
CHAPTER 9

9.1. A point charge,Q = −0.3µC andm = 3×10−16 kg, is moving through the field E = 30 az V/m. Use
Eq. (1) and Newton’s laws to develop the appropriate differential equations and solve them, subject to
the initial conditions at t = 0: v = 3 × 105 ax m/s at the origin. At t = 3µs, find:

a) the position P(x, y, z) of the charge: The force on the charge is given by F = qE, and Newton’s
second law becomes:

F = ma = md
2z
dt2

= qE = (−0.3 × 10−6)(30 az)

describing motion of the charge in the z direction. The initial velocity in x is constant, and so no
force is applied in that direction. We integrate once:

dz

dt
= vz = qE

m
t + C1

The initial velocity along z, vz(0) is zero, and so C1 = 0. Integrating a second time yields the z
coordinate:

z = qE

2m
t2 + C2

The charge lies at the origin at t = 0, and so C2 = 0. Introducing the given values, we find

z = (−0.3 × 10−6)(30)

2 × 3 × 10−16 t2 = −1.5 × 1010t2 m

At t = 3 µs, z = −(1.5 × 1010)(3 × 10−6)2 = −.135 cm. Now, considering the initial constant
velocity in x, the charge in 3µs attains an x coordinate of x = vt = (3×105)(3×10−6) = .90 m.
In summary, at t = 3 µs we have P(x, y, z) = (.90, 0,−.135).

b) the velocity, v: After the first integration in part a, we find

vz = qE

m
t = −(3 × 1010)(3 × 10−6) = −9 × 104 m/s

Including the intial x-directed velocity, we finally obtain v = 3 × 105 ax − 9 × 104az m/s.

c) the kinetic energy of the charge: Have

K.E. = 1

2
m|v|2 = 1

2
(3 × 10−16)(1.13 × 105)2 = 1.5 × 10−5 J

9.2. A point charge,Q = −0.3µC andm = 3×10−16 kg, is moving through the field B = 30az mT. Make
use of Eq. (2) and Newton’s laws to develop the appropriate differential equations, and solve them,
subject to the initial condition at t = 0, v = 3 × 105 m/s at the origin. Solve these equations (perhaps
with the help of an example given in Section 7.5) to evaluate at t = 3µs: a) the position P(x, y, z) of
the charge; b) its velocity; c) and its kinetic energy:

We begin by visualizing the problem. Using F = qv × B, we find that a positive charge moving along
positive ax , would encounter the z-directed B field and be deflected into the negative y direction.
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9.2 (continued) Motion along negative y through the field would cause further deflection into the negative
x direction. We can construct the differential equations for the forces in x and in y as follows:

Fxax = mdvx
dt

ax = qvyay × Baz = qBvyax

Fyay = mdvy
dt

ay = qvxax × Baz = −qBvxay

or
dvx

dt
= qB

m
vy (1)

and
dvy

dt
= −qB

m
vx (2)

To solve these equations, we first differentiate (2) with time and substitute (1), obtaining:

d2vy

dt2
= −qB

m

dvx

dt
= −

(
qB

m

)2

vy

Therefore, vy = A sin(qBt/m)+A′ cos(qBt/m). However, at t = 0, vy = 0, and so A′ = 0, leaving
vy = A sin(qBt/m). Then, using (2),

vx = − m

qB

dvy

dt
= −A cos

(
qBt

m

)

Now at t = 0, vx = vx0 = 3 × 105. Therefore A = −vx0, and so vx = vx0 cos(qBt/m), and
vy = −vx0 sin(qBt/m). The positions are then found by integrating vx and vy over time:

x(t) =
∫
vx0 cos

(
qBt

m

)
dt + C = mvx0

qB
sin

(
qBt

m

)
+ C

where C = 0, since x(0) = 0. Then

y(t) =
∫

−vx0 sin

(
qBt

m

)
dt +D = mvx0

qB
cos

(
qBt

m

)
+D

We require that y(0) = 0, so D = −(mvx0)/(qB), and finally y(t) = −mvx0/qB [1 − cos (qBt/m)].
Summarizing, we have, using q = −3×10−7 C,m = 3×10−16 kg,B = 30×10−3 T, and vx0 = 3×105

m/s:

x(t) = mvx0

qB
sin

(
qBt

m

)
= −10−2 sin(−3 × 10−7t) m

y(t) = −mvx0

qB

[
1 − cos

(
qBt

m

)]
= 10−2[1 − cos(−3 × 107t)] m

vx(t) = vx0 cos

(
qBt

m

)
= 3 × 105 cos(−3 × 107t) m/s

vy(t) = −vx0 sin

(
qBt

m

)
= −3 × 105 sin(−3 × 107t) m/s
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9.2 (continued) The answers are now:

a) At t = 3 × 10−6 s, x = 8.9 mm, y = 14.5 mm, and z = 0.

b) At t = 3 × 10−6 s, vx = −1.3 × 105 m/s, vy = 2.7 × 105 m/s, and so

v(t = 3µs) = −1.3 × 105ax + 2.7 × 105ay m/s

whose magnitude is v = 3 × 105 m/s as would be expected.

c) Kinetic energy is K.E. = (1/2)mv2 = 1.35 µJ at all times.

9.3. A point charge for which Q = 2 × 10−16 C and m = 5 × 10−26 kg is moving in the combined fields
E = 100ax − 200ay + 300az V/m and B = −3ax + 2ay − az mT. If the charge velocity at t = 0 is
v(0) = (2ax − 3ay − 4az)× 105 m/s:

a) give the unit vector showing the direction in which the charge is accelerating at t = 0: Use
F(t = 0) = q[E + (v(0)× B)], where

v(0)× B = (2ax − 3ay − 4az)105 × (−3ax + 2ay − az)10−3 = 1100ax + 1400ay − 500az

So the force in newtons becomes

F(0) = (2×10−16)[(100+1100)ax+(1400−200)ay+(300−500)az] = 4×10−14[6ax+6ay−az]

The unit vector that gives the acceleration direction is found from the force to be

aF = 6ax + 6ay − az√
73

= .70ax + .70ay − .12az

b) find the kinetic energy of the charge at t = 0:

K.E. = 1

2
m|v(0)|2 = 1

2
(5 × 10−26 kg)(5.39 × 105 m/s)2 = 7.25 × 10−15 J = 7.25 fJ

9.4. An electron (qe = −1.60219 × 10−19 C, m = 9.10956 × 10−31 kg) is moving at a constant velocity
v = 4.5 × 107ay m/s along the negative y axis. At the origin it encounters the uniform magnetic field
B = 2.5az mT, and remains in it up to y = 2.5 cm. If we assume (with good accuracy) that the electron
remains on the y axis while it is in the magnetic field, find its x-, y-, and z-coordinate values when
y = 50 cm: The procedure is to find the electron velocity as it leaves the field, and then determine its
coordinates at the time corresponding to y = 50 cm. The force it encounters while in the field is

F = qv × B = (−1.60219 × 10−19)(4.5 × 107)(2.5 × 10−3)(ay × az) = −1.80 × 10−14ax N

This force will be constant during the time the electron traverses the field. It establishes a negative
x-directed velocity as it leaves the field, given by the acceleration times the transit time, tt :

vx = F tt

m
=
( −1.80 × 1014 N

9.10956 × 10−31 kg

)(
2.5 × 10−2 m

4.5 × 107 m/s

)
= −1.09 × 107 m/s
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9.4 (continued) The time for the electron to travel along y between 2.5 and 50 cm is

t50 = (50 − 2.5)× 10−2

4.5 × 107 = 1.06 × 10−8 s

In that time, the electron moves to an x coordinate given by

x = vxt50 = −(1.09 × 107)(1.06 × 10−8) = −.115 m

The coordinates at the time the electron reaches y = 50 cm are then:

x = −11.5 cm, y = 50 cm, z = 0

9.5. A rectangular loop of wire in free space joins points A(1, 0, 1) to B(3, 0, 1) to C(3, 0, 4) toD(1, 0, 4)
toA. The wire carries a current of 6 mA, flowing in the az direction from B toC. A filamentary current
of 15 A flows along the entire z axis in the az direction.

