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PREF 

Linear algebra is an important course for a di verse number of students for at least 
two reasons. First, few subjects can claim \0 have such widespread applications 
in other areas of mathematics-multi variable calculus, differential equations, and 
probability, for example-as well as in physics, biology, chemistry. economics, fi­
nance, psychology, sociology. and all fields of engineering. Second, Ihc subject 
presents the student at Ihc sophomore level with an excellent opportunity to learn 
how to handle abstract concepts. 

This book provides an introduction to Ihc basic ideas and computational tech­
niques of linear algebra at the sophomore level. It also includes a wide variety 
of carefully selected applications. These include topics of contemporary interest. 
such as GoogleTh1 and Global Positioning System (DPS). The book also introduces 
the student to working with abstract concepts. In covering the basic ideas of linear 
algebra. the abstract ideas are carefully balanced by considerable emphasis on the 
geometrical and computatio nal aspects of the subject. This edition continues to 
provide Ihe optional opportunity to use MATLAB™or other soft ware to enhance 
the pedagogy of the book. 

What's New in the Ninth Edition 
We have been vcry pleased by the wide acccptance of the first eight editions of 
this book throughout Ihe 38 years of its life. In prcparing thi s edition. we have 
carefully considered many suggestions from faculty and students for improving 
the content and presentation of the matcrial. We have been especially gratified by 
hearing from the multigenerational users who used this book as students and are 
now using it as faculty members. Although a great many changes have been made 
to develop this major revision. our objective has remained the same as in the first 
cight editions: 10 presellf the bCl.fic ideas of linear algebra in a II/w!/Ier tlwlthe 
sludellf will find understandahle. To achieve this objective, thc following fcatures 
have been developed in this edition: 

DisclLssion questions have been added to the Chapter Review material. Many 
of these are suitable for writ ing projects or group activities. 

Old Section 2.1 has been split into two sections, 2.1, Echelon Fonn of a Ma ­
Irix, and 2.2. Solvillg Linear SY~·fellls . This will provide improved pedagogy 
for covering this important material. 

Old Chaptcr 6, Determinants, has now becomc Chapter 3, to permit earlier 
coverage of this material. 

• Old Section 3.4, Span and Linear Independence, has been split into two sec­
tions, 4.3. Span, and 4.4, Linear Independence. Sincc students often have 
difficulties with these more abstract topics. this revision presents this material 
at a somewhat slO\"er pace and has more examples. 

xi 
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Chapter 8, Applicatio/l.I· of Eigelll'lllue.r (llId Eigelll'ecfors, is new to this edition 
in thi s form. It consists o f old sections 7.3, 7.6 through 7.9. material fro m old 
section 7.5 on the transmission of symmetric images. and o ld sections 8.1 and 
8.2. 

More geomctric material illustrating the discussions o f diagonalization ofsym­
metric matrices and singular value decompositions. 

• Section 1.7, Compllfer Gmphic.r, has been expanded . 

More applications have been added. These include networks and chemical 
balance equations 

The exposition has been expanded in many places to improve the pedagogy 
and more explanations have been added to show the importance of certain 
material and results. 

A simplified discussion showing how linear algebra is used in global position­
ing systems (G PS) has been added. 

More material on recurrence relations has been added. 

More varied examples of vector spaces have been introduced. 

More material discussing the four fundamental subspaces of linear algebra 
have beell added. 

• More geometry has been added. 

More figures have been added. 

• More exercises at all levels have been added. 

Exercises involving real world data have been updated to include more recent 
data sets. 

• More MAT LAB exercises have been added. 

EXERCISES The exercises rOml an integral part of the text. Many of them are numerical in 
nature, whereas others arc of a theoretical type. :-lew to this edition are Discus­
sion Exercises at the end of each of the first seven chapters, which can be used for 
writ ing projects or group activities. Many theoretical and discussion exercises. as 
well as some numerical ones, call for a verbal solution. In this technological age, 
it is especially important to be able to write with care and precision: exercises of 
this type should help to sharpen this skill. Thi s edition contains almost 200 new 

exercises. Computer exercises. clearly indicated by a special symbol .!. arc of 
two types: in the fi rst eight chapters there arc exercises allowing for discovery and 
exploration that do not specify any particular software to be used for their .• olu­
tion: in Chapter tU there are 147 exercises designed to be solved using MATLAB. 
To extend the instructional capabilities of MAT LAB we have devcloped a set or 
pedagogical routines. called scripts or M-fi les, to illustrate concepts, streamline 
step-by-step computational procedures, and demonstrate geometric aspects of top­
ics using graphical displays. We feel that MATLAB and our instructional M· fil es 
provide an opportunity for a working pannership between the student and the com­
puter that in many ways fo recasts si tuations that will occur once a student joins the 
technological workforce. The exercises in this chrlpter arc keyed to topics rather 
than individual sections o f the text. Short descripti ve headings and references to 
M ATI .AR commnntt., in rhnplcr 9 supply informmion nholll Ihe sel.~ of exerci.'cs 



Preface xiii 

The answers to all odd-numbered exercises appear in the back of the book. An In­
structor's Solutions Manual (ISBN: 0-13-229655-1), containing answers to all 
even-numbered exercises and sol utions to all theoretical exercises, is available (to 
instructors only) from the publi sher. 

PRESENTATION We have learned from experience that at the sophomore level, abstract ideas must 
be introduced quite gradually and must be based on firm foundations. Thus we 
begin the study of linear algebra with the treatment of matrices as mere arrays of 
numbers that arise naturally in the solution of sys l~ms of linear equations, a prob­
lem al ready familiar to the studen1. Much al1cntion has been devoted from one 
edition to the next to refining and improving the pedagogical aspects of the exposi­
tion. The abstract ideas are carefully balanced by the considerable emphasis on the 
geometrical and computational aspects of the subject. Appendix C, Illt roductioll 
to Proofs can be used 10 give the studcnt a quick introduction 10 the foundations of 
proofs in mathematics. An expanded version of this material appears in Chapter 0 
of the Student Solutions Manual. 

MATERIAL COVERED [n using this book, for a one-quaner linear algebra course meeti ng four times a 
week, no difficulty has been encountered in covering eigenvalues and eigenvectors, 
omil1ing thc optional matcrial. Varying the amount oftimc spent on the thcoretical 
material can readily change the level and pace of the course. Thus, the book can 
be used to teach a number of different types of courscs. 

Chapter I deals v.-ith matrices and their propcnies. In this chapter we also 
provide an carly introduction to matrix transformations and an application of thc 
dot product to statistics. Methods for solving systems of lincar equations are dis­
cussed in Chapter 2. Chapter 3 introduces the basic properties of determinants 
and some of their applications. In Chapter 4, we corne to a more abstract notion, 
rcal vector spaces. Here we tap some of the many geometric ideas that arise nat­
urally. Thus we prove that an II -dimensional, real vector space is isomorphic to 
R", thc vector space of all ordered n-tuples of real numbers. or the vector space 
of all II x I matrices with real entries . Since R" is but a slight generalization of 
R2 and R3. two- and three-dimensional space are discussed at the beginning of 
the chapter. This shows that the notion of a finit e-dimensional. real vector space 
is not as remote as it may have seemed when first introduced. Chapter 5 cov­
ers inner product spaces and has a strong geometric orientation. Chapter 6 deals 
with matrices and linear transformations: here we consider the dimension theo­
rems and also appl ications to the solution of systems of linear equations. Chapter 
7 considers eigenvalues and eigenvectors. In this chapter we completely solve the 
diagona[ization problem for symmetric matrices. Chapter 8 (optional) pre~ents 

an introduction to some applications of e igenvalues and eigenvectors. Section 8.3, 
DOll/inalll Eigellvalue and Principal Compollent Analysis, hi ghlights some very 
useful results in linear algebra. 11 is possible to go from Section 7.2 directly to 
Section 8.4. Differelllial Equations. showi ng how linear algebra is used 10 solve 
differcntial equations. Section 8.5. Dynamical Sy.flem.\· gives an application of lin­
ear algebra to an imponant area of modern applied mathematics. In this chapter we 
also discuss real quadratic fornl s, conic sections. and quadric surL1ces. Chapter 
9. M ATLAB for Linear Algebra, provides an introduction to M ATLAB . Chapter 
10. MATLAB Exercises. consists of [47 exercises that are designed to be solved 



xiv Preface 

MAnAS SOFTWARE 

STUDENT SOLUTIONS 
MANUAL 

ACKNOWLEDGMENTS 

using MATLAB. Appendix A reviews some very basic material dealing with sets 
and functions. It can bc consulted at any time as needed. Appendix B, on com­
plex numbers, introduces in a brief but thorough manner complex numbers and 
their use in linear algebra. Appendix C provides a brief introduction to proofs in 
mathematics. 

The instructional M-filcs that have been developed to be used for solving thc ex­
ercises in thi s book, in particular those in Chapter 9, are available on the follow­
ing website: ww w.prenhall.comlkolman. These M-files arc designed to transform 
many of MATLAB'S capabilities into courseware. Although the computational 
exercises can be solved using a number of software packages, in our judgment 
MATLAB is the most suitable package for this purpose. MATLAB is a versatile 
and powerful soft ware package whose cornerstone is its linear algebra capabili­
ties. This is done by providi ng pedagogy that allows the student to interact with 
MATLAB. thereby letting the student think through all the steps in the solution 
of a problem and relegating MATL AB to act as a powerful calcu lator to relieve the 
drudgery of tedious computation. Indeed, this is the ideal role for MATLAB (or any 
other simi lar package) in a beginning linear algebra course, for in this course, more 
than many others, the tedium of lengthy computations makes it almost impossible 
to solve a modest-size problem. Thus, by introduci ng pedagogy and reining in 
the power of MATL AB, these M-files provide a working partnership between the 
student and the computer. Moreover. the intrcxluction to a powerfu l tool such as 
MATLAB early in the student 's college career opens the way for other software 
support in hi gher-level courses, especially in science and engineeri ng. 

MATLAB incorporates professionally developed quality computer routines for 
linear algebra computation. The code employed by MATL AB is wrillen in the C 
language and is upgraded as new versions of MATL AB arc released. MATLAB 
is available from The Math Works Inc., 3 Apple Hi ll Dri ve, Natick, MA 01760, 
e-mail: info@mathworks.com. [508-647-70001. The Student version is available 
from The Math Works at a reasonable cos\. This Sllldent Edition of MATLAB 
also includes a version of Maple™, thereby providing a symbolic computational 
capability. 

The Student Solutions Manual (ISB N: O-13-229656-X), prepared by Denni s R. 
Kletzi ng, Stetson Uni versity, contains sol utions to all odd-numbered exercises, 
both nu merical and theoretical. 

We arc pleased to express our thanks to the following reviewers of the first eight 
editions: the late Edward Norman. University of Central Florida; the late Charles 
S. Duris, and Herbert J. Nichol, both at Drexel University; Stephen D. Kerr, We­
ber State College; Norman Lee, Ball State University; William Briggs, University 
of Colorado: Richard Roth. Uni versity of Colorado; David Stanford , College of 
William and Mary; David L. Abrahamson, Rhode Island College; Ruth Berger, 
Memphis State University; Michael A. Geraghty, University of Iowa; You-Feng 
Lin. University of South Florida; Lothar Redlin, Pennsy lvania State University, 
Abington; Richard Sot, University of Nevada, Reno; Raymond Southworth, Pro­
fesso r Emerillls, College of William and Mary ; 1. Barry TUTen , Oakland Univer­
sity : Gordon Brown, University of Colorado; Mall Insall, Uni versity of Mis;ouri 
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at Rolla; Wolfgang Kappe State University of New York at Binghampton ; Richard 
P. Kubelka, San Jose State University; James Nation, Uni versity o f Hawaii ; David 
Peterson, Universi ty o f Central Arkansas; Malcolm J. Sherman, State Uni versity 
o f New York at Albany: Alcx Stanoyevi tch, Uni versity of Hawaii; Barbara Tabak, 
Brandeis Uni versity; Loring W. Tu Tufts University; Manfred Ko lster. McMaster 
Universi ty ; Daniel Cunningham, Buffalo State College; Larry K. Chu. Minot State 
Universi ty : Danie l King, Sarah L1wrence University; Kevin Yang, Minot State 
Universi ty ; Avy Soffer, Rutgers University; David Kaminski, Universi ty of Leth­
bridge, Pat ric ia Beaulieu. Universi ty o f Louis iana, Will Murray, California State 
Umversi ty at Long Beach and o f the ninth edition: Thalia U . Je llres. Wichita State 
Universi ty, Manuel Lopez. Rochester Institute of Technology, Thomas L. Scofield. 
Calvin Coitege, Jim Gehnnann, California State Universi ty, Sacramento, John M. 
Erdman. Portland State Universi ty. Ada Cheng, Kettering Universi ty. Juergen Ger­
lach, Radford Univers ity, and Martha Allen, Georgia College and State University. 

The numerous suggestions, comments, and critic isms of these people greatly 
improved the manuscript. 

We thank Dennis R. Kletzing, who typeset the entire manuscrip t, the Student 
Solutions Manl/al. and the Instructor's So/utions Mal/ual. He found and corrected 
a nllmher of mathemarical e rrors in the manuscripr . Ir was a pleas llfe working with 
him. 

We thank Blaise deSesa for carefully checki ng the answers to all the exercises. 
We thank William T. Williams. fo r kind ly letting us put his striking image 

Trane on the cover o f this edition. 
We also thank Lilian N. Brady and Nina Edelman, Temple University, for crit ­

ically and carefully reading page proofs: and instructors and students from many 
institutions in the United Slates and other countries, for sharing with us their ex­
periences with the book for the past 38 years and offering helpful suggestio ns. 

Finally, a sincere expressio n o f thanks goes to Scot! Di sanno. Senior Man­
aging Editor: to Holly Stark, Senior Editor; to Jennifer Lonschein. Editorial As­
s istant, and to the e nti re staff of Prentice Hall for the ir enthusiasm , interest. and 
unfailing cooperation during the conception, design, production. and marketing 
phases o f this edition. It was a genuine pleasure working with the m. 

B.K. 
D.R.H. 
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THE 

This course may be unlike any other mathematics course thaI you have stud ied 
thus far in at least two important ways. First, it may be your initial introduction 
to abstraction. Second, it is a mathematics course that may well have thc greatest 
impact on your vocation. 

Unlike other mathematics courses, this course will not give you a toolkit o f 
isolated computational techniques for solvi ng certain types of problems. Instead. 
we will develop a core of material called linear algebra by introducing certain def­
initions and creating procedures fo r determining properties and proving theorems. 
Proving a theorem is a "kilt that lakes time to master, so we will develop your skill 
al proving mathematical results very carefully. We introduce you to abstraction 
slowly and amply illustrate each abstract idea with concrete numerical examples 
and applications. Although you will be doing a lot of computations, the goal in 
most problems is not merely to get the "right" answer. but to understand and be 
able explain how to get the answer and then interpret the result. 

Linear algebra is used in the everyday world to solve problems in other areas 
o f mathematics. physics. biology, chemi stry. engineering, statistics. economics, fi­
nance. psychology, and sociology. Applications that use linear algebra include the 
transmission of information, the development o f special effect s in film and video. 
recording of sound, Web search e ngines on the Internet, global positioning system 
(GPS) and economic analyses. Thus, you can see how profoundly linear algebra 
affects you. A selected number of applications are included in this book, and if 
there is enough time, some of these may be covered in your course. Additionally, 
many of the applications call be used as sel f-study projects. An extensive list of 
;Jrplic:lIions npPC;Jrs in thc front insiflc COVC L 

There arc four different types of exercises in this book. First, there are com­
putational exercises. These exercises and the numbers in them have been carefull y 
chosen so that almost all of them can readily be done by hand. When you use 
linear algebra in real applications, you will lind that the problems are much bigger 
in size and the Ilumber,; that occur in them arc not always "nice." Thi s is not a 
problem because you will almost certainly use powerful software to solve them. A 
taste of this type of software is provided by the third type of exercises. These are 
exercises designed to be solved by using a compmer and M AT LAB TM, a powerful 
matrix-based application that is widely used in industry. The second type of ex­
ercises are theoretical. Some of these may ask you to prove a result or discu;s an 
idea. The fourth type of exercises are discussion exercises, which can be used as 
group projects. In today's world, it is not enough to be able to compute an answer; 
you o fte n have to prepare a report di scussing your solution, justifying the steps in 
your solution. and interpreting your results. These types o f exercises will give you 
experience in writing mathematics. Mathematics uses words. not just symbols. 

xvii 



xviii To the Student 

How to Succeed in Linear Algebra 
• Read the book slowly with pencil and paper at hand. You might have to read 

a particular section more than once. Take the time to verify the steps marked 
"verify" in the text. 

Make sure to do your homework on a timely basis. If you wait unti l the prob­
lems are explained in class, you will miss learning how to solve a problem by 
yoursclf. Even if you can't complete a problem. try it anyway, so that when 
you see it done in class you will understand it more easily. You might find 
it helpful to work with other students on the material covered in <:lass and on 
some homework problems. 

Make sure that you ask fo r help as soon as something is not clear to you. Each 
abstract idea in this course is based on previously developed ideas- much like 
laying a foundation and then bui lding a house. If any of the ideas are fuzzy to 
you or missing, your knowledge of the course will not be sturdy enough for 
you to grasp succeeding ideas. 

Make usc of the pedagogical tools provided in this book. At the end of each 
section in the fi rst eight chapters. we have a list of key terms; at the end of each 
of thc first seven chapters we have a chapter review, supplementary exercises,a 
chapter quiz, and discussion exercises. Answers to the odd-numbered compu­
tational exercises appear at the end of the book. The Student Solutions Manual 
provides detailed solut ions to all odd-numbered exercises, both numerical and 
theoretical. It can be purchased from the publisher (ISBN O-13-229656-X). 

We assure you that your efforts to learn linear algebra well will be amply 
rewarded in other courses and in your professional career. 

We wish you much success in your study of linear algebra. 



CHAPTER 

Linear Equations 
and Matrices 

m Systems of Linear Equations 

One of the most frequently recurring practical problems in many fields of study­
such as mathematics. physics, biology, chemistry, economics. all phases of engi­
neering. operations research, and the social sciences- is that of solvi ng a system 
of linear equations. The equation 

(I ) 

which expresses the real or complex quantity b in tcrms of the unknowns X I , X2, 

.. • , X" and the real or complex constants (II. (12 • ... • (In, is called a linear equa­
tion. In many applications we are given b and must find numbers Xl. Xl . ... . X" 

satisfying (I). 
A solution to Iinea.r Equation (I) is a sequence of /I numbers SI.,f2.. .,f". 

which has the propeny that ( I) is satisfied when XI = ,fl, -'"2 = S2, . .. ,X" = s" are 
substituted in (1). Thus XI = 2, X2 = 3. and XJ = - 4 is a solution to the linear 
equation 

because 
6(2) - 3(3) + 4( - 4) ~ - 13. 

More generall y, a system of III linear equations in /I unknowns, Xl, -'"2 .. . .. X". 
or a linear system, is a set of III linear equations each in n unknowns. A linear 

NOIe: Appendix A revitws some \"Cry basic material dealing witll sets and functions. It rail be 
consulted at any time. as needed. 

I 
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EXAMPLE 1 

system can conveniently be wri tten as 

(2) 

Th us the ith equation is 

I.n (2) the (Ii) are known constants. Given values of hi. h2 • ...• h",. we want to find 
values of XI. X2 . .. .. x" that will satisfy each equation in (2). 

A solution to linear system (2) is a sequence of 1/ numbers SI. S2. . . SII' 

which has the property that each equation in (2) is satisfied when XI = .1"1. X2 = .\·2 , 

.... x" = .f" are substituted . 
If the linear system (2) has no solution, it is ~aid to be inconsistent: if it has 

a solution. it is called consistent. If b l = h2 = = b", = 0, then (2) is 
called a homogeneous system. Note that XI = x? = = x" = 0 is always 
a solution to a homogeneous system; it is called the trivial solution. A solution 
to a homogeneous system in which not all of XI. X2 • ... • XII are zero is called a 
nontrivial solution. 

Consider another system of r linear equations in 1/ unknowns: 

CIIXI + CI2X2 + ... + Cl n T" = til 

C21XI + CnX2 + ... + Cil,T" = til 
(3) 

We say that (2) and (3) are equivalent if they both have exactly the same solutions. 

The linear system 

XI - 3X2=-7 

2xI + X2 = 7 

has only the solution XI = 2 and X2 = 3. The linear system 

8x, - 3X2 = 7 

3x, - 2tl = 0 

IOXI - 21:2 = 14 

(4) 

(5) 

also has only the solution XI = 2 and X2 = 3. Thus (4) and (5) are equivalent. • 

To find a solution to a linear system, we shall use a technique called the 
method of elimination: that is, we eliminate some variables by adding a multiple 
of one equation to another equation. Elimination merely amounts to the develop­
ment of a new linear system that is equivalent 10 the original system, but is much 
simpler 10 solve. Readers have probably confined their earlier work in this area to 



EXAMPLE 2 

EXAMPLE 3 

1.1 Systems of linear Equations 3 

linear systems in which III = II. that is, li near systems having as many equations 
as unknowns. In this course we shall broaden our outlook by dealing with systems 
in which we have 11/ = n, 11/ < II. and 11/ > n. Indeed. there are numerous applica­
tions in which III i= II. If we deal with two, three, or four unknowns, we shall often 
write them as x, y, Z, and w. In this section we use thc method of elimination as it 
was studied in high school. In Section 2.2 we shall look at this method in a much 
more systematic manner. 

The director of a trust fund has $100.000 to invest. The rules of the trust state 
that both a certificate of deposit (CD) and a long-term bond must be used. The 
director's goal is to have thc trust yield $7800 on its investments for the year. 
The CD chosen returns S% per annum. and the bond 9%. The director determines 
the amount x to invest in the CD and the amount y to invest in the bond as follows: 

Since the total inve:;tment is $100,000, we must have x +)' = 100.000. Since 
the desired return is $7800. we obtain the equation O.OSx + 0.09)' = 7800. Thus, 
we have the linear system 

x + )' = 100.000 

O.OSx + 0 .09)" = 7800. 
(6) 

To eliminate x, we add (-O.OS) times the first equation to the second, obtaining 

0.04)' = 2800. 

an equation having no .r term. We have eliminated the unknown x. Then solving 
for y . we have 

y = 70.000. 

and substituting into the lirst equation of (6), we obtain 

x = 30.000. 

To check that x = 30.000, Y = 70.000 is a solution to (6), we verify that these 
values o f x and )' satisfy each of the equations in the given linear system. Thi s 
solution is the only solution to (6): the system is consistent. The director of the 
trust should invest $30,000 in the CD and $70,000 in the long-term bond . • 

Consider the linear system 

x -3)"=-7 

2x - 6y = 7. 
(7) 

Agai n. we decide to eliminate x. We add (-2) times the fi rst equation to the 
second one, obtai ning 

0 = 21. 

which makes no sense. This means that (7) has no solution: it is inconsistent We 
could have come to the same conclusion from observing that in (7) the left side of 
the second equation is twice the len side of the fi rst equation, but the right side of 
the second equation is not twice the ri ght side of the fi rst equation . • 
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EXAMPLE 4 

EXAMPLE 5 

Consider the linear system 

x + 2)' + 3z = 6 

2x - 3)' + 2z = 14 

3x + )' - z = - 2. 

(8) 

To eliminate x, we add (- 2) times the first equation to the second one and (-3) 
times the fi rst equation to the third one, obtaini ng 

- 7)' - 4z= 2 

- 5)' - IOz = - 20. 
(9) 

Th is is a system of two equations in the unknowns.v and z. We multiply the second 
equation of (9) by (- tl. yieldi ng 

- 7y - 4z= 2 

)' + 2z = 4, 

which we write. by interchanging equations. as 

y + 2z= 4 
- 7y - 4z= 2. 

( 10) 

We now eliminate y in (10) by adding 7 times the first equation to the second one, 
to obtai n 

10z = 30. 

z = 3. ( II ) 

Substituting this value of z into the first equation of (10), we find that y = - 2. 
Then substituting these values of y and z into the first equation of (8), we find that 
x = I. We observe further that our elimi nation procedure has actually pnxluced 
the linear system 

x + 2y + 3:; = 6 
)' 1 2;: = 4 

:; = 3, 

(12) 

obtained by using the first equations of (8) and (10) as well as (II). The importance 
of this procedure is thaI, although the linear systems (8) and (12) are equi valent. 
(12) has the advantage that it is easier to solve. • 

Consider the linear system 

x + 2)' - 3z = - 4 
2x + y - 3z = 4. 

(13) 
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Eliminating x, we add (-2) times the first equation to the second equation to get 

-3)' + 3z = [2. 

We must now solve (14). A solution is 

)' =z - 4. 

where z can be any real number. Then from the fi rst equation of ( [ 3), 

x = -4 - 2y + 3;: 

= - 4 - 2(z - 4) + 3z 

= z + 4. 

Thus a solution to the linear system (13) is 

x = z +4 
Y = z - 4 

z = any real number. 

( 14) 

This means that the linear system (13) has infini tely many solutions. Evcry time 
we assign a value to z we obtain another solution to ( 13). Thus, if z = I, then 

x = 5. y = - 3 . and 

is a solution, while if z = - 2. then 

.r = 2, y = - 6. and z = -2 

is another solution. • 
These examples suggest that a li near system may have a unique solution, no 

solution, or infi ni tely many solutions. 
Consider next a li near system of two equations in the unknowns x and y: 

(JIX + (J2)' = el 

blx + b 2)' = C2 · 
(15) 

The graph of each of these equations is a straight line. which we denote by il and 
£2, respectively. If x = .\'1,)' = .f! is a solution to the linear system (15). then the 
point (.1'1. S2) lies on both lines i l and i 2 . Conversely, if the point (.fl. Sl) lies on 
both li nes i l and £2, then x = .1"[, )' = .\. ! is a solution to the linear system (15). 
Thus we are led geometrically to the same three possibilities mentioned previously. 
See Figure I. [. 

Next. consider a linear system of three equations in the unknowns x. y, and z: 

([IX + b l )' + elZ = d l 

(J2X + b2J' + elZ = d 2 

(l3X + h3)' + e3Z = d 3. 

( 16) 

The graph of each of these equations is a plane. denoted by PI. P2, and P3, re­
specti vely. As in the case of a linear system of two equations in two unknowns. 
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FIGURE 1. 1 

FIGURE 1.2 

(a) A unique solution. 

)' 

I, 

-7"+---' __ -< 

I, 

(b) No solution. 

)' 

---\1--\--" 

I , 

(e) Infinitely many solutions. 

)' 

I, 

---+7"'---- " 

the linear system in (16) can have infini tely many solutions, a unique solution, or 
no solution. These situations are illustrated in Figure 1.2. For a more concrete 
ill ustration of some of the possible cases, consider that two intersecting walls and 
the ceiling (planes) of a room intersect in a unique point, a corner of the room, 
so the li near system has a unique solution. Next, think of the planes as pages of 
a book. Three pages of a book (held open) intersect in a straight line, the spine. 
Thus, the linear system has infi ni tely many solutions. On the other hand, when the 
book is closed, three pages of a book appear to be parallel and do not intersect, so 
the linear system has no solution. 

(a) A unique solution. (b) Infinitely many solutions. (c) No solution. 

p,/ 
P, 

./ p;/ V 

If we exami ne the melhod of elimination more closely, we find that it involves 
three manipulations that can be perfonned on a linear system to convert it into 
an equivalent system. These manipu lations are as follows: 

I. Interchange the ith and Jth equations. 
2. Multiply an equation by a nonzero constant. 
3. Replace the ith equation by c times the jth equation plus the ith equation, 

i i= j. That is, replace 

by 
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EXAMPLE 7 

1.1 Systems of linear Equations 7 

It is not difficult to prove that performing thes~ manipulations on a linear sys­
tem leads to an equivalent system. The next example proves this for the second 
type of manipulation. Exercises 24 and 25 prove it fo r the firsl and third manipu­
lations, respectively. 

Suppose that the ith equation of the linear system (2) is multiplied by the nonzero 
constant c. producing the linear system 

(lIIXI + {/12X2 + 
anxi + {/ 22 X l + 

(17) 

If XI = .f1 • ..I:2 = .f2 .... . x" = .1'" is a solution to (2), then it is a solution to all the 
equations in (17), except possibly to the ith equation . For the ith equation we have 

c(a jl S1 + (/i2.f2 + ... + (linS,,) = Cbi 

CUi 1St +Clli2.f2 + ... + Cll,,,S,, = Chi. 

Thus the ith equation of (17) is also satisfied. Hence every solution to (2) is also 
a solution to (17). Conversely, every solution to (17) also satisfies (2). Hence (2) 
and (17) are equivalent systems. • 

The following example gives an application leading to a linear system of two 
equations in three unknowns: 

(Production Planning) A manufacturer makes three different types of chemical 
products: A, B. and C. Each product must go through two processing machines: 
X and Y. The products require the following times in machines X and Y: 

I. One ton of A requires 2 hours in machine X and 2 hours in machine Y. 

2. One ton of B requires 3 hours in machine X and 2 hours in machine Y. 
3. One ton of C requires 4 hours in machine X and 3 hours in machine Y. 

Machine X is available 80 hours per week. and machine Y is available 60 hours 
per week. Since management docs not want to keep the expensive machines X and 
Y idle, it would like 10 know how many tons of each product to make so that Ihe 
machines are fully utilized. It is assumed that the manuL1cturer can sell as much 
o f the products as is made. 

To solve this problem. we let XI> Xl, and X) denote the number of toilS of 
products A, B , and C. respectively. to be made. The number of hours that machine 
X will be used is 

2xI + 3X2 + 4X3 . 

which must equal 80. Thus we have 

2xI + 3X2 + 4X3 = 80. 
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Key Terms 
Linear equation 

Similarly, the number of hours that machine Y will be used is 60, so we have 

2xI + 2X2 + 3X3 = 60. 

Mathematically, our problem is to fi nd nonnegati ve values of XI. X2, and X 3 so that 

2xI + 3X2 + 4x] = 30 

2{1 + 2x2 + 3x] = 60. 

This li near system has infinitely many solutions. Followi ng the method of 
Example 4, we sec that all solutions are given by 

20 - x] 
XI = --2--

X2 = 20 - X3 

X ] = any real nu mber such that 0 S x ] S 20, 

since we must have X I ::: 0 ,","2::: 0, and X3 .:::. O. When x ] = 10, we have 

" = 5. X2 = 10, x ] = 10 

while 
x, ~ " X2 

" 
~ 13, x ] ~ 7 

when X 3 = 7. The reader should observe that one solution is just as good as the 
other. There is no best solution un less addi tional infonnation or restrictions are 
given. • 

As you have probably al ready observed, the method of eli mination has been 
described, so far, in general terms. Thus we have not indicated any rules for select­
ing the unknowns to be eliminated . Before providing a very systematic descrip­
tion of the method of elimi nation, we introduce in the next section the notion of 
a matrix. This will greatly simpli fy our notational problems and will enable us to 
develop tools 10 solve many imponant applied problems. 

Solulion of a linear equation 
Li near system 

Consistent system 
Homogeneous system 
Trivial solution 
Nontri vial solution 
Equivalent systems 

Unique solution 
No solution 
Infinitely many solutions 
Manipulations on linear systems 
Method of elimination 

Unknowns 
Inconsistent system 

M.M Exercises 

I II EJerdse.\· Ilhro l/gh 14 . . \"O/re each gil'ell lillear ~)'~'Ielll by 
fhe It1nl/Od of dimillmivil. 

l. x + 2)' = 8 
h - 4y =4 

2. 2x-3y+4;= - 12 
x - 2y + : = -5 

3x+ y+2z = 

3. 3x + 2y + : = 2 
4x + 2y + 2: = 8 

x - y + : =4 

5. 2{+4y+6Z = - 12 
2{ - 3y-4~ = 15 
3x+4y +5: = -8 

4 . . { +y =5 
3x+3y=IO 

6. x+ y-2: =S 
2x + 3y + 4: = 2 



7. 

9. 

II . 

13. 

15. 

.1 + 4y - :: = 12 8. 3x + 4)' - z =8 
h + 8y - 2;:: = 4 6_1 + 8)' - 2;:: = 3 

x + ), +3z =12 10. x+ )' =1 
2x + 2)' + 6;:: = 6 2, - ), =5 

3x + 4)' = 2 

h+3y=13 12. x - 5)' = 6 
x - 2)' = 3 1x + 2)' = I 

5:.: + 2)' = 27 5.{ + 2)' = I 

x + 3.1' = - 4 14. 21 + 3)' - z = 6 
2x+5y=-8 2, - ),+2z = - 8 
x+3y=-S 3x - y+ z = - 7 

Given the linear system 

2x - ) =5 

4x -2) = /. 

(a ) Delennine a particular vahle of I so thallhe system 
is consistent. 

(b) Detennine a particular value of f so thallhe system 
is mconslstenl. 

(c) How many different values of I can be selected in 
pari (b)? 

16. Given the linear system 

3x+4)=s 

6x+8) =I. 

(a) Determine particular values for l' and I so Ihal the 
system is consistent. 

(II) Dtlennine p.uticulal values fOJ 1 and I so thai the 
system is inconsistent. 

(c) What relationship between the values of s and I will 
guarantee Ihat Ihe system is consistent? 

17. Given the linear system 

x+ 2y=10 

3x + (6+1»), = 30. 

(a) Determine a particular value of I so that the system 
has infinitely many solutions. 

(b ) Determine a particular value of I so that the system 
has a unique solution. 

(e) How m:my different values of I can be selected in 
part (b)? 

18. Is every homogeneous linear system always consistent? 
Explain. 

19. Given the linear system 

2.1"+3), - z =O 

x - 4)' +5z =0. 

1 .1 Systems of linear Equations 9 

(a ) Verify that Xl = I. Yl = - 1. Zl = - I is a solution. 

(b) Verify that X2 = - 2.)'2 = 2. Z2 = 2 is a solution. 

(e) Is x = X l + X2 = - I. Y = Yl + Y2 = I. and 
Z = Zl + Z2 = 1 a solution to the linear system? 

(d) Is 3x. 3y. 3z . where x. y. and; are as in part (c). a 
solution to the linear system? 

20. Without using the method of elimination . so lve the linear 
system 

2x + )" - 2z = - S 

3y + z = 7 

4. 

21. Without using the method of el imination. solve the linear 
system 

4x 8 

-2\" + 3)' = - 1 

3x+Sy - 2z = II. 

22. Is there a value ofr so that X = I. Y = 2. Z = r is a 
solution to the followin g linear system? If there is. find 
it. 

2x + 3)' - Z = I I 

x - y+2:=-7 

4x+ y-2z = 12. 

23. Is there a value ofr so that x = r.y = 2. : = lis a 
solution to the follol'.-ing linear system? If there is. find 
it. 

3x - 2z= 4 

x - 4)' + z =-S 

-2x + 3y + 2z = 9. 

24. Show that the linear system obtained by interchanging 
two equations in (2) i, equ ivalent to (2). 

25. Show that the linear system obtained by adding a multi­
ple of an equation in (2) to another equation is equil'alent 
to (2). 

26. Describe the number o f points that simultaneously lie in 
each of the three planes shown in each part of Figure 1.2. 

27. Describe the number of points that simultaneously lie in 
each of the three planes shown in each part of Figure 1.3. 

28. Let C l and C2 be circles in the plane. Describe the num­
ber of possible points of intersection of C 1 and C2• illus­
trate each case with a figure. 

29. Let Sl and 52 be spheres in space. Describe the number 
of possible points of intersection of Sl and S2. Il lu5lrate 
each case with a figure. 
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/ p, / OJ / p, / P, 

1': / p, / 
(,) (b) 

(e) 

FIGURE 1.3 

30. :\n oil refi nery produces low sulfur and high sulfur fueL 
Each IOn of low-sulfur fuel requires 5 minutes in the 
blending plam and 4 minules in the refining plant: each 
ton of high.sulfur fuel require; 4 minutes in the blending 
plam and 2 minutes in the refining planl. If the blend-
109 plant is available for 3 hours and lhe refining plant is 
available for 2 hours. how many tons o f each lype of fuel 
should be manufactured so that the plants are fully used? 

31. A plastics manufacturer m:lkes two types of plastic: reg­
ular and special. Each ton of regular pl3SIic requires 2 
houo: in plam A :md 5 hours in planl B: each ton of ~pe_ 
c;:l1 plastic requires 2 hours In plam A and 3 hours in 
piam B. Jfplant A is avai lable [I hours per day and plant 
B is available 15 hours per day, how many tons of each 
type of plastic can be made daily so thm the plants are 
fully used? 

32. A dietician is preparing a meal consisting of foods A. B. 
and C. Each ounce of food A contains 2 units of pro_ 
lein. 3 units of fal. and 4 units of carbohydrate. Each 
ounce of food B contains 3 units of prote in. 2 units of 
fn1. and 1 unit of carbohydrme. Each ounce of food C 
contains 3 unils of protein. 3 units of fm. and 2 units of 
carbohydrate. If the meal IllUi t provide exactly 25 units 
of protein. 24 units of fat. and 2 I units of carbohydrate. 
how many ounces of each lype of food should be used? 

33. A manufacturer makes 2-minule. 6-minute. and 9·minute 
fi lm developers. E.1Ch ton of 2·minute developer requires 
6 minutes in plant A and 24 minutes in plant B. Each ton 
of 6·minute developer requires 12 minutes in plant A and 
12 minutes in plant B. Each too of9·minute de\'eloper reo 
quires 12 minutes in plant A and 12 minutes in plant B. 
If plant A is available 10 hours per day and plant B is 

avai lable 16 !lours per day, how many tons of each type 
of de\'elopcr can be p-oduced so that the plants are fu lly 
U."ed? 

34, Suppose that the three points ( I . - 5). (- I. I) . and (2. 7) 
lie on the parabola pel) = (I.r 2 + bx + c. 

(a) Determine a linear system of three equations in three 
unknowns that must be solved to find {/. h. and Co 

(b) Solve the linear system obtained in part (a) for (I, b, 
and c. 

35, An inheritance of S24,000 is to be divided among three 
truStS, with the second trust receiving twice as moch as 
the first trust. The three trusts pay interest annually at 
the rales o f 9%, 10%. and 6%, respectively. and return a 
total in interest of 52210 at the end of the first year. How 
much was invested in each trust? 

• 36. For the wftware you are using. determine the command 
that "automatically" wives a linear sy~tem of eqllations. 

• 37, Use the command from Exercise 36 to solve Exercises 3 
and 4. and compare the Output with the resulL~ yoo ob­
tained by the method o f elimination. 

.!. 38. Solve the linear system 

x+h'+ ~z = 

tx + jy+ ;z= N 
f x+ !y+ ~z= ~ 

by using YOllr software. Cornp.tre the computed soilltion 
with the exact solution x = !, y = ~. z = I. 

.!. . 39. If your software includes acce§s to a computer algebra 
sy.~lem (CAS), use it as follows: 

(a) For the linear system in Exercise 38. replace the 
fraction ~ with its decimal equivalent 0.5. Enter this 
system into your software and use the appropriate 
CAS commands to solve the system. Compare the 
solution with that obtained in Exercise 38. 

(b) In some CAS environments you can select the num­
ber of digits to be used in the calculations. Perfonn 
p:1I1 (a) with d i.!!it choices 2, 4. and 6 to see what 
infillence such selections have on the computed so· 
lution. 

.! 40, If )'our software includes acce.~s to a CAS and Y01 can 
. ..elect the number of digits used in calculations. do the 
following: Enter the linear system 

0.7I.1 + 0.21), = 0 .92 

0.23x + 0.58)' = 0 .8 1 

into the program. Have the software solve the system 
with digit choices 2. 5, 7. and 12. Briefly discus. any 
variations in the wlutions generated. 
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m Matrices 

If we examine the method of elimination described in Section 1.1, we can make Ihe 
following observation: Only the numbers in front oftne unknowns XI, X2, . . . , x" 
and the numbers hi. b2 • ...• bm on the right side are being changed as we perform 
the steps in the method of elimination. Thus we might think of looking fo r a way 
of writing a linear system without having to carry along thc unknowns. Matrices 
enable us to do this- that is, to write linear systems in a compact form that makes 
it easier to automate Ihc elimination method by using computer software in order 
to obtain a fast and efficient procedure for finding solutions. The usc o f matrices. 
however, is not merely that of a convenie nt notation. We now develop operations 
on matrices and will work with matrices according to the rules they obey: this will 
e nable us to solve systems of linear equations and to handle other computational 
problems in a fast and effici ent manner. Of course, as any good defini tion should 
do. the notion o f a matrix not only provides a new way of looking at old problems. 
but also gives ri se to a great many new questions. some of which we study in this 
book. 

An 11/ X 11 matrix A is a rectangular array of mil real or complex numbers arranged 
in //I hori zontal rows and II vertical columns: 

a!! al2 

a2! a22 

(I) 
.....- ith row 

• L- jth column 

The ith row of A is 

ai ll ] (I :;: i '=:: /I/ ); 

thejth column of A is 

[
a'i] a, 

,L (l .=::J.=:: n). 

We shall say that A is III by II (written as III x II ). If 11/ = II , we say that A is a 
square matrix of order II , and thai the numbers II!!. a22 . .... all" form the main 
diagonal of A. We rc fer to the number a ij , which is inlhe ith row and Jth column 
of A, as the i, j th element of A, or the (i.j) entry of A. and we often write (I) as 
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EXAMPLE 1 

EXAMPLE 2 

EXAMPLE 3 

EXAMPLE 4 

Lei 

A = [ [ 2 n B = [ I + i 4; 1 C ~ Hl - \ 0 2 - 3i - 3 . 

D ~ [i 0 n E ~ [3]. F ~ [ - \ 0 2] . 
- \ 

Then A is a2 x 3 matriK witha l2 = 2,{/ u = 3,(122 = 0, and un = [; B is a2 x 2 
matrix withb ll = I +i,bl2 = 4i. b2 1 = 2 - 3i.and bn = - 3; e is a3 x I matrix 
with C I I = L C2 1 = - I, and C3 1 = 2: D is a 3 x 3 matrix: E is a I x [ matrix: 
and F is a [ x 3 matrix . I.n D, the elements dll = l. d22 = 0, and d3J = 2 form 
the mai n diagonal. • 

For convenience, we focus much of our attention in the illustrative examples 
and exercises in Chapters [ -6 on matrices and e.\pressions containi ng only real 
numbers. Complex numbers make a brief appearance in Chapter 7. An introduc­
tion to complex numbers, thei r propenies, and examples and exercises showing 
how complex numbers arc used in linear algebra may be found in Appendix B. 

An /I x I matrix is also called an lI·vector and i:; denoted by lowercase boldface 
letters. When II is understood, we refer to II-vectors merely as vectors. Vectors 
arc discussed at length in Section 4.1. 

• 
The II-vector all of whose entries are zero is denoted by O. 

Observe that if A is an II x /I matrix, then the rows of A are I x II matrices and 
the columns of A are II x I matrices. The set of all /I -vectors with real entries is 
denoted by R". Simi larly, the set of all II-vectors with complex entries is denoted 
by en. As we have already pointed out. in the first six chapters of this book we 
work almost entirely with vectors in R" . 

(Tabular Display of Data ) The following matrix gives the airli ne distance;; be­
tween the indicated cities (i n statute miles): 

London Madrid New York Tokyo 

London 

[ 0 

785 3469 5959 ] 
Madrid 785 0 3593 6706 
New York 3469 3593 0 6757 
Tokyo 5959 6706 6757 0 • 

(Production) Suppose that a manufacturer has fou r plants, each of which makes 
three products. If we let aU denote the number of units of product i made by planl 
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EXAMPLE 6 

j in one week. then the 3 x 4 matrix 

Product I 

Product 2 
Product 3 

Plan! I 

[ 

560 
340 
280 

Planl2 

360 
450 
270 

Plar1l 3 

380 
420 
210 

1.2 Matrices 13 

Plant 4 

o ] 80 
380 

gives the manufacturer'; production for the week. For example. plant 2 makes 270 
units o f product 3 in one week. • 

The windchill table that follows is a matrix. 

OF 
15 10 5 0 - 5 - 10 

mph 

5 12 7 0 - 5 - 10 - 15 

10 - 3 - 9 - 15 - 22 - 27 - 34 

15 - II - 18 - 25 - 3 1 - 38 - 45 

20 - 17 - 24 - 31 - 39 - 46 - 53 

A combi nation of air temperature and wi nd speed makes a body feel colder than 
the actual temperature. For example, when the temperature is IOQF and the wind is 
15 miles per hOUT, this causes a body heat loss equal to that when the temperature 
is _ 18°F with no wind. • 

B y a graph we mean a SCI of points called nodes or vertices, some of which are 
connecTed hy li nes calk(] erl ges. The n(){]cs arc IIslI<llly lnhcJed llS PI, P2, . Pk, 
and for now we allow an edge to be traveled in either direction. One mathematical 
representation of a graph is constructed from a table. For example, the followi ng 
table represents the graph shown: 

P, P, P, P, 
P, 0 I 0 0 
P, I 0 I I 
P, 0 I 0 I 
P, 0 I I 0 

The 0. j) entry = I if there is an edge connecting veI1ex Pi to vertex Pj: 
otherwise, the (i. j) e ntry = O. The incidence matrix A is the k x k matrix 
obtained by omitting the row and column labels from the preceding table. The 
incidence matrix for the corresponding graph is 

• 
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DEFINITION 1.2 

EXAMPLE 7 

Internet search engines use matrices to keep track of the locations of informa­
tion, the type of information at a location, keywords that appear in the information, 
and even the way websites link to one another. A large measure of the effective­
ness of the search engine Google© is the manner in which matrices are used to 
determine which sites are referenced by other sites . That is. instead of directly 
keeping track of the information content of an actual web page or of an individual 
search topic, Google's matrix structure focuses on finding web pages that match 
the search topic. and then presents a li st of such pages in the order of their "impor­
tance." 

~uppose that there are /I accessible web pages during a certain month. A 
simple way to view a matrix that is part of Google's scheme is to imagine an n x II 
matrix A, called the "connectivity matrix," that initially contains all zeros. To 
build the conncctions, proceed as follows. When you detect that website j links 
to website i. set entry a i) equal to one. Since II is quite large, in the billions. most 
entries of the connectivity matrix A are zero. (Such a matrix is called sparse.) 
If row i of A contains many ones, then there are many sites linking to site i. 
Sites that are linked to by many other sites are considered more "imponant" (or to 
have a higher rank) by the soft ware drivi ng the Google search engine. Such sites 
wonl(1 appenr nenT lhc lOp of a li sl rChlmer! hy n n oogie search on lopics related 
to the information on site i. Since Google updates its connectivi ty matrix about 
every month, II increases over time and new links and sites are adjoined to the 
connectivity matrix. 

In Chapter 8 we elaborate a bit on the fundamental technique used for ranking 
sites and give several examples related to the matrix concepts involved. Further 
information can be found in the following sources' 

L Berry, Michael W .. and Murray Browne. Understallding Search Ellgines­
Mathematical M odelillg and Text Retrie)'(ll. 2d cd . Philadelphia: Siam. 2005 . 

2. www.google.comltechnology/index .html 
3. Moler, Cleve. "The World's Largest Matrix Computation: Google's PageRank 

Is an Eigenvector ofa Matrix of Order 2.7 Bi ll ion," MATLAB News alld Notes. 
October 2002, pp. 12- [3. 

Whenever a new object is introduced in mathematics. we must determi ne 
when two such objects are equal. For example, in the set of all rational numbers, 
the numbers ~ and ~ are called equal, although they have dilTerent representa­
tions. What we have in mind is the definition that a l b equals cl d when a d = be. 
Accordingly, we now have the following defi nition : 

Two III x /I matrices A = [ai) ] and B = [hi) ] are equ al if they agree entry by 
entry. that is, ifaij = bij fori = 1.2, . .. . 111 and j = 1. 2 . .. . . 11. 

The matrices 

B ~ [~ 
)' 

2 

~] x 
- 4 

are equal ifandonly ifw = - I, x = - 3,y = O, and z = 5. • 
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EXAMPLE 8 

EXAMPLE 9 

1.2 Matrices 15 

• Matrix Operations 

We next define a number of operations that will produce new matrices out of given 
matrices. When we are dealing with linear systems, for example, this will en­
able us to manipulate Ihc matrices that arise and to avoid writing down systems 
over and over again. These operations and manipulations are also useful in other 
applications of matrices. 

Matrix Addition 

If A = [aij ] and B = [bij ] arc both 11/ x /I maITiec;, then thc sum A + B is an m xn 

matrixC = [Ci j ] dcfined by Ci j = aij+ hij .i = L2 .. .. . m;j = 1. 2 .. 11. 

Thus, to obtain Ihc sum of A and B, we merely add corresponding entries. 

Lei 

A = [~ - 2 !] ond B = [~ 2 -~] -I 3 

Then 

[I +0 - 2 + 2 3+ 1 ] [I 0 ~] A+B = 2+ 1 - I + 3 4 + (- 4) = 3 2 • 
(Produclion) A manufacturer of a certain product makes three models, A, B, and 
C. Each model is partially made in factory FI in Taiwan and then finished in factory 
F2 in the United States. The total cost of each product consists of the manufactur­
ing cost and the shipping cost. Then the costs at each L1ctory (in dollars) can be 
dcscribed by the 3 x 2 matrices FI and F2: 

Manufacturing Shipping 
l:USI l:U~1 

[ 32 40 ] Model A 
FI = 50 80 Model B 

70 20 Model C 

Manufacturing Shipping 
00" cost 

[ 40 60 ] Model A 
F2 = 50 50 Model B 

130 20 Modele 

The matrix FI + F2 gives the total manufacturing and shipping costs for each 
product. Thus the total manufacturing and shipping costs of a model C product are 
$200 and $40, rcspectively. • 

If x is an II-vector. then it is easy to show that x + 0 = x, where 0 i, the 
II-vector all of whose entries are zcro. (See Exercise 16.) 

It should be noted that the sum of the matrices A and B is defined only when 
A and B have the same number of rows and the same number of columns, that is, 
only when A and B are of the same size. 
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DEFINITION 1.4 

EXAMPLE 10 

EXAMPLE 11 

EXAMPLE 12 

We now make the convention that when A + B is written, both A and B are of 
the same size. 

The basic properties of matrix addition are considered in the next section and 
are similar to those satisfied by the real numbers. 

Scalar Multiplication 

If A = [a ij ] is an m x /I matrix and r is a real number, then the scalar multi ple of 

A by r, rA. is them x /I matri x C = [cij J. wherecij = rai j , i = 1. 2 . .. .. II! and 
j = 1. 2 . .. .. II ; that is, the matri x C is obtained by multiplying each entry of A 
by r. 

We have 

_, [4 - 2 - 3] ~ [ (-2)(4) (- 2)( - 2) (-2)(- 3)] 
- 7 - 3 2 ( - 2)(7) (- 2)( - 3) (- 2)(2) 

[ - 8 4 -:1 = - [4 6 • 
Thus far, addi ti on of matrices has been dcJined for only two matrices. Our 

work with matrices will call for addi ng more than two matrices. Theorem 1.1 
in Section 1.4 shows that addit ion of matrices satis fies the associative property: 
A + (8 + C) ~ (A + B)+ C. 

If A and B are 11/ x II matrices. we wri te A + (- 1) 8 as A - 8 and call thi s 
the difl'erence between A and B . 

Lei 

Then 

A = [~ 3 
2 

A_ B= [2 - 2 
4 - 3 

Application 

3 + 1 
2 - 5 

and 8 ~ [2 
3 

- I 
5 

4 
- 3 

-8] 3 . • 
Vectors in R" can be used to handle large amoums of data. Indeed. a nu mber of 
computer software products. notably, M ATLAB® , make extensive use of vectors. 
The fo llowing example illustrates these ideas: 

(I nventory Control) Suppose that a store handles 100 different items . The inven­
tory on hand at the beginning o f the weck can be described by the inventory vector 
II in R 1oo. The number o f items sold at the end of the week can be descriocd by 
the I DO-vector v. and the vector 

u- , 
represents the inventory at the end o f the week. If the store receives a new shipment 
o f goods, represented by the I DO-vector w, then its new inventory would be 

u - v + w. • 
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We shall sometimes use the s ummation notation, and we now rcvicv,. this 
useful and compact notation. 

" By La; we mean ([I + ([2 + . .. + (I". The leiter i is called the index or 
i = ] 

s ummation; it is a dummy variable that can be replaced by another leller. Hence 
we can write 

T hus 

" " " L a; = L a) = L a ... 
j ",, ] j = J t ,.,] 

, 
L (Ii = III + {/2 + OJ + (14 _ 

; = ] 

The summation notation satisfies the following properties: 

n "" 
l. L (r; + Si )a; = Lrilli + L .\"illi 

i"" J , = 1 ; .. 1 , 
2. Lc(rilli) = cLr;lI; 

i _ J i .. l 

Property 3 can be interpreted as foll ows: The [eft side is obtained by adding all the 
entries in each column and then adding all the result ing numbers. The right side 
is obtained by adding all the enlries in each row and then adding all the resulting 
numbers. 

If A I. A2 • ...• Al are 11/ x 1/ matrices and Ct . C2 • .. . • Ct arc reat numbers. then 
an expression of the foml 

(2) 

is calted a linear comhinalion of A t. A 2 •.. .• A.., and Cl . C2 • .. . • q are called 
coerticients. 

The linear combination in Equation (2) can also be expressed in summation 
notation as , 

L CiAi = Ct A t + c2 A 2 + .. . + Ct A t · 
i=t 

The following are linear combi nalions of matrices: 

[

0 - 3 
3 2 3 

I - 2 

5] I [ 5 4 - 2 6 
- 3 - I 

2 
2 

- 2 

2[3 - 2] - 3[5 0] + 4[ - 2 5]. 
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EXAMPLE 14 

DEFINITION 1.5 

EXAMPLE 15 

Using scalar multiplication and matrix addition, we can compute each of these 
linear combinations. Verify that the results of such computations are, respectively, 

[ -; -10 ¥] [ -046] 8 " [ -17 16]. ond 0.4 . "2 . 

-5 " 3.08 - "2 • 
Lei 

[ 1895] P = 14.75 
8.60 

be a 3-vector that represents the current prices of three items at a store. Suppose 
that the store announces a sale so that the price of each item is reduced by 2()11t,. 

(a) Determine a 3-vector that gives the price changes for the three items . 

(b) Determine a 3-vector that gives the new prices of the items. 

Solution 
(a) Since each item is reduced by 20%, the 3-vector 

[
(-0.20)18.95] [-379] [3.79] 

- 0.20p = (- 0.20)14.75 = - 2.95 = - 2.95 
(- 0.20)8.60 - 1.72 1.72 

gives the price changes for the three items. 

(b) The new prices of the items arc given by the expression 

[
18.95] [3.79] [1S.16] 

p - 0.20p = 14.75 - 2.95 = 11.80 . 

8.60 1.72 6.88 

Observe that this express ion can also be written as 

p - 0.20p = O.80p. • 
The next operation on matrices is useful in a number of situations. 

If A = [aij ] is an 11/ x II matrix, then the t r anspose of A. AT = [a~ J, is the 

n x 11/ matrix defined by {I~ = {I jl ' Thus the transpose of A is obtained from A by 

interchangi ng the rows and columns of A. 

Lei 

A = [~ - 2 
5 [ -~ ~]. 

2 - 3 



Key Terms 
Matrix 
Rows 
Columns 
Size of a matrix 
Square matrix 
Main diagonal 
Element or entry of a matrix 

NU Exercises 

l. LeI 

A = [~ 
and 

c~ 

(a) Whatisa I2.an.(I2l'! 

(b) Whatishll .b31 '! 

(e) Whatis c 13.C31 .(:31 ? 

Then 

AT = H 
C

T 
= [~ - 3 -n 2 

EqU3J mmrices 
/l-vector (or vector) 
Rn , cn 

0, zero vector 
GoogJe 
Matrix addition 
Scalar multiple 

2. Determine the incidence matrix associated with each of 
the following graphs: 

(hj ~' 
P, 

PI p~ 

P, 

(. j 

3. For each of the following incidence matrices. construct a 
graph. Label the vertices PI. 1'2 . . ... Ps. 

1.2 Matrices 

~l - 2 

DT = 

U 3 n BT = - I 
2 

Hl and £ T = [2 

Difference of matrices 
Summation notation 
Index of summation 
Linear combination 
Coefficients 
Transpose 

A ~ [~ 
0 0 

~] 
0 I I 

(h j 0 0 
0 0 
0 0 

4. I f 

[" +b c - d 
<+d] [4 
(/ - b = [0 

find a, b, (". and d. 

5. I f 

[a + 2b 
2c + d 

2a - bH4 
c - 2d 4 

find a, b, c . and d. 

III £xercise~' 6 rhrvugh 9, lei 

A = [~ 2 :1 B~ [i 
c ~ [~ 

- I 

lJ D = [~ 

E ~ [~ 
- 4 J F ~ [-4 I 

2 
2 

- I 3]' 

n 
-2] 
- 3 . 

n 
-2] 4 . 

:] 

19 

• 
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",ul 0 ~ [~ ~ ~] 
6. If possible. compute the indicated linear combination: 

(a) C + £and£+C (b) A+B 

(e) D - F (d ) -3C - 50 

(e) 2C - 3£ (I) 2B + F 

7. If possible. compute the indicated linear combination: 

(a) 3D+2F (b ) 312A) and 6A 

(e) 3A + 2A and 5A 

(d) 2(D + F) and 2D + 2F 

(e) (2 +3)Dand2D+3D 

(I) 3( B + D) 

8. Ifpossible. compute the following: 

(a) A T and (AT)T 

(b) (C + £)T and CT + £T 

(e) (2D + 3fY (d ) D _ DT 

(e) 2AT + B (I) (3 D - 2F)T 

9. If possible. compute the following: 

10. 

II. 

(a) (2A) T (b) (A _ B )T 

(e) (3 BT _ 2A)T (d) (3 A T _ 5B T ,r 
(I) (C + E + F T)T (e) (_ A )T and _ (A T) 

. [' 0]. .. . Is the matnx 0 2 a lmear combmatlOn of the matn -

OJ [' OJ . 1 and 0 0 ? Ju, tl fy your answer. 

. [' ']. .. Is the matnx 0 - 3 a hnear comblllatlOn of the ma-

. [ , 
Inces 0 O] [' 0] . 1 and 0 0 ? Justify your answer. 

12. Let 

2 
2 

2 

If). is a real number. compute AlJ - A. 

o , 
° 

13. If A is an /I x /I matrix. what are the entries on the main 
diagonal of A - AT? Justify )·our answer. 

14. Explain why every incidence matrix A associated with a 
graph is the same as A T. 

15. Let the /I x /I matrix A be equal to A T. Briefly describe 
lhe pallern of the entries in A. 

16. If x is an /I -vector. show that x + 0 = x. 

17. Show lhat the summation notation satisfies the following 
properties: 

" "" 
(a) L (r, + .~; )(/; = L r;(/ , + L Si(/i 

;=1 ;=1 ;=1 

(bl te""")~c (t,,,,, ) 

18. ShOWlh"t(~U'I)~~(tu'i ) 
19. Identify the following expressions as true or false. If true. 

prove the result: if faIse. give a counterexample. 

(u) t('H' I ~(tu.) +u 

(b) t (~ ,) ~ '''' 
(e) ~ (t ",b} [t u'][~bi l 

20. A large steel manufacturer. who has 2000 employees. 
lists each employee·s salary as a component of a \·ector 
u in R2000. If an 8% across-the-board salary increase has 
been approved. find an expression involving u that gives 
all the new salaries. 

21. A brokerage finn records the high and low values of the 
price of IBM slock each day. The infonnation for a given 
week is presented in two vectors. I and b. in RS. showing 
the high and low values. respectively. What expression 
gives the avemge dai ly values of the price of IBM stock 
for the entire 5-day week? 

.I. 22. For the software you are using. determine the commands 
to enter a matrix. add matrices. multiply a scalar times a 
matrix. and obtain the transpose of a matrix for matrices 
with numerical entries. Praclice the commands. using the 
linear combinations in Example 13 . 

.1. . 23. Determine whether the software you are llsing includes 
a computer algebm system (CAS). and if it does. do the 
following: 

(a ) Find the command for entering a symbolic matrix. 
Ollis command may be different than thaI for enter­
ing a numeric matrix.) 

(b) Enter seveml symbolic matrices like 

A ~ [, 
u ~] [

u 
B~ 

d 
b ;1 and 

Compute expressions like A + B. 2A. 3A + B. 
A - 2B. AT + BT. etc. (In some systems you must 
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explicitly indicate scalar multiplication with an as­
terisk.) 

matrix. If there is. display the graphs for the incidence 
matrices in Exercise 3 and compare them with those that 
you drew by hand. Explain why the computer-generated 
graphs need not be identical to those you drew by hand. 

.!.. 24. For the software you are using, detennine whether there 
IS a command that will display a graph for an incidence 

DEFINITION 1.6 

EXAMPLE 1 

EXAMPLE 2 

m Matrix Multiplication 

In thi s section we introduce the operation of matri x multiplication. Unli ke ma­
trix addi tion, matrix multipli cation has some properties that di stinguish it from 
mult iplication of real numbers. 

The dot produCI, or inner product, of the II-vectors in R" 

[
at] ll2 

a = . 

a" 
[ ~;] and b = 

b" 

is defined as 
" 

a· b = lllb t +a2b2 + . .. +all b., = L a,b, .· 
,=1 

The dot product is an important operation that will be used here and in later 
sections. 

The dot product of 

is 

u·, ~ (1)(2) + (-2)(3) + (3)(-2) + (4)(1) ~ - 6. 

Let a ~ m and b ~ m Ila b ~ - U nd x 

Solution 
We have 

a - b = 4x +2+6 =-4 

4x+8 =-4 

x = - 3. 

' The dot product of I·ector! in C' is defined in Appendix B.2. 

• 

• 
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FIGURE 1.5 

EXAMPLE S 

EXAMPLE 6 
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A B AB 

III Xp p X n m X" 

ltd 
sizeofAB 

Then 

AB = [ (1)(-2) + (2)(4) + (-1 )(2) (1 )(5) + (2)( -3) + (- 1)( 1) ] 
(3)( - 2) + (1 )(4) + (4)(2) (3)(5) + (1)(- 3) + (4)( 1) 

= [: ~~ J 
LeI 

h [~ -~ -n 
Compute the (3 . 2) entry of A B. 

Solution 

ond B ~ [; -~] . 
- 2 2 

• 

If A B = C, then the (3. 2) entry of A B is C32, which is (row3(A» T , co12(B ). We 
now have 

Let 

. [ 12 ] ItAB = 6, findxand y . 

Solution 
We have 

AB = [~ _~. 

Then 

so x = - 2 and y = 6. 

3

1

] ond 

[-n ~-5 

B ~ m 

3] [!] ~ [2 + 4X + 3Y ] ~ [ I2 ] . 
[ 4 - 4 + y 6 

y 

2 + 4x +3y = 12 

y = 6 . 

• 

• 
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EXAMPLE 7 

EXAMPLE 8 

EXAMPLE 9 

EXAMPLE 10 

The basic properties of matrix multiplication will be considered in the next 
section. Howevcr, multiplication of matrices requires much more care than their 
addition, si nce the algebraic properties of matrix multiplication differ from those 
sat isfied by the real numbers. Part of the problem is due to the fact that A B is 
defined only when the number of columns of A is the same as the number of rows 
of B. Thus, if A is anm x p matrix and B is a p x II matrix, then AB is anm x II 

matrix. What about BA? Four different situations may occur: 

I . BA may not be de fin ed; this will take place if /I t- III. 

2. If BA is defined, which means that 11/ = fI, then BA is p x P while AB is 
III x 11/; thus. if 11/ F p. AB and B A are of different sizes. 

3. If A Band B A are both of the same size, they may be equal. 

4. If AB and B A are both of the same size, they may be unequal. 

If A is a2 x 3 matrix and B isa3 x 4 matrix.thenAB is a2 x 4 matrix while BA 
is undefined. • 

Let A be 2 x 3 and let B be 3 x 2. Then AB is 2 x 2 while BA is 3 x 3. • 

Lei 

A ~ [ 1 
- I ~] on" B = [~ :1 

Then 

AB = [ 2 
- 2 ~] while BA = [ I 

- I 
7] 3 . 

Thus AB =1= BA . • 
One might ask why matrix equality and matrix addition are defined in such 

a natural way. while matrix multiplication appears to be much more complicated. 
Only a thorough understanding o f the composition of functions and the relation­
ship that exists between matrices and what are cal kd linear transformations would 
show that the definition of multiplication given previously is the natural one. These 
topics are covered later in the book. For now, Example 10 provides a motivation 
for the definition of matrix multiplication. 

(Ecology) Pesticides are sprayed on plants to eliminate harmful insects. However, 
some of the pesticide is absorbed by the plant. The pesticides are absorbed by her­
bivores when they eat the plants that have been sprayed. To determine the amount 
of pesticide absorbed by a herbivore, we proceed a5 follows. Suppose that we have 
three pesticides and four plants. Let (llj denote the amount of pesticide i (in mil­
ligrams) that has been absorbed by plant j. This information can be represented 
by the matrix 

Plant I 

2 
3 
4 

Plant 2 

3 
2 
1 

Plant 3 Pll nt 4 

4 3 ] Pesticide I 
2 5 Pesticide 2 
6 4 Pesticide 3 
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Now suppose that we have three herbivores, and let bij denote the number of plants 
of type i that a herbivore of type j cats per month. This infonnation can be repre­
sented by the matrix 

Herbivore I Herbivore 2 Herbivore 3 

[ 
20 12 8 

] 
Plant I 

B ~ 
28 15 15 Plant 2 

30 12 10 Plant 3 
40 16 20 Plant 4 

T he (i. j) entry in AB gives the amount o f pesticide o f type i that animal j has 
absorbed. Thus, if i = 2 and j = 3, the (2. 3) enlry in A B is 

(row2(A»T .cab(R) = 3(8) + 2(15) + 2(10) + 5(20) 

= 174 mg of pesticide 2 absorbed by herbivore 3. 

If we now have p carnivores (such as a human) who eat the herbivores, we can 
repeat the analysis to find out how much of each pesticide has been absorbed by 
each carnivore. • 

It is sometimes useful to be able to fi nd a column in the matrix product A B 
without having to multiply the two matrices. It is not difficult to show (Exercise 
46) that the jth column of the matrix product A B is equal to the matrix product 
Acol j (B). 

LeI 

A ~ 
[ 

I '] 
-~ : and 

T hen the second column of A B is 

B ~ [
- 2 

3 

3 

2 
4] I . 

• 
Remark If u and v are II-vectors (II x matrices), then it is easy to show by 
matrix multiplication (Exercise 4 I) that 

u. v = uTv. 

T his observation is applied in Chapter 5 . 

• The Matrix- Vector Product Written in Terms of Coiunms 

LeI 

[ a" 
(112 

a,,, ] 
(l2J (1n (12" 

A ~ 

(l1~1 (1",2 {/~II' 
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EXAMPLE 12 

be an III x /I matrix and let 

be an /I-vector, that is, an /I x I matrix. Since A is III X /I and c is /I X 1, the matrix 
product Ac is the III x I matrix 

["" 
(112 

{/21 a" 
Ac = 

{/~iI {/m2 

a,,,] ["] [(WW'(A»" ' ] (/ 2n C2 (row2(A»T ,c 

(11~" ;" = (row",(~»T . c 
(2) 

[ 

a"e, +a"" + ... + a,,,,,, ] 
{/21CI + (122C2 + . .. + {/ln C" 

{/"IICI + (1",2C2 + .. + {/",,,C,, 

This last expression can be written as 

[::::] [:::] [::::] CI +C1 + " ' +C 

a~'1 - {/1~ 2 " {/I~" (3) 

Thus the product Ac o f an III x 11 matrix A and an 'I x 1 matrix c can be written as 
a linear combination of the columns of A, where the coetlicients are the entries in 
the matrix c. 

In our study of linear systems of eq uati ons we shall see that these system:; can 
be expressed in terms of a matrix- vector product. Thi s point of view provides us 
with an imponant way to think about solutions of linear systems. 

Let 

A = [! - I 

2 
-3] 
- 2 

and 

Then the product Ac, written as a linear combination of the columns of A, is 

Ac = [~ - I 
2 

• 
If A is an III x p matrix and B is a p x n matrix, we can then conclude that 

the Jth column of the product A B can be written as a linear combi nation of the 
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columns of matrix A, where the coefficients arc the entries in the jlh column of 
matrix B: 

If A and B are the matrices defined in Example [ L then 

AB ~ [; !] [ -~ 
- I 5 

3 
2 

4] - [: l~ 
I - 17 7 

6] l ~ . 

The columns of AB as linear combinations of the columns of A are given by 

• Linear Systems 

Consider the linear system of III equations in n unknowns, 

aJlXj + {l12X! + .. . + {/lr,Xn = hi 

{/21Xj + {/nX2 + .. . + {/ 2" X n = b2 

Now de fine the following matrices: 

[ U" 
(II ! 

U,,, ] 

U [b' ] {/2J (121 {/2" h2 
A ~ x ~ b = . . 

ami a,.," a,~", bm 

• 

(4) 
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EXAMPLE 14 

Then 

Ax = [ ::;: (I,~, I 
a,"] [X'] a," x, 

(lmn J." 

[

all \"1 + (l12X2 + 
all \"1 + (lnX2 + 

a",lxI + (1",2 tl + 

. + (l1"J." ] . + (l2"J." 

+ (I"",J." 

(5) 

The entries in the product Ax at the end of (5) are merely the left sides of the 
equations in (4). Hence the linear system (4) can be wrillen in matrix form as 

A x = b. 

The matrix A is called the coefticient matrix o f the linear system (4), and the 
matrix 

[ a" 
(Ill al" 

h, ] (121 (122 ail, : h2 

(I,:, ! (1m2 (I"", i h", 

obtained by adjoining colu mn b to A, is called the augmented matrix of the linear 
system (4). The augmented matrix o f (4) is written as [A : b ]' Conversely, any 
matrix with more than one column can be thought of as the augmented matrix 
of a linear system. The coefficient and augmented matrices play key roles in our 
method for solvi ng linear systems. 

Recall from Section 1.1 that if 

b l = b2 = ... = bIll = 0 

in (4), the linear system is called a homogeneous system . A homogeneous system 
can be written as 

A x = O. 

where A is the coefficient matrix. 

Consider Ihe linear sys lem 

Letting 

-2x + z = 5 

2x + 3)' - 4z = 7 

3x + 2)' + 2;:: = 3. 
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EXAMPLE 16 
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we can write the given linear system in matrix form as 

Ax = b. 

The coefficient matrix is A, and the augmented matrix is 

[ -~ 
0 

n 3 - 4 
2 2 • 

The maTrix 

[~ - I 3 

~l 0 2 , 

is the augmented matrix of the linear system 

2x -y+ 3z= 4 

3x + 2;: = 5. • 
We can express (5) in another form, as follows, llsing (2) and (3): 

Ax = 

[ 

a"x, + a" X.d .. . + a,. x. ] 
{/21J.1 + an '\ 2 + .. + a2n \n 

{/"dXj + a,., 2_\2 + . + (I" " );. ,, 

[ 
::::;: ] + [~;:;: ] + ... + [::~:;: ] 
{/", I Xj {/",2X2 am,:,x" 

[::::] [~;: ] [:::::] = \1 + \~ + . +.x" 

amJ {1m 2 (lmlt 

= Xl col l(A) +x2 coh (A) + ... +X" coll/(A). 

Thus Ax is a linear combination of the columns of A with coefficients that are the 
entries of x. It [ollows that the matrix form of a linear system, Ax = b, can be 
expressed as 

XI COI l (A) + X2 COI2(A) + ... + XI! col,,(A) = b . (6) 

Conversely, an equation of the form in (6) always describes a linear system of the 
fonn in (4). 

Consider the linear system Ax = b, where the coefficient matrix 
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Key Terms 
Dot product (inner product) 
Matrix~vector product 

.i' Exercises 

III £Hm:isel' I alld 2, (;Ompllle a· b. 

I. (a) , ~[a b ~[ _~] 

(b) ,~ [ =;J b ~ [_;] 
(cJ ,~ ul b ~m 

Idl , ~m b~m 

2. (a) ,~ [ ;J b ~m 

(b) '~ [ _ :l b ~[:] 

(c) , ~m b~n] 

(d ) ,~ [H b~m 

Writing Ax = b as a linear combination of the columns of A as in (6), we have 

• 
The expression for the linear system Ax = b as shown in (6), provides an 

important way to think about solutions of linear systems. 

Ax = b is consistent if and only if b can be expressed as a linear combination 
of the columns of the matrix A. 

We encounter this approach in Chapter 2. 

Coefficient matrix 
Augmented matrix 

3. L" '~ b ~[ -;llr '. b ~17.fiOd'. 
4. Determine the value of x so that v· w = O. where 

5. Detennine values of x and y so that v • w = 0 and v· u = 

Owb<re ' ~ [;] " ~Hl,"d U ~ m 
6. Determine values of.{ and y so that v • w = 0 and v · u = 

O.wb,re,~ [;] w ~ [ -n,"d U~ [-H 
7. Let w= [;~:: lcomputew. w. 

8. F;od ,II ,,'," of, '" '''0< U· U ~ 50. wh,,, U ~ [! 1 
9. F;od,1I "',,,of, ,",b" ,., ~ ,. wh", , ~ [-1 ]. 



10, lelA = [~ 2 
-I 

IfA8 = [~]'findXand Y , 
CO/u;der t"e/ollowing matrices/or £\'l' l t';se,Y II t"mugh 15: 

A ~ [; 2 3] 
I 4 . 

c ~ [; 
-I n D- [3 -2] - 2 5 . 

-4 

E ~ [~ n [-I 2] I (11111 ,,-= ~ ~ . 2 
11. If possible, compute the following: 

(a) A B (b) BA (e) F T[ 

(d) C 8 + 0 (e) A8 + D1. whcre 0 1 = OO 

12. If possible, compUle the following: 

(a) OA + 8 (b) £C (e) CE 

Cd) £8 + F (e) FC + f) 
13, If possible, compute the following: 

(a) FD - 3B (b) AB - 2D 

[e) FT 8 + 0 

(e) 80 + A£ 

(d) 2F - 3(A£) 

14. If po~ib l e. compute the following: 

(a) A(BD) (b ) ( AB) I> 

(e) A(C+ E) (d ) AC + A£ 

(e) (2A8 )T and 2( A8)T (0 A(C - 3£ ) 

IS. If possible, compute the followin g: 

(a) AT (b l (AT)T 

(e) (A8)T (d) B1' AT 

[e) (C + £)1' 8 and CT B + £ T B 

(I) A(28) and 2(A8) 

16. LeI A = [1 2 -3 ],8 = [ - 1 4 2].and 

C = [ -3 0 I]. If possible. compute the following : 

(a) ABT (b) CA T (e) (HA T)C 

Cd) AT8 (e) CC T (0 CTC 

(g) 8 /' CAAT 
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17. "'A ~ H n,"dB ~ [: -; :j 
Compute the following entries of A8: 

(a) Ihe (1. 2) entry (b) the (2. 3) entry 

C<) Ihe (3, I ) entry Cd) the (3. 3) c ntry 

18. [I' f , = [I - 0 ~]andD= [ -; -~l compute OIl 

and ' l l> . 

19. u, 

A = [~ -I] 4 . 

Show Ihat A8/= BA. 

20. If A is Ihe matrix in Example 4 :md 0 is Ihe 3 x 2 matrix 
e"cry onc of whose entries is zero, compute AD. 

111 £urc:i,\'e,\' 2J (/1Il122 , 11'1 

all(/ 

- I 
2 

-2 

o - I 
3 -3 
2 5 

~ ] 

21. Using the methexl in Example 11. compute the following 
columns of A8: 

(a) thc first column (b) the third column 

22. Using the methexl in Example II . compute the following 
column.~of AB: 

(a) the second column (b) the fourth column 

23, Let 

24. 

Express Ac as a linear combination of the columns of A. 

Lot 

-;] 
o - 2 [I -I] 8 = ~ ~ . 

- 2 
4 

Express the columns of A 8 as linear combinations of the 
columns of A. 
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25. LetA=[~ - 3 :l,"dB~ m 2 

(, ) Verify lhal A B = 331 + 5a 2 + 2 3 ) , where 3 j is the 
jlh column of A for j = 1.2.3. 

(b) . [(roW1(A))B] Venfyth:llA B = ( () . 
row: A) B 

26. (, ) Find a value of r so that A 8 T = 0, where 
A = [r 1 - 2] and B = [I 3 - IJ. 

(b) Gille an alternative way to write this product. 

27. Find a value of r and a \lalue of ~' so that A ST = D. where 

A=[l r l]andB=[ -2 2 .r]' 

28. (a ) LeI A be an III x II matrix with a row consisting en­
tirely of zeros. Show Ihal if B is an II x p matrix. 
(hen A B has a row of zeros. 

(b ) LeI A be an II! x f! m:Jlrix with a column consisting 
entirely of zeros and let B be p x m. Show Ihat BA 
has a column of zeros. 

29. LeIA=[ - ! ~ ~]With aj =lhejthcolumnOfA. 
j = L 2, 3. Verify IlwI 

[
,r" 

A TA= a~a l 

3 3 3 1 

af 3 2 

ai 3 2 

aj 3 2 

30. Consider the followinJ.! linear system: 

211 + 3X2 - 3X1 + X~ + X5 = 7 
3_l1 + 2X1 + 3xs = - 2 

211+3x2 - 4X4 3 

l ) + X4 + _IS = 5. 

(a) Find the coefficient matrix. 

(b) Write the linear system in matrix form. 

(c) Find the augmented matrix. 

31. Write the linear system whose augmented matrix is 

[

- 2 
- 3 

1 

3 

- I 
2 

o 
o 

o 
7 

o 

4 
8 
2 

3 

:] , . 

6 

32. Write the following linear system in matrix fonn: 

- 2xl + 3X2 = 5 

XI - 5X2 = 4 

33. Write the following linear system in matrix fonn: 

hi + 112 = 0 

3x2 + x] =O 
hi - X2 = 0 

34. Write the linear system whose augmented matrix is 

(, ) U 1 , n - I 0 -, 3 

[ -~ 
, 

n - I 0 
1 -, 3 

0 0 0 

(b) 

35. How are the linear systems obtained in Exercise 34 re­
lated? 

36. Write each of the following linear systems as a linear 
combination of the columns of the coefficient matrix: 

(a) 3xI + 21"1 + Xl - 4 
XI - _11+4x; = -2 

(b) - XI + Xz = 3 
2xI - _I! = - 2 
3xI + _I! = I 

37. Write each of the following linear combinations of 
columns as a linear system of the form in (4): 

38. Write each of the fo llowing as a linear system in matrix 
fonn: 

39. Determine a solution to each of the following linear sys­
tems. using the fact that Ax = h is consistent if and only 
if h is a linear combination of the columns of A: 

(, ) 

(b) 



40. Co",,,,,,,, e~ffi,;,"' m"ri, A '0 'h" , ~ [~] ;, , 

;olm;oo <0 'he ,y"em A, ~ b. wh,,, b ~ U 1 C," 

there be more than one such coefficient matrix? Explain. 

41. Show Ihal ifu and ... are /I-vectors. then u .... = u T ... . 

42. LeI A be an 1/1 x I! matrix and 8 an II x p matrix. Whm. if 
anything. can YOll say about the matrix product AB when 

(a ) A has a column consisting enlirely of zeros? 

(b) B has a row consisting entirely of zeros? 

43. j f A = [aii ] is an II x II matrix, then the Irace of A. 
Tr(A). is defined as the sum of all elements on the main . 
diagolwl of A. Tr(A) = LUil Show each of the follow-

;=1 

mg: 

(a) Tr(cA) = c Tr(A). where c is a real number 

(b) Tr(A + B ) = Tr(A) + Tr ( B ) 

(e) Tr(AB) = Tr(BA) 

(d) Tr(AT) = Tr(A) 

(e) Tr(A T A) 2: 0 

44. Compute the trace (see Exercise 43) of each of the fol­
lowing matrices: 

45. 

46. 

(a) [~ ~J 

Ie) [~ ! ~] 
Show Ihal there :Ire no 2 x 2 matrices A and B such that 

AB - BA=[~ ~l 
(a) Show that the jth column of the matrix product AB 

is equal to the matrix product A b j • where hi is the 
jth column of B. It follows that the product A B can 
bc written in tcrms of columns as 

Ih) 

Ab. ]. 

Show that the ith row of the matrix product A B is 
equal to the matrix product ai B. where ai is the ith 
row of A. It follows that the product A B can be 
wrillen in terms of rows as 
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47. Show that the jth column of the matrix product AS is a 
linear combination of the columns of A with coefficients 
the entries in b j . the jth column of B . 

48. The vec tor 

gives the number of receivers. CD players. speakers, and 
JJVD recorders that are on hand in an audio shop. The 
vec tor 

gives the price (in dollars) of each receiver, CD player, 
speaker. and DVD recorder, respectively. What does the 
dot product u • \I tell the shop owner'! 

49. (MUIII!fuctlln'''1: Costs) A furniture manufacturer 
makes chairs and tables. each of which must go through 
an assembly process and a finishing process. lbe times 
required for these processes are given (in hours) by the 
matrix 

50. 

AS>I'mbly Finishing 
process process 

[ 2 2 

1 
Chair 

A~ 
3 4 Table 

The manufacturer has a plant in Salt Lake City am an­
other in Chicago. The hourly rates for each of the pro­
cesses are given (in dollars) by the matrix 

Salt LIk.e 
City 

9 
10 

Chicago 

10 
12 1 

Assembly process 
Finishing process 

What do the entries in the matrix product AB tell the 
manufacturer? 

(Medicille) A diet research project includes adults and 
children of both sexes. The composition of the partici­
pants in the project is given by the matrix 

Adults Children 

[ 
80 
100 

120 1 
200 

Male 
Female 

The number of daily grams of protein. fat. and carbohy­
drate consumed by each child and adult is given by the 
matrix 

Protein 

[ 
20 
<0 

'0< 
20 
20 

Carbo­
hydrate 

20 1 
30 

Adult 
Child 
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(a) How many grams of protein are consumed daily by 
the males in the project? 

(c) Show that (k a) 0 b = a 0 (k b) = k (a. b). 

53. Let A be an III x II matrix whose entries are real numbers. 

(b ) How many grams of fat are consumed daily by the 
females in the project? 

Show that if AA f = 0 (the III x //I matrix all of whose 
entries are zero). then A = O. 

!. 54. Use the matrices A and C in Exercise II and the ma­
trix multiplication command in your software to compute 
AC and CA. Di scuss the results. 

51. Let x be an fl -VectOr. 

(a ) Is it possible for x 0 x to be negative? Explain. 

(b) Ifx·x=O.whatis x? .!. 55. Using your software. compute S f Sand S S f for 
52. Let a . b . and c be fl -vectors and let k be a real number. 

(a) Show that a·b = b·a. 

(b) Showthat (a+b) oc =aoc + b. c. 

B = [I , , , 
; 

Discuss the nature of the results. 

, , ;] . 

Algebraic Properties of Matrix Operations 

In this section we consider the algebraic properties of the matrix operations just 
defined. Many of these properties are simi lar to the familiar properties that hold 
for real numbers. However, there wilt be striking differences between thf! set 
of renl nlHnhcr.~ ami the set of matrices in their algehraic hchn vior limier certa in 
operations- for example. under multiplication (as seen in Section 1.3). The proofs 
of most of the properties will be left as exercises. 

Theorem 1. 1 Properties of Matrix Addition 

Lei A, B, and C be lit x /I matrices. 

(a) A + B = B + A . 

(b) A + (B + C ) ~ (A + B)+ c. 
(c) There is a unique lit x /I malri x 0 such Ihat 

for any lit x /I matri x A. The matrix 0 is called the lit x /I zero matrix . 

(d) For each lit x /I matrix A, there is a unique lit x n matrix D such that 

A + D = O. 

We shall write D as - A, so (2) can be wri llen as 

A + (- A) ~ o. 

( I ) 

(2) 

The matrix - A is called the negative of A. We also note that - A is (- I)A. 

Proof 

(a) Lei 
A ~ ["'l] . 

A + B ~ C ~ [ c;i ]· 

B ~ [boi l. 
and B + A = D = [dij ]. 

We must show that cij = d ij for all i, j. Now Clj = ai) + bi) and d l} = hi} + a ij 

for all i, j. Since a li and b li arc real numbers. we have a li +bli = hl i + al i , which 
implies that cII = d ij for all i, j . 
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EXAMPLE 2 

1.4 Algebraic Properties of Matrix Operations 35 

(c) Let U = [Il ij ]. Then A + U = A if and only if't a i) + II i) = a ij . which bolds 
if and onl y if II i) = O. Thus U is the 11/ x /I matrix all of whose entries arc zero: U 
is denoted by O. • 

The 2 x 2 zero matrix is 

' f 

then 

[4 -'] [0 
2 3 + 0 

The 2 x 3 zero matrix is 

o = [~ ~l 

[ 4 - '] A = 2 3' 

0] ~ [4+0 
o 2+0 

- ' + 0] ~ [4 
3 + 0 2 

o = [ ~ ° o 

-'] 3 . • 

• 
Theorem 1.2 Properties of Matrix Multiplication 

(a) If A, B. and C are matrices of the appropriate sizes. then 

A( Be) ~ (AB)e. 

(b) Ir A, B. and C arc matrh.:cs uf tht: appropriate sizes. then 

(A + 8 )C = AC + Be. 

(c) Lf A, B , and C arc matrices of the appropriate sizes. then 

C(A + B) = CA + C R. (3) 

Proof 

(a) Suppose that A is III X II. B is /I X p , and C is p x q. We shall prove the 
result for the special ca~ 11/ = 2, /I = 3, P = 4, and q = 3. The general proof is 
completelyanalogolls. 

LelA ~ [a;j ] , B ~ [b;j ],e ~ [ c;j ] , AB ~ D ~ [d;j ].Be ~ E ~ [c; j ]' 

(AB )e = F = [.Ii ) ], and A ( B C) = G = [gij ]. We must show that fij = glj for 
all i, j. Now 

fThc connector "i f and only if' means that both S(a!crncnt~ arc true or both statements arc false. 
Thus (il if A + U = A. then a;j + "'j = a.j : and ( ii) if ll'j + " Ij = a", locn A + U = A. Sec Awndix 
C, "Introduction to Proofs:' 
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EXAMPLE 3 

EXAMPLE 4 

ond 

Then, by the properties satisfied by the summation notation, 

, 
Jij = L )ail b lk + a d J2J:. + an b 31)clj ,=, , , , 

= a il L b 1kqj + a i2 L h 2J:.q; + (li3 L h31qj 
1= 1 k= J kz J 

= t a ir (t hr1qj) = gij · 
r od 1=1 

The proofs of (b) and (c) are left as Exercise 4. 

Lc< 

A = [~ !l [~ 
- I 

n 2 
B ~ 2 2 

- 3 
0 - I 

ond 

e ~ [~ 
0 

~] - 3 
0 

Then 

A(Be) ~ [ ~ 2 !l[~ 
3 ~] ~ [43 16 -4 -3 3 3 12 30 

and 

I~* 
0 

~] ~ [43 ['9 -I 6 -3 16 
(AB )e ~ 16 - 8 - 8 0 3 12 30 0 

LeI 

A = [~ 2 n B = [ ~ 0 -:1 ond e ~ U -I 3 
Then 

(A + BK = [~ 2 4l[~ ~] ~ [18 0] 
2 I 3 - I 12 3 

• 

5~ ] 

56] 
8 . • 

~l -I 
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and (veri fy) 

-I] ~ [18 0]-
7 12 3 

Recall Example 9 in Section 1.3, which shows that A B need not always 
equal BA . This is the first significant difference between mu ltiptication of 
matrices and muttiplicat io n of real numbers. 

• 

Theorem 1.3 Properties of Scalar Multiplication 

EXAMPLE S 

EXAMPLE 6 

If rand s are real num~rs and A and B arc matrices of the appropriate sizes, then 

(a) r(sA) = (r.I")A 

(b) (r+s)A = rA+.IA 

(c) rCA + B) = rA + r B 

(d) A(rB) = r(AB) = (rA)B 

Proof 

Exercises 13, 14 . 16, and 18. 

Let 

Then 

A = [~ 2 

- 3 

2(3A) = 2 [ I ~ 

We also have 

A(2B) = [~ 2 

- 3 

!] 
6 

- 9 

ond 

9] [24 
12 = 12 

12 

- 18 
18] = 6A . 24 

- 10 
o 

16] ~ 2(A B' . 26 ,I 

• 

• 
Scalar mult iplication can be used to change the size of entries in a matrix to meet 
prescribed properties. Let 

Then for k = ~ ,the largest entry o f kA is I . Also if the entries of A represent the 
volume of products in gallons, for k = 4, kA gives the volume in quarts. • 

So far we have seen that multiplication and addit ion of matrices have mLL~h in 
common with multiplication and addit io n o f real numbers. We now look at some 
properties of the transpose. 
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Theorem 1.4 Properties of Transpose 

EXAMPLE 7 

EXAMPLE 8 

If r is a scalar and A and B are matrices of the appropriate sizes, then 

(3) (AT)T = A 

(b) (A+ B )T=A T +BT 

(c) (AB)T=BTAT 

(d) (rA)T = rAT 

Proof 

We leave the proofs of (a), (b), and (d) as Exercises 26 and 27 . 

(c) Let A = [ai) ] and B = [hi} ]; let AB = C = [cij l We must prove that c0 
is the (i, j) entry in B T AT. Now 

LeI 

Then 

Also, 

Now 

LeI 

Then 

" " 
c~ =Cji = L ajl hki = Lahh~ 

h =1 to" t 

" 
= L b!t.a0 = the (i. j) entry in BT AT. • 

A _ [ 1 23
1

] 
- - 2 0 

A B =[ 12 5] , -3 

h . 1 

and B ~[3 - I ']_ 
3 2-[ 

""d B' ~ [ -~ ~]_ 
2 - I 

• 

~] " d B ~ [~ ~] _ 
3 - I 

, [12 '] and (A B ) = 5 - 3 . 
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EXAMPLE 10 

1.4 Algebraic Properties of Matrix Operations 39 

On the other hand, 

AT ~ U -l] 
Then 

and 
2 

2 

We also note two other peculiarities of matrix multiplication. If {/ and IJ are 
real numbers, then ab = 0 can hold only if a or b is zero. However, this is 
not true for matrices. 

If 

[ I '] A = 2 4 ond [ 4 -6] 
B = - 2 3 ' 

then nei ther A nor I:J is the zero matri x. but A I:J = [~ ~ J. 

If a , b, and c are real numbers for which ab = lie and (J ",. 0, it follows 
that b = c. That is. we can cancel out the nonzero factor lI. However, the 
cancellation law does not hold for matrices, as thc following example shows. 

If 

ond [-' 7] c = 5 - I . 

then 

AB=AC =[,! l~l 

• 

• 

but B i= c. • 

We summarize some of the differences between matrix multiplication and 
the multiplication of real numbers as follows: For matrices A, B. and C of 
the appropriate sizes, 

I. AB need not equal BA. 

2. A B may be the zero matrix with A t- 0 and B t- O. 

3. AB may equal AC with B t- c. 

In this section wc have developed a number of propert ies about matrices and 
their transposes. If a future problem involves these concepts, refer to these prop­
erties to help solve the problem. These resul ts can be used to develop many more 
results . 
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Key Terms 
Properties of matrix :lddition 
Zero matrix 

Properties of scalar multiplication 
Properties of transpose 

Properties of matrix multiplication -e- Exercises 

I. Prove Theorem 1.I(b). 

2. Prove Theorem 1.I (d). 

3. Verify Theorem 1.2(a) for the following matrices: 

A = [~ B~ 

and 

4. Prove Theorem 1.2(b) and (c) 

[
-I 

1 
3 

- 3 

5. Verify Theorem I.I(c) lor the following matrices: 

A = [~ -3 
- I -;] "~[~ 

C = [ _ ~ -!]. 

1 

3 

6. Let A = [aij ] be the I! x /I matrix defined by (Iii = k 
and(lij =Oifi i=- j. Show that if B is any n x /I matrix. 
then AB = kB. 

7. Let A be:lnm x II matrix :lnd C = [CJ C2 

a I x II! matrix. Prove that . 
CA = L:>iAj. 

j = l 

whereA j is the jth row of A. 

8 LetA=[ cosO 
. - sin O 

sinO] 
cosO . 

(a ) Determine a simple expression for A 2. 

(b) Determine:l simple expression for A ]. 

(c) Conjecture the form of a simple expression for A". 
k a positive integer. 

(d ) Prove or dispro\le your conjecture in part (c). 

9. Find a pair of unequal 2 x 2 matrices A and B. other than 
those given in Example 9. such that AB = O. 

10. Find two different 2 x 2 matrices A such that 

A2 = [~ ~l 

I I. Find two unequal 2 x 2 m:ltrices A and B such that 

All - [~ ~l 
12. Find two different 2 x 2 matrices A such that A" = O. 

13. Prove Theorem 1.3(a). 

14. Prove Theorem 1.3(b"1. 

15. Verify Theorem 1.3(b) for r 4. s - 2. and A 

[~ -a 
16. Prove Theorem 1.3(c). 

17. Ver ify Theorem l.3(c) lor r = - 3. 

B~ [ ~ ;]. 
- 2 1 

and 

18. Prove Theorem 1.3(d· .. 

19. Verify Theorem 1.3(d) for the following m:ltrices: 

B~ 
[

- I 

1 

and r = - 3. 

3 
- 3 

20. The m:ltrix A contairt~ the weight (in pounds) of objects 
packed on boMd a spacecraft on earth. The objects are 
to be used on the moon where things weigh :lbout ! as 
much. Write an expression kA that calculates the weight 
of the objects on the moon. 

21. (a ) A is a 360 x 2 matrix. The first column of A is 
cos OQ. cos 10 ..... cos 359 Q

: :lnd the second column 
is sin 0°. sin 10 ..... sin 359 Q

• The graph of the or-
dered pairs in A is :I circle of radius I centered :It 
the origin. Write an expression kA for ordered pairs 
whose gr:lph is a circle of radius 3 centered at the 
origin. 

(b ) Explain how to prove the claims about the circles in 
p:lrt (:I). 

22. Determine a scalar r such th:lt Ax = rx. where 



23. Determine a scalar , such that All: = ' x. where 

24. PrO\'c that if Ax = rx for" x 1/ matrix A. II X I matrix 
x. and Sl:alar r, thcn Ay = ,y, where y = sx for any 
scalar s. 
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(l.") For any seal:!r" show that 'X I is a solution. 

(d) For any scalars r and J, show that ' X I + .I'X~ is a 
solution. 

37. Show that if All: = II has more than one solution, then 
it has infinitely many solu tions. (H illl: If Xl and X2 are 
solut ions. l."onsidcr Xl = ' X I + J X2' where, + s = I.) 

38. Show th:lt if XI and X2 are solutions to the linear system 
Ax = b. then X I - X2 is a solution to the associated ho­
mogeneous system Ax = O. 

25. 

26. 

27. 

28. 

l)etennine a Sl:alar .f such Ihal AZx = s x when Ax = r x . ~ 39, Lo, 
Pro\'e 1llCOrem 1.4(a). 

Prove Theorem I .4(h) and (d). 

Verify Theorem 1.4(a), (b), ;llId (d) for 

A = [~ 3 _;]. 8 = [ _~ 2 -'] 5 . 

fmd r = - 4. 

29, Verify Theorem IA(c) for 

3 [' -'] B = ~ ~. 

30. Let 

Compute 8 r C and mult iply the result by A on the 
right. (Hi",: BT C is I x I ). 

(c) Explain why ( A8 T )C = ( 8 T C)A . 

3 1. Determine a constant k such thaI (k A)T (k A) = I, where 

A ~ [ ~:l '''h,re m""h,"o~ "'000" 'h" oo,'d 
be used? 

32, Find three 2 x 2 matrices. A. B. and C such that AB = 
ACwith B =FC and A =F O. 

33, Let A be an /I x /I matrix lind c a real number. Show that 
If cA = O.then c= OorA = O. 

34. Determine all 2 x 2 malrices A such Ihal AB = BA for 
any 2 x 2 matrix B. 

35. Show that (A _ 8 )T = AT _ 8 T. 

36. Let XI and X2 be solutions 10 tl:e homogeneous linear sys­
tem Ax = O. 

(a ) Show that XI + X1 is a solution. 

(b) Show that XI - X2 is a solution. 

(.) 

(b) 

-, 
13 
8 

and [
10.5] 

x = 2 1.0 . 

10.5 

Determine a scaL1r r such that Ax = r x. 

Is it true that AT X = r x for the lIa lue r detemlined 
in part (a)? 

.! 40. Repeat Exercise 39 with 

.!. 41. 

[

-3.35 

A = 1.20 
-3.60 

,.,O] 
2.05 - 6.20 

- 2.40 3.85 

-3 .1KI 

and x = [ 
12 .5 ] 

- 12 .5 . 
6 .25 

Let A = [~:~I ~:~J lin your software, set the 

display format to show as many decimal places as possi­
ble. then compute 

8 = IO . A. 

C - A+ A + A + A + A+ A+ A + A+A+A. 

and 

D = 8 - C. 

If D is not O. then you have lIer ified that scalar mul ­
tiplicat ion by a positi lle integer and successille adJition 
are not thc same in your r.:omputing enllironment. (It is 
nOl unusual that D '* 0, since many computing enlli­
ronments use only II "model" of exact arithmetic, called 
floatin g-po illl :lrithmetic,) 

.! 42. Let A = [: : ] . In your software, set the display to 

show as llIany decimnl places as possible. Experiment to 
find a posith'c integer k such that A + IO-t • A is equal 
to A. If you find su: h an integer k. you ha\'c lIerified 
that there is more than onc matrix in your computational 
enll ironment that pla)s the role of O. 
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EXAMPLE 1 

III Special Types of Matrices and Partitioned 
Matrices 

We have already introduced o ne special type of matrix 0, the matrix all of whose 
entries are zero. We now consider several other types of matrices whose structures 
are rather specialized and for which it will be convenient to have special names. 

An /I x /I matrix A = [(l ij ] is called a diagonal matrix if (Ii) = 0 for i =1= j. 
Th us, for a diagonal matrix, the terms off the main diagonal are all zero. Note 
that U is a diagonal matrix. A scalar matrix is a diagonal matrix whose diagonal 
clements are equal. The scalar matrix 1" = [dij ], where dl ; = I and dij = 0 for 
i "1= j , is called the /I x /I identity matrix. 

LeI 

Then A, B, and l, are diagonal matrices; Band 13 are scalar matrices: and I) is 
the 3 x 3 ide ntity matrix. • 

It is easy to show (Exercise I ) that if A is any m x 1/ matrix, then 

AI,, = A and I",A=A. 

Also, if A is a scalar matrix, then A = r 1" for some scalar r. 
Suppose that A is a square matrix . We now define the powers of a matrix, for 

p a positive integer, by 

If A is II X II, we also define 

AP= A·A··· · ·A. 
~ 

I' factor. 

Fm nonneg>lTive inTegers p ,inri (/ , The f>lmili>lr law, of exponenTs fm The real num­
bers can also be proved for matrix multiplication of a square matrix A (Exercise 8): 

It should also be noted [hat the rule 

(ABV = AI'BI' 

docs not hold for square matrices unless A B = B A. (Exercise 9). 
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An /I X /I matri x A = [aU ] is called upper triangular if aU = 0 fo r i > j. 
It is called lower triangular if a ij = 0 for i < j. A diagonal matrix is both upper 
tri angular and lower triangular. 

The malrix 

is upper rriilnglllnr, anti 

is lower triangular. • 

A matrix A with real entries is called symmetric if AT = A. 

A matrix A with real entries is called skew symmetric if A T = - A. 

U 
2 n A ~ 4 is a symmetric matrix. 

S 
• 

[ -~ 2 -n ,,, ' kew 'ymmell'e mo,,'x. B ~ 0 
- 3 4 

• 
We can make a few observations about symmetric and skew symmetric matri­

ces; the proofs of most of these statements will be left as exercises. 
It follows from thc precedi ng definitions that if A is symmetric or skew ~ym­

metric, then A is a square matrix. If A is a symmetric matrix, then the entries of A 
are symmetric with respect to the main diagonal of A. Also, A is symmetric if and 
only if a ;j = a j; , and A is skew symmetric if and only if aij = - a j; . Moreover, if 
A is skew symmetric, then the entries on the main diagonal of A are all zero. An 
important property of symmetric and skew symmetric matrices is the following: If 
A is an /I x /I matrix, then we can show that A = S + K , where S is symmetric 
and K is skew symmetric. Moreover, this decomposition is unique (Exercise 29) . 

• Partitioned Matrices 

If we start Ollt with an 11/ x /I matrix A = [a j) ] and then cross out some, blll not 
aiL of its rows or columns. we obtain a submatrix of A. 

Lei 
2 3 
4 - 3 
o S 

~] . 
- 3 
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EXAMPLE 6 

EXAMPLE 7 

If we cross out the second row and third column, we get the submatrix 

2 

o • 
A matrix can be panitioned into submatrices by drawing hori zontal lines be­

tween rows and vertical lines between columns. Of course, the partitioning can be 
carried out in many different ways. 

The mati ix 

can be partitioned as indicated previously. We could also write 

[a" 
(/12 i(/IJ ;:;:c~;: ] 

A ~ 
(/21 __ ~?3_~_a23 [ ~" AI2 ~,, ] 
(/31 an i a33 (134 i (115 A" A22 A" 
(/4 1 a42 : {/4J (144 : (145 

(I) 

which gives another partitioning of A. We thus speak of parti tioned matrices . • 

The augmented matrix (defined in Section 1.3) of a linear system is a partitioned 
matrix. Thus, if Ax = b, we can write the augmented matrix of this system as 
[A i b] • 

If A and B are both 11/ x /I matrices that are pilnitioned in the same way, then 
A + B is produced simply by adding the corresponding submatrices of A and B. 
Similarly, if A is a panitioned matrix, then thc scalar multiple cA is obtained by 
forming the scalar multiple of each submatrix. 

If A is partitioned as shown in (I) and 

b 11 b n i bD b l 4 

b21 bn i 1m b", I B" B" ] B ~ b JI b J2 i b JJ bJ4 B2\ :~: . b41 b42 : b43 b" _B31 
----------f--
b5J b52 : b53 b" 

then by straightforward computations we can show that 

AB = 
[

(All B\ I + AI2B21 + A\3BJ1 ) 
--------------------------------

(AIIBI I I AnBl! I AnB31) 

(A l1 B I2 + .41 2B22 + ADBJ2)] 
- - - - - - - - - - - - - - - -----------------

(Ali BI l -1 AnBll I AnB3l) 
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Lei 

A" ] 
An 

and let 

B ~ [ --f-----l-----~- -H---- -~---~i] 
- 3 - I 2: I 0 - 1 

B12] 
Bn . 

Then 

where ell should be AII BI I + A1 2B21. We verify thai ell is this expression as 
follows: 

AIIBII +A12 B21 = [~ m~ 0 ~J + [~ -~][ -~ 3 ~] - I 

~ [~ 0 ~] + [~ 3 -~] 2 10 

~ [! 3 ~] = Cli. 12 • 
This method of multiplying partitioned matrices is also known as block mul· 

tiplication. Partitioned matrices can be used to great advantage when matrices 
exceed the memory capacity o f a computer. Thus, in multiplying two partitioned 
matrices. one can keep the matrices on disk and bring into memory only the sub­
matrices required 10 fonn the submatrix products. The products, of course, can be 
downloaded as they are fonned. The partitioning must be done in such a way that 
the products of corresponding submatrices are defined. 

Partitioning of a matrix implies a subdi vision of the information into blocks. or 
units. The reverse process is 10 consider individual matrices as blocks and adjoin 
them 10 fo rm a partitioned matrix. The only requirement is that after the blocks 
have been joined. all rows have the same number o f entries and all columns have 
the same number of entries. 

Lei 

- I 0]. and D = [: 
8 
7 

-4] 5 . 
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DEFINITION 1. 1 0 

EXAMPLE 10 

Then we have 

[B 9 
6 

8 
7 

-4] 5 . 

8 
7 

- I • 
Adjoi ning matrix blocks to expand in formation structures is done regularly in 

a variety of application;;. It is common for a business to keep monthly sales data 
for a year in a I x 12 matrix and then adjoin such matrices to build a sales history 
matrix fo r a period of years. Similarly, results of new laboratory experi menl'> are 
adjoined to existing data to update a database in a research facility. 

We have already nuted in Example 7 that the augmented matri x of the linear 
system Ax = b is a partit ioned matrix. At times we shall need to solve several 
linear systems in which the coeffi cient matrix A is the same. but the right sides of 
the systems arc different. say, b. c, and d . In these cases we shall find it convenient 
to consider the partitioned matrix [A : b : c : d ]. (Sec Section 4.8.) 

• Nonsinguiar Matrices 

We now come to a special type of square matrix and formulate the notion corre­
spondi ng to the reciprocal of a nonzero real numbcr. 

An /I X /I m>ltrix A is c>llle(! nonsinglll:-.r, or invertih!e, if there eXiST;\; >In /I x /I 

matrix B such that A B = B A = In; such a B is called an inverse of A. Otherwise, 
A is called singular. or noninvertible. 

Remark In Theorem 2.1 I, Section 2.3. we show that if AB = In, then BA = In. 
Thus, to verify that B is an inverse of A. we need verify only that AB = In. 

[2 3] [-I '] LetA= 2 2 andB = I _ ~ .SinceAB = BA = /2 ,weconcludcthat 

B is an inverse of A. • 
Thearem 1.5 The inverse of a matrix. if it exists, is unique. 

Proof 

Let Band C be inverses of A. Then 

AB = BA = In and AC = CA = In. 

We then have B = Bill = B(AC ) = (B A)C = lliC = C, which proves that the 
inverse of a matrix, if it exists. is unique. • 
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Because o f this uniqueness, we write the inverse of a nonsingular matrix A as 
A-I. Thus 

LeI 

A = [~ ~]. 
If A -1 exists, let 

Then we must have 

'] [a 4 , ~J = h = [~ ~]. 
so that 

[ 
a+2, "+2d] [' 0] 

3a+4c 3b+4d = 0 I . 

Equating corresponding entries of these two matrices, we obtain the linear systems 

a+2c = I 

3a+4c = O 
"nd 

b+2d = O 

3b+4d = 1. 

The solutions are (verify) a = - 2. c = ~,b = I, and d = - !. Moreover, since 
the matrix 

[
a ,,] ~ [ - ; :] 
c d 1:-'2 

also satis ties the properly that 

[ -, , ] [ , ,] ~ [, 0]. 
~ - 4 3 4 0 I . 

we conclude that A is Ilonsingular and that 

LeI 

I f A-I exists, lei 

Then we must have 

_1 _[-2 ,] 
A - J J' 

:2 -'1 

AA-I ~ [2' '][a b] ~ J ~ [' 0] 4cd 2 0 [ , 

• 
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so that 

[ 
0+2, "+2dl ~[ 1 OJ. 

2o+4c 2h+4d 0 I 

Equating corresponding entries of these two matrices, we obtain the linear systems 

a + 2c = I 
2a+4c = O 

and 
h+2d = O 

2h+4t1 = 1. 

These linear sysu::ms have no solutions, so our a~sumplion Ihal A-I exisls is in­
correct. Thus A is singular. • 

We next establ ish several propcnies of inverses of matrices. 

Theorem 1.6 If A and B are both nonsingu lar /I x /I matrices, then A B is nonsingular and 
(A B )-I = B-IA-I . 

Proof 

We have (A B )(B -IA- I) = A(BB-I)A- I = (A ln) A-1 = AA- l = 1". Similarly, 
(B - 1 A -I)(A B ) = I". Thcn:fore A B is 1l0Hsiligu iai. Sillce lhe illl/e ise o f a lIlall ix 
is unique, we conclude that (A B)-I = B- 1 A -I . • 

Corollary 1. 1 If A I. A2 . . ... A, arc II x /I nonsingular matrices, then A I AI' .. Ar is nonsingular 
and (A I A 2 '" A,)-I = A;I A ;~I . .. Al l . 

Proof 

Exercise 44. 

Theorem 1.7 If A is a nonsingu lar matri x. then A -I is nonsingular and (A -1)-1 = A. 

Proof 

Exercise 45. 

Theorem 1.8 If A is a nonsingu lar matrix, then AT is nonsingular and (A -ll = (AT)-I . 

Proof 

We have AA- l = 1". Taking transposes of both sides. we gel 

(A-Il A T = 1,; = I". 

• 

• 

Taking transposes of both sides of the equation A-I A = 1,,, we find, similarly. that 

These equations imply [hat (A -I)T = (AT)-I. • 
EXAMPLE 13 If 
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then from Example II 

Also (verify), 

_, _[-2 ,] 
A - 3 1 

2" -2: 

and 

• 
Suppose that A is nonsingular. Then A B = AC implies that B C (Exer-

cise 50), and AB = 0 implies that B = 0 (Exercise 51). 
It follows from Theorem 1.8 that if A is a symmetric nonsinguiar matrix, then 

A -1 is symmetric. (See Exercise 54.) 

• Linear Systems and Inverses 

If A is an /I x 1/ matrix, then the linear system Ax = b is a system o f 1/ equations in 
/I IInknown .~ _ Sllrro.~e 111011 A is nomingll l>lT. Then A -I exists, ami we en n multiply 
Ax = b by A-Ion the left on both sides. yielding 

A-1(Ax) = A-1 b 

(A-1A)x = A-1b 

J"x = A-Ib 

x = A-1b. (2) 

Moreover, x = A-I b is c learly a solution to the given linear system. Thus. if A is 
nonsingular. we have a unique solution. We restate this result for emphasis: 

If A is an 1/ x 1/ matrix, then the linear system Ax = h has the uniq ue solution 
x = A-l b. Moreover. if b = 0, then the uniq ue solution to the homogeneous 
systemA x = O is x = O. 

If A is a nons in gular 1/ x 1/ matrix, Equation (2) implies that if the linear 
system Ax = b needs to be solved repeatedly fordiffcrent b 's. we need compute 
A -I only once; then whenever we change b, we find the corresponding solution 
x by forming A-l b. Although this is certainly a valid approach, its value is of a 
more theoretical rather than practical nature, since a more efficient procedure for 
solving such problems is presented in Section 2.5. 

Suppose that A is the matrix of Example II so that 

_, [-2 ,] 
A = ~ - t . 

If 
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then the solution to the linear system Ax = h is 

On the other hand, if 

then 

_, [10] [0] x = A 20=5' • 
• Application A: Recursion Relation; the Fibonacci Sequence 

In 1202, Leonardo of Pisa, also called Fibonacci ,' wrote a book on mathematics 
in which he posed the fottowing problem: A pair of newborn rabbits begins to 
breed at the age of I month, and thereafter produces one pair of olTspring per 
month. Su ppose that we start with a pair of newly born rabbits and that none of 
the rabbits produced from this pair dies. How many pai rs of rabbits will there be 
at the beginning of each month? 

At the beginning of month 0, we have the newly born pair of rabbits PI. At the 
beginning of month I ..... e still have only the original pair of rabbits PI , which have 
not yet produced any offspring. At the beginning of month 2 we have the original 
pair PI and its first pair of offspring, Pl' At the beginning of month 3 we have the 
original pair PI, its first pair of offspring P2 born at the beginning of month 2, and 
its second pair of offspring, P3 . At the beginning of month 4 we have PI , P2 , and 
P3 ; P" , the offspring of PI; and P5 , the offspring of P2. Let II " denote Ihe number 
of pairs of rabbits at the beginning of month II . We see Ihat 

The sequence expands rapidly, and we gel 

I. 1. 2. 3. 5. 8.13.2 1. 34.55. 89.144 .. 

To obtai n a formula for II", we proceed as follows. The number of pairs of 
rabbi ts that are alive at the beginning of month II is 11 11 -1, the number of pairs 
who were alive the previous month, plus the number of pairs newly born at the 
beginning of month II. The latter number is U,,_2, since a pair of rabbits produces 
a pair of offspring, starting with its second month of life. Thus 

Il II = 11 ,,_1 + 11,,-2. (3) 

"Leonardo Fibonacci of Pisa (about 1170-1250) was born and lived most of his life in Pisa. Italy. 
When he was about 20. his (ather was appointed director of Pisan commercial intere,ts in nmhern 
Africa. now a part of Algeria. Leonardo accompanied his father to Africa and for several years traveled 
extensively throughout the ~1cditermnean area on behalf of his father. During these tmvrls he learned 
the Hindu- Arabic method of numeration and calculation and decided to promote its use in ttaly. This 
was one purpose of his most famous book. Liber Abaci. which appeared in 1202 and contained the 
rabbit problem stated here. 
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That is, each number is the sum of its two predecessors. The resulting sequence of 
numbers, called a Fibonacci sequence, occurs in a remarkable variety of applica­
tions, such as the distribution of leaves on certain trees. the arrangements of seeds 
on su nflowers, search techniques in numerical ana.lysis, the generation of random 
numbers in statistics, and others. 

To compute li n by the recursion relation (or difference equation) (3). we have 
to compute 110. III • ... • 11,,-2' 11,,_1. Thi s can be rather tedious for large II. We now 
develop a fonnu la that will enable us to calculate II" directly. 

In addition to Equation (3), we write 

11 ,,_1 = 11,,-1. 

so we now have 

which can be wri tten in matri x form as 

[ u,,] [ , '] [u,,_,] 
11,,_1 = I 0 U,,_2· 

We now define, in general, 

and A= [: ~] (O:::;k:::;n-t) 

so thaI 

Then (4) can be written as 

Thus 

and W,,_I 

WI = Awo 

W2 = AWl = A(A wo) = A"wo 

W3 = A W 2 = A(A 2wo) = A3WO 

[ 
u , ] 

1111_1 

(4) 

Hence, to find II", we merely have to calculate A,,-I, which is st ill rather tedious if 
n is large. In Chapter 7 we develop a more effici ent way to compute the Fibonacci 
numbers that involves powers of a diagonal matriK. (Sec the discussion exercises 
in Chapter 7.) 
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Key Terms 
Diagonal matrix 
Identity matrix 
Powers of a matrix 
Upper triangular matrix 
Lower triangular matrix 

_,. Exercises 

Symmetric matrix 
Skew symmetric matrix 
Submatrix 
Partitioning 
Partitioned matrix 

I. (a) Show th:lt if A is any III )( n matrix. then I", A = A 
and A I" = A. 

(b) Show that if A is an II x I! scalar matrix. then 
A = r I . for some real number r. 

2. Prove that the sum. product, and scalar multiple of diag. 
onal. scabr. and upper (lower) tri,lIlgular matrices is di· 
agonal. scalar, and upper (lower) triangular, respectively. 

3, Prove: If A and 8 are I! x II diagonal matrices. then 
AB = BA. 

4. Let 

- 3 
2 
o 

Verify that A + 8 and A B are upper triangu lar. 

5. Describe:lll matrices that are both upper :lnd lower trian· 
gular. 

6. LetA=[~ ~~]and S =[~ -~lcomputeeach 
of the following: 

(, ) A' (b ) 8 3 (c) ( AS )! 

[i 0 

-l] H 0 

:] 7. Lo< A ~ and S 

0 
Compute e:lch of the following: 

(a) A 3 (b ) S! «) (A 8 )3 

8. Let p and q be nonnegative integers and let A be:l square 
matrix. Show th:l t 

9. If AS = BA and p is a nonnegative integer. show that 
{AB)P = A PB ". 

10. If p is a nonneg:ltive integer and e is a scalar. show that 
(eA)!' =ePA ". 

II. For:l square matri x A and:l nonnegative integer p. show 
[hat (A T)" = (AI,)T. 

Nonsingul:lr (invertible) matrix 
Inverse 
Singular (noninvertible) matrix 
Properties of nomingular matrices 
Line:lr system with nonsingular coefficient matrix 
Fibonacci sequence 

12. For a nonsingul:lr matrix A and a nonneg:ltive integer p . 
show that ( A P) - I = (A- I)". 

13. For a nonsingular matrix A :lnd nonzero scabr k. show 
that (kA) - 1 = t A- 1. 

14. (a) Show that every sC:llar matrix is symmetric. 

(b) Is every scalar matrix nonsingular? Expbin. 

(e) Is every diagonallll:ltrix a scalar matrix? Expbin. 

15. Find a 2 x 2 matrix 8 f­

AS= BA where A = [' . 2 

ces S are there? 

16. Find a 2 x 2 matrix B f-

AB=BA. Where A= [~ 
ces B are there? 

o and B f- I! such that 

'] . 1 . How m:lny such matn · 

o and B f- 12 such that 

'] . 1 . How many such matn · 

17. Prove or disprove: For any 11 XII matrix A. A T A = AAT. 

18. (a) Show tlwt A is symmetric if and only if (Ii) = {I i i 

furalli.j. 

(b) Show that A is skew symmetric if and only if a ij = 
- aii foralli.j. 

(e) Show that if A is skew symmetric. then the elements 
on the main diagonal of A are all zero. 

19. Show that if A is a symmetric matrix. then AT is sym­
metric. 

20. Describe all skew syr.lmetric scalar m:l trices. 

21. Show that if A is any III x n matrix. then AA T and AT A 
alC SY IllIllCtllC. 

22. Show that if A is any I! x I! matrix . then 

(a) A + A T is symmetric. 

(b) A - A T is skew symmetric. 

23. Show that if A is a symmetric m:ltrix, then A I, k 
2.3 ..... is symmetric. 

24. Let A and S be symmetric m:ltrices. 

(a) Show that A + B is symmetric. 

(b) Show that AS i. symmetric if and only if AS 
SA . 
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25. (a) Show that ir A is an upper triangular matrix. then 
AT is lower triangular. 

(b) Show that if A is a lower triangular matrix. then AT 
is upper lriangul:lr. 

26. If A is a skew symmetric m.atrix. whal Iype of malrix is 
AT? Justify your answer. 

27. Show that if A is skew symm~t ric, then the elements on 
lhe main diagonal of A are all 1.ero. 

28. Show that if A is skew symllletric, the n A' is skew sym· 
metric for any posi tive odd inlCger k. 

29. Show 1hat if A is an It x II ma\Jix. then A = S + K . where 
S is symmetric and K is skew symmetric. A lso show that 
this decomposition is unique. (Hilll : Use Exercise 22.) 

30. Let 

31. 

32. 

33. 

: -n· 
Find the matrices Sand K described in Exercise 29. 

Show that the m:l1rix A = [! !] is singular. 

IfD = [~ 
o 

- 2 
o 

Find the inverse of each of the following matrices: 

(a) A = [! ;] (b) A = [~ n 
34. If A is a nonsingular matrix whose inverse is [~ :l 

fi nd A. 

35. If 

and 

fi nd (AB )- I. 

B - 1 - [' - 3 

36. Suppose that 

37. 

A-
I =[: ~l 

Solve the linear system Ax = h for each of the following 
matrices b: 

The linear syste m ACx 
nonsingular with 

II is such that A and Care 

Find the solutio n x. 
38. The linear system A~ .~ = b is such that A is nonsingular 

wi lh 

Find the solut ion x. 
39. The linear system AT x = h is such that A is nonsingular 

with 

A l= [~ ~] and b =[ _~] . 
Find the solution x. 

40. The linear system C T Ax = b is such that A and C are 
nonsingular. wi th 

Find the solution x. 
41. Consider the linear syMem Ax = h. where A is the mao 

trix defined in Exercise 33(a). 

(a) Finda sOlutiOni f b =[~]. 

. . .'b [5] (b) Fmd a solutIOn 11 = 6 . 

42. Find t .... "O 2 x 2 singular matrices whose sum is nonsin· 
gular. 

43. Find twO 2 x 2 nonsUlgular matrices whose sum ii sin· 
gular. 

44. Pro\'e Corollary I. L 

45. Pro\'e Theorem 1.7. 

46. Prove Ihal if one row (column) o f the n X II matrix A con· 
sists e nti rely of zeros. lhen A is singular. (Hinl : Assume 
lhal A is nonsingular; that is, there exists an /I x /I matrix 
B such lhm AB = BA = I". E~labli s h aconlradiclion.) 

47. Prove: I f A is a diagonal illlitrix with nonzero di· 
agonal el11ries {/11.{/ll ••••• II" • • then A is nonsingu· 
lar and A- I is a dillgonal malrix Wilh diagonal entries 

1 / 11 11. l / lIll ..... 1/,,"". 

48. Lo< A = [~ 
o 

-3 
o 

49. For an /I x /I diagonal matrix A whose diagonal entries 
arc lIll' li n . .... a,,", compute AI' for a nonnegative inte· 
ger fJ. 

50. Show Ihat if A B 
1J =c. 

AC and A is nonsin~ular. then 
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5 I. Show that if A is nonsingular and A H = 0 for an /I x /I 

nlatrix H. then H = O. 

52. Let A = [:. : l Show that A i~ nonsingular if and 

only if lid - be 1= o. 
53. Consider the homogeneous system Ax = O. where A is 

/I X 11. If A is nonsingular. ~how th llt thc only solution is 
the trivial onc. x = O. 

54. Pro\·c that if A is symmetric and non~ingular. then A- I 
IS symmetric. 

55. Formulate the methoo for adding panitioned matrices. 
9nd verify your methoo by partitioning the matrices 

A = [i 3 

- 3 

1I11WO different ways and finding their ~um . 

56. Let A and lJ be the follow ing matrices: 

AJ~ 
1 3 4 

1] 
2 3 - I 

3 2 1 

II 
-I 3 2 

2 4 
- I 3 5 

>eo 

8 = [j 
2 3 4 

-: ] 3 2 

5 4 2 3 . 
1 3 5 7 
2 4 6 1 

Find A B by partitioning A and B in twO different ways. 

57. What type of matrix is a linear combination o f symmetric 
matrices? Justify your answer 

58. Whm type of matrix is a linear combination o f scalar ma­
trices? Justify your answer. 

59. The matrix form of the recursion relmion 

11 0 = O. Ifl = I. II~ = Sll ~_ , - 611 ~ _ l . II ::: 2 

IS wrincn as 
W~_ I = AW~_l' 

where 

and A = [~ -6] n . 

(3) Using 

"= [::: ]=[~l 
compule W I. W!, and Wj. Then make a list of the 
tenus of the recurrence relation 111 . II ) . 114. 

(b) Express W . _ I as a matrix times Woo 

60. The matrix form of the recursion re lution 

is written as 

where 

[ ""J W. _ I = . 
" "- 1 

and A =[~ -'1 o . 

(a) Using 

compute w,. W] . w 3 . and W4. TIlen make a list of 
the terms of the recurrence relation "!. II ) . 1I~.1I 5 . 

(h) E)(press W. _ I as a matrix times Woo 

.! 6). For the software you are Ilsing. determine the com­
mand(s) or procedures required to do eaeh of the follow­
ing: 

(3) Adjoin a row or column to an exi~ ting matrix. 

(b) Construct the partitiooed matrix 

from exis ting matrices A :md B. Ilsing appropriate 
size zero matnces. 

tel Ex tmct a submatnx from an CX lstlllg matnx. 

• 62. Most software for linear algebra ha~ specific commands 
for extracting the diagonal. upper triangular part, and 
lower triangular part of a matrix. Determine the corre­
sponding commands for the software that you are using. 
and experiment with them. 

63. Determine the command for computing the inverse of a 
matrix in the software you use. Usually, if such a com­
mand is applied to a singular matrix. a warning message 
is displayed. Experiment with your inverse command to 
determine which of the following matrices arc singular: 



!t 64. 

U 
2 

~] U 
2 

n (a) 5 (bl 5 
8 8 

[ ~; 2 

~n I' ) 
~ l 

If B is the inverse of II x /I matrix A. then Definition 1.10 
guarantees thaI A S = BA = ' .' The unstated assump­
lion is that exact arithmetic is used. If computer arith­
metic is used to compute A B. then A B need not equal ' " 
and. in fact, SA need not equal AB. However. bolh AS 
and S A should be close \0 I". In your software. LIse the 
Inverse command (see Exercise 63) and form the prod­
L1CIS A Band B A for each of tile following matrices: 

(a) A = (hi A ~ [; : ] 

(e) A = 

.1. . 66. 
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a · ·- ---~ 

' i - i+j - l' 

i. j _ 1.2 ..... 10. and b _ the firstcoJumn of 110. 

For the software you are using. determine the command 
for obtaining the powers A 2. A ].. of a square matrix 
A. lben. for 

I 

o 
o 
o 
o 

o 
I 

o 
o 
o 

o 
o 
I 

o 
o 

compute the matrix s:xJuence AI. k = 2.3.4. 5. 6. De· 
scribe the behavior of AI as k ....... 00. 

.!. 65. In Section 1.1 we studied the method of elimination 
for solving linear systems Ax = h. In Equation (2) 
of this section we showed lhal Ihe solution is given hy 
." = A- lb. if A is nonsingular. Using your software's 
command for automatically sD]ving linear systems, and 
l iS inverse command. compare these two solution tech· 
rliques on each of the following linear systems: 

!t. 67 . Experiment with your software to determine the b~hav· 
ior of the matrix sequence AI as k ....... 00 for each of the 
following matrices: 

(b) A = [ ~ 
~ l 

~ l 

I 

o ~n 
m Matrix Transformations 

I.n Section [.2 we introduced the notation R" for lhe set of aliI/ -vectors with real 
entries. Th us R2 denotes the set of all 2-vectors and RJ denotes the set of all 
3-vcctors. It is convenient 10 represent the clements of R2 and R3 geometrically 
as directed line segments in a rectangular coordinate system.· Our approach in 
this section is inlllitive and will enable us 10 present some interesting geometric 
applications in the next section (at this earl y stage of the course). We return in 
Section 4 . 1 10 a careful and precise study of 2- and 3-vectors. 

The veclOr 

x ~ [~.l 
in R2 is represented by the directed li ne segment shown in Figure 1.6. The veclOr 

' You h.al'e undoubtedly seen rectangular coordinate systems in your precalculus or calculus course.~. 
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EXAMPLE 1 

z-axis 

y-axis 

y (x. y) 

-----;;f--+--_x_axis 
o 

/ (X_y_ Z) 

--x-_____ -::::/tco~=---+---:;?)c, -- )'-axis 

x-axis 

FIGURE 1.6 FIGURE 1.7 

in R3 is represented by the directed line segment shown in Figure 1.7. 

Figure I.R shows ef:Om~l ric represent>llions of the 2-vcclors 

in a 2-dimcnsional rectangular coordinate system. Fi gure 1.9 shows geometric 
representations of the 3-vectors 

in a 3-dimensional rectangular coordinate system. • 
)' 

, 
" ., ., ., 

- 2 0 a , )' 

" 

FIGURE 1.8 FIGURE 1.9 
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Functions OCCll r in almost every application of mathematics. In this section 
we give a brief introduction from a geometric point of view to certain functions 
mapping R" into R"' . Since we wish to picture these functions, called matrix 
transformations, we limit mosl o f our discllssion in this section \0 the situation 
where III and 1/ have Ihc values 2 or 3. In the next section we give an application of 
these functions to computer graphics in the plane, thaI is, for 11/ and II equal to 2. 
In Chapter 6 we consider in greater detail a more general function, called a linear 
transfonnation mapping R" into R"' . Since every matrix transformation is a linear 
transfonnation, we then learn more about thc properties of matrix transformations. 

Linear translonnations play an imponant role in many areas 0 1 mathematics, 
as well as in numerous applied problems in the physical sciences, the social sc i­
ences. and economics. 

If A is an III x II matrix and u is an II-vector, then the matrix product Ji u is 
an III -vector. A function I mapping R" into R'" is denoted by I: R" -'jo R"' .' A 
matrix transformation is a function I: R" -'jo R'" defi ned by I(u) = Au. The 
vector I(u) in R'" is called the image of 1I , and the set o f all images o f the vectors 
in R" is called the range o f I . Although we are limiting o urselves in this section 
to matrices and vectors with only real entries, an entirely similar di scussion can be 
rleve1opcc1 for mfltrices ~ nrl vecTO r:<; wiT h complex enTries (See Appenrlix R.2.) 

(a) Let I be the matrix transformation defi ned by 

f(U)~[~ ~]U 

The imageof ll = [ - ~J is 

. .[,] . ['0] .. and the Image 0 1 2 TS 5 (venly). 

(h) 
[

' 2 LetA = I _ I 
0] . . . I . and consIder the matnx transforrnatlOn defi ned by 

I(u) = Au. 

Th," 'he 'm"ge o f m " m, 'he 'moge ul m .. , m """ 'he 'm"ge 01 

[ -n " [~] ("rify) • 

Observe that if A is an III x /I matrix and f: R" -'jo R'" is a matrix transfor­
mation mapping R" into R'" that is defi ned by I(u) = Au, then a vector w in R'" 
is in the range of I onl y if we can find a vector v in R" such that f(v ) = w. 

t Appendix A. dealing with sets and functions. may be consulted as needed. 
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EXAMPLE 3 

EXAMPLE 4 

) 

(x. )') 

" 
. o¥:------ , 

f lu) 
(x. - yJ 

FIGURE 1. 1 0 Reflection 
wilh respecllo (he x-axis. 

EXAMPLE S 

[ 
I '] . . . Let A = - 2 3 and consIder the matnx transfonnatlOn defined by feu) = Au. 

Determine if the vector w = [ _ ~] is in the range of f. 

Solution 
The question is equi valent to asking whether there is a vector v = [ :' ] such that 
f( v ) = w. We have 2 

Av - [ " +"'] -w-[ 4] - - 2vl +3V2 - - - I 

VI + 2V2 = 4 

- 2vl + 3V2 =- 1. 

Solving this linear system of equations by the familiar method of elimination. we 
get VI = 2 and V2 = I (verify). Thus w is in the range of f. In particular, if 

v = [~llhen f(v) = w. • 

For matrix transformations where 11/ and /I are 2 or 3, we can draw pictures 
showing the effect of the matrix transfonnation. This will be illustrated in the 
examples that follow. 

LeI f: R2 -+ R2 be the matrix transfonnation defined by 

Thus. if u = [::],then 

I(u) ~ I ([;,]) ~ [ _;] . 

The effect of the matrix transformation f. called refl ection with respect to the 
x-axis in R2, is shown in Fi gure 1.10. In Exercise 2 we consider reflection with 
respect to the y-axis . • 

Let f: R3 -+ R2 be the matrix transfomlation defined by 

Then 

I(u) ~ I ([n) ~ [;.]. 
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" 
(x.y.:) L 

o y 

FIGURE 1.11 x 

Figure 1.11 shows the effect of this matrix transformation, which is called projec­
tion into the xy-plane. (Warning: Carefully note the axes in Figure 1.11 .) 

Observe that if 

;;;;=d----.~ )" where.l" is any scalar, then 

Projection 

FIGURE 1.12 

EXAMPLE 6 

I(v) ~ [ ; . ] ~ I(u). 

Hence, infinitely many 3-veetors have the same image vector. See Fi gure 1.12. 

No" thm the im'ge of the 3-vwm v [~] ""de< the m,,,ix """,fotm"ion 

g: R J -+ RJ defi ned by 

i, [~l The elTw of thi' mmrix t"n,fonnmion i, , hown in Fig"" 1. 13. The 

picture is almost the same as Figure 1.11. There a 2-veetor (the imagc fe u)) lies 
in the xy-plane, whereas in Figure 1.13 a 3-veelor (the image g(v)) lies in the 
xy-piane. Observe Ihat /(v) appears to be the shadow cast by v a nta the xy-piane . 

• 
Lei f: RJ -+ R·1 be Ihe matrix transfonnation defi ned by 

[' 0 0] 
fe u ) = a r a lI . 

DO, 

where r is a real number. It is easil y seen that fl u) = r u. If r > I, f is called 
dilation ; ira < r < L f is called contraction. Figure 1.14(a) shows Ihe vector 
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FIGURE 1.13 

FIGURE 1. 14 

EXAMPLE 7 

, ~
(""'d 

Y o k - -Y o 
(x.)' 0) 

II(U) = 2u, and Fi gure 1.14(b) shows the vector 12(u) = ~ u . Thus di lation 
stretches a vector, and contraction shrinks it. Similarly, we can define the matrix 
transformation g: R2 -)0 R2 by 

We also have g(u) = r u, so again if r > I. g is called dilation: if 0 < r < [, g is 
<:u lled cun tnll:tiull . • 

oy-=-------y 

(a) Dilation: r> I (b) Co~tmction:O<r< J 

A publisher releases a book in three different editions: trade, book club, and 
deluxe. Each book requires a cenai n amount of paper and canvas (for the cover). 
The requirements are given (in grams) by the matrix 

Trade 

[
300 
40 

L" 

B~k 
club Deluxe 

500 
50 

800 
60 

[" ] x = .~2 

'Y 

Paper 
Canvas 

denote the production vector, where XI, X2, and X, arc the number of trade, book 
club, and deluxe books, respectively. that arc publi shed . The matrix transformation 



EXAMPLE 8 

FIGURE 1. 15 
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f: RJ --+ R2 defined by f( x ) = Ax gives thc vector 

Y ~ [Y'l· y, 

where Yt is the total amount of paper required and )'2 is [hc total amount of canvas 
required. • 

Suppose that we rotate every poinl in R2 counterclockwise through an angle ¢ 
about thc origin of a rectangular coordinate system. Thus, if thc poinl P has 
coordinates (x. y), then aner rotating, we gCllhc point p i with coordinates (x ' , ),'). 
To obtain a relationship between the coordinates of p i and those of P, we let u be 

the vector [: l which is represented by thc directed line segment from the origin 

to P (x . y). See Figure 1.15. Also. leI () be the angle made by II with the positive 
x-axis. 

,. 
P'(x' . y') 

ft" ) \ P(x . y) 

" 
-,rl''''''-'------ " 

Rotation 

Letting r denote thc length of Ihc directed line segment from 0 10 P, we see 
rrom Figure I. J 5(a) that 

x = rcos f}. y= r sin f} (I) 

on" 

X ' = r cos(f} + ¢) . y' = r sin(f} +¢). (2) 

By the formulas for the sine and cosine of a sum of angles, the equatio ns in (2) 
become 

X ' = r cos f} cos¢ - r sin e si n ¢ 

.v' = r sin f}cos¢, + r cose sin¢' . 

Substitllling the expression in (1) into the last pair of equations, we obtain 

x '= xcos¢'-ysin¢' . y' = xsin¢, + ycos¢' . 

Solving (3) for x and y . we have 

(3) 

x = x'cos¢+y'sin ¢ and y=-x' sin ¢+y'cosl/J . (4) 



62 Chapter 1 Linear Equations and Matrices 

Key Terms 
Matrix transfonnation 
Mapping (function) 
Range 

.,.W Exercises 

Equation (3) gives the coordinates o f p i in tenns of those of p, and (4) expresses 
the coordinates of P in tenns o f those of p' . This type o f rotation is used to 
simplify the general equation of second degree: 

ax! +bxy+ci + dx +ey+ [ = o. 

Substituting for x and)" in terms of x' and y' , we ubtain 

a l x '2 +b'x'y' +c'y '2 +d'x' + ("y' + [ ' = 0. 

The key point is to choose ¢ so Ihat 1/ = O. Once thi s is done (we might now 
have to perfonn a translation o f coordinates), we identify the general equati on of 
second degree as a circle, ellipse, hyperbola, parabola, or a degenerate form of one 
of these. This topic is treated from a linear algebra point of view in Section 8.7. 

We may also pcrfonn this change of coordinates by considering the matrix 
transformation [: R2 -+ R2 defi ned by 

(5) 

Then (5) can be written, usi ng (3), as 

It then follows that the vector fe u ) is represented by the directed line segment 
from 0 to the point p i Thus, rotation counterclockwise through an angle c/J is a 
matrix transformation. • 

Image 
Reflection 
Projection 

Dilation 
Contraction 
Rotation 

III £Tercises I Ihmugh 8, skl'fch u alld ils image IIlIder each 
girer: malrix lrall.iformalioll f. 

4. r: R2 --;. R" is a counterclockwise rotation through ~ rr 

radians; u = [ =~] 

2. f: R2 -+ R2 (rcHcction with rCS llcct to the y-axi~) de­
fined by 

! ([;.])~[-~ m;l " ~[ -;] 
3. r: R2 _ R2 is a counterclockwise rotation through 30": 

" ~[ -;J 

5. f: R2 _ R2 defined by 

! ([X])~[ - l 0][,]. " ~[3] y 0 - I )" . 2 

6. f: R2 _ R2 defined by 
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EXAMPLE 1 

FIGURE 1.16 

puter graphics also playa major role in the manufacturing world. Compllter-aided 
desigll (CAD) is used to create a computer model of a product and then. by subject­
ing the computer model to a variety of tests (carried out on the computer). changes 
to the current design can be implemented to obtain an improved design. One of the 
notable successes of this approach has been in the automobile industry, where the 
computer model can be viewed from different angles to achieve a most pleasing 
and popular style and can be tested for strength of components. for roadability, for 
seati ng comfort , and for safety in a crash. 

In this section we give illustrations of matrix transformations f: R2 -+ R2 
that arc useful in two-dimensional graphics. 

Let f: R2 -,10 R2 be the matrix transformation that performs a re flection with 
respect to the x-axis. (Sec Example 4 in Section 1.6. ) Then f is defined by 
f( v ) = Av, where 

Thus, we have 

To illustrate a refl ection with respect to the x-axis in computer graphic~. let 
the triangle T in Figure I. I 6(a) have vertices 

(- 1.4). (3. I). and (2 , 6) . 

To refl ect T with respect to the x-axis, we let 

)' )' 

6 6 

4 4 

2 2 

x x 
-6 -4 - 2 2 4 6 -6 -4 - 2 4 6 

- 2 -2 

-4 

- 6 -6 

(,' (b) 



EXAMPLE 2 

)' 

FIGURE 1.17 

6 

4 

2 

- 6 
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and compute thc imagc~ !(Vt), I(v!), and I(v)) by forming the products 

AV' ~ [~ -~][ -~] ~ [ =~l 

AV' ~ [~ -~W] ~ [ -n 
AV; ~ [b -~m]~[-n 

These Ihree products can be wri tten in terms of partitioned matrices as 

A [VI V ), ] ~ [ =~ 3 -n v, 
- I 

Thus the image of T has vertices 

( - 1, - 4) , (3. - I). and (2 , - 6) 

and is displayed in Figure 1.I6(b). • 
The matrix transformation f: Rl ~ R2 that performs a rencction with respect to 
thc line y = - xis defined by 

I(v) = Bv. 

where 

[ 0 -I] 
B = - I o· 

To illustrate reflection with respect to thc line y = - x, we use the triangle T as 
defined in Example I and compute the products 

] __ [ 0 -I] [-I 
V2 v J - I 0 4 

- I 
- 3 

-6] 
- 2 . 

3 

Thus the image of T has vertices 

(-4.1), ( - 1. - 3). and (-6. - 2) 

and is displayed in Figure 1.17. • 
To perfonn a reflection with respect 10 the x-axis on the triangle T of Example 

I, followed by a reflection with respect to the line y = - x, we compute 

It is not difficult to show that reversing the order of these matrix transformations 
produces a different image (verify). Thus the order in which graphics transii)f­
mations arc performed is important. This is not surprising. si nce matrix multi­
plication. unlike multiplication of real numix:rs, does not satisfy the commutative 
property. 
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EXAMPLE 3 

FIGURE 1. 18 

Rotations in a plane have been defined in Example 8 of Section 1.6. A plane 
figure is rotated cou nterclockwise through an angle ¢ by the matrix transformation 
f: R2 --+ R2 defined by f( v) = Av, where 

A ~ [cos¢ 
sin ¢ 

Now suppose that we wish 10 rotate the parabola y = x 2 counterclockwise 
through 50°. We stan by choosing a sample of points from the parabola. say. 

(-2.4). (- I. I) . (0.0). (l.l) . ond (3. 9). 

[See Figure I. [8(a).] We then compllle the images of these points. Thus, lening 

we compute the products (10 four decimal places) (verify) 

v, v, v 1 ~ [ - 4.3498 
.I 1.0391 

- 1.408& 
- 0.1233 

o 
o 

0.1299 
0.5437 

The image points 

(-4 .349&.1.0391) . (- 1.4088. - 0.1233). (0.0). 

(0.1299.0.5437), and (-4 .9660.8.0&32) 

- 4.966O J 
8.0832 . 

are ploned. as shown in Figure [. [8(b). and successive points are connected, show­
ing the approximate image of the parabola. • 

-4 -2 

)' 

8 

6 

o 
(,) 

x 
4 -4 

y 

8 

6 

4 

2 

, 
-2 0 2 4 

(b) 

Rotations are parti~ularly useful in achieving the sophisticated effects seen 
in arcade games and animated computer demonstrations. For example. 10 show a 
wheel spinning, we can rotate the spokes through an angle f}1, followed by a second 
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rotation through an angle O2 , and so on. Let the 2-vector u = [a, ] represent a a, 
spoke of the wheel ; let f: R2 ...... R2 be the matrix transformation defined by 
f( v) = Av. where 

A ~ [ C~SOI -Sin OI]: 
sm OI cosBI 

and let g: R2 ...... R2 be the matri x transfonnatio n defi ned by g(v) = Bv, where 

B ~[COSB2 
sin B2 

We represent the succession o f rotatio ns of the spoke u by 

g(j(u» = g(Au) = BIAu) . 

The product Au is performed fi rs t and generates a rotation of u through the angle 
BI; then the product B(A. u) generates the second rotation. We have 

B(Au) = B({/lcol l(A) + (/2coI2(A» = (I I Bcoll(A) + (l2Bcoh (A ) . 

and the final expression is a lincar combinati on of column vectors Beal l (A ) and 
BcoI2(A ). which we can write as the prod uct 

Bw l,(A ) 1 [a, ]. 
(12 

From the de finiti o n of matrix multiplication, [ Beal[ (A ) Bcoh (A )] 
we have 

B(Au) = (RA )u. 

BA , so 

Thus, instead o f applying the transfonnations in succession, f fo llowed by g, we 
can achieve the same result by forming the matrix product BA and using it to 
define a matrix transfonnation on the spokes of the wheel. 

The matrix product BA is given by 

BA = [ cOS(h 
sin fh 

[
COS{}2COS{}1 - sin {}2sin {}1 

= sin 02cosBI + cos {}2sin {}j 

- sin BI ] 
cosB j 

- cos(hsin OI -sin02COS{}I ] 
- sin (h sin 01 + cos {}2 s in (}I . 

Since g(f(u )) = BAu , it follows that thi s matrix transfo rmation perfo rms a rota­
ti on o f u through the angle BI + (}2' Thus we have 

- sin (OJ + B2)] . 

COS(OI + (2) 

Equating corresponding entries of the two matrix expressions for B A. we have the 
tri gono metric identities for the sine and cosine of the sum of two angles: 

COS({}I +fh) = COSOI COS{}2 - sin {}1 s in {}] 

s in({}1 + fh) = COSOI sin B2 + sin 01 cos fh . 

Sec Exercises 16 and 11 for related results . 
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EXAMPLE 4 

,. 

4 

2+--, 

A shear in the x-direction is the matrix transfonnation defi ned by 

[] k] f(v ) = 0 I v. 

where k is a scalar. A shear in the x-direction takes the point (x, y) to the point 
(x + ky, y). That is. the point (x. y) is moved parallel to the x-axis by the amount 
ky. 

Consider now the rectangle R. shown in Figure 1.19(a). with vertices 

(0.0) . (0.2) . (4.0). "d (4 .2) . 

If we apply the shear in the x-direction with k = 2, then the image of R is the 
parallelogram with vertices 

(0.0) . (4 .2). (4 .0). and (8.2) . 

shown in Figure 1.19(b). If we apply the shear in the x-direction with k = - 3. 
then the image of R is the parallelogram with vertices 

(0.0), ( - 6.2). (4 .0) . and ( - 2.2). 

shown in Figure 1.19(c). 
In Exercise 3 we consider shears in the y-di rection. • 

)' )' 

4 Shcar/': - 2 Shcar/.: = -3 4 

2 

-;;t--+---1--+--- , 
o 2 4 6 

---,;1<"+---?-f-+- , 
o 2 4 6 8 

]b) 

-+--+--~----+=--+---x 
-6 -4 -2 0 2 4 6 

(.) 

FIGURE 1.19 

EXAMPLE S 

Ie) 

Other matrix transfonnations used in two-dimensional computer graphics arc 
considered in the exercises at the end of this section. For a detailed discussion of 
computer graphics. the reader is referred to the books listed in the Further Readings 
at the end of this section. 

In Examples I and 2, we applied a matrix transfomlation to a triangle, a fi gure 
that can be specified by its three vertices. In Example 3, the figure transformed 
was a parabola, which cannot be specified by a finite number of points. In this 
case we chose a number of points on the parabola to approximate its shape and 
computed the images of these approximating points, which, when joined, gave an 
approximate shape of the parabola. 

Let f: R2 -j. R2 be the matrix transfonnation called scaling defi ned by f(v) = 
Av, where 



1.7 Computer Graph ics (Optional) 69 

with hand k both nonzero. Suppose that we now wish to apply this matrix trans­
fomlation to a circle of radius I that is centered at the origi n (the unit circle). 
Unfortunately, a circle cannot be specified by a fi nite number of points. However, 
each point on the unit circle is described by an ordered pair (cos 8. si nO), where 
the angle e takes on all values from 0 to 2n radians. Thus we now represent an 

arbitrary poi nt on the unit ci rcle by the vector u = [c~s ~] . Hence the images of 
Sill u 

the uni t circle that are obtai ned by applying the matrix transfonnation f arc given 
by 

f(U)=AU = [~ ~J[~~~ : J = [/~~~~ :]=[>l 
We recall that a circ le of radius I centered at the ori gin is described by the equation 

By Pythagoras's identity. sin2 0 +cos18 = I. Thus. the points (cosO. si n O) lie on 
the circumference of the unit circle. We now want to write an equation describing 
the image of the unit circle. We have 

It then fo llows that 

x'=hcosO and y'=ksin O. 

, 
x 
- = cosO. 

y' 
- = sin 8 . 
k " 

( ')' ( ')' T,-+T=1. 
which is the equation of an ellipse. Thus the image of the unit circle by the matrix 
transfonnation f is an ellipse centered at the origin. See Figure 1.20. • 

o 
FIGURE 1.20 Unit circle Ellipse 
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Key Terms 
Computer graphics 
Computer-aided des ign (CAD) 
Shear 

Rotation 
Contraction 

Dila tion 
Image 

... Exercises 

l. Let I: /?! -Jo /?2 be the matrix transformation defined 
by I(v) = Av. where 

A~ 
[

- I 
o 

Ihat is. I is reflection with respect to the y-axis. Find and 
sketch the image of the rectangle R with vertices (I. I ) . 
(2.1) . (l.3).and(2.3). 

2. Let R be the rectangle with vertices (I. I). (I. 4). (3. I). 
and (3. 4). Let I be the shear in the x-direction with 
k = 3. Find and sketch the image of R. 

3. A shcar in the y-direction is the matrix transformation 
I: /?! .....,.. R2 definedby I(v) = Av.and 

A=[~ n. 
where k is a scalar. Let /? be the rectangle defined in 
Exercise 2 and let I be the shear in the y-direction with 
k = - 2. Find and sketch the image of /? 

4. The matrix transformation j: /?! ...,. /?! defined by 
lev) = Av. where 

A=[~ ~J. 
and k is a real number. is called dilation if k > I and 
contraction if 0 < k < I. Thus. dilation stretches avec­
lor. whereas contraction shrinks it. If R is the rectangle 
defined in Exercise 2. find and sketch the image of /? for 

(a)k=4: (b) k= 1. 

5. The matrix transformation j: /?! ...... /?2 defined by 
I(v) = Av. where 

A = [~ ~l 

and k is a real number, is called dilation in the x­
di rection if k > 1 and contraction in the x-direction 
if 0 < k < l. If R is the unit square and I is dilation in 
the .I -direction with~' = 2. find and sketch the image of 
R . 

6. The matrix transformation I: /?2 ...... /?2 defined by 
I(v) = Al·. where 

A = [~ ~] 
and k is a real number. is called dilation in the y. 
di rection if k > 1 and contraction in the y.direction 
if 0 < k < I. If /? is the unit square and I is the contrac­
tion in the y-direction with k = ~. find and sketch the 
image o f R . -

7. Let T be the triangle with ven ices (5. 0), (0. 3), and 
(2. - I). Find the coordinates of the venices of the image 
of T under the matrix transformation I defined by 

[
-2 

I(v) = 3 

8. Let T be the triangle with vertices ( I . I ) . (-3. - 3), and 
(2. - I) . Find the coordinates of the venices of the image 
(If T IIn<l p.r Ihp. malrix Irnn~fmrnali(ln <l...tinp.fl hy 

9. Let I be the counterclockwise rotation through 600 If T 
is the triangle defined in Exercise 8, find and sketch the 
image o f T under I. 

10. Let II be reflection with respect to the y-axis and let h 
be counterclockwise rotation through n / 2 radians. Show 
that the result of first perfonnin,l:: I2 and then II is not the 
same as first performing II and then performing h. 



II . · . [' '] Let A be the smgular matnx 2 4 and leI T be the 

triangle defined in Exercise 8 De.~cribe the image of T 
under the malrix transformation f: R~ -- R~ defined by 
/( 11) = A \ ', (See also Exercis! 21.) 

12. LeI f be [he malrix transformation defined in Example 5. 
Find and sketch the image oflhe rectangle wilh vertices 
(0.0). (I. 0). (I. I). and (0, \ ) for" = 2 and k = 3. 

13. Let f: R 2 ---I' R2 be the matrix lr3nSfomlation defined 
by /(11) = Av. where 

A = [~ -I] 
3 . 

Find and sketch the image of Ihe rectangle defined in 
Excrci~e 12. 

111 £.um:is/!,\" /4 (l1ll115, In f l. h. /J. and /4 be the/ollowillK 
I1llItrLr Irw/.'ijormatiolls: 

II : cQlllIlerr:/ockll"ise IV/lltian throltgh Ihe tII/gft' rp 
h: rt}l('el;o" Wilh respec//o the X-ttli.f 

h: reflee/ioll wilh respect/o the y-a.ris 

/4: "flee/iOlI \I"i,I, respect /0 lire lillt' )' = .r 

14. leI S denote the unit square. 

,h 
-J----+-, 

Determine two distinct ways to use the matrix transfor­
mations dcfincd on S to obtain thc givcn image. You may 
apply more than one matrix tr::msfomlation in ~ucccssion. 

(,) " 

______ -.~o"---___ x 
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(b) J 

- I a --r-----r-----x 

-I 

15. Let S denote the triangle shown in the figure. 

,. 
, 

---«---1--+:--+---+--- ., o -2 , 
- 2 

Dctermine two distinct ways \0 use the matrix transfor­
mations defined on S to obtain the given image. You may 
apply more than one matrix tr:msfomlalion in s ucce~sion. 

(11) )' 

, 
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16. Refer to the discussion following Example 3 to develop 
the double angle identities for sine and cosine by using 
the matr ix transformation jU{u» = A(A u). where 

and u =[:~l 
17. Use a procedure similar to the one discussed after Ex­

ample 3 to develop sine and cosine expressions for the 
difference of two angles: 01 - 02. 

El"erciIeI 18 Ihrollgh 21 require Ihe lue afsoftv.'(/re Ihalsllp ­
porls campUler gmphin·. 

.!. 18. Define a triangle T by identifying its vertices and sketch 
It on paper. 

(a) Reflect T about the y-axis and record the resulting 
figure on paper. as Figure I . 

(b) Rotate Figure I counterclockwise through 30 Q and 
record the resulting figure on paper. as Figure 2. 

(e) Reflect T about the line ), - x , dilate the resulting 
figure in the x-direction by a factor of 2. and record 
the new figure on paper. as Figure 3. 

(d) Repeat the experiment in part (c). but interchange 
the order of the matrix transformations. Record the 
resulting figure on paper. as Figure 4. 

(e) Compare Figures 3 and 4. 

(I) What does your answer in part (e) imply about the 
order of the matrix transformations as applied to the 
triangle? 

.!. 19. Consider the triangle T defined in Exercise 18. Record 
r on paper. 

(a) Reflect T about the x-axis. Predict the result before 
execution of the command. Call this matrix trans­
fonnat ion L I . 

(b) Reflect the figure obtained in part (a) about the y­
axis. Predict the result before execution of the com­
mand. Call this matrix transformation L2. 

.! . 20. Consider the unit sq uare S and record S on paper. 

(a) Reflect S about the x-axis to obtain Figure l. Now 
reflect Figure I about the J-a:ds to obtain Figure 2. 
Finally. reflect Figure 2 about the line )" = -x to 
obtain Figure 3. Record Figure 3 on paper. 

(b) Compare S with Figure 3. Denote the reflection 
about the x-axis as L I. the reflection about tlte y­
axis as L2• and the reflection about the line )" = -x 
as L ). What fonnula does your comparison suggest 
when L I is followed by L 2. and thell by L ) on S? 

(e) If Mi . i = l. 2. 3. denotes the matrix defining L;. 
determine the entries of the matrix M )M 2MI. Does 
this result agree with your conclusion in pan (b)? 

(d) Experiment with the successive application of these 
three matrix transformations on other figures. 

.! 21. If your complller graphics software allows you to select 
any 2 x 2 matrix to Ilse as a matrix transformation. per­
fonll the following e.~periment: Choose a singular ma­
trix and apply it to a triangle. unit square. rectangle. and 
pentagon. Write a brief summary of your experiments. 
observations, and conclusions. indicating the behavior of 
"singular" matrix transfonnations. 

.! 22. If your software includes access to a computer algebra 
system (CAS). use it as follows: Let feu ) = Au be the 
matrix transformation defined by 

and let 8(v) - Bl' be the matrix transformation defined 
by 

B ~ [COSOl - sin02] 
sin Ol COS02' 

(a ) Find the symbolic matrix B A. 

(b) Use CAS commands to simplify SA to obtain the 
matrix 

COS(OI + O2) • (e) Record on paper the figure that resulted from parts 
(a) and (b). .!. 23. 

[ 
COS(OI + O2) 

sin(OI + O2) 

- sin(OI + O2) ] 

Ie yuur ~unwan: indmks an:ess tu a (;UlTlpUler algebra 
system (CAS). use it as follows: Let feu ) = Au be the 
matrix transformation defined by 

(d ) Examine the relationship between the figure ob­
tained in part (b) and T. What single matrix trans­
fonnation L ) will accomplish the same result? 

(e) Write a formula involving L I • L2. and L ) that ex­
presses the relationship you saw in part (d). 

(I) Experiment with the formula in part (e) on several 
other figures until you can determine whether this 
fonnula is correc\. in general. Write a brief sum­
mary of your experiments. observations. and con­
clusions. 

[00'" A -- sinO 
- SinO] 

cos O . 

(a ) Find the (symbolic) matrix that deHnes the matrix 
tmnsformation jU(u». 

(b ) Use CAS commands to simplify the matrix obtained 
in part (a) so that you obtain the double an.ele iden­
tities for sine and cosine. 
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.!. . 24. Jf your software includes access to a computer algebra 
system (CAS), usc it as follows: Let feu ) = Au be the 
matrix transfonnation defined by 

(a) Find the (symbolic) m;ltrix tlwt defines the matrix 
transfoflll;l tioll fUUU( u )))). 

)' 

FIGURE 1.21 Length of \' 

°VEc--r-r---y 

FIGURE 1.22 Lengthof v. 

- Si ll O] 
cosO . 

(b ) Use CAS commmlds 10 simplify the matrix ob­
t;lined in part (a) so tlwt you obtain Ihe identities 
for sin(40) and cos(40). 

m Correlation Coefficient (Optional) 

As we noted in Section 1.2, we C;ln use an II-vector to provide a listing of dma. In 
this section we provide a st;ltistical application of the dot product to measure the 
strength of a linear relationship between two data vectors. 

Before presenting this application, we must note two addit ional properties that 
vectors possess: length (also known as magnitude) and dircction. Thcsc notions 
will be carefully developed in Chaptcr 4; in this section we merely give the prop­
erties without justification. 

The length of thc II -vcctor 

dcnotcd as Ilvll. is dcfined as 

Ilv ll = jv; + vi + ... + V;_t + v~ . (I) 

If /I = 2, thc definition givcn in Equation ( I) can be established casily as follows: 
From Fi gurc 1.21 wc see by the Pythagorean theorem that thc length of the directed 

line segment from the origin to the point (Vt . V2) is jvf + vi. Since this directed 

linc scgment represents the vector v = [~~ J. wc agree that II vll_ thc length of the 

vector v, is the length of the directed line segment. If II = 3, a similar proof can 
be given by applyi ng the Pythagorean theorem twice in Figure 1.22. 

It is easiest to determine the direction of an II -vector by defining the angle 
between two vectors. In Sections 5.1 and 5.4, we defi ne the angle () between the 
nonzero vectors u and \' as the angle dctermincd by the cxpression 

In those sections we show that 

" ·v cos(}= ---. 
1I " lI llvll 

" ·v - I < --- < I. 
- 1I " lI llvll -

Hcncc, this quantity can be viewed as the cosine of an angle 0 .:::: e .:::: Jr . 
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FIGURE 1.23 

We now tum to ollr statistical application. We compare two data II -vectors x 
and y by examining the angle B between the vectors . The closeness of cos B to 
- l or I measures how near the two vectors are to being parallel, since the angle 
between parallel vectors is either 0 or :rr radians. Nearly parallel indicates a strong 
re lationship between the vectors. The smaller I cosB I is, the less likely it is that the 
vectors are parallel, and hence the weaker the relationship is between the vectors. 

Table 1.1 contains data about the ten largest U.S. corporations, ranked by mar­
ket value for 2004. In addition, we have included the corporate revenue for 2004. 
All fi gures arc in billions of dollars and have been rounded to the nearest bil hon. 

Markel Vallie Revel/lie 
Corporation (in $ billiolls) (ill $ billiolls) 

General Electric Corp. 329 1S2 

M icrosoft 287 37 

Pfizer 285 53 

Exxon Mobile 27": 271 

Ciligroup 255 108 

Wal-MaI1 S tores 244 288 

Inte l [97 34 

American International Group 195 99 

IBM Corp. 172 96 

Johnson & Johnson 16 1 47 

Sml1r e: Time A{nllmac 2006. {nformatio" Plea"",·. Pea!!i;on Education. Boston. Ma.s .. 
200': and tmp:llwww.gcohivc.oom/chans. 

To display the data in Table I. [ graphically, we fonn ordered pairs, (Imrket 
value, revenue), for each of the corporations and plot this sel of ordered pairs. The 
display in Figure 1.23 is called a scatter plot. This di splay shows that the data 
are spread Ollt more veI1ically than hori zontally. Hence there is wider variability 
in the revenue than in the market value. 

300 

250 f-
200 

ISO 

100 

50 f- . 
• 

q,o 200 250 300 350 
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If we are interested onl y in how individual values of market value and revenue 
go together, then we can rigidl y translate (shift) the plot so that the pattern of poi nts 
does not change. One translation that is commonly used is to move the center of 
the plot to the origin. (If we thi nk of the dots representing the ordered pairs as 
weights, we see that this amounts to shifting the center of mass to the origin.) To 
perform this translation, we compute the mean of the market value observations 
and subtract it from each market value; similarly, we compute the mean of the 
revenue observations and subtract it from each revenue value. We have (rounded 
to a whole number) 

Mean of market values = 240. mean of revenues = [ 19. 

Subtracting the mean from each observation is called centering the data , and the 
correspondi ng centered data are displayed in Table 1.2. The corresponding scatter 
plot of the centered data is shown in Figure 1.24. 

Celltered Market Valu e Celltered Revel/ue 
(ill $ billiotls) (ill $ bilfifJ lls) 

89 

47 
45 

37 

15 

4 

- 43 

- 45 

- 68 

- 79 

33 

- 82 

- 66 

152 

- II 

169 
- 85 

-20 

- 23 

-72 

200 

150 

100 

50 

o 

- 50 

- 100 

C-

C-

- 100 -5{I 

. 

. 

FIGURE 1.24 

, . . -

. 
. 

-
. , 

o 50 100 

Note Ihat the arrangement of dots in Figures 1.23 and 1.24 is the same: the scales 
of the respective axes have changed. 

A scatter plot places emphasis on the observed data, not on the variables in­
volved as general entities. What we waJl\ is a new way to plot the information 
that focuses on the variables. Here the variables involved are market value and 
revenue, so we want one axis for each corporation. This leads to a plot with ten 
axes, which we are unable to draw on paper. However, we visualize this situation 
by considering 10-vectors, that is, vectors with ten componeJl\s, one for each cor­
poration. Thus we defi ne a vector v as the vector of centered market values and a 
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----~--o~ 

FIGURE 1.25 

vector W as the vector of centered revenues: 

89 33 
47 - 82 
4S - 66 
37 152 
15 - II 

v ~ 
4 

W = 
169 

- 43 - 85 
- 45 - 20 
- 68 - 23 
- 79 - 72 

The best we can do schematically is to imagine v and W as directed line segments 
emanating from the origin, which is denoted by 0 (Figure 1.25). 

The representation of the centered infonnation by vectors. as in Fi gure 1.25. 
is called a vector plot. From stati stics, we have the following conventions: 

In a vector plot, the length of a vector indicmes the variabili ty of the corre­
sponding variable. 
In a vector plot, the angle between vectors measures how similar the variables 
arc to each other. 

The statistical temlinology for "how similar the variables are" is "how highly 
correlated the variables arc:' Vectors that represent highly correlated variables 
have either a small angle or an angle close to JT radians between them. Vectors 
that represent uncorrelated variables arc nearly perpendicu lar; that is, the angle 
between them is near JT / 2. 

The following chan summarizes the statistical tenninology applied to the ge­
ometric characteri stics of vectors in a vector plot. 

Geometric Characteristics 

Length of a vector. 
Angle between a pair of vectors 

is small. 
Angle between a pair of vectors 

is near JT. 

Angle between a pair of vectors 
is near JT / 2. 

Statistical lllterprelatioll 

Variability of the variable represented. 

The variables represented by the vectors 
are highly positively correlated. 

The variables represented by the vectors 
are highly negatively correlated. 

The variables represented by the vectors 
are uncorrelated or unrelated. The 
variables are said to be perpendicular 
or orthogonal. 

From statistics we have the following measures o f a sample of data {X t, X 2, 

... . x"_t,x,, l: 

Sample size = n, the number o f data. 



FIGURE 1.26 
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" I>, 
Sample mean = x = ~,the average of the data. 

" 
Correlation coefficient: If the II-vectors x and y are data vectors where the 
data have been centered, then the correlation coefficient, denoted by Cor(x. y), 
is computed by 

x, y 
Cor(x. y) = WM' 

Geometrically, Cor( x . y) is the cosine of the angle between vectors x and y. 

For the centered data in Table 1.2, the sample size is 1/ = 10, the mean of 
the market value variable is 240, and the mean of the revenue variable is 1 [9. To 
determine the correlation coetTicient fo r v and w. we compute 

, · w 
Cor(v . w) = cos(} = ~ = 0.2994. 

and thus 

() = arccos(0.2994) = 1.2667 radians <::: 72.6°. 

This res ult indicates that the variables market value and revenue are not highly 
correlated. This seems to be reasonable, given lhe physical meani ng of the vari­
ables from a financial poi nt of view. Including more than the ten top corporal ions 
lLIay provide a bellel lilcaSUie of tilt: corrcl atioH between market valuc amI rC VCllue. 
Another approach that can be investigated based OR the scatter plots is to omit data 
that seem L1r from the grouping of the majority of the data. Such data arc termed 
outliers, and this approach has validity for certain types of statistical studies. 

Figure 1.26 shows scatter plots that geometrically illustrate various cases for 
the value of the correlalion coefficient. This emphasizes that the correlation coef­
ficient is a measure of linear relationship between a pair of data vectors x and y. 
The closer all the data points are to the li ne (in other words, the less scatter). the 
higher the correlation between the data. 

(a) Perfect posItive 
correlation: 
CUI\x.y)=I. 

(b) Perfect negative 
correlation: 
CUI ( X. )·) = - 1. 

(c) Less than perfect 
positive correlati on: 
OSCor( A.Y)S l. 

: . .-
':.;,. 
",.'''.: . ':.:: .... .... . ..... .... 

(d) Less than perft{;! 
negative correlat ion: 

- I:S Cor(x.y) S O. 
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• 

o 

~ . . ' • • •• ' .. 
'. 

FIGURE 1.27 

To compute the correlation coefficient of a set of ordered pairs (Xi . Yi) , 
i = l. 2 ..... 11. where 

we use the steps in Table I.J . The computational procedure in Table 13 IS called 
the Pearson product-moment correlation coerticient in statistics. 

TABLE 1.3 

I. Compute the sample means for each data vector 

" " L> L Y, 
_ ;=1 - .=1 
X~ --. ), = --. 

" " 
2. Determine the centered x-data and the centered y.data as the vectors x.- and y .. 

respectively. where 

- ]' Xn - x 

Y" =[YI- Y J2-)' -]' ),,, - J . 

J. Compute the correlation coefficient as 

The correlation coefficient can be an infonnati ve statistic in a wide variety of 
applications. However. care must be exercised in interpreting thi s numerical esti­
mation of a relationship between data. As with many applied situations, the inter­
relationships can be much more complicated than they are perceived to be at first 
glance. Be warned that statistics can be misused by confusing relationship with 
cause and effect. Here we have provided a look at a computation commonly used 
in statistical studies that employ dot products and the length of vectors. A much 
more detailed slUdy is needed to usc the correlation coefficient as part of a sct of 
information for hypothesis testing. We emphasize such warnings with the follow­
ing discussion, adapted from Misused Statistics, by A. J. Jaffe and H. F. Spi rer 
(Marcel Dekker. Inc .. l\ew York, 1987): 

Data involving divorce rate per toOO of popu lation versus death rate 
per 1000 of population were collected from cities in a certain region. 
Figure 1.27 shows a scatter plot of the data. This diagram suggests that 
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divorce rate is highly (negatively) correlated with death rate. Based on 
this measure of relationship, should we infer that 

(i) divorces cause death? 
(ii) reducing the divorce rate will reduce the death rate? 

Certainly we have not proved any cause-and-effect relationshi p: hence 
we must be carcflll to guard against statements based solely o n a nu­
merical measure of relationship. 

Perpendicular vectors 
Scatter plot 
Vector plot 
CorrelatedJuncorrelatoo variables 
Sample size 

Sample mean 
Correlation coefficient 
Outliers 

I. The data sets displayed in Figures A. 8, C, and D have 
one of the following correlation coefficients: 0.97, 0.93. 
0.88, 0.76. Match the figure with its correlation coeffi­
cient. 

by the 8-vectors x and y. respectively. where 

1 

1"1 ..... "~' 
.:~i· .. ·· 

• I." ..... 

, . '.' .' .' '\' 
• (~ i · .. ' • 

figure C. 

:. :.-: 
, , 

." . .. ., . ,'., 
, , , 

" 

" .... . ., .. .. ' ; ... ... 
; .. ' .. ' 

2. A meter that measures flow rates is being calibrated. In 
Ihis initial test. n = 8 flows ate sent to the meter and the 
correspondinj! meter readinj!s are recorded. Let the set 
of flows and the corresponding meter readings be given 

2 2 .1 

3 33 I 
4 

and 
3.9 

, ~ 

5 Y ~ 1 52 1 
6 

l"'J 
7 6.9 
8 7.7 

Cumpute the l:Urrdaliun l:oeITidenl between the input 
fl ows in x and the resllltant meter readings in y. 

3. An experiment to measure the amplitude of a shock wave 
result ing from the detonation of an explosive charge is 
conducted by placing recorders at various distances from 
the charge. (Distances are lOOs of feet.) A common ar­
rangement for the recorders is shown in the accompany­
ing figure. The distance of a recorder from the charge 
and the amplitude of lhe recorded shock wave are shown 
in the table. Compute the correlation coefficient between 
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Ihe distance and amplit ude data. 

8 
7 
6 
5 
4 
3 
2 
1 
O~-rt-t-~t-~~ 

-I 
-2 
-3 
-4 
-5 
-6 
-7 

-~g~-~7~_76-~5~-~4-~3~-~2~-~I~O~I~2~3~4~5~6~7~8 
• - Recorder C - Explosh'e charge 

DistallCl! Amplitllde 

200 12.6 

200 19.9 

400 9.3 

400 9.5 

SIlO 7.9 

SIlO 7.8 

500 8.0 

700 6.0 

700 6.4 

• Supplementary Exercises 

I. Determine the number of entries on or above the main di­
agonal of a k x k matrix when 

(a ) k = 2. (b) k = 3. (c) k = 4. (d ) k = II. 

2. LeIA=[~ ~l 
(a) Find a 2 x k matrix B f- 0 such that AB = 0 for 

k = 1.2.3.4. 

(b) Are your answers to pan (a) unique? Explain. 

3. Find all 2 x 2 matrices with real entries of the form 

4. An equal number oftlllo-parent families. each with three 
children younger than ten years old were interviC\>,ed in 
cities of populations ranging from 25 .000 to 75.000. In­
terviewers collected da ta on (average) yearly living ex­
penses for housi ng lrental/mortgage payments). food. 
and clothing. The collected living expense data were 
rounded to the nearest 100 dollars. Compute the corre­
lation coefficient between the population data and living 
expense data shown irl the following table: 

City Populatioll Average Yearly 
(ill JOoos) Livillg Expense (i/l $ JO()s) 

2S 72 

30 65 

3S 78 

40 70 
50 79 
60 85 
6S 83 

7S 88 

4. An fl x II matrix A (with real entries) is called a squart! 
rool of the!! x II matrix B (with rea l entries) if A2 = B. 

(a} Find a square fOOl of B = [~ : 1 
(b ) Find a square root of B = [~I o~ O~] 

(c) Find a square root of B = 14 , 

(d) Show that there is no square root of 

B=[~ ~]. 



5. LetA beanm x I/matrix. 

(a) Describe the diagonal e ntries of AT A in tenns of the 
columMof A. 

(b) Prove that the diagonal en tri e.~ o f A T A are nonnega­
tive. 

(e) When is AT A = O? 

6. If A is an /I X /I matrix, show that ( A1)T == (A r)t for any 
posit ive integer k. 

7. Pro" c Ihm c"cry symmetric upper (or lower) triangular 
matrix is diagonal. 

8. lei A be an /I x /I skew ~ymmel ri c matrix and x an /I . 

vector. Show that xT Ax = 0 for al l x in R". 

9. Let A be an upper triangular matrix . Show Ihal A is non­
. ingular ifand only if all the entrie~ on Ihe main diagonal 
of A are nonzero. 

10. Show that the product of two 2 x 2 ~ kew ~ymmelric ma­
trices is diagonal. Is th is true for I! x I! ~kew symmetric 
matrices with /I > 2? 

II. Prove that ifTr(A' A) = O. then A == O. 

12. For" x /I mmrices A and B. when does (A+B)(A - B ) == 
A2 _ B2? 

13. Develop a simple expression fo r the entries of A". where 
II is a positive integer and 

[

I , ] 
A = 0 ! . 

14. If B = PAP- I. express B!. BJ .. ... 8 1
• where k is a 

posi tive integer. in tenllS o f A, 1'. and 1,- 1. 

IS. Pro" e that if A is skew symmetric and nonsingular. then 
A- I is skew symmetric. 

16. lei A be an 11 x /I matrix. Prove thaI if Ax = 0 for all 
n x I malrices x. then A == O. 

17. Let A be an I! x II matrix. Prove that if Ax = x for all 

/I x I malrices x, then A == ' ". 
18. Let A and B be II X II matrices. Prove [h<lt if Ax = 8x for 

aliI! x 1 mmrices x.then A = 8 . 

19. If A is an II x 11 matrix, then A is called idempotent if 
A2 = A. 

(a) Verify [hat I" :lnd 0 are idempotent. 

(b) Find an idempotent matrix that is not I" or 0 _ 

(e) Prove that Ihe only /I x /I Do n.~ingular idempotent ma­
trix is I ". 

20. leI A and 8 be /I X /I ide mpolCnlma[rices. (See Exercise 
19.) 

(a ) Show that A 8 is idempotent if A 8 = 8 A. 
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(b) Show that if A is Idem(Kltent, then A T is idempotent. 

(e) Is A + B idempotent? J ustify your answer. 

(d) Find all values ork for which kA is also idempotent. 

21. leI A be an idempotent malrix. 

(a) Show [hat A" = A for all integers /I :: I . 

(b) Show that I~ - A is also idempotent. 

22. If A is an 11 x II mmrix , then A is called nilpottnt if 
Al = 0 for some positive integer k. 

(a) Prove that e\'ery nilpOh!nt matrix is singular. 

(b) v,,;ry 'h" A ~ [~ i ~ l ";IPO'''''. 
(c) If A is nilpotent, prove that In - A is nonsingu­

lar. [Hil1l: Find (/" - A)- I in the ca~es AI = O. 
k = 1.2 .. " and look for a p<lllern.] 

23. L<l , ~ [~J uc","''''''' ''''DC W '0 <hoc , . W 

1I + b + ,. + ll . If v is an /I -vector. what is w? 

24. Use the result from Elercise 23 10 develop a fonnula for 

'h' '''~go of ,ho " ,";" ;0 '" n ·,W", , ~ [f] ;0 

lenns o f a ralio of dot products. 

25. For an /I x /I matrix A, the main counlcrdiagonal elements 
are al ~ . It!._ I . ••.. a~l. (Note that It;j i .~ a main countcr di­
agonal elemem. provided that i + j == 11 + I .) Thc sum o f 
the main coomer diagonal elemenls is denoted Med(A). 
and we have 

Mcd(A) = L ll jl' 

Itj=-t l 

meaning the sum of all the e ntrie~ of A who~e subscripts 
add [ 011 + I. 
(3) Prove: Mcd(cA) = c Mcd(A), whcre c i~a realnum-

ho, 

(b) Prove: Mcd( A + B ) == Mcd(A) + Mcd (B). 

(c) Prove: M cd(AT) == Mcd (A). 

(d ) Show by example that Mcd( A8) need not be equal 
(0 Mcd (BA ). 

26. An II x /I matrix A is ca lled b lock diagonal if it can be 
panitioned in such a way that all lhe nonzero enlries are 
contained in square blocks All. 
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(a ) Partition the following matrix into a block diagonal 
matrix: 

(b) If A is block diagonal. then the linear system Ax = b 
is said to be uncouplcd. because it can be solved by 
considering the linear systems with coefficient ilia 
trices A u and right sides an appropriate ponion of 
b . Solve Ax = b by "uncoupling" the linear system 
when A is the 4 x 4 matrix of pan (a) and 

27. Show that the product of two 2 x 2 skew symmetric mao 
trices is diagonal. Is this true for I! x I! skew symmetric 
matrices w ith I! > 27 

28. Let 

be a block diagonal II x II matrix. Prove that if A II and 
An are nonsingular. then A is nonsingular. 

29. Let 

[
A" 

A~ 
o 

be a partitioned m<:ltrix. If A I and All are nonsingul<:lr. 
show that A is nonsingular and find <:In expression for A - I. 

III £Iercises 30 Ihmugh 32, X alld Y are I! x I lIIa/rice.I' whose 
ell/ries are XI •. fl ....• x", and YI. )'2, ...• Yo. re.lpeclil'ely. The 
aliter prodflct of X alld Y is the matrix pmdllcl X y r, which 

gil'e.f the II x II matrix 

[ 

',y, 
X2}' 1 

""YI 

"Y"] XlY" 

_f"~'O . 

30. (aJ Fonn the oUler prodUCI of X and Y. where 

(b) Form the oUler product of X and Y . where 

31. Prove or disprove: The outer product of X and Yequals 
the oUler product of Y and X. 

32. Prove that Tr (Xy r) = X f y . 

33. Let 

A -_ [:' , ,',] and B=[~ :l 
Verify that 

, 
AB = L oUler product of coli(A) with row;( B). 

;=1 

34. Let W be an II x I matrix such that Wf W = I . Theil XI! 
matrix 

H = 1" - 2W Wf 

is called a Householder' matrix. (Note that a House· 
holder matrix is the identity matri x plus a scalar multiple 
of an outer product.) 

(a) Show that H is symmetric. 

(b) Show that H - 1 = H f . 

ALSTON S. H OUSEIIOLDER 

• Alston S. Houselloldcr (1904-1993) was born in Rockford. Illinois. and died in Malibu. CJlifor· 
nia, He receivcd his undcrgraduate degree from Northwestern University and his Mastcr of Am frolll 
Cornell University. both in philosophy. He receivcd his Ph.D. in mathematics in 1937 from the Univer· 
sity of Chicago. His early werk in matocmatics dealt with thc applications of mathematics to biology. 
In 1944. he began 10 work on problems dealing with World War [I. [n 1946. hc became a member 
of the Mathematics Division of Oak Ridge National Labomtory and became its director in 1948. At 
Oal: Ridge. his imerests shiflCd from mathematical biology IC numerical analysis. He is best known 
for his many important comributions 10 the field of numerical linear algcbm. [n addition 10 his re· 
search. Houseoolder occupied a number of posts in professional orgal1ization~. served on a variety of 
ed itorial boards. and organized the important Gatlinburg conferences (now Imown as the Householder 
Symposia). which continuc to this day. 



35. A circulant of order I! is the 1! x n matrix defined by 

C, C, C; 

COl I " c, C, C,, _ I 

( ,, - 1 C, C, C,, _ 2 

l C, c, c, , , 
The elements of each row of C are the same as those in 
the previous rows. but shifted one position to the right and 

Chapter Review 

True or False 

I. A linear system of three equations can have exactly three 
different solutions. 

2. If A and B are II x I! matrice, with no zero entries. then 
AB 1= o. 

3. If A is an II x I! matrix. then A + AT is symmetric. 

4. If A is aJI II X I! matrix and X ISII x I. then Axisalinear 
combination of the columns of A. 

5. Ilomogeneous linear systems are always consistent. 

6. The sum of two II x I! upper triangular matrices is upper 
triangular. 

7. The sum of two /I x I! symmetric matrices is symmetric. 

8. If a linear sys tem has a nonsingular coefficielll matrix. 
then the system has a unique wlution. 

9. The product of two 1! x 1! nomingular matrices is nonsin­
gular. 

[0 0] . . 10. A 0 1 defines a matrix transfonnatlon that 

projects the vector [~ 1 onto the y-axis. 

Qui;[ 

I. Find all solutions 10 the following linear sys tem by the 
method of elimination: 

4x+3y=-4 
2{ - y= 8 
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wrapped around. 

(a) Fonn the circulant C = circ(l. 2. 3) . 

(b) Fonn the circulant C = circ( l. 2. 5. - I). 

(e) Fonn the circulant C = circ(l. O. O. O. 0). 

(d) Form the circulant C = circ{l. 2. I. O. 0). 

36. Let e = circ(ci. C1. C3) . Under what conditions is Csym­
metric? 

37. LetC=circ(cl.c2 .. . .. (". )andletxbethel! X I matrix 
of alJ ones. Determine a sllnpJe expression for ex. 

38. Verify that for C = circ(CI. ("2. ("3). eTc = ceT. 

2. Determine all val ues of r so that x = l. y = - I. : = r is 
a solution 10 the following linear system: 

x-2y +3: = 3 

4x + 5,.- z= - I 

6x + y + 5: = 5 

3. Detennine all values of (/ and b so that 

4. Let 

L ~ [; 
" 

[I 2][ 3 b] [-' 
(/ 0 - 4 I = 12 

o 
- 2 ~l 

1~1 

4 
- I 

o 

(a) Determine all values of (/ so that the (3 .2) entry of 
LV is 7. 

(h) f)elennine .111 va hlf"_~ of h ann (. ~n Ihal Ihe (2. 1) en_ 

tl)' of LV is O. 

