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Bl PREFACE

Linear algebra is an important course for a diverse number of students for at least
two reasons. First, few subjects can claim to have such widespread applications
in other areas of mathematics-multivariable calculus, differential equations, and
probability, for example-as well as in physics, biology, chemistry, economics, fi-
nance, psychology. sociology, and all fields of engineering. Second, the subject
presents the student at the sophomore level with an excellent opportunity to learn
how to handle abstract concepts.

This book provides an introduction to the basic ideas and computational tech-
niques of linear algebra at the sophomore level. It also includes a wide variety
of carefully selected applications. These include topics of contemporary interest,
such as Google™and Global Positioning System (GPS). The book also introduces
the student to working with abstract concepts. In covering the basic ideas of linear
algebra, the abstract ideas are carefully balanced by considerable emphasis on the
geometrical and computational aspects of the subject. This edition continues to
provide the optional opportunity to use MATLAB™ or other software to enhance
the pedagogy of the book.

What's New in the Ninth Edition

We have been very pleased by the wide acceptance of the first eight editions of
this book throughout the 38 years of its life. In preparing this edition, we have
carefully considered many suggestions from faculty and students for improving
the content and presentation of the material. We have been especially gratified by
hearing from the multigenerational users who used this book as students and are
now using it as faculty members. Although a greal many changes have been made
to develop this major revision, our objective has remained the same as in the first
eight editions: fo present the basic ideas of linear algebra in a manner that the
student will find understandable. To achieve this objective, the following features
have been developed in this edition:

* Discussion questions have been added to the Chapter Review material. Many
of these are suitable for writing projects or group activities.

¢ Old Section 2.1 has been split into two sections, 2.1, Echelon Form of a Ma-
trix, and 2.2, Solving Linear Systems. This will provide improved pedagogy
for covering this important material.

* Old Chapter 6, Determinants, has now become Chapter 3, to permit earlier
coverage of this material.

¢ Old Section 3.4, Span and Linear Independence, has been split into two sec-
tions, 4.3, Span, and 4.4, Linear independence. Since students often have
difficulties with these more abstract topics, this revision presents this material
at a somewhat slower pace and has more examples.
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EXERCISES

¢ Chapter 8, Applications of Eigenvalues and Eigenvectors, 1s new to this edition
in this form. It consists of old sections 7.3, 7.6 through 7.9, material from old
section 7.5 on the transmission of symmetric images, and old sections 8.1 and
8.2,

¢ More geometric material illustrating the discussions of diagonalization of sym-
metric matrices and singular value decompositions.

e Section 1.7, Computer Graphics, has been expanded.

* More applications have been added. These include networks and chemical
balance equations.

* The exposition has been expanded in many places to improve the pedagogy
and more explanations have been added to show the importance of certain
material and results.

¢ A simplified discussion showing how linear algebra is used in global position-
ing systems (GPS) has been added.

¢ More material on recurrence relations has been added.

¢ More varied examples of vector spaces have been introduced.

* More material discussing the four fundamental subspaces of linear algebra
have been added.

* More geometry has been added.

¢ More figures have been added.

* More exercises at all levels have been added.

¢ Exercises involving real world data have been updated to include more recent
data sets.

* More MATLAB exercises have been added.

The exercises form an integral part of the text. Many of them are numerical in
nature, whereas others are of a theoretical type. New to this edition are Discus-
sion Exercises at the end of each of the first seven chapters, which can be used for
writing projects or group activities. Many theoretical and discussion exercises, as
well as some numerical ones, call for a verbal solution. In this technological age,
it is especially important to be able to write with care and precision; exercises of
this type should help to sharpen this skill. This edition contains almost 200 new

exercises. Compulter exercises, clearly indicated by a special symbol ® are of
two types: in the first eight chapters there are exercises allowing for discovery and
exploration that do not specify any particular software to be used for their solu-
tion; in Chapter 10 there are 147 exercises designed to be solved using MATLAB.
To extend the instructional capabilities of MATLAB we have developed a set of
pedagogical routines, called scripts or M-files, to illustrate concepts, streamline
step-by-step computational procedures, and demonstrate geometric aspects of top-
ics using graphical displays. We feel that MATLAB and our instructional M-files
provide an opportunity for a working partnership between the student and the com-
puter that in many ways forecasts situations that will occur once a student joins the
technological workforce. The exercises in this chapter are keyed to topics rather
than individual sections of the text. Short descriptive headings and references to
MATI.AR commands in Chaprer 9 supply information about the sets of exercises.
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The answers to all odd-numbered exercises appear in the back of the book. An In-
structor’s Solutions Manual (ISBN: 0-13-229655-1), containing answers (o all
even-numbered exercises and solutions to all theoretical exercises, is available (to
instructors only) from the publisher.

We have learned from experience that at the sophomore level, abstract ideas must
be introduced quite gradually and must be based on firm foundations. Thus we
begin the study of linear algebra with the treatment of matrices as mere arrays of
numbers that arise naturally in the solution of systems of linear equations, a prob-
lem already familiar to the student. Much attention has been devoted from one
edition to the next to refining and improving the pedagogical aspects of the exposi-
tion. The abstract ideas are carefully balanced by the considerable emphasis on the
geometrical and computational aspects of the subject. Appendix C, Introduction
to Proofs can be used to give the student a quick introduction to the foundations of
proofs in mathematics. An expanded version of this material appears in Chapter 0
of the Student Solutions Manual.

In using this book, for a one-quarter linear algebra course meeting four times a
week, no difficulty has been encountered in covering eigenvalues and eigenvectors,
omitting the optional material. Varying the amount of time spent on the theoretical
material can readily change the level and pace of the course. Thus, the book can
be used to teach a number of different types of courses.

Chapter 1 deals with matrices and their properties. In this chapter we also
provide an early introduction to matrix transformations and an application of the
dot product to statistics. Methods for solving systems of linear equations are dis-
cussed in Chapter 2. Chapter 3 introduces the basic properties of determinants
and some of their applications. In Chapter 4, we come to a more abstract notion,
real vector spaces. Here we tap some of the many geometric ideas that arise nat-
urally. Thus we prove that an n-dimensional, real vector space is isomorphic to
R", the vector space of all ordered n-tuples of real numbers, or the vector space
of all » »x 1 matrices with real entries. Since R" is but a slight generalization of
R? and R’, two- and three-dimensional space are discussed at the beginning of
the chapter. This shows that the notion of a finite-dimensional, real vector space
is not as remote as it may have seemed when first introduced. Chapter 5 cov-
ers inner product spaces and has a strong geometric orientation. Chapter 6 deals
with matrices and linear transformations; here we consider the dimension theo-
rems and also applications to the solution of systems of linear equations. Chapter
7 considers eigenvalues and eigenvectors. In this chapter we completely solve the
diagonalization problem for symmetric matrices. Chapter 8 (optional) presents
an introduction to some applications of eigenvalues and eigenvectors. Section 8.3,
Dominant Eigemvalue and Principal Component Analysis, highlights some very
useful results in linear algebra. It is possible to go from Section 7.2 directly to
Section 8.4, Differential Equations, showing how linear algebra is used to solve
differential equations. Section 8.5, Dynamical Systems gives an application of lin-
ear algebra to an important area of modern applied mathematics. In this chapter we
also discuss real quadratic forms, conic sections, and quadric surfaces. Chapter
9, MATLAB jor Linear Algebra, provides an introduction to MATLAB. Chapter
10, MATLAB Exercises. consists of 147 exercises that are designed to be solved
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using MATLAB. Appendix A reviews some very basic material dealing with sets
and functions. It can be consulted at any time as needed. Appendix B, on com-
plex numbers, introduces in a brief but thorough manner complex numbers and
their use in linear algebra. Appendix C provides a brief introduction to proofs in
mathematics.

The instructional M-files that have been developed to be used for solving the ex-
ercises in this book, in particular those in Chapter 9, are available on the follow-
ing website: www.prenhall.com/kolman. These M-files are designed to transform
many of MATLAB’s capabilities into courseware. Although the computational
exercises can be solved using a number of software packages, in our judgment
MATLAB is the most suitable package for this purpose. MATLAB is a versatile
and powerful software package whose cornerstone is its linear algebra capabili-
ties. This is done by providing pedagogy that allows the student to interact with
MATLAB, thereby letting the student think through all the steps in the solution
of a problem and relegating MATLAB to act as a powerful calculator to relieve the
drudgery of tedious computation. Indeed, this is the ideal role for MATLAB (or any
other similar package) in a beginning linear algebra course, for in this course, more
than many others, the tedium of lengthy computations makes it almost impossible
to solve a modest-size problem. Thus, by introducing pedagogy and reining in
the power of MATLAB, these M-files provide a working partnership between the
student and the computer. Moreover, the introduction to a powerful tool such as
MATLAB early in the student’s college career opens the way for other software
support in higher-level courses, especially in science and engineering.

MATLAB incorporates professionally developed quality computer routines for
linear algebra computation. The code employed by MATLAB is written in the C
language and is upgraded as new versions of MATLAB are released. MATLAB
is available from The Math Works Inc., 3 Apple Hill Drive, Natick, MA 01760,
e-mail: info@mathworks.com, [508-647-7000]. The Student version is available
from The Math Works at a reasonable cost. This Student Edition of MATLAB
also includes a version of Maple™, thereby providing a symbolic computational
capability.

The Student Solutions Manual (ISBN: 0-13-229656-X), prepared by Dennis R.
Kletzing, Stetson University, contains solutions to all odd-numbered exercises,
both numerical and theoretical.

We are pleased to express our thanks to the following reviewers of the first eight
editions: the late Edward Norman, University of Central Florida: the late Charles
S. Duris, and Herbert J. Nichol, both at Drexel University; Stephen D. Kerr, We-
ber State College; Norman Lee, Ball State University; William Briggs, University
of Colorado; Richard Roth, University of Colorado; David Stanford, College of
William and Mary; David L. Abrahamson, Rhode Island College; Ruth Berger,
Memphis State University; Michael A. Geraghty, University of Iowa; You-Feng
Lin, University of South Florida; Lothar Redlin, Pennsylvania State University,
Abington; Richard Sot, University of Nevada, Reno: Raymond Southworth, Pro-
fessor Emeritus, College of William and Mary; I. Barry Turett, Oakland Univer-
sity; Gordon Brown, University of Colorado; Matt Insall, University of Missouri
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at Rolla; Wolfgang Kappe State University of New York at Binghampton; Richard
P. Kubelka, San Jose State University; James Nation, University of Hawaii; David
Peterson, University of Central Arkansas; Malcolm J. Sherman, State University
of New York at Albany; Alex Stanoyevitch, University of Hawaii; Barbara Tabak,
Brandeis University; Loring W. Tu Tufts University; Manfred Kolster, McMaster
University; Daniel Cunningham, Buffalo State College; Larry K. Chu, Minot State
University; Daniel King, Sarah Lawrence University; Kevin Vang, Minot State
University: Avy Soffer, Rutgers University; David Kaminski, University of Leth-
bridge, Patricia Beaulieu, University of Louisiana, Will Murray, California State
Umiversity at Long Beach and of the ninth edition: Thalia D. Jettres, Wichita State
University, Manuel Lopez, Rochester Institute of Technology, Thomas L. Scolield,
Calvin College, Jim Gehrmann, California State University, Sacramento, John M.
Erdman, Portland State University, Ada Cheng, Kettering University, Juergen Ger-
lach, Radford University, and Martha Allen, Georgia College and State University.

The numerous suggestions, comments, and criticisms of these people greatly
improved the manuscript.

We thank Dennis R. Kletzing, who typeset the entire manuscript, the Student
Solutions Manual, and the Instructor's Solutions Manual. He found and corrected
a number of mathematical errors in the manuseript. Tt was a pleasure working with
him.

We thank Blaise deSesa for carefully checking the answers to all the exercises.

We thank William T. Williams, for kindly letting us put his striking image
Trane on the cover of this edition.

We also thank Lilian N. Brady and Nina Edelman, Temple University, for crit-
ically and carefully reading page proofs; and instructors and students from many
institutions in the United States and other countries, for sharing with us their ex-
periences with the book for the past 38 years and offering helpful suggestions.

Finally, a sincere expression of thanks goes to Scott Disanno, Senior Man-
aging Editor; to Holly Stark. Senior Editor; to Jennifer Lonschein, Editorial As-
sistant, and to the entire staff of Prentice Hall for their enthusiasm, interest, and
unfailing cooperation during the conception, design, production, and marketing
phases of this edition. It was a genuine pleasure working with them.

B.K.
DR.H.
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Bl TO THE STUDENT |

This course may be unlike any other mathematics course that you have studied
thus far in at least two important ways. First, it may be your initial introduction
to abstraction. Second, it is a mathematics course that may well have the greatest
impact on your vocation.

Unlike other mathematics courses, this course will not give you a toolkit of
isolated computational techniques for solving certain types of problems. Instead,
we will develop a core of material called linear algebra by introducing certain def-
initions and creating procedures for determining properties and proving theorems.
Proving a theorem is a skill that takes time to master, so we will develop your skill
at proving mathematical results very carefully. We introduce you to abstraction
slowly and amply illustrate each abstract idea with concrete numerical examples
and applications. Although you will be doing a lot of computations, the goal in
most problems is not merely to get the “right” answer, but to understand and be
able explain how to get the answer and then interpret the result.

Linear algebra is used in the everyday world to solve problems in other areas
of mathematics, physics, biology, chemistry, engineering, statistics, economics, fi-
nance, psychology, and sociology. Applications that use linear algebra include the
transmission of information, the development of special effects in film and video,
recording of sound, Web search engines on the Internet, global positioning system
(GPS) and economic analyses. Thus, you can see how profoundly linear algebra
affects you. A selected number of applications are included in this book, and if
there is enough time, some of these may be covered in your course. Additionally,
many of the applications can be used as self-study projects. An extensive list of
applications appears in the front inside cover.

There are four different types of exercises in this book. First, there are com-
putational exercises. These exercises and the numbers in them have been carefully
chosen so that almost all of them can readily be done by hand. When you use
linear algebra in real applications, you will find that the problems are much bigger
in size and the numbers that occur in them are not always “nice.” This is not a
problem because you will almost certainly use powerful software to solve them. A
taste of this type of software is provided by the third type of exercises. These are
exercises designed to be solved by using a computer and MATLAB™, a powerful
matrix-based application that is widely used in industry. The second type of ex-
ercises are theoretical. Some of these may ask you to prove a result or discuss an
idea. The fourth type of exercises are discussion exercises, which can be used as
group projects. In today’s world, it is not enough to be able to compute an answer;
you often have to prepare a report discussing your solution, justifying the steps in
your solution, and interpreting your results. These types of exercises will give you
experience in writing mathematics. Mathematics uses words, not just symbols.

Xvii
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To the Student

How to Succeed in Linear Algebra

¢ Read the book slowly with pencil and paper at hand. You might have to read

a particular section more than once. Take the time to verify the steps marked
“verify” in the text.

Make sure to do your homework on a timely basis. If you wait until the prob-
lems are explained in class, you will miss learning how to solve a problem by
yourself. Even if you can’t complete a problem, try it anyway, so that when
you see il done in class you will understand it more easily. You might find
it helpful to work with other students on the material covered in class and on
some homework problems.

Make sure that you ask for help as soon as something is not clear to you. Each
abstract idea in this course is based on previously developed ideas—much like
laying a foundation and then building a house. If any of the ideas are fuzzy to
you or missing, your knowledge of the course will not be sturdy enough for
you to grasp succeeding ideas.

Make use of the pedagogical tools provided in this book. At the end of each
section in the first eight chapters, we have a list of key terms; at the end of each
of the first seven chapters we have a chapter review, supplementary exercises,a
chapter quiz, and discussion exercises. Answers to the odd-numbered compu-
tational exercises appear at the end of the book. The Student Solutions Manual
provides detailed solutions to all odd-numbered exercises, both numerical and
theoretical. It can be purchased from the publisher (ISBN 0-13-229656-X).

We assure you that your efforts to learn linear algebra well will be amply

rewarded in other courses and in your professional career.

We wish you much success in your study of linear algebra.

A7
Qg & Hld



CHAPTER

Linear Equations
and Matrices

m Systems of Linear Equations

One of the most frequently recurring practical problems in many fields of study—
such as mathematics, physics, biology, chemistry, economics, all phases of engi-
neering, operations rescarch, and the social sciences—is that of solving a system
of linear equations. The equation

ayx; +axxy + -+ apx, = b, (D
which expresses the real or complex quantity b in terms of the unknowns x,, x2,
..., X, and the real or complex constants ay, az, ..., a,, is called a linear equa-
tion. In many applications we are given b and must find numbers x;, x2, ..., x,
satisfying (1).

A solution to linear Equation (1) is a sequence of n numbers sy, 5. ..., 5,
which has the property that (1) is satisfied when x| = 51, x2 = 52, ..., x, = 5, are
substituted in (1). Thus x; = 2, x, = 3, and x3 = —4 is a solution to the linear
equation

6x1 — 3x2 +4x3 = —13,

because
6(2) —3(3) +4(—4) =—13.

More generally, a system of m linear equations in n unknowns, x;, x. ..., x,,
or a linear system, is a set of m linear equations each in n unknowns. A linear

Note: Appendix A reviews some very basic material dealing with sets and functions. It can be
consulted at any time, as needed.
1
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Chapter 1

Linear Equations and Matrices

system can conveniently be written as

anxy + apxs + -+ apx; = by

anxy + apxs + -+ ayX, = by

(2)
1 X =+ U2 X2 e AmpXp = bm-
Thus the ith equation is
ap Xy + appXs + -+ dipxy = by,
In (2) the a;; are known constants. Given values of by, by. .. .. b, we want to find
values oF %5 X0 00002 x, that will satisfy each equation in (2).
A solution to linear system (2) is a sequence of n numbers sy, 57.. ... 5,,

which has the property that each equation in (2) is satisfied when x; = 5, xa = 53,
..., X; = 5, are substituted.
If the linear system (2) has no solution, it is said to be inconsistent; if it has

a solution, it is called consistent. If by = b, = --- = b, = 0, then (2) is
called a homogeneous system. Note that vy = x» = --- = x, = 0 is always
a solution to a homogeneous system; it is called the trivial solution. A solution
to a homogeneous system in which not all of xj,xa, ..., x, are zero is called a

nontrivial solution.
Consider another system of r linear equations in n unknowns:

ciXy + Cppxy + o0+ ClaXy = d)

€% + CpXg + -+ CoXy =

(3)

criXy 4 craxz + - - 4 CraXp = 4.

We say that (2) and (3) are equivalent if they both have exactly the same solutions.

Xy — 3 =7 @)
24+ = 17
has only the solution x; = 2 and x» = 3. The linear system
8)(1 bt 312 st
3.‘(1 s | 2.‘(2 = B (5)
]011 = 2)(2 =14

also has only the solution x; = 2 and x3 = 3. Thus (4) and (5) are equivalent. W

To find a solution to a linear system, we shall use a technique called the
method of elimination; that is, we eliminate some variables by adding a multiple
of one equation to another equation. Elimination merely amounts to the develop-
ment of a new linear system that is equivalent to the original system, but is much
simpler to solve. Readers have probably confined their earlier work in this area to
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linear systems in which m = n, that is, linear systems having as many equations
as unknowns. In this course we shall broaden our outlook by dealing with systems
in which we have m = n, m < n, and m > n. Indeed, there are numerous applica-
tions in which m # n. If we deal with two, three, or four unknowns, we shall often
write them as x, y, z, and w. In this section we use the method of elimination as it
was studied in high school. In Section 2.2 we shall look at this method in a much
more systematic manner.

The director of a trust fund has $100,000 to invest. The rules of the trust state
that both a certificate of deposit (CD) and a long-term bond must be used. The
director’s goal is to have the trust yield $7800 on its investments for the year.
The CD chosen returns 5% per annum, and the bond 9%. The director determines
the amount x to invest in the CD and the amount y to invest in the bond as follows:

Since the total investment is $100,000, we must have x + y = 100,000. Since
the desired return is $7800, we obtain the equation 0.05x + 0.09y = 7800. Thus,
we have the linear system

x + y = 100,000

(6)
0.05x + 0.09y = 7800.

To eliminate x, we add (—0.05) times the first equation to the second, obtaining
0.04y = 2800,

an equation having no r term. We have eliminated the unknown x. Then solving
for v, we have
¥y = 70,000,

and substituting into the first equation of (6), we obtain
x = 30,000.

To check that x = 30.000, y = 70,000 is a solution to (6), we verify that these
values of x and y satisfy each of the equations in the given linear system. This
solution is the only solution to (6); the system is consistent. The director of the
trust should invest $30,000 in the CD and $70,000 in the long-term bond. [ ]

Consider the linear system

x—dy=-7
g 7
2y — by = . M
Again, we decide to eliminate x. We add (—2) times the first equation to the
second one, obtaining
0-=21;

which makes no sense. This means that (7) has no solution; it 1s inconsistent. We
could have come to the same conclusion from observing that in (7) the left side of
the second equation is twice the left side of the first equation, but the right side of
the second equation is not twice the right side of the first equation. |
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m Consider the linear system

x+2y+3z= 6
2x—3y+2z= 14 (8)
x+ y— z=-2.

To eliminate x, we add (—2) times the first equation to the second one and (—3)
times the first equation to the third one, obtaining

—Ty— dz= 2

—5y — 10z = —20. ®)

This 15 a system of two equations in the unknowns y and z. We multiply the second
equation of (9) by (fé) yielding
—Ty—4z =
y+2z=4,

which we write, by interchanging equations, as

y+2z.=4

Ty —4z=2 ko

We now eliminate y in {10) by adding 7 times the first equation to the second one,
to obtain

10z = 30,
or
z =73 (11)
Substituting this value of z into the first equation of (10), we find that y = —2.

Then substituting these values of y and z into the first equation of (8), we find that
x = 1. We observe further that our elimination procedure has actually produced
the linear system

x+2y+3z=56
y+2%=4 (12)

s
=13,

obtained by using the first equations of (8) and (10) as well as (11). The importance
of this procedure is that, although the linear systems (8) and (12) are equivalent,
(12) has the advantage that it is easier to solve. | |

Consider the linear system

x4+ 2y —3z=-4

2+ y—3z= 4 (3
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Eliminating x, we add (—2) times the first equation to the second equation to get
=3y +3z=12 (14)
We must now solve (14). A solution is
y=z—4
where z can be any real number. Then from the first equation of (13),

x=—4—2y 43z
—4-2z-4+3%
=z+4.

Thus a solution to the linear system (13) is

-+ 4
pi=imd

z = any real number.

X

Il

+

Il

This means that the linear system (13) has infinitely many solutions. Every time
we assign a value to z we obtain another solution to (13). Thus, if z = 1, then

x=5 wy=-3, and z=1
is a solution, while if 7 = —2, then
x=2, y=-6, and z=-2
is another solution. i}

These examples suggest that a linear system may have a unique solution, no
solution, or infinitely many solutions.
Consider next a linear system of two equations in the unknowns x and y:

daix + day = cy

15
bix + by = ca. G

The graph of each of these equations is a straight line, which we denote by £, and
{7, respectively. If x = s;, ¥ = 52 1s a solution to the linear system (15), then the
point (51, s2) lies on both lines ¢, and £>. Conversely, if the point (51, 52) lies on
both lines £, and £, then x = 5|, y = §; is a solution to the linear system (15).
Thus we are led geometrically to the same three possibilities mentioned previously.
See Figure 1.1.

Next, consider a linear system of three equations in the unknowns x, y, and z:

ax +byy+cz=d
arx + by +cz =d> (16)
asx + by + c3z = ds.

The graph of each of these equations is a plane, denoted by Pj, P, and P;, re-
spectively. As in the case of a linear system of two equations in two unknowns,
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(a) A unique solution. (b) No solution. (c) Infinitely many solutions.
¥ ¥ ¥
&
€
¥ X i / x
£ - :
FIGURE 1.1 € 1

the linear system in (16) can have infinitely many solutions, a unique solution, or
no solution. These situations are illustrated in Figure 1.2. For a more concrete
illustration of some of the possible cases, consider that two intersecting walls and
the ceiling (planes) of a room intersect in a unique point, a corner of the room,
so the linear system has a unique solution. Next, think of the planes as pages of
a book. Three pages of a book (held open) intersect in a straight line, the spine.
Thus, the linear system has infinitely many solutions. On the other hand, when the
book is closed, three pages of a book appear to be parallel and do not intersect, so
the linear system has no solution.

(a) A unique solution. (b) Infinitely many solutions. (c) No solution.

/ y
-

It we examine the method of elimination more closely, we find that it involves
three manipulations that can be performed on a linear system to convert it into
an equivalent system. These manipulations are as follows:

Py

5

1. Interchange the ith and jth equations.

2. Multiply an equation by a nonzero constant.

3. Replace the ith equation by ¢ times the jth equation plus the ith equation,
i # j. That is, replace

a1 x1 + aipxs + - o+ dinkn = by
by
(cap + an)xy -+ (cajo + aix)xa +- -+ + (eaj, + aim)x, = cb; + b;.
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It is not difficult to prove that performing these manipulations on a linear sys-
tem leads to an equivalent system. The next example proves this for the second
type of manipulation. Exercises 24 and 25 prove it for the first and third manipu-
lations, respectively.

Suppose that the ith equation of the linear system (2) is multiplied by the nonzero
constant ¢, producing the linear system

anxy + apxy + -+ ks = by
anx; + apxs + -+ apxy = by

7
ca; Xy + cdpXa + -+ caix, = cb;
Ay X -+ A2 X2 st ppXp = hm-
If x; = 5;.x2 = 5. ....x, = 5, 1s a solution to (2). then it is a solution to all the

equations in (17), except possibly to the ith equation. For the ith equation we have
clapsy + ainsay + -+ + dinsn) = cb;

or
€151 +caiasy + - -+ cdis, = eb;.

Thus the ith equation of (17) 1s also satisfied. Hence every solution to (2) is also
a solution to (17). Conversely, every solution to (17) also satisfies (2). Hence (2)
and (17) are equivalent systems. |

The following example gives an application leading to a linear system of two
equations in three unknowns:

(Production Planning) A manufacturer makes three different types of chemical
products: A, B, and C. Each product must go through two processing machines:
X and Y. The products require the following times in machines X and ¥':

1. One ton of A requires 2 hours in machine X and 2 hours in machine Y.
2. One ton of B requires 3 hours in machine X and 2 hours in machine Y.
3. One ton of C requires 4 hours in machine X and 3 hours in machine Y.

Machine X is available 80 hours per week, and machine Y is available 60 hours
per week. Since management does not want to keep the expensive machines X and
¥ idle, it would like to know how many tons of each product to make so that the
machines are fully utilized. It is assumed that the manufacturer can sell as much
of the products as 1s made.

To solve this problem, we let x, x,, and x; denote the number of tons of
products A, B, and C, respectively, to be made. The number of hours that machine
X will be used is

2x) + 3x2 + 43,

which must equal 80. Thus we have

2x1 + 3x2 + 4x5 = &0.
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Similarly, the number of hours that machine ¥ will be used is 60, so we have
2x1 + 2x2 + 3x3 = 60.
Mathematically, our problem is to find nonnegative values of xy, x,, and x5 so that

2)(] + 3)(3 + 4.X3 = SO
2x1 4 2x2 + 3x3 = 060.
This linear system has infinitely many solutions. Following the method of
Example 4, we see that all solutions are given by
_ 20 — x3
T2

Xy =20 — x3

R

x3 = any real number such that 0 < x; < 20,
since we must have x; = 0, x; = 0, and x5 = (. When x3 = 10, we have
X =5, xy = 10, x3 =10

while

X =]5. x2=]3. X3 =7

when x3 = 7. The reader should observe that one solution is just as good as the
other. There is no best solution unless additional information or restrictions are
given. 2]

As you have probably already observed, the method of elimination has been
described, so far, in general terms. Thus we have not indicated any rules for select-
ing the unknowns to be eliminated. Before providing a very systematic descrip-
tion of the method of elimination, we introduce in the next section the notion of
a matrix. This will greatly simplify our notational problems and will enable us to
develop tools to solve many important applied problems.

Key Terms

Linear equation Consistent system Unigue solution

Solution of a linear equation Homogeneous system No solution

Linear system Trivial solution Infinitely many solutions
Unknowns Nontrivial solution Manipulations on linear systems
Inconsistent system Equivalent systems Method of elimination

WIEN Exercises

In Exercises | through 14, solve each given linear system by 3 3x+2y+ 4 x4+ y= 35
the method of elimination. 4x 4+ 2y + 22 Ix+3y=10
X Mok
1. I+2)'=3 7. 2173}‘+4z=712 5. 2x 4 dy L6z =—12 6. x4 y—27=
35 —dy—4 x—2y4 z= -5 R gyiocte, 15 2% 3y fdz =2

Brt y+2z= 1 3xbdy +5z= -8
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11.

13.

15.

16.

17.

18.

19.

14+4d4y— z=12 8. 3x4+4y— z=

3x+8y—2:= 4 6x + 8y —2z=3
x4 y4+3z=12 e x4 =1
2x+2y+6z= 6 2x — y=15
Ix+4y=2

2x4+3y=13 12. x—-5y=6
x—2y=:3 xt2p=1
Sx 4+ 2y =27 Sy +2y=1
x43y=-4 14, 2x +3y— z= ©
x4+ 5y =-8 2x — y+2z=-8
x+3y=-5 3x— y+ z=-7
Given the linear system

2y — y=5

4y —2y=1t,

(a) Determine a particular value of ¢ so that the system
is consistent.

(b) Determine a particular value of ¢ so that the system
1s inconsistent,

(¢) How many different values of r can be selected in
part (b)?
Given the linear system

Ix+4y=xs
bx + 8y =1,
{(a) Determine particular values for s and ¢ so that the
system is consistent.

{b) Determine particular values for s and ¢ so that the
system is inconsistent.

(c) What relationship between the values of s and t will
guarantee that the system is consistent?

Given the linear system

X+ 2y =10
3x + (64 0y =30,

r

(a) Determine a particular value of ¢ so that the system
has infinitely many solutions.

(b) Determine a particular value of ¢ so that the system
has a unique solution.

{c) How many different values of ¢ can be selected in
part (b)?

[s every homogeneous linear system always consistent?
Explain.

Given the linear system

20.

21.

22.

23.

24.

25,

26.

27.

28.

29.
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(a) Verify that x; =1, yy = —1, z; = —1 is a solution.
(b) Verify that x; = -2, y, = 2, z; = 2 is a solution.

() Isx =x4+x=-1,y =y +y» =1 and
= z1 + z> = 1 a solution to the linear system?

=

(d) Is 3x, 3y, 3z, where x, y, and z are as in part (c), a
solution to the linear system?

Without using the method of elimination, solve the linear
system

2x4+ y—2z=-5
v+ z= 7
z= 4

Without using the method of elimination, solve the linear
system

dx = R
—2x + 3y =-1
x4+ 5y—2z= 1L

Isthere a valueof rsothatx = 1,y =2,z =risa
solution to the following linear system? If there is, find
it.

2x+3y— z=11
x— y+4+2z=-7
x4+ y—2z= 12.

Is there a value of rsothatx = r.y =2,z = lisa
solution to the following linear system? If there is, find
it.
3x —2z= 4
x—4dy4+ z=-5
—2x4+3y+4+2z= 9.

Show that the linear system obtained by interchanging
two equations in (2) is equivalent to (2).

Show that the linear system obtained by adding a multi-
ple of an equation in (2) to another equation is equivalent
to (2).

Describe the number of points that simultaneously lie in
each of the three planes shown in each part of Figure 1.2.

Describe the number of points that simultaneously lie in
each of the three planes shown in each part of Figure 1.3.

Let €, and C; be circles in the plane. Describe the num-
ber of possible points of intersection of C; and C;. Illus-
trate each case with a figure.

Let 8, and S, be spheres in space. Describe the number
of possible points of intersection of §, and S,. Hlustrate
each case with a figure.
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30.

31.

32.

33.
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A

(c)
FIGURE 1.3

An oil refinery produces low sulfur and high sulfur fuel.
Each ton of low-sulfur fuel requires 5 minutes in the
blending plant and 4 minutes in the refining plant: each
ton of high-sulfur fuel requires 4 minutes in the blending
plant and 2 minutes in the refining plant. If the blend-
ing plant is available for 3 hours and the refining plant is
available for 2 hours, how many tons of each type of fuel
should be manufactured so that the plants are fully used?

A plastics manufacturer makes two types of plastic: reg-
ular and special. Each ton of regular plastic requires 2
hours in plant A and 5 hours in plant B; each ton of spe-
cial plastic requires 2 hours n plant A and 3 hours in
plant B. If plant A is available 8 hours per day and plant
B is available 15 hours per day, how many tons of each
type of plastic can be made daily so that the plants are
fully used?

A dietician is preparing a meal consisting of foods A, B,
and C. Each ounce of food A contains 2 units of pro-
tein, 3 units of fat, and 4 units of carbohydrate. Each
ounce of food B contains 3 units of protein, 2 units of
fat. and 1 unit of carbohydrate. Each ounce of food C
contains 3 units of protein, 3 units of fat, and 2 units of
carbohydrate. If the meal must provide exactly 25 units
of protein, 24 units of fat, and 21 units of carbohydrate,
how many ounces of each type of food should be used?

A manufacturer makes 2-minute, 6-minute, and 9-minute
film developers. Each ton of 2-minute developer requires
6 minutes in plant A and 24 minutes in plant B. Each ton
of 6-minute developer requires 12 minutes in plant A and
12 minutes in plant B. Each ton of 9-minute developer re-
quires 12 minutes in plant A and 12 minutes in plant B.
[l plant A is available 10 hours per day and plant B is

i |

X

34

35.

36.

37

39.

40

available 16 hours per day, how many tons of each type

of developer can be produced so that the plants are fully

used?

Suppose that the three points (1, —5), (=1, 1), and (2, 7)

lie on the parabola p(x) = ax? + bx + c.

(a) Determine a linear system of three equations in three
unknowns that must be solved to find a, b, and ¢.

(b) Solve the linear system obtained in part (a) for a, b,
and c.

An inheritance of $24,000 is 1o be divided among three
trusts, with the second trust receiving twice as much as
the first trust. The three trusts pay interest annually at
the rates of 9%, 10%. and 6%, respectively, and return a
total in interest of $2210 at the end of the first year. How
much was invested in each trust?

For the software you are using, determine the command
that “automatically” solves a linear system of equations.

Use the command from Exercise 36 to solve Exercises 3
and 4, and compare the output with the results you ob-
tained by the method of elimination.

Solve the linear system
x4+ %_\' +
7+ 3+
ot ly+ 1z

by using your software. Compare the computed solution
with the exact solution x = % y= % z=1.

=

I

18
' X

20

I=
j@
-
L

If your software includes access to a computer algebra
system (CAS), use it as follows:

(a) For the linear system in Exercise 38, replace the
fraction § with its decimal equivalent 0.5. Enter this
system into your software and use the appropriate
CAS commands to solve the system. Compare the
solution with that obtained in Exercise 38.

(b) Insome CAS environments you can select the num-
ber of digits to be used in the calculations. Perform
part (a) with digit choices 2, 4, and 6 to see what
influence such selections have on the computed so-

lution.

If your software includes access to a CAS and you can
select the number of digits used in calculations, do the
following: Enter the linear system

0.71x 4 021y =092
0.23x + 0.58y = 0.81

into the program. Have the software solve the system
with digit choices 2, 5. 7, and 12. Briefly discuss any
variations in the solutions generated.
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m Matrices

If we examine the method of elimination described in Section 1.1, we can make the
following observation: Only the numbers in front of the unknowns x, x2, ..., x,
and the numbers by, bs, . ... b,, on the right side are being changed as we perform
the steps in the method of elimination. Thus we might think of looking for a way
of writing a linear system without having to carry along the unknowns. Matrices
enable us to do this—that is, to write linear systems in a compact form that makes
it easier to automate the elimination method by using computer software in order
to obtain a fast and efficient procedure for finding solutions. The use of matrices,
however, is not merely that of a convenient notation. We now develop operations
on matrices and will work with matrices according to the rules they obey; this will
enable us to solve systems of linear equations and to handle other computational
problems in a fast and efficient manner. Of course, as any good definition should
do, the notion of a matrix not only provides a new way of looking at old problems,
but alse gives rise to a great many new questions, some of which we study in this
book.

Anm x n matrix A is arcctangular array of mn real or complex numbers arranged
in m horizontal rows and n vertical columns:

aip A4y v e e g
dgp Gz v e e gy
A= , 5 (1)
dij : -— ith row
ISR B R

i
L jth column

The ith row of A is

[Hr'l aj: ﬂm] (1=i=m)

(%

the jth column of A is

aj
@z y
(1=j=n).

U

We shall say that A is m by n (written as m x n). If m = n, we say that Ais a
square matrix of order », and that the numbers a,,, a», . .., a,, form the main
diagonal of A. We refer to the number a;;, which 1s in the ith row and jth column
of A, as the i, jth element of A, or the (7, j) entry of A, and we often write (1) as

A= [a,-f-].
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|_Exampie 1 [

1

i 4 3 1+i 4
A‘[—1 0 1]’ B‘{z—y —3]‘ o g
2
L1 0
Belz o Ll Euls, Pl 6 2.
3 -1 2

Then Aisa2 x 3 matrix withay;: =2, a3 =3,an»=0,andas = 1; Bisa2 x 2
matrix with by, = 141, b1 = 41, by = 2—31, and byy = —3; Cis a3 x | matrix

witheyy = 1,0 = —l,and ¢33 = 2; Disa 3 x 3 matrix; E is a 1 x 1 matrix;
and F 1s a 1 x 3 matrix. In D, the elements ¢, = 1, d»» = 0, and d3; = 2 form
the main diagonal. |

For convenience, we focus much of our attention in the illustrative examples
and exercises in Chapters 1-6 on matrices and expressions containing only real
numbers. Complex numbers make a brief appearance in Chapter 7. An introduc-
tion to complex numbers, their properties, and examples and exercises showing
how complex numbers are used in linear algebra may be found in Appendix B.

An nx 1 matrix is also called an n-vector and is denoted by lowercase boldface
letters. When n is understood, we refer to n-vectors merely as vectors. Vectors
are discussed at length in Section 4.1.

I 1

201, 2
u= | isad-vectorandv= | —1 | is a 3-vector. | |

0

The n-vector all of whose entries are zero is denoted by 0.

Observe that if A isan n x n matrix, then the rows of A are 1 x n matrices and
the columns of A are n x 1 matrices. The set of all n-vectors with real entries is
denoted by R". Similarly, the set of all n-vectors with complex entries is denoted
by C". As we have already pointed out, in the first six chapters of this book we
work almost entirely with vectors in R".

(Tabular Display of Data) The following matrix gives the airline distances be-
tween the indicated cities (in statute miles):

London Madrid New York Tokyo

London 0 785 3469 5959
Madrid 785 0 3593 6706
New York | 3469 3593 0 6757
Tokyo 5959 6706 6757 0 &

(Production) Suppose that a manufacturer has four plants, each of which makes
three products. If we let a;; denote the number of units of product i made by plant
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J in one week, then the 3 x 4 matrix

Plant 1 Plant2 Plant3 Plant 4

Product 1 560 360 380 0
Product 2 | 340 450 420 80
Product 3 280 270 210 380

gives the manufacturer’s production for the week. For example, plant 2 makes 270
units of product 3 in one week. |

The windchill table that follows is a matrix.

2F
15 10 g 0 —5 —10
mph
5 12 7 0 =5 —10 —15
10 =3 — =i =27 —27 —34
15 —11 —18 =25 =31 —38 —45
20 —17 —24 —21 =39 —46 —53

A combination of air temperature and wind speed makes a body feel colder than
the actual temperature. For example, when the temperature is 10°F and the wind is
15 miles per hour, this causes a body heat loss equal to that when the temperature
is —18°F with no wind. |

By a graph we mean a set of points called nodes or vertices, some of which are
connected hy lines called edges. The nodes are usnally labeled as Py, P, ..., P,
and for now we allow an edge to be traveled in either direction. One mathematical
representation of a graph is constructed from a table. For example, the following
table represents the graph shown:

| Py P Ps By P;
P00 1 0 0
B 1 0 1 1 P
P01 0 1 Py
Bxlid 1 1 @ P,

The (i. j) entry = 1 if there is an edge connecting vertex P; to vertex P,
otherwise, the (i, j) entry = 0. The incidence matrix A is the & x k matrix
obtained by omitting the row and column labels from the preceding table. The
incidence matrix for the corresponding graph is

oo = O
——
— O D
o= = O
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Internet search engines use matrices to keep track of the locations of informa-
tion, the type of information at a location, keywords that appear in the information,
and even the way websites link to one another. A large measure of the effective-
ness of the search engine Google® is the manner in which matrices are used to
determine which sites are referenced by other sites. That is, instead of directly
keeping track of the information content of an actual web page or of an individual
search topic, Google’s matrix structure focuses on finding web pages that match
the search topic, and then presents a list of such pages in the order of their “impor-
tance.”

Suppose that there are n accessible web pages during a certain month. A
simple way to view a matrix that is part of Google’s scheme 1s to imagine an n x n
matrix A, called the “connectivity matrix,” that initially contains all zeros. To
build the connections, proceed as follows. When you detect that website j links
to website 7, set entry a;; equal to one. Since n is quite large, in the billions, most
entries of the connectivity matrix A are zero. (Such a matrix is called sparse.)
If row i of A contains many ones, then there are many sites linking to site i.
Sites that are linked to by many other sites are considered more “important” (or to
have a higher rank) by the software driving the Google search engine. Such sites
would appear near the rop of a list returned by a Google search on topics related
to the information on site /. Since Google updates its connectivity matrix about
every month, n increases over time and new links and sites are adjoined to the
connectivity matrix.

In Chapter 8 we elaborate a bit on the fundamental technique used for ranking
sites and give several examples related to the matrix concepts involved. Further
information can be found in the following sources:

1. Berry, Michael W., and Murray Browne. Understanding Search Engines—
Mathematical Modeling and Text Retrieval, 2d ed. Philadelphia: Siam, 2005.

2. www.google.com/technology/index.html

3. Moler, Cleve. “The World’s Largest Matrix Computation: Google’s PageRank
Is an Eigenvector of a Matrix of Order 2.7 Billion,” MATLAB News and Notes,
October 2002, pp. 12-13.

Whenever a new object is introduced in mathematics, we must determine
when two such objects are equal. For example, in the set of all rational numbers,
the numbers % and % are called equal, although they have different representa-
tions. What we have in mind is the definition that a/b equals ¢/d when ad = bc.

Accordingly, we now have the following definition:

Two m x n matrices A = [“U ] and B = [bfj] are equal if they agree entry by
entry, thatis, if a;; = b;; fori =1,2,...,mand j =1,2,... n.

The matrices

1 2 -1 1 2 w

(=]
|
=
=

L)
|
=
24

are equal ifand only if w = -1, x = =3,y =0,and z = 5. |
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B Matrix Operations

‘We next define a number of operations that will produce new matrices out of given
matrices. When we are dealing with linear systems, for example, this will en-
able us to manipulate the matrices that arise and to avoid writing down systems
over and over again. These operations and manipulations are also useful in other
applications of matrices.

Matrix Addition

If A = [a;; | and B = [b;; ] are both m xn matrices, then the sum A+B is an m xn
matrix C = [¢;; ]| defined by ¢;j = a;; + by, i = 1,2,..., g =12, .
Thus, to obtain the sum of A and B, we merely add corresponding entries.

Let
1 -2 0 2 1
A—|i2 1 4] and B‘=|:1 3 _4]
Then
1+0 —-2+42 341 1 0 4
A+B—{2+l —-1+43 4+(74):|_h{3 2 0]' u

(Production) A manufacturer of a certain product makes three models, A, B, and
C. Each model is partially made in factory F; in Taiwan and then finished in factory
F; in the United States. The total cost of each product consists of the manufactur-
ing cost and the shipping cost. Then the costs at each factory (in dollars) can be
described by the 3 x 2 matrices F; and F»:

Manufacturing  Shipping

cost cost

A2 40 Model A
F| = 50 80 Model B

70 20 Model C

Manufacturing  Shipping

cost cost

40 60 Model A
F, = 50 50 Model B .

130 20 Model C

The matrix F, + F> gives the total manufacturing and shipping costs for each
product. Thus the total manufacturing and shipping costs of a model C product are
$200 and $40, respectively. | |

If x is an n-vector, then it is easy to show that x + 0 = x, where 0 is the
n-vector all of whose entries are zero. (See Exercise 16.)

It should be noted that the sum of the matrices A and B 1s defined only when
A and B have the same number of rows and the same number of columns, that is,
only when A and B are of the same size.
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We now make the convention that when A + B is written, both A and B are of
the same size.

The basic properties of matrix addition are considered in the next section and
are similar to those satisfied by the real numbers.

Scalar Multiplication

IfA= [“i.f] is an m x n matrix and r is a real number, then the scalar multiple of
Abyr,rA,isthe m x n matrix C = [c;_f], wherec;; =ra;;, i =1,2,...,mand
J = 1,2,..., n; that is, the matrix C is obtained by multiplying each entry of A
by r.

We have
_2[4 -2 =3 ={(—2)(4) (-2)(-2) (—2)(—3}]
=4 @2 =2 2-3) (22
| -8 4 6
| —14 6 —4| B

Thus far, addition of matrices has been defined for only two matrices. Our
work with matrices will call for adding more than two matrices. Theorem 1.1
in Section 1.4 shows that addition of matrices satisfies the associative property:
A+(B+C)=(A+B)+C.

If A and B are m » n matrices, we write A + (—1)B as A — B and call this
the difference between A and B.

Let
2 3 -5 2 -1 3
A_[4 ’ I] and BL-|:3 5 _2].
Then
T8 Bdd <54 @ % -3
A—B“[4—3 %5 1+2]“[1 -3 3]' -
Application

Vectors in R" can be used to handle large amounts of data. Indeed, a number of
computer software products, notably, MATLAB®, make extensive use of vectors.
The following example illustrates these ideas:

(Inventory Control) Suppose that a store handles 100 different items. The inven-
tory on hand at the beginning of the week can be described by the inventory vector
uin R'%, The number of items sold at the end of the week can be described by
the 100-vector v, and the vector

u—v
represents the inventory at the end of the week. If the store receives a new shipment
of goods, represented by the 100-vector w, then its new inventory would be

u—v-+w. | |
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We shall sometimes use the summation notation, and we now review this
useful and compact notation.

n
By > a; we mean a; + a; + -+ + a,. The letter 7 is called the index of
i=1
summation; it is a dummy variable that can be replaced by another letter. Hence
we can write

n n n
E Qyr= E aj = E ag.
i=1 J=1 k=1

Thus
4

Zﬂ; =a) +ax+ay + a,.

i=1
The summation notation satisfies the following properties:

i n n
L 3 (i +sda; = Y oria; + 3 sia;
i=1

i=1 i=1

n n
2. Y e(ria)) =} _ria
i=1 i=1

£ (Bo) <& (£0)

i=1\j

Property 3 can be interpreted as follows: The left side is obtained by adding all the
entries in each column and then adding all the resulting numbers. The right side
is obtained by adding all the entries in each row and then adding all the resulting

numbers.
If Ay Agyiiis Ay are m x n matricesand ¢, €3, .. ., ¢ are real numbers, then
an expression of the form
c1Ay + Az + -+ Ay (2)
is called a linear combination of A, A», ..., Ay, and ¢y, c3. .... ¢ are called

coefficients.
The linear combination in Equation (2) can also be expressed in summation
notation as

k
ZC{AI: =[.'|Al +£-2A2+"'+Ck‘4k'

i=l

m The following are linear combinations of matrices:

0 =3 3 1 A & B
3|2 3 4|- 5 6 2 B
1 -2 -3 -1 -2 3

2[3 —2]-3[5 0]+4[-2 5],

1 0.1
05| —4|+04| -4
-6 02
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Using scalar multiplication and matrix addition, we can compute each of these
linear combinations. Verify that the results of such computations are, respectively,

-3 -10 % —0.46
3 8 % [—17 16]. and 0.4
I -5 -z 3.08 -
1.t
18.95
p=|1475
8.60

be a 3-vector that represents the current prices of three items at a store. Suppose
that the store announces a sale so that the price of each item is reduced by 20%.

(a) Determine a 3-vector that gives the price changes for the three items.
(b) Determine a 3-vector that gives the new prices of the items.

Solution

(a) Since each item is reduced by 20%, the 3-vector

(—0.20)18.95 =379 299
—020p=| (0201475 | = | =295 | =—| 2.95
(—=0.20)8.60 -1.72 1.72

gives the price changes for the three items.
(b) The new prices of the items are given by the expression

18.95 3.79 15.16
p—020p=|1475| =295 | =] 11.80
8.60 1.72 6.88

Observe that this expression can also be written as
p — 0.20p = 0.80p. |
The next operation on matrices is useful in a number of situations.

If A = [a;]isanm x n matrix, then the transpose of A, AT = [(15 ], is the
n x m matrix defined by a,.Tf. = a ;. Thus the transpose of A is obtained from A by
interchanging the rows and columns of A.

Let
6 2 —4 5 4
A:[g _g 7;] B=|3 -1 2 C=|-3 2
0 4 3 2 -3
2
D=[3 =58 1] E=|-1



Key Terms

Matrix

Rows

Columns

Size of a matrix

Square matrix

Main diagonal

Element or entry of a matrix

P10 Exercises

1. Let
2 -3
A:[ﬁ -
and
7
C=| -4
6

(a) What is aiz, g2z, an’!
(b)Y Whatis by, b3, ?

(e) Whatis ¢ 3, ¢ap, €337

the following graphs:

(a) s
PZ

Py
'P5

3
zraph. Label the vertices Py, 1, ...,
01 0 1
[1 0 0 0
fag A=70 0 0 1
[1 01 0
i G (O R
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Then
4 0 6 3 0
AT=|-2 5 BT=| 2 -1 4|,
3 =2 -4 2 3
T a8 =3 & T : T
C'=|, 5 3| D'=|-5|, ad E'=[2 -1 3].
1 n

Equal matrices
n-vector (or vector)
R". C!f

0, zero vector
Google

Matrix addition
Scalar multiple

4
j] B=|-3
5

. Determine the incidence matrix associated with each of

(b)

. For each of the following incidence matrices, construct a

Ps.

1
1
1
1
0

Difference of matrices
Summation notation
Index of summation
Linear combination
Coefficients
Transpose

0
1
0
0
0

(b) A=

— (O -
==l = e S A o]
coo -=o
oo o

a+b

c—d
finda, b, c,and d.
If

finda, b, c, and d.

5.
a+2b
2e+d

In Exercises 6 through 9, let

1 0
3 2

3 4 5
E=|0 1 4], P‘:[_; fj
3. & 4 <
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10.

11.

12.

13.

14.

16.

. If possible, compute the indicated linear combination:

Chapter 1  Linear Equations and Matrices

00 0
and O=|0 0 0
0 0 0

. 1f possible, compute the indicated linear combination:

(fa) C+Eand E+C by A+ B
¢) D—F (d) —-3C —-50
(e) 2C —3E fy 2B+ F

3D+ 2F

3A 4+ 2A and 5A
2D+ Fyand 2D + 2F
(243)Dand2D 43D
3B+ D)

(a) (b) 3(2A) and 6A
(c)
(d)
(e)
(f)

19.

. If possible, compute the following:

{a) AT and (AT)"

b) (C+EY andCT + ET

(¢) (2D +3F)7" (d) b— DT

e) 2AT + B H 3D —-2F)"

. If possible, compute the following:

(b} (A—B)"
(d) 3AT —5BT)T
) (C+E+FNH

(a) (24)"
(©) (3BT —24)7
(e) (—A) and —(A")

21.

3
[s the matrix [0 (2}] a linear combination of the matri-

I 0 1 0
- 9 o} e~
ces {0 J and [0 0:|, Justify your answer.

Is the matrix {?}

1 : oy
1] a linear combination of the ma-

10 10
: e
trices [0 1] and [0 0] ? Justify your answer.
Let
-
12 3 1 0 o0 =
A=16 2 3 and L= |0 1 0
5 2 4 0o 0 1

I A is a real number, compute Al5 — A.
If Aisann x n matrix, what are the entries on the main
diagonal of A — A"? Justify your answer.

Explain why every incidence matrix A associated with a
araph is the same as AT,

. Let the n x n matrix A be equal to A?. Briefly describe

the pattern of the entries in A.
If x is an n-vector, show thatx + 0 = x.

17.

18.

20.

Show that the summation notation satisfies the following
properties:
" " "
(a) Z[ﬂ' + si)ai = Zr,m + Zs,m
i=1 de={ Te=t
"

(b) ic(rm,) i (Zr;a,)
pe=1 vi=1

i=

" m m i
Show that Z (z a; | = Z a,-,-).

im1 \j=1 =1 \i=1
Identify the following expressions as true or false. If true,
prove the result: if false, give a counterexample.

(a) i{a‘ +1)= (ia‘) +n
i=1 i=l
.

(5

n i "n L
o 5g)-[5]2)
j=1 =l =1 i=1

A large steel manufacturer. who has 2000 employees,
lists each employee’s salary as a component of a vector
u in R¥, If an 8% across-the-board salary increase has
been approved, find an expression involving u that gives
all the new salaries.

A brokerage firm records the high and low values of the
price of IBM stock each day. The information for a given
week is presented in two vectors, tand b, in B3, showing
the high and low values, respectively. What expression
gives the average daily values of the price of IBM stock
for the entire 5-day week?

. For the software you are using, determine the commands

to enter a matrix, add matrices, multiply a scalar times a
matrix, and obtain the transpose of a matrix for matrices
with numerical entries. Practice the commands, using the
linear combinations in Example 13.

. Determine whether the software you are using includes

a computer algebra system (CAS), and if it does, do the
following:

(a) Find the command for entering a symbolic matrix.
(This command may be different than that for enter-
ing a numeric matrix.)

(b) Enter several symbolic matrices like

O a b
A_|:u v LLJ 4 B_[d e f]

Compute expressions like A + B, 24, 34 + B,
A — 2B, AT + B”, etc. (In some systems you must
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explicitly indicate scalar multiplication with an as- matrix. If there is, display the graphs for the incidence

terisk.) matrices in Exercise 3 and compare them with those that

® 24, For the software you are using, determine whether there you drew by hand. F-XPIE_““’ why the computer-generated
is a command that will display a graph for an incidence graphs need not be identical Lo those you drew by hand.

DEFINITION 1.6

m Matrix Multiplication

In this section we introduce the operation of matrix multiplication. Unlike ma-
trix addition, matrix multiplication has some properties that distinguish it from
multiplication of real numbers.

The dot product, or inner product, of the n-vectors in R"

ay by

(5] bz
a=| . and b=

ai] b”

is defined as
n

a-b=ab +abr+-- +a,b, = Za;br‘-*

i=1

The dot product is an important operation that will be used here and in later
sections.

The dot product of
1 2
-2 3
u= 3 and v = 2
4 1
is
u-v=(12)+ (=2)(3) + 3 (=2) + B(1) = —6. |
x 4
leta=|2]|andb= |1 |.Ifa-b=—4, find x.
3 2
Solution
We have
ab=4dx+2+6=-4
dx +8=—4
x=-3. | |

“The dot product of vectors in C" is defined in Appendix B.2.



a2

Chazter | Lincor Eguations and Madrices

DEFIMITIOMN 1.7

FIGURE 1.4

[ omiputing & Conrse Avernge) Suppose that an instrocear uses foor prodes o
detemning o shadenl's course gverape: quiznes, bwn hourly exame, und a Aol exzm,
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Ll e
0 -1 ey |
130 6z
.30 i

and compuling
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Theue the stedent’s course average is 77.1. |
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A= |w, |isnivm = naris oind B = [ b | isa s moteix, chei the peoduct
pf A and & denoled A5, is the w = 0 maris C = [I.|| ] defined by

"-.:_.'_'Jilnl_l i l':l:E.r?_ll * o r].l.l‘i'_l._l

1
_Z"'“'L"L-' (=i <m, 1 =j=<uk

(Ll

Equation (1) savs chat the £, fib element inoile prodact imaicis s e dob aped-
net uf the mmspose of U ithonoss, rose, LA T—thal 3s, Droms (A1 ol the Th
;.':llun'ln.n.'-nl_,l:.l'l]. ol &2 this i shivemin Figure 14,

S HEEEAERES ik &
I B S I Tl PRERGRRE . B
I Bip b ool by
re, (Al By @a v Oy F 3 H
i _'bl Ill n_l.l Ipﬂ-_
CTIRI T i,
bl TR Ela
£y A (e
I'.r H
Val  Hazf i
= .l.'-. =
o, LA ool (8L = b= gy
|

Cihegrir Cha tha preslue:taf A nd 8 s dad oo ool whisn s sumbee ol raws
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Let
r | =1 k]
| r I -
A= _? i 'I':I and B o= I -! —.Ii T
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A B = AB
mxp r ®n mxn
the same
FIGURE 1.5 size of AB
Then

A [(1)(—2) + @)@+ D@ DG+ @)= +(—1)(1)]

BG=D+DEH +H2) GBS+ (D(=3) + @D

=[s 3] '

Compute the (3. 2) entry of AB.

Solution
It AB = C, then the (3. 2) entry of AB is ¢y, which is (rows(A))” - col-(B). We

now have
0 4
rows(ANT ccolb(B)=| 1|.|—-1]=-5.
-2 2 -

It AB = lil§j| find x and y.

Solution
We have
1 x 3 2 24+4x+ 3y 147
AB:[Z i 1] j =|i474+y-]=li6]'

244x+3y=12
y=06,

Then

sox=—2andy = 6. u
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EXAMPLE 7

EXAMPLE 8

The basic properties of matrix multiplication will be considered in the next
section. However, multiplication of matrices requires much more care than their
addition, since the algebraic properties of matrix multiplication differ from those
satisfied by the real numbers. Part of the problem is due to the fact that AB is
defined only when the number of columns of A is the same as the number of rows
of B. Thus, if A is anm x p matrix and B is a p » n matrix, then AB is anm x n
matrix. What about BA? Four different situations may occur:

1. BA may not be defined; this will take place if n % m.

2. If BA is defined, which means that m = n, then BA is p x p while AB is
m x m; thus, if m = p, AB and B A are of different sizes.

3. I AB and BA are both of the same size, they may be equal.
4. If AB and B A are both of the same size, they may be unequal.

If Aisa2 x 3 matrix and B is a 3 x 4 matrix, then AB is a 2 x 4 matrix while BA

is undefined. w
Let Abe2 x 3andlet Bbe 3 x 2. Then AB is 2 x 2 while BA 15 3 x 3. | |
Let

Then

Thus AB # BA. |

One might ask why matrix equality and matrix addition are defined in such
a natural way, while matrix multiplication appears to be much more complicated.
Only a thorough understanding of the composition of functions and the relation-
ship that exists between matrices and what are called linear transformations would
show that the definition of multiplication given previously is the natural one. These
topics are covered later in the book. For now, Example 10 provides a motivation
for the definition of matrix multiplication.

(Ecology) Pesticides are sprayed on plants to eliminate harmful insects. However,
some of the pesticide is absorbed by the plant. The pesticides are absorbed by her-
bivores when they eat the plants that have been sprayed. To determine the amount
of pesticide absorbed by a herbivore, we proceed as follows. Suppose that we have
three pesticides and four plants. Let a;; denote the amount of pesticide i (in mil-
ligrams) that has been absorbed by plant j. This information can be represented
by the matrix

Plant1 Plant2 Plant3 Plant4

2 3 -+ 3 Pesticide 1
A= 3 2 2 5 Pesticide 2 .
4 1 6 4 Pesticide 3
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Now suppose that we have three herbivores, and let 5;; denote the number of plants
of type i that a herbivore of type j eats per month. This information can be repre-
sented by the matrix

Herbivore |  Herbivore 2 Herbivore 3

20 12 8§ Plant 1
B 28 15 15 Plant 2

30 12 10 Plant3 ~

40 16 20 Plant 4

The (i. j) entry in AB gives the amount of pesticide of type i that animal j has
absorbed. Thus, if i =2 and j = 3, the (2, 3) entry in AB is

(rowa(ANT - col3(B) = 3(8) + 2(15) + 2(10) + 5(20)
= 174 mg of pesticide 2 absorbed by herbivore 3.

