CHAPTER 9

9.1. A point charge, Q = —0.3uCandm = 3 x 10~16 kg, ismoving through thefield E = 30a, V/m. Use
Eg. (1) and Newton’'s laws to devel op the appropriate differential equations and solve them, subject to
theinitial conditionsat t = 0: v = 3 x 10°a, m/s at the origin. At¢t = 3us, find:

a) the position P(x, y, z) of the charge: The force on the chargeis given by F = gE, and Newton's
second law becomes:

2

z
F=ma= = gE = (0.3 x 107%)(304a,)

a2
describing motion of the charge in the z direction. Theinitial velocity in x is constant, and so no
forceis applied in that direction. We integrate once:

dz qE
— =v,=—1t+C
dt om T

Theinitia velocity along z, v, (0) is zero, and so C1 = 0. Integrating a second time yields the z

coordinate:

E
z= q—t2+C2
2m

The chargelies at the origin at t = 0, and so C> = 0. Introducing the given values, we find

(0.3 x1075(30)

2 10,2
= t“=-15x10"r"m
LT Ty 3x10-16 x

Atr =3 us z = —(1.5 x 1019)(3 x 1076)2 = —.135cm. Now, considering theinitial constant
velocity in x, thechargein 3 usattainsan x coordinate of x = vr = (3x 10°)(3x 10-6) = .90 m.
Insummary, at t = 3 uswehave P(x, y, z) = (.90, 0, —.135).

b) thevelocity, v: After thefirst integration in part a, we find
_9E. 10 6y _ 4
v, = t=—Bx107)Bx10°) =-9x 10" m/s
m

Including the intial x-directed velocity, we finally obtain v = 3 x 10°a, — 9 x 10%a, m/s.

¢) thekinetic energy of the charge: Have

1 1
K.E = Em|v|2 = 5@x 10716)(1.13 x 10°)? = 1.5 x 10°°J

9.2. A point charge, Q = —0.3uCandm = 3 x 10716 kg, ismoving through the field B = 30a, mT. Make
use of EQ. (2) and Newton's laws to develop the appropriate differential equations, and solve them,
subject to the initial condition at r = 0, v = 3 x 10° m/s at the origin. Solve these equations (perhaps
with the help of an example given in Section 7.5) to evaluate at + = 3us. a) the position P (x, y, z) of
the charge; b) its velocity; ¢) and its kinetic energy:

We begin by visualizing the problem. Using F = ¢gv x B, wefind that a positive charge moving along
positive a,, would encounter the z-directed B field and be deflected into the negative y direction.

142



9.2 (continued) Motion along negative y through the field would cause further deflection into the negative
x direction. We can construct the differential equations for the forcesin x andin y asfollows:

dvy
F.a, = mgax = quay X BaZ = qvaax
dvy
Fyay = mway = quyay X Baz = _qBUxay
or p 5
Ux q
a m @
nd d B
vy ¢
Fria @

To solve these equations, we first differentiate (2) with time and substitute (1), obtaining:

dt2 m dt

d%v, qB dvy (qB)2

m

Therefore, v, = Asin(gBt/m) + A’ cos(qBt/m). However, at t = 0, v, = 0,and so A" = 0, leaving
vy = Asin(gBt/m). Then, using (2),

Now att = 0, v, = vyo = 3 x 10°. Therefore A = —v,o, and SO v, = vy COS(¢ Bt/m), and
vy = —vx0 SiN(g Bt/m). The positions are then found by integrating v, and v, over time:

Bt . Bt
x(1) :/vxocos<q—) dt+ C = Msm<q—> +C
m gB m

where C = 0, sincex(0) = 0. Then

. Bt Bt
y(t) = / —v,08SiN (q—) dt + D = 20 o (q—) +D
m gB m

We requirethat y(0) = 0,50 D = —(mvy,0)/(gB), andfinally y(r) = —muv,o/qgB[1 — cos(qg Bt/ m)].
Summarizing, wehave, usingg = —3x 10~/ C,m = 3x10 kg, B = 30x 1073 T,andv,g = 3x 10°
m/s.

muso (th

x(t) = S ) =-10"2sin(-3x 107’1y m
qgB m

x B _
(1) = — 10 [1 — cos(q—t)] = 1072[1 — cos(—3 x 1071)] m
qB m

Bt
V(1) = V50 cos(q—> = 3 x 10° cos(—3 x 10’r) m/s
m
. Bt .
vy (1) = —vyo SN (%) = —3x 10°sin(—3 x 10’r) m/s
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9.2 (continued) The answers are now:

a) Atr =3x10%s x=89mm, y=145mm, andz = 0.

b) Atr =3x10%s, v, = -1.3x 10°m/s, vy, = 2.7 x 10°m/s, and so

v(t = 3us) = —1.3 x 10°a, 4 2.7 x 10°a, m/s

whose magnitudeisv = 3 x 10° m/s aswould be expected.

c) Kinetic energy iskK.E. = (1/2)mv? = 1.35 pJ at al times.

9.3. A point charge for which Q0 = 2 x 10716 Cand m = 5 x 10720 kg is moving in the combined fields
E = 100a, — 200a, + 300a, V/m and B = —3a, + 2a, — a, mT. If the charge velocity at = O is
v(0) = (2a, — 3a, — 4a;) x 10° m/s.

a) give the unit vector showing the direction in which the charge is accelerating at + = 0: Use
F(t = 0) = ¢[E + (v(0) x B)], where

v(0) x B = (2a, — 3a, — 4a,)10° x (—3a, + 2a, — a,)10~3 = 1100a, + 1400a, — 500a,
So the force in newtons becomes
F(0) = (2x1071)[(100+-1100)a, +(1400—200)a, +(300—500)a,] = 4x 10~ **[6a, +6a, —a]
The unit vector that gives the acceleration direction is found from the force to be

_ 6a, +6a, —a,

aF = = .70a, + .70a, — .12a.
F m X y 4

b) find the kinetic energy of the chargeat ¢ = O:

1 1
K.E. = Em|v(0)|2 = 5(5 x 1072 kg)(5.39 x 10°m/s)® = 7.25 x 107 °J= 7.25fJ

9.4. An electron (g, = —1.60219 x 10719 C, m = 9.10956 x 103! kg) is moving at a constant velocity
v = 4.5 x 107ay m/s adong the negative y axis. At the origin it encounters the uniform magnetic field
B = 2.5a, mT, andremainsinituptoy = 2.5 cm. If we assume (with good accuracy) that the electron
remains on the y axis while it is in the magnetic field, find its x-, y-, and z-coordinate values when
y = 50 cm: The procedure isto find the electron velocity as it leaves the field, and then determine its
coordinates at the time corresponding to y = 50 cm. The force it encounters whilein thefield is

F=gv x B =(—160219 x 1071%)(4.5 x 10")(2.5 x 107 3)(a, x a;) = —1.80 x 10~ %4, N

This force will be constant during the time the electron traverses the field. It establishes a negative
x-directed velocity asit leaves the field, given by the acceleration times the transit time, #;:

m

Fi1, ( —1.80 x 104N ) (2.5 x 1072 m
Vy = — =

= —1.09 x 10’
9.10956 x 10-31kg ) \ 4.5 x 107 m/s) x 107 m/s
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9.4 (continued) The time for the electron to travel along y between 2.5 and 50 cmis