5. Let u be a vector in R1 whose projection onlO the -I-axis 
is shown in the figure. Determine the entries of the \·ector 

". 
y 

-+-+-+--+-- , 
023 
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Discussion Exercises 

I. [n Section 1.5 we brieOy introduced recursion relations. 
We showed how the members o f thc Fibonacci sequence 
could be computed by using a matrix fonn. By succes­
sive matrix multiplication we were able to produce 2 x I 
matrices from which the mcmbers of the sequence could 
be extracted, An alternat ive approach is to derive a for­
mula that gCllerates any member of the sequence without 
computing the preceding members. For two- tenn recur­
SIon relatIOns of the form II ~ = alf~_ l + blln _ 2 we can 
derive such a formula by solving a 2 x 2 system of equa­
[ions as fo llows: Associated "ith this recursion relation is 
a quadratic polynomial of the lorm , ] = ar +b. called the 
characterist ic polynomi al of the recursion relat ion. Label 
Ihe roots of this po lyno mial as ' I and 1"2. with r l f- ' 2. 
Then it C,U1 be shown th:lt the general term of the recur­
sion rehl1ion li n can be cxprcsscd in the form 

(.) 

where the constants C I and Cl arc dctennined by solving 
Ihe system of equations generated by setting /I = 0 and 
then /I = I in (.) and using the ini tial values o f 110 and II I 

given to start the recursion relation. 

(3) Use this approach to fi nd a fonnula for the /lth memo 
ber of tbe Fibonacci sequence. 

(b) Since the members of the Fibonacci sequence are in· 
tegers, explain why the fa-mula from pan (a) is rather 
amazing. 

(e) Gi\'en the coefficiems (I and b o f a two- tenn recur­
sion relation of the fonn " . = alfn _ 1 + blln_ 2• con­
struct a general system of equations that can be used 
to detemline the value.. .. of the constants C I and C2 in 
(.), 

2. We can use a 3" by 5" index card to represent (a portion 
01) a plane in space. Take th ree such index cards and cut 
a slit in each o nc about halfway through the card along 
lhe 5-inch edge. Thc slit will ict you model in tersecting a 
pair of planes by passing the slit in one card through the 
slit in another card , Each card c:ln be represented by :In 
equation of the form 1Ij. .( + bt )' + t'j.~ = d l so that for 
.I: = I. 2. 3 we have :I system of threc equations in three 
unknowns. Using the index cards. configure them so that 
they represent four different consistellllinear systems and 
fo ur different inconsistent sY5tems. Sketch each config. 
umtion and provide a brief descript ion of your diagram. 
(H im: Th'o index cards placed cx:lctly one on top of the 
other represent the samc plane.) 

3. [n Section 1.3 we defined mallix multiplication: if the ma­
[rix A is III X P and the lTh'ltrix B is p X /I. then the product 

AB is an III x /I malnX , Here we inves tigate the special 
case where A is m x I and 13 is I x /I . 

Cal Fo, ,'" "'" m = 3 "d " = 4. ,,, A = [~] "d 

B = [3 4 6 - I). Compute AB and carefull y 
describe a pattern of the result ing entries. 

( IJ) E.\plaill why thc lc will Ix: a ruw uf £t:rm in AB if 
the III x I matrix A has a zcro entry and matri.\ 13 is 
I x /I , 

(c) Suppose that thc second cntry o f the 1/1 x I matrix 
A is zero. DcSCriDc a resulting pallem of zero> that 
appcnrs in A AT. 

(d) Let C be a 5 x 5 m:1trix with idc ntical colu mns. Ex­
plain how to genCTate C by using a product of:l5 x I 
nmtrix A and a I x 5 matrix 8 . (Explicitly indicate 
the cntries of A and IJ.) 

4. In Scctions 1,6 and 1.7 we introduced matrix transfor· 
mations for the manipulation of objects in the plane­
for example, dilntion, cont raction. rotation. refl ection. and 
shear. Another maniplJ lation is called translation . which is 
like sliding an obj ect over a ccnain distance. To translate 

the vector u = [;] in Ihe plane. we add :I fixed "ector 

a = [:~ ] to it. This x tion defines a function g mapping 

R~ to R~ gi\'cn by 

g(u) = U + &. 

The function g is called a translation by the vector &. Ex­
plain why trallslations are not matrix transfomlations for 

a f- [~l (Him: Use Excreise 20 in Section 1.6.) 

S. In C hapter I wc discus,~d systcms of linear equations in 
the pl :U1C nnd in space \0 hc lp connect geometry 10 the al· 
gebmic expressions for the systc ms. We observed that a 
paIr of lines III the plnne could havc zero. one. or infinitcl y 
many intcrscction points; similarly. for three planes in 
space. For nonlinear systcms of equations there can be 
many other sets of illtersection poinlS. 

(a) The sct of fUlletions )' = f(.() = x:!n. /I = J. 2. 3. 
. '. is the family of cven power fun ctions. DeH::ribe 

the set o f in tersection poinL~ for any pai r of fu nc tions 
in this family. 

(b) For the function ). = fIx) = x !. where x :: o. de­
tennine another fUllction )' = g(x) so tliat f and g 
interscct in exactly four points. 



6. People have long been intrigued by magic squares. In the 
past they were often associated with the supernatural and 
hence considered to have magical properties. Today they 
are ~t udied to illustrate mathematical properties and also 
as puzzles and games. We define II magic square as fol­
lows: A magic square is an 11 x I! matrix of positive inte­
gers such that the sum of the entries of each row. each col­
umn. ;md each main diagonal (sec Ihe diagram) is equal 
to the same (magic) constant K. 

" .... In main 

diagona~, d;::::: 
~um i ~ K 

slim slim 
is K sum sum slim i .~ K 

IsKisKis K 

A 3 x 3 magic squilre. 
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The matrix 

is a magic square with(magic) constant K = 15. (Verify.) 
For 3 x 3 and other small square m:lIrices A of positive 
integers. it is rather easy to check whether A is a magic 
square by observation. 

(n) For u 3 x 3 matrix A. construct II method to check 
whether A is a magic square by mult iplying A by 
particular matrices and by using an operation defined 
on matrices. Specifically indicate your strategy and 
Slate how each of the portions of the preceding defi­
nition are checked. 

(h) Briefly discuss how to generalize the technique you 
devise in part (a) to I! x I! matrices. 
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CHAPTER 

Solving Linear Systems 

m Echelon Form of a Matrix 

In Section 1.1 we discussed the method of elimi nation for solving linear systems, 
which you studied in high school, and in Section 1.3 we introduced the coeffi cient 
matrix and augmented matrix associated with a linear system. In this section we 
discuss operations on a matrix. which when appl ied to an augmented matrix can 
greatly simplify the steps needed to determine the solution of the associated linear 
system. The operations d iscussed in this section apply to any matrix, whether or 
not it is an augmented matrix. In Section 2.2 we appl y the constructions developed 
in this section to the solution of linear systems. 

DEFINITION 2.1 

An III X /I matrix A is said to be in reduced row echelon form if it satisfies the 
following properties: 

(a) All zero rows, if there are any, appear at the bottom of the matrix . 

(b) The first nonzero entry from the left of a nonzero row is a l. This entry is 
called a leading one o f its row. 

(c) For each nonzero row. the leadi ng one appears to the ri ght and below any 
leading o nes in preceding rows. 

(d) If a col umn contai ns a leading one, then all other entries in that column are 
zero . 

A matrix in reduced row echelon form appears as a staircase ("echelon") pat­
tern o f leading ones descending from the upper left comer of the matrix. 

An III x /I matrix sat isfying properties (a). (b). and (c) is said to be in row 
echelon form. In Definition 2.1 , there may be no zero rows. 

A similar definition can be formulated in the obvious manner for reduced 
column echelon form and column echelon form. 



EXAMPLE 1 

EXAMPLE 2 

DEFINITION 2.2 

2.1 Echelon Form of a Matrix 87 

The following are matrices in reduced row echelon form, since they satisfy prop­
erties (a), (b), (c), and (d): 

[~ 
0 0 

~] B ~ [~ 
0 0 0 - 2 

-n 0 
0 0 4 

A ~ 0 0 7 
0 

0 0 0 0 
0 0 

0 0 0 0 

ond 

[1200 1] 
C = OOI23. 

00000 

The matrices that follow arc not in reduced row echelon form. (Why not?) 

[~ 
2 0 

~l E ~ [~ 
0 3 n D ~ 0 0 2 - 2 

0 - 3 0 

F ~ [~ 
0 3 n G ~ [~ 

2 3 n - 2 I - 2 
2 0 

0 0 0 0 • 
The following are matrices in row echelon fonn: 

H ~ [~ 
5 0 2 - 2 

-~l [~ 
0 0 n 0 3 4 
I 0 

0 0 7 I ~ 
0 

0 0 0 0 
0 0 

0 0 0 0 

h[~ 
0 3 5 7 

Il 
0 0 0 - 2 
0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 • 

A useful property of matrices in reduced row echelon form (see Exercise 9) is 
that if A is an /I x /I matrix in reduced row echelon form =1= I". then A has a row 
consisting entirely of zeros. 

We shall now show Ihat every matrix can be put into row (column) echelon 
form, or into reduced row (column) echelon form. by means of certain row (col­
umn) operations. 

An elementary row (column) operation on a matrix A is anyone of the following 
operations: 
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EXAMPLE 3 

(a) Type I: Interchange any two rows (columns). 
(b) Type II: Multiply a row (column) by a nonzero number. 
(c) Type In: Add a multiple of one row (column) to another. 

We now introduce the following notation for elementary row and elementary 
column operations on matrices: 

• Interchange rows (columns) i and j, Type I: 

Replace row (column) i by k times row (column) i, Type ll : 

kri ...,.. r ; (kc;...,.. Cj). 

Replace row (column) j by k times row (column) i + row (column) j. 
Type III : 

kri + r j ...,.. r j (kc; + Cj _ Cj ). 

Using this notation, it is easy to keep track of the elementary row and column 
operations performed on a matrix. For example, we indicate that we have inter­
changed the ith and jth rows of A as Ar.-rr We proceed similarly for column 
operations. 

Observe that when a matrix is viewed as the augmented matrix of a linear 
system. the elementary row operations are equivalent, respectively, to interchang­
ing two equations, multiplying an equation by a nonzero constant. and adding a 
multiple of one equation to another equation. 

Let 

A ~ [~ 
0 -;] 3 0 
3 6 -9 

Interchanging rows I and 3 of A, we obtain 

B ~ A.,_., ~ [~ 
3 6 -9] 3 0 - 2 . 
0 2 

Multiplying the third row of A by t, we obtain 

C ~ A , ~ [~ 0 -;] 3 0 
3 1"]- r 3 

I 2 - 3 

Adding ( - 2) times row 2 of A to row 3 of A. we obtain 

o 
3 

- 3 
o 
6 
-;] . 
- 5 

Observe that in obtaining D from A, row 2 of A did lIot chollge. • 



DEFINITION 2.3 

EXAMPLE 4 

2.1 Echelon Form of a Matrix 89 

An 11/ X II matrix B is said to be row ({'olumn ) equivalent to an 11/ x /I matrix A 
if B can be produced by applying a finite sequence o f elementary row (column) 
operations 10 A. 

LeI 
2 

- 2 

4 
3 
2 

If we add 2 times row 3 of A to its second row, we obtain 

so B is row equivalent \0 A. 

2 

- 3 
- 2 

Interchanging rows 2 and 3 of B. we obtain 

so C is row equivalent \0 B. 

2 
- 2 
- 3 

Multiplying row I of C by 2, we obtain 

4 
- I 
- 3 

4 
2 

7 

8 
2 
7 

4 
7 
2 lJ. 

so D is row equivalent to C. It then follows that D is row equi valent to A, since we 
obtained D by applying three successive elementary row operations \ 0 A. Using 
the notation for elcmemary row operations, we have 

D = A2r3 +r2-r2" 
r 2 ~ r ) 
2r l - rl 

We adopt the convention lhallhc row operations arc applied in the order listed . • 

We can readily show (see Exercise [0) that (a) every matrix is row equivalent 
to itself; (b) if B is row equivalent to A. then A is row equi valent to B: and (c) ifC 
is row equivalent 10 Band B is row equivalent to A. then C is row equi valent to A. 
In view of (b). both statements " 8 is row equivalent to A" and " A is row equivalent 
to B" can be replaced by "A and 8 are row equivalent." A similar s tatement holds 
for column equi valence. 

Theorem 2.1 Every nonzero III x II matrix A = [{Ii i ] is row (column) equivalent to a matrix in 
row (column) echelon form. 
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EXAMPLE S 

Proof 

We shall prove that A i; row equivalent to a matrix in row echelon form. That is, 
by using only elementary row operations. we can transform A into a matrix in row 
echelon form. A completely analogous proof by elementary column operations 
establishes the result for column equivalence. 

We stan by looking in matrix A for the first column with a nonzero entry. Thi s 
column is called the pivot column; the first nonzero entry in the pivot column is 
called the pivot. Suppose the pivot column is column j and the pivot occurs in row 
i. Now interchange, if necessary. rows I and i, getting matrix B = [bij]. Thus the 
pivol b l j is =1= O. Multiply the fi rst row of B by the reciprocal of the pivot, that is, 

by I /b l j , obtaining matrix C = [ e ;J ]. Note that el j = I. Now if Chj, 2 S II :::: III, 

is not zero, then 10 row II of C we add - Ch j times row I: we do this for each value 
of II. It follows that the elements in colum n j, in rows 2. 3 . .. .. 11/ of C. are zero. 
Denote the resulting matrix by D. 

Next, consider the (m - I ) XI/ submatrix AI of D obtained by deleti ng the 
fi rst row of D. We now repeat this procedure with matri x A I instead of matrix A . 
Continuing this way, we obtain a matrix in row echelon form that is row equivalent 
10 A. • 

LeI 

[0 2 3 - 4 

J A ~ 
o 0 2 3 

C6J 2 - 5 2 

2~ - 6 9 
1'1101 wtumn ~ 1'1\01 

Column I is the fi rst (counti ng from left 10 ri ght) column in A with a nonzero entry. 
so column I is the pivot column of A. The first (counting from top to bottom) 
nonzero entry in the pivot column occurs in the third row, so the pivot is (lJI = 2. 
We interchange the fi rst and third rows of A, obtaining 

B ~ A"_,, ~ [~ 
2 - 5 2 n 0 2 3 
2 3 - 4 
0 - 6 9 

I I 
Multiply the first row of B by the reciprocal of the pivot, that is. by -

b ll 
2' to 

obtai n 

~ [~ 
, 

1 
-, 

° 2 3 
C = B!rl_ rl 

2 3 - 4 

° - 6 9 

Add (- 2) times the first row of C to the fourth row of C to produce a matrix D in 
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which the only nonzero entry in the pivot col umn IS d ll = I: 

D ~ c ", .. ,_" ~ [~ 
1 -, 1 

fl 
2 

0 2 3 

2 3 - 4 
- 2 - I 7 

Identify A I as the submatrix of 0 obtained by deleting the fi rst row of 0: Do 
not erase the first row of D. Repeat the preceding steps with A I instead of A. 

2 

-~ 2 

2 3-4 

o , 3 

-2 - \ 7 

-~ 2 

o 2 

- 2 - \ 

-2 

3 

7 

l ] 4 . 

3 

-~ 2 

o 
o 

- 2 

2 3 

2 3 

1 ] 
, 
4 . 

4 

Do (AI)r l_r l iOobtain 8 1. 



92 Chapter 2 Solving linear Systems 

Deleting the first row of DI yields the matrix A2. We repeal the procedure with 
A2 instead of A. No rows of A2 have to be interchanged. 

, 
2 - 2" 

o , - 2 1 , , 

-~ 2 

0 
, 

- 2 
, , , 

[ ~ 0 
, 

2 l Finally. do (C2)-2rj +rl-->r2 , 
C2 = to obtain D2. 

0 2 3 4 

-~ 2 

0 
, 

- 2 
, , , 

[ ~ 0 
, 

2 l D2 = 
, 

0 0 0 0 

The matrix 

" ~ [! - 2 ~l 0 
, , 

0 0 0 

is in row echelon form and is row equivalent to A. • 
When doing hand computations. it is sometimes possible to avoid fractions by 

suitably modifying the ,teps in the procedure. 

Theorem 2.2 Every nonzero 11/ x /I matrix A = [aij ] is row (column) equivalent to a unique 
matrix in reduced row (column) echelon form. 

Proof 

We proceed as in Theorem 2.1, obtaining matrix H in row echelon form thai is 
row equivalent to A. Suppose that rows I. 2 ..... r o f H arc nonzero and that the 
leading ones in these rows occur in colum ns Cj. C2 •. ..• Cr . Then CI < C2 < . < 
Cr. Staning with the last nonzero row of H. we add suitable multiples of this row 
to all rows above it to make all entries in column Cr above the leading one in row r 
equallo zero. We repcalthis process Wilh rows r - 1. r - 2 .... , and 2, making all 
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entries above a leading one equaito zero . The result is a matrix K in reduced row 
echelon fo rm that has been derived from H by elementary row operations and is 
thus row equivalent to H. Since A is row equivalent to H, and H is row equivalent 
to K. then A is row equivalent to K. An analogous proof can be given to show 
that A is column equivalent to a matrix in reduced column echelon form. It can be 
shown, with some difficulty, that there is only o ne matrix in reduced row echelon 
limn that is row equivalent to a given matrix. For a proof, see K. Hoffman and 
R. Kunze, Linear Algebra, 2d cd . (Englewood Cliffs, N.J.: Prentice-Hall, 197 t) . 

• 
Remark It should be noted that a row echelon form o f a matrix is not unique. 

Find a matrix in reduced row echelon form that is row equivalent to the matrix A 
o f Example 5. 

Solution 
We stan with the matrix H obtained in Example 5 in row echelon fonn that is row 
equivalent to A. We add suitable multiples o f each nonzero row of H to zero out 
all entries above a leading I. Thus, we start by adding (- ~) times the third row of 
H to its second row: -

[ 
, 

1] 
-, 

[) [) " J - H -
-, 

I - - ; r ) + r 2- r 2 - 0 
[) ; , 

[) [) [) [) 

Next, we add ~ times the third row of J 1 to its fi rst row: 

[' 
[) " 

1] 
, 

[) [) " J? - J . - -, 
- - ( "" ,,,,- ,, - ~ [) ; , 

[) [) 0 

Finally, we add (- I) times the second row of h to its first row: 

, ~",C , '" ~ [; 

0 0 9 

1] 
[) " -, 

; - 0 0 , 
0 0 [) [) 

This is in reduced row echelon form and is row equivalent to A. Alternatively, we 
can express the reduced row echelon fonn o f A as 

• 



94 Chapter 2 Solving linear Systems 

Remark The procedure given here fo r fi nding a matri x K in reduced row ech­
cion limn that is row equi valent to a given matrix A is not the only one possible. 
For example, instead of first obtaining a matrix H in row echelon form that is row 
equivalent to A and then transfonning H 10 reduced row echelon form, we could 
proceed as follows. First, zero out the entries below a leadi ng I and then immedi­
ately zero out the entries above the lead ing I . This procedure is not as efficient as 
the procedure given in Example 6. 

Row echelon fonl1 

Key Terms 
Elimination method 
Reduced row echelon form 
Leading one 

Elementary row (column) operation 
Row (column) equivalent 

Pivot column 
Pivot 

w,. Exercises 

l. Find a row echelon fonn of each of the given matrices. 
Record the row operations you perform. using the nota­
lion for elementary row operations. 

(a) A = n =; -n 
[ ; ~ =:] 

5 6 ~3 

- 2 - 2 2 

(b) A = 

2. Find a row echelon fonn of each of the given matrices. 
Record the row operations you perfonn. using the nota­
lion fOt demelHary row operal;olls. 

[ - I 
I - I 0 3] (a) A = - 3 4 I I 10 

4 - 6 - 4 - 2 - 14 

Ih) A~ H -4] - I 10 
3 - 12 

3. Each of the given matrices is in row echelon fonn. De­
lermine its reduced row echelon fonn. Record the row 
operations you perform. using the notation for elemen­
mry row operations. 

[~ 
2 

-n (a) A = I 

0 

Ih) A~[~ 
4 3 

-1] 0 I 

0 0 
0 0 

4. Each of the given matrices is in row echelon fonn. De-

5. 

tennine its reduced row echelon fonn. Record the row 
operations you perform. using the notation for elemen­
tary row operations. 

[~ 
0 - 3 

~] (. ) 
I 

A~ 
0 I 

0 0 

Ih) A~[~ 
3 0 2 

~] 0 
0 - I 

Find the reduced row echelon fonn of each of the given 
matrices. Record the row operations you perfonn . 
Ihe notation for elementary row operations. 

I' J A ~ H !-n 
(h) A ~ U ~ ~~] 

using 

6. Find the reduced row echelon fonn of each of the given 
matrices. Record the row operations you perfonn . uSing 
the notation for elementary row operations. 

(a) A = [-i =; -n 
[ ; ~ =:] 

5 6 - 3 
- 2 - 2 2 

(b) A = 

7. Let x. y . z. and w be nonzero real numbers. Label each of 



Ihe following matrices REF if it is in row echelon form. 
RREF if it is in reduced row echelon form. or N if it is 
[lot REF and not RREF' 

(a) [~
I 

[

I 

(e) ~ 

x 

1 

o 

o 
1 

o 
o 

)' 

o 
w 

o 
w 

o 
o 

x 

)' 

o 
o 

o 
o 
1 

o ~ ] 

x 

1 

o 
o 

)' 

o 
1 

o 
~] o 
1 
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10. Prove: 

(a) Every matrix is row equivalent to itself. 

(b ) If B is row equivalent to A . then A is row equi"alent 
to B . 

(c) If C is row equil'alent to Band B is row equil'alent 
to A. then C is row equivalent 10 A. 

II. Let 
2 - 3 
o 3 

1 2 

3 0 
-~]. 
-3 

8. Let x . y . ; . and w be nonzero rt!al numbers. Label each of 
the fo llowing matrices REF if it is in row echelon form. 
RREF if it is in reduced row echelon form. or N if it is 
[lot REF and not RREF: 

(a) Find a matrix in column echelon form that is column 
equivalent to A. 

(b) Find a matrix in reduced column echelon form that 
is col umn eq uivalent to A. 

9. 

[~ 
0 ;] [~ (a) 1 (b) 

0 

[~ 
) 

~] (e.) 1 
0 

x 0 

r] 0 1 
0 0 
0 0 

12. Repeat Exercise II for the matrix 

2 3 4 
3 - I 

2 4 lJ 
13. Determine the reduced row echelon form of 

Let A be an /I x II matrix in reduced row echelon form. 

[
cosO 

A~ SinO] Prove that if A of- In. 
of zeros. 

then A has a row consisting entire ly 
-sin O cos O . 

m Solving Lint!ar Systt!ms 

In this sectio n we use the echelon form s developed in Section 2. 1 to more effi­
ciently determine the solution o f a linear system compared with the elimination 
method o f Section 1.1 . Using the augmented matrix of a linear system together 
with an echelon form. we develop two me thods fo r solving a system o f III linear 
equations in /I unknow ns. These me thods take the augmented matrix of the linear 
system, perform e leme ntary row operations o n it, and obtain a new matrix that 
represents an equivalent linear system (i .e., a system that has the same solutions as 
the origi nal linear system). T he important poi nt is that the latter linear system can 
be solved more easily. 

To sec how a linear system whose augmented matrix has a particular fo rm can 
be read ily solve d . suppose that 

2 o i 3] 
I: 2 
I : - 1 o 

re presents the augmented matrix o f a linear system. The n the solutio n is quic kly 
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found from the corresponding equations 

xJ + 2x2 3 

X2 + X 3 = 2 

X3 =-1 

X 3 =-1 

x2= 2 - x3 = 2+1 =3 

XI = 3 - 2X2 = 3 - 6 = - 3. 

The task of this section is to manipulate the augmented matrix representing a given 
linear system into a form from which the solution can be found more easily. 

We now apply row operations to the solution of linear systems. 

Theorem 2.3 Let Ax = b and Cx = d be two li near systems. each of III equations in II un­
knowns. If the augmented matrices [A i b ] and [C i d ] arc row equivalent, then 
the linear systems are equivalent; that is. they have exactly the same solutions. 

Proof 

This follows from the definition of row equivalence and from the fact that the three 
elementary row operations on the augmented mmrix are the three manipu lations 
on linear systems. discussed in Section 1.1 , which yield equivalent linear systems. 
We also note that if one system has no solution, then the other system has no 
solution. • 

Recall from Section 1.1 that the linear system of the form 

(lIIXI + (/1 2X 2 + . . . + (/lnX " ~ O 

(l21 X I + (/ 22 X 2 + .. + 112"Xn ~ O 
(1 ) 

is called a homogencous system. We can also write (1 ) in matrix fo rm as 

Ax = 0. (2) 

Corollary 2.1 If A and C are row equivalent 11/ x /I matrices. [hen the homogeneous systems 
Ax = 0 and Cx = 0 are equivalent. 

Proof 

Exercise. • 
We observe that we have developed the essential features of two very straight­

forwa rd methods fo r solving linear systems. The idea consists of starti ng with the 
linear system Ax = b, then obtaining a partitioned matrix [C i d ] in either row 
echelon form or reduced row echelon form that is row equivalent to the augmented 
matrix [A ! b ]. Now [C ! d ] represents the linear systcm Cx = d. which is quite 
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simple to solve because of the structure of [c i d ]. and the set of solutions to thi s 
system gives prec isely the set of solutions to A x = b; that is. the li near systems 
Ax = b and ex = d arc equi valent. (See Section 1.1.) The method where [C i d ] 
is in row echelon fonn is called Gaussian elimination ; the method where [C i d ] 
is in reduced row echelon form is called Gallss' - Jordant reduction. Strictly 
speaking, the original Gauss-Jordan reduction was more along the lines descri bed 
in the preceding Remark . The version presented in thi s book is more effic ient. In 
actual practice, neither Gaussian el imi nation nor Gauss-Jordan reduction is used 
as much as the method involving the LU-factorization of A that is discussed in 
Section 2.5. However. Gaussian elimination and Gauss-Jordan reduction are fi ne 
for small problems, and we use the latter heavily in this book. 

Gauss ian e limination consists of two steps: 

Step 1. The transformation of the augmented matrix [ A b ] to the matrix 
[ C i d ] in row echelon fonn using elementary row operat ions 

Step 2. Solution of the linear system corresponding to the augmented matrix 
[ C i d ] using back substitution 

For thc case in which A i .~ n x n . and the linear system Ax = h has a IInillllc 
solution, the matri x [ C i d ] has the fo llowing form: 

'Carl Friedrich Gauss (1777- 1855) was bom inlO a poor working·class family in Brunswick.. Ger· 
many. and died in Gouingen. Gennany. the most famous mmhemmician in the world. He was ~ child 
prodigy with a genius that did nOi impress his father. who called him a ··,tar·gazer:· However. his leach· 
ers were impressed enough 10 arrange for the Duke of BrUlt~wick to provide a scholarship for Gauss 
at the local secondary sclKxll. As a teenager there. he made onginal discoveries in number theory and 
began to speculate about non-Euclidean geometry. His scienlific publications include irnportatt con· 
tributions in number lheory. mmhemat ieal astronomy. mathcmmieal geography. struistics. differenlial 
geometry. and magnetism. His diaries and private nOleS contum many OIher discol'eries that he never 
published. 

An austere. conservative man who had few friends and whose pril'me life was generally unhappy. 
he was very concerned that proper credit be given for scientific discoveries. When he relied on the 
resuhs of OIocrs. he was careful to acknowledge lhem: and wocn OIhers independcmly di,coI'ered 
rcsuhs in his private notes. he was quick to claim priority. 

In his research Gauss u.ed a method of calculation lhat later generations general ized to row re· 
duction of matrices and named in his honor. ahhough the method was used in China almost 200] years 
earlicr. 

tWilhelm Jordan (1842-1899) was born in southern Gennany. He anended college in Stungan 
and in 1868 becamc full prafes,or of geodesy at lhe technical college in Karlsruhe. Germany. He 
participaled in surveying several regions of Gennany. Jordan was a prolific wriler whose major work. 
H{mdb"d, der Va",ess'mgsA"n"~ (lI"'I{lbook of G~{}de£y). was translated into French. halian. and 
Russian. He was considered a superb writer and an excellent teacher. Unfortunately. the Gau,s-Jordan 
reduction method has been widely auributed to Camille Jordan ( 1838-1922). a well-knOl'iIl French 
mathematician. MorcOl'er. it seems that the melhod was also discol'Cred independently at the same 
time hy B. l. Clasen. 3 priest woo lived in Luxembourg. This biographical skeleh is based on an 
exeellem artiele: S. C. Allhorn and R. McLaughlin. "Gauss-Jordan reduction: A brief hi,tory:' MAA 
Monthly. 94 (1987). ]J0-1 42. 
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EXAMPLE 1 

cn c" CI II d, 

0 cn cb, d, 

0 0 0 e,,_11I dn_
1 

0 0 0 0 d" 

(The remaining cases are treated after Example I.) Thi s augmented matrix repre­
sents the linear system 

XI + e l2 x2 + CIJXJ + 
-'"2 + C2JXJ + 

+ c["x" = d l 

+ e2nx" = d2 

X,,_I + e,,_] "x" = d,,_l 
X" = dll " 

Back substitution proceeds from the nth equation upward, solving for one variable 
from each equation: 

The linear system 

X " = dll 

X,,_J = d,,_l - C,,_l/lX" 

Xl = {h - cnXJ - C24X4 - ... - [:a,X" 

XI = d l - ("12X2 - CIJXJ _ .. . - CI"X". 

\" + 2y + 1 :0 = q 

2x - y+ ::= 8 
3x - ;:=3 

has the augmented matrix 

2 3 
- I 
o - I 

Transforming thi s matrix to row echelon form, we obtain (verify) 

[C i d l ~ [OOI 2 ~ i ~]. 
o 1 : 3 

Using back substitution, we now have 

z = 3 

y= 2 -;:= 2 - 3= - 1 

x = 9 - 2)' - 3::; = 9 + 2 - 9 = 2: 

thus the solution is x = 2, y = - I, z = 3, which is unique. • 
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The general case in which A is III X /I is handled in a similar fashion, but we 
need to elaborate upon several situations that can occur. We thus consider ex = d, 
where C is III X II , and [C : d] is in row echelon form. Then. for example, [C : d] 
might be of the following form: 

", 'u (I" d, 

0 0 C24 C2" d, 

0 0 0 C{-ln dt _ 1 

0 0 d, 

0 0 tit+! 

0 0 dm 

This augmcntt:d Illatlix repl csents the linear system 

Xl + c12.t2 + clJx) + + clnx" = d l 

+ 

OXI + + 

XJ + C24 X4 + ... + c2!,x" = d2 

X,,_I + ct_l"X" = dt _ 1 

x" = d. 

+ Ox" = rhll 

+ Ox" = dm. 

First, if dH I = I, then ex = d has no sol ution, since at least one equation 
is not satisfied. [f dHI = 0, which implies that d k+2 = ... = tim = 0 (since 
[C i d ] was assumed to oc in row echelon form), we then obtain x" = (h, Xn_l = 
d._I - Ct_1 "x" = dt _ 1 - ct _J"dt and continue llsing back substillltion to lind the 
remaining unknowns correspondi ng to the leading entry in each row. Of course, in 
the solution some of the unknowns may be expre;sed in terms o f others thal can 
take on any values whatsoever. This merely indicates that ex = d has infinitely 
many solutions. On the other hand. every unknown may have a determined value, 
indicating that the solution is unique. 

LeI 

2 

1 
o 
o 

3 
2 

o 

4 5 
3 - I 
2 3 

2 
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EXAMPLE 3 

EXAMPLE 4 

Then 

X4 = 9 - 2X5 

X -, = 7 - 2X4 - 3X5 = 7 - 2(9 - 2x5 ) - 3X5 = - I I + X5 

X2 = 7 - 2xJ - 3X4 + X5 = 2 + 5X5 

XI = 6 - 2X2 - 3X3 - 4X4 - 5X5 = - I - IOx5 

X5 = any real num ber. 

The system is consistent, and all solutions arc of the form 

XI =- I - IOr 

x2=2+5r 

x3= - II +r 

X4 = 9 - 2r 

X5 = r, any real number. 

Since r can be assigned any real number, the given linear system has infinitely 
many solutions. • 

If 

[

I 2 
[C : d l~ 0 I 

o 0 

then Cx = d has no solution, si nce the last equation is 

which can never be sati; fied. • 
When using the Gauss- Jordan reduction procedure, we transform the aug­

mented matrix [A ! b ] to [C : d J, which is in reduced row echelon form. Thi s 
means that we can solve the linear system Cx = d without back substi tu tion. as 
the examples that follow show; but of course, it takes more effort to put a matrix 
in reduced row eche lon form than to put it in row echelon form. It turns out that 
the techniques of Gaussian elimination and Gauss- Jordan reduction. as described 
in this book, require the same number of operations. 

I f 

then the unique solution is 

o 0 0 5] 
O~~~8· 
o 0 

X I = 5 

X2 = 6 

X3 = 7 

X4 = 8. • 
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If 

[C i d l ~ [: 
2 0 

, 

~l 
- '2 

0 0 
, , 

0 0 0 0 

then 

where X2, X3, and Xs can lake on any real numbers, so the system has infinitely 
many solutions. Thus a solution is of the form 

xl = ~ - r - 2.1·+ ~f 

X2 = r 

.\:4 = 1- ~ t 

.1.'5 = t. 

where r, .f, and f arc any real numbers. • 
We now solve a linear system both by Gaussian elimination and by Gauss­

Jordan reduction. 

Consider the linear system 

.t + 2)' + 3z = (, 

2x - 3)' + 2z = 14 

3x + y - z = - 2. 

We form the augmented matrix 

2 
- 3 

3: 6] 
2 i [4 . 

- I : - 2 

Add (-2) times the fi rst row to the second row: 

[I 2 3 

~l A : b = 0 - 7 - 4 
[ ']-2r l +r!~".1 3 -I - 2 

Add (-3) times the fi rst row to the third row: 

[~ 
2 3 6] [A : b]-2r l +r2 - r 2 = - 7 - 4 2 . 

- 3r l+"3- r3 - 5 - 10 - 20 



102 Chapter 2 Solving linear Systems 

Multiply the third row by (- k) and interchange the second and third rows: 

[A i b l-", '" _ " ~ [~ 
-3rl+ r3 ~r3 0 
- ! r3 ~C) 
r 2 - T) 

Add 7 times the second row to the third row: 

[A i b l-", '" _ " ~ [DO' 
- 3r l+ r 3 - r ) 
- ! r3 ~r) 
r 2 - r ) 
7r 2 + r 3 ~ r ) 

Multiply the third row by1o: 

[A ibl _" , .. ,_" [00' 
- ) r l +r) - r ) 

! r j ' r j 
r2 _ r ] 

7' 2+ r3 - r3 
~ r3 - r ] 

2 

- 7 

2 

o 

2 

o 

3 
2 

- 4 

3 
2 

'0 

3 
2 

!]-
30 

Th is matrix is in row echelon form. This means that :: = 3, and from the second 
row, 

y +2:: = 4 

so that 
y = 4 - 2(3) = - 2. 

From the fi rst row, 
x +2)' + 3.;: = 6. 

which implies that 

x = 6 - 2)' - 3:: = 6 - 2(- 2) - 3(3) = I. 

Thus x = I, Y = - 2. and z = 3 is the solution . This gives the solution by 
Gaussian elimination. 

To solve the given linear system by Gauss- Jordan reduction, we transform the 
last matrix to [C i d ], which is in reduced row echelon form. by the following 
sTeps: 

Add (- 2) times the third row to the second row: 

2 

o 
Now add (- 3) times the third row to the fi rst row: 

2 

o 

o 
o -3] - 2 _ 

3 
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Finally, add (- 2) times the second row to the first row: 

[c : dl -" , + " ~,, ~ [~ 
- 3r ) +rl _r l 0 
-2r !+ r l _ rl 

o 
0: '] o i - 2 . 

: 3 o 

The solution is x = I. )' = - 2, and z = 3, as before. • 
Remarks 
I. As we perfonn elementary row operations, we may encounter a row of the 

augmented matrix being transfonned to reduced row echelon fonn whose first 
II entries are zero and whose II + I entry is not zero. In this case, we can stop 
our computations and conclude that the given linear system is inconsistent. 

2. In both Gaussian elimination and Gauss-Jordan reduction, we can use only 
row operations. Do not try to usc any column operations . 

• Applications 

Linear systems arise in a great many applications. In this section we look at several 
of these. 

Quadratic Interpolation 
Various approximation techniques in science and engi neering use a parabola that 
passes through three given data points {(XI . )'1) . (X2 . )'2) . (XJ . )'3»), where Xi "f= X j 

for i i= j. We call these distinct points, si nce the x -coordinates are all different. 
The graph of a quadratic polynomial p(x) = ax2+ bx + c is a parabola, and we use 
the given data points to determine the coefficients a, b, and c as follows. Requiring 
th:H p(l"i ) = Yi, i = I ; 2 , 1, gives liS three linear eqIllHi()n .~ with IInknown .~ fI, h , 
and c: 

p(XI) = YI 01 (lxf + bxl + c = YI 

p(X2) = Y2 01 (lxi + bX2 + c = )'2 (3) 

p(xJ) = YJ 01 (Ix] + bXJ + c = }'3 . 

Lei 

A ~ [:1 :: :, ] 
Xi XJ 

be Iheeocflk;eOl 1m";,. v ~ [~] mid y ~ [~l Thco (3) " " be WI;U," ;" 

matrix equation fonn as Av = y whose augmented matrix 

[A : Y] = [ :; :: 
Xi XJ 

, y,] 
Y2 . 

y, 
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EXAMPLE 7 

We solve this linear system by Gaussian elimination or Gauss- Jordan reduction, 
obtaining values fo r (1, h, and c. It can be shown that there is a unique solution 
to this linear system if and only if the points are distinct. The construction of the 
parabola that matches the points of the given data ret is called quadr atic interpo­
lation, and the parabola is called the quadratic interpolant. This process can be 
generalized to distinct data sets of /I + I points and polynomials of degree II. We 
illustrate the construction of the quadratic in the following example: 

Find the quadratic interpolant fo r the three distinct points {(I. - 5). (- I. I). (2. 7)} . 

Solution 
Setting up linear system (3), we find that its augmented matrix is (verify) 

- I 
2 

Solving this linear system. we obtain (verify) 

1 :-5] 
I: [ . 
1 : 7 

(1 = 5. h =-3. c =-7. 

Thus the quadratic interpolant is p(x) = 5)." 2 - 3x - 7. and its graph is given in 
Figure 2.1. The asterisks represent the three data points. • 

IU 

o 

-IU ~---C---cc---~---cc---~ 
FIGURE 2.1 - 2 -] 0 2 

EXAMPLE 8 

Temperature D is t r ibution 

A simple model for estimating the temperature distribution on a square plate gives 
ri se 10 a linear system of equations. To construct the appropriate linear system, we 
use the following information: The square plate is perfectly insu lated on iB lOp 
and bottom so that the only heat flow is through the plate itself. The fOU f edges 
are held at various temperatufes. To estimate the temperature at an interior point 
on the plate, we use the rule that it is the average of the temperatures at its fou r 
compass-point neighbors, to the west, north, east, and south. 

Estimate the temperatures T;, i = 1.2. 3.4, at the four equispaced interior points 
on the plate shown in Figure 2.2. 



100' 

0 
T , T, 

T, T, 

o , 

FIGURE 2.2 

Solution 
We now construcl the linear system to estimate the temperatures. The poi nts 
al which we need the temperatures of the plate for this model arc indicated in 
Figure 2.2 by dots. Using our averaging rule, we obtai n thc equations 

TI = 
60 + [00 + T2 +T3 

4TI - T, - T3 = 160 m 
4 

T2 = 
TI + 100 + 40+ T4 

- TI + 4T2 T4 = 140 m 
4 

TJ = 
60 + TI + T4 +0 

- T, + 4T,- T4 = 60 m 
4 

T4 = 
T3 + T2 + 40+0 

T2 - T3 + 4T4 = 40. m 
4 

The augmented matrix for this li near system is (veri fy) 

[Ai b l ~ [ =l 
- I - I 0 

160] 4 0 - I 140 
0 4 - I 60 . 

- I - I 4 40 

Using Gaussian elimi nation or Gauss- Jordan reduction. we obtain the unique so­
lution (verify) 

• 
Global Positioning System 
A Global Positioni ng System (O PS) is a satellite-based global navigation system 
enabli ng thc user to determine his or hcr position in 3-dimcnsional coordinates 
without the need for furt her knowledge of navigational calcu lations. It was de­
veloped by the military as a locati ng uti li ty. and the GPS system operated by the 
U.S. Department of Defense became o]Xrational in 1995. GPS technology has 
proven to be a useful tool for a wide variety of civi lian applications as well and is 
now available in low-cost units. These units have been incorporated into boats, au­
tomobi les, airplanes, and handheld units avai lable for general use such as hiking. 

GPS is based on satellite rangi ng. that is. calcu lating the distances between a 
receiver and the position of three or more satelli tes (four or more if elevation is 
desired) and then applyi ng some mathematics. Assuming that the positions of the 
satellites are known, the location of the receiver can be calculated by determining 
the distance from each of the satellites to the receiver. GPS takes these three 
or more known references and measured distances and "tri laterates" the position 
of the receiver. Trilateration is a method of detenni ning the relative position of 
an object, in this case, orbiting satell ites. For GPS calcu lations, there are three 
position variables, x, y, and ;:: , together with a fourth variable, t, time. Time 
must be considered, si nce the GPS receiver processes signals from the satell ites to 
determine the distances involved. Even though the signals move at the speed of 
light, there are small time delays fo r transmission, togethcr with other factors like 
atmospheric conditions, that must be accounted For to ensure that accurate data 
are gathcred. In this brief discussion of GPS we will use a simplified model to 
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( 

FIGURE 2.3 

show how linear systems of equations enter into the mathematics that is part of the 
clever model involved in GPS. 

For "real"' GPS, we need to think in terms of three dime nsions. In this con­
text each satellite is represented by a sphere. and we need four spheres so that 
the location of the receiver can be determined by computing an intercept of the 
spheres; that is, a single point of intersection of the spheres. For our discussion. 
we will think in two dimensions and considcr three satellites. each represented by 
a circle for which the coordi nates of the center arc known. We will assume that 
our GPS receiver can detcrmine the distance between its location and the position 
of the satellite: thus, the radius of each circle is also known. Then, algebrmcall y. 
we have the equations of three circles as shown in (4), where circle j has center 
(ll j. b j ) and radius r j forj = [, 2,3. 

(x - al )2 + (y _ 1J t}2 = r ~ 

(x - (2) 2 + (y - 1J2)2 = ri 
(x - a })2 + (y - /}J)2 = rf 

(4) 

By construction, the location of the GPS receiver is on the circumference of each 
circle. so we are guaranteed that there is point (x. y) that satisfies each equation 
in (4). It is this point lhat will provide the coordinates of the GPS receiver. In 
Figure 2.3 we illustrate the system of the (nonlinear) equations in (4). [Why is (4) 
not a system of linear equations?] 

A question that arises is, How do we solve the system of equations in (4). 
since they are not linear equations? The answer is, We fi rst expand each equation 
and then eliminate the terms that contai n x l and l by using algebra. In (5) we 
show the expansion of each of the equations in (4) ; note that x 2 and )'2 appear in 
each equation. 

X l _ lalx + 1I~ + >'" _ 2h l y + h~ = r~ 

x 2 
- 211 2X + ai + l- 2b2y+b~ = ri 

x l _ 2t/JX + aj + y2 - 2b3y+b~ = r] 

Now we rearrange each equation in (5) to obtain the expressions shown in (6). 

xl - 2tllx + af + i- 2bl)' +bi - rl = 0 

xl - 2a2x + ai + i- 2b2)' +bi - ri = 0 

x 2 
_ 2aJx + as + )'2 - 2b3)' + bj - rj = 0 

(5) 

(6) 

Next, set the left side of the fi rst equation in (6) equal to the leli side of the second 
equation in (6) and simplify. Do likewise for the second and third equations in (6). 
This gives the linear system in x and )' in (7). 

- 2t/IX + (I f - 2b l )' + b; - rf = - 2a2x + ai - 2b2)' + b5 - r1 
- 2t/Jx + af - 2b3 y + bj - rj = - 2a2x + ai - 2b2)' + IJ~ - r1 

(7) 

Finally. collect like tcrms in x and y to get the equations in (8). 

- 2(al - ( 2)x - 2(b l - b2»)' = ( r ~ - ri ) + (a - ail + (b~ - b~) 
- 2(a3 - (/ 2)X - 2(b3 - b2»)' = (r] - r1) + (a - aj) + (IJ~ - IJ ~) 

(8) 
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To simplify a bit funhcr, we multiply each equation in (8) by - I and show the 
matrix fomlll lation for Ihc resulting 2 x 2 system in (9). 

[
2({/.1 - (/2) 2(h J - b2 )] [x] _ [<r]: - ri) + (af - ai) + (hi - bD] (9) 
2(a, - (l2) 2(b) - b2 ) )' - (rj: - ri) + (aj - ail + (hi - hi) 

So, given the coordinates of the centers and the radii of the three circles, we can 
determine the location of the GPS receiver in the two-dimensional model. 

The coordinates of the centers and the radii of three circles arc shown in Table 2.1. 
The corresponding system of equations is given in (10) (verify), and its solution 
is x = 6 and }' = 10 (verify). Thus, the coordinates of Ihc GPS receiver in the 
two-dimensional system for these three circles is (6. (0). 

TABLE 2.1 

Circle Cet/ler Radills 

(-3.50) 41 

2 ([1.-2) 13 

J (13.34) 25 

[-28 104] [x] ~ [8.72]. 
4 72 Y 744 

(10) 

• 
Next we present an approach for GPS in three dimensions. In this case each 

o f the equations in the system that is analogous to those in (4) has the form 

(x - a j )2 + (y _ b J )2 + (z _ C ) 2 = (di stance from receiver to satellite j)2 
(II) 

for j = 1,2,3,4, where (a j ' b j , Cj ) is the position of the satellite j. The di stance 
from the receiver to satellite j is computed by measuring the time it takes the signal 
from satellite j to reach the receiver. The satellite contai ns a dock mechanism 
that sends the time the signal was sent to the receiver. and we let 1 be the time the 
signal was received . Since the signal travels at the speed of light. we can get a 
good approximation to the distance by using the basic formula distance = speed 
x elapsed time. Thus there arc now four unknowns: x. y, z. and t. We proceed 
algebraically as we did to get expressions that are analogous to those in (7) and 
(8). This will yield a system of three equations in fou r unknowns analogous to the 
system in (9). We solve this system for x,)" and z in terms of time t. To determine 
the unknown t, we substitute these expressions fo r x, y, and z into any of the 
equations in (1 1) and then solve the resulting quadratic polynomial for t. Filially, 
we usc the resulting value of t in the expressions for x. y. and z to determi ne the 
location o f the receiver in three di mensions. Th is approach uses a system that has 
infinitely many solutions and then cleverl y uses the underlying physical situation 
to determine the "free" variable t. 
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EXAMPLE 10 

The real-life situation is even more complicated than our approach outlined 
for the three-di mensional case. The sate llites arc contin ually moving, so their lo­
cations vary with timc. inherent errors in time calculations creep in, and a number 
of other facto rs introduce more inaccuracies. Highly accurate estimation of the 
receiver's position is beyond the scope of this course, but there are many books 
and di scussions on the Internet that provide more detailed information. We have 
presented a basic component of GPS calculations. namely, that li near systems of 
equations are involved . 

• Homogeneolls Systems 

Now we study a homogeneous system Ax 
knowns. 

o of III linear equations in r. un-

Consider the homogeneous system whose augmented matrix is 

[~ 
o 
o 
o 
o 

o 

o 

° 

o 
o 
I 

° 

3 : 0 2 i 0] 
410 
D i D 

Since the augmented matrix is in reduced row echelon fo rm, the solution is seen 
to be 

Xl = - 2r 

X2 = s 

XJ = - 3r 
X4 = - 4r 

,. 

where rand !i are any real numbers. • 
In Example 10 we solved a homogeneous system of III (= 4) linear equations 

in 1/ (= 5) unknowns, where III < 1/ and the augmented matrix A was in reduced 
row echelon form. We can ignore any row of the augmented matrix that consists 
entirely of zeros. Thus let rows 1.2 .. . . , r of A be the nonzero rows, and let the 
I in row i occur in collimn c;. We are then solving a homogeneous system of r 
equations in 1/ unknowns, r < 1/, and in this special case (A is in reduced row 
echelon fo rm) we can solve for X C1 • xq , ... . x c, in terms of the remaining 11 - r 
unknowns. Since the latter can take on any real values, there are infinitely many 
solutions 10 the system Ax = 0; in panicular, there is a nontrivial solution. We 
now show that this situation holds whenever we have III < n: A does not have to 
be in reduced row echelon form. 

Theorem 2.4 A homogeneous system of III linear equations in Il unknowns always has a non­
trivial solution if III < II, that is, if the number of unknowns exceeds the number 
of equations. 
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Proof 

Let B be a matrix in red uced row echelon form that is row equivalent to A. Then 
the homogeneous systems Ax = 0 and Bx = 0 are equivalent. As we have just 
shown, the system Bx = 0 has a nontrivial solution. and therefore the same is true 
for the system A x = O. • 

We shall usc this result in the fo llowi ng equi valent form : If A is 11/ X II and 
Ax = 0 has onty the trivial solution, then 11/ :::: II . 

Consider the homogeneous system 

The augmented matrix 

is row equivalent to (verify) 

x + y +z +w = O 
x + w = 0 

x + 2)' + z = O. 

A ~ [! 1 : 0] 
0 0 [ i 0 

2 0 : 0 

[~ 
0 0 

~l 0 - I 
0 

Hence the solution is 

x =-r 

)' = r 

;: =-r 

w = r. any real number . 

• Application : Chemical Balance Eqmttions 

• 
Chemical reactions can be descri bed by equations. The expressions on the left 
side are called the reactants, and those o n the ri ght side arc the products, which 
are produced from the reaction of chemicals on the left. Unli ke mathematical 
equations, the two sides arc separated by an arrow, either ...... , which indicates that 
the reactants form the products, or _, which indicates a reversible equatio n: that 
is, once the products are formed, they begin to fom reactants. A chemical equation 
is balanced, provided that the number of atoms of each type on the left is the same 
as the number o f atom; of the corresponding type on the right. In Example 12 
we illustrate how to construct a homogeneous system of equatio ns whose solution 
provides appropriate values to balance the atoms in the reactants with those in the 
products. 

Sodium hydroxide (NaOH) reacts with sulfuric acid (H2S0 4) to form sodium sul­
fate (Na2S04) and water (I·hO). The chemical equation is 

NaO H + H2S04 ...... Na2S0.l + H20. 
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To balance this equation, we insert unknowns, multiplying the chemicals on the 
left and right 10 get an equation of the form 

Next, we compare the number of sodium (Na), oxygen (0 ), hydrogen (H). and 
sulfur (S) atoms on the left side with the numbers on the right. We obtain fou r 
linear equations: 

Na: x = 2z 

0: x + 4y = 4z + w 

H: x + 2y = 2w 

S: }' = z 

Observe that we made usc of the subscripts because they count the number of 
alOms of a particular element. Rewriting these equations in standard form. we see 
that we have a homogeneous linear system in fou r unknowns: 

x - 2z ~ O 

x + 4y- 4z- w = O 

x + 2y - 2w = 0 

)' - , = 0. 

Writing this system in matrix form, we have the augmented matrix 

[1 
0 - 2 0 

: ~] 4 - 4 - I 
2 0 - 2 i 0 

- I 0 : 0 

The reduced row echelon fortn is 

[: 
0 0 - I 

~l 0 
, 

- 2" 

0 -t 
0 0 0 

and the solution is x = w, y = &w. and z two Since w can be chosen 
arbitrarily and we are dealing with atoms. it is convenient to choose values so that 
all the unknowns are positive integers. One such choice is w = 2, which gives 
x = 2, y = I. and z = I. In this case our balanced equation is 

• 
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• Relationship between Nonhomogeneous Linear Systems 
and Homogeneolls Systems 

Let Ax = b, b i= 0, be a consistent tinear system. If XI' is a particular solution 
to the given no nhomogeneous system and Xh is a solution to the associated homo­
geneous system Ax = 0, then x p + Xh is a solution to the given system Ax = b. 
Moreover, every solution x to the nonhomogeneous linear system Ax = b can be 
written as xl' + x", where xp is a particular solution to the given nonhomogeneous 
system and X h is a solution to the associated homogeneous system Ax = O. For a 
proof, sec Exercise 29 

• Solving Linear Systems with Complex Entries 

Gauss ian elimination and Gauss- Jordan reduction can both be used 10 solve linear 
systems that have complex entries. The examples that follow show how to solve 
a li near system with complex e ntries by usi ng these solution techniques. (For 
simplicity, we do not show the notation for row operations.) Funhcr ill ustrations 
and exercises are given in Appendix B.2. 

Solve the linear system 

by Gaussian elimination. 

Solution 

( I - i)x+ (2 + i)y = 2+2i 

2x + ( I - 2i»' = I + 3i 

The augmented matrix of the given linear system is 

2+i ! 2+2i]. 
1 - 2i : I + 3i 

To transfonn this matrix to row echelon form, we first interchange the two rows 
(to avoid complicated fractio ns), obtaining 

Multipl y the fi rst row by t: 

1 - 2i 
2+i 

! I + 3i] . 
: 2 + 2; 

1 - 2i!I + 3i] 
2 : 2 . 

2 + i : 2 + 2i 

Add - (I - i) times the first row to the second row: 

[~ 
1 - 2i 

2 
5 +5i 

2 
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EXAMPLE 14 

2 
Multiply the second row by --, ' 

5 +5, 

[~ 
1-2; 

2 

Then 
2; 

Y=5+5; 

Using back substitution, we have 

1+3; 1-2; 1 8 . 
x = -- - --y = - + - I (verify). 

2 2 5 5 

Solve the linear system whose augmented matrix is 

[~ 
2 
2; 
- ; 

by Gauss-Jordan reduction. 

Solution 
1 

Mult iply the fi rst row by -:- : 
• 

[~ 
2 
; 

2. 

- ; 

, 1 
MultIpl y the second row by 2;: 

1 - ; : 1 -2;] 
2 + ; : - 2 - ; 

I : - \ - ; 

1- ; : 1- 2; ] -- ,--
; : i 

2 + 1 i - 2+ 1 . 

1 : - I - i 

!...=..': i 1 -: U • . ' . 
2+; i - 2 +; 2i ! - 2-; - ' 

I i - I - i 

Add i times the second row \0 the third row: 

2 1 - i \ - 2i 
; ; 

0 
2 + i - 2+; 

2; ? ' _. 
U u 

4 + i 
2 

- 4 - i 
2 

• 
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Multiply the third row by (~), 4+ , 

2 

o 

1 - i 

2 + i 

2i 

1 ~2i 1 
- 2 + i 
--- . 

2i 

- I 

Add ( _ 2 ; i) times the thi rd row to the second row and 

third row to the first row: 

( I-i) - -i- times the 

[
120 2~3'] 
001 . 

o 0 - I 

Add (- ~) times the second row to the first row: 

[ ~ 0 ~ - :] 

o 0 - I 

Hence the solut ion isx = -3.y = I, Z = - I. • 
Key Terms 
Gaussian elimination 
Gauss- Jordan reduction 
Homogeneous system 

-u Exercises 

Back substitution 
QuaJratic interpolation 
QuaJratic interpolant 

I. Each of the given linear systems is in row echelon form. 
Solve the system. 

(a) x + 2y - z = 6 
y+z =5 

z =4 

(b)x -3y+ 4z+w =0 
z - w =4 

W= I 

2. Each of the given linear systems is in row echelon form. 
Solve the system. 

(a) x + y - z + 2w = 4 
w = 5 

(b) .{ - y + z = 0 
y +2z=0 

z =1 
3. Each of the given linear systems is in reJuceJ row eche· 

Ion form. Solve the system 

Global positioning system 
Chemical balance equations 

(a) x + y = 2 
z + w = -3 

(b) x = 3 
y =0 

z= ] 

4. Each of the given linear systems is in reJuced row eche· 
Ion form. Solve the system. 

(a) x -2z =5 
y + z =2 

(b) x = I 

Y =2 

5. ConsiJer the linear system 

x + y +2z= - 1 
x - 2)' + z = -5 

3x+ y + z= 3. 

z - w =4 
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(3) Find all solutions. ifany exist. by using the Gaussian 
eiimin<ltion method. 

(b) Find all solutions. if any exist. by using the Gauss-
10rdan reduction method 

6. Repeat Exercise 5 for each of the following linear sys­
tems: 

(a) x + y + 2z + 3w = 13 
x - 2y + z + w = 8 

3x+ y + z- w=1 

(b ) x + y + z = I 
x+y - 2z=3 

2x+y+ z =2 

(e) 2{ + y + z - 2w = 
3x - 2y + z - 6 w = - 2 
x+ y- z- w= - I 

6x + z- 9w= - 2 
5x - y + 2z - 8w = 3 

In £:ierciJeJ 7 IhIV1I8h 9, mll 'e tiIe linear Jp·tl'm. lI'ilh Ihe 
giro, " u8menled ",,,nix. if il is cmu·i.,lenl. 

[l 1 i 0] [: 
2 3 

~] 7. (a) 0 i 3 Cbl 1 
: 1 2 

U 
2 3 i 0] 

(d ) [: 
2 3 i 0] (e) 1 1 i O 

7 9 :0 2 I : 0 

[: 
2 3 n K (a ) 1 0 
0 2 

[~ 
1 3 -3 i 0] Cbl 2 -3 : 3 

° 2 - I i-I 

[j 
2 

1 i 7] 

[~ 
2 

~] 
0 I : 4 

1 

9. C' l 0 2 i 5 Cbl 
3 0 

2 3 i II 
2 

4 : 12 
4 

10. Find a 2 x I matrix x with entries not all zero such th<lt 

Ax = 4x. where A = [~ ~J 
[H illt: Rewrite the matrix equltion A x = 4x as 
4x - Ax = (4 /2 - A)x = O. and solve the homogeneous 
linear system.] 

II. Find a 2 x I matrix x with entries not all zero such that 

Ax = 3x. where A = [~ a 

12. Find a 3 x I matrix x with entries not all zero such that 

13. Find a 3 x I matrix x with entries not all zero such that 

14. In the following linear system. determine all values of a 

for which the resulting linear system has 

(a) no solution: 

(b) a unique solution: 

(e) infinitely many solutions: 

x+ y­

x + 2)' + 
z = 2 
z = 3 

x + y + (a 2 - 5)z = a 

15. Repeat Exercise 14 for the linear system 

-{ + y + 

2x + 3y + 
:=2 

2z = 5 

2x + 3y + (a 2 - l )z = a + I. 

16. Repeat Exercise 14 for the linear system 

x+ y+ 

x + 2)' + 
z =2 

z =3 

x + y + «(/ - 5)z = a. 

17. Repeat Exercise 14 for the linear system 

x + y = 3 
x+(a2 - 8) y =a. 

18. Let 

19. 

A=[: !] and x=['::l 
Show that the linear system Ax = 0 has only the trivial 
solution if and only if ad - be f- O. 

[
a b] Show that A = e d is row equivalent to 11 if and 

only if ad - be f- O. 



20. Let I : RJ -+ RJ be the matrix transfomlation defined 

21. 

22. 

by 

Lei f. R ~ ..... R ' be Il,e lIlal' ;). IJansfo"nat;oll defined 
by 

! ( [~] ) [=i -~ -mJ 
'",d 'Y."o'h.,,! m]) m 
Let I : RJ -+ RJ be the matrix transformation defined 
by 

-, 
2 

Find an equation relating (I , h. and e so that ..... e can al­
ways compute values of .1" , )', and ;: for which 

!([;]) m 
23. Let /: RJ -+ RJ be the matrix transformation defined 

by 

! ( [ ~ ] ) [ = ~ -~ -;] m 
Find an equ:ttion relating ( I , b, and c so th:tt ..... e can al­
ways compute values or.e y, ~nd z for which 

Exerr:;st's 14 lI/u/ 15 (1ft 0flliolla/. 

24, (8) FOnllUlate the de finiti ons of column echelon form 
and reduced column ecnelon form of a matrix . 

(b) Prove that every //I >( /I matrix is column equi,'aient 
10 a matrix in colunill echelon form . 
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25. Prove that every III >( /I matrix is column equivalent to a 
unique matrix in reduced column echelon form. 

26, Find an equation relating (I. b. and e so that the linear 
system 

x + 2,.-3z= (I 
h + 3)' + 3;: = b 

5x + 9),- 6:=e 

is consistent for any \alue.~ of ( I . b . and e that satisfy that 
cqumion. 

27. Find an equation relating tl , b, and e so that the linear 
sys tem 

2.1" + 2)" + 3z = tI 

3x- y+ 5z= b 
x - 3)' + 2z = c 

is consistent for any ,alues of (I, b. and e that sa tisfy that 
equation. 

28. Sho ..... that the homogeneous syMem 

(tl - r).f+ d),= O 

u+(b - r )y= O 

has a oolllrivial solution if aud only if r satisfi es the equa­
tion ((I - r)(b - r ) - etl = O. 

29, Let Ax = b . b =F o. be a consistent linear sys tem. 

(8) Show that if xI' is a p:ll"licular solution to the given 
nonhomogeneous system and x. is a solut ion to 
Ihe ass.x: ialcu hQlllogelloous system Ax = O. thell 
x,. +. is a solution to the given system Ax = b. 

(b) Show that cvery solution x to the nonhomogeneous 
linear system Ax = b can be wrillen as xl' + XA, 

..... here x,. is a palticular solution to the given nonho­
mogeneous system and Xh is a solution to the as.w­
dated homogenw u s system Ax = O. 

[Him: Let s = xr + (x - xl'). ] 

30. Determine the quadr •. tic in terpolant to each of the given 
d"ta sets. Follow the proced ure in Example 7. 

(a) (0.2). (1. 5) , (2, 14») 

(b) [(- 1. 2). (3 .14). (0, - I)) 

31. (CIt/CII/IIS Reqllired) Construct 11 linear system of equa­
tions to detcnlline a ~adrntic polynomial p (x) = ax2 + 
bx + c that s.1Iisfies the conditions 1' (0 ) = 1(0). 1" (0) = 
/,(0 ). and (/' (0) = 1"(0) , ..... here 1(.' ) = ... b. 

32, (Ca(ClI(lIs Reqllired) Co nstruct a linear system o f o!q ua­
tions to dc tenlline a qJadrat ic polyno mial p(x) = a., 2 + 
bx +c that sa tisfies the condi tions 1'(1 ) = / (1 ), p 't l) = 
/'( I). and (,"( I) = /"( I ), where lex) = -'1". - 1. 
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33. Determine the temperatures at the interior points Ti • 

i = l. 2. 3. 4 for the plate ,hown in the figure. (See 
Example 8.) 

30' 

50 , 
T, T, 

50' 

T, T, 

34. Determine the planar location (x. y) of a GPS receiver. 
using coordinates of the centers and radii for the three 
circles given in the following tables: 

(a) 

Circle Center Radius 

1 ( - I S. 2m 25 

2 (5.- 12) ]J 

3 (9.40) 4 1 

Ihi 

Circle Center Radills 

1 ( - 10. 13) 25 

2 (1 0. - 19) ]J 

3 ( 14.33) 4 1 

35. The location of a GPS receiver in a two-dimensional sys­
tem is (-4. 3). The data used in the calculation are given 
III the table. except that the mdius of the first circle is 
missing. Determine the value of the missing piece of 
data. 

Circle Cel/ltr Radills 

(- 16.38) 

2 (7. - 57) 6 1 

3 (32.80) 8S 

36. The location of a GPS receiver in a two-dimensional sys­
tem is (6. 8). The data used in the calculation are given 
III the table. except that the ndii of circles 1 and 2 are 
missing. Determine the values of missing pieces of data. 

Circle 

2 

3 

Cel/ter Radius 

(3 . 4) ? 

( 10.5) 

(18.3) 

? 

13 

37. Suppose you have a "special edition" GPS receiver for 
rwn_rl;m<".ns;nn~ 1 ~y~r~ms rhar cnrH.1;ns rhree ~peci~l hnr_ 

tons. I~beled C l. C2. and C3. Each button when de­
pressed draws a circle that corresponds to data received 
from one of three closest satellites. You depress bu\ton 
C I and then C2. The image on your handheld unit shows 
a pair of circles that are tangent to each other. What is 
the location of the GPS receiver"! Explain. 

38. Rust is formed when there is a chemical reaction between 
iron and oxygen. The compound that is formed is the red­
di sh brown scales that cover the iron object. Rust is iron 
oxide whose chemical formula is Fe, O,. So a chemical 
equation for rust is 

Balance this equation. 

39. Ethane is a gas similar to methane that bums in oxygen to 
give carbon dioxide gas and steam. The steam condenses 
to form water droplets. The chemical equation fIX this 
reaction is 

Balance this equation. 

III Exell"ise.l· 40 alld 41 .. w/l'e each gil't'1! linear system. 

40. (I - ;)x + (2 + 2i)y = I 
(I + 2i)x + (-2 + 2i)y = 

41. x +y =3 - i 
ix +y + ;;=3 

y + iz = 3 

III Exercises 42 alld 43. soll'e each lif!tlllr .I'ystem whose aug­
mented matrix is given. 

42. 

43. 

~ 44. 

[
I - , 

l +i 
2+2;: i] 

- 2 + 2; i -2 

- i i - 2+2i] 
-i 2 : - 2 
2 3i i 2i 

Determine whether the software you are using has acom­
mand for computing the reduced row echelon form of 
a matrix. If it does. experiment with that command on 
some of the previous exercises. 
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.!. . 45. Detennine whether the software you are using has a com­
mand for computing interpolation polynomials. given a 
set of ordered pairs. If it does. use the comm:md 10 de­
termine the quadratic interpolant for the data sets in Ex­
ercise 30. 

and then mark the data points on the graph. 

(b) For the data set {(D. 0). (I. I). (4. 2)}. generate the 
quadratic interpolant and graph it over the interval 
[0.4]. Print out the graph and then mark the data 
points on the graph. This data set is a sample of 
the function }" = I(x) = ,JX. Carefully sketch 
the graph of I on the printout. making sure it goes 
through the data points. Briefly discuss the error that 
wou ld be incurred if you were to evaluate the inter­
polant at x = 2 and x = 3 to estimate .Ji and ../3. 
respectively. 

.!. 46. Determine whether the software you are using has a 
graphing option as part of a command for computing in­
terpolation polynomials, or if there is an easy way avail­
able to graph the interpolant. If it does, use it as follows: 

(a) Generate the graphs fOJ the quadratic interpoiallls 
for the data sets in Exercise 30. Print outlhe graphs. 

DEFINITION 2.4 

EXAMPLE 1 

m Elementary Matrices; Finding A - t 

In this section we deve lop a method fo r finding the inverse of a matrix if it exists. 
To use this method we do not have to fin d out first whether A - t exists. We start 
to find A- t; if in the course of the computation we hit a certain situation, then 
we know that A-I docs not exist. Otherwise. we proceed to the end and obtain 
A _I. This method requires that elementary row operations of types I. n . and III 
(see Section 2.1) be performed on A. We clarify these notions by starting with the 
following definition: 

An II x /I elementary matrix of type I, type II, or type III is a matrix obtained 
from the identity matrix 1" by perfonning a single elementary row or elementary 
column operation of type I, type n. or type III. respectively. 

The l'allowing are elementary matrices: 

[~ 
0 

~] E, ~ [~ 
0 

~l E I = I - 2 
0 0 

[~ 
2 n [~ 

0 n E3= and E4 = 
0 0 

Matrix E t is oftypc I- we interchanged the fi rst and third rows of 1]; E2 is of 
type II- we multiplied the second row of 13 by ( - 2); E3 is of type HI- we added 
twice the second row of 13 to the first row of 13; and E4 is of type HI- we added 
three times the first column of h to the third column of h • 

Theorem 2.5 Let A be an m x 1/ matrix. and let an elementary row (column) operation of type I, 
type II , or type III be peri'anncd on A to yield matrix B. Let E be the elementary 
matrix obtained from 1m (1,,) by perl'arming the ~ame elementary row (column) 
operation as was performed on A. Then B = EA (8 = A E). 

Proof 

Exercise I. • 
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EXAMPLE 2 

Theorem 2.5 says that an elementary row operation on A can be achieved by 
premultiplying A (multiplyi ng A on the left ) by thc corresponding elementary ma­
trix E: an elementary column operation on A can be obtained by post multiplying 
A (multi plying A on thc ri ght) by the corresponding elementary matrix. 

LeI 

A ~ H 
3 2 

n 2 3 
0 

and let B = A-2T)+rj_r j : then 

[ - 5 
3 0 -3] 

B = -! 2 3 4 . 
0 2 

Now let E = (h)-2r3+' j-r j: then 

E ~ [~ 
() 

-~l I 
0 

We can readi ly verify that B = EA. • 
Theorem 2.6 If A and Bare 111 x /I matrices, then A is row (col umn) equi valent to B if and only if 

there exist elementary matrices E I . E 2 . .... El such that B = EkEk_ I · · · E2EIA 
( B = AEIE2···Ek_IEk)· 

Proof 

We prove only the theorem for row equivalence. H A is row equivalent to B, then 
B results from A by a sequence of elementary row operations. This implies that 
there exist eleme ntary matrices E I . E2 . . .. . El such that B = E •. Ek_1 ... E2EIA. 

Conversely, if B = EkEl _ 1 .. . E2EI A, where the E; are elementary matrices, 
then B results from A by a sequence of elementary row operations, which implies 
that A is row equivalent to B. • 

Theorem 2.7 An elementary matrix E is nonsi ngular, and its inverse is an elementary matri x of 
the same type. 

Proof 

Exercise 6. • 
Thus an elementary row operation can be "undone" by another elementary 

row operation of the same type. 

We now obtain an algorithm for finding A-I if it exists: first . we prove the 
following lemma: 
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Lemma 2. 1+ Let A be an II x II matrix and let the homogeneous system Ax = 0 have only the 
trivial solution x = O. Then A is row equivalent to In. (That is, the reduced row 
echelon form of A is I ii ') 

Proof 

Let B be a matrix in reduced row echelon form that is row equivalent to A. Then 
the homogeneous systems Ax = 0 and Bx = 0 are equivalent, and thus Bx = 0 
also has only the trivial solution. It is clear that if r is the number of nonzero rows 
of B, then the homogeneous system Bx = 0 is equivalent to the homogeneous 
system whose coefficieut matrix consists of the nonzero rows o f B and is therefore 
r x II. Since this last homogeneous system has onl y the trivial solution, we con­
clude from Theorem 2.4 that r :::: II. Since B is II X II, r .::: II. Hence r = II , which 
means that B has no zero rows. Thus B = I ii' • 

Theorem 2.8 A is nonsingular if and only if A is a product of elementary matrices. 

Proof 

If A is a product of elementary matrices E t , E2 . .... El , then A = EI E2 · ·· Et . 

Now each elementary matrix is nonsingu lar, and by Theorem 1.6. the product of 
nonsingular matrices is nonsingular; therefore, A is nonsingular. 

Conversely, if A is nonsingular. then Ax = 0 implies that A -I (Ax) = A -1 0 = 
0 , so I"x = 0 or x = O. Thus Ax = 0 has only the trivial solution. Lemma 2.1 
then implies that A is row equivalent to I ii' Thi s means that there exist elementary 
matrices E I. E2 •...• El such that 

III = ElEk_ t • ·· E2EIA . 

It then follows that A = (EtEt _ 1 ... E1E I)-t = El t E21 . . . E;:~IE;:I. Since the 
inverse of an elementary matrix is an elementary matrix. we have established the 
result. • 

Corollary 2.2 A is nonsingular if and only if A is row equivalent to In. (That is, the reduced row 
echelon fo rm of A is I ii ') 

Proof 

If A is row equivalent to I" . then I II = EkEk_I · ·· E2E IA, where E l . E2.. . Ek 
are elementary matrices. Therefore, it follows that A = Ell Ei l .. . E;:l . Now 
the inverse of an elementary matrix is an elementary matrix, and so by Theorem 
2.8. A is nonsingular. 

Conversely, if A is nonsi ngular, then A is a product of elementary matrices, 
A = EtEk_I ··· E2E 1. Now A = AI" = EtEt _ I ··· E2E l l,,, which implies that 
A is row equivalent to Iii ' • 

We can see that Lemma 2.1 and Corollary 2.2 imply that if the homogeneo lLs 
system Ax = 0, where A is II X II, has only the trivial solution x = 0, then A 
is nonsingular. Conversely, consider Ax = 0, where A is II X II, and let A be 
nonsingular. Then A -I exists. and we have A -I (A x) = A -\ 0 = O. We also have 
A-I (A x) = (A- 1 A)x = II/ x = x, so x = 0, which means that the homogeneo lLs 

• A lemma is a theorem tllat is establi sllcd for tile purpose of proving anOiocr tllcorcm. 



120 Cha pler 2 Solvi ng linear Systems 

system has onl y the tri-.. ial solution. We have thus proved the fo llowing important 
theorem: 

Theorem 2.9 The homogeneous system of /I linear equations in /I unknowns Ax = 0 bas a 
nontrivial sol ution if and only if A is singular. (That is, the reduced row echelon 
form of A t- In.) • 

EXAMPLE 3 LeI 

A = [~ ~] . 
Consider the homogeneous system Ax = 0; that is, 

The reduced row echelon fonn of the augmented matrix is 

[I 2: 0] 
o 0 : 0 

(verify), so a solution is 

x = - 2r 

y = r. 

where r is any real number. Thus the homogeneous system has a nontrivial .• olu­
tion, and A is singular. • 

[n Section 1.5 we have shown that if the n x /I matrix A is nonsi ngu[ar, then 
the system Ax = b has a unique solution for every /I x I matrix h. The converse 
of this statement is also true. (See Exercise 30.) 

Note that at this poi nt we have shown that the following statements are equiva­
lent fo r an /I x /I matrix A: 

I. A is nonsingu[ar. 

2. Ax = 0 has only Ihe trivial solution. 
3. A is row (column) equivalent to I". (The reduced row echelon form of ,\ is 

I" .) 
4. The linear system Ax = b has a uniq ue solution for every /I x I matrix b. 
5. A is a product of elementary matrices. 

That is, any two of these five statements are pairwise equivalent. For exam­
ple, statements I and 2 are equivalent by Theorem 2.9, while statements I and 3 
are equivalent by Corollary 2.2. The importance of these five statements bei ng 
equivalent is that we can always replace anyone statement by any other one on 
the list. As you will see throughout this book, a given problem can often be solved 
in several alternative ways, and sometimes one proced ure is easier to apply than 
another. 
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Finding A-I 

AI the end of the proof of Theorem 2.8, A was nonsingular and 

from which it follows that 

This now provides an algorithm for finding A -\. Thus we perform elemen­
tary row operations on A until we gel In: the product of the elementary matrices 
EkEk_ 1 . . . £2E\ then gives A-I. A convenient way of organizing the computi ng 
process is to write down the partitioned matrix [A i I,,]. Then 

That is, for A nonsingular, we transform the partitioned matrix [A i 1,,] to reduced 

row echelon form, obtaini ng [I" i A-I]. 

LeI 

Assuming that A is nonsi ngu lar, we fo rm 

2 
5 

2 

5 

I 
3 

iJ 

o 
o 

o 
I 
o 

We now perform elementary row operations that transfoml [A ! 13] to [13 i A-I]: 

we consider [A ! 13] as a 3 x 6 matrix, and whatever we do to a row of A we also 
do to the corresponding row of 13 . I.n place of using elementary matrices directly, 
we arrange our computations, using elementary row operations as follows: 
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A J, 

0 0 Apply -Sr i + rJ ....... r l ' 

0 2 3 0 0 

5 5 0 0 

0 0 Apply ~ r2 ........ r,. 

0 2 3 0 0 

0 0 - 4 - 5 0 

0 0 Apply -~ r3 -'> r l' 

0 
, 

0 
, 

0 j , 
0 0 - 4 - 5 0 

0 0 Apply -~ r3 + r 2 ....... f2 and 

0 
, 

0 
, 

0 
- l r]+ r-I -'> f l _ 

j , 
0 0 

, 
0 

, , -, 
0 

, 
0 

, 
Apply - I r,+ r j ........ rl ' -, , 

0 0 " 
, , 

-" , , 
0 0 

, 
0 

, , -, 
0 0 11 , _ 1 

" 
-, < 

0 0 " 
, , 

-" , i 

0 0 
, 

0 
, , -, 

Hence 

[ 
¥ -l] " , - 8 8" 

~ O - ~ 

We can readily verify that AA -J = A - 1 A = 13. • 
The question that arises at this point is how to tell when A is singular. The 

answer is that A is singular if and only if A is row equivalent to matrix B , having 
at [cast one row that consists entirely o f zeros. We now prove this resu lt. 

Theorem 2.10 An 1/ x /I matrix A is singu lar if and only if A is row equivalent to a matrix B 
that has a row of zeros. (That is. the reduced row echelon form of A has a row of 
zeros .) 

Proof 

First , let A oc row equivalent to a matrix B that has a row consisti ng entirely 
of zeros. From Exercise 46 of Section 1.5 , it follows that B is singular. Now 
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B = EJ: Ek_! ,·· EIA, where £\ . £ 2 .. .. . EJ: arc elementary matrices. If A is 
nonsingular, then B is nonsi ngular, a contradiction. T hus A is singular. 

Conversely, if A is singular, then A is not row equivalent 10 I,,, by Corollary 
2.2. Thus A is row equivalent to a matrix B i= I" , which is in reduced row echelon 
form. From Exercise 9 of Section 2.1 , it follows thai B must have a row of zeros . 

• 
Th is means that in order to find A-I, we do not have to determine, in advance, 
whether it exists. We merely start to calculate A-I; if at any point in the com­
putation we find a matrix B that is row equivalent to A and has a row o f zeros, 
then A -\ does not exist. That is, we transform the partitioned matrix [A : / ,, ] 

to reduced row eche lon form, obtaining [C i D]. If C = I", then D = A -t . If 
C f= I", then C has a row of zeros and we conclude that A is singular. 

Lei 

[l 2 -:] A ~ - 2 
- 2 - 3 

To fi nd A -I, we proceed as follows: 

A I ; 

2 - 3 I 0 0 Apply - lrl + r2 ---lo r2. 

I - 2 I 0 0 

5 - 2 - 3 0 0 

2 - 3 0 0 Apply - Sri + r) ---lo r). 

0 - 4 4 - I I 0 

5 - 2 - 3 0 0 

2 - 3 0 0 Apply - 3r2 + r} ....... r3. 

0 - 4 4 - I 0 

0 - 12 12 - 5 0 

2 - 3 0 0 

0 - 4 4 - I I 0 
[) 0 0 - 2 - 3 

Al this poillt A is !"Ow cl]uiyaltllt to 

[i 
2 

-~] B ~ - 4 
0 

the last matrix under A Since B has a row of zeros, we stop and conclude that A 
is a singular matrix. • 

In Section 1.5 we defined an II x /I matrix B to be the inverse of the II x /I 

matrix A if AB = I" and BA = 1". We now show that one o f these equations 
follows from the other. 
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I,) U 2 n Id) [l : n 
10. [n\'crt each of the following matrices. if possible: 

la) [ -1 
2 -3 

-i] [l n 3 -3 
Ib) 

0 
-2 2 

[: 
, 
n Id) [~ 

1 n 1 
0 

I,) 

II. Find Ihe inverse. if it exists. of each o f the following: 

[l I 

i] Ih) [! 2 - I 

1] I. ) 2 
- I 2 

3 3 

[j 3 1 j] [: 
2 

iJ I,) 
2 - I 

Id ) 3 

9 
0 

[: 
2 n I,) 3 

12. Find Ihe inverse. if il exis ts . of each of the following: 

A _ [i 2 

-jJ 
la) 

-2 0 
2 I 
3 2 

Ib) A ~ [j I 

j] 3 
2 - I 
9 

III Ererci.rex J3 (lml /4, I,ml'/' 111111 elleh gil'en IIlmrix A i~' 

IWII.ri/J !; II/ar (lII(/ II'rile;1 (/J {/ prodllcf oj elemel/fary matrices. 

(Him: First, wrile the il!l'er.l'11 (IS 1/ I!mduL'l of elemell/ary ma­
{rices: Ihell /l.I'e '{"/worelll 2.7.) 

13. A =[~ ~J 14. A = [~ ~ ~] 
1 03 

15. If A is a nonsingular malrix whose inverse is [~ ~l 
find A . 

16. IfA -'~ [: _I iJr."dA 
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17. Which or the following homogeneous systems luvc a 
no ntrivial solution'! 

(a) x +2y+3z=O 
2),+ 2:=0 

x + 2)' + 3: =0 

(b) 2x+ y- ;:= 0 
x - 2)' - 3;:=0 

-3.l - )'+ 2:= 0 

(c) 3.\'+ ),+3;:_0 
- 2.r +2)' - 4:= 0 

2.r-3),+5:= O 
18. Which of thc following homogeneous systems have a 

nontrivial solution'] 

(a) x+)'+2:=0 
2,r+y+ :=0 
3x -)'+:=0 

(b ) .r - y + ;: = 0 
2,'+ Y = 0 
h - 2y+2z= O 

(c) 2\' - y + 5;: = 0 
3x+ 2,,-3;:=0 
.r- ), +4:=0 

19, Find all value(s) of a for which the inverse o f 

I 0] o 0 

2 " 

exists, What is A- I? 

20. For what va lues of (I docs the homogeneous system 

«(I- I)X+ 2),=0 

2.l + (1/ - 1», = 0 

have a nontrivinl solution? 

21. Provc Ihat 

is nonsingular if und only if (ld - be", 0, If this condition 
holds. show thut 

[ 

d 

ad - bc 
A- I = _{' 

(Id -I)c 

- b ] atl - be 

" . 
(/(1 - be 
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22. Let 
J 
o 
2 

26. 

27. 

Let A be an m X II matrix. Show that A is row equil'alent 
toOifandonlyifA=O. 

Let A and B be III x II matrices. Show th;!t A is row 
equivalent to B if and only if AT is column equivalent to .'. 

Find the elementary matrix that as a postmultiplier of A 
performs the following elementary column operations on 
k 

28. 

29. 

Show that a square matrix which has a row or a column 
consisting entirely of zeros must be singular. 

(a) [s (A + B) - I = A - I + B - 1? 

(a) Mult iplies the third column of A by (-3). I 
(lI ) Is (CA)- I = _A - I? 

(b) Interchanges the second and third columns of A. 
30. 

c 
If A is an /I x II matrix . prove that A is nonsingular if and 
only if the linear system Ax = b has a unique solution 
for every /I x I matrix b . 

(c) Adds (-5) times the first column of A to the third 
column of A. 

23. Prove that two III x II matrices A and B are row equiv­
alent if and onl y if there exists a nonsingular matrix I' 
such that B = P A. (Him: Use Theorems 2.6 and 2.8.) ~ 

31. 

32. 

Prove that the inverse of a nonsingular upper (lower) tri ­
angular matrix is upper (lower) triangular. 

If the software you use has a command for computing re­
duced row echelon form. use it to determine whether the 
matrices A in Exercises 9, 10. and II have an inverse by 
operating on the matrix [A i I" J. (See Example 4.) 

Repeat Exercise 32 on the matrices given in Exercise 63 
of Section 1.5. 

24. Let A and B be row equivalelllll XI! matrices. Prove th;!t 
A is nonsingular if and only if B is nonsingular. 

25. Lt:l A <1m] B be II X I! m<llril.:t:s. Shuw lhal if A B is llUIl ­

singular. then A and B must be nonsingular. (H illt: Use 
Theorem 2.9.) 

~ 33. 

DEFINITION 2.5 

m Equivalent Matrices 

We have thus L1r considered A to be row (column) equi vale nt to B if B results 

from A by a finit e sequence of elementary row (column) o perations. A natural 

extension of this idea is that of considering B to arise from A by a finite sequence 
of elementary row 0/. elementary column operations . Thi s leads to the notion of 

e quivalence of matrices. The material di scussed in this section is used in Section 

4.9. 

If A and 8 arc two 11/ x /I matrices, then A is equ.ivalent to B if we obtain B from 

A by a finite seque nce uf elementary row o r elementary column operations. 

As we have seen in the case of row equivale nce, we can show (sec Exerci se 

I) that (a) every matri x is equivalent to itself: (b) if B is equivalent to A, th~n A 
is equivalent to 8; (c) if C is equivalent to 8 , and 8 is e q uivalent to A, then C is 
equivalent to A. In view o f (b), both statements "A is equivalent to 8" and " 8 is 

equivalent to A" can be replaced by "A and B are equivalent." We can also show 

that if two matrices arc row equivalent, then they :! re equivalent. (See Exercise 4.) 

Theorem 2. 12 If A is any nonzero 11/ x /I matrix, the n A is e qui valent to a partitioned matrix of 

the form 

[ ]' I, Orn-r 
Om_" O",_rn_r . 

t Here, 0 ,"_, is llle, x ,, - , zero malrix: similarty. 0 .. _" is the m - r X r zero matrix. etc. 
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Proof 

By Theorem 2.2. A is row equivalent to a matrix B that is in reduced row echelon 
form. Using elementary column operations o f type L we get B to be equivalent to 
a matrix C of the fonn 

where r is the number of nonzero rows in B. By elementary column operations of 
type III , C is equivalent to a matrix D o f the fo rm 

From Exercise I , it then follows that A is equivalent to D . • 
Of course. in Theorem 2.12, r may equal m. in which case there will not be any 

zero rows at the bottom of the matrix. (Whal hapIXns if r = II? If r = 11/ = II?) 
Recall from Section 2. [ that we introduced the following notation for elemen-

tary col umn operati ons: 

Lei 

Interchange columns i and j: Ci _ Cj 

Replace column i by k times column i: kCi ...... Ci 

Replace column j by k times col umn i + column j: kCI + Cj _ Cj 

2 

- 4 
- 2 

2 

5 
~~] . 
- 4 

To find a matri x of the form described in Theorem 2. 12. which is equivalent to A, 
we proceed as follows. Apply row operation - [ r l + r 2 _ r 2 to obtain 

[ -f 
2 -:] - 1 

- 4 - 2 
- 2 5 - 4 

[t 
2 -:] - 1 

- 3 3 - 3 
- 2 5 - 4 

[~ 
2 -:] 1 - 1 

- 3 3 - 3 
- 3 3 - 3 
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[~ 
2 -:] - I 

Apply - i r3 ........ r3. 
- 3 3 - 3 

D 0 D 

[~ 
2 

-l] - I 
Apply - l r2 + r ] ...... f l . 

- I 
D 0 

[~ 
2 

-~] 1 - I 
Apply - l r 2+ rj -+ rl · 

0 0 
D D 

[~ 
0 3 

-~] - I 
Apply - 1(' , + "3 -'> ('1 

0 0 
D 0 

[~ 
D 0 

-~] - I 
0 D 

Apply 2el + c, -+ c~. 

0 0 

[~ 
0 D 

~] - I 
0 0 

Apply h~ 2 + ('3 --+ ('3. 

D 0 

[~ 
0 0 

~] 0 
D 0 

Apply - lcz+c4 ........ C4. 

0 D 

[~ 
0 D 

~l 1 0 
0 0 
0 0 

This is the matrix desired . • 
The following theorem gives another useful way to look at the equivalcn~c of 

matrices: 

Theorem 2. 13 Two m x 1/ matrices A and B are equivalent if and only if B = PAQ for some 
nonsi ngular matrices P and Q. 
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7. Repeat Exercise 6 for 10. For each of the following matrices A. find a matrix 
B of- A that is equivalent (0 A: 

A ~ [~ 
- I 2 

1] - I 3 
- 3 7 
- I 

A ~ [~ 
- 2 3 

J (b) A=[~ :] (0 ) - I 4 
0 - 2 

2 3 4 
8. Let A be an III x Il m<llrix. Show that A is equivalent to 

o if and only if A = O. 
1<) A ~ [ ~ 

- I n 1 - 2 0 
3 2 0 

9. LeI A and B be III x" lIlall ices. Show that A is equivalent 
to B if and only if A T is equivalent to BT. 

II . Let A and B be equivalent square matrices. PlOve tlial A 
is nonsingular if and only if B is nonsingular. 

m LV-Factorization (Optional) 

[n this section we discuss a variant of Gaussian elimination (presented in Section 
2.2) that decomposes a matri x as a product of a lower tri angular matrix and an 
upper triangular matrix. This decomposition lends to an algorithm for solving 
a linear system Ax = b thai is the most widely used method on computers for 
solving a li near system. A mai n reason fo r the popularity of this method is that it 
provides the cheapest way of solvi ng a linear system for which we repeatedly have 
to change the right side. This type of situation occurs often in appl ied problems. 
For example, an electric utility company must determ ine the inputs (the unknowns) 
needed to produce some required outpllls (the right sides). The inputs and outputs 
might be related by a linear system. whose coefficient matrix is fixed. while the 
right side changes from day 10 day, or even hour to hour. The decomposition 
discussed in this section is also useful in solving other problems in linear algebra. 

When U is an upper triangular matrix all of whose diagonal entries are differ­
ent from zero, then the linear system Ux = b can be solved withollttransforming 
the augmented matri x [U i b ] 10 reduced row e::helon form or 10 row echelon 
form. The augmented matrix of such a system is given by 

[1 

UI2 Uu Ill' 

1122 Iln 112" 

0 U" 113 •. 

0 0 II n~ 

The sol ution is obtained by the followi ng algori thm' 

", X,, = -
/I ,,,, 

hu_1 - U"_I"X,, 
Xn_1 = 

11 ,,-1,,-1 

j -I 

hi - Lll jtX J: 

'] b, 

~: 

X j = --"=~''--­
II ii 

J = /l ./l - I. .... 2 .1. 
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This procedure is merely back substitution, which we used in conjunction 
with Gaussian elimi nation in Section 2.2, where il was additionally requi red that 
the diagonal entries be 1. 

In a similar manner, if L is a lower triangular matrix all of whose diagonal 
entries arc different from zero, then the linear system Lx = b can be solved by 
rorward substitution, which consists o f the following procedure: The augmented 
matrix has the fonn 

[' i 21 

e" 

e:d 
and the soluti on is given by 

b, 

e" 

0 
i22 

£]2 

£,,2 

b2 - l2 1X I 
X2 = 

j -I 

0 
0 

£33 

(113 

o 
o 
o "'] 

I"~ 

~: 

h j - L {j t X• 

x j = --c'-C'-'-­ejj j = 2 .. .. . 11. 

That is, we proceed from the first equation downward, solving for one unknown 
from each equation. 

We illustrate forward substitution in the following example: 

To solve the linear system 

5xI = 10 

4XI - 2.\"2 = 28 

2tl + 3X2 + 4X3 = 26 

we use forward substitution. Hence we obtain from the previous algorithm 

10 
XI = - = 2 

5 

28 - 4x I 
X2 = =- [0 

- 2 

26 - ill - 3X2 
X3 = 13, 

4 

which implies that the solution to the givcn lower triangu lar system of equations 
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EXAMPLE 2 

is 

x ~ [ - :~l 
• 

As illustrated in the di scussion at the ocginning of Section 2.2 and Example 
of this section, the ease with which systems of equations with upper or lower 

triangular coefficient matrices can be solved is quite attractive. The forwa rd sub­
stitution and back substitution algorithms are fast and simple to use. These a re 
used in another important numerical procedure fo r solving linear systems of equa­
tions. which we develop next. 

Suppose that an II x II matrix A can be written as a product of a matrix L in 
lower triangular form and a matrix V in uppcr triangular foml; that is, 

A = L V . 

In this case we say that A has an LV-factorization or an LV-decomposition . The 
LV-L1ctorization of a matrix A can be used 10 efficiently solve a linear system 
Ax = b . Substituti ng LV fu r A . we have 

(L V)x = b. 

or by (a) of Theorem 1.2 in Section 1.4, 

L (U x) = b. 

Letting Vx = z, this matri x equation occomes 

1.7. = h 

Since L is in [ower triangular form, we solve directly for z by forward substitution. 
Once we determine z, sinee U is in upper triangular fo rm. we solve Ux = z by 
back substilUlion. [n summary. iran /I x /I matrix A. has an LU- factori zation. then 
the solution of Ax = b can be detennined by a fOlWard substitution fo llowed by a 
back substitution. We illustrate this procedure in the next example. 

Consider the linear system 

6xI - 2X2 - 4X3 + 4X4 = 2 

3xI - 3X2 - 6X3 + X4 = - 4 

- 12Xt+8x2+21x)- 8x4= 8 

- 6x l - lOx ) + 7X4 = - 43 

whose coeffic ient matrix 

[ - I~ 
- 2 - 4 

-i] A ~ 
- 3 - 6 

8 21 
- 6 0 - 10 
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has an LU -factorization, where 

L ~ [ ; 

0 0 

~] [~ 
- 2 - 4 

-~] 1 0 
and U ~ 

- 2 - 4 
- 2 - 2 0 5 - 2 
- I 1 - 2 0 0 8 

(veri fy). To solve the given system using this LU-factorization, we proceed as 
follows l .cI 

[ 2] - 4 
b = 8' 

- 43 

Then we solve Ax = b by writing it as LU x = b. First. let Ux = z and use 
forwa rd substitution to solve L z = b : 

We obtain 

[-1 
-I 

o 
1 

- 2 

Zl = 2 

o 
o 
1 

- 2 

:2 = - 4 - ~ Z I =-5 

:J = 8 + 2Z1 + 2 Z2 = 2 

: 4 = - 43 + Z I - Z2 + 2zJ = - 32. 

Next we solve Ux = z, 

[~ 
- 2 - 4 
- 2 - 4 
o 
o 

-~] [;:] ~ [ -~] . 5 - 2 XJ 2 
o 8 X4 - 32 

by back substitution. We obtain 

- 32 
x4=-S-=-4 

2 + 2X4 
XJ = --5- = - 1.2 
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EXAMPLE 3 

Thus the sollllion to the given linear system is 

[ 
4.5] 6.9 

x = =!.2 . 
• 

Next, we show how to obtain an LV-factorization of a matri x by modifying 
the Gaussian elimination procedure from Section 2.2. No row interchanges will 
be pcnnitted, and we do nut require that the diagonal entries have value 1. At the 
e nd o f this section we provide a reference that indicates how to enhance the LV­
factorization scheme presented to deal with matrices where row interchanges are 
necessary. We observe that the only elementary row operation penni ned is the o ne 
that adds a multiple of one row to a different row. 

To describe the LiI-factori zation. we present a step-by-step procedure in the 
next example. 

Let A be the coefficient matrix of the linear system of Example 2. 

A ~ [ _ I~ 
- 6 

- 2 
- 3 

8 
o 

-4 4] - 6 I 
21 - 8 

- 10 7 

We proceed to "zero out" entries below the diagonal entries, using only the row 
operation that adds a mltltiple o f one row to a different row. 

Procedure Matrices Used 

Step J. "Zero out" below the first di-
agonal entry o f A. Add ( -~ ) times 

U, ~ [~ 
- 2 - 4 

-~] the first row of A to the second row - 2 - 4 
of A. Add 2 times the fi rst row of A 
to the third row of A. Add I times the 4 13 

first row o f A to the fou rth row of A. - 2 - 14 II 

Call the new resulting matrix VI. 

We begin building a lower triangular 
matrix L I with l 's on the main di-

L , ~ [ ; 

0 0 

~ ] 
agonal, to record thc row operations. 

U 
Enter the negati\'e.\· of the lIIultiplier.l· 

I used in the row operations in the fi rst - 2 • 
column of L I, below tbe fi rst diago- - I • • 
nal entry of L I. 

Step 2. "Zero out" below the second 
diagonal entry o f Vt. Add 2times the 

[~ 
- 2 - 4 

-~] second row of VI to the third row of 
V2 = 

- 2 - 4 
VI. Add (- 1) times the second row 0 5 - 2 
of "I to thc fOll rth row of "t- r.nll 0 -10 12 
the new resulting matrix V2. 
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Lower triangular matrix 
Upper triangular matrix 
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Enter the negatives of the multipli-

[-1 
0 0 

~ ] ers from the row operations below the 0 
second diagonal entry of L t- Call the 

L2 = 
- 2 

new matrix L 2 . - I * 
Step 3. ··Zero out" below the third 

[~ 
- 2 - 4 

-~] diagonal entry of V2. Add 2 times the 
V 3 = 

- 2 - 4 
third row of V2 to the fourth row of 0 5 - 2 
U2 • Call the new resulting matrix VJ. 0 0 8 

L , ~ [ ; 

0 0 

~ ] Enter the negative of the multiplier 0 
below the third diagonal entry of L 2 . 

- 2 Call the new matrix L}. - 2 
- I - 2 

Let L = L3 and U = V3. Then the product LV gives the original matrix A 
(verify). This linear system of equations was solved in Example 2 by using the 
LV-factOiizationjust obtaillcd. • 

Remark In general, a given matrix may have more than one LV-factorization. 
For example. if A is the coefficient matrix considered in Example 2, then another 
LV-factorization is LV. where 

o 0 
- I 0 

2 
- I - 2 ~] ond 

- I 
2 
o 
o 

- 2 
4 

5 
o -il 

There are many methods for obtai ning an LV-factorization of a matrix besides 
the scheme for storage of multipliers described in Example 3. It is important 
to note that if all = 0, then the procedure used in Example 3 fails. Moreover, 
if the second diagonal entry of VI is zero or if the third diagonal entry of V2 

is zero, then the procedure also fails. In such cases we can try rearrangi ng the 
equations of the system and beginning agai n or lIsing one of the other methods for 
LV -factorization . Mosl computer programs for LU -L1ctorization incorporate row 
interchanges into the storage of multipliers scheme and use additional strategies to 
help control roundoff error. If row interchanges are required, then the product of 
L and V is not necessarily A- it is a matrix that is a permutation of the rows of A. 
For example, if row interchanges occur when lIsing the Iu command in MATLAB 
in the fonn [L,U] = Iu(A), then MATLAB responds as follows: The matrix that it 
yields as L is not lower triangular, V is uppcrtriangular, and LV is A. 

Decomposition 
Back and forward substillllion 

LV -factorization (-decomposition) 
Siorage of mullipliers 
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.,. Exercises 

III £Tercises Ilhrough 4. suIre Ihe linear .1')'.1'11'//1 Ax = b wilir 
Ihe gil-ell LV-fa('/uriwliull of Ihe coejJicil'nl //Ialrix A. Su/l-e 
Ihe iinear syslem by lIsillg aforward .\'Ilb.I'lillllionfoilowed by 
a back suinlillllioll. 

U 
8 

I. A = 2 

2 

[ ~ 
0 

L~ -3 
- I 

[l 12 
2. A = 5 

[; 0 
L~ 2 

[ -~ 
3 

3. A = 
5 

- 6 
9 

I 2 

0 

L~ 
I 

l -~ 3 
3 

U ~ [~ 
3 

- I 

0 
0 

[ -: 
2 

4. A = 
- 6 
16 

20 10 

h 
0 
I 

L~ 
-3 

0 

U ~ [~ 
2 

- 4 
0 
0 

-H b{l] 
n U~ [~ 4 

2 

o 

-n [ -36] b ~ II . 

16 

n [~ 
3 -1] U~ - 2 
0 

0 

:] [=~] 3 
b ~ 

7 7 . 

5 21 

0 

~l 0 

2 ~J 
0 

] 3 
- 2 

0 

_!] b ~[_q I 
- 3 

4 -3 15 

0 

n 0 

- I 

I 

l] 2 

I 

0 

efficiem lIla/rix oflhe gil-en linear sy.I'lem Ax = b. Soire Ihe 
iillear .I'plem b)' using a forward .l"IIbSlillllion followed b)' a 
back subslillllioll. 

5. A = U 
6. A = - 12 [ - 3 

IS 

7. A = [; 
8. A=[ -~~ 

]0 

9. A = [ 2 

-~ 

10. A = 

[ 

~8 
- 1.6 

8 

3 In b ~ [In 5 
8 

-2 ] b ~ [i~] 10 -6 . 
13 12 

2 n b ~ [=;] 0 
2 

4 
27 

2 

o 
2 

o 
-2 

] 

o 
- 1.1 

2.2 

] 

0.6 
- 0.08 

1.52 

o 
0.25 
0.25 
0.3 

0.25 
1.25 
0.01 

- 0.6 

-05] ~2.6 

0.2 . 

- 1.3 

b ~ [ -~;; ] 
1.69 

-4.576 

.I. . II . In the software you are llsing, investigate to see whether 
there is a command for obtaining an LV -factorization of 
a matrix. If there is. use it 10 find the LV -factorization 
of matrix A in Example 2. The result obtained in your 
software need not be thai given in Example 2 or 3. be­
cause there are many ways to compute such a factoriza ­
tion. Also. some software does not explicitly display L 
and V. but gives a matrix from which L and V can be 
"decoded." See the documentation on your software for 
more details . 

!.. 12. In the software you are using. investigate to see whether 
there are commands for doing fOl .... :ard substitution or 
back substillltion. Experiment with the use of such com­
mands on the linear systems. using L and U from Exam-

III Etercises 5 Ihrough 10. find all LV-factoriZa/ion of Ihe co- pIes 2 and 3. 



• Supplementary Exercises 

I. leI 
-4 

1 
o 

Find a matrix B in reduced row e(;helon fonn lhal is row 
equivalent to A. using elementary matrices. 

2. Find all values of a for which the following linear syslems 
ha\'i.~ oolution.<:: 

(a) x + 2y + z = ,,1 

x+ y+3z= " 
3x + 4)' + 7: = 8 

(b) x + 2)' + Z = u2 

x+ y+3: =u 
3x + 4)' + 8::: = 8 

3. Find all values of" for which the following homogeneous 
syslem has nonlrivial solution,: 

( I - a)x 

- 'jy+~= O 

)' + ~ =0 

4. Find all va lues of a. b. and c so thaI the linear system 

IS consistent for 

o 2] - 2 
- IU 3 

5. Let A be an /I >( II matrix. 

(a) Suppose that the matrix IJ is obtained from A by 
multiplying the jth row of A by k i=- O. Find an 
elemenlary row operation that. when applied to B. 
gives A. 

(b ) Suppose th[ltlhe mmrix C is obtained from A by in­
terchanging the i lh :"md jlh rows of A . Find an e le­
mentary row opermioll thJt. when applied 10 C. gives 

" 
(e) Suppose that the matrix D is obtained from A by 

adding k time~ the j lh row of A to its ilh row. Find 
an elementary row operalion Ihal. when applied 10 D. 
gives A, 

6. Exercise 5 implies th:l t Ihe effecl of any elementary row 
operalion can be reversed by another (suilable) elemen­
mry row optrntion. 

(a ) Suppose Ihal Ihe mmrix E, is obtained from I. by 
m uhiplyinj! the j th row of In by k i=- O. Explain why 
EI is nonsingular. 

7. 

8. 
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(b) Suppose Ihm the matrix E~ is obtained from I. by in­
terchanging the jlh and j th rows of I •. Explain why 
E~ is nons ingular. 

(c) Suppose that the matrix EJ is obtained from I . by 
adding k times the j lh row of I. to its i th row. Ex­
plain why EJ is nonsingul:lr. 

Find [he inverse o f 

U 
Find Ihe inverse of 

" 1 
o 
o 

0 

o 

" 
1 

o 

~] 

9. A ~ part of a projcct. two ~tudent~ IIIU~ I detennine the in_ 
verse of a given to )< 10 matri x A. Each performs the 
required calcu lation. and they return their results AI and 
A) . respectively. to the instruclor. 

( 3 ) What muSI be true aboullhe IWO results? Why'! 

(b ) How does the inslruclor check their work without re­
peating the calculations'! 

10. Compute [he vector w for each of the following expres­
sions without computing the in\'erse of any matrix. given 
Ihal 

A~[A O -nc~[~;:] 

F ~[=l ~ n , ~U] 
(b) w = (F + 2A)C - l v 

II . Determine all values of ,I' so Ihm 

A ~ [~ , 
is nonsingular, 

12. Delermine aJJ values Of.f so tha i 

is nonsingular. 
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13. Show thai the matrix 

[

COSo 

- sinO 
sin 0 1 
cosO 

IS nonsingular. and compute its inverse. 

14. Let u and v be solutions to the homogeneous linear sys­
lem Ax = O. 

(3 ) Show that u + v is a solution. 

th) Show that u - v is a solution. 

(c) For any scalar r. show that r u is a solution. 

(d) For any scalars r and.l". show thai r u + .I"V is a solu­
tion. 

15. Show that if u and v are solutions to the linear system 
Ax = b. then u - v is a solution to the associ:lIed homo­
geneous system Ax = O. 

16. Justify Remark I following Example 6 in Section 2.2. 

17. Show that if A is singular and Ax = h. h '" O. has one 
>ululiuli. lht:n il has infinildy many. (H int: Ust: EAt:n:ist: 
29 in Section 2.2.) 

t.-.urcil"l!.\· 18 through 20 {ue mmenal from Sectioll 2.5. 

Chapter Review 

True or False 

I. Every matrix in row echelon form is also in reduced row 
echelon form. 

2. If the augmented matrices of two linear systems are row 
equivalent. then the systems have exactly the same solu­
lions. 

3. If a homogeneous linear system has more equations than 
lmknowns. then it has a nontrivial solution. 

4. The elementary matrix 

limes the augmented matrix [ fl. b ] of a 3 x II linear sys­
lem will interchange the first and third equations. 

5. The reduced row echelon fonn of a nonsingular matrix is 
l!I identity matrix. 

6. If A is II X /I. then Ax = 0 has a nOlllrivial solution if and 
only if A is singular. 

7. If an II x /I matrix A can be expressed as a product of 
elementary matrices. then A is nonsingular. 

18. Let A = [~ ~l L = [~ -~l and U 

Find scalars J and f so that LV = A. 

19. Let 

and 

2 
5 

I 

2 
o 

[
2 0 0] 
: o -~ 

Find scalars r, J. f. and p so that LV = A. 

20. Let A have an LV-factorization. A = LU. By impect­
ing the lower trianguhr m:lIrix L and the upper triangu­
lar matrix U, explain how to claim that the linear system 
Ax = LUx = h does not have a unique solution. 

21. Show that the outer product of X and Y is row equil'alen t 
either to 0 or to a matrix with II - I rows of zeros. (See 
Supplementary Exercises 30 through 32 in Chapter I.) 

8. The reduced row echelon form of a singular matrix has a 
row of zeros. 

9. Any matrix equivalent to an identity matrix is nonsingu­
lar. 

10. If A 
[A 

Quiz 

is /I X /I and the reduced row echelon form of 
I.] is [C : D]'then C = I" and D = A - I. 

I. Determine the reduced row echelon form of 

A~ [j I 

- 2 

2. After some row operations. the augmented matrix of the 
linear system Ax = b is 

[C i dl~[! 
-2 4 5 i -6l 

0 I 3 : 0 
0 0 0 i OJ 
0 0 0 : 0 

(.) Is C in reduced row echelon form? Explain. 

(h) How many solutions are there for Ax = b? 



(e) Is A nonsingular? Explain. 

(d) Determine all possible solutions to Ax = h. 

I 

- 2 
6 

~] is singular. 
k 

4. Find all solutions to the homogeneous linear system with 
coefficient matrix 

Discussion Exercises 

l. The reduced row echelon form of the matrix A is I). De­
scribe all possible matrices A. 

2. The reduced row echelon form of the matrix A is 

Find three different such matrices A. Explain how you 
determined your matrices. 

3. Let A be a 2 x 2 real matrix. Determine conditions on the 
entries of A so that A 2 = ' 2. 

4. An agent is on a mission. but is not sure of her location 
She carries a copy of the map of the eastern Mediterranean 
basin shown here. 

• ."" 

The scale for the map is I inch for about 400 miles. 
The agelll's handheld GPS unit is malfunctioning. btll 
her radio unit is working. The radio unit"s baltery is so 
low that she can use it only very briefly. Turning it on. 

Chapter Review 139 

5. lfA~ U 2 

6. Let A and B be II X II nonsingular matrices. Find nonsin­
gular matrices P and Q so that P A Q = B. 

7. Fill in the blank in the following statement: 
If A is ____ , then A and A r are row equivalent 

she is able to contacl three radio beacons. which give 
approximate mileage from her position to each beacon. 
She quickly records the following information: 700 miles 
from Athens. 1300 miles from Rome, and 900 miles from 
Sophia. Determine the agent's approximate location. Ex­
plain your procedure. 

5. The exercises dealing with GPS in Section 2.2 were con­
structed so that the amwers were whole numbers or very 
close to whole numbers. The construction procedure 
worked in reverse. Namely. we chose the coordinates 
(x. y) where we wallled the three circles to illlersect and 
then set out to find the centers and radii of three circles 
that would intersect at lhat point. We wanted the centers 10 

be ordered pairs of integers and the radii to have positive 
integer lengths. Discuss how to use Pythagorean triples 
of natural numbers to complete such a construction. 

6. After Example 9 in Section 2.2. we briefly outlined an ap­
proach for G PS in three dimensions that used a set of four 
equations of the fom} 

(x _ (1 )2 + (y _ b,)! + ( X _ Cj ) 2 = 

(distance from the receiver to satellite j )!. 

where the distance on the right side came from the ex­
pression "dis"llIce = speed x elapsed time:' The speed 
in this case is related to the speed of light. A ver) nice 
example of a situation such as this appears in the work 
of Dan Kalman (""An Underdetermined Linear System for 
GPS." The College Ma/hem(l/;CI' journal. vol. 33. no. 5. 
Nov. 2002. pp. 384-390). In this paper the distance from 
the satellite to the receiver is expressed in terms of the 
time I as 0.047(/ - satellite to receiver time), where 0.047 
is the speed of light scaled to ealth radius units. Thus the 
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four equation~ have the form 

(x - (I i )l + (y - hJ)l + (.:- ei )! = 
0,(}471

( , - stltellite j to receiver time)2. 

where (oJ. hi ' cJ) is the location of satellite j . for j = I . 
2. 3. 4. For the data in the next table. determine the lo­
cation (x. y . .:) of the G PS receiver on the sphere we call 
earth. Carefully discuss your ~teps. 

Sate/IiU Position Time it took the signal 
(ai ' hi> Cj ) to go f rom the satelliU 

/Q the CPS receiver 

( 1.2.0) 19.9 

2 (2, 0,2) 2.4 

J ( I. l. 1) 32.6 

4 (2 , 1. 0) 19.9 

7. In Gau~s ian elimination for a ~quare linear system with a 
nonsingular cocfficicnt matrix. we usc row operations to 
obtain a row equivalem linear ~ystem that is upper trian· 
gular and then use back substitution to obtain the solution. 
A crude measure of work invoh'ed counts the number o f 
multipli e~ and d ivides required to get the upper triangular 
fonn. Let us auume that we do not need to interchange 
rows to have nonzero pivots and that we wil l not require 
the diagonal entrie.~ of the upper triangular coefficient ma­
trix to be I's, Hence. we wi ll proceed by using only the 
row operation kr; + r) _ f i ror an appropriate choice 01 
multiplier k, In this situation we can gh'e an expression 
for the multiplier k that works for each row operation: we 
have 

entry to be eliminated 
k = . . 

pIVOt 
Since we are not making the ph'ots I. we must count a 
Jivision each time we use a row operation. 

(a) Assume that the coeffic ient matrix is 5 x 5. Deter­
mine the number of mul tiplies and divides required 
ro Obl(,, " it lOW cqui vah::m lincar SYSt<!1ll whos<! co­
e ffi cient nHltrix is upper triangu lar. Do not forget to 
apply the row operations to the augmented column. 

(h) Generalize the result from P;"IrI (a) to II x II linear sys­
tems. Provide a compact fonnula for the total num­
ber of mult iplies and divides required. 

8. (Network A llolysi.f) The central business area of many 
large citie~ i~ a network of one-way streets. Any repairs 
to these thoroughfares, clOSing for emergencies and acci­
Jents. or civic fu nctions disrupts the nonnal flow of traf­
IIc. For one-way street networks there is a simple rule: 

Vehicles entering an intersection from a street must also 
exit the intersection by another street. (We will assume 
that parking lot.~ and garJgc~ are located outside the net­
work.) Thus for each interscction we ha\'e an equilibrium 
equation or, put simply. an inputoCquals-output equ:lIion. 
After some data coll t!(:t ion involving entry and exil vol­
ume.~ at intersections. a ci ty traffic commission can con­
struct network model~ for trafflc flow pallems involving 
linear systems. TIw! fi gure shows a street network where 
the direction o f traffic fl ow is indicated by arrows and the 
average number o f vehicles per hour that enter or exit on 
a st reet appears near the street. 

200 300 

""" " 300 
A U 

100 

" .', " 

B .', 
JOO 

C 
100 

." 
200 100 

(a) For each interse~tion A through D. construct an 
input-equals-output equation. Then rearrange the 
equaliou~ M) you call wl ite Ihc,"yslem ill mat,iA fOlIn. 

using the coefficients of .fl in column I. those for .1'2 

in column 2. and so on. Dctennine the reduced row 
echelon foml for the augmented matrix and solve for 
the unknowns corresponding to leading I ·s. 

(b) Since each .f; ::: O. determine any restrictions en the 
unknowns. 

(e) Explain what happens in this model if the street from 
intersection H to C is c losed. 

9. Solve each of the fo llowing matrix (' 'Illations' 

(a) Ax = x + h, 

Wh'''A=[~::!] b=m 
(b) A x = A ~x + h, 

Wh'''A=[! 3 n b=[-:J 



CHAPTER 

Determinants 

m Definition 

Ln Exercise 43 of Section 1.3, we defined the trace of a square (1/ x 1/) matrix 
" 

A = [(I i) ] by Tr(A) = L a ii . Another very important number associated with 
; = 1 

a square matrix A is the determinant of A, which we now define. Determinants 
first arose in the solution of linear systems. Although the methods given in Chap­
ter 2 for solving such systems are more efficient than those involving determi­
nants, detenninants will be useful for our further study of a linear transformation 
L: V -,>- V in Chapter 6. First, we deal briefly with pennutations. which are used 
in our definition of determinant. Throughout this chapter. when we use the term 
matrix. we mean square matrix. 

DEFINITION 3.1 

Let S = {I. 2 ..... 1/) be the set of integers from I to 1/ , arranged in ascending 
order. A rearrangement jl h ... j " of the elements of S is called a permutation of 
S. We can consider a permutation of S to be a one-to-one mapping of S onto itself. 

To illustrate the preceding definition, let S = {l. 2. 3. 4J. Then 423 1 is a 
permutation of S. It corresponds to the function f: S -,>- S defi ned by 

[(1) ~ 4 

[(2) ~ 2 

[(3) ~ 3 

[(4) ~ I. 

We can plll anyone of the 1/ elements of S in first position, anyone of the 
remaining 1/ - I elements in second position. anyone of the remaining 1/ - 2 
clements in third position. and so on until the nth position can be filled only by the 

141 
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EXAMPLE 1 

FIGURE 3 . 1 

EXAMPLE 2 

EXAMPLE 3 

EXAMPLE 4 

EXAMPLE S 

DEFINITION 3.2 

last remaining clement. Thus there arc 11(11 - 1)(11 - 2)·· · 2· I = II! (II fac torial) 
permutations of S; we denote the set of all pennutations of S by S" . 

Let S = (1. 2, 3) . The set S3 of all permutations of S consists of the 3! = 6 
permutations 123, 132,213, 23 I. 312, and 321. The diagram in Figure 3. I(a) can 
be used to enumerate all the permutations of S. Thus. in Figure 3.I(a) we start 
out from the node labeled I and proceed along one of two branches, one leading 
to node 2 and the other leading to node 3. Once we arrive at node 2 from node I, 
we can go only to node 3. Si milarl y, once we arrive at node 3 from node I, we 
can go onl y to node 2. Thus we have enumerated the pcnnutfltions 123. 132. The 
diagram in Figure 3.1 (b) yields the permutations 213 and 231, and the diagram in 
Figure 3.1 (c) yields the pennutations 312 and 321 

2~3 1~3 1~2 
,II, ,I I, ,II, 

('l (b) «l 

The graphical method illustrated in Figure 3. 1 can be generalized toenumerate 
all the permutations of the set ( 1.2 . . .. . II) . • 

A permutation jd2 . . . j" is said to have an inversion if a larger integer, j" 
precedes a smaller one. j • . A pennutation is called even if the total number of 
inversions in it is even. or odd if the total number of inversions in it is odd. If 
II ::: 2, there are 1I! / 2 e\ien and 1I! / 2 odd permutations in S" . 

St has onl y I! = I permutation: I, which is even because there are no inversions. 

• 
S2 has 2! = 2 pennutations: 12, which is even (no inversions), and 2 1. which is 
odd (one inversion). • 

In the pennutation 43 12 in S4, 4 precedes 3, 4 precedes 1,4 precedes 2. 3 precedes 
I, and 3 precedes 2. Thus the total number of inversions in this pennutation is 5, 
and 43 12 is odd. • 

S3 has 3! = 3·2· I = 6 permutations: 123,23 1, and 312, which arc even. and 
132,2 13, and 321, which are odd . • 

Let A = [aij ] be an 11 x II matrix. The determinant fu ncti on, denoted by J et , is 
defined by 

det(A) = L (±)atjI 1l2h. .. . a"jn ' 

where the summation is over all permutations jt j: · · · j" of the set S = (1. 2 
II f. The sign is taken as + or - according to whether the permutation jt h . .. j" is 
even or odd. 



EXAMPLE 6 

EXAMPLE 7 

EXAMPLE 8 

3.1 Definition 143 

In each term (±)aljl{/2h " 'all j" of det(A), the row subscripts are in natural 
order and the column subscripts arc in the order jlh ' " ill' Thus each leon in 
det(A), with its appropriate sign, is a product of II entries of A. with exactly one 
entry from each row and exactly one entry from each column. Since we slim over 
all permutations of S, dct(A) has II! lenns in the sum. 

Another notation for det(A) is IAI. We shall use both det(A) and IAI. 

If A = [all] isa I x [malrix,thendct(A) =all ' • 
If 

then to obtain dct(A), we write down the Icnns (11_(12_ and replace the dashes with 
all possible elements of 52: The subscripts become 12 and 2 [. Now 12 is an even 
permutation and 21 is (Ul odd pennutation. Thus 

Hence we see thaI dct(A) can be obtained by fonning the product of the entries 
on the line from left to right and subtracting from this number the product of the 
entries on the line from right to left. 

. [2 Thus, If A = 4 

If 

-3] 5 ,then IAI = (2)(5) - (-3)(4) = 22. 

[
a" 

A = a21 

a31 

• 

then to compute det(A), we write down the six terms {l1_([2_{/}_, {/1_al_{/ 3_. 

([1_a2_{/3_. ([I_{ll_a}_, al_{l2_{/3_, ([1-([2-{/3-. All the elements o f 53 arc us::d to 
replace the dashes, and if we prefix eaeh term by - or - according to whether the 
permutation is even or odd. we find that (verify) 

(I) 

We can also obtain IAI as follows. Repeat the first and second columns of A, 
as shown next. Form the sum of the products o f the entries 011 the lines from left to 
right, and subtract from this number the proollcts of the entries on the lines from 
right to left (verify): 

ilil ([12 a u ([11 {/Il 

illl ............... (!~::><(l~(l~ {l22 

{/31 ...... ~:x,31 ....... {l32 • 
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EXAMPLE 9 Lei 

Evaluate IAI. 

Solution 
Substituting in (I), we find that 

2 3 
2 3 ~ (1)(1)(2) + (2)(3)(3) + 13)(2)(1) - (1)(3)( 1) 

3 2 
- (2)(2)(2) - (3)( 1)(3) ~ 6. 

We could obtai n the same result by using the easy method illustrated prev i­
ously. as follows: 

IAI ~ (1)(1)(2) + (2)(3)(3) + (3)(2)(1) - (3)(1)(3) - (1)(3)(1) 

- (2)(2)(2) ~ 6. • 

Warning The methods used for computing det (A) in Examples 7- 9 do not ap­
ply for 1/ ~ 4. 

It may already have struck the reader that Definition 3.2 is an extremely te­
dious way of computing determinants for a sizable value of II. In fact, IO! = 
3.6288 x 106 and 20! = 2.4329 x 1018

, each an enormous number. In Section 3.2 
we develop properties of detenninants that will greatly reduce the computational 
effort. 

Permutations arc studied at some depth in abstract algebra courses and in 
courses dealing with group theory. As we just noted, we shall develop methods 
for evaluati ng determinants other than those involving permutations. However, we 
do require the following important property of permutations: If we interchange 
two numbers in the permutation jl h ... j", then the number of inversions is either 
increased or decreased by an odd number. 

A proof of this fact can be given by fi rst noting that if two adjacent numbers in 
the pennutation jlh . . . j" are interchanged, then the number of inversions is either 
increased or decreased by l. Thus consider the permutations jlh '" jeh' " j" 
and jlh . .. h j e ... j". If jeh is an inversion, then h je is not an inversion, and 
the second permutation has one fewer inversion than the first one: if j~h is not 
an inversion, then h je is, and so the seeond permutation has one more inversion 
than the first. Now an interchange of any two numbers in a permutation jlh'" j" 
can always be achieved by an odd number of successive interchanges of adjacent 
numbers. Thus, if we wish to interchange j< and A (c < k) and there are s numbers 
between j< and jl, we move i to the ri ght by interchanging adjacent numbers, 



' .1 w...;.. I.>! 

... ' I, ""'~, j,. "'" _~, , , . '" "'", _ _ ...... ... " ., '-' .... ~ "' __ ""' _" ". w_'" •. ~ fi,~" ...... """, ... ,," ....... oi_ .... t ' .... . ... "" .. " "" _,, , 1. 

. ..... . _ . ." _ . ,' ~' .£~ __ -.c .... -.." .. __ '. 
:..- , ~ "' , ~ -'"" .--- ... ~ ... "",",,' - _ . ..- ~ 
..... ;, J " _ , . ......... _ . "' """"" ..... "" -.." .,,', ...... H .-., ~ "'" -"" -... - ,,, ...... _ .. ""' ., ... .. 
__ of .... ' _ ~ '" '" ,""'.vd '" """''''_ , "" ,, ~ " 

"_.1 __ -. 
""'-'''' 

, 
'" " " I , 'I - > -, , ..... "" _ .,' ""'--, ... "' .......... "' -H.'.'.'''' " c "l .. I~ · " 
' '"'-''~"'" 

' _~.Or_"_ 

'" Ll'" ... "''' ., 12m .. , ,,-, , ... _ .... "'_ .. -m :]J I : :1 
. '_H, 1.1, " ,_ ,,-" 

" '" , .. .. " .. '''' , "" ., , 
, , '''---""''- ' ._, 

II' 
, , 

ill '" " , .... ,. '"~ " ..... - : , , " "" 
, , .. . " -, , 

, , , ,., _ "" _". " ... -~ .. -.... - ~ ""- ...... " "" -,, " ,,-.. '''J' ... """ , "'" -m , m ,,' ., , ,- ""---, ....... ~ .. - , . " " .. -"'~",', '~, ., "H' .. , '" ., '"'' -([: 
, 

:Il '" ., , .. "_J "'.-of_" ,,· " , 
""" 

'" ""'" ... , ... _" ......... ~ " "' .. - , , , , -,,=, ............... _, .. .,.- , , , , ,-... -, ..... '- ... -~. 
1<, , , , , ... ''' ...... _. , , , , 

, '"- " ,,-
", , :1 .. (r' ,' " .II " , , ,,' 



146 Chapter 3 Determinants 

- I 

o 

14. Evaluate: 

, I' 4 I \3) 5 / - 8 

m 

15. For each of the matrices in Exercise 13. find value, of / 
for which the de terminant is O. 

16. For each of the matrices in Exercise 14. find value, of / 
for which the de terminant is O. 

Properties of Determinants 

In this section we examine propenies of detenninants that simplify their computa­
tion. 

Theorem 3.1 If A is a matrix, then det(A) = dct(AT ) . 

EXAMPLE 1 

Proof 

Lct A = [aij ] and AT = [h ij ], whereh;) = (/ jj . Wc havc 

det(A T
) = L (±)ht), b2h . .. h"j" = l.) ± )a jl t{/h2 . . . a j"" . 

We can then write ht j, b2h· · · b ll j " = {/ h J([h2 · ·· ([j,," = ll tt l{/2t2 · ·· ll"kh , which is 
a tenn of dc t(A). Thus the terms in det(AT ) and det(A) are idcntical. We must now 
chcc k that thc signs of corrcsponding terms arc also identical. It can be shown, by 
the propenics of permutations discussed in an abstract algcbra course: that thc 
numbcr of inversions in the permutation k l k 2 • .. k" , which determi nes thc sign 
associated with thc term ° 11: 1(1212 .. . (lil t" , is the same as the number of invcrsions 
in the permutation jt h . .. j,,, which determines the sign associated with thc term 
b 1h b1h . . . bllj" . As an example. 

b u b24b35b4 1b 52 = llJ t(l42{/5J {/t 4{/25 = (/t4{/2SllJ I(l42(1SJ : 

the number of inversions in the permutati on 45 123 is 6. and the number of inver­
sions in thc permutation 345 12 is also 6. Since the signs of corresponding terms 
arc identical. we concl ude that dct(AT

) = dct(A). • 

Lct A be the matrix in Example 9 of Section 3.1 . Thcn 

AT~ U ; n 
Substituti ng in ( I) of Secti on 3.1 (or using thc method of lines given in Example 8 
of Section 3.1 ). we find that 

IATI ~ ( 1)( 1)(2) + (2)( 1)(3) + (3)(2)(3) 

- (1)( 1)(3) - (2)(2)(2) - (3) ( ))(3) ~ 6 ~ IA I. • 
' Sce J. Fraleigh. A Fir,·' CO/me iii Abstrac / Algebm. 7th cd .. Rcading. Mass .: Addison-Wes tcy 

Pubtish.in): Company. Inc .. 2OCl3 : and J. Gallian . COII/t·m/JOm t)· A b.I·/fUCI A/gebm. Slh cd .• Lexinglon. 
Mass .. D. C. Heath and Compan y. 2002. 
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Theorem 3. I will enable us to replace "row" by "column" in many of the addi­
tional properties of detcnninants; we see how to do this in the following theorem: 

Theorem 3.2 If matrix B results from matrix A by interchanging two different rows (columns) 
of A. then det(B) = - det(A). 

EXAMPLE 2 

Proof 

Suppose that B arises from A by interchanging rows rand s of A, say. r < .1". 

Then we have btl = a<j , bsj = arj , and bij = aU for i i= r, i i= .I". Now 

det(B) = L (±)b1l ]b2h ·· ·brj, ··bsj, · ··b"l" 

= L (±)a1h a2h .. . a'j, . .. arj, .. . anl" 

= L (±)a1ha2h " ' arj, "'asj, ' · ·a"j" . 

The permulation ilh ... i • ... ir ... 1" results from the permutation 11h ·· ·.ir 
i , .. . 1" by an interchange of two numbers, and the number of inversions in the 
former differs by an odd number from the number of inversions in the latter. This 
me;m .~ thll1 the sign of cflch Tenn in (let ( R) is The negaTive of the sign of the corre­
sponding term in det(A). Hence det(B) = - det(A). 

Now lei B arise from A by interchanging two columns of A. Then B T 
arises from AT by interchanging two rows of AT. So det( B T) = _ dct(A T ), 

but det(B T) = det(B) and det(A T ) = del(A). ['Ience det(B) = - det(A) . • 

I.n the results to follow. proofs will be given only for the rows of A; the proofs 
for the corresponding column cases proceed as at the end of the proof of Theo­
rem 3.2. 

• 
Theorem 3.3 If two rows (columns) of A are equal, then det(A) = O. 

EXAMPLE 3 

Proof 

Suppose that rows r and .I" of A arc equal. Interchange rows rand s of A to 
obtain a matrix B. Then det( B) = - del(A). On Ihe other hand, B = A. so 
det(B) = det(A). Thusdet(A) = - det(A) , and so det (A) = O. • 

W, hm 1-: ~ ; 1 ~ O. (Vc<;fy by Ihe "'c of O,ho;l;oo 3.2.) • 

Theorem 3.4 If a row (column) of A consists entirely of zeros, then det(A) = O. 

Proof 

Let Ihe ilh row of A consist entirely of zeros. Since each term in Definition 3.2 
for the determinant of A contai ns a factor from the ith row, each lenn in det(A) is 
zero. Hence det(A) = O. • 
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EXAMPLE 4 

2 3 
We have 4 5 6 = O. (Verify by the use of Definition 3.2.) 

000 
• 

Theorem 3.5 If B is obtained from A by multiplying a row (column) of A by a real nu mber k, 
then det(B) = k dct(A). 

EXAMPLE S 

EXAMPLE 6 

Proof 

Suppose (hat (he nh row of A = [(lij ] is multiplied by k to obtain B = [bij ]. 
Then b;j = aij if i "1= rand br) = karj. Using Definition 3.2. we obtain det eR) as 

= k (L: (±)a1jla2h ... (lrjr ... alii,, ) = k det(A). • 
We have I ~ 31 II 12 ~ (2)(3) I ~ I = 6(4 - I) = 18. • 

We can use Theorem 3.5 to simplify the computation o f det(A) by L1ctoring 
Ollt common factors from rows and columns of A. 

We have 

2 

2 

5 , 
3 
3 = 2 
6 

2 

5 
4 

3 
3 ~ (2)(3) 
3 

2 
5 
4 

~ (2)(3)(0) ~ o. 

Here, we first factored out 2 from the third row and 3 from the third column, and 
then used Theorem 3.3. since the first and third columns are equal. • 

Theorem 3.6 If B = [bij ] is obtained from A = [aU ] by adding to each element of the rth row 
(column) o f A, k times the corresponding element o f the s th row (column), r "1= .1", 
of A, then det (E) = det(A). 

Proof 

We prove the theorem for rows. We have b i) = (lij for i "1= r. and br) = ar) + k{lsj . 
r "1= .1", say, r <.r. Then 

det(B) = L (±)b1h b2h · ·· brjr · ·· b.io 

= L (±)a'h a2h ... (a' j, + kfl jjr) . .. (Is), ... all j" 

= L (±)a1h a2h ... afj, . . . a'1, ... {llIi" 

+ L(±)a1h {l2h ... (ka.j, )· .. {lsi. ... (lni" ' 
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Now the first tenn in this last expression is det(A). while the second is 

Note that 

(III {/12 (II" 

an (/ 22 (/2" 

a . 1 a.2 a." 
_ rth row 

a . 1 a.2 a." 
_ sth row 

a,,1 an2 a,m 

= 0. 

because this matrix has two equal rows. Hence det( B) = det(A) + 0 = det(A) . • 

We have 
2 

2 - \ 
o 

3 
3 

5 o 9 
2 - \ 

o 
3 

obtained by adding twice the second row to the first row. By appl yi ng the defini ­
tion of determi nant to the first and second detenninant, both arc seen to have the 
value 4. • 

Theorem 3.7 If a matrix A = [aij ] is upper (lower) triangular. then det(A) = all(/n " 'a" ,, ; 
that is, the detenninant of a triangular matri x is the product of the clements on the 
main diagonal. 

Proof 

Let A [a ij ] be upper tri angular (that is, aij = 0 for i > j). Then a term 
{/lha2 h " . (/" j" in the expression for det(A) can be nonzero only for I .::: h. 
2 .::: h , ... , II .::: j" . Now j l h .. . j" must be a permutation, or rearrangement, 
of {I. 2 .. . .. fI}. Hence we must have jl = I. h = 2, .. . , j" = II . Thus the 
onl y term of det(A) that can be nonzero is the product of the clements on the main 
diagonal of A. Hence det(A) = alla22 .. . a"". 

We leave the proof of the lower triangular case to the reader. • 

Recall that in Section 2.1 we introduced compact notation for elementary row 
and elementary col umn operations on matrices. In this chapter, we use the same 
notation for rows and colu mns of a determinant: 
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EXAMPLE 8 

Interchange rows (columns) i and j: 

r , _ r j (c, _ Cj ) . 

Replace row (column) i by k times row (column) i: 

• Replace row (column) j by k times row (column) i + row (column) j: 

k r i + r j -,). r j (kc; + Cj -,). Cj) . 

Using this notation, it is easy to keep track of the elementary row and column 
operations performed on a matrix. For example, we indicate that we have inter­
changed the ith and jth rows of A as Ari- rr We proceed similarly for column 
operations. 

We can now interpret Theorems 3.2, 3.5, and 3.6 in tenns of this notation as 
follows: 

det(A r. _ r) = - det(A) . i "f= j 

det(Akr,_ r;) = kdet(A) 

det(Akr;+rj ~ ri ) = det(A) . i #= j . 

It is convenient to rewrite these propenies in terms of det(A): 

det(A) = - det(A r . .... rj ) . i #= j 

I 
det(A) = k det (Akri_ r) . k "f= 0 

det(A) = det(Akr;+rj _ r j ) ' i "f= j . 

Theorems 3.2, 3.5, and 3.6 are useful in evaluating determinants. What we do 
is transform A by means of our elementary row or column operations to a triangu­
lar matrix. Of course. we must keep track of how the determinant of the resulting 
matrices changes as we perform the elementary row or column operations. 

LClhU 3 
- 2 

4 
n. Compme dCI(A). 

Solution 
We have 

det (A) = 2 det(A I ) 
! r3- r3 

m 
~lJ 

3 
- 2 

2 

. I 
MultIply row 3 by 2"' 

Interchange rows I ami 3. 
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~-2 detW 
2 m - 2 
3 

~ -2det (U 
2 

~L, +" -" ) - 2 Zero out below 

3 
the ( \. I ) entry. 

-4r] + r ) _ r ) 

~-2 det m 
2 

-~m - 8 
- 5 

~ -2detW 2 

-~~L,+,;J - 8 
Zero out below 

- 5 
the (2.2) entry. 

~ -2 dot m 2 

--~]) - 8 
0 

Next we compute the determi nant of the upper triangular matrix . 

det (A) = - 2(1)( - 8) ( - 34°) = - 120 by Theorem 3.7. 

The operations chosen are not the mosl efficient. but we do avoid fractions during 
the first few steps. • 

Remark The method used to compute a determinant in Example 8 will be re­
ferred to as computation via reduction to triangular form. 

We can now compute the detenninant of the identity matrix I,,: dct(1,,) = I . 
We can also compute the determinants of the elementary matrices discussed in 
Section 2.3, as follows. 

Let £1 be an elementary matrix of type I; that is, EI is obtained from I" by 
interchanging, say, the ith and jth rows of I" . By Theorem 3.2 we have that 
det (E! ) = - det(1,,) = - I. Now let £2 be an elementary matrix of type II ; that is, 
£ 2 is obtained from I" by multi pl ying, say, the ith row o f In by k i= O. By Theorem 
3.5 we have that det ( E2) = k det(1,,) = k. Finally, let EJ be an elementary matrix 
o f type IJI ; that is, EJ is obtained from I" by adding k times the sth row of 1" to 
the rth row of 1" (r i= s). By Theorem 3.6 wc have that det(E j ) = det(1n) = I . 
Thus the determinant of an elementary matrix is never zero. 

Next, we prove that the detenninant o f a product of two matrices is the product 
o f their determinants and that A is nonsingular if lmd only if det(A) i= O. 

Lemma 3.1 If E is an elementary matrix. then dct(EA) = det(E)det(A), and dct( AE ) 
det (A)det( E). 
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Proof 

If E is an elementary matrix of type I, then EA is obtained from A by inter­
changing two rows of A, so det(EA) = - det(A). Also det(E) = - \. Thus 
det(EA) = det (E) det(A). 

If E is an elementary matrix of type II. then EA is obtained from A by multi­
plying a given row of A by k i= O. Then det(EA) = kdet(A) and del (E) = k, so 
det(EA) = det(E) det(A). 

Finally, if E is an elementary matrix of type III , then EA is obtained from A 
by adding a multiple of a row of A to a dilTerent row of A. Then det(E A) = dct(A) 
and det(E) = I, so det(E A) = det(E) det(A). 

Thus, in all cases, det(E A) = det(E) det( A). By a similar proof, we can show 
that det(A E) = det(A) det(E). • 

It alsofollow5 from Lemma 3. 1 that if B = ErEr_I ··· E2E IA, then 

det(B) = det(Er (Er_I ·· · E1EIA» 
= det(Er ) det(Er _ 1 Er _ 2 ... £2EI A) 

= det(Er ) det(Er_l) . .. det (E!) det(E I) det(A) . 

Theorem 3.8 If A is an 1/ x 1/ matrix, then A is nonsingular if and only if det(A) i= o. 
Proof 

If A is nonsinguiar, then A is a product of elementary matrices (Theorem 2.8). 
Thus let A = E I E2 ... El: . Then 

If A is singular, then A is row equivalent to a matrix B that has a row of zeros 
(Theorem 2.10). The n A = E I E2 ··· E, B, where E I • E 2 , ...• E, are elementary 
matrices. It then follows by the observation following Lemma 3.1 that 

det(A) = det(E I E2 · , · ErB) = det(EI) det( E2)· · ·det(Er)det(B) = O. 

since det( B) = O. 

Corollary 3.1 If A is an 1/ x 1/ matrix, then Ax 
det(A) = O. 

Proof 

• 
o has a nontrivial solution if and only if 

If de t(A) 01= 0, then, by Theorem 3.8, A is nonsi ngular, and thus Ax = 0 has only 
the trivial solution (Theorem 2.9 in Section 2.3 orby the boxed remark preceding 
Example 14 in Section 1.5). 

Conversely, if det(A) = 0, then A is si ngu lar (Theorem 3.8). Suppose that A 
is row equivalent to a matrix B in reduced row echelon form. By Corollary 2.2 in 
Section 2.3, B i= I", and by Exerci se 9 in Section 2.1 , B has a row of zeros. 

The system Bx = 0 has the same solutions as the system Ax = O. Lei C I 

be the matrix obtained by deleting the zero rows of B. Then the system Bx = 0 
has the same solutions as the system C IX = O. Since the latter is a homogeneous 
system of at most /I - i equations in 1/ unknowns, il has a nontri vial solution 
(Theorem 2.4). Hence the given system Ax = 0 has a nontrivial solution. • 
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Let A be a 4 x 4 matrix with dct(A) = - 2. 

(a) Describe the set of all sol utions to the homogeneous system Ax = O. 

(b) If A is transformed to reduced row echelon fonn B, what is B ? 

(c) Give an expression fo r a solution to the linear system Ax = b , where 

(d) Can the linear system Ax = b have more than one solution? Explain. 
(e) Docs A -I exist? 

Solution 
(a) Since det(A) =1= 0, by Corollary 3.1. the homogeneous system has only the 
tri vial solution . 

(b) Since det(A) =1= 0, by Corollary 2.2 in Section 2.3, A is a nonsi ngular matrix. 
and by Theorem 2.2. B = 1". 
(c) A solution to the given system is given by x = A-l b . 

(d) No. The solution given in part (c) is the only one. 
(e) Yes. • 

Theorem 3.9 If A and Bare 1/ x 1/ matrices, then det(AB) = det(A) det( B). 

EXAMPLE 10 

Proof 

If A is nonsingular. then A is row equi valent to 1". Thus A = El Ek_ l ... E 2El In = 
£~ £ .1_1 ... £2£ I. where £ I . £2 . .. .. £1. are elementary mntrices. Then 

Now 

det(A B) = det(E • .El _ I ··· E2 E 1B) 

= det( Ed det(Ek_l) .. . det(E2 ) det(E 1) det( B) 

= det(A) detCB) . 

I f A is singular, then det(A) = ° by Theorem 3.8. Moreover. if A is singular. 
then A is row eqlllvalent to a matrix C that has a row consisting entirely of zeros 
(Theorem 2.10). Th us C = Et Ek_ I ··· EJEIA. so 

CB = Ek£t_l '" E2£JAB. 

This means that AB is row equivalent to C B, and since C B has a row consisting 
entirely of zeros, it fo llows that A B is singular. Hence det(A B) = D. and in this 
case we also have det (A B) = det(A) det (B). • 

L" 
ond -'] 2 . 
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Corollary 3.2 

Then 
IAI = - 2 and IBI = 5. 

On the other hand. AB = [I~ ~l and IAB I = - 10 = IA II B I· 

I 
If A is nonsingular. then det(A- I ) = ---. 

det(A) 

Proof 

Exercise 18. 

Corollary 3.3 If A and B are similar matrices. then det (A) = det( B). 

Proof 

Exercise 33. 

• 

• 

• 
The determinant of a sum of two /I x /I matrices A and B is. in general, not 

the sum of the detenninants of A and B. The best result we can give along these 
lines is that if A. B, and C are /I x /I matrices all of whose entries are equal except 
for the kth row (column), and the kth row (column} of C is the slim of the kth rows 
(columns) of A and B. then det (C) = det(A) + det (E ). We shall not prove this 
result, but will consider an example. 

EXAMPLE 11 LeI 

A ~ [~ 
2 

:] [~ 
2 

-:] 3 B ~ 3 
2 - 2 

ond 

e ~ [~ 
2 n 3 
0 

Then IAI = 8. IBI = - 9, and ICI = - 1, so ICI = IAI + IB I· 

Key Terms 
Properties of the determin,mt 
Elementary matrix 
Reduction to triangular form 

En Exercises 

l. Compute the following determin,Ults via reduction to trio 
angular form or by citing a panicular theorem or corol· 
lary: 

(a) I ~ ~ I (b) I ~ !I 
(e) I ~ ~ ~ I (d) I ~ i ~ I 

• 



2. 

3. 

, 2 2 0 , 2 3 -, 
2 0 0 0 3 -2 5 

(,) 
3 0 0 1 en - 2 0 1 -3 
0 0 0 8 -2 6 , 

Compute the following determinants via reduction to tri -
angular form or by citing a particular theorem or corol-
lary: 

(, ) I; -;1 (b) I ~ 
I: 

, 
~I I ~ (, ) 5 (d ) 

0 , 0 0 0 

(, ) 
-I 2 0 0 

2 -3 0 
S 3 S 

2 0 1 4 

(0 
3 2 -, - 2 

2 3 - I 0 
II 8 -, 6 

I'" 
(/2 

a'i If b l b, h) =3.find 
c, c, " 

I

lIl +2bl - 3q 
b , 

u2+2h-3q 
b, 

" 

2 

~ I - 2 
0 

- 3 

~ I 2 
0 

(/) +2h) - 3q I 

b, . 

" 

I

" , 

4. If b l 

c, 
:: :: I = - 2. find 
('2 c ) 

{I I - ~(/) a, a, 
iJ l - ~b) b, b, 

, 
C l - 1:c) c, ' ) 

I'" 
(/2 

", I s. 
If ~: b, h) = 4. find 

("2 " 
a, (/, 4(/) - 2(/2 

b, b, 4b) - 2b2 

tel tq 2q - C2 

6. Verify that del(A S ) = det(A)det(B) for the following: 
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(, ) A ~ H -2 
3 

(b ) A ~ [~ 
3 
3 

7. Evaluate: 

(' J 

-4 2 0 0 
2 3 I 0 

3 I 0 2 
303 

o o o 
3 
2 

2 

o 0 
4 0 

- I 

, - 2 
o 

(d ) I '~ l 1~3 1 

1 -s 

o 
-2 

o 
5 

8. Is det(AB) = det(BA)? Justify your answer. 

9. If del(AB) = O. is del(A) = 0 or det(B) = O'! Gille 
reasons for your answer. 

10. Show that if k is a scalar and A is II X II. then det(kA) = 
k" de\(A). 

II . Show 1hal if A is" x" Wilh" odd and skew symmetric. 
then del (A) = O. 

12. Show that if A is a matrix such that in each row and in 
each column one and only one element is not equal to O. 
then det(A) oJ=- O. 

det(A) 
13. Show that det(AB- ') = --. 

det(B) 

14. Show that if AB = I , .• then det(A) 1= 0 and det(B) 1= O. 

15. (a ) Show that if A = A- '. then det(A) =±l. 

(b) If AT = A - I. whal IS dellA)? 

16. Show that if A ,md B are square m<ttrices. then 

del ([ ~ ~]) = (det A)(det B). 

17. If A is a nonsingular matrix such that A2 = A. what is 
det(A)? 

18. Prove Corollary 3.2. 

19. Show that if A . B. and C <lfe square matrices. then 

del ([ ~ ~]) = (del A)(del B). 
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20. Show that if A and B are both /I x /I. then 

(a) det(A T BT) = det(A) det (8 T): 

(b) det(A T BT) = dCl(A T) det(8). 

21. Verify the result in Exercise 16 for A [~~] and 

B~[ _~ ;J 
22. Use the properties of Section 3.2 10 prove that 

b ,,' I b~ = (b - u)(c - a)(c - b). 

c 

(Hilll: Use factorization.) This detenninant is called a 
Vandcrmondco dcterminant. 

23. If det(A) = 2. find det (As). 

24. Use Theorem 3.8 10 detennine which of the following 
matrices are nonsingular: 

(, ) [~ 
2 
I 

-3 
(b) [~ 

25. Use 111eorem 3.8 10 detennine which of the following 
matrices are nonsingular: 

(, ) [! 3 

n I 

- 7 

[ -~ 
2 0 

j] 4 I 

5 2 
2 

(b) 

26. Use Theorem 3.8 to determine all values of I so that the 
following matrices are nonsingular: 

[i I 

:J [~ :J (, ) 4 (b) I 

7 0 

[~ 
0 0 

~] (, ) 
0 

0 , 
0 0 

27. Use Corollary 3. 1 to find out whether the following 
homogeneous system h;ls a nontrivial solution (dD 11O{ 

solve): 

XI - 2x~ + x) = 0 

2xI + 3X2 + .\"3 = 0 

3xI + Xl + 2I) = 0 

28. Repeat Exercise 27 for the follow ing homogeneom sys­
tem: 

[~ 
2 

I 

o 

o 
2 
I 

2 

29. Let A [aii ] be an upper triangular matrix. Prove 
that A is nonsingular if and only if lI ji 1= 0 for i = 
1.2 ..... 11. 

30. Let A be a 3 x 3 matrix with det(A) = 3. 

(a) What is the reduced row echelon form to which A is 
row equivalent? 

(b) How many solutions does the homogeneous system 
Ax = 0 have? 

31. Let A be a 4 x 4 malrix with det(A) = O. 

(a) Describe the reduced row echelon fonn matrix to 
which A is row equivalent. 

(b) How many solutions does Ihe homogeneous system 
Ax = 0 have? 

32. 1.e.1 A2 = A . 

det(A) = I . 
ProVf< th.11 e.;thf<r A ;~ ~;nenl~r or 

33. Prove Corollary 3.3. 

34. Let AS = AC. Prove Ihat if det (A) 1= O. then B = C. 

!.. 35. Determine whether the software you are using has a com­
mand for computing the determinant of a matrix. If it 
does. verify the computations in Examples 8. 10. and II. 
Experiment further by finding the detenninanl of the ma­
trices in Exercises I and 2. 

.!. . 36. Assuming m;lt your software has a command to con pUle 
the determinant of a matrix. read the accompanying soft­
ware documentation 10 detennine the method used. Is 
the description closest to that in Section 3.1. Example 8 
in Section 3.2. or the material in Section 2S! 

• Alexandro-Thoophile Vandennonde (1735- 1796) was born and died III Paris. His father was a physician who encouraged his son to pursue 
a career in music. Vandennonde followed his father's advice and did nOi get intcrested in mathematics U/ltil he was 35 years old. His en1lre 
mathcmaticai output consisted offour papers. He also published papers on chemistry and 00 the manufocture of steel. Although Vandennonde 
is bcstknown for his dctenninant. it does not appear ill any of his four papers. [t is believed that someont mistakenly al1ributed thi s detenni­
nant to him. Howel'er. in his founh mathematical paper. Vandennollde made ~igni fjcant contributions to the theory of detenninants. He was a 
staunch republican who fully badcd the French Rcvolution. 
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.!. . 37. Warning: TIlcorem 3.8 assumes thai all calculations for 
de\(A) are done hy exact arithmetic. As noted previollsly. 
[his is usually not the case in software. Hence. compu­
tationally. the detenninant n~y not be a valid lest for 
n.onsingulariIY. Perfoml the following experiment: LeI 

[
I 2 3] 

tationthatdet(B)= -3€.whereB= 4 5 6 . 
7 8 9+€ 

Hence. theoretically. for any Ii 1= 0, matrix B is nonsin­
gular. Let your software compute det(B) for Ii = ±lo-* . 
k = 5,6, .... 20. Do the computational results match 
the theoretical resuh~ If not. formulate a conjecture to 
explain why not 

A ~ [! ~ ~]. Showlhatdct(A) isO, either by hand 
7 8 9 

or by using your software. Next. show by hand compu-

DEFINITION 3.3 

DEFINITION 3.4 

EXAMPLE 1 

m Cofactor Expansion 

T hus far we have evaluated determinants by using Definition 3.2 and the properties 
establi shed in Section 3.2. We now develop a method for evaluating the determi­
nant of an /I x /I matrix that reduces the problem to the evaluation of determinants 
of matrices of order II - I. We can then repeat the process for these (/I - I) X (11 - I) 
matrices until we get to 2 x 2 matrices. 

Let A = [Uij ] bcan II XII matrix. LetMij bcthc(II - I) x(II - I)submatrixofA 
obtained by deleting the ith row and jth column of A. The determinant det(Mij) 
is called the minor o f (Ii j. 

Let A = [ai) ] be an II x II matrix. The cofactor AU of aij is defined as Ai) 
( _ 1)' +) det (M ij ) . 

Lei 

Then 

- I 
5 

~ 1= 8 - 42 = - 34, 
- I 

1= 3+7= 10. 

ond 

Also, 

ond 

I
- I 

det( MJJ) = 5 ~ 1 =-6 - 10 =- 16. 

A Jl = (_ I)J+2 det (M I2 ) = (- 1}(- 34) = 34. 

A23 = (- I)2+3 det (M23) = (- 1)(10) = - 10. 

AJI = (_ I)J+I det(M3J) = (\)(- 16) = - 16. • 
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If we think of the sign (_ I)i+j as being located in position (i. j) of an 
1/ x 1/ matrix, then the signs form a checkerboard pattern that has a + in the (I , I) 
position. The patterns for 11 = 3 and 11 = 4 are as follows: 

+ 

~ ] + 
+ 

+ 
11 = 3 11 = 4 

Theorem 3.1 0 Let A = [lli) ] be an 11 x 11 matrix. Then 

ond 

Proof 

det(A) = llil Ail + llnAn + .. . + ll;"A i" 

[expansion of det(A) along the ith row] 

dCl (A) = llljAl j + (l2j A 2j + ... + ll" j A "j 

[expansion of det (A) along the jth column]. 

The first formula follows from the second by Theorem 3.1, that is, from the fact 
that det(A T

) = det(A). We omit the general proof and consider the 3 x 3 matrix 
A = [lli) ]. From (I) in Section 3.1, 

We can write this expression as 

Now. 

Hence 

det(A) = llll({/22ll3J - (/23{/32) + 01:(1l23{/JI - ll210JJ) 

+ {/1J(1l2l{/32 - (/n{/31)' 

I = (022{/JJ - (/2j{/32). 

I = (a23{/31 - (l 11{/},). 

det(A) = {/IIA II + 111 2 A 12 + (/IJA 13 . 

which is the expansion of det (A) along the first row. 

(I) 
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If we now write ( I ) as 

det(A) = (l13(a21(l32 - (/22{/3d + ll2!(aU{/JI - (lllaJ2) 

+ {/JJ(a J I (I 22 - a 12{/21). 

we can verify that 

which is Ihc expansion of dct (A) along the third column. 

To evaluate the determinant 

- 4 
3 
2 

2 - 3 4 
2 

o 
3 

o - 3 
o - 2 3 

• 

it is best to expand along either thc second column or the third row because they 
each have two zeros. Obviollsly. the optimal course of action is to expand along 
thc row or column that has the largest number of zeros, because in thaI case 
thc cofactors A i) of those (Ii) which arc zero do not have to be evaluated, since 
(lUA i) = (O)( A ij ) = O. Thus, expanding along Ihc third row. we have 

2 - 3 4 
- 4 2 3 

3 0 0 - 3 
2 0 - 2 3 

2 - 3 4 - 3 4 
= (_ 1)3+1(3) 2 3 +(_ 1)3+2(0) - 4 3 

0 - 2 3 2 - 2 3 

2 4 2 - 3 
+ (_ 1)3+3(0) - 4 2 3 + (_ 1)3+4( _ 3) - 4 2 

2 0 3 2 0 - 2 

~ (+ 1 )(3)(20)+ 0 + 0 + (- 1)(- 3)( - 4) ~ 48. • 
We can usc the propcnics of Section 3.2 to introduce many zeros in a given 

row or column and thell expand along that row or column. Consider the following 
example: 
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EXAMPLE 3 

FIGURE 3 .:2 

We have 

2 - 3 4 
- 4 2 3 

o 0 - 3 

2 0 - 2 3 C4 + 3c l- C4 

2 - 3 7 
- 4 2 - 9 

000 
2 0 - 2 9 

2 - 3 
= ( _ ()3+I (1) 2 

0 - 2 

0 - 4 

7 

- 9 
9 

16 
~ ( - 1)'(1) 2 - 9 

0 - 2 9 

• Application to Computing Areas 

TI-T2-T I 

• 

Consider the tri angle with vertices (XI.)'I). (X2 . y,). and (X3, n), which we show 
in Figure 3.2. 

)' 

a 

We may compute the area of thi s tri angle as 

area of trapezoid A PI P2B + area of trapezoid B P2P3C 

- area of trapezoid A p . Pj C. 

Now recall that the area of a trapezoid is ! the distance between the parallel sides 



EXAMPLE 4 

y 

(- 1.4) 

(J, J) 

-+-+~-1--r-r-+-- < 
-6 -4 - 2 

- 2 
4 6 

-4 

-'i 

FIGURE 3.3 
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of the trapezoid limes the sum of the lengths of the parallel sides. Thus 

area of triangle PI P2P) 

I I I 
= "2(X2 - ..I:I)(YI + )'2) + "2(X3 - X2)(Yl + )'J) - 2"(X3 - XI )(YI + h) 

1 I I I I I 
= "2X2)'1 - "2X1)'2 + 2:XJJ'2 - ?'-2}'J - 2:XJJ'1 + "2X1)'3 

I 
= - 2"[(X2)'3 - X3)'2) - (XI)'3 - X3)'1) + (XI)'1 - X2)'1)] . (2) 

The expression in brackets in (2) is the cofactor expansion about the third column 
o f the matri x 

Th is determinant may be positive or negati ve, depending upon the localion of the 
points and how they are labeled. Thus, for a triangle with vertices (Xj . )'1), (X2, )'1), 
amI Cq , )'3). we have 

"",,' (C;oogio ~ ~ dct ([;: ;: :J) (3) 

(The area is ~ the absolute value of the determinant. ) 

Compute the area of the triangle T. shown in Figure 3.3, with vertices (- 1.4). 
(3. I ), and (2.6). 

Solution 
By Equation (3). the area of T is 

I 
~ -1 171 ~ 8.5. 

2 

• 
Suppose we now have the parallelogram shown in Fi gure 3.4. Si nce a diagonal 

divides the parallelogram into two equal triangles. it follows from Equation (3} that 

"''" o'p",""clog<4m ~ dot m: ~: :J) (4) 

The determinant in (4) can also be evaluated as follows: 

= det ([X2 - XI 
.\J - XI 

,., 
Y2 - )'1 

)'3 - )'1 

y, - y,]) 
.)'3 - )'1 

r] - r2- '"2 
r] -rl - r l 

Expansion by cofactors 
about the third col umn 
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FIGURE 3.4 

EXAMPLE S 

FIGURE 3.S 

y 

______ ~c--"O+-~-'O---------------~, 

Hence the absolute value of the determinant of a 2 x 2 matrix represents the area 
of a parallelogram. 

An arbitrary 2 x 2 matrix defines a matrix transformation I: R2 ____ R2 by 

I(v) = Av 

for a vector v in R2. How docs the area of the image of a closed figure, such as a 
triangle T that is obtained by applying I to T, compare with the area of T? Thus. 
suppose that T is the triangle with vertices (XI. )'I }. (.\"2 . )'2), and (X) • . )'3 ) , and let 

A ~ [a b] . 
c d 

In Exercise 19, we ask you to first compute the coordinates of the image I (T} and 
tbtu show that 

area of f(T) = Idet (A)1 . area of T. 

Compute the area of thc parallelogram P with venices ( - 1.4), (3. I), (2. 6). and 
(6.3), shown in Fi gure 3.5 . 

)' 

(2. 6) 
6 

(-1.4) 4 
(6. 3) 

2 

(3. I) , 
- 6 -4 - 2 2 4 6 

-2 

-4 

-6 
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Solution 
The dashed diagonal in Figure 3.5 divides the parallelogram into two equal trian­
gles, whose area has been computed in Example 4. '-!enee, the area of the paral­
lelogram is 17. • 

EXAMPLE 6 Consider the triangle T defined in Example 4 and let 

Key Terms 
Minor 
Cofactor 

FIGURE 3.6 

[ 6 -3] 
A = - I I' 

The image of T, using the matrix transformation defi ned by the matrix A. is the 
tri angle with venices (- 18.5), ( 15. - 2), and (- 6 , 4) (verify). Sec Figure 3.6. 
The area o f this triangle is, by Equation (3). 

( [

- 18 

~ del ~~ 
5 

- 2 
4 

Since det(A) = 3, we see that 3 x area of triangle T = area of the image. • 

)' 

6 

4 

--+--+--+--+-::-,.~""--+-- , 
-15 -10 -5 5 

-2 

-4 

-6 

Remark The result discussed in Example 6 is true in general: that is, if S is a 
closed figu re in 2-space (3-space), A i~ a matrix of appropriate dimension, and f 
is the matrix transformation defined by A, then the area of the image = Idet(A) I ' 
area of S (volume of the image = Idet(A) I · volume of S) . 

Expansion along a row or column 
Area of a triangle 
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.i' Exercises 

I. LetA= [31 °1 -4'] Find the following minors: 
5 2 - 3 

(a) det ( MlJ) (b) det (Mn) 

(e) det ( M31 ) (d) det (Mn) 

2. LetA [2 
-~ 

- I 0 

-u , - 2 
Find the following 

- 3 
2 - I 

minors: 

(a) det( Mn} (b) det(Mn) 

(e) det ( MJJ ) (d) det (Mll ) 

3. LetA= [ =~ ~ !] Find the followingcofactors : 
o - 3 

(, ) An (b) A21 

0 3 

[i 4. LetA= 
- 4 

2 4 
3 - I 

0] - I 
~ . Find the following co-

factors: 

(, ) A I! (b) A2J (e) A 3J (d) A ~I 

5. Use Theorem 3.10 to evaluate the determinants in Exer­
cise I(a). (d). and (e) of Section 3.2. 

6. Use Theorem 3.10 to evaluate the determinants in Exer­
cise I(b). (c) , and (f) of Section 3.2. 

7. Use Theorem 3.[0 to evaluate the determinants in Exer­
cise 2(a). (c) , and (f) of Section 3.2. 

8. Use Theorem 3.10 to evaluate the determinants in Exer­
cise 2(b). (d), and (e) of Section 3.2. 

9. Show by a column (row) expansion that if A = [a jj ] is 
upper (lower) triangular. then det (A) = (l 11 (lZZ ' " (In'" 

10. If A = [lIjj ];~ ~" X "m~lr;x . <l",v",1np lhp. eell"'r~1 p.x_ 
pression for det (A) by expanding 

(a) along the second column. 

(b ) along the third row. 

Compare these answers with th.ose obtained for Examp[e 
S in Section 3.1. 

II . Find all values of I for which 

(a) 1 1 ~ 2 1~3 1 =0: 

(b ) I' ~ I 1-::.
441 = O. 

12. Find all values of f for which 

13. Let A be an II x II matrix. 

(a) Show that 1(1) = det(1 i " - A ) is a polynomia[ in f 

of degree II. 

(b ) What is the coefficient of I" in I (t)? 

(e) What is the constant term in I( I)? 

14. Verify your answers to Exercise 13 with the following 
matrices: 

(a) r~ !J 
(e) r: :J 

(bl [i 3 
- I 

o 

15. Let T be the triangle with vertices (3.3), (- I. - I) . 
(4. I). 

(a) Find the area of the triangle T. 

(b) Find the coordinates of the vertices of the image of 
T under the matrix transformation with matrix rep-
rescntation 

A ~ [ 4 
- 4 

-3] , . 

(e) Find the area of the triangle whose vertices are ob­
tained in part (b). 

16. Find the area of the parallelogram with vertices (2. 3). 
(5.3). (4. 5), (7. 5) . 

17. Let Q be the quadri[ateral with vertices ( - 2. 3). ( I. 4) . 
(3.0) . and (- I. - 3). Find the area of Q. 

18. Prove that a rotation leaves the area of a triangle un­
changed. 

19. Let T be the triangle with vertices (X I. )'1) . (X! . )'1 ), and 
CI"J . )'J ) , and [et 

A~[: :1 
Let I be the matrix transformation defined by I(v) 
Av for a vector v in R2 . First. compute the vertices of 
f (T) and the image of T under I , and then show that 
the area of I(n is I det (A)1 . area of T . 
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m Inverse of a Matrix 

We saw in Section 3.3 that Theorem 3.10 provides formulas for expanding dct(A) 
along either a row or a column of A. Thus det(A) = ail A il + ai2A i2 + ... + ai" Ain 
is the expansion of det(A) along the ith row. It is interesting to ask what ail At l + 
ai2Ak2 + ... + ai" A l" is for i i= k. because as soon as we answer this question. 
we obtain another method for finding the inverse of a nonsingular matrix. 

Theorem 3.11 If A = [ lIij ] is an II x /I matrix. lhen 

EXAMPLE 1 

(/il Al l + a,2 A U + ... + ai" Ak" = 0 for i i= k : 

al j A u + a2 j Au + .. . +a"j A"k = 0 for j i= k. 

Proof 

We prove only the fi rst formula. The second follows from the fi rst one by Theorem 
3.l. 

Consider the matrix B obtained from A by replacing the kth row of A. by 
its ith row. Thus B is a matrix having two identical rows- the ith and kth- so 
de t(8) = O. Now expulld del ( 8 ) ulollg lhe klh lOW. The e ielllcu ts o f the klh 
row of Bare ai I . ai2 . .... ai,, ' The cofaclOrs of the kth row are Akl . A u . . A k" . 

Thus 
o = det(B) = ai I At l + {/il An + .. . + ai" A1" , 

which is what we wanted 10 show. • 
This theorem says that if we sum the products of the elements of any row 

(column) times the corresponding cofactors of any other row (column), then we 
obtain zero. 

2 

3 
5 

:]. Then 
- 2 

A ~ (_ 1 )H' 12 3 1= 19 
21 5 - 2 . 

A n = (_ 1)2+21 ! _~ 1=-14. and A2J= (_ I)2+:l I ! 

Now 

"nd 

{l II A ! 1 + al2 An + aU A 2J = (1)( 19) + (2)( - 14) + (3)(3) = o. • 

We may summarize our expansion res ults by writing 

a il Au + ai2A k2 + .. . + (li" At " = det(A) 
~ O 

if i = k 

ifi =F k 
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DEFINITION 3.5 

EXAMPLE 2 

ond 

al j Aa + U2jAU + ... + a"j A"k = det(A) 
~ O 

ifj = k 

ifj i= k. 

Let A = [a ij ] be an 1/ x 1/ matrix. The II x 1/ matrix adj A, ealled the adjoint of 
A, is the matrix whose (i . j)th entry is the cofactor A ji of (l ji. Thus 

[A" 
All 

A", ] All An A,,2 
adj A = : 

A:, ,, . 
A," 

A,,, 

Remark It should be noted that the term adjoint has other meanings in linear 
algebra in addition to iB use in the preceding definition. 

LCl hU -2 I] 
6 2. Compute adj A. 
o - 3 

Solution 
We first compute the cofactors of A. We have 

Then 

All = (- 1)1+11 ~ _~ 1 = - 18. 

,+, 15 ' I AI2=(- I) - 1 - 3 = 17. 

A2I = ( _ 1)2+1 I -~ _ ~ 1 = - 6. 

A ~(_ 1)2+21 J 1 1=_ 10 
22 I - 3 . 

~ I = - I , 

[

- 18 
adjA = 17 

- 6 

A ' 1)2+ ~ 1
3 

23 = (- 1 

I 1=- 10 2 ' 

A ' 1)'+'1 3 
33 = (- 5 

- 6 
- 10 
- 2 

- 10] 
- I , 
28 

~ 1=-6. 

-21 o = - 2, 

-21 6 = 28. 

• 
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Theorem 3. 12 If A = [(lij ] is an II x II matrix, then A (adj A ) = (adj A)A = det(A) /n. 

EXAMPLE 3 

Proof 

We have 

a ll al2 (lIn 

al l (122 (/'h, 

[A " 
A 21 A jl 

A", ] 
A" A" A j! 

A;'2 . A(adj A ) = 
ail ail {/i" 

A:
ln A211 A j " A nn 

(l,,1 an2 an" 

The (i. j)th element in the product matrix A (adj A) is, by Theorem 3.10, 

a jl A jl + aj2A j2 + ... + (/j"A j" = det (A) 
~ O 

This means that 

if i = j 

ifi #= j. 

[

d"(A) 

A (adJ A) = 0 

o 

o 
det(A) 

o 

~ ] ~ d« (A) I". 

dct(A) 

The (i. j)th element in the proouct matrix (adj A ) A. is, by Theorem 3.10, 

A Ulll j + A2jalj + . .. + A"j alli = det(A) if i = j 
~ O ifi =J=j. 

Thus (adj A)A = det(A)I". 

Consider the matrix of Example 2. Then 

[~ 
- 2 

1][- 18 
- 6 -10] [-94 0 

-9n 
6 2 17 - 10 - I = 0 -94 
0 - 3 - 6 - 2 28 0 0 

~ -94 [~ 
0 

~] 0 

and 

[ - 18 - 6 
- 10] [3 

- 2 

~] ~ -94 [~ 0 

~l 17 - 10 - 1 5 6 
- 6 - 2 28 1 0 - 3 0 0 

• 

• 
We now have a new method for finding the inverse of a nonsingular matrix. 

and we state thi s result as the following corollary: 
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Corollary 3.4 If A is an 1/ x 1/ matrix and dct(A) =1= O.thcn 

EXAMPLE 4 

Key Terms 
Inverse 
Adjoint 

Proof 

[ 
A-I = --(adjA) = 

dct(A) 

All A21 

dct(A) det(A) 

A 12 A22 
det(A) dct(A) 

A In Aln 

dct(A) det(A) 

det(A) 

A,,2 

det(A) 

det(A) 

By Theorem 3.12, A (adj A ) = dct(A)/,,, so if dct(A) =1= 0, then 

( [ ) [ [ 
A --(adj A) = -- (A (adj A» = --(dct(A) /,,) = I". 

det(A) det(A) dct(A) 

Hencc 

[ 
A-I = --(adj A). 

det(A) 

Again consider the matrix of Example 2. Then det(A) = - 94. and 

IS 6 [0 

94 94 94 
[ 17 [0 A-I = --(adjA) = 

det(A) 94 94 94 

6 2 28 
94 94 94 

• 

• 
Wc might note thm the method of inverting a nonsingu lar matrix given in 

Corollary 3.4 is much less e ffi cient than thc method given in Chapter 2. In fact , 
the computation of A -I, using dcterminants, as given in Corollary 3.4, becomes 
too expensive for 1/ > 4. Wc discuss these matters in Section 3.6. where we deal 
with dcterminants from a computational point of vicw. However. Corollary 3.4 is 
still a useful result on othcr grounds. 



Ee' Exercises 

I. Verify Theorem 3.11 for the matrix 

A~n :-n 
L"A~[-; 

I n 2. 2 
- 2 

(. ) Find adj A. 

(hi Compute det(A). 

(e) Verify Theorem 3.12; that is, show that 

A (adj A) = (adj A)A = det(A)/J • 

3.L"A~H 
Exercise 2. 

2 
4 

- 4 
8;] Follow the directions of 

4. Find the inverse of the matrix in Exercise 2 by the method 
given in Corollary 3.4. 

5. Repeal Exercise I I of Section 2.3 by the method given in 
Corollary 3.4. Compare your results with those obtained 
earlier. 

6. Prove that if A is a symmetric matrix. then adj A is sym­
metric. 

7. 1I~ Ih", mp.lhorl giv",n in Cornlbry 1.4 ro find rh", ;m''''r~. 
If it exists. of 

I 

3 
5 
o 

3.5 Other Applicotions of Determinants 169 

8. Prove that if A is a nonsingular upper triangular matrix. 
then A _r is upper triangular. 

9. Use the method given in Corollary 3.4 to find the inverse 
of 

[" A~ , ifad - bcl=-O. 

10. Use rhe melhod given in Corollary 3.4 ro find Ihe inverse 
of 

[Hint: See Exercise 22 in Section 3.2. where det(A) is 
computed.] 

II. Use the method given in Corollary 3.4 to find the inverse 
of 

o 
- 3 
o 

12. Use the method given in Corollary 3.4 to find the inverse 
of 

I 

- 3 
o 

13. Prove that if A is sin:;ular. then adj A is singular. (Hint: 
Firsl show Ihal if A is singular. Ihen A (adj A) = 0] 

14. Prove that if A is an n x II matrix. then det(adj A ) 
[det(A)I"- l. 

.!. 15. Assuming that your software has a command for com­
puting the inverse of a matrix (see Exercise 63 in Section 
1.5), read the accompanying software documentation to 
determine the method used. [s the description closer to 

that in Section 2.3 or Corollary 3.4? See also the com­
ments in Section 3.6. 

m Other Applications of Determinants 

We can use the results developed in Theorem 3. 12 to obtain another method for 
solving a linear system of 1/ equations in 1/ unknowns. This method is known as 
Cramer's rule. 
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Theorem 3. 13 Cramer's· Rule 

Lei 

GABRIEL CRAMER 

be a linear system of /I equations in /I unknowns, and let A = [(lij ] be the coeffi­
cient matrix so that we can write the given system as Ax = b, where 

If det (A) =1= 0, then the system has the unique solution 

det(A,) 
XI = ---. 

det(A) 
det(An) 

x" = det(A) , 

where AI is the matrix obtained from A by replacing the ith column of A by b. 

Proof 

If det(A) =1= 0, then, by Theorem 3.8, A is nonsingular. I'!encc 

A" A21 A", 
det(A) det(A) det(A) 

An An A n2 

[XI] 

de/(A) dct(A) det (A) 

[j~] X, 
x ~ x. ~ A -' b ~ Ali Ali Ani 

det(A) det(A) dct(A) 

A,,, A" Au" 
det(A) dct(A) det (A) 

This means that 

Ali A li Ani 
for i = [.2. , . Xi = det(A)b1 + det(A)b2 + .. . + det(A) h" .• 11. 

' Gabriel Cramer (1704--1752) was born in Geneva. Swilzerland. and lil'Cd Ihere all his life. Remain­
ing single. he traveled eXlensively. laughl al the Academic dc Calvin. and participaled actively in civ ic 
affairs. 

The rule for solving systrms of linear equalions appeared in an appendix 10 his 1750 book. Inlm­
dUClion a {'analyse de.f ligne., courin'£ algibrique.f. It was known previously by other mathematicians. 
but was not widely known or clearly explained until its appearance in Cramer's intlucntial work. 
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Now leI 

["" 
(1 12 (111_1 b, U l i +1 

a,,, ] 
{/ll (In (12;_1 b, U2;+ 1 {/2" 

A i = . 

a;", . (1;,1 (I,, 2 a " i_l b" u,,;+1 

If we evaluate dct(A,) by expanding along the cofactors of the ith column, we find 
that 

Hence 

dct(A i) 
X,= ---

det(A) 
[or i= 1. 2 ... 11. (I) 

• 
Ln the expression fo r X i given in Equation (1). the dctcnninant , dCl (Ai), of 

Ai can be calcu lated by any methoo desired. It was only in the derimfioll of 
the expression for X i that we had 10 evaluate det(A;) by expanding along the ilh 
column. 

Consider the fo llowing linear system: 

- 2xl +3X2 - X3= 

X I + 2X2 - X 3 = 4 

- 2xl - X 2 + X 3 = - 3. 

- 2 3 - [ 
Wc huvc lA I = 1 2 

- 2 - I 

Xl = 

.1:2 = 

"nd 

J:] = 

2. Then 

3 - I 
4 2 - I 

- 3 - I 
IAI 

- 2 - I 
1 4 - I 

- 2 - 3 1 

IAI 

- 2 3 
2 4 

- 2 - I - 3 

IAI 

- 4 
- = 2 - 2 . 

- 6 
- =3 . 
- 2 

- 8 
- = 4. 
- 2 • 
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Key Terms 
Cramer's rule 

We note that Cramer's rule is applicable only to the case in which we have II 

equations in II unknowns and the coefficient matrix A is nonsingular. Lf we have 
to solve a linear system of II equations in II unknowns whose coeffici ent matrix 
is singular, then we must use the Gaussian elimination or Gauss- Jordan reduction 
methods as di scussed in Section 2.2. Cramer's rule becomes computationally in­
efficient for II 2: 4, so it is beuer, in general , to use the Gaussian elimi nation or 
Gauss- Jordan reduction methods. 

Note that at this point we have shown that the following statements are equiva­
lent for an II x II matrix A: 

I . A is nonsingular. 
2. Ax = 0 has only the trivial solution. 
3. A is row (column) equi valent to 1". 

4. The linear system Ax = b has a unique solution for every II x I matrix b. 
5. A is a product of elementary matrices. 
6. det(A) =1= O. 

.i. Exercises 

l. If possible, sollie the following linear systems by 
Cramer's rule: 

lx l + 4X2 +6xJ = 2 

Xl +11".1= 0 

21"1 + 3X2 - X3 = -5. 

2. Repeat Exercise I for the linear system 

3. Sollie the following linear s)stem for -'"3. by Cramer's 
rule: 

2t1 + -'"2 + -'"3 = 6 

3X l + 2-'"2 - 2X3 = -2 

Xl + X2 + 11"3 = -4. 

4. Repeat Exercise 5 of Section 2.2: use Cramer's rule. 

5. Repeat Exercise I for the following linear system: 

2X1 - X2 + 3.t) = 0 

XI + 2X2 - 3X3 = 0 

4x I + 2X2 + X3 = O. 

6. Repeat Exercise 6(b) of Section 2.2: use Cramer's rule. 

7. Repeat Exercise I for the following linear systems: 

lxl +3X2 +7.>.) =0 

- 1tl - 4X3 = 0 

XI + 21"2 + 4X3 = O. 

ED Determinants from a Computational Point 
of View 

in Chapter 2 we discussed three methods for solving a linear system: Gaussian 
elimination, Gauss- Jordan reduction. and LU -L1ctorization. In this chapter, we 
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have presented one more way: Cramer's rule. We also have two methods for 
inverting a nonsi ngular matrix: the method developed in Section 2.3, which uses 
elementary matrices; and the method involving detemlinants. presented in Section 
3.4. In this section we discuss criteria to be considered when selecting one or 
another of these methods. 

In general , if we arc seeki ng numerical answers, then any method involvi ng 
determinants can be used for II S 4. Gaussian elimi nation, Gauss- Jordan reduc­
tion, and LV-factori zation all require approximately n 3/ 3 operations to solve the 
linear system Ax = b. where A is an II x II matrix. We now compare these methods 
with Cramer's rule, when A is 25 x 25, which in (he world of real applications is 
a small problem. (In some applications A can be as large as 100.000 x 100.000.) 

[ I' we find x by Cramer's rule, then we must first obtain det(A). Suppose that 
we compute det(A) by cofactor expansion, say. 

where we have expanded along the fi rst column of A . [f each cofactor Aij is 
available, we need 25 multiplications to compute det(A) . Now each cofactor A ij 
is the detenni nant of a 24 x 24 matrix. and it can be expanded along a particu­
lar row 01 COIU HlII, lequ iliug 24 multiplicatiolls. TI lus the computat ioll of dct(A) 
requires more than 25 x 24 x . .. x 2 x I = 25! (approximately 1.55 x 1025) mul­
tiplications. Even if we were to use a supercomputer capable of performing [ell 
trillion ( I x 10 12) multiplications per second (3 .1 5 x 1019 per year). it would take 
49,000 years to evaluate det(A). However, Gaussian elimination takes approxi­
mately 253/3 multiplications, and we obtain the solution in less than olle second . 
Of course, det(A) can be computed in a much mme efficient way, by using ele­
mentary row operations to reduce A to tri angular form and then using Theorem 
3.7. (See Example 8 in Section 3.2.) When implemented this way, Cramer's rule 
will require approximately n 4 multiplications for an /I x n matrix, compared with 
n 3 /3 multiplications for Gaussian elimination. The most widely used method in 
practice is LV-factori zation because it is cheapest, especiall y when we need to 
solve many linear systems with different right sides. 

The importance of determinants obviously does not lie in their computational 
use; determinants enable us to express the inverse of a matrix and the solutions to 
a system of n linear equat ions in /I unknowns by means of expressions or [orlllu­
las . The other methods mentioned previously lo r ~o l ving a linear system, and the 
method for finding A-I by using elementary matrices, have the property that we 
cannot write a[orllli/Ia for the answer; we must proceed algorithmically to obtain 
the answer. Sometimes we do not need a numerical answer, but merely an expres­
sion for the answer. because we may wish to furthcr manipulate the answer- for 
example, integrate it. 
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• Supplementary Exercises 

I. Compute IAI for each of the followin g: 

A ~ U 
3 

n (.J 2 

3 

A ~ [~ 
1 

n (bJ 2 

A ~ [~ 
1 -I 

-1] « J 
-3 -I 

3 2 

-2 - I 

A ~ [~ 
0 

r] (d J 
2 1 

1 2 

0 0 

2. Find all values of I for which dCI(I/J - A) = 0 for each 
of the following: 

(a) A = [~ : ~] 
o 0 1 

(bJ A ~ [-i -~ 

- II 

Chapter Review 

True or False 

I. del(A + 8) = del(A) + del(B) 

det(B) 
2. del(A - IB) = ~~ 

del (A) 

3. If del(A) = O. then A has alleasl lwoequal rows. 

4. If A ha~ a column of all zeroS. then del(A} = O. 

5. A is singular if and only if det(A) = O. 

6. If 8 is the reduced row echelon fonn of A. then det(B) = 
del(A ), 

7. The determinant oran elementary millrix is always I. 

3. Show Ihat if A~ = 0 for some positive integer /I (i.c .. if 
A is a nilpotent matrix), then del(A) = O. 

4. Using only elementary row or elcmcmary column opera­
tions <lud Theorems 3.2. 3.5. and ].6 (do not expand the 
deternlinant~). verify the following: 

(. J I ~ :: : 
C- li 

"I I" bl b = b c 
C t li 

(bJ I: : I ~ I : 
c lIb I 

a 
b 

5. Show that if A is an II x II matrix. then det(A A T) :: O. 

6. Prove or di~pro\'e that the determin:mt func tion is a linear 
tr.U1sforrnation of M M into R.I. 

7. Show Ihal if A is a nonsingular lII:nriX. Ihcn adj A is non­
~ingula r and 

1 
(adjA)- J = ~~A = adj(A- I ). 

det (A) 

8. Prove Ihal if two rows (columns) of Ihe 1/ x II malrix A 
are proportional. then det(A) = O. 

9. U:I Q be the II x II rea l matrix in which each entr) is I. 
Show that dct(Q -Il l ,) = O. 

10. Let A he lm 1/ x II matrix with ill1egcr cnlries. Prove that 
A i~ non~;nell1ar :lnll A - I has int~el'r(!ll1r;l' s if anll only if 

del(A) = ±L 
I I . Let A be an" XII matrix wi th ill1cgcr cntrics and det(A) = 

± I . Show that if b has all integer entries. then e\'ery so­
lu tion to Ax = b consists of integers. 