If we now have p carnivores (such as a human) who eat the herbivores, we can
repeat the analysis to find out how much of each pesticide has been absorbed by
each carnivore. w

It is sometimes useful to be able to find a column in the matrix product AB
without having to multiply the two matrices. It is not difficult to show (Exercise
46) that the jth column of the matrix product AB is equal to the matrix product
Acol;(B).

Let
1 2
A= 3 4 and B = |i : T:I
—1 5

Then the second column of AB is

2 3 7
Acolx(B) = 3 4 { } = 17
5 7 u
Remark If u and v are n-vectors (n x 1 matrices), then it is easy to show by
matrix multiplication (Exercise 41) that
u-v=u v

This observation is applied in Chapter 5.

B The Matrix—Vector Product Written in Terms of Columns

Let
apl (25 T ¢4 P
az| dz2 -+ G2

Ay am2 - Qmn
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be an m x n matrix and let

be an n-vector, that is, an n x 1 matrix. Since A ism x n and ¢is n x 1, the matrix
product Ac is the m > 1 matrix

- T
an diz - A €l (row(A))" - ¢
axy axn - au (&) (row2(ANT ¢
Ac = =
; T
Lml Am2 -+ dmn Cn (row,,(A))" - ¢
(2)
ayc) +appcs + -+ @l
az|c) +ancy + - -+ daCy
L Am1 €1+ @22 + - - A G Cy
This last expression can be written as
dayy a2 iy
asy as aap
8] x +ca 3 Franaity
: : 3)
Am Am2 yn
= ¢jcoly (A) | cacola(A) + -- -+ ¢ye0l, (A).

Thus the product Ac of an m » n matrix A and an n x | matrix ¢ can be written as
a linear combination of the columns of A, where the coefficients are the entries in
the matrix ¢.

In our study of linear systems of equations we shall see that these systems can
be expressed in terms of a matrix—vector product. This point of view provides us
with an important way to think about solutions of linear systems.

| ExampLe 12 [
2
2 -1 -3
A_.|:4 ) _2] and c¢= fi

Then the product Ae, written as a linear combination of the columns of A, is

2
2 -1 -3 2 -1 -3 -5
se=[2 72 S| g |=ele] (5] =)
4
If Aisanm x p matrix and B is a p x n matrix, we can then conclude that
the jth column of the product AB can be written as a linear combination of the



columns of matrix A, where the coefficien
matrix B:

1.3 Matrix Multiplication 27

ts are the entries in the jth column of

colj(AB) = Acol;(B) = byjcol | (A) + byjcaly(A) + - - - + byjcol ,(A).

If A and B are the matrices defined in Example 11, then

The columns of AB as linear combinations

4 7 6
T:I =| & 17 16
17 7 1

of the columns of A are given by

[~ ] 1 2
colj(AB)=| 6| = Acol|(B)=-2 31434
L 17 ] =1 5
i 1 2
col(AB) = | 17 | = Acola(B) =3 3|+2|4
L, —1 5
I ] 1 2
cols3(ABY= | 16 [ = Acols(B)=4| 3 |+1|4].
L. L | —1 5 H
B Linear Systems
Consider the linear system of m equations in n unknowns,
anxy + dpxz + -+ diky = by
x| + GnXs + -+ ayx, = by
(4
A1 X1 T ApaXy + - App Xy = bm-
Now define the following matrices:
ap dpz [P R by
ax  an azy X2 by
A= X= § b=
Ay 2 ynn Xn bm
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Then
ay ap - dp Xy
Iy dxm - dyy X2
Ax =

Ll hy2  ccc Omp Xn (5)

[ anxy + apxs + - + dinXs
anxy + anixa + -+ donXy

L )X =l Apa X2 o R Ay Xy

The entries in the product Ax at the end of (5) are merely the left sides of the
equations in (4). Hence the linear system (4) can be written in matrix form as

Ax=b.

The matrix A is called the coefficient matrix of the linear system (4), and the

matrix
ay  ap - apy b
ay  an ay | b
Q1 Auz - e | Dy

obtained by adjoining column b to A, is called the augmented matrix of the linear
system (4). The augmented matrix of (4) is written as [A ; b]. Conversely, any
matrix with more than one column can be thought of as the augmented matrix
of a linear system. The coefficient and augmented matrices play key roles in our
method for solving linear systems.

Recall from Section 1.1 that if

by =by = =bp=0

in (4), the linear system is called a homogeneous system. A homogeneous system
can be written as

Ax =10,
where A is the coefficient matrix.
m Consider the linedr system
—2x + z=35
2x+ 3y —4dz=
3x 4+ 2y +2z2=3.
Letting
-2 0 1 % 5
A= 2 3 4|, x=|y and b=]|7
3 2 2 Z 3



1.3 Matrix Multiplication 29

we can write the given linear system in matrix form as
Ax=bh.

The coefficient matrix is A, and the augmented matrix is

-2 0 Lo @
2 3 —-417
3 % B.8 -

| exampie 15 A
2 -1 3 14
3 b 2435
is the augmented matrix of the linear system

2y —y 4 g =4
3x + 2z =5. |

We can express (5) in another form, as follows, using (2) and (3):

[ ay1x) + apxs + o+ dixy,
@ Xy + anXy + 0 Ay Xy

| 1 X1+ ApaXz + - Ay Xy

appxy appxn Xy
a1 Xy axxs 2y Xy
= + N
| w1y X2 e X
dajpy apz iy
azy azz (25
=x . o N e i =
(7] A2 yn

= xi coli(A) + x2 col2(A) + - - + x,, col, (A).

Thus Ax is a linear combination of the columns of A with coefficients that are the
entries of x. It follows that the matrix form of a linear system, Ax = b, can be
expressed as

x;col [A) + x;col,(A) + -+ + x, col ,(A) = b. (6)
Conversely, an equation of the form in (6) always describes a linear system cf the
form in (4).
m Consider the linear system Ax = b, where the coefficient matrix
3 1 2 " 4
4 -5 6 ; 1
A= 0 7 _a| X= X_g , and b= 0
=1 2 D e 2
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Writing Ax = b as a linear combination of the columns of A as in (6), we have
3 1 2 -+
" 4 - —5 o 6 _ |1
B o il -3 0
-1 2 0 2 m
The expression for the linear system AX = b as shown in (6), provides an
important way to think about solutions of linear systems.
Ax = b is consistent if and only if b can be expressed as a linear combination
of the columns of the matrix A.
We encounter this approach in Chapter 2.
Key Terms
Dot product (inner product) Coefficient matrix
Matrix—vector product Augmented matrix
m Exercises
In Exercises I and 2, compute a+b. =3
r 4 3. Leta=b= 2 |.Ifa-b=17 find x.
1. (a) a= 2i|.b=|i 1] x
- 4. Determine the value of x so that v+ w = 0, where
(b) a= 73]h:[ 1] 1 .c'|
L2 -2 ~3 )
W= 4 and w— =% [
[ 4 1 . i J
© a=| 2[,b={3 &
| —1 6 5. Determine valuesof x and ysothatv.w=0andv-u =
m _ % 2 1
1 1 O,wherev=|1|.w=| -2 |.andu=| 8
d)y a=|1],b=|0 y 1 2
| 0 L] 6. Determine values of x and y sothatv.w =0andv-u =
roo 37 x x 0
2. a= li|.|3=|iq 0,wherev=|1|,w=| -2 |.andu=]| -9 |.
S i ¥ 0 ¥
: 1 1] sind
(b) a= —l]h:[l % Letw:[cma].Compmew-w.
E -2 g
) we== | @ = 0 8. Find all values of x so thatuw - = 50, whereu = | 3
| 3 1 4
5
[ 1 1 2
i a=|0l.p=10 9. Find all values of x so that vev =1, where v = | —1
0 0 b3




10. LclA:[l

Consider the following matrices for Exercises 11 through 15!

11.

12

H

13

14

15

16.

y
]mdB: X
1

2 X
3 -1 2

If AB = [:} find x and y.

’ 1
2 3]
A= . B=|2 1],
jz 1 4 : 5
(3 —1 3
a=l& & 3z D=|:3 ‘2],
2 5
L2 1 3 i
2 =k 5 =] 2
E=|0 1 4|, and F= 0 4
L3 2 1 35

[f possible, compute the following:

(a) AB (b) BA () FTE

id) CB+D  (¢) AB+ D?* where D> =DD
[f possible, compute the following:

(a) PA+B (b) EC () CE

(d) EB+F (e) FC+D

[f possible, compute the following:

(a) FD—-3B (by AB —2D
(¢ F"B+D (d) 2F — 3(AE)
(e) BD+AE

If possible, compute the following:

(a) A(BD) (b) (AB)D

(¢) A(C+E) (d) AC + AE

(e) (2AB)" and 2(AB)" (D) A(C —3E)

If possible, compute the following:

{m) AT (b) (A")"

fe) (AB)' (d) B"A"

(¢) (C+E)YBandC'"B+E"B

if) A(2B)and 2(AB)

LetA=[1 2 —3],B=[-1 4 2].and
C=[-3 0 1].If possible, compute the following:

(a) ABT ) cA” (¢) (BATC
d) A"B (e) CC” i ¢*c
(g) BTCAAT
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2 3
17. LetA=| -1 4|and B = il 3.
1 2 4
0 3

Compute the following entries of AB:

(a) the (1,2)eniry (b) the (2, 3) entry

(¢) the (3, 1) eniry (d) the (3, 3) entry

4 10 A 1
18. If I, = I:U I] and D = [—l _2]. compute D/,
and [, D.

19. Let
1 2 2 -1
A=[3 2] and .H=|i_3 4].

Show that AB # BA.

20. If A is the matrix in Example 4 and O is the 3 x 2 matrix
every one of whose entries is zero, compute AQ.

In Exercises 21 and 22, lei

1 A —
|

]

oW b R

and
1 0 -1 2
B = {3 3 -3 4
4 2 5 I

21. Using the method in Example 11, compute the following
columns of AB:

(a) the first column (b) the third column

22. Using the method in Example 11, compute the following
columns of AB:

(a) the second column (b) the fourth column

23. Let
-3 -+ 2
A= 3 and e= | 1|.
-1 =2 4

Express Ac as a linear combination of the columns of A.

24, Let
-1
4 P
4

Express the columns of AB as linear combinations of the
columns of A.

[ )
—_—2

A=

W M=

2
4 3 and B =
0

o W -
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25.

26.

27.

28.

29.

30.

31.

32.

Chapter 1  Linear Equations and Matrices
3
2 -3 1
LelA:[l N 4]andB: ;

{a) Verify that AB = 3a, + 5a, + 2a;, where a; is the
jtheolumnof A for j =1, 2, 3.

. . _ | row (AN B

(b) Verify that AB = [(row;{A))B:I'

{a) Find a value of r so that AB” = 0, where
A=[r 1 —2]andB=[1 3 -1].

{b) Give an alternative way to write this product.

Find a value of 7 and a value of s so that ABT = 0, where

A=l r 1]andB=[-2 2 5]

{a) Let A be an m x n matrix with a row consisting en-
tirely of zeros. Show that if B is an n x p matrix,
then A B has a row of zeros.

(b) Let A be an m x n matrix with a column consisting
entirely of zeros and let B be p x m. Show that BA
has a column of zeros.

-3 2 1 ; ;

Let A = [ 45 0] with a; = the jth column of A,

7 =1,2,3. Verify that

T T

aja; aja, ajay
i :
A'A=|ala, ala, ala,
ala; ala, ala;
Consider the following linear system:

2¢p+ 30 =3+ ut+ xs= 7
3x + 2x4 + 3xs = -2
2x; -+ 3% — dxy = 3

x4+ x4+ xs= A,

{a) Find the coefficient matrix.
(b) Write the linear system in matrix forn.

{c) Find the augmented matrix.

Write the linear system whose augmented matrix is
-2 -1 0 4 5
-3 2 7 8 | £
1 ¢ o 2 i 4
| 0 1 316
Write the following linear system in matrix form:
—2x 4+ 3x; =5
X —3x =4

34.

35.

36.

37.

38.

a9

. Write the following linear system in matrix form:

2y 4+ 362 =0
v+ x3 =0
Iy — x2=0

Write the linear system whose augmented matrix is

Z 1 & &0
| &= % 9|3
= =% 3l2
2 1 3 410

3 =1 2 0143

® |2 1|4 3!l2
0 0 0 010

How are the linear svstems obtained in Exercise 34 re-
lated?
Write each of the following linear systems as a linear
combination of the columns of the coefficient matrix:
(@) 3 +2x4+ xs— 4

X — xa+4dx=-2

Write each of the following linear combinations of
columns as a linear system of the form in (4):

@ x é] +x2 H i B]

1 0 3 1 2
M) x| 2|41 |+x|4]+x]|3]=]5
=1 2 5 4 8

Write each of the following as a linear system in matrix
form:

S HESHEIHER

1 2 1 0
) vy |1 |+l |[4+x({2]=]0
2 0 2 0

Determine a solution to each of the following linear sys-
tems. using the fact that AX = b is consistent if and only
il b is a linear combination of the columns of A:

1 2 1 x 0
(@ |3 6 =3||x|=]0
01 —1||lx 0
i & § 47| M 20
m (2 3 4 1| =]20
3 4 1 2f]* 20



40.

41.
42.

43.

EEH

45.

46.

1
Construct a coefficient matrix A so thatx = | 0
1

isa

solution to the system Ax = b, where b = . Can

O R

there be more than one such coefficient matrix? Explain.
Show that if w and v are n-vectors, thenu-v=u’ v.

Let A be anm x n matrix and 8 ann x p matrix. What, if
anything, can you say about the matrix product AB when
{a) A has a column consisting entirely of zeros?

{(b) B has a row consisting entirely of zeros?

If A = [a;]isann x n matrix, then the trace of A,
Tr(A). is defined as the sum of all elements on the main

diagonal of A, Tr(A) = 3 a;;. Show each of the follow-
i=l1

ng:
(a) TricA) = ¢ Tr(A), where ¢ is a real number
by Tr(A4 B)=Tr(A)+Ti(B)

(e) Tr(AB) = Tr(BA)

(d) Tr(A") = Tr(A)

e) Tr(ATA)Y =10

Compute the trace (see Exercise 43) of each of the fol-
lowing matrices:
2 2 3
(a) [; n:l (by |2 4 4
Z 3
3 -2 -5
1 0 0
e (O 1 0
0 0 1

Show that there are no 2 x 2 matrices A and B such that
1 0
AB— BA =
[0 1

{a) Show that the jth column of the matrix product AB
is equal to the matrix product Ab;, where b; is the
jth column of B. It follows that the product AB can
be written in terms of columns as

AB =[Ab;  Ab: Ab, .

(b) Show that the ith row of the matrix product AB is
equal to the matrix product a; B, where a; is the ith
row of A. It follows that the product AB can be
written in terms of rows as

[:;f;]
M

47.

48.

49,

50.
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Show that the jth column of the matrix product AB is a
linear combination of the columns of A with coefficients
the entries in b, the jth column of B.
The vector

20

30

80

10

gives the number of receivers, CD players, speakers, and
DVD recorders that are on hand in an audio shop. The

vector
200
. |7120
80
|_ 70
gives the price (in dellars) of each receiver, CD player,

speaker, and DVD recorder, respectively. What does the
dot product u - v tell the shop owner?

(Manufacturing Costs) A furniture manufacturer
makes chairs and tables, each of which must go through
an assembly process and a finishing process. The times
required for these processes are given (in hours) hy the

matrix

Assembly  Finishing
process process

=Ly 4]

The manufacturer has a plant in Salt Lake City and an-
other in Chicago. The hourly rates for each of the pro-
cesses are given (in dollars) by the matrix

Chaur
Table *

Salt Lake
City Chicago
B= 9 10 Assembly process
. 10 12 Finishing process

What do the entries in the matrix product AB tell the
manufacturer?

(Medicine) A diet research project includes adults and

children of both sexes. The composition of the partici-
pants in the project is given by the matrix

Adults  Chaldren
e 80 120 Male
B 100 200 Female *

The number of daily grams of protein, fat, and carbohy-
drate consumed by each child and adult is given by the

matrix
Carbo-
Protein Fat hydrate
B— [ 20 20 20 ] Adult

10 20 30 Child ~
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52.
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{a) How many grams of protein are consumed daily by
the males in the project?

{b) How many grams of fat are consumed daily by the

(c) Show that (ka)+b=a- (kb) =k(a+h).

Let A be anm x n malrix whose entries are real numbers.
Show that if AAT = O (the m x m matrix all of whose

53.

females in the project? entries are zero), then A = 0.

= 54. Use the matrices A and C in Exercise 11 and the ma-
trix multiplication command in your software to compute
AC and C A. Discuss the results.

® ss. Using your software, compute B? B and B B for

Let x be an n-vector.

{a) Is it possible for x « x to be negative? Explain.

(by Ifx.x =0, whatisx?

Let a, b, and ¢ be n-vectors and let k be a real number.
(a) Show thata-b="h-a.

(b) Showthat(a+b):-c=a-c+b-c.

B:[l

Discuss the nature of the results.

m Algebraic Properties of Matrix Operations

In this section we consider the algebraic properties of the matrix operations just
defined. Many of these properties are similar to the familiar properties that hold
for real numbers. However, there will be striking differences between the set
of real numbers and the set of matrices in their algebraic behavior under certain
operations—for example, under multiplication (as seen in Section 1.3). The proofs
of most of the properties will be left as exercises.

Theorem 1.1 Properties of Matrix Addition

Let A, B, and C be m x n matrices.
(a) A+ B=B+A.

(b) A+(B+C)=(A+B)+C.
(c) There is a unique m x n matrix O such that

A+0=A4 (1)
for any m x n matrix A. The matrix O is called the m x n zero matrix.
(d) Foreach m x n matrix A, there is a unique m x n matrix D such that
A+D=0. (2)

‘We shall write D as —A, so (2) can be wrilten as
A+ (—A)=0.
The matrix — A is called the negative of A. We also note that —A is (—1)A.

Proof
(a) Let
A=la;],
A+B=C=|cy].

B=[b;],
and B+A=D=/[d;].
We must show that ¢;; = d;; forall i, j. Now ¢;; = a;; + by; and di; = by + aj;

forall i, j. Since a;; and b;; are real numbers, we have a;; +b;; = b;; +a;;, which
implies that ¢;; = d;; for all 4, j.
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(¢) Let U = [u;; ]. Then A + U = A if and only if' a;; + u;; = a;;, which holds
if and only if u;; = 0. Thus U is the m x n matrix all of whose entries are zero: U
is denoted by O. m

The 2 x 2 zero matrix is

If

then
4—1+0 Of _|4+0 =14+0|_[|4 =1
2 3 0 0ol |240 3+0| |2 31" =
The 2 x 3 zero matrix is
s 0 0 0
|0 0 0
1 3 -2 -1 -3 2
lfA:{_2 4 3i|,then—A=|i 7 ol _3]. m

Properties of Matrix Multiplication

(a) If A, B, and C are matrices of the appropriate sizes, then
A(BC) = (AB)C.
(b) Il A, B, and C are matrices ol the appropriate sizes, then
(A+ B)C = AC + BC.
(c) If A, B, and C are matrices of the appropriate sizes, then
C(A+B)=CA+CB. 3

Proof

(a) Suppose that Aism x n, Bisn x p, and C is p x g. We shall prove the

result for the special case m = 2, n = 3, p = 4, and ¢ = 3. The general preof is

completely analogous.
LetA=ay;],B=[by;],C=[cy;],AB=D=[d;], BC =E = [ey],

(AB)C = F = [ fi;],and A(BC) = G = [ g;; |. We must show that f;; = g for

alli, j. Now

4 4 3
fii= i diveri = E E airbey |
k=1 k=1 \ir=l1
“The connector “if and only if” means that both statements are true or both statements are false.

Thus (i) if A+ U = A. then a;; +u;; = a;;: and (ii) if a;; +w;; = a,;. then A + U = A. See Appendix
C, "Introduction to Proofs.”
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and

3

3 3
B = E Air€rj = E iy
r=1. r=1

4
(Z brkfkj) s
k=1

Then, by the properties satisfied by the summation notation,

4

fij = Z(ﬂilb!k + aiabw + aizbapcy;

k=1

4 4 4
=y Z bixcrj + ain szkck, + a3 Zb:;kfk,‘
o= k=1 =1

3 4
= ajy (Zbrkck;‘) = 8ij-
r=I

k=1

The proofs of (b) and (c) are left as Exercise 4.

and
1 0
2 3
C=r6 o
2 1
Then
0 3
A(BC}:B i i] 8§ —4
9 3
and
1 0
18 =1 ‘& 187|2 —3
(AB)C=|:16 § -8 6} 0 0
21

=]
8]
%]
[§8]

3 0 -1 3

2

0

3

0

2—[43 16

i 1230
2
0| _[43 16
3|~ |12 30
0

56
8
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15 1 3 -1 18 0
ac+me= +[3 T]=[5 5 .

Recall Example 9 in Section 1.3, which shows that AB need not always
equal BA. This is the first significant difference between multiplication of
matrices and multiplication of real numbers.

and (verify)

Theorem 1.3 Properties of Scalar Multiplication
If 7 and s are real numbers and A and B are matrices of the appropriate sizes, then
(a) r(sA) = (rs)A
(b) (r +8)A =rA+sA
(¢) r(A+B)=rA+rB
(d) A(rB) =r(AB)=(rA)B
Proof
Exercises 13, 14, 16, and 18. Bill

|_Exampie 5 [
-2 1

9% =3 1
Then E
12 6 9 24 12 18
2(3’4):2{ 6 —9 12]:)2 -18 24]:6’4'
‘We also have
6 —4 27
& 3 3 32 -10 16 ‘
A(zs)_[2 e 4} 4 0 -2 -[0 s ZB]MZ(AB;.
0 2 4] -

m Scalar multiplication can be used to change the size of entries in a matrix to meet
prescribed properties. Let

3
7
A= 2
1
Then for k = .l,, the largest entry of kA is 1. Also if the entries of A represent the
volume of products in gallons, for k = 4, kA gives the volume in quarts. |

So far we have seen that multiplication and addition of matrices have much in
common with multiplication and addition of real numbers. We now look at some
properties of the transpose.
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Theorem 1.4 Properties of Transpose
If r is a scalar and A and B are matrices of the appropriate sizes, then
@) (ATY =4
() (A+B) =AT +B7
(¢) (AB)T =BTAT
(d) rA)T =rAT
Proof
We leave the proofs of (a), (b), and (d) as Exercises 26 and 27.
(c) Let A = [@a;; | and B = [b;; |; let AB = C = [¢;; |. We must prove that ¢,
is the (i, j) entry in BT AT, Now

n n
T e N T T
B = Z“Jk bri = E ay; biy
k=1 k=1

n
=Y blal, = the (i, j) entry in BT AT B
k=1
Let
EXAMPLE 7 o 1 2 3 i s )
=2 0 1 i i
Then
1 -2 3 3
AT=12 o0 and BT=|-1 2
3001 oS |
Also,
4 1
A+B=[4 ! 5] and (A+B)T=|1 2
1 20
50
Now
4 1
AT+B" =1 2|=A4+B)".
50 -
EXAMPLE 8 L
1 3 & T 2
A=[2 1 3} and B=|2 2
3 -1
Then

_fim 5 v [ 7
AB-I:_! _3] and (AB) *[5 _3].
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On the other hand,
: 0 2 3
AT=(3 -1 and BT=[1 ” 1].
2 3 h
Then
BTAT = [1§ ;} = (4B)".
iE | |
We also note two other peculiarities of matrix multiplication. If @ and b are
real numbers, then ab = () can hold only if a or b is zero. However, this is
not true for matrices.
EETI ¢
L 2 4 -6
A_|:2 4:| and B_|:_2 3:|.
. " 0 0
then neither A nor B is the zero matrix, but AB = [0 0}. | |
If a, b, and c are real numbers for which ab = ac and a # 0, it follows
that b = ¢. That is, we can cancel out the nonzero factor a. However, the
cancellation law does not hold for matrices, as the following example shows.
| exampie 10 i
1 2 21 -2 7
A_[Z 4]. B_[B 2]. . c__{ 2 4]-
then
8 .5
AB = AC = :
g [ 16 lﬂ]
but B # C. &

We summarize some of the differences between matrix multiplication and
the multiplication of real numbers as follows: For matrices A, B. and C of
the appropriate sizes,

1. AB need not equal BA.

2. AB may be the zero matrix with A # O and B # O.
3. AB may equal AC with B # C.

In this section we have developed a number of properties about matrices and
their transposes. If a future problem involves these concepts, refer to these prop-
erties to help solve the problem. These results can be used to develop many more
results.
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Key Terms

Properties of matrix addition
Zero matrix

Properties of matrix multiplication

m Exercises

i
. Prove Theorem 1.1(d).

. Verify Theorem 1.2(a) for the following matrices:

Prove Theorem 1.1(b).

1 3 -1 3 2
a=[y 3] o= 5 0]

0
and C=[3 -1
1 2

4. Prove Theorem 1.2(b) and (c).

10.

. Let A be anm x n matrix and C = [n 2

] LE[A:[

. Verify Theorem 1.2(c) for the following matrices:

2 =3 2 0 1 2
=[5 0 2] =l s 2]

; Letd = [a,—_,] be the n x n matrix defined by a; = k

and a;; = 0if 7 # j. Show that if B is any n x n matrix,
then AB = kB.
Cm]

a 1 x m matrix. Prove that

i

CA = Z('J—AJ‘.
=1
where A; is the jth row of A.
sinf/
cosfl |

{a) Determine a simple expression for A%,

cos
—sinf

{(b) Determine a simple expression for A°,

{c) Conjecture the form of a simple expression for A*,
k a positive integer.

{d) Prove or disprove your conjecture in part (c).

. Find a pair of unequal 2 x 2 matrices A and B, other than

those given in Example 9, such that AB = 0.
Find two different 2 x 2 matrices A such that
10

=i gy o3

11.

12.
13.
14.
15.

16.
17.

18.
19.

20.

21.

22.

Properties of scalar multiplication
Properties of transpose

Find two unequal 2 x 2 matrices A and B such that
1 0

w1 0

Find two different 2 x 2 matrices A such that A* = 0.

Prove Theorem 1.3(a).

Prove Theorem 1.3(b).

Verify Theorem 1.3(b) forr = 4,5 = =2, and A =
2 —3
4 2|

Prove Theorem 1.3(c).

Verity Theorem 1.3(c) for r = -3,
4 2 B 2
A=|1 -3|, and B= 4 3
3 2 -2 1

Prove Theorem 1.3(d).
Verify Theorem 1.3(d) for the following matrices:

i, B -1 3 2
A:[z —1]' B:[ 1 =3 4]'
and r = -3,

The matrix A contains the weight (in pounds) of objects
packed on board a spacecraft on earth. The objects are
to be used on the moon where things weigh about é as
much. Write an expression kA that calculates the weight
of the objects on the moon.

(a) A is a 360 x 2 matrix. The first column of A is
cos 0%, cos 17, ..., cos3597; and the second column
is sin0”, sin1°, ..., 5in 3597, The graph of the or-
dered pairs in A is a circle of radius 1 centered at
the origin. Write an expression kA for ordered pairs
whose graph is a circle of radius 3 centered at the
origin,

(b) Explain how to prove the claims about the circles in
part (a).

Determine a scalar r such that Ax = rx, where

o[t ] e =[]



23.

25.
26.
27.
28.

29,

30.

31.

32,

33.

35
36.

Determine a scalar r such that Ax = rx, where

— |

and: xX=
4 -4 5

Prove that if Ax = rx for n x n matrix A, n x |1 matrix
x, and scalar r, then Ay = ry. where y = sx for any
scalar s.

Determine a scalar s such that A’x = sx when AX = rx.
Prove Theorem 1.4(a).

Prove Theorem 1.4(b) and (d).

Verify Theorem 1.4(a), (b), and (d) for

1 § 4 § 2 =1
A‘[z 1-3]' B=[—2 I 5]'

and r = —4.

Verify Theorem 1.4(c) for

3 -1
A = : . 2 and B=(2 4
2 1 =3
1 2
Let

2 3 -1
A=|-1|, B=]| -2 and C= 5
3 —4 |

(a) Compute (AB")C.
(b) Compute B7C and multiply the result by A on the
right. (Hine: BTC is 1 % 1).

(¢) Explain why (ABT)C = (BT C)A.

Determine a constant k such that (kA)" (kA) = 1. where
-2

A= |
-1

be used?

Find three 2 x 2 matrices, A, B, and C such that AB =

AC with B # Cand A # O,

Let A be ana x n matrix and ¢ a real number. Show that

ifcA=0,thenc=00r A= 0.

Determine all 2 x 2 matrices A such that AB = BA for

any 2 x 2 matrix B.

Show that (A — B)" = AT — B".

Letx; and x: be solutions to the homogeneous linear sys-

tem Ax = 0.

{a) Show that x; + X, is a solution.

(b) Show that x; — x5 is a solution.

. Is there more than one value of k that could

1.4

37

38

= 39,

40.
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(c) For any scalar r, show that rx, is a solution.

(d) For any scalars r and s, show that rx; + sx» is a
solution.

Show that if AXx = b has more than one solution, then

it has infinitely many solutions. (Hint: If x; and x, are

solutions, consider X3 = rx; + §X;, where r +s5 =1.)

Show that if x; and x; are solutions to the linear system

Ax = b, then x; — x; is a solution to the associated ho-
mogeneous system Ax = 0.

Let
6 —1 1 10.5
A=|0 13 -16 and x= | 21.0
0 g8 -—11 10.5
(a) Determine a scalar » such that Ax = rx.

Is it true that A”x = rx for the value r determined
in part (a)?
Repeat Exercise 39 with

(b)

=335 =3 3.60
A= 120 205 -6.20
—3.60 -2.40 3.85
12.5
and x= | =125
6.25
0.1 0.01 :
LetA = [0.[)0! ﬂ.m(li]' In your software, set the

display format to show as many decimal places as possi-
ble. then compute

B=10xA,
C=A4+A4+A+A+A+A+A+A+ALA,
10 summands
and
D=B-C.

If D is not @, then you have verified that scalar mul-
tiplication by a positive integer and successive addition
are not the same in your computing environment. (It is
not unusual that 12 # (), since many computing envi-
ronments use only a “model™ of exact arithmetic, called
floating-point arithmetic.)

Let A = I:I. In your software, set the display to

) .
show as many decimal places as possible. Experiment to
find a positive integer k such that A + 107* % A is equal
to A. If you find such an integer k, you have verified
that there is more than one matrix in your computational
environment that plays the role of O.
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m Special Types of Matrices and Partitioned
Matrices

We have already introduced one special type of matrix O, the matrix all of whose
entries are zero. We now consider several other types of matrices whose structures
are rather specialized and for which it will be convenient to have special names.

Ann x nmatrix A = [a;; ] is called a diagonal matrix if a;; = 0 fori # j.
Thus, for a diagonal matrix, the terms off the main diagonal are all zero. Note
that O 1s a diagonal matrix. A scalar matrix 18 a diagonal matrix whose diagonal
elements are equal. The scalar matrix [, = [d;j]. where d;; = 1 and d;; = 0 for
i # j,is called the n x n identity matrix.

Let

| IS I 28 0 1 0 D
A=|M2 0]l B=E|102 0, a8l HS=10 1. 8

00 3 00 2 [ S A |
Then A, B, and I5 are diagonal matrices; B and [5 are scalar matrices; and /5 is

the 3 x 3 identity matrix. m

It is easy to show (Exercise 1) that if A is any m x n matrix, then
Al,=A and I,A=A.

Also, if A is a scalar matrix, then A = r I, for some scalar r.
Suppose that A 18 a square matrix. We now define the powers of a matrix, for
p a positive integer, by

AP v o
—_—_—
p factors

If Aisn x n, we also define

Al=1,.

For nonnegative integers p and g, the familiar laws of exponents for the real num-
bers can also be proved for matrix multiplication of a square matrix A (Exercise 8):

APAT = APT and  (AP) = AP,
It should also be noted that the rule
(AB)' = A" B?

does not hold for square matrices unless AB = BA (Exercise 9).
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Ann x n matrix A = [a;; | is called upper triangular if a;; = 0 fori > j.
Itis called lower triangular if a;; = 0 fori < j. A diagonal matrix is both upper
triangular and lower triangular.

The matrix
ML 3 37
A= |0 3 5§
L8 Q@ 2]
is upper triangular, and
(1 0 07
Bi= |23 @
L3 & 2]
is lower triangular. m

A matrix A with real entries is called symmetric if A7 = A.

A matrix A with real entrics is called skew symmetric if AT = —A.
f 2 3

A=12 4 5| isasymmetric matrix. i
.3 5 6
@ 2 3

B=|-2 0 —4]|isaskew symmetric matrix. | |
-3 4 0

We can make a few observations about symmetric and skew symmetric matri-
ces: the proofs of most of these statements will be left as exercises.

It follows from the preceding definitions that if A is symmetric or skew sym-
metric, then A is a square matrix. If A is a symmetric matrix, then the entries of A
are symmelric with respect to the main diagonal of A. Also, A 1s symmetric if and
only if a;; = aj;, and A is skew symmetric if and only if a;; = —a ;. Moreover, if
A is skew symmetric, then the entries on the main diagonal of A are all zero. An
important property of symmetric and skew symmetric matrices is the following: If
A is an n x n matrix, then we can show that A = § + K, where § is symmetric
and K is skew symmetric. Moreover, this decomposition is unique (Exercise 29).

B Partitioned Matrices

It we start out with an m x n matrix A = [a,-j] and then cross out some, but not
all. of its rows or columns, we obtain a submatrix of A.

Let
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If we cross out the second row and third column, we get the submatrix

{ L 2Z 4]
3 0 -3 m
A matrix can be partitioned into submatrices by drawing horizontal lines be-

tween rows and vertical lines between columns. Of course, the partitioning can be
carried out in many different ways.

| ExamPLE 6 [

I
1
1
P l __________ - [AII A:z]
@y Ay Gy |y dss Ay Ap
can be partitioned as indicated previously. We could also write

ap  dp o dpy dyg ) das

1
, | s mE
az; axp | axy | as Ap Ap A
A= o el =l T e wes |3 ()
az) a3 i a3y a3y 3 a3s Ay Axn An
a4) 42 | 443 Q44 | A4

which gives another partitioning of A. We thus speak of partitioned matrices. i

m The augmented matrix (defined in Section 1.3) of a linear system is a partitioned
matrix. Thus, if Ax = b, we can write the augmented matrix of this system as

[4b] s}

If A and B are both m x n matrices that are partitioned in the same way, then

A + B is produced simply by adding the corresponding submatrices of A and B.

Similarly, if A is a partitioned matrix, then the scalar multiple cA is obtained by

forming the scalar multiple of each submatrix.
If A is partitioned as shown in (1) and

by biibiz by

by by E bas b By By
B=|by by iby by |=|By Bn
by by by by B3y B
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Let
1 011 0
al0.213 -1 TAu A
12 0i-4 0| |[An Ay
o 110 3
and let
2 0 BET 1 =
FYu O . T 1i-1 2 2| _[Bu Bn
113 070 1 0| [Ba Bz
=B =1 BET 0 =l
Then
3 g @ri 2 =
w6 12 0/-3 7 5| [Gi Cu
s | 3 =2 _{Cﬁ Can |’
o s PN B

where Cy; should be Ay B + A2B2. We verify that Cyy is this expression as
follows:

(1 0][2 0o o0 1 0 1 3 0
AyBi+ ApBy = 0 2] {0 | 1]-1—[3 _]][_3 _1 2]
& 4 @ L1 3 0
i g 2 6 10 =2
[ 3§ o
I o]zc“' -

This method of multiplying partitioned matrices is also known as block mul-
tiplication. Partitioned matrices can be used to great advantage when matrices
exceed the memory capacity of a computer. Thus, in multiplying two partitioned
matrices, one can keep the matrices on disk and bring into memory only the sub-
matrices required to form the submatrix products. The products, of course, can be
downloaded as they are formed. The partitioning must be done in such a way that
the products of corresponding submatrices are defined.

Partitioning of a matrix implies a subdivision of the information into blocks, or
units. The reverse process is to consider individual matrices as blocks and adjoin
them to form a partitioned matrix. The only requirement is that after the blocks
have been joined, all rows have the same number of entries and all columns have
the same number of entries.

B=|:§:|. ¢=[1 -1 0], and D:[Z g _g].

Let
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DEFINITION 1.10

Theorem 1.5

Then we have

g § -4
N D
. D]=[356 7 5}‘ [C]z ?_Z ----- (5)

and

Adjoining matrix blocks to expand information structures is done regularly in
a variety of applications. It is common for a business to keep monthly sales data
for a yearin a 1 x 12 matrix and then adjoin such matrices to build a sales history
maltrix for a period of years. Similarly, results of new laboratory experiments are
adjoined to existing data to update a database in a research facility.

We have already noted in Example 7 that the augmented matrix of the linear
system Ax = b is a partitioned matrix. At times we shall need to solve several
linear systems in which the coefficient matrix A is the same, but the right sides of
the systems are different, say, b, ¢, and d. In these cases we shall find it convenient
to consider the partitioned matrix [A ‘hie: d]. (See Section 4.8.)

B Nonsingular Matrices

We now come to a special type of square matrix and formulate the notion corre-
sponding to the reciprocal of a nonzero real number.

An n x n matrix A is called nonsingnlar, or invertible, if there exists ann x n
matrix B such that AB = BA = I,;; such a B is called an inverse of A. Otherwise,
A is called singular, or noninvertible.

Remark In Theorem 2.11, Section 2.3, we show that if AB = [,,, then BA = [,,.
Thus, to verify that B is an inverse of A, we need verify only that AB = I,,.

1 -1
B is an inverse of A. [ |

[=1[%}

LetA = i 2} and B = { ] Since AB = BA = I>, we conclude that

The inverse of a matrix. if it exists, is unique.

Proof
Let B and C be inverses of A. Then

AB=BA=1, and AC=CA=1,.

We then have B = Bl, = B(AC) = (BA)C = I,C = C, which proves that the
inverse of a matrix. if it exists, is unique. 2]
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Because of this uniqueness, we write the inverse of a nonsingular matrix A as
A~ Thus
AA V= AT A= 1,

Let
If A" exists, let

Then we must have

=2 3]l D-nfs )

a+2 b+2d|_[1 O
3a+4c 3b+4da| |0 1|

Equating corresponding entries of these two matrices, we obtain the linear systems

so that

a+2c=1 . b+2d=0
Ja+4c=0 3b+4d = 1.

The solutions are (verify) a = =2, ¢ = 35, b = 1, and d = —3. Moreover, since

—
2
the matrix
-2
3 __
3

also satishes the property that

¥ -;Hi bt

we conclude that A is nonsingular and that

Let
If A—! exists, let

Then we must have

wat=a alle a)=e=lo 3]
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Theorem 1.6

Corollary 1.1

Theorem 1.7

Theorem 1.8

so that
a+2 b+2d|_[1 0
2a+4c 2b+4d| |0 1]°
Equating corresponding entries of these two matrices, we obtain the linear systems

a+2c=1 b+2d=0
and
2a+4c=0 2b+4d = 1.

These linear systems have no solutions, so our assumption that A" exists is in-
correct. Thus A is singular. ]

We next establish several properties of inverses of matrices.

If A and B are both nonsingular n % n matrices, then AB is nonsingular and
(AB)y' = B71A7L.
Proof

We have (AB)(B™'A™") = A(BB™DYA™! = (AL)A™! = AA~! = I,. Similarly,
(B~'A=")(AB) = I,. Therelore AB is nonsingular. Since the inverse of a matrix

is unique, we conclude that (AB)~' = B~1A~", il
If Ay, Az, ..., A, are n x n nonsingular matrices, then A;Aj - - - A, is nonsingular
and (A1As--- A) ' = AIAT - AT

Proof

Exercise 44. [in
If A is a nonsingular matrix, then A~ is nonsingular and (A~")~! = A.

Proof

Exercise 45. it

If A is a nonsingular matrix, then A7 is nonsingular and (A" = (A7)~

Proof
We have AA~! = [,. Taking transposes of hoth sides, we get

ANYAT =17 =4,
Taking transposes of both sides of the equation A~' A = I,,, we find, similarly, that
(ATAY =1,

These equations imply that (A—1)T = (AT)~1, i}

a1 2

It
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then from Example 11
= =2 1 =
A 1={ - J and (AHT =
)

Also (verify),

(35117

—
|
[T

(=117

AT=B i’] and (A7) !'=

2 f—

Suppose that A is nonsingular. Then AB = AC implies that B = C (Exer-
cise 50), and AB = O implies that B = O (Exercise 51).

It follows from Theorem 1.8 that if A is a symmeltric nonsingular matrix, then
Alis symmetric. (See Exercise 54.)

B Linear Systems and Inverses

I A is an n x n matrix, then the linear system Ax = b is a system of n equations in
n unknowns. Suppose that A is nonsingnlar. Then A~! exists, and we can multiply

Ax = b by A ! on the left on both sides, yielding
Al Ax)=A"'b
(A'Ax=A""p
Lx=A""b
x=A"'b. 2)

Moreover, X = A~ 'b is clearly a solution to the given linear system. Thus, if A is
nonsingular, we have a unique solution. We restate this result for emphasis:

If A is an n x n matrix, then the linear system Ax = b has the unique solution
x = A 'b. Moreover, if b = 0, then the unique solution to the homogeneous
system Ax =0is x =0.

If A is a nonsingular n x n matrix, Equation (2) implies that if the linear
system Ax = b needs to be solved repeatedly for different b’s, we need compute
A~! only once; then whenever we change b, we find the corresponding solution
x by forming A=!'b. Although this is certainly a valid approach, its value is of a
more theoretical rather than practical nature, since a more efficient procedure for
solving such problems is presented in Section 2.5.

Suppose that A is the matrix of Example 11 so that

If
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then the solution to the linear system Ax = b is

e—ay_ |2 1|8 -10
2

- [2].
e [3]-[2) :

B Application A: Recursion Relation; the Fibonacci Sequence

On the other hand, if

then

In 1202, Leonardo of Pisa, also called Fibonacci,” wrote a book on mathematics
in which he posed the following problem: A pair of newborn rabbits begins to
breed at the age of 1 month, and thereafter produces one pair of offspring per
month. Suppose that we start with a pair of newly born rabbits and that none of
the rabbits produced from this pair dies. How many pairs of rabbits will there be
at the beginning of each month?

At the beginning of month 0, we have the newly born pair of rabbits P;. At the
beginning of month 1 we still have only the original pair of rabbits P;, which have
not yet produced any offspring. At the beginning of month 2 we have the original
pair P, and its first pair of offspring, P,. At the beginning of month 3 we have the
original pair Py, its first pair of offspring P> born at the beginning of month 2, and
its second pair of offspring, P;. At the beginning of month 4 we have Py, P», and
Py; Py, the offspring of Py; and Ps, the offspring of P>. Let u,, denote the number
of pairs of rabbits at the beginning of month n. We see that

g =1; #tiy=1 wp=2 Hyp=3, =5 iyp=18:
The sequence expands rapidly, and we get
1,1,2,3.5.8,13,21, 34, 55. 89, 144, . ..

To obtain a formula for u,, we proceed as follows. The number of pairs of
rabbits that are alive at the beginning of month n is u,_;, the number of pairs
who were alive the previous month, plus the number of pairs newly born at the
beginning of month n. The latter number is u,_,, since a pair of rabbits produces
a pair of offspring, starting with its second month of life. Thus

Uy = Uy | + Uy 2. (3)

*Leonardo Fibonacei of Pisa (about 1170-1250) was born and lived most of his life in Pisa, Italy.
When he was about 20, his father was appointed director of Pisan commercial interests in northern
Africa, now a part of Algeria. Leonardo accompanied his father to Africa and for several years traveled
extensively throughout the Mediterranean area on behalf of his father. During these travels he learned
the Hindu-Arabic method of numeration and calculation and decided to promote its use in Italy. This
was one purpose of his most famous book. Liber Abaci. which appeared in 1202 and contained the
rabbit problem stated here.
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That is, each number is the sum of its two predecessors. The resulting sequence of
numbers, called a Fibonacci sequence, occurs in a remarkable variety of applica-
tions, such as the distribution of leaves on certain trees, the arrangements of seeds
on sunflowers, search techniques in numerical analysis, the generation of random

numbers in statistics, and others.

To compute u,, by the recursion relation (or difference equation) (3), we have
to compute wg. i1y, ..., t, 1., i, ;. This can be rather tedious for large n. We now

develop a formula that will enable us to calculate u,, directly.
In addition to Equation (3), we write

so we now have

Up—| = Up—1,

Uy =Uy—| + Uy

Uy =1u,_,,

which can be written in matrix form as

[

We now define, in general,

i
. [ m]
Uy
so that

e []
-[2]-()

Then (4) can be written as

Thus

w, | |1 1 Uy
[{ .| - 1 0 Up_2 i

1 1

and A:I:1 0

Up—1
vy Whpeo=| " , and w,_; =
Uy_»

Wy = AW",E.

W = Awp
wo = Aw; = A(Awp) = Awy
w3 = Awy = A(A%wg) = A’w,

Wy = A“_IWQ.

Hence, to find u,, we merely have to calculate A”~!, which is still rather tedious if
n is large. In Chapter 7 we develop a more efficient way to compute the Fibonacci
numbers that involves powers of a diagonal matrix. (See the discussion exercises

in Chapter 7.)

] O=k=n-1)

Uy
LT

]
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Key Terms

Diagonal matrix
Identity matrix

Powers of a matrix
Upper triangular matrix
Lower triangular matrix

Symmetric matrix
Skew symmetric matrix
Submatrix

Partitioning

Partitioned matrix

m Exercises

1.

10.

11.

1 2
i LetA:[3 72i|and82[7

{a) Show thatif A is any m x n matrix, then [, A = A
and Al, = A.

(b) Show that if A is an n x n scalar matrix, then
A = rl, for some real number r.

. Prove that the sum, product, and scalar multiple of diag-

onal, scalar, and upper (lower) triangular matrices is di-
agonal, scalar, and upper (lower) triangular, respectively.

. Prove: If A and B are n x n diagonal matrices, then

AB = BA.

Let
3 2 -1 6 -3 2
0 0 0 0 0 3

Verify that A + B and AB are upper triangular.

. Describe all matrices that are both upper and lower trian-

zular.
1

-1
3 :l Compute each

of the following:

(a) A? (b) B? (€) (AB)?
1 0 -1 001
i Lefada= | 2 1 l{amd B = | -1 1 1
3 1 0 2 01
Compute each of the following:
(a) A° (b) B (e) (AB)

. Let p and ¢ be nonnegative integers and let A be a square

matrix. Show that

APAY = APY and (A7) = AP,

. [f AB = BA and p is a nonnegative integer, show that

(AB)? = APB”,

If' p 15 a nonnegative integer and ¢ is a scalar, show that
{cA)? =¢PAP,

For a square matrix A and a nonnegative integer p, show
that (AT)? = (A?)7.

12,

135

14.

15;

16.

17.
18.

19.

20.
21.

22.

23,

24,

Nonsingular (invertible) matrix

Inverse

Singular (noninvertible) matrix

Properties of nonsingular matrices

Linear system with nonsingular coefficient matrix
Fibonacci sequence

For a nonsingular matrix A and a nonnegative integer p,
show that (A#)~' = (A~ H".

For a nonsingular matrix A and nonzero scalar k, show
that (kA)~! = tA-L.

(a) Show that every scalar matrix is symmetric.

(b) Isevery scalar matrix nonsingular? Explain.

(c) Isevery diagonal matrix a scalar matrix? Explain.
Find a 2 x 2 mawix B # O and B # [, such that

AB = BA, where A = [1

5 1 ] How many such matri-

ces B are there?
Find a 2 x 2 matrix B # O and B # [, such that

AB = BA, where A = I:[l] ?] How many such matri-

ces B are there?

Prove or disprove: Forany n x n matrix A, ATA = AA”,

(a) Show that A is symmetric if and only if a;; = a;:
foralli, j.

(b) Show that A is skew symmetric if and only if 2;; =
—aj; forall i, j.

(c) Show thatif A is skew symmetric, then the elements
on the main diagonal of A are all zero.

Show that if A is a symmetric matrix, then A” is sym-
metric.

Describe all skew symmetric scalar matrices.

Show that if’ A is any m % n matrix, then AA” and AT A
are symmetric.

Show that if A is any n x n matrix, then

(a) A+ AT is symmeiric.

(h) A — AT is skew symmetric.

Show that if A is a symmetric matrix, then ALk =
2,3, ..., is symmetric.

Let A and B be symmetric matrices.

(a) Show that A + B is symmetric.

(b) Show that AB is symmetric if and only if AB =
BA.



27.

29,

30.

3k

32.

33

35.

36.

37.
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{a) Show that if' A is an upper triangular matrix, then
AT is lower triangular.

{b) Show that if A is a lower triangular matrix, then A"
is upper triangular.

[f A 1s a skew symmetric matrix, what type of matrix is

AT? Justify your answer.

Show that if A is skew symmetric, then the elements on

the main diagonal of A are all zero.

Show that if A is skew symmetric, then A is skew sym-

metric for any positive odd integer k.

Show that if A is an n x n matrix, then A = §+ K, where

§ i1s symmetric and K 1s skew symmetric. Also show that

this decomposition is unique. (Hinr: Use Exercise 22.)

Let
| i -2

Find the matrices § and K described in Exercise 29.
2

Show that the matrix A = [ 3] is singular.

4 6

4 0 0
fFD=]10 =2 0
0 0 3

Find the inverse of each of the following matrices:

N - B 12
(a) .4—[5 2] (b)A—[z l]

If A is a nonsingular matrix whose inverse is [i :]

find A.

Jind D',

find (AB) .

Suppose that
|t 2
et 5.

Solve the linear system Ax = b for each of the following
matrices b:

W[ o[

The linear system ACX = b is such that A and C are
nonsingular with

o2 1) en gmoef)

38.

39.

40.

41.

42.

43.

45.
46

47.

48.

49.

50.

53

Find the solution x.

The linear system A’x = b is such that A is nonsingular

with
3 0 -1
ot (P L . —
A —[2 !] and b7|: 2].

Find the solution x.

The linear system A”x = b is such that A is nonsingular

with
. |*% & ; s l
A _[I 0 and b= 2|

Find the solution x.

The linear system C” Ax = b is such that A and C are
nonsingular, with

=[] =02 wn=[]

Find the solution x.

Consider the linear system Ax = b, where A is the ma-
trix defined in Exercise 33(a).

(a) Find a solution if b = [i]

(b) Find a solutionif b = [g]

Find two 2 x 2 singular matrices whose sum is nonsin-
gular.

Find two 2 x 2 nonsingular matrices whose sum is sin-
gular.

Prove Corollary 1.1.

Prove Theorem 1.7.

Prove that if one row (column) of the n x n matrix A con-
sists entirely of zeros. then A is singular. (Hint: Assume
that A is nonsingular; that is, there exists an 7 x n matrix
B such that AB = BA = 1. Establish a contradiction.)
Prove: If A is a diagonal matrix with nonzero di-

agonal entries an, da. ... . d, then A is nonsingu-
lar and A" is a diagonal matrix with diagonal entries

l/ﬂ;l. ]/t!;'_! ..... [/ﬂ,”,.
2 0 0

LetA= [0 -3 0. Compute A*
0o 0 5

For an n x n diagonal matrix A whose diagonal entries

are dayy, @, ..., dy,. compute A” for a nonnegative inte-
ger p.

Show that if AB = AC and A is nonsingular, then
B=C.
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Show that if A is nonsingularand AB = O forann x n
matrix B, then B = 0.

b
LetA = |

d
only if ad — be £ 0.
Consider the homogeneous system Ax = 0, where A is
it > n. If A is nonsingular, show that the only solution is
the trivial one, x = 0.

. Show that A is nonsingular if and

Prove that if A is symmetric and nonsingular, then A~
1S symmetric.

Formulate the method for adding partitioned matrices,
and verify your method by partitioning the matrices

1 3 - 3 21
A= 2 1 0 and B=|-2 3 1
2 -3 1 4 1 5

m two different ways and finding their sum.
Let A and B be the following matrices:

r2 1 3 4 27
1 2 3 ~1 4
2 3 2 | 4
REle 4 3 3 8
3 | 2 4 6
12 =1 3 5 7
and
B! 2 3 4 17
2 f &8 B =1
B=1]1 5 4 2 3
2 3 5 7
|3 2 4 6 1]

Find AB by partitioning A and B in two different ways.

What type of matrix is a linear combination of symmetric
matrices? Justify your answer.

What type of matrix is a linear combination of scalar ma-
trices? Justify your answer.

The matrix form of the recursion relation

(3%

g =0, y =1, w, =5up) — Oliy.z, n=

IS writlen as
Wy = AW,, 2y

w, _ | Hu—a = - iy
R Hy-2 : =l Hy—1 .
5 -6
I 0l

where

and A=

L |

60.

61,

(a) Using

uy 1
“lue] T |0O]"
compute Wi, w-, and ws. Then make a list of the
terms of the recurrence relation ws, us. 4.

(b) Express w,_, as a matrix times w.

The matrix form of the recursion relation

ug=1, 0y =2, u, =6u,_y Bup_y, n=2

is written as

W1 = AW,_3,
where
[uu—l] [ “u]
Wy_1= v Wy = '
2 LT
6 -8
and A= [-l 0]
(a) Using

w=[]=[1]

compute wy, w2, ws, and wy. Then make a list of

the terms of the recurrence relation s, ws, g, us.
(b)
For the software you are using, determine the com-
mand(s) or procedures required to do each of the follow-
ing:
(a)

(b)

Express w,— as a matrix times wp,

Adjoin a row or column to an existing matrix.

Construct the partitioned matrix

A O

0O B
from existing matrices A and B, using appropriate
size Zero matrices.

(¢)
Most software for linear algebra has specific commands
for extracting the diagonal, upper triangular part, and
lower triangular part of a matrix. Determine the corre-
sponding commands for the software that you are using,
and experiment with them.

Extract a submatrix from an existing matrix.

Determine the command for computing the inverse of a
matrix in the software you use. Usually, if such a com-
mand is applied to a singular matrix, a warning message
is displayed. Experiment with your inverse command to
determine which of the following matrices are singular:



. In Section 1.1

1 & 3 i % 3
@@ |4 5 6 M |4 5 6
TE U 78 9
1 2 4
B | =t 2 =
5 % |5

. If B is the inverse of n x n matrix A, then Definition 1.10

auarantees that AB = BA = [,. The unstated assump-
tion is that exact arithmetic is used. If computer arith-
metic is used to compute AB, then AB need not equal [,
and, in fact, BA need not equal AB. However, both AB
and BA should be close to /,,. In your software, use the
inverse command (see Exercise 63) and form the prod-
ucts AB and BA for each of the following matrices:

1 L I
fa) A= ]3 (b) A= 2. T
iz
1 1
15 3
8 - 1 1 1
G A=l7 3 3
i, & i
3 4 5

we studied the method of elimination
for solving linear systems Ax = b. In Equation (2)
of this section we showed that the solution is given by
x = A~ 'h. if A is nonsingular. Using your software’s
command for automatically solving linear systems, and
its inverse command, compare these two solution tech-
niques on each of the following linear systems:

® 6.
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F H f—’ 2
(@ A=|0 % §,b: 2
oo oL
0 0 3 3
(b) A =[a;] wher
1
& =ie———r,
> fis P
i.j=1,2,...,10, and b — the first column of {;.

. For the software you are using, determine the command

for obtaining the powers A%, A%, ..
A. Then, for

. of a square matrix

e R I
oo

A

:

o000 -
=il
oo -0 o

0 1
Lo 0
compute the matrix ssquence AY k=234 5 6 De-
scribe the behavior of A* as & — oc.
Experiment with your software to determine the bzhav-

ior of the matrix sequence A* as k — oo for each of the
following matrices:

11 | 0
(a) A= : : h) A=| 0 1 =1
i = O 1

m Matrix Transformations

In Section 1.2 we introduced the notation R" for the set of all n-vectors with real
entries. Thus R” denotes the set of all 2-vectors and R® denotes the set of all
3-vectors. It is convenient to represent the elements of R? and R? geometrically
as directed line segments in a rectangular coordinate system.® Our approach in
this section is intuitive and will enable us to present some interesting geometric
applications in the next section (at this early stage of the course). We return in
Section 4.1 to a careful and precise study of 2- and 3-vectors.

The vector

X
y

=

in R? is represented by the directed line segment shown in Figure 1.6. The vector

X
xX=|y

-
&

“You have undoubtedly seen rectangular coordinate systems in your precalculus or calculus courses.
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7-axis
y-axis
v+ (x, )
X
B 1;( X-axis I
X-axis
FIGURE 1.6 FIGURE 1.7

in R? is represented by the directed line segment shown in Figure 1.7.
m Figure 1.8 shows geometric representations of the 2-vectors
u = S = - and w3 = v
L= g |x W= s 5=

in a 2-dimensional rectangular coordinate system. Figure 1.9 shows geometric
representations of the 3-vectors

1 —1 0
vi=|[|2]|, va= 2|, and va= |0
3 -2 1
in a 3-dimensional rectangular coordinate system. |

FIGURE 1.8 FIGURE 1.9
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Functions occur in almost every application of mathematics. In this section
we give a brief introduction from a geometric point of view to certain functions
mapping R" into R™. Since we wish to picture these functions, called matrix
transformations, we limit most of our discussion in this section to the situation
where m and n have the values 2 or 3. In the next section we give an application of
these functions to computer graphics in the plane, that is, for m and n equal to 2.
In Chapter 6 we consider in greater detail a more general function, called a linear
transformation mapping 8" into R™. Since every matrix transformation is a linear
transformation, we then learn more about the properties of matrix transformations.

Linear transformations play an important role in many areas of mathematics,
as well as in numerous applied problems in the physical sciences, the social sci-
ences, and economics.

If A is an m > n matrix and u is an n-vector, then the matrix product Au is
an m-vector. A function f mapping R" into R" is denoted by f: R" — R"." A
matrix transformation is a function f: R" — R" defined by f(n) = Au. The
vector f(u) in R™ is called the image of u, and the set of all images of the vectors
in R" is called the range of f. Although we are limiting ourselves in this section
to matrices and vectors with only real entries, an entirely similar discussion can be
developed for matrices and vectors with complex entries. (See Appendix B.2.)

(a) Let f be the matrix transformation defined by

f(u) = |:§ T]u

2
The image of u = {_I] is

o[ -2

and the image of B] is [12] (verify).

1 2

(b) Lc:lA:[] E

0 : . : .
| ] and consider the matrix transformation defined by

f(u) = Au.
; 1 g 2
Then the image of | 0 | 1s [Z:I ,theimageof | I | is [2], and the image of
1 3
T
11]is 0 (verify). il
3

Observe that if A is an m x n matrix and f: R" — R™ is a matrix transfor-
mation mapping R" into R"™ thatis defined by f(u) = An, then a vector w in R"™
is in the range of f only if we can find a vector v in R" such that f(v) = w.

ﬁ’\ppem-:l-ix A, dealing with sets and functions, may be consulted as needed.
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y

(x. y)
u
0 X
m (x, —v)

FIGURE 1.10 Reflection
with respect to the x-axis.

LetA = [_; i] and consider the matrix transformation defined by f(u) = Au.

Determine if the vector w = |: T] is in the range of f.

Solution
C ; ; ; v
The question is equivalent to asking whether there is a vector v = l: : ] such that

f(v) = w. We have vz
s v+2wn|_ | 4
A= [—21:. +3v2] = [—1]

or
v+ 2= 4
—2v; + 3va = —1.
Solving this linear system of equations by the familiar method of elimination, we
get vy = 2 and v» = 1 (verify). Thus w is in the range of f. In particular, if
v = {?],Ihenf(v}:w. | |

For matrix transformations where m and n are 2 or 3, we can draw pictures
showing the effect of the matrix transformation. This will be illustrated in the
examples that follow.

Let f: R* — R? be the matrix transformation defined by

flu) = “) 7?]1}.

