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A Note To The Instructor...

The solutions here are somewhat brief, as they are designed for the instructor, not for the student.
Check with the publishers before electronically posting any part of these solutions; website, ftp, or
server access must be restricted to your students.

I have been somewhat casual about subscripts whenever it is obvious that a problem is one
dimensional, or that the choice of the coordinate system is irrelevant to the numerical solution.
Although this does not change the validity of the answer, it will sometimes obfuscate the approach
if viewed by a novice.

There are some traditional formula, such as

v2
x = v2

0x + 2axx,

which are not used in the text. The worked solutions use only material from the text, so there may
be times when the solution here seems unnecessarily convoluted and drawn out. Yes, I know an
easier approach existed. But if it was not in the text, I did not use it here.

I also tried to avoid reinventing the wheel. There are some exercises and problems in the text
which build upon previous exercises and problems. Instead of rederiving expressions, I simply refer
you to the previous solution.

I adopt a different approach for rounding of significant figures than previous authors; in partic-
ular, I usually round intermediate answers. As such, some of my answers will differ from those in
the back of the book.

Exercises and Problems which are enclosed in a box also appear in the Student’s Solution Manual
with considerably more detail and, when appropriate, include discussion on any physical implications
of the answer. These student solutions carefully discuss the steps required for solving problems, point
out the relevant equation numbers, or even specify where in the text additional information can be
found. When two almost equivalent methods of solution exist, often both are presented. You are
encouraged to refer students to the Student’s Solution Manual for these exercises and problems.
However, the material from the Student’s Solution Manual must not be copied.

Paul Stanley
Beloit College

stanley@clunet.edu
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E25-1 The charge transferred is

Q = (2.5× 104 C/s)(20× 10−6 s) = 5.0× 10−1 C.

E25-2 Use Eq. 25-4:

r =

√
(8.99×109N·m2/C2)(26.3×10−6C)(47.1×10−6C)

(5.66 N)
= 1.40 m

E25-3 Use Eq. 25-4:

F =
(8.99×109N·m2/C2)(3.12×10−6C)(1.48×10−6C)

(0.123 m)2
= 2.74 N.

E25-4 (a) The forces are equal, so m1a1 = m2a2, or

m2 = (6.31×10−7kg)(7.22 m/s2)/(9.16 m/s2) = 4.97×10−7kg.

(b) Use Eq. 25-4:

q =

√
(6.31×10−7kg)(7.22 m/s2)(3.20×10−3m)2

(8.99×109N·m2/C2)
= 7.20×10−11C

E25-5 (a) Use Eq. 25-4,

F =
1

4πε0
q1q2

r2
12

=
1

4π(8.85×10−12 C2/N ·m2)
(21.3µC)(21.3µC)

(1.52 m)2
= 1.77 N

(b) In part (a) we found F12; to solve part (b) we need to first find F13. Since q3 = q2 and
r13 = r12, we can immediately conclude that F13 = F12.

We must assess the direction of the force of q3 on q1; it will be directed along the line which
connects the two charges, and will be directed away from q3. The diagram below shows the directions.

F 12

F
23

F
23

F 12

θ

F net

From this diagram we want to find the magnitude of the net force on q1. The cosine law is
appropriate here:

F net
2 = F 2

12 + F 2
13 − 2F12F13 cos θ,

= (1.77 N)2 + (1.77 N)2 − 2(1.77 N)(1.77 N) cos(120◦),
= 9.40 N2,

F net = 3.07 N.
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E25-6 Originally F0 = CQ2
0 = 0.088 N, where C is a constant. When sphere 3 touches 1 the

charge on both becomes Q0/2. When sphere 3 the touches sphere 2 the charge on each becomes
(Q0 +Q0/2)/2 = 3Q0/4. The force between sphere 1 and 2 is then

F = C(Q0/2)(3Q0/4) = (3/8)CQ2
0 = (3/8)F0 = 0.033 N.

E25-7 The forces on q3 are ~F31 and ~F32. These forces are given by the vector form of Coulomb’s
Law, Eq. 25-5,

~F31 =
1

4πε0
q3q1

r2
31

r̂31 =
1

4πε0
q3q1

(2d)2
r̂31,

~F32 =
1

4πε0
q3q2

r2
32

r̂32 =
1

4πε0
q3q2

(d)2
r̂32.

These two forces are the only forces which act on q3, so in order to have q3 in equilibrium the forces
must be equal in magnitude, but opposite in direction. In short,

~F31 = −~F32,
1

4πε0
q3q1

(2d)2
r̂31 = − 1

4πε0
q3q2

(d)2
r̂32,

q1

4
r̂31 = −q2

1
r̂32.

Note that r̂31 and r̂32 both point in the same direction and are both of unit length. We then get

q1 = −4q2.

E25-8 The horizontal and vertical contributions from the upper left charge and lower right charge
are straightforward to find. The contributions from the upper left charge require slightly more work.
The diagonal distance is

√
2a; the components will be weighted by cos 45◦ =

√
2/2. The diagonal

charge will contribute

Fx =
1

4πε0
(q)(2q)
(
√

2a)2

√
2

2
î =

√
2

8πε0
q2

a2
î,

Fy =
1

4πε0
(q)(2q)
(
√

2a)2

√
2

2
ĵ =

√
2

8πε0
q2

a2
ĵ.

(a) The horizontal component of the net force is then

Fx =
1

4πε0
(2q)(2q)
a2

î +
√

2
8πε0

q2

a2
î,

=
4 +
√

2/2
4πε0

q2

a2
î,

= (4.707)(8.99×109N ·m2/C2)(1.13×10−6C)2/(0.152m)2 î = 2.34 N î.

(b) The vertical component of the net force is then

Fy = − 1
4πε0

(q)(2q)
a2

ĵ +
√

2
8πε0

q2

a2
ĵ,

=
−2 +

√
2/2

8πε0
q2

a2
ĵ,

= (−1.293)(8.99×109N ·m2/C2)(1.13×10−6C)2/(0.152m)2ĵ = −0.642 N ĵ.
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E25-9 The magnitude of the force on the negative charge from each positive charge is

F = (8.99×109N ·m2/C2)(4.18×10−6C)(6.36×10−6C)/(0.13 m)2 = 14.1 N.

The force from each positive charge is directed along the side of the triangle; but from symmetry
only the component along the bisector is of interest. This means that we need to weight the above
answer by a factor of 2 cos(30◦) = 1.73. The net force is then 24.5 N.

E25-10 Let the charge on one sphere be q, then the charge on the other sphere is Q = (52.6×
10−6C)− q. Then

1
4πε0

qQ

r2
= F,

(8.99×109N·m2/C2)q(52.6×10−6C− q) = (1.19 N)(1.94 m)2.

Solve this quadratic expression for q and get answers q1 = 4.02×10−5C and q2 = 1.24×10−6N.

E25-11 This problem is similar to Ex. 25-7. There are some additional issues, however. It is
easy enough to write expressions for the forces on the third charge

~F31 =
1

4πε0
q3q1

r2
31

r̂31,

~F32 =
1

4πε0
q3q2

r2
32

r̂32.

Then

~F31 = −~F32,
1

4πε0
q3q1

r2
31

r̂31 = − 1
4πε0

q3q2

r2
32

r̂32,

q1

r2
31

r̂31 = − q2

r2
32

r̂32.

The only way to satisfy the vector nature of the above expression is to have r̂31 = ±r̂32; this means
that q3 must be collinear with q1 and q2. q3 could be between q1 and q2, or it could be on either
side. Let’s resolve this issue now by putting the values for q1 and q2 into the expression:

(1.07µC)
r2
31

r̂31 = − (−3.28µC)
r2
32

r̂32,

r2
32r̂31 = (3.07)r2

31r̂32.

Since squared quantities are positive, we can only get this to work if r̂31 = r̂32, so q3 is not between
q1 and q2. We are then left with

r2
32 = (3.07)r2

31,

so that q3 is closer to q1 than it is to q2. Then r32 = r31 + r12 = r31 + 0.618 m, and if we take the
square root of both sides of the above expression,

r31 + (0.618 m) =
√

(3.07)r31,

(0.618 m) =
√

(3.07)r31 − r31,

(0.618 m) = 0.752r31,

0.822 m = r31
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E25-12 The magnitude of the magnetic force between any two charges is kq2/a2, where a =
0.153 m. The force between each charge is directed along the side of the triangle; but from symmetry
only the component along the bisector is of interest. This means that we need to weight the above
answer by a factor of 2 cos(30◦) = 1.73. The net force on any charge is then 1.73kq2/a2.

The length of the angle bisector, d, is given by d = a cos(30◦).
The distance from any charge to the center of the equilateral triangle is x, given by x2 =

(a/2)2 + (d− x)2. Then
x = a2/8d+ d/2 = 0.644a.

The angle between the strings and the plane of the charges is θ, given by

sin θ = x/(1.17 m) = (0.644)(0.153 m)/(1.17 m) = 0.0842,

or θ = 4.83◦.
The force of gravity on each ball is directed vertically and the electric force is directed horizontally.

The two must then be related by
tan θ = FE/FG,

so
1.73(8.99×109N ·m2/C2)q2/(0.153 m)2 = (0.0133 kg)(9.81 m/s2) tan(4.83◦),

or q = 1.29×10−7C.

E25-13 On any corner charge there are seven forces; one from each of the other seven charges.
The net force will be the sum. Since all eight charges are the same all of the forces will be repulsive.
We need to sketch a diagram to show how the charges are labeled.

12

3

4

5

6

7

8

The magnitude of the force of charge 2 on charge 1 is

F12 =
1

4πε0
q2

r2
12

,

where r12 = a, the length of a side. Since both charges are the same we wrote q2. By symmetry we
expect that the magnitudes of F12, F13, and F14 will all be the same and they will all be at right
angles to each other directed along the edges of the cube. Written in terms of vectors the forces
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would be

~F12 =
1

4πε0
q2

a2
î,

~F13 =
1

4πε0
q2

a2
ĵ,

~F14 =
1

4πε0
q2

a2
k̂.

The force from charge 5 is

F15 =
1

4πε0
q2

r2
15

,

and is directed along the side diagonal away from charge 5. The distance r15 is also the side diagonal
distance, and can be found from

r2
15 = a2 + a2 = 2a2,

then

F15 =
1

4πε0
q2

2a2
.

By symmetry we expect that the magnitudes of F15, F16, and F17 will all be the same and they will
all be directed along the diagonals of the faces of the cube. In terms of components we would have

~F15 =
1

4πε0
q2

2a2

(
ĵ/
√

2 + k̂/
√

2
)
,

~F16 =
1

4πε0
q2

2a2

(̂
i/
√

2 + k̂/
√

2
)
,

~F17 =
1

4πε0
q2

2a2

(̂
i/
√

2 + ĵ/
√

2
)
.

The last force is the force from charge 8 on charge 1, and is given by

F18 =
1

4πε0
q2

r2
18

,

and is directed along the cube diagonal away from charge 8. The distance r18 is also the cube
diagonal distance, and can be found from

r2
18 = a2 + a2 + a2 = 3a2,

then in term of components

~F18 =
1

4πε0
q2

3a2

(̂
i/
√

3 + ĵ/
√

3 + k̂/
√

3
)
.

We can add the components together. By symmetry we expect the same answer for each com-
ponents, so we’ll just do one. How about î. This component has contributions from charge 2, 6, 7,
and 8:

1
4πε0

q2

a2

(
1
1

+
2

2
√

2
+

1
3
√

3

)
,

or
1

4πε0
q2

a2
(1.90)

The three components add according to Pythagoras to pick up a final factor of
√

3, so

F net = (0.262)
q2

ε0a2
.
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E25-14 (a) Yes. Changing the sign of y will change the sign of Fy; since this is equivalent to
putting the charge q0 on the “other” side, we would expect the force to also push in the “other”
direction.

(b) The equation should look Eq. 25-15, except all y’s should be replaced by x’s. Then

Fx =
1

4πε0
q0 q

x
√
x2 + L2/4

.

(c) Setting the particle a distance d away should give a force with the same magnitude as

F =
1

4πε0
q0 q

d
√
d2 + L2/4

.

This force is directed along the 45◦ line, so Fx = F cos 45◦ and Fy = F sin 45◦.
(d) Let the distance be d =

√
x2 + y2, and then use the fact that Fx/F = cos θ = x/d. Then

Fx = F
x

d
=

1
4πε0

x q0 q

(x2 + y2 + L2/4)3/2
.

and
Fy = F

y

d
=

1
4πε0

y q0 q

(x2 + y2 + L2/4)3/2
.

E25-15 (a) The equation is valid for both positive and negative z, so in vector form it would read

~F = Fzk̂ =
1

4πε0
q0 q z

(z2 +R2)3/2
k̂.

(b) The equation is not valid for both positive and negative z. Reversing the sign of z should
reverse the sign of Fz, and one way to fix this is to write 1 = z/

√
z2. Then

~F = Fzk̂ =
1

4πε0
2q0 qz

R2

(
1√
z2
− 1√

z2

)
k̂.

E25-16 Divide the rod into small differential lengths dr, each with charge dQ = (Q/L)dr. Each
differential length contributes a differential force

dF =
1

4πε0
q dQ

r2
=

1
4πε0

qQ

r2L
dr.

Integrate:

F =
∫
dF =

∫ x+L

x

1
4πε0

qQ

r2L
dr,

=
1

4πε0
qQ

L

(
1
x
− 1
x+ L

)
E25-17 You must solve Ex. 16 before solving this problem! q0 refers to the charge that had been
called q in that problem. In either case the distance from q0 will be the same regardless of the sign
of q; if q = Q then q will be on the right, while if q = −Q then q will be on the left.

Setting the forces equal to each other one gets

1
4πε0

qQ

L

(
1
x
− 1
x+ L

)
=

1
4πε0

qQ

r2
,

or
r =

√
x(x+ L).
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E25-18 You must solve Ex. 16 and Ex. 17 before solving this problem.
If all charges are positive then moving q0 off axis will result in a net force away from the axis.

That’s unstable.
If q = −Q then both q and Q are on the same side of q0. Moving q0 closer to q will result in the

attractive force growing faster than the repulsive force, so q0 will move away from equilibrium.

E25-19 We can start with the work that was done for us on Page 577, except since we are
concerned with sin θ = z/r we would have

dFx = dF sin θ =
1

4πε0
q0λ dz

(y2 + z2)
z√

y2 + z2
.

We will need to take into consideration that λ changes sign for the two halves of the rod. Then

Fx =
q0λ

4πε0

(∫ 0

−L/2

−z dz
(y2 + z2)3/2

+
∫ L/2

0

+z dz
(y2 + z2)3/2

)
,

=
q0λ

2πε0

∫ L/2

0

z dz

(y2 + z2)3/2
,

=
q0λ

2πε0
−1√
y2 + z2

∣∣∣∣∣
L/2

0

,

=
q0λ

2πε0

(
1
y
− 1√

y2 + (L/2)2

)
.

E25-20 Use Eq. 25-15 to find the magnitude of the force from any one rod, but write it as

F =
1

4πε0
q Q

r
√
r2 + L2/4

,

where r2 = z2 +L2/4. The component of this along the z axis is Fz = Fz/r. Since there are 4 rods,
we have

F =
1
πε0

q Q z

r2
√
r2 + L2/4

,=
1
πε0

q Q z

(z2 + L2/4)
√
z2 + L2/2

,

Equating the electric force with the force of gravity and solving for Q,

Q =
πε0mg

qz
(z2 + L2/4)

√
z2 + L2/2;

putting in the numbers,

π(8.85×10−12C2/N·m2)(3.46×10−7kg)(9.8m/s2)
(2.45×10−12C)(0.214 m)

((0.214m)2+(0.25m)2/4)
√

(0.214m)2+(0.25m)2/2

so Q = 3.07×10−6C.

E25-21 In each case we conserve charge by making sure that the total number of protons is the
same on both sides of the expression. We also need to conserve the number of neutrons.

(a) Hydrogen has one proton, Beryllium has four, so X must have five protons. Then X must be
Boron, B.

(b) Carbon has six protons, Hydrogen has one, so X must have seven. Then X is Nitrogen, N.
(c) Nitrogen has seven protons, Hydrogen has one, but Helium has two, so X has 7 + 1− 2 = 6

protons. This means X is Carbon, C.
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E25-22 (a) Use Eq. 25-4:

F =
(8.99×109N·m2/C2)(2)(90)(1.60×10−19C)2

(12×10−15m)2
= 290 N.

(b) a = (290 N)/(4)(1.66×10−27kg) = 4.4×1028m/s2.

E25-23 Use Eq. 25-4:

F =
(8.99×109N·m2/C2)(1.60×10−19C)2

(282×10−12m)2
= 2.89×10−9N.

E25-24 (a) Use Eq. 25-4:

q =

√
(3.7×10−9N)(5.0×10−10m)2

(8.99×109N·m2/C2)
= 3.20×10−19C.

(b) N = (3.20×10−19C)/(1.60×10−19C) = 2.

E25-25 Use Eq. 25-4,

F =
1

4πε0
q1q2

r2
12

=
( 1

31.6× 10−19 C)( 1
31.6× 10−19 C)

4π(8.85× 10−12 C2/N ·m2)(2.6× 10−15 m)2
= 3.8 N.

E25-26 (a) N = (1.15×10−7C)/(1.60×10−19C) = 7.19×1011.
(b) The penny has enough electrons to make a total charge of −1.37×105C. The fraction is then

(1.15×10−7C)/(1.37×105C) = 8.40×10−13.

E25-27 Equate the magnitudes of the forces:

1
4πε0

q2

r2
= mg,

so

r =

√
(8.99×109N·m2/C2)(1.60×10−19C)2

(9.11×10−31kg)(9.81 m/s2)
= 5.07 m

E25-28 Q = (75.0 kg)(−1.60×10−19C)/(9.11×10−31kg) = −1.3×1013C.

E25-29 The mass of water is (250 cm3)(1.00 g/cm3) = 250 g. The number of moles of water is
(250 g)/(18.0 g/mol) = 13.9 mol. The number of water molecules is (13.9 mol)(6.02×1023mol−1) =
8.37×1024. Each molecule has ten protons, so the total positive charge is

Q = (8.37×1024)(10)(1.60×10−19C) = 1.34×107C.

E25-30 The total positive charge in 0.250 kg of water is 1.34×107C. Mary’s imbalance is then

q1 = (52.0)(4)(1.34×107C)(0.0001) = 2.79×105C,

while John’s imbalance is

q2 = (90.7)(4)(1.34×107C)(0.0001) = 4.86×105C,

The electrostatic force of attraction is then

F =
1

4πε0
q1q2

r2
= (8.99×109N ·m2/C2)

(2.79×105)(4.86×105)
(28.0 m)2

= 1.6×1018N.
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E25-31 (a) The gravitational force of attraction between the Moon and the Earth is

FG =
GMEMM

R2
,

where R is the distance between them. If both the Earth and the moon are provided a charge q,
then the electrostatic repulsion would be

FE =
1

4πε0
q2

R2
.

Setting these two expression equal to each other,

q2

4πε0
= GMEMM,

which has solution

q =
√

4πε0GMEMM,

=
√

4π(8.85×10−12C2/Nm2)(6.67×10−11Nm2/kg2)(5.98×1024kg)(7.36×1022kg),

= 5.71× 1013 C.

(b) We need
(5.71× 1013 C)/(1.60× 10−19 C) = 3.57× 1032

protons on each body. The mass of protons needed is then

(3.57× 1032)(1.67× 10−27 kg) = 5.97× 1065 kg.

Ignoring the mass of the electron (why not?) we can assume that hydrogen is all protons, so we
need that much hydrogen.

P25-1 Assume that the spheres initially have charges q1 and q2. The force of attraction between
them is

F1 =
1

4πε0
q1q2

r2
12

= −0.108 N,

where r12 = 0.500 m. The net charge is q1 + q2, and after the conducting wire is connected each
sphere will get half of the total. The spheres will have the same charge, and repel with a force of

F2 =
1

4πε0

1
2 (q1 + q2) 1

2 (q1 + q2)
r2
12

= 0.0360 N.

Since we know the separation of the spheres we can find q1 + q2 quickly,

q1 + q2 = 2
√

4πε0r2
12(0.0360 N) = 2.00µC

We’ll put this back into the first expression and solve for q2.

−0.108 N =
1

4πε0
(2.00µC− q2)q2

r2
12

,

−3.00× 10−12 C2 = (2.00µC− q2)q2,

0 = −q2
2 + (2.00µC)q2 + (1.73µC)2.

The solution is q2 = 3.0µC or q2 = −1.0µC. Then q1 = −1.0µC or q1 = 3.0µC.
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P25-2 The electrostatic force on Q from each q has magnitude qQ/4πε0a2, where a is the length
of the side of the square. The magnitude of the vertical (horizontal) component of the force of Q on
Q is

√
2Q2/16πε0a2.

(a) In order to have a zero net force on Q the magnitudes of the two contributions must balance,
so √

2Q2

16πε0a2
=

qQ

4πε0a2
,

or q =
√

2Q/4. The charges must actually have opposite charge.
(b) No.

P25-3 (a) The third charge, q3, will be between the first two. The net force on the third charge
will be zero if

1
4πε0

q q3

r2
31

=
1

4πε0
4q q3

r2
32

,

which will occur if
1
r31

=
2
r32

The total distance is L, so r31 + r32 = L, or r31 = L/3 and r32 = 2L/3.
Now that we have found the position of the third charge we need to find the magnitude. The

second and third charges both exert a force on the first charge; we want this net force on the first
charge to be zero, so

1
4πε0

q q3

r2
13

=
1

4πε0
q 4q
r2
12

,

or
q3

(L/3)2
=

4q
L2
,

which has solution q3 = −4q/9. The negative sign is because the force between the first and second
charge must be in the opposite direction to the force between the first and third charge.

(b) Consider what happens to the net force on the middle charge if is is displaced a small distance
z. If the charge 3 is moved toward charge 1 then the force of attraction with charge 1 will increase.
But moving charge 3 closer to charge 1 means moving charge 3 away from charge 2, so the force of
attraction between charge 3 and charge 2 will decrease. So charge 3 experiences more attraction to
ward the charge that it moves toward, and less attraction to the charge it moves away from. Sounds
unstable to me.

P25-4 (a) The electrostatic force on the charge on the right has magnitude

F =
q2

4πε0x2
,

The weight of the ball is W = mg, and the two forces are related by

F/W = tan θ ≈ sin θ = x/2L.

Combining, 2Lq2 = 4πε0mgx3, so

x =
(
q2L

2πε0

)1/3

.

(b) Rearrange and solve for q,

q =

√
2π(8.85×10−12C2/N ·m2)(0.0112 kg)(9.81 m/s2)(4.70×10−2m)3

(1.22 m)
= 2.28×10−8C.
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P25-5 (a) Originally the balls would not repel, so they would move together and touch; after
touching the balls would “split” the charge ending up with q/2 each. They would then repel again.

(b) The new equilibrium separation is

x′ =
(

(q/2)2L

2πε0mg

)1/3

=
(

1
4

)1/3

x = 2.96 cm.

P25-6 Take the time derivative of the expression in Problem 25-4. Then

dx

dt
=

2
3
x

q

dq

dt
=

2
3

(4.70×10−2m)
(2.28×10−8C)

(−1.20×10−9C/s) = 1.65×10−3m/s.

P25-7 The force between the two charges is

F =
1

4πε0
(Q− q)q
r2
12

.

We want to maximize this force with respect to variation in q, this means finding dF/dq and setting
it equal to 0. Then

dF

dq
=

d

dq

(
1

4πε0
(Q− q)q
r2
12

)
=

1
4πε0

Q− 2q
r2
12

.

This will vanish if Q− 2q = 0, or q = 1
2Q.

P25-8 Displace the charge q a distance y. The net restoring force on q will be approximately

F ≈ 2
qQ

4πε0
1

(d/2)2

y

(d/2)
=

qQ

4πε0
16
d3
y.

Since F/y is effectively a force constant, the period of oscillation is

T = 2π
√
m

k
=
(
ε0mπ

3d3

qQ

)1/2

.

P25-9 Displace the charge q a distance x toward one of the positive charges Q. The net restoring
force on q will be

F =
qQ

4πε0

(
1

(d/2− x)2
− 1

(d/2 + x)2

)
,

≈ qQ

4πε0
32
d3
x.

Since F/x is effectively a force constant, the period of oscillation is

T = 2π
√
m

k
=
(
ε0mπ

3d3

2qQ

)1/2

.
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P25-10 (a) Zero, by symmetry.
(b) Removing a positive Cesium ion is equivalent to adding a singly charged negative ion at that

same location. The net force is then
F = e2/4πε0r2,

where r is the distance between the Chloride ion and the newly placed negative ion, or

r =
√

3(0.20×10−9m)2

The force is then

F =
(1.6×10−19C)2

4π(8.85×10−12C2/N ·m2)3(0.20×10−9m)2
= 1.92×10−9N.

P25-11 We can pretend that this problem is in a single plane containing all three charges. The
magnitude of the force on the test charge q0 from the charge q on the left is

F l =
1

4πε0
q q0

(a2 +R2)
.

A force of identical magnitude exists from the charge on the right. we need to add these two forces
as vectors. Only the components along R will survive, and each force will contribute an amount

F l sin θ = F l
R√

R2 + a2
,

so the net force on the test particle will be

2
4πε0

q q0

(a2 +R2)
R√

R2 + a2
.

We want to find the maximum value as a function of R. This means take the derivative, and set it
equal to zero. The derivative is

2q q0

4πε0

(
1

(a2 +R2)3/2
− 3R2

(a2 +R2)5/2

)
,

which will vanish when
a2 +R2 = 3R2,

a simple quadratic equation with solutions R = ±a/
√

2.
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E26-1 E = F/q = ma/q. Then

E = (9.11×10−31kg)(1.84×109m/s2)/(1.60×10−19C) = 1.05×10−2N/C.

E26-2 The answers to (a) and (b) are the same!
F = Eq = (3.0×106N/C)(1.60×10−19C) = 4.8×10−13N.

E26-3 F = W , or Eq = mg, so

E =
mg

q
=

(6.64× 10−27 kg)(9.81 m/s2)
2(1.60× 10−19 C)

= 2.03× 10−7 N/C.

The alpha particle has a positive charge, this means that it will experience an electric force which
is in the same direction as the electric field. Since the gravitational force is down, the electric force,
and consequently the electric field, must be directed up.

E26-4 (a) E = F/q = (3.0×10−6N)/(2.0×10−9C) = 1.5×103N/C.
(b) F = Eq = (1.5×103N/C)(1.60×10−19C) = 2.4×10−16N.
(c) F = mg = (1.67×10−27kg)(9.81 m/s2) = 1.6×10−26N.
(d) (2.4×10−16N)/(1.6×10−26N) = 1.5×1010.

E26-5 Rearrange E = q/4πε0r2,

q = 4π(8.85×10−12C2/N ·m2)(0.750 m)2(2.30 N/C) = 1.44×10−10C.

E26-6 p = qd = (1.60×10−19C)(4.30×10−9) = 6.88×10−28C ·m.

E26-7 Use Eq. 26-12 for points along the perpendicular bisector. Then

E =
1

4πε0
p

x3
= (8.99× 109N ·m2/C2)

(3.56× 10−29 C ·m)
(25.4× 10−9 m)3

= 1.95× 104N/C.

E26-8 If the charges on the line x = a where +q and −q instead of +2q and −2q then at the
center of the square E = 0 by symmetry. This simplifies the problem into finding E for a charge +q
at (a, 0) and −q at (a, a). This is a dipole, and the field is given by Eq. 26-11. For this exercise we
have x = a/2 and d = a, so

E =
1

4πε0
qa

[2(a/2)2]3/2
,

or, putting in the numbers, E = 1.11×105N/C.

E26-9 The charges at 1 and 7 are opposite and can be effectively replaced with a single charge of
−6q at 7. The same is true for 2 and 8, 3 and 9, on up to 6 and 12. By symmetry we expect the
field to point along a line so that three charges are above and three below. That would mean 9:30.

E26-10 If both charges are positive then Eq. 26-10 would read E = 2E+ sin θ, and Eq. 26-11
would look like

E = 2
1

4πε0
q

x2 + (d/2)2

x√
x2 + (d/2)2

,

≈ 2
1

4πε0
q

x2

x√
x2

when x� d. This can be simplified to E = 2q/4πε0x2.
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E26-11 Treat the two charges on the left as one dipole and treat the two charges on the right as
a second dipole. Point P is on the perpendicular bisector of both dipoles, so we can use Eq. 26-12
to find the two fields.

For the dipole on the left p = 2aq and the electric field due to this dipole at P has magnitude

El =
1

4πε0
2aq

(x+ a)3

and is directed up.
For the dipole on the right p = 2aq and the electric field due to this dipole at P has magnitude

Er =
1

4πε0
2aq

(x− a)3

and is directed down.
The net electric field at P is the sum of these two fields, but since the two component fields point

in opposite directions we must actually subtract these values,

E = Er − El,

=
2aq
4πε0

(
1

(x− a)3
− 1

(x+ a)3

)
,

=
aq

2πε0
1
x3

(
1

(1− a/x)3
− 1

(1 + a/x)3

)
.

We can use the binomial expansion on the terms containing 1± a/x,

E ≈ aq

2πε0
1
x3

((1 + 3a/x)− (1− 3a/x)) ,

=
aq

2πε0
1
x3

(6a/x) ,

=
3(2qa2)
2πε0x4

.

E26-12 Do a series expansion on the part in the parentheses

1− 1√
1 +R2/z2

≈ 1−
(

1− 1
2
R2

z2

)
=
R2

2z2
.

Substitute this in,

Ez ≈
σ

2ε0
R2

2z2

π

π
=

Q

4πε0z2
.

E26-13 At the surface z = 0 and Ez = σ/2ε0. Half of this value occurs when z is given by

1
2

= 1− z√
z2 +R2

,

which can be written as z2 +R2 = (2z)2. Solve this, and z = R/
√

3.

E26-14 Look at Eq. 26-18. The electric field will be a maximum when z/(z2 + R2)3/2 is a
maximum. Take the derivative of this with respect to z, and get

1
(z2 +R2)3/2

− 3
2

2z2

(z2 +R2)5/2
=
z2 +R2 − 3z2

(z2 +R2)5/2
.

This will vanish when the numerator vanishes, or when z = R/
√

2.
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E26-15 (a) The electric field strength just above the center surface of a charged disk is given by
Eq. 26-19, but with z = 0,

E =
σ

2ε0
The surface charge density is σ = q/A = q/(πR2). Combining,

q = 2ε0πR2E = 2(8.85× 10−12 C2/N ·m2)π(2.5× 10−2m)2(3× 106 N/C) = 1.04× 10−7C.

Notice we used an electric field strength of E = 3 × 106 N/C, which is the field at air breaks down
and sparks happen.

(b) We want to find out how many atoms are on the surface; if a is the cross sectional area of
one atom, and N the number of atoms, then A = Na is the surface area of the disk. The number
of atoms is

N =
A

a
=

π(0.0250 m)2

(0.015× 10−18 m2)
= 1.31× 1017

(c) The total charge on the disk is 1.04× 10−7C, this corresponds to

(1.04× 10−7C)/(1.6× 10−19C) = 6.5× 1011

electrons. (We are ignoring the sign of the charge here.) If each surface atom can have at most one
excess electron, then the fraction of atoms which are charged is

(6.5× 1011)/(1.31× 1017) = 4.96× 10−6,

which isn’t very many.

E26-16 Imagine switching the positive and negative charges. The electric field would also need
to switch directions. By symmetry, then, the electric field can only point vertically down. Keeping
only that component,

E = 2
∫ π/2

0

1
4πε0

λdθ

r2
sin θ,

=
2

4πε0
λ

r2
.

But λ = q/(π/2), so E = q/π2ε0r
2.

E26-17 We want to fit the data to Eq. 26-19,

Ez =
σ

2ε0

(
1− z√

z2 +R2

)
.

There are only two variables, R and q, with q = σπR2.
We can find σ very easily if we assume that the measurements have no error because then at the

surface (where z = 0), the expression for the electric field simplifies to

E =
σ

2ε0
.

Then σ = 2ε0E = 2(8.854× 10−12 C2/N ·m2)(2.043× 107 N/C) = 3.618× 10−4 C/m2.
Finding the radius will take a little more work. We can choose one point, and make that the

reference point, and then solve for R. Starting with

Ez =
σ

2ε0

(
1− z√

z2 +R2

)
,
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and then rearranging,

2ε0Ez
σ

= 1− z√
z2 +R2

,

2ε0Ez
σ

= 1− 1√
1 + (R/z)2

,

1√
1 + (R/z)2

= 1− 2ε0Ez
σ

,

1 + (R/z)2 =
1

(1− 2ε0Ez/σ)2 ,

R

z
=

√
1

(1− 2ε0Ez/σ)2 − 1.

Using z = 0.03 m and Ez = 1.187 × 107 N/C, along with our value of σ = 3.618 × 10−4 C/m2, we
find

R

z
=

√
1

(1− 2(8.854×10−12C2/Nm2)(1.187×107N/C)/(3.618×10−4C/m2))2 − 1,

R = 2.167(0.03 m) = 0.065 m.

(b) And now find the charge from the charge density and the radius,

q = πR2σ = π(0.065 m)2(3.618× 10−4 C/m2) = 4.80µC.

E26-18 (a) λ = −q/L.
(b) Integrate:

E =
∫ L+a

a

1
4πε0

λ dxx2,

=
λ

4πε0

(
1
a
− 1
L+ a

)
,

=
q

4πε0
1

a(L+ a)
,

since λ = q/L.
(c) If a� L then L can be replaced with 0 in the above expression.

E26-19 A sketch of the field looks like this.
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E26-20 (a) F = Eq = (40 N/C)(1.60×10−19C) = 6.4×10−18N
(b) Lines are twice as far apart, so the field is half as large, or E = 20N/C.

E26-21 Consider a view of the disk on edge.

E26-22 A sketch of the field looks like this.
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E26-23 To the right.

E26-24 (a) The electric field is zero nearer to the smaller charge; since the charges have opposite
signs it must be to the right of the +2q charge. Equating the magnitudes of the two fields,

2q
4πε0x2

=
5q

4πε0(x+ a)2
,

or √
5x =

√
2(x+ a),

which has solution

x =
√

2 a√
5−
√

2
= 2.72a.

E26-25 This can be done quickly with a spreadsheet.

d
x

E

E26-26 (a) At point A,

E =
1

4πε0

(
− q

d2
− −2q

(2d)2

)
=

1
4πε0

−q
2d2

,
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where the negative sign indicates that ~E is directed to the left.
At point B,

E =
1

4πε0

(
q

(d/2)2
− −2q

(d/2)2

)
=

1
4πε0

6q
d2
,

where the positive sign indicates that ~E is directed to the right.
At point C,

E =
1

4πε0

(
q

(2d)2
+
−2q
d2

)
=

1
4πε0

−7q
4d2

,

where the negative sign indicates that ~E is directed to the left.

E26-27 (a) The electric field does (negative) work on the electron. The magnitude of this work
is W = Fd, where F = Eq is the magnitude of the electric force on the electron and d is the distance
through which the electron moves. Combining,

W = ~F · ~d = q~E · ~d,

which gives the work done by the electric field on the electron. The electron originally possessed a
kinetic energy of K = 1

2mv
2, since we want to bring the electron to a rest, the work done must be

negative. The charge q of the electron is negative, so ~E and ~d are pointing in the same direction,
and ~E · ~d = Ed.

By the work energy theorem,

W = ∆K = 0− 1
2
mv2.

We put all of this together and find d,

d =
W

qE
=
−mv2

2qE
=
−(9.11×10−31kg)(4.86× 106 m/s)2

2(−1.60×10−19C)(1030 N/C)
= 0.0653 m.

(b) Eq = ma gives the magnitude of the acceleration, and vf = vi + at gives the time. But
vf = 0. Combining these expressions,

t = −mvi

Eq
= − (9.11×10−31kg)(4.86× 106 m/s)

(1030 N/C)(−1.60×10−19C)
= 2.69×10−8 s.

(c) We will apply the work energy theorem again, except now we don’t assume the final kinetic
energy is zero. Instead,

W = ∆K = Kf −K i,

and dividing through by the initial kinetic energy to get the fraction lost,

W

K i
=
Kf −K i

K i
= fractional change of kinetic energy.

But K i = 1
2mv

2, and W = qEd, so the fractional change is

W

K i
=

qEd
1
2mv

2
=

(−1.60×10−19C)(1030 N/C)(7.88×10−3m)
1
2 (9.11×10−31kg)(4.86× 106 m/s)2

= −12.1%.

E26-28 (a) a = Eq/m = (2.16×104N/C)(1.60×10−19C)/(1.67×10−27kg) = 2.07×1012m/s2.
(b) v =

√
2ax =

√
2(2.07×1012m/s2)(1.22×10−2m) = 2.25×105m/s.
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E26-29 (a) E = 2q/4πε0r2, or

E =
(1.88×10−7C)

2π(8.85×10−12C2/N ·m2)(0.152 m/2)2
= 5.85×105N/C.

(b) F = Eq = (5.85×105N/C)(1.60×10−19C) = 9.36×10−14N.

E26-30 (a) The average speed between the plates is (1.95×10−2m)/(14.7×10−9s) = 1.33×106m/s.
The speed with which the electron hits the plate is twice this, or 2.65×106m/s.

(b) The acceleration is a = (2.65×106m/s)/(14.7×10−9s) = 1.80×1014m/s2. The electric field
then has magnitude E = ma/q, or

E = (9.11×10−31kg)(1.80×1014m/s2)/(1.60×10−19C) = 1.03×103N/C.

E26-31 The drop is balanced if the electric force is equal to the force of gravity, or Eq = mg.
The mass of the drop is given in terms of the density by

m = ρV = ρ
4
3
πr3.

Combining,

q =
mg

E
=

4πρr3g

3E
=

4π(851 kg/m3)(1.64×10−6m)3(9.81 m/s2)
3(1.92×105N/C)

= 8.11×10−19C.

We want the charge in terms of e, so we divide, and get

q

e
=

(8.11×10−19C)
(1.60×10−19C)

= 5.07 ≈ 5.

E26-32 (b) F = (8.99×109N ·m2/C2)(2.16×10−6C)(85.3×10−9C)/(0.117m)2 = 0.121 N.
(a) E2 = F/q1 = (0.121 N)/(2.16×10−6C) = 5.60×104N/C.
E1 = F/q2 = (0.121 N)/(85.3×10−9C) = 1.42×106N/C.

E26-33 If each value of q measured by Millikan was a multiple of e, then the difference between
any two values of q must also be a multiple of q. The smallest difference would be the smallest
multiple, and this multiple might be unity. The differences are 1.641, 1.63, 1.60, 1.63, 3.30, 3.35,
3.18, 3.24, all times 10−19 C. This is a pretty clear indication that the fundamental charge is on the
order of 1.6×10−19 C. If so, the likely number of fundamental charges on each of the drops is shown
below in a table arranged like the one in the book:

4 8 12
5 10 14
7 11 16

The total number of charges is 87, while the total charge is 142.69× 10−19 C, so the average charge
per quanta is 1.64× 10−19 C.

21



E26-34 Because of the electric field the acceleration toward the ground of a charged particle is
not g, but g ± Eq/m, where the sign depends on the direction of the electric field.

(a) If the lower plate is positively charged then a = g−Eq/m. Replace g in the pendulum period
expression by this, and then

T = 2π

√
L

g − Eq/m
.

(b) If the lower plate is negatively charged then a = g + Eq/m. Replace g in the pendulum
period expression by this, and then

T = 2π

√
L

g + Eq/m
.

E26-35 The ink drop travels an additional time t′ = d/vx, where d is the additional horizontal
distance between the plates and the paper. During this time it travels an additional vertical distance
y′ = vyt

′, where vy = at = 2y/t = 2yvx/L. Combining,

y′ =
2yvxt′

L
=

2yd
L

=
2(6.4×10−4m)(6.8×10−3m)

(1.6×10−2m)
= 5.44×10−4m,

so the total deflection is y + y′ = 1.18×10−3m.

E26-36 (a) p = (1.48×10−9C)(6.23×10−6m) = 9.22×10−15C ·m.
(b) ∆U = 2pE = 2(9.22×10−15C ·m)(1100 N/C) = 2.03×10−11J.

E26-37 Use τ = pE sin θ, where θ is the angle between ~p and ~E. For this dipole p = qd = 2ed
or p = 2(1.6× 10−19 C)(0.78× 10−9 m) = 2.5× 10−28 C ·m. For all three cases

pE = (2.5× 10−28 C ·m)(3.4× 106N/C) = 8.5× 10−22 N ·m.

The only thing we care about is the angle.
(a) For the parallel case θ = 0, so sin θ = 0, and τ = 0.
(b) For the perpendicular case θ = 90◦, so sin θ = 1, and τ = 8.5× 10−22 N ·m..
(c) For the anti-parallel case θ = 180◦, so sin θ = 0, and τ = 0.

E26-38 (c) Equal and opposite, or 5.22×10−16N.
(d) Use Eq. 26-12 and F = Eq. Then

p =
4πε0x3F

q
,

=
4π(8.85×10−12C2/N ·m2)(0.285m)3(5.22×10−16N)

(3.16×10−6C)
,

= 4.25×10−22C ·m.

E26-39 The point-like nucleus contributes an electric field

E+ =
1

4πε0
Ze

r2
,

while the uniform sphere of negatively charged electron cloud of radius R contributes an electric
field given by Eq. 26-24,

E− =
1

4πε0
−Zer
R3

.
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The net electric field is just the sum,

E =
Ze

4πε0

(
1
r2
− r

R3

)
E26-40 The shell theorem first described for gravitation in chapter 14 is applicable here since both
electric forces and gravitational forces fall off as 1/r2. The net positive charge inside the sphere of
radius d/2 is given by Q = 2e(d/2)3/R3 = ed3/4R3.

The net force on either electron will be zero when

e2

d2
=

eQ

(d/2)2
=

4e2

d2

d3

4R3
=
e2d

R3
,

which has solution d = R.

P26-1 (a) Let the positive charge be located closer to the point in question, then the electric
field from the positive charge is

E+ =
1

4πε0
q

(x− d/2)2

and is directed away from the dipole.
The negative charge is located farther from the point in question, so

E− =
1

4πε0
q

(x+ d/2)2

and is directed toward the dipole.
The net electric field is the sum of these two fields, but since the two component fields point in

opposite direction we must actually subtract these values,

E = E+ − E−,

=
1

4πε0
q

(z − d/2)2
− 1

4πε0
q

(z + d/2)2
,

=
1

4πε0
q

z2

(
1

(1− d/2z)2
− 1

(1 + d/2z)2

)
We can use the binomial expansion on the terms containing 1± d/2z,

E ≈ 1
4πε0

q

z2
((1 + d/z)− (1− d/z)) ,

=
1

2πε0
qd

z3

(b) The electric field is directed away from the positive charge when you are closer to the positive
charge; the electric field is directed toward the negative charge when you are closer to the negative
charge. In short, along the axis the electric field is directed in the same direction as the dipole
moment.

P26-2 The key to this problem will be the expansion of

1
(x2 + (z ± d/2)2)3/2

≈ 1
(x2 + z2)3/2

(
1∓ 3

2
zd

x2 + z2

)
.
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for d�
√
x2 + z2. Far from the charges the electric field of the positive charge has magnitude

E+ =
1

4πε0
q

x2 + (z − d/2)2
,

the components of this are

Ex,+ =
1

4πε0
q

x2 + z2

x√
x2 + (z − d/2)2

,

Ez,+ =
1

4πε0
q

x2 + z2

(z − d/2)√
x2 + (z − d/2)2

.

Expand both according to the first sentence, then

Ex,+ ≈ 1
4πε0

xq

(x2 + z2)3/2

(
1 +

3
2

zd

x2 + z2

)
,

Ez,+ =
1

4πε0
(z − d/2)q

(x2 + z2)3/2

(
1 +

3
2

zd

x2 + z2

)
.

Similar expression exist for the negative charge, except we must replace q with −q and the + in the
parentheses with a −, and z − d/2 with z + d/2 in the Ez expression. All that is left is to add the
expressions. Then

Ex =
1

4πε0
xq

(x2 + z2)3/2

(
1 +

3
2

zd

x2 + z2

)
+

1
4πε0

−xq
(x2 + z2)3/2

(
1− 3

2
zd

x2 + z2

)
,

=
1

4πε0
3xqzd

(x2 + z2)5/2
,

Ez =
1

4πε0
(z − d/2)q

(x2 + z2)3/2

(
1 +

3
2

zd

x2 + z2

)
+

1
4πε0

−(z + d/2)q
(x2 + z2)3/2

(
1− 3

2
zd

x2 + z2

)
,

=
1

4πε0
3z2dq

(x2 + z2)5/2
− 1

4πε0
dq

(x2 + z2)3/2
,

=
1

4πε0
(2z2 − x2)dq
(x2 + z2)5/2

.

P26-3 (a) Each point on the ring is a distance
√
z2 +R2 from the point on the axis in question.

Since all points are equal distant and subtend the same angle from the axis then the top half of the
ring contributes

E1z =
q1

4πε0(x2 +R2)
z√

z2 +R2
,

while the bottom half contributes a similar expression. Add, and

Ez =
q1 + q2

4πε0
z

(z2 +R2)3/2
=

q

4πε0
z

(z2 +R2)3/2
,

which is identical to Eq. 26-18.
(b) The perpendicular component would be zero if q1 = q2. It isn’t, so it must be the difference

q1 − q2 which is of interest. Assume this charge difference is evenly distributed on the top half of
the ring. If it is a positive difference, then E⊥ must point down. We are only interested then in the
vertical component as we integrate around the top half of the ring. Then

E⊥ =
∫ π

0

1
4πε0

(q1 − q2)/π
z2 +R2

cos θ dθ,

=
q1 − q2

2π2ε0

1
z2 +R2

.
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P26-4 Use the approximation 1/(z ± d)2 ≈ (1/z2)(1∓ 2d/z + 3d2/z2).
Add the contributions:

E =
1

4πε0

(
q

(z + d)2
− 2q
z2

+
q

(z − d)2

)
,

≈ q

4πε0z2

(
1− 2d

z
+

3d2

z2
− 2 + 1 +

2d
z

+
3d2

z2

)
,

=
q

4πε0z2

6d2

z2
=

3Q
4πε0z4

,

where Q = 2qd2.

P26-5 A monopole field falls off as 1/r2. A dipole field falls off as 1/r3, and consists of two
oppositely charge monopoles close together. A quadrupole field (see Exercise 11 above or read
Problem 4) falls off as 1/r4 and (can) consist of two otherwise identical dipoles arranged with anti-
parallel dipole moments. Just taking a leap of faith it seems as if we can construct a 1/r6 field
behavior by extending the reasoning.

First we need an octopole which is constructed from a quadrupole. We want to keep things as
simple as possible, so the construction steps are

1. The monopole is a charge +q at x = 0.

2. The dipole is a charge +q at x = 0 and a charge −q at x = a. We’ll call this a dipole at
x = a/2

3. The quadrupole is the dipole at x = a/2, and a second dipole pointing the other way at
x = −a/2. The charges are then −q at x = −a, +2q at x = 0, and −q at x = a.

4. The octopole will be two stacked, offset quadrupoles. There will be −q at x = −a, +3q at
x = 0, −3q at x = a, and +q at x = 2a.

5. Finally, our distribution with a far field behavior of 1/r6. There will be +q at x = 2a, −4q at
x = −a, +6q at x = 0, −4q at x = a, and +q at x = 2a.

P26-6 The vertical component of ~E is simply half of Eq. 26-17. The horizontal component is
given by a variation of the work required to derive Eq. 26-16,

dEz = dE sin θ =
1

4πε0
λ dz

y2 + z2

z√
y2 + z2

,

which integrates to zero if the limits are −∞ to +∞, but in this case,

Ez =
∫ ∞

0

dEz =
λ

4πε0
1
z
.

Since the vertical and horizontal components are equal then ~E makes an angle of 45◦.

P26-7 (a) Swap all positive and negative charges in the problem and the electric field must reverse
direction. But this is the same as flipping the problem over; consequently, the electric field must
point parallel to the rod. This only holds true at point P , because point P doesn’t move when you
flip the rod.
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(b) We are only interested in the vertical component of the field as contributed from each point
on the rod. We can integrate only half of the rod and double the answer, so we want to evaluate

Ez = 2
∫ L/2

0

1
4πε0

λ dz

y2 + z2

z√
y2 + z2

,

=
2λ

4πε0

√
(L/2)2 + y2 − y
y
√

(L/2)2 + y2
.

(c) The previous expression is exact. If y � L, then the expression simplifies with a Taylor
expansion to

Ez =
λ

4πε0
L2

y3
,

which looks similar to a dipole.

P26-8 Evaluate

E =
∫ R

0

1
4πε0

z dq

(z2 + r2)3/2
,

where r is the radius of the ring, z the distance to the plane of the ring, and dq the differential
charge on the ring. But r2 + z2 = R2, and dq = σ(2πr dr), where σ = q/2πR2. Then

E =
∫ R

0

q

4πε0

√
R2 − r2 r dr

R5
,

=
q

4πε0
1

3R2
.

P26-9 The key statement is the second italicized paragraph on page 595; the number of field
lines through a unit cross-sectional area is proportional to the electric field strength. If the exponent
is n, then the electric field strength a distance r from a point charge is

E =
kq

rn
,

and the total cross sectional area at a distance r is the area of a spherical shell, 4πr2. Then the
number of field lines through the shell is proportional to

EA =
kq

rn
4πr2 = 4πkqr2−n.

Note that the number of field lines varies with r if n 6= 2. This means that as we go farther from
the point charge we need more and more field lines (or fewer and fewer). But the field lines can only
start on charges, and we don’t have any except for the point charge. We have a problem; we really
do need n = 2 if we want workable field lines.

P26-10 The distance traveled by the electron will be d1 = a1t
2/2; the distance traveled by the

proton will be d2 = a2t
2/2. a1 and a2 are related by m1a1 = m2a2, since the electric force is the

same (same charge magnitude). Then d1 + d2 = (a1 + a2)t2/2 is the 5.00 cm distance. Divide by
the proton distance, and then

d1 + d2

d2
=
a1 + a2

a2
=
m2

m1
+ 1.

Then
d2 = (5.00×10−2m)/(1.67×10−27/9.11×10−31 + 1) = 2.73×10−5m.
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P26-11 This is merely a fancy projectile motion problem. vx = v0 cos θ while vy,0 = v0 sin θ. The
x and y positions are x = vxt and

y =
1
2
at2 + vy,0t =

ax2

2v2
0 cos2 θ

+ x tan θ.

The acceleration of the electron is vertically down and has a magnitude of

a =
F

m
=
Eq

m
=

(1870 N/C)(1.6×10−19C)
(9.11×10−31kg)

= 3.284×1014m/s2.

We want to find out how the vertical velocity of the electron at the location of the top plate. If
we get an imaginary answer, then the electron doesn’t get as high as the top plate.

vy =
√
vy,02 + 2a∆y,

=
√

(5.83×106m/s)2 sin(39◦)2 + 2(−3.284×1014m/s2)(1.97×10−2m),
= 7.226×105m/s.

This is a real answer, so this means the electron either hits the top plate, or it misses both plates.
The time taken to reach the height of the top plate is

t =
∆vy
a

=
(7.226×105m/s)− (5.83×106m/s) sin(39◦)

(−3.284×1014m/s2)
= 8.972×10−9s.

In this time the electron has moved a horizontal distance of

x = (5.83×106m/s) cos(39◦)(8.972×10−9s) = 4.065×10−2m.

This is clearly on the upper plate.

P26-12 Near the center of the ring z � R, so a Taylor expansion yields

E =
λ

2ε0
z

R2
.

The force on the electron is F = Ee, so the effective “spring” constant is k = eλ/2ε0R2. This means

ω =

√
k

m
=
√

eλ

2ε0mR2
=
√

eq

4πε0mR3
.

P26-13 U = −pE cos θ, so the work required to flip the dipole is

W = −pE [cos(θ0 + π)− cos θ0] = 2pE cos θ0.

P26-14 If the torque on a system is given by |τ | = κθ, where κ is a constant, then the frequency
of oscillation of the system is f =

√
κ/I/2π. In this case τ = pE sin θ ≈ pEθ, so

f =
√
pE/I/2π.

27



P26-15 Use the a variation of the exact result from Problem 26-1. The two charge are positive,
but since we will eventually focus on the area between the charges we must subtract the two field
contributions, since they point in opposite directions. Then

Ez =
q

4πε0

(
1

(z − a/2)2
− 1

(z + a/2)2

)
and then take the derivative,

dEz
dz

= − q

2πε0

(
1

(z − a/2)3
− 1

(z + a/2)3

)
.

Applying the binomial expansion for points z � a,

dEz
dz

= − 8q
2πε0

1
a3

(
1

(2z/a− 1)3
− 1

(2z/a+ 1)3

)
,

≈ − 8q
2πε0

1
a3

(−(1 + 6z/a)− (1− 6z/a)) ,

=
8q
πε0

1
a3
.

There were some fancy sign flips in the second line, so review those steps carefully!
(b) The electrostatic force on a dipole is the difference in the magnitudes of the electrostatic

forces on the two charges that make up the dipole. Near the center of the above charge arrangement
the electric field behaves as

Ez ≈ Ez(0) +
dEz
dz

∣∣∣∣
z=0

z + higher ordered terms.

The net force on a dipole is

F+ − F− = q(E+ − E−) = q

(
Ez(0) +

dEz
dz

∣∣∣∣
z=0

z+ − Ez(0)− dEz
dz

∣∣∣∣
z=0

z−

)
where the “+” and “-” subscripts refer to the locations of the positive and negative charges. This
last line can be simplified to yield

q
dEz
dz

∣∣∣∣
z=0

(z+ − z−) = qd
dEz
dz

∣∣∣∣
z=0

.

28



E27-1 ΦE = (1800 N/C)(3.2×10−3m)2 cos(145◦) = −7.8×10−3N ·m2/C.

E27-2 The right face has an area element given by ~A = (1.4 m)2ĵ.
(a) ΦE = ~A · ~E = (2.0 m2)̂j · (6 N/C)̂i = 0.
(b) ΦE = (2.0 m2)̂j · (−2 N/C)̂j = −4N ·m2/C.
(c) ΦE = (2.0 m2)̂j · [(−3 N/C)̂i + (4 N/C)k̂] = 0.
(d) In each case the field is uniform so we can simply evaluate ΦE = ~E · ~A, where ~A has six

parts, one for every face. The faces, however, have the same size but are organized in pairs with
opposite directions. These will cancel, so the total flux is zero in all three cases.

E27-3 (a) The flat base is easy enough, since according to Eq. 27-7,

ΦE =
∫
~E · d~A.

There are two important facts to consider in order to integrate this expression. ~E is parallel to the
axis of the hemisphere, ~E points inward while ~dA points outward on the flat base. ~E is uniform, so
it is everywhere the same on the flat base. Since ~E is anti-parallel to d~A, ~E · d~A = −E dA, then

ΦE =
∫
~E · d~A = −

∫
E dA.

Since ~E is uniform we can simplify this as

ΦE = −
∫
E dA = −E

∫
dA = −EA = −πR2E.

The last steps are just substituting the area of a circle for the flat side of the hemisphere.
(b) We must first sort out the dot product

dA

E

θ
φ

R

We can simplify the vector part of the problem with ~E · d~A = cos θE dA, so

ΦE =
∫
~E · d~A =

∫
cos θE dA

Once again, ~E is uniform, so we can take it out of the integral,

ΦE =
∫

cos θE dA = E

∫
cos θ dA

Finally, dA = (Rdθ)(R sin θ dφ) on the surface of a sphere centered on R = 0.
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We’ll integrate φ around the axis, from 0 to 2π. We’ll integrate θ from the axis to the equator,
from 0 to π/2. Then

ΦE = E

∫
cos θ dA = E

∫ 2π

0

∫ π/2

0

R2 cos θ sin θ dθ dφ.

Pulling out the constants, doing the φ integration, and then writing 2 cos θ sin θ as sin(2θ),

ΦE = 2πR2E

∫ π/2

0

cos θ sin θ dθ = πR2E

∫ π/2

0

sin(2θ) dθ,

Change variables and let β = 2θ, then we have

ΦE = πR2E

∫ π

0

sinβ
1
2
dβ = πR2E.

E27-4 Through S1, ΦE = q/ε0. Through S2, ΦE = −q/ε0. Through S3, ΦE = q/ε0. Through S4,
ΦE = 0. Through S5, ΦE = q/ε0.

E27-5 By Eq. 27-8,

ΦE =
q

ε0
=

(1.84µC)
(8.85×10−12 C2/N ·m2)

= 2.08×105 N ·m2/C.

E27-6 The total flux through the sphere is

ΦE = (−1 + 2− 3 + 4− 5 + 6)(×103N ·m2/C) = 3×103N ·m2/C.

The charge inside the die is (8.85×10−12C2/N ·m2)(3×103N ·m2/C) = 2.66×10−8C.

E27-7 The total flux through a cube would be q/ε0. Since the charge is in the center of the cube
we expect that the flux through any side would be the same, or 1/6 of the total flux. Hence the flux
through the square surface is q/6ε0.

E27-8 If the electric field is uniform then there are no free charges near (or inside) the net. The
flux through the netting must be equal to, but opposite in sign, from the flux through the opening.
The flux through the opening is Eπa2, so the flux through the netting is −Eπa2.

E27-9 There is no flux through the sides of the cube. The flux through the top of the cube is
(−58 N/C)(100 m)2 = −5.8×105N ·m2/C. The flux through the bottom of the cube is

(110 N/C)(100 m)2 = 1.1×106N ·m2/C.

The total flux is the sum, so the charge contained in the cube is

q = (8.85×10−12C2/N ·m2)(5.2×105N ·m2/C) = 4.60×10−6C.

E27-10 (a) There is only a flux through the right and left faces. Through the right face

ΦR = (2.0 m2)̂j · (3 N/C ·m)(1.4 m)̂j = 8.4 N ·m2/C.

The flux through the left face is zero because y = 0.
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E27-11 There are eight cubes which can be “wrapped” around the charge. Each cube has three
external faces that are indistinguishable for a total of twenty-four faces, each with the same flux
ΦE . The total flux is q/ε0, so the flux through one face is ΦE = q/24ε0. Note that this is the flux
through faces opposite the charge; for faces which touch the charge the electric field is parallel to
the surface, so the flux would be zero.

E27-12 Use Eq. 27-11,

λ = 2πε0rE = 2π(8.85×10−12C2/N ·m2)(1.96 m)(4.52×104N/C) = 4.93×10−6C/m.

E27-13 (a) q = σA = (2.0×10−6C/m2)π(0.12 m)(0.42 m) = 3.17×10−7C.
(b) The charge density will be the same! q = σA = (2.0× 10−6C/m2)π(0.08 m)(0.28 m) =

1.41×10−7C.

E27-14 The electric field from the sheet on the left is of magnitude El = σ/2ε0, and points directly
away from the sheet. The magnitude of the electric field from the sheet on the right is the same,
but it points directly away from the sheet on the right.

(a) To the left of the sheets the two fields add since they point in the same direction. This means
that the electric field is ~E = −(σ/ε0)̂i.

(b) Between the sheets the two electric fields cancel, so ~E = 0.
(c) To the right of the sheets the two fields add since they point in the same direction. This

means that the electric field is ~E = (σ/ε0)̂i.

E27-15 The electric field from the plate on the left is of magnitude El = σ/2ε0, and points directly
toward the plate. The magnitude of the electric field from the plate on the right is the same, but it
points directly away from the plate on the right.

(a) To the left of the plates the two fields cancel since they point in the opposite directions. This
means that the electric field is ~E = 0.

(b) Between the plates the two electric fields add since they point in the same direction. This
means that the electric field is ~E = −(σ/ε0)̂i.

(c) To the right of the plates the two fields cancel since they point in the opposite directions.
This means that the electric field is ~E = 0.

E27-16 The magnitude of the electric field is E = mg/q. The surface charge density on the plates
is σ = ε0E = ε0mg/q, or

σ =
(8.85×10−12C2/N ·m2)(9.11×10−31kg)(9.81 m/s2)

(1.60×10−19C)
= 4.94×10−22C/m2.

E27-17 We don’t really need to write an integral, we just need the charge per unit length in the
cylinder to be equal to zero. This means that the positive charge in cylinder must be +3.60nC/m.
This positive charge is uniformly distributed in a circle of radius R = 1.50 cm, so

ρ =
3.60nC/m

πR2
=

3.60nC/m
π(0.0150 m)2

= 5.09µC/m3.
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E27-18 The problem has spherical symmetry, so use a Gaussian surface which is a spherical shell.
The ~E field will be perpendicular to the surface, so Gauss’ law will simplify to

qenc/ε0 =
∮
~E · d~A =

∮
E dA = E

∮
dA = 4πr2E.

(a) For point P1 the charge enclosed is qenc = 1.26×10−7C, so

E =
(1.26×10−7C)

4π(8.85×10−12C2/N ·m2)(1.83×10−2m)2
= 3.38×106N/C.

(b) Inside a conductor E = 0.

E27-19 The proton orbits with a speed v, so the centripetal force on the proton is FC = mv2/r.
This centripetal force is from the electrostatic attraction with the sphere; so long as the proton is
outside the sphere the electric field is equivalent to that of a point charge Q (Eq. 27-15),

E =
1

4πε0
Q

r2
.

If q is the charge on the proton we can write F = Eq, or

mv2

r
= q

1
4πε0

Q

r2

Solving for Q,

Q =
4πε0mv2r

q
,

=
4π(8.85×10−12 C2/N ·m2)(1.67×10−27kg)(294×103m/s)2(0.0113 m)

(1.60×10−19C)
,

= −1.13×10−9C.

E27-20 The problem has spherical symmetry, so use a Gaussian surface which is a spherical shell.
The ~E field will be perpendicular to the surface, so Gauss’ law will simplify to

qenc/ε0 =
∮
~E · d~A =

∮
E dA = E

∮
dA = 4πr2E.

(a) At r = 0.120 m qenc = 4.06×10−8C. Then

E =
(4.06×10−8C)

4π(8.85×10−12C2/N ·m2)(1.20×10−1m)2
= 2.54×104N/C.

(b) At r = 0.220 m qenc = 5.99×10−8C. Then

E =
(5.99×10−8C)

4π(8.85×10−12C2/N ·m2)(2.20×10−1m)2
= 1.11×104N/C.

(c) At r = 0.0818 m qenc = 0 C. Then E = 0.

32



E27-21 The problem has cylindrical symmetry, so use a Gaussian surface which is a cylindrical
shell. The ~E field will be perpendicular to the curved surface and parallel to the end surfaces, so
Gauss’ law will simplify to

qenc/ε0 =
∮
~E · d~A =

∫
E dA = E

∫
dA = 2πrLE,

where L is the length of the cylinder. Note that σ = q/2πrL represents a surface charge density.
(a) r = 0.0410 m is between the two cylinders. Then

E =
(24.1×10−6C/m2)(0.0322 m)

(8.85×10−12C2/N ·m2)(0.0410 m)
= 2.14×106N/C.

It points outward.
(b) r = 0.0820 m is outside the two cylinders. Then

E =
(24.1×10−6C/m2)(0.0322 m) + (−18.0×10−6C/m2)(0.0618 m)

(8.85×10−12C2/N ·m2)(0.0820 m)
= −4.64×105N/C.

The negative sign is because it is pointing inward.

E27-22 The problem has cylindrical symmetry, so use a Gaussian surface which is a cylindrical
shell. The ~E field will be perpendicular to the curved surface and parallel to the end surfaces, so
Gauss’ law will simplify to

qenc/ε0 =
∮
~E · d~A =

∫
E dA = E

∫
dA = 2πrLE,

where L is the length of the cylinder. The charge enclosed is

qenc =
∫
ρdV = ρπL

(
r2 −R2

)
The electric field is given by

E =
ρπL

(
r2 −R2

)
2πε0rL

=
ρ
(
r2 −R2

)
2ε0r

.

At the surface,

Es =
ρ
(
(2R)2 −R2

)
2ε02R

=
3ρR
4ε0

.

Solve for r when E is half of this:

3R
8

=
r2 −R2

2r
,

3rR = 4r2 − 4R2,

0 = 4r2 − 3rR− 4R2.

The solution is r = 1.443R. That’s (2R− 1.443R) = 0.557R beneath the surface.

E27-23 The electric field must do work on the electron to stop it. The electric field is given by
E = σ/2ε0. The work done is W = Fd = Eqd. d is the distance in question, so

d =
2ε0K
σq

=
2(8.85×10−12C2/N ·m2)(1.15×105 eV)

(2.08×10−6C/m2)e
= 0.979 m
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E27-24 Let the spherical Gaussian surface have a radius of R and be centered on the origin.
Choose the orientation of the axis so that the infinite line of charge is along the z axis. The electric
field is then directed radially outward from the z axis with magnitude E = λ/2πε0ρ, where ρ is the
perpendicular distance from the z axis. Now we want to evaluate

ΦE =
∮
~E · d~A,

over the surface of the sphere. In spherical coordinates, dA = R2 sin θ dθ dφ, ρ = R sin θ, and
~E · d~A = EA sin θ. Then

ΦE =
∮

λ

2πε0
sin θR dθ dφ =

2λR
ε0

.

E27-25 (a) The problem has cylindrical symmetry, so use a Gaussian surface which is a cylindrical
shell. The ~E field will be perpendicular to the curved surface and parallel to the end surfaces, so
Gauss’ law will simplify to

qenc/ε0 =
∮
~E · d~A =

∫
E dA = E

∫
dA = 2πrLE,

where L is the length of the cylinder. Now for the qenc part. If the (uniform) volume charge density
is ρ, then the charge enclosed in the Gaussian cylinder is

qenc =
∫
ρdV = ρ

∫
dV = ρV = πr2Lρ.

Combining, πr2Lρ/ε0 = E2πrL or E = ρr/2ε0.
(b) Outside the charged cylinder the charge enclosed in the Gaussian surface is just the charge

in the cylinder. Then

qenc =
∫
ρdV = ρ

∫
dV = ρV = πR2Lρ.

and
πR2Lρ/ε0 = E2πrL,

and then finally

E =
R2ρ

2ε0r
.

E27-26 (a) q = 4π(1.22 m)2(8.13×10−6C/m2) = 1.52×10−4C.
(b) ΦE = q/ε0 = (1.52×10−4C)/(8.85×10−12C2/N ·m2) = 1.72×107N ·m2/C.
(c) E = σ/ε0 = (8.13×10−6C/m2)/(8.85×10−12C2/N ·m2) = 9.19×105N/C

E27-27 (a) σ = (2.4×10−6C)/4π(0.65 m)2 = 4.52×10−7C/m2.
(b) E = σ/ε0 = (4.52×10−7C/m2)/(8.85×10−12C2/N ·m2) = 5.11×104N/C.

E27-28 E = σ/ε0 = q/4πr2ε0.

E27-29 (a) The near field is given by Eq. 27-12, E = σ/2ε0, so

E ≈ (6.0×10−6C)/(8.0×10−2 m)2

2(8.85×10−12 C2/N ·m2)
= 5.3×107N/C.

(b) Very far from any object a point charge approximation is valid. Then

E =
1

4πε0
q

r2
=

1
4π(8.85×10−12 C2/N ·m2)

(6.0×10−6C)
(30 m)2

= 60N/C.
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P27-1 For a spherically symmetric mass distribution choose a spherical Gaussian shell. Then∮
~g · d~A =

∮
g dA = g

∮
dA = 4πr2g.

Then
Φg

4πG
=
gr2

G
= −m,

or
g = −Gm

r2
.

The negative sign indicates the direction; ~g point toward the mass center.

P27-2 (a) The flux through all surfaces except the right and left faces will be zero. Through the
left face,

Φl = −EyA = −b
√
aa2.

Through the right face,
Φr = EyA = b

√
2aa2.

The net flux is then

Φ = ba5/2(
√

2− 1) = (8830 N/C ·m1/2)(0.130 m)5/2(
√

2− 1) = 22.3 N ·m2/C.

(b) The charge enclosed is q = (8.85×10−12C2/N ·m2)(22.3 N ·m2/C) = 1.97×10−10C.

P27-3 The net force on the small sphere is zero; this force is the vector sum of the force of gravity
W , the electric force FE , and the tension T .

T

W

F E
θ

These forces are related by Eq = mg tan θ. We also have E = σ/2ε0, so

σ =
2ε0mg tan θ

q
,

=
2(8.85×10−12 C2/N ·m2)(1.12×10−6kg)(9.81 m/s2) tan(27.4◦)

(19.7×10−9C)
,

= 5.11×10−9C/m2.
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P27-4 The materials are conducting, so all charge will reside on the surfaces. The electric field
inside any conductor is zero. The problem has spherical symmetry, so use a Gaussian surface which
is a spherical shell. The ~E field will be perpendicular to the surface, so Gauss’ law will simplify to

qenc/ε0 =
∮
~E · d~A =

∮
E dA = E

∮
dA = 4πr2E.

Consequently, E = qenc/4πε0r2.
(a) Within the sphere E = 0.
(b) Between the sphere and the shell qenc = q. Then E = q/4πε0r2.
(c) Within the shell E = 0.
(d) Outside the shell qenc = +q − q = 0. Then E = 0.
(e) Since E = 0 inside the shell, qenc = 0, this requires that −q reside on the inside surface. This

is no charge on the outside surface.

P27-5 The problem has cylindrical symmetry, so use a Gaussian surface which is a cylindrical
shell. The ~E field will be perpendicular to the curved surface and parallel to the end surfaces, so
Gauss’ law will simplify to

qenc/ε0 =
∮
~E · d~A =

∫
E dA = E

∫
dA = 2πrLE,

where L is the length of the cylinder. Consequently, E = qenc/2πε0rL.
(a) Outside the conducting shell qenc = +q−2q = −q. Then E = −q/2πε0rL. The negative sign

indicates that the field is pointing inward toward the axis of the cylinder.
(b) Since E = 0 inside the conducting shell, qenc = 0, which means a charge of −q is on the

inside surface of the shell. The remaining −q must reside on the outside surface of the shell.
(c) In the region between the cylinders qenc = +q. Then E = +q/2πε0rL. The positive sign

indicates that the field is pointing outward from the axis of the cylinder.

P27-6 Subtract Eq. 26-19 from Eq. 26-20. Then

E =
σ

2ε0
z√

z2 +R2
.

P27-7 This problem is closely related to Ex. 27-25, except for the part concerning qenc. We’ll
set up the problem the same way: the Gaussian surface will be a (imaginary) cylinder centered on
the axis of the physical cylinder. For Gaussian surfaces of radius r < R, there is no charge enclosed
while for Gaussian surfaces of radius r > R, qenc = λl.

We’ve already worked out the integral∫
tube

~E · d~A = 2πrlE,

for the cylinder, and then from Gauss’ law,

qenc = ε0

∫
tube

~E · d~A = 2πε0rlE.

(a) When r < R there is no enclosed charge, so the left hand vanishes and consequently E = 0
inside the physical cylinder.

(b) When r > R there is a charge λl enclosed, so

E =
λ

2πε0r
.
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P27-8 This problem is closely related to Ex. 27-25, except for the part concerning qenc. We’ll set
up the problem the same way: the Gaussian surface will be a (imaginary) cylinder centered on the
axis of the physical cylinders. For Gaussian surfaces of radius r < a, there is no charge enclosed
while for Gaussian surfaces of radius b > r > a, qenc = λl.

We’ve already worked out the integral∫
tube

~E · d~A = 2πrlE,

for the cylinder, and then from Gauss’ law,

qenc = ε0

∫
tube

~E · d~A = 2πε0rlE.

(a) When r < a there is no enclosed charge, so the left hand vanishes and consequently E = 0
inside the inner cylinder.

(b) When b > r > a there is a charge λl enclosed, so

E =
λ

2πε0r
.

P27-9 Uniform circular orbits require a constant net force towards the center, so F = Eq =
λq/2πε0r. The speed of the positron is given by F = mv2/r; the kinetic energy is K = mv2/2 =
Fr/2. Combining,

K =
λq

4πε0
,

=
(30×10−9C/m)(1.6×10−19C)
4π((8.85× 10−12 C2/N ·m2)

,

= 4.31×10−17 J = 270 eV.

P27-10 λ = 2πε0rE, so

q = 2π(8.85×10−12C2/N ·m2)(0.014 m)(0.16 m)(2.9×104N/C) = 3.6×10−9C.

P27-11 (a) Put a spherical Gaussian surface inside the shell centered on the point charge. Gauss’
law states ∮

~E · d~A =
qenc

ε0
.

Since there is spherical symmetry the electric field is normal to the spherical Gaussian surface, and
it is everywhere the same on this surface. The dot product simplifies to ~E · d~A = E dA, while since
E is a constant on the surface we can pull it out of the integral, and we end up with

E

∮
dA =

q

ε0
,

where q is the point charge in the center. Now
∮
dA = 4πr2, where r is the radius of the Gaussian

surface, so
E =

q

4πε0r2
.

(b) Repeat the above steps, except put the Gaussian surface outside the conducting shell. Keep
it centered on the charge. Two things are different from the above derivation: (1) r is bigger, and
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(2) there is an uncharged spherical conducting shell inside the Gaussian surface. Neither change will
affect the surface integral or qenc, so the electric field outside the shell is still

E =
q

4πε0r2
,

(c) This is a subtle question. With all the symmetry here it appears as if the shell has no effect;
the field just looks like a point charge field. If, however, the charge were moved off center the field
inside the shell would become distorted, and we wouldn’t be able to use Gauss’ law to find it. So
the shell does make a difference.

Outside the shell, however, we can’t tell what is going on inside the shell. So the electric field
outside the shell looks like a point charge field originating from the center of the shell regardless of
where inside the shell the point charge is placed!

(d) Yes, q induces surface charges on the shell. There will be a charge −q on the inside surface
and a charge q on the outside surface.

(e) Yes, as there is an electric field from the shell, isn’t there?
(f) No, as the electric field from the outside charge won’t make it through a conducting shell.

The conductor acts as a shield.
(g) No, this is not a contradiction, because the outside charge never experienced any electrostatic

attraction or repulsion from the inside charge. The force is between the shell and the outside charge.

P27-12 The repulsive electrostatic forces must exactly balance the attractive gravitational forces.
Then

1
4πε0

q2

r2
= G

m2

r2
,

or m = q/
√

4πε0G. Numerically,

m =
(1.60×10−19C)√

4π(8.85×10−12C2/N ·m2)(6.67×10−11N ·m2/kg2)
= 1.86×10−9kg.

P27-13 The problem has spherical symmetry, so use a Gaussian surface which is a spherical shell.
The ~E field will be perpendicular to the surface, so Gauss’ law will simplify to

qenc/ε0 =
∮
~E · d~A =

∮
E dA = E

∮
dA = 4πr2E.

Consequently, E = qenc/4πε0r2.
qenc = q + 4π

∫
ρ r2dr, or

qenc = q + 4π
∫ r

a

Ar dr = q + 2πA(r2 − a2).

The electric field will be constant if qenc behaves as r2, which requires q = 2πAa2, or A = q/2πa2.

P27-14 (a) The problem has spherical symmetry, so use a Gaussian surface which is a spherical
shell. The ~E field will be perpendicular to the surface, so Gauss’ law will simplify to

qenc/ε0 =
∮
~E · d~A =

∮
E dA = E

∮
dA = 4πr2E.

Consequently, E = qenc/4πε0r2.
qenc = 4π

∫
ρ r2dr = 4πρr3/3, so

E = ρr/3ε0
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and is directed radially out from the center. Then ~E = ρ~r/3ε0.
(b) The electric field in the hole is given by ~Eh = ~E− ~Eb, where ~E is the field from part (a) and

~Eb is the field that would be produced by the matter that would have been in the hole had the hole
not been there. Then

~Eb = ρ~b/3ε0,

where ~b is a vector pointing from the center of the hole. Then

~Eh =
ρ~r
3ε0
− ρ~b

3ε0
=

ρ

3ε0
(~r− ~b).

But ~r− ~b = ~a, so ~Eh = ρ~a/3ε0.

P27-15 If a point is an equilibrium point then the electric field at that point should be zero.
If it is a stable point then moving the test charge (assumed positive) a small distance from the
equilibrium point should result in a restoring force directed back toward the equilibrium point. In
other words, there will be a point where the electric field is zero, and around this point there will be
an electric field pointing inward. Applying Gauss’ law to a small surface surrounding our point P ,
we have a net inward flux, so there must be a negative charge inside the surface. But there should
be nothing inside the surface except an empty point P , so we have a contradiction.

P27-16 (a) Follow the example on Page 618. By symmetry E = 0 along the median plane. The
charge enclosed between the median plane and a surface a distance x from the plane is q = ρAx.
Then

E = ρAx/ε0A = ρA/ε0.

(b) Outside the slab the charge enclosed between the median plane and a surface a distance x
from the plane is is q = ρAd/2, regardless of x. The

E = ρAd/2/ε0A = ρd/2ε0.

P27-17 (a) The total charge is the volume integral over the whole sphere,

Q =
∫
ρ dV.

This is actually a three dimensional integral, and dV = Adr, where A = 4πr2. Then

Q =
∫
ρ dV,

=
∫ R

0

(ρSr
R

)
4πr2 dr,

=
4πρS
R

1
4
R4,

= πρSR
3.

(b) Put a spherical Gaussian surface inside the sphere centered on the center. We can use Gauss’
law here because there is spherical symmetry in the entire problem, both inside and outside the
Gaussian surface. Gauss’ law states ∮

~E · d~A =
qenc

ε0
.
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Since there is spherical symmetry the electric field is normal to the spherical Gaussian surface, and
it is everywhere the same on this surface. The dot product simplifies to ~E · d~A = E dA, while since
E is a constant on the surface we can pull it out of the integral, and we end up with

E

∮
dA =

qenc

ε0
,

Now
∮
dA = 4πr2, where r is the radius of the Gaussian surface, so

E =
qenc

4πε0r2
.

We aren’t done yet, because the charge enclosed depends on the radius of the Gaussian surface. We
need to do part (a) again, except this time we don’t want to do the whole volume of the sphere, we
only want to go out as far as the Gaussian surface. Then

qenc =
∫
ρ dV,

=
∫ r

0

(ρSr
R

)
4πr2 dr,

=
4πρS
R

1
4
r4,

= πρS
r4

R
.

Combine these last two results and

E =
πρS

4πε0r2

r4

R
,

=
πρS
4πε0

r2

R
,

=
Q

4πε0
r2

R4
.

In the last line we used the results of part (a) to eliminate ρS from the expression.

P27-18 (a) Inside the conductor E = 0, so a Gaussian surface which is embedded in the conductor
but containing the hole must have a net enclosed charge of zero. The cavity wall must then have a
charge of −3.0µC.

(b) The net charge on the conductor is +10.0µC; the charge on the outer surface must then be
+13.0µC.

P27-19 (a) Inside the shell E = 0, so the net charge inside a Gaussian surface embedded in the
shell must be zero, so the inside surface has a charge −Q.

(b) Still −Q; the outside has nothing to do with the inside.
(c) −(Q+ q); see reason (a).
(d) Yes.
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Throughout this chapter we will use the convention that V (∞) = 0 unless explicitly stated
otherwise. Then the potential in the vicinity of a point charge will be given by Eq. 28-18,

V = q/4πε0r.

E28-1 (a) Let U12 be the potential energy of the interaction between the two “up” quarks. Then

U12 = (8.99×109N ·m2/C2)
(2/3)2e(1.60×10−19C)

(1.32×10−15m)
= 4.84×105eV.

(b) Let U13 be the potential energy of the interaction between an “up” quark and a “down”
quark. Then

U13 = (8.99×109N ·m2/C2)
(−1/3)(2/3)e(1.60×10−19C)

(1.32×10−15m)
= −2.42×105eV

Note that U13 = U23. The total electric potential energy is the sum of these three terms, or zero.

E28-2 There are six interaction terms, one for every charge pair. Number the charges clockwise
from the upper left hand corner. Then

U12 = −q2/4πε0a,
U23 = −q2/4πε0a,
U34 = −q2/4πε0a,
U41 = −q2/4πε0a,

U13 = (−q)2/4πε0(
√

2a),

U24 = q2/4πε0(
√

2a).

Add these terms and get

U =
(

2√
2
− 4
)

q2

4πε0a
= −0.206

q2

ε0a

The amount of work required is W = U .

E28-3 (a) We build the electron one part at a time; each part has a charge q = e/3. Moving the
first part from infinity to the location where we want to construct the electron is easy and takes no
work at all. Moving the second part in requires work to change the potential energy to

U12 =
1

4πε0
q1q2

r
,

which is basically Eq. 28-7. The separation r = 2.82× 10−15 m.
Bringing in the third part requires work against the force of repulsion between the third charge

and both of the other two charges. Potential energy then exists in the form U13 and U23, where all
three charges are the same, and all three separations are the same. Then U12 = U13 = U12, so the
total potential energy of the system is

U = 3
1

4πε0
(e/3)2

r
=

3
4π(8.85×10−12 C2/N ·m2)

(1.60×10−19 C/3)2

(2.82×10−15 m)
= 2.72×10−14 J

(b) Dividing our answer by the speed of light squared to find the mass,

m =
2.72× 10−14 J

(3.00× 108 m/s)2
= 3.02× 10−31 kg.
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E28-4 There are three interaction terms, one for every charge pair. Number the charges from the
left; let a = 0.146 m. Then

U12 =
(25.5×10−9C)(17.2×10−9C)

4πε0a
,

U13 =
(25.5×10−9C)(−19.2×10−9C)

4πε0(a+ x)
,

U23 =
(17.2×10−9C)(−19.2×10−9C)

4πε0x
.

