
CHAPTER 11

11.1. Show that Exs = Aejk0z+φ is a solution to the vector Helmholtz equation, Sec. 11.1, Eq. (16), for
k0 = ω

√
µ0ε0 and any φ and A: We take

d2

dz2 Aejk0z+φ = (jk0)
2Aejk0z+φ = −k2

0Exs

11.2. Let E(z, t) = 200 sin 0.2z cos 108tax + 500 cos(0.2z + 50◦) sin 108tay V/m. Find:
a) E at P(0, 2, 0.6) at t = 25 ns: Obtain

EP (t = 25) = 200 sin [(0.2)(0.6)] cos(2.5)ax + 500 cos [(0.2)(0.6) + 50(2π)/360] sin(2.5)ay

= −19.2ax + 164ay V/m

b) |E| at P at t = 20 ns:

EP (t = 20) = 200 sin [(0.2)(0.6)] cos(2.0)ax + 500 cos [(0.2)(0.6) + 50(2π)/360] sin(2.0)ay

= −9.96ax + 248ay V/m

Thus |EP | =
√

(9.96)2 + (248)2 = 249 V/m.

c) Es at P : Es = 200 sin 0.2zax − j500 cos(0.2z + 50◦)ay . Thus

EsP = 200 sin [(0.2)(0.6)] ax − j500 cos [(0.2)(0.6) + 2π(50)/360] ay

= 23.9ax − j273ay V/m

11.3. An H field in free space is given as H(x, t) = 10 cos(108t − βx)ay A/m. Find
a) β: Since we have a uniform plane wave, β = ω/c, where we identify ω = 108 sec−1. Thus

β = 108/(3 × 108) = 0.33 rad/m.

b) λ: We know λ = 2π/β = 18.9 m.

c) E(x, t) at P(0.1, 0.2, 0.3) at t = 1 ns: Use E(x, t) = −η0H(x, t) = −(377)(10) cos(108t −
βx) = −3.77 × 103 cos(108t − βx). The vector direction of E will be −az, since we require that
S = E × H, where S is x-directed. At the given point, the relevant coordinate is x = 0.1. Using
this, along with t = 10−9 sec, we finally obtain

E(x, t) = −3.77 × 103 cos[(108)(10−9) − (0.33)(0.1)]az = −3.77 × 103 cos(6.7 × 10−2)az

= −3.76 × 103az V/m

11.4. In phasor form, the electric field intensity of a uniform plane wave in free space is expressed as
Es = (40 − j30)e−j20zax V/m. Find:

a) ω: From the given expression, we identify β = 20 rad/m. Then ω = cβ = (3 × 108)(20) =
6.0 × 109 rad/s.

b) β = 20 rad/m from part a.
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11.4. (continued)
c) f = ω/2π = 956 MHz.

d) λ = 2π/β = 2π/20 = 0.314 m.

e) Hs : In free space, we find Hs by dividing Es by η0, and assigning vector components such that
Es × Hs gives the required direction of wave travel: We find

Hs = 40 − j30

377
e−j20zay = (0.11 − j0.08)e−j20z ay A/m

f) H(z, t) at P(6, −1, 0.07), t = 71 ps:

H(z, t) = Re
[
Hse

jωt
]

=
[
0.11 cos(6.0 × 109t − 20z) + 0.08 sin(6.0 × 109t − 20z)

]
ay

Then

H(.07, t = 71ps) =
[
0.11 cos

[
(6.0 × 109)(7.1 × 10−11) − 20(.07)

]
+ .08 sin

[
(6.0 × 109)(7.1 × 10−11) − 20(.07)

]]
ay

= [0.11(0.562) − 0.08(0.827)]ay = −6.2 × 10−3ay A/m

11.5. A 150-MHz uniform plane wave in free space is described by Hs = (4 + j10)(2ax + jay)e
−jβz A/m.

a) Find numerical values for ω, λ, and β: First, ω = 2π × 150 × 106 = 3π × 108 sec−1. Second,
for a uniform plane wave in free space, λ = 2πc/ω = c/f = (3 × 108)/(1.5 × 108) = 2 m.
Third, β = 2π/λ = π rad/m.

b) Find H(z, t) at t = 1.5 ns, z = 20 cm: Use

H(z, t) = Re{Hse
jωt } = Re{(4 + j10)(2ax + jay)(cos(ωt − βz) + j sin(ωt − βz)}

= [8 cos(ωt − βz) − 20 sin(ωt − βz)] ax − [10 cos(ωt − βz) + 4 sin(ωt − βz)] ay

. Now at the given position and time, ωt − βz = (3π × 108)(1.5 × 10−9) − π(0.20) = π/4. And
cos(π/4) = sin(π/4) = 1/

√
2. So finally,

H(z = 20cm, t = 1.5ns) = − 1√
2

(
12ax + 14ay

) = −8.5ax − 9.9ay A/m

c) What is |E|max? Have |E|max = η0|H |max , where

|H |max = √
Hs · H∗

s = [4(4 + j10)(4 − j10) + (j)(−j)(4 + j10)(4 − j10)]1/2 = 24.1 A/m

Then |E|max = 377(24.1) = 9.08 kV/m.
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11.6. Let µR = εR = 1 for the field E(z, t) = (25ax − 30ay) cos(ωt − 50z) V/m.

a) Find ω: ω = cβ = (3 × 108)(50) = 15.0 × 109 s−1.

b) Determine the displacement current density, Jd(z, t):

Jd(z, t) = ∂D
∂t

= −ε0ω(25ax − 30ay) sin(ωt − 50z)

