CHAPTER 3

3.1. Anempty metal paint canis placed on amarbletable, thelid isremoved, and both parts are discharged
(honorably) by touching them to ground. An insulating nylon thread is glued to the center of the lid,
and a penny, anickel, and adime are glued to the thread so that they are not touching each other. The
penny is given a charge of +5 nC, and the nickel and dime are discharged. The assembly is lowered
into the can so that the coins hang clear of all walls, and the lid is secured. The outside of the can is
again touched momentarily to ground. The deviceis carefully disassembled with insulating gloves and
tools.

a) What charges are found on each of the five metallic pieces? All coins were insulated during the
entire procedure, so they will retain their original charges: Penny: +-5nC; nickel: O; dime: 0. The
penny’s charge will haveinduced an equal and opposite negative charge (-5 nC) on theinside wall
of the can and lid. Thisleft acharge layer of +5 nC on the outside surface which was neutralized
by the ground connection. Therefore, the can retained a net charge of —5nC after disassembly.

b) If the penny had been given a charge of +5nC, the dime a charge of —2nC, and the nickel a
charge of —1nC, what would the final charge arrangement have been? Again, since the coins are
insulated, they retain their original charges. The charge induced on the inside wall of the can and
lid is equal to negative the sum of the coin charges, or —2nC. Thisis the charge that the can/lid
contraption retains after grounding and disassembly.

3.2. A point charge of 12 nC is located at the origin. four uniform line charges are located inthe x = 0
plane asfollows. 80nC/maty = —1land —5m, -50nC/mat y = —2and —4 m.
a) FindD at P(0, —3, 2): Note that this point lies in the center of a symmetric arrangement of line
charges, whose fields will all cancel at that point. Thus D arise from the point charge alone, and
will be

D_ 12 x 107%(—3ay + 2a,)
4 (3 + 2215
= —61.1a, + 40.7a, pC/m?

= —6.11 x 10 Ha, 4 4.07 x 107"a, C/m?

b) How much electric flux crossesthe plane y = —3 and in what direction? The plane intercepts all
flux that entersthe —y half-space, or exactly half the total flux of 12 nC. The answer isthus 6 nC
and inthe —a, direction.

¢) How much electric flux leavesthe surface of asphere, 4minradius, centered at C (0, —3, 0)? This
sphere encloses the point charge, so its flux of 12 nC isincluded. The line charge contributions
are most easily found by trandating the whole assembly (sphere and line charges) such that the
sphereis centered at the origin, with line chargesnow at y = 41 and +2. The flux from the line
chargeswill equal the total line charge that lies within the sphere. The length of each of the inner
two line charges (at y = £1) will be

1
h1 = 2r cosf1 = 2(4) cos [sin‘1 (Z)] =194m
That of each of the outer two line charges (at y = £2) will be

2
ho = 2r cOSO, = 2(4) cos [sin‘1 (Z)] =173m
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3.2c. (continued) Thetotal charge enclosed in the sphere (and the outward flux fromit) is now

Q1+ Q) = 2(1.94) (=50 x 107%) 4 2(1.73)(80 x 107%) 4 12 x 107° = 348nC

3.3. Thecylindrical surface p = 8 cm contains the surface charge density, ps = 5e =29l nC/m?2.
a) What isthe total amount of charge present? We integrate over the surface to find:

o0

=0.25nC
0

00 2 -1
0=2 f / 5e~2%2(.08)d¢ dz NC = 207 (.08) [ — | e=2*
o Jo 20

b) How much flux leavesthe surface p = 8cm, 1cm < z < 5cm, 30° < ¢ < 90°? Wejust integrate
the charge density on that surface to find the flux that leavesiit.

