CHAPTER 11

11.1. Show that E,; = Ae/%02+® jsa solution to the vector Helmholtz equation, Sec. 11.1, Eq. (16), for
ko = w./mo€g and any ¢ and A: Wetake

d2 . .
5 AT = (jko) Al = iZE,,

11.2. Let E(z,t) = 200sin0.2z cos108¢a, + 500 cos(0.2z + 50°) sin108¢a, V/m. Find:
a) Eat P(0,2,0.6)ar=25ns Obtain

Ep(t = 25) = 200sin[(0.2)(0.6)] cos(2.5)a, + 500cos[(0.2)(0.6) + 50(2r)/360] sin(2.5)ay
= —19.2a, + 164a, V/m

b) |[E|at Patr=20ns

Ep(t = 20) = 200sin[(0.2)(0.6)] cos(2.0)a, + 500 cos[(0.2)(0.6) + 50(27)/360] sin(2.0)a,
= —9.96a, + 248a, V/m

Thus |[Ep| = /(9.96)2 + (248)2 = 249 V/m.
C) Eyat P. E; = 200sin0.2za, — j500c0s(0.2z + 50°)a,. Thus

Esp = 200sin[(0.2)(0.6)] a, — j500c0s[(0.2)(0.6) + 27(50)/360] a,
=23.9a, — j273a, V/m

11.3. AnH field in free spaceis given asH (x, r) = 10cos(10% — Bx)a, A/m. Find
a) B: Since we have a uniform plane wave, 8 = w/c, where we identify @ = 10® sec™1. Thus
B = 108/(3 x 108) = 0.33 rad/m.

b) A: Weknow A = 27/8 = 18.9m.

¢) E(x,r) a P(0.1,02,03)ar =1ns Use E(x,t) = —noH (x,1) = —(377)(10) cos(10% —
Bx) = —3.77 x 10° cos(10% — Bx). The vector direction of E will be —a,, since we require that
S = E x H, where Sis x-directed. At the given point, the relevant coordinateis x = 0.1. Using
this, dlong with r = 10~° sec, we finally obtain

E(x, 1) = —3.77 x 10% cos[(108)(107°) — (0.33)(0.1)]a, = —3.77 x 10%c0s(6.7 x 10~?)a,
= —3.76 x 10°a, V/m

11.4. In phasor form, the electric field intensity of a uniform plane wave in free space is expressed as
E, = (40 — j30)e /2%, V/m. Find:
a) w: From the given expression, we identify 8 = 20 rad/m. Thenw = ¢ = (3 x 10%)(20) =
6.0 x 10° rad/s.

b) B = 20 rad/m from part a.
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11.4. (continued)
C) f=w/2r =956 MHz.

d) L =27/ =27/20=0.314m.
e) H;: Infree space, we find H by dividing E; by 1o, and assigning vector components such that
Es; x Hy givesthe required direction of wave travel: We find

40— 30

H
s 377

e~ = (0.11— j0.08)e /2% a, A/m

f) H(z,t) a P(6,—1,0.07),r = 71 ps.
Hz 1) = Re[Hsej“”] = [0.11 c0s(6.0 x 10% — 20z) + 0.08sin(6.0 x 10% — 2oz)] a,
Then

H(.07, 1 = 71ps) = [0.11 cos[(G.O x 10%)(7.1 x 10~ 11y — 20(.07)]

+.08sin[(6.0 x 10%(7.1x 1071 - 20(07) || 3,
= [0.11(0.562) — 0.08(0.827)]a, = —6.2 x 10~3a, A/m

11.5. A 150-MHz uniform plane wave in free space is described by Hy = (4 + j10)(2a, + ja,)e /= A/m.

a) Find numerical values for w, A, and B: First, w = 27 x 150 x 10° = 37 x 108 sec™!. Second,
for a uniform plane wave in free space, A = 27c/w = ¢/f = (3 x 10%)/(1.5 x 10%) = 2m.
Third, 8 = 27 /A = 7 rad/m.

b) FindH(z,¢t)atr = 1.5ns,z =20 cm: Use

H(z, 1) = Re{H,e/®"} = Re{(4 + j10)(2a, + jay)(cos(wt — Bz) + j sin(wt — Bz)}
= [8cos(wt — Bz) — 20sin(wt — Bz)] &, — [10cos(wt — Bz) 4+ 4sin(wt — Bz)] @,

. Now at the given position and time, wr — 8z = (37 x 108)(1.5 x 10~%) — 7(0.20) = = /4. And
cos(rt/4) = sin(r/4) = 1/4/2. Sofinally,

1
H(z = 20cm, t = 1.5ns) = -7 (12a, + 14a,) = —8.5a, — 9.9a, A/m

C) What is|E|qx? Have | E|nax = 10l H |imax, Where
|Hlmax = y/Hy - Hi = [4(4+ j10)(4 = j10) + (j)(—j)(4+ j10)(4 — j10)]Y/> = 24.1A/m

Then | E |mar = 377(24.1) = 9.08 KV /m.
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116. Let ug = eg = 1forthefield E(z, t) = (25a, — 30a,) cos(wt — 50z) V/m.
a) Findw: w = ¢ = (3 x 108)(50) = 15.0 x 10° s~ L.
b) Determine the displacement current density, J;(z, t):

oD .
Ju(z, 1) = 5 = —eow(25a, — 30ay) sin(wt — 50z)

= (—3.32a, + 3.98a,) Sin(1.5 x 10'% — 50z) A/m?