Add these and set it equal to zero. Then

(25.5)(17.2)
a

=
(25.5)(19.2)

a+ x
+

(17.2)(19.2)
x

,

which has solution x = 1.405a = 0.205 m.

E28-5 The volume of the nuclear material is 4πa3/3, where a = 8.0×10−15m. Upon dividing in
half each part will have a radius r where 4πr3/3 = 4πa3/6. Consequently, r = a/ 3

√
2 = 6.35×10−15m.

Each fragment will have a charge of +46e.
(a) The force of repulsion is

F =
(46)2(1.60×10−19C)2

4π(8.85×10−12C2/N ·m2)[2(6.35×10−15m)]2
= 3000 N

(b) The potential energy is

U =
(46)2e(1.60×10−19C)

4π(8.85×10−12C2/N ·m2)2(6.35×10−15m)
= 2.4×108eV

E28-6 This is a work/kinetic energy problem: 1
2mv

2
0 = q∆V . Then

v0 =

√
2(1.60×10−19C)(10.3×103V)

(9.11×10−31kg)
= 6.0×107m/s.

E28-7 (a) The energy released is equal to the charges times the potential through which the
charge was moved. Then

∆U = q∆V = (30 C)(1.0× 109 V) = 3.0× 1010 J.

(b) Although the problem mentions acceleration, we want to focus on energy. The energy will
change the kinetic energy of the car from 0 to Kf = 3.0× 1010 J. The speed of the car is then

v =

√
2K
m

=

√
2(3.0× 1010 J)

(1200 kg)
= 7100 m/s.

(c) The energy required to melt ice is given by Q = mL, where L is the latent heat of fusion.
Then

m =
Q

L
=

(3.0× 1010 J)
(3.33×105J/kg)

= 90, 100kg.
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E28-8 (a) ∆U = (1.60×10−19C)(1.23×109V) = 1.97×10−10J.
(b) ∆U = e(1.23×109V) = 1.23×109eV.

E28-9 This is an energy conservation problem: 1
2mv

2 = q∆V ; ∆V = q/4πε0(1/r1 − 1/r2). Com-
bining,

v =

√
q2

2πε0m

(
1
r1
− 1
r2

)
,

=

√
(3.1×10−6C)2

2π(8.85×10−12C2/N ·m2)(18×10−6kg)

(
1

(0.90×10−3m)
− 1

(2.5×10−3m)

)
,

= 2600 m/s.

E28-10 This is an energy conservation problem:

1
2
m(2v)2 − q2

4πε0r
=

1
2
mv2.

Rearrange,

r =
q2

6πε0mv2
,

=
(1.60×10−19C)2

6π(8.85×10−12C2/N ·m2)(9.11×10−31kg)(3.44×105m/s)2)
= 1.42×10−9m.

E28-11 (a) V = (1.60×10−19C)/4π(8.85×10−12C2/N ·m2)(5.29×10−11m) = 27.2 V.
(b) U = qV = (−e)(27.2 V) = −27.2 eV.
(c) For uniform circular orbits F = mv2/r; the force is electrical, or F = e2/4πε0r2. Kinetic

energy is K = mv2/2 = Fr/2, so

K =
e2

8πε0r
=

(1.60×10−19C)
8π(8.85×10−12C2/N ·m2)(5.29×10−11m)

= 13.6 eV.

(d) The ionization energy is −(K + U), or

Eion = −[(13.6 eV) + (−27.2 eV)] = 13.6 eV.

E28-12 (a) The electric potential at A is

VA =
1

4πε0

(
q1

r1
+
q2

r2

)
= (8.99×109N ·m2/C)

(
(−5.0×10−6C)

(0.15 m)
+

(2.0×10−6C)
(0.05 m)

)
= 6.0×104V.

The electric potential at B is

VB =
1

4πε0

(
q1

r2
+
q2

r1

)
= (8.99×109N ·m2/C)

(
(−5.0×10−6C)

(0.05 m)
+

(2.0×10−6C)
(0.15 m)

)
= −7.8×105V.

(b) W = q∆V = (3.0×10−6C)(6.0×104V −−7.8×105V) = 2.5 J.
(c) Since work is positive then external work is converted to electrostatic potential energy.
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E28-13 (a) The magnitude of the electric field would be found from

E =
F

q
=

(3.90× 10−15 N)
(1.60× 10−19 C)

= 2.44× 104 N/C.

(b) The potential difference between the plates is found by evaluating Eq. 28-15,

∆V = −
∫ b

a

~E · d~s.

The electric field between two parallel plates is uniform and perpendicular to the plates. Then
~E · d~s = E ds along this path, and since E is uniform,

∆V = −
∫ b

a

~E · d~s = −
∫ b

a

E ds = −E
∫ b

a

ds = E∆x,

where ∆x is the separation between the plates. Finally, ∆V = (2.44× 104 N/C)(0.120 m) = 2930 V.

E28-14 ∆V = E∆x, so

∆x =
2ε0
σ

∆V =
2(8.85×10−12C2/N ·m2)

(0.12×10−6C/m2)
(48 V) = 7.1×10−3m

E28-15 The electric field around an infinitely long straight wire is given by E = λ/2πε0r. The
potential difference between the inner wire and the outer cylinder is given by

∆V = −
∫ b

a

(λ/2πε0r) dr = (λ/2πε0) ln(a/b).

The electric field near the surface of the wire is then given by

E =
λ

2πε0a
=

∆V
a ln(a/b)

=
(−855 V)

(6.70×10−7m) ln(6.70×10−7 m/1.05×10−2 m)
= 1.32×108V/m.

The electric field near the surface of the cylinder is then given by

E =
λ

2πε0a
=

∆V
a ln(a/b)

=
(−855 V)

(1.05×10−2m) ln(6.70×10−7 m/1.05×10−2 m)
= 8.43×103V/m.

E28-16 ∆V = E∆x = (1.92×105N/C)(1.50×10−2m) = 2.88×103V.

E28-17 (a) This is an energy conservation problem:

K =
1

4πε0
(2)(79)e2

r
= (8.99×109N ·m2/C)

(2)(79)e(1.60×10−19C)
(7.0×10−15m)

= 3.2×107 eV

(b) The alpha particles used by Rutherford never came close to hitting the gold nuclei.

E28-18 This is an energy conservation problem: mv2/2 = eq/4πε0r, or

v =

√
(1.60×10−19C)(1.76×10−15C)

2π(8.85×10−12C2/N ·m2)(1.22×10−2m)(9.11×10−31kg)
= 2.13×104m/s
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E28-19 (a) We evaluate VA and VB individually, and then find the difference.

VA =
1

4πε0
q

r
=

1
4π(8.85× 10−12 C2/N ·m2)

(1.16µC)
(2.06 m)

= 5060 V,

and

VB =
1

4πε0
q

r
=

1
4π(8.85× 10−12 C2/N ·m2)

(1.16µC)
(1.17 m)

= 8910 V,

The difference is then VA − VB = −3850 V.
(b) The answer is the same, since when concerning ourselves with electric potential we only care

about distances, and not directions.

E28-20 The number of “excess” electrons on each grain is

n =
4πε0rV

e
=

4π(8.85×10−12C2/N ·m)(1.0×10−6m)(−400 V)
(−1.60×10−19C)

= 2.8×105

E28-21 The excess charge on the shuttle is

q = 4πε0rV = 4π(8.85×10−12C2/N ·m)(10 m)(−1.0 V) = −1.1×10−9C

E28-22 q = 1.37×105C, so

V = (8.99×109N ·m2/C2)
(1.37×105C)
(6.37×106m)

= 1.93×108V.

E28-23 The ratio of the electric potential to the electric field strength is

V

E
=
(

1
4πε0

q

r

)
/

(
1

4πε0
q

r2

)
= r.

In this problem r is the radius of the Earth, so at the surface of the Earth the potential is

V = Er = (100 V/m)(6.38×106m) = 6.38×108 V.

E28-24 Use Eq. 28-22:

V = (8.99×109N ·m2/C2)
(1.47)(3.34×10−30C ·m)

(52.0×10−9m)2
= 1.63×10−5V.

E28-25 (a) When finding VA we need to consider the contribution from both the positive and
the negative charge, so

VA =
1

4πε0

(
qa+

−q
a+ d

)
There will be a similar expression for VB ,

VB =
1

4πε0

(
−qa+

q

a+ d

)
.
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Now to evaluate the difference.

VA − VB =
1

4πε0

(
qa+

−q
a+ d

)
− 1

4πε0

(
−qa+

q

a+ d

)
,

=
q

2πε0

(
1
a
− 1
a+ d

)
,

=
q

2πε0

(
a+ d

a(a+ d)
− a

a(a+ d)

)
,

=
q

2πε0
d

a(a+ d)
.

(b) Does it do what we expect when d = 0? I expect it the difference to go to zero as the
two points A and B get closer together. The numerator will go to zero as d gets smaller. The
denominator, however, stays finite, which is a good thing. So yes, Va − VB → 0 as d→ 0.

E28-26 (a) Since both charges are positive the electric potential from both charges will be positive.
There will be no finite points where V = 0, since two positives can’t add to zero.

(b) Between the charges the electric field from each charge points toward the other, so ~E will
vanish when q/x2 = 2q/(d− x)2. This happens when d− x =

√
2x, or x = d/(1 +

√
2).

E28-27 The distance from C to either charge is
√

2d/2 = 1.39×10−2m.
(a) V at C is

V = (8.99×109N ·m2/C2)
2(2.13×10−6C)
(1.39×10−2m)

= 2.76×106V

(b) W = qδV = (1.91×10−6C)(2.76×106V) = 5.27 J.
(c) Don’t forget about the potential energy of the original two charges!

U0 = (8.99×109N ·m2/C2)
(2.13×10−6C)2

(1.96×10−2m)
= 2.08 J

Add this to the answer from part (b) to get 7.35 J.

E28-28 The potential is given by Eq. 28-32; at the surface V s = σR/2ε0, half of this occurs when√
R2 + z2 − z = R/2,

R2 + z2 = R2/4 +Rz + z2,

3R/4 = z.

E28-29 We can find the linear charge density by dividing the charge by the circumference,

λ =
Q

2πR
,

where Q refers to the charge on the ring. The work done to move a charge q from a point x to the
origin will be given by

W = q∆V,
W = q (V (0)− V (x)) ,

= q

(
1

4πε0
Q√
R2
− 1

4πε0
Q√

R2 + x2

)
,

=
qQ

4πε0

(
1
R
− 1√

R2 + x2

)
.
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Putting in the numbers,

(−5.93×10−12C)(−9.12×10−9C)
4π(8.85×10−12C2/N ·m2)

(
1

1.48m
− 1√

(1.48m)2 + (3.07m)2

)
= 1.86×10−10J.

E28-30 (a) The electric field strength is greatest where the gradient of V is greatest. That is
between d and e.

(b) The least absolute value occurs where the gradient is zero, which is between b and c and
again between e and f .

E28-31 The potential on the positive plate is 2(5.52 V) = 11.0 V; the electric field between the
plates is E = (11.0 V)/(1.48×10−2m) = 743 V/m.

E28-32 Take the derivative: E = −∂V/∂z.

E28-33 The radial potential gradient is just the magnitude of the radial component of the electric
field,

Er = −∂V
∂r

Then

∂V

∂r
= − 1

4πε0
q

r2
,

=
1

4π(8.85× 10−12 C2/N ·m2)
79(1.60× 10−19C)
(7.0× 10−15m)2

,

= −2.32×1021 V/m.

E28-34 Evaluate ∂V/∂r, and

E = − Ze

4πε0

(
−1
r2

+ 2
r

2R3

)
.

E28-35 Ex = −∂V/∂x = −2(1530 V/m2)x. At the point in question, E = −2(1530 V/m2)(1.28×
10−2m) = 39.2 V/m.

E28-36 Draw the wires so that they are perpendicular to the plane of the page; they will then
“come out of” the page. The equipotential surfaces are then lines where they intersect the page,
and they look like
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E28-37 (a) |VB − VA| = |W/q| = |(3.94× 10−19 J)/(1.60× 10−19 C)| = 2.46 V. The electric field
did work on the electron, so the electron was moving from a region of low potential to a region of
high potential; or VB > VA. Consequently, VB − VA = 2.46 V.

(b) VC is at the same potential as VB (both points are on the same equipotential line), so
VC − VA = VB − VA = 2.46 V.

(c) VC is at the same potential as VB (both points are on the same equipotential line), so
VC − VB = 0 V.

E28-38 (a) For point charges r = q/4πε0V , so

r = (8.99×109N ·m2/C2)(1.5×10−8C)/(30 V) = 4.5 m

(b) No, since V ∝ 1/r.

E28-39 The dotted lines are equipotential lines, the solid arrows are electric field lines. Note that
there are twice as many electric field lines from the larger charge!
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E28-40 The dotted lines are equipotential lines, the solid arrows are electric field lines.

E28-41 This can easily be done with a spreadsheet. The following is a sketch; the electric field is
the bold curve, the potential is the thin curve.
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rsphere radius

E28-42 Originally V = q/4πε0r, where r is the radius of the smaller sphere.
(a) Connecting the spheres will bring them to the same potential, or V1 = V2.
(b) q1 + q2 = q; V1 = q1/4πε0r and V2 = q2/4πε02r; combining all of the above q2 = 2q1 and

q1 = q/3 and q2 = 2q/3.

E28-43 (a) q = 4πR2σ, so V = q/4πε0R = σR/ε0, or

V = (−1.60×10−19C/m2)(6.37×106m)/(8.85×10−12C2/N ·m2) = 0.115 V

(b) Pretend the Earth is a conductor, then E = σ/epsilon0, so

E = (−1.60×10−19C/m2)/(8.85×10−12C2/N ·m2) = 1.81×10−8V/m.

E28-44 V = q/4πε0R, so

V = (8.99×109N ·m2/C2)(15×10−9C)/(0.16 m) = 850 V.

E28-45 (a) q = 4πε0RV = 4π(8.85×10−12C2/N ·m2)(0.152 m)(215 V) = 3.63×10−9C
(b) σ = q/4πR2 = (3.63×10−9C)/4π(0.152 m)2 = 1.25×10−8C/m2.

E28-46 The dotted lines are equipotential lines, the solid arrows are electric field lines.
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E28-47 (a) The total charge (Q = 57.2nC) will be divided up between the two spheres so that
they are at the same potential. If q1 is the charge on one sphere, then q2 = Q− q1 is the charge on
the other. Consequently

V1 = V2,

1
4πε0

q1

r1
=

1
4πε0

Q− q1

r2
,

q1r2 = (Q− q1)r1,

q1 =
Qr2

r2 + r1
.

Putting in the numbers, we find

q1 =
Qr1

r2 + r1
=

(57.2 nC)(12.2 cm)
(5.88 cm) + (12.2 cm)

= 38.6 nC,

and q2 = Q− q1 = (57.2 nC)− (38.6 nC) = 18.6 nC.
(b) The potential on each sphere should be the same, so we only need to solve one. Then

1
4πε0

q1

r1
=

1
4π(8.85× 10−12 C2/N ·m2)

(38.6 nC)
(12.2 cm)

= 2850 V.

E28-48 (a) V = (8.99×109N ·m2/C2)(31.5×10−9C)/(0.162 m) = 1.75×103V.
(b) V = q/4πε0r, so r = q/4πε0V , and then

r = (8.99×109N ·m2/C2)(31.5×10−9C)/(1.20×103V) = 0.236 m.

That is (0.236 m)− (0.162 m) = 0.074 m above the surface.
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E28-49 (a) Apply the point charge formula, but solve for the charge. Then

1
4πε0

q

r
= V,

q = 4πε0rV,
q = 4π(8.85× 10−12 C2/N ·m2)(1 m)(106 V) = 0.11 mC.

Now that’s a fairly small charge. But if the radius were decreased by a factor of 100, so would
the charge (1.10µC). Consequently, smaller metal balls can be raised to higher potentials with less
charge.

(b) The electric field near the surface of the ball is a function of the surface charge density,
E = σ/ε0. But surface charge density depends on the area, and varies as r−2. For a given potential,
the electric field near the surface would then be given by

E =
σ

ε0
=

q

4πε0r2
=
V

r
.

Note that the electric field grows as the ball gets smaller. This means that the break down field is
more likely to be exceeded with a low voltage small ball; you’ll get sparking.

E28-50 A “Volt” is a Joule per Coulomb. The power required by the drive belt is the product
(3.41×106V)(2.83×10−3C/s) = 9650 W.

P28-1 (a) According to Newtonian mechanics we want K = 1
2mv

2 to be equal to W = q∆V
which means

∆V =
mv2

2q
=

(0.511 MeV)
2e

= 256 kV.

mc2 is the rest mass energy of an electron.
(b) Let’s do some rearranging first.

K = mc2

[
1√

1− β2
− 1

]
,

K

mc2
=

1√
1− β2

− 1,

K

mc2
+ 1 =

1√
1− β2

,

1
K
mc2 + 1

=
√

1− β2,

1(
K
mc2 + 1

)2 = 1− β2,

and finally,

β =

√
1− 1(

K
mc2 + 1

)2
Putting in the numbers, √√√√1− 1(

(256 keV)

(511 keV)
+ 1
)2 = 0.746,

so v = 0.746c.
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P28-2 (a) The potential of the hollow sphere is V = q/4πε0r. The work required to increase the
charge by an amount dq is dW = V/, dq. Integrating,

W =
∫ e

0

q

4πε0r
dq =

e2

8πε0r
.

This corresponds to an electric potential energy of

W =
e(1.60×10−19C)

8π(8.85×10−12C2/N ·m2)(2.82×10−15m)
= 2.55×105 eV = 4.08×10−14J.

(b) This would be a mass of m = (4.08×10−14J)/(3.00×108m/s)2 = 4.53×10−31kg.

P28-3 The negative charge is held in orbit by electrostatic attraction, or

mv2

r
=

qQ

4πε0r2
.

The kinetic energy of the charge is

K =
1
2
mv2 =

qQ

8πε0r
.

The electrostatic potential energy is

U = − qQ

4πε0r
,

so the total energy is

E = − qQ

8πε0r
.

The work required to change orbit is then

W =
qQ

8πε0

(
1
r1
− 1
r2

)
.

P28-4 (a) V = −
∫
E dr, so

V = −
∫ r

0

qr

4πε0R3
dr = − qr2

8πε0R3
.

(b) ∆V = q/8πε0R.
(c) If instead of V = 0 at r = 0 as was done in part (a) we take V = 0 at r = ∞, then

V = q/4πε0R on the surface of the sphere. The new expression for the potential inside the sphere
will look like V = V ′ + Vs, where V ′ is the answer from part (a) and Vs is a constant so that the
surface potential is correct. Then

Vs =
q

4πε0R
+

qR2

8πε0R3
=

3qR2

8πε0R3
,

and then

V = − qr2

8πε0R3
+

3qR2

8πε0R3
=
q(3R2 − r2)

8πε0R3
.
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P28-5 The total electric potential energy of the system is the sum of the three interaction pairs.
One of these pairs does not change during the process, so it can be ignored when finding the change
in potential energy. The change in electrical potential energy is then

∆U = 2
q2

4πε0rf
− 2

q2

4πε0ri
=

q2

2πε0

(
1
rf
− 1
ri

)
.

In this case ri = 1.72 m, while rf = 0.86 m. The change in potential energy is then

∆U = 2(8.99×109N ·m2/C2)(0.122 C)2

(
1

(0.86 m)
− 1

(1.72 m)

)
= 1.56×108J

The time required is

t = (1.56×108)/(831 W) = 1.87×105s = 2.17 days.

P28-6 (a) Apply conservation of energy:

K =
qQ

4πε0d
, or d =

qQ

4πε0K
,

where d is the distance of closest approach.
(b) Apply conservation of energy:

K =
qQ

4πε0(2d)
+

1
2
mv2,

so, combining with the results in part (a), v =
√
K/m.

P28-7 (a) First apply Eq. 28-18, but solve for r. Then

r =
q

4πε0V
=

(32.0× 10−12 C)
4π(8.85× 10−12 C2/N ·m2)(512 V)

= 562µm.

(b) If two such drops join together the charge doubles, and the volume of water doubles, but the
radius of the new drop only increases by a factor of 3

√
2 = 1.26 because volume is proportional to

the radius cubed.
The potential on the surface of the new drop will be

V new =
1

4πε0
qnew

rnew
,

=
1

4πε0
2qold

3
√

2 rold

,

= (2)2/3 1
4πε0

qold

rold
= (2)2/3V old.

The new potential is 813 V.

P28-8 (a) The work done is W = −Fz = −Eqz = −qσz/2ε0.
(b) Since W = q∆V , ∆V = −σz/2ε0, so

V = V0 − (σ/2ε0)z.
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P28-9 (a) The potential at any point will be the sum of the contribution from each charge,

V =
1

4πε0
q1

r1
+

1
4πε0

q2

r2
,

where r1 is the distance the point in question from q1 and r2 is the distance the point in question
from q2. Pick a point, call it (x, y). Since q1 is at the origin,

r1 =
√
x2 + y2.

Since q2 is at (d, 0), where d = 9.60 nm,

r2 =
√

(x− d)2 + y2.

Define the “Stanley Number” as S = 4πε0V . Equipotential surfaces are also equi-Stanley surfaces.
In particular, when V = 0, so does S. We can then write the potential expression in a sightly
simplified form

S =
q1

r1
+
q2

r2
.

If S = 0 we can rearrange and square this expression.

q1

r1
= −q2

r2
,

r2
1

q2
1

=
r2
2

q2
2

,

x2 + y2

q2
1

=
(x− d)2 + y2

q2
2

,

Let α = q2/q1, then we can write

α2
(
x2 + y2

)
= (x− d)2 + y2,

α2x2 + α2y2 = x2 − 2xd+ d2 + y2,

(α2 − 1)x2 + 2xd+ (α2 − 1)y2 = d2.

We complete the square for the (α2 − 1)x2 + 2xd term by adding d2/(α2 − 1) to both sides of the
equation. Then

(α2 − 1)

[(
x+

d

α2 − 1

)2

+ y2

]
= d2

(
1 +

1
α2 − 1

)
.

The center of the circle is at

− d

α2 − 1
=

(9.60 nm)
(−10/6)2 − 1

= −5.4 nm.

(b) The radius of the circle is √√√√
d2

(
1 + 1

α2−1

)
α2 − 1

,

which can be simplified to

d
α

α2 − 1
= (9.6 nm)

|(−10/6)|
(−10/6)2 − 1

= 9.00 nm.

(c) No.
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P28-10 An annulus is composed of differential rings of varying radii r and width dr; the charge
on any ring is the product of the area of the ring, dA = 2πr dr, and the surface charge density, or

dq = σ dA =
k

r3
2πr dr =

2πk
r2

dr.

The potential at the center can be found by adding up the contributions from each ring. Since we
are at the center, the contributions will each be dV = dq/4πε0r. Then

V =
∫ b

a

k

2ε0
dr

r3
=

k

4ε0

(
1
a2
− 1
b2

)
. =

k

4ε0
b2 − a2

b2a2
.

The total charge on the annulus is

Q =
∫ b

a

2πk
r2

dr = 2πk
(

1
a
− 1
b

)
= 2πk

b− a
ba

.

Combining,

V =
Q

8πε0
a+ b

ab
.

P28-11 Add the three contributions, and then do a series expansion for d� r.

V =
q

4πε0

(
−1
r + d

+
1
r

+
1

r − d

)
,

=
q

4πε0r

(
−1

1 + d/r
+ 1 +

1
1− d/r

)
,

≈ q

4πε0r

(
−1 +

d

r
+ 1 + 1 +

d

r

)
,

≈ q

4πε0r

(
1 +

2d
r

)
.

P28-12 (a) Add the contributions from each differential charge: dq = λ dy. Then

V =
∫ y+L

y

λ

4πε0y
dy =

λ

4πε0
ln
(
y + L

y

)
.

(b) Take the derivative:

Ey = −∂V
∂y

= − λ

4πε0
y

y + L

−L
y2

=
λ

4πε0
L

y(y + L)
.

(c) By symmetry it must be zero, since the system is invariant under rotations about the axis
of the rod. Note that we can’t determine E⊥ from derivatives because we don’t have the functional
form of V for points off-axis!

P28-13 (a) We follow the work done in Section 28-6 for a uniform line of charge, starting with
Eq. 28-26,

dV =
1

4πε0
λ dx√
x2 + y2

,

dV =
1

4πε0

∫ L

0

kx dx√
x2 + y2

,
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=
k

4πε0

√
x2 + y2

∣∣∣L
0
,

=
k

4πε0

(√
L2 + y2 − y

)
.

(b) The y component of the electric field can be found from

Ey = −∂V
∂y

,

which (using a computer-aided math program) is

Ey =
k

4πε0

(
1− y√

L2 + y2

)
.

(c) We could find Ex if we knew the x variation of V . But we don’t; we only found the values of
V along a fixed value of x.

(d) We want to find y such that the ratio[
k

4πε0

(√
L2 + y2 − y

)]
/

[
k

4πε0
(L)
]

is one-half. Simplifying,
√
L2 + y2 − y = L/2, which can be written as

L2 + y2 = L2/4 + Ly + y2,

or 3L2/4 = Ly, with solution y = 3L/4.

P28-14 The spheres are small compared to the separation distance. Assuming only one sphere at
a potential of 1500 V, the charge would be

q = 4πε0rV = 4π(8.85×10−12C2/N ·m)(0.150 m)(1500 V) = 2.50×10−8C.

The potential from the sphere at a distance of 10.0 m would be

V = (1500 V)
(0.150 m)
(10.0 m)

= 22.5 V.

This is small compared to 1500 V, so we will treat it as a perturbation. This means that we can
assume that the spheres have charges of

q = 4πε0rV = 4π(8.85×10−12C2/N ·m)(0.150 m)(1500 V + 22.5 V) = 2.54×10−8C.

P28-15 Calculating the fraction of excess electrons is the same as calculating the fraction of
excess charge, so we’ll skip counting the electrons. This problem is effectively the same as Exercise
28-47; we have a total charge that is divided between two unequal size spheres which are at the same
potential on the surface. Using the result from that exercise we have

q1 =
Qr1

r2 + r1
,

where Q = −6.2 nC is the total charge available, and q1 is the charge left on the sphere. r1 is the
radius of the small ball, r2 is the radius of Earth. Since the fraction of charge remaining is q1/Q,
we can write

q1

Q
=

r1

r2 + r1
≈ r1

r2
= 2.0× 10−8.
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P28-16 The positive charge on the sphere would be

q = 4πε0rV = 4π(8.85×10−12C2/N ·m2)(1.08×10−2m)(1000 V) = 1.20×10−9C.

The number of decays required to build up this charge is

n = 2(1.20×10−9C)/(1.60×10−19C) = 1.50×1010.

The extra factor of two is because only half of the decays result in an increase in charge. The time
required is

t = (1.50×1010)/(3.70×108s−1) = 40.6 s.

P28-17 (a) None.
(b) None.
(c) None.
(d) None.
(e) No.

P28-18 (a) Outside of an isolated charged spherical object E = q/4πε0r2 and V = q/4πε0r.
Then E = V/r. Consequently, the sphere must have a radius larger than r = (9.15×106V)/(100×
106V/m) = 9.15×10−2m.

(b) The power required is (320×10−6C/s)(9.15×106V) = 2930 W.
(c) σwv = (320×10−6C/s), so

σ =
(320×10−6C/s)

(0.485 m)(33.0 m/s)
= 2.00×10−5C/m2.
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E29-1 (a) The charge which flows through a cross sectional surface area in a time t is given by
q = it, where i is the current. For this exercise we have

q = (4.82 A)(4.60× 60 s) = 1330 C

as the charge which passes through a cross section of this resistor.
(b) The number of electrons is given by (1330 C)/(1.60× 10−19 C) = 8.31× 1021 electrons.

E29-2 Q/t = (200×10−6A/s)(60s/min)/(1.60×10−19C) = 7.5×1016 electrons per minute.

E29-3 (a) j = nqv = (2.10×1014/m3)2(1.60×10−19C)(1.40×105m/s) = 9.41 A/m2. Since the ions
have positive charge then the current density is in the same direction as the velocity.

(b) We need an area to calculate the current.

E29-4 (a) j = i/A = (123×10−12A)/π(1.23×10−3m)2 = 2.59×10−5A/m2.
(b) vd = j/ne = (2.59×10−5A/m2)/(8.49×1028/m3)(1.60×10−19C) = 1.91×10−15m/s.

E29-5 The current rating of a fuse of cross sectional area A would be

imax = (440 A/cm2)A,

and if the fuse wire is cylindrical A = πd2/4. Then

d =

√
4
π

(0.552 A)
(440 A/m2)

= 4.00×10−2 cm.

E29-6 Current density is current divided by cross section of wire, so the graph would look like:
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E29-7 The current is in the direction of the motion of the positive charges. The magnitude of the
current is

i = (3.1×1018/s + 1.1×1018/s)(1.60×10−19C) = 0.672 A.

E29-8 (a) The total current is

i = (3.50×1015/s + 2.25×1015/s)(1.60×10−19C) = 9.20×10−4A.

(b) The current density is

j = (9.20×10−4A)/π(0.165×10−3m)2 = 1.08×104A/m2.

E29-9 (a) j = (8.70×106/m3)(1.60×10−19C)(470×103m/s) = 6.54×10−7A/m2.
(b) i = (6.54×10−7A/m2)π(6.37×106m)2 = 8.34×107A.

E29-10 i = σwv, so

σ = (95.0×10−6A)/(0.520 m)(28.0 m/s) = 6.52×10−6C/m2.

E29-11 The drift velocity is given by Eq. 29-6,

vd =
j

ne
=

i

Ane
=

(115 A)
(31.2×10−6m2)(8.49×1028/m3)(1.60×10−19C)

= 2.71×10−4m/s.

The time it takes for the electrons to get to the starter motor is

t =
x

v
=

(0.855 m)
(2.71×10−4m/s)

= 3.26×103s.

That’s about 54 minutes.

E29-12 ∆V = iR = (50×10−3A)(1800 Ω) = 90 V.

E29-13 The resistance of an object with constant cross section is given by Eq. 29-13,

R = ρ
L

A
= (3.0× 10−7 Ω ·m)

(11, 000 m)
(0.0056 m2)

= 0.59 Ω.

E29-14 The slope is approximately [(8.2− 1.7)/1000]µΩ · cm/◦C, so

α =
1

1.7µΩ · cm
6.5×10−3µΩ · cm/◦C ≈ 4×10−3/C◦

E29-15 (a) i = ∆V/R = (23 V)/(15×10−3Ω) = 1500 A.
(b) j = i/A = (1500 A)/π(3.0×10−3m)2 = 5.3×107A/m2.
(c) ρ = RA/L = (15×10−3Ω)π(3.0×10−3m)2/(4.0 m) = 1.1×10−7Ω ·m. The material is possibly

platinum.

E29-16 Use the equation from Exercise 29-17. ∆R = 8 Ω; then

∆T = (8 Ω)/(50 Ω)(4.3×10−3/C◦) = 37 C◦.

The final temperature is then 57◦C.
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E29-17 Start with Eq. 29-16,

ρ− ρ0 = ρ0αav(T − T0),

and multiply through by L/A,

L

A
(ρ− ρ0) =

L

A
ρ0αav(T − T0),

to get
R−R0 = R0αav(T − T0).

E29-18 The wire has a length L = (250)2π(0.122 m) = 192 m. The diameter is 0.129 inches; the
cross sectional area is then

A = π(0.129× 0.0254 m)2/4 = 8.43×10−6m2.

The resistance is

R = ρL/A = (1.69×10−8Ω ·m)(192 m)/(8.43×10−6m2) = 0.385 Ω.

E29-19 If the length of each conductor is L and has resistivity ρ, then

RA = ρ
L

πD2/4
= ρ

4L
πD2

and
RB = ρ

L

(π4D2/4− πD2/4)
= ρ

4L
3πD2

.

The ratio of the resistances is then
RA
RB

= 3.

E29-20 R = R, so ρ1L1/π(d1/2)2 = ρ2L2/π(d2/2)2. Simplifying, ρ1/d
2
1 = ρ2/d

2
2. Then

d2 = (1.19×10−3m)
√

(9.68×10−8Ω ·m)/(1.69×10−8Ω ·m) = 2.85×10−3m.

E29-21 (a) (750×10−3A)/(125) = 6.00×10−3A.
(b) ∆V = iR = (6.00×10−3A)(2.65×10−6Ω) = 1.59×10−8V.
(c) R = ∆V/i = (1.59×10−8V)/(750×10−3A) = 2.12×10−8Ω.

E29-22 Since ∆V = iR, then if ∆V and i are the same, then R must be the same.
(a) Since R = R, ρ1L1/πr

2
1 = ρ2L2/πr

2
2, or ρ1/r

2
1 = ρ2/r

2
2. Then

riron/rcopper =
√

(9.68×10−8Ω ·m)(1.69×10−8Ω ·m) = 2.39.

(b) Start with the definition of current density:

j =
i

A
=

∆V
RA

=
∆V
ρL

.

Since ∆V and L is the same, but ρ is different, then the current densities will be different.
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E29-23 Conductivity is given by Eq. 29-8, ~j = σ~E. If the wire is long and thin, then the
magnitude of the electric field in the wire will be given by

E ≈ ∆V/L = (115 V)/(9.66 m) = 11.9 V/m.

We can now find the conductivity,

σ =
j

E
=

(1.42×104A/m2)
(11.9 V/m)

= 1.19×103(Ω ·m)−1.

E29-24 (a) vd = j/en = σE/en. Then

vd = (2.70×10−14/Ω ·m)(120 V/m)/(1.60×10−19C)(620×106/m3 + 550×106/m3) = 1.73×10−2m/s.

(b) j = σE = (2.70×10−14/Ω ·m)(120 V/m) = 3.24×10−14A/m2.

E29-25 (a) R/L = ρ/A, so j = i/A = (R/L)i/ρ. For copper,

j = (0.152×10−3Ω/m)(62.3 A)/(1.69×10−8Ω ·m) = 5.60×105A/m2;

for aluminum,

j = (0.152×10−3Ω/m)(62.3 A)/(2.75×10−8Ω ·m) = 3.44×105A/m2.

(b) A = ρL/R; if δ is density, then m = δlA = lδρ/(R/L). For copper,

m = (1.0 m)(8960 kg/m3)(1.69×10−8Ω ·m)/(0.152×10−3Ω/m) = 0.996 kg;

for aluminum,

m = (1.0 m)(2700 kg/m3)(2.75×10−8Ω ·m)/(0.152×10−3Ω/m) = 0.488 kg.

E29-26 The resistance for potential differences less than 1.5 V are beyond the scale.
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E29-27 (a) The resistance is defined as

R =
∆V
i

=
(3.55× 106 V/A2)i2

i
= (3.55× 106 V/A2)i.

When i = 2.40 mA the resistance would be

R = (3.55× 106 V/A2)(2.40× 10−3A) = 8.52 kΩ.

(b) Invert the above expression, and

i = R/(3.55× 106 V/A2) = (16.0 Ω)/(3.55× 106 V/A2) = 4.51µA.

E29-28 First, n = 3(6.02×1023)(2700 kg/m3)(27.0×10−3kg) = 1.81×1029/m3. Then

τ =
m

ne2ρ
=

(9.11×10−31kg)
(1.81×1029/m3)(1.60×10−19C)2(2.75×10−8Ω ·m)

= 7.15×10−15s.

E29-29 (a) E = E0/κe = q/4πε0κeR
2, so

E =
(1.00×10−6C)

4π(8.85×10−12C2/N ·m2)(4.7)(0.10 m)2
=

(b) E = E0 = q/4πε0R2, so

E =
(1.00×10−6C)

4π(8.85×10−12C2/N ·m2)(0.10 m)2
=

(c) σind = ε0(E0 − E) = q(1− 1/κe)/4πR2. Then

σind =
(1.00×10−6C)

4π(0.10 m)2

(
1− 1

(4.7)

)
= 6.23×10−6C/m2.

E29-30 Midway between the charges E = q/πε0d, so

q = π(8.85×10−12C2/N ·m2)(0.10 m)(3×106V/m) = 8.3×10−6C.

E29-31 (a) At the surface of a conductor of radius R with charge Q the magnitude of the electric
field is given by

E =
1

4πε0
QR2,

while the potential (assuming V = 0 at infinity) is given by

V =
1

4πε0
QR.

The ratio is V/E = R.
The potential on the sphere that would result in “sparking” is

V = ER = (3×106N/C)R.

(b) It is “easier” to get a spark off of a sphere with a smaller radius, because any potential on
the sphere will result in a larger electric field.

(c) The points of a lighting rod are like small hemispheres; the electric field will be large near
these points so that this will be the likely place for sparks to form and lightning bolts to strike.
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P29-1 If there is more current flowing into the sphere than is flowing out then there must be a
change in the net charge on the sphere. The net current is the difference, or 2µA. The potential on
the surface of the sphere will be given by the point-charge expression,

V =
1

4πε0
q

r
,

and the charge will be related to the current by q = it. Combining,

V =
1

4πε0
it

r
,

or

t =
4πε0V r

i
=

4π(8.85× 10−12 C2/N ·m2)(980 V)(0.13 m)
(2µA)

= 7.1 ms.

P29-2 The net current density is in the direction of the positive charges, which is to the east. There
are two electrons for every alpha particle, and each alpha particle has a charge equal in magnitude
to two electrons. The current density is then

j = qeneve + qα + nαvα,

= (−1.6×10−19C)(5.6×1021/m3)(−88 m/s) + (3.2×10−19C)(2.8×1021/m3)(25 m/s),
= 1.0×105C/m2.

P29-3 (a) The resistance of the segment of the wire is

R = ρL/A = (1.69×10−8Ω ·m)(4.0×10−2m)/π(2.6×10−3m)2 = 3.18×10−5Ω.

The potential difference across the segment is

∆V = iR = (12 A)(3.18×10−5Ω) = 3.8×10−4V.

(b) The tail is negative.
(c) The drift speed is v = j/en = i/Aen, so

v = (12 A)/π(2.6×10−3m)2(1.6×10−19C)(8.49×1028/m3) = 4.16×10−5m/s.

The electrons will move 1 cm in (1.0×10−2m)/(4.16×10−5m/s) = 240 s.

P29-4 (a) N = it/q = (250×10−9A)(2.9 s)/(3.2×10−19C) = 2.27×1012.
(b) The speed of the particles in the beam is given by v =

√
2K/m, so

v =
√

2(22.4 MeV)/4(932 MeV/c2) = 0.110c.

It takes (0.180 m)/(0.110)(3.00×108m/s) = 5.45×10−9s for the beam to travel 18.0 cm. The number
of charges is then

N = it/q = (250×10−9A)(5.45×10−9s)/(3.2×10−19C) = 4260.

(c) W = q∆V , so ∆V = (22.4 MeV)/2e = 11.2 MV.
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P29-5 (a) The time it takes to complete one turn is t = (250 m)/c. The total charge is

q = it = (30.0 A)(950 m)/(3.00×108m/s) = 9.50×10−5C.

(b) The number of charges is N = q/e, the total energy absorbed by the block is then

∆U = (28.0×109 eV)(9.50×10−5C)/e = 2.66×106J.

This will raise the temperature of the block by

∆T = ∆U/mC = (2.66×106J)/(43.5 kg)(385J/kgC◦) = 159 C◦.

P29-6 (a) i =
∫
j dA = 2π

∫
jr dr;

i = 2π
∫
−0Rj0(1− r/R)r dr = 2πj0(R2/2−R3/3R) = πj0R

2/6.

(b) Integrate, again:

i = 2π
∫
−0Rj0(r/R)r dr = 2πj0(R3/3R) = πj0R

2/3.

P29-7 (a) Solve 2ρ0 = ρ0[1 + α(T − 20◦C)], or

T = 20◦C + 1/(4.3×10−3/C◦) = 250◦C.

(b) Yes, ignoring changes in the physical dimensions of the resistor.

P29-8 The resistance when on is (2.90 V)/(0.310 A) = 9.35 Ω. The temperature is given by

T = 20◦C + (9.35 Ω− 1.12 Ω)/(1.12 Ω)(4.5×10−3/◦C) = 1650◦C.

P29-9 Originally we have a resistance R1 made out of a wire of length l1 and cross sectional area
A1. The volume of this wire is V1 = A1l1. When the wire is drawn out to the new length we have
l2 = 3l1, but the volume of the wire should be constant so

A2l2 = A1l1,

A2(3l1) = A1l1,

A2 = A1/3.

The original resistance is

R1 = ρ
l1
A1

.

The new resistance is
R2 = ρ

l2
A2

= ρ
3l1
A1/3

= 9R1,

or R2 = 54 Ω.

P29-10 (a) i = (35.8 V)/(935 Ω) = 3.83×10−2A.
(b) j = i/A = (3.83×10−2A)/(3.50×10−4m2) = 109 A/m2.
(c) v = (109 A/m2)/(1.6×10−19C)(5.33×1022/m3) = 1.28×10−2m/s.
(d) E = (35.8 V)/(0.158 m) = 227 V/m.
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P29-11 (a) ρ = (1.09×10−3Ω)π(5.5×10−3m)2/4(1.6 m) = 1.62×10−8Ω ·m. This is possibly silver.
(b) R = (1.62×10−8Ω ·m)(1.35×10−3m)4/π(2.14×10−2m)2 = 6.08×10−8Ω.

P29-12 (a) ∆L/L = 1.7×10−5 for a temperature change of 1.0 C◦. Area changes are twice this,
or ∆A/A = 3.4×10−5.

Take the differential of RA = ρL: RdA+AdR = ρ dL+Ldρ, or dR = ρ dL/A+Ldρ/A−RdA/A.
For finite changes this can be written as

∆R
R

=
∆L
L

+
∆ρ
ρ
− ∆A

A
.

∆ρ/ρ = 4.3×10−3. Since this term is so much larger than the other two it is the only significant
effect.

P29-13 We will use the results of Exercise 29-17,

R−R0 = R0αav(T − T0).

To save on subscripts we will drop the “av” notation, and just specify whether it is carbon “c” or
iron “i”.

The disks will be effectively in series, so we will add the resistances to get the total. Looking
only at one disk pair, we have

Rc +Ri = R0,c (αc(T − T0) + 1) +R0,i (αi(T − T0) + 1) ,
= R0,c +R0,i + (R0,cαc +R0,iαi) (T − T0).

This last equation will only be constant if the coefficient for the term (T − T0) vanishes. Then

R0,cαc +R0,iαi = 0,

but R = ρL/A, and the disks have the same cross sectional area, so

Lcρcαc + Liρiαi = 0,

or
Lc

Li
= − ρiαi

ρcαc
= − (9.68×10−8Ω ·m)(6.5×10−3/C◦)

(3500×10−8Ω ·m)(−0.50×10−3/C◦)
= 0.036.

P29-14 The current entering the cone is i. The current density as a function of distance x from
the left end is then

j =
i

π[a+ x(b− a)/L]2
.

The electric field is given by E = ρj. The potential difference between the ends is then

∆V =
∫ L

0

E dx =
∫ L

0

iρ

π[a+ x(b− a)/L]2
dx =

iρL

πab

The resistance is R = ∆V/i = ρL/πab.
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P29-15 The current is found from Eq. 29-5,

i =
∫
~j · d~A,

where the region of integration is over a spherical shell concentric with the two conducting shells
but between them. The current density is given by Eq. 29-10,

~j = ~E/ρ,

and we will have an electric field which is perpendicular to the spherical shell. Consequently,

i =
1
ρ

∫
~E · d~A =

1
ρ

∫
E dA

By symmetry we expect the electric field to have the same magnitude anywhere on a spherical shell
which is concentric with the two conducting shells, so we can bring it out of the integral sign, and
then

i =
1
ρ
E

∫
dA =

4πr2E

ρ
,

where E is the magnitude of the electric field on the shell, which has radius r such that b > r > a.
The above expression can be inverted to give the electric field as a function of radial distance,

since the current is a constant in the above expression. Then E = iρ/4πr2 The potential is given by

∆V = −
∫ a

b

~E · d~s,

we will integrate along a radial line, which is parallel to the electric field, so

∆V = −
∫ a

b

E dr,

= −
∫ a

b

iρ

4πr2
dr,

= − iρ
4π

∫ a

b

dr

r
,

=
iρ

4π

(
1
a
− 1
b

)
.

We divide this expression by the current to get the resistance. Then

R =
ρ

4π

(
1
a
− 1
b

)
P29-16 Since τ = λ/vd, ρ ∝ vd. For an ideal gas the kinetic energy is proportional to the
temperature, so ρ ∝

√
K ∝

√
T .
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E30-1 We apply Eq. 30-1,

q = C∆V = (50× 10−12 F)(0.15 V) = 7.5× 10−12 C;

E30-2 (a) C = ∆V/q = (73.0×10−12 C)/(19.2 V) = 3.80×10−12F.
(b) The capacitance doesn’t change!
(c) ∆V = q/C = (210×10−12C)/(3.80×10−12F) = 55.3 V.

E30-3 q = C∆V = (26.0×10−6F)(125 V) = 3.25×10−3C.

E30-4 (a) C = ε0A/d = (8.85×10−12F/m)π(8.22×10−2m)2/(1.31×10−3m) = 1.43×10−10F.
(b) q = C∆V = (1.43×10−10F)(116 V) = 1.66×10−8C.

E30-5 Eq. 30-11 gives the capacitance of a cylinder,

C = 2πε0
L

ln(b/a)
= 2π(8.85×10−12 F/m)

(0.0238 m)
ln((9.15mm)/(0.81mm))

= 5.46×10−13F.

E30-6 (a) A = Cd/ε0 = (9.70×10−12F)(1.20×10−3m)/(8.85×10−12F/m) = 1.32×10−3m2.
(b) C = C0d0/d = (9.70×10−12F)(1.20×10−3m)/(1.10×10−3m) = 1.06×10−11F.
(c) ∆V = q0/C = [∆V ]0C0/C = [∆V ]0d/d0. Using this formula, the new potential difference

would be [∆V ]0 = (13.0 V)(1.10×10−3m)/(1.20×10−3m) = 11.9 V. The potential energy has changed
by (11.9 V)− (30.0 V) = −1.1 V.

E30-7 (a) From Eq. 30-8,

C = 4π(8.85×10−12F/m)
(0.040 m)(0.038 m)

(0.040 m)− (0.038 m)
= 8.45×10−11F.

(b) A = Cd/ε0 = (8.45×10−11F)(2.00×10−3m)/(8.85×10−12F/m) = 1.91×10−2m2.

E30-8 Let a = b+ d, where d is the small separation between the shells. Then

C = 4πε0
ab

a− b
= 4πε0

(b+ d)b
d

,

≈ 4πε0
b2

d
= ε0A/d.

E30-9 The potential difference across each capacitor in parallel is the same; it is equal to 110 V.
The charge on each of the capacitors is then

q = C∆V = (1.00× 10−6 F)(110 V) = 1.10× 10−4 C.

If there are N capacitors, then the total charge will be Nq, and we want this total charge to be
1.00 C. Then

N =
(1.00 C)

q
=

(1.00 C)
(1.10× 10−4 C)

= 9090.
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E30-10 First find the equivalent capacitance of the parallel part:

Ceq = C1 + C2 = (10.3×10−6F) + (4.80×10−6F) = 15.1×10−6F.

Then find the equivalent capacitance of the series part:
1
Ceq

=
1

(15.1×10−6F)
+

1
(3.90×10−6F)

= 3.23×105F−1.

Then the equivalent capacitance of the entire arrangement is 3.10×10−6F.

E30-11 First find the equivalent capacitance of the series part:
1
Ceq

=
1

(10.3×10−6F)
+

1
(4.80×10−6F)

= 3.05×105F−1.

The equivalent capacitance is 3.28×10−6F. Then find the equivalent capacitance of the parallel part:

Ceq = C1 + C2 = (3.28×10−6F) + (3.90×10−6F) = 7.18×10−6F.

This is the equivalent capacitance for the entire arrangement.

E30-12 For one capacitor q = C∆V = (25.0×10−6F)(4200 V) = 0.105 C. There are three capaci-
tors, so the total charge to pass through the ammeter is 0.315 C.

E30-13 (a) The equivalent capacitance is given by Eq. 30-21,

1
Ceq

=
1
C1

+
1
C2

=
1

(4.0µF)
+

1
(6.0µF)

=
5

(12.0µF)

or Ceq = 2.40µF.
(b) The charge on the equivalent capacitor is q = C∆V = (2.40µF)(200 V) = 0.480 mC. For

series capacitors, the charge on the equivalent capacitor is the same as the charge on each of the
capacitors. This statement is wrong in the Student Solutions!

(c) The potential difference across the equivalent capacitor is not the same as the potential
difference across each of the individual capacitors. We need to apply q = C∆V to each capacitor
using the charge from part (b). Then for the 4.0µF capacitor,

∆V =
q

C
=

(0.480 mC)
(4.0µF)

= 120 V;

and for the 6.0µF capacitor,

∆V =
q

C
=

(0.480 mC)
(6.0µF)

= 80 V.

Note that the sum of the potential differences across each of the capacitors is equal to the potential
difference across the equivalent capacitor.

E30-14 (a) The equivalent capacitance is

Ceq = C1 + C2 = (4.0µF) + (6.0µF) = (10.0µF).

(c) For parallel capacitors, the potential difference across the equivalent capacitor is the same as
the potential difference across either of the capacitors.

(b) For the 4.0µF capacitor,

q = C∆V = (4.0µF)(200 V) = 8.0×10−4 C;

and for the 6.0µF capacitor,

q = C∆V = (6.0µF)(200 V) = 12.0×10−4 C.
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E30-15 (a) Ceq = C + C + C = 3C;

deq =
ε0A

Ceq
=
ε0A

3C
=
d

3
.

(b) 1/Ceq = 1/C + 1/C + 1/C = 3/C;

deq =
ε0A

Ceq
=
ε0A

C/3
= 3d.

E30-16 (a) The maximum potential across any individual capacitor is 200 V; so there must be
at least (1000 V)/(200 V) = 5 series capacitors in any parallel branch. This branch would have an
equivalent capacitance of Ceq = C/5 = (2.0×10−6F)/5 = 0.40×10−6F.

(b) For parallel branches we add, which means we need (1.2×10−6F)/(0.40×10−6F) = 3 parallel
branches of the combination found in part (a).

E30-17 Look back at the solution to Ex. 30-10. If C3 breaks down electrically then the circuit is
effectively two capacitors in parallel.

(b) ∆V = 115 V after the breakdown.
(a) q1 = (10.3×10−6F)(115 V) = 1.18×10−3C.

E30-18 The 108µF capacitor originally has a charge of q = (108×10−6F)(52.4 V) = 5.66×10−3C.
After it is connected to the second capacitor the 108µF capacitor has a charge of q = (108×
10−6F)(35.8 V) = 3.87×10−3C. The difference in charge must reside on the second capacitor, so the
capacitance is C = (1.79×10−3C)/(35.8 V) = 5.00×10−5F.

E30-19 Consider any junction other than A or B. Call this junction point 0; label the four nearest
junctions to this as points 1, 2, 3, and 4. The charge on the capacitor that links point 0 to point 1 is
q1 = C∆V01, where ∆V01 is the potential difference across the capacitor, so ∆V01 = V0 − V1, where
V0 is the potential at the junction 0, and V1 is the potential at the junction 1. Similar expressions
exist for the other three capacitors.

For the junction 0 the net charge must be zero; there is no way for charge to cross the plates of
the capacitors. Then q1 + q2 + q3 + q4 = 0, and this means

C∆V01 + C∆V02 + C∆V03 + C∆V04 = 0

or
∆V01 + ∆V02 + ∆V03 + ∆V04 = 0.

Let ∆V0i = V0 − Vi, and then rearrange,

4V0 = V1 + V2 + V3 + V4,

or
V0 =

1
4

(V1 + V2 + V3 + V4) .

E30-20 U = uV = ε0E
2V/2, where V is the volume. Then

U =
1
2

(8.85×10−12F/m)(150 V/m)2(2.0 m3) = 1.99×10−7J.
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E30-21 The total capacitance is (2100)(5.0×10−6F) = 1.05×10−2F. The total energy stored is

U =
1
2
C(∆V )2 =

1
2

(1.05×10−2F)(55×103V)2 = 1.59×107 J.

The cost is

(1.59×107J)
(

$0.03
3600×103J

)
= $0.133.

E30-22 (a) U = 1
2C(∆V )2 = 1

2 (0.061 F)(1.0×104V)2 = 3.05×106J.
(b) (3.05×106J)/(3600×103J/kW · h) = 0.847kW · h.

E30-23 (a) The capacitance of an air filled parallel-plate capacitor is given by Eq. 30-5,

C =
ε0A

d
=

(8.85×10−12F/m)(42.0× 10−4m2)
(1.30× 10−3m)

= 2.86×10−11 F.

(b) The magnitude of the charge on each plate is given by

q = C∆V = (2.86×10−11 F)(625 V) = 1.79×10−8 C.

(c) The stored energy in a capacitor is given by Eq. 30-25, regardless of the type or shape of the
capacitor, so

U =
1
2
C(∆V )2 =

1
2

(2.86×10−11 F)(625 V)2 = 5.59µJ.

(d) Assuming a parallel plate arrangement with no fringing effects, the magnitude of the electric
field between the plates is given by Ed = ∆V , where d is the separation between the plates. Then

E = ∆V/d = (625 V)/(0.00130 m) = 4.81×105 V/m.

(e) The energy density is Eq. 30-28,

u =
1
2
ε0E

2 =
1
2

((8.85×10−12F/m))(4.81×105 V/m)2 = 1.02 J/m3.

E30-24 The equivalent capacitance is given by

1/Ceq = 1/(2.12×10−6F) + 1/(3.88×10−6F) = 1/(1.37×10−6F).

The energy stored is U = 1
2 (1.37×10−6F)(328 V)2 = 7.37×10−2J.

E30-25 V/r = q/4πε0r2 = E, so that if V is the potential of the sphere then E = V/r is the
electric field on the surface. Then the energy density of the electric field near the surface is

u =
1
2
ε0E

2 =
(8.85×10−12F/m)

2

(
(8150 V)
(0.063 m)

)2

= 7.41×10−2J/m3.

E30-26 The charge on C3 can be found from considering the equivalent capacitance. q3 = (3.10×
10−6F)(112 V) = 3.47×10−4C. The potential across C3 is given by [∆V ]3 = (3.47×10−4C)/(3.90×
10−6F) = 89.0 V.

The potential across the parallel segment is then (112 V) − (89.0 V) = 23.0 V. So [∆V ]1 =
[∆V ]2 = 23.0 V.

Then q1 = (10.3×10−6F)(23.0 V) = 2.37×10−4C and q2 = (4.80×10−6F)(23.0 V) = 1.10×10−4C..
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E30-27 There is enough work on this problem without deriving once again the electric field
between charged cylinders. I will instead refer you back to Section 26-4, and state

E =
1

2πε0
q

Lr
,

where q is the magnitude of the charge on a cylinder and L is the length of the cylinders.
The energy density as a function of radial distance is found from Eq. 30-28,

u =
1
2
ε0E

2 =
1

8π2ε0

q2

L2r2

The total energy stored in the electric field is given by Eq. 30-24,

U =
1
2
q2

C
=
q2

2
ln(b/a)
2πε0L

,

where we substituted into the last part Eq. 30-11, the capacitance of a cylindrical capacitor.
We want to show that integrating a volume integral from r = a to r =

√
ab over the energy

density function will yield U/2. Since we want to do this problem the hard way, we will pretend we
don’t know the answer, and integrate from r = a to r = c, and then find out what c is.

Then

1
2
U =

∫
u dV,

=
∫ c

a

∫ 2π

0

∫ L

0

(
1

8π2ε0

q2

L2r2

)
r dr dφ dz,

=
q2

8π2ε0L2

∫ c

a

∫ 2π

0

∫ L

0

dr

r
dφ dz,

=
q2

4πε0L

∫ c

a

dr

r
,

=
q2

4πε0L
ln
c

a
.

Now we equate this to the value for U that we found above, and we solve for c.

1
2
q2

2
ln(b/a)
2πε0L

=
q2

4πε0L
ln
c

a
,

ln(b/a) = 2 ln(c/a),
(b/a) = (c/a)2,
√
ab = c.

E30-28 (a) d = ε0A/C, or

d = (8.85×10−12F/m)(0.350 m2)/(51.3×10−12F) = 6.04×10−3m.

(b) C = (5.60)(51.3×10−12 F) = 2.87×10−10F.

E30-29 Originally, C1 = ε0A/d1. After the changes, C2 = κε0A/d2. Dividing C2 by C1 yields
C2/C1 = κd1/d2, so

κ = d2C2/d1C1 = (2)(2.57×10−12F)/(1.32×10−12F) = 3.89.
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E30-30 The required capacitance is found from U = 1
2C(∆V )2, or

C = 2(6.61×10−6J)/(630 V)2 = 3.33×10−11F.

The dielectric constant required is κ = (3.33×10−11F)/(7.40×10−12F) = 4.50. Try transformer oil.

E30-31 Capacitance with dielectric media is given by Eq. 30-31,

C =
κeε0A

d
.

The various sheets have different dielectric constants and different thicknesses, and we want to
maximize C, which means maximizing κe/d. For mica this ratio is 54 mm−1, for glass this ratio is
35 mm−1, and for paraffin this ratio is 0.20 mm−1. Mica wins.

E30-32 The minimum plate separation is given by

d = (4.13×103V)/(18.2×106V/m) = 2.27×10−4m.

The minimum plate area is then

A =
dC

κε0
=

(2.27×10−4m)(68.4×10−9F)
(2.80)(8.85×10−12F/m)

= 0.627 m2.

E30-33 The capacitance of a cylindrical capacitor is given by Eq. 30-11,

C = 2π(8.85×10−12F/m)(2.6)
1.0×103m

ln(0.588/0.11)
= 8.63×10−8F.

E30-34 (a) U = C ′(∆V )2/2, C ′ = κeε0A/d, and ∆V/d is less than or equal to the dielectric
strength (which we will call S). Then ∆V = Sd and

U =
1
2
κeε0AdS

2,

so the volume is given by
V = 2U/κeε0S

2.

This quantity is a minimum for mica, so

V = 2(250×103J)/(5.4)(8.85×10−12F/m)(160×106V/m)2 = 0.41 m3.

(b) κe = 2U/V ε0S2, so

κe = 2(250×103J)/(0.087m3)(8.85×10−12F/m)(160×106V/m)2 = 25.

E30-35 (a) The capacitance of a cylindrical capacitor is given by Eq. 30-11,

C = 2πε0κe
L

ln(b/a)
.

The factor of κe is introduced because there is now a dielectric (the Pyrex drinking glass) between
the plates. We can look back to Table 29-2 to get the dielectric properties of Pyrex. The capacitance
of our “glass” is then

C = 2π(8.85×10−12F/m)(4.7)
(0.15 m)

ln((3.8 cm)/(3.6 cm)
= 7.3×10−10 F.

(b) The breakdown potential is (14 kV/mm)(2 mm) = 28 kV.
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E30-36 (a) C ′ = κeC = (6.5)(13.5×10−12F) = 8.8×10−11F.
(b) Q = C ′∆V = (8.8×10−11F)(12.5 V) = 1.1×10−9C.
(c) E = ∆V/d, but we don’t know d.
(d) E′ = E/κe, but we couldn’t find E.

E30-37 (a) Insert the slab so that it is a distance a above the lower plate. Then the distance
between the slab and the upper plate is d− a− b. Inserting the slab has the same effect as having
two capacitors wired in series; the separation of the bottom capacitor is a, while that of the top
capacitor is d− a− b.

The bottom capacitor has a capacitance of C1 = ε0A/a, while the top capacitor has a capacitance
of C2 = ε0A/(d− a− b). Adding these in series,

1
Ceq

=
1
C1

+
1
C2
,

=
a

ε0A
+
d− a− b
ε0A

,

=
d− b
ε0A

.

So the capacitance of the system after putting the copper slab in is C = ε0A/(d− b).
(b) The energy stored in the system before the slab is inserted is

U i =
q2

2C i
=
q2

2
d

ε0A

while the energy stored after the slab is inserted is

U f =
q2

2Cf
=
q2

2
d− b
ε0A

The ratio is U i/U f = d/(d− b).
(c) Since there was more energy before the slab was inserted, then the slab must have gone in

willingly, it was pulled in!. To get the slab back out we will need to do work on the slab equal to
the energy difference.

U i − U f =
q2

2
d

ε0A
− q2

2
d− b
ε0A

=
q2

2
b

ε0A
.

E30-38 (a) Insert the slab so that it is a distance a above the lower plate. Then the distance
between the slab and the upper plate is d− a− b. Inserting the slab has the same effect as having
two capacitors wired in series; the separation of the bottom capacitor is a, while that of the top
capacitor is d− a− b.

The bottom capacitor has a capacitance of C1 = ε0A/a, while the top capacitor has a capacitance
of C2 = ε0A/(d− a− b). Adding these in series,

1
Ceq

=
1
C1

+
1
C2
,

=
a

ε0A
+
d− a− b
ε0A

,

=
d− b
ε0A

.

So the capacitance of the system after putting the copper slab in is C = ε0A/(d− b).
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(b) The energy stored in the system before the slab is inserted is

U i =
C i(∆V )2

2
=

(∆V )2

2
ε0A

d

while the energy stored after the slab is inserted is

U f =
Cf(∆V )2

2
=

(∆V )2

2
ε0A

d− b

The ratio is U i/U f = (d− b)/d.
(c) Since there was more energy after the slab was inserted, then the slab must not have gone in

willingly, it was being repelled!. To get the slab in we will need to do work on the slab equal to the
energy difference.

U f − U i =
(∆V )2

2
ε0A

d− b
− (∆V )2

2
ε0A

d
=

(∆V )2

2
ε0Ab

d(d− b)
.

E30-39 C = κeε0A/d, so d = κeε0A/C.
(a) E = ∆V/d = C∆V/κeε0A, or

E =
(112×10−12F)(55.0 V)

(5.4)(8.85×10−12F/m)(96.5×10−4m2)
= 13400 V/m.

(b) Q = C∆V = (112×10−12F)(55.0 V) = 6.16×10−9C..
(c) Q′ = Q(1− 1/κe) = (6.16×10−9C)(1− 1/(5.4)) = 5.02×10−9C.

E30-40 (a) E = q/κeε0A, so

κe =
(890×10−9C)

(1.40×106V/m)(8.85×10−12F/m)(110×10−4m2)
= 6.53

(b) q′ = q(1− 1/κe) = (890×10−9C)(1− 1/(6.53)) = 7.54×10−7C.

P30-1 The capacitance of the cylindrical capacitor is from Eq. 30-11,

C =
2πε0L
ln(b/a)

.

If the cylinders are very close together we can write b = a+ d, where d, the separation between the
cylinders, is a small number, so

C =
2πε0L

ln ((a+ d)/a)
=

2πε0L
ln (1 + d/a)

.

Expanding according to the hint,

C ≈ 2πε0L
d/a

=
2πaε0L

d

Now 2πa is the circumference of the cylinder, and L is the length, so 2πaL is the area of a cylindrical
plate. Hence, for small separation between the cylinders we have

C ≈ ε0A

d
,

which is the expression for the parallel plates.
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P30-2 (a) C = ε0A/x; take the derivative and

dC

dT
=

ε0
x

dA

dT
− ε0A

x2

dx

dT
,

= C

(
1
A

dA

dT
− 1
x

dx

dT

)
.

(b) Since (1/A)dA/dT = 2αa and (1/x)dx/dT = αs, we need

αs = 2αa = 2(23×10−6/C◦) = 46×10−6/C◦.

P30-3 Insert the slab so that it is a distance d above the lower plate. Then the distance between
the slab and the upper plate is a−b−d. Inserting the slab has the same effect as having two capacitors
wired in series; the separation of the bottom capacitor is d, while that of the top capacitor is a−b−d.

The bottom capacitor has a capacitance of C1 = ε0A/d, while the top capacitor has a capacitance
of C2 = ε0A/(a− b− d). Adding these in series,

1
Ceq

=
1
C1

+
1
C2
,

=
d

ε0A
+
a− b− d
ε0A

,

=
a− b
ε0A

.

So the capacitance of the system after putting the slab in is C = ε0A/(a− b).

P30-4 The potential difference between any two adjacent plates is ∆V . Each interior plate has a
charge q on each surface; the exterior plate (one pink, one gray) has a charge of q on the interior
surface only.

The capacitance of one pink/gray plate pair is C = ε0A/d. There are n plates, but only n − 1
plate pairs, so the total charge is (n− 1)q. This means the total capacitance is C = ε0(n− 1)A/d.

P30-5 Let ∆V0 = 96.6 V.
As far as point e is concerned point a looks like it is originally positively charged, and point d is

originally negatively charged. It is then convenient to define the charges on the capacitors in terms
of the charges on the top sides, so the original charge on C1 is q1,i = C1∆V0 while the original charge
on C2 is q2,i = −C2∆V0. Note the negative sign reflecting the opposite polarity of C2.

(a) Conservation of charge requires

q1,i + q2,i = q1,f + q2,f ,

but since q = C∆V and the two capacitors will be at the same potential after the switches are closed
we can write

C1∆V0 − C2∆V0 = C1∆V + C2∆V,
(C1 − C2) ∆V0 = (C1 + C2) ∆V,

C1 − C2

C1 + C2
∆V0 = ∆V.

With numbers,

∆V = (96.6 V)
(1.16µF)− (3.22µF)
(1.16µF) + (3.22µF)

= −45.4 V.
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The negative sign means that the top sides of both capacitor will be negatively charged after the
switches are closed.

(b) The charge on C1 is C1∆V = (1.16µF)(45.4 V) = 52.7µC.
(c) The charge on C2 is C2∆V = (3.22µF)(45.4 V) = 146µC.

P30-6 C2 and C3 form an effective capacitor with equivalent capacitance Ca = C2C3/(C2 + C3).
The charge on C1 is originally q0 = C1∆V0. After throwing the switch the potential across C1

is given by q1 = C1∆V1. The same potential is across Ca; q2 = q3, so q2 = Ca∆V1. Charge is
conserved, so q1 + q2 = q0. Combining some of the above,

∆V1 =
q0

C1 + Ca
=

C1

C1 + Ca
∆V0,

and then

q1 =
C2

1

C1 + Ca
∆V0 =

C2
1 (C2 + C3)

C1C2 + C1C3 + C2C3
∆V0.

Similarly,

q2 =
CaC1

C1 + Ca
∆V0 =

(
1
C1

+
1
C2

+
1
C3

)−1

∆V0.

q3 = q2 because they are in series.

P30-7 (a) If terminal a is more positive than terminal b then current can flow that will charge the
capacitor on the left, the current can flow through the diode on the top, and the current can charge
the capacitor on the right. Current will not flow through the diode on the left. The capacitors are
effectively in series.

Since the capacitors are identical and series capacitors have the same charge, we expect the
capacitors to have the same potential difference across them. But the total potential difference
across both capacitors is equal to 100 V, so the potential difference across either capacitor is 50 V.

The output pins are connected to the capacitor on the right, so the potential difference across
the output is 50 V.

(b) If terminal b is more positive than terminal a the current can flow through the diode on the
left. If we assume the diode is resistanceless in this configuration then the potential difference across
it will be zero. The net result is that the potential difference across the output pins is 0 V.

In real life the potential difference across the diode would not be zero, even if forward biased. It
will be somewhere around 0.5 Volts.

P30-8 Divide the strip of width a into N segments, each of width ∆x = a/N . The capacitance of
each strip is ∆C = ε0a∆x/y. If θ is small then

1
y

=
1

d+ x sin θ
≈ 1
d+ xθ

≈ d

(
1− xθ/d).

Since parallel capacitances add,

C =
∑

∆C =
ε0a

d

∫ a

0

(1− xθ/d)dx =
ε0a

2

d

(
1− aθ

2d

)
.
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P30-9 (a) When S2 is open the circuit acts as two parallel capacitors. The branch on the left has
an effective capacitance given by

1
C l

=
1

(1.0×10−6F)
+

1
(3.0×10−6F)

=
1

7.5×10−7F
,

while the branch on the right has an effective capacitance given by

1
C l

=
1

(2.0×10−6F)
+

1
(4.0×10−6F)

=
1

1.33×10−6F
.

The charge on either capacitor in the branch on the left is

q = (7.5×10−7F)(12 V) = 9.0×10−6C,

while the charge on either capacitor in the branch on the right is

q = (1.33×10−6F)(12 V) = 1.6×10−5C.

(b) After closing S2 the circuit is effectively two capacitors in series. The top part has an effective
capacitance of

Ct = (1.0×10−6F) + (2.0×10−6F) = (3.0×10−6F),

while the effective capacitance of the bottom part is

Cb = (3.0×10−6F) + (4.0×10−6F) = (7.0×10−6F).

The effective capacitance of the series combination is given by

1
Ceq

=
1

(3.0×10−6F)
+

1
(7.0×10−6F)

=
1

2.1×10−6F
.

The charge on each part is q = (2.1×10−6F)(12 V) = 2.52×10−5C. The potential difference across
the top part is

∆V t = (2.52×10−5C)/(3.0×10−6F) = 8.4 V,

and then the charge on the top two capacitors is q1 = (1.0×10−6F)(8.4 V) = 8.4×10−6C and
q2 = (2.0×10−6F)(8.4 V) = 1.68×10−5C. The potential difference across the bottom part is

∆V t = (2.52×10−5C)/(7.0×10−6F) = 3.6 V,

and then the charge on the top two capacitors is q1 = (3.0×10−6F)(3.6 V) = 1.08×10−5C and
q2 = (4.0×10−6F)(3.6 V) = 1.44×10−5C.

P30-10 Let ∆V = ∆Vxy. By symmetry ∆V2 = 0 and ∆V1 = ∆V4 = ∆V5 = ∆V3 = ∆V/2.
Suddenly the problem is very easy. The charges on each capacitor is q1, except for q2 = 0. Then the
equivalent capacitance of the circuit is

Ceq =
q

∆V
=
q1 + q4

2∆V1
= C1 = 4.0×10−6F.
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P30-11 (a) The charge on the capacitor with stored energy U0 = 4.0 J is q0, where

U0 =
q2
0

2C
.

When this capacitor is connected to an identical uncharged capacitor the charge is shared equally,
so that the charge on either capacitor is now q = q0/2. The stored energy in one capacitor is then

U =
q2

2C
=
q2
0/4
2C

=
1
4
U0.

But there are two capacitors, so the total energy stored is 2U = U0/2 = 2.0 J.
(b) Good question. Current had to flow through the connecting wires to get the charge from one

capacitor to the other. Originally the second capacitor was uncharged, so the potential difference
across that capacitor would have been zero, which means the potential difference across the con-
necting wires would have been equal to that of the first capacitor, and there would then have been
energy dissipation in the wires according to

P = i2R.

That’s where the missing energy went.

P30-12 R = ρL/A and C = ε0A/L. Combining, R = ρε0/C, or

R = (9.40 Ω ·m)(8.85×10−12F/m)/(110×10−12F) = 0.756 Ω.

P30-13 (a) u = 1
2ε0E

2 = e2/32π2ε0r
4.

(b) U =
∫
u dV where dV = 4πr2dr. Then

U = 4pi
∫ ∞
R

e2

32π2ε0r4
r2 dr =

e2

8πε0
1
R
.

(c) R = e2/8πε0mc2, or

R =
(1.60×10−19C)2

8π(8.85×10−12F/m)(9.11×10−31kg)(3.00×108m/s)2
= 1.40×10−15m.

P30-14 U = 1
2q

2/C = q2x/2Aε0. F = dU/dx = q2/2Aε0.

P30-15 According to Problem 14, the force on a plate of a parallel plate capacitor is

F =
q2

2ε0A
.

The force per unit area is then
F

A
=

q2

2ε0A2
=

σ2

2ε0
,

where σ = q/A is the surface charge density. But we know that the electric field near the surface of
a conductor is given by E = σ/ε0, so

F

A
=

1
2
ε0E

2.
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P30-16 A small surface area element dA carries a charge dq = q dA/4πR2. There are three forces
on the elements which balance, so

p(V0/V )dA+ q dq/4πε0R2 = p dA,

or
pR3

0 + q2/16π2ε0R = pR3.

This can be rearranged as
q2 = 16π2ε0pR(R3 −R3

0).

P30-17 The magnitude of the electric field in the cylindrical region is given by E = λ/2πε0r,
where λ is the linear charge density on the anode. The potential difference is given by ∆V =
(λ/2πε0) ln(b/a), where a is the radius of the anode b the radius of the cathode. Combining, E =
∆V/r ln(b/a), this will be a maximum when r = a, so

∆V = (0.180×10−3m) ln[(11.0×10−3m)/(0.180×10−3m)](2.20×106V/m) = 1630 V.

P30-18 This is effectively two capacitors in parallel, each with an area of A/2. Then

Ceq = κe1
ε0A/2
d

+ κe2
ε0A/2
d

=
ε0A

d

(
κe1 + κe2

2

)
.

P30-19 We will treat the system as two capacitors in series by pretending there is an infinitesi-
mally thin conductor between them. The slabs are (I assume) the same thickness. The capacitance
of one of the slabs is then given by Eq. 30-31,

C1 =
κe1ε0A

d/2
,

where d/2 is the thickness of the slab. There would be a similar expression for the other slab. The
equivalent series capacitance would be given by Eq. 30-21,

1
Ceq

=
1
C1

+
1
C2
,

=
d/2

κe1ε0A
+

d/2
κe2ε0A

,

=
d

2ε0A
κe2 + κe1

κe1κe2
,

Ceq =
2ε0A
d

κe1κe2

κe2 + κe1
.

P30-20 Treat this as three capacitors. Find the equivalent capacitance of the series combination
on the right, and then add on the parallel part on the left. The right hand side is

1
Ceq

=
d

κe2ε0A/2
+

d

κe3ε0A/2
=

2d
ε0A

(
κe2 + κe3

κe2κe3

)
.

Add this to the left hand side, and

Ceq =
κe1ε0A/2

2d
+
ε0A

2d

(
κe2κe3

κe2 + κe3

)
,

=
ε0A

2d

(
κe1

2
+

κe2κe3

κe2 + κe3

)
.
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P30-21 (a) q doesn’t change, but C ′ = C/2. Then ∆V ′ = q/C = 2∆V .
(b) U = C(∆V )2/2 = ε0A(∆V )2/2d. U ′ = C ′(∆V ′)2/2 = ε0A(2∆V )2/4d = 2U .
(c) W = U ′ − U = 2U − U = U = ε0A(∆V )2/2d.

P30-22 The total energy is U = qδV/2 = (7.02×10−10C)(52.3 V)/2 = 1.84×10−8J.
(a) In the air gap we have

Ua =
ε0E

2
0V

2
=

(8.85×10−12F/m)(6.9×103V/m)2(1.15×10−2m2)(4.6×10−3m)
2

= 1.11×10−8J.

That is (1.11/1.85) = 60% of the total.
(b) The remaining 40% is in the slab.

P30-23 (a) C = ε0A/d = (8.85×10−12F/m)(0.118 m2)/(1.22×10−2m) = 8.56×10−11F.
(b) Use the results of Problem 30-24.

C ′ =
(4.8)(8.85×10−12F/m)(0.118 m2)

(4.8)(1.22×10−2m)− (4.3×10−3m)(4.8− 1)
= 1.19×10−10F

(c) q = C∆V = (8.56×10−11F)(120 V) = 1.03×10−8C; since the battery is disconnected q′ = q.
(d) E = q/ε0A = (1.03×10−8C)/(8.85×10−12F/m)(0.118 m2) = 9860 V/m in the space between

the plates.
(e) E′ = E/κe = (9860 V/m)/(4.8) = 2050 V/m in the dielectric.
(f) ∆V ′ = q/C ′ = (1.03×10−8C)/(1.19×10−10F) = 86.6 V.
(g) W = U ′ − U = q2(1/C − 1/C ′)/2, or

W =
(1.03×10−8C)2

2
[1/(8.56×10−11F)− 1/(1.19×10−10F)] = 1.73×10−7J.

P30-24 The result is effectively three capacitors in series. Two are air filled with thicknesses of
x and d − b − x, the third is dielectric filled with thickness b. All have an area A. The effective
capacitance is given by

1
C

=
x

ε0A
+
d− b− x
ε0A

+
b

κeε0A
,

=
1
ε0A

(
(d− b) +

b

κe

)
,

C =
ε0A

d− b+ b/κe
,

=
κeε0A

κe − b(κe − 1)
.
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E31-1 (5.12 A)(6.00 V)(5.75 min)(60 s/min) = 1.06×104J.

E31-2 (a) (12.0 V)(1.60×10−19C) = 1.92×10−18J.
(b) (1.92×10−18J)(3.40×1018/s) = 6.53 W.

E31-3 If the energy is delivered at a rate of 110 W, then the current through the battery is

i =
P

∆V
=

(110 W)
(12 V)

= 9.17 A.

Current is the flow of charge in some period of time, so

∆t =
∆q
i

=
(125 A · h)

(9.2 A)
= 13.6 h,

which is the same as 13 hours and 36 minutes.

E31-4 (100 W)(8 h) = 800 W · h.
(a) (800 W · h)/(2.0 W · h) = 400 batteries, at a cost of (400)($0.80) = $320.
(b) (800 W · h)($0.12×10−3 W · h) = $0.096.

E31-5 Go all of the way around the circuit. It is a simple one loop circuit, and although it does
not matter which way we go around, we will follow the direction of the larger emf. Then

(150 V)− i(2.0 Ω)− (50 V)− i(3.0 Ω) = 0,

where i is positive if it is counterclockwise. Rearranging,

100 V = i(5.0 Ω),

or i = 20 A.
Assuming the potential at P is VP = 100 V, then the potential at Q will be given by

VQ = VP − (50 V)− i(3.0 Ω) = (100 V)− (50 V)− (20 A)(3.0 Ω) = −10 V.

E31-6 (a) Req = (10 Ω) + (140 Ω) = 150 Ω. i = (12.0 V)/(150 Ω) = 0.080 A.
(b) Req = (10 Ω) + (80 Ω) = 90 Ω. i = (12.0 V)/(90 Ω) = 0.133 A.
(c) Req = (10 Ω) + (20 Ω) = 30 Ω. i = (12.0 V)/(30 Ω) = 0.400 A.

E31-7 (a) Req = (3.0 V − 2.0 V)/(0.050 A) = 20 Ω. Then R = (20 Ω)− (3.0 Ω)− (3.0 Ω) = 14 Ω.
(b) P = i∆V = i2R = (0.050 A)2(14 Ω) = 3.5×10−2W.

E31-8 (5.0 A)R1 = ∆V . (4.0 A)(R1 +2.0 Ω) = ∆V . Combining, 5R1 = 4R1 +8.0 Ω, or R1 = 8.0 Ω.

E31-9 (a) (53.0 W)/(1.20 A) = 44.2 V.
(b) (1.20 A)(19.0 Ω) = 22.8 V is the potential difference across R. Then an additional potential

difference of (44.2 V)− (22.8 V) = 21.4 V must exist across C.
(c) The left side is positive; it is a reverse emf.

E31-10 (a) The current in the resistor is
√

(9.88 W)/(0.108 Ω) = 9.56 A. The total resistance of
the circuit is (1.50 V)/(9.56 A) = 0.157 Ω. The internal resistance of the battery is then (0.157 Ω)−
(0.108 Ω) = 0.049 Ω.

(b) (9.88 W)/(9.56 A) = 1.03 V.
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E31-11 We assign directions to the currents through the four resistors as shown in the figure.

a b

1 2

3 4

Since the ammeter has no resistance the potential at a is the same as the potential at b. Con-
sequently the potential difference (∆V b) across both of the bottom resistors is the same, and the
potential difference (∆V t) across the two top resistors is also the same (but different from the
bottom). We then have the following relationships:

∆V t + ∆V b = E ,
i1 + i2 = i3 + i4,

∆Vj = ijRj ,

where the j subscript in the last line refers to resistor 1, 2, 3, or 4.
For the top resistors,

∆V1 = ∆V2 implies 2i1 = i2;

while for the bottom resistors,
∆V3 = ∆V4 implies i3 = i4.

Then the junction rule requires i4 = 3i1/2, and the loop rule requires

(i1)(2R) + (3i1/2)(R) = E or i1 = 2E/(7R).

The current that flows through the ammeter is the difference between i2 and i4, or 4E/(7R) −
3E/(7R) = E/(7R).