.05

05 o 90 — 30 -1
®=0 = —20z ) — 2 ] —20z
o'= | /300 5¢~2%(.08) d¢ dz nC ( 360 ) n(5)(08)(20>e

.01
= 9.45 x 1073nC = 9.45pC

3.4. The cylindrical surfaces p = 1, 2, and 3 cm carry uniform surface charge densities of 20, —8, and 5
nC/m?, respectively.
a) How much electric flux passes through the closed surface p = 5¢m, 0 < z < 1 m? Since the
densities are uniform, the flux will be

® = 27 (aps1 + bpsz + cps3)(1m) = 27 [(.01)(20) — (.02)(8) + (.03)(5)] x 1072 = 1.2nC

b) Find D at P(1cm, 2cm, 3cm): This point lies at radius +/5 cm, and is thus inside the outermost
charge layer. Thislayer, being of uniform density, will not contributeto D at P. We know that in
cylindrical coordinates, the layersat 1 and 2 cm will produce the flux density:

aps1+ b,
D=Dpap=uap
0

or
_ (.0DH(20) + (.02)(—9)

D, =
g V.05
At P, ¢ =tan~1(2/1) = 63.4°. Thus D, = 1.8cos¢ = 0.8and D, = 1.8sing = 1.6. Finaly,

= 1.8nC/m?

Dp = (0.8a, + 1.6a,) nC/m?
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3.5. Let D = 4xya, + 2(x2 + z2)ay + 4yza, C/m? and evaluate surface integrals to find the total charge
enclosed in the rectangular parallelepiped 0 < x < 2,0 <y < 3,0 < z < 5m: Of the 6 surfacesto
consider, only 2 will contribute to the net outward flux. Why? First consider the planesat y = 0 and 3.
The y component of D will penetrate those surfaces, but will beinward at y = 0 and outward at y = 3,
while having the same magnitude in both cases. These fluxes will thus cancel. At the x = 0 plane,
D, = 0and at the z = 0 plane, D, = 0, so there will be no flux contributions from these surfaces.
This leaves the 2 remaining surfaces at x = 2 and z = 5. The net outward flux becomes:

5 3 3 2
<I>:/ / D‘x_z'axdydz—i-//D{_5~azdxdy
o Jo = o Jo T
3

3
:5/ 42)ydy + 2/ 4(5)ydy =360 C
0 0

3.6. Two uniform line charges, each 20 nC/m, arelocated at y = 1, z = £1 m. Find the total flux leaving a
sphere of radius 2 mif it is centered at
a) A(S,1,0): Theresult will be the sameif we move the sphere to the origin and the line charges to
(0,0, 1). The length of the line charge within the sphere is given by I = 4sin[cos™%(1/2)] =
3.46. With two line charges, symmetrically arranged, the total charge enclosed isgivenby Q =
2(3.46)(20nC/m) = 139nC

b) B(3,2,0): Inthis case the result will be the same if we move the sphere to the origin and keep
the charges where they were. The length of the line joining the origin to the midpoint of the line
charge (in the yz plane) isl1 = /2. The length of the line joining the origin to either endpoint
of the line charge is then just the sphere radius, or 2. The half-angle subtended at the origin by
the line charge isthen ¥ = cos1(v/2/2) = 45°. The length of each line charge in the sphere
isthenl» = 2 x 2siny = 2/2. The total charge enclosed (with two line charges) is now
Q' = 2(24/2)(20nC/m) = 113nC

3.7. Volume charge density islocated in free space as p, = 2¢ 190" nC/m3for0 < r < 1mm,andp, =0

elsewhere.
a) Findthetotal charge enclosed by the spherical surfacer = 1 mm: To find the charge we integrate:

2 T .001
0 =/ / / 2¢7100" .2 500 dr do dg
0 0 0

Integration over the angles gives a factor of 4. The radial integration we evaluate using tables;
we obtain

2,—1000r | go1 2 e—lOOOr 001
L

—r-e
< —1000r — 1
o T 1000 1000)2° r=1

re _ -9
1000 ] 40x 10°nC

Q=87r|:

b) By using Gauss's law, calculate the value of D, on the surface r = 1 mm: The gaussian surface
is a spherical shell of radius 1 mm. The enclosed charge is the result of part a. We thus write
4rr2D, = Q, or

0 40x107°

— - = 3.2 x 1074 nC/m?
42 = 47 (001)2 x /

D,
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3.8. Uniform line charges of 5 nC/m ar located infreespaceat x = 1,z =1, andaty =1,z = 0.
a) Obtain an expression for D in cartesian coordinates at P (0, 0, z). In general, we have

D() = P ro—rj ro—ro
(Z) — 2_ — 72 — 72
L Irs—rql [r2 — 15|

wherery =rp =za,, r; = a,,andr, = a, +a,. Thus

_ps [lzac —a]  [z—Da; —a]
Pl = Zn[ i+2 " L+ G-D7 ]

_&[ A +( =) oz )a]
T2t 14— [1+z8 \[1+G:z-1?7 [1+2z9)F

b) Plot |D|vs. za P, —3 < z < 10: Using part a, we find the magnitude of D to be

1/2
ps 1 1 ( (z—1 >2
Dl =—
o= [[1+(z 02 T2 \Ire-03 " [1+7
A plot of this over the specified range is shown in Prob3.8.pdf.

