ENT

Ear consists of 3 parts

- → External ear
- → Middle ear
- → Inner ear

Embryology of Ear

External Ear

- → Pinna is formed from 6 hillocks of his *(1and 2nd Arch)
- → External Auditory Canal: develops from 1st Arch

Middle ear

- → Tympanic membrane develops from all 3 germ layers
- → Middle ear cavity and Eustachian Tube develops from 1st Pouch. (Endodermal in origin)

 Ossicles: It reaches adult size by 15 weeks, and adult configuration by 20 weeks.
- → Malleus and Incus develop from 1st Arch (Meckel's cartilage)
- → Stapes supra structure develops form 2nd Arch (Reichert's Cartilage) Stapes footplate (Medial surface) develops from otic capsule.
- → Inner ear has 2 parts:
 - 1. Bony labyrinth which develops Otic capsule (secondary mesoderm)
 - 2. Membranous labyrinth which develops from the otic vesicle (Surface ectoderm)

Osteology of Temporal Bone

Parts of Temporal Bone

- 1. Squamous → Covers temporal lobe of brain
- Petro mastoid → After Birth differentiate into Petrous and mastoid parts

Petrous part which is on medial surface contains Inner ear Mastoid part consist of Mastoid air cells

- → Largest Mastoid cell is K/as mastoid Antrum
- → Mastoid antrum is of adult size at the time of birth
- → Mastoid process start developing 6 months after birth
- → Mastoid Tip is formed by 2 year of age
- → Mastoid reaches adult size by 18-19 years.
- 3. Tympanic Plate forms EAC and middle ear.
- 4. Styloid process
- → Petrous part and the squamous part in embryonic period has a suture in between than k/as Petrous squamous suture. This suture disappears, after birth if it does not disappear it forms a Korner's septum
- → Above EAC there is bony elevation k/as Supra meatal crest (a/k/as Inferior Temporal line)
- → Supra metal crest, Postero-superior wall of EAC, tangent to posterior wall of EAC and in between there is a Triangle k/as Macewen's Triangle (surgical landmark for mastoid antrum)

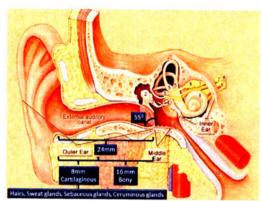
Temporal Bone

Dr. Sarvejeet Singh

Anatomy of Ear External ear

Pinna

- → Tragus: Embryologically develops from 1st Arch
- ightarrow Lobule consist of only Fat, no cartilage in the lobule
- → Cymba concha is the anatomical landmark of mastoid antrum (Surface landmark)
- → Incisura terminalis: Place of Fusion of 1st and 2nd Arch
- → If Incision is given at Incisura terminals we reach bone without cutting cartilage This incision is k/as Lampert's Incision (endaural approach)

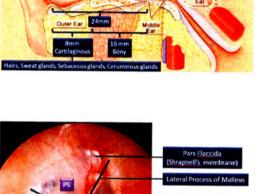

External Auditory canal

24 mm in length lateral $1/3^{rd}$ is cartilaginous(8mm) & inner 2/3rd (16 mm) is Bony.

Cartilaginous Part has hairs, Sweat Gland, sebaceous glands and ceruminous glands

Ceruminous glands are modified apocrine sweat glands.

- → Medial end of EAC has tympanic membrane which form an angle of 55 with the floor of EAC.
- → Antero-inferior wall is longest part of EAC and postero superior wall is shortest wall of EAC.



Tympanic Membrane

- → Trimeric structure
 - upper part is pars flaccida is Shraphell's membrane
 This part has minimum fibrous layers
 Lower part is pars tensa It has all the Germ Layers.
- → Fibrous annulus is formed by fibrous layer of Pars tensa.
- → Umbo: It is most visible anatomical landmark of tympanic membrane
- → It Divides Tympanic membrane into 4 quadrants antero superior; Antero inferior; Postero superior and Postero inferior Cone of light is seen in antero inferior quadrant of Pars tensa
- → Cone of light is present due to handle of Malleous, Antero inferior part becomes Perpendicular therefore cone of light is visible Most reliable landmark of Tympanic Membrane – Lateral Process of malleus

Nerve Supply of Pinna

- → Auriculo temporal Nerve Branch of Mandib ular Nerve
- → CN VII, X Nerve (C2, C3) Supplies choncha
- → Greater auricular Nerve (C2 C)3 is a Spinal Nerve
- → Supplies majority of EAR in medial as well as lateral part of ear.
- → Split lobule is seen due to ear Piercing Rx by Lobuloplasty (Greater Auricular Nerve Block is used)

Greater auricular Nerve is the most common Nerve to get injured during rhytidectomy incision (Face lift incision)

→ It can also be injured during Parotidectomy (modified blare incision) and patient a will have anesthesia in shaving area, lobule, Pinna.

ThickenedGreater Auricular Nerve in

Parotidectomy can also lead to injury to Auriculo – Temporal Nerve which can cause Frey's syndrome

Nerve Supply of EAC

- -> Anterio superior quadrant is supplied by Auriculo Temporal Nerve (Branch of mandibular Nerve)
- → Anterio Inferior Quadrant supplied by Arnold's Nerve Branch of Vagus. Cough reflex during syringing is due to arnold's Nerve
- → Posterio inferior is supplied by c=
- → Postero superior is supplied by Facial Nerve in this region

Absence of sensory supply facial Nerve is k/as hitzelberger sign It is seen in vestibular schwannoma

Nerve supply of Tympanic Membrane Lateral Aspect

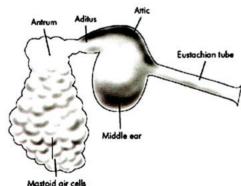
Anterior Half: Aurico-Temporal Nerve

Posterior Half: Arnold's Nerve

Medial Aspect: Jacobson's Nerve (Brach of IX Nerve) Jacobson nerve is Sensory supply to middle ear.

Arnold's

Jacobson's Nerve Glossopharyngeal (IX)


Middle ear

Middle ear cleft: Volume 6 ml

Formed by 3 Parts

Middle ear + Eustachian Tube + Mastoid

Volume: 5 ml (mastoid) + 1 ml (middle ear) = 6 ml

Nerve Supply of EAC

Middle ear

Lateral wall is formed by: Tympanic Membrane + Bony lateral wall of actic Scutum is present

→ Superior wall is k/as Tegmen Superior Buldge on superior wall is arcuate eminence (due to superior semi-circular canal.)

Anterior wall has 2 openings

- → Tensor Tympani
- → Eustachian Tube

Dome of LSCC Facial Nerve (lympanic Segment) Fenestra Vestibuli (Stapes footplate) Posterior Aditus Promontory (basal turn of Cochlea) Fustachian Tube Facial Nerve (Mastoid Segment) Fenestra Cochleae (Secondary TM)

Medial wall

→ Oval window/ Fenestra Vestibule covered by Stapes foot plate.

Round window/ Fenestra conchae covered by secondary tympanic membrane

- \rightarrow Anterior to oval window there is hook for tensor tympani k/as processus cochleariformis Tensor Tympani is supplied by mandibular Nerve Dome of Semi circular Canal \rightarrow M/c site for labyrinthine fistula
- ightarrow Horizontal / tympanic segment of facial Nerve is covered in a bony canal c/as fallopian canal
- → Promontory: Due to Basal (1st) turn of cochlea.
- ightarrow Meso tympanum (2 mm) is narrowest part of middle ear

Posterior wall

- i. Auditus connects middle ear to mastoid
- ii. Vertical segment of facial Nerve

Pyramid: Stapedius is smallest named muscle arizes from Pyramid inserts on stapes and is supplied by $7{\rm th}$ nerve

- → Area medial to facial Nerve is k/as sinus Tympani (M.C site for residual cholesteatoma)
- \rightarrow Area lateral to Facial nerve and above cauda facial angel \rightarrow k/as facial recess (This is area of Posterior tympanostomy)

Floor / inferior wall

Jugular bulb and internal carotid Artery are present below the floorIn between them there is bony crest k/as Carotico Jugular Crest

Phelp sign: Inability to distinguish b/w juglar bulb & carotid artery due to erosion of cortico-Jugular crest seen in CECT of tumor of Jugular bulb (glomus tumor).

Or. Sarvejeet Singh

Eustachian Tube (a/k/as Pharyngo-Tympanic Tube /Auditory tube)

→ Connect the anterior wall of middle ear to lateral wall of Nasopharynx 36 mm in length

Lateral 1/3rd is bony

Medial 2/3rd is cartilaginous

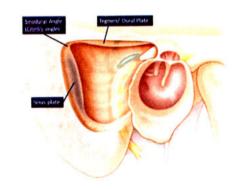
Isthamus: Narrowest part of eustachian tube

Eustachian Tube make angle of 45 to the horizontal line

In case of Neonates Eustachian tube is almost flat and $\frac{1}{2}$ the length (16-18 mm) Therefore Middle ear infection is most common in the children as it can travel from Nasopharynx to middle ear .

i. It maintain the middle ear air pressure equal to outmost pressure

ii. It drains the secretions of middle ear

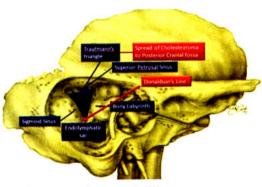

Eustachian tube is normally in a close position and that is because of ostmann of fat

It opens due to action of Tensor Veli palatini (Main dilator of Eustachian tube)

Mastoid Anatomy

3 walls

Ant wall: is same as post wall of middle ear Superior wall of mastoid k/as Tegmen / Dural plate Posterior wall is k/a sinus plate as it cover sigmoid sinus Angle between tegmen and sinus plate is k/as sinodural angel a/k/a citelli angle.

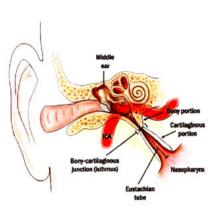


Medial Wall Of Mastoid

Trautmann's Triangle is seen:

Boundaries:

- → Posterior boundary Sigmoid sinus
 Anterior Boundary Bony labyrinth
- → Superior Boundary Superior petrosal sinus


Significance:

This is place where cholesteatoma erodes the Bone and goes into the Posterior cranial fossa.

(Bony labyrinth is formed from otic capsule it is hardest bone in body)

- → Donaldson's line Line drawn along semi circular canal It bisects the Posterior canal
- → It is landmark for endolymphatic sac.

Middle ear ossicles

Type of joint between ossicles: synovial joint b/w Incus &

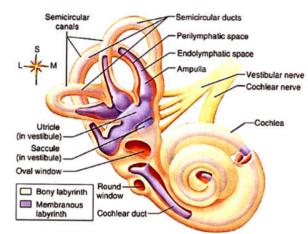
b/w malleus and Incus → Saddle Joint stapes

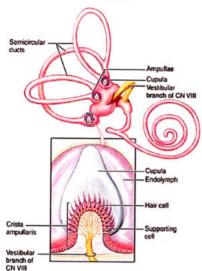
b/w malleus and Stapes → Ball & socket joint

ightarrow First/ M.C common part to undergo erosion – lenticular Process of Incus.

2 m/c → Long Process of incus

Last to undergo erosion is foot plate of stapes.


Anatomy of Inner ear


Inner ear

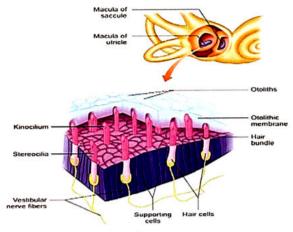
- 1. Bony labyrinth formed from otic capsule.
- 2. Membranous labyrinth formed from optic vesicle. Between Bony labyrinth and Membranous labyrinth there is space filled with Perilymph → K/as Peri lymphatic space. Inside Membranous labyrinth → Endolymph fluid is present - k/as Endolymphatic space

It can also be divided on basis of function

- → Auditory (Hearing)
 Cochlea consists of 2.75 turns around a central Bony axis k/as modulus.
- → Vestibular (balancing)
- → 3 semicircular canals Superior, Posterior and lateral each canal has opening c/as Ampulla Inside Ampule there are hair k/as crista ampullaris
- Crista ampullaris
 Vestibular branch of

→ Functions of cristae ampularis/ cupla ampullaris (semi circular canals) is to detect the Angular Acceleration

Function of utricle and saccule


- → Inside utricle and saccule, there is macula. This macula help in detecting the linear acceleration
- → Utricle help in detecting horizontal linear acceleration
- → Saccule help in detection vertical linear acceleration.

Macula consist of calcium carbonate Crystal on it and forms a layers on hair cells k/as "otoconia" Some otoconia goes in Posterior semi circular canal which leads to development of BPPV.

Benign Paroxysmal Positional vertigo (BPPV)

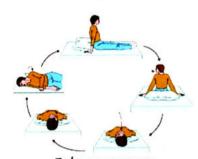
- → Positional vertigo
- → Last for few seconds to minutes
- → It is due to otoconia displaced to Posterior semi circular canal where they are k/as otolith – Condition is k/as otolithiasis

Dik hallpike maneuver

Diagnosis is made by Dix – hallpike maneuver

In this we move the patient in vertical direction check whether patient has nystagmus or not.

Treatment is by Epley's Maneuver


Eley's Maneuver consists of series of steps

First step is same as Dix. Hallpike's make patient go supine

Turn head other side

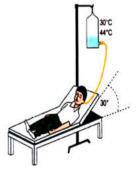
Again roll the body once again by 90 C

Take patient back to sitting position

Epleys maneuver

Test for Vestibular functioning

- i. Caloric Test
- ightarrow Fitzgerald Hallpike Test: Syringing is done with hot (44 C) and cold (30 C) wat (37 ± 7 C)


It produces nystagmus by stimulating lateral semi circular canal(horizontal nystagn

Syringing done with (COWS)

- i. Cold water -> Opposite side Nystagmus
- ii. Hot water → Same side Nystagmus

2. Modified Kobrak Test

Instead of Hot and cold water at O c is used because cold stimulus is strongest stimulus than Warm Temperature.