a) Find F on side BC:

FBC =
∫ C

B

IloopdL × Bfrom wire at BC

Thus

FBC =
∫ 4

1
(6 × 10−3) dz az × 15µ0

2π(3)
ay = −1.8 × 10−8ax N = −18ax nN

b) Find F on sideAB: The field from the long wire now varies with position along the loop segment.
We include that dependence and write

FAB =
∫ 3

1
(6 × 10−3) dx ax × 15µ0

2πx
ay = 45 × 10−3

π
µ0 ln 3 az = 19.8az nN

c) Find Ftotal on the loop: This will be the vector sum of the forces on the four sides. Note that by
symmetry, the forces on sides AB and CD will be equal and opposite, and so will cancel. This
leaves the sum of forces on sides BC (part a) and DA, where

FDA =
∫ 4

1
−(6 × 10−3) dz az × 15µ0

2π(1)
ay = 54ax nN

The total force is then Ftotal = FDA + FBC = (54 − 18)ax = 36 ax nN

9.6 The magnetic flux density in a region of free space is given by B = −3xax + 5yay − 2zaz T. Find
the total force on the rectangular loop shown in Fig. 9.15 if it lies in the plane z = 0 and is bounded
by x = 1, x = 3, y = 2, and y = 5, all dimensions in cm: First, note that in the plane z = 0, the z
component of the given field is zero, so will not contribute to the force. We use

F =
∫
loop

IdL × B

which in our case becomes, with I = 30 A:

F =
∫ .03

.01
30dxax × (−3xax + 5y|y=.02 ay)+

∫ .05

.02
30dyay × (−3x|x=.03 ax + 5yay)

+
∫ .01

.03
30dxax × (−3xax + 5y|y=.05 ay)+

∫ .02

.05
30dyay × (−3x|x=.01 ax + 5yay)
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9.6. (continued) Simplifying, this becomes

F =
∫ .03

.01
30(5)(.02) az dx +

∫ .05

.02
−30(3)(.03)(−az) dy

+
∫ .01

.03
30(5)(.05) az dx +

∫ .02

.05
−30(3)(.01)(−az) dy = (.060 + .081 − .150 − .027)az N

= −36 az mN

9.7. Uniform current sheets are located in free space as follows: 8az A/m at y = 0, −4az A/m at y = 1,
and −4az A/m at y = −1. Find the vector force per meter length exerted on a current filament carrying
7 mA in the aL direction if the filament is located at:

a) x = 0, y = 0.5, and aL = az: We first note that within the region −1 < y < 1, the magnetic
fields from the two outer sheets (carrying −4az A/m) cancel, leaving only the field from the center
sheet. Therefore, H = −4ax A/m (0 < y < 1) and H = 4ax A/m (−1 < y < 0). Outside
(y > 1 and y < −1) the fields from all three sheets cancel, leaving H = 0 (y > 1, y < −1). So
at x = 0, y = .5, the force per meter length will be

F/m = Iaz × B = (7 × 10−3)az × −4µ0ax = −35.2ay nN/m

b.) y = 0.5, z = 0, and aL = ax : F/m = Iax × −4µ0ax = 0.

c) x = 0, y = 1.5, aL = az: Since y = 1.5, we are in the region in which B = 0, and so the force is
zero.

9.8. Filamentary currents of −25az and 25az A are located in the x = 0 plane in free space at y = −1 and
y = 1m respectively. A third filamentary current of 10−3az A is located at x = k, y = 0. Find the
vector force on a 1-m length of the 1-mA filament and plot |F| versus k: The total B field arising from
the two 25A filaments evaluated at the location of the 1-mA filament is, in cartesian components:

B = 25µ0

2π(1 + k2)
(kay + ax)︸ ︷︷ ︸

line at y=+1

+ 25µ0

2π(1 + k2)
(−kay + ax)︸ ︷︷ ︸

line at y=−1

= 25µ0ax
π(1 + k2)

The force on the 1m length of 1-mA line is now

F = 10−3(1)az × 25µ0ax
π(1 + k2)

= (2.5 × 10−2)(4 × 10−7)

(1 + k2)
ay = 10−8ay

(1 + k2)
ay N = 10ay

(1 + k2)
nN
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9.9. A current of −100az A/m flows on the conducting cylinder ρ = 5 mm and +500az A/m is present
on the conducting cylinder ρ = 1 mm. Find the magnitude of the total force acting to split the outer
cylinder apart along its length: The differential force acting on the outer cylinder arising from the field
of the inner cylinder is dF = Kouter × B, where B is the field from the inner cylinder, evaluated at the
outer cylinder location:

B = 2π(1)(500)µ0

2π(5)
aφ = 100µ0 aφ T

Thus dF = −100az × 100µ0aφ = 104µ0aρ N/m2. We wish to find the force acting to split the outer
cylinder, which means we need to evaluate the net force in one cartesian direction on one half of the
cylinder. We choose the “upper” half (0 < φ < π), and integrate the y component of dF over this
range, and over a unit length in the z direction:

Fy =
∫ 1

0

∫ π

0
104µ0aρ · ay(5 × 10−3) dφ dz =

∫ π

0
50µ0 sin φ dφ = 100µ0 = 4π × 10−5 N/m

Note that we did not include the “self force” arising from the outer cylinder’s B field on itself. Since the
outer cylinder is a two-dimensional current sheet, its field exists only just outside the cylinder, and so no
force exists. If this cylinder possessed a finite thickness, then we would need to include its self-force,
since there would be an interior field and a volume current density that would spatially overlap.

9.10. Two infinitely-long parallel filaments each carry 50 A in the az direction. If the filaments lie in the
plane y = 0 at x = 0 and x = 5mm (note bad wording in problem statement in book), find the vector
force per meter length on the filament passing through the origin: The force will be

F =
∫ 1

0
IdL × B

where IdL is that of the filament at the origin, and B is that arising from the filament at x = 5mm
evaluated at the location of the other filament (along the z axis). We obtain

F =
∫ 1

0
50 dzaz × −50µ0ay

2π(5 × 10−3)
= 0.10 ax N/m

9.11. a) Use Eq. (14), Sec. 9.3, to show that the force of attraction per unit length between two filamentary
conductors in free space with currents I1az at x = 0, y = d/2, and I2az at x = 0, y = −d/2, is
µ0I1I2/(2πd): The force on I2 is given by

F2 = µ0
I1I2

4π

∮ [∮
aR12 × dL1

R2
12

]
× dL2

Let z1 indicate the z coordinate along I1, and z2 indicate the z coordinate along I2. We then have
R12 =

√
(z2 − z1)2 + d2 and

aR12 = (z2 − z1)az − day√
(z2 − z1)2 + d2

Also, dL1 = dz1az and dL2 = dz2az The “inside” integral becomes:∮
aR12 × dL1

R2
12

=
∮

[(z2 − z1)az − day] × dz1az
[(z2 − z1)2 + d2]1.5

=
∫ ∞

−∞
−d dz1 ax

[(z2 − z1)2 + d2]1.5
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9.11a. (continued) The force expression now becomes

F2 = µ0
I1I2

4π

∮ [∫ ∞

−∞
−d dz1 ax

[(z2 − z1)2 + d2]1.5
× dz2az

]
= µ0

I1I2

4π

∫ 1

0

∫ ∞

−∞
d dz1 dz2 ay

[(z2 − z1)2 + d2]1.5

Note that the “outside” integral is taken over a unit length of current I2. Evaluating, obtain,

F2 = µ0
I1I2d ay

4πd2 (2)
∫ 1

0
dz2 = µ0I1I2

2πd
ay N/m

as expected.

b) Show how a simpler method can be used to check your result: We use dF2 = I2dL2 × B12, where
the field from current 1 at the location of current 2 is

B12 = µ0I1

2πd
ax T

so over a unit length of I2, we obtain

F2 = I2az × µ0I1

2πd
ax = µ0

I1I2

2πd
ay N/m

This second method is really just the first over again, since we recognize the inside integral of the
first method as the Biot-Savart law, used to find the field from current 1 at the current 2 location.