(50 — 2.5) x 1072
I5p = =
45 x 10

In that time, the electron moves to an x coordinate given by

x = vytsg = —(1.09 x 107)(1.06 x 1078) = —.115m

=106 x 10 8s

The coordinates at the time the electron reaches y = 50 cm are then:

x=-11.5cm, y =50cm, z =0

9.5. A rectangular loop of wirein free spacejoins points A(1, 0, 1) to B(3,0, 1) to C(3,0,4) to D(1, 0, 4)
to A. Thewirecarriesacurrent of 6 mA, flowing inthea, directionfrom B to C. A filamentary current
of 15 A flows along the entire z axisin the a, direction.

a) FindF onside BC:

C
Fsc 2/ Iloopdl— X BtromwireatBC
B

Thus
150

—~" a,=-18x 108, N = —18a, nN
27(3) x AR AL

4
Fgc = / (6 x 1073 dza, x
1

b) Find F onside AB: Thefield from the long wire now varies with position along the loop segment.
We include that dependence and write

15u0 45 x 103
ay =

3
Fap = / (6 x 1073 dx a, x poln3a, = 19.8a, nN
1

27 x

¢) Find Fiia on the loop: Thiswill be the vector sum of the forces on the four sides. Note that by
symmetry, the forces on sides AB and C D will be equal and opposite, and so will cancel. This
leaves the sum of forceson sides BC (part a) and DA, where

1510
27 (1)

Thetotal forceisthen Fiota = Fpa + Fpc = (54 — 18)a, = 36a, NN

4
Fpa =/ —(6x 1073 dza, x a, = 54a, NN
1

9.6 The magnetic flux density in aregion of free space is given by B = —3xa, + 5ya, — 2za, T. Find
the total force on the rectangular loop shown in Fig. 9.15if it liesin the plane z = 0 and is bounded
byx=1,x =3 y=2andy =5, adl dimensionsin cm: First, note that in the plane z = 0, the z
component of the given field is zero, so will not contribute to the force. We use

F=/ IdL x B
loop

which in our case becomes, with I = 30 A:

.03 .05
F= / 30dxa, x (—3xa, + 5y|y:.02 ay) + / 3Odyay X (=3x|x=.03 & + Syay)
.01 .02
.01 .02
—I—f 30dxa, x (—3xa, + 5yly=.05 ay) —1—/ 30dya, x (—3x|y=01 & + 5ya,)
.03 .05
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9.6. (continued) Simplifying, this becomes

.03 .05

F :/ 30(5)(.02) a, dx +/ —30(3)(.03)(—a,) dy
.01 .02
.02

.01
+ / 30(5)(.05) a, dx + / —30(3)(.01)(—a,) dy = (.060 + .081 — .150 — .027)a, N
.03 .05

= —36a, mN
9.7. Uniform current sheets are located in free space asfollows: 8a, A/maty =0, —4a, A/maty = 1,
and —4a, A/mat y = —1. Findthevector force per meter length exerted on a current filament carrying
7 mA inthe a; direction if the filament is located at:

a x =0,y =0.5 and a; = a,: Wefirst note that within the region —1 < y < 1, the magnetic
fieldsfrom the two outer sheets (carrying —4a, A /m) cancel, leaving only thefield from the center
sheet. Therefore, H = —4a, A/m(0 <y < D) andH =4a,A/m (-1 < y < 0). Outside
(y > 1and y < —1) thefields from all three sheets cancel, leavingH =0(y > 1,y < —1). So
at x =0, y = .5, theforce per meter length will be

F/m=la, x B=(7x10"%)a, x —4u0a, = —35.2a, nN/m
b) y=05z=0anda; =a,: F/m=Ia, x —4upa, = 0.
¢) x=0,y=15a =a,: Sincey = 1.5, wearein theregion in which B = 0, and so theforceis
Zero.
9.8. Filamentary currents of —25a, and 25a, A arelocated inthe x = O planein free spaceat y = —1 and
y = 1m respectively. A third filamentary current of 10~3a, A islocated at x = k, y = 0. Find the

vector force on a 1-m length of the 1-mA filament and plot |F| versus k: Thetotal B field arising from
the two 25A filaments evaluated at the location of the 1-mA filament is, in cartesian components:

2510 25110 251103
= —— > (kay+ )+ —— 5 (—kay+ ) = ———5-
271(1+k2)( v+ )+27r(1—|—k2)( y +8) 7 (1+k?)
lineat y=+1 lineat y=—1
The force on the 1m length of 1-mA lineis now
_ 251108, (25 x 1072)(4 x 1077) 10~8a 10a,
F=103(Da = a,=——>a,N= Y nN
e 1+ k2 i Ry
Problem 9.8
10 T T T T
8 -— —
~~ 6 _— o=
d
=
= 4 —
2 -
| I ]
% 2 4 6 8 10
k (m)
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9.9.

9.10.

9.11.

A current of —100a, A/m flows on the conducting cylinder p = 5 mm and +500a, A/m is present
on the conducting cylinder o = 1 mm. Find the magnitude of the total force acting to split the outer
cylinder apart along its length: The differential force acting on the outer cylinder arising from the field
of theinner cylinder isdF = Kgyer x B, where B isthe field from the inner cylinder, evaluated at the
outer cylinder location:

27 (1)(500) o

21 (5)

ThusdF = —100a; x 100uoay = 104uoap N/mZ2. We wish to find the force acting to split the outer
cylinder, which means we need to evaluate the net force in one cartesian direction on one half of the
cylinder. We choose the “upper” half (0 < ¢ < m), and integrate the y component of dF over this
range, and over aunit length in the z direction:

ay = 100upay T

1 pm T
Fy = /O /0 10*08, - a,(5 x 10-3) dp dz = /0 5000 SiN¢ dp = 10010 = 4 x 1075 N/m

Notethat we did not include the“ self force” arising from the outer cylinder’sB field onitself. Sincethe
outer cylinder isatwo-dimensional current sheet, itsfield existsonly just outsidethe cylinder, and so no
force exists. If this cylinder possessed a finite thickness, then we would need to include its self-force,
since there would be an interior field and a volume current density that would spatially overlap.

Two infinitely-long paralle filaments each carry 50 A in the a, direction. If the filaments lie in the
planey = O at x = 0 and x = 5mm (note bad wording in problem statement in book), find the vector
force per meter length on the filament passing through the origin: The force will be

1
F=/ IdL x B
0

where IdL isthat of the filament at the origin, and B is that arising from the filament at x = 5mm
evaluated at the location of the other filament (along the z axis). We obtain

—50u0ay

1
F= | 50dza, x ——H0% _
/0 X B x 1079

= 0.10a, N/m

a) Use Eq. (14), Sec. 9.3, to show that the force of attraction per unit length between two filamentary
conductors in free space with currents Ih1a, at x = 0, y = d/2,and lba, aa x = 0,y = —d/2, is
uol1l2/(2rd): Theforceon I isgiven by

11 a dL
F2=Mo£ %—Rlzz 1 X dLo
4 R

Let z; indicate the z coordinate along 11, and z» indicate the z coordinate along I,. We then have

R12 = /(22 — z1)%2 + d? and

ar12 =
V(22 — 21)% + d?