3. Dundas Grant Test

→ Cold air is used when Syringing is C/I in perforated Tympanic membrane

Cochlea:

Divided into

- a. scala vestibuli
- b. Scala Media a/k/as cochlear duct
- c. Scala Tympani

By 2 membrane

- → Reissner's Membrane
- → Basilar Membrane

Scala vestibule and scala tympani are filled with perilymph

→ In scala Media it is filled with Endolymph

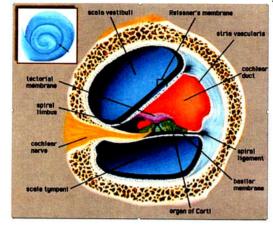
Endolymph is secreted by stria vascularis with help ${}^{\scriptscriptstyle \dagger}$ of ${}^{\scriptscriptstyle +}$

Na+ K+ ATPase pump the endolymph

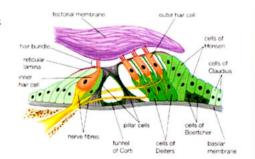
 \rightarrow In endolymph there is \uparrow K and Less Na

Due to high K+ ions, endolymph as Positive potential inside it k/as endocochlear potential.

Scala vestibule and scala tympani communicates with & (RIHL) other at the apex and this communication is k/as Helico-Trema.


- → Scale tympani also communicates with the sub-arachnoid space through cochlear aqueduct so Perilymph is same as CSF/ECF.
- ightarrow Endolymph which is produced by stria vestibularis it is absorbed by the endolympatic sac.

Endolymph is same as Intra cellular fluid.


Organ of Corti

Inside the cochlea there is sensory organ resting on basilar membrane known as organ of Corti.

There are 2 hair cells k/as outer hair cells & Inner hair cells.

Outer Hair cells (mOre)	Inner Hair cells
More in number (13-14 k)	Less in Number (3500)
More in Rows (3-5)	Less in rows (single)
Late development (more time)	Early to develop
More sensitive to ototoxic Drugs, Acoustic trauma (NIHI)	Less sensitive
It produces OAE (OHO-Acoustic emission)	

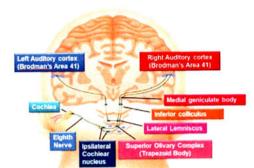
Neuronal Pathway of Sound

E → Eight Nerve

→ Cochlear Nerve (Spiral Ganglion)

O → Superior olivary complex (opposite side)

→ Lateral lemniscus (Largest)


→ Inferior colliculus

M → Medial Geniculate body

A → Auditory cortex (Brodmann area 41)

} Nerve Brain stem

Cerebrum

BINAURAL HEARING

→ One cochlea stimulates both the auditory cortex maximum to opposite side but some goes to same side.

Binaural hearing: sound localization (Head shadow effect)

Middle ear Mechanics:

It is concerned with impedence matching, transferring sound from external environment into the inner ear.

Total surface area of tympanic membrane =90mm2

= 55 mm Effective vibratory area of TM

= 3.2 mm2 Surface area of stapes foot plate

Area ratio:

17:1 1.3:1

Lever ratio:

(Handle of malleus: long process of Incus)

Middle ear transformer ratio:

(22:1)

Total Amplification by Middle ear k/as ossicular coupling

ightarrow Another Function of middle ear is to create a phase difference b/w 2 windows oval window and round window k/as Acoustic coupling Ossicular coupling and Acoustic coupling together help the middle ear to transfer the sound into the

inner ear → Impedence Matching

Inner ear Potentials

1. Endocochlear Potential

DC potential

Due to Na' - K'ATP Pump in stria vascularis

2. Cochlear Microphonics

AC potential

Due to opening of cation channels.

3. Summating potential

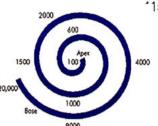
DC potential

Inside hair cells

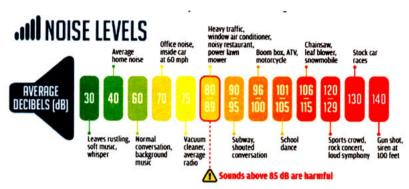
4. Action Potential

8th Nerve Action potential and All or None phenomenon is seen.

Mechanical energy of sound it is converted into electrical energy of the nerve impulse.


Frequency localization in Cochlea

Hearing range (frequency) 20 Hz - 20,000 Hz But each Each part of cochlear has different frequency



→ It is explained by Travelling wave theory. given by Von bekesy.

→ (Nobel Prize in physiology or Medicine in 1961 for this travelling wave Theory 20,000

Speech Intensity

Intensity of sound measured in Decibel.

- Leaves, rustling soft music: 30 Db.
- → Normal conversation between & 45 60 Db.
- Background music: 60 Db (market noise).
- → Sounds > 85 Db becomes harmful.

85 Db x 8 hrs is maximum audible tolerance limit set for industry workers. Industry workers work for 8 hours/day, 5 days/week Otherwise it will cause Noise Induced hearing loss.

If noise is more than 85 db then worker should be provided noise Maskers or protectors

Any exposure > 140 Db even for few milliseconds will cause NIHL

Test of Hearing

1. Tuning Folk Test:

→ The Most Commonly used tuning folk is 512 Hz.

Rinne's Test:

Comparison of air conduction with Bone conduction of same side

AC > BC Rinne's Positive Seen in Normal ear, Sensineural Hearing loss.

BC > AC Negative Rinne's Seen in Conductive Hearing loss

False -ve Rinne's: U/L Severe to Profound sensineural hearing loss 3 tuning folks can be Used for conducting Hearing – 256 Hz; 512 Hz, 1024 Hz

256 Hz	512 Hz	1024Hz	CHL
0	⊕	Φ	20-30 dB
Θ	Θ	Э	30-45 dB
Θ	Θ	Θ	> 45 dB

M.C used tuning folk = 512 Hz Most sensitive tuning folk = 256 Hz

Weber's Test: Most sensitivity Tuning folk test

It changes direction even with 5 Db change in sound levels.

→ 1st test to be checked in Question

Normal = Centralized

It Goes Away in Sensorineural Hearing loss

It Goes Toward in Conductive Hearing loss

eg if Weber Test Sound lateralize to Right

Right CHL / Left SNHL

Absolute bone Conduction / Test

* This Test is Comparison of patient with examiner.

Press Tragus to close air conduction

(Examiner is Normal)

Patient BC = Examiner BC = Normal

Patient BC < Examiner BC: SNHL

Modification of ABC Test is Schwabach's test

In this test external auditory Canal is not closed so it is not absolute bone conduction

→ Air conduction plays a role in this. Schwabach's test can also have 2 similar results as of absolute bone conduction ,but there can be '3 finding also.

Patient BC > Examiner Bone conduction: the patient is having conducting Hearing loss.

Pure tone Audiometry (PTA)

It is used to find out

- (i) Amount (degree of Hearing loss)
- (ii) Type of Hearing loss

Normally, Both AC and BC Curve are near the Zero decibel line.

In conductive Hearing loss, BC is still normal (near zero line) but AC is reduced(air bone gap)

In Sensineural Hearing loss both air conduction and Bone conduction will be reduced.

Ranges of Hearing loss:

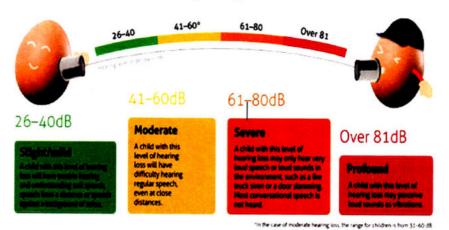
Clarks Classification

-10- +25 dB HL = Normal range

26-40 dB HL = Mild Hearing loss

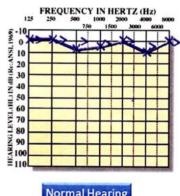
41-55 dB HL = Moderate Hearing loss

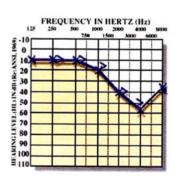
56-70 dB HL = Moderately - Severe Hearing loss


71-90 dB HL = Severe Hearing loss

> 90 dB HL(91) → profound hearing loss

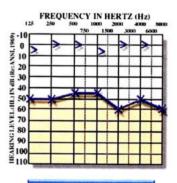
WHO Classification


Hearing loss grades

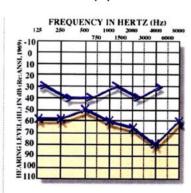

Hearing loss formula

Average Hearing loss: [500 Hz + 1000 Hz + 2000 Hz] ÷ 3 Percentage Hearing loss / Hearing Impairment \rightarrow [Average Hearing loss - 25] x 1.5 = % of loss Hearing disability = $[(\% better ear \times 5) + (\% worst ear)] \div 6 = \% of disability$

Hearing graphs



Normal Hearing


Sensorineural Hearing Loss

Dip @ 4000 Hz → Boiler's Notch Seen in Noise induced Hearing loss This Notch is seen in Bone Conduction

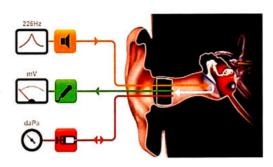
Conductive Hearing Loss

Air Bone Gap present

Mixed Hearing Loss

Both air conduction and Bone conduction has come down but there is also AB Gap. Both components of CHL & SNHL

Impedence Audiometry


It consists of 2 test → Tympanometry and Stapedial reflex / Acoutic reflex Test

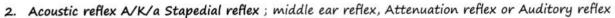
1. Tympanometry

Probe is Placed inside the ear

This Probe consists of 3 Things:-

- · Sound ossilator produces sound @ 226Hz
- Microphone which can detect sound waves coming after reflecting for Tympanic Membrane.
- Pressure probe by which Pressure can be ↓ or ↑

Pressure


Compliance

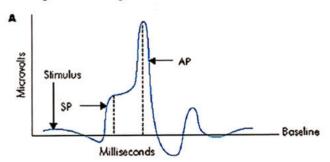
Different curves are obtained

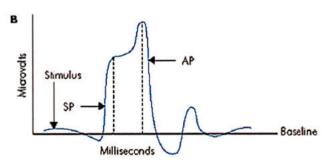
- Normal Curve is K/as A Type curve
 (maximum Compliance of Tympanic Memb. @ O Pressure)
- In case of otosclerosis stapes foot plate get fixed
 Compliance \(\psi \); As Type of curve is obtained
- In case of ossicular discontinuity Tympanic Membrane is able to move freely

Ad Type of curve is seen (Compliance 1)

- In case of fluid in middle ear tympanic Membrane is not able to Flat Curve is obtained B Type
- In case of retracted Tympanic Membrane,
 - → Curve Peek is shifted towards Negative Pressure. C type curve

→ Spadial muscle Contracts in response to loud sound and stops loud sound going to ear and causing Noise induced Hearing loss. It is Protective reflex.


Loud Sound \rightarrow middle ear \rightarrow inner ear(cochlea) \rightarrow VIII Nerve \rightarrow Cochlear Nucleus \rightarrow I/L and C/L Superior olivary complexes

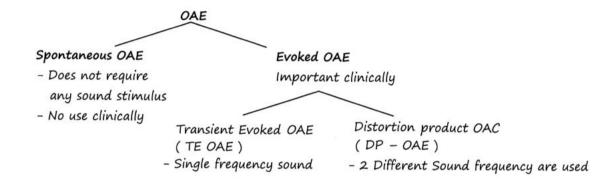

I/L Superior olivary complex \rightarrow I/L facial Nerve Nucleus \rightarrow middle ear (Stapedial muscle contracts) \rightarrow I/L reflex.

C/L Superior olivary Nucleus \rightarrow C/L facial Nerve Nucleus \rightarrow C/L reflex.

Electro cocheography

Normally Summating Potential is less than 30 % of Action Potential SP/AP ratio is < 0.3

In case of Mennier's disease, the Summating Potential is > 70% of A.P

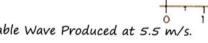

SP/AP ratio > 0.7

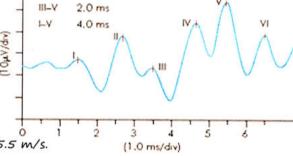
Most Specific Investigation for Meinner's disease

However, it is invasive Investigation, make a hole in tympanic Membrane & Mesaure Potential from round window.

OAE [Oto Acoustic emissions]

Low Intensity sound produced by Outer hair cells in response to sound stimulus.


Transient Evokes OAE is most sensitive test of outer Hair cells.


- OAE Directly coming from outer Hair cells so most sensitive test for detecting Noise Induced Hearing loss as well as ototoxicity
- OAE are used as Screening test for Neonatal Deafness.

BERA (Brain Stem Evoked Response Audiometry) / ABR (Auditory Brain stem response)

- -Wave I → Produced by Distal Part of 8th Nerve
- -Wave II → Produced by Proximal Part of 8th Nerve
- -Wave III → Produced by Cochlear Nucleus
- -Wave IV → Superior Olivary Complex
- -Wave V → Lateral Lemniscus

I, III, V are stable waves

Wave 1@ 1.5 m/s

Difference b/w wave I & wave V = 4 m/s. If >, 4.4 then Retrocochlear Hearing loss.

Confirmatory test for Neonatal Deafness (Best)

- -Wave VI → Inferior Colliculus
- -Wave VI → Inferior Colliculus

Age wise Hearing Assessments Subjective test

Subjective test from Birth - 6 Months = Behavioral Observational Audiometry

6M - 3yrs - Visual reinforcements orientation Audiometry

3yrs-9 yrs - Play Audiometry

Later - Pure tone Audiometry

Objective test:

- Tympanometry
- Acoustic reflex
- Electrocochleography
- OAE
- BERA / ABR
- BERA is also the best test for malingering

Cochlear vs Retero Cochlear Hearing loss

Test	Cochlear	Retro-Cochlear
S.I.S.I	Positive (>70%)	Negative
A.B.L.B <u>Laddergram</u>	Converging	Diverging
Tone Decay	Negative(<25 dB)	Positive (>25dB)
Speech <u>Audiometry</u>	SDS = 60-80%	<40%, Roll over phenomenon
B.E.R.A (Wave V Latency)	= 4.2 <u msec	>4.2 <u>msec</u>

S.I.SI. - Short Increment Sensitivity Index

A.B.L.B. - Alternal Binaural Loudness Balace test.