8. I f A is I1Olls ingular. then A - I _ ~I~ ~IJj(A). 
det(A ) 

9. If T i~ a matrix transformation frolll R.2 ..... R. 2 defined 

by A = [~ ~]. then the area of Ihe image of a closed 

plane fi gure Sunder T is six times the area of S. 

10. I f aJllhe diagonal elements of an /I X /I m.1lrix A are zero. 
then dct(A) = O. 

I I. det(ABTA - J)= detB. 

1 
12. - (del cA) = det(A). ,. 



Quiz 

I. Let A. 8 , aocl C be 2 )( 2 matrices wi th det(A) = 3. 
det(8) = - 2. and dct(C} = 4. Compute det(6AT 8 C- ' ). 

2. Prm 'e or disprove: For a 3 )( 3 matrix A. if 8 is the 
matrix obtained by adding 5 to each entry of A. then 
det( B) = 5 + det(A). 

3. Let B be the matrill obtained from A after the row op-
eralions 2r J ....... rj . r , .... r2. 4 r , + rJ ....... rJ. and 
- l r, + r~ ..... r~ ha\'e been pcrfomled. If det(B) = 2. 
fi nd dct (A). 

4. Compute the dClcrmin:lIl1 of 

A = [ ~ - 2 
3 

2 
1 2 
o - I 
o 

by u~ing row operntion~ to obl:i in upper lri:mgul:if form. 

5. Let A be a lower tri:ingu l:ir matrix. Prove that A is singu. 
l"r if anu ouly ifsolm: ui"gonal entry uf A is rem. 

Discussion Exercises 

I. Show that det(A ) i ~ (a 4 - b4 ) / (il - b). where 

[

a + b " b 0] 
A = I a+ b lib 

o I II + b 

for a and b any real numbers and II # b. carefully ex­
plaining all steps in your proof. 

2. Let 

[

" H "b 0 
A = I 1.1 + b lib 

o I ,,+b 
o 0 1 

o ] o 
lIh . 

a+h 

(a) Formulme a eOI~ec1U re for del(A). Explain how you 
arrived at your conjectu re. 

(h) Prove your conjecture. (If you have access to soft · 
ware thnt incorpor.ltes a computer algebra system. 
then use it in your proof.) 

3. Let i l J and b i ' j = I. 2. 3. 4. be any rea l numbers and c , 
and II I be any rea l numbers. Prove that det(A) = O. where 

["' A = bl 
C, 

d , 

l/ 2 ill 

/)2 b l 

o 0 
o 0 

"'] b, 
o . 
o 
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6. Evaluate del(A) hy using expansion along a row or col­
umn. given 

A = [ ~ 
1 2 

~] 3 4 
- 2 0 - I 1 . 

1 - I 0 0 

7. Use the adjoint to compute A _ I for 

A = [~ 
3 :] . 

- 2 - I 

8. Solve Ihe linellT systCnl Ax = II by using Cramer's rule. 
given 

Carefully explain all s:eps in your proof. 

4. Detennine all values of x so that det(A) = O. where 

;. 

= [., I] A 2 x . 

L" 

[' A = : x :J 
(0) Determine p(.r) = det(A), 

(b ) Gmph y = p(x ). If the graph has any .(. intercepts. 
determine the vuhle of dct (A) for those values. 

6. Let P (X' ,YI ) and Q(X~')'2) be two points in the pl:me. 
Prove that the equation of thc line through P and Q is 
given by det(A) = 0 , whcre 
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7. Let A~ be the /I )( It matrix of the form Show that for /I ~ 3, 

.< 0 0 0 

~l I x 0 0 
0 ., 0 

del ( A~) = .x det(A~_ I) - dCI(A w_2 ) 

0 0 I .< :j 
0 0 x 



CHAPTER 

Real Vector Spaces 

I.n Sections 1.2, 1.3, and 1.6, we have given brief glimpses of 2-vectors and 3-
vectors and of some of their properties from an intuitive, somewhat informal point 
of view. In this chapter we fi rst develop the notion of 2 vectors and 3-vectors 
along with thei r properties very carefully and sysrematically. A good mastery of 
this basic material wi ll be helpful in understanding II -vectors and in the study of 
Section 4.2, where a more general notion of vector will be introduced. Moreover. 
II -vectors and this more general concept of vector will be used in many parts of the 
book. 

m Vectors in the Plane and in 3-Space 

In many applications we deal with measurable quantities such as pressure, mass, 
and speed. which can be completely described by giving their magnitude. They 
are called scalars and will be denoted by lowercase italic leners such as c. d, 
r, s, and t. There are many other measurable quantities. such as velocity. force , 
and acceleration. which require for their description not only magnitude, but also a 
sense of direction. These arc called vectors, and their study comprises this chapter. 
Vectors will be denoted by lowercase boldface 1eners, sueh as u. v. x, y, and z. 
The reader may already have encountered vectors in elementary physies and in 
calculus . 

• Vectors in the Plane 

We draw a pair of perpendicular lines intersecting at a point 0, called the origin . 
Oneofthe lines, the x-axis. is usually taken in a horizontal position. The other line, 
the y-axis. is then taken in a vertical position. The.J: - and y-axes together arc called 
coordinate axes (Figure 4.1). and they form a rectangular coordinate system, or 
a Cartesian (after Rene Descartes·) coordinate system. We now choose a point 

' Rene Descartes (1596-1650) was one of the best-known scientists and philosophers of his dlY; he 
was considered by some to 00 the founder of modem philosophy. After completing a uni,'cr:sity dq;:ree 
in law. he turned to too privlte study of mathematics, simultancously pursuing interests in Parisian 

177 
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y-axis 

1 Po,"'" di""'",, 

~~f-+~~~~~~- . ·axis 
o 

Positi"e direction 

FIGURE 4 . 1 

y-axis 

on the x-axis to the ri ght of a and a point on the y-axis above a to fix the units 
of length and positive directions on the x- and y-axes. Frequently, but not always, 
these points are chosen so that they are both equidistant from a - that is, so that 
the same unit of length is used for both axes. 

With each point P in the plane we associate an ordered pair (x . y) of real 
numbers, its coordinates. Conversely, we can associate a point in the plane with 
each ordered pair of real numbers. Point P with coordinates (x. y) is denoted by 
P (x . y), or simply by (x. y) . The set of all points in the plane is denoted by R2; it 
is called 2.space. 

Consider the 2 x I matrix 

where x and )' are real numbers. With x we associme the di rected line segment with 
the initial point the ori gin and terminal point P (x . y). The directed line segment 

~ 

from a to P is denoted by a P ; a is called its tail and P its head. We disti nguish 
P(x. Y) tail and head by placing an arrow at the head (Figure 4.2). A directed tine scgment 

has a direction, indicated by the arrow at its head . The magnitu de of a directed 
line segment is its length. Thus a directed line segment can be used to describe 

-:c,,-:::-I<''--~~~~~- x-axls --
0 (0.0) force. velocity, or acceleration. Conversely. with the directed line segment a P 

FIGURE 4 .2 
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RENE D ESCARTES 

with tail 0 (0.0) and head P (x. y) we can associate the matrix 

[;,J 
A vector in the plane is a 2 x I matrix 

where x and )' are real numbers, called the components (or entries) of x. We refer 
to a vector in the plane merely as a vector or as a 2·vector. 

Thus, with every vector, we can associate a directed line segment and, can· 
versely. with every directed line segment we can associate a vector. Frequentl y, 
the notions of directed line segment and vector are used interchangeably, and a 
directed line segment is called a vector. 

nieh1 lif,.., a,,<1 i" lh" mililary. "ol"nl,,~ri"e (or hri~( !",riorl< in 11>~ n,,,,..h . R.wan .. " . an<l F,..,n ~h "nni~< 

The mOli;t productiw period cihis tifc was t628- 1648. whcn he ti vcd in Hotland. In t649 he acccpted 
an invitation from Queen Christina of Sweden to be ht.'r private tutor and to establi ,h an Academy of 
Sciences thcre. Unfortunatc l)'. he did not carry out this project. since he died of pneumonia in t650. 

In 16t9 Descartes haJ a dream in which he realized that the method of mathematics is the 
be,t way for obtaining trulh, However. his onty mathcmatical publication was Ul Giomitrii'. which 
appeared as an appendix 10 his majorphilosophieal work. Di,'cour.l· de la met/lOde po"r bien ~'o",luin' su 
mison. cI cill'n:;her 10 I'erite <iWIS Ie .• scienCl's (Di.~co"rJ'e 0" Iht Mi'f/r(}(1 of Reasonin!: lVi'1I "nd Sreking 
Trw" in fhe Sdenas). In UI Gtometr;,' hc proposes the radicat idea of doing geomctry atgcbmicalty. 
To express a curve atgcbmica lt y. one chooses any com'enient linc of reference and. 011 the line. a 
point of reference. If y repw;ents the distance from any poi11l or too curve to the reference line and 
x represents the di,tance atong too linc to Ihe rererence poinl. there is an cquation retating x and )' 
Illat reprosen1s the curvc. The systcmatic use of "Cartesian"" coordinates described in this sec.tion wa.~ 
introduced later i11loo seventeenth century by mathematicians carrying on Descartes's work. 
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FIGURE 4.3 
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Since a vector is a matrix, the vectors 

u = [~:: J and v=[;,:] 
are said to be equal if.xl = X2 and )'1 = J2. That is. two vectors arc equal if their 
respective components arc equal. 

The vectors 

are equal if 

a + IJ = 3 

a - b = 2, 

which means (verify) that (/ = ~ and b = t. • 
Frequently, in physical applications it is necessary 10 deal with a directed line 
~ 

segment PQ from the point P (x . y) (nol thc origin) to the point Q (x' , ),'), as 
shown in Figure 4.3(a). Such a directed line segment will also be called a vector 
in the plane, or simply a vector with tail P (x . y) and head Q(X ' , )"). The com· 

~ 

ponents of such a vector are X i - x and y' - y. Thus Ihc vector P Q in Figure 4.3(a) 
can also be represented by the vector 

["-Xl )" - y 

with tail 0 and head P"(x ' - x. y' - y) . Two such vectors in the plane will be 
~ 

called equlli if their respective components arc equal. Consider the vectors PI Q /, 
~ ~ 

P2Q 2, and P3Q3 joining the points Pl (3. 2) and Ql(5. 5), P2(O. 0) and Q2(2. 3), 
P3 ( - 3, I ) and Q3( - 1.4), respectively, as shown in Figure 4.3(b). Since they all 
have the same components, they arc equal. 

y 

Q(x' , )") 

/" 
p(x. y) 

P"(x' - x.y ' - yl 
" 

x 
0 

(a) Diffcrent directcd linc scgmcnts 
reprcscming thc samc '·cc[or. 

)' 

6 
Qj(5. 5) 

Q/-1. 4) Q,(;3)/ " 
I )/" ~ p ](-J. PI(3,2) 

x 
-4 -3 -2 -I / 2 3 4 5 6 

P2(O,0) 

(b) Vectors inlhc planc. 
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DEFINITION 4.2 

EXAMPLE 2 

Moreover. the head Q4 (X~ . y~) of the vector 

with tail P4 (- 5, 2) can be detennined as follows. We must have x~ - (- 5) = 2 
and Y~ - 2 = 3, so that x~ = 2 - 5 = - 3 and Y~ = 3 + 2 = 5. Similarly, the tail 
PS(.'ts. }"s) of the vector 

with head Qs(S.6) is determined as follows. We must have S - Xs 
6 - Ys = 3, so that xs = S - 2 = 6 and )"s = 6 - 3 = 3. 

With each vector 

x ~ [ ~, l 

2 and 

we can also associate the unique point P (x . y); conversely. with each point P (x . y) 
we associate the unique vector 

[;, 1 
Hence we also write the vector x as (x . y). Of course. this association is carried 

~ 

out by means of the directed line segment a P. where a is the ori gin and P is the 
point with coordi nates (x . y) (Figure 4.2). 

Thus the plane may be viewed both as the set of all points or as the set of all 
vectors. For this reason, and depending upon the context. we sometimes take R2 
as the set of all ordered pairs (x. y) and sometimes as the set of all 2 x I matrices 

Lei 

u = [::~J and v = [~~J 
be two vectors in the plane. The sum of the vectors u and v is the vector 

Remark Observe that vector addition is a special case of matri x addi tion. 

Let u = [~J and v = [ -!J. Then 

u + v = [3 ! ~ ~4) ] = [ - ~ J. 
See Figure 4.4. • 
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)' 

3 
. (2, 3) 

)' 

" 
3 

-+------+-----<~n ~~' -3 
U +V - 15.-1) 

w , , , , 

- 3 

FIGURE 4.4 

DEFINITION 4.3 

)' 

• (3, -4) 