= (−3.32ax + 3.98ay) sin(1.5 × 1010t − 50z) A/m2

c) Find the total magnetic flux 	 passing through the rectangle defined by 0 < x < 1, y = 0,
0 < z < 1, at t = 0: In free space, the magnetic field of the uniform plane wave can be easily
found using the intrinsic impedance:

H(z, t) =
(

25

η0
ay + 30

η0
ax

)
cos(ωt − 50z) A/m

Then B(z, t) = µ0H(z, t) = (1/c)(25ay + 30ax) cos(ωt − 50z) Wb/m2, where µ0/η0 =√
µ0ε0 = 1/c. The flux at t = 0 is now

	 =
∫ 1

0

∫ 1

0
B · ay dx dz =

∫ 1

0

25

c
cos(50z) dz = 25

50(3 × 108)
sin(50) = −0.44 nWb

11.7. The phasor magnetic field intensity for a 400-MHz uniform plane wave propagating in a certain lossless
material is (2ay − j5az)e

−j25x A/m. Knowing that the maximum amplitude of E is 1500 V/m, find β,
η, λ, vp, εR , µR , and H(x, y, z, t): First, from the phasor expression, we identify β = 25 m−1 from the
argument of the exponential function. Next, we evaluate H0 = |H| = √

H · H∗ = √
22 + 52 = √

29.
Then η = E0/H0 = 1500/

√
29 = 278.5 
. Then λ = 2π/β = 2π/25 = .25 m = 25 cm. Next,

vp = ω

β
= 2π × 400 × 106

25
= 1.01 × 108 m/s

Now we note that

η = 278.5 = 377

√
µR

εR

⇒ µR

εR

= 0.546

And
vp = 1.01 × 108 = c√

µRεR

⇒ µRεR = 8.79

We solve the above two equations simultaneously to find εR = 4.01 and µR = 2.19. Finally,

H(x, y, z, t) = Re
{
(2ay − j5az)e

−j25xejωt
}

= 2 cos(2π × 400 × 106t − 25x)ay + 5 sin(2π × 400 × 106t − 25x)az

= 2 cos(8π × 108t − 25x)ay + 5 sin(8π × 108t − 25x)az A/m
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11.8. Let the fields, E(z, t) = 1800 cos(107πt − βz)ax V/m and H(z, t) = 3.8 cos(107πt − βz)ay A/m,
represent a uniform plane wave propagating at a velocity of 1.4 × 108 m/s in a perfect dielectric. Find:

a) β = ω/v = (107π)/(1.4 × 108) = 0.224 m−1.

b) λ = 2π/β = 2π/.224 = 28.0 m.

c) η = |E|/|H| = 1800/3.8 = 474 
.

d) µR: Have two equations in the two unknowns, µR and εR: η = η0
√

µR/εR and β = ω
√

µRεR/c.
Eliminate εR to find

µR =
[
βcη

ωη0

]2

=
[
(.224)(3 × 108)(474)

(107π)(377)

]2

= 2.69

e) εR = µR(η0/η)2 = (2.69)(377/474)2 = 1.70.

11.9. A certain lossless material has µR = 4 and εR = 9. A 10-MHz uniform plane wave is propagating in
the ay direction with Ex0 = 400 V/m and Ey0 = Ez0 = 0 at P(0.6, 0.6, 0.6) at t = 60 ns.

a) Find β, λ, vp, and η: For a uniform plane wave,

β = ω
√

µε = ω

c

√
µRεR = 2π × 107

3 × 108

√
(4)(9) = 0.4π rad/m

Then λ = (2π)/β = (2π)/(0.4π) = 5 m. Next,

vp = ω

β
= 2π × 107

4π × 10−1 = 5 × 107 m/s

Finally,

η =
√

µ

ε
= η0

√
µR

εR

= 377

√
4

9
= 251 


b) Find E(t) (at P ): We are given the amplitude at t = 60 ns and at y = 0.6 m. Let the maximum
amplitude be Emax , so that in general, Ex = Emax cos(ωt − βy). At the given position and time,

Ex = 400 = Emax cos[(2π × 107)(60 × 10−9) − (4π × 10−1)(0.6)] = Emax cos(0.96π)

= −0.99Emax

So Emax = (400)/(−0.99) = −403 V/m. Thus at P, E(t) = −403 cos(2π × 107t) V/m.

c) Find H(t): First, we note that if E at a given instant points in the negative x direction, while the
wave propagates in the forward y direction, then H at that same position and time must point in
the positive z direction. Since we have a lossless homogeneous medium, η is real, and we are
allowed to write H(t) = E(t)/η, where η is treated as negative and real. Thus

H(t) = Hz(t) = Ex(t)

η
= −403

−251
cos(2π × 10−7t) = 1.61 cos(2π × 10−7t) A/m
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11.10. Given a 20MHz uniform plane wave with Hs = (6ax − j2ay)e
−jz A/m, assume propagation in a

lossless medium characterized by εR = 5 and an unknown µR .
a) Find λ, vp, µR , and η: First, β = 1, so λ = 2π/β = 2π m. Next, vp = ω/β = 2π × 20 × 106 =

4π × 107 m/s. Then, µR = (β2c2)/(ω2εR) = (3 × 108)2/(4π × 107)2(5) = 1.14.
Finally, η = η0

√
µR/εR = 377

√
1.14/5 = 180.

b) Determine E at the origin at t = 20ns: We use the relation |E| = η|H| and note that for positive z

propagation, a positive x component of H is coupled to a negative y component of E, and a negative
y component of H is coupled to a negativex component of E. We obtain Es = −η(6ay+j2ax)e

−jz.
Then E(z, t) = Re

{
Ese

jωt
} = −6η cos(ωt − z)ay + 2η sin(ωt − z)ax = 360 sin(ωt − z)ax −

1080 cos(ωt − z)ay . With ω = 4π × 107 sec−1, t = 2 × 10−8 s, and z = 0, E evaluates as
E(0, 20ns) = 360(0.588)ax − 1080(−0.809)ay = 212ax + 874ay V/m.