Both these tests are test of cochlear hearing loss.

They are based on Recruitment phenomenon

Tone Decay, Speech Audiometry, BERA are Reterocochlear Hearing loss

Facial Nerve

3 Nuclei :-

- a. Motor Nucleus (Pons)
- b. Nuclear Tractus Solitarius: Touch
- Nucleus Salivatories Superior is: Secretomotor nerve fibers from Nucleus Tractus Solitaries and Salivatorius Superioris forms Nerve of Wrisberg (Nerves Intermedius)

4 Segments:

- a. Intracranial
- b. Intra Meatal

- c. Intra temporal Fallopian canal (27 mm) Longest Canal for any cranial Nerve
- d. Extra temporal

3rd Segment: Parts

- a. Labyrinthine Shorter(3mm) & Narrowest (.68mm)
- b. Tympanic / Horizontal
- c. Mastoid / Vertical

Branches of facial Nerves:

1st Genu 3 Branches

- a. Greater superficial petrosal Nerve (GSPN):1" branch: Preganglionic Parasympathetic
- b. Lesser Petrosal
- c. External Petrosal

GSPN Combines with Deep Petrosal Nerve (Sympathetic fibres)

1 forms

Vidian Nerve

(Nerve of Pterygoid Canal)

1st Branch (GSPN) Supplies & places

- a. Lacrimal Glands
- b. Nasal Gland
- c. Minor Salivary
- d. Taste in palate

3 Segments gives 3 Important (1st Branch)

- a. 1st Branch: GSPN
- b. 1st Motor Branch: Nerve to stapedius
- c. 1st Embryonic Branch: Chord Tympani

5 terminal Branches

- a. Temporal
- b. Zygomatic
- c. Buccal
- d. Marginal Mandibular
- e. Cervical

Meatal Foramen

Meatal Foramen divided into 2 parts Transverse Crest

Upper Crest is further divided into 2 Parts - ant & Post by a

Verticle ridge of Bone - Bill's Bar

Named after Dr. William House

Dr. William House (father of Neuro-otology)

Anterior to Bill's Bar - Facial Nerve

Posterior to Bill's Bar - Superior Vestibular Nerve

Superior

Superior

Vestbular

People region

Facili nerve region

Thereverse densit

Singular foratrich

Inferior vestbular

Coccision nerve

region

Region

In Inferior part - Posterior side - Inferior Vestibular Nerve & in Anterior side - Cochlear part

Topodiagnostic Tests

1. Schirmers test / Lacrimation / Tear test

Normal: ⊙ve Facial Nerve is Normal till 1st Genu. Abnormal: ⊕ ve : Injury at or above 1st Genu

2. Stapedial Reflex test / Acostic reflex test

Normal:⊕ve: Facial Nerve is Normal till 2rd Genu Abnormal ⊝ve : Injury at or Above 2rd Genu.

3 Taste Test:

Normal: + ve F.N. normal till Stylomastoid foramen Ab Normal: -ve Injury above stylomastoid foramen

4 Submandibular Salivary flow Rate:

Normal: -ve F.N N till stylomastoid formen Abnormal:+ ve injury above stylomastoid foramen

Electrophysiological Testing of facial Nerve

Based on Wallerian Degeneration. Wait for 72 hours before doing Electrophysiological test (Prognostic Test)

if Injury is on face it can be used as topo Diagnostic test.

UMN vs LMN of facial Nerve

LMN lesion: I/L Complete facial palsy
UMN Lesion :C/L lower half facial palsy

Disorders of facial Nerve

Bell's Palsy (M/C)

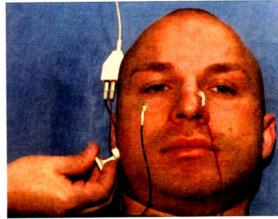
Idiopathic I/L LMN palsy

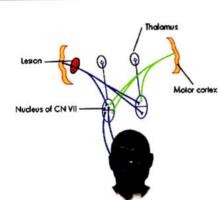
Viral Infection theory: Compression of labyrinthine segment

Tratment:

Steroids, Antiviral (72 hrs) Eye Protection, Physiotherapy

Herpes Zoster Oticus / Ramsay Hunt Syndrome

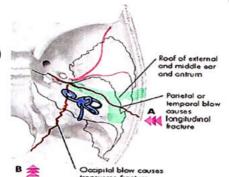

LMN Facial Palsy + Vesicular rash + Otalgia Poor Prognosis as compared to Bell's palsy.


Crocodile tears Syndrome / Bogorad's Syndrome

Injury above 1st Gene

There is criss-crossing of fibres and whenever patient tries to eat, lacrimal gland are stimulated instead of minor salivary glands leading to lacrimation on eating food.

latrogenic Facial Palsy: M/C Cause: Mastoidectomy (vertical segment just after 2rd Gene)



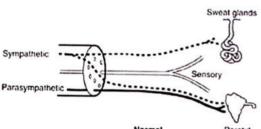
Temporal Bone Fractures

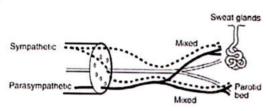
Longitudinal fracture: M.C Common (80%)due to blow from side
Transverse fracture: Occipital blow causes transverse fracture(20%)
Only 10% of Longitudinal fracture have facial Nerve Palsy
In Transverse fracture – 50% have facial Nerve Palsy
Mixed fracture (54%)

Frey's Syndrome :-

(Baillarger's Syndrome, Dupuy's Syndrome, auricotemporal Syndrome, Frey-Baillarger Syndrome)
There is criss crossing of fibres, Aurico temporal Nerve serves as Pathway of travelling of GlossPharyngeal Nerve & Supply Parotid Gland (Parasympathetic fibres)

After the Injury Parasympathetic fibres they get Inter changed and they also start supplying the sweat glands.


So whenever patient tries to eat there is sweating k/a freys syndrome.


This is due to injury to Auriculotemporal nerve

→ Nerve fibres of Glossopharyngeal Nerve (IX CN) are Getting damaged.

Auriculotemporal nerve is a branch of mandibular nerve but it

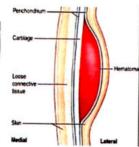
carring the fibres of glossopharyngeal nerve.

Diseases of External EAR

Pinna Hematoma (Cauliflower EAR) (Boxer's EAR)

- → D/t blunt trauma to pinna
- → Collection of blood b/w cartilage & perichondrium

RX → Needle Aspiration → Pressure dressing


Perichondritis of Pinna

→ mc causative organism → Pseudomonas

Rx

- 1. Ciprofloxacin (Antibiotic of choice)
- 2. Analgesics
- 3. 1 & D (Incision & Drainage)

cauliflower ear

Perichondritis of Pinna

Acute Otitis External/ Tropical/ Swimmer's ear

- → Types
 - 1. Localised/furunculosis
 - 2. Diffuse

1. Localised/furunculosis

- → Staph. Aureus infection of hair follicles → furuncle
- → Localised to outer 1/3rd

localized/furunculosis type

2. Diffuse type:

- → mc causative organism → Pseudomonas
- → Severe pain/ excruciating pain
- → Tragal sign → Positive

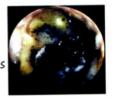
Rx

- → Antibiotics
- → Analgesics
- → 10% Ichthymol glycerine packing

Otomycosis/ Singapore EAR

→ Causative organism

Aspergillus niger (mc) → forms black colonies Aspergillus fumigatus → forms green colonies → forms white colony colonies Candida albicans



Rx → Aural toilet by micro suction

→ Topical antifungal ear drops for 4 weeks

Diffuse type

Aspergillus niger (M/C) Aspergillus fumigatus

Candida albicans

Myringitis Bullosa Haemorrhagica (Bullous Myringitis)/ Hemorrhagic Otitis Externa

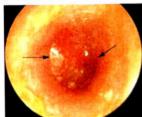
- → Formations of bleeding blebs on tympanic membrane
- → Blood mixed discharge +nt painful, conductive hearing loss
- → Caused by pneumococcus (Strep. pneumoniae)

Rx

Topical Antibiotic

Topical Steroids

Malignant Otitis Externa/ Acute Necrotizing Otitis Externa


- → Malignant → misnomer
- → Rapidly spreading pseudomonas infection in a immune compromised patient

C/F

- → Pain
- → Greenish Black discharge
- → Lateral skull base osteomyelitis
 - Multiple ca palsies (mc → facial N. palsy)
 - Spread to skull bone

via fissures of Santorini (in cartilage)

Diagnostic IOC - bone scan (TC - 99m)

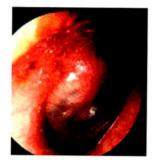
Rx → Ciprofloxacin

Gallium scan (Ga-67) (Prognostic IOC) - non specific

ASOM (Acute Suppurative otitis media)/ AOM (Acute Otitis Media)

Causes

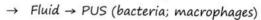
→ Streptococcus pneumonia (mc)


Stages

Stage 1 → Stage of Tubal occlusion

- -> Nasopharyngeal end or cartilaginous end of Eustachian tube is blocked
- → ME pressure decrease

Tympanic membrane is pulled/ retracted


Pain, & Hearing Dull & Luster less, non-shiny TM cone of light absent

stage 1

Stage II →Stage of pre suppuration

- ightarrow serous, mucoid secretion accumulate in ME ightarrow bacteria is present in ME
- ightarrow TM bulges out, Blood vessels becomes prominent ightarrow Cart wheel Appearance Stage III → stage of suppuration

- → Severe pain +nt
- → Tragus sign -ve

O/E: Red congested bulging TM ready to burst

Stage 4: Stages of Resolution

- → MC site of tm perforation → Antero inferior quadrant of pars tensa
- ightarrow After few weeks, perforation heals & hearing becomes Normal
- → A healed TM → Dimeric (No fibrous layer)

Rx

Stage I & II → Antibiotics, analgesics, Nasal decongestant drops

Stage III → Myringotomy (Performed in Postero inferior quadrant)

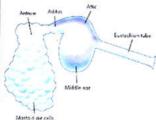
Stage IV \rightarrow 90% \rightarrow leave alone

M/C Complications - Perforation (According to latest Guideline's)

Stage 4

Acute Mastoiditis

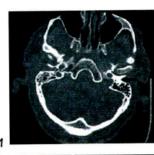
 \rightarrow 2nd mc complication (Infection from middle ear has goes to mastoid)


O/E

- → Ironed out mastoid: Mastoid is red, hot and smooth Battle Sign
- → Hematoma over mastoid d/t fracture middle cranial fossa

stage3

Gresseinger Sign

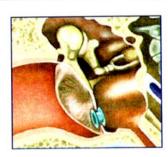

- → Pitting edema over mastoid d/t sigmoid sinus thrombosis
- 2. Coalescent mastoiditis chronic infections in mastoid, leading to

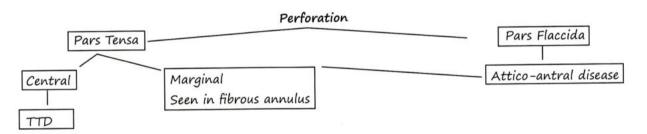
 Clouding and destruction of mastoid air cells (filled with fluid)

 $Rx \rightarrow IV$ antibiotics X 3 weeks (DOC)

Glue EAR/ SOM (Serous otitis Media) (Secretory Otitis media)/ Non-suppurative O.M

- → Long standing collection of serious mucoid fluid middle ear
- → Hearing loss present (CHL 25-30 db AB Gap 1)
- O/E → Fluid filled in middle ear → thin bulging TM with fluid behind TM. Air bubbles, airfluid levels may be seen. Blue TM (Sometimes) also seen in hemotympanum → Laugier's sign (middle cranial fracture; fossa fracture) cholesterol Granuloma Glomus has reddish Blue T.M.




Mx

- 1. Treat the cause
- 2. Myringotomy & grommet insertion in Antero inferior Quadrant

CSOM(Chronic Suppurative Otitis Media) / COM (chronic Otitis media)

- → Tubo Tympanic Disease (TTD)
- → Att o antral disease(AAD)

Tubo Tympanic Disease

Central perforation not involving fibrous annulus.