¢) Find the total magnetic flux ® passing through the rectangle defined by 0 < x < 1, y = 0,
0 <z <1 atr = 0: Infree space, the magnetic field of the uniform plane wave can be easily
found using the intrinsic impedance:

25 30
H(z,t) = (—ay + —ax> cos(wt — 50z) A/m
Yl no

Then B(z,t) = pnoH(z,1) = (1/¢)(25a, + 30a,) cos(wt — 50z) Wb/m?2, where uo/ng =
Jio€o = 1/c. Theflux atr = Oisnow

O] flle a,dxd f125cos(50)d 2 sin(50) 0.44 nWb
= . X = _— = —-—— = —U.
o Jo o =) “ %= 503 x 108) ==

11.7. The phasor magneticfield intensity for a400-MHz uniform plane wave propagating in acertain lossless
material is (2a, — j5a;)e~/2>* A/m. Knowing that the maximum amplitude of E is 1500 V/m, find g,
n, A, Vp, €R, g, aNdH(x, y, z, t): First, fromthe phasor expression, weidentify g = 25 m~1 from the
argument of the exponential function. Next, we evaluate Hyp = |[H| = vH - H* = v/22 + 52 = {/29.
Thenn = Eo/Ho = 1500/4/29 = 278.5 Q. Then A = 2n/B = 27/25 = .25 m = 25 cm. Next,

27 x 400 x 10°
o= o= LT 101 % 108 mys
B 25 7
Now we note that
n=2785=2377 KR - HER _o546
€R €R

And c

v, = 1.01 x 10% = = uger =8.79

! JERER RER

We solve the above two equations simultaneously to find e = 4.01 and g = 2.19. Finally,

H(x,y,z2,1) = Re {(Zay _ j5az)e*125xejwt}

= 200s(27 x 400 x 10% — 25x)a, + 5sin(27 x 400 x 10% — 25x)a,
= 2c0s(87 x 10% — 25x)a, 4 5sin(8r x 108 — 25x)a, A/m
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11.8. Let the fields, E(z, t) = 1800cos(10’wt — Bz)a, V/m and H(z, ) = 3.8cos(10’zt — Bz)a, A/m,
represent a uniform plane wave propagating at avelocity of 1.4 x 108 m/sin aperfect dielectric. Find:
a) B =w/v=(10"7)/(1.4 x 10%) = 0.224m~1,

b) A =2r/p =2r/.224=280m.
¢) n=|E|/|H| = 1800/3.8 = 474 Q.

d) wg: Havetwo equationsinthetwo unknowns, g andeg: n = no/ur/€r and B = w./ILr€R/c.
Eliminate eg to find

2.69

C[Ben]? [(224(3x 1084747
MR_[w_no} _[ (1077) (377) } B

€) er = 1r(o/m)?* = (2.69)(377/474)* = 1.70.

11.9. A certain lossless material has ug = 4 and eg = 9. A 10-MHz uniform plane wave is propagating in
the a, direction with E.o = 400V/mand Eyo = E,o =0at P(0.6,0.6,0.6) att = 60 ns.

a) Find B, 1, v,, and n: For auniform plane wave,

27 x 107

B =w e = %/—MRGR = S5 V@ (© = 04 rad/m
Then i = (27)/8 = (27)/(0.47) = 5m. Next,
w 2w x 107 .
UP_E_—4nx10—1 =5x10"m/s

Finally,

4
n=J% =1 /@=377\/j=2519
€ €R 9

b) Find E(¢) (at P): We are given the amplitudeat t = 60nsand at y = 0.6 m. Let the maximum
amplitude be E ., sothat in general, E, = E 4 COS(wt — By). At the given position and time,

E, =400 = Ejpqy c0[(27 x 107)(60 x 107°) — (47 x 1071)(0.6)] = Enax c0S(0.967)
= —0.99E qx

S0 Eppax = (400)/(—0.99) = —403V/m. Thusat P, E(t) = —403cos(2r x 1077) V/m.

c) Find H(r): First, we note that if E at agiven instant points in the negative x direction, while the
wave propagates in the forward y direction, then H at that same position and time must point in
the positive z direction. Since we have a lossless homogeneous medium, 7 is real, and we are
allowed to write H () = E(t)/n, where n istreated as negative and real. Thus

E((r) _ —403

51 cos(2r x 10~ 7r) = 1.61cos(2r x 10~ ') A/m

H(t) = H;(1) =
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11.10. Given a 20MHz uniform plane wave with H; = (6a, — j2ay)e‘fZ A/m, assume propagation in a
lossless medium characterized by ex = 5 and an unknown (. g.
@ Find A, vy, g, andn: First, B = 1,504 = 21/ = 2 m. Next, v, = w/p = 21 x 20 x 10° =
4 x 10’ m/s. Then, ug = (B2c?)/(w%er) = (3 x 108)2/(4n x 107)2(5) = 1.14.