" 
u +v I , 

til ) : , 
~~~-'-----~' --x 

o II " I III + 1I1 

FIGURE 4.5 Vector addition. 

We can interpret vector addit ion geometricall y. as follows. In Figure 4.5 the 
directed line segment w is parallel to v, it has the same length as v. and its tail is 
the head (11 1. 112) of u. so its head is ( U I + VI. 11 2 + V2) . Thus the vector with tail 
o and head ( II I + VI . II ~ + V2) is u + v. We can al so describe u + v as the diagonal 
of the parallelogram defined by u and v. as shown in Figure 4.6 . 

" u + v / 

""'----::--"" 0 - v 

, , , 

, , 

, , , , 

FIGURE 4 .6 Vector addi tion. 

)' 

---,¥=----_ x 

FIGURE 4 .7 Scalar mult iplication. 

If u = ['" ] is a vector and c is a scalar (a real number). then the scalar mu lti ple 
11 2 

cu of u by c is the vector [CIII]. Thus the scalar multiple cu is obtained by 
C II 2 

multiplying each component of u by c. If c > O. then cu is in the same direction 
as u. whereas if d <: 0, then d u is in the opposite direction (Figure 4.7) . 
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EXAMPLE 3 

y 
(-6.9) 

Ifc = 2, d = - 3,and u = [ _~lthen 

on" 

du --3 [ 2]- [<-3)(2) ]_ [-6] 
- - 3 - (-3)(-3) - 9 ' 

which are shown in Figure 4.8. 

, 

2 4 

" , 

, 
, , , , 

, , 

• 

I U + V \ 
-+-H-+-H---'CH-+-+-+-+-t-- x u - V I , , 

, 
-6 o 

-J 

-6 

FIGURE 4.8 

-, 
- 3) 

la) Difference between vectors. (b) Vector sum and vector difference. 

FIGURE 4.9 

The vector 

[~] 
is called the zero vector and is denoted by O. If u is any vector, it follows that 
(Exercise 2 1) 

u + 0 = u. 

We can also show (Exerc ise 22) that 

u + ( - I ) u = O. 

and we write (- I)u as - u and call it the negative of lI . Moreover, we write 
II + (- I) v as II - v and call it the difference between II and v. It is shown in 
Figure 4.9(a). Observe that while vector addi tion gives one diagonal of a parallel­
ogram, vector subtraction gives the other diagonal [see Figure 4.9(b)] . 

• Vectors in Space 

The foregoing d iscussion of vectors in the plane can be generali zed to vectors in 
space, as follows . We fi rst fix a coordinate system by choosi ng a point , called the 
or igin, and three lines, called the coordinate axes, each passing through the origin 
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so that each line is perpendicular to the other two. These lines are individually 
called the X-, y-, and z-axes. On each of these axes we choose a point fixing the 
units of length and positive directions on the coordinate axes. Frequently, but not 
always. the same unit of length is used for all the coordinate axes. In Figure 4.10 
we show two of the many possible coordinate sys t~ms . 

The coordinate system shown in Figure 4.IO(a) is called a righi -handed co­
ordinate system; the one in Figure 4.10(b) is called left-handed. A right-handed 
system is characterized by the followi ng propeny: If we curl the fi ngers of the 
ri ght hand in the direction of a 900 rotation from the positive x-axis to the positive 
y-axis, then the thumb witt poi nt in the direction 01 the positive z-axis. (See ..... igure 
4.11.) 

Ao;---- y a 

,. 
(a) Right-hallced coordinate system. (b) Left-handed coordinate system. x 

FIGURE 4.10 FIGURE 4 . 11 

If we rotate the x-axis cou nterclockwise toward the y-axis. then a ri ght-hand 
screw will move in the positive z-dircction (see Figure 4.11). 

With each point P in space we associate an ordered triple (x. y . z ) of real 
numbers, its coordinates. Conversely, we can associate a point in space with each 
ordered triple of real numbers. The point P with coordinates x, y. and z is denoted 
by P (x . y . z). or simply by (x. y . z). The set of all poi nts in space is called 3.space 
and is denoted by R3. 

A vector in space, or 3-vector, or simply a vector, is a 3 x 1 matrix 

where x, y, and z are real numbers, called the components of vector x. Two 
vectors in space are said to be equal if their respective components are equal. 

As in the plane , with the vector 

~ 

we associate the directed line segment 0 P , whose tail is 0(0. O. 0) and whose 
head is P (x . y. z); conversely, with each directed line segment we associate the 
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FIGURE 4.12 

EXAMPLE 4 

vector x [see Fi gure 4.12(a)]. Thus we can also write the vector x as (x . y . z). 
Again. as in the plane, in physical applications we often deal with a directed line 

~ 

segment P Q, from the point P (x . y. z ) (not the origin) to the point Q(x ' . y' . Z' ), 
as shown in Fi gure 4.l2(b). Such a directed line segment will also be called a 
vector in R 3

, or simpl y a vector with tail P(x. y. z) and head Q(x' . y' . z' ). The 
components of such a vector are x ' - x , y' - y, and z' - z. Two such vectors in RJ 

~ 

will be called equal if their respective components are equal . Thus the vector PQ 

in Figure 4. 12(b) can aL~o be represented by the vector [> - ~.] with tail 0 and 
z' - z 

head P"(x' - x . y' - y .z' -z). 

• p(x. y. z) 

~c-::-",------y 
0(0. O. 0) 

tal A vector in R3 

• Q(x'. y '. z') P(X')Y 
. P·(x' - x. y' - y. z' - z) 

~------- y 
o 

(b) Diffe:-cnt directed line segments 
representing the same vector. 

If u = 11 2 and \' = V2 are vectors in R' and c is a scalar. then the sum ['''] ["'] 
11 3 V3 

U + v and the scalar multiple eu arc defined, res]Xctively. as 

"d '" ~ [~::;] . 
ell , 

The sum is shown in Figure 4.1 3. which resembles Fi gure 4.5 , and the scalar 
multiple is shown in Figure 4.14, which resembles Fi gure 4.8. 

Compute: (a) u + v; (b) - 2u; (c) 3u - 2v. 
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FIGURE 4.13 Vector addi tion. FIGURE 4.14 Scalar multiplication. 

Solution 

Thc zero vector in R3 is denoted by 0, where 

The vector 0 has the property that if u is any vector in RJ
, then 

u I 0 = u. 

The negative of the vector u = [ ::~] is the vector - u = [ =::~] . and 
UJ - II ) 

u + ( - u) = O. 

• 

Observe that we have defined a vector in the plane as an ordered pair of real 
numbers, or as a 2 x I matrix. Similarly, a vector in space is an ordered triple 
of real numbers, or a 3 x I matrix. However, in physics we often treat a vector 
as a directed li ne segment. Thus we have three very different representations of a 
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" 

vector, and we can then ask why all three arc valid. That is, why are we justified 
in referring to an ordered pair of real numbers, a 2 x I matrix. and a directed line 
segment by the same name, "vector"? 

To answer this question, we first observe that. mathematically speaki ng, the 
onl y thing that concern; us is the behavior of the object we call "vector." It turns 
out that all three objects behave, From an algebraic point of view, in exactly the 
same manner. Moreover, many other objects that arise naturally in applied prob­
lems behave, algebraically speaking, as do the aforementioned objects. To a math­
ematician, this is a perfect situation. For we can now abstract those features that 
all such objects have in common (i.e., those properties that make them all behave 
alike) and define a new structure. The great advantage of doing this is that we 
can now talk about properties of all such objects at the same time without havi ng 
to refer to anyone object in part icular. This. of course, is much more effi cient 
than studying the properties of each object separately. For example. the theorem 
presented next summarizes the properties of addi tion and scalar multiplication for 
vectors in the plane and in space. Moreover. this theorem will serve as the model 
for the generali zation of the set of all vectors in the plane or in space to a more 
abstract setti ng. 

Theorem 4.1 If u, v, and w are vectors in R" or R3. and e and d are real scalars, thcn the 
following properties are valid: 

..-

(a) u + v = v + u 

(b) u + (v + w) = (u + v) + w 

(e) u + 0 = 0 + u = u 

(d) u + (-u) = 0 

(e) c(u + v) = eu + cv 
(I") (e j d ) u = eu I d u 

(g) e(d u) = (ed) u 

(h) [u = u 

Proof 

(a) Suppose that u and v are vectors in R2 so that 

u = [::~J and v = [~~] . 
Then 

and V+ U= [VI+ UI]. 
V2 + 11 2 

Since the components of u and v are real numbers, II I + VI = VI + 111 and II I + V2 = 
V2 + 11 2. Therefore, 

u + v = v + u. 

A similar proof can be given if u and v are vectors in R3. 
Property (a) can al;o be established geometrically. as shown in Figure 4.15 . 

FIGURE 4 . 15 Vector addition. 
The proofs of the remaining propert ies will be left as exercises. Rcmember. they 
can all be proved by eithcr an algebraic or a geometric approach. • 
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Key Terms 
Vectors Tail of a vector Scalar multiple of a vector 

Vector addition Rectanguhlr (Cartesian) coordinate system 
Coordinate axes 
x-axis. y-axis. z-axis 
Origin 
Coordinates 
2-space. R! 

Head of a vector 
Directed line segment 
Magnitude of a vector 
Vector in Ihe plane 
Components of a vector 
Equal veclors 

Zero vector 
Difference of vectors 
Righl- (lefl-) handed coordirwte system 
3-space. R3 
Vector in space 

e'M Exercises 

I. Sketch a directed line segmenl in Rl. representing each 
of the following vectors: 

(,' " ~[ -;J 
« ' w ~[ =;l 

(b) V=[!] 

(d) Z = [ _~] 

2. Determine the head of the vector [ -~] whose tail is 

(- 3. 2). Make a sketch. 

3. Determine the tail of the vector [!] whose head is (t. 2). 

-'1ake a sketch. 

4. D""ml", .h, "I] of .he ""m [ _ n who~ heed I, 

(3. - 2.2). 

5. For what values of 1.1 and b are the vectors [1.1 ~ b] and 

[1.I~b] equal? 

6. Foe wh" ,,]"" of a. b. "d ,,,"h,,~,",, [;'~-~] 

"d [ -~ ] 'q"'" 
a +b - 2c 

III Nercises 7 alldS. determille thecompollent.Yoj each l'eCfOr 

po. 
7. (,' P(1. 2). Q(3. 5 ) 

(h) P( - 2.2.3) . Q( - 3. S. 2) 

8. (,' P(- 1. 0). Q( - 3. - 4) 

(h , 1'( 1. I. 2), Q( t. - 2. - 4) 

In Erercil'es 9 {llId 10. filld .!!...:!'ector ",hose wil i.I' lire ()rigin 

Ihal repre.I'ellls each reclor I' Q. 

9. (,' P(- 1.2 ).Q(3.5) 

(h) P(1. I. - 2). Q(l 4. 5) 

10. (, ) P(2. - 3), Q( - 2.4) 

(h , P(- 2. - 3. 4) . 0(0. o. I) 

II. Compute u + v. u - v. 2u. and 3u - 2v if 

(, ) " ~[;] , ~ [-;J 
(h, " ~n , ~m 
«, " ~m,~m 

12. Compute u + v. 2u - v. 3u - 2v. and O - 3v if 

(a) u = m ,~ m 
(b) u = [ -:] , ~ U] 
«i " ~ UJ , ~ n] 

13. Let 

c = -2, and d = 3. Compllte each of the following: 

I' i H' 
(h, ('u + d w 

«i u + v + w 
(d ) ('u + d v + w 
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14. Let 

' ~[;l Y~ [ -!l 

' ~[:l ~d " ~[ -;l 
Find rand s so that 

(a) z = 2x. (h) ~u =y. (e) z + u = x. 

15. Let 

Find r .. \'. and I so that 

(a) z=tx. (b) z+ u = x. (e) z - x =y. 

16. [fpossible. find scalars CI and C2 so that 

17. If possible. find scalars CI. C2. and c ) so that 

18. [f possible. find scalars CI and q . not both zero. so that 

c,[;] + c,[:]~[~]. 
19. [fpossible. find scalars cI.q.and CJ . not all zero. so that 

20. Let 

F;od ",'," ,.,. ,.,. eod " '0 ,h" ,oy ",",0' " ~ [;] 

e<H1 be written as U = Ll i + q j + q k. 

21 . Show that if u isa vector in R!or R). then u + O= u. 

22. Show that if u is a vector in R2 or RJ. then 

u + (- I )u=O. 

23. Prove part (b) and parts (d) through (h) of Theorem 4.1 . 

.!. 24. Determine whether the software you use supports graph­
ics. If it does, experiment with plotting vectors in R 2. 
Usually. you must supply coordinates lor the head and 
tail of the vector and then tell the software to connect 
these points. The points in Exercises 7(a) and Sea) can be 
used this w:ty. 

!. 25. Assuming that the software you lise SlIpportS graphics 
(see Exercise 24). plot the vector 

.!. . 26. 

, ~ [!] 
on the same coordinate axes for each of the following: 

(a) visto havehead(I.I). 

(b) v is to have head (2. 3). 

Determine whether the software you use supports three­
dimensional graphics. that is. plots points in R). If it 
does. experiment with ploning points and connecting 
them to form vectors in R). 

m Vector Spaces 

A useful procedure in mathematics and other disciplines involves classification 
schemes. TIlat is, we form classes of objects based o n properties they have in 
common. Th is allows us to treat all members of the class as a single unit. Thus, 
instead o f dealing with each distinct member of the class. we can develop notions 
that apply to each and every member of the class based on the properties that 
they have in common . In many ways this helps us work with more abst ract and 
comprehensive ideas. 
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Linear algebra has sllch a classification scheme that has become vcry impor­
tant. This is the notion of a vector space . A vector space consists of a set of 
objects and two operations o n these objects thai satisfy a certain SCI of rules. If we 
have a vector space, we will automatically be able to attribute to it certain prop­
erties thaI hold for all vector spaces. Thus. upon meeting some new vector space, 
we will not have to verify everything from scratch. 

The name "vector space" conjures up the image of directed line segments from 
the plane. or 3-space, as di scllssed in Section 4.1. This is, of course. where the 
name of the classification scheme is derived from. We will see that matrices and 
II-vectors will give us examples of vector spaces, blll other collections of objects, 
like polynomials, funct ions, and solutions to various types of equations, wi ll also 
be vector spaces. For particular vector spaces, the members o f the set of objects 
and the operations on these objects can vary, blll the rules governing the properties 
satisfied by the operations involved will always be the same. 

A real vector space is a set V of elements on which we have two operations Gl 
and 0 defined with the following properties: 

(a) [ I' u and v are any clements in V. then u E!J v is in V , (We say that V is closed 
under the operation G1.) 

(I) u $ v = v $ u forall u,vin V. 

(2) u $ (v EB w) = (n EB v) Ef:l w for all u, v, w in V. 

(3) There exists an clement 0 in V such that u Ifl 0 = 0 \fI u = u for an~ u in 
V. 

(4) For each u in V there exists an element - u in V such that 
u Ifl - u = - u $ u = O. 

(b) If u is any element in V and c is any real number, then cO n is in V (i.e., V is 
dused under the uperatiun 0 ). 

(5) cO (u \fI v) = cO u $cO v for any u , v in V and any real number c. 

(6) (c + d) 0 u = cO u Ef:l d 0 u for any u in V and any real numbers f and 
d. 

(7) cO (l/ 0 u) = (cd) 0 u for any u in V and any real numbers c and d. 

(8) I O u = u for any u in V. 

The elements of V are called vectors: the elements of the set o f real numbers R 
are called scalars. The operation \fI is called vector addition: the operation 0 is 
called scalar multiplication . The vector 0 in property (3) is called a zero vector, 
The vector - u in pro]Xrty (4) is called a negative of u. It can be shown (see 
Exercises 19 and 20) that 0 and - u are unique. 

If we allow the scalars to be complex numbers, we obtai n a com plex vector 
space. More generally, the scalars can be members of a field' F, and we obtai n a 
vector space over F. Such spaces are important in many applications in mathemat­
ics and the physical sciences. We provide a brief introduction to complex vector 

• A field is an a1l:cbraic structure enjoyin!: tile arithmetic propc"ies shared by the real. complc~. and 
rational numbers. Fields al1' ,tudicd in detail in an abstract algebra course. 
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EXAMPLE 1 

FIGURE 4.16 

EXAMPLE 2 

EXAMPLE 3 

spaces in Appendix B. However, in this book most of our atte ntion will be focused 
on real vector spaces. 

In order to specify a vector space, we must be given a set V and two operations 
EI1 and 0 sat isfying all the properties of the definit ion. We shall often refer to a 
real vector space merely as a vector space. Thus a "vector" is now an element of 
a vector space and no longer needs to be interpreted as a directed li ne segment. 
In our examples we shall sec, howevcr, how this name came about in a natural 
manner. We now consider some examples of vector spaces, leaving it to the reader 
to verify that all the propen ies of Defi nition 4.4 hold. 

Consider R", the set of all II x I matrices 

with real entries. Let the operation EI1 be matrix addition and let the operation 0 
be mult iplication of a matrix by a real number (scalar multiplication). 

By the use of the properlies o f Illal riees eSlablished ill SeClio ll 1.4, il is UOl 
difficult to show that R" is a vector space by vcrifying that the propcrtics of Def-

inition 4.4 hold. Thus the matri x [~;], as an element of R", is now called an 

a" 
II-vector, or merely a vector. We have already discussed R2 and RJ in Section 4.1 . 
See Figure 4. 16 for geometric representations of R2 and R3. Although we sha!1 see 
later that many geometric notions, such as length and the angle between vectors, 
can be defi ned in R" for II > 3, we cannot draw pictures in these cases. • 

)' 

---I-;,---x 
a 

R' 

)' 

);c----x 
a 

R' 

The set of all 11/ x II matrices with matrix addit ion as Ei1 and multiplication of a 
matrix by a real number as 0 is a vector space (verify) . We denote thi s vector 
space by M",,, . • 

The set of all real numbers with EI1 as the usual addition of real numbers and 0 as 
the usual multiplication of real numbers is a vector space (verify), In thi s case the 
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real numbers play the dual roles of both vectors and scalars. Thi s vector space is 
essentiall y the case with n = I o f Example I. • 

Let RI1 be the sct of all I x /I matrices [(II (/2 a" J. where we define Gl by 

and we define 0 by 

can] . 

Then RII is a vector space (verify). This is just a special case of Example 2. • 

Lei V be the set of all 2 x 2 matrices with trace equal to zero: that is. 

[" b] .. A = c d IS m V provided Tr(A) = a+d = 0. 

(Sec Section 1.3. Exercise 43 for the defi nition and properties o f the trace o f a ma­
trix.) The operation ffi is standard matrix addition, and Ihc operation 0 is standard 
scalar multiplication of matrices; thcn V is a vector space. We verify properties 
(a), (3). (4), (b). and (7) of Definition 4.4. The remaining properties are left for the 
student to verify. 

LeI 

A -_ [~ db] [, 'j .. andB = tp 

be any clements o f V. Then Tr(A) = (/ + d = 0 and Tr(B) = r + p = O. For 
property (a), we have 

and 

A ffi B = [a + I" 
c + f 

b +.'.j 
d + p 

Tr(A tIl 8 ) = «(1 + 1") +(d + p) = «(I + d)+(r + p) = 0 + 0 = O. 

so A tB 8 is in V; that is, V is closed under the operation Ei1 . To verify property 
(3), observe that the matrix 

has trace equal to zero. so it is in V. Then it follows from the definition of $ that 

property (3) is valid in V, so [~ ~ ] is the zero vector. which we denote as O. To 

verify property (4). Jet A. as given previously. be an element of V and let 

c ~ [ -" -bj . 
- c - d 

We first show that C is in V: 

Tr(C) = (- a) + (- c) = - (a +c) = O. 
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Then we have 

A ill C ~ [a b] + [-a -b] ~ [0 0] ~ 0, 
cd -e-d 00 

so C = - A. For propeny (b), let k be any real numocr. We have 

. _ [k" kb] 
k 0 A - ke kd 

and 
Tr(k 0 A) = ka + kd = k(a + d) = o. 

so k 0 A is in V; that is. V is closed under the operation O . For propeny (7), let k 
and III be any real numbers. Then 

"ad 

k ) k [
ilia mb] [kllla O(IIIOA = 0 = 
lIIe IIId klllc 

(km) 0 A = [klllU klllb]. 
kllle kllld 

It follows that k 0 (III 0 A) = (kill) 0 A. 

klllb] 
kmd 

• 
Another source of examples are sets of polynomials; therefore, we recall some 
well-known facts about such functions. A polynomial (in t) is a function that is 
expressible as 

pet} = a"I" + ([,,_It,,-I + ... + alt +ao . 

where aD, al .. .. . a" are real numocrs and 1/ is a nonnegative integer. If a" t- 0, 
then pet) is said to have degree II . Thus the degree of a polynomial is the hi ghest 
power of a term having a nonzero coefficient ; p(t) = 2t + I has degree I, and the 
constant polynomial pet) = 3 has degree O. The zero polynomia l, denoted by O. 
has no degree. We now let P" be the set of all polynomials of degree s: 1/ togethcr 
with the zero polynomial. If p(t) and q(t) are in P", we can write 

p(t) = a"t" + a,,_l t ,,-1 + ... + (lIt + aD 

"ad 
q(t) = b"t" + b,,_lt,,-J + .. . + bit + boo 

We define p(t) tB q(t) as 

pet) G1 q(t) = (a" + b. )t" + (aJl_ 1 + b,,_I)t ,,-1 + .. . + (al + bl)t + (aD + bo). 

If c is a scalar, we also defi ne c 0 p(t) as 

C 0 pet) = (ca,,)t" + (ca,,_I) t ,,-1 + ... + (cadt + (caD) ' 

We now show that P" is a vector space. 
Let pet) and q(t), as before, be clements of PI!; that is, they are polynomials of 

degree .::: 1/ or the zero polynomial. Then the previous definitions of the operations 
EB and 0 show that p er} EB q (t) and C 0 pet). for any scalarc, are polynomials of 
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degree :::: /I or the zero polynomial. That is, pet) til q(t) and c 0 pet) are in P" so 
that (a) and (b) in Defi nition 4.4 hold. To verify property (I), we observe that 

q(t) tIl p(t) = (hI! + a.)(" + (h,,_J + an_dt,,-J + ... + (hi + ad' + (ao + bolo 

and since (Ii + bi = hi + (Ii holds for the real numbers. we conclude that p(t) tB 
q(t) = q(t) tB pet). Similarly, we veri fy property (2). The zero polynomial is Ihe 
clement 0 needed in property (3). If pet) is as given previously, then ils negative, 
- per), is 

We shall now verify property (6) and will leave the verification of the remaining 
properties to Ihc reader. Thus 

(c + eI) 0 pCt) = (e + d)a,,!" + (c + d)all_lt,,-I + ... + (c + d )a] ! 

+ (c + d)ao 

= (a"t" + da ,, !" + C(1,,_II,,-1 + dan_l t ,,-1 + ... + call 

+ da]f + caD +dao 

+ d(o,,!" + a,,_lf,,-1 + ... + (lI t + (l0) 

= cO p(t) $ d 0 p(r). • 
Remark We show later that the vector space P" behaves algebraically in exactly 
the same manner as R n+ I. 

For each natural number n. we have j ust defined the vector space Pn of atl 
polynomials of degree S n together with the zero polynomial. We could also 
consider the space P of all polynomials (of any degree). together with the zero 
polynomial. Here P is the mathematical union of all the vector spaces P". Two 
polynomials p(t) of degree II and q(f) of degree III are added in P in the same way 
as they would be added in Pr, where r is the maximum of the two numbers III and 
II. Then P is a vector space (Exerci se 6). 

As in the case of ordi nary real-nu mber arithmetic, in an express ion contain ing 
both 0 and $ . the 0 operation is perfonned fi rst. Moreover. the familiar arithmetic 
rules. when parentheses are encountered, apply in this case also. 

Let V be the set of all real-val ued continuous functions defi ned on RI. If f and 8 
arc ill V, we defill(; [6;1 S by (J $ S)(i) = [(I) + S(t). If [is ill V and {' is a 
scalar. we define c 0 f by (c 0 n(r) = cf(t) . Then V is a vector space, which is 
denoted by C ( - 00 . 00). (See Exercise 13. ) • 

Let V be the set of all real multiples of exponential functions of the form eh . 

where k is any real number. Define vector addition EB as 

and scalar multiplication 0 as 
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From the definitions of tB and 0 we see that V is closed under both operations. 
It can be shown that properties (I) and (2) hold. As for property (3), we have 
co., = I, so fo r any vector C]Ch in V, we have c .ekx tB I = I tB c]eh = c]el.<. 
Hence the zero vector in this case is the number I. Next we consider property (4). 
For any vector C]Ch in V, we need to determine another vector C2e",r in V so that 

We have Dch = 0 is in V; however, there is no vector in V that we can add to D 
(using the definition of (£I) to get I; thus V with the given operations tB and 0 is 
not a vector space. • 

Let V be the set of all real numbers with the operations u tf;l v u - v «(£I is 
ordinary subtraction) and c 0 u = cu (0 is ordinary multiplication). Is Va vector 
space? If it is not , which properties in Definition 4.4 fail to hold? 

Solution 
If u and v are in V. and c is a scalar. then u iII v and c 0 u are in V, so that (al and 
(b) in Definition 4.4 hold. However. property (I) fail s to hold. since 

u ffiv= u - v and v (fl u = v - u. 

and these are not the same, in general. (Find u and v such that u - v t- v - u.) 
Also, we shall let the reader verify that properties (2), (3). and (4) fail to hold. 
Properties (5), (7), and (8) hold. but property (6) docs not hold, because 

(c + d) 0 u = (c +d)u = ell + d u. 

whereas 

c 0 u tf;l d 0 u = cu tf;l d u = eu - d uo 

and these are not equal. in general. Thus V is not a vector space. • 
Let V be the set of all ordered triples of real numbers (x. y. z) with the operations 
(x. y . z) tf;l (x'. y'. z') = (x'. y+ )"', z + z'); cO (x.y, z) = (ex. ey. ez). We can 
readily verify that properties (I), (3). (4). and (6) of Definition 4.4 fail to hold. For 
example. if u = (x, y, z) and v = (x'. y' . z') , then 

u iII v = (x. y,z) tB (x', y', z') = (x', y + y' . z +z') . 

whereas 

v (£l u = (x', y', z') (fl (x . y . z) = Ct. y' + y, z' + z) , 

so property (I) L1ils to hold when x t- x'. Also, 

(e+d) 0 u = (e + d) 0 (x. y . z) 

= «c +d)x, (c+ d)y. (e +d)z) 

= (ex + dx. cy + dy, ez + d z), 
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e 0 u e tl 0 u = e 0 (x. y . z) $ d 0 (x .y.z) 

= (ex. ey . e:: ) G1 (dx. d y . tIz) 

= (dx. ey + d y. Cl. + d z). 

so property (6) fail s to hold when ex =1= O. Thus V is not a vector space. • 

Let V be the set of all integers : define t£! as ordinary addition and 0 as ordinary 
multiplication. Here V is not a vector, because if u is any nonzero vector in V and 
e = j3, then e 0 u is not in V. Thus (b) L1ils to hold. • 

To verify that a given set V with two operations Q1 and 0 is a real vector space. 
we must show that it satisfies all the propert ies of Defi nition 4.4. The first thing 
to check is whether (a) and (b) hold, for if either of these fa ils, we do not have a 
vector space. If both (a) and (b) hold, it is recommended that (3), the existence 
of a zero element, be verified next. Naturally. if (3) fa ils to hold, we do not have 
a vector space and do not have to chec k the remaining properties. 

The following theorem presents some useful properties common to all vector 
spaces : 

Theorem 4 .2 If V is a vector space, then 

(a) OO u = o for any vector u in V. 

(b) cO O = 0 for any scalar e. 

(e) If eO u = 0, then either e = Dor u = O. 

(d ) (- I)O u =-u for any vectoru inV. 

Proof 

(a) We have 

0 0 u = (0 + 0) 0 u = DO u + 0 0 u ( 1 ) 

by (6) of Definition 4.4. Adding - 0 0 u to both sides of Equation (I), we obtain 
by (2), (3), and (4) of Definition 4.4, 

0 0 u = O. 

Parts (b) and (c) are left as Exercise 21 . 

(d) (- I) 0 u Ei1 u = (- I) 0 u Ei1 I O u = (- I + I) 0 u = DO li = O. Since - u 
is unique, we conclude that 

(- I)O u =-u. • 
In the examples in this section we have introduced notation fo r a number of 

sets that will be used in the exerc ises and examples throughout the rcst of thi s 
book. The following table summarizes the notation and the descriptions of the set: 
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9. The set of all ordered triples of real numbers with the 
operations 

(x. y. z ) G1 (x'. y'. i) = (x +x' . y + y'. z + z') 

and 
rO(x. y .z)=(x.l.z). 

10. The set of all 2 x I matrices [;,]. where x ::: o. with the 

usual operations in R 2 

II. The set of all ordered pairs of real numbers with the 
operations (x. y) G1 (x'. /) = (x + x ' . y + y' ) and 
rO(x.y)=(O.O). 

12. Let V be the set of all positive real numbers: define $ by 
U G1 " = uv ($ is ordinary multiplication) and define 0 
by e 0 v = v". Prove that V is a vec tor space. 

13. Let V be the set of all real-valued continuous functions. 
If f and Ii are in V. define f Efl Ii by 

If f is in V. define c 0 f by (c O f)(t) = ef(I). Prove 
that V is a vector space. (This is the vector space defined 
10 Example 7.) 

14. Let V be the set consisting of a single element O. Let 
o G1 0 = 0 and cO O = O. Prove that V is a vector space. 

15. (Calcuills Required) Consider the differential equation 
y" - y' + 2y = O. A sollllion is a real-valued function f 
satisfying the equation. Let Ii be the set of all solutions 
[0 the gil'en differential equation. define @ and 0 as in 
Exercise 13. Prove that V is a vector space. (See also 
Section 8.5.) 

16. Let V be the set of all positive real numbers: define $ by 
u $ v=uv - I ;lnd0byc0 v= v.ls V a vector space? 

.!. 

m Subspaces 

17. 

IS. 

19. 

20. 

21. 
22. 

23. 

24. 

25. 

26. 
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Let V be the set of all real numbers; dcline G1 by u e v = 
u\' and 0 by c 0 u = c + u . Is V a vector space? 

Let V be the set of all real numbers; deline $ by u e v = 
2u - v and 0 by c 0 u = c u . Is V a vector space? 

Prove that a vector space has only one zero vec tor. 

Prove that a vector u in a vector space has only one neg­
allve. - u . 

Prove parts (b) and (c) of Theorem 4.2. 

Prove Ihat the set V of all real valued functions is ~ vec 
tor space under the operations defined in Exercise 13. 

Prove that -(-v) = v. 

Prove that if u $ v = u G1 w. then,' = w. 

Prove that if u f=- 0 and (IO U = b 0 u. then (I = b 

Example 6 discusses the vector space p" of polynomi­
als of degree II or le~s. Operations on polynomials can 
be performed in linear algebra software by associating a 
row matrix of size II + I with polynomial 1'(1) of p •. The 
row matrix consists of the coeflicients of pet). using the 
assocmhon 

pet) = (lnt" + (I" _ lt" - 1 + .,. + (l1t + (lu 

-7 [(I" (1,, _ 1 

If any term of pet) is explicitly missing. a zero is used 
for its coefficient. Then the addition of polynomials cor­
responds to matrix addition. and multiplication of a poly­
nomial by a sC;llar corresponds to scalar multiplication of 
matrices. With your software. perform each given opera­
tion on polynomials. usin!) the matrix association as just 
described. Let II = 3 and 

p(t)=2t )+ 51 2 + 1-2. q(t)=t J +3t+5. 

(a) p(t) + q(t) (b) 5p(t) 

In this sect ion we begin to analyze the structure of a vector space. First, it is 
convenient to have a name for a subset of a given vector space that is itself a vector 
space with respect to the same operations as those in V. Thus we have a definition. 

DEFINITION 4.5 Let V be a vector space and IV a nonempty subset of V . If IV is a vector space 
with respect to the operations in V, then IV is called a subspace of V. 

It follows from Definition 4.5 that to verify that a subset IV of a vector space 
V is a subspace, one must check that (a). (b), and ( I) through (8) of Definition 4.4 
hold. However, the next theorem says that it is enough to merely check that (a) and 
(b) hold to verify that a subset IV of a vector space V is a subspace. Property (a) is 
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called the closure property for $, and property (b) is called the closure property 
for 0 . 

Theorem 4.3 Let V be a vector space with operations tIl and 0 and let W be a nonempty subset 
of V. Then W is a subspace of V if and only if the following conditions hold: 

EXAMPLE 1 

EXAMPLE 2 

EXAMPLE 3 

EXAMPLE 4 

(a) If u and v are any vectors in W, then u ffi v is in W. 

(b) Ifc is any real numbcrand u is any vector in W. thene 0 u is in W. 

Prnnj 

If W is a subspace of V, then it is a vector space and (a) and (b) of Definition 4.4 
hold; these are prccisely (a) and (b) of the theorem. 

Conversely, suppose that (a) and (b) hold. We wish to show that W is a sub­
space of V. First, from (b) we have that ( - I) 0 u is in W for any u in W. From 
(a) we have that u tIl (- 1)0 u is in W. But u tIl (- I) O u = 0, sa O is in W. Then 
u $ 0 = u for any u in W. Finally, propenies (I), (2), (5), (6), (7), and (8) hold in 
W because they hold in V. Hence W is a subspace of V. • 

Examples of subspace.~ of a given vector space occur frequently. We investi­
gate several of these. More examples will be found in the exercises. 

Every vector space has at least two subspaces, itself and the subspace {OJ consist­
ing only of the zero vector. (Recall that 0 tB 0 = 0 and c 0 0 = 0 in any vector 
space.) Thus {OJ is closed for both operations and hence is a subspace of V. The 
subspace {O} is called the zero subspace of V. • 

Let P2 be the set consisting of all polynomials of degree S 2 and the zero polyno­
mial: P2 is a subset of P, the vector space of all polynomials. To verify that f'? is a 
mbspace of P, show it is closed for Ei1 and 0 . In general, the set P" consisting of 
all polynomials of degree S II and the zero polynomial is a subspace of f' . Also, 
P" is a subspace of P,,+I. • 

Let V be the set of all polynomials of degree exactly = 2; V is a miner of P. the 
vector space of all polynomials; but V is not a subspace of P. because the sum of 
the polynomials 212 + 31 + I and _ 21 2 + 1 + 2 is not in V, si nce it is a polynomial 
of degree I. (See also Exercise I in Section 4.2.) • 

Which of the following subsets of R" with the usual operations of vector addition 
and scalar multiplication are subspaces? 

(a) WI is the set of all vectors of the form [ ~, l where x ~ O. 

(b) W2 is the set of all vectors of the form [ ~ ], where x ~ 0, y ~ O. 

(c) lV, is the set of all vectors of the form [ ~ ]. where x = O. 

Solution 

(a) WI is the right half of the xy-plane (see Figure 4.17). It is not a subspace of 
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" 

IV, 

o 

R2 , because if we take the vector [~J in IV!, then the scalar multiple 

is not in IV I • so property (b) in Theorem 4.3 does not hold. 

(b) IV2 is the fi rst quadrant of the xy-plane. (See Figure 4.18.) The same vector 
and scalar multiple as in part (a) shows that W2 is not a subspace. 

y 

o 

y 

-o;-\--------x o 

FIGURE 4.18 FIGURE 4 . 19 

(c) IV) is the y-axis in the xy-plane (see Figure 4.19). To see whether W~ is a 
subspace, let 

be vectors in IV) . Then 

u aJ v ~ [2, ] + [~] ~ [b , : b,], 
which is in IV) , so property (a) in Theorem 4.3 holds. Moreover, if c is a scalar, 
then 
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which is in WJ so property (b) in Theorem 4.3 holds. Hence WJ is a subspace of 
~. . 
Let W be the set of all vectors in R3 of the form [ ~ ], where a and h are any 

a+b 

real numbers. To verify Theorem 4.3(a) and (b), we let 

be two vectors in W. Then 

is in W . for W consists of all those vectors whose third entry is the sum of the fi rst 
two entries . Similarly, 

cO [ ;:: ] ~ [ :;:: ] 
al + hi c(al + /)1) 

is in W. 1·lence W is a subspace of R3. • 
Henceforth, we shall usually denote u ffi Y and c 0 u in a vector space Vas u+ v 
and cn, respectively. 

We can also show that a nonempty subset W of a vector space V is a subspace 
of V if and only if cn + t/y is in W for any vectors u and v in Wand any scalars c 
and d. 

A simple way of constructing subspaces in a vector space is as follows. Let YI and 
Y2 be fixed vectors in a vector space V and lei W be the sel of all vectors in V of 
the form 

alYI + a2 Y2 . 

where III and a2 are any real numbers. To show that W is a subspace of V. we 
veri fy properties (a) and (b) of Theorcm 4.3. Thus let 

be vectors in W. Then 

which is in W . Also. if c is a scalar, then 

CW I = C(llI Y I +1l2 V2) = (Clll)V I + (ca2) Y2 

is in W. Hence W is a subspace of V. • 
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The construction carried Ollt in Example 6 for two vectors can be performed 
for more than two vectors. We now consider the following definition: 

LeI VI. '12 . . ... v. be vectors in a vector space V. A vector v in V is called a linear 
combination o f V I. '12 • .... 'Ik if , 

v = al'll +a2 v2+ ··· +at Vk= Lajv) 

for some real numbers (/1. (12 . .. .. {It. 
) = 1 

Remark Summation nOlation was introduced in Section 1.2 for linear combi­
nations of matrices. and properties of summation appeared in the Exercises for 
Section 1.2. 

Remark Definition 4.6 was stated for a finite sct of vectors, but it also applies 
to an infinite set S of vectors in a vector space using corresponding notation for 
infinite sums. 

In Example 5 we showed that W. the set of atl vectors in RJ of the fo rm [ ~: ], 
a+h 

where a and b are any real numbers, is a subspace o f R 3. Let 

Then every vector in lV is a linear combination of V I and V2. since 

• 
In Example 2, P2 was the vector space of all polynomials of degree 2 or less and 
the zero polynomial. Every vector in P2 has the form {/(2 + b( + c, so each vector 
in P2 is a linear combi nation of ( 2 , (, and I. • 

In Figure 4.20 we show the vector V as a linear combination of the vectors V I 

and V2. 

In R 3 let 

The vector 

v, U l v, ~ m on' v, ~ [l] 
v ~ m 

is a linear combination of V I, V2, and V3 if we can find real numbers ai, a2, and {/3 

so that 



202 Chapler 4 Real Vector Spaces 

FIGURE 4.20 Linear combination of two 
vectors. 

Substituting for v, VI. VI, and V). we have 

Equating corresponding entries leads to the linear system (verify) 

(II + (12 + {/3 = 2 

2al + {/3 = I 

(II + 2112 = 5. 

Solving this linear system by the methods of Chapter 2 gives (verify) (II = I , 
ll2 = 2. and 0.1 = - I , which means that V is a linear combi nation of VI, V2. and 
VJ . Thus 

Figure 4.2 [ shows V as a linear combination of VI , Vi, and V3. 

o 

FIGURE 4.21 

)11"----)' 
o 

FIGURE 4 .22 

• 
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P(x. y) 

PiO. b) 

------~~--------, o 

FIGURE 4 .23 
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In Figure 4.22 we represent a portion of the set of all linear combinations of 
the noncoliincar vectors VI and V2 in R2. The entire SCI o f all linear combinations 
of the vectors VI and V:; is a plane that passes through the origin and contail1.~ the 
vectors V I and V2. 

In Section 2.2 we observed that if A is an 11/ x /I matrix. then the homogeneous 
system of 11/ equations in /I unknowns with coefficient matrix A can be written as 

Ax = 0, 

where x is a vector in R" and 0 is the zero vector. Thus the SCI W of all solutions 
is a subset of R". We now show that W is a subspace of R" (called the solution 
space of the homogeneolls system, or the null space of the matrix A) by verifying 
(a) and (b) of Theorem 4.3. Let x and y be solutions. Then 

Ax = 0 and Ay = O. 

Now 
.-l (x + y) = Ax + Ay = 0 + 0 = O. 

so x + y is a solution. Also, if c is a scalar. then 

A(cx) = c(Ax) = cO = O. 

so cx is a solution . Thus W is closed under addition and scalar multiplication of 
vectors and is therefore a subspace of R". • 

It should be noted that the set of all solution:; to the linear system Ax = b, 
b "1= 0, is not a subspace of R" (sec Exercise 23). 

We leave it as an exercise to sbow that the subspaces of HI are lUI and H I lisell 
(see Exercise 28). As fo r R2. its subspaces are {O!, R2, and any set consisting of all 
scalar multiples of a nonzero vector (Exercise 29), that is, any line passing through 
the origin. Exercise 43 in Section 4.6 asks you \0 show that all the subspaces of 
RJ arc {O), R3 itself, and any line or plane passing through the origin . 

• Lines in Rl 

As you will recall, a line in the xy-plane, R2. is often described by the equation 
y = IIIX + IJ. where III is the slope of the line and h is the y- intercept [i.e. , the 
line intersects the y-axis at the point PoCO. b) I. We may describe a line in R2 in 
tenns of vectors by specifying its direction and a point on the line. Thus, lei v be 

the vector givi ng the direction of the line. and let Uo = [~J be the position vector 

of the point PoCO, b) at which the line intersects the y-axis. Then the line through 

Po and parallel to v consists of the points P(x. y) whose position vector u = [~,] 
satisfies (sec Fi gure 4.23) 

u = uo+ tv, -00 < 1 < +00. 
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We now \Urn to lines in R3. In R3 we determine a line by specifying its 
direction and one of its points. Let 

be a nonzero vector in R3. Then the line eo through the ori gin and parallel to v 

<on,i", of nillhe poin" PCx. y. :) who,e po, ilion 'WOI " ~ [~] i, Of lhofolm 

II = tv, -00 < t < 00 [see Figure 4.24(a)]. It is easy to verify that the line eo is a 

['0] subspace of R3. Now let Po(.,"o. Yo. ZO) be a point in R3. and let Uo = ~': be the 

position vector of Po. Then the line e through Po and parallel to v consists of the 

poi"" PCx. Y.:) who," po, ilion WCIOI." ~ [~] "li.I" " I'"c Fig"IC 4.24(b)] 

lI = Uo+tV. 

, 
--",I-:"'~--- " 

o 

(x) 

FIGURE 4 .24 Line in R3. 

-00 < t < 00. C I ) 

l 
Pl' y. z) 

Uo + /\. 

, 
0 

,. 

(b) 

Equation (I) is called a parametric equation of t, si nce it contains the pa­
rameter t. which can be assigned any real number. Equation (I) can also be written 
in terms of the components as 

X =xo+ ta 

y =yo+ tlJ 

z=zo+ tc. 

-00 < 1 < 00. 

which are called parametric equations of e. 
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Key Terms 
Subspace 
Zero subspace 
Subs~( 

efl Exercises 
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Parametric equations of the line passing through the point Po( - 3.2. \) and paral lel 

to the ""0" ~ [ -!] "e 

x = - 3 + 21 

y= 2 - 31 

Z = 1 + 41 

- 00 < r < 00. 

• 
Find parametric equations of the line e through the points Po(2. 3, - 4) and 
PI (3. - 2. 5). 

Solution 
~ 

The desired line is parallel to the vector v = POP1 Now 

V ~ [ -~ = ~ ] ~ [ -:]. 
5 -(-4) 9 

Since Po is o n the li ne, we can write the fo llowing parametric equations of f : 

x = 2 + t 

y = 3 - 51 

:: = - 4 + 91 

- 00 < 1<00. 

Of course, we could have used the point PI instead of Po. In fact. we cou ld lise 
any point on the line in a parametric equatio n for e. Thus a line can be represented 
in infi nitely many ways in parametric form. • 

Closure properly 
Linear combination 

Null (solution) space 
Parametric equation 

l. The set IV consisting of all the points in R2 of the fonn 
(x. x) is a straight line. Is IV a subspace of R2? Explain. 

2. Let IV be the set of all points in Rl that lie in Ihe _I y­
plane. Is IV a subspace of Rl ? Explain. 

,. 

IV 

----71'0'0-----' f--- - ---- ,-~, "------ -" , , 
.. "-----~,<-----: 

- -w 
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3. Consider the circle in the xy-plane centered at the origin 
whose equation is x 2 +),2 = I. Let IV be the set of 
all vectors whose tail is at the origin and whose head is 
a point inside or on the circle. Is IV a subspace of R2? 
Explain. 

y 

4. Consider the unit square shown in the accompanying fig-

ure. Let IV be the set of all vectors of the form [:: J-
where 0 .:: x .:: I. 0 .:: y .:: I. That is, IV is the set of 
all vectors whose tail is at the origin and whose head is 
a point inside or on the square. Is IV a subspace of R2? 
Explain. 

)' 

(I. I) 

---t,;---+- , o 

III Exerci.le.l· 5 alld 6. which of the Kiven .1"lIb.l"e/.I" of R3 are 
slIb.lpaCl's ? 

5. The set of all vectors of the foml 

la) m (b) [ ~] (e) [~] 
a + 2b 0 

(d) [~JWh,,,a + 2b - '~O 
6. The sel of (Ill vectors of the form 

la) m 
Ie) m 

(b) [ '~']. L where a > 0 

(d) [~JWh'''2a - b+'~ I 
III !:xerci.\"l's 7 alld 8, which of Ihe giVl'lI .1"lIiJse/s of R4 are 
sllb.lpaCl'~· ? 

7. (a) [a b e d].wherea - b=2 

(b ) [a b c d]' where c = a + 2b and d = a - 3b 

(e) [a b c dJ. wherea=Oandb= - d 

8. (a) [a b c d]' wherea=b=O 

(b) [a b c d]' wherea=l.b=O. anda + d=1 

(e) [a b , dJ. wherea > Oandb < O 

III El"erci.l·n 9 and 10. which oflhe girl'lI .1"lIb.l"el~ of the lecror 
space, M23, of a/l2 x 3 lIl!llrices are .wb.lpaceJ? 

9. The set of all matrices of the form 

(a ) [" h 

~l whereb=a+e 
d 0 

[: 
b ~].wherec > o (b) 
0 

(e) [: 
b 
, ;l where a = - 2e and f = 2e + d 

[: 
h ;l IU. (a ) wherea=2c + 1 , 

(b) [~ ~] , 

(c) [;; 
b ,] f .wherea+e=Oandb+d + f =0 

II . Let W be the set of all 3 x 3 matrices whose trace is zero. 
Show that S is a subspace of M3). 

12. Let IV be the set of all 3 x 3 matrices of the form 

[~ 
Show that IV is a subspace of M 33 . 

13. Let IV be the set of all 2 x 2 matrices 

A ~ [a b] 
, d 

such that (/ + b + c - d = O. Is IV a subspace of M22? 
Explain. 

14. Let IV be the set of all 2 x 2 matrices 

[
a b] 

A = c d 

such that Az = O. where z = [:]. Is IV a subspace of 

M 22? Explain. 



/11 £'ten·ise.f /5 (IIu/ 16, It"Iric1r of /I:t' gil'ell subsets of tire I"t~C­

tor sp(lce Pz (Ire Jub.\·/J(u:es ? 

15. The set of alt polynomials of the form 

(a) (l ~ t Z + (/ 11 + (10. where (10 = 0 

(b) (l ~ t~+ (I I I + (lo, lYhere(lo= 2 

(e) (1 ~ 1 2 + (I II + (10, where (I : + (I I = a o 

16. (a) (I ~ 1 2+(/ I I + (/o, whcre(/ = Oand(lo =O 

(IJ) I/: I l + (/ 1' + llo, whc/"C" = 2"0 

(e) 11,1 : + (/ 11 + lIo, whe/"Cll : + (11 + (10 = 2 

17. Which o f the followi ng subsets of the vector space M,," 
are subspaces? 

(a) The set of all" )( II symmetric matrices 

(b) The set of all" x II diagonal matrices 

(e) The set of all IJ )( II nonsi ngular matrices 

18. Which of lhe fo llowing subsets of the vector space M"" 
are subspaces1 

(a) The ~t of all" )( II Singular matrices 

(b) The ~t of all" x II upper triangular matrices 

(e) The set of all " x II skew symmetric mat rices 

19. (Calculus Requirel/) Which of the followi ng subsets are 
subspaces of the vector space C( -00,00) defined in Ex­
ample 7 of Section 4 .21 

(a) All nonneg:uh'e functions 

(IJ) Al11,:onSlalll fum:tious 

(e) All funct i on.~ f such that /(0) = 0 

(d ) All function.~ / such Ihat / (0) = 5 

(e) All differentiable functiolls 

20. (Ca /cuills Required) Which of the followi ng subsets are 
subspaces o f the vector space C( - 00. 00) defined in Ex­
ample 7 of Section 4.21 

(a) All integrable funct ions 

{II} All bounded functrons 

(cl All functions that are integrable on la. hI 

(d ) All func tions that are bounded on Ill. hI 
21, Show that P is a subspace of the vector space 

C(- oo. 00) defined in Example 7 of Section 4.2. 

22. Prove that Pz is a subspace of Pl. 

23. Show that the sel of all solutions to the linear system 
Ax = b. b #= 0, is not a subsp.lce of R-. 

24. If A is a nonsingular matrix. what is the null space of A 1 
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25. Show that every vector in 8. J of the fonn 

[-} 
for I any real number. is in the null space of the matrix 

A = H ~ :] 
26. Let Xo be a fixed vector in a vector space V . Show that 

the set IV consisting of all scalar multiples cXo of Xu is a 
subspa!,;e of V. 

27. Let A be an II! )( /1 nlatrix. Is the set IV of all vectors x 
in R" such that Ax =F 0 a subspace of R"1 Justify your 
answer. 

28. 

29. 

30. 

Show that the only subspaces of RI are {OJ and HI Itself. 

Show Ih;.l1 the only subspaces of R2 are {OJ, R !, and any 
~t' l c(m~i~ling of :III !:C:l lar multiples of a nonzero veClor. 

Determine which Or lne following subsets of H2 are sub­
spaces: 

(aJ VI ). 

v, 
=~o;\---X 

y 

v, 

---onl---- , 

)' 

----O:ot'--- , 
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(d) V~ !' 

v, 

o 

31. TIIC.'Iet IV of nil 2 )( 3 mlUric,~ of tile fonn 

[:: ~ ~]. 
whcre (. = {/ + b. is a subspace of Mll . Show that every 
vector in IV is a linear combination of 

o ' ] o 0 
and w, = [0 , 

• 0 0 ~] 
32. The set IV of all 2 x 2 sy mmetric matrices is a subspace 

of 11hz. Find three 2 x2 matrices VI. Vz. and v) so that ev­
ery vector in IV can be expressed as a linear combination 
of VI. Vz. and Vl. 

33. Which of the following vector; in Rl are linearcombina­
lions of 

., ~ [J " ~ [J ,"d " ~ [ =r} 
Cal m Cbl [j] '<l [-:J Cdl [ i] 

34. Which o f the following vector.; in R~ arc linear comb ina­
Iiolls o f 

VI = [I 2 0]. " ~ [4 -2 3] . 
VJ = [ I 2 6 - ,], V/ = [ - 2 3 -, 2 ]1 

lal [3 6 3 0] (bl [, 0 0 0] 
I<l [3 6 - 2 ,] (d) [0 0 0 , ] 

35. lal Show that a line io through the origin of Rl is a sub-
space of Rl. 

Ibl Show th:lI:l line l in RJ Itot pas..~i ng through the ori-
gin is not a subspace of Rl. 

36. State which or the following points are on the line 

x = 3 + 21 

y=-2 +31 

4 + 31 

-00< 1 <00 

(a) ( I. I. I) 

(c) ( I. O. - 2) 

(bJ ( 1. - 1.0) 

(d) (4. -to n 
37. State which orthe following points are on the line 

x = 4 - 21 

),=-3+21 

4 - 51 

-00< 1 <00 

(a) (0. I . - 6) 

(c) (4. -3. 4) 

(h) (I, 2.3) 

(d) (0.1.-1) 

38. Find par:lIllctric cCjualions of the 
1'0(.(0. )"0. '::0 ) panlilel to v. 

line through 

Cal "oC3. 4. - 2l, , ~ [ -i] 
(bl /'0(3.2. 4l. , ~ [ -n 

39. Find parametric c<luations of lhe line through the given 
points. 

(a) (2. -3. I). (4. 2. 5) 

(b) (-3.-2. - 2).(5 . 5.4) 

..!. 40. Numerical experimcnts in software celli/WI be used to 
verify that a set V wilh tWO operations Ell and 0 is a vec­
lOr space or a sub!;pace. Such a verification must bedone 
"abstractly" to take into account all possibilities for ele­
ments of V . Howcver. numerical experiments can yield 
counterexamples which show that V is not a vector ~pace 
or not a subspace. Use your software to verify that each 
of the following is 110' a subspace of M n. with the usual 
operations of addi tion of matrices and scalar mult ipl ica­
tion: 

.! 41. 

(a ) The SCt of symmetric matrices wi,h the ( I. I) entry 
equ:l l to 3 

(b) The scI of mal rices whose first column is [0 I ] T 

(c) The scI of matrices [: ~] such that lid - be I- 0 

A linearcombin:ltionofvcctors VI' v~ ..... VJ. in R" with 
coefficients "I . .... (It is given algebraically. as in Defi­
nition 4.6. by 

In software weean compute such a linear combination of 



4.4 Span 209 

columns by a matrix multiplication \. = Ac. where (b) Using Vt where VI = 212 + I + 2. V2 = 12 - 21. 

\ 'J = 51- - 51 + 2, and \ '4 = _ 12 - 31 - 2, compute 

(See also Exercise 46 in Section 1.3.) 

That is. matrix A hascol j (A) = Vj for j = 1.2 ..... k. 
Experiment with your software with such line:rr combi· 
nations. 

.!. 42. In Exercise 41, suppose that the vectors were in R". De· 
vise a procedure that uses matrix multiplication for iorm· 
ing linear combinations of vectors in R". 

(a) Using VI. V2. \ '3 from Example 9, compute 

5 VI -21l2 + 4V3' 

DEFINITION 4.7 

EXAMPLE 1 

m Span 

Thus far we have defined a mathematical structure called a real vector space and 
noted some of its properties. In Example 6 in Section 4.3 we showed that the set 
of all linear combinations of two fixed vectors Vt and V2 from a vector space V 
gave us a subspace W of V. We further observed that the only real vector space 
having a finite number of vectors in it is the vector space whose only vector is O. 
For if v i= 0 is a vector in a vector space V, then by Exercise 25 in Section 4.2. 
c 0 v i= c' 0 v, where c and c' are distinct real numbers, so V has infinitely many 
vectors in it. Also, from Example I in Section 4.3 we see that every vector space 
V has the zero subspace to}. which has only finitely many vectors in it. 

From the preceding discussion we have that. except for the vector space to}. 
a vector space V will have infinitely many vectors. However, in this section and 
several that follow we show that many real vector spaces V studied here contain 
a fi nite subset of vectors that can be used to completely describe every vector in 
V . It should be nOied that, in general. there is more [han one subsel Ihat can be 
used to descri be every vector in V. We now turn to a formulation of these ideas. 
Remember that we will denote vector addition U (£l ll and scalar multiplication c0u 
in a vector space V as u + v and eu , respectively. 

Linear combi nations play an important role in describing vector spaces. In 
Example 6 in Section 4.3 we observed that the set of all possible linear combina­
tions of a pair of vectors in a vector space V gives LIS a subspace. We have the 
following defi nition \0 help with such constructions: 

If 5 = {Vt, V2 . . , .. vt} is a set of vectors in a vector space V. then the set of all 
vectors in V that are linear combinations of the vectors in 5 is denoted by 

span S or span {v]. V2 .. .. , vd . 

Remark Definition 4.7 is stated for a finite set of vectors. but it also applies to 
an infinite set 5 of vectors in a vector space. 

Consider the set 5 of 2 x 3 matrices given by 

I [I 0 0] [0 I 0] [0 5=1 000 '000'0 
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EXAMPLE 2 

Then span S is the set in M 23 consisting of all vectors of the form 

[
' 0 a 0 0 

[
" b OJ = 0 cd' where a, h, e, and d are real numbers. 

That is, span S is the subset o f M 23 consisting of all matrices of the form 

[
" b OJ. 
Oed 

where a, h, e, and d are real numbers. • 
(a) Let S = ((2. f. I) be a subset of P2. We have span S = P2. (See Example 8 in 

Section 4.3.) 
(b) Let 

be ",ob,el of R' . Sp'" S;, Ih"el of ,II "elO" ;" R' of Ihe fO lm [~l 
where a and h are any real numbers. (Verify.) 

(c) I.n Figure 4.22 in Section 4.3 span (Vl . \'2) is the plane that passes through the 
origin and contains VI and V2. • 

The following theorem is a generalization of Example 6 in Section 4.3: 

Theorem 4.4 Let S = (v I . V2 .. . .. Vt f be a set of vectors in a vector space V. Then span S is a 
subspace of V. 

Proof 

Lei 
l 

II = Laj v j and 
j ed 

l 

W = Lhj v j 
j=1 

for some real numbers (/1. (12 . .. at and hi. h2 . .. .. ht . We have 

t t k 

U + W = L lI jYj + I :> jVj = L (a j + h j )Yj . 
j=1 j = l p . l 

using Exercise 17 (a) and (b) in Section 1.2. Moreover, for any real number c. 

Since the slim u + wand the scalar multiple e u are linear combinations of the 
vectors in S, then span S is a slIbspace o f V. • 
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EXAMPLE 4 

DEFINITION 4.8 

EXAMPLE S 

EXAMPLE 6 
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Let S = 11 2. I ! be a subset of the vector space P2. Then span S is the subspace of 
all polynomials o f the form (lf2 + hI. where (/ and b are any real numbers. • 

Lei 

be a subset of the vector space M22 . Then span S is thc subspace of all 2 x 2 
diagonal matrices . • 

In order to completely descri be a vector space V, we use the concept of span 
as stated in the followi ng definition: 

Let S be a set of vectors in a vector space V. If every vector in V is a linear 
combi nation of the vecTors in S, then the set S is said to span V, or V is spanned 
by the sel S; that is, span 5 = V. 

Remark If span S = V, S is called 11 spannin g set of V. A vector space can have 
many spanning sets. In our examples we used sets S containing a finit e number of 
vectors, blll some vector spaces need spanning sets with infinitely many vectors. 
Sec Example 5. 

Let P be the vector space o f all polynomials. Let S = II. t . 12 . . .. ): that is. the 
set of all (non negative integer) powers of t. Then span S = P. E very spanning set 
for P wi ll have infinite ly many vectors. • 

Remark The majority of vector spaces and subspaces in the examples and exer­
cises in this book will have spanning sets with finitely many vectors. 

A nother type o f question that we encounter is; For a given subset S o f a vector 
space V, is the vector w of V in span S? We will show in the following examples 
that fo r sets S with a finite number o f vectors we can answer such questions by 
solving a linear system of equations: 

In R 3
, let 

Determine whether the vector 

belongs to span lvi. \'1)' 

Solution 
If we can find scalars {/ . and {/2 such that 
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EXAMPLE 7 

then v belongs to span l v]. V2). Substituting for v ], V2, and v , we have 

This expression corresponds to the linear system whose augmented matrix is 
(veri fy) 

[ ~ - I i :] 

I 3 - 7 

The reduced row echelon form of this system is (verify) 

[~ o : 2] 
I :_ 3 

o : 0 

which indicates that the linear system is consistent, {I] = 2, and a2 = 3. Hence v 
helongs 10 span {VI. V2) • 

In P2, let 

VI = 2,2 +' + 2. V2 = ,2 - 2,. v 3 = 5, 2 - 5, + 2. V4 = _ , 2 - 3, - 2. 

Determine whether the vector 

V=,2+ ,+2 

belongs to span {V I . V2. V3. v4 1. 

Solution 
If we can find scalars {I . , a2, a3, and a4 so that 

then \' belongs to span lv]. \ '2. \ '3. v4 1. Substituting for VI. V1, V3, and V4. we have 

0' 

al (2,2 + 1 + 2) + a2(12 - 21) + a3(St 2 - 51 + 2) + ([4 ( _ 12 
- 3, - 2) 

= 12 + ' + 2. 

(2a] + a2 + Sa3 - (14 ) 12 + (al - 2a2 - Sa3 - 3(4)' + (2al + 2113 - 2(4) 

= 12 + 1+2. 

Now two polynomials agree for all values of 1 onl y if the coefficients of respective 
powers of' agree. Thus we get the linear system 

2a] + (12 + Sal - a4 = 

([I - 2112 - Sa } - 3a4 = 

2(11 + 2a3 - 2a4 = 2. 
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EXAMPLE 9 
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To determine whether this system of linear equations is consistent. we limn the 
augmented matrix and transform it to reduced row echelon form, obtaining (verify) 

[~ 
o 

o 
3 
o 
-I i 0] 

I : 0 . 
Oil 

which indicates that the system is inconsistent; that is, it has no solution . Hence v 
docs not belong to span {V I. \'2. \'3 . \ '4 ). • 

Remark In general, to determine whether a specific vector v belongs to span S, 
we investigate the consistency of an appropriate linear system. 

Lei V be the vector space RJ. lei 

To find 001 whelhen" ' " ' , ' pon V, we pick "ny wClon ~ [~] in V (a, b, 

and c arc arbitrary realllumbcrs) and determine whether there arc constants ai, (12, 

and {/3 such that 
{lI Vt +a2v2 +a3 v3 = v. 

This leads to the linear system (verify) 

A solution is (verify) 

- 2a + 2b+c 

3 

{II + {/2 + {/J = a 

2al + tl} = b 

{/1 + 2a2 =c. 

a - b + c 

3 
{[J = 

Thus v], VI, VJ span V. This is equivalent to saying that 

4a - b - 2c 

3 

span {VI. V2. vJ} = R3. • 

Let V bc the vector space P2' Let \'1 = , 2+ 2, + I and v2 = 12+ 2. Does {VI, V2} 
span V? 

Solution 
Let v = (1,2 + bl + c be any vector in V, where (I, b, and c are any real numbers. 
We must find OUi whether there are constants (II and {/2 such that 
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EXAMPLE 10 

Thus 
(al + ( 2)t 2 + (2al)t + (al + 2(2) = at l + /)1 + c. 

Equating the coefficients of respective powers of 1, we get the linear system 

al + a2 = a 

2t11 = b 

al + 2a2 = c. 

Transforming the augmented matrix of this linear ;;ystem, we obtain (veri fy) 

o 

o 

2a - c ] 
c - a . 

1J - 4a + 2c 

If b - 4a + 2c t- 0, then the system is inconsistent and there is no solution. Hence 
{VI. V2 } docs not span V. • 

Consider the homogeneous linear system Ax = 0, where 

o 

-~] 3 . 

9 

- 2 

4 
- I 
- I 

From Example [0 in Section 4.3, the set of a[1 solutions to Ax = 0 forms a sub­
space of R4. To determine a spanning set for the solution space of this homoge­
neous system, we find that the reduced row echelon fonn of the augmented matrix 
is (verify) 

[~ 
1 0 2 

~] 0 1 - I , , 
0 0 0 

, 

0 0 0 , , 

The general solution is then given by 

XI = - r - 2.1". X2 = r. X 3 = .1". X4 = .1" , 

where rand .\. are any real numbers. In matrix form we have that any member of 
the solution space is given by 

[-I] [-'] x ~ c ~ + , :. 

• 



Key Terms 
Span of a sel 
Sel S spans \lector space V 
V is ,panned by Ihe set 5 

CIi' Ex ercises 

Consistent system 
Inconsistent system 
Homogeneous system 

I. For each of the following vector spaces. give two differ· 
ent spanning sets: 

(a) R' (b) M n 

2. In each part. explain why the set 5 is not a spanning set 
for the \lector space V. 

(a) 5 = {fl. 12. fl. V = P, 

(e) s={[~ ~J.[~ ~] } .V=M22 
3. In each part. determine whetrer the given vector p(f) in 

1'2 belongs to span {PI (I) . P2(1 ) . Pl(t)I, where 

PI(I)=I'+2f+l. P2(1) =f 2 +3. 
and Pl(f) = f - l. 

(a) p(l ) = f2 + t + 2 

(b) p(l) = 212 + 21 + 3 

(e) pet ) = _1 2 + I - 4 

(d) p(l) = _ 21 2 + 3t + I 
4. In each part. detennine whether the given \lector A in 

M22 belongs to span {AI. A2. Al l, where 

(a) A = [ 5 
- I 

2] 1 . 

(d ) A = [; 

5. Which of the following \lectors span R2? 

I' J [I 2].[ - 1 I] 
IhJ [0 0]. [I 1]. [-2 - 2] 
I' ) [I 3]. [2 -3]. [0 2] 
Id)[1 '].[-1 ,] 
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6. Which of the following sets of vectors span R4? 

I' J I [-J []) 
Ih) mH -~H~] ) 

I' J I [ -ll m [ -1][ -ll U]) 
IdJ mH-ilUlUJ) 

7. Which of the following sets of vectors span R4 '! 

I' ) [I 
[ 1 

o 0 1].[0 
1 ]. [ 1 

IhJ [I 2 0]'[1 

I' J [6 4 - 2 4]. [2 0 
[3 2 - I 2].[5 6 
[0 , - 2 - I] 

o 0]. 
1 0] 

- I 0]. [0 

o 1]. 
- 3 2]. 

o 0 I] 

Id) [I 
[2 

o 0]'[1 2 - I 1]'[0 0 1 IJ. 
2 I] 

8. Which of the following sets of polynomials span P,? 

(a) {1 2 +1.1 2 +1.1+lj 

(b) {1 2+l.1_l.1 2 +1) 

(e) (12 + 2, 2f' - 1 + l. t + 2, 12 + I + 4) 

(d) {12+21 _ U 2 _ 11 

9. Do the polynomials t
' 
+ 21 + I, 12 - 1 + 2, I] + 2. 

_I l + 12 - Sf + 2 span P, ? 
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10. Does the sel 

s~m (~ l [~ ~l [~ ~].[~ 
span M22? 

II. Find a sel of vectors spannmg the solution 
Ax = O. where 

12. Find a set of vectors spanning the null space of 

A ~ [ ~ 
, 2 -I] 3 6 -2 

- 2 , 2 2 . 

0 -2 - 4 0 

: II 
space of 

Show lhal span S = IV. 

14. The sel IV of all 3 x 3 matrices A with Irace equal to zero 
is a subspace of M 33 . (See Exercise II in Section 4.3.) 
Determine a subset 5 of IV so Ihal span 5 = IV. 

15. The set IV of all 3 x 3 matrices of the Conn 

[
" 0 h] o (' 0 
dO, 

is a subspace of M 33 . (See Exercise 12 in Section 4.3.) 
Determine a subset S of IV so Ihal span S = IV. 

16. LeI T be the sel of all matrices of the Conn A 8 - 8 A. 
where A and 8 are II x II matrices. Show that span T is 
nOI M nn . (Hillt: Use properties of [f<lCe.) 

13. The set IV of all 2 x 2 matrices A with Irace equal 10 zero 
IS a subspace of Mn. leI 

.!. 17. Determine whether your software has a commaoo for 
finding the null space (see Example lOin Section 4.3) of 
a matrix A. If it uut:S. ust: it un tht: matrix A in Exampk 
10 and compare the command·s output with the results 
in Example 10. To experiment further. use Exercises I I 
and 12. 

EXAMPLE 1 

In Linear Independence 

In Section 4.4 we developed the notion of the span of a set of vectors together 
with spanning sets of a vector space or subspace. Spanning sets S provide vectors 
so that any vector in the space can be expressed as a linear combination of the 
members of S. We remarked that a vector space can have many di fferent spanning 
sets and that spanning sets for the same space need not have the same number of 
vectors. We illustrate this in Example I. 

In Example 5 of Section 4.3 we showed that the set W of all vectors of the form 

UJ 
where a and IJ are any real numbers, is a subspace of R3. Each of the following 
sets is a spanning set for W (verify): 

• 
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We observe that the set S3 is a more "effici ent" spanning set, since each vector 
of W is a linear combination of two vectors, compared with three vectors when 
using SI and fou r vectors when using S1. If we can determine a spanning set for a 
vector space V that is minimal. in the sense that it contains the fewest number of 
vectors, then we have an efficient way to describe every vector in V. 

In Example t, since the vectors in 53 span Wand 53 is a subset of 51 and 52, 
it follows that the vector 

in 51 must be a linear combination of the vectors in 53. and simi larly, both vectors 

m ond m 
in S2 must be linear combi nations of the vectors in 53. Observe that 

[n addition, for set SI we observe that 

and fo r set S2 we observe that 

It follows that if span 5 = V. and there is a linear combination of the vectors in 
5 with coefficients not all zero that gives the zero vector, then some subset of 5 is 
also a spanning set for V. 
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DEFINITION 4.9 

EXAMPLE 2 

Remark The preceding di scussion motivates thc next definition. In the prcced­
ing discussion, which is based on Example I. we used the observation that 5, was 
a subset of 51 and of 5!. However, that observation is a special case which need 
not apply when comparing two spanning sets for a vector space. 

The vectors V I' V2 . .. .. Vt in a vector space V arc said to be linearly dependent 
if there exist constants U I. (12 ..... at, not all zero, such that 

, 
L (J/ll j = fll V I + fl2 V 2 + .. . + (lt Vt = fl . 
j ",, ] 

(I) 

Otherwise, V I. V2 . . lit are called linearly independent. That is, V I. V2 . . , '.{. 

are linearly independent if, whenever {II V I + {/2V2 + ... + (lk V l = II , 

{I] = {l2 = ... = {I .{. = O. 

If S = {VI. " 2 • ... . vd,then we also say that the set S is linear ly dependent or 
li nearly independent if the vectors have the corresponding property. 

It should be empha.sized that fo r any vectors V I. V2 • ... , Vb Equation (I) al­
ways holds if we choose all the scalars (II. {/2 •.... {/k equal to zero. The important 
point in this definition is whether it is possible to satisfy (I) with at least one or the 
scalars different from zero. 

Remark Definition 4.9 is stated for a finite set of vectors, but it also applies to 
an infinite set 5 of a vector space, using corresponding notation for infinite sums. 

Remark We connect Definition 4.9 to "efficient" spanning sets in Section 4.6. 

To determine whether a set of vectors is linearly independent or linearly de­
pendent , we use Equation (I). Regardless or the form of the vectors, Equation ( I) 
yields a homogeneous linear system of equations. It is always consistent, since 
(II = a 2 = ... = (lk = 0 is a solution. However, the main idea from Defi nition 4.9 
is whether there is a nontrivial solution. 

Determine whether the vectors 

are linearly independenl. 

Solution 
Forming Equation (I), 
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we obtain Ihc homogeneous syste m (verify) 

3u I + ll2 - o.J = 0 

2a l + 2a2 + 2aJ = 0 

(1 1 - UJ = 0. 

The corresponding augmented matrix is 

[~ 
- I 

2 2 
o - I 

whose reduced row echelon form is (verify) 

[~ 
Thus there is a nontrivial solution 

o - I 
2 

o ° 

so the vectors are linearly dependent. • 

Arc theveclors v\ = [l 0 2]. V2 = [0 2 ], andvJ = [ I 
in R4 linearly dependent or linearly independent ? 

Solution 
We form Equation ( I). 

{/l Vl + a2 v2 + aJ v 3 = 0, 

and solve for {II . {/1 , and UJ . The resulting homogeneolls syste m is (verify) 

(11+ 0 3= 0 
(12 + (13= 0 

{II + (12 + OJ = 0 

2al + 2a2 + 3([3 = O. 

The corresponding augmented matrix is (verify) 

l~ ~ 
1 1 
2 2 

I i 0 1 : OJ 
l iD . 
3 : 0 

and its reduced row echelon form is (verify) 

3] 
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EXAMPLE 4 

Thus the only solution is the triv ial solution (II = {/2 = {/J = 0, so the vectors are 
linearly independent. • 

Are the vectors 

" -_ [ 0 -3] 
- 2 I 

in Mn linearly independent? 

Solution 
We form Equation ( 1). 

and solve for {/I, (12, and (/3. Performing the scalar multiplications and adding the 
resulting matrices gives 

[

la l + (12 

{/2 - 2(13 
(II + 2{12 - 3{13] ~ [0 0]. 

(II + (13 0 0 

Usi ng the definition fo r equal matrices, we have the linear sy~tem 

2al + a2 = 0 

{II + 2{/2 - 3(13 = 0 

(12- 2(13= 0 

(II + (13 = 0. 

The corresponding augmented matrix is 

[~ 
o 

2 - 3 
- 2 

o 

and its reduced row echelon form is (verify) 

[~ 
o 
I - 2 

o 0 
o 0 

Thus there is a nontri vial solution 

so the vectors are linearly dependent. • 
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EXAMPLE 6 

EXAMPLE 7 

EXAMPLE 8 
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To find out whether the vectors VI = [I 0 0], V2 = [0 0]' and VJ = 

[0 0 I ] in RJ are linearly dependent or linearly independent , we fo rm Equation 
(1 ), 

(/1 " 1 + {/2 V2 + {/Jv J = 0, 

and solve for (11 , 112 , and {/3. Since (II = (12 = OJ = 0 (verify). we conclude that 
the given vectors are linearly independent. • 

Are the vectors VI = [ 2 + I + 2, \' 2 = 2 12 + f, and VJ = 3t 2 + 2f + 2 in P2 linearly 
dependent or linearly independent ? 

Solution 
Forming Equati on (I), we have (verify) 

{II + 2U2 + 3aJ = 0 
(II + (12 + 2aJ = 0 

2al + 2(13= 0, 

which has infinitely many solutions (verify). A particular solution is {II I , 
{/2 = [,(13 =- [,50 

" I + \'2 - VJ = O. 

Hence the given vectors are linearly dependent. 

Consider the vectors 

in RJ Is S = {\ 'J , \'2 , Vj , V4 } linearly (Iepcnf]cnl or linearly incicpcndc nT ? 

Solution 
Setting up Equation (I). we are led to the homogeneous system 

([\ + ([2 - 3(/} + 2(/4 = 0 

2(/\ - 2(12 + 2{/3 = 0 

- (1\ + (12 - {/3 = 0, 

• 

o f three equations in four unknowns. By Theorem 2.4. we are assured of the 
exiSTence o f a nonlrivi:ll SolUTi on. Henee S is linearly depende nt. In f:leT, TWO of 
the infinitely many solutions are 

(1\ = I. (12 = 2 . ([3 = I. (14 = 0: 

(1\ = 1. (12 = 1. (13= 0 , ([4 =-1. • 
Determine whether the vectors 
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found in Example 10 in Section 4.4 as spanning the solution space of Ax = 0 are 
linearly dependent or linearly independent. 

Solution 
Forming Equation (I), 

we obtain the homogeneous system 

- (11 - 2{/2 = 0 

(11 + Oa2 = 0 

0(11 + {/2 = 0 
0([1 + {/2 = 0, 

whose only solution is {ll = (12 = 0 (verify). Hence the given vectors are linearly 
independent. • 

We can usc detenninants to determine whether a set of /I vectors in R" or R" 
is linearly independent. 

Theorem 4.5 Let S = IV1. V2 ... . . v,, 1 be a set of /I vectors in R" (Rn). Let A be the matrix 
whose columns (rows) are the clements of S. Then S is linearly independent if and 
onl y if det(A) t- o. 

EXAMPLE 9 

Proof 

We shall prove the result for columns only: the proof for rows is analogous. 
Suppose that S is linearly independent. Then it follows that the reduced row 

echelon form of A is I". Thus. A is row equivalent to I,,, and hence det(A) i= O. 
Conversely. if det(A) i= O. then A is row equivalent to I". Now assume that the 
rows of A arc linearly dependent. Then it follows that the reduced row echelon 
fonn of A has a zero row. which contradicts the earlier conclusion that A is row 
equivalent to 1" . Hence. the rows of A arc linearly independent. • 

I<S ~ ([I 2 3].[0 
tors in R3? 

Solution 

2] . [3 0 - I] J a linearly independent sct of vec-

We form the matrix A whose rows arc the vectors in S: 

Since det(A) = 2 (verify), we conclude that S is linearly independent. • 
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Theorem 4.6 Let 51 and 52 be finite subsets of a vector space and let 51 be a subset of 52. Then 
the following statemenl~ are true: 

(a) If 5! is linearly dependent , so is 5 2. 

(b) If 52 is linearly independent, so is 5!. 

Proof 

Lei 

51 = { VI. V2. ··· . vd and 52 = {V!. V2.· ··, Vk , Vk+J, . .. • "mI· 
We fi rst prove (a). Since 5! is linearly dependent, there exist (II. {/2, . .. • {ll, not all 
zero. such that 

Then 

(2) 

Since not all the coefficients in (2) are zero. we conclude that 52 is linearly depen­
dent. 

Statement (b) is the contrapositive of statement (a). so it is logically equivalent 
to statement (a). If we insist on proving it , we may proceed as follows. Let S2 be 
linearly independent. If 5] is assumed as linearly dependent, then 5 2 is linearly 
dependent. by (a). a contradiction. Hence, 5] must be linearly independent. • 

At this point, we have established the following results: 

The set 5 = {Ol consisting only of 0 is linearly dependent. since. for example. 
50 = 0, and 5 i= O . 

• From this it follows that if 5 is any set of vectors that contains 0, then 5 must 
be linearly dependent. 
A set of vectors consisting of a single nonzero vector is linearly independent 
(veri fy). 

If " ]. V2 • .. .• Vk are vectors in a vector space V and any two of them are equal, 
then "I. "2 ..... Vk are linearly dependent (veri fy). 

We consider next the meaning of linear independence in R2 and R] . Suppose 
that ,, ] and V2 are linearly dependent in R2. Then there exist scalars (II and (1:, not 
both zero. such that 

{I]"] +a2 v 2 = 0. 

If al i= 0, then " I = (-~) V2. If {/2 i= 0, then ": = (-~) " ]. Thus one of the 
(I] a2 

vectors is a multiple of the other. Conversely. suppose that ,, ] = {lV2. Then 

I,,] - (/"2 = 0. 

and since the coefficients of v ] and " 2 are not both zero, it follows that ,, ] and "2 
are linearly dependent. Thus v ] and V2 are linearly dependent in R2 if and only if 
one of the vectors is a multiple of the other [Figure 4.25(a)]. Hence two vectors 
in R2 are linearly dependent if and only if they both lie on the same line passing 
through the origin ]Figure 4.25(a)]. 
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FIGURE 4 .25 (a) Lincarly dcpendent \"cctors in R'. (b) Lincarly independent vcctors in R'. 

Suppose now that vI, V2, and vJ are linearly dependent in RJ. Then we can 
write 

where at, {/2, and {/J arc not all zero, say, (/2 =1= O. Then 

which means that V2 is In the subspace W spanned by Vt and VJ. 
Now W is either a plane through the origin (when VI and vJ arc linearly in­

dependent) or a line through the origi n (when VI and VJ arc linearly dependent), 
or IV = {O). Since a line through the origin always lies in a plane through the 
origin, we conclude that Vt, V2, and VJ all lie in the same plane through the origi n. 
Conversely. suppose that Vt, V2, and \'J all lie in the same plane through the origi n. 
Then either all three vectors are the zero vector. all three vectors lie on the same 
line through the origin, or allthrce vectors lie in a plane through the origin spanned 
by two vectors, say. Vt and VJ. Thus, in all these cases. V2 is a linear combination 
ofv t and YJ: 

Then 

CI Vt - 1\'2+c3 vJ = (). 

which means that Vt, V2. and VJ are linearly dependent. Hence three vectors in RJ 

are linearly dependent if and only if they atltie in the same plane passi ng through 
the origin [Figure 4.26(a)1. 

r~ ~a\l 

o " l
" 

, 

o " 

FIGURE 4.26 (a) Linearly dependcnt vectors in Rl. (b) Linearly independent vectors in Rl. 

More generally, let u and V be nonzero vectors in a vector space V. We can 
show (Exercise 18) that u and y are linearly dependent if and only if there is a 
scalar k such that V = ku. Equi valently. u and v are linearly independent if and 
only if neither vector is a multiple of the other. 
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Theorem 4.7 The nonzero vectors VI. V2 . .. .. v" in a vector space V are li nearly dependent if 
and only if one of the vectors v j (j 2: 2) is a li near combi nation of the preceding 
vectors \'\, V2, .. . , Vj-I . 

EXAMPLE 10 

Proof 

If Vj is a linear combi nation of VI. V2 ..... V j_l, that is, 

then 

Since at least one coefficient, - I. is nonzero, we conclude that VI. V2 .. . .. v" arc 
linearly dependent. 

Conversely, suppose that VI. V1 ..... V" arc linearly dependent. Then there 
exist scalars, lIl. (12 ..... [I", not all zero, such that 

Now lei j be the largesl subscripl fo r which a j #- O. If j :::. 2, thcn 

If j = I, then [lI V\ = O. which implies that \'1 = 0, a contradiction of the 
hypothesis that none of the vectors is the zero vector. Thus one of the vectors V j is 
a linear combination of the preceding vectors VI. \'2 . ... . v)_\ . • 

LetV = R3 and alsovl = [1 2 - 1],v2=[1 - 2 l]'v3= [ -3 2 - I]. 
and V4 = [2 0 0]' We fi nd (verify) thai 

VI + V2+0V3 - V4 = 0. 

so VI. V2. V3, and V4 arc linearly dependent. We then have 

• 
Remarks 
I. We observe that Theorem 4.7 does not say that eve!)' vector v is a linear 

combi nation of the precedi ng vectors. Th us. in Example 10, we also have 
VI + 2V2 + V3 + 0"4 = O. We cannot solve. in this equation. for V4 as a linear 
combi nation of VI. V2, and \'3 , since its coefficient is zero. 

2. We can also prove that if S = {V1. \'2 .. .. . vd is a set of vectors in a vector 
space V, then S is linearly dependent if and only if one of the vectors in S is a 
linear combi nation of all the other vectors in S (sec Exercise 19). For instance, 
in Example 10, 

V\ = - V2 - OV3 + V4: V2 = -~ V I - ! V3 - OV4. 

3. Observe that if VI, V2 . .... Vk are linearly independent vectors in a vector 
space, then they must be distinct and nonzero. 
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EXAMPLE 11 

Key Terms 
Consistent system 
Inconsistent system 
Homogeneous system 

.,. Exercises 

I . Show that 

The result shown next is used in Section 4 .6, as well as in several other places. 
Suppose that S = {VI. V2 . .. .. v,,} spans a vector space V. and v j is a linear com­
bination of the preceding vectors in S . Then the set 

SI = {VI. V2 . .. .. Vj -I. Vj+l . .. .. v,,} . 

consisting of S with Vj deleted, also spans V. To show this result, observe that if 
v is any vector in V, then, since S spans V, we can find scalars al . a2 . .. .. a" such 
that 

Now if 

then 

V = al V' + a2 V2 + .. . + a j_, Vj _1 + a j (bi v i + 1J2 V2 + . . . + bj_l vj _l) 

+aj+l vj+l +· ·· +a" v" 

= c, V, + C2V2 + . .. + Cj_I V j_1 + Cj+ I V j +' + .. . + C" V". 

which means that span 5, = V. 

Consider the set of vectors S = {VI. V2. V3, V4} in R4. where 

and let W = span S. Since 

we conclude that W = span S" where SI = {VI. V2, vJ}. 

Linearly independent set 
Linearly dependent set 

2. Show that 

is a linearly independent sel in R3. 

• 



3. Determine whether 

IS a linearly independem set in R4. 

4. Determine whether 

s = l[l ,].[3 8 - 5].[-3 6 - 9]) 

IS a linearly independent set in R). 

III E.terc:il·/,S 5 throllgh 8, /~"ch gil'(II /lfIgmellled IIllIlrix is de­

rired/rolll i:.'qlllllioll ( J). 

[ -~ ~ ~ ~ i ~l 
5. 1 - I 2 I : 0 

5 8 5 : 0 
Is the set S linearly independent? 

6. [~ :-r ~ ! ~] 
oooo i o 

Is the set S linearly independent? 

7. r~ -7 ~ i ~l,s theset SlinearIYindependent? 
o 0 2 : 0 

8. [A i 0]' where A is 5 x 5 and non.~i ngular. Is the set S 
linearly independent? 

9. L" " = [-il" = [=} , = m ~I,"g<o 
the solut ion space of Ax = 0, Is l XI' X!. x31linearly in­
dependeill'? 

IU. L" " = [H', = [-t}" = m relo"g<o,", 

nu ll space of A. Is {X I. x~, xl i linearly inJepenJem? 

II. Which o f the given vectors in RJ are linearly JepenJent? 
For those which are. express one vector as a linear com­
binat ion of the rest. 

{ol [I 

{bl [I 

(cJ [I 

0]. [0 , 3]. [1 2 l].[l 6 6] 

O]. [l 4 ,] 

0]'[0 2 3]. [< 2 3]'[0 0 0] 
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12. Consider the vec tor space M~:. Follow the directions of 
Exercise II . 

(" [; :][~ ~W ~l [: 
(b) [ : :][~ ~][~ ;] 
«) [ : :][; in; :][; ;J 

13. Consider the vector space 1'2. Follow the directims o f 
Exercise II . 

(a) 12 + 1.1 _ 2.1+3 (b) 21!+ 1. 12 +3. 1 

(e) 21 l + t + 1. 312 + 1 - 5./ + 13 

14. Let V be the vector space of all real-valued continuous 
function s. Follow the direc tio ll ~ of Exercise II. 

(a) cosl . si nt ,c' 

(e) 12.1. 1" 

(II) I,e',sinl 

(d) CO~21. sin" I. cos 21 

1.5. Consider the vector ~pnce RJ. Fo llow the directions of 
Exercise II. 

(.) mmU] 
(b) Ul m [:]t iJ 
«) m·mrn 

16. For what values of c are the veCIOl'S [-I 0 - I J. 
12 2], and [ I c J in RJ linearly dependent? 

17. For wh:1I vnlue~ of (' [.re the veCIOl'S t + 3 and 21 + c1 + 2 
in P I linearly independent? 

18. Lei u and v be nonzero veCIOrs in a vec tor ~pace V. Show 
thai u and v are linearl), depenJent if and only if there 
is a scalal ~ such llial I' = ~ u . Equivalelll ly, u ~lld I' 

arc linearly indepe ndent if anJ only if neither veelor is a 
multiple of the other. 

19. Let S = {VI. vl .' ,. \'.1 1 be a SCI of vectors in a vector 
space V. Prove th31 5 is linc3rly dependent ifand only if 
o ne of the vec tors in S is a linear combination of all the 
other veclors in S. 

20. Suppose that S = l VI. v!, vJ! is a line3r1y ind<!pen­
dent set of ,'eclOI'S in a ,'eclor space V . Prm'c Ihat 
T = {WI. W~, ~'J l is also linearly indepenJ ent, where 
W I = VI + "1 + VJ ' ,,~ = V ~ + 1'3, and W} = vJ. 
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21. Suppose that S = (VI. '0' 2. '0'3) is a linearly independent 
set of vectors in a vector space V. Is T = (WI. W2. w) l. 
where WI = VI + '0'2. W, = '0'1+ '0') . W) = v,+vJ.linearly 
dependent or linearly independent? Justify your answer. 

22. Suppose that S = {VI. '0'2. \ ') 1 is a linearly dependent set 
of vectors in a vector space V. Is T = (WI. W2. " '3 1. 
where WI = \'1. W2 = VI + '0' 3. W3 = VI + V, + '0'3. 
linearly dependent or linearly independent? Justify your 
answer. 

23. Show that if (VI. V2) is lineally independelll and v] does 
aot belong to span (V I. '0'21. then (VI. \'2. '0'1) is linearly 
mdependent. 

24. Suppose that {VI. '0'2 ..... "N} is a linearly independent 
se t of vectors in RN. Show that if A is an /I x /I non· 
singular matrix. then {A vi. AV2 ..... AvN} is linearly in· 
dependent. 

25. Let A be an //I x /I matrix in reduced row echelon form. 
Prove that the nonzero rows of A. viewed as vectors in 
RN • fonn a linearly independent set of vectors. 

26. Let S = {UI. U2 ..... UI'} be a set of vectors in a vec­
tor space and let T = (VI. V~ .. . .. vN, I. where each Vj. 
i = I. 2 . .. .. //I. is a linear combination of the vectors in 
5. Prove that 

w= bl v l+b2V2+' ,+b .. vm 

IS a linear combination of the I'ectors in S. 

27. Let S j and S2 be finite subsets of a vector space and let 
51 be a subset of 5,. If 5, is linearly dependent. why or 
why not is S j linearly dependent? Give an example. 

28. Let SI and S2 be finite subsets of a vector space and let 
51 be a subset of S2. If 51 is linearly independent. why or 
why not is S2 linearly independent'! Give an example. 

..!. 29. Let A be an 1/1 x /I matrix. Associate with A the vector 
win RN

'" obtained by "stringing out" the columns of A. 
For example. with 

we associate the vector 

w~ [l •. 
; 
6 

Determine whether your software has such a command. 
If it does. use it with the vectors in Example 4. together 
with your software's reduced row echelon form com­
mand. to show that the vectors are linearly dependent. 
Apply this technique to solve Exercise 12. 

!. . 30. As noted in the Remark after Example 7 in Section 4.4. 
to detennine whether a specific vector V belongs to span 
S. we investigate the consistency of an appropriate non­
homogeneous linear system Ax = b. In addition. to de­
tennine whether a set of vectors is linearly independent. 
we investigate the null space of an appropriate homoge­
neous system Ax = O. These investigat ions can be per­
fanned computationally. using a command for reduced 
row echelon form. if available. We summarize the use of 
a reduced row echelon form command in these cases. as 
follows: Let RREF(C) represent the reduced row eche­
lon form of matrix C. 

(i) V belongs to span S. provided that RREF ([ A i b ]) 

contains no row of the fonn [0 0 i 01< ]. 

where * represents a nonzero number. 

(ii) The set of vectors is linearly independent if 
RREF ([ A : 0 ]) contains only rows from an iden­
tity matrix and possibly rows of all zeros. 

Experiment in your software with this approach. using 
the data given in Example 8 in Section 4.4 and Examples 
3.5.6. and 7. 

.!. 31. (\Vurning: TIle stratcgy given in Exercisc 30 assumes 
the computations are performed by using exact arith­
metic. Most software uses a model of exact arithmetic 
called floating point arithmetic: hence the use of reduced 
row echelon fonn may yield incorrect results in these 
cases. Computationally. the "line between" linear inde­
pendence and linear dependence may be blurred.) Ex­
periment in your software with the use of reduced row 
echelon fonn for the vectors in R' given here. Are they 
linearly independent or linearly dependent? Compare the 
theoretical answer with the computational answer from 
your software. 
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m Basis and Dimension 

I.n this section we continue our study o f the structure of a vector space V by deter­
mining a SCI of vectors in V that completely describes V. Here we bring together 
the topics of span from Section 4.4 and linear independence from Section 4.5. In 
the case of vector spaces that can be completely described by a finite SCI of vec­
tors, we prove further properties thai reveal more details about thc structure of 
such vector spaces . 

• Basis 

The vectors V I. V2 .. .. . Vt in a vector space V arc said to fonn a basis fo r V if 
(a) V I. V2 • .. . . Vt span V and (b) V I. V2 • .... Vt arc linearly independent. 

Remark If V I . \'2 . .. Vt [ann a basis for a vector space V, then they must be 
distinct and nonzero. 

Remark We state Dciinition 4. [0 for a finite set of vectors. but it also applies to 
an infinite set o f vectors in a vector space. 

Let V ~ R' . The ""0," [H m m 101m" b,,;, [ot R' . e""ed the 

natu ral basis or standard basis. for R3. We can readily see how to generali ze this 
to obtain the natural ba~is for R". Similarly, [I 0 0], [0 I OJ. [0 0 I] 
is the natural basis for RJ• • 

The natural basis for RIO is denoted by Ie!. e2 . .. .. ell), where 

o 

o 
ei = ~ ith row: 

o 

o 
that is, ei is an II x J matrix with a [ in the IIh row and zeros e lsewhere . 

The natural basis for RJ is also o ft en denoted by 

These vectors arc shown in Figure 4.27. Thus any vector v = 

written as 
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EXAMPLE 2 Show that the set S = {12 + I. I - 1. 21 + 21 is a basis for the vector space P2. 

Solution 
To do this, we must show that S spans V and is linearly independent. To show that 
it spans V, we take any vector in V, that is. a polynomial at 2 + bt + c. and find 
constants al. a2, and aJ such that 

al2 +bt +C = 111(12 + 1) + 112(1 - 1) + aJ(2t +2) 

= {l112 + (a 2 + 2aJ)1 + (al - a2 + 2aJ) . 

Since two polynomials agree for all values of t only if the coefficients of respective 
powers of I agree. we gctthe linear system 

Solving. we have 

Hence S spans V. 

a, = (l 

a2 + 2aJ = b 

al - a2 + 2aJ = c. 

a + b - c 

2 
aJ = 

c + b - {I 

4 

To ill ustrate this result, suppose that we are given the vector 2t 2 + 6t + 13. 
Here, a = 2, b = 6, and c = 13. Substituti ng in the foregoing expressions for a. 
b, and c . we find that 

Hence 
212 + 6t + 13 = 2(12 + I) - ~ (t - I) + lj- (21 +2) . 

To show that S is linearly independent, we form 

al (/2 + I) + a2(t - I) + (lJ(21 + 2) = o. 

Then 
alt 2 + (a2 + 2aJ)t + (al - a2 + 2aJ) = O. 

Again, this can hold for all values of t on ly if 

a, 
a 2 + 2a, = 0 

al - a2 + 2aJ = O. 

The only solution to this homogeneous system is (II = a2 = {/J = 0, which implies 
that S is li nearly independent. Thus S is a basi s for P2 . • 

The set of vectors {I". ,,,-1 .... , 1. I J forms a basis for the vector space P" 
called the natural , or standard basis, fo r P". 
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V I = [ I 0 

\'3 = [0 2 2 

is a basis for R4 . 

Solution 

0]. ,, ~ [o - I 2] . 

[ ] . and V4 = [I o 0 I] , 

To show that S is linearly independent. we form the equation 

{lIV! + {/2V2 + {/3 V3 + (J4 V4 = 0 

and solve for {II_ {/2 , {/3 , and (14. Substituting for V) , V2, \'}, and V4 , we obtain the 
linear system 

(II + (14 = 0 

112 + 2a) = 0 

(II {/2 + 2a3 = 0 

2£12 + {/J + a4 = O, 

which has as its only solution {II = (12 = llJ = {/4 = 0 (verify), showi ng that S 
is linearly independent. Observe that the columns of the coefficient matrix of the 
preceding linear system are vi, vr, vI, and vI. 

To show that S spans R4 , we lei v = [{/ bed] be any vector in R4• We 
now seek constants {II. {/2 , ([.I, and (/4 such thaI 

Substituting for VI. \' 2, VJ . \'4 , and v, we find a solution for a). {/2, llJ. and {/4 

(veri fy) to Ihe resulting linear system. Hence S spans R4 and is a basis for R4 . • 

The set IV of all 2 x 2 matrices with trJ.ce equal to zero is a subspace of M 22 . Show 
that the set S = {v, . VI . VJJ. where 

V ' = [~ ~l V2 = [~ ~l aoo V3= [~ -~J 
is a basis for IV. 

Solution 
To do this, we must show that span S = IV and S i; linearly independent. To show 
that span S = IV, we take any vector v in IV . that is. 

and find constants (/" {/2, and (/3 such that 

Substituting for v, . V2, VJ. and v and performing the matrix operations on the left, 
we obtain (veri fy) 

[a, a, a,] [a 
- {/J = C 
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EXAMPLE S 

Eq uating corresponding entries gives aJ = b, a2 = c, and a j = a, so S spafl~ W . 
If we replace the vector v by the zero matrix, it fo llows in a similar fas hion that 
a l = a2 = a3 = O. so S is a linearly independent set. Hence S is a basis for W . • 

Find a basis for the subspace V of P2, consisting of all vectors of the form at2 + 
bt +c, wherec = a - b . 

Solution 
Every vector in V is of the form 

at 2 + bt + a - b. 

which can be wri tten as 
a(r 2 + I) + b(t - I), 

so the vectors t 2 + I and t - I span V . Moreover, these vectors arc lincarly 
independent because neither one is a mult iple of the other. This conclusion could 
also be reached (with more work) by writing the equation 

a](t2 + 1) + a2(r - 1) = o. 

a]t2 + a21 + (a] - ( 2) = O. 

Since thi s equation is to hold fo r all values of t , we must have (I I = 0 and (12 = O . 

• 
A vector space V is called fi nite-dimensional if there is a fi nite subset of 

V that is a basis fo r V. If there is no such finite subset of V, then V is called 
infi nite-dimensional. 

We now establi sh some resu lts about fi nite-dimensional vector spaces that will 
te ll about the number of vectors in a basis, compare two di frerent bases, and 
give propenies of bases. First, we observe that if {v], V2. .. Vk} is a basis fo r 
a vector space V, then {cv], V2, .... Vk} is also a basis when c =1= 0 (Exercise 
35). Thus a basis for a nonzero vector space is never uniq ue. 

Theorem 4 .8 If S = (v]. V2 .. .. . \',,) is a basis fo r a vector space V, then every vector in V can 
be wri tten in one and o lll y one way as a linear combination of the vectors in S. 

Proof 

First, every vector v in V can be wri tten as a linear combination of the vectors in 
S because S spans V . Now let 

We must show that a i = bi for i = 1. 2. . 11 . We have 
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Since 5 is linearly independent, we conclude that 

ai - hi = 0 fori = 1.2 . .... 11. • 
We can also prove (Exercise 44) that if 5 = { VI. V2 ..... vnl is a set of nonzero 

vectors in a vector space V such that every vector in V can be written in one and 
only one way as a linear combination of the vectors in 5, then 5 is a basis fo r V. 

Even though a nonzero vector space contains an infinite number of elements, 
a vector space with a finit e basis is, in a sense. completely described by a ii nite 
number of vectors, namely, by those vectors in the basis. 

Theorem 4.9 Let 5 = {V I . V2 • .... v.l be a set of nonzero vectors in a vector space V and let 
W = span 5. Then some subset of 5 is a basis for W. 

Proof 

Case I If 5 is linearly independent, then since 5 already spans W. we conclude 
that 5 is a basis for W. 
Case 11 If 5 is linearly dependent, then 

(I) 

where al. a2 . . .. . a" are not all zero. Thus some \'j is a linear combi nation of the 
preceding vectors in 5 (Theorem 4.7). We now delete Vj from 5, getti ng a subset 
51 of 5. Then. by the observation made at the end of Section 4.5, we conclude that 
51 = {VI. V2 . .. . , Vj _1 \ ·j+I ....• v"l also spans W. 

If 51 is linearly independent. then 51 is a basis. If 51 is linearly dependent, 
delete a vector of 51 that is a linear combination of the preceding vectors of 51 
and get a new set 52 which spans W. Continuing, si nce 5 is a finite set, we will 
eventually find a subset T of 5 that is linearly independent and spans IV. The set 
T is a basis for W. 

Altematil'e Constructive P roof when V 1.\' R m or Rm , n O! III. (By the results 
seen in Section 4.7. this proof is also applicable when V is Pm or Mp q , where 
1/ :: pq.) We take the vectors in 5 as 11/ x 1 matrices and form Equation ( I). Thi s 
cquation leads to a homogeneous system in the n unknowns al . a2 . .... a,,: the 
columns of its 11/ x 1/ coefficient matrix A are VI . V2 , . .. • V" . We now transform A 
to a matrix B in reduced row echelon form, having r nonzero rows, I :::: r :::: 11/. 

Without loss of generali ty, we may assume that the r leadi ng I 's in the r nonzero 
rows of B occur in the tirst r columns. Thus we have 

0 0 0 h l r +1 b" 
0 [ 0 0 h2r +J hill 
0 0 [ 0 h3r +1 h3n 

B ~ 
0 0 0 brr+l b rn 
0 0 0 0 0 0 

0 0 0 0 0 0 

Solvi ng fo, Ihe unknowns corresponding 1O Ihe leading l's, we sec that 
al . a 2, . ... ar can be solved for in terms of the other unknowns ar+l. a r+2 . .. .. a". 
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Thus, 
al = -bl ,+la,+1 - b l ,+2a,+2 - .. . - bl"a" 

a2 = - b 2 ,+la,+1 - b2,+2a,+2 _ .. . - bbla" 
(2) 

where a,+I, a,+2 . . . .. a" can be assigned arbitrary real values. Lcuing 

a,+ 1 = t. a,+2 = 0. a" = 0 

in Equation (2) and using these values in Equation ( I), we have 

- bl r +1 VI - /)2,+1 V2 - . . . - br r+1 " , + V,+I = 0, 

which implies that Vr +1 is a linear combination of VI . V2 . .. .. vr . By the remark 
made at the end of Section 4.5, the sct of vectors obtained from S by de lcting V, + I 

spans W. Simi larly, leuing a ,+1 = 0 , a,+2 = I , a,_3 = 0 , .. . , a" = 0 , we fi nd that 
V, +2 is a linear combination of VI. V2 ... . . vr and the set of vectors obtained from S 
by deleting V,+I and v r+2 spans W. Continuing in thi s manner. Vr+3. v ,+4 . . .. . V" 

are linear combinations of VI . V2 . ... . V" so it fo llows that {VI. V2 .... . v ,} spans 
IV . 

We next show that {VI . V1 •. .. • v ,} is linearl y indepcndent. Consider the ma­
trix BD that we get by dcleting from B all columns not containing a Icading I. In 
this case, BD consists of the first r columns of B. Thus 

0 
0 
0 0 

BD = 
0 0 

0 0 

0 0 

0 
0 

o 
o 

I 

o 

o 
Let A D be the matri x obtained from A by deleting the columns corresponding 

to the columns that were deleted in B to obtain BD . Ln thi s case. the columns of 
A D are VI . V2 • ... • v ,. the first r columns of A. Since A and B are row equi vaJent. 
so arc A D and B D. Then the homogeneous systems 

A Dx = 0 and B Dx = 0 

are equivalent. Recall now that the homogeneous system BDx = 0 can be wrillcn 
equivalcnt ly as 

(3) 

lX'l 
x~ 

where x = :- and YI. yl . .. .. y, are the col umns of Bf) . Since thc columns 

" of Bf) form a linearly independent set of vcctors in R"' , Equation (3) has only 
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the trivial solution. Hence A D X = 0 also has only the tri vial solution. Thus 
the columns of AD are linearly independent. That is. { VI. V2 ..... v,} is linearly 
independent. • 

The first proof of Theorem 4.9 leads to a simple procedure for finding a subset 
T of a set 5 so that T is a basis for span 5. Let S = {V I. V2 . .... VII} be a set of 
nonzero vectors in a vector space V. The procedure for finding a subset T of 5 
that is a basis for W = "pan 5 is as follows : 

Step 1. Form Equation ( I), 

which we solve for {I I. i/2 , .... {III ' If these arc all zero, then 5 is linearly indepen­
dent and is then a basis for W. 

Step 2. If {I I. {l 2 • .... Gil are not all zero, then 5 is linearly dependent. so one of 
the vectors in .'I- say. v j-is a linear combination of the preceding vectors in 5. 
Delete V j from 5. getting the subset 51, which also spans W. 

Step 3. Repeat Step I, using 51 instead of 5. By repeatedly deleting vectors of 5. 
we derive a subset T of 5 that spans IV and is linearly independent. Thus T is a 
basis for W. 

This procedure can be rather tedious, since el'rl}' lime we de lete a vector from 
5, we must sol ve a linear system. In Section 4.9 we present a much more e ffici ent 
procedure for finding a basis for W = span S, but the basis is 1I0t guaranteed to 
be a subset of 5. In many cases this is not a cause for concern. since one basi s 
for W = span 5 is as good as any other basis. However, there are cases when the 
vectors in 5 have some special properties and we want the basis for W = span 5 
to have the same propenies, so we want the basis to be a subset of 5. If V = R'" 
or R"" the alternative proof of Theorem 4.9 yie lds a very effici em procedure (see 
Example 6) for finding a basis for W = span 5 consisting of vectors from 5. 

Let V = R'" or Rill and let 5 = {V I. V2 • .. . . vlI } be a sct of nonzero vectors in 
V. The procedure for finding a subset T of S that is a basis for W = span S is 
as follows . 

Step 1. Form Equation ( I), 

Step 2. Construct the augmented matrix associated with the homogeneolLs sys­
tem of Equation ( I), and transfonn it to reduced row echelon form. 

Step 3. The vectors corresponding to the columns containing the leading l's 
form a basis T for W = span S. 

Recall that in the alternative proof of the theorem we assumed without loss 
of generality that the r leading l 's in the r nonzero rows of B occur in the fi rst r 
columns. Thus, if 5 = {VI. V2 .... , V6} and the leading I 's occur in columns I, 3, 
and 4, then {V I . v), V4 J is a basis for span 5. 
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EXAMPLE 6 

Remark In Step 2 of the foregoing procedure, it is sufficient to transform the 
augmented matrix to row echelon fonn. 

LetV = R3and S = {vl. V2.VJ .V4.VsLwhere vl=[ 1 0 l].v2=[O I], 

V3 = [I I 2], V4 = [I 2 1 J.and Vs = [ - I 1 - 2]. We find that Sspans 
RJ (veri fy), and we now wish to find a subset of S that is a basis for R3 • Using the 
procedure just developed , we proceed as fo llows: 

S"p l . a'[l 0 1] +a, [O 1]+a,[ 1 '] +a, [1 2 1]+ 
,,'[ - 1 -2] ~ [0 ° 0]. 

Step 2. Equating corresponding components. we obtain the homogeneous system 

al + a.l + a4 - as = 0 

a 2 + a J + 2a4 + as = 0 

(/1 + {/2 + 2(/3 + a4 - 2ns = O. 

The reduced row echelon form o f the associated augmented matrix is (verify) 

[~ 
o 
1 
o 

1 

1 
o 

o 

° 
-2 i 0] 
- I : 0 . 

1 i 0 

Step 3. The leading 1 's appear in columns 1. 2, and 4. so {\'I. V2. V4! is a basis for 
RJ . • 

Remark In the alternative proof o f Theorem 4.9. the order of the vectors in the 
original spanni ng set S determines which basis for V is obtained. If. for example. 
we consider Example 6, where S = {WI. W2. W3. W4. ws} with WI = VS, W2 = V4. 
W3 = \'3 , W4 = V2, and Ws = VI, then the reduced row echelon form of the 
augmented matrix is (verify) 

[~ 
o 

o 

o 
o - I 

2 

-I i 0] 
1 : 0 . 

- I i 0 

It then follows that {WI. W2. W3} = lvs. V4, vJ} is a basis for R3 . 

We are now about to establish a major result (Corollary 4.1 . which follows 
from Theorem 4.10) o f this section, which willtcll us about the number of vectors 
in two different bases. 

Theorem 4.10 If S = {VI. V2 ... . . v,,} is a basis for a vector space V and T = {WI. W2 .. . .. w,} 
is a linearly independent set o f vectors in V. then r S II. 

Proof 

Let T I = IWI. VI. . VII} ' Since S spans V, so docs T I. Since WI is a linear 
combi nati on o f the vectors in S, we find that Tl is linearl y dependent. Then, 
by Theorem 4.7, some V i is a linear combination of the preceding vectors in TI • 

Delete that particular vector V j . 
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Let SI = { W I. V I •. .. Vj -I, V j +! .. .. . VII} . Note that SI spans V. Next, let 
T2 = { W 2. W I, V i • .. .• Vj -I . Vj +! . . VII} . Then T2 is linearly dependent and 
some vector in T2 is a linear combination of the preceding vectors in T2. Since 
T is linearly independent, thi s vector cannot be W I, so it is Vi . i 1= j. Repeat this 
process over and over. Each time there is a new w vector available from the set T, 
it is possible to discard one of the v vectors from the set S. Thus the number r of 
W vectors must be no greater than the number II of v vectors. That is. r ::::: II. • 

Corollary 4 . 1 If S - { VI. V2 . . ... v,,} and T - { W I. W 2 • ... • w" j arc bases for a vector space V . 
then II = 111. 

Proof 

Since S is a basis and T is linearly independent, Theorem 4. 10 implies that III ::::: II. 

Simi larly, we obtain II ::::: III because T is a basis and S is linearly independent. 
Hence II = III. • 

A vector space or subspace can have many different bases. For example, the 
natural basis BI fo r R2 is 

but the set 

is also a basis for R2. (Verify.) From Theorem 4.8 we have that every vector in R2 
can be written in one and onl y one way as a linear combination of the vectors in 
BI and in one and only one way as a linear combination of the vectors in 8 2 For 
any vector v in R2, where 

we have 

However, to express V as a linear combi nation of the vectors in 82, we must find 
scalars CI and C2 so that 

Solving CI and C2 requires the solution of the li near system of equations whose 
augmented matrix is 

[ : (verify). 

The sol lllion to this linear system is Cj = 2a - band C2 = b - {/. (Verify.) Thus 

v = (2u - b) [:] + (b - (I) [~J. 
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DEFINITION 4.11 

EXAMPLE 7 

EXAMPLE 8 

DEFINITION 4.12 

EXAMPLE 9 

In this case we observe that the natural basis is more convenient for representing all 
the vectors in R2, since the solution of a linear system is not required to determine 
the corresponding coefficients. In some applications in Chapter 8, a basis other 
than the natural basis is more convenient. So the choice of basis for a vector 
space can be importanl in representing thc vectors in that space. We study the 
representation of a vector in terms of different bases in more detail in Section 4.8, 
where we discuss the coordinates of a vector with rcspect to an ordered basis . 

• Oimensinn 

Although a vector space may have many bases, we have just shown that, for a 
particular vector space V, all bases have the same number of vectors. We can then 
make the following definition: 

The dimension of a nonzero vector space V is the number of vectors in a basis for 
V. We often write dim V for the dimension of V. We also define the dimension 
of the trivial vector space {V! to be zero. 

The set 5 = {t 2 . t . I! isa basis for P2,sodim P 2 - 3. • 

Let V be the subspace of R3 spanned by 5 = {VI, V2' V3) . where VI = [0 I J. 
V2 = [I 0 I], and v3 = [ I I 2]. Thus every vector in V is of the form 

where (11, (12, and OJ are arbitrary real numbers. We find that 5 is linearly de­
pendent, and V3 = VI + V2 (verify). Thus 51 = {VI , V2! also spans V. Since 
51 is linearly independent (verify), we conclude that it is a basis for V . Hence 
dim V = 2. • 

Let 5 be a set of vectors in a vector space V. A subset T of 5 is called a maximal 
independent subset of 5 if T is a linearly independent set of vectors that i, not 
properly contained in any other linearly independent subset of 5. 

Let V be RJ andconsiderthesetS = {VI. V2 , V3. V4! . where 

Maximal independent subsets of S ar..: 

Corollary 4.2 If the vector space V has dimension II, then a maximal independent subset of 
vectors in V contains 11 vectors. 
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Proof 

Let S = {VI. V2 ..... v, } be a maximal independent subset of V. If span S f: V , 
then there exists a vector v in V that cannot be wrillen as a linear combination 
of \ '1 . V2 •. .. , Vl . It follows by Theorem 4.7 that {VI. V2 . .. Vk. v } is a linearly 
independent set of vectors. However, this contradicts the assumption that 5 is a 
maximal independent SLlbset of V. Hence span S = V, which implies that set S is 
a basis for V and k = II by Corollary 4.1. • 

Corollary 4 .3 If a VCCIOi slJace V has dilllcnsiollll, thell a IlliuiJllal* spaulliJlg set fOi V cOlllaills 
II vectors. 

Proof 

Exercise 38. • 
Although Corollaries 4.2 and 4.3 are. theorctically, of considerable impor­

tance, they can be computationally awkward. 
From the preceding results. we can make the following observations: If V has 

dimension II , then any set of II + I vectors in V is necessarily linearly dependent ; 
at~o. any set of II - I vectors in V cannot span V More generally, we can establish 
the following results: 

Corollary 4.4 If vector space V has dimension II , then any subset of III > II vectors must be 
linearly dependent. 

Proof 

Exercise 39. • 
Corollary 4.5 If vector space V has dimension II, then any subset of III < II vectors cannot span 

v. 
Proof 

Exercise 40. • 
In Section 4.5. we have already observed that the set {O} is linearly dependent. 

This is why in Definition 4.1 1 we defined the dimcnsion of the trivial vector space 
to} to be zero. 

Thus RJ has dimension 3, R2 has dimension 2, and R" and R" both have 
dimension II. Similarly, PJ has dimension 4 because IfJ . f2. f. 1\ is a basis for PJ• 

Ln generaL P" has dimension II + I. Most vector spaces conSIdered henee]orth in 
this book are finite-dimensional. Although infinite-dimensional vector spaces are 
very important in mathematics and physics. their study lies beyond the scope of 
this book. The vector space P of all polynomials is an infinite-dimensional vector 
space (Exercise 36). 

Section 4.3 included an exercise (Exercise 29) to show that the subspaces of 
R2 are IO}, R2 itself, and any line passing through the origin. We can now establish 
this result by using the material developed in this section. First. we have (O) and 

"If S is a set of wctors spannin& a .'cctor space V. thcn S is callcd a minimat spanning set for V if 
S does not properly contain any other set spanning V. 
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R2, the trivial subspaces of dimensions 0 and 2, respectively. The subspace V of 
R2 spanned by a vector v i= 0 is a one-dimensional subspace of R2; V is a line 
through the origin. Thus the subspaces of R2 are {OJ, R2. and all the lines through 
the origin. In a simi lar way, Exercise 43 at the end of this section asks you to 
show that the subspaces of RJ are {OJ, R3 itself, and all tines and planes passi ng 
through the origin. We now prove a theorem that we shall have occasion to use 
several times in constructing a basis containing a given set of linearly independent 
vectors. 

Theorem 4.11 If 5 is a linearty independent set of vectors in a Ilnite-dimensionat vector space V, 
then there is a basis T for V that contains 5. 

EXAMPLE 10 

Proof 

Let 5 = {VI. V2 .. . .. vm} be a linearly independent set of vectors in the /1-

dimensional vector space V, where III < /I. Now let {WI. W2, .... w,,} be a basis 
for V and let 51 = {VI, V2 .. . .. Vm • W I. WI ..... WIll . Since 51 spans V, by The­
orem 4.9 it contains a basis T for V. Recall that T is obtained by deleting from 
51 every vector that is a linear combination of the preceding vectors. Since 5 is 
linearly independent , none of the Vi can be linear combinations of other v i and 
thus are not deleted. Hence T will contain 5. • 

Suppose that we wish to find a basis for R4 that contains the vectors 

0] and v2= [ - 1 - I 0]. 

We use Theorem 4. 1 I as follows. First, let {e'. ' e; . e; . e~} be the natural basis 
for R4• where 

0]. 
,nd 

,~ ~ [o 0 0 I]. 

Form the set 5 = {VI. V2. e 'l ' e;. e;. e~} . Since {e'l ' e;. e~. e~} spans R4 , so does 
5. We now use the alternative proof of Theorem 4.9 to find a subset of 5 that is a 
basis for R4 . Thus we fonn Equation (I), 

alvl+(l2v2+(/3e'l + a4e;+ {/Se~+ a6e~ = [0 0 0 0] . 

which leads to the homogencous system 

a, - {/l + (/3 ~ O 

- {/ 2 + (14 ~ O 

a, - {/2 + (Is ~ O 

(16 = O. 

Transforming the augmented matrix 10 reduced row echelon form, we get (verify) 

[~ 
0 0 0 

~l 0 0 0 
0 0 - I 0 
0 0 0 0 
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Since the leading I 's appear in columns I. 2. 3, and 6, we conclude that 
{VI, V2, e~, e~} is a basis for R 4 containing V, and V2. • 

It can be shown (Exercise 4 1) that if W is a subspace of a finite-dimensional 
vector space V, then W is finite-dimensional and dim W :: dim V. 

As defined earlier, a given set S of vectors in a vector space V is a basis for V 
if it spans V and is li nearly independent. However. if we are given the additiollal 
information that the dimension of V is II , we need verify only one of the two 
conditions. This is the content of the following theorem: 

Theorem 4 . 12 Lei V be an II-dimensional vector space. 

EXAMPLE 11 

(a) If S = {v,. \ '2 • .. .. v,,} is a linearly independent set of vectors in V. then S is 
a basis for V. 

(b) if S = {Vt. V2 • .. •• VII} spans V, then S is a basis for V. 

Proof 

Exercise 45. • 
As a particular application of Theorem 4. 12. we have the following: To deter­

mine whether a subset 5 of R" (RII ) is a basis for R" (R,,), first count the number 
of elements in S. If S has /I elements, we can use either part (a) or part (b) of 
Theorem 4. 12 to determine whether S is or is nOl a basis. If S does not have II 
elements, it is not a basis for R" (R,,). (Why?) The same line of reasoning applies 
to any vector space or subspace whose dimellsioll i~· kllowlI . 

In Example 6. si nce dim R, = 3 and the set S contains five vectors, we conclude 
by Theorem 4.12 that S is not a basis for R, . In Example 3, since dim R4 = 4 
and the set S contains four vectors, it is possible for S to be a basis for R4 . If S is 
lillcarly iudcpcmlcll t or spaHs R4, it is a basis; otllcrwise. it is lIot a basis. Tllus we 
need check only one of the condi tions in Theorem 4.12, not both. • 

We now recall that if a set S of II vectors in R" (R,,) is linearly independent. 
then S spans R" (R,,), and conversely, if S spans R" (R,,), then S is li nearly inde­
pendent. Thus the conditi on in Theorem 4.5 in Section 4.5 [that det(A) t- 01 is 
also necessary and sufficient for S to span R" ( R,,). 

Theorem 4. 13 Let S be a fini te subset of the vector space V that spans V . A maximal independent 
subset T of S is a basis for v. 

Key Terms 

Basis of a vector space 
N~rllr~1 (~r~nn~nl) h~~i~ 

Finjte·dimension~1 vector space 

Proof 

Exercise 46. 

Infinite·dimerlsional vector space 
Dimension flf ~ ~1Jhsr~c.e 
Maxim~l independent set 

• 

Minimal spanning sct 
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Ct._ Exercises 

I. Which of the fol1owi ng sets oi vectors are bases for «21 

(.j H:][-:]I (bj H~l[;][;ll 

« j 1[;][-;][;]1 (dj l[:][-m 
2. Which of the following sets of vectors are bases for « 1? 

(. j mlU]) 
(b j IUl[l][-i]tm 
~j I[l]· [-!]. [!] ) 

(dj mlUl[:][m 
3. Which o f the followi ng SCts of vectors are bases for «~? 

(.j 1[1 0 0 IJ .[O I 0 OJ. 
[I iJ .[O I III 

(bj 1[1 - I 0 2J.[3 - I 2 IJ. 
[IOOlli 

« j 1[ - 2 4 6 4J.[0 I 2 OJ. 
[- I 2 3 2]. [ -3 2 5 6J. 
[ - 2 - I 0 411 

(dj 1[0 0 I 1].[ - 1 I I 2J. 
[I I 0 OJ.[2 I 2 1]1 

4. Which of the following sets of vectors are bases for Pl? 

(a) (- / 2+1+2.2,2+21+3,41< - 1) 

(b) (/ 1 + 21 - l. 21< + 31 - 2) 

(e) j l l+ 1.311 +21 + 1.611 + 61+3} 

(d ) (31 2 +21 + 1.12+ 1 + 1./ 1 + II 

5. Which of the fol1owing sets of vectors are bases for p)? 

(a) (I l +21 2+3t, 21 ) + I. 6t l +8,2 +61 +4, 
,)+212+1+ II 

(b) (/ 1+ tl+ l. tl_ l.tl+ tl+ l) 

(e) {/ l+ tl+t+l./l+2r2+r+3,2tl+t!+31+2, 
1)+ /!+2/+21 

(d) (/ 1 _ t" l+ ,2+ 1./ - 1) 

6. Show that the set of matrices 

fonns a ba.~is for thc vector space Mn. 

hr t .xercise.\" 7 (///(I 8. ,Ielenllllle It'/rrclr vf tire gll'ell .1·"bseH 
fomiS a bmis for « 1, £'I7Jfe.\·s lire "ector 

a.l· (/ linear combinatioll ojlllf. I'ector.\" in ellclr .1"II"sef tlrat is (/ 
b{/~-i.\". 

7. (.j I[: l m m ) 
(bj IUl m [~] ) 

8. (.j ![;l[i][!][iJ) 
(b j I[Jmtnl 

III £.rerci.l"el· 9 ",,,110. delermille whiclr of lire gil'l'n sl,"sets 
fuml (/ "(IJ"i,~ for 1'2. £xpr(,u 51! - 31 + 8 liS a linear com"i· 
lIalioll of tile reclOrs il! each ,\'IIb,I'el Iilm i,I' a "luis, 

9, (a ) (/ 2 + 1.1 _ 1./ + II (b ) (1 2 + I. I - 1) 

II . Find a basis for thc subspace IV of Rl spanned by 

What is the dimen.~ion of IV? 



12. Find 3 ba.~is for the subspace W of R~ spanned by the set 
of \"cctors 

([ I 0 

[I 0 

[ - I -5 

Whm is dim IV? 

-iJ· [O 2 iJ. 
- I] . [I - 6 -3 ]. 

Oll 

13. Let IV be the subspace of P1 spanned by 

It l + t 2 _ 21 + I. t2 + 1.,1 _ 21. 2Jl + 312 - 4t + 3). 

Find 3 basis for IV. What is the dimension of IV? 

14. Let 

Find a basis fOf the subspace IV = span S of M 21 • 

IS. Find 311 va lues of a for which 

{[u' 0 iJ.[O u 2].[1 0 III 
tS a b3Sis for RJ . 

16. Find a basis for the subspace IV of M lJ consisting of all 
symmetric matrices. 

17. Find 3 basis for the subspace of M ]] consisting o f all di­
agonal m3trices. 

lit Let IV be the subspace of the sp"ce of all continuous real · 
va lued functions spanned by (COS2 " si n1 I. cos21). Find 
a basis for IV. What is the dimen~ion of IV? 

111 £rerc-il'el' /9 ami 20. find a /){lsiJjor Ih t! gil'ell slIbspaces of 
RJ WId R~. 

19. In) AII,,"o~of''''fo= [~lWhO"b~"+' 

Ih) All ,,"o~ of 'ho fonn [~] . who," b ~" 

(e) All vectors of the form [!]. where 

2'I+b-c =O 

20. la) AII''''O~Of'h''O=[~lWh'''O~O 

[ "+'] a - b 
(b) All vec tors of the fOfm b + c 

- ( I +b 
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(c) All vec tors of tlle form [~], where 

1I - b +5c =O 

21. Find a basis for the subspace of "2 consist ing of all vee· 
to rs of the fonn al 2 + bl + c, where c = 2a - 3b. 

22. Find a b3Sis for the subspace of p] consisting of al l vec· 
tors of the forma' ] _bl" +ct + d, wherec = a - 2t.1 
andb =511 + 3d. 

In £rercises 23 Will 24, find lite dimell.fiOlls of lite gil'en Sllb· 
SfJ(ICe.f 0/ R 4. 

23. (a) All vec tors of the foml [0 b c d]' where 
ll=lI+b 

(h) All vec tors of the form [ll b C d]' where 
c=a-b andd=ll+b 

24. (0) All vectors of the form [(I b c d]' where 
a = b 

Ib) All \'ectors of the fonn 

[a + c a-b b+c - a+b] 

25. Find the dimensions of the subSp3Ces of Rl spanned by 
the vec tors in Exercise I. 

26. Find the dimensions of Ihe subspnces of RJ spanned by 
the vectors in Exercise 2. 

27. Find Ihe dimensions of the ~ ubspace~ of /(4 spanned by 
the vectors in Exercise 3. 

28. Find a basis for R ] lhal includes 

I.) lhe ,,"m m 
(h) Iho ,,"o~ m Md m 

29. Find a basis for PJ that includes lhe vectors I] + I and 
, ~ - I. 

30. Find a basis for AllJ . What is the dimens ion of M n? 
Generalize to M ..... 

31. Find the dimension c f the subspace of P! consisling of 
all ,'cctOTS of the form m 2 + bt + c, wherec = b - 2a. 

32. Find the dimension of Ihe subspace of PJ consisling of all 
vec tors of the form alJ +bl"+ CI + d, where b = 3a - 5d 
andc = d+4a. 
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33. Give an example of a two-dimensional subspace of R4. 43. Prove that the sllbspaces of RJ are (0 ). RJ itself. amI any 
line or plane passing through the origin. 

34. Give an example of a two-dimensional subspace of 1'3. 

35. Prove that if (v\. V2 •.... Vk ) i, a basis for a vector space 
V. then (cVI. \ '2 •.••• v.I. fore I- O. is also a basis for V. 

44. Let S = {VI , \ '2 •...• v.] be a set of nonzero vectors in a 
vector space V such thai every vector in V can be \\,;tten 
in one and only one way as a linear combination of the 
vectors in S. Prove that S is a basis for V. 36. Prove that the vector space I' of all polynomi­

als is not finite-dimensional. [Him: Sllppose that 
[PI(/). {l2(t) .... , pdt)) is a finite basis for 1'. Let 
Jj = degree {I/ /). Establish a contradiction.] 

45. Prove lbeorem 4.12. 

46. Prove Theorem 4.13. 

47. Suppose that (V I. \ ', •..• v. 1 is a basis for R". Show that 
if A is an II x I! nonsingular matrix. then 37. Let V be an II-dimensional vector space. Show thal any 

/I + I vectors in V form a linearly dependent set. 

38. Prove Corollary 4.3. 

39. Prove Corollary 4.4. 

40. Prove Corollary 4.5. 

is also a basis for R". (Hillt: See Exercise 24 in Section 
4.5.) 

41. Show that if IV is a sllbspace ofa finite-dimensional vec­
lor space V, then IV is finite-dimensional and dim IV ::: 
dim V. 

48. Suppose Ihat ( VI. V2 •...• v") is a linearly independent 
set of vectors in R" and let A be a singular matrix. Prove 
or disprove that (A VI. A V2 ..... A vn) is linearly indepen­
dent. 

42. Show that it" IV is a sllbspace ora tinite-dimensional vec­
lor space V and dim IV = dim V. then IV = V. 

4'.1. Find a basis for the ~ubspace IV of all 3 x 3 matrices with 
trace equal to zero. What is dim IV? 

m Homogeneous Systems 

In Example 12 in Section 2.2 we have seen how the solution of chemical balance 
equations requires the solution of a homogeneous linear system of equations. In­
deed. homogeneous systems playa central role in linear algebra. Thi s will be seen 
in Chapter 7, where the foundations of the subject are all integrated to solve one 
of the major problems occurring in a wide variety of applications. In this section 
we deal with several problems invol ving homogeneous systems that will arise in 
Chapter 7. Here we are able to focus our attention on these problems without being 
distracted by the additional material in Chapter 7. 

Consider the homogeneous system 

Ax = O. 

where A is an 11/ x II matrix. As we have already observed in Example 10 of 
Section 4.3, the set of all solUlions to this homogeneous system is a subspace of 
RI! . An extremely important problem, which will occur repeatedly in Chapter 7, 
is that of finding a basis for thi s solUlion space. To find such a basis. we use the 
method of Gauss- Jordan reduction presented in Section 2.2. Thus we transform 
the augmented matrix [A i 0] of the system to a matrix [B i 0 ] in reduced row 
echelon form. where B has r nonzero rows, I S r ::: 11/. WithoUlloss of generality, 
we may assume that the leading [·s in the r nonzero rows occur in the firsl r 
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columns. If , = II . then 

" 
0 0 0 0 

0 0 0 0 
r = /1 

lB : o j ~ 0 0 0 0 m 

0 0 0 0 

0 0 0 0 

and the only solution \0 Ax = () is the trivial one. The solution space has no basis, 
find ils dimension is zero. 

If r < II , then 

" 
0 0 0 b1r+1 1)[ It 0 

0 0 0 /)2 , +1 b2J, 0 

0 0 0 , 

[8 : 0] ~ III . 

0 0 0 I ba +1 b,,, 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

Solving for the Llnknown .~ corresp::mding to the leadings I 'so we have 

X l = - h i ,+1.\",+1 - b J ,+2.\", + 2 - . .. - h lnx" 

X2 = - h Z,H X,+! - b 2.+2.\",+2 - .. . - b 2n X" 

where X, + l . .\", + 2 . . .. .. T" can be assigned arbitrary real values .f j . j = 1. 2 . . p. 
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and p = 1/ - r. Thus 

XI - bl r+IS I - b lr+ 2S2 _ . . - hl".f " 

X l - h2 r +I S I - h2 r+1S2 _. - h:..,sp 

x" 

- h rr+ISI - h,,+2S2 _ . . . - hr~ S I' ,., 
s2 

- bl r+2 

- b2r+2 

- brr+1 - h rr+2 

0 
- brl! 

0 
= .1'1 

0 
+ .1' 1 

I + .. . +.1'1' 
0 

0 

o 
o 

0 

o 
o 

0 

o 

Since .fl •. 1'2 . . .. • sp can be assigned arbitrary real values. we make the followi ng 
choices for these values: 

Sl = l. 
.f] = D. 

Sl = D. 

These yield the solutions 

x, 

Since 

o 
o 

o 
o 

.1'2 = D. 

.1'2 = I, 

o 

o 
o 

.1' 1' _1 = D. 

Sp = D . 
Sp = D . 

Sp = I. 

- h", 
o 
o 
o 

o 
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we see that IXI. X2 . .. .. xl'l spans the sol ut ion space o f Ax = O. Moreover, if we 
form the eq uation 

(lI X I + (/l X 2 + .. . + u"x" = 0, 

its coefficient matrix is the matrix whose columns are X I . Xl . .. .. X I> ' If we look at 
rows r + I. r + 2 .. .. . 'I of this matrix, we readi ly see that 

Hence {X I. X2 • . .. . XI' } is linearly independent and forms a basis for the solution 
space o f A x = 0 (the null space o f A ). 

The procedure for fi nding a basis for the solut ion space of a homogeneo lLs 
system Ax = O. or the null space of A. where A is 11/ X II, is as follows: 

Step 1. Solve the given homogeneous system by Gauss- Jordan reduction. If the 
solut ion contains no arbitrary constants, then the solut ion space is {O}, which has 
no basis; the dimension of the solution space is zero. 

Step 2. If the solut ion '{ contains arbitrary constants, write x as a linear combina­
tion o f vectors X I . X2 . .. .. x l' with .\'1. ~·2 • .. .. sp as coeffi cients: 

X = SI X j + S2 X2 + ... +.I"px p . 

Step 3. The sct of vectors (X I, X2 . ... . x p) is a basis fo r the solut ion space of 
Ax = 0 ; the dimension of the sollllion space is p. 

Remark In Step I. suppose that the matri x in reduced row echelon fo rm 10 which 
[ A i 0 ] has been transformed has r nonzero rows (also, r leading I's). Then 
p = /I - r . That is, the d imension o f the solut ion space is /I - r. Moreover, a 
solut ion X 10 Ax = 0 has /I - r arbitrary constants. 

If A is all !II x /I watli x, we lefel to the dilllCHSio ll of the Ilull space of A as 
the nullity of A, denotcd by null ity A. 

Find a basis for and the di mension of the solut ion space W o f the homogeneous 
system 

Solution 

o 
- I 

4 
2 

o 
o 
6 

1 
o 
o 

Step 1. To solve the given system by the Gauss-Jordan red uction method, we 
transfon n the augmented matrix 10 reduced row echelon form, obtaining (verify) 

[~ 
0 2 0 

n 2 0 - I 
0 0 1 2 

0 0 0 0 
0 0 0 0 
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EXAMPLE 2 

Every solution is of the form (veri fy) 

[-"-'] 
- 2.1' +1 

X = .I' • 

- 2' , 
(I) 

where .I' and t arc any real numbers. 

Step 2. Every vector in W is a solution and is therefore of the form given by 
Equation (I). We can thus write every vector in Was 

(2) 

Since .\' and t can take on any values. we fi rst let of = I. 1 = O. and then lets = 0, 
1 = I, in Equation (2), obtaining as solutions 

Step 3. The set {XI. X2) is a basis for W. Moreover. dim W = 2. • 
The followin g example illustrates a type of problem that we will be solving 

often in Chapter 7: 

Find a basis for the solution space of the homogeneous system (A i , - A )x = 0 for 
A = - 2 and 

Solution 
We form - 2/3 - A: 

o 

o 

A ~ [ -~ 0 -~] 
o 0 - 2 

~] [ -~ 0 -~] ~ [ _ ; 

I 0 0 - 2 0 

o 
- 3 

o 
This last matrix is the coeflicie nt matrix of the homogeneous system, so we trans­
form the augmented matrix 

o 
- 3 

o 
o 
o 
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to reduced row echelon form. obtaining (vcrify) 

[~ 
o , -, 
o 0 

Every solution is then of the form (verify) 

[-"] x = t:: . 

where s is any real number. Then every vector in the solution can be written as 

'0 I [ -i ] I ,," b,,', fot tho '0''''00 'P"" • 
Another important problem that we have to solve o ft en in Chapter 7 is illus­

trated in thc following example: 

Find all rcaillumbcrs A such that the homogeneous system (A I ! - A)x = 0 has a 
nontrivial solution for 

Solution 
We form Ah - A: 

0] _[' S] ~ [A - ' 
I 3 - I - 3 

-S] 
A + I . 

The homogencolls system (lh - A)x = 0 is then 

[A - , -S] [x,] ~ [0], 
- 3 A + 1 X 2 0 

It follows from Corollary 3.1 in Seclion 3.2 that this homogeneous system has a 
nontrivial solution if and only if 

([
A - , 

det - 3 
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EXAMPLE 4 

that is. if and only if 

(A - l )(A + l ) - 1 5 ~ O 

A2 _ 16 = 0 

A = 4 or A = - 4. 

Thus. when A = 4 or - 4, the homogeneous system (A ll - A)x = 0 fo r the given 
matrix A has a nontrivial solution. • 

• Relationship between Nonhomogeneous Linear Systems and 
Homogeneolls Systems 

We have already noted in Section 4.3 that if A is 11/ X II, then the set of all solutions 
to the linear system Ax = b, b "1= 0, is not a subspace of Rn. The following 
example illustrates a geometric relationship between the set of all solutions to the 
nonhomogeneous system Ax = b, b "1= O. and the associated homogeneous system 
Ax = O. 

Consider the linear system 

The set of all solutions to this linear system consists of all vectors of the form 

(verify), which can be written as 

The set of all solutions to the associated homogeneous system is the two-dimensional 
subspace of R3 consisting of all vectors of the form 

This subspace is a plane n I passing through the origin: the set of all solutions to 
the given nonhomogeneous system is a plane n2 that docs not pass through the 
origin and is obtained by shifting n I parallel to itself. This situation is illustrated 
in Figure 4.28. • 
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--=~---)' o 

FIGURE 4.28 1"1 1 is the solution 'pace toAx = O. n1 is the set of all sobtiolls to Ax .. b. 

Key Terms 

Homogeneous system 
Solution (null) space 

.,. Exercises 

l. Let 

The fo llowi ng result, which is important in the study of differential equations, 
was presented in Section 2.2 and its proof left to Exercise 29(b) of that section. 

If xl' is a particu lar solution to the nonhomogeneous system Ax = b, b i= 0, 
and x" is a solution to the associated homogeneous system Ax = O. then xp + XI, 
is a solution to the given system Ax = b. Moreover, every solution x to the 
nnnhomoeenenll .~ li nc~r ~y~ rcm Ax = h c~n he written ~~ XI' + Xh , where xf is ~ 
particular solution to the given nonhomogeneolls system and Xh is a solution to the 
associated homogeneous system Ax = O. Thus, in Example 4, 

where rand s are any real numbers. 

Dimension 
Nullity 

Arbitrary constants 

2. Let 

A~ [ -~ - ; -~] 
- 8 4 8 

1 
-2 
- I 

-2] 4 . 
2 

(a) Find the set of all solutiorls to Ax = O. 

(b) Express each solution as a linear combination of two 
vectors in Rl . 

(e) Sketch these vectors in a three·dimensional coordi­
nate system to show that the solution space is a plane 
through the origin. 

(a ) Find the set of all solutions to Ax = O. 

(b) Express each solution as a linear combination of two 
vectors in Rl . 

(e) Sketch these vecrors in a three-dimensional coordi ­
nate system to show that the solution space is a plane 
through the origin. 
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III t.xerdl'es J thmugh 10. filld a Ixt.I'isj(Jr and Ihe dimellsion 
of Ih .. mlulioll .I,/J(ICI' of Ihe givell hOl//ogelleoll.I' l')'.1'lelll. 

3. _II +X2 +X) +X4=0 

lxl + X2 - x ) + X4 = 0 

4. [~ - I 

-3 
- 2 

2 0 

5. XI + 2lt - Xl + 3X4 = 0 

lxl + 2f) - Xl + 2X4 = 0 
XI + 3Xl + 3X4 = 0 

6. XI II + 2Xl + 3X4 + 4xs = 0 

7. 

8. 

-_I I + 2Xl + 3X3 + 4_t4 + S.TS = 0 
XI - Xl + 3X3 + 5X4 + 6_T s = 0 

3xI - 4Xl + X 3 + 2X4 + 3_T5 = 0 

[~ 
2 I 2 If] 2 2 I 2 It 

4 3 3 3 " 
0 -I - I X4 x, 

[i 0 

lJ [::] m 
9 [~ 

2 2 -I If ] 2 2 - 2 

-l ll1 . 2 6 2 - 4 I 4 0 -3 

m 

m 

IO h 
2 
2 

-4 
o 
2 

- 3 
- 4 

6 
- I 

- 3 

- 2 
3 
4 
5 

-2 

I 

3 
- 3 

I 

o 

!] [~ •.. ; 1 [~] 2 "I ~ 0 9 _14 0 

7 "J 0 '. 
III £IelL'i.1'e.f II alld 12. find a basil- for Ihe null .1'pace of each 
gil'et: malrix A. 

2 3 
3 2 
4 

- I 

12 A~[~ 
-I 2 

0 I -I -I 3 0 
-2 5 I 

3 -, -5 

III £tercise.\' I J Ihmllgh 16. find a basi.I' for Ihe SOllilioll jpace 
of the hOlllogelleoll.I' l)'J'lem (}" 1" - A)x = 0 for the Ijil'en 
scalar}. alld gil'f!ll malri_l A. 

13. }.=I.A=[~ 

14. 
[

- 4 
}.= - 3.A= 2 

15. }.. = l. A = 

III Exerci.l'es 17 Ihmugh 20. find all real number.I' A .l'IIch that 
the homogel/eOlM" .1'y.I'lem (I.ln - A)x = 0 has a nOlllrivial 
sO/lltioll. 

17. A = [~ -:] 18. A = [~ -~] 

[~ 
0 -I] 19. A = 
0 

n 0 

-l] 20. A = - 2 
4 

III Exerci.l'e.l" 21 alld 22, delennine Ihe .I'Ollilioll 10 Ihe IiI/ear 
system Ax = h alld write II illihefonn x = x p + Xh. 

21. A=[~ 

22 A~[: 
23. LeI S = {XI . X! ..... -"d be a set of solutions 10 a homo­

geneous system Ax = O. Show that every vector in 
span S is a solution to Ax = O. 

24. Show that if the 1/ x 11 coefficient matrix A of the homo­
geneous system Ax = 0 has a row or column of zeros. 
then A x = 0 has a nontrivial solution. 

25. (a ) Show that the zero matrix is the only 3 x 3 matrix 
whose null space has dimension 3. 
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(h) Let A be a nonzero 3 x 3 matrix and suppose that 
Ax = 0 has a nontri vial solution. Show that the 
dimension of the null space of A is either I or 2. 

26. Matrices A and B are III x I!. and their reduced row eche­
lon fomls are the same. What is the relationship between 
the null space of A and the null space of B1 

EXAMPLE 1 

EXAMPLE 2 

m Coordinates and Isomorphisms 

• Coordinates 

If V is an /I dimensional vector space, we know that V has a basis S with /I vecton> 
in it ; thus far we have not paid much allention to the order of the vectors in S. 
However, in the discussion of this section we speak of an ordered basis S = 
{Vt. V2. .. vn} for V; thus St = {V2. Vl . .. .. v,,} is a different ordered basis for 
v. 

If S = {Vl. V2. . . v,,} is an ordered basis for the II -dimensional vector space 
V, thcn by Theorem 4.8 every vector v in V can be uniquely expressed in the form 

where {It. {l2 • .... {In are rea l numbers. We shall reler to 

as lhe coordinate vector of v with respect to the ordered basis S. The entries of 
r v ls arc called the coordinates of v with respect to S. 

Consider the vector space P! and let S = {t . I} be an ordered basis fo r Pl . If 

v = pet) = 5t - 2, then [ v ] s = [ _~] is the coordinate vector of v with respect 

to the ordered basis S. On the other hand, if T = {I + I. t - I} is the ordered basi s, 
we have 51 - 2 = hI + I) + hI - I), which implies that 

• 
Notice that the coordinate vector [ v l~ depends upon the order in which lhe 

vectors in S are listed: a change in the order of this lisling may change Ihe coordi­
nates of v with respecl 10 S . 

Consider the vector space RJ and leI S = {Vt. V2. vJ} be an ordered basis for RJ
, 

where 
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y 

FIGURE 4 .29 

If 

compute [ v ] s' 

Solution 
To find [v Js- we need to fi nd the constants {/I, {/2, and {/, such that 

{/I \ 'I + {/2 V2 + (1, V, = v. 

which leads to the linear system whose augmented matrix is (verify) 

or equi valentl y. 

2 

o i I . 
o : I] 
2 :- 5 

[ VI V2 V3 ! v J . 

(I) 

Transforming the matrix in (I) to reduced row echelon foml, we obtai n the solution 
(verify) 

{/1=3. (12= - 1. (/3= - 2. 

• 
I.n Example 5 of Section 1.7 we showed that the matrix transformation 

f: R2 --+ R2 defined by f( v ) = Av. where 

A ~ [h 0] 
Ok' 

with II and k nonzero. maps the unit circle to an e llipse centered at the origin. (See 
Figure 1.20 in Section 1.7.) Using techniques from Chapter 8, we can shoy,. that 
for any 2 x 2 matrix A with real entries, the matrix transfonnation f: R2 _ R2 
defined by f(v ) = Av maps the unit circle into an ellipse centered at the origin. 
With a general 2 x 2 matrix the e llipse may be rotated so that its major and minor 
axes are not parallel to the coordinate axes. (See Figure 4.29.) 

Any point on the unit circle has coordinates x = cos(tJ), y = sin(tJ), and the 
vector v from the origin to (x. y) is a linear combination o f the natural basis for 
R2: that is, 

v ~ ,",(0) [ ~] + ,'" (0) [~]. 
The coordinates of the image of the poi nt (x . y) by thc matrix transfomlation f 
are computcd from 
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FtGURE 4 .30 
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If we take 1/ successive images of the unit circle, using thc matrix transformation 
J. then Ihe coordinates o f the point (x. y) arc computed from the matrix product 

A" [,"' (9)] 
sm(lI) 

and can be quite complicated expressions. However. a change of basis that uses 
particular propcrties orlhe matrix A can greatly simplify the computation of such 
coordinates. We illustrate this in Example 3. In Chapter 7 we explain how to 
determine such buses. 

Let the matrix transformation f: R2 --). R2 be defi ned by f(v ) = Av, where 

~ [0.97 0.12] 
A 0.03 0.88 . 

The image of the unit circle by this matrix transformation is shown in Figure 4.30. 
Lei 

Observe that 
AVI = VI and AV2 = O.85v2: 

furthermore, that {\'I. V2) is a linearly independent set (verify) and hence a basis 
for R2. (Explain.) It follows that a vector v from the origin to a poi nt (x . .">') = 
(cos(e) . sinCe)) on the unit circle is a linear combination of V I and V2. and we have 
(veri fy) 

v = = V I + v~ 
[

00. S(O)] cos(O) + sinCe) cos (e) - 4sin(e) 
smlB) 5 5-' 

Then I(v) is given by 

cos(O) + sinCe) cos(O) - 4 sin(O) 
Av = 5 A VI+ 5 AV2 

cos(O) + sin (O) cos(O) - 4 si n(O) 
= 5 V I + 5 0.85vl' 

so the coordinates of I(v) with respect to the {v!. V2} basis are 

(
cos(e) + sin (e) cos(e ) - 4 ~i n (O) ) 

5 . 5 0.85 . 

The coordinates of the image (x. y) on the unit circle with respect to the { V I. \ '2) 

basis after II applications of the matrix transformation I are given by 

(
COS(IJ) + sinCe) eos(e) - 4 sin Ce) ") 

5 . 5 (0.85) . 

which is qui te easy to compute. since we need not perform successive matrix prod­
ucts. • 
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along - WI. Similarly, the positive direction on the x2-axis is in the direction of 
W2; the negative direction on the xl-axis is along - W2. The lengths of WI and W2 
determine the scales on the XI- and X2-axes, respectively. If v is a vector in PI, we 
can write v, uniquely. a; v = ai wi + {/2 W2. We now mark off a segment of length 
lad on the xI-axis (in the positive direction if al is positive and in the negative 
direction if al is negative) and draw a line through the endpoint of this segment 
paralIcI to W2' Similarly, mark off a segment of length la21 on the xl-axis (in the 
positive direction if a2 is positive and in the negative di rection if a2 is neglllive) 
and draw a line through the endpoint of this segment parallel to WI. We draw a 
directed line segment from U to the point of intersection of these two Jines. Thi s 
directed line segment represents v . 

• Isomorphisms 

If v and ware vectors in an II-dimensional vector space V with an ordered basis 
S = {VI. V2 . .... VII L then we can write v and w. uniquely, as 

v = {/I VI +a2 v2 + . .. +a"vn. W = bi vi +b2\ '2 + .. . +b" v" . 

Thus with v and W we associate [ v t and [ w t. respectively. elements in RIO: 

v ...... [v]s 
w _ [wls ' 

The slim v + w = (al + hl )vl + (a2 + h2)V2 + .. . + (all + b")v,,. which means 
that with v + W we associate the vector 

Therefore, 

That is, when we add v and W in V, we add their associated coordinate vectors 
[ v l~ and [ w ls to obtain the coordinate vector [v + w]s in R" associated with 
v+w. 

Similarly, if c is a real number, then 

cv = (cal) VI + (ca2) V2 + ... + (can) v". 

which implies that 

Therefore, 
cv ...... [cv] s = c [ v ]s . 
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and thus when v is multiplied by a scalar c, we multiply [ v l~ by c to obtain the 
coordinate vector in R" associated with cv. 

This discussion suggests that, from an algebraic point of view. V and R" be­
have rather similarly. We now clarify this notion. 

Let L be a function mapping a vector space ~' into a vector space W. Recall 
that L is one-to-one if L(vl) = L(v2), for V I . V2 in V, implies that VI = V2. Also. 
L is onto if for each w in W there is at least one V in V fo r which L(v) = w" 
Thus the mapping L: RJ -+ R2 defined by 

is onto. To see this, suppose that w = [~~]: we seek v = [at] 
(12 such that 
a, 

Thus we obtain the solution: (II = b2 , (12 = /)1 - b2 , and (/J is arbitrary. However. 

Li,"ot OOC-(O-O"" rm if ' t ~ U] "d " ~ [i 1 thoe 

L (vl) = L(v2) = [~J. bU1 V I i= \'2 · 

Let V be a real vector space with operations tIl and 0, and let W be a real vector 
space Wi1h operations EI and G . A one-to-one function L mapping V onto W is 
called an isomorphism (from the Greek i.ws, meaning "the same," and morphos. 
meaning "stmcture") of V onto W if 

(a) L(v $ w) = L (v) [±] L(w) for v, w in V: 

(b) L(e 0 v) = e r:J L(v) for \' in V. c a real number. 

In this case we say that V is isomorphic to W. 

It also follows from Definition 4.13 that if L i~ an isomorphi sm of V onto W. 
then 

where VI . V1 .... . Vk are vectors in V and (I I. (12 •. • .• (lk are scalars [sec Exerci se 
27(c)I, 

Remark A functio n L mapping a vector space V into a vector space W satisfyi ng 
properties (a) and (b) of Definition 4.13 is called a linear transformation. These 
functions will be studied in depth in Chapter 6. Thus an isomorphi sm of a vector 

' Sec Appendix A for furtller discussion of one·lo·one and onto functions. 
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space V onto a vector ~pace W is a linear transformation that is one-to-onc and 
onto. 

As a result of Theorem 4.15, to follow. we can replace the expressions "V is 
isomorphic to W" and " W is isomorphic to V" by "V and Ware isomorphic." 

Isomorphic vector ;paces differ onl y in the nature of their clements: their al­
gebraic properties are identical. That is, if the vector spaces V and Ware isomor­
phic, under the isomorphism L, then for each v in V there is a unique w in W so 
that L(v) = wand , conversely, for each win W there is a unique v in V so that 
w = f .( \' ). If we now rcpl>lcc each c lement of V hy iL~ im>lge lln(ler " anti replace 
the operations \B and 0 by @ and El , respectively. we get precisely W. The most 
important example of isomorphic vector spaces is given in the following theorem: 

Theorem 4 . 14 If V is an II-dimensional real vector space, then V is isomorphic to R". 

Proof 

. VII} be an ordered basis for V, and let L: V -+ R" be defined 

where v = at Vt + (l2 V2 + ... + allv". 
We show that L is an isomorphism. First, L is one-to-one. Let 

['l' ~ [::;] ood [ W L ~ [:;] 
(1" btl 

and suppose that L(v) = L(w). Then [\'ls = [ w ls' and from our earlier remarks 
it follows that v = w. 

Next, L is onto. for if w = [:;] is a given Vf!ctor in R" and we let 

b, 

v = htv, +b2 v2 + ... +b" v". 

then L(v) = w. 
Finally, L satisfies Definition 4.l3(a) and (b). Let v and w be vectors in V 

[
a,] ["'] (12 b? 

such that [ v ls = : and [ w Js = :-. Then 

a" btl 

L(' + w) ~ [, + w], ~ [, ], + [w], ~ L ( , ) + L(w) 
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ond 
L(cv) = [cv] s = c [v] s = cL(v ) . 

as we saw before. Hence V and R" are isomorphic. • 
Another example of isomorphism is given by the vector spaces discussed in 

the review section at the beginning of this chapter: R2, the vector space of directed 
line segments emanating from a point in the plane and the vector space of all 
ordered pai rs of real numbers. There is a corresponding isomorphism for RJ. 

Some important properties of isomorphisms arc given in Theorem 4. [5. 

Theorem 4.1 S (a) Every vector space V is isomorphic to itself. 

(b) If V is isomorphic to IV. then IV is isomorphic to V. 

(e) If U is isomorphic to V and V is isomorphic to IV , then U is isomorphic to IV . 

Proof 

Exercise 28. [Parts (a) and (c) arc not difficult to show: (b) is slightly harder and 
will essentially be proved in Theorem 6.7.1 • 

The following theorem shows that all vector spaces of the same dimension 
are, algebraically speaki ng, alike. and conversely, that isomorphic vector spaces 
have the same dimensions: 

Theorem 4.16 Two finite-dimensional vector spaces are isomorphic if and only if their dimen­
sions are equal. 

Proof 

Let V and IV be II-dimensional vector spaces. Then V and R" are isomorphic 
and IV and R" arc isomorphic. From Theorem 4.15 it follows that V and IV are 
isomorphic. 

Conversely. let V and IV be isomorphic finite-dimensional vector spaces; 
let L : V _ IV be an isomorphism. Assume Ihat dim V = II, and let S = 
{V I, V2 ..... VII } be a basi s fo r V. 

We now prove that the set T = IL(vd. L(v1) ..... L (v ,, )} is a basis for IV. 
First, Tspans IV. lfwi ; anyvectorin IV,thenw = L(v)forsomevin V. SinceS 
is a basi s for V, V = al \'1 +([2 V2+" ·+ all v,,, where thea; are uniquclydetermined 
real numbers, so 

L(v) = L(lIIV I +a2 v2 + ... + (lII V,,) 

= L (a jvj) + L(a2v2) + .. . + L(all v lI ) 

= al L(vl) + al L (v2) + ... + (/II L(vll) . 

Thus T spans IV. 
Now suppose that 

(lIL(vl) + lI2L( V2) + ... + (JIIL(vn) = Ow. 

Then L «([IVl + (/2V2 + ... + a"vlI ) = Ow. From Exercise 29(a), L(O y} = Ow. 
Since L is one-to-one, we gel al VI + 112V2 + ... + all v" = Oy. Since S is linearly 
independent, we conclude that ([1 = a2 = .. . = ([" = 0, which means that T is 
linearly independent. Hence T is a basis for W, and dim IV = II. • 
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As a consequence of Theorem 4. 16, the spaces R" and Rill arc isomorphic if 
and only if II = III. (Sec Exercise 30.) Moreover, the vector spaces P" and R"+I 

are isomorphic. (Sec Exercise 32.) 
We can now establish the converse of Theorem 4.14, as follows: 

Corollary 4.6 If V is a finit e-di mensional vector space that is isomorphic to R", then dim V = II. 

Proof 

This result follows from Theorem 4. [6. • 
If L: V _ W is an isomorphism, then since L is a one-to-one onto mapping. 

it has an inverse L -I. (This will be shown in Theorem 6.7.) It can be shown 
that L -I: W ...... V is also an isomorphism. (This will also be essentially shown 
in Theorem 6.7.) Moreover. if S = { V I. V2 ..... VII} is a basis for V. then T = 
L (5) = (L (vl)' L (V2) . .... L (v,,)! is a basis for IV , as we have seen in the proof 
of Theorem 4. 16. 

As an example of isomorphi sm, we note that the vector spaces P3 , R4. and R4 
arc all isomorphic, since each has di mension four. 

We have shown in this section that the idea of a finite-di me nsional vector 
space, which at fi rst seemed fairl y abslract, is not so mysterious. In fact. such a 
vector space does not differ much from R" in its algebraic behavior . 

• Transition Matrices 

We now look at the relationship between two coord inate vectors for the same 
vector V with respect to different bases . Thus, let S = { VI. V2 . .. v,,} and 
T = {WI. W2 ..... w/ll be two ordered bases for the II -dimensional vector space 
V. If V is any vector in V, then 

v ~" W ' + " w,+ + ',w, ond [v], ~ m 
Then 

[v ls = [CI WI +C2 W2 + . .. +cllw"ls 

= [CI WI ]S + [c2w21s + . . . + [e/lw,, ]s (2) 

= CI [wds +C1 [wd s + . . . +clI [w"l~· 

Let the coordinate vector of Wj with respect to 5 be denoted by 

The 11 X 11 matrix whose j th column is [ W i l~ is called the transition matrix 
from the T·basis to the 5-basis and is denoted by PS_ T . Then Equation (2 ) can 
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V (111 V) [v),din R") 

~tiP1YOn / ;:Jf~Jby P
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_
T 

(" ),(in R") 

FIGURE 4 .32 

EXAMPLE 4 

be written in matrix form as 

(3) 

Thus, to find the transition matrix PS~T from the T -basis to the S-basis, we 
fi rst compute the coordinate vector of each member of the T -basis with respect 
to the S-basis. Forming a matrix with these vectors as col umns arranged in their 
natural order, we obtain the transition matrix. Equation (3) says that the coordinate 
vector of v with respect to the basis S is the transition matrix PS~T times the coor­
dinate vector of v with respect to the basis T. Fi gure 4.32 illustrates Equation (3), 

Let V be R3 and let S = lVt. V2, V3} and T = l W1. W2. W3} be ordered bases for 
R3 , where 

"nd 

(a) Compute the transition matrix PS_ T from the T -basis to the S-basis. 

(b) Verify Eq"",ion (3) foo ~ [ -n. 
Solution 
(a) To compute PS_ T , we need to find ai, a2, a J such that 

which leads to a linear system of three equations in three unknowns, whose aug­
mented matrix is 

That is, the augmented matrix is 

I : 6] 
1 ! 1 _ 
I : 3 

Similarly, we need 10 find b t , h2, hJ and C1, e2, C3 such that 

bivi + h2V2 + bJvJ = W2 

et v! + cl V! + eJ v J = w J. 

These vector equations lead to two linear systems. each of three equations in three 
unknowns, whose augmented matrices are 
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or specifically, 

[~ 2 

o 
2 

o 
I i 5 . 
I : 5] 
I : 2 

Since the coefficient matrix of all three linear systems is [ V! V2 VJ], we can 
transfonn the three augmented matrices to reduced row echelon form simultane­
ously by transforming the panitioned matrix 

to reduced row echelon fo rm. Thus. we transform 

[~ 
6 4 n 2 3 :- 1 

0 3 3 

to reduced row echelon form, obtaining (verify) 

[~ 
0 0 2 i 2 "] 0 I :-1 i 2 . 
0 I I : I 

which implies that the transition matrix from the T -basis to the S-basis is 

[

2 , 

PS_ T = : - : 

So [ v] , ~ [ j 1 Theo 

[V]'~ P'~d V]'~[ : ~~ 
If we compute [ v ]s directly. we find that 
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Hence, 

• 
We next want to show that the transition matrix PS_ T from the T -basis to the 

S-basis is nonsingular. Suppose that PS _ T [V]T = OR" for some v in V. From 
Equation (3) we have 

P.,-d v] , ~ [v], ~ O"," 

If V = bl vi + b 2\ '2+ ... + b" v", then 

V = OV I + OV2 + ... + Ov ... = Ov . 

Hence, [\' ]T = ORn. Thus the homogeneous system PS_T x = 0 has onl y the 
tri vial solution: it then follows from Theorem 2.9 that PS _ T is nonsingular. Of 
course, we then also have 

That is, PS-:"'T is then the transition matrix from the S-basis to the T -basi s; the jth 

column of P.i:"'T is [ v j ]T. 

Remark In Exercises 39 through 41 we ask you to show that if Sand Tare 
ordered bases for the vector space R", then 

f\_r = M ."il M{. 

where M s is the 1/ x /I matrix whose jth column is Vj and M T is the /I x /I matrix 
whose jth column is w i . This formula implies that PS _ T is nonsingular, and it is 
helpful in solving some of the exercises in thi s section. 

LeI Sand T be the ordered bases for RJ defined in Example 4. Compute the 
transition matrix QT_5 from the S-basis 10 the T-basis direclly and show that 
QT_S = P.i:"'T· 

Solution 
QT_S is the matri x whose columns are the solution vectors 10 the linear systems 
obtained from the vector equations 

({ I WI + ({ 2 W2 + ({J W3 = VI 

bi wi + b2 W 2 + bJ W3 = V2 

CI W I + C2W2 + CJW 3 = VJ. 

As in Example 4, we can solve Ihese linear systems simultaneously by transform­
ing the partitioned matri x 
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to reduced row echelon form. That is, we transform 

4 
- I 

3 

5 
5 
2 

2 

o 2 
o 

to reduced row echelon form, obtaining (verify) 

[~ 
0 0 

, , -'] , , : , 
0 :-! , , , 

: 2 
, i 2 . 

0 :-1 0 : 2 

[ =l 

, 

-1] 
, 

QT_S = 
, -, 
0 

Multiplying QT~S by PS ~T. we find (veri fy) thaI QT~SPS_T = h so we con­
elude Ihal QT<-S = PS~T' • 

Let V be PI. and leIS = {v ,. V2} and T = {WI. W2J be ordered bases for PI, 
where 

V I = t . \'2 = f - 3, W I = t - [. W2 = I + I . 

(a) Compute the transition matrix PS<-T from the T -basis to thc S-basis. 

(b) Verify Equation (3) for v = Sf + I . 

(c) Compute the transition matrix QT_S from Ihc S-basis to thc T -basis and show 
that QT_S = PS-~T ' 

Solution 
(a) To compute P S- T , we need to solve Ihc vector equations 

(lI Y ' + {/2 V2 = W I 

1J1 V t + h1 \'2 = W2 

simultaneously by transforming Ihc resulting partit ioned matrix (verify) 

[~ 
, 
, 

- 3 i - I 
i I] 
: 1 

to reduced row echelon form. The result is (verify) 

[~ o 
:; : 3 . 
, : ,] 
t :- t 
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Key Terms 

Ordered basis 
C:(')()nlin~Ip.~ of:'l Vp.Clor r<,.lalivp. 10 

an ordered basis 

(b) If v = Sf + I . then expressing v in terms o f the T -basis, we have (verify} 

v = Sf + I = 2(f - I) + 3(1 + I ). 

so [ V ]T = [~l Then 

Computi ng [ v ]s directly, we fi nd that 

Hence 

(c) The transition matrix QT~S from the S-basis to the T -basis is derived (veri ry) 
by transformi ng the partitioned matrix 

! 1 ! 1] 
, 0 ' - 3 , , 

to reduced row echelon form, yieldi ng (veri fy) 

[~ o l • 2] 
4 i- I 

Hence, 

[' 2] Q T<-S = ~ . 
2: - I 

Multiplying QT~S by PS<-T. we find that QT~S PS<r-T = 
elude thai QT<r-S = P.S~T ' 

12 (veri fy). so we con­

• 

Coordinate.> 
Onp._In-onp. fnrlcrion 
Onto function 

Isomorphism 
l,omnrphic Vp.Clor ~p~cp.~ 
Transition matrix 



.i:i Exercises 

III Ererche.l' I IhrougiJ 6. ('olllpllfe Ihe coordinale l'n'lor of v 

wilh re.lpecI 10 each gil'ell onlered b(l.1'is Sfor V. 

2. VisR3.S=l[1 -I 0]. [0 

'~[2 - I -2 ]. 
0].[1 0 2]1. 

3. V is P I. S = (I + 1.1 - 2). \ ' = I +4. 

4. V is 1'2. S = 112 - I + I. I + I. 12 + 1 J. v = 41' -21+3. 

5. Vi,M"S ~ m ~][~ ~][~ ~][~ nl 
,~[ I 

- I n 

I II Etercises 7 Ihrough /2. cOlllpulT Ihe vee/or v iflhe C(xHdi­
IWfe reclor [v]s i.l' gil"ell wilh respe£"l 10 each ordered basis S 
for V. 

- 1]. [1 0 0].[1 Ill· 

9. ViSPI.S=11.21 - [).[ vl=[-~l 

10. Vi, P,. S ~ ),' + I., + 1.<'+<1. [, ], ~ [=n. 
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12. V is At2! . 

3] [I 
I . 0 

0] [0 o . I 

I II £wlllple J we sJwwed Ihal W\ appropriale choice ofb(/.\'is 
could greally .1'implify lite compulalioll of Ihe mlues of (/ se­
quence of flieforlll Av. A'v. A3v.. Exercisu /3 and /4 
require w\ approach simi/llr 10 Ihal ill EX(lmple J. 

13. Let 

S~), , ',J~ l[ -:][-;]1 
[

-O_R,'; 
A~ 

LlO 
-0_""] 

0.80 ' eo" , ~m 
(a ) Show that S is ;j basis for R2. 

(b) Find [ v]s' 

(c) Determine a scalar )'1 sLlch thai A \ '1 = A] V I ' 

(d) Determine a scalar 1.2 such thai A \ '2 = 1.2 V2 . 

(e) Use the basis S and the results of parts (b) through 
(d) to determine an expression for A nv thai is a lin­
ear combination of V I and V2. 

(I) As /I increases. describe the limiting behavior of the 
sequence Av. A 2, ., A 3' .. .. .. A n" .. 

14. Let 

S~J" . ',J~ l[ -:][-m 
A~ 

[

- I 

3 
-2] 4 . eo" ' ~[:l 

Follow the directions for (a) through (0 in Exercise 13. 

IS. L"S~m][n l '''dT~ l[ :][;] l bo 
ordered bases for R 2. Let v = [~] illld w = [~]. 
(a ) Find the coordinate vectors of v and w with respect 

to the basis T. 

(b) What is the trumition matrix Ps_r from the T - to 
the S-basis? 

(c) Find the coordinate veclors of v and w with respect 
to S.using 1'.1'_1 . 
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(d) Find the coordinate lIectors of II and W with respect 
to 5 directly. 

(e) Find the transition matrix QT_ S from the 5 - to the 
T -basis. 

(I) Find the coordinate lIectors of II and w with respect 
to T. using Qr _ s. Compare the answers with those 
of (a). 

16. Let 

be ordered bases for Rl . Let 

Follow the directions for (a) through (f) in Exercise 15. 

17. Let 5 = (/2 + 1./ - 2. / + 3) and T = (2/ 2 +f. / 2 +3. f) 
be ordered bases for P2• Let v = 81 2 - 41 + 6 and 
w = 7f2 - I + 9. Follow the directions for (a) through (f) 
111 Exercise 15. 

18. Let 

IJ.lI 2 3J.l I 0 IJI 

be ordered bases for R3. Let 

v =[ - I 4 5] and 

o 0]'[1 0 

w = [2 0 -6] . 
Follow the directions for (a) through (f) in Exercise 15. 

19. Let 

be ordered bases for Mn. LeI 

V = [: :1 and w ~ [ I 
- 2 

2] I . 

Follow the directions for (a) through (f) in Exercise 15. 

20. Let 

and 

be ordered bases for R2 • [f v is in R2 and [V]T = [~1. 
determine [ v 11' 

21. Let S = II + 1.1 - 2) and T = (f-5.f-2) be ordered 

bases for PI. [f v is in PI and [ v ] r = [ -~1.detemline 
[ , J.,. 

22. Let 

23. 

S~I[ - I 2 1] . [0 I]. [ - 2 2 III 
and 

0]. [0 0] . [0 

be ordered bases for R1. [f v is in Rl and 

determine [ v Jr' 

If'h""'o" io P, "'''h"~,di,,,'' "'''0' [i] wi,h 
respect to the ordered basis T = (f2. / - I. I). what is 
[ v L if S = (1

2 + 1 + l. / + I. I)? 

24. Let 5 = ( VI. V2 . Vl ) and T = ( WI . W2 . Wl) be ordered 
bases for Rl . where 

Suppose that the transition matrix from T to S is 

- I 

Determine T . 



25. Let S = {v I. v21 and T = Ill' . w,1 be ordered bases for 
1', . where 

W,= I. w;= I - I . 

If the transi tion matrix from S to T is [ _ ~ ~]. 
detennine S . 

26. Let S = (v,. v21 and T = Ill' . w,1 be ordered bases for 
R!. where 

If the transition matrix from S to T is [~ : ]. 

determine T . 

27. Let S= ( l 'I. V2) and T = Ill' , w!1 be ordered bases for 
PI, where 

WI = I - I. w ! = I + l. 

If the trnnsi tion m:1 trix fro m T 10 S is [~ ~l 
determine S. 

28. ?rove partS (a) and (c) of Theorem 4. 15. 

29. Let L : V __ IV be an isomorphism of vec tor space V 

onto \'ector space IV. 

(a) Prove lhat L(O ... ) = Ow. 

(b) Show that L(l ' - \1') = L(l ') - L(w). 

(e) Show that 

L (tl , VI + tI, " , + ... + tI,I V,I) 

= til L (v ,) + o;L( v:) + ... + til L (v,l). 

30. Prove that R~ and R" arc isomorphic if and only if 

n = 111. 

3 1. Fi nd an iromorphism L : R" ...... R", 

32. Find an iromorphism L : 1'2 __ Rl . More generally. 
show that p. and R"+I are i~omorphic. 

33. (a ) Show that M:: is isomorphic 10 R4. 

(b ) What is dim M::? 
J 4. Lei V Lx: the ~ubspace of [he veC [U J space of all real ­

va lued cont inuous fu nctions th ,ll has basis S = Ie'. e-'I. 
Show that V and Rl nre isomorphic. 

35. Lei V be the subspace of the vec tor space of all real­
valued functions that is .lpOJJJ/INI by the set 

S = (COS! I. sin! I. cos2t). 

Show that V and R, are isomorphic. 

4.8 Coordinote$ ond bomorphi$ms 269 

36. Let V and IV be isomorphic vector spaces. Prove that if 
VI is a subspace of v. thell VI is isomorphic [0 a sub­
space IV, o f IV. 

37. Let S = {VI. V 2 ••••• v~1 be an ordered basis for the "­
dimensional vec tor space V . and let , . and w be two vec­
tors in V. Show that v = w if and only if [\,]s = [w ]s. 

38. Show that if S is an ordered ba.~i s for an II-dimen,ional 
\'ector space V . \' and ", are vectors in V. and c is a scalar. 
then 

and 

III Exercius 39 Ihrr!llgh 4/. leI S = {v! . v! .... , v"j lIlId 
T = {"' I . W2 ..... "',, ) be ordered bo,I'e,f IlIr Ihe l'eCfOr iptlce 
R'. 

39. Lei Ms be the 11 x 11 mntrix whose j lh column is Vj and 
lei Mr be the 11 x 11 matrix whose j[h column is W j . 

Prove that Ms and Mr are nonsingular. (Hilll: Consider 
[he homogeneous ~yMems /11 5,,- = 0 and Alr "- = OJ 

40. If \' is a vec tor in V , show that 

41. (a) Use Equation (3) and Exercise.~ 39 and 40 [0 show 
that 

" 5_T = Mi ' MT. 

(b) Show that I'S_T is nonsingular. 

(e) Verify the resu lt in part (a) of Example 4. 

42. Let S be an ordered blSis for II -d imensional vector . pace 
V. Show that if ( WI, w: ..... w,) is a linearly indepen. 
dent set of veeton in V. then 

H w, l, [w,], .... [w,],1 

is a linearly illul:jJcmlcllt .\C[ or VC\;IUrs in N" . 

43. Let S = { VI. V2 •••• • v.) be an ordered basis for 3J1 11 -

dimensional vcctor spacc V . Show Ihal 

H', l, H , ... . [',l,1 
is an ordered basis for R". 
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DEFINITION 4.14 

m Rank of a Matrix 

I.n this section we obtain another effective method for finding a basis for a vector 
space V spanned by a given set o f vectors S = {VI. V2 ..... " k j. In Section 4.6 we 
developed a technique fo r choosing a basis for V that is a subset of S (Theorem 
4.9). The method to be developed in this section produces a basis for V that is not 
guaranteed to be a subset of S. We shall also allach a unique number to a matrix A 
that we later show gives LI S information about the dimension of the solution space 
of a homogeneous system with coefficient matrix A. 

Lei 

[ a'i 
(/1 2 

a" , ] a" an {/2/1 

A ~ 

a'~l (1m2 {/~III 
be an 11/ x /I matrix. The rows of A. considered as vectors in R/I' span a subspace of 
R" called the row space of A. Similarly, the columns of A, considered as vectors 
in Rill, span a subspace o f R ill called the column space of A. 

Theorem 4 . 17 If A and B are two 11/ x II row (column) equivalent matrices, then the row (column) 
spaces o f A and B arc equal. 

EXAMPLE I 

Proof 

If A and B are row equivalent, then the rows of B arc derived from the rows of A 
by a finit e number of the three elementary row operations. Thus each row of B is 
a linear combination of the rows o f A . Hence the row space of B is contained in 
the row space of A. If we apply the inverse elem~ntary row operations to B. we 
get A, so the row space o f A is contained in the row space o f B. Hence the row 
spaces o f A and B arc identical. The proof for the column spaces is similar. • 

We can usc this theorem to find a basis for a subspace spanned by a given set 
of vectors. We illustrate this method with the following example: 

Find a basis for the subspace V of R5 that is spanned by S 
where 

VI = [I - 2 0 3 - 4]. V2 = [3 2 8 

v J = [2 3 7 2 3] . ond V4 = [- I 2 0 

Solution 

4]. 

4 - 3]. 

Note that V is the row space of the matrix A whose rows are the given vectors. 

A = [ : 

-~ 

- 2 
2 
3 
2 

o 
8 
7 
o 

3 -4] I 4 
2 3 ' 
4 - 3 
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Using elementary row operations, we find that A is row equivalent to thc matrix 
(verify) 

o 
1 
o 
o 

2 

o 
o : -ll 

which is in reduced row echelon form. The row spaces of A and B are identicaL 
and a basis for the row ~pace of B consists of 

w, ~ [I 0 2 0 I ]. w, ~ [0 o I]. 
and wJ = [D 0 0 - I ] . 

(See Exercise 25 in Section 4.5.) Hence, IWI. W2 , wJ} is also a basis for V. • 

It is not necessary to find a matri x B in reduced row echelon fonn that is 
row equivalent to A. All that is required is thai we have a matrix B which is row 
equivalent to A and sllch thai we can easil y obtain a basis for the row space of B. 
Often. we do not have to reduce A all the way to reduced row echelon form to gel 
such a mutrix B. We can show that if A is row equivalent to u malrix B which is 
in row echelon form. then the nonzero rows of B form a basis for the row space of 
A. 

Of course, the basis produced by the procedure used in Example I may not 
be a subset o f the given spanning set. The method used in Example 6 o f Section 
4.6 always gives a basis that is a subset of the sp..1nning set. However, the basis 
for a subspace V of R" that is obtained by the procedure used in Example I is 
analogous in its simplicity to the natural basis for R". Thus if 

['" ] ", 
V = . 

", 
is a vector in V and {VI. V2 • .... vd is a basis for V obtained by the method of 
Example I where the leading I's occur in columns )] . h . .. .. A, then it can be 
shown (Exerci se 42) that 

Let V be the subspace of Example I. Given that the vector 

v ~ [5 4 14 6 3] 

is in V, wri te v as a linear combination of the basis determined in Example I. 

Solution 
We have)] = t, 12 = 2, and h = 4, so \' = 5w] +4W2 + 6wJ' • 
Remark The following example illustrates how to use the proced ure given in 
Example I to find a basis for a subspace of a vector space that is not R" or R,, : 
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EXAMPLE 3 

DEFINITION 4.15 

EXAMPLE 4 

Let V be the subspace of P4 spanned by S = IVI. \'2. V3. V4). where VI = ,4 + ,1 + 
2t + I. V2 = t 4 + (2 + 21 + 2. V3 = 2(4 + (3 + ( + 2. and V4 = (4 + (3 _ (" - 1. 

Find a basis fo r V. 

Solution 
Since P4 is isomorphic to R5 under the isomorphism L defined by 

L (a(4+ bt 3 +c(" + dt + e) = [a b c (I e] . 

then L(V) is isomorphic to a subspace IV of R5• (Sec Exercise 36.) The subspace 
IV is spanned by IL(vl). L(V2). L(V3). L (V4»). as we have seen in the proof of 
Theorem 4.16. We now find a basis for IV by proceeding as in Example l. Thus 
IV is the row space of the matrix 

and A is row equivalent to (verify) 

o 2 

o 2 

o 
- 1 - I 

o 2 
- 2 - 3 

o 0 0 
o 0 0 rl 

A basis for IV is therefore T = {WI. Wz. W3}, v.here WI = [1 0 2 0]. 
W2= [O 1 - 2 - 3 O].andw3 = [O 0 0 0 IlAbasisforVisthen 

The dimension of the row (column) spaee of A is called the row (column) rank 
of A. 

If A and B arc row equivalent . then row rank A = row rank B ; and if A and 
B arc column equivalent. then column rank A = column rank B. Therefore. if 
we start out with an 11/ x n matrix A and find a matrix B in reduced row echelon 
form that is row equivalent to A. then A and B have equal row ranks. But the row 
rank of B is clearly the number of nonzero rows. Thus we have a good method for 
finding the row rank of a given matrix A. 

Find a basis for the row space of the matrix A defined in the solution of Example 
I that contains only row vectors from A. Also. compute the row rank of A. 
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Solution 
Using the procedure in [he alternative proof of Theorem 4.9, we form the equation 

",[1 - 2 0 3 - 4] + ", [3 2 8 4] + ",[2 3 7 2 3] 
+", [ - 1 2 0 4 -3] ~ [O 0 0 0 0] 

[ -~ 
- 4 

3 
2 
8 

1 
4 

2 - I 
3 2 
7 0 

2 4 
3 - 3 

( I ) 

that is, the coetlicient matrix is AT. Transfonning the augmented matrix [AT i 0] 
in (I) to reduced row echelon form, we obtai n (veri fy) 

0 " 0 0 

" 0 0 " 0 -24" 

0 0 
, 

0 (2) , 
0 0 0 0 0 

0 0 0 0 0 

Since the leading I 's in (2) occur in columns 1. 2, and 3, we conclude that the first 
three rows of A form a basis for the row space of A. That is. 

I[ 1 - 2 0 3 - 4]. [3 2 8 4].[2 3 7 2 3]1 

is a basis for the row smee of A. The row rank of A is 3. • 
Find a basis for the column space o f the matrix A defined in the solution o f Exam­
ple [. and compUie the column rank of A. 

Solution 1 
Writing the columns of A as row vectors, we obtain the matrix A T, which when 
transfonncd to reduced row echelon form is (as we saw in Example 4) 

0 0 " "24 

0 0 " - "24 

0 0 
, 
j 

0 0 0 0 

0 0 0 0 

Thus, the vectors [ I 0 0 *], [0 0 -~ ],and[O 0 ~ ] form a 
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basis for the row space of AT. He nce the vectors 

[;] Ul ," m 
form a basis for the. column space o f A. and we conclude that the. column rank of 
A is 3. 

Solution 2 
If we want 10 find a basis for the column space of A that contains only the column 
vectors from A, we follow the procedure developed in the proof o f Theorem 4.9. 
forming the equation 

whose augmented matrix is [A to]. Transfo rming this matrix to reduced row 
echclon form. we obtain (as in Example I) 

[~ 
o 

o 
o 

2 

o 
o 

o 
o 

- I 
o 0 

Since the leading I's occur in columns I. 2, and 4, we conclude that the fi rst. 
second, and fOllrth columns of A form a basis for the column space of A. That is, 

I U]r~Hj] 1 
is a basis for the column space o f A. The column rank of A is 3. • 

We may also conclude that if A is an m x II matri x and P is a nonsingular 
III x m matrix, then row rank ( P A) = row rank A, fo r A and P A arc row equivalent 
(Exercise 23 in Section 2.3). Similarly. if Q is a nonsinguiar II x II matrix. then 
column rank ( A Q) = column rank A. Moreover, since dimension R" = II, we sec 
that row rank A :::: II. Also. si nce the row space o f A is spanned by III vectors. row 
rank A .:s: III. Thus row rank A :::: mi nimum {m.II]. 

In Examples 4 and 5 we observe that the row and column ranks o f A arc equal. 
This is always true and is a very important result in linear algebra. We now tum to 
the proof of this theorem. 
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Theorem 4 . 18 The row rank and column rank of the m x 1/ matrix A = [(Ii) ] are equal. 

Proof 

Let VI . V2 •. ... Vm be the row vectors of A , where 

i = 1.2 ..... m. 

Let row rank A = r anrllet the set of vectors {W I. W2 • . .. . w,} fo rm a basis for the 
row space of A. where Wi = [bi l lJil hill] for i = 1.2. .. r . Now each 
of the row vectors is a linear combination of W I. " 2 ..... W,: 

VI = CI IW I + C12 W2 + ... - Cl r Wr 

V2 = C2 JW I +CnW 2 + ... - C2rW r 

where the Ci j are uniquely determined real numbers. Recalling that two matrices 
are equal if and only if the corresponding entries are equal, we equate the entries 
of these vector equations to get 

al ) cllb lj + Cl2 h ! j +. .. + Clrbrj 

(12) C21 h l) + Cnh 2j +. .. + c2,brj 

(l11I) = cmlb lj + c m2h!j + . . . + cmr b rj 

for j = 1.2 . .... 11. 

Since every column of A is a linear combination of r vectors, the dimension 
of the column space of A is at most r. or column rank A .:::: r = row rank A. 
Similarly, we get row rank A .:::: column rank A. 1·lence, the row and column ranks 
of A are equal. 

Alternative Pm(~f: Let X I. X2 • ... • XII denote the columns of A. To determine the 
dimension of the column space of A, we usc the procedure in the alternative proof 
of Theorem 4.9. Thus we consider the equation 

We now transform the augmented matrix, [A i 0 l of this homogeneous system to 
reduced row echelon form. The vectors corresponding to the columns containing 
the leading I's form a basis for the column space of A. Thus the column rank of A 
is the number of leading I·s. But this number is also the number of nonzero rows 
in the reduced row echelon form matrix that is row equi valent to A, so it is the row 
rank of A. Th us row rank A = column rank A. • 
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Theorem 4.19 

EXAMPLE 6 

Since the row and column ranks of a matrix are equal, we now merely refer 
to the rank of a matrix. Note that rank I" = II. Theorem 2.13 states that A 
is equivalent to B if and only if there exist nonsingu lar matrices P and Q such 
that B = PAQ. If A is equi valent to B, then mnk A = rank B, for rank B = 
rank( P A Q) = rank(P A) = rank A. 

We also recall from Section 2.4 that if A is an III x 1/ matrix, then A is equiva-

lent to a matrix C = [~ ~ J. Now rank A = rank C = r. We use these facts to 

establish the res ult that if A and B are III x 1/ matrices of equal rank, the n A and 
B are equi valent. Thus let rank A = r = rank B. Then there exist nonsingular 
matrices Pl . Q ], P2, and Q2 such that 

Then p2-
J PI A Q J Q;-l = B. Letting P = p2-

J PI and Q = QI Q;-J , we find that 
P and Q arc nonsingular and B = P A Q. Hence A and B are equivalent. 

If A is an III x 1/ matrix, we have defined (sec Sect ion 4.7) the nullity of A as 
the dimension of the null space of A. that is, the dimension of the solution space of 
Ax = O. If A is transformed to a matrix B in reduced row echelon form. having r 
nonzero rows, then we know that the dimension of the solution space of Ax = 0 is 
n - r. Since r is also tbe rank of A, we have obtained a fundamental relationship 
between the rank and nullity of A, which we state in the following theorem: 

If A is an III x n matrix, then rank A + nullity A = n . • 
Lei 

A ~ [! 
4 

~l 
1 2 
0 0 

- I 0 0 
6 0 

as it was defined in Example 1 of Section 4.7. When A is transformed to reduced 
row echelon form , we get 

[~ 
0 2 0 

-:] 1 2 0 
0 0 1 2 . 
0 0 0 0 
0 0 0 0 

Then rank A = 3 and nullity A = 2. This agrees with the result obtained in solving 
Example [ of Section 4.7. where we found that the dimension of the sollllion space 
of Ax = 0 is 2. Thus, Theorem 4.19 has been verified. • 

The following example illustrates geometrically some of the ideas discussed 
previously: 
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Lei 
- I 

Transfonning A to reduced row echelon form, we find that 

[~ 
o 

0

11 ] (verify). 
o 

so we conclude the following: 

Rank A = 2. 

Dimension arrow space of A = 2. so Ihc row .pace of A is a two-dimensional 
subspace of R3 , that is, a plane passing through thc origin. 

From the reduced row echelon form matrix that A has been transformed to, 
we see that every solution to thc homogeneous system Ax = 0 is of the form 

where r is an arbitrary constant (verify), so the solution space of this homogeneous 
system, or the null space of A, is a line passi ng through the origin. Moreover. the 
dimension of the null space of A, or the nullity of A, is I. Thus Theorem 4. [9 has 
been verified. 

Of course, we already know that Ihc dimension of the column space of A is 
also 2. We cou ld produce this result by finding a basis consisting of two vectors 
for the column space of A. Thus. the column space of A is also a two-dimensional 
subspace of RJ-that is, a plane passing through the origin. These result3 are 
illustrated in Fi gure 4.33. • 

Null space of A r 

'\ : 
·,·L ----.~---_ y 

Row space of A 

,, ' /
' ", 

Column space of A 

Null space of A 

)-<'==--',1--_ , 
, , , , , , 

" 

In Chapter 5 we investigate the relationship between the subspaces associated 
with a matrix. However, using Example 7, we can make the following observa­
tions. which provide a way to visualize the subspaces associated with a matrix: 
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Since Ax = 0, we have 

rowj(A)x = O. j= I.2. 3. 

or equi valently, 

Lf v is any vector in the row space of A , then v is a linear combination of the 
rows of A. Thus we can find scalars CI, C2, and c] so that 

v = CI r ow l(A) +C2 row2(A ) +cJ rowJ(A) 

It follows that 
vT 

. X = 0 (verify). 

In Chapter 5 we show that a geometric interpretation of this relationship be­
tween the row space of A and the null space of A is expressed by saying these 
two subspaces arc perpendicular (orthogonal). Thus, the plane representi ng 
the row space of A and the arrow representing the nult space of A intersect in 
a right angle in Fi gure 4.33(a). 
The reduced row echelon form of AT is 

[~l 00 ~l] (verify). 

so the row space of AT is also a plane in R3 passing through the origin. (It 
follows that the row space of AT is the column space of A.) The nult space of 
AT consists of all vectors x of the fonn (veri fy) 

where /' is an arbitrary constant. As in the discussion for the matrix A, the null 
space of AT is perpendicular to the row space of AT. See Figure 4.33(b). 

Observe that the row and null space associated with A arc different than those 
associated with AT . 

• Rank and Singularity 

The rank 01 a square matrix can be used 10 determine whether the matrix is singular 
or nons in gu lar. We first prove the following theorem: 

Theorem 4.20 If A is an II x II matrix , then rank A = II if and only if A is row equivalent 10 1". 

Proof 

lfrank A = II, then A is row equivalent 10 a matrix B in reduced row echelon fonn , 
and rank B = II. Since rank B = II, we conclude tnat B has no zero rows, and this 
implies (by Exercise 9 of Section 2.1) that B = I". Hence. A is row equivalent to 
1". 

Conversely. if A is row equivalcntlO 1", then rank A = rank 1" = II. • 
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Corollary 4 .7 A is nonsingular if and only if rank A = II. 
Proof 

This follows from Theorem 4.20 and Corollary 2.2. • 
From a practical point of view. this result is not too useful. since most of the 

time we want to know not only whether A is nonsingutar, but also its inverse. The 
method developed in Chapter I enables us 10 find A -I. if it exists, and tells us if it 
does not exist. Thus we do not have 10 learn fi rst if A -I exists and then go through 
another procedure 10 obtain it. 

Corollary 4.8 If A is an II x II matrix, then rank A = II if and only if det(A) t- o. 
Proof 

By Corollary 4.7 we know that A is nonsingu lar if and only if rank A = II; and by 
Theorem 3.8. A is nonsingular if and only if det(A) t- O. • 

This rcsul1 also is nOl very ILseflLl from a complLlMional poinl of view, si nce iT 
is simpler to find rank A directly than by computing dct(A). 

Corollary 4.9 The homogeneous systcm Ax = 0, where A is II X II. has a nontrivial solution if 
and only if rank A < II. 

Proof 

This follows from Corollary 4.7 and from the fact that Ax 
solution if and only if A is si ngular (Theorem 2.9). 

o has a nontrivial 

• 
Corollary 4. 10 Let A be an /I x /I matrix. The linear system Ax = b has a unique solution for 

every II x I matrix b ifandonlyifrank A = 11. 

EXAMPLE 8 

Proof 

Exercise 43. • 
Let S = (VI. V2, .... v,,) be a set of II vectors in R", and let A be the matrix 

whose jth row is v j. It can be shown (Exerc ise 37) that S is linearly independent 
if and only if rank A = II and if and only if det(A) t- O. Similarly, let S = 
{VI. V2 .. ... v,,} be a set of n vectors in R", and let A be the matrix whose jth 
column is Vj. It can then be shown (Exercise 38) that S is linearly independent 
if and only if rank A = II and if and only if del(A) t- O. Moreover, it follows 
(Exercise 49) that a set S = {V I . V2 ..... v,,} of vectors in R" (R,, ) spans R" (RII ) if 
and only if the rank of (he matrix A whose jth column (jth row) is vi if and only 
if det(A) t- O. 

I'S~ ( [ I 2 3] .[0 2] . [3 0 - I ] J a linearly indcpendcnt set of vec-
tors in R}? 
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EXAMPLE 9 

Solution 
We form the matrix A whose rows arc the vectors in S: 

h [~ :-n 
Since det(A) = 3 (verify), we conclude that S is linearly independent. The result 
also follows from the observation that det(A) = 2. • 

To fi nd out if S = Ir2 + r . r + I. r - I I is a basis fo r P2, we note that P2 is a 
three-dimensional vector space isomorphic to R3 under the mapping L : P2 -+ R3 

d'fi ocd by L(at' + bl + c) ~ [~l Th"cfmc S;," b,,;, rOt P, ;[ ond mll y ;[ 

T = {L(t 2 + t) . L(t + 1). L(t - I)} is a basis for R3. To decide whether this is so, 
proceed as follows. Let A be the matrix whose colum ns arc L(t 2 + t ), L(t + I), 
L(t - I), respectively. :-.Jow 

L(t' + I) ~ [l] L(t + I ) ~ m "d L (I - I ) ~ Ul 
'0 

h [l 0 -n 
Since rank A = 3 (verify) or det(A) = - 2 (verify), we conclude that T is linearly 
independent. Hence S is linearly independent, and since di m P2 = 3, S is a basis 
b~ • 

• Ap plications of Rank to the Linear System Ax = b 

I.n Corollary 4.9 we have seen that the rank of A provides us with information 
abollt the existence of a nontrivial solution to the homogeneous system Ax = O. 
We now obtain some results that use the rank of A to provide info rmation llbout 
the solutions to the linear system Ax = b, where b is an arbitrary /I x I matrix. 
When b i= O. the linear system is said to be nonhomogeneous. 

Theorem 4.21 The linear system Ax = b has a solution if and only if rank A - rank [A i b ], 
that is, if and only if the ranks of the coeffi cient and augmented matrices arc eq ual. 

Proof 

First, observe that if A = [aU] is HI X II, then the given linear system mlly be 
written as 

(3) 



EXAMPLE 10 

EXAMPLE 11 

Key Terms 

Row space of a matrix 
f:ntllrlln spilc:e (If :'l m:'llrix 

Row (column) rank 

4.9 Rank of a Matrix 281 

Suppose now that Ax = b has a sol ution. Then there exist values of XI. Xl . .... X n 

that satisfy Equation (3). Thus b is a linear combination of thc columns of A and 
so belongs to thc column space of A. Hence rank A = rank [A : b]' 

Conversely. suppose that rank A = rank [A i b ]' Then b is in thc column 
space of A, which means that we can find values of XI. X2, .... x" that slltisfy 
Equation (3). Hence Ax = b has a solution. • 

Consider the linear system 

U - 2 

Since rank A = rank [A i b ] = 3 (verify), the linear system has a sol ution. • 

The linear system 

2 

- 3 
- \ 

has no solution, because rank A = 2 and rank [A i b ] = 3 (veri fy). 

The following statements are equivalent for an /I x /I matrix A: 

I. A is nonsingu lar. 

2. Ax = 0 has only the trivial solution. 
3. A is row (column·) equivalent to 1". 

4. For every vector b in R", the system Ax = b has a unique solution. 

5. A is a product of elementary matrices. 

6. det(A) =1= o. 
7. The rank of A is I !. 

8. The nullity of A is zero. 
9. The rows of A form C\ linearly independent set of vectors in Rn. 

10. The columns of A foml a li nearly independent set of vectors in R". 

R~k 

Sinf:lll~rfnfm~inf:ll1ar m~lr;Cp.~ 

Nonhomogeneous linear system 

Augmented matr ix 

• 
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et- Exercises 

I. Find a basis for the subspace V of R3 splmned by 

S~ ! [i]. m· [=;]. m· [:] ) 
and write each of the following vectors in lenns of the 
basis vectors: 

«) m 
2. Find a basis for the subspace of P3 spanned by 

S = {13 +1 2 +2t + Lt3 -3/ + 1.12 + 1 +2. 

1+1.13+1) . 

3. Find a basis for the subspace of M22 spanned by 

s~ l[ : ;][; :][~ ;] 

[: :][~ -~l l 
4. Find a basis for the subspace of R2 spanned by 

S~I[I 2].[2 3].[3 1].[ - 4 3]1. 

/11 Exercises 5 and 6, find a basi.l" for the rolV .Ipace of A COII­
Si.I'tillg of l'ector.I' 11/(/1 (a ) are not 'lecesmrily row I'ectors of 
A: and (b) are roll' r{'c/or.I' of A. 

[ -; 
2 

- I] 
5. A = 

9 - I 
8 3 

- 2 3 2 

U 
2 -I 

r] 6. A = 
5 2 
I 2 

0 -2 

III Exercises 7 alld 8. filld a basi.I' for the CO/1111111 JjX1Ce of A 
cO/!.\"lstillg of I'ectors that (a) are lIot lIeces.\'(/rily m/1111111 I"{'C­

IOrs of A: alld (b) are COlWlI1I l'l'cwrs of A. 

- 2 
- I 

2 

7 

4 
- 3 
- I ~] 

- 2 

[

- 2 

8. A = _! 
2 

2 

3 

- 2 

4 
7 
8 

8 

- 5 

I II Ext'lrises 9 alld 10. filld the row and colllllln rallb of Ihe 
gil'ell matrices. 

9. (a) 
[;

1 

(h) [j 
10. (a) [~

I 

(h) [i 

2 

I 

8 

3 

2 

8 

9 

2 

S 
- I 

I 

- 4 
- I 

- 9 

3 2 

- s -2 
- I 2 

2 0 
- s 

S 

9 I 

4 2 

3 2 

4 0 
2 4 

- I 2 
o I 

- 3 7 
o 

o 
2 

- 2 
- 2 

o 

-i] 

I] 

iJ 

II. Let A be an III x n malrix in row echelon form. Prove 
that rank A = the number of nonzero rows of A. 

12. For each of the following matrices. verify Theorem 4.18 
by computing the row and column ranks: 

(. ) [-; 
(h) [i - 2 

-I 
- 8 

2 

2 

-i] [j 
- 2 

-i] « ) 
- I 
- 8 
- 7 

III EI"{'rciJes /J alld 14, compute Ihe milk alld IIl1l1ity oj {'ach 

gil'ell lIIatrix and I'erify Theorem 4.19. 

[i - I 2 

In 
13. (a) 6 - 8 

3 - 2 

[i 2 0 

n (h) 2 - I 
- I 0 



14. (a) [-:: 

(h) [~ 

3 - 2 
4 - 5 
2 I 

- 5 8 

- I ° - I 

- I 

'] 10 
- 2 

- 16 

~] 
15. Which of the following matrices are equivalent? 

A~ 

B~ 

c= 

U 
[t 
[ -~ 
[l 
[ -~ - 2 

o 

2 
I 

8 
14 

2 

I 

° 

2 
7 

12 
3 

5 
I 

o 
7 

3 

- 6 
- 3 
- 6 

III Erercisl's 16 and 17. delennint which of the gil'l'lIlinear 
system,l' are COl/sistent by comparing the rallks oflhe coeffi­
cient and I.lIIgmemed lira/rice.\'. 

16. (a ) 
[:

1 

(b) 
[:

1 

17. (· l U 

2 5 
3 -2 

° 
2 5 
3 - 2 

o 

- 2 - 3 
- I - S 

3 

-n[] m 
-mJ H] 

-nm m 
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(h) U - I 

III Exercises 18 and 19. lise CO/vllw)' 4.7 /() find which oflhe 
gin' lI matrices are lIo/!.ringli/ar: 

18. (a) [ 
I 2 -3] 

- I 2 3 
o 8 0 

(hJ [ 
I 2 -3] 

- I 2 3 
o I 

[ 
I I '] - I 3 4 

- 5 7 8 
19. (a) 

(bl [ 
I I 4 -I] 
I 2 2 

- I 3 I 
- 2 6 12 -4 

III t."xerciJ/'s 20 and 21. lI~e Corollary 4.8 to find Ollt lI"ilnher 
rank A = 3 jor each girl'n IIImrix 

[ 
2
1 2 3

0
] 

20. (a) A = 

- 3 2 

(b) A = [_~ 3 -~] 
- 9 15 0 

21. (a) A = [2
11 0 ~I] 

(b) A = [~ i =~] 
- I - 3 5 

III £rercis/'s 22 alld 23. lise Corollary 4.9 10 find which of the 
girl'lI hOlllogelleOlI.1' systems lull'l' (/ IWIl/ril,ial sO/lIlioll. 

22. (a ) [~ ~ ~] [:;] m 
(hl [! 2 -I] ["] [0] ! - I ~:: ~ 
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III £Tercil"e.\' 24 alld 25, filld milk .'\, by obtaillillg (/ matrix of 

[ /, "op fnrm 0 ~] l/t{l/ is e,!lIi, ·"ln,//o A 

24. (a ) A = [l 2 -n 
U 

- 2 0 

n (b) A = 2 3 6 

3 6 

25. (a) A = [l 2 -;] 
4 - I 

(b) A~ [j - I 2 

1] 
2 0 

- 5 6 

0 4 

III El"erci.I'es 26 alld 27. lise Corolllll)' 4.10 10 determine 
whether the linear syJlelll Ax = b has a IIl1iqlle sO/lIliollfor 
<","Cry 3 X I ",arrix b. 

[~ 
2 

- 2] 26. A = 8 - 7 
- 2 1 

27. A ~ [i - I 

n 2 
- 2 

III Elell'ises 28 through JJ. soh'e using Ihe cOllcepl of mnk. 

28. Is 

a linearly independent set of vectors in Rl ? 

29. Is 

2]'[25 - 5].[2 - I 3]1 

a linearly independent se t of vectors in RJ ? 

30. Does the set 

span R3? 

31. IsS = (t l +l + 1.2/2 +3.1 _ 1.21 3 _ 21 2) a basis for 
Pl '! 

32. Is 

a basis for M22? 

33. For what values of c is the set (I +3. 2t +c2 +2) linearl y 
independent? 

34. (a) If A is a 3 x 4 matrix. what is the largest possible 
value for rank A ? 

(b) If A is a 4 x 6 matrix. show that the columns of A 
are linearly dependent. 

(c) If A is a 5 x 3 matrix. show that the rows of A are 
linearly dependent. 

35. Let A be a 7 x 3 matrix whose mnk is 3. 

(a) Are the rows of A linearly dependent or linearly in­
dependent? lustify your answer. 

(b) Are the columns of A linearly dependent or linearly 
independent? lustify your answer. 

36. Let A be a 3 x 5 matrix. 

(a) Give a/l possible values for the rank of A . 

(b) If the rank of A is 3. what is the dimension of its 
column space? 

(c) If the mnk of A is 3. what is the dimension of the 
solution space of the homogeneous system Ax = 0'1 

37. Let S = [v ,. V2 •..•• vn) be a se t of II vec tors in R" and 
let A be the matrix whose jth row is v j_ Show that 5 is 
linearly independent if and only if rank A = /I. 

38. Let S= (v, . I'! ..... v.lbe a setof" vectOis in R',and 
let A be the matrix whose jth column is Vj ' Show that 5 
is linearly independent if and only if rank A = II. 

39, Let A be an n x II matrix. Show that the homogeneous 
system Ax = 0 has a nontrivial solution if and only if the 
columns of A are linearly dependent. 

40. Let A be an II x n matrix. Show that rank A = II if and 
only if the columns of A are linearly independent. 

41. Let A be an II x /I matrix. Prove that the rows of A are 
linearly independent if and only if the columns of A span 
R". 



42. Let S = (VI. V2 •... , vd be a basis for a subspace V of 
R" that is obtained by the method of Example I . [f 

belongs to V and the leading I's in the reduced row eche­
lon form from the method in Example I occur in columns 
j l . h . .... jk. then show that 

43. Prove Corollary 4.10. 

44. Let A be an III x II matrix. SllOw that the linear system 
Ax = b has a solution for every III x I matrix b if and 
only if rank A = Ill. 

45. Let A be an III x II matrix with //I 1= II. Show that either 
lhe rows or the columns of A are linearly dependent. 

46. Suppose that the linear system Ax = h, where A is III XII. 

IS consistent (i.e., has a solution). Prove that the solution 
IS unique if and only if rank A = f!. 

47. What can you say about the dimension of the solution 
'pal:e uf a humugeneuus syslem uf 8 e4U<lliulls ill 10 UIl ­
knowns? 

• Supplementary Exercises 

I. Let C[a,bl denote the set of all real-valued continuous 
functions defined on [a, h]. If f and g are in C[a, h]. we 
ile.fine. / fBg hy (j fBgHI) = /(1) +g(l), for, in [(J . h] 
[f f is in CIa. hI and c is a scalar, we define c 0 f by 
(c 0 f)(t) = cf(f) . forf in [a. h]. 

(a) Show that C[a, hI is a real vec tor space. 

(b ) Let IV (k) be the set of all functions in CIa. b] with 
f(a) = k. For what values of k will W(k ) be a sub­
spaceofC[a.b]? 

(e) Let f 1.'2 ..... t" be a fixed set of points in [a,h]. 
Show that the subset of all functions f in C[a.b] 
(ha( have roo(s a( ' , . 12.' .• 10 , (ha( is. /(1,) = 0 for 
i = I. 2 .... ,f!. forms a subspace. 

2. In R", let IV be the subset of all vectors 

lhat satisfy a~ - a ) = a2 - a l 

(a) Show that IV is a subspace of R4. 
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48. Is it possible that all nontrivial solutions of a 
homogeneous system of 5 equations in 7 UnknOWllS be 
multiples of each other? Explain. 

49. Show that a set S = ( VI . V2 •... • v") of vectors in R" 
( R.) spans R" ( R,,) if and only if the rank of the matrix 
whose j th column (jlh row) is V j is II. 

.!. 50. Determine whether your software has a commaoo for 
computing the rank of a matrix. If it does, experiment 
with the command on matrices A in Examples 4 and 5 
and Exercises 13 and 14. 

.!. . 51. Assuming that exact arithmetic is used. rank A is the 
number of nonzero rows in the reduced row echelon jonn 
of A. Compare the results by using your rank command 
and the reduced row echelon form approach on the fol­
lowing matrices: 

A=[~ IXllO- i J. j = 5.10.16. 

(See Exercise 31 in Section 4.5.) 

(b) Show that 

s~ ! u]·m·m·m l 
spans IV. 

(e) Find a subset of S that is a basis for IV. 

(d) E,p"" , ~ [1] " , ,;,,,,, romb;"";o,, "r 'h' 

basis obtained in part (c). 

3. Consider 

Determine whether each vector V belonJ!s to 
span ( V I, \' 2, \' l)' 
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4. Let A be a fixed II >( II matrix and let the set of all II >( II 

matrices B such that AD = 8A be denoted by C(A). Is 
C(A) a subspace of Mu '! 

5. Let IV and U be subspaces of vector space V. 

fa) Show thaI IV U U, the ~t o f all "ectors " that are 
either in IV or in U. is not always a subspace o f V. 

(b) When is IV U U a subspoce o f V? 

(c) Show that IV n U, Ihe set of all vectors \' Ihat arc in 
bolh IV and U, is a subspace of V. 

6. Prove that a subspace IV of Rl coincides wilh Rl if and 

ooly I] I, co""I,' "" w"o~ m m "" m 
7. LeI A be a fixed /II >( II matrix and de fine IV to be the 

subset of all 111 >( I matrices h in R'" for which the linear 
.ystem Ax = b has a solution 

(a) Is IV a subspace of R-'! 

(b ) What is the relationship between IV and the column 
space of A? 

8. Consider vector space R~. 

(a) For what values of 1/1 and b will all vectors of the 
fonn[x IIIX +b ] be a subspace of R2? 

(h) For what value of r wililhe set of all \'ectors of lhe 
fonn [x r .f ! ] be a sub,pace of R2? 

9. Let IV be a nonempty subset of a vector space V. Prove 
that IV is a subspace o f V i f and o nly if r u + n ' is in IV 
for any vec tors u and v in IV and any scalars rand 1'. 

10. Let A be an /I >( /I 111atrix and .l. a scalar. Show that the set 
IV consisting of all vec tors x III R" such that Ax = AX is 
a subspace of N". 

II . Foe wi", ",'""f,, I"h' "",,0' [ ~;] I, 

'P'" lU] m m I, 
12. Fo, wh" ",'"" of" I"hn,"oe ['n i, 

'P'" nn m m I, 

13. For what va lues of k will the set S foml a basis for K6? 

14. Consider the subspace of R~ gi\'en by 

IV ~;~", 1m· [lJ. m· ml 
(a) Dctermine a subset S of the spanning set that is a ba­

sis for IV. 

(b) Find a basis T for IV lhat is not a subset of the span­
ning s.::1. 

«) FI,,' 'he "".dl"" ",",0' of , = [ =i] wl,h re­

spect to each o f the base.~ from parts (a) and (b). 

13. Prove that if S = {" I. v~, .... Vt I is a basis for a subipace 
IV of "ector Sp.1CC V. then there is a basis for V that in­
cludes thc sel S. (Hi",; Use 1beorem 4.11.) 

16. Lei V = span {" I. v11. where 

Find 3 basis S for RJ '.hut includes V I and " 2. (Hilll : Use 
the techniquc developed in the Al ternative Constructive 
Proof of Theorcm 4.9.) 

17. Dcscribe lhe SCI ofalt vectors h in RJ for which the linear 
system Ax = b is consistent. 

A ~ [i -2 

-n (.) , 
-7 2 

(b) A ~[ ; 
2 

iJ 
3 
4 

18. Find a basis for lhe solu tion space of the homogeneous 
system ("A.lJ - A)x = 0 for each j! i,'en scalar A and !Z iven 
matrix A. 



(aJ A ~ LA ~ [! ~ -iJ 

(bl' ~ 3.A~ H <:J 
19. Show Ihal rank A = rank A r for :my //I x II matrix A. 

20. Let A lmd 8 be m x /I matrices thaI are row equivalent. 

(a) Prove that rank A = rank IJ . 

(b) Prove Ihal for x in R~. Ax = 0 if and only if Bx = O. 

21. LetAbem x nandBbe" xk. 

(a) Pro\'c that rank{A IJ ) .:::: min!rank A. rank B l. 

(b) Find A and B such thaI 
rank (A 8 ) < min{rank A . rank B I, 

(c) I f k = I! and B is nonsingular. prove thm 
nmk(A 8 ) = rank A. 

(d ) If III _ " and A is nonsingulliT. pro ... e Ihnt 
rank(AB) = rank B. 

(e) For nonsingular matrices P and Q. what is 
rank( P AQ)? 

22. For an III x 1/ matrix A. iellhe sel of all vectors x in R~ 

such that Ax = 0 be denoted by NS{A), which in Exam­
ple 10 of Section 4.3 has been shown 10 be a subspace of 
R". called the null space of A 

(a) Prove lhal rank A + dim NS( A) = I! . 

(b ) For", = II . prow that A 1$ nonsingular if and only if 
dim NS(A ) = O. 

23. Let A be an III x /I matrix and 8 a nonsingular III x 11/ 

matrix. Prove Ihal NS (8A ) = NS(A), (See Exercise 22.) 

24. Find dimNS (A) (see Exercist 22) for each of the fo11ow­
IIIg matrices: 

25. 

U 
2 

J (a) A = 0 
4 

U 
2 4 

:] (b) A = 1 1 
4 10 

Any nonsingular 3 x 3 matrix P represenls a lransition 

rnalrix from some ordered basis T = {"'I. "'2. "'l l to 
,ome Olher ordered basis S = {VI. vz. v31. leI 

1 
2 
o 
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(. J If" ~ m" ~ [HOOd', ~ m fiod T 

(hJ IfW,~ [HW, ~[H''''d W,~ mfiOdS 
26. [n Supplementary Exercises 30 through 32 for Chapter I. 

we defined the outer product o f two /I x [ column matrices 
X and Y as XyT. Detennine the rank of an o uter product. 

27. Suppose Ihal A is an /I x /I matrix and that there is no 
nonzcro veclor x in R~ such that Ax = x. Show Ihal 
A - I" is nonsingular. 

28. Let A be an III x /I matrix. Prove that if AT A is non~ngu­
la r. thcn rank A = II. 

29. Prove or find a counterexample to disprove each of the 
foll owing: 

(a) r:lllk(A + 8 ) ::: max{rank A . rank 81 

(b) rank(A + 8 ) :: min{rank A . rank 81 

(c) rank(A + B ) = rank A + rank 8 

30. Let A be an /I x /I matrix and {" I. \ '1 ••..• vd a lir.early 
dependent sel of vectors in R~. Are A "~ I' A \ '1' ... , A vJ 

linearly dependent or linearly independent \'eclors in R"? 
Justify your answer. 

31. Let A be an 11/ x /I matrix. Show thaI the linear system 
Ax = b h:ls :lt most one solution for every 1/1 x I matrix b 
if and only if the :lssoci:lted homogeneous system Ax = 0 
has only Ihe Irivi:ll solution. 

32. Let A be an 1/1 x /I matnx. Show that the hnear sys tem 
Ax = h has at most or.e solutio n for every 1/1 x I matrix b 
if and only if the columns o f A are linearly independent. 

33. What can you say about Ihe solutions to the consistenl 
nonhomogeneous linelf syslem Ax = h if the rank of A 
is less than the number of unknowns? 

34. 

35. 

Let WI and Wz be subspaces o f a vector space V Let 
IVI + IV! be Ihe set of al l vec tors \' in V such [hat 
v = "' I + "'2. where WI is in IVI and "'2 i ~ in 1V1. Show 
th:lt IVI + lVe is a subspace of V. 

Let IVI and IV! be subspaces of :1 vector Sp:lce V with 
IVI n IV! = !O). Let IV) + IV! be as defined in Exercise 
34. Suppose that V = IVI + 1V2. Prove that every \ector 
in V can be uniquely written as "' I + "'1' ..... here "') is in 
IVI and "'z is in 1V2. In [his case we write V = IVI ED W2 
and say Ihal V is the direct sum of the subs paces IV) and 

IV!. 

36. Let S = ! \ ' I. V1 •...• v, 1 be a set of vec tors in a vector 
space V. and let It' be a subspace of V containing S. 
Sho ..... that IV contains span S. 
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Chapter Review 

True or False 

I. In the accompanying figure. \I' = U - v. 

[7 
2. If V is a real vector space. then for every vector u in V. 

the scalar 0 times u gives the rero vector in V. 

3. Let V be the vector space R 2. Then the set of all vectors 
with head and tail on the line y = 2x + I is a subspace of 
R2. 

4. If W is a subspace of the vectcr space V, then every linear 
combination of vectors from Y is also in W. 

5. The span of a set S is the sr.me as the set of all linear 
combinations of the vectors in S. 

6. Every subspace of N3 contaim infinitely many vectors. 

7. If A is an //I x I! matrix. then the set of all solutions 10 
Ax = 0 is a subspace of R". 

8. If the set S spans a subspace IV of a vector space V, then 
every vector in IV can be wrinen as a linear combination 
of the vectors from S. 

9. Two vectors are linearly dependent. provided that one is a 
scalar multiple of the other. 

10. Any subset of a linearly independent set is linearly depen­
dent. 

II. Any set containing the zero vector is linearly independent. 

12. A basis for a vector space V is a linearly independent set 
lhat spans V. 

13. N" contains infinitely many vectors, so we say it is 
mfinite-dimensional. 

14. Two bases for a subspace of R" must contain the same 
number of vectors. 

15. Every set that Sp:IIIS a subspace contains a basis for the 
subspace. 

16. The dimension of the null space of m<ltrix A is the number 
of arbitrary constants in the sol ution to the linear system 
Ax= O. 

17. If a nonhomogeneous 3 x 3 linear system Ax = b h<ls 
a solution x = Xh + xl' where Xh contains two arbitrary 
constants. then the set of solutions is a plane that does not 
go through the origin. 

18. If S = {VI. V2. " 3} is a basis for a vector space V and u in 
V has 

19. rank A is the number of zero rows in the row echelon [ann 

of A. 

20. [f A is 4 x 4 with rank A = 4. then Ax = b has e~actly 
four solutions. 

21. [fthel! x /I matrix A \s singular. thcn rank A ::: /I - I. 

22. [fAisl! x /I with rank A =I! - 1.thcnA is singular. 

Quiz 

I. Let V be the set of all 2 x 1 real matrices with operations 

and 

[s V a vector space? Explain. 

2. Let V be the set of all 2 x 2 real matrices with operations 
standard matrix addition and 

' 0 [~] ~ ['(a +hI]. 
() k(a+b) 

[s V a vector SP<lCe'! Explain. 

3. Is the set of all vecton of the fonn [ ~]. where iI and 
-a 

b are any real numbers. a subspace IV of NJ ? Expbin. If 
it is. find a basis for W . 

4. I"h"" of ,II ""oc> of,hdonn [~l whee, a. h. ,nd 

c are any real numbers with (/ + b + c > 0, a subspace IV 
of N3? Explain. If it h. find <l basis for IV. 

5. Let W be the set of all vectors p (t ) in P2 such that 
p(O) = O. Show that IV is a subspace of P2 and find a 
basis for W . 



6. Let 

s= lUH-nrnJ 
Detemline whether sp.1n S = RJ. 

7. Let 

s= l[i].m.[j].m.ml. 
Show that span S = RJ and find a basis for Rl consisting 
of vectors from S. 

8. Find a basis for Ihe null space of 

A - [~ - , 
I 

Discussion Exercises 

, 
3 
o 

I 
o 
2 :] . 

- I 

I. LeI{lJ andhl. j = 1.2,).4,5.andL'j .ll,. aooej.j = L 
2 be any real numbers, Construct the matrix 

A=Oc1 0c? O. [ ~: :: :: :: ::] 
Od1 0d, O 
Oel Oe2 0 

Discuss how to show Ihat det(A) = O. without actually 
computing the determinant, 

2. Let k be any real number except I and - 2, Show that 

IS a basis for HJ. 

3. L"S=i[k OJ.[I k 1].[0 kJl. De.". 
mine all the real values of k so that S is a linearly depen. 
dent set. 

4. Let It' be the set of all 11 )( 11 matrices A such that 
A - I = A r , Prove or dispro'le thm It' is a subspace of 

M~w' 

5. Anll x II matrix A is called in\'olulory if A? = J~. Prove 
or disprove that the set of aliI! x 11 in\'olUlory matrices is 
3 subspace of Mww ' 
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9. Determine a ba~is for ',he row space of 

3 
- I 

2 
-'] 4 . 
- 6 

10. If A is 3 x 3 with rank A = 2. show that tbe dimension of 
tbe null space of A is I, 

II. Determine the solution to the lilM!af system Ax = b and 
writo;: it in tho;: form.Il = xp + Xh. ror 

[-; A = 0 

- I 

, - I 
, -3 
6 - I 
4 0 

l] eod b = I~l· 
o ls 

12. Determine 1111 values of c 1'0 Ihat the sct [/ + 3, 2/ +c? + 2) 
is linearly independent. 

6. In Section 1.5 we di~ussed the Fibonacci sequence and 
illustrated its comput3!ion by using a recurrence relation 
that was expres~d as a matrix product 

where 

wo=[:] al~ A=[: ~l 
Let S = ( \'t, \ '1) ' where 

(a) Show Iha\ S is II basis for Hl, 

(b) Show tlwt AVt is a scalar multiple of " I' At VI, and 
determine the ilCalar AI_ 

(c) Show that AVl is a scalar llIultiple of " 2. Al l '2 , and 
determine the scalar A2, 

(d) Find scalars Cl lind CI 1'0 lh:1I " 'u = C] VI + el V), 

(e) Form the expression W w_ l = A"-I WO by using the 
result orpan (d) and simpli fy as much as possible, 

(0 Use the result from 1'3rt (e) 10 obtain an expression 
for U w in terms of Ihe powers of A1 and Al' Explain 
all the stel's in your computation. 
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CHAPTER 

Inner Product Spaces 

As we noted in Chapter 4, when physicists talk about vectors in R2 and R3. they 
usually refer to objects that have magnitude and direction . However, thus far in 
our study of veClor spaces we have refrained from discussing these nOlions. In this 
chapter we deal with magnitude and dircction in a vector spacc. 

m Length and Direction in R2 and R3 

• Lengtll 

In this scction we address the notions of magnitude and direction in R2 and RJ. 
and in the next section we generalize these to RI! . We consider R2 and RJ with 
the usual Canesian coordinate system. The length, or magnitude, of the vector 

v = [~~ ] in R2, denoted by Ilvll, is by the Pythagorean theorem (sec Figure 5.1) 

II vll = Jvi + vi · (I) 

)' 

, 

o ", 

FIGURE 5 . 1 Length of v. 

NOIe: This chaplcr may also be covered before Section 7.3. which. is where (he material i( dis­
cusses is used. 



EXAMPLE 1 

FIGURE 5.2 

EXAMPLE 2 
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If 

then. by Equation (1). 

• 
Consider now the points P ! (11 1.112) and P2(VI . V2), as shown in Figure 5.2(a). 

Appl ying the Pythagurean theurem to triangle PIRP2. we fi nd that the distance 
from PI to P2, the length of the li ne segment from PI to Pl , is given by 

If II = [u,] and v = [",] are vectors in R2, as shown in Fi gure S.2(b). 
112 v2 

then their heads are al the points P I ( 11 1. 11 2) and P2(VI, V2), respectively. We then 
definc the distance between the vectors II and v as the di stance between Ihc points 
PI and P2. The distance between II and v is 

. [", -u] smce v - II = . . 
V2 - 111 

) 

v, __________ _ 

PIC" l - 1'2) 

['1 
\ ., 

0 ", ", 
(a) Distance between the points 

P IC",_ "1) and p!(v 1• v,). 

)' 

~~--------------)' o 

(b) Distance OC1WCC~ the \'cctors u and \', 

Compute the distance between the vectors 

Solution 
By Equation (2). the distance between u and \' is 

(2) 
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, 

r - ++- - y 

, 

FIGURE 5.3 Length of v. 

EXAMPLE 3 

EXAMPLE 4 

Now leI V ~ [:: ] be " vcotOI in R' . Uvi ng Ihe PYlhogOloon Iheo"m Iwice 

(Figure 5.3). we obtain the length of v, also denoted by Ilvll. as 

(3) 

It follows from Equation (3) that the zero vector has length zero. It is easy to show 
that the zero vector is the only vector whose length is zero. 

If PI (U I. 112. II]) and P2(VI . V2. V]) are points in R]. then as in the case for R2. 
the distance between PI and P2 is given by 

J(V[ _ 111)2 + (iJ2 - U2)2 + (V3 - 11 3 )2. 

Again, as in R2, if U = 11 2 and v = V2 are vectors in R3. then the di stance ["'] [",] 
II ] v 3 

between u and v is given by 

(4) 

Compute the length of the vector 

Solution 
By Equation (3), thc length of v is 

Ilvll ~ JI' + 2' + 3' ~ Ji4. • 
Computc the distance betwcen the vectors 

Solution 
By Equation (4), the distance between u and v is 

Ilv - ull ~ J(- 4 - I)' + (3 - 2)' + (5 - 3)' _ 50. • 
• Direction 

Thc direction of a vector in R" is given by specifyi ng its angle of inclination, or 
slope. The direction of a vector v in R3 is speci fied by giving the cosi nes of the 
angles that the vector v makes with the positive X-, ),-, and z-axcs (see Figure 5.4); 
these are callcd d irection cosines. 
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)' -" 
, , 

" 
)' y 

0 
O~'+---'--___ _ 

/ , 
FIGURE 5 .4 FIGURE 5.5 

Instead of deali ng with the special problem o f finding the cosines o f these 
angles for a vector in RJ , or the angle of inclination for a vector in R", we consider 
the more general problem of determining the angle e, 0 :::: e :::: Jr. between two 
nonzero vectors in R 2 or R 3, As shown in Figure 5.5, let 

["' ] u = ~~ 

be two vectors in R3. By the law of cosines, we have 

Hence 

cosO = 

Thus 

lI ull' + 11 ' 11' - li v - ull' 
21ull llvil 

(II i + u~ + II ~) + (vi + vi + vj) 
211u llllvil 

(VI - 111)2 + ( V2 - 11 2) 2 + ( V3 - U3)2 

211ull llvil 

lIull ll'll 

(5) 

In a similar way, if u = ["' 1 and v = [" ' 1 are nonzero vectors in R2 and e 
11 2 v2 

is the angle between u and v, then 

(6) 
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EXAMPLE S 

The zero vector in R2 or R3 has no specific di rection. The law of cmi nes 
expression given previously is true if v =1= 0 and u = 0 for any angle O. ThLl', the 
zero vector can be assigned any direction. 

Lei u ~ [l] ond, ~ [:]. The ,ng" B bclwe," u ond,;, delenn;ned by 

(1)(0) + (1)(1) + (0)(1) 
cosO = ~~~~~~~~~~~Ci J]1 + J2 + 02 J02 + J2 + ]2 2 

• 
The length of a vec[or and the cosine of an angle between two nonzero vectors 

in R2 or RJ can be expressed in terms of the dot product, which was defi ned 
in Section 1.3. We now recall this definition from a diffe rent point o f view, to 
anticipate a generalization o f the dot product introduced in the next section. 

The standard inner product. or dot product on R2 (R 3) is the fu nction that 

assigns 10 each ordered pair of vectors II = [" , ], v = 

'" , ~ [~~] in R 3 ) the number u · v defined by -

~ . ~ 
II IVI+1I2V2 mR-

[:;];n R' (u ~ [::]. 
'" 

Remark We have already observed in Section 1.3 that if we view the vectors u 
amI v ill R1 OJ R J as JualJices, thell we call wrile lht: dOl pJoUuct of u amI v, iu 
terms o f matrix multiplication, as uT v, where we have ignored the brackets around 
the [ x 1 matrix uT v. (Sec Exercise 4 [ in Section 1.3.) 

If we examine Equations (1) and (3), we see that if v is a vector in R2 or RJ, 

then 

(7) 

We can also write Equations (5) and (6) fo r the cosine of the angle B between 
two nonzero vectors U Ilnd v in R2 and R3 as 

u·, 
cos (}= WW' 

It is shown in Section 5.3 that 

U·' 

o :::s () :::: If. 

- I < --- < I. 
- lI ullll ' lI -

(8) 

It then follows that two vectors u and v in R" or RJ are orthogonal, or per­
pendicular, if and only if II ' v = o. 



EXAMPLE 6 

FIGURE 5.6 
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The vectors u = [ _~] and v = [~J arc orthogonal, since 

u, v = (2)(4) + (- 4)(2'1 = O. 

See Figure 5.6. • 
)' 

2 (4.2) 

-+-+--+-+:oJ6't-+-+--+-- , 
4 

-4 (2. -4) 

We note the following properties of the standard inner product on R2 and R J 

that will moti vate our next section. 

Theorem 5.1 Let u, v, and w be vectors in R" or RJ , and let c be a scalar. The standard inner 
product on R2 and R.1 has the following properties: 

EXAMPLE 7 

(a) u · u 2: 0: U · U = 0 if and only if u = 0 

(b) u · v = v· u 

(c) (u + v) . w = u ·w + V· w 

(d) ell ' v = c(u . v). for any real scalar c 

Proof 

Exercise 13. 

• Unit Vectors 

• 

A unit vector in R2 or R3 is a vector whose length is I. If x is any nonzero vector, 
then the vector 

I 
u ~ -x 

II xll 
is a unit vector in the direction of x (Exercise 34). 

Let x = [-!]. Then Ilxll = J( - 3)2 + 42 _ 5. Hence the vector 

is a unit vector. Observe that 



296 Chapler 5 Inner Product Spaces 

)' 

4 

, 
--+-+-+-'t;;--- )' 

-3 0 

FIGURE 5.7 

)' 

(0, I ) 

( 1.0) 

o 

FIGURE 5.8 

EXAMPLE 8 

y 

C , B 
, 13 

y , y 
, , 

A 12 0 

FIGURE 5.9 

NOlice also Ihat u points in the direction of x (Figure 5.7). • 
There are two unit vectors in R2 that are of special importance. These arc 

i = [~J and j = [~l the unit vectors along the positive x- and y-axes, respec­

tIVely, shown in Figure S.K Observe that i and j are orthogonal. Since i andj lorm 
the natural basis for R2, every vector in R2 can be wri tten uniquely as a linear 

combination of the orthogonal vectors i and J Th us, if u = ['" 1 is a vector in 

'" R2. then 

U = UI [~] + U2 [~J = il l i + il2 J 

Similarly, the vectors in the natural basis for R3, 

are unit vectors that arc mutually orthogonal. Thus, if u = [::~] is a vector in 

" y 

• Resultant Force and Velocity 

When several fo rces act on a body, we can find a single force, called the resultant 
force, having an equi valent effect. The resultant force can be determined using 
vectors. The following example illustrates the method: 

Suppose that a force of [2 pounds is applied to an object along the negative x·axis 
and a force of 5 pou nds is applied to the object along the positive y-axis. Find the 
magnitude and direction of the resultant fo rce. 

Solution 
In Figure 5.9 we have represented the force along the negative x-axis by the vector 
~ ~ 

o A and the fo rce along the positive y-axis by the vector 0 B. The resultant force 
~ ~ ~ 

is Ihe vector OC = 0.4 + 0 B. Thus Ihe magnilllde of the resultant force is 13 
pounds, and its direction is as indicated in the figure. • 

Vectors are also used in physics to deal with velocity problems, as the follow­
ing example illustrates: 



EXAMPLE 9 

0 4 
A , , 

5 
, 

3 
, , , , , 
c 

FIGURE 5 . 10 

Key Terms 
Length (magnitude) of a vector 
Distance between vectors 
Direction cosines 

Ai. Exercises 
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Suppose that a boat is traveling cast across a river at a rate of 4 miles per hour 
while the ri ver's current is fl ow ing sOllth at a rate of 3 miles per hour. Find the 
resultant velocity of the boat. 

Solution 
~ 

In Figure 5. \0 we have represented the velocity of the boat by the vector 0 A and 
~ 

the velocity of the ri ver's current by the vector 0 B. The resultant velocity is the 
~ ~ ~ 

vector OC = OA + OB. Thus the magnitude of the resultant velocity is 5 miles 
pCI hoU! , aud its di reclioJl is as illdicated in lilt: figli le. • 

Law of cosines 
Standard inner product 
DOl product 

Orthogonal (perpendicu];)r) vectors 
Unit vec tors 

III £Hm:isI'I I and 2, find the lengll, of each I'I'C/OI: 

l. (a) [0'] 
2. (, ) [-n 

(b) [~] 

(b) [=il 
III £{ercisl'.Y 3 and 4, compule Ilu - vII. 

3. (, ) " ~ [a ,~ [ : ] 

(h) " ~ [~l '~ [-:] 

4. (, ) " ~ m ,~ m 

(h) " ~ [=iJ , ~ [ =n 

«) [;] 

«) [ -n 

III £lt~rrisl'.\' 5 and 6, find the dis/alice between u and v. 

5. (, ) " ~[ a ' ~ [ =~] 
(h) " ~[ a ' ~ [ _~] 

III t.xerci.\'/'s 7 and 8, deferminl'- aI/ \'II/III'S of c j'() Ihal each 

girl'n condition is satisfied. 

9. For each pair of vectors u and v in Exercise 5, find the 
cosine of Ihe angle () between u and v. 

10. For each pair of vectors in Exercise 6, find the cosine of 
(he angle () between u and v. 

II. For each of the following vectors v. find the direction 
cosines (the cosine of the angles between \' and the 
positive X- , ),-. and z-axes): (,' ,~ m (h) ,~ m 
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12. Let P and Q be the )Xlints in R3. with respective coor­
dinates (3. - 1.2) and (4.2. - 3). Find the length of the 
segment PQ. 

13. Prove Theorem 5.1. 

14. Verify Theorem S.I for 

andc= - 3. 

15. Show that in R2. 

(a) i - i = j - j =l: (b) j.j =O. 

16. Show that in R3. 

(a) i - i = j - j = k.k = I: 

(b) i . j = i . k =j .k =O. 

17. Which of the vectors V I = [~] . v! = [~]. V3 = [ = ~]. 

'. ~ [-;J', ~ [;l,"d'. ~ [ - ~l M' 

(a) orthogonal? (b) in the same direction? 

(e) in op)Xlsite directions'! 

18. 

(a) orthogonal? (b) in the same direction? 

(e) in op)Xlsite directions? 

19. ,:Optiolw/) Whieh of the follm"'ing pairs of lines arc per­
pendicular? 

(a) x= 2+21 x=2 + 1 
)"= - 3-31 and y =4 - 1 
:;: = 4+41 :;: =5 - 1 

(b ) x = 3 - 1 
)"=4+41 
:;: =2+21 

x = 21 
)" = 3 - 21 
:;: =4+21 

20. (Optiol1al) Find pammetrie equations of the line passing 
throuf.!.h (3, - I. - 3) and peq:endicular to the line pass­
mg through (3. - 2.4) and (0,3,5). 

21. A ship is being pushed by a tugboat with a force of 300 
pounds along the negative y-axis while another tugboat 
is pushing along the negative x-axis with a force of 400 
pounds. Find the magnitude and sketch the direction of 
the resultant force. 

22. Sup)Xlse that an airplane is flying with an airspeed of 260 
kilometers per hour while a wind is blowing tothe ",est at 
100 kilometers per hour. Indicate on a figure the appro­
priate direction that the plane must follow to fly directly 
south. What will be the resultant speed? 

23. Let points A. B. C. and D in R3 have respective coordi­
nates (1,2,3). (- 2.3. 5). (0. 3. 6). and (3.2.4). Prove 
that ABeD is a parallelogram. 

24. Find (. so that the vector V = [~] is orthogonal to 

25. Find c so tlwt the vector v 

27. If po,,;h],. hod" ",d b '0 'h" , ~ [~] ;, onhog","] 

'obo'h w ~ m ,"d , ~ m 
28. Find (' so that the vectors [ ~ ] and [~] are paralle l. 

29. Let (} be the angle between the nonzero vectors u and 
v in R! or R 3. Show that if u and v are parallel. tllen 
cos (} =±l. 

30. Show that the only vector x in R2 or R3 that is orthogonal 
to every other vector IS the zero vector. 

31. Prove that if v. w. and x are in R2 or R 3 and v is orthog­
onal to both w and x. then v is orthoj!.onal to every vector 
in span Iw. x l. 



32. Let u be a fixed vector in R" (R'). Prove that the set V of 
all vectors v in R2 (Rl) such that u and v are orthogonal 
IS a subspace of R 2 (R ' ). 
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40. Prove that a parallelogram is a rhombus. a parallelogram 
with four equal sides if and only if its diagonals are or­
thogonal. 

33. Prove that if c is a scalar and v is a vector in R2 or Rl . " _ 41. To compute the dot product of a pair of vectors u and 
V in R" or R' . use the matrix product operation in your 
software as follow s: l et U and V he column matrices for 
vectors u and v. respectively. Then u· v is the product of 
U T and V (or VT and U). Experiment by choosing sev­
eral pairs of vec tors in R2 and Rl. (Detemline whether 
your software has a p3fticular command for compUling a 
dot product. ) 

then llevll = Iclllvil. 
34. Show that if x is a nonzero vector in R 2 or R' . then , 

u = WX is a unit vector in the direction of x. 

35. Let S = ( VI. V2. Vl) be a set of nonzero vectors in R' 
such that any two \lectors in S are orthogonal. Prove that 
S is linearly independent. 

36. Prove that for any vectors u . \'. and \\. in R2 or Rl . we 
have 

u • (v + w) = u· \' + U· w. 

37. Prove that for any vectors u. v. and w in R2 or Rl and 
any scalar c. we have 

(a) (u +cv) ·w=u-w +c(vow); 

(b) u· (cv) = c(u · v): 

(e) ( u + v)· (cw) _ c(u . w) + c( \ " wl. 

38. Prove that the diagonals of a rectangle are of equal 
length. [Him: Take the vertices of the rectangle as (0. 0). 
(0. b ), (a . 0). and (ll. b). ] 

39. Prove that the angles at the base of an isosceles triangle 
are equal. 

.! . 42. Determine whether there is a command in your software 
to compute the length of a vector. If there is, use it on 
the vector in Example 3 and then compute the distance 
between the vectors in Example 4. 

1. . 43. Assuming that your software has a command to conpute 
the length of a vector (see Exercise 42). determine a unit 
vector in the direction of v for each of the following:: 

.!. 44. Referring to Exercise 41. how could your software check 
for orthogonal vectors? 

m Cross Product in R J (Optional) 

In this section we discuss an o pe ration that is meaningful o nly in R 3. Desp ite this 

limitation, il has a number of important applications. some of which we discuss in 
this section. Suppose Ihat U = /II i + u:J + uJk and v = vIi + v:J + vJ k and thai 

we wonl 10 find , ""0' w ~ [~] onhogon,' (pocpend',"'",) 10 bOlh U ood , . 

Thus we want U 0 W = 0 and v· W = 0, which leads to the linear system 

It can be shown that 

II tX + 112)' + 11 3Z = 0 

Vt X + V2)' + V3Z = O. 

['''"' - ",",] W = II j VI - II IVJ 

li t V2 - 11 2VI 

is a solution to Equation ( I) (verify). or course, we can also write W as 

(I) 

(2) 

This vector is catted the cross product of u and " and is denoted by u x v. Note 
that the cross product, U x v, is a vector, while the dOl product, u, v, is a scalar, 
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EXAMPLE 1 

EXAMPLE 2 

FIGURE 5.11 

EXAMPLE 3 

or number. Although the cross product is not defined on R" if /I i= 3. it has many 
applications: we shall use it when we study planes in R3. 

Let u = 2i + j + 2k and v = 3i - j - 3k. From Equation (2). 

u x v = - i + 12j - 5k. • 
Let u. v, and w be vectors in R3 and c a scalar. The cross product operation 

satis fies the following properties. whose verification we leave to the reader: 

(a) u x v = - (v x u) 

(b) u x(v + w)= u xv + u xw 

(c) (u + v) x w = u x w + v x w 

(d) e(n x v) = (en ) x \I = U x (e v) 

(e) u x u = 0 

(f) 0 x u = u x 0 = 0 

(g) u x (v x w) = (n . w)v - (u . v)w 

(h) (u x v) x w = (w. u)v - (w . v)u 

It follows from (2) that 

i x i = j xj = k x k = 0. 

i x j = k. j x k = i. k x i = j. 

Also, 
jxi =-k. k x j =-i. i x k =-j. 

These rules can be rcmembered by the method illustrated in Figure 5.11. Moving 
around the circle in a clockwise direction. we see thutthe cross product of two vec 
tors taken in the indicated order is the third vector: moving in a counterclockwi se 
direction, we see that the cross product taken in thf! indicated order is the negative 
of the third vector. The cross product of a vector with itself is the zero vector. • 

Although many of the familiar properties of the real numbers hold for the 
cross product. it should be notcd that two important properties do not hold. The 
commutative law docs not hold, since u x v = - ( \I X u). Also, the associative law 
does not hold, si nce i x (i xj) = i x k = - j while (i x i) x j = 0 xj = O. 

We now take a closer look at the geometric properties of the cross product. 
Filst, we observe the followi llg udditioHut ploPClty of the cross product, wbose 
proof we leave to the reader: 

(u x v) . w = U · (v x w) (Exercise 7) 

Let u and v be as in Example I, and let w = i + 2j + 3k. Then 

u x v = - i + 12j - 5k and (u x v). w = 8 

v x W = 3i - 12j + 7k and u . (v x w) = 8, 

which illustrates Equation (3). 

(3) 

• 
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FIGURE 5.12 
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From thc constmction o f u x V, il follows that u x v is orthogonal to both u 
and v; thaI is, 

(n x v) • u = o. 
(u x v) . v = o. 

(4) 

(5) 

These equations can also be verified directly by the definitions of u x v and dOl 
product. or by Equation (3) and properties (a) and (e) of Ihc cross product oper­
ation. Then u x v is also orthogonal to the plane determined by u and v. It can 
be shown that if () is Ihc angle between u amI v. thell the direction o f u x v is 
determined as fo llows. If we curl the fingers o f the right hand in the direction o f a 
rotation through the angle () from u to v, then thc thumb will point in the di rection 
of u x v (Figure 5.(2). 

The magnitude of u x \' can be determined as follows. From Equation (7) of 
Section 5.1, it follows that 

Ilu X vlll = (u X v) , (u x v) 

= u ·lv x (u x v)1 by (3) 

= lI ' rev ·v) u - (v , u) vl 

= (li . u)(v ' v) - (v' u)(v' u) 

= Ilu I12 11 "112 
_ (u, V) 2 

by property (g) for cross product 

by (d) and (b) o f Theorem 4. [ 

by Equation (7) of Section 4. 1 and 
(b) o f Theorem 4. [. 

From Equation (8) of Section 5.1 . it follo ws that 

u, v = Hull II v ii cosO. 

whcre () is the angle between u and v. Hence 

IllI x v ii! = lI ul12 11vl12 - llu fll vI12 cos2
() 

= Ilu f llv l12(1 - cos20) 

= lI u112 Hv112sin2 0 . 

Taking square roots, we obtain 

Ilu x vII = Ilu lll lv ll sin O. o :::::: 0 :::::: Jr. (6) 

Note that in (6) we do not have to wri te Isin OI . since sin O is nonnegative for 
o :::::: 0 :::::: Jr . It follows that vectors u and v are parallel if and only if u x v = 0 
(Exercise 9). 

We now consider several applications of cross product. 

• Area of a Triangle 

Consider the triangle with vertices PI, Pl , and P3 (Figure 5.1 3). The area of this 
triangle is ~bh, where b is the base and Ii is the) heighl. If we take the segment 
between PI and P2 to be the base and denote PI P: by the vector u. then 
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EXAMPLE 4 

EXAMPLE S 

, 
I', 

~ 

Letting PI P3 = v, we find that the height II is given by 

11 = Ilv ll sin O. 

Hence, by (6), the area AT of the triangle is 

AT = ~ l lu l ll l v l l sin O = !llu x vii. 

Find the area of the triangle with vertices PI (2 .2. 4), P2( - I. O. 5), and P3(3. 4. 3). 

Solution 
We have 

~ 

u = PI P2 = - 3i - 2j + k 
~ 

v = PI P3 = i + 2j - k. 

Then the area of the triangle A T is 

AT = !11(- 3i - 2j + k) x (i +2j - k) 11 

= tll- 2j - 4k ll = II - j - 2k ll = vis. 

• Area of a Parallelogram 

• 

The area A p of the parallelogram with adjacent sides u and v (Figure 5.14) is 2A T • 

b 

A p = Ilu x vii. 

If PI, P2, and PJ are as in Example 4, then the area of the parallelogram with 
~ ~ 

adjacent sides PI P2 and PI PJ is 2j5. (Verify.) • 

"" 

" 

<0 "" 
11",/'-/ 

, 
/ 

, , , 

,-------

" 

FIGURE 5 . 14 FIGURE 5.15 

• Volume of a Parallelepi l)ed 

Consider the parallelepiped with a venex at the origin and edges u, \'. and w (Fi g­
ure 5.15). The volume V of the parallelepi ped is the product of the area of the face 
contai ning v and wand the distance Ii from this L1ce to the face parallel to it. Now 

II = Ilu lll cosOI. 
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EXAMPLE 7 

EXAMPLE 8 
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where £I is the angle between u and v x w. and the area of the face determined by 
v and w is II v x wll. Hence 

v = Ilv x wllllulllcosO I = In . (v x w)l. 

Consider the parallelepi ped with a vencx at the origin and edges u = i - 2j + 3k. 
v = i + 3j + k. and w = 2i + j + 2k. Then 

v x w = 5i - Sk . 

Hence u· (v x w) = - 10 . Thus the volume V is given by 

v = lu , (v x w)1 = 1- [01 = [0. • 
• Planes 

A plane in RJ can be delcmli ncd by spec ifyi ng a point in the plane and a vector 
perpendicular to the pl ane. This vector is called a normal to the plane. 

To obtain an equation of the plane passing through the poi nt Po(xQ. )'0. ::0) and 
having the nonzero vector v = (I i + bj + c k as a normal. we proceed as follows: - , 
A poi nl P(x.)" z) lies in the plane if and o nl y if the vector PoP is perpendicular 
to \' (Fi gure 5.16). Thus P(x. y. z) lies in the plane if and o nl y if 

Since 

we can wri te (7) as 

~ 

~ 

v' PoP = O. 

PoP = (x - xo) i + (y - yoH + (z - zo)k . 

a(x - xo) + b(y - Yo) + eez - zo) = o. 

(7) 

(8) 

Find an equation of the plane passing through the poi nt (3 . 4. - 3) and perpendic­
ular to the vector v = Si - 2j + 4k. 

Solution 
Substituting in (8), we obtain the eq uation of the plane as 

sex - 3) - 2(y - 4) + 4(z + 3) = O. • 
A plane is also dctcrmincd by three noncolli ncar points in it, as we show in 

the followi ng example: 

Find an equation of the plane passi ng through the points P I (2 . - 2. 1),P2( - I , O. 3), 
and P}(S , - 3.4). 

Solution 
~ ~ 

The nonparallel vectors PI P2 = - 3i + 2j + 2k and PI PJ = 3i - j + 3k lie in the 
plane, since the points PI, P2 , and p} lie in the plane. The vector 

\I = M x ~ = 8i + ISj - 3k 
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EXAMPLE 9 

EXAMPLE 10 

EXAMPLE 11 

n, 

FIGURE 5 . 17 

~ ~ 

is then perpendicular to both PI P2 and PI PJ and is thus a normal to the plane. 
Using the vector v and the point PI (2. - 2. I) in (8). we obtai n 

8(x - 2) + IS (y + 2) - 3(z - 1) = 0 

as an equation of the plane. 

If we multiply out and simplify. (8) can be rewritten as 

ax + by + c: + d = O. 

Equation (10) of the plane in Example 8 can be rewritten as 

8x+15y - 3::+17 = 0. 

(9) 

• 
(10) 

(11 ) 

• 
It is not difficult 10 show (Exercise 24) that the graph of an equation of the form 

given in (10), where a. b. c, and d are constants (with a, h, and c not all zero), is a 
plane with normal v = ai + hj + c k: moreover, if d = 0, it is a two-dimensional 
subspace of R3. 

An alternative solution to Example 8 is as follows. Let the equation of the desired 
plane be 

ax + hy + cz + d = O. ( 12) 

where a, b. c, and d are to be detennined. Since PI , P2. and PJ lie in the plane, 
their coordinates satisfy (12). Thus we obtain the linear system 

la - 2h+ c+d = O 

- a +3c+d = 0 

Sa - 3h + 4c + d = O. 

Solving this system. we have (verify) 

{/ = f7 r. h = Hr. c = -17r. and d = r. 

where r is any real number. Letting r = 17, we find that 

a = 8. h = 15. c =-3. and d = 17. 

which yields ( II ) as in the first solution. 

Find parametric equations of the line of intersection of the planes 

nl:2x+3y - 2z+ 4 = 0 and n 2:x - y + 2:: + 3 = 0. 

Solution 

• 

Solving the linear system consisting of the equations of n I and n2, we get (verify) 

x = -If - ~ I 

Y = ~ + ~I 
z= O+t 

- 00 < t < 00 

as parametric equations (sec Section 4.3) of the line l of intersection of the planes 
(see Figure 5.17). • 
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Key Terms 

Cross product 
Unit vectors. Lj. k 
Orthogonal vectors 
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As we have indicated, thc cross product cannot be generalized to R" . How­
ever, we can generalize the notions of length, direction, and standard inner product 
to R" in the natural manner, but there arc some things to be chec ked . For example, 
if we de fine thc cosine of the angle B between two nonzero vectors u and v in R" 
as "., 

cosO = ---. 
11 " 11 11'11 

we must check that - I ::5 cosO :::: I: otherwise, it would be misleading to call 
this fraction cos O. (Sec Section 5.3.) Rather than verify this property for R " now. 
we obtain this result in the next section, where we formulatc thc notion of inner 
product in any real vector space . 

• Determinants and Cross Product (Optional) 

Dctcnninants can be applied to the computation of cross products. Recall that the 
cross product u x v ofthe vectors u = u l i +iI :'.i + II , k and v = v l i +l'2j + V3 k in 
R' is 

If we formally write the matrix 

c ~ [,;, 
", 

j 

then the determinant of C, evaluated by expanding along the cofactors of the first 
row, is u x v; that is, 

1 

", u x v = det(C) = -", "'IH I'" V 3 VI '" 1 k. ", 
Of course, C is not really a matrix. and det(C) is not really a determi nant, but 

it is convenient to think of the computati on in this way. 

If u = 2i + j +2k and v = 3i - j - 3k, as in Example 1, then 

c ~ [; k] 
~ - I -~ 

and det(C) = u x v = - i + 12j - 5k. when expanded along its first row. • 

Parallel vectors 
Length of a veclor 
Area or a triangle 

Area of a parallelogram 
Volume of a parallelepiped 
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AU Exercises 

I. Compute u x v. 

(a) u = 2i + 3j +4k v = - i +3j - k 

(b) u = i + k.v =2i + 3j - k 

(c) u = i - j + 2k. \' = 3i - 4j + k 

(d) " ~ Hl ' ~ -2" 
2. Compute u x v. 

(a) u = i - j + 2k.v =3i + j + 2k 

(b) u = 2i + j - 2k. v = i +3k 

(c) u = 2j + k, v = 3u 

3. Let u = 1+2J - 3k. v = 21+3J + k. W = 21- J+ 2k, and 
c = - 3. Verify properties (a) through (h) for the cross 
product operation. 

4. Prove properties (a) through (h) for the cross product op­
eration. 

5. Let u = 2i - j +3k v = 3i + j - k. and w = 3i + j +2k. 
Verify Equation (3). 

6. Verify that each of the cross prodllcts u x \' in Ex.ercise I 
]s orthogonal to both u and v. 

7. Showthat (u x v) ·w = u - (\· xw). 

8. Verify Equation (6) for the pairs of vectors in Exerci se I. 

9. Show that u and v are parallel if and only if u x v = O. 

10. Show that ll u x vlf + (u . V)2 = Ilu ll 2l1 vll2 . 

II. Prove the Jacobi identity 

(u x v) x w + (v x w) x u + (w x u) x v = O. 

12. Find the area of the triangle with vertices '>](1. - 2. 3) . 
f'2 ( - 3. I. 4). and 1'3(0. 4. 3). 

13. Find the area of the triangle with vertices PI. P2. and P
" ~ ~ 

where PI 1'2 = 2i + 3j - k and PI P3 = i + 2j + 2k. 

14. Find the area of the parallelogram with adjacent sides 
u = i + 3j - 2k and v = 3i - j - k. 

15. Find the volume of the paf"Jllelepiped with a vertex at 
the origin and edges u = 2i - j . v = i - 2j - 2k and 
w=3i - j + k. 

16. Repeat Exercise IS for u = i - 2j + 4k, v = 3i +4j + k, 
and w = - i + j + k. 

17. Determine which of the following points are in the plane 

3(x - 2) + l (y + 3) - 4(z - 4) = 0: 

(a) (0. - 2.3) (b) ( I. - 2. 3) 

18. Find an equation of the plane passing through the given 
point and perpendicular to the given vector. 

(a) (0.2. - 3).3i - 2j +4k 
(b) (- 1. 3.2). j - 3k 

19. Find an equation of the plane passing through the given 
points. 

(a) (0. 1.2), (3 . -2. 5). (2. 3. 4) 

(b ) (2.3.4), ( I. - 2. 3) . ( - 5. - 4. 2) 

20. Find parametric equJtions of the line of intersection of 
the given planes. 

(a) 2x + 3), - 4z +5=0 and 
- 3x + 2y + 5z +6 = 0 

(b) 3x - 2)' - 5z + 4 = 0 and 
2t+3y +4z + 8=0 

21. Find an equation of the plane through (-2. 3. 4) and 
perpendicular to the line through (4. - 2.5) and (0.2.4). 

22. Find the point of intersection of the line 

x=2 - 31 

y =4+21 

z = 3-SI. 

-00 < I < 00. 

and the plane 2{ + 3.'1 + 4z + 8 = O. 

23. Find a line passing through (-2. S. - 3) and 
perpendicular to the plane 2x - 3y + 4z + 7 = O. 

24. (a) Show that the graph of an equation orthe fonn given 
in (10), with a . b. and c not all zero. is a plane with 
normal v = a i + bj + ck. 

(b) Show that the set of all points on the plane ax +by+ 
cz = 0 is a subspace of /?3. 

(c) Find a basis for the subspace given by the plane 
2x - 3y+<1 z = 0. 

25. Find a basis for the subspace given by the plane -3x + 
2)" + Sz =0. 

26. LeI u = II li + 1l:J + 11 3k. v = Vi i + v:J + v, k. and 
w = wl i + w:J + W3 k be vectors in R3. Show that 

I 
'" (u x v) - W = VI 

W, 

'" 
' " I ", . w, ", 

27. Compute each u x \' by the method of Example 12. 

(a) u = 2i + 3j + 4k. v = - i + 3j - k 
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(h) u = i + k. v = 2i +3j - k 29. Let P;(x,. )"i. z;). ; = I. 2. 3. he three points in 3-spacc. 

(c) u = i - j +2k. \' = 3i -4j+k 

(d) u = 2i + j - 2k. v = i+ 3k 

Show that 
x y , 

" 28. If (X I . )"1) and (X2. )'2) are distinct points in the plane. 
,how that 

x, 
X, 

y, 
~O 

Y2 z! 

I
:, ;, 
·{2 Y2 

X, Y3 " 
is the equat ion of a plane (see Section 5.2) through points 
1';. ;=1.2.3. 

IS the equation of the line through (XI . )"1) and (X2 . )"2). 
Use this result to develop a test for collinearity of three 

.!. 30. Determine whether your software has a command for 
computing cross products. If it does, check your results 
in Exercises J and 2. points. 

DEFINITION 5.1 

EXAMPLE 1 

m Inner Product Spaces 

In this section we use the propen ies of the standard inner product or dot product 
on R' listed in Theorem 5.1 as our foundation for generalizing the notion of the 
inner product to any real vector space. Here, V is an arbitrary vector space, not 
necessarily finite-dimensional, where the scalars are restricted to real numbers. 

Let V be a real vector space. An inner product on V is a function that assigns to 
each ordered pair of vectors u, v in Va real numocr (u. v) sati sfying the following 
properties: 

(a) (u. u) :?: 0; (u. u ) = 0 if and only ifu = Ov 

(b) (v, u) = (u. v) for any u. v in V 

(c) (u + v, w) = (u. w) + (v, w) for any u, v, w in V 
(d) (cu . v) = d u. v) for u. v in V and c a real scalar 

From these properties it follows that (u. cv) = c(u. v), because (u. cv) 
(cv. u) = c(v. u) = c(u. v). Also, (u. v + w) = (u. v) + (u. w) . 

In Section 1.3 we defined the standard inner product. or dot product, on R" as the 
function that assigns to each ordered pair of vectors 

[:::] [::] 
u = II " and v = VI! 

in R" the number, denoted by (u. v), given by 

Of course, we must verify that this function satisfies the properties of Defini­
tion 5.1. • 
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EXAMPLE 2 

EXAMPLE 3 

Remarks 
I. Sec Appendix 8.2 for the definition of inner product on an arbitrary vector 

space V where the scalars are restricted to be complex numbers. (Of course, 
they cou ld be real numbers.) 

2. If we view the vectors u and v in R" as 1/ x I matrices, then we can write the 
standard inner product of u and v in terms of matrix multiplication as 

(u. v)= uTv. (I) 

where we have ignored the brackets arou nd the J x J matrix uT v (Exerci se 
39). 

Let V be any finite-dimensional vector space and let S = l U 1. U2 .... . u,,1 be an 
ordered basis for V. If 

on" 

we define 

(v. w) = ([ \' ] s' [ w l~) = (l1b1 + a~b2 + ... + allbll . 

It is not di fficult to verify that this defines an inner product on V (Exercise 4). Thi s 
definition of (v. w) as an inner product on V use .. the standard inner product on 
R" . • 

Example 2 shows that we can define an inner product on any finite-dimensional 
vector space. or course. if we change the basis for V in Example 2, we obtai n a 
different inner product. 

["'J ["'J ' Let u = and v = be vectors in R-. We define 
11 2 V2 

(u. \.) = 111 VI - 1l2VI - 111 Vl + 3112V2 . 

Show that this gives an inner product on R2. 

Solution 
We have 

(u. u) = IIi - 2U11l2 + 3u~ = 117 - 21l1U2 + II~ + 2u~ 
= fll1 - 11 2)2 + 211~ 2: O. 

Moreover, if (u . u) = 0, then 111 = 112 and 11 2 = 0, so u = O. Conversely. if u = O. 
then (u. u) = O. We can also verify (see Exercise 2) the remaining three properties 
of Definition 5.1. This inner product is, of course. not the standard inner product 
ooR'. • 

Example 3 shows that on one vector space we may have more than one inner 
product. since we also have the standard inner product on R2. 
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EXAMPLE 6 
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Let V be the vector space of all cont inuous real-valued functions on the unit in­

tervallO. 11. For f and g in V, we let (f. g) = fd f(t)g(t)dt . We now verify 
that this is an inner product on V, that is, that the propert ies of Definition 5. 1 arc 
sat isfied. 

Using results from calculus, we have for f #=- 0, the zero function, 

(I f) = 11 (f( t ))2 dt :::: o. 

Moreover, if U . f) = 0 , then f = O. Conversely, if f = 0, then (f, f) = O. 
Also, 

U. g) = 11 f(t)g(t)llt = 11 g(t)f(t)dl = (g . f) . 

Next, 

(j+g.h) = 1IU (t)+g(t»II(t)d t = 11 f(t) II(t)dt + 11 g(t)II( t )dt 

= U. II) + (g . II). 

Finally, 

(cf. g) = 11 (cf(t »g(t) dl = C 11 f(t)8(t) dt = c(f. g). 

Thus, for example, if f and g are the func tions defined by f(t) t + I, 
get) = 2t + 3, then 

(I. g) = 11

(t+ l )(2t +3)dt= 11

(21 2 + 5t+3)dt =¥, • 

Let V = R2 ; if u = [UI 112] and v = [VI L'2] are vectors in V, we define 
(u. v) = II J VI - Jl 2VI - ul v 2 + 5U2V2 ' The verification that this function is an inner 
product is entirely analogous to the verification required in Example 3 (Exercise 5) . 

LeI V = P; if p(t) and q(t) are polynomials in P , we define 

(p(t), q(t» = 11 p(t)q(t)dt. 

• 

The verification that thi ;; function is an inner product is identical to the veri fi cation 
given for Example 4 (Exercise 6). • 

We now show that every inner product on a finite-dimensional vector space V 
is completely dctermi ned, in terms of a given basis, by a certain matrix. 

Theorem 5.2 Let S = { U I. U2, . .. . u,, } bc an ordered basis for a finite-dimensional vector space 
V, and assume thaI we are given an inner product on V. Let Cjj = (U j, ui) and 

C = [ cij J. Then 

(a) C is a symmetric matrix. 

(b) C determines (v, w) for every v and w in V. 
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Proof 

(a) Exerci se. 

(b) If v and ware in V. then 

v = al u l + a2 u2 + ... +a"u" 

w = bl u l + b2 u2 + ... +bllu". 

which implies that 

and ["'] }" 

[ w l, ~ b: . 

The inner product (v. w) can then be expressed as 

,," " " 
= La; L b j (u;. Uj) = L L aibj(Ui. Uj) 

; = ] j = ] ; = ] j = ] 

" " 
= LLa;cijb j 

i = ] j = 1 

which mcans that C detemtines (v. w) for every v and w in V. 

(2) 

• 
Thus the inner product in Equation (2) is the product of three matrices. We 

next show tnattne inncr product in (2) can also be expressed in terms of a standard 
inner product on R" . We first establi sn tne following res ult for tne standard inner 
product on R": 

If A = [aij ] is an /I x 1/ matrix and x and yare vectors in R" , then 

(Ax. y) = (x. A T y). (3) 

Equation (1), together with associativity of matrix multiplication and Theorem 
1.4(c), can now be used 10 prove (3): 

(Ax . y) = (Ax)"J"y = (xl" A'/)y = Xl (A Ty) = (x. A Ty). 
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Using Equation (I), we can now write (2) as 

( Y. w) ~ ([ y] , . c [w ],). (4) 

where the inner product on the left is in V and the inner product on the ri ght is the 
standard inner product on R". Using ( I) and the fact that C is symmetric, we have 

(5) 

(verify). Thus C determines ( v. w) for every v and w in V. In summary, we have 
shown that an inner product on a real finite-dimensional vector space V elm be 
computed by llsing the ;tandard inner product on R", as in (4) or (5). 

The matrix C in Theorem 5.2 is called the matrix of the inner product with 
respect to the ordered basis S. If the inner product is as defined in Example 2, 
then C = III (verify). 

There is another important propcny satisfied by thc matrix o f an inner product. 
If u is a no nzero vector in R", then (u , u) > 0; so letting x = [ u Js, Equation (2) 
says that 

xT Cx > 0 for every nonzero x in R". 

This property o f the matri x of an inner product is so important that we specifi­
cally identify such matrices. An /I x /I symmetric matrix C with the property that 
xT Cx > 0 for every nonzero vector x in R" is called positive definite. A posi­
tive definitc matrix C is nonsingular. for if C is si ngular. then the homogcneous 
system Cx = 0 has a nontrivial solution Xo. Then xI CXo = 0, contradicting the 
requirement that xT Cx > 0 for any nonzero vector x. 

[ I' C = [ Cij ] is an n x /I positive definite matrix, then we can use C to define 
an inner product on V. Using the same notation as before, we de/inc 

(Y. wi ~ ([ y],. c[ w L) ~ t t a,c,jh; . 
, .. I j = 1 

It is not difficult to show that this defines an inner product on V (verify). The 
only gap in the preceding discussion is that we sti ll do not know when a symmet­
ric matrix is positive definite, other than trying to verify the de/inition, which is 
usually not a fruitful approach. In Section 8.6 (see Theorem 8.11) we provide a 
characterization of positive definite matrices. 

[
2 

LetC = I ~]. In this case we may verify that C is positive definite as follows: 

x,] [2 '] [x,] 
I 2 ~\2 

= 2xf + lx l x2 + 2xi 

• 
We now de fin e an inner product on PI whose matrix with respect to the or­

dered basis S = (f. [! is c. Thus lei p(t) = alt + a 2 and q(f) = bll + b2 be 
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DEFINITION 5.2 

any two vectors in P I. Let (p(t), q (t)) = 2(/Ibl + (/2bl +al b2 + 2(/2b2. We must 
veriry that (p(r), p(r)) :: 0; that is, 2a; + 2(/1(/2 + 2a3 :: O. We now have 

20f + 2ala2 + 2ai = aT + ai + (al + (2)2 :: O. 

Moreover, if p (t) = 0, so that al = 0 and (/2 = 0, then ( p(t) . pet)) = O. Con­
versely, if ( p (t), p(t)) = 0, then al = 0 and a2 = 0, so p(t) = O. The remain ing 
properties are not difficult to verify. 

A real vector space that has an inner product defined on it is called an inner prod­
uct space. If the space is finite dimensionaL it is called a E uclidean space. 

If V is an inner product space, then by the dimension of V we mean the 
dimension of V as a real vector space, and a set S is a basis for V if S is a basis for 
the real vector space V. Examples I through 6 are inner product spaces. Examples 
I through 5 are Euclidean spaces. 

In an inner product space we defi ne the length of a vector u by Ilull = J(ll.li). 
This defi nition of length secms reasonable, because at least we have Ilull > 0 if 
u I- O. We can show (see Exercise 7) that 11011 = O. 

We now prove a re,ult that witt enable us to give a worthwhile definition for 
the cosine of an angle between two nonzero vectors u and v in an inner product 
space V. This res ult, called the Ca llchy·-Schwarz t inequality, has many impor­
tant applications in mathematics. The proof, although not difficult, is one that is 
not too nalural and does call for a clever start. 

Theorem 5.3 Cauchy*-Schwarzt Inequality 

. 

~ .. 

~ .. •... !i 

AUGUSTIN·L oUls CAUCHY 

KARL HERMANN 

AMANDUS SCHWARZ 

If II and v are any two vectors in an inner product space V, then 

I(u. v)1 ~ lI ull llv ll· 

Proof 

If u = 0, then lI uli = ° and by Exercise 7(b). (u, v) = 0, so the inequality holds. 
Now suppose that u is nonzero. Let r be a scalar and consider the vector r u + v. 
Since the inner product of a vector with itself is always nonnegative, we have 

0 :::: (r u + v. r u + v) = (u , u )r2 + 2r(u. v) + (v, v) = ar2 + 2br +c, 

• Augustin·Louis Cauchy ( 1789- 1857) ¥rcw up in a suburb of Paris a~ a ncighbor of scvcmllcalling 
mathematicians of tile day. altended the Ecole Poly technique and the Ecole des Ponts et Chauss~c.~. 

and was for a time a pmcticin); engineer. He was a devout Roman Catholic. with an abiding interest in 
Catholic charities. He was also strongly devoted to royalty. c.~f'Ceially to the Bourbon k.ings woo ruled 
France after Napoleon's defeat. When Charles X was <kposed in 18]0. Cauchy voluntarily followed 
him into exile in Prague. 

Cauchy wrote seven books and more th.an 700 papers of mrying quality. touching on all bmnches 
of mathematics. He made important con tributions to the early theory of determinants. the the",), of 
eigenvalues. the study of ordinary and partial differential equations. the theory of pemlUtat ion groups. 
and the foundations of calculus: and he founded the theory of functions of a complex variable. 

t Karl Hermann Amandus Schwarz ( 1843- 1921 ) was born in Poland. but was educated and laught 
in Germany. He was a prot~gc of Karl Weierstrass and of Ernst Eduard Kummer. whose daug~tcr he 
married. His main conuibut lons to matllcmatics wcre in the geometric aspects of analysis. such as 
confonnalmappings and mi ni mal surfaces. In connection with the latter, he sought cenain numbers 
associated with differential equations. numbers that havc sinre come to be called cil:envalues The 
inequality given in tile text was used in the searcll for these numocrs 
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where {/ = (u. u), b = (u. v) , and c = (v. v). If we fix u and \', then (lr 2 + 2.IJr + 
c = per) is a quadratic polynomial in r that is nonnegative for all values of r . Thi s 
means that per) has at most one real rool, for if it had two disti nct real roOIS, rl 
and r2, it would be negative between rl and r2 (Figure 5.18). From the quadratic 
formula, the roots of per) are given by 

-b+~ -b -~ 

a a 

(0 =1= 0 since u =1= 0). Thus we must have b2 - {Ie ::::: 0, which means that b2 5 ([c. 

Taking square roots. we have Ih l ::::: Fa.;c. Substituting fo r a, b, and c, we obtain 
the desired inequality. • 

Remark The result widely known as the Cauchy-Schwarz inequality (Theorem 
5.3) provides a good example of how nationalistic feelings make their way into 
scienee. In Russia this result is generally known as Bunyakovsky 's* inequality. 
In France it is often referred to as Cauchy's inequality, and in Germany it is fre­
quently called Schwarz'.f inequality. In an attempt to di stribute credit fo r the resul t 
among all three contenders. a minori ty of authors refer to the result as the cns 
inequality. 

LeI 

be in the Euclidean spa~e RJ with the standard inRer product. Then (u. v) = - 5. 
lIull = JT4, and II vll = J17. Therefore. I(u. \') 1 ::::: lI ull ll \'II· • 

If u and v are any two nonzero vectors in an inner product space V. the 
Cauehy-Schwarz inequality can be wri tten as 

- I 
(u , v) 

::::: .::::; 1. 
lIull llvll 

It then follows that there is one and only one angle () sllch that 

(u. v) 
cos() =---. 

Ilull llvll 
° S() S JT· 

We define this angle to be the angle between u and v. 
The triangle inequality is an easy consequence of the Cauchy- Schwar.l in­

equali ty. 

*Viktor Yakovlcvich. BunYlkovsky ( 1804-1889) was born in Bar. Ukraine. He reccived a doctorate 
in Paris in 1825. He carricd out additional studies in SL Pctersburg and thcn had a long earcer thex as a 
professor. Bunyakovsky made irnponalU con!ribU!ions in number th.eory and also worked in geomctry. 
applied rnceh.anics. and hydrostatics. His proof of the Cauchy- Sch.warL inequality appeared in (Inc of 
h.is rnonograph.s in 1859,25 )ears hcfol1' Sch.warz published lIis proof. He died in Sc Petersburg. 
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Corollary 5.1 Triangle Inequality 

EXAMPLE 9 

If u and v are any vectors in an inner product space V. then lI u + vII s Ilull + Ilv ll. 

Proof 

We have 

lI u + v ll 2 = (u + v. u + v) = (u. u) + 2(u. v) + (v. v) 

~ Ilu ll' + 2(u, v) + IIvll' , 

The Cauchy-Schwarz inequality states thai (u. v) s I(u. v)1 s lI u ll llv ll. so 

Ilu + vII's Ilull' + 211ull ll vil + Ilvll' ~ (liull + Ilvlll' , 

Taking square roots, we obtain 

• 
We now state the Cauchy- Schwarz inequality for the inner product spaces 

introduced in several of our examples. In Example I , if 

u ~ [:::] ood v ~ [~] 
If" U" 

then 

In Example 4. if f and g arc continuous functions on 10. I I, then 

IU g)1 ~ 11' 1«)8«) d/ l" ( l' 1'(I) dl ) ( l' 8'(/)dl ) , 

Let V be the Euclidean space P2 with inner prodllct defined as in Example 6. If 
p(t) = r + 2, then the length of per ) is 

IIp(t)11 = J(p(t). p(t» - 11 (t + 2)2dr = JT!. 
If q(t) = 21 - 3. then to find the cosine of the angle e between p(t) and q(t), we 
proceed as follows. First, 

Ik,(t) II = 11
(2t - 3)2 d r=l¥. 

Next. 

(p(r). q(I» = (I + 2)(2l - 3) dl = (2[ ? + 1 - 6)dr = - -. L' L' m 
( I 0 6 



DEFINITION S.3 

DEFINITION S.4 

EXAMPLE 10 

EXAMPLE 11 

DEFINITION S.S 

5.3 Inner Product Spaces 315 

Then 

(p(t), q(f)) " - 29 -, 
case = 

tiFf • 11'(')1111,,(1)11 2J(19)(13) 

If V is an inner product space, we define the distance between two vectors u and 
v in Vas den . v) = Ilu - vii. 

Let V be an inner product space. Two vectors u and v in V are orthogonal if 
(u . v) = o. 

LeI V be the Euclidean space R4 with the standard inner product. If 

then (u, v) = 0, so U and v are orthogonal. • 

LeI V be the inner product space P2 considered in Example 9. The vectors I and 
f - t are orthogonal, since 

Of course, the vector Ov in an inner product space V is orthogonal to every 
vector in V [sec Exercise 7(b}], and two nonzero vectors in V are orthogonal if 
the angle {} between them is ][/2. Also. the subset of vectors in V orthogonal to a 
fixed vector in V is a subspace of V (see Exercise 23). 

We know from calculus that we can work with any set of coordinate axes 
for R3

, but that the work becomes less burdensome when we deal with Cartesian 
coordinates. The comparable notion in an inner product space is that of a basis 
whose vectors are mutually orthogonal. We now proceed to formulate this idea. 

Let V be an inner product space. A set S of vectors in V is called orthogonal if 
any two disti nct vectors in S arc onhogonal. If, in addition. each veetor in S is of 
unit length. then S is called orthonormal. 

We note hcre that if x is a nonzero vector in an inner product space, then we 
can always find a vector of unit length (called a unit vector) in the same direction 

1 
as x; we let u = Wx. Then 

(x. x) 

11' 11 11'11 

and the cosine of the angle between x and u is I. sox and u have the same direction. 
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EXAMPLE 12 

EXAMPLE 13 

Ifx, ~ m x, ~ [-n,ndx, ~ m Ihen {x,. x,. x,1 'monhogon,1 ,el 
(veri fy). The vectors 

I 2 

./5 - ./5 

U I = 0 and U2 = 0 

2 I 

./5 ./5 

are unit vectors in the directions of XI and X2, respectively. Since X3 is also a unit 
vector, we conclude that {U I. U2 . X3} is an orthonormal set. • 

The natural bases fo r R" and Rn are orthonormal sets with respect to the standard 
inner products on these vector spaces. • 

An important resull about orthogonal sets of vectors in an inner product space 
is the following: 

Theorem 5.4 Let 5 = lUI. U2 ....• II. } be a finite orthogonal set of nonzero vectors in an inncr 
product space V. Then 5 is linearly independent. 

EXAMPLE 14 

Proof 

Suppose Ihat 

a l ll i + (l2 U2 + .. . +a" tJ" = 0. 

Then taking the inner product of Ix)!h sides with IIi, we have 

The left side is 

(l1(U I. Ui) + il2(U2 . IIi) + ... + ai ( U i. U,) + ... + a"(u ,, . II i ) . 

and since 5 is orthogonal. this is (li(Ui . Ui). Thus a i(U i. IIi) = O. Si nce II i =1= 0, 
( Ui . II i ) =1= 0, so (Ii = O. Repeating this for i = L 2 .... . II. we find that {I I = (12 = 
... = a" = 0, so 5 is linearl y independent. • 

Lei V be the vector space of all continuous real -valued functions on r - JT. JT 1. For 
f and g in V, we let 

(f. g) ~ i: f(t)g(t)dt . 

which is shown to be an inner product on V (see Example 4). Consider Ihe func ­
tions 

L cos t . sin t . cos 2t. sin 2t . . .. . cO'; lit . sin lit. (6) 
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w hic h a re clearly in V . The relatio nsh ips 

I" cosnfdt = I" sinnltlt = I" sin n f cosntcil = O. 
-11 - 11 -" 

1, l' _" cosmt COS li t til = _71 sinml sin nttlt =0 if m "1=11 

demonstrate that (f. g) = 0 w he never f and g are distinct functions from (6). 
H ence every fi ni te sub:;et o f fu nctions from (6) is a n o nhogon al set. Theorem 
5.4 then implies that any fi ni te subset o f functions from (6) is linearly indepe n­
dent. The fu nctio ns in (6) were st ud ie d by the French mathematician Jean Ba ptiste 
Joseph Four ier. We take a closer look at these functio ns in Sectio n 5.5. • 

Key Terms 
Real vector space 
Inner proouct space 
Standard inner (dot) product on R n 

Matrix of the inner proouci with 

Euclidean space 
Dimension 
Basis 

Distance between vectors 
Orthogonal vectors 
Orthogonal set 

respect to an ordered b(lsis 
Positive definite matri x 

Cauchy- SchwarL inequality 
CBS inequality 

Unit vectors 
Qrthononn(ll set 

Triangle inequality 

.i' Exercises 

l. Verify that the standard inner product on R" satisfies the 
properties of Definition 5.1. 

2. Verify that the function in Example 3 satisfies the remain­
mg three properties of DefinitlOn 5.1. 

3. Let V = Mnn be the rcal vector space of all" x" matri­
ces. If A and B are in V, we define (A. B) = Tr(Sr A), 
where Tr is the trace function defined in Exercise 43 of 
Section 1.3. Show that this function is an inner product 
on V. 

4. Verify that the function defined on V in Example 2 is an 
mner prooucl. 

5. Verify that the function defined on R2 in Example 5 is an 
mner prooucl. 

6. Verify that the function defined on P in Example 6 is an 
mner prooucl. 

7. Let V be an inner product space. Show the following· 

(a) 11011 = o. 
(b) (u . 0) = (0 . u) = 0 for any u in V. 

(c) If(u . v) =Oforall , . in V. then u = 0. 

(d) If (u . w) = (v. w) for all w in V. then u = v. 

(e) If (w . u) = (w . v) for all w in V. then u = v. 

III E.>.erci.l·e.l· 8 and 9. lei V be the Euclideall space R .. with rhe 
stalldanl inlier pmdllct. Compute (u . v). 

8. (. ) u = [I 3 - I 2]. ' ~[ - 1 2 0 I] 

(h) " ~[O 0 i]. ' ~[ 1 0 0] 

(, ) " ~ [ -2 4].' ~ [3 2 - 2] 
9. (. ) u = [I 2 3 4]. ' ~[ - 1 0 - I - I] 

(h) " ~ [0 - I 4]. ' ~[2 0 - 8 2] 
(, ) " ~ [0 0 - I 2]. ' ~[2 3 - I 0] 

III Exerei.l·e.l· 10 alld II. lise rhe inner prvdllcr .Ipace of cOlllill­
\/011.'· filllction.\" all [0. I J defined ill Example 4. Find (f. g) /01 
rhefol/owing: 

10. (. ) f(t) = 1+I.g(t)=2 - 1 

(h) f(t) = t, g(l ) = 3 

(, ) f(l)= I.g(/) = 3+21 

I I. (. ) f(l) = 31, get) = 2t2 

(h ) f(l)=I.g( I)=e' 

(, ) f(l) = sin I. g(t) = cos 1 

III Exercises 12 and 13, let V be Ihe Euclidean s!,ace of Ex­
ample 3. Compllte the lellgth of each girell I'ectof. 

12. (a) [~] (b ) [ -n (,) m 
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13. (a) [ 0] 
- 2 C<) m 

In /:.'J:ercixes 14 and 15, 11'1 V be the inner plvduel .1'Ix/Ce of 
Example 6. Find Ihe cosine oflhe <llIgle bt'fween each pair of 
veclors in V. 

14. (a ) p(1) =I.q(t) =1 - 1 

(b) p(l)=I.q(l)=1 

i<) pet) = l. q(t) = 21 + 3 

lS. i· ) pet) = l.q (t) = I 

(b) {J(t) = 12. q(f) = 21 3 
- it 

i<) {J(t) = sinl. q(/) = cos I 

16. Prove the parallelogram law for any two vectors in an 
Inner product space: 

17. Let V be an inner product space. Show tbat lI eu ll 
clilul l for any vector u and any scalar c. 

18. State the Caucby- Schwarz inequality for the inner prod. 
uct spaces defined in Example 3. Example S. and Exer· 
cise 3. 

19. Let V be an inner product space. Prove that if u and v 
are any vectors in V. then II ll + vl12 = 1I 1l 1l2 + II vll2 if 
and only if (u . v) = O. that is. if and only if u and v 
are orthogonal. This result is known as the Pythagorean 
Iheorem. 

20. Let lu . v. w) be an orthononnal set of vectors in an inner 
product space V. Compute Ilu + v + wU2. 

21. Let V be an irmer product space. If u and v are vectors 
In V. show that 

22. Let V be the Euclidean space R~ considered in Exercise 
g. Find which of the pairs of vectors listed there are or· 
thogonal. 

23. Let V be an inner product space and u a fixed vector in V. 
Prove that the set of all vectors in V that are orthogonal 
to u is a subspace of V. 

24. For each of the irmer products defined in Examples 3 and 
5. choose an ordered basis S for the vector space and find 
the matrix of the inner product with respect to S. 

25. Let C = [_~ -~J Define an inner product on R2 

whose matrix with respect to the natural ordered basis is 
C. 

26. If V is an inner product space. prove that the distance 
function of Definition 5.3 satisfies the foliowinJ! proper· 
lies for all vectors u . v. and w in V: 

C· ) d( u . v) ::: 0 

Ch) d( u . v) = 0 if and only if u = \' 

C<) d( u . v) = d(\'. u) 

Cd) d( u . v) .::: d( u . w) + de w . v) 

III Exerci.l·es 27 and 28. Id V be the inlier product SfXice of 
Emlllple 4. COlllpllle Ihe dis/ance be/ween Ihe gil'l!/! l'eClors. 

27. (a ) sint.cosl 

28. (a) 21+3.31 2 - 1 

(b) I. t 2 

(b)31+I, 1 

III £terdse.\" 29 alld 30, which of Ihe gil'en sels of wewrs 
ill R3. wilh the stalldard inlier product. are onJ/Ogonal, or· 
Ihollorlllal, OJ" lIeilher! 

I I 
,fi - ,fi o 

29. (a) o 0 

I 

J2 ,/i o 

Ch) 

C<) 

30. (a) 

Ch) 

C<) 

III Exerci.l"t,s 31 and 32. Id V be Ihe inner product .IpGce of 
Example 6. 

31. Let pet) = 31 + 1 rmd q(t) = (If. For what values of a 

are pet) and q(t) orthogonal? 



32. Let p(l) = 31 + I and q(l) = al + b. For whm values of 
iI and bare p(t) and q(l) orthogonal? 

I II £.11'1L·isl':f JJ and 34. leI V be Ihe Elldidean space R3 wilh 
Ihe s/(Indard inlier producl. 

33. Lo< " ~ [-l] ,,,d , ~ [ - ;]. Fmwhm"'""of,, 

are U and v orthogonan 

34. Let u = 

, 
,fi 

o , 
,fi 

and b is (u. v) an orthonormal set? 

35. Let A = [~ ~l Find a 2 x 2 matrix B of- 0 such 

Ihnt A and B arc orthogonu] in thc inner product spnce 
deline<! in Exercise 3. Can there be more than one matrix 
B that is ofthogonallO A? 

36. Let V be the inner product space in Example 4. 

(a) [f p(t) = .Ji. find q(l) = a +bl i=- 0 such thm p(l) 
and q {l) are orthogonal. 

(b) [f p(t) = sin I. lind q(f) = a + be' i=- 0 such that 
pe,) and q(t) are orthogonal. 

37. Let C = [eii ] be an II x II positive definite symmet­
ric matrix and let V be an " .dimensional vector space 
with ordered basis S = (UI. U2 ..... u,,). For v = 

"l UI + a2 u2+·· ·+all u" and w = bj ul +b2 U2+·· ·+b"u" 
" " 

III V deline (v. w) = L L iI,c'j b j • Prove thm this de-
i=1 j =1 

fines an inner product on V. 

38. [f A and Bare n x n matrices. show that (A u. B v) = 
(u. AT Bv) for any vectors u and v in Euclidean space 
R" with the standard inner product. 

39. [n the Euclidean space R" with the standard inner prod­
uct. prove that (u . v) = u T v. 

40. Consider Euclidean space Rl with the standard inner 
prodtlct and let 

!.. 

.!. 

!. 

.!. 
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(a ) Prove that the set W consisting of all vectors in R4 
that are orthogonal to both UI and U2 is a sub.;pace 
of R"'. 

(b) Find a basis for w. 

41. Let V be an inner product space. Show that if v is or­
thogonal to WI. W! ..... W k, then v is orthogonal to every 
vector in 

span {WI. W2 ..... wd. 
42. Suppose that (VI. V2 .... v,,) is an orthonormal set in R" 

with the standard inner proouct. Let the matrix A be 
given by A = [ VI \12 v,, ]. Show that A is non­
singular and compute its inverse. G ive three different ex­
amples of such a mmrix in R2 or RJ. 

43. Suppose that (VI . V2 ..... v,,) is an orthogonal set In R" 
with the standard inner proouct. Let A be the matrix 
whosejthcolumnis vi ,j = 1.2 ..... 11. Prove or dis­
prove: A is nonsingular. 

44. [f A is nonsinguiar. prove that A T A is positive definite. 

45. If C is po~iti\'e definite. :lI1d x i=- 0 is such that e x = kx 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

for some scalar k. show tlwt k > o. 
[f C is positive definite, show that its diagonal emries are 
positive. 

Let C be positive definite and r any scalar. Prove or dis­
prove: rC is positive delinite. 

If Band C are II x n positive definite mmrices. show that 
B + C is positive definite. 

Let S be the set of /I x II positive definite matrices [s S 
a subspace of M""? 

To compute the standard inner proouct of a pair of vec­
tors u and V in R". use the matrix product operation in 
your software as follows. Let U and V be column ma­
trices for vectors u and \'. respectively. Then (u . v) = 
the product of UT and V (or VT and U). Experiment 
with the vectors in Example I and Exercises 8 and 9 (see 
Exercise 39). 

Exercise 41 in Section 5.1 can be generalized to R" . or 
even R" in some software. Determine whether this is the 
Gl'\e for rhl'< ~oftwarl'< that YOIl II~ 

Exercise 43 in Section 5.1 can be generalized to R" . or 
even N" in some software. Determine whether this is the 
case for the software lhat you use . 

[f your software incorporates a computer algebm system 
that computes delinite integrals. then you can compute 
inner products of functions as in Examples 9 and [4. 
Use your software to check your results in Exercises 10 
and II. 
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m Gram*-Schmidtt Process 

In this section we prove that for every Euclidean space V we can obtain a basis 
S for V sllch that S is an orthonormal set; such a basis is called an orthonormal 
basis, and the method we use to obtain it is the Gram-Schmidt process. From 
our work with the natural bases for R 2, R3, and in general, Rn, we know that when 
these bases are present, the computations are kept to a minimum. The reduction 
in the computational effort is due to the L1Ct that we are dealing with an orthonor­
mal basis. For example. if S = ( U I . U 2 • ... , U I!} is a basis for an /I -dimensional 
Euclidean space V, then if v is any vector in V, we can write v as 

The coefficients e). e2 , ... . e" are oblained by solving a linear system of /I equa­
tions in /I unknowns. 

However, if S is orthonormal, we can produce the same resu lt with much less 
work. Thi s is the content of Ihe following theorem: 

Theorem S.S LeI S = (u ). U2, . .. . u~J be an orthonormal basis for a Euclidean space V and leI 
v be any vector in V. Then 

JORGEN PEDERSEN GRAM 

ERHARD SCHMIDT 

where 

Proof 

Exercise 19. 

EXAMPLE 1 

u, 

Ci = (v, lIi) . I. 2 ..... n. 

• 

' JoT£en Pedersen Gmm (18S()....t9t6) was born and edueat!d in Denmark. where he rcceivtd de· 
grees in Malhematics. In t8,S he began his career at the Haf~ia Insurance Company. with whom he 
was associated until 1910. in ever increasingly intportant positions. In 1884 he founded his own insur· 
ance company while continuing to work for Hafnia. He also did considerable work on ntathematical 
models for maximizing profits in forest management. In m:klit ion to his work in actuarial science and 
prohability theory. Gram made many mathematical contributions. 

t Erhard Schmidt (1876-1959) taught at scveralleading German universities and was a student of 
both Hertnann Amandus Schwarz and David Hilbert. He made important contributions to the study of 
integral equatiOll~ and partial differential equ31iollS and. as part of this study. he introduced the method 
for finding an orthonormal b:t>is in 1907. In 1908 he wrote a paper on intinitely many linear equations 
in infinitely many unknowns. in which hc founded the theory of Hilbert spaces and in "ihich hc again 
uscd his mCIOOd. 
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Note that S is an orthonormal set. Write the vector 

as a linear combination of the vectors in S. 

Solution 
We have 

Theorem 5.5 shows that CI, ("2, and C3 can be derived without having to solve a 
linear system of three equations in three unknowns. Thus 

and v = UI +7U3. • 
Theorem 5 .6 Gram-Schmidt Process 

FIGURE 5.19 

Let V be an inner product space and W t- {Ol an m-dimensional subspace of V. 
Then there exists an orthonormal basis T = {w I. \\'2 ..... W m I for W. 

Proof 

The proof is constructive; that is. we exhibit the desired basis T. However, we first 
find an orthogonal basis T + = {VI.V2 . ... . v"'l forW. 

Let S = {UI. U2 . .... u",1 be any basis for W. We start by selecti ng anyone of 
the vectors in S-say, u l- and call it VI. Thus VI = UI. We now look for a vector 
V2 in the subspace WI of W spanned by {UI. u21 that is orthogonal to VI. Since 
VI = UI. WI is also the subspace spanned by {VI. u21. Thus V2 = al VI + a1 U2. We 
determine {II and a2 so that (V2. v() = o. Now 0 = (V2. VI ) = (al VI + {l2 U2. vt} = 
{II (VI. VI) + (l2(U2. vd . Note that VI t- 0 (Why ?). so (VI. v t) t- o. Thus 

(U2. VI) 
al = - a?---. 

-(VI.V t) 

We may assign an arbitrary nonzero value to {/2. Thus, letting a2 = [, we obtain 

Hence 

(U2. VI) 
{II =----. 

(VI. VI) 

(Ul' VI) 
"2 = (II VI + U2 = U2 - ---v,. 

(V I. V I) 

AI this point we have an orthogonal subset {VI. v21 of W (Figure 5.19). 
Next, we look for a vector V3 in the subspace W2 of W spanned by {UI. U2. U3} 

that is orthogonal to both VI and V2. Of course, W2 is also the subspace spanned 
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FIGURE 5.20 

by {VI . V2. Uj} (Why?). Thus Vj = bl VI + h 2V2 + h j u j . We try to find hi . b 2 , and 
hj so that (Vj . VI) = 0 and (Vj . V2) = O. Now 

0 = (v). VI) = (hi v i + b2V2 + h3u ), VI) = hl(v ! . v !) + " ](uJ . v !) 

0 = (Vj . V2) = (h! v ! + "2 V2 + bju ). V2) = "2(V2. V2) + " 3(U3. V2) ' 

Observe that V2 i= 0 (Why?). Solving for h! and ~. we have 

We may assign an arbitrary nonzero value to b3 . Thus, letting b] = I, we have 

At this poi nt we have an orthogonal subset {v !. V2, V3} of HI (Fi gure 5.20). 

, , 
: VJ , , , 

v, ' 

o ------::..~ (u3. v I) (u3' v2) 

I¥~ VI = U I ( \ '1' v I) V I + (v2_ v2 ) V2 

We next seek a vector V4 in the subspace HI] spanned by {u !. U2. u ) . 141. and 
also by {v ! . V2. vJ . u4L which is orthogonal to v !, V2, vJ. We obtain 

(U4. v !) (U4. V2) (\4. vJ) 
V4 = U4 - ---v, - ---v, - ---v,. 

(v ! . v !) (V2. V2) (vJ . v) 

We continue in this manner until we have an orthogonal set 

of 11/ vectors. Ry Theorem _"i_4 we conclllde that T' is a hasi .~ for W If we now let 
I 

Wi = N Vi for i = 1.2 ... .. III , then T = {W I . W2, .. .• wno ) is an orthonormal 

basis for W. • 

Remark It can be shown that if U and v are vectors in an inner product space 
such that (u. v) = 0, then (u. cv) = 0 for any scalar c (Exercise 3 1). This result 
can oft en be used to simpli fy hand computations in the Gram- Schmidt process. 
As soon as a vector Vi is computed in Step 2, multiply it by a proper scalar to clear 
any frac tions that may be present. We shall usc this approach in ollr computational 
work with the Gram- Schmidt process. 
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Lei \V be the subspace of the Euclidean space R4 with the standard inner product 
with basis S = l UI. U2. u J} . where 

Transform S to an orthonomUll basis T = {WI. ""2. wJ }. 

Solution 
First, lei VI = H I . Then we find that 

v,~ u,- (u, .v ,\ ~ [ -~] _ (_ ~) [:] ~ [-I]. 
(VI. VI) _ \ 3 I _1 , 

I 0 I 

Multipl ying " 2 by 3 to clear fractions. we gel 

which we now use as V~ . Next, 

~ [J H) [lj( ,',) [j] ~ [:i] 
Multipl ying VJ by 5 to clear fractions, we get 

Ul 
which we now take as "3. Thus 
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EXAMPLE 3 

is an orthogonal basis for W. Multiplying each vector in S by the reciprocal of its 
length yields 

I I 4 

Ji, - fiS - Ji,5 

I 2 3 

T = {W I. W2. w}j = 
Ji, fiS Ji,5 
I I I 

Ji, - fiS Ji,5 
3 3 

0 
fiS - Ji,5 

which is an orthonormal basis for W. • 
Remark In solving Example 2. as soon as a vector is computed, we multiplied 
it by an appropriate scalar to eliminate any fract ions that may be present. Thi s 
uptiunal step results in simpler cumpwations when working by hand. Musl (om­
puter implementations of the Gram-Schmidt process, including those developed 
with MATLAB, do not clear fractions. 

Let V be the Euclidean space P3 with the inner product deli ned in Example 6 of 
Section 5.3. Let W be the subspace of p} having S = {r l . l! as a basis. Find an 
orthononnal basis for W. 

Solution 
First, let U I = r1 and U2 = 1. Now let VI = U I = ,1. Then 

where 

ond 

Since 

(U 2. V I) 
v~ = u~ - ---v, 
- - (vl. vd 

~ ~ 5 , 
= 1 - T r = r - - r. 

, 4 

1'" l' , I ( \ "1 . VI) = rrdl = 1 tir =-
o 0 5 

1'( 5,), I 
(V2, V2) = r - -r dr = - . 

o 4 48 

I J5 r2. J48 (I - ~ ( 2 )} is an orthononnal basis for W. If we choose U I = I and 

U2 = r2. then we obtain (verify) the orthonomlal basis I J3 r. 50 (r2 - &r) J for 
W. • 
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In the proof of Theorem 5.6 we have also established the following result: At 
each stage of the Gram-Schmidt process, the ordered set {W I , W2 • ... • wd is an 
orthonormal basis for the subspace spanned by 

5. k 5. lI. 

Also, the final orthonormal basis T depends upon the order of the vectors in the 
given basis S. Thus. if we change the order of the vectors in S. we might obtain a 
different orthonormal basis T for W. 

Remark We make one final observation with regard to the Gram-Schmidt pro­
cess. In our proof of Theorem 5.6 we first obtained an orthogonal basis T' and 
then normalized all the vectors in T' to fi nd the orthonormal basis T. Ofcoursc. an 
alternative course of action is to normalize each vector as it is produced. However. 
normalizing at the end is simpler for hand computation. 

One of the useful consequences of having an orthonormal basis in a Euclidean 
space V is that an arbitrary inner product on V, when it is expressed in terms of 
coordinates with respect to the orthonormal basis, behaves like the standard inner 
product on R" . 

Theorem 5.7 Let V be an II -dimens ional Euclidean space, and let S = {U I . U2 • ... • u,,1 be an 
orthonormal basis for V. If v = al u l + a2 u2 + .. ' + a" u" and w = !JI LI I + b2112 + 
... + b" u" , then 

Proof 

We fi rst compute the matrix C = [ c ij ] of the given inner product with respect to 
the ordered basis S. We have 

Cij = ( Ui. Uj ) = I ~ if i = j 

ifi # j. 

Hence C = I,,, the identity matrix. Now we also know from Equation (2) of 
Section 5.3 that 

[
b'] b2 

an] : = albl + a2b2 + ·· · + allb". 

"" 
which establishes the result. • 

The theorem that we just proved has some additional implications. Consider 
the Euclidean space R, with the standard inner product and let W be the subspace 
withorderedbasisS = 1[2 I 1],[1 I 2J).L.ct u = [5 3 4] be a vector 
in W. Then 

I] + I [I 2]. 
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so[5 3 41s= [~].Nowlhelengthof U iS 

lI uli ~ Js' + 3' +4' - /25 +'+ 16 _ ./50. 

We mighl expect to compute the length of u by using Ihe coordinale vector wilh 
respcct 10 S; thai is, 111111 = ~ = vis. Obviously, we have Ihe wrong 
answer. However, lei us Iransform Ihe given basis S for W inlo an orthonormal 
basis T for W. Using Ihe Gram- Schmidl process, we find thai 

1[2 I]· H 1 m 
is an orthogonal basis for W (veri fy). It Ihen follows from Exercise 31 Ihat 

is also an onhogonal basis, so 

1 Jii 

I]. [ - 4 7]) 

1 

J66 Jool l 
is an orthononnal basis for W. Then Ihe coordi nate vector of u wilh respecllo T 
is (verify) 

[
17 Jii] [u], ~ ~ 6 . 

- J66 
6 

Compuling Ihe length of u by using Ihese coordinates. we find Ihat 

I( 17 )' (I )' tIsOO lI ull, ~ y o J6 + 6JGu ~ V 36 ~ ./50. 

It is nOI di fficullto show (Exercise 21) Ihat if T is an onhononnal basis for an 

inner product space and [ v ]T = [:::], then II vll = Jar + ai + ... + aJ. 
all 

• QR-Factorization 

I.n Section 2.5 we discussed the LU -factorization of a matrix and showed how 
it leads to a very effi cient method for solving a linear system. We now discuss 
another factori zation ofa matrix A, called the QR-factorization of A. This type of 
factorization is widely used in computer codes to lind the eigenvalues of a matrix, 
to solve linear systems, and to find least squares approximations. 

Theorem 5.8 If A is an 11/ x /I matrix wilh linearly independent columns. then A can be factored 
as A = QR, where Q is an 11/ x /I matrix whose columns fonn an orthonormal 
basis for Ihe column space of A and R is an /I x /I nonsi ngular uppcr triangular 
matrix. 



5.4 Grom-Schmidt Process 327 

Proof 

Let U I . U2 • .. .. U" denote the linearly independent columns of A, which fonn a 
basis for the column space of A. By using the Gram-Schmidt process, we can 
derive an orthonormal basis W I. W2 • .... W n for lhe column space of A. Recall 
how this orthononnal basis was obtained. We fi rst construcled an orthogonal basis 
VI. V2 . . .. • Vn as follows: VI = U I. and lhen for i = 2. 3 . .. .. II , we have 

( I) 

I 
Finally, Wi = -- Vi for i = 1.2.3. . . II. Now every u-veClor can be wrillen 

11 ' ,11 
as a linear combination of W I . W2 ..... w,,: 

UI = ril w i + r 21 W2 + ... + r"I W" 

U2 = rl2 W I + r 22 W2 + ... + r"2 W,, 
(2) 

From Theorem 5.5. we have 
r ji = ( Ui. Wj) . 

Moreover. from Equation (I). we see that Ui lies in 

span {VI , V2 .... • vi! = span {W I . W2 .. . .. w;J. 

Since Wj is orthogonal to span {W I. W2 •. ... w;) for j > i, it is orthogonal to Ui. 

Hence rii = 0 for j > i. Let Q be the matrix whose colunms are W I. W2 • .. .• W j. 

LeI 

[
'Ii ] r2j 

r j = . . 

r"i 

Then lhe equations in (2) can be wri tten in matrix form as 

where R is the matrix whose columns are r l. r2. .. r". Thus 

[': 
rl2 

'" 1 r 22 'On 

R ~ 0 

0 r"l! 

We now show that R is nonsi ngular. Let x be a solution to the linear system 
Rx = O. Multiplying this equation by Q on the left, we have 

Q( Rx) ~ (Q R )x ~ Ax ~ QO ~ o. 
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EXAMPLE 4 

As we know from Chapter I, the homogeneous sy~tem Ax = 0 can be wri tten as 

where Xl. X2 . . ... x" are the components of the vector x. Since the columns of A 
are linearly independent , 

XI = X 2 = .. . = X" = O. 

so x must be the zero vector. Then Theorem 2.9 implies that R is nonsingular. In 
Exercise 36 we ask you to show that the di agonal entries rii of R are nonzero by 
first expressing Ui as a linear combi nation of VI. V2 • . ..• Vi and then computing 
ri i = (Ui . Wi) . This provides another proof of the nonsingu larity of R. • 

Find the Q R-factorization of 

A ~ [: ~~ -~] 
o - I 

Solution 
The columns of A are the vectors U I, " 2, and " }, respectively, defined in Example 
2. In that example we obtained the following orthonormal basis fo r the column 
space of A: 

1 1 4 

j3 - J15 - 55 
1 2 1 

j3 JI5 55 
WI= W 2 = w } = 

1 1 1 

j3 - J15 55 
3 3 

0 JI5 - 55 

Then 

1 4 

j3 - ./15 - 55 0.5774 - 0.2582 - 0.676 1 

1 2 3 

j3 ./15 55 0.5774 0.5 164 0.5071 

Q ~ ~ 

1 1 

j3 - ./i5 55 
0.5774 - 0.2582 0. 1690 

3 3 
]) 0.7746 - 0.5071 0 

./is - 55 
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ond 

['" R = 0 
o 

where rji = (Ui. W j )' Thus 

3 , I 

./3 - /3 - ./3 1.732 1 - 1. 1547 - 0.5774 

5 2 
R ~ 0 - fiS ~ 0 1.2910 - 0.5[64 

fiS 

0 0 
7 

55 
0 0 1. 1832 

As you can verify. A = Q R . • 
Remark State-of-the-art computer implementations (such as in MATLAB) yield 
an al te rnat ive Q R-factorizat ion of an 11/ x /I matrix A as the product o f all III x 1/1 

matrix Q and an 11/ x II matrix R = [rij J. where rij = 0 if i > j . Thus, if A is 
5 x 3. then 

Key Terms 
Otthonomlal basis 
Gram- Schmidt process 

4t. Exercises 

Q R-faclorizution 

I II {hiI set of nerci.\'l's. Ihe Euclidean lJXICl'l' Rn (lnd Rn IUII'f! 
Ihe slal/dard illller products Ol! them. Euclidean space p. hal' 
the inlier product defined in Emmp/e 6 ojSeclioll 5.3. 

l. Use Ihe Gram- Schmidt process \0 transform the basis 

{ [~] . [ -!] } for the Euclidean space R2 inlo 

(a) an orthogonal basis: 

(b) an orthonormal basis. 

2. Use the Gram- Schmidt process to transform the ba-

,1< I [ ~] . [ -;] I fn< 'he "b<poo, IV of Eodld"" 

.pace R3 into 

(a ) an orthogonal basis: 

(b) an orthonormal basis. 

3. Consider the Euclide.:ln space R, and let IV be [he sub­
space [hal has 

- I 0]'[0 2 0 III 

as a basis. Use the Gram- Schmid[ process to ob[Jin an 
oflhononnal basis for IV. 

4. Consider Euclidean space R3 and let IV be the sub.>pace 

'hOI h" b,,'" ~ /[ :J [ ~] IUd' G"m-

Schmidt process to obtain an otthogonal basis for W. 
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5. Let S = {I . IJ be a basis for a subspace IV of the Eu­
clidean space p!. Find an orthonomml basis for IV. 

6. Rcpeat Exercise 5 with S = I' + I. I - I I. 

7 . Let S = II. sin 271/1 be a basIs for a subspace IV of the 
mner product space ofExumpie 4 in Section 5.3. Find an 
orthonorm::ll b::lsis for IV. 

S. Let S = {I. e' l be a basis for a subspace IV of the in· 
ncr product space of Exampk 4 in Section 5.3. Find an 
anhonorm::ll basis for IV. 

9. Find an onhonormal basis for the Euclidean Sp..1ce Rl 
that contains the vectors 

10. U~ the Gram- Schmidt proceu to transform the basis 

for the Euclidean space Rl in lO an onhonormal basis for 
R'. 

I J. U~ the Grarn--Schmidt process to construct an onhonor­
mal basis for the subspace IV of thc Euclidean space Rl 
spal1llecl by 

I [~]· [l] ·[~] ·[i] l · 
12. U~ thc Gram-Schmidt process to construct an onhonor­

mal b:lsis for the subspace IV of the Euclidean space Rl 
SfUllllltll by 

13. 

14. 

/[ 1 - I 

[2 - I 

IJ . [ - 2 

2] . [0 
2 

o 
- 2]. 

°li· 
Find an orthonormal basis for lhe subspace of R l con­
listing of all vectors of the form 

[+l 
Find an on honormal basis far the subspace of R4 consist­
mg o f all vectors of the form 

[a a+b C b+ c ] . 

IS. Find an onhonormal basis for the subspace of Rl con­

, i;tio, of ,II ,.,,'''' [~] '''h ,hm " +" + c ~ o. 
16. Find an arthOnomlal basis for the subsp::lce of R. consist-

ing of all vectors [ a b d] such that 

a - b-2c + d = 0. 

17. Find an onhonormal basis for the ro lution space of the 
homogeneous system 

-'"1 +-'"2- .1"3= 0 

21"1 + .r2 + 2.l J = O. 

18. Find an orthonormal basis for lhe solution space of the 
homogeneous system 

[; -;] [::] [~] . 
I 2 - 0 x, 0 

19. Prove Theorem 5.5. 

20. LetS = I [1 - I 0] . [1 0 - I]}be a basis fora 
subspace IV of the Euclidean space Rj . 

(n) Use the Gram-Schmidt proces.~ to o btain an or­
tho nonnal basis for IV. 

(h) Using Theorem 5.5. write u = [5 - 2 - 3] as 
n linear combination of the vectors obtai ned in part 
(a). 

2!. Prove that if T is an orthonomlal basis for a Euclidean 
space and 

then 11 " 11 = Jai + tl~ + ... + (j~. 
22. Let IV be the subspa;e of the Euclidean space Rl with 

basis 

l<" ~ [ ~n be i, <V 

(a) Find the length of v directly. 

(h) Usin)! the Gram- Schmidt process. transform S into 
an orthonormal basis T for IV . 



(e) Find the length of v by o!>illg the coordinate vector 
of \' with respec t to T . 

23. (n) Verify that 

is an orthononnal basis for the Euclide:m space RJ. 

(h) Use Theorem 5.5 to finll the coordin.1le vector of , ~ [' n w;,h re,p""O S. 

(e) Find the length of v directly and also by using the 
coordi nate vector found in pMt (b). 

24. (Calclllll s Reqllired) Apply the Gram-Schmidt process 
10 the basis II. f. f2) for the Euclide:ln sp:'!ce P 1 and ob­
tain an orthonormal basi ~ for 1'1' 

25. Let V Ix: the Euclidean space of all 2 x 2 matrices with 
mner product defined by (A. 8) = Tr(8T A). (See Exer­
ciJ;e 43 in Section 1.3.) 

(n) Prove thaI 

is :m orthonormal basis for V . 

(b) Usc Theorem 5.5 10 find Ihe coordi n:'!te vector of 

[I 2] . \' = 3 4 wllh resp!!(.1to S. 

26. LeI 

be a basis for a subspace IV of the Euclideall space de­
fi ned in Exercise 25. Use Ihe Gram-Schmidt process to 
find an orthononnal basis for IV. 

21. Rcpe.1l Exercise 26 if 

28. Consider the orthonormal ba~is 

1 2 
,rs -,rs o 

S~ 0 0 

2 1 
,rs ,rs o 
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(0' R'. U, ;o. Theorem 5.5. wriIO ,he '<dO' [ -n "" 
line3r combination of the veclorS in S. 

III E.lIm:isl's 29 {llId 30. compwe Ihe QR-!affOri~ufioll of A. 

29. (a) A ~ [ 1 
- I ~] 

(e) A = 

30. (a) A = 

(e) A = 

[ 1 2] 
(b) A = - : - ~ 

(b)A=[-: 
- I 

o 
2 

- 2 

3 1. Show that if u and \' are orthogonal vec tors in an inner 
product space. then (u. c v) = 0 for any scalar c. 

32. Let ll l. 1I2 ..... Un be"ectors in R-. Show that if u isor­
t hogon31 to u I. U 2 •...• u". then u is orthogonal to every 
vector in 

span {U I. Ul"'" u,, ), 

33. Let II be a fixed veclor in R" . Prove ttwtthe SCI of all 
vectors in R" Ihal are orthogonal to II is a subsp:JCe of 
R'. 

34. Let S = {UI. U2, .... ull be an OnhonOnllal basis for a 
~ubsp3ce IV o f Eucl idean space V Ih3t has dimension 
11 > k. Discuss how to construct an orthononnal basis 
for V that includes S. 

35. Let S = {VI. V2 ..... \'l l be an orthononnal baSIS for 
the Euclidean space V and 1(/ 1. (12.' '" ad be any itt of 
scal3rs none of which is zero. Prove th3t 

is an onhogonal basis for V. How should Ihe scalars 
al' a2 . .... til be chosen so thaI T is an onhononlJaI ba­
sis for V'? 

36. In the proof of Theorem 5.8. show that the diagonal 
entries rli are nonzero by first expressing U; as a lin­
ear combination of \ '1. \ '2 .... , V; and then computing 
r il = (u; . WI) ' 

31. Show that every Donsingular mmrix has a QR­
factorization. 
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.!. . 38. Determine whether the software that you use has a com· 
mand to compute an orthonormal set of vectors from a 
linearly independent set of vectors in R" . (Assume that 
Ihe standard inner product is used.) If it does. compare 
Ihe output from your command with the results in Exam· 
pIe 2. To experiment further. use Exercises 2. 7. 8. II. 
and 12. 

.! . 39. Determine whether the software you use has a command 
to obtain the QR. factorization of a given matrix. If it 
does. compare the output produced by your command 
with the results obtained in Example 4. Experiment fur­
ther with Exercises 29 and 30. Remember the remark fol· 
lowing Example 4. which points out that most software in 
use today will yield a different type of Q R·factorization 
of a given matrix. 

DEFINITION 5.6 

EXAMPLE I 

m Orthogonal Complements 

In Supplementary Exercises 34 and 35 in Chapter 4, we asked you to show that if 
IVt and IV2 are subspaces of a vector space V, then IVt + 1V2 (the set o f all vectors 
v in W such that v = \V! + W2, where Wt is in Wt and W2 is in 1V2) is a subspace 
of V. Moreover, if V = WI + IV2 and IVt n IV2 = {O), then V = IVl EI1 IV2 : that 
is, V is the direct sum of IVl and IV] , which means that every vector in V can be 
written uniquely as WI + W1, where Wt is in IVt and W1 is in IV!. In this section we 
show thai if V is an inner product space and IV is a finite-dimensional subspace of 
V. Ihen V can he wriTTen as a ciireCl slim of IV and anolher slIhspace o f V _ Thi s 
subspace will be used to examine a basic relationship between four vector spaces 
associated with a matrix. 

Let IV be a subspace of an inner product space V. A vector u in V is said to be 
orthogonal to IV if it is orthogonal to every vector in IV. The set of all vectors in 
V that arc orthogonal to all the vectors in IV is called the orthogonal complement 
of IV in V and is denoted by IV.L . (Read " IV pcrp".) 

Lei IV be the subspace of R3 consisting of all multiples of the vector 

Thus IV = span {wI. so IV is a one-dimensional subspace of IV. Then a vector u 
in R3 belongs to IV.L if and only if u is orthogonlll to CW, for any scalar c . Thus, 
geometrically, IV.L is tile plane with normal w. Using Equations (7) and (8) in 
optional Section 5.2, W.L can also be described as the set of all points P(x. y. z) 
in R3 such that 

2x - 3y + 4z= O. • 
Observe that if IV is a subspace o f an inner product space V. then the zero 

vector of V always belongs to IV .L (Exercise 24). Moreover, the orthogonal com­
plement o f V is Ihe zero subspace, and Ihe orthogonal complement of the zero 
subspace is V itself (Exercise 25). 

Theorem 5.9 Let IV be a subspace of an inner product space V. Then Ihe following are true: 

(a) IV .LisasubspaceofV . 

(b) IV n IV .L = {OJ. 



EXAMPLE 2 

5.5 Orthogonal Complements 333 

Proof 

(a) Let " I and " 2 be in W.L . Then " I and " 1 arc orthogonal to each vector w in 
IV. We now have 

( U l + " 2_ w) = ( U I_ w) + ( U2. w) = 0 + 0 = O. 

SO " I + " 2 is in W.L . Also. let u be in W.L and c be a real scalar. The n for any 
vector w in IV. we have 

(cu . w) = c(n , w) = cO = D, 

so en is in W. This implies that W.L is closed under vector addition and scalar 
multiplication and hence is a subspace of V. 

(b) LeI U be a vector in IV n W.L. Then u is in both IV and W.L, so (u , u) = O. 
From Definition 5.1, it iollows that u = O. • 

In Exerci se 26 we ask you to show that if IV is a subspace of an inner product 
space V thaI is spanned by a sct of vectors S, then a vector u in V belongs to W.L 
if and only if u is orthogonal to every vector in S. This result can be helpful in 
finding W.L . as shown by the next example. 

Let V be the Euclidean space P3 with the inner product defined in Example 6 of 
Section 5.3: 

(p(t) . q(t)) = 11 p(t)q(t)dt. 

Let W be the subspace of P3 with basis {I. t 2 ). Find a basis for W .l . 

Solution 
Let pet) = ar J +bt2 + ct +d be an clement of W.l. Since pet) must be orthogonal 
to each of the vectors in the given basis for W, we have 

(p(t) . I) = (at] + bt 2 + ct + d) dT = - + - + - + d = O. 1
1 abc 

o 4 3 2 

~ {I . 5 4 3 ~ abc d 
(p(t).r) = J

o 
(at +bt +ct +dr)dt=6"+S+4+"3=0. 

Solving the homogeneous system 

we obtain (verify) 

a = 3r + 16.1". 

d = O 

abc d 
-+- + -+-= 0 
6543' 

15 
/J =- - r - 15.\". c=r. d =.I" . 

4 
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Then 

, (15 ) , p(t )= (3r+16s)t + -4r - 15~' r+rt + s 

= r(3tJ _ ~t2 + t)+S(l6tJ _ 15t2+1). 

Hence the vectors 3rJ - lj t2 + f and 16t J 
- 151 2 + I span \ti l. . Since they are 

not multiples of each other. they are linearly independent and thus form a basis for 
W' . • 

Theorem 5. 10 Let W be a finite-dimensional subspace o f an inner product space V. Then 

V = W $ W l. . 

Proof 

Let dim W = III. Then W has a basis consisting of III vectors. By the Gram­
Schmidt process we can transform this basis to an orthonormal basis. Thu; , let 
S = {W I . W2 • .. .. W no f be an orthonormal basis for W. If v is a vector in V, let 

( I) 

and 

u = v - w. (2) 

Since W is a linear combination of vectors in S, w belongs to W. We next prove 
that u lies in W.l by showing that u is orthogonal to every vector in S, a basis for 
W. For each Wi in S. we have 

(u, w;) = (v - w. Wi ) = (v. Wi) - (w. Wi) 

= (v. Wi) - « v. W I) W I + (v. W2 ) W 2 + ... + (v. Wm ) W",. Wi ) 

= (v. Wi) - (v. Wi )(Wi. Wi) 

= 0. 

since ( Wi . Wj ) = 0 fo r j =1= j and ( Wi . Wi) = I. :::: i ::::: III. Thus u is orthogonal 
to every vector in Wand so lies in W l.. Hence 

v = W + u. 

which means that V = \tI + \ti l. . From part (b) of Theorem 5.9, it follows that 

• 
Remark As pointed out at the beginning of this section, we also conclude that 
the vectors wand u defined by Equations (I) and (2) are unique. 

Theorem 5. 11 If W is a finite-dimensional subspace of an inner product space V. then 

( W.l).l = W. 
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Proof 

First, if w is any vector in lV, then w is orthogonal to every vector u in W-L, so W 

is in (W.L).L . Hence W is a subspace of ( W.L).L . Conversely. let v be an arbitrary 
vector in (W .L) .L. Then. by Theorem 5.10, v can be written as 

v = w + u. 

where w is in Wand u is in W.L . Since u is in W.L , it is orthogonal to v and w . 
Thus 

0 = (II, \,) = ( II , W + II) = (II , w) + (II , II) = (II , II). 

(u . II) = 0, 

which implies that II = O. Then v = w. so v belongs to W. Hence (W.L).L = HI .• 

Remark Since W is the orthogonal complement o f W.L, and W.L is also the or­
thogonal complement of W , we say that HI and W.L are orthogonal complements . 

• Relations among the Fundamental 511bspaces 
Associated with a Matrix 

If A is a given III x /I matrix, we associate the following fo ur fundamental sub­
spaces with A : the null space of A, the row space of A, the null space o f A T. 
and the column space of A. The following theore m shows that pairs of these four 
subspaces are orthogonal complements: 

Theorem 5.12 If A is a given 11/ x II matrix, then the fo llowing statements are true : 

(a) The null space of A is the orthogonal complement o f the row space of At 

(b) The null space of AT is the orthogonal complement of the column space of A. 

Proof 

(a) Before proving the result, let us verify that the two vector spaces that we wish 
to show are the same have equal dimensions . If r is the rank of A , then the di­
mension o f the null space of A is /I - r (fheorem 4. 19). Since the dimension of 
the row space of A is r, then by Theorem 5.10, the dimension of its orthogonal 
complement is also /I - r . Let the vector x in R" be in the null space of A. Then 
Ax = O. Let the vectors VI. V2 .... . VIII in R" denote the rows of A. Then the 
entries in the 11/ x I matrix Ax are V IX. V2X . .... Vm X. Thus we have 

(3) 

Since Vi X = Vi ' X. i = l, 2 . .... m , it follows that x is orthogonal to the vectors 
VI , V2 •. .. • VIII' which span the row space of A. It then follows that x is orthogonal 
to every vector in the row space o f A , so x lies in the orthogonal complement of 
the row space of A. Hence the null space o f A is contained in the orthogonal 
complement o f the row space of A. 

' Strictly speaking. the null spacc of A consists of vectors in R"-tha! is. cotumn wc!Ors--whcrcas 
the row spacc of A consists 0' row vcctors--that is. vcctors in R • . Thus thc orthogonal complemcll t of 
the row spacc should also con.<;st of row vcctors. HOI'ic'·cr. by TIlcorcm 4. t4 in Scction 4.8. R' and R. 
are isomorphic. so an II'VCct<r can be vicwcd as a row vcctor <r as a column vector. 
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Conversely, if x is in the orthogonal complement of the row space of A.then 
x is orthogonal to the vectors VI . V2 • ...• Vm , so we have the relations given by 
(3), which imply that Ax = O. Thus x belongs to the null space of A. Hence the 
orthogonal complement of the row space of A is contained in the null space of A. 
It then follows that the null space of A equals the orthogonal complement of the 
row space of A. 

(b) To establish the result, replace A by AT in pan (a) to conclude that the null 
space of AT is the orthogonal complement of the row space of A T . Since the row 
space of A T is the column space of A, we have established part (b). • 

Ln Section 4.9 we briefly di scussed the relationship between subspaces as­
sociated with a matrix and in Figure 4.33 illustrated their relationships. Using 
Theorems 5.10 and 5.12, we can say more about the relationships between these 
subspaces for an 11/ x /I matrix A. 

For the row space of A and the null space of A, the following apply: 

Every vector in the row space of A is orthogonal 10 every vector in the null 
space of A. [Theorem 5. 12(a).J 
The only vector that belongs to both the row space of A and its null space is 
the zero vector. 
If the rank of A is r, then the dimension of the row space of A is r and the 
dimension of the null space of A is /I - r. Thus 

row space of A \II null space of A = R". 

and hence every vector in R" is uniquely expressible as the sum of a vector 
from the row space of A and a vector from the null space of A. (Theorem 
5.10.) This is illustrated in Fi gure 5.21. 

Theorem ."i. I 2(h) tel ls ItS ThaT The column sp,lce of A anti The nuB space of AT 

are related as shown in Figure 5.22. 

Row space of A 

dim=r 
Column span of A 

dim = T 

FIGURE S.21 

_ ~x . x, . xn 

, ' 

" .,.': Null space of A 
x" I dim=,,-r 

R" 

FIGURE S.22 

Null space of AT 

dim=m-r 

R" 



R" 

o 

FIGURE 5.231 

GILBERT STRANG 
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In order to connect the subspaces represented in Fi gures 5.2 1 and 5.22, we use 
matrix prod ucts. 

Let x, be in the row space of A. Then Ax, = b is a linear combination of the 
columns of A and hence lies in the column space of A . See Fi gure 5.23. 

Let x" be in the null space of A. Then Ax" = 0, the zero vector in R". Sec 
Figure 5.23 . 

For an arbitrary vector x in R", Theorem 5. 10 implies that there exist a vector 
Xr in the row space of A and a vector XII in the null space of A such that 

X= X,+ X". 

It fo llows that Ax = Ax, = h. See Figure 5.23. 

Row space of A Column space of A 

b 

Null space of AT 

In summary, for any x in R". A x is in the column space of A and hence thi s 
case corresponds to a consistent nonhomogeneous linear system Ax = b . In the 

tThis material is based upon the work of Gilbert Strang' ; fer further details. sec "TIle Fundamental 
Theorem of Linear Algebra" Amer;<:<1It Malhemali<'111 Momhl). 100 (1993). pr. 848- 855. 

' Gilbe!1 Strang (1934-) WlS bom in Chicago. Il linois. He reeeil'ed his undergraduate degree from 
MIT in 1955 and was a Rhodes Scholar at Balliol College. Oxford. His Ph.D. was from UCLA in 1959. 
and sioce then he has taught at MIT. He has been a Sloan Fellew (1966-1967) and a Fairchild Scholar 
at the California Institute of Tcdmology ( 1980-1981 ). and he was named a Fellow of the Am~rican 
Academy of Arts and Sciences in 1985. He is a Profcssor of Mathematics at MIT and an Honorary 
Fellow of BaHiol Collegc. Hc was the Presidcnt of SIAM during 1999 and 2000. and Chair of the 
Joint Policy Board for Mathematics. He received the \'On Neumann Medal of thc U.S. As,ociation 
for Computational Mechanics. In 2007. the first Su Buchin Prize from the lntemational Congress 
of Industrial and Applied Mathematics. and the Haimo Prize from the Mathematical Associat ion of 
America. were awarded to hint for his contributions to teaching around the world. Dr. Strang hal been 
an editor for numerous in!1uential journals. publi.hed highly a:claimcd books. and authored onr ISO 
papers. His contributions to Imcar algebra and its applications haw had a broad impact on re,eatch a~ 
well as teaching. 
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EXAMPLE 3 

particular case that x is in the null space of A, the corresponding linear system is 
the homogeneous system Ax = O. 

Lei 

A = [ : 
-~ 

- 2 
- I 

3 

- 3 

4 
2 
5 

o -!J 
Compute the four fundamental vector spaces associated with A and verify Theo­
rem 5.12. 

Solution 
We lirst transform A to reduced row echelon form. obtaining (verify) 

B ~ [~ 
0 7 2 

~l I 3 
0 0 0 
0 0 0 

Solving the linear system Bx = 0, we find (verify) that 

is a basis for the null space o f A. Moreover, 

T ~ I[I 0 7 2 4].[0 3 III 
is a basis for the row space of A. Since the vectors in Sand T arc orthogonal, 
it follows that S is a basis for the orthogonal complement of the row space of A. 
where we take the vectors in S as row vectors . Next, 

Solving the linear system AT x = 0, we find (verify) that 



EXAMPLE 4 
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is a basis fo r thc null space of AT. Transforming AT to reduced row echelon faml, 
we obtain (verify) 

o - 2 

o 0 
o 0 
o 0 

Then thc nonzero rows of C, read vertically, yield the following basis for the col­
umn space of A: 

Since the vectors in 5 ' and r ' are orthogonal, it follows that 5 ' is a basis for the 
orthogonal complement of the column space of A. • 

Find a basis for thc orthogonal complement of Ihc subspace IV of Rs spanned by 
the vectors 

W I = [2 - I 0 2] . w, ~ [I 3 - 2 - 4]. 

w, ~ [3 2 - I - 2]. W4 = [7 7 3 - 4 - 8]. 

Ws = [I - 4 - I - I - 2]. 

Solution 1 
LeI U = [{/ IJ c de] be an arbitrary vector in W.L. Since u is orthogonal to 
each oflhe given vectors spanning IV, we have a linear system of five equations in 
five unknowns, whose cocHicient matrix is (verify) 

- I 
3 
2 
7 

- 4 

0 

3 

- I 

-~l - 2 
- I - 2 . 
- 4 - 8 
- I - 2 

Solving the homogeneous system Ax = 0, we obtain the following basis for the 
solution spaee (verify): 

, 
0 -, , 
0 -, 

S ~ 0 

0 - 2 

0 

These vectors, taken in horizontal form, provide a basis for W-L. 
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Null space 
of A 

, " , 

EXAMPLE S 

",' Row space 
" of A , , 

, , , 

,)H-- - y 
, " 

Column space 
of A 

FIGURE S.24 

Solution 2 
Form the matrix whose rows are the given vectors. Thi s matrix is A as shown in 
Solution I, so the row space of A is W. By Theorem 5.12, Wi. is the null space of 
A. Th us we obtain the same basis for Wi. as in Solution I. • 

The following example will be used to geomelrically illustrate Theorem 5.12: 

Lei 
- I 

Transforming A to reduced row echelon form, we obtai n 

[~ : l] 
so the row space of A isa two-dimensional subspace of R3- that is, a plane passing 
through the origin- wilh basis 1( 1.0, I ). (0. I. 1)1 . The null space of A is a one­
dimensional subspace of RJ with basis 

(veri fy). Since this basis vector is orthogonal to the two basis vectors for the row 
space of A just given, the null space of A is orthogonal to the row space of A: that 
is. the null space of A is the orthogonal complement of the row space of A. 

Next, transforming AT to reduced row echelon limn, we have 

[~ : i] 
(verify). It follows that 

I[=i]l 
is a basis fo r the null space of AT (verify). Hence the null space of AT is a line 
through the origin. Moreover, 

is a basis for the column space of AT (verify), so the column space of AT is a plane 
through the origin. Since every bas is vector for the null space of AT is orthogonal 
to every basis vector for the column space of AT, we conclude that the null space 
of A T is the orthogonal complement of the column space of AT. These results are 
illustrated in Fi gure 5.24. • 



w 

FIGURE 5.25 

FIGURE 5.19 {relabeledl 
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• Projections and Applications 

In Theorem 5.10 and in the Remark following the theorem, we have shown that if 
IV is a finite-dimensional subspace of an inner product space V with orthonormal 
basis 1WI. W2 .. .. . wml and v is any vector in V, then there exist unique vectors w 
in Wand u in W.L such that 

V = w + u. 

Moreover. as we saw in Equation (I), 

which is called the orthogonal projection of v on IV and is denoted by projwv. In 
Figure 5.25, we illustrate Theorem 5.10 when IV is a two-dimensional subspace 
of R3 (a plane through the origin). 

Often. an orthonormal basis has many fractions. so it is helpful to also have a 
fannula giving projw v when IV has an orthogonal basis. In Exercise 29, we ask 
you to show that if {WI. W2 ..... wm} is an orthogonal basis for IV. then 

Remark The G ram- Schmidt process described in Theorem 5.6 can be rephrased 
in terms of projections at each step. Thus, Figure 5.19 (the first step in the Gram­
Schmidt process) can be relabeled as follows: 

Let IV be the two-dimensional subspace of R3 with orthonormal basis {W I. W1), 

where 

2 I 

3 Ji 

W I = and W 2 = 0 
3 

2 I 

3 Ji 



342 Chapler 5 Inner Product Spaces 

EXAMPLE 7 

Using the standard inner product on R 3
, find the orthogonal projection of 

on IV and the vector u that is onhogonalto every vector in IV. 

Solution 
From Equation (I), we have 

on" 

• 
It is clear from Figure 5.25 that the distance from v to the plane IV is given by 

the length of the vector u = v - w. that is, by 

Ilv - proj"vll· 
We prove this result. in general, in Theorem 5. [3. 

Let IV be the subspace of R 3 defi ned in Example 6 and let v = 
distance from v to W. 

Solution 
We first compute 

Then 

[I] [1%] [fi] v - proJ\\'v = ~ -~ = _~ 

ond 

m Find'h' 

J 25 400 25 [5 5 
Ilv - proj wvll = ~,+ ~, + ~~ = -h = -h. 

18- 18- [8- 18 6 

so the d istance from v to IV is ~ ,fi. • 
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In Example 7, Ilv - projwv ll represented the distance in 3-space from v to 
the plane W. We can generali ze this notio n of distance from a vector in V to a 
subspace W o f V. We can show that the vector in W that is closest to v is in fact 
proj wv, so II ' > - projw" 11 represents the di stance from v to W . 

Theorem 5.13 Let W be a finite-dimensional subspace of the inner product space V. Then, for 
vector v belonging to V, the vector in W closest to v is projw v. That is, Ilv - wll, 
for w belonging to W , is minimized when w = proj lV v. 

Proof 

Let w be any vector in W. Then 

Since w and proj wv are both in W, proj wv - w is in W. By Theorem 5. 10, 
v - proj wv is orthogonal to every vector in W , so 

II v - Wll 2 = (v - w, v - w) 

= « v - proj IV v) + (proj wv - w) . (v - projwv) + (proj wv - w)) 

= Ilv - proj wv l11 + Ilproj wv - w112. 

If w =1= proj wv, then II projW V - wf is positive and 

Thus it foll ows that projw v is the vector in W that minimizes Ilv - w ll2 and hence 
minimizes Ilv - wll· • 

10 E,"mplc 6, W ~ pmj"v ~ [t] ,,,hc v<Olo,'o IV ~ ' p'" {w, .w, { 'hOI 

' " Io<c" to v ~ m 
• Fourier Series (Calculus Required) 

I II tlie study of calculus. you JllUst likely eJlcoulI!u ed fUJlctioll s /(1) . wliich had 
derivati ves of all orders at a point t = to. Associated with f(t) is its Taylor series. 
defined by 

~ j (' )(to) t 

L --(t - to) . 
k= O k! 

(4) 

The expression in (4) is called the Taylor series of f al 10 (or about to, or cen­
tered at to) . When to = 0, the Taylor series is called a Maclaurin series. The 
coeffici ents o f Taylor and Maclaurin series expansions involve success ive deriva­
ti ves of the given function evaluated at the center of the expansion. If we take the 
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JEAN BAPT ISTE JOSEPH FO URIER 

fi rst II + I terms of the series in (4). we obtain a Taylor or Maclaurin polynomial 
of degree II that approximates the given function. 

The function f(t) = It 1 does not have a Tay lor series expansion at to = 0 (a 
Maclaurin series), because .r does not have a derivative at I = O. Thus there is 
no way to compute the coefficients in such an expansion. The expression in (4) 
is in terms of the functions I. I. 12. . However. it is possible to fi nd a series 
expansion for such a function by using a di fferent type of expansion. One such 
importanl expansion involves the set of fu nctions 

I. COS I. sin l . COS 21. sin 21 . cos II I. sin III. 

which we discussed brieny in Example 14 of Section 5.3. The French mathemati­
cian Jean Baptiste Joseph Fourier· showed that every fu nction f (contin uolls or 
not) that is defined on [ -Jr. Jr 1 can be represented by a series of the fo rm 

!ao + {lJ cos I + {ll COS2l + . . . + {I" cos III 

+ bJ sin l + b2sin 21 + .. . + !In sin III + 

It then follows that every function f (continuous or not) that is defined on [-Jr . JT 1 
can be approximated as closely as we wish by a functio n of the form 

~ao + {II cos I + {II cos 21 + .. . + arl cos III 

+hJ sin l + b2sin2l + . ··+ h ll sin lit 
(5) 

for II sufficiently large. The fu nction in (5) is called a t r igonometric polynomial. 
and if all and hll arc both nonzero. we say that its degree is II. The topic of Fourier 
series is beyond the scope of thi s book. We limit ourselves to a brief discussion on 
how to obtain the best approximation of a function by trigonometric poly nomials. 

' Jean Baplisle Joseph Fourier (\768-- 1830) was born in Aaxere. France. His falher was a lailor. 
Fourier reeeived much of his early education in Ihe local mililary scllool. whicll was run by the Bene· 
dictine order. and at 100 age of 19 he decided to siudy for Ihe priesthood. His strong intereSi in mathe· 
malics. which started de veloping al the age of 13. conlinued '>Ihite he siudied for Ihe priestllood. Two 
years taler. he decided not 10 lake his religious mws and became a Icacllcr allilc mililary school whcre 
he !'md studied. 

Fourier was aClil'e in Fxncll polilics Ihroughoul Ihe French Revolulion and Ihe lurbulenl period 
Ihat followed. [n 1795. he was appoinled 10 a chair al the prestigious Ecole Polylechnique. [n 1798. 
Fourier. as a scienlitic advisor. accompanied Napoleon in his invasion of Egypl. Upon reluming 10 
France. Fourier sCI"ved for 12 yean; as prefect of the departmelll oJ [s~re and livcJ in Grenoble. During 
Ihis period he did his pioneering work on the theory ofhetll. In this work he showed Ilial every fU:1Ction 
can be represenied by a series of Iril:OnOmelric polynomials. Such a series is now called a Fourier 
series. He died in Paris in 1830. 
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It is not difficult 10 show that 

i:1dt = 21T, ]" 
_" sinnl dt = D, i: caslI/tlt = 0, 

i: sinlll sinmfdr = 0 (/I =/= 111), ]" 
_" cosn! cosmltir = 0 (/I =/=m) , 

i: sinn! cosm flil = 0 (1/ 1= 11/), ] " sin n! sin IIf tir = Jr . 

-" i: COS lit cosllfdr = Jr . 

(H im: Use your favorite computer algebra system.) 
LeI V be the vector space of real-valued conti nuous functions on r - Jr . l71. If 

f and g belong to V, then U, g) = f::'" JCt)g( f ldt defines an inner product on 
V, as in Example 14 of Section 5.3. These relations show that the following sel of 
vectors is an orthonormal set in V : 

Now 

I 
.jii cos I . 

I . 
jiTSLnT. 

I 
..;;rcaslI! . 

I I 
,fir cos2t . ,fir sin 21. 

I . ,;;r smn! . 

f [I [ I I 
W = span l ,fiii ' jKeast . ,jIisint . ..;;r cos 2t . .jiisin 2t. 

I I ) j7i cos IIf. ,j7i sin /If 

. ... 

. ... 

is a finite-dimensional subspace o f V. Theore m 5.13 implies thaI the besL approx­
imation LO a given function f in V by a trigonometric polynomial of degree 1/ 

is given by proj w/, the projection o f / onto W. This polynomial is called the 
Fourier polynomial of degree 11 for f. 

Find Fourier polynomials o f degrees I and 3 for the function /(/) = It l. 

Solution 
First, we compute the Fourier polynomial of degree 1. Using Theorem 5.10. we 
can compute projwv for v = It I, as 

projw lt l = ( It l. ~) ~ + ( If I. ~ cos t) ~ cost 

+ ( It l. ~ sint) ~ si nt. 
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We have 

ond 

Then 

( II I, ~) ~ 1" III ~dl 
V 2r. -1r " 2n 

I 1" I 1" ~, ~ -- - ttlt + --= ttlt = --, 
.Jii -1r .J2lr 0 j2;r 

( I ) 1" I It l . .jii cost = -1r It l .jii cos tdt 

= ~ i: - tcoSltll + ~ 1" I COS f tit 

2 2 4 
~ - .;rr - .;rr ~ - .;rr 

= In i: - t sin {dt + ~ 1" t sin t tit 

= - .jii +.jii = o. 

n 2 [ 4 [ n 4 
proj wlt l = ~ ~ - '- '- cost = - - - cost. 

v2JT v2JT 'In 'In 2 lr 

Next, we compute the Fourier polynomial of degree 3. By Theorem 5. 10, 

proj wlt l = ( It l. ~) ~ 

We have 

+ ( It l. '<~ cost) ~ cost + ( It l. ~ sint) ~ sinl 

+ ( It l. ,,~ cos2t) ~ cos2t + ( It l. ~ sin2t) ~ sin 2t 

+ ( It l' ,,~ COS3t) )n cos3t + ( It l' Jrr Sin3t) ~ sin 3t. 

1" I 
It I r.: cos2tdt = 0. 

_" yn 

1" I 4 
II I ,-cm3tdt= - r.:' 

_,. 'I n Yv tr 

1" I 
_" It I j1i sin 2tdl = 0. 

1" I 
It I r= sin 3t dt = O. 

_" v rt 
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I. Let W be the subspace of R.1 spanned by the vector 

(3) Find a basis for W.i . 

(h) I)<"scri~ W.i eeomerric~lIy (Yorr m~y rr~e ~ vernal 
or pictorial description.) 

2. Let 

IV ~ 'P'" I [J . [-n I 
(3) Find a basis for W.i. 

(b ) Describe W.i geometrically. (You may use a verbal 
or pictorial description.) 

3. Let \V be the subspace of Rs spanned by the vectors 1-1',. 
W 1. 1-1', . 1-1'4. I-I's. where 

1-1' 1=[2 - I 3 0]. 

1-1'2 = [I 2 0 - 2]. 

1-1'3 = [4 3 5 - 4]. 
1-1'4 = [3 2 - I I). 
I-I's = [2 - I 2 - 2 3]. 

Find a basis for W.i. 

4. Let \V be the subspace of R4 spanned by the vectors 1-1'1. 
W 1. 1-1', . \\'4. where 

Find a basis for \V .i. 

5. (Ca lclllus Required). Let V be the Euclidean space 1'3 
with the inner proouct defined in Example 2. Let \V be 
the subspace of 1') spanned by II - I. I"). Find a basis 
for \V.i. 

6. Let V be the Euclidean space 1'4 with the inner proo­
uct defined in Example 2. Let W be the subspace of p~ 
spanned by (I. f). Find a basis for W.i. 

7. Let W be the plane 3.r +2)' - ~ =0 in R}. Find a basis 
for W.i. 

8. Let V be the Euclidean space of all 2 x 2 matrices with 
the inner proouct defined by (A. 8 ) = 1'r(8 T A). where 
1'r is the trace function defined in Exercise 43 of Section 
1.3. Let 

-I] [I ']1 3 . 0 - I . 

Find a basis for \V.i . 

III Exaci!le!l 9 alld 10, cOlllpllfe Ihe jOllr fillldwlIl'lila/ll'cfOr 

!lpace!l aJ.I·ociafed lI'ilh A IIl1d rerify Theorem 5.12. 

A ~ [i 5 3 

-l] 9. 0 -, 
7 - I 

10 A ~ [~ 
- I 3 

-lJ - 3 7 

- 2 
4 - 9 

III ExerciJe.l· II throllgh /4,jilld projwv jor Ihe gil'ell I'ector v 
(llid slIhspace \V. 

II. Let V be the Euclidean space R' . and W the sub>pace 
with basis 

12. Let V be the Euclidean space R4. and IV the sub>pace 
with basis 

[ 1 0 I]. [0 0]'[ - 1 0 0 I]. 

(oj , ~ [2 3 0] 

(hi ,~ [0 - I 0] 

«i ,~ [0 2 0 3] 



13. Let V be the vector space of real· valued continuous func· 
tions on [ - Jr. It J. and let IV = span (I. cos I. sin I). 

(a) v = 1 (b) v = 12 (e) v = 1" 

14. Let IV be the plane in R3 given by the equation 
x+ )"- 2:;:=0. 

(3 ) 

15. Let IV be the subspncc of Rl wilh ol1hononnnl basis 
[WI. W2\, where 

Write the vector 

as w + u . with w in IV and u in \V.i. 

, 
J5 

2 

J5 

16. Let \V be the subspace of R4 with otthonormal basis 
[WI. ',1,'2. W3}. where 

w, 

, 
Ji 
o 

Writt: tht: vt:(;tor 

[ ~l ~J 

as w + u with w in IV and u ia IV.i . 

~l 

iJ 

17. Let IV be the subspace of continuous functions on 
[- Jr. It] defined in Exercise 13. Write the vector v 
I - I as w + u.with w in IV and u in IV.i. 
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18. Let IV be the plane in R3 given by the equation x - )" -

, ~ o. W,;."h","'" ~ [ -~] "w + U, w;.h w ;, 

IV and u in W .i. 

19. Let IV be the subspace of Rl defined in Exercise 15. and ,,, , ~ [ -~ 1 F;,d .h, d;,,,,,, fmrn "0 IV. 

20. Let IV be the subspace of R4 defined in Exercise 16. and 

,,, ' ~ [ -tl F;"d.h,d;",,,,, fmrn "0 IV. 

21. Let IV be the subspace of continuous functions on 
[ - J"[. It[ defined in Exercise 13 and let v = I. Find the 
distance from v to IV 

III Exercise.l· 22 {llId 23, find the f"tJllrier polynomial of degree 
2ior I . 
22. (Calculus Required ) I(t) = 12 . 

23. (Calclllll s Requireti) 1(1) = 1". 

24. Show that if V is an itmer product space and IV is II sub· 
space of V, then the zero vector of V belongs to IV!.. 

25. Let V be an inner product space. Show that the otthog. 
onal complement of V is the zero subspace and the or· 
thogonal complement of the zero subspace is V itself. 

26. Show Ihal if IV is a Hlbspace of an inner product . pace 
V that is spanned by a set of vectors S. then a vector u in 
V belongs to IV!. if and only if u is orthogonal to every 
vector in S. 

27. Let A be an //I x II matrix. Show that every vector \' in 
R" can be written uniquely as ',I,' + u , where ',I,' is in the 
null space of A and u is in the column space of AT. 

28. Let V be a Euclidean space, and IV a sub.>pace 
of V. Show that if WI. W2 ..... W, is a basis 
for IV and UI. U2 . .. .. U, is a basis for IV!. , then 
WI. W z •.•.• Wr • UI . U2 • • ... U s is a basis for V. lind thm 
dimV =dimIV+dimIV.i . 

29. Let IV be a subspace of an inner product space V and let 
{WI. w, .. . .. w/O J be an otthogonal basis for IV. Show 
that if v is any vector in V. then 

. ( II . WI) ( II . W2) 
proJ wll = (WI. WI) WI + (W2. ',1,' 2) ',1,'2 + . . 

(II . W,n) 
+ (W", . W/O ) ',1,' ", . 
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FIGURE 5.29 

m Least Squares (Optional) 

From Chapter I we recall that an 11/ x /I linear system Ax = b is inconsistent if it 
has no solut ion. In the proof of Theorem 4.21 in Section 4.9 we show that Ax = b 
is consistent if and only if b belongs to Ihe column space of A. Equi valentl y, 
Ax = b is inconsistent if and only if b is I/ot in the column space o f A. I.nconsistent 
systems do indeed arise in many situations. and we must determine how 10 deal 
with them. OUf approach is to change the problem so that we do not require Ihe 
matrix equation Ax = b to be satisfied . Instead, we seek a vector x in R" such thaI 
Ax is as close to b as possible. 

If W is the column space of A. then from Theorem 5.13 in Section 5.5, it 
follows that the vector in W that is closest 10 b is proj wb. That is, lib - wll. fo r w 
in W. is mini mized when w = projw b. Thus. if we fin d xsuch that Ax = proj wb. 
then we are assured that lib - Axil will be as small as possible. As shown in the 
proof of Theorem 5.13, b - proj wb = b - Axis onhogonal to every vector in W. 
(Sec Figure 5.29.) It then follows that b - Ax is orthogonal to each column of A. 
[n terms of a matri x equation , we have 

or equivalently, 

(I) 

Any solution to (I) is called a least squares solution to the linear system Ax = b. 
(Warning: In general, Ax i= b.) Equation (I) is called the normal system of 
equations associated with Ax = b, or simply, the nomlal system. Observe that 
if A is nonsi ngular. a least squares solution to Ax = b is just the usual solution 
x = A-1 b (sec Exercise I). 

b 

w 

IV '" Column space of A. 

To compute a least squares solution xto the linear system Ax = b, we can pro­
ceed as follows. Compute proj wb by using Equmion (I) in Section 5.5 and then 
solve Ax = proj wb. To compute projw b requires that we have an orthonormal 
basis for W , the column space of A. We could first find a basis for W by determin­
ing the reduced row echelon fo rm of AT and taking the transposes of the nonzero 
rows. Next, apply the Gram- Schmidt process to the basis to find an orthonormal 
basis for W. The procedure just outlined is theoretically valid when we assume 
that exact arithmetic is used. However, even small numerical errors, due to, say, 
roundoff. may adversely affect the results. Thus more sophisticated algorithms are 
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required fo r numerical applications. Wc shall not pursuc thc gcncral casc hcre, but 
tum our attention to an important special case. 

Remark A n alternative method for finding proj \l' b is as follows. Solve Equation 
( I) for X, the least squares solution to the linear system Ax = b . Then Ax will be 
proj II' b . 

Theorem 5.14 If A is an In x /I matrix with rank A = II. thcn A 7 A is nonsingular and thc linear 
system Ax = b has a unique least squarcs solution given by x = (A 7 A)- l A 7h. 

EXAMPLE 1 

Proof 

If A has rank /I, then the columns of A are linearly indepcndent. The matrix A ' A is 
nonsingular, providcd that the linear system A 7 Ax = 0 has only the zero solution. 
Multiplying both sides of A T Ax = 0 by x7 on the left givcs 

0 = x T A T Ax = (A X)T (Ax) = (A x. Ax) . 

when we usc thc standard inner product on R". It follows from Definition 5.1 (a) 
in Section 5.3 thaI Ax = O. But Ihis implies Ihal we have a linear combination 
o f the linearl y independent columns of A that is zero; hence x = O. Thus A 7 A is 
nonsingular, and Equation (I) has the unique solution x = ( A T A)- l A Tb. • 

Dctennine a least squares solution to Ax = b , where 

, - I 3 
2 2 5 

A ~ 
- 2 3 4 

b ~ 
- 2 

4 2 0 
0 , 3 3 

- I 2 0 5 

Solution 
Using row reduction, we can show that rank A = 4 (veri fy). Then using Theorem 
5. [4, wc fonn the nonnal system AT Ax = A Tb (verify), 

[ '~ - I 
5 

5 - I 
23 13 
13 24 
17 6 

5] ['4] [7 ~ 4 
6 x = [0 . 

23 20 

Applying Gaussian eliminat ion. we have the unique least squares solution (verify) 

[ 

0.9990] 
~ - 2.0643 
x ~ 1.l039' 

1.8902 
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EXAMPLE 2 

If W is thc column space of A, then (verify) 

proj ll' b = Ax ;:::: 

1.4371 

4.8181 
- 1.8852 

0.9713 
2.6459 

5.2712 

which is Ihe vector in W such that lib - yll, y in W, is minimized. That is, 

min IIh - wil = lib - Axil. 
yin W • 

When A is an III XII matrix whose rank is /I, it is computationally more efficient 
to solve Equation (I) by Gaussian elimination than to determine ( A T A)-l and 
then fO fm the product (A T A)-l Ar b. An even bettcr approach is to use the QR­
factorization of A, as follows: 

Suppose that A = QR is a QR-faclorizalion of A. Substituting this expres­
sion for A into Equation ( I), we obtain 

(QR)' (QR)x ~ (QR,'b. 

RT( Q TQ) Rx = R TQTb . 

Since the columns of Q fo rm an orthononnal set. we have Q T Q = In" so 

Since RT is a nonsingular matrix, we obtain 

Using Ihc L1Ct that R is upper triangular, we readily solve this linear system by 
back substitution. 

Solve Example I by using the Q R-factori zation of A. 

Solution 
We use the Gram- Schmidt process, carryi ng OUI all computations in M ATLAB . We 
find that Q is given by (verify) 

- 0.[961 - 0.385 1 0.5099 0.3409 
- 0.3922 - 0.1 311 - 0.1768 0.4244 

Q ~ 
0.3922 - 0.72[0 - 0.4733 - 0.2177 

- 0.7845 - 0.2622 - 0.1041 - 0.5076 
0 - 0.4260 0.0492 0.4839 

- 0.[961 0.2540 - 0.6867 0.4055 
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and R is given by (veri fy) 

[ - 50990 - 0.9806 0.1961 - 09806] 
R = 0 

- 4.6945 - 2.8102 -3.4164 

0 0 - 4.0081 0.8504 . 

0 0 0 3.1054 

Then 

[ 

4.7068 ] 
T - 0.1311 

Q b = 2.8172' 

5.8699 

Finally, solving 
Rx = QT h. 

we find (verify) exactly the same x as in the solution to Example I. • 
Remark As we have already observed in our discussion of the Q R-factorization 
of a matrix. if you use a computer program such as M ATLAB to find a Q R­
factorization of A in Example 2. you will fi nd that the program yields Q as a 
6 x 6 matrix whose first four columns agree with the Q found in our solution, and 
R as a 6 x 4 matrix whose fi rst fou r rows agree with the R found in Ollr solution 
and whose last two rows consist entirely of zeros. 

Least squares problems often arise when we try to construct a mathematical 
model of the form 

Y(I) = XI II (1) + x2/2 (I) + .. . + x,J,,(I ) (2) 

to a data set D = {(Ii . Yi) . i = 1.2 ..... ml.wherem > II. Ideall y. we would like 
to determine XI. X2 • ...• X " such that 

for each data point I i , i = I. 2 .... . m. In matrix form we have the linear system 
Ax = b. where 

[t' (I,) 12(11) [,,(1,) ] 
II (12) 12(12) [,,(t2) 

A ~ (3) 

II~I"') !2(lm) [":1,,,) 

x = [XI Xl x,,]T . ond b ~ [y, y, ),,,,]T . 

As is o ft en the case, the system Ax = b is inconsistent, so we determine a least 
squares solution x to Ax = b. If we set X i = .fi in the model equation (2), we say 
that 

H I) = .fIII(I) + .f2h(t) + ... +.f"I,, (t) 

gives a least squares model for data set D. In general, Hri) 1= )'i . i = 1.2 . .... m. 
(They may be equal, blilthere is no guarantee.) Lete; = )';-Y(1;) . i = I. 2 . .. .. m, 
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EXAMPLE 3 

which represents the error incurred at t ; when yet) is used as a mathematical model 
for data sct D. If 

then 

e = b - Ax. 

and Theorem 5.13 in Section 5.5 guarantees that lI e ll 
possible. ThaI is, 

lib - Axil is as small as 

m [ " ] ' Ile ll" = (e. e) = (b - Ax. b - AX) = L )'i - L""j/) U,) 
/ = ) J= l 

is minimized. We say that x. the least squares sol ut ion, mini mizes Ihc sum of the 
squares o f the deviation; between the observations)'; and the values y(r,) predicted 
by the model equatio n. 

The following data show atmospheric pollutants Yi (relative 10 an EPA standard) 
at half-hour intervals I i: 

A plot of these data points, as shown in Fi gure 5.30, suggests that a quadratic 
polynomial 

may produce a good model for these data. With I I (1) I. [,(t) 1, and 
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b(t) = 12. Equat ion (3) gives 

- 0.[5 
1.5 2.25 0.24 
2 4 0.68 
2.5 6.25 

[H 
1.04 

A ~ 3 9 x= b ~ 1.21 
3.5 12.25 ' ; 1.15 
4 16 0.86 
4.5 20.25 0.41 
5 25 - 0.08 

The rank of A is 3 (verify). and the normal system is 

[ 

9 27 
27 96 
96 378 

96 ] [.,,] [5.36] 
378 x" = 16.71 . 

[583.25.\'3 54.65 

Applying Gaussian elimination gives (verify) 

~ [ - 1.9317] 
x ~ 2.0067 , 

- 0.3274 

so we obtain the quadratic polynomia[ model 

Y(I) = - 1.93 17 + 2.00671 - 0.32741 2. 

Figure 5.3 [ shows the data set indicated with + and a graph of yet ) . We see that 
yet ) is close to each data point. blll is not required to go through the data. • 

>.5 

+ 

o 2 4 6 

- 0.5 
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Key Terms 
i nconsislenl iinear system 
Least squares solution 

Nannai system of equations 
Projection 

Q "'-factorization 

_,.W Exercises 

l. Let A be II X II and nonsingular. From the normal system 
of equations in (I), show thaI Ihe least squares solution 
lo Ax=b is x =A - 1b. 

2. Determine Ihe leasl squares solution \0 Ax = b, where 

[ ; ~] m.d b~[ :] 
-~ -: -~ 

3. Determine Ihe least squares solution to Ax = b. where 

2 
3 
5 
o 
n 
:J 

4. Solve Exercise 2. using QR-factorization of A . 

5. Solve Exercise 3, using QR-factorization of A. 

6. In Ihe manufacture of product Z. the amount of com­
pound A present in the prOOucl is controlled by the 
amount of ingredient B used in the refining process. In 
manufacturing a liler of Z. the amount of B used and the 
amount of A present are recorded. The following data 
were obtained: 

BUsed 
(gramsRiter) 2 4 6 8 10 

A Presellt 
(grall/slliter) 3.5 8.2 10.5 12.9 14.6 

Determine the least squares line to the data. [In Equation 
(2), llse [1(1) = I. 12(1) = I.] Also compute Ile li. 

7. In Exercise 6, the least squares line to the data set D = 
1(1;. yd . i = I. 2 ..... Ill} is the line)" = .il +;2t. which 
minimizes . 

E l = 2)Y; - (X l + X11;)f. 

;=1 

Similarly, the least squares quadratic (see Example 2) to 
[he data set D is the pambola y = .il +.i21 + .1-;12, which 

minimizes . 
f~1 = L [ Y; - (T J + T!I; + T3f} )]2 

;=1 

Gille a vector space argument to show that E2 .::: £1 . 

8. The accompanying table is a sample set of seasonal fann 
employment data (ti.y;) over about a two-year period. 
where t, represents months and )"1 represents millions of 
people. A plot of the data is gillen in the figure. It is de­
cided to develop a leJst squares mathematical model of 
the form 

)"(1) = XI + x2t + X3 cos I. 

Determine the least ,quares model. Plot the resulting 
function y(t) and the data set on the same coordinate sys­
tem. 

'. y. " J; 

3.1 3.7 11.8 5.0 

4.3 4.4 13.1 5.0 

5.6 5.3 14.3 3.8 

6.8 5.2 15.6 2.8 

8.1 4.0 16.8 3.3 

9.3 3.6 18.1 4.5 

10.6 3.6 

7 

6 

5 ++ + + 
+ + 

4 + + + ++ 
J 

+ 
+ 

2 

10 15 20 



9. Given Ax = b. where 

A~ [; ! =~] 
o - I 2 

I 2-1 

(a) Show that rank A = 2. 

and 

(h) Since rank A 1- number of columns. Theorem 5.14 
cannot be used to detennine a least squares solution 
x. Follow the general procedure as discussed prior 
to Theorem 5.14 to find a least squares solution. Is 
the solution unique? 

10. The following data showing U.S. per capita health care 
expenditures (in dollars) is available from the National 
Center for Health Statistics (hnp:llwww/cdc.gov/nchsl 
hus.htm) in the 2002 Chanbook on Trends in the Health 
of Americans. 

Year Per Cap ila Expendilllres (i/l $) 

1960 143 

1970 348 

1980 1.067 

1990 2.738 

1995 3.698 

1998 4.098 

1999 4.302 

2000 4.560 

2001 4.914 

2002 5.317 

(a) Detennine the line of best fit to the given data. 

(h) Predict the per capita expenditure for the years 2008, 
2010, and 2015. 

II. The following data show the size of the U.S. debt 
per capita (in dollars). This infonnation was con· 
structed from federal government data on public debt 
(hnp:llwww.publicdebt.treas.gov/opd/opd.htm#history) 
and (estimated) population data (hnp:llwww.census. 
gov. popest/archives/). 

(a ) Determine the line of best fit to the given data. 

(h) Predict the debt per capita for the years 2008. 2010. 
and 2015. 
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Year Debl per Capila (i/l $) 

1996 20.070 

1997 20.548 

1998 20.774 

1999 21.182 

2000 20.065 

2001 20,874 

2002 22.274 

2003 24.077 

2004 25.868 

2005 27.430 

12. For the data in Exercise II, find the least squares 
quadratic polynomial approximation. Compare this 
model with that obtained in Exercise II by computing 
the error in each case 

13. Gauge is a measure of shotgun bore. Gauge numbers 
originally referred 10 the number of lead balls with the di· 
ameter equal 10 that of the gun barrel that could be made 
from a pound of lead. Thus, a 16.gauge shotgun's bore 
was smaller than a 12-gauge shotgun's. (Ref.. Tht' lVorid 
Aimwll./c alld Book of Facf.l· 1993, Pharos Books. NY. 
1992, p. 290.) Today. an international agreement assigns 
millimeter measures to each gauge. The following table 
gives such infonnatiOil for popular gauges of shotguns: 

x y 

Gaflge Bore Diameter (i/l mm) 

6 23.34 

iO 19.67 

12 18.52 

14 17.60 

16 16.81 

20 15.90 

We would like to develop a model of the fonn y = reH 

for the data in this table. By taking the natural logarithm 
of both sides in this expression. we obtain 

In y = Inr +.\·x. (.) 

Let C I = In rand ("2 = s. Substituting the data from the 
table in Equation (*). we obtain a linear system of six 
equations in two unknowns. 

(a ) Show that this system is inconsistent. 

(b) Find its least squares solution. 
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(l.") Determine rand l. 

(d) Estimate the bore diameter for an IS-gauge shotgun. 

.!. 14. In some software programs, the command for soh'ing a 
linear system produces a least squares solution when the 

• Supplementary Exercises 

I. Exerdsc 33 of Section SA proves that the sct of all vec­
tors in R~ that are orthogonal to a fixed vector u forms 

,,"b<p'" of R" . Fo, " ~ [ -i]' fio d '" ""hogo",' 

basis for the sub ~pace of vectors in Rl that are orthogo­
nal to u . IHiw' Solve the linear ~yMem (u . v) = O. when 

[

X, ] 
v = ~: .1 

2. Use the GrJm- Schmidt process to find an orthonomlal ba­
.is for the subspace of R4 with basis 

I UlhH~] 1 
] , Gh'en the orthononnal basis 

, 
o ,f2 

o 

o 
, 

,f2 

for RJ , wri te the veClor 

as a linear combin:lIion of Ihe vectors in S. 

4, Use the Gram- Schmidt process to find an orthonormal ba­
sis for the subspace of R4 with basis 

cocffident matrix is nOi square or is nonsingular. Deter­
mine whether this is the casc in your software. If it is. 
compare your software 's output with the solution given 
in Example I. To expcriment further, usc Exercise 9. 

5. Given vec tor v = i + lj + k and the plane P detennined 
by the vectors 

W I = i - 3j - 2k and w2=3i - j -3k. 

find the vector in P c losest 10 v and the distance from v to 
P. 

6. Find the distance from the point (2.3. - J) to the plane 
3x - 2)' + z = O. (H im: First find an orthonormal basis 
for the plnne.) 

7. Consider the veClor space of continuous real-valued func­
tions on [0. 7f[ with an inner product defined by (/.8) = 
f~~ /(1)8(1)(/1. Show that the collection of functions 
sin III. for /I = I. 2 .. .. . is an orlhogonal set. 

8, Let V be the inner product space defined in Exer­
dse 13 o f Scction 5.5. In (a) th rough (c) let IV be 
the subspace spanned by the given orthonOffilal vec tors 
W j . W2 •...• W~. Find pro;"," . for the vector , . in V. 

• I I . 
(a) \ '= I + I ", W j= .jiiCOSI. Wz= .;;rsm21 

(b) 

«) 

, I I . 
,'=sinF· wl = .J2ii, wz= .;;rsm l 

, , 
\'=COS1/ " 1 = t::O, wz= ,-COS/. 

..... 27f ..... rr , 
WJ= ,-cm21 

"rr 
9. Find an onhonormal basis for each null ~pace of A. 

(a) A = [~ 0 _ ~ =;] 
(b) A = [~ o 5 

- 2 -!] 
10. Find the QR-factorizmio!l for each given malrix A. 

(.) [-; ; -iJ (b) [=; -iJ 
" Leo IV ~'P'" mHm ,,, R' 

(a) Find a basis for the orlhogonal complement of IV. 



(b) Show .h" ""w~ [~J [!J ~d .he b,,'donh, 

orthogonal complement of IV from part (a) form a 
basis for Rl . 

(c) Express each of the given vectors v as w + u , where 
w is in IV and u is in \V.i, 

12. Find the orthogonal complement orthe null space of A. 

[i - 2 

n (a) A = 3 
- I 

(bJ A ~ U - I 3 

-n -, 7 

2 
13. Use the Gram-Schmidt process 10 flUd an orthonormal 

basis for 1'2 with respect to the inner product (f, g) = 

f~ l f(t)g(l)dt. starting with Ihe standard basis jl. I. /2) 
for 1'2. The polynomials thus obtained are called Ihe l eg­
endre ' polynomials. 

14. Using Ihe Legendre polynomials from Exercise 13 as an 
orthononnal basis for 1'2 considered as a subspace of 
the vector space of real-valued continuous functions on 
[- I. 1], find projp' v for each af the following: 

(b)v=sinlf/ (c) v = COSJTl 

15. Using the Legendre polynomials from Exercise 13 as an 
orthonomlal basis for Pl considered as a subspace of 
lhe vector space of real-valued continuous functions on 
[- I. 11. find the distance from \. = I ' + 1 to 1'2. 

16. Let V be the inner product space of real-valued continu-

-
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ous functions on [-1r. Jt 1 with inner product defined by 
(j. g) = r~ !(t)g(l)dl. (See Exercise 13 in Section 
4.5.) Find the distance between sin/IX and COSIILL 

17. Let A be an /I x I! symmetric matrix. and suppose that R" 
has the standard inner product. Prove that if (u . Au) = 
(u . u) for all u in R". Ihen A = /". 

18. An /I x /I symmetric matri x A is posith'e semidefinite if 
xT Ax 2: 0 for all x in N". Prove the following: 

(a) Every positive definite matrix is posilive semidefi­
nile. 

(b) If A is singular and positive semidefinite. then A is 
not positive defilllle. 

(e) A diagonal matrix A is positive semidefinile if and 
only if ai i 2: 0 for i = I. 2 ..... II. 

19. In Chapter 7 Ihe notion of an orlhogonal malrix is dis­
cussed. II is shown thlt an /I x /I matrix /' is orthogonal 
if and only if the columns of P. denoted PI . P2 . .. . . p". 
fonn an orthonormal Oft in Nh

• using the standard inner 
product. Let I' be an orthogonal matrix. 

(a) For x in R". prove thaI 111'.'1: 11 = II xll, using Theorem 
5.7. 

(b) For x and y in R". prove Ihat the angle between Px 
and Py is the same as that between x and y. 

20. Let A be an I! x I! skew symmetric matrix. Prove thaI 
xT Ax = 0 for all x in R". 

21. Let S be an In x /I matrix with orthononnal columns 
b l. b2 ..... b". 

(a] Prove that II! 2: /I 

(b ) Prove that S f S = I". 

22, Let Iu I •.... Ul ' . UN I •...• u") be an orthonormal basis 
for Euclidean space V. S = span { U I •...• Uk ). and T = 
span { Ul -tl •...• u,,}. For any x in S and any y in T. show 
that (x. y) = o. 

'Adrien-Marie Legendre (1752- 1833) was born in Paris ir.!O a wealthy family and died in Paris. 

ADRIEN· MARIE LEG ENDRE 

After teaclling at the Ecole Militaire in Paris for several years, Legendre won a prestigious prize in 
1782 from the Berlin Acadcmy for a paper describing the tmjectory of a projectile. taking into account 
air resistance. He made important contributions to celestial mechanics and number theory and was a 
member of a commission to ,tandardize weights and measures. He was also the codircctor of a major 
project!O produce logarithmic and trigonometric tables. In 1794, Legendre publisbcd a basic text· 
book on geometry tilat enjoyed great popularity in Europe and the United States for about 100 years. 
Legendre also developed the method of least squares for fitting a curve to a given set of data. 
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23. Let V be a Euclidean space and W a subspace of V. Use 
Exercise 28 in Section 5.5 to ~how thaI (Wl.)l. = W. 

24. Let V be a Euclidean space with basis S 
[VI. V2 ..... \'nl. Show that if u is a vector in V that is 
orthogonal to every vector in S. then u = O. 

25. Show that if A is an III x n matrix such that A A r is non­
singular. then rank A = III. 

26. Let u and v be vectors in an inner product space V. If 
{(u - vl. (u + v)) = O. show that Ilu ll = II vl l. 

27. Let S = {VI. Vl ..... v"1 be an onhonormal basis for a 
finite-dimensional inner product space V and let V and w 
be vectors in V with 

Show that 

For ExerL"i.ye.\· 28rhrvllgh JJ. cOllsider rhefollowing illforllla­
I/on: 

A I·ec/or Il orm OIl Nil iI a fimclioll Ihal a.\")"igll.\· 10 em:;h 

rector v in Nn a lIonnegalirl' real number. called the 1I0rm of 
valid denoted by II v ll . . \"(/ti~fying 

(a) I v II ~ O. and Ilvl l = 0 if and only ifv = 0 ; 

(b) I evi l = It; llI vl lfor any rl'al.l"cular c and reclor v: 

(c) l u + vII .::: lI u ll + II vl l forall \'ectOr.\" u a/UI \' (rhe triangle 
hlequalily). 

Therl' are three widely uJed norm.l" in applic(/fion.l" of linear al­
gebra. called the 1-lIorlll . rhe 2-lIorlll . and Ihl' OO- lIorlll and 

Chapter Review 

True or False 

I. The distance between the vectors u and v is the length of 
[heir difference. 

2. The cosine of the angle bemeen the vectors u and v is 
given by U· v. 

3. The length of the vector v is given by v • v. 

4. For any vector v we can find a unit vector in the same 
direction. 

5. The Cauchy- Schwarz inequality implies that the inner 

den/!/ed iJy II Il l. II 112. II I"", respecth'ely, which are defined 
mIollow.\·: Ler 

be a rec/or in H". 

II x lh = Ixli + l·r!1 + ... + Ix" 1 

II x lb = jxi +x; + ... +x; 

Ilxll"" = max{lxll.lx21.· ··.lx" l) 

Obsen·e Ihal Ilx l12 il" rhe Imgth of the I·ector x a.\" defined in 
Section 5. I. 

28. For each given vector in H2. compute II x ll l . Ilxlb . and 

II x ll "". 

(. ) m (b) [ _~] (e)[=~l 
29. For each given vector in R). compute II xl ll. Ilxlb. "d 

II x li oo . 

(. ) [2 -2 3] (b) [0 3 -2] 

(e) [2 0 0] 
30. Verify that II III is a norm. 

31. Verify that II 1100 is a nonn. 

32. Show the following properties: 

(a) II x ll ~ .::: Ilx ll i (b) ~ .::: II xl loo .::: II x ll l 

" 33. Sketch the set of points in R! such that 

(a) II x ll l = I: (b) Ix lb = I: (e) II x ll"" = l. 

product of a pair of \"ectors is less than or equal to the 
product of their lengths. 

6. If v is orthogonal to both u and w. then v is orthogollalto 
every vector in span (u. wI. 

7. An othonormal set can contain the zero vector. 

8. A linearly independent set in an inner product space is 
also an orthononnal set. 

9. Given any set of vectors. the Gram~Schmid t proces.' will 
produce an orthonormal set. 



10. If 

'hco IV";, ,II ,wo" of "" foem [~]. wh,,, , ;, ~y 
real number. 

II. If IV is a subspace of V. then for v in V. proi wv is the 
vector in IV ciosestto v. 

12. If IV is a subspace of V. then for v in V. the vector 
v - projw v is orthogonal to W. 

Qui~ 

I. LeI 

Delermine all Ihe unit vectors l· in UJ so that the angle 
between u and \' is 60°. 

2. Find all vectors in R~ Ihal are orthogonal to both 

3. LeI V be the veclor space of all continuous real-valued 
functions on the interval [0. II. For the inner producl 
(f. g) = f~ /(l)g(l) dl. determine all polynomials of de­
gree I or less that are orthogonal 10 /(t) = 1 + I. 

4. (a) Explain in words whatlhe Cauchy- Schwarl inequal­
ity guarantees for a pair of vectors u and v in an inner 
product space. 

(b ) Briefly explain a primal)' geometric result derived 
from the Cauchy- Schwarl inequality. 

5. Let S = [VI. v!. v31. where 

(a ) Show that S is an orthogonal sel. 

(b) Determine an orthonorm11 set T so thaI span S 
span T. 
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(c) Find a nonzero veclor V4 orthogonal to S and show 
that [VI. V!. V3. V4) is a basis for R~. 

6. LeI S = {UI. u!. u,l . where 

[!] ['] I'] 0 , ~ ! . ° ~ -; . 0 , ~ l j . 
(a) Show that S is an orthonormal baSIS for J(J . 

(b) Express 

as a linearcombinalion of the veclors in S. 

(c) Let V = span[ u l. u!). Detemline the orthogonal 
projection of 

w ~ U] 
onto V and compute the distance from w 10 V. 

7. Use the Gram- Schmidt process to determine an orthonor­
lIIal basis for 

8. Find a basis for the orthogonal complement of 

IV~,p'" l [IJ·m·m l · 
9. LeI S be a set of vectors in a finite-dimensional inner 

product space V. If IV = span S. and S is linearly de­
pendent, then give a Jetailed outline of how to develop 
information for IV and W.i. 

10. LeI V be an inner product space and W a finite­
dimensional subspace of V with orthonormal basis 
(WI. W!. w31 . For u and v in V, prove or disprove Ihal 
proj w(u + v) = projwu + proj wv. 
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Discussion Exercises 

I. Let S = I VI. " 2. , ... V~ I be a basis for a Euclidean space 
V and T = lUI' u ~ ..... U~ ! an orthonormal basis for 
V. For a specified vector w of V provide a discussion 
Ihat contrasts the wo rk inlloh-ed in computing [Yo' ]s and 

[ w], 
2. Let S = \VI' V2' ." . v~ 1 be a set of vec tors in a Eucl idean 

'pace V suc h that span S = V, Provide a discussion that 
nll rli ni" ~ a rrr)("~I IIn' 10 rlC'll'nnine:1II nnhognnal ha~i~ for 
V that uses the set S. 

3. Let Ax = b be a linear system of eq uations. where A 
IS a nonsingular matrix nnd nisume that we have a QR. 
factorization of A; A = Q R. 

[a ) Explnin why r 'J #: O. j = I. 2 ..... Il . 

(b) Exphtin how to sollie the linear system using the Q R · 
f;.tc torization, 

4. Let 

be a vector in R~ such Ihm IUil ~ I. j = I. 2. 

(a) Explain how 10 delemline whether the point corre· 
sponding 10 v li~ wilhin the unil circle centered at 
the origin. 

(b) Suppose thnt ,. and w are vectors in R2 that have their 
corresponding poinls lying within the unit circle cen­
tered at the origin. Explnin how to detennine whether 

the ci rcle centered allhe midpoint o f lhe line segment 
connecting the pointS and having the segment as a di­
ameter lies entirely within Ihe unit circle centered at 
the origin. 

S. Let k be any real number in (0 . I). I.n the following fig­
ures. the function defined on [0. II in (a) is denoted by f 
and in (b) is denoted by g. Both f and g are continuous 
on [0. I]. Discuss the inner product of f and g using the 
inner product delined!ll Example 4 in Section 5.3. 

' ~ I /iLl 
~~k 

(a) ! (b) If. 

6. leI IV be the vector space of all differen tiable real· valued 
funClions on the unit imerval 10. II. For f and g in IV 
define 

(f. g) = [f(Xlg(X)dX+ Io' J'(X)g'(X) tl.r. 

Show that (f. g) is nn inner product on IV. 



CHAPTER 

Linear Transformations 
and Matrices 

m Definition and Examples 

As we have noted earlier, much of calculus deals with the study of properties of 
functions. Indeed, properties of functions are of great importance in every branch 
of mathematics, and linear algebra is no exception. In Section 1.6, we already 
encountered functions mapping one vector space into another vector space; these 
are matrix transformations mapping R" into Rm. Another example was given by 
isomorphisms between vector spaces, which we studied in Section 4.8. If we 
drop some of the conditions that need to be sati sfied by a function on a vector 
space to be an isomorphism, we get another very useful type of function called a 
linear transformation. Linear transformations play an important role in many areas 
of mathematics. the physical and social sciences, and economics. A word about 
notation: In Section 1.6 we denote a matrix transfonnation by J. and in Section 
4.8 we denote an isomorphism by L. In this chapter a function mapping one vector 
space into another vector space is denoted by L. 

DEFINITION 6.1 

Let V and IV be vector spaces. A function L : V -+ IV is called a linear trans­
formation of V into IV if 

(a) L(u + v) = L (u ) + L(v) for every u and v in V. 

(b) L(eu ) = eL(u ) for any u in V, and e any real number. 

If V = IV, the linear transformation L: V ...... IV is also called a linear operator 
on V. 

Most of the vector spaces considered henceforth, but not aiL are finite-dimen­
sional. 

In De/inition 6. I, observe that in (a) the + in u + v refers to the addition 
operation in V, whereas the + in L (u) + L(v) refers to the addition operation in 

363 
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EXAMPLE 1 

EXAMPLE 2 

W . Similarly, in (b) the scalar product eu is in V. while the scalar product eL(u) 
is in W. 

We have already pointed out in Section 4.8 that an isomorphism is a linear 
transformation that is one-to-one and onto. Linear transformations occur very 
frequently. and we now look at some examples. (At this point it might be profitable 
to review the material of Section A.2.) It can be shown that L: V -+ W is a linear 
transfonnmion if and only if L (au + bv) = a L(u) + bL(v) for any real numbers 
a. b and any vectors u, v in V (see Exercise 6.) 

Lei A be an III x II matrix. In Section 1.6 we defi ned a matrix transformation as 
a function L: R" -+ R'II defined by L(u) = Au. We now show Ihm every matrix 
transfonnation is a linear transformation by verifyi ng that properties (a) and (b) in 
Definition 6. [ hold. 

If u and v are vectors in R", then 

L(u + v) = A(u + v) = Au + Av = L(u) + L (v) . 

Moreover. if c is a scalar, then 

L(eu ) = A(eu ) = c(A U) = eL(u ). 

Hence, every matrix transformation is a linear transformation. • 
For convenience we now summarize the matrix transformations that have al­

ready been presented in Section 1.6. 

Reflection wilh respect to the x-axis: L : R? -+ R2 is defined by 

L(["']) ~[ ",]. 
11 2 - 11 2 

Projection into the xy-plane: L: R3 ....... R2 is defi ned by 

Dilation: L : R3 ....... R3 is defined by L (u) = ru for r > I. 
Contraction: L : RJ -+ R3 is defined by L(u) = ru for 0 < r < l. 
Rotation counterclockwise through an angle ifJ: L: R2 ....... R2 is defined by 

L(u) = [c~sep 
stnep 

Let L : RJ -+ RJ be defined by 



EXAMPLE 3 

EXAMPLE 4 

To determine whether L is a linear transformation. lei 

['" ] u = 11 1 

'" 
T hen 

On the other hand, 

["' +'] ["'+ '] [(", +",)+ 2] L(u ) + L (v) = 2112 + 2V.2 = 2(1/2 + V2) . 

11 3 VI 11 3 + VJ 

Letting III = 1,112 = 3, II ) = - 2. VI = 2, V2 = 4, and VJ = I, we see thaI 
L(u + v) i= L (u ) + L (v). Hence we conclude thaI the functio n L is nOl a linear 
transformation. • 

Let L: R2 --+ Rl be defined by 

L([1I1 11 2]) = [ui 211 2] . 

Is L a linear transformatio n? 

Solution 
Le' 

Then 

On the other hand . 

L(u + v)~ L([", ",] + [", ", J) 
= L([U I+ VI 1I :,.+V2 ]) 
= [(Ul + v[)l 2 (112 + V2) ]. 

L (u) + L(v) = [II i 2U2] + [ vf 2U2] 

= [II i + vf 2(U 2 + V2) ] . 

Since there arc some choices of /I and v such that L(u + v) i= L(u) + L(v). we 
conclude that L is not a linear transformation. • 

Lei L: PI --+ P2 be defi ned by 

L[pU)l = lp(t). 

Show that L is a linear transformation. 
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EXAMPLE S 

EXAMPLE 6 

EXAMPLE 7 

Solution 
Let pet) and q(t) be vectors in PI and let c be a scalar. Then 

L! p(t) + q(t)] = t[p(t) + q(t)] 

= tp(t) + tq(t) 

= L!p(t)] + L!q(t)]. 

L[cp(t)] = t[cp(t)] 

= c[tp(t)] 

= cL[p(t)]. 

Hence L is a linear transformation. • 
Let W be the vector space of all real-valued functions and let V be the subspace 
of all differentiable functions. Let L: V -... W be defined by 

L(f) ~ J', 

where!' is the derivative of f. We can show (Exercise 24). using the properties 
of differcntiation. that L is a linear transformation • 

Let V = Cia. h] be the vector space of a II real-vaillcd fu nctions that are integrable 
over the interval !a.h]. Let W = RI. Define L : V -... Wby 

L(f) = lb f(x)dx. 

We can show (Exercise 25). using the properties of integration. that L is a linear 
transfonnation. • 

Since an /I -dimensional vector space V is isomorphic to Rn. we can determi ne 
whether the set S = I VI. V2 ..... "n I of /I vectors ill V is a basis fo r V by checking 
whether {L(vd. L(V2) . .... L(v,,)} is a basis for RI!. where L : V -... R" is an 
isomorphi sm. The fo llowing example illustrates this approach: 

To find out if S = It2 + f.t + I.f - II is a basis for P2 , we note that P2 is a 
three-dimensional vector space isomorphic to R3 under the mapping L: P2 ..... R3 

defined by L(n,' + b, + c) ~ [:]. Therefore, S i," b"i, fo , P, if "nd o"y if 

T = {L(t 2 + t). L(t + 1). L (t - I)} is a basis for R3. To decide whether this is 
so. we apply Theorem 4.5. Thus let A be the matrix whose columns are L (t2 + t) , 
L(t + I ). L(t - I). respectively. Now 
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'0 

h[l 0 

~l - I 

Since dCl(A) = - 2 (verify), we conclude that T is linearly independent. Hence S 
is linearly independent, and since dim P2 = 3, S is a basis for Pl. We cou ld also 
have reached the same concl usion by computing nmk(A) to be 3 (verify). • 

We now develop some general properties of linear transformations. 

Theorem 6 .1 Lei L: V ~ W be a linear transfonnation. Then 

EXAMPLE 8 

(a) L(Ov ) = Ow. 

(b) L (u - v) = L (u ) - L (v), for u, v in V . 

Proof 

(a) We have 
01' = 01' + Ov. 

L (Ov) = L (Ov + ov) 

L (Ov) = L (Ov) + L (Ov) . 

Adding - L(Ov) to both sides, we obtain 

L (Ov) = Ow. 

(b) L(u - v) = L(u + (- I)v) = L(u ) + L «-1)I') 
= L(u ) + (- I ) L (v) = L (u) - L (v). 

Remark Example 2 can be solved more easily by observing thai 

so, by part (a) of Theorem 6.1 , L is not a linear transformation. 

• 

Let V be an II -dimensional vector space and S = {VI . V2, .... v,,! an ordered basis 
for V. If v is a vector in V. then v can be written in one and only one way, as 

where (II. (12 • . •. • (I" are real numbers, which were called in Section 4.8 the coor­
dinates of v with respect to S. Recall that in Section 4.8 we defined the coordinate 
vector of v with respect to S as 

['" ] ", 
[ v ] , ~ : . 

a" 
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EXAMPLE 9 

WedefineL: V_ R"by 
L(v) ~ [vI,. 

It is not difficult to show (Exercise 29) that L is a linear transformation. • 

Let V be an n-dimcnsional vector space and let S = {VI. V2 ..... v,,) and T 
{WI. W2 . . ... w,,) be ordered bases for V. U v is any vector in V. then Equation 
(3) in Section 4.8 gives the relationship between the coordinate vector of v with 
respect to S and the coordinate vector of v with respect to T as 

where PS_ T is the transition matri x from T to S. Let L : R" _ R" be defined by 

for v in R". Thus L is a matrix transformation. so it follows that L is a linear 
transfonnation. • 

We know from caleulus that a function can be specified by a fonnula which 
assigns to every member of the domain a unique element of the range. On the 
other hand, we can also specjfy a function by listing next to each member of the 
domain its assigned clement of the range. An example of this would be listing 
the names of all charge account customers of a department store. along with their 
charge account number. At first glance it appears impossible to describe a linear 
transfonnation L : V _ W of a vector space V "1= {O) into a vector space W in 
this laller manner. since V has infinitely many members in it. However. the next, 
very usefuL theorem tells us that once we !Ja}' what a linear tram/ormatio/l L doe.l· 
fo a b(/!Ji~"f()r V, then we have completely specified L. Thus, since in this book. we 
deal mostly with finite-dimensional vector spaces, it is possible to describe L by 
giving only the images of a finite number of vectors in the domain V. 

Theorem 6.2 Let L : V ...... W be a linear transformation of an II-dimensional vector space V 
into a vector space W. Let S = {VI. Vl . . . v,,) be a basis for V. If v is any vector 
in V. then L (v ) is completely determined by {L(VI), L (v ]), ... , L (vn») . 

Proof 

Since v is in V. we can write v = al VI + (l2V2 + . .. + (l"V". where al. a2 . ... . a" 
are uniquely determined real numbers. Then 

L(v) = L (al vl +a2 v2+" ' +II" v,,) 

= L (ll IV!) + L «(l2V2) + .. . + L(a"v,,) 

= (II L (vl) + a2L(v2) + ... + a"L(v,,). 

Thus L (v ) has been completely determined by the vectors L(VI), L(v2). 
L(vll ). • 

Theorem 6.2 can also be stated in the following useful form: Let L: V ...... W 
and L' : V _ It' be linear transfonnations of the II-dimensional vector space V 
into a vector space W. Let S = (VI. VI ..... v" I bea basis for V. If L' (v;) = L(v;) 
for i = 1.2 ..... n, then U(v) = L (v) for every v in V; that is. if Land L' agree 
all a ba.l"i.l"jor V, then L alld L' are idelllicallinear tnlll.l/omwtiolls. 
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Let L : R4 -+ R2 be a linear transformation and let S = IVI. V2. VJ. V4} be a basis 
forR4,where vl = [10 I 0],V2= [0 I - I 2]. vJ=[0 2 2 I], 
and V4 = [I 0 0 I]. Suppose that 

LeI 

Find L(v) . 

Solution 

L(v,)~[ l 2]. 

L(v;)~[O 0] . 

L(v,)~[O 3] . 
and L(V4)= [2 0]. 

v ~ [3 - 5 - 5 0]. 

We first write v as a linear combination of the vectors in S. obtai ning (verify) 

v = [3 - 5 - 5 O] = 2VI+ V2-3vJ+ V4. 

It then follows by Theorem 6.2 that 

L(v) = L(2vl + V2 - 3vJ + V4) 

= 2L(vl) + L (V2) - 3L (vJ) + L(V4) = [4 7]. • 
We already know that if A is an 11/ x /I matrix. then the fu nction L : R" -+ R'" 

defined by L(x) = Ax for x in R" is a linear transformation. In the next example. 
we show that if L : R" -+ RI» is a linear transfomlation, then L must be of this 
form. That is, L must be a matrix transformation. 

Theorem 6.3 Let L: R" -+ R'" be a linear transformation and consider the natural basis {el. e2 . 
.... ell} for R" . Let A be the 11/ x /I matrix whose jth column is L (e j) . The matrix 

[

XI] 
A has the following property: If x = Xl is any vector in R". then 

,\" 

L(x) = Ax. (I) 

Moreover. A is the only matrix satisfying Equation (I). It is called the standard 
matrix representing L. 

Proof 

Writi ng x as a linear combi nation of the natural basis for R". we have 

so by Theorem 6.2, 

L(x) = L(xl e l + X2e2 + ... + xn en) 

= XI L(el) + x2L(e1) + . . . + x" L (e,,). 
(2) 

Since A is the III x /I matrix whose jth column is L (c j) . we can write Equation 
(2) in matrix form as 

L(x) = Ax. 

We leave it as an exercise (Exercise 37) to show that A is unique. • 
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EXAMPLE 11 

EXAMPLE 12 

Let L: R3 --+ R2 be the linear transformation defined by 

Find the standard matri ,~ representing L. 

Solution 
Lei lei. e2. e3} be the natural basis for RJ. We now compute L(ej ) for j = 1, 2.3 
as follows: 

Hence 

L(e,) ~ L WJ) ~ [~l· 
L(e') ~ Lm]) ~ m· 

L (e') ~ Lm]) ~ [ -~l· 

A ~ [L(e,) L(e,) L(e, ] ~ [~ 2 
3 • 

(C ryptology) Cryptology is the technique of coding and decoding messages; it 
goes back to the time of the ancient Greeks. A simple code is constructed by 
associating a different number with every letter in the alphabet. For example. 

A 8 c D x y z 
I I I I I ! 

2 3 4 24 25 26 

Suppose that Mark S. and Susan J. are two undercover agents who want to com­
municate with each other by using a code because they suspect thai their phones 
are being tapped and their mail is being intercepted. I,n panicu lar, Mark wants to 
send Susan the following message: 

MEET TOMORROW 

Using the substitution scheme just given, Mark sends this message: 

13 5 5 20 20 15 13 15 18 18 15 23 

A code of this type could be cracked without too much difficulty by a number 
of tcchniques, including the analysis of frequency of letters. To make it difiicult 
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to crack the code. the agents proceed as follows. Fi rst, when they undertook the 
mission, they agreed on a 3 x 3 nonsi ngular matrix, the encoding matrix, slLch as 

2 

Mark then breaks the message into four vectors in R3. (If thi s cannot be done, we 
can add extra letters.) Thus we have the vectors 

Mark now defines the linear transformation L: R' -+ R' by L(x) = Ax. so the 
message becomes 

[
105] 
70 . 
50 

["7] 79 . 
61 

Th us Mark transmits the fo llowi ng message: 

38 28 15 105 70 50 97 64 51 117 79 61 

Suppose now that Mark receives the message from Susan, 

77 54 38 71 49 29 68 51 33 76 48 40 86 53 52 

which he wants to decode with the same key matrix A. To decode it , Mark breaks 
the message into five vectors in R3: 

and solves the equation 

for XI. Since A is nonsingu lar, 

X'~A-'[;~] [~ -2 = :][;~] [I~] 
38 - I I 38 15 
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Key Terms 
Linear transfonnation 
Linear operator 
Reflection 

Woj. Exercises 

Similarly, 

Using our correspondence between letters and nu mbers, Mark has received the 
following message: 

PHOTOGRAPH PLANS • 
Additional material on cryptology may be found in the references given in Funher 
Readings. 

FURTHER READINGS IN CRYPTOLOGY 
E lcmelltary pre.l·cntation 

Kohn, Bernice. Secret Codes and Ciphers. Englewood Cliffs. N.J.: Prentice­
Hall, Inc., [968 (63 pages). 

Advanced presellfation 

Fisher, James L. Applicatioll.f·Oriellfed Algebra. New York: T. Harper & 
Row. Publishers, 1977 (Chapter 9. "Coding Theory"). 

Garrett, Paul. Making, Breaking Codes . Upper Saddle River, N.J. : Prentice 
Hall. Inc., 200 1. 

Hardy, Dare l W .. and Carol L. Walker, Applied Algebra. Codes. Cipher.! lIIui 
DiKreteAlgorithms. Upper Saddle River, N.J. : Prentice Hall, Inc., 2002. 

Kahn, David. The Codebreaker!i . New York: The New American Library Inc., 
[973. 

Projection 
Dilation 
Contraction 

Rotation 
Standard matrix representing a linear transformation 
Translation 

l. Which of the following functions are linear transfonna­
lions? 

tions? 

(. ) L : R3 ...... R3 defined by 
L ([ II] 112 113])=[111 II ~ + II i II i] 

(h ) L : R1 ...... R3 defined by 

(a) L: R1 ....... R3 defined by 
L([II] IId) = [1I 1+ 1 112 11 1+112] 

(b) L: Rz ..... R3 defined by L ([ II I 112 113]) = [1 '" 112] 
«) L: R3 ...... R3 defined by 

L ([ II I 112 113])=[0 '" lid 
L([1I1 lid) = [II I + l<l 112 11 1- 112] 

2. Which of the following functions are linear transforma -



3. Which of the following functions are linear transforma­
tions? (Here, p'(t) denotes the derivative of p(l) with 
respect to I.] 

(a) L : 1'2 -+ I', defined by L(p (l » = I ) p'(O)+12 p(O) 

(b) L: PI -+ P2 defined by L (p(I» = Ip(t) + p (O) 

(e) L: PI -+ P2 defined by L(p(l)) = fp(l) + I 
4. Which of the following functions are linear transforma­

tions? 

(a) L: 114". ->. 114". defined by L ( A ) _ AT 

(b) L : 114,," ......... M,," defined by L (A ) = A- I 

5. Which of the following functions are linear transforma­
tions? 

(a) L: M,," ......... HI defined by L(A ) = det(A) 

(b) L : M,," -j. HI defined by L(A ) = Tr(A) 
(See Exercise 43 in Section 1.3.) 

6. Let L : V -j. W be a mapping of a vector space V into 
a vector space IV. Prove that L is a linear transformation 
If :"lnd only if I .«(J II + hv) = (JI.(II ) + h I .(v ) for :"lny real 

numbers a. b and any vectors u. v in V. 

III Erercise.\· 7 and 8. find Ihe slandard lIIalri.t represellling 
each gil'enlim:ar lran.ifunnalion. 

7. (a) L: R2 -j. H2 definedbyL ([:: ~ ]) = [-::J 
(b) L : H2 -j. H! defined by L ([ :: ~ ]) = [ -:: ~ ] 

8. 

•• 

I' ) LR' - R' d,h"d by L ([:::J) {n 
(0 ) L , H2 -+ 

(II) L , H2 -+ 

I' ) L , R' ~ 

Consider the 

L(A) = [~ 

R'd,h"d by L ([" , ]) ~ [ - "'] 
11 2 - II I 

R! defined by L ([:: : ]) = [111 :2k 1l2 
] 

R3 defined by L(u) = k u 

function L : M )4 -MN 
3 '] . 2 - 3 A forA 111 M H· 

2 
o 

o 
2 

- 2 

defined by 

(b) Show Ihat L is a linear transformation. 

10. Find the standard matrix representing each given linear 
Irnnsformation. 

(a) Projection mapping H3 into the _t y-plane 

(II) Dilation mapping H' into H) 
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(e) Reflection with respect to the x-axis mapping H! 
in to H2 

II. Find the standard mntrix representing each given linear 
trnnsformation. 

(a) L : H2 -4 H! detlned by L ([ ::: ]) = [:: : ] 

(b) L : H2 -+ R3 detlned by 

L ([ ::;]) ~ [;,~ ;,~::: ] 
(e) L : H3 -j. R ) detlned by 

L ( [:: : ] ) ~ - " ' ~':'''] 
11 3 112 + 11 3 

12. Let A = [ -~ - : ~] be the stnndnrd mmrix rep-
I 2 -3 

rt:scllling Lilt: lim:ar lfJIlSfuflll<tliull L : Rl -+ R) . 

13. LeI L : H) ...... R! be a lincnr transformation for which 
we know Ihat 

L ([~] ) ~ [-~l 
L ([m ~ [-:]. L ([m ~ [;] 

(0) WhO] i>L ( [ -m' 
Ih ) WI",;, L ( [:: : ]) , 

14. Let L: R2 ......... R2 be nlinear trnnsformation for which we 
know thm 

L([l I J) ~ [I - 2]. 
L([ - I I J)~[2 3] . 

(0) What is L ([ - I 5 J)' 
lh) What is L ([III 11 2 ])? 
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15. Let L: P2 -). P1 be a linear transformation for which we 
know that L(J) = I. L (t) = t1. L (t 2) = 11 + I. 

(a) Find L (21 " - 51 + 3). (b) Find L(a1 2 + bl + c). 

16. Let A be a fixed 3 x 3 matrix: also let L: M33 -+ M33 be 
defined by L (X ) = AX - XA. for X in "1,3. Show that 
L is a linear transformation. 

17. Let L : R -+ N be defined by L (v) = (IV + b. where 
is and b are real numbers. (Of course. v is a vector in 
R. which in this case means that v is also a real num­
ber.) Find all values of a and b such that L is a linear 
lransfonmltion. 

18. Let V be an inner product space and let W be a fixed vec­
lor in V. Let L: V -+ R be defined by L (v) = (, .. w) 
for V in V. Show that L is a linear transfonnation. 

19. Describe the followin g linear transformations geometri­
cally: 

20. Let L : P1 __ PI be a linear transformation for which we 
know that L (t + 1) = 21 +3 and L (t - 1) = 31 - 2. 

(a) Find L (61 - 4 ). 

(b) Find L (al + b). 

21. Lt:l V amJ IV bt: Vt:l:lor spal:l:1i. Pruvt: lhal lht: fllll l: liun 
0: V _ IV defined by O(v) = Ow is a linear transfor­
mation. which is called the zcro linear transformation. 

22. Let I : V _ V be defined by I (v ) = v.forvin V. Show 
thaI I is a linear transformatioll. which is called the ide n­
tity operator on V. 

23. Let L : M21 -+ R I be defined by 

Is L a linear transformation ·! 

24. (Calcullls Required) Let IV be the vector space of all 
real -valued functions and let V be the subspace of all dif­
ferentiable functions. Define L: V -+ IV by L (f) = J' . 
where J' is the derivative of f. Prove that L is a linear 
transformation. 

25. Let V = Cla. bl be the vector space of all real- valued 
functions that are integrable over the interval la. b]. Let 

IV = R I. Define L : V ...... IV by L (f) = t.f(.I)dx. 
Prove that L is a linear transformation. 

26. Let A be an II x I! matrix and suppose that L : M", -. 
M"" is defined by L (X ) = AX. for X in Mo". Show that 
L is a linear transformation. 

27. Let L : M"" -). NI be defined by L (A ) = allan··· a,," . 
for an II x I! matrix A = [ aij ]. Is L a linear transforma­
tion? 

28. Let T : V -). IV be the funct ion defined by T (v) = v+ b. 
for v in V. where b is a fixed nonzero vector in V. Tis 
called a translation by vector v. Is T a linear transfor­
mation? Explain. 

29. Show that the function L defined in Example 8 is a linear 
transformation. 

30. For the linear transformation defined in Example 10. find 
L([ a b c riD. 

31. Let V be an II -dimensional vector space with ordered ba­
sis S = {VI. V2 •. • .• v.1 and let T = (WI. W l • . •• • w"1 
be an ordered set of vectors in V. Prove that there is 
a unique linear transformation L : V __ V such that 
L(v;) = W i for i = l. 2 . . ... 11. [Hinl: Let L be a map­
ping from V into V such that L(v;) = Wi: then show 
how to extend L to be a linear transfonllation defin;xl on 
all of V. ] 

32. Let L : V -). IV be a linear transformation from a \·ector 
space V into a vector space IV. The imagc of a sub.lpace 
VI of V is defined as 

L (VI ) = {w in IV I w = L(v) for some v in VI. 

Show that L (VI ) is a subspace of V . 

33. Let L j and L2 be linear transformat ions from a \·ector 
space V into a vector space IV . Let {VI. V2 •.• v"1 
be a basis for V. Show that if L I(v;) = L2(v,) for 
i = l. 2 ..... n. then L I (v) = Lz(v) for any v in V . 

34. Let L : V ...... IV be a linear transformation from a vec-
tor space V into a vector space IV . The preimage of a 
subspace WI of IV is defined as 

L - I(IVI) = Iv in V I L (v) is in IVd. 

Show Ihal L - I ( WI) is a subspace of V. 

35. Let 0: N" -). N" be the zero linear transformation de­
fined by 0 (,·) = 0 for v in N" (see Exercise 2 1). Find 
the standard matrix representing O. 

36. Let I : R" ...., R" be the identity linear transformation 
defined by I (v) = v for v in R" (see Exercise 22). Find 
the standard matrix representing I . 

37. Complete the proof of llleorem 6.3 by showing thlt the 
matrix A is unique. (Him: Suppose that there is another 
matri x B such that L(x) = Dx for x in N". Consider 
L(ej ) for j = 1.2 ..... I!. Show that A = D.) 
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38. Use the substitution scheme and encoding matr ix A of 
Example 12. 

lrix 

A = [~ 3] 
(a) Code the message SEN D HIM MONEY. 

I . 

(b) Decode the message 67 44 41 49 39 19 
11 3 76 62 104 69 55. 

(a) Code the message WORK HARD. 

(b) Decode the message 

39. Use the subslillltion scheme of Example 12 and the rna· 93 36 60 21 159 60 110 43 

DEFINITION 6.2 

EXAMPLE 1 

EXAMPLE 2 

Kernel and Range of a Linear Transformation 

In this section we study special types of linear transformations; we formu late the 
notions of one-to-one linear transformations and onto linear transformations. We 
also develop methods for determining when a linear transformation is one-Io-one 
or onto. and exami ne some applications of these notions. 

A li near transformation L: V -+ W is called one·to-one if it is a one-to-one 
function; that is, if VI i= V2 implics that L(vd i= L(v2) . An cquivalent statcment 
is that L is one to-one if L(vI) = L(vz) implics that V I = Vz . (See Figure A.2 in 
Appendix A.) 

Let L: R2 -4- R2 be defincd by 

L ([", j) ~ [", + "'j. 
11 2 III - 11 2 

To determi ne whethcr L is one-to-one. we lct 

[",] Vt = 

'" 

Adding these equations, we obtain 21lt = 2VI, or III = VI, which implies that 
II I = V2 . Hence Vt = V2, and L is onc-to-one. • 

Let L: R3 -4- R2 be the linear transformation (a projection) defined by 

L ([:::J) ~ [::;]. 
S" oo L ([iJ) L (UD yel m ~ Ul w"on""de IhOl L ;, 

not onc-to-one. • 
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DEFINITION 6.3 

EXAMPLE 3 

We shall now develop some more efficient ways of determining whether a 
linear transformation is one-to-one. 

Let L : V _ W be a linear transformation of a vector space V into a vector space 
W . The kernel of L , ker L. is the subset of V consisting of all clements v of V 
such that L (v) = Ow. 

We observe that Theorem 6.1 assures us that ker L is never an empty set. 
because if L : V _ W is a linear transformati on, then Ov is in ker L. 

Lei L , R' ~ R' be ", defi ned in b omple 2. The "CIOI [~ J i, in kel L, 

, inoe L ([m ~ [~ l Howe,"" Ihe " CiOI [-!] i, nOI in ketL . , inoe 

L ( [ -!]) ~ [-n To find ketL , we m,,1t delCnnine ' " v in R' '0 Ihm 

L (v) ~ O ,,- Th", i"we "ekv ~ [::J ,o lhm 

However, L(v) [ ~~l Thus [ ~~] = [~ l so VI = O. V2 0, and V.i can 

be ony te, 1 m'mbet. Hen" k" L con, i", of ' " " CiO" in R' of Ihe 101m [~l 
where {/ is any real number. It is clear that ker L consists of the z-axis in (x. y. z) 
three-dimensional space RJ. • 

An exami nation of the clements in ker L allows us to decide whether L is or 
is not one-to-one. 

Theorem 6.4 Let L: V _ W be a linear transformation of a vector space V into a vector space 
W . Then 

(a) ker L is a subspace of V. 

(b) L is one-to-one if and only if ker L = {Ov}. 

Proof 

(a) We show that if v and w are in ker L , then so are v + w and cv fo r any real 
number c. If v and w are in ker L , then L(v) = 0 \1". and L (w) = Ow. 
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Then, since L is a linear transformation, 

L (v + w) = L (v) + L (w) = Olt + Ow = Ow. 

Thus v + w is in ker L. Also. 

L (cv) = cL (v) = c Ow = O. 

so cv is in ker L. Hence kcr L is a subspace of V. 

(b) Lei L be oue-IO-Olle . We show 11131 kel L = IOv}. Lei v be ill kel L . TlieH 
L(\') = Ow. Also, we already know that L (Ov) = Ow. Then L (v) = L (Ov). Since 
L is one-to-one, we conc lude that v = Ov. Hence ker L = IOv}. 

Conversel y, suppose that ker L = lOy}. We wish to show that L is one-to­
one. Let L ( v l) = L (V2) for V I and V2 in V. Then 

so that L ( v i - V2) = Ow. Th is means that V I - \'2 is in ker L , so V I - V2 = Ov. 
Hence V I = V2, and L i; one-to-one. • 

Note that we can also state Theorem 6.4(b) as fo llows: L is one-to-one if and 
only If dim ker L = O. 

The proof of Theorem 6.4 has also established the following result. which we 
state as Coroll ary 6.1 : 

Corollary 6.1 If L (x) = b and L (y) = b, then x - y belongs to ker L . In other words. any two 
solutions to L (x) = b differ by an element of the kernel of L. 

EXAMPLE 4 

Proof 

Exercise 29. 

(CalclIlus Required) Let L : P2 -+ R be the linear transformation defi ned by 

L (at 2 + bt + c) = 11

(at 2 +bt+C) dl . 

(a) Find ker L . 

(b) Find dim ker L. 
(c) Is L one-to-one? 

Solution 

• 

(a) To find ker L. we seek an element V = at2 + bt + c in P2 such that L (v) = 
L (at2 + bt + c) = OR = O. Now 

at } bt l I' " b L (v) = - + - +ct = - + - +c. 
3 2 0 3 2 

Th us c = - a / 3 - b / 2. Then ker L consists of all polynomials in P2 of the fo rm 
at l + bt + (- a / 3 - bI2). for 1I and b any real numbers . 
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DEFINITION 6.4 

(b) To find the dimension of ker L, we obtain a basis fo r ker L. Any vector in 
ker L can be wri tten as 

Thus the elements (t 2 - ~) and (t - H in P2 span ker L. Now, these elements arc 
also linearly independent. since they arc not constant multiples of each other. Thus 
{t 2 -; . t - it is a basis fo r kerL , and di m ker L = 2. 
(c) Sincc dim ker L - 2, L is not onc-to-one. • 

If L: V ....:,. W is a linear transformation of a vector space V into a vector space 
W. then the range of L or image of V under L , denoted by range L , consists of all 
those vectors in W that are images under L of vectors in V. Thus w is in range L 
if there exists some vector v in V such that L (v) = w. The linear transformation 
L is called onto if range L = W. 

Theorem 6.5 if L: V ....:,. W is a linear transformation of a vector space V into a vector space 
W , Ihen range L is a subspace uf W. 

EXAMPLE S 

EXAMPLE 6 

Proof 

Let WI and W2 be in range L. Then WI = L(vI ) and W2 = L(V2) for some VI and 
V2 in V. Now 

which implies that WI + W2 is in range L. Also, if W is in range L. then W = L (v) 
for some v in V. Then cw = cL(v ) = L(cv) where c is a scalar. so that cw is in 
range L. Hence range L is a subspace of W. • 

Consider Example 2 of this section again. Is the projection L onto? 

Solution 

W, , hoo,c "ny ""0' W ~ [~l ;n R' ood ""k n "'10' v ~ [::] ;n V ,",h 

that L(v) = w. Now L(v) = [~~l so if VI = c and V2 = d, then L(v) w. 

Therefore, I. is onto :mlillim r>lnge I. = 2 • 
Consider Example 4 of this section; is L onto? 

Solution 
Given a vector W in R, W = r, a real number. can we find a vector v = at 2 + bt + c 
in P2 so that L (v ) = W = r? 

Now 

L(v) = (at 2 +bt +c) dt =-+-+c. 1
1 a b 

n 3 2 

We can let a = b = 0 and c = r. Hence L is onto. Moreover, di m range L = I . • 
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Let L: R3 --+ RJ be defi ned by 

(a) Is L onto? 

(b) Find a basis fo r range L. 

(e) Find ker L. 
(d) Is L uue-to-om;? 

Solution 

(0) G'''o "Y w ~ [:] 'a R', whc," a, b, "d,' 0" "Y ",I ""mho", CO" wc 

"ad v ~ [::] '0 thm L (v) ~ w? We ,cok , ,01"t'o" to the lioc", ,y"em 

and we find the reduced row echelon form of thc augmented matrix to be (verify) 

[

I 0 
o I 
o 0 

I : a ] 
[ : !J - a . 

O : c-b-a 

Thus a solution exists onl y for c - b - a = 0, so L is not onto. 

(b) To find a basis for range L, we note that 

L ([:: ]) ~ [i 
~ C , m h m +C, m 

This means that 

spans range L. Thai is, range L is the subspace of RJ spanned by the columns of 
the matrix defining L. 

The firsl two vectors in thi s set are linearl y independent, since they arc not 
constant multiples of each other. The third vector is Ihc slim of the first two. 
Therefore, thc firsl two vectors form a basis for range L , and dim range L = 2. 
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EXAMPLE 8 

(c) To find ker L, we wish to find all v in RJ so that L(v) = OR) ' Solving the 
resulting homogeneous system, we fi nd (verify) that VI = - V ] and V2 = - VJ . 

Thus ker L consists of all vectors of the form 

[-"] [-I] 
- :: = a - : . 

where a is any real number. Moreover, dim ker L = I. 
(d) Since ker L i {OHJ}, it fo llows from Theorem 6.4(b) that L is not one-to-one . 

• 
The problem of finding a basis for ker L always reduces to the problem of find­
ing a basis for the solution space of a homogeneous system; this latter problem 
has been solved in Section 4.7. 

If range L is a subspace of R'" or Rm , then a basis for range L can be obtained 
by the method discussed in Theorem 4.9 or by the procedure given in Section 
4.9. Both approaches are illustrated in the next example. 

Let L : R4 ......;. R] be dciined by 

Find a basis fo r range L. 

Solution 
We have 

L ([ u, 112 II] 

Thus 

114J) = 111[ 1 0 

+II} [0 

s ~ I[1 0 1].[ 1 0 0].[0 

I ] + u,[ I ° 
1] + u.[O 

I]. [0 

0] 
0] 

° ]1 
spans range L. To find a subset of S that is a basis for range L , we proceed as in 
Theorem 4.9 by fi rst writing 

The reduced row echelon form of the augmented matrix of this homogeneous sys­
tem is (verify) 

[~ 
o o -I i 0] 

o [ : 0 . 
I I : 0 ° 

Since the leading 1 's appear in columns 1. 2, and 3, we conclude that the fi rst three 
vectors in S form a basis for range L. Thus 

1[1 0 1].[ 1 0 0].[0 1]1 
is a basis for range L. 
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Altcrnatively, wc may proceed as in Section 4.9 to form thc matrix whose 
rows arc the given vectors 

Transforming thi s matrix to reduccd row cchelon form, we gct (verify) 

H,noo l[l 0 0].[0 0]. [0 0 I]} is a basis for range L. • 
To dcterminc if a linear transformation is onc-to-one or onto, we must solve 

a linear systcm. This is one further demonstration of thc I"rcquency with which 
linear systems must be solved to answer many qucstions in lincar algcbra. Finall y. 
from Example 7. where dim ker L = I, dim rangeL = 2, and dim domain L = 3. 
we saw that 

dimker L + dim range L = dim domain L. 

This very important result is always true, and we now prove it in the following 
theorem: 

Theorem 6.6 If L : V -+ W is a linear transformation of an II -dimensional vector space V into 
a vector spacc W. thcn 

dim ker L + dim range L = dim V. 

Proof 

Lct k = dim ker L. II" k = II. then ker L = V (Exerc ise 42. Section 4.6). which 
impl ies that L (v) = 0 11- for every v in V. Hence range L = {Ow), dim rangc L = 
0, and thc conclusion holds. Ncxt, suppose that I .::: k < II. We shall provc that 
dim rangeL = /I - k. Lct {VI. V2 . ... . Vl} bea basis forkerL. By Theorem 4. 1 I 
we can extend this basis to a basis 

S = {VI . V2 . . .. , Vt . vH I . .. .. v,,} 

for V. We provc that the sct T = \L(vHI) . L(vH 2) . .. .. L (v,,)} is a basis for 
range L. 

First, we show that T spans rangc L. Let w bc any vcctor in rangc L. Then 
w = L (v) for some v in V. Sincc S is a basis for V, we can find a unique set of 
rcal numbers al . a2 . ... . a" such that v = al VI + (12 V2 + . . . + a" VI!' Thcn 

w = L(v) = L (ai vi + (/2 Vl + . .. + a t vt +a.\+ lvk+1 + ... + a" v,,) 

= (/I L (vl) + (/2L(V2) + ... + (/t L(Vt ) + aHIL( vH I) + . .. + a"L(v,,) 

= (lk+IL(vt+l) + ... + a" L (v,,) 

because V I. V2 . . ... Vk arc in kCf L . Hcncc T span:; range L. 
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EXAMPLE 9 

Now we show that T is linearly independent. Suppose that 

ak+JL(vl+l) + ak+2L(Vk+2) + ... + a" L (vn) = Ow. 

Then 
L (ak+ 1 Vk+1 + ak+2vk+ 2 + ... + an vn ) = Ow. 

Henee the vector ak+1 vH I + ak+l vk+2 + . .. + al!v" is in ker L. and we can write 

a t+ 1 Vk+1 + ([k_2Vk+2 + .. . + a" VI! = hi VI + h 2V2 + . .. + hJ.,Vk. 

where hi. h 2 • .. .• bt fire uniquely determi ned rCfll numbers. We then havc 

hi v i + b 2V2+ ··· + bkVk - (/J.·+ IV*+I - ak+2vk+2 - .. . - ([" V" = Ov . 

Since S is linearly independent, we find that 

Henee T is linearly independent and forms a basis for range L. 
If k = O. then ker L has no basis: we let {VI. V2 . .. .. VII} be a basis for V. The 

proof now proceeds as previously. • 

The dimension ofker L is also cal led the nullity of L. In Section 6.5 we deline 
the rank of L and show that it is equal to dim range L. With this terminology, the 
concl usion of Theorem 6.6 is very similar to thaI of Theorem 4.19. Th is is not 
a coincidence, since in the next section we show how to attach a unique III x II 

matrix to L , whose propenies reflect those of L. 
The following example illustrates Theorem 6.6 graphically: 

Let L: R3 -4- RJ be the linear transformation defined by 

([ u,] ) ['" +",] L 11 2 = III j ~j 2 . 

11 3 11 2 - 1/ 3 

A vector 111 is in ker L if [
u, ] 
'" 

We must then find a basi s for the solution space of the homogeneous system 

11 1 + II J = 0 

III + 112 = 0 

112 - II J = O. 

We nod ('c<;fy) 'hm " b,,;, I,,, kc< L ;, I [ -: ] I' '0 d;m kc< L ~ I, "d kc< L 

is a line through the origin. 
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Next, every vector in range L is of the form 

which can be written as 

Then a basis for range L is 

(explain), so dim range L = 2 and range L is a plane passing through the origin. 
These results are illustrated in Fi gure 6.1. Moreover. 

dimRJ = 3 = dimker L + dim range L = 1+ 2. 

verifying Theorem 6.6. 

Jc-----J' o 

., 

range L 

;""'''''-----y 

Let L: PI -,). P2 be the linear transformation defined by 

L (ar2 + In + c) = (a + 2h)r + (b + c). 

(a) Fiud a iJasi s fo r ktJ L. 
(b) Find a basis fo r range L. 

(e) Verify Theorem 6.6. 

Solution 

(a) The vector or 2 + hI + e is in ker L if 

L (ar2 + hr + e) = O. 

that is, if 
(a + 2b)r + (h + c) = o. 

• 
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Then 
a + 2b = 0 

b +c=O. 

Transforming the augmented matrix of this linear system to reduced row echelon 
form. we find that a basis for the solution space. and then a basis for ker L. is 
(veri fy) 

{2t 2 _t+ Ij . 

(b) Every vector in range L has the form 

(0 + 2b)t + (b + c). 

so the vectors 1 and [ span range L. Since these vectors arc also linearly indepen­
dent. they form a basis for range L. 
(c) From (a). dim ker L = [. and from (b), dim range L = 2, so 

dim ker L + dim range L = dim P2 = 3. • 
We have seen that a linear transformation may be one-to-one and not onto 

or onto and not one-to-one. However, the followi ng corollary shows that each ot" 
these properties implies the other if the vector spaces V and IV have the same 
dimensions: 

Corollary 6 .2 If L : V -+ IV is a li near transformation of a vector space V into a vector space IV 
and dim V = dim IV, then the following statements are true: 

(a) If L is one-to-one, then it is onto. 

(b) [f L is onto, then it is one-to-one. 

Proof 

Exercise 3 1 . • 
A linear transformation L : V -+ IV ofa vector space V into a vector space W 

is called inverlible if it is an invertible function- that is, if there exists a unique 
function L -I: IV -+ V such that L 0 L -I = II\' and L -I 0 L = l v, where 
I v = identity linear transformation on V and II\' = identity linear transformation 
on IV. We now prove the following theorem: 

Theorem 6.7 A linear transformation L: V -+ IV is invertible if and only if L is one-to-one and 
onto. Moreover, L -I is a linear transformatIOn and ( L -I )-1 = L. 

Proof 

Let L be one-to-one and onto. We define a function H: IV -+ V as follows. If w 
is in IV, then since L is onto, w = L(v) for some v in V, and since L is one-to­
one, v is unique. Let H (w) = v; H is a function and L (H (w» = L(v) = w, so 
L 0 H = II\'. Also, H (L(v» = H (w) = v. so H 0 L = I v. Thus H is an inverse 
of L. Now H is unique, for if H I: IV -+ V is a function such that L 0 HI = 1\1' 
and H I 0 L = I v. then L ( H (w» = w = L (H I(w» for any w in W. Since L is 
one-to-one, we conclude that H (w) = HI (w). Hence H = HI. Thus H = L -I . 

and L is invertible. 
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Conversely, let L b~ invertible; that is, L 0 L -I = f w and L -10 L = I v. We 
show that L is onc-to-onc and onto. Suppose that L (v !) = L(V2) for VI, V2 in V. 
Then L -I(L (VI» = L -1(L (V2», so VI = V2, which means that L is one-to-one. 
Also, if w is a vector in W , then L (L -I (w)) = w, so if we let L -J (w) = \', then 
L(v ) = w. Thus L is onto . 

We now show that L -I is a lincar transformation. leI W I, W 2 be in W, where 
L (v l) = WI and L (v2) = W2 for v j, \'2 in V. Then, si nce 

we have 

which implies that L -I is a linear transformation. 
Finally, since L 0 L -I = f w, L -I 0 L = l v, and inverses are unique, we 

concl ude thaI (L -1)-1 = L. • 

Remark If L : V -+ V is a linear operator that is one-to-one and onto, then L is 
an isomorphi sm. See Defi ni tion 4. 13 in Section 4.8. 

Consider the linear operator L : RJ __ RJ de fined by 

Since ker L = {OJ (verify) . L is one-to-one, and by Corollary 6.2 it is also onto, 
so it is invertible. To obtain L -I, we proceed as follows. Since L -I(W) = ,,, we 
must solve L(v) = w for v. We have 

We are then solvi ng the linear system 

VI + V2 + VJ = WI 

2vI + 2V2 + VJ = W2 

Vl+V)=W3 

for VI, 1f:1, and V ) . We find that (verify) 

• 
The followi ng useful theorem shows that one-to-one linear transformations 

preserve linear independence of a set of vectors. Moreover, if this property holds, 
then L is one-to-one. 
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Theorem 6.8 A linear transformation L: V -+ IV is one-to-one if and only if the image of every 
linearly independent set of vectors in V is a linearly independent set of vectors in 
IV. 

Proof 

Let S = {v!, V2, .. .. Vi ) be a linearly independent set of vectors in V and let 
T = {L(VI), L (V2) . ... . L (Vk» ). Suppose that L is one-to-one; we show that T is 
linearly independent. Let 

where al. a 2 • ... . (lk arc real numbers. Then 

Since L is one-to-one, we conclude that 

Now S is linearl y independent, so aJ = (12 = ... = (lk = O. l'!ence T is linearly 
independent. 

Conversely, suppose that the image of any linearly independent set of vectors 
in V is a linearly independent set of vectors in W. Now {v}, where v t- Oy, 
is a linearly independent set in V. Since the set {L(v») is linearly independent, 
L(v) t- Ow, so ker L = {Ov }, which means that L is one-to-one. • 

It fo llows from this thcorem that if L: V -+ W is a lillear transformatio/l and 
dim V = dim W. then L is one-fo-Olle, and thus illvertilJle, if alld only iffhe ill/age 
of a hasisfor V ullder L is {/ hasisfor W. (Sec Exercise 18.) 

We now make one final remark for a linear system Ax = b, where A is II X II. 

We again consider the lincar transformation L: R" -+ Rn defincd by L(x) = Ax, 
for x in R" . If A is a nonsingular matrix, thcn dim range L = rankA = n, so 
dim ker L = O. Thus L is one-to-one and hcnee onto. This mcans that thc given 
linear system has a uniquc solution. (Of coursc, we alrcady knew this result from 
othcr considcrations.) Now assume that A is si ngular. Then rank A < II. Thi s 
means that dim ker L = II - rank A > 0, so L is not one-to-onc and nOl onto. 
Therefore, there exists a vector b in Rn, for which the system Ax = b has no 
solution. Moreovcr, since A is singular, Ax = () has a nontri vial solution Xo. If 
Ax = b has a solution y, thcn Xo + y is a solution to Ax = b (vcrify). Thus, for A 
singular, if a solution to Ax = b exists, then it is not unique. 
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The following statements are then equivalent: 

l. A is nonsingular. 

2. Ax = 0 has only the trivial solution. 

3. A is row (column) equi valent to 1" . 

4. The linear system Ax = b has a unique solution for every vector b in RIO . 

5. A is a product of elementary matrices. 

6. det(A) =1= o. 
7. A has rank II. 
8. The rows (columns) of A form a linearly independent set of II vectors in R IO 

(R" ). 

9. The dimension of the solution space of Ax = 0 is zero. 

10. The linear transformation L : R" --+ R" defined by L(x) Ax, for x in 
R", is one-to-one and onto. 

We can summarize the condit ions under which a linear transformation L of 
an II-dimensional vector space V into itself (or, more generally, to an 11-

dimensional vector space W) is invertible by the following equivalent state­
ments: 

l. L is invertible. 
2. L is one-to-one. 

3. L is onto. 

Image or a linear translonnation 
Onto 
Dimension 

Nullity 
Invertible linear transformation 

I. Let L : R2 ....... R" be the linea! transformation defined by 
(a ) IS[ ~]inkerL? (b) IS[_~]inker L? 

L ([::;]) ~ [,~ 1 
I' J IS[~]inkerL? (b) Is [~] in kerL ? 

(0: ) [S[~]inrnngeL"! (d) IS[~] inrange L ? 
(c) Find ker L. 

I' J Is [~] inrangeL? (d) IS[~]inrange L ? 
(I) Find a set of vectors spanning range L. 

3. Let L : R~ ....... R2 be the linear tmnsfonnation defined by 

Ie) Find ker L. (0 Find range L. L ([ II I 112 '" 114])=[111+111 112 + II~ J. 
2. Let L : R2 -;. R2 be the linea! operator defined by 

I' J Is [2 3 - 2 3]inkerL? 

L ([::;]) ~ [; 2]['" 1 4 11 2 

IhJ Is [ 4 - 2 - 4 2] in kerL ? 

I' J Is [ I 2]inrange L? 
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(d) IS[O O]inrangeL? 

(e) Find ker L. 

(0 Find a set of vectors spanning range L. 

4. Let L : R2 -+ R3 be the linear transformation defined by 

L([1I 1 11 2])=[11 1 111+112 112]' 
(a) Find ker L. 

(b) Is L one-to-one? 

(e) Is L onlO? 

5. Let L : R~ -+ R3 be the linear trnnsfonnation defined by 

L([1I1 112 113 114]) 

= [III + II ! II j + 114 "I + 11 3 ]' 

(a) Find a basis for ker L. 

(b ) Whm is dim ker L? 

(el Find a basis for range L. 

(d ) Whal is dim range L? 

6. Let L: P2 -+ P3 be the linear trnnsfonmltion defined by 
L(p(l» = 12,l(l). 

(a) Find a basis for and the dimension of ker L. 

(h) Find a basis for and the dimension of range L. 

7, Let L : M2j __ Mn be the lirrar transformation defined 
by -I] 2 A 

I 

for A in MB . 

(a) Find the dimension ofker L. 

(b) Find the dimension of range L. 

8. Let L: 1'2 -+ PI be the linear transform.'1tion defined by 

L(tlt 2 +br +c) = (o+b)t + (b-c). 

(n) Find a basis for kef L. 

(b ) Find a basis for range L. 

... . LeI L:"2 > H.l be the linear trnllsformulion defined by 
L(a/ 2 +bl +c) = [a b]' 

(a) Find a basis for ker L. 

(b) Find a basis for range L. 

10. Let L : Atn ...... Mn be the lirrar transformation defined 
by 

L(A)=[: nA-A [: ~]. 
(a) Find a basis for ker L. 

(b ) Find a basis for range L. 

II. lei L: M 22 -+ M n be the linear operator defined by 

([a b]) [a +b 
L cd = (I +(1 

(a) Find a basis for ker L. 

(h) Find:l basis for range L. 

He] 
b+d . 

12. leI L : V __ IV be a linear transfoml:l tion. 

(a) Show that dimrangeL .s dim 1'. 

(b ) Pro"e thaI if L is onto, then dim IV :: dim V. 

13. Verify Theorem 6.6 for the following linear transfonna­
lions: 

(a) L: 1'2 ..... P2 defined by L (p( I » = 11"(1). 

(b) L: RJ -+ R2 defined by 

L(flll 112 IIJ])=[ 1I 1+ 1I1 1I1+lIj ]. 
(e) L: M 2! ...... M21 Jefined by 

2 3] 
I 3 . for A in Mn. 

14. Verify Theorem 6.5 for the linear InUlsfonnation gi\"en in 
Exercise I I . 

15. Lei A be an 11/ X " matrix. and consider the linear trans­
fomlalion L : W ...... R'" defined by L(x) = Ax. for x in 
R~. Show that 

16. 

range L = column space of A. 

LeI L : RS -+ R' be the linear transformation defin~d by 

L([]){ 0 - I 3 =:] [::;] 0 0 2 
0 - I 5 - I II , . 

0 - I o II , 

II~ 

(a) Find a basis for and the dimension of ke r L. 

(b) Find a basis for and the dimension of range L. 

17. Let L : Rj ...... R3 be the linear tr.lIIsfonnation defined by 

L(e f )=L([ 1 0 O]) ~[3 0 0]. 

L(er) = L ([0 O]) ~[ I I]. 
and 

L(ej) = L ([0 0 1]) ~[2 tJ · 
Is the set 

IL (ei). L(eI). L(ej)f 

= /[3 0 0] . [ I I]. [2 III 
a i>..1sis for RJ ? 



18. Let L : V --,I- IV be a linear tmnsfonnation. and let 
dim V = dim IV. Prove that L is invertible if and only if 
[he image of a basis for V under L is a basis for IV. 

19. Let L: 1(3 --,I- 1(3 be defined by 

(a) Prove that L is invertible 

20. Let L : V __ IV be a linear transfonnation. and let 
5 = {VI. V! • ...• ' ·n} be a set of vectors in V. Prove that if 
T = {L (v l). L(V2) . .... L (v.)) is linearly independent. 
Ihen so i ~ S. What can we ~ay about the converse? 

21. Find the dimension of the solution space for the follow ­
mg homogeneous system: 

[j 
2 
1 - I 

o 0 
- I 

22. Find a linear transfonnation L : 1(2 --,I- R 3 such that S = 
([I - I 2].[3 - 1]psa basisforrangeL. 

23. Let L : f( l __ « 1 be the Imeat transformation defined by 
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(a ) Prove that L is invertible. 

24. Let L· V -+ IV be a linear transfonnation. Prove that L 
is one-to-one if and only if dim range L = dim V . 

25. Let L: R'; ___ 1(6 be a linear transfonnation . 

(II) If dim kef L = 2. whal is dim rangt: L ? 

(b ) [f dim range L = 3. what is dim ker L? 

26. LeI L : V --)0 RS be a linear transfonnation. 

(a) [f L is onto and dim ker L = 2. what is dim V~ 

(b) [f L is one-to-one and onto, what is dim V? 

27. Let L be the linear transformation defined in Exercise 24. 
Section 6.1. Prove or disprove the following: 

(a) L is one-to-one. 

(b) L is onto. 

28. Let L be the linear transformation defined in Exercise 25 . 
Section 6.1. Prove or disprove the following: 

(a) L is one-to-one. 

(b) L is onto. 

29. Prove Corollary 6.1. 

30. Let L : RIO ..... Rm be a linear transformation defined by 
L(x) = Ax. for x in R". Prove that L is onto if and only 
ifrankA =111. 

31. Prove Corollary 6.2. 

m Matrix of a Linear Transformation 

[n Section 6.2 we saw that if A is an III x n matrix. then we can define a linear 
transfonnation L : R" --,I- R'n by L (x) = Ax for .'\ in R" . We shall now develop 
the following notion: If L: V -+ W is a linear trans fonnation of an n-dimensional 
vector space V into an m-di me nsional vector spal:e W. and if we choose ordered 
bases for V and W, then we can associate a unique 11/ x n matri x A wilh L that 
will enable us to fi nd L (x) fo r x in V by merely performing matrix multiplication. 

Theorem 6.9 Let L: V _ W be a linear trans formation of an n-d imensional vector space V into 
an III-di mensional vector spacc W (n 1= 0, III 1= 0) and tet S = {V], V2 . .. .. v,,! 
and T = {w t . W2 • • . .• wm ! be ordered bases for \/ and W. res,Pcctivcl,Y. Then the 
III x n matrix A whose jth column is the coordinate vcctor l L(v j) J

T 
of L(v) 
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with respect to T has the followi ng property: 

for every x in V. 

Moreover. A is the onl y matri x with thi s property. 

Proof 

(I ) 

We show how to constmct the matri x A. Consider the vector vi in V for j = 
1. 2 . ... , n. Then L (v i ) is a vector in W, and since T is an ordered basis for IV, 
we can express this vector as a linear combination of the vectors in T in a unique 
manner. Thus 

(2) 

This means that the coordinate vector of L ( v) with respect to T is 

Recall from Section 4.8 that , to find the coordinate vector [L (v i ) JT' we must 

solve a linear system. We now define an III x /I matrix A by choosing [L (v) ] T 
as the jth column of A and show that thi s matrix satisfies the properties stated in 
the theore m. 

Let x be any vector in V. Then L (x ) is in W. Now let 

['" ] '" [xl,~ ,-
ali 

and 

This means that x = (l I VI + {/l Vl + .. . + (l Il VII , Then 

L(x) = al L ( v l ) + a2 L (v2) + ... + (l Il L (v lI ) 

= (/1(cII WI + [ 21 W2 + ... + C",I Wm) 

+ (/ l(CJ2 W I + c22 W 2 + ... + Cm2 W",) 

+ ... + (/ II(CIII W I + c2" W 2 + ... +Cm" Wm ) 

= (CII {/ 1 + CI2 a 2 + ... + cl"a ,,)w l + (Cl l{/l + C22a2 + ... + c2t!a ,,)w2 

+ .. . + (c",I (l 1 + C",2a2 + .. . + c",,,all) w ,,, . 

Now L (x) = bi w i + b 2W 2 + ... + b m w ",. Hence 

bi=CiJ {/ I + Ci2a2+" ' +Ci"all fo r i = 1. 2 . ... . 111 . 
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Next, we verify Equation (1). We have 

:::] [::] 
C~,n {;" 

[ 

c" 
c" 

A[xL ~ : 

eml 

C22 

C",2 

[ 

e"a, + e"a, + ... + e,,,a,,] [b'] c"a, + e"a, + .. + eb,a" b, 

em'''' + 'm,a, +. + em"a" bm 
Finall y, we show that A = [ Cij ] is the only matrix with this property. Suppose 

that we have another matrix A = [cij] with Ihc same properties as A, and that 

A =1= A. All the clcmcms of A and A cannot be equal, so say that the klh columns 
o f these matrices are unequal. Now the coordinate vector of Vk with respect to the 
basis S is 

0 
0 

[,,J, ~ I _ klh row. 

0 

0 

[
au] all 

: = klh column of A 

a",t 

[
aU] (Ill 

= klh column of A. 

ci,~'t 

This means that L (Vi) has two different coordinate vectors with respect to Ihc 
same ordered basis. which is impossible. Hence the matrix A is unique. • 
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FIGURE 6.2 

EXAMPLE 1 

We now summarize the procedure given in Theorem 6.9 for computi ng the 
matrix of a linear transformation L : V -+ W with respect to the ordered bases 
S = {v]. V2 •. .. , v,,1 and T = {W I . W2 . .. wml for V and lV, respectively. 

Step }. Compute L(vj ) fo r j = 1. 2 . .. .. 11. 

Step 2. Find the coordi nate vector [L(v j)]T of L(v j) with respect to T . Thi s 
means that we have to express L (v) as a linear combination of the vectors in T 
[see Equation (2)1, and this requires the solution of a linear system. 

Step 3. The matrix A of the linear transformat ion L with respect to the o rdered 
bases Sand T is formed by choosing, for each j from I to II, [ L( v j) ]T as the jth 
column of A. 

Figure 6.2 gives a graphical interpretat ion of Eq uation (I), that is, of Theorem 
6.9. The top horizontal arrow represents the linear transfonnation L from the 1/­

dimensional vector space V into the III-di mensional vector space lV and takes the 
vector x in V to the vector L(x) in W, The bottom horizontal line repre;;ents 
the matrix A. Then [L(x ) ]T' a coordinate vector in R'n, is obtained simply by 

mult iplying [x l~, a coordinate vector in R". by the matrix A on the left. We can 
thus wOlk with matl ices lather thall with linear tfallsfollnat io lls. 

(Calculll.~ R equired) Let L : P2 -+ PI be defined by L(p(t)) = p'( t). and con­
sider the ordered bases S = {t l. f , \} and T = {f , II for P2 and PI. respectively. 

(a) Find the matrix A assoc iated with L. 

(b) If pet ) = 5t 2 
- 3t + 2, compute L(p(t» directly and then by using A. 

Solution 
(a) We have 

L (t 2
) = 2t = 2f + 0( \ ) . 

L (/ ) ~ I ~ 0(1) + 1( 1). 

L (I) ~ 0 ~ 0(1) + 0(1). 

'0 [L(I') IT ~ [~l 

'0 [L(/ ) IT ~ [~l 

'0 [ L (1)lT ~ [n 
In this case, the coordinates of L(1 2), L(1), and L(l) with respect to the T-basis 
arc obtained by observation, since the T -basis is quite simple. Th us 

[2 0 0] 
A = 0 I 0 . 

(b) Since p(t) = 51 2 
- 31 + 2, then L(p(t )) = IOf - 3. However, we can find 

L(p(t» by using the matrix A as fo llows: Since 
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EXAMPLE 3 
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then 

[L(p(/))] , ~ [~ 0 ~l [-u ~ [~~l· 
which means that L (p (t) = lOt - 3. • 

Remark We observe [hat Theorem 6.9 states, and Example [ illustrates. that for 
a given linear transformation L: V -+ IV, we can obtain the image L (v) of any 
vector v in V by a simple matrix multiplication; that is , we multiply the matrix A 
associated with L by the coordinate vector [ \' l~ of v with respect to the ordered 

basis S for V to find the coordinate vector [L(v) ]T of L (v) with respect \0 the 

ordered basis T for W. We thcn compute L (v) , using [L(v)]T and T. 

Lei L: P2 -,)0 PI be defined as in Example I and consider the ordered bases 
S = p. t. t 2 ) and T = {I, If for P 2 and PI. respectively. We then find thaI 

the matrix A associated with L is [~ ~ ~] (verify). Notice that if we change 

the order of the vectors in SorT, the matrix may change. • 

Let L: P2 -+ PI be defined as in Example I, and consider the ordered bases 
S = {t 2• t. II and T = [1 + I. t - II fo r P2 and PI , respectively. 

(a) Find the matrix A associated with L. 

(b) If pet) = 5t 2 - 3t + 2, compute L(p(t». 

Solution 
(a) We have 

L«( 2) = 2t. 

To find the coordinates of L ( 2) with respect to the T -basis, we form 

L (t 2
) = 2r = al (1 + 1) + a2(t - 1) . 

which leads to the linear system 

al + a2 = 2 

al - a2 = O. 

whose solution is {II = I. (Ii = I (verify). Hence 

Similarly, 

L (t) = 1 = !(t + I) - hI - 1). '0 [L (/)], ~ [-lJ. 
L(1) = 0 = 0(1 + I ) + 0(1 - I). '0 [L(I)], ~ [~l. 
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EXAMPLE 4 

H'n" A ~ [: -l :] 
(b) We have 

[L(p(/))], ~ [: : ] [ -n [ ~ ] 
so L (p(r) = ~(t + 1)+ ¥(t - I) = lOt - 3, which agrees Wilh lheresul! found 
in Example I. - - • 

Notice that the matrices obtained in Examples I. 2. and 3 are different, even 
though L is the same in all three examples. In Section 6.5 we discuss the relation­
ship between any two of these three matrices. 

The matrix A is called the representation of L with respect to the ordered 
bases Sand T. We also say that A represents L with respect to Sand T. Havi ng 
A enables us to replace L by A and x by [ x ]s to get A [ x ls = [ L (x ) ]T' Thus the 

result of applying L to X in V to obtain L (x ) in W can be found by multiplying the 
matrix A by the matrix [ x ls' That is, we can work. with matrices rather than with 
linear transformations. Physicists and others who deal at great length with linear 
transfonnations perform most of their computations with the matrix representa­
tions of the li near transformations. Of course. it is easier to work. on a computer 
with matrices than with our abstract definition of a linear transfonnation. The rela­
tionship between linear transformations and matri ces is a much stronger one than 
mere computational cOIlvenience. In the next seclion we show that the set of all 
linear transformations from an II -dimensional vector space V to an III-dimensional 
vector space W is a vector space that is isomorphic to the vector space M",n of all 
III x n matrices 

We might also mention that if L: Rn -+ R,n is a linear transformation, then we 
oft en usc the natural bases for R" and R"', which simpli fies the task of obtaining a 
representati on of L. 

Let L : R3 -+ R2 be defi ned by 

L ( [;: ]) ~ [: 2 :l[;:] 
LeI 

e, ~ m e, ~ m " ~ m 
" ~[~l , nd " ~ [~l 

Then S = {el. C:1. eJ} and T = fel. e2} are the natural bases fo r RJ and R2, 
respectively. 
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Now 

L(e r) = [ : , :] m ~ [:] ~ Ie , + Ie, '0 [L(' ,)lT~ [:1 
L (e2) = [ : 

2 :] m ~ [~] ~ Ie , +" ,. '0 [L(")lT~ [~l 

L (eJ )=[ : , :] m ~ [;] ~ Ie, +" ,. so [L(eJ) ]T= [~l 

In Ihis case, the coordinate vectors of L(ed, L(e2), and L (e) with respect to the 
T-basis are readily computed, because T is the natural basis for Rl. Then the 
representation of L with respect to Sand T is 

, '] , 3 . 

The reason thai A is the same matrix as the one involved in the defi nition of L is 
that the natural bases are being used fo r RJ and R2. • 

Let L: R3 ...... R2 be defi ned as in Example 4, and consider the ordered bases 

for R''\ and R2, respectively. Then 

Similarly, 

To determine the coordinates of the images of the S-basis. we must solve the three 
linear systems 

",[~] + ",[:] ~ b 

['] [2] [']. . .. where b = 3 ' 5 . and 3 . ThI s can be done slInultaneously. as In SectIOn 

4.8, by transforming the partitioned matrix 

[
1 1 : 2 : 2 : 1] 
23:3 : 5:3 , , , 
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to reduced row echelon form , yieldi ng (veri fy) 

[~ o i 3 
:- 1 

The last three columns of this matrix are the desired coordinate vectors of the 
image of the S-bas is with respect to the T -basis. That is. the last three columns 
form the matrix A representing L with respect to Sand T. Thus 

A ~ [ 3 0] 
- I I ' 

This matrix, of course. differs from the one thar defined L. Thus. although a 
matrix A may be involved in the definition of a lincar transformation L. we cannot 
conclude that it is necessarily the representation of L that we seek. • 

From Example 5 we see that if L : R" -+ R'" is a linear transformation. thcn a 
computationally effi cient way to obtain a matrix representation A of L with respect 
to thcordcrcd bases S = {V].V2 ..... VII} for R" and T = {W].W2 • .. .• w"'} for 
Rm is to proceed as follows: Transform the partitioned matrix 

to reduced row echelon fo rm. The matrix A consists of the last n columns of thi s 
last matrix. 

If L : V -+ V is a linear operator on ann-dimensional space V, then to obtain 
a representation of L. we fix ordered bases Sand T for V, and obtain a matrix 
A representing L with respect to Sand T. However, it is oft en convenient in 
this case to choose S = T. To avoid verbosity in this case, we refer to A a~ the 
representation of L with respect to S. If L : R" -+ R" is a linear operator. then 
the matrix representing L with respect to the natural basis for R" has already been 
discussed in Theorem 6.3 in Section 6.1. where it was called thc standard matrix 
representing L. 

Also, we can show readily that the matrix of the identity operator (see Exerci se 
22 in Section 6.1) on an II-dimensional space, with respect to any basis, is III' 

Let J : V -+ V be the identity operator on an n-dimensional vector space V 
and let S = {v]. V2 .... . v,, } and T = {WI. W2 ..... wlI } be ordered bases for V. It 
can be shown (Exercise 23) that the matrix of the identity operator with respect to 
Sand T is the transition matrix from the S-basis to the T -basis (see Section 4.8). 

If L : V -+ V is an invertible linear operator and if A is the representation of 
L with respect to an ordered basis S for V. then A-I is the representation of L - I 

with respect to S. This fact , which can be proved directly at this point, follows 
almost tri vially in Section 6.4. 

Suppose that L : V -+ W is a linear transfonnation and that A is the matrix 
representing L with respect to ordered bases for V and W. Then the problem of 
finding ker L reduces to the problem of finding [he solution space of Ax = O. 
Moreover, the problem of finding range L reduces to the problem of finding the 
column space of A. 
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We can s ummarize the co nditio ns unde r w h ich a linear trans fo rmatio n L o f 
an n -dime ns io na l vector space V into itself (or, mo re gene rally, in to an n ­
dime ns io na l vecto r space W) is invert ib le by the fo llowing equivalen t state­
men ts: 

l. L is invert ible. 

2. L is o ne-to-one . 

3. L is o n to. 

4. The matrix A represen ting L with respect to o rdered bases Sand T for V 
and W is no nsingular. 

Key Terms 
Matrix representing a li near transfonnation 
Ordered basis 
Invariant subspace 

'0" Exercises 

l. Let L : R2 _ R2 be defined by 

Let S be the natural basis for R2 and let 

Find the representation of L with respec t to 

(a) S: (b) SandT: (e) T and S: (d) T. 

(c) Find L ([ ~]) by using the defin it ion of L and also 

by using the matrices found in parts (a) through (d). 

2. Let L : R~ -;. RJ be defined by 

Let 5 and T be the natural bases for R~ and R]. respec­
lively. Let 

and 

o 0 lJ. [0 0 0 

o 0 ].[0 

lJ· 
0] 1 

0]. [0 0].[ 1 0 lJ l. 
(a) Find the representation of L with respect to 5 and 

T. 

(b) Fi nd the representation of L with respec t to 5' and 
T ' . 

(e) Find L ([ 2 - I 3]) by using the matrices 
obtained in patts (a) and (b) and compare this an· 
swer with that obtained from the definit ion for L. 

3. Let L : R~ __ RJ be defined by 

o 
1 

- 2 

1 

2 iJ [:::]. 
'" 

Let 5 and T be the na tural bases for R~ and Rl . respec­
tively. and consider the ordered bases 

for R4 and RJ. respect ively. Find the representation of L 
with respect to (a) 5 and T: (b) 5' and 1". 

4. Let L : R2 -;. R2 be the linear transformation rotating 
R2 counterclockwise throui!,h an anJ,::le ¢J. Find the repre­
sentation of L with respect to the na tural basis for /(2. 
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5. Let L: R3 --;. R 3 be defined by 

(a ) Find the representation of L with respcetto the nat­
ural basis S for R 3. 

Ibl F;"d L (U]) by";,, ,," d,",;,;oo of L ",d 

also by using the matrix obtained in part (a). 

6. Let L : R 3 --;. R3 be defined as in Exereise 5. Let 
T = (L(el). L (c2). L(e3» ) be an ordered basis for R3. 
and let S be the natural basis for R3. 

(a) Find the representation of L with respect to Sand 
T . 

Ibl F;"d L (U]) by ";0, 'he m"ri, ob,,;o'" ;" 

part (a). 

7. Let L: R 3 .-...)0 R3 be the linear transformation repre­
,ented by the matrix 

[l ; ~] 
with respect to the natural basis for R3. Find 

8. Let L : M n ...... M 22 be defined by 

for A in Mn. Consider the ordered bases 

for M 22 . Find the representation of L with respect to 

(a) S; (b) T: (c) Sand T; (d) T and S. 

9. (Cufcuflls Required) Let V be the vector space with basis 
S={I.f.e' .le'} andletL: V_ Vbealinearoperator 
defined by LU) = f' = dfldl. Find the representation 
of L with respect to S. 

10. Let L : P I --;. 1'2 be tX":fi ned by L (p (f )) = Ip(t ) + prO). 
Consider the ordered bases S = {I. I} and S' = (f - I . 
I - I) for P I. and T =(t 2.1.I}andT' = (12+ 1.1 - 1. 
I + I) for 1'2. Find the representation of L with respect 

'0 
(a) 5 and T (b) 5' and T'. 

(c) Find L(-31-3) by using the definition of L and the 
matrices obtained in parts (a) and (b). 

[
I '] . II. Let A = 3 4 . an<llet L: M 22 - M n be the lmear 

transfonnation <lefined by L(X ) = AX - X A for X in 
M22 . Let 5 an<l T be the ordere<l bases for Mn <lefined 
in Exercise 8. Find the representation of L with respect 

'0 
(a ) 5 ; (b) T : (e ) Sand T: (d ) T ami 5 

12. Let L: V ....... V be a linear operator. A nonempty sub­
space U of V is called invariant under L if L {V ) is con­
taine<l in U. Let L be a linear operator with invariant 
subspace U. Show that if dim V = III and dim V = II. 

then L has a representation with respect to a basis S 

. [A"] . . for V of the lorm 0 C . where A IS III X III. B IS 

III X ( II - III), 0 is the zero (n - Ill ) X III matrix. and C 
is (II - Ill ) X (II - //I). 

13. Let L ' R~ -;, R' be defined by 

a reflection about the x-axis. Consider the natural basis 
S and the ordered basis 

for RC. . Find the represelllation of L with respect to 

(a) 5; (b) T: (c) Sand T: (d) T ami S. 

14. If L: R3 --;. R2 is the linear transfonnation whose repre­
sentation with respect to the natural b<lses for R3 and R! 

. [ ' - I '] . IS 2 3 . find each of the followmg: 

(. ) L([I '3]) (bl L([ - I 2 - I]) 

«l L([O ,]) (d) L([O 0]) 

1<' L([O 0 I]) 
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15. If 0: V -+ W is the zero linear transformation. show 
that the matrix representation of 0 with respect to any 
ordered ba~es for V and W IS the III x /I zero matrix. 
where /I = dim V and III = dim W . 

16. If I : V ...... V is the identity linear operator on V defined 
by ' (v) = v for v in V. prove that the matrix representa­
tion of I with respect to any ordered basis S for V is ' • . 
wheredirn V = /I. 

17. Let I : R2 ...... R2 be the identi ty linear operator 
on R2. Let S ([I 0].[0 1]) and T 

([ I - I]. [2 3J) be ordered bases for H2. Find the 
representation of I with respect to 

(a) S; (b) T: (e) Sand T: (d) T and S. 

18. (Cufcllflls Reqllired) Let V be the vector space of real­
valued continuous functions with basis S = fe'. e - '} . 
Find the representation of the linear operator L : V -)- V 
defined by L(j) = f' with respect to S. 

19. Let V be the vec tor space of real-valued continuous func ­
lions with ordered basis S - (sin I. cos fl. Find the rep_ 
resentation of the linear operator L : V -+ V defined by 
L(f) = f' with respect to S. 

20. (Cufcuflls Reqllired) Let V be the vector space of real­
va lued continuous functions with ordered basis S = 
[sin I. cos I} and consider T = {sin I-COS I. sin I + cos I} . 

another ordered basis for V. Find the representation of 
the linear operator L : V -+ V defined by L (j) = f' 
with respect to 

(a) S: (b) T: (e) Sand T: (d) T and S. 

21. 

22. 

Let L : V -+ V be a linear operator defined by L iv) = 
c v. where c is a fixed constant. Prove that the represen­
tation of L with respect to any ordered basis for \' is a 
scalar matrix. (See Section 1.5.) 

Let the representation of L : Rl -)- R2 with respect to 
the ordered bases S = {VI . V2. Vl} and T = (WI. W2) be 

where 

A ~ [ 1 
- I 

2 

(a) Compute [ L{vl ) Jr' [ L{V2) ]r' and [ L(Vl) Jr' 
(h) Compllte 1.(v , ). I .(v2) . anrl / .(v) 

C,) Comp",' L (U]) 
23. Let I : V -+ V b~ the identity operator on an /1 -

dimensional veclor space V and let S = (VI. V2.. . ""I 
and T = {WI. W2 ..... w" I be ordered bases for V. Show 
that the matrix of the identity operator with respect to S 
and T is the transition matrix from the S-basis to the T­
basis. (See Section 4.8.) 

III Vector Space of Matrices and Vector Space 
of Linear Transformations (Optional) 

DEFINITION 6.5 

We have already seen in Section 4.2 that the set Mmn of all III x 1/ matrices is 
a vector space under the operations o f matrix addition a nd scalar multiplication . 
We now show in this sectio n that the set o f all linear trans formations of an 1/ ­

dimensional vector space V into an Ill -dimensional vector space W is also a vector 
space U under two suitably d e fined operations, and we shall exami ne the re lation 
between U and Mm " . 

Le t V and W be two vector spaces of dime nsions 1/ and Ill. respectively. Also. le t 
L l : V _ Wand L2 : V ...... W be linear transformations. We define a mapp ing 

L: V ...... W by L (x) = L I (x) + L 2 (x), for x in V. Of course. the + here is vector 
addition in W. We shall denote L by L l m L2 and call it the sum o f L t and L2. 
Also, if L3: V _ W is a linear transformation and c is a real number, we de fin e a 
mapping H : V _ W by H (x) = cL 3 (x) for x in V. Of course, the operation on 

the ri ght side is scalar multiplication in W . We de note H by c [] L3 and call it the 
scalar multiple o f L j by c. 
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EXAMPLE 1 

EXAMPLE 2 

L I(x)= L I([1I1 11 2 11 3]) = [111 + 11 2 11 2+ 113] 

Then 

and 

• 
We leave it to the reader (see the exercises in this section) to verify that if L , 

L I • L2, and L3 are linear transformations of V into Wand if c is a real number. 
then L 10 L2 and c D LJ arc linear transformations. We also let the reader show 
that the set U of all linear transformations of V into W is a vector space under 
the operations El and El . The linear transformation 0: V ---->- HI defi ned by 
O(x) = Ow for x in V is the zero vector in U . That is. L m 0 = o m L = L for 
any L in U . Also,if L is in U, then L tIl (-I El L ) = O. so we may write (- 1) El L 
as - L. Of course, to say that S = {L I, L 2• Ld is a linearly dependent set in 
U mcans merely that there exist k scalars {II , {l2. ., {lk. not all zcro, such that 

where 0 is the zero linear transformation. 

LI ([ il J 

L2 ([ II I 

L J ([ 11 1 

112 ]) = [III + 112 2112 11 2]' 

112 ]) = [U2- 1I 1 2111 + 112 III]' 

112]) = [3111 -2U2 UI+2u2 ]' 

Detenni ne whethcr S = {LJ. L 2• L j ) is linearly independent. 

Solution 
Suppose that 

where {lJ, {/2, and {I} are real numbers. Then, for er = [I 0], we have 

(lJ L I(er) + (l2 L2(er) + (l3L](ef) 

~", [I 2 0]+",[ - 1 2 1] +",[3 ° I] ~ [O 0 0]. 
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Thus we must solve the homogeneous system 

- I 
2 

obtaining a] = (l2 = (l3 = 0 (verify). Hence S is linearly independent. • 

Theorem 6. 10 Let U be the vector space of all li near transformations of an II-di mensional vector 
space V into an !II-dimensional vector space W, II i= 0 and 11/ i= 0, under the 
operations El and 8. Then U is isomorphic to the vector space M"", of all III x II 

matrices. 

Proof 

Let S = {v]. V2 • . .. . v,1 and T = {W I. W2 • .. .. wml be ordered bases for V and 
W. respectively. We defi ne a function M : U ....... M"," by letting M (L ) be the 
matrix representing L with respect to the bases Sand T. We now show that M is 
an isomorphi sm. 

First. M is one-to-one. fo r if L I and L 2 are two different elements in U. then 
L l(vj) i= L 2(v j ) for some j = [.2 . .... 11 . Thi s means that the jth columns 
of M (L I ) and M (L2), which are the coordinate vectors of L I( vj) and L2(v; ). 
respectively, with respect to T , are different. so M (L ]) i= M (L 2) . Hence M is 
one-to-one. 

Next, M is onto. Let A = [(l ij ] be a given 11/ x II matrix: that is, A is an 
clement of M"", . Then we define a function L : V ....... W by 

," 
L(Vi) = L Oki Wt . 

k=1 

i = I. 2, ... . 11. 

and if x = CI VI + C2 V2 + ... + c" V" . we define L (x) by 

" 
L (x ) = L c; L(v;). 

i ",d 

It is not difficult to show that L is a linear transformation: moreover, the matrix 
representing L with respect to Sand T is A = [(I;; ] (verify). Thus M (L) = A., so 
M is onto. 

Now !et M (L I ) = A = [{I;j ] and M (L 2) = B = [lJij ]. We show that 
M (L I (!] L 2) = A + B. Fim, note thm the jlh column of M (L I m L 2) is 

Thus the Jth column of M (L I EEl L 2) is the sum of the J th columns of M (L ]) = A 
and M (L 2 ) = B. Hence M (Ll EEl L 2) = A + B. 

Finally, let M (L ) = A and C be a real number. Following the idea in the 
preceding paragraph, we can show that M (c [J L ) = cA (verify). Hence U and 
M "'n are isomorphic. • 

This theorem implies that the dimension of U is 11/11. for dim M",,, = !ll1I. 

Also, it means that when dealing with fini te-dimensional vector spaces, we can 
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EXAMPLE 3 

always replace all linear transformations by thei r matrix representations and work 
onl y with the matrices. Moreover. it should be noted again that matrices lend 
themselves much more readily than linear transfonnations to computer implemen­
tations. 

[I 2 -I] __ 
LctA = 2 - I 3 ,and letS= (e l .e2.eJ}andT = (C I.e2) bc the natural 

bases for R3 and R2, re5pcctively. 

(a) Find the unique linear transfonnation L: RJ -+ R2 whose representation with 
respect to Sand T is A. 

(b) Let 

be ordered bases for RJ and R2, respectively. Determi ne the linear transfor­
mation L : RJ --+ R2 whose representation with resjX!ct to S' and T' is A. 

(e) Comp"" L (U])' ",ing L", d""mined in pon (b). 

Solution 

(a) Let 

Now if x = [~~ ] isin RJ, wedefine L (x) by 
n, 

L (,,) = L (alcl + a2C] + aJeJ) 

= (II L (e l) + a2 L (C2) + {[JL (eJ). 
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Note that 

L (X)~[~ _~ -~][::;]. 
" 3 

so we could have defined L by L(x) = Ax for x in R3. We can do this when the 
bases 5 and T are the natural bases. 
(b) Let 

L ([m ~ I [~] + 2[ -~ l ~ m 
L([m ~2 [;] - I[ -~l ~ m 

L([m ~ - I[:] +3[ _;] ~ [ _n 

Then if x = [:~ ]. we ex press x in terms of the basis 5 ' as 

"3 

Define L(x) by 

L(x) = [ 5b l I 5IJJ ]. 
hl+7h2 - 6bJ 

(e) To food L ([~ ]). we rom hm (ycdry) 

( I ) 
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EXAMPLE 4 

Then, using b l = I, /)2 = 0, and b3 = 2 in Equation (I), we obtain 

• 
The linear transformations obtained in Example 3 depend on the ordered bases 

for R2 and RJ. Thus if L is as in part (a), then 

which differs from the answer obtained in part (c). since the linear transformation 
in part (b) differs from that in part (a). 

Now let VI be an II-dimensional vector space, V2 an m-dimensional vector 
space, and V, a p-dimensional vector space. Let L I : VI ...... V2 and L2 : V2 -+ V3 
be linear transformations. We can defi ne the composite function 

L2 0 L I : VI ...... V3 by (L 2 0 LJ)(x) = L2(L I(x)) 

for x in VI. It follows that L2 0 L I is a linear transformation. If L : V ...... V, then 
L 0 L is written as L 2. 

Then 

while 

(L , oL,) ([:::]) ~ L , ([:::]) ~ [ _ :::]. 

(L , 0 L,) ([ :: ; ]) ~ L , ([ _ ::;]) ~ [ - ::; 1 
• 

Theorem 6.11 Let VI be an II-di mensional vector space, V2 an m-dimensional vector space, and 
Vj a p-dimensional vector space with linear transformations LI and L2 such that 
L 1 : VI -+ V2 and L2 : V2 ...... V3 . If the ordered bases P, S,and T arc chosen for 
VI, V2 • and VJ • respectively. then M (L2 0 L I) = /L1(L 2)M(LI). 

Proof 

Let M (L I ) = A with respect to the P and S ordered bases fo r VI and V2, respec­
tively, and let M (L 2) = B with respect to the Sand T ordered bases for V2 and 
V3 , respectively. For any vector x in VI, [ L I (x) ]s = A [ x ]p . and for any vector Y 

in V2 , [Ll(Y)]T = B [Y] s ' Then it follows that 

[(L ,o L,)(x)], ~ [L ,(L ,(x))] , 

~ B[L,(x)l, ~ B(A[X] ,,) ~(BA)[ X] ,. 
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7. (Calcllllls Required) Let Ll PI -+ P2 be the linear 
transformation defined by L1 (p(t) = Ip(t) and let 
L2: P, __ P3 be the linear transfomlation defined by 
L, (p(t )) = I ' p'(t). Let H = il + I. f - I). S = 
il ' .1 - 1.1 +2). and T = it3.l z - l.f.f + I) beor­
dered bases for P I. I'z. and 1'), respectively. 

(a) Find the representation C of L , 0 L I with respect to 
Hand T. 

(b ) Compute the representation A of L I with respect to 
K and S and the representation lJ of L , wlth respect 
to Sand T. Verify that SA is the matrix C obtained 
in part (a). 

8. Let L I. L,. and S be as in Exercise 3. Find the following: 

(a) (L 1 o L,) ([1I 1 II , 11 3 ]) 

(b ) (L,o L 1)([1I 1 II , lI.d) 
(c) The representation of L I 0 L, with respect to S 

(d) The representation of L , 0 L I with respect to S 

9. If [! _: -iJ , .. he "pre~m"'o<' of' h'"'' 0",'· 

ator L: R 3 -+ R 3 with respect to ordered bases Sand T 

for R 3. find the representation with respect to Sand T of 

(a) 28L: (b) 2 El L Etl L o L. 

10. Let L j • L,. and L 3 be linear transformations of R3 into 
R, defined by 

L I ([ II , '" Il l ]) = [:1, +lI~ lI , - II ) ] . 
Ld[1I 1 II, lI J ]) = [ il l - II, 113] . and 

L J([ " l II, lI J ])=[ il l li Z + 113] . 

Prove that S = iLl. L,. LJ ) is a linearly independent se t 
111 the vector space U of all linear transformations of R 3 

mto R,. 

II. Find the dimension of the vector space U of all linear 
transformations of V into IV for each of the following : 

(a ) V - H'. IV - RJ (h ) V - P1• IV - P, 

(c) V = M,j, IV = At3, (d) V = R3. IV = H4 

12. Repeat Exercise II for each of the fo llowing: 

(a ) V = IV is the vector space with basis (sin I. cos I). 

(b ) V = IV is the vector space with basis ( I. I. e'. fe'). 

(c) V is the vec tor space .I"palllled by i I. f. 21J. and IV 
is the vector space with basis il'. I. I I. 

13. Let A = [ali ] be a given /II x I! matrix. and let V and IV 
be given vector spaces of dimensions II and /II, respec­
lively. LeI S = i VI. V, ..... ' ·n} be an ordered basis for 

14. 

IS. 

16. 

V. and let T = (W I. ""2 .. .. . w"') be an ordered basis for 
IV. Define a function L : V -4 IV by . 

L(v;) = L al; w •. i = 1.2 ..... 11. 

I= j 

and if ll: = (. j VI + Cl V, + ... + Cn V", we deline L(x) by 

L(x) = L c,L(Vi) . 
;=1 

(a) Show that L is a linear transformation. 

(b) Show that A replesents L with respect to Sand T. 

Let A = [~ ~ =~ 1 Let S be the natural basis for 

Rl and T be the natlllal basis for H'. 

(a) Find the linear transformation L: H] -4 H' deter­
mined by A. 

Let A be as in Exercise 14. Consider the ordered bases 
S = if'. I. I ) and T = (1. 1) for 1', and P I, respectively. 

(a) Find the linear transformation L: [', -4 PI deter-
mined by A. 

(b) Find L(al ' + hI + c). (c) Find L (2f 2 - 51 + 4) . 

Find two linear transformations L j : H' -4 H: and 
L 2: H2 _ R'suchthatL2 o L I ",L l oL1. 

17. Find a linear transformation L : R2 -4 K'. L '" f, the 
identity operator. such that L 2 = L 0 L = I. 

18. Find a linear transformation L: H' ........ H'. L '" O. the 
zero transformation. such that L 2 = O. 

19. Find a linear transformation L: R 2 -)- H2. L I- I. 
L '" O ,such that L' = L. 

20. Let L : R 3 -)- Rl be the linear transformation defined in 
Exercise 19 of Section 6.2. Find the matrix representing 
L - I with respect to the natural basis for H3. 

21 . Let L : R 3 ..... R 3 be the linear transformation definoo in 
Exercise 23 of Section 6.2. Find the matrix representing 
L - I with respect to the natural basis for R'. 

22. Let L : R' ..... Rl be the invertible linear transfonr.ation 
represented by 

with respect to an ordered basis S for H] . Find the repre­
sentation of L - I with respect to S. 



23. Let L: V ..... V be a linear transfonnation represented 
by a matrix A with respect to an ordered basis S for V. 
Show that A 2 represents L 2 = L 0 L with respect to S. 
_\1oreover. show that if k is a positive integer. then A' 
represents L l = L 0 L o· . 0 L (k times) with respect to 

S. 

m Similarity 

6.5 Similarity 407 

24. Let L: P, -+ P, be the invertible linear transfonr.ation 
represented by 

A = [~ -n 
with respect to an ordered basis S for P,. Find the repre­
sentation of L - I with respect to S. 

In Section 6.3 we saw how the matrix representing a linear transformation of an 
n-dimensional vector space V into an III-dimensional vector spaee W depends 
upon the ordered bases we choose for V and W. We now sec how this matrix 
changes when the bases fo r V and Ware changed. For simplicity. in this section 
we represent the transition matrices PS~SI and QT<-T' as P and Q, respectively. 

Theorem 6. 12 Let L: V -+ W be a linear transformation of an n-dimensional vector space 
V into an m-dimensional vector space W. Let 5 = {VI. V2 . .. .. vnl and 5' = 
{v't. v;, ..... v;, J be ordered bases fo r V. with transition matri x P from 5 ' to S; let 
T = {WI. W2 .... . wml and T ' = {wt• w2 •...• w..,l be ordered bases for W with 
transition matrix Q from T ' to T. If A is the representation o f L with respect to 5 
and T. then Q-I A P is the representation of L with respect to 5' and T '. 

Proof 

Recall Section 4.8, where the transition matrix was first introduced. If P is the 
transition matrix from 5' to S, and x is a vector in V, then 

[x] ,~ p[x]". (t) 

where the jth column of P is the coordinate vector [vj l~ of vj with respect to S. 
Similarly, if Q is the transition matrix from T' to T and y is a vector in W. then 

(2) 

where the jth column of Q is the coordinate vector [ wi]T of wj with respect to 
T. If A is the representation of L with respect to 5 and T, then 

(3) 

for x in V. Substituting y = L (x) in (2), we have [ L (x) ]T = Q [ L (x) ]T" Now, 
using first (3) and then (I) in this last equation, we obtain 

Q [ L (x) ]T' ~ A P [ x]" . 

This means that Q-l A P is the representation of L with respect to 5 ' and T'. • 
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FIGURE 6.3 

EXAMPLE 1 

Theorem 6.[2 can be illustrated as follows: Consider Figure 6.3(a), where 
Iv: V __ V is the identity operator on V, and Iw: W __ W is the identity 
operator on W. 

Let [SLoord be the set consisting of the coordinate vectors of each of the 

vectors in S, and let [TLoord' [S'Loord' and [T'lOOrd be defined similar[y. In 

terms of matrix representations, Fi gure 6.3(a) becomes Fi gure 6.3(b). 

R" -"- R'" 

V 
L 

IV 
!:Iasls [S Iroo.d MaSlS rl"lOO<lfd 

Basis S Ba,is T 
p .. PIS l..- '(- IS'l-oc.J r Plllro... .(- lT" l.""" = Q I,) ) I, R" --"-- R'" 

V 
L 

IV 
Basis IS')coord Basis IT' lcOOfd 

Basis S' Basis r where B '" Q- I AP 

(0) (h) 

Using Theorem 2.13, we sec that two ",~plY,:.Y<mtatiO/u of a lillcUI" tl"(lll.vfOI"llW­

fioll with respect fo dijJaent pairs ofbw·e.\· are equil'alenl. 

Let L: R 3 ...... R2 be defined by 

Consider the ordered bases 

for R 3
, and 

fOI R2. We cal l establish (velify) thai A = [~ o (] . . - I IS the repleStlltallOIl of 

L with respect to Sand T. 
The transition matrix P from S' to S is the matrix whose Jth column is 

the coordinate vector of the Jth vector in the basis S' with respect 10 S. Thus 

P ~ [l 0 ~l "d the ",,,'t'oo mmri, Q (tom T ' to T ,. Q ~ [: a 
Now Q-I [- ] (We cou ld also obtain Q-I as the transition matrix 
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from T to T ' .) Then the representation of L with respect to S' and T'is 

B= Q-IAP = [1 ~ 2] 
o - 1 - I 

On the other hand , we can compute the representation of L with respect to S' and 
T' directly. We have 

Lm]) ~ [:] ~ I[:] +O[;] <0 [L ([mL ~ [~] 

L m]) [~] ~ H:] -Wl <0 [L m]) L [-:J 
Lm]) ~ [ :] ~ 2[:] - lm '0 [Lm])L ~ [ 71 

Then the representation of L with respect to S' and T ' is 

which agrees with our earlier result. • 
Taking V = W in Theorem 6.11, we obtain an important result, which we 

state as Corollary 6.3. 

Corollary 6.3 Let L: V -+ V be a linear operator on an n-dimensional vector space. Let S = 
{VI. V2 ..... VII} and 5' = {V'I ' v; ..... v;,} be ordered bases fo r V with transition 
matrix P from 5' to S. If A is the representation of L with respect to S, then 
p - J A P is the representation of L with respect to S' . • 

We may defi ne the rank of a linear trans formation L: V -+ W, rank L, as 
the rank of any matrix representi ng L. This definition makes sense, si nce if A and 
J:J represent L , then A and H are equivalent (see Section 2.4); by SectIOn 4.Y we 
know that equi valent matrices have the same rank. 

We can now restate Theorem 6.6 as follows: If L: V -+ W is a linear trans­
formation, then 

nullity L + rank L = dim V. 

If L: R" -+ R'" is a linear transfomtation defined by L(x) = Ax, for x in 
R" . where A is an 11/ x 1/ matrix. then it follows that nullity L = nullity A. (See 
Section 4.7.) 

Theorem 6.13 Let L: V -+ W be a linear transformation. Then rank L = di m range L. 
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DEFINITION 6.6 

Proof 

Let II = dim V, 11/ = dim W, and r = dim range L. Then, from Theorem 6.6, 
dim ker L = n - r. Let V,+I . V,+2 . .. .. v" be a basis fo r ker L. By Theorem 4. [ 1, 
there exist vectors VI. V1 .. . .. v, in V such that S = {VI. V2, . ... V, . V, +I . .... VII f 
is a basis fo r V. The veclOrs WI = L(VI), W2 = L(V2), ... , W, = L(v,) form a 
basis for range L. (They clearly span range L, and there are r of them. so Theorem 
4. [2 app[ies.) Again by Theorem 4. [ 1, there exist vectors W,+I ' w,+2 ' . .. . WIll in 
W such that T = {WI' W1 ... .. w, . W,+I' ""'+2 ..... W"'} is a basis fo r W. Let A 
denote the 11/ x II matrix that represents L with respect to Sand T. The columns 
of A are (Theorem 6.9) 

[L(v,) ], ~ [w;j, ~ . ,. i = 1.2 ..... r 

on" 
j=r+ l. r+2 . .... II. 

Hence 

A = [~ 0] o . 

Therefore 

rankL = rank A = r = dimrangeL. • 
If A and B are II x /I matrices, we say that B is similar 10 A if there is a nonsingular 
matrix P such that B = P-IAP. 

We can show readily (Exercise I) that B is similar to A if and only if A is 
similar to B. Thus we replace the statements "A is similar to 8" and "8 is similar 
to A" by "A and B are similar." 

By Corollary 6.3 we then see that any two representations of a linear operator 
L: V _ V arc similar. Conversely, let A = [ aU] and B = [bij ] be similar /I x II 

matrices and let V be an II -dimensional vector space. (We may take V as R".) We 
wish to show that A and B represent the same linear transfonnation L: V _ V 
with respect 10 differem bases. Since A and B are similar, B = p- l A P for some 
nonsingular matrix P = [pij ]. Let S = {\'I . V2 . .... VII} be an ordered basis for V: 
from the proof of Theorem 6.10, we know that there exists a linear transfonnation 
L: V _ V. which is represented by A with respcctlO S. Then 

[ L (x) L ~ A [x 1,· (4) 

We wish 10 prove that B also represents L with respcctlO some basis for V. Let 

" 
W j = LPij V;. 

i",, 1 

We first show that T = {WI. W2 .. .. . w,, } is also a basis for V. Suppose that 

(5) 
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Then, from (5), we have 

which can be rewritten as 

Since S is linearly independent, each of the coefficients in (6) is zero. Thus 

or equivalently. 

" L I'ij a j = O. 
j = [ 

i=1.2 . . .. . II. 

Pa = 0. 

(6) 

where a = l (II a2 an (. This is a homogeneous system of II equations in 
the II unknowns a[. a2 • . .. , ([Ii' whose coefficient matrix is P. Si nce P is nonsin­
gular, the only solution is the trivial one. Hence III = a2 = .. . = (I" = O. and 
T is linearly independent. Moreover, Equation (5) implies that P is the transition 
matrix from T to S (see Section 4.8). Thus 

[x], ~ p[ x], . (7) 

[n (7), replace x by L(x), giving 

[L( x) 1, ~ P [L( x)],. 

Using (4), we have 

A[x 1,~P[L(x)],. 

and by (7), 

A P [ x ], ~ P [ L(x)] , . 

Hence 
[L( x)], ~ P-'AP [x],. 

which means that the representation of L with respect to T is B = p-[ A P. We 
can summarize these results in the fotlowing theorem: 

Theorem 6.14 Let V be any /I-dimensional vector space and let A and B be any /I x /I matri­
ces. Then A and B are simi lar if and only if A and B represent the same linear 
transfonnation L: V --+ V with respect to two ordered bases fo r V . • 

EXAMPLE 2 Let L: RJ --+ RJ be deiined by 

L ([u[ 142 UJ]) =[ 211[ - 1I3 111+112 - 113 IIJ] . 
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Let 5 = ([ I 0 0]. [0 0]. [0 0 I]) be the natural basis for R3 . The 
representation of L with respect to 5 is 

Now consider the ordered basis 

01 ·l ' 011 
for R3 • The transition matrix P from 5' to 5 is 

moreover.p- l=[_~ 0 :] 
I 0 - 1 

Then the representation of L with respect to S' is 

The same result can be calculated directly (verify). The matrices A and Bare 
similR • 

Observe that the matrix 8 obtained in Example 2 is diagonal. We can now 
ask a number of related questions. First. givcn L : V -+ V, when can we choose 
a basis 5 for V such that the representation of L with respect to 5 is diagonal? 
How do we choose such a basis? In Example 2 we apparently pulled our basis 
S' "out of the air." If we cannot choose a basis giving a representation of L that 
is diagonal, can we choose a basis giving a matrix that is close in appearance to 
a diagonal matrix ? What do we gain from having such simple representations? 
First, we already know from Section 6.4 that if A represents L: V -+ V with 
respect to some ordered basis S for V, then At represents L 0 L 0 '" 0 L = Lt 
with respect to S: now, if A is similar to B, then 8 k also represents L k . Of course, 
if 8 is diagonaL then it is a trivial matter to compute Bk: The di agonal clements 
of B k are those of B raised to the kth power. We shall also find that if A is similar 
to a diagonal matrix, then we can easily solve a homogeneous linear system of 
di fferential equations with constant coefficients. The answers to these questions 
are taken up in detail in Chapter 7. 

Similar matrices enjoy other nice propenies. For example, if A and Bare 
similar, then Tr(A) = Tr(8) (Exercise 8). (Sec Exercise 43 in Section 1.3 for a 
definition of trace.) Also, if A and B arc simi lar, then Ak and Sk are simi lar for 
any positive integer k (Exercise 6). 

We obtain one fi nal result on similar matrices. 

Theorem 6.15 If A and B are similar II x /I matrices, then rank A = rank B. 
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Proof 

We know from Theorem 6. 14 that A and B represent the same linear transfonna­
tion L: R" ...... Rn with respect to different bases . Hence rank A = rank L 
_ B. • 

Key Terms 
Transition matrix 
Equivalent representations 

Rank of a linear tr.l.lIsfonnation 
Similar matrices 

W.j' Exercises 

I. Let A. B. and C be square matrices. Show that 

(a) A is similar to A. 

(b) If B is similar to A. then A is similar to B. 

(e) If C is similar to B and B is similar to A , then Cis 
similar to A. 

2. Let L be the linear transformation defined in Exercise 2. 
Section 6.3. 

(a) Find the transi tion matrix I' from S' to S. 

(b) Find the transition matrix from 5 to 5' and verify 
that it is 1'- 1. 

(e) Find the transi tion matrix Q from r ' to r. 

(d) Find the representation of L with respect to S' and 
T'. 

(e) What is the dimension of range L ? 

J. Do EAcrcise J(d) of Seetioll 6.3. using u"lls itioll matri­
ces. 

4. Do Exercise 8(b) of Section 6.3. using transition matri­
ces. 

5. Let L : R2 --'> R2 be defined by 

L (['''j) ~ [ '''j . 11 2 - 112 

(a) Find the representation of L with respect to the nat­
ural basis S for R2. 

(b) Find the representation of L with respect to the or­
dered basis 

(e) Verify that the matrices obtained in parts (a) and (b) 
are similar. 

(d) Verify that the mnks of the matrices obtained in parts 
(a) and (b) are equal. 

6. Show that if A and B .. re similar matrices. then A' 
and B' are similar for any positive integer k. (Hi.~I: If 
B = p - I AP. find Bl = B B . and soon.) 

7. Show that if A and Bare simil .. r. then A T .. nd Bf are 
similar. 

8. Prove that if A and B are si milar. then Tr(A) = Tr(B). 
(Hint: See Exercise 43 in Section 1.3 for a definition of 
trace. ) 

9. Let L: R3 ...... R2 be the line .. r transfortnation whose rep­
resentation is 

A = [~ - I ~j 
with respect to the ordered bases 

S~I[I 0 - 1].[0 2 0].[1 2 3]1 

and 
T~I[I - 1].[2 0]1. 

Find the representation of L with respect 10 the natuml 
bases for R3 and R1. 

10. Let L : R3 _ RJ be the linear transfonnation whose 
representation with respect to the natural basis for R 3 is 

A = [aii]. Let 

p~[: ~ 1] 
Find a basis r for R 3 with respect to which B = p _1 AI' 
represents L. (Hint: See the solution of Example 2.) 

I I. Let A and B be similar. Show that 

(a) If A is nonsingular. then B is nonsingular. 

(b) If A is nonsingular.then A - I and B- 1 are similar. 

12. Do Exercise 13(b) of Section 6.3, using transition matri­
ces. 

13. Do Exercise I 7(b) of Section 6.3. usin.\:: transition matri­
ces. 



414 Chapler 6 Linear Transformations and Matrices 

14. Do Exercise IO(b) of Section 6.3, using tnmsition matri· 
ces. 

16. Prove that A and 0 are similar if and only if A = O. 

15. Do Exercise 20(b) of Section 6.3. using transition matri· 
ces. 

17. Show that if A and B are similar matrices, then det (A) = 
det(B). 

EXAMPLE 1 

I'D Introduction to Homogeneous Coordinates 
(Optional) 

The mathematics underlying computer graphics is closely connected to matrix 
multiplication. In either 2-space or 3-space we perform rotations. refl ections, or 
scaling operations (dilations or contractions) by means of a matrix transfonna­
tion, where the transformation is defined in terms of the standard matrix A that is 
2 x 2 or 3 x 3, respectively. The effect of the transformation can be described as a 
function J that operates on a picture, viewed as a set of data, to produce an image: 

J(pictllre) = image. 

When the data representing the picture are properly arranged, the operation of the 
function f is executed by a matrix multiplication using the matri x A: 

[(pictllre) = A * pictllre = image . 

Unfortunately. a general transformation includes not only rotations. reflections. 
and scalings. but also translations, or shifts (which "transport" the picture without 
distortion from where it used to be to a new location). Such a general transfor­
mation cannot be expressed using the associated standard matri x of correspondi ng 
size 2 x 2 or 3 x 3. To usc matrix multiplication seamlessly in dealing with trans­
lations. we introduce the notion of homogeneolLs coordinates, d iscussed in this 
section, and obtai n an e.~tended representation of the data representing the picture . 

• 2D and 3D Transform~ttions 

In our earlier di scussion of matrix transformations and computer graphics in Sec­
tions 1.6 and 1.7. we used elementary two-dimensional graphics to illustrate the 
principles involved. Examples of such transformations from R2 into R2. called 2D 
transformations, included rotations, re flections, scalings, and shears. Associated 
with each transformation is a 2 x 2 matrix A represent ing the matrix transformation 
(see Example I), and the image of the vector x is the matrix product Ax. Compos­
ite transformations are pcri"omled by slLccessive matrix mUltiplications. To obtain 
a singlt: matrix that would perfonn a se4ucnt:c of sut:h transformations. we need 
onl y compute the correspondi ng product of the associated matrices. 

Matrices associated with 2D transformations: 

. . [' 0] Idenllty transformatIOn: 0 I 

Re fl ection with respect to the x-axis: [' 0] o - , 

• Re flection with respect to the y-axis: [-0' 0,] 



EXAMPLE 2 

y 

);;--f-- y o 

• 
FIGURE 6.4 
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n .. . [0 '] Rc cellOn Wiln respect 10 the tme y = x: I 0 

. . .. [_0 
RotatIOn counterclockwIse through a positIve angle B: sin e - sin 0] 

cosO 

Scaling by II in the x-direction and by k in Ihc y-dircction: rhO Ok] 

Shear in the x-direction by thc factor k: [0' k,] 

• Shear in Ihc y-direclion by thc factor k: [! n 
• 

For matrix transfonnations from R3 into R3. called 3D transformations, thc 
corresponding matrix A is 3 x 3. As in thc case of 20 transformations, the image 
of the vector x under a 3D transformation is the matrix product Ax; composite 
transfonnations arc performed by successive matrix multiplications. Example 2 
shows matrices associated with several 3D transformations. 

Matrices associated with 3D transformations: 

Identity transformation: [~' 00 O~] 
Scaling by II in the x-direction, by k in the y-direction, and by 11/ in the 

;:: -dircction: [~ ~ ~] 
o 0 11/ 

Rotation counterclockwise through a positive angle 0 about the x-axis: 

R< = [~ co~O - Si~O] 
o si n O cosO 

• Rotation counterclockwise through a positive angle fJ about the y-ax is: 

[ 
WO'ft 0 "no ft] 

RI , = 
-sinfJ 0 cosfJ 

• Rotation counterclockwise through a positive angle y about the z-axis: 

R, ~ [',7i~ -:~~~ ~] 
• 

The matrices for the rotations given in Example 2 are consistent with a right­
handed coordinate system. We illustrate this in Figure 6.4. Since the 2D and 3D 
transformations are matrix transformations, they are linear transformations. 
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~
(X*'Y*'Z*) 

0, 

""' OJ 
(x. y. z) 

) 

0"'-------

FIGURE 6.S 

• Translations 

The translation of a point. vector. or object defi ned by a set of points is per­
formed by adding the same quantity .6..x to each x-coordi nate. the same quantity 
.6..)' to each y-coordinate. and in three dimensions the same quantity .6.. :: to each 
z-coordinate. We emphasize that .6..x • .6..y, and.6..:. are not required to be equal in 
magnitude and can be positive. negative, or zero. We illustrate this in Figure 6.5 
for a point in R3. where the coordi nates of the translated point are 

(x·. y' . z*) = (x + .6..x. Y + fiy. z + .6.. z ). 

The point (x. y . z) can also be interpreted as the vector 

If we define the vector 

t ~ [;: ] [~:,] 
l~ .6.. :: 

then the translation of the vector v by the vector t is the vector 

Figure 6.6 shows 

[

X + I,] 
v·= v + t = )~+ lJ ' 

;;; +1: 
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FIGURE 6 .8 

EXAMPLE 3 

6.6 Introduction to Homogeneous Coordinates (Optional) 417 

A line segment connects two points Po and PI and can be viewed as the set 
of points given by the expression sP I + (1 - s) Po, where.f is a parameter with 
0:::: s :::: I. If we let ro be the vector from the origin to Po and r l the vector from 
the origin to PI. then the linear combination 

sr i + (1 - s) ro. 0 :::: s :::: I 

sweeps out the line segment between Po and PI . We illustrate this in 2-spa~e in 
Figure 6.7, where the asterish, *. lie on the line segment between Po and PI. 

2 3 4 5 6 7 

The translation of a li ne segment preserves its orientation and length. To carry 
olltthe translation of a line segment, we simply translate its endpoints. In 2-space, 
as shown in Figure 6.7. if Po = (xo. Yo), PI = (XI . )'1), and the line segment 
connecting these points is to be translated by 

then the endpoints of tbe translated line segment are P; = (xo + .6..x. )'0 + .6..)') 
and Pt = (XI + 6.x. ) ' 1 + 6.)'). The corresponding vector expression is s r l+ 
(I - .\·)ro + t , 0 :::: s :::: I. See Figure 6.8. 

Example 3 demonstrates the usc of translations with other 20 transformations 
from the list given in Example I. 

Let v = [ - :] and! = [~l 
(a) Reflect v with respect to the line y = x and then translate the resulting vector 

by 1. 

(b) Scale the vector v by a factor of -t translate the result by the vector t. and 
rotate Ihe result about the origin by 1m angle of ~ radians. 
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10 
9 
8 
7 
6 
5 
4 
3 
2 

Solution 

(a) The matrix defining the reflection with respcct lO the line y = x is 

Then the desired vector. W, is given by 

(Verify.) See Figure 6.9(a). 

(b) The matrix defining the scaling by - ~ is 

and the matrix defining the rotation is 

R ~ [cos i 
. " Slfi '6 

Then the final vector w is computed as w = R(A v + t) . (Verify.) See Figure 
~~ . 

A\' +! 

10 
9 
8 
7 

, 
w = R(Av + t) 

6 ~------~k=~~==~ 

6 
5 
4 
3 
2 
I Av+ t 
0r---------~~--------
1 

-I 
-2 Ih 
- 3 
-4 
-5 
-6 
-7 

- 2 
-3 
-4 
-5 
-6 
- 7 

-8 - 8 
- 9 
-lOo~~~~~~-.:-C~~.:-C~~,~, ~_~O':-<_~N~~~.:-C~~.:-:'~~~7c!~~c=--

- 9 
-I Oo~~~~~~~.~~"-'.~~'c"N~_~o-_~,~,~_~ . • "-'~~.'c"~~~7c!o~o:-

1" 1 I I I I I I I I - 1" 1 I I I I II I I -

(0) (hl 

FIGURE 6.9 
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15 

10 

0 

-5 

-10 

-15 
15 10 

FIGURE 6.10 
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In Example 3(b). if we require only the scaling followed by the rotation, we 
could compute the matrix product B = RA and obtain the desired vector. W, as 
W = Bv. 

Figure 6.IO(a) shows an object called boxhead. which is described as a set of 
vertices connected by line segments as shown. To translate box head by the vector 

we translate each vertex of the object and reconnect the new vertices in the same 
order. However, we can show the translation as a sequence of steps of the figure, 
as follows. Let B be the 2 x /I matrix of vertices of box head. Then to translate 
boxhead by the vector l, we add t to each column of B. giving the new vertices 
in a 2 x /I matrix B·. If T = [t t t], which contains /I repetitions of the 
vector t , then B· = B + T. To make boxhead with vertices in B move along a path 
to a final image of box head with venices in B· . we use the parametric expression 
~· B· + (I - .r) B for 0 .:::: s .:::: I. Figure 6.IO(b) shows boxhead's successive 
movements along the translation path for s = 0.2, 0.4, 0.6, 0.8, 1.0. For each 
value of .r, we plot and connect the vertices given by the parametric expression .• 

15 

10 

J 5 

0 

-5 

-10 

5 0 10 15 
-15 

-15 -10 -5 0 5 10 15 

('J (h) 

Unfortunately. a translation cannot be perfonned by a matrix multiplication 
using 2 x 2 matrices. Thi s makes combining matrix transformations. like those in 
Examples I and 2, with translations awkward. The use of successive matrix trans­
formations can be done by multiplying the corresponding matrices (in the proper 
order. since matrix multiplication is not commutative) prior to applying the trans­
formation to the vector or object. However. when translations are interspersed. 
this convenience is lost. While the preceding examples were in the plane, that is, 
in 2-space, the corresponding behavior occurs in 3-space. 
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• Homogeneous Coordinates 

In order to have scalings. projections. and rotations interact smoothly with trans­
lations, we change the vector space in which we work! As noted in Example 
I, 2D transformations take a vector v from R2 and compute its image as another 
vector in R2 by multiplyi ng it by a 2 x 2 matri x. Similarly, from Example 2, 3D 
transfonnations perform a matrix multiplication by using a 3 x 3 matrix. In order 
to use matrix multiplication to perform translations and avoid addition, as illus­
trated in Examples 3 and 4, we adjoin another component to vectors and border 
matrices with another row and column. This change is said to usc homogeneous 
coord inates. To use homogeneous coordinates, we make the followi ng identifica-

t;oo" A ,coto, [ ; 1 ;0 R';, ;deot;fied w;th the ""0' [~] ;0 R' . The fi,,, two 

components are the same, and the third componenl is I. Simi larly. a vector 

in R3 is identified with a vector 

is considered a point in homogeneous coordinates, then we merely plot Ihe ordered 
pair (x. y) . Simi larly, for Ihe point 

in homogeneous coordi nates, we plot the ordered triple (x . y , z) . Each of the 
matrices A associated with Ihe matrix transformations in Example I is identified 
with a 3 x 3 matrix of the form 

[~l] ~ [:::: ::: ~,] 
['] 0 0 

' Wc shall see 1lial by usin£ four-dimcnsional '·celors. wc ean perfonn transformations in ] -spacc in 
an easy fashion. 
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EXAMPLE 6 
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(a) When using homogeneous coordi nates for R2, a rcncction with respect to the 
y-axis is identified with the 3 x 3 matrix 

[ -~ ~ ~] . 
001 

(b) When llsing homogeneous coordinates for R2, a rotation by an angle () is 
identified with the 3 x 3 matrix 

- sin O 

cose 
o • 

Each of the matrices A associated with the matrix transformations from R3 
inlo R3 in Example 2 is identified with a 4 x 4 matrix of the form 

[ ,\ 

[0 0 0] 
m] ~ [::: 
[I] 0 

(/12 au 

~l li n a23 

{/32 an 
0 0 

(a) When using homogeneous coordinates for R3 , a scaling by fl, k, and III in the 
respective directions x. y, and z is identified with the 4 x 4 matrix 

(b) When using homogeneolls coordinates for RJ, a rotation about the z-axis 
through the angle y is identified with the 4 x 4 matrix 

[

'"'V 
Sin Y 
o 
o 

- siny 
cos y 

o 
o 

A trans lation in R1 of v = [~J by t 

coordinates is performed as 

n o 
o 

o • 
[

Ax 1 when using homogeneous 
Ay 

(Note that the third entries are 1101 added. ) Thi s translation can be performed by 
matrix multiplication. using the 3 x 3 matrix 

[

I 0 
o I 
o 0 

AX] 
~y . 
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EXAMPLE 7 

EXAMPLE 8 

We have 

Similarly, a translation in R3 by 

using homogeneous coordinates, is performed by multiplying by the matri x 

[

' 0 0 
o , 0 

00' 
000 

tH] n.y . 

'" , 
Thus, homogeneous coordinates provide an easy way to usc successive matrix 
multiplications to perform the composition of scalings, projections, rotations, and 
translations in both R2 and R3. 

The composition of operations in Example 3(b). using homogeneous coordinates. 
can be expressed as w = R(T(Av)) = RT Av, where 

is the matrix determined by the translation of the vector 

which is in homogeneous form. Here v, A, and R must be expressed in homoge­
neous fonn , also. (ConstnLct the matrix RT A and verify this result .) • 

Let S be the unit square in the plane with the lower left corner at the origin. S 
is to be rotated by 45° (Jr /4 radians) counterclockwise and then translated by the 

vector t = [:]. To detemline the 3 x 3 matrix in homogeneous form that performs 

the composition of these transformations, we compute the rotation matrix Rand 



FIGURE 6 . 11 

EXAMPLE 9 
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multiply it (on the left) by the translation matrix T. We have 

[I 0 I] [oo,(rr /4) - sin (JT / 4) n M = TR = 0 1 I si n(n / 4) cos(JT / 4) 

o ° 1 0 0 
[ Ji/2 - Ji/2 

:J ~ ~2 Ji/2 
0 

If S is described by the coordinates of its venice." in homogeneous form arranged 
as columns of the matrix Q, where 

[

0 1 

Q ~ 0 ° 
1 1 

then the image of the unit square is given by the matrix product MQ. which is 
(verify) 

1+ ...fi/ 2 

1 + Ji/2 
1 - Ji/2] 
1+ ~/2 . 

Figure 6.11 shows the result of the transformation. 

3 -- r -- , --
, , , , 

2 --+---+--, , , , 

-- .1.- --1--
, , , , 

---i--T--i 
, , ' 

--- 1--- +-- -: , , , 

h --l - - , , , 
, , 

o f-+--+--+---j-+-"'; 
: 1 1 1 

I 1 ___ L __ l __ J 
-I -- T -- I -- 1 1 I 

I 1 1 1 1 

- 2 -- }-- i -- --- ~ -- } -- ~ 
1 1 1 1 1 
I 1 1 1 1 

2 o 2 3 
The unit square. 

3 --r-- , --, , , , 

2 -- + -- -+ --, , , , 

-- .1. ---1--, , , , 

---r--r---

-0~ -L - ~ , , , 
___ I __ l __ ~ 

, , , , , , 
o f-+--+--+---o- +-"'; 

: 1 I 1 
I 1 ___ L __ l __ J 

-I --T-- I -- 1 1 1 

I 1 1 I 1 

- 2 -- }--i-- --- ~ -- + -- ~ 
1 1 1 1 1 

I L_c' ;-c'.,----!; __ ';.---';' _-,:' 
- 3 2 0 2 3 

Its image using the 
lransfonnation by 
matrix M. 

(I ) 

• 

Figure 6.12 shows an object called boxdog. which is described as a set of vertices 
connected by line segments in 3-space. Successive frames show composite images 
of boxdog rotated aboul the z-axis, then re flected with respect to the xy-plane, and 
finally translated by the vector 
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Key Terms 
Image 

FIGURE 6.12 

2D transformations 
Reflection 
Rotmion 

10 

o 

-10 
-10 

to 

o 

-In 
-10 

x 

o 
10~I~O------~oC------" ' 

Boxdug. 

o 
10~_~1~0------~O-------"'10 

Reflected throug~ thexy-planc. 

0 \ 

-to ~ \ 
\ 

-10 
~d 0'( 

to -]0 0 10 

Translated by vector [_~ ] . 

The sequence of frames in Figure 6.12 was obtained by usi ng homogeneous coor­
dinate representations for vectors in 3-space and mUltiplying the appropriate trans­
formation matrices R_ F, and T. which perform rotation, refl ectio n_ and transla­
tion, where 

Scaling 
Shear 

[ - I 
R = 0 

0 
0 

3D transformations 
Translation 

0 
- I 

0 
0 

0 

~l F ~ [~ 
0 

0 
0 

0 0 

T ~ [~ 
0 0 

-n 0 
0 
0 0 

Homogeneous coordinates 
Geometric sweep 
Screw transformation 

0 

~l 0 
- I 

0 

• 



6.6 Introduction to Homogeneous Coordinates (Optional) 425 I.,. Exercises 

l. Refer to Example 8. 

(a) Determine the matrix M in homogeneous fonn that 
would first perform the translation and then the ro­
tatIOn. 

(b) Sketch the unit square S in one coordinate plane and 
its image by the transfomlation represented by the 
matrix M in a second coordinate plane. 

(c) Are the images shown in Figure 6.11 and that de­
tennined in part (b) the same? Explain why or why 
no\. 

2. Let the columns of 

2 4 
J 4 

be the homogeneous form of the coordinates of the ver­
tices of a triangle in the plane. Note that the first and last 
column are the same. indicating that the figure is a closed 
regIon. 

(a) In a coordinate plane. sketch the triangle detennined 
by S. Connect its vertices with straight line seg­
ments. 

(b ) The triangle determined by S is to be scaled by ~ in 
both the..[ - and y-directiDns and then translated by 

1 = [ =: ]. Determine the 3 x 3 matrix M in homo­

geneous fonn thai represents the composite transfor_ 
mation that first performs the scaling and then the 
translation. 

(c) Use the matrix M from part (b) to determine the 
image of the triangle and sketch it in a coordinate 
plane. 

(d) Determine the matrix Q in homogeneous form tlwt 
would first perform the translation and then the scal­
ing. 

(c) Use the matrix Q from part (d) to determine the 
image of the triangle and sketch it in a coordinate 
plane. 

(I) Are the images from pam (c) and (e) the same? Ex­
plain why or why not. 

3. Let the columns of 

2 4 
3 4 ~] 

be the homogeneous fonn of the coordinates of the ver­
tices of a triangle in the plane. Note that the first and 

last columns are the same. indicating that the figure is a 
closed region. 

(a) In a coordinate plane. sketch the triangle determined 
by S. Connect its vertices with straight line seg­
ments. 

(b ) The triangle determined by S is 10 be rotated by 
30' counterclockwise and then rotated again by 90' 
counterclockwise. Detennine the 3 x 3 matrix M 

in homogeneous form that represents the composite 
transformation or these two rotations. 

(c) Use the matrix M from part (b) to determine the 
image of the triangle and sketch it in a coordinate 
plane. 

(d) Determine the matrix Q in homogeneous form that 
would first perfonn the rotation through 90' fol­
lowed by the rotation through 30°. 

(e) Use the matrix Q from part (d) to determine the 
image of the triangle and sketch it in a coordinate 
plane. 

(I) Are the images from parts (c) and (e) the same? Ex­
plain why or why not. 

4. A plane figure S is to be translated by I = [ -~ ] and 

then the resulting figure translated by v = [ _ ~]. 
(a) Determine the 3 x 3 matrix M in homogeneous form 

that will perfonl1this composition of translations. 

(b) Can the transfonnations be reversed? That is. is it 
possible to detennine a matrix P that will return the 
image from part (a) to the original position? If it 
is possible, determine the matrix P. Explain your 
construction of P. 

5. Let A be the 3 x 3 matrix in homogeneous form that re­
flects a plane figure about the x-axis and let B be the 3 x 3 
matrix in homogeneous form that translates a plane fig -

ure by the vector I - [ _~ ]. Will the image be the same 

regardless of the order in which the transformations are 
perfonned'! Explain )'our answer. 

6. LeI A be the 3 x 3 matrix in homogeneous fonllthat trans­

lates a plane figure by t = [ =~] and leI B be Ihe 3 x 3 

matrix in homogeneous form that translates a plane fig -

[ '] . . ure by the vector v = 3 . Will the Image be the same 

regardless of the order in which the transformations are 
performed? Explain your answer. 
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7, Detem)jne the malrix in homogcncou$ fonn Ihal pro­
duced Ihe image of Ihe reclangle depicIed in the foltow­
mg fi gure: 

on I fi gma 19ure 
6 
5 ,L J _l_L_L. -f- t+-:- l-, , , , , 

4 ...I _ ..1 _ .l. _ I..._l.. _.1_ l.. _I......I_ ..1 _ , , , , , , , , , , 
3 ~- -+ --I--I--I- -"-"-I-~- -+ -, , , , , , , , , , 
2 -1--1-"'-"'-1- -.,.-.,.-r--1-"-
I 

, , , , , , , , , , ..... -., - r - ,...-r -"I-r-r ..... -.,-
0 

, , , , , , , , , , 
I ...I_..1_.L_L_L _.1_.L_"-...I_..1_ , , , , , , , , , , 
2 .... --1 - -1- - 1--1- "-, , , , , , , , , 
3 ""- ... -.,.-r-I- -.,.-t--I- -,-
4 

, , , , , , , , , 
'-"-r-r-r -,-,...-,.... -,-

5 
, , , , , - , , , -,-, , r , -,-

6 
-.0",.".""'''' 
I I I I I 

- o -
l m~llc 

6rT-r,,~~-r'-~, 
5 -:--I-1-f-t- +-:--I-1-t-
4 -t- ~- ~ -1-~- -~-:-~-1-~-
3 -~i-i-1-i- -i~i-i-i-
2 -I- ... -.,-.,.-t-- -r-~,-.,.-.,.-

, , I " "'" 1 -I- -., - , - ,.-r- -,..-r-.,-.,-,.-
Oe-~'-+,-e,~,-+-e~+-+,~, 

_L...l_-I:~ _"-_l.....I_-I_.1_ 
1 " , "" 1 

2 -ii- i - _ l-- _ -j-ii-i-1-
3 -1--1-"' - "' - "' - -,..-t--1-"'- "' -

4 -:- ~-~-~- ~ - -~-:-~- ~-~-
5 -:-+i-i-+- -:--:-+i-i-
6.~J~~~~~Loi,-'_-!o:--"_~oL,_~~~~~~,.J. 

I I I I I 

8, Determine lhe matrix in homogcneou$ fonn Ihal pro­
duced the image of Ihe triang le depicted in Ihe following 
figure: 

, 
7 

" 5 
4 
3 
2 
1 
0 
1 
2 
3 
4 
5 
6 
7 , 

1 " 19ure ng,na 

.1 .... _ l- ..1_l.. -l- ...I_ ..1_1- ... ...1_"-.1_1_ , , , , , , , , , , , , , , 

r,-,, -"''''- , -,..,.',-r,-,-
"--+-l-- -f - I- + ~-

!~1f"-'-
1 _'_L .L L 1 .L . .l-L1 _LJ_'_ , , , , , , , 

" '" .,....,- ,.. ... -r- .,. -,- .,. ... -,...,-t-
-l-...l_ l... .J_l.. -l- ...I_ .J ... .J_L.1_l.. , , , , , , , , , 1 1 , , 1,-.,..,-rT'- -rT,-r,.-,-

,+tl+t-:-l_'_LJ_Ll_'_ , , , , , , , 
.,. -,- t- -I -1-.,. ... - .,.-t-.,..,-r.,.~ 

J....I_L.J_l....l....I_ .J_l....L.J_LJ._l.. , , , , , , , , , , , , , , 
"I""1- .,., -r 1'- .,-rT'-"'''I-'-
...... -1- .. - 1- ...... - "_I-l--...I_I-"_I-, , , , , , , ·H-H-H-:-1 - ,- (1-,-1-,-
.,....,-t--I-I-"'-'- -I-I-"-1-,..-t-,-

' r-co-.-r,-~I;m:'~";-,-,-""co-r, 
7 1-:-t-:-t-:-t -:-1-~1-:-t-!-
6 "-"'T-,-T'-'" -r.,-r,,-rT'-
5 -t-I-+-+- ....... - .. -1--1-1-+-1-+--+-

4 f-H+H-t -H-H++-:-
3 .,.-r r ..... - T-,- ,... - r ... -r- .,. -r-r ..... -
2 1-:_ t -!- t ~- T -:-1-~ i -:_ i -!-
6e-'L-~r-"_,~-_'L'~-.r-k-~r-"_-.r_'L-~r-"_-.'-~ 

- I f-:-++H-t ,-H -:-t-:-
-2 .,-t-.,.~.,.-,-,.. -1-"'-1-"'''''-
-3 1-:--:--:-t-:-t , f-:-t-:--4 ,.-rT"T"r,-'" -.,., -r1'-
-5 .. -1- ... -+- ....... - ... - ..... -.. -I-~-

-6 t-H-:-H-\- -H-l- -'- + 
-7 L"'_-"r_'L-;-""'_"L-_ocj"-"r_'L--Lr"'c-"rc"~" -, 

