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Lecture # 3 

Control System Representation in Modern Time-Domain 

For the analysis of control systems, mathematical modeling is the first step. Modeling can be 

time domain (differential equations) or frequency domain (s-domain). In fact, the representation 

of control systems by differential equations is referred to as classical time domain. The primary 

disadvantage of the classical time domain approach is, however, limited to LTI systems.  or 

systems that can be approximated as such. A major advantage of s-domain techniques is that they 

rapidly provide stability and transient-response information. A modern time domain 

representation is also frequently used known as state-space representation, applicable to both LTI 

and non-linear systems. 

State Space 

The state-space representation is used for the same class of systems modeled by classical 

methods. In state-space, the state of a system refers to the past, present, and future conditions. 

State-space approach defines set of state variables and state equations to model dynamic systems. 

Some important terminologies used in state-space approach are as follows: 

System variable: Variable that responds to an input or places initial conditions in a system is 

referred to as system variable. Usually quantities that are associated with energy storage devices, 

for example in electric circuits; the inductor current and the capacitor voltage. 

State variables: (phase variables): The state variables of a system are defined as x1(t), 

x2(t),...,xn(t), that determine the state of the system at any time t > t0. At any initial time t = t0, the 

state variables x1(t0), x2(t0), • • •, xn(t0) define the initial states of the system. In physical systems, 

the state variables are those which incorporate change of state and are associated with the 

energy-storage devices. Thus in an electrical circuit, the inductor current and the capacitor 

voltage are the state variables since the voltage and current for these devices exists in derivative 

form, exhibiting a rate of change.  

 

Column and Row Vector: A single column matrix is a column vector whereas a single row 

matrix is a row vector. 

State equations: State equations are a set of n number of first-order differential equations with n 

state variables. 

Output equation: The output equation expresses the output variables of a system as linear 

combinations of the state variables and the inputs. 

The state and output equations can be written in matrix form if the system is linear. The 

state represents the state of energy-storage devices in terms of their currents and voltages for 

electrical system and displacement and velocity for mechanical systems. The state equation can 

generally be written as: 

 
dt

tdx )(
Ax(t) + Br(t)        1 
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Where x(t) are the state variables and r(t) is the input variable. One should not confuse 

the state variables with the outputs of a system. An output of a system is a variable that can be 

measured, but a state variable does not always satisfy this requirement. In the output equation, 

the output quantity is defined in terms of state variables and can generally be written as: 

  )(tc  Cx(t) + Dr(t)        2 

Where:  

x(t) is the state variable 

dt

tdx )(
 is the time-derivative of the state variable 

c(t) is the output variable 

And r(t) is the input variable 

In Eq (1) and Eq (2), the quantities A, B, C and D are space vectors and are expressed in matrix 

form. Thus: 

A = System or evolution matrix (n x n) 

B = Input or control matrix (n x m) 

C = Output or observation matrix (m x p) 

D = Direct transmittance matrix (p x q) 

State-Space Approach 

Our scope for state-space representation will only be confined to electrical systems. The 

modeling of a system using state-space method takes the following approach: 

1. Select all possible system variables and refer them as state variables (those quantities, 

which produce a change of state (input) and those which exhibit state change (inductor 

current and capacitor voltage). 

2. Label each voltage drop with polarity across each passive element and label current with 

direction in each branch. Remember that for voltage drop across each element, the 

direction of current must be from positive to negative terminal of voltage drop. 

3. Relate state variables with state derivatives through the use of KVL and KCL for every 

possible loop and nodes. 

4. For an n
th

-order system, obtain n simultaneous, first-order differential equations in terms 

of the state variables. These simultaneous differential equations are then referred to as 

state equations.  

5. Algebraically combine the state variables with the system's input and find all of the other 

system variables for t > t0. This algebraic equation is referred to as the output equation. 