- \rightarrow CHL (AB gap \rightarrow 10-40 dB) (depends on site & size of perforation)
- → Ear Discharge
 - Mucoid (or) Mucopurulent
 - Non foul smelling
 - Continuous or intermittent
 - Copious in Quantity

It is also called as Mucoid disease

- 1. Active (Discharge coming)
- 2. Inactive discharge (Not coming)

Tubo-tympanic Disease (TTD)

Active → Antibiotics (for Discharge) Myringoplasty (Repair of TM)

Traumatic Perforation	Diseased Perforation
Irregular, rough margins Blood clots around perforation	Circular or kidney shaped with Smooth margins
traumatic perforation	

→Sieve like perforation (Multiple perforations): Seen in TB

Types of Tympanoplasty

Type 1 Tympanoplasty/ Myringoplasty

→ mc used graft → Temporalis fascia

Type II Tympanoplasty

→ Myringoplasty + Ossiculoplasty (Normal middle ear physiology maintained)

Type III Tympanoplasty/ Myringostapediopexy (columella effect)

Type IIIa → Graft directly placed on stapes head

Type IIIb → PORP (Partial ossicular Reconstruction prosthesis)

Type IIIc → TORP (Total ossicular Reconstruction prosthesis)

- → A real ratio is maintained
- → Lever ratio is not present

Type IV Tympanoplasty (Baffle effect)

- → Graft is kept over round window
- → Phase difference present but no amplification

Type V Tympanoplasty/ fenetration operation

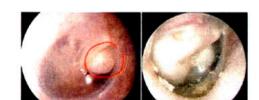
Earlier done for Otosclerosis, now obsolete

Type VI Tympanoplasty/ Sono inversion

→ Graft is placed over oval window phase difference is created, reverse of type IV Tympanoplasty

Attico Antral Disease

Cholesteatoma (Keratoma)


- → Normal keratinized stratified
- → squamous epithelium
- → In abnormal place (middle ear cleft)

Type

- 1. Congenital
- 2. Acquired

Congenital Cholesteatoma

 \rightarrow Epithelium is trapped inside, during or before the formation of middle ear cleft. It look like a bright pearly mass, behind an intact tympanic membrane (No h/o of Tympanic memes perforation)

Congenital Cholesteatoma

Acquired cholesteatoma

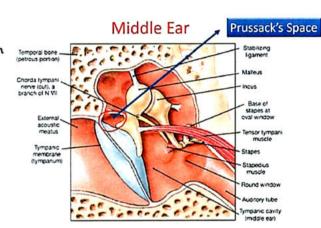
→ Epithelium goes into the middle ear cleft after birth

2 Acquired Cholesteatoma

- → 2 to perforation
- → Migration of squamous epithelium
 - Marginal perforation
- → Squamous metaplasia

1° Acquired Cholesteatoma

Wittmack's Retraction Pocket Theory/theory of Invagination


→M/C formed in Prussack's space in epitympanum

boundaries - Superior → Lateral malleal ligament

- Medial → Neck of malleus
- Inferior → Lateral process of malleus
- Lateral → Pars flaccida & Scutum

Clinical Features

- → Conductive hearing loss (AB Gap 45 db)
- → Discharge → Scanty
 - → Purulent
 - → Foul smelling
 - → Blood stained (due to bone erosion)
 - → intermittent/ continous

Management

Atticoantral disease is classified as squamous disease

- → Active (Discharge)
- → Inactive (Discharge Not present)

1. Treatment

→ Modified Radical mastoidectomy

Mastoidectomy - Types

Simple/ Cortical/ Schwartz Mastoidectomy

- → Just drill in the mastoid
- → Indicated for
 - Coalescent mastoidectomy
 - Cochlear implant

Radical mastoidectomy

Common cavity of mastoid & middle ear is created by removing common wall between the two. Indication → Malignancy

Modified Radical Mastoidectomy

Same as radical mastoidectomy, however conductive hearing apparatus is also preserved, if conductive apparatus has been damaged, it is repaired

Rx of choice for Attico-antral disease

Complications

Chronic Suppurative otitis media (CSOM/SOM) complications

- → Intra cranial
- → Extra Cranial

Intra Temporal

Extra Temporal

Intra Temporal Complications

- 1. Ossicular chain Erosion (mc complication) -CHL.
- 2. Labyrinthitis
 - Serous Labyrinthitis → SNHL reversible
 - Suppurative labyrinthitis → SNHL Irreversible
- 3. Labyrinthine Fistula

mc site → done for lateral semicircular canal

Fistula Sign/ test → pressing on tragus with finger vertigo or nystagmus occurs

True +ve Fistula test → Fistula present, Fistula sign +ve

False -ve fistula test → Fistula present, Fistula sign -ve

Seen in

- → Dead ear
- → Cholesteatoma covering fistula
- → False +ve Fistula test → No fistula
 - → Fistula sign +ve

Seen in

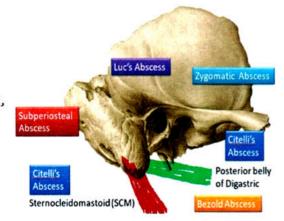
- → Congenital Syphilis \ Hennerbert's Sign
- → Menier's disease

Gradenigo Syndrome (Grade "D")

4. Petrositis

- → Long standing discharge
- → Deep seated retro orbital pain

→ Diplopia of lateral gaze


- d/t lateral rectus palsy
- d/t abducent nerve nerve palsy (6th canal) in Dorello's canal (6th n. canal)

Extra Temporal Complications:

When infection come out of temporal bone it leads to extra

Temporal complications.

Temporal bone on mastoid process there are 2 muscles attached,

on lateral aspect sternocleidomastoid is attached, on medial aspect posterior belly of digastric is attached

1. Post Aural/ Sub Periosteal Abscess IF the cholesteatoma breaks

The mastoid bone and comes out behind the pinna this is k/a Sub periosteal abscess.

- 2. Bezold Abscess if choleasteatoma breaks the bone at the tip of mastoid

 And goes along sternocledomastoid into the neck it is called as bezold abscess
- 3. Luc's Abscess if cholesteatoma breaks the wall of external auditory canal and forms abscees in External auditory canal it is called as luc's abscess.
- 4. Zygomatic abscess if cholesteatoma breaks the root of zygomatic process it is called Zygomatic abscess. It lies anteriosuperior to external auditory canal.
- 5. Citellis's Abscess → IF cholesteatoma breaks the bone medial to mastoid where posterior belly of 1.digastric is attached, it can spread along posterior belly of digastric or spread behind the mastoid

Intra Cranial Complications

- 1. Meningitis (mc)
- 2. Extra Dural Abscess or epidural abscess.
- 3. Sub Dural Abscess
- 4. Brain Abscess: abscess inside brain parenchyma

types

- → Temporal abscess
- → Cerebellar Abscess

Both are seen with csom but temporal abscess is more common

Most common cause of brain abscess is otogenic(ear infections)

Brain abscess can have different stages it starts with stage of encephalitis and then

Stage of latency for next 1-3 days and after that it start expanding in next 3-10 days and there after it undergoes rupture

- 5. Otitic Hydrocephalus (Rarest)
- 6. Sigmoid/ Lateral Sinus Thrombosis

Sigmoid/ Lateral Sinus Thrombosis

Clinical Features

- → Picket Fence Fever
 - Remittent Fever (Fever rises, goes down but never come to Normal)
- → Grieseinger sign → Odema over Mastoid (Emissary Vein Thrombosis)
- → Tobey Ayer/ Queckenstedt Test

Rise in intra cranial pressure when IJV is pressed over normal side

Crow Beck Test

→ Whenever IJV is pressed normal side there is engorgement of retinal veins

CECT/MRI

- → Empty delta Sign elicited
- → Most important sign seen in sigmoid sinus thrombosis.

Otosclerosis

→ Enchondral Bone changes to Spongy bone.

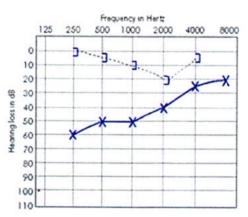
M.C site of formation of spongy bone is at Fistula Ante Fenestrum
It is just anterior to the oval window and that leads to fixation of stapes.

M.C site for fixation of stapes is Anterior 1/3rd or anterior crura
 This spongy bone grows and completely fixes the stapes foot plates
 & results in decreased hearing.

Presentation

- Female Male → 2:1
- 20-30yrs
- The incidences increases during pregnancy
- Autosomal Dominant (50 % positive family history)

Vander Hoeve syndrome: -


(Otosclerosis + osteogenesis imperfecta + Blue sclera)

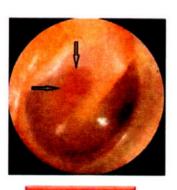
- B/L disease
- Conductive Hearing loss
- Paracusis Willisi (Hear better in a Noisy environment)

O/E

Schwartz sign

→ Flamingo Pink coloured Tympanic Membrane, Seen in early or active phase of disease. a/K/a phase of otospongiosis.

Pure tone audiometry:-

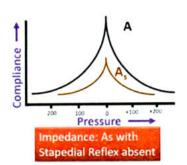

- Ab gap into 60 db seen
- Maxium possible conductive hearing loss that can be seen

Dip in bone conduction @2000 Hz k/as Carhart's notch

Note: -

- This is disease of air conduction, but carhart's notch is in bone conduction @2000 Hz
- Similar dip in bone conduction @ 4000 Hz is seen in Noise induced hearing loss

Schwartz sign



Impedence audiometry →

- As types of curve
- → Spapedial reflex is absent because stapes is fixed

Rx Laser Stapdotomy

A hole is made in stapes footplate & piston placed in it & anchored to Long Process of Incus

Laser Stapedotomy

Glomus tumour

M/C benign tumour of middle ear Age: 40–50 yrs of age group

Female: Male → 5:1

It arises from Para ganglionic cells (Glomus Body)

Glomus tumor can be divided into 2 types

Globus Tympanium

It is arising from the paraganglionic cell which are on the promontory along the course of Jacobson's Nerve (branch of IX Cranial Nerve) Limited to Middle Ear It causes palsy of VII Nerve

Glomus Jugulare

Arises from Dome of Jugular It involves Juglar foramen

Spreads to skull base
Can cause multiple cranial nerve
Palsy (IX, X, XI, Cranial Nerve)
jugular foramen syndrome
(a/k/a Vernet's syndrome)

Clinical Presentation:

Symptoms:

- Conductive Hearing loss
- Pulsatile tinnitus

O/E: Profusely bleeding polyp

Signs:

- Rising sun sign
 Reddish blue tumor rising from hypotympanum
- If juglar vein is pressed the tinnitus will be Improved K/a Aquino sign

Brown Sign: On seigalization, tumour blanches and becomes white.

IOC → CECT

Phelp Sign Seen:

Inability to distinguish b/w Internal carotid artery and Juglar bulb due to erosion of Cartico juglar Crest

10% Rule of Glomus:

- 10% MultiCentric
- 10% Familial
- 10% Secretory (Secrete Catecholamines)

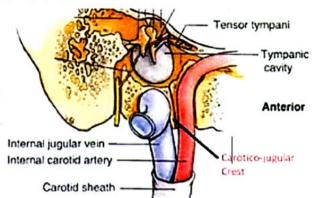
Rxoc-Surgical Excision

Meniere's disease: Endolymphatic hydrops

- · disease of cochlea.
- Endolymphatic hydrops: Endolymph
 Accumulates inside Cochlea leading to bulging of Reissner's membrane. It can burst and there can be mixing of endolymph with Perilymph

- U/L disease
- Affects Male more
- 35-40yrs
- Meniere's disease is triad of mainly 3 symptoms.

Episodic Vertigo Fluctuating Sensineural Hearing loss Tinnitus


Other than this Patient Can also complain of aural fullness

- Tullio Phenomenon:
 Loud noise precipitate vertigo
- · Lermoyez syndrome: variant of Meniere's disease: vertigo relieves sensorineural hearing loss
- Tumarkin crisis
 Sudden fall on the Ground because of the severity of meniere's disease

Investigations:

1. Glycerol test: Glycerol is hygroscopic agent which will absorb water and it will lead to a 10 db ↑ in sensineural hearing loss on pure tone audiometry or 10% improvement in speech speech discriminations score on speech audiometry

It is done Generally in acute attack of Meniere's disease

Pure tone audiometry

In Early meniere's disease, there is rising curve.

In case of late meniere's disease it shows a Sloping curve

Gold Standard investigation -> Electrocochleography

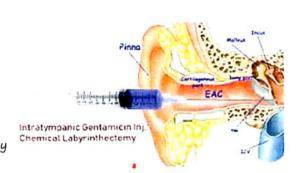
In this Summating Potential is compared with action potential

Sp - > 70% of A.P.

SP/AP ratior > 0.7

Rx: Acute attack of meniere's disease

· Labyrinthine Sedative P.O.C Prochlorperazine, Cinnarizine


Maintain Phase

Medical Management:

- i. Diuretics
- ii. B-Blockers
- iii. Histaminics

Surgical management:-

Conservation Surgery: Endolymphatic Sac decompression
Radical Surgery: Surgical Labyrinthectomy
Gold Standard Treatment in intractable vertigo
(No relief despite all treatment) – Surgical Labyrinthectomy

Nowadays New treatment is available, before going from medical to surgical management

- → Intra tympanic Gentamycin therapy (chemical labyrinthectomy)
- → New method of delivery of Gentamicin to inner ear is Micro wick Microcatheter system (Drug delivery system)
- → Meniett's device: New home treatment device, it is USA FDA device
- → Intermittent low pressure pulse therapy

Vestibular schwannoma:

Earlier k/as Acoustic Neuroma.

→ M/C Benign tumor of CP angle (cerebello pontine angle)

M.C site of origin

- > Schwann cells of inferior vestibular Nerve inside the
- → Internal auditory Canal.

Symptoms

- → U/L slow progressive SNHL (M/C)
- → Tinnitus

Signs

- → Loss of corneal reflex (Vth Nerve involvement)
- → M/C cranial Nerve involve 8th Nerve.

Hitzelberger Sign: Involvement of # cranial Nerve where sensory supply to Postero superior wall of EAC is lost

IOC: Contrast enhanced MRI (Gadolinium contrast)

Treatment

Treatment of Large Tumour

Surgical excision

Treatment of small tumour.