Finaly, n = novir/er = 377/ 1.14/5 = 180.

b) Determine E at theorigin at 1 = 20ns. We usetherelation |E| = n|H| and note that for positive z
propagation, apositivex component of H iscoupled to anegative y component of E, and anegative
y component of H iscoupled toanegativex component of E. WeobtainE; = —n(6a,+j2a,)e /.
Then E(z, 1) = Re{Eye/“'} = —6ncos(wt — z)ay + 2nsin(wt — z)a, = 360sin(wr — z)a, —
1080 cos(wt — z)ay. Withw = 4r x 107 sec™!, + = 2 x 1078 5 and z = 0, E evaluates as
E(0, 20ns) = 360(0.588)a, — 1080(—0.809)a, = 212a, + 874a, V/m.

11.11. A 2-GHz uniform planewave hasanamplitudeof E,o = 1.4kV/mat (0, 0, 0, r = 0) and ispropagating
inthea, directioninamediumwheree” = 1.6x 10~ F/m, ¢’ = 3.0x 10~ F/m,and x = 2.5 uH/m.
Find:

a) Ey,a P(0,0,1.8cm) at 0.2 ns: To begin, we havetheratio, €” /¢’ = 1.6/3.0 = 0.533. So

> 1/2
/Me/ ¢

—6 —11
— (27 x 2 % 109)\/(2'5 x 10730 x 1077 [\/1 ¥ (533)2 — 1]1/2 — 28.1Np/m

2

1/2
/ Y\ 2
ﬂ:w,/%[ 1+(€€—,) +1} — 112rad/m

Ey(z, 1) = Lde™ 2 cos(4r x 10% — 1127) kV/m
Evaluating thisat r = 0.2 nsand z = 1.8 cm, find

Then

Thusin general,

E,(1.8cm,0.2ns) = 0.74kV/m

b) H, a P at 0.2 ns: We use the phasor relation, H,; = —E,;/n Where

o 1 25 x 10-6 1 ,
L S — 263+ j65.7 = 271/ 14° Q@
7 \/; =) \30x10 1 /T (533 J
S0 now
3\ ,—28.1z ,—j112
H,, — _Eys _ _(1.4 X 1(;7)f jl4oze j1127 b g2l 112 14 AJm
e
Then

H,(z,1) = —5.16e%8Y cos(4r x 107°¢ — 1127 — 14°)
This, when evaluated at t = 0.2 nsand z = 1.8 cm, yields

H,(1.8cm,0.2ns) = —3.0A/m
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11.12. TheplanewaveEg; = 300e—f’”‘ay V/mispropagating in amaterial for which u = 2.25 uH/m, ¢’ =9
pF/m, and ¢” = 7.8 pF/m. If v = 64 Mrad/s, find:
a) a: Weusethe general formula, Eq. (35):

> 1/2
IME/ €

—6 —12
— (64 x 106)\/(2'25 x 1075 < 1077 [\/1 +(867)2 — 1]1/2 — 0.116 Np/m

2
b) B: Using (36), we write

12
/ A4
ﬂ:w,/%[ 1+(€E—,) +1} — 311rad/m

) v, = w/B = (64 x 108)/(.311) = 2.06 x 10® m/s.
d) A =27/8 = 27/(.311) = 20.2m.
e) n: Using (39):

B \/ﬁ 1 _ [225x 107 1
n= €’ 1— j(el//el) - (SI% 10712 ./1— ](867)

f) Hy: With E; inthe positive y direction (at agiven time) and propagating in the positive x direction,
we would have a positive z component of Hy, at the same time. We write (with jk = o + jB):

qo_ B, _ 300
YT YT 43450/
= 0.69¢116% (/31 =/ 365 A /m

= 407 + j152 = 434.5¢/

e Ikra, = O.69e_‘”e_j’g’ce_j'?"saZ

9) E(3, 2,4, 10ns): The real instantaneous form of E will be
Ex,y,z,) = Re{Ese-"“”} = 300e™** cos(wt — Bx)ay
Therefore

E(3, 2,4, 10ns) = 300e 1% cog(64 x 10°)(10~8) — .311(3)]a, = 203V/m

11.13. Let jk = 0.2+ j1.5m 1 and n = 450 + j60 2 for a uniform plane wave propagating in the a,
direction. If w = 300 Mrad/s, find u, €', and €”: We begin with

= 450 + j60

R S
= \[ S @)
and

jk = jo/ue' /11— j(€/e’) =02+ jl.5
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11.13. (continued) Then
«_ M 1

nm* = — ——— = (450 + j60)(450 — j60) = 2.06 x 10° D
€’ /1 + (6///6/)2
and
(k) (k)" = o’pe’ \J1+ (€”/€)2 = (0.2 + j1.5)(0.2 — j1.5) = 2.29 2)
Taking theratio of (2) to (1),
(]k)(]k)* 2/ 1\2 N ANE 2.29 _ —5
Then with w = 3 x 108,
1.11 x 10~° 1.23 x 1022
(€)? = = 3)