E31-12 (a) Define the current i1 as moving to the left through r1 and the current i2 as moving
to the left through r2. i3 = i1 + i2 is moving to the right through R. Then there are two loop
equations:

E1 = i1r1 + i3R,

E2 = (i3 − i1)r2 + i3R.

Multiply the top equation by r2 and the bottom by r1 and then add:

r2E1 + r1E2 = i3r1r2 + i3R(r1 + r2),

which can be rearranged as

i3 =
r2E1 + r1E2

r1r2 +Rr1 +Rr2
.

(b) There is only one current, so

E1 + E2 = i(r1 + r2 +R),

or
i =

E1 + E2
r1 + r2 +R

.
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E31-13 (a) Assume that the current flows through each source of emf in the same direction as
the emf. The the loop rule will give us three equations

E1 − i1R1 + i2R2 − E2 − i1R1 = 0,
E2 − i2R2 + i3R1 − E3 + i3R1 = 0,

E1 − i1R1 + i3R1 − E3 + i3R1 − i1R1 = 0.

The junction rule (looks at point a) gives us i1 + i2 + i3 = 0. Use this to eliminate i2 from the second
loop equation,

E2 + i1R2 + i3R2 + 2i3R1 − E3 = 0,

and then combine this with the the third equation to eliminate i3,

E1R2 − E3R2 + 2i3R1R2 + 2E2R1 + 2i3R1R2 + 4i3R2
1 − 2E3R1 = 0,

or
i3 =

2E3R1 + E3R2 − E1R2 − 2E2R1

4R1R2 + 4R2
1

= 0.582 A.

Then we can find i1 from

i1 =
E3 − E2 − i3R2 − 2i3R1

R2
= −0.668 A,

where the negative sign indicates the current is down.
Finally, we can find i2 = −(i1 + i3) = 0.0854 A.
(b) Start at a and go to b (final minus initial!),

+i2R2 − E2 = −3.60 V.

E31-14 (a) The current through the circuit is i = E/(r + R). The power delivered to R is then
P = i∆V = i2R = E2R/(r + R)2. Evaluate dP/dR and set it equal to zero to find the maximum.
Then

0 =
dP

dR
= E2R

r −R
(r +R)3

,

which has the solution r = R.
(b) When r = R the power is

P = E2R
1

(R+R)2
=
E2

4r
.

E31-15 (a) We first use P = Fv to find the power output by the electric motor. Then P =
(2.0 N)(0.50 m/s) = 1.0 W.

The potential difference across the motor is ∆V m = E − ir. The power output from the motor is
the rate of energy dissipation, so Pm = ∆V mi. Combining these two expressions,

Pm = (E − ir) i,
= Ei− i2r,

0 = −i2r + Ei− Pm,

0 = (0.50 Ω)i2 − (2.0 V)i+ (1.0 W).

Rearrange and solve for i,

i =
(2.0 V)±

√
(2.0 V)2 − 4(0.50 Ω)(1.0 W)

2(0.50 Ω)
,
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which has solutions i = 3.4 A and i = 0.59 A.
(b) The potential difference across the terminals of the motor is ∆V m = E − ir which if i = 3.4 A

yields ∆V m = 0.3 V, but if i = 0.59 A yields ∆V m = 1.7 V. The battery provides an emf of 2.0 V; it
isn’t possible for the potential difference across the motor to be larger than this, but both solutions
seem to satisfy this constraint, so we will move to the next part and see what happens.

(c) So what is the significance of the two possible solutions? It is a consequence of the fact that
power is related to the current squared, and with any quadratics we expect two solutions. Both
are possible, but it might be that only one is stable, or even that neither is stable, and a small
perturbation to the friction involved in turning the motor will cause the system to break down. We
will learn in a later chapter that the effective resistance of an electric motor depends on the speed
at which it is spinning, and although that won’t affect the problem here as worded, it will affect the
physical problem that provided the numbers in this problem!

E31-16 req = 4r = 4(18 Ω) = 72 Ω. The current is i = (27 V)/(72 Ω) = 0.375 A.

E31-17 In parallel connections of two resistors the effective resistance is less than the smaller
resistance but larger than half the smaller resistance. In series connections of two resistors the
effective resistance is greater than the larger resistance but less than twice the larger resistance.

Since the effective resistance of the parallel combination is less than either single resistance
and the effective resistance of the series combinations is larger than either single resistance we can
conclude that 3.0 Ω must have been the parallel combination and 16 Ω must have been the series
combination.

The resistors are then 4.0 Ω and 12 Ω resistors.

E31-18 Points B and C are effectively the same point!
(a) The three resistors are in parallel. Then req = R/3.
(b) See (a).
(c) 0, since there is no resistance between B and C.

E31-19 Focus on the loop through the battery, the 3.0 Ω, and the 5.0 Ω resistors. The loop rule
yields

(12.0 V) = i[(3.0 Ω) + (5.0 Ω)] = i(8.0 Ω).

The potential difference across the 5.0 Ω resistor is then

∆V = i(5.0 Ω) = (5.0 Ω)(12.0 V)/(8.0 Ω) = 7.5 V.

E31-20 Each lamp draws a current of (500 W)/(120 V) = 4.17 A. Furthermore, the fuse can
support (15 A)/(4.17 A) = 3.60 lamps. That is a maximum of 3.

E31-21 The current in the series combination is is = E/(R1 + R2). The power dissipated is
P s = iE = E2/(R1 +R2).

In a parallel arrangement R1 dissipates P1 = i1E = E2/R1. A similar expression exists for R2,
so the total power dissipated is P p = E2(1/R1 + 1/R2).

The ratio is 5, so 5 = P p/P s = (1/R1 + 1/R2)(R1 + R2), or 5R1R2 = (R1 + R2)2. Solving for
R2 yields 2.618R1 or 0.382R1. Then R2 = 262 Ω or R2 = 38.2 Ω.
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E31-22 Combining n identical resistors in series results in an equivalent resistance of req = nR.
Combining n identical resistors in parallel results in an equivalent resistance of req = R/n. If the
resistors are arranged in a square array consisting of n parallel branches of n series resistors, then
the effective resistance is R. Each will dissipate a power P , together they will dissipate n2P .

So we want nine resistors, since four would be too small.

E31-23 (a) Work through the circuit one step at a time. We first “add” R2, R3, and R4 in
parallel:

1
Reff

=
1

42.0 Ω
+

1
61.6 Ω

+
1

75.0 Ω
=

1
18.7 Ω

We then “add” this resistance in series with R1,

Reff = (112 Ω) + (18.7 Ω) = 131 Ω.

(b) The current through the battery is i = E/R = (6.22 V)/(131 Ω) = 47.5 mA. This is also the
current through R1, since all the current through the battery must also go through R1.

The potential difference across R1 is ∆V1 = (47.5 mA)(112 Ω) = 5.32 V. The potential difference
across each of the three remaining resistors is 6.22 V − 5.32 V = 0.90 V.

The current through each resistor is then

i2 = (0.90 V)/(42.0 Ω) = 21.4 mA,
i3 = (0.90 V)/(61.6 Ω) = 14.6 mA,
i4 = (0.90 V)/(75.0 Ω) = 12.0 mA.

E31-24 The equivalent resistance of the parallel part is r′ = R2R/(R2 + R). The equivalent
resistance for the circuit is r = R1 + R2R/(R2 + R). The current through the circuit is i′ = E/r.
The potential difference across R is ∆V = E − i′R1, or

∆V = E(1−R1/r),

= E
(

1−R1
R2 +R

R1R2 +R1R+RR2

)
,

= E RR2

R1R2 +R1R+RR2
.

Since P = i∆V = (∆V )2/R,

P = E2 RR2
2

(R1R2 +R1R+RR2)2
.

Set dP/dR = 0, the solution is R = R1R2/(R1 +R2).

E31-25 (a) First “add” the left two resistors in series; the effective resistance of that branch is
2R. Then “add” the right two resistors in series; the effective resistance of that branch is also 2R.

Now we combine the three parallel branches and find the effective resistance to be

1
Reff

=
1

2R
+

1
R

+
1

2R
=

4
2R

,

or Reff = R/2.
(b) First we “add” the right two resistors in series; the effective resistance of that branch is 2R.

We then combine this branch with the resistor which connects points F and H. This is a parallel
connection, so the effective resistance is

1
Reff

=
1

2R
+

1
R

=
3

2R
,
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or 2R/3.
This value is effectively in series with the resistor which connects G and H, so the “total” is

5R/3.
Finally, we can combine this value in parallel with the resistor that directly connects F and G

according to
1
Reff

=
1
R

+
3

5R
=

8
5R

,

or Reff = 5R/8.

E31-26 The resistance of the second resistor is r2 = (2.4 V)/(0.001 A) = 2400 Ω. The potential
difference across the first resistor is (12 V) − (2.4 V) = 9.6 V. The resistance of the first resistor is
(9.6 V)/(0.001 A) = 9600 Ω.

E31-27 See Exercise 31-26. The resistance ratio is

r1

r1 + r2
=

(0.95± 0.1 V)
(1.50 V)

,

or
r2

r1
=

(1.50 V)
(0.95± 0.1 V)

− 1.

The allowed range for the ratio r2/r1 is between 0.5625 and 0.5957.
We can choose any standard resistors we want, and we could use any tolerance, but then we

will need to check our results. 22Ω and 39Ω would work; as would 27Ω and 47Ω. There are other
choices.

E31-28 Consider any junction other than A or B. Call this junction point 0; label the four
nearest junctions to this as points 1, 2, 3, and 4. The current through the resistor that links
point 0 to point 1 is i1 = ∆V01/R, where ∆V01 is the potential difference across the resistor, so
∆V01 = V0 − V1, where V0 is the potential at the junction 0, and V1 is the potential at the junction
1. Similar expressions exist for the other three resistor.

For the junction 0 the net current must be zero; there is no way for charge to accumulate on the
junction. Then i1 + i2 + i3 + i4 = 0, and this means

∆V01/R+ ∆V02/R+ ∆V03/R+ ∆V04/R = 0

or
∆V01 + ∆V02 + ∆V03 + ∆V04 = 0.

Let ∆V0i = V0 − Vi, and then rearrange,

4V0 = V1 + V2 + V3 + V4,

or
V0 =

1
4

(V1 + V2 + V3 + V4) .

E31-29 The current through the radio is i = P/∆V = (7.5 W)/(9.0 V) = 0.83 A. The radio
was left one for 6 hours, or 2.16×104 s. The total charge to flow through the radio in that time is
(0.83 A)(2.16×104 s) = 1.8×104 C.

E31-30 The power dissipated by the headlights is (9.7 A)(12.0 V) = 116 W. The power required
by the engine is (116 W)/(0.82) = 142 W, which is equivalent to 0.190 hp.
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E31-31 (a) P = (120 V)(120 V)/(14.0 Ω) = 1030 W.
(b) W = (1030 W)(6.42 h) = 6.61 kW · h. The cost is $0.345.

E31-32

E31-33 We want to apply either Eq. 31-21,

PR = i2R,

or Eq. 31-22,
PR = (∆VR)2/R,

depending on whether we are in series (the current is the same through each bulb), or in parallel
(the potential difference across each bulb is the same. The brightness of a bulb will be measured by
P , even though P is not necessarily a measure of the rate radiant energy is emitted from the bulb.

(b) If the bulbs are in parallel then PR = (∆VR)2/R is how we want to compare the brightness.
The potential difference across each bulb is the same, so the bulb with the smaller resistance is
brighter.

(b) If the bulbs are in series then PR = i2R is how we want to compare the brightness. Both
bulbs have the same current, so the larger value of R results in the brighter bulb.

One direct consequence of this can be tried at home. Wire up a 60 W, 120 V bulb and a 100 W,
120 V bulb in series. Which is brighter? You should observe that the 60 W bulb will be brighter.

E31-34 (a) j = i/A = (25 A)/π(0.05 in) = 3180 A/in2 = 4.93×106A/m2.
(b) E = ρj = (1.69×10−8Ω ·m)(4.93×106A/m2) = 8.33×10−2V/m.
(c) ∆V = Ed = (8.33×10−2V/m)(305 m) = 25 V.
(d) P = i∆V = (25 A)(25 V) = 625 W.

E31-35 (a) The bulb is on for 744 hours. The energy consumed is (100 W)(744 h) = 74.4 kW · h,
at a cost of (74.4)(0.06) = $4.46.

(b) r = V 2/P = (120 V)2/(100 W) = 144 Ω.
(c) i = P/V = (100 W)/(120 V) = 0.83 A.

E31-36 P = (∆V )2/r and r = r0(1 + α∆T ). Then

P =
P0

1 + α∆T
=

(500 W)
1 + (4.0×10−4/C◦)(−600C◦)

= 660 W

E31-37 (a) n = q/e = it/e, so

n = (485×10−3A)(95×10−9s)/(1.6×10−19C) = 2.88×1011.

(b) iav = (520/s)(485×10−3A)(95×10−9s) = 2.4×10−5A.
(c) P p = ip∆V = (485×10−3A)(47.7×106V) = 2.3×106W; while P a = ia∆V = (2.4×10−5A)(47.7×

106V) = 1.14×103W.

E31-38 r = ρL/A = (3.5×10−5Ω ·m)(1.96×10−2m)/π(5.12×10−3m)2 = 8.33×10−3Ω.
(a) i =

√
P/r =

√
(1.55 W)/(8.33×10−3Ω) = 13.6 A, so

j = i/A = (13.6 A)/π(5.12×10−3m)2 = 1.66×105A/m2.

(b) ∆V =
√
Pr =

√
(1.55 W)(8.33×10−3Ω) = 0.114 V.
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E31-39 (a) The current through the wire is

i = P/∆V = (4800 W)/(75 V) = 64 A,

The resistance of the wire is

R = ∆V/i = (75 V)/(64 A) = 1.17 Ω.

The length of the wire is then found from

L =
RA

ρ
=

(1.17 Ω)(2.6×10−6 m2)
(5.0×10−7 Ωm)

= 6.1 m.

One could easily wind this much nichrome to make a toaster oven. Of course allowing 64 Amps to
be drawn through household wiring will likely blow a fuse.

(b) We want to combine the above calculations into one formula, so

L =
RA

ρ
=
A∆V/i

ρ
=
A(∆V )2

Pρ
,

then

L =
(2.6×10−6 m2)(110 V)2

(4800 W)(5.0×10−7 Ωm)
= 13 m.

Hmm. We need more wire if the potential difference is increased? Does this make sense? Yes, it
does. We need more wire because we need more resistance to decrease the current so that the same
power output occurs.

E31-40 (a) The energy required to bring the water to boiling is Q = mC∆T . The time required
is

t =
Q

0.77P
=

(2.1 kg)(4200 J/kg)(100◦C− 18.5◦C)
0.77(420 W)

= 2.22×103s

(b) The additional time required to boil half of the water away is

t =
mL/2
0.77P

=
(2.1 kg)(2.26×106J/kg)/2

0.77(420 W)
= 7340 s.

E31-41 (a) Integrate both sides of Eq. 31-26;∫ q

0

dq

q − EC
= −

∫ t

0

dt

RC
,

ln(q − EC)|q0 = − t

RC

∣∣∣∣t
0

,

ln
(
q − EC
−EC

)
= − t

RC
,

q − EC
−EC

= e−t/RC ,

q = EC
(

1− e−t/RC
)
.

That wasn’t so bad, was it?
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(b) Rearrange Eq. 31-26 in order to get q terms on the left and t terms on the right, then
integrate; ∫ q

q0

dq

q
= −

∫ t

0

dt

RC
,

ln q|qq0 = − t

RC

∣∣∣∣t
0

,

ln
(
q

q0

)
= − t

RC
,

q

q0
= e−t/RC ,

q = q0e
−t/RC .

That wasn’t so bad either, was it?

E31-42 (a) τC = RC = (1.42×106Ω)(1.80×10−6F) = 2.56 s.
(b) q0 = C∆V = (1.80×10−6F)(11.0 V) = 1.98×10−5C.
(c) t = −τC ln(1− q/q0), so

t = −(2.56 s) ln(1− 15.5×10−6C/1.98×10−5C) = 3.91 s.

E31-43 Solve n = t/τC = − ln(1− 0.99) = 4.61.

E31-44 (a) ∆V = E(1− e−t/τC ), so

τC = −(1.28×10−6s)/ ln(1− 5.00 V/13.0 V) = 2.64×10−6s

(b) C = τC/R = (2.64×10−6s)/(15.2×103Ω) = 1.73×10−10F

E31-45 (a) ∆V = Ee−t/τC , so

τC = −(10.0 s)/ ln(1.06 V/100 V) = 2.20 s

(b) ∆V = (100 V)e−17 s/2.20 s = 4.4×10−2V.

E31-46 ∆V = Ee−t/τC and τC = RC, so

R = − t

C ln(∆V/∆V0)
= − t

(220×10−9F) ln(0.8 V/5 V)
=

t

4.03×10−7F
.

If t is between 10.0µs and 6.0 ms, then R is between

R = (10×10−6s)/(4.03×10−7F) = 24.8Ω,

and
R = (6×10−3s)/(4.03×10−7F) = 14.9×103Ω.

E31-47 The charge on the capacitor needs to build up to a point where the potential across the
capacitor is VL = 72 V, and this needs to happen within 0.5 seconds. This means that we want to
solve

C∆VL = CE
(

1− eT/RC
)

for R knowing that T = 0.5 s. This expression can be written as

R = − T

C ln(1− VL/E)
= − (0.5 s)

(0.15µC) ln(1− (72 V)/(95 V))
= 2.35×106Ω.
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E31-48 (a) q0 =
√

2UC =
√

2(0.50 J)(1.0×10−6F) = 1×10−3C.
(b) i0 = ∆V0/R = q0/RC = (1×10−3C)/(1.0×106Ω)(1.0×10−6F) = 1×10−3A.
(c) ∆VC = ∆V0e

−t/τC , so

∆VC =
(1×10−3C)

(1.0×10−6F)
e−t/(1.0×106Ω)(1.0×10−6F) = (1000 V)e−t/(1.0 s)

Note that ∆VR = ∆VC .
(d) PR = (∆VR)2/R, so

PR = (1000 V)2e−2t/(1.0 s)/(1×106ω) = (1 W)e−2t/(1.0 s).

E31-49 (a) i = dq/dt = Ee−t/τC/R, so

i =
(4.0 V)

(3.0×106Ω)
e−(1.0 s)/(3.0×106Ω)(1.0×10−6F) = 9.55×10−7A.

(b) PC = i∆V = (E2/R)e−t/τC (1− e−t/τC ), so

PC =
(4.0 V)2

(3.0×106Ω)
e−(1.0 s)/(3.0×106Ω)(1.0×10−6F)

(
1− e−(1.0 s)/(3.0×106Ω)(1.0×10−6F)

)
= 1.08×10−6W.

(c) PR = i2R = (E2/R)e−2t/τC , so

PR =
(4.0 V)2

(3.0×106Ω)
e−2(1.0 s)/(3.0×106Ω)(1.0×10−6F) = 2.74×10−6W.

(d) P = PR + PC , or

P = 2.74×10−6W + 1.08×10−6W = 3.82×10−6W

E31-50 The rate of energy dissipation in the resistor is

PR = i2R = (E2/R)e−2t/τC .

Evaluating ∫ ∞
0

PRdt =
E2

R

∫ ∞
0

e−2t/RCdt =
E2

2
C,

but that is the original energy stored in the capacitor.

P31-1 The terminal voltage of the battery is given by V = E − ir, so the internal resistance is

r =
E − V
i

=
(12.0 V)− (11.4 V)

(50 A)
= 0.012 Ω,

so the battery appears within specs.
The resistance of the wire is given by

R =
∆V
i

=
(3.0 V)
(50 A)

= 0.06 Ω,

so the cable appears to be bad.
What about the motor? Trying it,

R =
∆V
i

=
(11.4 V)− (3.0 V)

(50 A)
= 0.168 Ω,

so it appears to be within spec.
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P31-2 Traversing the circuit we have

E − ir1 + E − ir2 − iR = 0,

so i = 2E/(r1 + r2 +R). The potential difference across the first battery is then

∆V1 = E − ir1 = E
(

1− 2r1

r1 + r2 +R

)
= E r2 − r1 +R

r1 + r2 +R

This quantity will only vanish if r2 − r1 + R = 0, or r1 = R + r2. Since r1 > r2 this is actually
possible; R = r1 − r2.

P31-3 ∆V = E − iri and i = E/(ri +R), so

∆V = E R

ri +R
,

There are then two simultaneous equations:

(0.10 V)(500 Ω) + (0.10 V)ri = E(500 Ω)

and
(0.16 V)(1000 Ω) + (0.16 V)ri = E(1000 Ω),

with solution
(a) ri = 1.5×103Ω and
(b) E = 0.400 V.
(c) The cell receives energy from the sun at a rate (2.0 mW/cm2)(5.0 cm2) = 0.010 W. The cell

converts energy at a rate of V 2/R = (0.16 V)2/(1000 Ω) = 0.26 %

P31-4 (a) The emf of the battery can be found from

E = iri + ∆V l = (10 A)(0.05 Ω) + (12 V) = 12.5 V

(b) Assume that resistance is not a function of temperature. The resistance of the headlights is
then

rl = (12.0 V)/(10.0 A) = 1.2 Ω.
The potential difference across the lights when the starter motor is on is

∆V l = (8.0 A)(1.2 Ω) = 9.6 V,

and this is also the potential difference across the terminals of the battery. The current through the
battery is then

i =
E −∆V

ri
=

(12.5 V)− (9.6 V)
(0.05 Ω)

= 58 A,

so the current through the motor is 50 Amps.

P31-5 (a) The resistivities are

ρA = rAA/L = (76.2×10−6Ω)(91.0×10−4m2)/(42.6 m) = 1.63×10−8Ω ·m,

and
ρB = rBA/L = (35.0×10−6Ω)(91.0×10−4m2)/(42.6 m) = 7.48×10−9Ω ·m.

(b) The current is i = ∆V/(rA + rB) = (630 V)/(111.2µΩ) = 5.67×106A. The current density
is then

j = (5.67×106A)/(91.0×10−4m2) = 6.23×108A/m2.

(c) EA = ρAj = (1.63×10−8Ω ·m)(6.23×108A/m2) = 10.2 V/m and EB = ρBj = (7.48×10−9Ω ·
m)(6.23×108A/m2) = 4.66 V/m.

(d) ∆VA = EAL = (10.2 V/m)(42.6 m) = 435 V and ∆VB = EBL = (4.66 V/m)(42.6 m) = 198 V.
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P31-6 Set up the problem with the traditional presentation of the Wheatstone bridge problem.
Then the symmetry of the problem (flip it over on the line between x and y) implies that there is no
current through r. As such, the problem is equivalent to two identical parallel branches each with
two identical series resistances.

Each branch has resistance R+R = 2R, so the overall circuit has resistance

1
Req

=
1

2R
+

1
2R

=
1
R
,

so Req = R.

P31-7

P31-8 (a) The loop through R1 is trivial: i1 = E2/R1 = (5.0 V)/(100 Ω) = 0.05 A. The loop
through R2 is only slightly harder: i2 = (E2 + E3 − E1)/R2 = 0.06 A.

(b) ∆Vab = E3 + E2 = (5.0 V) + (4.0 V) = 9.0 V.

P31-9 (a) The three way light-bulb has two filaments (or so we are told in the question). There
are four ways for these two filaments to be wired: either one alone, both in series, or both in
parallel. Wiring the filaments in series will have the largest total resistance, and since P = V 2/R
this arrangement would result in the dimmest light. But we are told the light still operates at the
lowest setting, and if a filament burned out in a series arrangement the light would go out.

We then conclude that the lowest setting is one filament, the middle setting is another filament,
and the brightest setting is both filaments in parallel.

(b) The beauty of parallel settings is that then power is additive (it is also addictive, but that’s
a different field.) One filament dissipates 100 W at 120 V; the other filament (the one that burns
out) dissipates 200 W at 120 V, and both together dissipate 300 W at 120 V.

The resistance of one filament is then

R =
(∆V )2

P
=

(120 V)2

(100 W)
= 144 Ω.

The resistance of the other filament is

R =
(∆V )2

P
=

(120 V)2

(200 W)
= 72 Ω.

P31-10 We can assume that R “contains” all of the resistance of the resistor, the battery and the
ammeter, then

R = (1.50 V)/(1.0 m/A) = 1500 Ω.

For each of the following parts we apply R+ r = ∆V/i, so
(a) r = (1.5 V)/(0.1 mA)− (1500 Ω) = 1.35×104Ω,
(b) r = (1.5 V)/(0.5 mA)− (1500 Ω) = 1.5×103Ω,
(c) r = (1.5 V)/(0.9 mA)− (1500 Ω) = 167Ω.
(d) R = (1500 Ω)− (18.5 Ω) = 1482 Ω

P31-11 (a) The effective resistance of the parallel branches on the middle and the right is

R2R3

R2 +R3
.
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The effective resistance of the circuit as seen by the battery is then

R1 +
R2R3

R2 +R3
=
R1R2 +R1R3 +R2R3

R2 +R3
,

The current through the battery is

i = E R2 +R3

R1R2 +R1R3 +R2R3
,

The potential difference across R1 is then

∆V1 = E R2 +R3

R1R2 +R1R3 +R2R3
R1,

while ∆V3 = E −∆V1, or

∆V3 = E R2R3

R1R2 +R1R3 +R2R3
,

so the current through the ammeter is

i3 =
∆V3

R3
= E R2

R1R2 +R1R3 +R2R3
,

or

i3 = (5.0 V)
(4 Ω)

(2 Ω)(4 Ω) + (2 Ω)(6 Ω) + (4 Ω)(6 Ω)
= 0.45 A.

(b) Changing the locations of the battery and the ammeter is equivalent to swapping R1 and
R3. But since the expression for the current doesn’t change, then the current is the same.

P31-12 ∆V1 + ∆V2 = ∆VS + ∆VX ; if Va = Vb, then ∆V1 = ∆VS . Using the first expression,

ia(R1 +R2) = ib(RS +RX),

using the second,
iaR1 = ibR2.

Dividing the first by the second,

1 +R2/R1 = 1 +RX/RS ,

or RX = RS(R2/R1).

P31-13

P31-14 Lv = ∆Q/∆m and ∆Q/∆t = P = i∆V , so

Lv =
i∆V

∆m/∆t
=

(5.2 A)(12 V)
(21×10−6kg/s)

= 2.97×106J/kg.

P31-15 P = i2R. W = p∆V , where V is volume. p = mg/A and V = Ay, where y is the height
of the piston. Then P = dW/dt = mgv. Combining all of this,

v =
i2R

mg
=

(0.240 A)2(550 Ω)
(11.8 kg)(9.8 m/s2)

= 0.274 m/s.
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P31-16 (a) Since q = CV , then

q = (32×10−6F)
[
(6 V) + (4 V/s)(0.5 s)− (2 V/s2)(0.5 s)2

]
= 2.4×10−4C.

(b) Since i = dq/dt = C dV/dt, then

i = (32×10−6F)
[
(4 V/s)− 2(2 V/s2)(0.5 s)

]
= 6.4×10−5A.

(c) Since P = iV ,

P = [
[
(4 V/s)− 2(2 V/s2)(0.5 s)

] [
(6 V) + (4 V/s)(0.5 s)− (2 V/s2)(0.5 s)2

]
= 4.8×10−4W.

P31-17 (a) We have P = 30P0 and i = 4i0. Then

R =
P

i2
=

30P0

(4i0)2
=

30
16
R0.

We don’t really care what happened with the potential difference, since knowing the change in
resistance of the wire should give all the information we need.

The volume of the wire is a constant, even upon drawing the wire out, so LA = L0A0; the
product of the length and the cross sectional area must be a constant.

Resistance is given by R = ρL/A, but A = L0A0/L, so the length of the wire is

L =

√
A0L0R

ρ
=

√
30
16
A0L0R0

ρ
= 1.37L0.

(b) We know that A = L0A0/L, so

A =
L

L0
A0 =

A0

1.37
= 0.73A0.

P31-18 (a) The capacitor charge as a function of time is given by Eq. 31-27,

q = CE
(

1− e−t/RC
)
,

while the current through the circuit (and the resistor) is given by Eq. 31-28,

i =
E
R
e−t/RC .

The energy supplied by the emf is

U =
∫
Ei dt = E

∫
dq = Eq;

but the energy in the capacitor is UC = q∆V/2 = Eq/2.
(b) Integrating,

UR =
∫
i2Rdt =

E2

R

∫
e−2t/RCdt =

E2

2C
=
Eq
2
.
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P31-19 The capacitor charge as a function of time is given by Eq. 31-27,

q = CE
(

1− e−t/RC
)
,

while the current through the circuit (and the resistor) is given by Eq. 31-28,

i =
E
R
e−t/RC .

The energy stored in the capacitor is given by

U =
q2

2C
,

so the rate that energy is being stored in the capacitor is

PC =
dU

dt
=

q

C

dq

dt
=

q

C
i.

The rate of energy dissipation in the resistor is

PR = i2R,

so the time at which the rate of energy dissipation in the resistor is equal to the rate of energy
storage in the capacitor can be found by solving

PC = PR,

i2R =
q

C
i,

iRC = q,

ECe−t/RC = CE
(

1− e−t/RC
)
,

e−t/RC = 1/2,
t = RC ln 2.
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E32-1 Apply Eq. 32-3, ~F = q~v×~B.
All of the paths which involve left hand turns are positive particles (path 1); those paths which

involve right hand turns are negative particle (path 2 and path 4); and those paths which don’t turn
involve neutral particles (path 3).

E32-2 (a) The greatest magnitude of force is F = qvB = (1.6×10−19C)(7.2×106m/s)(83×10−3T) =
9.6×10−14N. The least magnitude of force is 0.

(b) The force on the electron is F = ma; the angle between the velocity and the magnetic field
is θ, given by ma = qvB sin θ. Then

θ = arcsin
(

(9.1×10−31kg)(4.9×1016m/s2)
(1.6×10−19C)(7.2×106m/s)(83×10−3T)

)
= 28◦.

E32-3 (a) v = E/B = (1.5×103V/m)/(0.44 T) = 3.4×103m/s.

E32-4 (a) v = F/qB sin θ = (6.48×10−17N/(1.60×10−19C)(2.63×10−3T) sin(23.0◦) = 3.94×105m/s.
(b) K = mv2/2 = (938 MeV/c2)(3.94×105m/s)2/2 = 809 eV.

E32-5 The magnetic force on the proton is

FB = qvB = (1.6×10−19 C)(2.8×107 m/s)(30eex−6 T) = 1.3×10−16N.

The gravitational force on the proton is

mg = (1.7×10−27kg)(9.8 m/s2) = 1.7×10−26 N.

The ratio is then 7.6×109. If, however, you carry the number of significant digits for the intermediate
answers farther you will get the answer which is in the back of the book.

E32-6 The speed of the electron is given by v =
√

2q∆V/m, or

v =
√

2(1000 eV)/(5.1×105 eV/c2) = 0.063c.

The electric field between the plates is E = (100 V)/(0.020 m) = 5000 V/m. The required magnetic
field is then

B = E/v = (5000 V/m)/(0.063c) = 2.6×10−4T.

E32-7 Both have the same velocity. Then Kp/Ke = mpv
2/mev

2 = mp/me =.

E32-8 The speed of the ion is given by v =
√

2q∆V/m, or

v =
√

2(10.8 keV)/(6.01)(932 MeV/c2) = 1.96×10−3c.

The required electric field is E = vB = (1.96×10−3c)(1.22 T) = 7.17×105V/m.

E32-9 (a) For a charged particle moving in a circle in a magnetic field we apply Eq. 32-10;

r =
mv

|q|B
=

(9.11×10−31kg)(0.1)(3.00×108 m/s)
(1.6×10−19 C)(0.50 T)

= 3.4×10−4 m.

(b) The (non-relativistic) kinetic energy of the electron is

K =
1
2
mv2 =

1
2

(0.511 MeV)(0.10c)2 = 2.6×10−3 MeV.
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E32-10 (a) v =
√

2K/m =
√

2(1.22 keV)/(511 keV/c2) = 0.0691c.
(b) B = mv/qr = (9.11×10−31kg)(0.0691c)/(1.60×10−19C)(0.247 m) = 4.78×10−4T.
(c) f = qB/2πm = (1.60×10−19C)(4.78×10−4T)/2π(9.11×10−31kg) = 1.33×107 Hz.
(d) T = 1/f = 1/(1.33×107 Hz) = 7.48×10−8s.

E32-11 (a) v =
√

2K/m =
√

2(350 eV)/(511 keV/c2) = 0.037c.
(b) r = mv/qB = (9.11×10−31kg)(0.037c)/(1.60×10−19C)(0.20T) = 3.16×10−4m.

E32-12 The frequency is f = (7.00)/(1.29×10−3s) = 5.43×103 Hz. The mass is given by m =
qB/2πf , or

m =
(1.60×10−19C)(45.0×10−3T)

2π(5.43×103 Hz)
= 2.11×10−25kg = 127 u.

E32-13 (a) Apply Eq. 32-10, but rearrange it as

v =
|q|rB
m

=
2(1.6×10−19 C)(0.045 m)(1.2 T)

4.0(1.66×10−27kg)
= 2.6×106 m/s.

(b) The speed is equal to the circumference divided by the period, so

T =
2πr
v

=
2πm
|q|B

=
2π4.0(1.66×10−27kg)

2(1.6× 10−19 C)(1.2 T)
= 1.1×10−7 s.

(c) The (non-relativistic) kinetic energy is

K =
|q|2r2B

2m
=

(2×1.6×10−19 C)2(0.045 m)2(1.2 T)2

2(4.0×1.66×10−27kg))
= 2.24×10−14J.

To change to electron volts we need merely divide this answer by the charge on one electron, so

K =
(2.24×10−14J)
(1.6×10−19 C)

= 140 keV.

(d) ∆V = K
q = (140 keV)/(2e) = 70 V.

E32-14 (a) R = mv/qB = (938 MeV/c2)(0.100c)/e(1.40 T) = 0.223 m.
(b) f = qB/2πm = e(1.40 T)/2π(938 MeV/c2) = 2.13×107 Hz.

E32-15 (a) Kα/Kp = (q2
α/mα)/(qp

2/mp) = 22/4 = 1.
(b) Kd/Kp = (qd

2/md)/(qp
2/mp) = 12/2 = 1/2.

E32-16 (a) K = q∆V . Then Kp = e∆V , Kd = e∆V , and Kα = 2e∆V .
(b) r = sqrt2mK/qB. Then rd/rp =

√
(2/1)(1/1)/(1/1) =

√
2.

(c) r = sqrt2mK/qB. Then rα/rp =
√

(4/1)(2/1)/(2/1) =
√

2.

E32-17 r =
√

2mK/|q|B = (
√
m/|q|)(

√
2K/B). All three particles are traveling with the same

kinetic energy in the same magnetic field. The relevant factors are in front; we just need to compare
the mass and charge of each of the three particles.

(a) The radius of the deuteron path is
√

2
1 rp.

(b) The radius of the alpha particle path is
√

4
2 rp = rp.
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E32-18 The neutron, being neutral, is unaffected by the magnetic field and moves off in a line
tangent to the original path. The proton moves at the same original speed as the deuteron and has
the same charge, but since it has half the mass it moves in a circle with half the radius.

E32-19 (a) The proton momentum would be pc = qcBR = e(3.0×108m/s)(41×10−6T)(6.4×106m) =
7.9×104 MeV. Since 79000 MeV is much, much greater than 938 MeV the proton is ultra-relativistic.
Then E ≈ pc, and since γ = E/mc2 we have γ = p/mc. Inverting,

v

c
=
√

1− 1
γ2

=

√
1− m2c2

p2
≈ 1− m2c2

2p2
≈ 0.99993.

E32-20 (a) Classically, R =
√

2mK/qB, or

R =
√

2(0.511 MeV/c2)(10.0 MeV)/e(2.20 T) = 4.84×10−3m.

(b) This would be an ultra-relativistic electron, so K ≈ E ≈ pc, then R = p/qB = K/qBc, or

R = (10.0 MeV)/e(2.2 T)(3.00×108m/s) = 1.52×10−2m.

(c) The electron is effectively traveling at the speed of light, so T = 2πR/c, or

T = 2π(1.52×10−2m)/(3.00×108 m/s) = 3.18×10−10s.

This result does depend on the speed!

E32-21 Use Eq. 32-10, except we rearrange for the mass,

m =
|q|rB
v

=
2(1.60×10−19 C)(4.72 m)(1.33 T)

0.710(3.00×108 m/s)
= 9.43×10−27 kg

However, if it is moving at this velocity then the “mass” which we have here is not the true mass,
but a relativistic correction. For a particle moving at 0.710c we have

γ =
1√

1− v2/c2
=

1√
1− (0.710)2

= 1.42,

so the true mass of the particle is (9.43×10−27 kg)/(1.42) = 6.64×10−27kg. The number of nucleons
present in this particle is then (6.64×10−27kg)/(1.67×10−27 kg) = 3.97 ≈ 4. The charge was +2,
which implies two protons, the other two nucleons would be neutrons, so this must be an alpha
particle.

E32-22 (a) Since 950 GeV is much, much greater than 938 MeV the proton is ultra-relativistic.
γ = E/mc2, so

v

c
=
√

1− 1
γ2

=

√
1− m2c4

E2
≈ 1− m2c4

2E2
≈ 0.9999995.

(b) Ultra-relativistic motion requires pc ≈ E, so

B = pc/qRc = (950 GeV)/e(750 m)(3.00×108m/s) = 4.44 T.
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E32-23 First use 2πf = qB/m. The use K = q2B2R2/2m = mR2(2πf)2/2. The number of
turns is n = K/2q∆V , on average the particle is located at a distance R/

√
2 from the center, so the

distance traveled is x = n2πR/
√

2 = n
√

2πR. Combining,

x =
√

2π3R3mf2

q∆V
=
√

2π3(0.53 m)3(2× 932×103 keV/c2)(12×106/s)2

e(80 kV)
= 240 m.

E32-24 The particle moves in a circle. x = R sinωt and y = R cosωt.

E32-25 We will use Eq. 32-20, EH = vdB, except we will not take the derivation through to Eq.
32-21. Instead, we will set the drift velocity equal to the speed of the strip. We will, however, set
EH = ∆V H/w. Then

v =
EH

B
=

∆V H/w

B
=

(3.9×10−6V)/(0.88×10−2m)
(1.2×10−3T)

= 3.7×10−1m/s.

E32-26 (a) v = E/B = (40×10−6V)/(1.2×10−2m)/(1.4 T) = 2.4×10−3m/s.
(b) n = (3.2 A)(1.4 T)/(1.6×10−19C)(9.5×10−6m)(40×10−6V) = 7.4×1028/m3.; Silver.

E32-27 EH = vdB and vd = j/ne. Combine and rearrange.

E32-28 (a) Use the result of the previous exercise and Ec = ρj.
(b) (0.65 T)/(8.49×1028/m3)(1.60×10−19C)(1.69×10−8Ω ·m) = 0.0028.

E32-29 Since ~L is perpendicular to ~B can use

FB = iLB.

Equating the two forces,

iLB = mg,

i =
mg

LB
=

(0.0130 kg)(9.81 m/s2)
(0.620 m)(0.440 T)

= 0.467 A.

Use of an appropriate right hand rule will indicate that the current must be directed to the right
in order to have a magnetic force directed upward.

E32-30 F = iLB sin θ = (5.12×103A)(100 m)(58×10−6T) sin(70◦) = 27.9 N. The direction is
horizontally west.

E32-31 (a) We use Eq. 32-26 again, and since the (horizontal) axle is perpendicular to the
vertical component of the magnetic field,

i =
F

BL
=

(10, 000 N)
(10µT)(3.0 m)

= 3.3×108A.

(b) The power lost per ohm of resistance in the rails is given by

P/r = i2 = (3.3×108A)2 = 1.1×1017 W.

(c) If such a train were to be developed the rails would melt well before the train left the station.
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E32-32 F = idB, so a = F/m = idB/m. Since a is constant, v = at = idBt/m. The direction is
to the left.

E32-33 Only the ĵ component of ~B is of interest. Then F =
∫
dF = i

∫
By dx, or

F = (5.0 A)(8×10−3T/m2)
∫ 3.2

1.2

x2 dx = 0.414 N.

The direction is −k̂.

E32-34 The magnetic force will have two components: one will lift vertically (Fy = F sinα), the
other push horizontally (Fx = F cosα). The rod will move when Fx > µ(W −Fy). We are interested
in the minimum value for F as a function of α. This occurs when

dF

dα
=

d

dα

(
µW

cosα+ µ sinα

)
= 0.

This happens when µ = tanα. Then α = arctan(0.58) = 30◦, and

F =
(0.58)(1.15 kg)(9.81 m/s2)
cos(30◦) + (0.58) sin(30◦)

= 5.66 N

is the minimum force. Then B = (5.66 N)/(53.2 A)(0.95 m) = 0.112 T.

E32-35 We choose that the field points from the shorter side to the longer side.
(a) The magnetic field is parallel to the 130 cm side so there is no magnetic force on that side.
The magnetic force on the 50 cm side has magnitude

FB = iLB sin θ,

where θ is the angle between the 50 cm side and the magnetic field. This angle is larger than 90◦,
but the sine can be found directly from the triangle,

sin θ =
(120 cm)
(130 cm)

= 0.923,

and then the force on the 50 cm side can be found by

FB = (4.00 A)(0.50 m)(75.0×10−3 T)
(120 cm)
(130 cm)

= 0.138 N,

and is directed out of the plane of the triangle.
The magnetic force on the 120 cm side has magnitude

FB = iLB sin θ,

where θ is the angle between the 1200 cm side and the magnetic field. This angle is larger than
180◦, but the sine can be found directly from the triangle,

sin θ =
(−50 cm)
(130 cm)

= −0.385,

and then the force on the 50 cm side can be found by

FB = (4.00 A)(1.20 m)(75.0×10−3 T)
(−50 cm)
(130 cm)

= −0.138 N,

and is directed into the plane of the triangle.
(b) Look at the three numbers above.
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E32-36 τ = NiAB sin θ, so

τ = (20)(0.1 A)(0.12 m)(0.05 m)(0.5 T) sin(90◦ − 33◦) = 5.0×10−3N ·m.

E32-37 The external magnetic field must be in the plane of the clock/wire loop. The clockwise
current produces a magnetic dipole moment directed into the plane of the clock.

(a) Since the magnetic field points along the 1 pm line and the torque is perpendicular to both
the external field and the dipole, then the torque must point along either the 4 pm or the 10 pm line.
Applying Eq. 32-35, the direction is along the 4 pm line. It will take the minute hand 20 minutes
to get there.

(b) τ = (6)(2.0 A)π(0.15 m)2(0.07 T) = 0.059 N ·m.

P32-1 Since ~F must be perpendicular to ~B then ~B must be along k̂. The magnitude of v is√
(40)2 + (35)2 km/s = 53.1 km/s; the magnitude of F is

√
(−4.2)2 + (4.8)2fN = 6.38 fN. Then

B = F/qv = (6.38×10−15N)/(1.6×10−19C)(53.1×103m/s) = 0.75 T.

or ~B = 0.75 T k̂.

P32-2 ~a = (q/m)(~E + ~v × ~B). For the initial velocity given,

~v × ~B = (15.0×103m/s)(400×10−6T)̂j− (12.0×103m/s)(400×10−6T)k̂.

But since there is no acceleration in the ĵ or k̂ direction this must be offset by the electric field.
Consequently, two of the electric field components are Ey = −6.00 V/m and Ez = 4.80 V/m. The
third component of the electric field is the source of the acceleration, so

Ex = max/q = (9.11×10−31kg)(2.00×1012m/s2)/(−1.60×10−19C) = −11.4 V/m.

P32-3 (a) Consider first the cross product, ~v × ~B. The electron moves horizontally, there is a
component of the ~B which is down, so the cross product results in a vector which points to the left
of the electron’s path.

But the force on the electron is given by ~F = q~v× ~B, and since the electron has a negative charge
the force on the electron would be directed to the right of the electron’s path.

(b) The kinetic energy of the electrons is much less than the rest mass energy, so this is non-
relativistic motion. The speed of the electron is then v =

√
2K/m, and the magnetic force on the

electron is FB = qvB, where we are assuming sin θ = 1 because the electron moves horizontally
through a magnetic field with a vertical component. We can ignore the effect of the magnetic field’s
horizontal component because the electron is moving parallel to this component.

The acceleration of the electron because of the magnetic force is then

a =
qvB

m
=
qB

m

√
2K
m
,

=
(1.60×10−19C)(55.0×10−6T)

(9.11×10−31kg)

√
2(1.92×10−15J)
(9.11×10−31kg)

= 6.27×1014 m/s2.

(c) The electron travels a horizontal distance of 20.0 cm in a time of

t =
(20.0 cm)√

2K/m
=

(20.0 cm)√
2(1.92×10−15J)/(9.11×10−31kg)

= 3.08×10−9 s.

In this time the electron is accelerated to the side through a distance of

d =
1
2
at2 =

1
2

(6.27×1014 m/s2)(3.08×10−9 s)2 = 2.98 mm.
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P32-4 (a) d needs to be larger than the turn radius, so R ≤ d; but 2mK/q2B2 = R2 ≤ d2, or
B ≥

√
2mK/q2d2.

(b) Out of the page.

P32-5 Only undeflected ions emerge from the velocity selector, so v = E/B. The ions are then
deflected by B′ with a radius of curvature of r = mv/qB; combining and rearranging, q/m =
E/rBB′.

P32-6 The ions are given a kinetic energy K = q∆V ; they are then deflected with a radius of
curvature given by R2 = 2mK/q2B2. But x = 2R. Combine all of the above, and m = B2qx2/8∆V.

P32-7 (a) Start with the equation in Problem 6, and take the square root of both sides to get

√
m =

(
B2q

8∆V

) 1
2

x,

and then take the derivative of x with respect to m,

1
2
dm√
m

=
(
B2q

8∆V

) 1
2

dx,

and then consider finite differences instead of differential quantities,

∆m =
(
mB2q

2∆V

) 1
2

∆x,

(b) Invert the above expression,

∆x =
(

2∆V
mB2q

) 1
2

∆m,

and then put in the given values,

∆x =
(

2(7.33×103V)
(35.0)(1.66×10−27kg)(0.520 T)2(1.60×10−19C)

) 1
2

(2.0)(1.66×10−27kg),

= 8.02 mm.

Note that we used 35.0 u for the mass; if we had used 37.0 u the result would have been closer to
the answer in the back of the book.

P32-8 (a) B =
√

2∆V m/qr2 =
√

2(0.105 MV)(238)(932 MeV/c2)/2e(0.973 m)2 = 5.23×10−7T.
(b) The number of atoms in a gram is 6.02×1023/238 = 2.53×1021. The current is then

(0.090)(2.53×1021)(2)(1.6×10−19C)/(3600 s) = 20.2 mA.

P32-9 (a) −q.
(b) Regardless of speed, the orbital period is T = 2πm/qB. But they collide halfway around a

complete orbit, so t = πm/qB.

P32-10

103



P32-11 (a) The period of motion can be found from the reciprocal of Eq. 32-12,

T =
2πm
|q|B

=
2π(9.11×10−31kg)

(1.60×10−19C)(455×10−6T)
= 7.86×10−8s.

(b) We need to find the velocity of the electron from the kinetic energy,

v =
√

2K/m =
√

2(22.5 eV)(1.60×10−19 J/eV)/(9.11×10−31kg) = 2.81×106 m/s.

The velocity can written in terms of components which are parallel and perpendicular to the magnetic
field. Then

v|| = v cos θ and v⊥ = v sin θ.

The pitch is the parallel distance traveled by the electron in one revolution, so

p = v||T = (2.81×106m/s) cos(65.5◦)(7.86×10−8s) = 9.16 cm.

(c) The radius of the helical path is given by Eq. 32-10, except that we use the perpendicular
velocity component, so

R =
mv⊥
|q|B

=
(9.11×10−31kg)(2.81×106m/s) sin(65.5◦)

(1.60×10−19C)(455×10−6T)
= 3.20 cm

P32-12 ~F = i
∫ b
a
d~l × ~B. d~l has two components, those parallel to the path, say d~x and those

perpendicular, say d~y. Then the integral can be written as

~F =
∫ b

a

d~x× ~B +
∫ b

a

d~y × ~B.

But ~B is constant, and can be removed from the integral.
∫ b
a
d~x =~l, a vector that points from a to

b.
∫ b
a
d~y = 0, because there is no net motion perpendicular to ~l.

P32-13 qvyB = Fx = mdvx/dt; −qvxB = Fy = mdvy/dt. Taking the time derivative of the
second expression and inserting into the first we get

qvyB = m

(
− m

qB

)
d2vy
dt2

,

which has solution vy = −v sin(mt/qB), where v is a constant. Using the second equation we find
that there is a similar solution for vx, except that it is out of phase, and so vx = v cos(mt/qB).

Integrating,

x =
∫
vxdt = v

∫
cos(mt/qB) =

qBv

m
sin(mt/qB).

Similarly,

y =
∫
vydt = −v

∫
sin(mt/qB) =

qBv

m
cos(mt/qB).

This is the equation of a circle.

P32-14 d~L = îdx+ ĵdy + k̂dz. ~B is uniform, so that the integral can be written as

~F = i

∮
(̂idx+ ĵdy + k̂dz)× ~B = îi× ~B

∮
dx+ îj× ~B

∮
dy + ik̂× ~B

∮
dz,

but since
∮
dx =

∮
dy =

∮
dz = 0, the entire expression vanishes.
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P32-15 The current pulse provides an impulse which is equal to∫
F dt =

∫
BiLdt = BL

∫
i dt = BLq.

This gives an initial velocity of v0 = BLq/m, which will cause the rod to hop to a height of

h = v2
0/2g = B2L2q2/2m2g.

Solving for q,

q =
m

BL

√
2gh =

(0.013 kg)
(0.12 T)(0.20 m)

√
2(9.8 m/s2)(3.1 m) = 4.2 C.

P32-16

P32-17 The torque on a current carrying loop depends on the orientation of the loop; the
maximum torque occurs when the plane of the loop is parallel to the magnetic field. In this case the
magnitude of the torque is from Eq. 32-34 with sin θ = 1—

τ = NiAB.

The area of a circular loop is A = πr2 where r is the radius, but since the circumference is C = 2πr,
we can write

A =
C2

4π
.

The circumference is not the length of the wire, because there may be more than one turn. Instead,
C = L/N , where N is the number of turns.

Finally, we can write the torque as

τ = Ni
L2

4πN2
B =

iL2B

4πN
,

which is a maximum when N is a minimum, or N = 1.

P32-18 d~F = i d~L × ~B; the direction of d~F will be upward and somewhat toward the center. ~L
and ~B are a right angles, but only the upward component of d~F will survive the integration as the
central components will cancel out by symmetry. Hence

F = iB sin θ
∫
dL = 2πriB sin θ.

P32-19 The torque on the cylinder from gravity is

τg = mgr sin θ,

where r is the radius of the cylinder. The torque from magnetism needs to balance this, so

mgr sin θ = NiAB sin θ = Ni2rLB sin θ,

or

i =
mg

2NLB
=

(0.262 kg)(9.8 m/s2)
2(13)(0.127 m)(0.477 T)

= 1.63 A.

105



E33-1 (a) The magnetic field from a moving charge is given by Eq. 33-5. If the protons are
moving side by side then the angle is φ = π/2, so

B =
µ0

4π
qv

r2

and we are interested is a distance r = d. The electric field at that distance is

E =
1

4πε0
q

r2
,

where in both of the above expressions q is the charge of the source proton.
On the receiving end is the other proton, and the force on that proton is given by

~F = q(~E + ~v × ~B).

The velocity is the same as that of the first proton (otherwise they wouldn’t be moving side by side.)
This velocity is then perpendicular to the magnetic field, and the resulting direction for the cross
product will be opposite to the direction of ~E. Then for balance,

E = vB,
1

4πε0
q

r2
= v

µ0

4π
qv

r2
,

1
ε0µ0

= v2.

We can solve this easily enough, and we find v ≈ 3× 108 m/s.
(b) This is clearly a relativistic speed!

E33-2 B = µ0i/2πd = (4π×10−7T ·m/A)(120 A)/2π(6.3 m) = 3.8×10−6T. This will deflect the
compass needle by as much as one degree. However, there is unlikely to be a place on the Earth’s
surface where the magnetic field is 210 µT. This was likely a typo, and should probably have been
21.0 µT. The deflection would then be some ten degrees, and that is significant.

E33-3 B = µ0i/2πd = (4π×10−7T ·m/A)(50 A)/2π(1.3×10−3 m) = 37.7×10−3T.

E33-4 (a) i = 2πdB/µ0 = 2π(8.13×10−2m)(39.0×10−6T)/(4π×10−7T ·m/A) = 15.9 A.
(b) Due East.

E33-5 Use

B =
µ0i

2πd
=

(4π×10−7N/A2)(1.6× 10−19 C)(5.6× 1014 s−1)
2π(0.0015 m)

= 1.2×10−8T.

E33-6 Zero, by symmetry. Any contributions from the top wire are exactly canceled by contribu-
tions from the bottom wire.

E33-7 B = µ0i/2πd = (4π×10−7T ·m/A)(48.8 A)/2π(5.2×10−2 m) = 1.88×10−4T.
~F = q~v × ~B. All cases are either parallel or perpendicular, so either F = 0 or F = qvB.
(a) F = qvB = (1.60×10−19C)(1.08×107m/s)(1.88×10−4T) = 3.24×10−16N. The direction of

~F is parallel to the current.
(b) F = qvB = (1.60×10−19C)(1.08×107m/s)(1.88×10−4T) = 3.24×10−16N. The direction of

~F is radially outward from the current.
(c) F = 0.
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E33-8 We want B1 = B2, but with opposite directions. Then i1/d1 = i2/d2, since all constants
cancel out. Then i2 = (6.6 A)(1.5 cm)/(2.25 cm) = 4.4 A, directed out of the page.

E33-9 For a single long straight wire, B = µ0i/2πd but we need a factor of “2” since there are
two wires, then i = πdB/µ0. Finally

i =
πdB

µ0
=
π(0.0405 m)(296, µT)

(4π×10−7N/A2)
= 30 A

E33-10 (a) The semi-circle part contributes half of Eq. 33-21, or µ0i/4R. Each long straight wire
contributes half of Eq. 33-13, or µ0i/4πR. Add the three contributions and get

Ba =
µ0i

4R

(
2
π

+ 1
)

=
(4π×10−7N/A2)(11.5 A)

4(5.20×10−3m)

(
2
π

+ 1
)

= 1.14×10−3T.

The direction is out of the page.
(b) Each long straight wire contributes Eq. 33-13, or µ0i/2πR. Add the two contributions and

get

Ba =
µ0i

πR
=

(4π×10−7N/A2)(11.5 A)
π(5.20×10−3m)

= 8.85×10−4T.

The direction is out of the page.

E33-11 z3 = µ0iR
2/2B = (4π×10−7N/A2)(320)(4.20 A)(2.40×10−2m)2/2(5.0×10−6T) = 9.73×

10−2m3. Then z = 0.46 m.

E33-12 The circular part contributes a fraction of Eq. 33-21, or µ0iθ/4πR. Each long straight
wire contributes half of Eq. 33-13, or µ0i/4πR. Add the three contributions and get

B =
µ0i

4πR
(θ − 2).

The goal is to get B = 0 that will happen if θ = 2 radians.

E33-13 There are four current segments that could contribute to the magnetic field. The straight
segments, however, contribute nothing because the straight segments carry currents either directly
toward or directly away from the point P .

That leaves the two rounded segments. Each contribution to ~B can be found by starting with
Eq. 33-21, or µ0iθ/4πb. The direction is out of the page.

There is also a contribution from the top arc; the calculations are almost identical except that
this is pointing into the page and r = a, so µ0iθ/4πa. The net magnetic field at P is then

B = B1 +B2 =
µ0iθ

4π

(
1
b
− 1
a

)
.

E33-14 For each straight wire segment use Eq. 33-12. When the length of wire is L, the distance
to the center is W/2; when the length of wire is W the distance to the center is L/2. There are four
terms, but they are equal in pairs, so

B =
µ0i

4π

(
4L

W
√
L2/4 +W 2/4

+
4W

L
√
L2/4 +W 2/4

)
,

=
2µ0i

π
√
L2 +W 2

(
L2

WL
+
W 2

WL

)
=

2µ0i

π

√
L2 +W 2

WL
.
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E33-15 We imagine the ribbon conductor to be a collection of thin wires, each of thickness dx
and carrying a current di. di and dx are related by di/dx = i/w. The contribution of one of these
thin wires to the magnetic field at P is dB = µ0 di/2πx, where x is the distance from this thin wire
to the point P . We want to change variables to x and integrate, so

B =
∫
dB =

∫
µ0i dx

2πwx
=

µ0i

2πw

∫
dx

x
.

The limits of integration are from d to d+ w, so

B =
µ0i

2πw
ln
(
d+ w

d

)
.

E33-16 The fields from each wire are perpendicular at P . Each contributes an amount B′ =
µ0i/2πd, but since they are perpendicular there is a net field of magnitude B =

√
2B′2 =

√
2µ0i/2πd.

Note that a =
√

2d, so B = µ0i/πa.
(a) B = (4π×10−7T ·m/A)(115 A)/π(0.122 m) = 3.77×10−4T. The direction is to the left.
(b) Same numerical result, except the direction is up.

E33-17 Follow along with Sample Problem 33-4.
Reversing the direction of the second wire (so that now both currents are directed out of the

page) will also reverse the direction of B2. Then

B = B1 −B2 =
µ0i

2π

(
1

b+ x
− 1
b− x

)
,

=
µ0i

2π

(
(b− x)− (b+ x)

b2 − x2

)
,

=
µ0i

π

(
x

x2 − b2

)
.

E33-18 (b) By symmetry, only the horizontal component of ~B survives, and must point to the
right.

(a) The horizontal component of the field contributed by the top wire is given by

B =
µ0i

2πh
sin θ =

µ0i

2πh
b/2
h

=
µ0ib

π(4R2 + b2)
,

since h is the hypotenuse, or h =
√
R2 + b2/4. But there are two such components, one from the

top wire, and an identical component from the bottom wire.

E33-19 (a) We can use Eq. 33-21 to find the magnetic field strength at the center of the large
loop,

B =
µ0i

2R
=

(4π×10−7T ·m/A)(13 A)
2(0.12 m)

= 6.8×10−5T.

(b) The torque on the smaller loop in the center is given by Eq. 32-34,

~τ = Ni~A× ~B,

but since the magnetic field from the large loop is perpendicular to the plane of the large loop, and
the plane of the small loop is also perpendicular to the plane of the large loop, the magnetic field is
in the plane of the small loop. This means that |~A× ~B| = AB. Consequently, the magnitude of the
torque on the small loop is

τ = NiAB = (50)(1.3 A)(π)(8.2×10−3m)2(6.8×10−5T) = 9.3×10−7N ·m.
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E33-20 (a) There are two contributions to the field. One is from the circular loop, and is given
by µ0i/2R. The other is from the long straight wire, and is given by µ0i/2πR. The two fields are
out of the page and parallel, so

B =
µ0i

2R
(1 + 1/π).

(b) The two components are now at right angles, so

B =
µ0i

2R

√
1 + 1/π2.

The direction is given by tan θ = 1/π or θ = 18◦.

E33-21 The force per meter for any pair of parallel currents is given by Eq. 33-25, F/L = µ0i
2/2πd,

where d is the separation. The direction of the force is along the line connecting the intersection of
the currents with the perpendicular plane. Each current experiences three forces; two are at right
angles and equal in magnitude, so |~F12 + ~F14|/L =

√
F 2

12 + F 2
14/L =

√
2µ0i

2/2πa. The third force
points parallel to this sum, but d =

√
a, so the resultant force is

F

L
=
√

2µ0i
2

2πa
+

µ0i
2

2π
√

2a
=

4π ××10−7N/A2(18.7 A)2

2π(0.245 m)
(
√

2 + 1/
√

2) = 6.06×10−4N/m.

It is directed toward the center of the square.

E33-22 By symmetry we expect the middle wire to have a net force of zero; the two on the outside
will each be attracted toward the center, but the answers will be symmetrically distributed.

For the wire which is the farthest left,

F

L
=
µ0i

2

2π

(
1
a

+
1
2a

+
1
3a

+
1
4a

)
=

4π ××10−7N/A2(3.22 A)2

2π(0.083 m)

(
1 +

1
2

+
1
3

+
1
4

)
= 5.21×10−5N/m.

For the second wire over, the contributions from the two adjacent wires should cancel. This
leaves

F

L
=
µ0i

2

2π

(
1
2a

+
1
3a

+
)

=
4π ××10−7N/A2(3.22 A)2

2π(0.083 m)

(
1
2

+
1
3

)
= 2.08×10−5N/m.

E33-23 (a) The force on the projectile is given by the integral of

d~F = i d~l× ~B

over the length of the projectile (which is w). The magnetic field strength can be found from adding
together the contributions from each rail. If the rails are circular and the distance between them is
small compared to the length of the wire we can use Eq. 33-13,

B =
µ0i

2πx
,

where x is the distance from the center of the rail. There is one problem, however, because these
are not wires of infinite length. Since the current stops traveling along the rail when it reaches the
projectile we have a rod that is only half of an infinite rod, so we need to multiply by a factor of
1/2. But there are two rails, and each will contribute to the field, so the net magnetic field strength
between the rails is

B =
µ0i

4πx
+

µ0i

4π(2r + w − x)
.
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In that last term we have an expression that is a measure of the distance from the center of the
lower rail in terms of the distance x from the center of the upper rail.

The magnitude of the force on the projectile is then

F = i

∫ r+w

r

B dx,

=
µ0i

2

4π

∫ r+w

r

(
1
x

+
1

2r + w − x

)
dx,

=
µ0i

2

4π
2 ln

(
r + w

r

)
The current through the projectile is down the page; the magnetic field through the projectile is

into the page; so the force on the projectile, according to ~F = i~l× ~B, is to the right.
(b) Numerically the magnitude of the force on the rail is

F =
(450×103A)2(4π×10−7N/A2)

2π
ln
(

(0.067 m) + (0.012 m)
(0.067 m)

)
= 6.65×103 N

The speed of the rail can be found from either energy conservation so we first find the work done
on the projectile,

W = Fd = (6.65×103 N)(4.0 m) = 2.66×104 J.

This work results in a change in the kinetic energy, so the final speed is

v =
√

2K/m =
√

2(2.66×104 J)/(0.010 kg) = 2.31×103 m/s.

E33-24 The contributions from the left end and the right end of the square cancel out. This leaves
the top and the bottom. The net force is the difference, or

F =
(4π×10−7N/A2)(28.6 A)(21.8 A)(0.323 m)

2π

(
1

(1.10×10−2m)
− 1

(10.30×10−2m)

)
,

= 3.27×10−3N.

E33-25 The magnetic force on the upper wire near the point d is

FB =
µ0iaibL

2π(d+ x)
≈ µ0iaibL

2πd
− µ0iaibL

2πd2
x,

where x is the distance from the equilibrium point d. The equilibrium magnetic force is equal to the
force of gravity mg, so near the equilibrium point we can write

FB = mg −mgx
d
.

There is then a restoring force against small perturbations of magnitude mgx/d which corresponds
to a spring constant of k = mg/d. This would give a frequency of oscillation of

f =
1

2π

√
k/m =

1
2π

√
g/d,

which is identical to the pendulum.

E33-26 B = (4π×10−7N/A2)(3.58 A)(1230)/(0.956m) = 5.79×10−3T.
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E33-27 The magnetic field inside an ideal solenoid is given by Eq. 33-28 B = µ0in, where n is
the turns per unit length. Solving for n,

n =
B

µ0i
=

(0.0224 T)
(4π×10−7N/A2)(17.8 A)

= 1.00×103/m−1.

The solenoid has a length of 1.33 m, so the total number of turns is

N = nL = (1.00×103/m−1)(1.33 m) = 1330,

and since each turn has a length of one circumference, then the total length of the wire which makes
up the solenoid is (1330)π(0.026 m) = 109 m.

E33-28 From the solenoid we have

Bs = µ0nis = µ0(11500/m)(1.94 mA) = µ0(22.3A/m).

From the wire we have

Bw =
µ0iw
2πr

=
µ0(6.3 A)

2πr
= (1.002 A)

µ0

r

These fields are at right angles, so we are interested in when tan(40◦) = Bw/Bs, or

r =
(1.002 A)

tan(40◦)(22.3 A/m)
= 5.35×10−2m.

E33-29 Let u = z − d. Then

B =
µ0niR

2

2

∫ d+L/2

d−L/2

du

[R2 + u2]3/2
,

=
µ0niR

2

2
u

R2
√
R2 + u2

∣∣∣∣d+L/2

d−L/2
,

=
µ0ni

2

(
d+ L/2√

R2 + (d+ L/2)2
− d− L/2√

R2 + (d− L/2)2

)
.

If L is much, much greater than R and d then |L/2 ± d| >> R, and R can be ignored in the
denominator of the above expressions, which then simplify to

B =
µ0ni

2

(
d+ L/2√

R2 + (d+ L/2)2
− d− L/2√

R2 + (d− L/2)2

)
.

=
µ0ni

2

(
d+ L/2√
(d+ L/2)2

− d− L/2√
(d− L/2)2

)
.

= µ0in.

It is important that we consider the relative size of L/2 and d!

E33-30 The net current in the loop is 1i0 + 3i0 + 7i0 − 6i0 = 5i0. Then
∮
~B · d~s = 5µ0i0.

E33-31 (a) The path is clockwise, so a positive current is into page. The net current is 2.0 A out,
so
∮
~B · d~s = −µ0i0 = −2.5×10−6T ·m.

(b) The net current is zero, so
∮
~B · d~s = 0.
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E33-32 Let R0 be the radius of the wire. On the surface of the wire B0 = µ0i/2πR0.
Outside the wire we have B = µ0i/2πR, this is half B0 when R = 2R0.
Inside the wire we have B = µ0iR/2πR2

0, this is half B0 when R = R0/2.

E33-33 (a) We don’t want to reinvent the wheel. The answer is found from Eq. 33-34, except it
looks like

B =
µ0ir

2πc2
.

(b) In the region between the wires the magnetic field looks like Eq. 33-13,

B =
µ0i

2πr
.

This is derived on the right hand side of page 761.
(c) Ampere’s law (Eq. 33-29) is

∮
~B · d~s = µ0i, where i is the current enclosed. Our Amperian

loop will still be a circle centered on the axis of the problem, so the left hand side of the above
equation will reduce to 2πrB, just like in Eq. 33-32. The right hand side, however, depends on
the net current enclosed which is the current i in the center wire minus the fraction of the current
enclosed in the outer conductor. The cross sectional area of the outer conductor is π(a2 − b2), so
the fraction of the outer current enclosed in the Amperian loop is

i
π(r2 − b2)
π(a2 − b2)

= i
r2 − b2

a2 − b2
.

The net current in the loop is then

i− i r
2 − b2

a2 − b2
= i

a2 − r2

a2 − b2
,

so the magnetic field in this region is

B =
µ0i

2πr
a2 − r2

a2 − b2
.

(d) This part is easy since the net current is zero; consequently B = 0.

E33-34 (a) Ampere’s law (Eq. 33-29) is
∮
~B · d~s = µ0i, where i is the current enclosed. Our

Amperian loop will still be a circle centered on the axis of the problem, so the left hand side of the
above equation will reduce to 2πrB, just like in Eq. 33-32. The right hand side, however, depends
on the net current enclosed which is the fraction of the current enclosed in the conductor. The cross
sectional area of the conductor is π(a2− b2), so the fraction of the current enclosed in the Amperian
loop is

i
π(r2 − b2)
π(a2 − b2)

= i
r2 − b2

a2 − b2
.

The magnetic field in this region is

B =
µ0i

2πr
r2 − b2

a2 − b2
.

(b) If r = a, then

B =
µ0i

2πa
a2 − b2

a2 − b2
=
µ0i

2πa
,

which is what we expect.
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If r = b, then

B =
µ0i

2πb
b2 − b2

a2 − b2
= 0,

which is what we expect.
If b = 0, then

B =
µ0i

2πr
r2 − 02

a2 − 02
=
µ0ir

2πa2

which is what I expected.

E33-35 The magnitude of the magnetic field due to the cylinder will be zero at the center of
the cylinder and µ0i0/2π(2R) at point P . The magnitude of the magnetic field field due to the
wire will be µ0i/2π(3R) at the center of the cylinder but µ0i/2πR at P . In order for the net
field to have different directions in the two locations the currents in the wire and pipe must be in
different direction. The net field at the center of the pipe is µ0i/2π(3R), while that at P is then
µ0i0/2π(2R)− µ0i/2πR. Set these equal and solve for i;

i/3 = i0/2− i,

or i = 3i0/8.

E33-36 (a) B = (4π×10−7N/A2)(0.813 A)(535)/2π(0.162 m) = 5.37×10−4T.
(b) B = (4π×10−7N/A2)(0.813 A)(535)/2π(0.162 m + 0.052 m) = 4.07×10−4T.

E33-37 (a) A positive particle would experience a magnetic force directed to the right for a
magnetic field out of the page. This particle is going the other way, so it must be negative.

(b) The magnetic field of a toroid is given by Eq. 33-36,

B =
µ0iN

2πr
,

while the radius of curvature of a charged particle in a magnetic field is given by Eq. 32-10

R =
mv

|q|B
.

We use the R to distinguish it from r. Combining,

R =
2πmv
µ0iN |q|

r,

so the two radii are directly proportional. This means

R/(11 cm) = (110 cm)/(125 cm),

so R = 9.7 cm.

P33-1 The field from one coil is given by Eq. 33-19

B =
µ0iR

2

2(R2 + z2)3/2
.

There are N turns in the coil, so we need a factor of N . There are two coils and we are interested
in the magnetic field at P , a distance R/2 from each coil. The magnetic field strength will be twice
the above expression but with z = R/2, so

B =
2µ0NiR

2

2(R2 + (R/2)2)3/2
=

8µ0Ni

(5)3/2R
.
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P33-2 (a) Change the limits of integration that lead to Eq. 33-12:

B =
µ0id

4π

∫ L

0

dz

(z2 + d2)3/2
,

=
µ0id

4π
z

(z2 + d2)1/2

∣∣∣∣L
0

,

=
µ0id

4π
L

(L2 + d2)1/2
.

(b) The angle φ in Eq. 33-11 would always be 0, so sinφ = 0, and therefore B = 0.

P33-3 This problem is the all important derivation of the Helmholtz coil properties.
(a) The magnetic field from one coil is

B1 =
µ0NiR

2

2(R2 + z2)3/2
.

The magnetic field from the other coil, located a distance s away, but for points measured from the
first coil, is

B2 =
µ0NiR

2

2(R2 + (z − s)2)3/2
.

The magnetic field on the axis between the coils is the sum,

B =
µ0NiR

2

2(R2 + z2)3/2
+

µ0NiR
2

2(R2 + (z − s)2)3/2
.

Take the derivative with respect to z and get

dB

dz
= − 3µ0NiR

2

2(R2 + z2)5/2
z − 3µ0NiR

2

2(R2 + (z − s)2)5/2
(z − s).

At z = s/2 this expression vanishes! We expect this by symmetry, because the magnetic field will
be strongest in the plane of either coil, so the mid-point should be a local minimum.

(b) Take the derivative again and

d2B

dz2
= − 3µ0NiR

2

2(R2 + z2)5/2
+

15µ0NiR
2

2(R2 + z2)5/2
z2

− 3µ0NiR
2

2(R2 + (z − s)2)5/2
+

15µ0NiR
2

2(R2 + (z − s)2)5/2
(z − s)2.

We could try and simplify this, but we don’t really want to; we instead want to set it equal to zero,
then let z = s/2, and then solve for s. The second derivative will equal zero when

−3(R2 + z2) + 15z2 − 3(R2 + (z − s)2) + 15(z − s)2 = 0,

and is z = s/2 this expression will simplify to

30(s/2)2 = 6(R2 + (s/2)2),
4(s/2)2 = R2,

s = R.
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P33-4 (a) Each of the side of the square is a straight wire segment of length a which contributes
a field strength of

B =
µ0i

4πr
a√

a2/4 + r2
,

where r is the distance to the point on the axis of the loop, so

r =
√
a2/4 + z2.

This field is not parallel to the z axis; the z component is Bz = B(a/2)/r. There are four of these
contributions. The off axis components cancel. Consequently, the field for the square is

B = 4
µ0i

4πr
a√

a2/4 + r2

a/2
r
,

=
µ0i

2πr2

a2√
a2/4 + r2

,

=
µ0i

2π(a2/4 + z2)
a2√

a2/2 + z2
,

=
4µ0i

π(a2 + 4z2)
a2

√
2a2 + 4z2

.

(b) When z = 0 this reduces to

B =
4µ0i

π(a2)
a2

√
2a2

=
4µ0i√
2πa

.

P33-5 (a) The polygon has n sides. A perpendicular bisector of each side can be drawn to the
center and has length x where x/a = cos(π/n). Each side has a length L = 2a sin(π/n). Each of the
side of the polygon is a straight wire segment which contributes a field strength of

B =
µ0i

4πx
L√

L2/4 + x2
,

This field is parallel to the z axis. There are n of these contributions. The off axis components
cancel. Consequently, the field for the polygon

B = n
µ0i

4πx
L√

L2/4 + x2
,

= n
µ0i

4π
2√

L2/4 + x2
tan(π/n),

= n
µ0i

2π
1
a

tan(π/n),

since (L/2)2 + x2 = a2.
(b) Evaluate:

lim
n→∞

n tan(π/n) = lim
n→∞

n sin(π/n) ≈ nπ/n = π.

Then the answer to part (a) simplifies to

B =
µ0i

2a
.
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P33-6 For a square loop of wire we have four finite length segments each contributing a term
which looks like Eq. 33-12, except that L is replaced by L/4 and d is replaced by L/8. Then at the
center,

B = 4
µ0i

4πL/8
L/4√

L2/64 + L2/64
=

16µ0i√
2πL

.

For a circular loop R = L/2π so

B =
µ0i

2R
=
πµ0

L
.

Since 16/
√

2π > π, the square wins. But only by some 7%!

P33-7 We want to use the differential expression in Eq. 33-11, except that the limits of integra-
tion are going to be different. We have four wire segments. From the top segment,

B1 =
µ0i

4π
d√

z2 + d2

∣∣∣∣3L/4
−L/4

,

=
µ0i

4πd

(
3L/4√

(3L/4)2 + d2
− −L/4√

(−L/4)2 + d2

)
.

For the top segment d = L/4, so this simplifies even further to

B1 =
µ0i

10πL

(√
2(3
√

5 + 5)
)
.

The bottom segment has the same integral, but d = 3L/4, so

B3 =
µ0i

30πL

(√
2(
√

5 + 5)
)
.

By symmetry, the contribution from the right hand side is the same as the bottom, so B2 = B3,
and the contribution from the left hand side is the same as that from the top, so B4 = B1. Adding
all four terms,

B =
2µ0i

30πL

(
3
√

2(3
√

5 + 5) +
√

2(
√

5 + 5)
)
,

=
2µ0i

3πL
(2
√

2 +
√

10).

P33-8 Assume a current ring has a radius r and a width dr, the charge on the ring is dq = 2πσr dr,
where σ = q/πR2. The current in the ring is di = ω dq/2π = ωσr dr. The ring contributes a field
dB = µ0 di/2r. Integrate over all the rings:

B =
∫ R

0

µ0ωσr dr/2r = µ0ωR/2 = µωq/2πR.

P33-9 B = µ0in and mv = qBr. Combine, and

i =
mv

µ0qrn
=

(5.11×105eV/c2)(0.046c)
(4π×10−7N/A2)e(0.023 m)(10000/m)

= 0.271 A.

P33-10 This shape is a triangle with area A = (4d)(3d)/2 = 6d2. The enclosed current is then

i = jA = (15 A/m2)6(0.23 m)2 = 4.76 A

The line integral is then
µ0i = 6.0×10−6T ·m.
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P33-11 Assume that B does vary as the picture implies. Then the line integral along the path
shown must be nonzero, since ~B ·~l on the right is not zero, while it is along the three other sides.
Hence

∮
~B · d~l is non zero, implying some current passes through the dotted path. But it doesn’t,

so ~B cannot have an abrupt change.

P33-12 (a) Sketch an Amperian loop which is a rectangle which enclosed N wires, has a vertical
sides with height h, and horizontal sides with length L. Then

∮
~B ·d~l = µ0Ni. Evaluate the integral

along the four sides. The vertical side contribute nothing, since ~B is perpendicular to ~h, and then
~B · ~h = 0. If the integral is performed in a counterclockwise direction (it must, since the sense
of integration was determined by assuming the current is positive), we get BL for each horizontal
section. Then

B =
µ0iN

2L
=

1
2
µ0in.

(b) As a→∞ then tan−1(a/2R)→ π/2. Then B → µ0i/2a. If we assume that i is made up of
several wires, each with current i0, then i/a = i0n.

P33-13 Apply Ampere’s law with an Amperian loop that is a circle centered on the center of
the wire. Then ∮

~B · d~s =
∮
B ds = B

∮
ds = 2πrB,

because ~B is tangent to the path and B is uniform along the path by symmetry. The current
enclosed is

ienc =
∫
j dA.

This integral is best done in polar coordinates, so dA = (dr)(r dθ), and then

ienc =
∫ r

0

∫ 2π

0

(j0r/a) rdr dθ,

= 2πj0/a
∫ r

0

r2dr,

=
2πj0
3a

r3.

When r = a the current enclosed is i, so

i =
2πj0a2

3
or j0 =

3i
2πa2

.

The magnetic field strength inside the wire is found by gluing together the two parts of Ampere’s
law,

2πrB = µ0
2πj0
3a

r3,

B =
µ0j0r

2

3a
,

=
µ0ir

2

2πa3
.
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P33-14 (a) According to Eq. 33-34, the magnetic field inside the wire without a hole has magnitude
B = µ0ir/2πR2 = µ0jr/2 and is directed radially. If we superimpose a second current to create the
hole, the additional field at the center of the hole is zero, so B = µ0jb/2. But the current in the
remaining wire is

i = jA = jπ(R2 − a2),

so
B =

µ0ib

2π(R2 − a2)
.
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E34-1 ΦB = ~B · ~A = (42×10−6T)(2.5 m2) cos(57◦) = 5.7×10−5Wb.

E34-2 |E| = |dΦB/dt| = AdB/dt = (π/4)(0.112 m)2(0.157 T/s) = 1.55 mV.

E34-3 (a) The magnitude of the emf induced in a loop is given by Eq. 34-4,

|E| = N

∣∣∣∣dΦB
dt

∣∣∣∣ ,
= N

∣∣(12 mWb/s2)t+ (7 mWb/s)
∣∣

There is only one loop, and we want to evaluate this expression for t = 2.0 s, so

|E| = (1)
∣∣(12 mWb/s2)(2.0 s) + (7 mWb/s)

∣∣ = 31 mV.

(b) This part isn’t harder. The magnetic flux through the loop is increasing when t = 2.0 s. The
induced current needs to flow in such a direction to create a second magnetic field to oppose this
increase. The original magnetic field is out of the page and we oppose the increase by pointing the
other way, so the second field will point into the page (inside the loop).

By the right hand rule this means the induced current is clockwise through the loop, or to the
left through the resistor.

E34-4 E = −dΦB/dt = −AdB/dt.
(a) E = −π(0.16 m)2(0.5 T)/(2 s) = −2.0×10−2V.
(b) E = −π(0.16 m)2(0.0 T)/(2 s) = 0.0×10−2V.
(c) E = −π(0.16 m)2(−0.5 T)/(4 s) = 1.0×10−2V.

E34-5 (a) R = ρL/A = (1.69×10−8Ω ·m)[(π)(0.104 m)]/[(π/4)(2.50×10−3m)2] = 1.12×10−3Ω.
(b) E = iR = (9.66 A)(1.12×10−3Ω) = 1.08×10−2V. The required dB/dt is then given by

dB

dt
=
E
A

= (1.08×10−2 V)/(π/4)(0.104 m)2 = 1.27 T/s.

E34-6 E = −A∆B/∆t = AB/∆t. The power is P = iE = E2/R. The energy dissipated is

E = P∆t =
E2∆t
R

=
A2B2

R∆t
.

E34-7 (a) We could re-derive the steps in the sample problem, or we could start with the end
result. We’ll start with the result,

E = NAµ0n

∣∣∣∣didt
∣∣∣∣ ,

except that we have gone ahead and used the derivative instead of the ∆.
The rate of change in the current is

di

dt
= (3.0 A/s) + (1.0 A/s2)t,

so the induced emf is

E = (130)(3.46×10−4m2)(4π×10−7Tm/A)(2.2×104/m)
(
(3.0A/s) + (2.0A/s2)t

)
,

= (3.73×10−3 V) + (2.48×10−3 V/s)t.