9.12. A conducting current strip carrying K = 12azA/m lies in the x = 0 plane between y = 0.5 and y = 1.5
m. There is also a current filament of I = 5 A in the az direction on the z axis. Find the force exerted
on the:

a) filament by the current strip: We first need to find the field from the current strip at the filament
location. Consider the strip as made up of many adjacent strips of width dy, each carrying
current dIaz = Kdy. The field along the z axis from each differential strip will be dB =
[(Kdyµ0)/(2πy)]ax . The total B field from the strip evaluated along the z axis is therefore

B =
∫ 1.5

0.5

12µ0ax
2πy

dy = 6µ0

π
ln

(
1.5

0.5

)
ax = 2.64 × 10−6ax Wb/m2

Now

F =
∫ 1

0
IdL × B =

∫ 1

0
5dz az × 2.64 × 10−6 ax dz = 13.2 ay µN/m

b) strip by the filament: In this case we integrate K ×B over a unit length in z of the strip area, where
B is the field from the filament evaluated on the strip surface:

F =
∫
Area

K × B da =
∫ 1

0

∫ 1.5

0.5
12az × −5µ0ax

2πy
dy = −30µ0

π
ln(3) ay = −13.2 ay µN/m
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9.13. A current of 6A flows from M(2, 0, 5) to N(5, 0, 5) in a straight solid conductor in free space. An
infinite current filament lies along the z axis and carries 50A in the az direction. Compute the vector
torque on the wire segment using:

a) an origin at (0, 0, 5): The B field from the long wire at the short wire is B = (µ0Izay)/(2πx) T.
Then the force acting on a differential length of the wire segment is

dF = IwdL × B = Iwdx ax × µ0Iz

2πx
ay = µ0IwIz

2πx
dx az N

Now the differential torque about (0, 0, 5) will be

dT = RT × dF = xax × µ0IwIz

2πx
dx az = −µ0IwIz

2π
dx ay

The net torque is now found by integrating the differential torque over the length of the wire
segment:

T =
∫ 5

2
−µ0IwIz

2π
dx ay = −3µ0(6)(50)

2π
ay = −1.8 × 10−4 ay N · m

b) an origin at (0, 0, 0): Here, the only modification is in RT , which is now RT = x ax + 5 az So
now

dT = RT × dF = [
xax + 5az

]× µ0IwIz

2πx
dx az = −µ0IwIz

2π
dx ay

Everything from here is the same as in part a, so again, T = −1.8 × 10−4 ay N · m.

c) an origin at (3, 0, 0): In this case, RT = (x − 3)ax + 5az, and the differential torque is

dT = [
(x − 3)ax + 5az

]× µ0IwIz

2πx
dx az = −µ0IwIz(x − 3)

2πx
dx ay

Thus

T =
∫ 5

2
−µ0IwIz(x − 3)

2πx
dx ay = −6.0 × 10−5

[
3 − 3 ln

(
5

2

)]
ay = −1.5 × 10−5 ay N · m

9.14. The rectangular loop of Prob. 6 is now subjected to the B field produced by two current sheets,
K1 = 400 ay A/m at z = 2, and K2 = 300 az A/m at y = 0 in free space. Find the vector torque on the
loop, referred to an origin:

a) at (0,0,0): The fields from both current sheets, at the loop location, will be negative x-directed.
They will add together to give, in the loop plane:

B = −µ0

(
K1

2
+ K2

2

)
ax = −µ0(200 + 150) ax = −350µ0 ax Wb/m2

With this field, forces will be acting only on the wire segments that are parallel to the y axis. The
force on the segment nearer to the y axis will be

F1 = IL × B = −30(3 × 10−2)ay × −350µ0ax = −315µ0 az N
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9.14a (continued) The force acting on the segment farther from the y axis will be

F2 = IL × B = 30(3 × 10−2)ay × −350µ0ax = 315µ0 az N

The torque about the origin is now T = R1 × F1 + R2 × F2, where R1 is the vector directed from the
origin to the midpoint of the nearer y-directed segment, and R2 is the vector joining the origin to the
midpoint of the farther y-directed segment. So R1(cm) = ax + 3.5ay and R2(cm) = 3ax + 3.5ay .
Therefore

T0,0,0 = [(ax + 3.5ay)× 10−2] × −315µ0 az + [(3ax + 3.5ay)× 10−2] × 315µ0 az

= −6.30µ0ay = −7.92 × 10−6 ay N−m

b) at the center of the loop: Use T = IS × B where S = (2 × 3)× 10−4 az m2. So

T = 30(6 × 10−4az)× (−350µ0 ax) = −7.92 × 10−6 ay N−m

9.15. A solid conducting filament extends from x = −b to x = b along the line y = 2, z = 0. This filament
carries a current of 3 A in the ax direction. An infinite filament on the z axis carries 5 A in the az
direction. Obtain an expression for the torque exerted on the finite conductor about an origin located
at (0, 2, 0): The differential force on the wire segment arising from the field from the infinite wire is

dF = 3 dx ax × 5µ0

2πρ
aφ = −15µ0 cosφ dx

2π
√
x2 + 4

az = − 15µ0x dx

2π(x2 + 4)
az

So now the differential torque about the (0, 2, 0) origin is

dT = RT × dF = x ax × − 15µ0x dx

2π(x2 + 4)
az = 15µ0x

2 dx

2π(x2 + 4)
ay

The torque is then

T =
∫ b

−b
15µ0x

2 dx

2π(x2 + 4)
ay = 15µ0

2π
ay
[
x − 2 tan−1

(x
2

)]b
−b

= (6 × 10−6)

[
b − 2 tan−1

(
b

2

)]
ay N · m

9.16. Assume that an electron is describing a circular orbit of radius a about a positively-charged nucleus.
a) By selecting an appropriate current and area, show that the equivalent orbital dipole moment is
ea2ω/2, where ω is the electron’s angular velocity: The current magnitude will be I = e

T
, where

e is the electron charge and T is the orbital period. The latter is T = 2π/ω, and so I = eω/(2π).
Now the dipole moment magnitude will be m = IA, where A is the loop area. Thus

m = eω

2π
πa2 = 1

2
ea2ω //

b) Show that the torque produced by a magnetic field parallel to the plane of the orbit is ea2ωB/2:
With B assumed constant over the loop area, we would have T = m × B. With B parallel to the
loop plane, m and B are orthogonal, and so T = mB. So, using part a, T = ea2ωB/2.
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9.16. (continued)
c) by equating the Coulomb and centrifugal forces, show that ω is (4πε0mea

3/e2)−1/2, whereme is
the electron mass: The force balance is written as

e2

4πε0a2 = meω2a ⇒ ω =
(

4πε0mea
3

e2

)−1/2

//

d) Find values for the angular velocity, torque, and the orbital magnetic moment for a hydrogen atom,
where a is about 6 × 10−11 m; let B = 0.5 T: First

ω =
[

(1.60 × 10−19)2

4π(8.85 × 10−12)(9.1 × 10−31)(6 × 10−11)3

]1/2

= 3.42 × 1016 rad/s

T = 1

2
(3.42 × 1016)(1.60 × 10−19)(0.5)(6 × 10−11)2 = 4.93 × 10−24 N · m

Finally,

m = T

B
= 9.86 × 10−24 A · m2

9.17. The hydrogen atom described in Problem 16 is now subjected to a magnetic field having the same
direction as that of the atom. Show that the forces caused by B result in a decrease of the angular
velocity by eB/(2me) and a decrease in the orbital moment by e2a2B/(4me). What are these decreases
for the hydrogen atom in parts per million for an external magnetic flux density of 0.5 T? We first write
down all forces on the electron, in which we equate its coulomb force toward the nucleus to the sum
of the centrifugal force and the force associated with the applied B field. With the field applied in the
same direction as that of the atom, this would yield a Lorentz force that is radially outward – in the
same direction as the centrifugal force.