Thus, ifu = I:;], then

fw=f ([;D B Lj] |

The effect of the matrix transformation f, called reflection with respect to the
x-axis in R, is shown in Figure 1.10. In Exercise 2 we consider reflection with
respect to the y-axis. | |

Let f: R® — R’ be the matrix transformation defined by

¥ - o)
Sm=fFfl|¥]]= (I) (1} g} y
Z =L Z
Then
A_ X
fw=f1]» =L]-
z) 3



FIGURE 1.11

Projection
¥

FIGURE 1.12

-y
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X

Figure 1.11 shows the effect of this matrix transformation, which is called projec-
tion into the xy-plane. (Warning: Carefully note the axes in Figure 1.11.)

Observe that if

-
Il
s

where s is any scalar, then

fw = [:] = f(u.

Hence, infinitely many 3-vectors have the same image vector. See Figure 1.12.

-
Note that the image of the 3-vector v = | v | under the matrix transformation
g: R* — R* defined by
1 00
glvy =10 1 0 ]v
000

X

is | v |. The effect of this matrix transformation is shown in Figure 1.13. The
0

picture is almost the same as Figure 1.11. There a 2-vector (the image f(u)) lies

in the xy-plane, whereas in Figure 1.13 a 3-vector (the image g(v)) lies in the

xy-planc. Observe that f (v) appears to be the shadow cast by v onto the x y-planc.

Let f: R* — R? be the matrix transformation defined by

¥ o 0
fwy=10 r 0 |u
00 r

where r is a real number. It is easily seen that f(u) = ru. If r = 1, f is called
dilation: if 0 < r < 1, f is called contraction. Figure 1.14(a) shows the vector
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FIGURE 1.13

FIGURE 1.14

EXAMPLE 7

fi(u) = 2u, and Figure 1.14(b) shows the vector fz(n) = %u. Thus dilation

stretches a vector, and contraction shrinks it. Similarly, we can define the matrix
transformation g: R* — R* by

r 0
g(u) = [0 r]u

We also have g(u) = ru, so again if r > 1, g is called dilation; if 0 < r < I, g is
called contraction. | |

fr(w) =2u

)

(a) Dilation: > 1 (b) Contraction: 0 <r< 1

A publisher releases a book in three different editions: trade, book club, and
deluxe. Each book requires a certain amount of paper and canvas (for the cover).
The requirements are given (in grams) by the matrix

Book
Trade cfuob Deluxe

s 300 500 800 | Paper
- 40 50 60 Canvas -

Let

denote the production vector, where x|, x3, and x3 are the number of trade, book
club, and deluxe books, respectively, that are published. The matrix transformation
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FIGURE 1.15
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f: R} — R?defined by f(x) = Ax gives the veclor

¥ ]’
where y; is the total amount of paper required and y» is the total amount of canvas
required. |

Suppose that we rotate every point in R* counterclockwise through an angle ¢
about the origin of a rectangular coordinate system. Thus, if the point P has
coordinates (x, y), then after rotating, we get the point P’ with coordinates (x', ¥").
To obtain a relationship between the coordinates of P’ and those of P, we letu be

the vector , which is represented by the directed line segment from the origin

).
to P(x, y). See Figure 1.15. Also, let @ be the angle made by u with the positive
X-axis.

flu) \
Pix, y)

Rotation

Letting r denote the length of the directed line segment from O to P, we see
from Figure 1.15(a) that

x =rcosf, y=rsinf (1)
and
x"=rcos(@ + ¢), y' = rsin(@ + ¢). (2)

By the formulas for the sine and cosine of a sum of angles, the equations in (2)
become

x' =rcosfcos¢p — rsindsing
vy =rsin0cos¢ + rcosdsin¢.

Substituting the expression in (1) into the last pair of equations, we obtain
x'=xcos¢p — ysing, y = xsin¢g + ycosg. (3)
Solving (3) for x and y. we have

x=x'cosp+y'sing and y=—x"sing+ y cosg. 4
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Equation (3) gives the coordinates of P’ in terms of those of P, and (4) expresses
the coordinates of P in terms of those of P’. This type of rotation is used to
simplify the general equation of second degree:
ax’ + bxy —f—cyz +dx+ey+ f=0.
Substituting for x and y in terms of x" and y’, we obtain
LI’I’E + ba)(;}lf + C’}-‘{z + dfxr + E"‘)"‘ 2 ff =0.

The key point is to choose ¢ so that b’ = 0. Once this is done (we might now
have to perform a translation of coordinates), we identify the general equation of
second degree as a circle, ellipse, hyperbola, parabola, or a degenerate form of one
of these. This topic is treated from a linear algebra point of view in Section 8.7.

We may also perform this change of coordinates by considering the matrix
transformation f: R*> — R? defined by

% _|cos¢ —sing || x
f(GD=e el
Then (5) can be written, using (3), as
_[xcos¢p —ysing | _ [
flu) = [xsinqb +_vcos¢i| = [‘ ;
It then follows that the vector f(u) is represented by the directed line segment
from O to the point P’. Thus, rotation counterclockwise through an angle ¢ is a

matrix transformation. i}
Key Terms
Matrix transformation Image Dilation
Mapping (function) Reflection Contraction
Range Projection Rotation
m Exercises
In Exercises 1 through 8, sketch wand its image under each 4. f: R* — R?is acounterclockwise rotation through %v
given matrix transformation f. ) =)
: radians: u = 3
1. f: R* — R? defined by e

s(GD=1e 23] ==[3] 5. iR > R definedby

2. f: R* — R? (reflection with respect to the y-axis) de- #lP = -1 0][x]. . 3
fined by e |, =1 e B |

SR A I P

—» R?isa counterclockwise rotation through 307%;

e A S M
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puter graphics also play a major role in the manufacturing world. Computer-aided
design (CAD) is used to create a computer model of a product and then, by subject-
ing the computer model to a variety of tests (carried out on the computer), changes
to the current design can be implemented to obtain an improved design. One of the
notable successes of this approach has been in the automobile industry, where the
computer model can be viewed from different angles to achieve a most pleasing
and popular style and can be tested for strength of components, for roadability, for
seating comfort, and for safety in a crash.

In this section we give illustrations of matrix transformations f: R — R®
that are useful in two-dimensional graphics.

Let f: R* — R? be the matrix transformation that performs a reflection with
respect to the x-axis. (See Example 4 in Section 1.6.) Then f is defined by

f(v) = Av, where
1 0
A=|:0 _1].

ey 2112

To illustrate a reflection with respect to the x-axis in computer graphics, let
the triangle T in Figure 1.16(a) have vertices

Thus, we have

(=1.4), G;1), and (2.6).

To reflect T with respect to the x-axis, we let

=[]

6+ 6+

<G4 44

2__
e ¥ x
-6-4-2| 2 4 6

74__

76__

FIGURE 1.16 (a) (b)
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and compute the images f(vi), f(v2), and f(v3) by forming the products
(1 0][-1 —1
WEs ]l 4] z{—nl}'
i 073 | 3
0 =1 || t]  |=1]

1 072 2
ey 2L

AVQ =

D -

o

These three products can be written in terms of partitioned matrices as

A[v| ¥ V3]= [:i :;) ﬁé]
Thus the image of T has vertices
(-1,—4), (3.—1), and (2,—6)
and is displayed in Figure 1.16(b). ]

The matrix transformation f: R*> — R? that performs a reflection with respect to
the line y = —ux is defined by

f(v) = Bv.

[ 0 -1
= || =il (}} ’
To illustrate reflection with respect to the line y = —x, we use the triangle T as
defined in Example | and compute the products

o 1=t & 2 -4 -1 —6
B[u "3]=Ll 0i| 4 1 6]={ 1 =3 72]'

Thus the image of T has vertices

where

(—4,1), (—1,-3), and (—6,-2)
and is displayed in Figure 1.17. ||

To perform a reflection with respect to the x-axis on the triangle 7 of Example
1, followed by a reflection with respect to the line y = —x, we compute

B(Avy), B(Ava), and B(Av;).

It 1s not difficult to show that reversing the order of these matrix transformations
produces a different image (verify). Thus the order in which graphics transfor-
mations are performed is important. This is not surprising, since matrix multi-
plication, unlike multiplication of real numbers, does not satisfy the commutative

property.
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FIGURE 1.18

Rotations in a plane have been defined in Example 8 of Section 1.6. A plane
figure is rotated counterclockwise through an angle ¢ by the matrix transformation
f: R? — R?defined by f(v) = Av, where

s [casrb fsinqﬁ]

sin¢ cos ¢

Now suppose that we wish to rotate the parabola y = x? counterclockwise
through 50°. We start by choosing a sample of points from the parabola, say,

(=2.4), (=1,D, (0,0, (3.1, and (3,9.

[See Figure 1.18(a).] We then compute the images of these points. Thus, letting

w=[2] w=[1] w=[o] w=|i] w=[3]

we compute the products (to four decimal places) (verify)

-

—4.3498 —1.4088 0 0.1299 —4.9660
Alvp v, v3 v ¥5]= )

1.0391 —-0.1233 0  0.5437  8.0832
The image points

(—4.3498. 1.0391), (—1.4088. —0.1233). (0.0).
(0.1299,0.5437), and (—4.9660, 8.0832)

are plotted, as shown in Figure 1.18(b), and successive points are connected, show-

ing the approximate image of the parabola. ]
¥ ¥
T8
+6
+4
T2
f f f } x ' J ¥
e 8 o 2 4 2 4

Rotations are particularly useful in achieving the sophisticated effects seen
in arcade games and animated computer demonstrations. For example, to show a
wheel spinning, we canrotate the spokes through an angle ¢, followed by a second
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% [}
rotation through an angle 6, and so on. Let the 2-vector u = [ 1] represent a
ay

spoke of the wheel; let f: R? — R? be the matrix transformation defined by
f(v) = Av, where

__|cos@ —sinf,
~ | sinf;,  cos#,

and let g: R® — R? be the matrix transformation defined by g(v) = Bv, where
a5 {00592 = sinég] .
sin s cos s
‘We represent the succession of rotations of the spoke u by
g(f(u)) = g(Au) = B(Au).

The product Au is performed first and generates a rotation of u through the angle
01 then the product B(Au) generates the second rotation. We have

B(Au) = B(a;col;(A) + axcola(A)) = a;Beol (A) + aBeola(A),

and the final expression is a lincar combination of column vectors Beol; (A} and
Beolp(A), which we can write as the product

[ Beol;(A) Beoly(A)] [‘“} ;
as
From the definition of matrix multiplication, [Bcol](A) Bcolg(A}] = BA, so
we have
B(Au) = (BA)u.

Thus, instead of applying the transformations in succession, [ followed by g, we
can achieve the same result by forming the matrix product 5A and using il to
define a matrix transformation on the spokes of the wheel.

The matrix product BA is given by

BA:[CQSGQ —sinﬂz]{cosé?, —sin&]

sin cosbh sin cos o,
| cos@ycost —sinfasind;  — costhsinf — sinf; cos )
" | sinfhcosB) 4+ cosfysind;  —sinds sinf) + cos A sindy |

Since g(f(u)) = B Au, it follows that this matrix transformation performs a rota-
tion of u through the angle 8, + 0,. Thus we have

__ | cos(dr +62) —sin(@ + 6)
T L sin(d +62)  cos(@ +6) |

Equating corresponding entries of the two matrix expressions for BA, we have the
trigonometric identities for the sine and cosine of the sum of two angles:

cos(0) + 6,) = cos ) cos B, — sin b sin b,
sin(#) + #») = cos B sin 61 + sin b cos 5.

See Exercises 16 and 17 for related results.
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A shear in the x-direction is the matrix transformation defined by

fv) = [(]} If] v,

where k& is a scalar. A shear in the x-direction takes the point (x, y) to the point
(x + ky, y). That s, the point (x, y) is moved parallel to the x-axis by the amount
ky.

Consider now the rectangle R, shown in Figure 1.19(a), with vertices

0,0, 0,2), &0, and (4 2).

If we apply the shear in the x-direction with & = 2, then the image of R is the
parallelogram with vertices

0,0, 42), @40, and (8,2),

shown in Figure 1.19(b). If we apply the shear in the x-direction with k = —3,
then the image of R is the parallelogram with vertices

0.0, (=6,2). &0, and (-2,2).

shown in Figure 1.19(c).
In Exercise 3 we consider shears in the y-direction. =

T 4 Shear k = 2
2
+ } x : e 4§ X
0 2 4 6 o 2 4 6 8 6
(a) (b)

FIGURE 1.19

Other matrix transformations used in two-dimensional computer graphics are
considered in the exercises at the end of this section. For a detailed discussion of
computer graphics, the reader is referred to the books listed in the Further Readings
at the end of this section.

In Examples 1 and 2, we applied a matrix transformation to a triangle, a figure
that can be specified by its three vertices. In Example 3, the figure transformed
was a parabola, which cannot be specified by a finite number of points. In this
case we chose a number of points on the parabola to approximate its shape and
computed the images of these approximating points, which, when joined, gave an
approximate shape of the parabola.

Let f: R? — R? be the matrix transformation called scaling defined by f(v) =

Av, where
h 0
a=[s 4]



FIGURE 1.20
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with i1 and k both nonzero. Suppose that we now wish to apply this matrix trans-
formation to a circle of radius 1 that is centered at the origin (the unit circle).
Unfortunately, a circle cannot be specified by a finite number of points. However,
each point on the unit circle is described by an ordered pair (cos 0, sind), where
the angle @ takes on all values from 0 to 27 radians. Thus we now represent an
cos
sin
the unit circle that are obtained by applying the matrix transformation f are given

by
h 0][cos@ hcosé x'
f(“’z’l“z[o k][sinﬁ]z[ksine]er’]'

We recall that a circle of radius 1 centered at the origin is described by the equation

arbitrary point on the unit circle by the vector n = [ ] Hence the images of

12—}—}'2= 1.

By Pythagoras’s identity, sin® @ +cos® @ = 1. Thus, the points (cos 8, sinf) lie on
the circumference of the unit circle. We now want to write an equation describing
the image of the unit circle. We have

x'=hcos6 and y =ksind,

S0
U

— =cos0, = sinf.
h

}‘r
k

(-G -

which is the equation of an ellipse. Thus the image of the unit circle by the matrix
transformation f is an ellipse centered at the origin. See Figure 1.20. |

It then follows that

Unit circle Ellipse

FURTHER READINGS

Cunningham, Steve. Computer Graphics: Programming, Problem Solving, and
Visual Communication. New Jersey: Prentice Hall, 2007,

Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Hughes. Com-
puter Graphics: Principles and Practice in C, 2d ed. Reading, Mass.: Addison
Wesley, 1996.
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Shirley, Peter, Michael Ashikhmin, Michael Gleicher, Stephen Marschner, Erik
Reinhard, Kelvin Sung, William Thompson, and Peter Willemsen. Fundamen-
tals of Computer Graphics, 2d ed. Natick, Mass.: A. K. Peters, Ltd., 2005.

Key Terms
Computer graphics Rotation Dilation
Computer-aided design (CAD) Contraction Image
Shear

74| Exercises

. Let f: R* — R? be the matrix transformation defined
by f(v) = Av, where

-1 0
A= 1]
that is, f is reflection with respect to the y-axis. Find and

sketch the image of the rectangle R with vertices (1, 1),
(2, 1),(1,3), and (2, 3).

. Let R be the rectangle with vertices (1, 1), (1. 4), (3, 1),
and (3,4). Let f be the shear in the x-direction with
& = 3. Find and sketch the image of R.

. A shear in the y-direction is the matrix transformation
f: R* — R? defined by f(v) = Av, and

a3 B,

where k is a scalar. Let R be the rectangle defined in
Exercise 2 and let f be the shear in the y-direction with
& = —2. Find and sketch the image of R.

. The matrix transformation f: R* — R* defined by
f(v) = Av, where
k0
[

and k is a real number, is called dilation if £ > 1 and
contraction if 0 < k& < 1. Thus, dilation stretches a vec-
tor, whereas contraction shrinks it. If R is the rectangle
defined in Exercise 2, find and sketch the image of R for

@) k=4 ) k=1

. The matrix transformation f: R*> — R* defined by

f(v) = Av, where
k0
a=[t 9]

10.

and & is a real number, is called dilation in the x-
direction if k > 1 and contraction in the x-direction
if 0 < k& < 1. If R is the unit square and f is dilation in
the x-direction with & = 2, find and sketch the image of
R.

The matrix transformation f: R — R® defined by
f(v) = Av, where
1 0
A=o 3]

and k is a real number, is called dilation in the y-
direction if & > | and contraction in the y-direction
if ) < & < 1. If R is the unit square and f is the contrac-
tion in the y-direction with k& = %, find and sketch the
image of R. ;

Let T be the triangle with vertices (5,0), (0,3), and
(2, —1). Find the coordinates of the vertices of the image
of 7 under the matrix transformation f defined by

p ~2 1
.fm=[ 3 4]v.

Let 7" be the triangle with vertices (1, 1), (=3, =3}, and
(2, —1). Find the coordinates of the vertices of the image
af T under the matrix transformation defined hy

4 -3
fiv)= [_4 2}

Let f be the counterclockwise rotation through 607, If T
is the triangle defined in Exercise &, find and sketch the
image of T under f.

Let f; be reflection with respect to the y-axis and let f5
be counterclockwise rotation through /2 radians. Show
that the result of first performing f> and then f; is not the
same as first performing f; and then performing f>.



11.

12.

13.

Let A be the singular matrix [_1, and let T be the

2
4
riangle defined in Exercise 8. Describe the image of T
under the matrix transformation f : R* — R? defined by

f(v) = Av. (See also Exercise 21.)

Let f be the matrix transformation defined in Example 5.
Find and sketch the image of the rectangle with vertices
0,00, (1,0), (1, 1), and (0, 1) for h =2 and k = 3.

Let f: R — R® be the matrix transformation defined
by f(v) = Av. where

1 -1
=[]
Find and sketch the image of the rectangle defined in
Exercise 12.

In Exercises 14 and 15, let fi, fs. [y and fs be the following
matrix transformations:

14.

fi: counterclockwise rotation through the angle ¢
fa: reflection with respect to the x-axis
[y reflection with respect to the y-axis

[ reflection with respect to the line y = x
Let § denote the unit square.

y

(0] 1

Determine two distinct ways lo use the matrix transfor-
mations defined on § to obtain the given image. You may
apply more than one matrix transformation in succession.

(@) v
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(b) ¥

15. Let § denote the triangle shown in the figure.

|
ta
<
5 4

Determine two distinct ways to use the matrix transfor-
mations defined on S to obtain the given image. You may
apply more than one matrix transformation in succession.

(a) b

|
[

]
(&)

() ¥

|
S
ta -+
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16. Refer to the discussion following Example 3 to develop = 20. Consider the unit square S and record § on paper.

17.

the double angle identities for sine and cosine by using
the matrix transformation f( f(u)) = A(Au), where

cosf); —sinf ay
= . and n= .
sin#, cos s
Use a procedure similar to the one discussed after Ex-

ample 3 to develop sine and cosine expressions for the
difference of two angles; 6, — 6.

Exercises 18 through 21 require the use of software that sup-
ports computer graphics.

18.

19.

Define a triangle 7 by identifying its vertices and sketch
it on paper.

{a) Reflect 7" about the y-axis and record the resulting
figure on paper, as Figure 1.

(b) Rotate Figure | counterclockwise through 30° and
record the resulting figure on paper, as Figure 2.

{e) Reflect T about the line v — x, dilate the resulting
figure in the x-direction by a factor of 2, and record
the new figure on paper, as Figure 3.

(d) Repeat the experiment in part (c), but interchange
the order of the matrix transformations. Record the
resulting figure on paper, as Figure 4.

{e) Compare Figures 3 and 4.

() What does your answer in part (e) imply about the

order of the matrix transformations as applied to the
triangle?
Consider the triangle 7" defined in Exercise 18. Record
I" on paper.
(a) Reflect T about the x-axis. Predict the result before
execution of the command. Call this matrix trans-
formation L.
(b) Reflect the figure obtained in part (a) about the y-
axis. Predict the result before execution of the com-
mand. Call this matrix transformation L.

Record on paper the figure that resulted from parts
(a) and (b).

(e)
(d) Examine the relationship between the figure ob-
tained in part (b) and 7. What single matrix trans-
formation Ly will accomplish the same result?

Write a formula involving L, L,, and Lj that ex-
presses the relationship you saw in part (d).

Experiment with the formula in part (e) on several
other figures until you can determine whether this
formula is correct, in general. Write a brief sum-
mary of your experiments, observations, and con-
clusions.

21;

22,

23.

(a) Reflect § about the x-axis to obtain Figure 1. Now
reflect Figure 1 about the y-axis to obtain Figure 2.
Finally, reflect Figure 2 about the line y = —x to
obtain Figure 3. Record Figure 3 on paper.

(b) Compare § with Figure 3. Denote the reflection

about the x-axis as L, the reflection about the y-

axis as L, and the reflection about the line y = —x

as L. What formula does your comparison suggest

when L, is followed by L, and then by L5 on §?

If M;, 1 = 1, 2, 3, denotes the matrix defining L;,
determine the entries of the matrix M; M. M,. Does
this result agree with your conclusion in part (b)?

(c)

(d) Experiment with the successive application of these

three matrix transformations on other figures.

If your computer graphics software allows you to select
any 2 x 2 matrix to use as a matrix transformation. per-
form the following experiment: Choose a singular ma-
trix and apply it to a triangle, unit square, rectangle, and
pentagon. Write a brief summary of your experiments,
observations, and conclusions, indicating the behavior of
“singular” matrix transformations.

If your software includes access to a computer algebra
system (CAS), use it as follows: Let f(u) = Au be the
matrix transformation defined by

—sin#,
cosf,

and let g(v) — Bv be the matrix transformation defined

by

[cos &,
| sing,

sin 6,

_ [cosd,
l cosf,

—sind, ]
(a) Find the symbolic matrix BA.

(b) Use CAS commands to simplify BA to obtain the
matrix

sin(#; + #;) cos(f) + ;)
If your software includes access 0 a computer algebra
system (CAS), use it as follows: Let f(u) = Au be the
matrix transformation defined by

—sind
cost |’

(a) Find the (symbalic) matrix that defines the matrix
transformation f( f(u)).

[cos(@, + ) —sind, + 61)}

[ cost
~ | sin@

(b) Use CAS commands to simplify the matrix obtained
in part (a) so thal you obtain the double angle iden-
tities for sine and cosine.
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- 24, If your software includes access to a computer algebra (a) Find the (symbclic) matrix that defines the matrix

system (CAS), use it as follows:
matrix transformation defined by

0 Y

FIGURE 1.21 Lengthofv.

=]

X

FIGURE 1.22 Lengthofv.

__ | cosd —sind
sin ¢ cos 6

Let f(u) = Au be the transformation f(f(f(f(u)))).
(b) Use CAS commands to simplify the matrix ob-

]A tained in part (a) so that you obtain the identities
for sin(4#) and cos(46).

m Correlation Coefficient (Optional)

As we noted in Section 1.2, we can use an n-vector to provide a listing of data. In
this section we provide a statistical application of the dot product to measure the
strength of a linear relationship between two data vectors.

Before presenting this application, we must note two additional properties that
vectors possess: length (also known as magnitude) and direction. These notions
will be carefully developed in Chapter 4; in this section we merely give the prop-
erties without justification.

The length of the n-vector

L]
vz
b —
Un—1
Uy
denoted as ||v||, is defined as
L T A (1)

If n = 2, the definition given in Equation (1) can be established casily as follows:
From Figure 1.21 we see by the Pythagorean theorem that the length of the directed

line segment from the crigin to the point (v;. v2) is ,/ v% + v%. Since this directed

- v
line segment represents the vector v = [ '], we agree that || v||, the length of the
U2

vector v, is the length of the directed line segment. If n = 3, a similar prool can
be given by applying the Pythagorean theorem twice in Figure 1.22.

It is easiest to determine the direction of an n-vector by defining the angle
between two vectors. In Sections 5.1 and 5.4, we define the angle € between the
nonzero vectors u and v as the angle determined by the expression

u-v
lall vl

In those sections we show that
u-v
-1 = |— <1

[ull fIvil —

Hence, this quantity can be viewed as the cosine of an angle 0 < 0 < 7.
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FIGURE 1.23

We now turn to our statistical application. We compare two data n-vectors x
and y by examining the angle € between the vectors. The closeness of cos@ to
—1 or 1 measures how near the two vectors are to being parallel, since the angle
between parallel vectors is either 0 or 7 radians. Nearly parallel indicates a strong
relationship between the vectors. The smaller | cos 8| is, the less likely it is that the
vectors are parallel, and hence the weaker the relationship is between the vectors.

Table 1.1 contains data about the ten largest U.S. corporations, ranked by mar-
ket value for 2004. In addition, we have included the corporate revenue for 2004.
All figures are in billions of dollars and have been rounded to the nearest billion.

TABLE 1.1
Market Value Revenue

Corporation {in 3 billions) (in $ billions)
General Electric Corp. 329 152
Microsoft 287 37
Pfizer 285 53
Exxon Mobile 277 271
Citigroup 259 108
Wal-Mart Stores 244 288
Intel 197 34
American International Group 195 99
IBM Corp. 172 96
Johnson & Johnson 161 47

Sowrce: Time Almanac 2006, Information Please, Pearson Education, Boston, Mass.,
2003; and hup://www.geohive.com/charts,

To display the data in Table 1.1 graphically, we form ordered pairs, (market
value, revenue), for each of the corporations and plot this set of ordered pairs. The
display in Figure 1.23 is called a scatter plot. This display shows that the data
are spread out more vertically than horizontally. Hence there is wider variability
in the revenue than in the market value.

300 -
250 ~
200 N
150 |- & .|
100 + —

50 & i |

(‘:‘1 50 200 250 300 350
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If we are interested only in how individual values of market value and revenue
go together, then we can rigidly translate (shift) the plot so that the pattern of points
does not change. One translation that is commonly used is to move the center of
the plot to the origin. (If we think of the dots representing the ordered pairs as
weights, we see that this amounts to shifting the center of mass to the origin.) To
perform this translation, we compute the mean of the market value observations
and subtract it from each market value; similarly, we compute the mean of the
revenue observations and subtract it from each revenue value. We have (rounded
to a whole number)

Mean of market values = 240, mean of revenues = 119.

Subtracting the mean from each observation is called centering the data, and the
corresponding centered data are displayed in Table 1.2. The corresponding scatter
plot of the centered data is shown in Figure 1.24.

TABLE 1.2
Centered Market Value Centered Revenue
(in $ billions) (in $ billions)
89 33 e e T
47 —82 150 — : —
45 —66 100 = |
37 152
15 =11 50 = s
4 169 0 .
—43 —85 = e
50 — s
—45 -20 . <
= [ |
—68 =23 "1(}00 =50 0 50 100
-79 -72

FIGURE 1.24

Note that the arrangement of dots in Figures 1.23 and 1.24 is the same; the scales
of the respective axes have changed.

A scatter plot places emphasis on the observed data, not on the variables in-
volved as general entities. What we want is a new way to plot the information
that focuses on the variables. Here the variables involved are market value and
revenue, so we want one axis for each corporation. This leads to a plot with ten
axes, which we are unable to draw on paper. However, we visualize this situation
by considering 10-vectors, that is, vectors with ten components, one for each cor-
poration. Thus we define a vector v as the vector of centered market values and a
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0{’
w

FIGURE 1.25

vector w as the vector of centered revenues:

89 337]
47 =52
45 —66
37 152
el 13 we | -1
4" 169
—43 —85
—45 —20
—68 —-23
—79 -72

The best we can do schematically is to imagine v and w as directed line segments
emanating from the origin, which is denoted by 0 (Figure 1.25).

The representation of the centered information by vectors, as in Figure 1.25,
is called a vector plot. From statistics, we have the following conventions:

* In a vector plot, the length of a vector indicates the variability of the corre-
sponding variable.

¢ In a vector plot, the angle between vectors measures how similar the variables
are to each other.

The statistical terminology for “how similar the variables are™ is “how highly
correlated the variables are” Vectors that represent highly correlated variables
have either a small angle or an angle close to 7 radians between them. Vectors
that represent uncorrelated variables are nearly perpendicular; that is, the angle
between them is near /2.

The following chart summarizes the statistical terminology applied to the ge-
ometric characteristics of vectors in a vector plot.

Geometric Characteristics Statistical Interpretation
Length of a vector. Variability of the variable represented.
Angle between a pair of vectors The variables represented by the vectors
is small. are highly positively correlated.
Angle between a pair of vectors The variables represented by the vectors
is near . are highly negatively correlated.
Angle between a pair of vectors The variables represented by the vectors
is near /2. are uncorrelated or unrelated. The
variables are said to be perpendicular
or orthogonal.

From statistics we have the following measures of a sample of data {x, xa,
. ,)(”,|,I”]:

Sample size = n, the number of data.
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n
E X;

Sample mean = x =

, the average of the data.
n

Correlation coefficient: If the n-vectors x and y are data vectors where the
data have been centered, then the correlation coefficient, denoted by Cor(x. y).
is computed by

X-y

Cor(x,y) = ——.
Il Iyl

Geometrically, Cor(x.y) is the cosine of the angle between vectors X and y.

For the centered data in Table 1.2, the sample size is n = 10, the mean of
the market value variable is 240, and the mean of the revenue variable is 119. To
determine the correlation coefficient for v and w, we compute

Cor(v,w) = cosf = ———_ — (0.2004,
(¥l [Fwl|

and thus

0 = arccos((.2994) = 1.2667 radians = 72.6°.

This result indicates that the variables market value and revenue are not highly
correlated. This seems to be reasonable, given the physical meaning of the vari-
ables from a financial point of view. Including more than the ten top corporations
may provide a better measure of the correlation between market value and revenue.
Another approach that can be investigated based on the scatter plots is to omit data
that seem far from the grouping of the majority of the data. Such data are termed
outliers, and this approach has validity for certain types of statistical studies.

Figure 1.26 shows scatter plots that geometrically illustrate various cases for
the value of the correlation coefficient. This emphasizes that the correlation coef-
ficient is a measure of linear relationship between a pair of data vectors x and y.
The closer all the data points are to the line (in other words, the less scatter), the
higher the correlation between the data.

(a) Perfect positive
correlation;
Cor(x,¥}=L

(b) Perfect negative
correlation:
Cor(x, ¥)=-1.

{c) Less than perfect
positive correlation;
0= Cor(x,y)= L.

(d) Less than perfect
negative correlation;
-1 = Cor(x,y)< 0.
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To compute the correlation coefficient of a set of ordered pairs (x;, i),

i=1,2,...,n, where
X1 ¥i
X2 ¥2
Xi= : and y=
Xn—1 Yn—1
).-" ‘Il'!

we use the steps in lTable 1.3. The computational procedure 1n Table 1.3 1s called
the Pearson product-moment correlation coefficient in statistics.

TABLE 1.3

1. Compute the sample means for each data vector:

" "
lei Z Yi
= . = =1 ]

n ; n

e ¥

2. Determine the centered x-data and the centered y-data as the vectors x, and y.,
respectively, where

xo=[xi—F m—F oo m—%F]

Ye=[n-7 n-3  wn-3] -

3. Compute the correlation coefficient as

Ci e N Y e -
o 3 = o el

u The correlation coefficient can be an informative statistic in a wide variety of
i applications. However, care must be exercised in interpreting this numerical esti-
mation of a relationship between data. As with many applied situations, the inter-
. relationships can be much more complicated than they are perceived to be at first
glance. Be warned that statistics can be misused by confusing relationship with
cause and effect. Here we have provided a look at a computation commonly used
in statistical studies that employ dot preducts and the length of vectors. A much
more detailed study is needed to use the correlation coefficient as part of a set of
information for hypothesis testing. We emphasize such warnings with the follow-
ing discussion, adapted from Misused Statistics, by A. J. Jaffe and H. F. Spirer
(Marcel Dekker, Inc., New York, 1987):

4]

Data involving divorce rate per 1000 of population versus death rate
FIGURE 1.27 per 1000 of population were collected from cities in a certain region.
Figure 1.27 shows a scatter plot of the data. This diagram suggests that
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divorce rate is highly (negatively) correlated with death rate. Based on
this measure of relationship, should we infer that

(1) divorces cause death?
(i1) reducing the divorce rate will reduce the death rate?

Certainly we have not proved any cause-and-effect relationship; hence
we must be careful to guard against statements based solely on a nu-
merical measure of relationship.

Key Terms

Dot product Perpendicular vectors Sample mean

Length of a vector Scatler plot Correlation coefficient
Direction of a vector Vector plot Outliers

Angle between vectors Correlated/uncorrelated variables

Parallel vectors Sample size

m Exercises

1. The data sets displayed in Figures A, B. C, and D have
one of the following correlation coefficients; 0.97, (.93,
0.88, 0.76. Martch the figure with its correlation coeffi-

cient.
a .l L]
- o gt
L) &
-‘l.':'.= .o.‘ -t
.:..' i ...'.- . s
.
. ﬁ'!# . : 5 :
Figure A. Figure B.
3 l.‘: e
ak ad P
M :-l o .
- .
N N
gt R
H e
L]
Figure C. Figure D.

2. A meter that measures flow rates is being calibrated. In
this initial test, n = 8 flows are sent to the meter and the
corresponding meter readings are recorded. Let the set
of flows and the corresponding meter readings be given

by the 8-vectors x and y, respectively, where

[12]
2.1
33
39
5.2
6.1
6.9

| 7.7 |

and y=

00~ N L B Wbl =

Compute the correlation coefficient between the input
flows in x and the resultant meter readings in y.

. Anexperiment to measure the amplitude of a shock wave

resulting from the detonation of an explosive charge is
conducted by placing recorders at various distances from
the charge. (Distances are 100s of feet.) A common ar-
rangement for the recorders is shown in the accompany-
ing figure. The distance of a recorder from the charge
and the amplitude of the recorded shock wave are shown
in the table. Compute the correlation coefficient between
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the distance and amplitude data.

LI
- L/

- I T oA I T Nl S G
& T76-54-32-1012345678
e — Recorder

C - Explosive charge

Distance Amplitude
200 12.6
200 19.9
400 9.3
400 9.5
500 7.9
500 7.8
500 8.0
700 6.0
700 6.4

B Supplementary Exercises

L

Determine the number of entries on or above the main di-
agonal of a k x k matrix when

fa) k=2, (b) k=3, (¢) k=4, (d) k=n.

0 2
Let A= [0 5]

{a) Find a2 x k matrix B # O such that AB = O for
k=1,2,3,4

(b) Are your answers to part (a) unique? Explain.

. Find all 2 x 2 matrices with real entries of the form

=[5 <]

such that A2 = L.

4. An equal number of two-parent families, each with three

children younger than ten years old were interviewed in
cities of populations ranging from 25,000 to 75,000. In-
terviewers collected data on (average) yearly living ex-
penses for housing (rental/mortgage payments), food,
and clothing. The collected living expense data were
rounded to the nearest 100 dollars. Compute the corre-
lation coefficient between the population data and living
expense data shown in the following table:

City Population Average Yearly
(in 1000s) Living Expense (in § 100s)
25 72
30 65
35 78
40 70
50 79
60 85
65 83
15 88

4. Ann x n matrix A (with real entries) is called a square

root of the n x n matrix B (with real entries) if A> = B.

(a) Find a square rootof B = |i(1) ”

I 00
(b) Find asquarerootof B=|0 0 0
0 00

(c) Find a square root of B = 1.

(d) Show that there is no square root of

0 1
s=(2 1]
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11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

Let A be anm x n matrix.
{a) Describe the diagonal entries of A” A in terms of the
columns of A.

{(b) Prove that the diagonal entries of A" A are nonnega-
tive.

{c) Whenis ATA=0?

If A is an n % n matrix, show that (A*)" = (AT)* for any
positive integer k.

Prove that every symmetric upper (or lower) triangular
matrix 1s diagonal.

. Let A be an n x n skew symmeltric matrix and X an n-

vector. Show that x” Ax = 0 for all x in R".

. Let A be an upper triangular matrix. Show that A is non-

singular if and only if all the entries on the main diagonal
of A are nonzero.

Show that the product of two 2 x 2 skew symmetric ma-
trices is diagonal. Is this true for n x n skew symmetric
matrices with n > 27

Prove thatif Tr(ATA) = 0, then A = O,

For n x n matrices A and B, when does (A4+B)(A—B) =
A% — B

Develop a simple expression for the entries of A", where
n 1s a positive integer and

A=
0

Tl b=

If B = PAP™', express B>, B*. ..., B*. where k is a
positive integer, in terms of A, P, and P™'.

Prove that if A is skew symmetric and nonsingular, then
A~ is skew symmetric.

Let A be an n x n matrix. Prove that if Ax = 0 for all
n % | matrices x, then A = O.

Let A be an n x n matrix. Prove that if Ax = x for all
n x | matrices x, then A = 1,

Let A and B be n x n matrices. Prove that if Ax = Bx for
all n % 1 matrices x, then A = B,

[f Ais an n = n matrix, then A is called idempotent if
Al = A,

{a) Verify that /, and O are idempotent.

(b) Find an idempotent matrix that is not /, or O.

(¢) Prove that the only n x n nonsingular idempotent ma-
trix is [,,.

Let A and B be n x n idempotent matrices. (See Exercise
19.)

{a) Show that AB is idempotent if AB = BA.

21.

22,

23,

24.

26.
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(b) Show that if A is idempotent, then A" is idempotent.
(¢) Is A+ B idempotent? Justify your answer.

(d) Find all values of k for which kA is also idempotent.
Let A be an idempotent matrix.

(a) Show that A" = A for all integers n > 1.

(b) Show that /, — A is also idempotent.

If Ais an n x n maiix, then A is called nilpotent if
A* = O for some positive integer k.

(a) Prove that every nilpotent matrix is singular,

0 1 1
Verifythat A= [0 0 1
0 0 0

(b) is nilpotent.

If A is nilpotent, prove that /, — A is nonsingu-
lat. [Hint: Find (I, — A)~" in the cases A* = O,
k=1,2,..., and look for a pattern.|

a

(¢)

Let vy = . Determine a vector w so that v.w =

d
a+ b+ ¢ +d. If visan n-vector, what is w?

Use the result from Exercise 23 to develop a formula for
vy
1]

the average of the eniries in an n-vector v = L ;|

Uy

terms of a ratio of dot products.

For an n x n matrix A, the main counter diagonal elements
are dyy, dap- 1, ... dy1. (Note that @;; is a main counter di-
agonal element, provided that i + j = n + 1.) The sum of
the main counter diagonal elements is denoted Mcd(A),
and we have

MediA) = Y ay,

i j=n1
meaning the sum of all the entries of A whose subscripts
add ton + 1.

(a) Prove: Mcd(cA) = ¢ Mcd(A), where ¢ is a real num-

ber.

Prove: Mcd(A + B) = Mcd(A) + Mcd(B).

Prove: Mcd(A”) = Mcd(A).

Show by example that Mcd(AB) need not be equal
to Mcd(BA).

An n x n matrix A is called block diagonal if it can be
partitioned in such a way that all the nonzero entries are
contained in square blocks A;;.

(h)
(¢)
(d)
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{a) Partition the following matrix into a block diagonal

matrix:
1 2 00
34 00
00 1 0
oD 2 3

(b} If A is block diagonal, then the linear system Ax = b
is said to be uncoupled, because it can be solved by
considering the linear systems with coefficient ma
trices A; and right sides an appropriate portion of
b. Solve Ax = b by “uncoupling” the linear system
when A is the 4 x 4 matrix of part (a) and

1
- 2l
o
3
27. Show that the product of two 2 x 2 skew symmetric ma-

trices is diagonal. Is this true for n x n skew symmetric
matrices withn = 27

Ay O
A=
0 Axn

be a block diagonal n x n matrix. Prove that if A;; and
As- are nonsingular, then A is nonsingular.

A: AH A]z
0 An

be a partitioned matrix. If A ; and A,, are nonsingular,
show that A is nonsingular and find an expression for A~

28. Let

29, Let

In Exercises 30 through 32, X and Y are n x | matrices whose
entries are Xy, X2, ..., Xy, and yi, Y2, ..., yu, respectively. The
outer product of X and Y is the matrix product XY 7, which

gives the n X n matrix

LY XYz o X
X2yl Xa1¥2  cc+ X2Ye

XnYn J

30. (a) Form the outer product of X and ¥, where

XnY1 Xa)2

1 4
X=|2 and Y =|5
3 6

(b) Form the outer product of X and ¥, where

and Y =

[

=1
0
3
5

31. Prove or disprove: The outer product of X and ¥ equals
the outer product of ¥ and X.

32, Prove that Tr(XYT) = X7y,

33. Let
E 7
A=13 ¢ and B:[z :]
5 11
Verify that
2
AR = outer product of col;(A) with row; (B).

i=1

34. Let W be ann x 1 matrix such that WYW = 1. Then x n

matrix ]
H=1,—-2ww"

is called a Householder® matrix. (Note that a House-
holder matrix is the identity matrix plus a scalar multiple
of an outer product.)
(a) Show that H is symmetric.
(b) Show that H~' = HT.

*Alston 5. Householder (1904—1993) was born in Rockford, llineis, and died in Malibu, Califor-

ALSTON 5. HOUSEHOLDER

nia. He received his undergraduate degree from Northwestern University and his Master of Arts from
Cornell University, both in philosophy. He received his Ph.D. in mathematics in 1937 from the Univer-
sity of Chicago. His early work in mathematics dealt with the applications of mathematics to biology.
In 1944, he began to work on problems dealing with World War I1. In 1946, he became a member
of the Mathematics Division of Oak Ridge National Laboratory and became its director in 1948, At
Oak Ridge. his interests shifted from mathematical biclogy te numerical analysis. He is best known
for his many important contributions to the field of numerical linear algebra. In addition to his re-
search, Householder occupied a number of posts in professional organizations, served on a variety of
editorial boards, and organized the important Gatlinburg conferences (now known as the Householder
Symposia), which continue to this day.



35. A circulant of order n is the n x n matrix defined by

C-=circ(ey, €y €5)
€ €2 O3 Cn
{2} Cf; 'y Chit
= | €1 Ca € Ch2

The elements of each row of C are the same as those in
the previous rows, but shifted one position to the right and

Chapter Review

True or False

1. A linear system of three equations can have exactly three

different solutions.

2. If A and B are n x n matrices with no zero entries, then

AB £ 0.
3. If Aisann x n matrix, then A + A7 is symmetric.

4. [f Aisann x n matrix and x 18 n x 1, then Ax is a linear

combination of the columns of A,

5. llomogeneous linear systems are always consistent.

6. The sum of two n x n upper triangular matrices is upper

triangular.

7. The sum of two n x n symmetric matrices is symmetric.
8. I a linear system has a nonsingular coefficient matrix,

then the system has a unique solution.

9. The product of two n x n nonsingular matrices is nonsin-

zular.

10. 4 = 0

: x ;
projects the vector [ ] onto the y-axis.

Quiz

1. Find all solutions to the following linear system by the

method of elimination:

Ay 4+ 3y=—4
2p— = B

[G ?] defines a matrix transformation that

36.

37.

38.

Chapter Review 83

wrapped around.

(a) Form the circulant C = cire(1, 2, 3).

(b) Form the circulant C = cire(1, 2, 5, —1).

(c) Form the circulant C = cire(1, 0, 0, 0, 0).

(d) Form the circulant C = cire(1, 2, 1, 0, 0).

Let C = circ(ey, €3, ¢3). Under what conditions is C sym-
metric?

Let C = circ(cy, ¢a, . .., ¢,) and let x be the n x 1 matrix
of all ones. Determine a simple expression for CX.
Verify that for C = circ(cy, €2, ¢3), CTC = CCT.

. Determine all values of r sothatx = 1, y=—1,z=r1s

a solution to the following linear system:

. Determine all values of @ and b so that

[ ol t]=[5 el

Let
2 0 0 1 4 b
L=]1 =2 0 and U=|0 -1 5
a 1 3 0 0 ¢
(a) Determine all values of a so that the (3, 2) entry of
LU is 7.
(h) Determine all valnes of b and ¢ so that the (2, 3) en-
try of LU 1s 0.

. Let u be a vector in R? whose projection onto the x-axis

is shown in the figure. Determine the entries of the vector
u.
y

|
t
0 1 2 3
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Discussion Exercises

1. In Section 1.5 we briefly introduced recursion relations.

We showed how the members of the Fibonacci sequence
could be computed by using a matrix form. By succes-
sive matrix multiplication we were able to produce 2 x 1
matrices from which the members of the sequence could
be extracted. An alternative approach is to derive a for-
mula that generates any member of the sequence without
computing the preceding members. For two-term recur-
ston relations of the form u, = au,_; + bu,_» we can
derive such a formula by solving a 2 x 2 system of equa-
tions as follows: Associated with this recursion relation is
a quadratic polynomial of the form r? = ar +b, called the
characteristic polynomial of the recursion relation. Label
the roots of this polynomial as ry and ro, with ry # rs.
Then it can be shown that the general term of the recur-
sion relation u, can be expressed in the form

iy = Ci(r)" 4 Ca(ra)", (*)

where the constants €y and C, are determined by solving
the system of equations generated by setting n = () and
then n = 1 in (*) and using the initial values of u, and u,
ziven to start the recursion relation.

(a) Use this approach to find a formula for the nth mem-
ber of the Fibonacer sequence.

(b) Since the members of the Fibonacci sequence are in-
tegers, explain why the formula from part (a) is rather
amazing.

{e) Given the coefficients @ and b of a two-term recur-
sion relation of the form u,, = au,_, + bu,_». con-
struct a general system of equations that can be used
1o determine the values of the constants C; and Cs in
=)

. We can use a 3" by 5" index card to represent (a portion

of) a plane in space. Take three such index cards and cut
a slit in each one about halfway through the card along
the 5-inch edge. The shit will let you model intersecting a
pair of planes by passing the slit in one card through the
slit in another card. Each card can be represented by an
equation of the form azx + by + ¢,z = dy so that for
£ = 1,2, 3 we have a system of three equations in three
unknowns. Using the index cards, configure them so that
they represent four different consistent linear systems and
four different inconsistent systems. Sketch each config-
uration and provide a brief description of your diagram.
(Hinr: Two index cards placed exactly one on top of the
other represent the same plane.)

In Section 1.3 we defined matrix multiplication: if the ma-
rix A is m x p and the matrix B is p x n, then the product

AB is an i % n mairx. Here we investigate the special
case where Aism x land Bis | x n.
2
(a) Forthecasem = 3andn =4, let A = | 0| and
5
B = [3 4 6 -1 ] Compute AB and carefully
describe a pattern of the resulting entries.
(b) Explain why there will be a row of zeros in AB if
the m x 1 matrix A has a zero entry and matrix B is
1 xn.

(c) Suppose that the second entry of the m x 1 matrix
A is zero, Describe a resulting pattern of zeros that
appears in AAT,

(d) Let € beas x 5matrix with identical columns, Ex-
plain how to generate € by using a product of a5 x 1
matrix A and a | x 5 matrix B. (Explicitly indicate
the entries of A and B.)

In Sections 1.6 and 1.7 we introduced matrix transfor-

mations for the manipulation of objects in the plane—

for example, dilation, contraction, rotation, reflection, and
shear. Another manipulation is called translation, which is
like sliding an object over a certain distance. To translate

the vector u = :] in the plane, we add a fixed vector

a= [z' ] to it. This action defines a function g mapping
R? 1o R? given by
glu)=u+a.

The function g is called a translation by the vector a. Ex-
plain why translations are not matrix transformations for

0
a# [0] (Hinr: Use Exercise 20 in Section 1.6.)

In Chapter 1 we discussed systems of linear equations in

the plane and in space to help connect geometry to the al-

gebraic expressions for the systems. We observed that a

pair of lines in the plane could have zero, one, or infinitely

many intersection points; similarly, for three planes in
space. For nonlinear systems of equations there can be
many other sets of intersection points.

(a) The set of functions y = f(x) = x*. n = 1.2, 3,
..., s the family of even power functions. Describe
the set of intersection points for any pair of functions
in this family.

(b) For the function v = f(x) = x?, where x > 0, de-
termine another function y = g(x) so that f and g
intersect in exactly four points.



6. People have long been intrigued by magic squares. In the

past they were often associated with the supernatural and
hence considered to have magical properties. Today they
are studied to illustrate mathematical properties and also
as puzzles and games. We define a magic square as fol-
lows: A magic square is an n x i matrix of positive inte-
zers such that the sum of the entries of each row, each col-
umn, and each main diagonal (see the diagram) is equal
to the same (magic) constant K.

main main
diagonal diagonal
=" J— sum is K
q sum is K
- sum is K
sum sum
s K Sum sum sum s K

isKisKisK
A 3 x 3 magic square.
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The matrix

W oo

1
A= 5
9

=
[ES IS =

is a magic square with (magic) constant K = 15. (Verify.)

For 3 x 3 and other small square matrices A of positive

integers, it is rather easy to check whether A is a magic

square by observation.

(a) Fora 3 x 3 matrix A, construct a method to check
whether A is a magic square by multiplying A by
particular matrices and by using an operation defined
on matrices. Specifically indicate your strategy and
state how each of the portions of the preceding defi-
nition are checked.

(b) Briefly discuss how 1o generalize the technigue you
devise in part (a) to n x ;i matrices.
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Solving Linear Systems

m Echelon Form of a Matrix

In Section 1.1 we discussed the method of elimination for solving linear systems,
which you studied in high school, and in Section 1.3 we introduced the coefficient
matrix and augmented matrix associated with a linear system. In this section we
discuss operations on a matrix, which when applied to an augmented matrix can
greatly simplify the steps needed to determine the solution of the associated linear
system. The operations discussed in this section apply to any matrix, whether or
not it is an augmented matrix. In Section 2.2 we apply the constructions developed
in this section to the solution of linear systems.

DEFINITION 2.1

An m x n matrix A is said to be in reduced row echelon form if it satisfies the
following properties:

(a) All zero rows, if there are any, appear at the bottom of the matrix.

(b) The first nonzero entry from the left of a nonzero row is a 1. This entry is
called a leading one of its row.

(c) For each nonzero row, the leading one appears to the right and below any
leading ones in preceding rows.

(d) If a column contains a leading one, then all other entries in that column are
Zero.

A matrix in reduced row echelon form appears as a staircase (“echelon™) pat-
tern of leading ones descending from the upper left corner of the matrix.

An m x n matrix satisfying properties (a), (b), and (c) is said to be in row
echelon form. In Definition 2.1, there may be no zero rows.

A similar definition can be formulated in the obvious manner for reduced
column echelon form and column echelon form.
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m The following are matrices in reduced row echelon form, since they satisfy prop-
erties (a), (b), (¢), and (d):

1 0 0 0 -2 4
[1)(1}33 o 1 0 0 4 8
A:DOIU,B=00017—2
00 0 1 o o o0 0 0 0
o o o0 0o 0 0
and

1 2 0 0 1

GC= |0 0 1 23

00 0 00

The matrices that follow are not in reduced row echelon form. (Why not?)

if 2 0 4 1 0 3 4
D=|0 0 0 Xl; E=|0 2 =2 5
0 0 1 -3 L0 0 1 2|
M1 0 3 47 "1 2 3 47
0 1 -2 5 0 1 -2 )
F=lo 1 3 2 G=lo o 1 2
(0 0 0 o] 0 0 0 0] -
m The following are matrices in row echelon form:
1 5 0 2 =2 4 100 0
0 1 0 3 4 8 010 0
H=1|0 0 0 1 T =2 I= 0010
g o o 9 0 0 00 0 1
0 0 0 0 0 0
0 0 1 3 5 7 9
0 0 0 0 1 -2 3
=0 0 O @ @ 1 2
0 0 0 0 0 0 1
0 0 0 0 0 0 0

A useful property of matrices in reduced row echelon form (see Exercise 9) is
that if A is an n x n matrix in reduced row echelon form # [, then A has a row
consisting entirely of zeros.

We shall now show that every matrix can be put into row (column) echelon
form, or into reduced row (column) echelon form, by means of certain row (col-
umn) operations.

m An elementary row (column) operation on a matrix A is any one of the following
operations:
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(a) Type L: Interchange any two rows (columns).
(b) Type II: Multiply a row (column) by a nonzero number.
(c) Type III: Add a multiple of one row (column) to another.

We now introduce the following notation for elementary row and elementary
column operations on matrices:

¢ Interchange rows (columns) i and j, Type I:
roer; (€ ).
¢ Replace row (column) i by k times row (column) i, Type II:
kr; = r; (ke; — ¢;).

¢ Replace row (column) j by k times row (column) i + row (column) j,

Type III:

kri+r; —>r; (ke;+ec; —cj).

Using this notation, it is easy to keep track of the elementary row and column
operations performed on a matrix. For example, we indicate that we have inter-
changed the /th and jth rows of A as Ay, ..r;. We proceed similarly for column
operations.

Observe that when a matrix is viewed as the augmented matrix of a linear
system, the elementary row operations are equivalent, respectively, to interchang-
ing two equations, multiplying an equation by a nonzero constant, and adding a
multiple of one equation to another equation.

| EXAMPLES [
0 1 2

0
A= |2 3 0 -2
3

Interchanging rows 1 and 3 of A, we obtain

3 3 6 -9
B

Il
kS
Fa
¢
o
|
)
w
o
|
)

Multiplying the third row of A by 35 we obtain

0 0 1 2
C=Ap, =2 3 0 -2
1 1 2 -3

Adding (—2) times row 2 of A torow 3 of A, we obtain

0 0 1 2
D= A—’lrg-ﬁ—r-j—)rj = 2 3 0 =2
-1 =3 6 —5

Observe that in obtaining I from A, row 2 of A did not change. |
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An m x n matrix B is said to be row (column) equivalent to an m x n matrix A
if B can be produced by applying a finite sequence of elementary row (column)
operations to A.

Let
1 2 4 3
Ai=| 2 1 3 2
1 -2 2 3

B=Axynyonn=|4 -3 71 8
1 % % 3

so B is row equivalent to A.
Interchanging rows 2 and 3 of B, we obtain

1 2 4 3
[ 3
d =3 ¥ &

[§]
(78]

C=Bor, =

so C is row equivalent to B.
Multiplying row 1 of C by 2, we obtain

2 4 8 6
D=Chny=|1 -1 3
4 -8 7 &

so D is row equivalent to C. It then follows that D is row equivalent to A, since we
obtained D by applying three successive elementary row operations to A. Using
the notation for elementary row operations, we have

D= A3r3+r3 — Ey-
ry e r;
rp—ry

‘We adopt the convention that the row operations are applied in the order listed. W

We can readily show (see Exercise 10) that (a) every matrix is row equivalent
toitself: (b) if B 1s row equivalent to A, then A is row equivalent to B: and (¢} if C
is row equivalent to B and B is row equivalent to A, then C is row equivalent to A.
In view of (b), both statements “B is row equivalent to A” and “A is row equivalent
to B” can be replaced by “A and B are row equivalent.” A similar statement holds
for column equivalence.

Every nonzero m x n matrix A = [a; ,—] is row (column) equivalent to a matrix in
row (column) echelon form.
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Proof

‘We shall prove that A 1s row equivalent to a matrix in row echelon form. That is,
by using only elementary row operations, we can transform A into a matrix in row
echelon form. A completely analogous proof by elementary column operations
establishes the result for column equivalence.

We start by looking in matrix A for the first column with a nonzero entry. This
column is called the pivot column; the first nonzero entry in the pivot column is
called the pivot. Suppose the pivot column is column j and the pivol occurs in row
i. Now interchange, if necessary, rows 1 and i, getling matrix B = [b;J ] Thus the
pivot by; is # 0. Multiply the first row of B by the reciprocal of the pivot, that is,
by 1/by;, obtaining matrix C = [ ¢;; |. Note that ¢;; = 1. Now if ¢;;, 2 < h < m,
is not zero, then to row h of C we add —cj; times row 1; we do this for each value
of k. Tt follows that the elements in column j, inrows 2, 3, ..., m of C, are zero.
Denote the resulting matrix by D.

Next, consider the (m — 1) x n submatrix A, of D obtained by deleting the
first row of D. We now repeat this procedure with matrix A; instead of matrix A.
Continuing this way, we obtain a matrix in row echelon form that is row equivalent

o A. 1]
Let
0 2 i —4 1
i 0 0 2 3 £
@ 2 =8 2 4
2“ E
Pivot column . Pivot

Column 1 is the first (counting from left to right) column in A with a nonzero entry,
so column 1 is the pivot column of A. The first (counting from top to bottom)
nonzero entry in the pivot column occurs in the third row, so the pivot is a3 = 2.
‘We interchange the first and third rows of A, obtaining

& 2 -5 2 4
0 0 2 3 4
F=Bayen =16 5 3 <4 1
9 0 -6 0 7

1 1
Multiply the first row of B by the reciprocal of the pivot, that is, by — = —, to

biy 2
obtain
I & — 1 2
0O 0 2 3 4
C=B-n=|p 2 3 1
20 9

Add (—2) times the first row of C to the fourth row of C to produce a matrix D in
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which the only nonzero entry in the pivot column is d;; = 1:

1 14 1T 2
0 0 2 3 4
Bellgpmy™ly 3 § -4 73
b ~f 7 &

Identify A, as the submatrix of D obtained by deleting the first row of D: Do
not erase the first row of D. Repeat the preceding steps with A, instead of A.

1 o= L
8 o ¢ 3 4 ety it
0 (A{)p,r, toobtain By.
A| = 0 @ . | LI Rad | 1
0/—2 & § 9
Pivot T Pivot col
5
1 1= 1 2
§ «& 1§ ‘
g=lo o 3 % 4 Dt)(Bl)nin__rl to obtain C;.
-2 -1 4
1 1 -5 1 2
1 3 -2 I _
Ci= 0 2 4 Do (C})ar, 41, 10 Obtain D,
-2 -1 3
1 1 -5 1 2
1 3 -2 1
Dy = 2 3 4
2 3 4
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Deleting the first row of D; yields the matrix A>. We repeat the procedure with
Az instead of A. No rows of A; have to be interchanged.

1 1 -3 1 2
o 1 2 -2
0o 0 @ 3 4
A = 0/2 w3 = B>. Do (By) 1, ., o obtain C:.
Ervat T—l’ivm column of A,
1 1 -3 1 2
o 1 3 -2 1
c 1 ‘;' 2 Finally, do (C2) 2r {1y s
= i
5 3 4 Lo obtain D>,
1 1 -2 1 2
o 1 3 -2 !
g ¢ 1 £ 2
D2= -
a 9 £ 0 9
The matrix
1 1 -3 1 2
3 1
_— 0 1 =& &
o 0 1 3 2
o o0 o0 0 0
is in row echelon form and is row equivalent to A. |

When doing hand computations, it is sometimes possible to avoid fractions by
suitably modifying the steps in the procedure.

Theorem 2.2 Every nonzero m x n matrix A = [a,— J-] is row (column) equivalent to a unique
matrix in reduced row (column) echelon form.

Proof

We proceed as in Theorem 2.1, obtaining matrix H in row echelon form that is
row equivalent to A. Suppose that rows 1, 2,
leading ones in these rows occur in columns ¢y, ¢2,...,¢.. Thene) <2 < -+ <
. Starting with the last nonzero row of H, we add suitable multiples of this row
to all rows above it to make all entries in column ¢, above the leading one in row r
equal to zero. We repeat this process withrows r— 1, r—2, ..., and 2, making all
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entries above a leading one equal to zero. The result is a matrix K in reduced row
echelon form that has been derived from H by elementary row operations and is
thus row equivalent to H. Since A is row equivalent to H, and H is row equivalent
to K, then A is row equivalent to K. An analogous proof can be given to show
that A is column equivalent to a matrix in reduced column echelon form. It can be
shown, with some difficulty, that there is only one matrix in reduced row echelon
form that is row equivalent to a given matrix. For a proof, see K. Hoffman and
R. Kunze, Linear Algebra, 2d ed. (Englewood Cliffs, N.J.: Prentice-Hall, 1971).
]

Remark It should be noted that a row echelon form of a matrix is not unique.

Find a matrix in reduced row echelon form that is row equivalent to the matrix A
of Example 5.