~~~~.".,...,,,,-o-,,,,...,.,,.~~~~ 

1 I 1 I I 1 I I 

9, Determine [he matrix in homogeneous fonn Ihal pro· 
d uced the image of the semicircle depic1ed in [he follow· 
ing figure : 

, r_-,-_-,-~O,-'~ig~i~":'ITfi~,g~"~,,:;..._,--_,--, 
I I' "I 

I " '" 
3 --T--~--~--- --t--1--i---

, I I '" 

2 --:--1--:--- -_-_~------
--t--i---:---

, I' '" o e--'e_~'e___:'-__l-__:'-_+' -_+'-~ 

- I 

- 2 

-3 

, , , , , 
-- ,.-- - , -- -,- --, , , , , , 
-- -----1-- .... ---, , , , , , -- ---- .. -- .... --­, , , , , , 

3 2 o 

, , , , , , 
--,.---.,---,---, , , , , , 
------ .. -- .... -- -, , , , , , 
__ "' __ " __ .J __ _ , , , , , , 

2 3 4 

4r-_r-_-_~1~""~,''-r---_,-, 
, I' " 1 
, I' '" 

3 -- t-- t-- i-- --i---~--i--
1 I' " I 

2 -- ~ - - t -- 1-- --~---:_--t--
, " '" 

-- ~ -- t --f-- --~---~--r--
, " "I 

o f--~' -~'r____:'-_+-+' -~'i___:'-__j 

--~---~ 
, , , 

- I 
, , , 

--r--"'--.,--, , , , , , 
-2 

__ t- __ .,. __ -t __ 
, , , , , , __ L- __ .... __ -I __ 

, , , -3 , , , 
2 

, , , , , , 
-- .... ---1---,...--, , , , , , __ .... ___ I- __ L- __ 

, , , , , , 
o 2 4 



6.6 Introduction to Homogeneous Coordinates (Optional) 427 

10. Determine the matrix in hor.lOgeneous fonn that pro· 
duced the image of the semicircle depicted in [he follow ­
mg figure: 

Ori ginal figure 
8 or~-r~~~~~~-ro 
7 +f -;.-:-~- t+ -f++~ - t++ 
6 "' -~- I- -I- -I -""-I- - ~ _I-_I_ -I _ "" _I- "' _ 

1 1 1 1 1 1 I 1 1 1 1 1 1 1 
5 -' -1- , -I- -' -T-r -1-,-I--'-T-r-,-

4 +f- ;. -:- ~ -t+ -f-;.-:-~-t++ 
3 "'-~- I- -~ -I -""-I- -~_I-~_-I_""_I-"'_ 

I 1 I 1 I L L ""' " 1 -' -1- , -I- -' -T-r - m --'-T-r-,-

I +f- ;. -:- ~ -t-~ -, 1 ,-~-t+~-
Or", ~,~, ~,~, ~,-,, -+-,,-,,-,,-,,-;,-;,-;,-1 

-I --'- 1 -,-I-,-T - , - 1 - ,-'-, - T -r --, -

-2 +f -;.-:-~- t - ~ - f - ;. -:- ~ - t - :-- ~ -
-3 "'- ~ -I--I--I- "" -I- -~-I- --I- -I - "" -I- "' -

-4 ~- -:' -~-:-i- ~ - ~ - -:' - ~ -:- i - ~ - :- ~ -
-5 ~- f - ~ -:- ~- t -:-- - f -~-:- ~- t -:-- ~-
-6 "' -~- I- -I- -I -+--I- - .. - 1- --1--1-+--1- "' -

-7 -i --:'- ~ -:- i -~- ~ --:'-~-:-i-~-:-~-
-8:'8~7~6~5~4~3~2~I~O~I~2-OJ-4~5~6-7~8' 

8 
Image 

7 .Ll._L.1_1._LJ _ _1_.1_1._I_ .1 _L_I_ 
, , , , , , , , , , , , , , 

-1 _ .... _1- ... _ .... _ 1--1 _ -~-I-I-- I- -I -I---I-

5 
, , , , , , , , , , , , , , 

-' -T-r-'-T-r -, - -r-'-,-I- -, -r-,-

.1 =~L _L.1_L_L_ .1 _L_I_ 
1 1 1 1 1 , , , , , , , 

3 -1 __ 1--1_1- 1--1 _ -~-I-I--I - -I -I-~-

2 
1 1 I' 1 , , , , , , , , , - -r-,-,-,- -, - , -,-

6 

4 

1 ..J _ l. _L.L 1. _ LJ _ _L.l_L_I_ .l_ L-'_ 
, , , , , , , , , , , , , , 

o 
1 

, , , , , , , , , , , , , , 
--'- T - r, - T -r,- -r, - , -,-,-,,-

2 _ L 1. _ LJ _ 1. _L.1_ _ L.l _ L _'_.l_ L--' _ 
, , , , , , , , , , , , , , 

J ... - .... -I- ... - I--~-I- -~ -I - I- -I- -I-I- --I -
, , , , , , , , , , , , , , 

-' - T -r-' -T - r-, - -r-,- r--,- -, - r- ,--4 
5 .l _1._LJ_1._L.l _ _L.l_L_I_ .l _L--'_ 

, , , , , , , , , , , , , , 
- 6 -I -+-I-"'- " -~ -I - -~-I- I- -I- -I -I---I-

7 
, , , , , , , , , , , , , , 
-'-T-r-'-T-r -, - -r-'-,-I- , - r ,-, 

8 7-fo 5 4 3 2 10 I 2 3 4 5 6 7 8 

II. Determine the matrix in homogeneous fonn that pro­
duced the image of the semicircle depicted in the follow ­
ing figure: 

Original fi gure 

4 '-'---'---"'--'~'---T' ---'--' , , 
3 -- t -- t -- t -- --{--{--{---

, 1 1 1 1 1 

2 --f--t--t-- ~~~~~~ 
--r--,--T--

1 'I 1 1 1 

o f---i'---,' ---,-' --+--,' ---,-' --,', - 1 
1 1 1 1 

, 'I ,I 1 
-I 

- _1- __ 1- __ +- ____ .. __ -1 __ -1 __ _ 

1 'I 1 1 1 
1 1 1 1 1 1 

- 2 
__ 1- __ 1- __ .... ____ ~ __ -I __ -I __ _ 

1 1 1 1 1 
1 1 1 'I' __ 1- __ 1- __ 1- ____ ~ __ -I __ .l __ _ 

1 'I 1 1 1 
- 3 

1 1 1 1 1 1 

Image 

4 ,--" -"" ,--,'--,, --" ---" --, 

3 -- ~ -- i--+--?'_ -t--i--
2 --~--_:.-- i -- ,-- ~ --_:.--

1 I 1 " 1 
1 1 1 I 1 1 --r---'-- -' --- --r-- T--'--
1 1 1 I 1 1 

"f---',-~'--~'---+---i-' --~' ---i-' --~ 
1 I 1 ' " 1 1 1 I 1 1 __ I- __ ~ __ -I _____ 1- __ + __ -1 __ 

1 I 1 I 1 1 
1 I I I 1 1 

- 2 
__ 1- __ -1 __ -1 _____ 1- __ .... __ -1 __ 

1 I I I 1 1 
1 I 1 I 1 1 __ L __ .l __ .l _____ I- __ ~ __ .l __ 

1 I 1 I 1 
- 3 

1 I I I 1 

J 2 o 2 3 4 
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12. Determine the matrix in hor.lOgeneous fonn that pro­
duced the image of the semicircle depicted in the follow ­
mg figure: 

Original fi gure 
4,-,--,--,, "-~o,--,-,,--, 

, , 
3 --t--t--t-- --+--+--+--

I I I I I I 

2 --f--f-- r-- ~~~~~ 
--,...--,...-- r --

I " " I 

Or--C'---,'---c'--i---,'---c' --,'---i 
, I I I I I 

I " I I I 
- I - - ~ - -~- - ~ - - --~-- +--+--

I " " I , I I I I I 

- 2 --~--~-- ~ -- --~-- .--+--
I I I I I I 
I I I I I , 

--~--~-- ~-- --~-- ~ --~--
I " " I 

- 3 
, I I I I I 

- 4 4 3 2 o 2 3 4 
[m~gc 

4,-,..--,-,.., --r--;,,-,--,---, 
, , 

3 -- t -- + --~--- --t--+--{--
I " " I 

2 --~--~-- ~--- --~-- ~ --~--
I I I I I I 
I " I I I 

--r--~-- ~ --- --r-- r --~--

~ : : 
O r--~~~--if_~~~__i 

__ L_L_L __ ~_: _: L_L_ 
I " " I I I I I I I 

- I 

- 2 --~--~--~ --- --~-- +--~--I I I I I , 

, " " I 
--~--~-- ~ --- --~-- +--~--

I " " I 

- 3 

I I I ' " 

- 41 ~4--~3--~2C-~~O--~-C2C--3C-~4 

13. The semicircle depicted as the original figure in Exercise 
[2 is to be transfonned by a rotation of90" counterclock­
wise about the point ( [. [) . 

(a) Sketch the image of the semicircle. 

4 r,,--c, -',--r ,,--c, -',---; 
_ ~ _~_.I. __ ~_.J __ I __ 

I I I I I , 
_L_l._.l __ J_.J __ ' __ 

I I I I I , 
I I I I I I -, -, -T- -, -, --,--

o r-~'--~' ~'--I-~'--~' ~'--i 
I I I I I I 

- [ - "" -'--1"- - -1 - "- -'--
I I I I I I 

- 2 - ~ -~-+- --t-~--I--
I I I I I I - 3 -~_~_.I. __ ~_~ _ _I __ 

I I I I I I 

- 4' ~4-C3c"2~7I COC-7-"2--'3~4 

14. 

(b) Using transform1tions. we must first translate the 
semicircle to the origin. rotate it. and then translate 
it back to its original position. Determine the 3 x 3 
matrix M in homogeneous fonn that will perfonn 
this tmnsfonnation . 

(c) Verify that your matrix M is correct by computing 
the image of the endpoints of the horizontal diame­
ter of the semicircle. 

Sweeps In calculus a surface of revol ution is generated 
by rotming a curve )' = [(x) defined on an interval 
fa. hJ around an axis of revolution. For example. y = x 2 

on [0. 1 J rotated about the _I-axis generates the surface 
shown in Figure 6.13. We say that the surface is "swept 
out"· hy the curve rotating about the x-axis. 

-I (Jo ---",;--_.J' 

FIGURE 6 . 13 

A continuous sequence of composite transforma­
tions of a shape is said to produce a geolllelri£" .,weep. 

The set of transfonnations employed is called a geolllel­

r;{ ' 'WI'P!, Imnif"n1ull;m, [n Fie"n" 0_14 we ~hflw ,he 
swept surface of a triangular tube. llte original triangle 
with vertices A(3 . O. 0) . 8 (0. O. 5), and C(-6. O. 0) is 
tmnslated to sweep out a tube that terminates with the 
triangle whose vertices are D(6. 6. 3), E (6 . 6.8). and 
F ( -3 . 6.3). 

10 E 

B 

F 

0 A 

C 
- 5 

-10 
-10 II 

- 10 -5 0 5 1010 

FIGURE 6.14 

The fi~ure shows several intenned iate states of the sweep 
process. l1te tube is generated by translating triangle 
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ABC by the vector 

The terminal face of the tube is triangle DEF. The trian­
gular Illbe in Figure 6.14 was swept out by the geometric 
sweep transfonnation. which is given by the following 
matrix IV: 

I~ 0 0 "' j+' f-' l 

I 0 J j + lfr w= 

l~ '\"j ~ l t, J . 0 I 

0 0 

The matrix expression that performs the steps of the 
sweep. where To represents Ifiangle ABC and Ts repre­
sents triangle DEF. is given by 

Tj +1 = IVTj • (*) 

where j = 0, l. 2. 3. 4 and ~"j + 1 = (O.2)(j + I). 

The values of the parameter .I"j control the position of the 
mtennediate triangles in the sweep from triangle ABC to 
triangle DEI-". The number of steps in the sweep (here. 
there are five) is detennined by the wnge of the index j 
with the requirements .1'1 < .1"2 < .. " < .l'S = I. 

(a) Figure 6.15 shows the sY/ept surface we generate by 
translating the triangle ABC along the y-axis. Point 
D in Figure 6.15 has coordinates (3. 10.0). Con­
structthe matrix IV corresponding 10 this geometric 
sweep transformation. 

10 

5 

0 D 

-5 

-10 

-17 
0 

- 0 -5 0 1010 

FIGURE 6.15 

(b) We can generate a twisted sweep by including a pa­
rameterized rotation at each step of the sweep. If we 
wanted to rotate face To through an angle () about 
the y-axis as we sweep to obtain face 7"s . then we 
parameterize the rotation in a manner similar to that 

used for the sweep translation matrix that appears in 
Equation (*). Such a rotation matrix has the form 

[ CO,(~., 8) 0 sin(." j+I()) 

~l 0 

- sin(sj+ I()) 0 COS(.'"j+18) 

0 0 0 

wherej = 0, I. 2. 3. 4 ands j +1 = (0.2)(j+1). The 
result of the composite transformation of the trans­
lation sweep and the parameterized rotation. using 
8 = rrj4. is shown in Figure 6.16. Figure 6.16(a) 
shows the steps of the sweep. and Figure 6.16(b) 
emphasizes the mbe effect. 

10 

5 

} " 1 7 r 
o / -

-5 

- _18 O·;-----::-C;5~-;0:--~5 ---;;CIO:1l1O 0 

(0) 

10 

5 

o 

-5 

-10 

110 
/,-10 

5·~-ccOC--7""-~I-O 10 

(h) 

FIGURE 6.16 

Determine the composite parameterized sweep ma­
trix that will perfonn the sweep with a twist. as 
shown in Figure 6. 16. 

(e) The sweep process can be used with any Iype of 
transfonnation. Determine the parameterized sweep 
matrix that will perform the sweep wilh scaling of ~ 
in the ::-direction, as shown in Figure 6.17. --
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4. Let L: RJ _ RJ Dc a linear transformation for which we 
know that 

L(( I 
L((O 
L((I 

o I]) ~ (I 

2]) ~ (1 

O]) ~ (I 

(a) What is L ([ 4 0 J)? 
(b) Whatis L([O 0 On? 

(e) What is L ([II I "2 Jj JJ)? 

2 J] . 
o 0]. ,,'" 
o lj. 

5. Let L : PI ..... PI be a linear tramformation defined by 

L(I - I) = 1 + 2 and L(I + I )=21+1. 

(a) Whm is L(St + 1)1 

(b) Whm is L(at + b)'! 

6. Let L : 1'2 -+ 1'2 be a lineM transformation defined by 

L (UI 2 + bl +c) ",", «(I + C)I Z + (b + C)I. 

(.) Is t 2 - 1 - 1 inkerJ.1 

(b ) Is t 2 + I - I in ker J. 1 

(, ) Is 21 ~ - I in range L '! 

(d ) Is t Z - I + 2 in rauge L? 

(,) Find a basis for ker L. 

(n Find a basis for range J.. 

7. Let L : PJ ..... PJ be the linear transformation defined by 

L(utJ +bt~ +CI +(/) = (0 _ b)11 +(c -d)l. 

(a) IS IJ + t 2 + t _ 1 inker L1 

(b) I S I J- t~+t- I inkerL'I 

(e) Is 3t1 + I in range L'I 
(d) Is 3t1 - t 2 in runge L? 

(e) Find it basis for ker L. 

(f) Find a basis for range L. 
8. Let L : M !.!. > M!.~ be the lineur Inulsformalion defined 

by L (A) = Ar. 

(a) Find a basi s for ker L. 

(b ) Find a basis for range J.. 

9. Let L: MZ2 _ M~1 be defined by 
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be bases for MZ1. Find the matrix of L with respect to 

(a) S; (b) Sand T : (e) T and S: (d) T. 

10. For the \'cctor sp."lCe Vand linear transformation L of Ex­
ercise 24 in Section 6.1. find a bas is for ker L. 

II . U:I V bt: the vector ~ I'Jce ~' f real-v;lluel.l continuOlJ~ func­
tions on [0. II and let L : V ..... R be given by L(!) = 
/(0). for / in V . 

(a) Show thaI L is a lineM transformation. 

(b) Describe the kernel of L and give examples of poly­
nomials. quotient. of polynomials. and trigonometric 
functions that belong to ker L. 

(e) If we redefine L by L(j) = / ( ~ ). is it sti ll a linear 
transformatio n'! Explain. 

12. (CI/lculus Requirecl) Let L ; PI _ R he thc lincar trans­
fonttation defined by 

L (l, (t)) = 11 p (I)(I,. 

(a) Find a basis for ker J.. 

(b) Find a basis for range J.. 

(e) Verify Theorem 6.6 for L. 

13. leI L : 1'2 ..... 1'2 be the linear transformation definet.! by 

L (at! + bl + c) = (0 + 2c)I! + (b - c)t + (0 - c). 

Let S = II.I . I! I and T = lI Z - 1.1.1- I} be ordered 
bases for 1'2. 

(a) Find the matrix of L with re~pec t to Sand T. 

(b) If pe,) = 21 2 - 31 + I. compute L(p(t». using the 
rn~trix obtained in pMt (a). 

14. Let L: PI _ P I be a linear tmn~fonlla(ion that is repre­
sented by the malri" 

with res]lCCtto the basis S = 1/'1(1). " z(t)). where 

PIC' ) = I - 2 and p;:(I) = I + l. 

(a) Compute L (PI(t)) and L(p;: (t)). 

(b) Compute [L (PI(t))]S and [L(1'2(/» ]s· 
(e) Compute L (I + 2). 
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15. Let L: P3 -+ P3 be defined by 

L (lIf 3 + bf2 + cf + d ) = 3ar 2 + 2bl + c. 

Find the matrix of L with respect to the basis 
S={t3.1 2. 1.ljforP3. 

16. Consider R" as an inner prod\lct space with the standard 
mner product and let L: N" -+ R" be a linear operator. 
Prove that for any vector u in N" . IIL (u )11 = Ilul l if and 
only if 

(L(u ). L(v») = (u . v) 

for any vectors u and v in N". Such a linear operator is 
said to presen ·c inner products. 

17. Let L I : V -+ V and L2: V -+ V be linear transforma­
tions on a vector space V. Prove that 

(L I + L 2)2 = L ; + 2LI 0 L 2 + L; 

If and only if L I 0 L 2 = L 20 L j • (See Exercise 23 in 
Section 6.4.) 

18. Let u and v be nonzero vectors in R". In Section 5.3 we 
defined the angle between u and v \0 be the angle () such 
that 

(u . v) 
cosO = - --

Ilu ll llvl l · 
A linear operator L: N" -+ R' is called angle prcscn 'ing 
If the angle between u and v IS the same as that between 
L(u) and L(v). Prove that if L is inner product preserving 
(see Exercise 16). then it is angle preserving. 

19. Let L: N" -+ R" be a linear operator that preserves in­
ner producL~ (see Exercise 16). and let the II x II matrix A 
represent L with respect to some ordered basis S for R". 

Chapter Review 

True or False 

I. If L: V -+ IV is a linear transformation. then for VI and 
\·2 in V. we have L(v i - V2) = L(v l) - L(V2). 

2. If L: R! ....... R 2 is a linear transformation ddined by 

L ([:::]) ~ [,~ ]. 
lhen L is one-to-one. 

3. Let L: V -;. IV be a linear transformation. If VI and V2 
are in ker L. then so is span!v. v11. 

4. If L: V -;. IV is a linear transformation. then for any vec­
lor w in IV there is a vector v in V such that L(v) = w. 

5. If L : N4 -+ R' is a line;lr transfonnation. then it is possi­
ble that dim ker L = I and dim range L = 2. 

(a) Prove that ker L = {O}. 

(b) Prove that AAT = I". (Hilll: Use Supplementary 
Exercise 17 in Chapter S.) 

20. Let L: V -;. IV be ;I linear transformation. If (VI. V2 .. 
vd spans V. show that (L(vl). L (v!) ..... L (vtl} ,pans 
range L. 

21. Let V be an II-dimensional vector space and S 
(VI.V2 ..... V,,) a basis for V. Define L: N" -;. Vas 
follows: If 

is a vector in RM
, let 

Show that 

(a) L is a linear transformation; 

(b) L is one-to-one; 

(c) L is onto. 

22. Let V be an II-dimensional vector space. The \·ector 
space of all linear transformations from V into R I is 
called the dual space and is denoted by V'. Prove that 
dim V = dim V '. What does this impl)"! 

23. If A and B are nonsingular, show that AB and BA are 
similar. 

6. A line;lr transfonnation is invertible if and only if it is onto 
and one-to-one. 

7. Similar matrices represent the same linear transformation 
with respect to different ordered bases. 

8. If a linear transfonnation L : V -;. IV is onto. then the 
image of V is all of IV. 

9. If a linear transfonllation L: Rl -+ H) is onto, then L is 
invertible. 

10. If L : V -+ IV is a linear transformation. then the image 
of a linearly independ~nt set of vec tors in V is a linearly 
independent set in IV. 

II. Similar matrices have the same detenninanl. 

12. The determinant of 3 x 3 matrices defines a linear trans­
fonnation from M3) to R I. 



Qui~ 

I. Let L : M n ....... R be defined by 

Is L a linear transformation'! Explain. 

2. Let k be a fixed real scalar. 

(a) Show that Lk: R2 -.. R2 defined by 

is a linear transfonnation. 

(b) Find the standard matrix representing L •. 

3. Let L: Rl -+ Rl be the linear transformation defined by 
L(x) = Ax. where A is a 3 x 3 matrix with no zero entries 
and all of its entries different. 

(. ) F("d" .no,,(., A w.h" [ ~] « (, k" L. 

(b) Can A be chosen nonsingul<lr? Explain. 

4. Let L : Rl _ Rl be the linear transfonllation defined by 

Discussion Exercises 
I. Let L: V -.. IV be a linear transformation. Explain the 

meaning of the following statement: 

The action of the linear transformation L is 
completely determined by its action on a basis 
for V. 

2. Let L : V -> IV be a linear transformation such that the 
III x /I m<ltrix A represents L with respect to p<ltticular or­
dered bases for V and IV. Explain the connection between 
[he null space of A and properties of L. 
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5. Let L : R2 --lo R2 be the linear transfonnation defined by 

let 5 be the natural basis for R2. and 

Find the representation 01 L with respect to T and S. 

6. Let L : R~ --+ Rl be the linear transfonnation defined by 

Let 5 be the natural basis for R2 and 

be another basis for R2. while T is the natural basis for 
Rl and 

is another basis for RJ. 

(a) Find the representation A of L with respect to 5 
and T. 

(b ) Find the transition matrix P from 5' to S. 

(e) Find the transition matrix Q from T' IO T. 

(d ) Find the representation B of L with respect to 5' 
and T'. 

3. LeI L: V -> IV be a linear transformation that is repre­
sented by a matrix A and also by a matrix B. A i=- B. 
Explain why this is possible. 

4. A translation in R2 is a mapping T from R 2 to R 2 defined 
by 1"(v) = v + b. where v is any vector in R 2 and b is a 
fixed vector in R2. 

(a) Explain why T is not a linear transfonn<ltion when 
b ,f O. 
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(b) Let S be the set of all points on the unit circle cen­
tered at the origin. Carefull y describe the result o f 
applying the translation T on S for each of the fol ­
lowing choices of b: 

(i) b = [~] (Ii) b = [ _~] (iii) b =[ -~] 
5. The transfomlation T : R2 _ Rl defined by T(v) = 

A v + II, where A is a specified 2 x 2 matrix, \' is any 
vector in R2, and b is a fi xed \'ector in R2. is called an 
affi ne transrorma tion. 

(a) LetA [~~]and b = [~lcarefUllYdeSCribe 
T (v). 

(b) Let A 

T(v). 

_ [3 
- 0 ~] and II = [~l Carefully describe 

(e) Determi ne when ll11 llffinc transfonnation is a linear 
tmnsformation . 

(d) Explain goometric differences between a translation 
and an aft1ne t rJn~fonllatlon for b :I O. 

6. Any mapping of a \'ec tor space V in lo a veclor space IV 
tbat is not a linear tmnsfonnalion is called a nonlinear 
tra nsform ation. Let I' = If = M~~ and let A be any 
veclor in v. Dctemline which of the following tmnsfor­
mat ions are nonlinear: 

(a) T(A ) = AT (b) T(A ) = A2 

(c) T (A ) = A + I~ 
(d ) T (A) = P - ' A P fOI P a fi ... ed nOlls ing ut3J IlIahi ... 

in M~~. 

(e) T ( A) = HAC 

(0 T ( A ) = (0 .. 
A- I. 

for 8 and C fixed matrices in M~" 

if A is singular 

if A is nonsingular 

7. Suppose that T : R~ ..... R~ is a nonl inear tmnsfonnation. 
(See Di.~cu~sion Exercise 6.) Explain why the action of T 
eannol be completely described in tenns o f multiplication 
by an II x 1/ matrix. 

8. leI V be the set of pomts inside or on Ihe unit circle cen­
lered al the origin in R2. Let v = (a. b) be any point in V 
and 

T (v) = the point on the ci rc umference o f tbe 
unit circle closest to .... 

Explain why T is neither a linear nor a nonlineartmDsfor­
mation. 

9. Explain why an affine transformation (see Exercise 5) 
maps a line segme nt to a line segment. 

10. From Disc u~s ion Exelcise 9. affine tmnsformations seem 
simple enough. However. compositions of different affine 
transformatio ns can lead 10 surprisingly complex pallems. 
which are referred to as fnl cluls. To physically comtruct 
a simplc fraClal. proceed as follow s: 

(a) Take a Slrip of paper nbout 12 inches long and I inch 
wide. Fold it in half: then open il up so thaI the re is a 
right angle between lhe halves. See Step I in Figure 
6.20. 

(b) Next. fold the original Strip in half as before. and then 
fo ld il in ha lf again in the same d irection. Open it up. 
keeping the angles between the pieces a right zngle: 
this is Slep 2. 

(c) Repeal the folding in half successi\'cly. in the same 
di rec tion, and opening. maintaining a right angle be­
tween the pIeces to get Step 3. 

(d ) Perfoml Step 4 . 

The figure shows a number o f steps. After a large number 
of steps, the resulting fi gure resembles a dmgon. Hence 
this fractal is called a dmgnn curve. 

~ ~ 
Slep I. Step 2. Step 3. 

~ ~ 
Step 4. Step 8. Step 12. 

FIGURE b .20 



II . To use linear algebra in place of the paper folding in Dis­
cussion Exercise 10, we use the following approach: Let 
[he original strip of paper be represented by a line segmenl 

[hal connects the point A(O. 0) to the point B (4.4). 
The first fold replaces this segment by the legs of an 
Isosceles right triangle Ihal has hypotenuse AB. (See Fig­
ure 6.21.) We view Ihe image of the segment AB as the 
union of two line segments. each an image of AB. 

(a) Constmct an affine transFormation Tj Ihat maps AB 
to CD. (Hint: The lenglh of AB is I. while CD has 

length if- and is rotated -45".) 

Ii 
2 

A(O.O) 

FIGURE 6 .21 

2 
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(b) Constmct an affine transformation 7'-1 that maps AB 
10 DE. (Hint: The lenglh of AB is l. while DE has 
length 4. is rotmed 45 ". and has undergone a trans­
lation.) -

(c) Thus Step I is the union of 7j(AB) and 1;(AB). In 
a similar fashion. Step 2 is the union of TI (CD). 
T2(CD), TI (DE). and '[2(01:..). BOlh transformations 
7\ and T2 are applied to each segmenl of a step of 
the dragon curve to obtain Ihe next step as a union 
of the im .. ges. Suppose th .. 1 10 sleps of Ihis process 
are performed. Determine the total number or line 
segments that must be drawn to gel Step 10.' 

£(Ii Ii) , ' , 

C(O.O) 

tThe orienlalion of llie dragon curve can "ary. dependinl: on Ihe choice oflhe oril:inal sCl:nlCni AB. A web search on Ihe dragon curve will yield 
additional information. More infonnation on fractals is available on Ihe inlernel. One highly regarded sile is hllp:ffmalh.bu.edulDYSYSfapplelsJ. 
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CHAPTER 

Eigenvalues and 
Eigenvectors 

m Eigenvalues and Eigenvectors 

• Definitions and Examples 

Let L: V --+ V be a linear transformation of an II-dimensional vector space V into 
itself (a linear operalOr on V). Then L maps a vector \' in V 10 another vector L (v) 
in V. A question that arises in a wide variety of applications is that of determining 
whether L (v) can be a multiple of v. If V is R" or e", then this question becomes 
one of determining whether L(v) can be parallel to v. Note that if v = 0, then 
L(O) = 0, so L(O) is a multiple of 0 and is then parallel 10 O. Thus we need 
consider onl y nonzero vecrors in V 

EXAMPLE 1 

Let L: R2 --+ R2 be a reflection with respect 10 the x-axis, defined by 

which we considered in Example 4 of Section 1.6. See Figure 7. [. If we want 

)' 

--,;olE------ )' 

L (v) 

FIGURE 7.1 



EXAMPLE 2 

)' 

tx', y') 

L(v) 

\ (x.)') 

, 

0 
, 

FIGURE 7.2 

DEFINITION 7.1 
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L(v) to be parallcllO a no nzero vector v, we must have 

L ([x ,]) _A[X'] 
-'"2 X2 

where A is a scalar. Th us 

Since v is not the zero vector, both XI and X2 cannot be zero. If XI i= 0, then from 
the first equation it follows thai A = I, and from the second equation we conclude 

that X2 = O. Thus v = [ ~ ]. r =1= O. which represents any vector along the x-axis. 

If X 2 =1= 0, then from the second equation it follows that A = - I, and from the 

. [0]. fi rst equauon we have .I[ = O. Thus v = ~. ,!i i= 0, which represents any vector 

along the y-axis. !-!cnee, for any vector v along the x-ax is or along the y-axis, 
L(v) will be parallel to v. • 

Let L: R2 ...... R2 be the linear operator defined by 

L ([x]) ~ ['"'¢ 
y sm rP 

a counterclockwise rotation through the angle ¢, 0 s ¢ < 21r. as defined in 
Example 8 of Section l.6. See Figure 7.2. It follows that if ¢ i= 0 and ¢ i:: Jr, 

then for every vector v = [; l L (v) is oriented in a direction different from that 

o f v, so L (v) and v arc never parallel. If ¢ = 0, then L (v) = v (verify). which 
means that L(,') and v are in the same direction and are thus parallel. If ¢ = Jr , 

then L(v) - v (verify). so L(v) and v are in opposite directions and are thus 
parallel. • 

As we can see from Examples I and 2, the problem of determining all vectors 
v in an n-dimensional vector space V that are mapped by a given linear operator 
L: V _ V to a multiple of v does not seem simple. We now formulate some 
terminology to study this important problem. 

Let L: V ____ V be a linear transfonnation of an n-dimensional vector space V into 
itself (a linear operator on V). The number).. is called an eigenvalue of L if there 
exists a nonzero vector x in V such that 

L (x ) = Ax. (I) 

Every nonzero vector x sat isfying this equation is then called an eigenvector of 
L associated with the eigenvalue L The word figenl'llille is a hybrid (eigen in 
German means proper). Ei genvalues are also called proper values, characteristic 
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EXAMPLE 3 

EXAMPLE 4 

values, and latent values; and eigenvectors are also called proper vectors, and so 
on, accordingly. 

Remark In Definition 7.1 , the number A can be real or complex and the vector x 
can have real or complex components. 

Note that if we do not require that x be nonzero in Definition 7. 1, then /'1 'e1")' 

number A would be an eigenvalue, si nce L(O) = U = AO. Such a definition would 
be of no interest. Th is i5 why we insist that x be nonzero. 

Let L : V -+ V be the linear operator defined by L(x) = 2x. We can see that the 
onl y eigenvalue of L is A = 2 and that every nonzero vector in V is an eigenvector 
of L associated with the eigenvalue A = 2. • 

Example 3 shows that an eigenvalue A can have associated with it many differ­
ent eigenvectors. In fac t, if x is an eigenvector of L associated with the eigenvalue 
A [i .e., L(x) = h], then 

L(rx) = r L (x ) = r (h) = A(rx) , 

for any real number r. Thus, if r t- O. then rx is also an eigenvector of L associated 
with A so that eigenvectors are never unique. 

Let L: R2 -'jo R2 be the linear operator defined by 

L ([::; ]) ~ [ - ::; ] . 

To find eigenvalues of L and associated eigenvectors, we proceed as follows: We 
need to find a number A such that 

Then 

[-a,] ~ A[a,]. 
al a2 

- a2 = Aal 

al = Aa2. 

If a2 t- O. then A 2 = - I. "knce 

A = i and A = - i. 

This means that there is no vector [::~ ] in R2 sllch that L ([:~ J) is parallel to 

[
a, ]. If we now consider L as defined previously to map C2 into C 2, then L has 
(12 



EXAMPLE 5 

EXAMPLE 6 
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the eigenvalue A = i with associated eigenvector [ ;'] (veri fy), and the eigenvalue 

A = - i with associated eigenvector [ -~ ] (veri fy). • 

Lei L: R2 -+ R2 be the linear operator defined by 

It follows that 

Thus any vector of the form [~ ], where r is any nonzero real number- such as 

[ ']. . XI = I - IS an e igenvector of L associated v.ith the eigenvalue A = 1; any 

vector of the form [ _~ ], where r is any nonzero real number, such as X2 = 

[ _: l is an eigenvector of L associated with the eigenvalue A = - [ (see Fi gure 

7n • 

FIGURE 7.3 

Lei L : R2 _ R2 be counterclockwise rotat ion through thc angle cp, 0 ~ ¢ < 21T, 
as defined in Example 2. It follows from our di scllssion in Example 2 that ¢ = 0 
and ¢ = Jr arc the onl y angles for which L has eigenvalues. Thus, if ¢ = 0, 
then A = [ is the only eigenvalue of L and every nonzero vector in R2 is an 
eigenvector of L associated with the eigenvalue A = I . The geometric approach 
used in Example 2 shows that the linear operator L has no real eigenvalues and 
associated eigenvectors when ¢ = rr j 4. lei us now proceed algebraically and 
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EXAMPLE 7 

EXAMPLE 8 

consider the linear operator as defined in Example 2. but now mapping C2 into 
C 2

. In this case. we fi nd that 

./2 ./2 
A = -+-; 

2 2 

is an eigenvalue of L with associated eigenvector [ : ] (verify) and 

./2 ./2. 
A = - - -' 

2 2 

is an eigenvalue of L with associated eigenvector [ _ : ] (verify). • 
Let L: R2 ...... R2 bedeiinedby L ([XI Xl]) = [0 X2]. We can then see that 

SO;l veclor of Ihe fonn [r 0] . where r is any nom'em real nllmher (silch ;IS 

[2 0]), is an eigenvector of L associated with the eigenvalue A = O. Also, 

so a vector of the fonn [0 r]. where r is any nonzero real number such as 

[0 I ]. is an eigenvector of L associated with the eigenvalue A = I. • 

By definition, the zero vector cannot be an eigenvector. However. Example 7 
shows that the scalar zero can be an eigenvalue. 