Fe = Fcent + FB ⇒ e2

4πε0a2 = meω2a + eωaB︸ ︷︷ ︸
QvB

With B = 0, we solve for ω to find:

ω = ω0 =
√

e2

4πε0mea3

Then with B present, we find

ω2 = e2

4πε0mea3 − eωB

me
= ω2

0 − eωB

me

Therefore

ω = ω0

√
1 − eωB

ω2
0me

.= ω0

(
1 − eωB

2ω2
0me

)

But ω
.= ω0, and so

ω
.= ω0

(
1 − eB

2ω0me

)
= ω0 − eB

2me
//
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9.17. (continued) As for the magnetic moment, we have

m = IS = eω

2π
πa2 = 1

2
ωea2 .= 1

2
ea2

(
ω0 − eB

2me

)
= 1

2
ω0ea

2 − 1

4

e2a2B

me
//

Finally, for a = 6 × 10−11 m, B = 0.5 T, we have

1ω

ω
= eB

2me

1

ω

.= eB

2me

1

ω0
= 1.60 × 10−19 × 0.5

2 × 9.1 × 10−31 × 3.4 × 1016 = 1.3 × 10−6

where ω0 = 3.4 × 1016 sec−1 is found from Problem 16. Finally,

1m

m
= e2a2B

4me
× 2

ωea2
.= eB

2meω0
= 1.3 × 10−6

9.18. Calculate the vector torque on the square loop shown in Fig. 9.16 about an origin at A in the field B,
given:

a) A(0, 0, 0) and B = 100ay mT: The field is uniform and so does not produce any translation of the
loop. Therefore, we may use T = IS × B about any origin, where I = 0.6 A and S = 16az m2.
We find T = 0.6(16)az × 0.100ay = −0.96 ax N−m.

b) A(0, 0, 0) and B = 200ax + 100ay mT: Using the same reasoning as in part a, we find

T = 0.6(16)az × (0.200ax + 0.100ay) = −0.96ax + 1.92ay N−m

c) A(1, 2, 3) and B = 200ax +100ay −300az mT: We observe two things here: 1) The field is again
uniform and so again the torque is independent of the origin chosen, and 2) The field differs from
that of part b only by the addition of a z component. With S in the z direction, this new component
of B will produce no torque, so the answer is the same as part b, or T = −0.96ax + 1.92ay N−m.

d) A(1, 2, 3) and B = 200ax + 100ay − 300az mT for x ≥ 2 and B = 0 elsewhere: Now, force
is acting only on the y-directed segment at x = +2, so we need to be careful, since translation
will occur. So we must use the given origin. The differential torque acting on the differential wire
segment at location (2,y) is dT = R(y)× dF, where

dF = IdL × B = 0.6 dy ay × [0.2ax + 0.1ay − 0.3az] = [−0.18ax − 0.12az] dy

and R(y) = (2, y, 0)− (1, 2, 3) = ax + (y − 2)ay − 3az. We thus find

dT = R(y)× dF = [
ax + (y − 2)ay − 3az

]× [−0.18ax − 0.12az] dy

= [−0.12(y − 2)ax + 0.66ay + 0.18(y − 2)az
]
dy

The net torque is now

T =
∫ 2

−2

[−0.12(y − 2)ax + 0.66ay + 0.18(y − 2)az
]
dy = 0.96ax + 2.64ay − 1.44az N−m
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9.19. Given a material for which χm = 3.1 and within which B = 0.4yaz T, find:
a) H: We use B = µ0(1 + χm)H, or

H = 0.4yay
(1 + 3.1)µ0

= 77.6yaz kA/m

b) µ = (1 + 3.1)µ0 = 5.15 × 10−6 H/m.

c) µR = (1 + 3.1) = 4.1.

d) M = χmH = (3.1)(77.6yay) = 241yaz kA/m

e) J = ∇ × H = (dHz)/(dy) ax = 77.6 ax kA/m2.

f) Jb = ∇ × M = (dMz)/(dy) ax = 241 ax kA/m2.

g) JT = ∇ × B/µ0 = 318ax kA/m2.

9.20. Find H in a material where:
a) µR = 4.2, there are 2.7 × 1029 atoms/m3, and each atom has a dipole moment of 2.6 × 10−30 ay

A · m2. Since all dipoles are identical, we may write M = Nm = (2.7×1029)(2.6×10−30ay) =
0.70ay A/m. Then

H = M
µR − 1

= 0.70 ay
4.2 − 1

= 0.22 ay A/m

b) M = 270 az A/m and µ = 2 µH/m: Have µR = µ/µ0 = (2 × 10−6)/(4π × 10−7) = 1.59.
Then H = 270az/(1.59 − 1) = 456 az A/m.

c) χm = 0.7 and B = 2az T: Use

H = B
µ0(1 + χm) = 2az

(4π × 10−7)(1.7)
= 936 az kA/m

d) Find M in a material where bound surface current densities of 12 az A/m and −9 az A/m exist at
ρ = 0.3 m and ρ = 0.4 m, respectively: We use

∮
M · dL = Ib, where, since currents are in the

z direction and are symmetric about the z axis, we chose the path integrals to be circular loops
centered on and normal to z. From the symmetry, M will be φ-directed and will vary only with
radius. Note first that for ρ < 0.3 m, no bound current will be enclosed by a path integral, so we
conclude that M = 0 for ρ < 0.3m. At radii between the currents the path integral will enclose
only the inner current so,∮

M · dL = 2πρMφ = 2π(0.3)12 ⇒ M = 3.6

ρ
aφ A/m (0.3 < ρ < 0.4m)

Finally, for ρ > 0.4 m, the total enclosed bound current is Ib,tot = 2π(0.3)(12)−2π(0.4)(9) = 0,
so therefore M = 0 (ρ > 0.4m).

9.21. Find the magnitude of the magnetization in a material for which:
a) the magnetic flux density is 0.02 Wb/m2 and the magnetic susceptibility is 0.003 (note that this

latter quantity is missing in the original problem statement): From B = µ0(H + M) and from
M = χmH, we write

M = B

µ0

(
1

χm
+ 1

)−1

= B

µ0(334)
= 0.02

(4π × 10−7)(334)
= 47.7 A/m
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9.21b) the magnetic field intensity is 1200A/m and the relative permeability is 1.005: From B = µ0(H+M) =
µ0µRH, we write

M = (µR − 1)H = (.005)(1200) = 6.0 A/m

c) there are 7.2 × 1028 atoms per cubic meter, each having a dipole moment of 4 × 10−30 A · m2 in
the same direction, and the magnetic susceptibility is 0.0003: With all dipoles identical the dipole
moment density becomes

M = nm = (7.2 × 1028)(4 × 10−30) = 0.288 A/m

9.22. Three current sheets are located as follows: 160az A/m at x = 1cm, −40az A/m at x = 5cm, and 50az
A/m at x = 8cm. Let µ = µ0 for x < 1cm and x > 8cm; for 1 < x < 5 cm, µ = 3µ0, and for
5 < x < 8cm, µ = 2µ0. Find B everywhere: We know that the H field from an infinite current sheet
will be given in magnitude by H = K/2, and will be directed parallel to the sheet and perpendicular
to the current, with the directions on either side of the sheet determined by the right hand rule. With
this in mind, we can construct the following expressions for the B field in all four regions:

B(x < 1) = 1

2
µ0(−160 + 40 − 50) = −1.07 × 10−4 ay T

B(1 < x < 5) = 1

2
(3µ0)(160 + 40 − 50) = 2.83 × 10−4 ay T

B(5 < x < 8) = 1

2
(2µ0)(160 − 40 − 50) = 8.80 × 10−5 ay T

B(x > 8) = 1

2
µ0(160 − 40 + 50) = 1.07 × 10−4 ay T

9.23. Calculate values for Hφ , Bφ , and Mφ at ρ = c for a coaxial cable with a = 2.5 mm and b = 6 mm
if it carries current I = 12 A in the center conductor, and µ = 3 µH/m for 2.5 < ρ < 3.5 mm,
µ = 5 µH/m for 3.5 < ρ < 4.5 mm, and µ = 10 µH/m for 4.5 < ρ < 6 mm. Compute for:

a) c = 3 mm: Have

Hφ = I

2πρ
= 12

2π(3 × 10−3)
= 637 A/m

Then Bφ = µHφ = (3 × 10−6)(637) = 1.91 × 10−3 Wb/m2.

Finally,Mφ = (1/µ0)Bφ −Hφ = 884 A/m.

b) c = 4 mm: Have

Hφ = I

2πρ
= 12

2π(4 × 10−3)
= 478 A/m

Then Bφ = µHφ = (5 × 10−6)(478) = 2.39 × 10−3 Wb/m2.

Finally,Mφ = (1/µ0)Bφ −Hφ = 1.42 × 103 A/m.

c) c = 5 mm: Have

Hφ = I

2πρ
= 12

2π(5 × 10−3)
= 382 A/m

Then Bφ = µHφ = (10 × 10−6)(382) = 3.82 × 10−3 Wb/m2.

Finally,Mφ = (1/µ0)Bφ −Hφ = 2.66 × 103 A/m.
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9.24. A coaxial transmission line has a = 5 mm and b = 20 mm. Let its center lie on the z axis and let
a dc current I flow in the az direction in the center conductor. The volume between the conductors
contains a magnetic material for whichµR = 2.5, as well as air. Find H, B, and M everywhere between
conductors if Hφ = 600/π A/m at ρ = 10 mm, φ = π/2, and the magnetic material is located where:

a) a < ρ < 3a; First, we know that Hφ = I/2πρ, from which we construct:

I

2π(10−2)
= 600

π
⇒ I = 12 A

Since the interface between the two media lies in the aφ direction, we use the boundary condition
of continuity of tangential H and write

H(5 < ρ < 20) = 12

2πρ
aφ = 6

πρ
aφ A/m

In the magnetic material, we find

B(5 < ρ < 15) = µH = (2.5)(4π × 10−7)(12)

2πρ
aφ = (6/ρ)aφ µT

Then, in the free space region, B(15 < ρ < 20) = µ0H = (2.4/ρ)aφ µT.

b) 0 < φ < π ; Again, we are given H = 600/π aφ A/m at ρ = 10 and at φ = π/2. Now, since
the interface between media lies in the aρ direction, and noting that magnetic field will be normal
to this (aφ directed), we use the boundary condition of continuity of B normal to an interface,
and write B(0 < φ < π) = B1 = B(π < φ < 2π) = B2, or 2.5µ0H1 = µ0H2. Now, using
Ampere’s circuital law, we write∮

H · dL = πρH1 + πρH2 = 3.5πρH1 = I

Using the given value for H1 at ρ = 10 mm, I = 3.5(600/π)(π × 10−2) = 21 A. Therefore,
H1 = 21/(3.5πρ) = 6/(πρ), or H(0 < φ < π) = 6/(πρ) aφ A/m. Then H2 = 2.5H1, or
H(π < φ < 2π) = 15/(πρ) aφ A/m. Now B(0 < φ < 2π) = 2.5µ0(6/(πρ))aφ = 6/ρ aφ µT.
Now, in general, M = (µR−1)H, and so M(0 < φ < π) = (2.5−1)6/(πρ)aφ = 9/(πρ) aφ A/m
and M(π < φ < 2π) = 0.

9.25. A conducting filament at z = 0 carries 12 A in the az direction. Let µR = 1 for ρ < 1 cm, µR = 6 for
1 < ρ < 2 cm, and µR = 1 for ρ > 2 cm. Find

a) H everywhere: This result will depend on the current and not the materials, and is:

H = I

2πρ
aφ = 1.91

ρ
A/m (0 < ρ <∞)

b) B everywhere: We use B = µRµ0H to find:

B(ρ < 1 cm) = (1)µ0(1.91/ρ) = (2.4 × 10−6/ρ)aφ T

B(1 < ρ < 2 cm) = (6)µ0(1.91/ρ) = (1.4 × 10−5/ρ)aφ T

B(ρ > 2 cm) = (1)µ0(1.91/ρ) = (2.4 × 10−6/ρ)aφ T where ρ is in meters.
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9.26. PointP(2, 3, 1) lies on the planar boundary boundary separating region 1 from region 2. The unit vector
aN12 = 0.6ax+0.48ay+0.64az is directed from region 1 to region 2. LetµR1 = 2,µR2 = 8, and H1 =
100ax − 300ay + 200az A/m. Find H2: First B1 = 200µ0ax − 600µ0ay + 400µ0az. Then its normal
component at the boundary will be B1N = (B1 ·aN12)aN12 = (52.8ax+42.24ay+56.32az)µ0 = B2N .
Then H2N = B2N/(8µ0) = 6.60ax + 5.28ay + 7.04az, and H1N = B1N/2µ0 = 26.40ax + 21.12ay +
28.16az. Now H1T = H1 − H1N = (100ax − 300ay + 200az)− (26.40ax + 21.12ay + 28.16az) =
73.60ax − 321.12ay + 171.84az = H2T .

Finally, H2 = H2N + H2T = 80.2ax − 315.8ay + 178.9az A/m.

9.27. LetµR1 = 2 in region 1, defined by 2x+3y−4z > 1, whileµR2 = 5 in region 2 where 2x+3y−4z < 1.
In region 1, H1 = 50ax − 30ay + 20az A/m. Find:

a) HN1 (normal component of H1 at the boundary): We first need a unit vector normal to the surface,
found through

aN = ∇ (2x + 3y − 4z)

|∇ (2x + 3y − 4z)| = 2ax + 3ay − 4az√
29

= .37ax + .56ay − .74az

Since this vector is found through the gradient, it will point in the direction of increasing values
of 2x + 3y − 4z, and so will be directed into region 1. Thus we write aN = aN21. The normal
component of H1 will now be:

HN1 = (H1 · aN21)aN21

= [
(50ax − 30ay + 20az) · (.37ax + .56ay − .74az)

]
(.37ax + .56ay − .74az)

= −4.83ax − 7.24ay + 9.66az A/m

b) HT 1 (tangential component of H1 at the boundary):

HT 1 = H1 − HN1

= (50ax − 30ay + 20az)− (−4.83ax − 7.24ay + 9.66az)

= 54.83ax − 22.76ay + 10.34az A/m

c) HT 2 (tangential component of H2 at the boundary): Since tangential components of H are con-
tinuous across a boundary between two media of different permeabilities, we have

HT 2 = HT 1 = 54.83ax − 22.76ay + 10.34az A/m

d) HN2 (normal component of H2 at the boundary): Since normal components of B are continuous
across a boundary between media of different permeabilities, we write µ1HN1 = µ2HN2 or

HN2 = µR1

µR2
HN1 = 2

5
(−4.83ax − 7.24ay + 9.66az) = −1.93ax − 2.90ay + 3.86az A/m

e) θ1, the angle between H1 and aN21: This will be

cos θ1 = H1

|H1| · aN21 =
[

50ax − 30ay + 20az
(502 + 302 + 202)1/2

]
· (.37ax + .56ay − .74az) = −0.21

Therefore θ1 = cos−1(−.21) = 102◦.
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9.27f) θ2, the angle between H2 and aN21: First,

H2 = HT 2 + HN2 = (54.83ax − 22.76ay + 10.34az)+ (−1.93ax − 2.90ay + 3.86az)

= 52.90ax − 25.66ay + 14.20az A/m

Now

cos θ2 = H2

|H2| · aN21 =
[

52.90ax − 25.66ay + 14.20az
60.49

]
· (.37ax + .56ay − .74az) = −0.09

Therefore θ2 = cos−1(−.09) = 95◦.