Solution

We start with the matrix H obtained in Example 5 in row echelon form that is row
equivalent to A. We add suitable multiples of each nonzero row of H to zero out

all entries above a leading 1. Thus, we start by adding (—%) times the third row of
H 1o its second row:

5

| I = 1 2
6 1 o =& _2
- ; - 4 2
Ji= H—%r_ﬁrrzarz = 0 1 % )
0 0 0 0 0

Next, we add g times the third row of Jy to its first row:

19

| 1 0 i 7
- 0 1 o -Z _3
B0l = 5 4 3 2
0 0 0 0 0

Finally, we add (—1) times the second row of J; to its first row:

1 0o o 9 %

0 1 B —

K = (J)-irytry—r = 43 %
0 1 i 2

0 0 0 0 o0

This is in reduced row echelon form and is row equivalent to A. Alternatively, we
can express the reduced row echelon form of A as

H—%rg +ra—ra’

5
5r3+r — 1)
=lrg+rp =1 | |
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Elimination method
Reduced row echelon form

Leading one

IR Exercises
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Remark The procedure given here for finding a matrix K in reduced row ech-
elon form that is row equivalent to a given matrix A is not the only one possible.
For example, instead of first obtaining a matrix H in row echelon form that is row
equivalent to A and then transforming H to reduced row echelon form, we could
proceed as follows. First, zero out the entries below a leading 1 and then immedi-
ately zero out the entries above the leading 1. This procedure is not as efficient as
the procedure given in Example 6.

Pivot column
Pivot

Row echelon form
Elementary row (column) operation
Row (column) equivalent

1.

termine its reduced row echelon form. Record the row
operations you perform, using the notation for elemen-
rary row operations.

1 2 4 1 2 5
@ A=|0 1 =2 @ oaA=| 2 =t &
0 0 1 . % = 7
L 4 3 8 i
) 0 0 1 —4 5 4 1
® A=y & o 1 WA= 5 & -3
o 0 o o . =7 i

4. Each of the given matrices is in row echelon form, De-

Find a row echelon form of each of the given matrices. termine its reduced row echelon form. Record the row
Record the row operations you perform, using the nota- operations you perform, using the notation for elemen-
tion for elementary row operations. tary row operations.
i B 5T 1T 0 -3 2
(a) A= 2 -1 6 |0 1 1 1
| 2 2 7] (a) A= 0o 0 1 2
- 1 -1 o0 0 0
r 3 4 -1 1 3 0 4
B 4=1 5 6§ —3 ® A=|0 1 0 1 0
| 2 -2 2] 0 0 1 -1 0
. Find a row echelon form of each of the given matrices. . Find the reduced row echelon form of each of the given
Record the row operations you perform, using the nota- matrices. Record the row operations you perform, using
tion for elementary row operations. the notation for elementary row operations,
-1 1 -1 0 3 [ A 0 =27
(a) A=| -3 4 1 | 10 (a) A=| -2 1 9
4 -6 —4 -2 -4 | 3 2 4]
| 1 -4 ¥ 0 ¥
by A=|-2 -1 10 -1 2 -2
b) A=
4 3 —-12 (b) 0 1 0
Each of the given matrices is in row echelon form. De- | —2 T =3

. Find the reduced row echelon form of each of the given

matrices. Record the row operations you perform, using
the notation for elementary row operations.

7. Letx, y, z, and w be nonzero real numbers. Label each of
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the following matrices REF if it is in row echelon form, 10. Prove:
RR%Z’; 1 :15 L rl:;]g;d row echelon form, or N if it is (a) Every matrix is row equivalent to itself.
t L %
e aEAR 1 ol (b) If B is row equivalent to A, then A is row equivalent
1 x v 0 8 ; ;) ; w0 B.
(@ [0 1 0 z (b) 00 1 0 (c) If C is row equivalent to B and B is row equivalent
L0 0 w 1 00 0 1 to A, then C is row equivalent to A.
- 11. Let
10 0x 00 ¢ ¢ W 3
T A |_—I 0 3 4
“1oo o010 =T @ 7 =& =3
LO 0 0 0 0 1 L 2 3 0 -3
et dradndy and b bF nonzem‘re‘a] _nu.mhers. Label cachiof (a) Finda matrix in column echelon form that is column
the following matrices REF if it is in row echelon form, equivalent to A
RREF if it is in reduced row echelon form, or N if it is '
not REF and not RREF: (b) Find a matrix in reduced column echelon form that
I x 0 0 is column equivalent to A.
’ (1} ? # I 12. Repeat Exercise 11 for the matrix
W s ® o001
0 0 1 o 6 O 0 1 2 3 4 5
5 ’ 2 1 3 -1 2
¥y 9 3 1 2 4 1
g |1 1 0
0 0 1 13. Determine the reduced row echelon form of
Let A be an n % n matrix in reduced row echelon form. o iED
Prove that if A 5 [, then A has a row consisting entirely A= " ) 4
i —sinf  cost

m Solving Linear Systems

In this section we use the echelon forms developed in Section 2.1 to more effi-
ciently determine the solution of a linear system compared with the elimination
method of Section 1.1. Using the augmented matrix of a linear system together
with an echelon form, we develop two methods for solving a system of m linear
equations in n unknowns. These methods take the augmented matrix of the linear
system, perform elementary row operations on it, and obtain a new matrix that
represents an equivalent linear system (i.e., a system that has the same solutions as
the original linear system). The important point is that the latter linear system can
be solved more easily.

To see how a linear system whose augmented matrix has a particular form can
be readily solved, suppose that

1 2 0! 3
O 1 1) 2
Y

represents the augmented matrix of a linear system. Then the solution is quickly
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Theorem 2.3

Corollary 2.1

found from the corresponding equations

X1 + 2xo = 3
X2 +x3= 2
X3 = -1
as
x3=-—1

m=2—a31=24+1=3
Xxi=3-2x»=3—-6=-3.

The task of this section is to manipulate the augmented matrix representing a given
linear system into a form from which the solution can be found more easily.
‘We now apply row operations to the solution of linear systems.

Let Ax = b and Cx = d be two linear systems, each of m equations in » un-
knowns. If the augmented matrices [A | b] and [C | d] are row equivalent, then
the linear systems are equivalent; that is, they have exactly the same solutions.

Proof

This follows from the definition of row equivalence and from the fact that the three
elementary row operations on the augmented matrix are the three manipulations
on linear systems, discussed in Section 1.1, which yield equivalent linear systems.
We also note that if one system has no solution, then the other system has no
solution. m

Recall from Section 1.1 that the linear system of the form

apxy; + apxs + -0+ apx, =0
a2xy + apxy + -+ + apx, =0

(1
am1x1 + apaxe + o0+ dpaxy =0
is called a homogeneous system. We can also write (1) in matrix form as
Ax = 0. (2)

If A and C are row cquivalent m x n matrices, then the homogeneous systems
Ax = 0 and Cx = 0 are equivalent.

Proof
Exercise. ]

We observe that we have developed the essential features of two very straight-
forward methods for solving linear systems. The idea consists of starting with the
linear system Ax = b, then obtaining a partitioned matrix [C | d] in either row
echelon form or reduced row echelon form that is row equivalent to the augmented
matrix [A | b]. Now [ C ! d] represents the lincar system Cx = d, which is quite
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simple to solve because of the structure of [C i d ] and the set of solutions to this
system gives precisely the set of solutions to Ax = b; that is, the linear systems
Ax = band Cx = d are equivalent. (See Section 1.1.) The method where [C | d]
is in row echelon form is called Gaussian elimination; the method where [C | d]
is in reduced row echelon form is called Gauss*—Jordan® reduction. Strictly
speaking, the original Gauss—Jordan reduction was more along the lines described
in the preceding Remark. The version presented in this book is more efficient. In
actual practice, neither Gaussian elimination nor Gauss—Jordan reduction is used
as much as the method involving the LU-factorization of A that is discussed in
Section 2.5. However, Gaussian elimination and Gauss—Jordan reduction are fine
for small problems, and we use the latter heavily in this book.
Gaussian elimination consists of two steps:

Step 1. The transformation of the augmented matrix [A Eh] to the matrix
[C‘ | d] in row echelon form using elementary row operations

Step 2. Solution of the lincar system corresponding to the augmented matrix
[ € | d] using back substitution

For the case in which A is n x n, and the linear system Ax = b has a unique
solution, the matrix [ C | d] has the following form:

*Carl Friedrich Gauss (1777-1855) was born into a poor working-class family in Brunswick, Ger-
many, and died in Géttingen, Germany, the most famous mathematician in the world. He was a child
prodigy with a genius that did not impress his father, who called him a “star- gazer” However, his teach-
ers were impressed enough to arrange for the Duke of Brunswick to provide a scholarship for Gauss
at the local secondary school. As a teenager there, he made original discoveries in number theory and
began to speculate about non-Euclidean geomeiry. His scientific publications include important con-
tributions in number theory, mathematical astronomy, mathematical geography, statistics, differential
geometry, and magnetism. His diaries and private notes contain many other discoveries that he never
published.

An austere, conservative man who had few friends and whose private life was generally unhappy,
he was very concerned that proper credit be given for scientific discoveries. When he relied on the
results of others, he was careful to acknowledge them; and when others independently discovered
results in his private notes, he was quick to claim priority.

In his research Gauss used a method of calculation that later generations generalized to row re-
duction of matrices and named in his honor, although the methoed was used in China almost 2000 years
earlier.

TWilhelm Jordan (1842-1399) was born in southern Germany. He attended college in Stuttgart
and in 1868 became full professor of geodesy at the technical college in Karlsruhe, Germany. He
participated in surveying several regions of Germany. Jordan was a prolific writer whose major work,
Handbuch der Vermessungskunde (Handbook of Geadesy), was translated into French, Italian, and
Russian. He was considered a superb writer and an excellent teacher. Unfortunately, the Gauss—Jordan
reduction method has been widely attributed to Camille Jordan (1838-1922), a well-known French
mathematician. Moreover, it seems that the method was also discovered independently at the same
time by B. L. Clasen, a priest who lived in Luxembourg. This biographical sketch is based on an
excellent article: S. C. Althoen and R. McLaughlin. “Gauss—Jordan reduction: A brief history.” MAA
Monthly, 94 (1987), 130-142.
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1 e €3 -+ B % dy
0 1 23 Cop i dg
00 0 1 6y1a |dac
o & @ =0 1 ld ]

(The remaining cases are treated after Example 1.) This augmented matrix repre-
sents the linear system

xuFeExeFeiEng o F Cte=1d1
ntenxst ... + cpxp=1ds

Xn—1 F Co—1nXy = dy—1
Xy = dy.

Back substitution proceeds from the nth equation upward, solving for one variable
from each equation:

X = dy
Xpg = dp—| — Cp—_in¥y
Xy = dy — Cp3%3 — CoaXy — ++ — CopXy
x; =dy — CraXa — €13%3 — ++ — CipXn-
| EXAMPLE 1 [
x4+ 2y + 3z =
2x— y+ z=38
3x — z=3
has the augmented matrix
1 2 319
[Aib]=]2 -1 18
3 0 -1 ! 3
Transforming this matrix to row echelon form, we obtain (verify)
I 2 319
[€ld]= |0 L 12
00 1i3
Using back substitution, we now have
:,3:2— =2_.3=—1

1=9-2y—-3;=942-9=2;

thus the solution is x =2, y = —1, z = 3, which is unique. | |
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The general case in which A is m x n 1s handled in a similar fashion, but we
need to elaborate upon several situations that can occur. We thus consider Cx = d,
where Cismxn, and [C | d] isinrow echelon form. Then, for example, [C | d]
might be of the following form:

[1 e e - e | odi ]
0 0 1 cy - | da
0o 0 .- 0 1 ciorn (i
]
0 0 1 dy
]
0 0 | dit1
]
0 0 | du
This augmented matrix represents the linear system
Xt e e+ o + Xy =d)

X3+ cuxa+ oo+ oy =i

Xn_1 + Ch—1nXn = dp_y

Xy = dk
Ox; + -+ + Ox, =y
-+ + -} Oy =y
First, if djy; = 1, then Cx = d has no solution, since at least one equation
is not satisfied. If djy = 0, which implies that dj.» = --- = d,, = 0 (since
[C | d] was assumed to be in row echelon form), we then obtain x,, = i, x,_1 =
di_| — iy pX, = dy_ — ¢;_ 1 ,,d; and continue using back substitution to find the

remaining unknowns corresponding to the leading entry in each row. Of course, in
the solution some of the unknowns may be expressed in terms of others thal can
take on any values whatsoever. This merely indicates that Cx = d has infinitely
many solutions. On the other hand, every unknown may have a determined value,
indicating that the solution is unique.

Let
1 2 3 4 5.8
. § T 8 8 = i'%
[C‘d]“o 8 1 2 Big
0O 0 0 L 219
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Then
Xg =9'—'2}£5
X3=T =224 —3x5 =T —2(0 — 2x5) — 3x5 = —11 + x5
xo=T—2x3—3x4 +x5 =24 5x5
X1 =6*2I2 *3)‘3 *4_1'4 *515 = -1 lOJC5
x5 = any real number.

The system is consistent, and all solutions are of the form

x =—-1-10r
x»=2+45r
x3=—l14r
x4 =9-—2r

x5 = r, any real number.

Since r can be assigned any real number, the given linear system has infinitely
many solutions. o

| EXamPLE3 [
2
1

then Cx = d has no solution, since the last equation is
Ox; +0x; +0x3+0xy =1,
which can never be satisfied. | |

When using the Gauss—Jordan reduction procedure, we transform the aug-
mented matrix [A i h] to [C i d], which is in reduced row echelon form. This
means that we can solve the linear system Cx = d without back substitution, as
the examples that follow show; but of course, it takes more effort to put a matrix
in reduced row echelon form than to put it in row echelon form. It turns out that
the techniques of Gaussian elimination and Gauss—Jordan reduction, as described
in this book, require the same number of operations.

| EXaMPLES [

00 0,5
| 01 00}6
[e1dl= g 1 1 017
60 8 1,8
then the unique solution is
=35
X2=6
x3=17

X4 = 8. [ |
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5 0z
241
[cid]=|o R
0 0 0 010
then
x.1=51—%x§
x;=%—x2—2x3+%xs.

where x3, x3, and x5 can take on any real numbers, so the system has infinitely
many solutions. Thus a solution is of the form

Xy = % —r—2.s'+§f
X3 =T
X3 =48
> 1 1
X4 =5 — EI
X5 =1,
where r, 5, and t are any real numbers. | |

We now solve a linear system both by Gaussian elimination and by Gauss—
Jordan reduction.

Consider the linear system

A+2y+3z= 0
2x—3y+2z= 14
x4+ y— z=-2

We form the augmented matrix

1 2 316
[Aib]=|2 -3 |14
3 4 ol B
Add (—2) times the first row to the second row:
1 2 341 %6
[A 3b] = =|0 -7 —41 2
—2rp+ra—r i
3 1 -1 -2
Add (—3) times the first row to the third row:
1 2 3 6

[A ih]—lr1+r2—~r3 =0 =7 —4 i 2
—3r| 413 — 13 § =5 =3ip i
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Multiply the third row by (—%) and interchange the second and third rows:

1 2 3 i 6
[A ib]*lr]#’rz‘frl: 0 1 2 i 4
—er; T =S 0 -7 —4 | 2

r2 <> I3

Add 7 times the second row to the third row:

]

[A i b]—lr]+r3—~r2 ==
—3r) +r3 — 13
—3r3 = 13
l‘z Hl’s
Tra+r3 =13

S D
—
e S PR

Multiply the third row by 1

1 2

i
[A :b]—2r1+rgar3 0 1
—3rj+r3—+r; 0 0
zry T3
ra Iy
Tra 413 =13
ﬁr_,—-q

_ N W
[ZE I S e )

This matrix is in row echelon form. This means that z = 3, and from the second
row,
y+2z=4
so that
y=4-2(3)=-2.

From the first row,
x+2y+3z=6,
which implies that
x=6—2y—-3z=6—-2(-2)—-33)=1.
Thus x = 1, y = —2, and z = 3 is the solution. This gives the solution by
Gaussian elimination.

To solve the given linear system by Gauss—Jordan reduction, we transform the
last matrix to [C | d]. which is in reduced row echelon form, by the following

steps:
Add (—2) times the third row to the second row:
1 2 31 6
[C Ed]—"qa—rv—n = 0 1 0 iiz
7 o o 113

Now add (—3) times the third row to the first row:

1 2 0|
[Cld]oyirnn=|0 1 0|2
0 0 1!

—3ry+r —r
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Finally, add (—2) times the second row to the first row:

| 0 011
[C id]—2r3+r3ar3= 0 1 0 3_2
—3rz3+r; = 0 0 1 i 3
—2r34r =T
The solutionis x = 1, y = —2, and 7 = 3, as before. [ |

Remarks

1. As we perform elementary row operations, we may encounter a row of the
augmented matrix being transformed to reduced row echelon form whose first
n entries are zero and whose n + 1 entry is not zero. In this case, we can stop
our computations and conclude that the given linear system is inconsistent.

2. In both Gaussian elimination and Gauss—Jordan reduction, we can use only
row operations. Do not try to use any column operations.

B Applications

Linear systems arise 1n a great many applications. In this section we look at several
of these.

Quadratic Interpolation

Various approximation techniques in science and engineering use a parabola that
passes through three given data points {(x1, y1), (x2, ¥2), (x3, y3)}, where x; # x;
fori # j. We call these distinet points, since the x-coordinates are all different.
The graph of a quadratic polynomial p(x) = ax>+bx+c is a parabola, and we use
the given data points to determine the coefficients a, b, and ¢ as follows. Requiring
that p(x;) = yi. i = 1.2, 3, gives us three linear equations with unknowns a, b,
and c:

]

plx)) =y or ax{+bx;+c=y
y2 (3)

plxs) =y3 or ax_% +bxy+c = ys.

]

plxy) =y2 or axzz +bxs+ ¢

Let
2
x oz A
A= 121 x|
Xz gz i
a Y1
be the coefficient matrix, v= | b | and y = | y» |. Then (3) can be written in
¢ »

matrix equation form as Av = y whose augmented matrix

xlz x1 Liy
[Aly]=|x2 = 1ip

S
x4 10w
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FIGURE 2.1

EXAMPLE 8

We solve this linear system by Gaussian elimination or Gauss—Jordan reduction,
obtaining values for a, b, and ¢. It can be shown that there is a unique solution
to this linear system if and only if the points are distinct. The construction of the
parabola that matches the points of the given data set is called quadratic interpo-
lation, and the parabola is called the quadratic interpolant. This process can be
generalized to distinet data sets of n + 1 points and polynomials of degree n. We
illustrate the construction of the quadratic in the following example:

Find the quadratic interpolant for the three distinct points {(1, —5), (—1, 1), (2. )}.

Solution

Setting up linear system (3), we find that its augmented matrix is (verify)

i 4 153
[Aly]=]|1 -1 1} 1
4 L& g

Thus the quadratic interpolant is p(x) = 5x> — 3x — 7, and its graph is given in

Figure 2.1. The asterisks represent the three data points. ]
20 T r T
10+ 1
0r b
e =5 3 1 > 3

Temperature Distribution

A simple model for estimating the temperature distribution on a square plate gives
rise to a linear system of equations. To construct the appropriate linear system, we
use the following information: The square plate is perfectly insulated on its top
and bottom so that the only heat flow is through the plate itself. The four edges
are held at various temperatures. To estimate the temperature at an interior point
on the plate, we use the rule that it is the average of the temperatures at its four
compass-point neighbors, to the west, north, east, and south.

Estimate the temperatures T;, 1 = 1, 2, 3, 4, at the four equispaced interior points
on the plate shown in Figure 2.2.



100°
T
60°
I3 T
"
FIGURE 2.2

40°
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Solution

We now construct the linear system to estimate the temperatures. The points
at which we need the temperatures of the plate for this model are indicated in
Figure 2.2 by dots. Using our averaging rule, we cbtain the equations

_60+100+T> + T

ha™—F " wm A= %=k = 160
Ty + 100 +40 + T:

T2=¥ at =0 4R — Ty =140
60k Ty T =+ 0

n:% or T, +AT, — Ty= 60
Tit T 40 4+ 0

n:% or = B Bt dly= 4b,

The augmented matrix for this linear system is (verify)

4 -1 -1 0160
-1 4 0 -1]140
~1 0 4 =L 69

0 =1 —F 9§ 40

[Ab]=

Using Gaussian elimination or Gauss—Jordan reduction, we obtain the unigue so-
lution (verify)

T, =65, T=60° T:=40° and T,=35" ]

Global Positioning System
A Global Positioning System (GPS) is a satellite-based global navigation system
enabling the user to determine his or her position in 3-dimensional coordinates
without the need for further knowledge of navigational calculations. It was de-
veloped by the military as a locating utility, and the GPS system operated by the
U.S. Department of Defense became operational in 1995. GPS technology has
proven to be a useful tool for a wide variety of civilian applications as well and is
now available in low-cost units. These units have been incorporated into boats, au-
tomobiles, airplanes, and handheld units available for general use such as hiking.
GPS is based on satellite ranging, that is, calculating the distances between a
receiver and the position of three or more satellites (four or more if elevation is
desired) and then applying some mathematics. Assuming that the positions of the
satellites are known, the location of the receiver can be calculated by determining
the distance from each of the satellites to the receiver. GPS takes these three
or more known references and measured distances and “trilaterates” the position
of the receiver. Trilateration is a method of determining the relative position of
an object, in this case, orbiting satellites. For GPS calculations, there are three
position variables, x, v, and z, together with a fourth variable, ¢, time. Time
must be considered, since the GPS receiver processes signals from the satellites to
determine the distances involved. Even though the signals move at the speed of
light, there are small time delays for transmission, together with other factors like
atmospheric conditions, that must be accounted for to ensure that accurate data
are gathered. In this brief discussion of GPS we will use a simplified model to
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FIGURE 2.3

show how linear systems of equations enter into the mathematics that is part of the
clever model involved in GPS.

For “real” GPS, we need to think in terms of three dimensions. In this con-
text each satellite is represented by a sphere, and we need four spheres so that
the location of the receiver can be determined by computing an intercept of the
spheres; that is, a single point of intersection of the spheres. For our discussion,
we will think in two dimensions and consider three satellites, each represented by
a circle for which the coordinates of the center are known. We will assume that
our GPS receiver can determine the distance between its location and the position
ol the satellite; thus, the radius ol each circle is also known. "Then, algebraically,
we have the equations of three circles as shown in (4), where circle j has center
(a;, bj) and radius r; for j =1, 2, 3.

(x—a)?+ @ —b)=rf
x—a)+(—b)=r; ()
(x—a)?+ (@ —b) =r]

By construction, the location of the GPS receiver is on the circumference of each
circle. so we are guaranteed that there is point (x. ¥) that satisfies each equation
in (4). It is this point that will provide the coordinates of the GPS receiver. In
Figure 2.3 we illustrate the system of the (nonlinear) equations in (4). [Why is (4)
not a system of linear equations?]

A question that arises is, How do we solve the system of equations in (4),
since they are not linear equations? The answer is, We first expand each equation
and then eliminate the terms that contain x* and y? by using algebra. In (5) we
show the expansion of each of the equations in (4): note that x* and y* appear in
each equation.

¥ Qayx + a|2 Jr)'z —2byy + h;l = rl2
Pl oy a% + 3% = 2byy + b% = r% (5)
¥ —2asx +a +y* = 2bsy+ b3 =7

Now we rearrange each equation in (5) to obtain the expressions shown in (6).
x2 — 2a\x +a|2 + _\‘2 —2by +bf — rf =0
x272a2_t+a§+)‘272b3y+b§fr§ =0 (6)
x2 —2a3x + a:% + )‘2 — 2byy +b§ - r:f =0
Next, set the left side of the first equation in (6) equal to the lelt side of the second
equation in (6) and simplify. Do likewise for the second and third equations in (6).
This gives the linear system in x and y in (7).

—2a,x + a,z —2by + b]2 — rl2 = —2ax + ag — 2byy + bé — "22 (7)
—2azx + a}z —2hzy + bg — r_% =—2az:x 4 ag —2bzy + bi — rf
Finally, collect like terms in x and y to get the equations in (8).

~2(ay —ax)x = 2(by — b))y = (r{ —r3) + (a3 — a}) + (b5 — b))

, _ TR AT T @
—2(a; —azx)x —2(bs — b))y = (ry —ry)+ (a3 —a3) + (bz _hg)
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To simplify a bit further, we multiply each equation in (8) by —1 and show the
matrix formulation for the resulting 2 x 2 system in (9).

{2«1; —ay) 2 —bz)] [x] . {(ri =)+ (@] — a3) + (b} — b%}] ©
2ay —a) 2by—ha) ||y (r3 —rd) + (a3 — ad) + (b} — b3)

So. given the coordinates of the centers and the radii of the three circles, we can
determine the location of the GPS receiver in the two-dimensional model.

The coordinates of the centers and the radii of three circles are shown in Table 2.1.
The corresponding system of equations is given in (10) (verify). and its solution
isx = 6 and y = 10 (verify). Thus, the coordinates of the GPS receiver in the
two-dimensional system for these three circles is (6. 10).

TABLE 2.1
Circle Center Radius
1 (—3,50) 41
2 =2y 13
3 (13,34) 25
—-28 104 || =x 872
{ 4 72] [v] - {144]' {"2

Next we present an approach for GPS in three dimensions. In this case each
of the equations in the system that is analogous to those in (4) has the form

(x — a;-]z + (y — bj)z + (z — c;-)2 = (distance from receiver to satellite j)2

(D

for j =1,2,3, 4, where (a;, b, ¢;) is the position of the satellite j. The distance
from the receiver to satellite j is computed by measuring the time it takes the signal
from satellite j to reach the receiver. The satellite contains a clock mechanism
that sends the time the signal was sent to the receiver, and we let ¢ be the time the
signal was received. Since the signal travels at the speed of light, we can get a
good approximation to the distance by using the basic formula distance = speed
x elapsed time. Thus there are now four unknowns: x., y, z, and 1. We proceed
algebraically as we did to get expressions that are analogous to those in (7} and
(8). This will yield a system of three equations in four unknowns analogous to the
system in (9). We solve this system for x, y, and z in terms of time ¢. To determine
the unknown ¢, we substitute these expressions for x, y, and z into any of the
equations in (11) and then solve the resulting quadratic polynomial for 7. Finally,
we use the resulting value of ¢ in the expressions for x, y, and z to determine the
location of the receiver in three dimensions. This approach uses a system that has
infinitely many solutions and then cleverly uses the underlying physical situation
to determine the “free” variable r.
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Theorem 2.4

The real-life situation is even more complicated than our approach outlined
for the three-dimensional case. The satellites are continually moving, so their lo-
cations vary with time, inherent errors in time calculations creep in, and a number
of other factors introduce more inaccuracies. Highly accurate estimation of the
receiver’s position is beyond the scope of this course, but there are many books
and discussions on the Internet that provide more detailed information. We have
presented a basic component of GPS calculations, namely, that linear systems of
equations are involved.

B Homogeneous Systems

Now we study a homogeneous system Ax = 0 of m linear equations in n un-
knowns.

Consider the homogeneous system whose augmented matrix is

oo o -
e [ v e o
(o= e R R
o= oo
fea i SR VS I

Since the augmented matrix is in reduced row echelon form, the solution is seen
to be

X =—=2r
Xy = 5
X3 = —3r
x4 = —4r
x5= r,
where r and s are any real numbers. m

In Example 10 we solved a homogeneous system of m (= 4) linear equations
in n (= 5) unknowns, where m < n and the augmented matrix A was in reduced
row echelon form. We can ignore any row of the augmented matrix that consists
entirely of zeros. Thus let rows 1, 2, ..., r of A be the nonzero rows, and let the
1 in row i occur in column ¢;. We are then solving a homogeneous system of »
equations in n unknowns, r < n, and in this special case (A is in reduced row
echelon form) we can solve for x,, x.,, ..., X, in terms of the remaining n — r
unknowns. Since the latter can take on any real values, there are infinitely many
solutions to the system Ax = 0; in particular, there is a nontrivial solution. We
now show that this situation holds whenever we have m < n: A does not have to
be in reduced row echelon form.

A homogeneous system of m linear equations in n unknowns always has a non-
trivial solution if m < n, that is, if the number of unknowns exceeds the number
of equations.
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Proof

Let B be a matrix in reduced row echelon form that is row equivalent to A. Then
the homogeneous systems Ax = 0 and Bx = 0 are equivalent. As we have just
shown, the system Bx = 0 has a nontrivial solution, and therefore the same is true
for the system Ax = 0. i

We shall use this result in the following equivalent form: If A is m x n and
Ax = 0 has only the trivial solution, then m = n.

Consider the homogeneous system

x+ y+z+w=0

x +w=0
x+2y+z =0.
The augmented matrix
I T A
A=|1 0 0 1:0
i 231 m

is row equivalent to (verify)

Hence the solution is

X =—-r
Y= r
= —F
w = r,any real number. n

B Application: Chemical Balance Equations

Chemical reactions can be described by equations. The expressions on the left
side are called the reactants, and those on the right side are the products, which
are produced from the reaction of chemicals on the left. Unlike mathematical
equations, the two sides are separated by an arrow, either —, which indicates that
the reactants form the products, or <>, which indicates a reversible equation: that
is, once the products are formed, they begin to form reactants. A chemical equation
is balanced, provided that the number of atoms of each type on the left is the same
as the number of atoms of the corresponding type on the right. In Example 12
we illustrate how to construct a homogeneous system of equations whose solution
provides appropriate values to balance the atoms in the reactants with those in the
products.

Sodium hydroxide (NaOH) reacts with sulfuric acid (H,SOy) to form sodium sul-
fate (Na»;504) and water (H,0). The chemical equation is

NaOH + H,;S0; — Na»SO; + H,0.
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To balance this equation, we insert unknowns, multiplying the chemicals on the
left and right to get an equation of the form

xNaOH + }‘sto_-‘ — ZNﬂzSO4 + I.UHZO.
Next, we compare the number of sodium (Na), oxygen (O), hydrogen (H). and

sulfur (S) atoms on the left side with the numbers on the right. We obtain four
linear equations:

Na:x =2z
Ox+4y=4z+w
H:x+2y =2w
Sigi=n

Observe that we made use of the subscripts because they count the number of
atoms of a particular element. Rewriting these equations in standard form, we see
that we have a homogeneous linear system in four unknowns:

x —2z =i
x+4y—4dz— w=0
X+ 2y —2w=0

i 1z =if);

Writing this system in matrix form, we have the augmented matrix

| 0 -2 010
| 4 —4 —1 10
| 2 0 =2 10
8 & & e
The reduced row echelon form is
(1. & B8 =L [@]
0 1 -0
0 i =2 4
0 0 0 0]
and the solution is x = w, y = %w. and z = %w. Since w can be chosen

arbitrarily and we are dealing with atoms, it is convenient to choose values so that
all the unknowns are positive integers. One such choice is w = 2, which gives
x =2,y =1,and z = I. In this case our balanced equation is

2NaOH + H;5804 — NaxSOy + 2H,0. iu]
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B Relationship between Nonhomogeneous Linear Systems
and Homogeneous Systems

Let Ax = b, b # 0, be a consistent linear system. If x,, is a particular solution
to the given nonhomogeneous system and x; is a solution to the associated homo-
geneous system AX = 0, then x, + X}, is a solution to the given system AX = h.
Moreover, every solution x to the nonhomogeneous linear system Ax = b can be
written as X, + X, where X, 1s a particular solution to the given nonhomogeneous
system and x;, is a solution to the associated homogencous system Ax = 0. For a
proof, see Exercise 29.

B Solving Linear Systems with Complex Entries

Gaussian elimination and Gauss—Jordan reduction can both be used to solve linear
systems that have complex entries. The examples that follow show how to solve
a linear system with complex entries by using these solution techniques. (For
simplicity, we do not show the notation for row operations.) Further illustrations
and exercises are given in Appendix B.2.

Solve the linear system

A=idx+ Q@+ily=2+2
Do (1 =By =14%

by Gaussian elimination.

Solution
The augmented matrix of the given linear system is

1§ 25 125
2 1=

To transtorm this matrix to row echelon form, we first interchange the two rows
(to avoid complicated fractions), obtaining

I o R
= Bdg opeg |
Multiply the first row by 1:
[ 1214
3 i B
feg i | B

Add —(1 — 1) times the first row to the second row:

1—2i

5+ 5i
2
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Multiply the second row by

5+ 5i
1—2i | 143
3 | 2
5 i b2
545
Then
U B
SR LTy T e

Using back substitution, we have
143 1-2i L . B it
X= —— R = = 1 E
X 5 5 ¥ 5 + 51 (verily)

Solve the linear system whose augmented matrix is

voZ =il 1=

0 2i 24i{—-2+i

0 -t 1 {-1-i
by Gauss—Jordan reduction.

Solution

1
Multiply the first row by 7

1

0 2i 24i!|—=2+i
0 =i 1 {=1-i
: 1
Multiply the second row by 2—
1
i 2 1-=iy 1-2
i i N i
240 =2+i
N
0 =i |

Add i times the second row to the third row:
2 A= | 1—-2i

1 I~ —= =
i -
240 | —2+i
0 1 :
2 2
0 0 4+4+i i —4—i

)



2
Multiply the third row by (4

241

i
third row to the first row:

Add (—

1
times the third row to the second row and (—
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)

+1
i 2 1—i 1-=-2i
i i i
0 1 2—%15—2-‘{—1
2 4 2
g6 T | -~

—1i
) times the
1

2 123
L o W .I
I i
S R
oo 1) =i

2
Add (— -_—) times the second row to the first row:
i

I o 013
]
0 1L o6 1
6 9 1 -1
Hence the solutionis x = -3,y =1,z = —1. | |
Key Terms
Gaussian elimination Back substitution Global positioning system
Gauss—Jordan reduction Quadratic interpolation Chemical balance equations
Homogeneous system Quadratic interpolant
IEET Exercises
1. Each of the given linear systems is in row echelon form. (a) x+y = .2 (b) x =3
Solve the system. z4+w=-3 ¥y =0
pri=il

(@) x+2y—z=6

¥+zg=5

Zo=4

Each of the given linear systems is in row echelon form.
Solve the system.

@ x+y—z4+2w=4

w=>5

(b) x —3y+4z4+w=0
z—w=4
w=1

3. Each of the given linear systems is in reduced row eche-

lon form. Solve the system.

4. Each of the given linear systems is in reduced row eche-
lon form. Solve the system.

@ x —-2z= (b) x =l
y+ z= ¥ =4
1—w=4
5. Consider the linear system
x4+ y4+2z=-1
x=2y4+ z=-5
3 P = B
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{a) Find all solutions, if any exist, by using the Gaussian
elimination method.

{b) Find all solutions, if any exist, by using the Gauss—
Jordan reduction method.

Repeat Exercise 5 for each of the following linear sys-

lems:

a x4+ vy+2z4+3w=13
x—2y4+ z4 w= 8§
3+ y¥ z— =1

M) x+y+ z=1
x+y—2z7=73
2x4+y+ =2

(€ 2x4+ y+ z—-2w= 1
3x—2y4 z—6w=-2
¥+ y— r— w=-1
6x 4+ z—%w=-—
Sx— y+42z—-8w= 3

n Exercises rough 9, solve the linear system, with the
In Ex 7 through 9, selve the I St th th
given augmented matrix, if it (s consistent.

10.

11.

. (a)

. (a)

11 110 E 2 30
@@ [1 1 013 W [1 1 110
L0 1 111 E 1 2.0
1 2 3107 ,
@ (4 L A0 (d)[: i ‘:’ig}
L5 7 910] '

M 2 3 18

S I

LI © 2 153

M1 I 3310

m [0 2 1 33

L1 0 2 —1i-=1

L 2 [y 7
i L 2 110

o 18 4 |_ |
i 3 !

1 0 2(5 (b) 7o n:ﬂ
! 0 1 210

1 2 3111 s 1 Al

L2 1 o112 '

Find a 2 x 1 matrix x with entries not all zero such that

4 1
Ax=4 here A = 1
X x, where [ 0 2}
[Hint: Rewrite the matrix equation Ax = 4x as
4x — Ax = (41; — A)x = 0, and solve the homogeneous
linear system. |
Find a 2 x 1 matrix x with entries not all zero such that

§ _I2 4
AX = 3X, wheleﬁ_[] 2:[.

12.

13.

14.

15.

16.

17.

18.

19.

Find a 3 x | matrix x with entries not all zero such that

2
Ax =3x, where A = 0

Find a 3 x 1 matrix x with entries not all zero such that

M1 2 —17
Ax = Ix, where A= |1 0 1
L4 —4 5]

In the following linear system, determine all values of a
for which the resulting linear system has

(a) no solution;
(b) a unique solution;

(c) infinitely many solutions:

e Y=
x+2y+
X+ y+{a*—5z=a

Lo IS |

W o

Repeat Exercise 14 for the linear system

x4+ y4 =12
2x + 3y + 25 =195
2x+3v+ (@ -z =a+1.

Repeat Exercise 14 for the linear system

ol
x4+ 2y +
x4+ y+ (@ =5z=a.

Repeat Exercise 14 for the linear system

x4+ y=:3
x4 (@ —8)y =a.

a b Xy
A_[C (J and x_[‘z]

Show that the linear system Ax = 0 has only the trivial
solution if and only if ad — be # (.

Let

Show that A = [f j] is row equivalent to [5 if and
only if ad — be #£ 0.



20.

21.

22,

Let f: R* — R® be the matrix transformation defined

by
f(

Find x, y. z so that f (

FERL
I
(SRR S
|

a

= A
e —
Il

L

-1

Let [ R' — R' be the mauix tansformation defined

by
X 1 2 3
flly =|=-3 =2 -1l

P

2]

p)
Find x, y, z so that f y =|2
Let f: R* — R* be the matrix transformation defined

by
X
f( y|l=

Find an equation relating a, b, and ¢ so that we can al-
ways compute values of x, y, and z for which

,(

Let f: R* — R* be the matrix transformation defined

by
X
/(L2))-

Find an equation relating a, b, and ¢ so that we can al-
ways compute values of x, y, and z for which

1 3
| 3
2 0

b =
T

e

1 2 3
-3 =2 =l
-2 0 2

rq = -

=
Mo M

a
=1b
c

Exercises 24 and 25 are optional.

24.

(a) Formulate the definitions of column echelon form
and reduced column echelon form of a matrix.

(b) Prove that every m x n matrix is column equivalent
to a matrix in column echelon form.

25.

26.

27.

29,

30.

31.

32.
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Prove that every m x n matrix is column equivalent to a
unique matrix in reduced column echelon form.

Find an equation relating a, b, and ¢ so that the linear
system
x+2y—3z=a
x+3y+3z=b
Sx+9y—6z=c¢

is consistent for any values of a, b, and ¢ that satisfy that
equation.

Find an equation relating a, b, and ¢ so that the linear
system
2x+2y+3z=a
3x— y+5z=bh
x=3y+2z=c
is consistent for any values of a, b, and ¢ that satisfy that
equation.

Show that the homogeneous system

la—r)x + dy =10
cx+(b=r)y=0

has a nontrivial solution if and only if r satisfies the equa-

tion (a —r)(b —r) —ed = 0.

Let Ax = b.b 5 0, be a consistent linear system.

(a) Show that if x,, is a particular solution to the given
nonhomogeneous system and x; is a solution to

the associated homogencous system Ax = 0, then
X, + X, is a solution to the given system Ax = b.

(b) Show that every solution X to the nonhomogeneous
linear system AX = b can be written as x,, + x;,
where x,, is a particular solution to the given nonho-
mogeneous system and x;, is a solution to the asso-
ciated homogeneous system Ax = 0.

[Hint: Letx =X, + (x — x,).]

Determine the quadratic interpolant to each of the given
data sets. Follow the procedure in Example 7.

(a) {(0,2), (1,5), (2, 14)}

(b) {(—1,2),(3,14), (0, —-1))

(Calculus Required) Construct a linear system of equa-
tions to determine a quadratic polynomial p(x) = ax* 4
bx + ¢ that satisfies the conditions p(0) = f(0), p'i0) =
£(0), and p"(0) = f"(0), where f(x) = e™.

(Calculus Required) Consiruct a linear system of equa-
tions to determine a quadratic polynomial p(x) = ex* +
bx 4+ ¢ that satisfies the conditions p(1) = f(1), p'(1) =
f/(h,and p"(1) = f"(1), where f(x) = xe* .
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33. Determine the temperatures at the interior points 7},
i =1, 2, 3, 4 for the plate shown in the figure. (See
Example 8.)

30°
Tl TI
507 50°
T |1y
0

34. Determine the planar location (x. y) of a GPS receiver,
using coordinates of the centers and radii for the three
circles given in the following tables:

(a)
Circle Center Radius
1 (—15,20) 25
2 (5, —12) 13
3 (9, 40) 41
(b)
Circle Center Radius
1 (—10,13) 25
2 (10, —19) 13
3 (14, 33) 41

35. The location of a GPS receiver in a two-dimensional sys-
temis (—4, 3). The data used in the calculation are given
n the table, except that the radius of the first circle is
missing. Determine the value of the missing piece of
data.

Cirele Center Radius
1 (—16,38) 2
2 (7, =57) 61
3 (32, 80) 85

36. The location of a GPS receiver in a two-dimensional sys-
tem is (6, 8). The data used in the calculation are given
in the table, except that the radii of circles | and 2 are
missing. Determine the values of missing pieces of data.

Circle Center Radius
1 (3,4) ?
2 (10, 5) ?
3 (18, 3) 13

37. Suppose you have a “special edition™ GPS receiver for
two-dimensional systems that contains three special but-
tons, labeled C1, C2, and C3. Each button when de-
pressed draws a circle that corresponds to data received
from one of three clesest satellites. You depress button
C1 and then C2. The image on your handheld unit shows
a pair of circles that are tangent to each other. What is
the location of the GPS receiver? Explain.

38. Rustis formed when there is a chemical reaction between
iron and oxygen. The compound that is formed is the red-
dish brown scales that cover the iron object. Rust is iron
oxide whose chemical formula is Fe,04. So a chemical
equation for rust is

Fe + 0; — Fe,0s.

Balance this equation.

39. Ethane is a gas similar to methane that burns in oxygen to
give carbon dioxide gas and steam. The steam condenses
to form water droplets. The chemical equation for this
reaction is

C;Hg + 0; — CO; + H,0.
Balance this equation.

In Exercises 40 and 41, solve each given linear system.

40. (1—ix+ (24+2)y=1
(1+2)x + (—2+2)y=1i
4. x+y =3
ix+y =0
y+iz=3

In Exercises 42 and 43, solve each linear system whose aug-
mented matrix is given.

l—d 242 i
i [1+i —242 :72]
I R
3. |26 - 2| -2
1 2 s 2

® 44, Determine whether the software you are using has acom-

mand for computing the reduced row echelon form of
a matrix. If it does, experiment with that command on
some of the previous exercises.



46.

. Determine whether the software you are using has a com-
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and then mark the data points on the graph.

mand for computing interpolation polynomials, given a (b) For the data set {(0,0), (1, 1), (4, 2)}, generate the

set of ordered pairs. If it does, use the command to de-
termine the quadratic interpolant for the data sets in Ex-

ercise 30,

Determine whether the software you are using has a
araphing option as part of a command for computing in-
terpolation polynomials, or if there is an easy way avail-
able to graph the interpolant. If it does, use it as follows:

{(a) Generate the graphs for the quadratic interpolants

quadratic interpolant and graph it over the interval
[0.4]. Print out the graph and then mark the data
points on the graph. This data set is a sample of
the function y = f(x) = J/x. Carefully sketch
the graph of f on the printout, making sure it goes
through the data points. Briefly discuss the error that
would be incurred if you were to evaluate the inter-
polant at x = 2 and x = 3 to estimate /2 and +/3,

for the data sets in Exercise 30. Print out the graphs, respectively.

DEFINITION 2.4

Theorem 2.5

m Elementary Matrices; Finding A ™'

In this section we develop a method for finding the inverse of a matrix if it exists.
To use this method we do not have to find out first whether A~! exists. We start
to find A‘l; if in the course of the computation we hit a certain situation, then
we know that A~! does not exist. Otherwise, we proceed to the end and obtain
A~". This method requires that elementary row operations of types L, II, and III
(see Section 2.1) be performed on A. We clarify these notions by starting with the
following definition:

An n x n elementary matrix of type L, type 11, or type III is a matrix obtained
from the identity matrix /, by performing a single elementary row or elementary
column operation of type I, type II, or type III, respectively.

The following are elementary matrices:

qQ o i 1 0 0
Ex=1|0 1 |, E=|0 2 0i| ;

10 0 0o 0 1

L ¢ 10 3
Es=|0 1 0|, and E;={0 L @

0 M | g 1

Matrix E| is of type I—we interchanged the first and third rows of I5; E;is of
type ll—we multiplied the second row of I3 by (—2); E3 is of type [[I—we added
twice the second row ol /3 to the first row of f3; and £} is of type Ill—we added
three times the first column of /5 to the third column of 5. | |

Let A be an m x n matrix, and let an elementary row (column) operation of type I,
type II, or type III be performed on A to yield matrix B. Let E be the elementary
matrix obtained from 1, (/,) by performing the same elementary row (column)
operation as was performed on A. Then B = EA (B = AL).

Proof
Exercise 1. ]
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Theorem 2.6

Theorem 2.7

Theorem 2.5 says that an elementary row operation on A can be achieved by
premultiplying A (multiplying A on the left) by the corresponding elementary ma-
trix £ an elementary column operation on A can be obtained by postmultiplying
A (multiplying A on the right) by the corresponding elementary matrix.

Let
1 & 2 1
A=|—-1 2 3 4
30 1 2

and let B = A_ary4r 1, ; then

=5 3 0 -3
B=| -1 2 3 4

Now let E = (13) _2r,4x;—r,s then

1 g =2
E=|0 1 @
0 0 1
We can readily verify that B = EA. m

If A and B are m x n matrices, then A is row (column) equivalent to B if and only if

there exist elementary matrices Ey, Eo, ..., Ey suchthat B = EEy - -- E2E\A
(B=AE\Ey---Ey | Ep).
Proof

We prove only the theorem for row equivalence. If A is row equivalent to B, then
B results from A by a sequence of elementary row operations. This implies that
there exist elementary matrices £y, E, ..., Epsuchthat B = E By --- E2E AL

Conversely, if B = E E; ;--- E;E A, where the E; are elementary matrices,
then B results from A by a sequence of elementary row operations, which implies
that A is row equivalent to B. i

An elementary matrix £ is nonsingular, and its inverse is an elementary matrix of
the same type.

Proof
Exercise 6. m

Thus an elementary row operation can be “undone” by another elementary
row operation of the same type.

We now obtain an algorithm for finding A~ if it exists; first, we prove the
following lemma:



Lemma 2.1°

Theorem 2.8

Corollary 2.2
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Let A be an n x n matrix and let the homogeneous system Ax = 0 have only the
trivial solution x = 0. Then A is row equivalent to [,. (That is, the reduced row
echelon form of A is [,,.)

Proof

Let B be a matrix in reduced row echelon form that is row equivalent to A. Then
the homogeneous systems Ax = 0 and Bx = 0 are equivalent, and thus Bx = 0
also has only the trivial solution. It is clear that if r is the number of nonzero rows
of B, then the homogeneous system Bx = 0 is equivalent to the homogeneous
system whose cocfficient matrix consists of the nonzero rows of B and is therefore
r x n. Since this last homogeneous system has only the trivial solution, we con-
clude from Theorem 2.4 that ¥ > n. Since Bisn x n,r < n. Hence r = n, which
means that B has no zero rows. Thus B = I,,. m

A is nonsingular if and only if A is a product of elementary matrices.

Proof

If A is a product of elementary matrices Ey, Ez. ..., B, then A = E\Es--- Ey.
Now each elementary matrix is nonsingular, and by Theorem 1.6, the product of
nonsingular matrices is nonsingular; therefore, A is nonsingular.

Conversely, if’ A is nonsingular, then Ax = 0 implies that A™'(Ax) = A7'0 =
0,s0 I,x = 0 orx = 0. Thus Ax = 0 has only the trivial solution. Lemma 2.1
then implies that A is row equivalent to /. This means that there exist elementary
matrices Ey, Ea, ..., Ey such that

I, =EE - - E:E\A.

It then follows that A = (ExEy_;--- E2E))~ = E{'E;' - B} E; " Since the
inverse of an elementary matrix is an elementary matrix, we have established the
resull. B

A is nonsingular if and only if A is row equivalent to [,,. (That is, the reduced row
echelon formof A is [,,.)

Proof
If A isrow equivalentto [, then [, = EEp_--- E2E A, where Ey, E, ... E;
are elementary matrices. Therefore, it follows that A = E[_'E;' ---Ek_'. Now

the inverse of an elementary matrix is an elementary matrix, and so by Theorem
2.8, A is nonsingular.

Conversely, if A is nonsingular, then A is a product of elementary matrices,
A= E,'\.Ek,l R EzEj. Now A = A]“ = EkEk—I oS EzE] [ri! which implics that
A is row equivalent to /. m

We can see that Lemma 2.1 and Corollary 2.2 imply that if the homogeneous
system Ax = 0, where A is n x n, has only the trivial solution x = 0, then A
is nonsingular. Conversely, consider Ax = 0, where A is n x n, and let A be
nonsingular. Then A~! exists, and we have A~ (Ax) = A~'0 = 0. We also have
A7 (Ax) = (A~'A)x = I,x = x, so x = 0, which means that the homogeneous

“A lemma is a theorem that is established for the purpose of proving another theorem.
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Theorem 2.9

system has only the trivial solution. We have thus proved the following important
theorem:

The homogeneous system of n linear equations in » unknowns Ax = 0 has a

nontrivial solution if and only if A is singular. (That is, the reduced row echelon
formof A # [,.) 1]

A=|:; j]

Consider the homogencous system Ax = 0 that is,

2 5I0)=[]

The reduced row echelon form of the augmented matrix is

1 814
0 0:0

Let

(verify), so a solution is

where r is any real number. Thus the homogeneous system has a nontrivial solu-
tion, and A is singular. |

In Section 1.5 we have shown that if the n x n matrix A is nonsingular, then
the system Ax = b has a unique solution for every n x 1 matrix b. The converse
of this statement is also true. (See Exercise 3(0.)

Note that at this point we have shown that the following statements are equiva-
lent for an n x n matrix A:

1. A is nonsingular.

2. Ax = 0 has only the trivial solution.

3. A is row (column) equivalent to [,,. (The reduced row echelon form of A is
1)

4. The linear system Ax = b has a unique solution for every n x 1 matrix b.

5. A is a product of elementary matrices.

That is, any two of these five statements are pairwise equivalent. For exam-
ple, statements 1 and 2 are equivalent by Theorem 2.9, while statements 1 and 3
are equivalent by Corollary 2.2. The importance of these five statements being
equivalent is that we can always replace any one statement by any other one on
the list. As you will see throughout this book, a given problem can often be solved
in several alternative ways, and sometimes one procedure is easier to apply than
another.
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Finding A ™!

At the end of the proof of Theorem 2.8, A was nonsingular and
A=Er'Ey' - EL B
from which it follows that
A = (BB ELNEY T = EvEyy - EoEn.

This now provides an algorithm for finding A ~'. Thus we perform elemen-
tary row operations on A until we get [,; the product of the elementary matrices
EvE;_y--- E2E, then gives A~!. A convenient way of organizing the computing
process 1s to write down the partitioned matrix [A LIy ] Then

(ExEp_y- - E2E)[A | Iy = [ExEx1- - B2E\A | ExEy_y - BB |

=5 s

That is, for A nonsingular, we transform the partitioned matrix [A 4 ] to reduced
row echelon form, obtaining [ 1, | A™'].

Let
1 1 1
=i | 0 2, 3
5 5 1

Assuming that A is nonsingular, we form

1 1 1}{1 0 o0
[2{g]=|0 & @FiQ T ¥
% & 4j@ § 1

We now perform elementary row operations that transform [A i 13] to [13 [A™ '];
we consider [A 13] as a 3 x 6 matrix, and whatever we do to arow of A we also
do to the corresponding row of f3. In place of using elementary matrices directly,
we arrange our computations, using elementary row operations as follows:
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A I
1 1 1 | 0 0 Apply =51 + 13 — r3.
B 2 % 4 G T 0
5 5 1 0 0 1
1 1 1 | 0 0 Apply %rz —> TIs.
g 2 3 0 1 0
0 0 —4 —5 0 1
1 1 1 1 0 0 Apply —ir; — 3.
g 41 2 0 4 0
0 0 —4 -5 0 1
1 1 1 1 0 0 Apply—§r3+r3—>rland
0 1 % 0 % 0 —Iry+r =1
6 b 1 : 0 -t
1 0 —% 0 _'; Apply —1r; +1; — 13.
o 1 B E & 3§
0 0 1 2 0 -4
0 0 B4
0o 1 o ¥ 3
0 1 30 -4
Hence
i _i _1
8 2 B
at=l-g t g
;o0
We can readily verify that AA ' = A 'A =[5, m

The question that arises at this point is how to tell when A is singular. The
answer is that A is singular if and only if A is row equivalent to matrix B, having
at least one row that consists entirely of zeros. We now prove this result.

Theorem 2.10 An n x n matrix A is singular if and only if A is row equivalent to a matrix B
that has a row of zeros. (That is, the reduced row echelon form of A has a rew of
Zeros.)

Proof

First, let A be row equivalent to a matrix 5 that has a row consisting entirely
of zeros. From Exercise 46 of Section 1.5, it follows that B is singular. Now
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B = EEi_ - E1A, where Ey, E3, ..., E; are elementary matrices. If A is

nonsingular, then B is nonsingular, a contradiction. Thus A is singular.
Conversely, if A is singular, then A is not row equivalent to I, by Corollary
2.2. Thus A is row equivalent to a matrix B # [, which is in reduced row echelon
form. From Exercise 9 of Section 2.1, it follows that B must have a row of zeros.
m

This means that in order to find A~', we do not have to determine, in advance,
whether it exists. We merely start to calculate A~'; if at any point in the com-
putation we find a matrix B that is row equivalent to A and has a row of zeros,
then A~ does not exist. That is, we transform the partitioned matrix [A | 1, ]
to reduced row echelon form, obtaining [C | D]. If C = I,.then D = A" If
C # I, then C has a row of zeros and we conclude that A is singular.

| EXAMPLES [

1 2 -3
A=|1 -2 1
5 -2 -3
To find A~', we proceed as follows:
A I3
1 2 -3 1 0 0 Apply —1Ir; + 12 — 12,
1 -2 1 0 l 0
5 -2 -3 0 0 1
1 2 =3 1 0 0 Apply —5r; + 135 — 13,
0 -4 —1 1 0
5 -2 3 0 0 1
1 2 -3 1 0 0 Apply —3r; + 135 — 13,
0 —4 4 1 -1 | 0
0 -12 12 | -5 0 1
1 2 -3 i 1 0 0
0 -4 -+ —1 1 0
0 0 0 -2 =3 1
At this point A is row equivalent to
1 2 -3
B=|0 -4 41,
0 0 0

the last matrix under A. Since B has a row of zeros, we stop and conclude that A
is a singular matrix. |

In Section 1.5 we defined an n x n matrix B to be the inverse of the n x n
matrix A if A = [, and BA = [,. We now show that one of these equations
follows from the other.
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1z 3 1 2 3 17. Which of the following homogeneous systems have a
(c) 1 1 2 @ |1 1 2 nontrivial solution?
[0 1 2 L0 1 1 (@) x+2y+3:=0
10. Invert each of the following matrices, if possible: 2y +2:=0
- E x+2y+4+3z=0
1 2 -3 1 31 2
-1 3 -3 =2 5 M 24+ y— z=0
2 - =
W12 0 1 s ) I:f ,1, 2i| x—2y—3=0
L. 3 1 -2 5] - —3x— y+2:=0
i & % [3: i 4 (© 3x+ y+32-0
(e) L 12 |0 1 2 -2x+2y—4z=0
[ 1 1 0] 1 0 3 2 =3y +52=0
11. Find the inverse, if it exists, of each of the following: 18. Which of the following homogeneous systems have a
= nontrivial solution?
- = | | 1 il
L 11 1 5w ) (@) x+y+2z=0
@) |1 2 3 (h) xx+y+ z=
o1 - B I—y+ z=0
- E 4 & & = e E
M| | 1 1 (b) x— y+ z=0
) 3 1 ) 1 2 o v+ ¥ =0
] ) 2 . 1 ) |1 3 2 2 —2y+2z=0
5 8 0L & %A © 2r— y+5:=0
- [ ’ f o— ¥ =2
L2 2 Ix+2y—3z=0
@ |1 31 x— y+4z=0
{
113 19. Find all value(s) of @ for which the inverse of
12. Find the inverse, if it exists, of each of the following: 1 1 0
1 1 2 17 A=|1 0 0
10 =2 0 0 I 2 d
(a) A= 1 > 1 2
Lo 3 2 L exists. Whatis A~'?
M1 1 1 i 20. For what values of a does the homogeneous system
1 3 1 2
by A=
® 1 2 -1 1 (a—Dx + 2y =0
L5 9 I in 2x+(a—-1Ly=0
In Exercises 13 and 14, prove that each given matrix A is ) B e
nonsingular and write it as a product of elementary matrices. have a nontrivial solution?
(Hini: First, write the inverse as a product of elementary ma- 21. Prove that
trices; then use Theorem 2.7.) i [a b]
[ ¥ 14 3 S le d
13. A= [—,. 4] 4.4=10 1 2 is nonsingular if and enly if ad —be # 0. If this condition
: I 0 3 holds, show that
; ; ; ; . [4 2
15. If A is a nonsingular matrix whose inverse is - d —b
find A, ad —bc  ad — be

-1 __

I e - a

16. A = |1 1 2 |.find A. ad —bc  ad — be
-1 1
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22,

23.

24.

25.
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|' 2 3 -1 '|
1 0 3
A= 6 3 -l
-2 1 3
Find the elementary matrix that as a postmultiplier of A

performs the following elementary column operations on
A:

(a) Multiplies the third column of A by (=3).

Let

{(b) Interchanges the second and third columns of A.

{c) Adds (—5) times the first column of A to the third
column of A,

Prove that two m x n matrices A and B are row equiv-
alent if and only if there exists a nonsingular matrix P
such that B = PA. (Hint: Use Theorems 2.6 and 2.8.)

Let A and B be row equivalent n x n matrices. Prove that
A is nonsingular if and only if B is nonsingular.

Let A and B be n x n matrices. Show that il AB is non-
singular, then A and B must be nonsingular. (Hint: Use
Theorem 2.9.)

26.

28.

29.

30.

31

32.

33.

. Let A and B be m % n matrices.

Let A be an m x n matrix. Show that A is row equivalent
to O ifand only if A = O.

Show that A is row
equivalent to B if and only if A” is column equivalent to
B,

Show that a square matrix which has a row or a column
consisting entirely of zeros must be singular.

(a) Is(A+B)"'=A""+B""7

1
(b) Is(cA)y'=-A""2

If Aisann xn matrix, prove that A is nonsingular if and
only if the linear system AX = b has a unique solution
for every n x 1 matrix b.

Prove that the inverse of a nonsingular upper (lower) tri-
angular matrix is upper (lower) triangular.

If the software you use has a command for computing re-
duced row echelon form, use it to determine whether the
matrices A in Exercises 9, 10, and 11 have an inverse by
operating on the matrix [A i I, 1 (See Example 4.)

Repeat Exercise 32 on the matrices given in Exercise 63
of Section 1.5.

m Equivalent Matrices

We have thus far considered A to be row (column) equivalent to B if B results
from A by a finite sequence of elementary row (column) operations. A natural
extension of this idea is that of considering B to arise from A by a finite sequence
of elementary row or clementary column operations. This leads to the notion of
equivalence of matrices. The material discussed in this section is used in Section

4.9

DEFINITION 2.5

If A and B are two m x n matrices, then A is equivalent to B if we obtain B from
A by a finite sequence of elementary row or elementary column operations.

As we have seen in the case of row equivalence, we can show (see Exercise
1) that (a) every matrix is equivalent to itself; (b) if B is equivalent to A, then A
is equivalent to B; (¢) if C is equivalent to B, and B is equivalent to A, then C is
equivalent to A. In view of (b), both statements “A is equivalent to B” and “B is
equivalent to A” can be replaced by “A and B are equivalent.” We can also show
that if two matrices are row equivalent, then they are equivalent. (See Exercise 4.)