(Calculus Required) Although we introduced this chapter with the requirement 
that V be an II-dimensional vector space, the notions of eigenvalues and eigenvec­
tors can be considered for infinite-dimensional vector spaces. In this example we 
look at such a situation. 

Let V be the vector space of all real-valued func tions of a single variable that 
have derivatives of all orders. Let L: V _ V be the linear operator defined by 

L(f) ~ j ' . 

Then the problem presented in Definition 7. 1 can be stated as follows: Can we find 
a number A and a fu nction f t- 0 in V so that 

L(j) ~ Ai' 

If y = I(x). then (2) can be written as 

d y 
- = AV. 
dx -

(2) 

(3) 

Equation (3) states that the quantity y is one whose rate of change, with respect to 
x. is proportional 10 y itself. Examples of physical phenomena in which a quan­
tity satisfies (3) include growth of human population. growth of bacteria and other 
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organisms, investment problems, radioactive decay, carbon dating. and concentra­
tion of a drug in the body. 

For each number i.. (an eigenvalue of L ) we obtain, by using calculus. an 
associated eigenvector given by 

f(x) = K eA.,. 

where K is an arbitrary nonzero constant. • 
Equation (3) is a simple example of a differential equation. The subject of 

differential equations is a major area in mathematics. In Section 8.4 we provide a 
brief introduction to homogeneous linear systems of differential equations. 

Lei L be a linear transformation of an II -dimensional vector space V into 
itself. If S = {XI. X2 .. .. . x,,} is a basis for V. then there is an II x n matrix A 
that represents L with respect to 5 (sec Section 6.3). To dctcnnine an eigenvalue 
A of L and an eigenvector x of L associated with the eigenvalue A, we solve the 
equation 

L (x) = Ax. 

Using Theorem 6.9, we see that an equi valent matrix equation is 

This formulation allows us to use techniques for solving linear systems in R" to 
detennine eigenvalue-cigenvector pairs of L. 

Let L: P2 -,). P2 be a linear opemtor defined by 

L(af l + 1J1 + c) = - bl - 2c. 

The eigen-problem for L can be formulated in terms of a matrix representi ng 
L with respect to a specific basis for P2 . Find the corresponding matrix eigen­
problem for each of the bases S = {I - 1, I + f . f 2 ) and T = {f - I. 1.(2) for 
P2 . 

Solution 
To find the matrix A that represents L with respect to the basis S, we compute 
(verify) 

L (l - t) = 1 - 2 = - to - r) -!(I + t) + Or2
. 

L ( I + I) ~ - I - 2 ~ - l( I - I) - l (1 + 1)+ 01' . .'0 [ L(l + I) L ~ [ =~ 1 
LV') ~ 0 ~ 0(1 - I) + 0(1 + 1)+ 01 ' . '0 [L (I')], ~ [~l 
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Then 

[-! 0] 
A = - 2 0 . 

000 
and the matrix eigen-problem for L with respect to S is that of finding a number A 
and a nonzero vector x in RJ or CJ so that 

Ax = AX. 

I.n a similar fashion we can show that the matrix B which represents L with respect 
to the basis T is 

[

- I 

B = ~ 

o 
- 2 

o 

(verify), and the corresponding matrix eigen-problem fo r L with respect to T is 

Bx = AX. 

Thus the matrix eigen-problcm fo r L depends on the basis selected fo r V. We show 
in Section 7.2 that the eigenvalues of L will not depend on the matrix representing 
L. • 

As we have seen in Example 9, the eigen-problcm for a linear transformation 
can be expressed in terms of a matrix representing L. We now fonnulate the 
notions of eigenvaluc and eigenvector for ullysquare matrix. If A is an II XII matrix. 
we can consifler. as in Section n.l , Ihc linea r operaTor I. · R" --)0 R" (r." --)0 r ") 
defined by L (x) = Ax for x in R" (C n ). If A is a scalar (real or complex). and 
X =1= 0 a vector in R" (e") such that 

Ax = AX. (4) 

then we say thai A is an eigenvalue of A and X is an eigenvector of A associated 
with L That is, A is an eigenvalue of L and X is an eigenvector of L associated 
with A. 

Remark Although we began this chapter with the problem of finding the eigen­
values and associated eigenvectors of a linear operator, from now on we emphasize 
the problem of finding the eigenvalues and associmed eigenvectors of an II x 11 ma­
trix . 

• Comlmting Eigenvalues and Eigenvectors 

Thus far we have found the eigenvalues and associated eigenvectors of a given 
linear transformation by inspection. geometric arguments. or very simple algebraic 
approaches. In the following example. we compute the eigenvalues and associated 
eigenvectors of a matrix by a somewhat more systematic method. 
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LeI A = [ _~ !]. We wish to find the eigenvalues of A and their associ­

ated eigenvectors. Thus we wish to find all numbers A and all nonzero vectors 

x = [~~] that sati sfy Equation (4): 

[ 1 Il[X'] ~ A[X'], 
- 2 4 Xl X 2 

which yields 

XI + X2 = AX1 

- 2Xl + 4X2 = AX2 

(A - I)X] - X2 = O 

2x! + (J.. - 4)X2 = 0. 

(Sa) 

(5b) 

This homogeneous system of lwo equations in two unknowns has a nontrivial so­
lution if and only if the determinant of the coefficient matrix is zero. Thus 

- I I A _ 4 = 0. 

This me'lns lhnr 
).2 _ 5A + 6 = 0 = U. - 3)(.l. - 2). 

and so AI = 2 and)..2 = 3 are thc eigenvalues of A. That is, Equation (5b) will 
have a nontrivial solution only when )'1 = 2 or A2 = 3. To find all eigenvectors of 
A associated with Al = 2, we substitute AI = 2 in Equation (Sa): 

[ 1 I] [x' ] ~ 2 [x' 1 ' - 2 4 X2 X 2 

which yields 

XI + X2 = 2xI 

- 2x1 + 4X2 = 2X2 
0' 

(2 - I )xl -

2x1 + (2 - 4)X2 = 0 

2xI - 2X2 = 0. 

Note that we could have obtained this last homogeneous system by merely 
substituting AI = 2 in (5b). All solutions to this last systcm are given by 

XI = X2 

X2 = any numbcr r. 

Hence all eigenvectors associated with the eigenvalue AI = 2 are given by [~l 

where r is any nonzero number. In particular. for r = I, XI = [:] is an eigen­

vector associated with ).1 = 2. Similarly, substitutmg A2 = 3 in Equation (5b), we 
obtain 

(3 - 1)xl -
0' 

2xI -'"2 = 0 
2xI -'"2 = 0. lxl + (3 - 4)X2 = 0 
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DEFINITION 7.2 

All solutions to this last homogeneous system are given by 

XI = ~ X2 
X l = any number s. 

Hence all eigenvectors associated with the eigenvalue .1...1 = 3 are given by [ ~ J. 
where.l" is any nonzero number. In particular. for s = 2. x) = [~] is an e igenvec­

tor associated with the eigenvalue .1...2 = 3. • 

We now usc the method followed in Example 10 as our standard for findi ng 
the eigenvalues and associated eigenvectors of a given matrix. We first state some 
termi nology. 

["" {I ~I 

LetA = ~ 

{III I 

:~:] be an II x II matrix. Then the determinant of the 

(I"" 
matrix 

[

A - a" 
- {l 21 

AI" - A = . 

- aliI 

- (II " ] 
- (/211 

A - a,,,, 

is called the characteristic polynomial of A. The equat ion 

p eA) = det(A /n - A) = 0 

is called the characteristic equation of A. 

Recall from Chapter 3 that each term in the expansion of the determi nant of 
an II x II matrix is a product of II entries of the matrix, containing exactly one 
entry from each row and exactly one entry from each column. Thus, if we expand 
det(A1" - A), we obtain a polynomial of degree II. The expression involving An in 
the characteristic polynomial of A comes from the product 

and so the coefficient of A" is I. We can then write 

det(A1" - A) = peA) = A" + (lIA,,-1 + {/2An-2 + ... + {In_IA + (I" . 

Note that if we let A = 0 in det(A1" - A), as well as in the expression on the 
right. then we get det ( - A) = {I", and thus the constant term of the characteristic 
polynomial of A is (III = (- 1)" det(A). 
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Lei A -_ [,', _~2 - 5" ] The characteristic polynomial of A is 

). - I - 2 
pC). ) = det(A /3 - A) = - I - 1 = A3 _ 6).2 + 11). _ 6 

- 4 4 ). - 5 

(verify). • 
We now connect the characteristic polynomial of a matrix with its eigenvalues 

in the following theorem: 

Theorem 7.1 Let A be an /I x /I matrix. The eigenvalues of A are the roots of the characteristic 
polynomial of A. 

Proof 

Let x in R" be an eigenvector of A associated with the eigenvalue ). . Then 

Ax = AX or Ax = (A /,, )x or (A I" - A)x = U. 

Th is is a homogeneous system of II equations in II unknowns; a nontri vial solution 
ex ists if and only if det().I" - A) = 0. Hence J... is a root of thc characteristic 
polynomial of A. 

Conversely, if A is a root of the characteristic polynomial of A, then 
det(A/" - A ) = 0, so the homogeneous system (A I" - A)x = 0 has a nontriv­
ial solution. I·lcnee). is an eigenvalue of A. • 

Thus. to find the eigenvalues of a given matrix A, we must find the roots of its 
chruacte[ istic polyuoJllial p()..). There are llJany Ulethods I'm fin dillg applOxiUla­
tions to the roots of a polynomial, some of them more effective than others. Two 
results that are sometimes useful in this connection arc as follows: (I) The product 
of all the roots of the polynomial 

ptA) = A" +al).,,-I + ·· · + a"_I). + a,, 

is (- I)"a,,; and (2) If {II. (/2 • ... • a" arc integers, then ptA) cannot have a rat ional 
root that is not already an integer. Thus we need to try only the integer factors of 
a" as possible rational roots of pCA). Of course, {JCA) might well have irrat ional 
roots or complex roots. 

To minimize the computational effoo. and as a convenience to the reader, 
most of the c1wracteri~·tic pofYllomiah 10 be solved ill the rest of this chapter IUlIle 
ollly illfeger roots, and each of thcse roots is a factor of the constant term of the 
characteristic polynomial of A. The corresponding eigenvectors are obtained by 
substituting for A in the matri x equation 

(A /II - A)x = O (6) 

and solving the resulting homogeneous system. The solution to these types of 
problems has been studied in Section 4.7. 
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EXAMPLE 12 Compute the eigenvalues and associated eigenvectors of the matri x A defined in 
Example [I. 

Solution 
In Example II we found the characteristic polynomial of A to be 

The possible integer roots of p().) are ± I, ±2, ±3, and ±6. By substituting these 
values in peA), we find that p(l ) = 0, so A = I is a root of p(A). Hence (A - I) 
is a t:1ctor of peA). Dividing peA) by (A - I), we obtain 

p()..) = (A - I)(A 2 - 5A + 6) (verify). 

Factoring A2 - 5A + 6, we have 

peA) ~ (A - I)(A - 2)(J. - 3). 

The eigenvalues of A are then AI = 1. A2 = 2, and A3 = 3. To lind an eigenvector 
XI assoc iated with AI = L we substitute A = I in (6) to get 

[

1 - 1 
- 1 
- 4 

- 2 

4 

[ _~ - 2 _ :] [~;] [~] 
- 4 4 - 4 A ] 0 

is all eigcll vcctm of A associated with AI = I (r "as takcH as 2). 
To lind an eigenvector Xl associated with A1 = 2. we substitute A = 2 ill (6), 

obtaining 

[-: -~ -:] [::] [~] . 
- 4 4 - 3 \3 0 
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Tho "0(0, [ - ,] ;, 0 ,010l;on fo, "ny nombe, ,. Th,,, x, ~ [-!] " nn 

eigenvector of A associated with ).2 = 2 (r was taken as 4). 
To find an eigenvector X 3 associated with A.1 = 3, we substitute A = 3 in (6), 

obtaining 

[3 - I - 2 1]["] n -I 3 - I X2 = 0 
- 4 4 3 - 5 XJ 0 

m 

[ -~ 
- 2 

=n [;:] ~ m 3 
- 4 4 

The ,eo(O, [ -; ] ;, n ,o",,;on fo, nny nombe, ,. Th,,, 

x; ~ [-i] 
is an eigenvector of A associated with A3 = 3 (r was taken as 4). • 
Compute the eigenvalues and associated eigenvectors of 

~ -l]. 
Solution 
The characteristic polynomial of A is 

A - 0 0 - 3 
p(;") = dCI(A13 - A) = - \ A - 0 = )..3 _ 3)..2+ ).. _ 3 

o - I A - 3 

(veri fy). We find that).. = 3 is a root of p()..). Dividing peA) by ().. - 3), we get 
p(A) = (.i.. - 3)()" 2 + I). The eigenvalues of A arc then 

To compute an eigenvector Xl associated with AJ = 3, we substi tute ).. = 3 in (6), 
obtaining 

[

3 - 0 
- I 
o 

o 
3 - 0 
- I 
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EXAMPLE 14 

We find thOl the """"' [~] ;" ,ol",;on fa< "ny n"mbet ' (,cc;fy). Lctt;ng' ~ I. 

we conclude that 

is an eigenvector of A associated with AI = 3. To obtain an eigenvector X2 associ­
ated with A2 = i, we substitute A = i in (6), which yields 

[' -° ° -3 ] [Xt] [0] - I I - 0 I \: 2 0 
o - I I - 3 X 3 0 

We find thOl the wo(Ot [(~;:);)c ] i, , ,ol t((;on fot "tty n",nbet , (,,,ify). 

Letting r = I, we conclude that 

is an eigenvector of A associated with A2 = i. Similarly, we find that 

is an eigenvector of A associated with A3 = - i. • 
Let L be the linear operator on P2 defined in Example 9. Using the matrix B 
obtained there representing L with respect to the basis (t - I, I. t 2 f for P2 , find 
the eigenvalues and associated eigenvectors of L. 

Solution 
The characteristic polynomial of 

[

- I 

B = ~ 
o 

- 2 
o ~] 

is peA) = A(A + 2)(A + I) (verify), so the eigenvalues of L are AI = 0, A2 = - 2, 
and A3 = - I. Associated eigenvectors are (verify) 
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These arc the coordinate vectors of the eigenvectors of L , so the correspondi ng 
eigenvectors of L are 

respectively. 

0(1 - 1) + 0(1) + 1(1 2) = {2 

1(1 - 1) + [(1)+0(1 2) = 1 

0(1 - 1) + [(1 ) + 0 (1 2) = I. 

• 
The procedure for finding the eigenvalues and associated eigenvectors of a ma­
trix is as follows: 

Step 1. Detennine the roots of the characteristic polynomial 

peA) = det (A1" - A). 

These are the eigenvalues of A. 

Step 2. For each eigenvalue A. find all the nontrivial solutions to the 
homogeneous system (AI" - A)x = O. These are the eigenvectors of A as­
sociated with the eigenvalue A. 

The characteristic polynomial of a matrix may have some complex roots, and 
it may. as seen in Example 13. even have no real roots. However. in the important 
case of symmetric matrices, all the roots of the characteristic polynomial are reaL 
We prove this in Section 7.3 (Theorem 7.6). 

Ei genvalues and eigenvectors satisfy many important and interesting proper­
ties . For example. if A is an upper (lower) triangular matrix. then the eigenvalues 
of A are the clements on the mai n diagonal of A (Exercise II ). Other properties 
arc developed in the exerc ises for this section. 

It must be poi nted out that the method for finding the eigenvalues of a linear 
transformation or matrix by obtain ing the real roots of the characteristic polyno­
mial is not practical for II > 4, since it involves evaluating a determinant. Efficient 
numerical methods for Ii nding eigenvalues and associated eigenvectors are studied 
in numerical analysis courses. 

Warning When fi nding the eigenvalues and associated eigenvectors of a ma­
tri x A, do not make the common mistake of fi rst transforming A to reduced row 
echelon form B and then finding the eigenvalues and eigenvectors of B. To see 
quickly how this approach fails, consider the matri x A defined in Example 10. Its 
eigenvalues arc Al = 2 and 1.2 = 3. Since A is a nonsingul ar matri x, when we 
transfonn it to red uced row echelon form B, we have B = h The eigenvalues of 
hareAI = land A2 = 1. 

Characteristic value 
Latent value 
Characteristic polynomial 

Characteristic equation 
Roots of the characteristic polynomial 
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l. Let L : R2 __ R! be counterclockwise rotation through 8. Find all the eigenvalues and associated eigenvectors of 
an angle rr. Find the eigenvalues and associated eigen-
vectors of L. 

2. Let L: P I ---'> P I be the linear operator defined by 
L(at + b) = bl + a. Using the matrix representing L 
with respect to the basis (I. t ) for P I, find the eigenval­
ues and associated eigenvectors of L. 

3. Let L. 1'2 ....... 1'2 be the linear operator dellned hy 

L (at! + bt + c) = (" _ at!. 

Using the matri x representing L with respect to the basis 
[12 + I. t. I) for P" find the eigenvalues and associated 
eigenvectors of L. 

4. Let L : R3 ....... R3 be defined by 

Using the natural basis for R1. find the eigenvalues and 
associated eigenvectors of L. 

5. Find the characteristic polynomial of each of the follow -
109 matrices: 

(c.) [ 4~ 
- I 

2 
o 

(h) U ; n 
(d ) [: ~] 

6. Find the characteristic polynomial. the eigenvalues. and 
associated eigenvectors of each of the following matri­
ces: 

[ II (. ) :] (b) [ - : ~ ~] 
3 2 - 2 

(d ) U ; -;] 
7. Find the characteristic polynomial, the eigenvalues. and 

associated eigenvectors of each of the following matri ­
ces: 

[,
I 

(. ) 

(,) U 2 
2 -, 

each of the following matrices: 

(. ) [ : -;] (b) [~ -~] 

[! 
2 -4] 

[! 
- I 

n (, ) 5 - 4 (d ) 0 
0 6 

9. Find the characteristic polynomial. the eigenvalue~. and 
associated eigenvectors of each of the following matri -

(. ) [ 0 01] 
- I 

(d ) [ _ ~ ~ ] 
10. Find all the eigenval~es and associated eigenvectors of 

each of the following matrices: 

II . 

[
- II (. ) 

- I 
o 

Ch) 

~] (d ) 

Prove that if A is an upper (lower) triangular m;!trix, then 
the eigenvalues of A are the elements on the main diago­
nal o f A. 

12. Prove that A and A ' have the same eigenvalues. What. 
if anything. can we say about the associated eigenvectors 
of A and A'? 

13. Let , 
- I 

o 
o 

3 

3 
J 

o ~] 
represent the linear transfonnation L : M22 ---'> M22 with 
respect to the b;!sis 

Find the eigenvalues and associated eigenvectors of L. 

14. Let L: V ---'> V be a linear operator, where V is an /1 -

dimension;!] vector space. Let A. be an eigenvalue of L. 



Prove thallhe ~ ubsel o f V consisting of 01' and all eigen­
vectors of L a.~soc iated with i.. is a subspace of V. This 
subspace i~ called the eigenspace associated with A. 

15. Let A be an eigenvalue of the n x /I matrix A. Prove that 
(he subset of W (C~) consisting of the zero vector and all 
e igenvector~ of A associated with A is a subspace of R~ 

(C·). This subspace is called the eigenspace associated 
wi th A. (This resul t is acorollary to the result in Exercise 
14.) 

16. In Exercises 14 and I ~. why do we have 10 include 0 1' in 
(he set of all eigclwcctors a~sociated with A? 

III Eurcilies 17 (IIu/ 18, find" bmis ior thl' eigell~pacl' (see 
E;urdse 15) (ls.md(ltl'(iwitll Aior I'(jd, g il'l'lI matrix. 

0 
17. (a) [~ , 

H' =' 0 

U 
, 

U' =, (b) , 
0 

18. (a) [ -l 3 -H' =3 

19. 

0 

[~ 
2 0 

U'= 2 (b) 
3 0 0 2 
0 0 

[A 
- 4 n Let A = 0 

(a) Find a ba~is for Ihe eigenspace a~sociated with the 
eigenvalue A( = 2;. 

(h) Find a b'l~is for Ihe eigenspace associated with the 
e igenvalue A~ = - 2;. 

20 L"A = [~ ~ r fJ 
(a) Find a ba.~i s for the eigenspace associated wilh the 

eigenvalue A, = I. 

(b) Find a basis for the eigenspace associated with the 
eigenvalue A~ = 2. 

21. Prove Ihat if A is an ei.eenvalue of a matrix A with asso­
ciated eigenveclor x. and k is a posith'e integer. then AI 
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is an eigenvalue of Ihe m:nrix 

AI = A . A ..... A (k factors ) 

with a.~socialed eigenl'ector x. 

22. Let 

23. 

A=[: _~] 
be Ihe matrix of Exercise Sea). Find the eigenvalues and 
e igenvectors o f A~ and verify Exercise 21. 

Prove thaI if AI = 0 for some positive integer k [i.e .. if 
A is a nilpolelll malmt (see Supplemental)' Exercise 22 
in Chapler 1)1. Ihen 0 is the only cigenvalue of A. (Hint: 
Use Excrci~e 21.) 

24. Let A be an /1 x I! mntrix. 

(a) Show that del (A) is the product of all the roots of 
the characteri ~lic polynomial of A. 

(b) Show that A is singu lar if and only if 0 is an eigen­
value of A. 

(c) Also prove the analogous statement for a linear 
transformation: If L : V -+ V is a linear transfor­
mation. show that L is not one·to-one if and ooly if 
o is an eigenvalue of L. 

(d ) Show Ihal if A is nilpotent (see Supplementary Ex­
ercise 22 in Chapter I). then A is singular. 

25. Let L: V ...... V be an in\'crtible linear operator and let A 
be an eigenvalue of L with associated eigenl'ector x. 

(a) Show that 1/;" i ~ an cigenvalue of L _ I wi th associ­
ated eigel1\'cctor x. 

(h) State and prove the analogous statement for matri­
ces. 

26. Let A be an /I x II matrix with eigenvalues AI aoo A2. 

where AI i= A2' LeI 5( and 52 be Ihc eigenspaces associ­
ated with AI and A1. respectivcly. Explain why the zero 
vector is the only vector Ihm is in belh 51 and 52. 

27. Let A be an eigenvalue of A with assocklled eigen\'ector 
x. Show thaI A + r i ~ an eigenvalue of A + rio Wilh as­
sociated eigenvector x. Thus. adding a scalar multiple of 
the identity matrix to A merely shifts the eigenvalues by 
the scalar multiple. 

28. Let A be an /I x I' matrix and consider the linear operator 
on R" defined by L (u) = All. for u in R". A subspace IV 
of W is called iO\'aria nt under L if for any w in W. L(w ) 
is also in IV. Show that an ei~enspace of A is invariant 
under L. 
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29. Let A and 8 be I! X I! matrices such that Ax = AX and 
8 x = /-l x. Show tha t 

31. Let A be an I! XII matrix whose characteristic polynomial 

(a) (A + 8 )x = (A + /-l)x: 

(b) (A8)x = (A/-l)X. 

1'0.) = A" + atA"- 1 + .. . + an _ t/ +(1". 

If A is nonsingular. show that 

30. The CayleY' - Hamillon' Ihrorem states that a matrix 
satisfies its characteristic equation: that is. if A is an II x I! 
matrix with characteristic polynom ial 

A- t = - ~(A"- ' +",A"- ' + + A + I ) . . . (/" _ 2 (1,, _ 1,,' 

"" 
[H illt: Use the Cayle)- Hamihon theorem (Exercise 30).] 

]2. 1.p.t 

then A~[~ !l 
The proof and applications of this result. unfonunately. 
lie beyond the scope of this book. Verify the Cayley­
Hamilton theorem for the following matrices: 

Prove tha t the characteristic polynomial 1'(1.) of A is 
given by 

peA) =).2 _ Tr(A)A + det(A). 

where Tr(A) denotes the trace of A (see Exercise 43 in 
Seclion 1.3). (.) [i -; n 

(e) [~ !J 

ARTHUR CAYLEY 

WILLIAM ROWAN H AMtLTON 

Ibl [~ 
2 
2 
o 33. Show that if A is a matrix all of whose columns add up 

to l. then A = 1 is an eigenvalue of A. (Hilll: Consider 
the product AT x. where x is a vector all of whose entries 
are I . and use Exercise 12.) 

• Arthur Cayley (1821- 1895) was born in Richmond. Surrey. England. into an established and tal­
ented family. and died in Canlbridge. As a youngster he showed considerable talent in mathematics. 
and his teachers persuaded his father to let him go to Cambridge im;tead of entering the family business 
as a merchant. At Cambridge he distinguished himself in his studies and published a number of papers 
as an undergraduate. After graduation. he accepted a Fellowship at Trinity College in Cambrid!;e. but 
left to study law. Although he spent 14 years working as a successful lawyer. he was still able to spend 
considerable time working on mathematics and published nClrly 200 papers during this period. [n 
1863. he was appointed to a Professorship at Cambridge Univl'Tsity. His prolific work in matrix theory 
and other areas 01 tmear atgebm was 01 lundamentat ,mponance to the ocvetopment 01 the sUhJect. 
He also made many important contributions to abstract algebra. gcometry. and other areas of modem 
mathematics. 

' William Rowan Hamillen (1805-1865) was born and died in Dublin. Ireland. He was a child 
prodigy who had leamed Greek. Latin. and Hebrew by the ag~ o( 5. His extraordinary mathematical 
talent became apparent by the age of 12. He studied at Trini"y College in Dublin. where he was an 
outstanding student. As an undergraduate he was appointed Royal Astronomer of Ireland. Director of 
the Dunsink Observatory. and Professor of Astronomy. [n his early papers he made significant contri­
butions to the field of optics. At the age of]O he was knighted after having his mathematicalthcory of 
conical rcfraction in optics confirmed experimentally. Hamilton is also known for his dis("o\'cry of the 
algebra of quatcmions. a set consisting of quadruples satisfying ("enain algebraic propcnies. He spent 
the last 20 years of his life working on quatcmions and their applications. 



34. Show that if A is an I! x I! matrix whose kth row is the 
same as the kth row of I". then I is an eigenvalue of A. 

35. Let A be a square matrix. 

(a) Suppose that the homogeneous system Ax = 0 has 
a nontrivial solution x = u. Show that u is an eigen­
vector of A. 

(b) Suppose that 0 is an eigenvalue of A and v is an as­
sociated eigenvector. Show that the homogeneous 
system Ax = 0 has a nontrivial solution. 

.!. 36. Determine whether your soflware has a command for 
fi nding the characteristic polynomial of a matrix A. If 
11 does. compare the output from your software with the 
results in Examples 10 :md 13. Software output for a 
charucteristic polynomial often is just the set of coem­
cients of the polynomial with the powers of I. omitled. 
Carefully detennine the order in which the coefficients 
are listed. Experiment further with the matrices in Exer­
cises 5 and 6. 

.!. 37. If your soflware has a command for finding the charuc­
teristic polynomial of a matrix A (see Exercise 36), it 
probably has another command for finding the roots of 
polynomials. Investigate the use of these commands in 
your software. The roots of the characteristic polynomial 
of A are the eigenvalues of A. 
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!.. 38. Assuming that your software has the commands dis­
cussed in Exercises 36 and 37. apply them 10 find the 

. [ 0 '] . elgenvalues of A = _ I O. If your software IS suc-

cessful. the results should be A. = i. - i. where i = P . 
(See Appendix B.) (Caution: Some software does not 
handle complex roots and may not permit complex ele­
ments in a matrix. Determine the situation for the soft­
ware you use.) 

.!. 39. Most linear algebra software has a command for auto­
matically finding the eigenvalues of a matrix. Deter­
mine the command available in your software. Test its 
behavior on Examples 12 and 13. Often. such a com­
mand uses techniques that are different than finding the 
roots of the charucteristic polynomial. Use the documen­
tation accompanying your software to find the method 
used. (Warning: It may involve ideas from Section 7.3 
or more sophisticated procedures.) 

.!. 40. Fullowing lhe iueas ill Exen:ise 39. uelermillc lhc cum­
mand in your software for obtaining the eigenvectors of 
a matrix. Often, it is a variation of the eigenvalue com­
mand. Test it on the matrices in Examples 10 and 12. 
These examples cover the types of cases for eigenvectors 
that you will encounter frequently in this course. 

Diagonalization and Similar Matrices 

If L: V -+ V is a lincar operator on an II-dimcnsional vector spacc V, as wc have 
already seen in Section 7.1 then we can find the eigenvalues of L and associated 
eigenvectors by usi ng a matri x representing L with respect 10 a basis for V. The 
computational steps involved depend upon the matrix selected to represent L. An 
ideal situation wou ld be the following one: Suppose that L is represented by a 
matrix A with respect to a certain basis for V. Fi nd a basis for V with respect to 
which L is represented by a diagonal matrix D whose eigenvalues are the same as 
the eigenvalues o f A. Of course. this is a very desirable situation, si nce the eigen­
values of D are merely its entries on the main diagonal. Now recall from Theorem 
6.14 in Section 6.5 that A and D represent the same linear operator L: V -+ V 
with respect 10 two bases for V if and onl y if they are similar-that is, if and only 
if there exists a nonsingular matrix P sueh that D = p -t A P. In this section we 
examine the type o f linear transformations and matrices for which this situation is 
possible. For convenience, we work only with matrices all of whose entries and 
eigenvalues are real numbers. 

Remark The need to compute powers of a matrix A (see Section 1.5) arises 
frequently in applications. (See the discussion of Fibonacci numbers in Section 
1.5, and recursion relations in the exercises of Section 1.5 and Section 8.1.) If the 
matrix A is similar to a diagonal matrix D, then D = p -t A P, fo r an appropri ate 
matrix P. It follows that A = P D p - J (verify) and that At = p Dk p-J (verify). 
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DEFINITION 7.3 

EXAMPLE 1 

Since D is diagonal, so is Dk, and its diagonal entries are dJj . Hence At is easy 
to compute. In Section 8.4 we see another instance in which problems involving 
matrices that are similar to diagonal matrices can be solved quite efficiently. 

Let L: V ...... V be a linear operator on an II-dimensional vector space V. We say 
that L is diagonalizable, or can be diagonalized, if there exists a basis 5 for V 
such that L is represented with respect to 5 by a diagonal matrix D. 

In Example 2 of Section 6.5 we considered the linear transformation L: R3 ...... R3 
defined by 

I.n that example we used the basis 

S'~ {[I 0 1].[0 0]. [ 1 0]) 

for R3 and showed that the representation of L with respect to 5' is 

Hence L is a diagonalizablc linear transformation. • 
We next show that :;imilar matrices have the same eigenvalues. 

Theorem 7 .:1 Simila r matrices have the same eigenva ilies 

Proof 

Let A and B be similar. Then B = p -I A P, for some nonsi ngular matrix P. We 
prove that A and B have the same characteristic polynomials, PA()..) and PR()..). 
respectively. We have 

PR()..) = det()..]" - B) = det()"1" - p - I A P) 

= det( p - 1)" 1nP - P -1AP) = det(p- 1()"1" - A)P) 

- dct( P - I) dct(.U" - A)det ( P ) 

= det( p - 1
) det(P) det()..1" - A ) 

= det().. 1" - A ) = PA()..). (I) 

Since PA()..) = P/J()..), it follows that A and B have the same eigenvalues. • 

Note that in the proof o f Theorem 7.2 we have used the facts that the product 
o f det(p- I) and det(P ) is I and that determinants are numbers, so their order as 
facto rs in multi plication does not matter. 

Let L: V ...... V be a diagonalizable linear operator on an II -dimensional vector 
space V and let 5 = {XI . X2 • .. •• x,,} be a basis for V sllch that L is represented 
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with respect to S by a diagonal matrix 

A, 0 0 
0 A, 0 

D ~ 

0 

0 0 0 A" 
where )'-1. A2 .... . A" arc real scalars. Now recall that if D represents L with re­
spect to S, then the jth column of D is the coordinate vector [L (x j )]s of L(xj ) 
with respect to S. Thus we have 

[ L(x ) ] ~ , ., 

which means that 

o 
o 

o 
A, 
o 

o 

...... jth row, 

L(x) = OXI + OX2 + . . . + OX j _1 + A j Xj + DXj +1 + .. . + Ox" = Aj X) . 

Conversely. let S = (XI. X2 . . .. . x" I be a basis for V such that 

L (x) = A j X j = OXI + OX2 + . .. + OXj _1 

+ Aj X)+ OXj+I+ "' +Ox" forj = 1.2 . . .. . n. 

We now fi nd the matrix representing L with respect to S. The jth column of this 
matrix is 

Hence 

o 
o 

o 
Ai 
o 

o 

[ ~ ;, ~ 1 
D ~ 0 0 O)~ 

a di agonal matrix, represents L with respect to S, so L is diagonalizablc. 



456 Chapler 7 Eigenvalues and Eigenvectors 

We can now state the following theorem, whose proof has just been given: 

Theorem 7.3 Let L: V -+ V be a linear operator on an II-dimensional vector space V. Then L 
is diagonalizable if and only if V has a basis S of eigenvectors of L. Moreover. if 
D is the diagonal matrix representing L with resJX!Ct to S, then the entries on the 
main diagonal of D are the eigenvalues of L. • 

In terms of matrices. Theorem 7.3 can be stated as follows: 

Theorem 7.4 An /I x /I matrix A is similar to a diagonal matrix D if and onl y if A has II linearly 
independent eigenvectors. Moreover, the elements on the mai n di agonal of Dare 
the eigenvalues of A. • 

EXAMPLE 2 

EXAMPLE 3 

Remark If a matrix A is similar to a diagonal matrix, we say that A is diagonal­
izable or can be di agonalized. 

To use Theorem 7.4. we need show only that there is a set of /I eigenvectors 
of A that are linearly independent. 

Let A = [ _ ~ ! l In Example 10 of Section 7.1 we found that the eigenvalues 

of A are AI = 2 and A2 = 3, with associated e igenvectors 

respectively. Since 

is linearly independent (verify). A can be diagonalized . From Theorem 7.4. we 

condudethatAisSimilartoD = [~ ~l • 

[ , '] .. Let A = 0 I . Can A be dlagonallzed? 

Solution 
Since A is upper triangular, its eigenvalues arc the entries on its main diagonal 
(Exercise I I in Section 7.1). Thus, the eigenvalues of A arc A] = 1 and A2 = I. 

We now fi nd eigenvectors of A associated with )'1 = I. Equation (6) of 
Section 7.1, (A I" - A)x = 0, becomes, with A = 1, the homogeneous system 

(1 - I)xl X2 = 0 
(1 - I)x2 = 0. 

The vector [ ~ l for any number r. is a solution. Thus all eigenvectors of A are 

multiples of the vector [~l Since A does not have two linearly independent 

eigenvectors. it cannot be diagonalized. • 
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If an /I x 1/ matrix A is similar to a diagonal matrix D. then p-l A P = D for 
some nonsingu lar matrix P. We now di scuss how 10 construel such a matrix P. 
We have AP = PD. Let 

and let Xj , j = [ , 2 . .. .. II, be the jlh column of P. Note that the jlh column of 
AP is Ax ). and the jthco[umn of PD is Aj Xj . (See Exercise 46 in Section 1.3.) 
Thus we have 

AXj = Aj Xj , 

which means that Aj is an eigenvalue of A and Xj is an associated eigenvector. 
Conversely, if AI. )..2 . .. .. AI! arc 1/ eigenvalues of an /I x /I matrix A and 

XI_ X2_ ...• xI! are associated eigenvectors fanning a linearly independent set, we 
let P be the matrix whose jlh column is Xj' Then rank P = II, so by Corollary 
4.7, P isnonsingular. SinceAxj = Aj Xj ,j = L2 . .. .. II,wchavcAP = PD, 
or p -l A P = D , which means that A is diagonalizablc. Thus, if /I eigenvectors 
Xl. Xl . . .. • XII of the /I x n matrix A form a linearly independent set. we can di­
agonalize A by lel1ing P be the matrix whose j tll column is Xj , and we find that 
p -l A P = D , a diagonal matrix whose entries on the main diagonal are the as­
sociated eigenvalues of A. Of course. the order of columns of P determines the 
order of the diagonal entries of D. 

Let A be as in Example 2. The eigenvalues of A are A! 
associated eigenvectors are 

respectively. Thus 

Hence 

and p _, ~ [ 2 -I] 
- I I 

(verify). 

P-IAP = [ 2 
- I 

-1][ I 1] [1 1] ~ [2 0] 
I - 2 4 I 2 0 3 . 

On the other hand, if we let AI = 3 and A2 = 2. then 

3. and 
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ond 

• 
The following useful theorem identi fies a large class of matrices that can be 

diagonali zed: 

Theorem 7.5 If the roots of the characteristic polynomial of an II x II matri x A arc atl di ffere nt 
from each other (i .e., dist inct), then A is diagonalizable. 

Proof 

Let P.I. A2 . . . . . A" f be the sel o f disti nct eigenvalues of A, and let 5 = {XI. X2. 
x,,1 be a set of associated eigenvectors. We wish to prove that 5 is linearly inde­
pendent. 

Suppose that 5 is linearly dependent. Then Theorem 4.7 implies that some 
vector Xj is a linear combination o f the preceding vectors in 5. We can assume 
that 51 = {XI. X2, . . . . Xj_l} is linearl y independent, for otherwise, one of the 
vectors in 51 is a linear combination of the preceding ones, and we can choose a 
new set S2. and so on. We thus have that SI is linearly independent and that 

(2) 

where al. {/2 . .. .. {/j _1 arc scalars. This means that 

AXj = A(alxl + {/2X2 + . . . + (/j _I Xj _J) 

= {lJ AXI + {l2A x2 + . . . + (/ j _1 AXj_l . (3) 

Since AI. A2 . .. .. Aj are eigenvalues and Xl. X2 . ... . Xj arc associated eigenvec­
tors, we know that AXi = AiXi fo r i = 1. 2 ... .. II. Substitut ing in (3). we have 

(4) 

Multiplying (2) by Aj . we get 

(5) 

Subtracting (4) from (3), we have 

0 = Aj Xj - Aj x) 

= {/I()..I - Aj )XI + {l2(A2 - Aj )X2 + .. . +aj _IU. j _1 - Aj )Xj_l. 

Since 51 is linearly independent, we must have 

Now (AI - Aj ) =1= D. (A2 - Aj ) =1= 0, . .. , (A j_1 - Aj) =1= 0, since the A's arc distinct. 
which implies that 

{II = {l2 = . . . = {lj _1 = O. 

This means that Xi = 0, which is impossible if Xi is an eigenvector. Hence S is 
linearly independe nt, so A is di agonalizable. • 
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Remark In the proof of Theorem 7.5 we have actually established the follow­
ing somewhat stronger result: LeI A be an /I x II matrix and lei AI. )..2 .. .. . AJ: 
be k distinct eigenvalues of A with associated eigenvectors X I. X2 .. ... Xj;. Then 
XI. X2 . .... Xk are linearl y independent (Exercise 25). 

If all the roots of the characteristic polynomial of A are nOi all distinct, then 
A mayor may not be diagonalizable. The characteristic polynomial of A can be 
written as the product of n factors, each of the form A - Ao. where AO is a root 
of the characteristic polynomial. Now the eigenvalues of A arc the roots of the 
characteristic polynomial of A. Thus the characteristic polynomial can be written 

where AI. ).2 ..... Ar arc the disti nct eigenvalues of A, and kl' k2, .... kr are in­
tegers whose sum is II. The integer k ; is called the multiplicity of Ai. Thus in 
Example 3, A = [ is an eigenvalue of 

of multiplicity 2. It can be shown that A can be diagonalized if and only if, for each 
eigenvalue A of multiplicity k, we can find k linearly independent eigenvectors. 
This means that the solution space of the homogeneous system (Aln - A)x = 0 
has dimension k. It can also be shown that if )., is an eigenvalue of A of multiplicity 
k, then we can never fi nd more than k linearly independent eigenvectors associated 
with ) •. 

LeI 

b [~ ~ n 
Then the characteristic polynomial of A is peA) = ).,()., - 1)2 (verify), so the 
eigenvalues of A are AI = 0').,2 = I, and ).,3 = I; thus).,2 = I is an eigenvalue 
of multiplicity 2. We now consider the eigenvectors associated with the eigen­
values ).,2 = A3 = I. They arc computed by solv ing the homogeneous system 
(113 - A )x = 0 [Equation (6) in Section 7.1]: 

The sol utions arc the vectors of the form 

where r is any number, so the dimension of the solution space of (1/.l - A)x = 0 
is 1 (Why?), and we cannot find two linearly independent eigenvectors. Thus A 
cannot be diagonali zed, • 
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EXAMPLE 6 

EXAMPLE 7 

[ O~ 00 O~J Let A = The characteristic polynomial of A is p(A) = AlA -

1)2 (verify), so the eigenvalues of A are A\ = 0, A2 = 1, and AJ = 1; thus 
A2 = I is again an eigenvalue of multiplicity 2. Now we consider the eigenvectors 
associated with the eigenvalues A2 = AJ = l. They are computed by solving the 
homogeneous system (113 - A)x = 0 [Equation (6) in Section 7.11: 

Tho ,ol,,"o",",c 'hc 'COlO" of 'hc fO lm [;J fO l "y ""mbm I "d.L Th", 

X, ~ m "d x, ~ m "''''gc",""o". 

Next, we look for an eigenvector associated with A\ = O. We have to solve 
the homogeneous system 

Tho '01""0"' ore 'ho ""0" 01 'ho 101m [ ~ J fOl "Y ""mhol I. Th", x, 

[ _ ~ J ,.'" c'g,","CIOI ""oo'"cd w' ,h A, ~ o. "ow S ~ {x,. x,. x,} " Ii",""y 

independent, so A can be diagonalized . • 

Thus an /I x II matrix will fail to be diagonalizable only if it does not have II 
linearly independent eigenvectors. 

Now define the characteristic polynomial of a linear operator L: V ...... V 
as the characteristic polynomial of any matrix representing L; by Theorem 7.2 
all representations of L will give the same characteristic polynomial. It follows 
that a scalar A is an eigenvalue of L if and only if A is a root o f the characteristic 
polynomial of L. 

In Example 14 of Section 7.1, we derived the matrix eigen-problem for the linear 
operator L : P2 -+ P2, defined in Example 9 o f that section, by L(at 2 +ht +c) = 
- ht - 2c by using the matrix 

[

- I 

B = ~ 
o 

- 2 
o 
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which represents L with respect to the basis 1t - I I. t21 for P2 . We computed the 
characteristic polynomial of B to be p().) = ).(). + 2)()' + I), so this is also the 
characteristic polynomial of L. Since the eigenvalues are distinct, it follows that 
Band L are diagonalizable. Of course, any other matrix representing L could be 
used in place of B. • 

Key Terms 
Diagonalizable 
Diagonalized 
Similar matrices 

-u Exercises 

Characteristic polynomial 
Ei genval ues/eigenvectors 
Distinct eigenvalues 

I. Let L : 1'2 ---+ 1'2 be the linear operator defined by 
L(p(l)) = p' (I) for p(l) in h Is L diagonalizable? 
If it is. find a basis S for 1'2 ' .... ilh respect to which L is 
represented by a diagonal matrix. 

2. Let L: PI -'> PI be the linear operator defined by 

L(at + b) = - bl - a. 

Find. if possible. a basis for PI with respect to which L 
IS represented by a diagonal matrix. 

3. Let L: 1'2 --+ P2 be the linear operator defined by 

L(a1 2 +bt +c) = at 2 -c. 

Find. if possible. a basis for P2 with respect to which L 
IS represented by a diagonal matrix. 

4. (Calculus Reqllired) Let V be the vector space of contino 
uous functions with basis {sin t. cos t J. and let L: V -'> 

V be defined as L(g(l)) = g'(t ) . Is L diagonalizable? 

5. Let L: 1'2 ....... 1'2 be the linear operator defined by 

L (at2 +bt + c) = (2a + b +£")t2 

+ (2(" - 3b)1 +4£". 

Find the eigenvalues and eigenvectors of L. Is L diago. 
Ilalizable? 

6. Which of the followlllg matrices are diagonalizabJe? 

[ II I· ) Ib) 

(d ) 

n 
2 

- I 
o 

7. Which of the following matrices are diagonalizable·! 

I. ) [~ i n (b) [ -~ n 

Multiplicity of an eigenvalue 

«)[~O~] 
R. Find ~ 2 x 2 n()ndiile...,n~l marrix whrwe p. iep.nvallJp.~are 2 

and - 3. and associated eigenvectors are [ - ~] and [ :]. 

respectively. 

9. Find a 3 x 3 nondiagonal matrix whose eigenvalues are 

- 2. - 2. "d 3. "d ,,"oci,,,d 'ig,"""o~ 'co [~l 

10. For each of the following matrices find. if possible. a 
nonsingular matrix f' such that/J

-
1 AI' is diagonal: 

(. ) [ -~ 

1<1 [~ 
2 

2 
I 

- 2 
(h) [~ n 
(d ) [0 -I] 

2 3 

II. For each of the following matrices find. if possible. a 
nonsingular matrix I' such that 1'- 1 AI' is diagonal: 

(. ) [~ -~ ~] 

1<) [~ ~ ~] 

(b) U ~ n 
(d) [~ 0 ~] 



462 Chapter 7 Eigenvalues and Eigenvectors 

12. Let A be a 2 x 2 matrix whose eigenvalues are 3 and 4. 

and associated eigenvectors are [ - :] and [~]. respec­

lively. Without computation. find a diagonal matrix D 
Ihat is similar to A. and a non~ingular matrix I' such that 
1,- IAp = D. 

13. Let A be a 3 x 3 matrix whose eigenvalues are - 3. 4. and 
4. and associated eigenvectors are 

respectively. Without computation. find a diagonal ma­
nix D th .. t is similar to A. and .. nonsingular matrix I' 
suchthat p - IAP = D. 

14. Which of the following matrices are similar to .. diagonal 
matrix'! 

(e) [ -~ ~] 

(b) [~ r ~] 
(d ) [i i ~] 

15. Show that each of the following matrices is di .. gonaliz­
able and find .. di .. gon .. 1 matrix similar to each given m .. -
nix: 

(a) [: ~] (b) [! ~] 

(,) [~ ~: -l] (d ) [! -~ -:] 
16. Show th .. t none of the following m .. trices is di .. gonaliz­

able: 

17. 

[0
1 

(. ) : 1 
(, ) [~~ ~~ -~] 

-8 - 8 - I 

A m .. trix A is called dcfccth'cif A h .. s an eigenvalue A of 
multiplicity //I > I for which the associ .. ted eigenspace 
Il .. s .. basis of fewer ttwn //I vectors: that is. the dimension 
of the eigensp .. ce associated with A is less than III. Use 
the eigenvalues of the following matrices to detennine 
which malrices are defective: 

(. ) [~ ;J " = 8.8 

H 0 

-}~335 (b) 3 
0 

U 3 
}~OO3 (, ) 3 

- 3 - 3 

(d ) [r 
U I 

UJ 0 0 - I 

0 0 ~ ,A=l.J. - l, - I 

- I 0 

18. Let D = [~ -~l Compute D9. 

19. Let A = [~ =~l Compute A9. (Hilll: Find a matrix 

P such that 1,- 1 A f' is adiagonal m .. trix D and show that 
A~ = pD~ p- I .) 

[" 'J .. 20. Let A = cd' Find necessary and sufficient condi-

tions for A to be diagonalizable. 

21. Let A and B be nonsingular II x II matrices. Prove that 
A Band B A have the same eigenvalues. 

22. (Calclllus Reqlfired) Let V be the vector space of con­
tinuous functions with basis {e' . e- ' j. Let L: V -I- V be 
defined by L (g(l)) = g' (I) for 8(1) in V. Show ttwt L is 
diugonalizablc. 

23. Prove that if A is diagonalizable. then (a) AT isdiagOlwl­
izable. and (b) At is diagonalizable. where k is a positive 
integer. 

24. Show that if A is nonsingut..r and diagonalizable. then 
A _ I is diagonalizable. 

25. Let )' 1. A2 •.. . • )., be dis tinc t eigenv<llues of an II x n ma­
trix A with associated eigenvectors X I . X2 .... . Xt. Prove 
that x I. X2 . . ... Xk are linearly independent. (Hill l: See 
the proof of Theorem 7.5.) 

26. Let A and B be nonsingular II x II matrices. Prove that 
AB- I and B- 1 A have the same eigenvalues. 

27. Show that if a matrix A is similar to a diagonal matri x 
D. then Tr(A ) = Tr(D ), where Tr(A) is the trace of A. 
[Hilll: See Exercise 4.3. Section 1.3. where part (c) estab­
lishes Tr(AB ) = Tr(BA).] 

28. Let A be an II x II matrix and let B = 1' _ 1 A P be similar 
to A. Show that if x is an eigenvector of A associated 
with the eigenvalue i, of A. then p - IX is an eigem'ector 
of B associated wilh Ihe eigenvalue). of the malrix B . 
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of Matrices 

I.n this section we consider the diagonalization of a symmetric matrix (i.e. , a matrix 
A for which A = AT). We restrict our attention [0 symmetric matrices. because 
they are easier to handle than general matrices and because they arise in many 
applied problems. One of these applications is discussed in Section 8.6. By defi­
nition. all entries of a symmetric matrix are real numbers. 

Theorem 7.5 assures us that an /I x /I matrix A is diagonalizable if it has /I dis­
tinct eigenvalues; if thi s is not so, then A may fail to be diagonalizable. However, 
every symmetric matrix can be diagonalized; that is, if A is symmetric, there ex­
ists a nonsingular matrix P such that p- 1 A P = D. where D is a diagonal matrix. 
Moreover. P has some noteworthy properties that we remark on. We thus turn to 
the study of symmetric matrices in this section. 

We first prove that all the roots of the characteristic polynomial of a symmet­
ric matrix arc real. Appendix B.2 contains additional examples of matrices with 
complex eigenvalues. A review of complex arithmetic appears in Appendix B.l. 

Theorem 7.6 All the roots of the characteristic polynomial of a symmetric matrix are real num­
bers. 

Proof 

We give two proofs of this result. They both require some facts about complex 
numbers, which arc covered in Appendix B.l. The first proof requires fewer of 
these facts, but is more computational and longer. Let A = a + bi be any root of 
the characteristic polynomial of A. We shall prove that h = O. so that A is a. real 
number. Now 

det(A/" - A) = 0 = det«a + hi)/" - A). 

This means that the homogeneolls system 

«a + hi) /" - A)(x + yi) = 0 = 0 + Oi (1 ) 

has a nontrivial solution x + yi, where x and y are vectors in Rn that arc not both 
the zero vector. Carrying out the multiplication in (I), we obtain 

(a l"" - Ax - h1"Y) + i(a l"y + hl"x - Ay) = 0 + Oi. 

Setting the real and imaginary parts equal to 0, we have 

al"x - Ax - bl"y = 0 

al"y - Ay + bl"x = O. 

(2) 

(3) 

Forming the inner products of both sides of the first equation in (3) with y and of 
both sides of the second equation of (3) with x. we have 

(y.a l"" - Ax - bl"y) = (y.O) = 0 

«(I I"y - Ay + bl"". ,,) = (0. x) = O. 

a(y. Inx) - (y , Ax) - bey. I"y) = 0 

a(J"Y. x) - (Ay. x) + /)(I"X. x) = o. 
(4) 
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Now, by Equation (3) in Section 5.3, we see that (l"y. x) = (y . ( ; x) = (y . II/ x) 
and that (Ay. x) = (y. AT x) = (y . Ax). Note that we have used the facts that 
I,; = I" and that. since A is symmetric, we have AT = A. Subtracting the two 
equations in (4), we now get 

- hey. I"y) - h(l"x. x) = 0 , (5) 

- hl(Y. y) + (x. x)1 = o. (6) 

Since x and yare not both the zero vector, (x. x) > 0 or (y. y) > O. From (6), we 
conclude that h = O. Hence every root of the characteristic polynomial of A is a 
real number. 

A Itenmtive Proof 
Let A be any root of the eharactenstlc polynOlUlal of A We will prove that A is 
real by showing that A = I. its complex conjugate. We have 

Ax = AX. 

Multiplying both sides of this equation by i T on the left, we obtain 

i T Ax = i T).,x. 

Taking the conjugate transpose of both sides yiclds 

i Tj\T X = IiTx. 

i T Ax = I iTx 

.l..iTx = I iTX, 

(since A = AT) 

(A - I)(i T x) = O. 

Since x 1= 0, iTx =1= O. Hence A - I = Oor A = I. • 
Now that we have established this result, we know that complex numbers do 

not enter into the study of the diagonalization problem for symmetric matrices. 

Theorem 7.7 If A is a symmetric matrix, thcn eigenvectors that belong to distinct eigenvalucs of 
A are orthogonal. 

Proof 

Let XI and Xl be eigenvectors of A that are associated with the distinct eigenvalues 
AI and A2 of A. We thell have 

AXI = AI XI and Ax! = A2 X2. 

Now, using Equation (3) of Section 5.3 and the fact that A T 
symmetric, we have 

AI(XI . X2) = (AI XI. X2) = (A x i' X2) 

= (XI. AT X2) = (XI. AX2) 

= (XI, A2 X2) = A2(XI. Xl) ' 

A, si nce A is 
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Thus 

and subtracting, we obtain 

0 = AI(Xj_ X2) - A2(Xj_ X2) 

= 0"1 - A2)(Xj. Xl). 

Since AI =1= )..2. we conclude that (XI. X2) = O. 

LeIA = [~ 
- 2 

- ~ - ~]. The ,ho,"OIen"" polyoom,"1 of A " 

peA) ~ (A + 2)(A - 4)(, + I) 

• 

(verify), so thc eigenvalues of A are AI = - 2''''2 = 4, A3 = - I. Associated 
eigenvectors are thc nontrivial solutions of the homogeneolLs system [Equation (6) 
in Section 7.1] 

[~ 
o 

),, + 2 

o 
2 ] [X'] [0] () '~2 = O. 

A - 3 A3 0 

Fa, A, - 2. we fiod thot x, ;, ooy "010' of the fo'm [n. where, ;, ooy 

ooowo m,mb" ("rify). Th" we m"y toke x, ~ [n. Fo, A, ~ 4, we fiod thot 

x, ;'""Y "010' of the fono [ - ~ ]. wh"e, ;, 00, ooowo m,mb" (",;fy). Th'" 

we moy tokox, ~ [ - ~ 1 Fot A, ~ - I. we fiod 'hot x, ;"opeoto, of thero,m 

[2~ 1 whet" ;"01'0owo oomb" (wrify). Th'" we moy tokex, ~ [~l It 
is clear that IXj. X2 . xJ} is ort hogonal and linearly independent. Thus A is similar 

toD = [ -~ ~ ~]. • 
o 0 - 1 

If A can be diagonalized, thcn there exists a nonsingular matrix P such thai 
p -J A P is diagonal. Moreover. the columns of P are e igenvectors of A. Now. if 
the eigenvectors o f A form an orthogonal set S, as happens when A is symmetric 
and the eigenvalues o f A are di stinct, then since any nonzero scalar multiple of 
an eigenvector of A is also an eigenvector of A, we can normali ze S to obtain an 
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DEFINITION 7.4 

EXAMPLE 2 

EXAMPLE 3 

orthonormal set T = {X I. X2 • .... X" I of eigenvectors of A. Let the jth column 
of P be the eigenvector X j . and we now see what type of matrix P must be. We 
can write P as a partitioned matrix in the form P = [XI X2 x" l Then 

xi 
p T = 

xr 
. where xT is the transpose of the 1/ x 1 matrix (or vector) XI_ We find 

X~ 
that the (i. j) entry in pT P is ( Xi . X j) . Since (Xi . Xj) = 1 if i = j and ( Xi . X j) = 0 
if i i= j. we have p T P = I,,, which means that p T = p- I . Such matrices are 
important enough to have a special name. 

A real square matrix A is called orthogonal if A -I = AT. Of course, we can also 
say that A is orthogonal if AT A = 1". 

Lei 

[: 

, 

-iJ 
-j 

A ~ 
, 
j , 
j 

It is easy to check that AT A = I,,, so A is an orthogonal matrix. • 
Let A be the matrix defined in Example I. We already know that the set of eigen-
vectors 

is orthogonal. If we normalize these vectors. we fi nd that 

I 2 
0 - ./5 ./5 

T~ 0 0 

2 I 
0 

./5 ./5 

is an orthonormal basis for R3. A matrix P such that p- I A P is diagonal is the 
matrix whose columns are the vectors in T. Thus 

I 2 
0 - ./5 ./5 

p ~ 0 0 

2 I 
0 

./5 ./5 
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We leave it to the reader to verify that P is an orthogonal matrix and that 

[
-20 04 °0] P-JAP = pT AP = 

o 0 - 1 • 
The following theorem is not difficult to prove: 

Theorem 7 .8 The II x II matrix A is orthogonal if and only if the columns (rows) of A form an 
onhononnal sel. 

Proof 

Exercise 5. • 
If A is an orthogonal matrix, then we can show that det(A) = ± I (Exerci se 

8). We now look at some of the geometric properties of orthogonal matrices. If A 
is an orthogonal II x II matrix, let L: RIO ~ RIO be the linear operator defined by 
L (x) = Ax, for x in R" (recall Chapter 6). If det(A) = [ and /I = 2, it then follows 
that L is a cou nterclockwise rotation. It can also be shown that if det(A) = - I, 
then L is a renection about the x-axis followed by 11 counterclockw ise rotation (sec 
Exercise 32). 

Again. let A be an orthogonal II x II matrix and let L: R" ~ R" be defined 
by L(x) = Ax for x in R" . We now compute (L (};). L(y)) for any vectors x, y in 
R", using the standard inner product on R". We have 

(L(x) . L(y» = (Ax. Ay) = (x. AT Ay) = (x. A-I Ay) = (x. l Il Y) = (x. y) . (7) 

where we have used Equation (3) in Section 5.3. This means that L preserves the 
inner product of two vectors and, consequently, L preserves length. (Why ?) It 
also follows that if B is the angle between vector> x and y in R", then the angle 
between L (x) and L(y) is also B. A linear transformation sat isfying Equation 
(7), (L (x), L (y» = (x. y), is called an isometry (from the Greek meaning equal 
length). Conversely, let L : R" ~ R" be an isometry, so that (L(x). L(y) = 
(x. y) for any x and y in R" . Let A be the standard matrix representing L. Then 
L(x) = Ax. We now have 

(x, y) = (L(x). L(y» = (A x. Ay) = (x. AT Ay). 

Since this holds for all x in R", then by Exercise i(e) in Section 5.3. we conclude 
that AT Ay = Y for any y in RIO . It follows that AT A = 1" (Exercise 36), so A 
is all ortho£ollal lLlatli .... Olher pmpellies of ollhogolLal matrices aud isolllctlies 
arc exami ned in the exercises. (See also Supplementary Exercises 16 and 18 in 
Chapter 6.) 

We now turn to the general situation for a symmetric matrix; even if A has 
eigenvalues whose multiplicities arc greater than one. it turns out that we can still 
diagonalize A. We omit the proof of the next theorem. For a proof, see J. M. Or­
tega, Matrix Theory: A Secolld Course, New York : Plenum Press, [987. 

Theorem 7.9 If A is a symmetric II x II matrix. then there exists an orthogonal matrix P such 
that p- l A P = p T A P = D, a diagonal matrix. The eigenvalues of A lie on the 
main diagonal of D. • 
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EXAMPLE 4 

It can be shown (sec the book by Ortega cited previous ly) that if a symmetric 
matrix A has an eigenvalue A of multiplicity k, thw the sol ution space of the ho­
mogeneous system (A I. - A)x = 0 [Equation (6) in Section 7.11 has dimension 
k . This means that there exist k linearly independent eigenvectors of A associ­
ated with the eigenvalue A. By the Gram- Schmidt process. we can choose an 
orthonormal basis for this solution space. Thus we obtain a set of k orthonormal 
eigenvectors associated with the eigenvalue A. Since eigenvectors associated with 
distinct eigenvalues are orthogonal, if we limn the set of all eigenvectors. we get 
an orthonormal set. Hence the matrix P whose columns are the eigenvectors is 
orthogonal. 

LeI 

The characteristic polynomial of A is 

2 
o 
2 

peA) ~ (A + 2)'(1 - 4) 

(veri fy), so its e igenvalues are 

AI = - 2, A2 = - 2. and A] = 4. 

That is, - 2 is an eigenvalue of multiplicity 2. To find eigenvectors associated with 
- 2. we solve the homogencolls system ( - 2/) - A)x = 0: 

[ =~ =~ =~] [~;] [~] 
- 2 - 2 - 2 A ] 0 

(8) 

A basis for the solution space of (8) consists of the eigenvectors 

(verify). Now XI and Xl are not orthogonal, since ( X I. X2) 1= O. We can usc the 
Gram--Schmidt process to obtai n an orthonomlal basis for the solution space of (8) 
(the eigenspace associated with - 2) as follows: Let Y I = X I and 

To eliminate fractions, we let 
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The sct {YI. yi l is an orthogonal sct o f vectors. Normalizing. we obtain 

The set {z]. Z2} is an orthononnal basis for the eigenspace associated with 
A = - 2. Now we find a basis for the eigenspace associated with A. = 4 by solving 
the homogencolls system (41] - A)x = 0: 

(9) 

A basis for this eigenspace consists of the vector 

(veri fy). Normalizing this vector, we have the eigenvector 

as a basis for the eigenspace associated with A = 4. Since eigenvectors associated 
with distinct eigenvalues arc onhogonal, we observe that ZJ is orthogonal to both 
ZI and Z2. Thus the sct{ Z]. Z2. ZJ) is an orthonormal basis fo r RJ consisting of 
eigenvectors o f A . The matrix P is the matrix whose J lh column is Zj: 

I I I 
- ./2 - /6 j3 

I I I 
p ~ 

./2 - /6 j3 

2 I 
0 

/6 j3 

We leave it to the reader to verify that 

n 0 n P- 1AP = p TAP = - 2 
0 • 

Lei 

A ~ [~ 
2 0 n 0 
0 
0 2 
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Either by straightforward computation or by Exercise 16 in Section 3.2, we find 
that the characteristic polynomial of A is 

peA) ~ (A + 1)'(1. - J) ' . 

so its eigenvalues are 

We now compute associated eigenvectors and the onhogonal matrix P. The eigen­
space associated with the eigenvalue - I, of multi pl icity 2, is the solution space of 
the homogeneous system (- 1/4 - A)x = O. namely, 

- 2 
2 

o 
o 

o 
o 

- 2 
- 2 

which is the set of all vectors of the fo rm 

where r and~' are taken as any real numbers. Thus the eigenvectors 

form a basis for the eigenspace associated with - I, and the dimension of this 
eigenspace is 2. Note that the eigenvectors 

happen to Ix- orthogonal Si nce we are looking for an orthonormal basis for this 
eigenspace. we take 

I 

./2 
0 

I 0 
XI = - ./2 oed X2 = I 

0 ./2 
I 

0 - ./2 
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as eigenvectors associated with AI and A2, respectively. Then {XI. x21 is an or­
thonormal basis fo r the eigenspace associated with - 1. The eigenspace associated 
with the eigenvalue 3, of multiplicity 2, is the solution space o f the homogeneous 
system (3h - A)x = 0, namely, 

[ -~ 
- 2 

2 

o 
o 

o 
o 
2 

- 2 

which is the set o f all vectors o f the form 

where rand !i are taken as any real numbers. Thus the eigenvectors 

m ond m 
form a basis for the eigenspace associated with 3, and the dimension of this eigen­
space is 2. Since these eigenvectors are orthogonal, we nomlalize them and let 

I 

.,12 
0 

I 0 

XJ = .,12 ond "' ~ I 

0 .,12 
I 

0 .,12 
be eigenvectors associated with A) and )'4 ' respect ively. Then {x) , X4} is an or­
thonormal basis for the eigenspace associated with 3. Now eigenvectors associated 
with distinct eigenvalues are orthogonal, so {XI . X2, x) , X4 } is an orthonomlal basis 
for R4. The matrix P is the matrix whose jth column is Xj , j = 1,2,3,4. Thus 

I I 

.,12 
0 

.,12 
0 

I I 
- .,12 0 

.,12 
0 

p ~ 
I I 

0 
.,12 

0 
.,12 

I I 
0 - .,12 0 

.,12 
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We leave it to the reader to verify that P is an orthogonal matri x and that 

[

- I 

P -' A P ~ pTA P ~ ~ 
o 

- I 
o 
o 

o 
o 
3 

o 

The procedure for diagonalizi ng a matrix A is as fo llows: 

~] o . 
3 

Step 1. Form the characteristic polynomial peA) = det(A J" - A ) of A. 

Step 2. Find the roots of the characteristic polynomial of A. 

• 

Step 3. For each eigenvalue Aj of A of multiplicity k j • fi nd a basis for the 
solution space of (A j l" - A) x = 0 (Ihe eigenspace associated with Ai). If the 
dimension of the eigenspace is less than k j , then A is not di agonalizable. We 
thus determine /I linearly independent eigenvectors of A. In Section 4.7 we 
solved the problem of findi ng a basis for the sol ution space of a homogeneolls 
system. 

Step 4. Let P be the matrix whose columns arc the /I linearly independent 
e igenvectors determined in Step 3. Then P- I A P = D , a di agonal ma­
trix whose di agonal elements are the eigenvalues of A that correspond to the 
columns of P. 

[f A is an /I x II symmetric matrix, we know that we can fi nd an orthogonal 
matrix P such that P-I AP is diagonal. Conversely, suppose that A is a matrix for 
which we can fi nd an orthogonal matrix P such that p - I A P = D is a diagonal 
malr ix. Whal Iypc of malrix is A? Since p -I A P = f) , A = P f) p - I Also, 
p - I = p T, since P is orthogonal. Then 

A T = ( PDp T) T = ( p Tl D T p T = P DpT = A . 

which means that A is symmetric . 

• Application : The Image of the Unit Circle hy a Symmetric 
Matrix 

In Example 5 of Section 1.7 we showed that the image of the uni t circle by a 
matrix tJalls foll llalio ll whose assoc iated lllat li x is lliagollal was all e1 li fJse Ct ll len.;d 
at the origin with major and mi nor axes parallel to the coordinate axes; that is. 
in standard position. Here, we investigate the image of the unit circle by a matrix 
transfonnatio n whose associated matrix A is symmetric . We show the fundamental 
role played by eigenvalues and associated eigenvectors of A in determi ning both 
the size and orientation of the image. 

Let A be a 2 x 2 symmetric matri x. Then by Theorem 7.9 there exists an 
orthogonal matrix P = [PI P2] such that 
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where AI and A2 are the eigenvalues o f A with associated eigenvectors PI and Pl , 
respectively. Moreover, {P I. P2} is an orthonormal set. It follows that A = P D p T 
(verify). 

Any point on the unit circle in R" is represented by a vector (or point) 

~ [<o"j , . . 
sm t 

Hence the image of the unit circle consists of all vectors (or points) 

Av = ( PDp T)v. 

It is convenient to view the image points as those obtai ned from a composition of 
matrix transformations: that is. 

Av = P(D(pT v» 

This corresponds to three successive matrix transformations. 
To determine the form or shape of this image, we use the following fact: 

If Q is any 2 x 2 orthogonal matrix, then there is a real number 'I' such 
that 

Q ~ [c~srp 
sm rp 

- Sin rpj 
cos 'I' 

Sin rpj. 
- cos rp 

In the first case Q is a rotation matrix; see Section 1.7. In the second case 
Q performs a reflection (about the x-axis, the y-axis, the line y = x, or 
the line y = - x) or a rotation followed by a reflection about the x-axis. 

( 10) 

With this information and the result o f Example 5 in Section 1.7, we can determi ne 
tht: geumelric furm o f Ihe image o f Ihe unit cin:lc. Using tht: composile furm 
displayed in Equation (10), we have the following actions: 

p T takes the unit circle to another unit circle, 

D takes this L1nit circle to an ellipse in standard position. and (1 I) 

P rotates or rellects the ellipse. 

Thus the image of the unit circle by a symmetric matrix is an ellipse with cemer al 
the ori gin, blll possibly with its axes not parallel to the coordinate axes (sec Figure 
7.4). 

A 

O P~,O D O P O 
Unit circle. n'e image. an <"Ilipsc . 
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FIGURE 7.S 

EXAMPLE 6 

FIGURE 7.6 

Next, we show how the eigenvalues and associated eigenvectors of A com­

pletely determi ne the elliptical image. The unit vectors i = [ ~ ] and j = [~] arc 

on the unit c ircle . Then P i = PI and Pj = P2. (Veri fy.) But PI and P2 arc also on 
the unit circle, since P is an orthogonal matrix. Hence 

P -I p i = p T PI = i and P- lp2 = pT P2 = j. 

I.n (10), let v = PI: then we have 

API = P(D(p T PI)) = P(D( i» = P O'-l i) = AI P i = AI PI (12) 

and also AP2 = A2 P2' But , of course. we knew this, because AI and)..2 an: the 
eigenvalues of A with associated eigenvectors PI and P2. However, this sequence 
of steps shows that eigenvectors of A on the original unit circle become multiples 
of themselves in the elliptical image. Moreover, since PI and P2 arc orthogonal , so 
are Ap I and AP2 (Why?), and these are the axes of the elliptical image. We display 
this graphically in Figure 7.5. It follows that the elliptical image is completely 
determined by the eigenvalues and associated eigenvectors of the matrix A. 

A 

(D, ~C9 D eg.J. 
I "L I p, 

Unit circlc. 

p M 
W 

TIIC imagc: an cllipse. 

[3 4] . . Let A = 4 3 . Then the eigenvalues 01 A are )'1 

associated orthononnal eigenvectors 

7 with 

(Verify.) Fi gure 7.6 shows the unit circle with PI and P2 displayed as solid li ne 
segments and the elliptical image of the unit circle with axes displayed as dashed 
line segments. • 

The preceding results and example show the following: 

I. The eigenvalues delermine the stretching of axes. 
2. Ei genvectors determi ne the orientation of the images of the axes. 

So, indeed, the eigenvalues and associated eigenvectors completely determine the 
image. These results generalize to /I x /I symmetric matrices. The image of the 
uni t /I-ball is an n-dimensional ellipse. For /I = 3, the image is an ellipsoid. 
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Symmetric matrix 
Diagonalization 
Eigenvat ues/ei genvectors 

WI' Exercises 

I. Verify thaI 

IS an orthogonal matrix. 
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Some remarks about nonsymmetric matrices are in order at this point. Theo­
rem 7.5 assures us that an n x n matrix A is diagonalizablc if all thc roots of its 
characteristic polynomial arc distinct. We also studied examples, in Section 7.2, 
of nonsymmetric matrices that had repeated eigenvalues which were diagonaliz­
able (see Example 7) and others that were not diagonalizable (see Examples 3 and 
6). There are some striking differences between the symmetric and nonsymmet­
ric cases. which we now summari ze. If A is nonsymmetric, then the roots of its 
characteristic polynomial need not all be real numbers ; if an eigenvalue A has mul­
tiplicity k, then the solution space of (1.1" - A)x = 0 may have dimension less 
than k; If the roots of the characteristic polynomial of A are all real , it is possible 
that A will not have II linearly independent eigenvectors; eigenvectors associated 
with di stinct eigenvalues need not be orthogonal. Thus, in Example 6 of Section 
7.2, the eigenvectors XI and x~ associated with the eigenvalues AI = 0 and AJ = 1 
are not orthogonal. If a matrix A cannot be diagonalized, then we can often find 
a matrix B similar to A that is "nearly diagonal.'" The matrix B is said to be in 
Jordan canonical form. The study of sllch matrices lies beyond the scope of this 
book, but they are studied in advanced books on linear algebra (e.g .. K. Hoffman 
and R. Kunze, Linear Algebra, 2d ed. , Englewood Cliffs. NJ: Prentice-Hall, 1971); 
rhey pl:ly a key role in many aprticarions of linear algehra 

It should be noted that in many applications we need find only a diagonal 
matrix D that is similar to the given matrix A; that is, we do not explicitly have to 
know the matrix P stich that p -I A P = D. 

Ei genvalue problems arise in all applications involving vibrations: they occur 
in aerodynamics, elasticity, nuclear physics. mechanics, chemical engineering, bi­
ology, differential equations, and so on. Many of the matrices to be diagonalized 
in applied problems either are symmetric or all the roots of their characteristic 
pol ynomial are real. Of course, the methods for finding eigenvalues that have been 
presented in thi s chapter are not recommended fo r matrices of large order because 
of the need to evaluate detenninants. 

Distinct eigenvalues 
Orthogonal matrix 
Orthonormal set 

Gram-Schmidt process 

A ~ [~ 
0 

'i~. ] (. ) cos¢! 
- sin¢! cos¢! 

r~ 
0 0 

I I 

(b) B = ./2 -./2 
I I 

2. Find the inverse of each of the following orthogonal ma­
trices: 

lo - ./2 -./2 
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3. Show that if A and B are orthogonal matrices. then A B 
IS an orthogonal matrix. 

4. Show that if A is an orthogonal matrix. then A- I is or-
thogonal. 

5. Prove Theorem 7.8. 

6. Verify Theorem 7.8 for the matrices in Exercise 2. 

7. Verify that the matrix I' in Example 3 is an orthogonal 
matrix and that 

[

- 2
0 

0
4 

00] p - IAI'=I,TAp = 

o 0 - 1 

8. Show that if A is an orthogonal matrix. then 
det{A) = ±l. 

9. (a) Verify that the matrix 

is orthogonal. 

[
cos¢ 
sin¢ 

-Sin¢] 
cos¢ 

(b) Prove that if A is an orthogonal 2 x 2 matrix. then 
there exists a real nllmber ¢ such that either 

0' 

A ~ [cos¢ 
sm¢ 

A ~ [cos¢ 
sin¢ 

10. For the orthogonal matrix 

A~ 

- sin q,] 
cosq, 

sin¢! ]. 
- cos¢! 

verify that (Ax. Ay) = (x. y) for any vectors x and y in 
R2. 

II. Let A be an II x 1/ orthogonal matrix. and let L : R" -+ R" 
be the linear operator associated with A: that is. L{x) = 
Ax for x in R" . Let 0 be the angle between vectors x and 
yin R". Prove that the angle between L(x) and L(y ) is 
also O. 

12. A linear operator L: V ....... V. where V is an 1/­

dimensional Eucl idean space. is called orthogonal if 
(L(x). L{y » = (x . y). Let S be an orthonormal basis for 
V. and let the matrix A represent the orthogonal linear 
operator L with respect to S. ]'rove that A is an orthogo­
nal matrix. 

13. Let L: R" -+ Rt be the linear operator performing a 
counterclockwise rotation throllgh Jr/4 and let A be the 
matrix representing L with respect to the natllral basis for 
R 2. Prove that A is orthogonal. 

14. Let A be an 1/ x 1/ matrix and let B = 1' - 1 A I' be similar 
to A. Prove that if x is an eigenvector of A associated 
with the eigenvalue ,_ of A. then p - 1x is an eigen\'ector 
of B associated with the eigenvalue A. of B. 

II/ £.{ercise.l· 15 rhrollgh 20. diagol/alize each gi l'en malrL{ lind 
find WI orihogollalllllllri.>: I' ~'lIch Ihal 1'- 1 A P i.l· diago/!al. 

A = [~ ~] [~ 
0 

~] IS. 16. A = 0 
0 

[~ 
0 

n [~ 
0 0 

~l 17. A = 2 18. A = 
0 0 

2 
0 0 
0 

[ -~ - I -I ] 19. A = 0 -I 
- I - I 0 

n 2 J 20. A = - I 
2 

III £'u/L·isc.1" 2 J Ihmugh 28. diagol/alize each gil'en II/(l/ri.>:. 

[~ 
2 0 

~1 21. A = [~ ;] 22. A = 
2 0 

0 2 ;J 0 2 

[l ~] [~ 
0 

-n 23. A = 1 24. A = 3 
0 - 2 

[~ 
0 n [~ 

0 0 

~l 25. A = 26. A = 
0 0 
0 0 
0 0 

[ -i 
- I 

n 27. A = 1 

2 

[ -~ 0 -:] 28. A~ - 2 
- I 0 - ] 

29. Prove Theorem 7.9 for the 2 x 2 case by stlldying the two 
possible cases for the roots of the characterist ic polyno-
mial of A. 



30. Let L: V -'> V be an oI1hogonallinear operator (see Ex­
ercise 12), where V is an I!-dimensional Euclidean space. 
Show that if A is an eigenvalue of L. then IAI = I. 

31 . LetL: R2 --;. R2 bedefinedby 

L ( [,] ) I;' ;, l [x]. ) 1;,-;,1' 
Show that L is an isometry of R2. 

32. Let L: R2 -'> H2 be defined by L (x ) = Ax. for x in H2. 

where A is an orthogonal matrix. 

33. 

(a) Prove that if det (A) = l. then L is a counterclock­
wise rotation. 

(b) Prove that if det(A) = - I. then L is a reflection 
about the x-axis. followed by a counterclockwise ro­
tation. 

Let L. N" --;. H" be a linear operator. 

(a) Prove that if L is an isometry. then IIL(x) 11 
forxin H". 

= Ilx li. 

(b ) Prove that if L is an isometry and () is the angle be­
tWeen vectors x and y in H". then the angle between 
L(x) and L(y) is also () . 

• Supplementary Exercises 

l. Find the eigenvalues and associated eigenvectors for each 
of the matrices in Supplementlry Exercise 2 in Chapter 3. 
Which of these matrices are similar to a diagonal matrix'! 

2. Let 

A ~ [~ ~ -:] 
-4 4 3 

(a) Find the eigenvalues and associated eigenvectors of 
A. 

(b ) Is A similar to a diagonal matrix? If so. find a non­
singular matrix P such that P - 'A I' is diagonal. Is 
I' unique? Explain. 

(e) Find the eigenvalues of A - I . 

(d) Find the eigenvalues and associated eigenvectors of 
A2. 

3. Let A be any /I x /J real matrix. 

(a) Prove that the coefficient of A "- , in the characteristic 
polynomial of A is given by - Tr(A) (see Exercise 
43 in Section 1.3). 

(b) Prove that Tr(A) is the sum of the eigenvalues of A. 
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34. Let L: R" --+ R" be a linear operator defined by L(x ) = 
Ax for x in R". Prove that if L is an isometry. then L - , 

is an Isometry. 

35. Let L. N" -'> H" be a linear operator and 
S = (v ,. V2 •.•.• vn) an orthonormal basis for R". 
Prove that L is an isometry if and only if 
T = (L(v,). L(v!) ..... L (vn)) is an orthonormal basis 
for R" . 

36. Show that if AT Ay =y forallyin R" .then A T A = I". 

37. Show that if A is an orthogonal matrix. then A T is also 
orthogonal. 

38. Let A be an orthogonal matrix. Show that cA is orthogo­
nal if and only if c = ±I. 

.1 . 39. 

.1. . 40. 

Assuming that the software you use has a command for 
eigenvalues and eigenvectors (see Exercises 39 and 40 
in Section 7.1). detennine whether a set of orthonormal 
eigcnvectors is retum~d when the input matrix A is sym­
metric. (See Theorem 7.9.) Experiment with the matrices 
in Examples 4 and 5. 

If the answer to Exercise 39 is no. you can use the Gram­
Schmidt procedure toobtain an orthonormal set of eigen­
vectors. (See Exercise 38 in Section 5.4.) Experiment 
with the matrices in Examples 4 and 5 if necessary. 

(e) Prove that the constant coefficient of the character­
istic polynomial of A is ± times the product of the 
eigenvalues of A. 

4. Prove or disprove: Every nonsingular matrix is similar to 
a diagonal matrix. 

5. Let ,,(x) = (10 + (I,X + ll2X2 + ... + (lp .. t be a poly­
nomial in x. Show that the eigenvalues of matrix ,,(A) = 
(loIn +(I ,A+ll2A 2+ .. '+lItAJ. are ,,(Ai). i = l. 2 ..... 11. 

where Ai are the eigenvalues of A. 

6. Let p,(t.) be the characteristic polynomial of A I,. and 
"~leA) lIlt: char.tctt:ris lIC polynumial ur Al2. Wh<tl 's lht: 
characteristic polynomial of each of the following parti­
tioned matrices? 

(a) A = [ A~, (b) A = [A~' 
(Hilll: See Exercises 16 and 19 in Section 3.2.) 

7. Let L: 1', --;. P, be the linear operator defined by 
(I+b 

L «(li + b) = - , - I Let S = (2 - I. 3 + I) be a ba-

sis for 1', . 

(a ) Find [ L(2 - I) Land [ L(3 + I) ]s' 



478 Cha pler 7 Eigenvalues and Eigenvecto rs 

(b) Find a matrix A represeming L with respect to S. 

(e) Find the eigenvalues and associated eigenvectors of 
A. 

(d ) Find the eigenvalues and associated eigenvectors of 
L 

(e) Describe the eigenspace for each eigenvalue of L. 

8. Let V = M22 and let L: Ii ....... V be the linear op­
erator defined by L (A) = AT, for A in V. Let S = 
[AI. A 2. A J • A~J. where 

AI = [~ ~l A2 = [~ ~ l 
AJ =[~ ~l and A4 =[~ ~J. 

be a basis for V. 

(a) Find [L(Ai)] S fori = 1,2,3.4. 

(b ) Find the matrix B representing L with respect to S. 

(e) Find tIlt: t:igt:nvalut:s <lnd assodatt:d t:igt:llvt:cturs uf 
B. 

Chapter Review 

True or False 

I . Ifx is an eigenvector of A, then so is k x for any scalar k. 

2. Zero is never an eigenvalue of a matrix. 

3. The roots of the characteristic polynomial of a matrix are 
Its eigenvalues. 

4. Given that I, = 4 is an eigenvalue of A. then an associated 
eigenvector is a nontrivial solution of the homogeneous 
system (4 1" - A)x = O. 

5. If an II x f! matrix A is real. then all of its eigenvalues are 
real. 

6. Ifa 3 x 3 matrix A haseigetll'alues)' = I. - I. 3. then A 
l S diagon<tliLablt:. 

7. If x and y are eigenvectors of A associated with the eigen­
value I,. then for any nonzero vector w in span{x. y J. 
Aw =AW. 

8. If P is nonsingular and D is diagonal. then the eigenval­
ues of A = p - I DP are the diagonal entries of D. 

9. If A is 3 x 3 and has eigenvectors that form a basis for R3. 

then A is diagonalizable. 

10. The eigenvalues of A! are the squares of the eiJ,::envalues 
of A. 

(d ) Find the eigenvalues and associated eigenvectors of 
L 

(e) Show that one of the eigenspaces is the set of all 2 x 2 
symmetric matrices and that the other is the ~tof all 
2 x 2 skew symmetric matrices. 

9. (Cufcllfll s Required) Let V be the real vector space of 
trigonometric polynomials of the fonn (/ + bsinx + 
ccoS .I. Let L: V -4 V be the linear operator defined 

d 
by L { v ) = - [ v l Find the eigenvalues and asso­

dx 
ciated eigenvectors of L. (Hilll: Use the basis S = 
(I. sinx,cosx) for V.) 

10. Let V be the mmplex rector space (see Appendix 8.2) of 
trigonometric polynomials 

(/ +bsinx +ccosx. 

For L as defined in Exercise 9. find the eigenvalues and 
associated eigenvectors. 

II. Provt: th<tt if tht: lIlillri\ A is simikrr 10 a diagoll<tl TIlairix. 
then A is similar to AT. 

II. Every II x f! matrix has II eigenvalues, so it is diagonaliz­
able. 

12. If A is similar to an upper triangular matrix U. then the 
eigenvalues of A are the diagonal entries of U, 

13. Every symmetric matrix is diagonalizable. 

14. The inverse of an orthogonal matrix is its transpose. 

15. If A is 4 x 4 and orthogonal. then the inner product of any 
two different columns of A is zero. 

16. If A is 4 x 4 and orthogonaL then its columns are a basis 
for R~. 

17. If A is4 x4 and symmetric, then we can find eigenvectors 
of A that are a basis for R", 

18. Lt:t L: Rl --+ R ) be reprt:st:nttxl by Iht: matrix A. If x is 
an eigenvector of A. then L(x) and x are paralleL 

19. If A is diagonalizable and has eigenvalues with abwlute 
value less than I. then lim A' = O. 

,-~ 

20. If A is orthogonal. then (det(A) ( = I. 

Quiz 

I. Find the eigenvalues and associated eigenvectors of 

A~ [
- I 

4 



2. Let L: P2 -). P2 be defined by L(ar! + bf + c) = cl + h. 

(a) Find the matrix representing L with respect to the 
basis S = (t 2

, 2 + I. 2 - I). 

(b) Find the eigen\lalues and a~socialed eigenvectors 
of L. 

3. The characteristic polynomiaiof A is p(J..) = ).3_3).2+4. 
Find its eigenvalues. 

4. Jf A has eigen\lalue A = 2 and associated eigenvector 

[ I]. . . " = - I . [IIlU <tn t:lgt:nvalut and as . .,lX:lalt:u t::igenvt:clu l 

of B = A) - A + 3h 

5. For 
I 

2 
- I 

find a basis for Ihe eigenspace associated wilh A = 2. 

6. Find a diagonal m;ltrix similar to 

7. I. A ~ [~ ~ ~] d;,go",I;"bl,' E'pl,;". 

8. LeI A be a 3 x 3 matrix whose columns satisfy 
cO]i(A)'coli(A) = 0 for i of- j. Is A an orthogonal ma­
trix '! Explain. 

Discussion Exercises 

l. Given a particular matrix A and Ihe scalar 5, discuss how 
[0 delennine whether 5 is an eigenvalue of A. 

2. Given a particular matrix A and a vector x 1= O. discuss 
how to determine whether x is an eigenvector of A. 

3. Suppose that the 5 x 5 matrix A has five linearly indepen­
dent eigenvectors given by the set S = {XI. XZ. X). '4. x~} . 

(a) Explain why S is a basis for R5. 

(b ) Explain how to obtain a oonsingular matrix I' so that 
1'- 1 AI' is diagonal. Can there be more than one such 
matrix P? Explain. 

(c) Discuss what is known about the eigenvalues of A. 

(d) Is the matrix A nonsingular? Explain. 

(c) Explain how 10 detennine an orthonormal basis for 
RS. using the set S. 

4. In the description of an eigenspace (see Exercise 14 in 
Section 7.1). explain why we explicitly insist that the zero 
vector be included. 

Chapter Review 479 

(a) Find a nonzero vector z orthogonal to both X and y. 

(b) Let A = [ x y z]. Compute A r A. Describe the 
resulting matrix and explain the meaning of ea:h of 
Its entnes. 

(c) Use the infonnation from part (b) to form an orthog­
onal matrix related to A. Expl(lin your procedure . 

(d) Fonn a conjecture to complete the following: Ii A is 
an /I x I! Ill(ltrix whose columns are mutually orthog-
onal. then A r A i ~ ____ . 

(c) Prove your conjecture. 

10. Prove or disprove: If we interchange two rows of (l square 
matrix. then the eigenvalues are unchanged. 

11. LetAbea3x3matrixwithfirstrow[k 0 O]forsome 
nonzero re(ll number t. Prove that k is an eigenvalue of 
A. 

12. Let A = [-~ -~ =;] 
-2 - 2 6 

(a) Show that ). = 4 and A = to are eigenvalues of A 
and find bases for the associated eigenspace.~. 

(b) Find an orthogonal matrix P so that p T A /' is diag­
onal. 

5. Let 

and AI = 4. A2 = I. where AXI = AIX I and Ax, = )'2X2. 
Also. let Vj be the eigenspace associated with Alo and V2 
the eigenspace associJtoo Wilh A1. Discuss the validity of 
the following st<ltement and cite reasons for your conclu­
sion: 

If Y 1= 0 is a vector in R2. then y belongs to 
either Vj or V2• 

6. Let p(A) be the characteristic polynomial ofthe4 x 4 ma­
trix A. Using algebra. you compute the roots of ptA) = 0 
to be rio r2. r). and r4' Discuss how to detennine whether 
your calculations of the roots is correct by using the ma­
trix A. 
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[ 
, ']. .. f 7. Let A = 12 and 8 = 0 I . DIscuss the validity 0 

the followi ng statement and cae rea.wns for your conciu­
, ion: 

If A and IJ have the same trace. detenninant. 
rank. and eigenvalues. then the matrices are sim­
ilar. 

8. Let A be an II x II matrix with distinct eigenvectors XI and 
X2. Discuss conditions under which any nonzero vector in 
span!xl. Xl i is an eigen\'ector of A. 

9. Let A be a 3 x 3 symmetric matrix with eigenvalues AJ. 

j = I. 2. 3. such th:11 IA,I < I for each j. Discuss the 
behavior of the sequence of matrices A. A !. Al ..... A~. 
as/I_ex>. 

10. u t A = [: ~ l 
(a) Find the eigenvalues and associated eigenvectors of 

A. 

(b) Determine a diagonal nt.1trix 0 similar to A. 

(el In Section 1.5 we briefly discussed Fibonacci num­
bers. Discuss how to u~ the matrix 0 of part (b) to 
detemline the 11th Fibonacci number. 



CHAPTER 

Applications of 
Eigenvalues and 
Eigenvectors (Optional) 

ED Stable Age Distribution in a Population; Markov 
Processes 

In this section we deal with two applications of eigenvalues and eigenvectors. 
These applications lind use in a wide variety of everyday situations, incl uding 
harvesting of animal resources and planning of mass transponation systems . 

• Stable Age Distribution in a Population 

C:onsi(tcr fl ror"l:llion of flnimfll .~ IhM Cfl n live 10 :l m:lXimllm flge of /I yc,lrS (or 
any other time unit). Suppose thfll the number of males in the population is always 
a fixed percentage of the female population. Thus, in studying the growth of the 
entire population, we can ignore the male population and concentrate our attention 
on the female population. We divide the female populfllion into II + I age groups 
as follows: 

LeI 

x iI) = number of females of age i who are alive at time k, 0 S i S II: 

Ji = fraction of females of age i who will be alive a year later; 

hi = average number of females born to a female of age i. 

'" x, 
(k ~ 0) 

denote the age distribution vector at time k. 
481 
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The number of females in the fi rst age group (age zero) at time k + 1 is merely 
the total number of females born from time k to time k + I. There are xAt ) females 
in the first age group at time k and each of these females. on the average. produces 
bo female offspring, so the first age group produces a total of boxg:) females . Sim­

ilarly. the x ~t) females in the second age group (age I) produce a total of b1x;1) 
females. Thus 

(I) 

The number x it+ l ) of females in the second age group at time k + I is the number 
of females from the first age group at time k who are alive a year later. Thus 

(un _ ( " -

and , in general, 

fraction of females in ) x ( 
fi rst age group who arc 

alive a year later 

number of females in 
fi rst age group 

( l ~ j S Il). 

We can write ( I) and (2), using matrix notation, as 

(k ~ I ), 

where 

["' 
b, h,,_1 

II Jo 0 0 0 

A = 0 I I 0 0 

0 0 0 f n- I 

) 

(2) 

(3) 

We can use Equation (3) to try to determine a di stribution of the population by age 
groups at time k + 1 so that the number of females in each age group at time k + 1 
will be a fixed multiple of the number in the corresponding age group at time k. 
That is, if A is the mUltiplier. we want 

Thus A is an eigenvalue of A and x (t) is a corresponding eigenvector. If A = L 
the number of females in each age group will be the same, year after year. If we 
can fi nd an eigenvector x ( t ) corresponding to Ihe eigenvalue A = [ , we say that we 
have a stable age distribution. 
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Consider a beet lc that can live 10 a maximum age of IWO years and whose popula­
tion dynamics arc represented by the matrix 

o 
o , 
j 

~] 
We find that A = I is an eigenvalue o f A with corresponding eigenvector 

Thus, if the numbers of females in the three groups are proportional to 6: 3: I, we 
have a stable age distribution. That is, if we have 600 fema les in the first age 
group, 300 in the second, and 100 in the third, then, year after year, the number of 
females in each age group will remain the same. • 

Remark Population growth problems of the type considered in Example I have 
applications to animal harvesting. 

• Markov Processes 

A Markov' chain , or Markov process, is a process in which the probability of 
the system being in a panicular state at a given observation period depends only 
on its state at the immediately precedi ng observation period . 

Suppose that the system has II possible states. For each i = [.2, .. . , II, and 
j = I. 2 ... . . II, let tij be the probability that if the system is in state j at a certain 
observation period, it will be in state i at the next observation period; tli is called 
a transition probability . Moreover, t ij applies to every period; that is, it does not 
change with time . 

Since t l) is a probability, we must have 

(I ::::: i, j ::::: II), 

Also. if the system is in state j at a certain observation period, then it must be in 
one o f the /I states (i t may remain in state j) at the next observation period. Thus 
we have 

tl) + t2j + ... + f" j = I. (4) 

It is convenient to arrange the transition probabilities as the II x /I matrix T = 
[tij ], which is called the transition matrix of the Markov process. Other names 
for a transition matrix are Markov matrix, stochastic matrix, and probability 

• Andrei Andrcyevich Marto l' (t 856-1922) was born in Ryl7.an. Russia. and died in 51. Petel"'lburg. 
Russia. Alicr graduating from 51. Petersburg University. IK: became a professor of mathematics at that 
im;titutioll in 1893. At that time. he became involved in liberal movements and expressed his opposition 
to the tsari.t regime. His carly contribut ions in mathematics were in number theory and analysIS. He 
turned to probability theory and laterdel'Clopcd the field tlmt is now known as Markov cllains to analyze 
tlK: structure of literary texts. Today. Markov cllains arc widely used in many applications .• ucll a.~ 
modem pllysics. the fluctuati,m of stock prices. and genetics. 
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matrix. We see that the entries in each column of T are nonnegative and, from 
Equation (4), add up to [. 

We shall now use the transition matrix of the Markov process to determine the 
probabili ty of the system being in any of the 1/ states at futu re times. 

LeI 

(k :::: 0) 

P
it) 

" 
denote the state vector of the Markov process at me observation period k. where 
Pjl ) is the probability that the system is in state j at the observation period k. The 

state vector x(O), at the observation period 0, is called the initial state vector. 
It follows from the basic properties of probability theory that if T is the tran­

sition matrix of a Markov process, then the state vector x(H l) , at the (k + I)th 
observation period, can be detennined from the state vector x(t) , at the kth obser­
vation period, as 

From (5), we have 

and, in general , 

XO) = T x (O) 

X(2) = T x (l) = T ( T x (O) = T 2x (O) 

x (J) = T X (2) = T(T2x (O) = T J x (O) , 

x (n) = T"x (O)_ 

(5) 

Thus the transition matrix and the initial state vector completely detemline every 
other state vector. 

For certain types of Markov processes, as the number of observation periods 
increases, the state vectors converge to a fi xed vector. In this case, we say that the 
Markov process has reached equilibrium. The fiKed vector is called the steady­
state vector. Markov processes are generally used to determine the behavior of a 
system in the long run- for example, the share of the market that a certain manu­
factu rer can expect to retai n on a somewhat permanent basis. Thus, the question of 
whether or not a Markov process reaches eq uilibrium is quite important. To iden­
tify a class of Markov processes that reach equilibrium. we need several additional 
notions. 

The vector 

["I] 
11 2 

u ~ 

1/:" 

is called a probability vector if II i :::: 0 ( I ::::: i ::::: n) and 

11 1+ 112 + " ' +11,, = 1. 
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A Markov process is called regular if its transition matrix T has the property 
that all the entries in some power of T arc positive . It can be shown that a reg­
ular Markov process always reaches equilibrium and Ihe steady-state vector is a 
probability vector. We can find the steady-state vector by obtaining the limit orlhe 
successive powers T"x for an arbit rary probability vector x. Observe thaI if u is 
the steady-state vector of a Markov process with transition matrix T, then T u = u, 
so that A = 1 is an eigenvalue of T with associated eigenvector u (a probability 
vector). 

Suppose that the weather in a certain city is e ither rainy or dry. As a resu lt of 
extensive record-keeping, it has been determined that the probability o f a rainy 
day following a dry day is t, and the probability of a rainy day foll owing a rainy 

day is ~ . Let state D be a dry day and state R be a rainy day. Then the transition 
matrix o f thi s Markov process is 

D R 

T=[! l] D 

~ R 

Since at! the entrie'l in T are positive, we are dealing with a regular Markov 
process, so the process reaches equilibrium. Suppose that when we begin our 
observations (day 0), it is dry, so the initial state vector is 

a probability vector. Then the state vector on day I (the day after we begin our 
observations) is 

( I ) _ (0 ) _ [0.67 
x - Tx - 0.33 0.5] ['] ~ [0.67]. 

0.5 0 0.33 

where for convenience we have written ~ and ~ as 0.67 and 0.33, respectively. 
Moreover, to simplify matters, the output of calculations is recorded to three digits 
of accuracy. Thus the probability of no rain on day I is 0.67, and the probability 
of rain on that day is 0.33. Similarly, 

(2) _ ( I ) _ [0.67 
x - Tx - 0.33 

(3) _ T (2) _ [0.67 
x - .Ii: - 0. 33 

(4) _ T (3) _ [0.67 
x - x - 0. 33 

(5) _ T (4) _ [0.67 
x - x - 0.33 

0.5] [0~7] ~ [0.014] 
0.5 0.,,3 0.386 

0.5] [0.614] [0.604] 
0.5 0.386 = 0.396 

0.5] [0.604] [0.603] 
0.5 0.396 = 0. 397 

0.5] [0.603] [0.003] 
0.5 0.397 = 0.397 . 
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Key Terms 
Stable age distribution 
Markov chain 
Markov process 
Regular Markov process 

i :i. Exercises 

From the founh day on. the state vector is always the same, 

[0.603] 
0.397 . 

so this is the steady-state vector. 
This means that from the founh day on, it is dry about 60% of the time. and it 

rains about 40% of the lime. 
The steady-state vector can also be found as follows: Since). = I is an eigen-

value of T, we find an associated eigenvector u = ["'] by solving the equation 
112 

T u = u 

(h - T)u = O. 

From the infinitely many solutions that can be obtained by solving the resulting 
homogeneous system, we determine a unique solution u by requiring that its com­
ponents add up to I (since u is a probability vector). In thi s case we have to solve 
the homogeneous system 

i ll l ~1I2 = 0 

-~ 1I 1 + ~1I2 = o. 

Then 112 = ~ 1I 1. Substituting in the equation 

we get II I = 0.6 and 112 = 0.4. 

Markov matrix 
Stochastic matrix 
Probabil ity matrix 
Transition probability 

III + 112= I , 

Equilibrium 
Steady.sIJ.te vector 
Probability vector 
Initial state vector 

• 

l. Consider a living organism that can live to a maximum 
age of 2 years and whose matrix is 

2. Consider a living organism that can live 10 a maximum 
age of 2 years and whose matrix is 

Find a stable age distribution. 

o 
o 

Find a stable age distribution. 

4 

o , , 
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3. 

4. 

Which of the following can be transition matrices of a 
Markov process'! 

[03 07] [02 
0.3 

01] la) 
0.4 0 .• 

(b) 0.8 0.5 0.7 
0.0 0.2 0.2 

[0.55 0.33] [0.3 
0.4 

02] 
I' ) 0.45 0.67 

(d) 0.2 0.0 0.8 
0. 1 0.3 0 .• 

Which of the following are probability vectors? 

la) m 
(,) m 

Ih) m 

(d ) m 
5. Consider the trunsition matrix 

T = [0.7 0.4]. 
0.3 0.6 

(a) If x~O! = [~], compute Xl i). xt!l. and x ll ' to three 

decimal places. 

(b l Show that T is regular ar.d find its steady·slate vec­
tor. 

6. Consider the trnnsi tion matrix 

(a) I f 

0.2 
0.3 
0.5 

0.0] 
0.3 . 
0.7 

compute Xi I), x (2l, Xll), and X(4) to Ihree decimal 

places. 

(bl Show that T is regular and find its steady-state vec· 
tor. 

7. Which of the following tnmsilion matrices are regular? 

la) [~ : ] [' ° o~~: ] (b) ~ I 

! ° 

[~ 
1 

~] [1 
1 

~] 
, , 

I,) Id, ° 1 ; , 
8. Show that each of the following trnnsition matrices 

reaches a state of equilibrium: 

(a) [: ~] (b) [0.4 
0.6 

02] 
0.8 

[1 1] 
[OJ 0.1 

04] (, ) ° Id) 0.2 0.4 0.0 

0 0.5 0.5 0.6 

9. Find the steady·s' ~lle vector of each of the following reg· 
ular matrices: 

(a' [: :J (h) [03 
0.7 

0.1 ] 
0.9 

[; i] [0.4 
0.0 

01 ] (,' (d) 0.2 0.5 0.3 

° 
0.4 0.5 0 .• 

10. (Ps)"cJlOlogy) A bclilvioral psychologist places a rnt 
each day in a cage wilh two doors, A and 8. TIle rat can 
go through door A. where it recei\'es an elect ric shock. or 
through door 8. where it receives some food. A [.!Cord 
is made of the door through which the rut passes. At the 
stan of the experiment, on a Monday, the rat is Cl.Jually 
likely 10 go through door A a.~ through door 8. After 
going through door A and receiving a shock. the proba­
bility of going through the same door on the next day is 
0.3. After going through door 8 and receiving food. the 
probability of going through lhe same door on the nexi 
day is 0.6. 

(a) Write the I r~nsilion 111Ulrix for Ihe Markov process. 

(b) Whm is Ihe probnbility of lhe ral going Ihrough door 
A on Thursday (the third day after ~tarting Ihe exper· 
iment)"' 

(e) What is the StelldY'~late vector'! 

II. (S/Jci/Jlogy) A study ha~ determined thaI the occupation 
of a boy. as an adult depends upon the occupation of 
his father and is given by the following transition matrix 
where P = professional. F = farmer. and L = laborer: 

Father's ocCllpation 
[> F L 

I' 
[0' 

0.3 
02] Son's 

F 0.1 0.5 0.2 occup,uion 
L 0.1 0.2 0.6 
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Thus the prohahility that the son of a professional will 
also he a professional is 0.8. and so on. 

(a) What is the prohahility that the grandchild of a pro­
fessional will also he a professional'! 

(b) In the long run. what proportion of the population 
will he farmers? 

12. (Gel1etics ) Consider a plant that can have red flowers 
(R). pink flowers (P). or while flowers (W). depending 
upon the genotypes RR, RW. and WW. When we cross 
each or these genotypes with a genotype RW. we obtain 
the transition matrix 

Rowers of 
offspring 
plant 

Rowers of parent plant 

R 

R [0.5 
p 0.5 
W OJ) 

p 

0.25 
0.50 
0.25 

w 

0.0] 
0.5 
0.5 

Suppose that each successive generation is produced 
by crossing only with plants of RW genotype. When 
[he process reaches equilibrium . what percentage of the 
plants will have red. pink. or white flowers'! 

13. (Mass Trallsit ) A new mass transit system has just gone 
into operation. The transi t authority has made stud­
ies that predict the percentage of commuters who will 
change to mass transit (M ) or continue driving their au­
tomobile (A). The following transition matrix shows the 
results: 

Next year 

This year 
M A 

M [0.7 0.2]. 
A 0.3 0.8 

Suppose that the population of the area remains con~tant. 
and that initially 30% of the commuters use mass transit 
and 70% use their automobiles. 

(a) What percentage of the commuters will be using the 
mass transit system after I year? After 2 years? 

(b) What percentage of the commuters will be using the 
mass transit system in the long run? 

ID Spectral Decomposition and Singular Value 
Decomposition 

Theorem 7.9 tells us that an 1/ x 1/ symmetric matrix A can be expressed as the 
matrix product 

(1 ) 

where D is a diagonal matrix and P is an orthogollal matrix. The diagonal entries 
of D are the eigenvalues o f A, At. A2 . . ... All' and the columns of P are associ-
ated orthononnal eigenvectors Xt. X2 . .. . . XII ' The expression in (I) is called the 
spectral decomposition of A. It is hclpful to write (I) in the following form: 

;., 0 0 x' 
0 J., 0 0 

, 

A = [ X I Xli ] 0 0 
xr 

(2) x, 

0 
0 0 0 A" x;, 

The expression in (2) can be used to gain information about quadratic forms as 
shown in Section 8.6. and the nature of the eigenvalues of A can be uti lized in other 
applications. However, we can use ( I) and (2) to reveal aspects o f the information 
contained in the matrix A. In particular, we can express A as a linear combination 
of simple symmetric matrices that arc fundam ental building blocks of the total 
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information within A. The product DpT can be computed and gives 

" 0 o )..2 0 

DpT = 0 

o 0 

and hence (2) becomes 

o 
o 
o 
o 

o A/I AII X~ 

A" X~ 

(3) 

A careful analysis of the product on the right side of (3) reveals that we can ex­
press A as a linear combination of the matrices xJx; , and the coefficients are the 
eigenvalues of A. That is, 

" 
A = L ).j X j X) = A,XjXf + A2X2X[ + ... + A" X" X~. (4) 

J-= J 

A formal proof of (4) is quite tedious. In Example I we show the process for 
obtaining (4) in the case 1/ = 2. The steps involved reveal the pattern that can be 
followed for the general casco 

Let A be a 2 x 2 symmetric matrix with e igenvalues AI and A2 and associated 
orthononnal eigenvectors XI and X2 . Let P = [XI X2 ] and, to make the manipu­
lations easier to sec, let 

Since A is symmetric, it is diagonalizablc by using an orthogonal matrix. We have 

and so A = P [A' 0] p ' o A2 . 
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EXAMPLE 2 

Next, perform the followi ng matrix and algebraic operations: 

= ).1 [
a' 
ab 

=).1 +A~ [
ala bl] [e[e dl] 
bra bl - d[e dl 

Alab + A2Cl/] 
Alb! + A2d2 

• 
The expression in (4) is equi valent to the spectral decomposition in (I), but 

displays the eigenvalue and eigenvector information in a different form . Example 
2 illustrates the spectral decomposition in both fomls. 

LeI 

To determine the spectral representation of A, we first obtain its eigenvalues and 
eigenvectors. We fin d that A has three distinct eigenvalues AI = 1, A2 = 3. and 
AJ = - I and that associated eigenvectors are, respectively (verify). 

[-ll [ll "nd m 
Since the eigenvalucs are distinct, we are assured that the corresponding eigenvec­
tors fonn an onhogonal set. (See Theorem 7.7 .) Nonnalizing thesc vectors, we 
obtain eigenvectors of unit length that are an orthonormal set: 
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Then the spectral representation of A is 

A = At xtxf + A2X2Xr + A3X3Xj 

1 G) [-l - I 

~]+3G)[l ~] +(-1) [~ 1 
0 0 

~ 'H 
, 

0] [ ' 

, 

~] + (-l)[ 
0 

~] 
- "2 

~ + 3 ~ 
, 

, , 
0 , , 

0 0 0 

0 

~] 0 
0 

• 
I.n Example 2 the eigenvalues of A are di stinct, so the associated eigenvectors 

form an orthogonal set. If a symmetric matrix has an eigenvalue that is repeated. 
then the linearly independent eigenvectors associated with the repeated eigenvalue 
need not form an orthogonal set. However, we can apply the Gram- Schmidt pro­
cess to the linearly independent eigenvectors associated with a repeated eigenval ue 
to obtain a set of orthogonal eigenvectors . 

We note that (4) expresses the symmetric matrix A as a linear combination of 
matrices. Xi X) , which arc II x II, si nce Xi is II x I and X) is I x II. The matrix 

Xj X) has a simple eonslntction, as shown in Figure 8.1. 

We call Xj X) an outer product. (Sce Supplementary Exercises in Chapter I.) 

It can be shown that each row is a multiple of xj. 1·lcnce the reduced row echelon 
form of Xj X) [denoted r ref(xj x» l has one nonzero row and thus has rank one. 

We interpret this in (4) to mean that each oUier product Xj X) contributes just one 
piece of information to the construction of matri.\ A. Thus we can say that the 
spectral decomposition certainly reveals basic information about the matrix A. 

The spectral decomposition in (4) expresses A as a li near combination of 
outer products of the eigenvectors of A with coeffici ents that are the corresponding 
eigenvalues. Since each oUier product has rank onc, we could say that they have 
·'equal value" in building the matrix A. However, the magnitude of the cigenvaluc 
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EXAMPLE 3 

A) determines the "weight"' given to the information contained in the outer product 
Xj x). Intuitively, if we label the eigenvalues so that lAd::: IA21 ::: ... ::: IA"I, then 
the beginning terms in the sum 

" 
A = L:) jXjX; = AI XIX; + A2 x2x~ + ... + )." x"x~ 

) = 1 

contribute more information than the later terms, which correspond to the smaller 
eigenvalues. Note that if any eigenvalue is zero, then its eigenvector contributes 
no information to the construction of A. This is the case for a singular symmetric 
matrix. 

From Example 2, we have that the eigenvalues are ordered as 131 ::: 1- 11 ::: II I. 
Thus the contribution of the eigenvectors corresponding to eigenvalues - 1 and I 
can be considered equal, whereas that corresponding to 3 is dominant. Rewriting 
the spectral decomposition, using the terms in the order of the magnitude of the 
eigenvalues, we obtain the following: 

b1CJU}1 O]+(-1)[~}O 0 I] 

+{~)'H}I -I 0] 

~ 3m[ll n + (- I)[~ ~ n+IG)[-l - I H. o 
Looking aJ the terms of the partial sums in Example 3 individually, we have 

the fo llowing matrices: 

[~ 
; 

:] 
, 
; , 
0 

[! 

, 
:J + [~ 

0 

-~] [! 

, 

-~] 
, , 
; 0 , , , 
0 0 0 

[t 
; 

0] [! ~] [~ -~] 
, 

o + - ; ; 2 = A. , 
0 - I 0 0 0 

This suggests that we can approximate the information in the matrix A, using the 
partial sums of the spectral decomposition in (4). In fact, this type of development 
is the foundation of a number of approximation procedures in mathematics. 
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• Application : The image of the Unit Circle by a 2 x 2 Matrix 

Let A be any 2 x 2 real matrix. Then we know that A has a singular value de­
composition A = US VT

• where U = [ U ! U2] and V = [ \ ' 1 V2 ] are 2 x 2 
onhogonal matrices. The matrix S is a 2 x 2 diagonal matrix with the si ngu lar val­
ues o f A as its di agonal entries . The analysis o f the form of the image o f the unit 
circle in this case is nearly the same as in Section 7.3, except that we use singular 
vectors o f A in place of eigenvectors. The image is again an ellipse. We have the 
following important equi valent relations: 

A = USV T is equivalent to AV = US (explain). 

AV = US isequi valcnt to A [ V ! V2 ] = [ U I U2] [ SI~ s2~l 
0]. . IS eqUivalent to A VI = SI! U I and 

S22 

Thus the image of the columns of V are scalar multiples of the columns of U. This 
is remi niscent of the analogous results for eigenvalues and eigenvectors in Section 
7.3. Sillce V is urthogonal, ils columns are onhollunnal vectOis ami VT = V - I, 

so VT V I = i and VT V2 = j. Figure 8.2 is analogous to Figure 7.5 in Seclion 7.3, 
with eigenvectors replaced by singular veetors. 

A 

Un;1 circle The image: an ellipse. 

LeI 

A = [ _ ~ !J. 
Usi ng MATLAB, we fi nd that the singular value decomposition is A 
where 

on" 

u ~ [ - 0.1091 
- 0.9940 

- 0.9940] 
0.[09[ . 

v ~ [ 0.4179 
- 0.9085 

S = [4.4~66 1. 3~43] · 

- 0.9085]. 
- 0.4[79 

Figure 8.3 shows the unit circle with the vectors V I and V2 di splayed and the ellipti­
cal image with its major and minor axes shown as .1"1 l U I and Sn U2, respectively . • 
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EXAMPLE S 

• Application: Symmetric Images 

Suppose that we have a large symmetric matrix A of information that mu; t be 
transmitted quickly. but we really need only most of the infonnation content. Thi s 
might be the case if the symmetric matrix represented infonnation from a pattern 
or a photo. Let us also assume that we can compute eigenvalues and associated 
eigenvectors of the matrix with relative ease. U~ing the spectral decomposition 
of the matrix, we can approximate the image by usi ng partial sums' rather than 
all the eigenvalues and eigenvectors. To do this. we consider the eigenvalues as 
weights for the information contained in the eigenvectors and label the eigenvalues 
so that 

lAd ::::.IA21::::.·· · ::::. P·" I· 
Then A R:< AJ XJ xi + A2 X2 Xf + ... + Ak XkX[, where k :::::: II. This scheme uses the 
information associated with the larger eigenvalues fi rst and then adjoins it to that 
associated with the smaller eigenvalues. 

Consider the geometric pattern shown in Figure 8.4. which we digitize by usi ng 
a I fo r a black block and 0 for a white block. Let A be the 9 x 9 matrix of 
correspondi ng zeros and oncs in Figure 8.5. 

() 0 0 0 1 () 0 0 () 

() 0 11 1 0 1 0 0 0 

0 0 1 0 () 0 1 0 0 

0 1 0 1 1 1 11 1 0 

1 0 0 1 () 1 11 0 1 

0 1 0 1 1 1 0 1 0 

0 0 1 0 0 0 1 0 0 

0 () 0 1 () 1 11 0 0 

0 0 11 0 1 () 0 11 0 

FIGURE 8.4 FIGURE 8.5 

We can approximate the geometric pattern by usi ng partial sums of the spectral 
representation. With MATLAB. we can show that the eigenvalues are, in order of 
magnitude to tenths, 3.7, 2. -2. 1.1, - 0.9,0, O. O. O. Rather than display the 
approximations digitally, we show a pictorial representation where an entry is a 
black square if the corresponding numerical entry is greater than or equal to ~ in 
absolute value; otherwise, it is shown as a white square. We show the fi rst two 
partial sums in Figures 8.6 and 8.7. respectively. The third partial sum reveals 
Figure 8.7 again, and the fourth partial sum is the origi nal pattern of Figure 8.4. If 
we had to transmit enough information to build a black-and-white approximation 
to the pattern, then we could send just the first foureigenvalucs and their associated 
eigenvectors; that is, 4 + (4)9 = 40 numerical values. This is a significant savi ngs. 
compared with transmitting all of the matrix A. which requires 81 values. • 

' When fewer (llan (lie" (erms in (4) are combined. we caU (his a panial sum of (00 spec(rat rcpre­
,emallon. 
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While the utility of a symmetric matrix is somewhat limited in terms of the 
representation of infonnation, a generalization of a spectral style decomposition 
to arbitrary size matric~ dramatically extends the usefulness of the approximation 
procedure by partial sums. We indicate this more general decomposition next. 

We state the following result, whose proof can be found in the references listed 
at the end of this section: 

The Singular Value Decomposition of a Matrix 

Let A be an III x n real matrix. Then there exist orthogonal matrices U of size 
III x III and V of size II x II such that 

A = USV T
• (5) 

where S is an III x II matrix with nondiagonal entries all zero and 511 ~ 5 12 ~ 

... ~5pp ~ O,where f) = minIm. II }. 

The diagonal entries of S are called the singular values of A, the columns of U 
arc called the left singular vectors of A, and the columns of V are called the 
r ight singular vectors of A. The singular value decomposition of A in (5) can be 
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expressed as the followi ng linear combination: 

A = COII(U),\'l leol l(V)T + eoI2(U).\'22cobeV)T 

+ ... + col,,(U),\'/Jpcolp(V)' . 
(6) 

which has the same fonn as the spectral represemation of a symmetrie matrix as 
given in Equation (4). 

To determi ne the matrices U, S. and V in th~ singular value decomposition 
given in (5), we stan as follows: An /I x /I symmetric matri x related to A is i\ T A. 
By Theorem 7.9 there exists an orthogonal n X II matrix V such that 

where D is a di agonal matrix whose diagonal entries )'-1 . A2 ..... A" are the eigen­
values of AT A. If Vj denotes column j of V , then (AT A)Vj = Aj Vj. Multiply both 
sides of thi s expression on the left by v;; then we can rearrange the expression as 

V)(A T A)vj = Aj V; Vj or ( A Vj )T(A v j ) = Aj ' J Vj or IIA vj f = Aj II '"JII 2. 

Since the length of a vector is nonnegative, the last expression implies that A j ~ 

O. Iknce each eigenvalue of AT A is nonnegative. If necessary. renumber the 
eigenvalues of AT A so that AI ~ A2 ~ .. . ~ All; then define S j) = jfj. We note 
that since V is an orthogonal matrix, each of its colum ns is a unit vector; that is. 
II vj ll = l. Hence .fj) = IIAvill. (Veri fy.) Thus the si ngular values of A are the 
square roots of the eigenvalues of A T A. 

Finally, we determi ne the 11/ x III orthogonal matrix U . Given the matrix 
equation in (5), let us see what the columns of U should look like. 

Since U is to be orthogonal, its columns must be an orthonormal set; hence 
they arc linearly independent 11/ x I vectors . 

• T he maTrix 51 has The form (hlnck (ti agon:l t) 

'" 0 0 

0 S22 0 
Op. II_P 

S~ 0 
0 0 sl'I' 

From (5), AV = US. so 

SII 

0 

~ [ u, U, un> ] 
0 

0 

S22 

where Or.s denotes an 
r x .I" matrix of zeros. 

0 

0 
Op.,, _P 

0 
0 s p/J 

-------------

Om_I' , /, °"'_1""_1' 
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This implies that we need to require that Av} = .Vjj U j for j = 1. 2 . . .. p. 
(Verify.) 

However, U must have III orthononnal columns, and 11/ ::: p. In order to 
construct U, we need an orthonormal basis for R'" whose first p vectors arc 

] 
U j = - Avj . In Theorem 4.11 we showed how to extend any linearly in-

s )) 

dependent subset of a vector space to a basis. We usc that technique here to 
obtain the remaining 11/ - P columns of U. (This is necessary only if 11/ > p.) 
Since these 11/ - P columns are not unique. matrix U is not unique. (Neither 
is V if any of the eigenvalues of AT A arc repeated.) 

It can be shown that thc preceding construction gives matrices U. S, and V, so that 
A = U SV T

. We illustrate the process in Example 6. 

To hnd th"ingo],,,o]oe deoompo;ition of A ~ [_! -~ 1 wdollow th""p' 

outlined previously. Fint, we compute A T A, and then compute its e igenvalues and 
eigenvectors. We obtain (verify) 

AT A = [2~ 3~l 
and since it is diagonal, we know that its eigenvalues are its diagonal entries. It 

follows that [~] is an eigenvector associated with eigenvalue 25 and that [~] is 

an eigenvector associated with eigenvalue 36. (Verify.) We label the eigenvalues 
in decreasing magnitude as AI = 36 and A) = 25 with corresponding eigenvectors 

v! = [~] and V2 = [~J.respectiveIY. Hence 

V = [ VI V2] = [~ ~] and ~. !! = 6 and .f 22 = 5. 

It follows that 

s ~ [-~o?]. (0, in he 2 x 2 "CO motrix.) 

Next, we determine the matrix U, starting with the first two columns: 

U t ~ -'-A V t ~ ~ [ -~] 
Sl! 6 0 

4 

nnd O' ~ -'-A V' ~ ~[ ~]. sn 5 - 4 
] 

The remaining two columns are found by extending the linearly independent vec­
tors in l U I. U2} to a basis for R4 and then applying the Gram- Schmidt process. We 
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proceed as follows: We first compute the reduced row echelon fOrol (verify): 

,, ]) ~ [j 
0 0 0 

, 

'J 

, 

-t 
0 0 

, 
rrel' ([ U I U, 

-, 
0 0 

, , 
0 0 

, , 
This tells us that the sct l U I. U2. el. e 2) is a basis for R4. (Explain why.) Next. 
we apply the Gram-Schmidt process to this set to find the orthogonal matrix U. 
Recording the results to six decimals. we obtain 

u, 

0.628932 
0.098933 
0.508798 
0.579465 

o ] 0.847998 
0.317999 . 

- 0.423999 

Thus we have the singular value decomposition of A, and 

l u , 

0.628932 

o ] [6 0] A = USV T = 
0.098933 0.847998 0 5 V2r u, 
0.508798 0.317999 ______ [VI 
0.579465 - 0.423999 0 2 

[! 

, 
0.628932 

" J [' " 
, 
, 

0.098933 0.847998 0 5 0 1 , 
_~::;::: ~ ~ [I 0] , 

0.508798 -, , 
0.579465 , 

, 

• 
The singular decomposition of a matrix A has been called one of the most 

useful tools in terms of the information that it reveals. For example, previously 
in Section 4.9. we indicated that we could compute the rank A by determining 
the number of nonzero rows in the reduced row echelon limn of A. An implicit 
assumption in this statement is that all the computational steps in the row opera­
tions would use exact arithmetic. Unfortunately, in most computing environments, 
when we perform row operations, exact arithmetic is not used. Rather, floating 
point arithmelic, which is a model of exaci arilhmetic , is used. Thus we may lose 
accuracy because of the accumulation of small errors in the arithmetic step~ . In 
some cases this loss of accuracy is enough 10 introduce doubt into the computation 
of rank. The following two results, which we slate without proof. indicate how the 
singular value decomposition of a matrix can be used to compute its rank. 

Theorem 8 . 1 Let A be an 11/ x /I matrix and lei Band C be nonsingular matrices of sizes III x III 
and /I x II. respectively. Then 

rankBA = rank A = rankAC. • 
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Corollary 8 . 1 The rank of A is the number of nonzero singular values of A. (Multiple singular 
values are counted according to their multiplicity.) 

Proof 

Exercise 7. • 
Because matrices U and V of a singular value decomposition are onhogonal, 

it can be shown that most of the errors due to the use of noating point arithmetic 
occur in the computation of the singular values. The size of the matrix A and char­
acteristics of the fl oating point arithmetic are often used to detennine a threshold 
value below which singu lar values are considered zero. It has been argued that sin­
gular values and si ngular value decomposition give us a computationally reliable 
way to compute the rank of A. 

In addition to determining rank, the singu lar value decomposition of a matrix 
provides orthononnal bases for the fundamental subspaces associated with a linear 
system of equations. We state without proof the following: 

Theorem 8.2 Let A be an III x II real matrix of rank r with singular value decomposition U SV T . 

Key Terms 
Diagonal matrix 
Onhogonal matrix 
Spectral decomposi tion 
Outer product 

Then the following statements arc true: 

(a) The first r columns of U arc an orthonormal basis for the column space of A. 

(b) The first r columns of V are an orthonormal basis for the row space of A. 

({') The last II - r columns of V are an orthonormal basis for the null space of A . 

• 
The si ngular value decomposition is also a valuable tool in the computation 

of least-squares approximations and can be used to approximate images that have 
been digitized. For examples of these applications. refer to the following refer­
ences. 
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1 :0 Exercises 

l. Find the singular values of each of the following 
matrices: 

(b) A = [: : ] 

(d) A=[~ o 
- I 

2. Determine the singular value decomposition of 

[ I -4] 
A = -~ ~. 

.'\. f)t';rl'<nninl'< rht'; ~inellbr valliI'< dN~nmpo~ i rinn of 

A ~ [ I I] 
- 1 I . 

4. Determine the singular value decomposition of 

[

: 0 _ :] 

- I 0 

o I 

5. There is a M ATLAB command. svd. that computes the 
singular value decomposition of a matrix A. Used in the 
fonn svd(A). the output is a list of the singular values 
of A. In the form [U. S . Vl = svd (A). we get matrices 
U. S. and V such that A = U SVT. Use this command 
[0 determine the singular values of each of the following 
matrices: 

[: :] U 
12 

- In I· ) Ibl - I 
- 8 

I' ) [~ 
5 

I~] 6 
7 II 

8 12 

.!. 6. An III x II matrix A is said to have full rank if rank A = 
minimum {III. II). The singular value decomposition lets 
LIS measure how close A is to not having full rank. If any 

singular value is zero. then A does not have full rank. 
If ,I'min is the smallest singular value of A and S"u n 1= O. 
then the distance from A to the set of matrices with rank 
r = min{lII.n) - 1 is Sm'n. Determine the distance from 
each of the given matrices to the matrices of the same 
size with rank min{m.lI} - l. ( U se M ATLAB to find the 
singular values.) 

[i 
3 

-~] [l 2 

rJ 
I 

Ibl 0 (' 1 - s 
2 

6 

[ I 
0 0 - I -] - I I 0 

(e) ~ 0 I - 2 
0 

7. Prove Corollary 8.1, using Theorem 8.1 and the singu lar 
value decomposition. 

Exercises81.111d 9 use ,l'IIpplt1l11ellfl.ll MATLAB COlllIlWlldfCOII­

sfmcted for rhis book. St1e St1clioll 9.9. 

8. To use MATLAB to illustrate geometrically the approxi­
mation of a picture composed of black and white squares. 
like that in Example S. proceed as fo llows. We have 
put a four-letter word into a matrix by using a I for a 
black block and 0 for a white block. The objective is 
to determine the word. using as few as possible singu­
lar value and singnlar vector tenlls to construci a partial 
sum from E<)uation (6). Follow the directions appearing 
on the screen in the rout ine picgen. Use the following 
MATLAB commands: 

load svdword I ...... This will load a word encoded 
in a matri x. using O's and l·s. 

picgcn(svdwordl) ...... This will show the partial sum 
images as determined by the 
singu lar value and singular 
vectors that appear in Equa­
lion (6). 

9. Follow the procedure given in Exercise 8. using these 
commands: 

load s"dword2 

picgcn(svdword2) 

(Hilll : The letters in this case have been written on an 
angle.) 
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III Dominant Eigenvalue and Principal Component 
Analysis 

• Dominant Eigem'alue 

In Section 8.2 we discussed and illustrated the spectral decomposition o f a ~ym­
metric matrix. We showed that if A is an 1/ x II symmetric matrix. then we can 
express A as a linear combi nation of matrices of milk one. using the eigenvalues 
o f A rmd assnc. i;ncd cigr.nvcclOTs as follows_ I .e! }.[ , 1 2, , An he the e igenvalues 
o f A and X I . Xl , .... x, a sct o f associated orthonormal eigenvectors. Then the 
spectral decomposition o f A is given by 

(I) 

Furthermore, if we label the eigenvalues so that 

then we can construcl approximations to the matrix A, using partial sums of the 
spectral decomposition. We illustrated such approximations by using matrices of 
zeros and ones that corresponded to pictures represented by matrices of black and 
white blocks. As remarked in Section 8.2. the tenus using eigenvalues o f largest 
magnitude in the partial sums in (I) contributed a large part o f the "information" 
represented by the matrix A. In this section we investigate two other situations 
where the largest eigemalue and its corresponding eigenvector can supply valuable 
information. 

If A is a real II x II matrix with real eigenvalues A\ . A2, . ... An. then an eigenvalue 
of largest magni tude is called a dominant eigenvalue of A. 

Let 

6 - I ~] . 
- II 6 

The eigenvalues o f A are 3, 1, and - 5 (vcri fy). Thus the dominant eigenvalue of 
A is - 5, since I- 51 > I and I-51 > 3. • 

Remark Observe that Aj is a domi nant eigenvalue o f A, provided that IAjl :?: 
lAd, i = 1.2 .. . .. j - Lj + L . .. . 11. A matrix can havc morc than one dominant 
eigenvalue. For example, the matrix 

[ ~ - ~ -~] 
o 0 - 4 

has both 4 and - 4 as dominant eigenvalues. 
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Let A be a real /I x /I matrix with real eigenvalues Iq . A2 ..... A", where lAd> 
IA;I, i = 2 . ... . /I. Then A has a unique dominant eigenvalue . Furthermore, 
suppose that A is diagonalizablc with associated linearly independent eigenvectors 
XI. X2 . . .. . X". Hence S = lXI. X2, . .. . xIII isa basis for R", and every vector x in 
R" is expressible as a linear combination of the vectors in S. Let 

and compute the sequence of vectors Ax, A2x. AJx . .... At x .. 
following: 

We obtain the 

Ax = clA x l + C2A x2 + . . . + clIA x" = CIAI XI + C2A2 X2 + ... + C"AII XII 

A2x =cIA !Axl +C2A2Ax2 + ... +CIIAII AxlI =C!Aix ! +C2A~X2 + ... +cIIA~ x" 

A3 X = cIA~A XI + c2A~A x2 + ... + cIIA;,A x" = C!A~X ! + c2A~x2 + . .. + clIA! xlI 

We have 

A"x = A1 (C!X! + C<~ X2 + ... + CII ~~ XII ) 

= A1 (ClXl +C2 (~~r Xl + ... +C" (~:r X,,). 

and since A! is the dominant eigenvalue of A,I ~I < I for i > I. Hence, as 

k ~ 00, it follows that 

(2) 

Using this result, we can make the following observations: For a real diagonal­
izable matri x with all real eigenvalues and a unique dominant eigenvalue AI, we 
have 

(a) AkX approaches the zero vector for any vector x. provided that lAl l < 1. 

(b) The sequence of vectors AkX does n01 converge, provided that IAII > [. 

(c) If lAd = I, then the limit of thc sequence of vectors Akx is an eigenvector 
associated withAl. 

[n certain iterative processes in numerical linear algebra. sequences of vectors 
of the l'onn AkX ari se frequent ly. In order to determine the converge nce of the 
sequence, it is important to determine whether or not the dominant eigenvalue is 
smaller than I. Rather than compllle the eigenvalues, it is often easier to deter­
mine an uppcr bound on the dominant eigenvalue. We next investigate one such 
approach. 
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In the Supplementary Exercises 28- 33 in Chapter 5 we defined the I-nom) of 
a vector x in R" as the sum of the absolute values of its entries: that is, 

For an 1/ x 1/ matrix A, we extend this defi ni tion and define the I-norm of the 
matrix A to be the maximum of the I-norms of its columns. We dcnote the I-norm 
of the matrix A by IIA III, and it follows that 

IIAIII = max II lco1 j (A) lld· 
J= 1.2 ... .. n 

LeI 

6 -14] I 2 
6 - [I 

as in Example I. It follows that IIA Ih = max{l7, 13, 27) = 27. • 
Theorem 8.3 For an 1/ x II matrix A, the absolute value of the domi nant eigenvalue of A is less 

than or equal to II A III. 

Proof 

Let x be any II-vector. Then the product Ax can be expressed as a linear combina­
tion of the columns of A in the fonn 

Ax = .\ I col I (A) + x2coh(A) + .. + x"col" (A ) . 

We proceed by usi ng properties of a norm : 

IIAx ll1 = Ilxlcoll ( A) + X2coI2(A) + ... + x"col,,(A) III 

(Compute the I- norm of each side. ) 

:::: Ilxl coll(A) 111 + Ilx2coI2(A) lh + .. . + Ilx"col,,(A) 111 

(Usc the triangle inequality of the I-nonn.) 

= Ix dll coll(A) 111 + IX2 11IcoI2(A) 111 + ... + Ixn lllcol,,(A) lh 

(Usc the scalar multiple of a norm.) 

~ lx, IliA lit + Ix, IIIA lit + ... + 1' "I IiA II, 
(Usc IlcoIJ (A) 11 :::: IIA lh ·) 

= Ilxlh llAIII. 

Next, suppose that x is the eigenvector corresponding to the dominant eigenvalue 
A o f A and recall that Ax = AX. Then we have 

and since x is an eigenvector. we have Ilx lll #=- 0, so 

Hence the absolute value o f the dominant eigenvalue is "'bounded above" by the 
matrix I- nonnor A. • 
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EXAMPLE 3 Lei 
6 

6 

as in Example I. Then 

Idominant eigenvalue of AI .::: IIA III = maxI 17. 13.27) = 27. 

From Example I. we know that Idominant eigenvalue of A I = 5. • 
Theorem 8.4 If IIA III < I. then the sequence of veclOrs A kX approaches the zero vector for any 

vector x. 

Proof 

Exercise 9. • 
In Section 8.1 we saw sequences of vectors of the form T"x that arise in the 

analysis of Markov processes. I f T is a transition matrix (also called a Markov 
matrix), then II Til l = I. Then from Theorem 8.3 we know that the absolute value 
of the dominant eigenvalue of T is less than or equal to I. However, we have the 
following stronger result: 

Theorem 8.S If T is a transition matrix of a Markov process, then the dominant eigenvalue of T 
is I. 

EXAMPLE 4 

Proof 

Let x be the II-vector of all ones. Then T T x = x (verify), so I is an eigenvalue 
of T T. Since a matrix and its transpose have the same eigenvalues, ). = I is 
also an eigenvalue of T. Now by Theorem 8.3 and the statement in the paragraph 
preceding this theorem. we conclude that the dominant eigenvalue of the transition 
matrix T is I. • 

The preceding results about the dominant eigenvalue were very algebraic in 
nature. We now \Urn to a graphical look at the effect of the dominant eigenvalue 
and an associated eigenvector. 

From (2) we see that the sequence of vectors Ax. A2x. A ~ x.. approaches a 
scalar multiple of an eigenvector associated with the dominant eigellvalue. Geo­
metrically, we can say that the sequence or vector. Ax. A 2x. AJx. . approaches 
a line in II-space that i; parallel 10 an eigenvector associated with the dominant 
eigenvalue. Example 4 illustrates this observation in R2. 

Let L be a linear transformation from R2 10 R2 that is represented by the matrix 

A = [~ -n 
with respect to the natural basis for R2. For a 2-vector x we compute the terms 
A k X, k = 1.2 . .... 7. Since we are interested in the direction of this set of vectors 
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in R2 and for ease in displaying these vectors in the plane R2, we first scale each 
of the vectors Akx to be a unit vector. Setting 

and computing the set of vectors, we get the following: 

0.2 0.2941 0.0688 - 0.7654 - 0.9397 - 0.8209 -0.7667 - 0.7402 
0.5 0.9558 0.9976 0.6436 - 0.3419 - 0.5711 - 0.6420 - 0.6724 

Here, we have shown only fOllr decimal digits. Figure 8.8 shows these vectors in 
R2, where x is labeled with 0 and the vectors Atx arc labeled with the value of k . 

0.8 

0.6 

0.4 

0.2 

o 
- 0.2 

- 0.4 4 

- 0.6 

- 0.8 

/ 
/ 

56 /// 

/}/ 

_ , C'"------~cc------~------~L-------~ 
- J - 0.5 0 0.5 

• 

An eigenvector associated with a dominant eigenvalue is shown as a dashed 
line segment. The choice of the vector x is almost arbitrary, in the sense that 
x cannot be an eigenvector associated with an eigenvalue that is not a dominant 
eigcnvaluc, since in thilt case the sequence AkX ..... ould always be in the direction 
of that eigenvector. 

For the linear transformation in Example 4. we compute successive images of 
the unit circle; that is, At x (unit circle). (See Example 5 of Section 1.7 for a 
special case.) The first image is an ellipse, and so are the successive images for 
k = 2.3. . Fi gure 8.9 displays five images (where each point displayed in the 
graphs is the terminal point of a vector that has been scaled to be a unit vector in 
R2), and again we see the alignment of the images in the direction oran eigenvector 
associated with the dominant eigenvalue. Thi s eigenvector is shown as a dashed 
line segment. • 
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Unit circle A times unit circle A2 times unit circle 

, , , , , , , , , , , , , 
0.5 0.5 . 0.5 , . , , , 

0 0 0 

-0.5 -0.5 - 0.5 

- I -I - I 

- I " - I 0 - I 0 

A3 limes unit circle A 4 times unit circle AS times unit circle 

, , , , 
, , , , , . 

0.5 0.5 0.5 

0 0 0 

- 0.5 -0.5 -0.5 

- I - I - I 

- I 0 - I 0 - I 0 

FIGURE 8.9 

The sequence of vectors Ax, A2X. A 3X .. also forms Ihe basis fo r the nu-
merical method called the power method for estimating the dominant eigenvalue 
of a matrix A. Details of this method can be found in D. R. Hill and B. Kolman. 
Modem MaTrix Algebra, Upper Saddle River, NJ: Prentice Hall, 2001, as well as 
in numerical analysis and numerical linear algebra texts . 

• Principal Component Analysis 

The second application that involves the dominant eigenval ue and its eigenvector is 
taken from applied multivariate statistics and is called principal com ponent anal· 
ysis, often abbreviated PCA. To provide a foundat ion for this topic, we briefly dis· 
cuss some selected terminology from statistics and state some results that involve 
a matrix that is useful ill statistical analysis. 

Multivariate statistics concerns the analysis of data in which several variables 
arc measured on a number of subjects, patients, objects, items, or other entities of 
interest. The goal of the analysis is to understand the relationships between the 
variables: how they vary separately, how they vary together, and how to develop 
an algebraic model that expresses the interrelationships of the variables. 

The sets of observations of the variables, the data, arc represented by a matrix. 
Let X jk indicate the particular value of the kth variable that is observed 0 11 the 
jth item. We let /I be the number of items being observed and p the number 
of variables measured. Such data arc organized and represented by a rectangular 
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matrix X given by 

XII Xl 2 Xl k xl" 

X" X 22 X 2k Xl!, 

X ~ 
X jl Xj! Xjl: X jp 

Xnl Xu2 X"k X,, 

a multivariate data matrix. The matrix X contains all the observations on all of 
the variables. Each column represents the data for a different variable, and lin­
ear combinations o f the set of observations are formed by the matrix product Xc, 
where c is a p x I matrix. Useful algebraic models arc derived in thi s way by im­
posing some optimization criteria for the selection of the entries of the coefficient 
vector c. 

In a si nglc-variabJccasc where the matrix X is 1/ X L such as exam scores, the 
data are often summarized by calculating the arithmetic average, or sample mean. 
and a measure of spread. or variation. Such summary calculations are referred to 
as descriptive statistics. In this case, for 

tho 

and the 

[X'l 
x, 

X ~ 

.;" 

I " 
sample mean = x = - L X) 

II ) = 1 

I " 
sample variance = 52 = - L(x i - X)1. 

II )=1 

In addition, the square root of the sample variance is known as the sample stan­
dard deviation. 

If the matrix 

X = [97 92 90 87 85 83 83 78 72 7170 6Sr 

is the set of scores out of 100 for an exam in li near algebra, then the associated 
descriptive statistics arc x;:,: 81. ,\. 2 ;:,: 90.4, and the standard deviation .I" ;:;,; 9.5 . • 



These descript ive statistics arc also applied 10 the set o f observations of each 
o f the variables in a multivariate data matrix. We next de fine these, IOgether with 
statistics that provide a measure of the relationship bet ween pairs of variables: 

I " 
Sample mean for the kth variable = Xt = - L Xjb k = 1. 2 . . .. . p. 

II j = l 

I " 
Sample variance for thc kth variable = si = - L (X jl - Xt)2 . k = 1.2 . .. .. p. 

II j= ] 

Remark The sample variance is often defi ned with a divisor o f II - I rather than 
II. for theoretical reasons, especiall y in the case where II. the number o f samples, 
is small. In many multivariate stati stics texts. there is a notatio nal convention 
employed to distinguish between the two versions. For simplicity in our brief 
excursion into multivari ate statistics, we will use the expression givcn prcvio llsly. 

Presently, wc shall introduce a matrix which contains statistics that relate pairs 
o f variables. For convenience o f matrix notation, we shall use the alternative nota­
tion Sa for the variance o f the kth variable; that is. 

I " 
.I·U = s~ = - L (X jt - XA·)2. k = l. 2 . .. .. p. 

II j = l 

A measure of the linear association between a pair of variables is provided by 
the notion o f sample covariance. The measure of association betwccn the i th and 
kth variables in the multivariate data matrix X is given by 

I " 
Sample covariance = Sit = - I)Xji - Xi )(Xjl - Xd. 

II j = l 

i = 1.2 . .. .. p, 
k = l. 2, ... . p, 

which is the average product of the deviations from their respective sample means. 
It follows that Sil = .I">.i, for all i and k. and that for i = k, the sample covariance 
is just the variance, sf = .fU. 

We next organize the descriptive stati stics associated with a multivariate data 
matrix into matrices: 

[ ~ ' ] .\ 2 
Matrix o f sample means = i = 

" 

['" ,1'2] 

Matrix of sample variances and covariances = S" = : 

S l'] 

Sl 2 

."" ] .fIp 

S I'P 

The matrix S" is a symmetric matrix whose diagonal entries arc the sample vari­
ances and the subscript II is a notational device to remind us that the di visor /1 was 
used 10 compute the variances and covariances. The matrix 5" is often called the 
covariance matrix. for simplicity. 
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A selection of six recei pts from a supermarket was collected to investigate the 
nature of food sales. On each receipt was the cost of the purchases and the number 
of items purchased. Let the first variable be the cost of the purchases rounded 
to whole dollars, and the second variable the number of items purchased. The 
corresponding multivariate data matrix is 

x ~ 

39 21 
59 28 
18 10 
21 13 
[4 13 

22 [0 

Dctcnnine the sample statistics given prev io lLsly, recording numerical valuf!s to 
one decimal place and using this approxi mation in subsequent calculations. 

Solution 
We find that the sample means are 

XI ~ 28.8 and X2 ":: 15.8. 

and thus we take the matrix of sample means as 

x ~ [28.8]. 
15.8 

The variances arc 
SII ;;::: 243.1 and .\'22;;::: 43. 1. 

whi le the covariances are 
·\' 12 = .1"21 ;;::: 97.8. 

Hence we take the covariance matrix as 

s _ [243.1 
II - 97.8 

97 .8] 
43.1 . • 

In a more general setti ng the multivariate data matrix X is a matrix whose 
entries are random variables. In this setting the matrices of descriptive statistics 
are computed using probability distributions and expected value. We shall not 
consider this case, but just note that the vector of means and Ihe covariance matrix 
can be computed in an analogous fashion . In particular, the covariance matrix is 
symmetric, as it is for the "sample" case ill ustrated previously. 

We now state several results that indicate how to use information about the 
covariance matrix to define a set of ncw variables . These new vari ables are linear 
combi nations of the origi nal variables represented by the columns of the data ma­
tri x X. The technique is called principaJ com ponent analysis, PCA, and is among 
the oldest and most widely used of multivariate techniques. The new variables are 
derived in decreasi ng order of importance so that the first, called the fi rst princi­
pal component, accounts for as milch as possible of the vari ation in the original 
data. The second new variable, called the second principal component, accounts 
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for another, but smaller. ponion of the variation, and so on. For a sit uation involv­
ing p variables. p components are required to account for all the variation, but 
often, much of the variation can be accounted for by a small number of principal 
components. Thus, PCA has as its goals the interpretation of the variation and data 
reduction. 

The description of PCA given previously is analogous to the use of the spec­
tral decomposition of a symmetric matrix in the application to symmetric images 
discussed in Section 8.2. In fact, we use the eigenvalues and associated orthonor­
mal eigenvectors of the covariance matrix 5" to construct the principal components 
and derive info rmation alxlut them. We have the following result, which we state 
without proof: 

Theorem 8.6 Let 5" be the p x p covariance matrix associated with the multivariate data matrix 
X. Let the eigenvalues of S" be Aj . j = L 2 . .. .. p, where AI ::: A2 ::: ... ::: Af' ::: 
0, and let the associated orthonormal eigenvectors be U j , j = L 2 ..... p . Then 
the ith principal component y; is given by the linear combination of the columns 
of X, where the coefficients are the entries of the eigenvcctor Ui; that is, 

y, = ith principal component = XUi ' 

In addition, the variance of Yi is Ai, and the covariance of Yi and Yb i i= k, is 
zero. (If some of the eigenvalues are repeated. then the choices of the associated 
eigenvcctors are not unique; hence the principal components are not unique.) • 

, 
Theorem 8.7 Under the hypotheses of Theorem 8.6, the total variance of X given by L .fi; is 

; = 1 
the same as the sum of the eigenvalues of the covariance matrix 5n . 

Proof 

Exercise 18. 

This result implies that 

( 

Proponion of the 
total variance due 
to the kth principal 
component 

) 

A, 
~ A, + A?+ "' + A . - ,. k = 1.2 . . .. . p. 

• 

(3) 

Thus we see that if AI > A2, then AI is the dominant eigenvalue of the covariance 
matrix. Hence the first principal component is a new variable that "explains." or 
accounts for, more of the variation than any other principal componenl. If a large 
percentage of the total variance for a data matrix with a large number p of columns 
can be anributed to the fi rst few principal components, then these new variables 
can replace the original p variables without significant loss of infonnation. Thus 
we can achieve a significant reduction in data. 
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Compute thc first principal componenl for thc data matrix X given in Example 7. 

Solution 
The covariance matrix Sn is computed in Example 7, so we detcnni ne its eigen­
values and associated orthononnal eigenvectors. (Here, we record Ihc numerical 
values to only fOUT decimal places.) We obtain the eigenvalues 

)'1 = 282.9744 and ).. 2 = 3.2256 

fmft ;lssociaIC([ ci gcnvcclor.~ 

u ~ [0.9260] 
I 0.3775 

ond u, = [ 0.3775]. 
- - 0.9260 

Then, llsing Theorem g.7. we find that Ihc first principal component is 

YI = 0.9260coll (X) + O.377ScoI2( X), 

and it follows that Yl accounts for Ihc proportion 

A, 
(about 98.9%) 

)'1 +)...2 

of thc total variance of X (verify). • 
Suppose that we have a multivariate data matrix X with three columns, which we 
denote as XI, Xl, and X3, and the covariance matrix (recording values to only four 
decimal places) is 

[

3.6270 2.5440 
5" = 2.5440 6.8070 

o 0 

Detennine the principal components YI, Y2, and y!. 

Solution 
We find that the eigenvalues and associated onhononnal eigenvectors are 

AI = 8.2170. A2 = 2.2170. and AJ = I. 

[
0.4848] 
O.8~46 . [

-0.8746] 
0.4~48 , and 

Thus the principal components arc 

YI = 0.4848xl + O.8746x2 

Y2 = - O.8746xl + 0.4848xl 

YJ = XJ . 

Then it follows from (3) that YI accounts for 78.61 % of the total variance. while 
Y2 and Y3 account for 19.39% and 8.75%, respectively. • 
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EXAMPLE 10 

There is much more infonnation concerning the innuence of and relationship 
between variables that can be derived from the computations associated with PCA. 
For more information on PCA, see the references below. 

We now make several observations about the geometric nature of PCA. The 
fact that the covariance matrix Sn is symmetric means that we can find an orthog­
onal matrix U consisting of eigenvectors of S" such that U T S"U = D, a diagonal 
matrix. The geometric consequence of this result is that the p original variables are 
rotated to p new orthogonal variables, called the principal components. Moreover, 
these principal components are linear combinations of the original variables. (The 
orthogonality follows from the fact that the covanance 01 Yo and YJ.·, i "* k, is zero.) 
Hence the computation of the principal components amounts to transforming a co­
ordinate system that consists of axes that may not be mUlUaHy perpendicular to a 
new coordinate system with mutually perpendicular axes. The new coordinate sys­
tem, the principal components, represents the original variables in a more ordered 
and convenient way. An orthogonal coordinate system makes it possible to eas­
il y use projections to derive further information about the relationships between 
variables. For details, refer to the followi ng references: 

REFERENCES 
Johnson, Richard A., and Dean W. Wichern. Applied Multivariate Statisical Anal­

ysis, 5th ed. Upper Saddle Ri ver, NJ: Prentice Hall, 2002. 

Jolliffe, I. T. Principal Compo/lent Analysis. New York: Springer-Verlag, 1986. 

Wickens, Thomas D. The Geometry oj Multivariate Statistics. Hillsdale. NJ: 
Lawrence Erlbaum Associates, 1995. 

For an interest ing application to trade routes in geography, see Philip D. Straf­
fin, "Linear Algebra in Geography: Eigenvectors of Networks," Mathematics Mag­
minf!, vol. 53, no. 5, Nov. 1980, pp. 269- 276 . 

• Se~lrching with Google: Using the Dominant Eigenvalue 

In Section 1.2, after Example 6, we introduced the connectivity matrix A used 
by the software that drives Google's search engine. Matrix A has entries that are 
either 0 or I. with {l ij = I if website j links to websitei: otherwise, (Ii ) = O. 

A company with seven employees encourages the use of websites fo r a variety of 
business reasons. Each employee has a website, and certain employees include 
link..~ to coworkers' si tes. For this small company. thei r connectivity matrix is as 
folluws: 

E. E, E, E, E, E, E, 
E. 0 1 0 1 1 0 0 

E, 1 0 1 1 0 1 0 

E, 1 0 0 0 0 0 1 

E, 0 0 1 0 1 1 0 

E, 1 1 0 0 0 1 0 

E, 0 1 1 1 0 0 1 

E, 1 0 0 0 0 0 1 



EXAMPLE 11 

8.3 Dominanl Eigenvalue and Principal Component Analysis 513 

Here. we have assigned the names Eb k = 1.2 .. . .. 7 10 designate the employ­
ees. We see from the column labeled £ 3 that this employee links to the sites of 
coworkers £2, £4, and £6. • 

Upon inspecting the connectivity matrix in Example 10, we might try to assign 
a rank to an employee website by merely counting Ihe number of sites that are 
linked to it. But this strategy does not take into account the rank of the websites 
that link to a given site. 

There are many applications that use the ranking of objects, teams, or people 
in associated order of imporlance. One approach \0 the ranking strategy is to 
create a connectivity matrix and compute its dominant eigenvalue and associated 
eigenvector. For a wide class of such problems. the entries of the eigenvector can 
be taken to be all positive and scaled so that the sum of their squares is I. In 
such eases, if the kth entry is largest, then the kth item that is being ranked is 
considered the most important: that is, it has the highest rank . The other items are 
ranked according to the size of the corresponding entry of the eigenvector. 

For the connectivity matrix in Example 10, an eigenvector associated with the 
dominant eigenvalue is 

0.4261 
0.4746 
0.21 37 

v = 0.3596 
0.44[6 
0.42[4 

0.2137 

It follows that max{v[, V2, .. . , l'7J = 0.4746; hence employee number 2 has the 
higliest-Jallked website, followed by that of numbc. 5 , and tlieu !lumber [. Notice 
that the site for employee 6 was referenced more times than that of employee [ or 
employee 5, but is considered lower in rank. • 

In carrying out a Google search, the ranking of web sites is a salient feature that 
determines the order of the sites returned to a query. The strategy for ranking uses 
the basic idea that the rank of a site is higher if other highly ranked sites link to it. 
In order to implement thi s strategy for the huge connectivity matrix that is a part 
of Google's ranking mechanism, a variant of the domi nant eigenvalue/eigenvector 
idea of Example [0 is used. In their algorithm the Google tcam determines the 
rank of a site so that it is proportional to the sum of the ranks of all sites that li nk 
to it. This approach generates a large eigenvalue/eigenvector problem that uses the 
connectivity matrix in a more general fashion than that illustrated in Example [ [. 

REFERENCES 
Moler, Cleve. "The World's Largest Matrix Computation: Google's PageRank Is 

an Eigenvector of a Matrix of Ordcr 2.7 Billion." MATLAB News and Notes, 
October 2002, pp. 12- 13. 

Wi If, Herbert S. "Searching the Web with Eigenvectors." The UMAP Journal, 
23(2),2002, pp. 101 - 103. 
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Key Terms 
Symmetric matrix 
Onhononnal eigenvectors 
Dominant e igenvalue 
Iterative process 

Principal component analysis (PCA) 
Multivariate data matrix 

First principal component 
Second principal component 
Total variance Descriptive statistics 

Sample mean Google 
I-norm Sample variance Connectivity matrix 
Markov process 
Power method 

Sample standard deviation 
Covariance matrix 

M:,' Exercises 

I. Find the dominant eigenvalue of each of the following 
matrices' 

(a) [ _~ ~ J (h) [i _~ -i] 
2. Find the dominant eigenvalue of each of the following 

matrices: 

(a) [; ~J (h) U ;-n 
3. Find the I-norm of each of the following matrices: 

[~ -:] U 
1 

n (, ) (h) 5 
-4 

U 
-I 1 

] -2 2 
(, ) 

0 2 

4 8 

4. Find the I-norm of each of the following matrices: 

[~ -~] [ -2 
0 -!] (, ) (h) -2 3 

3 - 2 

[ -~ 
2 -3 

-~] « ) 
1 2 
4 1 

- 3 4 

5. Determine a bound on the absolute value of the dominant 
eigenvalue for each of the matrices in Exercise I. 

6. Determine a bound on the absolute value of the dominant 
eigenvalue for each of the matrices in Exercise 2. 

7. Prove that if A is symmetric. then II AIII = II ATII,. 

8. Determine a matrix A for which IIAIII = IIATII ,. but A 
lS not symmetric. 

9. Prove Theorem 8.4. 

10. Explain why IIA Iii can be greater than I and the sequence 
of vectors A' x can still approach the zero vector. 

II. Let X = [56 62 59 73 75 r be the weight in 
ounces of scoops of birdseed obtained by the same per­
son using the same ~oop. Find the sample mean. the 
variation. and standard deviation of these data. 

12. Let X = [5400 4'X)() 6300 6700] T be the esti­
mates in dollars for the cost of replacing a roof on the 
same home. Find the sample mean, the variation. and 
standard deviation of these data. 

13. For the five most populated cit ies in the United States in 
2002, we have the following crime infomlation: For vio­
lelll offenses known to police per 100.000 res idents. the 
number of robberies appears in column I of the data ma­
trix X. and the number of aggravated assaults in column 
2. (Values are rounded to the nearest whole number.) 

[

337 

449 
X = 631 

SSO 
582 

"'1 847 
846

J 
617 

647 

Determine the vector of sample means and the covari­
ance matrix. (Data taken from TIME Almanac 2006. In­
fonnation Please LLC, Pearson Education. Boston. MA. ) 

14. For the five most populated ci ties in the United States 
in 2002, we have the following crime information: For 
property crimes known to police per 100,000 residents. 
the number of burglaries appears in column I of the data 
matrix X and the number of motor vehicle thefts in col ­
umn 2. (Values are rounded to the nearest whole num­
ber.) 

x~ [H~ 
1319 
737 

334] 891 

859 
11 73 
873 



Determine the vector of sample means and the covari­
ance matrix. (Data taken from TIME Almarwc 2006. In­
form ation Please LLC. Pearson Education. Boston. MA.) 

15. For the data in Exercise 13. d~tennine the first principal 
component. 

16. For the data in Exercise 14. d~tennine the first principal 
component. 

17. In Section 5.3 we defined a positive definite matrix as a 
,quare symmetric m:ltrix C such that yT Cy > 0 for ev­
ery nonzero vector y in HI!. Prove that ;:llIY eigenvalue of 
a positive definite matrix is positive. 
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18. Let So be a covariance matrix satisfying the hypotheses 
of Theorem 8.6. To prove Theorem 8.7. proceed a~ fol­
lows: 

(a) Show that the trace of Sn is the total variance. (See 
Section 1.3, Exercise 43, for the definition of trace.) 

(b) Show that there exists an orthogonal matrix P such 
that p TS" p = D. a diagonal matrix. 

(c) Show that the trxe of S" is equal to the trace of D. 

(d) Complete the proof. 

m Differential Equations 

A differential equation is an eq uation that involves an unknown fu ncti on and its 
derivatives. An important, simple example of a different ial equation is 

d 
- 1'(1) = rx(1) . 
d, 

where r is a constant. The idea here is to fi nd a funct ion x(t) that will satisfy 
the given difl"erential equatio n. T his differential equation is discussed furthe r sub­
sequently. Di ffere ntial equations occur often in all branches of science and en­
gineeri ng; linear algebra is helpfu l in the form ulation and solutio n o f differential 
equations. In this section we provide only a brief survey of the approach: books 
on differential equations deal with the subject in much greater detaiL and several 
suggestions for further reading are given at the end o f thi s chapter . 

• Homogeneous Linear Systems 

We consider the first-order homogeneous linear system of differential eq uations. 

(1 ) 

where the aij are known constants. We seek functions Xt(t), X2(t) . .. xn(t) de-
lined and differenti able o n the real line and satisfying (I). 

We can write (I) in matrix form by letting 

[X'(tl] [aft 
(It2 a,,, ] 

1'2 (t) a21 a22 a2" 
x(t) = . . A ~ 

1',,(t) a:, t a,," a"" 



516 Chapter 8 Applications of Eigenvalues and Eigenvectors (Optional) 

and defining 

[

X: (I) 1 x~ (t) 
x' (t) = -. . 

x~(r) 

Then (1) can be written as 

X' (/) = AX(/) . (2) 

We shall often write (2) more brie fl y as 

x' = Ax. 

With this notation, an II-vector function 

[
"'(1)] X2(/) 

x(t) = . 

x,,(r) 

satisfying (2) is called a solution to the given systcm. 
We leave it to the reader to verify that if x(l )(t) . x (2) (r) , .. .. X(II) (t) arc all 

solutions to (2), then any linear combination 

(3) 

is also a solution to (2). 
It can be shown (Exerc ise 4) that the set of all solut.ions to the homogeneous 

linear system of differcnt ial equations (2) is a subspace of the vector space of 
di fferentiable real-valued II-vector fu nctions. 

A set of vector fUllctions (x(l) (I) . X(2)(t) . .. .. X(II) (t)} is said to be a funda­
mental system for (I) if every solution to (I) can be written in the form (3). In 
this case. the right side of (3). where hi. h2 • ...• h., arc arbitrary constants, is said 
to be the general solution to (2). 

It can be shown (see the book by Boyce and DiPrima or the book by Cullen 
cited in Further Readings) that any system of the form (2) has a fundamental sys­
tem (in fact. infinitely many). 

In genera l. dillerential equations arise in the course of solving physical prob­
lems. Typically. once a general solution to the differential equation has been ob­
tained, the physical constraints of the problem impose certain definite values on 
the arbitrary constants in the general solution, giving rise to a particular solution. 
An important particular solution is obtained by finding a solution x(1) to Equation 
(2) such that x(O) = Xo. an initial condition. where Xo is a given vector. This 
problem is called an initial \'alue problem. If the general solution (3) is known. 
then the initial value problem can be solved by setting I = 0 in (3) and determi ning 
the constants hi . h2 • •. .• h" so that 
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It is readily seen that thi s is actually an /I x 1/ linear system with unknowns 
/)1 . b2 • • .. , b". Thi s linear system can also oc wri tten as 

Cb = Xo. (4) 

where 

- [::] b _ . 

b" 

and C is the /I x 1/ matri x whose columns are X(I)(O) . X(2) (O) ... . . x (n) (0), respec­

tively. It can be shown (see the book by Boyce and DiPrima or the book by Cullen 
cited in Further Readings) thaI if x(1)(t) . X(2) (t) . ... xin)(t) fo rm a fundamental 
system for (I), then C is Ilonsingular, so (4) always has a unique solution. 

The simplest system of the form (I ) is the single equation 

dx 
- = ax . 
d, 

(5) 

where ([ is a constant. From calculus, the solutions to th is equation arc of the form 

x = be~ l : 

that is. this is the general soluti on to (5). To solve the initial value problem 

dx 
-= ax . 
d, x(O) = Xo. 

(6) 

we set t = 0 in (6) and obtain IJ = Xo. Thus the solution to the initial lIalue 
problem is 

0' x = xoc. • 
The system (2) is said to be diagonal if the matrix A is diagonal. Then ( I) can 

be rewritten as 

x;(t) = (/IIXI(t) 

x; (t) = (/22X2(t ) 
(7) 

X~(t) = ilI1I1 X,,(t) . 

This system is easy to sollie, since the equations can be solved separately. Apply­
ing the res ults o f Example I to each equation in (7), we obtain 

XI(t) = blc""' 

X2(t ) = b2c"221 

(8) 
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EXAMPLE 2 

where b 1• b2 • ... • b" are arbitrary constants. Writing (8) in vector fonn yields 

This implies lhat the vector functions 

form a fu ndamental syste m fo r the diagonal system (7). 

The diagonal system 

can be written as three equations: 

Solving these equatiom, we obtain 

x; = 3Xl 

x; = - 2x2 

x~ = 4xJ. 

where hI, h2' and bJ are arbitrary constants. Thus 

is the general solution to (9), and the functions 

form a fundamental system for (9). 

(9) 

• 
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If the system (2) is not diagonaL then it cannot be solved as simply a~ the 
system in the preceding exampte. However, there is an extension of this method 
that yields the general solution in the case where A is diagonalizable. Suppose that 
A is diagonalizable and P is a nonsingular matrix such that 

P -1AP = D. 

where D is diagonal. Then, multiplying the given system 

x' = Ax 

on the left by pi, we obtain 

p-1X' = p -l Ax. 

Since p -l P = I'I> we can rewrite the last equation as 

p -I X' = (P-JAP)(P-1 x). 

Temporarily, let 

Since p -I is a constant matrix. 

u ' = p-1X' . 

Therefore, substituting ([0). (12). and (13) into (I I). we obtain 

u' = D u. 

(10) 

(II) 

( 12) 

(13) 

(14) 

Equation (14) is a diagonal system and can be solved by the methods just dis­
cussed. Before proceeding, however, let us recall from Theorem 7.4 that 

D ~ [A~~, ~] , 
o 0 A" 

where AI, A2 . .. A" are the eigenvalues of A, and that the columns of P are lin­
early independent eigenvectors of A associated. respect ively, with A[, A2 ..... A". 
From the di scussion just given for diagonal systems. the general solution to (14) is 

[
"" '" 1 b2eA11 

b"e
A
"' 

where 
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and bl . h2 • . .. • h" are arbitrary constants. From Equation (12), x = P u, so the 
general solution to the given system x' = Ax is 

However, si nce the constant vectors in (15) are the columns of the identity matrix 
and PI" = P, (16) can be rewritten as 

(17) 

whcle P l ' Pl . .. . . p" alc the CO[UJlIlIS of P, and thcl cfoJC cigcJl YcclOl S of A asso-
ciated wilh AI. A2 . . ... A,,, respectively. 

We summarize this discussion in the following theorem: 

Theorem 8.8 If the /I x /I matrix A has /I linearly independent eigenvectors PI. P2 ..... p" asso­
ciated with the e igenvalues AI' A2 . ... . AI!' respectively. then the general solution 
to the homogeneous linear system of different ial equations 

EXAMPLE 3 

EXAMPLE 4 

is given by Equation (17). 

For the system 

the matrix 

x' = Ax 

• 

A = [~ -!] 
has eigenvalues AI = 2 and A2 = 3 with respective associated eigenvectors (veri fy) 

These eigenvectors are automatically linearly independent, since they are associ­
ated with distinct eigenvalues (proof of Theorem 7.5). Hence the general sollLlion 
to the given system is 

[ I]"~ [,]" x(t) = h l - I e + b2 - 2 e. 

In terms of components, this can be written as 

XI(t) = ble'2J + h2e31 

X2(t) = _ h le21 - 2b2e31 . 

Consider the following homogeneous linear system of di fferential equations: 

o 
- '4 

• 
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The characteristic polynomial of A is (verify) 

p( ).) = ),.J _ 7A2 + 14)" _ 8, 

PIA) ~ (A - I )(A - 2)(A - 4). 

so the eigenvalues of A are )'1 = I, A2 = 2, and A3 = 4. Associated eigenvectors 
arc (verify) 

respectively. The general solution is then given by 

where hi. /)2. and hJ are arbitrary constants. • 
For the linear system of Example 4, solve the initial value problem determined by 
the initial conditions XI (0) = 4. X2(O) = 6, and x , (O) = 8. 

Solution 
We write our general solution in the form x = Pu as 

Now 

2 
4 

2 
4 

2 
4 

Solving (18) by Gauss-Jordan reduction, we obtain (verify) 

Therefore, the solution [0 the initial value problem is 

X(/ ) ~ j m " + 3 m ," -l U] ," 

(18) 

• 
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EXAMPLE 6 

We now recall several L1ctS from Chapter 7. If A docs not have disti nct eigen­
values, then we mayor may not be able to diagonalize A. Let A be an eigenvalue 
of A of multiplicity k. Then A can be diagonalized if and only if the dimension of 
the eigenspace associated with A is k- that is. if and only if the rank of the matrix 
(A ln - A) is /I - k (verify). If the rank of (AI" - A) is /I - k, then we can find k 
linearly independent eigenvectors of A associated with A. 

Consider the linear system 

o 
3 

- 2 

The eigenvalues of A arc Al = A2 = I and A3 = 5 (verify). The rank of the matrix 

is I, and the linearly independent eigenvectors 

m ond m 
are associated with the eigenvalue I (verify). The eigenvector 

U] 
is associated with the eigenvalue 5 (verify). The general solution to the given 
system is then 

where bl, /)2, and b3 are arbitrary constants. • 
If we cannot diagonalize A as in the examples. we have a considerably more 

difficult sit uation. Methods for dealing with such problems arc discussed in more 
advanced books (see Further Readings) . 

• Application-A DitTusion Process 

The following example is a modification of an example presented by Derrick and 
Grossman in Elemellfal}' DifJerellfial Eqllariol/S with Applicatioll.f (see Further 
Readings): 
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Cell J Ccl12 

--. .:::-.:::-.:::::-...... -- ', : 

b 

FIGURE 8 .10 
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Consider two adjoining cells separated by a penneable membrane, and suppose 
that a fluid flows from the fi rst cell to the second one at a rate (in milliliten per 
minute) that is nu merically equal to three times the volume (in mi llil iters) of Ihe 
fluid in the first cel l. II then flows OUI of the second cell at a rate (i n milliliters 
per minute) that is numerically equal to twice the volume in the second cell. LeI 
XI (1) and X2(t) denote the volumes of the fluid in the first and second cel ls at time 
f, respectively. Assume Ihat, initially, the first cell has 40 milliliters of fluid , while 
the second one has 5 milliliters of fluid. Find the volume of fluid in each cell at 
timet . Sec Fi gUfC 8.10. 

Solution 
The change in volume of the fluid in each cell is the difference between the amount 
flowing in and the amount flowing out. Since no fluid flows into the first cell, we 
have 

dx ] (r) 
-- = - 3X I(t) , 

dl 

where the minus sign indicates that the fluid is fl owing out of the cel l. The flow 
3xI (t) from the fi rst cell flows into the second cell. The flow out of the second cell 
is 2X2(t) . Thus the change in volume of the fluid in the second cell is given by 

dX2(t) 
-- = 3xl(t ) - 2X1(t) . 

dl 

We have then obtained the linear system 

which can be written in matri x form as 

[
'; (1) ] ~ [-3 0] [,,(I)]. 
x;(t) 3 - 2 X2(t ) 

The eigenvalues of the matrix 

A ~ [ - 3 0] 
3 - 2 

are (verify) AI = - 3, A2 = - 2, and respective associated eigenvectors are (veri fy ) 

Hence the general solution is given by 

[X,(I)] [ '] _" [0] _" x (t) = X2(t) = hi - 3 e + b2 I e . 
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Key Terms 
Differential equation 

Using the initial conditions, we find that (verify) 

Thus the volume of nuid in each cell at time t is given by 

XI (t) = 40e-31 

X2(t) = _ 120e-31 + I 25e-21 . • 
It should be pointed out that for many differential equations the solution can­

not be wrillen as a formula. Numerical methods. some of which are studied in nu­
merical analysis, exist for obtaining numerical solutions to differential equations: 
computer codes for some of these methods are widely available. 

FURTHER READINGS 
Boyce, W. E. Elemellfary Differellfial Equatioll.f, 9th cd. New York : John Wiley & 

Sons, Inc., 2007. 

Cullen, C. G. Linear Algehra and Differential ElJuatioll.f, 2d cd. Boston: PWS­
Kent , 1991. 

Derrick. W. R .. and S. I. Grossman. Elementary Differential Equations, 4th cd. Read­
ing, MA: Addison-Wesley, 1997. 

Denman, J. H. Introduction to Linear Algebra and Dijferellfial Equations. New 
York : Dover. 1986. 

Goode, S. W. Differential Equation.\" and Linear Algebra, 2d cd. Upper Saddle 
Ri ver. NJ: Prentice Hall, Inc .. 2000. 

Rabenstein. A. L. Elememary Dijferellfial Equatio/l.I· with Linear Algebra, 4th 
cd. Philadelphia: W. B. Saunders, 1992. 

Homogeneous system of differemial equations 
Initi31 value problem 

Initial condition 
Fundamental system 
Particular solution 

Diffusion process 
Geneml solution 
Eigenvectors 

i :t- Exercises 

l. Consider the linear system of differential equations 

(3) Find the general solution 

(b) Find the so lution to the initial value problem deter­
mined by the initial conditions XI(O) = 3. X2(0) 
4. X3(O) = S. 

2. Consider the linear system of differential equations 

o 
- 2 

o 

(3) Find the general solution. 

(b) Find the solution to the initial value problem deter­
mined by the initial conditions X] (0) = 2 . .I2(0) = 
7 . .I)(O) = 20. 



3. Find the general solution to the linear system of differen­
lial equations 

o 
- s 0] [,,] o X!. 

2 x } 

4. Prove that the set of all solutions to the homogeneous 
linear system of differential equations x' = Ax. where A 
IS II X n. is a subspace of the vector space of all differ­
entiable leal-valued n-veCIOI funclions. This subspace is 
called the solution space of the given linear system. 

S. Find the general solution to the linear system of differen­
tial equations 

6. Find the general solution to the linear system of differen­
lial equations 

[
,:] ~ [ 3 - ,] [ ,,]. 
x 2 - 2 3 x! 

7. Find the general solution to the linear system of differen­
tial equations 

- 2 

- 2 
2 

:1 [::]. 
I J _f } 

8. Find the generul solution 10 the linear system of differen 
tial equations 

[':1 II x; = I 0 

xU lo ~] [::]. 
3 -[3 
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9. Consider two competing species that live in the same for­
est. and let x ,(I) and X2(t) denote the respective popula­
tions of the species at time I. Suppose that the initial 
populations are _f ,(O) = SOO and X2(0) = 200. If the 
growth rates of the species are given by 

x;(t) = - 3Xl (l) + 6X2(t) 

r; (t) = x, (I) - 2X2(t ). 

what is the popUlation of e;lch species at time 11 

10. Suppose that we have a system consisting of two inter­
connected tanks. each containing a brine soltllion. Tank 
A contains _f(l) pounds of salt in 200 gallons of brine. 
and tank B contains y(l ) pounds of salt in 300 gallons of 
brine. The mixture in each tank is kep t unifonn by con­
stant stirring. When I = O. brine is pumped from tank A 
to tank B at 20 gallons/minute and from tank B to tank 
A at 20 gallons/minute. Find the amount of salt in each 
t:lOk at time I if _f(O) = 10 and y eO) = 40. 

20 g::.llonslminute 

20 gallonslminute 

TankA Tank B 

m Dynamical Systems 

In Section 8.4 we studied how to solve homogeneous linear systems of di ffere n­
tial equations for which an initial condi tion had been specified . We called such 
systems ini tial value problems and wrote them in the fo rm 

X'(l) = A X(I) . x eD) = "0. ( I ) 
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JULES HENRI POINCARE 

where 
(I I I a 11 

[" (I ) ] 
all a21 

X2(t ) 
x(t) = . A ~ 

x,, ::t ) 
a,,1 all! 

and Xo is a spec ified vector of constants. In the case that A was di agonalizable, we 
used the: e:igcllvalucs aHJ c ige: llve:c tors o f A to cOlist ruc! a paJl icular solut ioll tu (I). 

In thi s section we focus our attention on the case /I = 2, and for ease of 
reference, we use x and y instead of XI and Xl. Such homogeneous linear systems 
of differential equations can be written in the fonn 

(Ix 
- = ax +hy 
d l 

dy 
- =cx+ (ly . 
dl 

where a , h, c, and tI are real constants, or 

, d [, ] [,] ,, (t)= - = A = Ax(t). 
d t y y 

(2) 

(3) 

where A = [ll h]. For the systems (2) and (3), we try to describe properties 
c d 

of the solution based on the different ial equation itself. This area is called the 
qualitative theory of differential equations and was studied extensively by J. H. 
Poincare! 

The systems (2) and (3) are called autonomous differential equations, since 
d x dy 

the rates of change - and - explicitl y depend on onl y the values of x and y, 
ti l d t 

not on the independent vari able t . For our purposes, we shall call the independent 
variable f time, and then (2) and (3) are said to be time-independent systems. 
Using this convention, the systems in (2) and (3) provide a model for the change 
of x and y as time goes by. Hence stich systems are called dynamical systems. 
We use thi s tenninology throughout our discussion in th is section. 

· .1 "t~< H .. "ri P"i,,~art< (tR'i4-t9t2) wa, Imn' in Nancy. F,"nr~ . 10 a WPli·104to family. many of 
whose members played key roles in tIK: French go"emment. Asa youngster. he was clumsy and aMent· 
minded. but showed great talent in mathemat ics. In 187]. he entered the Ecole Poly technique. and in 
1879. he received his doctorale from the University of Paris. He then began a un iversity career. t1nally 
joining the University of Paris in 1881. where he remained unlil his death. Poincare is eonsider~d the 
last of tIK: universalists in mathcmaties-Ihat is. someone who can work. in all branches of mathematics. 
both pure and appl ied. His doctoral dissenation deal! with the exi,tence of solutions to d ifferential 
equations. In applied mathematics. he made eonuibutions to the fields of optics. electricity. ela,tieity. 
tIK:nnodynamics. quantum mechanics. the theory of relativity. and cosmology. In pure mathcmatLes. he 
was one of the principal creators of algehraie topology and made numerous contributions to alg~braic 
geomelry. analytic functions. and number theory. He was the fir;] person to think. of chaos in eonnl'Ction 
with his work. in a~tronomy. In his later years. he wrote several books popularizing mathematics. In 
some of these books he dealt with the psychological processes inml.-cd in mathematical discm'ery and 
with the aestIK:tic aspeels of mathematics. 



EXAMPLE 1 

8.5 Dynamical Systems 527 

A qualitative analy:;is of dynamical systems probes sllch questions as the fol-
lowing: 

Are there any constant solutions? 

If there arc constant solutions. do nearby solutions move toward or away from 
the constant solution? 

What is the behavior of solutions as f -+ ±oo? 

• Are there any solutions that oscillate? 

Each of these qLlestion.~ has a geometric flavo r 1·lenee we introduce a helpful 
device for studying the behavior of dynamical systems. If we regard t, time. as 
a parameter, Ihcn x = x(t) and y = y et) will represent a curve in the xy-plane. 
Such a curve is called a trajectory, or an orbit , of the systems (2) and (3). The 
xy-plane is called the phase plane of the dynamical system. 

The system 

dx 

, [ 0 '] x (t) = Ax(r) = - I 0 xU) 
tit = Y 

dy 
0' 

~ =-x 

has the general solution· 

x = hi siner) + h2 cos(r) 

}' = III cos(t) - 112 si n(t). 

d, 

(4) 

It follows that the trajcclories t satis fy x 2 +l = c2
, wherec2 = Ilf + h~ . Hence the 

trajectories of this dynamical system are circles in the phase plane centered at the 

origin. We note that if an initial condition x(O) = [~~ ] is speci fi ed, then setting 

I = 0 in (4) gives the linear system 

b l sin(O) + h2 casCO) = kl 

hi casCO) - 112 sin (O) = k2. 

It follows that the solution is "2 = kl and III = k2, so the corresponding panicular 

solution to the initial value problem x' (t) = AX(I), XcI = [~~] determine, Ihe 

trajectory xl + y2 = kf + ki; that is, a circle centered at the origin with radius 

jkf+ki. • 

' We I'crify Illi s later in the section. 

tWe ean obtain too trajeelUrics directly by noting that wc eill eliminate I to get '.!..!.. = ~. Then 
dx y 

y 
separating tile variables gives y dy = - xdx . and upon integrating. ''''e get '2 
equivalently. -,, ' + y' = c' . 

-~ + k' . or 
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FIGURE 8 . 11 

DEFINITION 8.2 

A sketch of the trajectories of a dynamical system in the phase plane is called a 
phase portrait. A phase portrait usually contains the sketches of a few trajectories 
and an indication of the direction in which the curve is traversed . Arrowheads are 
placed on the trajectory to ind icate the direction of motion of a point (x . y) as t 

increases. The direction is indicated by the velocity vector 

[

dX 1 dl 
dy . 

dl 

For the dynamical system in Example I, we have v = [ _ ; 1 Thus in the phase 

plane for x > 0 and y > 0, the vector v is oriented downward to the right; hence 
these trajectories are traversed cloc kwise, as shown in Figure 8. [ I. (Warning: In 
other dynamical systems not all trajectories are traversed in the same direction.) 

One of the questions posed earlier concerned the existence of constant ~olu­
tions. For a dynamical system (which we regard as a model depicting the change 

dx d y 
of x and y as time goes by) to have a constant solution, both - and - must be 

dt tit 
zero. That is, the system doesn't change. It follows that points in the phase plane 
that correspond to constant solutions are determined by solving 

dx 
- = ax + by = O 
dl 

dy 
- = ex + tly = 0, 
dl 

which leads to the homogeneous linear system 

We know that one solution to this linear system is x = 0, )' = 0 and that there 
ex ist other solutions if and only if det(A) = O. In Example I, 

A - [ 0 '] and det(A) = I. - - I 0 

Thus for the dynamical system in Example [, the only point in the phase plane that 
corresponds to a constant solution is x = 0 and y = 0, the origin. 

A point in the phase plane at which both tlx and dy are zero is called an equilib-
tit dt 

rium point, or fixed point, of the dynamical system. 

The behavior oftn~eetories near an equilibrium point serves as a way to char­
acterize different types of equilibrium points. If trajectories through all points near 
an equilibrium point converge to the equilibrium poi nt, then we say that the equi­
librium point is stable, or an attractor. Thi s is the case for the origin shown in 



)' 

FIGURE 8.12 A stable 
equ il ibrium point at (0, 0). 
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Figure 8.12. where Ihe trajectories are all straight lines heading into the origin. 
The dynamical system whose phase portrait is shown in Figure 8.12 is 

dx 
- = - x 
d, 

dy 
tit = - y, 

which we discuss later in Example 3. Another situation is shown in Fi gure 8. [ I. 
where, again, the o nl y equilibrium point is the origin. In this case, trajectories 
through points ncar the equ ilibri um point slay a :;mall distance away. In such a 
case, the equilibrium (Xlin! is called marginally stable. AI other times, nearby 
trajectories tend \0 move away from an equilibrium point. In such cases, we say 
that the equilibrium point is unstable. or a repelling point. (See Fi gure 8.13.) In 
addition. we can have equilibrium points where nearby trajectories on one side 
move toward it and on the other side move away from it. Such an equilibrium 
point is called a saddle point . (See Figure 8.14. ) 

FIGURE 8.13 An unstable 
equilibrium poinl al (0. 0). 

FIGURE 8.14 A saddle point 
;11 (0.0). 

From the developments in Section 8.4, we expect that the eigenvalues and 

[
a "] . . eigenvcctors of the coefficient matrix A = c d of the dynamIcal system will 

determine features of the phase portrait of the system. From Equation (17) in 
Section 8.4. we have 

(5) 

where At and A2 are the eigenval ues of A, and PI and P2 are associated eigenvec­
tors. We also require that both AI and A2 be nonzero.* Hence A is nonsingular. 
(Explain why.) And so the only equilibrium point is x = 0, y = 0, the origin 

' It can be shown tllat if Ixlll eigenvalues of A are zero. tile, all solut ions 10 (2) as given in (5) are 
either COlH;tams or constants lIld straight lines. In addition. we can show that if one eigenvalue of A is 
zero and toc Olller nonzero. then there is a line of equilillrium points. See Furtocr Readings at the end 
of this section. 