Also, dL1 = dzia, and dLo = dzoa, The“inside” integral becomes:

f agiz xdL1 [ [(z2 —z1)8 —da)] xdzia, /oo _ddzia
RG [(z2— 202 +d?1Y5  — J_o [(z2 — z1)2 + d?]15
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9.11a (continued) The force expression now becomes

= I f |:/°O —ddz1ay J ai| I / / ddzidzza,
= _— X Z =
2= R0y —oo [(z2 — 21)% + d?]15 25| TRy oo [(z2 — z1)% + d?]15

Note that the “outside” integral is taken over aunit length of current 7. Evaluating, obtain,

ay, N/m

I1I>da 01112
Fo = 110 > (2) / “

4rd?

as expected.

b) Show how a simpler method can be used to check your result: WeusedF2 = I>dL > x B1o, where
the field from current 1 at the location of current 2 is
mol1

B = —=a
12 2dx

so over aunit length of I,, we obtain

mol1 111>

0
Fo = ha, x —a, = Ho=——
2 ZZXZHdX 'u027rd

ay, N/m
This second method isreally just thefirst over again, since we recognize the inside integral of the
first method as the Biot-Savart law, used to find the field from current 1 at the current 2 location.

9.12. A conducting current strip carrying K = 12a, A/mliesinthex = Oplanebetweeny = 0.5andy = 1.5
m. Thereisaso acurrent filament of 7 = 5A inthe a, direction on the z axis. Find the force exerted
on the:

a) filament by the current strip: We first need to find the field from the current strip at the filament
location. Consider the strip as made up of many adjacent strips of width dy, each carrying
current dfa, = Kdy. The field along the z axis from each differential strip will be dB =
[(Kdyuo)/(2ry)]a,. Thetotal B field from the strip evaluated along the z axisistherefore

1512u0a 6 15
B:f HO% 4y = 240 a, = 2.64 x 10~%a, Wh/m?
05 21wy T 0.5

1 1
F=/ I1dL xB:/ 5dza, x 2.64 x 10°%a, dz = 13.2a, uN/m
0 0 -

b) strip by thefilament: Inthiscaseweintegrate K x B over aunit lengthin z of the strip area, where
B isthe field from the filament evaluated on the strip surface:

—5uea -30
F =f K x Bda _/ / 123, x —0 gy = 0 n@)a, = —13.2a, uN/m
Area 0.5 77:y v
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9.13. A current of 6A flows from M (2, 0,5) to N(5, 0, 5) in a straight solid conductor in free space. An
infinite current filament lies along the z axis and carries 50A in the a, direction. Compute the vector
torque on the wire segment using:

a) anoriginat (0, 0, 5): The B field from the long wire at the short wireis B = (uol;ay)/(2nx) T.
Then the force acting on a differential length of the wire segment is

I I,1
dF = I,dL x B = Iydxa, x =oa, = 2002 gy g N
27 x 21w x
Now the differential torque about (0, 0, 5) will be
I,1 1,1
dT =Ry x dF = xa, x 2082 gy g, = —HOW= gy g
TX 2

The net torgque is now found by integrating the differential torque over the length of the wire
segment:

-4
- = o ay,=-18x10"a, N-m

5
T=/ _polwly o 3p0(6)(S0)
2

b) an origin at (0, 0, 0): Here, the only maodification isin Ry, whichisnow Ry = xa, + 5a, So
now

dT =Ry x dF = [xa, +5a,] x

I, Iy1
,U«szdva:_PLszdxay
T X 2

Everything from hereisthe sameasin part ¢, so again, T = —1.8 x 10—4ay N-m.

¢) anoriginat (3,0,0): Inthiscase, Rr = (x — 3)a, + 5a,, and the differential torqueis

I ILI(x—3
4T = [(x — Ba, + 5a,] x “Owle g — HOWECZD o
21 x
Thus
5
Ll(x—3 5
T=/ —Mowz—(x)dxay=—6.0x10_5[3—3|n<—)] a,=-15x10"5a, N-m
2 2w x 2

9.14. The rectangular loop of Prob. 6 is now subjected to the B field produced by two current sheets,
K1 =400a, A/matz =2, andK, = 300a; A/mat y = 0infree space. Find the vector torque on the
loop, referred to an origin:

a) at (0,0,0): The fields from both current sheets, at the loop location, will be negative x-directed.
They will add together to give, in the loop plane:

Ki K
B=—puo (71 + 72) a, = —1u0(200 + 150) a, = —350p0 &, Wh/m?

With thisfield, forces will be acting only on the wire segmentsthat are parallel to the y axis. The
force on the segment nearer to the y axiswill be

F1=1IL x B=—30(3 x 10%a, x —350u0a, = —315u0a, N
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9.14a (continued) The force acting on the segment farther from the y axiswill be
Fo = IL x B =30(3 x 10 %)a, x —350u0a, = 315404, N

Thetorque about the originisnow T = R1 x F1 4+ Rz x F2, where R1 isthe vector directed from the
origin to the midpoint of the nearer y-directed segment, and R> is the vector joining the origin to the
midpoint of the farther y-directed segment. So Ri(cm) = a, + 3.5a, and Ra(cm) = 3a, + 3.5a,.
Therefore

To.0.0 = [(@ + 3.58,) x 107] x —315u0a, 4 [(3a, + 3.5a,) x 107%] x 315u0 &,
= —6.30u0a, = —7.92 x 10 %a, N—m

b) at the center of theloop: Use T = IS x B whereS= (2 x 3) x 10~%a, m?. So

T =30(6 x 10~%a,) x (—350upa,) = —7.92 x 10 %a, N—m

9.15. A solid conducting filament extendsfrom x = —b tox = b dongtheliney = 2, z = 0. Thisfilament
carries a current of 3 A in the a, direction. An infinite filament on the z axis carries 5 A in the a,
direction. Obtain an expression for the torque exerted on the finite conductor about an origin located
a (0, 2, 0): Thedifferential force on the wire segment arising from the field from the infinite wire is

Spmo . 1dpocos¢dx 15u0x dx

R — (R A— = —— Q4
2np ¥ X2+ 4 - 2n(x2+4+4)
So now the differential torque about the (0, 2, 0) originis

dF = 3dxa, x

15u0x dx _ 15p0x2 dx

dT =Ry x dF =xa, x — o0t 2_5 _ HOT T 4
T A T+ ) T 22+ )

Thetorqueisthen

b 15p0x2dx 150 x\1°
T= a, = a,|x —2tan~ (=
f_b m(x2+4) YT om Y [x (2)]_,,

= (6x 1079 [b —2tan?! (g)] a, N-m

9.16. Assumethat an electron is describing a circular orbit of radius a about a positively-charged nucleus.
a) By selecting an appropriate current and area, show that the equivalent orbital dipole moment is
ea’w/2, where o isthe electron’s angular velocity: The current magnitude will be I = 7, Where
e isthe electron charge and T isthe orbital period. Thelatter isT = 27 /w, and s0 I = ew/(27).
Now the dipole moment magnitude will bem = I A, where A isthe loop area. Thus
ew 2