Theorem 2.12
the form

If A is any nonzero m x n matrix, then A is equivalent to a partitioned matix of

i

I)' Or A—r

Om—l'r Om—r n—r

THere, 0,,_, is the r % 1 — 7 zero matrix; similarly, Q,,_,, is the m — r % r Zero matrix, etc.
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Proof

By Theorem 2.2, A is row equivalent to a matrix B that is in reduced row echelon
form. Using elementary column operations of type I, we get B to be equivalent to

a matrix C of the form
[r Uf n—r
Olll—r r OMI —r H—r !

where r is the number of nonzero rows in B. By elementary column operations of
type 1IL, C is equivalent to a matrix D of the form

Ir Or n—r
OHJ—J'J' OIJI—F n—r |
From Exercise 1, it then follows that A is equivalent to D. i1

Of course, in Theorem 2.12, r may equal m, in which case there will not be any
zero rows at the bottom of the matrix. (What happens if r = n? If r = m = n?)
Recall from Section 2.1 that we introduced the following notation for elemen-
tary column operations:
¢ Interchange columms i and j: ¢; < ¢;
¢ Replace column i by &k times column i: ke; — ¢;
¢ Replace column j by k times column i + column j: k¢; +¢; — ¢;

Let
1 4 2 =
2 1 0
s N
1 <2 5 -4

To find a matrix of the form described in Theorem 2.12, which is equivalent to A,
we proceed as follows. Apply row operation —1r; + r» — r; to obtain

1 1 2 =1
0 1 -1
1 - 1 -2 Apply Ir; +r3 — 1.

1 1 2 -1
0 1 -1 1
0 -3 3 -3 Apply —1r; + 1y — 1y
1 —2% 3 =

Apply —1r; + 1y — 1.
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| 1 2 -1
0 1 -1 |
6 3 5 3 Apply —ir; — 3.
L0 0 0 0 |
1 1 2 —17]
0 1 -1 |
0 1 -1 ) Apply —1r; +ry — 3.
L0 0 0 0|
M1 1 2 =17
0 1 -1 I
0 0 0 0 Apply —=1r, +r; — ).
L0 0 0 0 |
1 0 3 =27
0 1 -1 1
Apply =3 3 —> €.
0 0 0 0 pply =3¢, + ¢ [
L0 0 0 0|
"1 0 0 =27
" 5 ; Apply 2¢, + ¢ c
£ - %
0 0 0 0 S
L0 0 0 0|
1 0 0 0]
0 1 -1 |
0 0 0 0 Apply lez + €3 — ca.
L0 0 0 0|
B 0 0 0]
0 1 0 1
0 0 0 0 Apply —lez + ¢4 — ¢.
L0 0 0 0|
| 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
This is the matrix desired. | |

The following theorem gives another useful way to look at the equivalence of
matrices:

Theorem 2.13 Two m x n matrices A and B are equivalent if and only if B = PAQ for some
nonsingular matrices P and Q.
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Theasrem 2.14
Franf
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If A s aquivalens i £ then & arises from A by nosaquence of elementary row oe
slermentary column eperstions. Thus there exist elemenion marrices Fj, B,

Fe. 1, Fa.

Lot &y By -~ - E2E) = Fand 5 Fa -

I such that

Ele g FaFE AR Pz -

-Fo= @ Thin &y = FAp. whee P ool

£ arc nunsingalar It then follows that A — P23 azd since P~ and 7 ane

nomsingalar, A is nonsingalar
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o aiquivakeant tis . Herce A G5 equivalent e T, [ |
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Fquivailard mairis
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m Exarcises

Ik

Ga) Pooss Tear every mmalos A ds sqisnabzal e

il Frovs dhat f & 25 egusvakent o AL then A is eiuiva
lemi o .
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1 T -1 4
3 i 1 -3 i 1 1]
wy | 2 | [ 1 Ihy | 2 ! [
§ i 5 03 . S -
3 1 1 1
-I 1 i _.|I :_l T-
7T e S iy ,: : ; 3
;3 1 3 3 3 %

X, Repeat Exercie 2 for the fellowing matrices:

8

o = i A 4 |
k2 ',: | = -z
wii 227 w(s §
= < | 5 = 1|
[2 3 4 =7
[ b i i i S
ey | 2 1 | | idi | 1 a
4 23 -5 1 4l 1 2]
|4 3 L
Sheaw that il A amd B oaee v oxquivalenl, thea they are

oqunakeal

Frowe Theoeems LI,
Lt
nELA]
A= [ 1 Z
o1 1

Firsla mair: 5 al the foem desersan] e Thaearem 202
Ihie = eodvalent o A, Alae End monsingula mances
Foand O sk tha = A
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7. Repeat Exercise 6 for

1

=1

10. For each of the following matrices A, find a matrix
B # A that is equivalent to A:

2 3 ol B ! P &
Feu|® = = B @ Aa=|o0 -1 4 3 rh)Az[2 e]
& =3 T 7 £ B el
0 -1 1 )
1 Sl 3 4 3
8. Let A be an m x n matrix. Show that A is equivalent to ) A= 0 1 -2 0 2
O ifand only if A = O. —1 3 2 4 1
9. Let A and B be m x n matrices. Show that A is equivalent 11. Let A and B be equivalent square matrices. Prove that A

to B if and only if A" is equivalent to BT,

is nonsingular if and only if B is nonsingular.

m LU-Factorization (Optional)

In this section we discuss a variant of Gaussian elimination (presented in Section
2.2) that decomposes a matrix as a product of a lower triangular matrix and an
upper triangular matrix. This decomposition leads to an algorithm for solving
a linear system Ax = b that is the most widely used method on computers for
solving a linear system. A main reason for the popularity of this method is that it
provides the cheapest way of solving a linear system for which we repeatedly have
to change the right side. This type of situation occurs often in applied problems.
For example, an electric utility company must determine the inputs (the unknowns)
needed to produce some required outputs (the right sides). The inputs and outputs
might be related by a linear system, whose coefficient matrix is fixed, while the
right side changes from day to day, or even hour to hour. The decomposition
discussed in this section is also useful in solving other problems in linear algebra.

When U is an upper triangular matrix all of whose diagonal entries are differ-
ent from zero, then the linear system UUx = b can be solved without transforming
the augmented matrix [U | b] to reduced row echelon form or to row echelon
form. The augmented matrix of such a system is given by

uyp My My cee Uy by
0wy wy oo owy by
0 0 usz -+ ws by
1
N P
1
0 0 0 et Hpy i bn
The solution is obtained by the following algorithm:
bil
Ip = —
Uyp
. bu—l — Uy _1nte
]'H'—: === .
Up_1n—1
j—1
b — Zﬂjkﬂ-
szk:in. J=ngas ey L

Ui
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This procedure is merely back substitution, which we used in conjunction
with Gaussian elimination in Section 2.2, where it was additionally required that
the diagonal entries be 1.

In a similar manner, if L is a lower triangular matrix all of whose diagonal
entries are different from zero, then the linear system Lx = b can be solved by
forward substitution, which consists of the following procedure: The augmented
matrix has the form

Ell 0 0 T 0 ! bl
€y fp O e 0 B2
€3y Loy Hgg e 0 i by
Enl En2 Er!_’! ﬂ,,,, i bu
and the solution is given by
by
X| = —
£
by — 210y
Xy =—-—"—"
Ly
i
b),‘ = EJ‘;‘X*
k=1 ;
Xj=——"—4/——, i n.
&

That is, we proceed from the first equation downward, solving for one unknown
from each equation.
We illustrate forward substitution in the following example:

To solve the linear system

51 =10
4)?] = 2).’2 =28
2x1 4+ 3x2 + 4x3 =26

we use forward substitution. Hence we obtain from the previous algorithm

10
XI —_—
5
28 — 4x,
et . il
=2
PR R PO

4

which implies that the solution to the given lower triangular system of equations
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is
2
x=|—-10

13 -

As illustrated in the discussion at the beginning of Section 2.2 and Example
1 of this section, the ease with which systems of equations with upper or lower
triangular coefficient matrices can be solved is quite attractive. The forward sub-
stitution and back substitution algorithms arc fast and simple to use. These are
used in another important numerical procedure for solving linear systems of equa-
tions, which we develop next.

Suppose that an n x n matrix A can be written as a product of a matrix L in
lower triangular form and a matrix U in upper triangular form; that 1s,

A=LU:

In this case we say that A has an LU-factorization or an LU-decomposition. The
LU -factorization of a matrix A can be used to efficiently solve a linear system
Ax = b. Substituting LU for A, we have

(LUx=h,
or by (a) of Theorem 1.2 in Section 1.4,
L(Ux)=h.
Letting Ux = z, this matrix equation becomes
Lz =h

Since L 1s in lower triangular form, we solve directly for z by forward substitution.
Once we determine z, since U is in upper triangular form, we solve Ux = z by
back substitution. In summary, if an n x n matrix A has an LU -factorization, then
the solution of Ax = b can be determined by a forward substitution followed by a
back substitution. We illustrate this procedure in the next example.

Consider the linear system

bx; — 2x — dxa+4x = 2
3x; — 30— bxz3+ xy= —4
—12x; + 8x2 + 21x;3 — 8x4 = 8
—bx; — 10x3 + Txg = —43

whose coefficient matrix

= g =10 9
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has an LU -factorization, where

1 0 0 0 G <3 =& i
1 o

b d T B Bl o |02 -4 4
=7 =% 1 B 9 @ 5 3

-1 1 % 1 0 0 0 8

(verify). To solve the given system using this LU-factorization, we proceed as
follows. T.et

Then we solve Ax = b by writing it as LUx = b. First, let Ux = z and use
forward substitution to solve Lz = b:

10 0 0][z 2
11 0 of|z]| | -4
-2 =2 1 of|lzm|" 8
=1 1 =2 1| lz —43
We obtain
=2
n=—4—31=-5

3=8+2z1+2z,=2
34:-43‘}‘2[ _32"'223:_32'

Next wesolve Ux = z,

6 -2 —4 4 x| 2
0 -2 —4 -1 | | =3
0 0 5 =2 x| 2
0o 0 0 =& X4 =32
by back substitution. We obtain
—32
X4 = —8 = —4
242
¥y = a2 o
i 5
=5 +4x: :
Xy = et e 6.9
-2
242 4x3 — 4x,
. T+ 2x7 + 4x3 — 4xy i

6
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Thus the solution to the given linear system is

O —

Next, we show how to obtain an LU-factorization of a matrix by modifying
the Gaussian elimination procedure from Section 2.2. No row interchanges will
be permitted, and we do not require that the diagonal entries have value 1. At the
end of this section we provide a reference that indicates how to enhance the LU-
factorization scheme presented to deal with matrices where row interchanges are
necessary. We observe that the only elementary row operation permitted is the one

4.5
6.9
—-1.2

-4

that adds a multiple of one row to a different row.

To describe the LU-factorization, we present a step-by-step procedure in the

next example.

Let A be the coefficient matrix of the linear system of Example 2.

0

3
A=
=12

—6

We proceed to “zero out” entries below the diagonal entries, using only the row

-2
=3
8
0

-4 4
-6 1
o] —8

—10 7

operation that adds a maltiple of one row to a different row.

Procedure

Step 1. “Zero out” below the first di-
agonal entry of A. Add (—}) times
the first row of A to the second row
of A. Add 2 times the first row of A
to the third row of A. Add 1 times the
first row of A to the fourth row of A.
Call the new resulting matrix U;.

We begin building a lower triangular
matrix L, with 1's on the main di-
agonal, to record the row operations.
Enter the negatives of the multipliers
used in the row operations in the first
column of L, below the first diago-
nal entry of L.

Step 2. “"Zero out” below the second
diagonal entry of U;. Add 2 times the
second row of U; to the third row of
Up. Add (—1) times the second row
of I/} to the fourth row of [/, Call
the new resulting matrix Us.

Ly

Matrices Used

6 —2
0 -2
0 4
0 -2

1

1

2
=2
-1
6. —2
0 -2
0 0
0 0

¥ W = O

—4
—4
13
—14

-1

11



Key Terms

Lower triangular matrix
Upper triangular matrix

2.5 [LU-Factorization (Optional) 135

Enter the negatives of the multipli- 1 0 0 0
ers from the row operations below the - 110 o0
second diagonal entry of L. Call the 2= -2, =2 1 0
new matrix L. ke 1 e 1 J
Step 3. “Zero out” below the third [6 -2 -4 4
diagonal entry of U,. Add 2 times the Us = 0 =2 —4 -1
third row of U to the fourth row of == 1.6 0 5 =2
Us. Call the new resulting matrix Us. 0 0 0 8
1 0o 0 0 ‘
Enter the negative of the multiplier 1 1 0 0
below the third diagonal entry of L. By = _5 e ] 0 |
Call the new matrix Ls. [
L —1 1 =2 1 _‘

Let L = L; and U = U;. Then the product LU gives the original matrix A
(verify). This linear system of equations was solved in Example 2 by using the
LU -factorization just obtained. @

Remark In general, a given matrix may have more than one LU -factorization.
For example, if A is the coefficient matrix considered in Example 2, then another
LU -factorization is LU, where

2 0 0 0 § -1 -2 @2
i =1 4§ o 0 2 4 1
Belg g 1 pt %8S 6 5 -3
3 =] =3 9 0 0 0 4

There are many methods for obtaining an LU -factorization of a matrix besides
the scheme for storage of multipliers described in Example 3. It is important
to note that if @;; = 0, then the procedure used in Example 3 fails. Moreover,
if the second diagonal entry of Uj is zero or if the third diagonal entry of U,
is zero, then the procedure also fails. In such cases we can try rearranging the
equations of the system and beginning again or using one of the other methods for
LU -factorization. Most computer programs for L{/-factorization incorporate row
interchanges into the storage of multipliers scheme and use additional strategies to
help control roundoff error. If row interchanges are required, then the product of
L and U is not necessarily A—it is a matrix that is a permutation of the rows of A.
For example, if row interchanges occur when using the lu command in MATLAB
in the form [L,U] = lu(A), then MATLAB responds as follows: The matrix that it
yields as L is not lower triangular, U is upper triangular, and LU is A.

LU/ -factorization (-decomposition)
Storage of multipliers

Decomposition
Back and forward substitution
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I Exercises

In Exercises | through 4, solve the linear system Ax = b with
the given LU-factorization of the coefficient matrix A. Solve
the linear system by using a forward substitution followed by

a back substitution.

2 & 0
1. Aa=|2 2 =8|
1 2 7
)
E=l2 =3 1wl
1 =1 =
T8 13 =4
2.A=|6 5 7/,
2 1 6
4 0 0
L=\|s 2 w0l
e ¢ 4
2 3
4 5 3
B o 2 0
L 8 9 5
r1 0 0
2 1 0
L=
=1 3 1
L & 3 2
-
0 -1 3
V=10 =9
o o0 o0
42 1
4 6 1
dh=|"8 5
20 10 4
TR
1 1 0
E=l s 3 3
| 5 g i
LT
g =4 B
Fe=lg & 1
0 0 0

18
b=| 3.
12
1
U=|0
0
58
bl 11
16
2
u=|o
0
-
3
7l B=
21 |
i
0
ol
1]
1
1
5
4
e
3
ab b=
-3 |
5
0
s b
1]
0
3
5
2
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F
4 0 6
2 1
0 2

7
3

—16

|
=3 Il
= (SN
| Mo —
=

10.
-
. 11
13
20
| s
"

In Exercises 5 through 10, find an LU-factorization of the co-

efficient matrix of the given linear system Ax = b. Solve the
linear system by using a forward substitution followed by a
back substitution.

2 3 4 6
A=|4 5 10|, b=]|16
4. & 2 2
A 15
L A= =12 0 =6 |, w=| %2
| 15 13 12 5
T, & B 1
a=l2 © 5| b=|-1
&t 2 1 3
- -5 4 0 1'| 17
30 27 2 7 102
= 5 2 0 20 P =
| 1w ot <2 4 —6
il 0 —4 -3
10 025 —1 15
P A= o a4 ozs ex|r | s
4 22 03 -24 22
A 1 025 —0.5
a—| 08 06 125 -26
| 16 —008 o001 o02]
8 152 —06 —13
—0.15
9.77
il
—4.576

. In the software you are using, investigate to see whether

there is a command for obtaining an L U/-factorization of
a matrix. If there is. use it to find the LU/-factorization
of matrix A in Example 2. The result obtained in your
software need not be that given in Example 2 or 3, be-
cause there are many ways to compute such a factoriza-
tion. Also, some software does not explicitly display L
and {/, but gives a matrix from which L and U can be
“decoded.” See the documentation on your software for
more details.

In the software you are using, investigate to see whether
there are commands for doing forward substitution or
back substitution. Experiment with the use of such com-
mands on the linear systems, using L and U from Exam-
ples 2 and 3.
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Let
2 4 0
A=|0 | 3
0 0 6

Find a matrix B in reduced row echelon form that is row
equivalent to A, using elementary matrices.

Find all values of a for which the following linear systems
have solutions:

(@ x+2y4+ z=a° ) x+2y+ z=a®
x+ y+3z=a x4+ y+3z=a
Ix+4y+7z=8 3x+4y +8:=8

Find all values of @ for which the following homogeneous
system has nontrivial solutions:

(1 —a)x +z=
—ay+z=0
y+z=0
Find all values of a, b, and ¢ so that the linear system
a
Ax=1|b
&
is consistent for
1 0 2
A=]1 =2
1 3 —10

Let A be ann x n matrix.

{a) Suppose that the matrix B is obtained from A by

multiplying the jth row of A by k # 0. Find an

elementary row operation that, when applied to B,

gives A.

Suppose that the matrix € is obtained from A by in-

terchanging the ith and jth rows of A. Find an ele-

mentary row operation that, when applied to C, gives

A.

Suppose that the matrix D is obtained from A by

adding & times the jth row of A to its ith row. Find

an elementary row operation that. when applied 1o D,

gives A.

Exercise 5 implies that the effect of any elementary row

operation can be reversed by another (suitable) elemen-

ary row operation.

(a) Suppose that the matrix E, is obtained from [, by
multiplying the jth row cf 1, by k £ 0. Explain why
E, is nonsingular.

10.

11

12.
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(b) Suppose that the matrix E; is obtained from I, by in-
terchanging the ith and jth rows of [,. Explair why
E; is nonsingular.

(c) Suppose that the matrix Ej; is obtained from I, by

adding k times the jth row of /, to its ith row. Ex-

plain why E; is nonsingular.

Find the inverse of

1 0 1

¥ 1 0

g 1 1

Find the inverse of

I a 0 0
01 a 0
00 1 a
00 o 1

As part of a project, two students must determine the in-

verse of a given 10 x 10 matrix A. Each performs the

required calculation, and they return their results A; and

Az, respectively, to the instructor.

(a) What must be true about the two results? Why?

(b) How does the instructor check their work without re-
peating the calculations?

Compute the vector w for each of the following expres-

sions without computing the inverse of any matrix, given

that

1 0 -2 1L N |

A= |1 1 0 E=]2 3 1

0 1 1 L & 3k
2T 8 6
F=|-3 0 2 V= 7
-1 1 2 -3

(@) w=AYC+Fyv (b)w=(F+2A)C v
Determine all values of s so that

0 1 2
A=|2 1 1
9 IS
is nonsingular.
Determine all values of s so that
s 1 07
A=]1 4% 1
01 s

is nonsingular.
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13.

14.

15.

16.
17.
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Show that the matrix
cosf  sind

—sin#  cosé
1s nonsingular, and compute its inverse.
Let u and v be solutions to the homogeneous linear sys-
tem Ax = 0.
(a) Show that u + v is a solution.
{b) Show that u — v is a solution.
{c) For any scalar r, show that ru is a solution.
{d) For any scalars r and s, show that ru + sv is a solu-

tion.

Show that if u and v are solutions to the linear system
AX = b, then u — v is a solution to the associated homo-
zeneous system Ax = (.

Justify Remark 1 following Example 6 in Section 2.2.

Show that if A 1s singular and Ax = b, b # 0, has one
solution, then it has infinitely many. (Hinr: Use Exercise
29 in Section 2.2.)

Exercises 18 through 20 use material from Section 2.5.

Chapter Review

True or False

1.

Every matrix in row echelon form is also in reduced row
echelon form.

. If the augmented matrices of two linear systems are row

equivalent, then the systems have exactly the same solu-
rons.

. 1f a homogeneous linear system has more equations than

unknowns, then it has a nontrivial solution.

. The elementary matrix

0 0 1
0 1 0
L 00

times the augmented matrix [ A | b] of a 3 3 n linear sys-
tem will interchange the first and third equations.

. The reduced row echelon form of a nonsingular matrix is

an identity matrix.

. If Aisn % n, then Ax = 0 has a nontrivial solution if and

only if A is singular.

. If an n x n matrix A can be expressed as a product of

elementary matrices, then A is nonsingular.

18.

19.

20.

21.

10.

2 6 2 0 1 3
LetA:[l l]'L:[_r 72:|,ElndU= {0 !:l
A.

Find scalars s and ¢ sothat LU =

Let
6 2 8 2 0 0
A= |9 & 11 L= % s 0
3 1 6 1 0 -1
and
r | 4
U=1|0 2 -1
0 0 p

Find scalars r, s, t, and p sothat LU = A.

Let A have an LU-factorization, A = LU. By inspect-
ing the lower triangular matrix L and the upper triangu-
lar matrix U, explain how to claim that the linear system
Ax = LUx = b does not have a unique solution.

Show that the outer product of X and Y is row equivalent
either to O or to a mamrix with n — 1 rows of zeros. (See
Supplementary Exercises 30 through 32 in Chapter 1.)

. The reduced row echelon form of a singular matrix has a

row of zeros.

. Any matrix equivalent to an identity matrix is nonsingu-

lar.

If Aisn xn and the reduced row echelon form of
[AlL]is[C:D].thenC=1,and D= A",

Quiz

1.

2

Determine the reduced row echelon form of

1 1 5
A= 2 -2 -2
3 L -3

After some row operations, the augmented matrix of the
linear system Ax = b is

I 5:76‘|

; 0 0 1 3! 0
[Cid]l=14 o o 0! 0]
0 0 0 0! 0

(a) Is C inreduced row echelon form? Explain.
(b) How many solutions are there for Ax = b?



() Is A nonsingular? Explain.
(d) Determine all possible solutions to Ax = b.

2 1 4
. Determine ksothat A=]1 -2 1 | is singular.
2 6 k

. Find all solutions to the homogeneous linear system with
coefficient matrix

2 0
i
A=]1
[1
2

1
1
3
2
4

=T ST

Discussion Exercises

1. The reduced row echelon form of the matrix A is /5. De-

scribe all possible matrices A.

. The reduced row echelon form of the matrix A is

1 2 0
0 01
0 00

Find three different such matrices A. Explain how you
determined your matrices.

. Let A be a 2 x 2 real matrix. Determine conditions on the

entries of A so that A2 = [,.

. An agent is on a mission, but is not sure of her location.
She carries a copy of the map of the eastern Mediterranean
basin shown here.

The scale for the map is | inch for about 400 miles.
The agent’s handheld GPS unit is malfunctioning, but
her radio unit is working. The radio unit's battery is so
low that she can use it only very briefly. Turning it on,

Chapter Review 139

1 2 1
. IfA=|1 1 1 |[,henfind (if possible) A"
2 10

. Let A and B be n x n nonsingular matrices. Find nonsin-

gular matrices P and @ sothat PAQ = B.

. Fill in the blank in the following statement:

If Ais _ then A and A" are row equivalent,

she is able to contact three radio beacons, which give
approximate mileage from her position to each beacon.
She quickly records the following information: 700 miles
from Athens, 1300 miles from Rome, and 900 miles from
Sophia. Determine the agent’s approximate location. Ex-
plain your procedure.

. The exercises dealing with GPS in Section 2.2 were con-

structed so that the answers were whole numbers or very
close to whole numbers. The construction procedure
worked in reverse. Namely, we chose the coordinates
(x. ») where we wanted the three circles to intersect and
then set out to find the centers and radii of three circles
that would intersect at that point. We wanted the centers to
be ordered pairs of integers and the radii to have positive
integer lengths. Discuss how to use Pythagorean triples
of natural numbers to complete such a construction.

. After Example 9 in Section 2.2, we briefly outlined an ap-

proach for GPS in three dimensions that used a set ol four
equations of the form

=g+ G -b) + - =

(distance from the receiver to satellite j)°.

where the distance on the right side came from the ex-
pression “distance = speed x elapsed time.” The speed
in this case is related to the speed of light. A very nice
example of a situation such as this appears in the work
of Dan Kalman (“An Underdetermined Linear System for
GPS,” The College Mathematics Journal, vol. 33, no. 5,
Nov. 2002, pp. 384-390). In this paper the distance from
the satellite to the receiver is expressed in terms of the
time ¢ as 0.047(r — satellite to receiver time), where 0,047
is the speed of light scaled to earth radius units. Thus the
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four equations have the form
(—a) +y=b)+@@—c) =
0.047°(r — satellite J 1o receiver time)®,

where (a;. by, ;) is the location of satellite j, for j = 1,
2, 3, 4. For the data in the next table, determine the lo-
cation (x, y, z) of the GPS receiver on the sphere we call
earth. Carefully discuss your steps.

Satellite  Position Time it took the signal
(aj,bj,c;) togo from the satellite
to the GPS receiver
1 (1,2,0) 199
2 2,0,2) 24
3 (LLD 326
4 (2,1,0) 19.9

[n Gaussian elimination for a square linear system with a
nonsingular coefficient matrix, we use row operations to
obtain a row equivalent linear system that is upper trian-
zular and then use back substitution to obtain the solution.
A crude measure of work involved counts the number of
multiplies and divides required to get the upper triangular
form. Let us assume that we do not need to interchange
rows to have nonzero pivots and that we will not require
the diagonal entries of the upper triangular coefficient ma-
trix to be 1's. Hence, we will proceed by using only the
row operation kr; + r; — r; tor an appropriate choice of
multiplier k. In this situation we can give an expression
for the multiplier k that works for each row operation; we
have

i entry to be eliminated

- pivot

Since we are not making the pivots 1, we must count a
division each time we use a row operation.

(a) Assume that the coefficient matrix is 5 x 5. Deter-
mine the number of muliiplies and divides required
to obtain a row equivalent linear system whose co-
efficient matrix is upper triangular. Do not forget to
apply the row operations to the augmented column.

(b) Generalize the result from part (a) to n x nt linear sys-
tems, Provide a compact formula for the total num-
ber of multiplies and divides required.

(Network Analysis) The central business area of many
large cities is a network of one-way streets. Any repairs
10 these thoroughfares, closing for emergencies and acci-
dents, or civic functions disrupts the normal flow of traf-
fic. For one-way street networks there is a simple rule:

Vehicles entering an intersection from a street mus: also
exit the intersection by another street. (We will assume
that parking lots and garages are located outside the net-
work.) Thus for each intersection we have an equilibrium
equation or, put simply, an input-equals-output equation.
After some data collection involving entry and exit vol-
umes al intersections, a city traffic commission can con-
struct network models for traffic flow patterns involving
linear systems. The figure shows a street network where
the direction of traffic flow is indicated by arrows and the
average number of vehicles per hour that enter or exit on
a street appears near the street.

200 300

200 100

(a) For each intersection A through D, construct an
input-equals-output equation. Then rearrange the
equations so you can wiite the system in matrix form,
using the coefficients of x| in column 1, those for x,
in column 2, and so on. Determine the reduced row
echelon form for the augmented matrix and solve for
the unknowns comresponding to leading 1's.

(b) Since each x; > 0, determine any restrictions cn the
unknowns.

(e) Explain what happens in this model if the street {rom
intersection B to €' is closed.

. Solve each of the following matrix equations:

(a) Ax=x+h,
[4 1 0 0 2
1 <4 1 B 1
where A = &1 % b= 0
|00 1 4 2
(b) Ax= A’x+b,
3 1 O |
whereA=]1 3 1|, b=| -1
01 3 1




l CHAPTTER

Determinants

Definition

In Exercise 43 of Section 1.3, we defined the trace of a square (n x n) matrix
n

A= [ai j] by Tr(A) = Za;;. Another very important number associated with
i=1

a square matrix A is the determinant of A, which we now define. Determinants
first arose in the solution of linear systems. Although the methods given in Chap-
ter 2 for solving such systems are more efficient than those involving determi-
nants, determinants will be useful for our further study of a linear transformation
L:V — V in Chapter 6. First, we deal briefly with permutations, which are used
in our definition of determinant. Throughout this chapter, when we use the term
matrix, We mean square matrix.

DEFINITION 3.1

Let § = (1,2....,n} be the set of integers from 1 to n., arranged in ascending
order. A rearrangement j; j» - - - j, of the elements of § is called a permutation of
S. We can consider a permutation of § to be a one-to-one mapping of § onto ilself.

To illustrate the preceding definition, let § = {1,2,3,4). Then 4231 is a
permutation of S. It corresponds to the function f: § — § defined by

f)y=4
f(2)=2
f3=3
f@ =1

We can put any one of the n elements of S in first position, any one of the
remaining n — 1 elements in second position, any one of the remaining n — 2
elements in third position, and so on until the nth position can be filled only by the
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FIGURE 3.1

last remaining element. Thus there are n(n — 1)(n — 2) --- 2 - 1 = n! (n factorial)
permutations of §; we denote the set of all permutations of § by §,,.

Let § = (1,2, 3}. The set S5 of all permutations of § consists of the 3! = 6
permutations 123, 132, 213, 231, 312, and 321. The diagram in Figure 3.1(a) can
be used to enumerate all the permutations of §. Thus, in Figure 3.1(a) we start
out from the node labeled | and proceed along one of two branches, one leading
to node 2 and the other leading to node 3. Once we arrive at node 2 from node 1,
we can go only to node 3. Similarly, once we arrive at node 3 from node 1, we
can go only to node 2. Thus we have enumerated the permutations 123, 132, The
diagram in Figure 3.1(b) yields the permutations 213 and 231, and the diagram in
Figure 3.1(c) yields the permutations 312 and 321.

1 2 3

(a) () (©)

The graphical method illustrated in Figure 3.1 can be generalized to enumerate
all the permutations of the set {1, 2, ..., n}. | |

A permutation jj j:... j, is said to have an inversion if a larger integer, j.,
precedes a smaller one, j,. A permutation is called even if the total number of
inversions in it is even, or odd if the total number of inversions in it is odd. If
n = 2, there are n!/2 even and n!/2 odd permutations in S,,.

S1 has only 1! = 1 permutation: 1, which is even because there are no inversions.
m

8> has 2! = 2 permutations: 12, which is even (no inversions), and 21, which is
odd (one inversion). [ ]

In the permutation 4312 in Sy, 4 precedes 3, 4 precedes 1, 4 precedes 2, 3 precedes
I, and 3 precedes 2. Thus the total number of inversions in this permutation is 5,
and 4312 is odd. |

S;has 3! = 3-2-1 = 6 permutations: 123, 231, and 312, which are even, and
132, 213, and 321, which are odd. | |

Let A = [a,- j-] be an n x n matrix. The determinant function, denoted by det, is
defined by

det(4) = ) "(Bar @), - - nj,.
where the summation is over all permutations jj jz - - - j, of theset § = {1,2....,

n}. The sign is taken as + or — according to whether the permutation jj js - - - j, is
cven or odd.
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In each term (£)ay; azj, - - - anj, of det(A), the row subscripts are in natural
order and the column subscripts are in the order jjja--- j,. Thus each term in
det(A), with its appropriate sign, is a product of n entries of A, with exactly one
entry from each row and exactly one entry from each column. Since we sum over
all permutations of S, det(A) has n! terms in the sum.

Another notation for det(A) is |A|. We shall use both det(A) and |A|.

If A=[a, |isal x I matrix, then det(A) = a,;. u

It
a a
e { il ;z] .
ax  an
then to obtain det(A), we write down the terms a;_az_ and replace the dashes with

all possible elements of S,: The subscripts become 12 and 21. Now 12 is an even
permutation and 21 is an odd permutation. Thus

det(A) = ayyaxn — apa.-

Hence we sce that det(A) can be obtained by forming the product of the entrics
on the line from left to right and subtracting from this number the product of the
entries on the line from right to left.

ap - ap

*an

e
2

Thus, if A = [4

_g] then [A] = (2)(5) — (=3)(4) = 22. B

I
day  dip a3
A= |ay an an|,
azy  diy a3

then to compute det(A), we write down the six terms a)_ar_a3_, aj_ar_az_,
d|_ar_ds_, d_dr_d3_, d|_dr_ads_, dj—az_as—. All the elements of S5 are used to
replace the dashes, and if we prefix each term by + or — according to whether the
permutation is even or odd, we find that (verify)

det(A) = ananas; + ananas + aiaaan — anaxnas o
i b 4T s KL LS
We can also obtain |A| as follows. Repeat the first and second columns of A,
as shown next. Form the sum of the products of the entries on the lines from left to
right, and subtract from this number the products of the entries on the lines from
right to left (verify):

a3 dyp 4

ay @y my ey’ an
a3+ apaTwman A way wan ™
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|_Exampie o [

=
Il
W=
— = 2
B W

Evaluate [A].

Solution
Substituting in (1), we find that

1. 2.3
2 1 3{=(D(D2)+ @233+ @)L — (3D
3 1

—(@2)2) - (D (3) =6.

We could obtain the same result by using the easy method illustrated previ-
ously, as follows:

il B
2 1
A”3.. \hl‘x

[A] = (D)2 + 2)B3)(3) + (3)(2)(1) = (3)(1)(3) — (1)) (1)
— 2)(2)(2) = 6. B

Warning The methods used for computing det(A) in Examples 7-9 do not ap-
ply forn = 4.

It may already have struck the reader that Definition 3.2 is an extremely te-
dious way of computing determinants for a sizable value of n. In fact, 10! =
3.6288 x 10° and 20! = 2.4329 x 10'%, each an enormous number. In Section 3.2
we develop properties of determinants that will greatly reduce the computational
effort.

Permutations are studied at some depth in abstract algebra courses and in
courses dealing with group theory. As we just noted, we shall develop methods
for evaluating determinants other than those involving permutations. However, we
do require the following important property of permutations: If we interchange
two numbers in the permutation jy ja - - - j,, then the number of inversions is either
increased or decreased by an odd number.

A proof of this fact can be given by first noting that if two adjacent numbers in
the permutation jj j2 - - - j, are interchanged, then the number of inversions is either
increased or decreased by 1. Thus consider the permutations jijo -« - jejr -+ Jjn
and jija- -« jyje - ju. If jojr 18 an inversion, then j; j. is not an inversion, and
the second permutation has one fewer inversion than the first one: if j, j; is not
an inversion, then j; j, is, and so the second permutation has one more inversion
than the first. Now an interchange of any two numbers in a permutation j; jz -- - j,
can always be achieved by an odd number of successive interchanges of adjacent
numbers. Thus, if we wish to interchange j. and j; (¢ < k) and there are s numbers
between j. and ji. we move j. to the right by interchanging adjacent numbers,
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14. Evaluate:

(a)

t 4
5 t—8|

Theorem 3.1

t—1 0 1
(b) det =2 1+ =1
0 0 t+1

15. For each of the matrices in Exercise 13, find values of ¢
for which the determinant is 0.

16. For each of the matrices in Exercise 14, find values of ¢
for which the determinant is 0.

m Properties of Determinants

In this section we examine properties of determinants that simplify their computa-
tion.

If A is a matrix, then det(A) = det(AT).

Proof
Let A = [(f,-);] and AT = [b,-j- ], where b;; = aj;. We have

del(AT) = ) (D)bujibagy - bujy = Y ()aj11a52 G

‘We can then write b]jjbgjz we b,u'” = A1y = QLg% Al which is
aterm of det(A). Thus the terms in del(AT) and det(A) are identical. We must now
check that the signs of corresponding terms are also identical. It can be shown, by
the properties of permutations discussed in an abstract algebra course,” that the
number of inversions in the permutation kiks . ..k,, which determines the sign
associated with the term ay; @y, « - - dyy, , is the same as the number of inversions
in the permutation j, j5. .. j,. which determines the sign associated with the term
bij baj, - by, As an example,

b1abaybssbaibsy = azianasyaaass = dydrsds dgdss;

the number of inversions in the permutation 45123 is 6, and the number of inver-
sions in the permutation 34512 is also 6. Since the signs of corresponding terms
are identical, we conclude that det(AT) = det(A). 1]

Let A be the matrix in Example 9 of Section 3.1. Then

I' 3 3
Af =2 1 1
3 8 &

Substituting in (1) of Section 3.1 (or using the method of lines given in Example 8
of Section 3.1), we find that

|AT] = (M2 + @(DHB) + B DA3)
— (3B — @2)2)(2D) — GHD(3) =6 = |A]. &

“See . Fraleigh, A First Course in Abstract Algebra, 7th ed., Reading, Mass.: Addison-Wesley
Publishing Company, Inc., 2003: and J. Gallian, Contemporary Abstract Algebra, 5th ed., Lexington,
Mass.. D. C. Heath and Company, 2002,
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Theorem 3.1 will enable us to replace “row” by “column” in many of the addi-
tional properties of determinants; we see how to do this in the following theorem:

If matrix B results from matrix A by interchanging two different rows (columns)
of A, then det(B) = — det(A).

Proof

Suppose that B arises from A by interchanging rows r and 5 of A, say, r < s.
Then we have b,; = ayj, byj = a,j, and b;j = a;; fori #r, i # 5. Now

der(B) = Dby b by b
=) (Baijyazyy -+ s, - arj, -+~

= 2 ()1, Gy - gjy o A Ay

The permulatmn Jijz- oo Jo oo Ju results from the permutation jyjr ... j, ..
Ji---Jx by an mlercha.nge of two numbers and the number of inversions in the
former differs by an odd number from the number of inversions in the latter. This
means that the sign of each term in det(B) is the negative of the sign of the corre-
sponding term in det(A). Hence det(B) = —det(A).

Now let B arise from A by interchanging two columns of A. Then B”
arises from AT by interchanging two rows of A7, So det(B") = —det(A”),
but det(B”) = det(B) and det(AT) = det(A). Hence det(B) = — det(A). |

In the results to follow, proofs will be given only for the rows of A: the proofs
for the corresponding column cases proceed as at the end of the proof of Theo-
rem 3.2.

We have |A| = ‘2 _1‘

S

3 3 2 3 n
*iz —1““‘—1 2’“'A|“7' =

If two rows (columns) of A are equal, then det(A) =

Proof

Suppose that rows r and s of A are equal. Interchange rows r and s of A to

obtain a matrix B. Then det(B) = —det(A). On the other hand, B = A, so

det(B) = det{A). Thus det{A) = — det(A), and so det(A) = 0. 5]
I # 3

We have |—1 0 7| =0. (Verify by the use of Definition 3.2.) |
I & 3

If a row (column) of A consists entirely of zeros, then det(A) = 0.

Proof

Let the ith row of A consist entirely of zeros. Since each term in Definition 3.2
for the determinant of A contains a factor from the ith row, each term in det(A) is
zero. Hence det(A) = 0. x|
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Theorem 3.5

Theorem 3.6

s

‘We have = 0. (Verify by the use of Definition 3.2.) | |

o ==
o L2

6
0

If B is obtained from A by multiplying a row (column) of A by a real number &,
then det(B) = kdet(A).

Proof
Suppose that the rth row of A = [g;; ] is multiplied by k to obtain B = [b;; ].

Then bj; = a;; it i # r and b,; = ka,;. Using Definition 3.2, we obtain det(8) as
det(B) = Y ()byjibajy - by, -+ b,

=Y Doy kar,) -,

=k ( E (B)ayj azjy - agj, -+ a,ijﬁ) = kdet(A). B
2 6 1 3 1 1
- - 3 — =
Wehave1 ]2‘ 2‘1 12‘ (2}(.)‘1 4‘ 6(4—1)=18. u

We can use Theorem 3.5 to simplify the computation of det(A) by factoring
out common factors from rows and columns of A.

We have
1 2 3 1 2 3 L 2
1 5 5 =20 5 3[=@2)3|1 5 1|=@2)30)=0.
2 8 6 1 4 3 1 4 1

Here, we first factored out 2 from the third row and 3 from the third column, and
then used Theorem 3.3, since the first and third columns are equal. | |

If B = [ b;; ] is obtained from A = [a;; | by adding to each element of the rth row
(column) of A, k times the corresponding element of the sth row (column), r # s,
of A, then det(B) = del(A).

Proof

We prove the theorem for rows. We have b;; = a;; for i # r,and by = a,; +kay;,
r £ s, say, r < s. Then

det(B) = Y (H)bijibaj, - brj, -+ b,
= Z(ﬂ:)a”‘lazh <@y, +kag) - --agj, - -ang,
= Y (Baiydap, -y, - gy ooty

-+ Z(ﬂ:}aulazh s (ka.\'j;)‘ 2 .aﬁﬂ i 'anj”-
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Now the first term in this last expression is det(A), while the second is

k [E (E)arj azj, -+ g, -+ gy - ﬂn;,.] :

Note that

: (i)aljllazjz e a"}!‘ R a’f.& = a'fj'rr

ay dya 2 Ay,
azj ann R
g s oo dgy | < rthrow
g g e gy <«— sth row
Qpy p3 Tt typ

=l

because this matrix has two equal rows. Hence det(B) = det(A) 4 0 = det(A). B

We have
L 2 3 5 0 9
2 -1 3| =2 -1 3
1L @ 1 1 0 1

obtained by adding twice the second row to the first row. By applying the defini-
tion of determinant to the first and second determinant, both are seen to have the
value 4. |

If a matrix A = [a;j] is upper (lower) triangular, then det(A) = a;ja2 - - dyn;
that is, the determinant of a triangular matrix is the product of the elements on the
main diagonal.

Proof
Let A = [a,-}-] be upper triangular (that is, a¢;; = 0 fori > j). Then a term
ayj,azj, -~ -ayj, in the expression for det(A) can be nonzero only for 1 < jj,
2< jp,....n = jy. Now jij>...J, must be a permutation, or rearrangement,
of {1,2,...,n}. Hence we must have j, = 1, » = 2, ..., j, = n. Thus the
only term of det(A) that can be nonzero is the product of the elements on the main
diagonal of A. Hence det(A) = ay a3, - - - a,,-

‘We leave the proof of the lower triangular case to the reader. it}

Recall that in Section 2.1 we introduced compact notation for elementary row
and elementary column operations on matrices. In this chapter, we use the same
notation for rows and columns of a determinant:
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EXAMPLE 8

¢ Interchange rows (columns) i and j:
I<r (cec.
¢ Replace row (column) i by k times row (column) i:
kr; - r; (ke — ¢;).
¢ Replace row (column) j by k times row (column) i + row (column) j:
KT —=1; (ke -+ =6

Using this notation, it is easy to keep track of the elementary row and column
operations performed on a matrix. For example, we indicate that we have inter-
changed the ith and jth rows of A as Ay, .r;. We proceed similarly for column

operations.
We can now interpret Theorems 3.2, 3.5, and 3.6 in terms of this notation as

follows:
det(Ar,or;) = —det(A). i #J
det(Agr,—r,) = kdet(A)
det(Asr, prjry) = det(A), @ # .
It is convenient to rewrite these properties in terms of det(A):

det(A) = —del(Agar))y i #
1
det(A) = - det(Apr, ). k#0

det(A) = det(Arr—r))s i # J.

Theorems 3.2, 3.5, and 3.6 are uscful in evaluating determinants. What we do
is transform A by means of our elementary row or column operations to a triangu-
lar matrix. Of course, we must keep track of how the determinant of the resulting
matrices changes as we perform the elementary row or column operations.

4 3 2
letdA=|3 -2 5 |. Compute det(A).
2 4 6
Solution
We have
1
det(A) = 2det(A T o) Multiply row 3 by =
4 3 )
= 2det 3 -2 5
1 2 3
4 3 2
= (—1)2det 3 =2 5 Interchange rows 1 and 3.
1 2

]
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—2det

Zero out below

—2det the (1, 1) entry.

Il

=3rp+ry—ora

e —— —— —
T 1
Lo =
|
WO
oW
L ]

—dr| +ry —r3
M5, @ 37
|10 =5 —10
1 2 5 |
Zero out below
=—2det| |0 -8 —4 the (2, 2) entry.
[0 =5 -10] — =
M1 2 3]
= —2det| |0 —8 —4
30
L& 0 =5

Next we compute the determinant of the upper triangular matrix.

30
det(A) = =2(1)(—8) (_I) =-—120 by Theorem 3.7.

The operations chosen are not the most efficient, but we do avoid fractions during
the first few steps. | |

Remark The method used to compute a determinant in Example 8 will be re-
ferred to as computation via reduction to triangular form.

We can now compute the determinant of the identity matrix [, det(/,) = 1.
We can also compute the determinants of the elementary matrices discussed in
Section 2.3, as follows.

Let E; be an elementary matrix of type I; that is, E; 1s obtained from [, by
interchanging, say, the ith and jth rows of [,. By Theorem 3.2 we have that
det(E,) = —det(/,) = —1. Now let E; be an elementary matrix of type II; that is,
L is obtained from [, by multiplying, say, the ithrow of 1, by k s 0. By Theorem
3.5 we have that det(E;) = k det(/,) = k. Finally, let £5 be an elementary matrix
of type III; that is, £y is obtained from f, by adding k times the sth row of I, to
the rth row of 7, (r # s). By Theorem 3.6 we have that det(E3) = det(/,) = 1.
Thus the determinant of an elementary matrix 1s never zero.

Next, we prove that the determinant of a product of two matrices is the product
of their determinants and that A is nonsingular if and only if det(A) #= 0.

If E is an elementary matrix, then det(EA) = det(E)det{A), and det(AE) =
det(A) det( E).
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Theorem 3.8

Corollary 3.1

Proof
If £ is an elementary matrix of type I, then EA is obtained from A by inter-
changing two rows of A, so det(EA) = —det(A). Also det(E) = —1. Thus

det(EA) = det(E) det(A).

If E is an elementary matrix of type II, then EA is obtained from A by multi-
plying a given row of A by k # 0. Then det(£A) = kdet(A) and det(£) = k, so
det(EA) = det(E) det(A).

Finally, if £ is an elementary matrix of type III, then £A is obtained from A
by adding a multiple of a row of A to a different row of A. Then det(EA) = det(A)
anddet(E) = 1, sodet(EA) = det(E) det(A).

Thus, in all cases, det(EA) = det(£) det(A). By a similar proof, we can show
that det(AE) = det(A)det(E). ]

It also follows from Lemma 3.1 thatif B = E. E,_, --- E;E 1A, then

det(B) = det(E, (B, -+ - E2E1A))
= det(E,)det(E, 1E, 2+ E2E1A)

= At(E, ) det(E, _) - -+ det(E;) det(E}) det(A).

If Ais ann x n matrix, then A is nonsingular if and only if det(A) s 0.

Proof

If A is nonsingular, then A is a product of elementary matrices (Theorem 2.8).
Thus let A = E | E,--- E;. Then

det(A) = det(E | Es - - - E;) = det(E;) det(E>) - - - det(Ey) # 0.

If A is singular, then A is row equivalent to a matrix B that has a row of zeros
(Theorem 2.10). Then A = EE;-.. E, B, where E{, E>, ..., E, are elementary
matrices. It then follows by the observation following Lemma 3.1 that

det{A) =det(E|E>- -+ E,B) = det(E}) det(E») - - - det( E,) det(B) = 0.
since det(B) = 0. U]

If A is an n x n matrix, then Ax = 0 has a nonirivial solution if and only if
det(A) = 0.

Proof

If det(A) = 0, then, by Theorem 3.8, A is nonsingular, and thus Ax = () has only
the trivial solution (Theorem 2.9 in Section 2.3 or by the boxed remark preceding
Example 14 in Section 1.5).

Conversely, if det(A) = 0, then A is singular (Theorem 3.8). Suppose that A
is row equivalent to a matrix B in reduced row echelon form. By Corollary 2.2 in
Section 2.3, B # [,, and by Exercise 9 in Section 2.1, B has a row of zeros.

The system Bx = 0 has the same solutions as the system Ax = 0. Let C,
be the matrix obtained by deleting the zero rows of B. Then the system Bx = 0
has the same solutions as the system C;x = 0. Since the latter is a homogeneous
system of at most n — 1 equations in n unknowns, it has a nontrivial solution
(Theorem 2.4). Hence the given system Ax = 0 has a nontrivial solution. m
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Let A be a4 x 4 matrix with det(A) = —2.

(a) Describe the set of all solutions to the homogeneous system Ax = 0.
(b) If A is transformed to reduced row echelon form B, what is B?
(c) Give an expression for a solution to the linear system Ax = b, where

|

2
e o)
4
(d) Can the linear system Ax = b have more than one solution? Explain.
(e) Does A~! exist?

Solution
(a) Since det(A) # 0, by Corollary 3.1, the homogeneous system has only the
trivial solution.

(b) Since det(A) #= 0, by Corollary 2.2 in Section 2.3, A is a nonsingular matrix,
and by Theorem 2.2. B = 1,..

(¢) A solution to the given system is given by x = A~'b.
(d) No. The solution given in part (c) is the only one.
(e) Yes. | |

If A and B are n x n matrices, then det(AB) = det(A) det(B).

Proof
If A is nonsingular, then A is row equivalent to f,,. Thus A = EyEy_--- E,E\, =
E(Ei_y--- E2E, where E|, E,, ..., E; are elementary matrices. Then

det(A) = det{ ExEy—y - - E2Ey) = det(Eg) det( Eg_y) - - - det( £5) det( Ey).
Now
det(AB) =det(ELEi—) -+ - E2E\B)
=det(Ey) det(E;_) - - -det(E2) det(E) det(B)
= det(A) det(B).

If A is singular, then det(A) = 0 by Theorem 3.8. Moreover, if A is singular,
then A 1s row equivalent to a matrix C that has a row consisting entirely ol zeros
(Theorem 2.10). Thus C = Ey Ei_;--- EsE A, s0

CB=LiE---EE|AB.

This means that AB is row equivalent to C B, and since C B has a row consisting
entirely of zeros, it follows that AB is singular. Hence det(AB) = (), and in this
case we also have det(AB) = det(A) det(B). i}

I 2 2 -1
A=|:3 4:| and B=|:1 2:|.

Let
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Then
|Al]=-2 and |B|=35.
4 3
On the other hand, AB = 0 5 cand |AB| = —10 = |A||B]. |
1
Corollary 3.2 If A is nonsingular, then det(A~!) = oAy
Proof
Exercise [8. [}

Corollary 3.3 If A and B are similar matrices, then det(A) = det(B).

Proof
Exercise 33. m

The determinant of a sum of two n x n matrices A and B is, in general, not
the sum of the determinants of A and B. The best result we can give along these
lines is that if A, B, and C are n x n matrices all of whose entries are equal except
for the kth row (column), and the kth row (column) of C is the sum of the kth rows
(columns) of A and B, then det(C) = det(A) + det(B). We shall not prove this
result, but will consider an example.

| EXAMPLE 11 [
2 3 2 3

=

I
S oM

W

i

=

]
Canlit=1 £+

(5]

I

2 -4 -2 —4
and
2 2 3
cC=|0 2] 4
1 0 0
Then |A| =8, |[B]| = —9,and |C| = —1,50 |C| = |A| + | B]. u
Key Terms
Properties of the determinant
Elementary matrix
Reduction to triangular form
m Exercises
1. Compute the following determinants via reduction to tri- 4 0 0 4 1 3
angular form or by citing a particular theorem or corol- (€ [0 2 6 d) (2 3 0
lary: 0 8 3 I 3 2
) : 2 1
@) |, 11 ””‘4 3‘




3.

4.

5.

6. Verify that det(AB) = det(A) det(B) for the following:

r

(e)

L b

0

2. Compute the following determinants via reduction to tri-
angular form or by citing a particular theorem or corol-

=R ]

0

LR =R S ]
]

(0
10

4 2 3 -4
3 =2 1 5
2 0 1 -3
g8 -2 6 4

lary:
4 2 0
(a) i _f |0 =2 5
0 0 3
3 4 2 4 -3 5
) |2 5 0 (d) 5 2 0
30 0 2 0 4
4 0 0 0
© -1 2 0 0
‘ i 2 -3
1 5 3 5
2 0 1 4
) 3 2 —4 =2
D12 3 0 o
11 8 —4 6
a, @ ai
If|\by by by|=3,find
€ C¢aocy
(751 - 2.’}1 — 3(‘1 a2 + 2b1 o 3(‘2 [k} - 2;73 - 3{.‘3
by bs b
(4] Cz C3
a, @ a;
If\by by by|=-2 find
ey € G
ap — %ff::‘ a2 di
by — ébg by byl
€ — %c‘; €2
a, a ai
If|by by by| =4, find
S T Y
d ar  das — 2a,
by by 4by; —2b,|.
i) %c'g 2¢3 — 2

10.
11.

12.

13.

14.
. (a) Show thatif A = A~ then det(A) = +1.

16.

17.

18.
19.
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1 =2 3 1 0 2
(@ A=|-2 3 1[,B=|3 -2 5
0 1 0 2 1 3
2 3 6 3 0 0
(by A=1|0 3 2|,B=14 ) 0
0 0 —4 2 1 =2
Evaluate:
-4 2 0 0
2310
@1ls102
I 310 3
2 0 0 0
=l 3 0 0
(b) 3 2 4 0
A 2 1 =3
=il = -2
(c) 0 =2 2
0 0 t—3
t+1 4
@[y 3‘

. Isdet(AB) = det(BA)? Justify your answer.
. If det(AB) = 0, is det(A) = 0 or det(B) = 07 Give

reasons for your answer.

Show that if k is a scalar and A is n x n, then det(kA) =
k" det(A).

Show that if A is n 3 n with n odd and skew symmetric,

then det(A) = 0.

Show that if A is a matrix such that in each row and in
each column one and only one element is not equal to 0,
then det{A) £ ().

det(A)
det(B)’
Show that if AB = [, then det(A) # 0 and det(B) # 0.

Show that det(AB ') =

(b) IfA" = A™' what is det(A)?

Show that if A and B are square matrices, then

A O
det ([O B]) = (det A)(det B).

If A is a nonsingular matrix such that A> = A, whal is
det(A)?

Prove Corollary 3.2.

Show that if A, B, and C are square matrices, then

A O
del([c B])—(delA)(GCIB}.
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20.

21.

22.

23.
24.

25.

26.
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Show that if A and B are bothn x n, then
(a) det(A” B") = det(A) det{BT);
(b) det(AT BT) = det(A7) det(B).

Verify the result in Exercise 16 for A = [ ; i} and

=11

Use the properties of Section 3.2 to prove that

1 a a
1 b bl=(h—a)c—a)ec—b).
1 ¢ ¢

{Hint: Use factorization.) This determinant is called a
Vandermonde® determinant,

[f det(A) = 2, find det(A”).

Use Theorem 3.8 to determine which of the following

matrices are nonsingular:

1 2 B
@ [0 1 2 (b) B ﬂ
| 2.~ 1]

Use Theorem 3.8 to

determine which of the following

matrices are nonsingular:

T 3 2]
@l2z 1 4
1 =2 3
M1 2 0 5
, 3 4 1 7
®1 2 5 2 o
0 1 3 -7

Use Theorem 3.8 to determine all values of t so that the ® 3z

following matrices are nonsingular:

f I 2 t 1
@ [3 4 5 (b)y |0 1
L6 7 8 1 0
fr 0 0 1
© 0 ¢t 0 0
0 0 ¢ 0
10 0 1

27.

30.

31.

36.

Use Corollary 3.1 to find out whether the following
homogeneous system has a nontrivial solution (do nor
solve):
X —2x: 4+ x3=0

2614354 x3=0

3+ o +2x=0
Repeat Exercise 27 for the following homogeneous sys-
tem:

1 . 0 1 X1 0

0 1 2 3| x| |0

0 0 1 2]x | |0

0 1 2 -1 Xy 0
. Let 4 = [(x”] be an upper triangular matrix. Prove
that A is nonsingular if and only if a; # 0 fori =

Let A be a3 x 3 matrix with det(A) = 3.

(a) What is the reduced row echelon form to which A is
row equivalent?

(b) How many solutions does the homogeneous system
Ax = 0 have?

Let A be a4 x 4 matrix with det(A) = 0.

(a) Describe the reduced row echelon form matrix to
which A is row equivalent.

(b) How many solutions does the homogeneous system

Ax = (0 have?
. Tt AP=A. Prave that either A is singular or
det(A) = 1.

. Prove Corollary 3.3.

Let AB = AC. Prove that if det(A) # 0, then B = C.

Determine whether the software you are using has acom-
mand for computing the determinant of a matrix. If it
does, verify the computations in Examples 8, 10, and 11.
Experiment further by finding the determinant of the ma-
trices in Exercises 1 and 2.

Assuming that your software has a command to compute
the determinant of a matrix, read the accompanying soft-
ware documentation to determine the method used. Is
the description closest to that in Section 3.1, Example 8
in Section 3.2, or the material in Section 2.5?

* Alexandre-Théophile Vandermonde (1735-1796) was born and died in Paris. His father was a physician who encouraged his son to pursue
a career in music. Vandermonde followed his father's advice and did net get interested in mathematics until he was 35 years old. His entire
mathematical output consisted of four papers. He also published papers on chemistry and on the manufacture of steel. Although Vandermonde
is best known for his determinant, it does not appear in any of his four papers. It is believed that someone mistakenly attributed this determi-
nant to him. However, in his fourth mathematical paper, Vandermonde made significant contributions to the theory of determinants. He was a

staunch republican who fully backed the French Revolution.



- 37. Warning: Theorem 3.8 assumes that all calculations for
det(A) are done by exact arithmetic. As noted previously,
this is usually not the case in software. Hence, compu-
tationally, the determinant may not be a valid test for
nonsingularity. Perform the following experiment: Let

1 2 3
A=1|4 5 6| Showthatdet(A)is0,either by hand
7 89

or by using your software. Next, show by hand compu-
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1 2 3
tation that det(B) = —3¢, where B=| 4 5 6
7 8 9+4¢

Hence, theoretically, for any e # 0, matrix B is nonsin-
gular. Let your software compute det(B) for e = +107*,
k = 5,6,...,20. Do the computational results match
the theoretical result? If not, formulate a conjecture to
explain why not.

DEFINITION 3.4

m Cofactor Expansion

Thus far we have evaluated determinants by using Definition 3.2 and the properties
established in Section 3.2. We now develop a method for evaluating the determi-
nant of an n x n matrix that reduces the problem to the evaluation of determinants
of matrices of order n—1. We can then repeat the process for these (n—1) x (n—1)
matrices until we get to 2 x 2 matrices.

Letd = [a;}-] be an n x n matrix. Let Mj; be the (n — 1) x (n — 1) submatrix of A
obtained by deleting the ith row and jth column of A, The determinant det(M,;)
is called the minor of g;;.

Let A = [al-j] be an n % n matrix. The cofactor A;; of a;; is defined as A;; =
(— 1) det(M;).

| Exampie 1 [
3 =1 2
A=|4 5 &
7 1 9
Then
4 6 : 3 1
det(My2) = ‘ - ‘:3—42:—34. del(Mgg)A' = |43+7A 10,
and
= 2
det(M3)) = | =—6-10=—16.
Also,
Az = (=D det(My2) = (—1)(—34) = 34,
Axy = (=P det(My3) = (—1H)(10) = —10,
and

Az = (=1 det(M3)) = (1)(—16) = —16. m



158  Chapter 3 Determinants

If we think of the sign (—1)* as being located in position (i, j) of an
n % n matrix, then the signs form a checkerboard pattern that has a + in the (1, 1)
position. The patterns for n = 3 and n = 4 are as follows:

+ - + +
_+_ —
+ - + +

I 2 |
lezte I o
F 0l %=l

|
w
=
Il
=

=

Theorem 3.10 Let A =[a;; ] be ann x n matrix. Then

det(A) = a1 A + dpAp + - - + amAiy
[expansion of det(A) along the ith row]

and

det(A) = a1;A1; +azjAaj + -+ aujAnj
|expansion of det(A) along the jth column].

Proof

The first formula follows from the second by Theorem 3.1, that is, from the fact
that det(AT) = det(A). We omit the general proof and consider the 3 x 3 matrix
A = [aj; ]. From (1) in Section 3.1,

det(A) = aj1anass + apanasz + a;zazas 0
— apaxazy — dpdadiy — d13dnas).
We can wrile this expression as
det(A) = ay1(apnasz — axas;) + az(anas — anas;)

+ aj3lazaz — anas).