3.9. A uniform volume charge density of 80 .C/m? is present throughout the region 8mm < r < 10mm.

Let p, =0for0 <r < 8mm.
a) Findthetotal charge inside the spherical surface r = 10 mm: Thiswill be

.010

21 T .010 r3
0= / / / (80 x 107%)r?sin6 dr d6 d¢ = 47 x (80 x 1078 —
0 o J.o 3 l.oos

08
=1.64 x 10719C = 164pC

b) Find D, a r = 10 mm: Using a spherical gaussian surface at »r = 10, Gauss' law is written as
47r’D, = Q = 164 x 107%2, or

164 x 10712

(007 1.30 x 10~/ C/m? = 130nC/m?
TT (. -

D,(10mm) =

c) If thereisno chargefor » > 10 mm, find D, a r = 20 mm: Thiswill be the same computation
asin part b, except the gaussian surface now lies at 20 mm. Thus

164 x 10712

02 = 3.25 x 1078 C/m? = 32.5nC/m?
TT (. -

D,(20mm) =

3.10. Let p; = 8uC/m? intheregionwherex = 0and —4 < z < 4m, and let p; = 0 elsewhere. Find D at
P(x,0, z), wherex > 0: The sheet charge can be thought of as an assembly of infinitely-long parallel
strips that lie parallel to the y axisin the yz plane, and where each is of thickness dz. The field from
each strip isthat of an infinite line charge, and so we can construct thefield at P from asingle strip as:

osdz r—r’
dDp = —
P 2 |r —r/)2
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3.10 (continued) wherer = xa, + za, andr’ = z’a, We distinguish between the fixed coordinate of P, z,
and the variable coordinate, 7/, that determines the location of each charge strip. To find the net field at
P, we sum the contributions of each strip by integrating over z':

_— /4 8 x 107°d7’ (xa, + (z — 2)a)
P= _a 2n[x2 + (z — )]

We can re-arrange this to determine the integral forms:

D il _ ( )/ / 2 ELZ/ 2 2—2/z+22]
= xay + za,
P 2 X Z (xz ZZ) 227 + (2) “Jog (x5 +2z9) 27/ +(Z)

Using integral tables, we find

4x 10 1 27 — 2
Dp =X |:(xax +zaz)—tan_1( < Z)
T X 2x

1 271 27 — 27 4
_ _|n 2 2_2 / /2 ——tan_l a
|:2 x4z 44 +(z))+2x > |,

which evaluates as

4x 106 7+ 4 z—4 1 [x24(z+49)?
Dp=—"—"J|tan? —tan~?! a +=In| ————=|a C/m?
p= o e (0F) e (50 e an G e ©

The student is invited to verify that for very small x or for avery large sheet (allowing 7’ to approach
infinity), the above expression reduces to the expected form, Dp = p,/2. Note also that the expression
isvalid for al x (positive or negative values).

3.11. Incylindrical coordinates, let p, = 0 for p < 1 mm, p, = 2siN(200077p) NC/m?3 for 1mm < p <
1.5mm, and p, = Ofor p > 1.5mm. Find D everywhere: Since the charge varies only with radius,
and isintheform of acylinder, symmetry tells usthat the flux density will be radially-directed and will
be constant over a cylindrical surface of a fixed radius. Gauss' law applied to such a surface of unit
length in z gives:

a) for p < 1 mm, D, =0, since no charge is enclosed by a cylindrical surface whose radius lies
withinthisrange.

b) for 1mm < p < 1.5mm, we have

o)
2npD, = 21 /0012 x 1072 sin(20007p") p’ dp’
_9 1 . 0 p
=4 x 10 ———— sin(20007p) — 20000 €0s(2000r p)