9.28. For values of B below the knee on the magnetization curve for silicon steel, approximate the curve by
a straight line with µ = 5 mH/m. The core shown in Fig. 9.17 has areas of 1.6 cm2 and lengths of 10
cm in each outer leg, and an area of 2.5 cm2 and a length of 3 cm in the central leg. A coil of 1200
turns carrying 12 mA is placed around the central leg. Find B in the:

a) center leg: We use mmf = 6R, where, in the central leg,

Rc = Lin

µAin
= 3 × 10−2

(5 × 10−3)(2.5 × 10−4)
= 2.4 × 104 H

In each outer leg, the reluctance is

Ro = Lout

µAout
= 10 × 10−2

(5 × 10−3)(1.6 × 10−4)
= 1.25 × 105 H

The magnetic circuit is formed by the center leg in series with the parallel combination of the two
outer legs. The total reluctance seen at the coil location is RT = Rc + (1/2)Ro = 8.65 × 104 H.
We now have

6 = mmf

RT
= 14.4

8.65 × 104 = 1.66 × 10−4 Wb

The flux density in the center leg is now

B = 6

A
= 1.66 × 10−4

2.5 × 10−4 = 0.666 T

b) center leg, if a 0.3-mm air gap is present in the center leg: The air gap reluctance adds to the total
reluctance already calculated, where

Rair = 0.3 × 10−3

(4π × 10−7)(2.5 × 10−4)
= 9.55 × 105 H

Now the total reluctance is Rnet = RT + Rair = 8.56 × 104 + 9.55 × 105 = 1.04 × 106. The
flux in the center leg is now

6 = 14.4

1.04 × 106 = 1.38 × 10−5 Wb

and

B = 1.38 × 10−5

2.5 × 10−4 = 55.3 mT
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9.29. In Problem 9.28, the linear approximation suggested in the statement of the problem leads to a flux
density of 0.666 T in the center leg. Using this value of B and the magnetization curve for silicon steel,
what current is required in the 1200-turn coil? With B = 0.666 T, we read Hin

.= 120 A · t/m in Fig.
9.11. The flux in the center leg is6 = 0.666(2.5 × 10−4) = 1.66 × 10−4 Wb. This divides equally in
the two outer legs, so that the flux density in each outer leg is

Bout =
(

1

2

)
1.66 × 10−4

1.6 × 10−4 = 0.52 Wb/m2

Using Fig. 9.11 with this result, we find Hout
.= 90 A · t/m We now use∮

H · dL = NI

to find

I = 1

N
(HinLin +HoutLout ) = (120)(3 × 10−2)+ (90)(10 × 10−2)

1200
= 10.5 mA

9.30. A toroidal core has a circular cross section of 4 cm2 area. The mean radius of the toroid is 6 cm. The
core is composed of two semi-circular segments, one of silicon steel and the other of a linear material
withµR = 200. There is a 4mm air gap at each of the two joints, and the core is wrapped by a 4000-turn
coil carrying a dc current I1.

a) Find I1 if the flux density in the core is 1.2 T: I will use the reluctance method here. Reluctances
of the steel and linear materials are respectively,

Rs = π(6 × 10−2)

(3.0 × 10−3)(4 × 10−4)
= 1.57 × 105 H−1

Rl = π(6 × 10−2)

(200)(4π × 10−7)(4 × 10−4)
= 1.88 × 106 H−1

whereµs is found from Fig. 9.11, usingB = 1.2, from whichH = 400, and soB/H = 3.0 mH/m.
The reluctance of each gap is now

Rg = 0.4 × 10−3

(4π × 10−7)(4 × 10−4)
= 7.96 × 105 H−1

We now construct

NI1 = 6R = 1.2(4 × 10−4)
[
Rs + Rl + 2Rg

] = 1.74 × 103

Thus I1 = (1.74 × 103)/4000 = 435 mA.
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9.30b. Find the flux density in the core if I1 = 0.3 A: We are not sure what to use for the permittivity of steel
in this case, so we use the iterative approach. Since the current is down from the value obtained in part
a, we can try B = 1.0 T and see what happens. From Fig. 9.11, we find H = 200 A/m. Then, in the
linear material,

Hl = 1.0

200(4π × 10−7)
= 3.98 × 103 A/m

and in each gap,

Hg = 1.0

4π × 10−7 = 7.96 × 105 A/m

Now Ampere’s circuital law around the toroid becomes

NI1 = π(.06)(200 + 3.98 × 103)+ 2(7.96 × 105)(4 × 10−4) = 1.42 × 103 A−t

Then I1 = (1.42 × 103)/4000 = .356 A. This is still larger than the given value of .3A, so we can
extrapolate down to find a better value for B:

B = 1.0 − (1.2 − 1.0)

[
.356 − .300

.435 − .356

]
= 0.86 T

Using this value in the procedure above to evaluate Ampere’s circuital law leads to a value of I1 of
0.306 A. The result of 0.86 T for B is probably good enough for this problem, considering the limited
resolution of Fig. 9.11.

9.31. A toroid is constructed of a magnetic material having a cross-sectional area of 2.5 cm2 and an effective
length of 8 cm. There is also a short air gap 0.25 mm length and an effective area of 2.8 cm2. An mmf
of 200 A · t is applied to the magnetic circuit. Calculate the total flux in the toroid if:

a) the magnetic material is assumed to have infinite permeability: In this case the core reluctance,
Rc = l/(µA), is zero, leaving only the gap reluctance. This is

Rg = d

µ0Ag
= 0.25 × 10−3

(4π × 10−7)(2.5 × 10−4)
= 7.1 × 105 H

Now

6 = mmf

¨g = 200

7.1 × 105
= 2.8 × 10−4 Wb

b) the magnetic material is assumed to be linear with µR = 1000: Now the core reluctance is no
longer zero, but

Rc = 8 × 10−2

(1000)(4π × 10−7)(2.5 × 10−4)
= 2.6 × 105 H

The flux is then

6 = mmf

Rc + Rg = 200

9.7 × 105
= 2.1 × 10−4 Wb

c) the magnetic material is silicon steel: In this case we use the magnetization curve, Fig. 9.11, and
employ an iterative process to arrive at the final answer. We can begin with the value of 6 found
in part a, assuming infinite permeability: 6(1) = 2.8 × 10−4 Wb. The flux density in the core
is then B(1)c = (2.8 × 10−4)/(2.5 × 10−4) = 1.1 Wb/m2. From Fig. 9.11, this corresponds to
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magnetic field strengthH(1)c
.= 270 A/m. We check this by applying Ampere’s circuital law to the

magnetic circuit: ∮
H · dL = H(1)c Lc +H(1)g d

whereH(1)c Lc = (270)(8×10−2) = 22, and whereH(1)g d = 6(1)¨g = (2.8×10−4)(7.1×105) =
199. But we require that ∮

H · dL = 200 A · t

whereas the actual result in this first calculation is 199 + 22 = 221, which is too high. So, for a
second trial, we reduce B to B(2)c = 1 Wb/m2. This yields H(2)c = 200 A/m from Fig. 9.11, and
thus 6(2) = 2.5 × 10−4 Wb. Now∮

H · dL = H(2)c Lc +6(2)Rg = 200(8 × 10−2)+ (2.5 × 10−4)(7.1 × 105) = 194

This is less than 200, meaning that the actual flux is slightly higher than 2.5 × 10−4 Wb.
I will leave the answer at that, considering the lack of fine resolution in Fig. 9.11.