Now,
. 141 | 422 423
Ay = (=Dt = (anus; — anasn),
a3z daz
¢ 142 | d21 43
Ap= (1" = (anaz — a2 as).
az; as;
o oidd| B s
Ap= (1)t = (anasn — andas).
az; dsz;
Hence

det(A) = ap Ay +apdpp +apAs,

which is the expansion of det(A) along the first row.
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If we now write (1) as

det(A) = aj3(aaiaz — anasy) + anlanas — dyjasn)

+ ass(anan — apan),
we can verify that
2t(A) = a3A13 + anAs + aAa,

which is the expansion of det(A) along the third column. ]

To evaluate the determinant

1 2 -3 4
-4 2 1 3
3 0 0 =3
2 0 -2 3

it is best to expand along either the second column or the third row because they
each have two zeros. Obviously, the optimal course of action is to expand zlong
the row or column that has the largest number of zeros, because in that case
the cofactors A;; of those a;; which are zero do not have to be evaluated, since
ajjAjj = (0)(A;;) = 0. Thus, expanding along the third row, we have

1 2. -3 4
=i 9 1 2
3 0 0 -3
2 0 =2 3
2 -3 & 1 -3 4
==D*@®|2 1 3|+ 0o)| -4 1 3
0 -2 3 9 -3 3
1 2 4 1 2 -3
EiPH =4, 2 8 |ty =4 2 4
2 0 3 N
= (+1D(3)(20) + 0404 (—=1)(=3)(—4) = 48. 2]

We can use the properties of Section 3.2 to introduce many zeros in a given
row or column and then expand along that row or column. Consider the following
example:
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|_ExampLe 3[R

1 2 -3 4 1 2 =3 7
-4 2 1 3 R
1 0 0 -3 1 0 0 o0
2 D~z 3 2 -2 9
cy+3c—ey
o
=YDz 1 -9
0 =2 9
i —Ty—F)
0 —4 16
=(=D*MD|2 1 -9
0 -2 9
= (—=1)*(1)(@8) = 8. [ |

B Application to Computing Areas

Consider the triangle with vertices (xy. y1), (x2, ¥2), and (x3, y3), which we show
in Figure 3.2.

v

Pylxa, va)

P,y

i
| .
| | T Pa(xs. y3)

FIGURE3.2 ©| A0 Bl 0)  Clxs, 0)

We may compute the arca of this triangle as

area of trapezoid A P; P, B + area of trapezoid B P> PsC
— area of trapezoid AP, P;C.

Now recall that the area of a trapezoid is % the distance between the parallel sides



% 4 -2, |
a4
&
FIGURE 3.3
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of the trapezoid times the sum of the lengths of the parallel sides. Thus

arca of triangle Py P> P

1 1 1
5(12 —x1}(yi +y2) + E(l& =) (Y2 + y3) — i(»\j = x1)(n + ¥3)

1 . T, 8
= %Y1 — SXYat 5Ky — oMYy — SXaV1 F S E1Ys
1
= *El(xz}’} —x3y2) — (x1y3 — x3y1) + (1 y2 — x20)l. (2)

The expression in brackets in (2) is the cofactor expansion about the third column
of the matrix

x 1
x » |1
x3 ¥ 1

This determinant may be positive or negative, depending upon the location of the
points and how they are labeled. Thus, for a triangle with vertices (xi, y1), (x2, ¥2),
and (13, y3), we have

) xa o»n |
area of triangle = 5 det x v | 4 3)
- xn oyl

(The area is % the absolute value of the determinant.)

Compute the area of the triangle T, shown in Figure 3.3, with vertices (—1. 4),
(3. 1), and (2. 6).

Solution
By Equation (3), the area of T is
| -1 4 1 |
i det & A = §|17| =il
. | u

Suppose we now have the parallelogram shown in Figure 3.4. Since a diagonal
divides the parallelogram into two equal triangles, it follows from Equation (3) that

2 yn 1
area of parallelogram = |det X ¥y 1 : (4)
xz yz 1

The determinant in (4) can also be evaluated as follows:

x on 1 X ¥i 1
det x2 va 1 = det x2—x1 vw2—y 0 n-fa—rn
- - v r—ry >3

X3 ¥z 1 Xy —x ¥y—yp U

—dgf|B—® F—2 Expansion by cofactors
: X3—X Y3— about the third column
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FIGURE 3.4

FIGURE 3.5

Chapter 3 Determinants

Pz(/\'zn ¥a)

Pi(x,. _\.'V

X
\//

P Xy, Vy)

/ Py y9)

X

Hence the absolute value of the determinant of a 2 x 2 matrix represents the area
of a parallelogram.
An arbitrary 2 x 2 matrix defines a matrix transformation f: R* — R? by

f(¥)=Av

for a vector v in R2. How does the area of the image of a closed figure, such as a
triangle 7" that is obtained by applying f to T', compare with the area of 77 Thus,
suppose that T is the triangle with vertices (x;, yi), (x2, y2), and (x3. y3), and let

A=[ﬂ; j;].

In Exercise 19, we ask vou to first compute the coordinates of the image f(T) and

then show that
areaof f(T) = |det(A)| -areaof T.

Compute the area of the parallelogram P with vertices (—1, 4), (3, 1), (2, 6), and
(6. 3), shown in Figure 3.5.

(6, 3)




Key Terms

Minor
Cofactor

FIGURE 3.6
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Solution

The dashed diagonal in Figure 3.5 divides the parallelogram into two equal trian-
gles, whose area has been computed in Example 4. Hence, the area of the paral-
lelogram is 17. |

Consider the triangle T defined in Example 4 and let

a=[ £ 7).

The image of T, using the matrix transformation defined by the matrix A, is the
triangle with vertices (—18.5), (15, —=2), and (-6, 4) (verify). See Figure 3.6.
The area of this triangle is, by Equation (3),

—18 5 1 1
5 det 15 -2 ) =5|51|=25.5.
—6 4 1
Since det(A) = 3, we see that 3 x area of triangle T' = area of the image. m

¥
T6
T4

f : : k : | x

—15 ~10 =5 5 15

T—2
T—4
T-6

Remark The result discussed in Example 6 is true in general; that is, if § is a
closed figure in 2-space (3-space), A is a matrix of appropriate dimension, and f
is the matrix transformation defined by A, then the area of the image = |det(A)] -
area of § (volume of the image = [det(A)| - volume of S).

Expansion along a row or column
Area of a triangle
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m Exercises

11.

i Letodi=: | 3 1 4

[271 0
 fmA=y 1 2 2

1 0 -2

. Find the following minors:
5 2 =3

{a) det(Ms) (b) det(M»)

(¢) det(My) (d) det(M,)

"

. Find the following

LV T 5 =N

-1 1 =3 -
0 2 -1
(b) det(M3)
(d) det(My)

minors:
(a) det(Mi2)
(c) det(Ms3)

=1 2 3
. LetA=1] -2 5 4 |. Find the following cofactors:
0 1 =3
(a) Ap (b) Ay (e) Az (d) Aj;
[1 0 3 0
. Let A= . : . Find the following co-
3 2 4 0
| 0 3 — 4}
factors:
fa) Ap (b) Au (e) Ass (d) Ay
. Use Theorem 3.10 to evaluate the determinants in Exer-

cise 1(a), (d), and (e) of Section 3.2.

. Use Theorem 3.10 to evaluate the determinants in Exer-

cise 1(b), (c), and (f) of Section 3.2.

. Use Theorem 3.10 to evaluate the determinants in Exer-

cise 2(a), (c). and (f) of Section 3.2.

. Use Theorem 3.10 to evaluate the determinants in Exer-

cise 2(b), (d), and (e) of Section 3.2.

. Show by a column (row) expansion that if A = [a;; ] is

upper (lower) triangular, then det(A) = ayjaa -+ @y

. A= [“"i] is a 3 x 3 matrix, develop the general ex-

pression for det(A} by expanding
{a) along the second column,
(b) along the third row.

Compare these answers with those obtained for Example
8 in Section 3.1.

Find all values of t for which

=
t—2 2 ‘:0;

@13 i

12,

13.

14.

15.

16.

¥is

18.

19.

t—1 —4
(b) 0 r—4‘70'
Find all values of t for which
t—1 0 1
-2 t42 -1 |=0.
0 0 41

Let A be ann x n matrix.

(a) Show that f(r) = det(¢tf, — A) is a polynomial in ¢
of degree n.

(b) What is the coefficient of 1" in f(¢)?

(c) What is the constant term in f(t)?

Verify your answers to Exercise 13 with the following
matrices:

1 5 2
(a) |:; iil () |2 -1 3
T 1

L
© [1 1}
Let T be the triangle with vertices (3,3), (—1,—1),
(4, 1).
(a) Find the area of the triangle 7"

(b) Find the coordinates of the vertices of the image of
T under the matrix transformation with matrix rep-

resentation
4 -3
o 8 41

(c) Find the area of the triangle whose vertices ate ob-
tained in part (b).

Find the area of the parallelogram with vertices (2, 3),
(5,3), 4,5), (7,5).

Let O be the quadrilateral with vertices (=2, 3), (1, 4),
(3,0), and (—1, —3). Find the area of Q.

Prove that a rotation leaves the area of a triangle un-
changed.

Let 7' be the triangle with vertices (x1, ¥1), (x2. ¥z}, and
(x3, ¥3), and let
a b
&= [c d] ;

Let f be the matrix transformation defined by f(v) =
Av for a vector v in R%, First, compute the vertices of
f(T) and the image of T under f, and then show that
the area of f(7T) is |det(A)| -area of T.
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<8 Inverse of a Matrix

We saw in Section 3.3 that Theorem 3.10 provides formulas for expanding det(A)
along either a row or a column of A. Thus det(A) = a;1Aj1 +ainAn+-+a, Ay,
1s the expansion of det(A) along the ith row. It is interesting to ask what a; Az, +
aipAp + -+ ainAgg 18 for i £ k, because as soon as we answer this question,
we obtain another method for finding the inverse of a nonsingular matrix.

If A= [a;j] is an n % n matrix, then

apAg + apApp + -+ ain A =0 fori #£k;
ajj A+ azjAsy 4+ a A =0 for j #k

Proof

We prove only the first formula. The second follows from the first one by Theorem
3.1

Consider the matrix B obtained from A by replacing the kth row of A by
its ith row. Thus B is a matrix having two identical rows—the ith and kth—so
det(B) = 0. Now expand det(B) along the kth row. The elements of the kth
row of B are a;y, a;», ..., a;,. The cofactors of the kth row are Ay, Az, ..., Ag,.
Thus

0 =det(B) = aj1 A + apAp + -+ @in A,

which is what we wanted to show. 3]

This theorem says that if we sum the products of the elements of any row
(column) times the corresponding cofactors of any other row (column), then we
obtain zero.

1 2 3
LetA=| -2 5 1 | . Then
4 5 -2
Ay =1 | 2 7;‘=19.
1 3 1 2
— (—1yt2 i Eor o a2 o
Az = (1) 4 _2’ 14, and Ay = (=1 5’ 3

Now
a3 Az + axp Az + azsAsz = (4)(19) + 5)(—14) + (=2)(3) = 0.
and
ay Az +apAy +apAn = (1)(19) + (2)(-14) + (3)(3) = 0. B
We may summarize our expansion results by writing

ap Ay +apAp + - Fap A, = det{A)  ifi =k
=0 ili £k
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and
ajA FazjAn + - Fa A =det{d)  if j=k
—0 if j £ k.
Let A = [a;; ] be an n x n matrix. The n x n matrix adj A, called the adjoint of
DEFINITION 3.5 A, is the matrix whose (i, j)th entry is the cofactor A ;; of a ;. Thus
Apn Ax oo Ap
Ap An - Am
adj A = . .
Aln A211 . Amt

Remark It should be noted that the term adjoint has other meanings in linear
algebra in addition to its use in the preceding definition.

3 =2 1

m letA=|5 6 2 |. Compute adj A.
1 0 =3

Solution
We first compute the cofactors of A. We have

6 2
— (e o
An = (-1) 0 _3‘ 18,
s =] — (-3 B
A|2_( [) 1 -3 i AES‘—( 1) 1 0 = —0),
-2 1
— 132+ g
Asy = (—1) 0 _3‘— 6.
3 1 3 =2
o 1)\2+2 T 1323 i
Agyi= (1) | _3’— 10, Ap= (-1} | 0‘— 2,
-2 1
A3 = (=1 =—10
st =(-1) 6 2‘ .
3 | 3 =2
o 3k o — 7 pF3 i
Ap=(-1) 5 2‘~ 1, Ayp=(-1) 5 6’——23-
Then
—18 —6 —10
adj A = 17 =10 -1

-6 =2 28 )
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If A=[a;;]isann x n matrix, then A(adj A) = (adj A)A = det(A)1,.

Proof
‘We have
(a1 ai - ay ]
axl d -t dg Ay Ay - Ap - An
: : : A Ap - Ep - Ap
A(adj A) = . . . .
(270 B 5 R 7 2 : : .
Aln Aoy, el AJP‘! E .
| dnl  Qn2 - Oan |

The (i. j)th element in the product matrix A(adj A) is, by Theorem 3.10,

aiAj +apAp+ -+ apmAj, =det(Ad) ifi=j

=10 o
This means that
det(A) 0 . 0
0 det(A)
Aadj A) = £ : =det(A)],.
0 cee 0 det(A)

The (i, j)th element in the product matrix (adj A)A is, by Theorem 3.10,

Ajjay; + Asiazj + - -+ Apiay; = det(A)  ifi = j

=0 if § 55 f.
Thus (adj A)A = det(A)1,,. ]
Consider the matrix of Example 2. Then
3 —2 1 —18 =6 =10 —94 0 0
g @6 32 17 —100 -1 |= 0 —94 0
1 0 -3 =6 =2 28 0 0 —-9%
1 0 0
=-94(0 1 ©
0, 0 L.
and
—18 =6 =10 3 =2 1 [l 0 0
17 =10 =1 5 6 2|=-94|0 1 1.
-6 -2 28 1 ¢ =3 [0 B 1| B

We now have a new method for finding the inverse of a nonsingular matrix,
and we state this result as the following corollary:
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Corollary 3.4 If A is ann x n matrix and det(A) # 0, then

A 1 A21 - Aul
det(A) det(A) det(A)
A12 Agg AnZ
| o N ol e . < W
- s ay — | det(A)  det(A) det(A)
Ay 24 4) _ , _
Aln AZH Aim
| det(A) det(A) det(A) |
Proof
By Theorem 3.12, A(adj A) = det(A){,, so if det(A) s 0, then
1 1
A dj A = Aladj A)) = det(A),) = 1,.
(dcl(A)(a j J) det(A}( (adj A)) det(A)(e( W) =1,
Hence
-1 1 :
AT = ——(adj A).
det(A) 0]
m Again consider the matrix of Example 2. Then det(A) = —94, and
[ 18 6 10|
94 94 94
A= _agay=|_17 10 1L
det(A) 94 94 94
6 2 »
94 94 94 | ]

We might note that the method of inverting a nonsingular matrix given in
Corollary 3.4 is much less efficient than the method given in Chapter 2. In fact,
the computation of A~!, using determinants, as given in Corollary 3.4, becomes
too expensive for n > 4. We discuss these matters in Section 3.6, where we deal
with determinants {rom a computational point of view. However, Corollary 3.4 1s
still a useful result on other grounds.

Key Terms

Inverse
Adjoint



m Exercises

1,

Verify Theorem 3.11 for the matrix

-2 3 0
A= 4 1 -3
2 0 1
by computing ayy Ays + a2y Ay + a3 A,
2 1 3
. LetA=|-—1 2 0
3 -2 1

{a) Find adj A.
by Compute det(A).
{e) Verify Theorem 3.12; that is, show that

Aadj A) = (adj A)A = det(A) ;.

6 2 8
i et = | —3 -+ 1 |. Follow the directions of
4 —4 5
Exercise 2.
. Find the inverse of the matrix in Exercise 2 by the method

ziven in Corollary 3.4.

. Repeat Exercise 11 of Section 2.3 by the method given in

Corollary 3.4, Compare your results with those obtained
earlier.

. Prove that if A is a symmetric matrix, then adj A is sym-

metric.

. Use the method given in Corollary 3.4 to find the inverse,

it exists, of

0 2 1 3
, g =1 3 %
Wl 1 5 a2
9 1 @ 2
4 3 3
m o 1 2] (© [é i]
10 3

10.

11.

12.

13.

14.

15.
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Prove that if A is a nonsingular upper triangular matrix,
then A~ is upper triangular.

Use the method given in Corollary 3.4 to find the inverse
of

a b 5
A= [c d] ifad — be # 0.

Use the method given in Corollary 3.4 to find the inverse
of

1l & @
A=|1 b b
1 ¢

[Hint: See Exercise 22 in Section 3.2, where det(A) is
computed.]

Use the method given in Corollary 3.4 to find the inverse
of

= o =
-3

0

A=

(===
Moo

Use the method given in Corollary 3.4 to find the inverse
of

4 1 2]
A= =8 3
o o 2|

Prove that if A is singular, then adj A is singular. |[Hint:
First show that if A is singular, then A(adj A) = O ]

Prove that if A is an n x n matrix, then det(adjA) =
[det(A)]" L.

Assuming that your software has a command for com-
puting the inverse of a matrix (see Exercise 63 in Section
1.5), read the accompanying software documentation to
determine the method used. Is the description closer to
that in Section 2.3 or Corollary 3.47 See also the com-
ments in Section 3.6.

m Other Applications of Determinants

We can use the results developed in Theorem 3.12 to obtain another method for
solving a linear system of n equations in n unknowns. This method is known as

Cramer’s rule.
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Theorem 3.13 Cramer’s” Rule

CRAMER

GABRIEL CRAMER

Let
aypxy + apxs + -+ aex, = by
a21x1 + Gpaxz + -+ + awxs = by

Ai1X1 + ApaXn + v Xy = by

be a linear system of n equations in » unknowns, and let A = [(:,-j] be the coeffi-
cient matrix so that we can write the given system as Ax = b, where

by
bg

n

If det(A) 7 0, then the system has the unique solution

det(Ay) det(A2) det(A,)
By ==z Yommt e o g E= —————
' det(A) *7 det(A) det(A)
where A; is the matrix obtained from A by replacing the ith column of A by b.
Proof
If det(A) # 0, then, by Theorem 3.8, A is nonsingular. Hence
[ An An Aw i
det(A) det(A) det(A)
A Az A
% det(A) det(A) det(A) b,
g ' : : 2
= . o - A],- Agg Am‘ :
Ty det(A) det(A) det(A) b,
Alu AZJJ Auu
| det(A) det(A) det(A) |
This means that
) Ay b Az b Api b ik — 8
Xp= det(A) 1+del(A) B LA o det(A) h ori =1,2,...,n.

*Gabriel Cramer (1704-1752) was born in Geneva, Switzerland, and lived there all his life. Remain-
ing single, he traveled extensively, taught at the Académie de Calvin, and participated actively in civie
affairs.

The rule for solving sysiems of linear equations appeared in an appendix to his 1750 book, Intro-
duction a l'analyse des lignes courbes algébrigues. It was known previously by other mathematicians,
but was not widely known or clearly explained until its appearance in Cramer's influential work.
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Now let
@i @iy < g b mip v @iy
azy ayp --- azicg b miy - anm
A=
dy) Qpa -0 i bir sy Tt Oy

If we evaluate det(A;) by expanding along the cofactors of the ith column, we find
that
det(A;) = Ayiby + Azby + - - + Ayiby,.

Hence

 det(4)
"7 det(A)

forit =12 ... n. (1)
m

In the expression for x; given in Equation (1), the determinant, det(A;), of

A; can be calculated by any method desired. It was only in the derivation of

the expression for x; that we had to evaluate det(A;) by expanding along the ith
column.

Consider the following linear system:

=2x1 + 30 —x3= 1
&2 —ay

I
=

—2x1 — X+ x3=-3.

—2 3 1
We have |A| = 1 2 1| = —2. Then
-2 -1 1
1 3 -1
4 2 -1
-3 -1 1 —4 g
SV TR
-2 1 -1
1 4 —1
—2 -3 1 —6
== —0= 3,
[A] -2
and
-2 3 1
1 2 4
-2 -1 -3 -8
X3 = =— =4
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We note that Cramer’s rule is applicable only to the case in which we have n
equations in n unknowns and the coefficient matrix A is nonsingular. If we have
to solve a linear system of n equations in n unknowns whose coefficient matrix
is singular, then we must use the Gaussian elimination or Gauss—Jordan reduction
methods as discussed in Section 2.2. Cramer’s rule becomes computationally in-
efficient for n = 4, so it is better, in general, to use the Gaussian elimination or
Gauss—Jordan reduction methods.

Note that at this point we have shown that the following statements are equiva-
lent for an n x n matrix A:
1. A is nonsingular.
AX = 0 has only the trivial solution.
. A is row (column) equivalent to 1,,.
. The linear system Ax = b has a unique solution for every n x 1 matrix b.
. A is a product of elementary matrices.
. det(A) # 0.

=T VY

Key Terms

Cramer’s rule

m Exercises

1. If possible, solve the following linear systems by 4. Repeat Exercise 5 of Section 2.2; use Cramer’s rule.
Cramer’s rule:

9 Sodps boy= 2 5. Repeat Exercise 1 for the following linear system:
| +2= 0
2 + 30 — x3=-5. 25— x4 3x3=0
x4 2x — 3x =

2. Repeat Exercise 1 for the linear system VIV AR )

1 1 1 =27 [x —4
B : . 3 2| = 4 . 6. Repeat Exercise 6(b) of Section 2.2; use Cramer’s rule.
2 1 -1 20| % 5
1, =1 0 1 A4 4 7. Repeat Exercise | for the following linear systems:
3. Solve the following linear system for x;, by Cramer’s

rule: 2%+ 30+ Ty =0

—2x1 —4x3 =0

Xy 4+ 205 + 4y = 0.

2% 4 Azt Xs= 6
3x; + 20 — 2xy =2
X4 x4 20 =—4

Determinants from a Computational Point
of View

In Chapter 2 we discussed three methods for solving a linear system: Gaussian
elimination, Gauss—Jordan reduction, and LU-factorization. In this chapter, we
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have presented one more way: Cramer’s rule. We also have two methods for
inverting a nonsingular matrix: the method developed in Section 2.3, which uses
elementary matrices; and the method involving determinants, presented in Section
3.4. In this section we discuss criteria to be considered when selecting one or
another of these methods.

In general, if we are seeking numerical answers, then any method involving
determinants can be used for n < 4. Gaussian elimination, Gauss—Jordan reduc-
tion, and L U-factorization all require approximately n* /3 operations to solve the
linear system Ax = b, where A is an n x n matrix. We now compare these methods
with Cramer’s rule, when A 18 25 x 25, which in the world ol real applications 1s
a small problem. (In some applications A can be as large as 100,000 x 100,000.)

If we find x by Cramer’s rule, then we must first obtain det(A). Suppose that
we compute det(A) by cofactor expansion, say,

det(4) = ay Ay +an Ay + - +anda,

where we have expanded along the first column of A. If each cofactor A;; is
available, we need 25 multiplications to compute det(A). Now each cofactor A;;
is the determinant of a 24 x 24 matrix, and it can be expanded along a particu-
lar row or column, requiring 24 multiplications. Thus the computation of det(A)
requires more than 25 x 24 x - .- x 2 x 1 = 25! (approximately 1.55 x 10?°) mul-
tiplications. Even if we were to use a supercomputer capable of performing ten
trillion (1 x 10'2) multiplications per second (3.15 x 1019 per year), it would take
49,000 years to evaluate det(A). However, Gaussian elimination takes approxi-
mately 25%/3 multiplications, and we obtain the solution in less than one second.
Of course, det(A) can be computed in a much more efficient way, by using ele-
mentary row operations to reduce A to triangular form and then using Theorem
3.7. (See Example 8 in Section 3.2.) When implemented this way, Cramer’s rule
will require approximately n* multiplications for an n x n matrix, compared with
n’ /3 multiplications for Gaussian elimination. The most widely used method in
practice is LU-factorization because it is cheapest, especially when we need to
solve many linear systems with different right sides.

The importance of determinants obviously does not lie in their computational
use; determinants enable us to express the inverse of a matrix and the solutions to
a system of n linear equations in n unknowns by means of expressions or formu-
fas. The other methods mentioned previously for solving a linear system, and the
method for finding A~ by using elementary matrices, have the property that we
cannot write a formula for the answer; we must proceed algorithmically to obtain
the answer. Sometimes we do not need a numerical answer, but merely an expres-
sion for the answer, because we may wish to further manipulate the answer—for
example, integrate it.
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B Supplementary Exercises

Compute |A| for each of the following:
[2 3 4
(@) A=]|1 2 4
|4 3 1
2.1 ©
b) A=]|1 2 1
[0 1 2
2 I -1 2
9% =f W
{ =
c) A 1 3 3 i
L1 & =i /i
2. T @ D
1 2 & O
@ A=l | 2 1
00 1 2

Find all values of r for which det(t/y — A) = 0 for each
of the following:

[ 4 B
@) A=[0 4 0
[0 0 1
[ 2 —2 0
(h) A=] -3 1 0
L 0 0 3
o 1 0
) A=|[0 0 1
L6 —11 6
0 1 0
dy A=1|0 0 1
3 1 -3

Chapter Review

True or False

1.

det(A + B) = det(A) + det(B)

det(A~'B e
- NS det(A)
If det(A) = 0, then A has at least two equal rows.

If A has a column of all zeros. then det(A) = 0.
A is singular if and only if det(A) = 0.

If B is the reduced row echelon form of A, then det(B) =
det(A).

The determinant of an elementary matrix is always 1.

7

10.

11

10.

11.

12

. If A is nonsingular, then A !

Show that if A" = O for some positive integer n (Le.. if
A is a nilpotent matrix), then det(A) = 0.

. Using only elementary row or elementary column opera-

tions and Theorems 32, 3.5, and 3.6 (do not expand the
determinants), verify the following:

a—b 1 a @ 1 b
(@) |[b—¢ 1 b|l=|b 1 ¢
c—a 1 ¢ Y
1 a be 1 a a*
®) [l b ca|=|1 b B
Il ¢ ab

Show that if A is an n x n matrix, then det(AA”) = 0.

. Prove or disprove that the determinant function is a linear

transformation of M, into R'.

Show that if A is a nonsingular matrix, then adj A is non-
singular and

(adj A)~' = A=adj(A™").

det(A)
Prove that if two rows (columns) of the n x n matrix A
are proportional, then det(A) = 0.

Let Q be the n x n real matrix in which each entry is 1.
Show that det(Q —nl,) = 0.

Let A be an n x n matrix with integer entries. Prove that
A is nonsingnlar and A~ has integer entries if and only if

det(A) = £1.

Let A be an n x n matrix with integer entries and det(A) =
+1. Show that if b has all integer entries, then every so-
lution to Ax = b cons:sts of integers.

= detd) adj(A).

If 7' is a matrix_transformation from R* — R* defined
5

by A = i ; , then the area of the image of a closed

plane figure S under T is six times the area of §.

If all the diagonal elements of an n x n matrix A are zero,
then det(A) = 0.

det(AB"A™") =det B.

l(dcl cA) = det{A).
&



Quiz

1. Let A, B, and C be 2 x 2 matrices with det(4) = 3,
det(B) = —2, and det(C) = 4. Compute det(6A” BC ).

2. Prove or disprove: For a 3 x 3 matrix A, if B is the
matrix obtained by adding 5 to each entry of A, then
det(B) = 5 + det(A).

3. Let B be the matrix obtained from A after the row op-
erations 2r; — ry, rp < ry, 4rp +r; — rs;, and
—2r) + rs — r; have been performed. If det(B) = 2.
find det(A).

4. Compute the determinant of

1 2 1 0

0 | 2 3
2 0 -1 =1
3 0 0 =1
by using row operations to obtain upper triangular form.

5. Let A be alower triangular matrix. Prove that A is singu-
lar il and only il some diagonal entry of A is zero.

Discussion Exercises
1. Show that det(A) is (a* — b*)/(a — b). where

at+b ab 0
A= 1 a+b ab
0 1 a+b

for a and b any real numbers and a # b, carefully ex-
plaining all steps in your proof.

2. Let
a+b ab 0 0
e 1 a+b ab 0
- 0 1 a+b ab
0 0 1 a+b

{a) Formulate a conjecture for det(A). Explain how you
arrived at your conjecture.

(b) Prove your conjecture. (If you have access to soft-
ware that incorporates a computer algebra system,
then use it in your proof.)

3. Leta;and by, j = 1,2, 3, 4, be any real numbers and ¢,
and d, be any real numbers. Prove that det(A) = 0, where

ay ax: dy dg
by b by by
a 0 0 0
d 0 0 0

Chopier Review 175

6. Evaluate det(A) by using expansion along a row or col-
umn, given

D T X ‘0
B & A S
A= -2 @ 1 I
i =1 © @

7. Use the adjoint to compute A~" for

3 1
1

A= |
-1 =2

N oM

8. Solve the linear system Ax = b by using Cramer’s rule,
given

Carefully explain all steps in your proof.

4. Determine all values of x so that det(A) = 0, where
__ [ &
b 0
5. Let
x 1 2
A= x 1
1 1 1

(a) Determine p(x) = det(A).

(b) Graph y = p(x). If the graph has any x-intercepts,
determine the value of det(A) for those values.
6. Let P(x;.y,) and Q(xz, y2) be two points in the plane.
Prove that the equation of the line through P and Q is
given by det(A) = 0, where
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7. Let A, be the n x n matrix of the form Show that for n = 3,
§ & B ¥ B A8 o g det(A,) = xdet(A, ) — det(A,2)
1 x | 0 0 . - 0
0 1 X 1 0 - - 0 : x 1
E o w w m S ; (Nm‘-t’.fh=[.‘t].:‘13=|:i t])
. 0
0 0 1 I |
K v 01 x|




I CHAPTTER

Real Vector Spaces

In Sections 1.2, 1.3, and 1.6, we have given brief glimpses of 2-vectors and 3-
vectors and of some of their properties from an intuitive, somewhat informal point
of view. In this chapter we first develop the notion of 2 vectors and 3 vectors
along with their properties very carefully and sysiematically. A good mastery of
this basic material will be helpful in understanding n-vectors and in the study of
Section 4.2, where a more general notion of vector will be introduced. Moreover,
n-vectors and this more general concept of vector will be used in many parts of the
book.

m Vectors in the Plane and in 3-Space

In many applications we deal with measurable quantities such as pressure, mass,
and speed, which can be completely described by giving their magnitude. They
are called scalars and will be denoted by lowercase iralic letters such as ¢, d,
r. s, and r. There are many other measurable quantities, such as velocity, force,
and acceleration, which require for their description not only magnitude, but also a
sense of direction. These are called veetors, and their study comprises this chapter.
Vectors will be denoted by lowercase boldface letters, such as u, v, x, y, and z.
The reader may already have encountered vectors in elementary physics and in
calculus.

B Vectors in the Plane

We draw a pair of perpendicular lines intersecting at a point O, called the origin.
One of the lines, the x-axis, is usually taken in a horizontal position. The other line,
the y-axis, is then takenin a vertical position. The x- and y-axes together are called
coordinate axes (Figure 4.1), and they form a rectangular coordinate system, or
a Cartesian (after René Descartes™) coordinate system. We now choose a point

“René Descartes (1596-1650) was one of the best-known scientists and philosophers of his day: he
was considered by some to be the founder of modern philosophy. After completing a university degree
in law, he turned to the private study of mathematics, simultaneously pursuing interests in Parisian

177
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y-axis

Positive direction

[} ‘I
Positive direction
FIGURE 4.1
Y-uxis
Plx, y)
000, 0) ‘
FIGURE 4.2

x-axis

X-axis

DEFINITION 4.1

RENE DESCARTES

on the x-axis to the right of O and a point on the y-axis above O to fix the units
of length and positive directions on the x- and y-axes. Frequently, but not always,
these points are chosen so that they are both equidistant from O—that is, so that
the same unit of length is used for both axes.

With each point P in the plane we associate an ordered pair (x, y) of real
numbers, its coordinates. Conversely, we can associate a point in the plane with
each ordered pair of real numbers. Point P with coordinates (x, y) is denoted by
P(x, y), or simply by (x, v). The set of all points in the plane is denoted by R?; it
is called 2-space.

H
X= 5
¥y

Consider the 2 x | matrix
where x and y are real numbers. With x we associate the directed line segment with
the initial point the origin and terminal point P(x, y). The directed line segment

—_—
from O to P is denoted by O P; O is called its tail and P its head. We distinguish
tail and head by placing an arrow at the head (Figure 4.2). A directed line segment
has a direction, indicated by the arrow at its head. The magnitude of a directed
line segment is its length. Thus a directed line segment can be used to describe

=
force, velocity, or acceleration. Conversely, with the directed line segment O P
with tail @(0, 0) and head P(x, y) we can associate the matrix

X
-
A vector in the plane is a 2 x [ matrix
H
X = .
y

where x and y are real numbers, called the components (or entries) of x. We refer
to a vector in the plane merely as a vector or as a 2-vector.

Thus, with every vector, we can associate a directed line segment and, con-
versely, with every directed line segment we can associate a vector. Frequently,
the notions of directed line segment and vector are used interchangeably, and a
directed line segment is called a vector.

night life and in the military, volunteering for hrief periods in the Dutch, Bavarian, and French armies
The most productive period of his life was 1628-1648, when he lived in Holland. In 1649 he accepted
an invitation from Queen Christina of Sweden to be her private tutor and to establish an Academy of
Sciences there. Unfortunately, he did not carry out this project, since he died of pneumonia in 1650.
In 1619 Descartes had a dream in which he realized that the method of mathematics is the
best way for obtaining truth. However, his only mathematical publication was La Géométrie, which
appeared as an appendix to his major philosophical work, Discours de la méthode powr bien conduire sa
raison, et chercher la vérité dans les seiences (Discourse on the Method of Reasoning Well and Seeking
Truth in the Sciences). In La Géoméirie he proposes the radical idea of doing geometry algebraically.
To express a curve algebraically, one chooses any convenient line of reference and, on the line, a
point of reference. If y represents the distance from any point of the curve to the reference line and
x represents the distance along the line to the reference point, there is an equation relating x and y
that represents the curve. The systematic use of “Cartesian” coordinates described in this section was
introduced later in the seventeenth century by mathematicians carrying on Descartes’s work.
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Since a vector is a matrix, the vectors

u= E‘“] and v= [AZ]
¥ ¥2

are said to be equal if x; = x; and y; = y,. That s, two vectors are equal if their
respective components are equal.

[20] e [a2]

The vectors

are equal if

a+b=3
a—b=2,
which means (verify) thata = 3 and b = §. il

Frequently, in physical applications it is necessary to deal with a directed line
—_—

segment P from the point P(x,y) (not the origin) to the point Q(x’, y), as
shown in Figure 4.3(a). Such a directed line segment will also be called a vector
in the plane, or simply a vector with tail P(x, y) and head Q(x’, y"). The com-

—>
ponents of such a vector are x’—x and y’— y. Thus the vector P Q in Figure 4.3(a)
can also be represented by the vector

[)t’ _7¥]
r
=

with tail O and head P"(x" — x,¥" — y). Two such vectors in the plane will be
e

called equal if their respective components are equal. Consider the vectors P Q,

—_— —_—

P>05, and P; Q5 joining the points Py(3.2) and ¢(5.5), P»(0.0) and Q»(2.3),

Py(—3.1) and Q3(—1,4), respectively, as shown in Figure 4.3(b). Since they all

have the same components, they are equal.

0(x',y) G

5
/ 01,4

P(x,y)

0Q)(5.5)

0,2, 3)

P — =) 2
.

50 Pi(3,2)

x —t—t—

0 R oA d 1
P40, 0)
(b) Vectors in the plane.

a4
w
5N
L
(=]

(a) Different directed line segments
representing the same vector.
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Moreover, the head Q4 (x}, v;) of the vector
—_— 2 —
PyQy = s PyQ»

with tail P,(—35, 2) can be determined as follows. We must have x; — (—5) = 2
and y; —2 =3,s0thatx] =2 - 5= —3and y; = 3 + 2 = 5. Similarly, the tail

Ps(xs, ys) of the vector
P—) 2

505 = 3
with head Q5(8. 6) is determined as follows. We must have 8 — x5 = 2 and
6—ys=3,s0othatxs =8—2=6and ys =6—-3 = 3.

With each vector
«=}]
y

we can also associate the unique point P (x, v): conversely, with each point P (x, y)
we associate the unique vector
x
[.\' ] '

Hence we also write the vector x as (x, y). Of course, this association is carried
—>

out by means of the directed line segment O P, where O is the origin and P is the
point with coordinates (x, y) (Figure 4.2).

Thus the plane may be viewed both as the set of all points or as the set of all
vectors. For this reason, and depending upon the context, we sometimes take R?
as the set of all ordered pairs (x. y) and sometimes as the set of all 2 x 1 matrices

il
=g o=l

be two vectors in the plane. The sum of the vectors u and v is the vector

Let

H:+U|:|

u+v=
" |iﬁ.1+vo

Remark Observe that vector addition is a special case of matrix addition.
2 3
Letu = [3:| and v = [_4]. Then

248 T [ 5
wrw=f3 33 1= 5]

See Figure 4.4 )
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—_— Uy + Uy fmmm———————— (i) + vy, iy + )
=3 (udy, 1z) w :
Uy [-—— i
! |
| ut+v |
ny | 1
| 1
(v, Ug)l
—37 B A i
| 1
v
1 | 1 ¢
(8} u vy Uyt oy

FIGURE 4.4

DEFINITION 4.3

FIGURE 4.5 Vector addition.

We can interpret vector addition geometrically, as follows. In Figure 4.5 the
directed line segment w is parallel to v, it has the same length as v, and its tail is
the head (1, u») of u, so its head is (u; + vy, us + v2). Thus the vector with tail
(@ and head (u; + vy, w2+ v2) is u+ v. We can also describe u+ v as the diagonal
of the parallelogram defined by u and v, as shown in Figure 4.6.

=
/ﬁ
FIGURE 4.6 Vecior addition. FIGURE 4.7 Scalar multiplication.

y u F: i .
Ifu= [ L ] is a vector and ¢ is a scalar (a real number), then the scalar multiple
s

s ; cu

cu of u by ¢ is the vector { !
cly

multiplying each component of u by c. If ¢ = 0, then cu is in the same direction

as u, whercas if d < 0, then du is in the opposite direction (Figure 4.7).

]. Thus the scalar multiple eu is obtained by
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Cu:z[—i] - BEZ—)H] = [—2]

and
2 (-3)(2) —6
= —3 — —
“ [—3] [(—3)(—3> 9]
which are shown in Figure 4.8. ]
y
(—6.9)
- 9 4
—3u T
I 2 4
+—+————+ f x
6 0¥
73 -
—b : (a) Difference between vectors.  (b) Vector sum and vector difference.
FIGURE 4.8 FIGURE 4.9

The vector

)

is called the zero vector and is denoted by 0. If u is any vector, it follows that
(Exercise 21)

u+0=u.
‘We can also show (Exercise 22) that
u+(—=Hu=0,

and we write (—[)u as —u and call it the negative of u. Moreover, we write
u+ (—1)v as u — v and call it the difference between u and v. It is shown in
Figure 4.9(a). Observe that while vector addition gives one diagonal of a parallel-
ogram, vector subtraction gives the other diagonal [see Figure 4.9(b)].

B Vectors in Space

The foregoing discussion of vectors in the plane can be generalized to vectors in
space, as follows. We first fix a coordinate system by choosing a point, called the
origin, and three lines, called the coordinate axes, each passing through the origin
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so that each line is perpendicular to the other two. These lines are individually
called the x-, y-, and z-axes. On each of these axes we choose a point fixing the
units of length and positive directions on the coordinate axes. Frequently, but not
always, the same unit of length is used for all the coordinate axes. In Figure 4.10
we show two of the many possible coordinate systems.

The coordinate system shown in Figure 4.10(a) is called a right-handed co-
ordinate system; the one in Figure 4.10(b) is called left-handed. A right-handed
system is characterized by the following property: If we curl the fingers of the
right hand in the direction of a 90° rotation from the positive x-axis to the positive
y-axis, then the thumb will point in the direction of the positive z-axis. (See Figure
4.11.)

S g

(a) Right-hanced coordinate system.  (b) Left-handed coordinate system.

FIGURE 4.10

FIGURE 4.11

If we rotate the x-axis counterclockwise toward the y-axis, then a right-hand
screw will move in the positive z-direction (see Figure 4.11).

With each point P in space we associate an ordered triple (x, v, z) of real
numbers, its coordinates. Conversely, we can associate a point in space with each
ordered triple of real numbers. The point P with coordinates x, y, and z is denoted
by P(x, y, z),orsimply by (x. y, z). The set of all points in space is called 3-space
and is denoted by R*.

A vector in space, or 3-vector, or simply a vector, is a 3 x 1 matrix

where x, v, and z are real numbers, called the components of vector x. Two
vectors in space are said to be equal if their respective components are equal.
As in the plane, with the vector

R ]

"~

—_—
we associate the directed line segment O P, whose tail is O(0, 0, 0) and whose
head is P(x, v, z): conversely, with each directed line segment we associate the
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FIGURE 4.12

vector X [see Figure 4.12(a)]. Thus we can also write the vector x as (x, v, z).
Again, as in the plane, in physical applications we often deal with a directed line
segment P Q, from the point P(x, v, z) (not the origin) to the point Q(x', v', 2,
as shown in Figure 4.12(b). Such a directed line segment will also be called a
vector in R*, or simply a vector with tail P(x, v, z) and head Q(x', v/, z/). The
components of such a vector are x’ — x, ¥y’ — y, and 2’ — z. Two such vectors in R?

i
will be called equal if their respective components are equal. Thus the vector P Q

x—x
in Figure 4.12(b) can also be represented by the vector | y' — y | with tail O and
¢
Zi—g

head P"(x' —x,y' — y.2' — 2).

L0007

e P(x,y,2)

/0(0, 0, 0)

X

(b) Different directed line segments

(a) A vector in R* s
representing the same vector.

"y v
fu=|u | andv = | v, | are vectors in R? and ¢ is a scalar, then the sum
i3 U3

u + v and the scalar multiple cu are defined, respectively, as

uy + vy cu
nw+v=| 1+ and cu= | cus
Uz + v3 CU3

The sum is shown in Figure 4.13, which resembles Figure 4.5, and the scalar
multiple is shown in Figure 4.14, which resembles Figure 4.8.

Let
4 3
u= B and v=|—4
-1 2

Compute: (a) u+ v;(b) —2u (¢c) 3u—2v.
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Hy + 1y

iy L

Q
L]
V) Ao o o e
Y e V-
X
FIGURE 4.13 Vector addition. FIGURE 4.14 Scalar multiplication.
Solution
243 5
@utv=| 344 |[=]-1
-1+2 |
—2(2) —4
(b) —2u= | —-2(3) =| —6
—2(—1) 2
3(2) 2(3) 0
(c) 3u—2v=| 3(3) - 2(=4 | = | 17
3(=1) 2(2) -7

| ]
The zero vector in R* is denoted by 0, where

0
0=1|0
0

The vector 0 has the property that if u is any vector in R, then

ulbd=nu.
u| -
The negative of the vector u = | u> | is the vector —u = | —u» |, and
U3 —Uu3
u—+(—u) =0.

Observe that we have defined a vector in the plane as an ordered pair of real
numbers, or as a 2 x 1 matrix. Similarly, a vector in space is an ordered triple
of real numbers, or a 3 x | matrix. However, in physics we often treat a vector
as a directed line segment. Thus we have three very different representations of a
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Theorem 4.1

FIGURE 4.15 Vector addition.

vector, and we can thern ask why all three are valid. That is, why are we justified
in referring to an ordered pair of real numbers, a 2 x 1 matrix, and a directed line
segment by the same name, “vector”?

To answer this question, we first observe that, mathematically speaking, the
only thing that concerns us is the behavior of the object we call “vector” It turns
out that all three objects behave, from an algebraic point of view, in exactly the
same manner. Moreover, many other objects that arise naturally in applied prob-
lems behave, algebraically speaking, as do the aforementioned objects. To a math-
ematician, this is a perfect situation. For we can now abstract those features that
all such objects have in common (1.e., those properties that make them all behave
alike) and define a new structure. The great advantage of doing this is that we
can now talk about properties of all such objects at the same time without having
to refer to any one object in particular. This, of course, is much more efficient
than studying the properties of each object separately. For example, the theorem
presented next summarizes the properties of addition and scalar multiplication for
vectors in the plane and in space. Moreover, this theorem will serve as the model
for the generalization of the set of all vectors in the plane or in space to a more
abstract setting.

If u, v, and w are vectors in R? or R*, and ¢ and d are real scalars, then the
following properties are valid:

(a) u+v=v+u

by ut+v+w =@+v)+w

(¢) u+0=0+4+u=u

(dut(—u)y=0

(e) clu+v)=cu+cv

) (¢ | dju=cu | du

(g) c(du) = (cd)u

(h) lu=u

Proof

(a) Suppose that u and v are vectors in R? 50 that

u={”l:| and v=[vl].
Uy Uy

u+v=|:u1+v1i| A v+u=|im+u1]‘

Then

U2 + U2

Since the components of u and v are real numbers, u; +v; = vy +u; and us+vy =
vz + ua. Therefore,
Uu+v=v+u

A similar proof can be given if u and v are vectorsin R*.

Property (a) can also be established geometrically, as shown in Figure 4.15.
The proofs of the remaining properties will be left as exercises. Remember, they
can all be proved by either an algebraic or a geometric approach. i



Key Terms

Vectors

Rectangular (Cartesian) coordinate system
Coordinate axes

x-axis, y-axis, z-axis

Origin

Coordinates

2-space, R*

m Exercises

4.1

Tail of a vector

Head of a vector
Directed line segment
Magnitude of a vector
Vector in the plane
Components of a vector
Equal vectors

Vectors in the Plane and in 3-Space

Scalar multiple of a vector
Vector addition

Zero vector

Difference of vectors

187

Right- (left-) handed coordinate system

3-space, R?
Vector in space

1.

Sketch a directed line segment in R, representing each
of the following vectors:

we-[] ol
o3 e[

In Exercises 9 and 10, find a vector whose tail is the origin

that represents each vector P_é
9. (a) P(—1.2),0(3,5
(b)y P(1,1,-2), 0(3,4,5)
10. (a) P(2,-3), Q(-2.4)
(b) P(-2.-3.4),0(0,0.1)
11. Compute u + v, u — v, 2u, and 3u — 2v if

2. Determine the head of the vector [

(=3, 2). Make a sketch.

_2] whose tail is

S

3. Determine the tail of the vector [2] whose head is (1, 2). 0 s -G] " [3]
)| A 4
Make a sketch. > i
2 (c) u= G]'v:[é]'
4. Determine the tail of the vector 4 | whose head is 52

=]

3 =225,

5. For what values of ¢ and b are the vectors [a ; b] and

4
9
{a 4 b] equal?

6. For what values of @, b, and ¢ are the vectors

[ ST 3%

and equal?
a+b—2c

In Exercises 7 and 8, determine the components of each vector

PO.
7. (a) P(1,2), Q(3.5)
(hy P(-2,2,3),0(-3,5,2)
8. (a) P(—1.0), Q(—3,—4)
(b) P(1,1,2), Q(1, =2, —4)

12. Compute u + v, 2u — v, 3u — 2v, and 0 — 3vif

" 1 2
(@) u=\|2|,v=|0|:
| 3 1
[ 27 1
(b) u=| -1 |, v= 2
4 -3
2a—b I
a—2b 1 -1
6 (c) u= 0], v= 1
| —1_ 4
13. Let
27 -1 0
u= 3 V= 2 W= 1
-1 4 =1
¢ = —2, and d = 3. Compute each of the following:
(a) u4v
(b) en+ dw
(c) u+v+w
(d) cu+dv+w
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14.

16.

17.

18.

19.
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Let

Find r and s so that

(a) z=2x, (b) u=y, () z+u=x.
Let
1 -3 '
x=| -2 y= I, z=|-=1
3 3 0
3
and u=|t
2

Find r, s, and t so that
(a) z=1x, () z+u=x. (¢c) z—x=y.
If possible. find scalars ¢; and ¢5 so that

o[ 4] 3-[7]

If possible, find scalars ¢y, ¢, and ¢5 so that

1 —1 -1 2
€ 214+ e 1|+ e 4| =1-=-2
-3 1 —1 3

If possible. find scalars ¢y and ¢z, not both zero, so that

TN

[f possible. find scalars 1. ¢z, and ¢3, not all zero, so that

1 1 3 0
Cy 2|4 3(4+c T =0
-1 -2 —4 0

20.

21.
22.

23.

26.

Let
1 0 0
= Bl F=| 3 and k=0
0 0 1
r
Find scalars ¢y, €2, and c3 so that any vectoru = |

t
can be written as u = cyi + 2 + o3k,

Show that if u is a veetorin R* or B?, thenu+ 0 = u.

Show that if u is a vector in R* or R?, then
u+ (—lja=0.

Prove part (b) and parts (d) through (h) of Theorem 4.1.

. Determine whether the software you use supports graph-

ics. If it does, experiment with plotting vectors in R2.
Usually, you must supply coordinates for the head and
tail of the vector anc then tell the software to connect
these points. The points in Exercises 7(a) and 8(a) can be
used this way.

. Assuming that the software you use supports graphics

(see Exercise 24), plot the vector

on the same coordinate axes for each of the following:
(a) wistohave head (1, 1).

(b) wis to have head (2, 3).

Determine whether the software you use supports three-
dimensional graphics, that is, plots poinis in R, If it
does, experiment with plotting points and connecting
them to form vectors in R*.

m Vector Spaces

A useful procedure in mathematics and other disciplines involves classification
schemes. That is, we form classes of objects based on properties they have in
common. This allows us to treat all members of the class as a single unit. Thus,
instead of dealing with each distinct member of the class, we can develop notions
that apply to each and every member of the class based on the properties that
they have in common. In many ways this helps us work with more abstract and

comprehensive ideas.
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Linear algebra has such a classification scheme that has become very impor-
tant. This is the notion of a vector space. A vector space consists of a set of
objects and two operations on these objects that satisfy a certain set of rules. If we
have a vector space, we will automatically be able to attribute to it certain prop-
erties that hold for all vector spaces. Thus, upon meeting some new vector space,
we will not have to verify everything from scratch.

The name *“vector space” conjures up the image of directed line segments from
the plane, or 3-space, as discussed in Section 4.1. This is, of course, where the
name of the classification scheme is derived from. We will see that matrices and
n-vectors will give us examples ol vector spaces, but other collections ol objects,
like polynomials, functions, and solutions to various types of equations, will also
be vector spaces. For particular vector spaces, the members of the set of objects
and the operations on these objects can vary, but the rules governing the properties
satisfied by the operations involved will always be the same.

A real vector space is a set V of elements on which we have two operations &
and @ defined with the following properties:

(a) If uand v are any elements in V, thenu @ v isin V. (We say that V is closed
under the operation @.)
(1) udv=vauforallu, vin V.
(2) ud(vew) =(u@v)@wilorallu v,win V.
(3) There exists an element 0 in V such thatu @0 =0 @ u = u for any uin
V.

(4) For each uw in V there exists an element —u in V such that
ug-—u=-—-udpu=N_0

(b) If wis any elementin V and ¢ is any real number, then c G uisin V (ie, V is
¢losed under the operation ).
(5) cOQev)=cOudc@vforanyu,vinV and any real number c.
6) (c+d)Ou=cOuddouforanyunin V and any real numbers ¢ and
d.
(7) ¢©(d@u) = (cd) ®uforanyuin V and any real numbers ¢ and d.
(8) l©ou=uforanyuin V.

The elements of V are called veetors; the elements of the set of real numbers R
are called scalars. The operation @ is called vector addition; the operation © is
called scalar multiplication. The vector 0 in property (3) is called a zero vector.
The vector —u in property (4) is called a negative of u. It can be shown (see
Exercises 19 and 20) that 0 and —u are unique.

If we allow the scalars to be complex numbers, we obtain a complex vector
space. More generally, the scalars can be members of a field* F, and we obtain a
vector space over F. Such spaces are important in many applications in mathemat-
ics and the physical sciences. We provide a brief introduction to complex vector

*A field is an algebraic structure enjoving the arithmetic properties shared by the real, complex, and
rational numbers. Fields are studied in detail in an abstract algebra course.
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FIGURE 4.16

spaces in Appendix B. However, in this book most of our attention will be focused
on real vector spaces.

In order to specify a vector space, we must be given a set V and two operations
@ and © satisfying all the properties of the definition. We shall often refer to a
real vector space merely as a vector space. Thus a “vector” is now an element of
a vector space and no longer needs to be interpreted as a directed line segment.
In our examples we shall see, however, how this name came about in a natural
manner. We now consider some examples of vector spaces, leaving it to the reader
to verify that all the properties of Definition 4.4 hold.

Consider R", the set of all n x 1 matrices

aj
a

dy

with real entries. Let the operation @ be matrix addition and let the operation ©
be multiplication of a matrix by a real number (scalar multiplication).
By the use of the properties of matrices established in Section 1.4, it is not
difficult to show that R" is a vector space by verifying that the properties of Def-
ay
(5]

inition 4.4 hold. Thus the matrix | . |, as an element of R”, is now called an

al’!
n-vector, or merely a vector. We have already discussed R* and R in Section 4.1.
See Figure 4.16 for geometric representations of R* and R*. Although we shall see
later that many geometric notions, such as length and the angle between vectors,

can be defined in R" for n > 3, we cannot draw pictures in these cases. [ |
Y %
X X
(0] 0
T
y
R? R

The set of all m x n matrices with matrix addition as & and multiplication of a
matrix by a real number as © is a vector space (verify). We denote this vector
space by M,,,,,. | |

The set of all real numbers with & as the usual addition of real numbers and © as
the usual multiplication of real numbers is a vector space (verify). In this case the
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real numbers play the dual roles of both vectors and scalars. This vector space is
essentially the case with n = 1 of Example 1. |

Let R, be the setof all 1 x n matrices [a; a> --- a, |, where we define & by
[a1 a; - a,,]EB [b| by .- b,,] = [a; +b, ax+by - a, +b,,]
and we define © by

c@[al ay v a,,]:[ca; cas .- c'an].
Then R, is a vector space (verify). This is just a special case of Example 2. |

Let V be the set of all 2 x 2 matrices with trace equal to zero: that is,
@& B... ;
A= 5 isin V. provided Ti(A)=a+d =0.

(See Section 1.3, Exercise 43 for the definition and properties of the trace of a ma-
trix.) The operation & is standard matrix addition, and the operation © is standard
scalar multiplication of matrices; then V is a vector space. We verify properties
(a), (3), (4), (b), and (7) of Definition 4.4. The remaining properties are left for the

student to verify.
A= I:a b] and B = [r s]
c d rp

Let
be any elements of V. Then Tr(A) = a +d = 0 and Tt(B) = r 4+ p = 0. For
property (a), we have

AEF)B:[a+r b+5‘]

c+t d+p
and
TABB)=(@+r)+d+p)=(@@+d) +(r+p)=0+0=0,

so A @ Bisin V; thatis, V is closed under the operation @. To verify property
(3), observe that the matrix
0 0
oo

has trace equal to zero, so itis in V. Then it follows from the definition of & that

00
property (3) is valid in V, so [ 0 0] is the zero vector, which we denote as 0. To
verify property (4), let A, as given previously, be an element of V and let

== 2.

Tr(C) = (—a) + (—¢c) = —{a+¢) =0.

We first show that C isin V:
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Then we have
a b —-a —b 0 0
aoc=[2 o]+ Z]=[5 o]0
so C = —A. For property (b), let k be any real number. We have

kOA:[ka kb]

ke kd

und
Tk A)=ka+kd =kla+d) =0,

sok© Aisin V; thatis, V is closed under the operation @. For property (7), let k
and m be any real numbers. Then

EOmEA) =kE {ma mb] — |:kma kmbi|

me  md kme  knd
and
kma kmb
k A= )
e { kmc kmd]
It follows that k @ (m © A) = (km) © A. B

Another source of examples are sets of polynomials; therefore, we recall some
well-known facts about such functions. A polynomial (in ¢) is a function that is
expressible as

gt ant +a,

where ay, ay, ..., a, are real numbers and n is a nonnegative integer. If a,, # 0,
then p(t) is said to have degree n. Thus the degree of a polynomial is the highest
power of a term having a nonzero coefficient; p(r) = 2t + 1 has degree 1, and the
constant polynomial p(t) = 3 has degree . The zero polynomial, denoted by 0,
has no degree. We now let P, be the set of all polynomials of degree < n together
with the zero polynomial. If p(¢) and g (7) are in P,, we can write

p(f} = ﬂ'”t” + a1t

p(t) = ant" + ay_1t" + -+ at +ag

and
gty = byt" + by_yt" ™ + -+ byt + by.

We define p(t) @ g(t) as
PO B q(t) = (an + b)t" + (ay_1 + by )"+ + (ay + bt + (a0 + bo).
If ¢ is a scalar, we also define ¢ @ p(f) as

e O p() = (ca)t" + (ca,_ )"~ + - + (ca)t + (cap).

‘We now show that P, is a vector space.

Let p(7) and ¢(¢), as before, be elements of P,; that is, they are polynomials of
degree < n or the zero polynomial. Then the previous definitions of the operations
& and © show that p(r) & ¢g(r) and ¢ ® p(t). for any scalar ¢, are polynomials of
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degree < n or the zero polynomial. Thatis, p(r) & g (f) and ¢ © p(t) are in P, so
that (a) and (b) in Definition 4.4 hold. To verify property (1), we observe that

f{(f) ® f){f) == (bu + air)r" + (b,!,] +H”,1)F”7} i IO T (bl +Hl)l + (30 =+ b0)1

and since a; + b; = b; + a; holds for the real numbers, we conclude that p(r) &
q(t) = gq(r) @ p(t). Similarly, we verify property (2). The zero polynomial is the
element 0 needed in property (3). If p(¢) is as given previously, then its negative,
—p(t),is

g e B s e
We shall now verify property (6) and will leave the verification of the remaining
properties to the reader. Thus

(c+d) O pt) = (¢ +dayr" + (c +dya, " + -+ (c +d)ayt
+ (c +d)ay
= bt L i Tty d™ e dty e 7 e g
+dat + cag + dag
= cla " + dp_yt"' + - - +art + ay)
+d(ayt” + an 11"+ oot + ap)
=c®p) ®d O pt). ]

Remark We show later that the vector space P, behaves algebraically in exactly
the same manner as R,

For each natural number n, we have just defined the vector space P, of all
polynomials of degree < n together with the zero polynomial. We could also
consider the space P of al/l polynomials (of any degree), together with the zero
polynomial. Here P is the mathematical union of all the vector spaces F,. Two
polynomials p(r) of degree n and g(r) of degree m are added in P in the same way
as they would be added in P, where r is the maximum of the two numbers m and
n. Then P is a vector space (Exercise 6).

As in the case of ordinary real-number arithmetic, in an expression containing
both @ and &, the © operation is performed first. Moreover, the familiar arithmetic
rules, when parentheses are encountered, apply in this case also.

Let V be the set of all real-valued continuous functions defined on R'. If £ and g
are in V, wedefine f @ gby (f D)) = [()+g@). If fisin Vandcisa
scalar, we define ¢ © f by (¢ @ f)(r) = ¢f (t). Then V is a vector space, which is
denoted by C(—o00, 0o). (See Exercise 13.) | |
Let V be the set of all real multiples of exponential functions of the form *+,
where k is any real number. Define vector addition & as

K )

c1€™ @ cre™ = ciezel
and scalar multiplication © as

K kx
roce” =ree,
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From the definitions of & and © we see that V is closed under both operations.
It can be shown that properties (1) and (2) hold. As for property (3), we have
¢™ = 1, so for any vector ;e in V, we have c;e"* @ 1 = 1 @ 1% = ¢,
Hence the zero vector in this case is the number 1. Next we consider property (4).
For any vector ¢1e™ in V, we need to determine another vector ¢2¢™ in V so that

C;e‘“ @ (.'3(’"“' - clcze{k—l—mj,\ i

We have 0e** = 0 is in V; however, there is no vector in V that we can add to 0
(using the definition of &) to get 1; thus V with the given operations ¢ and © is
not a vector space. m

Let V be the set of all real numbers with the operations u & v = u — v (P is
ordinary subtraction) and ¢ @ u = cu (© is ordinary multiplication). Is V a vector
space? If it is not, which properties in Definition 4.4 fail to hold?