(20007 )2 007 ool

or finally,

—15
D, =

- [Sin(ZOOOJTp) t2on [1 —10% COS(ZOOOJT,O)H c/m? (1mm < p < 1L5mm)
n2p
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3.11. (continued)
¢) for p > 1.5mm, the gaussian cylinder now lies at radius p outside the charge distribution, so
the integral that evaluates the enclosed charge now includes the entire charge distribution. To
accomplish this, we change the upper limit of the integral of part » from p to 1.5 mm, finaly
obtaining:

25x 10715
D, = i—p C/m? (p > 1.5mm)

3.12. A nonuniform volume charge density, p, = 120r C/m3, lies within the spherical surfacer = 1m, and
0y = 0 everywhere else.
a) Find D, everywhere. For r < 1 m, we apply Gauss' law to a spherical surface of radius r within
this range to find
A7r°D, = 47r/ 1207’ (') dr’ = 1207 r*
0
Thus D, = (30r2) for r < 1 m. For r > 1 m, the gaussian surface lies outside the charge
distribution. The set up is the same, except the upper limit of the above integral is 1 instead of r.
Thisresultsin D, = (30/r2) forr > 1 m.

b) What surface charge density, ps2, should be onthe surfacer = 2 suchthat D, ,—»— = 2D, ,—24?
Atr =2, wehave D, ,—>_ = 30/2? = 15/2, from part a. The flux density in the regionr > 2
arising from a surface charge at r = 2 isfound from Gauss' law through

4ps 2

A7r?D,s = 41 (2)%ps2 = Dy = >

Thetotal flux density intheregion r > 2 arising from the two distributionsis

@ + 4/Os2

D, =
r r2 72

Our requirement that D, ,—p— = 2D, ,—»+ becomes

30 30 15
?:2(?+ps2> = pSZZ_ZC/m

¢) Make asketch of D, vs. r for 0 < r < 5 m with both distributions present. With both charges,
D,(r <1)=30r%, D,(1 <r < 2) =30/r? and D,(r > 2) = 15/r2. These are plotted on the
next page.
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Problem 3.12
40 T T T T

D(r)

3.13. Spherical surfacesat r = 2, 4, and 6 mcarry uniform surfacechargedensitiesof 20nC/m?, —4nC/m?,
and py0, respectively.
a) FindD at r = 1, 3and 5 m: Noting that the charges are spherically-symmetric, we ascertain that
D will beradially-directed and will vary only with radius. Thus, we apply Gauss' law to spherical
shellsin the following regions. r < 2: Here, no charge is enclosed, and so D, = 0.

80 x 1079

2<r<4: 47r’D, =47(2%(20x 10°% = D, = —>—C/m*
r
So D, (r =3) =8.9x10°9C/m?.
16 x 109
4<r<6: dur’D, =4r(22(20 x 1079 + dr (AP (—4x 10 = D, = =
"

So D, (r =5) = 6.4 x 10710C/m2.

b) Determine pso suchthat D = O at r = 7 m. Sincefieldswill decrease as 1/r2, the question could
be re-phrased to ask for p,0 suchthat D = 0 at all pointswherer > 6 m. In thisregion, the total

field will be
16 x 1079 N 050(6)2

D,(r > 6) = ;" 2

Requiring this to be zero, wefind pso = —(4/9) x 1072 C/m?.

3.14. If p, = 5nC/m?3for 0 < p < 1 mm and no other charges are present:
a) find D, for p < 1 mm: Applying Gauss' law to a cylindrical surface of unit length in z, and of
radius p < 1 mm, wefind

2npD, = 1p*(5x 107 = D, =25p x 10°°C/m?
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3.14b. find D, for p > 1 mm: The Gaussian cylinder now lies outside the charge, so

25x 1071
p
¢) What line charge p;, a p = 0 would give the same result for part »? The line charge field will be

pr _ 25x 1071
2tp

2npD, = 7(.001)>(5x 10°% = D, = C/m?

D, =

(part b)

Thus p;, = 57 x 107 C/m. In al answers, p is expressed in meters.