(b) When t = 2.0 s the induced emf is 8.69×10−3 V, so the induced current is

i = (8.69×10−3 V)/(0.15 Ω) = 5.8×10−2 A.
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E34-8 (a) i = E/R = NAdB/dt. Note that A refers to the area enclosed by the outer solenoid
where B is non-zero. This A is then the cross sectional area of the inner solenoid! Then

i =
1
R
NAµ0n

di

dt
=

(120)(π/4)(0.032 m)2(4π×10−7N/A2)(220×102/m)
(5.3 Ω)

(1.5 A)
(0.16 s)

= 4.7×10−3A.

E34-9 P = Ei = E2/R = (AdB/dt)2/(ρL/a), where A is the area of the loop and a is the cross
sectional area of the wire. But a = πd2/4 and A = L2/4π, so

P =
L3d2

64πρ

(
dB

dt

)2

=
(0.525 m)3(1.1×10−3m)2

64π(1.69×10−8Ω ·m)
(9.82×10−3T/s)2 = 4.97×10−6W.

E34-10 ΦB = BA = B(2.3 m)2/2. EB = −dΦB/dt = −AdB/dt, or

EB = − (2.3 m)2

2
[−(0.87 T/s)] = 2.30 V,

so E = (2.0 V) + (2.3 V) = 4.3 V.

E34-11 (a) The induced emf, as a function of time, is given by Eq. 34-5, E(t) = −dΦB(t)/dt
This emf drives a current through the loop which obeys E(t) = i(t)R Combining,

i(t) = − 1
R

dΦB(t)
dt

.

Since the current is defined by i = dq/dt we can write

dq(t)
dt

= − 1
R

dΦB(t)
dt

.

Factor out the dt from both sides, and then integrate:

dq(t) = − 1
R
dΦB(t),∫

dq(t) = −
∫

1
R
dΦB(t),

q(t)− q(0) =
1
R

(ΦB(0)− ΦB(t))

(b) No. The induced current could have increased from zero to some positive value, then decreased
to zero and became negative, so that the net charge to flow through the resistor was zero. This
would be like sloshing the charge back and forth through the loop.

E34-12 ∆PhiB = 2ΦB = 2NBA. Then the charge to flow through is

q = 2(125)(1.57 T)(12.2×10−4m2)/(13.3 Ω) = 3.60×10−2C.

E34-13 The part above the long straight wire (a distance b−a above it) cancels out contributions
below the wire (a distance b− a beneath it). The flux through the loop is then

ΦB =
∫ a

2a−b

µ0i

2πr
b dr =

µ0ib

2π
ln
(

a

2a− b

)
.
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The emf in the loop is then

E = −dΦB
dt

=
µ0b

2π
ln
(

a

2a− b

)
[2(4.5 A/s2)t− (10 A/s)].

Evaluating,

E =
4π×10−7N/A2(0.16 m)

2π
ln
(

(0.12 m)
2(0.12 m)− (0.16 m)

)
[2(4.5 A/s2)(3.0 s)−(10 A/s)] = 2.20×10−7V.

E34-14 Use Eq. 34-6: E = BDv = (55×10−6T)(1.10 m)(25 m/s) = 1.5×10−3V.

E34-15 If the angle doesn’t vary then the flux, given by

Φ = ~B · ~A

is constant, so there is no emf.

E34-16 (a) Use Eq. 34-6: E = BDv = (1.18T)(0.108 m)(4.86 m/s) = 0.619 V.
(b) i = (0.619 V)/(0.415 Ω) = 1.49 A.
(c) P = (0.619 V)(1.49 A) = 0.922 W.
(d) F = iLB = (1.49 A)(0.108 m)(1.18T) = 0.190 N.
(e) P = Fv = (0.190 V)(4.86 m/s) = 0.923 W.

E34-17 The magnetic field is out of the page, and the current through the rod is down. Then Eq.
32-26 ~F = i~L× ~B shows that the direction of the magnetic force is to the right; furthermore, since
everything is perpendicular to everything else, we can get rid of the vector nature of the problem
and write F = iLB. Newton’s second law gives F = ma, and the acceleration of an object from rest
results in a velocity given by v = at. Combining,

v(t) =
iLB

m
t.

E34-18 (b) The rod will accelerate as long as there is a net force on it. This net force comes from
F = iLB. The current is given by iR = E −BLv, so as v increases i decreases. When i = 0 the rod
stops accelerating and assumes a terminal velocity.

(a) E = BLv will give the terminal velocity. In this case, v = E/BL.

E34-19

E34-20 The acceleration is a = Rω2; since E = BωR2/2, we can find

a = 4E2/B2R3 = 4(1.4 V)2/(1.2 T)2(5.3×10−2m)3 = 3.7×104m/s2.

E34-21 We will use the results of Exercise 11 that were worked out above. All we need to do is
find the initial flux; flipping the coil up-side-down will simply change the sign of the flux.

So
ΦB(0) = ~B · ~A = (59µT)(π)(0.13 m)2 sin(20◦) = 1.1×10−6 Wb.
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Then using the results of Exercise 11 we have

q =
N

R
(ΦB(0)− ΦB(t)),

=
950
85 Ω

((1.1×10−6 Wb)− (−1.1×10−6 Wb)),

= 2.5×10−5 C.

E34-22 (a) The flux through the loop is

ΦB =
∫ vt

0

dx

∫ a+L

a

dr
µ0i

2πr
=
µ0ivt

2π
ln
a+ L

a
.

The emf is then
E = −dΦB

dt
= −µ0iv

2π
ln
a+ L

a
.

Putting in the numbers,

E =
(4π×10−7N/A2)(110 A)(4.86 m/s)

2π
ln

(0.0102 m) + (0.0983 m)
(0.0102 m)

= 2.53×10−4V.

(b) i = E/R = (2.53×10−4V)/(0.415 Ω) = 6.10×10−4A.
(c) P = i2R = (6.10×10−4A)2(0.415 Ω) = 1.54×10−7W.
(d) F =

∫
Bil dl, or

F = il

∫ a+L

a

dr
µ0i

2πr
= il

µ0i

2π
ln
a+ L

a
.

Putting in the numbers,

F = (6.10×10−4A)
(4π×10−7N/A2)(110 A)

2π
ln

(0.0102 m) + (0.0983 m)
(0.0102 m)

= 3.17×10−8N.

(e) P = Fv = (3.17×10−8N)(4.86 m/s) = 1.54×10−7W.

E34-23 (a) Starting from the beginning, Eq. 33-13 gives

B =
µ0i

2πy
.

The flux through the loop is given by

ΦB =
∫
~B · d~A,

but since the magnetic field from the long straight wire goes through the loop perpendicular to the
plane of the loop this expression simplifies to a scalar integral. The loop is a rectangular, so use
dA = dx dy, and let x be parallel to the long straight wire.

Combining the above,

ΦB =
∫ D+b

D

∫ a

0

(
µ0i

2πy

)
dx dy,

=
µ0i

2π
a

∫ D+b

D

dy

y
,

=
µ0i

2π
a ln

(
D + b

D

)
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(b) The flux through the loop is a function of the distance D from the wire. If the loop moves
away from the wire at a constant speed v, then the distance D varies as vt. The induced emf is then

E = −dΦB
dt

,

=
µ0i

2π
a

b

t(vt+ b)
.

The current will be this emf divided by the resistance R. The “back-of-the-book” answer is somewhat
different; the answer is expressed in terms of D instead if t. The two answers are otherwise identical.

E34-24 (a) The area of the triangle is A = x2 tan θ/2. In this case x = vt, so

ΦB = B(vt)2 tan θ/2,

and then
E = 2Bv2t tan θ/2,

(b) t = E/2Bv2 tan θ/2, so

t =
(56.8 V)

2(0.352 T)(5.21 m/s)2 tan(55◦)
= 2.08 s.

E34-25 E = NBAω, so

ω =
(24 V)

(97)(0.33 T)(0.0190 m2)
= 39.4 rad/s.

That’s 6.3 rev/second.

E34-26 (a) The frequency of the emf is the same as the frequency of rotation, f .
(b) The flux changes by BA = Bπa2 during a half a revolution. This is a sinusoidal change, so

the amplitude of the sinusoidal variation in the emf is E = ΦBω/2. Then E = Bπ2a2f .

E34-27 We can use Eq. 34-10; the emf is E = BAω sinωt, This will be a maximum when
sinωt = 1. The angular frequency, ω is equal to ω = (1000)(2π)/(60) rad/s = 105 rad/s The
maximum emf is then

E = (3.5 T) [(100)(0.5 m)(0.3 m)] (105 rad/s) = 5.5 kV.

E34-28 (a) The amplitude of the emf is E = BAω, so

A = E/2πfB = (150 V)/2π(60/s)(0.50 T) = 0.798m2.

(b) Divide the previous result by 100. A = 79.8 cm2.

E34-29 dΦB/dt = AdB/dt = A(−8.50 mT/s).
(a) For this path∮

~E · d~s = −dΦB/dt = −− π(0.212 m)2(−8.50 mT/s) = −1.20 mV.

(b) For this path∮
~E · d~s = −dΦB/dt = −− π(0.323 m)2(−8.50 mT/s) = −2.79 mV.
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(c) For this path∮
~E · d~s = −dΦB/dt = −− π(0.323 m)2(−8.50 mT/s)− π(0.323 m)2(−8.50 mT/s) = 1.59 mV.

E34-30 dΦB/dt = AdB/dt = A(−6.51 mT/s), while
∮
~E · d~s = 2πrE.

(a) The path of integration is inside the solenoid, so

E =
−πr2(−6.51 mT/s)

2πr
=

(0.022 m)(−6.51 mT/s)
2

= 7.16×10−5V/m.

(b) The path of integration is outside the solenoid, so

E =
−πr2(−6.51 mT/s)

2πR
=

(0.063 m)2(−6.51 mT/s)
2(0.082 m)

= 1.58×10−4V/m

E34-31 The induced electric field can be found from applying Eq. 34-13,∮
~E · d~s = −dΦB

dt
.

We start with the left hand side of this expression. The problem has cylindrical symmetry, so the
induced electric field lines should be circles centered on the axis of the cylindrical volume. If we
choose the path of integration to lie along an electric field line, then the electric field ~E will be
parallel to d~s, and E will be uniform along this path, so∮

~E · d~s =
∮
E ds = E

∮
ds = 2πrE,

where r is the radius of the circular path.
Now for the right hand side. The flux is contained in the path of integration, so ΦB = Bπr2.

All of the time dependence of the flux is contained in B, so we can immediately write

2πrE = −πr2 dB

dt
or E = −r

2
dB

dt
.

What does the negative sign mean? The path of integration is chosen so that if our right hand fingers
curl around the path our thumb gives the direction of the magnetic field which cuts through the
path. Since the field points into the page a positive electric field would have a clockwise orientation.
Since B is decreasing the derivative is negative, but we get another negative from the equation
above, so the electric field has a positive direction.

Now for the magnitude.

E = (4.82×10−2 m)(10.7×10−3 T/s)/2 = 2.58×10−4 N/C.

The acceleration of the electron at either a or c then has magnitude

a = Eq/m = (2.58×10−4 N/C)(1.60×10−19 C)/(9.11×10−31 kg) = 4.53×107m/s2.

P34-1 The induced current is given by i = E/R. The resistance of the loop is given by R = ρL/A,
where A is the cross sectional area. Combining, and writing in terms of the radius of the wire, we
have

i =
πr2E
ρL

.
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The length of the wire is related to the radius of the wire because we have a fixed mass. The total
volume of the wire is πr2L, and this is related to the mass and density by m = δπr2L. Eliminating
r we have

i =
mE
ρδL2

.

The length of the wire loop is the same as the circumference, which is related to the radius R of the
loop by L = 2πR. The emf is related to the changing flux by E = −dΦB/dt, but if the shape of the
loop is fixed this becomes E = −AdB/dt. Combining all of this,

i =
mA

ρδ(2πR)2

dB

dt
.

We dropped the negative sign because we are only interested in absolute values here.
Now A = πR2, so this expression can also be written as

i =
mπR2

ρδ(2πR)2

dB

dt
=

m

4πρδ
dB

dt
.

P34-2 For the lower surface ~B · ~A = (76×10−3T)(π/2)(0.037 m)2 cos(62◦) = 7.67×10−5Wb. For
the upper surface ~B · ~A = (76×10−3T)(π/2)(0.037 m)2 cos(28◦) = 1.44×10−4Wb.. The induced emf
is then

E = (7.67×10−5Wb + 1.44×10−4Wb)/(4.5×10−3s) = 4.9×10−2V.

P34-3 (a) We are only interested in the portion of the ring in the yz plane. Then E = (3.32×
10−3T/s)(π/4)(0.104 m)2 = 2.82×10−5V.

(b) From c to b. Point your right thumb along −x to oppose the increasing ~B field. Your right
fingers will curl from c to b.

P34-4 E ∝ NA, but A = πr2 and N2πr = L, so E ∝ 1/N . This means use only one loop to
maximize the emf.

P34-5 This is a integral best performed in rectangular coordinates, then dA = (dx)(dy). The
magnetic field is perpendicular to the surface area, so ~B · d~A = B dA. The flux is then

ΦB =
∫
~B · d~A =

∫
B dA,

=
∫ a

0

∫ a

0

(4 T/m · s2)t2y dy dx,

= (4 T/m · s2)t2
(

1
2
a2

)
a,

= (2 T/m · s2)a3t2.

But a = 2.0 cm, so this becomes

ΦB = (2 T/m · s2)(0.02 m)3t2 = (1.6×10−5Wb/s2)t2.

The emf around the square is given by

E = −dΦB
dt

= −(3.2×10−5Wb/s2)t,

and at t = 2.5 s this is −8.0×10−5V. Since the magnetic field is directed out of the page, a positive
emf would be counterclockwise (hold your right thumb in the direction of the magnetic field and
your fingers will give a counter clockwise sense around the loop). But the answer was negative, so
the emf must be clockwise.
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P34-6 (a) Far from the plane of the large loop we can approximate the large loop as a dipole, and
then

B =
µ0iπR

2

2x3
.

The flux through the small loop is then

ΦB = πr2B =
µ0iπ

2r2R2

2x3
.

(b) E = −dΦB/dt, so

E =
3µ0iπ

2r2R2

2x4
v.

(c) Anti-clockwise when viewed from above.

P34-7 The magnetic field is perpendicular to the surface area, so ~B · d~A = B dA. The flux is
then

ΦB =
∫
~B · d~A =

∫
B dA = BA,

since the magnetic field is uniform. The area is A = πr2, where r is the radius of the loop. The
induced emf is

E = −dΦB
dt

= −2πrB
dr

dt
.

It is given that B = 0.785 T, r = 1.23 m, and dr/dt = −7.50×10−2m/s. The negative sign indicate
a decreasing radius. Then

E = −2π(1.23 m)(0.785 T)(−7.50×10−2m/s) = 0.455 V.

P34-8 (a) dΦB/dt = B dA/dt, but dA/dt is ∆A/∆t, where ∆A is the area swept out during one
rotation and ∆t = 1/f . But the area swept out is πR2, so

|E| = dΦB
dt

= πfBR2.

(b) If the output current is i then the power is P = Ei. But P = τω = τ2πf , so

τ =
P

2πf
= iBR2/2.

P34-9 (a) E = −dΦB/dt, and ΦB = ~B · ~A,so

E = BLv cos θ.

The component of the force of gravity on the rod which pulls it down the incline is FG = mg sin θ.
The component of the magnetic force on the rod which pulls it up the incline is FB = BiL cos θ.
Equating,

BiL cos θ = mg sin θ,

and since E = iR,

v =
E

BL cos θ
=

mgR sin θ
B2L2 cos2 θ

.

(b) P = iE = E2/R = B2L2v2 cos2 θ/R = mgv sin θ. This is identical to the rate of change of
gravitational potential energy.
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P34-10 Let the cross section of the wire be a.
(a) R = ρL/a = ρ(rθ + 2r)/a; with numbers,

R = (3.4×10−3Ω)(2 + θ).

(b) ΦB = Bθr2/2; with numbers,

ΦB = (4.32×10−3Wb)θ.

(c) i = E/R = Bωr2/2R = Baωr/2ρ(θ + 2), or

i =
Baαtr

ρ(αt2 + 4)
.

Take the derivative and set it equal to zero,

0 =
4− at2

(αt2 + 4)2
,

so at2 = 4, or θ = 1
2at

2 = 2 rad.
(d) ω =

√
2αθ, so

i =
(0.15 T)(1.2×10−6m2)

√
2(12 rad/s2)(2 rad)(0.24 m)

(1.7×10−8Ω ·m)(6 rad)
= 2.2 A.

P34-11 It does say approximate, so we will be making some rather bold assumptions here. First
we will find an expression for the emf. Since B is constant, the emf must be caused by a change in
the area; in this case a shift in position. The small square where B 6= 0 has a width a and sweeps
around the disk with a speed rω. An approximation for the emf is then E = Barω. This emf causes
a current. We don’t know exactly where the current flows, but we can reasonably assume that it
occurs near the location of the magnetic field. Let us assume that it is constrained to that region of
the disk. The resistance of this portion of the disk is the approximately

R =
1
σ

L

A
=

1
σ

a

at
=

1
σt
,

where we have assumed that the current is flowing radially when defining the cross sectional area of
the “resistor”. The induced current is then (on the order of)

E
R

=
Barω

1/(σt)
= Barωσt.

This current experiences a breaking force according to F = BIl, so

F = B2a2rωσt,

where l is the length through which the current flows, which is a.
Finally we can find the torque from τ = rF , and

τ = B2a2r2ωσt.
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P34-12 The induced electric field in the ring is given by Eq. 34-11: 2πRE = |dΦB/dt|. This
electric field will result in a force on the free charge carries (electrons?), given by F = Ee. The
acceleration of the electrons is then a = Ee/me. Then

a =
e

2πRme

dΦB
dt

.

Integrate both sides with respect to time to find the speed of the electrons.∫
a dt =

∫
e

2πRme

dΦB
dt

dt,

v =
e

2πRme

∫
dΦB
,

=
e

2πRme
∆ΦB .

The current density is given by j = nev, and the current by iA = iπa2. Combining,

i =
ne2a2

2Rme
∆PhiB .

Actually, it should be pointed out that ∆PhiB refers to the change in flux from external sources. The
current induced in the wire will produce a flux which will exactly offset ∆PhiB so that the net flux
through the superconducting ring is fixed at the value present when the ring became superconducting.

P34-13 Assume that E does vary as the picture implies. Then the line integral along the path
shown must be nonzero, since ~E ·~l on the right is not zero, while it is along the three other sides.
Hence

∮
~E · d~l is non zero, implying a change in the magnetic flux through the dotted path. But it

doesn’t, so ~E cannot have an abrupt change.

P34-14 The electric field a distance r from the center is given by

E =
πr2dB/dT

2πr
=
r

2
dB

dt
.

This field is directed perpendicular to the radial lines.
Define h to be the distance from the center of the circle to the center of the rod, and evaluate

E =
∫
~E · d~s,

E =
dB

dt

∫
r

2
h

r
dx,

=
dB

dt

L

2
h.

But h2 = R2 − (L/2)2, so

E =
dB

dt

L

2

√
R2 − (L/2)2.

P34-15 (a) ΦB = πr2Bav, so

E =
E

2πr
=

(0.32 m)
2

2(0.28 T)(120π) = 34 V/m.

(b) a = F/m = Eq/m = (33.8 V/m)(1.6×10−19C)/(9.1×10−31kg) = 6.0×1012m/s2.
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E35-1 If the Earth’s magnetic dipole moment were produced by a single current around the core,
then that current would be

i =
µ

A
=

(8.0× 1022J/T)
π(3.5× 106m)2

= 2.1×109 A

E35-2 (a) i = µ/A = (2.33 A ·m2)/(160)π(0.0193 m)2 = 12.4 A.
(b) τ = µB = (2.33 A ·m2)(0.0346 T) = 8.06×10−2N ·m.

E35-3 (a) Using the right hand rule a clockwise current would generate a magnetic moment which
would be into the page. Both currents are clockwise, so add the moments:

µ = (7.00 A)π(0.20 m)2 + (7.00 A)π(0.30 m)2 = 2.86 A ·m2.

(b) Reversing the current reverses the moment, so

µ = (7.00 A)π(0.20 m)2 − (7.00 A)π(0.30 m)2 = −1.10 A ·m2.

E35-4 (a) µ = iA = (2.58 A)π(0.16 m)2 = 0.207 A ·m2.
(b) τ = µB sin θ = (0.207 A ·m2)(1.20 T) sin(41◦) = 0.163 N ·m.

E35-5 (a) The result from Problem 33-4 for a square loop of wire was

B(z) =
4µ0ia

2

π(4z2 + a2)(4z2 + 2a2)1/2
.

For z much, much larger than a we can ignore any a terms which are added to or subtracted from
z terms. This means that

4z2 + a2 → 4z2 and (4z2 + 2a2)1/2 → 2z,

but we can’t ignore the a2 in the numerator.
The expression for B then simplifies to

B(z) =
µ0ia

2

2πz3
,

which certainly looks like Eq. 35-4.
(b) We can rearrange this expression and get

B(z) =
µ0

2πz3
ia2,

where it is rather evident that ia2 must correspond to ~µ, the dipole moment, in Eq. 35-4. So that
must be the answer.

E35-6 µ = iA = (0.2 A)π(0.08 m)2 = 4.02×10−3A ·m2; ~µ = µn̂.
(a) For the torque,

~τ = ~µ× ~B = (−9.65×10−4N ·m)̂i + (−7.24×10−4N ·m)̂j + (8.08×10−4N ·m)k̂.

(b) For the magnetic potential energy,

U = ~µ · ~B = µ[(0.60)(0.25 T)] = 0.603×10−3J.
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E35-7 µ = iA = iπ(a2 + b2/2) = iπ(a2 + b2)/2.

E35-8 If the distance to P is very large compared to a or b we can write the Law of Biot and
Savart as

~B =
µ0i

4π
~s×~r
r3

.

~s is perpendicular to ~r for the left and right sides, so the left side contributes

B1 =
µ0i

4π
b

(x+ a/2)2
,

and the right side contributes

B3 = −µ0i

4π
b

(x− a/2)2
.

The top and bottom sides each contribute an equal amount

B2 = B4 =
µ0i

4π
a sin θ

x2 + b2/4
≈ µ0i

4π
a(b/2)
x3

.

Add the four terms, expand the denominators, and keep only terms in x3,

B = −µ0i

4π
ab

x3
= −µ0

4π
µ

x3
.

The negative sign indicates that it is into the page.

E35-9 (a) The electric field at this distance from the proton is

E =
1

4π(8.85×10−12C2/N ·m2)
(1.60×10−19C)

(5.29×10−11m)2
= 5.14×1011N/C.

(b) The magnetic field at this from the proton is given by the dipole approximation,

B(z) =
µ0µ

2πz3
,

=
(4π×10−7N/A2)(1.41×10−26A/m2)

2π(5.29×10−11m)3
,

= 1.90×10−2 T

E35-10 1.50 g of water has (2)(6.02×1023)(1.5)/(18) = 1.00×1023 hydrogen nuclei. If all are
aligned the net magnetic moment would be µ = (1.00×1023)(1.41×10−26J/T) = 1.41×10−3J/T.
The field strength is then

B =
µ0

4π
µ

x3
= (1.00×10−7N/A2)

(1.41×10−3J/T)
(5.33 m)3

= 9.3×10−13T.

E35-11 (a) There is effectively a current of i = fq = qω/2π. The dipole moment is then µ = iA =
(qω/2π)(πr2) = 1

2qωr
2.

(b) The rotational inertia of the ring is mr2 so L = Iω = mr2ω. Then

µ

L
=

(1/2)qωr2

mr2ω
=

q

2m
.
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E35-12 The mass of the bar is

m = ρV = (7.87 g/cm3)(4.86 cm)(1.31 cm2) = 50.1 g.

The number of atoms in the bar is

N = (6.02×1023)(50.1 g)/(55.8 g) = 5.41×1023.

The dipole moment of the bar is then

µ = (5.41×1023)(2.22)(9.27×10−24J/T) = 11.6 J/T.

(b) The torque on the magnet is τ = (11.6 J/T)(1.53 T) = 17.7 N ·m.

E35-13 The magnetic dipole moment is given by µ = MV , Eq. 35-13. Then

µ = (5, 300 A/m)(0.048 m)π(0.0055 m)2 = 0.024 A ·m2.

E35-14 (a) The original field is B0 = µ0in. The field will increase to B = κmB0, so the increase is

∆B = (κ1 − 1)µ0in = (3.3×10−4)(4π×10−7N/A2)(1.3 A)(1600/m) = 8.6×10−7T.

(b) M = (κ1 − 1)B0/µ0 = (κ1 − 1)in = (3.3×10−4)(1.3 A)(1600/m) = 0.69 A/m.

E35-15 The energy to flip the dipoles is given by U = 2µB. The temperature is then

T =
2µB
3k/2

=
4(1.2×10−23J/T)(0.5 T)

3(1.38×10−23J/K)
= 0.58 K.

E35-16 The Curie temperature of iron is 770◦C, which is 750◦C higher than the surface temper-
ature. This occurs at a depth of (750◦C)/(30 C◦/km) = 25 km.

E35-17 (a) Look at the figure. At 50% (which is 0.5 on the vertical axis), the curve is at
B0/T ≈ 0.55 T/K. Since T = 300 K, we have B0 ≈ 165 T.

(b) Same figure, but now look at the 90% mark. B0/T ≈ 1.60 T/K, so B0 ≈ 480 T.
(c) Good question. I think both fields are far beyond our current abilities.

E35-18 (a) Look at the figure. At 50% (which is 0.5 on the vertical axis), the curve is at B0/T ≈
0.55 T/K. Since B0 = 1.8 T, we have T ≈ (1.8 T)/(0.55 T/K) = 3.3 K.

(b) Same figure, but now look at the 90% mark. B0/T ≈ 1.60 T/K, so T ≈ (1.8 T)/(1.60 T/K) =
1.1 K.

E35-19 Since (0.5 T)/(10 K) = 0.05 T/K, and all higher temperatures have lower values of the
ratio, and this puts all points in the region near where Curie’s Law (the straight line) is valid, then
the answer is yes.

E35-20 Using Eq. 35-19,

µn =
VM

N
=
MrM

Aρ
=

(108g/mol)(511×103A/m)
(10490 kg/m3)(6.02×1023/mol)

= 8.74×10−21A/m2
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E35-21 (a) B = µ0µ/2z3, so

B =
(4π×10−7N/A2)(1.5×10−23J/T)

2(10×10−9m)3
= 9.4×10−6T.

(b) U = 2µB = 2(1.5×10−23J/T)(9.4×10−6T) = 2.82×10−28J.

E35-22 ΦB = (43×10−6T)(295, 000×106m2) = 1.3×107Wb.

E35-23 (a) We’ll assume, however, that all of the iron atoms are perfectly aligned. Then the
dipole moment of the earth will be related to the dipole moment of one atom by

µEarth = NµFe,

where N is the number of iron atoms in the magnetized sphere. If mA is the relative atomic mass
of iron, then the total mass is

m =
NmA

A
=
mA

A

µEarth

µFe
,

where A is Avogadro’s number. Next, the volume of a sphere of mass m is

V =
m

ρ
=
mA

ρA

µEarth

µFe
,

where ρ is the density.
And finally, the radius of a sphere with this volume would be

r =
(

3V
4π

)1/3

=
(

3µEarthmA

4πρµFeA

)1/3

.

Now we find the radius by substituting in the known values,

r =

(
3(8.0×1022J/T)(56 g/mol)

4π(14×106g/m3)(2.1×10−23J/T)(6.0×1023/mol)

)1/3

= 1.8×105m.

(b) The fractional volume is the cube of the fractional radius, so the answer is

(1.8×105 m/6.4×106)3 = 2.2×10−5.

E35-24 (a) At magnetic equator Lm = 0, so

B =
µ0µ

4πr3
=

(1.00×10−7N/A2)(8.0×1022J/T)
(6.37×106m)3

= 31µT.

There is no vertical component, so the inclination is zero.
(b) Here Lm = 60◦, so

B =
µ0µ

4πr3

√
1 + 3 sin2 Lm =

(1.00×10−7N/A2)(8.0×1022J/T)
(6.37×106m)3

√
1 + 3 sin2(60◦) = 56µT.

The inclination is given by

arctan(Bv/Bh) = arctan(2 tanLm) = 74◦.

(c) At magnetic north pole Lm = 90◦, so

B =
µ0µ

2πr3
=

2(1.00×10−7N/A2)(8.0×1022J/T)
(6.37×106m)3

= 62µT.

There is no horizontal component, so the inclination is 90◦.
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E35-25 This problem is effectively solving 1/r3 = 1/2 for r measured in Earth radii. Then
r = 1.26rE, and the altitude above the Earth is (0.26)(6.37×106m) = 1.66×106m.

E35-26 The radial distance from the center is r = (6.37×106m) − (2900×103m) = 3.47×106m.
The field strength is

B =
µ0µ

2πr3
=

2(1.00×10−7N/A2)(8.0×1022J/T)
(3.47×106m)3

= 380µT.

E35-27 Here Lm = 90◦ − 11.5◦ = 78.5◦, so

B =
µ0µ

4πr3

√
1 + 3 sin2 Lm =

(1.00×10−7N/A2)(8.0×1022J/T)
(6.37×106m)3

√
1 + 3 sin2(78.5◦) = 61µT.

The inclination is given by

arctan(Bv/Bh) = arctan(2 tanLm) = 84◦.

E35-28 The flux out the “other” end is (1.6×10−3T)π(0.13 m)2 = 85µWb. The net flux through
the surface is zero, so the flux through the curved surface is 0− (85µWb)− (−25µWb) = −60µWb..
The negative indicates inward.

E35-29 The total magnetic flux through a closed surface is zero. There is inward flux on faces
one, three, and five for a total of -9 Wb. There is outward flux on faces two and four for a total of
+6 Wb. The difference is +3 Wb; consequently the outward flux on the sixth face must be +3 Wb.

E35-30 The stable arrangements are (a) and (c). The torque in each case is zero.

E35-31 The field on the x axis between the wires is

B =
µ0i

2π

(
1

2r + x
+

1
2r − x

)
.

Since
∮
~B · d~A = 0, we can assume the flux through the curved surface is equal to the flux through

the xz plane within the cylinder. This flux is

ΦB = L

∫ r

−r

[
µ0i

2π

(
1

2r + x
+

1
2r − x

)]
dx,

= L
µ0i

2π

(
ln

3r
r
− ln

r

3r

)
,

= L
µ0i

π
ln 3.

P35-1 We can imagine the rotating disk as being composed of a number of rotating rings of
radius r, width dr, and circumference 2πr. The surface charge density on the disk is σ = q/πR2,
and consequently the (differential) charge on any ring is

dq = σ(2πr)(dr) =
2qr
R2

dr

The rings “rotate” with angular frequency ω, or period T = 2π/ω. The effective (differential) current
for each ring is then

di =
dq

T
=
qrω

πR2
dr.
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Each ring contributes to the magnetic moment, and we can glue all of this together as

µ =
∫
dµ,

=
∫
πr2 di,

=
∫ R

0

qr3ω

R2
dr,

=
qR2ω

4
.

P35-2 (a) The sphere can be sliced into disks. The disks can be sliced into rings. Each ring has
some charge qi, radius ri, and mass mi; the period of rotation for a ring is T = 2π/ω, so the current
in the ring is qi/T = ωqi/2π. The magnetic moment is

µi = (ωqi/2π)πr2
i = ωqir

2
i /2.

Note that this is closely related to the expression for angular momentum of a ring: li = ωmir
2
i .

Equating,
µi = qili/2mi.

If both mass density and charge density are uniform then we can write qi/mi = q/m,

µ =
∫
dµ = (q/2m)

∫
dl = qL/2m

For a solid sphere L = ωI = 2ωmR2/5, so

µ = qωR2/5.

(b) See part (a)

P35-3 (a) The orbital speed is given by K = mv2/2. The orbital radius is given by mv = qBr, or
r = mv/qB. The frequency of revolution is f = v/2πr. The effective current is i = qf . Combining
all of the above to find the dipole moment,

µ = iA = q
v

2πr
πr2 = q

vr

2
= q

mv2

2qB
=
K

B
.

(b) Since q and m cancel out of the above expression the answer is the same!
(c) Work it out:

M =
µ

V
=

(5.28×1021/m3)(6.21×10−20 J)
(1.18 T)

+
(5.28×1021/m3)(7.58×10−21 J)

(1.18 T)
= 312 A/m.

P35-4 (b) Point the thumb or your right hand to the right. Your fingers curl in the direction of
the current in the wire loop.

(c) In the vicinity of the wire of the loop ~B has a component which is directed radially outward.
Then ~B× d~s has a component directed to the left. Hence, the net force is directed to the left.

P35-5 (b) Point the thumb or your right hand to the left. Your fingers curl in the direction of the
current in the wire loop.

(c) In the vicinity of the wire of the loop ~B has a component which is directed radially outward.
Then ~B× d~s has a component directed to the right. Hence, the net force is directed to the right.
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P35-6 (a) Let x = µB/kT . Adopt the convention that N+ refers to the atoms which have parallel
alignment and N− those which are anti-parallel. Then N+ +N− = N , so

N+ = Nex/(ex + e−x),

and
N− = Ne−x/(ex + e−x),

Note that the denominators are necessary so that N+ +N− = N . Finally,

M = µ(N+ −N−) = µN
ex − e−x

ex + e−x
.

(b) If µB � kT then x is very small and e±x ≈ 1± x. The above expression reduces to

M = µN
(1 + x)− (1− x)
(1 + x) + (1− x)

= µNx =
µ2B

kT
.

(c) If µB � kT then x is very large and e±x →∞ while e−x → 0. The above expression reduces
to

N = µN.

P35-7 (a) Centripetal acceleration is given by a = rω2. Then

a− a0 = r(ω0 + ∆ω)2 − rω2
0 ,

= 2rω0∆ω + r(∆ω0)2,

≈ 2rω0∆ω.

(b) The change in centripetal acceleration is caused by the additional magnetic force, which has
magnitude FB = qvB = erωB. Then

∆ω =
a− a0

2rω0
=
eB

2m
.

Note that we boldly canceled ω against ω0 in this last expression; we are assuming that ∆ω is small,
and for these problems it is.

P35-8 (a) i = µ/A = (8.0×1022J/T)/π(6.37×106m)2 = 6.3×108A.
(b) Far enough away both fields act like perfect dipoles, and can then cancel.
(c) Close enough neither field acts like a perfect dipole and the fields will not cancel.

P35-9 (a) B =
√
Bh

2 +Bv
2, so

B =
µ0µ

4πr3

√
cos2 Lm + 4 sin2 Lm =

µ0µ

4πr3

√
1 + 3 sin2 Lm.

(b) tanφi = Bv/Bh = 2 sinLm/ cosLm = 2 tanLm.
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E36-1 The important relationship is Eq. 36-4, written as

ΦB =
iL

N
=

(5.0 mA)(8.0 mH)
(400)

= 1.0×10−7Wb

E36-2 (a) Φ = (34)(2.62×10−3T)π(0.103 m)2 = 2.97×10−3Wb.
(b) L = Φ/i = (2.97×10−3Wb)/(3.77 A) = 7.88×10−4H.

E36-3 n = 1/d, where d is the diameter of the wire. Then

L

l
= µ0n

2A =
µ0A

d2
=

(4π×10−7H/m)(π/4)(4.10×10−2m)2

(2.52×10−3m)2
= 2.61×10−4H/m.

E36-4 (a) The emf supports the current, so the current must be decreasing.
(b) L = E/(di/dt) = (17 V)/(25×103A/s) = 6.8×10−4H.

E36-5 (a) Eq. 36-1 can be used to find the inductance of the coil.

L =
EL
di/dt

=
(3.0 mV)
(5.0 A/s)

= 6.0×10−4H.

(b) Eq. 36-4 can then be used to find the number of turns in the coil.

N =
iL

ΦB
=

(8.0 A)(6.0×10−4H)
(40µWb)

= 120

E36-6 Use the equation between Eqs. 36-9 and 36-10.

ΦB =
(4π×10−7H/m)(0.81 A)(536)(5.2×10−2m)

2π
ln

(5.2×10−2m) + (15.3×10−2m)
(15.3×10−2m)

,

= 1.32×10−6Wb.

E36-7 L = κmµ0n
2Al = κmµ0N

2A/l, or

L = (968)(4π×10−7H/m)(1870)2(π/4)(5.45×10−2m)2/(1.26 m) = 7.88 H.

E36-8 In each case apply E = L∆i/∆t.
(a) E = (4.6 H)(7 A)/(2×10−3s) = 1.6×104V.
(b) E = (4.6 H)(2 A)/(3×10−3s) = 3.1×103V.
(c) E = (4.6 H)(5 A)/(1×10−3s) = 2.3×104V.

E36-9 (a) If two inductors are connected in parallel then the current through each inductor will
add to the total current through the circuit, i = i1 + i2, Take the derivative of the current with
respect to time and then di/dt = di1/dt+ di2/dt,

The potential difference across each inductor is the same, so if we divide by E and apply we get

di/dt

E
=
di1/dt

E
+
di2/dt

E
,

But
di/dt

E
=

1
L
,
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so the previous expression can also be written as

1
Leq

=
1
L1

+
1
L2
.

(b) If the inductors are close enough together then the magnetic field from one coil will induce
currents in the other coil. Then we will need to consider mutual induction effects, but that is a topic
not covered in this text.

E36-10 (a) If two inductors are connected in series then the emf across each inductor will add to
the total emf across both, E = E1 + E2,

Then the current through each inductor is the same, so if we divide by di/dt and apply we get

E
di/dt

=
E1
di/dt

+
E2
di/dt

,

But
E

di/dt
= L,

so the previous expression can also be written as

Leq = L1 + L2.

(b) If the inductors are close enough together then the magnetic field from one coil will induce
currents in the other coil. Then we will need to consider mutual induction effects, but that is a topic
not covered in this text.

E36-11 Use Eq. 36-17, but rearrange:

τL =
t

ln[i0/i]
=

(1.50 s)
ln[(1.16 A)/(10.2×10−3A)]

= 0.317 s.

Then R = L/τL = (9.44 H)/(0.317 s) = 29.8 Ω.

E36-12 (a) There is no current through the resistor, so ER = 0 and then EL = E .
(b) EL = Ee−2 = (0.135)E .
(c) n = − ln(EL/E) = −ln(1/2) = 0.693.

E36-13 (a) From Eq. 36-4 we find the inductance to be

L =
NΦB
i

=
(26.2×10−3Wb)

(5.48 A)
= 4.78×10−3H.

Note that ΦB is the flux, while the quantity NΦB is the number of flux linkages.
(b) We can find the time constant from Eq. 36-14,

τL = L/R = (4.78×10−3H)/(0.745 Ω) = 6.42×10−3 s.

The we can invert Eq. 36-13 to get

t = −τL ln
(

1− Ri(t)
E

)
,

= −(6.42×10−3 s) ln
(

1− (0.745 A)(2.53 A)
(6.00 V)

)
= 2.42×10−3 s.
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E36-14 (a) Rearrange:

E = iR+ L
di

dt
,

E
R
− i =

L

R

di

dt
,

R

L
dt =

di

E/R− i
.

(b) Integrate:

−
∫ t

0

R

L
dt =

∫ i

0

di

i− E/R
,

−R
L
t = ln

i+ E/R
E/R

,

E
R
e−t/τL = i+ E/R,

E
R

(
1− e−t/τL

)
= i.

E36-15 di/dt = (5.0 A/s). Then

E = iR+ L
di

dt
= (3.0 A)(4.0 Ω) + (5.0 A/s)t(4.0 Ω) + (6.0 H)(5.0 A/s) = 42 V + (20 V/s)t.

E36-16 (1/3) = (1− e−t/τL), so

τL = − t

ln(2/3)
= − (5.22 s)

ln(2/3)
= 12.9 s.

E36-17 We want to take the derivative of the current in Eq. 36-13 with respect to time,

di

dt
=
E
R

1
τL
e−t/τL =

E
L
e−t/τL .

Then τL = (5.0×10−2H)/(180 Ω) = 2.78×10−4s. Using this we find the rate of change in the current
when t = 1.2 ms to be

di

dt
=

(45 V)
((5.0×10−2H)

e−(1.2×10−3s)/(2.78×10−4s) = 12 A/s.

E36-18 (b) Consider some time ti:

EL(ti) = Ee−ti/τL .

Taking a ratio for two different times,

EL(t1)
EL(t2)

= e(t2−t1)/τL ,

or

τL =
t2 − t1

ln[EL(t1)/EL(t2)]
=

(2 ms)− (1 ms)
ln[(18.24 V)/(13.8 V)]

= 3.58 ms

(a) Choose any time, and

E = ELet/τL = (18.24 V)e(1 ms)/(3.58 ms) = 24 V.
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E36-19 (a) When the switch is just closed there is no current through the inductor. So i1 = i2 is
given by

i1 =
E

R1 +R2
=

(100 V)
(10 Ω) + (20 Ω)

= 3.33 A.

(b) A long time later there is current through the inductor, but it is as if the inductor has no
effect on the circuit. Then the effective resistance of the circuit is found by first finding the equivalent
resistance of the parallel part

1/(30 Ω) + 1/(20 Ω) = 1/(12 Ω),

and then finding the equivalent resistance of the circuit

(10 Ω) + (12 Ω) = 22 Ω.

Finally, i1 = (100 V)/(22 Ω) = 4.55 A and

∆V2 = (100 V)− (4.55 A)(10 Ω) = 54.5 V;

consequently, i2 = (54.5 V)/(20 Ω) = 2.73 A. It didn’t ask, but i2 = (4.55 A)− (2.73 A) = 1.82 A.
(c) After the switch is just opened the current through the battery stops, while that through the

inductor continues on. Then i2 = i3 = 1.82 A.
(d) All go to zero.

E36-20 (a) For toroids L = µ0N
2h ln(b/a)/2π. The number of turns is limited by the inner radius:

Nd = 2πa. In this case,
N = 2π(0.10 m)/(0.00096 m) = 654.

The inductance is then

L =
(4π×10−7H/m)(654)2(0.02 m)

2π
ln

(0.12 m)
(0.10 m)

= 3.1×10−4H.

(b) Each turn has a length of 4(0.02 m) = 0.08 m. The resistance is then

R = N(0.08 m)(0.021 Ω/m) = 1.10 Ω

The time constant is

τL = L/R = (3.1×10−4H)/(1.10 Ω) = 2.8×10−4s.

E36-21 (I) When the switch is just closed there is no current through the inductor or R2, so the
potential difference across the inductor must be 10 V. The potential difference across R1 is always
10 V when the switch is closed, regardless of the amount of time elapsed since closing.

(a) i1 = (10 V)/(5.0 Ω) = 2.0 A.
(b) Zero; read the above paragraph.
(c) The current through the switch is the sum of the above two currents, or 2.0 A.
(d) Zero, since the current through R2 is zero.
(e) 10 V, since the potential across R2 is zero.
(f) Look at the results of Exercise 36-17. When t = 0 the rate of change of the current is

di/dt = E/L. Then
di/dt = (10 V)/(5.0 H) = 2.0 A/s.

(II) After the switch has been closed for a long period of time the currents are stable and the
inductor no longer has an effect on the circuit. Then the circuit is a simple two resistor parallel
network, each resistor has a potential difference of 10 V across it.
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(a) Still 2.0 A; nothing has changed.
(b) i2 = (10 V)/(10 Ω) = 1.0 A.
(c) Add the two currents and the current through the switch will be 3.0 A.
(d) 10 V; see the above discussion.
(e) Zero, since the current is no longer changing.
(f) Zero, since the current is no longer changing.

E36-22 U = (71 J/m3)(0.022 m3) = 1.56 J. Then using U = i2L/2 we get

i =
√

2U/L =
√

2(1.56 J)/(0.092 H) = 5.8 A.

E36-23 (a) L = 2U/i2 = 2(0.0253 J)/(0.062 A)2 = 13.2 H.
(b) Since the current is squared in the energy expression, doubling the current would quadruple

the energy. Then i′ = 2i0 = 2(0.062 A) = 0.124 A.

E36-24 (a) B = µ0in and u = B2/2µ0, or

u = µ0i
2n2/2 = (4π×10−7N/A2)(6.57 A)2(950/0.853 m)2/2 = 33.6 J/m3.

(b) U = uAL = (33.6 J/m3)(17.2×10−4m2)(0.853 m) = 4.93×10−2J.

E36-25 uB = B2/2µ0, and from Sample Problem 33-2 we know B, hence

uB =
(12.6 T)2

2(4π×10−7N/A2)
= 6.32×107J/m3.

E36-26 (a) uB = B2/2µ0, so

uB =
(100×10−12T)2

2(4π×10−7N/A2)
1

(1.6×10−19J/eV)
= 2.5×10−2 eV/cm3

.

(b) x = (10)(9.46×1015m) = 9.46×1016m. Using the results from part (a) expressed in J/m3 we
find the energy contained is

U = (3.98×10−15J/m3)(9.46×1016m)3 = 3.4×1036J

E36-27 The energy density of an electric field is given by Eq. 36-23; that of a magnetic field is
given by Eq. 36-22. Equating,

ε0
2
E2 =

1
2µ0

B2,

E =
B
√
ε0µ0

.

The answer is then

E = (0.50 T)/
√

(8.85×10−12C2/N ·m2)(4π×10−7N/A2) = 1.5×108 V/m.

E36-28 The rate of internal energy increase in the resistor is given by P = i∆VR. The rate of
energy storage in the inductor is dU/dt = Li di/dt = i∆VL. Since the current is the same through
both we want to find the time when ∆VR = ∆VL. Using Eq. 36-15 we find

1− e−t/τL = e−t/τL ,

ln 2 = t/τL,

so t = (37.5 ms) ln 2 = 26.0 ms.
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E36-29 (a) Start with Eq. 36-13:

i = E(1− e−t/τL)/R,

1− iR

E
= e−t/τL ,

τL =
−t

ln(1− iR/E)
,

=
−(5.20×10−3s)

ln[1− (1.96×10−3A)(10.4×103Ω)/(55.0 V)]
,

= 1.12×10−2s.

Then L = τLR = (1.12×10−2s)(10.4×103Ω) = 116 H.
(b) U = (1/2)(116 H)(1.96×10−3A)2 = 2.23×10−4J.

E36-30 (a) U = E∆q; q =
∫
idt.

U = E
∫
E
R

(
1− e−t/τL

)
dt,

=
E2

R

(
t+ τLe

−t/τL
)2

0
,

=
E2

R
t+
E2L

R2
(e−t/τL − 1).

Using the numbers provided,

τL = (5.48 H)/(7.34 Ω) = 0.7466 s.

Then

U =
(12.2 V)2

(7.34 Ω)

[
(2 s) + (0.7466 s)(e−(2 s)/0.7466 s) − 1)

]
= 26.4 J

(b) The energy stored in the inductor is UL = Li2/2, or

UL =
LE2

2R2

∫ (
1− e−t/τL

)2

dt,

= 6.57 J.

(c) UR = U − UL = 19.8 J.

E36-31 This shell has a volume of

V =
4π
3
(
(RE + a)3 −RE

3
)
.

Since a << RE we can expand the polynomials but keep only the terms which are linear in a. Then

V ≈ 4πRE
2a = 4π(6.37×106m)2(1.6×104m) = 8.2×1018m3.

The magnetic energy density is found from Eq. 36-22,

uB =
1

2µ0
B2 =

(60×10−6 T)2

2(4π×10−7N/A2)
= 1.43×10−3J/m3.

The total energy is then (1.43×10−3J/m3)(8.2eex18m3) = 1.2×1016J.
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E36-32 (a) B = µ0i/2πr and uB = B2/2µ0 = µ0i
2/8π2r2, or

uB = (4π×10−7H/m)(10 A)2/8π2(1.25×10−3m)2 = 1.0 J/m3.

(b) E = ∆V/l = iR/l and uE = ε0E
2/2 = ε0i

2(R/l)2/2. Then

uE = (8.85×10−12F/m)(10 A)2(3.3×10−3Ω/m)2/2 = 4.8×10−15J/m3.

E36-33 i =
√

2U/L =
√

2(11.2×10−6J)/(1.48×10−3H) = 0.123 A.

E36-34 C = q2/2U = (1.63×10−6C)2/2(142×10−6J) = 9.36×10−9F.

E36-35 1/2πf =
√
LC so L = 1/4π2f2C, or

L = 1/4π2(10×103Hz)2(6.7×10−6F) = 3.8×10−5H.

E36-36 qmax
2/2C = Limax

2/2, or

imax = qmax/
√
LC = (2.94×10−6C)/

√
(1.13×10−3H)(3.88×10−6F) = 4.44×10−2A.

E36-37 Closing a switch has the effect of “shorting” out the relevant circuit element, which
effectively removes it from the circuit. If S1 is closed we have τC = RC or C = τC/R, if instead S2

is closed we have τL = L/R or L = RτL, but if instead S3 is closed we have a LC circuit which will
oscillate with period

T =
2π
ω

= 2π
√
LC.

Substituting from the expressions above,

T =
2π
ω

= 2π
√
τLτC .

E36-38 The capacitors can be used individually, or in series, or in parallel. The four possible
capacitances are then 2.00µF, 5.00µF, 2.00µF + 5.00µF = 7.00µF, and (2.00µF )(5.00µF)(2.00µF +
5.00µF) = 1.43µF. The possible resonant frequencies are then

1
2π

√
1
LC

= f,

1
2π

√
1

(10.0 mH)(1.43µF )
= 1330 Hz,

1
2π

√
1

(10.0 mH)(2.00µF )
= 1130 Hz,

1
2π

√
1

(10.0 mH)(5.00µF )
= 712 Hz,

1
2π

√
1

(10.0 mH)(7.00µF )
= 602 Hz.
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E36-39 (a) k = (8.13 N)/(0.0021 m) = 3.87×103N/m. ω =
√
k/m =

√
(3870 N/m)/(0.485 kg) =

89.3 rad/s.
(b) T = 2π/ω = 2π/(89.3 rad/s) = 7.03×10−2s.
(c) LC = 1/ω2, so

C = 1/(89.3 rad/s)2(5.20 H) = 2.41×10−5F.

E36-40 The period of oscillation is T = 2π
√
LC = 2π

√
(52.2mH)(4.21µF) = 2.95 ms. It requires

one-quarter period for the capacitor to charge, or 0.736 ms.

E36-41 (a) An LC circuit oscillates so that the energy is converted from all magnetic to all
electrical twice each cycle. It occurs twice because once the energy is magnetic with the current
flowing in one direction through the inductor, and later the energy is magnetic with the current
flowing the other direction through the inductor.

The period is then four times 1.52µs, or 6.08µs.
(b) The frequency is the reciprocal of the period, or 164000 Hz.
(c) Since it occurs twice during each oscillation it is equal to half a period, or 3.04µs.

E36-42 (a) q = C∆V = (1.13×10−9F)(2.87 V) = 3.24×10−9C.
(c) U = q2/2C = (3.24×10−9C)2/2(1.13×10−9F) = 4.64×10−9J.
(b) i =

√
2U/L =

√
2(4.64×10−9J)/(3.17×10−3H) = 1.71×10−3A.

E36-43 (a) im = qmω and qm = CV m. Multiplying the second expression by L we get Lqm =
V m/ω

2. Combining, Limω = V m. Then

f =
ω

2π
=

(50 V)
2π(0.042 H)(0.031 A)

= 6.1×103/s.

(b) See (a) above.
(c) C = 1/ω2L = 1/(2π6.1×103/s)2(0.042 H) = 1.6×10−8F.

E36-44 (a) f = 1/2π
√
LC = 1/2π

√
(6.2×10−6F)(54×10−3H) = 275 Hz.

(b) Note that from Eq. 36-32 we can deduce imax = ωqmax. The capacitor starts with a charge
q = C∆V = (6.2×10−6F)(34 V) = 2.11×10−4C. Then the current amplitude is

imax = qmax/
√
LC = (2.11×10−4C)/

√
(6.2×10−6F)(54×10−3H) = 0.365 A.

E36-45 (a) ω = 1/
√
LC = 1/

√
(10×10−6F)(3.0×10−3H) = 5800 rad/s.

(b) T = 2π/ω = 2π/(5800 rad/s) = 1.1×10−3s.

E36-46 f = (2×105Hz)(1 + θ/180◦). C = 4π2/f2L, so

C =
4π2

(2×105Hz)2(1 + θ/180◦)2(1 mH)
=

(9.9×10−7F)
(1 + θ/180◦)2

.

E36-47 (a) UE = UB/2 and UE +UB = U , so 3UE = U , or 3(q2/2C) = q2
max/2C, so q = qmax/

√
3.

(b) Solve q = qmax cosωt, or

t =
T

2π
arccos 1/

√
3 = 0.152T.
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E36-48 (a) Add the contribution from the inductor and the capacitor,

U =
(24.8×10−3H)(9.16×10−3A)2

2
+

(3.83×10−6C)2

2(7.73×10−6F)
= 1.99×10−6J.

(b) qm =
√

2(7.73×10−6F)(1.99×10−6J) = 5.55×10−6C.
(c) im =

√
2(1.99×10−6J)/(24.8×10−3H) = 1.27×10−2A.

E36-49 (a) The frequency of such a system is given by Eq. 36-26, f = 1/2π
√
LC. Note that

maximum frequency occurs with minimum capacitance. Then

f1

f2
=
√
C2

C1
=

√
(365 pF)
(10 pF)

= 6.04.

(b) The desired ratio is 1.60/0.54 = 2.96 Adding a capacitor in parallel will result in an effective
capacitance given by

C1,eff = C1 + Cadd,

with a similar expression for C2. We want to choose Cadd so that

f1

f2
=

√
C2,eff

C1,eff
= 2.96.

Solving,

C2,eff = C1,eff(2.96)2,

C2 + Cadd = (C1 + Cadd)8.76,

Cadd =
C2 − 8.76C1

7.76
,

=
(365 pF)− 8.76(10 pF)

7.76
= 36 pF.

The necessary inductance is then

L =
1

4π2f2C
=

1
4π2(0.54×106Hz)2(401×10−12F)

= 2.2×10−4H.

E36-50 The key here is that UE = C(∆V )2/2. We want to charge a capacitor with one-ninth the
capacitance to have three times the potential difference. Since 32 = 9, it is reasonable to assume
that we want to take all of the energy from the first capacitor and give it to the second. Closing
S1 and S2 will not work, because the energy will be shared. Instead, close S2 until the capacitor
has completely discharged into the inductor, then simultaneously open S2 while closing S1. The
inductor will then discharge into the second capacitor. Open S1 when it is “full”.

E36-51 (a) ω = 1/
√
LC.

qm =
im
ω

= (2.0 A)
√

(3.0×10−3H)(2.7×10−6F) = 1.80×10−4C

(b) dUC/dt = qi/C. Since q = qm sinωt and i = im cosωt then dUC/dt is a maximum when
sinωt cosωt is a maximum, or when sin 2ωt is a maximum. This happens when 2ωt = π/2, or
t = T/8.

(c) dUC/dt = qmim/2C, or

dUC/dt = (1.80×10−4C)(2.0 A)/2(2.7×10−6F) = 67 W.
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E36-52 After only complete cycles q = qmaxe
−Rt/2L. Not only that, but t = Nτ , where τ = 2π/ω′.

Finally, ω′ =
√

(1/LC)− (R/2L)2. Since the first term under the square root is so much larger than
the second, we can ignore the effect of damping on the frequency, and simply use ω′ ≈ ω = 1/

√
LC.

Then
q = qmaxe

−NRτ/2L = qmaxe
−NπR

√
LC/L = qmaxe

−NπR
√
C/L.

Finally, πR
√
C/L = π(7.22 Ω)

√
(3.18µF)/(12.3 H) = 1.15×10−2. Then

N = 5 : q = (6.31µC)e−5(0.0115) = 5.96µC,
N = 5 : q = (6.31µC)e−10(0.0115) = 5.62µC,
N = 5 : q = (6.31µC)e−100(0.0115) = 1.99µC.

E36-53 Use Eq. 36-40, and since U ∝ q2, we want to solve e−Rt/L = 1/2, then

t =
L

R
ln 2.

E36-54 Start by assuming that the presence of the resistance does not significantly change the
frequency. Then ω = 1/

√
LC, q = qmaxe

−Rt/2L, t = Nτ , and τ = 2π/ω. Combining,

q = qmaxe
−NRτ/2L = qmaxe

−NπR
√
LC/L = qmaxe

−NπR
√
C/L.

Then

R = −
√
L/C

Nπ
ln(q/qmax) = −

√
(220mH)/(12µF)

(50)π
ln(0.99) = 8700 Ω.

It remains to be verified that 1/LC � (R/2L)2.

E36-55 The damped (angular) frequency is given by Eq. 36-41; the fractional change would then
be

ω − ω′

ω
= 1−

√
1− (R/2Lω)2 = 1−

√
1− (R2C/4L).

Setting this equal to 0.01% and then solving for R,

R =

√
4L
C

(1− (1− 0.0001)2) =

√
4(12.6×10−3H)
(1.15×10−6F)

(1.9999×10−4) = 2.96 Ω.

P36-1 The inductance of a toroid is

L =
µ0N

2h

2π
ln
b

a
.

If the toroid is very large and thin then we can write b = a+ δ, where δ << a. The natural log then
can be approximated as

ln
b

a
= ln

(
1 +

δ

a

)
≈ δ

a
.

The product of δ and h is the cross sectional area of the toroid, while 2πa is the circumference,
which we will call l. The inductance of the toroid then reduces to

L ≈ µ0N
2

2π
δ

a
=
µ0N

2A

l
.

But N is the number of turns, which can also be written as N = nl, where n is the turns per unit
length. Substitute this in and we arrive at Eq. 36-7.
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P36-2 (a) Since ni is the net current per unit length and is this case i/W , we can simply write
B = µ0i/W .

(b) There is only one loop of wire, so

L = φB/i = BA/i = µ0iπR
2/Wi = µ0πR

2/W.

P36-3 Choose the y axis so that it is parallel to the wires and directly between them. The field
in the plane between the wires is

B =
µ0i

2π

(
1

d/2 + x
+

1
d/2− x

)
.

The flux per length l of the wires is

ΦB = l

∫ d/2−a

−d/2+a

B dx = l
µ0i

2π

∫ d/2−a

−d/2+a

(
1

d/2 + x
+

1
d/2− x

)
dx,

= 2l
µ0i

2π

∫ d/2−a

−d/2+a

(
1

d/2 + x

)
dx,

= 2l
µ0i

2π
ln
d− a
a

.

The inductance is then
L =

φB
i

=
µ0l

π
ln
d− a
a

.

P36-4 (a) Choose the y axis so that it is parallel to the wires and directly between them. The
field in the plane between the wires is

B =
µ0i

2π

(
1

d/2 + x
+

1
d/2− x

)
.

The flux per length l between the wires is

Φ1 =
∫ d/2−a

−d/2+a

B dx =
µ0i

2π

∫ d/2−a

−d/2+a

(
1

d/2 + x
+

1
d/2− x

)
dx,

= 2
µ0i

2π

∫ d/2−a

−d/2+a

(
1

d/2 + x

)
dx,

= 2
µ0i

2π
ln
d− a
a

.

The field in the plane inside one of the wires, but still between the centers is

B =
µ0i

2π

(
1

d/2 + x
+
d/2− x
a2

)
.

The additional flux is then

Φ2 = 2
∫ d/2

d/2−a
B dx = 2

µ0i

2π

∫ d/2

d/2−a

(
1

d/2 + x
+
d/2− x
a2

)
dx,

= 2
µ0i

2π

(
ln

d

d− a
+

1
2

)
.
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The flux per meter between the axes of the wire is the sum, or

ΦB =
µ0i

π

(
ln
d

a
+

1
2

)
,

=
(4π×10−7H/m)(11.3 A)

π

(
ln

(21.8,mm)
(1.3 mm)

+
1
2

)
,

= 1.5×10−5Wb/m.

(b) The fraction f inside the wires is

f =
(

ln
d

d− a
+

1
2

)
/

(
ln
d

a
+

1
2

)
,

=
(

(21.8,mm)
(21.8,mm)− (1.3 mm)

+
1
2

)
/

(
(21.8,mm)
(1.3 mm)

+
1
2

)
,

= 0.09.

(c) The net flux is zero for parallel currents.

P36-5 The magnetic field in the region between the conductors of a coaxial cable is given by

B =
µ0i

2πr
,

so the flux through an area of length l, width b− a, and perpendicular to ~B is

ΦB =
∫
~B · d~A =

∫
B dA,

=
∫ b

a

∫ l

0

µ0i

2πr
dz dr,

=
µ0il

2π
ln
b

a
.

We evaluated this integral is cylindrical coordinates: dA = (dr)(dz). As you have been warned so
many times before, learn these differentials!

The inductance is then
L =

ΦB
i

=
µ0l

2π
ln
b

a
.

P36-6 (a) So long as the fuse is not blown there is effectively no resistance in the circuit. Then
the equation for the current is E = Ldi/dt, but since E is constant, this has a solution i = Et/L.
The fuse blows when t = imaxL/E = (3.0 A)(5.0 H)/(10 V) = 1.5 s.

(b) Note that once the fuse blows the maximum steady state current is 2/3 A, so there must be
an exponential approach to that current.

P36-7 The initial rate of increase is di/dt = E/L. Since the steady state current is E/R, the
current will reach the steady state value in a time given by E/R = i = Et/L, or t = L/R. But that’s
τL.

P36-8 (a) U = 1
2Li

2 = (152 H)(32 A)2/2 = 7.8×104J.
(b) If the coil develops at finite resistance then all of the energy in the field will be dissipated as

heat. The mass of Helium that will boil off is

m = Q/Lv = (7.8×104J)/(85 J/mol)/(4.00g/mol) = 3.7 kg.
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P36-9 (a) B = (µ0Ni)/(2πr), so

u =
B2

2µ0
=
µ0N

2i2

8π2r2
.

(b) U =
∫
u dV =

∫
urdr dθ dz. The field inside the toroid is uniform in z and θ, so

U = 2πh
∫ b

a

µ0N
2i2

8π2r2
r dr,

=
hµ0N

2i2

4π
ln
b

a
.

(c) The answers are the same!

P36-10 The energy in the inductor is originally U = Li20/2. The internal energy in the resistor
increases at a rate P = i2R. Then∫ ∞

0

P dt = R

∫ ∞
0

i20e
−2t/τLdt =

Ri20τL
2

=
Li20
2
.

P36-11 (a) In Chapter 33 we found the magnetic field inside a wire carrying a uniform current
density is

B =
µ0ir

2πR2
.

The magnetic energy density in this wire is

uB =
1

2µ0
B2 =

µ0i
2r2

8π2R4
.

We want to integrate in cylindrical coordinates over the volume of the wire. Then the volume
element is dV = (dr)(r dθ)(dz), so

UB =
∫
uBdV,

=
∫ R

0

∫ l

0

∫ 2π

0

µ0i
2r2

8π2R4
dθ dz rdr,

=
µ0i

2l

4πR4

∫ R

0

r3 dr,

=
µ0i

2l

16π
.

(b) Solve

UB =
L

2
i2

for L, and

L =
2UB
i2

=
µ0l

8π
.

P36-12 1/C = 1/C1 + 1/C2 and L = L1 + L2. Then

1
ω

=
√
LC =

√
(L1 + L2)

C1C2

C1 + C2
=

√
C2/ω2

0 + C1/ω2
0

C1 + C2
=

1
ω0
.
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P36-13 (a) There is no current in the middle inductor; the loop equation becomes

L
d2q

dt2
+
q

C
+ L

d2q

dt2
+
q

C
= 0.

Try q = qm cosωt as a solution:

−Lω2 +
1
C
− Lω2 +

1
C

= 0;

which requires ω = 1/
√
LC.

(b) Look at only the left hand loop; the loop equation becomes

L
d2q

dt2
+
q

C
+ 2L

d2q

dt2
= 0.

Try q = qm cosωt as a solution:

−Lω2 +
1
C
− 2Lω2 = 0;

which requires ω = 1/
√

3LC.

P36-14 (b) (ω′ − ω)/ω is the fractional shift; this can also be written as

ω′

ω − 1
=

√
1− (LC)(R/2L)2 − 1,

=
√

1−R2C/4L− 1,

=

√
1− (100 Ω)2(7.3×10−6F)

4(4.4 H)
− 1 = −2.1×10−3.

P36-15 We start by focusing on the charge on the capacitor, given by Eq. 36-40 as

q = qme
−Rt/2L cos(ω′t+ φ).

After one oscillation the cosine term has returned to the original value but the exponential term has
attenuated the charge on the capacitor according to

q = qme
−RT/2L,

where T is the period. The fractional energy loss on the capacitor is then

U0 − U
U0

= 1− q2

q2
m

= 1− e−RT/L.

For small enough damping we can expand the exponent. Not only that, but T = 2π/ω, so

∆U
U
≈ 2πR/ωL.

149



P36-16 We are given 1/2 = e−t/2τL when t = 2πn/ω′. Then

ω′ =
2πn
t

=
2πn

2(L/R) ln 2
=

πnR

L ln 2
.

From Eq. 36-41,

ω2 − ω′2 = (R/2L)2,

(ω − ω′)(ω + ω′) = (R/2L)2,

(ω − ω′)2ω′ ≈ (R/2L)2,

ω − ω′

ω
= ≈ (R/2L)2

2ω′2
,

=
(ln 2)2

8π2n2
,

=
0.0061
n2

.
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E37-1 The frequency, f , is related to the angular frequency ω by

ω = 2πf = 2π(60 Hz) = 377 rad/s

The current is alternating because that is what the generator is designed to produce. It does this
through the configuration of the magnets and coils of wire. One complete turn of the generator will
(could?) produce one “cycle”; hence, the generator is turning 60 times per second. Not only does
this set the frequency, it also sets the emf, since the emf is proportional to the speed at which the
coils move through the magnetic field.

E37-2 (a) XL = ωL, so

f = XL/2πL = (1.28×103Ω)/2π(0.0452 H) = 4.51×103/s.

(b) XC = 1/ωC, so

C = 1/2πfXC = 1/2π(4.51×103/s)(1.28×103Ω) = 2.76×10−8F.

(c) The inductive reactance doubles while the capacitive reactance is cut in half.

E37-3 (a) XL = XC implies ωL = 1/ωC or ω = 1/
√
LC, so

ω = 1/
√

(6.23×10−3H)(11.4×10−6F) = 3750 rad/s.

(b) XL = ωL = (3750 rad/s)(6.23×10−3H) = 23.4 Ω
(c) See (a) above.

E37-4 (a) im = E/XL = E/ωL, so

im = (25.0 V)/(377 rad/s)(12.7 H) = 5.22×10−3A.

(b) The current and emf are 90◦ out of phase. When the current is a maximum, E = 0.
(c) ωt = arcsin[E(t)/Em], so

ωt = arcsin
(−13.8 V)
(25.0 V)

= 0.585 rad.

and
i = (5.22×10−3A) cos(0.585) = 4.35×10−3A.

(d) Taking energy.

E37-5 (a) The reactance of the capacitor is from Eq. 37-11, XC = 1/ωC. The AC generator
from Exercise 4 has E = (25.0 V) sin(377 rad/s)t. So the reactance is

XC =
1
ωC

=
1

(377 rad/s)(4.1µF)
= 647 Ω.

The maximum value of the current is found from Eq. 37-13,

im =
(∆VC)max)

XC
=

(25.0 V)
(647 Ω)

= 3.86×10−2A.

(b) The generator emf is 90◦ out of phase with the current, so when the current is a maximum
the emf is zero.
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(c) The emf is -13.8 V when

ωt = arcsin
(−13.8 V)
(25.0 V)

= 0.585 rad.

The current leads the voltage by 90◦ = π/2, so

i = im sin(ωt− φ) = (3.86×10−2A) sin(0.585− π/2) = −3.22×10−2A.

(d) Since both the current and the emf are negative the product is positive and the generator is
supplying energy to the circuit.

E37-6 R = (ωL− 1/omegaC)/ tanφ and ω = 2πf = 2π(941/s) = 5910 rad/s , so

R =
(5910 rad/s)(88.3×10−3H)− 1/(5910 rad/s)(937×10−9F)

tan(75◦)
= 91.5 Ω.

E37-7

E37-8 (a) XL doesn’t change, so XL = 87 Ω.
(b) XC = 1/ωC = 1/2π(60/s)(70×10−6F) = 37.9Ω.
(c) Z =

√
(160 Ω)2 + (87 Ω− 37.9 Ω)2 = 167 Ω.

(d) im = (36 V)/(167 Ω) = 0.216 A.
(e) tanφ = (87 Ω− 37.9 Ω)/(160 Ω) = 0.3069, so

φ = arctan(0.3069) = 17◦.

E37-9 A circuit is considered inductive if XL > XC , this happens when im lags Em. If, on the
other hand, XL < XC , and im leads Em, we refer to the circuit as capacitive. This is discussed on
page 850, although it is slightly hidden in the text of column one.

(a) At resonance, XL = XC . Since XL = ωL and XC = 1/ωC we expect that XL grows with
increasing frequency, while XC decreases with increasing frequency.

Consequently, at frequencies above the resonant frequency XL > XC and the circuit is predomi-
nantly inductive. But what does this really mean? It means that the inductor plays a major role in
the current through the circuit while the capacitor plays a minor role. The more inductive a circuit
is, the less significant any capacitance is on the behavior of the circuit.

For frequencies below the resonant frequency the reverse is true.
(b) Right at the resonant frequency the inductive effects are exactly canceled by the capacitive

effects. The impedance is equal to the resistance, and it is (almost) as if neither the capacitor or
inductor are even in the circuit.

E37-10 The net y component is XC − XL. The net x component is R. The magnitude of the
resultant is

Z =
√
R2 + (XC −XL)2,

while the phase angle is

tanφ =
−(XC −XL)

R
.

E37-11 Yes.
At resonance ω = 1/

√
(1.2 H)(1.3×10−6F) = 800 rad/s and Z = R. Then im = E/Z =

(10 V)/(9.6 Ω) = 1.04 A, so

[∆VL]m = imXL = (1.08 A)(800 rad/s)(1.2 H) = 1000 V.
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E37-12 (a) Let O = XL −XC and A = R, then H2 = A2 +O2 = Z2, so

sinφ = (XL −XC)/Z

and
cosφ = R/Z.

E37-13 (a) The voltage across the generator is the generator emf, so when it is a maximum from
Sample Problem 37-3, it is 36 V. This corresponds to ωt = π/2.

(b) The current through the circuit is given by i = im sin(ωt− φ). We found in Sample Problem
37-3 that im = 0.196 A and φ = −29.4◦ = 0.513 rad.

For a resistive load we apply Eq. 37-3,

∆VR = imR sin(ωt− φ) = (0.196 A)(160Ω) sin((π/2)− (−0.513)) = 27.3 V.

(c) For a capacitive load we apply Eq. 37-12,

∆VC = imXC sin(ωt− φ− π/2) = (0.196 A)(177Ω) sin(−(−0.513)) = 17.0 V.

(d) For an inductive load we apply Eq. 37-7,

∆VL = imXL sin(ωt− φ+ π/2) = (0.196 A)(87Ω) sin(π − (−0.513)) = −8.4 V.

(e) (27.3 V) + (17.0 V) + (−8.4 V) = 35.9 V.

E37-14 If circuit 1 and 2 have the same resonant frequency then L1C1 = L2C2. The series
combination for the inductors is

L = L1 + L2,

The series combination for the capacitors is

1/C = 1/C1 + 1/C2,

so
LC = (L1 + L2)

C1C2

C1 + C2
=
L1C1C2 + L2C2C1

C1 + C2
= L1C1,

which is the same as both circuit 1 and 2.

E37-15 (a) Z = (125 V)/(3.20 A) = 39.1 Ω.
(b) Let O = XL −XC and A = R, then H2 = A2 +O2 = Z2, so

cosφ = R/Z.

Using this relation,
R = (39.1 Ω) cos(56.3◦) = 21.7 Ω.

(c) If the current leads the emf then the circuit is capacitive.

E37-16 (a) Integrating over a single cycle,

1
T

∫ T

0

sin2 ωt dt =
1
T

∫ T

0

1
2

(1− cos 2ωt) dt,

=
1

2T
T =

1
2
.

(b) Integrating over a single cycle,

1
T

∫ T

0

sinωt cosωt dt =
1
T

∫ T

0

1
2

sin 2ωtdt,

= 0.
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E37-17 The resistance would be given by Eq. 37-32,

R =
P av

irms
2

=
(0.10)(746 W)

(0.650 A)2
= 177 Ω.

This would not be the same as the direct current resistance of the coils of a stopped motor, because
there would be no inductive effects.

E37-18 Since irms = Erms/Z, then

P av = i2rmsR =
E2

rmsR

Z2
.

E37-19 (a) Z =
√

(160 Ω)2 + (177 Ω)2 = 239 Ω; then

P av =
1
2

(36 V)2(160 Ω)
(239 Ω)2

= 1.82 W.

(b) Z =
√

(160 Ω)2 + (87 Ω)2 = 182 Ω; then

P av =
1
2

(36 V)2(160 Ω)
(182 Ω)2

= 3.13 W.

E37-20 (a) Z =
√

(12.2 Ω)2 + (2.30 Ω)2 = 12.4 Ω
(b) P av = (120 V)2(12.2 Ω)/(12.4 Ω)2 = 1140 W.
(c) irms = (120 V)/(12.4 Ω) = 9.67 A.

E37-21 The rms value of any sinusoidal quantity is related to the maximum value by
√

2 vrms =
vmax. Since this factor of

√
2 appears in all of the expressions, we can conclude that if the rms values

are equal then so are the maximum values. This means that

(∆VR)max = (∆VC)max = (∆VL)max

or imR = imXC = imXL or, with one last simplification, R = XL = XC . Focus on the right hand
side of the last equality. If XC = XL then we have a resonance condition, and the impedance (see
Eq. 37-20) is a minimum, and is equal to R. Then, according to Eq. 37-21,

im =
Em

R
,

which has the immediate consequence that the rms voltage across the resistor is the same as the
rms voltage across the generator. So everything is 100 V.

E37-22 (a) The antenna is “in-tune” when the impedance is a minimum, or ω = 1/
√
LC. So

f = ω/2π = 1/2π
√

(8.22×10−6H)(0.270×10−12F) = 1.07×108Hz.

(b) irms = (9.13µV)/(74.7 Ω) = 1.22×10−7A.
(c) XC = 1/2πfC, so

VC = iXC = (1.22×10−7A)/2π(1.07×108Hz)(0.270×10−12F) = 6.72×10−4V.
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E37-23 Assuming no inductors or capacitors in the circuit, then the circuit effectively behaves as
a DC circuit. The current through the circuit is i = E/(r + R). The power delivered to R is then
P = i∆V = i2R = E2R/(r + R)2. Evaluate dP/dR and set it equal to zero to find the maximum.
Then

0 =
dP

dR
= E2R

r −R
(r +R)3

,

which has the solution r = R.

E37-24 (a) Since P av = im
2R/2 = Em

2R/2Z2, then P av is a maximum when Z is a minimum, and
vise-versa. Z is a minimum at resonance, when Z = R and f = 1/2π

√
LC. When Z is a minimum

C = 1/4π2f2L = 1/4π2(60 Hz)2(60 mH) = 1.2×10−7F.

(b) Z is a maximum when XC is a maximum, which occurs when C is very small, like zero.
(c) When XC is a maximum P = 0. When P is a maximum Z = R so

P = (30 V)2/2(5.0 Ω) = 90 W.

(d) The phase angle is zero for resonance; it is 90◦ for infinite XC or XL.
(e) The power factor is zero for a system which has no power. The power factor is one for a

system in resonance.

E37-25 (a) The resistance is R = 15.0 Ω. The inductive reactance is

XC =
1
ωC

=
1

2π(550 s−1)(4.72µF)
= 61.3 Ω.

The inductive reactance is given by

XL = ωL = 2π(550 s−1)(25.3 mH) = 87.4 Ω.

The impedance is then

Z =
√

(15.0 Ω)2 + ((87.4 Ω)− (61.3 Ω))2 = 30.1 Ω.

Finally, the rms current is

irms =
Erms

Z
=

(75.0 V)
(30.1 Ω)

= 2.49 A.

(b) The rms voltages between any two points is given by

(∆V )rms = irmsZ,

where Z is not the impedance of the circuit but instead the impedance between the two points in
question. When only one device is between the two points the impedance is equal to the reactance
(or resistance) of that device.

We’re not going to show all of the work here, but we will put together a nice table for you

Points Impedance Expression Impedance Value (∆V )rms,
ab Z = R Z = 15.0 Ω 37.4 V,
bc Z = XC Z = 61.3 Ω 153 V,
cd Z = XL Z = 87.4 Ω 218 V,
bd Z = |XL −XC | Z = 26.1 Ω 65 V,
ac Z =

√
R2 +X2

C Z = 63.1 Ω 157 V,

Note that this last one was ∆Vac, and not ∆Vad, because it is more entertaining. You probably
should use ∆Vad for your homework.

(c) The average power dissipated from a capacitor or inductor is zero; that of the resistor is

PR = [(∆VR)rms]2/R = (37.4 V)2/(15.0Ω) = 93.3 W.
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E37-26 (a) The energy stored in the capacitor is a function of the charge on the capacitor; although
the charge does vary with time it varies periodically and at the end of the cycle has returned to the
original values. As such, the energy stored in the capacitor doesn’t change from one period to the
next.

(b) The energy stored in the inductor is a function of the current in the inductor; although the
current does vary with time it varies periodically and at the end of the cycle has returned to the
original values. As such, the energy stored in the inductor doesn’t change from one period to the
next.

(c) P = Ei = Emim sin(ωt) sin(ωt− φ), so the energy generated in one cycle is

U =
∫ T

0

P dt = Emim

∫ T

0

sin(ωt) sin(ωt− φ)dt,

= Emim

∫ T

0

sin(ωt) sin(ωt− φ)dt,

=
T

2
Emim cosφ.

(d) P = im
2R sin2(ωt− φ), so the energy dissipated in one cycle is

U =
∫ T

0

P dt = im
2R

∫ T

0

sin2(ωt− φ)dt,

= im
2R

∫ T

0

sin2(ωt− φ)dt,

=
T

2
im

2R.

(e) Since cosφ = R/Z and Em/Z = im we can equate the answers for (c) and (d).

E37-27 Apply Eq. 37-41,

∆V s = ∆V p
N s

Np
= (150 V)

(780)
(65)

= 1.8×103 V.

E37-28 (a) Apply Eq. 37-41,

∆V s = ∆V p
N s

Np
= (120 V)

(10)
(500)

= 2.4 V.

(b) is = (2.4 V)/(15 Ω) = 0.16 A;

ip = is
N s

Np
= (0.16 A)

(10)
(500)

= 3.2×10−3A.

E37-29 The autotransformer could have a primary connected between taps T1 and T2 (200 turns),
T1 and T3 (1000 turns), and T2 and T3 (800 turns).

The same possibilities are true for the secondary connections. Ignoring the one-to-one connections
there are 6 choices— three are step up, and three are step down. The step up ratios are 1000/200 = 5,
800/200 = 4, and 1000/800 = 1.25. The step down ratios are the reciprocals of these three values.
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E37-30 ρ = (1.69×10−8Ω ·m)[1− (4.3×10−3/C◦)(14.6◦C)] = 1.58×10−8Ω ·m. The resistance of
the two wires is

R =
ρL

A
=

(1.58×10−8Ω ·m)2(1.2×103m)
π(0.9×10−3m)2

= 14.9 Ω.

P = i2R = (3.8 A)2(14.9 Ω) = 220 W.

E37-31 The supply current is

ip = (0.270 A)(74×103V/
√

2)/(220 V) = 64.2 A.

The potential drop across the supply lines is

∆V = (64.2 A)(0.62 Ω) = 40 V.

This is the amount by which the supply voltage must be increased.

E37-32 Use Eq. 37-46:
Np/N s =

√
(1000 Ω)/(10 Ω) = 10.

P37-1 (a) The emf is a maximum when ωt − π/4 = π/2, so t = 3π/4ω = 3π/4(350 rad/s) =
6.73×10−3s.

(b) The current is a maximum when ωt − 3π/4 = π/2, so t = 5π/4ω = 5π/4(350 rad/s) =
1.12×10−2s.

(c) The current lags the emf, so the circuit contains an inductor.
(d) XL = Em/im and XL = ωL, so

L =
Em

imω
=

(31.4 V)
(0.622 A)(350 rad/s)

= 0.144 H.

P37-2 (a) The emf is a maximum when ωt − π/4 = π/2, so t = 3π/4ω = 3π/4(350 rad/s) =
6.73×10−3s.

(b) The current is a maximum when ωt+π/4 = π/2, so t = π/4ω = π/4(350 rad/s) = 2.24×10−3s.
(c) The current leads the emf, so the circuit contains an capacitor.
(d) XC = Em/im and XC = 1/ωC, so

C =
im
Emω

=
(0.622 A)

(31.4 V)(350 rad/s)
= 5.66×10−5F.

P37-3 (a) Since the maximum values for the voltages across the individual devices are propor-
tional to the reactances (or resistances) for devices in series (the constant of proportionality is the
maximum current), we have XL = 2R and XC = R.