11.11. A 2-GHz uniform plane wave has an amplitude of Ey0 = 1.4 kV/m at (0, 0, 0, t = 0) and is propagating
in the az direction in a medium where ε′′ = 1.6×10−11 F/m, ε′ = 3.0×10−11 F/m, and µ = 2.5 µH/m.
Find:

a) Ey at P(0, 0, 1.8cm) at 0.2 ns: To begin, we have the ratio, ε′′/ε′ = 1.6/3.0 = 0.533. So

α = ω

√
µε′

2



√

1 +
(

ε′′

ε′

)2

− 1


1/2

= (2π × 2 × 109)

√
(2.5 × 10−6)(3.0 × 10−11)

2

[√
1 + (.533)2 − 1

]1/2 = 28.1 Np/m

Then

β = ω

√
µε′

2



√

1 +
(

ε′′

ε′

)2

+ 1


1/2

= 112 rad/m

Thus in general,
Ey(z, t) = 1.4e−28.1z cos(4π × 109t − 112z) kV/m

Evaluating this at t = 0.2 ns and z = 1.8 cm, find

Ey(1.8 cm, 0.2 ns) = 0.74 kV/m

b) Hx at P at 0.2 ns: We use the phasor relation, Hxs = −Eys/η where

η =
√

µ

ε′
1√

1 − j (ε′′/ε′)
=

√
2.5 × 10−6

3.0 × 10−11

1√
1 − j (.533)

= 263 + j65.7 = 271� 14◦ 


So now

Hxs = −Eys

η
= − (1.4 × 103)e−28.1ze−j112z

271ej14◦ = −5.16e−28.1ze−j112ze−j14◦
A/m

Then
Hx(z, t) = −5.16e−28.1z cos(4π × 10−9t − 112z − 14◦)

This, when evaluated at t = 0.2 ns and z = 1.8 cm, yields

Hx(1.8 cm, 0.2 ns) = −3.0 A/m
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11.12. The plane wave Es = 300e−jkxay V/m is propagating in a material for which µ = 2.25 µH/m, ε′ = 9
pF/m, and ε′′ = 7.8 pF/m. If ω = 64 Mrad/s, find:

a) α: We use the general formula, Eq. (35):

α = ω

√
µε′

2



√

1 +
(

ε′′

ε′

)2

− 1


1/2

= (64 × 106)

√
(2.25 × 10−6)(9 × 10−12)

2

[√
1 + (.867)2 − 1

]1/2 = 0.116 Np/m

b) β: Using (36), we write

β = ω

√
µε′

2



√

1 +
(

ε′′

ε′

)2

+ 1


1/2

= .311 rad/m

c) vp = ω/β = (64 × 106)/(.311) = 2.06 × 108 m/s.

d) λ = 2π/β = 2π/(.311) = 20.2 m.

e) η: Using (39):

η =
√

µ

ε′
1√

1 − j (ε′′/ε′)
=

√
2.25 × 10−6

9 × 10−12

1√
1 − j (.867)

= 407 + j152 = 434.5ej.36 


f) Hs : With Es in the positive y direction (at a given time) and propagating in the positive x direction,
we would have a positive z component of Hs , at the same time. We write (with jk = α + jβ):

Hs = Es

η
az = 300

434.5ej.36 e−jkxaz = 0.69e−αxe−jβxe−j.36az

= 0.69e−.116xe−j.311xe−j.36az A/m

g) E(3, 2, 4, 10ns): The real instantaneous form of E will be

E(x, y, z, t) = Re
{

Ese
jωt

}
= 300e−αx cos(ωt − βx)ay

Therefore

E(3, 2, 4, 10ns) = 300e−.116(3) cos[(64 × 106)(10−8) − .311(3)]ay = 203 V/m

11.13. Let jk = 0.2 + j1.5 m−1 and η = 450 + j60 
 for a uniform plane wave propagating in the az

direction. If ω = 300 Mrad/s, find µ, ε′, and ε′′: We begin with

η =
√

µ

ε′
1√

1 − j (ε′′/ε′)
= 450 + j60

and
jk = jω

√
µε′ √1 − j (ε′′/ε′) = 0.2 + j1.5
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11.13. (continued) Then

ηη∗ = µ

ε′
1√

1 + (ε′′/ε′)2
= (450 + j60)(450 − j60) = 2.06 × 105 (1)

and

(jk)(jk)∗ = ω2µε′
√

1 + (ε′′/ε′)2 = (0.2 + j1.5)(0.2 − j1.5) = 2.29 (2)

Taking the ratio of (2) to (1),

(jk)(jk)∗

ηη∗ = ω2(ε′)2
(

1 + (ε′′/ε′)2
)

= 2.29

2.06 × 105
= 1.11 × 10−5

Then with ω = 3 × 108,

(ε′)2 = 1.11 × 10−5

(3 × 108)2
(
1 + (ε′′/ε′)2

) = 1.23 × 10−22(
1 + (ε′′/ε′)2

) (3)

Now, we use Eqs. (35) and (36). Squaring these and taking their ratio gives

α2

β2 =
√

1 + (ε′′/ε′)2√
1 + (ε′′/ε′)2

= (0.2)2

(1.5)2

We solve this to find ε′′/ε′ = 0.271. Substituting this result into (3) gives ε′ = 1.07 × 10−11 F/m.
Since ε′′/ε′ = 0.271, we then find ε′′ = 2.90 × 10−12 F/m. Finally, using these results in either (1) or
(2) we find µ = 2.28 × 10−6 H/m. Summary: µ = 2.28 × 10−6 H/m,

ε′ = 1.07 × 10−11 F/m, and ε′′ = 2.90 × 10−12 F/m.