6. The state equations and the output equations are represented in matrix form. This 

mathematical representation of the system is referred to as a state-space representation. 
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Let us consider an RLC series circuit with a voltage v(t) applied across the combination 

and that the output is taken across the inductor as; inductor voltage vL(t). Let us assume a current 

i(t) flowing in the circuit. The circuit is a single loop and there are no nodes. The equation of the 

circuit through the use of KVL is: 

   dtti
C

tRi
dt

tdi
Ltv )(

1
)(

)(
)(       3 

Remember is state equation there must not be any integral term. But we cannot directly take the 

derivative of both sides in order to get rid of integral will not make sense, since the time-

derivative of the input v(t) is not defined. However, we can replace the current by the time-

derivative of the charge q(t). Thus Eq (3) can be expressed in terms of charge q(t) as: 

  )(
1)()(

)(
2

2

tq
Cdt

tdq
R

dt

tqd
Ltv        4 

But in Eq (4) a second derivative appears, which is also not allowed. Thus we can simply replace 

the integral term directly bu the derivative of current (charge). Eq (3) can then be expressed as: 

  
dt

tdq

C
tRi

dt

tdi
Ltv

)(1
)(

)(
)(        5 

Therefore the state variable in this example are q(t) and i(t), since their derivative exists and that:  

  )(
)(

ti
dt

tdq
          6 

Using Eq (5) can be expressed as: 

  )(
1

)()(
1)(

tv
L

ti
L

R
tq

LCdt

tdi
       7 

Thus the state equations are Eq (6) and Eq (7) can be arranged as one of the state equations in 

matrix form with state derivatives on one side and all the state variables on the other side. 

  


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
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











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































L

tv
ti

tq

L

R

LC
dt

tdi
dt

tdq

1
0

)(
)(

)(
1

10

)(

)(

     8 

The output is vL(t), which is: 
dt

tdi
L

)(
. Therefore substituting the value of 

dt

tdi )(
 from Eq (7) we 

have:  )()()(
1)(

)( tvtRitq
Cdt

tdi
LtvL   

Or   1)(
)(

)(1
)( tv

ti

tq
R

C
tvL 
















       9 
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Thus: A = 















L

R

LC

1
10

, B = 














L

1
0

, C = 







 R

C

1
 and D = [1] 

Let us now consider an RLC parallel combination across a current source i(t) as shown in Figure 

(1) in which all the branch currents are labeled and there is a single node.  

 

Figure 1: RLC Parallel Combination 

Let us assume that the output is taken across the capacitor as a voltage v0(t). The state 

variables in this case are the quantities; inductor current iL(t) and the capacitor voltage vC(t), 

since these quantities exist in derivative forms when defining the inductor voltage and capacitor 

current. In the circuit of Figure (1), applying KCL at the node where the voltage is v(t), we have: 

  )()()()( titititi CLR   

Or  
dt

tdv
Cti

R

tv
ti C

L

)(
)(

)(
)(   

Since the node voltage is appearing as the same across each element connected in parallel, 

therefore this voltage is same as the voltage appearing across the capacitor, which is one of the 

state variables. Thus v(t) = vC(t). Therefore: 

  
dt

tdv
Cti

R

tv
ti C

L
C )(

)(
)(

)(   

Or  )(
1

)(
1

)(
1)(

ti
C

tv
RC

ti
Cdt

tdv
CL

C       10 

Since the other state variable is inductor current, whose derivative, when multiplied with L is the 

inductor voltage is:  

  
dt

tdi
Ltv L

L

)(
)(   

Since the voltage is same across the parallel combination, therefore: vL(t) = vC(t), so that: 
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dt

tdi
Ltv L

C

)(
)(   

Or  )(
1)(

tv
Ldt

tdi
C

L          11 

Eq (4.7) and Eq (4.8) forms one set of the state equations, which can be expressed in matrix form 

as: 
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
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

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C

L

C
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1
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)(
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1
0

)(

)(

     12 

Let us consider the output to be the voltage across the capacitor. Thus: )()(0 tvtv C . So that: 

    0
)(

)(
10)(0 










tv

ti
tv

C

L
       13 

Thus: A = 


















RCC

L
11

1
0

, B = 














C

1
0

, C =  10  and D = [0] 

Example 1: Obtain the state-space representation of the electrical system shown in Figure (2a). 