9.32. Determine the total energy stored in a spherical region 1cm in radius, centered at the origin in free
space, in the uniform field:

a) H1 = −600ay A/m: First we find the energy density:

wm1 = 1

2
B1 · H1 = 1

2
µ0H

2
1 = 1

2
(4π × 10−7)(600)2 = 0.226 J/m3

The energy within the sphere is then

Wm1 = wm1

(
4

3
πa3

)
= 0.226

(
4

3
π × 10−6

)
= 0.947 µJ

b) H2 = 600ax + 1200ay A/m: In this case the energy density is

wm2 = 1

2
µ0

[
(600)2 + (1200)2

]
= 5

2
µ0(600)2

or five times the energy density that was found in part a. Therefore, the stored energy in this field
is five times the amount in part a, orWm2 = 4.74 µJ.

c) H3 = −600ax + 1200ay . This field differs from H2 only by the negative x component, which is a
non-issue since the component is squared when finding the energy density. Therefore, the stored
energy will be the same as that in part b, orWm3 = 4.74 µJ.

d) H4 = H2 + H3, or 2400ay A/m: The energy density is now wm4 = (1/2)µ0(2400)2 =
(1/2)µ0(16)(600)2 J/m3, which is sixteen times the energy density in part a. The stored en-
ergy is therefore sixteen times that result, orWm4 = 16(0.947) = 15.2 µJ.

e) 1000ax A/m+0.001ax T: The energy density iswm5 = (1/2)µ0[1000+.001/µ0]2 = 2.03 J/m3.
ThenWm5 = 2.03[(4/3)π × 10−6] = 8.49 µJ.
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9.33. A toroidal core has a square cross section, 2.5 cm < ρ < 3.5 cm, −0.5 cm < z < 0.5 cm. The upper
half of the toroid, 0 < z < 0.5 cm, is constructed of a linear material for which µR = 10, while the
lower half, −0.5 cm < z < 0, has µR = 20. An mmf of 150 A · t establishes a flux in the aφ direction.
For z > 0, find:

a) Hφ(ρ): Ampere’s circuital law gives:

2πρHφ = NI = 150 ⇒ Hφ = 150

2πρ
= 23.9/ρ A/m

b) Bφ(ρ): We use Bφ = µRµ0Hφ = (10)(4π × 10−7)(23.9/ρ) = 3.0 × 10−4/ρ Wb/m2.

c) 6z>0: This will be

6z>0 =
∫ ∫

B · dS =
∫ .005

0

∫ .035

.025

3.0 × 10−4

ρ
dρdz = (.005)(3.0 × 10−4) ln

(
.035

.025

)
= 5.0 × 10−7 Wb

d) Repeat for z < 0: First, the magnetic field strength will be the same as in part a, since the
calculation is material-independent. Thus Hφ = 23.9/ρ A/m. Next, Bφ is modified only by the

new permeability, which is twice the value used in part a: Thus Bφ = 6.0 × 10−4/ρ Wb/m2.
Finally, since Bφ is twice that of part a, the flux will be increased by the same factor, since the
area of integration for z < 0 is the same. Thus 6z<0 = 1.0 × 10−6 Wb.

e) Find 6total: This will be the sum of the values found for z < 0 and z > 0, or 6total =
1.5 × 10−6 Wb.

9.34. Three planar current sheets are located in free space as follows: −100ax A/m2 at z = −1, 200ax A/m2

at z = 0, −100ax A/m2 at z = 1. Let wH = (1/2)B · H J/m3, and find wH for all z: Using the fact
that the field on either side of a current sheet is given in magnitude by H = K/2, we find, in A/m:

H(z > 1) = (1/2)(−200 + 100 + 100)ay = 0

H(0 < z < 1) = (1/2)(−200 − 100 + 100)ay = −100ay

H(−1 < z < 0) = (1/2)(200 − 100 + 100)ay = 100ay

and
H(z < −1) = (1/2)(200 − 100 − 100)ay = 0

The energy densities are then
wH(z > 1) = wH(z < −1) = 0

wH(0 < z < 1) = wH(−1 < z < 0) = (1/2)µ0(100)2 = 6.28 mJ/m2
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9.35. The cones θ = 21◦ and θ = 159◦ are conducting surfaces and carry total currents of 40 A, as shown in
Fig. 9.18. The currents return on a spherical conducting surface of 0.25 m radius.

a) Find H in the region 0 < r < 0.25, 21◦ < θ < 159◦, 0 < φ < 2π : We can apply Ampere’s
circuital law and take advantage of symmetry. We expect to see H in the aφ direction and it would
be constant at a given distance from the z axis. We thus perform the line integral of H over a circle,
centered on the z axis, and parallel to the xy plane:

∮
H · dL =

∫ 2π

0
Hφaφ · r sin θaφ dφ = Iencl. = 40 A

Assuming that Hφ is constant over the integration path, we take it outside the integral and solve:

Hφ = 40

2πr sin θ
⇒ H = 20

πr sin θ
aφ A/m

b) How much energy is stored in this region? This will be

WH =
∫
v

1

2
µ0H

2
φ =

∫ 2π

0

∫ 159◦

21◦

∫ .25

0

200µ0

π2r2 sin2 θ
r2 sin θ dr dθ dφ = 100µ0

π

∫ 159◦

21◦

dθ

sin θ

= 100µ0

π
ln

[
tan(159/2)

tan(21/2)

]
= 1.35 × 10−4 J

9.36. A filament carrying current I in the az direction lies on the z axis, and cylindrical current sheets of 5az
A/m and −2az A/m are located at ρ = 3 and ρ = 10, respectively.

a) Find I if H = 0 for ρ > 10. Ampere’s circuital law says, for ρ > 10:

2πρH = 2π(3)(5)− 2π(10)(2)+ I = 0

from which I = 2π(10)(3)− 2π(3)(5) = 10π A.

b) Using this value of I , calculate H for all ρ, 3 < ρ < 10: Again, using Ampere’s circuital law, we
find

H(3 < ρ < 10) = 1

2πρ
[10π + 2π(3)(5)] aφ = 20

ρ
aφ A/m

c) Calculate and plotWH versusρ0, whereWH is the total energy stored within the volume 0 < z < 1,
0 < φ < 2π , 3 < ρ < ρ0: First the energy density will bewH = (1/2)µ0H

2 = 200µ0/ρ
2 J/m3.

Then the energy is

WH =
∫ 1

0

∫ 2π

0

∫ ρ0

3

200µ0

ρ2 ρ dρ dφ dz = 400πµ0 ln
(ρ0

3

)
= (1.58 × 10−3) ln

(ρ0

3

)
J
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9.36c. (continued) A plot of the energy as a function of ρ0 is shown below.