_ — —,,2
m_znna 2eaa)//

b) Show that the torque produced by a magnetic field parallel to the plane of the orbit is ea?wB /2:
With B assumed constant over the loop area, we would have T = m x B. With B paraléel to the
loop plane, m and B are orthogonal, and so T = mB. So, using parta, T = ea’wB/2.
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9.16. (continued)
¢) by equating the Coulomb and centrifugal forces, show that w is (4w egm.a®/e?)~1/2, wherem, is
the electron mass: The force balance iswritten as

-1/2
4neomea3) /

2

e2

=mwla = a)=< //

2

4 epa e

d) Findvauesfor theangular velocity, torque, and the orbital magnetic moment for ahydrogen atom,
where a isabout 6 x 10~ m; let B = 0.5T: First

B [ (1.60 x 107192

1/2
= 3.42 x 10 rad
47(8.85 x 10-12)(9.1 x 10-31)(6 x 1011)3} x 107 rad/s

1
T = 5(3'42 x 10%6)(1.60 x 107)(0.5)(6 x 107112 = 493 x 107%* N - m

Finally,

T
m = E=9.86x10—24A.m2

9.17. The hydrogen atom described in Problem 16 is now subjected to a magnetic field having the same
direction as that of the atom. Show that the forces caused by B result in a decrease of the angular
velocity by ¢ B/(2m,) and adecreasein the orbital moment by e?a?B/(4m.). What are these decreases
for the hydrogen atom in parts per million for an external magnetic flux density of 0.5 T? We first write
down all forces on the electron, in which we equate its coulomb force toward the nucleus to the sum
of the centrifugal force and the force associated with the applied B field. With the field applied in the
same direction as that of the atom, this would yield a Lorentz force that is radially outward — in the
same direction as the centrifugal force.

2

F,=Feont + Fg = = mea)za + ewaB

47 ega’
QvB
With B = 0, we solve for w to find:
e2
w=wg=
4t egma3
Then with B present, we find
2 e? ewB , ewB
4megm.a Mg ne
Therefore
ewB ewB
w=wq [1— > =wo|1l-— 5
w§ime 2wgme,

But w = wg, and so
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9.17. (continued) Asfor the magnetic moment, we have

IS ew 2 1 2 . 1 2 eB 1 2 1@26123
m = = —7Ta = —wead = —eda wo — = — ea — —
o 2 2 0" om, ) T 2™ 4" m,

Finaly, fora = 6 x 1001 m, B = 0.5 T, we have

Aw eB 1 . eB 1 160x 101 x05 . o o6
o  2mew 2m,wy 2x91x103x34x106 T —

where wp = 3.4 x 1016 sec~1 isfound from Problem 16. Finally,

A 2a°B 2 B
Mol 22 % _13x10°

m 4m, wea 2m.wo

9.18. Calculate the vector torgque on the square loop shown in Fig. 9.16 about an origin at A in the field B,
given:
a) A(0,0,0) and B = 100a, mT: Thefield isuniform and so does not produce any translation of the
loop. Therefore, we may use T = IS x B about any origin, where I = 0.6 A and S = 16a, m?.
Wefind T = 0.6(16)a, x 0.100a, = —0.96a, N—m.

b) A(0, 0, 0) and B = 200a, + 100a, mT: Using the same reasoning asin part a, we find

T =0.6(16)a, x (0.200a, + 0.100a,) = —0.96a, + 1.92a, N—m

c) A(1,2,3) andB = 200a, + 100a, — 300a, mT: We observe two things here: 1) Thefieldisagain
uniform and so again the torque isindependent of the origin chosen, and 2) Thefield differs from
that of part b only by the addition of az component. With Sinthe z direction, this new component
of B will produce no torque, so theanswer isthesameaspartb, or T = —0.96a, + 1.92a, N—m.

d) A(1,2,3) and B = 200a, + 100a, — 300a, mT for x > 2 and B = O elsewhere: Now, force
is acting only on the y-directed segment at x = +2, so we need to be careful, since translation
will occur. So we must use the given origin. The differential torque acting on the differential wire
segment at location (2,y) isdT = R(y) x dF, where

dF =1dL x B =0.6dya, x [0.2a, 4+ 0.1a, — 0.3a;] =[-0.18a, — 0.12a;] dy
andR(y) =(2,y,00 - (1,2,3) = a, + (y — 2)a, — 3a,. Wethusfind

dT =R(y) x dF = [a; + (y — 2)ay — 3a;] x [-0.18a, — 0.12a.] dy
= [-0.12(y — 2)a, + 0.66a, + 0.18(y — 2)a.] dy

The net torque is now

2
T= / [-0.12(y — 2)a, + 0.66a, + 0.18(y — 2)a,] dy = 0.96a, + 2.64a, — 1.44a, N—m
-2
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9.19. Given amateria for which x,, = 3.1 and within which B = 0.4ya, T, find:
a) H: WeuseB = uo(1+ xm)H, or

0.4ya,

= ——F——— =77.6ya, KA/m
(1+3Dpuo #

b) u=(1+31)uo=515x 10" H/m.
0 nr=(1+31) =41
d) M = x,H = (3.1)(77.6ya,) = 241ya, KA/m

€ J=V xH = (dH.)/(dy)a, = 77.6a, kA/m?.
f) J, =V xM = (dM,)/(dy) a, = 241a, KA/mZ.
g) Jr =V x B/uo = 318a, kA/m?.

9.20. Find H in amaterial where:
a ug = 4.2, thereare 2.7 x 10%° atoms'm?, and each atom has a dipole moment of 2.6 x 10~¥ a,
A -m?. Sinceall dipolesareidentical, we may writeM = Nm = (2.7 x 10%)(2.6 x 10~%a,) =
0.70a, A/m. Then
H— M _ 0.70a,
ur—1 421

=0.22a, A/m

b) M = 270a, A/mand i = 2 uH/m: Have ugr = u/po = (2 x 1076) /(47 x 10~7) = 1.59.
ThenH = 270a,/(1.59 — 1) = 456a, A/m.
C) xm =07andB =2a, T: Use
B B B 2a,
o4 xn)  (Am x 10-7)(1.7)

— 9363, KA/m

d) Find M in amaterial where bound surface current densities of 12a, A/m and —9a, A/m exist at
p =0.3mand p = 0.4 m, respectively: Weuse § M - dL = I, where, since currents are in the
z direction and are symmetric about the z axis, we chose the path integrals to be circular loops
centered on and normal to z. From the symmetry, M will be ¢-directed and will vary only with
radius. Note first that for o < 0.3 m, no bound current will be enclosed by a path integral, so we
conclude that M = Ofor p < 0.3m. At radii between the currents the path integral will enclose
only theinner current so,

3.6
%M -dL =2npMy =27(0.3)12 = M = —as A/m (0.3 < p < 0.4m)
0

Finally, for p > 0.4 m, thetotal enclosed bound currentisy ;,; = 27(0.3)(12) —27(0.4)(9) = 0,
so thereforeM = 0 (p > 0.4m).

