

Chap No.6 SOLIDS

Types	Constituent particles	Nature of forces	Melting point	Bond energy (kJ/mol)	conductivity	Examples
Ionine	Cations and anoins	Ionic	Very high	400-4000	Conductor	NaCl,CaO,KNO ₃
Covalent	Atoms	Covalent	Extremely high	150-500	Insulators	Diamond , SiO,SiO ₂ , silicon, crystal
Molecular	Molecules	Vander waal	Lowest	Low	Insulators	I ₂ , S ₈ , ice, dry ice
Metallic	Atoms	Metallic bond	High	80-1000	Conductors	Cu, Au, Ag alloys

Solid and its types

Types of solids

- 1. Crystalline / true solids
- 2. Amorphous solids/ super cooled liquids

Crystalline solids are also called True solids

- Amorphous solids are also called Super cooled liquids
- 2. Crystalline solids have definite Geometrical shape and their particles are Arranged properly
- Amorphous solids have no definite shape and its particles are packed together without Proper arrangement
- 4. NaCl, CaCO3, CaO, CuSO4, 5H2 O, Graphite and Diamond etc are. Crystalline solids
- 5. Glasses, Plastics, Rubber, Coal, Tar and Gemstone are Amorphous solids

Amorphous solids are made by silicates fusing with

- 6. Borax oxide
- Aluminium oxide
- Phosphorous pentaoxide
- Q.

Properoties of crystalline solids

- Symmetry
 - Plane of symmetry >1
 - Axis of symmetry >1
 - Centre of symmetry = 1
- 2. Geometric shape
- 3. Melting point
- Cleavage plane
- Habit of crystal
- Crystal growth
- Anisotropy

Symmetry

10. Plane of symmetry can be More than 1 11. Axis of symmetry can be More than 1

12. Centre of symmetry can be Only 1

Geometrical shape

13. Grinding to a very fine powder, crystalline solids still retain their specific Geometrical shape

PAGE: 62

Melting point

14. The temperature of crystalline solids remain constant until all particles Become mobile

Cleavage plane

 The magnitude of interfacial angles after cleavage has taken place is always Different for different solids

Habit of crystal

16. NaCl has a Cubic Habit

Crystal Growth

- NaCl will grow in one dimension (needle like) if % of urea present is 10%
- Crystalline solids have anisotropic behavior because of Regular particles arrangement

POINT

Remember the examples fo isomorphs and their corresponding structure.

Isomorphism

NaCl - MgO	Cubic structure
ZnO - CdS	Hexagonal
KNO3 - NaNO3 - CaCO3	Rhombohedral

- 19. Physical properties of isomorphs are Different from each other
- 20. Existence of more than two compounds in one crystalline form

Isomorphism

Polymorphism

 Existence of one compound in more than one crystalline form Polymorphism

KNO3 - AgNO3	Rhombohedral + orthorhombic
CaCO ₃	Trignol + orthorhombic

POINT

Remember the examples of polymorphs and their structures.

Allotrophy

- 22. Existence of one element in more than one crystalline form Allotrophy
- 23. Sulphur exist in two allotropic forms Rhombohedral and monoclinic

Suphur	uphur Rhombohedral and monoclinic	
Oxygen	O2 and O3	
Carbon	Diamond, graphite and bucky balls	
Tin	Grey tine cubic and white tin tetragonal	

POINT ember the example

Remember the examples fo allotrphy and their allotrphic forms.

Transition Temperature

Chap No.6 SOLIDS

Types	Constituent particles	Nature of forces	Melting point	Bond energy (kJ/mol)	conductivity	Examples
Ionine	Cations and anoins	Ionic	Very high	400-4000	Conductor	NaCl,CaO,KNO ₃
Covalent	Atoms	Covalent	Extremely high	150-500	Insulators	Diamond , SiO,SiO ₂ , silicon, crystal
Molecular	Molecules	Vander waal	Lowest	Low	Insulators	I ₂ , S ₈ , ice, dry ice
Metallic	Atoms	Metallic bond	High	80-1000	Conductors	Cu, Au, Ag alloys

Solid and its types

Types of solids

- 1. Crystalline / true solids
- 2. Amorphous solids/ super cooled liquids

Crystalline solids are also called True solids

- Amorphous solids are also called Super cooled liquids
- 2. Crystalline solids have definite Geometrical shape and their particles are Arranged properly
- Amorphous solids have no definite shape and its particles are packed together without Proper arrangement
- 4. NaCl, CaCO3, CaO, CuSO4, 5H2 O, Graphite and Diamond etc are. Crystalline solids
- 5. Glasses, Plastics, Rubber, Coal, Tar and Gemstone are Amorphous solids

Amorphous solids are made by silicates fusing with

- 6. Borax oxide
- Aluminium oxide
- Phosphorous pentaoxide
- Q.

Properoties of crystalline solids

- Symmetry
 - Plane of symmetry >1
 - Axis of symmetry >1
 - Centre of symmetry = 1
- 2. Geometric shape
- 3. Melting point
- Cleavage plane
- Habit of crystal
- Crystal growth
- Anisotropy

Symmetry

10. Plane of symmetry can be More than 1 11. Axis of symmetry can be More than 1

Types of crystalline solids

Ionic crystal	Long range, Never exist in liquid or gas, Soluble in polar, NaCl, MgO ,NaBr
Metallic crystal	Malleable → sheets, Ductile → wires, Only few are soft, Copper, iron, aluminium, sodium, silver
Covalent crystal	isoluble in polar Diamond, carborundum, silicon carbide
Molecular crystal	Tightly packed patters Soft May be:Polar (sugar and ice) or Non-polar (solidified noble gas, CO ₂ , S, P and I)

- NaCl, MgO and NaBr are Ionic crystals
- 47. Diamond, Carborundum and Silicon carbide are Covalent crystals
- 48. Copper, Alluminium, Silver, Iron and Sodium are Metallic crystals
- Ice and Sugar are Polar molecular crystals
- Carbondioxide, Sulphur, Phosporus, Solidified noble gases and Iodine are molecular crystals

 Non-polar
- The melting point of Ionic crystals, Covalent crystals, Metallic crystals are high while Molecular crystals have High meting point
- 52. The Ionic crystals, Covalent crystals, Metallic crystals are hard while Molecular crystals are Soft
- 53. The Ionic crystals are soluble in Polar
- The Covalent crystals are soluble in Non-polar
- 55. The Molecular crystals are soluble in Non-polar
- 56. Ionic crystals are Do not conduct heat and electricity
- 57. Covalent crystals are Poor conductors of heat and electricity
- 58. Metallic crystals are Good conductors of heat and electricity
- Metallic crystals Ductile and Malleable
- Because of the polar nature of molecule and presence of strong hydrogen bonding, ice has high value of Heat of fusion
- 61. Molecular crystals are soft and have low melting points.
- 62. Ionic, covalent and metallic crystals are hard and have high m.ps