T Bx1082(1+ (¢"/€)?)  (L+(e/€)?)
Now, we use Egs. (35) and (36). Squaring these and taking their ratio gives

o J14("/€)? (027

B2 J1+ (/)2 (15?2
We solve thisto find €/ /e’ = 0.271. Substituting this result into (3) gives ¢’ = 1.07 x 10~ F/m.
Sincee” /e’ = 0.271, wethen find €” = 2.90 x 10~12 F/m. Finally, using these results in either (1) or
(2) wefind i = 2.28 x 10~% H/m. Summary: u = 2.28 x 10~H/m,
€ =1.07x 10011 F/m, and ¢” = 2.90 x 1012 F/m.

11.14. A certain nonmagnetic material has the material constantsef, = 2ande”’/e’ =4 x 104 aw = 1.5
Grad/s. Find the distance a uniform plane wave can propagate through the material before:

a) it is attenuated by 1 Np: First, ¢’ = (4 x 10%)(2)(8.854 x 10~1%) = 7.1 x 10~1° F/m. Then,

sincee” /e’ << 1, we use the approximate form for «, given by Eq. (51) (writtenin termsof €”):

4 1.5 x 10%)(7.1 x 10~15) 377
. @< fr_ (15 x 1071 x V37T _ 1 42 % 1072 Np/m

2 Ve 2 V2
The required distanceisnow z; = (1.42 x 1073)~1 = 706 m

b) the power level is reduced by one-half: The governing relation is e=2*?12 = 1/2, or 12 =
IN2/2a =1n2/2(1.42 x 10~ 3) = 244 m.

c) the phase shifts 360°: This distance is defined as one wavelength, where & = 27 /8
= (27¢) /(w@ — [27(3 x 108)]/[(L5 x 10%)+/7] = 0.89 m.

11.15. A 10 GHz radar signal may be represented as a uniform plane wave in a sufficiently small region.
Calculatethewavel ength in centimetersand the attenuation in nepersper meter if thewaveispropagating
in anon-magnetic material for which

a) € = land ey = 0: Inanon-magnetic material, we would have:

ILOEOG/ e 2 12
o =w,| —2R 1+ <—,R) -1
2 €r
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11.15. (continued) and

MOGOE/ e 2 12
B=w|—X& 1+<—,R> +1
2 €r

With the given values of ¢}, and €, it is clear that B = w./moe0 = w/c, and so
r=2n/B =2nc/w =3 x 101°/1010 = 3cm. Itisaso clear that o = 0.

b) €j, = 1.04and e}, = 9.00 x 1074 Inthiscaseej/e), << 1,andso f = w,/ep/c = 2.13cm™L,
Thusi = 27/8 = 2.95cm. Then

L we’ [ weh Jioko o €f  2m x 1010 (9.00 x 1074

0=—_[/—

- — 9. - 8
2 Ve 2 /E;e 2c /6% 2 x 3 x 10 J1.04
=9.24 x 1072 Np/m

C) €, = 25and e = 7.2: Using the above formulas, we obtain

1/2

27 x 1010,/25 7.2\

g TX T Ve 1+(—> +1| =471cm™?
(3 x 1019)/2 25

andso A = 27/8 = 1.33cm. Then

1/2
27 x 1019,/2.5 7.2\?
a=—"""""Y""1 14+ (==) —1| =335Np/m

(3 x 10812 { (2.5> 335 Rp/m

11.16. The power factor of a capacitor is defined as the cosine of the impedance phase angle, and its Q is
oC R, where R isthe parallel resistance. Assume anidealized parallel plate capacitor having adielecric

characterized by o, €/, and wg. Find both the power factor and Q in terms of the loss tangent: First,
the impedance will be:

N—"

1
S, R(ja)_C _ 1-jRoC _ 1—j0
R+(L) 1+ (RwC)? 1+ Q2

joC

Now R = d/(cA) and C = ¢’A/d, and 0 Q = we'/o = 1/1.t. Then the power factor is P.F =
cogtan(—0)] = 1/y/1+ 02,
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11.17. Letn = 250+ j30Q and jk = 0.2+ j2m~1 for auniform plane wave propagating in the a, direction
in a dielectric having some finite conductivity. If |[E;| = 400V/mat z = O, find:

a)

b)

P;.av @ z = 0and z = 60 cm: Assume x-polarization for the electric field. Then
1 1 , 400 :
P, av = éRe{Es X H;"} = ERe{4OOe_°‘Ze_”32ax X Fe_o’ze]ﬂzay}

1 1 1
— Z(400)%2e 2%Re{ —la, =80x10%202:Rel ___ = 14
54007 {n*} : e 250 — ;30

= 315¢72027 5. W/m?