3.15. Volumechargedensity islocated asfollows: p, = Ofor p < Immandfor p > 2mm, p, = 4p uC/m3
forl < p <2mm.

a) Calculatethetota chargeintheregion0 < p < p1,0 < z < L, wherel < p1 < 2mm: Wefind

L 2 o 8L
o= [ [" [ avpdpasaz =" 15 - 1079 uc
0 0 .001

where p1 isin meters.

b) Use Gauss' law to determine D, at p = p1: Gauss law states that 2rp1 LD, = Q, where Q is
the result of part a. Thus

where p1 isin meters.

c) Evaluate D, a p = 0.8mm, 1.6mm, and 2.4mm: At p = 0.8 mm, no charge is enclosed by a
cylindrical gaussian surface of that radius, so D,(0.8mm) = 0. At p = 1.6 mm, we evaluate the
part b result at p; = 1.6 to obtain:

4[(.0016)2 — (.0010)3]
Dy (1.6mm) = 3(.0016)

At p = 2.4, we evaluate the charge integral of part a from .001 to .002, and Gauss' law iswritten
as

=3.6x 107% uC/m?

8L
21pLD, = ”T[(.ooz)2 — (.00)3] uC

from which D, (2.4mm) = 3.9 x 1076 uC/m?.

3.16. Given the electric flux density, D = 2xy a, + x2a, + 6z3a, C/m?:

a) use Gauss' law to evaluate the total charge enclosed in the volume O < x, vy, z < a: Wecall the
surfacesat x = a and x = 0 the front and back surfaces respectively, thoseat y =aandy =0
the right and left surfaces, and those at z = a and z = 0 the top and bottom surfaces. To evaluate
the total charge, we integrate D - n over al six surfaces and sum the results:

a a a a
¢:Q:¢D.nda=/ / Zaydydz-i-/ / —2(0)ydydz
0 JO 0 JO

front

back
a a a a a a a a
+/ / —xzdxdz-l-/ / xzdxdz-l-/ / —6(0)3dxdy+/ / 6a°dx dy
0 0 0 0 0 0 0 0
left top

right bottom
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3.16a. (continued) Noting that the back and bottom integrals are zero, and that the left and right integrals
cancel, we evaluate the remaining two (front and top) to obtain Q = 64° + a*.

b) use Eq. (8) to find an approximate value for the above charge. Evaluate the derivatives at
P(a/2,a/2,a/2): Inthis application, Eq. (8) statesthat Q = (V - D\P)Av. WefindV -D =
2x + 1822, whichwhen evaluated at P becomesV-D|, = a+4.5q%. Thus Q = (a+4.5a%)a® =
4.5a° 4 a*

¢) Show that the results of partsa and b agreein thelimit asa — 0. In thislimit, both expressions
reduceto Q = a*, and so they agree.

3.17. A cubeisdefinedby 1 < x, y, z < 1.2. If D = 2x2ya, + 3x2y%a, C/m?:

a) apply Gauss' law to find the total flux leaving the closed surface of the cube. We call the surfaces
at x = 1.2 and x = 1 the front and back surfaces respectively, thoseat y = 1.2 and y = 1 the
right and left surfaces, and those at z = 1.2 and z = 1 the top and bottom surfaces. To evaluate
the total charge, we integrate D - n over al six surfaces and sum the results. We note that there
is no z component of D, so there will be no outward flux contributions from the top and bottom
surfaces. The fluxes through the remaining four are

12 p12 12 p12
d=Q= 7§ D nda :/ / 2(1.2)%y dy dz+/ / —2(1)%ydydz
1 1 1 1

front back
1.2 1.2 1.2 1.2
+ / / —3x2(1)%dx dz + f / 3x2(1.2)%2dx dz = 0.1028C
1 1 1 1

left right

b) evaluate V - D at the center of the cube: Thisis

V-D=[4 62] — 4(1.1)% + 6(1.1)% = 12.83
Xy + xy<1.1,1.1> (1.1)° +6(1.1)° = 12.83

¢) Estimate the total charge enclosed within the cube by using Eq. (8): Thisis

Q0 =V.D| x Av = 12.83 x (0.2)° = 0.1026 Close!

center

3.18. Let avector field by given by G = 5x%y“#z*a,. Evaluate both sides of Eq. (8) for this G field and the
volumedefinedby x =3and 3.1, y = 1and 1.1, and z = 2 and 2.1. Evaluate the partial derivatives at
the center of the volume. First find

3G
V.G =—2 =20x%34
dy

The center of the cube is located at (3.05,1.05,2.05), and the volumeis Av = (0.1)2 = 0.001. Eq. (8)
then becomes
® = 20(3.05)*(1.05)%(2.05)*(0.001) = 35.4
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3.19. A spherical surface of radius3 mmiscentered at P (4, 1, 5) infree space. Let D = xa, C/m?2. Usethe
results of Sec. 3.4 to estimate the net electric flux leaving the spherical surface: Weuse ® = V - DAv,
whereinthiscase V- D = (3/dx)x = 1 C/m?3. Thus