11.14. A certain nonmagnetic material has the material constants ε′
R = 2 and ε′′/ε′ = 4 × 10−4 at ω = 1.5

Grad/s. Find the distance a uniform plane wave can propagate through the material before:
a) it is attenuated by 1 Np: First, ε′′ = (4 × 104)(2)(8.854 × 10−12) = 7.1 × 10−15 F/m. Then,

since ε′′/ε′ << 1, we use the approximate form for α, given by Eq. (51) (written in terms of ε′′):

α
.= ωε′′

2

√
µ

ε′ = (1.5 × 109)(7.1 × 10−15)

2

377√
2

= 1.42 × 10−3 Np/m

The required distance is now z1 = (1.42 × 10−3)−1 = 706 m

b) the power level is reduced by one-half: The governing relation is e−2αz1/2 = 1/2, or z1/2 =
ln 2/2α = ln 2/2(1.42 × 10−3) = 244 m.

c) the phase shifts 360◦: This distance is defined as one wavelength, where λ = 2π/β

= (2πc)/(ω

√
ε′
R) = [2π(3 × 108)]/[(1.5 × 109)

√
2] = 0.89 m.

11.15. A 10 GHz radar signal may be represented as a uniform plane wave in a sufficiently small region.
Calculate the wavelength in centimeters and the attenuation in nepers per meter if the wave is propagating
in a non-magnetic material for which

a) ε′
R = 1 and ε′′

R = 0: In a non-magnetic material, we would have:

α = ω

√
µ0ε0ε

′
R

2



√

1 +
(

ε′′
R

ε′
R

)2

− 1


1/2
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11.15. (continued) and

β = ω

√
µ0ε0ε

′
R

2



√

1 +
(

ε′′
R

ε′
R

)2

+ 1


1/2

With the given values of ε′
R and ε′′

R , it is clear that β = ω
√

µ0ε0 = ω/c, and so

λ = 2π/β = 2πc/ω = 3 × 1010/1010 = 3 cm. It is also clear that α = 0.

b) ε′
R = 1.04 and ε′′

R = 9.00 × 10−4: In this case ε′′
R/ε′

R << 1, and so β
.= ω

√
ε′
R/c = 2.13 cm−1.

Thus λ = 2π/β = 2.95 cm. Then

α
.= ωε′′

2

√
µ

ε′ = ωε′′
R

2

√
µ0ε0√
ε′
R

= ω

2c

ε′′
R√
ε′
R

= 2π × 1010

2 × 3 × 108

(9.00 × 10−4)√
1.04

= 9.24 × 10−2 Np/m

c) ε′
R = 2.5 and ε′′

R = 7.2: Using the above formulas, we obtain

β = 2π × 1010
√

2.5

(3 × 1010)
√

2



√

1 +
(

7.2

2.5

)2

+ 1


1/2

= 4.71 cm−1

and so λ = 2π/β = 1.33 cm. Then

α = 2π × 1010
√

2.5

(3 × 108)
√

2



√

1 +
(

7.2

2.5

)2

− 1


1/2

= 335 Np/m

11.16. The power factor of a capacitor is defined as the cosine of the impedance phase angle, and its Q is
ωCR, where R is the parallel resistance. Assume an idealized parallel plate capacitor having a dielecric
characterized by σ , ε′, and µR . Find both the power factor and Q in terms of the loss tangent: First,
the impedance will be:

Z =
R

(
1

jωC

)
R +

(
1

jωC

) = R
1 − jRωC

1 + (RωC)2 = R
1 − jQ

1 + Q2

Now R = d/(σA) and C = ε′A/d, and so Q = ωε′/σ = 1/l.t. Then the power factor is P.F =
cos[tan−1(−Q)] = 1/

√
1 + Q2.
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11.17. Let η = 250 + j30 
 and jk = 0.2 + j2 m−1 for a uniform plane wave propagating in the az direction
in a dielectric having some finite conductivity. If |Es | = 400 V/m at z = 0, find:

a) Pz,av at z = 0 and z = 60 cm: Assume x-polarization for the electric field. Then

Pz,av = 1

2
Re

{
Es × H∗

s

} = 1

2
Re

{
400e−αze−jβzax × 400

η∗ e−αzejβzay

}

= 1

2
(400)2e−2αzRe

{
1

η∗

}
az = 8.0 × 104e−2(0.2)zRe

{
1

250 − j30

}
az

= 315 e−2(0.2)z az W/m2

Evaluating at z = 0, obtain Pz,av(z = 0) = 315 az W/m2,

and at z = 60 cm, Pz,av(z = 0.6) = 315e−2(0.2)(0.6)az = 248 az W/m2.