From Eq. 37-18,

tanφ =
XL −XC

R
=

2R−R
R

= 1,

or φ = 45◦.
(b) The impedance of the circuit, in terms of the resistive element, is

Z =
√
R2 + (XL −XC)2 =

√
R2 + (2R−R)2 =

√
2R.

But Em = imZ, so Z = (34.4 V)/(0.320 A) = 108Ω. Then we can use our previous work to finds that
R = 76Ω.
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P37-4 When the switch is open the circuit is an LRC circuit. In position 1 the circuit is an RLC
circuit, but the capacitance is equal to the two capacitors of C in parallel, or 2C. In position 2 the
circuit is a simple LC circuit with no resistance.

The impedance when the switch is in position 2 is Z2 = |ωL− 1/ωC|. But

Z2 = (170 V)/(2.82 A) = 60.3 Ω.

The phase angle when the switch is open is φ0 = 20◦. But

tanφ0 =
ωL− 1/ωC

R
=
Z2

R
,

so R = (60.3 Ω)/ tan(20◦) = 166 Ω.
The phase angle when the switch is in position 1 is

tanφ1 =
ωL− 1/ω2C

R
,

so ωL− 1/ω2C = (166 Ω) tan(10◦) = 29.2 Ω. Equating the ωL part,

(29.2 Ω) + 1/ω2C = (−60.3 Ω) + 1/ωC,
C = 1/2(377 rad/s)[(60.3 Ω) + (29.2 Ω)] = 1.48×10−5F.

Finally,

L =
(−60.3Ω) + 1/(377 rad/s)(1.48×10−5F)

(377 rad/s)
= 0.315 H.

P37-5 All three wires have emfs which vary sinusoidally in time; if we choose any two wires the
phase difference will have an absolute value of 120◦. We can then choose any two wires and expect
(by symmetry) to get the same result. We choose 1 and 2. The potential difference is then

V1 − V2 = V m (sinωt− sin(ωt− 120◦)) .

We need to add these two sine functions to get just one. We use

sinα− sinβ = 2 sin
1
2

(α− β) cos
1
2

(α+ β).

Then

V1 − V2 = 2V m sin
1
2

(120◦) cos
1
2

(2ωt− 120◦),

= 2V m(
√

3
2

) cos(ωt− 60◦),

=
√

3V m sin(ωt+ 30◦).

P37-6 (a) cosφ = cos(−42◦) = 0.74.
(b) The current leads.
(c) The circuit is capacitive.
(d) No. Resonance circuits have a power factor of one.
(e) There must be at least a capacitor and a resistor.
(f) P = (75 V)(1.2 A)(0.74)/2 = 33 W.
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P37-7 (a) ω = 1/
√
LC = 1/

√
(0.988 H)(19.3×10−6F) = 229 rad/s.

(b) im = (31.3 V)/(5.12 Ω) = 6.11 A.
(c) The current amplitude will be halved when the impedance is doubled, or when Z = 2R. This

occurs when 3R2 = (ωL− 1/ωC)2, or

3R2ω2 = ω4L2 − 2ω2L/C + 1/C2.

The solution to this quadratic is

ω2 =
2L+ 3CR2 ±

√
9C2R4 + 12CR2L

2L2C
,

so ω1 = 224.6 rad/s and ω2 = 233.5 rad/s.
(d) ∆ω/ω = (8.9 rad/s)/(229 rad/s) = 0.039.

P37-8 (a) The current amplitude will be halved when the impedance is doubled, or when Z = 2R.
This occurs when 3R2 = (ωL− 1/ωC)2, or

3R2ω2 = ω4L2 − 2ω2L/C + 1/C2.

The solution to this quadratic is

ω2 =
2L+ 3CR2 ±

√
9C2R4 + 12CR2L

2L2C
,

Note that ∆ω = ω+ − ω−; with a wee bit of algebra,

∆ω(ω+ + ω−) = ω2
+ − ω2

−.

Also, ω+ + ω− ≈ 2ω. Hence,

ω∆ω ≈
√

9C2R4 + 12CR2L

2L2C
,

ω∆ω ≈ ω2R
√

9C2R2 + 12LC
2L

,

ω∆ω ≈ ωR
√

9ω2C2R2 + 12
2L

,

∆ω
ω

≈
R
√

9CR2/L+ 12
2Lω

,

≈
√

3R
ωL

,

assuming that CR2 � 4L/3.

P37-9

P37-10 Use Eq. 37-46.

P37-11 (a) The resistance of this bulb is

R =
(∆V )2

P
=

(120 V)2

(1000 W)
= 14.4 Ω.
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The power is directly related to the brightness; if the bulb is to be varied in brightness by a factor of
5 then it would have a minimum power of 200 W. The rms current through the bulb at this power
would be

irms =
√
P/R =

√
(200 W)/(14.4 Ω) = 3.73 A.

The impedance of the circuit must have been

Z =
Erms

irms
=

(120 V)
(3.73 A)

= 32.2 Ω.

The inductive reactance would then be

XL =
√
Z2 −R2 =

√
(32.2 Ω)2 − (14.4 Ω)2 = 28.8 Ω.

Finally, the inductance would be

L = XL/ω = (28.8 Ω)/(2π(60.0 s−1)) = 7.64 H.

(b) One could use a variable resistor, and since it would be in series with the lamp a value of

32.2 Ω− 14.4Ω = 17.8 Ω

would work. But the resistor would get hot, while on average there is no power radiated from a pure
inductor.

160



E38-1 The maximum value occurs where r = R; there Bmax = 1
2µ0ε0RdE/dt. For r < R B is

half of Bmax when r = R/2. For r > R B is half of Bmax when r = 2R. Then the two values of r
are 2.5 cm and 10.0 cm.

E38-2 For a parallel plate capacitor E = σ/ε0 and the flux is then ΦE = σA/ε0 = q/ε0. Then

id = ε0
dΦE
dt

=
dq

dt
=

d

dt
CV = C

dV

dt
.

E38-3 Use the results of Exercise 2, and change the potential difference across the plates of the
capacitor at a rate

dV

dt
=
id
C

=
(1.0 mA)
(1.0µF)

= 1.0 kV/s.

Provide a constant current to the capacitor

i =
dQ

dt
=

d

dt
CV = C

dV

dt
= id.

E38-4 Since E is uniform between the plates ΦE = EA, regardless of the size of the region of
interest. Since jd = id/A,

jd =
id
A

=
1
A
ε0
dΦE
dt

= ε0
dE

dt
.

E38-5 (a) In this case id = i = 1.84 A.
(b) Since E = q/ε0A, dE/dt = i/ε0A, or

dE/dt = (1.84 A)/(8.85×10−12F/m)(1.22 m)2 = 1.40×1011V/m.

(c) id = ε0dΦE/dt = ε0adE/dt. a here refers to the area of the smaller square. Combine this
with the results of part (b) and

id = ia/A = (1.84 A)(0.61 m/1.22 m)2 = 0.46 A.

(d)
∮
~B · d~s = µ0id = (4π×10−7H/m)(0.46 A) = 5.78×10−7T ·m.

E38-6 Substitute Eq. 38-8 into the results obtained in Sample Problem 38-1. Outside the capacitor
ΦE = πR2E, so

B =
µ0

2πr
ε0πR

2dE

dt
=

µ0

2πr
id.

Inside the capacitor the enclosed flux is ΦE = πr2E; but we want instead to define id in terms of
the total ΦE inside the capacitor as was done above. Consequently, inside the conductor

B =
µ0r

2πR2

ε0πR
2dE

dt
=

µ0r

2πR2
id.

E38-7 Since the electric field is uniform in the area and perpendicular to the surface area we
have

ΦE =
∫
~E · d~A =

∫
E dA = E

∫
dA = EA.

The displacement current is then

id = ε0A
dE

dt
= (8.85×10−12F/m)(1.9 m2)

dE

dt
.
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(a) In the first region the electric field decreases by 0.2 MV/m in 4µs, so

id = (8.85×10−12F/m)(1.9 m2)
(−0.2×106V/m)

(4×10−6s)
= −0.84 A.

(b) The electric field is constant so there is no change in the electric flux, and hence there is no
displacement current.

(c) In the last region the electric field decreases by 0.4 MV/m in 5µs, so

id = (8.85×10−12F/m)(1.9 m2)
(−0.4×106V/m)

(5×10−6s)
= −1.3 A.

E38-8 (a) Because of the circular symmetry
∮
~B · d~s = 2πrB, where r is the distance from the

center of the circular plates. Not only that, but id = jdA = πr2jd. Equate these two expressions,
and

B = µ0rjd/2 = (4π×10−7H/m)(0.053 m)(1.87×101A/m)/2 = 6.23×10−7T.

(b) dE/dt = id/ε0A = jd/ε0 = (1.87×101A/m)/(8.85×10−12F/m) = 2.11×10−12V/m.

E38-9 The magnitude of E is given by

E =
(162 V)

(4.8×10−3m)
sin 2π(60/s)t;

Using the results from Sample Problem 38-1,

Bm =
µ0ε0R

2
dE

dt

∣∣∣∣
t=0

,

=
(4π×10−7H/m)(8.85×10−12F/m)(0.0321 m)

2
2π(60/s)

(162 V)
(4.8×10−3m)

,

= 2.27×10−12T.

E38-10 (a) Eq. 33-13 from page 764 and Eq. 33-34 from page 762.
(b) Eq. 27-11 from page 618 and the equation from Ex. 27-25 on page 630.
(c) The equations from Ex. 38-6 on page 876.
(d) Eqs. 34-16 and 34-17 from page 785.

E38-11 (a) Consider the path abefa. The closed line integral consists of two parts: b → e and
e→ f → a→ b. Then ∮

~E · d~s = −dΦ
dt

can be written as ∫
b→e

~E · d~s +
∫
e→f→a→b

~E · d~s = − d

dt
Φabef .

Now consider the path bcdeb. The closed line integral consists of two parts: b→ c→ d→ e and
e→ b. Then ∮

~E · d~s = −dΦ
dt

can be written as ∫
b→c→d→e

~E · d~s +
∫
e→b

~E · d~s = − d

dt
Φbcde.

162



These two expressions can be added together, and since∫
e→b

~E · d~s = −
∫
b→e

~E · d~s

we get ∫
e→f→a→b

~E · d~s +
∫
b→c→d→e

~E · d~s = − d

dt
(Φabef + Φbcde) .

The left hand side of this is just the line integral over the closed path efadcde; the right hand side
is the net change in flux through the two surfaces. Then we can simplify this expression as∮

~E · d~s = −dΦ
dt
.

(b) Do everything above again, except substitute B for E.
(c) If the equations were not self consistent we would arrive at different values of E and B

depending on how we defined our surfaces. This multi-valued result would be quite unphysical.

E38-12 (a) Consider the part on the left. It has a shared surface s, and the other surfaces l.
Applying Eq. I,

ql/ε0 =
∮
~E · d~A =

∫
s

~E · d~A +
∫
l

~E · d~A.

Note that d~A is directed to the right on the shared surface.
Consider the part on the right. It has a shared surface s, and the other surfaces r. Applying Eq.

I,

qr/ε0 =
∮
~E · d~A =

∫
s

~E · d~A +
∫
r

~E · d~A.

Note that d~A is directed to the left on the shared surface.
Adding these two expressions will result in a canceling out of the part∫

s

~E · d~A

since one is oriented opposite the other. We are left with

qr + ql
ε0

=
∫
r

~E · d~A +
∫
l

~E · d~A =
∮
~E · d~A.

E38-13

E38-14 (a) Electric dipole is because the charges are separating like an electric dipole. Magnetic
dipole because the current loop acts like a magnetic dipole.

E38-15 A series LC circuit will oscillate naturally at a frequency

f =
ω

2π
=

1
2π
√
LC

We will need to combine this with v = fλ, where v = c is the speed of EM waves.
We want to know the inductance required to produce an EM wave of wavelength λ = 550×10−9m,

so

L =
λ2

4π2c2C
=

(550× 10−9m)2

4π2(3.00× 108m/s)2(17× 10−12 F)
= 5.01× 10−21 H.

This is a small inductance!
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E38-16 (a) B = E/c, and B must be pointing in the negative y direction in order that the wave
be propagating in the positive x direction. Then Bx = Bz = 0, and

By = −Ez/c = −(2.34×10−4V/m)/(3.00×108m/s) = (−7.80×10−13T) sin k(x− ct).

(b) λ = 2π/k = 2π/(9.72×106/m) = 6.46×10−7m.

E38-17 The electric and magnetic field of an electromagnetic wave are related by Eqs. 38-15
and 38-16,

B =
E

c
=

(321µV/m)
(3.00× 108m/s)

= 1.07 pT.

E38-18 Take the partial of Eq. 38-14 with respect to x,

∂

∂x

∂E

∂x
= − ∂

∂x

∂B

∂t
,

∂2E

∂x2
= − ∂

2B

∂x∂t
.

Take the partial of Eq. 38-17 with respect to t,

− ∂

∂t

∂B

∂x
= µ0ε0

∂

∂t

∂E

∂t
,

− ∂
2B

∂t∂x
= µ0ε0

∂2E

∂t2
.

Equate, and let µ0ε0 = 1/c2, then
∂2E

∂x2
=

1
c2
∂2E

∂t2
.

Repeat, except now take the partial of Eq. 38-14 with respect to t, and then take the partial of Eq.
38-17 with respect to x.

E38-19 (a) Since sin(kx− ωt) is of the form f(kx± ωt), then we only need do part (b).
(b) The constant Em drops out of the wave equation, so we need only concern ourselves with

f(kx± ωt). Letting g = kx± ωt,

∂2f

∂t2
= c2

∂2f

∂x2
,

∂2f

∂g2

(
∂g

∂t

)2

= c2
∂2f

∂g2

(
∂g

∂x

)2

,

∂g

∂t
= c

∂g

∂x
,

ω = ck.

E38-20 Use the right hand rule.

E38-21 U = Pt = (100×1012W)(1.0×10−9s) = 1.0×105J.

E38-22 E = Bc = (28×10−9T)(3.0×108m/s) = 8.4 V/m. It is in the positive x direction.
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E38-23 Intensity is given by Eq. 38-28, which is simply an expression of power divided by surface
area. To find the intensity of the TV signal at α-Centauri we need to find the distance in meters;

r = (4.30 light-years)(3.00×108 m/s)(3.15×107 s/year) = 4.06× 1016 m.

The intensity of the signal when it has arrived at out nearest neighbor is then

I =
P

4πr2
=

(960 kW)
4π(4.06× 1016 m)2

= 4.63× 10−29 W/m2

E38-24 (a) From Eq. 38-22, S = cB2/µ0. B = Bm sinωt. The time average is defined as

1
T

∫ T

0

S dt =
cBm

2

µ0T

∫ T

0

cos2 ωt dt =
cBm

2

2µ0
.

(b) Sav = (3.0×108m/s)(1.0×10−4T)2/2(4π×10−7H/m) = 1.2×106W/m2.

E38-25 I = P/4πr2, so

r =
√
P/4πI =

√
(1.0×103W)/4π(130 W/m2) = 0.78 m.

E38-26 uE = ε0E
2/2 = ε0(cB)2/2 = B2/2µ0 = uB .

E38-27 (a) Intensity is related to distance by Eq. 38-28. If r1 is the original distance from the
street lamp and I1 the intensity at that distance, then

I1 =
P

4πr2
1

.

There is a similar expression for the closer distance r2 = r1−162 m and the intensity at that distance
I2 = 1.50I1. We can combine the two expression for intensity,

I2 = 1.50I1,
P

4πr2
2

= 1.50
P

4πr2
1

,

r2
1 = 1.50r2

2,

r1 =
√

1.50 (r1 − 162 m).

The last line is easy enough to solve and we find r1 = 883 m.
(b) No, we can’t find the power output from the lamp, because we were never provided with an

absolute intensity reference.

E38-28 (a) Em =
√

2µ0cI, so

Em =
√

2(4π×10−7H/m)(3.00×108m/s)(1.38×103W/m2) = 1.02×103V/m.

(b) Bm = Em/c = (1.02×103V/m)/(3.00×108m/s) = 3.40×10−6T.

E38-29 (a) Bm = Em/c = (1.96 V/m)/(3.00×108m/s) = 6.53×10−9T.
(b) I = Em

2/2µ0c = (1.96 V)2/2(4π×10−7H/m)(3.00×108m/s) = 5.10×10−3W/m2.
(c) P = 4πr2I = 4π(11.2 m)2(5.10×10−3W/m2) = 8.04 W.
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E38-30 (a) The intensity is

I =
P

A
=

(1×10−12W)
4π(6.37×106m)2

= 1.96×10−27W/m2.

The power received by the Arecibo antenna is

P = IA = (1.96×10−27W/m2)π(305 m)2/4 = 1.4×10−22W.

(b) The power of the transmitter at the center of the galaxy would be

P = IA = (1.96×10−27W)π(2.3×104ly)2(9.46×1015m/ly)2 = 2.9×1014W.

E38-31 (a) The electric field amplitude is related to the intensity by Eq. 38-26,

I =
E2

m

2µ0c
,

or
Em =

√
2µ0cI =

√
2(4π×10−7H/m)(3.00×108m/s)(7.83µW/m2) = 7.68×10−2 V/m.

(b) The magnetic field amplitude is given by

Bm =
Em

c
=

(7.68× 10−2 V/m)
(3.00× 108m/s)

= 2.56× 10−10 T

(c) The power radiated by the transmitter can be found from Eq. 38-28,

P = 4πr2I = 4π(11.3 km)2(7.83µW/m2) = 12.6 kW.

E38-32 (a) The power incident on (and then reflected by) the target craft is P1 = I1A = P0A/2πr2.
The intensity of the reflected beam is I2 = P1/2πr2 = P0A/4π2r4. Then

I2 = (183×103W)(0.222 m2)/4π2(88.2×103m)4 = 1.70×10−17W/m2.

(b) Use Eq. 38-26:

Em =
√

2µ0cI =
√

2(4π×10−7H/m)(3.00×108m/s)(1.70×10−17W/m2) = 1.13×10−7 V/m.

(c) Brms = Em/
√

2c = (1.13×10−7 V/m)/
√

2(3.00×108m/s) = 2.66×10−16T.

E38-33 Radiation pressure for absorption is given by Eq. 38-34, but we need to find the energy
absorbed before we can apply that. We are given an intensity, a surface area, and a time, so

∆U = (1.1×103W/m2)(1.3 m2)(9.0×103s) = 1.3×107J.

The momentum delivered is

p = (∆U)/c = (1.3×107J)/(3.00×108m/s) = 4.3×10−2kg ·m/s.

E38-34 (a) F/A = I/c = (1.38×103W/m2)/(3.00×108m/s) = 4.60×10−6Pa.
(b) (4.60×10−6Pa)/(101×105Pa) = 4.55×10−11.

E38-35 F/A = 2P/Ac = 2(1.5×109W)/(1.3×10−6m2)(3.0×108m/s) = 7.7×106Pa.
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E38-36 F/A = P/4πr2c, so

F/A = (500 W)/4π(1.50 m)2(3.00×108m/s) = 5.89×10−8Pa.

E38-37 (a) F = IA/c, so

F =
(1.38×103W/m2)π(6.37×106m)2

(3.00×108m/s)
= 5.86×108N.

E38-38 (a) Assuming MKSA, the units are

m
s

F
m

V
m

N
Am

=
m
s

C
Vm

V
m

sN
Cm

=
Ns
m2s

.

(b) Assuming MKSA, the units are

A2

N
V
m

N
Am

=
A2

N
J

Cm
N

Am
=

1
sm

J
m

=
J

m2s
.

E38-39 We can treat the object as having two surfaces, one completely reflecting and the other
completely absorbing. If the entire surface has an area A then the absorbing part has an area fA
while the reflecting part has area (1− f)A. The average force is then the sum of the force on each
part,

F av =
I

c
fA+

2I
c

(1− f)A,

which can be written in terms of pressure as

F av

A
=
I

c
(2− f).

E38-40 We can treat the object as having two surfaces, one completely reflecting and the other
completely absorbing. If the entire surface has an area A then the absorbing part has an area fA
while the reflecting part has area (1− f)A. The average force is then the sum of the force on each
part,

F av =
I

c
fA+

2I
c

(1− f)A,

which can be written in terms of pressure as

F av

A
=
I

c
(2− f).

The intensity I is that of the incident beam; the reflected beam will have an intensity (1 − f)I.
Each beam will contribute to the energy density— I/c and (1− f)I/c, respectively. Add these two
energy densities to get the net energy density outside the surface. The result is (2− f)I/c, which is
the left hand side of the pressure relation above.

E38-41 The bullet density is ρ = Nm/V . Let V = Ah; the kinetic energy density is K/V =
1
2Nmv

2/Ah. h/v, however, is the time taken for N balls to strike the surface, so that

P =
F

A
=
Nmv

At
=
Nmv2

Ah
=

2K
V
.
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E38-42 F = IA/c; P = IA; a = F/m; and v = at. Combine:

v = Pt/mc = (10×103W)(86400 s)/(1500 kg)(3×108m/s) = 1.9×10−3m/s.

E38-43 The force of radiation on the bottom of the cylinder is F = 2IA/c. The force of gravity
on the cylinder is

W = mg = ρHAg.

Equating, 2I/c = ρHg. The intensity of the beam is given by I = 4P/πd2. Solving for H,

H =
8P

πcρgd2
=

8(4.6 W)
π(3.0×108m/s)(1200 kg/m3)(9.8 m/s2)(2.6×10−3m)2

= 4.9×10−7m.

E38-44 F = 2IA/c. The value for I is in Ex. 38-37, among other places. Then

F = (1.38×103W/m2)(3.1×106m2)/(3.00×108m/s) = 29 N.

P38-1 For the two outer circles use Eq. 33-13. For the inner circle use E = V/d, Q = CV ,
C = ε0A/d, and i = dQ/dt. Then

i =
dQ

dt
=
ε0A

d

dV

dt
= ε0A

dE

dt
.

The change in flux is dΦE/dt = AdE/dt. Then∮
~B · d~l = µ0ε0

dΦE
dt

= µ0i,

so B = µ0i/2πr.

P38-2 (a) id = i. Assuming ∆V = (174×103V) sinωt, then q = C∆V and i = dq/dt = Cd(∆V )/dt.
Combine, and use ω = 2π(50.0/s),

id = (100×10−12F)(174×103V)2π(50.0/s) = 5.47×10−3A.

P38-3 (a) i = id = 7.63µA.
(b) dΦE/dt = id/ε0 = (7.63µA)/(8.85×10−12F/m) = 8.62×105V/m.
(c) i = dq/dt = Cd(∆V )/dt; C = ε0A/d; [d(∆V )/dt]m = Emω. Combine, and

d =
ε0A

C
=
ε0AEmω

i
=

(8.85×10−12F/m)π(0.182 m)2(225 V)(128 rad/s)
(7.63µA)

= 3.48×10−3m.

P38-4 (a) q =
∫
i dt = α

∫
t dt = αt2/2.

(b) E = σ/ε0 = q/ε0A = αt2/2πR2ε0.
(d) 2πrB = µ0ε0πr

2dE/dt, so

B = µ0r(dE/dt)/2 = µ0αrt/2πR2.

(e) Check Exercise 38-10!

P38-5 (a) ~E = E ĵ and ~B = Bk̂. Then ~S = ~E× ~B/µ0, or

~S = −EB/mu0 î.

Energy only passes through the yz faces; it goes in one face and out the other. The rate is P =
SA = EBa2/mu0.

(b) The net change is zero.
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P38-6 (a) For a sinusoidal time dependence |dE/dt|m = ωEm = 2πfEm. Then

|dE/dt|m = 2π(2.4×109/s)(13×103V/m) = 1.96×1014V/m · s.

(b) Using the result of part (b) of Sample Problem 38-1,

B =
1
2

(4π×10−7H/m)(8.9×10−12F/m)(2.4×10−2m)
1
2

(1.96×1014V/m · s) = 1.3×10−5T.

P38-7 Look back to Chapter 14 for a discussion on the elliptic orbit. On page 312 it is pointed
out that the closest distance to the sun is Rp = a(1− e) while the farthest distance is Ra = a(1 + e),
where a is the semi-major axis and e the eccentricity.

The fractional variation in intensity is

∆I
I

≈ Ip − Ia

Ia
,

=
Ip

Ia
− 1,

=
Ra

2

Rp
2
− 1,

=
(1 + e)2

(1− e)2
− 1.

We need to expand this expression for small e using (1 + e)2 ≈ 1 + 2e, and (1− e)−2 ≈ 1 + 2e, and
finally (1 + 2e)2 ≈ 1 + 4e. Combining,

∆I
I
≈ (1 + 2e)2 − 1 ≈ 4e.

P38-8 The beam radius grows as r = (0.440µrad)R, where R is the distance from the origin. The
beam intensity is

I =
P

πr2
=

(3850 W)
π(0.440µrad)2(3.82×108m)2

= 4.3×10−2W.

P38-9 Eq. 38-14 requires

∂E

∂x
= −∂B

∂t
,

Emk cos kx sinωt = Bmω cos kx sinωt,
Emk = Bmω.

Eq. 38-17 requires

µ0ε0
∂E

∂t
= −∂B

∂x
,

µ0ε0Emω sin kx cosωt = Bmk sin kx cosωt,
µ0ε0Emω = Bmk.

Dividing one expression by the other,

µ0ε0k
2 = ω2,
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or
ω

k
= c =

1
√
µ0ε0

.
Not only that, but Em = cBm. You’ve seen an expression similar to this before, and you’ll see

expressions similar to it again.
(b) We’ll assume that Eq. 38-21 is applicable here. Then

S =
1
µ0

=
EmBm

µ0
sin kx sinωt cos kx cosωt,

=
E2

m

4µ0c
sin 2kx sin 2ωt

is the magnitude of the instantaneous Poynting vector.
(c) The time averaged power flow across any surface is the value of

1
T

∫ T

0

∫
~S · d~A dt,

where T is the period of the oscillation. We’ll just gloss over any concerns about direction, and
assume that the ~S will be constant in direction so that we will, at most, need to concern ourselves
about a constant factor cos θ. We can then deal with a scalar, instead of vector, integral, and we
can integrate it in any order we want. We want to do the t integration first, because an integral over
sinωt for a period T = 2π/ω is zero. Then we are done!

(d) There is no energy flow; the energy remains inside the container.

P38-10 (a) The electric field is parallel to the wire and given by

E = V/d = iR/d = (25.0 A)(1.00 Ω/300 m) = 8.33×10−2V/m

(b) The magnetic field is in rings around the wire. Using Eq. 33-13,

B =
µ0i

2πr
=

(4π×10−7H/m)(25 A)
2π(1.24×10−3m)

= 4.03×10−3T.

(c) S = EB/µ0, so

S = (8.33×10−2V/m)(4.03×10−3T)/(4π×10−7H/m) = 267 W/m2.

P38-11 (a) We’ve already calculated B previously. It is

B =
µ0i

2πr
where i =

E
R
.

The electric field of a long straight wire has the form E = k/r, where k is some constant. But

∆V = −
∫
~E · d~s = −

∫ b

a

E dr = −k ln(b/a).

In this problem the inner conductor is at the higher potential, so

k =
−∆V

ln(b/a)
=

E
ln(b/a)

,
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and then the electric field is
E =

E
r ln(b/a)

.

This is also a vector field, and if E is positive the electric field points radially out from the central
conductor.

(b) The Poynting vector is
~S =

1
µ0

~E× ~B;

~E is radial while ~B is circular, so they are perpendicular. Assuming that E is positive the direction
of ~S is away from the battery. Switching the sign of E (connecting the battery in reverse) will flip
the direction of both ~E and ~B, so ~S will pick up two negative signs and therefore still point away
from the battery.

The magnitude is

S =
EB

µ0
=

E2

2πR ln(b/a)r2

(c) We want to evaluate a surface integral in polar coordinates and so dA = (dr)(rdθ). We have
already established that ~S is pointing away from the battery parallel to the central axis. Then we
can integrate

P =
∫
~S · d~A =

∫
S dA,

=
∫ b

a

∫ 2π

0

E2

2πR ln(b/a)r2
dθ r dr,

=
∫ b

a

E2

R ln(b/a)r
dr,

=
E2

R
.

(d) Read part (b) above.

P38-12 (a) ~B is oriented as rings around the cylinder. If the thumb is in the direction of current
then the fingers of the right hand grip ion the direction of the magnetic field lines. ~E is directed
parallel to the wire in the direction of the current. ~S is found from the cross product of these two,
and must be pointing radially inward.

(b) The magnetic field on the surface is given by Eq. 33-13:

B = µ0i/2πa.

The electric field on the surface is given by

E = V/l = iR/l

Then S has magnitude

S = EB/µ0 =
i

2πa
iR

l
=

i2R

2πal
.∫

~S · d~A is only evaluated on the surface of the cylinder, not the end caps. ~S is everywhere parallel
to d~A, so the dot product reduces to S dA; S is uniform, so it can be brought out of the integral;∫
dA = 2πal on the surface.

Hence, ∫
~S · d~A = i2R,

as it should.
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P38-13 (a) f = vlambda = (3.00×108m/s)/(3.18 m) = 9.43×107 Hz.
(b) ~Bmust be directed along the z axis. The magnitude is

B = E/c = (288 V/m)/(3.00×108m/s) = 9.6×10−7T.

(c) k = 2π/λ = 2π/(3.18 m) = 1.98/m while ω = 2πf , so

ω = 2π(9.43×107Hz) = 5.93×108 rad/s.

(d) I = EmBm/2µ0, so

I =
(288 V)(9.6×10−7T)

2(4π×10−7H/m)
= 110 W.

(e) P = I/c = (110 W)/(3.00×108m/s) = 3.67×10−7Pa.

P38-14 (a) ~B is oriented as rings around the cylinder. If the thumb is in the direction of current
then the fingers of the right hand grip ion the direction of the magnetic field lines. ~E is directed
parallel to the wire in the direction of the current. ~S is found from the cross product of these two,
and must be pointing radially inward.

(b) The magnitude of the electric field is

E =
V

d
=

Q

Cd
=

Q

ε0A
=

it

ε0A
.

The magnitude of the magnetic field on the outside of the plates is given by Sample Problem 38-1,

B =
µ0ε0R

2
dE

dt
=
µ0ε0iR

2ε0A
=
µ0ε0R

2t
E.

~S has magnitude

S =
EB

µ0
=
ε0R

2t
E2.

Integrating, ∫
~S · d~A =

ε0R

2t
E22πRd = Ad

ε0E
2

t
.

But E is linear in t, so d(E2)/dt = 2E2/t; and then∫
~S · d~A = Ad

d

dt

(
1
2
ε0E

2

)
.

P38-15 (a) I = P/A = (5.00×10−3W)/π(1.05)2(633×10−9m)2 = 3.6×109W/m2.
(b) p = I/c = (3.6×109W/m2)/(3.00×108m/s) = 12 Pa
(c) F = pA = P/c = (5.00×10−3W)/(3.00×108m/s) = 1.67×10−11N.
(d) a = F/m = F/ρV , so

a =
(1.67×10−11N)

4(4880 kg/m3)(1.05)3(633×10−9)3/3
= 2.9×103m/s2.
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P38-16 The force from the sun is F = GMm/r2. The force from radiation pressure is

F =
2IA
c

=
2PA
4πr2c

.

Equating,

A =
4πGMm

2P/c
,

so

A =
4π(6.67×10−11N ·m2/kg2)(1.99×1030kg)(1650 kg)

2(3.9×1026W)/(3.0×108m/s)
= 1.06×106m2.

That’s about one square kilometer.
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E39-1 Both scales are logarithmic; choose any data point from the right hand side such as

c = fλ ≈ (1 Hz)(3×108m) = 3×108m/s,

and another from the left hand side such as

c = fλ ≈ (1×1021 Hz)(3×10−13m) = 3×108m/s.

E39-2 (a) f = v/λ = (3.0×108m/s)/(1.0×104)(6.37×106m) = 4.7×10−3 Hz. If we assume that
this is the data transmission rate in bits per second (a generous assumption), then it would take 140
days to download a web-page which would take only 1 second on a 56K modem!

(b) T = 1/f = 212 s = 3.5 min.

E39-3 (a) Apply v = fλ. Then

f = (3.0×108m/s)/(0.067×10−15m) = 4.5×1024 Hz.

(b) λ = (3.0×108m/s)/(30 Hz) = 1.0×107m.

E39-4 Don’t simply take reciprocal of linewidth! f = c/λ, so δf = (−c/λ2)δλ. Ignore the negative,
and

δf = (3.00×108m/s)(0.010×10−9m)/(632.8×10−9m)2 = 7.5×109 Hz.

E39-5 (a) We refer to Fig. 39-6 to answer this question. The limits are approximately 520 nm
and 620 nm.

(b) The wavelength for which the eye is most sensitive is 550 nm. This corresponds to to a
frequency of

f = c/λ = (3.00× 108 m/s)/(550× 10−9m) = 5.45× 1014 Hz.

This frequency corresponds to a period of T = 1/f = 1.83× 10−15s.

E39-6 f = c/λ. The number of complete pulses is ft, or

ft = ct/λ = (3.00×108m/s)(430×10−12s)/(520×10−9m) = 2.48×105.

E39-7 (a) 2(4.34 y) = 8.68 y.
(b) 2(2.2×106 y) = 4.4×106 y.

E39-8 (a) t = (150×103m)/(3×108m/s) = 5×10−4s.
(b) The distance traveled by the light is (1.5×1011m) + 2(3.8×108m), so

t = (1.51×1011m)/(3×108m/s) = 503 s.

(c) t = 2(1.3×1012m)/(3×108m/s) = 8670 s.
(d) 1054− 6500 ≈ 5400 BC.

E39-9 This is a question of how much time it takes light to travel 4 cm, because the light traveled
from the Earth to the moon, bounced off of the reflector, and then traveled back. The time to travel
4 cm is ∆t = (0.04 m)/(3× 108 m/s) = 0.13 ns. Note that I interpreted the question differently than
the answer in the back of the book.
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E39-10 Consider any incoming ray. The path of the ray can be projected onto the xy plane, the
xz plane, or the yz plane. If the projected rays is exactly reflected in all three cases then the three
dimensional incoming ray will be reflected exactly reversed. But the problem is symmetric, so it is
sufficient to show that any plane works.

Now the problem has been reduced to Sample Problem 39-2, so we are done.

E39-11 We will choose the mirror to lie in the xy plane at z = 0. There is no loss of generality
in doing so; we had to define our coordinate system somehow. The choice is convenient in that
any normal is then parallel to the z axis. Furthermore, we can arbitrarily define the incident ray
to originate at (0, 0, z1). Lastly, we can rotate the coordinate system about the z axis so that the
reflected ray passes through the point (0, y3, z3).

The point of reflection for this ray is somewhere on the surface of the mirror, say (x2, y2, 0). This
distance traveled from the point 1 to the reflection point 2 is

d12 =
√

(0− x2)2 + (0− y2)2 + (z1 − 0)2 =
√
x2

2 + y2
2 + z2

1

and the distance traveled from the reflection point 2 to the final point 3 is

d23 =
√

(x2 − 0)2 + (y2 − y3)2 + (0− z3)2 =
√
x2

2 + (y2 − y3)2 + z2
3 .

The only point which is free to move is the reflection point, (x2, y2, 0), and that point can only
move in the xy plane. Fermat’s principle states that the reflection point will be such to minimize
the total distance,

d12 + d23 =
√
x2

2 + y2
2 + z2

1 +
√
x2

2 + (y2 − y3)2 + z2
3 .

We do this minimization by taking the partial derivative with respect to both x2 and y2. But
we can do part by inspection alone. Any non-zero value of x2 can only add to the total distance,
regardless of the value of any of the other quantities. Consequently, x2 = 0 is one of the conditions
for minimization.

We are done! Although you are invited to finish the minimization process, once we know that
x2 = 0 we have that point 1, point 2, and point 3 all lie in the yz plane. The normal is parallel to
the z axis, so it also lies in the yz plane. Everything is then in the yz plane.

E39-12 Refer to Page 442 of Volume 1.

E39-13 (a) θ1 = 38◦.
(b) (1.58) sin(38◦) = (1.22) sin θ2. Then θ2 = arcsin(0.797) = 52.9◦.

E39-14 ng = nv sin θ1/ sin θ2 = (1.00) sin(32.5◦)/ sin(21.0◦) = 1.50.

E39-15 n = c/v = (3.00×108m/s)/(1.92×108m/s) = 1.56.

E39-16 v = c/n = (3.00×108m/s)/(1.46) = 2.05×108m/s.

E39-17 The speed of light in a substance with index of refraction n is given by v = c/n. An
electron will then emit Cerenkov radiation in this particular liquid if the speed exceeds

v = c/n = (3.00× 108 m/s)/(1.54) = 1.95×108 m/s.
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E39-18 Since t = d/v = nd/c, ∆t = ∆nd/c. Then

∆t = (1.00029− 1.00000)(1.61×103m)/(3.00×108m/s) = 1.56×10−9s.

E39-19 The angle of the refracted ray is θ2 = 90◦, the angle of the incident ray can be found by
trigonometry,

tan θ1 =
(1.14 m)
(0.85 m)

= 1.34,

or θ1 = 53.3◦.
We can use these two angles, along with the index of refraction of air, to find that the index of

refraction of the liquid from Eq. 39-4,

n1 = n2
sin θ2

sin θ1
= (1.00)

(sin 90◦)
(sin 53.3◦)

= 1.25.

There are no units attached to this quantity.

E39-20 For an equilateral prism φ = 60◦. Then

n =
sin[ψ + φ]/2

sin[φ/2]
=

sin[(37◦) + (60◦)]/2
sin[(60◦)/2]

= 1.5.

E39-21

E39-22 t = d/v; but L/d = cos θ2 =
√

1− sin2 θ2 and v = c/n. Combining,

t =
nL

c
√

1− sin2 θ2

=
n2L

c
√
n2 − sin2 θ1

=
(1.63)2(0.547 m)

(3×108m/s)
√

(1.632)− sin2(24◦)
= 3.07×10−9s.

E39-23 The ray of light from the top of the smokestack to the life ring is θ1, where tan θ1 = L/h
with h the height and L the distance of the smokestack.

Snell’s law gives n1 sin θ1 = n2 sin θ2, so

θ1 = arcsin[(1.33) sin(27◦)/(1.00)] = 37.1◦.

Then L = h tan θ1 = (98 m) tan(37.1◦) = 74 m.

E39-24 The length of the shadow on the surface of the water is

x1 = (0.64 m)/ tan(55◦) = 0.448 m.

The ray of light which forms the “end” of the shadow has an angle of incidence of 35◦, so the ray
travels into the water at an angle of

θ2 = arcsin
(

(1.00)
(1.33)

sin(35◦)
)

= 25.5◦.

The ray travels an additional distance

x2 = (2.00 m− 0.64 m)/ tan(90◦ − 25.5◦) = 0.649 m

The total length of the shadow is

(0.448 m) + (0.649 m) = 1.10 m.
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E39-25 We’ll rely heavily on the figure for our arguments. Let x be the distance between the
points on the surface where the vertical ray crosses and the bent ray crosses.

d

d app

x

θ1

θ2

In this exercise we will take advantage of the fact that, for small angles θ, sin θ ≈ tan θ ≈ θ In
this approximation Snell’s law takes on the particularly simple form n1θ1 = n2θ2 The two angles
here are conveniently found from the figure,

θ1 ≈ tan θ1 =
x

d
,

and
θ2 ≈ tan θ2 =

x

dapp
.

Inserting these two angles into the simplified Snell’s law, as well as substituting n1 = n and n2 = 1.0,

n1θ1 = n2θ2,

n
x

d
=

x

dapp
,

dapp =
d

n
.

E39-26 (a) You need to address the issue of total internal reflection to answer this question.
(b) Rearrange

n =
sin[ψ + φ]/2

/
sin[φ/2]

and θ = (ψ + φ)/2 to get

θ = arcsin (n sin[φ/2]) = arcsin ((1.60) sin[(60◦)/2]) = 53.1◦.

E39-27 Use the results of Ex. 39-35. The apparent thickness of the carbon tetrachloride layer, as
viewed by an observer in the water, is

dc,w = nwdc/nc = (1.33)(41 mm)/(1.46) = 37.5 mm.

The total “thickness” from the water perspective is then (37.5 mm) + (20 mm) = 57.5 mm. The
apparent thickness of the entire system as view from the air is then

dapp = (57.5 mm)/(1.33) = 43.2 mm.
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E39-28 (a) Use the results of Ex. 39-35. dapp = (2.16 m)/(1.33) = 1.62 m.
(b) Need a diagram here!

E39-29 (a) λn = λ/n = (612 nm)/(1.51) = 405 nm.
(b) L = nLn = (1.51)(1.57 pm) = 2.37 pm. There is actually a typo: the “p” in “pm” was

supposed to be a µ. This makes a huge difference for part (c)!

E39-30 (a) f = c/λ = (3.00×108m/s)/(589 nm) = 5.09×1014Hz.
(b) λn = λ/n = (589 nm)/(1.53) = 385 nm.
(c) v = fλ = (5.09×1014Hz)(385 nm) = 1.96×108m/s.

E39-31 (a) The second derivative of

L =
√
a2 + x2 +

√
b2 + (d− x)2

is
a2(b2 + (d− 2)2)3/2 + b2(a2 + x2)3/2

(b2 + (d− 2)2)3/2(a2 + x2)3/2
.

This is always a positive number, so dL/dx = 0 is a minimum.
(a) The second derivative of

L = n1

√
a2 + x2 + n2

√
b2 + (d− x)2

is
n1a

2(b2 + (d− 2)2)3/2 + n2b
2(a2 + x2)3/2

(b2 + (d− 2)2)3/2(a2 + x2)3/2
.

This is always a positive number, so dL/dx = 0 is a minimum.

E39-32 (a) The angle of incidence on the face ac will be 90◦ − φ. Total internal reflection occurs
when sin(90◦ − φ) > 1/n, or

φ < 90◦ − arcsin[1/(1.52)] = 48.9◦.

(b) Total internal reflection occurs when sin(90◦ − φ) > nw/n, or

φ < 90◦ − arcsin[(1.33)/(1.52)] = 29.0◦.

E39-33 (a) The critical angle is given by Eq. 39-17,

θc = sin−1 n2

n1
= sin−1 (1.586)

(1.667)
= 72.07◦.

(b) Critical angles only exist when “attempting” to travel from a medium of higher index of
refraction to a medium of lower index of refraction; in this case from A to B.

E39-34 If the fire is at the water’s edge then the light travels along the surface, entering the
water near the fish with an angle of incidence of effectively 90◦. Then the angle of refraction in
the water is numerically equivalent to a critical angle, so the fish needs to look up at an angle of
θ = arcsin(1/1.33) = 49◦ with the vertical. That’s the same as 41◦ with the horizontal.
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E39-35 Light can only emerge from the water if it has an angle of incidence less than the critical
angle, or

θ < θc = arcsin 1/n = arcsin 1/(1.33) = 48.8◦.

The radius of the circle of light is given by r/d = tan θc, where d is the depth. The diameter is twice
this radius, or

2(0.82 m) tan(48.8◦) = 1.87 m.

E39-36 The refracted angle is given by n sin θ1 = sin(39◦). This ray strikes the left surface with
an angle of incidence of 90◦ − θ1. Total internal reflection occurs when

sin(90◦ − θ1) = 1/n;

but sin(90◦− θ1) = cos θ1, so we can combine and get tan θ = sin(39◦) with solution θ1 = 32.2◦. The
index of refraction of the glass is then

n = sin(39◦)/ sin(32.2) = 1.18.

E39-37 The light strikes the quartz-air interface from the inside; it is originally “white”, so if
the reflected ray is to appear “bluish” (reddish) then the refracted ray should have been “reddish”
(bluish). Since part of the light undergoes total internal reflection while the other part does not,
then the angle of incidence must be approximately equal to the critical angle.

(a) Look at Fig. 39-11, the index of refraction of fused quartz is given as a function of the
wavelength. As the wavelength increases the index of refraction decreases. The critical angle is a
function of the index of refraction; for a substance in air the critical angle is given by sin θc = 1/n.
As n decreases 1/n increases so θc increases. For fused quartz, then, as wavelength increases θc also
increases.

In short, red light has a larger critical angle than blue light. If the angle of incidence is midway
between the critical angle of red and the critical angle of blue, then the blue component of the light
will experience total internal reflection while the red component will pass through as a refracted ray.

So yes, the light can be made to appear bluish.
(b) No, the light can’t be made to appear reddish. See above.
(c) Choose an angle of incidence between the two critical angles as described in part (a). Using

a value of n = 1.46 from Fig. 39-11,

θc = sin−1(1/1.46) = 43.2◦.

Getting the effect to work will require considerable sensitivity.

E39-38 (a) There needs to be an opaque spot in the center of each face so that no refracted ray
emerges. The radius of the spot will be large enough to cover rays which meet the surface at less
than the critical angle. This means tan θc = r/d, where d is the distance from the surface to the
spot, or 6.3 mm. Since

θc = arcsin 1/(1.52) = 41.1◦,

then r = (6.3 mm) tan(41.1◦) = 5.50 mm.
(b) The circles have an area of a = π(5.50 mm)2 = 95.0 mm2. Each side has an area of (12.6 mm)2;

the fraction covered is then (95.0 mm2)/(12.6 mm)2 = 0.598.

E39-39 For u� c the relativistic Doppler shift simplifies to

∆f = −f0u/c = −u/λ0,

so
u = λ0∆f = (0.211 m)∆f.
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E39-40 c = fλ, so 0 = f∆λ+λ∆f . Then ∆λ/λ = −∆f/f . Furthermore, f0− f , from Eq. 39-21,
is f0u/c for small enough u. Then

∆λ
λ

= −f − f0

f0
=
u

c
.

E39-41 The Doppler theory for light gives

f = f0
1− u/c√
1− u2/c2

= f0
1− (0.2)√
1− (0.2)2

= 0.82 f0.

The frequency is shifted down to about 80%, which means the wavelength is shifted up by an
additional 25%. Blue light (480 nm) would appear yellow/orange (585 nm).

E39-42 Use Eq. 39-20:

f = f0
1− u/c√
1− u2/c2

= (100 Mhz)
1− (0.892)√
1− (0.892)2

= 23.9 MHz.

E39-43 (a) If the wavelength is three times longer then the frequency is one-third, so for the
classical Doppler shift

f0/3 = f0(1− u/c),

or u = 2c.
(b) For the relativistic shift,

f0/3 = f0
1− u/c√
1− u2/c2

,√
1− u2/c2 = 3(1− u/c),
c2 − u2 = 9(c− u)2,

0 = 10u2 − 18uc+ 8c2.

The solution is u = 4c/5.

E39-44 (a) f0/f = λ/λ0. This shift is small, so we apply the approximation:

u = c

(
λ0

λ
− 1
)

= (3×108m/s)
(

(462 nm)
(434 nm)

− 1
)

= 1.9×107m/s.

(b) A red shift corresponds to objects moving away from us.

E39-45 The sun rotates once every 26 days at the equator, while the radius is 7.0×108m. The
speed of a point on the equator is then

v =
2πR
T

=
2π(7.0×108m)

(2.2×106s)
= 2.0×103 m/s.

This corresponds to a velocity parameter of

β = u/c = (2.0×103 m/s)/(3.0×108 m/s) = 6.7×10−6.

This is a case of small numbers, so we’ll use the formula that you derived in Exercise 39-40:

∆λ = λβ = (553 nm)(6.7×10−6) = 3.7×10−3 nm.

180



E39-46 Use Eq. 39-23 written as

(1− u/c)λ2 = λ2
0(1 + u/c),

which can be rearranged as

u/c =
λ2 − λ2

0

λ2 + λ2
0

=
(540 nm)2 − (620 nm)2

(540 nm)2 + (620 nm)2
= −0.137.

The negative sign means that you should be going toward the red light.

E39-47 (a) f1 = cf/(c+ v) and f2 = cf/(c− v).

∆f = (f2 − f)− (f − f1) = f2 + f1 − 2f,

so

∆f
f

=
c

c+ v
+

c

c− v
− 2,

=
2v2

c2 − v2
,

=
2(8.65×105m/s)2

(3.00×108m/s)2 − (8.65×105m/s)2
,

= 1.66×10−5.

(b) f1 = f(c− u)/sqrtc2 − u2 and f2 = f(c+ u)/
√
c2 − u2.

∆f = (f2 − f)− (f − f1) = f2 + f1 − 2f,

so

∆f
f

=
2c√

c2 − u2
− 2,

=
2(3.00×108m/s)√

(3.00×108m/s)2 − (8.65×105m/s)2
− 2,

= 8.3×10−6.

E39-48 (a) No relative motion, so every 6 minutes.
(b) The Doppler effect at this speed is

1− u/c√
1− u2/c2

=
1− (0.6)√
1− (0.6)2

= 0.5;

this means the frequency is one half, so the period is doubled to 12 minutes.
(c) If C send the signal at the instant the signal from A passes, then the two signals travel together

to C, so C would get B’s signals at the same rate that it gets A’s signals: every six minutes.

E39-49

E39-50 The transverse Doppler effect is λ = λ0/
√

1− u2/c2. Then

λ = (589.00 nm)/
√

1− (0.122)2 = 593.43 nm.

The shift is (593.43 nm)− (589.00 nm) = 4.43 nm.
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E39-51 The frequency observed by the detector from the first source is (Eq. 39-31)

f = f1

√
1− (0.717)2 = 0.697f1.

The frequency observed by the detector from the second source is (Eq. 39-30)

f = f2

√
1− (0.717)2

1 + (0.717) cos θ
=

0.697f2

1 + (0.717) cos θ
.

We need to equate these and solve for θ. Then

0.697f1 =
0.697f2

1 + 0.717 cos θ
,

1 + 0.717 cos θ = f2/f1,

cos θ = (f2/f1 − 1) /0.717,
θ = 101.1◦.

Subtract from 180◦ to find the angle with the line of sight.

E39-52

P39-1 Consider the triangle in Fig. 39-45. The true position corresponds to the speed of light,
the opposite side corresponds to the velocity of earth in the orbit. Then

θ = arctan(29.8×103m/s)/(3.00×108m/s) = 20.5′′.

P39-2 The distance to Jupiter from point x is dx = rj − re. The distance to Jupiter from point y
is

d2 =
√
r2
e + r2

j .

The difference in distance is related to the time according to

(d2 − d1)/t = c,

so √
(778×109m)2 + (150×109m)2 − (778×109m) + (150×109m)

(600 s)
= 2.7×108m/s.

P39-3 sin(30◦)/(4.0 m/s) = sin θ/(3.0 m/s). Then θ = 22◦. Water waves travel more slowly in
shallower water, which means they always bend toward the normal as they approach land.

P39-4 (a) If the ray is normal to the water’s surface then it passes into the water undeflected.
Once in the water the problem is identical to Sample Problem 39-2. The reflected ray in the water
is parallel to the incident ray in the water, so it also strikes the water normal, and is transmitted
normal.

(b) Assume the ray strikes the water at an angle θ1. It then passes into the water at an angle
θ2, where

nw sin θ2 = na sin θ1.

Once the ray is in the water then the problem is identical to Sample Problem 39-2. The reflected
ray in the water is parallel to the incident ray in the water, so it also strikes the water at an angle
θ2. When the ray travels back into the air it travels with an angle θ3, where

nw sin θ2 = na sin θ3.

Comparing the two equations yields θ1 = θ3, so the outgoing ray in the air is parallel to the incoming
ray.
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P39-5 (a) As was done in Ex. 39-25 above we use the small angle approximation of

sin θ ≈ θ ≈ tan θ

The incident angle is θ; if the light were to go in a straight line we would expect it to strike a
distance y1 beneath the normal on the right hand side. The various distances are related to the
angle by

θ ≈ tan θ ≈ y1/t.

The light, however, does not go in a straight line, it is refracted according to (the small angle
approximation to) Snell’s law, n1θ1 = n2θ2, which we will simplify further by letting θ1 = θ, n2 = n,
and n1 = 1, θ = nθ2. The point where the refracted ray does strike is related to the angle by
θ2 ≈ tan θ2 = y2/t. Combining the three expressions,

y1 = ny2.

The difference, y1 − y2 is the vertical distance between the displaced ray and the original ray as
measured on the plate glass. A little algebra yields

y1 − y2 = y1 − y1/n,

= y1 (1− 1/n) ,

= tθ
n− 1
n

.

The perpendicular distance x is related to this difference by

cos θ = x/(y1 − y2).

In the small angle approximation cos θ ≈ 1− θ2/2. If θ is sufficiently small we can ignore the square
term, and x ≈ y2 − y1.

(b) Remember to use radians and not degrees whenever the small angle approximation is applied.
Then

x = (1.0 cm)(0.175 rad)
(1.52)− 1

(1.52)
= 0.060 cm.

P39-6 (a) At the top layer,
n1 sin θ1 = sin θ;

at the next layer,
n2 sin θ2 = n1 sin θ1;

at the next layer,
n3 sin θ3 = n2 sin θ2.

Combining all three expressions,
n3 sin θ3 = sin θ.

(b) θ3 = arcsin[sin(50◦)/(1.00029)] = 49.98◦. Then shift is (50◦)− (49.98◦) = 0.02◦.

P39-7 The “big idea” of Problem 6 is that when light travels through layers the angle that it
makes in any layer depends only on the incident angle, the index of refraction where that incident
angle occurs, and the index of refraction at the current point.

That means that light which leaves the surface of the runway at 90◦ to the normal will make an
angle

n0 sin 90◦ = n0(1 + ay) sin θ
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at some height y above the runway. It is mildly entertaining to note that the value of n0 is unim-
portant, only the value of a!

The expression

sin θ =
1

1 + ay
≈ 1− ay

can be used to find the angle made by the curved path against the normal as a function of y. The
slope of the curve at any point is given by

dy

dx
= tan(90◦ − θ) = cot θ =

cos θ
sin θ

.

Now we need to know cos θ. It is

cos θ =
√

1− sin2 θ ≈
√

2ay.

Combining
dy

dx
≈
√

2ay
1− ay

,

and now we integrate. We will ignore the ay term in the denominator because it will always be
small compared to 1. Then∫ d

0

dx =
∫ h

0

dy√
2ay

,

d =

√
2h
a

=

√
2(1.7 m)

(1.5×10−6m−1)
= 1500 m.

P39-8 The energy of a particle is given by E2 = p2c2 +m2c4. This energy is related to the mass
by E = γmc2. γ is related to the speed by γ = 1/

√
1− u2/c2. Rearranging,

u

c
=

√
1− 1

γ2
=

√
1− m2c2

p2 +m2c2
,

=

√
p2

p2 +m2c2
.

Since n = c/u we can write this as

n =

√
1 +

m2c2

p2
=

√
1 +

(
mc2

pc

)2

.

For the pion,

n =

√
1 +

(
(135 MeV)
(145 MeV)

)2

= 1.37.

For the muon,

n =

√
1 +

(
(106 MeV)
(145 MeV)

)2

= 1.24.
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P39-9 (a) Before adding the drop of liquid project the light ray along the angle θ so that θ = 0.
Increase θ slowly until total internal reflection occurs at angle θ1. Then

ng sin θ1 = 1

is the equation which can be solved to find ng.
Now put the liquid on the glass and repeat the above process until total internal reflection occurs

at angle θ2. Then
ng sin θ2 = nl.

Note that ng < ng for this method to work.
(b) This is not terribly practical.

P39-10 Let the internal angle at Q be θQ. Then n sin θQ = 1, because it is a critical angle. Let
the internal angle at P be θP . Then θP + θQ = 90◦. Combine this with the other formula and

1 = n sin(90− θP ) = n cos θQ = n

√
1− sin2 θP .

Not only that, but sin θ1 = n sin θP , or

1 = n
√

1− (sin θ1)2/n2,

which can be solved for n to yield

n =
√

1 + sin2 θ1.

(b) The largest value of the sine function is one, so nmax =
√

2.

P39-11 (a) The fraction of light energy which escapes from the water is dependent on the critical
angle. Light radiates in all directions from the source, but only that which strikes the surface at an
angle less than the critical angle will escape. This critical angle is

sin θc = 1/n.

We want to find the solid angle of the light which escapes; this is found by integrating

Ω =
∫ 2π

0

∫ θc

0

sin θ dθ dφ.

This is not a hard integral to do. The result is

Ω = 2π(1− cos θc).

There are 4π steradians in a spherical surface, so the fraction which escapes is

f =
1
2

(1− cos θc) =
1
2

(1−
√

1− sin2 θc).

The last substitution is easy enough. We never needed to know the depth h.
(b) f = 1

2 (1−
√

1− (1/(1.3))2) = 0.18.
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P39-12 (a) The beam of light strikes the face of the fiber at an angle θ and is refracted according
to

n1 sin θ1 = sin θ.

The beam then travels inside the fiber until it hits the cladding interface; it does so at an angle of
90◦ − θ1 to the normal. It will be reflected if it exceeds the critical angle of

n1 sin θc = n2,

or if
sin(90◦ − θ1) ≥ n2/n1,

which can be written as
cos θ1 ≥ n2/n1.

but if this is the cosine, then we can use sin2 + cos2 = 1 to find the sine, and

sin θ1 ≤
√

1− n2
2/n

2
1.

Combine this with the first equation and

θ ≤ arcsin
√
n2

1 − n2
2.

(b) θ = arcsin
√

(1.58)2 − (1.53)2 = 23.2◦.

P39-13 Consider the two possible extremes: a ray of light can propagate in a straight line
directly down the axis of the fiber, or it can reflect off of the sides with the minimum possible angle
of incidence. Start with the harder option.

The minimum angle of incidence that will still involve reflection is the critical angle, so

sin θc =
n2

n1
.

This light ray has farther to travel than the ray down the fiber axis because it is traveling at an
angle. The distance traveled by this ray is

L′ = L/ sin θc = L
n1

n2
,

The time taken for this bouncing ray to travel a length L down the fiber is then

t′ =
L′

v
=
L′n1

c
=
L

c

n2
1

n2
.

Now for the easier ray. It travels straight down the fiber in a time

t =
L

c
n1.

The difference is

t′ − t = ∆t =
L

c

(
n2

1

n2
− n1

)
=
Ln1

cn2
(n1 − n2).

(b) For the numbers in Problem 12 we have

∆t =
(350×103 m)(1.58)

(3.00×108m/s)(1.53)
((1.58)− (1.53)) = 6.02×10−5s.
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P39-14

P39-15 We can assume the airplane speed is small compared to the speed of light, and use Eq.
39-21. ∆f = 990 Hz; so

|∆f | = f0u/c = u/λ0,

hence u = (990/s)(0.12 m) = 119 m/s. The actual answer for the speed of the airplane is half this
because there were two Doppler shifts: once when the microwaves struck the plane, and one when the
reflected beam was received by the station. Hence, the plane approaches with a speed of 59.4 m/s.
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E40-1 (b) Since i = −o, vi = di/dt = −do/dt = −vo.
(a) In order to change from the frame of reference of the mirror to your own frame of reference

you need to subtract vo from all velocities. Then your velocity is vo − v0 = 0, the mirror is moving
with velocity 0− vo = −vo and your image is moving with velocity −vo − vo = −2vo.

E40-2 You are 30 cm from the mirror, the image is 10 cm behind the mirror. You need to focus
40 cm away.

E40-3 If the mirror rotates through an angle α then the angle of incidence will increase by an
angle α, and so will the angle of reflection. But that means that the angle between the incident
angle and the reflected angle has increased by α twice.

E40-4 Sketch a line from Sarah through the right edge of the mirror and then beyond. Sarah can
see any image which is located between that line and the mirror. By similar triangles, the image
of Bernie will be d/2 = (3.0 m)/2 = 1/5 m from the mirror when it becomes visible. Since i = −o,
Bernie will also be 1.5 m from the mirror.

E40-5 The images are fainter than the object. Several sample rays are shown.

E40-6 The image is displaced. The eye would need to look up to see it.

E40-7 The apparent depth of the swimming pool is given by the work done for Exercise 39-
25, dapp = d/n The water then “appears” to be only 186 cm/1.33 = 140 cm deep. The apparent
distance between the light and the mirror is then 250 cm + 140 cm = 390 cm; consequently the
image of the light is 390 cm beneath the surface of the mirror.

E40-8 Three. There is a single direct image in each mirror and one more image of an image in
one of the mirrors.
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E40-9 We want to know over what surface area of the mirror are rays of light reflected from the
object into the eye. By similar triangles the diameter of the pupil and the diameter of the part of
the mirror (d) which reflects light into the eye are related by

d

(10 cm)
=

(5.0 mm)
(24 cm) + (10 cm)

,

which has solution d = 1.47 mm The area of the circle on the mirror is

A = π(1.47 mm)2/4 = 1.7 mm2.

E40-10 (a) Seven; (b) Five; and (c) Two. This is a problem of symmetry.

E40-11 Seven. Three images are the ones from Exercise 8. But each image has an image in the
ceiling mirror. That would make a total of six, except that you also have an image in the ceiling
mirror (look up, eh?). So the total is seven!

E40-12 A point focus is not formed. The envelope of rays is called the caustic. You can see a
similar effect when you allow light to reflect off of a spoon onto a table.

E40-13 The image is magnified by a factor of 2.7, so the image distance is 2.7 times farther from
the mirror than the object. An important question to ask is whether or not the image is real or
virtual. If it is a virtual image it is behind the mirror and someone looking at the mirror could see
it. If it were a real image it would be in front of the mirror, and the man, who serves as the object
and is therefore closer to the mirror than the image, would not be able to see it.

So we shall assume that the image is virtual. The image distance is then a negative number.
The focal length is half of the radius of curvature, so we want to solve Eq. 40-6, with f = 17.5 cm
and i = −2.7o

1
(17.5 cm)

=
1
o

+
1

−2.7o
=

0.63
o
,

which has solution o = 11 cm.

E40-14 The image will be located at a point given by

1
i

=
1
f
− 1
o

=
1

(10 cm)
− 1

(15 cm)
=

1
(30 cm)

.

The vertical scale is three times the horizontal scale in the figure below.

189



E40-15 This problem requires repeated application of 1/f = 1/o + 1/i, r = 2f , m = −i/o, or
the properties of plane, convex, or concave mirrors. All dimensioned variables below (f, r, i, o) are
measured in centimeters.

(a) Concave mirrors have positive focal lengths, so f = +20; r = 2f = +40;

1/i = 1/f − 1/o = 1/(20)− 1/(10) = 1/(−20);

m = −i/o = −(−20)/(10) = 2; the image is virtual and upright.
(b) m = +1 for plane mirrors only; r = ∞ for flat surface; f = ∞/2 = ∞; i = −o = −10; the

image is virtual and upright.
(c) If f is positive the mirror is concave; r = 2f = +40;

1/i = 1/f − 1/o = 1/(20)− 1/(30) = 1/(60);

m = −i/o = −(60)/(30) = −2; the image is real and inverted.
(d) If m is negative then the image is real and inverted; only Concave mirrors produce real images

(from real objects); i = −mo = −(−0.5)(60) = 30;

1/f = 1/o+ 1/i = 1/(30) + 1/(60) = 1/(20);

r = 2f = +40.
(e) If r is negative the mirror is convex; f = r/2 = (−40)/2 = −20;

1/o = 1/f − 1/i = 1/(−20)− 1/(−10) = 1/(20);

m = −(−10)/(20) = 0.5; the image is virtual and upright.
(f) If m is positive the image is virtual and upright; if m is less than one the image is reduced,

but only convex mirrors produce reduced virtual images (from real objects); f = −20 for convex
mirrors; r = 2f = −40; let i = −mo = −o/10, then

1/f = 1/o+ 1/i = 1/o− 10/o = −9/o,

so o = −9f = −9(−20) = 180; i = −o/10 = −(180)/10 = −18.
(g) r is negative for convex mirrors, so r = −40; f = r/2 = −20; convex mirrors produce only

virtual upright images (from real objects); so i is negative; and

1/o = 1/f − 1/i = 1/(−20)− 1/(−4) = 1/(5);

m = −i/o = −(−4)/(5) = 0.8.
(h) Inverted images are real; only concave mirrors produce real images (from real objects);

inverted images have negative m; i = −mo = −(−0.5)(24) = 12;

1/f = 1/o+ 1/i = 1/(24) + 1/(12) = 1/(8);

r = 2f = 16.
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E40-16 Use the angle definitions provided by Eq. 40-8. From triangle OaI we have

α+ γ = 2θ,

while from triangle IaC we have
β + θ = γ.

Combining to eliminate θ we get
α− γ = −2β.

Substitute Eq. 40-8 and eliminate s,
1
o
− 1
i

= −2
r
,

or
1
o

+
1
−i

=
2
−r

,

which is the same as Eq. 40-4 if i→ −i and r → −r.

E40-17 (a) Consider the point A. Light from this point travels along the line ABC and will be
parallel to the horizontal center line from the center of the cylinder. Since the tangent to a circle
defines the outer limit of the intersection with a line, this line must describe the apparent size.

(b) The angle of incidence of ray AB is given by

sin θ1 = r/R.

The angle of refraction of ray BC is given by

sin θ2 = r∗/R.

Snell’s law, and a little algebra, yields

n1 sin θ1 = n2 sin θ2,

n1
r

R
= n2

r∗

R
,

nr = r∗.

In the last line we used the fact that n2 = 1, because it is in the air, and n1 = n, the index of
refraction of the glass.

E40-18 This problem requires repeated application of (n2−n1)/r = n1/o+n2/i. All dimensioned
variables below (r, i, o) are measured in centimeters.

(a)
(1.5)− (1.0)

(30)
− (1.0)

(10)
= −0.08333,

so i = (1.5)/(−0.08333) = −18, and the image is virtual.
(b)

(1.0)
(10)

+
(1.5)
(−13)

= −0.015385,

so r = (1.5− 1.0)/(−0.015385) = −32.5, and the image is virtual.
(c)

(1.5)− (1.0)
(30)

− (1.5)
(600)

= 0.014167,
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so o = (1.0)/(0.014167) = 71. The image was real since i > 0.
(d) Rearrange the formula to solve for n2, then

n2

(
1
r
− 1i

)
= n1

(
1
r

+
1
o

)
.

Substituting the numbers,

n2

(
1

(−20)
− 1

(−20)

)
= (1.0)

(
1

(−20)
+

1
(20)

)
,

which has any solution for n2! Since i < 0 the image is virtual.
(e)

(1.5)
(10)

+
(1.0)
(−6)

= −0.016667,

so r = (1.0− 1.5)/(−0.016667) = 30, and the image is virtual.
(f)

(1.0)− (1.5)
(−30)

− (1.0)
(−7.5)

= 0.15,

so o = (1.5)/(0.15) = 10. The image was virtual since i < 0.
(g)

(1.0)− (1.5)
(30)

− (1.5)
(70)

= −3.81×10−2,

so i = (1.0)/(−3.81×10−2) = −26, and the image is virtual.
(h) Solving Eq. 40-10 for n2 yields

n2 = n1
1/o+ 1/r
1/r − 1/i

,

so

n2 = (1.5)
1/(100) + 1/(−30)
1/(−30)− 1/(600)

= 1.0

and the image is real.

E40-19 (b) If the beam is small we can use Eq. 40-10. Parallel incoming rays correspond to an
object at infinity. Solving for n2 yields

n2 = n1
1/o+ 1/r
1/r − 1/i

,

so if o→∞ and i = 2r, then

n2 = (1.0)
1/∞+ 1/r
1/r − 1/2r

= 2.0

(c) There is no solution if i = r!

E40-20 The image will be located at a point given by

1
i

=
1
f
− 1
o

=
1

(10 cm)
− 1

(6 cm)
=

1
(−15 cm)

.
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E40-21 The image location can be found from Eq. 40-15,

1
i

=
1
f
− 1
o

=
1

(−30 cm)
− 1

(20 cm)
=

1
−12 cm

,

so the image is located 12 cm from the thin lens, on the same side as the object.

E40-22 For a double convex lens r1 > 0 and r2 < 0 (see Fig. 40-21 and the accompanying text).
Then the problem states that r2 = −r1/2. The lens maker’s equation can be applied to get

1
f

= (n− 1)
(

1
r1
− 1
r2

)
=

3(n− 1)
r1

,

so r1 = 3(n− 1)f = 3(1.5− 1)(60 mm) = 90 mm, and r2 = −45 mm.

E40-23 The object distance is essentially o =∞, so 1/f = 1/o+ 1/i implies f = i, and the image
forms at the focal point. In reality, however, the object distance is not infinite, so the magnification
is given by m = −i/o ≈ −f/o, where o is the Earth/Sun distance. The size of the image is then

hi = hof/o = 2(6.96×108m)(0.27 m)/(1.50×1011m) = 2.5 mm.

The factor of two is because the sun’s radius is given, and we need the diameter!

E40-24 (a) The flat side has r2 = ∞, so 1/f = (n − 1)/r, where r is the curved side. Then
f = (0.20 m)/(1.5− 1) = 0.40 m.

(b) 1/i = 1/f − 1/o = 1/(0.40 m)− 1/(0.40 m) = 0. Then i is ∞.

E40-25 (a) 1/f = (1.5− 1)[1/(0.4 m)− 1/(−0.4 m)] = 1/(0.40 m).
(b) 1/f = (1.5− 1)[1/(∞)− 1/(−0.4 m)] = 1/(0.80 m).
(c) 1/f = (1.5− 1)[1/(0.4 m)− 1/(0.6 m)] = 1/(2.40 m).
(d) 1/f = (1.5− 1)[1/(−0.4 m)− 1/(0.4 m)] = 1/(−0.40 m).
(e) 1/f = (1.5− 1)[1/(∞)− 1/(0.8 m)] = 1/(−0.80 m).
(f) 1/f = (1.5− 1)[1/(0.6 m)− 1/(0.4 m)] = 1/(−2.40 m).

E40-26 (a) 1/f = (n− 1)[1/(−r)− 1/r], so 1/f = 2(1− n)/r. 1/i = 1/f − 1/o so if o = r, then

1/i = 2(1− n)/r − 1/r = (1− 2n)/r,

so i = r/(1− 2n). For n > 0.5 the image is virtual.
(b) For n > 0.5 the image is virtual; the magnification is

m = −i/o = −r/(1− 2n)/r = 1/(2n− 1).

E40-27 According to the definitions, o = f + x and i = f + x′. Starting with Eq. 40-15,

1
o

+
1
i

=
1
f
,

i+ o

oi
=

1
f
,

2f + x+ x′

(f + x)(f + x′)
=

1
f
,

2f2 + fx+ fx′ = f2 + fx+ fx′ + xx′,

f2 = xx′.
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E40-28 (a) You can’t determine r1, r2, or n. i is found from

1
i

=
1

+10
− 1

+20
=

1
+20

,

the image is real and inverted. m = −(20)/(20) = −1.
(b) You can’t determine r1, r2, or n. The lens is converging since f is positive. i is found from

1
i

=
1

+10
− 1

+5
=

1
−10

,

the image is virtual and upright. m = −(−10)/(+5) = 2.
(c) You can’t determine r1, r2, or n. Since m is positive and greater than one the lens is

converging. Then f is positive. i is found from

1
i

=
1

+10
− 1

+5
=

1
−10

,

the image is virtual and upright. m = −(−10)/(+5) = 2.
(d) You can’t determine r1, r2, or n. Since m is positive and less than one the lens is diverging.

Then f is negative. i is found from

1
i

=
1
−10

− 1
+5

=
1
−3.3

,

the image is virtual and upright. m = −(−3.3)/(+5) = 0.66.
(e) f is found from

1
f

= (1.5− 1)
(

1
+30

− 1
−30

)
=

1
+30

.

The lens is converging. i is found from

1
i

=
1

+30
− 1

+10
=

1
−15

,

the image is virtual and upright. m = −(−15)/(+10) = 1.5.
(f) f is found from

1
f

= (1.5− 1)
(

1
−30

− 1
+30

)
=

1
−30

.

The lens is diverging. i is found from

1
i

=
1
−30

− 1
+10

=
1
−7.5

,

the image is virtual and upright. m = −(−7.5)/(+10) = 0.75.
(g) f is found from

1
f

= (1.5− 1)
(

1
−30

− 1
−60

)
=

1
−120

.

The lens is diverging. i is found from

1
i

=
1
−120

− 1
+10

=
1
−9.2

,

the image is virtual and upright. m = −(−9.2)/(+10) = 0.92.
(h) You can’t determine r1, r2, or n. Upright images have positive magnification. i is found from

i = −(0.5)(10) = −5;

194



f is found from
1
f

=
1

+10
+

1
−5

=
1
−10

,

so the lens is diverging.
(h) You can’t determine r1, r2, or n. Real images have negative magnification. i is found from

i = −(−0.5)(10) = 5;

f is found from
1
f

=
1

+10
+

1
5

=
1

+3.33
,

so the lens is converging.

E40-29 o+ i = 0.44 m = L, so

1
f

=
1
o

+
1
i

=
1
o

+
1

L− o
=

L

o(L− o)
,

which can also be written as o2 − oL+ fL = 0. This has solution

o =
L±

√
L2 − 4fL
2

=
(0.44 m)±

√
(0.44 m)− 4(0.11 m)(0.44 m)

2
= 0.22 m.

There is only one solution to this problem, but sometimes there are two, and other times there are
none!

E40-30 (a) Real images (from real objects) are only produced by converging lenses.
(b) Since hi = −h0/2, then i = o/2. But d = i+o = o+o/2 = 3o/2, so o = 2(0.40 m)/3 = 0.267 m,

and i = 0.133 m.
(c) 1/f = 1/o+ 1/i = 1/(0.267 m) + 1/(0.133 m) = 1/(0.0889 m).

E40-31 Step through the exercise one lens at a time. The object is 40 cm to the left of a
converging lens with a focal length of +20 cm. The image from this first lens will be located by
solving

1
i

=
1
f
− 1
o

=
1

(20 cm)
− 1

(40 cm)
=

1
40 cm

,

so i = 40 cm. Since i is positive it is a real image, and it is located to the right of the converging
lens. This image becomes the object for the diverging lens.

The image from the converging lens is located 40 cm - 10 cm from the diverging lens, but it is
located on the wrong side: the diverging lens is “in the way” so the rays which would form the image
hit the diverging lens before they have a chance to form the image. That means that the real image
from the converging lens is a virtual object in the diverging lens, so that the object distance for the
diverging lens is o = −30 cm.

The image formed by the diverging lens is located by solving

1
i

=
1
f
− 1
o

=
1

(−15 cm)
− 1

(−30 cm)
=

1
−30 cm

,

or i = −30 cm. This would mean the image formed by the diverging lens would be a virtual image,
and would be located to the left of the diverging lens.

The image is virtual, so it is upright. The magnification from the first lens is

m1 = −i/o = −(40 cm)/(40 cm)) = −1;
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the magnification from the second lens is

m2 = −i/o = −(−30 cm)/(−30 cm)) = −1;

which implies an overall magnification of m1m2 = 1.

E40-32 (a) The parallel rays of light which strike the lens of focal length f will converge on the
focal point. This point will act like an object for the second lens. If the second lens is located a
distance L from the first then the object distance for the second lens will be L− f . Note that this
will be a negative value for L < f , which means the object is virtual. The image will form at a point

1/i = 1/(−f)− 1/(L− f) = L/f(f − L).

Note that i will be positive if L < f , so the rays really do converge on a point.
(b) The same equation applies, except switch the sign of f . Then

1/i = 1/(f)− 1/(L− f) = L/f(L− f).

This is negative for L < f , so there is no real image, and no converging of the light rays.
(c) If L = 0 then i =∞, which means the rays coming from the second lens are parallel.

E40-33 The image from the converging lens is found from

1
i1

=
1

(0.58 m)
− 1

(1.12 m)
=

1
1.20 m

so i1 = 1.20 m, and the image is real and inverted.
This real image is 1.97 m − 1.20 m = 0.77 m in front of the plane mirror. It acts as an object

for the mirror. The mirror produces a virtual image 0.77 m behind the plane mirror. This image is
upright relative to the object which formed it, which was inverted relative to the original object.

This second image is 1.97 m + 0.77 m = 2.74 m away from the lens. This second image acts as an
object for the lens, the image of which is found from

1
i3

=
1

(0.58 m)
− 1

(2.74 m)
=

1
0.736 m

so i3 = 0.736 m, and the image is real and inverted relative to the object which formed it, which was
inverted relative to the original object. So this image is actually upright.

E40-34 (a) The first lens forms a real image at a location given by

1/i = 1/f − 1/o = 1/(0.1 m)− 1/(0.2 m) = 1/(0.2 m).

The image and object distance are the same, so the image has a magnification of 1. This image is
0.3 m− 0.2 m = 0.1 m from the second lens. The second lens forms an image at a location given by

1/i = 1/f − 1/o = 1/(0.125 m)− 1/(0.1 m) = 1/(−0.5 m).

Note that this puts the final image at the location of the original object! The image is magnified by
a factor of (0.5 m)/(0.1 m) = 5.

(c) The image is virtual, but inverted.
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E40-35 If the two lenses “pass” the same amount of light then the solid angle subtended by each
lens as seen from the respective focal points must be the same. If we assume the lenses have the
same round shape then we can write this as do/fo = de/f e. Then

de

do
=
fo

f e
= mθ,

or de = (72 mm)/36 = 2 mm.

E40-36 (a) f = (0.25 m)/(200) ≈ 1.3 mm. Then 1/f = (n − 1)(2/r) can be used to find r;
r = 2(n− 1)f = 2(1.5− 1)(1.3 mm) = 1.3 mm.

(b) The diameter would be twice the radius. In effect, these were tiny glass balls.

E40-37 (a) In Fig. 40-46(a) the image is at the focal point. This means that in Fig. 40-46(b)
i = f = 2.5 cm, even though f ′ 6= f . Solving,

1
f

=
1

(36 cm)
+

1
(2.5 cm)

=
1

2.34 cm
.

(b) The effective radii of curvature must have decreased.

E40-38 (a) s = (25 cm)− (4.2 cm)− (7.7 cm) = 13.1 cm.
(b) i = (25 cm)− (7.7 cm) = 17.3 cm. Then

1
o

=
1

(4.2 cm)
− 1

(17.3 cm)
=

1
5.54 cm.

The object should be placed 5.5− 4.2 = 1.34 cm beyond F1.
(c) m = −(17.3)/(5.5) = −3.1.
(d) mθ = (25 cm)/(7.7 cm) = 3.2.
(e) M = mmθ = −10.

E40-39 Microscope magnification is given by Eq. 40-33. We need to first find the focal length
of the objective lens before we can use this formula. We are told in the text, however, that the
microscope is constructed so the at the object is placed just beyond the focal point of the objective
lens, then fob ≈ 12.0 mm. Similarly, the intermediate image is formed at the focal point of the
eyepiece, so f ey ≈ 48.0 mm. The magnification is then

m =
−s(250 mm)
fobf ey

= − (285 mm)(250 mm)
(12.0 mm)(48.0 mm)

= 124.

A more accurate answer can be found by calculating the real focal length of the objective lens, which
is 11.4 mm, but since there is a huge uncertainty in the near point of the eye, I see no point in trying
to be more accurate than this.

P40-1 The old intensity is Io = P/4πd2, where P is the power of the point source. With the
mirror in place there is an additional amount of light which needs to travel a total distance of 3d
in order to get to the screen, so it contributes an additional P/4π(3d)2 to the intensity. The new
intensity is then

In = P/4πd2 + P/4π(3d)2 = (10/9)P/4πd2 = (10/9)Io.
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P40-2 (a) vi = di/dt; but i = fo/(o− f) and f = r/2 so

vi =
d

dt

(
ro

2o− r

)
= −

(
r

2o− r

)2
do

dt
= −

(
r

2o− r

)2

vo.

(b) Put in the numbers!

vi = −
(

(15 cm)
2(75 cm)− (15 cm)

)2

(5.0 cm/s) = −6.2×10−2 cm/s.

(c) Put in the numbers!

vi = −
(

(15 cm)
2(7.7 cm)− (15 cm)

)2

(5.0 cm/s) = −70 m/s

(d) Put in the numbers!

vi = −
(

(15 cm)
2(0.15 cm)− (15 cm)

)2

(5.0 cm/s) = −5.2 cm/s.

P40-3 (b) There are two ends to the object of length L, one of these ends is a distance o1 from
the mirror, and the other is a distance o2 from the mirror. The images of the two ends will be
located at i1 and i2.

Since we are told that the object has a short length L we will assume that a differential approach
to the problem is in order. Then

L = ∆o = o1 − o2 and L′ = ∆i = i1 − i2,

Finding the ratio of L′/L is then reduced to

L′

L
=

∆i
∆o
≈ di

do
.

We can take the derivative of Eq. 40-15 with respect to changes in o and i,

di

i2
+
do

o2
= 0,

or
L′

L
≈ di

do
= − i

2

o2
= −m2,

where m is the lateral magnification.
(a) Since i is given by

1
i

=
1
f
− 1
o

=
o− f
of

,

the fraction i/o can also be written

i

o
=

of

o(o− f)
=

f

o− f
.

