
Introduction to Programming

Lecture Number:



What is Programming

 Programming is to instruct the computer on 

what it has to do in a language that the 

computer understands.

 Programming must be done in a 

programming language, most preferably it 

should be the binary language as computers 

work on 1’s and 0’s which is called machine 

or some times ‘object’ code.



Machine Code

 An example machine code could be: 

1011001101010101 (Add two numbers)

1111001100110101 (Subtract two numbers)

1111000011110000 (Multiply two numbers)

It clearly is not memorisable or understandable

by the human being so we need an alternative!



Assembly Language

 As an alternative the binary sequences of numbers 

were represented by simple english keywords:

1011001101010101 (ADD)

1111001100110101 (SUB)

1111000011110000 (MUL)

This is relatively easier as compared to the machine 

language, however modern applications need much 

higher levels of abstraction.



The need for High level languages

 ADD,SUB, MUL etc are usually limited to a 
specific maximum number of bits, we need 
generic coding schemes where we can 
concentrate on the logic instead of memory 
constraints.

 ADD might be SUM or ADDA in other 
machines, we needed a machine and 
platform independent solution so a single 
language could suffice for all machines. 



High-level Languages

 High level languages came into being solving 
various glitches (issues) that machine and 
assembly languages had.

 Examples of high-level languages are:

C++, Java, Visual Basic, Visual C#, etc

 However, High level languages are not 
understandable by the machines so we need 
an interpreter, also called a compiler.



Compiler

 A compiler is a piece of software that 

translates high level language into machine 

or binary code.

 Every language has a specific style or way, 

called its syntax, just like there’s grammar in 

human languages.

 Compiler also checks for any syntax errors in 

our ‘code’.



The Compile process

Programmer Writes High-level Code

Compiler checks for code validity

Translated to machine code



Examples of Compilers

 Microsoft Visual Studio

 Borland C++

 Bloodshed Dev C++ 



What happens after compiling?

 Once the object-code/Machine-code is generated, 

another process called ‘Linking’ is done, which 

means to link any pre-available libraries with our 

code.

 A library is a collection of modules or functions made 

by other programmers for later reuse.

 Different languages have different ways of 

expressing libraries, like in C++ they’re represented 

by .lib extension.



What happens after Linking?

 Loading!

 The program after linking is put into Main 

Memory (RAM).

 Execution is the next step

 The RAM acts like a conveyer belt for the 

processor which actually executes the code.



Building the Program Logic

 Before writing a program, we need to plan 

the flow of the program

 Pseudo-code and flow-charts are two 

general tools that help in planning for a 

program



Pseudo-code & Flow Charts

 Pseudo-code (As the name suggests, pseudo-code generally does not actually 

obey the syntax rules of any particular language; there is no systematic standard form. Usually natural 

language sentences could be used in the pseudo-code to explain the mechanism)

– Informal language used to develop algorithms

– Similar to a Natural Language

– Not actually executed on computers 

– Allows us to “think out” a program before writing 

the code

– Easy to convert into a program

http://en.wikipedia.org/wiki/Syntax


Pseudo-code & Flow Charts

 Flow Charts
– Flow Charts are a graphical representation, 

usually considered more understandable

– Drawn using certain special-purpose symbols, as 

described next



Pseudo-code & Flow Charts

 Oval symbol OR small circle

– indicates beginning or end of a program, 

or a section of code

 Arrows called flow-lines

– Indicate the flow of program



Pseudo-code & Flow Charts

 Rectangle symbol (action symbol)

– Indicates any type of action.

 Diamond

– Indicates Decision

add grade to total

grade >= 60



Today we studied

 What is Computer Programming?

 Machine, Assembly and High-Level language

 Compilers

 The program planning process