→ 1. Old patient, slow growing tumor

Rx: is Wait and watch

MRI is done every 6th months and observation

→ 2. Young Patient, Fast Growing Tumour

Rx: Gamma Knife Excision/ Cyber knife excision

This is targeted radiotherapy technique a/k/a stereotactic radiotherapy

Neurofibromatosis 2

- \rightarrow NF 2 Gene mutation
- → Produces a tumour suppressor NF-2 Gene k/as Merlin

 Presentation
- → B/L vestibular schwannoma
- → Meningioma's
- → Multi Fibromas
- → Vestibular schwannoma are generally seen in young

Rx: B/L surgical excision

Rehabilitation: Auditory Brainstem Implants (ABI)

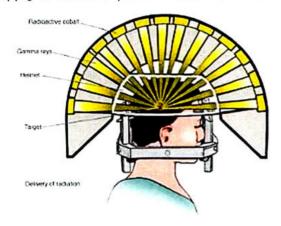
Hearing Devices/ Implants

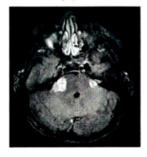
1. Cochlear Implants (Bionic sense organ)

Components

- 1. External Body worn consist of Microphone, speech processor, transmitter.
- 2. Internal implantable component /Surgically implanted Part

consist of receiver/ stimulator and electrode array


Surgically implanted Part consist of receiver/ stimulator and electrode array


→ This electrode array is implanted in the cochlea in scala tympani through round window and stimulate 8th Nerve

Indications

- 1. Severe to profound SNHL: adult with 70 db hearing loss & children > 90 db
 - → Implanted in U/L or B/L profound SNHL
- 2. Poor speech perception: SDS < 20-30%
- 3. No improvement with hearing aids
- 4. Age 1 year or older

Maximum Priority is given to post - lingual deaf - children

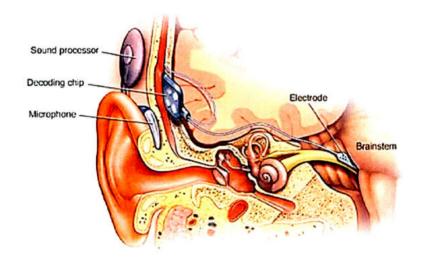
Absolute contraindications of Cochlear implants

- 1. Michel Aplasia: No cochlea
- 2. 8th Nerve aplasia
- **3.** Scheibe Dysplasia: a/k/a cochlea saccule dysplasia. Part of cochlea is damaged.
- 4. Neurofibromatosis Type II with Bilateral vestibular schwannoma
- 5. Pre lingual deaf Patient ≥ 7 Years

Mondinis' dysplasia is not a absolute C/I Mondini's dysplasia is a relative contra indication

abert coches abort vettoda abort vettoda abort vettoda abort vettoda

Michel Aplasia


Scheibe dysplasia

8th Nerve aplasia

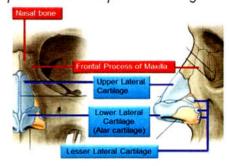
Auditory Brain Stem implant (ABI)

- ightarrow It is used when cochlear implant cannot be used All C/I of Cochlear Implant becomes indications of Auditory Brains stem Implant
- \rightarrow ABI is similar to cochlear implant, only difference is that electrode array is shaped in different way and this is implanted on Cochlear Nucleus (4th Ventricle)

4th ventricle is reached through the foramen of Luschka in the brain stem.

Nose

Externally Nose Consists Of

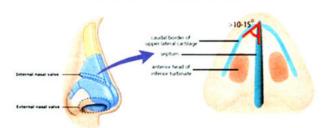

Upper $1/3^{rd} \rightarrow Bony$, made up of nasal bone which is supported by frontal process of maxilla.

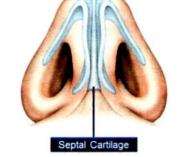
Lower 2/3rd → Cartilaginous, consists of 3 paired and 1 unpaired cartilage

Paired Cartilages

- → Upper lateral
- → Lower lateral (Alar)
- → Lesser lateral / Lesser Alar Cartilage

Unpaired → Septal cartilage





Medial crus of alar cartilage goes inside the septum and it form columellar septum.

Just behind the columellar septum, there is membranous septum, where there is no bone or cartilage and septal piercing is done in membranous septum. lower end of upper lateral cartilage it forms internal nasal valve along with nasal septum.

Internal Nasal Valve

- → The angle b/w the caudal end or lower end of upper lateral cartilage with the septum should be \ge 10-15° for good nasal patency and is k/a minimum angle.
- → Internal nasal valve aka Limen Nasi or Limen vestibuli this leads to 50% of total nasal airway resistance.

Deformities and Diseases of External Nose

<u>Deviated Nose</u> Rx by Rhinoplasty

Crooked Nose
'C' shaped deviation
Rx by Rhinoplasty

Nasal Hump

Rx by reduction

Rhinoplasty

<u>Saddle Nose</u> Rx by Augmentation Rhinoplasty

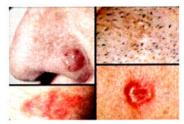
Rhinophyma (Potato Tumor)

- → Tumor word is misnomer because there is no hyperplasia.
- → More common in males, 35 40 yrs
- → There is benign hypertrophy of sebaceous glands
- → There is Lobulated mass of Nose

Rx → Derma Abrasion with CQ laser

Rodent Ulcer (Basal Cell Carcinoma)

Most common skin malignancy


Rhinophyma

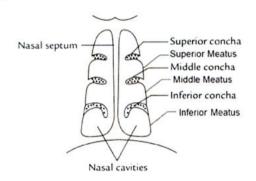
It is generally on exposure to UV rays on skin exposed area such as Dorsum of hand and face It is k/a rodent ulcer because outside appearance is less than what is inside.

- → Locally invasive tumor
- → Distant metastasis is rare

Rx → Wide Local Excision

Rodent Ulcer

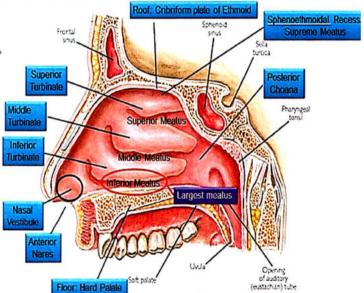
Nasal Cavity


→ Medial wall of nasal cavity is formed by nasal septum.

Lateral Wall

There are 3 Turbinates

- → Superior turbinate / Concha
- → Middle turbinate / Concha
- → Inferior Turbinate / Concha


The space below each turbinate is k/a meatus Below Superior Turbinate there is superior meatus Below Middle Turbinate there is middle meatus Below Inferior Turbinate there is Inferior meatus

Lateral Wall of Nose

- → Roof of Nasal Cavity Is formed by cribriform plate of ethmoid bone
- → Cribriform plate of Ethmoid bone is thinnest bone of body. It is called cribriform because it has holes and through these holes the olfactory nerves fibres pass through.
- → Olfactory nerve fibres are bipolar neurons.
- → Cribriform plate of ethmoid is k/a dangerous area of nose.

Floor of Nasal Cavity is formed by hard palate. Hard palate is formed by 2 bones, maxilla anterior and palatine bone posteriorly.

Anterior Opening of nasal cavity is known as nares through which air enters into nasal cavity. Posterior Opening is k/a choana

Nasal Vestibular

- → In nasal vestibular lot of hairs are present.
- → Any infection by Staph. Aureus is K/a as Nasal Vestibulitis.

Treatment → Systemic antibiotics

 \rightarrow The lower part of nose between 2 naso labial folds and upper lip is k/a dangerous triangle of face.

Infection from dangerous area of face can quickly go to cavernous sinus and can cause cavernous sinus thrombosis

- → The space above the superior turbinate is k/a sphenoethmoidal recess / supreme turbinate.
- → Sometimes 4th turbinate is present in sphenoethmoidal recess k/a supreme turbinate.

Inferior meatus is largest meatus.

Normally NLD Opens into inferior meatus; but after DCR (Dacryocystorhinostomy) NLD opens into middle meatus.

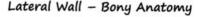
Direction of NLD is

 $N \rightarrow Inwards$

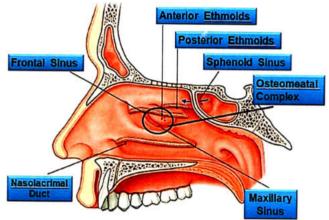
L → Laterally

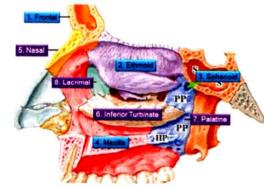
D → Downwards

Middle Meatus

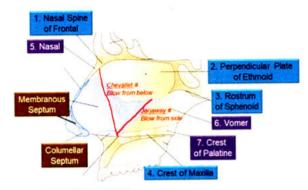

There Is Opening Of

- (i) Maxillary sinus
- (ii) Frontal sinus
- (iii) Anterior ethmoids
- → Ethmoids opening in middle meatus are k/a anterior ethmoids.
- → Ethmoids opening in superior meatus are k/a posterior ethmoids.


Sphenoid Sinus


ightarrow Sphenoid Sinus opens in area that is above the superior turbinate which is k/a Spheno ethmoidal recess / supreme meatus.

Osteomeatal Complex (OMC) \rightarrow Key area on lateral wall where there is opening of maxillary sinus, frontal sinus and anterior ethmoids this is known as 'OMC'.



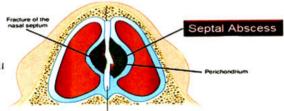
Para Nasal Sinus Bones	Individual Bon
e→ Frontal Bone	→ Nasal Bone
→ Ethmoidal Bone	→ Inferior Turbinate
→ Sphenoid Bone	→ Palatine Bone
→ Maxillary Bone	→ Lacrimal Bone

Bones which do not contribute to nasal septum "Lacrimal Bone" or "Inferior Turbinate"

Bones of Nasal Septum total 7 Bones = 4+3

Para Nasal Sinus Walls	
→ Nasal Spine of frontal bone	→ Nasal bone
→ Perpendicular plate of ethmoid	→ Vomer
→ Rostrum of sphenoid	→ Crest of palatine bone
→ Crest of maxilla	

Vomer \rightarrow It is exclusive to septum it does not contribute to the lateral wall.


Jarjaway fracture. Any Injury of nasal septum such as blow from side cause fracture running parallel to the cartilage vomer junction

Chevallet fracture \rightarrow If the punch is landed on the nose from below there can be fracture running from anterior most point of maxillary crest (Nasal spine of maxilla) upto nasal spines of frontal bone.

Septal hematoma

Collection of blood B/W the cartilage and its mucoperichondrius

→ B/L nasal obstruction

Treatment → Incision and drainage followed by B/L anterior nasal packing

Septal Abscess: If this haematoma get infected, there can be pus between cartilage and mucoperichondrium, it will be k/a septal abscess.

Rx
ightarrow Incision and drainage B/L anterior nasal packing along with IV antibiotics

Most common complication of septal abscess is septal perforation.

Septal Perforation

Most common cause → Trauma

Trauma can be Nose Picking, latrogenic due to chemical cautery or Electro cautery on septum or septal surgery.

Nose picking is type of trauma but however nose picking itself is not a most common cause of septal perforation.

(Nose picking is most common cause for Anterior Epistaxis)

Other Causes

- → Septal abscess
- → Septal piercing
- → Cocaine abuse
- → Granulomatous disorders

Granulomatous disorders are of various types

Cartilaginous

Bony

Both (Cartilaginous Bony)

E.g. TB, Leprosy

E.g. Syphilis

E.g. Wegner's Granulomotosis

Lupus vulgaris

Apple jelly nodules are seen in lupus vulgaris. Lupus vulgaris is mild form of tuberculosis skin lesions.

Blood Supply of Nasal Septum Septum Is Supplied By 5 Arteries

→ Anterior Ethmoidal Artery

→ Posterior Ethmoidal Artery

Branches of Ophthalmic Artery

1

Branch of ICA

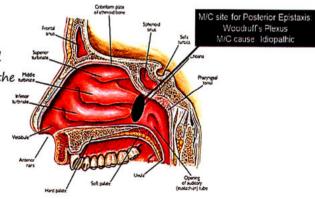
→ Sphenopalatine Artery

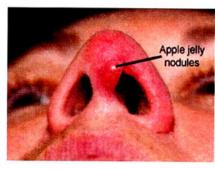
→ Greater Palatine artery

Branches of Internal

Maxillary Artery

→ Septal branch of superior labial artery → Branch of Facial Artery Both facial artery and internal maxillary artery is branch of ECA. Nose is being supplied by Both ICA and ECA systems.


Little's Area


- → In the anterior inferior part of nasal septum there is an arterial plexus formed by 4 arteries.
- → This plexus is k/a Kiesselbach's plexus in the area k/a Little's area.
- → Posterior Ethmoidal Artery does not contribute to Kiesselbach's plexus.
- → Branch of ICA which contribute to the Kiesselbach's Plexus → Anterior Ethmoidal Artery
- → Most common site for epistaxis is Kiesselbach's plexus.
- → Most common cause → Nose picking.

Posterior Epistaxis

→ Most common for posterior epistaxis is area behind the posterior of middle and inferior turbinate on the lateral wall → k/a Woodruff's plexus

→ Most common cause → Idiopathic

Management strategy for epistaxis

Resuscitation

1

Bleeding point visible on anterior Rhinoscopy YES →

Anterior Epistaxis Chemical / Electro cautery

1 NO

Posterior Epistaxis

Treatment of Choice → Endoscopic Electrocautery

↓ Fails/Diffuse bleeding on endoscopy

B/L anterior nasal packing

1 Fails

B/L Anterior packing + Posterior Nasal Packing (Foley's catheter, Bellocq's Pack, gauge peice)

el Liantic

Vessel Ligation

Endoscopic sphenopalatine artery ligation

↓ Not respond

Internal maxillary / Artery ligation

↓ Not respond

External carotid artery ligation

- → Sphenopalatine artery is artery of epistaxis. It is most common artery involved epistaxis and it is first vessel to ligated.
- → Even after EC ligation there is bleeding that is most likely from anterior ethmoidal artery which can be ligated.
- → We never Ligate internal carotid artery.

Hereditary Hemorrhagic Telangiectasia (HHT)/ Osler Weber Rendu disease

Autosomal Dominant Disease. Diagnosis is done by "Curacao Criteria"

Curacao Criteria Consists Of 4 Things (At least 3 criteria out of 4 criteria should be Present to confirm it as a case of Osler Weber Rendu Disease)

- → Spontaneous recurrent epistaxis (H/O of bleeding without any cause, trauma)
- → Multiple Telangiectasia at Lips / Oral Cavity / Figures / Nose
- → Arteriovenous malformation in liver, gut
- → Family history in first degree relatives

Spontaneous Recurrent Epistaxis

Telangectasias at Lips/ Oral cavity/ Fingers/ Nose

Visceral lesions: AVMS

Family History

15- 18 yrs

12 vrs

15 vrs

18 yrs

Ethmoidal Infundibulum

4-5 months

after birth

1 yr

6- 7 yrs

4- 5 yrs

Yes

Yes

Yes

Paranasal Sinus

Development Of Paranasal Sinus

Sequence of development of paranasal sinus

M → Maxillary

E → Ethmoid

 $S \rightarrow Sphenoid$

F -> Frontal

-	-> Frontai			
>	Maxillary sinus, Ethmoid sinus and Sphenoid sinus can	be seen at birth on "CT Scan"		

→ At time of birth frontal is indistinguishable from anterior ethmoids.

