NUMERICAL PROBLEMS

P 20.1. Find the mass defect and binding energy for helium nucleus? Solution

 $\Delta m = ? E_B = ? (for Helium nucleus)$

Mass of proton

 $m_p = 1.00728 a.m.u$

Mass of neutron

 $m_n = 1.00867 a.m.u$

Mass of helium nucleus

 $M_{He} = 4.00125 a.m.u$

Helium has two protons (Z = 2) and its atomic mass A is 4. So it has (A - Z) neutrons i.e,

$$N = 4 - 2 = 2$$

Now mass defect can be determined by

$$\Delta m = (Z m_p - N m_n) - M_{He}$$

$$\Delta m = (2 \times 1.00728 - 2 \times 1.00867) - 4.00152$$

$$\Delta m = 0.03038 \text{ a.m.u}$$

To calculate binding energy E_B, since 1 a.m.u = 931.5 MeV

So

P 20.2. A certain radioactive isotope has half-life of 8 hours. A solution containing 500 million atoms of this isotope is prepared. How many atoms of this isotope have not disintegrated after (a) 8 hours (b) 24 hours.

Solution

T_{1/2}= 8hrs

N = 500Million (a) $N_1 = ?$ (atoms left after 8 hrs)

- (b) N₂ = ? (atoms left after 24 hrs)
- (a) The given isotope has half-life of 8 hrs. So after 1st half-life, 250 Million will disintegrate and 250 Million will not disintegrate.

Hence $N_1 = 250$ Million are not disintegrated after 8 hrs.

(b) Now 24hrs means that 3 half-lives have passed. So the number N2 of nuclei that are left un-decayed or those nuclei which are not disintegrated are $(\frac{1}{2})(\frac{1}{2})(\frac{1}{2}) = \frac{1}{8}$ of the total number.

So

$$N_2 = \frac{1}{8} \times 500$$
 Million

 $N_2 = 62.5$ Million are not disintegrated after 24 hrs

P 20.3. Write the nuclear equations for the beta decay of (a) 82 Pb²¹⁰ (b) 83 Bi²¹⁰ (c)

90Th²³⁴ (d) 93Np²³⁹ Solution

Nuclides having excess no. of neutrons decay through negative beta emission.

$$N \rightarrow P + \beta^- + \gamma$$

(Z increases by 1)

Nuclides having greater no. of protons decay through positive beta emission

$$P \rightarrow N + \beta^+ + \gamma$$

 $P \rightarrow N + \beta^+ + \gamma$ (Z decreases by 1)

$$Z = 82$$
 & $A = 210$ $\Rightarrow N = A - Z = 210 - 82 = 128$

Hence N > Z

$$Z = 83$$
 & $A = 210$ $\Rightarrow N = A - Z = 210 - 83 = 127$

Hence N > Z

$$Z = 90 \& A = 234 \Rightarrow N = A - Z = 234 - 90 = 144$$

Hence N > Z

$$\Rightarrow$$
 N = A - Z = 239 - 93 = 146

Hence N > Z

Thus all the nuclides decay through negative beta emission.

$$_{82}Pb^{210}$$
 \longrightarrow $_{83}Bi^{210} + _{-1}\beta^{0} + \bar{\nu} + Q$

$$_{83}Bi^{210} \longrightarrow _{84}Po^{210} + _{-1}\beta^{0} + \bar{\nu} + Q$$

$$_{90}\text{Th}^{234}$$
 \rightarrow $_{91}\text{Pa}^{234} + _{-1}\beta^{0} + \bar{\nu} + Q$

$$_{93}Np^{239} \longrightarrow _{94}Pu^{239} + _{.1} \beta^0 + \bar{\nu} + Q$$

Where E shows the energy liberated and $\bar{\nu}$ are anti-neutrinos as they are always associated with negative beta emission.

P 20.4. Calculate the total energy released if 1kg of U²³⁵ undergoes fission? Taking the disintegration energy per event to be Q = 208 MeV. Solution

$$Q = 208 \text{ MeV per event}$$
 $m = 1 \text{kg of } U^{235}$

Number of atoms in 1 kg of U²³⁵

$$N = nN_A$$

(1)

Number of moles

$$n = \frac{\text{Given mass " m "}}{\text{Atomic mass " M "}} = \frac{1 \text{ kg}}{235 \frac{\text{kg}}{\text{kmol}}}$$

$$n = 4.255 \times 10^{-3} \text{ k mole}$$

putting in (1) we get

N =
$$4.255 \times 10^{-3} \text{ k mole x } (6.023 \times 10^{23+3} \frac{\text{atoms}}{\text{kmol}})$$

$$N = 2.56 \times 10^{24}$$
 atoms

Now total energy liberated is

P 20.5. Find the energy released in the following fission reaction?

Solution

$$Q = ? on^{1} + 92U^{235}$$
 $_{36}Kr^{92} + _{56}Ba^{141} + 3_{0}n^{1} + Q$

Total mass on reactants side m_r = mass of one neutron + mass of U²³⁵

$$m_r = 1.00867 + 235.0439$$

Now total mass on products side mpro is given by

m_{pro} = mass of Kr⁹²+mass of Ba¹⁴¹+mass of 3 neutrons

 $m_{pro} = 91.8973 + 140.9139 + 3 (1.00867)$

 $m_{pro} = 235.8372 a.m.u$

mass deficit

 $\Delta m = m_r - m_{pro} = 236.05257 - 235.8372$

 $\Delta m = 0.21536 \text{ a.m.u}$

And the energy released during the reaction is

 $Q = \Delta m \times 931.5 \text{ MeV} = 0.21536 \times 931.5 \text{ MeV}$

Q = 201 MeV

P 20.6. Find the energy released in the fusion reaction.