530 Chapter 8 Applications of Eigenvalues and Eigenvectors (Optional) 

)' 

p, 

-------7r------->, 

FIGURE 8.15 

EXAMPLE 2 

)' 

p, 

FIGURE 8. 16 

To show how we use the eigen information from A to detenni ne the phase 
portrait. we treat the case of complex eigenvalues separately from the case of real 
eigenvalues. 

• Case A) and A2 Real 

For real eigenvalues (and eigenvectors), the phase plane interpretation of Equation 
(S) is that x(r) is in span {PI , p:1l. Hence PI and pz are trajectories . It follows that 
the eigenvectors PI and P2 determi ne lines or rays through the origi n in the phase 
plane, and a phase portrait fo r this case has the general form shown in Figure 8. [S. 
To complete the portrait, we need more than the s('Ccial trajectories corresponding 
to the eigen directions. These other trajectories depend on the values of AI and A2. 

Eigenvalues negative and distinct: AI < A2 < 0 
From (S), as 1 -+ 00. X(/ ) gets small. Hence all the trajectories tend toward the 
equilibrium point at the origin as 1 -+ 00. See Example 2 and Figure 8. 16. 

Determine the phase plane portrait of the dynamical system 

, [-' x (t) = Ax(t) = I 

We begi n by finding the eigenvalues and associated eigenvectors of A. We find 
(verify) 

It follows that 

X(/) = [: ] = hi P le-41 + b2 P2e-31. 

and as 1 -+ 00. X(/) gets small. It is helpful to rewrite this expression in the fo rm 

As long as b1 =1= 0, the term bl P le-1 is negligible in comparison to b 2P2. Thi s 
implies that, as I -+ 00, all trajectories, except those starting on PI, will align 
themselves in the direction of P2 as they get close to the ori gin. Hence the phase 
portrait appears like that given in Figure 8.16. The origin is an attractor. • 

Eigenvalues positive and distinct: AI > A2 > 0 
From (S), as f -+ 00, X(/ ) gets large. Hence all the trajectories tend 10 go away 
from the equilibrium point at the origin. The phase portrait for such dynamical 
systems is like that in Fi gure 8.16, except that all the arrowheads are reversed. 
indicating motion away from the origin. In this case (0. 0) is called an unstable 
equilibrium point. 



FIGURE 8.17 

EXAMPLE 3 

)' 

p, 

FIGURE 8.18 
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Both eigenvalues negative, but equal: A, = A2 < 0 
All trajectories go to a stable equilibrium at the origin, but they may bend differ­
ently than the trajectories depicted in Figure 8.16. Their behavior depends upon 
the number of linearly independent eigenvectors of matrix A. If there are two lin­
early independent eigenvectors. then x(t ) = e A11 (hi PI + b2P2). which is a multiple 
of the constant vector hlPI + b2P2. Thus it follows that all the trajectories are lines 
through the ori gin, and since AI < 0, motion along them is toward the origi n. See 
Figure 8.17. We illustrate this in Example 3. 

)' 
p, 

p, 

----'Oll'Eo--- x 

The matrix A of the dynamical system 

, [-I x (I) = Ax(t) = 0 -n x(t) 

has eigenvalues AI = )..2 = - I and corresponding eigenvectors 

(verify). 

It follows that 

x (t) = e- I (hl PI + b2Pl ) = ,,-1 [~~ ] ' 

b, 
sox = ble-' and y = b2e- l

. If bl i= O, then), = b;x. Ifhl = O.then we are on 

the trajectory in the direct ion of P2. It follows that aillrajectories are straight tines 
through the origin, as in Figures 8.12 and 8.17. • 

If there is only one linearly independent eigenvector, then it can be shown that 
atl trajectories passing through points not on the eigenvector align themselves to 
be tangent to the eigenvector at the origin. We will not develop this case, but the 
phase portrait is similar to Fi gure 8.18. In the case that the eigenvalues are positive 
and equal, the phase portraits for these two cases are like Figures 8.17 and 8.18 
with the arrowheads reversed. 

One positive eigenvalue and one negative eigenvalue: A. < 0 < A2 
From (5), as t -+ 00, one of the terms is increasi ng while the other term is de­
creasing. This causes a trajectory that is not in the direction of an eigenvector to 
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FIGURE 8.19 

EXAMPLE 4 

)' 
p, 

---t-'HHc\--- ' 

FIGURE 8.20 

head toward the ori gin, but bend away as I gets larger. The origin in this case is 
called a saddle point. The phase portrait resembles Figure 8. [9. 

" p, 

Detennine the phase plane portrait of the dynamical system 

, [ , x (I) = Ax(t) = - 2 -'] o x(t). 

We begin by finding the eigenvalues and associated eigenvectors of A. We find 
(veri fy) 

It follows that the origin is a saddle point and that we have 

We sec that if hi i= 0 and h2 = O. then the motion is in the direction of eigenvector 
P I and toward the origin. Similarly. if hi = 0 and h2 i= O. then the motion is in 
the direction of Pl, but away from the origin. If we look at the components of the 
original system and eliminate t , we obtain (verify) 

lly 2x 
dx y - x 

This expression tells us the slope along trajectories in the phase plane. Inspecting 
this expression. we see the followi ng (explai n): 

• All trajectories crossing the y-axis have horizontal tangents. 

As a trajectory crosses the line)' = x, it has a vertical tangent. 
• Whenever a trajectory crosses the x-axis, it has slope - 2. 

Usi ng the general fo rm of a saddle point, shown in Figure 8.19, we can produce 
qui te an accurate phase portrait for this dynamical system, shown in Figure 8.20 . 

• 



) 
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• Both Eigenvalues Coml)lex Numbers 

For real 2x2 matrices A, the characteristic equation det(.U2- A) = 0 is a quadratic 
polynomial. If the roots of this quadratic equation ).1 and )..2 arc complex numbers, 
then they are conjugates of one another. (Sec Appendix B.2.) If Al = a + f3i, where 
a and f3 are real numbcrs with f3 i= 0, then A2 = ~ = a - f3i. Hence in Equation 
(5) we have the exponential of a complex number: 

The tenn eal is a stamL1rd exponential function, but efJ il is quite different. since 
i = P . Fortunately, there is a simple way to express such an exponential 
function in temlS of more manageable functions. We use Euler's identity. 

e iO = cos(o) + i sin(&) . 

which we state without proof. By Euler's identity, we have 

ond 

= eal (cos( - f3f) + i si ne - f3t» 

= eal(cos(f3f) - i sin(f3t». 

It can be shown that the system given in (5) can be written so that the components 
x(tl and y(t) are linear combinations of eal cos(et) and eal sin(,Bt) with real co­
efficients. The behavior of the trajectories can now be analyzed by considering the 
sign of a, since f3 i= O. 

Complex eigenvalues: Al = a + fji and 12 = a - fj i with a = 0, fj t= 0 

For this case, x(t ) and y(t) arc linear combinations of cos (fJ t) and si n(,Bf) . It 
can be shown that the trajectories arc ellipses whose major and minor axe, are 
determined by the eigenvectors. (See Example I for a particular case.) The motion 
is periodic, since the trajectories are closed curves. The origin is a marginally 
stable cquilibrium point, since the trajectories through points near the origin do 
Hot move very faJ away. (Sec Figure 8.11.) 

Complex eigenvalues: Al = a + fj i and 12 = a - fj i with a. i= 0, fj ¥- 0 

- -TT-T-r-ff+-- x For this case. x(t) and y(t) are linear combinations of eal cos(,Bt) and eal sin(,Bt). 

FIGURE 8.21 

It can be shown that the trajectories are spirals. If a > 0, then the spiral goes 
outward, away from the origin. Thus the origi n is an unstable equilibrium point. If 
a < 0, then the spiral goes inward, toward the origin, and so the origin is a stable 
equilibrium point. The phase portrait is a collection of spi rals as shown in Figure 
8.21. with arrowheads appropriately affixed. 

The dynamical system in (2) may appear quite special. However, the experi­
ence gained from the qualitative analysis we have performed is the key to under-
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DEFINITION 8.3 

EXAMPLE 1 
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m Real Quadratic Forms 

I.n your precalculus and calculus courses you have seen that the graph of the equa­
tion 

(I) 

where a, IJ, c, and d arc real numbers. is a conic section centered al the origin of a 
rectangular Cartesian coordinate system in two-dimensional space. Similarly, the 
graph of the equation 

ax" + 2dxy + 2exz + hi + 2/yz + ez l = g. (2) 

where (I, b, c, d, e, f, and g are real numbers, is a quadric surrace centered at the 
origin of a rectangular Cartesian coordinate system in three-dimensional space . If 
a conic section or quadric surface is nOI centered at the origin, its equations are 
more complicated than those given in (I) and (2). 

The ide ntification of the conic section or quadric surface that is the graph 
of a given equation often requires the rotation and translation of the coordinate 
axes. T hese methods can best be understood as an application of eigenvalues and 
eigenvectors of matrice; , discussed in Sections 8.i and 8.8. 

The expressions on the left sides of Equations ( I) and (2) are examples of 
quadratic forms. Quadmtic forms arise in statistics, mechanics, and in other areas 
of physics: in quadratic programming; in the study of maxima and minima of 
functions of several variables: and in other applied problems. In this section we 
use our results on eigenvalues and eigenvectors of matrices to give a brief treatment 
of real quadratic forms in /I variables. In Section 8.7 we apply these results to the 
classification o f the conic sections. and in Section 8.8 to the classification of the 
quadric surfaces. 

Lf A is a symmetric matrix. then the function g: R" --'jo R' (a real-valued fun ction 
on R") defined by 

g(x) = x T Ax. 

where 

[

X, ] X 2 
x ~ 

;" 
is called a real quadratic form in the II variables x" X2 . .... X". The matrix A 
is called the matrix of the quadratic form g. We shall also denote the quadratic 
form by g(x). 

Write the left side o f (I) as the quadratic form in the variables X and y . 

Solution 
L" 

and A ~ [a 
b 
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EXAMPLE 2 

EXAMPLE 3 

DEFINITION 8.4 

DEFINITION 8.S 

Then the left side of ( I) is the quadratic form 

g(x) = xT Ax. 

Write the left side of (2) as the quadratic form in the variables x, y. and z. 

Solution 
LeI 

Then the left side of (2) is the quadratic form 

g(x) = x T Ax. 

The following expressions are quadratic forms: 

d 
b 

f 

(a) 3x 2 - 5xy _ 7y2 = [x ] -:2 '\ 
[ 

3 
' ][.] Y _~ - 7 Y 

• 

• 

Suppose now that g(x) = xT Ax is a quadratic form. To simplify the quadratic 
form, we change from the variables XI. X 2 • ...• x" to the variables )'1 .. )"2 •...• y,,, 
where we assume that the old variables arc related to the new variables by x = Py 
for some orthogonal matrix P. Then 

where B = p T A P. We shall let you verify [hat if A is a symmetric matrix. then 
p T A p is also symmetric (Exercise 25). Thus 

hey) = y T By 

is another quadrati c fo rm and sex ) = hey). 
This situation is important enough to formu late the follo wing definitions 

I f A and B arc /I x /I matrices. we say that B is congruent to A if B = p T A P for 
a nonsingular matrix P. 

In light of Exercise 26, " A is congruent to B" and " B is congruent to A ~ can 
both be replaced by "A and B are congruent." 

Two quadratic forms g and h with matrices A and B, respectively, arc said [0 be 
equivalent if A and B arc congruent. 
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The congruence of matrices and equivalence of forms are more general con­
cepts than the notion of simi larity. since the matrix P is required only to be nonsin­
gular (not necessarily onhogonal). We consider here the more restrictive situation, 
with P orthogonal. 

Consider the quadratic form in the variables x and y de fined by 

g(x ) ~ 2x' + 2xy + 2/ ~ [x y ] [~ ~ 1 [; 1 (3) 

We now change from the variables x and y to the variables x ' and y'. Suppose thai 
the old variables are related to the new variables by the equations 

I I [ , 

X = .Jjx - -./2-2 y and 
I 

y =- x 
./2 

(4) 

which can be written in matrix form as 

where the orthogonal (hence nonsinguiar) matrix 

We shall soon sec why and how this particular matrix P was selected. Substi­
tuting in (3), we obtain 

g(x) = xT Ax = (py)T A (Py) = yT p T APy 

~ [x ' y'l[~ _ ~l T [~ ~l[~ - ~l[:,: ] 
./2./2 ./2./2 

+' y'm m;},,(y) 
= 3x'2 + y'2 . 

Thus the matrices 

[~ n and [~ ~] 
are congruent, and the quadratic forms g and II are equivalent. • 
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We now turn to the question of how 10 select the matrix P. 

Theorem 8.9 Principal Axes Theon'm 

EXAMPLE S 

Any quadratic fonn in n variables g(x) = xT Ax is equivalent by means of an 
orthogonal matrix P lOa quadratic fonn, hey) = Alyf +A2yi + ... + AnY; . where 

y ~ [~;] 
Yo 

and AI. A2 . .... A" arc the eigenvalues of the matrix A of g. 

Proof 

If A is the matrix of g.then since A is symmetric, we know by Theorem 7.9 that 
A can be diagonalized by an orthogonal matrix. Thi s means that there exists an 
orthogonal matrix P such that D = p - I A P is a diagonal matrix. Since P is 
orthogonal, p -I = p T, so D = p T AP. Moreover. the elements on the main 
diagonal of D are the eigenvalues AI. A2, ... . A" of A, which are real numbers. 
The quadratic fonn h with matrix D is given by 

h(y) = Alyf + A2Yi + ... + A"y~: 

g and h are equivalent. 

Consider the quadratic fonn g in the variables x. )'. and : defined by 

g(x) = 2x2 +4/ +6),z-4::" . 

• 

Uetennine a quadratic lorm II of the ionn in 'rheorem ):j.Y to which g is equivalent. 

Solution 
The matrix of g is 

and the eigenvalues of A. are 

1'-1 = 2. ),2 = 5. and ),3 =-5 (verify). 

Let h be the quadratic fonn in the variables x', )", and :' defined by 

hey) = 2X'2 + 5/2 
_ 5:'2 . 

Then g and h are equivalent by means of some orthogonal matrix. Note that 
I~(y) = _ 5x ,2 + 2),,2 + 5Z12 is also equi valent to g. • 

Observe that 10 apply Theorem 8.9 to diagonalize a given quadratic form, as 
shown in Example 5. we do notl1eed to know the eigenvectors of A (nor the matrix 
P): we require only the eigenvalues of A. 
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To understand the significance of Theorem 8.9, we consider quadratic forms 
in two and three variables. As we have already observed at the beginning of this 
section, the graph of the equation 

g(x) = xT Ax = I. 

where x is a vector in R2 and A is a symmetric 2 x 2 matrix. is a conic section 
centered at the origin of the x),-piane. From Theorem 8.9 it follows that there is a 
Canesian coordinate system in the xy-ptanc with respect to which the equation of 
this conic section is 

{lX ,2 + b y'2 = I. 

where {/ and h arc real numbers. Similarly, the graph of the equation 

g (x) = xTAx = I. 

where x is a vector in R 3 and A is a symmetric 3 x 3 matrix, is a quadric surface 
centered at the origin of Ihe xyz Cancsian coordi nate system. From Theorem 8.9 
it follows that there is a Canesian coordinate system in 3-space with respect to 
which the equation of the quadric surface is 

ax,2 + hy,2 + CZ,2 = I. 

where (/ , h. and c are real numbers. The principal axes of the conic section or 
quadric surface lie along the new coordinate axes, and this is the reason for calling 
Theorem 8.9 the Principal Axes Theorem. 

Consider the conic section whose equation is 

g(x) = 2x2 + 2xy + 2/ = 9. 

From Example 4 it follows that this conic section can also be described by the 
equation 

which can be rewritten as 
x '2 )"2 
~ + ~ = l. 
3 9 

The graph of this equation is an ellipse (Figure 8.22) whose major axis is along the 
)" -axis. The major axis is of length 6; the minor axis is of length 2J3. We now 
note that there is a very close connection between the eigenvectors of the matrix 
of (3) and the location of the x '- and )" -axes. 

Since x = Py. we have y = p - 1 X = p T X = Px. ( P is onhogonal and. in 
this example, also symmetric.) Thus 

This means that, in terms of the x- and y-axes, the x '-axis lies along the vector 
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FIGURE 8.22 

y 

3 

and the y'-axis lies along the vector 

Now X l and X2 are the columns of the matrix 

which in tum arc eigenvectors of the matrix of (3). Thus the X'- and y'-axes lie 
along the eigenvectors of the matrix of (3). (See Figure 8.22.) • 

The situation described in Example 6 is true in general. That is, the principal 
axes of a conic section or quadric surface lie along the eigenvectors of the matrix 
of the quadriltic fO f lLl. 

Let g(x) = XT Ax be a quadratic form in /I variables. Then we know that g is 
equivalent to the quadratic fonn 

where AI . .1... 2 .... , .1.../1 are eigenvalues of the symmetric matrix A of g, and hence 
are all real. We can labclthe eigenvalues so that all the positive eigenvalues of A, if 
any, are listed first, followed by all the negative eigenvalues, if any, followed by the 
zero eigenvalues, if any. Thus let AI . .1...2 . . ... Ap be positive, Ap+l. A,}+!, .... Ar 
be negative. and Ar+ l . Ar+2 . .. .. .1.../1 be zero. We now define the diagonal matrix 



H whose entries on the main diagonal are 

I 
;r;. 

I 
.;>;. 
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I 

J - A, . l. l.. I. 

with /I - r ones. Let D be the diagonal matrix whose entries on the main diagonal 
are AI. 1.2 . .. .. AI" 1.1'+1 . .. .. At. A,+I . .. . . A,,: A and D are congruent. Let DI = 
H T D H be the matrix whose diagonal elements are I. [ .. .. . I. - [ . ... . - I . 0, O . 
. . . , 0 (p ones, r - p - I negative ones, and /I - r zeros); D and DI are then 
congruent. f7rom Exercise 26 it follows that A and DI arc congruent. In terms of 
quadratic forms, we have establi shed Theorem 8. [0. 

Theorem 8. 10 A quadratic form g(x) = xT Ax in /I variables is equi valent to a quadratic form 

EXAMPLE 7 

• 
It is clear that the rank of the matrix DI is r. the number of nonzero entries 

on its mai n diagonal. Now it can be shown (see J. L. Goldberg, Matrix Theory 
with Applir(Jtinll.l", Ncw York: Mcfir:lw- Hill , Inc .. l1N1 ) Ihar crme rllcnr mMriccs 
have equal ranks. Since the rank of DI is r, the rank of A is also r. We also 
refer to r as the rank of the quadratic form g whose matrix is A. It can be shown 
(see the book by Goldberg cited earl ier) that the number p of positive terms in the 
quadratic form h of Theorem 8.10 is unique: that is, no matter how we simplify 
the given quadratic form g to obtain an equivalent quadratic fo rm. the latter will 
always have p positive terms. Iknce the quadratic form II in Theorem 8.10 is 
unique; it is often called the canonical fo rm of a quadratic form in /I variables. 
The difference between the number of positive eigenvalues and the number of 
negati ve eigenvalues is s = p - (r - p ) = 2p - r and is called the signat ure 
of the quadratic form. Thus. if g and II are equi valent quadratic forms, then they 
have equal ranks and signatures. However. it can also be shown (see the book by 
Goldberg cited earlier) that if g and II have equal ranks and signatures, then they 
are equi valent. 

Consider the quadratic fonn in XI. Xl, x3. given by 

g(x) = 3xi + 8X2X 3 - 3x; 

The eigenvalues of A are (verify) 

In thi s case A is congruent to 

o 
- 5 
o 

o 
3 
4 

0] [,,] 
4 Xl. . 

- 3 X3 
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If we let 
1 

.j5 

H ~ (] 

0 

then 

0 

1 

.j5 

(] 

(] 

(] 

(] 

- I 
o 

and A are congruent, and the given quadratic form is equivalent to the canonical 
fonn 

hey) = y~ - yi · 

The rank of g is 2, and ~ince I' = I, the signature s = 21' - r = O. • 
For a final application of quadratic forms we consider positive definite ~ym­

metric matrices. We recail that in Section 5.3, a symmetric 1/ x 1/ matrix A was 
called positive definite jf xT Ax > 0 fo r every nonzero vector x in R" . 

If A is a symmetri ~ matrix, then g(x) xT Ax is a quadratic form. and by 
Theorem 8.9, g is equi\oalcnt to II, where 

hey) = A,yf + A2Y5 + ... + Ap)'; + AP+l )';+1 + Ap+2)';+2 + ... + AtY; ' 

Now A is positive definite if and only if hey) > 0 for each y i= O. However, this 
can happen if and only if all summands in hey) are positive and r = II. These 
remarks have established the following theorem: 

Theorem 8. 11 A symmetric matrix A is positive definite if and only if all the eigenvalues of A 

-~- . 
Key Terms 
Conic seclion 
Quadric surface 
Quadratic fonn 
Matrix of a quadralic form 

i :t .W Exercises 

nite. 
A quadratic fo rm is then called positive defi nite if its matrix is positive defi-

Congruent matrices 
Equivalent quadratic fonns 
Principal axes theorem 
Canonical form 

Signalure 
Positive defin ite matrix 

III Exercise.l· I alld 2. write each quadratic forlll as xT Ax. 
where A is a symmetric matrix. 

(e) 3x~ + xi - 2xi + X j X2 - X jX3 - 4X2-1:} 

2. (a) xi - 3xi + 4xi - 4X jX2 + 6X2X3 

(b) 4x2 - 6xy - 2)'~ l. (a) - 3.t! + 5x y _ 2 )' 2 

(b) 2x~ + 3X j X2 - 5xjx) + 7X!-{3 (e) - 2IjX2 + 4xjx) + 6X2X l 



I II £ll'rcisl':f J alld 4,for each gil'l'l1 symml'lric mm,.ix A,filld 
a diagonal mmrix D Ihal is cOllgruenllo A. 

n 0 

:J 3. (a)A= 

(b ) A = [: :] 
[~ 

2 

n (e) A = 0 
2 

[~ 
4 

~] 4. (a)A= - 3 
0 

(b) A = [: 2 iJ 
1<) A ~ [~ 

0 

~] 1 
0 

I II £lerciseJ 5 Ihrollgh /0, filld a quadralic/onll of the Iype in 
1J,eorem S. 9 thai i.I' eqllil'alelll /() Ihe gil'ell quadratic form. 

5. 2X2 _ 4x y _ )'2 

7. IXlxJ 

6 . . l~ + xi + xi + 2.l2Xl 

8. IIi + 2xj + 4.12.1') 

9. - 21~ - 4.l i + 4xj - 6X2Xl 

10. 6.1,.12 + 8.l!x) 

I II £lercise.\· II through 16.filld a q!wdralic/orm o/Ihl' t)1Je ill 
1J,eoremS. /0 Ilwl is equil'a/I'llt 10 Ihe girell quadratic form. 

II. h! + 4xy+2y2 

12. x~ + xi + xi + lXlx! 

13. h~ + 4xi + 4x; + 10x!xl 

14. h~ + 3xi + 3xj + 4X2X] 

15. - 3x~ + 2Ii + 2xi +4x2Xl 

16. - 3x~ + 5xi + 3xj - 8x,x] 

17. Let g(x) = 4.li + 4xJ - IOx!x] be a quadratic form in 
th ree variables. Find a quadratic form of the type in The­
orem 8.10 that is equivalent tog. What is the rank of 8? 
What is the signature of g? 

18. Let g(x) = 3.1~ - 3.1; - 3.1; +4x!x) be a quadratic form 
111 three variables. Find a quadratic form of the type in 
Theorem 8.10 that is equivalent to M. What is the rank of 
g? What is the signature of g? 
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19. Find all quadratic forms g(x) = xr Ax in two variables 
of the type described in Theorem 8.10. What conics do 
the equations xr Ax = I represent? 

20. Find all quadratic forms g(x) = xr Ax in two variables 
of rank I of the type described in Theorem 8.10. What 
conics do the equations xr Ax = I represent? 

I II Exercise~' 21 alld 22. which o/Ihe girell quadratic /onll:f ill 
Ihree IYIriable.\· are eqllilYl/elll? 

21 ·81(X) = xr+ x i+ x j+ 2x].t, 
g!(x) = 2.1; + 2li + 2X!-l l 
g](x) = 3x; - 3xi + 8.1'2.1] 
g~(x ) = 3xi + 3xi - 4X2X ) 

22. g, (x) = x; + 2X,Xl 
g2(X) = 2~~ + 21; +.l; + 21 [X2 + 211X] + 21!X] 
g](x) = 2X,X2 + 2X,X3 + 2X2X3 
g~(x) = 4x~ + 3x? + 4.1'; + 10X ,.I] 

I II t.'J:l'rcises 23 alld 24, which of Ihl' gil't1l! I/Iairices are posi­
liI 'e defillili'? 

23. (a) 

«) 

(e) 

24. (a) 

«) 

[ 
2 -Il 

-I 2 

[1 
1 

3 
o 

[; ; 1 
[ 

0 -Il 
- I 0 

[~ 
o 

2 

(e) [~ 
o 
1 

o 
o 

(b) [~ ~J 

(d ) [~ ~ -n 

(b) [: 

n (d ) [: 

L~] 

: 1 
4 
7 
4 

25. Prove that if A is a symmetric matrix. then pT A P iil also 
symmetric. 

26. If A. B. and C are II x 11 symmetric matrices. prol'e the 
following: 

(a) A is congruent to A. 

(b ) If B is congruent 10 A. then A is congruent to B. 

(e) If C is congruent to Band B is congruent to A, then 
C is congruent to A. 

27. Prove that if A is symmetric. then A IS congruent to a 
diagonal matrix D. 
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[
" b 1 . . 28. Let A = b d be a 2 x 2 symmetnc matnx. Prove 29. Prove that a symmetric matrix A is positive definite if 

and only if A = 1,7 P for a nonsingular matrix f>. 
lhat A is positive definite if and only if det(A) :> 0 and 
il :> O. 

m Conic Sections 

In this section we discuss the classification of the conic sections in the plane. A 
quadratic equation in the variables x and y has the form 

ax ! + 2bxy + cl + dx + e} + f = D. (I) 

where a, b, c, d, e, and f are real numbers. The graph of Equation (I) is a conic 
section. a curve so named because it is produced by intersecting a plane with a 
ri ght circular cone that has two nappes. In Figure 8.23 we show that a plane cuts 
the cone in a circle. ellipse. parabola. or hyperbola. Degenerate cases of the conic 
sections are a point. a line, a pair of lines, or the empty set. 

Ellipse Circle P&rabola Hyperbola 

FIGURE 8 .23 Nondegenerate conic sections. 

EXAMPLE 1 

The nondegenerate conics are said to be in standard position if their graphs 
and equat ions arc as give n in Figure 8.24. The equation is said to be in stand ard 
form . 

Identify the graph of each given equation. 

(a) 4x 2 + 2Sy" - 100 = 0 

(b) 9 y2 - 4x2 = - 36 

(c) x 2 + 4y = O 
(d) y' ~ 0 

(e) x" + 9/ + 9 = 0 
(I) x 2 + y 2 = 0 
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)' 

(0, b) 

( ";.(ot);::=f=3t(,~,.mo/ 
(0, -b) 

Ellip,e. 
.r ,,1 
~+/;l = l 

(I > b > () 

Parabola. 

X, = (I)' 

(I > O 

y 

-----T--- , 

Parabola. 

)'1 = ax 
, < 0 

)' 

(0, b) 

----,+Hc-c-- , 
(-(l,O) (0,0) 

(0, -b) 

Ellipse. 
Xl \.2 

~+bz = l 
b > a > O 

Parabola. 

X, '" a)' 

{I < O 

--,:-t-+--+---c::-- , 

Hyperbola. 

x' \.2 

;;I - hI "' ] 
(1 > O,b > O 

FIGURE 8.24 Conic sections in standard position. 

Solution 
(a) We rewrite the given equation as 

4 2 25 2 100 
- x + - y 
100 [00 [00 

)' 

(0, II ) 

---,+--- 1----1-"" 
(-11,0) (a,O) 

(0, -a) 

Circle . 

. r >'" 
;:;I + ~ " I 

y 

---1[----- , 

Parabola. 

Y' '" ax 
(I > 0 

)' 

(0, b) 
-----1---' 

(0, -b) 

Hyperbola. 

1,1 X' 

~ - ;;r = l 

a > O,b > O 
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FIGURE S.2S 

whose graph is an ellipse in standard position with a = 5 and b = 2. Thus the 
x-intercepts arc (5.0) and (- 5, 0). and the y-intercepts are (0. 2) and (0. - 2) . 

(b) Rewriting the given equation as 

we see that its graph is a hyperbola in standard position with a = 3 and b = 2. 
The x-intercepts are (3.0) and (-3. 0). 
(c) Rewriting the given equation as 

x 2 = - 4)'. 

we sec that its graph is a parabola in standard position with a = - 4. so it opens 
downward. 
(d) Every point satisfying the given equation must have a y-coordi nate equal to 
zero. Thus the graph of this equation consists of all the points on the x-axis. 
(e) Rewriting the given equation as 

x 2 +9i = - 9. 

we conclude that there are no points in the plane whose coordinates satisfy the 
given equation. 
(f) The only point satisfying the equation is the origin (0. 0). so the graph of this 
equation is the single point consisting of the origin. • 

We next tum to the study of conic sections whose graphs arc not in standard 
position. First, notice that the equations of the conic sections whose graphs are in 
standard position do not contain an xy-tcrm (called a cross-product term). If a 
cross-product term appears in the equation, the graph is a conic section that has 
been rotated from its standard position [sec Figure 8.25(a)]. Also, notice that none 
of the equations in Figure 8.24 contain an x2-term and an x-term or a i-term and 
a y-term. If either of these cases occurs and there is no xy-term in the equation. 
the graph is a conic section that has been translated from its standard position [sec 
Figure 8.25(b)]. On the other hand. if an xy-term is present, the graph is a conic 
section that has been rotated and possibly also translated [sec Fi gure 8.25(c)]. 

" 

(a) A parabola that has 
been rOiated. 

---i----------- , 

(b) An ellipse that has 
been tmnslated. 

L 

(e) A hyperbola that has occn 
rotated and translated. 
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To identify a nondegencrate conic seclion whose graph is not in standard posi­
tion, we proceed as follows: 

l. If a cross-product term is present in the given equation. rotate the xy­
coordinate axes by means of an orthogonal linear transformation so that 
in the resulting equation the xy-tenn no longer appears. 

2. If an x)'-term is not present in the given equation, but an xl-tenn and an 
x-term. or a i-term and a y-term appear, translate the xy-coordinate axes 
by completing the square so that the graph of the resulting equation will be 
in standard position with respect to the origin of the new coordinate system. 

Thus, i f an xy-term appears in a given equation. we first rotate the x)'-coor­
dinatc axes and then, if necessary, translate the rotated axes. I.n the next example, 
we deal with the case requiring onl y a translation of axes . 

Identi fy and sketch the graph of the equation 

x 2 - 4/ + 6x + 16)' - 23 = 0. (2) 

A lsu, write its t quatiolJ ill staudard fOJlu. 

Solution 
Since there is no cross-product term, we need onl y translate axes. Completing the 
squares in the x- and y-terms. we have 

Letting 

x 2 + 6x + 9 - 4(/ - 4)' + 4) - 23 = 9 - 16 

(x+ 3)2 - 4(y - 2)2 = 23+9 - 16 = 16. 

.\ '= .\ +3 aud ),'=),- 2 . 

we can rewrite Equation (3) as 

X , l _ 4), ,2 = 16. 

or in standard form as 

(3) 

(4) 

If we translate the x),-coordinate system to the x ' y'-coordinate system. whose ori­
gin is at (- 3.2), then the graph of Eq uation (4) is a hyperbola in standard position 
with respect to the x ' )"-coordinate system (sec Fi gure 8.26). • 

We now (urn to the problem of ident ifying the graph of Equation ( I ). where 
we assume that b t- 0; that is, a cross-product term is present. This equation can 
be written in matrix form as 

xT Ax + Bx + f = O. (5) 

where 

x ~ [;, 1 A ~ [a 
b 

and B = [d e]. 
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FIGURE 8.26 

)" y 

• , , , , , , , , 
, , , , 

(-3,:2) 
._--------- ------.---, 

_r -4y! +6x+16y -23 - 0 

------------ -. .r' 

--------,c----+' --~,,---------- . 

Since A is a symmetric matrix. we know from Section 7.3 that it can be diagonal­
ized by an orthogonal matrix P. Thus 

where Al and A2 are the eigenvalues of A and the columns of P are Xl and X2, 
orthononnal eigenvectors of A associated with Al and A2, respectively. 

Letting 

X = Py. where y = [>l 
we can rewrite Equation (5) as 

( py)T A( Py) + B(Py) + f ~ 0 

yT(p T AP)y + B (Py) + J = 0 

[ X ' y' ] [A' o 0] [X'] A2 )" + B(Py) + f = 0 (6) 

(7) 

Equation (7) is the resulting equation for the given conic section, and it has no 
cross-product tenn. 

As discussed in Section 8.6, the x ' and )" coordinate axes lie along the eigen­
vectors Xl and X2. respectively. Since P is an orthogonal matrix, det( P) = ± I, 
and if necessary, we can interchange the columns of P (the eigenvectors Xl and 
X2 of A) or multiply a column of P by - I so that det(P ) = [. As noted in Sec­
tion 7.3, it then follows that P is the matrix of a counterclockwise rotation of R2 
through an angle () that can be detenni ned as follows: If 
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then 

() = tan-1 (~2!) . 
,\ II 

a result that is frequently developed in a calculus course. 

Identify and sketch the graph of the equation 

5x2 
- 6xy + 5l - 24hx + 8./2)' + 56 = O. 

Write the equation in standard form. 

Solution 
Rewriting the given equation in matrix form, we obtai n 

We now find the eigenvalues of the matrix 

[ 5 -3] 
A = - 3 5' 

Thus 

1)./2 - A I = [ A ~ 5 A ~ 5 ] 

= (.l.. - 5)(.l.. - 5) - 9 = ).? - lOA + [6 

~ (A - 2)(A - 8). 

so the eigenvalues of A are 

AJ = 2. )..2 = 8. 

Associated eigenvectors arc obtained by solving the homogeneous system 

(). i 2 - A)x = o. 

Thus. for A! = 2, we have 

[-3 3] 
3 - 3 x = O. 

so an eigenvector of A associated with AI = 2 is 

For >"2 = 8, we have 

[~ ~Jx = o. 
so an eigenvector of A associated with)..2 = 8 is 

(8) 
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Nonnali zing these eigenvectors, we obtai n the orthogonal matrix -[~ -~l P - I [. 
- -

Ji Ji 

Then 

PTA P = [~ ~l 
Letting x = Py, we write the transformed equation for the given conic section, 
Equation (6), as 

2X'2 +8),,2 _ 16x' +32),' + 56=0 

X ,2 + 4yI2 _ 8x' + 16y'+28=0. 

To identify the graph of this equation, we need to translate axes, so we complete 
the squares, which yie lds 

(x' _ 4)2+ 4(y' +2)2 +28 = 16 + [6 

(x' - 4)2 + 4(y' + 2)2 = 4 

("x,_' _~4),-2 (y' + 2)2 - + = I. 
4 I 

(9) 

Letting x " = x ' - 4 and )'" = y' + 2. we find thaI Equation (9) becomes 

(10) 

whose graph is an ellipse in standard position with respect to the x "y" -coordinate 
axes, as shown in Figure 8.27, where the origin of the x " y"-coordinate system is 
in the x 'y'-coordinate system at (4. - 2), which is (3h. h) in the xy-coordinate 

Y y" 
.t o, 

)+-}'--- (4. - 2) in .t'y'-coordinate sy,tcm 

(3.fi . ./2) in xy-coordinatc sy,tcm 

FIGURE 8 .27 ~x' - OX)" + ~)" - 24./lx + 8.,/2 y + ~6 = O. 



Key Terms 
Quadratic equation 
Coni; section 
C ircle 

l :fM Exercises 

8.7 Conic Sections 551 

system. Equation (10) i; the standard form of the equation o f the elli pse. Since the 
eigenvector 

the xy-coordinate axes have been rotated through the angle e, where 

so e = 45°. The x'- and y'-axes lie along the respective eigenvectors 

as shown in Figure 8.21. • 
The graph o f a given quadratic equation in x and y can be identified from the 

equation that is obtained alier rotati ng axes, that is, from Equation (6) or (7). The 
identification o f the conic section given by these eq uations is shown in Table 8. I . 

Etlipse 
Parabola 
Hyperbola 

Ellipse Hyperbola 

Standard position 
Standard form 
Rotat ion of axes 

PXIICIIY aile oj 
AI. A2 1s Zero 

Parabola 

III Exercises Ithrollgh 10. idelltify the graph of each equation. 7. 4x2+4),2_9 =0 

I. x! +9y! - 9 =0 

3. 25y2 _ 4x2 = tOO 

5. h 2 _ y! = 0 

2. 

4. 

6. 

.r! = 2)" 

1- 16 =0 

.1' =0 

8. - 25x 2 + 9)'2 + 225 = 0 

9. 4x 2+y2=0 

1O. 9x 2 +4y2+36=0 
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III Exercise.I' II Ihrough 18, lram/ale aW.I' 10 idelllif)' Ihe 
graph of each eqllalion and wrile each equalion ill slalldard 
form 

20. x y = I 

21. 9x1+y1 +6x),=4 

22. x1+yl+4xy =9 
II. xl +2)'2_4x_4)'+ 4=0 

12. x2 -l +4x - 6)' -9 = 0 

13. xl + ),2 _ Sx - 6y =0 

14. x l -4.{+4y +4=O 

15. yl_4y =0 

16.4x2 +5),1_30y+25 =0 

17. x1 +i - 2x - 6y +IO=0 

IS. 2x 2+y1 - 12x - 4y +24=0 

23. 4x 2 + 4yl - IOx y = 0 

24. 9x 2 + 6),2+4x), - 5=0 

III Exercise.I' 25 lhlVugh 30. idelllify Ihe graph of each eqll(/­
lion alld wrile each equalioll ill slalldard foml 

25.9x 2 +),,'+ 6x), - IO.;lox + 10,fiO), +90=0 

26. 5x2 + 5)'1 - 6x )' - 30Jix + ISJi y + S2 = 0 

In Exercise.f 19 Ihmugh 24. mlale axes 10 idemify Ihe graph 
of each equalioll alld wrile each eljUlllioll ill .\'I(lIIdard form. 

27. 5x 2 + IIxy - 12mx = 36 

28. 6x 2 +9yl_4xy - 4J5x - ISJ5 y =5 

29. x 2 - yl + 2J3 x y +6x = 0 

30. SX2+ Sy1_ 16xy +33J2x -3 1,J2 y +70=0 

m Quadric Surfaces 

In Section 8.7 conic sections were used to prov ide geometric models for quadratic 
forms in two variables I,n this section we investigate quadratic forms in three 
variables and use particular suri:1ccs called quadric surfaces as gL"Ometric models. 
Quadric surfaces are often studied and sketched in analytic geometry and calcu lus. 
Here we use Theorems 8.9 and 8.10 to dcvelop a classification scheme for quadric 
surfaces . 

A second-degree polynomial equation in three variables x, y. and z has the 
form 

(U·
2 +bi +cz2 +2dxy + 2exz + 2fyz + gx +hy + iz = j . (\) 

where coeffi cients {/ through j are real numbers with {/ . b . .. . . f not all rero. 
Eq uation (I) can be wrillen in matri x fo rm as 

where 

d 

h 

f 

xT Ax + Bx = j . (2) 

We call xT Ax the quadratic form (in three variables) associated with the 
second-degree polynomial in ( \). As in Section 8.6, the symmetric matrix A 
is called the matrix of the quadratic fo rm. 

The graph of ( \ ) in R3 is called a quadric surface. As in the case of the 
classification of conic sect ions in Section 8.7. the dassilication of ( \ ) as to the 
type of surL1cc represell tcd dcpends on the matri x A. Using the idcas in Section 
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8.7, we have the following strategies 10 determine a simpler equation for a quadric 
surL1ce: 

l. If A is not diagonal, then a rotation of axes is used to eliminate any cross­
product terms xy, X Z , or yz . 

2. If B = [g II i] i= 0, then a translation of axes is used to eliminate any 
first-degree terms. 

The res ulting equation will have the standard form 

or in matrix form. 

(3) 

whc« y ~ [::: ]. k i, ,"mc ,co, COO"""I, ood C i, 0 diogooo' motei, wilh diogo­

nal entries 1'1, A2 . )..}, which are the eigenvalues of A . 
We now turn to the classification of quadric surfaces. 

Let A be an /I xn sym metric matrix. The inertia of A , denoted In(A), is an ordered 
triple of numbers 

(pos, neg, zcr), 

where pos, neg, and zer are the number of positive.. negative, and zero eigenvalues 
of A, respectively. 

Find the inertia of each of the following matrices: 

A? = [2 - , 
Solution 

2 

o 
2 

We detertnine the eigenvalues of each of the matri~es . It follows that (verify) 

det ().. I! - A 2) = (A - l)(A - 3) = 0, 

so AI = 0, A2 = 4, and 
In(A!) = ( I. D. I). 

sOA! = 1,A2=3.and 
In(A2) = (2 . D. 0). 

so AI = A2 = - 2. A} = 4, and 
In(A}) = ( I. 2. 0). • 

From Section 8.6, the signature of a quadratic form xT Ax is the difference be­
tween the number of positive eigenvalues and the number of negative eigenvalues 
of A. l.n terms of inertia, the signature ofxT Ax is s = pos - neg. 
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EXAMPLE 2 

In order to usc inenia for classification of quadric surL1ces (or conic sections), 
we assume that the eigenvalues of an /I x /I symmetric matrix A of a quadratic 
form in /I variables arc denoted by 

AI ::: ... ::: Apos > 0 

Apo.+1 S .. . S Apos+neg < 0 

Apos+n~g+1 = ... = A" = O. 

The largest positive e igenvalue is denoted by AI and the smallest one by Apos. 
Wc also assumc that A1 ;.. 0 and j :: 0 in (2). which eliminatcs rcdundant and 
impossible cases. For e(ample, if 

A ~ [ - ~ -~ ~]. B ~ [0 0 0]. "nd j ~ 5. 
o 0 - 3 

then the second-degree polynomial is _ x 2 
- 21 - 3z2 = 5, which has an empty 

solution SCI. That is, the surface represented has no points. However, if j = - 5. 
then the second-degree polynomial is _ x 2 

- 2i - 3z2 = - 5, which is identical 
to x 2 + 2)'1 + 3z2 = 5. The assumptions AI :.>- 0 and j :::: 0 avoid such a redundant 
representation. 

Consider a quadratic form in two variables with matrix A, and assume that AI > 0 
and f ::: 0 in Equation (I) of Section 8.7. Then there arc only three possiblccases 
for the inertia of A. which we summarize as follows: 

I. In(A) = (2. O. 0); then the quadratic form represents an ellipse. 

2. In (A) = (I. 1.0): then the quadratic form represents a hyperbola. 
3. In(A) = (I , o. I); then the quadratic form represents a parabola. 

This classification is identical to that given in Table 8.2 later in this section, laking 
the assumptions into account. • 

Note that the classification of the conic sect ions in Example 2 does not di stin­
guish between special cases within a particular geometric class. For example. both 
y = x 2 and x = y2 have inertia (1. 0. I). 

Before classifying quadric surfaces, using inertia, we present the quadric sur­
faces in the standard fonns mct in analytic geomctry and calculus. (In the follow­
ing, (/. b, and c are positive unless otherwise designated.) 

Ellipsoid (See f7i gurc 8.28.) 

x 2 )'2 Z2 

a 2 + b2 + ~ = 
The special case {/ = b = c is a sphere. 

E lliptic P a r a boloid (Sec Fi gure 8.29.) 
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~"---y 

FIGURE 8 .28 Ellipsoid. FIGURE 8 .29 Elliptic 
paraboloid. 

Xl >"" 
;;; + p- =I _ .-!-,- .:: , , , , , , (- <I. O. 0) 

, , _ .&.."' .,. ~ 

(0. - b. O)t::;:·~, :::::t~(ol.". b.b.<iO~)· Y 
(<I .iO. O) , , 

" 
, , , 

FIGURE 8.30 Elliptic cylinder. 

A degenerate case of a parabola is a line, so a degenerate case of an elliptic 
paraboloid is an elliptic cylinder (see Figure 8.30), which is given by 

Hyperboloid of One Sheet (See Fi gure 8.31.) 

\2 )2;:2 \: 2 y2;:2 Xl)"2;:2 

a2 + /)2 - "2 = I. {l2 - /)2 + "2 = I - a 2 + b2 + "2 = 

A degenerate case of a hyperbola is a pair of lines through the origi n; hence a 
degenerate case of a hyperboloid of one sheet is a cone (see Figure 8.32), which is 
given by 

..}----y 

x 

FIGURE 8 .31 Hyperboloid of one sheet. FIGURE 8.32 Cone. 
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Hyperboloid of Two Sheets (See Fi gure 8.33.) 

Hyperbolic Paraboloid (See Figure 8.34.) 

r '----,+ -- )' 

FIGURE 8.33 Hyperboloid of two 
sheets. 

FIGURE 8.34 Hyperbolic paraboloid. 

A (Iegenemre case of a parahola is a line. so a oegenerare case of a hypcroolic 
paraboloid is a hyperbolic cylinder (see Fi gure 8.35). which is given by 

" 
( 

(0. - (D.h.D) 

FIGURE 8.3S Hyperbolic cylinder. 

y' x' 
--- =J 
h' ,,' 
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Paraholic Cylinder (See Fi gure 8.36.) One of a or b is not zero. 

x 2 = ay + bz , 1,2 = ax + by 

For a quadratic fo rm in three variables with matrix A. under the assumptions 
Al > 0 and j :::. 0 in (2), there are exactly six possibilities fo r the inenia of A. 
We present these in Table 8.2. As with the conic section classification of Example 
2, the classification of quadric surfaces in Table 8.2 docs not distinguish between 

- _ -1-_0 ), special cases within a particular geometric class. 

FIGURE 8 .36 Parabolic 
cylinder. 

EXAMPLE 3 

EXAMPLE 4 

In(A) = (3. O. 0) 

In(A) = (2. O. I) 

In(A) = (2. 1.0) 

In(A)=(1.2.0) 

In(A) = ( I. I. I) 

In{A)= ( 1.0.2) 

Ell ipsoid 

Ell iptic paraboloid 

Hyperboloid of one sheet 

Hyperboloid of two sheets 

Hyperbolic paraboloid 

Parabolic cylinder 

Classify the quadric surface represented by the quadratic form xT Ax = 3, where 

Solution 

2 

o 
2 

From Example I we have In(A) 
hyperboloid of two sheets. 

Classify the quadric surface given by 

( I . 2. 0), and hence the quadric surface is a 

• 
2x l +4/ - 41,2 +6yz - 5x+3y = 2. 

Solution 
Rewrite the second-degree polynomial as a quadratic form in three variables to 
identify the matrix A of the quadratic form. This gives 

h [~ ~ -n 
Its eigenvalues are AI = 5, A2 = 2, and A3 = - 5 (verify). Thus In(A) = (2. 1.0). 
and hence the quadric suri:1ce is a hyperboloid of one sheet. • 

It is much easier to classi fy a quadric surface than to transform it to the stan­
dard forms that are used in analytic geometry and calculus. The algebraic steps fol­
lowed to produce an equation in standard form from a second-degree polynomial 
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EXAMPLE S 

equation ( I) requ ire, in general. a rotation and translation of axes, as mentioned 
earlier. The rotation requires both the eigenvalues and eigenvectors of the matrix 
A of the quadratic lonn. The eigenvectors of A are used to fo rm an orthogonal 
matrix P so that det( P ) = I, and hence the change o f variables x = Py represents 
a rotation. The resulting associated quadratic fo rm is that obtained in the principal 
axes theorem. Theorem 8.9; that is, all cross-pnxluct terms are eliminated . We 
illustrate this with the next example. 

For the quadric surface in Example 4, 

xI"A x + [ - 5 3 O] x = 2. 

determine the rotation so that all cross-product terms are eliminated. 

Solution 
The eigenvalues of 

[' ! 0] 
~ 3-! 

AJ = 5. ),, 2 = 2, AJ =-5 

and associated eigenvectors are (verify), 

The eigenvectors Vi are mutually orthogonal, since they correspond to di stinct 
eigenvalues of a symmetric matrix (see Theorem 7.7). We normalize the eigen­
vectors as 

and define P = [ " I U2 Uj]. Then det(P) = I (verify), so we let x = Pyand 
obtain the representation 

(Pyj' A ( Py)+ [ - 5 3 0] Py ~ 2 

yT (p T A P )y + [ - 5 3 0] Py = 2. 

Si,,, p' A P ~ D , " d lcu"g Y ~ [~: ], we h"e 

o 
2 
o 

- 5 ~3~lY = 2 
jjO 
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[if det( P ) i= L we redefine P by reordering its columns until we get its determi­
nant to be 11, or 

" " I' 9 I I 3 I 5.x - + 2)' - - 5z - + -- x - 5)' + -- z = 2. 
M M • 

To complete the transfomlation to standard form, we introduce a change of 
variable 10 perform a translation that eliminates any fi rst-degree temlS. Alge­
braicall y, we complete the square in each of the three variables. 

Continue with Example 5 to eliminate the fi rst-degree terms. 

Solution 
T he last expression fo r the quadric surface in Example 5 can be written as 

" 9 I I' , " 3 I 5x - + - - x + 2)' - - 5)' - 5z - + -- z = 2. 
M M 

Completing the square in each variable, we have 

( 9)' ( ')' ( 3)' = 5 x' + IOFo + 2 / - 4" - 5 z'- IO./TO 

405 50 45 5485 
= 2 + lOoo + T6 - 1000 = l OO{]" 

Letting 

II , 9 
x = x +---, 

10M 
" , 5 

Y = }' - 4' 
II I 3 

? =z----
• 10M' 

we can write the equation of the quadric surface as 

T his can be written in standard form as 

\ ,, 2 ),"2 : ,,2 

5.485 + 5A85 - 5.485 = I. -,- --,- --,-

Ellipse 
Hyperbola 
Parabol<l 
Ellipsoid 
Elliptic cylinder 
Elliptic paraboloid 

Hyperboloid of one sheet 
Hyperboloid of two sheets 
Cone 
Hyperbolic parnboloid 
Degenerate case 
Parabolic cylinder 

• 
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1 :' :1 Exercises 

III £u!rcise.\' Ilhnll/gh 14. use inertia 10 da.Hify the quadric 
surface giren by each equa/ion. 

I. x2 + y2 +2:2 - 2xy - 4x t - 4yz+ 4x = 8 

2. x1+3y2+ 2z2 - 6x - 6y +4z - 2=0 

3. : =4xy 

4. x2 + y2 + Z2 +2x)" =4 

5. x2 _y =0 

6. lx y +z =0 

7. 5)"2+ 20y + <: -23= 0 

8. x2 + i +2:2 _ 2xy +4xz+4yz = 16 

9. 4x 2+ 9y2+ z2+8x - 18y- 4z- 19=0 

10. yl_ Z2 - 9x - 4y +8Z- 12=0 

II. x2+4/+ 4x + 16y- 16z- 4=0 

12. 4x 2 - y2 +Z l - 16x +8y- 6z +5 = 0 

13. x2 - 4z2 - 4x + 8z =0 

14. !x2 + 2y2 + 4z2 + lxy - 2xz - 2yz + 3x -
5y + z = 7 

III Exercixn 15 thnmgh 28. da.I'.\'ify the quadric ,miface !iil'en 
by each equation alld de/ermine it!, nandard fonl!. 

15. x 2+2y2+ 2z2+2yz = 1 

16. x 2+ i +2;:1 _ 2xy +4x z +4yz = 16 

17. 2I~ - 2;: - 4.1'- 4: +8 = 0 

18. x 2 +3y2 + 3z2 - 4y~ = 9 

19. Xl + y2 + ;:2 + 2Iy =g 

20. _ x 2 - y2 -z2+ 4x), + 4x: +4),z = 3 

21. lx2 + 2y2 +4z2- 4xy- 8xz- 8)"z +8x=15 

22. 4x2 + 4 y2 + 8z2 + 4x y - 4xz - 4yz + 6x -
1O)"+ 2z = ~ 

23. 2y2+ 2z2+4y<:+~ x+4=0 

24. x 2 + y2 - 22 2+ 2xy + 8x: + 8yz + 3x + : =0 

25. _ x 2 _ y2 _Z2 + 4x ),+ 4x: +4yz+ -Ji x -:72)' = 6 

26. lx 2+ 3yl +3:1 - 2/ z +2x + :n Y + ~z = ~ 

27. x 2+ yl_;:2_ lx _ 4y_ 4z+ 1 =0 

28. _ 8x2 - 8yl + 10;:2 + 32xy - 4xz - 4yz = 24 



CHAPTER 

MATLAB for Linear 
Algebra 

_ Introduction 

MATLAB is a versatile piece of computer software with linear algebra capabili­
ties as its core. MATLAB stands for MATrix LABoratory. It incorporates ponions 
of professionally developed projects of quality computer routines for linear alge­
bra computation. The code employed by MATLAB is written in the C language; 
however, many of the routines and functions are v.-ritten in the MATLAB language 
and arc upgraded as new versions of MATLAB are released. MATLAB is available 
for Microsoft Windows. Linux platforms. Macintosh computer operating systems. 
and Unix workstations.' 

MATLAB has a wide range of capabil ities. In this book we employ only a few 
of its featu res. We find that MATLAB'S command structure is very close to the 
way we write algebraic expressions and linear algebra operations. The nmnf!S of 
many MATLAB commands closely paratielthose of the operations and concepts of 
linear algebra. We give descriptions of command~ and features of MATLAB that 
relate directly to this course. A more detailed discussion of MATLAB commands 
can be found in The MATLAB User's Guide that accompanies the software and in 
the books Modem Matrix Algebra. by David R. Hill and Bernard Kolman (L"pper 
Saddle River. NJ: Prentice HaIL Inc., 2(01); Experiment.l· in Computational Matrix 
Algebra. by David R. 1·lill (New York: Random House. 1988); and Linear Alge­
bra LABS wilh MATLAB, 3d ed .. by David R. Hill and David E. Zitarelli (L"pper 
Saddle River, NJ: Prentice Hall , Inc., 2004). Alternatively. the MATLAB software 
provides immediate on-screen descriptions through the help command. Typing 

help 

displays a li st of MATLAB subdirectories and alternative directories containing 
fi les corresponding to commands and data sets. Typing help name. where name is 
the name of a command, accesses inlormation on the specific command named. Ln 

"Dcscriplions in tllis cllapter focus on MATlAB running in Microsoft Windows. 

561 
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some cases the description displays much more information than we need for this 
course. !-!cnce you may not full y understand the whole description displayed by 
help. In Section 9.9 we provide a li st of the majority of MATLAB commands used 
in thi s book. 

Once you initiate the MATL AB software, you will see the MATLAB logo and 
then the M AT LAB prompt » . The prompt » indicates that M ATLAB is awaiting a 
command. In Section 9.1 we describe how to enter matrices into MATLAB and give 
explanations of several commands. However, there are cenain MAT LAB features 
you should be aware ofbcfore you begin the material in Section 9.1. 

• Starring execution of {/ command. 
After you have typed a command name and any arguments or data required. 
you must press ENTER before execution takes place. 

• The cOlI/mand stack. 
As you enter commands, MATLAB saves a number of the most recent com­
mands in a stack. Previous commands saved on the stack can be recalled 
by scrolling up with the mouse or pressi ng the up arrow key. The num­
ber of commands saved on the stack varies, depending on the length of the 
commands and other factors. 

• Correcting errors 
If MATLAB recognizes an error after you have pressed ENTER to execute 
a command, then MATLAB responds with a beep and a message that helps 
define the error. You can recall the command line and edit it as you would 
any computer text. 

• Continuing cOlllllumd.\·. 
MAT LAB commands that do not fit on a single line can be continued to the 
next line, using an ellipsis, which is three consecutive periods. followed by 
ENTER. 

• Stopping ([ cOllI/lland. 
To stop execution of a MATLAB command, press Ct rl and C simultaneously. 
then press ENTER. Sometimes this sequence must be repeated. 

• Quitting. 
To quit MATLAB , type exit or quit , followed by ENTER. 

m Input and Output in MATLAB 

• Matrix Input 

To enter a matrix into MATLAB. just type the entries enclosed in square brackets 
f ... J, with entries separated by a space (or a comma) and rows tenninated with a 
semicolon. Thus the matrix 

[ -~ II 

- 8 
5 

- 12 
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is entered by typing 

[9 -8 7;-6 5 

and the accompanying display is 

-4;11 

ans '" 

9 - 8 7 

- 6 5 - 4 

11 - 12 0 

-12 01 

Notice that no brackets arc d isplayed and that MATLAB has ass igned this matrix 
the name ans. Every matrix in MATLAB must have a name. If you do not assign a 
matrix a name, then MATLAB assigns it ans. which is called the derault variable 
name . To assign a matrix name, we use the assignment operator = . For example, 

A = 14 5 8;0 -J 61 

is displayed as 
A 

4 S ,II 

o - 1 6 

(Warning: 

L All rows must have the same number of entries. 

2. MATLAB distinguishes between uppercase and lowercase leuers. 
3. A matrix name can be reused. In such a case the "old" contents are lost.) 

To assign a matrix, but J/Ippress the display oJ its elltries. follow the closing square 
bracket, 1. with a semicolon. Thus 

A = [4 5 8;0 -1 6J; 

assigns the same matrix to name A as previously, but no display appears. To assign 
a currently defined matrix a new name, use the assignment operator = . Command 
Z = A assigns the contents of A to Z. Matrix A is stil l defi ned. 

To determine the matrix names that are in u~e , use the who command. To 
delete a matrix, use the clear command, followed by a space and then the matrix 
name. For example, the command 

clear A 

deletes name A and its contents from MATLAB. The command clear by itself 
deletes all currently defi ned matrices. 

To determine the number of rows and columns in a matrix, use the size com­
mand, as in 

size(A) 

which, assuming that A has not been cleared, displays 

ans : 

2 3 

meani ng that there are two rows and three columns in matrix A. 
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To see all of the cO/llpol/ellls of a matrix. type its I/ame. If the matrix is large, 
the display may be broken into subsets of columns that arc shown successively. 
For example, the command 

hilb(9) 

displays the first seven columns followed by columns 8 and 9. (For information 
on command hilb. use help hilb .) If the matrix is quite large, the screen display 
will scroll too L1St for you to see the matrix. To see a portion of a matrix, type 
command more on followed by ENTER. then type the matrix name or a command 
to gellc late it. Pl ess tht: Sl'acc Bar to rcvea[ Jnorc of thc matrix. Contiuut: I'lcssi ug 
the Space Bar until the "--more--" no longer appears near the bottom of the screen. 
Try this with hilb(20). To disable this paging featu re, type command more ofT. 
Use your mouse to move the scroll bar to reveal previous portions of di splays . 

The conventions that follow show a portion of a matrix in M ATL AB . For 
purposes of illustration. suppose that matrix A has been entered into M ATLAB as 
a 5 x 5 matrix. 

• To see the (2, 3) entry of A, type 

A(2,3) 

• To see the fourth row of A, type 

A(4,:) 

• To see the first column of A, type 

[n the preceding situat ions. the: is interpreted to mean "all." The colon can also 
be used to represent a range of rows or columns. For example. typing 

2:8 

displays 

an, 

2 3 4 5 6 7 8 

We can use this featu re to display a subset of rows or columns of a matrix. As an 
illustration. to display rows 3 through 5 of matrix A. type 

Similarly, columns I through 3 are displayed by the command 

For more infonnation on the use of the colon operator, type help colon . The colon 
operator in M ATL AB is very versatile, but we will not need to usc all of its features. 
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• Display Formats 

MATLAB stores matrices in decimal form and does its arithmetic computations 
using a decimal-type arithmetic. This decimal form retains about 16 digits, but 
not all di gits must be shown. Between what goes on in the machine and what is 
shown on the screen are routines that convert, or format, the numbers into displays. 
Here, we give an overview of the di splay formats that we will use. (For more 
information, see the MATlAR User's GI/hle or type help format. ) 

If the matrix contains all integers, then the entire matrix is displayed as integer 
values; that is, no decimal points appear. 
If any entry in the matrix is not exactly represented as an integer, then the 
entire matrix is displayed in what is known a. format short. Such a display 
shows fou r places behind the decimal point, and the last place may have been 
rounded. The exception to this is zero. If an entry is exactly zero, then it is 
displayed as an integer zero. Enter the matrix 

Q=IS 0 1/3 213 7.123456] 

into MATLAB. The display is 

Q • 

5 . 0000 o 0.3333 0 . 6667 7 . 1235 

(Warning: If a value is di splayed as 0.0000. then it is not identically zero. You 
should change to format long, discussed next, and display the matrix again.) 

Q 

To see more than four places. change the display format. One way to proceed 
is to usc the command 

format long 

which shows 15 places. The matrix Q in format long is 

Columns 1 through 4 

5 . 00000000000000 0 0 . 33333333333333 0 . 66666666666667 

Column 5 

7 . 12345600000000 

Other display formats use an exponent of 10. They are formal short e and 
format long e. The e-formats are a form of scientific notation and are often 
used in numerical analysis. Try these fonnaL~ with the matrix Q . 

• MATLAB can display values in rational form. The command format rat, 
short for rational di splay, is entered. Inspect the outplll from the following 
sequence of MATLAB commands: 

format short 

v = [1 1/2 1/6 lilll 
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displays 

v 
1.0000 

on" 

displays 

v 
1 

0 . 5000 0.1667 

format rat 

V 

1(2 1(6 1/12 

0 . 0833 

Finally, type format short to return to a decimal display form. 

[f a matrix P with decimal entries is entered or derived from the result of 
computations. then displaying P in format rat gives a matrix whose every entry is 
approximated by a ratio of smatl integers. In MATLAS typing pi displays a decimal 
approximation to J1", and the command exp(l ) displays a decimal approximation 
to the number e. In format long we would see 

» pi » exp(l) 

an, an, 

3.14159265358979 2.7 I 828182845905 

The following commands ill ustrate the approximation of decimal entries as a ratio 
of small integers when format rat is used: 

»format: rat: 
»P"'[pi exp(1)] 

p= 

355/113 1457/536 

Computi ng the ratios displayed previously in formal long, we have 

»forma1: long 
»355/113 

ans", 
3 . 14159292035398 

»1457/536 

ans: 
2 . 71828358208955 

It is easily seen that the ratios are just an approximation to the original decimal 
values. 

When MATLAB suns. the format in effect is format short. If you chrlllge 
the format. it remains in effect until another fonnat command is executed. Some 
MATLAB routines change the format within the routine. 
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m Matrix Operations in MATLAB 

The operations of addi tion, subtraction, and multiplication o f matrices in MATLAB 
follow the same definitions as in Sections 1.2 and 1.3. If A and B are III XI! matrices 
that have been entered into M AT LAB, then their sum in M AT LAB is computed by 
the command 

A+B 

and their difference by [he command 

A-B 

(S paces can be used on either side of + or - .) If.4 is III x n and C is 11 X k, then 
the product of A and C in M AT LAB musl be written as 

A.C 

III M ATLAB, * IIIlI.I"f be specifically placed hefwew the n([lIIes of matrices 10 he 

lIIultiplied. In M ATLAB, writing AC does not perform an implied multiplication . 
I.n fact, M ATLAB considers AC a new matrix name, and if AC has not been previ­
ously defi ned, an error wilt result from enteri ng it. If the matrices involved are not 
compatible for the operation specified, then an error message wi ll be di splayed. 
Compatibility for addit ion and subtraction means that the matrices arc Ihe same 
size. Matrices arc compatible for multi plication if Ihe number o f columns in the 
fi rst matrix equals Ihe number of rows in the second . 

Enter the matrices 

A = [~ 
into M AT LAB and compute Ihe given express iom . We display the results from 
M AT LAB. 

Solution 
(a) A+C displays 

(b) A",C displays 

an< 

4 - 3 

7 6 

13 - 1 

26 - 2 

(c) b",A displays ??? Error using ==> mt:ime s 

~nner mat:rix dimensions must: agree. • 
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Setl/ar multiplication in MAT LAB requires the use of the multiplication ~)'lIIbol 
*. For the matri x A in Example I, SA denotes scalar multi plication in this book, 
while S.A is required in MATLAB. 

In MAT LAB the transpose operator (or symbol) is the single quotation mark, 
or prime, ' . Using the matrices in Example I, in MATLAB 

Q=C' displays Q = 

3 S 

- s z 

ond 

p = b' displays p 

- 3 1 

As a convenience, we can enter column matrices into MATLAB, usi ng i To 
enter the matrix 

we can use either the command 

x = (1;3 ;-5] 

or the command 

x=(I 3 -5]' 

Suppose that we are given the linear system Ax = b. where the coefficient 
matrix A and the right side b have been entered into MATLAB. The augmented 
matrix [A i b ] is formed in MATLAB by typing 

[A b[ 

or, if we want to name it aug, by typing 

aug = [A bI 

No bar wi ll be displayed separati ng the right side from the coefficient matrix. Us­
ing matrices A and b from Example I, form the augmented matrix in MATLAB for 
the system Ax = b. 

Forming augmented matrices is a special case of building matrices in MAT­
LAB. Essentially, we can '·paste together" matrices, as long as sizes are appropri-
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ate. Usi ng the matrices A, b, and C in Example I, we give some examples: 

IA C( displays ans "" 
1 2 3 - 5 

2 4 5 2 

IA;C( displays an< 

1 2 

2 4 

3 - 5 

5 2 

IA b CI di splays an< 

1 2 - 3 3 - 5 

2 4 1 5 2 

IC A ;A C( displays an< 

3 - 5 1 2 

5 2 2 4 

1 2 3 - 5 

2 4 5 2 

M ATLAB has a command to build diagonal matrices when onl y the diagonal 
entries arc inputted. The command is diag, and 

D = diag({I 2 31) displays o = 

1 

o 
o 

o 
2 

o 

Command ding also works \0 "extract" a sct o f diagonal e ntries. If 

R ~ [ -~ ~ ~] 
6 4 - 8 

i s entered into M ATL AB. then 

diag(R) displays an< 

Note thai 

diag(diag(R» displays an, 

5 

7 

- 8 

5 0 0 

o 7 0 

o 0 - 8 

o 
o 
3 

For morc information on diag, usc help. Commands related 10 diag are tril and 
triu . 
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EXAMPLE 1 

Matrix Powers and Some Matrices 

I.n MATLAB, 10 raise a matrix to a power, we must use the exponentiation operator 
" . If A is square and k is a positive integer, then Ak is denoted in MAT LAB by 

A' k 

which corresponds to a matrix product of A with itself k times. The rules for 
exponents, given in Section 1.5, apply in M ATLAB. In particular. 

A'O 

displays an identity malrix having the same size as A. 

Enter matrices 

A=[: -:] and B=[~ -~] 
inlO M AT LAB and compute the given expressions. We display the MAT LAB re­
sults. 

Solution 

(a) A" 2 di splays an, 

0 - 2 

2 0 

(b) (A",B)" 2 di splays aM 

- 8 6 

- 6 - 8 

(c) (B-A)"3 displays an, 

0 1 

- 1 0 • 
The" X" identity matrix is denoted by In throughout this book. M ATLAB has 

a command to generate I" when it is nceded . The command is eye, and it behaves 
as follows: 

eye(2) 

eye(S) 

t = IO;eye(t) 

eye(size(A» 

displays a 2 x 2 identity matrix. 

displays a 5 x 5 identity matrix. 

displays a 10 x 10 identity matrix. 

displays an identity matrix the same size as A. 

Two other M ATLAB commands, zeros and ones, behave in a similar manner. 
The command zeros produces a matrix of all zeros. and the command ones gener­
ates a matrix of all ones. Rectangular matrices of size III x " can be generated by 
the expressions 

zeros(m,n). ones(m,n) 
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where III and /I have been previolLsly defined with positive integer values in M AT­
LAB. Using this convention, we can generate a column with four zeros by the 
command 

zeros(4,1) 

From algebra YOll are L1m iliar with polynomials in x such as 

4x 3 _ 5x 2 + X _ 3 and x4 - x - 6. 

The evaluation of such polynomials at a value o f x is readily handled in MATLAS 
by Ihc command polyval. Define the coefficients of the polynomial as a vector (a 
row or column matrix) with Ihc coefficient of the largesl power first , the coefficient 
of thc nexl largest power second, and so on, down to the constant term. If any 
power is explici tly missing, its coeffi cient must be set to zero in the corresponding 
position in Ihc coefficient vector. In M ATLAB. for the foregoing polynomials, we 
have the respecti ve coeffi cient vectors 

v = [4 -5 -31 and w=[1 o 0 -I -61 

The command 
polyval(v,2) 

evaluates the fi rst polynom ial at x = 2 and di splays the computed value of II. 
Similarly, the command 

t = -I;polyval(w,t) 

evaluates the second polynomial at x = - I and di splays the val ue - 4 . 
Polynomials in a square matrix A have the fonn 

5A 3 _ A2 + 4A _ 7 f . 

Note that the constant te rm in a matrix polynomial is an identity matrix of the same 
size as A. Thi s conventio n is a natural one if we recall that the constant tenn in an 
ordinary polynomial is the coeffic ient of xO and that AO = I. We often meet matrix 
polynomials when evaluat ing a standard poly nomial such as p(x) = x4 - X - 6 at 
an fI x I! matrix A. The resulting matrix polynomial is 

peA) = A4 - A - 61". 

Matrix polynomials can be evaluated in M ATLAB in response to the command 
polyvalm. Define the square matrix A and the coellicienl vector 

w=(I 0 0 -I -61 

for p(x) in MATLAB. Then the command 

polyvalm(w,A) 

produces the value of peA ), which will be a matri x the same s ize as A. 

LeI 
- I 

]) 

3 
and p(x) = 2x3 

- 6x2 + 2x + 3. 
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EXAMPLE 3 

To compute p(A) in M ATLAB, use the following commands (we show the M AT­

L AB display after the commands): 

-I 2;-1 0 1;0 3 I) ; 

-6 2 3]; 

Q = polyvalm(v,A) 

Q : 

- 13 - 18 10 

- 6 - 25 10 

6 18 -1 7 • 
At times you may want a matrix with integer entries to use in testing some 

matrix relationship. MATL AB commands can generate such matrices quite easily. 
Type 

C = fix(lO",rand(4» 

and you will see displayed a 4 x 4 matrix C with integer entries. To investigate 
what this command does, use help with the commands fix and rand. 

In M ATLAB, generate several k x k matrices A for k = 3,4,5, and display B = 
A + A T. Look over the matrices displayed and try to determine a property that 
these matrices share. We show several such matrices next. Your results may not 
be the same, because of the output of the random number generator rand . 

The display is 

k = 3; 

A = fix( IO",rand(k)); 

B =A+A' 

B 

4 

6 

11 

6 

IB 
11 

11 

11 

o 

Use the up arrow key to rccall the prcvious commands onc at a time, pressing 
ENTER after each command. This time the matrix di splayed may be 

B : 

See Exercise 22(a) in Section 1.5. 

o 
5 

10 

5 
6 

6 

10 

6 

10 

• 
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Elementary Row Operations in MATLAB 

The soluti on of linear systems of equations, as di ~cussed in Section 2.2. uses ele­
mentary row operations to obtain a sequencc of linear systems whose augmented 
matrices are row equivalent. Row equivalent li near systems have the same so­
lut ions; hence we choose elementary row operations to produce row equivalent 
systems that are not difficult to solve. It is shown that linear systems in reduced 
row echelon form are readily solved by the Gauss-Jordan procedure, and systems 
in row echelon form arc solved by Gaussian elimination with back substitution. 
Usi ng either of these procedures requires that we perform row operations which 
introduce zeros into the augmented matrix of the linear system. We show how 
to perform such row operations with MATLAB . The arithmetic is done by the 
MATLAB soft ware, and we are able to concentrate on the strategy to produce the 
reduced row echelon fonn or row echelon fonn. 

Given a linear system Ax = b, we enter the coefficient matrix A and the right 
side b into MATLAB . We form the augmented matrix (see Section 9.2) as 

C = [A b) 

Now we are ready to begin applyi ng row operations to the augmented matrix C. 
Each row operation replaces an existing row by a new row. Our strategy is to con­
struct the row operation so that the resulting new row moves us closer to the goal of 
reduced row echelon form or row echelon form. There are many different choices 
that can be made for the sequence of row operations to transform [A : b ] to one 
of these forms. Naturally. we try to use the fewest number of row operations, but 
many times it is convenient to avoid introducing fractions (if possible), especially 
when doing calculation; by hand. Since MAT LAB will be doing the ari thmetic for 
us. we need not be concerned about fractions, but it is visually pleasing to uvoid 
them anyway. 

As described in Section 2. 1, there are three row operations: 

Interchange two rows. 
Mu ltiply a row by a nonzero number. 
Add a multiple of one row to another row. 

To perform these operations on an augmented matrix C = [A : b ] in MAT­
LAB. we empluy the (;ulun opt:rator. whkh was uis(;ussed in Seniun 9.1. We 
illustrate the technique on the linear system in Example I of Section 2.2 . When 
the augmented matrix is entered into MATLAB, we have 

c = 

1 2 3 9 

2 - 1 1 8 

3 0 - 1 3 

To produce the reduced row echelon form. we proceed as follows: 
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Descriplioll 

add (-2) times row 1 to row 2 

[Explanation of MAT LAB 
command : Row 2 is replaced by 
(or set equal to) the sum of - 2 
times row I and row 2.] 

add (-3) times row I to row 3 

multiply row 2 by (- D 

[Explanation of MAT LAB 
command : Row 2 is replaced by 
(or set equal to) (- k) times row 2.1 

add (-2) times row 2 to row J 

add 6 times row 2 to row 3 

multiply row 3 by (- D 

add (-I) times row 3 to row 2 

MATLAB Co",,,,alld~' alld Di!.'p/ay 

C(2,') ~ -2 • C(I,') + C(2,' ) 

c • 
1 2 3 9 

o - 5 - 5 - 10 

3 0 - 1 3 

C(3,') ~ -3. C(I,') + C(3,') 

c • 
1 2 3 9 

o - 5 - 5 - 1 0 

o - 6 - 10 - 24 

C(2,:) = ( - 115) '" C(2,:) 

c . 
1 2 3 9 

0 1 1 2 

0 - 6 - 10 - 24 

C(I ,') ~ -2 • C(2,' ) + C(I ,') 

c • 
1 

o 
o 
1 

1 

1 

5 

2 

o - 6 - 10 - 24 

C(3,') ~ 6. C(2, ' ) + C(3,' ) 

c • 
1 0 1 5 

o 1 1 2 

o 0 - 4 - 12 

C(3,') ~ ( - 1/4) • C(3,') 

c • 
1 

o 
o 

o 
1 

o 

1 

1 

1 

5 

2 

3 

C(2,') ~ -I • C(3,') + C(2,') 
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c 
1 

o 
o 

o 
1 

o 

1 5 

o - 1 

1 3 

add (-I) times row 3 to row I C(1,:) = -I. C(3,:) + C(I ,:) 

c 
1 

o 
o 

o 
1 

o 

o 2 

o - 1 

1 3 

This last augmented mmrix implies that the solution of the linear system is x = 2, 
y = - I , z =3. 

In the preceding reduction o f the augmented matrix to reduced row echelon 
form. no row interchanges were required . Suppose that at some stage we had to 
interchange rows 2 and 3 o f the augmented matrix C. To accompli sh this, we lise 
a temporary storage area. (We choose to name this area temp here.) In MATLAB 
we proceed as follows: 

De~'criplioll 

Assign row 2 to temporary storage. 
Assign the contents of row 3 to row 2. 
Assign the contents of row 2 contained in 

temporary storage to row 3. 

M ATLA B Cummands 

temp = C(2,:); 
C(2,:) = C(3,:); 
C(3,:) = temp; 

(The semicolons at the end of each command just suppress the display of the con­
tents.) 

Using the colon operator and the assignment operator, =, as previous ly, wecan 
instruct MATLAB to perfonn row oJXrations to generate the reduced row echelon 
form or row echelon fonn of a matrix. M ATLAB does the arithmetic, and we 
concentrate on choosing the row operations to perfonn the reduction. We also 
must enter the appropri ate MATLAB command . If we mistype a multiplier or row 
number, the error can be corrected, but the correction process requires a number of 
steps. To pennit us to concentrate completely on choosing row operations fo r the 
reduction process, there is a routine called reduce in the set of auxiliary MATLAB 

routines available to users of this book. Once you have incorporated these routines 
into M ATLAB, you can type help reduce and see the following display: 

REDUCE Perform row reduction on matrix A by explicitly 
choosing row operations to use . A row operation 
can be "undone." bu"t this feature cannot be used 
in succession. This routine is for small matrices, 
real or complex . 

Use "the form =~:> reduce <==: to select a demo or 
enter your own matrix A 

or in the form ---> reduce(A) <---
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Routine reduce alleviates all the command typing and instructs M ATLAB to 
perform the associated ari thmetic . To usc reduce, enter the augmented matrix C 
of your system as discussed previously and type 

reduce(C) 

We di splay the first three steps of reduce for Example I in Section 2.2. The ma­
trices involved will be the same as those in the first three steps of the reduction 
process, where we mad~ direct lLse of the colon operator 10 pcrfonn the row oper­
ations in M ATLAB . Screen displays are shown between rows of plus signs, and all 
input appears in boxes. 

++++++++++++++++++++++++++++++++++++++ 

***** "REDUCE" a Matrix by ROil' Reduction ***** 

The current ma trix is : 

A : 

1 2 3 9 

2 - 1 1 8 

3 0 - 1 3 

OPTIONS 
<1> Row(i) <::=> Row(j) 
<2> k * Row(i) (k not zero) 
<3> k*Row(i) + Row(j ) ""=""> Row(j) 
<4> Turn on rational display . 
<5> Turn off rational display . 

<-1> "Undo" previous row operation . 
<0> Quit re duce! 

ENTER your choice ;:=> GO 

Enter multiplier. ~ 

Ent e r f irst row number. QO 

Enter number of row that changes . ~ 

Comment: Option 3 in the fore going menu me ans the same as 

add a multiple of one row to another row 
The preceding input pe rforms the operation in the form 

multiplier * (first row) + (second row) 
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++++++++++++++++++++++++++++++++++++++ 

***** Replacement by Linear Combination Complete ***** 

The current matrix is : 

A : 

1 

o 
3 

2 

- 5 

o 

3 9 

- 5 - 10 
- 1 3 

OPTIONS 
<1> RowCi) <"''''''=> Rowej) 
<2> k * Row(i) Ck not zero) 
<3> k * Row(i) + Row (j) ===> RowCj) 
<4> Turn on rational display . 
<5> Turn o f f rational display . 

<-1> "Undo" previous row operation . 
<0> Quit reduce! 

ENTER your choice =="'> 0 
Ent e r multiplier. [JO 
Ent e r first row number. ill 
Ent e r number of row that changes . ~ 

++++++++++++++++++++++++++++++++++++++ 

***** Replac ement by Linear Combination Complete ***** 

The current matrix is : 

A : 

1 2 3 9 

o - 5 - 5 - 10 

o - 6 - 10 - 24 

OPTIONS 
<1> Row(i) <=""=> Row(j) 
<2> k * Row(i) (k not zero) 
<3> k * Row(i) + Row (j) ""==> Rowe j) 
<4> Turn on rational display . 
<5> Turn off rational display . 

<-1> "Undo" pre vious row operation . 
<0> Quit reduce! 

ENTER your choice ="""'> ~ 

Enter multiplier. 1-1/51 
Enter row number. QQ 
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EXAMPLE 1 

++ ++ ++ ++++++++++++++++++++++++++++++++ 

***** Multiplication Complete 

The current matrix is : 

A = 

1 2 3 9 

o 1 1 2 

o - 6 - 10 - 24 

OPTIONS 
<1> Row(i) <"''''''''> Row(j) 
<2> k * Row(i) (k not zero) 
<3> k*Row(i) + Row(j ) "'''''''> Row(j) 
<4> Turn on rational display . 
<5> Turn off rational display . 

<-1> "Undo" previous row operation . 
<0> Quit reduce! 

FNTFR ynllr r hn ir p "''''=> 

** * * * 

++++++++++++++++++++++++++++++++++++++ 

At this point you shou ld complete the reduction of thi s matrix to reduced row 
echelon fo rm by using reduce. 

I. Although opti ons I through 3 in reduce appear in symbols. they have the same 
meaning as the phrases used to describe the row operations near the beginning 
of this section. Option <3> fo rms a lillear combillatioll of rows to replace 
a row. Thi s tenninology is used later in thi s course and appears in certain 
displays of reduce. (See Sections 9.7 and 2.2.) 

2. Wi thin routine reduce, the matrix on which the row operations are performed 
is called A, regardless of the name of your input matri x. 

Solve the following li near system, using reduce: 

Solution 

tx + ~y= ¥ 
~x + 4." = ~ 

Enter the augmented matrix into MATLAB and name it C. 

Then type 

c ~ [113 114 13/6; In 1/9 59/631 

c = 

0.3333 0 . 2500 2 . 1667 
0.1429 0 . 1111 0 . 9365 

reduce(C) 
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T he steps from reduce arc displayed next. The steps appear with decimal 
displays, unless you choose the rational di splay option <4> . T he correspondi ng 
rational di splays arc shown in braces in the examples, fo r ill ustrat ive purposes. 
Ordinari ly, the decimal and rational d isplays arc not shown simultaneously. 

++++++++++++++++++++++++++++++++++++++ 

***** "REDUCE" a Matrix by Roll' Reduction ***** 

The current matrix is: 

A : 

0.3333 
0.1429 

0.2500 
0.1111 

2.1667 
0.9365 

OPTIONS 
<1> RowCi) <===> Row(j) 
<2> k * Row(i) Ck not zero) 
<3> k * Row(i) + Row (j) ===> RowCj) 
<4> Turn on rational display . 
<5> Turn off rational display . 

<-1> "Undo" previous row operation . 
<0> Quit reduce! 

ENTER your choice ===> CD 
Enter multiplier. 11/ACl,l)1 

Enter row number. QO 

11/3 
(1/7 

1/ 4 
1/ 9 

13 / 6 ) 
59 / 63) 

++++++++++++++++++++++++++++++++++++++ 

***** Row Multiplication Complete ***** 

The current matrix is: 

A : 

1.0000 
0.1429 

0.7500 
0.1111 

6.5000 
0.9365 

OPTIONS 
<1> RowCi) <=="'> Row(j) 
<2> k * Row(i) Ck not zero) 
<3> k* Row(i) + Row(j ) "''''''''> RowCj) 
<4> Turn on r ational display . 
<5> Turn off rational display . 

<- 1> "Undo" previous row operation . 
<0> Quit reduce! 

ENTER your choice ==""> CD 
Enter multiplier. I-A(2 ,1) 1 

3/ 4 
1/9 

13/2 I 
59 / 63) 
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Enter first row number. QO 
Enter number of row that changes. ~ 

++++++++++++++++++++++++++++++++++++++ 

***** Replacement by Linear Combination Complete * ** ** 

The current matrix is : 

A = 
1.0000 

o 
0.7500 
0.0040 

6.5000 
0.0079 

OPTIONS 
<1> Row(i) <===> Row(j) 
<2> k * Row(i) Ck not zero) 
<3> k * Row(i) + Row (j) "'''''''> Row(j) 
<4> Turn on rational display. 
<5> Turn off rational display . 

<-1> "Undo" previous row operation . 
<0> Quit reduce! 

ENTER your c hoice ~=:> ~ 

Enter multiplier. 11/AC2,2)1 

Enter row number. ~ 

11 
10 

3/4 
1 /252 

13 /2 ) 
1/126} 

++++++++++++++++++++++++++++++++++++++ 

***** Row Multiplication Complete ***** 

The current matrix is: 

A = 

1.0000 
o 

0.7500 
1.0000 

6.5000 
2.0000 

OPTIONS 
<1> Row(i) <==~> Row(j) 
<2> k * Row(i) Ck not zero) 
<3> k * Row(i) + Row (j).,.",=> RowCj) 
<4> Turn on rational display . 
<5> Turn off rational display . 

<-1> "Undo " previous row operation . 

<0> Quit reduce! 
ENTER your choice ===> GO 

Enter multiplier. I-A(1 ,2) 1 

Enter first row number. ~ 

Enter number of row that changes . QO 

11 
10 

3/4 
1 

13/2} 
2 , 
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++++++++++++++++++++++++++++++++++++++ 

***~* Replacement by Linear Combination Complete ~**** 

The current matrix is : 

A : 

1.0000 

o 
o 

1.0000 

5.0000 

2.0000 

OPTTONS 
<1> RowCi) <==:> Row(j) 
<2> k * Row(i) Ck not zero) 
<3> k * Row(i) + Row(j ) "'''''''> Row(j) 
<4> Turn on rational display . 
<5> Turn off rational display . 

< - 1> "Undo" previous row operation . 
<0> Quit reduce! 

ENTER your choice "''''~> ~ 

{1 
{O 

o 
1 

51 
2} 

* * ** = ==> REDUCE is over . Your final matrix is: 

A 

1.0000 
o 

o 
1.0000 

5.0000 
2.0000 

++++++++++++++++++++++++++++++++++++++ 

It follows that the solution to the linear system is x = 5, Y = 2. • 
The redu ce routi ne forces you to concentrate on the strategy of the row reduc­

tion process. Once you have used reduce on a number of linear systems, the re­
duction process becomes a fairly systematic computation. Routi ne reduce uses the 
text screen in MATLAS. An alternative is routine rowop, which has the same fu nc­
tionality as reduce, but employs the graphics screen and uses MATLAS'S graphical 
user interface. The command help rowop displays the following description: 

ROWOP Perform row reduction on real matrix A by explicitly 
choosin2 row operations to use. A row operation can 
be "undone", but this feature cannot be used in 
succession . Matrices can be at most 6 by 6. 

To enter information, click in the gray boxes with 
your mouse and then type in the desired numerical 
value followed by ENTER. 

Use in the form ===> rowop <~== 

If the matrix A is complex. the routine REDUCE is 
called. 
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EXAMPLE 2 

After a matrix has been entered inlO rowop, the following screen appears (here 
it is shown in shades of gray, but it will be in color when MATLAB is used): 

<>ROWOP<> 

Bti°.;tWij' 

"."ro, 

Current Matrix A 
, 2 , 

2 ., 

3 0 ·1 

The reduced row echelon fo rm of a matrix is used in many places in linear 
algebra to provide information related to concepts. As such, the reduced row eche­
lon form of a matrix becomes one step of more involved computational processes. 
Hence MATLAB provides an automatic way 10 obtain the reduced row echelon 
rorm. The command is r rer. Once you have entered the matrix A under consider­
ation, where A could represent an augmented matrix. just type 

r rer(A) 

and MATLAB responds by displaying the reduced row echelon form of A. 

I.n Section 2.2. Example II asks fo r the solution of the homogeneous system 

Xl + X2 + X J + X4 = 0 

Xl + X4 =0 

xl + 2x2 + X3 =0. 

Form the augmented matrix C in MAT LAB to obtain 

c • 

1 

1 

1 

1 

o 
2 

1 

o 
1 

1 

1 

o 

o 
o 
o 
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Next, type 

and MATLAB di splays 

1 

o 
o 

rrer(C) 

o 
1 

o 

o 1 

o - 1 

1 1 

o 
o 
o 

It rollows that the unknown X4 can be chosen arbitraril y-say, X4 = r, where r is 
any number. Hence the soluti on is 

XI = - r. X] = - r. X4 = r. • 
m Matrix Inverses in MATLAB 

As discussed in Section 2.3, for a square matrix A to be nonsingular, the reduced 
row echelun furm u f A musl be Ihe idelUi lY malrix. H em;e in MATLAB WI: (;un 

determine whether A i~ singular or nonsingular by computing the reduced row 
echelon form of A, usi ng either reduce or rrer. If the result is the identity matrix, 
then A is nonsingular. Such a computation determines whether an inverse exists, 
but does not explicitly compute the inverse when it does exist. To compute the 
inverse of A. we proceed as in Section 2.3 and find the reduced row echelon form 
of [A i In]. If the resulting matrix is [In i Q], then Q = A- I. In MATLAB. once 
a nonsingular matrix A has been entered, the inverse can be found step by step by 
using 

reduce([A eye(size(A»))) 

or computed immediately by lIsing 

rrer((A eye(size(A)))) 

For example, if we use the matrix A in Example 4 of Section 2.3, then 

2 
5 

Entering matrix A into MATLAB and typing the command 

displays 

ans '" 

1.0000 

o 
o 

o 
1.0000 

o 

rrer((A eye(size(A»)) 

o 
o 

1.0000 

1.6250 

- 1.8i50 

1.2500 

- 0.5000 

0.5000 

o 

- 0.1250 

O.3i50 

- 0.2500 



584 Chapler 9 MATIAB for Li near Algebra 

To extract the inverse matrix, we input 

and get 
Ainv 

Ainv = ans(:,4:6) 

1.6250 

- 1.8750 

1.2500 

- 0.5000 

0.5000 

o 

To see the result in rational display, use 

format rat 

Ainv 

which gives 
Ainv 

Type the command 

B / B 
- 15 / 8 

5/ 4 

- 1 / 2 

1 / 2 

o 

format short 

- 0.1250 

0.3750 

- 0.2500 

- l / B 

3/ 8 

- 1 / 4 

to tum off the rational display. Thus our previous MAT LAB commands can be 
used in a manner identical to the way the hand computations are described in 
Section 2.3. 

For cOTlvenience, there is a routine that computes inverses directly. The com­
mand is invert . For the preceding matrix A, we would type 

invert(A) 

and the result would be identical to that generated in Ainv by the command rref. 
I f the matrix is not square or is singular, an error message will appear. 

m Vectors in MATLAB 

An I1- Vc<:lOr x (see Section 1.2 or 4.2) in MATLAB can be represented either as a 
column matrix with 11 clements, 

or as a row matrix with 11 clements, 

X=[Xt X 2 x. ]. 
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In a particular problem or exercise, choose one way of representing the /I-vectors 
and stay with that fo rm 

The vector operations of Section 4.2 correspond \0 operations on II x I matrices 
or columns. If the /I -vector is represented by row matrices in MATLAB, then the 
vector operations corre~pond to operations on I XII matrices. These are just special 
cases of addition, subtraction. and scalar multiplication of matrices, which were 
discussed in Section 9.2. 

The norm or length of vector x in MATLAB is produced by the command 

lIonll(X) 

This command computes the square rool of the sum of the squares of the compo­
nents of x, which is equal to Ilx ll, as discussed in Section 5.1. 

The distance between vectors x and y in Rn in MATLAB is given by 

norm(x - y) 

LeI 

Enter these vectors in R4 into MATLAB as columns. Then 

norm(u) 

displays 

2.6458 

while 
norm(v) 

gives 

3.7417 

ond 

norm(u - v) 

gives 

an< 

1 . 7321 • 
The dot product of a pair of vectors u and v in R" in MATLAB is computed by 

the command 
dot(u,v) 
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EXAMPLE 2 

For the vectors in Example I, MATLAB gives the dot product as 

9 

As di sc ussed in Section 5.1, the notion of a dot product is useful to define the 
angle between Il-VectoB. Equation (8) in Section 5.1 tells us that the cosine of the 
angle () between u and v is given by 

u·v 
cos 0 - iiUiiIiVii. 

I.n M ATLAB the cosine of the angle between u and v is computed by the command 

dot(u,v)/(norm(u) ... norm(v» 

The angle () can be computed by taking the arccosine of the value of the previous 
expression. In MATLAB the arccosine function is denoted by acos. The result will 
be an angle in radians. 

For the vectors II and v in Example I , the angle between the vectors is computed 

"' 

which displays 

c = dot(u,v)/(norm(u) ... norm(v»; 

angle = acos(c) 

angle 

0.4296 

and is approximately 24.61 °. 

Applications of Linear Combinations in MATLAB 

• 

The notion of a linear combination. as discussed in Sections 1.2 and 4.3, is fun­
damental to a wide variety of topics in linear algebra. The ideas of span, linear 
independence, linear dependence, and basis are based on forming linear combina­
tions of vectors. In addition, the elementary row operations di scussed in Sections 
2.1 and 9.4 :ue essentially of the fo rm, "Replace illl existing row by 3. line:u com­
bination of rows." This is clearly the case when we add a multiple of one row to 
another row. (See the menu for the routine reduce in Section 9.4.) From this point 
of view. it follows Ihat the reduced row echelon form and the row echelon form 
are processes for implement ing linear combinations of rows of a matri x. Hence 
the M ATL AB routines reduce and rref are useful in solving problems that involve 
li near combi nations. 

Here, we discuss how 10 use M ATL AB to solve problems dealing with linear 
combinations. span. linear independence, linear dependence, and basis. The basic 
strategy is 10 SCI up a linear system related to the problem and ask questions such 
as ··Is there a solution?" or ·' Is the only solution the trivial solution?" 



EXAMPLE 1 

9.7 Applications of Li near Combinations in MAHAB 587 

• The Line~'r Combination Problem 

Given a vector space V and a set of vectors 5 = lv \. " 2 ..... vd in V. determi ne 
whether v, belonging to V, can be expressed as a linear combination of the mem­
bers of S. That is, can we fi nd some sct of scalars (/ I. G2, .... ak so that 

There arc several common situations. 

CASE I If thc vectors in S arc column matrices, then we construct (as shown in 
Example 9 of Section 4.3) a linear system whose coefficient matrix A is 

and whose right side is v. Let c = [C[ C2 q t and b = v: then transform 
the linear system Ac = b, using reduce or rref in MAT LAB. If the system is shown 
to be consistent. so that no rows of the form [0 0 0 i (/ ], q ¥- 0, occur, 
then the vector v can be written as a linear combination of thc vcctors in S. In that 
case thc solution to the lincar system gives the values of the coefficients. 

(Caution: Many times we need only determi nc whether thc system is consi~tent 
to dccide whether v is a lincar combination ofthc members of S. Rcad the qucstion 
carefully.) 

To apply MATLAB to Example 9 of Scction 4.3, proceed as follows. Define 

A = [I 2 1;1 0 2; 1 0 )' 

b = [2 5)' 

Then use thc command 

to give 
an, 

rref([A bl) 

1 

o 
o 

o 
1 

o 

o 1 

o 2 
1 - 1 

Recall that this display represents the reduced row echelon fonn of an augmented 
matrix. It follows that tllc corrcsponding linear systcm is consistcnt, with solution 

Hence v is a linear combi nation of Vt, V2, and vJ . • 
CASE 2 If the vectors in S are row matrices, then we construct the coefficient 
matrix 

and sct b = vT • Proceed as described in Case I. 
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EXAMPLE 2 

CASE 3 If the vectors in S are polynomials, then associate a column of coeffi­
cients with each polynomial. Make Sllre any missing terms in the polynomial arc 
associated with a zero coefficient. One way to proceed is to use the coefficient 
of the highest-power tenn as the first entry of the column, the coefficient of the 
next-highest-power tenn as the second entry, and so on. For example, 

The linear combination problem is now solved as in Case I. 

CASE 4 If the vectors in S are II! x n matrices, then associate with each such 
matrix A j a column Vj formed by stringing together its columns one after the 
other. In MATLAB this transformation is done by using the reshape command. 
Then we proceed as in Case I. 

Given the matrix 

p = [! 2 

5 

To associate a column matri x, as descri bed previously, within MATLAB, lirst enter 
Pinto MATLAB, then type the command 

v = reshape(P,6,1) 

which gives 

v 

For more information, type help reshape. 

• The Span Prohlem 

1 

4 

2 

5 

3 

6 

• 
There are two common types of problems related to span. The /irst is as follows: 

Given the set of vectors S = { V I, V2, .... Vi J and 
the vector V in a vector space V, is v in span S? 

This is identical to the linear combination problem addressed previollsly, because 
we want to know if v is a linear combination of the members of S. As shown 
before, we can use MATLAB in many cases to solve this problem. 

The second type of problem related to span is as follows: 

(liven I~ sel of vt"£IOrs S = {VI , \ 'J , 

a vector space V, does span S = V? 
, Vd in 
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Here, we are asked if every vector in V can be wrillen as a linear combination 
of the vectors in S. In this case the linear system constructed has a ri ght side 
that contains arbitrary values that correspond to an arbitrary vector in V. (See 
Example 8 in Section 4.4.) Since MATLAB manipulates only numerical values in 
routines such as reduce and rref, we cannot use M AT LAB here to (full y) an.<;wer 
this question. 

For the second type of spanning question, there is a special case that arises 
frequently and can be hand led in M ATLAB. In Section 4.6 the concept of the 
dimension of a vector space is di scussed. The dimension of a vector space V is 
the number 0 1 vectors in a basis (see Section 4.6) that is the smallest num ber 01 
vectors that can span V. If we know that V has dimension k and the set S has k 
vectors, then we can proceed as foll ows to see if span S = V: Develop a linear 
system Ac = b associated with the span question. If the reduced row echelon form 
of the coeffi cient matrix A has the fonn 

where II is a submatrix of all zeros. then any vectcx" in V is expressible in terms of 
the members of S. In fact, S is a basis for V . In M ATLAB we can use the routine 
reduce or rref on the matrix A. If A is square, we can also use det. Try this 
strategy on Example 8 in Section 4.4. 

Another spanning question involves finding a set that spans the set of solutions 
of a homogeneous system of equations Ax = O. The strategy in M ATLAB is to find 
the reduced row echelon form of [A i ll ]. using the command 

rref(A) 

(There is no need to include thc augmentcd column, since it is all zeros.) Then 
form the general sollition of the line:lT SYSTem ami express it :IS a linenrcom hination 
of columns. The colu mns form a spanning set for the solution set of the linear 
system. See Example 10 in Section 4.4 . 

• The Linear Lnde)1endence/Dependence Problem 

The linear independence or dependence of a set of vectors S = {Vt. \'2 .. ... vd 
is a linear combination question. Set S is linearly independent if the Oll /Y time 
the linear combination CI V I + C2 V2 + ... + q \ ' .. gives the zero vector is when 
Cl = C2 = = q = O. If we can produce the zero vector with anyone of 
the coeffici ents r j ¥- 0 , Then 51 is li ne:lrly (lepemlenl. Following the discllssi0n on 
linear combi nation problems. we produce the associated linear system 

Ac. = II . 
Note that thi s linear system is homogeneous. We have the following result : 

S is linearly independent if and onl y if Ac = II 
has only the trivial solution. 

Otherwise, S is linearl y dependent. See Examples 3 and 7 in Section 4.5. Once we 
have the homogeneous system Ac = 0, we can usc the MATLAB routine reduce 
or rrefto analyze whether or not the linear system has a nontrivial solution. 
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A special case arises if we have k vectors in a set S in a vector space V whose 
dimension is k (see Section 4.6). Let the linear system associated with the linear 
combi nation problem be Ac = O. It can be shown that 

S is linearly independent if and only if 

the reduced row echelon form of A is [ ~ l 
where 0 is a submatrix of all zeros. In fact, we can extend this further to say S is a 
hasis for V. (See Theorem 4. 12.) In M ATI.A R we can lise redlilP or rref on A 10 
aid in the analysis of such a situation. 

m Linear Transformations in MATLAB 

We consider the special case of linear transfonnations L: Rn 
-,>- R"'. Such linear 

transfonnations can be represented by an III x n matri x A. (See Section 6.3.) Then. 
for x in Rn, L(x ) = A x , which is in R'n. For example, suppose that L: R4 -,>- R3 is 
given by L (x ) = A x , where the matrix 

- I 
- 3 
- 2 

- 2 
- 5 
- 3 

-'] - 6 . 
- 4 

The image of 

under L is 

- I - 2 
- 3 - 5 
- 2 - 3 

The range of a linear transformation L is the subspace of W' consisting of 
the set of all images of vectors from R". It is easi ly shown that 

range L = column space of A. 

(Sec Example 7 in Section 6.2.) It follows that we "know the range of L'" when 
we have a basis for the column space of A. There arc two simple ways to fi nd a 
basis for the column space of A: 

L The tmnsposes of the nonzero rows of rref(A') foml a basis for the column 
space. (See Example 5 in Section 4.9.) 

2. If the columns containing the leading l's of rref(A) are kl < k2 <. < k,. 
then columns kl . k2 • ... • k, of A arc a basis for the column space of A. (Sec 
Example 5 in Section 4.9.) 
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For the matrix A given previously, we have 

rref(A') = [ O~I O~ -~:] 

ond hence I U] . m I ;" b,,;, lonhc mngo of L. By method 2. 

",'(A) ~ [~ 
o - I 

o 0 

Thus it follows that columns I and 2 of A are a basis for the column space of A 

and hence a basis for the range of L. In addition, routine lisub can be used. Use 
help for directions. 

The kernel of a linear transformation is the subspace of all vectors in R" 
whose image is the zero vector in Rm. This corresponds to the set of all vectors x 
satisfying 

L(x) = Ax = O. 

Hence it follows that the kernel of L, denoted ker L. is the set of all solutions to 
the homogeneous system 

Ax= O. 

which is the null space of A . Thus we "know the kernel of L" when we have a 
basis for the null space of A. To find a basis for the null space of A, we form the 
general solution to Ax = 0 and "separate it into a li near combination of columns 
by using the arbitrary constants Ihat are present." The columns employed form a 
basis for the null space of A. Thi s procedure uses rref(A). For the matrix A, we 
have 

",'(A) ~ [~ 
o - I 

o 0 

if we choose the variables corresponding to columns without leading I's to be 
arbitrary, we have XJ = rand X4 = t. It follows that the general solution to A x = 0 
is given by 

Thus columns 
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form a basis fo r ker L. See also routine homsoln, which will display the gcneral 
sollllion of a homogeneous li near system. In addition, the command null will 
produce an onhonormal basis for the null space of a matrix. Use help for further 
information on these commands. 

In summary. appropriate use of the rref command in M ATLAB will give bases 
for both the kerncl and range of the linear transformation L (x ) = Ax . 

m MATLAB Command Summary 

I.n this section we list the principal M ATL AB commands and operators used ill this 
book. The list is divided into two parts: commands that come with the MATLAS 

software. and special instructional routines available to users of this book. For 
ease of reference. we have included a brief description of each instmctional rou­
tine that is available to users of this book. These descriptions are also available 
from M ATLAS'S help command once the install ation procedures are complete. A 
description of any MATLAS command can be obtai ned by usi ng help. (See the 
introduction to this chapter.) 

Rllil1-in MAT I ,A R f:ommancls 

an, inv roots 
clear norm "'" conj null size 
det ones 'qrt 
diag pi sum 
dot poly tril 
eig polyval triu 
exit polyvalm zeros 
eye quit \ 
fix rnnd 
formal rnnk 
help rnt I (prime) 
hilb "al +. - , iii , /. 

, 
image reshape 

Supplemental Instructional Commands 

adjoint forsub picgen 
bksub gschmidl planelt 
circimages homsoln reduce 
cofactor invert rowop 
crossprd Isqline vec2demo 
crossdemo lupr vec3demo 

Both rref and reduce are used in many sections. Several utilities required by the 
instmctional commands are arrowh, mat2strh, scan, svdwordl , s\'dword2. and 
blkmal. The description given next is displayed in response to the help command. 
In the description of several commands, the notation differs slightly from that in 
the text. 



ADJOINT 

BKSUB 

CIRCIMAGES 

COFACTOR 

CROSSDEMO 

CROSSPRD 

FORSUB 
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Description or Instruclional Commands 

Compute the classical adjoint of a square matrix A. If A is not 
square an empty matrix is returned . 
*** This routine should only be used by students to check adjoint 

computations and should not be used as part of a routine to 
compute inverses. See invert or inv . 

Use in the form _~> adjoint(A) <R_ 

Perform back substitution on upper triangular system Ax _ b. If A is 

not square . upper triangular, and nonsingular. an error message is 
displayed . In case of an error the solution returned is all zeros . 

Use in the form _~> bksub(A,b) <~_ 

A demonstration of the images of the unit circle when mapped by a 
2 by 2 matrix A . 

Use in the form _a> circimages(A) < __ 

The output is a set of 6 2raphs for AAk *(unit circle) for k _ 
1,2, .... 6 . The displays are scaled so that all the images are in 
the same size graphics box . 

Computes the (i . j) - cofactor of matrix A . If A is not square . an 
error message is displayed . 
*** This routine should only be used by students to check cofactor 
computations . 

Use in the form _a> cofactor(i, j . A) < __ 

Display a pair of three - dimensional vectors and their cross 
product . 

The input vectors u and v are displayed i n a three-dimensional 
perspective along with their cross product . For visualization 
purposes a set of coordinate 3-D axes are shown . 

Use in the form _a> crossdemo(u.v) < __ 

or in the form __ > crossdemo <__ to use a demo or be prompted for 

input 

Compute the cross product of vectors x and y in 3-space . The 
output 
and y . 
[vI v2 

is a vector orthogonal to both of the original vectors x 
The output is returned as a row matrix with 3 components 
v3] which is interpreted as vl *i v2 *j + v3 * k where i , j . 

k are the unit vectors in the x, y. and z directions respectively . 

Use in the form _a> v _ crossprd(x.y) < __ 

Perform forward substitution on a lower triangular system Ax z b . 

If A is not square . lower triangular, and nonsingular . an error 
message is displayed . In case of an error the solution returned is 
all zeros . 

Use in the form _a> forsub(A,b) < __ 
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GSCHMIDT 

HOMSOLN 

I NVERT 

LSQLINE 

LUPF. 

PICGEN 

The Gram-Schmid~ process on the columns i n matrix x. The 
orthonormal basis appears in the columns of y unless there is a 
second argument . in which case y contains only an orthogonal 
basis . The second argument can have any value. 

Use in the form _a> y _ gschmidt(x) < __ 
or _a> y _ gschmidt(x.v) < __ 

Find the general solution of a homogeneous system of equations. 
The routine returns a set of basis vectors for the null space of 
Ax_O. 

Use in the form _~> ns a homsoln(A) < __ 

If there is a second argument . the general solution is displayed . 

Use in the form _~> homsoln(A . l) < __ 

This option assumes that the general solution has at most 10 
arbitrary constants. 

Compute the inverse of a matrix A by using the reduced row echelon 
form applied to (A IJ . If A is singular, a warning is given . 

Use in the form _a> B _ invert(A) < __ 

This routine will construct t he equation of the least squares line 
to a data set of ordered pairs and then graph the line and the 
data set. A short ~enu of options is available, including 
evaluating the equation of the line at points . 

Use in the form _a> C _ lsqline(x.y) or lsqline(x,y) < __ 

Here x is a vector containing the x-coordinates and y is a vector 
containing the corresponding y-coordinates . On output, c con~ains 

the coefficients of the least squares line: 

y=c(1)*x+c (2) 

Perform LU-factorization on matrix A by explicitly choosing row 
operations to use . No row interchanges are permitted. hence it is 
possible that the factorization cannot be found . It is recommended 
that the multipliers be constructed in terms of ~he elements of 
matrix U, like - U( 3. 2)!U(2, 2) . since ~he displays of matrices Land 
U do not show all ~he decimal places avai lable. A row operation 
can be "undone," but: thi" feature cannot be u"ed in &ueee,,&ion. 

This routine uses ~he utilities ma~2strh and blkmat. 

Use in the form _a> (L,U] _ lupr(A) < __ 

Generate low rank approximations to a figure using singular value 
decomposition of a digitized image of the figure which is 
contained in A. 

npic contains the last approximation generated 

(routine scan is required) 

Use in the form _a> npic _ picgen(A) < __ 



PLANELT 

REDUCE 

ROWOP 

SCAN 

VEC2DEMO 
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Demonstration of plane linear transformations: 

Rotations. Reflections. Expansions/Compressions. Shears 

Or you may specify your own transformation . 

Graphical results of successive plane linear transformations can 
be s~en using a multiple window display . Standard figures can b~ 
chosen or you may choose to use your own figure . 

Use in the form _a> planelt <~_ 

Perform row reduction on matrix A by explicitly choosing row 
operations to use . A row operation can be "undone . " but this 

feature cannot b~ used in succession . This routine is for small 
matrices. r~al or complex . 

Use in the form _a> reduce < __ to select a demo or enter your own 

matrix A or in the form _a> reduce(A) <a. 

Perform row reduction on real matrix A by explicitly choosing row 
operations to us~ . A row operation can be "undone". but this 
feature cannot be used in succession . Matrices can be at most 
6 by 6. 

To ~nter information. click in the gray boxes with your mouse and 
then type in the desired numerical value followed by ENTER . 

Use in the form _a> rowop <=_ 

If the matrix A is complex . the routine REDUCE is called . 

Scans input matrix A element-by-element to generate an image 
matrix picture consisting of blanks and X· s. If there is only on~ 
argument. tol is set to .5 and the rule 

if A(i.j) > tol then pic(i,j) : X 

else pic(i.j)=blank 

is used for image generation . 

Use in the form _a> pic _ scan(A) < __ 

or _a> pic _ scan(A.tol) < __ 

WARNING: For proper display the command window font used must be a 
fix~d width funt. Try fix~dsys funt ur ~uuri~r n~w. 

A graphical demonstration of vector operations for two-dimensional 
vectors . 

Select vectors u_[xl x2] and v _ [yl y2J. They will be displayed 

graphically along with their sum , difference, and a scalar 
multiple. 

Use in the form _a> vec2demo(u.v) <~_ 

or _a> vec2demo < __ 

In the latter case you will be prompted for input. 
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VEC3DEMO Display a pair of thr~e-dim~nsional vectors . their sum . difference 
and scalar multipl~s . 

The input vectors u and v are displayed i n a 3-dimensional 
perspective along with t heir sum . difference and selected scalar 
multiples . For visualization purposes a set of coordinate 3-D axes 
are shown . 

Use in the form _a> ve c3demo(u,v) < __ 

or in the form _z> vec3demo <aa to c h oose a demo or be prompted 
for input . 



CHAPTER 

MATLAB Exercises 

IIiII Introduction 

In Chapter 9 we gave a brief survey of MATLAB and its functio nality for use in 
an elemcntary linear algebra coursc. This chapter consists of exercises that are 
designed to be solved by M AT LAB. However, we do not ask that users of this 
text wri te programs. The user is merely asked to use MAT LAB to solve speci fic 
numerical problems. 

The exercises in this chapter complement those given in Chapters I through 
8 and exploitthc comp .. J1ational capabilities of MATLAB. To extend the instruc­
tional capabilities of MATLAB, we have developed a set of pedagogical routines, 
caik d sCl ipts 01 M-files, IU illustrate cOllceplS, sln;alll iim; step-by-step COlllpula­
tional procedures, and demonstrate geometric aspects of topics, using graphical 
displays. We feel thai MATLAB and our instructional M-fil es provide an opportu­
nity for a working partllership between the student and the computer that in many 
ways forecasts situations that will occur once the student joins the technological 
workforce of the twenty-first century. 

The exercises in this chapter are keyed to topics rather than to individual sec­
tions of the text. Short descriptive headings and references to MATLAB commands 
in Chapter 9 supply information about the sets of exercises. 

597 
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Basic Matrix Properties 

III unier 10 liSt' MATLAB ill this .~e(lioll. yO/I slwllltljirst relui 
SecliUlIJ 9.1 lwd 9.2. which girl' bo..fic illjumUilioll (,bout 
M ATLAB lllld matrix operllliOlJ.f ill M ATLAB. You (11"1' urged 
10 I!XU'IIII' lilly e.wmples 01" illllstm/joll,l' of M ATLAB 

cOllltrlwu/J' that apfH'ar ill Set'liolls 9. 1 (l1JI19.2 bl,/ol"e tl"ying 
Iltese exerciu.\·. 

1\11..1 . In M AT LAB. enter the followi ng matrices: 

[ '" 8 = 1/201 
0.00001 

USing M ATLAB commandR, display the following: 

(a) (In. bu. b'2 

(b) rowl(A). coIJ(A). row!(B) 

(e) Type M ATLAB commnnd fonnallong and 
display matrix 8 . Compare the elements of 8 
from part (a) wi th the current display. Note that 
rormat short displays four dccimal places. 
rounded. Reset the fomKlt to rorma! s hort. 

1\11..2. In M ATLAB. type the colUnwlld II = hilb(5);. 
(Note that the last character is a ~micolon. which 
suppresses the display of the conlents 01 matrix H . 
See Section 9.1.) For mOle information on the hilb 
commnnd. type help hilb Using M ATLAB 

commnnds. do the following: 

(a) Determine the size of H , 

(b) Display the contents o f H. 

(e) Extract as a matrix the firs t three columns. 

(d) Extract as a matrix the last tWO rows. 

ML3. SOllletillles. it ;s cOIl VClliCLI l1O ~ce t il e contents of a 
matrix displayed as rational numbers. 

(a ) In M ATLAB. type the following commands: 

format rat 

H = hilb(S) 

Note the frac tions that appear as entries. 

(b) Warning: format ra l is fOf viewing purposes 
only. All M ATLAB computations use 
decimal-style expres~ion s. Besides. format rat 

may display only an approximation. In 
MATLAB. type the fo llowing commands: 

format rat 

pi 

forlllllt Inng 

pi-355f11 3 

Note that the value shown in formal rat is only 
lin approximation tt);r. 

Matrix Operations 

ML.1. In M AT LA B. type the command clear. then enter 
the following matrices: 

1/'] 1/ 4 . 
1/ 6 

C = [~ ' /4 
2 

B = [, 

9/4] 
3 . 

-2 ]. 

Using MATLAB commands. compute each of the 
expressions if possible. Recall that a prime in 
M ATLAB ind icates transpose. 

(a) A.C (b) A . B 
«) A +C' (d ) IJ .A-C. A 
(,) (2.C-6* A') *8' in A .C- C * A 
(g) A.A'+r'*r 

1\1L.2. Enter the coefficient matrix of lhe system 

2t +4)' + 6:: = - 12 
2(-3), - 4;: = 15 

3x+4y+5;:= - 8 

into M ATLA B nntl call it A. Enter the right side o f 
the system nnd call it h. Form the augmented matrix 
associated with this linear system. using the 
M ATLA B command [A hr. To give the augmented 

matrix a name. such as aug, use the command 
aug = [A b]. (Do nottypc the period!) Note that 
no bar appears between the coefficient matrix and 
the right side in Lr.C M ATLAIl display. 

ML.J. Repcat lhe preceding exercise with the following 
linear system: 

4x - 3)' + 2z - w = -5 
2\" +),-3z 7 

- x + 4y + z + 2w = 8. 



ML.4. Enter matrices 

,"0 

B~ [i 0 - I 
3 -3 
2 5 

into MATLAB. 

(a ) Using MATLAB commands. assign row2(A) to 
R and coI3(8) to C. Let V = R * C . What is V 
in terms of the entries of the product A * 8 '! 

(b) Using MATLAB commands. assign 0012( 8 ) to 
C ; then compute V = A * C. What is V in 
terms of the entries of the product A * 8 1 

(c) Using MATLAB commands. ass ign row3(A) to 
R . then compute V = R * 8 . What is V in 
tenns of the entries of the product A * 8 1 

ML.5. Use the MATLAB command diag to form each of 
the given diagonal matrices. Using d iag. we can 
form diagonal matrices without typing in all the 
entries. (To refresh your memory about command 
diag. use MATLAB'S help feature.) 

ML.6. 

(a) The 4 x 4 diagonal matrix with main diagonal 
[I 2 3 ,] 

(b) lbe 5 x 5 diagonal matrix with main diagonal 

[ O l !!! ] 
2 3 ~ 

(c) The 5 x 5 scabr matrix with all S's on the 
diagonal 

M ATLAB has some commands that behave quite 
differently from the standard definitions of +. - . 
and *. Enter the follow ing matrices into M ATLAB: 

A = [~ - 2 
5 

B~ [
- 2 

7 
9 

- 3 '] 8 . 

Execute each of the following commands and then 
write a description of the aClion taken: 

(a) A.*S 

(b) A l B and S lA 

(c) A.A2 

Powers of a Matrix 

In OIrler 10 lise MATLAB illlhi.I' l'eclioll, ),Olll'hOlildfir.I'1 have 
read Clll/pler 9 Ihro llgh SaliOl! 9.}. 

ML.1. 

ML.2. 
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Use M ATLAB to find Ihe smallest positive integer k 
in each of the following cases: 

(a) A ' ~/, ro'A~ [! o 

~] o 

(bJ A'~Ar",A~ [ -~ 
o 

r] o o 
o o 
o 

Use MATLAB to display the matrix A in each oflhe 
given cases. Find the smallest value of k such that 
A k is a zero matrix. Here. tril. o nes. triu . fix. and 
rand are MATLAB commands. (To see a 
description. use help.) 

(a) A = Iril (oncs(5). - 1) 

(b) A = Iriu(fix(lO * rand (7)). 2) 

ML.3. LeI A = [ 0 - : -~]. Using command 
- I 0 I 

polY"alm in MATLAB. compute the following 
matrix polynomials: 

(a) A~ _ AJ +A 2 +21J 

(b) A 3 _ 3A 2 + 3A 

[
0.1 0.3 0.'] 

ML.4. Let A = 0.2 0.2 0.6. Using MATLAB. 

ML.5. 

0.3 0.3 0.4 
cmnpnre each ofrhe foll nwine marrix express;ons ~ 

(a) (A l - ' A )(A + 3/3) 

(b) (A- /J)l + (A) +A) 

(c) Look at the sequence A. A2. AJ . .... AK . . 
Does it appear to be converging to a matri ,~? If 
so. to what matrix '! 

Le>A ~ [~ n u" MAT"",O comp"" 

members of the sequence A. A 2. AJ ..... A ~ . 
Write a description of the behavior of this matrix 
sequence. 

ML.6. Let A = [t ~] Repeat Exercise ML.S. 
o -k 

ML.7. Le>A ~ [-l -: n u" MATeA"O 00 

the following: 

(a) Compute At A and AAT. Are they equal? 
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(b) Compute B = A+At and C = A _ Ar. Show 
that B is symmetric and C is skew symmetric. 

(c) Detennine a relationship between B + C and 
A. 

Row Operations and Echelon Forms 

III orr/er to lise M ATLAB illihis ,I"eelioll. you shouldjir.w hm'e 
read Chapler 9 throllgh SeC/ion 9.4. (In place oflhe 
command reduce. lire co",mand r{)w{)p can be IIsed.) 

MLI. Let 

ML2. 

A ~ [ -l -~ 1] 
Find the matrices obtained by performing the given 
row oper.:ltions in succession on matrix A. Do the 
row oper.:ltions directly. ming the colon operator. 

(a ) Multiply row I by ~ . 

(b) Add 3 times row I to row 2. 

(e) Add ( - I) times row I to row 3. 

(d ) Add ( - 5) times row I to row 4. 

(e) Interchange rows 2 and 4. 

Le, 

A ~ [i II 
Find the matrices obtained by performing the given 
row oper.:ltions in succession on matrix A. Do the 
row oper.:ltions directly. u;;ing the colon operator. 

(a) Multiply row I by 2. 

(b) Add (-Dtimesrow I to row 2. 

(c) Add (- I) times row I to row 3. 

(d) Interchange rows 2 and 3. 

l\'IL.3. Use rcduc(' to find the reduced row echelon fonn of 
matrix A in Exercise ML.I. 

ML4. Use rcduc(' to find the reduced row echelon fonn of 
matrix A in Exercise ML.2. 

ML.5. Use rcduc(' to find all solutions to the linear system 
in Exercise 6(a) in Section 2.2. 

ML.6. Use r('duc(' to find all sol!ltions to the linear system 
in Exercise 7(b) in Section. 2.2. 

ML7. Use f('duc(' to find all solutions to the linear system 
in Exercise 8(b) in Section. 2.2. 

ML.8. Use rcduc(' to find all solutions to the linear system 
in Exercise 9(a) in Section 2.2. 

ML.9. Let 

A = [~ 
Use rcduc(' to find a nontrivial solution to the 
homogeneous system 

(Sh - A)x = O. 

[Him: In M ATLAB. enter matrix A: then use the 
command rcduCf(5 * ('ye(s iZ(' (A» - A).] 

J\.-tL.IO. Let 

A = [~ S] I . 

Use rcduc(' to find a nontrivial solution to the 
hflmfleenNlll~ ~y~rem 

(- 412 - A)x = O. 

[Him: In M ATLAB. enter matrix A: then use the 
command rcducf( - 4 * ('ye(siz('(A» - A).] 

ML.II. Use rref in MATLAB to solve the linear systems in 
Exercise 8 in Sec.1ion 2.2. 

ML.1.2. MATLAB has an immediate command for solving 
square lineal systems Ax = b . Once the coefficient 
matrix A and right side b are entered into MATLAB. 

command 

x = A\ b 

displays the solution. as long as A is considered 
nonsingular. The backslash command. \. docs not 
use reduced row echelon fonn. but does initiate 
numerical methods that are discussed briefly in 
Section 2.5. For more details on the command . see 
D. R. Hil l. Experimems in ComplIwtiollal Malrix 
Algebra. New York: Random House. 1988. 

(a) Use \ to solve Exercise 8(a) in Section 2.2. 

(b) Use \ to solve Exercise 6(b) in Section 2.2. 

ML.13. TIle \ command behaves differently than rrcr. Use 
bolh \ and rref 10 solve A x = b. where 

2 
5 
8 



LU-Factorization 

Romine h' IIr lJfVI'ides 1I step-by-sltp pfVCt'lllire ill M ATLAB 

for obU/illillS lire LV-/liclOri:atioll (li,~clI,Hed i'l St'clioll 2.5. 
alia 1>"1' h(ll"e the LV-!lIctoriwtim:, mlllilll'S for sub l/J1l1 

bks ub rail be used 10 perjonlllhejonl'(mi mul bllek 
.wb,\'lillllioll. rel'jJeL'lil·ely. Vse help /or /unher ill/ormatioll 
Oil Ih(',\'I' fOulin(,l' . 

ML!. Use lupr in MATLAB to find an LV-factorization of 

8 
2 
2 -n 

ML2. Use lupr in MATLAB to find an LV-factorization of 

- I 
7 

MLJ. Sol,'c thc lincar systcm in E)(amplc 2 in Section 2.5. 
u ~ing lupr. forsub. and bk.~uh in M ATLAB. Check 
your LV -factorization. using Example 3 in Section 
2.5. 

ML4. Solve Exercises 7 and g in Section 2.5. using lupr. 
for sub. and bksub in M ATLAII. 

Matrix Inverses 

III OilIer II! lise M ATLAB illlhi.f .1'eClioll, YO II slumldfifl'1 IIl1l'l' 
re(ld Chapler 9 Ihro ugh S('('liol1 9.5. 

ML!. USing M ATLAB. determine which of the given 
mmrices are nonsingular. Use command rref. 

(.) A = [ I 
- 2 :] 

[; 
2 

~l (b) A = 5 
8 

«) A ~ U 2 

~l 5 
g 

M1..2. USing M ATLAB. determine which of tltc given 
mmrices are nonsingular. Use command r ref. 

A = [~ ;] (b)A ~ [~ 
0 

(. ) 

(el A~ [~ 
2 

~] 1 
0 

~] 

M1..3. 

ML4. 
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USing MATLAB. determine the in\'erse of each of 
the given matrices. Use commnnd 
rref(IA eye(size(A» )). 

(a) A = [ : 
2 

USing M ATLAB. determine the inverse of each of 
Ihe given matrices. Use COlllrnnnd 
rn!f([A eye(size(A»)]). 

(a) A = [~ 
- I 

2 
o ~] 

MLS. USing M ATLAB. delermine a ]lO.~ itive integer I so 
thnt (/ I - A) is singu lar. 

Determinants by Row Reduction 

III orr/", 10 liSt': M ATLAB in lhis St'clioll, yml slulII'" firstlwl'e 
rt'(I(1 Clulf'ter 9 thmllgh St'ctimr 9.5. 

ML.1. Use the TOutine red uce to perronn row operations. 
:md keep track by hand o f Ihe chnnges in the 
dctcrminant. as in Example 8 in Section 3.2. 

n 1 

n (a) A = 3 
2 

(b) A ~ [ -~ 
3 

-~] 1 

0 1 

0 0 

1'I'IL.2. Use routine red uce to perform row operations. and 
keep track by hand o f lite chnnges in the 
determinant. as in Example 8 in Section 3.2. 

[~ 
0 

n (II) A = 2 

(b) A~[~ 
2 0 

~] 2 
2 
0 2 

ML.J. M ATLA B has the command del . which returns the 
value of the detenninant of a m3trix. JuSt type 
d et (A). Find the detemlin3nt of each of the 
following mntriccs, using del : 
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1\U.4. 

U 
- I 

-: ] (a) A = 

(h) A ~ [~ 
2 3 

~] 3 4 
4 , , 6 

Use d el (see Exercise ML.3) to compute the 
(\elermin.'UlI of each o f tht' following: 

(3) S. eye(size(A» - A. whe re 

3 

~] o 

(h) (3 . cye(sizc(A» - A)" 2. where 

A = [~ ;] 
«) imwt (A ) .A. where 

A ~ [i 
0 n 

ML.S. Delemline a posi tive integer I so that 
d et(t. eyc(size(A» - i\) = O. where 

A ~ [ ' 2] - I 2' 

Determinants by Cofactor Expansion 
1\U.1. In MATLAlllhere is a routine cofactor that 

computes Ihe (i, j ) cof:lctor of a matrix. For 
directio ns on using this routine. type help cofactor. 
Use cofllctor 10 checl; Yol.lr hand computations for 
the matTi;>; A in E;>;ercise I in Section 3.4. 

ML.2. Use the cofa ctor routine (see Exerci se ML.I ) to 
l:ol1 lpute the I;ufal:lor of lhe cielTlcllls in the sel;omJ 

row of , 
- I 

2 

ML.3. Use the coractor roul ine to evaluate the determinant 
o f A , using Theorem 3. 10. 

A ~ [ -~ ~ =:] 
o 4 - 3 

ML.4. Use the cofactor rout ine to evaluate the determinant 
o f A. usi llg 1Oeorem 3. 10. 

[

- I 

A _ 2 
- 0 

o 

2 
- I 

2 
o 

o 
2 

- I 
2 
j] 

1\·1L.5. In MATLA llthere is a routine adjoint. which 
computes the adjoint of a matrix. For directio n; o n 
using this rout ine. type hdlJ adjoint. Use adjoint 
to aid ill computillg the illverses of the matrices ill 
E;>;erc ise 7 in Secrio n 3.4. 

Vectors (Geometrically) 

£I"e rci.l"l'.f MLI rhmllgh ML 3 IISI! IIII' Wlilille vcc2dcmo. 
lI"ilich pmllides ( I graphic'J/ diJp/a)' o[I'eclors ill/he plane. 
For II IHlir o[ I'e" /(Jr,I' \I = (.\·t. )'1 ) (lml v = (Xl. )'2) . roll/ille 

\'Cc2demo grophs II " lid \ ', II + V. II - v. uml a Jcu/ar 
mil/lip/e. OJJce I}, I.' l 'ec·lOr.~ II {//uJ v "'" ellie red inlo 
M ATLAB, type 

\·ccZdcmo{u. \,) 

For [ lI n ller i lt[ orlll(/f;(JII. 1Iit' help \'cc2d cmo. 

ML. I . Use the rout ine \'ec2d emo with each of the given 
pairs ofvec tol"l'. tSquare brackets are used in 
M ATLAB.) 

(. ) " ~[2 o]. , ~ [ o 3] 
(h) " ~[ -3 1]. ' ~[2 2] 
« ) " ~[, 2J. " ~ [ - 3 3] 

ML.2. Use the rout ine wcZdemo wi th each of the given 
pairs o f \'ectors . tS<luare brackets are used in 
MATLAS.) 

(. ) " ~ [2 -2 ]. ' ~ [ 1 3] 
(h) " ~[ O 3 ]. ' ~ [ -2 0] 
« ) " ~ [4 - 1 ].' ~ [ -3 ,] 

ML.3. Choose pai rs of \'cctors \I and v 10 use wilh 
\'ec2<1cI1l0. 

ML.4. As an aid for visual izing vector operations in RJ. 
we have \"Cc3demo . This routine provides a 
graphical display of vectors in 3.space. For a pair of 
vcc tors II and v, mutine \'cc3dcmo graphs II and v. 
u + \', U - v, and a scalar multiple. Once the pair of 
vcc tors from Rl are entered into MATLAB. t y~ 

\·ecJdemo (u . v) 

Use \'cdd elllo 0:1 each o f the j!i\'en pairs from R3. 
(Square brac l;ets are used in M ATLAB.) 



(.) u = [2 6 4J'. " ~[6 2 -s ]' 
(b) u ~ (3 -s 4]'.'~[7 - I -2]' 
«) u = [4 0 -S J ', ' ~[O 6 3]' 

Vector Spaces 

The cO/Jeepl.\" di.rclI!iSl'd in I/iiS SeL'liOllllre 1101 (,luil)' 
impltIllI!JIlt'l/ ill M AT LAS routines. Tire Ilmllenies ill 
Defilliliml 4,4 1IIIISIIIOldfor alll't!(10rs. JII.I"1 bec(IllSt' we 
,/eIlWIWr(lte ill M ATLAB tlrat a (Irupert)' "f Deju,;rioll 4.4 
"olds!or (I jew ,'ectors, ;1 dOf's 110/ illlply filtH it holds/or all 
s lIcl1 ,'ec/()r.f. YOII 11111.1'/ gllurcillgllin.fl slIcl1 /till II)' reasoning. 

HOII'(,I'er. if. jor il partin/llIr cholet a/reClOrs. II"\" sl/OII' Ilwl 
a property/tlil.f ill MATLAB. then \I'e lraw! I'J/(Ibli.flred Ilrm 
lire propert), (Joes /10/ hoM in all (Jossible C(IJe!, Hence Ihe 
property is cOII.\'idered to be faI!N'. !11 lhil>' 1<'(/)' 11'1' might be 
able 10 ,I'how /11(11 lI.1"/'I is 1101 (/ l'u'lOr space. 

ML. I . leI V be the set of all 2 )< 2 rnalrice~ with 
opcmlions given by the following M ATLAB 
commands: 

A $ B is A .• B 

k 0 A is k+A 

Is V a vector space? (Hill': Emcr some 2 x 2 
matrices and experiment with the MATLAB 
commands to understand their behavior before 
checking the condit ions in Defini tion 4.4.) 

1'11..2. Following Example 6 in Section 4.2. we discuss the 
vector space p. of polynomialS of degree II or less. 
Opcrahons on polynomials of degree II can be 
performed in linear algebra software by associating 
a row matrix of size II + I with polynomial p(l) of 
p •. The row matrix consi'lS of the coefflcients of 
p(l). by the association 

I, (t) = 1I. 1· +1I.~ 11 · - 1 + ... + "I' + lIo 
-lo [ll. "._1 

If any Icrm of p(l) is explicitly missing. a zero is 
used for its coefficient. Then the addition of 
polyllomiab l:orrcspolll.!s 10 nUll";" .u.kJil ioll, <lnd 
multiplication of a polynomial by a scalar 
corresponds to scalar multiplication of matrices. 
Use MATLAB to perfonn the given operations on 
polynomials. using the matrix a~sociation 
previously described. lei I. = 3 and 

p(/) = 2,1 + 51 2 + ' _ 2. 

q(l) = Il + 3, + 5. 

(a) 1,(/) + q(t) 

(c) 3p(l) -4q(t) 

(b) 5p(tl 
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Subspoces 

ML.I . Let v be R1 and let \V belhe subset o f V o f veclors 
of Ihe form [2 II b J. where" and b are any rea l 
numbers. Is IV a subspace of V'] Use Ihe following 
M ATLAB commands 10 help you detemline the 
[mswer: 

al = fix ( 10 . randn): 

a2 = 6x (10 . nUldn): 

bl = fix ( IO . nmrln): 

b2 = fix ( IO . r :mdn); 

" = 12albI J 

w = 12 a2 b2 ) 

V - W 

3 .. 

ML.2. Let V be p~ and le t IV be the subset o f V o f vectors 
of the form lU' + bx + 5. where II :md bare 
arbitrary rea l numbers. Wi th each such polynomial 
in \V we associatl.' a vector [ a b 5] in R1. 
Construct commands like those in Exercise ML.I 10 

show that IV is nOI a subspace o f v. 

Be/Ofe .mldll /: the/allowing M ATLAB exerci.\·e.f, )"011 should 
hllre relld Seuio/l 9.7. 

ML3. Use M ATLAB to determine whether vector v is a 
linear combination o flhe members of set S. 

(a) S = {VI. \ '2. ,.] ! 
~IPoolj,[olloJ,[III 'lI 

,~[o I I Ij 

(h) S = {VI. " 2. ,'] ! 

1\tL.4. Use MATLAB to determine whether V is a linear 
combination oflhe members of set S. If it is. 
express \' in tenus of the members of S. 

(a) S = {VI. V2. vJ! 
~Ir ' 2 1],[30 1],[1 8311 

' ~[-2 144J 
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MI..S. Use MATLA B to determine whether l ' is a linear 
combination of the members of I>Ct S. I f it is, 
express " in terms of the members of S. 

(a) S = (l· l. " 2. "1. "4) 

(b) S = {PI(t)./12(I). PJ(I ») 
:= {2t 2 -t+ 1,(2- 2.1 - 11 

l ' = p(l ) =4P + 1 - 5 

M1..6. In each pan. detennine whether \' belongs to span 
S. where 

~ 1[ 1 0 I ]. [ I - I 0 I] . [0 

(a) ,, = [2 3 2 3J 
(hJ ,, := [2 - 3 -2 3J 
«J ,,:= [0 2 3J 

M1.1. In each p.1n. detennine whether 1'(1) belongs to 
span S. where 

S = {PI(t)"'z(I), " 3(1») 

= (1- 1. 1 + I.r 2+ r+ I). 

(II ) p(r) = r2+2r+4 

(b) p(t) = 21 2 + 1 - 2 

(c) 1' (1) = _ 2t l + I 

Linear Independence/Dependence 

Ml. l. Detemline whether S is linearly independent or 
linearly dependent. 

o 0 I J. [0 
III 

OJ . 

2 I l l . 

~ '[I 2] [2 -I] [-3 (b) S 1 I o· I 2 ' 0 

« J s~ m [-iHJJ f] 
(d) S = {21~ - / +3. 12 + 21 - 1.41 ~ - 7t + II) 

ML.2. Find a spanning ~t of the solution space of Ax = 0, 
where 

ML3. Let 

2 

- I 

2 

o 

5 
- 2 

i] . 
- 2 

Dctennine whether" is in span {l'l. V2. "11 for each 
of Ihe followi ng. and if il is. fin d the coefficienlS Ihal 
expres.~ \' as a l i n~ar combination of V,. \ '2. and "J: 

(h) , ~ m 

Bases and Dimension 

III orr/er 10 liSt' MATLAB ililhis secliOlI, you slumltl hmy 
rl!(ld SeclifNl 9.7. III Ihl! III!.f1 nnri.H!J we retaIl! Ihe Iheory 
llcI'dopCl/ i'l (Illil scclioll to complUmif)/llIlpwadl/rcs in 
M ATLAIlII'liidlaid ill onalyzing Ihl' .1·ifUllIioli. 

To determine whethu 1I .l'e! S = (vI, v2 ..... l'l l i.r 01 

basi,I'for II I'('c /Or ~"'lIce V. Ihe definition 1"I'{/ lIi,·e.I' 11.1" to show 
liI(II spall S = V ami S is linearly inilcpcnilelll. Howe)"er. if 
we kllOw Ilral dim V = k. Ihell Theorell/ 4. 12 ilII11lies Ilralll'e 
neel/to Jlww of/I)' Ihal either sf}(m S = V or S is lif/early 
illl/epelldetlf. The lillear inJepelllleIlC(', ill litis special CGSC. is 
ec,.fily (//1lIIy:'ecl by MATLA B's rrt'f cOlI/lllmld. COllslmcl the 
hOllll1gelll'OIl.I" SYl'/Clll Ac = 0 llssm;illf('d lI"illi the lillcllr 
illllep(,lu/(,IlCc/l/cpelldt'llcc qllesliml. Th eil S is /illellrly 
illl/CI'I'IU/('111 if lllll/allly if 

r rt' r(A) = [ ~ ] . 



III £lercises MLI throllgh ML6. ~rlhe set qualifies a.r a 
special case. apply M ATLAB'S rrcf command: OIhenvi.I'e. 
determine whether S i.I' a bwi.I' for V in the cmll'elltimwl 
manner. 

ML.1. S ~ I[ I 2 iJ. [2 
V = R3 

ML2. S = (21 _ 2.12 - 31 + 1.212 - 81 +4) in V = P2 

ML3. S ~ 1[1 0 0]. [2 I - I]. 

[0 0 I]. [I 2 2]1inV=R4 

ML4. S ~ 1[1 2 I 0]' [2 I 3 I ]. 

[2 - 2 4 2]!inV=spanS 

ML5. S ~ 1[1 2 I 0]' [2 I 3 iJ· 
[2 2 2]}inV=spanS 

ML6. V = the subspace of R3 of all vectors of the form 
[a b c].whereb=2a -c and 

S~I[O I - 1).[1 I 1)1 

III £Tercise.f ML7 Ihrollgh ML9. /'.1'1' MATLAB's rref 
command 10 del1'l7llille a J'Ilb.I'el ofS Ihal i.l· (I basillor span 
S. Su Ewmple 5 in Seclion 4.6. 

ML.7. S ~ I[ I 
[I 0 2 

o 0]'[ -2 
I]. [2 2 

-2 0 0]. 

I]. [0 
What is dim span S1 Does span S = R4 '! 

ML8. s= {[: 

[; 
What is dim span S1 Does span S = M n '! 

1]1· 

l\U.9. S = (I - 2. 21 - I. 41 - 2. 12 - I + I. 12 + 21 + I). 
What is dim span S1 Does span S = P21 

All iMerprelalioll of Theorem 4.11 ill Seclion 4.6 is Ihat an)' 
linear/y illdepelldelll sllb!let S of veclor space V can be 
ntl'llded 10 a basillor V. Following Ihe ideas in t.'):ample 10 
ill SI'('fiOIl 4.6, 11.1'1' MATLAB '.1' rrcf command to exlend S fO a 
basi.lIor V in £w/"ci.I'e.I" ML /0 Ihrollgh ML.12. 

ML.lO. S ~ I[ I o 0].[1 0 

ML.II. S = (I' - 1 + l. I' + 2). V = P3 

ML.l2. S~I[O 3 0 2 - Ill. 

O]I·V~R, 

V = the sllbspace of Rs consisting of all vectors of 
theform[a bed e].wherec=a, 
b=2d+e 
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Coordinates and Change of Basis 

Findin g Ihe coordinale.I' of a \'eclor with re.\'pecllO a bwis is 
a liflea/"combillafioll problem. Helice, once Ihe 
corrl'.l'{Jonding lillear l')'.I'll'm is conslrucled, we ('(11111.1'1' 

MATLAB TTmlille reduce or rref to find ils SOllltioll. The 
solution girl'S II.\' Ihe desiral coo/"dillafe1', (The disclI.nioll in 
Section 9.7 i.I' helpflll (I.\' a/1 aid for cOlIslrueling Ihe lIece.uary 
lillear .1'),.1'11'111.) 

ML.1. Let V = R3 and 

Show tlwt S is a basis for V and find [ v L for each 
of the following vectors: 

(a) v = [ 8~] 

«) , ~m 
ML.2. LetV=R4 andS=l[1 0 I I]. 

[I 2 I 3].[0 2 iJ.[O 0 0] 1. 
Show that S is a basis for V and find [ v L for each 
of the following vectors: 

(a) v =[4 12 8 14] 

(b) ' ~[l 0 0 0] 

(c) v = [I 
ML3. Let V be the vector space of all 2 x 2 matrices and 

Show that S is a basis for V and find [ v L for each 
of the following vectors: 

(. ) 
[ 2 '"] (b) v = ~ ~ 

«) 

Findin g the tran.l'iliollm(/frix PI_r from Ihe T -basi.I' 10 Ihe 
5-bmi.l· i.r also a linear combillllfion problem, Ps_r is Ihe 
malrix whoIe COIIlIllIl .I' are Ihe coordinales oflhe reclors in T 
lI'ilh 11'.l{Jecl to Ihe 5-basi.I'. f"olloll'illg Ihe ideas del·eloped ill 
Exalllple 4 of Section 4.8, 11'1' ca,,-[ind lII(l/rix Ps_r by III'iflK 

routine reduct! or rrer. The idea is fO comlrucl a malri.T A 
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wlrOM' collimllS ('orrespmul /tJ Ihe \'I!clors ill S (sel! Seclioll 
9,7) IIlId (1lIwlrix 8 wlloJi! COIU/IIII; correspond to tire ~'ec/(Jrs 
ill T, Tlre/l MATLA" w/III/1(Uld rrd(!A 8 1) girl'S [ I Ps _ TI, 

til Exe,dseJ ML4 Ilmmglr ML6. lise lire MATLAB 
leclrr.iqlf/'S jllsl l/escril1l!{1 /(J fimlillt! IrtlllSi/itJIl mlilrix I'S_T 

from lire T ·btIJ';S to 11/" S·btl.f;J, 

Ml,4. V = NJ • 

Ml,5. V = I'J.S=ll - I.I + I.I !+ I,tJ- I), 
T = 11 2, 1 _ I,2 _ 12, IJ +1 2) 

Ml,6. V = N4.S= l rI2 
[3 0 , 2].[2 
T = natur:ll basis 

3 0l.rO 
3 0 1) I· 

2 

l\'1l,7. Let V = NJ :lnd suppose that we have bases 

"d 

31· 

(3) "'Ind lhe lrlln ~i tion matrix I' from U to T, 

(b) Find lhe tn\ll ~i t ioll matrix Q from T to S, 

(c) Find lhe tnlnsitiollillatrix. Z from U to S. 

(d) Does Z = PQ or QP? 

Homogeneous Linear Systems 

III £telrise,f ML/ through ML3, ".re M ATLAB 's rrd 
cmll/all/llllo a;ll ;lIfilldillg II mlJisjor Ihe 111111 Splice 0/ A. 
YO/I "Ill)' "'so lue roillille homsoln. For ilireClim/S, liSt! help. 

>ILL A ~ [i , 
o 

2 
4 

2 

2 
2 
2 ~] 

2 
2 

ML.2. A = [f , !] 0 
0 

'1L.3 A ~ U 4 7 

-~] 5 8 
6 9 - 2 

1\11 .• 4 . For Ihl' m:l1ri~ 

A = [~ n 
and A = 3. lhe homogeneolls system 
(Ul - A)x = 0 has II nontrivial solution. Find such 
a solution. using MATt.AII commands. 

j\'11.5. For thc malrix 

2 
2 

and A = 6. lhe homogeneous linear system 
(U J - A)x = 0 hllS a nontrivial solution. Find such 
a solution. using MATLAB commands. 

Rank of a Matrix 

Gil'ell a matrix A. lire IUm:em rows of rrt'f(A ) /Ol1llll basis 
for Ihe mil' l 'pllce 0/ A {/lid lire IIOII: ero rows qfrrdCA ') 
Irillls/omlelllO COlll/lIIl.f gil'e (I btlSis for Ihe CO/IIIIIII SpllCt! 
a/A. 

l\1L.I , Sol\'c Exercises I through 4 in Section 4.9 by using 
MATLAB. 

To Jilld (/ btuis for t/le /lilt· JPoce 0/ A IhOl com-isIs of rows of 
A. It'e COlli/III Ie rrcf(A '). The fetulillg J 's {Joimlo Ihe ongilllli 
rows 0/ A litOl gil'(' II,~ (I bO,fis /(}r Ihe /lIW spact!. See 
ExwlI/}/e 4 in Sec/ion 4.9. 

M1.2. DClcnninc IWO hases for each row space of A that 
havc no vectors in commo n, 

(.) A ~ [~ ,1 ~] 

(b) A ~ [~ 
, 2 

i] 
0 0 
2 2 
5 6 
3 4 

ML.3. Repeal Exercise ML.2 for the column spaces. 



To cOli/pille Ihe r(lllk of (/ Ilwlrl)." A ill MATLAR. lise Ihe 
cmwlwm/ rank(A). 

ML.4. COlilpute the rank and nullity of each of the 
following matrice.~: 

(. ) [; ; -;] 

[i 
2 2 

iJ 
(h) 

1 0 0 
- I - I - 2 

0 - I - 2 

ML.5. Using only the rlmk cOlilmand. determine which of 
the followin g linear systems is consistent: 

Standard Inner Product 

fll orner /(J lI.re MATLAR ill lhis seCliOlI. YOlis/wllltljirsl 'Illre 
read Sectitlll 9.6. 

1\·IL.I . In MATLAlllhe dOl product of a pai r of vectors can 
be computed by the dol command. If the vectors v 
and w have been entered into MATLAB as either 
rows or columns, their dOl product is computed 
from the MATLAB command dot(v, w). Ir the 
vectors do not have the S:lme number of e lements. 
an error message is displayed. 

(It) Use dot to compute the dot product of each of 
the following pairs of vectors: 

(I) ' ~[ I 4 - 1]. w ~[ 7 2 0] 

0;) , ~[ -Uw= U] 
(b) Let a = [ 3 - 2 I ]. Findavalueforkso 

that the dOl product of a with b = [ k I 4] 
is zero. Verify your results in MATLAB. 
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(c) For each of the follOWing vectors \\ compute 
dol(' ,, \,) in MATLAB. 

(i) ,~[ 4 2 - 3] 

Oi) ,~[ - 9 3 0 6] 

('H) • ~ 1=11 
What sign is each of these dot products? 
Expl:lin wh) this is true for almost:lll vectors 
v. When is il not true? 

ML.2. Determi ne tite norm . or length. of each of the 
foll owing vecton. using MATLAB : 

MLJ. Detemline the dist:lnce between each of the 
following pairs of vectors. using MATLAB : 

(.) "= m· ~ [ -:J 
(h) " = [2 0 0 1]. . = [2 5 - I 3] 

«) " =[1 0 4 3]. . =[ - 1 2 2] 

ML.4. Detcrmine tite lengths of the sides of the triangle 
ABC, which has vertices in n]. given by 
A ( 1. 3, - 2), n (4, - I. 0). C(l. I. 2). (Him: 
Detenni ne a vcctor for each side and compute Its 
length.) 

M1.5. Delenlline lhe dot prodUCI of each one of the 
following pairs of vectors. using MATLAB: 

(.) " ~[5 4 -4] . ' ~[3 2 I] 

(h) " ~(3 - I 02] 
. ~[ - I 2 - 5 - 3] 

te) u = [J 2 3 4 ::.]. v = - u 
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ML.6. TIle norm. or length. of a vector can be computed 
using dot products. as follows: 

Ilul l = Jij':"ij. 

In MATLAB. the right side of the preceding 
expression is computed as 

sqrt(dot(u. u)) . 

Verify this alternative procedure on the vector~ in 
Exercise ML2. 

ML.7. In MATLAB. if the II -vectors u and v are entered as 
columns. then 

u'* v or v'* u 

gives the dot product of v~ctors u and v. Verify this. 
using the vectors in Exercise ML.S. 

ML.8. Use M ATLAB to find the angle between each of the 
given pair~ of vectors. (To convert the angle from 
radians to degrees. multiply by 180Ipi.) 

(a) u =(3 2 4 O].v=[O 2 - I 0] 

(b) " ~[2 2 - 1].'~[2 0 I] 

«) "~ [I 0 0 2].'~[0 3 -4 0] 
l\'1L.9. Use MATLAB to find a unit vector in the direction 

of the vectors in Exercise ML.2. 

Cross Product 

Therl' are 111"0 MATLAB rolllilll'.f Il:al apply 10 Ihl' material ill 
Secti~n 5.2. They art' crou. which compllle.f Ihe Cro'\".f 
product of a pair of 3·redors: alld crossdemo. which 
di~pla)'.I· graphically a pair of 1'l'ctOr.!" and their CIVSS 
product. Usillg IVlltine dot lI'ilh cross. \I"e call carry 0111 the 
complilmion.l" ill £wmple 6 of Section 5.2. (For dirl'clioll.l· 011 

Ihe 1Il'1' of MATLAB rolllilll'S. lise hclp folloll"ed by a space 
alld the name of the rolltille.) 

MLI. Use cross in MATLAB to find the cross product of 
each of the following pairs of vectors: 

(a) u = i - 2j +3k. v = i + 3j + k 

(b) " ~[I 0 3]. ' ~[1 - I 2] 

«) " ~[I 2 -3 ]. ' ~[2 - I 2] 
ML.2. Use routine cross to find the cross product of each 

of the following pairs of \'ectors: 

(a) " ~[2 3 - 1].'~[2 3 I] 
(b) u =3i - j + k. v =2u 

(c) u=[1 - 2 1]' \' =[ 3 - I] 

ML.3. Use crossdcmo itt MATLAB to display the vectors u 
and v and their cross product. 

(a) u = i +2j + 4k.\· = - 2i+ 4j +3k 

(b) " ~[ -2 4 S] . ,~[O 1 - 3] 

«) " ~[2 2 2]. '~ [3 -3 3] 
ML.4. Use MATLAB to find the volume or the 

parallelepiped with venex at the origin and edges 
u =[3 - 2 l]. v =[1 2 3].and 
'1'=[ 2 - I 2]. 

ML.5. The angle of intersection of two planes in 3.space is 
the same as the angle of intersection of 
perpendiculars to the planes. Find the angle of 
intersection of plane n I determined by x and)' and 
plane n! determined by v. w. where 

'~[ 2 - I 2]. y~(3 - 2 I] 

'~[I 3 I]. W~[O 2 - I]. 

The Gram-Schmidt Process 

The Gram- Schmidl pIVee!.\· takes a ba.\·iJ S for a slI!Jspace W 
of V and pmdllces WI orthollormal b(uis T for IV. 1111' 
algorithm 10 prodllce the orlhollormal !Jwis T is 
implellll'lIled ill M ATLAB ill rollline gschmidt. Type hclp 
gschmidt fo r di reeliolls. 

ML.1. Use g.~chmidl to produce an oI1hononnai basis for 
R3 from the basis 

Your answer will be in decimal fonn: rewrite it in 
tenns of Ji. 

ML,2. Use gschmidl to produce an oI1hOnomlai basis for 
R4 fromthebasisS =1[1 0 I I]. 

[I 2 1 3].[0 2 1 1].[0 0 0] 1. 
ML,3. lnR j .S=j[0 - I 1].[0 I ]. 

II I IJ) isab;lsis. UseS tofind;ln 

orthononn.al basi, T and then find [ v ]r for each of 
the followmg vectors: 

(.) ,~[ 1 2 0] (b) , ~ [I I] 

(c) v = [ - I 0 I] 
ML.4. Find an onhonormal basis for the subspace of R4 • 

consisting of all vectors of the Conn 

[a 0 a +b b+c]. 

where a. h. and c are any real numbers. 



ML.5. Let \' = [~l 
(a) Find a non7.cro vector w orthogonal to ,'. 

(b ) Compute 

II I = v1l nonn (v) 

111 = w/ nonn (w) 

and roml matrix 

Now compute U' '" r. How are U and U' 
rclnted '! 

(e) Choose x to be any nonzero veclOr in R2. 
Compare the lcngth of x and U '" x. 

(d) Choose a pair of nonzero vectors x and y in H2. 

Compare dol (x . y) '.nd dol (U '" x. U '" y). 

Projections 

ML.I . Find the projection of ,' 0:110 w. (Recall that we 
have routines tlol and noml available in MATLAB.) 

(.) , ~[ -iJ w ~ m 
(h) , ~[ fl w{] 

ML.2. Let S = !", I , ",2 1, where 

w' ~ [tJ ,ed w2 ~ [-1] 
and let IV = ~pan S. 

(a) Show that S is an onhogonal basis for IV. 

(b) Let 

Compute Proj .. l '" 
(c) For vector v in pan (b). compute projll"" 
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ML.3. Plane n in Rl hM onhogonal basis Iwl . w2l. where 

w' ~ [i] ,,~ '" ~ [ -n 
(a) Find the projection of 

, ~ m 
Ollto n. 

(b) Find the distance from " 10 n. 
j\·1L.4. Let IV be the sul:6pace of R4 with basis 

(a' Find projw v. 

(b) Find the distance from v 10 IV. 

ML.5. lei 

(a) Show tbnt the system Tx = b is inconsistent. 

(b) Since Tx = b is inconsis tent. b is nOi in the 
column sp;lce of T. One approach to find an 
approximatc solution is 10 fi nd a ,'ector y in the 
column space of T so that Ty is as dose as 
possiblc 10 h . We can do this by finding the 
projcction II of b ontO the column space or' T. 
Find this projection p (which will be T y). 

Least Squares 

ROliline is(llinc in MATLAll will fomplile Ihe lew' I ~·ql/(/re.f 

line for dalll yO Il supply (//111 gmph bOlh Ihe line and Ihe dala 
poims. To lise 1S<lline, pIli Ihe x+foon/ill(l/el' of YOllr dala inlo 
a I'eclor x lind lire c(}rreSfKJlldillg y+coorriilltltel' illio tI I'l!clor 
y lllld IhelllY/,e is(llinc(x. y). For /110ft' ;llflJl"mlitioll. lise help 
Isqline. 

ML.I . Solve Exerci.'\e 6 in Section 5.6 in MATLAB. using 
ISlllinc. 

ML.2. Use IS(l linc to detcnnine the solution to Exerci~e I I 
in SC("lion 5.6. 
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ML.3. An experiment was conducted on the temperatures 
of a fluid in a newly designed container. TIle 
following data were obtained: 

TIme (mill/Ires) o 
185 

2 

170 
J I 5 I 9 

166 152 110 

( .. ) Detenlline Ihe lea.';1 squares linc. 

(b) Estimale the temperature at x = I. 6. 8 
minutes. 

(c) Estim!l(c the time at which the temperature of 
the fluid was 16WF. 

ML.4. Attime I = 0 an object iHlropped from a height of 
I meIer alxlVe II fluid . A recording device registers 
Ihe height of the Object above the surface of the 
fluid at ~ ~econd imervals. wiill a negalive value 
indicating when the objeCi is below the surface of 
the fluid. The following table of data is the result: 

TIme (suo"ds) Dept" (meters) 

0 

0.5 0.88 

0.54 

1.5 0.07 

2 - 0.42 

2.5 - 0.80 

3 - 0.99 

3.5 - 0.94 

4 - 0.65 

4.5 - 0.2 1 

(a ) DelCnllinc the least ~uares quadratic 
polynotnial. 

(b) Estimate the depth at I = 5 and I = 6 seconds. 

(c) Estimate Ihe time the objcci breaks through the 
surface or the fluid the second lime. 

ML.5. Delemline the least squares quadratic polynomial 
for the table of data .e.h·ell Use this dala model to 
predicl the value of)' when x = 7. 

x y 

- 3 0.5 

- 2.5 0 

- 2 - 1.125 

- 1.5 - 1.875 

- I - I 

0 0.9375 

0.' 2.81.50 

1 4.75 

1.5 8.25 

2 11 .5 

Linear Transformations 

MATLAB C(lII/WI be lued 10 slwll' Illal ufilllL"lio/l belwet:/! 
I"ector sfN'ce.~ is (/ li/lcor IflIl1sj()rlllation. Howel"er. MATLAB 
ClllI b,· uscd 10 Clln.'·'/"Iu:t WI "xalllple Illal ,·hllw., Ihal a 

fimclio/l i.~ IWI (I linear IrUII.l"/Ofl/Ullio/!. Hit! following 
e.re,dse.~ illlIs/r(lIe Illis /H/:III: 

ML.I . Let L: W - RI Dc defined by L(u ) = lIuli . 
(a) Find a pair of vectors u and v in R2 such that 

L(u + v) F L (u) + L(v). 

Use M ATLAB to do the computations. It 
follows that L is not a linear transformation. 

(h) Find a pair (I f \'ectors u and v in Rl such thai 

L(u + v) F L (u ) + L(v). 

Use M ATI.AB to do the compulations. 

1\·1L.2. Let L : M •• _ RI Dc defined by L(A) = de l (A). 

(a) Find a pair of 2 x 2 matrices A and 8 such that 

L (A + 8 ) F L(A) + L ( 8). 

Use M ATI.AB to do the computations. It 
follows thaI L is not a linear transformation. 

( II) Fi tHJ a pail" ul" 3 x 3 1ll'lIril:cs A amJ 8 su(;h Iha l 

L(A + IJ ) F L(A) + L(IJ). 

It follows Ihll L is not a linear transfonna!ion. 
Use MATI.AB 10 do the computations. 

ML.3. Let L: M •• _ RI be defined by L(A ) = rank A. 

(a) Find a pair of2 x 2 matrices A and 8 such Ihat 

L(A + 8) F L(A) + 1.(8). 

JI follows thlt L is not a line.1r transfonna:ion. 
Use M ATLAB to do the computations. 



(b) Find a pair of 3 x 3 matrices A and B such that 

L(A + B) f- L(A) + L(B). 

It follows that L is not a linear transfonnation. 
Use MATLAB to do the computations. 

Kernel and Range of Linear 
Transformations 

/" order 10 lise MATLA B in Ihi .• ,'..clion. ),011 slwllldfir.u relld 

Section 9.S. Find a basi.ffor the kernel and range oflhe 
lillear Iran.l/ormation L (x) = Axfor each of the following 
1I1lIIrrce.I' A: 

M L. 1. A = [ I 
2 5 -n -2 - 3 - 8 

n 2 -n ML 2. A = - I 

- 2 

H 
3 - 3 1 "] ML.3. A = -, 7 -2 - l~ 
2 - 3 

Matrix of a Linear Transformation 

I II MATLAB.folloll' the .I"teps gil'en ill Section 6,3 to filld the 
m(/{rix of L: Rn _ Rm. The solutioll techlliqlle lued ill the 

MATLAB exen:i.I'e.I' dealing with coordin(/{es and challge of 
basi.I' will be "elpflll here. 

M L. 1. lei L: RJ _ R! be given by 

Find the matrix A representing L with respect to the 
bases 

and 

l\U .2. lei L: Rl _ R4 be given by L(v) = C v. where 
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Find the matrix A representing L with respect to the 
bases 

s ~ {v,. v,. v, { ~ ! m . m· m 1 
and 

~ l m·[l]·U]·m l · 
ML.3. Let L: R! __ R2 be defined by 

L([X]) ~ [-x. +2,. ] 
y 3{ - Y 

and let 

and 

be bases for R1. 

(a ) Find the matrix A representing L with respect 
lOS. 

(b) Find the matrix B representing L with respect 
10 T. 

(c) Find the transition matrix P from T to S. 

(d) Verify that B = 1' _1 A P . 

Linear Transformations on Plane 
Geometric figures 

The IVlltille planeit in MATLAB pnll"ides a geomelric 
l.isualiza1iollfor Ilze .I'lalldard algebraic appmach to lillTar 
IHIIl.rjo/"matiolls by iI/Wi/rating plane linear 
Iransform alio ns. which (Ire linear IHm.ljormatiollsfmm R2 
10 R2. The lIame. of cOllrse. follows from the fact Ih(/{ we are 
mappillg point.I' ill Ihe plane ill/o poillts ill a corre.I'j}(J/ldmg 
phllle. 

III MATLAB. Iype Ihe command 

planell 
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A de3criplioll oflht ((ntlillt lI'il/ be diJ/,/a)'t'd. Rt'ad iI, Ilrt'll 

pres:! ENTER. YOII wiflllrt'11 Jt't''':Je1 of Gn/em/ Direcliol/s. 
Relld 11rt'1II clIfeflllly: IlItll l"·tJS ENTER. A St'l of Figllrt! 
Clroir:t's will tltell bt lli:!ll/tl)"ell. As )'011 do Ihe I'."ft'rcist's IJlUt 
folio,,"'. record lite jigllre.f requested 0/1 a st'ptrrate shut of 
paper. (After tllcflllltllli cflOict. f,ress £Nl"ER. To retllm 10 1I 

11/1'/111 when/lte gmphic.f art l"i.l·iblt. press ENTt.""R.) 

ML.I . In pla nell. choose figure #4 (the triangle). Then 
choose option # 1 (see the triangle). Return to the 
menu and choose option,2 (u.<;e th is figure). Next 
perfoml the following linear tran~formations: 

(a) Reflect the triangle about the y-axis. Record 
the Current Figure. 

(b) Now rolate the result from part (a) 60". Record 
the figure . 

(c) Return to the menu, res tore the original figure. 
reflect it uboutthe line)' = x. and then dilate it 
in the x-direc tion by a fuctor of 2. Record the 
figure. 

(d) Repeat the experiment in part (c). but 
interchange the order of the linear 
transformations. Record the figure. 

(e) Are the results frolll paI1S (c) and (d) the same? 
Compare the two figures you recorded. 

(f) What does your answer in paI1 (e) imply about 
the order of the linear transfomlations as 
applied 10 the triallgl~? 

M 1 .. 2. RI'~' ort' 'he oriein"t lrinnelf' s.- Iec'eti in Exercise 
ML.I . 

(a) Refleci it aboulthe x-axis. Predict the result 
before pressing ENTER. (Call this linear 
t ran~formalion L ,.) 

(b) Then reflect the figure resulting in part (3) 
about the y-ax i ~. Predict the resu lt before 
pressing ENTER. (Call this linear 
tr:msformation L 2') 

(c) Record the figure thnt resulted from parts (a) 
and (b). 

(d ) Inspect the rcllllion~hip between the Current 
Figure and the Original Figure. What (s ingle) 
transformation do yoo think will accomplish 
the same resul!"? (Use ,Willes that appear in the 
tmnsformation menu. Call the linear 
transformation you ~Iec t L ). ) 

(e) Write a formula involving reflect ion L , about 
the x-axis. reflection L~ about the y-axis. and 
the transformation LI that expresses the 
re lationship you MW in part (d). 

<n Experiment with the fOnllUla in part (e) on 
severnl other figures until you can detemline 
whcther o r not the forllluia in paI1 (e) is correct 
in general. Write a brief summary of your 
experiments. observations. and conclusions. 

1\"lL.3. Choose the unil square as the figure. 

(a) Reflect it about the x-axis. reflect the resulting 
figure about the y-axis. and then reflect that 
figure about the line y = - x. Record the 
flgure. 

(b) Compare the Current Figure with the Original 
Figure. Denote the re fl ection about the .r-axis 
as L 1 , the reflec tion about the y-axis as L :, and 
the re fl ection about the line), = -x as L3. 
Whm formula relating the~ linear 
transformations doc~ your comparison suggest 
when L , is followed by L2, and then by L3. on 
this figure? 

(c) If M, denotes the standard matrix repre~nting 
the Imear trnnsfomlnllon L i HI part (b). to what 
matrix is MJ * M2 * M, equal? Does this resu lt 
agree with your conclusion in part (b)? 

(d) Experiment with the successive application of 
these three linear trnnsfomlations on other 
fi gures. 

M.L.4. In routine Illa neU you can enter any figure you like 
and penonn linear lransfonnalions on it. Folio ..... the 
direclioM on entering your own figure and 
experiment with varioll~ linear transformations... It is 
recommended Ihat you draw the figure on graph 
paper first and as~ign the coordinates of its vertices. 

ML.S. On a figure. 1)laneU allows you to select any 2 x 2 
matrix !O use as a linear transformation. Perfonn 
the following experiment : Choose a singular matrix 
and apply it to each of the stored figures. Write a 
brief summary of your experiments, observations. 
and conclusions about the behavior of "singular" 
linear tran sfornlation ~. 

Eigenvalues and Eigenvectors 

MATLAB IIl1.\" 1/ p{lirof comnWIIlI.1" tirm call be lued IOjind the 
clwrtlcterislic pO/)"l1olllilll (lnd figel/I"(I/ lles of II lIIalrix. 
COIIIIIIIII/ll poly(A) giL"e.\· Ihe cOl1Jicielll.r of tire c1ll1rt1Cleristic 
pO/)"lwmitlf of fIIatrix A. .I·wrting wilh the highe~·t-llegrl't' 
lenll. IfU"1! sel v = poly(A) lIIul,hl!lIlISI! Ihe commalld 
rools(v). II"t obit/iII lire fOQts ()fllrt' c/1(lfactl!riSlic po/JIliHllial 

of A. 
Dllce we frm'e lIIr tigtlll"lIhll' l. of A , we Cll/I 1151' rfir or 

homsoln /0 jiml (I ,·orrt'.~/x!lUlillJ: l!iJ:t'III't!ClOr from lire iiI/ear 
S)"S/I'III (AI - A)x = O. 



ML.I. Find the clwracteristic polynomial of each of the 
following matrices. using MATLAB: 

ML2. 

(a) A = [~ -~] 

U 
4 

n (b) A = 2 
4 

«) A ~ [~ 
0 0 

-~] - 2 0 

0 2 
0 - I 

Use the poly and roots commands in MATLAB to 
find the eigenvalues of the following matrices' 

(a) A=[~ =~] 

(b) A ~ [ -l 
«) A~ [: 

(d ) A = [~ 

- I 

o 

- 2 
- I 

- I 

:] 
l\U.3. In each of the given cases. A is an eigenvalue of A. 

Use M ATLAB to find an associated eigenvector. 

(a) A=3.A=[ _ : ~] 

(b) A = - I. A = [~ ~ ~] 
2 - I 

«) A ~ 2 A ~ U 2 -n 
l\U.4. Use MATLAB to determine whether A is 

diagonalizable. Ifit is. find a nonsingular matrix I' 
so that 1,- 1 AI' is diagonal. 

(a) A = [ 0 
- I ;J 

(b) A = [~ -3] 
- 5 

A~ U 0 

~] «) 3 
0 
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ML.5. Use MATLAB and the hint in Exercise 19 in Section 
7.2 to compute A30. where 

A~ [=; ; =:] 
- 2 2-1 

ML.6. Repeat Exercise ML.5 for 

[

- I 

A = - 2 

- 2 

1.5 
2.5 
2.0 

- 1.5 ] 
- 1.5 . 
- 1.0 

Display your answer in both formal shari and 
format long. 

ML.7. Use M ATLAB to investigate the sequences 

for matrix A in Exercise ML.5. Write a brief 
description of the behavior of these sequences. 
Describe lim A". 

Diagonalization 

The MATLAB cvmmand eig will prodll£'e the eigelll'llllle5 and 
a In vf onllOnorma/ eige/lI'eclOr.~ fvr (/ .I'ymmnric matrix A. 
Use the comlllal/d in theforlll 

[V. DJ = rig(A) . 

The IIIatrix V will COIllailllhe onhol/orllla! eigelll'l'ctors. and 
IIIafri.{ D will be diagonal contailling the corrl'.1polldillg 
eigelll'{/llIe~·. 

ML.1. Use cig to find the eigenvalues of A and an 
orthogonal matrix P so that 1' _1 A P is diagonal. 

(a) A=[~ ~] 

[i 2 

n (b) A = 

2 

«) A ~ [~ 
1 

n 4 

ML.2. Command eig can be applied to any matrix. but the 
matrix V of eigenvectors need not be orthogonal. 
For each of the matrices that follow. use eig to 
determine which matrices A are such that V is 
orthogonal. If V is not orthogonal. then discuss 
briefly whether it can or cannot be replaced by an 
orthogonal matrix of eigenvectors. 
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(.) A = [ I 
- I 

(h) [' A = ~ 

(,) A = [~ 

(d ) A ~ [~ 

MATIAS Exercises 

!] 
, -:] 

-3] 
-5 

0 n 

Dominant Eigenvalue 

l\1L. J. In Examples 4 and 5 in Section 8.3 we showed that 
successive images of the uni t circle in R~ tended 
toward lhe eigenvector corresponding \0 the 
do minant eigenvalue. For each of Ihe gillen 
mmrices, use M ATLAB'S cig command \0 find lhe 
eigenvalues and eigenvectors. Identify the do minant 
eigenvalue and an associated eigenvector. Next. use 
the routine circimages to generate a geometric 
display o f the successive images of the unit circle. 

[' '] [' (a) A = 3 4 (b) A = 9 ~] 



APPENDIX 

Preliminaries 

In this appendix, which can be consultcd as the need arises, we present the hasic 
ideas of sets and functions that are used in Chapters 4, 5, 6, and 7. 

Sets 

A set is a collection. class, aggregate. or family of objects, which arc called ele­
ments, or members. of the scI. A set will be denoted by a capital leller, and an 
clement of a set by a lowercase leller. A set 5 is specified either by describing all 
the elements of 5, or by stating a property that determines, unequivocally, whether 
an element is or is not an element of S. Let S = 11.2. 3) be the set of all positive 
integers < 4. Then a real number belongs to S if it is a positive integer < 4. Thus 
S has been described in bOlh ways. Sels A and B are said to be equal if each cle­
ment of A belongs to B and if each element of B belongs to A. We write A = B. 
Thus {I. 2. 3) = {3 . 2. I} = {2 . 1. 3), and so on. [f A and B arc sets such that 
every clement of A belongs to B. then A is said to be a subset of B. The set of all 
rational numbers is a subset of the set of all real numbers: the set {I, 3) is a subset 
of {I . 2. 3); the set of all isosceles triangles is a subset of the set of all triangles. 
We can see that every set is a subset of itself. The empty set is the set that has 
no elements in it. The set of all real numbers whose squares equal - I is empty. 
because the square of a real number is never negative. 

' ·D Functions 

A function 1 from a set S into a set T is a rule that assigns to each element s of 
S a unique element t of T. We dcnote the function 1 by I: 5 -,>- T and write 
f = I(s) . Functions constitute the basic ingredient of calculus and other branches 
of mathematics. and the reader has dealt extensively with them. The set S is called 
the domain of I: the set T is called the codomain of I; the subset I (S) of T 
consisting of all the elements I(s), for .\' in S. is called the range of I, or the 
image of Sunder I. As examples of functions, we consider the following: 

A-I 
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FIGURE A. l .t 

I. Let S = T = the set of all real numbers. Let I: 5 -+ T be defined by the 
ru le I(s) = .1. 1, lors in S. 

2. Let S = the set of all real numbers and let T = the set of all nonnegative real 
numbers. Let I: S -+ T be de/ined by the rule 1(.1") = .1.

2
, lor.l" in S. 

3. Let S = three-dimensional space, where each point is described by x-, yo, 
and z-coordinates (x. y . z) . Let T = the (x. y)-plane as a subset of 5 . Let 
I: S -+ T be defined by the rule I «x . y . z)) = (x. y . 0). To sec what I 
docs, we take a point (x. y. z) in 5, draw a line from (x . y . z) perpendicular 
to T. the (x. y)-plane, and find the point of intersection (x. y. 0) of this line 
with the (x . y)-plane. Thi s point is the image of (x. y. z) under I; I is called 
a projection function (Figure A.I). 

s 

(x. y. z) 

0 )' 

(x.y.O) 

T 

4. Let S = T = the set of all real numbers. Let f: S -+ T be defined by the 
rule 1(.1") = 2s + I, for.l" in S. 

5. Let S = the x-axis in the (x . y)-plane and let T = the (x. y)-plane. Let 
I: S -+ T be defined by the rule 1«.1".0)) = (s. I), lors in S. 

6. Let S = the set of all real numbers. Let T = the set of all positive real 
numbers. Let I: 5 -+ T be de/ined by the rule 1(.1") = e"'. for.l" in S. 

There arc two properties of functions that we need to distinguish. A function 
I: S -+ T is called one-to-one if l(sl) t- 1(.1'2) whenever .l"l and S2 are di stinct 
elements of S. That is, I is one-to-one if two different clements of S cannot be sent 
by I to the same element of T. An equivalent statement is that if I(st> = J(S2). 
then we must have.l"l = .1'2 (see Figure A.2). A function I: S __ T is called onto 
if the range of I is all of T - that is, if for any given f in T there is at least one s 
in S such that 1(.1") = 1 (see Figure A.3). 

We now examine the listed functions: 

I. I is not one-to-one, for if I(sl) = 1(.~2), it need not follow that 

[f(2) ~ f( - 2) ~ 4[. 

Since the range of I is the set of nonnegative real numbers, I is 110t onto. 
Thus if 1 = - 4, then there is nO!i such that I (j") = - 4. 



FIGURE A.2 

FIGURE A.3 

A.2 Functions A -3 

s T s T 

.1 1 ....-----, [(.1 1) 

£1 ____ [(J
2

) 

(a)/is one-to-on~. (b)fis not one-to-one. 

Not in the image ofj 

s T 
Image off 

o L O hm,,,,! 
(a)/is onto. (b)fis not onto. 

2. / is not one-to-one, but is onto. For if t is a given nonnegative real number, 
then s = ,ji is in Sand Its) = 1. Note that the codomai n makes a difference 
here. The/onnu/asare the same in I and 2. but the/ullctions arc not. 

3. / is not one-to-one, for if /((al .{/2.{/,)) /((b l .1J2 .1J)), then 
(al . 112. 0) = (b l. b2 . 0), so {II = b l and a2 = b2 . However. b3 need not equal 
llJ. The range of f is T: that is, / is onto. For let (XI. X2. 0) be any clement 
of T . Can we find an clement (al . (/2. (13) of 5 such that /(al. {/2. (13)) = 
(Xl. X2. O)? We merely lei {II = Xl, {/2 = X2. and 03 = any real number we 
wish-say, (/J = 5. 

4. / is one-to-one, for if /(.VI ) = /(S2), then 2sJ + 1 = 2s2 + l, which means 
that.l"l = S2 . Also. / is onto, for given a real number t , we seck a real number 
.f so that Its) = t; that is, we need to solve 2.1" + I = t for s, which we can 
do, obtaining .\. = ~(r - I). 

5. / is one-Io-one. but / is not onto, because nO! every element in T has I for 
its y-coordinate. 

6. / is one-to-one and onto, because e 'l 1= e'2 if Sl 1= S2, and for any positive 1 

we can always solve f = ,,', ohlaining s = In f 

If f: 5 --+ T and g: T --+ U arc functions. th f!n we can define a new function 
go /, by (go 1)(.1") = g(f(.I"», fo r s in S. The function go/: S ....... U is called the 
composite of / and g . Thus, if / and g are the functions 4 and 6 in the preceding 
li st of functions, then g o/ is defined by (g 0 /)(s) = g(f(s)) = e 2< +1 ,and fog 
is defined by (/ 0 g)(s) = leges»~ = 2e' + I. The funclion i: S --+ S defined by 
its) = s, for .f in 5, is called the idenlity funclion on 5. A function /: S ....... T 
for which there is a function g: T --+ 5 such that g o/ = is = identity function 
on 5 and / 0 g = iT = identity function on T is called an invertible function , 
and g is called an inverse of /. It can be shown that a function can have at most 
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one inverse. It is not difficult to show- and we do so in Chapter 6 for a special 
case- that a function I: S ...... T is invertible if and only if it is one-to-one and 
onto. The inverse of f, if it exists. is denoted by I-I . If f is invertible, then I-I 
is also one-to-one and onto. "If and only if" ' means that both the statement and its 
converse arc true (see Appendix C). That is, if f: S ...... T is invertible, then f is 
one-to-one and onto; if f: S ...... T is one-to-one and onto, then f is invenibIe. 
Functions 4 and 6 are invertible: the inverse of function 4 is 8: T ...... S defined 
by 8(1) = t(t - I) for 1 in T; the inverse of function 6 is g: T -+ S. defined by 
8(1) = In I. 



APPENDIX 

Complex Numbers 

1;11 Complex Numbers 

Complex numbers are llsually introduced in an algebra course to "complete" the 
solution to the quadratic equation 

(lX
2 +bx + c = O. 

In using the quadratic fonnula 

x = 
- b ± Jb 2 4(1c 

2" 

the case in which b2 
- 411c < 0 is not resolved unless we can cope with the square 

roots of negative numbers. I.n the sixteenth century, mathematicians and scien­
ti sts justified this "completion" of the solution of quadratic equations by intuition. 
Naturally, a controversy arose, with some mathematicians denying the existence of 
these numbers and others using them along with real numbers. The use of complex 
num bers did not lead to any contradictions, and thc idea proved to be an important 
milestone in the development of mathematics. 

A complex number c is of the fonn c = 0. + bi, where a and b are real 
numbers and where i = P; a is called the real part of c, and b is called 
the imaginary part of c . The tenn imagillary part arose from the mysticism 
surrounding the beginnings of complex numbers; however, these numbers are as 
"real" as the real numbers. 

EXAMPLE 1 

(a) S - 3i has real partS and imaginary part - 3: 

(b) - 6 + Ji i has real part - 6 and imaginary part Ji. • 
A-S 
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EXAMPLE 2 

The symbol; = J=l has the property that ;~ = - I, and we can deduce the 
following relationships: 

., . 
I =-/. 

These results will be handy for simplifying opemtions involving complex numbers. 
We say that two complex numbers CI = al + bl; and C2 = a2 +b2i are equal if 

their real and imaginary pans are equal, that is, if al = al and b l = b2 . Of course, 
every real number {/ is a complex number with its imaginary part zero: {/ = {/ + Oi . 

• Opemtions on Complex Numbers 

If CI = al + bli and C2 = a2 + b2i arc complex numbers. then their sum is 

and their dilTerenc.e is 

CI - C2 = (al - al) + (b l - b2)i. 

In words, to form the sum of two complex numbers, add the real parts and add the 
imagillaJ y I'arts. The product of q a lld (;2 is 

CIC2 = (al + b li), (a2 + b2;) = {/ 1(/2 + (a l b2 + b l{/2)i + b l b2i2 

= (a la2 - b lb2) + (a lb2 + bl(2)i. 

A spec ial case of multiplication of complex numbers occurs when £"1 is real . In 
this case, we obtain the simple result 

CIC2 = CI • (a2 + bIi) = Clal + c lb2 i. 

If C = {/ +bi is a complex number, then the conjugate of c is the complex number 
c = a - bi. It is not difficult to show that if c and d arc complex nu mbers, then 
the following basic properties of complex arithmetic hold: 

I. c = c. 

2. c+d = c+d. 
3. ClI =cd. 
4. c is a real number if and only if c = C. 

5. c c is a nonnegative real number and c c = 0 if and only if c = O. 

We prove property 4 here and leave the others as exercises. Let C = a + bi so 
that c = {/ - bi. If c = C, then (/ + bi = a - bi. so b = 0 and C is real. On the 
other hand, if c is reaL then C = a and c = a, so c = c. 

Let CI = 5 - 3i. C2 = 4 + 2;, and CJ = - 3 + i. 

(a) CI + C2 = (5 - 3i) + (4 + 2;) = 9 - i 
(b) C2 - CJ = (4 + 2i) - (-3 + i) = (4 - (- 3» + (2 - I)i = 7 + i 

(c) CIC2 = (5 - 3i) . (4+2i) = 20 + 10i - 12i _ 6i 2 = 26 - 2i 

(d) clcJ = (5 - 3i).( 3 + i) (5 - 3i).(- 3 - i) 
= - 15 - 5; - 9i +3i2 

=- 18 + 4i 
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(c) 3cI +2C2 = 3(5 - 3i) + 2(4 +2i) = (15 - 9i) + 2(4 - 2i) 
= (15 - 9i) + (8 - 4i) = 23 - 13i 

(f) CI C] = (5 - 3;)(5 - 3i ) = (5 - 3i)(5 + 30 = 34 • 
When we consider systems of linear equation<! wi th complex coeffi cients, we 

need \ 0 divide complex numbers to complete the solution process and derive a 
reasonable form for the sol uti Oil. Let Cj = {lJ + h J/ and C2 = (12 +b2i . If C2 i= 0.­
that is. if a2 #= 0 or b2 =1= O-thcn we can divide CI by (" 2 : 

CJ (II + hli 
-~--- . 