b) the average ohmic power dissipation in watts per cubic meter at z = 60 cm: At this point a flaw
becomes evident in the problem statement, since solving this part in two different ways gives
results that are not the same. I will demonstrate: In the first method, we use Poynting’s theorem
in point form (first equation at the top of p. 366), which we modify for the case of time-average
fields to read:

−∇ · Pz,av =< J · E >

where the right hand side is the average power dissipation per volume. Note that the additional
right-hand-side terms in Poynting’s theorem that describe changes in energy stored in the fields
will both be zero in steady state. We apply our equation to the result of part a:

< J · E >= −∇ · Pz,av = − d

dz
315 e−2(0.2)z = (0.4)(315)e−2(0.2)z = 126e−0.4z W/m3

At z = 60 cm, this becomes < J · E >= 99.1 W/m3. In the second method, we solve for the
conductivity and evaluate < J · E >= σ < E2 >. We use

jk = jω
√

µε′√1 − j (ε′′/ε′)

and

η =
√

µ

ε′
1√

1 − j (ε′′/ε′)

We take the ratio,
jk

η
= jωε′

[
1 − j

(
ε′′

ε′

)]
= jωε′ + ωε′′

Identifying σ = ωε′′, we find

σ = Re

{
jk

η

}
= Re

{
0.2 + j2

250 + j30

}
= 1.74 × 10−3 S/m

Now we find the dissipated power per volume:

σ < E2 >= 1.74 × 10−3
(

1

2

)(
400e−0.2z

)2
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11.17b. (continued) At z = 60 cm, this evaluates as 109 W/m3. One can show that consistency between the
two methods requires that

Re

{
1

η∗

}
= σ

2α

This relation does not hold using the numbers as given in the problem statement and the value of σ

found above. Note that in Problem 11.13, where all values are worked out, the relation does hold and
consistent results are obtained using both methods.

11.18a. Find P(r, t) if Es = 400e−j2xay V/m in free space: A positive y component of E requires a posi-
tive z component of H for propagation in the forward x direction. Thus Hs = (400/η0)e

−j2xaz =
1.06e−j2xaz A/m. In real form, the field are E(x, t) = 400 cos(ωt−2x)ay and H(x, t) = 1.06 cos(ωt−
2x)az. Now P(r, t) = P(x, t) = E(x, t) × H(x, t) = 424.4 cos2(ωt − 2x)ax W/m2.

b) Find P at t = 0 for r = (a, 5, 10), where a = 0,1,2, and 3: At t = 0, we find from part a,
P(a, 0) = 424.4 cos2(2a), which leads to the values (in W/m2): 424.4 at a = 0, 73.5 at a = 1,
181.3 at a = 2, and 391.3 at a = 3.

c) Find P at the origin for T = 0, 0.2T , 0.4T , and 0.6T , where T is the oscillation period. At
the origin, we have P(0, t) = 424.4 cos2(ωt) = 424.4 cos2(2πt/T ). Using this, we obtain
the following values (in W/m2): 424.4 at t = 0, 42.4 at t = 0.2T , 277.8 at t = 0.4T , and
277.8 at t = 0.6T .

11.19. Perfectly-conducting cylinders with radii of 8 mm and 20 mm are coaxial. The region between the
cylinders is filled with a perfect dielectric for which ε = 10−9/4π F/m and µR = 1. If E in this region
is (500/ρ) cos(ωt − 4z)aρ V/m, find:

a) ω, with the help of Maxwell’s equations in cylindrical coordinates: We use the two curl equations,
beginning with ∇ × E = −∂B/∂t , where in this case,

∇ × E = ∂Eρ

∂z
aφ = 2000

ρ
sin(ωt − 4z)aφ = −∂Bφ

∂t
aφ

So

Bφ =
∫

2000

ρ
sin(ωt − 4z)dt = 2000

ωρ
cos(ωt − 4z) T

Then

Hφ = Bφ

µ0
= 2000

(4π × 10−7)ωρ
cos(ωt − 4z) A/m

We next use ∇ × H = ∂D/∂t , where in this case

∇ × H = −∂Hφ

∂z
aρ + 1

ρ

∂(ρHφ)

∂ρ
az

where the second term on the right hand side becomes zero when substituting our Hφ . So

∇ × H = −∂Hφ

∂z
aρ = − 8000

(4π × 10−7)ωρ
sin(ωt − 4z)aρ = ∂Dρ

∂t
aρ

And

Dρ =
∫

− 8000

(4π × 10−7)ωρ
sin(ωt − 4z)dt = 8000

(4π × 10−7)ω2ρ
cos(ωt − 4z) C/m2
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11.19a. (continued) Finally, using the given ε,

Eρ = Dρ

ε
= 8000

(10−16)ω2ρ
cos(ωt − 4z) V/m

This must be the same as the given field, so we require

8000

(10−16)ω2ρ
= 500

ρ
⇒ ω = 4 × 108 rad/s

b) H(ρ, z, t): From part a, we have

H(ρ, z, t) = 2000

(4π × 10−7)ωρ
cos(ωt − 4z)aφ = 4.0

ρ
cos(4 × 108t − 4z)aφ A/m

c) P(ρ, φ, z): This will be

P(ρ, φ, z) = E × H = 500

ρ
cos(4 × 108t − 4z)aρ × 4.0

ρ
cos(4 × 108t − 4z)aφ

= 2.0 × 10−3

ρ2 cos2(4 × 108t − 4z)az W/m2

d) the average power passing through every cross-section 8 < ρ < 20 mm, 0 < φ < 2π . Using
the result of part c, we find Pavg = (1.0 × 103)/ρ2az W/m2. The power through the given
cross-section is now

P =
∫ 2π

0

∫ .020

.008

1.0 × 103

ρ2 ρ dρ dφ = 2π × 103 ln

(
20

8

)
= 5.7 kW

11.20. If Es = (60/r) sin θ e−j2r aθ V/m, and Hs = (1/4πr) sin θ e−j2r aφ A/m in free space, find the average
power passing outward through the surface r = 106, 0 < θ < π/3, and 0 < φ < 2π .