Evaluating at z = 0, obtain P, ,,(z = 0) = 315a, W/m?,
andat z = 60 cm, P, 4, (z = 0.6) = 315202065 — 2483 W/m?.

the average ohmic power dissipation in watts per cubic meter at z = 60 cm: At this point a flaw
becomes evident in the problem statement, since solving this part in two different ways gives
results that are not the same. | will demonstrate: In the first method, we use Poynting's theorem
in point form (first equation at the top of p. 366), which we modify for the case of time-average
fieldsto read:

—V-P,ay=<J-E>

where the right hand side is the average power dissipation per volume. Note that the additional
right-hand-side terms in Poynting's theorem that describe changes in energy stored in the fields
will both be zero in steady state. We apply our equation to the result of part a:

d
<J-E>=-V P4 = —d—315e—2<0~2>Z = (0.4)(315)e~2027 = 1267 9% W/m®
Z

At z = 60 cm, thisbecomes < J - E >= 99.1 W/m3. In the second method, we solve for the
conductivity and evaluate < J - E >= 0 < E2 >. Weuse

Jk = joype'J1—j"/e)

and
I S
€ VI-j€/e)
We take theratio,

k 4
JE_ jowe' |:1— j <6—/>] = jwe + we”
n €

Identifying o = we”, wefind

ik 02+ j2 s
=Re{— i =Re] ————— 1 =174x10°S/m
“ { 7 } {250+j30 % /

Now we find the dissipated power per volume:

1 2
0 <E?>=174x10"3 <§> (4ooe—0~22>
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11.17b. (continued) At z = 60 cm, this evaluates as 109 W/m?3. One can show that consistency between the
two methods requires that
Re] Z1- 7
| 2«

This relation does not hold using the numbers as given in the problem statement and the value of o
found above. Note that in Problem 11.13, where all values are worked out, the relation does hold and
consistent results are obtained using both methods.

11.18a. Find P(r,r) if E; = 400e—12"ay V/m in free space: A positive y component of E requires a posi-
tive z component of H for propagation in the forward x direction. Thus H; = (400/no)e /*a, =
1.06e=/%*a, A/m. Inreal form, thefieldareE(x, t) = 400 cos(wt —2x)a, andH (x, 1) = 1.06 cos(wt —
2x)a.. Now P(r,1) = P(x,t) = E(x, 1) x H(x, t) = 424.4co(wt — 2x)a, W/m?,

b) Find P at+r = Oforr = (a,5, 10), wherea = 0,1,2, and 3: At ¢t = 0, we find from part «,
P(a,0) = 424.4cos%(2a), which leads to the values (in W/m?): 424.4ata =0, 73.5ata = 1,
181.3ata =2,and391.3ata = 3.

¢) Find P at the origin for T = 0, 0.2T, 0.4T, and 0.6T, where T is the oscillation period. At
the origin, we have P(0,t) = 424.4cos?(wt) = 424.4cos?(27¢/T). Using this, we obtain
the following values (in W/m?): 424.4att =0, 42.4a+=02T, 277.8a:=0.4T, and
277.8att = 0.67T.

11.19. Perfectly-conducting cylinders with radii of 8 mm and 20 mm are coaxial. The region between the
cylindersisfilled with a perfect dielectric for which e = 10~°/4x F/mand g = 1. If Einthisregion
is (500/ p) cos(wt — 4z)a, VIm, find:

a) w, withthehelp of Maxwell’s equationsin cylindrical coordinates. We use the two curl equations,
beginning with V x E = —9B/d¢, wherein this case,

oE 2000 oB
VxE=—La,="—sn(wr—4 =_27
% 5y 0=, SRRy =
= 2000 2000
By = / —— sin(wt — 4z)dt = —— coS(wt —4z) T
P wp
Then

By 2000
T po (4r x 107 Nwp
Wenext use V x H = dD/d¢, where in this case

Hy cos(wt —4z) A/m

0H, 190(pH
VXH:——¢ap+— (,0 ¢)
0z o op

2k

where the second term on the right hand side becomes zero when substituting our Hy. So

oH 8000 .
VxH= ——¢ap = —Sln(a)t — 4Z)ap =

oD,
0z (4 x 10~ Hwp

a
ar "

And

8000

2
@ % 10 1a2s cos(wt — 4z) C/m

D —/ 8000 sin(wt — 4z)dt =
e (4 x 10~ NHwp @ et =
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11.19a. (continued) Finally, using the givene,

D, 8000

Ep = e (10-16)w2p

cos(wt —4z) V/m

This must be the same as the given field, so we require

8000 500
W=7 = w=4x 108rad/s

b) H(p, z, t): From part a, we have

2000

H(p, 2, 1) = —
P20 = G X 10 Tyap

4.0
cos(wt — 4z)ay = — cos(4 x 108 — 4z)a, A/m
Jol

¢) P(p, ¢, z): Thiswill be

500 4.0
P(p,¢,2) = E x H= == cos(4 x 108 — 4z)a, x — cos(4 x 10%r — 4z)ay
P P

2.0x 1073
= ;—2 cos?(4 x 108 — 4z)a, W/m?

d) the average power passing through every cross-section 8 < p < 20mm, 0 < ¢ < 2x. Using
the result of part ¢, we find P, = (1.0 x 10%)/p2%a, W/m?2. The power through the given

Cross-section is now

2 0201 13 2
f f OX 0 pdpd¢_2nx103ln(8o>:5.7kw

11.20. IfEy = (60/r) Sinf e=/%" gy VIm,andH; = (1/4rr)sind e~/2" a; AIminfreespace, find theaverage

power passing outward through the surface r = 10%,0 < § < 7/3,and0 < ¢ < 27.