9.21. Find the magnitude of the magnetization in amaterial for which:
a) the magnetic flux density is 0.02 Wb/m? and the magnetic susceptibility is 0.003 (note that this
latter quantity is missing in the origina problem statement): From B = uo(H + M) and from
M = x,,H, wewrite

B ( 1 >—1 B 0.02
mo \ Xm no(334)  (4m x 10~7)(334)

= 47.7A/m
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9.21b) themagneticfieldintensity is1200A/mand therelative permeability is1.005: FromB = uo(H+M) =
o grH, wewrite

M = (ug — 1)H = (.005)(1200) = 6.0 A/m

c) thereare 7.2 x 10%® atoms per cubic meter, each having a dipole moment of 4 x 10730 A . m?in
the same direction, and the magnetic susceptibility is0.0003: With al dipolesidentical the dipole
moment density becomes

M=nm= (7.2 x 10%)(4 x 107%°) = 0.288 A/m

9.22. Three current sheets are located asfollows: 160a, A/mat x = 1cm, —40a, A/m at x = 5cm, and 50a,
A/matx = 8cm. Let u = poforx < Iemandx > 8cm; for 1 < x < 5cm, u = 3uo, and for
5 < x < 8cm, u = 2ug. Find B everywhere: We know that the H field from an infinite current sheet
will be given in magnitude by H = K /2, and will be directed parallel to the sheet and perpendicular
to the current, with the directions on either side of the sheet determined by the right hand rule. With
thisin mind, we can construct the following expressions for the B field in al four regions:

1
B(x < 1) = 5/10(~160+ 40 — 50) = ~1.07 x 107%a, T

1
Bl<x<b) = E(S,uo)(lGO + 40— 50) = 2.83 x 10~* a, T

1
B(5 < x < 8) = 5(210)(160 — 40 — 50) = 8.80 x 10%a, T

1
B(x > 8) = >/10(160 — 40+ 50) = 1.07 x 10%a, T

9.23. Calculate values for Hy, By, and My a p = c for acoaxial cable witha = 25 mmand b = 6 mm
if it carries current I = 12 A in the center conductor, and © = 3 uH/m for 25 < p < 3.5 mm,
uw=5uH/mfor35< p <45mm,and x = 10 uH/mfor 4.5 < p < 6 mm. Compute for:

a) ¢ = 3mm: Have
I 12

2mp  27(3 x 10-3)
Then By = nHy = (3 x 107%)(637) = 1.91 x 1073 Wh/m?.

b) ¢ = 4 mm: Have

Hy = =637 A/m

I 12
2np  27(4 x 10-3)
Then By = nHy = (5 x 107%)(478) = 2.39 x 10~3 Wh/m?.
Finaly, My = (1/110) By — Hp = 1.42 x 103 A/m.

Hy = =478 A/m

¢) ¢ = 5mm: Have
I 12

2mp  27(5 x 10-3)
Then By = nHy = (10 x 107°)(382) = 3.82 x 10~3 Wb/m?.
Finaly, My = (1/110) By — Hp = 2.66 x 103 A/m.

Hy = = 382A/m
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9.24. A coaxial transmission linehasa = 5 mm and » = 20 mm. Let its center lie on the z axis and let
adc current I flow in the a, direction in the center conductor. The volume between the conductors
containsamagnetic materia for which uz = 2.5, aswell asair. FindH, B, and M everywhere between
conductorsif Hy = 600/7 A/mat p = 10 mm, ¢ = 7/2, and the magnetic material islocated where:

a) a < p < 3a; First, weknow that Hy = 1/2mp, from which we construct:

1 600

— = — I =12A
27(1072) T =

Since the interface between the two medialiesin the a, direction, we use the boundary condition
of continuity of tangential H and write

12 6

In the magnetic material, we find

_ (25 (4r x 1077)(12)
- 2 p

B(5 < p < 15) = uH ay = (6/p)ay uT

Then, inthe free space region, B(15 < p < 20) = uoH = (2.4/p)ag nT.

b) 0 < ¢ <m;, Agan, wearegivenH = 600/7 ay A/mat p = 10 and at ¢ = /2. Now, since
the interface between medialiesin the a, direction, and noting that magnetic field will be normal
to this (a, directed), we use the boundary condition of continuity of B normal to an interface,
andwriteB(0 < ¢ < ) =By =B(r < ¢ < 27) = By, or 25ugH1 = uoH2. Now, using
Ampere'scircuital law, we write

?f H.dL =npH1+npHo =35mpH, =1

Using the given value for Hy a p = 10 mm, I = 3.5(600/x)(r x 10~2) = 21 A. Therefore,
Hy = 21/(3.5mp) = 6/(mwp), or HO < ¢ < m) = 6/(wp)ag A/m. Then H, = 2.5H, or
H(m < ¢ <2m) =15/(mp)ag A/m. Now B(0 < ¢ < 2m) = 2.5u0(6/(rp))ay = 6/pay uT.
Now, ingeneral,M = (ug—1)H,andsoM (0 < ¢ < ) = (2.5-1)6/(wp)ay = 9/(wp)as A/m
andM(z < ¢ < 2m) =0.

9.25. A conducting filament at z = O carries 12 A inthe a, direction. Let ug = 1for p < 1cm, ugp = 6 for
l<p<2cmyand ug =1for p > 2cm. Find
a) H everywhere: Thisresult will depend on the current and not the materials, and is:

1 191
H:_%:TA/m O < p <o)

b) B everywhere: Weuse B = uruoH tofind:
B(p < 1cm) = (Duo(L.91/p) = (24 x 1078/p)ay T
B(1<p <2cm) = (6)uo(1.91/p) = (L4 x 107°/p)ay T
B(p > 2cm) = (Duo(L.91/p) = (2.4 x 1078/p)ay T where p isin meters.
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9.26. Point P(2, 3, 1) liesontheplanar boundary boundary separating region 1 fromregion 2. Theunit vector
ay12 = 0.6a, +0.48a, +-0.64a, isdirected fromregion1toregion2. Let g1 = 2, ug2 = 8,andHy =
100a, — 300a, + 200a, A/m. Find Hy: First By = 200u0a, — 600u0a, 4 40010a;. Then its normal
component at the boundary will be By = (B1-ay12)ayiz = (52.8a, +42.24a, +56.32a,) 10 = Boy .
ThenHay = Ban/(8ro) = 6.60a, +5.28a, 4 7.04a;, and Hiy = Bin /210 = 26.40a, +21.12a, +
28.16a,. Now Hir = H1 — Hyy = (100a, — 300a, + 200a,) — (26.40a, + 21.12a, + 28.16a;) =
73.60a, — 321.12a, + 171.84a; = Hor.

Finaly, Ho = Hoy 4+ Hor = 80.2a, — 315.8a, 4 178.9a, A/m.