Solution: We will proceed according to the following steps: 

Step 1: The first step is to define the state variables, which are quantities, associated with the 

energy storage devices and must be those quantities which exist in first derivative form (except 

the forcing function; input). Thus the state variables are: iL(t), vC1(t), vC2(t) and the input is v(t). 

The governing equations for energy-storage devices in derivative form are: 

  
dt

tdi
tv L

L

)(
)(           14 

  
dt

tdv
ti C

C

)(
)( 1

1          15 

  
dt

tdv
ti C

C

)(
)( 2

2          16 

Step 2: In this step all the branch currents and voltages across the energy-storage devices are 

indicated. The labeled circuit diagram of the given system is shown in Figure (2b) where the 

reference node is grounded.  

 



Lecture 3 [DR. MUHAMMAD NAEEM ARBAB] 

 

6 Control System Engineering 

 

 

(a)                                                                  (b) 

 

Figure 2: Electrical System of Example (1)  

Step 3: We require three state equations (equal to the number of state variables) and one output 

equation (equal to the number of output). In state equations, the derivative of the state variable is 

on the LH-side and the state variables on the RH-side. In the all possible loop and nodal 

equations, all the quantities must be written in terms of the state variables. First the loop 

containing the voltage source is considered for the formation of loop equation by applying KVL. 

That is: 

  )()()( 1 tvtvtv CL   

Or  )()()( 1 tvtvtv CL          17 

Let us see whether we can get something in derivative form which can help us to form a state 

equation from the above first loop equation. The LH-side of Eq (17) is the inductor voltage and 

so that Eq (17) can be written as: 

  )()(
)(

1 tvtv
dt

tdi
C

L         18 

In Eq (18) we can see that there is only a state derivative and state variables. Thus Eq (18) is one 

of the state equations. Also by applying KVL to the output loop containing the voltage v0(t) and 

current i0(t), we have:  

  )()()( 201 tvtvtv CC   

Or  )()()( 210 tvtvtv CC          19 

Eq (19) is the output state equation, since every element in the LH side contains only defined 

state variables. Considering node y and applying KCL, we have: 

  )()()( 02 tititi RC          20 
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Where 
1

)()(
)( 0 tvtv

tiR


  and 

1

)(
)( 0

0

tv
ti  . By substituting the expression of iR(t) and i0(t), Eq 

(20) can be expressed as: 

  )()()()( 002 tvtvtvtiC         21 

Substituting the value of v0(t) from Eq (19) in the above Eq (21), we have: 

  )()()]()([)()( 21212 tvtvtvtvtvti CCCCC   

Or  )()(2)(2)( 212 tvtvtvti CCC        22  

Or  )()(2)(2
)(

21
2 tvtvtv

dt

tdv
CC

C        23 

In Figure (2b), applying KCL at node x, we have: 

  )()()( 21 tititi CCL   

Or  )()()( 21 tititi CLC          24 

Substituting the value of iC2(t) from Eq (21) in Eq (24), simplifying and rearranging, we have: 

  )]()(2[)()( 01 tvtvtiti LC   

Substituting v0(t) from Eq (19) in the above equation, we have: 

  )()]()([2)()( 211 tvtvtvtiti CCLC       

Or  )()(2)(2)(
)(

21
1 tvtvtvti

dt

tdv
CCL

C       25 

Eqs (18), (23) and (25) are the state equations, which are re-written as follows: 

  )()(
)(

1 tvtv
dt

tdi
C

L         

  )()(2)(2)(
)(

21
1 tvtvtvti

dt

tdv
CCL

C       

  )()(2)(2
)(

21
2 tvtvtv

dt

tdv
CC

C        

And the output equation is: 

  )()()( 210 tvtvtv CC          
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Step 4: The state equations are finally expressed in state matrix form as: 
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
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


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)(
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)(

2

1

2

1 tv

tv

tv

ti

dt

tdv
dt

tdv
dt

tdi

C

C

L

C

C
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And    ]0)[(

)(

)(

)(

110)(

2

10 tv

tv

tv

ti

tv

C

C

L



















  

Thus: A = 























220

221

010

, B = 

















1

1

1

, C =  110   and D = [0] 

Converting Differential Equation into State Space  

System representation in classical time domain by differential equations can be converted 

to modern time domain (state-space) by using the identity: 
dt

d
s  . The dependent variables and 

defined in terms of state variables and state derivatives. 