On CT scan Frontal sinus can be seen by 1 yr.

Anatomy Of Paranasal Sinuses

- → Bulla ethmoidal belongs to anterior ethmoids.
- → Together frontal, maxillary and anterior ethmoids drains in a space called as Osteo Meatal Complex.

Sinus

Maxillary Antrum Antrum of Highmore

Ethmoid

Sphenoid

Frontal

- → Uncinate process is a part of ethmoid bone and it creates a drainage pathway of maxillary sinus which is K/a Ethmoidal Infundibulum
- → There are cells above and beyond the bulla ethmoidals k/a suprabullar cell.
- → Cells anterior to bulla k/a Agar Nasi Cells
- → It is in close relation to the lacrimal bone.

The cells above the Agar Nasi they start blocking the drainage pathway of frontal sinus and these cells are k/a frontal cells.

There is classification of these frontal cells k/a "Kuhn's Classification".

Type 1 → A single cell above Agar Nasi

Type II → Multiple cells above Agar Nasi

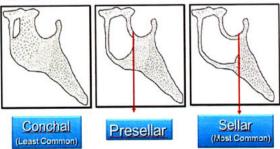
Type III → Cells which goes into frontal sinus

Causes frontal headache (office head ache)

Type IV → Single loner cell deep inside frontal sinus

Anatomy of Sphenoid Sinus


- → Body of sphenoid bone is divided into 2 parts by inter sinus septum
- → In lateral wall of sphenoid sinus there is optic nerve, ICA.
- → Posterior most cell of ethmoid k/a onodi cell lies lateral to sphenoid sinus.
- → So it will lie b/w the sphenoid sinus and optic nerve and that can lead to a damage through optic nerve during surgery.


Sphenoid Pneumatization

4 Types

- 1. Conchal Pneumatization (Least Common Type)
 - → Seen in 1-4 % individuals
- 2. Presellar Pneumatization

The Pneumatization reaches upto anterior wall of sella.

3. Sellar Pneumatization/ Sphenoid Pneumatization (MC)

when Pneumatization goes through floor almost upto posterior wall

- → Seen in 54% cases
- → It is surgical importance during pituitary surgery.

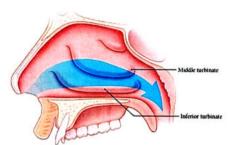
4. Mixed Pneumatization

X Ray Of Paranasal Sinus

- 1. Water's View -> Most common view done for Paranasal Sinuses.
 - Aka occipito mental view (Nose Chin Position)
 - → Best for Maxillary sinus and anterior ethmoids
- 2. Pierre's View → Water's view done with open mouth.
 - → Sphenoid Sinus also seen
 - → Posterior ethmoids are not seen in water's view both with open & close mouth.
- 3. Caldwell's View → aka occipito frontal (Nose forehead position).
 - → Best for frontal & Ethmoidal sinus
- 4. Lateral View → All Sinus are visible

Airflow during inspiration to Nasal Cavity

- → Max Air flow is through middle meatus is in a parabolic curve
- → During the flow of air in inspiration there is olfaction called as orthonasal olfaction which is not very developed due to missing of olfactory fossa


Bernoulli's Phenomenon

Negative pressure in Nasal cavity due to lamellar flow

Air flow during expiration to nasal cavity

During expiration, this air flow is rerotated back and there is creation of Eddie current around the middle Turbinate \rightarrow This help in Aeration of Para-nasal sinus as well as Retero nasal olfaction

Retronasal olfaction is also due to Cranial Nerve 5, 7, 9, 10.

Airflow During Inspiration

Airflow During Expiration

Rhinosinusitis

1. Acute Rhinosinusitis

- → Mc causative agent: Rhino virus
- → Rx: Symptomatic

2. Acute Bacterial Rhinosinusitis

- → Mc cause: Streptococcus pneumoniae
- → Rx: Symptomatic + Antibiotics

3. Chronic Rhinosinusitis

- → > 12 weeks → Chronic Rhinosinusitis
- → Mc causative organism → Staph. Aureus

→ Rx → Culture directed Antibiotics + Nasal Decongestants (Rx of choice)

↓ Not responding

FESS (Functional endoscopic Sinus Surgery)

4. Vasomotor Rhinosinusitis

- → Due to increase parasympathetic discharge there is Non allergic Non infective perineal Rhinosinusitis (Naniper)
- → More common in emotional female
 Rx → Vidian Neurectomy Gold standard Treatment
- 5. Rhinitis Medicamentosa
- → Excess usage of Nasal decongestants for long period of duration which leads to Rebound phenomenon
- \rightarrow Rx \rightarrow Intra nasal corticosteroid spray (D.O.C)
- 6. Allergic Rhinosinusitis

M/c allergen → Carpet dust/ House dust mite

Symptoms:

Intermittent Symptoms (< 4days/ week or < 4 weeks)

– Mild – Moderate - Severe

Persistent Symptoms (> 4 days/week & > 4 weeks)

On Examination

Signs

- → Allergic or Atopic facies mouth breathing
- → Allergic Shiner and Denni morgan lines
- → Allergic salute → Nasal Crease
- → Pale bluish hypertrophied mucosa
- → Confirmed by Skin Prick Test
- → Nasal Allergen challenge/ Provocation test/Inhalation test (Gold Standard)
 - Not commonly done
- \rightarrow Rx \rightarrow Mild Intermittent \rightarrow 2nd generation Non sedative Antihistaminic
- Moderate to severe/ Persistent \rightarrow Intranasal steroids spray is given and if not responds to pharmacotherapy, immunotherapy is given.

Nasal Polyps

Antrochoanal Polyp (AC Polyp)	Ethmoidal Polyp
Starts from Maxillary antrum and goes up to choana	Starts from ethmoidal air cells and goes to Nares
Single, large, Unilateral	Small, multiple, bilateral
Grows posteriorly towards choana	Comes out anteriorly
Seen in children	Seen in Adults

Polyps with Syndrome

- 1. Samter's Traid → Asthma + Aspirin intolerance + Polyps
- 2. kartagener Syndrome → Situs Inversus + Bronchiectasis + Polyp
- 3. Young Syndrome → Azoospermia + Bronchiectasis + Polyps
- 4. Churg strauss Syndrome → Eosinophilic granulomatosis with Polyangiitis
- 5. Nares → Non allergic Rhinitis with Eosinophilia also has Polyps
- 6. Allergic fungal Rhinosinusitis (AFRS) → also has Nasal Polyps

Atrophic Rhinosinusitis (ozaena)

- → Causative agents → Klebsiella ozaenae (Perez bacillus)
- → Young Females of poor socio economic status are affected
- Iron deficiency
- Multi Vitamin (Vitamin D) deficiency
- → Pseudostratified Ciliated columnar epithelium is converted to Stratified squamous epithelium
- → Mc complaint → Nasal obstruction [crust formation]
- foul smell
- Anosmia → Merciful Anosmia

Rx

- 1. Alkaline Nasal Douching [Nacl + NaHco 3+ Na biborate] → Crust softens Klebsiella does not grow
- 2. 25% Glucose in Glycerin (Hygroscopic effect)

Nourishes the columnar cells

- 3. Antibiotics
- 4. Multivitamins (Vitamin D), Fe supplements
- 5. Estrogen Spray
- 6. Kemicetine/ Anti ozaena solution
 - → Chloromycetin/ Chloramphenicol
 - → Vitamin D
 - → Estradiol
- 6 Sx \rightarrow Young's Operations \rightarrow alternative closure of each nasal cavity for 6 months Modified Young's Operations \rightarrow Partially closing both Nasal Cavities.

Rhinoscleroma (Respiratory Scleroma) aka hebra nose

→ Caused by Klebsiella rhinoscleromatis (Frisch Bacillus)

Stages

- 1. Stage of Atrophy (Behaves like Atrophic Rhinitis)
- 2. Stage of Granuloma formation

On histopathological examination Mukulicz cells and Russel bodies are seen which are diagnostic of

Rhinoscleroma

- 3. Stage of Sclerosis/ fibrosis/ Cicatrization
 - → Woody Nose/ Hebra Nose/ Tapir Nose
 - → Woody nose formed in stage 3
 - → Woody induration initially seen in stage 2

Doc → Rifampicin

Rx of choice

- Laser Excision + Base Electro cautery
- → Rhino Scleroma → Disease of Resp. Epithelium
- → New Name Respiratory Scleroma

Rhinosporidiosis

- → Caused by Rhinosporidium Seeberi (It is an Aquatic Protozoa)
- Affects only mucosal surfaces
- → Seen in southern Eastern coast of India, Srilanka & Bangladesh mainly in rural population (Pond Bathing) → Cross infection from animals

- → Strawberry Granuloma is seen
- → Humans are accidental host
 - On HPE Multiple thick walled sporangia

DOC → Amphotericin B/ Dapsone

Rx of choice → Laser Excision + Base electro cautery (Fungal Rhino sinusitis)

Fungal Rhino Sinusitis

Fungal Ball/ Mycetoma/ Aspergilloma

- → MC → Aspergillus Fumigates
- → No invasion, No reaction from nasal mucosa

Rx → Evacuation with FESS

Allergic Fungal Rhinosinusitis (AFRS)

→ Causative agent - Bipolaris (M.C)

Criteria

Bent and Kuhn diagnostic criteria

Major	Minor
Type I Hypersensitivity	Asthma
Characteristic CT finding	Unilateral disease
Eosinophilic mucin without invasion	Bone erosion
Positive fungal stain	Fungal Cultures
Nasal polyposis	Charcot leyden crystals
	Serum eosinophilia

CT Findings

Double Dense Appearance/ Heterogeneous appearance is most characteristic features of Allergic fungal Rhinosinusitis

- → It is due to calcium deposits in fungal hyphae
- → Generally it unilateral but may be Bilateral
- → Bone erosion are seen without invasion

Treatment

- → Functional endoscopic sinus surgery and removal of fungai Double Dense appearance
- → Steroids
- → Immunotherapy

Rhino Cerebral Mucormycosis

- → Caused by Mucor/Rhizopus it is saprophytic organism
- → Acute invasive fulminant fungal disease
- → Seen in Immuno compromised patient especially in Diabetic Patients
- → Necrotizing Vasculitis present

C/C

- → Sudden Blindness
- → Stroke

DOC → Amphoterecin B

- → Surgical Debridement
- → Diabetic Control

Tumors of Nose and Paranasal Sinus

Osteoma

- → Mc benign tumor of PNS
- → Mc site is frontal sinus > Ethmoidal sinus

Rx is endoscopic excision

Inverted Papilloma/ Ringertz Tumor

- → mc Benign tumor of Nasal Cavity
- → Arises from Schneiderian Membrane (specially epithelium on lateral wall) transitional cells epithelium HPE – Shows Infolding inverted papilloma (IOC).

Rx

- → Endoscopic Endonasal Excision → Rx of choice
- → High rate of Recurrence more the recurrence, more the chances of squamous cell CA (- 10% can harbor squamous cell carcinoma)

Squamous Cell CA

- → Mc Para nasal sinus involved → maxillary Sinus
- → Mc malignancy of PNS & Nasal Cavity

Classification

- → Ohngren's line → from canthus to angle of mandible dividing it into supra and Infra structure
- → Supra structure malignancy → Bad prognosis
- → Lederman's classification uses two lines of Sibileau divide into 3 parts
 - Supra structure
 - Meso. Structure
 - Infra structure

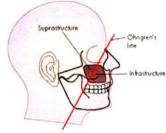
TNM Classification

- T, → Involvement of Sinus mucosa
- T₂ → Involvement of Bone except superior wall of max. Sinus
- T. -> Involves the superior wall or ethmoidal air cells or into subcutaneous tissue
- T₄ → Involves the eye ball, orbit, skin

Rx → Sx + Radiotherapy stage

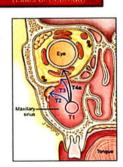
- → T1 T2 stage, surgery only
- → T3 T4 a, b, surgery + radiotherapy

Facial trauma


- → Mc bone to undergo fracture in facial trauma → Nasal Bone
 - Open book deformity
 - Closed book deformity

 $Rx \rightarrow Closed\ reduction$, either done immediately i.e. before the onset of edema or after 4 - 5 days (When the edema subsides).

Zygomatic fracture/ Tripod fracture


- → 2nd most fractured bone in facial trauma
- → Now it is known as Quadripod fracture
- → Malar prominence is lost a/k/a step deformity

Rx → Open reduction internal fixation

Ohngren's Line

Blow Out Fracture

- → Weakest wall of orbit is floor of orbit.
- → Orbital contents hangs in max. antrum is Tear Drop Sign
- → There is entrapment of Inferior rectus muscle so Patient not able to look up confirmed it by forced duction test.
- → Treatment mesh application and reduction of contents

Maxillary fracture/ Le Fort fracture

- → LeFort I fracture/ Transverse fracture (floating Palate Seen)
 - Fracture line runs parallel to hard palate
- → LeFort II/ Pyramidal Fracture (Floating maxilla is seen)
- → Lefort III/ Cranio Facial Dysjunction
 - Most dangerous associated with maximum morbidity
 - Lower part forms Pigs snout Deformity
- → Treatment of LeFort Fracture is open reduction internal fixation

Tear drop sign

Le Fort II

Le Fort

CSF Rhinorrhea

- \rightarrow M/C/C \rightarrow head injury
- → M/c site → fracture cribriform plate of ethmoid
- → Clear watery discharge
 - ↑ on coughing, straining, sneezing, bending forward -> Tea Pot Sign/ Reservoir Sign

Test to differentiate Mucosal discharge from CNS rhinorrhea

- → Sniff Test → can not sniff back CSF
- → Handkerchief Test → not stiffens
- \rightarrow Glucose Test $\rightarrow 2/3^{rd}$ of N Blood Glucose level
 - → 40-60 mg/dL
- → In case of blood mixed with CSF
- 1. Halo Sign/ Double Ring Sign/ Target Sign
- 2. B. Transferrin test
 - Gold Standard for CSF
 - Only found in CSF
- → Gold Standard investigation in CSF Rhinorrhoea
- 1. HRCT of Nose & PNS (to find site of leak) → 1st inv/IOC
- 2. MRI T₂weighted images [MR Cisternography] → can't see both fracture and the CSF at once
- 3. CT cisternography → can see both fracture and the CSF (most specific Investigation)

Management

Conservative Mx

- → Prophylactic Antibiotics
- → Acetazolamide & Wait for 7 days
- → Stool softeners, anti tussive
- → No relief → Lumbar Drain for 2 weeks (Total 3 weeks)
- → No relief → Endoscopic Repair

Spontaneous CSF Rhinorrhea

- → Do MRI, rule out any cause of ICT
- → Endoscopic Repair

Paradoxical CSF Rhinorrhea

- → Fracture in temporal bone (petrous part)
- → Can cause CSF Otorrhea also

Rx → Treatment of fracture of Temporal Bone

Pharynx

Nasal cavity

Hardpalate

Tongue

Epiglottis

Trachea

Extends from skull base to the Esophagus
Nasopharynx → From skull base to hard palate
Oropharynx → From hard palate to hyoid bone
Hypopharynx → From hyoid bone to esophagus

Nasopharynx/ Epipharynx

Eustachian Tube

- → Opens on lateral wall
- → Torus Tubarius Cartilaginous Protrusions

Adenoids

- → Lymphoid tissue on posterolateral wall
- → Nasopharyngeal bursa → midline recess represents the attachment of Notocord in embryonic life **Pharyngeal chordoma** arises from here (M.C. Site). Blockage of Nasopharyngeal bursa leads to collection of secretion in it and forms **Thornwaldt's Disease**.