9.27. Letugy = 2inregionl, definedby 2x+3y—4z > 1, whileugs = 5inregion2where2x+3y—4z < 1.
Inregion 1, H; = 50a, — 30a, + 20a, A/m. Find:
a) Hy1 (normal component of H4 at the boundary): We first need aunit vector normal to the surface,
found through

V(2x+3y—4z) 2ac+3a —4a; 37a. 1 56a. — 74a
= .37a, + .56a, — .74a,

anv = =
N7V @x + 3y —42)) 29

Since this vector is found through the gradient, it will point in the direction of increasing values
of 2x 4+ 3y — 4z, and so will be directed into region 1. Thus we write ay = ay21. The normal
component of H1 will now be;

Hy1 = (H1-ay21)ay21
= [(50a, — 30a, + 20a;) - (.37a, + .56a, — .74a,)] (.37a, + .56a, — .74a;)
= —4.83a, — 7.24a, + 9.66a, A/m

b) Hr1 (tangential component of H4 at the boundary):

Hri=Hi—Hn:
= (50a, — 30a, + 20a,) — (—4.83a, — 7.24a, + 9.66a,)
= 54.83a, — 22.76a, + 10.34a, A/m

¢) Hpo (tangential component of H» at the boundary): Since tangential components of H are con-
tinuous across a boundary between two media of different permeabilities, we have

H7o = Hyq = 54.83a, — 22.76a, + 10.34a. A/m

d) Hy2 (normal component of H» at the boundary): Since normal components of B are continuous
across a boundary between media of different permeabilities, we write u1Hy1 = u2Hpy2 or

2
Hyo = 281y = = (—4.83a, —7.24, +9.66a;) = —1.93a, — 2.90a, + 3.86a; A/m

UR2

€) 61, the angle between Hy and ay21: Thiswill be

50a, — 30a, + 20a,
(502 + 302 + 20%)1/2

H
COSHL = —= . Ay = [ ] . (.37a, + .56a, — .74a;) = —0.21

IH1l

Therefore 91 = cos 1(—.21) = 102°.
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9.27f) 02, the angle between Hy and ay»1: First,

9.28.

Hz = Hro + Hy2 = (54.83a, — 22.76a, + 10.34a,) + (—1.93a, — 2.90a, + 3.86a;)
= 52.90a, — 25.66a, + 14.20a, A/m

Now

H>
COSHr = —— - ay21 =

[52.90ax — 25.66a, + 14.20a,
[H2|

60.49 ] - (.37a, + .56ay — .74a,) = —0.09

Therefore o = cos 1(—.09) = 95°.

For values of B below the knee on the magnetization curve for silicon steel, approximate the curve by
astraight line with » = 5 mH/m. The core shown in Fig. 9.17 has areas of 1.6 cm? and lengths of 10
cm in each outer leg, and an area of 2.5 cm? and alength of 3 cm in the central leg. A coil of 1200
turns carrying 12 mA is placed around the central leg. Find B in the:

a) center leg: Weuse mmf = ® R, where, in the centra leg,

L; 3x 1072
Ro=—" = - =24 x 10*H
wAi, (5% 1073)(2.5 x 107%)
In each outer leg, the reluctanceis
Loy 10 10_2
R, ’ . — 1.25 x 105 H

T UAgn  (5Bx 10-3)(1.6 x 104

The magnetic circuit isformed by the center leg in serieswith the parallel combination of the two
outer legs. The total reluctance seen at the coil locationis Ry = R. + (1/2)R, = 8.65 x 10* H.

We now have
mmf 14.4

Rr 865 x 10
The flux density in the center leg is now

&= = 1.66 x 1074 Wb

_®  166x1071

= = e = 0666T

b) center leg, if a0.3-mm air gap is present in the center leg: The air gap reluctance adds to the total
reluctance already calculated, where

0.3x 1073

—955x 10° H
(47 x 10-7)(25 x 104 .

Rair =

Now the total reluctance is R,;.; = R7 + Ryir = 8.56 x 10% + 9.55 x 10° = 1.04 x 106. The
flux in the center leg is now

14.4
=" _—138x10°Wb
1.04 x 106 %
and 5
1.38 x 10~
= _—553mT
2.5 x 104
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9.29. In Problem 9.28, the linear approximation suggested in the statement of the problem leads to a flux
density of 0.666 T in the center leg. Using thisvalue of B and the magnetization curvefor silicon steel,
what current is required in the 1200-turn coil? With B = 0.666 T, weread H;, = 120 A - t/min Fig.
9.11. Theflux in the center legis ® = 0.666(2.5 x 10~%) = 1.66 x 10~* Wh. Thisdividesequally in
the two outer legs, so that the flux density in each outer leg is

1\ 1.66 x 10~4
Boy=|2) """ —052Wb/m?
o (2) 16x 104 /m

Using Fig. 9.11 with thisresult, we find H,,;, = 90 A - t/m We now use
?gH -dL =NI

to find

(120)(3 x 1072) + (90)(10 x 1072)
1200

1
I = N (HinLin + Hour Lour) = =10.5mA

9.30. A toroidal core has acircular cross section of 4 cm? area. The mean radius of the toroid is 6 cm. The
core is composed of two semi-circular segments, one of silicon steel and the other of alinear materia
with ug = 200. Thereisadmm air gap at each of thetwo joints, and the coreiswrapped by a4000-turn
coil carrying adc current 1.

a) Find I if the flux density inthe coreis 1.2 T: | will use the reluctance method here. Reluctances
of the steel and linear materials are respectively,

7(6 x 1072) 5,1
R, = — 157 x 10°H
"= B0x 10 3@ x 109 x
6 x 1072
R (6 x 1079 — 188 x 10°H!

~ (200)(47 x 10-7)(4 x 10-4)

wherep, isfoundfromFig. 9.11,using B = 1.2, fromwhich H = 400,andso B/H = 3.0mH/m.
The reluctance of each gap is now

0.4 x 103

R, = =79 x 10°H !
¢ = 4r x 10-7)(4 x 10-4) .

We now construct
NI = ®R =12(4x 1074 [Ry + R, + 2R,] = 1.74 x 10

Thus I1 = (1.74 x 10%)/4000 = 435 mA.
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9.30b. Find the flux density in the coreif 71 = 0.3 A: We are not sure what to use for the permittivity of steel
in this case, so we use the iterative approach. Sincethe current is down from the value obtained in part
a,wecantry B = 1.0 T and see what happens. From Fig. 9.11, we find H = 200 A/m. Then, in the
linear material, 10

= =3.98x 10° A
20047 x 10-7) x 107A/m

H

and in each gap,
1.0

Hy= ————
87 4r x 107
Now Ampere'scircuital law around the toroid becomes

=7.96 x 10° A/m

NIy = 7(.06)(200 + 3.98 x 10%) + 2(7.96 x 10°)(4 x 10~%) = 1.42 x 103 A—t

Then I; = (1.42 x 10%)/4000 = .356 A. This is till larger than the given value of .3A, so we can
extrapolate down to find a better value for B:

=0.86T

.356 — .300
B=10-(12-10) [ }

435 — .356

Using this value in the procedure above to evaluate Ampere's circuital law leads to a value of I of
0.306 A. Theresult of 0.86 T for B is probably good enough for this problem, considering the limited
resolution of Fig. 9.11.