Pavg = 1

2
Re

{
Es × H∗

s

} = 15 sin2 θ

2πr2 ar W/m2

Then, the requested power will be

	 =
∫ 2π

0

∫ π/3

0

15 sin2 θ

2πr2 ar · ar r2 sin θdθdφ = 15
∫ π/3

0
sin3 θ dθ

= 15

(
−1

3
cos θ(sin2 θ + 2)

) ∣∣∣π/3

0
= 25

8
= 3.13 W

Note that the radial distance at the surface, r = 106 m, makes no difference, since the power density
dimishes as 1/r2.
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11.21. The cylindrical shell, 1 cm < ρ < 1.2 cm, is composed of a conducting material for which σ = 106

S/m. The external and internal regions are non-conducting. Let Hφ = 2000 A/m at ρ = 1.2 cm.

a) Find H everywhere: Use Ampere’s circuital law, which states:∮
H · dL = 2πρ(2000) = 2π(1.2 × 10−2)(2000) = 48π A = Iencl

Then in this case

J = I

Area
az = 48

(1.44 − 1.00) × 10−4 az = 1.09 × 106 az A/m2

With this result we again use Ampere’s circuital law to find H everywhere within the shell as a
function of ρ (in meters):

Hφ1(ρ) = 1

2πρ

∫ 2π

0

∫ ρ

.01
1.09 × 106 ρ dρ dφ = 54.5

ρ
(104ρ2 − 1) A/m (.01 < ρ < .012)

Outside the shell, we would have

Hφ2(ρ) = 48π

2πρ
= 24/ρ A/m (ρ > .012)

Inside the shell (ρ < .01 m), Hφ = 0 since there is no enclosed current.

b) Find E everywhere: We use

E = J
σ

= 1.09 × 106

106 az = 1.09 az V/m

which is valid, presumeably, outside as well as inside the shell.

c) Find P everywhere: Use

P = E × H = 1.09 az × 54.5

ρ
(104ρ2 − 1) aφ

= −59.4

ρ
(104ρ2 − 1) aρ W/m2 (.01 < ρ < .012 m)

Outside the shell,

P = 1.09 az × 24

ρ
aφ = −26

ρ
aρ W/m2 (ρ > .012 m)
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11.22. The inner and outer dimensions of a copper coaxial transmission line are 2 and 7 mm, respectively.
Both conductors have thicknesses much greater than δ. The dielectric is lossless and the operating
frequency is 400 MHz. Calculate the resistance per meter length of the:

a) inner conductor: First

δ = 1√
πf µσ

= 1√
π(4 × 108)(4π × 10−7)(5.8 × 107)

= 3.3 × 10−6m = 3.3µm

Now, using (70) with a unit length, we find

Rin = 1

2πaσδ
= 1

2π(2 × 10−3)(5.8 × 107)(3.3 × 10−6)
= 0.42 ohms/m

b) outer conductor: Again, (70) applies but with a different conductor radius. Thus

Rout = a

b
Rin = 2

7
(0.42) = 0.12 ohms/m

c) transmission line: Since the two resistances found above are in series, the line resistance is their
sum, or R = Rin + Rout = 0.54 ohms/m.

11.23. A hollow tubular conductor is constructed from a type of brass having a conductivity of 1.2 × 107 S/m.
The inner and outer radii are 9 mm and 10 mm respectively. Calculate the resistance per meter length
at a frequency of

a) dc: In this case the current density is uniform over the entire tube cross-section. We write:

R(dc) = L

σA
= 1

(1.2 × 107)π(.012 − .0092)
= 1.4 × 10−3 
/m

b) 20 MHz: Now the skin effect will limit the effective cross-section. At 20 MHz, the skin depth is

δ(20MHz) = [πf µ0σ ]−1/2 = [π(20 × 106)(4π × 10−7)(1.2 × 107)]−1/2 = 3.25 × 10−5 m

This is much less than the outer radius of the tube. Therefore we can approximate the resistance
using the formula:

R(20MHz) = L

σA
= 1

2πbδ
= 1

(1.2 × 107)(2π(.01))(3.25 × 10−5)
= 4.1 × 10−2 
/m

c) 2 GHz: Using the same formula as in part b, we find the skin depth at 2 GHz to be δ = 3.25×10−6

m. The resistance (using the other formula) is R(2GHz) = 4.1 × 10−1 
/m.
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11.24a. Most microwave ovens operate at 2.45 GHz. Assume that σ = 1.2 × 106 S/m and µR = 500 for the
stainless steel interior, and find the depth of penetration:

δ = 1√
πf µσ

= 1√
π(2.45 × 109)(4π × 10−7)(1.2 × 106)

= 9.28 × 10−6m = 9.28µm

b) Let Es = 50 � 0◦ V/m at the surface of the conductor, and plot a curve of the amplitude of Es vs.
the angle of Es as the field propagates into the stainless steel: Since the conductivity is high, we
use (62) to write α

.= β
.= √

πf µσ = 1/δ. So, assuming that the direction into the conductor is
z, the depth-dependent field is written as

Es(z) = 50e−αze−jβz = 50e−z/δe−jz/δ = 50 exp(−z/9.28)︸ ︷︷ ︸
amplitude

exp(−j z/9.28︸ ︷︷ ︸
angle

)

where z is in microns. Therefore, the plot of amplitude versus angle is simply a plot of e−x versus
x, where x = z/9.28; the starting amplitude is 50 and the 1/e amplitude (at z = 9.28 µm) is 18.4.