Then

L ≈ − i
2

o2
= −

(
f

o− f

)2
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P40-4 The left surface produces an image which is found from n/i = (n − 1)/R − 1/o, but since
the incoming rays are parallel we take o =∞ and the expression simplifies to i = nR/(n− 1). This
image is located a distance o = 2R − i = (n − 2)R/(n − 1) from the right surface, and the image
produced by this surface can be found from

1/i = (1− n)/(−R)− n/o = (n− 1)/R− n(n− 1)/(n− 2)R = 2(1− n)/(n− 2)R.

Then i = (n− 2)R/2(n− 1).

P40-5 The “1” in Eq. 40-18 is actually nair; the assumption is that the thin lens is in the air. If
that isn’t so, then we need to replace “1” with n′, so Eq. 40-18 becomes

n′

o
− n

|i′|
=
n− n′

r1
.

A similar correction happens to Eq. 40-21:

n

|i′|
+
n′

i
= −n− n

′

r2
.

Adding these two equations,
n′

o
+
n′

i
= (n− n′)

(
1
r1
− 1
r2

)
.

This yields a focal length given by

1
f

=
n− n′

n

(
1
r1
− 1
r2

)
.

P40-6 Start with Eq. 40-4

1
o

+
1
i

=
1
f
,

|f |
o

+
|f |
i

=
|f |
f
,

1
y

+
1
y′

= ±1,

where + is when f is positive and − is when f is negative.

The plot on the right is for +, that on the left for −.
Real image and objects occur when y or y′ is positive.
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P40-7 (a) The image (which will appear on the screen) and object are a distance D = o + i
apart. We can use this information to eliminate one variable from Eq. 40-15,

1
o

+
1
i

=
1
f
,

1
o

+
1

D − o
=

1
f
,

D

o(D − o)
=

1
f
,

o2 − oD + fD = 0.

This last expression is a quadratic, and we would expect to get two solutions for o. These solutions
will be of the form “something” plus/minus “something else”; the distance between the two locations
for o will evidently be twice the “something else”, which is then

d = o+ − o− =
√

(−D)2 − 4(fD) =
√
D(D − 4f).

(b) The ratio of the image sizes is m+/m−, or i+o−/i−o+. Now it seems we must find the actual
values of o+ and o−. From the quadratic in part (a) we have

o± =
D ±

√
D(D − 4f)

2
=
D ± d

2
,

so the ratio is
o−
o+

=
(
D − d
D + d

)
.

But i− = o+, and vice-versa, so the ratio of the image sizes is this quantity squared.

P40-8 1/i = 1/f − 1/o implies i = fo/(o − f). i is only real if o ≥ f . The distance between the
image and object is

y = i+ o =
of

o− f
+ o =

o2

o− f
.

This quantity is a minimum when dy/do = 0, which occurs when o = 2f . Then i = 2f , and y = 4f .

P40-9 (a) The angular size of each lens is the same when viewed from the shared focal point. This
means W1/f1 = W2/f2, or

W2 = (f2/f1)W1.

(b) Pass the light through the diverging lens first; choose the separation of the lenses so that
the focal point of the converging lens is at the same location as the focal point of the diverging lens
which is on the opposite side of the diverging lens.

(c) Since I ∝ 1/A, where A is the area of the beam, we have I ∝ 1/W 2. Consequently,

I2/I1 = (W1/W2)2 = (f1/f2)2

P40-10 The location of the image in the mirror is given by

1
i

=
1
f
− 1
a+ b

.
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The location of the image in the plate is given by i′ = −a, which is located at b− a relative to the
mirror. Equating,

1
b− a

+
1

b+ a
=

1
f
,

2b
b2 − a2

=
1
f
,

b2 − a2 = 2bf,

a =
√
b2 − 2bf,

=
√

(7.5 cm)2 − 2(7.5 cm)(−28.2 cm) = 21.9 cm.

P40-11 We’ll solve the problem by finding out what happens if you put an object in front of the
combination of lenses.

Let the object distance be o1. The first lens will create an image at i1, where

1
i1

=
1
f1
− 1
o1

This image will act as an object for the second lens.
If the first image is real (i1 positive) then the image will be on the “wrong” side of the second

lens, and as such the real image will act like a virtual object. In short, o2 = −i1 will give the correct
sign to the object distance when the image from the first lens acts like an object for the second lens.
The image formed by the second lens will then be at

1
i2

=
1
f2
− 1
o2
,

=
1
f2

+
1
i2
,

=
1
f2

+
1
f1
− 1
o1
.

In this case it appears as if the combination

1
f2

+
1
f1

is equivalent to the reciprocal of a focal length. We will go ahead and make this connection, and

1
f

=
1
f2

+
1
f1

=
f1 + f2

f1f2
.

The rest is straightforward enough.

P40-12 (a) The image formed by the first lens can be found from

1
i1

=
1
f1
− 1

2f1
=

1
2f1

.

This is a distance o2 = 2(f1 + f2) = 2f2 from the mirror. The image formed by the mirror is at an
image distance given by

1
i2

=
1
f2
− 1

2f2
=

1
2f2

.

Which is at the same point as i1!. This means it will act as an object o3 in the lens, and, reversing
the first step, produce a final image at O, the location of the original object. There are then three
images formed; each is real, same size, and inverted. Three inversions nets an inverted image. The
final image at O is therefore inverted.
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P40-13 (a) Place an object at o. The image will be at a point i′ given by

1
i′

=
1
f
− 1
o
,

or i′ = fo/(o− f).
(b) The lens must be shifted a distance i′ − i, or

i′ − i =
fo

o− f
− 1.

(c) The range of motion is

∆i =
(0.05 m)(1.2 m)

(1.2 m)− (0.05 m)
− 1 = −5.2 cm.

P40-14 (a) Because magnification is proportional to 1/f .
(b) Using the results of Problem 40-11,

1
f

=
1
f2

+
1
f1
,

so P = P1 + P2.

P40-15 We want the maximum linear motion of the train to move no more than 0.75 mm on the
film; this means we want to find the size of an object on the train that will form a 0.75 mm image.
The object distance is much larger than the focal length, so the image distance is approximately
equal to the focal length. The magnification is then m = −i/o = (3.6 cm)/(44.5 m) = −0.00081.

The size of an object on the train that would produce a 0.75 mm image on the film is then
0.75 mm/0.00081 = 0.93 m.

How much time does it take the train to move that far?

t =
(0.93 m)

(135 km/hr)(1/3600 hr/s)
= 25 ms.

P40-16 (a) The derivation leading to Eq. 40-34 depends only on the fact that two converging
optical devices are used. Replacing the objective lens with an objective mirror doesn’t change
anything except the ray diagram.

(b) The image will be located very close to the focal point, so |m| ≈ f/o, and

hi = (1.0 m)
(16.8 m)
(2000 m)

= 8.4×10−3m

(c) f e = (5 m)/(200) = 0.025 m. Note that we were given the radius of curvature, not the focal
length, of the mirror!
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E41-1 In this problem we look for the location of the third-order bright fringe, so

θ = sin−1 mλ

d
= sin−1 (3)(554× 10−9m)

(7.7× 10−6m)
= 12.5◦ = 0.22 rad.

E41-2 d1 sin θ = λ gives the first maximum; d2 sin θ = 2λ puts the second maximum at the location
of the first. Divide the second expression by the first and d2 = 2d1. This is a 100% increase in d.

E41-3 ∆y = λD/d = (512×10−9m)(5.4 m)/(1.2×10−3m) = 2.3×10−3m.

E41-4 d = λ/ sin θ = (592×10−9m)/ sin(1.00◦) = 3.39×10−5m.

E41-5 Since the angles are very small, we can assume sin θ ≈ θ for angles measured in radians.
If the interference fringes are 0.23◦ apart, then the angular position of the first bright fringe

is 0.23◦ away from the central maximum. Eq. 41-1, written with the small angle approximation
in mind, is dθ = λ for this first (m = 1) bright fringe. The goal is to find the wavelength which
increases θ by 10%. To do this we must increase the right hand side of the equation by 10%, which
means increasing λ by 10%. The new wavelength will be λ′ = 1.1λ = 1.1(589 nm) = 650 nm

E41-6 Immersing the apparatus in water will shorten the wavelengths to λ/n. Start with d sin θ0 =
λ; and then find θ from d sin θ = λ/n. Combining the two expressions,

θ = arcsin[sin θ0/n] = arcsin[sin(0.20◦)/(1.33)] = 0.15◦.

E41-7 The third-order fringe for a wavelength λ will be located at y = 3λD/d, where y is measured
from the central maximum. Then ∆y is

y1 − y2 = 3(λ1 − λ2)D/d = 3(612×10−9m− 480×10−9m)(1.36 m)/(5.22×10−3m) = 1.03×10−4m.

E41-8 θ = arctan(y/D);

λ = d sin θ = (0.120 m) sin[arctan(0.180 m/2.0 m)] = 1.08×10−2m.

Then f = v/λ = (0.25 m/s)/(1.08×10−2m) = 23 Hz.

E41-9 A variation of Eq. 41-3 is in order:

ym =
(
m+

1
2

)
λD

d

We are given the distance (on the screen) between the first minima (m = 0) and the tenth minima
(m = 9). Then

18 mm = y9 − y0 = 9
λ(50 cm)

(0.15 mm)
,

or λ = 6×10−4 mm = 600 nm.

E41-10 The “maximum” maxima is given by the integer part of

m = d sin(90◦)/λ = (2.0 m)/(0.50 m) = 4.

Since there is no integer part, the “maximum” maxima occurs at 90◦. These are point sources
radiating in both directions, so there are two central maxima, and four maxima each with m = 1,
m = 2, and m = 3. But the m = 4 values overlap at 90◦, so there are only two. The total is 16.
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E41-11 This figure should explain it well enough.

E41-12 ∆y = λD/d = (589×10−9m)(1.13 m)/(0.18×10−3m) = 3.70×10−3m.

E41-13 Consider Fig. 41-5, and solve it exactly for the information given. For the tenth bright
fringe r1 = 10λ+ r2. There are two important triangles:

r2
2 = D2 + (y − d/2)2

and
r2
1 = D2 + (y + d/2)2

Solving to eliminate r2, √
D2 + (y + d/2)2 =

√
D2 + (y − d/2)2 + 10λ.

This has solution

y = 5λ

√
4D2 + d2 − 100λ2

d2 − 100λ2
.

The solution predicted by Eq. 41-1 is

y′ =
10λ
d

√
D2 + y′2,

or

y′ = 5λ

√
4D2

d2 − 100λ2
.

The fractional error is y′/y − 1, or √
4D2

4D2 + d2 − 100λ2
− 1,

or √
4(40 mm)2

4(40 mm)2 + (2 mm)2 − 100(589×10−6mm)2
− 1 = −3.1×10−4.

E41-14 (a) ∆x = c/∆t = (3.00×108m/s)/(1×10−8s) = 3 m.
(b) No.
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E41-15 Leading by 90◦ is the same as leading by a quarter wavelength, since there are 360◦ in a
circle. The distance from A to the detector is 100 m longer than the distance from B to the detector.
Since the wavelength is 400 m, 100 m corresponds to a quarter wavelength.

So a wave peak starts out from source A and travels to the detector. When it has traveled a
quarter wavelength a wave peak leaves source B. But when the wave peak from A has traveled
a quarter wavelength it is now located at the same distance from the detector as source B, which
means the two wave peaks arrive at the detector at the same time.

They are in phase.

E41-16 The first dark fringe involves waves π radians out of phase. Each dark fringe after that
involves an additional 2π radians of phase difference. So the mth dark fringe has a phase difference
of (2m+ 1)π radians.

E41-17 I = 4I0 cos2
(

2πd
λ sin θ

)
, so for this problem we want to plot

I/I0 = cos2

(
2π(0.60 mm)

(600×10−9m)
sin θ

)
= cos2 (6280 sin θ) .

E41-18 The resultant quantity will be of the form A sin(ωt+ β). Solve the problem by looking at
t = 0; then y1 = 0, but x1 = 10, and y2 = 8 sin 30◦ = 4 and x2 = 8 cos 30 = 6.93. Then the resultant
is of length

A =
√

(4)2 + (10 + 6.93)2 = 17.4,

and has an angle β given by
β = arctan(4/16.93) = 13.3◦.

E41-19 (a) We want to know the path length difference of the two sources to the detector.
Assume the detector is at x and the second source is at y = d. The distance S1D is x; the
distance S2D is

√
x2 + d2. The difference is

√
x2 + d2 − x. If this difference is an integral number

of wavelengths then we have a maximum; if instead it is a half integral number of wavelengths we
have a minimum. For part (a) we are looking for the maxima, so we set the path length difference
equal to mλ and solve for xm.√

x2
m + d2 − xm = mλ,

x2
m + d2 = (mλ+ xm)2,

x2
m + d2 = m2λ2 + 2mλxm + x2

m,

xm =
d2 −m2λ2

2mλ

The first question we need to ask is what happens when m = 0. The right hand side becomes
indeterminate, so we need to go back to the first line in the above derivation. If m = 0 then d2 = 0;
since this is not true in this problem, there is no m = 0 solution.

In fact, we may have even more troubles. xm needs to be a positive value, so the maximum
allowed value for m will be given by

m2λ2 < d2,

m < d/λ = (4.17 m)/(1.06 m) = 3.93;

but since m is an integer, m = 3 is the maximum value.
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The first three maxima occur at m = 3, m = 2, and m = 1. These maxima are located at

x3 =
(4.17 m)2 − (3)2(1.06 m)2

2(3)(1.06 m)
= 1.14 m,

x2 =
(4.17 m)2 − (2)2(1.06 m)2

2(2)(1.06 m)
= 3.04 m,

x1 =
(4.17 m)2 − (1)2(1.06 m)2

2(1)(1.06 m)
= 7.67 m.

Interestingly enough, as m decreases the maxima get farther away!
(b) The closest maxima to the origin occurs at x = ±6.94 cm. What then is x = 0? It is a local

minimum, but the intensity isn’t zero. It corresponds to a point where the path length difference is
3.93 wavelengths. It should be half an integer to be a complete minimum.

E41-20 The resultant can be written in the form A sin(ωt + β). Consider t = 0. The three
components can be written as

y1 = 10 sin 0◦ = 0,
y2 = 14 sin 26◦ = 6.14,
y3 = 4.7 sin(−41◦) = −3.08,
y = 0 + 6.14− 3.08 = 3.06.

and

x1 = 10 cos 0◦ = 10,
x2 = 14 cos 26◦ = 12.6,
x3 = 4.7 cos(−41◦) = 3.55,
x = 10 + 12.6 + 3.55 = 26.2.

Then A =
√

(3.06)2 + (26.2)2 = 26.4 and β = arctan(3.06/26.2) = 6.66◦.

E41-21 The order of the indices of refraction is the same as in Sample Problem 41-4, so

d = λ/4n = (620 nm)/4(1.25) = 124 nm.

E41-22 Follow the example in Sample Problem 41-3.

λ =
2dn

m− 1/2
=

2(410 nm)(1.50)
m− 1/2

=
1230 nm
m− 1/2

.

The result is only in the visible range when m = 3, so λ = 492 nm.

E41-23 (a) Light from above the oil slick can be reflected back up from the top of the oil layer
or from the bottom of the oil layer. For both reflections the light is reflecting off a substance with
a higher index of refraction so both reflected rays pick up a phase change of π. Since both waves
have this phase the equation for a maxima is

2d+
1
2
λn +

1
2
λn = mλn.

Remember that λn = λ/n, where n is the index of refraction of the thin film. Then 2nd = (m− 1)λ
is the condition for a maxima. We know n = 1.20 and d = 460 nm. We don’t know m or λ. It might
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seem as if there isn’t enough information to solve the problem, but we can. We need to find the
wavelength in the visible range (400 nm to 700 nm) which has an integer m. Trial and error might
work. If λ = 700 nm, then m is

m =
2nd
λ

+ 1 =
2(1.20)(460 nm)

(700 nm)
+ 1 = 2.58

But m needs to be an integer. If we increase m to 3, then

λ =
2(1.20)(460 nm)

(3− 1)
= 552 nm

which is in the visible range. So the oil slick will appear green.
(b) One of the most profound aspects of thin film interference is that wavelengths which are

maximally reflected are minimally transmitted, and vice versa. Finding the maximally transmitted
wavelengths is the same as finding the minimally reflected wavelengths, or looking for values of m
that are half integer.

The most obvious choice is m = 3.5, and then

λ =
2(1.20)(460 nm)

(3.5− 1)
= 442 nm.

E41-24 The condition for constructive interference is 2nd = (m − 1/2)λ. Assuming a minimum
value of m = 1 one finds

d = λ/4n = (560 nm)/4(2.0) = 70 nm.

E41-25 The top surface contributes a phase difference of π, so the phase difference because of the
thickness is 2π, or one complete wavelength. Then 2d = λ/n, or d = (572 nm)/2(1.33) = 215 nm.

E41-26 The wave reflected from the first surface picks up a phase shift of π. The wave which is
reflected off of the second surface travels an additional path difference of 2d. The interference will
be bright if 2d+ λn/2 = mλn results in m being an integer.

m = 2nd/λ+ 1/2 = 2(1.33)(1.21×10−6m)/(585×10−9m) + 1/2 = 6.00,

so the interference is bright.

E41-27 As with the oil on the water in Ex. 41-23, both the light which reflects off of the acetone
and the light which reflects off of the glass undergoes a phase shift of π. Then the maxima for
reflection are given by 2nd = (m− 1)λ. We don’t know m, but at some integer value of m we have
λ = 700 nm. If m is increased by exactly 1

2 then we are at a minimum of λ = 600 nm. Consequently,

2(1.25)d = (m− 1)(700 nm) and 2(1.25)d = (m− 1/2)(600 nm),

we can set these two expressions equal to each other to find m,

(m− 1)(700 nm) = (m− 1/2)(600 nm),

so m = 4. Then we can find the thickness,

d = (4− 1)(700 nm)/2(1.25) = 840 nm.
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E41-28 The wave reflected from the first surface picks up a phase shift of π. The wave which is
reflected off of the second surface travels an additional path difference of 2d. The interference will
be bright if 2d+ λn/2 = mλn results in m being an integer. Then 2nd = (m− 1/2)λ1 is bright, and
2nd = mλ2 is dark. Divide one by the other and (m− 1/2)λ1 = mλ2, so

m = λ1/2(λ1 − λ2) = (600 nm)/2(600 nm− 450 nm) = 2,

then d = mλ2/2n = (2)(450 nm)/2(1.33) = 338 nm.

E41-29 Constructive interference happens when 2d = (m − 1/2)λ. The minimum value for m is
m = 1; the maximum value is the integer portion of 2d/λ+1/2 = 2(4.8×10−5m)/(680×10−9m)+1/2 =
141.67, so mmax = 141. There are then 141 bright bands.

E41-30 (a) A half wavelength phase shift occurs for both the air/water interface and the water/oil
interface, so if d = 0 the two reflected waves are in phase. It will be bright!

(b) 2nd = 3λ, or d = 3(475 nm)/2(1.20) = 594 nm.

E41-31 There is a phase shift on one surface only, so the bright bands are given by 2nd = (m −
1/2)λ. Let the first band be given by 2nd1 = (m1 − 1/2)λ. The last bright band is then given by
2nd2 = (m1 + 9− 1/2)λ. Subtract the two equations to get the change in thickness:

∆d = 9λ/2n = 9(630 nm)/2(1.50) = 1.89µm.

E41-32 Apply Eq. 41-21: 2nd = mλ. In one case we have

2nair = (4001)λ,

in the other,
2nvac = (4000)λ.

Equating, nair = (4001)/(4000) = 1.00025.

E41-33 (a) We can start with the last equation from Sample Problem 41-5,

r =

√
(m− 1

2
)λR,

and solve for m,

m =
r2

λR
+

1
2

In this exercise R = 5.0 m, r = 0.01 m, and λ = 589 nm. Then

m =
(0.01 m)2

(589 nm)(5.0 m)
= 34

is the number of rings observed.
(b) Putting the apparatus in water effectively changes the wavelength to

(589 nm)/(1.33) = 443 nm,

so the number of rings will now be

m =
(0.01 m)2

(443 nm)(5.0 m)
= 45.

208



E41-34 (1.42 cm) =
√

(10− 1
2 )Rλ, while (1.27 cm) =

√
(10− 1

2 )Rλ/n. Divide one expression by
the other, and (1.42 cm)/(1.27 cm) =

√
n, or n = 1.25.

E41-35 (0.162 cm) =
√

(n− 1
2 )Rλ, while (0.368 cm) =

√
(n+ 20− 1

2 )Rλ. Square both expres-
sions, the divide one by the other, and find

(n+ 19.5)/(n− 0.5) = (0.368 cm/0.162 cm)2 = 5.16

which can be rearranged to yield

n =
19.5 + 5.16× 0.5

5.16− 1
= 5.308.

Oops! That should be an integer, shouldn’t it? The above work is correct, which means that there
really aren’t bright bands at the specified locations. I’m just going to gloss over that fact and solve
for R using the value of m = 5.308. Then

R = r2/(m− 1/2)λ = (0.162 cm)2/(5.308− 0.5)(546 nm) = 1.00 m.

Well, at least we got the answer which is in the back of the book...

E41-36 Pretend the ship is a two point source emitter, one h above the water, and one h below
the water. The one below the water is out of phase by half a wavelength. Then d sin θ = λ, where
d = 2h, gives the angle for theta for the first minimum.

λ/2h = (3.43 m)/2(23 m) = 7.46×10−2 = sin θ ≈ H/D,

so D = (160 m)/(7.46×10−2) = 2.14 km.

E41-37 The phase difference is 2π/λn times the path difference which is 2d, so

φ = 4πd/λn = 4πnd/λ.

We are given that d = 100×10−9m and n = 1.38.
(a) φ = 4π(1.38)(100×10−9m)/(450×10−9m) = 3.85. Then

I

I0
= cos2 (3.85)

2
= 0.12.

The reflected ray is diminished by 1− 0.12 = 88%.
(b) φ = 4π(1.38)(100×10−9m)/(650×10−9m) = 2.67. Then

I

I0
= cos2 (2.67)

2
= 0.055.

The reflected ray is diminished by 1− 0.055 = 95%.

E41-38 The change in the optical path length is 2(d− d/n), so 7λ/n = 2d(1− 1/n), or

d =
7(589×10−9m)

2(1.42)− 2
= 4.9×10−6m.
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E41-39 When M2 moves through a distance of λ/2 a fringe has will be produced, destroyed, and
then produced again. This is because the light travels twice through any change in distance. The
wavelength of light is then

λ =
2(0.233 mm)

792
= 588 nm.

E41-40 The change in the optical path length is 2(d− d/n), so 60λ = 2d(1− 1/n), or

n =
1

1− 60λ/2d
=

1
1− 60(500×10−9m)/2(5×10−2m)

= 1.00030.

P41-1 (a) This is a small angle problem, so we use Eq. 41-4. The distance to the screen is
2× 20 m, because the light travels to the mirror and back again. Then

d =
λD

∆y
=

(632.8 nm)(40.0 m)
(0.1 m)

= 0.253 mm.

(b) Placing the cellophane over one slit will cause the interference pattern to shift to the left or
right, but not disappear or change size. How does it shift? Since we are picking up 2.5 waves then
we are, in effect, swapping bright fringes for dark fringes.

P41-2 The change in the optical path length is d− d/n, so 7λ/n = d(1− 1/n), or

d =
7(550×10−9m)

(1.58)− 1
= 6.64×10−6m.

P41-3 The distance from S1 to P is r1 =
√

(x+ d/2)2 + y2. The distance from S2 to P is
r2 =

√
(x− d/2)2 + y2. The difference in distances is fixed at some value, say c, so that

r1 − r2 = c,

r2
1 − 2r1r2 + r2

2 = c2,

(r2
1 + r2

2 − c2)2 = 4r2
1r

2
2,

(r2
1 − r2

2)2 − 2c2(r2
1 + r2

2) + c4 = 0,
(2xd)2 − 2c2(2x2 + d2/2 + 2y2) + c4 = 0,

4x2d2 − 4c2x2 − c2d2 − 4c2y2 + c4 = 0,
4(d2 − c2)x2 − 4c2y2 = c2(d2 − c2).

Yes, that is the equation of a hyperbola.

P41-4 The change in the optical path length for each slit is nt − t, where n is the corresponding
index of refraction. The net change in the path difference is then n2t − n1t. Consequently, mλ =
t(n2 − n1), so

t =
(5)(480×10−9m)

(1.7)− (1.4)
= 8.0×10−6m.

P41-5 The intensity is given by Eq. 41-17, which, in the small angle approximation, can be
written as

Iθ = 4I0 cos2

(
πdθ

λ

)
.
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The intensity will be half of the maximum when

1
2

= cos2

(
πd∆θ/2

λ

)
or

π

4
=
πd∆θ

2λ
,

which will happen if ∆θ = λ/2d.

P41-6 Follow the construction in Fig. 41-10, except that one of the electric field amplitudes is
twice the other. The resultant field will have a length given by

E′ =
√

(2E0 + E0 cosφ)2 + (E0 sinφ)2,

= E0

√
5 + 4 cosφ,

so squaring this yields

I = I0

(
5 + 4 cos

2πd sin θ
λ

)
,

= I0

(
1 + 8 cos2 πd sin θ

λ

)
,

=
Im

9

(
1 + 8 cos2 πd sin θ

λ

)
.

P41-7 We actually did this problem in Exercise 41-27, although slightly differently. One maxi-
mum is

2(1.32)d = (m− 1/2)(679 nm),

the other is
2(1.32)d = (m+ 1/2)(485 nm).

Set these equations equal to each other,

(m− 1/2)(679 nm) = (m+ 1/2)(485 nm),

and find m = 3. Then the thickness is

d = (3− 1/2)(679 nm)/2(1.32) = 643 nm.

P41-8 (a) Since we are concerned with transmission there is a phase shift for two rays, so

2d = mλn

The minimum thickness occurs when m = 1; solving for d yields

d =
λ

2n
=

(525×10−9m)
2(1.55)

= 169×10−9m.

(b) The wavelengths are different, so the other parts have differing phase differences.
(c) The nearest destructive interference wavelength occurs when m = 1.5, or

λ = 2nd = 2(1.55)1.5(169×10−9m) = 393×10−9m.

This is blue-violet.
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P41-9 It doesn’t matter if we are looking at bright are dark bands. It doesn’t even matter if we
concern ourselves with phase shifts. All that cancels out. Consider 2δd = δmλ; then

δd = (10)(480 nm)/2 = 2.4µm.

P41-10 (a) Apply 2d = mλ. Then

d = (7)(600×10−9m)/2 = 2100×10−9m.

(b) When water seeps in it introduces an extra phase shift. Point A becomes then a bright fringe,
and the equation for the number of bright fringes is 2nd = mλ. Solving for m,

m = 2(1.33)(2100×10−9m)/(600×10−9m) = 9.3;

this means that point B is almost, but not quite, a dark fringe, and there are nine of them.

P41-11 (a) Look back at the work for Sample Problem 41-5 where it was found

rm =

√
(m− 1

2
)λR,

We can write this as

rm =

√(
1− 1

2m

)
mλR

and expand the part in parentheses in a binomial expansion,

rm ≈
(

1− 1
2

1
2m

)√
mλR.

We will do the same with

rm+1 =

√
(m+ 1− 1

2
)λR,

expanding

rm+1 =

√(
1 +

1
2m

)
mλR

to get

rm+1 ≈
(

1 +
1
2

1
2m

)√
mλR.

Then
∆r ≈ 1

2m

√
mλR,

or
∆r ≈ 1

2

√
λR/m.

(b) The area between adjacent rings is found from the difference,

A = π
(
r2
m+1 − r2

m

)
,

and into this expression we will substitute the exact values for rm and rm+1,

A = π

(
(m+ 1− 1

2
)λR− (m− 1

2
)λR

)
,

= πλR.

Unlike part (a), we did not need to assume m � 1 in order to arrive at this expression; it is exact
for all m.
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P41-12 The path length shift that occurs when moving the mirror as distance x is 2x. This means
φ = 2π2x/λ = 4πx/λ. The intensity is then

I = 4I0 cos2 2πx
λ

213



E42-1 λ = a sin θ = (0.022 mm) sin(1.8◦) = 6.91×10−7m.

E42-2 a = λ/ sin θ = (0.10×10−9m)/ sin(0.12×10−3 rad/2) = 1.7µm.

E42-3 (a) This is a valid small angle approximation problem: the distance between the points
on the screen is much less than the distance to the screen. Then

θ ≈ (0.0162 m)
(2.16 m)

= 7.5× 10−3 rad.

(b) The diffraction minima are described by Eq. 42-3,

a sin θ = mλ,

a sin(7.5× 10−3 rad) = (2)(441× 10−9 m),
a = 1.18× 10−4 m.

E42-4 a = λ/ sin θ = (633×10−9m)/ sin(1.97◦/2) = 36.8µm.

E42-5 (a) We again use Eq. 42-3, but we will need to throw in a few extra subscripts to
distinguish between which wavelength we are dealing with. If the angles match, then so will the sine
of the angles. We then have sin θa,1 = sin θb,2 or, using Eq. 42-3,

(1)λa
a

=
(2)λb
a

,

from which we can deduce λa = 2λb.
(b) Will any other minima coincide? We want to solve for the values of ma and mb that will be

integers and have the same angle. Using Eq. 42-3 one more time,

maλa
a

=
mbλb
a

,

and then substituting into this the relationship between the wavelengths, ma = mb/2. whenever mb

is an even integer ma is an integer. Then all of the diffraction minima from λa are overlapped by a
minima from λb.

E42-6 The angle is given by sin θ = 2λ/a. This is a small angle, so we can use the small angle
approximation of sin θ = y/D. Then

y = 2Dλ/a = 2(0.714 m)(593×10−9m)/(420×10−6m) = 2.02 mm.

E42-7 Small angles, so y/D = sin θ = λ/a. Then

a = Dλ/y = (0.823 m)(546×10−9m)/(5.20×10−3m/2) = 1.73×10−4m.

E42-8 (b) Small angles, so ∆y/D = ∆mλ/a. Then

a = ∆mDλ/∆y = (5− 1)(0.413 m)(546×10−9m)/(0.350×10−3m) = 2.58 mm.

(a) θ = arcsin(λ/a) = arcsin[(546×10−9m)/(2.58 mm)] = 1.21×10−2◦.

E42-9 Small angles, so ∆y/D = ∆mλ/a. Then

∆y = ∆mDλ/a = (2− 1)(2.94 m)(589×10−9m)/(1.16×10−3m) = 1.49×10−3m.
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E42-10 Doubling the width of the slit results in a narrowing of the diffraction pattern. Since the
width of the central maximum is effectively cut in half, then there is twice the energy in half the
space, producing four times the intensity.

E42-11 (a) This is a small angle approximation problem, so

θ = (1.13 cm)/(3.48 m) = 3.25× 10−3 rad.

(b) A convenient measure of the phase difference, α is related to θ through Eq. 42-7,

α =
πa

λ
sin θ =

π(25.2× 10−6m)
(538× 10−9m)

sin(3.25× 10−3 rad) = 0.478 rad

(c) The intensity at a point is related to the intensity at the central maximum by Eq. 42-8,

Iθ
Im

=
(

sinα
α

)2

=
(

sin(0.478 rad)
(0.478 rad)

)2

= 0.926

E42-12 Consider Fig. 42-11; the angle with the vertical is given by (π − φ)/2. For Fig. 42-10(d)
the circle has wrapped once around onto itself so the angle with the vertical is (3π−φ)/2. Substitute
α into this expression and the angel against the vertical is 3π/2− α.

Use the result from Problem 42-3 that tanα = α for the maxima. The lowest non-zero solution
is α = 4.49341 rad. The angle against the vertical is then 0.21898 rad, or 12.5◦.

E42-13 Drawing heavily from Sample Problem 42-4,

θx = arcsin
(
αxλ

πa

)
= arcsin

(
1.39
10π

)
= 2.54◦.

Finally, ∆θ = 2θx = 5.1◦.

E42-14 (a) Rayleigh’s criterion for resolving images (Eq. 42-11) requires that two objects have an
angular separation of at least

θR = sin−1

(
1.22λ
d

)
= sin−1

(
1.22(540× 10−9)
(4.90× 10−3m)

)
= 1.34× 10−4 rad

(b) The linear separation is y = θD = (1.34× 10−4 rad)(163×103m) = 21.9 m.

E42-15 (a) Rayleigh’s criterion for resolving images (Eq. 42-11) requires that two objects have
an angular separation of at least

θR = sin−1

(
1.22λ
d

)
= sin−1

(
1.22(562× 10−9)
(5.00× 10−3m)

)
= 1.37× 10−4 rad.

(b) Once again, this is a small angle, so we can use the small angle approximation to find the
distance to the car. In that case θR = y/D, where y is the headlight separation and D the distance
to the car. Solving,

D = y/θR = (1.42 m)/(1.37× 10−4 rad) = 1.04× 104m,

or about six or seven miles.
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E42-16 y/D = 1.22λ/a; or

D = (5.20×10−3m)(4.60×10−3/m)/1.22(542×10−9m) = 36.2 m.

E42-17 The smallest resolvable angular separation will be given by Eq. 42-11,

θR = sin−1

(
1.22λ
d

)
= sin−1

(
1.22(565× 10−9m)

(5.08 m)

)
= 1.36× 10−7 rad,

The smallest objects resolvable on the Moon’s surface by this telescope have a size y where

y = DθR = (3.84× 108 m)(1.36× 10−7 rad) = 52.2 m

E42-18 y/D = 1.22λ/a; or

y = 1.22(1.57×10−2m)(6.25×103m)/(2.33 m) = 51.4 m

E42-19 y/D = 1.22λ/a; or

D = (4.8×10−2m)(4.3×10−3/m)/1.22(0.12×10−9m) = 1.4×106 m.

E42-20 y/D = 1.22λ/a; or

d = 1.22(550×10−9m)(160×103m)/(0.30 m) = 0.36 m.

E42-21 Using Eq. 42-11, we find the minimum resolvable angular separation is given by

θR = sin−1

(
1.22λ
d

)
= sin−1

(
1.22(475× 10−9m)

(4.4× 10−3m)

)
= 1.32× 10−4 rad

The dots are 2 mm apart, so we want to stand a distance D away such that

D > y/θR = (2× 10−3m)/(1.32× 10−4 rad) = 15 m.

E42-22 y/D = 1.22λ/a; or

y = 1.22(500×10−9m)(354×103m)/(9.14 m/2) = 4.73×10−2 m.

E42-23 (a) λ = v/f . Now use Eq. 42-11:

θ = arcsin
(

1.22
(1450 m/s)

(25×103Hz)(0.60 m)

)
= 6.77◦.

(b) Following the same approach,

θ = arcsin
(

1.22
(1450 m/s)

(1×103Hz)(0.60 m)

)
has no real solution, so there is no minimum.
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E42-24 (a) λ = v/f . Now use Eq. 42-11:

θ = arcsin
(

1.22
(3×108 m/s)

(220×109Hz)(0.55 m)

)
= 0.173◦.

This is the angle from the central maximum; the angular width is twice this, or 0.35◦.
(b) use Eq. 42-11:

θ = arcsin
(

1.22
(0.0157 m)
(2.33 m)

)
= 0.471◦.

This is the angle from the central maximum; the angular width is twice this, or 0.94◦.

E42-25 The linear separation of the fringes is given by

∆y
D

= ∆θ =
λ

d
or ∆y =

λD

d

for sufficiently small d compared to λ.

E42-26 (a) d sin θ = 4λ gives the location of the fourth interference maximum, while a sin θ =
λ gives the location of the first diffraction minimum. Hence, if d = 4a there will be no fourth
interference maximum!

(b) Since d sin θmi = miλ gives the interference maxima and a sin θmd = mdλ gives the diffraction
minima, and d = 4a, then whenever mi = 4md there will be a missing maximum.

E42-27 (a) The central diffraction envelope is contained in the range

θ = arcsin
λ

a

This angle corresponds to the mth maxima of the interference pattern, where

sin θ = mλ/d = mλ/2a.

Equating, m = 2, so there are three interference bands, since the m = 2 band is “washed out” by
the diffraction minimum.

(b) If d = a then β = α and the expression reduces to

Iθ = Imcos
2α

sin2 α

α2
,

= Im
sin2(2α)

2α2
,

= 2Im

(
sinα′

α′

)2

,

where α = 2α′, which is the same as replacing a by 2a.

E42-28 Remember that the central peak has an envelope width twice that of any other peak.
Ignoring the central maximum there are (11− 1)/2 = 5 fringes in any other peak envelope.
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E42-29 (a) The first diffraction minimum is given at an angle θ such that a sin θ = λ; the order
of the interference maximum at that point is given by d sin θ = mλ. Dividing one expression by the
other we get d/a = m, with solution m = (0.150)/(0.030) = 5. The fact that the answer is exactly 5
implies that the fifth interference maximum is squelched by the diffraction minimum. Then there are
only four complete fringes on either side of the central maximum. Add this to the central maximum
and we get nine as the answer.

(b) For the third fringe m = 3, so d sin θ = 3λ. Then β is Eq. 42-14 is 3π, while α in Eq. 42-16
is

α =
πa

λ

3λ
d

= 3π
a

d
,

so the relative intensity of the third fringe is, from Eq. 42-17,

(cos 3π)2

(
sin(3πa/d)

(3πa/d)

)2

= 0.255.

P42-1 y = mλD/a. Then

y = (10)(632.8×10−9m)(2.65 m)/(1.37×10−3m) = 1.224×10−2m.

The separation is twice this, or 2.45 cm.

P42-2 If a� λ then the diffraction pattern is extremely tight, and there is effectively no light at
P . In the event that either shape produces an interference pattern at P then the other shape must
produce an equal but opposite electric field vector at that point so that when both patterns from
both shapes are superimposed the field cancel.

But the intensity is the field vector squared; hence the two patterns look identical.

P42-3 (a) We want to take the derivative of Eq. 42-8 with respect to α, so

dIθ
dα

=
d

dα
Im

(
sinα
α

)2

,

= Im2
(

sinα
α

)(
cosα
α
− sinα

α2

)
,

= Im2
sinα
α3

(α cosα− sinα) .

This equals zero whenever sinα = 0 or α cosα = sinα; the former is the case for a minima while the
latter is the case for the maxima. The maxima case can also be written as

tanα = α.

(b) Note that as the order of the maxima increases the solutions get closer and closer to odd
integers times π/2. The solutions are

α = 0, 1.43π, 2.46π, etc.

(c) The m values are m = α/π − 1/2, and correspond to

m = 0.5, 0.93, 1.96, etc.

These values will get closer and closer to integers as the values are increased.
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P42-4 The outgoing beam strikes the moon with a circular spot of radius

r = 1.22λD/a = 1.22(0.69×10−6m)(3.82×108m)/(2× 1.3 m) = 123 m.

The light is not evenly distributed over this circle.
If P0 is the power in the light, then

P0 =
∫
Iθr dr dφ = 2π

∫ R

0

Iθr dr,

where R is the radius of the central peak and Iθ is the angular intensity. For a � λ we can write
α ≈ πar/λD, then

P0 = 2πIm

(
λD

πa

)2 ∫ π/2

0

sin2 α

α
dα ≈ 2πIm

(
λD

πa

)2

(0.82).

Then the intensity at the center falls off with distance D as

Im = 1.9 (a/λD)2
P0

The fraction of light collected by the mirror on the moon is then

P1/P0 = 1.9
(

(2× 1.3 m)
(0.69×10−6m)(3.82×108m)

)2

π(0.10 m)2 = 5.6×10−6.

The fraction of light collected by the mirror on the Earth is then

P2/P1 = 1.9
(

(2× 0.10 m)
(0.69×10−6m)(3.82×108m)

)2

π(1.3 m)2 = 5.6×10−6.

Finally, P2/P0 = 3×10−11.

P42-5 (a) The ring is reddish because it occurs at the blue minimum.
(b) Apply Eq. 42-11 for blue light:

d = 1.22λ/ sin θ = 1.22(400 nm)/ sin(0.375◦) = 70µm.

(c) Apply Eq. 42-11 for red light:

θ = arcsin (1.22(700 nm)/(70µm)) ≈ 0.7◦,

which occurs 3 lunar radii from the moon.

P42-6 The diffraction pattern is a property of the speaker, not the interference between the speak-
ers. The diffraction pattern should be unaffected by the phase shift. The interference pattern,
however, should shift up or down as the phase of the second speaker is varied.

P42-7 (a) The missing fringe at θ = 5◦ is a good hint as to what is going on. There should be
some sort of interference fringe, unless the diffraction pattern has a minimum at that point. This
would be the first minimum, so

a sin(5◦) = (440× 10−9m)

would be a good measure of the width of each slit. Then a = 5.05× 10−6m.
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(b) If the diffraction pattern envelope were not present we could expect that the fourth interfer-
ence maxima beyond the central maximum would occur at this point, and then

d sin(5◦) = 4(440× 10−9m)

yielding
d = 2.02× 10−5m.

(c) Apply Eq. 42-17, where β = mπ and

α =
πa

λ
sin θ =

πa

λ

mλ

d
= m

πa

d
= mπ/4.

Then for m = 1 we have

I1 = (7)
(

sin(π/4)
(π/4)

)2

= 5.7;

while for m = 2 we have

I2 = (7)
(

sin(2π/4)
(2π/4)

)2

= 2.8.

These are in good agreement with the figure.
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E43-1 (a) d = (21.5×10−3m)/(6140) = 3.50×10−6m.
(b) There are a number of angles allowed:

θ = arcsin[(1)(589×10−9m)/(3.50×10−6m)] = 9.7◦,
θ = arcsin[(2)(589×10−9m)/(3.50×10−6m)] = 19.5◦,
θ = arcsin[(3)(589×10−9m)/(3.50×10−6m)] = 30.3◦,
θ = arcsin[(4)(589×10−9m)/(3.50×10−6m)] = 42.3◦,
θ = arcsin[(5)(589×10−9m)/(3.50×10−6m)] = 57.3◦.

E43-2 The distance between adjacent rulings is

d =
(2)(612×10−9m)

sin(33.2◦)
= 2.235×10−6m.

The number of lines is then

N = D/d = (2.86×10−2m)/(2.235×10−6m) = 12, 800.

E43-3 We want to find a relationship between the angle and the order number which is linear.
We’ll plot the data in this representation, and then use a least squares fit to find the wavelength.

The data to be plotted is

m θ sin θ m θ sin θ
1 17.6◦ 0.302 -1 -17.6◦ -0.302
2 37.3◦ 0.606 -2 -37.1◦ -0.603
3 65.2◦ 0.908 -3 -65.0◦ -0.906

On my calculator I get the best straight line fit as

0.302m+ 8.33× 10−4 = sin θm,

which means that
λ = (0.302)(1.73µm) = 522 nm.

E43-4 Although an approach like the solution to Exercise 3 should be used, we’ll assume that each
measurement is perfect and error free. Then randomly choosing the third maximum,

λ =
d sin θ
m

=
(5040×10−9m) sin(20.33◦)

(3)
= 586×10−9m.

E43-5 (a) The principle maxima occur at points given by Eq. 43-1,

sin θm = m
λ

d
.

The difference of the sine of the angle between any two adjacent orders is

sin θm+1 − sin θm = (m+ 1)
λ

d
−mλ

d
=
λ

d
.

Using the information provided we can find d from

d =
λ

sin θm+1 − sin θm
=

(600× 10−9)
(0.30)− (0.20)

= 6µm.
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It doesn’t take much imagination to recognize that the second and third order maxima were given.
(b) If the fourth order maxima is missing it must be because the diffraction pattern envelope has

a minimum at that point. Any fourth order maxima should have occurred at sin θ4 = 0.4. If it is a
diffraction minima then

a sin θm = mλ where sin θm = 0.4

We can solve this expression and find

a = m
λ

sin θm
= m

(600× 10−9m)
(0.4)

= m1.5µm.

The minimum width is when m = 1, or a = 1.5µm.
(c) The visible orders would be integer values of m except for when m is a multiple of four.

E43-6 (a) Find the maximum integer value of m = d/λ = (930 nm)/(615 nm) = 1.5, hence
m = −1, 0,+1; there are three diffraction maxima.

(b) The first order maximum occurs at

θ = arcsin(615 nm)/(930 nm) = 41.4◦.

The width of the maximum is

δθ =
(615 nm)

(1120)(930 nm) cos(41.4◦)
= 7.87×10−4 rad,

or 0.0451◦.

E43-7 The fifth order maxima will be visible if d/λ ≥ 5; this means

λ ≤ d

5
=

(1×10−3m)
(315 rulings)(5)

= 635×10−9m.

E43-8 (a) The maximum could be the first, and then

λ =
d sin θ
m

=
(1×10−3m) sin(28◦)

(200)(1)
= 2367×10−9m.

That’s not visible. The first visible wavelength is at m = 4, then

λ =
d sin θ
m

=
(1×10−3m) sin(28◦)

(200)(4)
= 589×10−9m.

The next is at m = 5, then

λ =
d sin θ
m

=
(1×10−3m) sin(28◦)

(200)(5)
= 469×10−9m.

Trying m = 6 results in an ultraviolet wavelength.
(b) Yellow-orange and blue.
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E43-9 A grating with 400 rulings/mm has a slit separation of

d =
1

400 mm−1
= 2.5× 10−3 mm.

To find the number of orders of the entire visible spectrum that will be present we need only consider
the wavelength which will be on the outside of the maxima. That will be the longer wavelengths, so
we only need to look at the 700 nm behavior. Using Eq. 43-1,

d sin θ = mλ,

and using the maximum angle 90◦, we find

m <
d

λ
=

(2.5× 10−6m)
(700× 10−9m)

= 3.57,

so there can be at most three orders of the entire spectrum.

E43-10 In this case d = 2a. Since interference maxima are given by sin θ = mλ/d while diffraction
minima are given at sin θ = m′λ/a = 2m′λ/d then diffraction minima overlap with interference
maxima whenever m = 2m′. Consequently, all even m are at diffraction minima and therefore
vanish.

E43-11 If the second-order spectra overlaps the third-order, it is because the 700 nm second-order
line is at a larger angle than the 400 nm third-order line.

Start with the wavelengths multiplied by the appropriate order parameter, then divide both side
by d, and finally apply Eq. 43-1.

2(700 nm) > 3(400 nm),
2(700 nm)

d
>

3(400 nm)
d

,

sin θ2,λ=700 > sin θ3,λ=400,

regardless of the value of d.

E43-12 Fig. 32-2 shows the path length difference for the right hand side of the grating as d sin θ.
If the beam strikes the grating at ang angle ψ then there will be an additional path length difference
of d sinψ on the right hand side of the figure. The diffraction pattern then has two contributions to
the path length difference, these add to give

d(sin θ + sin psi) = mλ.

E43-13

E43-14 Let d sin θi = λi and θ1 + 20◦ = θ2. Then

sin θ2 = sin θ1 cos(20◦) + cos θ1 sin(20◦).

Rearranging,

sin θ2 = sin θ1 cos(20◦) +
√

1− sin2 θ1 sin(20◦).

Substituting the equations together yields a rather nasty expression,

λ2

d
=
λ1

d
cos(20◦) +

√
1− (λ1/d)2 sin(20◦).
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Rearranging,
(λ2 − λ1 cos(20◦))2 =

(
d2 − λ2

1

)
sin2(20◦).

Use λ1 = 430 nm and λ2 = 680 nm, then solve for d to find d = 914 nm. This corresponds to 1090
rulings/mm.

E43-15 The shortest wavelength passes through at an angle of

θ1 = arctan(50 mm)/(300 mm) = 9.46◦.

This corresponds to a wavelength of

λ1 =
(1×10−3m) sin(9.46◦)

(350)
= 470×10−9m.

The longest wavelength passes through at an angle of

θ2 = arctan(60 mm)/(300 mm) = 11.3◦.

This corresponds to a wavelength of

λ2 =
(1×10−3m) sin(11.3◦)

(350)
= 560×10−9m.

E43-16 (a) ∆λ = λ/R = λ/Nm, so

∆λ = (481 nm)/(620 rulings/mm)(5.05 mm)(3) = 0.0512 nm.

(b) mm is the largest integer smaller than d/λ, or

mm ≤ 1/(481×10−9m)(620 rulings/mm) = 3.35,

so m = 3 is highest order seen.

E43-17 The required resolving power of the grating is given by Eq. 43-10

R =
λ

∆λ
=

(589.0 nm)
(589.6 nm)− (589.0 nm)

= 982.

Our resolving power is then R = 1000.
Using Eq. 43-11 we can find the number of grating lines required. We are looking at the second-

order maxima, so

N =
R

m
=

(1000)
(2)

= 500.

E43-18 (a) N = R/m = λ/m∆λ, so

N =
(415.5 nm)

(2)(415.496 nm− 415.487 nm)
= 23100.

(b) d = w/N , where w is the width of the grating. Then

θ = arcsin
mλ

d
= arcsin

(23100)(2)(415.5×10−9m)
(4.15×10−2m)

= 27.6◦.
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E43-19 N = R/m = λ/m∆λ, so

N =
(656.3 nm)

(1)(0.180 nm)
= 3650

E43-20 Start with Eq. 43-9:

D =
m

d cos θ
=
d sin θ/λ
d cos θ

=
tan θ
λ

.

E43-21 (a) We find the ruling spacing by Eq. 43-1,

d =
mλ

sin θm
=

(3)(589 nm)
sin(10.2◦)

= 9.98µm.

(b) The resolving power of the grating needs to be at least R = 1000 for the third-order line; see
the work for Ex. 43-17 above. The number of lines required is given by Eq. 43-11,

N =
R

m
=

(1000)
(3)

= 333,

so the width of the grating (or at least the part that is being used) is 333(9.98µm) = 3.3 mm.

E43-22 (a) Condition (1) is satisfied if

d ≥ 2(600 nm)/ sin(30◦) = 2400 nm.

The dispersion is maximal for the smallest d, so d = 2400 nm.
(b) To remove the third order requires d = 3a, or a = 800 nm.

E43-23 (a) The angles of the first three orders are

θ1 = arcsin
(1)(589×10−9m)(40000)

(76×10−3m)
= 18.1◦,

θ2 = arcsin
(2)(589×10−9m)(40000)

(76×10−3m)
= 38.3◦,

θ3 = arcsin
(3)(589×10−9m)(40000)

(76×10−3m)
= 68.4◦.

The dispersion for each order is

D1 =
(1)(40000)

(76×106nm) cos(18.1◦)
360◦

2π
= 3.2×10−2◦/nm,

D2 =
(2)(40000)

(76×106nm) cos(38.3◦)
360◦

2π
= 7.7×10−2◦/nm,

D3 =
(3)(40000)

(76×106nm) cos(68.4◦)
360◦

2π
= 2.5×10−1◦/nm.

(b) R = Nm, so

R1 = (40000)(1) = 40000,
R2 = (40000)(2) = 80000,
R3 = (40000)(3) = 120000.
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E43-24 d = mλ/2 sin θ, so

d =
(2)(0.122 nm)

2 sin(28.1◦)
= 0.259 nm.

E43-25 Bragg reflection is given by Eq. 43-12

2d sin θ = mλ,

where the angles are measured not against the normal, but against the plane. The value of d depends
on the family of planes under consideration, but it is at never larger than a0, the unit cell dimension.

We are looking for the smallest angle; this will correspond to the largest d and the smallest m.
That means m = 1 and d = 0.313 nm. Then the minimum angle is

θ = sin−1 (1)(29.3× 10−12 m)
2(0.313× 10−9 m)

= 2.68◦.

E43-26 2d/λ = sin θ1 and 2d/2λ = sin θ2. Then

θ2 = arcsin[2 sin(3.40◦)] = 6.81◦.

E43-27 We apply Eq. 43-12 to each of the peaks and find the product

mλ = 2d sin θ.

The four values are 26 pm, 39 pm, 52 pm, and 78 pm. The last two values are twice the first two,
so the wavelengths are 26 pm and 39 pm.

E43-28 (a) 2d sin θ = mλ, so

d =
(3)(96.7 pm)
2 sin(58.0◦)

= 171 pm.

(b) λ = 2(171 pm) sin(23.2◦)/(1) = 135 pm.

E43-29 The angle against the face of the crystal is 90◦ − 51.3◦ = 38.7◦. The wavelength is

λ = 2(39.8 pm) sin(38.7◦)/(1) = 49.8 pm.

E43-30 If λ > 2d then λ/2d > 1. But

λ/2d = sin θ/m.

This means that sin θ > m, but the sine function can never be greater than one.

E43-31 There are too many unknowns. It is only possible to determine the ratio d/λ.

E43-32 A wavelength will be diffracted if mλ = 2d sin θ. The possible solutions are

λ3 = 2(275 pm) sin(47.8)/(3) = 136 pm,
λ4 = 2(275 pm) sin(47.8)/(4) = 102 pm.
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E43-33 We use Eq. 43-12 to first find d;

d =
mλ

2 sin θ
=

(1)(0.261× 10−9 m)
2 sin(63.8◦)

= 1.45× 10−10 m.

d is the spacing between the planes in Fig. 43-28; it correspond to half of the diagonal distance
between two cell centers. Then

(2d)2 = a2
0 + a2

0,

or
a0 =

√
2d =

√
2(1.45× 10−10 m) = 0.205 nm.

E43-34 Diffraction occurs when 2d sin θ = mλ. The angles in this case are then given by

sin θ = m
(0.125×10−9m)
2(0.252×10−9m)

= (0.248)m.

There are four solutions to this equation. They are 14.4◦, 29.7◦, 48.1◦, and 82.7◦. They involve
rotating the crystal from the original orientation (90◦ − 42.4◦ = 47.6◦) by amounts

47.6◦ − 14.4◦ = 33.2◦,
47.6◦ − 29.7◦ = 17.9◦,
47.6◦ − 48.1◦ = −0.5◦,
47.6◦ − 82.7◦ = −35.1◦.

P43-1 Since the slits are so narrow we only need to consider interference effects, not diffraction
effects. There are three waves which contribute at any point. The phase angle between adjacent
waves is

φ = 2πd sin θ/λ.

We can add the electric field vectors as was done in the previous chapters, or we can do it in a
different order as is shown in the figure below.

Then the vectors sum to
E(1 + 2 cosφ).

We need to square this quantity, and then normalize it so that the central maximum is the maximum.
Then

I = Im
(1 + 4 cosφ+ 4 cos2 φ)

9
.
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P43-2 (a) Solve φ for I = Im/2, this occurs when

3√
2

= 1 + 2 cosφ,

or φ = 0.976 rad. The corresponding angle θx is

θx ≈
λφ

2πd
=
λ(0.976)

2πd
=

λ

6.44d
.

But ∆θ = 2θx, so

∆θ ≈ λ

3.2d
.

(b) For the two slit pattern the half width was found to be ∆θ = λ/2d. The half width in the
three slit case is smaller.

P43-3 (a) and (b) A plot of the intensity quickly reveals that there is an alternation of large
maximum, then a smaller maximum, etc. The large maxima are at φ = 2nπ, the smaller maxima
are half way between those values.

(c) The intensity at these secondary maxima is then

I = Im
(1 + 4 cosπ + 4 cos2 π)

9
=
Im

9
.

Note that the minima are not located half-way between the maxima!

P43-4 Covering up the middle slit will result in a two slit apparatus with a slit separation of 2d.
The half width, as found in Problem 41-5, is then

∆θ = λ/2(2d),= λ/4d,

which is narrower than before covering up the middle slit by a factor of 3.2/4 = 0.8.

P43-5 (a) If N is large we can treat the phasors as summing to form a flexible “line” of length
NδE. We then assume (incorrectly) that the secondary maxima occur when the loop wraps around
on itself as shown in the figures below. Note that the resultant phasor always points straight up.
This isn’t right, but it is close to reality.

228



The length of the resultant depends on how many loops there are. For k = 0 there are none.
For k = 1 there are one and a half loops. The circumference of the resulting circle is 2NδE/3, the
diameter is NδE/3π. For k = 2 there are two and a half loops. The circumference of the resulting
circle is 2NδE/5, the diameter is NδE/5π. The pattern for higher k is similar: the circumference
is 2NδE/(2k + 1), the diameter is NδE/(k + 1/2)π.

The intensity at this “approximate” maxima is proportional to the resultant squared, or

Ik ∝
(NδE)2

(k + 1/2)2π2
.

but Im is proportional to (NδE)2, so

Ik = Im
1

(k + 1/2)2π2
.

(b) Near the middle the vectors simply fold back on one another, leaving a resultant of δE. Then

Ik ∝ (δE)2 =
(NδE)2

N2
,

so
Ik =

Im

N2
,

(c) Let α have the values which result in sinα = 1, and then the two expressions are identical!

P43-6 (a) v = fλ, so δv = fδλ + λδf . Assuming δv = 0, we have δf/f = −δλ/λ. Ignore the
negative sign (we don’t need it here). Then

R =
λ

∆λ
=

f

∆f
=

c

λ∆f
,

and then
∆f =

c

Rλ
=

c

Nmλ
.

(b) The ray on the top gets there first, the ray on the bottom must travel an additional distance
of Nd sin θ. It takes a time

∆t = Nd sin θ/c

to do this.
(c) Since mλ = d sin θ, the two resulting expression can be multiplied together to yield

(∆f)(∆t) =
c

Nmλ

Nd sin θ
c

= 1.

This is almost, but not quite, one of Heisenberg’s uncertainty relations!

P43-7 (b) We sketch parallel lines which connect centers to form almost any right triangle similar
to the one shown in the Fig. 43-18. The triangle will have two sides which have integer multiple
lengths of the lattice spacing a0. The hypotenuse of the triangle will then have length

√
h2 + k2a0,

where h and k are the integers. In Fig. 43-18 h = 2 while k = 1. The number of planes which cut
the diagonal is equal to h2 +k2 if, and only if, h and k are relatively prime. The inter-planar spacing
is then

d =
√
h2 + k2a0

h2 + k2
=

a0√
h2 + k2

.
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(a) The next five spacings are then

h = 1, k = 1, d = a0/
√

2,

h = 1, k = 2, d = a0/
√

5,

h = 1, k = 3, d = a0/
√

10,

h = 2, k = 3, d = a0/
√

13,

h = 1, k = 4, d = a0/
√

17.

P43-8 The middle layer cells will also diffract a beam, but this beam will be exactly π out of phase
with the top layer. The two beams will then cancel out exactly because of destructive interference.
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E44-1 (a) The direction of propagation is determined by considering the argument of the sine
function. As t increases y must decrease to keep the sine function “looking” the same, so the wave
is propagating in the negative y direction.

(b) The electric field is orthogonal (perpendicular) to the magnetic field (so Ex = 0) and the
direction of motion (so Ey = 0); Consequently, the only non-zero term is Ez. The magnitude of E
will be equal to the magnitude of B times c. Since ~S = ~E × ~B/µ0, when ~B points in the positive
x direction then ~E must point in the negative z direction in order that ~S point in the negative y
direction. Then

Ez = −cB sin(ky + ωt).

(c) The polarization is given by the direction of the electric field, so the wave is linearly polarized
in the z direction.

E44-2 Let one wave be polarized in the x direction and the other in the y direction. Then the net
electric field is given by E2 = E2

x + E2
y , or

E2 = E2
0

(
sin2(kz − ωt) + sin2(kz − ωt+ β)

)
,

where β is the phase difference. We can consider any point in space, including z = 0, and then
average the result over a full cycle. Since β merely shifts the integration limits, then the result is
independent of β. Consequently, there are no interference effects.

E44-3 (a) The transmitted intensity is I0/2 = 6.1×10−3W/m2. The maximum value of the electric
field is

Em =
√

2µ0cI =
√

2(1.26×10−6H/m)(3.00×108m/s)(6.1×10−3W/m2) = 2.15 V/m.

(b) The radiation pressure is caused by the absorbed half of the incident light, so

p = I/c = (6.1×10−3W/m2)/(3.00×108m/s) = 2.03×10−11Pa.

E44-4 The first sheet transmits half the original intensity, the second transmits an amount pro-
portional to cos2 θ. Then I = (I0/2) cos2 θ, or

θ = arccos
√

2I/I0 = arccos
√

2(I0/3)/I035.3◦.

E44-5 The first sheet polarizes the un-polarized light, half of the intensity is transmitted, so
I1 = 1

2I0.
The second sheet transmits according to Eq. 44-1,

I2 = I1 cos2 θ =
1
2
I0 cos2(45◦) =

1
4
I0,

and the transmitted light is polarized in the direction of the second sheet.
The third sheet is 45◦ to the second sheet, so the intensity of the light which is transmitted

through the third sheet is

I3 = I2 cos2 θ =
1
4
I0 cos2(45◦) =

1
8
I0.
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E44-6 The transmitted intensity through the first sheet is proportional to cos2 θ, the transmitted
intensity through the second sheet is proportional to cos2(90◦ − θ) = sin2 θ. Then

I = I0 cos2 θ sin2 θ = (I0/4) sin2 2θ,

or
θ =

1
2

arcsin
√

4I/I0 =
1
2

arcsin
√

4(0.100I0)/I0 = 19.6◦.

Note that 70.4◦ is also a valid solution!

E44-7 The first sheet transmits half of the original intensity; each of the remaining sheets transmits
an amount proportional to cos2 θ, where θ = 30◦. Then

I

I0
=

1
2
(
cos2 θ

)3
=

1
2

(cos(30◦))6 = 0.211

E44-8 The first sheet transmits an amount proportional to cos2 θ, where θ = 58.8◦. The second
sheet transmits an amount proportional to cos2(90◦ − θ) = sin2 θ. Then

I = I0 cos2 θ sin2 θ = (43.3 W/m2) cos2(58.8◦) sin2(58.8◦) = 8.50 W/m2.

E44-9 Since the incident beam is unpolarized the first sheet transmits 1/2 of the original intensity.
The transmitted beam then has a polarization set by the first sheet: 58.8◦ to the vertical. The second
sheet is horizontal, which puts it 31.2◦ to the first sheet. Then the second sheet transmits cos2(31.2◦)
of the intensity incident on the second sheet. The final intensity transmitted by the second sheet
can be found from the product of these terms,

I = (43.3 W/m2)
(

1
2

)(
cos2(31.2◦)

)
= 15.8 W/m2.

E44-10 θp = arctan(1.53/1.33) = 49.0◦.

E44-11 (a) The angle for complete polarization of the reflected ray is Brewster’s angle, and is
given by Eq. 44-3 (since the first medium is air)

θp = tan−1 n = tan−1(1.33) = 53.1◦.

(b) Since the index of refraction depends (slightly) on frequency, then so does Brewster’s angle.

E44-12 (b) Since θr + θp = 90◦, θp = 90◦ − (31.8◦) = 58.2◦.
(a) n = tan θp = tan(58.2◦) = 1.61.

E44-13 The angles are between

θp = tan−1 n = tan−1(1.472) = 55.81◦.

and
θp = tan−1 n = tan−1(1.456) = 55.52◦.

E44-14 The smallest possible thickness t will allow for one half a wavelength phase difference for
the o and e waves. Then ∆nt = λ/2, or

t = (525×10−9m)/2(0.022) = 1.2×10−5m.
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E44-15 (a) The incident wave is at 45◦ to the optical axis. This means that there are two
components; assume they originally point in the +y and +z direction. When they travel through
the half wave plate they are now out of phase by 180◦; this means that when one component is in
the +y direction the other is in the −z direction. In effect the polarization has been rotated by 90◦.

(b) Since the half wave plate will delay one component so that it emerges 180◦ “later” than it
should, it will in effect reverse the handedness of the circular polarization.

(c) Pretend that an unpolarized beam can be broken into two orthogonal linearly polarized
components. Both are then rotated through 90◦; but when recombined it looks like the original
beam. As such, there is no apparent change.

E44-16 The quarter wave plate has a thickness of x = λ/4∆n, so the number of plates that can
be cut is given by

N = (0.250×10−3m)4(0.181)/(488×10−9m) = 371.

P44-1 Intensity is proportional to the electric field squared, so the original intensity reaching the
eye is I0, with components Ih = (2.3)2Iv, and then

I0 = Ih + Iv = 6.3Iv or Iv = 0.16I0.

Similarly, Ih = (2.3)2Iv = 0.84I0.
(a) When the sun-bather is standing only the vertical component passes, while
(b) when the sun-bather is lying down only the horizontal component passes.

P44-2 The intensity of the transmitted light which was originally unpolarized is reduced to Iu/2,
regardless of the orientation of the polarizing sheet. The intensity of the transmitted light which
was originally polarized is between 0 and Ip, depending on the orientation of the polarizing sheet.
Then the maximum transmitted intensity is Iu/2 + Ip, while the minimum transmitted intensity is
Iu/2. The ratio is 5, so

5 =
Iu/2 + Ip

Iu/2
= 1 + 2

Ip

Iu
,

or Ip/Iu = 2. Then the beam is 1/3 unpolarized and 2/3 polarized.

P44-3 Each sheet transmits a fraction

cos2 α = cos2

(
θ

N

)
.

There are N sheets, so the fraction transmitted through the stack is(
cos2

(
θ

N

))N
.

We want to evaluate this in the limit as N →∞.
As N gets larger we can use a small angle approximation to the cosine function,

cosx ≈ 1− 1
2
x2 for x� 1

The the transmitted intensity is (
1− 1

2
θ2

N2

)2N

.
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This expression can also be expanded in a binomial expansion to get

1− 2N
1
2
θ2

N2
,

which in the limit as N →∞ approaches 1.
The stack then transmits all of the light which makes it past the first filter. Assuming the light

is originally unpolarized, then the stack transmits half the original intensity.

P44-4 (a) Stack several polarizing sheets so that the angle between any two sheets is sufficiently
small, but the total angle is 90◦.

(b) The transmitted intensity fraction needs to be 0.95. Each sheet will transmit a fraction
cos2 θ, where θ = 90◦/N , with N the number of sheets. Then we want to solve

0.95 =
(
cos2(90◦/N)

)N
for N . For large enough N , θ will be small, so we can expand the cosine function as

cos2 θ = 1− sin2 θ ≈ 1− θ2,

so
0.95 ≈

(
1− (π/2N)2

)N ≈ 1−N(π/2N)2,

which has solution N = π2/4(0.05) = 49.

P44-5 Since passing through a quarter wave plate twice can rotate the polarization of a linearly
polarized wave by 90◦, then if the light passes through a polarizer, through the plate, reflects off the
coin, then through the plate, and through the polarizer, it would be possible that when it passes
through the polarizer the second time it is 90◦ to the polarizer and no light will pass. You won’t see
the coin.

On the other hand if the light passes first through the plate, then through the polarizer, then is
reflected, the passes again through the polarizer, all the reflected light will pass through he polarizer
and eventually work its way out through the plate. So the coin will be visible.

Hence, side A must be the polarizing sheet, and that sheet must be at 45◦ to the optical axis.

P44-6 (a) The displacement of a ray is given by

tan θk = yk/t,

so the shift is
∆y = t(tan θe − tan θo).

Solving for each angle,

θe = arcsin
(

1
(1.486)

sin(38.8◦)
)

= 24.94◦,

θo = arcsin
(

1
(1.658)

sin(38.8◦)
)

= 22.21◦.

The shift is then

∆y = (1.12×10−2m) (tan(24.94)− tan(22.21)) = 6.35×10−4m.

(b) The e-ray bends less than the o-ray.
(c) The rays have polarizations which are perpendicular to each other; the o-wave being polarized

along the direction of the optic axis.
(d) One ray, then the other, would disappear.
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P44-7 The method is outline in Sample Problem 44-24; use a polarizing sheet to pick out the o-ray
or the e-ray.
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E45-1 (a) The energy of a photon is given by Eq. 45-1, E = hf , so

E = hf =
hc

λ
.

Putting in “best” numbers

hc =
(6.62606876×10−34J · s)
(1.602176462×10−19 C)

(2.99792458×108m/s) = 1.23984×10−6 eV ·m.

This means that hc = 1240 eV · nm is accurate to almost one part in 8000!
(b) E = (1240 eV · nm)/(589 nm) = 2.11 eV.

E45-2 Using the results of Exercise 45-1,

λ =
(1240 eV · nm)

(0.60 eV)
= 2100 nm,

which is in the infrared.

E45-3 Using the results of Exercise 45-1,

E1 =
(1240 eV · nm)

(375 nm)
= 3.31 eV,

and

E2 =
(1240 eV · nm)

(580 nm)
= 2.14 eV,

The difference is ∆E = (3.307 eV)− (2.138 eV) = 1.17 eV.

E45-4 P = E/t, so, using the result of Exercise 45-1,

P = (100/s)
(1240 eV · nm)

(540 nm)
= 230 eV/s.

That’s a small 3.68×10−17W.

E45-5 When talking about the regions in the sun’s spectrum it is more common to refer to
wavelengths than frequencies. So we will use the results of Exercise 45-1(a), and solve

λ = hc/E = (1240 eV · nm)/E.

The energies are between E = (1.0×1018J)/(1.6×10−19C) = 6.25 eV and E = (1.0×1016J)/(1.6×
10−19C) = 625 eV. These energies correspond to wavelengths between 198 nm and 1.98 nm; this is
the ultraviolet range.

E45-6 The energy per photon is E = hf = hc/λ. The intensity is power per area, which is energy
per time per area, so

I =
P

A
=

E

At
=
nhc

λAt
=

hc

λA

n

t
.

But R = n/t is the rate of photons per unit time. Since h and c are constants and I and A are equal
for the two beams, we have R1/λ1 = R2/λ2, or

R1/R2 = λ1/λ2.
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E45-7 (a) Since the power is the same, the bulb with the larger energy per photon will emits
fewer photons per second. Since longer wavelengths have lower energies, the bulb emitting 700 nm
must be giving off more photons per second.

(b) How many more photons per second? If E1 is the energy per photon for one of the bulbs,
then N1 = P/E1 is the number of photons per second emitted. The difference is then

N1 −N2 =
P

E1
− P

E2
=
P

hc
(λ1 − λ2),

or

N1−N2 =
(130 W)

(6.63×10−34J·s)(3.00×108m/s)
((700×10−9m)− (400×10−9m)) = 1.96×1020.

E45-8 Using the results of Exercise 45-1, the energy of one photon is

E =
(1240 eV · nm)

(630 nm)
= 1.968 eV,

The total light energy given off by the bulb is

Et = Pt = (0.932)(70 W)(730 hr)(3600 s/hr) = 1.71×108J.

The number of photons is

n =
Et

E0
=

(1.71×108J)
(1.968 eV)(1.6×10−19J/eV)

= 5.43×1026.

E45-9 Apply Wien’s law, Eq. 45-4, λmaxT = 2898µm ·K; so

T =
(2898µm ·K)
(32×10−12m)

= 91×106K.

Actually, the wavelength was supposed to be 32µm. Then the temperature would be 91 K.

E45-10 Apply Wien’s law, Eq. 45-4, λmaxT = 2898µm ·K; so

λ =
(2898µm ·K)

(0.0020 K)
= 1.45 m.

This is in the radio region, near 207 on the FM dial.

E45-11 The wavelength of the maximum spectral radiancy is given by Wien’s law, Eq. 45-4,

λmaxT = 2898µm ·K.

Applying to each temperature in turn,
(a) λ = 1.06×10−3m, which is in the microwave;
(b) λ = 9.4×10−6m, which is in the infrared;
(c) λ = 1.6×10−6m, which is in the infrared;
(d) λ = 5.0×10−7m, which is in the visible;
(e) λ = 2.9×10−10m, which is in the x-ray;
(f) λ = 2.9×10−41m, which is in a hard gamma ray.
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E45-12 (a) Apply Wien’s law, Eq. 45-4, λmaxT = 2898µm ·K.; so

λ =
(2898µm ·K)

(5800 K)
= 5.00×10−7m.

That’s blue-green.
(b) Apply Wien’s law, Eq. 45-4, λmaxT = 2898µm ·K.; so

T =
(2898µm ·K)
(550×10−9m)

= 5270 K.

E45-13 I = σT 4 and P = IA. Then

P = (5.67×10−8W/m2 ·K4)(1900 K)4π(0.5×10−3m)2 = 0.58 W.

E45-14 Since I ∝ T 4, doubling T results in a 24 = 16 times increase in I. Then the new power
level is

(16)(12.0 mW) = 192 mW.

E45-15 (a) We want to apply Eq. 45-6,

R(λ, T ) =
2πc2h
λ5

1
ehc/λkT − 1

.

We know the ratio of the spectral radiancies at two different wavelengths. Dividing the above
equation at the first wavelength by the same equation at the second wavelength,

3.5 =
λ5

1

(
ehc/λ1kT − 1

)
λ5

2

(
ehc/λ2kT − 1

) ,
where λ1 = 200 nm and λ2 = 400 nm. We can considerably simplify this expression if we let

x = ehc/λ2kT ,

because since λ2 = 2λ1 we would have

ehc/λ1kT = e2hc/λ2kT = x2.

Then we get

3.5 =
(

1
2

)5
x2 − 1
x− 1

=
1
32

(x+ 1).

We will use the results of Exercise 45-1 for the exponents and then rearrange to get

T =
hc

λ1k ln(111)
=

(3.10 eV)
(8.62×10−5 eV/K) ln(111)

= 7640 K.

(b) The method is the same, except that instead of 3.5 we have 1/3.5; this means the equation
for x is

1
3.5

=
1
32

(x+ 1),

with solution x = 8.14, so then

T =
hc

λ1k ln(8.14)
=

(3.10 eV)
(8.62×10−5 eV/K) ln(8.14)

= 17200 K.
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E45-16 hf = φ, so

f =
φ

h
=

(5.32 eV)
(4.14×10−15eV · s)

= 1.28×1015Hz.

E45-17 We’ll use the results of Exercise 45-1. Visible red light has an energy of

E =
(1240 eV · nm)

(650 nm)
= 1.9 eV.

The substance must have a work function less than this to work with red light. This means that
only cesium will work with red light. Visible blue light has an energy of

E =
(1240 eV · nm)

(450 nm)
= 2.75 eV.

This means that barium, lithium, and cesium will work with blue light.

E45-18 Since Km = hf − φ,

Km = (4.14×10−15eV · s)(3.19×1015Hz)− (2.33 eV) = 10.9 eV.

E45-19 (a) Use the results of Exercise 45-1 to find the energy of the corresponding photon,

E =
hc

λ
=

(1240 eV · nm)
(678 nm)

= 1.83 eV.

Since this energy is less than than the minimum energy required to remove an electron then the
photo-electric effect will not occur.

(b) The cut-off wavelength is the longest possible wavelength of a photon that will still result in
the photo-electric effect occurring. That wavelength is

λ =
(1240 eV · nm)

E
=

(1240 eV · nm)
(2.28 eV)

= 544 nm.

This would be visible as green.

E45-20 (a) Since Km = hc/λ− φ,

Km =
(1240 eV · nm)

(200 nm)
(4.2 eV) = 2.0 eV.

(b) The minimum kinetic energy is zero; the electron just barely makes it off the surface.
(c) V s = Km/q = 2.0 V.
(d) The cut-off wavelength is the longest possible wavelength of a photon that will still result in

the photo-electric effect occurring. That wavelength is

λ =
(1240 eV · nm)

E
=

(1240 eV · nm)
(4.2 eV)

= 295 nm.

E45-21 Km = qV s = 4.92 eV. But Km = hc/λ− φ, so

λ =
(1240 eV · nm)

(4.92 eV + 2.28 eV)
= 172 nm.
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E45-22 (a) Km = qV s and Km = hc/λ − φ. We have two different values for qV s and λ, so
subtracting this equation from itself yields

q(V s,1 − V s,2) = hc/λ1 − hc/λ2.

Solving for λ2,

λ2 =
hc

hc/λ1 − q(V s,1 − V s,2)
,

=
(1240 eV · nm)

(1240 eV · nm)/(491 nm)− (0.710 eV) + (1.43 eV)
,

= 382 nm.

(b) Km = qV s and Km = hc/λ− φ, so

φ = (1240 eV · nm)/(491 nm)− (0.710 eV) = 1.82 eV.

E45-23 (a) The stopping potential is given by Eq. 45-11,

V0 =
h

e
f − φ

e
,

so

V0 =
(1240 eV · nm)
e(410 nm

− (1.85 eV
e

= 1.17 V.

(b) These are not relativistic electrons, so

v =
√

2K/m = c
√

2K/mc2 = c
√

2(1.17 eV)/(0.511×106 eV) = 2.14×10−3c,

or v = 64200 m/s.

E45-24 It will have become the stopping potential, or

V0 =
h

e
f − φ

e
,

so

V0 =
(4.14×10−15eV ·m)

(1.0e)
(6.33×1014/s)− (2.49 eV)

(1.0e)
= 0.131 V.

E45-25

E45-26 (a) Using the results of Exercise 45-1,

λ =
(1240 eV · nm)
(20×103 eV)

= 62 pm.

(b) This is in the x-ray region.

E45-27 (a) Using the results of Exercise 45-1,

E =
(1240 eV · nm)

(41.6×10−3 nm)
= 29, 800 eV.

(b) f = c/λ = (3×108m/s)/(41.6 pm) = 7.21×1018/s.
(c) p = E/c = 29, 800 eV/c = 2.98×104 eV/c.
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E45-28 (a) E = hf , so

f =
(0.511×106eV)

(4.14×10−15eV · s)
= 1.23×1020/s.

(b) λ = c/f = (3×108m/s)/(1.23×1020/s) = 2.43 pm.
(c) p = E/c = (0.511×106eV)/c.

E45-29 The initial momentum of the system is the momentum of the photon, p = h/λ. This
momentum is imparted to the sodium atom, so the final speed of the sodium is v = p/m, where m
is the mass of the sodium. Then

v =
h

λm
=

(6.63×10−34J · s)
(589×10−9m)(23)(1.7×10−27kg)

= 2.9 cm/s.

E45-30 (a) λC = h/mc = hc/mc2, so

λC =
(1240 eV · nm)
(0.511×106eV)

= 2.43 pm.

(c) Since Eλ = hf = hc/λ, and λ = h/mc = hc/mc2, then

Eλ = hc/λ = mc2.

(b) See part (c).

E45-31 The change in the wavelength of a photon during Compton scattering is given by Eq.
45-17,

λ′ = λ+
h

mc
(1− cosφ).

We’ll use the results of Exercise 45-30 to save some time, and let h/mc = λC, which is 2.43 pm.
(a) For φ = 35◦,

λ′ = (2.17 pm) + (2.43 pm)(1− cos 35◦) = 2.61 pm.

(b) For φ = 115◦,

λ′ = (2.17 pm) + (2.43 pm)(1− cos 115◦) = 5.63 pm.

E45-32 (a) We’ll use the results of Exercise 45-1:

λ =
(1240 eV · nm)
(0.511×106eV)

= 2.43 pm.

(b) The change in the wavelength of a photon during Compton scattering is given by Eq. 45-17,

λ′ = λ+
h

mc
(1− cosφ).

We’ll use the results of Exercise 45-30 to save some time, and let h/mc = λC, which is 2.43 pm.

λ′ = (2.43 pm) + (2.43 pm)(1− cos 72◦) = 4.11 pm.

(c) We’ll use the results of Exercise 45-1:

E =
(1240 eV · nm)

(4.11 pm)
= 302 keV.
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E45-33 The change in the wavelength of a photon during Compton scattering is given by Eq.
45-17,

λ′ − λ =
h

mc
(1− cosφ).

We are not using the expression with the form ∆λ because ∆λ and ∆E are not simply related.
The wavelength is related to frequency by c = fλ, while the frequency is related to the energy

by Eq. 45-1, E = hf . Then

∆E = E − E′ = hf − hf ′,

= hc

(
1
λ
− 1
λ′

)
,

= hc
λ′ − λ
λλ′

.

Into this last expression we substitute the Compton formula. Then

∆E =
h2

m

(1− cosφ)
λλ′

.

Now E = hf = hc/λ, and we can divide this on both sides of the above equation. Also, λ′ = c/f ′,
and we can substitute this into the right hand side of the above equation. Both of these steps result
in

∆E
E

=
hf ′

mc2
(1− cosφ).

Note that mc2 is the rest energy of the scattering particle (usually an electron), while hf ′ is the
energy of the scattered photon.

E45-34 The wavelength is related to frequency by c = fλ, while the frequency is related to the
energy by Eq. 45-1, E = hf . Then

∆E = E − E′ = hf − hf ′,

= hc

(
1
λ
− 1
λ′

)
,

= hc
λ′ − λ
λλ′

,

∆E
E

=
∆λ

λ+ ∆λ
,

But ∆E/E = 3/4, so
3λ+ 3∆λ = 4∆λ,

or ∆λ = 3λ.

E45-35 The maximum shift occurs when φ = 180◦, so

∆λm = 2
h

mc
= 2

(1240 eV · nm)
938 MeV)

= 2.64×10−15m.

E45-36 Since E = hf frequency shifts are identical to energy shifts. Then we can use the results
of Exercise 45-33 to get

(0.0001) =
(0.9999)(6.2 keV)

(511 keV)
(1− cosφ),

which has solution φ = 7.4◦.
(b) (0.0001)(6.2 keV) = 0.62 eV.
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E45-37 (a) The change in wavelength is independent of the wavelength and is given by Eq.
45-17,

∆λ =
hc

mc2
(1− cosφ) = 2

(1240 eV · nm)
(0.511×106 eV)

= 4.85×10−3 nm.