4
= §7r(.003)3(1) =113 x 107’ C = 113nC
3.20. A cube of volume a3 has its faces parallel to the cartesian coordinate surfaces. It is centered at

P(3,—2,4). Giventhefiedd D = 2x3a, C/m?:
a) caculatedivD at P: Inthe present case, thiswill be

_8Dx_de
T 9x  dx

vV-D

=54C/m3

b) evaluate the fraction in the rightmost side of Eq. (13) for @ = 1 m, 0.1 m, and 1 mm: With the
field having only an x component, flux will pentrate only the two surfacesat x = 3+ a/2, each
of which has surface areaa?. The cube volumeis Av = 8. The equation reads:

§D-dS i[2<3+%)3a2_2<3_%)3a2} ZS[(3+%)3_(3_6_21)3]

Av a8
evaluating the above formulaat a = 1 m, .1 m, and 1 mm, yields respectively

54.50, 54.01, and 54.00 C/m®,

thus demonstrating the approach to the exact value as Av gets smaller.

3.21. Calculate the divergence of D at the point specified if
a D= (1/z%) [10xyz a, + 5x%za, + (223 — 5x2y) a.] at P(—2, 3, 5): Wefind

=8.96

10 10x2
V-D:[—y+0+2+ xy}
< < (—2,3,5)

b) D= 5zzap + 10pz @, at P(3, —45°,5): In cylindrical coordinates, we have

19 19Dy 9D 572
V-D:——(pr)+—_¢+ Z:|:_
p ap P

+ 10 =71.67
o 0¢ 0z p]

(3,—45°,5)

c) D=2rsindsinga, +rcosé sing ag +r cos¢ as a P (3, 45°, —45°): In spherical coordinates,

we have
vo=2202py+ -2 9 sinopy) + 9Dy
. = ——(r _ - -
r2are 7T 1 dn6 90 97T Sne 9e
€0s20 sin sin
=|6sindsing + . ¢ _ : ¢ =-2
sino Sin6 | 3450 a5y
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3.22. LetD = 8psinga, + 4pcos¢g ay C/m?.
a) Finddiv D: Using the divergence formulafor cylindrical coordinates (see problem 3.21), we find
V.D =12sn¢.

b) Find the volume charge density at P (2.6, 38°, —6.1): Since p, = V - D, we evaluate the result of
part a at this point to find p,p = 12sin38° = 7.39C/m5.

¢) How much charge is located inside the region defined by 0 < p < 1.8, 20° < ¢ < 70°,
24 <z < 3.1?Weuse

31 ,70° ,18 70° ,02 18
0= / oydv = / / / 12singpdpdedz = —(3.1 — 2.4)12cos¢) —’
vol 2.4 J2 0 20°

0° 2 1lo
=813C

3.23. &) A point charge Q lies at the origin. Show that div D is zero everywhere except at the origin. For
a point charge at the origin we know that D = Q/(4rnr?)a.. Using the formula for divergence in
spherical coordinates (see problem 3.21 solution), we find in this case that

1d
V.D=—-—(r2 =0
r2dr (r 4nr2>

The above is true provided » > 0. When r = 0, we have asingularity in D, so its divergence is not
defined.

b) Replace the point charge with a uniform volume charge density p,0 for 0 < r < a. Relate pyo
to Q and a so that the total charge is the same. Find div D everywhere: To achieve the same net
charge, we require that (4/3)ma3p,0 = Q, SO pyo = 3Q/(4wa®) C/mS. Gauss law tells us that
inside the charged sphere

4 3
47'[}"2Dr = :-—))77,'1"3,01)0 = Qa—g

Thus

1d 3 3
D, =-2 c/mladv.p= >4 (L) 2 3¢
4 a3 r2dr \ 4ma3 47 a3

as expected. Outside the charged sphere, D = Q/(4nr?) a, as before, and the divergenceis zero.
3.24. Inside the cylindrical shell, 3 < p < 4 m, the electric flux density is given as
D =5(p — 3)%a, C/m?
a) What isthe volume charge density at p = 4 m? In this case we have

1d 1d
pp=V-D==—(pD,) ==—[5p(p — ] =
pdp

2
Sp=3° (4p — 3) C/m°
pdp P

Evaluating thisat p = 4 m, wefind p,(4) = 16.25 C/m?3

b) What is the dectric flux density at p = 4 m? We evaluate the given D at this point to find
D(4) =5a, C/m?