15sin? 6

Tz ¥ WM

1
Puvg = éRe{Es X H;“} =
Then, the requested power will be

2t pm/3 155|n2 . /3 -
/ f S a,-a,rzsnededqs:ls/ sin®6 do
T 0

2
/3 25
_15<—§cose(sm 9+2)) ‘n :523.13W

Note that the radial distance at the surface, r = 10° m, makes no difference, since the power density

dimishesas 1/r2.
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11.21. The cylindrical shell, 1 cm < p < 1.2 cm, is composed of a conducting material for which o = 10°
S/m. The external and internal regions are non-conducting. Let Hy = 2000A/mat p = 1.2 cm.

a) Find H everywhere: Use Ampere'scircuital law, which states:
?gH -dL = 27p(2000) = 27(1.2 x 1072)(2000) = 487 A = I,;

Then in this case

I 48
J= a —1.09 x 1082, A/m?
Area ® = (144-1.00) x 104 x 1078 A/

With this result we again use Ampere's circuital law to find H everywhere within the shell as a
function of p (in meters):

2
54.5
Hy1(p) = 271p f01109 x 10% pdp dep = (104 2_1)A/m (.01 < p < .012)

Outside the shell, we would have

487
Hya(p) = 2mp 24/p A/m (p > .012)

Inside the shell (o < .01 m), Hy, = 0 since thereis no enclosed current.

b) Find E everywhere: We use

J 109 x 10°
E = ; = Taz = 1.09az V/m

which isvalid, presumeably, outside as well asinside the shell.
¢) Find P everywhere: Use

54.5
P=ExH=109a x —(10°p? — 1) a,
Jol

59.4
= -""(10%? - 1)a, W/m? (.01 < p < .012m)
P

Outside the shell,

24 26
=1.09a; x —a¢ =—-"a, W/m? (p >.012m)
P
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11.22. The inner and outer dimensions of a copper coaxial transmission line are 2 and 7 mm, respectively.
Both conductors have thicknesses much greater than 8. The dielectric is lossless and the operating
frequency is 400 MHz. Calculate the resistance per meter length of the:

a) inner conductor: First

1 1

8 = =
Vrfuo o \/m(4 x 108) (4w x 10-7)(5.8 x 107)

=33x 10%m =3.3um

Now, using (70) with a unit length, we find

1 1
R' = =
" 2macs T 2m(2 x 10-3)(5.8 x 107)(3.3 x 10-6)

= 0.42 ohms/m

b) outer conductor: Again, (70) applies but with adifferent conductor radius. Thus

2
Rous = Rin = =(0.42) = 0.12 ohms/m

¢) transmission line: Since the two resistances found above are in series, the line resistance is their
sum, of R = R;, + R,y = 0.54 ohms/m.

11.23. A hollow tubular conductor is constructed from atype of brass having a conductivity of 1.2 x 10" S/m.
The inner and outer radii are 9 mm and 10 mm respectively. Calculate the resistance per meter length
at afreguency of

a) dc: Inthiscasethe current density is uniform over the entire tube cross-section. We write:

R(dc) = L !

— =14x103Q
oA~ (1.2 x 1097 (.012 — .0092) X /m

b) 20 MHz: Now the skin effect will limit the effective cross-section. At 20 MHz, the skin depth is
§(20MHz) = [ f oo ] Y2 = [7(20 x 10%) (47 x 1077)(1.2 x 10)] ¥? =3.25 x 10> m

This is much less than the outer radius of the tube. Therefore we can approximate the resistance
using the formula:

L 1 1
R(20MHz) = —

— — —=41%x102Q
oA 2758 (1.2 x 107)(27(.01)(3.25 x 105 a /m

¢) 2GHz: Usingthesameformulaasin part b, wefind the skin depth at 2 GHztobe § = 3.25x 10~6
m. The resistance (using the other formula) is R(2GHz) = 4.1 x 1071 Q/m.
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11.24a. Most microwave ovens operate at 2.45 GHz. Assumethat o = 1.2 x 10° SYm and g = 500 for the
stainless stedl interior, and find the depth of penetration:

1 1

— — =9.28 x 107®m = 9.28um
Vrfuo  /m(2.45 x 109) (4 x 10~7)(1.2 x 106)

8

b) Let £, = 50/ 0° V/m at the surface of the conductor, and plot a curve of the amplitude of E; vs.
the angle of E, asthe field propagates into the stainless steel: Since the conductivity is high, we
use (62) towritea = B8 = /mfuo = 1/8. So, assuming that the direction into the conductor is
z, the depth-dependent field is written as

Es(z) = 50e %%~ /P7 = 50e /% ~/%/% = 50 exp(—z/9.28) exp(—j z/9.28)
N —

amplitude angle

where z isin microns. Therefore, the plot of amplitude versus angleis simply aplot of e versus
x, wherex = 7/9.28; the starting amplitude is 50 and the 1/¢ amplitude (at z = 9.28 um) is18.4.