(b) The change in energy is given by

∆E =
hc

λf
− hc

λi
,

= hc

(
1

λi + ∆λ
− 1
λi

)
,

= (1240 eV · nm)
(

1
(9.77 pm) + (4.85 pm)

− 1
(9.77 pm)

)
= −42.1 keV

(c) This energy went to the electron, so the final kinetic energy of the electron is 42.1 keV.

E45-38 For φ = 90◦ ∆λ = h/mc. Then

∆E
E

= 1− hf ′

hf
= 1− λ

λ+ ∆λ
,

=
h/mc

λ+ h/mc
.

But h/mc = 2.43 pm for the electron (see Exercise 45-30).
(a) ∆E/E = (2.43 pm)/(3.00 cm + 2.43 pm) = 8.1×10−11.
(b) ∆E/E = (2.43 pm)/(500 nm + 2.43 pm) = 4.86×10−6.
(c) ∆E/E = (2.43 pm)/(0.100 nm + 2.43 pm) = 0.0237.
(d) ∆E/E = (2.43 pm)/(1.30 pm + 2.43 pm) = 0.651.

E45-39 We can use the results of Exercise 45-33 to get

(0.10) =
(0.90)(215 keV)

(511 keV)
(1− cosφ),

which has solution φ = 42/6◦.

E45-40 (a) A crude estimate is that the photons can’t arrive more frequently than once every
10− 8s. That would provide an emission rate of 108/s.

(b) The power output would be

P = (108)
(1240 eV · nm)

(550 nm)
= 2.3×108eV/s,

which is 3.6×10−11 W!

E45-41 We can follow the example of Sample Problem 45-6, and apply

λ = λ0(1− v/c).

(a) Solving for λ0,

λ0 =
(588.995 nm)

(1− (−300 m/s)(3×108m/s)
= 588.9944 nm.
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(b) Applying Eq. 45-18,

∆v = − h

mλ
= − (6.6×10−34J · s)

(22)(1.7×10−27kg)(590×10−9m)
= 3×10−2m/s.

(c) Emitting another photon will slow the sodium by about the same amount.

E45-42 (a) (430 m/s)/(0.15 m/s) ≈ 2900 interactions.
(b) If the argon averages a speed of 220 m/s, then it requires interactions at the rate of

(2900)(220 m/s)/(1.0 m) = 6.4×105/s

if it is going to slow down in time.

P45-1 The radiant intensity is given by Eq. 45-3, I = σT 4. The power that is radiated through
the opening is P = IA, where A is the area of the opening. But energy goes both ways through the
opening; it is the difference that will give the net power transfer. Then

P net = (I0 − I1)A = σA
(
T 4

0 − T 4
1

)
.

Put in the numbers, and

P net = (5.67×10−8W/m2 ·K4)(5.20× 10−4m2)
(
(488 K)4 − (299 K)4

)
= 1.44 W.

P45-2 (a) I = σT 4 and P = IA. Then T 4 = P/σA, or

T = 4

√
(100 W)

(5.67×10−8W/m2 ·K4)π(0.28×10−3m)(1.8×10−2m)
= 3248 K.

That’s 2980◦C.
(b) The rate that energy is radiated off is given by dQ/dt = mC dT/dt. The mass is found from

m = ρV , where V is the volume. This can be combined with the power expression to yield

σAT 4 = −ρV CdT/dt,

which can be integrated to yield

∆t =
ρV C

3σA
(1/T 3

2 − 1/T 3
1 ).

Putting in numbers,

∆t =
(19300kg/m3)(0.28×10−3m)(132J/kgC)

3(5.67×10−8W/m2 ·K4)(4)
[1/(2748 K)3 − 1/(3248 K)3],

= 20 ms.

P45-3 Light from the sun will “heat-up” the thin black screen. As the temperature of the screen
increases it will begin to radiate energy. When the rate of energy radiation from the screen is equal
to the rate at which the energy from the sun strikes the screen we will have equilibrium. We need
first to find an expression for the rate at which energy from the sun strikes the screen.

The temperature of the sun is T S. The radiant intensity is given by Eq. 45-3, IS = σT S
4. The

total power radiated by the sun is the product of this radiant intensity and the surface area of the
sun, so

P S = 4πrS
2σT S

4,

244



where rS is the radius of the sun.
Assuming that the lens is on the surface of the Earth (a reasonable assumption), then we can

find the power incident on the lens if we know the intensity of sunlight at the distance of the Earth
from the sun. That intensity is

IE =
P S

A
=

P S

4πRE
2
,

where RE is the radius of the Earth’s orbit. Combining,

IE = σT S
4

(
rS

RE

)2

The total power incident on the lens is then

P lens = IEAlens = σT S
4

(
rS

RE

)2

πrl
2,

where rl is the radius of the lens. All of the energy that strikes the lens is focused on the image, so
the power incident on the lens is also incident on the image.

The screen radiates as the temperature increases. The radiant intensity is I = σT 4, where T is
the temperature of the screen. The power radiated is this intensity times the surface area, so

P = IA = 2πri
2σT 4.

The factor of “2” is because the screen has two sides, while ri is the radius of the image. Set this
equal to P lens,

2πri
2σT 4 = σT S

4

(
rS

RE

)2

πrl
2,

or

T 4 =
1
2
T S

4

(
rS rl

RE ri

)2

.

The radius of the image of the sun divided by the radius of the sun is the magnification of the
lens. But magnification is also related to image distance divided by object distance, so

ri

rS
= |m| = i

o
,

Distances should be measured from the lens, but since the sun is so far from the Earth, we won’t be
far off in stating o ≈ RE. Since the object is so far from the lens, the image will be very, very close
to the focal point, so we can also state i ≈ f . Then

ri

rS
=

f

RE
,

so the expression for the temperature of the thin black screen is considerably simplified to

T 4 =
1
2
T S

4

(
rl

f

)2

.

Now we can put in some of the numbers.

T =
1

21/4
(5800 K)

√
(1.9 cm)
(26 cm)

= 1300 K.
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P45-4 The derivative of R with respect to λ is

−10
π c2 h

λ6 (e( h c
λ k T ) − 1)

+
2π c3 h2 e( h c

λ k T )

λ7 (e( h c
λ k T ) − 1)2 k T

.

Ohh, that’s ugly. Setting it equal to zero allows considerable simplification, and we are left with

(5− x)ex = 5,

where x = hc/λkT . The solution is found numerically to be x = 4.965114232. Then

λ =
(1240 eV · nm)

(4.965)(8.62×10−5eV/K)T
=

2.898×10−3m ·K
T

.

P45-5 (a) If the planet has a temperature T , then the radiant intensity of the planet will be
IσT 4, and the rate of energy radiation from the planet will be

P = 4πR2σT 4,

where R is the radius of the planet.
A steady state planet temperature requires that the energy from the sun arrive at the same rate

as the energy is radiated from the planet. The intensity of the energy from the sun a distance r
from the sun is

P sun/4πr2,

and the total power incident on the planet is then

P = πR2P sun

4πr2
.

Equating,

4πR2σT 4 = πR2P sun

4πr2
,

T 4 =
P sun

16πσr2
.

(b) Using the last equation and the numbers from Problem 3,

T =
1√
2

(5800 K)

√
(6.96×108m)
(1.5×1011m)

= 279 K.

That’s about 43◦ F.

P45-6 (a) Change variables as suggested, then λ = hc/xkT and dλ = −(hc/x2kT )dx. Integrate
(note the swapping of the variables of integration picks up a minus sign):

I =
∫

2πc2h
(hc/xkT )5

(hc/x2kT )dx
ex − 1

,

=
2πk4T 4

h3c2

∫
x3 dx

ex − 1
,

=
2π5k4

15h3c2
T 4.
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P45-7 (a) P = E/t = nhf/t = (hc/λ)(n/t), where n/t is the rate of photon emission. Then

n/t =
(100 W)(589×10−9m)

(6.63×10−34J · s)(3.00×108m/s)
= 2.96×1020/s.

(b) The flux at a distance r is the rate divided by the area of the sphere of radius r, so

r =

√
(2.96×1020/s)

4π(1×104/m2 · s)
= 4.8×107m.

(c) The photon density is the flux divided by the speed of light; the distance is then

r =

√
(2.96×1020/s)

4π(1×106/m3)(3×108m/s)
= 280 m.

(d) The flux is given by
(2.96×1020/s)

4π(2.0 m)2
= 5.89×1018/m2 · s.

The photon density is

(5.89×1018m2 · s)/(3.00×108m/s) = 1.96×1010/m3.

P45-8 Momentum conservation requires

pλ = pe,

while energy conservation requires
Eλ +mc2 = Ee.

Square both sides of the energy expression and

E2
λ + 2Eλmc2 +m2c4 = E2

e = p2
ec

2 +m2c4,

E2
λ + 2Eλmc2 = p2

ec
2,

p2
λc

2 + 2Eλmc2 = p2
ec

2.

But the momentum expression can be used here, and the result is

2Eλmc2 = 0.

Not likely.

P45-9 (a) Since qvB = mv2/r, v = (q/m)rB The kinetic energy of (non-relativistic) electrons will
be

K =
1
2
mv2 =

1
2
q2(rB)2

m
,

or

K =
1
2

(1.6×10−19C)
(9.1×10−31kg)

(188×10−6T ·m)2 = 3.1×103 eV.

(b) Use the results of Exercise 45-1,

φ =
(1240 eV · nm)
(71×10−3nm)

− 3.1×103eV = 1.44×104 eV.
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P45-10

P45-11 (a) The maximum value of ∆λ is 2h/mc. The maximum energy lost by the photon is
then

∆E =
hc

λf
− hc

λi
,

= hc

(
1

λi + ∆λ
− 1
λi

)
,

= hc
−2h/mc

λ(λ+ 2h/mc)
,

where in the last line we wrote λ for λi. The energy given to the electron is the negative of this, so

Kmax =
2h2

mλ(λ+ 2h/mc)
.

Multiplying through by 12 = (Eλ/hc)2 we get

Kmax =
2E2

mc2(1 + 2hc/λmc2)
.

or

Kmax =
E2

mc2/2 + E
.

(b) The answer is

Kmax =
(17.5 keV)2

(511 eV)/2 + (17.5 keV)
= 1.12 keV.
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E46-1 (a) Apply Eq. 46-1, λ = h/p. The momentum of the bullet is

p = mv = (0.041 kg)(960 m/s) = 39kg ·m/s,

so the corresponding wavelength is

λ = h/p = (6.63×10−34J · s)/(39kg ·m/s) = 1.7×10−35 m.

(b) This length is much too small to be significant. How much too small? If the radius of the
galaxy were one meter, this distance would correspond to the diameter of a proton.

E46-2 (a) λ = h/p and p2/2m = K, then

λ =
hc√

2mc2K
=

(1240 eV · nm)√
2(511 keV)

√
K

=
1.226 nm√

K
.

(b) K = eV , so

λ =
1.226 nm√

eV
=

√
1.5 V
V

nm.

E46-3 For non-relativistic particles λ = h/p and p2/2m = K, so λ = hc/
√

2mc2K.
(a) For the electron,

λ =
(1240 eV · nm)√

2(511 keV)(1.0 keV)
= 0.0388 nm.

(c) For the neutron,

λ =
(1240 MeV · fm)√

2(940 MeV)(0.001 MeV)
= 904 fm.

(b) For ultra-relativistic particles K ≈ E ≈ pc, so

λ =
hc

E
=

(1240 eV · nm)
(1000 eV)

= 1.24 nm.

E46-4 For non-relativistic particles p = h/λ and p2/2m = K, so K = (hc)2/2mc2λ2. Then

K =
(1240 eV · nm)2

2(5.11×106eV)(589 nm)2
= 4.34×10−6 eV.

E46-5 (a) Apply Eq. 46-1, p = h/λ. The proton speed would then be

v =
h

mλ
= c

hc

mc2λ
= c

(1240 MeV · fm)
(938 MeV)(113 fm)

= 0.0117c.

This is good, because it means we were justified in using the non-relativistic equations. Then
v = 3.51×106m/s.

(b) The kinetic energy of this electron would be

K =
1
2
mv2 =

1
2

(938 MeV)(0.0117)2 = 64.2 keV.

The potential through which it would need to be accelerated is 64.2 kV.

249



E46-6 (a) K = qV and p =
√

2mK. Then

p =
√

2(22)(932 MeV/c2)(325 eV) = 3.65×106 eV/c.

(b) λ = h/p, so

λ =
hc

pc
=

(1240 eV · nm)
(3.65×106 eV/c)c

= 3.39×10−4nm.

E46-7 (a) For non-relativistic particles λ = h/p and p2/2m = K, so λ = hc/
√

2mc2K. For the
alpha particle,

λ =
(1240 MeV · fm)√

2(4)(932 MeV)(7.5 MeV)
= 5.2 fm.

(b) Since the wavelength of the alpha is considerably smaller than the distance to the nucleus
we can ignore the wave nature of the alpha particle.

E46-8 (a) For non-relativistic particles p = h/λ and p2/2m = K, so K = (hc)2/2mc2λ2. Then

K =
(1240 keV · pm)2

2(511keV)(10 pm)2
= 15 keV.

(b) For ultra-relativistic particles K ≈ E ≈ pc, so

E =
hc

λ
=

(1240 keV · pm)
(10 pm)

= 124 keV.

E46-9 The relativistic relationship between energy and momentum is

E2 = p2c2 +m2c4,

and if the energy is very large (compared to mc2), then the contribution of the mass to the above
expression is small, and

E2 ≈ p2c2.

Then from Eq. 46-1,

λ =
h

p
=
hc

pc
=
hc

E
=

(1240 MeV · fm)
(50×103 MeV)

= 2.5×10−2 fm.

E46-10 (a) K = 3kT/2, p =
√

2mK, and λ = h/p, so

λ =
h√

3mkT
=

hc√
3mc2kT

,

=
(1240 MeV · fm)√

3(4)(932MeV)(8.62×10−11MeV/K)(291 K)
= 74 pm.

(b) pV = NkT ; assuming that each particle occupies a cube of volume d3 = V0 then the inter-
particle spacing is d, so

d = 3
√
V/N = 3

√
(1.38×10−23J/K)(291 K)

(1.01×105Pa)
= 3.4 nm.
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E46-11 p = mv and p = h/λ, so m = h/λv. Taking the ratio,

me

m
=

λv

λeve
= (1.813×10−4)(3) = 5.439×10−4.

The mass of the unknown particle is then

m =
(0.511 MeV/c2)
(5.439×10−4)

= 939.5 MeV.

That would make it a neutron.

E46-12 (a) For non-relativistic particles λ = h/p and p2/2m = K, so λ = hc/
√

2mc2K.
For the electron,

λ =
(1240 eV · nm)√

2(5.11×105 eV)(1.5 eV)
= 1.0 nm.

For ultra-relativistic particles K ≈ E ≈ pc, so for the photon

λ =
hc

E
=

(1240 eV · nm)
(1.5 eV)

= 830 nm.

(b) Electrons with energies that high are ultra-relativistic. Both the photon and the electron will
then have the same wavelength;

λ =
hc

E
=

(1240 MeV · fm)
(1.5 GeV)

= 0.83 fm.

E46-13 (a) The classical expression for kinetic energy is

p =
√

2mK,

so

λ =
h

p
=

hc√
2mc2K

=
(1240 keV · pm)√

2(511 keV)(25.0 keV)
= 7.76 pm.

(a) The relativistic expression for momentum is

pc = sqrtE2 −m2c4 =
√

(mc2 +K)2 −m2c4 =
√
K2 + 2mc2K.

Then

λ =
hc

pc
=

(1240 keV · pm)√
(25.0 keV)2 + 2(511 keV)(25.0 keV)

= 7.66 pm.

E46-14 We want to match the wavelength of the gamma to that of the electron. For the gamma,
λ = hc/Eγ . For the electron, K = p2/2m = h2/2mλ2. Combining,

K =
h2

2mh2c2
E2
γ =

E2
γ

2mc2
.

With numbers,

K =
(136keV)2

2(511 keV)
= 18.1 keV.

That would require an accelerating potential of 18.1 kV.
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E46-15 First find the wavelength of the neutrons. For non-relativistic particles λ = h/p and
p2/2m = K, so λ = hc/

√
2mc2K. Then

λ =
(1240 keV · pm)√

2(940×103 keV)(4.2×10−3 keV)
= 14 pm.

Bragg reflection occurs when 2d sin θ = λ, so

θ = arcsin(14 pm)/2(73.2 pm) = 5.5◦.

E46-16 This is merely a Bragg reflection problem. Then 2d sin θ = mλ, or

θ = arcsin(1)(11 pm)/2(54.64 pm) = 5.78◦,
θ = arcsin(2)(11 pm)/2(54.64 pm) = 11.6◦,
θ = arcsin(3)(11 pm)/2(54.64 pm) = 17.6◦.

E46-17 (a) Since sin 52◦ = 0.78, then 2(λ/d) = 1.57 > 1, so there is no diffraction order other
than the first.

(b) For an accelerating potential of 54 volts we have λ/d = 0.78. Increasing the potential will
increase the kinetic energy, increase the momentum, and decrease the wavelength. d won’t change.
The kinetic energy is increased by a factor of 60/54 = 1.11, the momentum increases by a factor of√

1.11 = 1.05, so the wavelength changes by a factor of 1/1.05 = 0.952. The new angle is then

θ = arcsin(0.952× 0.78) = 48◦.

E46-18 First find the wavelength of the electrons. For non-relativistic particles λ = h/p and
p2/2m = K, so λ = hc/

√
2mc2K. Then

λ =
(1240 keV · pm)√

2(511 keV)(0.380 keV)
= 62.9 pm.

This is now a Bragg reflection problem. Then 2d sin θ = mλ, or

θ = arcsin(1)(62.9 pm)/2(314 pm) = 5.74◦,
θ = arcsin(2)(62.9 pm)/2(314 pm) = 11.6◦,
θ = arcsin(3)(62.9 pm)/2(314 pm) = 17.5◦,
θ = arcsin(4)(62.9 pm)/2(314 pm) = 23.6◦,
θ = arcsin(5)(62.9 pm)/2(314 pm) = 30.1◦,
θ = arcsin(6)(62.9 pm)/2(314 pm) = 36.9◦,
θ = arcsin(7)(62.9 pm)/2(314 pm) = 44.5◦,
θ = arcsin(8)(62.9 pm)/2(314 pm) = 53.3◦,
θ = arcsin(9)(62.9 pm)/2(314 pm) = 64.3◦.

But the odd orders vanish (see Chapter 43 for a discussion on this).

E46-19 Since ∆f ·∆t ≈ 1/2π, we have

∆f = 1/2π(0.23 s) = 0.69/s.
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E46-20 Since ∆f ·∆t ≈ 1/2π, we have

∆f = 1/2π(0.10×10−9s) = 1.6×1010/s.

The bandwidth wouldn’t fit in the frequency allocation!

E46-21 Apply Eq. 46-9,

∆E ≥ h

2π∆t
=

4.14×10−15 eV · s)
2π(8.7×10−12s)

= 7.6×10−5 eV.

This is much smaller than the photon energy.

E46-22 Apply Heisenberg twice:

∆E1 =
4.14×10−15 eV · s)

2π(12×10−9s)
= 5.49×10−8 eV.

and

∆E2 =
4.14×10−15 eV · s)

2π(23×10−9s)
= 2.86×10−8 eV.

The sum is ∆Etransition = 8.4×10−8eV.

E46-23 Apply Heisenberg:

∆p =
6.63×10−34J · s)
2π(12×10−12m)

= 8.8×10−24kg ·m/s.

E46-24 ∆p = (0.5 kg)(1.2 s) = 0.6 kg ·m/s. The position uncertainty would then be

∆x =
(0.6 J/s)

2π(0.6 kg ·m/s)
= 0.16 m.

E46-25 We want v ≈ ∆v, which means p ≈ ∆p. Apply Eq. 46-8, and

∆x ≥ h

2π∆p
≈ h

2πp
.

According to Eq. 46-1, the de Broglie wavelength is related to the momentum by

λ = h/p,

so
∆x ≥ λ

2π
.

E46-26 (a) A particle confined in a (one dimensional) box of size L will have a position uncertainty
of no more than ∆x ≈ L. The momentum uncertainty will then be no less than

∆p ≥ h

2π∆x
≈ h

2πL
.

so

∆p ≈ (6.63×10−34J · s)
2π(×10−10 m)

= 1×10−24kg ·m/s.

253



(b) Assuming that p ≈ ∆p, we have

p ≥ h

2πL
,

and then the electron will have a (minimum) kinetic energy of

E ≈ p2

2m
≈ h2

8π2mL2
.

or

E ≈ (hc)2

8π2mc2L2
=

(1240 keV · pm)2

8π2(511 keV)(100 pm)2
= 0.004 keV.

E46-27 (a) A particle confined in a (one dimensional) box of size L will have a position uncer-
tainty of no more than ∆x ≈ L. The momentum uncertainty will then be no less than

∆p ≥ h

2π∆x
≈ h

2πL
.

so

∆p ≈ (6.63×10−34J · s)
2π(×10−14 m)

= 1×10−20kg ·m/s.

(b) Assuming that p ≈ ∆p, we have

p ≥ h

2πL
,

and then the electron will have a (minimum) kinetic energy of

E ≈ p2

2m
≈ h2

8π2mL2
.

or

E ≈ (hc)2

8π2mc2L2
=

(1240 MeV · fm)2

8π2(0.511 MeV)(10 fm)2
= 381 MeV.

This is so large compared to the mass energy of the electron that we must consider relativistic effects.
It will be very relativistic (381� 0.5!), so we can use E = pc as was derived in Exercise 9. Then

E =
hc

2πL
=

(1240 MeV · fm)
2π(10 fm)

= 19.7 MeV.

This is the total energy; so we subtract 0.511 MeV to get K = 19 MeV.

E46-28 We want to find L when T = 0.01. This means solving

T = 16
E

U0

(
1− E

U0

)
e−2kL,

(0.01) = 16
(5.0 eV)
(6.0 eV)

(
1− (5.0 eV)

(6.0 eV)

)
e−2k′L,

= 2.22e−2k′L,

ln(4.5×10−3) = 2(5.12×109/m)L,
5.3×10−10m = L.
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E46-29 The wave number, k, is given by

k =
2π
hc

√
2mc2(U0 − E).

(a) For the proton mc2 = 938 MeV, so

k =
2π

(1240 MeV · fm)

√
2(938 MeV)(10 MeV− 3.0 MeV) = 0.581 fm−1.

The transmission coefficient is then

T = 16
(3.0 MeV)
(10 MeV)

(
1− (3.0 MeV)

(10 MeV)

)
e−2(0.581 fm−1

)(10 fm) = 3.0×10−5.

(b) For the deuteron mc2 = 2× 938 MeV, so

k =
2π

(1240 MeV · fm)

√
2(2)(938 MeV)(10 MeV− 3.0 MeV) = 0.821 fm−1.

The transmission coefficient is then

T = 16
(3.0 MeV)
(10 MeV)

(
1− (3.0 MeV)

(10 MeV)

)
e−2(0.821 fm−1

)(10 fm) = 2.5×10−7.

E46-30 The wave number, k, is given by

k =
2π
hc

√
2mc2(U0 − E).

(a) For the proton mc2 = 938 MeV, so

k =
2π

(1240 keV · pm)

√
2(938 MeV)(6.0 eV− 5.0 eV) = 0.219 pm−1.

We want to find T . This means solving

T = 16
E

U0

(
1− E

U0

)
e−2kL,

= 16
(5.0 eV)
(6.0 eV)

(
1− (5.0 eV)

(6.0 eV)

)
e−2(0.219×1012)(0.7×10−9),

= 1.6×10−133.

A current of 1 kA corresponds to

N = (1×103C/s)/(1.6×10−19C) = 6.3×1021/s

protons per seconds. The time required for one proton to pass is then

t = 1/(6.3×1021/s)(1.6×10−133) = 9.9×10110s.

That’s 10104 years!
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P46-1 We will interpret low energy to mean non-relativistic. Then

λ =
h

p
=

h√
2mnK

.

The diffraction pattern is then given by

d sin θ = mλ = mh/
√

2mnK,

where m is diffraction order while mn is the neutron mass. We want to investigate the spread by
taking the derivative of θ with respect to K,

d cos θ dθ = − mh

2
√

2mnK3
dK.

Divide this by the original equation, and then

cos θ
sin θ

dθ = −dK
2K

.

Rearrange, change the differential to a difference, and then

∆θ = tan θ
∆K
2K

.

We dropped the negative sign out of laziness; but the angles are in radians, so we need to multiply
by 180/π to convert to degrees.

P46-2

P46-3 We want to solve

T = 16
E

U0

(
1− E

U0

)
e−2kL,

for E. Unfortunately, E is contained in k since

k =
2π
hc

√
2mc2(U0 − E).

We can do this by iteration. The maximum possible value for

E

U0

(
1− E

U0

)
is 1/4; using this value we can get an estimate for k:

(0.001) = 16(0.25)e−2kL,

ln(2.5×10−4) = −2k(0.7 nm),
5.92/ nm = k.

Now solve for E:

E = U0 − (hc)2k28mc2π2,

= (6.0 eV)− (1240 eV · nm)2(5.92/nm)2

8π2(5.11×105eV)
,

= 4.67 eV.
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Put this value for E back into the transmission equation to find a new k:

T = 16
E

U0

(
1− E

U0

)
e−2kL,

(0.001) = 16
(4.7 eV)
(6.0 eV)

(
1− (4.7 eV)

(6.0 eV)

)
e−2kL,

ln(3.68×10−4) = −2k(0.7 nm),
5.65/ nm = k.

Now solve for E using this new, improved, value for k:

E = U0 − (hc)2k28mc2π2,

= (6.0 eV)− (1240 eV · nm)2(5.65/nm)2

8π2(5.11×105eV)
,

= 4.78 eV.

Keep at it. You’ll eventually stop around E = 5.07 eV.

P46-4 (a) A one percent increase in the barrier height means U0 = 6.06 eV.
For the electron mc2 = 5.11×105 eV, so

k =
2π

(1240 eV · nm)

√
2(5.11×105 eV)(6.06 eV− 5.0 eV) = 5.27 nm−1.

We want to find T . This means solving

T = 16
E

U0

(
1− E

U0

)
e−2kL,

= 16
(5.0 eV)
(6.06 eV)

(
1− (5.0 eV)

(6.06 eV)

)
e−2(5.27)(0.7),

= 1.44×10−3.

That’s a 16% decrease.
(b) A one percent increase in the barrier thickness means L = 0.707 nm.
For the electron mc2 = 5.11×105 eV, so

k =
2π

(1240 eV · nm)

√
2(5.11×105 eV)(6.0 eV− 5.0 eV) = 5.12 nm−1.

We want to find T . This means solving

T = 16
E

U0

(
1− E

U0

)
e−2kL,

= 16
(5.0 eV)
(6.0 eV)

(
1− (5.0 eV)

(6.0 eV)

)
e−2(5.12)(0.707),

= 1.59×10−3.

That’s a 8.1% decrease.
(c) A one percent increase in the incident energy means E = 5.05 eV.
For the electron mc2 = 5.11×105 eV, so

k =
2π

(1240 eV · nm)

√
2(5.11×105 eV)(6.0 eV− 5.05 eV) = 4.99 nm−1.
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We want to find T . This means solving

T = 16
E

U0

(
1− E

U0

)
e−2kL,

= 16
(5.05 eV)
(6.0 eV)

(
1− (5.05 eV)

(6.0 eV)

)
e−2(4.99)(0.7),

= 1.97×10−3.

That’s a 14% increase.

P46-5 First, the rule for exponents

ei(a+b) = eia eib.

Then apply Eq. 46-12, eiθ = cos θ + i sin θ,

cos(a+ b) + i sin(a+ b) = (cos a+ i sin a)(sin b+ i sin b).

Expand the right hand side, remembering that i2 = −1,

cos(a+ b) + i sin(a+ b) = cos a cos b+ i cos a sin b+ i sin a cos b− sin a sin b.

Since the real part of the left hand side must equal the real part of the right and the imaginary part
of the left hand side must equal the imaginary part of the right, we actually have two equations.
They are

cos(a+ b) = cos a cos b− sin a sin b

and
sin(a+ b) = cos a sin b+ sin a cos b.

P46-6
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E47-1 (a) The ground state energy level will be given by

E1 =
h2

8mL2
=

(6.63× 10−34J · s)2

8(9.11× 10−31kg)(1.4× 10−14 m)2
= 3.1× 10−10 J.

The answer is correct, but the units make it almost useless. We can divide by the electron charge to
express this in electron volts, and then E = 1900 MeV. Note that this is an extremely relativistic
quantity, so the energy expression loses validity.

(b) We can repeat what we did above, or we can apply a “trick” that is often used in solving
these problems. Multiplying the top and the bottom of the energy expression by c2 we get

E1 =
(hc)2

8(mc2)L2

Then

E1 =
(1240 MeV · fm)2

8(940 MeV)(14 fm)2
= 1.0 MeV.

(c) Finding an neutron inside the nucleus seems reasonable; but finding the electron would not.
The energy of such an electron is considerably larger than binding energies of the particles in the
nucleus.

E47-2 Solve

En =
n2(hc)2

8(mc2)L2

for L, then

L =
nhc√

8mc2En
,

=
(3)(1240 eV · nm)√

8(5.11×105eV)(4.7 eV)
,

= 0.85 nm.

E47-3 Solve for E4 − E1:

E4 − E1 =
42(hc)2

8(mc2)L2
− 12(hc)2

8(mc2)L2
,

=
(16− 1)(1240 eV · nm)2

8(5.11×105)(0.253 nm)2
,

= 88.1 eV.

E47-4 Since E ∝ 1/L2, doubling the width of the well will lower the ground state energy to
(1/2)2 = 1/4, or 0.65 eV.

E47-5 (a) Solve for E2 − E1:

E2 − E1 =
22h2

8mL2
− 12h2

8mL2
,

=
(3)(6.63×10−34J · s)2

8(40)(1.67×10−27kg)(0.2 m)2
,

= 6.2×10−41J.

(b) K = 3kT/2 = 3(1.38×10−23J/K)(300 K)/2 = 6.21×10−21. The ratio is 1×10−20.
(c) T = 2(6.2×10−41J)/3(1.38×10−23J/K) = 3.0×10−18K.
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E47-6 (a) The fractional difference is (En+1 − En)/En, or

∆En
En

=
[
(n+ 1)2 h2

8mL2
− n2 h2

8mL2

]
/

[
n2 h2

8mL2

]
,

=
(n+ 1)2 − n2

n2
,

=
2n+ 1
n2

.

(b) As n→∞ the fractional difference goes to zero; the system behaves as if it is continuous.

E47-7 (a) We will take advantage of the “trick” that was developed in part (b) of Exercise 47-1.
Then

En = n2 (hc)2

8mc2 L
= (15)2 (1240 eV · nm)2

8(0.511× 106 eV)(0.0985 nm)2
= 8.72 keV.

(b) The magnitude of the momentum is exactly known because E = p2/2m. This momentum is
given by

pc =
√

2mc2E =
√

2(511 keV)(8.72 keV) = 94.4 keV.

What we don’t know is in which direction the particle is moving. It is bouncing back and forth
between the walls of the box, so the momentum could be directed toward the right or toward the
left. The uncertainty in the momentum is then

∆p = p

which can be expressed in terms of the box size L by

∆p = p =
√

2mE =

√
n2h2

4L2
=
nh

2L
.

(c) The uncertainty in the position is 98.5 pm; the electron could be anywhere inside the well.

E47-8 The probability distribution function is

P2 =
2
L

sin2 2πx
L
.

We want to integrate over the central third, or

P =
∫ L/6

−L/6

2
L

sin2 2πx
L
dx,

=
1
π

∫ π/3

−π/3
sin2 θ dθ,

= 0.196.

E47-9 (a) Maximum probability occurs when the argument of the cosine (sine) function is kπ
([k + 1/2]π). This occurs when

x = NL/2n

for odd N .
(b) Minimum probability occurs when the argument of the cosine (sine) function is [k + 1/2]π

(kπ). This occurs when
x = NL/2n

for even N .
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E47-10 In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2.

(a) The Lyman series is the series which ends on E1. The least energetic state starts on E2. The
transition energy is

E2 − E1 = (13.6 eV)(1/12 − 1/22) = 10.2 eV.

The wavelength is

λ =
hc

∆E
=

(1240 eV · nm)
(10.2 eV)

= 121.6 nm.

(b) The series limit is
0− E1 = (13.6 eV)(1/12) = 13.6 eV.

The wavelength is

λ =
hc

∆E
=

(1240 eV · nm)
(13.6 eV)

= 91.2 nm.

E47-11 The ground state of hydrogen, as given by Eq. 47-21, is

E1 = − me4

8ε20h2
= − (9.109× 10−31 kg)(1.602× 10−19 C)4

8(8.854× 10−12 F/m)2(6.626× 10−34 J · s)2
= 2.179× 10−18 J.

In terms of electron volts the ground state energy is

E1 = −(2.179× 10−18 J)/(1.602× 10−19 C) = −13.60 eV.

E47-12 In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2.

(c) The transition energy is

∆E = E3 − E1 = (13.6 eV)(1/12 − 1/32) = 12.1 eV.

(a) The wavelength is

λ =
hc

∆E
=

(1240 eV · nm)
(12.1 eV)

= 102.5 nm.

(b) The momentum is
p = E/c = 12.1 eV/c.

E47-13 In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2.

(a) The Balmer series is the series which ends on E2. The least energetic state starts on E3. The
transition energy is

E3 − E2 = (13.6 eV)(1/22 − 1/32) = 1.89 eV.

The wavelength is

λ =
hc

∆E
=

(1240 eV · nm)
(1.89 eV)

= 656 nm.
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(b) The next energetic state starts on E4. The transition energy is

E4 − E2 = (13.6 eV)(1/22 − 1/42) = 2.55 eV.

The wavelength is

λ =
hc

∆E
=

(1240 eV · nm)
(2.55 eV)

= 486 nm.

(c) The next energetic state starts on E5. The transition energy is

E5 − E2 = (13.6 eV)(1/22 − 1/52) = 2.86 eV.

The wavelength is

λ =
hc

∆E
=

(1240 eV · nm)
(2.86 eV)

= 434 nm.

(d) The next energetic state starts on E6. The transition energy is

E6 − E2 = (13.6 eV)(1/22 − 1/62) = 3.02 eV.

The wavelength is

λ =
hc

∆E
=

(1240 eV · nm)
(3.02 eV)

= 411 nm.

(e) The next energetic state starts on E7. The transition energy is

E7 − E2 = (13.6 eV)(1/22 − 1/72) = 3.12 eV.

The wavelength is

λ =
hc

∆E
=

(1240 eV · nm)
(3.12 eV)

= 397 nm.

E47-14 In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2.

The transition energy is

∆E =
hc

λ
=

(1240 eV · nm)
(121.6 nm)

= 10.20 eV.

This must be part of the Lyman series, so the higher state must be

En = (10.20 eV)− (13.6 eV) = −3.4 eV.

That would correspond to n = 2.

E47-15 The binding energy is the energy required to remove the electron. If the energy of the
electron is negative, then that negative energy is a measure of the energy required to set the electron
free.

The first excited state is when n = 2 in Eq. 47-21. It is not necessary to re-evaluate the constants
in this equation every time, instead, we start from

En =
E1

n2
where E1 = −13.60 eV.

Then the first excited state has energy

E2 =
(−13.6 eV)

(2)2
= −3.4 eV.

The binding energy is then 3.4 eV.
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E47-16 rn = a0n
2, so

n =
√

(847 pm)/(52.9 pm) = 4.

E47-17 (a) The energy of this photon is

E =
hc

λ
=

(1240 eV · nm)
(1281.8 nm)

= 0.96739 eV.

The final state of the hydrogen must have an energy of no more than −0.96739, so the largest
possible n of the final state is

n <
√

13.60 eV/0.96739 eV = 3.75,

so the final n is 1, 2, or 3. The initial state is only slightly higher than the final state. The jump
from n = 2 to n = 1 is too large (see Exercise 15), any other initial state would have a larger energy
difference, so n = 1 is not the final state.

So what level might be above n = 2? We’ll try

n =
√

13.6 eV/(3.4 eV− 0.97 eV) = 2.36,

which is so far from being an integer that we don’t need to look farther. The n = 3 state has energy
13.6 eV/9 = 1.51 eV. Then the initial state could be

n =
√

13.6 eV/(1.51 eV− 0.97 eV) = 5.01,

which is close enough to 5 that we can assume the transition was n = 5 to n = 3.
(b) This belongs to the Paschen series.

E47-18 In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2.

(a) The transition energy is

∆E = E4 − E1 = (13.6 eV)(1/12 − 1/42) = 12.8 eV.

(b) All transitions n→ m are allowed for n ≤ 4 and m < n. The transition energy will be of the
form

En − Em = (13.6 eV)(1/m2 − 1/n2).

The six possible results are 12.8 eV, 12.1 eV, 10.2 eV, 2.55 eV, 1.89 eV, and 0.66 eV.

E47-19 ∆E = h/2π∆t, so

∆E = (4.14×10−15 eV · s)/2π(1×10−8s) = 6.6×10−8eV.

E47-20 (a) According to electrostatics and uniform circular motion,

mv2/r = e2/4πε0r2,

or

v =

√
e2

4πε0mr
==

√
e4

4ε20h2n2
=

e2

2ε0hn
.
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Putting in the numbers,

v =
(1.6×10−19C)2

2(8.85×10−12F/m)(6.63×10−34J · s)n
=

2.18×106m/s
n

.

In this case n = 1.
(b) λ = h/mv,

λ = (6.63×10−34J · s)/(9.11×10−31kg)(2.18×106m/s) = 3.34×10−10m.

(c) λ/a0 = (3.34×10−10m)/(5.29×10−11) = 6.31 ≈ 2π. Actually, it is exactly 2π.

E47-21 In order to have an inelastic collision with the 6.0 eV neutron there must exist a transition
with an energy difference of less than 6.0 eV. For a hydrogen atom in the ground state E1 = −13.6 eV
the nearest state is

E2 = (−13.6 eV)/(2)2 = −3.4 eV.

Since the difference is 10.2 eV, it will not be possible for the 6.0 eV neutron to have an inelastic
collision with a ground state hydrogen atom.

E47-22 (a) The atom is originally in the state n given by

n =
√

(13.6 eV)/(0.85 eV) = 4.

The state with an excitation energy of 10.2 eV, is

n =
√

(13.6 eV)/(13.6 eV− 10.2 eV) = 2.

The transition energy is then

∆E = (13.6 eV)(1/22 − 1/42) = 2.55 eV.

E47-23 According to electrostatics and uniform circular motion,

mv2/r = e2/4πε0r2,

or

v =

√
e2

4πε0mr
==

√
e4

4ε20h2n2
=

e2

2ε0hn
.

The de Broglie wavelength is then

λ =
h

mv
=

2ε0hn
me2

.

The ratio of λ/r is
λ

r
=

2ε0hn
me2a0n2

= kn,

where k is a constant. As n→∞ the ratio goes to zero.
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E47-24 In Exercise 47-21 we show that the hydrogen levels can be written as

En = −(13.6 eV)/n2.

The transition energy is

∆E = E4 − E1 = (13.6 eV)(1/12 − 1/42) = 12.8 eV.

The momentum of the emitted photon is

p = E/c = (12.8 eV)/c.

This is the momentum of the recoiling hydrogen atom, which then has velocity

v =
p

m
=

pc

mc2
c =

(12.8 eV)
(932 MeV)

(3.00×108m/s) = 4.1 m/s.

E47-25 The first Lyman line is the n = 1 to n = 2 transition. The second Lyman line is the
n = 1 to n = 3 transition. The first Balmer line is the n = 2 to n = 3 transition. Since the photon
frequency is proportional to the photon energy (E = hf) and the photon energy is the energy
difference between the two levels, we have

fn→m =
Em − En

h

where the En is the hydrogen atom energy level. Then

f1→3 =
E3 − E1

h
,

=
E3 − E2 + E2 − E1

h
=
E3 − E2

h
+
E2 − E1

h
,

= f2→3 + f1→2.

E47-26 Use
En = −Z2(13.6 eV)/n2.

(a) The ionization energy of the ground state of He+ is

En = −(2)2(13.6 eV)/(1)2 = 54.4 eV.

(b) The ionization energy of the n = 3 state of Li2+ is

En = −(3)2(13.6 eV)/(3)2 = 13.6 eV.

E47-27 (a) The energy levels in the He+ spectrum are given by

En = −Z2(13.6 eV)/n2,

where Z = 2, as is discussed in Sample Problem 47-6. The photon wavelengths for the n = 4 series
are then

λ =
hc

En − E4
=

hc/E4

1− En/E4
,
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which can also be written as

λ =
16hc/(54.4 eV)

1− 16/n2
,

=
16hcn2/(54.4 eV)

n2 − 16
,

=
Cn2

n2 − 16
,

where C = hc/(3.4 eV) = 365 nm.
(b) The wavelength of the first line is the transition from n = 5,

λ =
(365 nm)(5)2

(5)2 − (4)2
= 1014 nm.

The series limit is the transition from n =∞, so

λ = 365 nm.

(c) The series starts in the infrared (1014 nm), and ends in the ultraviolet (365 nm). So it must
also include some visible lines.

E47-28 We answer these questions out of order!
(a) n = 1.
(b) r = a0 = 5.29×10−11m.
(f) According to electrostatics and uniform circular motion,

mv2/r = e2/4πε0r2,

or

v =

√
e2

4πε0mr
==

√
e4

4ε20h2n2
=

e2

2ε0hn
.

Putting in the numbers,

v =
(1.6×10−19C)2

2(8.85×10−12F/m)(6.63×10−34J · s)(1)
= 2.18×106m/s.

(d) p = (9.11×10−31kg)(2.18×106m/s) = 1.99×10−24kg ·m/s.
(e) ω = v/r = (2.18×106m/s)/(5.29×10−11m) = 4.12×1016rad/s.
(c) l = pr = (1.99×10−24kg ·m/s)(5.29×10−11m) = 1.05×10−34J · s.
(g) F = mv2/r, so

F = (9.11×10−31kg)(2.18×106m/s)2/(5.29×10−11m) = 8.18×10−8N.

(h) a = (8.18×10−8N)/(9.11×10−31kg) = 8.98×1022m/s2.
(i) K = mv2/r, or

K =
(9.11×10−31kg)(2.18×106m/s)2

2
= 2.16×10−18J = 13.6 eV.

(k) E = −13.6 eV.
(j) P = E −K = (−13.6 eV)− (13.6 eV) = −27.2 eV.
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E47-29 For each r in the quantity we have a factor of n2.
(a) n is proportional to n.
(b) r is proportional to n2.
(f) v is proportional to

√
1/r, or 1/n.

(d) p is proportional to v, or 1/n.
(e) ω is proportional to v/r, or 1/n3.
(c) l is proportional to pr, or n.
(g) f is proportional to v2/r, or 1/n4.
(h) a is proportional to F , or 1/n4.
(i) K is proportional to v2, or 1/n2.
(j) E is proportional to 1/n2.
(k) P is proportional to 1/n2.

E47-30 (a) Using the results of Exercise 45-1,

E1 =
(1240 eV · nm)

(0.010 nm)
= 1.24×105 eV.

(b) Using the results of Problem 45-11,

Kmax =
E2

mc2/2 + E
=

(1.24×105 eV)2

(5.11×105 eV)/2 + (1.24×105 eV)
= 40.5×104 eV.

(c) This would likely knock the electron way out of the atom.

E47-31 The energy of the photon in the series limit is given by

Elimit = (13.6 eV)/n2,

where n = 1 for Lyman, n = 2 for Balmer, and n = 3 for Paschen. The wavelength of the photon is

λlimit =
(1240 eV · nm)

(13.6 eV)
n2 = (91.17 nm)n2.

The energy of the longest wavelength comes from the transition from the nearest level, or

Elong =
(−13.6 eV)

(n+ 1)2
− (−13.6 eV)

n2
= (13.6 eV)

2n+ 1
[n(n+ 1)]2

.

The wavelength of the photon is

λlong =
(1240 eV · nm)[n(n+ 1)]2

(13.6 eV)n2
= (91.17 nm)

[n(n+ 1)]2

2n+ 1
.

(a) The wavelength interval λlong − λlimit, or

∆λ = (91.17 nm)
n2(n+ 1)2 − n2(2n+ 1)

2n+ 1
= (91.17 nm)

n4

2n+ 1
.

For n = 1, ∆λ = 30.4 nm. For n = 2, ∆λ = 292 nm. For n = 3, ∆λ = 1055 nm.
(b) The frequency interval is found from

∆f =
Elimit − Elong

h
=

(13.6 eV)
(4.14×10−15eV · s)

1
(n+ 1)2

=
(3.29×1015/s)

(n+ 1)2
.

For n = 1, ∆f = 8.23×1014Hz. For n = 2, ∆f = 3.66×1014Hz. For n = 3, ∆f = 2.05×1014Hz.
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E47-32

E47-33 (a) We’ll use Eqs. 47-25 and 47-26. At r = 0

ψ2(0) =
1
πa3

0

e−2(0)/a0 =
1
πa3

0

= 2150 nm−3,

while
P (0) = 4π(0)2ψ2(0) = 0.

(b) At r = a0 we have

ψ2(a0) = frac1πa3
0e
−2(a0)/a0 =

e−2

πa3
0

= 291 nm−3,

and
P (a0) = 4π(a0)2ψ2(a0) = 10.2 nm−1.

E47-34 Assume that ψ(a0) is a reasonable estimate for ψ(r) everywhere inside the small sphere.
Then

ψ2 =
e−2

πa3
0

=
0.1353
πa3

0

.

The probability of finding it in a sphere of radius 0.05a0 is∫ 0.05a0

0

(0.1353)4πr2 dr

πa3
0

=
4
3

(0.1353)(0.05)3 = 2.26×10−5.

E47-35 Using Eq. 47-26 the ratio of the probabilities is

P (a0)
P (2a0)

=
(a0)2e−2(a0)/a0

(2a0)2e−2(2a0)/a0
=

e−2

4e−4
= 1.85.

E47-36 The probability is

P =
∫ 1.016a0

a0

4r2e−2r/a0

a3
0

dr,

=
1
2

∫ 2.032

2

u2e−udu,

= 0.00866.

E47-37 If l = 3 then ml can be 0, ±1, ±2, or ±3.
(a) From Eq. 47-30, Lz = mlh/2π.. So Lz can equal 0, ±h/2π, ±h/π, or ±3h/2π.
(b) From Eq. 47-31, θ = arccos(ml/

√
l(l + 1)), so θ can equal 90◦, 73.2◦, 54.7◦, or 30.0◦.

(c) The magnitude of ~L is given by Eq. 47-28,

L =
√
l(l + 1)

h

2π
=
√

3h/π.

E47-38 The maximum possible value of ml is 5. Apply Eq. 47-31:

θ = arccos
(5)√

(5)(5 + 1)
= 24.1◦.
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E47-39 Use the hint.

∆p ·∆x =
h

2π
,

∆p
r

r
∆x =

h

2π
,

∆p · r∆x
r

=
h

2π
,

∆L ·∆θ =
h

2π
.

E47-40 Note that there is a typo in the formula; P (r) must have dimensions of one over length.
The probability is

P =
∫ ∞

0

r4e−r/a0

24a5
0

dr,

=
1
24

∫ ∞
0

u4e−udu,

= 1.00

What does it mean? It means that if we look for the electron, we will find it somewhere.

E47-41 (a) Find the maxima by taking the derivative and setting it equal to zero.

dP

dr
=
r(2a− r)(4a2 − 6ra+ r2)

8a6
0

e−r = 0.

The solutions are r = 0, r = 2a, and 4a2 − 6ra + r2 = 0. The first two correspond to minima (see
Fig. 47-14). The other two are the solutions to the quadratic, or r = 0.764a0 and r = 5.236a0.

(b) Substitute these two values into Eq. 47-36. The results are

P (0.764a0) = 0.981 nm−1.

and
P (5.236a0) = 3.61 nm−1.

E47-42 The probability is

P =
∫ 5.01a0

5.00a0

r2(2− r/a0)2e−r/a0

8a3
0

dr,

= 0.01896.

E47-43 n = 4 and l = 3, while ml can be any of

−3, −2, −1, 0, 1, 2, 3,

while ms can be either −1/2 or 1/2. There are 14 possible states.

E47-44 n must be greater than l, so n ≥ 4. |ml| must be less than or equal to l, so |ml| ≤ 3. ms

is −1/2 or 1/2.

E47-45 If ml = 4 then l ≥ 4. But n ≥ l + 1, so n > 4. We only know that ms = ±1/2.
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E47-46 There are 2n2 states in a shell n, so if n = 5 there are 50 states.

E47-47 Each is in the n = 1 shell, the l = 0 angular momentum state, and the ml = 0 state. But
one is in the state ms = +1/2 while the other is in the state ms = −1/2.

E47-48 Apply Eq. 47-31:

θ = arccos
(+1/2)√

(1/2)(1/2 + 1)
= 54.7◦

and

θ = arccos
(−1/2)√

(1/2)(1/2 + 1)
= 125.3◦.

E47-49 All of the statements are true.

E47-50 There are n possible values for l (start at 0!). For each value of l there are 2l+ 1 possible
values for ml. If n = 1, the sum is 1. If n = 2, the sum is 1+3 = 4. If n = 3, the sum is 1+3+5 = 9.
The pattern is clear, the sum is n2. But there are two spin states, so the number of states is 2n2.

P47-1 We can simplify the energy expression as

E = E0

(
n2
x + n2

y + n2
z

)
where E0 =

h2

8mL2
.

To find the lowest energy levels we need to focus on the values of nx, ny, and nz.
It doesn’t take much imagination to realize that the set (1, 1, 1) will result in the smallest value

for n2
x + n2

y + n2
z. The next choice is to set one of the values equal to 2, and try the set (2, 1, 1).

Then it starts to get harder, as the next lowest might be either (2, 2, 1) or (3, 1, 1). The only way
to find out is to try. I’ll tabulate the results for you:

nx ny nz n2
x + n2

y + n2
z Mult. nx ny nz n2

x + n2
y + n2

z Mult.
1 1 1 3 1 3 2 1 14 6
2 1 1 6 3 3 2 2 17 3
2 2 1 9 3 4 1 1 18 3
3 1 1 11 3 3 3 1 19 3
2 2 2 12 1 4 2 1 21 6

We are now in a position to state the five lowest energy levels. The fundamental quantity is

E0 =
(hc)2

8mc2L2
=

(1240 eV · nm)2

8(0.511×106 eV)(250 nm)2
= 6.02×10−6 eV.

The five lowest levels are found by multiplying this fundamental quantity by the numbers in the
table above.

P47-2 (a) Write the states between 0 and L. Then all states, odd or even, can be written with
probability distribution function

P (x) =
2
L

sin2 nπx

L
,
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we find the probability of finding the particle in the region 0 ≤ x ≤ L/3 is

P =
∫ L/3

0

2
L

cos2 nπx

L
dx,

=
1
3

(
1− sin(2nπ/3)

2nπ/3

)
.

(b) If n = 1 use the formula and P = 0.196.
(c) If n = 2 use the formula and P = 0.402.
(d) If n = 3 use the formula and P = 0.333.
(e) Classically the probability distribution function is uniform, so there is a 1/3 chance of finding

it in the region 0 to L/3.

P47-3 The region of interest is small compared to the variation in P (x); as such we can approxi-
mate the probability with the expression P = P (x)∆x.

(b) Evaluating,

P =
2
L

sin2 4πx
L

∆x,

=
2
L

sin2 4π(L/8)
L

(0.0003L),

= 0.0006.

(b) Evaluating,

P =
2
L

sin2 4πx
L

∆x,

=
2
L

sin2 4π(3L/16)
L

(0.0003L),

= 0.0003.

P47-4 (a) P = Ψ∗Ψ, or
P = A2

0e
−2πmωx2/h.

(b) Integrating,

1 = A2
0

∫ ∞
−∞

e−2πmωx2/hdx,

= A2
0

√
h

2πmω

∫ ∞
−∞

e−u
2
du,

= A2
0

√
h

2πmω

√
pi,

4

√
2mω
h

= A0.

(c) x = 0.

P47-5 We will want an expression for
d2

dx2
ψ0.
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Doing the math one derivative at a time,

d2

dx2
ψ0 =

d

dx

(
d

dx
ψ0

)
,

=
d

dx

(
A0(−2πmωx/h)e−πmωx

2/h
)
,

= A0(−2πmωx/h)2e−πmωx
2/h +A0(−2πmω/h)e−πmωx

2/h,

=
(
(2πmωx/h)2 − (2πmω/h)

)
A0e

−πmωx2/h,

=
(
(2πmωx/h)2 − (2πmω/h)

)
ψ0.

In the last line we factored out ψ0. This will make our lives easier later on.
Now we want to go to Schrödinger’s equation, and make some substitutions.

− h2

8π2m

d2

dx2
ψ0 + Uψ0 = Eψ0,

− h2

8π2m

(
(2πmωx/h)2 − (2πmω/h)

)
ψ0 + Uψ0 = Eψ0,

− h2

8π2m

(
(2πmωx/h)2 − (2πmω/h)

)
+ U = E,

where in the last line we divided through by ψ0. Now for some algebra,

U = E +
h2

8π2m

(
(2πmωx/h)2 − (2πmω/h)

)
,

= E +
mω2x2

2
− hω

4π
.

But we are given that E = hω/4π, so this simplifies to

U =
mω2x2

2

which looks like a harmonic oscillator type potential.

P47-6 Assume the electron is originally in the state n. The classical frequency of the electron is
f0, where

f0 = v/2πr.

According to electrostatics and uniform circular motion,

mv2/r = e2/4πε0r2,

or

v =

√
e2

4πε0mr
==

√
e4

4ε20h2n2
=

e2

2ε0hn
.

Then

f0 =
e2

2ε0hn
1

2π
πme2

ε0h2n2
=

me4

4ε20h3n3
=
−2E1

hn3

Here E1 = −13.6 eV.
Photon frequency is related to energy according to f = ∆Enm/h, where ∆Enm is the energy of

transition from state n down to state m. Then

f =
E1

h

(
1
n2
− 1
m2

)
,
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where E1 = −13.6 eV. Combining the fractions and letting m = n− δ, where δ is an integer,

f =
E1

h

m2 − n2

m2n2
,

=
−E1

h

(n−m)(m+ n)
m2n2

,

=
−E1

h

δ(2n+ δ)
(n+ δ)2n2

,

≈ −E1

h

δ(2n)
(n)2n2

,

=
−2E1

hn3
δ = f0δ.

P47-7 We need to use the reduced mass of the muon since the muon and proton masses are so
close together. Then

m =
(207)(1836)

(207) + (1836)
me = 186me.

(a) Apply Eq. 47-20 1/2:

aµ = a0/(186) = (52.9 pm)/(186) = 0.284 pm.

(b) Apply Eq. 47-21:

Eµ = E1(186) = (13.6 eV)(186) = 2.53 keV.

(c) λ = (1240 keV · pm)/(2.53 pm) = 490 pm.

P47-8 (a) The reduced mass of the electron is

m =
(1)(1)

(1) + (1)
me = 0.5me.

The spectrum is similar, except for this additional factor of 1/2; hence

λpos = 2λH.

(b) apos = a0/(186) = (52.9 pm)/(1/2) = 105.8 pm. This is the distance between the particles,
but they are both revolving about the center of mass. The radius is then half this quantity, or
52.9 pm.

P47-9 This problem isn’t really that much of a problem. Start with the magnitude of a vector
in terms of the components,

L2
x + L2

y + L2
z = L2,

and then rearrange,
L2
x + L2

y = L2 − L2
z.

According to Eq. 47-28 L2 = l(l+ 1)h2/4π2, while according to Eq. 47-30 Lz = mlh/2π. Substitute
that into the equation, and

L2
x + L2

y = l(l + 1)h2/4π2 −m2
l h

2/4π2 =
(
l(l + 1)−m2

l

) h2

4π2
.

Take the square root of both sides of this expression, and we are done.
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The maximum value for ml is l, while the minimum value is 0. Consequently,√
L2
x + L2

y =
√
l(l + 1)−m2

l h/2π ≤
√
l(l + 1)h/2π,

and √
L2
x + L2

y =
√
l(l + 1)−m2

l h/2π ≥
√
l h/2π.

P47-10 Assume that ψ(0) is a reasonable estimate for ψ(r) everywhere inside the small sphere.
Then

ψ2 =
e−0

πa3
0

=
1
πa3

0

.

The probability of finding it in a sphere of radius 1.1×10−15m is∫ 1.1×10−15m

0

4πr2 dr

πa3
0

=
4
3

(1.1×10−15m)3

(5.29×10−11m)3
= 1.2×10−14.

P47-11 Assume that ψ(0) is a reasonable estimate for ψ(r) everywhere inside the small sphere.
Then

ψ2 =
(2)2e−0

32πa3
0

=
1

8πa3
0

.

The probability of finding it in a sphere of radius 1.1×10−15m is∫ 1.1×10−15m

0

4πr2 dr

8πa3
0

=
1
6

(1.1×10−15m)3

(5.29×10−11m)3
= 1.5×10−15.

P47-12 (a) The wave function squared is

ψ2 =
e−2r/a0

πa3
0

The probability of finding it in a sphere of radius r = xa0 is

P =
∫ xa0

0

4πr2e−2r/a0 dr

πa3
0

,

=
∫ x

0

4x2e−2x dx,

= 1− e−2x(1 + 2x+ 2x2).

(b) Let x = 1, then
P = 1− e−2(5) = 0.323.

P47-13 We want to evaluate the difference between the values of P at x = 2 and x = 2. Then

P (2)− P (1) =
(
1− e−4(1 + 2(2) + 2(2)2)

)
−
(
1− e−2(1 + 2(1) + 2(1)2)

)
,

= 5e−2 − 13e−4 = 0.439.
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P47-14 Using the results of Problem 47-12,

0.5 = 1− e−2x(1 + 2x+ 2x2),

or
e−2x = 1 + 2x+ 2x2.

The result is x = 1.34, or r = 1.34a0.

P47-15 The probability of finding it in a sphere of radius r = xa0 is

P =
∫ xa0

0

r2(2− r/a0)2e−r/a0 dr

8a3
0

=
1
8

∫ x

0

x2(2− x)2e−x dx

= 1− e−x(y4/8 + y2/2 + y + 1).

The minimum occurs at x = 2, so

P = 1− e−2(2 + 2 + 2 + 1) = 0.0527.
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E48-1 The highest energy x-ray photon will have an energy equal to the bombarding electrons,
as is shown in Eq. 48-1,

λmin =
hc

eV

Insert the appropriate values into the above expression,

λmin =
(4.14× 10−15 eV · s)(3.00× 108 m/s)

eV
=

1240× 10−9 eV ·m
eV

.

The expression is then

λmin =
1240× 10−9 V ·m

V
=

1240 kV · pm
V

.

So long as we are certain that the “V ” will be measured in units of kilovolts, we can write this as

λmin = 1240 pm/V.

E48-2 f = c/λ = (3.00×108m/s)/(31.1×10−12m) = 9.646×1018/s. Planck’s constant is then

h =
E

f
=

(40.0 keV)
(9.646×1018/s)

= 4.14×10−15 eV · s.

E48-3 Applying the results of Exercise 48-1,

∆V =
(1240kV · pm)

(126 pm)
= 9.84 kV.

E48-4 (a) Applying the results of Exercise 48-1,

λmin =
(1240kV · pm)

(35.0 kV)
= 35.4 pm.

(b) Applying the results of Exercise 45-1,

λKβ =
(1240keV · pm)

(25.51 keV)− (0.53 keV)
= 49.6 pm.

(c) Applying the results of Exercise 45-1,

λKα =
(1240keV · pm)

(25.51 keV)− (3.56 keV)
= 56.5 pm.

E48-5 (a) Changing the accelerating potential of the x-ray tube will decrease λmin. The new
value will be (using the results of Exercise 48-1)

λmin = 1240 pm/(50.0) = 24.8 pm.

(b) λKβ doesn’t change. It is a property of the atom, not a property of the accelerating potential
of the x-ray tube. The only way in which the accelerating potential might make a difference is if
λKβ < λmin for which case there would not be a λKβ line.

(c) λKα doesn’t change. See part (b).

276



E48-6 (a) Applying the results of Exercise 45-1,

∆E =
(1240keV · pm)

(19.3 pm)
= 64.2 keV.

(b) This is the transition n = 2 to n = 1, so

∆E = (13.6 eV)(1/12 − 1/22) = 10.2 eV.

E48-7 Applying the results of Exercise 45-1,

∆Eβ =
(1240keV · pm)

(62.5 pm)
= 19.8 keV.

and

∆Eα =
(1240keV · pm)

(70.5 pm)
= 17.6 keV.

The difference is
∆E = (19.8 keV)− (17.6 keV) = 2.2 eV.

E48-8 Since Eλ = hf = hc/λ, and λ = h/mc = hc/mc2, then

Eλ = hc/λ = mc2.

or ∆V = Eλ/e = mc2/e = 511 kV.

E48-9 The 50.0 keV electron makes a collision and loses half of its energy to a photon, then the
photon has an energy of 25.0 keV. The electron is now a 25.0 keV electron, and on the next collision
again loses loses half of its energy to a photon, then this photon has an energy of 12.5 keV. On the
third collision the electron loses the remaining energy, so this photon has an energy of 12.5 keV. The
wavelengths of these photons will be given by

λ =
(1240 keV · pm)

E
,

which is a variation of Exercise 45-1.

E48-10 (a) The x-ray will need to knock free a K shell electron, so it must have an energy of at
least 69.5 keV.

(b) Applying the results of Exercise 48-1,

λmin =
(1240kV · pm)

(69.5 kV)
= 17.8 pm.

(c) Applying the results of Exercise 45-1,

λKβ =
(1240keV · pm)

(69.5 keV)− (2.3 keV)
= 18.5 pm.

Applying the results of Exercise 45-1,

λKα =
(1240keV · pm)

(69.5 keV)− (11.3 keV)
= 21.3 pm.
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E48-11 (a) Applying the results of Exercise 45-1,

EKβ =
(1240keV · pm)

(63 pm)
= 19.7 keV.

Again applying the results of Exercise 45-1,

EKβ =
(1240keV · pm)

(71 pm)
= 17.5 keV.

(b) Zr or Nb; the others will not significantly absorb either line.

E48-12 Applying the results of Exercise 45-1,

λKα =
(1240keV · pm)

(8.979 keV)− (0.951 keV)
= 154.5 pm.

Applying the Bragg reflection relationship,

d =
λ

2 sin θ
=

(154.5 pm)
2 sin(15.9◦)

= 282 pm.

E48-13 Plot the data. The plot should look just like Fig 48-4. Note that the vertical axis is
√
f ,

which is related to the wavelength according to
√
f =

√
c/λ.

E48-14 Remember that the m in Eq. 48-4 refers to the electron, not the nucleus. This means
that the constant C in Eq. 48-5 is the same for all elements. Since

√
f =

√
c/λ, we have

λ1

λ2
=
(
Z2 − 1
Z1 − 1

)2

.

For Ga and Nb the wavelength ratio is then

λNb

λGa
=
(

(31)− 1
(41)− 1

)2

= 0.5625.

E48-15 (a) The ground state question is fairly easy. The n = 1 shell is completely occupied by
the first two electrons. So the third electron will be in the n = 2 state. The lowest energy angular
momentum state in any shell is the s sub-shell, corresponding to l = 0. There is only one choice for
ml in this case: ml = 0. There is no way at this level of coverage to distinguish between the energy
of either the spin up or spin down configuration, so we’ll arbitrarily pick spin up.

(b) Determining the configuration for the first excited state will require some thought. We could
assume that one of the K shell electrons (n = 1) is promoted to the L shell (n = 2). Or we could
assume that the L shell electron is promoted to the M shell. Or we could assume that the L shell
electron remains in the L shell, but that the angular momentum value is changed to l = 1. The
question that we would need to answer is which of these possibilities has the lowest energy.

The answer is the last choice: increasing the l value results in a small increase in the energy of
multi-electron atoms.

E48-16 Refer to Sample Problem 47-6:

r1 =
a0(1)2

Z
=

(5.29×10−11m)
(92)

= 5.75×10−13 m.
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E48-17 We will assume that the ordering of the energy of the shells and sub-shells is the same.
That ordering is

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p
< 6s < 4f < 5d < 6p < 7s < 5f < 6d < 7p < 8s.

If there is no spin the s sub-shell would hold 1 electron, the p sub-shell would hold 3, the d sub-shell
5, and the f sub-shell 7. inert gases occur when a p sub-shell has filled, so the first three inert gases
would be element 1 (Hydrogen), element 1 + 1 + 3 = 5 (Boron), and element 1 + 1 + 3 + 1 + 3 = 9
(Fluorine).

Is there a pattern? Yes. The new inert gases have half of the atomic number of the original inert
gases. The factor of one-half comes about because there are no longer two spin states for each set
of n, l,ml quantum numbers.

We can save time and simply divide the atomic numbers of the remaining inert gases in half:
element 18 (Argon), element 27 (Cobalt), element 43 (Technetium), element 59 (Praseodymium).

E48-18 The pattern is
2 + 8 + 8 + 18 + 18 + 32 + 32+?

or
2(12 + 22 + 22 + 33 + 33 + 42 + 42 + x2)

The unknown is probably x = 5, the next noble element is probably

118 + 2 · 52 = 168.

E48-19 (a) Apply Eq. 47-23, which can be written as

En =
(−13.6 eV)Z2

n2
.

For the valence electron of sodium n = 3,

Z =

√
(5.14 eV)(3)2

(13.6 eV)
= 1.84,

while for the valence electron of potassium n = 4,

Z =

√
(4.34 eV)(4)2

(13.6 eV)
= 2.26,

(b) The ratios with the actual values of Z are 0.167 and 0.119, respectively.

E48-20 (a) There are three ml states allowed, and two ms states. The first electron can be in
any one of these six combinations of M1 and m2. The second electron, given no exclusion principle,
could also be in any one of these six states. The total is 36. Unfortunately, this is wrong, because
we can’t distinguish electrons. Of this total of 36, six involve the electrons being in the same state,
while 30 involve the electron being in different states. But if the electrons are in different states,
then they could be swapped, and we won’t know, so we must divide this number by two. The total
number of distinguishable states is then

(30/2) + 6 = 21.

(b) Six. See the above discussion.
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E48-21 (a) The Bohr orbits are circular orbits of radius rn = a0n
2 (Eq. 47-20). The electron is

orbiting where the force is

Fn =
e2

4πε0r2
n

,

and this force is equal to the centripetal force, so

mv2

rn
=

e2

4πε0r2
n

.

where v is the velocity of the electron. Rearranging,

v =

√
e2

4πε0mrn
.

The time it takes for the electron to make one orbit can be used to calculate the current,

i =
q

t
=

e

2πrn/v
=

e

2πrn

√
e2

4πε0mrn
.

The magnetic moment of a current loop is the current times the area of the loop, so

µ = iA =
e

2πrn

√
e2

4πε0mrn
πr2
n,

which can be simplified to

µ =
e

2

√
e2

4πε0mrn
rn.

But rn = a0n
2, so

µ = n
e

2

√
a0e2

4πε0m
.

This might not look right, but a0 = ε0h
2/πme2, so the expression can simplify to

µ = n
e

2

√
h2

4π2m2
= n

(
eh

4πm

)
= nµB.

(b) In reality the magnetic moments depend on the angular momentum quantum number, not
the principle quantum number. Although the Bohr theory correctly predicts the magnitudes, it does
not correctly predict when these values would occur.

E48-22 (a) Apply Eq. 48-14:

Fz = µz
dBz
dz

= (9.27×10−24J/T)(16×10−3T/m) = 1.5×10−25 N.

(b) a = F/m, ∆z = at2/2, and t = y/vy. Then

∆z =
Fy2

2mv2
y

=
(1.5×10−25 N)(0.82 m)2

2(1.67×10−27kg)(970 m/s)2
= 3.2×10−5m.

E48-23 a = (9.27×10−24J/T)(1.4×103T/m)/(1.7×10−25kg) = 7.6×104m/s2.
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E48-24 (a) ∆U = 2µB, or

∆U = 2(5.79×10−5eV/T)(0.520 T) = 6.02×10−5eV.

(b) f = E/h = (6.02×10−5eV)(4.14×10−15eV · s) = 1.45×1010Hz.
(c) λ = c/f = (3×108m/s)/(1.45×1010Hz) = 2.07×10−2m.

E48-25 The energy change can be derived from Eq. 48-13; we multiply by a factor of 2 because
the spin is completely flipped. Then

∆E = 2µzBz = 2(9.27×10−24 J/T)(0.190 T) = 3.52×10−24J.

The corresponding wavelength is

λ =
hc

E
=

(6.63×10−34J · s)(3.00×108m/s)
(3.52×10−24J)

= 5.65×10−2m.

This is somewhere near the microwave range.

E48-26 The photon has an energy E = hc/λ. This energy is related to the magnetic field in the
vicinity of the electron according to

E = 2µB,

so

B =
hc

2µλ
=

(1240 eV · nm)
2(5.79×10−5J/T)(21×107nm)

= 0.051 T.

E48-27 Applying the results of Exercise 45-1,

E =
(1240 eV · nm)

(800nm)
= 1.55 eV.

The production rate is then

R =
(5.0×10−3W)

(1.55 eV)(1.6×10−19J/eV)
= 2.0×1016/s.

E48-28 (a) x = (3×108m/s)(12×10−12s) = 3.6×10−3m.
(b) Applying the results of Exercise 45-1,

E =
(1240 eV · nm)

(694.4nm)
= 1.786 eV.

The number of photons in the pulse is then

N = (0.150J)/(1.786 eV)(1.6×10−19J/eV) = 5.25×1017.

E48-29 We need to find out how many 10 MHz wide signals can fit between the two wavelengths.
The lower frequency is

f1 =
c

λ1
=

(3.00× 108 m/s)
700× 10−9 m)

= 4.29× 1014 Hz.
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The higher frequency is

f1 =
c

λ1
=

(3.00× 108 m/s)
400× 10−9 m)

= 7.50× 1014 Hz.

The number of signals that can be sent in this range is

f2 − f1

(10 MHz)
=

(7.50× 1014 Hz)− (4.29× 1014 Hz)
(10× 106 Hz)

= 3.21× 107.

That’s quite a number of television channels.

E48-30 Applying the results of Exercise 45-1,

E =
(1240 eV · nm)

(632.8nm)
= 1.960 eV.

The number of photons emitted in one minute is then

N =
(2.3×10−3W)(60 s)

(1.960 eV)(1.6×10−19J/eV)
= 4.4×1017.

E48-31 Apply Eq. 48-19. E13− E11 = 2(1.2 eV).. The ratio is then

n13
n11

= e−(2.4 eV)/(8.62×10−5eV/K)(2000 K) = 9×10−7.

E48-32 (a) Population inversion means that the higher energy state is more populated; this can
only happen if the ratio in Eq. 48-19 is greater than one, which can only happen if the argument of
the exponent is positive. That would require a negative temperature.

(b) If n2 = 1.1n1 then the ratio is 1.1, so

T =
(−2.26 eV

(8.62×10−5eV/K) ln(1.1)
= −2.75×105K.

E48-33 (a) At thermal equilibrium the population ratio is given by

N2

N1
=
e−E2/kT

e−E1/kT
= e−∆E/kT .

But ∆E can be written in terms of the transition photon wavelength, so this expression becomes

N2 = N1e
−hc/λkT .

Putting in the numbers,

N2 = (4.0×1020)e−(1240 eV·nm)/(582 nm)(8.62×10−5 eV/K)(300 K)) = 6.62×10−16.

That’s effectively none.
(b) If the population of the upper state were 7.0×1020, then in a single laser pulse

E = N
hc

λ
= (7.0×1020)

(6.63×10−34J · s)(3.00×108m/s)
(582×10−9m)

= 240 J.
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E48-34 The allowed wavelength in a standing wave chamber are λn = 2L/n. For large n we can
write

λn+1 =
2L
n+ 1

≈ 2L
n
− 2L
n2
.

The wavelength difference is then

∆λ =
2L
n2

=
λ2
n

2L
,

which in this case is

∆λ =
(533×10−9m)2

2(8.3×10−2m)
= 1.7×10−12m.

E48-35 (a) The central disk will have an angle as measured from the center given by

d sin θ = (1.22)λ,

and since the parallel rays of the laser are focused on the screen in a distance f , we also have
R/f = sin θ. Combining, and rearranging,

R =
1.22fλ
d

.

(b) R = 1.22(3.5 cm)(515 nm)/(3 mm) = 7.2×10−6m.
(c) I = P/A = (5.21 W)/π(1.5 mm)2 = 7.37×105W/m2.
(d) I = P/A = (0.84)(5.21 W)/π(7.2µm)2 = 2.7×1010W/m2.

E48-36

P48-1 Let λ1 be the wavelength of the first photon. Then λ2 = λ1 + 130 pm. The total energy
transfered to the two photons is then

E1 + E2 =
hc

λ1
+
hc

λ2
= 20.0 keV.

We can solve this for λ1,
20.0 keV

hc
=

1
λ1

+
1

λ1 + 130 pm
,

=
2λ1 + 130 pm

λ1(λ1 + 130 pm)
,

which can also be written as

λ1(λ1 + 130 pm) = (62 pm)(2λ1 + 130 pm),
λ2

1 + (6 pm)λ1 − (8060 pm2) = 0.

This equation has solutions
λ1 = 86.8 pm and − 92.8 pm.

Only the positive answer has physical meaning. The energy of this first photon is then

E1 =
(1240 keV · pm)

(86.8 pm)
= 14.3 keV.

(a) After this first photon is emitted the electron still has a kinetic energy of

20.0 keV− 14.3 keV = 5.7 keV.

(b) We found the energy and wavelength of the first photon above. The energy of the second
photon must be 5.7 keV, with wavelength

λ2 = (86.8 pm) + 130 pm = 217 pm.
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P48-2 Originally,

γ =
1√

1− (2.73×108m/s)2/(3×108m/s)2
= 2.412.

The energy of the electron is

E0 = γmc2 = (2.412)(511 keV) = 1232 keV.

Upon emitting the photon the new energy is

E = (1232 keV)− (43.8 keV) = 1189 keV,

so the new gamma factor is

γ = (1189 keV)/(511 keV) = 2.326,

and the new speed is
v = c

√
1− 1/(2.326)2 = (0.903)c.

P48-3 Switch to a reference frame where the electron is originally at rest.
Momentum conservation requires

0 = pλ + pe = 0,

while energy conservation requires
mc2 = Eλ + Ee.

Rearrange to
Ee = mc2 − Eλ.

Square both sides of this energy expression and

E2
λ − 2Eλmc2 +m2c4 = E2

e = p2
ec

2 +m2c4,

E2
λ − 2Eλmc2 = p2

ec
2,

p2
λc

2 − 2Eλmc2 = p2
ec

2.

But the momentum expression can be used here, and the result is

−2Eλmc2 = 0.

Not likely.

P48-4 (a) In the Bohr theory we can assume that the K shell electrons “see” a nucleus with charge
Z. The L shell electrons, however, are shielded by the one electron in the K shell and so they “see”
a nucleus with charge Z − 1. Finally, the M shell electrons are shielded by the one electron in the
K shell and the eight electrons in the K shell, so they “see” a nucleus with charge Z − 9.

The transition wavelengths are then

1
λα

=
∆E
hc

=
E0(Z − 1)2

hc

(
1
22
− 1

12

)
,

=
E0(Z − 1)2

hc

3
4
.

and

1
λβ

=
∆E
hc

=
E0

hc

(
1
32
− 1

12

)
,

=
E0(Z − 9)2

hc

−8
9
.
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The ratio of these two wavelengths is

λβ
λα

=
27
32

(Z − 1)2

(Z − 9)2
.

Note that the formula in the text has the square in the wrong place!

P48-5 (a) E = hc/λ; the energy difference is then

∆E = hc

(
1
λ1
− 1
λ2

)
,

= hc
λ2 − λ1

λ2λ1
.

=
hc

λ2λ1
∆λ.

Since λ1 and λ2 are so close together we can treat the product λ1λ2 as being either λ2
1 or λ2

2. Then

∆E =
(1240 eV · nm)

(589 nm)2
(0.597 nm) = 2.1×10−3eV.

(b) The same energy difference exists in the 4s→ 3p doublet, so

∆λ =
(1139 nm)2

(1240 eV · nm)
(2.1×10−3eV) = 2.2 nm.

P48-6 (a) We can assume that the K shell electron “sees” a nucleus of charge Z − 1, since the
other electron in the shell screens it. Then, according to the derivation leading to Eq. 47-22,

rK = a0/(Z − 1).

(b) The outermost electron “sees” a nucleus screened by all of the other electrons; as such Z = 1,
and the radius is

r = a0

P48-7 We assume in this crude model that one electron moves in a circular orbit attracted to
the helium nucleus but repelled from the other electron. Look back to Sample Problem 47-6; we
need to use some of the results from that Sample Problem to solve this problem.

The factor of e2 in Eq. 47-20 (the expression for the Bohr radius) and the factor of (e2)2 in Eq.
47-21 (the expression for the Bohr energy levels) was from the Coulomb force between the single
electron and the single proton in the nucleus. This force is

F =
e2

4πε0r2
.

In our approximation the force of attraction between the one electron and the helium nucleus is

F1 =
2e2

4πε0r2
.

The factor of two is because there are two protons in the helium nucleus.
There is also a repulsive force between the one electron and the other electron,

F2 =
e2

4πε0(2r)2
,
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where the factor of 2r is because the two electrons are on opposite side of the nucleus.
The net force on the first electron in our approximation is then

F1 − F2 =
2e2

4πε0r2
− e2

4πε0(2r)2
,

which can be rearranged to yield

F net =
e2

4πε0r2

(
2− 1

4

)
=

e2

4πε0r2

(
7
4

)
.

It is apparent that we need to substitute 7e2/4 for every occurrence of e2.
(a) The ground state radius of the helium atom will then be given by Eq. 47-20 with the

appropriate substitution,

r =
ε0h

2

πm(7e2/4)
=

4
7
a0.

(b) The energy of one electron in this ground state is given by Eq. 47-21 with the substitution
of 7e2/4 for every occurrence of e2, then

E = −m(7e2/4)2

8ε40h2
= −49

16
me4

8ε40h2
.

We already evaluated all of the constants to be 13.6 eV.
One last thing. There are two electrons, so we need to double the above expression. The ground

state energy of a helium atom in this approximation is

E0 = −2
49
16

(13.6 eV) = −83.3eV.

(c) Removing one electron will allow the remaining electron to move closer to the nucleus. The
energy of the remaining electron is given by the Bohr theory for He+, and is

EHe+ = (4)(−13.60 eV) = 54.4 eV,

so the ionization energy is 83.3 eV - 54.4 eV = 28.9 eV. This compares well with the accepted value.

P48-8 Applying Eq. 48-19:

T =
(−3.2 eV)

(8.62×10−5eV/K) ln(6.1×1013/2.5×1015)
= 1.0×104K.

P48-9 sin θ ≈ r/R, where r is the radius of the beam on the moon and R is the distance to the
moon. Then

r =
1.22(600×10−9m)(3.82×108m)

(0.118 m)
= 2360 m.

The beam diameter is twice this, or 4740 m.

P48-10 (a) N = 2L/λn, or

N =
2(6×10−2m)(1.75)

(694×10−9)
= 3.03×105.
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(b) N = 2nLf/c, so

∆f =
c

2nL
=

(3×108m/s)
2(1.75)(6×10−2m)

= 1.43×109/s.

Note that the travel time to and fro is ∆t = 2nL/c!
(c) ∆f/f is then

∆f
f

=
λ

2nL
=

(694×10−9)
2(1.75)(6×10−2m)

= 3.3×10−6.
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E49-1 (a) Equation 49-2 is

n(E) =
8
√

2πm3/2

h3
E1/2 =

8
√

2π(mc2)3/2

(hc)3
E1/2.

We can evaluate this by substituting in all known quantities,

n(E) =
8
√

2π(0.511× 106 eV)3/2

(1240× 10−9 eV ·m)3
E1/2 = (6.81× 1027 m−3 · eV−3/2)E1/2.

Once again, we simplified the expression by writing hc wherever we could, and then using hc =
1240× 10−9 eV ·m.

(b) Then, if E = 5.00 eV,

n(E) = (6.81× 1027 m−3 · eV−3/2)(5.00 eV)1/2 = 1.52× 1028 m−3 · eV−1.

E49-2 Apply the results of Ex. 49-1:

n(E) = (6.81× 1027 m−3 · eV−3/2)(8.00 eV)1/2 = 1.93× 1028 m−3 · eV−1.

E49-3 Monovalent means only one electron is available as a conducting electron. Hence we need
only calculate the density of atoms:

N

V
=
ρNA
Ar

=
(19.3×103kg/m3)(6.02×1023mol−1)

(0.197 kg/mol)
= 5.90×1028/m3.