C2 {/2 +h2i 

To confonn to ollr practice o f expressing a complex number in the form real part + 
imaginary part · i, we must simplify the foregoing expression for e[ / c2' To sim­
plify this complex fractio n. we multiply the numemtor and the denominator by the 
conjugate of the denominator. Thus, dividing C t by C2 gives the complex number 

at +h!i 

a2 + h2i 

((11 + b t i)(a2 - h2 i) 

(a2 + h2i)(a2 - b2 i) 

Let CI = 2 - 5i and c) = - 3 +4i. Then 

CI 2 - 5i (2 - 5i)( - 3 - 4i ) 

;;= - 3+4i =, 3 + 4i)( 3 4i) 

a\(l2 + b tb2 

(li +bi 

- 26 + 7i 

( 3)' + (4) ' 

Finding the reciprocal of a complex number is a special case of division of 
complex numbers. If c = a + hi, C =1= 0, then 

a - hi a - bi 
- ~ - ~ .,--,--':-cc:-"----;-c- ~ --

a + hi (a + hi)(a - hi) a 2 + b2 

a h 

2 - 3i 2 - 3i 2 3 
(a) 2 + 3i = (2 + 3i)(2 3i) = 22 + 32 = 13 - 13 i 

I - i - i - i . 
- ~ -- ~ --~ --- =-/ 
i i e-i) _ i 2 - (- I) 

(b) • 
Summarizing, we can say that complex numbers arc mathematical objects for 

which addition. subtraction, multiplication. and division are defi ned in such a way 
that these operatio ns on real numbers can be derived as special cases . In faet, it 
can be shown that complex numbers fo rm a mathematical system that is called a 
fi eld. 

• Geometric Representation of Complex Numbers 

A complex number c = a + hi may be regarded as an ordered pair (a . h) of real 
numbers. This ordered pair of real numbers corresponds to a point in the plane. 
Such a correspondence naturally suggests that we represent a +bi as a point in the 
complex plane. where the horizontal axis is used to represent the real part of ( and 
the vertical axis is used to represent the imaginary part o f c. To simplify malters, 
we call these the real axis and the imagina ry axis, respecti vely (see Figure B. l). 
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Plot the complex numbers c = 2 - 3i, d = 1 + 4i, e = - 3, and f = 2i in the 
complex plane. 

Solution 
See Figure B.2. • 

The rules concerning inequality of real numbers, such as less than and greater 
than, do not apply to complex numbers. There is no way to arrange the complex 
numbers according to size. However, using the geometric representation from the 
complex plane, we can attach a notion of size to a complex number by measuring 
its distance from the origi n. The distance from the origin to c = a + hi is called 
the absolu te value, or modulus, of the complex number and is denoted by lei = 
la +hi I. Using the formula for the distance between ordered pairs of real numbers, 
we get 

le i = la +hi l = Ja2 _ h2 . 

It follows that c c = lell (verify). 

Referri ng to Example 5, we note that lei = J]3; Idl = v't7; lei = 3; If I = 2 . • 

A diffcrcnt, hilt rciMcd intcrprct;)lion of ;) complcx nllmlw:r is ohllli nl'".(1 if wc 
associate with c = a + hi the vector 0 P, where 0 is the origin (0.0) and P is 
the point (a . h). There is an obvious correspondence between this representation 
and vectors in the plane discussed in calculus, which we reviewed in Section 4.1. 
Using a vector represenmtion, addition and subtraction of complex numbers can be 
viewed as the corresponding vector operations. These are represented in Fi gures 
4.5, 4.6, and 4.9. We will not pursue the manipulation of complex numbers by 
vector operations here. but sllch a point of view is important for the development 
and study of complex variables . 

• Matrices with Complex Ent.-i es 

If the entries of a matriK arc complex numbers, we can perform the matrix opera­
tions of addition, subtraction, multiplication, and scalar multiplication in a manner 
completely analogous to that fo r real matrices. We verify the validity of these op­
erations, using properties of complex arithmetic and just imitating the proofs for 
real matrices presented in the text. We illustrate these concepts in the following 
example: 

Let 

A ~ [4 +i 
6+ 4i 

-2 +3i] 
- 3/ . 

[

1+ 2; 
C = 3 - i 

4 +2i 

[
2 - ; 

B = 5 + 2i 
3 - 4; ] 

- 7 + 5i . 

( ) B [(4 + i) + (2 - i) 
a A + = (6 + 4i) + (5+2i) 

(- 2 + 3i)+(3 - 4i)] 
(-3i) + (- 7+5i) 

I - ; ] 
- 7 +2i 
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(b) B - A = [ (2 - i) - (4+i) 
(5 + 2i) - (6+4i) 

(3 - 4i) - (- 2 +3i)] 
( - 7+5i) - ( - 3;) 

~ [ -2 - 2i 
- I - 2i 

5 - 7i 1 
- 7 + 8i 

[' + 2i i ] [4+i (,) CA = 3 - i 
I ~i 6 + 4i 4 + 2i 

- 2 + 3i] 
- 3i 

[ 

(I + 2i)(4 + 1) + (1)(6 + 41) 

(3 - i)(4 + i) + (8)(6 +4i) 
(4 + 2i)(4 + i) + ( I - i)(6 + 4i) 

(I+2ij( - 2+31) + ll){ - 3i) ] 
(3 - i)( - 2 + 3i) + (8)( - 3i) 

(4+2;)( - 2+3;) + (I - i)( - 30 

[

- 2+15i 
= 6[ + 3Ii 

24 + IOi 

- 5 - i ] 
- 3 - 13i 

- 17 + 5i 

(d) (2 + i)B = [(2 + .i)(2 - i~ (2 +.i)(3 - 4i~ 1 
(2 +1)(5 + 2/) (2 + 1)(- 7 +51) 

10 - 5; ] 
- 19 + 3i • 

J ust as we can compute the conjugate of a complex number. we can compute 
the conjugate ora matrix by computing the conjugate of each entry o f the matrix. 
We denote the conjugate o f a matrix A by A and wri te 

A ~ [a'l l . 
Referring to Example 7. we fi nd that 

- [4 - i A ~ 
6 - 4i 

and 8 = [2 + i 
5 - 2i 

3 + 4i 1 
- 7 - 5i . 

The fo llowing propert ies o f the conjugate o f a matrix hold : 

I. A = A. 

2. A + B = A + B. 

3. AB = AB. 

4. For any real number k, kA = k A. 
5. For any complex number c. cA = c A . 

6. (A)T = AT. 

7. If A is nonsi ngular. then (A)-I = A=T. 

• 

We prove propen ies 5 and 6 here and leave the others as exercises. First, property 
5 is proved as follows: If c is complex. the (i. j) entry of cA is 

which is the (i. j) entry o f cA. Next, we prove property 6: The (i . j) entry of 
(A)T is (I ji , which is the (i . j) entry of AT. 
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EXAMPLE 9 

EXAMPLE 10 

CHARLES H ERMITE 

• Special Types of Complex Matrices 

As we have already seen. certain types of real matrices satisfy some important 
properties. The same situation applies to complex matrices, and we now di scuss 
several of these types of matrices. 

An II x 1/ complex matrix A is called Hermitianf if 

AT = A . 

This is equivalent to saying thaI a ji = a ij for all i and j . Evcry real symmetric 
matrix is j-Icnnitian [Exercise 11 (c)], so we may cons ider Hermitian matrices as 
the analogs of reat symmetric matrices. 

The matrix 

A ~ [ 
2 3+ ;] 

3 - i 5 

is Hermitian, since 

AT= [3!i 3~IJ [3~1 3~IJ = A . • 
An 11 x 1/ complex matri x A is called unitary if 

( A T)A = A (AT) = I" . 

This is equivalent to saying that AT = A -J. Evcry real orthogonal matrix is 
unitary [Exercise 12(a)], so we may consider unitary matrices as the analogs of 
real orthogonal matrice;. 

The matrix 

A ~ 

is unitary, since (verify) 

and, similarly, A ( A T) = h 

[ 
~ I;'; ] 

1 - i I 

J3 - J3 

• 
tCllarles Hemlite (1822- 1901) was born to a well -to-do middle-class family in Dieuzc. Lorraine. 

France and died in Paris. He ,tudied at the Ecole 1'0ly!Cchnique for only OIlC year and eominued his 
mathematical studies on his own with thc cneouragemelH of stl'cml of too leading mathcmaticilns of 
too day. who recognized h.is extraordinary abilities a! a young age. He did not like geometry rut did 
makc many impol1ant cootribU!ions in number !heory. algebra. and linear algcbm. One of Ius two 
major eonuibutions was to show !ha! the general fifth-degree polynomial can be solwd by uiing a 
special type of function ealled an elliptic function. His second major eOlHribution was to show !hat thc 
number e (tile base for tlK: sy,tem of natumllogarithms) is transcendental; that is. e is not the root of 
any polynomial equation wi!h integer coefficients. 
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There is one more type of complex matrix that is important. An 11 x 11 complex 
matrix is called normal if 

EXAMPLE 11 The matrix 

A ~ 

is normal, since (verify) 

[ 
5 - i 

- I - i 
- I +i ] 

3 - i 

- 8 + 8i] 
12 . 

Moreover, A is not Hermitian. since AT f=. A (verify). • 
• Complex Numbus and Roots of Polynomials 

A polynomial of degree 11 with real coefficients has 11 complex roots, some, all, or 
none of which may be real numbers. Thus the polynomial il (x) = x"' - I has the 
roots i, - i, I,and - I: the polynomial hex) = x 2 _ 1 has the roots I and - I; and 
the polynomial h(x) = x 2 + I has the roots i and - i . 

• ~I. Exercises 

I. Lei CI = 3+4i.C1 = 1 - 2i. andc3 = - I +i. Compute 
each of Ihe following and simplify as much as possible: 

(a) CI +C2 (b) C)-CI 

(e ) CI C2 (d) Q C3 

(e) 4("3+Ci (I) (-i)· ("2 

(g) 3cI - iC1 (h ) ("IC2("3 

2. Write in Ihe form a + hi. 
1 +2i 

(a) 3 - 4i 
2 - 3i 

(b) 3 _ i 

(2 + i)2 
I' ) 

I 
(d ) 

(3 + 2i)(1 +i ) 
3. Represent each complex number as a point and as avec· 

lOr in Ihe complex plane. 

(a) 4+2i (b) -3+ i 

(e) 3 -2i (d) i{4+i) 

4. Find the modulus of each complex number in Exercise 3. 

5. If (" = a + hi. Ihen we can denole Ihe real patt of e by 
Re(e) and the imaginary part of (" by Im(c). 

(a ) For any complex numbers el = (I I + hli, e2 = 
(/2 + h2i, prove that Re(ci + (2) = Rekl) + Re(c2) 
and Im(el + (2) = Im(cl ) + [m(e1)' 

(b) For ;lOy real number k. prove that Re(ke) = k Re(d 
and I m(ke) = k Im (e). 

(e) Is part (b) lrue if k is a complex number? 

(d) Prove or disprove: 

6. Skelch. in the complex plane. the veclors corresponding 
to e and c if e = 2+ 3i and c = - I + 4i. Geometrically. 
we can say that c is the ,efleclioll of L' with lespecilo Ihe 
real axis. (See also Examp[e 4 in Section 1.6.) 

7. Lei 

[
2 +2i 

A~ 
-2 

-1 + 3i] 
1 - i . 

[

2; 
B~ o 

1 +2i] 
3 - i . 

Compute e;lch of the following and simplify e;lch entry 
asa+bi: 

(a) A + B 

(d) BC 

(g) AC 

(b) (I - 2i)C 

(e) A - 21z 

(h) (A + 8 )C 

(e) A B 

(0 B 

8. Let A and B be III X I! complex matrices. and let C be an 
11 x II nonsingular matrix. 

(a ) Prove that A + B = A + 8. 
(b) Prove that for any real number k. kA = k A. 

(e) i'rovethat(C) - I=C- 1 . 
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9. If A = [~ ~].comPU[eA !. AJ,undA4. GiveageneraJ 

rule for A~ ." a positive integer. 

10. Which of the following matrices nre Hcnnitian. unitary. 
or nonnal? 

(oj [, ~; 2 ;iJ (bj [3!i 1-;] 
- 2 

(,) 
[I;; 

I + i 

I;;] 
1 - i (d ) [: -: ] 

2 2 

[3 ~; 
3 - i 4-;] 

(.j - 2 2+; 

4 +i 2 - i 3 

(n 

(gj - I ] 
2+; 

[: 

0 

l 1+; 
(I) ./3 

I 
- ./3 

UJ [4 + 7; 
1 -2; 

-2-;] 
3+4; 

II . (a) Prove that the diagonal er.lrics of a Hcnnitian matrix 
must be real. 

(I» Prove that ellery Hermit ian nlUlrix A can be wri tten 
as A = 8 + ie. where B is real and symmetric and 
C is real and skew symmetric (sec Definition 1.9). 
(Hilll: Consider B = (A+A)/ 2 and C = (A- A)! 2,.] 

(e) Prollc thaI every rea l symmetric 1ll:l1ri)( is Hermitian. 

12. (a) Show Ihat every real onlll)gonal nMrix is unitary. 

(b) Show that if A is a unitary nlmrix . then A T is uni­
tary. 

(e) Show 111.11 i f A is a unitary matrix. then A- I is uni ­
tnry. 

13. Let A be nn II x /I complex matrix. 

(a) Show that A can be wri llrn as B + i C. where Band 
C are Hermitian. 

(h) Show that A is nomlal ifand only if 

BC = CD. 

[Him: Consider B = (A + AT)/2 and C = (A ~ 
AT)/ 2i.! 

14. (a) Prove that every Hennitian matrix is nonnal. 

(h) Prove that every unitary matrix is normal. 

(e) Find a 2 x 2 normal matrix that is neither Hennit ian 
nor unitary. 

IS. An /I x /I complex matrix A is caJled skew Hermitian if 

16. 

17. 

A T = ~A . 

Show that a matrix A = B + i C. where Band C are 
reaJ matrices. is sk.ew Hermitian if and only if B is sk.ew 
symmetric and C is symmetric. 

Find all the roolS. 

(a) .1"1 +.1"+ 1=0 

(b ) .\·J +2(! + x +2 =O 

(e) .I" ~ + .\.4 ~ X - I = 0 

LeI p (:c) denote a polynumial and leI A be a square ma­
trix. Then peA) is called a matrix 1>oIynomial. or a 
I>oJynomial in the matrb: A. For p(.f) = 2(2 + 5x - 3. 
compute peA) = 2A' +5A - 3/~ foreac:h of the follow­
ing: 

(a) A = [ -~ _~] 

(e) A = [~ ~] 

(h) A = [~ 

(d) A = [~ 
1M. LeI p{.I") = x 2 + I. 

19. 

20. 

(a) Detennine two different 2x 2 matrices A ofth efonn 
kh thaI satisfy peA) = O. 

(b) Verify thaI p (A ) = O. for A = [ I 
- I 

Find aJl lhe 2 x 2 matrices A or the foml k l! thaI SJtisfy 
,,(A ) = 0 for p (x ) =x2 -.I" - 2. 

In Supplementary Exercise 4 in Chapter I. we introduced 
the concept of a square root of a matrix with real entries. 
We can generalize the nOllon of a square root of a matnx 
if we pennit complex entries. 

(a) Compule a complex square root of 

A~ [
- I 

o 

(b) Compute a complex square root of 

[-2 2] 
A = 2 - 2 . 
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I :n Complex Numbers in Linear Algebra 

The primary goal of this appendix is to provide an easy transition to complex num­
bers in linear algebra. Thi s is of particular importance in Chapter 7, where complex 
eigenvalues and eigenvectors arise naturall y for matrices with real entries. Hence 
we restate onl y Ihe main theorems in the complex case and provide a disclLssion 
and examples of Ihe major ideas needed to accomplish Ihis transition. It wi ll soon 
be evident that the increased computational effort of complex arithmetic becomes 
quite tedious if done by hand . 

• Solving Linear Systems with Complex Entries 

The results and techniques dealing wilh the solution of linear systems that we 
developed in Chapter 2 carryover directly to linear systems with complex coeffi­
cients. We shall illustrate row operations and echelon forms for such systems with 
Gauss-Jordan reduction. using complex ari thmetic. 

Solve the followi ng linear system by Gauss- Jordan reduction: 

tl + i)Xl + (2+i)x2 = 5 

(2-2i)xl+ iX2= 1 +2i . 

Solution 
We form the augmented matrix and use elementary row operations to transform it 
to reduced row echelon form. For the augmented matrix [A B]. 

[ 
1+ i 

2 - 2i 

2 + i 

multiply the first row by 1/( I + i) to obtain 

: , , .] . ::;-::;1 

~ I + 2i . 

We now add -(2 - 2i ) times the first row to the second row to get 

, ,. ] ::; - ,I 
1 + 12i [~ - 2 +5i 

Multiply the second row by 1/ (-2 + 5i) to obtain 

[~ , ;.] 
22 ~ ~I . 

which is in row echelon form. To get to reduced row echelon form. we add -a - ~i) times the second row to the fi rst row to obtain 

[~ o 2~il 
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EXAMPLE 2 

EXAMPLE 3 

Hence the solution isxl = 0 andx2 = 2 - i. • 
If you carry out the arithmetic for the row operations in the preceding example. 

you will feel the burden of the complex arithmetic, even though there were just two 
equations in two unknowns. Gaussian elimination with back substitution can also 
be used on linear systems with complex coefficients. 

Suppose that the augmented matrix of a linear system has been transformed to the 
following matrix in roy,. echelon fonn: 

o -I] 2+i . 
2; o 

The back substitution procedure gives us 

x, = 2i 

Xl = 2 + i - 3i(2;) = 2+i + 6 = 8 +i 
XI = - I - (I +i)(2i) = - I - 2i + 2 = 3 - 2i. • 

We can alleviate the tedium of complex arithmetic by using computers to solve 
linear systems with complex entries. However, we must still pay a high price, 
because the execution time will be approximately twice as long as that for the 
same size linear system with all real entries. We illustrate this by showing how 
to transform an /I x /I linear system with complex coefficients to a 2/1 x 2/1 linear 
system with only real coeffic ients. 

Consider the linear system 

(2 + i)Xl + (I + i)x2 = 3 + 6; 

(3 - i)xl + (2 - 2i)X2 = 7 - i. 

If we let XI = a! + h!i and Xl = (12 + b2i. withil!,b!,a2, and b2 real numbers, 
then we can write this system in matrix form as 

'+i] [a, +6,;] ~ [3+6l]. 
2 - 21 a2+b21 7 - / 

We first rewrite the given linear system as 

'] . [ , 2 + 1 - I 

Multiplying, we have 

m m:::] -[-: -~m:]) 
+;([; ~m;] + [ - : -;J[~;]) ~ [;]+;[ -n 
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The real and imagi nary parts on both sides o f the equation must agree, respectively, 
and so we have 

[2 1] ["'] [I I] [b,] [3] 
3 2 {/2 - - I - 2 ~ = 7 

"nd 

This leads to the linear system 

which can be written as 

2al + {/2 - b l - hl = 3 

3al + 2(12 + hi + 2b2 = 7 

(II + {/2 + 2b] + b2 = 6 

- (11 - 2a2 + 3b1 + 2b2 =- 1. 

- I 

-~] [;;:] ~ [ ~] . 
2 b2 - I 

2 

I 2 
- 2 3 

This linear system of fou r equations in fouf unknowns is now solved as in Chapter 
2. The solution is (verify) al = 1, (J2 = 2,b l = 2,andb2 = - I. Thus XI = 1+ 2i 
and X 2 = 2 - i is the solution to the give n linear system. • 

• Determinants of Complex Matrices 

The defi ni tion of a determinant and all the properties derived in Chapler 3 apply to 
matrices with complex entries. T he following example is an illustration: 

LeI A be the coeffi cient matrix of Example 3. Compute IA I. 

Solution 

2 + i 
3 - i 

I + i 
2 - 2i 

I = (2 + i)(2 - 2i) - (3 - i)( I + i) 

= (6 - 2i) - (4 + 2i) 

= 2 - 4i 

• Complex Vector Spaces 

• 
A complex vector space is de fined exactly as is a real vector space in Definition 
4.4, except that the scalars in properties 5 through 8 are permilled 10 be complex 
numbers. The terms complex vector space and rea! vector space emphasize the set 
from which the scalars are chosen. It happens that. in order to sati sfy the closure 
property o f scalar multiplication IDefinition 4.4(b)] in a complex vector space. we 
must. in most examples, consider vectors that involve complex numbers. 

Most o f the real vector spaces o f Chapter 4 have complex vector space anal ogs. 
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EXAMPLE S 

EXAMPLE 6 

(a) Consider e", the set of all 1/ x I matrices 

[J 
with complex entries. Let the operation tIl be matrix addi tion and let the op­
eratIOn 0 be multiplication of a matrix by a complex number. We can verily 
that e" is a complex vector space by using the propcrties o f matrices estab­
li shed in Section 1.4 and the properties of complex arithmetic established in 
Section B. I . (Note that if the operation 0 is taken as multiplication of a matrix 
by a reat number. then C" is a real vector space whose vectors have complex 
components.) 

(b) The sct o f allm x II matrices, with complex entries with matrix addi tion as tB 
and mult iplication of a matrix by a complex number as 0, is a complex vector 
space (verify). We denote thi s vector space by c,"'" 

(e) The sel of polyuOlnials, Wilh COlllpleX coeffi cicll ts with polyllolllial addit iou 
as a1 and multiplicat ion of a polynomial by a complex constant as 0, forms a 
complex vector spa,::e. Veri ficat ion fo llows the pattern of Example 6 in Section 
4.2. 

(d) The set of complex-valued continuous functions defined on the interval [a . hI 
(i.e., all fu nct ions of the form 1(1) = II(t) + ih(t), where II and hare 
real-valued continuous functions on [a . bl), with a1 defi ned by (f a1 g)(l) = 
1(1) + 8(1) and c:.:, defined by (c 0 f)(t) = cl(l ) for a complex scalar c, 
forms a complex vector space. The corresponding real vector space is given 
in Example 7 in Section 4.2 for the interval (- 00.00). • 

A complex vector subspace W of a complex vector space V is defi ned as 
in Definit ion 4.5. but with real scalars replaced by complex ones. The analog of 
Theorem 4.3 can be proved to show that a nonempty subset W of a complex vector 
space V is a complex vector subspace if and only if the following conditions hold: 

(a) If u and v are any vectors in W , then u Ell v is in W. 

(b) If c is any complex number and u is any vector in W, then c 0 u is in W 

(a) Let W be the set of all vectors in C JI of the form 

where a and b are complex numbers. It follows that 
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belongs to Wand, for any complex scalar c, 

belongs to lV. Hence W is a complex vector subspace of C3J. 

(b) LeI W be the set of all vectors in C rnll having only real entries. if A = [(lij ] 
and B = [hi) ] belong 10 lV. then so witt A Ef:l B. because if a ij and bi j arc 
real, then so is their sum. However, if c is any complex scalar and A belongs 
to lV, then c 0 A = cA can have entries caij that need not be real numbers. 
It follows thaI C 0 A need not belong to lV, so W is not a complex vector 
subspace. • 

• Linear Independence and Basis in Complex Vector Spaces 

The notions of linear combinations, spanning sets, linear dependence, linear inde­
pendence, and basis are unchanged for complex vector spaces, except that we use 
complex scalars. (See Sections 4.4 and 4.6.) 

Let V be the complex vector space C 3
. Let 

(a) Determine whether ,' = [ - 3-~ 3i] is a linear combination of V, . VI , and v3. 
- 4 + i 

(b) Determine whether {VI. "2. V3J spans CJ
. 

(c) Determine whether {VI. V2. vJ} is a linearly independent subset of CJ
. 

(d) Is { \ ' I . VI . VJ! a basis for CJ? 

Solution 

(a) We proceed as in Example 8 of Section 4.4. We limn a linear combination of 
V,. \ '] . and V1. with unknown coefficie nts a,. a ) . and al. respecti vely. and .;;et it 
equal to v: 

a,v, +a2v2+ a3vJ = v. 

If we substitute the vectors V" V2, vJ. and V into this expression, we obtain (verify) 
the linear system 

a,+ ia2+aJ =- [ 
ia, +aJ =-3 + 3i 

(I +i)a2 + llJ = - 4 + i. 

We next investigate the consistency of this linear system by using elementary row 
operations to transform its augmented matrix to either row echelon or reduced row 
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echelon form. A row echelon form is (verify) 

[~ 1 - i 
o 

which implies that Ihc system is consistent ; hence v is a linear combi nation of VI, 
V2. and V3 . In fac\. back substitution gives (verify) {II = 3. (12 = i, and {/} = - 3. 

(b) Lei' ~ [ ~; ] be , n "b'lm,y "010< of C' . We fonn Ihe lin" , comb' o",'on 

and solve for {II. {/2 . and {/3. The resulting linear system is 

{/I + ia2 + aJ= cl 

ial + (l3 = C2 

( I + i )(/2 + {lJ = CJ . 

Transforming Ihc augmented matrix \0 row echelon form. we obtain (verify) 

[~ 1 - i 
o 

Hence we can solve for ([ I . {/2 . {/ J for any choice o f complex numbers CI, C1. CJ, 

which implies that {VI. V2 . vJ} spans C J . 

(e) Proceeding as in Example 7 o f Section 4.5, we form the equation 

and solve for (II. {/1 , and llJ. The resulting homogeneous system is 

(11+ 

ill l 

ill] + llJ = 0 

+ a3 = 0 

( I + i)a2 + a3 = 0. 

Transfonning the augmented matrix 10 row eche lon fo rm. we obtain (verify) 

[~ I 1 - i 
o 

and he nce the only solution is (II {/2 {/3 = 0, showing that {VI. V2 . "J} is 
linearly independent. 

(d) Yes, because VI, V2 , and V3 span C 3 [part (b)l and they are linearly independent 
I~ OOI • 
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Just as for a real vector space, thc questions of spanning sets, linearly indepen­
dent or linearly dependent sets, and basis in a complex vector space are resolved by 
using an appropriate linear system. The definition of the dimension o f a complex 
vector space is thc same as that given in Definition 4. [ 1. In di scussing the dimen­
sion of a complex vector space such as e", we must adjust Oll r inlllitive picture. 
For example, C l consists o f all complex multiples of a single nonzero vector. Thi s 
collection can be put into one-to-one correspondence with the complex numbers 
themselves-that is. with all the points in thc complex plane (see Figure B.1 ). Just 
as the clements of a two-dime nsional real vector space can be put into a one-to-one 
correspondence with the points of N, 2 (see Section 4. 1), a complex vector space ot 
dimension one has a geometric model that is in one-to-one correspondence with 
a geometric model of a two-dimensional real vector space . Similarl y, a complex 
vector space of di mension two is the same, geometrically, as a four-dimensional 
real vector space . 

• Complex Inner Products 

Let V be a complex vector space. An inner product on V is a function that 
assigns, to each ordered pair o f vectors u, v in V, a complex number (u. v) sat is­
tying the fo llowing conditions: 

(a) (u. v) ::: 0: (u. u) = 0 if and only if u = Ov 

(b) (v. u) = (u. v) for any u. v in V 

(c) (u + v. w) = (u. w) + (v. w) for any u, v, w in V 

(d) (cu. v) = c(u. v) for any u, v in V, and c a complex scalar 

Remark Observe how simi lar this definition is [0 Defini tion 5. 1 of a real inner 
product. 

We can define the standard inner product on en by defining (u , v) for 

u ~ [:::] , nd v ~ [:: ] ;nC" " 

u" Vn 

which can also be expressed as (u. v) = uT v. 
Thus. if 

[ 

1 - i ] 

- 3 :2i 
and [

3+2i] 
v = 3 - ~i 

- 3, 

are vectors in C J
• then 

(u. v) = ( I - i)(3 + 2i) + 2(3 - 4i) + (-3 + 2i)( - 3i) 

= (I - 50 + (6 + 8i) + (-6 - 9i) 

= I - 6i . • 
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A complex vector space that has a complex inner product de fined on it is called 
a complex inner product s pace. If V is a complex inner product space, then we 
can defi ne the length of a vector u in V exactly as in the real case: 

Moreover. the vectors u and v in V arc said to be orthogonal if (u. v) = o . 

• Complex Eigenvalues and Eigenvectors 

In the case or complex matrices, we have the following analogs of the theorems 
presented in Section 7.3, which show the role played by the special matrices dis­
cussed in Section 7.3: 

Theorem 8.1 If A is a Hermitian matrix, then the eigenvalues of A are all real. Moreover. eigen­
vectors belonging 10 disti nct eigenvalues are orthogonal (complex analog of Thc­
OTems 7.6 and 7.7). • 

Theorem B.2 If A is a Hermitian matrix. then there exists a unitary matrix V such that U- I AU = 
D, a diagonal matrix. Thee igenvalues of A lie on the main diagonal of D (complex 
analog of Theorcm 7.9). • 

In Scction 7.3 we provcd that if A is a real symmetric matrix. then there exists 
an orthogonal matrix P such that p - I A P = D, a diagonal matrix: and conversely, 
if there is an orthogonal matrix P such that p-I A P is a diagonal matrix, then A 
is a symmetric matrix. For complex matrices, the si tuation is more complicatcd. 
The converse of Theorem B.2 is not true. That is. if A is a matrix for which there 
ex ists a unitary matrix U such that V-I AU = D. a diagonal matrix, then A need 
not be a Hcrmitian matrix. The correct statement invol ves normal matrices. (See 
Section B.I .) The following result can be establi shed: 

Theorem B.3 If A is a normal matrix, thcn there exists a unitary matrix U such that U- I AU = 
D. a diagonal matrix. Conversely, if A is a matrix for which there exists a unitary 
matrix U sllch that U- I A U = D, a diagonal matrix, then A is a normal matrix . • 

• ~D Exercises 

I . Solve by using Uauss- Jord:ln reduction 

(a) (I + 2i)x j + (-2 + i).I2 = 1 - 3i 
(2 +i)xj + (- 1 +2i)-I2 = -1 - i 

(b) 2ix,- (l - i)X2=I+i 
(I - i)x , + .I2 = I - i 

(e) (1 + i )x, - X2 = -2 + i 
2ix , +(I - i)X2= i 

2. Transform the given au.c;mented matrix of a linear sys tem 
[0 row echelon form and solve by back substitution. 

[~ 
0 

I ~ i] (.) 3i -2 + i 

0 2 + i 2 - i 

[~ 
2 l + i 

3i ] (h) l - i 0 ~ 2 + i 
0 3 : 6 - 3i 

3. Solve by Gaussian el imination with back subst itution. 

(a ) iX1 +(1 + i)x! = i 
( l - i)T , + q-;q=l 

iX2 + .I, = 1 



(b) XI+ ;x2+ ( I -;)x )= 2 + ; 
iXI +( I + i )xJ=- I +; 

2;X2 - X J = 2 - i 

4. Compute the determinant and simplify a ~ much as possi. 
ble. 

I 
I +i - I I la, 2; I +i 

Ib, I 
2 - i 1 + i 
1 +2i - ( I - ;) 

I 
1 + ; , 2 - i 

I 
« ) 0 3+; 

- 2 1 + 2; 

(d) I 
2 I - i 0 

I 
1+; - I 

0 - ; 2 

5. Find the inverse of each of the following matrices. ifpos. 
sible : 

(b' [+ o I ~; ] 
2 +; 

6. Detemtine whether the following subsets IV of en are 
complex vector subs paces: 

(Il) IV i~ the set of all 2 x 2 C()mplex malrices wi th zeros 
on the main diagonal. 

(b) IV is the set of all 2 x 2 complex matrices that have 
diagonal entries with real part equ:iI to zero. 

[e, IV Is the set of all sym metric 2 x 2 complex matrices. 

7. (a ) Prove or disprove: The set IV o f all /I x " Hennitian 
matrices is a complex "telor subspace of C ... . 

(b) Prove or disprove: The set IV of all II x /I Hennitian 
matrices is a real vector subspace of the real vector 
~pace of all II x /I complex matrice~. 

8. Pro" e or disprove: The ~et IV of all II x II uni tary matrices 
IS a complex vector subspace of C.~ . 

9. Let IV = sp<lnjv l. v, . V11. where 

[
-5+21 ] 

\ '] = - 1-3; , 
2 - 3; 
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(a) Doe, ' ~ [~] "'Ioog '" IV? 

(b) Is the set!v l. "2. v31 linearl y independent orl inearly 
dependent? 

10. Let {V I ' Vz. v31 be a basis for a complex vector space V. 

]) . 

12. 

Determine whether or not w is in span {WI, w:j. 

(a) WI = ; VI + ( I - ; )"'1 + 2vJ 

W1 = (2 + ; ) \'1 + 2; v2 + (3 - i)vl 
W = (-2 - 3i)v ] + (3 - l)v2 + ( - 2 - 21)" :; 

(b) WI = 2; \'1 + " 2 + (I - i)vJ 
Wz = 3i ,,] + ( I + i )"2 + 3v] 
w = (2 + 31)" 1 + (2 + i) vz + (4 - 2i )" j 

Find the eigenvalues and associated eigenvectors of the 
following complex matrices: 

(a)A = [1 
- I 

«, A ~ [~ 
: 1 
o 
2 

- , 

(b) 
[

I ; 1 A = _; I 

For each of the parts in Exercise 11 . find <l matrix l' such 
that 1'- 1 A P = D. a diagonal mmrix . For part (c). find 
three different matrices /' thm diagonalize A. 

13. (a) Prove that if A is Hermitian. then the eigenvalues of 
A are real. 

(h) Verify that A in Exercise II(c) is Hermitian. 

(c) Are the eigenvectors associated with an eigenvalue 
of a Hennitian matrix guarallleed 10 be real vectors? 
Explain. 

14. PlOve tJ ,al an II x II cOlllple" lIIalJi" t\ j~ UllilaJY if amJ 
only if the columns (rows) of A form an orthonormal set 
with respect to the standard inner product on C· . (Hint: 
See Theorem 7.8.) 

15. Show that if A is a skew Hermit ian matrix (see Exercise 
15 in Section B.1) and ). is an eigenvalue of A, then the 
real part of ). is zero. 
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Introduction to Proofs * 

H' Logic 

Logic is the di scipline that deals with the methods of reasoning. It provides rules 
and tcchniques for determin ing whether a given argument is valid. Logical reason­
ing is used in mathematics to prove theorems. 

A statement or proposition is a declarative sentence that is either true or 
false, but not both. 

EXAMPLE 1 
Wh ich of the following are statements? 

(a) Nero is dead. 
(b) Every rectangle is a square. 
(c) Do you speak Engli sh? 
(d) xl ::: O. for every real number x . 

(e) 4 + 3 = 7. 
(f) Call me tomorrow. 
(g) x 2 _ 3x + 2 = o. 

Solution 
(a) (b), (d). and (e) are statements. (a). (d), and (e) are true, while (b) is fa lse: (c) is 
a question, not a statement ; (f) is a command. not a statement ; (g) is a declarative 
sentence that is true for some values of x and fal se for others. • 

If p is a statement, then the statement "not (J" is called the negation of p 
and is denoted by "- p. The negation of (J is also called the opposite of p. The 
statement ....... p is true when p is fal se. The truth value of "- p relative to p is given 
in Table C.l, which is called a truth table. 

' Chapter () of the Student Solutions Manual oontains an cXPJ.nded version of thi s Appendix . 
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EXAMPLE 3 
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T F 
F T 

Give the negation of each of the following statements: 

(a) p: 2 + J :> I 

(b) q: It is cold. 

Solution 
(a) '" p: 2 + 3 is not greater than I. That is, '" p: 2 + 3 s I. Since p is true, .-...- p 
is false. 

(b) "'q: It is nOl cold. • 
The statements p and q can be combi ned by a number of logical connectives 

to form compound statements. We look at the most important logical connectives. 
Let p and q be statements. 

I. The statement "p and q"' is denoted by p A q and is called the conj unction of 
p and q . The statement p /\ q is true only when both p and q are true. The 
truth table giving the truth values of p /\ q is given in Table C2. 

2. The statement "p or q" is denoted by p v q and is called the disjunction of 
p and q. The statement p v q is true onl y when either p or q or both are true. 
The tmth table giving the truth values of p v q is given in Table C.3. 

TABLE C.2 TABLE C.3 

p q p q p vq P A q 

T 

F 

F 

---
T T T T 

T F T F 

F T F T 

F F F F F 

Form the conjunction of the statements p: 2 < 3 and q: - 5 > - 8. 

Solution 
p 1\ q: 2 < 3 and - 5 > - 8, a true statement. 

T 

T 

T 

F 

• 
Form the disjunction of the statements p: - 2 is a negative integer and q: J3 is a 
rational number. 

Solution 
pVq: - 2 is a negative integer or .j3 is a rational number, a true statement. (Why?) 

• 
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EXAMPLE S 

q 

T 

F 

T 

F 

T 

F 

T 

T 

The connective or is more complicated than the connective {ll/d, because it 
is used in IWO different ways in Ihc Engli sh language. When we say "I left for 
Paris on Monday or I le ft for Paris on Tuesday," we have a disjunction of the 
statements p: I len for Paris on Monday and q: I left for Paris on Tuesday. Of 
course, exactly one of the two possibilities occurred; both could not have occurred. 
Thus thc connective 0,. is being used in an exclusive sense. On Ihc other hand, 
consider thc disjunction " ~ I failed French or I passed mathematics:' In this case, 
at least one of the two possibilities could have occurred. but both possibilities 
could have occurred. Thus. the connective or is being used in an inc!u.\·ive sense. 
In mathematics and computer science, we always use the connective or In the 
inclusive sense. 

Two statements are equivalent if they have the same truth values. This means 
that in the course of a proof or computation , we can always replace a given state­
ment by an equivalent statement. Thus, 

5 x - 3 
Multiplyi ng by I is equivalent to multiplying by - or by --, x i= 3. 

5 x - 3 
I 

Dividing by 2 is equivalent to multiplying by 2: ' 
Equivalent statements are used heavily in constructing proofs. as we indicate later. 

[f p and q arc statements, the compound statement "i f p then q," denoted by 
p =:} q. is called a conditional statement, or an implication. The statement p is 
called the antecedent or hypothesis, and the statement q is called the consequent 
or conclusion . The connective if. thell is denoted by the symbol =>. 

Thc following are implications: 

(a) I f two lincs arc paralleL then the lines do not intersect. 

(b) 

, 
If I am hungry, thcn I will eat. ---------- ~ • 

The conditional statcment p ==> q is true whenever the hypothesis is fal~e or 
the conclusion is true. Thus, the truth table giving the truth values of p => q is 
shown in Table CA. 

A conditional statement can appear disguiscd in various forms. Each of the 
following is equivalent to p ==> q: 

p implies q; 
q, if p; 

p only if q; 
p is sufficient for q; 

q is necessary for p. 

One of the primary objectives in mathematics i~ to show that thc implication 
p => q is truc; that is, we want to show that if p is true, then q must be true. 
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q 

T 

F 

T 

F 

T 

F 

F 

T 
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If p =} q is an implicat ion. then the contrapositive of p => q i; the 
implication "' q =} -..- p. The truth table giving its truth values is shown in Table 
C.S, which we observe is exactly thc same as Table C.4, the truth table fcr the 
conditional statement p => q . 

TABLE C.S 

P 

T 

T 

F 

F 

q 

T 

F 

T 

F 

- q ==>- p 

T 

F 

T 

T 

TABLE C.6 

q 

T 

T 

F 

F 

P 

T 

F 

T 

F 

q = p 

T 

F 

T 

T 

If p => q is an implication, then the com'crse o f p => q is the implication 
q => p. The trulh table giving its truth values is shown in Table C.6. Observe 
that the converse o f p ==> q is obtained by interchanging the hypothesis and 
conclusion. 

Form Ihc contrapositi ve and converse o f the given implication. 

(a) If IWO different lines are parallel, then the lines do not intersect. 

(b) If the numbers {/ and b arc positive. Ihen a/J is positive. 

(c) If /I + I is odd, then /I is even. 

Solution 

(a) Contrapositive: If two different lines intersect, then they are not parallel. The 
given implication and the contrapositive arc true. 

Converse: If two differe nt lines do not intersect. then they are parallel. In this 
case. the given implication and the converse arc true. 

(b) Contrapositive: If ub is not positive, then (! and IJ are not both positive. The 
given implication and the contrapositive are true. 

Converse: If ab is positive, then a and b are positive. I.n thi s case. the given 
implication is true, but the converse is false (take a = - I and IJ = - 2). 

(c) Contrapositive: If II is odd, then n + I is even. The given implication and the 
contrapositive are true. 

Converse: If n is even, then n + I is odd. In this case. the given implication 
and the converse are trlle. • 

If p and q arc statements, the compound statement "p if and only if q:' de­
noted by p {::::::} q. is called a biconditional. The connective if and only if is 
denoted by the symbol ~. The truth values of p <==> q are given in Table 
C.7. Observe that p <==> q is true only when both p and q are true or when both 
are L11se. The biconditional p <==> q can also be stated as p is necessary and 
sullicient for q. 
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EXAMPLE 7 

EXAMPLE 8 

Each o f the following is a biconditio nal statement: 

(a) a > b if and onl y if (/ - h > O. 

(b) An integer II is prime if and onl y if its only divisors are I and itself. • 

Is the fo llowing biconditional a true statement? 3 > 2 if and only if 0 < 3 - 2. 

Solution 
Lei p be the statement 3 > 2 and let q be thc statement 0 < 3 - 2. Since both p 
and q arc true, we conclude that p <:=:> q is true. • 

A convenient way to think of a biconditional is as follows: p <:=:> q is true 
exactly when p and q are equivalent. It is also not difficult to show that. to prove 
p {=} q, we must show that both p => q and q => p arc true. 

We soon turn to a brief introduction to techniques o f proof. First, we present 
in Table e.S a number of equivalences that are useful in this regard. Thus. in any 
proof we may replace any statement by its equi valent statement. 

TABLE C.8 

Statem ellt ___ -=Ecqc"ci''''a lellt S tatemellt 

(,) ~(~p) 

(b) ~(pvq) 

(e) ~(p /1'1) 

(d) (p ==> 'I) 
(0) (p ==> 'I) 

(0 (p~q) 

(g) ~(p ==> 'I) 

'h) ~(p {==} 'I) 

(i) (p ==> 'I) 

p 

(~p) /I (~q) 

(~p) v (~q) 

(~p)v (1 

~q ==>~p 

(p ==> q) /I ('I ==> p) 

I' /I ~(I 

(pA~q)V(q"~p) 

«p A (~q)) ==> c, wherec is aSlalemenl 
Ihal is always false 

Finally. in Table C.9, we present a number of implications that are always true. 
Some o f these are useful in techniques of proof. 

(,) (pAq) ==> p 

(b) (p/lq) ==> q 

(e) p ==> (I' v 'I) 

(d) q ==> (pvq) 

(0) ~p ==> (p ==> q) 

(0 ~(p ==> q) ==> I' 

(g) (I' A (p ==> q)) ==> q 

(h) (~p /I (p v q)) ==> 'I 
(i) (~(I A (I' ==> q» ==> ~p 
G) «I' Aq)A ('I Ar» ~ (I' = r) 



EXAMPLE 1 

C.2 Techniques of Proof A-27 

Techniques of Proof 

In Ihis section we discliss techniques for constfuc[ing proofs of conditional state­
ments p =} q . To prove p =} q, we must show that whenever p is true it 
follows that q is true, by a logical argument in the language of mathematics. The 
construction of Ih is logical argument may be quite elusive: the logical argument 
itself is what we call the proof. Conceptually, the proof that p ==> q is a sequence 
of steps that logicall y connect p to q. Each step in the "connection" must be jus­
tified or have a reason for its val idi ty. which is usually a previous definition, a 
property or axiom Ihat is known to be true, a previous ly proven theorem or solved 
problem, or even a previously verified step in the current proof. Thus we connect 
p and q by logically building blocks of known (or accepted) facts. Often, it is not 
clear what building blocks (facts) 10 use and exactly how to get started on a fruitful 
path. In many cases, the fin·t step of the proof is crucial. Unfortunately, we have 
no explicit guideli nes in this area, other than to recommend a careful reading of the 
hypothesis p and conclusion q in order 10 elearly understand them. Only in this 
way can we begin 10 seek relationships (connections) between them. At any stage 
in a proof, we can replace a statement that needs to be derived by an equivalent 
statement. 

The construction of a proof requires the building of a step-by-step connec­
tion (a logical bridge) between p and q . If we let bl. b2 • . . .• hn represent logical 
building blocks, then, conceptuall y. our proof appears as 

where each conditional statement must be justified. Thi s approach is known as a 
direct proof. We illustrate this in Example I. 

Prove: If //I and /I are even integers, then III + f! is even. 

Solution 
Let p be the statement " 11/ and /I are even integers" and let q be the statement 
" 11/ + II is even." We start by assuming that p is true and then ask what facts we 
know which can lead us to q . Since both p and q involve even numbers, we try 
the following: 

p => 11/ = 2k .1I = 2j, for some integersk and j . 
~ 

" 
Since q deals with the sum of 11/ + II, we try to form this sum in h2: 

hi => 11/ + /I = 2k + 2j = 2(k + j) . 

Observe that h2 implies that the sum 11/ +11 is a multiple of 2. Hence 11/ + /1 is even. 
This is juSt q. so we have b2 => q. In summary. 

([ ) 

• 
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EXAMPLE 2 

EXAMPLE 3 

In Example I we proceeded fo rward to bui ld a bridge from p to q. We call 
this forward building. Alternatively, we could also start with q and ask what fact 
IJ" will lead us to q, what L1Ct b,,_1 will lead us to b", and so on. until we reach 
p Jscc Expression (I)]. Such a logical bridge is called backward building. The 
two techniques can be combined ; build fo rward a few steps, build backwards a few 
steps. and try 10 logically join the two ends. 

In practice. the construction of proofs is an art and must be learned in part from 
observation and experience. T he choice of intermediate steps and the methods for 
deriving them are creative activities that cannot be preci sely described. 

Another proortechlllque replaces the origmal statement p => lj by an eqUiV­
alent statement and then proves the new statement. Such a procedure is called 
an indirect method of proof. One indirect method uses the equivalence between 
p => q and its contrapositive - q => - p [Table C.S(e)]. When the proof of 
the contrapositive is done di rectly, we calt this proof by contrapositive. Unfortu­
nately, there is no way to predict in advance that an indirect method of proof by 
contrapositive may be success ful. Sometimes, the appearance of the word not in 
the conclusion ---q is a mggeslioll to try this method . There are no guarantees that 
it will work. We illustrate the use of proof by contrapositive in Example 2. 

Let II be an integer. Prove that if 11 2 is odd, then II is odd. 

Solution 
Let p: 1/

2 is odd and q: 1/ is odd. We have to prove that p => q is true. In~ead . 
we prove the contrapositive ---q => --- p. Thus, suppose that 1/ is not odd, so that 1/ 

is even. Then 1/ = 2k, where k is an integer. We have 1/
2 = (2k)2 = 4k2 = 2(2k2). 

so ,,2 is even. We have thus shown that if" is even, then 1/
2 is even, whi ~h is 

the contrapositive of the give n statement. Hence the given statement has been 
establi shed by the method of proof by contrapositive. • 

A second indirect method of proof. called proof by contradiction, uses the 
equivalence between the conditional p => q and the statement «p A (-q)) => 
c, where c is a statement that is always false [Table C.S(i)]. We can see why this 
method works by referring to Table C.4. The cOllditional p => q is false only 
when the hypothesis p is true and the conclusion q is fal se. The method of proof 
by contradiction starts with the assumption that p is true. We would like to show 
that q is also true. so we assume that q is L11se and then attempt to build a logical 
bridge to a statement that is known to be always false. When this is done, we say 
that we have reached a contradiction, so our additional hypothesis that q is L1lse 
lllUst be illcorn:ct. 11u::refOl"c, q lIIust be tJUe. If we ,lie uHable to uuiId a bridge 
to some statement that is always false, then we cannot conclude that q is false. 
Possibly, we were not clever enough to build a correct bridge. As with proof by 
contrapositive, we cannm tell in advance that the method of proof by contrad iction 
will be successful. 

Show that J2 is irrational. 

Solution 
Let p: x = J2 and q: x is irrational. We assume that p is true and need to show 
that q is true. We try proof by contradiction. Thus we also assume that ---q is true, 
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so we have assumed that x = .Ji and x is rational. Then 

x = j2 = ~. 

" where /I and d are integers having no common t:1ctors: that is. - is in lowest icnns. 
d 

Then 
1/

2 

2 = - . so 2tP = 11 2 . 
d' 

This implies that /I is even, s ince the square of an odd number is odd. Thus. 
/I = 2k, for some integer k, so 

2d2 = 1/
2 = (2k)2 . 

Hence 2(/2 = 4k2 , and therefore (j2 = 2e, an even number. Hence d is even. 
We have now concluded that both /I and d arc even, which implies thai they have 

" a common factor of 2, contradicting the [1Ct that d is in lowest terms. Thu~ our 

assumption --q is invalid. and it follows that q is true. • 

As a fi na l observation, we note that many mathematical results make a state­
ment thaI is true fo r all objects of a certain type. For example. the statement " Let 
m and 1/ Ix: integers; prove that 1/

2 = 111 2 if and only if III = 1/ or III = - 1/ " is actu­
ally saying, " For aH integers III and ll,n 2 = m2 ifandonly ifm = 1/ orm = - n." 
To prove this result, we must make sure that all the steps in the proof are valid for 
every integer m and 1/. We cannot prove the result for specific values of m and n. 
On the other hand, to disprove a result claimi ng that a certain property holds for 
all objects of a certain type, we need find only one instance in which the property 
does not hold. Such an instance is called a counterexample. 

Prove or disprove Ihe struemem Ihat i f x and yare real numbers, Ihen 

Solution 
Let x = - 2 and)' = 2. Then x 2 = l, that is. ( _ 2)2 = (2)2. but x i= )'. so 
the bicondi tional is false. That is, we have disproved the result by producing a 
counterexample. Many olher cou nterexamples could be used equally we ll . • 

For an expanded version of the material in this appendix, see Chapter 0 of the 
Student Solutions Manual. 
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Addith'c im'c rsc of a matrix: The additive inverse oLm III x I! 
matrix A is an II! x I! malrix 8 such that A + 8 = O . Such a 
matrix 8 is Ihe negative of A. denoted - A. which is equal to 
( - 1)A. 

Adjoint : For an II x I! matrix A = [ai j ] the adjoint of A. de­
noted adj A is the transpose of the matrix fonned by replacing 
each entry by its cofactor A ,j: that is. adj A = [ A ji ]. 

Angle betwecn vectors: For nonzero vectors u and \' in N" the 
angle () between u and v is detennined from the expression 

". , 
cos(O) = Ilulill vU' 

Augmcntcd matrix: For the linear system Ax = b. the aug­
mented matrix is formed by adjoinmg to the coefficient matrix 
A the right side vector b. We expressed the augmented matrix 
as[A :bJ. 
Back substitution: If U = [I/ii ] is an upper triangular matrix 
all of whose diagonal entries are not zero, then the linear sys­
tem Ux = b can be solved by back substitution. The process 
starts with the last equ;llion and computes 

b. 
Xn= - : 

I/ n" 

we u>c the next to last equation and compute 

continuing in this fashion using the jth equation we compute 

Basis: A set of vectors S {V I. V2 •...• vd from a vector 
space V is called a basis for V provided S spans V ;lnd S is a 
linearly independent set. 

Cauchy--..';;;ch warz inequality: For vectors v and u in R". the 
Cauchy- SchwarL inequality says that the absolute value of the 
dot product of v and u is less than or equal to the product of 
the lengths of v ;lnd u: that is. Iv , ul ::: Ilvllll ul l. 

Character istic cquation: For a square matrix A. its charac­
teristic equation is given by 1(1) = det(A - f / ) = O. 

Character istic pol~'nomial : For 3 square matrix A. its char­
acteristic polynomial is given by 1(1) = det(A - (1). 

Closure properties: Let V be a given SCI. with members that 
we call vectors. and two operations. one called vector addi­
tion. denoted (fl . and Ihe second called scabr multiplication. 
denoted 0. We say that V is closed under (fl . provided for u 
and v in V. u (fl v is a member of V. We say that V is closed 
under 0. provided for any real number k. k 0 u is a member 
of V. 

Coefficient matr ix: A linear system of II! equations in II un­
knowns has the form 

The matrix 

(lliXI + allx, + .. + al.x. = hi 

(l21 XI + a22X, + ... + (/lnX. = h, 

I aa 
(lu a,. ] 

a21 (I" (I,. 
A~ 

l"., a .. 2 a mn 

is callt:tllht: L'Ot:fficit:lllmalrix of lht: lint:ar syslt:m. 

Cofactor: For an /I x /I matrix A = [a'j ] the cofactor Aij 

of a; j is defined as Aij = (_ l) i+i det(M;j). where Mi j is the 
ij-minorof A. 

Column rank: The column rank of a matrix A is the dimen­
sion of the column space of A or equivalently the number of 
linearly independent columns of A. 

Column space: The column space ofa real III x /I matrix A is 
the subspace of R'" spanned by the columns of A. 
romplcx ,'cclor space: A complex veclor ~p:1ce V i~ ~ W'ol. 

with members that we call vectors. and two operations one 
called vector addition. denoted (fl, and the second called scalar 
multiplication. denoted 0 . We require Ihal V be closed ~nder 
(fl . that is. for u and \' in V. u (!l v is a member of V: in ;lddition 
we require th;lt V be closed under 0 . that is. for any complex 
numberk, k 0 u is a member of V. There are Sother propenies 
that must be satisfied before V with the two operations e and 
o is called a complex vector space. 

Complcx vector subspace: A subset W of a complex \'ector 
space V that is closed under addition and scabr multiplication 
is called a complex subspace of V. 

A -3J 
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Components of a ,'ector : TIle components of a vector v in R" 
are i l~ entries: 

Composite lincar transrormatioa: Let L J and L ! be linear 
transformations with L 1 : V -- IV and L2: IV __ U . Then 
lhe. mmposi , ;on I . ~ 0 I ., ' V -+ " i ~:l lint'."lr Jran~fonnation 
and for \" in V. we compute (L ! a L,)(\' ) = L !(L ,(II». 

Computation of a delenninanl "ja reduction to triangular 
form: For an " x II matri:'l A the determinant of A. denOied 
de\(A ) or IAI. can be computed wi th lhe aid of elementary row 
opcrJl ions as follow ~. Use elementary row operations on A. 
keepi ng track of Ihc operations U S~'(\. \0 obtain an upper Irian­
gular rnalrix. Using Ihc changes in the determinant as the result 
of applying a row operation and lhe facllhallhc determirwnt of 
an upper lriangulnr rnmrix is the product of its diagonal entries. 
we can obtain ,m appropriate expre~s ion for det(A). 

Consistent linear system : A linear system Ax = b is called 
consistcnt if the systcm has at least one solution. 

Coordinat l5: The coordinates o f a vector v in a vector space 
V with ordered basis S = Iv!. v~ ..... v~1 are the coefficients 
CL. C, •. , .• ('~ such Ihal v = ( 'I V I +c~v~+·· · +c~v • . We denote 
the coordinates of v re lative to Ihe basis S by [v ]s and write 

CfOS'l produrt: The cross producl of a pai r o f vectors u and v 
from Rl is denOled II x \" and is computed as the delenninanl 

where i. j . and k are Ihe unit vec tors in the ,f-. YO. and z­
directions. respectivc ly. 

Defeclh'e nmtrix: A squMe matrix A is called defective if it 
has an eigcnvaluc of multiplicity IN > I for which the associ, 
ated eigcnspace has a b:lsis wilh fewer than III vectors. 

Determinant: For an 11 x 11 matnx A the determinant of A. 
dcnoted dct( A) or IAI. is a scalar that is computed as the sum 
o f all possible products of /I entries of A each with its appro­
priate sign. with exactly one e nlry from each row and exactly 
one entry from each column. 

Dia~n.11I11atrix : A square matrix A = [(I ;) ] is called diaj!;o­
nal provided (II} = 0 whenever i " j . 

Diagonaliza ble: A square matrix A is called diagonalizable 
provided it is similar to a diagonal matrix 0 : that is. there ex­
ists a nonsingular matri x I' such that p - l A P = O . 

Diffe rence or ma trices: 'The difference of the In x /I matrices 
A and B is denOled A - B and is equal to the sum A + (- I )B. 
The difference A - B is the //I x II matrix whose entries a.<e the 
difference of correspondin~ entries of A and B. 

Difference or "ectors: The difference of the vectors v and w 
in a vector space V is denoted v - w. which is equal 10 Ihe 
8um \' + (- l )w. If V _ R~ , then \' _ w is computed.1.s the 
difference o f corresponding e ntries. 

Dilation: The linear transfonnation L : W -> R " given by 
L(,') = kv. for k > 1. iscalled a dilation. 

Dimcnsion: The dimension of a nonzero vector space V is 
the number of vectors in a basis for V. The dimemion of the 
vector space 101 is de fined as zero. 

Dislunce between IJoinL~ (or \'cctors): The dislance between 
the points (111 . 112 .. ... 11") and (VI. V! . " ... v") is the lenglh 
of the vector II - \'. where II = (III . II ~ ..... 11 M) and v = 
(Ill. "2 ..... ""). :lIId is given by 

Thus we see that Ihe distance betwecn vectors in R" is also 
Uu - vU· 
Dot product: For ,'ectOTS v and w in W the dot product of " 
and w is also called the st ~ndard innc r product or just the in­
ner produc t of v and w. The dOl product of v and w in R- is 
denOled v • w and is computed as 

,' ·w = "I WI + II! W~ + ··,+ v"w •. 

Eigcnspace: The SCt of all eigen\'ectoTS of a square matrix A 
associated wilh a specified eigenvalue A of A. together with 
Ihe zero "ector. is called the eigenspace associated with the 
eigenvalue A. 

Eigcn"alue: An eigenvalue of an /I x /I matrix A is a scalar ). 
for which there ex ists a nonzero II-vector x ~ uch that Ax = AX. 
The vector x is an eigenvector associated with the eigenvalue ,. 
Eigem'cctor: An eigenvcctorofan II x /I n1<ltrix A is a nonzero 
II -vector x such that Ax is a scalo:lf multiple of x : Ihal is. Ihere 
exists some scalar A such that Ax = AX. The scalar is an eigen­
value o f Ihe IImlrix A. 

Elementary row opeTlltions: An elementary row operation on 
a matrix is any of Ihe fo llowing three operations: (I) an inter­
change o f rows. (2) mUltiplying a row by a nonzero scalar. and 
(3) replacing a row by adding a scalar multiple of a different 
row to it. 

[quul matrices: 1bc II! X II fuatri ces A and B are equal 
provided correspondinJ! entries are equal: that is. A = B if 
"'j = biJ• i = I. 2., ... m. j = I. 2 ..... II . 



Equal vcctors: Vectors v and w in R" are equal provided cor­
responding entries are equal: that is. v = w if their correspond­
ing components are equal. 

Finite-dime nsional , 'cctor space: A vector space V that has a 
basis that is a finite subset of V is said to be finite dimensional. 

Forward s ubstitution: If L = [Ii} ] is a lower triangular ma­
trix all of whose diagonal entries are not zero. then the linear 
system Lx = b can be solved by forward substitution. The 
process starts with the first equation and computes 

b, 
ll=~: 

next we use the second equation and compute 

b2 - In.l l • 
X2 = 

continuing in this fashion using the jth equation we compute 

i - I 
bj - L ljLXI' __ --\'-0''---_ 

I"j = I ji 

Fundamental \"ector spaces associated with a matrix: If A 
is an III x /I matrix there are four fund<lmental subspaces asso­
ciated with A: (I) the null space of A. a subspace of R": (2) 
the row sp<lce of A. a subspace of R": (3) the null space of AT. 
a subspace of R"' : and (4) the column space of A. a subspace 
of R"' . 

Gaussian elimination: For the linear system Ax = b form the 
augmented matrix [A ' b]' Compute the row echelon foml 
of the augmented matrix: then the solution can be computed 
using back substitution. 

Gauss-Jordan reduction: For the linear system Ax = b fonn 
the augmented matrix [A ' b]' Compute the reduced row ech­
elon form of the augmented matrix: then the solution can be 
computed using back substitution. 

General solution: The general solution of a consistent linear 
system Ax = b is the set of all solutions to the system. If 
b = O. then the general solution is just the set of all solutions 
to the homogeneous system Ax = O. denoted Xh. If b f= O. 
then the general solution of the nonhomogeneous system con­
sists of a particular solution of Ax = b. denoted x~, together 
with Xh: that is. the general solution. is expressed as x" + Xh. 

G ram-Schmidt process: The Gram- Schmidt process con­
verts a basis for a subspace into an orthononnal basis for the 
same subspace. 

Hermitian matrix: An /I x II complex matrix A is called Her­

mitian provided Ar 
= A. 

Homogeneous system: A homogeneous system is a linear sys­
tem in which the right side of each equation is zero. We denote 
a homogeneous system by Ax = O. 
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Ide ntity matrix: The II x I! identity matrix. denoted I". is a 
diagonal matrix with diagonal entries of all Is. 

Inconsistent linear system : A linear system A x = b that has 
no solution is called inconsistent. 

Infinite·dimensional \'eclor s pace: A vector space V for 
which there is no finite subset of vectors that form a basis for 
V is said to be infinite dimensional. 

Inner product: For vectors v and \II in R" the inner product of 
v and \II is also called the dot product or ~tandard inner product 
of v and \II. TIle inner product of v and w in R" is denoted v . \II 

and is computed as 

Im'ariant subspace: A subspace IV ofa vector space V io said 
to be invariant under the linear tmnsformation L : V -+ V. 
provided L (v) is in IV for all vectors v in W. 

Inverse linear transrormation: See invertible linear transfor­
matJon. 

Inverse or a matrix : An 1/ x II matrix A is said to have an 
inverse provided there exists an /I x /I matrix B sLlch that 
AB = B A = I. We call B the inverse of A and denote it 
as A- I. In this case. A is also called nonsingular. 

Invertible linear transformation : A linear transformation 
L: V --> IV is called invertible if there exists a linear transfor­
mation. denoted L - I. sLlch that L - 1(L(v» = v. for all vectors 
v in V and L(L - I(W» = w. for all vectors \II in IV. 

Isometry: An isometry is a linear Imnsformation L thaI 
preserves the distance between pairs of vectors: that is. 
II L(v) - L(u) 1I = Ilv - ul l. for all vectors u and v. Since 
an isometry preserves distances. it also preserves lengths: that 
is, Ii L(v) 1i = II v ll. for all vectors v. 

Length (or magnitude) of a \'ector: The length of a vector v 
in R" is denoted Ilv ll and is computed as the expression 

For a vector v in a vector space V on which an inner prod­
uct (dot product) is defined. the length of v is computed as 
II v ll = ..;v:v. 
Linear combination: A linear combination of vectors 
VI_ V2 ..... VI from a vector space V is an expression of 
the foml CI VI + q v! + ... + qVI. where the CI. Cl .. .. ('I 
are scalars. A linear combination of the II! x I! matrices 
AI. A2 ..... A I is given byclAI + nA2 + . . +q A k. 

Linear operator: A linear operator is a linear transformation 
L from a vector space to itself: that is. L : V --> V. 
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Linear syst em: A system of III linear equations in 1! unknowns 
1"1 . Xl ... . . .I" is a sel of linear equations in the /I unknowns. 
We express a linear system in matrix form as Ax = b. where 
A is the matrix of coefficients. x is the vector of unknowns. 
and b is the vector of right sides of the linear equations. (See 
coetTicienl matrix.) 

Linear transformation : A linear lfansformalion L : V -+ IV 
is a function assigning a unique vector L{v) in W \0 each vec­
tor \I in V such Ih311WO properties are sa tisfied: ( I) L(u + v) = 
L(u ) + L (v ), for every u and \I in V. and (2) L (kv) - k L ( v ), 
for every \I in V ,llld every scalar k. 

Linearly dependent : A sel of vectors S = {VI . \'2 ..... II"} is 
called linearly dependent provided there exists a linear combi­
nation ei v i + C2 V2 +,". + c" v" trot produces the zero vector 
when not all the coefficients are zero. 

Linearly independent : A set of \'ectors S = {VI . '0'2 ..... v" l 
is called linearly independent provided the only linear combi­
nation CI \ ' 1 + C2V2 + .. . + C" V" lhat produces the zero vec­
tor is when all the coefficients afe zero. that is. only when 
CI - C2 _ ... - Co _ 0. 

Lower tr iangular matrix: A square matrix wi th zero entries 
above its diagonal entries is called lower triangular. 

L V-factorization (or LV-decomposition): An LU­
fac torization of a square matrix A expresses A as the product 
of a lower triangular matrix L and an upper triangular m<ltrix 
V: that is. A = LV. 

l\'lain diagonal of a matrix: The main diagonal of an /I x /I 
matrix A is the set of entries {II I . {l22 . . ... {I,,". 

l\19trix ~ An III x" matrix A is::I rect:lIIgul::lr array of IIIIl entries 
arranged in III rows ;md " columns 

Matrix addition : For III x " matrices A = [{Ii} J and B = 

[b./ ]. the addition of A <lnd B is perfonned by adding corre­

sponding enlIies: that is. A + B = [{lij J + [bij ]. This is also 
called the sum of the matrices A and B. 

Matrix representing a linear transformation: Let L : V -40 

IV be a linear transformation from an /I-dimensional space V 
toanlll-dimensional space IV. Fora basis S = {VI. "'2 .. . .. '0'"1 
in V;md a basis T = ( WI . W2.. • wNl l in IV there exists an 
III x /I matrix A. with column j of A = [ L (v j )] r such that 
the coordinates of L(x ). for any x in V. with respect to thc T 
basis can be computed as [ L(x)]r = A [x L. We say A is thc 
matrix representing the linear transfonnation L. 

Matrix transformation: For an III x " malIix A the function 
f defined by fe u ) = A u for u in R" is called the matrix trans­
fonl11tion from Rio to R'" defined by the matrix A. 

Minor: Let A = [{li j ] be an II x " matrix and M.} the 
(/I - I) X (/I - I) submatrix of A. obtained by deleting the 
ith row and jth column of A. The detenninant det ( Mi j ) is 
called the minor of {l ij' 

Multiplicity of an eigenvalue: The mult iplicity of;m eigen­
value I. of a square matrix A. is the number of times A. is a root 
of the characteristic polynomial of A. 

Natural (or standard) basis: The natural basis for R" is the 
set of vectors e j = column j (or. equivalently. row j) of the 
/I X" identitymatrix.j = 1.2 ..... ". 

Negath'e of a ,'ector: The negative of a vector u is a vector W 

such th<lt u + W = O. the zero vector. We denote the negative 
of u as - u = (- I)u . 

NOllhumugcllcuus systcm A line<tr ~ystelll Ax = It is <;<tllcu 
nonhomogeneous provided the vector b is not the zero vector. 

Nonsingular (or invertible) matrix : An /I x /I matrix A is 
called nonsingular provided there exists an " x /I matrix B 
such that A B = B A = I . We call B the inverse of A and 
denote it as A - ) . 

Nontrh'ial solution: A nontrivial solution of a linear system 
Ax = b is any vector x containing at least one nonzero entry 
such that Ax = b. 

Normal matri.x : An" x /I complex matri x A is called normal 

provided (AT) A = A (A1). 
II -span' : The set of all II-vectors is called /I-space. For vec tors 
whose entries are rea l numbers we denote II -space as R". For 
a special case see 2-space. 

Nullity: 111e nullity of the matrix A is the dimension of the 
null space of A. 

II -vector: A I x " or an 1/ x I matrix is called an /I -vector. 
When" is understood. we refer to II-vectors merely as vectors. 

One-to-one: A function I: S -+ T is said to be one-to-one 
provided f(.I' I) 1= f(.i2) whenever 1"1 and ) "2 are distinct el­
ements of S. A linear transformation L : V -+ IV is called 
one-to-one provided L is a one-to-one function . 

Onto: A function f: S """'" T is said to be onto provided 
for each member I of T there is some member .1' in S so that 
I(s) = I. A linear transfonnation L : V --> W is called onto 
provided range L = IV. 

Ordert!d basis: A se t of vectors S = 1 VI . "'2 •. . .• vJ.,} in a vec­
tor space V is called an ordered basis for V provided S is a 
basis for V and if we reorder the vec tors in S. this new order­
ing of the vec tors in S is considered a dilTerent basis for V. 

Orthogonal basis: A basis for a vector space V that is also an 
orthogonal set is called an onhogonal basis for V. 

Orthogonal complement : The onhogonal complement of a 
set S of vectors in a vec tor space V is the set of all vectors in 
V that are onhogonal to all vectors in S. 

Orthogonal matrix: A square matrix P is called orthogonal 
provided p - I = p r o 

Orthogonal projection : For a vector v in a vector space V. 
the orthogonal projection of l' onto a subspace IV of V with or­
thonormal basis lw i. W2 •...• wd is the vector w in IV. where 



14' = ('" WI)WI + ( V · W 2) W l + ... + (,' . WI)WI. Vector 14' is 
the wctor in IV Ihal is closest 10 v. 

Orthogonal seC: A sel of \'ectors S = (WI. 14'2 •.••• wtl from 
a vector sp;lce V on which an inner product is defined is an 
orthogonal set provided /lOne of the vCCIOrs is the zero vector 
and the inner producl of any 114'0 different \'cctors is zero. 

Orthogonal ,·« tors: A pair of \~tors is cal led orthogonal 
provided their dOl (inner) product is zero. 

Ort.hogOlllllly diagonali:mble: A square matrix A is said to be 
orthugonally diagolwlil.abJc p"J\'illt:ll tht:rt:. t:x isls an orthogo­
nal matrix P such Ihat/> - I A J> is a diagonal matrix. That is. A 
is similar to a diagonal malri .... using an orthogonal matri .... p . 

Orthonormal bllsis: A basis for a vector space V that is also 
an orthonormal set is called an ort honormal basis for V. 

Orthonormal seC: A SCI of vcctors S = ( 14' 1.14'2 •...• wI! 
from a vector ~paee V on which an inner product is defined 
is an onhonumlal set provided each \'eclOr is a unit vector and 
the inner product of lIny two different vectors is zero. 

Parallel , 'cctors: 'TWo nonzcro vectors are said to be parallel 
If one is a scalar multiple of lhe other. 

ParticuLar solution: A particular .olution of a consistent lin· 
ear syslem Ax = b is a veClor xp containing no arbitrary con· 
stants such that Axp = b. 
Partitioned matrix: A matri .... Ih:i\ has been p;lnilioned into 
submatrices hy drawing horizontal tines between rows andlor 
venieallines between columns is called a panilioned matrix. 
There are many ways to panilion a m.1trix. 

Perpendicular (or orthogomd) \'celors: A pair of vectors is 
said 10 be perpendicular or orthogonal provided their dot prod­
uct is zero. 

Ph'ot: When usi ng row opcrJl ions on a matrix A. a pivot is a 
nonzero entry of a row that is used to 7.c ro-out entries in the 
column in which Ihe pivot resides. 

Posilh'e definile: Matrix A is posith'e definite prO\ided A is 
symmetric and all of its eigenvalues are posi tive. 

POWtrs of 11 nmtrix: For a square matrix A and nonnegative 
integer k, the kth power of A. denoled AI'. is the product of A 
with ilself k times; At = A • A • ... • A. where there are k 
factors. 
Projection: The projection of :1 point I' in a plane onlo a 
line L in the same plane is the point Q obtained by inter· 
secting the line L with the line through f> that is perpendic. 
ular 10 L. The linear tr,Ulsformation L : 1<1 ..... I< ! defined by 
L (x. y. z) = (.r. y) is called:l projection of RJ onto R 2. (See 
also onhogonal projection.) 

Range: The range of a function /: S ...... T is the set of 
all members 1 of T such Ihat there is a member.l" in S with 
/(.1") = I. The range of a linear Ir:flSfOrmalion L : V _ IV is 
the set of all vectors in IV Ihal are imal!es under L of vectors 
in V. 

Glossary For linear Algebra A-35 

Rank: Si nce row rank A = column rank A. we just refer to 
Ihe rank of Ihe matrix A a<! rank A. Equivalently. rank A = 
Ihe number of linearly independent rows (columns) of A = the 
number of leading Is in Ihe reduced row echelon form of A. 

Real \'e<:tor space: A real \'ector space V is a set. with mem­
bers that we call \'eclors aoJ tWO operations: one is called \'ec­
tor addition. denoted ED, and lhe second called scalar multipli­
cation. denoted 0. We require that V be closed under ED: that 
is. for u and \' in V . II ED \' is a member of V. In addition we 
require that V be closed under 0; that is. for any real number 
k. k 0 u is a member of V. There are g other propeniei that 
must be satisfied before V with the two oper:ltions ED and 0 is 
called a vector space. 

Reduced row echelon fomt: A malrix is said to be in reduced 
row echelon form provided it satisfies the following proper· 
ties: ( I) All zero row~, ifthcrc arc any. appear as bollom rows. 
(2) The first nonzero entry in a nonzero row is a I: it is called 
a leading I . (3) For eilch nonzero row. the leading I appears 
to the right and below any leading Is in preceding rows. (4) 
If a column contains a le:lding I. then all other entries in that 
column are zero. 

Refl ection: The linear lra n.~forma t ion L: 1<2 -;. 1<1 given by 
L (x . y) = (.r. - y) is called a reflection wilh respect 10 the.1:­
axis. Similarly. L(.r. y) = (-x. y) is called a reflection with 
respect to the ),-axis. 

Roots of the characteristic 1)()lynomial: For a square matrix 
A. the roots of il~ characleristic polynomial /(1) = det{A- t 1) 
are the eigenvalues of A. 

Rotation: The linear transformation L : R2 ..... 1<2 given by 

L ([xl) ~ [ ~'(9) 
y "m(O) 

-" "(9)l [xl 
COS(O) y 

is called a counterclockwisc rotation in (he platte by the 
angle O. 
Row « helon form: A matrix is said 10 be in row echelon form 
provided it satisfies Ihe following properties: (1) All zero rows. 
if Ihere are any, appe:lr as bollom rows. (2) The first nonzero 
entry in a nonzero row is a l; il is called a leading I. (3) For 
each nonzero row, lhe leading I appears 10 the right and below 
any leading Is in preceding rows. 

Row equivalent: The III >( I! malrices A and B are row equiv. 
alent provided there exi~( s 11 SCI of row operations that when 
perfonned on A yield 8 . 

Row r.lllk : The row rank of III:1(ri .... A is the dimension of the 
row .~ pace of A or. equivalently. Ihe number of linearly inde· 
pendent rows of A. 

Row spact': The row ."Pace of a real III x 1/ malrix A IS Ihe 
subspace of W spanned by the rows of A. 

S<:alar malr ix: MilIri .... A is a scalar matrix provided A is a 
diagonal matrix wilh equal diagonal entries. 
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Scalar multiple of a matrix : For an //I x II matrix A = [a;j ] 
and scalar r. the scalar multiple of A by r gives the II! x /I 

matrix r A = [ra'j l 
Scalar multiple of a \'cctor: If \" is in real vector space V . 
then for any real number k. a scalar. the scalar multiple of \' by 
k is denoted kv. If V = R" . then /.;v = (kV1. kU2 ..... kv. ). 

Scalars: In a real vector space V the scalars are rC3i numbers 
and are llsed when we form scalar multiples kv. where v is 
in V. Also. when we form linear combinations of vectors the 
co.:.flkiellls ale scalars. 

Shear: A shear in the x-direct ion is defined by the matrix 
Imnsformation 

L (u) = [~ k] [" , ]. 
I 112 

where k is a scalar. Similarly. a shear in the y -direclion is given 
by 

L(u) = [~ 0] ["']. I "2 

Similar matrices: Matrices A aad Bare simibr provided 
there exists a nonsingular matrix /' such that A = ,, - I B P. 

Singular (or noninvrrtible) matrix : A matrix A that has no 
inverse matrix is said to be singu lar. Any square matrix whose 
reduced row echelon form is not the identity matrix is singular. 

Skew symmetric matrix: A square real matrix A such that 
A = _A T is called skew symmetric. 

Solution space: The solution space of an III x II real homoge­
neom ~ystem Ax = 0 is the set IV of all II-vectors x such that 
A times x gives the zero vector. IV is a subspace of R". 

Solution to a homogeneous system: A solution to a homoge­
neous system Ax = 0 is a vector x such that A times x gives 
the zero vector. 

Solution to a linear system: A solution to a linear system 
Ax = b is any vector x such that A times x gives the vector b. 

Span : The span of a set IV = {WI. W2_ .... wd. denoted by 
span IV. from a vector space V is the set of all possible lin­
ear combinations of the vectors WI. W 2 • ...• WJ.. Span IV is a 
subspace or V. 

Squill"(! matrix: A matrix witlt tlte same number of rows as 
columns is called a square matrix. 

Standard inner product: For vectors v and W in R" the stan­
dard inner product of v and W is al50 called the dot product of 
v and w.denoted v· W = (II WI + l'lW2 + ... + (I"W •. 

Submatrix : A matrix obtained from a matrix A by deleting 
rows and/or columns is cal led a submatrix of A. 

Subspac£: A subset IV of a vector space V that is closed under 
addition and scalar multiplication is called a subspace of V. 

Sum of \'cctors: The sum of two vectors is also called vec­
tor addition. In R" adding corresponding components of the 
vectors performs the sum of two vectors. In a vector space V. 
U ill v is computed using the definition of the operation $ . 

Summation notation: A compact notation to indicate the sum 
of a set (a I. a2 . .. .. a" I: the sum of a l through a. is denoted 

" 
in summation notation as L a;. 

.=1 
Symmetric matrix: A square real matrix A such that A = A T 
is called symmetric. 

Transition mat rix: Let S = (VI. Vl ... . . v" ) and r = 
(WI_ W t • ...• w" ) be bases for an Ii-dimensional vector space 
V. The transition matrix from the T-basis to the S-basis is 
an II x II matrix. denoted Ps_ r . that convet1s the coord inates 
of a vector v relative to the T -basis into the coordinates of v 
relative to the S-basis: [ v ]s = PS_ T [ V J

T
. 

Translation: Let T : V -> V be defined by T (\') = \I + b 
for all v in V and any fixed vector b in V. We call th iS the 
translation by the vector b. 

Transpose of a mat rix : The transpose of an //I x II matrix A 
is the Ii x III matrix obtained by fomling columns from each 
row of A. The transpose of A is denoted AT. 

Trivia l solution : The trivial solu tion of a homogeneous sys­
tem Ax = 0 is the zero vector. 

2-space: The set of all 2-vectors is called 2-space. For vectors 
whose entries are real numbers we denote 2-space as R2. 

Unil \'eclor: A vector of length I is called a unit vector. 

Unitary matrix: An II x II complex matrix A is called unitary 
provided A- I = AT. 
Upper triangular matri,,: A square matrix with zero entries 
below its diagonal entries i.i called upper triangular. 

Vector: lbe generic name for any member of a vector space. 
(See also 2-vector and II -vector.) 

Vector addition: The sum of tWO vectors is also called vec­
tor addition. In R" adding corresponding components of the 
vectors performs vector addition. 
Zero matrix: A matrix with all zero entries is called the zero 
matrix. 

Zero polynomial: A polynomial all of whose coefficients are 
zero is called the zero polynomial. 

Zero subspace : The subspace consisting of exactly the zero 
vector of a vector space is called the zero subspace. 

Zero \'ector : A vector with all zero entries is called the zero 
vector. 



CHAPTER I 

Sectioll 1.I, p. 8 

I . x = 4.}" = 2. 

3. x= - 4.y=2 . z=10. 

5 . .r = 2.)" = - I. z = - 2. 

7. x = - 20.)" = (~) z + 8,z = any real number. 

9. This linear system has no solution. It is inconsistent. 

Il. x=5.)"=1. 

13. This linear system has no solution. It is inconsistent. 

15. (a) I = 10. (b) One value is I = 3. 

(e) The choice I = 3 in part (b) was arbitrary. An)' 
choice for f. other than f = 10. makes the system 
inconsistent. Hence there are infinitely many ways 
to choose a value for f in part (b). 

17. (a) 1=0. (b) f = I. (e) Any I i- O. 

21. .r = 2. )" = L z = O. 

23. There is no such value of r. 

27. Zero. infinitely many, zero. 

29 . . \10 points of intersection: 

One point of intersection: 

Infinitely many points of intersection: 

in{<r>ec{;on i, s, (= s, ) 

31. 1.5 tons of regular and 2.5 tons of special plastic. 

33. 20 IOns of 2-minute developer and a total of 40 tons of 
6-minute and 9-minute developer. 

35. $7000, S 14,000, $3000. 

Sectioll 1.2, p. 19 

I. (a) - 3. - 5,4. (b) 4.5. (c) 2,6.-1. 

3. (a) 

~ 1\' 
p {~1'4 

P, 

(h) 

:1i . (1=0, 1>= 2. (·= 1. (/=2 

7. (. ) [ I~ I:l 
(h) 3(2A) = 6A = [I~ 12 

6 

«) 3A + 2A =5A = [I~ ]0 
5 

(d) [ - 2 2(D + F) = 2D+2F= 8 

(e) (2+3)D=2 D +3D=[:~ 
(0 Impossible. 

18] 
24· 

IS] 
20 

I~l 
-10] 

20 . 

9. (a) [: n (b) Impossible. 

[i -'] «) ] . (d ) Impossible. 
2 

(I) Impossible. 

II . No. 13, Zero. 

15. The entries are symmetric about the main diagonal. 

19. (a) True. 

21. ~(t + b). 

(b) True. (e) True. 

A-37 
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Sectioll l .J, p. 30 

I. (a ) 

3. ±,. 
7. I. 

11 . (a) 

« ) 

(d) 

13. {aj 

« ) 

(d) 

IS. (a) 

« ) 

(e) 

(fj 

2. (b) I. (e) 4. (d ) I. 

; . x=4.)'= - 6 

,. ±1· 
[14 

' 6 :] (bl 

[ I~ 
10 -2] 
6 31· 

Impossible. 

[ -; "] 17. 

'0 ' 3 

[" 27 l~l 
Impossible. 

[i n 
[I: '6] 9 . 

[; 2 

, 

(,) ['9 
32 

'~l 17 

-8] 
30 . 

[ 8 "] (b) 12 _ ~ . 

(e) Impossible. 

(d) S~me as (e). 

(c + £)TB = CT8 + ET e = 8 [" 
38 

[" A(28) = l(AB) = ;2 '6] IS · 

14] 8 . 
17 

17. (a) 4 . (b) 13. (e) 3. (d ) 12. 

21. 

23. 

(al [;H 
2[-n+ ,[ ~n + 4[jl 

27. 11lere are infinitely many choices. For example. r = I. 
s = O:orr = O,s = 2:orr = lO.s = - 18. 

31. - 2xl - .1"2 + 4.(~ = 5 
-3.1", + 1"2 + 7.(3 + 8.(4 = 3 

'"I +2rl=4 
3,\"1 + ,Il + 3'{4 = 6. 

35. The linear ~ystems are equivalent. ThaI is, [hey have the 
S:lme solutions. 

37. (n) lX I + X 2 = 4 (b) 
1(2 = 2. 

.I I +3x) + ,(4=2 
2t1 + .\"1 + 4 ,() + 3x~= 5 
-XI + 2x2 + 5.Il + 4x~ = 8. 

3 • . (a) , ~ [~] ;,,'" 00,,,0'",;0". 

2.. . . II ['] [-'] (II) x = ~ IS a solulJon: anOlhcr soiullOn IS :. 

49. A IJ gives the total cost of producing each kind of 
product in each city: 

Salt L.:d;e 
City 

38 [ 67 

Chicago 

44 ] 
78 

Chair 

Table 

Seclilm 1.4, p. 40 

,. One such pair is A = [~ ~] :lnd IJ = [_: 

Another p:lir is A = [~ I~] :lnd H = [ - ~ -~]. 
Yet ano ther pair is A = 0 and 8 = any 2 x 2 matri); 
with at I ca~1 one nonzero elemen!. TIlere are infinitely 
many such pairs. 

I I . There are many such pairs of matrices. For e);ample. 

A =[~ :]andB=[~ - :]orA =[ : ~]and 
Jj = [ _ ~ -:l No~ealsothatforA =k [~ ~] and 

B = (i)[~ ~]. k"o.± I .weha ... eA" B and 

AB=[~ ~l 

21. (a) 
[ 

cosOQ 

cos 1° 

3A=3 cos3Sg
o 

smO° ] 
sm 10 

." 359' 



23. 

(b) The ordered pairs obtained rrom A are 
(.f;. Yi) = (3 eos i. 3 sin i ). where i = O. I. .... 359. 
Since 

xr+y;= 9. 
we conclude thai the point (Xj. Y;) lies on the c ircle 
.f! + y2 = 9. 

r =2. 3I. k = ±/f. 
Sectioll 1.5, p. 51 

[ -l 2 n [: 0 

iJ 7. (8) (bJ i 
- i 0 [ -, 0 

I~l (' J - 5 25 
- i 3 25 100 

15. [i 3] fJ = 3 IlssuChthlllAIJ = BA. There are 

Infinitely m:lI1y such matrices B. 

(.J A -'= [ -~ _~ 1 ,bJ A-'= [-; -1 u u 

33. 

35. [ I ~ 19] o . 37. ,= [In 3. '=[;j 
4 1. (.J [H (bJ m 
43. Possible answer: [ _~ !] and [ -~ =~]. 

59. (a) WI=[~l wz= [I~l WJ= [~~l'1 2 =5. 
II] = 19.IU = 65. 

(b) W~_ l = A ·- I ~'(). 

Section 1.6, p. 61 

1. )' 

4 

2 

- 4 - 2 

- 2 

-, 

e(2.3) 

2 

- (2.-3) - /(2.3) 

Answers 10 Odd-Numbered Exercises A-39 

3. u 
4 

/(- i , 3) = u =(- 1, 3) 

(='=" ~) , , , 2 

:::::: (-2.366, 2.098) 

- 2 2 

- 2 

5. )' 

4 

2 
" 

(3.2) 

- 4 - 2 , 
0 2 4 

(-3. - 2) 
- 2 

/(u) 

- 4 

7. , 

u :{2.-I. ]) 

--+-+--t-:'~"=+-+-'+-+-+--+-+- J' 

/(II) .. (2. 3. () 

x 

•• Yes . il. Yes. 13. No. 

15. (.J Reflection :Iboul the y-axis. 

(bJ 
• rr 

Rotate counterclockwIse through "2' 
17. (. ) Projection onto the .f-axis. 

(b) Projection onto the y-axis. 

i 9. (.) Coonterclockwise rotation by 60°. 

(b) Clockwise rotation by 30· . 

(,) 12. 
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Sectioll 1.7, p. 70 

I. )' 

4 

2 EJ 
x -, - 2 0 2 4 

) ' 

4 

02 

x -, -2 0 2 4 

3. ,. 
4 

t~r ') 2 

( I. I) (3 
)) 

" - 2 0 2 , 
,. 

4 

2 ( 1.2) 

0 
" - 2 (I , -I) 

, 

'1 
(3. -2) 

-, 
(3, -5) 

- (, 

(-3, - 3) 

). 

(I -zVi, 1 +2\13) 2 
_(- 0.366.1.366) 

-2 o 

(2\V3, 2VJZ-l) 
.. (1.866, 1.232) 

(-3 +/YJ. -3 -/\13) 
.. ( 1.098, - 4.098) 

II . The image of the vertices of T under L consi ~ts of the 
points (- 9. - 18), (0, 0), and (3. 6). Thus Ihe imu.ec of T 
under L is:l line segment. 



13. y 

4 

2 

, 
- 4 - 2 a 2 4 

- 2 

- 4 

Y , 

- 2 

15. (a) Possible uns ..... er: Firs l perform JI 
(90Q COUll IClcJod,wiN: lowliuu) then h. 

rb) Possible ans ..... er: Pcrfonn II ( - 135 " 
counterclockwi.o;e r013Iion). 

17. <:OS(OI -~) = COSOI cos~ + sin OI sin Ol 
sin (OI - O!) = sin 81 cos 82 - cos 01 sin 8:2. 

Seclioll J .8, p. 79 

1. A has correlation coefficient 0.93. 

3. 

B has correlation coefficient 0.76. 
C has correlation coefficient 0.97. 
D has corrchl\ion coefficicnI 0.88. 

Correlation coefficient = - 0.8482. 
Angle in radians = 2.5834. 
An.ele in dc,l!1ces = 148.0 16 1°, 
\1odero.lcly negatively correlated. 

Answers to Odd-Numbered Exercises A-41 

2',----r----~--~----, 

20 ... 

l' + 
10 

, 
°O~---c2~OO~----.400~---C~~----~800 

SlIpplementary Exerciu)', p. 80 

I. (a) 3. (h) 6. (el 10. " (d) '2(11 + I). 

3. [~ ;J,[ -~ -n,[~ -n·[ -~ ';]-
where b is any real nurnber. 

23. w= [1 Ir. 

Chapler Re"ieM', p. 83 

True/False 

I. F. 2. F. 3. T. 

6. T. 7. T. 8. T. 

Quiz 

4. T. 5. T. 

9. T. 10. T. 

2. r = O. 3. a=b=4. 

4. II = 2. b = 10. c = any real number. 

5. [:'l where r is any rtal number. 

CHAPTER 2 

SeC/ioll 2. J, p. 94 

I . (a) Po~sib l e answer; 
r l ...... - r l 
r ! --I' r ! - 2rl 
r J ...... rl- 2r l 
r 1 ..... ~ r! 
r l ...... rJ- 2r~ 

r l ...... -3r J 

(b) Po.~sihle answer; 

r !-- rZ- 3r l 
r , ...... r)-Sr l 
r4 -- r~+2 r l 

[~ 
- 2 

0 

[~ 1 
0 
0 

-I] 

-~] 
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r l ~ r 2 +4r] 
(b ) r l -+ rl - Sr ] 

r l -> r) - 3rj 

r 2 -+ r 2 +2rl 
5. (a ) f J ->- f ) - 3rl 

rJ_ r]- 2r 2 

r2_ r 2+ r l 
r4 -'> r4 +2rJ 
r2 -+ t r2 

(h) r~ _ r4 - 7r2 

r3 -'> 2r3 
r 4 -> r4 - ~ rJ 
r 2 -+ r 2 + ~ rJ 
r l -'> rl - rJ 

I~ 
l~ 

[~ 

[~ 

4 
0 
0 
0 

0 
1 
0 

0 
1 
0 
0 

7. (a) N (b) REF (e) RREF. 

[ -~ 
0 

II. (a) Possible :l!Iswer: , , -, , 

I~ 
0 0 

~] 0 
(h) I~ = 

l~ 0 1 

0 0 

13 [I . 0 ~l 
Sectiol1 2.2, p. J 13 

I. (a) x=8. y = 1.:=4. 

o 0] 1 0 
o 1 
o 0 

-n 

!] 

0 
0 

3 

3. 

(b) x= - 2 1 +31, y =I,z=5,w=1. 

x = 2 - )' ,Y =S. : = - 3 - I. w = I. 

x = 3, )' = 0, z = I. 

I· ) 
Ih, 

5. I· ) 
(II) 

7. (a) 

IhJ 

x = I. )' = 2. z = - 2. 

x = I. )' = 2. z = - 2. 

x= - l. y =4.z= - 3. 

x=)'= z =O. 

~] 

I" 
Id, 

•• (a) 

\" =r. y = -2r. z = r. wherer = any real number. 

x = - 2r. y = r. Z = 0, where r = any real number. 

x = 1. )' = 2. z = 2. 

Ib) x= y = z =O. 

15. (a) (/ = ±J3. (II) {/ i=- ±J3. 
(e) There is no \lalue of a such (hat (his system has 

infinitely many solutions. 

17. (a) a = - 3. (b) a i=- ±3. (e) (/ = 3. 

21. x= - 2 +r,y=2 - 2r. z =r.whererisanyreal 
nllmber. 

23. c-b-a= O. 

27. - a+b-c=O. 

31. 2x2+2x + l. 

33. TI = 36.25 ~ . Tl = 36.25". TJ = 28.75°. T4 = 28.75 ~ . 

35. Radius = 37. 

39. One solution is 2C, H6 + 70 2 -4 4C02 + 6H,0. 

Sectiol1 2.1, p. J 24 

[~ 
- 4 0 

n 3. (a) 
1 0 
0 1 
0 0 

[~ 
0 0 

~] [~ 
0 0 

~] Ih) 
0 1 I,) 1 0 

1 0 0 4 
0 0 0 0 

[~ 
0 

~l 5. (a) C = 1 
0 

Ih, B~ n - I -; 1 
- I - I 

(e) A and B are inverses of each other. 

7.A- ' ~ [ - : 1 
9. (a) Singlliar. (h) A- ' ~ [ -n 

(e) A- I = [ ~ 1 

- 2 =:J (d) Singular. 
- I 



II . (a) A - ' ~ [ : 
0 -:] - I 

- I - I 

A- ' ~ [ : 

_1 _1 

-!I 
, , 

_1 
_. 

• • 
_1 _. 1 • • • -, , , , 

[b) 

[<) Singular. 

A- ' ~ [ i - I 

J 0 -

-~ 

[d ) 

(e) Singular. 

13. A _ [I 
- J ~m -m~ ;J 

15. 
A ~ [ -i -;] 

17. ia) and (b). 

19. A- I exists forti =fo O. Then 

A -'~ U 0] - I o . 

~ " " 
Set:tioll 1.4, p. 119 

[~ 
0 0 n [~ 

0 

3. (a) 1 0 [b} 
0 

0 0 
0 

[~ 
0 0 

~] 
1 0 

« ) 0 (d) Ij. 
0 0 
0 0 

8 ~ [~ 
0 0 

0] [ - ' 7. 
1 0 o p = 2 - I 
0 0 o ' - 4 0 

0 0 0 o 0 0 

Q - [~ 
0 - I 

n 1 
- 0 0 

0 0 0 

r] 

0 n 0 

0 

Answers to Odd·Numbered Exercises A -43 

Se(lioll 1.5, p. 136 

~]. 
- 2 

L ~ [ 0; 
0 

nu ~ [~ 
2 

3~] 7. - I 
0.25 - 1.5 0 5.5 

, ~ [=H 
L ~ [0; 

0 0 

n 9. 
0 

- I 0.2 1 
2 - 0.4 2 

U ~ [~ 
0 

-~] {~] - 0.5 0.25 
0 0.2 2 ' x - 2' 

0 0 2 1.5 

Slfpplemelltary Exercise.{, p. 137 

8 ~ [~ 
0 n I. 1 3. tI =± 1. 
0 

5. (a) Multiply the j lh row of B by ~ . 

(b) Inlerch:lI1ge Ihe i lh and j lh rows of B. 

(el Add - k limes Ihe j lh row of fJ 10 its ilh row. 

7. ~ [ - : - :] . 
- I - I I 

9. (a ) The resulls musl be identical. since an inverse is 
unique. 

(b) The i n~ruc lor compules AA I and AA2. Iflhe result 
is I lo. lheli Ihe amwer submi1led by the student is 
correc\. 

II. q!: i. 19. r=3 . . f= J. t=3. p= - 2. 
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Chapter Re l'je w, p. 118 

True/False 

I. E 

6. T. 

Quiz 

2. T. 

7. T. 

3. F. 

8. T. 

4. T. 

9. T. 

5. T. 

10. F. 

2. (a) No. The entry above the leading one in lhe second 
row is nOl zero. 

(b ) Infinitely many. 

(e) No. If we tranSfOnll A toreduccd row echelon form , 
we do not obtain 14 -

(d) [-6 ~:~ + 7,] . who«, ,"d, '" ru,y ,~I 
numbers. 

3. k = 6. 

4. [H 5{; -I J] 
6. " = A- 1. Q=lJ. 

7. Diagonal. zero. or symmetric. 

CH,uyn : R 3 

SecliQI/ 3.1, p. 145 

I. (a) 5. (b) 7. (e) 4. 

3. (a) Even. (b) Odd. (e) Even. 

5. (U) - (b) +. (c) -. 

7. (a) 9. 

(b) Number o f inversions in 416235 is 6: 
number of inversions in 4362 15 is 9 . 

9. (a) O. (b) O. 

II . (.) 9. (b) O. (, ) 144. 

13. (.) , 2_ 3/ _ 4. (b) , l_ 41 2 +31. 

IS. (a) I = 4. I = - I. (b) I = l. I = 0, I = 3. 

Seclitm 3.2, p. 154 

I. (n) 3. (b) 2. (c) 24. (d) 29. 

(.) 4. (n - 30. 

3. 3. 5. 8. 

7. (a) 2. (b) - 120. 

(,) (I - 1)(/ - 2)(/ - 3) =tl_ 61~+ 111 - 6. 

(d) , 2- 21 - 11. 

23. 32. 25. (b) is nonsingular. 

27. The syslem has a nontrivial solulion. 

Sect;(J/1 3.3, p. 164 

I. (a) I. (b) 7. (e) 2. (d) 10. 
3. (a) - 2. (b) 9. (e) - 2. (d) - I. 

5. (a) 3. (d) 29. (e) 4. 

7. (.) 4. (,) - 30 (f) O. 

II. (a) 1 = 0.1 =5. (b) t = L I = 4. 

15. (.) 6. (b) (3. -6). (- 1. 2),( 13.- 14). 

(,) 24. 

17. " ,. 
Secli(J/I J.4, p. 169 

[

24 - 42 
3. (a) 19 - 2 

- >1 32 

-30] 
-30 . 

30 
(h) 150. 

(.) Singular. 

[-30 -5 9 46] I - 32 , 4 36 
7. (II) - 28 - 12 -2 -2 24 ' 

16 - 2 -2 -32 



Ibl U -1 - ] 

9. [",/~b" ad-':.<]. 
- (' a 

--- ---
ad - be ad - be 

II. [: _! ;] 
Sectiall 3.5, p. J 72 

I. XI = - 2. x! = 0, x ] = I. 

3. ,I) =~. 

5. XI =X2 = X l =0. 

7. Since det(A) = 0, we cannot use Cramer's rule. 

SlIpplementary Exercises, p. J 74 

l. (a) 5. (b) 4. 

Chapler Review, p. 174 

TrueIFalse 

l. F. 

5. T. 

2. T. 

6. F. 

3. 

7. 

F. 

F. 

9. T. 10. F. II. T. 

Quiz 

l. - 54. 3. - I. 

CHAPTER 4 

Sectiol1 4.1, p. 187 

I. )' 

" 
, 

(c) 36. 

4. T. 

8. T. 

12. F. 

4. - 2. 

-+++++)I4++++-x 
o - 5 

w 
-5 

(d) 5. 

6. 19. 

Answers to Odd·Numbered Exercises A-45 

3. Tail (- I. - 4). 
Y 

5 

-, 
5. a=3,b= - I. 

7. C. ) [;] Cbl [n 
9. C· l [a (bl m 

II. (a) u +\'=[~lu - v =[ _~l 

2u = r:].3U-2V= [~~J 
Cb) 

C, ) 

13. C' l m 
C' l m 

(bl [=H 
(d) [~n 

15. (a) r = ~, .\'= ! ' 

(b ) r = - 2 .. \' = l. I = - J. 

(c) r = - 2 . .\' = 6. 

17. Impossible. 

19. Possible answer: c ] = - 2. 1:2 = - I. c ) = I. 
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S ectiu ll 4.2, p. 196 

l. (b ) No; 0 0 pet) = 0, which does not have exact degree 
2. 

3. (a) Yes. (b) Yes. (e) 0 = [~ ~l 

(d) Yes. The negative of [2~: ~] is [ _; =~ 1 
(e) Yes. II satisfies all the propenies in Definition 4.4 

7. Properties (3), (4) , (b). (5) , (6), and l7). 

9. Properties (5), (6), and (8). 

II. Property (8). 

17 . . \Jo. 

Seetiu ll 4.3, p. 205 

l. Yes. Properties (a) and (b) of Theorem 4.3 are satisfied. 

3 .. \10. A scalar multiple of a vector in W may not lie in W. 

5. (b). (e), and (d). 

7. (b) and (c). 

9. (a) and (e). 

13. Yes. 

15. (a) and (e). 

17. (a) and (b). 

19. (b). (e), and (e). 

33. (b) and (e). 

37. (a) and (e). 

39. (a ) Possible "llsweL x =2+21. ), = -3 +51. 
z = I + 41. 

(b ) Possible answer: x = - 3 + 81. )' = - 2 + 71. 
t = - 2+61. 

S ectioll 4.4, p. 215 

I . (a) Possible answers: 

I [~]· [l]· [i]·[~]· [!]. [i] )· 
(b) Possible answers: 

![~ ~][~ ~][~ ~][~ n 
[~ ~][~ ~][: ~][: :]1 

(, ) Possible answers: 
(1 2.1+1.1_ 1).(12+1 12 _ I. 1+ I). 

l. (. ) Yes. (b) No. (' J y" (d ) No. 

7. (a) and (d). 

9. :-.lo. 

II . Possible answer: WlJ) 
m 

0 

~][~ 
0 

~][~ 
0 

~] 15. 0 0 I 
0 0 0 

[~ 
0 

~] [~ 
0 m 0 0 

0 0 

Sectio ll 4.5, p. 226 

l. Yes. 

5. No. 

7. Yes. 

9. No. 

II . (a) and (e) are linearlydependem: (b) is linearly 
independent 

(' J [3 6 6] ~ 'II I ~L+qo 
, 3] + 

I I 2 

(, ) [0 0 0] ~ 0[1 I 0] +0[0 , 3] + 
0[1 2 l]. 

13. (a) and (b) are linearly independent : (e) is linearly 
dependent: I + 13 = 3(212 +1 + I) - 2(312 +1 - 5). 

15. (b) is linearly dependent: 

U]~li]+[!] - m 
17. Forc 'I- ±2. 

Sectioll 4. 6, p. 242 

I. (a) and (d). 

3. (a) and (d). 

5. (e). 

7. (a) is a basis for Rl and 

m~~[i] + ~m - ~m 
9. (a) forms a basis. 

51 2 - 3r + 8 = 5(12 + t) - 8(1 - I). 

II. 1m· m ) dim\V~'. 
13. (I ) +12 - 21 + 1.12+ I}.dim IV = 2. 



15. Fora "1- - 1.0.1. 

17. s~ ( [~ ~ ~] [~ ~ n [~ ~ n I 
19. i· ) mHm (bl mHm 

i<) mHm 
21. [, 2 + 2.1 - 3}. 

23. (a) 3. (b) 2. 

25. (a) 2. (b) I. (c) 2. (d) 2. 

27. (a) 4. (b) 3. (c) 3. (d) 4. 

33. Po"ibl, ",,,we,, 'h,~' of ,II ",'o~ of ,"doon [~l 
where a and b are real numbers. 

49. m ~ jH~ ~ n [~ ~ ~] 
[ ~ : :] [: ~ :] [: : ~] 
o 0 0 0 0 - I 0 0 0 

[0 ° 0] [0 ° 0] I o 0 0 . 0 0 0 : dim IV = 8. 
I 0 0 0 I 0 

Sectiol1 4.7, p. 251 

[
1, +,] 

I. (a) x = : . where rand.f are any real numbers. 

Answers to Odd-Numbered Exercises A -47 

«) 

17. 1. = 30r - 4. 19. ).=Oorl. 

21. x,) = [ -~l Xh = r [ -~l where r is any real number. 
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Seni(J1l 4.8, p. 2(17 

9. 41 - 3. 

B (b) [.J, ~ [~~l 
(c) AI = - 0.3. 

(d) A! = 0.25 . 

(f) The ~equence approaches the zero vector. 

15. (0) [ ' l,~[ -;}[w],~ [ -;J 

(b) '>.\._r= [_: -~J 
(,) ['], ~ [: 1 [ w], ~ [ -:l 
(d) Same as (c). 

(e) Qr _s = [ - : -no 
(f) Same a~ (a). 

(d) Same a~ (c). 

(,) Q'-' ~U -I -: ] 

(Q [ . ] , ~ Q,- ,[ . ], ~ en 
[w], ~ 0,_, [w], ~ [ -H ~m' ~ (,). 

(d) Sallie :I~ (c). 

Q,-, ~ [~ 
2 

IJ (,) 
I 0 
0 

- I - 2 

(Q Same as (a ). 

21. [ : l 23. [J 
25. S=(/ + 1.51 - 2) . 27. S=I - I+5.1 - 3). 

Sectioll 4.9, p. 282 

I. A po. .... ~i b l e ba.~is is 1"1. "2. "JI. where 

" ~ m " ~ m,,~ " ~ m 
(,) [In ~ 3., +", + 12., . 

(b) U] ~ 3. , + 2. , + 2.,. 

(,) [J., + 2.·, +6., 

3. A~~SibleanSWeris l [~ ~].[~ ~] . [~ ~l 

[~ ~ II 



0]1. 5. (a) ([ I 

(b) ([ I 

o - iJ.[O 
2 - iJ.[ 1 9 - iJl. 

7. (. ) mmm 
(h) /[l] f;l m 

9. (a) 3. (b) S. 

13. (a) rank = 2. nu ll ity = 2. 

(b) rank = 3. nu ll ity = I . 

15. Band C are equivalent: A. D. and E are equ ivalent. 

17. .'leither. 

19. Cb). 

21. (. ) y~. (b) No. 

23. Cb). 

25. (a) 2. (b) 3. 

27. Has a unique solution. 

29. Linearly dependent. 

31. Yes. 

33. For c 1= ±2. 

35. (a ) Linearly dependen t. 

(b) Linearly independent. 

Supplementary Exercises, p. 285 

I. (b)k = O. 

3. (a) No. (b) 

II. 1I=lora=2. 

13. k f- I.- I. 

Yes. (c) Yes. 

17. (. ) h ~ [~lWhe~b+C - 3"~O 
(b) Any b . 

Answers to Odd-Numbered Exercises A -49 

Chapter Review, p. 28' 

TruelFalse 

I. T. 2. T. 3. F. 4. F. 5. T. 

6. F. 7. T. 8. T. 9. T. 10. F. 

II. F. 12. T. 13. F. 14. T. 15. T. 

16. T. 17. T. 18. T. 19. F- 20. F. 

21. T. 

Quiz 

l. No. Property I in Definition 4.4 is not satisfied. 

2. No. Properties 5- 8 in Defini tion 4.4 are not satisfied. 

3. Yes. All the properties in Definition 4.4 are satisfied. 

B" i. I [ _~ ]. m I dim'",iOO~2 
4. No. Property (b) in Definition 4.4 is not satisfied. 

5. If pet) and q(t) are in IV and c is a scalar. (hen 

(p + q)(O) = p(O) + q(O) = 0 + 0 = O. 

(cpHO) = c(p(O)] = cO = O. 

Basis = (1 2.1). 

6. No. S is linearly dependent. 

8. Wtlh]) 
9. 1[ 1 0 2].[0 - 2] 1· 

10. Dimension of null space = II - rank A = 3 -2 = I. 

number. 
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C HAPTER 5 

Sec/ioll 5.1, p. 297 

I. (a) I . (b) O. 

3. (a) I . (b) ...ti. 
5. (a)./74. (b) J58. 
7. c=±J5. 

9. (a) 
- 14 

,rsJ4i (b) 

II. (a) I. O. O. 
1 3 2 

(b ) jj4. jj4. jj4 

-I - 2 -3 
(e) jj4. jj4. jj4 

4 -3 2 
(d) 

,fi'i ,fi'i ,fi9 

(e) ../S. 

- 6 

,rsJ4i 

17. (. ) VI and V4. VI and Vb. V) and V~. V) and Vb. 
v~ and vs, V5 and V6. 

(b ) VI and V5, V4 and Vo. 

(e) VI and V), V3 and V5. 

19. (b). 

21. Y 

400 pounds 

, o 
i Resultant 
I 500 pounds 

~-----
300 pounds 

25. ~. 27. a= - 2. h=2. 

Sec/ioll 5.2, p. 306 

I. (a) - ISi - 2j +9k. (b) - 3i + 3j +3k. 

(e) 7i +5j - k. (d ) Oi +Oj +Ok. 

5. {uxv) ·w =24. 

13. f./iO. 15. I. 17. (al. 

19. (a) x- z+ 2=O. (b)3.r+y - 14z. +47=O. 

21. 4.t - 4y +z + 16=O. 

23 . .r = - 2+21 . y = 5 - 31 . Z = - 3 + 41. 

25. mHm 

27. (a) - ISi - 2j +9k. 

(e) 7i +5j - k. 

Sec/ioll 5.3, p. 317 

9. (. ) - 8. (b) O. 

II. (. ) 1 (b) I. , . 

(b) - 3i + 3j + 3k. 

(d) 3i - 8j - k. 

(e) I. 

(e) ~ sin2 I. 

Il. (. ) 2. (b) 2,;5. (c) 2,/2. 

2 sin! 1 
15. Ca) I. (b ) O. (e ) 

J4-sin2 2 

25. If u = [II I 112]andv=[vl vd, then 
(u. v) = 311 1VI - 2111 Vl - 2112 VI + 3112V2. 

27. (. ) J I -sinl l. (b) [i,. 
29. (. ) Onhonormal. (h) Neither. 

(e) Neither. 

31. (/ = O. 33. (/ = S. 

35. B= [b ll bll] withb ll +3b21 +2b I2 +4bn = 0. 
b21 bn 

Sec/ioll 5.4, p. 329 

9. /[ -!l [J][!] I 
II. Possible answer: 

I ;, [:] :. [=;] ;, nJl 
Il./ [; ] fi] 



/[ '][ '] 72 -ji; 

15. _; . _~ 

23. Ih) Ul (,) ((,(( ~ 9/3. 

27. Possible answer: 

29. (a) Q~[ ~ 72 ] ~ [O. 7071 0.7071] -72::l2 - 0. 7071 0.7071 . 

~ [Ji -7i ] ~ [1.4142 0.7071] 
R 0 72 0 3.5355' 

[ 
1- ~ ] [0.5774 OA082] 

Ih) Q ~ -if -;J; ~ - 0.5774 - 0.4082 . 

If- -i 0.5774 - 0.8165 

R~[/3 * ] ~ [I.7321 2.8868] . 
0 :';: 0 0.8165 
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[ 

0.4082 0.8729 - 0.2673] 
0.8165 - 0.2182 0.5)45. 

- 0.4082 0.4364 0.8018 

R= 0 *' *' "" [
7. -t. 7. ] 
o 0 ! ~ ;;;:; 

[2~9S 

SUI;,-", .i .. i , p. 3411 

-3.2660 
[ .5275 

o 

OA082] 
0.2182 . 
5.0780 

(b) The set of all points P (x . y . z) sllch Ihat 
2{ - 3)' + ~ = 0. W.1 is the plane whose normal 
is w. 

3. l[ -¥ ~ 5 I O] . [ g ! - 3 0 1]1. 

7. [=n 
9. N"" , p,,,ofA h"h,,; , I [-IJ· [ -~] ) 

Basis for row space of A is 
1[1 0 - 2 - 3].[0 I I 2]1. 

N"" , p,,,ofA ' h"b,,;, I [ --~ ] ) . 

B,,;, fo"ol"m"p", of A' ;, ! [~]. [J] I 
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II. (, ) Ul Cbl m 
13. (a) 2sin l. 

rr' 
(h) ""3 - 4cOSI. 

(c) ( e.~ ;:r
e
-

W

) + ( e -"2~ elf ) cos 1+ 

--- si n l. (," -'"") 
2rr 

17. w =2sin l - l. u = I- I - [2sin l - I]=1 - 2sinl. 

19. ~J5. 

12rr ' 21. """"3 - 4:r ~ 2.847. 

23. projll'e' = ~ (e~ - e-If
) + ~ (-~e.~ + ~e-.~ ) cos I 

h Tf 2 2 

+ -'- ( ~e~ - ~e-.y ) sin I + ~ (~e~ - ~e-" ) cos21 
:r22 :r55 

+ -'- (- ~e'" + ~e -~ ) sin21. 
JT 5 5 

Sectiol1 5.6, p. 356 

[
-1.5333] 

3. x"'" - 1.8667 . 
4.2667 

II. (a) y = 752x - 1.482.059.&J. 

(h) Predicted value 
Year rounded to whole dollars 
2008 27 .956 
2010 29.460 
201 5 33 .220 

13. (h) In )" = - 0.0272t + 3.2709. 

(c) /" = 26.3350 . .Y = - 0.0272. (d) 16. 14mm. 

Sflpplementary Exercises, p. 358 

I. / [~]rm 
3. ' ~ -h [ _1 ] +{]W2 [ ll 
5. Vector in P closest to v is _ 1- [2~~]' 

122 50 

9 
distance is Ji22. 

9. (a) 
) . I I 2 I I 5 

/
'-'] "]) I ossible answer: J30 l ~ . J30 l ~ . 

(h) Possible answer: 

13. { ~.A"I.JI(312-1) } . 

15. lis ~ 0.2 14. 

29. (a ) 7.4. 1231.3. 

(h) 5.3.6055,3. 

(c) 2.2 . 2. 



(a) IIxll , = I (b) IIxll, = I (e) IlxlL = J 

Chapter Rel·jew. p. 360 

TrueIFalse 

1. T. 2. F. 3. F. 4. F. 

5. T. 6. T. 7. F. 8. F. 

9. F. 10. F. II. T. 12. T. 

Quiz 

I. b= y..c=±y.. 

numbers. 

3. il + hf. where (I = -~ b. 

4. (b) The cosine of the angle between u and v lies 
belween - I and I. 

5. (b ) H\'" 76 1'2. Ju I'3J. 

6. (b ) w = ~ u , + ±U2 + ±U3. (c) [-± , ]1". 2 f7 
:J • :1'/ 6. 

9. Hinf: To slari. consider the conslruction ofa basis for IV,. 

Answers to Odd-Numbered Exercises A -53 

CHAPTER 6 

Section 6.1, p. 372 

I. (b). 

3. (a) and (b). 

5. (b) 

7. (a) [-I 0] o I . 
(b) [0 -I] 

I O · 

«l[~~~] 
[

IS 5 
9. (a) - s _\ 

4 
10 

II. (a) A=[~ ~l 

13. 

IS. 

17. 

19. 

A ~ [~ -3] (b) -I . 
2 

A ~ [~ 
4 -:] «l 0 

(. ) [Ia (bl [ 2I1 ,+ 3112 + 2113J 
- 411 , - 5112+3113 . 

(. ) 2f3 _ 5f2 + 21 +3. 

(b) (l f 3 + bf2 +(1/ +c. 

(I = any real number. b = O. 

(. ) Reflection aboul Ihe y-axis. 

y 

L(v) I' 

-----='-'-----~--< o 
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(II) Reflection about the origin. 

y 

(c) Counterclockwise rotation through n / 2 radians. 

y 

L(v) 

--------~-------, o 

23. Yes. 27. No. 35. The I! x II zero matrix. 

Sectioll 6.1, p. 387 

I. (a ) Yes. (b) No. (e) Yes. (d) No. 

(c) All vectors [~1. where G is any real number: that 

is, the y-axis. 

(I) All wctors [~l where" is allY real number, th .. ! 

is. the x -axis. 

3. (a) No. (b) Yes. (e) Yes. (d) Yes. 

(e) All vectors of the form [ - r - s r .f]' where r 
and s are real numbers. 

In I[ I 
5. I. ) I[ I 

I' ) I[ I 
7. (a) O. 

9. (a) {II. 

O].[O.llI· 
- I - I lJl. (b) I. 

o 0].[0 o lJ . [ I 
(b) 6. 

(h) 1[1 0].[0 1]1. 

1]1. (dJ 3. 

II. (a) kerL= 1 [~ ~J} . SOkerLhasnObaS iS. 

13. (a) dirnkerL=I,dimrangeL=2. 

(b) dimkerL=I , dimrangeL=2. 

(el dim ker L = O. dim range L = 4. 

17. No. 

23. (b) [ =~::: =:::+ 2113]. 
- 211 ) +11 2 - 11 ) 

25. (a) 2. (II) l. 

Section 6.3, p. 397 

I. (a) [~ _no 

Ie) m 
3. (a)[~ ~ 

- I - 2 
2 

(b) [ _ : _ ; _! 

5. (' J [l ~ ~] 

7. (. J ['H 
9. [~ ~ ! ~] 

[

_ 0023 =~ ~ 
II. (a) 0 3 

3 - 2 

3 - 2 
- 9 - 2 

[-' 2] (d) ~ 2 . 

a 
:]. 

- 5 

(h) m 
IhJ m 

-H 
(b) [~ 3 

4 

-:] 6 o· 
o 3 



[ -~; (c) 
3 -2 0] 

-~ ~ -~ . 

3 - I - I 

Id) [~ =~ -~ =~ ] 
3 60' 
3 - 2 3 

13. (a) [~ _no 

I' ) [-l =:l 
[0' 0,]. 17. (a) 

Ie) U -n 
Sectiol1 6.4, p. 405 

(b) [ _~ -~l 

(d ) [ _ : =:l 
(b) [~ ~l 

(d ) [ , ']. 
- , 3 

3. (a) [- 11 1+4112- 113 311 1- 112 + 311) 

411 1 + 3112 + 511]]. 

Ib) [5 - 4 - 4]. 

I' ) n -; -n 
(d) [211 1 + 21lJ - 411 1 - lu ! - 211 ] 

- 211 1- 4112- 611 3]. 

(e) [14 - 28 14]. 

In U - :~ n 
5. I' J ['n 

IbJ '"L, ~,",,"oe, of'h,foem [-';-'1 
k" L , ~ ,II ""0" of 'h' loem [ - , : 2, ]. 
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k" L, n ,,, L , ~ ,II '''10'' of ,h"om, [ -~ l 
(,) A'h,,,o,, of ,h"oem [ -J 
(d ) They are the same. 

7. (a) 

(bJ A~[; _; ]. B ~[~ _~ _:,]. 
~ -j 0 

9. (. ) U j -n (b) [:! ~i 'n 
II. (a) 6. (b) 6. (e) 12. (d) 12. 

15. (a) L (I! ) = I + 3. Lit ) = 21 +4. L( I) = -21 - l. 

(b) (a + 2b - 2c )I+C3a+4b -c) . 

(e) - 16t - 18. 

17. Possible answers: L ([ :: ~ D = [:: ~ l 
L ([", ]) ~ [ - " ' ]. 

11 2 - II ! 

19. Possible answers: L ([ :::D = [ /~ l 

L ([::;]) ~ [::: r: 1 
21. [ - ; -~ - ;] 

1 1 - 1 

Sectiol1 6.5, p. 413 

5. (a)A=[~ _no 

Ce) 1'=[ _: ~l 

(b) B ~ [ -l 
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9. 1 ! 1 

[ 

U 1 _' ] 

-~ -i 

13. [I 0] o I . 

[0 -I] 
15. J O· 

SuliuI/ 6.6, p. 415 

1. (a) 

(hi 

[

,/2/2 
M = ~/2 

, , 
- I -i--i -, , 
- 2 -,--r-, , 

-./i/2 
,/212 

o 

, , 
__ '- _ .1 __ , , , , --r-,--, , 

o , , 
- I -1--!--
-2r - ~--~-, , 
-3_ 3 - 2 - I 0 

[c) No. 

3. (0) , ---------- --1"-"1--1--1-1 I I I I , , , , , , , , , , -"-,--r-T- --r-,.-,-- -, , , , , , , , , 
3 -.j.---I-- I---' - --1-- - - 1- - -1 , , , , , , , , , 
2 

, , , , --b --:--~--l -1--I--r - 1-, , , , , , , , 
- -t- ..... -- .... - .. - --t- ..... --t-- ... , , , , , , , , 

0 , , , , , , , , , 

- I 
, , , , , , , , , 

- "1-'--'-""1- --,-"1--'--,- , 
, , , , , , , , , 

- 2 _ .1 _ --1 __ 1-_.1 _ -- 1- -.1---1--1----, , , , , , , , , 
-3 

, , , , --f--1--:--1---1 -1--1--,-1-, , , , , , , , , 
- 4 -1'--1-- 1""-" - --,..--t-'"I-- .... -; , , , , , , , , , -, 

- 5 - 4 -3 - 2-] 0 2 3 , , 
[ - 1/2 -,fj/2 n (h) M ~ ,fj/2 1/2 

0 0 

, , , 
--!--7--: , , ' - -r- ,. - - I , , , , 

(,) 

(d) 
[

- 1/ 2 
Q ~ -;:2 -,fj/2 

112 
o 

(e) II is the same as in pan (c). 

<0 They are the same since AI = Q. ROI:lIions are 
commutative. 

; A~[~ -! ~],"d8 ~ [~ ! -n~ 

II . 

13. 

images will not be the same since A IJ =F IJ A. 

o 
- I 

o 

[

./2/2 
1.1 = ~/2 

- .fi/2 
.fil l 

o 
(.) , ------ -- -- - --~--~--~--~ 

3 
I I I I 

--~--~--~-- r/' --i--~--i 
I I I I I I , --~--I---I--- -- -- ,- -,--~ 
I I I J\ I I I 

--t -- t - -~--t~ --i--i--~ 
I I I I I I I 

0 
I I I I I I I 

I I I I I I I 

- I 
I I I I I I I 

--~--r-- r-- - -~--~ -- ~ --~ 
I I I I I I I 
I I I I I I I 

- 2 
_ _ ~ __ ~ __ ~ ____ ~ __ 1 __ 1 _ _ J 

I I I I I I I 
I I I I I I I 

-3 
__ ~ _ _ ~ __ L ____ ~ __ ~ __ ~ __ J 

I I I I I I I 

-, -, 
I I I I I I I 

L--L~~L--L~~L--L-' 
] -2 -] U 2 3 4 



15. (a) 
sin OJ 

o [

,",0, 

o 
(b) It appears that the length of the vector being 

"screwed" is decreasing as we move down the 
z-axis. Thus a scaling in lhe,t - and y-directions by a 
factor smaller than I is included. 

Supplemelltary Exercises, p. 430 

3. ~o. 

5. (a) 8f +7. 

7. (a) No. (b) No. 

(e) (1 1 + 12.1+11. 

9 I. ) [~ : P] 
Ib) [ -~ ~ : 

o 
1 

o 
II 

1<) [r P ~] 
Id) U ~ : 

- I 

2 
o 

(b) t (3a + b)I + 4c3a - b). 

(CJ Yes. (d) No. 

(f ) (1 3. II. 

II. (b ) ker L = the set of all continuous functions f on 
(0. IJ such that frO) = 0 

(e) Yes. 

13. u 0 

;l I· j 1 (b) 4f l - 4f + I. 
0 - 2 

[~ 
0 0 

~] 0 0 
2 0 
0 

15. 
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Chapter Review, p. 432 

TmclFalsc 

I. T. 2. F. 3. T. 

6. T. 7. T. 8. 1'. 

Quiz 

I. Yes. 2. (b) r ~ 
4. [-n 5. [~ 

A~U -I] 6. (a) 1 . 

0 

1 

4. F. 5. F. 

9. T. 10. F. 

0] 1 . 3. (b) No. 

-I] 5 . 

(b ) 
P = r~ ~l 

(e) Q = [l 2 ~l [-I I] (d ) B = 2 O. 
- I - I 

C HAPTER 7 

Sectiol1 7.J, p. 450 

I. The only eigenvalue of L is A = - \. Every nonzero 
vector in R2 is an eigenvector of L associated with ) .. 

3. The eigenvalues are).1 = I. ),2 = - I. ), 3 = O. 
Associated eigenvectors are I. / 2. and I. respectively. 

5. (a) p ().) = )..2_ 5).. +7. 

(b ) p C).) =).1 - 4),2 + 7. 

(e) p C).) = V,- 4)().-2)().-3) = )..1_ 9)..2+26)._24. 

(d ) p ().) =),2-n+ 6. 

7. (a) ,,().) = ).. 2 - 5).. + 6. The eigenvalues are). 1 = 2 
and 1.2 = 3. Associated e igenvectors are 

(b) p ().) =)..1 - 7)..2+ (4). - 8. The eigenvalues are 
)..1 = 1' ).2 = 2. and 1.3 =4. Associated 
eigenvectors are 
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(e) p().) = ;.. 3 _ 5.1.. 2 + 2).. + 8. The e igenvalues are 
AI = - L /..2 = 2. and i. ) = 4. Associated 
e igenvectors are 

(d ) p()..) = A 1 - 3}.. 2 - 6,. + 8. The eigenvalues are 
"1 = - 2').2 = 4. and A] = l. Associated 
eigenvectors are 

9. (a) p().) = A 2 + l. The eigen.values are AI = i and 
).2 = - i. Associated eigenvectors are 

(b) p eA) = ,,] + 2>.. 2 + 4,. + 8. The e igenvalues are 
1.. 1 = - 2. /..2 = 2;. and "J = - 2i. Associated 
eigenvectors are 

(e) p()..) = ,,1 + (-2 + i ).l. 2 - 2i>... The eigenval ues are 
AI = 0' ).2 = -i. and A) = 2. Associated 
e igenvec tors are 

(d ) p ().) = 1.2 - 8). + 17. The eigenvalues are 
',I = 4+ i and 1..2 = 4 - i. Assoc iated e igenvectors 

'" 

13. The characteristic polynomial of A is 

p().) = p. - 1)(J.. + l)(.l.. - 3)(.l. - 2). 

The eigenvalues of L arc AI = I. /1.. 2 = - I, A) = 3. and 
)'4 = 2. Associated e igenvectors are 

17. (. ) mHm 
19 (. ) l[ ~m 
Sectiull 7.2, p. 461 

[~ -I] o . 

[
- 29 

- 9 
-7] 

3 . 

(h ) wm 
(h ) l[ -~m 

I. L is not diagonalizable. The eigenvalues of L are 
)'1 = 1.2 = A) = O. The set of associated eigenvectors 
does not fonn a basis for P2' 

5. The e igenvalues of L are A1 = 2. A2 = - 3. and A) = 4. 
Associated eigenvectors are 12 . , 2 - 51. and 
9,2 + 4, + 14. L is diagonalizable. 

7. (a) Not diagonalizable. 

(c) Not diagonalizable. 

(d ) Not diagonalizable. 

5 
3 

5 

-5] -5 . 
- 7 

(b ) Diagonalizable. 

p ~ [~ 
2 

~J II. (a) 1 
0 - 3 

[ - I 
- I 

:J (h ) p = ~ 0 

C' ) Not possible. 

Cd) Not possible. 

13. D= [-~ ~ ~] "= [ -~ ~ ~] 
o 0 4 I I 



15. (a ) D = [~ 0] I . (b)D=[~ n 
D~ [~ 

0 n I<J 4 

0 

D~ [~ 
0 n IdJ 2 

0 

17. (a ) Defective. 

(b) Not defective. 

I<J Not defective. 

(d) Not defective. 

19. [768 
256 

~ 1280l 
-768 

Sectio ll 7.3, p. 475 

7. I' r f> = 13. 

9. (a ) If 11 is the given matrix, verify that B r B = 12 

15. . . . [0 ~] "d P ~ [ ~ ~l A IS similar to D = 0 

-72 :r, 

A 1«lml]'''o D ~ [~ 
0 n oed 

17. 0 
0 

p ~ [: 
0 

~l , 
-72 

, 
:r, :r, 

[ - 2 
0 

~] oed 19. A is similar to D = ~ ] 

0 

[ , , 
, ] :r, -:r, -7-

p= ~ 
, 

-~ . :r, 

:r, 0 

21. A is similar to D = [~ ~l 

23 A 1«lmll'''o D ~ [~ ~ n 
25. A is similar to D = [~] o~ O~] 

Answers to Odd-Numbered Exercises A-59 

27. A I, ,Imll" '0 D ~ [~ 
o 

-2 
o 

Supplemelltary Exercises, p. 477 

(d) AI = ~3.A2 = l. 1..) = - 1: 

",=I"N'lg,"~"o~ [-i} [:J [:] 
7. (. J [-n [ -n 

-12] 8 . 

(e) The eigenvalues are 1..1 = O. 1.2 = 4. Associmed 
eigenvectors are 

(d) The eigenvalues are 1..1 = 0 and 1..2 = ~. Associated 
eigenvectors are PI (t) = 51 - 5 and P2(1) = 51. 

(e) The eigenspace for 1.1 = 0 is the subspace of PI 
with basis {Sf - 5}. The eigenspace for 1..2 = ~ is 
the subspace of PI with basis {51}. -

9. The only eigenvalue is 1..1 = 0 and an associated 
eigenvector is PI(X) = I. 
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Chapter Review, p. 478 

TrurIFalse 

.. T. 2. F. 3. T. 4. T. 5. F. 

6. T. 7. T. 8. T. 9. T. 10. T. 

II. F. 12. T. 13. T. 14. T. IS. T. 

16. T. 17. T. 18. T. 19. T. 20. T. 

Quiz 

.. AI = J.X I = [-:J 
A 2 =3 .X2 =[ -~l 

3. AI = - I.A2 = 2. andA) =2. 

4. ;.. = 9. x. 

5. m]tm 
6. D= [ -~ ~ ~]. 

003 

7 . . \10. 8. No. 

9. (a) Possible answer: [-2;] 

12. (.) ) ' ~4 ([m 

"~ l o l n]rm 

[ 
, 

7-
(b) Possible answer: P = ~ 

7-

CHAPTER 8 

SectioIlS.J, p.486 

.. [H 3. (b) and (c) . 

, 
-:;; , 

:;; 
o 

(b) Since all entries of T are posi tive. it is regu lar: 

" ~ [0.571]. 
0.429 

7. (a) and (d). 

9. (. ) m (b) [:J 

«l m (d ) m 
II . (3) 0.69. 

(b ) 20.7 percent or the population will be fanners. 

13. (a) 35 percent. 37.5 percent. 

(b) 40 percent. 

Section S.2, p. 500 

.. (. ) 5, I. (b) 2. O. 

«l -/5 . ./6 (d) 0.0. I. Js. 

3. A~USV' ~[ ~ ~ ] [~ ~][ ~ 
-72 :;; 

5. (. ) 10.83 10. 0.83 10. 

(b) 18.9245 . 3.8400. 0.3440. 

«l 25.4368.1 .7226, O. 

or I . 



Sectiotl 8.J, p. 514 

I. (a ) 3. (b) 3. 

3. (a) 7. 

S. (a) 5. 

(b) 10. 

(b) 7. 

(r) 13. 

II. S:llllple mean = 65. variation = 58. 
",andurd deviation ~ 7.6158. 

1.3. S3nlpie means ::t; [~~::]. 

C . . [11.01 4.96 OV3n unce matnx ::t; 
9.822.88 

9.822 .88] . 
25.092 .64 

IS. Fi"t principal component ::t; [: :~~~:;] . 
826.7 
746.9 

Secliotl 8.5, p. 5J4 

I. lllc origin is a stable equilibrium. TIle phase portrai t 
shows all trajectories tending toward the origin. 

3. The origin is a stable equilibrium. The phase portrait 
shows all trajectories tending tow3rd Ihe origin with 
those passing through points nOl o n the eigenvector 
al iAninA themselves to be tan.cent 10 the eigenvector at 
the origin. 
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S. The origin is a saddle point. The ph3SC portrait shows 
trajectories not in the direction of an eigenvector heading 
toward the origin. but bending away as t ..... 00. 

7. The origin is a stable equilibrium. TIle phase portrait 
shows (Ill trajectories tending toward the origin. 

9. The origin is called marginally st:tble. 

Secliotl 8.6, p. 541 

(,) [." x, x, ] [ _; 

3. (a ) [ -~ ~ ~] 
000 

(") [~ ~ n 
(,) [~ -~ -n 

S. 3.f'~ _ 2y't . 

7. Yr - y;. 
9. - 2yf + 5yi - 5y;. 

13. Yr + yi - y;' 

15. y~ - yi-

17. )'r - y;. ranI:. = 2. signature = O. 

21. 8 1.81. and 84' 

2.3. (3). (b). (lnd (c). 
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Sec/ifJII 8.7, p. 551 

I. Ellipse. 

3. Hyperbola. 

S. Two intersccting lines. 

7. Circle. 

9. Point. 

" II . Ellipse: .~. + >,'2 = I. 
. .r>2 >,'2 

13. CIrcle: 52 + 51 = I. 
15. Pair of paral lel lines; y' = 2, y' = - 2: ),'2 = 4. 

17. Point (1. 3): X '2 + /2 = O. 
.t 'l \,'2 

19. Possible answer: e ll ipse; 12 + 4 = l. 
2 

21. Possible answer: pair of parallcllincs y' = r.;:; and 
v 10 

, 2 
)'--.Ji(j' 

23. Possible answer: IWO intersccting [ine.~ y' = 3x' and 
y' = -3x ': 9X'2 _ y'2 = 0, 

25. Possible :m5wer: parabola: >,"2 = - 4x". 
l uI }'~l 

27. Possible answer: hyperbola. 4"" - 9"" = I 
X"l )'~l 

29. Possible answer: hyperoola: T - T = t . 

Sectioll 8.S, p. 560 

I . Hyperboloid of one sheet. 

3. Hyperbolic paraboloid. 

5. Parabolic cylinder. 

7. Parabolic cylinder. 

9. Ellipsoid. 

II . Ellipt ic paraboloid. 

13. Hyperbolic parnboJo id. 

-" 

• • 

15. Ellipsoid: X '2 + )"2 + ~! = L , 
.( "2 )""2 

17. Hyperbolic paraboloid: 4"" - 4"" = z". 

.t'2 )"2 
19. Elliptic paraboloid: 4"" + 8"" = l. 

x~' ),"2 z~ 
21. Hyperboloid of one sheet: 2"" + 4"" - "4 = I. 

4 
23. Parabolic cylinder: .r"'~ = J2 )'H. 

25. 
X~2 ), "2 :"2 

Hyperboloid of two sheets: T - T - T = I. 

• • • 
27. Cone: .rill + )""2 _ :."" = o. 

CHAPTER 10 

Basic Matrix I'roperties, p. 598 
ML.1. (a) Commands; 1\(2,3), 8 (3,2), 8 (1,2). 

(b) For row l (A), U.'>e command A(I .:). 
For colj (A), J~e command A(:,3). 
For rowl(B), use command n (2,:). 
(In this (;omext the colon means '·all .") 

(c) Matrix IJ in rornmt long is 

[ 

8.llOOOllOOOOOJ() 
0.004975124378 11 
0.0000 I 000000000 

Ma/rix Opera/iolls, 1'. 598 

[45~ 2.2500 
37500] 

ML.1. (. J 1.5833 0.9167 1.5()()() . 
0.9667 0.5833 0.9500 

(bj ??? Error using --> * 
Inner matrix dimens ions must 
agree. 

[5~ L5~] 
(' J 1.5833 2.2500 . 

2.4500 3. 1667 

(d j ??? Error using --> * 
Inner matrix dimensions must 
agree . 

(,j ??? Error using --> • 
Inner matrix dimensions must 
agree, 

(r) ? ?? Error using --> ~ 
Inner mat rix dimensions must 
agree . 

[ 18 .2500 7.4583 ".2833] 
(g) 7.4583 5.7361 8.9208 . 

12.2833 8.9208 14.1303 

[j ~3 2 ~ I ~5] 
ML3. ~3 0 7 . 

4 2 , 

[~ 
0 0 n M.L.5. (. j 
2 0 
0 3 
0 0 



o o o 
I.OCOO 0 o 

o (b) [ ~]. 
o 0.3333 0 

o 0.5000 
o 
o o o 0.2500 

I~ 
(0) l ~ 

o 
5 
o 
o 
o 
o 

Powers of a Matrix, p. 599 

o 
o 
5 
o 
o 
o 

o 
o 
o 
5 
o 
o 

o 
o 
o 
o 
5 
o !l 

MLI. (a) k = 3. (b) k = S. 

ML3. (.) U -~ -n (b) [~ 
ML5. The sequence seems to be converging to 

[ -; ML.7. (a) A T A = 

- I 

[ -~ AA T = 

- 3 

B ~ [ -i - 3 
(b) 2 

4 

C ~ [ 0 
- I 

0 
- I 0 

(0) B+C~ [ -~ 
B + C=2A. 

- 3 
9 
2 

- I 

6 
4 

0.7500] o . 

-i] 

-n 
H 
H 

-4 n 2 
4 

Row Operatiolls and Ecl/elol1 Forms, p. 600 

o 
o 
o 

-3.0000 1.0000 4.0000 

[ 

1.0000 0.5000 0.5000] 

ML.1. (a) 1.0000 0 3.0000 ' 

5.0000 - 1.0000 S.OOOD 

[

1.0000 

(b) l.~ 
5.0000 - 1.0000 

0.5000 
2.5000 

o 

0.5000] 
5.5000 
3.0000 . 
5.0000 

Answers to Odd-Numbered Exercises 

(0) 

(d) 

(,) 

I~ 
ML.3. l~ 

[I.~ 
0.5000 
2.5000 

~O.SOOO 

5.0000 ~ 1 .OOOO 

[I.l 0.5000 
2.5000 

- 0.5000 
- 3.5000 

[I.l 0.5000 
- 3.5000 
- 0.5000 

2.5000 

o 
1 

o 
o 

~] 1 . 

o 

05000] 5.5000 
2.5000 . 

5.0000 

05000] 5,5000 
2.5000 . 

2.5000 

05000] 2.5000 
2.5000 . 

5.5000 

ML.S. x = - 2 + r. y = - I, z =8 - 2r, w =r, 
r = <lny real number. 

!\fl.,. X l = - r + l,x2 =r + 2.x) = r - 1.x.J =r. 
r = any real number. 

ML..9. _ , - [0.,5']. 

A -63 

ML.11. (a) X l = l - r . . 12 =2.x) = 1 .x~ = r.wherer is 
any real number. 

(b) _t l=l - r . . T2 =2 + r.x3 = - I+r.x4 =r. 
where r is any real number. 

ML.J3. TIle \ command yields a matrix showing that the 
system is inconsistent. TIle rref command leads 10 
the display of a warning that the result may contain 
large roundoff errors. 

LU· FactoriUllitm, p. 601 

0 
ML.1. 1 L ~ [ : 

0.5 0.3333 n 
ML.3. 

[~ 
8 

U~ - 6 
0 

_ 0.5000 

[ 

1.0000 

L - - 2.0000 

- 1.0000 

-n 
o 0 

1.0000 0 
- 2.0000 1.0000 

1.0000 - 2.0000 

0] o 
o . 

1.0000 
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[

6 - 2 
o - 2 

U = 0 0 

o 0 

-4 4] - 4 -I 
5 - 2 . 

o 8 

[ 
2] [4.5000] - S 6.9000 

Z = 2 . X= - 1.2000 . 

- 32 - 4.0000 

Matrix In verses, p. 601 

l\U.1. (3) and (c). 

ML3. (a) [-; -;J 

[=! 
, , 

(b) , -, 
, -, ~: ] 

ML5. (a) I = 4. (b )t=3. 

Determillallts by Row Redllctioll, p. 601 

l\U.1. (a) - 18. (b) S. 

ML.3. (a) 4. (b) O. 

ML.5. 1 = 3.1 = 4. 

Determillallts by Co/actor Expamitm, p. 602 

Ml.l. A ll = - II. A !) = - 2. Al l = 2. 

l\U.3. O. 

I r '0 I - 9 -Mil 
Ml.5. (a) 

32 - 4 - 4 - 36 

'28l 12 2 2 -24J 
- 16 2 2 32 

I [ 3 
- 6 -H (bJ - 2 10 

14 - I 2 
« ) I [4 

18 3 
-2] 3 . 

SlIbspaces, p. 603 

ML.3. (a) No. (b) Yes. 

l\U.S. (a) O VI + \'2 - Vl - \'4 = v. 

(b) PI(f) + 2p2 (t) + 2pl(t ) = p (I). 

ML.7. (a) Yes. (b) Yes. (c) Yes. 

Lillear Il1depelldellcelDepelldellct, p. ()04 

l\U.1. (a) Li nearly dependent. 

(b) Linearly independent. 

(c) Linearly independent 

Bases 11l1d Dimellsioll, p. 604 

MLI. Basis. l\.'IL.3. Basis. ML.5. Basis. 

ML.7. di m span S = 3, span S i= R4. 

ML.9. dim span S = 3. span S = 1'2. 

ML.11. If 3 - / + I. f 3 + 2.1. I I. 

Coordillates alld Change of Basis, p. 605 

MLL (a) m (b) [ ~n « ) m 
ML.3. (a) 

[ 
0.5000 1 

- 0.5000 

OJ· 
- 0.5000 

[
1.0000] 0.5000 

(b) 0.333~. 

0.1667 
(c) - 0.3333 . [ 

0.5000] 

- 1.5000 

[

- 0.5000 - 1.0000 - 0.5000 

l\.IL5. - 0.5000 0 1.5000 
[ .0000 0 - [ .0000 

o 0 0 

[ 1.0000 
- 1. 6667 2.3333 ] 

ML.7. (a) 1.0000 0.6667 - 1.3333 . 
0 1.111l - O.Mfi7 

H 0 -;] (b) 
- I 

U 
-2 -H « ) I (d) Q I' . 

2 

Homogeneolls Linear Syslems, p. 606 

I.J]. 
1.0000 



Rail/.: of a Matrix, p. 606 

ML.3. (a) The original columns of A and 

mHIH~] ) 
(b) llie first two column~ of A and 

ML.5. (a) Consistent. 

(e) Inconsistent. 

(b) Inconsistent. 

Stalldard IlIlIer Prodflct, p. 607 

ML.3. (a) 2.2361. (b) 5.4772 (e) 3.1623. 

l\U.5. (a) 19. (b) - II. (e) - 55. 

ML.9. (a) [ ~:~~;] or in mtional form [ ]. 
- 0.3333 

Cro~·11 Prodllct, p. 608 

ML.1. (a) [ - II 2 5]. (b) [3 

« ) [ I - 8 - 5]. 
l\U.5. 2.055 rad. or 117.7409° 

- I]. 

Answers to Odd·Numbered Exercises A-65 

The Gram-Schmidt Proceu, p. 608 

MLI ( [~;~;l]· [ -~;~;lJ· [IJ]) 

~ ![rl[ -r l[~] ) 
[ -14142] 

(h) [14I4~l ML.3. (a) 1.4142 . 
10000 10000 

[ 07071] 
«) 0.7071 . 

- 1.0000 

ML.5. (a) w ~ [-;J 
til) ", ~ t, [;] U2 = 7s [ _no 

Projectiolls, p. 609 

ML.1. (a) 

[ ;l,. l· 
(hI 

ML.3. (a) [~:~~:~]. 
7.901 1 

Ir(2~.4~2~~~_~2)~' ------------­
(b) V + (3.9341 _ 4)2 + (7.9011 _ 8)2 

"" 0.4448. 

[

0.8571 ] 0.5714 
ML.S. P = 1.4286. 

0.8571 
0.8571 

Least Sqllares, p. 609 

ML.1. y = 1.87 + 1.3451. 

ML.3. (a) T = - 8.278/ + 188.1. where I = time. 

(b) T(I) = 179.7778° F. 
T(6 ) = 138.3889° F. 
T(8 ) = 121.8333° F. 

(e) 3.3893 minutes. 



A-66 Answers to Odd-NLmbered Exercises 

~'I L.S_ )' = I .02 ~_I_ l + 3. 1238x + 1.0507. 
when x = 7.), = 72.9 169. 

Kem el (/lid Rallge of Lil/ear 1'rtlm/l1rmotiolls, p. 6// 

Malrix of " Vllear Tram:/ort/UI(iOll , p. 61 J 

ML.1. A = [ ~ : ~ -~ l 
) [ 

1.3333 - 0. 3333] 
MLJ. (a A = -1.6661 - 3.3333 . 

[
-3.6667 0.3333 ] 

(b) B = - 3.3333 1.6667 ' 

( ) ) _ [-0.3333 
c J 1.6667 

0.6667] 
- 0.3333 . 

Eigell~'(II/les alld EigelWtctors, p. 611 

l\'Il.1. (a) ;.l_5. (b) ;.1_ 6).1+ 4>.+8. 

(e) ).~ - )i..} - 3,\1 + I U. - 6. 

MLJ. (.) [: 1 

[ ~ 
- I 

MLS. 0 
0 

l\'IL7. TIle sequence A. A J . A ~ . ... converges to 

[ =~ ~ =:]. 
- 2 2-1 

The sequence A 1 . A ~ . A b. . .. converges 10 

[~ -~ :J 

DiagollafizatiO/I. p. 6/3 

_ _ '). _ [ 0.707 1 
ML.J. (:.. ) AI - 0 , A1 - L . P - - 0 .707 1 

0.707 1] 
0.7011 . 

( II) AI = - 1. ).2 = - I. Al = 5; 

[ 

0.7743 - 0.2590 
p = - 0.6115 - 0.54 11 

-0. 1629 0.8001 

0.5774] 
0.5774 . 
0.5774 

(e) A, = 5.4142 . .1.1 = 4.0000. Al = 2.5858. 

[

o.5<XXl - 0.7071 - 0.5000] 
P = 0.7071 - 0.0000 0.7071. 

O.5(XX) 0.7071 - 0.5000 

Domimmt £igelll'aille, p. 6/4 

[-0.77"'] MLI. (u) AI ~ 7.6904. XI::::: - 0.6308 

[
- 0.8846] 

A~ ~ - 1 .6~. x~ ::::: 0.4664 ' 

A] is dominant. 

(h) A] ~ 8.8655. x ] ::::: [ =~::~] 

[
- 0.658 1] 

A) ~ -5 .8655. x~ ::::: 0.7530' 

A I i ~ dominant. 

API'ENDIX B 

Sectioll B.I , p. A- II 

I. (a) 4 + 2;. (h) - 4 - 3;. (, ) II - 2i . 

(d) -3+ ; , (. ) -3+6i. (r ) - 2 - i, 

(g) 7 - Ii i. (h) - 9 + 13,. . 

3. (a) 
" 

2 

- 2 o 2 

- 2 



Answers to Odd-Numbered Exercises A -67 

(II) )' (h) [3 - 61] 
- 2 - 6i . 

9. A! = [ -~ 0] A ' ~[ 0 -a 2 - I . - i 

A~ = [~ 0]. A';" = I "~ A~"+I = A. , -

- 2 0 2 
A"",+l = A! = - /2. A~"+l = AJ = - A. 

17. 
2 

(. ) [~ ~] (b) [~ I!J. 

(, ) [ - 5 
51 

51] - 5 . (d) [~ 71 ] 
- 3 . 

I' ) y 

[~ 0][ - ' -n 19. 2· 0 

2 Sectioll 8 .2, p. A-20 

I. (3) No solution. (b) No solution. 

(, ) x l = ~+~i,X2= ~+ i. 
-2 0 2 3. (. ) X I = i .. t! = I.x) = I I. 

(b) X I =0.X2 = - i.x ) = i. 
-2 

~ [2 +i 5. (. ) 2 - 4i]. 
5 3 - i - 2 - i 

Id) y ,[ I 
I - 3i 

3~21 1 (hi 6 - 2 ~ 3i 21 
21 -, 

9. (. ) Yes. (b) Linearly independent. 

2 II. (. ) The eigenvalues are A I = I + i. A2 = I - i. 
Associated eigenvectors are 

" ~ [ -:] " ~ [:1 0 x and 
- 2 

- 2 (b) The eigenvalues are A I = O. A! = 2. Associ<lted 
eigenvectors are 

7. I' J 
[2 + 4i 

- 2 
51 ] 

4 - 2i . 
(b) [4 - 31] 

- 2 - I " ~[-:] and " ~ [:1 
I' ) [-4+4i -2+ 16i] 

- 4i - 8i . (, ) The eigenvalues are A I = I. "2 = 2. A3 = 3. 

[ 31 ] [ 21 - I + 3iJ 
Assocklted eigenvectors are 

Id) - I - 3i . 
(, ) 

- 2 - 1 - 1 

" ~ [-:] ,,~m 'F[:] [ -gl 1 - 2i] [ HI ] 
~d 

In 3+; . (g) - 3 + 3i . 
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A 

Absolute value of complex numbers. 
A-8 

Addition 
of complex numbers. A -6 
oflinear transformations. 339 
of matrices. 15 
properties of. 34 
ofveclors. 183. 186. 189 

Adjoint. 166 
Affine transfonnation. 434 
Angle between vectors. 73. 293. 313 
Angle preserving linear operalor. 432 
Antecedent, A -24 
Area 

of a parallelogram, 162. 302 
of a triangle, [60. 30 I 

Aumctor, 528 
Augmented m,ltrix, 28 
Autonomous system. 526 
Axis(es) 

B 

coordinate. 177. 182 
imaginary. A-7 
pnncipal theorem. 538 
real. A-7 
X -, 177 
Y-, 177 
Z-, 183 

Back substitution. 97. 131 
Backward building. A-2S 
Basis. 229 

change oC 261 
for inner product space, 312 
natural. 229 
ordered. 253 
onhogonal. 322 
onhononnal. 320 
standard. 229 

Biconditional. A-2S 
Block diagonal matrix. 81 
Block multiplication of matrices. 45 

Bunyakovsky. Viktor Yakovlevich. 313 

c 
Canonical fonn 

Jordan. 475 
of a quadratic form, 541 

Cartesian coordinate system. 177 
Cauchy. Augustin-Louis, 312 
Cauchy- Schwarz inequality. 312 
Cayley, Arthur, 452 
Cayley- Hamilton Theorem. 452 
CBS incquality. 312 
Change 

of basis, 261 
of coordinates. 262 

Characteristic 
equation, 444 
polynomial, 444 
value. 437 
vector, 437 

Characteristic polynomial 
of a linear operator, 444, 460 
of a matrix. 444 

Chemic .. l b .. lance equ<ltions. 109 
Circle, 104 
Circulant, 83 
Closed. 189 
Closure property, 189. 198 
Codomain. A- I 
Coefficient matrix, 28 
Coefficients of a linear combination. 17 
Cofactor, 157 
Column 

f'chf'lnr1 form , Rfl 

equivalent matrices, 89 
jth, II 
of a matrix. I 1 
opemtions. elementary. 87 
rank. of a matrix. 272 
reduced echelon Conn, 86 
space of a matrix. 270 

Complement 
orthogonal. 332 

Complex inner product. A- 19 
Complex inner product space, A-20 
Complex number(s), A-5 

absolute value of, A-8 
addition of, A-6 
conjugate of. A-6 
difference of. A-6 
division of. A-7 
equality of. A-6 
imaginary pan of, A-5 
modulus of. A-8 
product of. A-6 
re.:ll part of. A-5 
sum of. A-6 

Complex plane. A-7 
Complex vector space, A- I 5 
Complex vector subspace, 189. A-16 
Componentsofa vector. 178, 179,183 
Composi te 

function, A-3 

linear transfonnation. 404 
Computer graphics, 63 
Conclusion, A-24 
Conditional. A-24 
Cone, 555 

Congruent matrices, 536 
Conic section(s), 535. 544 
Conjugate of a complex number. A-6 
Conjugate of a matrix. A-9 
Conjunction, A-23 
Comequent, A-24 
Consistent linear system, 2 

Contraction, 60. 70. 364 
Contrapositive, A-28 

CO!ll'erse of. A-25 
Coordinate(s). 178.253 

axes, 177, 182 

change of. 262 
homogeneous. 420 
system. 177 
vector, 253 

with respect to a basis. 253 

I-I 



1-2 Index 

Coordinate system, 177 
CWesian, 177 
left-handed, un 
rectangular, 177 
right-handed. 183 

Correlated variable.~. 76 
Correlation coeOlcient. 77 
Cour.terexample, A-29 
Cov:w-iance matrix. 508 
Cramer. Gabriel. 170 
Cramer's rule. 170 
Cross product of \'ectors. 299 

properties of 300 
Cros~-product term. 546 

D 
Decomposition 

L V-, 132 
matrix. 462 

Defective malrix, 462 
Degree 

ofa polynomial, 192 
ofa trigonometric polynomi:li. 344 

Descartes. Rene. 177 
Descriptive statistics, 507 
Del. .fU Determinant 
Determinant. 142 

computation by reduction to 
triangular form. 15 1 

expansion aloug a column. 158 
expansion along a row. 158 
propenies of. 146 
Vandermonde, 156 

Determinant o f2 )( 2 matrix. 143 
Determinant of 3 x 3 matrix. 143 
Determinant of complex malrices. A- 15 
Diagonal lllotrix. 42 
Diagon<ll system of differential 

equations. 5 I 7 
Diagonali1.able 

linear Ir:ln~fornlalion, 454 
matrix , 456 

Difference 
between complex numbers. A-6 
between matrices, 16 
between vectors. 182 

Differential e(luation(s), 515 
autonomous, 526 
diagonal,5 17 
dynamical system. 526 
fir.t-order homo,e.eneous linear 

system of. 515 

fundamental sysnm for. 516 
general solution. 516 
homogeneous. 515 
initial conditions. 5 16 
panicular solution. 5 I 6 
qualitative theol) of. 526 
solution space. 516 
solution. 516 

Diffusion process. 522 
Dilation. 60. 70. 3tH 
Dimension 

of inner product space. 312 
of \'ector space. 238 

Direct proof. A-27 
Direct sum of subspaces. 287, 334. 336 
Directed line segment. 178 

direction of. 178 
head of. 178 
magni tude of. 178 
tail of. 178 
and vectors. 178 

Direction 
of a directed line segment. 178 

Direction cosines. 292 
Disjunction. A-23 
Distance between v~tors. 291. 3 15 
Distinct eigenvalues. 458 
Distinct points. 103 
Division of complex numbers. A-7 
Domain. A-I 
Dominant e igenvalue. 501 
Dot proouct. 21 

on H2. 294 
on H3. 294 
on«~ .21 

Dragon curve. 434 
Dual space. 432 
Dynamical system. 526 

E 

orbit. 527 
phase plane. 527 
phase portr::til. 528 
tr::tjectory. 527 

Echelon form 
column. 86 
reduced column. 86 
reduced row. 86 
row. 86 

Edges. 13 
Ei j!enspace. 45 1 
Eigenval ue. 

di;tinct.458 
ofa complex matrix. A-20 
of a linear transfonnation. 437 
of a matrix. 442 
ffiJltiplicity of. 459 

Eigenvector. 
of a lincar transfomlation. 437 
of a matrix. 442 

Element 
(i. j)th. of a matrix. 1 I 
ofaset.A- 1 

Elementary column operation. 87 
Elementary matrix 

oftypl! I. IL or 111. 117 
Elcmcnlary row opcr::ttion. 87 
Elimination 

Gaussian. 97 
method of. 2 

Elli~e. 69. 473. 493. 55 1 
EIliI~oid. 554 
Elliptic cylindcr. 555 
Elliptic paraboloid. 554 
Empty SCt. A·I 
Entry. (i . j). of a matrix. II 
Encooing matrix. 371 
Equnl matrices. 14 
Equnlity 

of complcx numbers. A-6 
of matrices. 14 
of scts. A-I 
o f \·CCIOrs. 179 

Eqllnl sets. A-I 
Eqllnl \·ectors. 179. 183. 184 
Eqll::tion(s): SI'I' also Linear system(s) 

characteristic. of a matrix. 444 
diffl!rential. 515 
lincar. I 
of a planc. 303 
p:lrnmctric.204 
qLadratic.544 
~Undnrd form. 544 

Equilibrium in a Markov process. 484 
Equilibrium point. 528 

anr:lctor. 528 
nllrgina lly stable. 529 
repelling point. 529 
saddle point. 529. 532 
stable point. 528 
unstable point. 529. 530 

Equivalent 
column. matrices. 84 
linear systems. 2 



matrices. 126 
quadratic forms. 536 
row. matrices. 89 
statements. A-24 

Euclidean space. 312 
Ellen permutation. 142 

F 
Factorization 

LV-.132 
Fibonacci sequence. 51. 480 
Field. 189 
Finite-dimensional vector space. 232 
First-order homogeneous linear 

differential equations. 515 
First principal component. 509 
Fixed point. 528 
FOlV.'ard building. A-28 
FOlV.'ard substitution. 131 
Fourier. Jean Baptiste Joseph. 317. 344 
Fourier polynomial. 345 
Fourier series. 343 
Fractals. 434 
Full rank of a matrix. 500 
Function. A-I 

codomain of. A-I 
composite. A-3 
domain of. A- I 
identity. A-3 
image under. A- I 
inverse. A-3 
invertible. A-3 

matrix. 43 
one-to-one. A-2 
onto. A-2 
projection. A-2 
range of. A- I 

Fund1mental system. 516 
Fund1mental vector spaces associated 

with a matrix. 335 

G 
Gauss. C. F .. 97 
Gaussian elimination. 97 
Gauss-Jordan reduction. 97 
General solution. 516 
Global positioning system. 104. 139 
Google. 14. 512 
GPS. 104. 139 
Gram. Jorgen Pedersen. 320 
Gram-Schmidt process. 321 
Graph. 13 

H 
Hamilton. William Rowan. 452 
Head 

of a directed line segment. 178 
of a lIector. 178 

Hermite. Charles. A-IO 
Hermitian matrix. A-IO 
Homogeneous coordinates. 420 
Homogeneous linear system. 2. 28. 

108.244 
solution space of. 203 

Homogeneous linear system of 
differential equations. 515 

general solution. 516 
Householder. Alston. 82 
Householder matrix. 82 
Hyperbola. 551 
Hyperbolic cylinder. 556 
Hyperbolic paraboloid. 556 
Hyperboloid 

of one sheet. 552 
of two sheets. 556 

Hypothesis. A-24 

Idempotent matrix. 81 
Identity 

function. A-3 
linear operator. 374 
matrix. 42 

(i.j) entry ofa matrix. II 
(i. nth element of a matrix. II 
Image 

under a function. A- I 
under a linear tratlsformation. 378 
under a matrix transformation. 57 

Imaginary axis. A-I 
Imaginary part of a complex number. 

A-5 
Incidence matrix. 13 
Inconsistent linear system. 2 
Index of summation. 17 
Indirect method of proof. A-28 
Inertia of a symmetric matrix. 553 
Infinite-dimensional lIector space. 232 
oo-nonn.360 
Initial condition. 521 
Initial state vector. 484 
Initial value problem. 5 [6 
Inner product. 21. 307 

matrix of. with respect to an ordered 
basis. 3 [ 1 

Index ]·3 

preserving linear operator. 432 
space. 312 
standard. on e". A- 19 
standard. on R2. 294 
standard. on R3. 294 
standard on R". 21 

Inner product space. 312 
basis for. 3 [2 
complex. A-20 
dimension of. 312 
length in. 312 
real. 312 

Iteratille process. 502 
Interpolation polynomial. 104 
Invarial1l subspace. 398 
Inverse 

function. A-3 
linear transfonnation. 384 
matrix. 46 : see al.\'O Nonsingular 

matrix 
Inversion. 142 
Invertib[e 

function. A-3 
linear transfonnation. 384 

Invertible matrix. 46 
Involutory matrix . 289 
[sometry.467 
Isomorphic lIector spaces. 258 
Isomorphism. 258 

J 
Jacobi identity. 306 
Jordan. W .. 97 
Jordan canonical form. 475 

K 
Kernel. 376 

L 
Latent 

value. 438. 442 
vector. 442 

Law of cosines. 293 
Leading one of a row. 86 
Least squares solution to a linear 

system. 350 
Left-handed coordinate system. 183 
Left singular lIector. 495 
Legendre. Adrien-Marie. 359 
Legendre po[ynomials. 359 
Len.{!th in inner product space. 312 
Length of a lIector. 73. 290. 292 



1-4 Index 

Length preserving linear 
transfomlation,467 

Linels). 
parametric equations of. 204 

Line segment. directed, 178 
Linear combination, 20 I 

of matrices. 17 
Linear dependence, 218 
Linear equation(s), I 

equivalent. 2 
solution to, I 
sy;;tem of. I 

Linear independence. 218, A-17 
Linear operator, 363 

angle preserving, 432 
characteristic polynomial of. 460 
characteristic value of. 437 
diagonalizable,454 
eigenvalue of. 437 
eigenvector of. 437 
identity. 374 
inner product preserving, 432 
latent value of. 437 
orthogonal. 476 
proper value of. 437 

Linear system(s), l, 27 
augmented matrix of. 28 
coefficient matrix of. 28 
consistent. 2 
Cramer's rule, 170 
eyuivalent. 2 
Gaussian elimination method of 

solution. 97 
Gauss-Jordan method of SOhllioo, 97 
homogeneous. 2. 28, J08. I II 
homogeneous. of differential 

equations, 5 I 5 
inconsistent, 2 
le~st squares solution, 350 
method of elimination. 2 
nonhomogeneous. 111.280 
nontrivial solution. 2 
null space of. 203 
solution, 2 
solution space of homogeneous, 203 
trivial solution, 2 
uncoupled. 82 
with complex entries, I I I. A- 13 
with nonsingular coefficient matrix, 

49 
with unique solution, 49 

Linear transfonnation(s), 363 

addition of. 399 
angle preserving, 432 
characteri,<;tic polynomial of. 460 
characteristic vallie of. 437 
characteristic vector of. 437 
composite. 404 
contraction, 60, iO. 364 
diagonalizable, 454 
dilation. 60, 70, 364 
eigenvalue of. 437 
eigenvector of. 437 
identity. 374 
image of. 378 
inner product preserving. 432 
inverse of. 384 
invertible, 384 
kernel of. 376 
latent values. 43i 
length preserving. 467 
matrix of. 389 
nullity of. 382 
one-to-one. 375 
onto. 378 
orthogonal. 476 
projection. 59. 364 
proper values. 437 
wnge of. 378 
rank of. 409 
reflection, 364 
representation of. 394. 396 
[olatiun. Gl, 66. )64 
scalar multiple of. 399 
sum of, 399 
zero. 374 

Linearly dependent 
vectors, set of. 218 

Linearly independent 
vectors. set of. 218 

Lines in Rl. 203 
Lower triangular matrix. 43 
L U _decomposition. 132 
L U -factorization, 132 

M 
Maclaurin series. 343 
Magic square, 85 
Magnitude of a vector, 73. 290. 292 
Main diagonal 

of a matrix. I I 
Mapping. 57 
Mar.c,inally stable point. 529 
Markov, Andrei Andreyevich, 483 

Markov matrix. 483 
Markov process. 483 

equilibrium. 484 
initial state vector of. 484 
regular. 485 
state vector of. 484 
steady-state vector of. 484 

MATLAB commands. 592 
Matrices 

addition of. 15 
properties of. 34 

block multiplication of. 45 
change of basis. 261 
column equivalent. 84 
columns of. I I 
congruent. 536 
diagonal. 42 
dbgonalizable.456 
difference between. 16 
eigenvalue of, 442 

eigenvector of. 442 
elementary. I 17 
entry of. I I 
equality of. 14 
equivalent. 128 
(; . j) entry of. I I 

(i. j)th element of. II 
linear combination of. 17 
of linear transfonnations. 369, 389 
rn!lltiplication of. 22 
nonsingular.46 
order of. I I 
partitioned. 44 
postmultiplication of. 118 
powers of. 42 
premultiplication of. 118 
product of. 22 
properties of scalar multiplication. 

37 
properties of transpose. 38 
row equivalent, 89 
rCM'S of. I I 
scalar multiple of. 16 
scalar multiplication of. 16 
similar. 410 
singular, 46 
size of. I I 
subtraction of. 16 
sum of, 15 
trace of. 33 



transpose of. 18 
properties of. 38 

type I. II. or Ill. 117 
Matrix. 

addition. 15 
adjoint. 166 
augmented. 28 
block diagonal. 81 
characteristic equation of. 444 
characteristic polynomial of. 444 
circulant. 83 
coefficient. 28 
column echelon form. 86 
column rank of. 272 
column space of. 270 
columns of. II 
complex. A-8 
conjugate of. A-9 
covariance. 508 
defective. 462 
definition of. I I 
determinant of. 142 
diagonal. 42 
diagonalizable.456 
eigenvalue of. 442 
eigenvector of. 442 
element of. II 
elementary. of type 1. 11 . or II I. 11 7 
elementary column operation. 87 
elementary row operation. 87 
enwding.371 
entry of. II 
equality. 14 
fu ll rank of. 500 
Hermitian. A- IO 
Householder. 82 
idempotent. 81 
identity. 42 
(i.j) entry. II 
(i. j)th element of, II 
incidence. 13 
inertia. 553 
of inner product with respect to 

orderetl basis. 311 
inverse of. 46. 121. 165 
invertible. 46 
involutory. 289 
leading one of row, 86 
of a linear transformation. 389 
lower triangular. 43 
main diagonal of. I I 
II! X I!, II 

Markov. 483 
multiplication. 22 

properties of. 35 
negative of. 34 
nilpotent. 81 
noninvertible.46 
nonsingular.46 
normal. A- II 
nullity of. 247 
order of. II 
orthogonal. 466 
partitioned. 43 
polynomial. A- I I 
positive definite, 31 I 
positive semidefinite. 359 
powers. 42 
probability. 483 
product of. 22 
QR-factorization, 326 
of a quadratic form. 535 
rank of, 272 
reduced column echelon form. 86 
reduced row echelon fonll. 86 
representation of a linear 

transformation, 369 
row echelon form. 86 
row equivalent, 89 
row rank of. 272 
row space of. 270 
rows of. II 
sl:alar.42 
scalar multiple of. 16 
scalar multiplication of, 16 

properties of. 37 
similar. 410 
singular. 46 
singular value decomposi tion of. 495 
size of. II 
skew Hermitian. A- 12 
skew symmetric. 43 
spectral decomposition of. 488 
square, II 
square root of. 80 
standard representing. 369 
stochastic. 483 
storage of multipliers, 135 
sub-.43 
subtraction. 16 
sum of. 15 
symmetric. 43 
trace of. 33 
transition. 483 

Index ]·5 

from a basis, 261 
of a Markov process. 483 

trJnspose. 18 
properties of. 38 

triangul:lr.43 
type I. II. or III operation. 117 
unitary. A- I 0 
upper triangular, 43 
zero. 34 

Matrix representation. 394. 396 
Matrix transfonnation. 57 

range of. 57 
Matrix-vector product. 25 

as a linear combination of columns. 
2S 

Maximal independent subset. 238 
Member of a set. A-I 
Method of elimination. 2 
Minimal spanning se t. 239 
Minor. 157 
Modulus of complex numbers. A-8 
Multiple 

scalar. 16 
scalar. of a matrix. 16 

Multiplication 
block. of matrices. 45 
of complex numbers. A-6 
of matrices, 22 

differences from multiplication of 
real numbers. 39 

propenies of. 35 
of partitioned matrices. 43 

Multiplicity, of an eigenvalue. 459 
Multipliers. storage of. 135 
Multivariate data matrix. 507 

N 
Natural basis. 229 
Negation of a statement. A-22 
Negative 

of a matrix. 34 
of a vector. 182. 184. 189 

Network analysis. 140 
Nilpotent matrix. 81 
Nonhomogeneous linear system. III. 

280 
Noninvertible matrix. 46: Jee a/so 

Singular matrix 
Nonlinear transformation. 434 
Nonsingular matrix. 46 

properties of 48 
Nontrivial solution to a linear system. 2 



1·6 Index 

Norm 
1·.360.503 
2·.360 
00·.360 

Normal matrix. A· II 
Normal system. 350 
Normal to a plane, 303 
",space. 190 
Null space, 203 
Nullity 

ofa linear transfOmliltion, 382 
ofa matrix. 247 

Number, complex. A·5 
/I·vector,12 

o 
Odd permutation. 142 
I· norm. 360 

of a matrix. 503 
of a vector. 503 

One·to·one 
fU:1Ction.258 
linear transformation. 375 

Onlo 
function. 258 
linear transformation. 378 

OpcrJtion 
elementary column, 87 
elementary row. 87 
type I. 117 
type II. 117 
lypelll.l17 

Opposite of a statemcnt. A·22 
Orbit. 527 
Order of a square matrix, I I 
Ordered basis. 253 
Origin. 177. 182 
Orthogonal 

b:l~is. 322 
complement. 332 
lillear operator. 476 
matrix. 466 
projection. 341 
vcctor. 294. 315. A-20 
vectors. set of. 315 

Orthogonal vectors. 3 15 
Orthonomlal 

basis. 320 
vet tors, set of. 315 

Outer product. 491 
Outliers, 77 

r 
Parabola. 551 
Parabolic cylinder. 557 
Parallel vectors, 301 
Parallelogram law, 318 
Parametric equation(s). 204 
Parlial sums, 494 
Particular solution. 516 
Partitioned matrices, 44 

multiplication of, 44 

Pearson product.moment correlation 
coefficient. 78 

Pennut.1lion(s).14 1 
even. 142 
inversion. 142 
odd. 142 
sign associated wilh. 142 

Perpendicular vectors. 294 
Phase plane. 527 
Phase portrait, 528 
Pivot. 90 
Ph'ot column, 90 
Plane 

complex. A-27 
equation of. 303 
normal to. 303 
vcctor in the, 178 

Planes, 303 
Poincare. Jules Herri. 526 
Point. 178 
Polynomialts), 

characteristic. ofa matrix. 444 
degree of. 192 
Fourier. 345 
imcrpolation. 103 
Legendre, 359 
in a matrix, A·II 
roots of. A-I I 
second.degree equation, 552 
zcro. 192 

Polynomial equation 
second-degree. 552 

Posi tive definite 
rn.'1trix, 3 1 I 
quadratic fonn, 542 

Positl\'e semidefinite matrix, 359 
Postmultiply. I 18 
Power method. 506 
Powcrs of a matrix. 42. 52 
Preimage.374 
Premultiply, 118 
Pre.~r\'e inner prodJcts. 432 

Principal axes theorem. 538 
Principal component ana l y~is, 506. 509 
Prolxlbility 

lIIltriX, 483 
vettor, 484 

Prod!ct 
complex inner product space. A-20 
of complex numbers. A-6 
cross. of vectors. 299 
dot. 2 1 
inner, 21. 294, 307. A-19 
in:Jcr product space. 312 
of matrices, 22 
ol.ler, 491 
standard inner, 294. A-19 

Projection. 59. 364 
into the xy.plane, 59 
orthogonal. 34 I 

Projection function, A·2 
Prod by contradiction. A-28 
Prod by contrapositive, A-28 
Proper 

value, 437 
vector, 438 

Properties 
of cross proouc\, 300 
of dot product, 295 
of matrix addition, 34 
of matrix multiplication, 35 
of scalar multiplication of matrices, 

37 
of transpose. 38 

Propasition. A·22 
Pythlgorean theofCm. 318 

Q 
QR·factorization, 326. 352 
Quadratic equation. 544 
Quadratic form(s) 

canonica1. 475, 541 
cquivalent. 536 
nlltrix of. 535 
positive definite, 542 
ranK of. 54 1 
rro!. 535 
sign:Lture of, 541 
in three variables. 552 

Quadratic interpolant. 104 
Quadratic interpolation. 104 
Qu~dric surface. 535. 552 
Qualitative theory of differential 

equations, 526 



R 
Range 

of a runelion. A-I 
of a linear Ir:msfonnation, 378 

R~' 
column. of a mimix. 272 
of a linear lr3nSfOnnalion. 409 
of a matrix. 272 
of a quadratic form. 54 1 
row. of a malrix. 272 

Real axis. A· 7 
Real pari o f:t complex number. A-S 
Real quadr:lIic fonn(s). 535; )'ee (1)'0 

Quadr,uic form(~) 
Real vec tor space. 189: ,\'(~e of,1'f} Vector 

space(s) 
ReclangulM coordinate system, 177 
Recursion relation. 5 1 
Reduced column echelon form, 86 
Reduced row echelon form. 86 
Reduction 10 lri:mgular fonn. 151 
Reflection. 58, 62. 364 
Regular Markov process, 483 
Repellent point. 529 
Representation of a lincar 

lranformalion by a matrix, 394, 
396 

Resul tant force. 296 
Righi-handed coordinate system. 183 
Righi singular vector. 495 
Rums of I:hamclcrislic polynoluiul. oMS 
Roo!> of poly nominIs. A-II 
Rotation. 6 1. 66. 364 
R~ 

S 

echelon form. 86 
equivalem m3Irice~. 89 
ilh. II 
ofa malrix. II 
operntions. e lementary, 87 
mnk. of a mmrix. 272 
reduced echelon fonll. 86 
sp:ICe of a matrix, 270 

Saddle point. 529 
Sample 

covariance. 508 
mean. 77. 507 
size. 76 
stmdard deviation. 507 
variance. 507 

Scal::r matrix. 42 

Scalar multiple. 16 
of a linear trnnsfonnation. 399 
o f a matrix. 16 
of a \'ector. 181 

Scalar multiplication 
of a linear trnnsfonnation. 399 
of a matrix. 16 

properties of. 37 
ofa vector. 18 1. 184. 186. 189 

Scalars. 177 
Scaling. 68 
Scatter plot. 74 
Schmidt. Erhard. 320 
Schwarz. Hermann Amandus. 312 
Screw transformation. 430 
Search engine. 14 
Second-degree polynomial equalion. 

552 
Second principal cCfl\ponen1. 509 
Set(s). 

e lement of. A- I 
empty. A- I 
equality of. A-I 
memberoLA- 1 
subset o f. A-I 

Shear(s), 68. 70 
Sign associated with a pennutation. 142 
Signature o f a quadratic fonn. 541 
Similar matrices. 4 JO 
Singular matrix. 46 
Sin~ul;u- valu!: oJ!:clnlpo~itiun uf a 

matrix. 495 
Singular values, 495 

Singular vec tors. 495 
Size of a matrix. II 
Skew Hermitian matrix. A-12 
Skew symmetric matrix. 43 
Solution 

general. to a system of diffe ren tial 
equalions. 516 

least squares. to ~ linear system. 350 
to a linear equation. I 
to a linear system. 2 
infinitely many to a linear system. 6 
none to a linear system. 6 
nontrivial. to a linear system. 2 
particular. to a linear sys tem of 

differential equations, 5 16 
trivial. to a linear sys tem. 2 
unique to a linear system. 6 

Solution space 
of a homogeneous system. 203 

Index 1-7 

of a linear system of differential 
equations. 5 16 

Spare(s) 
column, 270 
complex inner product. A-19 
complex \'ector. A-IS 
dual. 432 
eigenspace. 45 1 
Euclidean. 3 12 
fin ite-dimensional vector. 232 
infinite-d imensional vector. 232 
inaer product. 3 12 
isomorphic vec tor. 258 
11 -. 190 
111 .. 11,203 
rell vector. 189 
row. 270 
solution, 203 
3-. 183 
2-. 178 
vector in. 183 

Span. 209. 21 I 
Spanning set of vectors. 211 
Spectral decomposition. 488 

Sphere. 554 
Square matrix. I I 
Square root of a matrix. 80 
Stable age distribu tion. 482 
Stable point. 528 
Standard basis. 229 
Stand.u'li r01111 

equation. 544 
Standard inner product 
onC~ .A- 1 9 

on R1. 294 
on Rl . 294 
on R".2 l 

Slandal\llllalrix represen ting a linear 
tran~for illalion . 369 

Standard position. 544 
Slale vee lor, 4&4 
Slatcment(s), A-22 

antecedent. A-24 
biconditional. A-25 
conclusion. A-24 
conditional. A-24 
conjunction. A-23 
consequent. A-24 
conl rapositi\'e. A-28 
cClwer.;:e of. A-25 
di; iunct ion. A-23 
equivalent. A-24 



1-8 Index 

Statement(s) (Coll/illlled) 
hypothesis. A-24 
implication. A-24 
negation of. A-22 
opposite of. A-22 

Steady-state vector, 484 
Stochastic matri.>;. 483 
Storage of multipliers. 135 
Strang. Gilbert. 337 
Submatrix.43 
Subs~t(s) . 197 

maximal independent, 238 
minimal spanning. 239 

Subspace(s), 197 
complex vector. 189. A- 16 
direct sum of. 287. 334. 336 
invariant, 398 
onhogonal complement of. 332 
zero. 198 

Substitution 
back. 97, 131 
forward. 131 

Sum 
of complex numbers. A-6 
of linear tranformations, 399 
of matrices. 15 
of vectors. 178. 183, [86. 189 

Summation 
index of. [7 

Summation notation. 17 
Sweeps. 428 
Symmetric matrix. 43 
System 

T 

autonomous, 526 
C::.rtesian coordinate. 177 
dynamical. 526 
of first -order homogeneous linear 

differential equations. 515 
left-handed coordinate, 183 
linear, [, 27 
of lin .. ar equations. I: w'e ,,/;-o 

Linear system(s) 
nonhomogenous linear. 111. 280 
normal. 350 
rectangular coordinate, 177 
right-handed coordinate. 183 

3-space. 183 
Tail 

ofa directed line segment. 178 
of a vector. 178 

Taylor series. 343 
Temperature distribJtion. 104 
3D transformation. 4[4 
Time, 526 
Trace. 33. 480 

properties of. 33 
Trajectory. 527 
Transformation 

30 .414 
20.415 
affine. 434 
matrix. 57 
nonlinear. 434 

Transition matrix 
from a basis. 26 [ 
of a Markov process, 483 

Transition probability. 483 
Translation. 374, 416 
Transpose 

of a matrix. 18 
properties of, 38 

Triangle inequality, 314 
Triangular matrix 

lower. 43. 131 
upper. 43. 130 

Trigonometric polynomial. 344 
degree of. 344 

Trivial solution 
to a linear system. 2 

2D transformation. 415 
2-norm.36O 
2-space. 178 
Truth table. A-22 
Type I. 11. or 111 elementary matrix, 117 
Type I. II. or III elementary operation. 

88 

U 
Uncorrelated variables. 76 
Uncoupled linear system. 82 
Unit circle, 69. 472, 493 
Unit vector. 295, 315 
Unitary matrix. A- lO 
Unknowns. 1 
Unstable point. 529 
Upper triangular matrix. 43 

V 
Vandermonde. Alexandre-Theophile, 

156 
Vandermonde determinant. 156 
Vector(s), 12. 177 

2-veclOr.178 
3-veclOr. 183 
addition of. [86, 189 
angle between. 73. 293, 313 
b~sis. 229 
characteristic. 437 
complex space, A-IS 
complex subspace. A-16 
components of. 178, 179.183 
coordinate. 178 
coordinates of. [78 
cross product of. 299 
difference between. 182 
directed line segment. 178 
direction of. 73.178 
direction cosines of. 292 
di, tance between. 219. 315 
dot product of. 21 
entry of. 178 
equality of. [79 
head of. 178 
in the plane. 178 
infinite-dimensional space, 232 
initial state, 484 
inner product of. 21 
inner product space. 3 [2 
latent. 437 
lelt singular. 495 
length of. 73. 290. 292 
linear combination of, 201 
linearly tlepenueru set ur. 218 
linearly independent set of. 218. 
m3gnitudeof. 178.290 
ll -vector.12 
negative of. 182. 185. 189 
nonn.360 
normal to a plane. 303 
orthogonal. 294 
orthogonal complement. 332 
orthogonal projection. 341 
orthogonal set or. 294. 315. A_20 
orthonormal set of. 315 
p~rallel. 301 
perpendicular. 76 
in the plane, 178 
probability. 484 
proper. 437 
right singular, 495 
scalar multiple of. 181. 184. 186, 

189 
in space, 183 
span. 209 



spanning set of. 21 I 
st3te.484 
steady-state, 484 
sum of. 180. 184 
tail of. 178 
unit. 295 
velocity. 296 
zero. 15, 185. 189 

Vector plot. 76 
Vector space(s). 189. A- IS 

basis for. 229 
complex. 189. A-IS 
definition of. 189 
dimension of. 238 
finite-dimensional, 232 

infinite-dimensional. 232 
inner product in. 294. 307 
isomorphic. 258 
of linear trnnsfonnations. 399 
real. 189 
subspace. 197. A-16 
zero. 15 

Velocity vector. 528 
Vertices. 13 
Volume of a paJ'allelepiped. 302 

x 
I"-axis. 177 
XI-. X!-lxes. 256 

Index ]·9 

y 

y-axIs. 177 

z 
z-axis. 183 
Zero 

linear trnnsformation. 374 

matrix. 34 
polynomial. 192 
subspace. 198 
vector. 15. 182. 185. 189 

vector space. 198 
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