11.25. A good conductor is planar in form and carries a uniform plane wave that has a wavelength of 0.3 mm
and avelocity of 3 x 10° m/s. Assuming the conductor is non-magnetic, determine the frequency and
the conductivity: First, we use

v 3x10°
=-=_"""=10"Hz=1GH
f A 3x104 z=2502
Next, for agood conductor,
A 1 Vib 4 A

= 1.1x 10° S/m

= o T Jatie T a2 T (9x 108109 (dr x 107)

11.26. The dimensions of a certain coaxial transmission line are ¢ = 0.8mm and & = 4mm. The outer
conductor thickness is 0.6mm, and all conductorshave o = 1.6 x 10’ S/m.
a) Find R, the resistance per unit length, at an operating frequency of 2.4 GHz: First

1 1

5= -
VEfuo  \/7(2.4 x 108)(4r x 10-7)(1.6 x 107)

= 2.57 x 107®m = 2.57um

Then, using (70) with a unit length, we find

1 1
Rin = =
2racd  2m(0.8 x 10-3)(1.6 x 107)(2.57 x 10-5)

= 4.84 ohms/m

The outer conductor resistance is then found from the inner through

0.8
Rour = %R,-n = = (4.84) = 0.97 ohms/m

The net resistance per length isthen thesum, R = R;,, + R,,; = 5.81 ohms/m.
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11.26b. Use information from Secs. 5.10 and 9.10 to find C and L, the capacitance and inductance per unit
length, respectively. The coax isair-filled. From those sections, we find (in free space)

2meo _ 2m(8.854 x 1012

=3.46 x 1071 F/m

~Inb/a) In(4/.8)
—7
= Mo In(b/a) = u In(4/.8) = 3.22 x 10~" H/m
2 2

c) Findo and B if @« + jB = /jowC(R + jwL): Taking real and imaginary parts of the given
expression, we find

- —1/2
LC R \?
(x:Re{\/ja)C(R—i—ja)L)}:wﬁ 1+(a)_L> -1
and B “1/2
VL R \?
p=m{Viwe®+ jaD | = “2E | 1w () +1

These can befound by writingouta = Re{/joC(R + jwL)} = (1/2)/jwC(R + joL)+c.c.,
wherec.c denotesthecomplex conjugate. Theresultissquared, termscollected, and the squareroot
taken. Now, usingthevaluesof R, C, and L foundin partsa and b, wefinda = 3.0 x 1072 Np/m
and 8 = 50.3rad/m.

11.27. The planar surface at z = 0 is a brass-Teflon interface. Use data available in Appendix C to evaluate
the following ratios for a uniform plane wave having w = 4 x 1019 rad/s:
a) aTef /aprass. From the appendix we find €” /¢’ = .0003 for Teflon, making the material a good
dielectric. Also, for Teflon, €j, = 2.1. For brass, wefindo = 1.5 x 107 S/m, making brass a good
conductor at the stated frequency. For a good dielectric (Teflon) we use the approximations.

anm €\ (1 - 1/ a)\/T
= — — = — — € = — — — ./ €
“ 2V € € 2 OV i 2\e¢ ) ¢ VR

1 VA
B = wy/ e [14——(6—/)] ia)«/,ue/zg €
€ c

8
For brass (good conductor) we have

1
o =B = /1f1uopras = \/n <2—) (4 x 1010) (47 x 10-7)(1.5 x 107) = 6.14 x 10° m~!
T

Now
are  Y2(€"/€) (@/0)\J€r  (1/2)(.0003)(4 x 1019/3 x 108)y/2.1 s
_ _ . =47 x10
Uprass q/T[f[,LO'brass 6.14 x 10
b)
At _ (21/Pre) _ Porass _ v/ iobas _ 3x 109)(614x100) _ .

Mrass  (27/Pprass)  Pref (4 x 1010)/2.1

/
W4/ €R Tef
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11.27. (continued)

<)

vt (@/Bret) _ Porass
Ubrass (w/ Borass) Bret

— 3.2 x 10° asbefore

11.28. A uniform plane wave in free space has electric field given by E; = 10e—/#*a, + 15¢~/F*a, V/m.

a) Describe the wave polarization: Since the two components have a fixed phase difference (in this
case zero) with respect to time and position, the wave haslinear polarization, with the field vector

inthe yz plane at angle ¢ = tan—1(10/15) = 33.7° to the y axis.

b) Find H,: With propagation in forward x, we would have

—10

15
s = 377¢ e Fra, + ——e7Pra, A/m = —26.5¢7/F*a, + 39.8¢/F*a, mA/m

377

c) determine the average power density in the wavein W/m?: Use

1
Pavg = 5Re{Eq x H

<10)2al (15)2
b= 2[377 3T

ax] = 0.43a, W/m? or Py, = 0.43W/m?