9.31. A toroid is constructed of amagnetic material having a cross-sectional areaof 2.5 cm? and an effective
length of 8 cm. Thereisalso ashort air gap 0.25 mm length and an effective area of 2.8 cm2. An mmf
of 200 A - t is applied to the magnetic circuit. Calculate the total flux in the toroid if:

a) the magnetic material is assumed to have infinite permeability: In this case the core reluctance,
R, =1/(nA), iszero, leaving only the gap reluctance. Thisis

d 0.25 x 1073
Rg = = . =71x10°H
poAg  (4m x 1077)(2.5 x 10~4)
Now 200
o= " _ - =2.8x 10 Wb
. 71x 106 ————

b) the magnetic material is assumed to be linear with ux = 1000: Now the core reluctance is no
longer zero, but

8x 102
R, = —26x 10°H
¢ = (1000) (47 x 10-7)(2.5 x 10-%) x
The flux isthen 00
mimf — 2.1 x 104 Wb

CI): =
R+ R, 9.7 x10°

¢) the magnetic material issilicon steel: In this case we use the magnetization curve, Fig. 9.11, and
employ an iterative process to arrive at the final answer. We can begin with the value of ® found
in part a, assuming infinite permeability: ®@ = 2.8 x 10~* Whb. The flux density in the core
isthen BV = (2.8 x 104)/(2.5 x 104) = 1.1 Wb/m2. From Fig. 9.11, this corresponds to
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magnetic field strength Hc(l) = 270 A/m. We check this by applying Ampere'scircuita law to the
magnetic circuit:

f H-dL=HPL.+H d

where HV L, = (270)(8x 1072) = 22, andwhere H{’d = &M, = (2.8x 1074)(7.1x 10°) =
199. But we require that

¢H~dL=200A-t

whereas the actual result in thisfirst calculation is 199 4+ 22 = 221, which istoo high. So, for a
second trial, we reduce B to B?) = 1 Wb/m2. Thisyields H® = 200 A/m from Fig. 9.11, and
thus @@ = 2.5 x 107* Wb. Now

f H.dL=HPL,+ @R, =200(8 x 1072) + (2.5 x 10~%)(7.1 x 10°) = 194

This is less than 200, meaning that the actual flux is slightly higher than 2.5 x 10~4 Wh.
| will leave the answer at that, considering the lack of fineresolutionin Fig. 9.11.

9.32. Determine the total energy stored in a spherical region 1cm in radius, centered at the origin in free
space, in the uniform field:

a)

b)

d)

€)

H1 = —600a, A/m: First we find the energy density:
_1 R 7 2 _ 3
Wyl = 251 -Hq1 = 2M0H1 = 2(47'[ x 107 )(600)° = 0.226 J/m

The energy within the sphereis then
4 3 4 -6
W1 = w1 374)= 0.226 3" * 10 = 0.947 ud
H> = 600a, + 1200a, A/m: In this case the energy density is

1 5
w2 = S0 [ (600)2 + (1200)2] = 2 uo(600)?

or five times the energy density that was found in part a. Therefore, the stored energy in thisfield
isfive timesthe amount in part a, or W,,,2 = 4.74 nJ.

H3z = —600a, + 1200a,. Thisfield differsfrom H only by the negative x component, whichisa
non-issue since the component is squared when finding the energy density. Therefore, the stored
energy will be the same asthat in part b, or W,,,3 = 4.74 pJ.

Hs = Hz + Hs, or 2400a, A/m: The energy density is now wy,4 = (1/2)10(2400)? =
(1/2)1t0(16)(600)% J/m3, which is sixteen times the energy density in part . The stored en-
ergy istherefore sixteen times that result, or W,,,4 = 16(0.947) = 15.2 uJ.

1000a, A/m+0.001a, T: Theenergy density iSw,,5 = (1/2)110[1000+4.001/0]? = 2.03J/m?.
Then W,,,5 = 2.03[(4/3) x 10~°] = 8.49 pJ.
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9.33. A toroidal core has asquare cross section, 2.5¢cm < p < 3.5¢cm, —0.5cm < z < 0.5 cm. The upper
half of thetoroid, 0 < z < 0.5 cm, is constructed of a linear material for which uz = 10, while the
lower half, —0.5cm < z < 0, has ug = 20. Anmmf of 150 A - t establishesaflux inthe ay direction.
For z > 0O, find:

a) Hy(p): Ampere’scircuital law gives:

150
2npHy = NI =150 = Hy = % =23.9/p A/m

b) By(p): Weuse By = puruoHy = (10)(4r x 1077)(23.9/p) = 3.0 x 10~4/p Wh/m?.
C) ®,.0: Thiswill be

005 .035 3 10—4 035
Z>o_//B dS = / f 2EX T dpdz = (.005)(3.0 x 10~ )|n(025)
025

=5.0x10"" Wb

d) Repeat for z < 0: First, the magnetic field strength will be the same as in part a, since the
calculation is material-independent. Thus Hy = 23.9/p A/m. Next, B, is modified only by the
new permesbility, which is twice the value used in part a: Thus By = 6.0 x 1074/p Wh/m?.
Finally, since By, is twice that of part a, the flux will be increased by the same factor, since the
area of integration for z < O isthe same. Thus ®,_¢ = 1.0 x 10~ Wh.

€) Find ®yg: This will be the sum of the values found for z < Oand z > 0, or Qg =
1.5 x 10~ Wh.

9.34. Threeplanar current sheetsarelocated in free space asfollows: —100a, A/m?atz = —1, 200a, A/m?
az=0 —100a, A/m?atz =1 Letwy = (1/2)B-H J/m?, and find wy for al z: Using the fact
that the field on either side of a current sheet is given in magnitudeby H = K /2, wefind, in A/m:

H(z > 1) = (1/2)(—200 + 100 + 100)a, = 0

H(O < z < 1) = (1/2)(—200 — 100 + 100)a, = —100a,
H(—1 < z < 0) = (1/2)(200 — 100 + 100)a, = 100a,

and
H(z < —1) = (1/2)(200 — 100 — 100)a, = 0

The energy densities are then
w(z>1) =wy(z<-1)=0

w0 <z <1) =wy(—1<z<0) = (1/2)uo(100)? = 6.28 mJ/m?
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9.35. Theconesd = 21° and § = 159° are conducting surfaces and carry total currents of 40 A, as shownin
Fig. 9.18. The currents return on a spherical conducting surface of 0.25 m radius.

a) Find H intheregion 0 < r < 0.25,21° < 0 < 159°, 0 < ¢ < 27: We can apply Ampere's
circuital law and take advantage of symmetry. We expect to seeH inthe a, direction and it would
be constant at agiven distance from the z axis. Wethus perform thelineintegral of H over acircle,
centered on the z axis, and parallel to the xy plane:

2
fH-dL= H¢a¢'r§nea¢d¢=lencl.=4OA
0

Assuming that Hy is constant over the integration path, we take it outside the integral and solve:

40 20
Hy=——7— = H= —3ap A/m

2nrsing wr Siné

b) How much energy is stored in this region? Thiswill be

27 p159° (.25 20010 . 10010 159° do
WH:/ M0H¢—/ /2 / 22520 r Sﬂ@drd@dqﬁz - /210 sno

_ 100uo [tan(159/2)
N tan(21,/2)

] =1.35x107%J
b4 -

9.36. A filament carrying current I in the a, direction lies on the z axis, and cylindrical current sheets of 5a,
A/mand —2a, A/m arelocated at p = 3 and p = 10, respectively.

a) Find 7 if H =0for p > 10. Ampere'scircuital law says, for p > 10:
2npH =27(3)(5) —27(10)(2) +1 =0
fromwhich I = 27 (10)(3) — 27 (3)(5) = 107 A.
b) Usingthisvalueof I, calculateH for al p, 3 < p < 10: Again, using Ampere'scircuital law, we

find
1 20

¢) Calculateand plot Wy versus pg, where Wy isthetotal energy stored withinthevolumeO < z < 1,
0< ¢ < 2n,3< p < po: Firsttheenergy density will bewy = (1/2)uoH?2 = 2000/ p2 I/md.
Then the energy is

1 p2m prpo 20010 £0 _ £0
Wi :/0 / /3 = pdpdg dz = 400muoln () = (158 x 107 () 3
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9.36¢. (continued) A plot of the energy as afunction of pg is shown below.