37



3.24c. How much éectric flux leavesthe closed surface3 < p < 4,0 < ¢ < 27, —2.5 < z < 2.5? We note
that D has only aradial component, and so flux would leave only through the cylinder sides. Also, D
does not vary with ¢ or z, so the flux is found by a simple product of the side area and the flux density.
We further notethat D = O at p = 3, so only the outer side (at p = 4) will contribute. We use the result
of part b, and write the flux as

® = [2.5— (=2.5)]27(4)(5) = 2007 C

d) How much charge is contained within the volume used in part ¢? By Gauss' law, thiswill be the
same as the net outward flux through that volume, or again, 200r C.

3.25. Within the spherical shell, 3 < r < 4 m, the electric flux density is given as
D =5( —3)%a, C/m?

a) What isthe volume charge density at » = 4? In this case we have
1d 5
py=V-D=S—@?D,) = =(r — 3)*(5r — 6) C/m°
rédr r

which we evaluate at r = 4 to find p, (r = 4) = 17.50 C/mq.

b) What isthe electric flux density at r = 4? Substitute r = 4 into the given expression to
find D(4) = 5a, C/m?

¢) How much electric flux leaves the sphere r = 4? Using the result of part b, this will be & =
47 (4)%(5) = 3207 C

d) How much charge is contained within the sphere, r = 4? From Gauss' law, this will be the same
as the outward flux, or again, Q = 320z C.

3.26. Giventhefield

5sin6
p _ >Snocosé c/m2,
find:
a) the volume charge density: Use
1d 5sn0 cos
py=V.D==22p,) = 2N o
r2dr r2

b) thetota charge contained within the region r < 2 m: To find this, we integrate over the volume:

2 T 2 H
5sn6 cos .
Q:/ //—2¢r23n9drd9d¢
o Jo Jo r

Before plunging into this one notice that the ¢ integration is of cos¢ from zeroto 2. Thisyields
azero result, and so the total enclosed chargeis Q = 0.

¢) thevalue of D at the surfacer = 2: Substituting r = 2 into the given field produces

5.
Dir =2) = 5 sino cosga, C/m?
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3.26d. thetotal electric flux leaving the surface r = 2 Sincethetotal enclosed chargeis zero (from part 4), the
net outward flux is also zero, from Gauss' law.

3.27. Let D = 5.00r2a, mC/m? for r < 0.08 mand D = 0.205a, /r2 ©C/m? for r > 0.08 m (note error in
problem statement).
a) Find p, for r = 0.06 m: Thisradius lies within the first region, and so

1d o 1d A 2

which when evaluated at » = 0.06 yields pu(r = .06) = 1.20 mC/m?3.

Py =V- D—

b) Find p, for » = 0.1 m: Thisisin the region where the second field expression isvalid. The 1/r?
dependence of this field yields a zero divergence (shown in Problem 3.23), and so the volume
charge density is zero at 0.1 m.

¢) What surface charge density could be located at » = 0.08 mto cause D = Oforr > 0.08 m? The
total surface charge should be equal and opposite to the total volume charge. The latter is

2 .08
0= / / / 20r(mC/m3) r2sinf dr d6 d¢ = 2.57 x 1073 mC = 2.57 uC
0 0

So now

2.57
Ps =

(. 08)2} —32uC/m*

3.28. Thedectric flux density isgiven asD = 20p3a, C/m?for p < 100 um, and k a,/p for p > 100 m.
a) Find k sothat D iscontinuous at p = 100 um: We require

k
20x107 =1 = k=2x10""C/m

b) Find and sketch p, asafunction of p: In cylindrical coordinates, with only aradial component of D,
we use

10 10
py=V-D==—(pD,) = =—(20p") =80p*> C/m* (p < 100m)
p ap p op

For p > 100 um, we obtain

ov=——(p— )_
pop - p

The sketch of p, vs. p would be a parabola, starting at the origin, reaching a maximum value of
8 x 10~ C/m3 at p = 100 um. The plot is zero at larger radii.
3.29. Intheregion of free space that includesthevolume2 < x, y,z < 3,

2
D= Z_Z(yzax +xzay —2xya;) C/m2

a) Evaluate the volume integral side of the divergence theorem for the volume defined above: In
cartesian, wefind V - D = 8xy/z3. The volume integral sideis now

/v de_ff/&c—ydxdydz_(9 4)(9— 4)(3_%)=3.47C
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3.290.