11.29. Consider aleft-circularly polarized wave in free space that propagates in the forward z direction. The
eectric field is given by the appropriate form of Eq. (80).
a) Determine the magnetic field phasor, H;:
We begin, using (80), with E; = Eg(a, + jay)e‘fﬂz. We find the two components of H;
separately, using the two components of E;. Specifically, the x component of E; is associated
with a y component of Hy, and the y component of E; is associated with anegative x component
of H,. Theresultis
_ 50 _ —jBz
H; - (ay ]ax)e

b) Determine an expression for the average power density in thewavein W/m? by direct application
of Eq. (57): We have

1 1 : E .
Pz,avg = ERe(Es X H;() = ERe <E0(ax + jay)e_JﬂZ X n—g(ay — jax)e_HﬂZ)

g2
—%a, W/m? (assuming Eg isreal)
0
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11.30. The€electric field of auniform plane wave in free spaceis given by E; = 10(a, + jay)e %%,
a) Determinethe frequency, f: Use

_ Be (5B 10%)

= = 1.2 GHz
2 27

f

b) Findthe magnetic field phasor, H,: With the Poynting vector in the positive x direction, apositive
y component for E requires a positive z component for H. Similarly, a positive z component for
E requires a negative y component for H. Therefore,

— E) —j25x

o

H, [a. — jay]e

¢) Describe the polarization of the wave: Thisis most clearly seen by first converting the given field
to real instantaneous form:

E(x,1) = Re{Esej“”} = 10[cos(wt — 25x)ay — sin(wt — 25x)a, |

At x = 0, this becomes,
E(0, 1) = 10 [cos(wt)ay — sin(wt)a, |

With the wave traveling in the forward x direction, we recognize the polarization as left circular.

11.31. A linearly-polarized uniform plane wave, propagating in the forward z direction, isinput to alossless
anisotropic material, in which the dielectric constant encountered by waves polarized along y (egy)
differs from that seen by waves polarized along x (egy). Suppose ez, = 2.15, g, = 2.10, and the
waveelectricfield at input ispolarized at 45° tothe positivex and y axes. Assumefree spacewavelength
A.

a) Determinethe shortest length of the materia such that the wave as it emerges from the output end
iscircularly polarized: Withtheinput field at 45°, the x and y components are of equal magnitude,
and circular polarization will result if the phase difference between the componentsis /2. Our
requirement over length L isthus 8, L — By,L = /2, or

T e

L = =
2(Bx — By) 2w ( /€rx — JVERY)

With the given values, we find,

58.3 A
_ O8I _ po3t _146n

L
2w 4 —
b) Will the output wave beright- or left-circularly-polarized? With the dielectric constant greater for
x-polarized waves, the x component will lag the y component in time at the output. Thefield can
thus be written asE = Eg(a, — ja,), whichisleft circular polarization.

198



11.32. Suppose that the length of the medium of Problem 11.31 is made to be twice that as determined in
the problem. Describe the polarization of the output wave in this case: With the length doubled, a
phase shift of r radians develops between the two components. At the input, we can write the field as
Es(0) = Eo(a, + a,). After propagating through length L, we would have,

E,(L) = Eole /F:la, + e~ ifrla)] = Ege P [a, + i BrPolq]

where (By — By)L = —x (since By > By), and 0 E; (L) = Ege /P+L[a, — a,]. With the reversal of
the y component, the wave polarization is rotated by 90°, but is still linear polarization.

11.33. Givenawavefor which E; = 15e~/#7a, + 18¢~/#<¢/%a, V/m, propagating in amedium characterized
by complex intrinsic impedance, 7.

a) Find Hy: With the wave propagating in the forward z direction, we find:

1 . _
Hy = = [—18ef¢ax + 15ay] eiB AJm
n

b) Determine the average power density in W/m?: Wefind

P avg = %Re{ES x H}} = }Re

2 2
- {(15) +(18)

1
g . }:275Re{—} W/m?
n n

n*

11.34. Given the general elliptically-polarized wave as per Eq. (73):
E; = [Ecoay + Eyoejd’ay]e_jﬂZ

a) Show, using methods similar to those of Example 11.7, that alinearly polarized wave resultswhen
superimposing the given field and a phase-shifted field of the form:

E, =[Er 02y + Eyoe_j"bay]e_j’gzej‘3
where § is a constant: Adding the two fields gives

Egror = [Exo (1 - ej‘s) ar + Eyo (ef¢’ - e_j¢ej8) ay] e Pz

= | E.e/%/? (e—./a/z + e.;é/z) a, + Eypel®? (e—ja/zem 4 e—jasejs/z) a, | e /P

2c0s(8/2) 2cos(¢p—68/2)

This simplifiesto Ey ;o = 2[E0C0S(8/2)a + EyoCos(¢ — 8/2)ay ] e/%/2¢=/P%, which is lin-
early polarized.

b) Find § in terms of ¢ such that the resultant wave is polarized along x: By inspecting the part a
result, we achieve azero y component when 2¢ — § = r (or odd multiples of ).
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