1.5 —

Energy x 1000
|

05 —

radius (m)

9.37. Find the inductance of the cone-sphere configuration described in Problem 9.35 and Fig. 9.18. The

9.38.

inductance is that offered at the origin between the vertices of the cone: From Problem 9.35, the
magnetic flux density is By = 20uo/(rr sinf). We integrate this over the crossectional area defined
by 0 <r <0.25and 21° < 0 < 159°, to find the total flux:

15" 025 20, Suro,  [tan(159/2) 5M0
—— rdrdf = In
210 nrsing tan(21/2)

(3.37) = 6.74 x 1075 Wb

Now L = ®/I = 6.74 x 107%/40 = 0.17 puH.
Second method: Use the energy computation of Problem 9.35, and write

2Wy 2(1 35 x 1074
12 (40)2

L= = 0.17 uH

A toroidal core has arectangular cross section defined by the surfacesp = 2cm, p = 3cm, z = 4cm,
and z = 4.5 cm. The core materia has a relative permeability of 80. If the core is wound with a coil
containing 8000 turns of wire, find itsinductance: First we apply Ampere's circuital law to a circular
loop of radius p in theinterior of the toroid, and in the a direction.

NI

%H dL-27'L’,OH¢-NI = H¢—2
9

Theflux in thetoroid is then the integral over the cross section of B:

I /.
/fB dL_/ / “R“ON dp dz _(005)—“R“°N in( %
02 2 .02

The flux linkage is then given by N ®, and the inductanceis

N®  (.005)(80)(4r x 10~ 7)(8000)

L = =
1 2

In(1.5) = 2.08H
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9.39. Conducting planesinair at z = 0 and z = d carry surface currents of +Kpa, A/m.
a) Findtheenergy storedinthemagneticfield per unitlength (0 < x < 1) inawidthw (0 < y < w):
First, assuming current flows in the +a, direction in the sheet at z = d, and in —a, in the sheet
at z = 0, wefind that both currents together yield H = Kopa, for 0 < z < d and zero elsewhere.
The stored energy within the specified volume will be:

1 5 Y e 1 2
Wy = | zuoHdv = —noKgdxdydz = —wduoKg J/m
v 2 o Jo Jo 2 2 - -

b) Calculate the inductance per unit length of this transmission line from Wy = (1/2)L12, where I
isthetotal current in awidth w in either conductor: We have I = wKjg, and so

2 wd 2 2 dw

¢) Calculate the total flux passing through therectangle0 < x < 1,0 < z < d, intheplaney = 0,
and from this result again find the inductance per unit length:

d r1 d pl
= / f noHay -a,dxdz = / / woKodx dy = uodKo
o Jo o Jo

(o} dK d
=2 Hodfo pod
1 wKo w

Then

9.40. A coaxial cable has conductor dimensions of 1 and 5 mm. The region between conductors is air for
O0<¢ <m/2and < ¢ < 3r/2, and a non-conducting material having ug = 8forz/2 < ¢ < n
and 37/2 < ¢ < 2m. Find the inductance per meter length: The interfaces between media all occur
along radial lines, normal to the direction of B and H in the coax line. B is therefore continuous (and
constant at constant radius) around a circular loop centered on the z axis. Ampere's circuital law can
thus be written in this form:

o= 2 () s (o) (30 e (5) = En =

and so

_ URrpol
wp(l+ ur)
The flux in the line per meter length in z is now

_ MRpol mrpol
_PREOT gpdz = BP0 ns)
/ /001 o1+ ur) 71+ ur)

And the inductance per unit length is:

_®_ memo o 84T x1070) o
L= TS In(5) = <O In(5) =572nH/m
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9.41. A rectangular coil iscomposed of 150 turns of afilamentary conductor. Find the mutual inductancein
free space between this coil and an infinite straight filament on the z axisif the four corners of the coil
arelocated at

a (0,1,0), (0,3,0), (0,3,1), and (0,1,1): In this case the coil liesin the yz plane. If we assume that
the filament current isin the +-a, direction, then the B field from the filament penetrates the cail
in the —a, direction (normal to the loop plane). The flux through the loop will thus be

_ I
// pol (ax)dydz_‘;ilns

The mutual inductance is then

NO® 150
M=—1= =

In3 =33 H

b) (1,1,0), (1,3,0), (1,3,1), and (1,1,1): Now the cail liesin the x = 1 plane, and the field from the
filament penetrates in a direction that is not normal to the plane of the coil. We write the B field
from the filament at the coil location as

wolag

2/ y2 4+ 1

B =

The flux through the coil is how

1 Isin
// _ Mol (= ax)a’de—// Mol >TP ¢ dydz
2 y +1 21 y +1

_ poly _ ol - -
/ / 27(y2 + 1) dydz =" 271 In(y +1)(1—(1.6><10 )i

The mutual inductance is then

N
M=—= (150)(1.6 x 10~7) = 24 uH

9.42. Find the mutual inductance of this conductor system in free space:

a) the solenoid of Fig. 8.11b and a square filamentary loop of side length b coaxially centered
inside the solenoid, if @ > b/+/2; With the given side length, the loop lies entirely inside the
solenoid, and so islinked over its entire cross section by the solenoid field. The latter is given by
B = noN1/d a, T. Theflux through the loop areaisnow & = Bb?, and the mutual inductanceis
M = ®/I = ugNb?/d H.

b) acylindrical conducting shell of aradius a, axis on the z axis, and afilamentat x = 0, y = d,
and where d > a (omitted from problem statement); The B field from the cylinder is B =
(nol)/(2mp) ay for p > a, and so the flux per unit length between cylinder and wireis

/f“—old dz = 1ol (g>Wb
2 a

Finally the mutual inductanceis M = ®/1 = uo/2r In(d/a) H.
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9.43.

b)

a) Use energy relationships to show that the internal inductance of a nonmagnetic cylindrical wire of
radius a carrying a uniformly-distributed current I is wo/(87) H/m. We first find the magnetic field
inside the conductor, then calculate the energy stored there. From Ampere’s circuital law:

2
P

21 a?

2 2.2
20 12
WH_/ ,uoH(pdv_// /“024pd dé dz —%J/m

Now, with Wy = (1/2)L12, wefind L;,; = po/(87) as expected.

Find the internal inductance if the portion of the conductor for which p < ¢ < a isremoved: The
hollowed-out conductor still carries current 7, so Ampere’s circuital law now reads:

2_ 2 2_ 2
T (pc —c°) I | pc—c
2npHy = ——5——>- = Hy = 20 [m] A/m

and the energy is now
1 2 2 2 2 2 B 4
pol®(p? — ¢2) pol / 3 , C
Wi = dpdgpdz = —F0 22,4 Sy
! ‘/0 fo '/C 8 pZ(a 2)2 pdpdgdz 47'[(&2 —02)2 c P co P p

2 1
= W |:Z(a4 — = 2@® - +c*n <%)} J/m

Theinternal inductanceisthen

2W 4 44%¢% + 3¢* + 4¢*In
L, = 2WH _ 1o [a ¢+ 3¢ + (a/c)] H/m

12~ 81 (a2 — c2)2
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