11.25. A good conductor is planar in form and carries a uniform plane wave that has a wavelength of 0.3 mm
and a velocity of 3 × 105 m/s. Assuming the conductor is non-magnetic, determine the frequency and
the conductivity: First, we use

f = v

λ
= 3 × 105

3 × 10−4 = 109 Hz = 1 GHz

Next, for a good conductor,

δ = λ

2π
= 1√

πf µσ
⇒ σ = 4π

λ2f µ
= 4π

(9 × 10−8)(109)(4π × 10−7)
= 1.1 × 105 S/m

11.26. The dimensions of a certain coaxial transmission line are a = 0.8mm and b = 4mm. The outer
conductor thickness is 0.6mm, and all conductors have σ = 1.6 × 107 S/m.

a) Find R, the resistance per unit length, at an operating frequency of 2.4 GHz: First

δ = 1√
πf µσ

= 1√
π(2.4 × 108)(4π × 10−7)(1.6 × 107)

= 2.57 × 10−6m = 2.57µm

Then, using (70) with a unit length, we find

Rin = 1

2πaσδ
= 1

2π(0.8 × 10−3)(1.6 × 107)(2.57 × 10−6)
= 4.84 ohms/m

The outer conductor resistance is then found from the inner through

Rout = a

b
Rin = 0.8

4
(4.84) = 0.97 ohms/m

The net resistance per length is then the sum, R = Rin + Rout = 5.81 ohms/m.

195



11.26b. Use information from Secs. 5.10 and 9.10 to find C and L, the capacitance and inductance per unit
length, respectively. The coax is air-filled. From those sections, we find (in free space)

C = 2πε0

ln(b/a)
= 2π(8.854 × 10−12)

ln(4/.8)
= 3.46 × 10−11 F/m

L = µ0

2π
ln(b/a) = 4π × 10−7

2π
ln(4/.8) = 3.22 × 10−7 H/m

c) Find α and β if α + jβ = √
jωC(R + jωL): Taking real and imaginary parts of the given

expression, we find

α = Re
{√

jωC(R + jωL)
}

= ω
√

LC√
2



√

1 +
(

R

ωL

)2

− 1


1/2

and

β = Im
{√

jωC(R + jωL)
}

= ω
√

LC√
2



√

1 +
(

R

ωL

)2

+ 1


1/2

These can be found by writing out α = Re
{√

jωC(R + jωL)
} = (1/2)

√
jωC(R + jωL)+c.c.,

where c.c denotes the complex conjugate. The result is squared, terms collected, and the square root
taken. Now, using the values of R, C, and L found in parts a and b, we find α = 3.0 × 10−2 Np/m
and β = 50.3 rad/m.

11.27. The planar surface at z = 0 is a brass-Teflon interface. Use data available in Appendix C to evaluate
the following ratios for a uniform plane wave having ω = 4 × 1010 rad/s:

a) αTef/αbrass: From the appendix we find ε′′/ε′ = .0003 for Teflon, making the material a good
dielectric. Also, for Teflon, ε′

R = 2.1. For brass, we find σ = 1.5×107 S/m, making brass a good
conductor at the stated frequency. For a good dielectric (Teflon) we use the approximations:

α
.= σ

2

√
µ

ε′ =
(

ε′′

ε′

)(
1

2

)
ω
√

µε′ = 1

2

(
ε′′

ε′

)
ω

c

√
ε′
R

β
.= ω

√
µε′

[
1 + 1

8

(
ε′′

ε′

)]
.= ω

√
µε′ = ω

c

√
ε′
R

For brass (good conductor) we have

α
.= β

.=
√

πf µσbrass =
√

π

(
1

2π

)
(4 × 1010)(4π × 10−7)(1.5 × 107) = 6.14 × 105 m−1

Now

αTef

αbrass
=

1/2
(
ε′′/ε′) (ω/c)

√
ε′
R√

πf µσbrass
= (1/2)(.0003)(4 × 1010/3 × 108)

√
2.1

6.14 × 105
= 4.7 × 10−8

b)

λTef

λbrass
= (2π/βTef)

(2π/βbrass)
= βbrass

βTef
= c

√
πf µσbrass

ω

√
ε′
R Tef

= (3 × 108)(6.14 × 105)

(4 × 1010)
√

2.1
= 3.2 × 103
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11.27. (continued)

c)
vTef

vbrass
= (ω/βTef)

(ω/βbrass)
= βbrass

βTef
= 3.2 × 103 as before

11.28. A uniform plane wave in free space has electric field given by Es = 10e−jβxaz + 15e−jβxay V/m.

a) Describe the wave polarization: Since the two components have a fixed phase difference (in this
case zero) with respect to time and position, the wave has linear polarization, with the field vector

in the yz plane at angle φ = tan−1(10/15) = 33.7◦ to the y axis.