Rathke's Pouch

- → Place from where pharyngeal mucosa invaginates to form pituitary gland
- → Craniopharyngioma arises from here

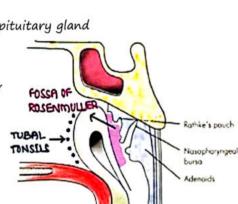
Fossa of Rosenmuller

- → Blind recess in posterior superior to Eustachian tube openir
- -> Mc site for origin of Nasopharyngeal carcinoma

Tubal Tonsils of Gerlach

→ Lymphoid nodules around ET

Diseases of Nasopharynx


Chronic Adenoiditis/ Chronic Adenoid Hypertrophy

→ 3 - 5 years → Growth Starts

5 - 7 years \rightarrow Max. growth

> 7 years -> Growth |

Normal Physiological growth pattern of adenoids

Soft palate

Nasopharynx

Oropharynx

Hypopharynx

sophagus

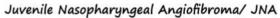
Elongated face with open Mouth pinched nose

Clinical Features

- → B/L Nasal obstruction Mouth breath → High Arched Palate
- → Adenoid Facies

High Arched Palate

Overcrowding of anterior teeth


X - Ray

→ Mass arising from Postero-superior wall of Nasopharynx and Completely blocked Nasopharynx

Rx Management: Adenoidectomy

Indications of Adenoidectomy

- 1. Obstruction
- 2. Adenoid facies
- 3. B/L serous otitis media is seen in some patients
- 4. Recurrent attack of acute otitis media.
- 5. CSOM Associated with chronic adenoiditis
- 6. Recurrent & Rhino Sinusitis

- → mc benign tumor of nasopharynx
- → Site of origin → Lateral nasal wall near spheno palatine foramen & pterygoid base
- → Vascular Tumor
 - mc blood supply of JAF → Sphenopalatine Artery (br. Of Internal max. A).
- → Exclusively seen in adolescent males (Androgen dependent tumor) → 8-22 years
- → No tunica media M/C presentation profuse recurrent epistaxis → anemia
 - Nasal obstruction (1)
 - Swelling in Cheek ⊕

Session Staging

→ Limited to Nasal Cavity/ Nasopharynx Stage i

→ Extension into one or more Paranasal Sinuses. Stage ib

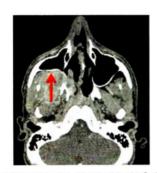
Stage ii a → Lateral extension goes in Pterygopalatine fossa.

Stage ii $b \rightarrow$ Antral sign or extension into orbit

Stage ii C → Goes in Infra temporal fossa

Stage iii -> Goes intra cranially

Dx


- → CECT (1.O.C)
 - Anterior bowing of posterior maxillary wall → ANTRA

/HOLMANN MILLER SIGN

Widening of pterygo palatine tunnel → HONDUSA SIGN

HOLMANN MILLER SIGN

Rx of choice - Endoscopic excision

Nasopharyngeal Carcinoma (NPC)

- → Male, 8 12 years & 60 70 years
- → Common in Chinese
 - EBV association
- → Mc site → fossa of Rosenmuller
- → Mc type → sq. cell CA (> 85%)

Presentation

- → Mc Cervical Lymph Node Metastasis → associated with good prognosis
- → U/L serous otitis media → u/l conductive hearing loss
- → Multiple cranial nerve palsy (earliest 6th nerve) (OI factory N. spared)
 - 5th CN involvement → ipsilateral Trigeminal Neuralgia
 - 10th CN involvent → ipsilateral palatal palsy

TNM Staging

- T₁ → Soft tissue involve of Nasopharynx/ Nose/ Oropharynx
- $T_2 \rightarrow$ Involvement of parapharyngeal space
- T₃ → Skull Base involvement/ involves Para- nasal sinus
- T₄ → Intracranial extension
- $N_{\perp} \rightarrow \text{Tumour} < 6 \text{ cm any one side}$
- N2 → < 6 B/L
- Nza → > 6 cm (Single Node)
- N₃b → Tumor in ho's triangle or supraclavicular fossa

Treatment of NPC

Radio sensitive Tumor: Radio therapy is mainstay t/t in all stages.

Stage 1 & Early Stage 2 → Radiotherapy

Stage 2 late, stage 3 & 4 → Chemo radiation

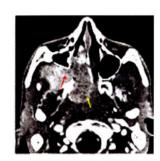
Prognostic Markers → IgA/VCA & IgA/EA

(VCA: Viral Capsid Antigen; EA: Early Antigen of EBV)

IgA/ vCA: Serological screening of NPC

OROPHARYNX

Palatine Tonsils


- → B/L
- → Covered by fibrous capsule & forms crypts
- → Tonsillar bed formed by superior constrictor muscle
- → Peri Tonsillar space → b/w fibrous capsule & sup. Constrictor muscle Infection of Peritonsillar Space → Peritonsillar abscess/ Quinsy

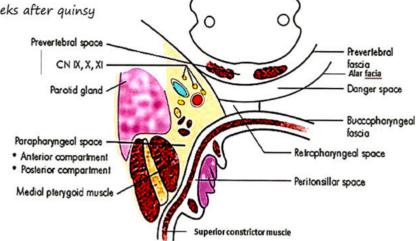
Present with

- Pain in throat
- Fever
- Dysphagia, Odynophagia

0/E:

- Red enlarged congested tonsil pushing soft palate
- Hot potato voice / Muffled voice

HONDUSA SIGN


Trotter's Traid or sinus of morgagni Syndrome

Treatment

- 1. Incision & Drainage
- 2. Antibiotic iv
- 3. Interval Tonsillectomy done 6 weeks after guinsy

DEEP NECK SPACES

Prevertebral space: Space between Vertebra & Pre vertebral fascia. Infection is called as Prevertebral space abscess. It forms a midline swelling in Post Pharyngeal wall.

ightarrow Danger space: Space between Pre vertebral fascia and alar fascia. The Infection from here quickly spread to the mediastinum.

Retropharyngeal Space It is space between Buccopharyngeal fascia and Alar fascia it formed by condensation of buccopharyngeal fascia in midline that leads to formation of Retropharyngeal space on both sides.

Abcess in Reteropharyngeal space will be on posterior pharyngeal wall and it may be on Right side or left side

Parapharyngeal Space

Medial Boundary – Palatine Tonsils, Superior Constrictor muscle, buccopharyngeal fascia

Posteriorly: Pre Vertebral fasia

Lateral: Mandible, medial Pterygoid muscle, Parotid Gland.

If there is Deep lobe Parotid Gland Tumor, it will come in parapharyngeal space.

Parapharyngeal space is divided into 2 compartment.

- Anterior Compartment and posterior compartment
- Anterior compartment has only fat, adipose tissue
- Posterior compartment has important Neurovascular structure Such as internal Juglar vein, Interval Carotid artery, X Cranial Nerve in Carotid Sheath IX, XI, XII cranial Nerve

Anterior compartment abscess → it will push tonsil medially

- → Tonsils are enlarged and they reach midline → Quinsy
- ightarrow Tonsils are pushed to midline ightarrow Δ sis Parapharyngeal space abscess
- → Parapharyngeal space abscess can have Trismus because of involvent of medial Pterygoid muscle.
- → Generally seen in Anterior compartment

Quinsy can also spread to Parapharyngeal space also cause trismus by involving medial Pterygoid muscle.

Blood Supply of Tonsils

Tonsils are supplied by S. Arteries.

- i. Tonsillar Artery (main) → Branch of Facial Arteries
- ii. Ascending Palantine Artery
- iii. Descending Palantine Artery
- iv. Ascending Pharyngeal Artery
- V. Dorsal Lingual Artery

Venous drainage of tonsillitis by Para tonsillar vein

Acute Tonsillitis

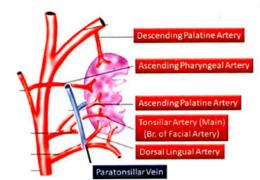
- 1. Acute Catarrhal Tonsillitis When there is viral infection, tonsils are red, congested but they are inside tonsillar fossa.
- 2. Acute follicular Tonsillitis Due to Bacterial infections, Bacteria goes in crypts and there is presence of Pus in crypts openings.
- 3. Acute Parenchymal Tonsillitis Infection in Parenchyma which result in Tonsillar Hypertrophy Grade 4
 Tonsillar Hyper trophy is called Kissing Tonsils
- 4. Acute Membranous Tonsillitis When Pus in Crypt form a Membrane over tonsils.

Causes:

- 1. Acute Tonsillitis
- 2. Faucial Diphtheria
 - → Seen in child 2 3 year age, unimmunized

C/C

- → Fever
- → Throat Pain
- ightarrow Bull neck ightarrow B/L Cervical Lymphadenopathy
 Psudomembrane over tonsils Bleeds on Peeling, dirty Greyish membrane
- 3. Infectious Mononucleosis: Similar Appearance is also seen → Age 20 30 years
 - B/L cervical lymphadenopathy
 - Palatal petechiae
- 4. Candidiasis Immunocompromised/ on inhalational steroids
- 5. Vincent Angina is caused by Borrelia Vincentii (Trench Mouth)
- 6. Aphthous Ulcers Painful, red margins


Chronic Tonsillitis

Irwin Moore Sign

→ Press the anterior tonsillar Pillar, Pus come out of crypts shows there is chronic Bacterial infections inside the tonsils

Management

- → Tonsillectomy
- → Position used Rose Position
- → Cervical Joint & Thoraco Cervical, Joint, both are in extension Indications of Tonsillectomy
 - 1. Recurrent sore Throat:
 - a. ≥ 7 episodes/ 1 year

- b. ≥ 5 episodes/ year for 2 years
- c. ≥ 3 episodes/ year for last 3 years
- 2. Quinsy: Single episode in child
 - 2nd episode in adult
- 3. Obstruction
- 4. Febrile seizures
- 5. Biopsy for Malignancy

Coblation Tonsillectomy (In which radio frequency is used to ionize the Sodium Chloride) Bloodless and Painless

Complication of Tonsillectomy

M.C complication - Hemorrhage

3 Types

- → Primary (Intra operative): M.C source of Primary Haemorrhage is Paratonsillar Vein. It is controlled by suture Ligation
- → Reactionary (Within 24 hours): Reactionary Haemorrhage: because of Slippage of suture Rx: Repeat Ligation. Most dangerous type of Haemorrhage

Secondary (5 - 7 days): Due to Secondary Infection Rx: I/V Antibiotics

2. Pain in ear: due to glossopharyngeal Nerve involvement in tonsillar fossa

Hypopharynx/ Laryngopharynx

- → Wall is made up of inferior constrictor muscle consisting of Thyropharyngeus and Cricopharyngeus
- → Thyropharyngeous is supplied by Superior laryngeal nerve
- ightarrow Cricopharyngeus is Supplied by Recurrent laryngeal Nerve
- → Oblique fibres of thyropharyngeus and Transverse fibres of Cricopharyngeus form a △ space → Killians Dehiscence/ Gateway of Tears
 M.C site for Oesopharyngeal Perforation

Zenkers/ Pulsion Diverticulum

M/C Site: Killian's Dehiscence

Presents with Dysphagia, Halitosis, Regurgitation of old eaten food. It is Pseudo diverticulum

Treatment

Treatment of Choice → (Endoscopic Diathermy/ Dohlman's Operation)

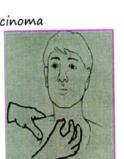
Barium Swallow Dohlman's Operation

Hypopharynx

3 components

- 1. Posterior Pharyngeal
- 2. Post Cricoid Area
- 3. Pyriform Fossa

Plummer Vinson/ Patterson Brown Kelly syndrome


- → Post Cricoid Webs
- → Iron Deficiency Anemia
- → koilonychia
 Post Cricoid Webs lead to development of Squamous Cell Carc<u>i</u>noma

Post Cricoid Carcinoma

2 Signs

- Moure/ Broca's Sign Move the larynx with hand, Crepitus
 is felt normally. But in Post Cricoid Carcinoma Crepitus

 Ont → Muir's Crackle Ont
- 2. Chevalier Jackson's Sign Swelling in Pyriform fossa

Posterior

Pharyngeal Wall

Post Cricoid

Area

yriform Fossa

Chevalier Jackson's Sign

Embryology of larynx

Larynx is formed by 2 arches -

→ 4th Branchial arch and 6th Branchial arch

4th Branchial arch:

Nerve supply: Superior laryngeal Nerve branch of vagus nerve.