9.37. Find the inductance of the cone-sphere configuration described in Problem 9.35 and Fig. 9.18. The
inductance is that offered at the origin between the vertices of the cone: From Problem 9.35, the
magnetic flux density is Bφ = 20µ0/(πr sin θ). We integrate this over the crossectional area defined
by 0 < r < 0.25 and 21◦ < θ < 159◦, to find the total flux:

6 =
∫ 159◦

21◦

∫ 0.25

0

20µ0

πr sin θ
r dr dθ = 5µ0

π
ln

[
tan(159/2)

tan(21/2)

]
= 5µ0

π
(3.37) = 6.74 × 10−6 Wb

Now L = 6/I = 6.74 × 10−6/40 = 0.17 µH.
Second method: Use the energy computation of Problem 9.35, and write

L = 2WH
I 2 = 2(1.35 × 10−4)

(40)2
= 0.17 µH

9.38. A toroidal core has a rectangular cross section defined by the surfaces ρ = 2 cm, ρ = 3 cm, z = 4 cm,
and z = 4.5 cm. The core material has a relative permeability of 80. If the core is wound with a coil
containing 8000 turns of wire, find its inductance: First we apply Ampere’s circuital law to a circular
loop of radius ρ in the interior of the toroid, and in the aφ direction.∮

H · dL = 2πρHφ = NI ⇒ Hφ = NI

2πρ

The flux in the toroid is then the integral over the cross section of B:

6 =
∫ ∫

B · dL =
∫ .045

.04

∫ .03

.02

µRµ0NI

2πρ
dρ dz = (.005)

µRµ0NI

2π
ln

(
.03

.02

)

The flux linkage is then given by N6, and the inductance is

L = N6

I
= (.005)(80)(4π × 10−7)(8000)2

2π
ln(1.5) = 2.08 H
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9.39. Conducting planes in air at z = 0 and z = d carry surface currents of ±K0ax A/m.
a) Find the energy stored in the magnetic field per unit length (0 < x < 1) in a widthw (0 < y < w):

First, assuming current flows in the +ax direction in the sheet at z = d, and in −ax in the sheet
at z = 0, we find that both currents together yield H = K0ay for 0 < z < d and zero elsewhere.
The stored energy within the specified volume will be:

WH =
∫
v

1

2
µ0H

2dv =
∫ d

0

∫ w

0

∫ 1

0

1

2
µ0K

2
0 dx dy dz = 1

2
wdµ0K

2
0 J/m

b) Calculate the inductance per unit length of this transmission line fromWH = (1/2)LI 2, where I
is the total current in a width w in either conductor: We have I = wK0, and so

L = 2

I 2

wd

2
µ0K

2
0 = 2

w2K2
0

dw

2
µ0K

2
0 = µ0d

w
H/m

c) Calculate the total flux passing through the rectangle 0 < x < 1, 0 < z < d , in the plane y = 0,
and from this result again find the inductance per unit length:

6 =
∫ d

0

∫ 1

0
µ0Hay · ay dx dz =

∫ d

0

∫ 1

0
µ0K0dx dy = µ0dK0

Then

L = 6

I
= µ0dK0

wK0
= µ0d

w
H/m

9.40. A coaxial cable has conductor dimensions of 1 and 5 mm. The region between conductors is air for
0 < φ < π/2 and π < φ < 3π/2, and a non-conducting material having µR = 8 for π/2 < φ < π
and 3π/2 < φ < 2π . Find the inductance per meter length: The interfaces between media all occur
along radial lines, normal to the direction of B and H in the coax line. B is therefore continuous (and
constant at constant radius) around a circular loop centered on the z axis. Ampere’s circuital law can
thus be written in this form:∮

H · dL = B

µ0

(π
2
ρ
)

+ B

µRµ0

(π
2
ρ
)

+ B

µ0

(π
2
ρ
)

+ B

µRµ0

(π
2
ρ
)

= πρB

µRµ0
(µR + 1) = I

and so

B = µRµ0I

πρ(1 + µR)aφ

The flux in the line per meter length in z is now

6 =
∫ 1

0

∫ .005

.001

µRµ0I

πρ(1 + µR) dρ dz = µRµ0I

π(1 + µR) ln(5)

And the inductance per unit length is:

L = 6

I
= µRµ0

π(1 + µR) ln(5) = 8(4π × 10−7)

π(9)
ln(5) = 572 nH/m
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9.41. A rectangular coil is composed of 150 turns of a filamentary conductor. Find the mutual inductance in
free space between this coil and an infinite straight filament on the z axis if the four corners of the coil
are located at

a) (0,1,0), (0,3,0), (0,3,1), and (0,1,1): In this case the coil lies in the yz plane. If we assume that
the filament current is in the +az direction, then the B field from the filament penetrates the coil
in the −ax direction (normal to the loop plane). The flux through the loop will thus be

6 =
∫ 1

0

∫ 3

1

−µ0I

2πy
ax · (−ax) dy dz = µ0I

2π
ln 3

The mutual inductance is then

M = N6

I
= 150µ0

2π
ln 3 = 33 µH

b) (1,1,0), (1,3,0), (1,3,1), and (1,1,1): Now the coil lies in the x = 1 plane, and the field from the
filament penetrates in a direction that is not normal to the plane of the coil. We write the B field
from the filament at the coil location as

B = µ0Iaφ

2π
√
y2 + 1

The flux through the coil is now

6 =
∫ 1

0

∫ 3

1

µ0Iaφ

2π
√
y2 + 1

· (−ax) dy dz =
∫ 1

0

∫ 3

1

µ0I sin φ

2π
√
y2 + 1

dy dz

=
∫ 1

0

∫ 3

1

µ0Iy

2π(y2 + 1)
dy dz = µ0I

2π
ln(y2 + 1)

∣∣∣3
1

= (1.6 × 10−7)I

The mutual inductance is then

M = N6

I
= (150)(1.6 × 10−7) = 24 µH

9.42. Find the mutual inductance of this conductor system in free space:
a) the solenoid of Fig. 8.11b and a square filamentary loop of side length b coaxially centered

inside the solenoid, if a > b/
√

2; With the given side length, the loop lies entirely inside the
solenoid, and so is linked over its entire cross section by the solenoid field. The latter is given by
B = µ0NI/d az T. The flux through the loop area is now6 = Bb2, and the mutual inductance is
M = 6/I = µ0Nb

2/d H.

b) a cylindrical conducting shell of a radius a, axis on the z axis, and a filament at x = 0, y = d ,
and where d > a (omitted from problem statement); The B field from the cylinder is B =
(µ0I )/(2πρ) aφ for ρ > a, and so the flux per unit length between cylinder and wire is

6 =
∫ 1

0

∫ d

a

µ0I

2πρ
dρ dz = µ0I

2π
ln

(
d

a

)
Wb

Finally the mutual inductance isM = 6/I = µ0/2π ln(d/a) H.
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9.43. a) Use energy relationships to show that the internal inductance of a nonmagnetic cylindrical wire of
radius a carrying a uniformly-distributed current I is µ0/(8π) H/m. We first find the magnetic field
inside the conductor, then calculate the energy stored there. From Ampere’s circuital law:

2πρHφ = πρ2

πa2 I ⇒ Hφ = Iρ

2πa2 A/m

Now

WH =
∫
v

1

2
µ0H

2
φ dv =

∫ 1

0

∫ 2π

0

∫ a

0

µ0I
2ρ2

8π2a4 ρ dρ dφ dz = µ0I
2

16π
J/m

Now, withWH = (1/2)LI 2, we find Lint = µ0/(8π) as expected.

b) Find the internal inductance if the portion of the conductor for which ρ < c < a is removed: The
hollowed-out conductor still carries current I , so Ampere’s circuital law now reads:

2πρHφ = π(ρ2 − c2)

π(a2 − c2)
⇒ Hφ = I

2πρ

[
ρ2 − c2

a2 − c2

]
A/m

and the energy is now

WH =
∫ 1

0

∫ 2π

0

∫ a

c

µ0I
2(ρ2 − c2)2

8π2ρ2(a2 − c2)2
ρ dρ dφ dz = µ0I

2

4π(a2 − c2)2

∫ a

c

[
ρ3 − 2c2ρ + C4

ρ

]
dρ

= µ0I
2

4π(a2 − c2)2

[
1

4
(a4 − c4)− c2(a2 − c2)+ c4 ln

(a
c

)]
J/m

The internal inductance is then

Lint = 2WH
I 2 = µ0

8π

[
a4 − 4a2c2 + 3c4 + 4c4 ln(a/c)

(a2 − c2)2

]
H/m

166