Example 2: Represent the given differential equation: )(2)(3
)(

4
)(

2

2

trtc
dt

tdc

dt

tcd
  in state-

space, with c(t) as dependent variable and r(t) as independent variable. Assume zero initial 

conditions. 

Solution: Let us suppose that: c(t) = x1(t), then: 

  )(
)()(

2
1 tx
dt

tdx

dt

tdc
  

And  )(
)()()(

3
21

2

2

tx
dt

tdx

dt

tdx

dt

d

dt

tcd
  

The given differential equation can therefore be written as: 

  )(2)(3
)(

4
)(

2

2

trtc
dt

tdc

dt

tcd
  

Or  )(2)(3)(4
)(

12
2 trtxtx
dt

tdx
  
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Thus the state equations are: 

  )(
)(

2
1 tx
dt

tdx
  

And  )(2)(3)(4
)(

12
2 trtxtx
dt

tdx
  

The state-space representation is: 

  
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

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

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2

0
)(

)(

)(
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)(

)(

2

1

2

1

tr
tx

tx

dt

tdx
dt

tdx

 

And    0
)(

)(
01)(

2

1











tx

tx
tc   

State Space to Transfer Function  

Transfer function is regarded as a powerful tool in many control problems. State space 

representation can be conveniently converted to transfer function. Systems can be conveniently 

modeled by a mathematical expression, known as transfer function. To convert the state-space 

representation into a transfer function, the state equations are re-written in s-domain followed by 

simplification and rearrangement to obtain the ratio of the output to input variable. Consider the 

general form of state equation and output equation.  

  
dt

tdx )(
 Ax(t) + Br(t) 

  )(tc  Cx(t) + Dr(t) 

Taking the Laplace transform of the above equations to express them in s-domain: 

  )(ssX  AX(s) + BR(s)       26 

And  )(sC CX(s) + DR(s)        27 

From Eq (26), we have: 

  X(s)[sI – A] = BR(s)     

Or  )(sX  [sI – A]
– 1

 BR(s)       28 

Where I  is the identity matrix. Substituting X(s) from Eq (28) in Eq (27), we have: 

  )(sC C[sI – A]
–1

 BR(s) + DR(s)
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Or  )(sC  (C[sI – A]
–1 

B + D)R(s) 

The transfer function is then: 

  
)(

)(

sR

sC
 C[sI – A]

 –1 
B + D       29 

Example 3: From the given state representation of the system, obtain the transfer function 

C(s)/R(s). Also obtain the differential equation of the system. 
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

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

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
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And    ]0)[(

)(

)(

)(

001)(

3

2

1

tr
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tx

tc 

















  

Solution: Given that: A 





















523

100

010

, B 



















10

0

0

, C  001  and D = [0] 

Therefore: 
)(

)(
)(

sR

sC
sT C[sI – A]

–1
B + D

  

  sI – A



















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
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
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




















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100

010

00

00

00

s

s

s

 

Or  sI – A 

























523

10
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s

s

s

 

Therefore: [sI – A]
 –1 


























2

2
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)32(3

)5(3

1525
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1
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C[sI – A]
 –1

B
  


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



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








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




10

0

0

)32(3

)5(3

1525

001
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1

2

2
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sss

sss

sss

sss
 

Simplifying: 
325

10

)(

)(
23 


ssssR

sC
       30 

The differential equation can be obtained once the transfer function is known. The transfer 

function is worked out by cross multiplying Eq (30), from which we have: 

  )(10)325)(( 23 sRssssC   

Or  )(10)(3)(2)(5)( 23 sRsCssCsCssCs   

Transforming from s-domain to time-domain by using the identity: 
dt

d
s  , we have: 

  )(10)(3
)(

2
)(

5
)(

2

2

3

3

trtc
dt

tdc

dt

tcd

dt

tcd
      31 

 

 

 