It supply cricothyroid muscle – only intrinsic muscle of larynx which is supplied by superior laryngeal nerve

4th Branchial arch + 3 Branchial arch they together they form a Hypobranchial eminence.

Hypobranchial eminence form posterior 1/3 of tongue and epiglottis

4th branchial arch also forms thyroid, corniculate, cuneiform cartilage

6th Branchial arch

Nerve supply: Recurrent laryngeal nerve branch of vagus nerve

→ It supplies all intrinsic muscle except cricothyroid muscle.

6th Branchial arch forms the cricoid and arytenoid cartilag

Cartilages of larynx

3 unpaired cartilage	3 paired cartilage
Thyroid	Arytenoid
Epiglottis	Corniculate
Cricoid	Cuneiform

Front view of larynx

 \rightarrow Any muscle / Membrane/ ligament that is present in b/w 2 cartilage \rightarrow Intrinsic

Any muscle/ membrane/ligament that connects cartilage to external surface = Extrinsic

Thyroid membrane

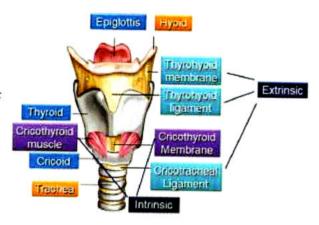
Thyrohyoid ligament

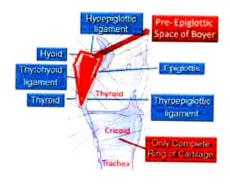
Cricotracheal ligament

Cricothyroid membrane

Cricothyroid muscle

Cricothyroid ligament


extrinsic structure


Intrinsic Structure

Cricothyroid in only intrinsic muscle of larynx which lies on external surface of larynx

Cross section of larynx

- → Cricoid cartilage only complete ring of cartilage in whole human airway
- → Anterior to epiglottic there is space k/a pre epiglottic space of Boyer

Boundaries:

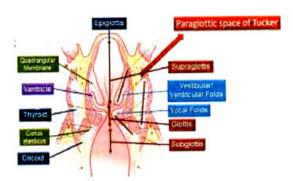
Superior: Hyoepiglottic ligament

Posterior: Epiglottis and thyroepiglottic ligament

Anteriorly: Body of Hyoid, Thyrohyoid ligament and small part of thyroid cartilage

Space is open on 2 sides and communicate with paraglottic space

3 Parts of Larynx:


1. Glottis: part that contain vocal folds

2. Supraglottis: part above the glottis

3. Sub Glottis is formed by a complete ring of cricoids cartilage.
In supraglottis there is vestibular/ ventricular folds

They are called ventricular folds because they enclose a space k/a ventricle.

→ Ventricle is only true space of larynx Rest all are potential spaces.
Inside Vestibular folds there is membrane of k/a Quadrangular membrane.

Boundaries of paraglottic space

Anterior lateral: Thyroid cartilage

Superomedial: Quadrangular membrane Antero medial boundary — conus elasticus

Any Malignancy seen in Paraglottic space of Tucker is Transglottic Malignancy and is considered as t3 stage

Indirect vs direct laryngoscopy

Image: virtual, smaller and inverted Ease of procedure can be done in OPD

Phonation possible (vocal fold movements can be seen)

Patient cooperation is required (cannot be done in children)

Additional procedures like Biopsy cannot be done

Actual larynx seen

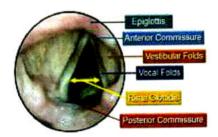
Requires OT

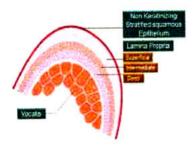
Not Possible (movements cannot be seen)

Not required (can be done)

Can be done

Indirect larygoscopy


→ Glottis is Narrowest part of airway however, in Neonates subglottis is Narrowest In Neonates the larynx is funnel shaped, so subglottis is Narrowest


Layers of vocal folds

layers of vocal fold

i Non keratinizing stratified squamous epithelium shines, reflects back light, stands out so vocal fold are looking different from remaining tissues

ii Lamina propria

Divided In 3 further layers:

- Superficial
- Intermedial
- Deep

iii. Vocalis Muscle

Superficial layer of lamina propria → k/a

Reinke's space

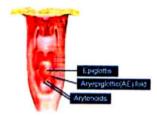
Edema of Reinke's space - Reinke's oedema

Intermediate and deep layers combines to form

vocal ligament.

Laryngeal Inlet

Reinke's oedema


Boundaries

Anteriorly - Epiglottis

Posteriorly - arytenoids cartilage

Aryepiglottic fold in between

Laryngeal Inlet

Nerve supply of larynx

Larynx is supplied by vagus verve (X C.N)

2 Terminal branches

- 1. Superior laryngeal nerve (SLN)
- 2. Recurrent laryngeal nerve (RLN)

Superior laryngeal nerve further divides into 2 Branches

- External laryngeal nerve
- Internal laryngeal nerve

External laryngeal nerve supplies cricothyroid muscle

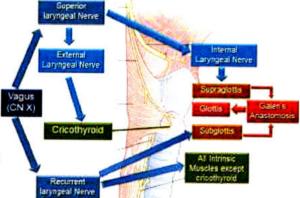
(Only intrinsic muscle, supplied by External laryngeal Nerve)

→ Internal laryngeal nerve give sensory supply to supraglottis

Recurrent laryngeal nerve supplies all intrinsic muscles except cricothyroid.

- Also give sensory supply to subglottis
- At level of glottis internal laryngeal nerve from supraglottis & recurrent laryngeal nerve from subglottis both comes & from Galen's anastomosis

Galen's Anastomosis supply glottis


Muscles of Larynx

All the muscles are adductors except posterior cricoarytenoid (only abductor of Larynx)

Safety muscle of Larynx: Posterior cricoarytenoid

Tensor of vocal folds: Cricothyroid

Relaxer of vocal fold: vocalis (medial fibres of thyroarytenoid)

Diseases of Larynx

- 1. Laryngomalacia
- → Congenital lesions of larynx
- → M.C congenital lesion: Laryngomalacia
- → Child is born with soft cartilages.
- → Inspiratory stridor at Birth (Improves in Prone position)
- → Cry is Normal as expiration is normal

O/E- omega shaped epiglottis

- → RX Conservative Treatment
- → Disappears by 2 yrs of age
- 2. Sub Glottic haemangioma
- → C/F: Inspiratory stridor at 3-6 months of age 50% of patients have cutaneous haemangiomas

Rx - Tracheostomy.

- Co₂laser excision
- Injection of steroids

Membrane formed due to incomplete canalization of airway

C/F: Biphasic stridor from birth

Stridor				
supra glottis	- inspiratory strido			
Glottis & subglottic	– Biphasic stridor			
trachea & bronchi	- expiratory stridor			

M/C Site = Anterior Glottis (1/3rd)

Rx CO2 laser Excision

Infections of Larynx

1. Acute epiglottitis/ Acute supraglottitis

M.C causative organisms -> Haemophilus influenza B

C/C: Fever, Sorethroat, dysphagia, Dyspnoea.

O/E: Tripod sign/ Rising sun sign

IOC: X Ray Lateral View: Thumb sign

Rx: I/V Antibiotics Ceftriaxone (D.O.C) Steroid Nebulisation

2. Acute laryngo Tracheo Bronchitis (Croup)

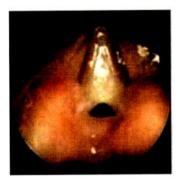
Viral infection caused by parainfluenza type 1 & 2

C/C: fever, Barking cough (croup)

Stridor: Initially it is inspiratory later on become

biphasic, some have expiratory stridor.

IOC X-ray Steeple Sign:


Rx Symptomatic

Laryngomalacia

Sub Glottic hemangioma



Tripod sign

Steeple sign

Steeple sign

3. Laryngeal T.B

- Always associated with pulmonary T.B
- submucosal nodules.

Signs:

- 1. Hyperemia of vocal folds along with incomplete adduction (first/earliest sign)
- 2. Mammillated appearance
- 3. Mouse nibbled appearance
- 4. Turban epiglottis

(Pseudo edema of epiglottis)

RX ATT

Vocal fold palsy

1. U/L external laryngeal nerve palsy:

M.C Cause: Thyroid surgery

M.C Nerve Injured in thyroid surgery is external laryngeal nerve

- There is loss of pitch

Rx: Conservative

2. U/L Recurrent laryngeal nerve palsy

- Right is M.C Injured during thyroid surgery
- Left is M.C injured during cardio-thoracic surgery as it has longer course in thorax

O/C - hoarseness

Vocal ford lie in Paramedian position

Rx: conservative

3. U/L X cranial Nerve palsy

(ELN + ILN + RLN) palsy

→ M.C cause = Surgery

C/C - hoarseness, Aspiration

Vocal folds lie in cadaveric position

Rx Thyroplasty Type I

4. B/L recurrent LN palsy

M.C cause: Thyroid surgery

C/C: Stridor but voice Quality is good

Both vocal folds lie in paramedian position

So airway is inadequate

A/k/as B/L Abductor cord Palsy

Rx Type 2 Thyroplasty

5. B/L superior Laryngeal Nerve Palsy

- MC cause Thyroid surgery
- C/C: severe Aspiration

Gold standard Rx. Intractable aspiration → Tracheal separation & Permanent Tracheostomy

Thyroplasty

Given by Isshiki

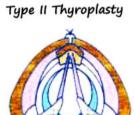
Type I Thyroplasty: a/k/as medialization/ Approximation

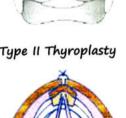
Type II Thyroplasty: a/k/as lateralization/ Expansion

Type III Thyroplasty: a/k/as shortening/ Relaxation

Type IV Thyroplasty: a/k/as lengthening / tensioning thyroplasty

Done in RLN + SLN palsy


→ Done is B/L RLN Palsy


Done in puberphonia

Type I Thyroplasty

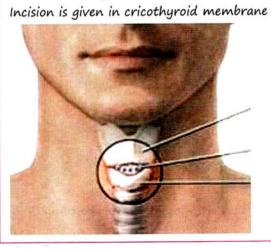
Type III Thyroplasty

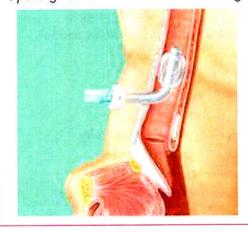
Type IV Thyroplasty

Cricothyrotomy vs Tracheostomy

Cricothyrotomy

Done in emergency


Outside the hospital


→ Done in Androphonia

Tracheostomy

Done in emergency / planned In the hospital

Opening b/w 2nd and 3rd Tracheal ring

High Tracheostomy

Tracheostomy done B/W 1st and 2nd Tracheal ring Done in Ca larynx

Benign lesions of larynx

Vocal Nodule / singer's nodules/ screamer's nodule.

- It is due to chronic misuse of voice

C/C - Hoarsness of voice

O/E: B/L symmetrical,

Vocal nodule is sessile on free margin

It is present at Junction of Anterior 1/3rd and posterior 2/3rd (area of maximum vibration)

Rx speech therapy

- Proton pump inhibitors

2. Vocal polyp

It is due to sudden vocal abuse

C/C hoarseness, Diplophonia

O/E: U/L Pedunculated, mobile at

Anterior 1/3rd and posterior 2/3rd of vocal cords

Rx: Microlaryngeal surgery

Causative organisms: HPV 6 and 11

Acquires HPV during birth from

mother's Genito urinary Tract.

Age 3-4 year child born to primi gravida mother

C/C: Stridor/ hoarseness

O/C: B/L Multiple Papillomas, very high recurrence after surgical exision

Rx: Excision by microdebrider

Medical Rx: Interferon α (to reduce the recurrence)

Carcinoma larynx

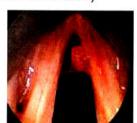
M/C Type - Squamous cell carcinoma

M.C site: Glottis

Best prognosis

Ca Glottis: M.C presentation - Hoarseness (best prognosis)

Ca supraglottis: M.C presentation – Foreign body sensation


Ca Subglottis: M.C presentation - Stridor, Poor prognosis

TNM Staging for glottis Carcinoma

Ti- Normal vocal fold

Tz Impaired vocal fold motility

Vocal polyp

JORRP

T3 Fixed vocal folds or 3p - pre-epiglotic

- Para epiglotic
- Post Cricoid area

T-Outside larynx

T4a - Anywhere in neck except T4b

T46-

- Superior mediastinum
- Prevertebral space
- Encases carotid Artery

TNM staging for supra glottic carcinoma

T. → 1 subsite

 $T_2 \rightarrow > 1$ Subsite mucosa of base of tongue or

T3→ vocal fold palsy

T₄→ outside larynx

Treatment for Ca Glottis:

- T1/T2- Stage – Radiotherapy

T₃ - CCRT (concurrent chemo radiotherapy)

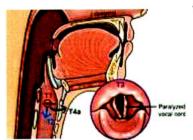
 T_{4a} Stage combined (surgery + Radiotherapy \pm chemotherapy)

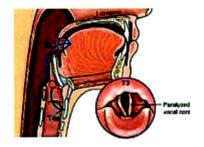
T46 Stage: Palliative therapy

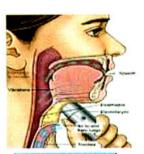
In T₂Stage if malignancy is on Anterior commisure → Staged as T.₂But it is treated as T4a

Post laryngectomy voice rehabilitation:

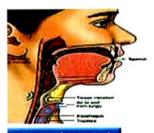
1. Electrolarynx

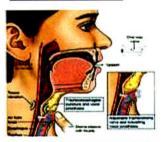

Small hand held device - easy to use


2. Oesophageal speech


Patient swallows the air in to esophagus and brings it out to phonate

3. Tracheo-oesophageal speech


Consists of one way valve c/as trachea esophageal voice prosthesis (TEP) Placed b/w Trachea and esophagus Best way for voice rehabilitation



Electrolarynx

Oesophageal speech

Tracheo-oesophageal Speech