Solution

$$Q = ?$$
 $_1H^2 + _1H^3 \longrightarrow _2He^4 + _0n^1 + Q$

Total mass on reactants side is

 $m_r = mass of deuterium _1H^2 + mass of tritium _1H^3$

 $m_r = 2.0141 + 3.01605$

 $m_r = 5.03015 a.m.u$

Now total mass on products side is;

m_{pro} = mass of one α-particle + mass of one neutron

 $m_{pro} = 4.00263 + 1.00867$

 $m_{pro} = 5.0113 a.m.u$

 $\Delta m = m_r - m_{prod}$

 $\Delta m = 0.01885 \text{ a.m.u}$

Now the energy released during the given fusion reaction is;

 $Q = \Delta m \times 931.5 \text{ MeV}$

Q = 0.01885 x 931.5 MeV

P 20.7. Complete the following nuclear reactions.

$$_{7}N^{14} + _{2}He^{4}$$
 \longrightarrow $_{1}H^{1} + X_{1}$ $_{5}B^{11} + _{1}H^{1}$ \longrightarrow $_{6}C^{11} + X_{2}$ $_{3}Li^{6} + X_{3}$ \longrightarrow $_{4}Be^{7} + _{0}n^{1}$

In all the equations, law of conservation of charge number (Z number) and law of conservation of mass number (A number) must be conserved.

First equation is

At the left hand side of the above equation total Z number is 9 whereas A number is 18. Now Z number on right hand side is 1 whereas A number is also 1. Hence the missing nucleus X_1 will have Z number 9 - 1 = 8 while A number 18 - 1 = 17 which is of oxygen written as ${}_8O^{17}$

Now after putting the missing term the above equation becomes

The second equation is

Here Z number on left hand side is 6 and A number is 12 whereas Z number on right side of equation is 6 and A number is 11. Hence the missing nucleus X_2 will have Z number 6 - 6 = 0 and A number 12 - 11 = 1 which is of neutron $_0$ n 1 . Now with this, the equation can be written as follows.

Third equation is

In this equation right hand side has total Z number 4 and A number 8 whereas left hand side has Z number 3 and A number 6. So the missing nucleus X_3 has Z number 4 - 3 = 1 and A number 8 - 6 = 2 which is of deuterium ${}_1H^2$. With this, the third equation is re-written as follows:

$$_{3}\text{Li}^{6} + _{1}\text{H}^{2} \longrightarrow _{4}\text{Be}^{7} + _{0}\text{n}^{1}$$

P 20.8. $_3$ Li⁶ is bombarded by deuterons. The reaction gives two α -particles along with release of energy equal to 22.3 MeV. Knowing masses of deuteron and α -particles determine mass of lithium isotope of $_3$ Li⁶.

Solution Equation can be written as

E = 22.3 MeV

Using the equation $E = \Delta m c^2$

$$\Delta m = \frac{E}{c^2} = \frac{22.3 \text{ M eV}}{931.5 \frac{\text{M eV}}{\text{a.m.u}}} = 0.023939 \text{ a.m.u}$$

```
Mass of deuteron 1H2 is
                         m_d = 2.0141 a.m.u
Mass of helium nucleus 2He4 is
                         m<sub>He</sub> = 4.00263 a.m.u
Now the nuclear equation above can be interpreted as follows:
       Mass of _3\text{Li}^6 + Mass of _1\text{H}^2 = 2(mass of _2\text{He}^4) + mass defect \Delta m
                         m_{Li} = 2(mass of _2He^4) + mass defect \Delta m - mass of _1H^2
                         m_{Li} = 2(4.00263) + 0.023939 - 2.0141 = 6.015 a.m.u
p 20.9. Find the energy released when β-decay changes 30Th<sup>234</sup> into 91Pa<sup>234</sup>
Solution
ATh = 234.0436u
                                   A_{Pa} = 234.042762 \text{ u.}
                                                                 Q = ?
Equation for beta decay is shown as
                         on Th 234
                                                _{91}Pa^{234} + _{-1}\beta^{\circ} + Q
Energy released Q can be found by equation
                                   Q = \Delta m \times 931.5 \text{ MeV} -----(1)
                                   \Delta m = Mass of {}_{90}Th^{234} - (mass of {}_{91}Pa^{234} + mass of {}_{-1}\beta^{\circ})
                                   \Delta m = 234.0436 - (234.042762 + 0.00055)
                                   \Delta m = 0.000288u put this in (1) we get
                                   Q = 0.000288 x 931.5 MeV = 0.27 MeV
 20.10. Find out the K.E to which a proton must be accelerated to induce the
following nuclear reaction.
                         Q = ? for the reaction Li^7 (p,n) Be^7
Solution
The equation can be written as follows
                                         _{4}Be^{7} + _{0}n^{1} + O
                         _{3}Li^{7} + _{1}H^{1}
Energy Q can be found using equation
                                   Q = \Delta m \times 931.5 \text{ MeV} ----- (1)
Mass of _3Li^7 = 7.01823 a.m.u
Mass of 1H1 = 1.00814 a.m.u
Mass of _4Be^7 = 7.015929 a.m.u
 Mass of on1 = 1.00867 a.m.u
 Now mass deficit Δm can be determined using the equation
                \Delta m = ( mass of _3Li^7 + Mass of _1H^1) - ( Mass of _4Be^7 + Mass of _0n^1)
```

Δm = (7.01823 + 1.00814) - (7.015929 + 1.00867)

Koracademy.com

 $\Delta m = 0.001771 \text{ a.m.u}$ putting this value in eq (1) we get $Q = 0.001771 \times 931.5 \text{ MeV} = 1.65 \text{ MeV}$