Solution

If uwand v are in V, and ¢ is a scalar, thenu & v and ¢ @ u are in V, so that (a) and
(b) in Definition 4.4 hold. However, property (1) fails to hold. since

nPv=u—v and vu=v—u,

and these are not the same, in general. (Find u and v such thatu — v # v — u.)
Also, we shall let the reader verify that properties (2), (3), and (4) fail to hold.
Properties (5), (7), and (8) hold, but property (6) does not hold, because

(c+d)®u=(c+du=cu+du,

whereas

coOuddou=cuédu=ca—du,
and these are not equal, in general. Thus V is not a vector space. n
Let V be the set of all ordered triples of real numbers (x, y. z) with the operations
(x, v, 00 &, y.2) =& y+y.2+2);c 0 @, ¥, 2) = (cx, cy, cz). Wecan

readily verify that properties (1), (3), (4), and (6) of Definition 4.4 fail to hold. For
example, if u = (x, y,z) and v = (x, y', 2'), then

nsv=(x,y, 2000 x,y. )= y+y,z+2),

whereas
veu=0uLy,)e @y =Gy +y.7+2),

so property (1) fails to hold when x # x'. Also,
(c+d)Ou=(c+d)O(x,y2)

=((c+d)x,(c+d)y, (c+d)z)
= (ex +dx,cy+dy,cz+dz),
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whereas
cQuodCu=c0O(x,y,2)®d 0 (,y,2)
= (ex,cy,cz) B (dx,dy, dz)
= (dx, cy +dy, cz + dz),
so property (6) fails to hold when cx s 0. Thus V' is not a vector space. u

Let V be the set of all integers; define @ as ordinary addition and © as ordinary
multiplication, Here V' is not a vector, because if u is any nonzero vector in V and
o= \/5, then ¢ @ wis not in V. Thus (b) fails to hold. | |

To verify that a given set V with two operations @ and © is a real vector space,
we must show that it satisfies all the properties of Definition 4.4, The first thing
to check is whether (a) and (b) hold, for if either of these fails, we do not have a
vector space. If both (a) and (b) hold, it is recommended that (3), the existence
of a zero element, be verified next. Naturally, if (3) fails to hold, we do not have
a vector space and do not have to check the remaining propertics.

The following theorem presents some useful properties common to all vector
spaces:

If V is a vector space, then

(a) 0 ©@u = 0forany vectoruin V.

(b) ¢ © 0 = 0 for any scalar c.

(¢) If c @u =0, then citherc = Qoru = 0.
(d) (—=1) ©@u= —uforany vectoruin V.
Proof

(a) We have

0ou=0+0cu=00u+00u (1)

by (6) of Definition 4.4. Adding —0 © u to both sides of Equation (1), we obtain
by (2), (3), and (4) of Definition 4.4,

0Gu=0.

Parts (b) and (c) are lefi as Exercise 21.
d) (—Hougu=(—-Houdlu=(—1+1)0u=00u=0. Since —u
is unique, we conclude that

(—)ou=—u. [ ]

In the examples in this section we have introduced notation for a number of
sets that will be used in the exercises and examples throughout the rest of this
book. The following table summarizes the notation and the descriptions of the set:
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10.

11.

12.

13.

14.

15.

16.

. The set of all ordered triples of real numbers with the

operations
ya@. y.h=@+xy+y,z42)

and
FE ) =g Ipg):

The set of all 2 x 1 matrices [:] where x < 0, with the

usual operations in R”.

The set of all ordered pairs of real numbers with the
operations (x,y) & (x".y) = (x + x',y + ') and
r@ (x,y)=(0,0.

Let V be the set of all positive real numbers; define @& by
u g v = uv (4 is ordinary multiplication) and define ©
by ¢ @ v = v°. Prove that V is a vector space.

Let V be the set of all real-valued continuous functions.
If fand g are in V, define f & g by

S @)= ) +g).

If fisin V, define ¢ @ f by (¢ @ f)(t) = ¢f(r). Prove
that V is a vector space. (This is the vector space defined
in Example 7.)

Let V' be the set consisting of a single element 0. Let
0&0=0andc®0=0. Prove that V is a vector space.

(Calculus Required) Consider the differential equation
v — 3"+ 2y = 0. A solution is a real-valued function f
satisfying the equation. Let V be the set of all solutions
to the given differential equation; define @ and @ as in
Exercise 13. Prove that V is a vector space. (See also
Section 8.5.)

Let V be the set of all positive real numbers; define @& by
ugv=uv—Iland @by c©v=v.Is V avector space?

m Subspaces

17.

18.

19.
20.

21.

23.
24,
25,
26.
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Let V be the set of all real numbers; define & byusv =
uvand @ by c @u =¢+ u. Is V a vector space?

Let V' be the set of all real numbers; define @ byuov =
2u—vand ® by ¢ @u = cu. Is V a vector space?
Prove that a vector space has only one zero vector.
Prove that a vector uin a vector space has only one neg-
ative, —u.

Prove parts (b) and (c) of Theorem 4.2.

Prove that the set V of all real valued functions is a vec
tor space under the operations defined in Exercise 13.
Prove that —(—v) = v.

Prove thatifu @ v=u@® w, then v=w.

Prove thatifu Z0anda Gu=»bQ©u, thena = b,
Example 6 discusses the vector space P, of polynomi-
als of degree n or less. Operations on polynomials can
be performed in linear algebra software by associaling a
row matrix of size n + | with polynomial p(r) of P,. The
row matrix consists of the coefficients of p(t), using the
association

p(t) = aut" fa, "t dait + ag

—“[ﬂn Uy oy a:r]-

If any term of p(f) is explicitly missing, a zero is used
for its coefficient. Then the addition of polynomials cor-
responds to matrix addition, and multiplication of a poly-
nomial by a scalar corresponds to scalar multiplication of
matrices. With your software, perform each given opera-
tion on polynomials, using the matrix association as just
described. Letn = 3 and

plt) =202 4 5c2 ¢ — 2,

®) Sp(r)

gty =1 +3r 45

(a) p(t)+qg(t) (c) 3p(t) —4g(t)

In this section we begin to analyze the structure of a vector space. First, it is
convenient to have a name for a subset of a given vector space that is itself a vector
space with respect to the same operations as those in V. Thus we have a definition.

DEFINITION 4.5

Let V be a vector space and W a nonempty subset of V. If W is a vector space
with respect to the operations in V, then W is called a subspace of V.

It follows from Definition 4.5 that to verify that a subset W of a vector space
V' is a subspace, one must check that (a), (b), and (1) through (8) of Definition 4.4
hold. However, the next theorem says that it is enough to merely check that (a) and
(b) hold to verify that asubset W of a vector space V is a subspace. Property (a) is
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Theorem 4.3

EXAMPLE 4

called the closure property for &, and property (b) is called the closure property
for ©.

Let V be a vector space with operations & and © and let W be a nonempty subset
of V. Then W is a subspace of V if and only if the following conditions hold:

(a) If wand v are any vectors in W, thenu & visin W.
(b) If ¢ is any real number and u is any vectorin W, then ¢ ® wisin W.

Proof

If W is a subspace of V, then it is a vector space and (a) and (b) of Definition 4.4
hold; these are precisely (a) and (b) of the theorem.

Conversely, suppose that (a) and (b) hold. We wish to show that W is a sub-
space of V. First, from (b) we have that (—1) @ wis in W for any u in W. From
(a) we have thatu @& (—1) ®uisin W. Butu @ (—1) @u = 0,s00isin W. Then
u @ 0 = ufor any u in W. Finally, properties (1), (2), (5), (6), (7), and (8) held in
W because they hold in V. Hence W is a subspace of V. m

Examples of subspaces of a given vector space occur frequently. We investi-
gate several of these. More examples will be found in the exercises.

Every vector space has at least two subspaces, itself and the subspace {0} consist-
ing only of the zero vector. (Recall that 0 0 = 0 and ¢ © 0 = 0 in any vector
space.) Thus {0} is closed for both operations and hence is a subspace of V. The
subspace {0} is called the zero subspace of V. i

Let P» be the set consisting of all polynomials of degree < 2 and the zero polyno-
mial; P, is a subset of P, the vector space of all polynomials. To verify that P, is a
subspace of P, show itis closed for @ and @. In general, the set P, consisting of
all polynomials of degree = n and the zero polynomial is a subspace of P. Also,
P, is a subspace of P, ;. @

Let V be the set of all polynomials of degree exactly = 2; V is a subser of P, the
vector space of all polynomials; but V' is not a subspace of P, because the sum of
the polynomials 20243t + 1 and —2/2 41 + 2 is not in V, since it is a polynomial
of degree 1. (See also Exercise 1 in Section 4.2.) | |

Which of the following subsets of R? with the usual operations of vector addition
and scalar multiplication are subspaces?

(a) W, 1s the set of all vectors of the form |ii:| where x = (.

(b) W, is the set of all vectors of the form {X ], where x = 0, y = 0.
y
(c) Wiy is the set of all vectors of the form [i] where x = (0.

Solution

(a) W, is the right half of the xy-plane (see Figure 4.17). Itis not a subspace of
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Wy

R?, because if we take the vector {2i| in Wy, then the scalar multiple

3

<of]-[3

is not in Wy, so property (b) in Theorem 4.3 does not hold.
(b) W is the first quadrant of the xy-plane. (See Figure 4.18.) The same vector
and scalar multiple as in part (a) shows that W is not a subspace.

y

FIGURE 4.18 FIGURE 4.19

(c) Wiy is the y-axis in the xy-plane (see Figure 4.19). To see whether Wi is a
subspace, let

be vectors in W5. Then

wov=|p |+ [ o] =5 i)

which is in W3, so property (a) in Theorem 4.3 holds. Moreover, if ¢ is a scalar,

then
0 0
LQu_LGI:b]]_ L‘b]]‘
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which is in W3 so property (b) in Theorem 4.3 holds. Hence W is a subspace of

R, |
a
Let W be the set of all vectors in R of the form b , where a and b are any
a+b
real numbers. To verify Theorem 4.3(a) and (b), we let
ay [25:]
u= by and v = b2
ay + by ax + b
be two vectors in W. Then
d; + a» ay +az
uPv= by + by - by + by
(ay +by) + (a2 + by) (@) +az) + (by + b3)

isin W, for W consists of all those vectors whose third entry is the sum of the first
two entries. Similarly,

ay Cdy cel
c® by = chy = chy
ay+ by cla + by) cay + chy
is in W. Hence W is a subspace of R°. |

Henceforth, we shall usually denote u@ v and ¢ @ u in a vector space V as u+v
and cu, respectively.

We can also show that a nonempty subset W of a vector space V is a subspace
of V if and only if cu 4 dv is in W for any vectors u and v in W and any scalars ¢
and d.

A simple way of constructing subspaces in a vector space is as follows. Let v| and
v> be fixed vectors in a vector space V' and let W be the set of all vectors in V of
the form

aivy + axva,

where a; and a» are any real numbers. To show that W is a subspace of V. we
verify properties (a) and (b) of Theorem 4.3. Thus let

W =a Vi +avy; and Wi =bv|+ v,
be vectors in W. Then
Wi+ W2 = (a1v) +axv2) + (b1vy + bava) = (a1 + b)vi + (a2 + ba)va,
which is in W. Also, if ¢ is a scalar, then
cwi = cla1v) +arva) = (ca))vy + (caz)va

isin W. Hence W is a subspace of V. |
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The construction carried out in Example 6 for two vectors can be performed
for more than two vectors. We now consider the following definition:

Letvy,va, ..., v; be vectors in a vector space V. A vector vin V is called a linear

combination of vy, vo, ..., v if .

V=a|Vi +aVo + -+ apvp = E a;v;
i=l
for some real numbers ay, a», . . ., dag.

Remark Summation notation was introduced in Section 1.2 for linear combi-
nations of matrices, and properties of summation appeared in the Exercises for
Section 1.2.

Remark Definition 4.6 was stated for a finite set of vectors, but it also applies
to an infinite set S of vectors in a vector space using corresponding notation for
infinite sums.

a
In Example 5 we showed that W, the set of all vectors in R? of the form b 2
a-+b
where a and b are any real numbers, is a subspace of R*. Let
1 0
vi= |0 and va=| 1
1 et
Then every vector in W is a linear combination of v; and v, since
w
avy + bva = h 4
a -+ h_ <]

In Example 2, P> was the vector space of all polynomials of degree 2 or less and
the zero polynomial. Every vector in P; has the form at® + bt + ¢, so each vector
in P, is a linear combination of 72, ¢, and 1. | |

In Figure 4.20 we show the vector v as a linear combination of the vectors v,
and vs.

In R let
1 1 1
vi=|2(, v,=(0], and v3=]1
1 2 0

The vector
2
v=|1
5
is a linear combination of vy, v2, and v if we can find real numbers «|, a>, and as

so that
aVy + axVa +azvy = V.
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FIGURE 4.20

Y =@Vt av;

vy

Linear combination of two
vectors.

Substituting for v, vy, v2, and vz, we have

1 jf 1 2
ar|2|+a: |0 | +as|1]|=|1
1 2 0 5

Equating corresponding entries leads to the linear system (verify)

ap+ ay+a3 =2

2ay +a3 =1
ay + 2a —
Solving this linear system by the methods of Chapter 2 gives (verify) a; = 1,
a» = 2, and ay3 = —1, which means that v is a linear combination of vy, v, and
vs. Thus

V=v+2vs — V3.

Figure 4.21 shows v as a linear combination of vy, v3, and v;. i}

h"\l

h"\r
v=vi+2v,— v, 2 ;3
s 2V2

apv, s
V3 ¥ va
¥
va vy
0 X

FIGURE 4.21 FIGURE 4.22
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In Figure 4.22 we represent a portion of the set of all linear combinations of
the noncollinear vectors vy and v, in R2. The entire set of all linear combinations
of the vectors v; and v; is a plane that passes through the origin and contains the
vectors vy and vo.

In Section 2.2 we observed that if A is an m x n matrix, then the homogeneous
system of m equations in n unknowns with coefficient matrix A can be written as

Ax =10

1

where x is a vector in R" and 0 is the zero vector. Thus the set W of all solutions
is a subset of R". We now show that W is a subspace of R" (called the solution
space of the homogeneous system, or the null space of the matrix A) by verifying
(a) and (b) of Theorem 4.3. Let x and y be solutions. Then

Ax=0 and Ay=0.
Now
AX+y)=Ax+Ay=0+0=0,

so X + y 18 a solution. Also, if ¢ is a scalar, then
A(cxX) = c(Ax) = c0 =0,

so ¢x is a solution. Thus W is closed under addition and scalar multiplication of
vectors and is therefore a subspace of R". |

It should be noted that the set of all solutions to the linear system Ax = b,
b # 0, is not a subspace of R" (see Exercise 23).

We leave 1t as an exercise to show that the subspaces of R are |0} and R' itself
(see Exercise 28). As for R, its subspaces are {0}, R?, and any set consisting of all
scalar multiples of a nonzero vector (Exercise 29), that is, any line passing through
the origin. Exercise 43 in Section 4.6 asks you to show that all the subspaces of
R? are {0}, R? itself, and any line or plane passing through the origin.

B Linesin R’

As you will recall, a line in the xy-plane, R?, is often described by the equation
y = mx + b, where m is the slope of the line and b is the y-intercept [i.e., the
line intersects the y-axis at the point Py(0. b)]. We may describe a line in R¥in
terms of vectors by specifying its direction and a point on the line. Thus, let v be

the vector giving the direction of the line, and let ug = [ bi| be the position vector
of the point Py(0. b) at which the line intersects the y-axis. Then the line through
Py and parallel to v consists of the points P(x. y) whose position vector u = [ji|

satisfies (see Figure 4.23)

u=ug-+1y, —00 <t <+400.
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FIGURE 4.24

We now turn to lines in R*. In R® we determine a line by specifying its
direction and one of its points. Let

-
Il
o =8

be a nonzero vector in R*. Then the line £y through the origin and parallel to v

*
consists of all the points P(x, y, z) whose position vectoru = | y | is of the form
z
u=1v,—00 <t < o0 [see Figure 4.24(a)]. It is casy to verify that the line £ is a
X0
subspace of R®. Now let Py(xp. vo. zo0) be a point in R and letug = | yg | be the

0

position vector of P,. Then the line ¢ through P, and parallel to v consists of the

X
points P(x. y, z) whose position vector, u = | y | satisfies [see Figure 4.24(b)]
b4
= ug + Iv, —00 < 1 < 00. (1)

ra

(a) (b)
Line in R
Equation (1) is called a parametric equation of £, since it contains the pa-

rameter 7, which can be assigned any real number. Equation (1) can also be written
in terms of the components as

X =Xxp+ta
y=1yp+1tb —00 < I < 00,
z=2z0+1c,

which are called parametric equations of £.
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Parametric equations of the line passing through the point Py(—3. 2. 1) and parallel

2
to the vectorv = | —3 | are
4
x=-342t
p= 2~-3t —0 < f < 00,
1+ 4t |

m Find parametric equations of the line ¢ through the points Py(2, 3, —4) and
Pi(3, -2, 5).

Solution

—_—
The desired line is parallel to the vector v = Py P;. Now

32 1
- =|-5
5= (=4 9

Since F is on the line, we can write the following parametric equations of £:

24 ¢
3 —5¢ —00 < < 0Q.

—4 49t

Of course, we could have used the point Py instead of F;. In fact, we could use
any point on the line in a parametric equation for £. Thus a line can be represented
in infinitely many ways in parametric form. |

Key Terms

Subspace Closure property
Zero subspace Linear combination
Subset

RN Exercises

Null (solution) space
Parametric equation

1. The set W consisting of all the points in R? of the form
{x,x) is a straight line. Is W a subspace of R?? Explain.

5

i

. Let W be the set of all points in R” that lie in the xy-

plane. Is W a subspace of R*? Explain.




206

Chapter 4 Real Vector Spaces

3. Consider the circle in the xy-plane centered at the origin

whose equation is x* + ¥*> = 1. Let W be the set of
all vectors whose tail is at the origin and whose head is
a point inside or on the circle. Is W a subspace of R*?

Explain.
‘v r

. Consider the unit square shown in the accompanying fig-

ure, Let W be the set of all vectors of the form I:'::l

where 0 <= x = 1,0 = y = 1. Thatis, W is the set of
all vectors whose tail is at the origin and whose head is
a point inside or on the square. Is W a subspace of R*?
Explain.

¥
; a0

0 1

In Exercises 5 and 6, which of the given subsets of R are
subspaces?

5.

6.

The set of all vectors of the form
_ﬂ_ a [
(a) | b (b) b (c) | O
L1 a+2b 0
-2
d) | b |, wherea+2b—c=0
The set of all vectors of the form
_ﬂ 3 (3
a) | b (b) | b |, wherea >0
0 | ¢
-ﬂ- a
c) a (d) | b |, where2a —b4+c =1
[ £

In Exercises 7 and 8, which of the given subsets of R, are
subspaces?

7.

(a) [a b ¢ d].wherea—b:?.

(b) [u b ¢ dl,where c=a+2bandd =a—3b
(¢) [a b ¢ d] wherea=0andb=—d

(a) [a b « d],wherea =h=10

() [a b ¢ d]wherea=1.b=0anda+d =1
(c) [a B oo 1, wherea = OQand b < 0

In Exercises 9 and 10, which of the given subsets of the vector
space, Moz, of all 2 % 3 matrices are subspaces?

9.

10.

11.

12,

13.

The set of all matrices of the form

a b ¢

(a) ld o 0],whereb_a+(
[a b ¢

(b) ld 0 0].wherec =0

(c) [a b c] where ¢« = —2c and f =2¢ +d
hd & _f . o = O = L€

(a) e & & where a = 2c + 1
ld e f] 4=
o0 1 @

(b) Lb ¢ 0}

(c) [a b ] wherea +c=0andb+d+ f =0
i e 1 et e

Let W be the set of all 3 x 3 matrices whose trace is zero.
Show that § is a subspace of Ms;.

Let W be the set of all 3 x 3 matrices of the form

a 0 b
B & 0
d 0 e

Show that W is a subspace of M.

Let W be the set of all 2 x 2 matrices

a b
Ai[c' d]

suchthata + b+ c+d = 0. Is W a subspace of M1,?
Explain.

Let W be the set of all 2 x 2 matrices
a b
=3 4]

such that Az = 0, where z = |:i] Is W a subspace of
M5,7? Explain.



In Exercises 15 and 16, which of the given subsets of the vec-
tor space P; are subspaces?

15,

16.

i A

18.

19.

20

21.

The set of all polynomials of the form

(@) axf* + a1 +ag, where a; = 0

(b) axt* 4+ ayt + ay, where ag = 2

(€©) a:f* +ayt + ag, where a: + a; = ay

(@) a.r* +ayt + ay, wherea, = 0and ay = 0
(b) asr® + ayr + ag, where a, = 2a,

{(€) aar* + ait + ap, where ay + a; +ap =2

Which of the following subsets of the vector space M,
are subspaces?

(@) The setof all n x n symmetric matrices
(b) The set of all n x n diagonal matrices

{e) The setof all n % n nonsingular matrices

Which of the following subsets of the vector space M,
are subspaces?

() The set of all n x n singular matrices
{b) The set of all n x n upper triangular matrices
(e) The set of all n x n skew symmetric matrices

(Calculus Required) Which of the following subsets are
subspaces of the vector space C(—oc, oc) defined in Ex-
ample 7 of Section 4.27

(a) All nonnegative functions

(b) All constant functions

(e) All functions f such that f(0) =0
(d) All functions f such that f(0) =5
{e) All differentiable functions

i{Calculus Required) Which of the following subsets are
subspaces of the vector space C(—o00, o0) defined in Ex-
ample 7 of Section 4.27

{a) All integrable functions
(b) All bounded functions
ic) All functions that are integrable on [a, b)

{d) All functions that are bounded on [a. b)

Show that P is a subspace of the vector space
C(—00, o) defined in Example 7 of Section 4.2.

22. Prove that P, is a subspace of P;.

23. Show that the set of all solutions to the linear system

Ax = b, b # 0, is not a subspace of R".

24. If A is anonsingular matrix, what is the null space of A?

25.

26.

27.

28.
29.

30.
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Show that every vector in R* of the form

1
-t
I

for r any real number. is in the null space of the matrix

I &
A=|-1 0 1

2 6 4
Let xg be a fixed vector in a vector space V. Show that
the set W consisting of all scalar multiples cx;, of x; is a
subspace of V.,
Let A be an m x n matrix. Is the set W of all vectors x
in R" such that AX # 0 a subspace of R"? Justify your
answer.
Show that the only subspaces of R' are {0} and R' itself.
Show that the only subspaces of R* are (0}, R, and any
set consisting of all scalar multiples of a nonzero vector.
Determine which of the following subsets of R? are sub-
spaces;

(a) ¥ ¥
V!
-:h(;.—..(
(b) V, y
Vi
X
[
(c) V5 v
Vs
0 *
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31

32.

33.

35.

36.

Chapter 4 Real Vector Spaces

d) Vi ¥
Vy

!

—AY X
0
The set W oof all 2 x 3 matrices of the form

a b ¢
a 0 0]

where ¢ = a + b, is a subspace of Maa. Show that every
vector in W is a linear combination of

e [ O T g o O 4
=l moel] P e 0 ol
The set W of all 2 x 2 symmetric matrices is a subspace
of M1, Find three 2 x 2 matrices vy, v, and v; so that ev-

ery vector in W can be expressed as a linear combination
of vy, va, and vy,

Which of the following vectors in R are linear combina-
tions of

s
—I |2
0

1 4 2 1
(a) |1 | 2| ©@|-1] @[ 2
1 -6 1 3

Which of the following vectors in R, are linear combina-
tions of

2
1|, and V3=
=2

vi=T1 2 1 /0] [4 1 -2 3],
vw=[1 2 6 -5], w=[-2 3 -1 2]

v, =

@ [3 6 3 0] (b [1 0 0 0]

© [3 6 -2 5] @ f[o o 0 1]

(a) Show that a line ¢, through the origin of R* is a sub-
space of R*.

{b) Show thata line £ in R not passing through the ori-
gin is not a subspace of R*.

State which of the following points are on the line

x= 3+2
y=-243 —00 <! <00
2= 443

37.

38.

39.

o 4.

L ITY

(@) (1.1.1) (h) (1.—1,0)

(€ (1,0,-2) @ (4.-1.3)
State which of the following points are on the line

x= 4-2t
y==3+2% —00 <! <00
1= 4-5
(a) (0,1.-6) (b) (1.2.3)
(c) (4,-3.4) (d) (0,1, -1)
Find parametric eguations of the line through

Py(xq, vo, zo) parallel to v.

4

(a) Py(3,4,-2),v=| -5
2

-2

(b) Py(3.2,4),v=| 5

Find parametric equations of the line through the given
points.

(a) (2.-3.1).(4.2.5)

(b) (—3.-2,-2),(5.5.4)

Numerical experiments in software cannot be uszd to
verify that a set V with two operations & and @ is a vec-
tor space or a subspace. Such a verification must be done
“abstractly” to take into account all possibilities for ele-
ments of V. However, numerical experiments can yield
counterexamples which show that V' is not a vector space
or not a subspace. Use your software to verify that each
of the following is nor a subspace of M., with the usual
operations of addition of matrices and scalar multiplica-
tion:

(a) The set of symmetric matrices with the (1. 1) entry

equal to 3

(b) The set of matrices whose first column is [0 1]”

(e) The set of matrices |:(: Z] such that ad — be # 0

A linear combination of vectors v, va, ..., v, in R" with
coefficients ay, ..., a is given algebraically, as in Defi-
nition 4.6, by

v=av, +d2va+ -+ apvg.

In software we can compute such a linear combination of



columns by a matrix multiplication v = Ac, where

L]
dz

and ¢=

L.

That is, matrix A has col;(A) =v;for j =1,2,... k.
Experiment with your software with such linear combi-
nations.

A:[v. V2 o oeee v;\.]

(a) Using v, v, v; from Example 9, compute

Sv — 2vy +dvy.

Span

42,
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(b) Using v;, where v = 2>+t 42, v5 = > — 24,
vy = 51> — 5t +2, and vy = —t? — 3r — 2, compute

3v) — va + dvy + 2wy

(See also Exercise 46 in Section 1.3.)
In Exercise 41, suppose that the vectors were in R,. De-
vise a procedure that uses matrix multiplication for form-
ing linear combinations of vectors in R,,.

Thus far we have defined a mathematical structure called a real vector space and
noted some of its properties. In Example 6 in Section 4.3 we showed that the set
of all linear combinations of two fixed vectors v; and v, from a vector space V
gave us a subspace W of V. We further observed that the only real vector space
having a finite number of vectors in it is the vecter space whose only vector is 0.
For if v # 0 is a vector in a vector space V, then by Exercise 25 in Section 4.2,
c @ v # ' ©v, where ¢ and ¢' are distinct real numbers, so V has infinitely many
vectors in it. Also, from Example 1 in Section 4.2 we see that every vector space
V has the zero subspace {0}, which has only finitely many vectors in it.

From the preceding discussion we have that, except for the vector space {0},
a vector space V will have infinitely many vectors. However, in this section and
several that follow we show that many real vector spaces V studied here contain
a finite subset of vectors that can be used to completely describe every vector in
V. It should be noted that, in general, there is more than one subset that can be
used to describe every vector in V. We now turn to a formulation of these ideas.
Remember that we will denote vector addition u&v and scalar multiplication c ©u
in a vector space V' as u -+ v and cu, respectively.

Linear combinations play an important role in describing vector spaces. In
Example 6 in Section 4.3 we observed that the set of all possible linear combina-
tions of a pair of vectors in a vector space V gives us a subspace. We have the
following definition to help with such constructions:

If.§ = {V[.Vg...

DEFINITION 4.7

span § or

., Vi | is a set of vectors in a vector space V, then the set of all
vectors in V' that are linear combinations of the vectors in S is denoted by

span {1, Vazeous Vi)

Remark Definition 4.7 is stated for a finite set of vectors, but it also applies to
an infinite set S of vectors in a vector space.

0 0

s={lo 0

Consider the set § of 2 x 3 matrices given by

)8 o a)lo 7 o)[o o 1}
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Then span S is the set in M»3 consisting of all vectors of the form
1 0 0 1 0 0 0 0 0 0 0
“[0 0 0]”’[0 0 0]+C[0 1 0}“(1[0 0 1]
a b 0
= , where a, b, c, and d are real numbers.

0 ¢ d

That is, span S is the subset of M3 consisting of all matrices of the form

a b 0
0 e d]

where a, b, ¢, and d are real numbers. | |

m (a) LetS= {rz. t. 1} be a subset of P,. We have span § = P». (See Example § in
Section 4.3.)

(b) Let
2 0 0
= 01, -1 0
0 0 0

a
be a subset of R, Span § is the set of all vectors in R? of the form | & |,
0
where a and b are any real numbers. (Verify.)
(c) In Figure 4.22 in Section 4.3 span{vy, vz} is the plane that passes through the
origin and contains vy and vz. | |

The following theorem is a generalization of Example 6 in Section 4.3:

Theorem 4.4 Let § = {v, Vs, ..., ¥} be a set of vectors in a vector space V. Then span § is a
subspace of V.
Proof
Let
k k
u= Zajvj and w= ijvj-
j= j=1
for some real numbers a;. as. ..., ay and by, by, ..., by. We have

k k k
u+w= Zaj-vj +ijv_f — Z(a!- +h),)vj,
=1 j=1 J=1

using Exercise 17 (a) and (b) in Section 1.2. Morcover, for any real number c,

& k
cu=c E a;v;| = E {caj)v;.

j=1 F=1

Since the sum u 4 w and the scalar multiple cu are linear combinations of the
vectors in §, then span § is a subspace of V. m
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m Let S = {¢”. t} be a subset of the vector space P;. Then span § is the subspace of
all polynomials of the form at® + bt, where ¢ and b are any real numbers. |

|_ExamPLEs By
s={[s ol-[s 1}

be a subset of the vector space Mz, Then span S is the subspace of all 2 x 2
diagonal matrices. |

In order to completely describe a vector space V, we use the concept of span
as stated in the following definition:

Let S be a set of vectors in a vector space V. If every vector in V is a linear
DEFINITION 4.8 Nt . P e aa .
combination of the vectors in §, then the set § is said to span V, or V is spanned

by the set S; that is, span § = V.

Remark If span S = V, § is called a spanning set of V. A vector space can have
many spanning sets. In our examples we used sets § containing a finite number of
vectors, but some vector spaces need spanning sets with infinitely many vectors,
See Example 5.

m Let P be the vector space of all polynomials. Let § = {1,¢, ¢, ...}, that is, the
set of all (nonnegative integer) powers of 1. Then span § = P. Every spanning set
|

for P will have infinitely many vectors.

Remark The majority of vector spaces and subspaces in the examples and exer-
cises in this book will have spanning sets with finitely many vectors.

Another type of question that we encounter is; For a given subset § of a vector
space V, is the vector w of V in span S?7 We will show in the following examples
that for sets § with a finite number of vectors we can answer such questions by
solving a linear system of equations:

2 1

Determine whether the vector

belongs to span{v;, va}.

Solution
If we can find scalars a- and a> such that

a)vy +av2 =V,
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EXAMPLE 7

then v belongs to span {v;, v2}. Substituting for vy, v, and v, we have

2 1 1
a |1 |+a| —1]|= 5
1 —7

This expression corresponds to the linear system whose augmented matrix is
(verify)

2 1)1
=
1 3 1=-7

The reduced row echelon form of this system is (verify)

1 0 2
(|
0 0! 0]
which indicates that the linear system is consistent, a; = 2, and a» = 3. Hence v
helongs to span (v, va]. m
In P>, let

vi=2041+2, w=r2-2t, vy=51-5+2 wvy=—12-3t-2.
Determine whether the vector
v=1t'41+2
belongs 1o span (v, v2,v3, v4}.

Solution
If we can find scalars a . a», a3, and a4 so that

ajvy +axvy +aivy + agvy =V,
then v belongs to span {vy, va2. vi. v4}. Substituting for vi, vz, v3, and v4, we have
a (267 + 1 +2) +ar(t* — 20) + ax(56* — 5t +2) + ay(—t* — 3t — 2)
= 4t+2
or
(2a; + a» + 5az — a)t* + (a1 — 2a» — 5a3 — 3a)t + (2a; + 2as — 2a,)
=t +1+2.

Now two polynomials agree for all values of ¢ only if the coefficients of respective
powers of ¢ agree. Thus we get the linear system

2ay + a» + S5a3 — a3 =1
{11*202*5513*304:1
2(11 + 2[}3 i 2(14 = 2
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To determine whether this system of linear equations is consistent, we form the
augmented matrix and transform it to reduced row echelon form, obtaining (verify)

1 0 1 -1}0
0O 1 3 110
0 0 0 011

which indicates that the system is inconsistent; that is, it has no solution. Hence v
does not belong to span {v. v2, v3, v4}. | |

Remark In general, to determine whether a specific vector v belongs to span S,
we investigate the consistency of an appropriate linear system.

Let V be the vector space R*. Let

1 1 1
vi=|2], va=|0]|, and w3=]1
1 2 0

o
To find out whether vy, v,, v3 span V, we pick any vector v = [ b | in V (a, b,
c
and ¢ are arbitrary real numbers) and determine whether there are constants a, as,
and a3 such that
a)vy + axVa +azyvy = V.

This leads to the linear system (verify)

)+ dr+ay3=a

2a, +ay =250
ay + 2a» =
A solution is (verify)
—2a+2b+c a—b+c da — b — 2c
G =——7—"; h= v a3 = .
3 3 3
Thus vy, v3, v3 span V. This is equivalent to saying that
span {vj, va, V3}=R3. | |

Let V be the vector space P;. Let v| = t* + 2f + l and v, = 1 + 2. Does {v, v}
span V7

Solution

Letv = at®+ bt +cbe any vector in V, where a, b, and ¢ are any real numbers.
‘We must find out whether there are constants ¢; and a; such that

aivy +a¥2 = v,

or
a4+ 2+ D+ a (> +2) =ar* + bt +c.



214

Chapter 4

Real Vector Spaces

Thus
(@1 +a)t* + Qapt + (ay + 2a2) = at* + bt +c.

Equating the coefficients of respective powers of 7, we get the linear system

a+ ar=a
26![ =b
da) + 2a» = c.

Transforming the augmented matrix of this linear system, we obtain (verify)

1 0 i 2a —¢
0 1| c—a
0 0! b—da+2e

If b —4a+ 2c¢ # 0, then the system is inconsistent and there is no solution. Hence
{vy. v2} does not span V. i)

Consider the homogeneous linear system Ax = (), where
1 1 0 2
=2 =2 1 =5

1 1 ~1 3
4 4 -1 9

A=

From Example 10 in Section 4.3, the set of all solutions to Ax = 0 forms a sub-
space of R*. To determine a spanning set for the solution space of this homoge-
neous systemn, we find that the reduced row echelon form of the augmented matrix
is (verify)

1 1 0 2 g
0 0 1 -1 10
0O 0 0 010
0 0 0 010
The general solution is then given by
Xy =—r—28;, Xp=r, X3=39; Xa=7,

where r and s are any real numbers. In matrix form we have that any member of
the solution space is given by

-1 =2

X=r . + 5 4

0 1

0 l
—1 -2

1 0 :
Hence 0 and | | span the solution space. B

0 1



Key Terms

Spanof a set
Set S spans vector space V
V is spanned by the set §

W Exercises

Consistent system
Inconsistent system
Homogeneous system
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15

For each of the following vector spaces, give two differ-
ent spanning sets:
a) R?

(b) My (€} P,

. In each part, explain why the set § is not a spanning set

for the vector space V.
@ S={F 21, Vv="n

o =] ()=
o 5= T r-n

. In each part, determine whether the given vector p(t) in

P belongs to span {p (1), p2(t), ps(1)}, where

P =242 41, ety =43,
and p3()=1t—1.

@) p@)=124t42
) p)=2024+2t+3
(€ pt)y=—1>+1—4
(@ p(t)=—-2t>+3t+1

. In each part, determine whether the given vector A in

M- belongs to span {4, A,, A}, where

1 -1 1 1
A;:I:O 3}. Ag:|:(} 2].
2 2
and A3:|:71 ]].
, s -3 -1
gl ¥ 7 e[ Y

, I3 -2 1 o0
ac)A_[s 2} (d)A_|:2 1}

. Which of the following vectors span R2?

(a) [1
b) [0
@ [1
) [2

2).[-1 1]

0].[1 1].[ =)

312 -3)[0 2]
]

4],[-1 2

]

6.

T

8.

9.

Which of the following sets of vectors span R*?

17 [0
=5 %
L Ak
| 0 1]
E 17 o
. 2 | 2] |o
e[| - |]e
o] [ o] Lt
- A TR T TS e
2| o] | 2| ] &| | 2
R AL A UE S E
| 2] lzd L2l L 2l L=
1 17 T ¥ T &
I 2| | o I
E Yo = || 2|} 2
Lo L L=x) L1

Which of the following sets of vectors span R,7

(@ [t 0o 0 1[0 1 0 0]
[t 1 1 1]t 1 1 0]
® [t 2 1 0]t 1T —1 0]L[0 @ 0 1]
(¢ [6 4 —2 4].[2 0 0 1]
[3 2 <1 2[]5 & =3 2]
[0 4 -2 -1]
@ [t 1t o o[t 2 -1 1],Jo 0 1 1]

[2 I 2 ]]
Which of the following sets of polynomials span P.?
(@) 41,2450+ 1)
(b) {F+16—-1,4+1)
(€ (24220 =4+ 1,842 3£ 44)
(d) 2 4-2e—1,0%—1}

Do the polynomials * + 2r + 1, 2 — ¢t + 2, 12 + 2,
—£ 417 — 5t 4+ 2 span Py?
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Show that span § = W.

= { L1 [0 0 L0 [0 1 l 14. The set W of all 3 x 3 matrices A with trace equal to zero
o o]\t 1]'le 1|"|1 1 is a subspace of M. (See Exercise 11 in Section 4.3.)
Determine a subset S of W so thatspan§ = W.
span Ms;?
11. Find a set of vectors spanning the solution space of 15. The set W of all 3 x 3 matrices of the form
Ax = 0. where
1010 L1
{2 8 1 0 ¢ 0O
= 2 d 0
=131 81 b
) LR is a subspace of Ms;. (See Exercise 12 in Section 4.3.)
12. Find a set of vectors spanning the null space of Determine a subset S of W so that span § = W.
1 1 By ] 16. Let T be the set of all matrices of the form AB — BA,
O . where A and B are n x n matrices. Show that span T is
A= not My, (Hint: Use properti f trac
-2 1 2 2 s ! properties of trace.)
o =2 =4 0 = 17. Determine whether your software has a command for
13. The set W of all 2 x 2 matrices A with trace equal to zero finding the null space (see Example 10 in Section 4.3) of

18 a subspace of Ma,. Let
0 1 0 0
s={lo o] 1 6

o

a matrix A, I it does. use it on the matrix A in Example
10 and compare the command’s output with the results
in Example 10. To experiment further, use Exercises 11
and 12.

0
-1

I}

m Linear Independence

In Section 4.4 we developed the notion of the span of a set of vectors together
with spanning sets of a vector space or subspace. Spanning sets S provide vectors
so that any vector in the space can be expressed as a linear combination of the
members of §. We remarked that a vector space can have many different spanning
sets and that spanning sets for the same space need not have the same number of
vectors. We illustrate this in Example 1.

In Example 5 of Section 4.3 we showed that the set W of all vectors of the form

a
b 1
a—+hb

where a and b are any real numbers, is a subspace of R*. Each of the following
sets is a spanning set for W (verify):

1 0 3

Ss=1lo0f,]1 2

1 1 5
1 0 0 2 1 0
Sss={lol|.[1],]0 0 Ss=110 1
1 1 0 2 1 1



4.5 Linear Independence 217

We observe that the set S3 is a more “efficient” spanning set, since each vector
of W is a linear combination of two vectors, compared with three vectors when
using §; and four vectors when using S». If we can determine a spanning set for a
vector space V that is minimal, in the sense that it contains the fewest number of
vectors, then we have an efficient way to describe every vector in V.

In Example 1, since the vectors in S5 span W and S5 is a subset of S and S5,
it follows that the vector

3

¥ ]

in §; must be a linear combination of the vectors in 83, and similarly, both vectors

0 2
0 and 0
0

in §> must be linear combinations of the vectors in S3. Observe that

1 0 3

310|421 |=)2

_1_ _I_ I_S_

1] 07 07

Ofo|1+0|1|=(0

| 1] L | L0

17 0] [27]

210401 =10

_1_ _]'_ I_l_

In addition, for set §; we observe that
1 0] [3 0
310 4+2(1|—=1(2|=]0
R [ 1] | 5 | 0
and for set §> we observe that

[l 0 0 o
00| 4+0(1|=1{0|=]0
| ] L1 ] | 0 L0
il 07 [~2 o
21014011 [(—=1]0]|=1]0
|51 L1 ] .2 L0

It follows that if span § = V, and there is a linear combination of the vectors in
§ with coefficients not all zero that gives the zero vector, then some subset of § is
also a spanning set for V.
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DEFINITION 4.9

Remark The preceding discussion motivates the next definition. In the preced-
ing discussion, which is based on Example 1, we used the observation that S; was
a subset of 8§ and of S;. However, that observation is a special case which need
not apply when comparing two spanning sets for a vector space.

The vectors v;. ¥5, ...,V in a vector space V are said to be linearly dependent
if there exist constants a;, aa, . . ., ag, not all zero, such that
k
ZKJj"J; =aV| + aaVy + -+ apv =0 (n
Jj=1
Otherwise, vy, va, ..., v; are called linearly independent. That is, vj, va, ..., V&

are linearly independent if, whenever a;vy +axva+ -+ + v =0,
ap=am=---=a; = 0.

IS8 ={vi,va,..., vi}, then we also say that the set § is linearly dependent or
linearly independent if the vectors have the corresponding property.

It should be emphasized that for any vectors vy, va, ..., vy, Equation (1) al-
ways holds if we choose all the scalars ay, as, . . ..a; equal to zero. The important
point in this definition is whether it is possible to satisfy (1) with at least one of the
scalars different from zero.

Remarl Definition 49 is stated for a finite set of vectors, but it also applies to
an infinite set S of a vector space, using corresponding notation for infinite sums.

Remark We connect Definition 4.9 to “efficient” spanning sets in Section £.6.

To determine whether a set of vectors is linearly independent or linearly de-
pendent, we use Equation (1). Regardless of the form of the vectors, Equation (1)
yields a homogeneous linear system of equations. It is always consistent, since
ay =ay = --- = a; = 01is a solution. However, the main idea from Definition 4.9
is whether there is a nontrivial solution.

Determine whether the vectors

3 1 —1
V) = 2 Vi = 2 5 V3= 2
1 0 —1
are linearly independent.
Solution
Forming Equation (1),
3 1 -1 0
ay |2 | 4ax ]| 2| +as 2Z]l=1]0
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we obtain the homogeneous system (verify)

3a1+ ax— az =0
2a; + 2a» + 2a; =0

ay - .d3 =0

The corresponding augmented matrix is

M3 1 -1 1 07

2 2 24 0

L1 0 =117 0]
whose reduced row echelon form is (verify)

M1 0 —1 4 07

0 1 L0

(0 0 0} o0]
Thus there is a nontrivial solution

k

=2k |, k% 0 (verify),

k

so the vectors are linearly dependent.

Arethevectorsv; =[1 0 1 2],va=[0 1 1 2],andvs=[1 1
in Ry linearly dependent or linearly independent?
Solution
We form Equation (1),
apvy +azvy +azv; =0,
and solve for ay, a2, and az. The resulting homogeneous system is (verify)
g + a3 =0
a + a3y =0
ar+ ax+ ay=0
2ay + 2a> + 3a; =0.

The corresponding augmented matrix is (verily)

[1 0 10
01 1:0
i 1 110"
2 2 310

and its reduced row echelon form is (verify)

O DT
o e R

219

1
1 3]
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Thus the only solution 18 the trivial solution ¢; = a2 = a3 = 0, so the vectors are
linearly independent. |

Are the vectors

2 1 i % g 3
w=loa] w=lid] we[2

in My, linearly independent?

Solution
‘We form Equation (1),

2 17, [t 2], B - [0
A 4T T AT §[T6 6l

and solve for a1, az, and a3. Performing the scalar multiplications and adding the
resulting matrices gives

2ay +a ar+2az—3a3| |0 O
a» — 2az a, +a o ol

Using the definition for equal matrices, we have the linear system

2a, + a =0
ay; + 2a» — 3a; =0

ay — 2a; =0
o) + ay=0.

The corresponding augmented matrix is

e 4 B9
1 2 -31{0
g 1 <210
Ll 0 1}{0]

and its reduced row echelon form is (verify)

1 0 1 | 0

0 L =24 0

0 0 010
0 0 0} 0]

Thus there is a nontrivial solution

—k
2k |, k%0 (verify),
k

so the vectors are linearly dependent. |
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To hnd out whether the vectors v = [1 0 0], v2 = [0 1 0], and v; =
[O 0 1n Rj are linearly dependent or linearly independent, we form Equation

(0,

aivy +axva +azvy =0,

and solve for a, az, and a3. Since a; = a3 = az = 0 (verify), we conclude that
the given vectors are linearly independent. ]

Are the vectors ¥ = 2+ +2, v2 = 21>+ ¢, and v3 = 3t> + 2t 4+ 2 in P, linearly
dependent or linearly independent?

Solution

Forming Equation (1), we have (verify)
a; + 2a, + 3a; =0
a+ ay+2a3; =0

26!1 + 2613 = 0,
which has infinitely many solutions (verify). A particular solution is ¢; = 1,
ar=1,a3 =—1, so
Vi+va—vi=0.
Hence the given vectors are linearly dependent. |

Consider the vectors

1 1 -3 2
V| = 21, wm=|-21|, w= 21, and v4= |0
-1 1 -1 0

nR IsS = {vi. va, vi, v4} linearly dependent or linearly independent?

Solution
Setting up Equation (1), we are led to the homogeneous system

a+ a» —3ay +2a3 =0
2a; — 2a» + 2as =0
—ai+ @3 — @ =0,
of three equations in four unknowns. By Theorem 2.4, we are assured of the

existence of a nontrivial solution. Hence § is linearly dependent. In fact, two of
the infinitely many solutions are

ar=1, ap=2 wm=1, g=0

ai=1, =1 a3=0, ay=-—1. | |
Determine whether the vectors
-2

and

oo~ —
——
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Theorem 4.5

found in Example 10 in Section 4.4 as spanning the solution space of Ax = 0 are
linearly dependent or linearly independent.

Solution
Forming Equation (1),

=1 =2 0
= 1 oo 0] _10
Moo 1T el
0 1 0
we obtain the homogeneous system

T 2{12 =)
a; + 0a, =0
Oa; + a» =0
Oai + ax =0,

whose only solution is a; = az = 0 (verify). Hence the given vectors are linearly
independent. i

‘We can use determinants to determine whether a set of n vectors in R" or R,
is linearly independent.

Tiet: S = {¥1, %005 v,} be a set of n vectors in R" (R,). Let A be the matrix
whose columns (rows) are the elements of S. Then § is linearly independent if and
only if det(A) # 0.

Proof

‘We shall prove the result for columns only; the proof for rows is analogous.
Suppose that § is linearly independent. Then it follows that the reduced row
echelon form of A is [,. Thus, A is row equivalent to {,, and hence det(A) # 0.
Conversely, if det(A) # 0, then A is row equivalent to /,. Now assume that the
rows of A are linearly dependent. Then it follows that the reduced row echelon
form of A has a zero row, which contradicts the earlier conclusion that A is row
equivalent to /. Hence, the rows of A are linearly independent. B

Is§ = {[l 2 3] ; [ﬂ 1 2] 3 [3 0 71]} a linearly independent set of vec-
tors in R*?

Solution
‘We form the matrix A whose rows are the vectors in S:

1 2 3
A=t 0 1 2
g Q0 =1

Since det(A) = 2 (verify), we conclude that § is linearly independent. | |
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Theorem 4.6 Let §) and S» be finite subsets of a vector space and let S| be a subset of S>. Then
the following statements are true:
(a) If S, is lincarly dependent, sois S».
(b) If S5 is linearly independent, so is Si.

Proof
L&t

S = V15 Vo505 vi} and S ={vi,v2, ..., Wi Vhaetsvson Vo)

We first prove (a). Since S, is linearly dependent, there exista;. az, ..., ap. not all
zero, such that
a1 v +02V2 “+ -4 Qp Ve = 0.

Then
a)vi+ava+ -+ avp + 0V 4o+ 0v, = 0. (2)

Since not all the coefficients in (2) are zero, we conclude that S» 1s linearly depen-
dent.

Statement (b) is the contrapositive of statement (a), so it is logically equivalent
to statement (a). If we insist on proving it, we may proceed as follows. Let §; be
linearly independent. If §) is assumed as lincarly dependent, then S, is linearly
dependent, by (a), a contradiction. Hence, S| must be linearly independent. B8

Al this point, we have established the following results:

¢ The set § = {0} consisting only of 0 is linearly dependent, since, for example,
50 =0,and 5 # 0.

¢ From this it follows that if § is any set of vectors that contains 0, then S must
be linearly dependent.

¢ A set of vectors consisting of a single nonzero vector is linearly independent

(verify).
¢ IEwviavo o v are vectors in a vector space V and any two of them are equal,
then vy, va, ..., v are linearly dependent (verify).

We consider next the meaning of linear independence in R* and R3. Suppose
that v and vy are linearly dependent in R?. Then there exist scalars a; and az, not
both zero, such that

ayvy +arvs = 0.

Ifa) #0,thenv, = (—@) vy If as # 0, thenv; = (_a_,) vy. Thus one of the
(45 an
vectors is a multiple of the other. Conversely, suppose that vi = av.. Then

1‘-’[ — aVy; = 0,

and since the coefficients of v, and v, are not both zero, it follows that v; and v,
are linearly dependent. Thus v; and v; are linearly dependent in R if and only if
one of the vectors is a multiple of the other [Figure 4.25(a)]. Hence two vectors
in R? are linearly dependent if and only if they both lie on the same line passing
through the origin [Figure 4.25(a)].
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FIGURE 4.25

FIGURE 4.26

V2 v,
/ A ¥z
0 o

(a) Linearly dependent vectors in R%. (b) Linearly independent vectors in RZ.

Suppose now that vy, v, and vy are linearly dependent in R?. Then we can
write
aivi +axva +azvy = 0,

where a;, a», and a3 arc not all zero, say, a» # 0. Then

aj az
Y= == ¥l = | =i
az az

which means that v is in the subspace W spanned by v and v;.

Now W is either a plane through the origin (when v; and vy are linearly in-
dependent) or a line through the origin (when v; and vy are linearly dependent),
or W = [0}. Since a line through the origin always lies in a plane through the
origin, we conclude that vy, v». and vy all lie in the same plane through the origin.
Conversely, suppose that vy, v2, and v; all lie in the same plane through the origin.
Then either all three vectors are the zero vector, all three vectors lie on the same
line through the origin, or all three vectors lie in a plane through the origin spanned
by two vectors, say. v; and v3. Thus, in all these cases, vz is a linear combination
of v; and vs:

V2 = €1V1 + €3V3.

Then
vy — 1va + c3va =0,

which means that v, v,, and v; are linearly dependent. Hence three vectors in R?
are linearly dependent if and only if they all lie in the same plane passing through
the origin [Figure 4.26(a)].

V3
< v;‘“n“\*“‘“
& 1o
Q ¥ vy
! ]
(a) Lincarly dependent vectars in R*. (b) Linearly independent vectors in R”.

More generally, let w and v be nonzero vectors in a vector space V. We can
show (Exercise 18) that u and v are linearly dependent if and only if there is a
scalar k such that v = ku. Equivalently, u and v are linearly independent if and
only if neither vector is a multiple of the other.
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Theorem 4.7 The nonzero vectors vy, va, ..., V, in a vector space V are linearly dependent if
and only if one of the vectors v; (j = 2) is a linear combination of the preceding
Vectors ¥y, V2, ..., Vj_1.

Proof

If v; is a linear combination of vy, v, ..., v;_y, that is,
Vi=a1Vy +aVo+ -+ a1V,

then

ayVi+ava+ -+ a; Vi |+ (=1D)v; +0v +---+0v, =0.

Since at least one coefficient, —1, is nonzero, we conclude that vy, v», ..., v, are
linearly dependent.

Conversely, suppose that vy, va, ..., v, are linearly dependent. Then there
exist scalars, ¢y, as, ..., a,, not all zero, such that

a\vi+axva+ -+ agv, =0.

Now let j be the largest subscript for which a; s 0. If j = 2, then

ay an aj|
vj':— — VI— —. Vz—"-— i VJ‘_|.
& a5y aj

If j = 1, then a;v; = 0, which implies that vy = 0, a contradiction of the
hypothesis that none of the vectors is the zero vector. Thus one of the vectors v; is
a linear combination of the preceding vectors vi. v, ..., V. i}

m LetV = Ryandalsov;=[1 2 —1]va=[1 -2 1],»s=[-3 2 -1],
andvy=[2 0 0]. We find (verify) that

Vi+va+0v; —vy =0,
SO V[, V2, v3, and v, are linearly dependent. We then have

vi =V +va+ Ovs. [i0]
Remarks

1. We observe that Theorem 4.7 does not say that every vector v is a linear
combination of the preceding vectors. Thus, in Example 10, we also have
v + 2va + va + Ovy = 0. We cannot solve, in this equation, for v4 as a linear
combination of vy, v», and v3, since 1ts coefficient is zero.

2. We can also prove that if § = {vy, va...., v;} 18 a set of vectors in a vector
space V, then § is linearly dependent if and only if one of the vectors in § is a
linear combination of all the other vectors in § (see Exercise 19). For instance,
in Example 10,

Vvi=—-vVi—0vi+vy, wv= _é"j - :],:Vg, — Ovy.

3. Observe that if vy, va, ..., v; are linearly independent vectors in a vector
space, then they must be distinct and nonzero.
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The result shown next is used in Section 4.6, as well as in several other places.
Suppose that § = {vy, ¥2,...,V,] spans a vector space V, and v, is a linear com-
bination of the preceding vectors in S. Then the set

S ={vi,¥2, e, Vi, Vjglso e oy Vnhs

consisting of § with v; deleted, also spans V. To show this result, observe that if
v is any vector in V, then, since S spans V, we can find scalars ay, as, . . ., a, such
that

Y=a,V, +02V2+"'+aj_|vj:_] +(TJ'VJ‘ +a;-+|vj-+| +--'Jrﬂ""'n.

Now if
Vi=hvi+bve+---+ b vy,

then
V=aivi+ava+--tai Vi tabivi+bava+ -+ biovn)
+aj1Viyl + -+ dnVn
=avit+evet-o+ Vi eV e+ aaVa,

which means that span §; = V.

m Consider the set of vectors § = {v}, v2. v3, v4} in R?, where

1 i} 0 2
v, = 1 vy = d v 1 and vy = ;
L= g | 27 |y W= | gl Ll
0 0 0 0
and let W = span §. Since
Y4 =¥ + Vo,
we conclude that W = span §, where §; = {v;. v2, v3}. | |
Key Terms
Consistent system Linearly independent set
Inconsistent system Linearly dependent set
Homogeneous system
I Exercises
1. Show that 2. Show that
2 3 10 1 0 2
S b | L= o] 0 S=¢|2|s]1]:]0
3 2 10 1 1 1

is a linearly dependent set in R*. is a linearly independent set in R°,



3.

4.

Determine whether

N -
= =
W= O N

is a linearly independent set in R*.

Determine whether
s={[3 1 2].[3 8 -=5].[-3 & -9}

1s a linearly independent set in Rs.

In Exercises 5 through 8, each given augmented matrix is de-
rived from Equation (1).

10.

11.

% 1 B 310

-1 0 0 110

I =1 2 1}

| 5 1 8 s51i0
[s the set S linearly independent?
(1 0 2 00

0 1 -1 010

0 0 0 110
o 0 0 010
s the set § linearly independent?
T 2 1 §0

0 -1 0 | 0|Istheset S linearly independent?
0 0 210
[A | O] where A is 5 x 5 and nonsingular. Is the set §

linearly independent?
2 4
letxy = | -1 |, xa = | =7
| -1
the solution space of Ax = 0. Is [x;, x5, X3} linearly in-
dependent?

|
,X3 = | 2 | belong to
2

1 1 1
z 0 f

Let x; = ol X2 = 1l X3 = ’ belong to the
1 1 0

null space of A. Is [x,, X5, X3} linearly independent?

Which of the given vectors in R: are linearly dependent?
For those which are, express one vector as a linear com-
bination of the rest.

@ [t t o],[0o 2 3]t 2 3)[3 6 6]
) [1 1 0],[3 4 2]
@ [r 1 0o 2 31 2 3l]o @ @]

12.

13.

14.

15.

16.

17.

18.

19.

20.
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Consider the vector space M»,. Follow the directions of
Exercise 11.

b 0 DR A0S
o[ Y
o [} 3G

Consider the vector space Pi. Follow the directions of
Exercise 11.

(@) P+ 1Lr=2143 (b)) 28+, 1>+ 3,1t

(c) 22 4+14 1,32+t =51+13
Let V be the vector space of all real-valued continuous
functions. Follow the directions of Exercise 11.

(a) cost,sint, e (b) 1, ¢, sint

(c) r’.1,¢ (d) cos®t, sin® ¢, cos 2t

Consider the vector space R*. Follow the directions of
Exercise 11.

M1 0 1]
(a |[0].]1 2
0 1 -1

1 0 1] 1

(h) L) 1 il Elsl 2

| -1 1 1 L2
[ 2 —17
@ |01} 2
L0 1 1

For what values of ¢ are the vectors [—I 0 —l],
[2 1 2].and[1 1 ¢]in R; linearly dependent?

For what values of ¢ are the vectors 1 + 3 and 2r +¢* 42
in Py linearly independent?

Let u and v be nonzero vectors in a vector space V., Show
that u and v are linearly dependent if and only if there
is a scalar & such that v = ku. Equivalently, u and v
are linearly independent if and only if neither vecior is a
multiple of the other.

Let § = {v;.v2,...,v;] be a set of vectors in a vector
space V., Prove that § is linearly dependent if and only if
one of the vectors in § is a linear combination of all the
other vectors in §.

Suppose that § = ({vy, v2,¥3) is a linearly indepen-
dent set of vectors in a vector space V. Prove that
T = {w;.w,, ws) is also linearly independent, where
Wi =V, + Vi + Vi, W3 = V3 + V3, and w3 = V;.
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21.

22.

23.

24,

25,

26.

27.

28.
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Suppose that § = {v;, v2, v3} is a linearly independent
set of vectors in a vector space V. Is T = {w;, w2, wa},
where Wy = v+ V2, Wa = v+ V3, W3 = vy +V3, linearly
dependent or linearly independent? Justify your answer.

Suppose that § = {v1, v2. va} is a linearly dependent set
of vectors in a vector space V. Is T = {w;, wa, wi},
where w1 = vy, W2 = ¥ + Vi, W3 = V| 4 V2 + va,
linearly dependent or linearly independent? Justify your
answer.

Show that if {v;, v} is linearly independent and v; does
not belong to span {v, v-}, then {vy, vo, v5} is linearly
independent.

Suppose that {v;, vs,...,v,} is a linearly independent
set of vectors in R". Show that if A is an n x n non-
singular matrix, then {Av, Ava, ..., Av,} is linearly in-

dependent.

Let A be an m x n matrix in reduced row echelon form.
Prove that the nonzero rows of A, viewed as vectors in
R,. form a linearly independent set of vectors.

Let S = {uy, uw,...,u} be a set of vectors in a vec-
tor space and let T = {v;,v.,...,v,}. where each v,
i=1,2,...,m,is alinear combination of the vectors in

5. Prove that
w="bv,+bvi+-+b,v,
18 a linear combination of the vectors in S.
Let §; and S, be finite subsets of a vector space and let

S| be a subset of S5. If S, is linearly dependent, why or
why not is §; linearly dependent? Give an example.

Let §; and S, be finite subsets of a vector space and let
S| be asubset of §5. If S is linearly independent, why or
why not is §; linearly independent? Give an example.