b) Find Hs : With propagation in forward x, we would have

Hs = −10

377
e−jβxay + 15

377
e−jβxaz A/m = −26.5e−jβxay + 39.8e−jβxaz mA/m

c) determine the average power density in the wave in W/m2: Use

Pavg = 1

2
Re

{
Es × H∗

s

} = 1

2

[
(10)2

377
ax + (15)2

377
ax

]
= 0.43ax W/m2 or Pavg = 0.43 W/m2

11.29. Consider a left-circularly polarized wave in free space that propagates in the forward z direction. The
electric field is given by the appropriate form of Eq. (80).

a) Determine the magnetic field phasor, Hs :
We begin, using (80), with Es = E0(ax + jay)e

−jβz. We find the two components of Hs

separately, using the two components of Es . Specifically, the x component of Es is associated
with a y component of Hs , and the y component of Es is associated with a negative x component
of Hs . The result is

Hs = E0

η0

(
ay − jax

)
e−jβz

b) Determine an expression for the average power density in the wave in W/m2 by direct application
of Eq. (57): We have

Pz,avg = 1

2
Re(Es × H∗

s ) = 1

2
Re

(
E0(ax + jay)e

−jβz × E0

η0
(ay − jax)e

+jβz

)

= E2
0

η0
az W/m2 (assuming E0 is real)
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11.30. The electric field of a uniform plane wave in free space is given by Es = 10(ay + jaz)e
−j25x .

a) Determine the frequency, f : Use

f = βc

2π
= (25)(3 × 108)

2π
= 1.2 GHz

b) Find the magnetic field phasor, Hs : With the Poynting vector in the positive x direction, a positive
y component for E requires a positive z component for H. Similarly, a positive z component for
E requires a negative y component for H. Therefore,

Hs = 10

η0

[
az − jay

]
e−j25x

c) Describe the polarization of the wave: This is most clearly seen by first converting the given field
to real instantaneous form:

E(x, t) = Re
{

Ese
jωt

}
= 10

[
cos(ωt − 25x)ay − sin(ωt − 25x)az

]
At x = 0, this becomes,

E(0, t) = 10
[
cos(ωt)ay − sin(ωt)az

]
With the wave traveling in the forward x direction, we recognize the polarization as left circular.

11.31. A linearly-polarized uniform plane wave, propagating in the forward z direction, is input to a lossless
anisotropic material, in which the dielectric constant encountered by waves polarized along y (εRy)

differs from that seen by waves polarized along x (εRx). Suppose εRx = 2.15, εRy = 2.10, and the
wave electric field at input is polarized at 45◦ to the positive x and y axes. Assume free space wavelength
λ.

a) Determine the shortest length of the material such that the wave as it emerges from the output end
is circularly polarized: With the input field at 45◦, the x and y components are of equal magnitude,
and circular polarization will result if the phase difference between the components is π/2. Our
requirement over length L is thus βxL − βyL = π/2, or

L = π

2(βx − βy)
= πc

2ω(
√

εRx − √
εRy)

With the given values, we find,

L = (58.3)πc

2ω
= 58.3

λ

4
= 14.6 λ

b) Will the output wave be right- or left-circularly-polarized? With the dielectric constant greater for
x-polarized waves, the x component will lag the y component in time at the output. The field can
thus be written as E = E0(ay − jax), which is left circular polarization.
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11.32. Suppose that the length of the medium of Problem 11.31 is made to be twice that as determined in
the problem. Describe the polarization of the output wave in this case: With the length doubled, a
phase shift of π radians develops between the two components. At the input, we can write the field as
Es(0) = E0(ax + ay). After propagating through length L, we would have,

Es(L) = E0[e−jβxLax + e−jβyLay] = E0e
−jβxL[ax + e−j (βy−βx)Lay]

where (βy − βx)L = −π (since βx > βy), and so Es(L) = E0e
−jβxL[ax − ay]. With the reversal of

the y component, the wave polarization is rotated by 90◦, but is still linear polarization.

11.33. Given a wave for which Es = 15e−jβzax +18e−jβzejφay V/m, propagating in a medium characterized
by complex intrinsic impedance, η.

a) Find Hs : With the wave propagating in the forward z direction, we find:

Hs = 1

η

[
−18ejφax + 15ay

]
e−jβz A/m

b) Determine the average power density in W/m2: We find

Pz,avg = 1

2
Re

{
Es × H∗

s

} = 1

2
Re

{
(15)2

η∗ + (18)2

η∗

}
= 275 Re

{
1

η∗

}
W/m2

11.34. Given the general elliptically-polarized wave as per Eq. (73):

Es = [Ex0ax + Ey0e
jφay]e−jβz

a) Show, using methods similar to those of Example 11.7, that a linearly polarized wave results when
superimposing the given field and a phase-shifted field of the form:

Es = [Ex0ax + Ey0e
−jφay]e−jβzejδ

where δ is a constant: Adding the two fields gives

Es,tot =
[
Ex0

(
1 + ejδ

)
ax + Ey0

(
ejφ + e−jφejδ

)
ay

]
e−jβz

=


Ex0e

jδ/2
(
e−jδ/2 + ejδ/2

)
︸ ︷︷ ︸

2 cos(δ/2)

ax + Ey0e
jδ/2

(
e−jδ/2ejφ + e−jφejδ/2

)
︸ ︷︷ ︸

2 cos(φ−δ/2)

ay


 e−jβz

This simplifies to Es,tot = 2
[
Ex0 cos(δ/2)ax + Ey0 cos(φ − δ/2)ay

]
ejδ/2e−jβz, which is lin-

early polarized.

b) Find δ in terms of φ such that the resultant wave is polarized along x: By inspecting the part a

result, we achieve a zero y component when 2φ − δ = π (or odd multiples of π ).
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