3.30.

3.31.

Evaluate the surface integral side for the corresponding closed surface: We call the surfacesat x = 3
and x = 2 thefront and back surfacesrespectively, thoseat y = 3and y = 2 theright and | eft surfaces,
and those a z = 3 and z = 2 the top and bottom surfaces. To evaluate the surface integral side, we
integrate D - n over al six surfaces and sum the results. Note that since the x component of D does not
vary with x, the outward fluxes from the front and back surfaces will cancel each other. The sameis
true for the left and right surfaces, since D, does not vary with y. This leaves only the top and bottom
surfaces, where the fluxes are:

3 13 _4yy 3 13 _4dyy 1 1
D.-dS= dxdy — dxdy =O—-4H©9—4 (> - >)=347C
$ [t aar- [[ ] 5 anav == e )<4 9)
top

bottom

If D = 15p2sin2¢ a, + 10p? cos2¢ a, C/m?, evaluate both sides of the divergence theorem for the
regionl < p <2m,1< ¢ < 2rad, 1 < z < 2m: Taking the surface integral side first, the six sides
over which the flux must be evaluated are only four, since there is no z component of D. We are | eft
withthesidesat ¢ = 1and ¢ = 2 rad (left and right sides, respectively), and thoseat p = 1and p = 2
(back and front sides). We evaluate

2 2 2 p2
?g D.dS= / / 15(2)2 Sin(2¢) (2)dpdz — / / 15(1)2sin(2¢) (L)dpdz
1 1 1 1

front back
2 2 2 p2
— f / 1002 cos(2) dpdz + / f 10p? cos(4) dpdz = 6.93C
1 1 1 1

left right

For the volume integral side, we first evaluate the divergence of D, which is
10 . 190 .
V.D==—(15p3sin2¢) + — —(10p? cos2¢) = 25p sin2¢
p 9p p 3¢

Next

2 r2 2 25 .12 —cos(2¢) 1?
/ V.Ddv = / / / 250 5in(29) pdp d dz = = p°| —C0S29) 1" _6a3cC
vol 1 J1 1 3° 1 2 1

Given the flux density
16
D = — cos(20) ag C/m?,
r

use two different methods to find the total charge withintheregionl <r <2m,1 < 6 < 2rad,
1 < ¢ < 2rad: We use the divergence theorem and first evaluate the surface integral side. We are
evaluating the net outward flux through a curvilinear “cube’, whose boundaries are defined by the
specified ranges. The flux contributionswill be only through the surfaces of constant 6, however, since
D has only a9 component. On a constant-theta surface, the differential areais da = r sinfdrde,
where 6 isfixed at the surface location. Our flux integral becomes

2 p2 16 2 p2 16
f D.-dS=— f / —cos(2) r sin(l) drd¢ + / / — cos(4) r Sin(2) drd¢
1 J1r 1 J1 7

o=1 9=2
= —16[cos(2) sin(1) — cos(4) sin(2)] = —3.91C
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3.31. (continued) We next evaluate the volume integral side of the divergence theorem, where in this case,

V-D= 1 d(nD)— 1 d 16coszesm9
"~ rsing do 9= ysing 4o

16 [cos 26 cosé

- —2sin26
r2 sing

r

We now evaluate:
2
16 [ cos20 coso : .
/ V. de_/ / / [ —25|n29} r2sino drdodg
1 sing
Theintegra simplifiesto

2
f / / 16[c0s26 cosf — 2sin20 sinf] drdfd¢ = 8/ [3cos39 — cosf]dh = —3.91C
1 1 1

3.32. If D = 2r a. C/m?, find the total electric flux leaving the surface of thecube, 0 < x, y, z < 0.4: This
is where the divergence theorem really saves you time! First find
1
V.-D= (r X 2r) =26

Then the net outward flux will be

/ V-Ddv =6(0.4)°=0.38C
vol
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