. Let A be an m = n matrix. Associate with A the vector

w in R"™" obtained by “stringing out” the columns of A.
For example, with

1 4
A=|2 5
3 6
we associate the vector
1
2
— 3
T4

o W

30.

31.

Determine whether your software has such a command.
If it does, use it with the vectors in Example 4, together
with your software's reduced row echelon form com-
mand, to show that the vectors are linearly dependent.
Apply this technique to solve Exercise 12.

As noted in the Remark after Example 7 in Section 4.4,
to determine whether a specific vector v belongs to span
S, we investigate the consistency of an appropriate non-
homogeneous linear system Ax = b. In addition. to de-
termine whether a set of vectors is linearly independent,
we investigate the null space of an appropriate homoge-
neous system Ax = 0. These investigations can be per-
formed computationally, using a command for reduced
row echelon form, if available. We summarize the use of
a reduced row echelon form command in these casas, as
follows: Let RREF(C) represent the reduced row eche-
lon form of matrix C.

(i) v belongs to span S, provided that RREF ([ A | b])

contains no row of the form [0 0! ],
where % represents a nonzero number.

(ii) The set of vectors is linearly independent if
RREF ([ A | 0]) contains only rows from an iden-
tity matrix and possibly rows of all zeros.

Experiment in your software with this approach, using

the data given in Example 8 in Section 4.4 and Examples

3,5,6,and 7.

(Warning: The strategy given in Excreise 30 assumes
the computations are performed by using exact arith-
metic. Most software uses a model of exact arithmetic
called floating point arithmetic; hence the use of reduced
row echelon form may yield incorrect results in these
cases. Computationally, the “line between” linear inde-
pendence and linear dependence may be blurred.) Ex-
periment in your software with the use of reduced row
echelon form for the vectors in R* given here. Are they
linearly independent or linearly dependent? Compare the
theoretical answer with the computational answer from
your software.

1 I ! 1

@) [0} [1 x 10-5} ®) [0] [1 x 10-‘“}
1 1

© fol|1x10
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FIGURE 4.27 Natural basis
for R,
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m Basis and Dimension

In this section we continue our study of the structure of a vector space V by deter-
mining a set of vectors in V' that completely describes V. Here we bring together
the topics of span from Section 4.4 and linear independence from Section 4.5. In
the case of vector spaces that can be completely described by a finite set of vec-
tors, we prove further properties that reveal more details about the structure of
such vector spaces.

B Basis

The vectors vy, va, ..., v; in a vector space V are said to form a basis for V if
(a) ¥vi, ¥a. ..., vgspan V and (b) vy, va, ..., v are linearly independent.
Remark If v, vs, ..., v, form a basis for a vector space V, then they must be

distinct and nonzero.

Remark We state Definition 4. 10 for a finite set of vectors, but it also applies to
an infinite set of vectors in a vector space.

1 0 0
Let V = RY. The vectors | O |, | 1 |, | 0| form a basis for R®, called the
0 0 1

natural basis or standard basis, for R*. We can readily see how to generalize this
to obtain the natural basis for R". Similarly, [1 0 0].[0 1 0].[0 0 1]
is the natural basis for R;. | |

The natural basis for R" is denoted by {e|, es, .. .. e,}, where

0

e =|1]| « ithrow;

—0—

that is, e; 1s an i x | matrix with a | in the ith row and zeros elsewhere.
The natural basis for R is also often denoted by

1 0 0
i=|0], i=]|1], ad k=0
0 0 1
ay
These vectors are shown in Figure 4.27. Thus any vector v = | @ | in R? can be
written as az

v =ai+ arj + azk.



230

Chapter 4 Real Vector Spaces

Show that the set S = {t2 + 1.t — 1, 2t + 2} is a basis for the vector space Fs.

Solution
To do this, we must show that § spans V and is linearly independent. To show that

it spans V, we take any vector in V, that is, a polynomial at® + bt + ¢, and find
constants ¢, a», and a; such that
at® + bt +c=a, (> + D +ar(t — 1) +a3(2t +2)
= ait’ + (a2 + 2a3)t + (@1 — a2 + 2a3).

Since two polynomials agree for all values of  only if the coefficients of respective
powers of t agree, we get the linear system

a,
ar +2a3=h
a, — ay + 2a; = ¢

Solving, we have

a+b—c¢ c+b—a
e =
2 4

ay=a, a=

Hence § spans V.

To illustrate this result, suppose that we are given the vector 2¢> + 6t + 13.
Here, @ = 2, b = 6, and ¢ = 13. Substituting in the foregoing expressions for a,
b, and ¢ , we find that

1

(=117
-

a =2, a=-— ay =

+|

Hence
20+ 6t +13 =20+ 1) — 3¢t — 1) + 22t +2).

To show that § is linearly independent, we form
a4+ 1) +ax(t — 1) + a2t +2) = 0.

Then
ait® + (ay + 2a3)t + (@ — ay + 2a3) = 0.

Again, this can hold for all values of ¢ only if
(75} =0

ar + 2a; =0
ay — ar + 2a; = (.

The only solution to this homogeneous system is a) = a; = a3 = 0, which implies
that § is linearly independent. Thus S is a basis for Ps. |

The set of vectors {t", """, ..., t. 1} forms a basis for the vector space P,
called the natural, or standard basis, for P,.
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m Show that the set § = {v|, v2., v3, v4}, where

vi=[1 01 0], w»=[0 1 -1 2],
v [l 2 2 1], and wa=[1 0 © 1],
is a basis for Ry.

Solution
To show that § is lincarly independent, we form the equation

avVi + axvVa + azvz +aqvg =0

and solve for ay, a2, a3, and ay. Substituting for vi, v, v3, and v4, we oblain the
linear system

a +ays=0
a» + 2a; =)
ay — dar+ 2a; =0

200 + az+as =10,

which has as its only solution @y = a; = a3 = a4 = 0 (verify), showing that S
is linearly independent. Observe that the columns of the coefficient matrix of the
preceding linear system are v1, v2, vI, and v

To show that S spans Ry, we let v = [a b ¢ a‘] be any vector in Ry. We
now seek constants ay. a2, a3, and a4 such that

apvy +axvy +azvy+agvyg = V.

Substituting for vy, vo, v3, v4, and v, we find a solution for a;, a», as, and a4
(verily) to the resulting linear system. Hence § spans R and 1s a basis for R;. W

m The set W of all 2 x 2 matrices with trace equal to zero is a subspace of M»;. Show
that the set § = {v,, v2, v3}, where

0 1 0 0 1 0
v,={0 0]. V3=|:1 0]. and V3=[0 71]

is a basis for W.

Solution

To do this, we must show that span § = W and § is linearly independent. To show
that span § = W, we take any vector v in W, that is,

[a b]
V= .
€ —a
and find constants a;. as, and a3 such that

aivy + az2¥a + aavy = V.

Substituting for vi, va, va, and v and performing the matrix operations on the left,

we obtain (verify)
as ap| |a b
a —az| |e —al’
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Theorem 4.8

Equating corresponding entries gives a; = b, a2 = ¢, and a3 = a, so § spans W.
If we replace the vector v by the zero matrix, it follows in a similar fashion that
a) = ay = a3 = 0, so §1s a linearly independent set. Hence S is a basis for W. B

Find a basis for the subspace V of P», consisting of all vectors of the form at® +
bt + ¢, wherec = a — b.

Solution
Every vector in V is of the form

at> + bt +a—b,
which can be written as
a(t>+ )+ bt —1),

so the vectors 12 + 1 and ¢ — 1 span V. Moreover, these vectors are linearly
independent because neither one is a multiple of the other. This conclusion could
also be reached (with more work) by writing the equation

a(t?+ 1) +a(t—1)=0,

or
a;r2 + aot + (ay —az) = 0.
Since this equation is to hold for all values of ¢, we must have a; = 0 and a, = 0.
m

A vector space V is called finite-dimensional if there is a finite subset of
V' that is a basis for V. If there is no such finite subset of V, then V is called
infinite-dimensional.

We now establish some results about finite-dimensional vector spaces that will
tell about the number of vectors in a basis, compare two different bases, and
give properties of bases. First, we observe that if {v, v3, ..., vt} is a basis for
a vector space V, then {cvy, V2, ..., Vy] is also a basis when ¢ # 0 (Exercise
35). Thus a basis for a nonzero vector space is never unique.

If § = {vi.vs,...,v,}1s a basis for a vector space V, then every vector in V can
be written in one and only one way as a linear combination of the vectors in §.
Proof

First, every vector v in V' can be written a8 a linear combination of the vectors in
§ because § spans V. Now let

V=a V) +avy+ -+ a,v,

and
V=bvi+bva+ -+ by,

We must show that q; = b; fori = 1,2, ..., n. We have

0=v—v=1(a—b))vi+ (a2 — b2)V2+ - - - + (ay — by)Vy.
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Since § is linearly independent, we conclude that
a—b; =0 forl =12 ormegit ]

We can also prove (Exercise 44) that if § = {v,, vo, ..., v,]} is a set of nonzero
vectors in a vector space V such that every vector in V can be written in one and
only one way as a linear combination of the vectors in §, then § is a basis for V.

Even though a nonzero vector space contains an infinite number of elements,
a vector space with a finite basis is, in a sense, completely described by a finite
number of vectors, namely, by those vectors in the basis.

Let § = {vy,v2,..., v, } be a set of nonzero veclors in a vector space V and let
W = span §. Then some subset of § is a basis for W.
Proof

Case I If S is linearly independent, then since § already spans W, we conclude
that § is a basis for W.
Case II If S is linearly dependent, then

aivi +avy+ -+ a,v, =0, (1)

where ay, as, . .., a, are not all zero. Thus some v; is a linear combination of the
preceding vectors in § (Theorem 4.7). We now delete v; from §, getting a subset
S1 of S. Then, by the observation made at the end of Section 4.5, we conclude that
O ={Vis¥eeeay V<N ke v} also spans W,

If §) is linearly independent, then S is a basis. If §) is linearly dependent,
delete a vector of S, that is a linear combination of the preceding vectors of §,
and get a new set §» which spans W. Continuing, since S is a finite set, we will
eventually find a subset T' of § that is linearly independent and spans W. The set
T is a basis for W.

Alternative Constructive Proof when V Is R" or Ry, n = m. (By the results
seen in Section 4.7, this proof is also applicable when V is P, or M, where
n = pg.) We take the vectors in § as m x 1 matrices and form Equation (1). This
equation leads to a homogeneous system in the n unknowns a;, a», . ... a,; the
columns of its m x n coefficient matrix A are v, vo, ..., v,;. We now transform A
to a matrix B in reduced row echelon form, having r nonzero rows, 1 < r < m.
Without loss of generality, we may assume that the r leading 1’s in the r nonzero
rows of B occur in the first » columns. Thus we have

[1 @ O =0 @ by wen by

0 1 O s 10 llE’P_J'+I blu

001 -« 0 bypq - by
B =

G B B o= 1 l’,:’rr—f—l S hrl:

000 -0 0 cee 0

[0 @ 0 v @ 0 s 0

Solving for the unknowns corresponding to the leading 1's, we see that
aj, as, ..., a, can be solved for in terms of the other unknowns a, 1, a,.2, ..., a,.
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Thus,
ay = —biyp1rt — bipjaarr — - — biay

a3 = _bl rH1drp] — bZr+2ar+2 - bluar!

a4y = —by i1 — brppaeis — 5o — Brgdp,
where a, 1, @13, ..., 0, can be assigned arbitrary real values. Letting
ary] = ]_ Qry2 =0_. CI,,=0
in Equation (2) and using these values in Equation (1), we have
=bBreVy —bypVa— o =B Ve Ve =0,

which implies that v, is a linear combination of vy, v2, ..., v,. By the remark
made at the end of Section 4.5, the set of vectors obtained from § by deleting v,
spans W. Similarly, lettinga, .+, = 0,a,05 = L,a,_3 =0,...,a, = 0, we find that
¥V, > is a linear combination of v, v, ..., v, and the set of vectors obtained from §
by deleting v, and v, > spans W. Continuing in this manner, v, 3. Vo4, ...V,
are linear combinations of v, va, ..., v,, so it follows that {vy, va, ..., v.} spans
w.

We next show that {v, va, ..., v, } is linearly independent. Consider the ma-
trix Bp that we get by deleting from B all columns not containing a leading 1. In
this case, By consists of the first » columns of 5. Thus

N 1 R
0 1 @ == 0
00 1
Bo=14 ¢ 1
00 0
[0 0 sus |

Let Ap be the matrix obtained from A by deleting the columns corresponding
to the columns that were deleted in B to obtain Bp. In this case, the columns of
Apare vy, va,..., V,, the first r columns of A. Since A and B are row equivalent,
so are Ay and Bj. Then the homogeneous systems

Apx =0 and Bpx=10

are equivalent. Recall now that the homogeneous system Bpx = 0 can be written
equivalently as

Xy + Xy + -+ 2y, =0, (3)
X1
X2

wherex = | | | andy;, y2..... ¥, are the columns of Bp. Since the columns
Xr

of Bp form a linearly independent set of vectors in R", Equation (3) has only
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the trivial solution. Hence Apx = 0 also has only the trivial solution. Thus
the columns of Ap are linearly independent. That is, {v, v2,....v,} is lincarly
independent. m

The first proof of Theorem 4.9 leads to a simple procedure for finding a subset
T of a set § so that T is a basis for span §. Let § = {v;. vy, ..., v,} be a set of
nonzero vectors in a vector space V. The procedure for finding a subset T of §
that is a basis for W = span § is as follows:

Step 1. Form Equation (1),
ayvy 4 ava + - +a,v, =0,

which we solve for ay, aa, .. .. a,. If these are all zero, then § is linearly indepen-
dent and is then a basis for W.

Step 2. W ay,a, ..., a, are not all zero, then § is linearly dependent, so one of
the vectors in §—say, v;—Iis a linear combination of the preceding vectors in §.
Delete v; from §, getting the subset §;, which also spans W.

Step 3. Repeat Step 1, using S instead of §. By repeatedly deleting vectors of S,
we derive a subset T of § that spans W and is linearly independent. Thus T is a
basis for W.

This procedure can be rather tedious, since every fime we delete a vector from
§, we must solve a linear system. In Section 4.9 we present a much more efficient
procedure for finding a basis for W = span S, but the basis i1s not guaranteed to
be a subset of S. In many cases this is not a cause for concern, since one basis
for W = span S is as good as any other basis. However, there are cases when the
vectors in § have some special properties and we want the basis for W = span §
to have the same properties, so we want the basis to be a subset of S. If V. = R™
or R,,, the alternative proof of Theorem 4.9 yields a very efficient procedure (see
Example 6) for finding a basis for W = span S consisting of vectors from S.

Let V= R" or R, and let § = {v,, ¥, ..., V,} be a set of nonzero vectors in
V. The procedure for finding a subset T" of § that is a basis for W = span § is
as follows.

Step 1. Form Equation (1),
avy +az¥a + - apv, =10

Step 2. Construct the augmented matrix associated with the homogeneous sys-
tem of Equation (1), and transform it to reduced row echelon form.

Step 3. The vectors corresponding to the columns containing the leading 1’s
form a basis T" for W = span §.

Recall that in the alternative proof of the theorem we assumed without loss
of generality that the r leading 1°s in the r nonzero rows of B occur in the first r
columns. Thus, if § = {vy, vs,..., v} and the leading 1’s occur in columns 1, 3,
and 4, then {v,. v3, v4} is a basis for span §.
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Remark In Step 2 of the foregoing procedure, it is sufficient to transform the

augmented matrix to row echelon form.

LetV = Ryand S = {v1, V2, V3, V4, Vsh. wherev; = [1 0 1],va=[0 1 1],

vi=[1 1 2]va=[1 2 1]andvs=[—1 1 —2]. Wefind that S spans

R (verify), and we now wish to find a subset of S that is a basis for R;. Using the

procedure just developed, we proceed as follows:

Stepl. ay[1 0 1]+a[0 1 1]+as[1 | 2]+al 2 1]+
as[-1 1 =2]=[0 0 0].

Step 2. Equating corresponding components, we obtain the homogeneous system

aj + a3+ da— as=0
ay+ a3+2a3+ as=0
ar +a» + 2as + as — 2as = 0.

The reduced row echelon form of the associated augmented matrix is (verify)

i @ & B =2|W
0 1 1 0 =110
0 0 0 1 110

Step 3. The leading 1’s appear in columns 1, 2, and 4, so {v{, va, v4} is a basis for
Ry ]

Remark In the alternative proof of Theorem 4.9, the order of the vectors in the
original spanning set § determines which basis for V' is obtained. If, for example,
we consider Example 6, where § = {w, wa, Wi, wi. ws} with w; = vs, wa = vy,
W3 = V3, Wy = Va2, and ws = vy, then the reduced row echelon form of the
augmented matrix is (verify)

1 0 0 1 -11}0
0 T 0 =1 {14
0 @ 1 &2 =l#

It then follows that {w, wa, w3} = {vs. V4, Va} is a basis for Rs.

We are now about to establish a major result (Corollary 4.1, which follows
from Theorem 4.10) of this section, which will tell us about the number of vectors
in two different bases.

It § = {vi, va, ..., ¥4} is a basis for a vector space V and T' = {w, W, ..., W, }
is a linearly independent set of vectors in V, then » < n.

Proof

Let T} = {wy,Vy,...,v,}. Since S spans V, so does 7). Since w is a linear

combination of the vectors in S, we find that 7} is linearly dependent. Then,
by Theorem 4.7, some v; is a linear combination of the preceding vectors in Tj.
Delete that particular vector v;.
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Let §1 = {wWi,¥i,...,¥j-1, Vi1, ..., Vs). Note that S; spans V. Next, let
T = {Wa, Wi, V...V, V41, ..., V). Then T3 is linearly dependent and
some vector in T is a lincar combination of the preceding vectors in 75. Since
T is linearly independent, this vector cannot be wy, soitis v;,i # j. Repeat this
process over and over. Each time there is a new w vector available from the set T,
it is possible to discard one of the v vectors from the set S. Thus the number r of

w vectors must be no greater than the number n of v vectors. Thatis,r =n. MW
KES={v,v,....v,}and T = {w;, w>, ..., w, } are bases for a vector space V,
thenn = m.

Proof

Since § is a basis and T is linearly independent, Theorem 4.10 implies thatm < n.
Similarly, we obtain n < m because T is a basis and § is linearly independent.
Hence n = m. m

A vector space or subspace can have many different bases. For example, the

natural basis B, for R? is
1 0
B = ; ;
=1L

m={[i)-L2]

is also a basis for R2. (Verify.) From Theorem 4.8 we have that every vector in R?
can be written in one and only one way as a linear combination of the vectors in
B, and in one and only one way as a linear combination of the vectors in B,. For
any vector vin R?, where
" _a
s J)] .

vV=ua l-—f—bo
~ o] 1l

However, to express v as a linear combination of the vectors in B,, we must find

scalars ¢; and ¢> so0 that
1 o [ 1 _|a
(] 1 2 _2 = b o

Solving ¢; and ¢z requires the solution of the linear system of equations whose
augmented matrix is

but the set

we have

1 1@ .
{] Zfb_ (verify).

The solution to this linear system is ¢; = 2a — b and ¢ = b — a. (Verify.) Thus

v——-(Za—b)[i]-i—(b—a) [é]
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DEFINITION 4.11

EXAMPLE 7

EXAMPLE 8

DEFINITION 4.12

Corollary 4.2

In this case we observe that the natural basis is more convenient for representing all
the vectors in R?, since the solution of a linear system is not required to determine
the corresponding coefficients. In some applications in Chapter 8, a basis other
than the natural basis is more convenient. So the choice of basis for a vector
space can be important in representing the vectors in that space. We study the
representation of a vector in terms of different bases in more detail in Section 4.8,
where we discuss the coordinates of a vector with respect to an ordered basis.

B Dimension

Although a vector space may have many bases, we have just shown that, for a
particular vector space V, all bases have the same number of vectors. We can then
make the following definition:

The dimension of a nonzero vector space V' is the number of vectors in a basis for
V. We often write dim V for the dimension of V. We also define the dimension
of the trivial vector space {0} to be zero.

The set § — {t2. ¢, 1} is a basis for Ps, so dim P> — 3. n

Let V be the subspace of Ry spanned by § = {v|, v», v3}, where v| = [0 1 1],

Vi = [1 0 1], and v; = [l 1 2]. Thus every vector in V is of the form
a1vy + da¥Vaz + asvs,

where a;, a3, and a3 are arbitrary real numbers. We find that S is linearly de-

pendent, and v3 = v 4 vy (verify). Thus §; = {v;, vy} also spans V. Since
51 1s lincarly independent (verify), we conclude that it is a basis for V. Hence
dimV = 2. |

Let S be a set of vectors in a vector space V. A subset T of § is called a maximal
independent subset of S if 7 is a linearly independent set of vectors that is not
properly contained in any other linearly independent subset of S.

Let V be R and consider the set S = {¥1, v2, v3, v4}, where

1 0 1
vi=|0], va=|1|, wv=|0], and vy=|1
0 0 I 1
Maximal independent subsets of § are
{vi,va, val, {vi.va,val, {vi,vs,va), and {wp, v3, v4}. 2]

If the vector space V has dimension nr, then a maximal independent subset of
vectors in V' contains n vectors,
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Corollary 4.4

Corollary 4.5
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Proof

Let § = {v|, vz, ..., v;] be a maximal independent subset of V. If span § £ V,
then there exists a vector v in V that cannot be written as a linear combination
of vi,va,..., vi. It follows by Theorem 4.7 that {v;, va, ..., vz, v} is a linearly

independent set of vectors. However, this contradicts the assumption that § is a
maximal independent subset of V. Hence span § = V, which implies that set § is
a basis for V and k = n by Corollary 4.1. m

If a vector space V' has dimension #, then a minimal® spanning set for V' contains
n vectors.

Proof
Exercise 38. H

Although Corollaries 4.2 and 4.3 are, theoretically, of considerable impor-
tance, they can be computationally awkward.

From the preceding results, we can make the following observations: If V has
dimension n, then any set of n + 1 vectors in V is necessarily linearly dependent;
also, any set of n — 1 vectors in V cannot span V. More generally, we can establish
the following results:

If vector space V has dimension n, then any subset of m > n vectors must be
linearly dependent.

Proof
Exercise 39. ]

If vector space V has dimension n, then any subset of m < n vectors cannot span
V.

Proof
Exercise 4(0. 1]

In Section 4.5, we have already observed that the set {0} is linearly dependent.
This is why in Definition 4.11 we defined the dimension of the trivial vector space
{0} to be zero.

Thus R* has dimension 3, R> has dimension 2, and R" and R, both have
dimension n. Similarly, P; has dimension 4 because {rj, 251 1} is a basis for Ps.
In general, £, has dimension n + 1. Most vector spaces considered henceforth i
this book are finite-dimensional. Although infinite-dimensional vector spaces are
very important in mathematics and physics, their study lies beyond the scope of
this book. The vector space P of all polynomials is an infinite-dimensional vector
space (Exercise 306).

Section 4.3 included an exercise (Exercise 29) to show that the subspaczs of
R? are {0}, R? itself, and any line passing through the origin. We can now establish
this result by using the material developed in this section. First, we have {0} and

*If § is a set of vectors spanning a vector space V., then § is called a minimal spanning set for V if
S does not properly contain any other set spanning V.
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R?, the trivial subspaces of dimensions 0 and 2, respectively. The subspace V of
R? spanned by a vector v # 0 is a one-dimensional subspace of R%; V is a line
through the origin. Thus the subspaces of R? are {0}, R%, and all the lines through
the origin. In a similar way, Exercise 43 at the end of this section asks you to
show that the subspaces of R? are {0}, R? itself, and all lines and planes passing
through the origin. We now prove a theorem that we shall have occasion to use
several times in constructing a basis containing a given set of linearly independent
VeCLors.

If § is a linearly independent set of vectors in a finite-dimensional vector space V,
then there is a basis T for V that contains §.

Proof

Let § = {vi,¥2,..-, v} be a linearly independent set of vectors in the n-
dimensional vector space V, where m < n. Now let {w, w3, ..., w,} be a basis
for V and let §; = {v{, V2, ..., Vin, Wi, W2, ..., W,}. Since §; spans V, by The-
orem 4.9 it contains a basis T for V. Recall that T is obtained by deleting from
8y every vector that is a linear combination of the preceding vectors. Since § is
linearly independent, none of the v; can be linear combinations of other v; and
thus are not deleted. Hence 7" will contain §. i}

Suppose that we wish to find a basis for Ry that contains the vectors
vi=[1 0 1 0] and v»=[-1 1 -1 0].

We use Theorem 4.11 as follows. First, let {e/, €}, €}, €}} be the natural basis
for Ry, where

e=[1 0@ 0], e=[0 1 0 0], e=[0 @ 1 0]

and
e,=[0 0 0 1]

Form the set § = {v).va. €], €}. €}, €;}. Since (e}, €. €}, |} spans Ry, so does
S. We now use the alternative proof of Theorem 4.9 to find a subset of § that is a
basis for Ry. Thus we form Equation (1),

a\vy +asva +age’1 +ﬂ49’2 +a583 +{16211 = [0 0 0 0] i

which leads to the homogeneous system

ay —ax + as =0
— iz + iy =10
a; — a + as =10
af,zO.

Transforming the augmented matrix to reduced row echelon form, we get (verify)

1 0 0 1 1 01}0
0 1 0 1 0 00
0 0 1 0 -1 01!0
o 0 0 0 0 1!0
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Key Terms

Basis of a vector space
Natural (standard) basis
Finite-dimensional vector space
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Since the leading 1's appear in columns 1, 2, 3, and 6, we conclude that
{v1, V2, e"l, €} } is a basis for Ry containing v; and va. | |

It can be shown (Exercise 41) that it W is a subspace of a finite-dimensional
vector space V, then W is finite-dimensional and dim W < dim V.

As defined earlier, a given set § of vectors in @ vector space V is a basis for V'
if it spans V and is linearly independent. However, if we are given the additional
information that the dimension of V is n, we need verify only one of the two
conditions. This is the content of the following theorem:

Let V be an n-dimensional vector space.

(a) S ={v,v2, ..., v, } 15 a linearly independent set of vectors in V, then S is
a basis for V.

(b) If § = {vy,v2,..., v, | spans V., then § is a basis for V.

Proof

Exercise 45. <1

As a particular application of Theorem 4.12, we have the following: To deter-
mine whether a subset § of R" (R,) is a basis for R" (R, ), first count the number
of elements in S. If § has n elements, we can use either part (a) or part (b) of
Theorem 4.12 to determine whether S is or is not a basis. If § does not have n
elements, it is not a basis for R" (R,). (Why?) The same line of reasoning applies
to any vector space or subspace whose dimension is known.

In Example 6, since dim K3 = 3 and the set S contains five vectors, we conclude
by Theorem 4.12 that § is not a basis for R3. In Example 3, since dim Ry = 4
and the set § contains four vectors, it is possible for § to be a basis for Ry. If § is
linearly independent or spans Ry, it is a basis; otherwise, it is not a basis. Thus we
need check only one of the conditions in Theorem 4.12, not both. | |

We now recall thatif a set § of n vectors in R" (R,,) is linearly independent,
then S spans R" (R,,), and conversely, if § spans R" (R,), then § is linearly inde-
pendent. Thus the condition in Theorem 4.5 in Section 4.5 [that det(A) # 0] is
also necessary and sufficient for § to span R" (R),).

Let S be a finite subset of the vector space V that spans V. A maximal independent
subset T of § is a basis for V.

Proof
Exercise 46. m

Infinite-dimensional vector space Minimal spanning set
Dimension of a subspace
Maximal independent set
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m Exercises

1. Which of the following sets of vectors are bases for R*?

o[BI e EILELE
o 2L @ (LI

2. Which of the following sels of vectors are bases for R*?

B! 0]
(a) s 1

L0 -1 ]

[ 1 2] 4 0
(b) 1 |s |3 |s Ll B

L1 4] -1 -1

M3 -1 0
(©) 2l 4 [P

L2 1] Lo

M1 07 3 0
(d) 0]. 21.141.]1

L0 —-1] L1 0

3. Which of the following sets of vectors are bases for Ry?
@ {[1 0 0 1].[o t 0o o],
[ 1 & 1k T ¢ 1
m {[1 -1 0 2],[3 =1 2 1],
[x 0 o 1)
© {[ 4 6 4].[0 1 2 o0].
2.3 2],[-3 25 6],
-1 0 4]}
@ {[c 0 1 1],[-1 1 1 2],
[x 190 0].[2 1 2 1]}
4. Which of the following sets of vectors are bases for P5?
(@) (=P +r+2,224+2r+3,4* -1}
) 42— 1,207 31— 1)
(€} {41,367 +2¢t + 1,61+ 6t + 3}
(dy 3242t 41,02 4+1t+12+1}
5. Which of the following sets of vectors are bases for P;?
(@) {P+22+30.20 +1,60° +8% +61+4,
P42 1+ 1)
) {B+P2 41,2 -1,242 41}

-2
~1
-2

[P

© (P24 14, P 4200914325 +154-31 42,

P4+r+2142)
@ (=0, 4+ +1,1-1)

6. Show that the set of matrices

[ERIR bR RER RE |

forms a basis for the vector space M».

In Exercises 7 and 8, determine which of the given subsets
forms a basis for R®. Express the vector

as d linear combination of the vectors in each subset that is a

basis.
ES 1 0]
7. (a) L | 5|2 1
1] |3 0

1 F2f o
(b) 2 la]Z]o|'®
131 L3] Lo

2 ] TI 1
8. (a) 1 2 1 ) l
2] bae] |wee] LA
M1 [27] 3
(b) Ll 2] 4
L2] Lo] L-!

In Exercises 9 and 10, determine which of the given subsets
form a basis for Py. Express 5t — 31 + 8 as a linear combi-
nation of the vectors in each subset that is a basis.

9. (a) {t24rt,t—1,t+1} (b)Y (£*+1,¢r—1}
10. (a) {4t 1% >+ 1) (b) {(£*+ 1,12 —r+1)

11. Find a basis for the subspace W of R* spanned by

| 3 11 7
201214130 |s]6
2 1 7 4

What is the dimension of W?
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13.

14.

15

16.

17.

18.

In Exercises 19 and 20, find a basis for the given subspaces of

Find a basis for the subspace W of R, spanned by the set
of vectors

(v v o —1],[0 1 2 1],
[t o1 —1],[t t -6 -3],
[-1 =5 1 0]}

What is dim W?
Let W be the subspace of P spanned by

P+ —241,241,7=21,20 +31* —4r +-3).

Find a basis for W. What is the dimension of W?
Let

s={ls 100 516 00 2D

Find a basis for the subspace W = span § of M5,.

Find all values of a for which

{[a> 0 1].[0 @ 2].[1 0 1]}
15 a basis for R;.
Find a basis for the subspace W of M, consisting of all
symmelric matrices.
Find a basis for the subspace of Ma3 consisting of all di-
agonal matrices.
Let W be the subspace of the space of all continuous real-
valued functions spanned by {cos” r, sin’ 1, cos 2r}. Find
a basis for W. What is the dimension of W?

R* and R*.
]
19. {a) All vectors of the form | b |, whereb=a + ¢
L C_-
[a]
{b) All vectors of the form | b |, where b = a
= c -
—
{¢) All vectors of the form | b |, where
2a4+b—c=0 L€
2
20. (a) All vectors of the form | b |, wherea =0
- L-—
a+c
{b) All vectors of the form g=d
: b+rc
L—a+b

21.

22,
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a
(c¢) All vectors of the form | b |, where
a—b+5¢=0 e

Find a basis for the subspace of P, consisting of al! vec-
tors of the form at® + bt + ¢, where ¢ = 2a — 3b.

Find a basis for the subspace of P consisting of al! vec-
tors of the form at® — bt* + ¢t +d, where ¢ = a — 2d
and b = 5a 4 3d.

In Exercises 23 and 24, find the dimensions of the given sub-
spaces of Rs.

23.

24.

25

26,

27

28.

29.

31

32.

(a) Allvectors of the form [a b ¢ ;.f]. where
d=a+b

(b) All vectors of the form [a b ¢ (!]. where
c=a—bandd=a+h

(a) All vectors of the form [a b ¢
a=h

d ] where

(b) All vectors of the form
[a—i—r: a—b b+c —ﬂ+b]
Find the dimensions of the subspaces of R* spanned by

the vectors in Exercise 1.

Find the dimensions of the subspaces of R* spanned by
the vectors in Exercise 2.

Find the dimensions of the subspaces of Ry spanned by
the vectors in Exercise 3.

Find a basis for R that includes

1
(a) the vector | O |;
z
1 0
(b) the vectors | 0 | and | 1
2 3

Find a basis for Py that includes the vectors 1* + ¢ and
=t

Find a basis for M>5. What is the dimension of M»;?

Generalize o M,,,.

Find the dimension of the subspace of P, consisting of
all vectors of the form at* + bt + ¢, where c = b — 2a.

Find the dimension of the subspace of P; consisting of all
vectors of the form ar® +bt*+ct +d, where b = 3a—5d
and ¢ = d + 4a.
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33.
34.
3,

36.

37.

38.
39.
40.
41.

42,

Give an example of a two-dimensional subspace of R*. 43. Prove that the subspaces of R* are {0}, R® itself. and any
Give an example of a two-dimensional subspace of P;. lpc:epplancpagsing theough the grizin,
. = . 44. Let § = {v|, ¥5, ..., V,} be a set of nonzero vectors in a
Prove thatif {vi, va, ... . vi}isa bas.ls fora vec:f)r SPALE, vector space V such that every vector in V can be written
V., then v, ¥l ik Jore 7= 1, isalsanbasisfor V., in one and only one way as a linear combination of the
Prove that the vector space P of all polynomi- vectors in §. Prove that § is a basis for V.
als is not finite-dimensional. [Hinr: Suppose that 45. Prove Theorem 4.172.
[pilf). pa(t). ..o, pi()) is a finite basis for P. Let 46 Prove Theatsmnd.13.
d; = degree p,(t). Establish a contradiction. | = . .
: ; : 47. Suppose that {vi. v>. ..., v,}is a basis for R". Show that
Let V be an n-dimensional vector space. Show that any if A is an n x n nonsineular matrix, then
i 4 1 vectors in V form a linearly dependent set. -
Prove Caorollary 4.3. v A% AV:)
Prove Corollary 4.4. is also a basis for R". (Hint: See Exercise 24 in Section
4.5.
Prove Corollary 4.5. ) y ) .
48. Suppose that {v,,va, ..., v,} is a linearly independent
Show that if W is a subspace of a finite-dimensional vec- set of vectors in R” and let A be a singular matrix. Prove
tor space V, then W is finite-dimensional and dim W < or disprove that {Avy, Ava, ..., Av,} is linearly indepen-
dim V. dent.
Show that i W is a subspace of a finite-dimensional vec- 49. Find a basis for the subspace W of all 3 x 3 matrices with

tor space V and dim W = dim V, then W = V.

trace equal to zero. What is dim W?

Homogeneous Systems

In Example 12 in Section 2.2 we have seen how the solution of chemical balance
equations requires the solution of a homogeneous linear system of equations. In-
deed, homogeneous systems play a central role in linear algebra. This will be seen
in Chapter 7, where the foundations of the subject are all integrated to solve one
of the major problems occurring in a wide variety of applications. In this section
we deal with several problems involving homogeneous systems that will arise in
Chapter 7. Here we are able to focus our attention on these problems without being
distracted by the additional material in Chapter 7.
Consider the homogeneous system

Ax =0,

where A is an m x n matrix. As we have already observed in Example 10 of
Section 4.3, the set of all solutions to this homogeneous system is a subspace of
R™. An extremely important problem, which will occur repeatedly in Chapter 7,
is that of finding a basis for this solution space. To find such a basis, we use the
method of Gauss—Jordan reduction presented in Section 2.2. Thus we transform
the augmented matrix [A | {)] of the system to a matrix [B | 0] in reduced row
echelon form, where B has r nonzero rows, 1 < r < m. Without loss of generality,
we may assume that the leading 1's in the r nonzero rows occur in the first r
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columns. If r = n, then

[Bioj]=]0o o ... 0 1 m

and the only solution to Ax = 0 is the trivial one. The solution space has no basis,
and its dimension is zero.
If r < n, then

n

[1 0 0 o 0 b - by 0]

0 0 baria e bay i 0
0 0 1 § r

[B EU]= ; : : - : b .

0 0 0 <« 1 By -~ B0

0 0 0 0 !0
L0 0 o0 0 0t 0]

Solving for the unknowns corresponding to the leadings 1’s, we have

X1 = —byry1 X4 — blr+2-tr+2 — oo — DXy
0 =—braxep — brrpoxen — oo — byyx,
X = =bppp1Xrq1 — by r4aXry s — o0 — DXy,

where x,41. X2, . ... X, can be assigned arbitrary real values s;, j = 1.2, ..., p,
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and p =n —r. Thus

X1 [ —birri81 = brrjasa — - = bius, |
X2 —bar 15 — bapynsy — - — BanSy
X = Xr _ _brr+|'§1 —bpgspa g brnsp
Xrr1 51
Xpt2 52
& Xn - L sp =
[ —by41 ] [ —bi1r427] [ —b1, ]
—b2r 1 —b2s12 —ba,
_br r+l _br r+2 _br'ri
1 0 0
=5 0 + 52 1 I, o
0 0 0
0 0 0
0 ] L 0 T .
Since 5y, 52, ..., 5, can be assigned arbitrary real values, we make the following
choices for these values:
Si=rk an =l iy & =0,
S1=10; KTl og—— sy =0,
5 =0, wn =0 e sp1 =0, sp=1
These yield the solutions
=117 [ —h1ri2] —b1, ]
—ba 41 —b2,42 —ba,
—bp _brr+2 —bpn
X = . Xy = 0 Xpi= 0
1= 0 1 1= 1 Sl p = 0
0 0 0
0 0 0
0 ] L 0 ] L1

Since
X=5X] + 50X + - -+ 35X,
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we see that {X.Xa, ....X,} spans the solution space of Ax = 0. Morcover, if we
form the equation
aX) +axxp + - +aux, =0,

its coefficient matrix is the matrix whose columns are x|, Xo, .. ., X,. If we look at

rows r + 1, r + 2, ..., n of this matrix, we readily see that
ag=a=---=a,=0.

Hence {x;. Xy, ..., X,} is linearly independent and forms a basis for the solution

space of Ax = 0 (the null space of A).

The procedure for finding a basis for the solution space of a homogeneous
system Ax = 0, or the null space of A, where A ism x n, is as follows:

Step 1. Solve the given homogeneous system by Gauss—Jordan reduction. If the
solution contains no arbitrary constants, then the solution space is {0}, which has
no basis; the dimension of the solution space is zero.

Step 2. 1If the solution X contains arbitrary constants, write X as a linear combina-
tion of vectors X, X, ..., X, with 51, 52, ..., 5, as coefficients:

X=5X; + 5%+ + 585X,

Step 3. The set of vectors (X, X;....,X,} is a basis for the solution space of
Ax = 0; the dimension of the solution space is p.

Remark In Step 1, suppose that the matrix in reduced row echelon form to which
[A i 0] has been transformed has r nonzero rows (also, r leading 1’s). Then
p = n — r. That is, the dimension of the solution space is n — r. Moreover, a
solution x to Ax = 0 has n — r arbitrary constants.

If A is an s x nomatrix, we refer to the dimension of the null space of A as
the nullity of A, denoted by nullity A.

Find a basis for and the dimension of the solution space W of the homogeneous
system

i I & 1 7w 0
0o 1 2 1 1||lx 0
0o 0 0 1 2l|lml=]o0
1 =1 0 0 2| 0
2 1 6 0 1] s 0

Solution

Step 1. To solve the given system by the Gauss—Jordan reduction method, we
transform the augmented matrix to reduced row echelon form, obtaining (venfy)

1 0 2 0 140
g 1 2 © <140
0 0 0 1 210
0 0 0 0 010
0O 0 0 0 0!0
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Every solution is of the form (verify)

—25 — 1
—25 +

where s and ¢ are any real numbers.

Step 2. Every vector in W is a solution and is therefore of the form given by
Equation (1). We can thus write every vector in W as

-2 -1

-2 1

X=35 1|+t 0. (2)
0 -2
0 1

Since s and ¢ can take on any values, we firstlets = I, f = 0, and then let s = 0,
t = 1, in Equation (2), obtaining as solutions

-2 —1
-2 1
X = 1 and x> = 0
0 -2
0 |
Step 3. The set {x, X»| 1s a basis for W. Moreover, dim W = 2. w

The following example illustrates a type of problem that we will be solving
often in Chapter 7:

Find a basis for the solution space of the homogeneous system (A/; — A)x = 0 for
A= —2and

-3 0 -1
A= 2 1 0
0 0 -2
Solution
We form —213 — A:
1 0 0 -3 0 -1 1 0 1
=210 1 0f- 2 1 Of=|-2 =3 0
0 0 1 0 0 -2 0 0 0

This last matrix 1s the coelficient matrix of the homogeneous system, so we trans-
form the augmented matrix

1 0 110
== VI T
0 0 010
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to reduced row echelon form, obtaining (verify)

E @& 2130
0 1 -210
0 0 0 0

S0 is a basis for the solution space. ]

—_— 0

Another important problem that we have to solve often in Chapter 7 is illus-
trated in the following example:

Find all real numbers A such that the homogeneous system (A, — A)x = 0 has a
nontrivial solution for
1 5
A= -
5 -]

Solution
We form A1, — A:

5 Lo |1 5| _[#=1 -8
0 1 3 -1 | -3 a+1)
The homogeneous system (Af, — A)x = 018 then
A=1 =5 x| _ [0
=3 A+1]lx] [0]°
It follows from Corollary 3.1 in Section 3.2 that this homogeneous system has a
nontrivial solution if and only if

A=l =5
da({ Y o ID 5,
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that is, if and only if

GR=—DER+1D—-15=0
Ar—16=0
A=4 or A=-—4

Thus, when & = 4 or —4, the homogeneous system (Af> — A)x = 0 for the given
matrix A has a nontrivial solution. | |

B Relationship between Nonhomogeneous Linear Systems and
Homogeneous Systems

We have already noted in Section 4.3 that if A is m x n, then the set of all solutions
to the linear system Ax = b, b # 0, is not a subspace of R". The following
example illustrates a geometric relationship between the set of all solutions to the
nonhomogeneous system Ax = b. b 0, and the associated homogeneous system
Ax = 0.

Consider the linear system

1 2 =3 x

(&}

B~
|

(=]
o
b
Il

2
4
6

The set of all solutions to this linear system consists of all vectors of the form

2—2r+3s
X = r
&
(verify), which can be written as
2, -2 3
x=|0]|+r 1|1 +s]10
0 0 1

The set of all solutions to the associated homogeneous system is the two-dimensional
subspace of R* consisting of all vectors of the form

This subspace is a plane IT; passing through the origin; the set of all solutions to
the given nonhomogeneous system is a plane [T, that does not pass through the
origin and is obtained by shifting IT; parallel to itself. This situation is illustrated
in Figure 4.28. |
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X X

FIGURE 4.28 1, is the solution space to Ax = 0. 11, is the set of all solutions to Ax = b.

The following result, which is important in the study of differential equations,
was presented in Section 2.2 and its proof left to Exercise 29(b) of that section.

If x,, is a particular solution to the nonhomogencous system AX = b, b # 0,
and x;, is a solution to the associated homogeneous system Ax = 0, then x,, + x;,
is a solution to the given system Ax = b. Moreover, every solution x to the
nonhomogeneous linear system Ax = h can be written as x,, + x;, where x, is a
particular solution to the given nonhomogeneous system and x;, 1s a solution to the
associated homogeneous system Ax = 0. Thus, in Example 4,

2 —2 3
X, =|0 and x, =r 1|+5]|0
0 0 1

where r and s are any real numbers.

Key Terms
Homogeneous system Dimension Arbitrary constants
Solution (null) space Nullity

4 | Exercises

1. Let 2. Let
2 —1 =2 1 1 -2
A=) =4 20 4| A=|-—2 —2 4
=8 & E = =k 2
{a) Find the set of all solutions to Ax = 0. (a) Find the set of all solutions to Ax = 0.
{b) Express each solution as a linear combination of two (h) Express‘eac]l solution as a linear combination of two
vectors in R, vectors in R,

(c) Sketch these vectors in a three-dimensional coordi-
nate system to show that the solution space is a plane
through the origin.

{c) Sketch these vectors in a three-dimensional coordi-
nate system to show that the solution space is a plane
through the origin.
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In Exercises 3 through 10, find a basis for and the dimension
of the solution space of the given homogeneous system.

3. xitnm4a+n=0
2xp+x —x3 +xy =0

X1
g [L =t 1= 177 _T8
a3 =2 % o 2| P Tla
X3
X5

wn

X420 — x+3n=0
2xy 4+ 2% — x4 2x=0
xy + 3x34+3x;,=0

6. 11— x+2043x+4d5=0
=X+ 20+ 33+ 4+ 55=0

Xy — X2+ 3x3 4 5x4 4 6x5 =0

3xy —dxy 4+ x4+ 20+ 3x5=0

F & T ' aT|™ 0
|1 2 2 1 2 :{ - 0-|
2 A& 3 % AallP 0
0 o 4 - —1]|™ oJ
_Xs
F1 0 27T=7 o
812 1 3f[=|=]0
(3 1 2)[m 0
T 2 o2 =1 27| 0
6 2 2 =2 -1|[|2 0-|
9. s
2 6 2 =4 1||”" 0
1 4 0 = @™ OJ
_As
a8 3 =8 3§73
1 2«4 3 3 a&|[ [
0 [—2 =4 & 4 =3 2[[7
@ 01 § 1 9 :‘
|1 2 =3 =2 0 7 LIGJ

In Exercises 11 and 12, find a basis for the null space of each

given matrix A.

1 2 3 -1
zZ 5 2 0
B s 3 4 1 1
1 1 -1 1

12. A=

In Exercis

i < & 1 o
g B 1 =1 3
5 -1 3 0 3

|-4 =2 5 1 3
I 3 =3 5

ex 13 through 16, find a basis for the solution space

of the homogeneous system (L1, — A)x = 0 for the given

scalar & and given matrix A.
. '3 2
13. A=1,A= 1 5 }
o, o [=% —3
14. f.——3.A—[ 2 3]
ro 0 l
15 A =1 4=]1 0 -3
LO 1 3
[ A 1 -2
16. A =3, A= -1 2 1
0 1 -1
In Exercises 17 through 20, find all real numbers i such that
the homogeneous system (A1, — A)X = 0 has a nontrivial
solution.
[2 3 3 0
17.1‘1—_2 73:{ lS.A—I:2 72]
0 0 0
19. A=1[0 I -1
1 o
[[—2 0 0
20. A= 0 -2 -3
| 0 4 5
In Exercises 21 and 22, determine the solution to the linear

system AX

21. A=

22. A=

23. Let S

= b and write it in the form X = X, + X;.

B

1 1 2 1
1 | 21.,b=| -1
.1l =3 2 3
= {X;, X1, ..., %} be a set of solutions to a homao-

geneous system Ax = 0. Show that every vector in
span § is a solution to Ax = 0.

24. Show

that if the n x » coefficient matrix A of the homo-

geneous system Ax = 0 has a row or column of zeros,
then Ax = 0 has a nontrivial solution.

25. (a) Show that the zero matrix is the only 3 x 3 matrix
whose null space has dimension 3.
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(b) Let A be a nonzero 3 x 3 matrix and suppose that 26. Matrices A and B are m x n, and their reduced row eche-
Ax = 0 has a nontrivial solution. Show that the lon forms are the same. What is the relationship between
dimension of the null space of A is either 1 or 2. the null space of A ard the null space of B?

m Coordinates and Isomorphisms

B Coordinates

If V is an n-dimensional vector space, we know that V has a basis § with n vectors
in it; thus far we have not paid much attention to the order of the vectors in S.
However, in the discussion of this section we speak of an ordered basis § =
{vi.va, ..., v, } for V;thus §; = {v2. vy, ..., v,}is a different ordered basis for
V.

If § = {vi,v2,...,v,} is an ordered basis for the n-dimensional vector space
V., then by Theorem 4.8 every vector v in V can be uniquely expressed in the form

Y=aVi +a@Va+-+an¥p:
where a;, as, .. .. ay, are real numbers. We shall refer to

aj
(75

[v]s = EH

as the coordinate vector of v with respect to the ordered basis S. The entries of
[v] , are called the coordinates of v with respect to 5.

Consider the vector space Py and let § = {¢, 1} be an ordered basis for £. If
=1 N ; R o
v = p(r) = 5t — 2, then [V]S = [_2] is the cocrdinate vector of v with respect

to the ordered basis S. On the other hand, if T = {t + 1, r — 1} is the ordered basis,
we have 5t — 2 = 3(1 + 1) + Z(t — 1), which implies that

[v], =

b= b

Notice that the coordinate vector [v]  depends upon the order in which the
vectors in S are listed; a change in the order of this listing may change the coordi-
nates of v with respect to S.

Consider the vector space RPandlet § = {v1. v2, v3} be an ordered basis for R?,
where

1 2 0
vi=|1]|, wa=]|0]|, and vy=|1
0 1 2
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If

compute {V ] 5

Solution

To find [v] ¢» We need to find the constants a1, a2, and as such that

apvy +axva +dazvy = v,

which leads to the linear system whose augmented matrix 1s (verify)

1 % @il
1 B 141l (1)
B I =5

or equivalently,

[vi w2 vaiv].
Transforming the matrix in (1) to reduced row echelon form, we obtain the solution
(verify)

a=3 a=-1, a=-2,
$0
3
[¥]g=|-1
—2 n

In Example 5 of Section 1.7 we showed that the matrix transformation
f: R?* — R?defined by f(v) = Av, where

h 0
=0 2]
with /1 and k nonzero, maps the unit circle to an ellipse centered at the origin. (See
Figure 1.20 in Section 1.7.) Using techniques from Chapter 8, we can show that
for any 2 x 2 matrix A with real entries, the matrix transformation f: R - R?
defined by f(v) = Av maps the unit circle into an ellipse centered at the origin.
With a general 2 x 2 matrix the ellipse may be rotated so that its major and minor
axes are not parallel to the coordinate axes. (See Figure 4.29.)

Any point on the unit circle has coordinates x = cos(f), y = sin(f), and the
vector v from the origin to (x. y) is a linear combination of the natural basis for

R?: that is,
v = cos(f) : + sin(#) g
= ( 0 s1 il

The coordinates of the image of the point (x, y) by the matrix transformation f
are computed from

- — cos(f)
flv)y =Av=A [sinw)] 5
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If we take n successive images of the unit circle, using the matrix transformation
[, then the coordinates of the point (x, y) are computed from the matrix product

cos(6)
A" L(.)S(
|: sin(f)
and can be quite complicated expressions. However, a change of basis that uses
particular properties of the matrix A can greatly simplify the computation of such

coordinates. We illustrate this in Example 3. In Chapter 7 we explain how to
determine such bases.

Let the matrix transformation f : R?* — R? be defined by f(v) = Av, where

4=[097 012
= 10.03 0.88]

The image of the unit circle by this matrix transformation is shown in Figure 4.30.

Let
-+ |
vlz{]] and vz:[*'il'

Avy =v, and Av, =0.85v,;

Observe that

furthermore, that {v,., v»} is a linearly independent set (verify) and hence a basis
for R2. (Explain.) It follows that a vector v from the origin to a point (x. y) =
(cos(#), sin(A)) on the unit circle is a linear combination of v, and v,, and we have
(verify)

_|eos(@) ] _ cos(#) + sin(d) cos(@) — 4sin(6)
= sin(d) = 5 Vi + 5 Va.

Then f(v) is given by

cos() -+ sin(6) X cos() — 4 sin(@) i

= 5 Wi 5 xe
o D B OO S

so the coordinates of f{v) with respect to the {v,, va} basis are

(cos(e)) + sin(@) cos(@) — 4sin(9)0 85)

5 ; 5

The coordinates of the image (x, y) on the unit circle with respect to the {v;, v}
basis after n applications of the matrix transformation f are given by

(cos(E)) +sin(#) cos(8) — 4sin(@)
5 ’ 5

(0.85)") ;

which is quite easy to compute, since we need not perform successive matrix prod-
ucts. |
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a; = b, =172, n
Then
Yo=Yl aava oo Y,
nnd
W= b By 4= b,
=¥ Sy = Gy
=¥

Uit comrses, CF v nnd woare vasmoms inoihe vechor spice ¥oand ¥ = w, then ["'].-. =
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along —w/. Similarly, the positive direction on the x;-axis is in the direction of
W, the negative direction on the xz-axis is along —wa. The lengths of w; and w2
determine the scales on the x- and x;-axes, respectively. If v is a vector in Py, we
can write v, uniquely, as v = a;w; + aaW>. We now mark off a segment of length
lai| on the x;-axis (in the positive direction if «; is positive and in the negative
direction if a; is negative) and draw a line through the endpoint of this segment
parallel to w,. Similarly, mark off a segment of length |a;| on the x;-axis (in the
positive direction if a, is positive and in the negative direction if a, is negative)
and draw a line through the endpoint of this segment parallel to w;. We draw a
directed line segment from ¢ to the point of intersection of these two lines. This
directed line segment represents v.

B Isomorphisms

If v and w are vectors in an n-dimensional vector space V with an ordered basis
S ={¥5; Yoy v, }. then we can write v and w, uniquely, as

V=aVi +aVr+ - +a,¥,. W=D5bvi+bwva+ --+ b,v,.
Thus with v and w we associate [ v] and [w] . respectively. elements in R":
v [v],
w— [w],.

The sum v +w = (a; + by)v| + (a2 + b>)vy + -- - + (a, + b,)v,. which means
that with v + w we associate the vector

a) + by
a + by
[v+w] = A =[v], +[w],.

a, + b n

Therefore,
v+w— [v +w]5 = [v]s-i- [w]s.

That is, when we add v and w in V', we add their associated coordinate vectors
[V]S and [w]s to obtain the coordinate vector [v+w]s in R" associated with
v+ w.

Similarly, if ¢ is a real number, then

cv = (ca)vy + (cap)va + - - -+ (ca,)v,,

which implies that

Therefore,
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and thus when v is multiplied by a scalar ¢, we multiply [v]T by ¢ to obtain the
coordinate vector in R" associated with cv. ‘

This discussion suggests that, from an algebraic point of view, V and R" be-
have rather similarly. We now clarify this notion.

Let L be a function mapping a vector space V into a vector space W. Recall
that L is one-to-one if L(v;) = L(vs), for vi, va in V, implies that v; = v». Also,
L is onto if for each w in W there is at least one v in V for which L(v) = w.*
Thus the mapping L: R* — R? defined by

aj +
[ a
L as = |: ! 2]
ay

as

b a1
is onto. To see this, suppose that w = |i; ' ]; we seek v = | a2 | such that

72

3

it == )

Thus we obtain the solution: a; = b2, aa = by — b3, and a3 is arbitrary. However,

-

L is not one-to-one, forif v, = and v, = , then

Wk —

2
4
3
L(Vt)=L(V3)=|:l:|. but v, # v;.

Let V be a real vector space with operations @ and @, and let W be a real vector
space with operations @ and . A one-to-one function L mapping V onto W is
called an isomorphism (from the Greek isos, meaning “the same,” and morphos,
meaning “structure”) of V onto W if

(a) Lvépw)=L(v)E L(w)forv,win V;

(b) L(c @v)=cEL(v) forvin V, ¢ a real number.

In this case we say that V' is isomorphic to W.

It also follows from Definition 4.13 that if L is an isomorphism of V onto W,
then

L{a)Ovi®a:0OV2B- - D OVi) = ay O L(v))Bay [ L(V2) B - - - B ag [ L(vg),

where v, vs, ..., v, are vectors in V and ay, a,, ..., a; are scalars [see Exercise
27(c)].

Remark A function L mapping a vector space V into a vector space W satislying
properties (a) and (b) of Definition 4.13 is called a linear transformation. These
functions will be studied in depth in Chapter 6. Thus an isomorphism of a vector

"See Appendix A for further discussion of one-to-one and onto functions.
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space V onto a vector space W is a linear transformation that is one-to-one and
onto.

As a result of Thecrem 4.15, to follow, we can replace the expressions “V is
isomorphic to W and “W is isomorphic to V" by “V and W are isomorphic.”

Isomorphic vector spaces differ only in the nature of their elements; their al-
gebraic properties are identical. That is, if the vector spaces V and W are isomor-
phic, under the isomorphism L, then for each v in V' there is a unique w in W so
that L(v) = w and. conversely, for each w in W there is a unique v in V so that
w = L(v). If we now replace each element of V hy its image under I. and replace
the operations & and © by B and &, respectively, we get precisely W. The most
important example of isomorphic vector spaces is given in the following thearem:

If V is an n-dimensional real vector space, then V is isomorphic to R".

Proof
Let § = {v;, V2, ..., v,} be an ordered basis for V,andlet L: V — R" be defined
by

45}

az

L) =[v], =

n

where v = av| + aava + - - - + a, V.
‘We show that L is an isomorphism. First, L is one-to-one. Let

ay bl

[75) bl
[V]S = 2 and [W]S —

ay bn

and suppose that L(v) = L(w). Then [v]q = [w]g, and from our earlier remarks
it follows that v = w. ' v

by
b
Next, L is onto, forif w= | _ | is a given vector in R" and we let
b}]’
V=01V +byVa 4 A by,
then L(v) = w.
Finally, L satisfies Definition 4.13(a) and (b). Let v and w be vectors in V
) b|
as b
suchthat [v], =  |and[w];=1| _ |. Then
ai] bﬂ

L(V+wW) = [v+w]5 = [V]S+[W]S=L(V)+L(w)
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and
Lcv) = [CV]S = c'[v]s =cL(v),
as we saw before. Hence V and R" are isomorphic. ]
Another example of isomorphism is given by the vector spaces discussed in
the review section at the beginning of this chapter: R, the vector space of directed
line segments emanating from a point in the plane and the vector space of all

ordered pairs of real numbers. There is a corresponding isomorphism for R?.
Some important properties of isomorphisms are given in Theorem 4.15.

(a) Every vector space V is isomorphic to itself.
(b) If V is isomorphic to W, then W is isomorphic to V.
(¢) If U isisomorphicto V and V is isomorphic to W, then U is isomorphic to W.

Proof
Exercise 28. [Parts (a) and (c) are not difficult to show: (b) is slightly harder and
will essentially be proved in Theorem 6.7.] m

The following theorem shows that all vector spaces of the same dimension
are, algebraically speaking, alike, and conversely, that isomorphic vector spaces
have the same dimensions:

Two finite-dimensional vector spaces are isomorphic if and only if their dimen-
sions are equal.

Proof

Let V and W be n-dimensional vector spaces. Then V and R" are isomorphic
and W and R" are isomorphic. From Theorem 4.15 it follows that V and W are
isomorphic.

Conversely, let V and W be isomorphic finite-dimensional vector spaces;
let L: V. — W be an isomorphism. Assume that dimV = n, and let § =
{¥vi.v2,...,Vv,} be abasis for V.

We now prove that the set T = {L(v;), L(v2),.... L(v,)} is a basis for W.
First, T spans W. If wis any vector in W, then w = L(v) for some vin V. Since §
isabasisfor V,v = a;vi+a2v2+- - - +a,V,, where the a; are uniquely determined
real numbers, so

L(v) = L{a\vi +avy +--- +a,vy,)
— L(QIV]) 1 L(aevz) e L(auvir)
= a L(v)) + a2 L(v2) + -- - + a, L(v,).

Thus 7" spans W.
Now suppose that

arLivy) +axL(va) + - +a,L(v,) = 0y.

Then L(a;v) + aavy + -+ - + apv,) = Oy. From Exercise 29(a), L(0y) = Oy.
Since L is one-to-one, we get av| + aava + - - - + a, v, = Oy. Since § is linearly
independent, we conclude that ¢y = a» = --- = @, = 0, which means that T is
linearly independent. Hence T is a basis for W, and dim W = n. ]
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As a consequence of Theorem 4.16, the spaces R" and R™ are isomorphic if
and only if n = m. (See Exercise 30.) Moreover, the vector spaces P, and RuH
are isomorphic. (See Exercise 32.)

‘We can now establish the converse of Theorem 4.14, as f