E49-4 Use the ideal gas law: pV = NkT . Then

p =
N

V
kT = (8.49×1028m3)(1.38×10−23J/ ·K)(297 K) = 3.48×108Pa.

E49-5 (a) The approximate volume of a single sodium atom is

V1 =
(0.023 kg/mol)

(6.02×1023part/mol)(971 kg/m3)
= 3.93×10−29m3.

The volume of the sodium ion sphere is

V2 =
4π
3

(98×10−12 m)3 = 3.94×10−30 m3.

The fractional volume available for conduction electrons is
V1 − V2

V1
=

(3.93×10−29m3)− (3.94×10−30 m3)
(3.93×10−29m3)

= 90%.

(b) The approximate volume of a single copper atom is

V1 =
(0.0635 kg/mol)

(6.02×1023part/mol)(8960 kg/m3)
= 1.18×10−29m3.

The volume of the copper ion sphere is

V2 =
4π
3

(96×10−12 m)3 = 3.71×10−30 m3.

The fractional volume available for conduction electrons is
V1 − V2

V1
=

(1.18×10−29m3)− (3.71×10−30 m3)
(1.18×10−29m3)

= 69%.

(c) Sodium, since more of the volume is available for the conduction electron.
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E49-6 (a) Apply Eq. 49-6:

p = 1/
[
e(0.0730 eV)/(8.62×10−5eV/K)(0 K) + 1

]
= 0.

(b) Apply Eq. 49-6:

p = 1/
[
e(0.0730 eV)/(8.62×10−5eV/K)(320 K) + 1

]
= 6.62×10−2.

E49-7 Apply Eq. 49-6, remembering to use the energy difference:

p = 1/
[
e(−1.1) eV)/(8.62×10−5eV/K)(273 K) + 1

]
= 1.00,

p = 1/
[
e(−0.1) eV)/(8.62×10−5eV/K)(273 K) + 1

]
= 0.986,

p = 1/
[
e(0.0) eV)/(8.62×10−5eV/K)(273 K) + 1

]
= 0.5,

p = 1/
[
e(0.1) eV)/(8.62×10−5eV/K)(273 K) + 1

]
= 0.014,

p = 1/
[
e(1.1) eV)/(8.62×10−5eV/K)(273 K) + 1

]
= 0.0.

(b) Inverting the equation,

T =
∆E

k ln(1/p− 1)
,

so

T =
(0.1 eV)

(8.62×10−5eV/K) ln(1/(0.16)− 1)
= 700 K

E49-8 The energy differences are equal, except for the sign. Then

1
e+∆E/kt + 1

+
1

e−∆E/kt + 1
= ,

e−∆E/2kt

e+∆E/2kt + e−∆E/2kt
+

e+∆E/2kt

e−∆E/2kt + e+∆E/2kt
= ,

e−∆E/2kt + e+∆E/2kt

e−∆E/2kt + e+∆E/2kt
= 1.

E49-9 The Fermi energy is given by Eq. 49-5,

EF =
h2

8m

(
3n
π

)2/3

,

where n is the density of conduction electrons. For gold we have

n =
(19.3 g/cm3)(6.02×1023part/mol)

(197 g/mol)
= 5.90×1022 elect./cm3 = 59 elect./nm3

The Fermi energy is then

EF =
(1240 eV · nm)2

8(0.511×106 eV)

(
3(59 electrons/nm3)

π

)2/3

= 5.53 eV.
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E49-10 Combine the results of Ex. 49-1 and Eq. 49-6:

no =
C
√
E

e∆E/kt + 1
.

Then for each of the energies we have

no =
(6.81×1027 m−3 · eV−3/2)

√
(4 eV)

e(−3.06 eV)/(8.62×10−5eV/K)(1000 K) + 1
= 1.36×1028/m3 · eV,

no =
(6.81×1027 m−3 · eV−3/2)

√
(6.75 eV)

e(−0.31 eV)/(8.62×10−5eV/K)(1000 K) + 1
= 1.72×1028/m3 · eV,

no =
(6.81×1027 m−3 · eV−3/2)

√
(7 eV)

e(−0.06 eV)/(8.62×10−5eV/K)(1000 K) + 1
= 9.02×1027/m3 · eV,

no =
(6.81×1027 m−3 · eV−3/2)

√
(7.25 eV)

e(0.19 eV)/(8.62×10−5eV/K)(1000 K) + 1
= 1.82×1027/m3 · eV,

no =
(6.81×1027 m−3 · eV−3/2)

√
(9 eV)

e(1.94 eV)/(8.62×10−5eV/K)(1000 K) + 1
= 3.43×1018/m3 · eV.

E49-11 Solve

En =
n2(hc)2

8(mc2)L2

for n = 50, since there are two electrons in each level. Then

Ef =
(50)2(1240 eV · nm)2

8(5.11×105eV)(0.12 nm)2
= 6.53×104eV.

E49-12 We need to be much higher than T = (7.06 eV)/(8.62×10−5eV/K) = 8.2×104K.

E49-13 Equation 49-5 is

EF =
h2

8m

(
3n
π

)2/3

,

and if we collect the constants,

EF =
h2

8m

(
3
π

)2/3

n3/2 = An3/2,

where, if we multiply the top and bottom by c2

A =
(hc)2

8mc2

(
3
π

)2/3

=
(1240× 10−9 eV ·m)2

8(0.511× 106 eV)

(
3
π

)2/3

= 3.65× 10−19 m2 · eV.

E49-14 (a) Inverting Eq. 49-6,
∆E = kT ln(1/p− 1),

so
∆E = (8.62×10−5eV/K)(1050 K) ln(1/(0.91)− 1) = −0.209 eV.

Then E = (−0.209 eV) + (7.06 eV) = 6.85 eV.
(b) Apply the results of Ex. 49-1:

n(E) = (6.81× 1027 m−3 · eV−3/2)(6.85 eV)1/2 = 1.78× 1028 m−3 · eV−1.

(c) no = np = (1.78× 1028 m−3 · eV−1)(0.910) = 1.62× 1028 m−3 · eV−1.
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E49-15 Equation 49-5 is

EF =
h2

8m

(
3n
π

)2/3

,

and if we rearrange,

EF
3/2 =

3h3

16
√

2πm3/2
n,

Equation 49-2 is then

n(E) =
8
√

2πm3/2

h3
E1/2 =

3
2
nEF

−3/2E1/2.

E49-16 ph = 1− p, so

ph = 1− 1
e∆E/kT + 1

,

=
e∆E/kT

e∆E/kT + 1
,

=
1

1 + e−∆E/kT
.

E49-17 The steps to solve this exercise are equivalent to the steps for Exercise 49-9, except now
the iron atoms each contribute 26 electrons and we have to find the density.

First, the density is

ρ =
m

4πr3/3
=

(1.99×1030kg)
4π(6.37×106m)3/3

= 1.84×109kg/m3

Then

n =
(26)(1.84×106 g/cm3)(6.02×1023part/mol)

(56 g/mol)
= 5.1×1029 elect./cm3

,

= 5.1×108 elect./nm3

The Fermi energy is then

EF =
(1240 eV · nm)2

8(0.511×106 eV)

(
3(5.1×108 elect./nm3)

π

)2/3

= 230 keV.

E49-18 First, the density is

ρ =
m

4πr3/3
=

2(1.99×1030kg)
4π(10×103m)3/3

= 9.5×1017kg/m3

Then
n = (9.5×1017kg/m3)/(1.67×10−27kg) = 5.69×1044/m3.

The Fermi energy is then

EF =
(1240 MeV · fm)2

8(940 MeV)

(
3(5.69×10−1/fm3)

π

)2/3

= 137 MeV.
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E49-19

E49-20 (a) EF = 7.06 eV, so

f =
3(8.62×10−5eV ·K)(0 K)

2(7.06 eV)
= 0,

(b) f = 3(8.62×10−5eV ·K)(300 K)/2(7.06 eV) = 0.0055.
(c) f = 3(8.62×10−5eV ·K)(1000 K)/2(7.06 eV) = 0.0183.

E49-21 Using the results of Exercise 19,

T =
2fEF

3k
=

2(0.0130)(4.71 eV)
3(8.62×10−5eV ·K)

= 474 K.

E49-22 f = 3(8.62×10−5eV ·K)(1235 K)/2(5.5 eV) = 0.029.

E49-23 (a) Monovalent means only one electron is available as a conducting electron. Hence we
need only calculate the density of atoms:

N

V
=
ρNA
Ar

=
(10.5×103kg/m3)(6.02×1023mol−1)

(0.107 kg/mol)
= 5.90×1028/m3.

(b) Using the results of Ex. 49-13,

EF = (3.65× 10−19 m2 · eV)(5.90×1028/m3)2/3 = 5.5 eV.

(c) v =
√

2K/m, or

v =
√

2(5.5 eV)(5.11×105eV/c2) = 1.4×108m/s.

(d) λ = h/p, or

λ =
(6.63×10−34J · s)

(9.11×10−31kg)(1.4×108m/s)
= 5.2×10−12m.

E49-24 (a) Bivalent means two electrons are available as a conducting electron. Hence we need
to double the calculation of the density of atoms:

N

V
=
ρNA
Ar

=
2(7.13×103kg/m3)(6.02×1023mol−1)

(0.065 kg/mol)
= 1.32×1029/m3.

(b) Using the results of Ex. 49-13,

EF = (3.65× 10−19 m2 · eV)(1.32×1029/m3)2/3 = 9.4 eV.

(c) v =
√

2K/m, or

v =
√

2(9.4 eV)(5.11×105eV/c2) = 1.8×108m/s.

(d) λ = h/p, or

λ =
(6.63×10−34J · s)

(9.11×10−31kg)(1.8×108m/s)
= 4.0×10−12m.
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E49-25 (a) Refer to Sample Problem 49-5 where we learn that the mean free path λ can be
written in terms of Fermi speed vF and mean time between collisions τ as

λ = vFτ.

The Fermi speed is

vF = c
√

2EF /mc2 = c
√

2(5.51 eV)/(5.11×105 eV) = 4.64×10−3c.

The time between collisions is

τ =
m

ne2ρ
=

(9.11×10−31kg)
(5.86×1028m−3)(1.60×10−19C)2(1.62×10−8Ω ·m)

= 3.74×10−14s.

We found n by looking up the answers from Exercise 49-23 in the back of the book. The mean free
path is then

λ = (4.64×10−3)(3.00×108m/s)(3.74×10−14s) = 52 nm.

(b) The spacing between the ion cores is approximated by the cube root of volume per atom.
This atomic volume for silver is

V =
(108 g/mol)

(6.02×1023part/mol)(10.5 g/cm3)
= 1.71×10−23cm3.

The distance between the ions is then

l = 3
√
V = 0.257 nm.

The ratio is
λ/l = 190.

E49-26 (a) For T = 1000 K we can use the approximation, so for diamond

p = e−(5.5 eV)/2(8.62×10−5eV/K)(1000 K) = 1.4×10−14,

while for silicon,
p = e−(1.1 eV)/2(8.62×10−5eV/K)(1000 K) = 1.7×10−3,

(b) For T = 4 K we can use the same approximation, but now ∆E � kT and the exponential
function goes to zero.

E49-27 (a) E − EF ≈ 0.67 eV/2 = 0.34 eV.. The probability the state is occupied is then

p = 1/
[
e(0.34) eV)/(8.62×10−5eV/K)(290 K) + 1

]
= 1.2×10−6.

(b) E −EF ≈ −0.67 eV/2 = −0.34 eV.. The probability the state is unoccupied is then 1− p, or

p = 1− 1/
[
e(−0.34) eV)/(8.62×10−5eV/K)(290 K) + 1

]
= 1.2×10−6.

E49-28 (a) E − EF ≈ 0.67 eV/2 = 0.34 eV.. The probability the state is occupied is then

p = 1/
[
e(0.34) eV)/(8.62×10−5eV/K)(289 K) + 1

]
= 1.2×10−6.
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E49-29 (a) The number of silicon atoms per unit volume is

n =
(6.02×1023part/mol)(2.33 g/cm3)

(28.1 g/mol)
= 4.99×1022 part./cm3

.

If one out of 1.0eex7 are replaced then there will be an additional charge carrier density of

4.99×1022 part./cm3
/1.0×107 = 4.99×1015 part./cm3 = 4.99×1021m−3.

(b) The ratio is
(4.99×1021m−3)/(2× 1.5×1016m−3) = 1.7×105.

The extra factor of two is because all of the charge carriers in silicon (holes and electrons) are charge
carriers.

E49-30 Since one out of every 5×106 silicon atoms needs to be replaced, then the mass of phos-
phorus would be

m =
1

5×106

30
28

= 2.1×10−7 g.

E49-31 l = 3
√

1/1022/m3 = 4.6×10−8m.

E49-32 The atom density of germanium is

N

V
=
ρNA
Ar

=
(5.32×103kg/m3)(6.02×1023mol−1)

(0.197 kg/mol)
= 1.63×1028/m3.

The atom density of the impurity is

(1.63×1028/m3)/(1.3×109) = 1.25×1019.

The average spacing is
l = 3

√
1/1.25×1019/m3 = 4.3×10−7m.

E49-33 The first one is an insulator because the lower band is filled and band gap is so large;
there is no impurity.

The second one is an extrinsic n-type semiconductor: it is a semiconductor because the lower
band is filled and the band gap is small; it is extrinsic because there is an impurity; since the impurity
level is close to the top of the band gap the impurity is a donor.

The third sample is an intrinsic semiconductor: it is a semiconductor because the lower band is
filled and the band gap is small.

The fourth sample is a conductor; although the band gap is large, the lower band is not completely
filled.

The fifth sample is a conductor: the Fermi level is above the bottom of the upper band.
The sixth one is an extrinsic p-type semiconductor: it is a semiconductor because the lower band

is filled and the band gap is small; it is extrinsic because there is an impurity; since the impurity
level is close to the bottom of the band gap the impurity is an acceptor.

E49-34 6.62×105eV/1.1 eV = 6.0×105 electron-hole pairs.

E49-35 (a) R = (1 V)/(50×10−12A) = 2×1010Ω.
(b) R = (0.75 V)/(8 mA) = 90Ω.
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E49-36 (a) A region with some potential difference exists that has a gap between the charged
areas.

(b) C = Q/∆V . Using the results in Sample Problem 49-9 for q and ∆V ,

C =
n0eAd/2
n0ed2/4κε0

= 2κε0A/d.

E49-37 (a) Apply that ever so useful formula

λ =
hc

E
=

(1240 eV · nm)
(5.5 eV)

= 225 nm.

Why is this a maximum? Because longer wavelengths would have lower energy, and so not enough
to cause an electron to jump across the band gap.

(b) Ultraviolet.

E49-38 Apply that ever so useful formula

E =
hc

λ
=

(1240 eV · nm)
(295 nm)

= 4.20 eV.

E49-39 The photon energy is

E =
hc

λ
=

(1240 eV · nm)
(140 nm)

= 8.86 eV.

which is enough to excite the electrons through the band gap. As such, the photon will be absorbed,
which means the crystal is opaque to this wavelength.

E49-40

P49-1 We can calculate the electron density from Eq. 49-5,

n =
π

3

(
8mc2EF

(hc)2

)3/2

,

=
π

3

(
8(0.511×106 eV)(11.66 eV)

(1240 eV · nm)2

)3/2

,

= 181 electrons/nm3
.

From this we calculate the number of electrons per particle,

(181 electrons/nm3)(27.0 g/mol)
(2.70 g/cm3)(6.02×1023 particles/mol)

= 3.01,

which we can reasonably approximate as 3.
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P49-2 At absolute zero all states below EF are filled, an none above. Using the results of Ex.
49-15,

Eav =
1
n

∫ EF

0

En(E) dE,

=
3
2
EF
−3/2

∫ EF

0

E3/2 dE,

=
3
2
EF
−3/2 2

5
EF

5/2,

=
3
5
EF.

P49-3 (a) The total number of conduction electron is

n =
(0.0031 kg)(6.02×1023mol−1)

(0.0635 kg/mol)
= 2.94×1022.

The total energy is

E =
3
5

(7.06 eV)(2.94×1022) = 1.24×1023eV = 2×104J.

(b) This will light a 100 W bulb for

t = (2×104 J)/(100 W) = 200 s.

P49-4 (a) First do the easy part: nc = N cp(Ec), so

N c

e(Ec−EF)/kT + 1
.

Then use the results of Ex. 49-16, and write

nv = Nv[1− p(Ev)] =
Nv

e−(Ev−EF)/kT + 1
.

Since each electron in the conduction band must have left a hole in the valence band, then these two
expressions must be equal.

(b) If the exponentials dominate then we can drop the +1 in each denominator, and

N c

e(Ec−EF)/kT
=

Nv

e−(Ev−EF)/kT
,

N c

Nv
= e(Ec−2EF+Ev)/kT ,

EF =
1
2

(Ec + Ev + kT ln(N c/Nv)) .

P49-5 (a) We want to use Eq. 49-6; although we don’t know the Fermi energy, we do know
the differences between the energies in question. In the un-doped silicon E − EF = 0.55 eV for the
bottom of the conduction band. The quantity

kT = (8.62×10−5 eV/K)(290 K) = 0.025 eV,

which is a good number to remember— at room temperature kT is 1/40 of an electron-volt.
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Then
p =

1

e(0.55 eV)/(0.025 eV) + 1
= 2.8×10−10.

In the doped silicon E − EF = 0.084 eV for the bottom of the conduction band. Then

p =
1

e(0.084 eV)/(0.025 eV) + 1
= 3.4×10−2.

(b) For the donor state E − EF = −0.066 eV, so

p =
1

e(−0.066 eV)/(0.025 eV) + 1
= 0.93.

P49-6 (a) Inverting Eq. 49-6,
E − EF = kT ln(1/p− 1),

so
EF = (1.1 eV − 0.11 eV)− (8.62×10−5 eV/K)(290 K) ln(1/(4.8×10−5)− 1) = 0.74 eV

above the valence band.
(b) E − EF = (1.1 eV)− (0.74 eV) = 0.36 eV, so

p =
1

e(0.36 eV)/(0.025 eV) + 1
= 5.6×10−7.

P49-7 (a) Plot the graph with a spreadsheet. It should look like Fig. 49-12.
(b) kT = 0.025 eV when T = 290 K. The ratio is then

if
ir

=
e(0.5 eV)/(0.025 eV) + 1
e(−0.5 eV)/(0.025 eV) + 1

= 4.9×108.

P49-8
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E50-1 We want to follow the example set in Sample Problem 50-1. The distance of closest
approach is given by

d =
qQ

4πε0Kα
,

=
(2)(29)(1.60×10−19C)2

4π(8.85×10−12C2/Nm2)(5.30MeV)(1.60× 10−13J/MeV)
,

= 1.57×10−14 m.

That’s pretty close.

E50-2 (a) The gold atom can be treated as a point particle:

F =
q1q2

4πε0r2
,

=
(2)(79)(1.60×10−19C)2

4π(8.85×10−12C2/Nm2)(0.16×10−9m)2
,

= 1.4×10−6N.

(b) W = Fd, so

d =
(5.3×106eV)(1.6×10−19J/eV)

(1.4×10−6N)
= 6.06×10−7m.

That’s 1900 gold atom diameters.

E50-3 Take an approach similar to Sample Problem 50-1:

K =
qQ

4πε0d
,

=
(2)(79)(1.60×10−19C)2

4π(8.85×10−12C2/Nm2)(8.78×10−15m)(1.60× 10−19J/eV)
,

= 2.6×107eV.

E50-4 All are stable except 88Rb and 239Pb.

E50-5 We can make an estimate of the mass number A from Eq. 50-1,

R = R0A
1/3,

where R0 = 1.2 fm. If the measurements indicate a radius of 3.6 fm we would have

A = (R/R0)3 = ((3.6 fm)/(1.2 fm))3 = 27.

E50-6

E50-7 The mass number of the sun is

A = (1.99×1030kg)/(1.67×10−27kg) = 1.2×1057.

The radius would be
R = (1.2×10−15m) 3

√
1.2×1057 = 1.3×104m.
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E50-8 239Pu is composed of 94 protons and 239− 94 = 145 neutrons. The combined mass of the
free particles is

M = Zmp +Nmn = (94)(1.007825 u) + (145)(1.008665 u) = 240.991975 u.

The binding energy is the difference

EB = (240.991975 u− 239.052156 u)(931.5 MeV/u) = 1806.9 MeV,

and the binding energy per nucleon is then

(1806.9 MeV)/(239) = 7.56 MeV.

E50-9 62Ni is composed of 28 protons and 62 − 28 = 34 neutrons. The combined mass of the
free particles is

M = Zmp +Nmn = (28)(1.007825 u) + (34)(1.008665 u) = 62.513710 u.

The binding energy is the difference

EB = (62.513710 u− 61.928349 u)(931.5 MeV/u) = 545.3 MeV,

and the binding energy per nucleon is then

(545.3 MeV)/(62) = 8.795 MeV.

E50-10 (a) Multiply each by 1/1.007825, so

m1H = 1.00000,

m12C = 11.906829,

and
m238U = 236.202500.

E50-11 (a) Since the binding energy per nucleon is fairly constant, the energy must be proportional
to A.

(b) Coulomb repulsion acts between pairs of protons; there are Z protons that can be chosen as
first in the pair, and Z−1 protons remaining that can make up the partner in the pair. That makes
for Z(Z − 1) pairs. The electrostatic energy must be proportional to this.

(c) Z2 grows faster than A, which is roughly proportional to Z.

E50-12 Solve

(0.7899)(23.985042) + x(24.985837) + (0.2101− x)(25.982593) = 24.305

for x. The result is x = 0.1001, and then the amount 26Mg is 0.1100.
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E50-13 The neutron confined in a nucleus of radius R will have a position uncertainty on the
order of ∆x ≈ R. The momentum uncertainty will then be no less than

∆p ≥ h

2π∆x
≈ h

2πR
.

Assuming that p ≈ ∆p, we have

p ≥ h

2πR
,

and then the neutron will have a (minimum) kinetic energy of

E ≈ p2

2m
≈ h2

8π2mR2
.

But R = R0A
1/3, so

E ≈ (hc)2

8π2mc2R2
0A

2/3
.

For an atom with A = 100 we get

E ≈ (1240 MeV · fm)2

8π2(940 MeV)(1.2 fm)2(100)2/3
= 0.668 MeV.

This is about a factor of 5 or 10 less than the binding energy per nucleon.

E50-14 (a) To remove a proton,

E = [(1.007825) + (3.016049)− (4.002603)] (931.5 MeV) = 19.81 MeV.

To remove a neutron,

E = [(1.008665) + (2.014102)− (3.016049)] (931.5 MeV) = 6.258 MeV.

To remove a proton,

E = [(1.007825) + (1.008665)− (2.014102)] (931.5 MeV) = 2.224 MeV.

(b) E = (19.81 + 6.258 + 2.224)MeV = 28.30 MeV.
(c) (28.30 MeV)/4 = 7.07 MeV.

E50-15 (a) ∆ = [(1.007825)− (1)](931.5 MeV) = 7.289 MeV.
(b) ∆ = [(1.008665)− (1)](931.5 MeV) = 8.071 MeV.
(c) ∆ = [(119.902197)− (120)](931.5 MeV) = −91.10 MeV.

E50-16 (a) EB = (ZmH +NmN−m)c2. Substitute the definition for mass excess, mc2 = Ac2 +∆,
and

EB = Z(c2 + ∆H) +N(c2 + ∆N)−Ac2 −∆,
= Z∆H +N∆N −∆.

(b) For 197Au,

EB = (79)(7.289 MeV) + (197− 79)(8.071 MeV)− (−31.157 MeV) = 1559 MeV,

and the binding energy per nucleon is then

(1559 MeV)/(197) = 7.92 MeV.
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E50-17 The binding energy of 63Cu is given by

M = Zmp +Nmn = (29)(1.007825 u) + (34)(1.008665 u) = 63.521535 u.

The binding energy is the difference

EB = (63.521535 u− 62.929601 u)(931.5 MeV/u) = 551.4 MeV.

The number of atoms in the sample is

n =
(0.003 kg)(6.02×1023mol−1)

(0.0629 kg/mol)
= 2.87×1022.

The total energy is then

(2.87×1022)(551.4 MeV)(1.6×10−19J/eV) = 2.53×1012J.

E50-18 (a) For ultra-relativistic particles E = pc, so

λ =
(1240 MeV · fm)

(480 MeV)
= 2.59 fm.

(b) Yes, since the wavelength is smaller than nuclear radii.

E50-19 We will do this one the easy way because we can. This method won’t work except when
there is an integer number of half-lives. The activity of the sample will fall to one-half of the initial
decay rate after one half-life; it will fall to one-half of one-half (one-fourth) after two half-lives. So
two half-lives have elapsed, for a total of (2)(140 d) = 280 d.

E50-20 N = N0(1/2)t/t1/2 , so

N = (48×1019)(0.5)(26)/(6.5) = 3.0×1019.

E50-21 (a) t1/2 = ln 2/(0.0108/h) = 64.2 h.
(b) N = N0(1/2)t/t1/2 , so

N/N0 = (0.5)(3) = 0.125.

(c) N = N0(1/2)t/t1/2 , so

N/N0 = (0.5)(240)/(64.2) = 0.0749.

E50-22 (a) λ = (−dN/dt)/N , or

λ = (12/s)/(2.5×1018) = 4.8×10−18/s.

(b) t1/2 = ln 2/λ, so
t1/2 = ln 2/(4.8×10−18/s) = 1.44×1017s,

which is 4.5 billion years.
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E50-23 (a) The decay constant for 67Ga can be derived from Eq. 50-8,

λ =
ln 2
t1/2

=
ln 2

(2.817×105 s)
= 2.461×10−6s−1.

The activity is given by R = λN , so we want to know how many atoms are present. That can be
found from

3.42 g
(

1 u
1.6605×10−24 g

)(
1 atom
66.93 u

)
= 3.077×1022 atoms.

So the activity is

R = (2.461×10−6/s−1)(3.077×1022 atoms) = 7.572×1016 decays/s.

(b) After 1.728×105 s the activity would have decreased to

R = R0e
−λt = (7.572×1016 decays/s)e−(2.461×10−6/s−1)(1.728×105 s) = 4.949×1016 decays/s.

E50-24 N = N0e
−λt, but λ = ln 2/t1/2, so

N = N0e
− ln 2t/t1/2 = N0(2)−t/t1/2 = N0

(
1
2

)t/t1/2
.

E50-25 The remaining 223 is

N = (4.7×1021)(0.5)(28)/(11.43) = 8.6×1020.

The number of decays, each of which produced an alpha particle, is

(4.7×1021)− (8.6×1020) = 3.84×1021.

E50-26 The amount remaining after 14 hours is

m = (5.50 g)(0.5)(14)/(12.7) = 2.562 g.

The amount remaining after 16 hours is

m = (5.50 g)(0.5)(16)/(12.7) = 2.297 g.

The difference is the amount which decayed during the two hour interval:

(2.562 g)− (2.297 g) = 0.265 g.

E50-27 (a) Apply Eq. 50-7,
R = R0e

−λt.

We first need to know the decay constant from Eq. 50-8,

λ =
ln 2
t1/2

=
ln 2

(1.234×106 s)
= 5.618×10−7s−1.

And the the time is found from

t = − 1
λ

ln
R

R0
,

= − 1
(5.618×10−7s−1)

ln
(170 counts/s)
(3050 counts/s)

,

= 5.139×106 s ≈ 59.5 days.
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Note that counts/s is not the same as decays/s. Not all decay events will be picked up by a detector
and recorded as a count; we are assuming that whatever scaling factor which connects the initial
count rate to the initial decay rate is valid at later times as well. Such an assumption is a reasonable
assumption.

(b) The purpose of such an experiment would be to measure the amount of phosphorus that is
taken up in a leaf. But the activity of the tracer decays with time, and so without a correction factor
we would record the wrong amount of phosphorus in the leaf. That correction factor is R0/R; we
need to multiply the measured counts by this factor to correct for the decay.

In this case
R

R0
= eλt = e(5.618×10−7s−1)(3.007×105 s) = 1.184.

E50-28 The number of particles of 147Sm is

n = (0.15)
(0.001 kg)(6.02×1023mol−1)

(0.147 kg/mol)
= 6.143×1020.

The decay constant is
λ = (120/s)/(6.143×1020) = 1.95×10−19/s.

The half-life is
t1/2 = ln 2/(1.95×10−19/s) = 3.55×1018s,

or 110 Gy.

E50-29 The number of particles of 239Pu is

n0 =
(0.012 kg)(6.02×1023mol−1)

(0.239 kg/mol)
= 3.023×1022.

The number which decay is

n0 − n = (3.025×1022)
[
1− (0.5)(20000)/(24100)

]
= 1.32×1022.

The mass of helium produced is then

m =
(0.004 kg/mol)(1.32×1022)

(6.02×1023mol−1)
= 8.78×10−5kg.

E50-30 Let R33/(R33 + R32) = x, where x0 = 0.1 originally, and we want to find out at what
time x = 0.9. Rearranging,

(R33 +R32)/R33 = 1/x,

so
R32/R33 = 1/x− 1.

Since R = R0(0.5)t/t1/2 we can write a ratio

1
x
− 1 =

(
1
x0
− 1
)

(0.5)t/t32−t/t33 .

Put in some of the numbers, and

ln[(1/9)/(9)] = ln[0.5]t
(

1
14.3

− 1
25.3

)
,

which has solution t = 209 d.
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E50-31

E50-32 (a) N/N0 = (0.5)(4500)/(82) = 3.0×10−17.
(b) N/N0 = (0.5)(4500)/(0.034) = 0.

E50-33 The Q values are

Q3 = (235.043923− 232.038050− 3.016029)(931.5 MeV) = −9.46 MeV,
Q4 = (235.043923− 231.036297− 4.002603)(931.5 MeV) = 4.68 MeV,
Q5 = (235.043923− 230.033127− 5.012228)(931.5 MeV) = −1.33 MeV.

Only reactions with positive Q values are energetically possible.

E50-34 (a) For the 14C decay,

Q = (223.018497− 208.981075− 14.003242)(931.5 MeV) = 31.84 MeV.

For the 4He decay,

Q = (223.018497− 219.009475− 4.002603)(931.5 MeV) = 5.979 MeV.

E50-35 Q = (136.907084− 136.905821)(931.5 MeV) = 1.17 MeV.

E50-36 Q = (1.008665− 1.007825)(931.5 MeV) = 0.782 MeV.

E50-37 (a) The kinetic energy of this electron is significant compared to the rest mass energy,
so we must use relativity to find the momentum. The total energy of the electron is E = K +mc2,
the momentum will be given by

pc =
√
E2 −m2c4 =

√
K2 + 2Kmc2,

=
√

(1.00 MeV)2 + 2(1.00 MeV)(0.511 MeV) = 1.42 MeV.

The de Broglie wavelength is then

λ =
hc

pc
=

(1240 MeV · fm)
(1.42 MeV)

= 873 fm.

(b) The radius of the emitting nucleus is

R = R0A
1/3 = (1.2 fm)(150)1/3 = 6.4 fm.

(c) The longest wavelength standing wave on a string fixed at each end is twice the length of
the string. Although the rules for standing waves in a box are slightly more complicated, it is a fair
assumption that the electron could not exist as a standing a wave in the nucleus.

(d) See part (c).
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E50-38 The electron is relativistic, so

pc =
√
E2 −m2c4,

=
√

(1.71 MeV + 0.51 MeV)2 − (0.51 MeV)2,

= 2.16 MeV.

This is also the magnitude of the momentum of the recoiling 32S. Non-relativistic relations are
K = p2/2m, so

K =
(2.16 MeV)2

2(31.97)(931.5 MeV)
= 78.4 eV.

E50-39 N = mNA/Mr will give the number of atoms of 198Au; R = λN will give the activity;
λ = ln 2/t1/2 will give the decay constant. Combining,

m =
NMr

NA
=
Rt1/2Mr

ln 2NA
.

Then for the sample in question

m =
(250)(3.7×1010/s)(2.693)(86400 s)(198 g/mol)

ln 2(6.02×1023/mol)
= 1.02×10−3g.

E50-40 R = (8722/60 s)/(3.7×1010/s) = 3.93×10−9Ci.

E50-41 The radiation absorbed dose (rad) is related to the roentgen equivalent man (rem) by
the quality factor, so for the chest x-ray

(25 mrem)
(0.85)

= 29 mrad.

This is well beneath the annual exposure average.
Each rad corresponds to the delivery of 10−5 J/g, so the energy absorbed by the patient is

(0.029)(10−5 J/g)
(

1
2

)
(88 kg) = 1.28×10−2 J.

E50-42 (a) (75 kg)(10−2J/kg)(0.024 rad) = 1.8×10−2J.
(b) (0.024 rad)(12) = 0.29 rem.

E50-43 R = R0(0.5)t/t1/2 , so

R0 = (3.94µCi)(2)(6.048×105s)/(1.82×105s) = 39.4µCi.

E50-44 (a) N = mNA/MR, so

N =
(2×10−3g)(6.02×1023/mol)

(239 g/mol)
= 5.08×1018.

(b) R = λN = ln 2N/t1/2, so

R = ln 2(5.08×1018)/(2.411×104y)(3.15×107s/y) = 4.64×106/s.

(c) R = (4.64×106/s)/(3.7×1010 decays/s · Ci) = 1.25×10−4Ci.
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E50-45 The hospital uses a 6000 Ci source, and that is all the information we need to find the
number of disintegrations per second:

(6000 Ci)(3.7×1010 decays/s · Ci) = 2.22×1014 decays/s.

We are told the half life, but to find the number of radioactive nuclei present we want to know the
decay constant. Then

λ =
ln 2
t1/2

=
ln 2

(1.66×108 s)
= 4.17×10−9 s−1.

The number of 60Co nuclei is then

N =
R

λ
=

(2.22×1014 decays/s)
(4.17×10−9 s−1)

= 5.32×1022.

E50-46 The annual equivalent does is

(12×10−4rem/h)(20 h/week)(52 week/y) = 1.25 rem.

E50-47 (a) N = mNA/MR and MR = (226) + 2(35) = 296, so

N =
(1×10−1g)(6.02×1023/mol)

(296 g/mol)
= 2.03×1020.

(b) R = λN = ln 2N/t1/2, so

R = ln 2(2.03×1020)/(1600 y)(3.15×107s/y) = 2.8×109Bq.

(c) (2.8×109)/(3.7×1010) = 76 mCi.

E50-48 R = λN = ln 2N/t1/2, so

N =
(4.6×10−6)(3.7×1010/s)(1.28×109y)(3.15×107s/y)

ln 2
= 9.9×1021,

N = mNA/MR, so

m =
(40 g/mol)(9.9×1021)

(6.02×1023/mol)
= 0.658 g.

E50-49 We can apply Eq. 50-18 to find the age of the rock,

t =
t1/2

ln 2
ln
(

1 +
NF
NI

)
,

=
(4.47×109y)

ln 2
ln
(

1 +
(2.00×10−3g)/(206 g/mol)
(4.20×10−3g)/(238 g/mol)

)
,

= 2.83×109y.

306



E50-50 The number of atoms of 238U originally present is

N =
(3.71×10−3g)(6.02×1023/mol)

(238 g/mol)
= 9.38×1018.

The number remaining after 260 million years is

N = (9.38×1018)(0.5)(260 My)/(4470 My) = 9.01×1018.

The difference decays into lead (eventually), so the mass of lead present should be

m =
(206 g/mol)(0.37×1018)

(6.02×1023/mol)
= 1.27×10−4 g.

E50-51 We can apply Eq. 50-18 to find the age of the rock,

t =
t1/2

ln 2
ln
(

1 +
NF
NI

)
,

=
(4.47×109y)

ln 2
ln
(

1 +
(150×10−6g)/(206 g/mol)
(860×10−6g)/(238 g/mol)

)
,

= 1.18×109y.

Inverting Eq. 50-18 to find the mass of 40K originally present,

NF

N I
= 2t/t1/2 − 1,

so (since they have the same atomic mass) the mass of 40K is

m =
(1.6×10−3 g)

2(1.18)/(1.28) − 1
= 1.78×10−3g.

E50-52 (a) There is an excess proton on the left and an excess neutron, so the unknown must be
a deuteron, or d.

(b) We’ve added two protons but only one (net) neutron, so the element is Ti and the mass
number is 43, or 43Ti.

(c) The mass number doesn’t change but we swapped one proton for a neutron, so 7Li.

E50-53 Do the math:

Q = (58.933200 + 1.007825− 58.934352− 1.008665)(931.5 MeV) = −1.86 MeV.

E50-54 The reactions are

201Hg(γ, α)197Pt,
197Au(n,p)197Pt,
196Pt(n, γ)197Pt,
198Pt(γ,n)197Pt,
196Pt(d,p)197Pt,
198Pt(p,d)197Pt.
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E50-55 We will write these reactions in the same way as Eq. 50-20 represents the reaction of
Eq. 50-19. It is helpful to work backwards before proceeding by asking the following question: what
nuclei will we have if we subtract one of the allowed projectiles?

The goal is 60Co, which has 27 protons and 60− 27 = 33 neutrons.

1. Removing a proton will leave 26 protons and 33 neutrons, which is 59Fe; but that nuclide is
unstable.

2. Removing a neutron will leave 27 protons and 32 neutrons, which is 59Co; and that nuclide is
stable.

3. Removing a deuteron will leave 26 protons and 32 neutrons, which is 58Fe; and that nuclide is
stable.

It looks as if only 59Co(n)60Co and 58Fe(d)60Co are possible. If, however, we allow for the possibility
of other daughter particles we should also consider some of the following reactions.

1. Swapping a neutron for a proton: 60Ni(n,p)60Co.

2. Using a neutron to knock out a deuteron: 61Ni(n,d)60Co.

3. Using a neutron to knock out an alpha particle: 63Cu(n,α)60Co.

4. Using a deuteron to knock out an alpha particle: 62Ni(d,α)60Co.

E50-56 (a) The possible results are 64Zn, 66Zn, 64Cu, 66Cu, 61Ni, 63Ni, 65Zn, and 67Zn.
(b) The stable results are 64Zn, 66Zn, 61Ni, and 67Zn.

E50-57

E50-58 The resulting reactions are 194Pt(d,α)192Ir, 196Pt(d,α)194Ir, and 198Pt(d,α)196Ir.

E50-59

E50-60 Shells occur at numbers 2, 8, 20, 28, 50, 82. The shells occur separately for protons and
neutrons. To answer the question you need to know both Z and N = A− Z of the isotope.

(a) Filled shells are 18O, 60Ni, 92Mo, 144Sm, and 207Pb.
(b) One nucleon outside a shell are 40K, 91Zr, 121Sb, and 143Nd.
(c) One vacancy in a shell are 13C, 40K, 49Ti, 205Tl, and 207Pb.

E50-61 (a) The binding energy of this neutron can be found by considering the Q value of the
reaction 90Zr(n)91Zr which is

(89.904704 + 1.008665− 90.905645)(931.5 MeV) = 7.19 MeV.

(b) The binding energy of this neutron can be found by considering the Q value of the reaction
89Zr(n)90Zr which is

(88.908889 + 1.008665− 89.904704)(931.5 MeV) = 12.0 MeV.

This neutron is bound more tightly that the one in part (a).
(c) The binding energy per nucleon is found by dividing the binding energy by the number of

nucleons:
(40×1.007825 + 51×1.008665− 90.905645)(931.5 MeV)

91
= 8.69 MeV.

The neutron in the outside shell of 91Zr is less tightly bound than the average nucleon in 91Zr.
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P50-1 Before doing anything we need to know whether or not the motion is relativistic. The
rest mass energy of an α particle is

mc2 = (4.00)(931.5 MeV) = 3.73 GeV,

and since this is much greater than the kinetic energy we can assume the motion is non-relativistic,
and we can apply non-relativistic momentum and energy conservation principles. The initial velocity
of the α particle is then

v =
√

2K/m = c
√

2K/mc2 = c
√

2(5.00 MeV)/(3.73 GeV) = 5.18×10−2c.

For an elastic collision where the second particle is at originally at rest we have the final velocity
of the first particle as

v1,f = v1,i
m2 −m1

m2 +m1
= (5.18×10−2c)

(4.00u)− (197u)
(4.00u) + (197u)

= −4.97×10−2c,

while the final velocity of the second particle is

v2,f = v1,i
2m1

m2 +m1
= (5.18×10−2c)

2(4.00u)
(4.00u) + (197u)

= 2.06×10−3c.

(a) The kinetic energy of the recoiling nucleus is

K =
1
2
mv2 =

1
2
m(2.06×10−3c)2 = (2.12×10−6)mc2

= (2.12×10−6)(197)(931.5 MeV) = 0.389 MeV.

(b) Energy conservation is the fastest way to answer this question, since it is an elastic collision.
Then

(5.00 MeV)− (0.389 MeV) = 4.61 MeV.

P50-2 The gamma ray carries away a mass equivalent energy of

mγ = (2.2233 MeV)/(931.5 MeV/u) = 0.002387 u.

The neutron mass would then be

mN = (2.014102− 1.007825 + 0.002387)u = 1.008664 u.

P50-3 (a) There are four substates: mj can be +3/2, +1/2, -1/2, and -3/2.
(b) ∆E = (2/3)(3.26)(3.15×10−8eV/T)(2.16 T) = 1.48×10−7eV.
(c) λ = (1240 eV · nm)/(1.48×10−7eV) = 8.38 m.
(d) This is in the radio region.

P50-4 (a) The charge density is ρ = 3Q/4πR3. The charge on the shell of radius r is dq = 4πr2ρ dr.
The potential at the surface of a solid sphere of radius r is

V =
q

4πε0r
=
ρr2

3ε0
.

The energy required to add a layer of charge dq is

dU = V dq =
4πρ2r4

3ε0
dr,
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which can be integrated to yield

U =
4πρ2R5

3ε0
=

3Q2

20πε0R
.

(b) For 239Pu,

U =
3(94)2(1.6×10−19C)

20π(8.85×10−12F/m)(7.45×10−15m)
= 1024×106eV.

(c) The electrostatic energy is 10.9 MeV per proton.

P50-5 The decay rate is given by R = λN , where N is the number of radioactive nuclei present.
If R exceeds P then nuclei will decay faster than they are produced; but this will cause N to decrease,
which means R will decrease until it is equal to P . If R is less than P then nuclei will be produced
faster than they are decaying; but this will cause N to increase, which means R will increase until it
is equal to P . In either case equilibrium occurs when R = P , and it is a stable equilibrium because
it is approached no matter which side is larger. Then

P = R = λN

at equilibrium, so N = P/λ.

P50-6 (a) A = λN ; at equilibrium A = P , so P = 8.88×1010/s.
(b) (8.88×1010/s)(1−e−0.269t), where t is in hours. The factor 0.269 comes from ln(2)/(2.58) = λ.
(c) N = P/λ = (8.88×1010/s)(3600 s/h)/(0.269/h) = 1.19×1015.
(d) m = NMr/NA, or

m =
(1.19×1015)(55.94 g/mol)

(6.02×1023/mol)
= 1.10×10−7g.

P50-7 (a) A = λN , so

A =
ln 2mNA
t1/2Mr

=
ln 2(1×10−3g)(6.02×1023/mol)
(1600)(3.15×107s)(226 g/mol)

= 3.66×107/s.

(b) The rate must be the same if the system is in secular equilibrium.
(c) N = P/λ = t1/2P/ ln 2, so

m =
(3.82)(86400 s)(3.66×107/s)(222 g/mol)

(6.02×1023/mol) ln 2
= 6.43×10−9g.

P50-8 The number of water molecules in the body is

N = (6.02×1023/mol)(70×103g)/(18 g/mol) = 2.34×1027.

There are ten protons in each water molecule. The activity is then

A = (2.34×1027) ln 2/(1×1032y) = 1.62×10−5/y.

The time between decays is then
1/A = 6200 y.
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P50-9 Assuming the 238U nucleus is originally at rest the total initial momentum is zero, which
means the magnitudes of the final momenta of the α particle and the 234Th nucleus are equal.

The α particle has a final velocity of

v =
√

2K/m = c
√

2K/mc2 = c
√

2(4.196 MeV)/(4.0026×931.5 MeV) = 4.744×10−2c.

Since the magnitudes of the final momenta are the same, the 234Th nucleus has a final velocity
of

(4.744×10−2c)
(

(4.0026 u)
(234.04 u)

)
= 8.113×10−4c.

The kinetic energy of the 234Th nucleus is

K =
1
2
mv2 =

1
2
m(8.113×10−4c)2 = (3.291×10−7)mc2

= (3.291×10−7)(234.04)(931.5 MeV) = 71.75 keV.

The Q value for the reaction is then

(4.196 MeV) + (71.75 keV) = 4.268 MeV,

which agrees well with the Sample Problem.

P50-10 (a) The Q value is

Q = (238.050783− 4.002603− 234.043596)(931.5 MeV) = 4.27 MeV.

(b) The Q values for each step are

Q = (238.050783− 237.048724− 1.008665)(931.5 MeV) = −6.153 MeV,

Q = (237.048724− 236.048674− 1.007825)(931.5 MeV) = −7.242 MeV,

Q = (236.048674− 235.045432− 1.008665)(931.5 MeV) = −5.052 MeV,

Q = (235.045432− 234.043596− 1.007825)(931.5 MeV) = −5.579 MeV.

(c) The total Q for part (b) is −24.026 MeV. The difference between (a) and (b) is 28.296 MeV.
The binding energy for the alpha particle is

E = [2(1.007825) + 2(1.008665)− 4.002603](931.5 MeV) = 28.296 MeV.

P50-11 (a) The emitted positron leaves the atom, so the mass must be subtracted. But the
daughter particle now has an extra electron, so that must also be subtracted. Hence the factor
−2me.

(b) The Q value is

Q = [11.011434− 11.009305− 2(0.0005486)](931.5 MeV) = 0.961 MeV.

P50-12 (a) Capturing an electron is equivalent to negative beta decay in that the total number
of electrons is accounted for on both the left and right sides of the equation. The loss of the K shell
electron, however, must be taken into account as this energy may be significant.

(b) The Q value is

Q = (48.948517− 48.947871)(931.5 MeV)− (0.00547 MeV) = 0.596 MeV.
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P50-13 The decay constant for 90Sr is

λ =
ln 2
t1/2

=
ln 2

(9.15×108 s)
= 7.58×10−10s−1.

The number of nuclei present in 400 g of 90Sr is

N = (400 g)
(6.02×1023/mol)

(89.9 g/mol)
= 2.68×1024,

so the overall activity of the 400 g of 90Sr is

R = λN = (7.58×10−10s−1)(2.68×1024)/(3.7×1010/Ci · s) = 5.49×104 Ci.

This is spread out over a 2000 km2 area, so the “activity surface density” is

(5.49×104 Ci)
(20006 m2)

= 2.74×10−5 Ci/m2.

If the allowable limit is 0.002 mCi, then the area of land that would contain this activity is

(0.002×10−3 Ci)
(2.74×10−5 Ci/m2)

= 7.30×10−2m2.

P50-14 (a) N = mNA/Mr, so

N = (2.5×10−3g)(6.02×1023/mol)/(239 g/mol) = 6.3×1018.

(b) A = ln 2N/t1/2, so the number that decay in 12 hours is

ln 2(6.3×1018)(12)(3600 s)
(24100)(3.15×107s)

= 2.5×1011.

(c) The energy absorbed by the body is

E = (2.5×1011)(5.2 MeV)(1.6×10−19J/eV) = 0.20 J.

(d) The dose in rad is (0.20 J)/(87 kg) = 0.23 rad.
(e) The biological dose in rem is (0.23)(13) = 3 rem.

P50-15 (a) The amount of 238U per kilogram of granite is

N =
(4×10−6kg)(6.02×1023/mol)

(0.238 kg/mol)
= 1.01×1019.

The activity is then

A =
ln 2(1.01×1019)

(4.47×109y)(3.15×107s/y)
= 49.7/s.

The energy released in one second is

E = (49.7/s)(51.7 MeV) = 4.1×10−10J.

The amount of 232Th per kilogram of granite is

N =
(13×10−6kg)(6.02×1023/mol)

(0.232 kg/mol)
= 3.37×1019.
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The activity is then

A =
ln 2(3.37×1019)

(1.41×1010y)(3.15×107s/y)
= 52.6/s.

The energy released in one second is

E = (52.6/s)(42.7 MeV) = 3.6×10−10J.

The amount of 40K per kilogram of granite is

N =
(4×10−6kg)(6.02×1023/mol)

(0.040 kg/mol)
= 6.02×1019.

The activity is then

A =
ln 2(6.02×1019)

(1.28×109y)(3.15×107s/y)
= 1030/s.

The energy released in one second is

E = (1030/s)(1.32 MeV) = 2.2×10−10J.

The total of the three is 9.9×10−10W per kilogram of granite.
(b) The total for the Earth is 2.7×1013 W.

P50-16 (a) Since only a is moving originally then the velocity of the center of mass is

V =
mava +mX(0)
mX +ma

= va
ma

ma +mX
.

No, since momentum is conserved.
(b) Moving to the center of mass frame gives the velocity of X as V , and the velocity of a as

va − V . The kinetic energy is now

Kcm =
1
2
(
mXV

2 +ma(va − V )2
)
,

=
v2
a

2

(
mX

m2
a

(ma +mX)2
+ma

m2
X

(ma +mX)2

)
,

=
mav

2
a

2
mamX +m2

X

(ma +mX)2
,

= K lab
mX

ma +mX
.

Yes; kinetic energy is not conserved.
(c) va =

√
2K/m, so

va =
√

2(15.9 MeV)/(1876 MeV)c = 0.130c.

The center of mass velocity is

V = (0.130c)
(2)

(2) + (90)
= 2.83×10−3c.

Finally,

Kcm = (15.9 MeV)
(90)

(2) + (90)
= 15.6 MeV.
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P50-17 Let Q = Kcm in the result of Problem 50-16, and invert, solving for K lab.

P50-18 (a) Removing a proton from 209Bi:

E = (207.976636 + 1.007825− 208.980383)(931.5 MeV) = 3.80 MeV.

Removing a proton from 208Pb:

E = (206.977408 + 1.007825− 207.976636)(931.5 MeV) = 8.01 MeV.

(b) Removing a neutron from 209Pb:

E = (207.976636 + 1.008665− 208.981075)(931.5 MeV) = 3.94 MeV.

Removing a neutron from 208Pb:

E = (206.975881 + 1.008665− 207.976636)(931.5 MeV) = 7.37 MeV.

314



E51-1 (a) For the coal,
m = (1×109J)/(2.9×107J/kg) = 34 kg.

(b) For the uranium,

m = (1×109J)/(8.2×1013J/kg) = 1.2×10−5kg.

E51-2 (a) The energy from the coal is

E = (100 kg)(2.9×107J/kg) = 2.9×109J.

(b) The energy from the uranium in the ash is

E = (3×10−6)(100 kg)(8.2×1013J) = 2.5×1010J.

E51-3 (a) There are
(1.00 kg)(6.02×1023mol−1)

(235g/mol)
= 2.56×1024

atoms in 1.00 kg of 235U.
(b) If each atom releases 200 MeV, then

(200×106 eV)(1.6×10−19J/ eV)(2.56×1024) = 8.19×1013 J

of energy could be released from 1.00 kg of 235U.
(c) This amount of energy would keep a 100-W lamp lit for

t =
(8.19×1013 J)

(100 W)
= 8.19×1011s ≈ 26, 000 y!

E51-4 2 W = 1.25×1019eV/s. This requires

(1.25×1019eV/s)/(200×106eV) = 6.25×1010/s

as the fission rate.

E51-5 There are
(1.00 kg)(6.02×1023mol−1)

(235g/mol)
= 2.56×1024

atoms in 1.00 kg of 235U. If each atom releases 200 MeV, then

(200×106 eV)(1.6×10−19J/ eV)(2.56×1024) = 8.19×1013 J

of energy could be released from 1.00 kg of 235U. This amount of energy would keep a 100-W lamp
lit for

t =
(8.19×1013 J)

(100 W)
= 8.19×1011s ≈ 30, 000 y!

E51-6 There are
(1.00 kg)(6.02×1023mol−1)

(239g/mol)
= 2.52×1024

atoms in 1.00 kg of 239Pu. If each atom releases 180 MeV, then

(180×106 eV)(1.6×10−19J/ eV)(2.52×1024) = 7.25×1013 J

of energy could be released from 1.00 kg of 239Pu.
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E51-7 When the 233U nucleus absorbs a neutron we are given a total of 92 protons and 142
neutrons. Gallium has 31 protons and around 39 neutrons; chromium has 24 protons and around
28 neutrons. There are then 37 protons and around 75 neutrons left over. This would be rubidium,
but the number of neutrons is very wrong. Although the elemental identification is correct, because
we must conserve proton number, the isotopes are wrong in our above choices for neutron numbers.

E51-8 Beta decay is the emission of an electron from the nucleus; one of the neutrons changes into
a proton. The atom now needs one more electron in the electron shells; by using atomic masses (as
opposed to nuclear masses) then the beta electron is accounted for. This is only true for negative
beta decay, not for positive beta decay.

E51-9 (a) There are
(1.0 g)(6.02×1023mol−1)

(235g/mol)
= 2.56×1021

atoms in 1.00 g of 235U. The fission rate is

A = ln 2N/t1/2 = ln 2(2.56×1021)/(3.5×1017y)(365d/y) = 13.9/d.

(b) The ratio is the inverse ratio of the half-lives:

(3.5×1017y)/(7.04×108y) = 4.97×108.

E51-10 (a) The atomic number of Y must be 92−54 = 38, so the element is Sr. The mass number
is 235 + 1− 140− 1 = 95, so Y is 95Sr.

(b) The atomic number of Y must be 92 − 53 = 39, so the element is Y. The mass number is
235 + 1− 139− 2 = 95, so Y is 95Y.

(c) The atomic number of X must be 92 − 40 = 52, so the element is Te. The mass number is
235 + 1− 100− 2 = 134, so X is 134Te.

(d) The mass number difference is 235 + 1− 141− 92 = 3, so b = 3.

E51-11 The Q value is

Q = [51.94012− 2(25.982593)](931.5 MeV) = −23 MeV.

The negative value implies that this fission reaction is not possible.

E51-12 The Q value is

Q = [97.905408− 2(48.950024)](931.5 MeV) = 4.99 MeV.

The two fragments would have a very large Coulomb barrier to overcome.

E51-13 The energy released is

(235.043923− 140.920044− 91.919726− 2×1.008665)(931.5 MeV) = 174 MeV.

E51-14 Since En > Eb fission is possible by thermal neutrons.

E51-15 (a) The uranium starts with 92 protons. The two end products have a total of 58 + 44 =
102. This means that there must have been ten beta decays.

(b) The Q value for this process is

Q = (238.050783 + 1.008665− 139.905434− 98.905939)(931.5 MeV) = 231 MeV.
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E51-16 (a) The other fragment has 92− 32 = 60 protons and 235 + 1− 83 = 153 neutrons. That
element is 153Nd.

(b) Since K = p2/2m and momentum is conserved, then 2m1K1 = 2m2K2. This means that
K2 = (m1/m2)K1. But K1 +K2 = Q, so

K1
m2 +m1

m2
= Q,

or
K1 =

m2

m1 +m2
Q,

with a similar expression for K2. Then for 83Ge

K =
(153)

(83 + 153)
(170 MeV) = 110 MeV,

while for 153Nd

K =
(83)

(83 + 153)
(170 MeV) = 60 MeV,

(c) For 83Ge,

v =

√
2K
m

=

√
2(110 MeV)

(83)(931 MeV)
c = 0.053c,

while for 153Nd

v =

√
2K
m

=

√
2(60 MeV)

(153)(931 MeV)
c = 0.029c.

E51-17 Since 239Pu is one nucleon heavier than 238U only one neutron capture is required. The
atomic number of Pu is two more than U, so two beta decays will be required. The reaction series
is then

238U + n → 239U,
239U → 239Np + β− + ν̄,

239Np → 239Pu + β− + ν̄.

E51-18 Each fission releases 200 MeV. The total energy released over the three years is

(190×106W)(3)(3.15×107s) = 1.8×1016J.

That’s
(1.8×1016J)/(1.6×10−19J/eV)(200×106eV) = 5.6×1026

fission events. That requires

m = (5.6×1026)(0.235 kg/mol)/(6.02×1023/mol) = 218 kg.

But this is only half the original amount, or 437 kg.

E51-19 According to Sample Problem 51-3 the rate at which non-fission thermal neutron capture
occurs is one quarter that of fission. Hence the mass which undergoes non-fission thermal neutron
capture is one quarter the answer of Ex. 51-18. The total is then

(437 kg)(1 + 0.25) = 546 kg.
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E51-20 (a) Qeff = E/∆N , where E is the total energy released and ∆N is the number of decays.
This can also be written as

Qeff =
P

A
=
Pt1/2

ln 2N
=
Pt1/2Mr

ln 2NAm
,

where A is the activity and P the power output from the sample. Solving,

Qeff =
(2.3 W)(29 y)(3.15×107s)(90 g/mol)

ln 2(6.02×1023/mol)(1 g)
= 4.53×10−13J = 2.8 MeV.

(b) P = (0.05)m(2300 W/kg), so

m =
(150 W)

(0.05)(2300 W/kg)
= 1.3 kg.

E51-21 Let the energy released by one fission be E1. If the average time to the next fission event
is tgen, then the “average” power output from the one fission is P1 = E1/tgen. If every fission event
results in the release of k neutrons, each of which cause a later fission event, then after every time
period tgen the number of fission events, and hence the average power output from all of the fission
events, will increase by a factor of k.

For long enough times we can write

P (t) = P0k
t/tgen .

E51-22 Invert the expression derived in Exercise 51-21:

k =
(
P

P0

)tgen/t

=
(

(350)
(1200)

)(1.3×10−3s)/(2.6 s)

= 0.99938.

E51-23 Each fission releases 200 MeV. Then the fission rate is

(500×106W)/(200×106eV)(1.6×10−19J/eV) = 1.6×1019/s

The number of neutrons in “transit” is then

(1.6×1019/s)(1.0×10−3s) = 1.6×1016.

E51-24 Using the results of Exercise 51-21:

P = (400 MW)(1.0003)(300 s)/(0.03 s) = 8030 MW.

E51-25 The time constant for this decay is

λ =
ln 2

(2.77×109 s)
= 2.50×10−10s−1.

The number of nuclei present in 1.00 kg is

N =
(1.00 kg)(6.02×1023 mol−1)

(238 g/mol)
= 2.53×1024.

The decay rate is then

R = λN = (2.50×10−10s−1)(2.53×1024) = 6.33×1014s−1.

The power generated is the decay rate times the energy released per decay,

P = (6.33×1014s−1)(5.59×106 eV)(1.6×10−19 J/eV) = 566 W.
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E51-26 The detector detects only a fraction of the emitted neutrons. This fraction is

A

4πR2
=

(2.5 m2)
4π(35 m)2

= 1.62×10−4.

The total flux out of the warhead is then

(4.0/s)/(1.62×10−4) = 2.47×104/s.

The number of 239Pu atoms is

N =
A

λ
=

(2.47×104/s)(1.34×1011y)(3.15×107s/y)
ln 2(2.5)

= 6.02×1022.

That’s one tenth of a mole, so the mass is (239)/10 = 24 g.

E51-27 Using the results of Sample Problem 51-4,

t =
ln[R(0)/R(t)]
λ5 − λ8

,

so

t =
ln[(0.03)/(0.0072)]

(0.984− 0.155)(1×10−9/y)
= 1.72×109y.

E51-28 (a) (15×109W · y)(2×105y) = 7.5×104W.
(b) The number of fissions required is

N =
(15×109W · y)(3.15×107s/y)
(200 MeV)(1.6×10−19J/eV)

= 1.5×1028.

The mass of 235U consumed is

m = (1.5×1028)(0.235kg/mol)/(6.02×10−23/mol) = 5.8×103kg.

E51-29 If 238U absorbs a neutron it becomes 239U, which will decay by beta decay to first 239Np
and then 239Pu; we looked at this in Exercise 51-17. This can decay by alpha emission according to

239Pu→235 U + α.

E51-30 The number of atoms present in the sample is

N = (6.02×1023/mol)(1000 kg)/(2.014g/mol) = 2.99×1026.

It takes two to make a fusion, so the energy released is

(3.27 MeV)(2.99×1026)/2 = 4.89×1026MeV.

That’s 7.8×1013J, which is enough to burn the lamp for

t = (7.8×1013J)/(100 W) = 7.8×1011s = 24800 y.

E51-31 The potential energy at closest approach is

U =
(1.6×10−19C)2

4π(8.85×10−12F/m)(1.6×10−15m)
= 9×105eV.
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E51-32 The ratio can be written as

n(K1)
n(K2)

=
√
K1

K2
e(K2−K1)/kT ,

so the ratio is √
(5000 eV)
(1900 eV)

e(−3100 eV)/(8.62×10−5eV/K)(1.5×107K) = 0.15.

E51-33 (a) See Sample Problem 51-5.

E51-34 Add up all of the Q values in the cycle of Fig. 51-10.

E51-35 The energy released is

(3×4.002603− 12.0000000)(931.5 MeV) = 7.27 MeV.

E51-36 (a) The number of particle of hydrogen in 1 m3 is

N = (0.35)(1.5×105kg)(6.02×1023/mol)/(0.001 kg/mol) = 3.16×1031

(b) The density of particles is N/V = p/kT ; the ratio is

(3.16×1031)(1.38×10−23J/K)(298 K)
(1.01×105Pa)

= 1.2×106.

E51-37 (a) There are
(1.00 kg)(6.02×1023mol−1)

(1g/mol)
= 6.02×1026

atoms in 1.00 kg of 1H. If four atoms fuse to releases 26.7 MeV, then

(26.7 MeV)(6.02×1026)/4 = 4.0×1027MeV

of energy could be released from 1.00 kg of 1H.
(b) There are

(1.00 kg)(6.02×1023mol−1)
(235g/mol)

= 2.56×1024

atoms in 1.00 kg of 235U. If each atom releases 200 MeV, then

(200 MeV)(2.56×1024) = 5.1×1026MeV

of energy could be released from 1.00 kg of 235U.

E51-38 (a) E = ∆mc2, so

∆m =
(3.9×1026J/s)
(3.0×108m/s)2

= 4.3×109kg/s.

(b) The fraction of the Sun’s mass “lost” is

(4.3×109kg/s)(3.15×107s/y)(4.5×109y)
(2.0×1030kg)

= 0.03 %.
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E51-39 The rate of consumption is 6.2×1011kg/s, the core has 1/8 the mass but only 35% is
hydrogen, so the time remaining is

t = (0.35)(1/8)(2.0×1030kg)/(6.2×1011kg/s) = 1.4×1017s,

or about 4.5×109 years.

E51-40 For the first two reactions into one:

Q = [2(1.007825)− (2.014102)](931.5 MeV) = 1.44 MeV.

For the second,

Q = [(1.007825) + (2.014102)− (3.016029)](931.5 MeV) = 5.49 MeV.

For the last,

Q = [2(3.016029)− (4.002603)− 2(1.007825)](931.5 MeV) = 12.86 MeV.

E51-41 (a) Use mNA/Mr = N , so

(3.3×107J/kg)
(0.012 kg/mol)

(6.02×1023/mol)
1

(1.6×10−19J/eV)
= 4.1 eV.

(b) For every 12 grams of carbon we require 32 grams of oxygen, the total is 44 grams. The total
mass required is then 40/12 that of carbon alone. The energy production is then

(3.3×107J/kg)(12/44) = 9×106J/kg.

(c) The sun would burn for

(2×1030kg)(9×106J/kg)
(3.9×1026W)

= 4.6×1010s.

That’s only 1500 years!

E51-42 The rate of fusion events is

(5.3×1030W)
(7.27×106eV)(1.6×10−19J/eV)

= 4.56×1042/s.

The carbon is then produced at a rate

(4.56×1042/s)(0.012 kg/mol)/(6.02×1023/mol) = 9.08×1016kg/s.

The process will be complete in

(4.6×1032kg)
(9.08×1016kg/s)(3.15×107s/y)

= 1.6×108y.

E51-43 (a) For the reaction d-d,

Q = [2(2.014102)− (3.016029)− (1.008665)](931.5 MeV) = 3.27 MeV.

(b) For the reaction d-d,

Q = [2(2.014102)− (3.016029)− (1.007825)](931.5 MeV) = 4.03 MeV.

(c) For the reaction d-t,

Q = [(2.014102) + (3.016049)− (4.002603)− (1.008665)](931.5 MeV) = 17.59 MeV.
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E51-44 One liter of water has a mass of one kilogram. The number of atoms of 2H is

(0.00015 kg)
(6.02×1023/mol)
(0.002 kg/mol)

= 4.5×1022.

The energy available is

(3.27×106eV)(1.6×10−19J/eV)(4.5×1022)/2 = 1.18×1010J.

The power output is then
(1.18×1010J)

(86400 s)
= 1.4×105W

E51-45 Assume momentum conservation, then

pα = pn or vn/vα = mα/mn.

The ratio of the kinetic energies is then

Kn

Kα
=
mnv

2
n

mαv2
α

=
mα

mn
≈ 4.

Then Kn = 4Q/5 = 14.07 MeV while Kα = Q/5 = 3.52 MeV.

E51-46 The Q value is

Q = (6.015122 + 1.008665− 3.016049− 4.002603)(931.5 MeV) = 4.78 MeV.

Combine the two reactions to get a net Q = 22.37 MeV. The amount of 6Li required is

N = (2.6×1028MeV)/(22.37 MeV) = 1.16×1027.

The mass of LiD required is

m =
(1.16×1027)(0.008 kg/mol)

(6.02×1023/mol)
= 15.4 kg.

P51-1 (a) Equation 50-1 is
R = R0A

1/3,

where R0 = 1.2 fm. The distance between the two nuclei will be the sum of the radii, or

R0

(
(140)1/3 + (94)1/3

)
.

The potential energy will be

U =
1

4πε0
q1q2

r
,

=
e2

4πε0R0

(54)(38)(
(140)1/3 + (94)1/3

) ,
=

(1.60×10−19C)2

4π(8.85×10−12C2/Nm2)(1.2 fm)
211,

= 253 MeV.

(b) The energy will eventually appear as thermal energy.
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P51-2 (a) Since R = R0
3
√
A, the surface area a is proportional to A2/3. The fractional change in

surface area is
(a1 + a2)− a0

a0
=

(140)2/3 + (96)2/3 − (236)2/3

(236)2/3
= 25 %.

(b) Nuclei have a constant density, so there is no change in volume.
(c) Since U ∝ Q2/R, U ∝ Q2/ 3

√
A. The fractional change in the electrostatic potential energy is

U1 + U2 − U0

U0
=

(54)2(140)−1/3 + (38)2(96)−1/3 − (92)2(236)−1/3

(92)2(236)−1/3
= −36 %.

P51-3 (a) There are
(2.5 kg)(6.02×1023mol−1)

(239g/mol)
= 6.29×1024

atoms in 2.5 kg of 239Pu. If each atom releases 180 MeV, then

(180 MeV)(6.29×1024)/(2.6×1028MeV/megaton) = 44 kiloton

is the bomb yield.

P51-4 (a) In an elastic collision the nucleus moves forward with a speed of

v = v0
2mn

mn +m
,

so the kinetic energy when it moves forward is

∆K =
m

2
v2

0

4m2
n

(m+mn)2
= K

mnm

(mn +m)2
,

where we can write ∆K because in an elastic collision whatever energy kinetic energy the nucleus
carries off had to come from the neutron.

(b) For hydrogen,
∆K
K

=
4(1)(1)
(1 + 1)2

= 1.00.

For deuterium,
∆K
K

=
4(1)(2)
(1 + 2)2

= 0.89.

For carbon,
∆K
K

=
4(1)(12)
(1 + 12)2

= 0.28.

For lead,
∆K
K

=
4(1)(206)
(1 + 206)2

= 0.019.

(c) If each collision reduces the energy by a factor of 1−0.89 = 0.11, then the number of collisions
required is the solution to

(0.025 eV) = (1×106eV)(0.11)N ,

which is N = 8.
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P51-5 The radii of the nuclei are

R = (1.2 fm) 3
√

7 = 2.3 fm.

The using the derivation of Sample Problem 51-5,

K =
(3)2(1.6×10−19C)2

16π(8.85×10−12F/m)(2.3×10−15m)
= 1.4×106eV.

P51-6 (a) Add up the six equations to get

12C +1H +13 N +13 C +1 H +14 N +1 H +15 O +15 N +1 H→
13N + γ +13 C + e+ + ν +14 N + γ +15 O + γ +15 N + e+ + ν +12 C +4 He.

Cancel out things that occur on both sides and get

1H +1 H +1 H +1 H→ γ + e+ + ν + γ + γ + e+ + ν +4 He.

(b) Add up the Q values, and then add on 4(0.511 MeV for the annihilation of the two positrons.

P51-7 (a) Demonstrating the consistency of this expression is considerably easier than deriving
it from first principles. From Problem 50-4 we have that a uniform sphere of charge Q and radius
R has potential energy

U =
3Q2

20πε0R
.

This expression was derived from the fundamental expression

dU =
1

4πε0
q dq

r
.

For gravity the fundamental expression is

dU =
Gmdm

r
,

so we replace 1/4πε0 with G and Q with M . But like charges repel while all masses attract, so we
pick up a negative sign.

(b) The initial energy would be zero if R =∞, so the energy released is

U =
3GM2

5R
=

3(6.7×10−11N·m2/kg2)(2.0×1030kg)2

5(7.0×108m)
= 2.3×1041J.

At the current rate (see Sample Problem 51-6), the sun would be

t =
(2.3×1041J)
(3.9×1026W)

= 5.9×1014 s,

or 187 million years old.
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P51-8 (a) The rate of fusion events is

(3.9×1026W)
(26.2×106eV)(1.6×10−19J/eV)

= 9.3×1037/s.

Each event produces two neutrinos, so the rate is

1.86×1038/s.

(b) The rate these neutrinos impinge on the Earth is proportional to the solid angle subtended
by the Earth as seen from the Sun:

πr2

4πR2
=

(6.37×106m)2

4(1.50×1011m)2
= 4.5×10−10,

so the rate of neutrinos impinging on the Earth is

(1.86×1038/s)(4.5×10−10) = 8.4×1028/s.

P51-9 (a) Reaction A releases, for each d

(1/2)(4.03 MeV) = 2.02 MeV,

Reaction B releases, for each d

(1/3)(17.59 MeV) + (1/3)(4.03 MeV) = 7.21 MeV.

Reaction B is better, and releases

(7.21 MeV)− (2/02 MeV) = 5.19 MeV

more for each N .

P51-10 (a) The mass of the pellet is

m =
4
3
π(2.0×10−5m)3(200 kg/m3) = 6.7×10−12kg.

The number of d-t pairs is

N =
(6.7×10−12kg)(6.02×1023/mol)

(0.005 kg/mol)
= 8.06×1014,

and if 10% fuse then the energy release is

(17.59 MeV)(0.1)(8.06×1014)(1.6×10−19J/eV) = 230 J.

(b) That’s
(230 J)/(4.6×106J/kg) = 0.05 kg

of TNT.
(c) The power released would be (230 J)(100/s) = 2.3×104W.
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E52-1 (a) The gravitational force is given by Gm2/r2, while the electrostatic force is given by
q2/4πε0r2. The ratio is

4πε0Gm2

q2
=

4π(8.85×10−12C2/Nm2)(6.67×10−11Nm2/kg2)(9.11×10−31kg)2

(1.60×10−19C)2
,

= 2.4×10−43.

Gravitational effects would be swamped by electrostatic effects at any separation.
(b) The ratio is

4πε0Gm2

q2
=

4π(8.85×10−12C2/Nm2)(6.67×10−11Nm2/kg2)(1.67×10−27kg)2

(1.60×10−19C)2
,

= 8.1×10−37.

E52-2 (a) Q = 938.27 MeV− 0.511 MeV) = 937.76 MeV.
(b) Q = 938.27 MeV− 135 MeV) = 803 MeV.

E52-3 The gravitational force from the lead sphere is

GmeM

R2
=

4πGρmeR

3
.

Setting this equal to the electrostatic force from the proton and solving for R,

R =
3e2

16π2ε0Gρmea2
0

,

or

3(1.6×10−19C)2

16π2(8.85×10−12F/m)(6.67×10−11Nm2/kg2)(11350 kg/m3)(9.11×10−31kg)(5.29×10−11m)2

which means R = 2.85×1028m.

E52-4 Each γ takes half the energy of the pion, so

λ =
(1240 MeV · fm)

(135 MeV)/2
= 18.4 fm.

E52-5 The energy of one of the pions will be

E =
√

(pc)2 + (mc2)2 =
√

(358.3 MeV)2 + (140 MeV)2 = 385 MeV.

There are two of these pions, so the rest mass energy of the ρ0 is 770 MeV.

E52-6 E = γmc2, so
γ = (1.5×106eV)/(20 eV) = 7.5×104.

The speed is given by
v = c

√
1− 1/γ2 ≈ c− c/2γ2,

where the approximation is true for large γ. Then

∆v = c/2(7.5×104)2 = 2.7×10−2m/s.

326



E52-7 d = c∆t = hc/2π∆E. Then

d =
(1240 MeV · fm)
2π(91200 MeV)

= 2.16×10−3fm.

E52-8 (a) Electromagnetic.
(b) Weak, since neutrinos are present.
(c) Strong.
(d) Weak, since strangeness changes.

E52-9 (a) Baryon number is conserved by having two “p” on one side and a “p” and a ∆0 on the
other. Charge will only be conserved if the particle x is positive. Strangeness will only be conserved
if x is strange. Since it can’t be a baryon it must be a meson. Then x is K+.

(b) Baryon number on the left is 0, so x must be an anti-baryon. Charge on the left is zero, so x
must be neutral because “n” is neutral. Strangeness is everywhere zero, so the particle must be n̄.

(c) There is one baryon on the left and one on the right, so x has baryon number 0. The charge
on the left adds to zero, so x is neutral. The strangeness of x must also be 0, so it must be a π0.

E52-10 There are two positive on the left, and two on the right. The anti-neutron must then be
neutral. The baryon number on the right is one, that on the left would be two, unless the anti-
neutron has a baryon number of minus one. There is no strangeness on the right or left, except
possible the anti-neutron, so it must also have strangeness zero.

E52-11 (a) Annihilation reactions are electromagnetic, and this involves ss̄.
(b) This is neither weak nor electromagnetic, so it must be strong.
(c) This is strangeness changing, so it is weak.
(d) Strangeness is conserved, so this is neither weak nor electromagnetic, so it must be strong.

E52-12 (a) K0 → e+ + νe,
(b) K0 → π+ + π0,
(c) K0 → π+ + π+ + π−,
(d) K0 → π+ + π0 + π0,

E52-13 (a) ∆̄0 → p̄ + π+.
(b) n̄→ p̄ + e+ + νe.
(c) τ+ → µ+ + νµ + ν̄τ .
(d) K− → µ− + ν̄µ.

E52-14

E52-15 From top to bottom, they are ∆∗++, ∆∗+, ∆∗0, Σ∗+, Ξ∗0, Σ∗0, ∆∗−, Σ∗−, Ξ∗−, and Ω−.

E52-16 (a) This is not possible.
(b) uuu works.

E52-17 A strangeness of +1 corresponds to the existence of an s̄ anti-quark, which has a charge
of +1/3. The only quarks that can combine with this anti-quark to form a meson will have charges of
-1/3 or +2/3. It is only possible to have a net charge of 0 or +1. The reverse is true for strangeness
-1.
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E52-18 Put bars over everything. For the anti-proton, ūūd̄Z, for the anti-neutron, ūd̄d̄.

E52-19 We’ll construct a table:

quarks Q S C particle
uc̄ 0 0 -1 D̄0

dc̄ -1 0 -1 D−

sc̄ -1 -1 -1 D−s
cc̄ 0 0 0 ηc

cū 0 0 1 D0

cd̄ 1 0 1 D+

cs̄ 1 1 1 D+
s

E52-20 (a) Write the quark content out then cancel out the parts which are the same on both
sides:

dds→ udd + dū,

so the fundamental process is
s→ u + d + ū.

(b) Write the quark content out then cancel out the parts which are the same on both sides:

ds̄→ ud̄ + dū,

so the fundamental process is
s̄→ u + d̄ + ū.

(c) Write the quark content out then cancel out the parts which are the same on both sides:

ud̄ + uud→ uus + us̄,

so the fundamental process is
d̄ + d→ s + s̄.

(d) Write the quark content out then cancel out the parts which are the same on both sides:

γ + udd→ uud + dū,

so the fundamental process is
γ → u + ū.

E52-21 The slope is
(7000 km/s)
(100 Mpc)

= 70 km/s ·Mpc.

E52-22 c = Hd, so

d = (3×105 km/s)/(72 km/s ·Mpc) = 4300 Mpc.

E52-23 The question should read “What is the...”
The speed of the galaxy is

v = Hd = (72 km/s ·Mpc)(240 Mpc) = 1.72×107m/s.

The red shift of this would then be

λ = (656.3nm)

√
1− (1.72×107m/s)2/(3×108m/s)2

1− (1.72×107m/s)/(3×108m/s)
= 695 nm.
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E52-24 We can approximate the red shift as

λ = λ0/(1− u/c),

so

u = c

(
1− λ0

λ

)
= c

(
1− (590 nm)

(602 nm)

)
= 0.02c.

The distance is
d = v/H = (0.02)(3×108m/s)/(72 km/s ·Mpc) = 83 Mpc.

E52-25 The minimum energy required to produce the pairs is through the collision of two 140
MeV photons. This corresponds to a temperature of

T = (140 MeV)/(8.62×10−5eV/K) = 1.62×1012K.

This temperature existed at a time

t =
(1.5×1010s1/2K)2

(1.62×1012K)2
= 86µs.

E52-26 (a) λ ≈ 0.002 m.
(b) f = (3×108m/s)/(0.002 m) = 1.5×1011Hz.
(c) E = (1240 eV · nm)/(2×106nm) = 6.2×10−4eV.

E52-27 (a) Use Eq. 52-3:

t =
(1.5×1010

√
sK)2

(5000 K)2
= 9×1012s.

That’s about 280,000 years.
(b) kT = (8.62×10−5eV/K)(5000 K) = 0.43 eV.
(c) The ratio is

(109)(0.43 eV)
(940×106eV)

= 0.457.

P52-1 The total energy of the pion is 135 + 80 = 215 MeV. The gamma factor of relativity is

γ = E/mc2 = (215 MeV)/(135 MeV) = 1.59,

so the velocity parameter is
β =

√
1− 1/γ2 = 0.777.

The lifetime of the pion as measured in the laboratory is

t = (8.4×10−17 s)(1.59) = 1.34×10−16s,

so the distance traveled is

d = vt = (0.777)(3.00×108m/s)(1.34×10−16s) = 31 nm.

329



P52-2 (a) E = K +mc2 and pc =
√
E2 − (mc2)2, so

pc =
√

(2200 MeV + 1777 MeV)2 − (1777 MeV)2 = 3558 MeV.

That’s the same as

p =
(3558×106eV)
(3×108m/s)

(1.6×10−19J/eV) = 1.90×10−18kg ·m/s

.
(b) qvB = mv2/r, so p/qB = r. Then

r =
(1.90×10−18kg ·m/s)
(1.6×10−19C)(1.2 T)

= 9.9 m.

P52-3 (a) Apply the results of Exercise 45-1:

E =
(1240 MeV · fm)
(2898µm ·K)T

= (4.28×10−10MeV/K)T.

(b) T = 2(0.511 MeV)/(4.28×10−10MeV/K) = 2.39×109K.

P52-4 (a) Since

λ = λ0

√
1− β2

1− β
,

we have
∆λ
λ0

=

√
1− β2

1− β
− 1,

or

z =

√
1− β2 + β − 1

1− β
.

Now invert,

z(1− β) + 1− β =
√

1− β2,

(z + 1)2(1− β)2 = 1− β2,

(z2 + 2z + 1)(1− 2β + β2) = 1− β2,

(z2 + 2z + 2)β2 − 2(z2 + 2z + 1)β + (z2 + 2z) = 0.

Solve this quadratic for β, and

β =
z2 + 2z

z2 + 2z + 2
.

(b) Using the result,

β =
(4.43)2 + 2(4.43)

(4.43)2 + 2(4.43) + 2
= 0.934.

(c) The distance is

d = v/H = (0.934)(3×108m/s)/(72 km/s ·Mpc) = 3893 Mpc.
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P52-5 (a) Using Eq. 48-19,
∆E = −kT ln

n1

n2
.

Here n1 = 0.23 while n2 = 1− 0.23, then

∆E = −(8.62×10−5eV/K)(2.7 K) ln(0.23/0.77) = 2.8×10−4eV.

(b) Apply the results of Exercise 45-1:

λ =
(1240 eV · nm)
(2.8×10−4eV)

= 4.4 mm.

P52-6 (a) Unlimited expansion means that v ≥ Hr, so we are interested in v = Hr. Then

Hr =
√

2GM/r,

H2r3 = 2G(4πr3ρ/3),
3H2/8πG = ρ.

(b) Evaluating,

3[72×103m/s · (3.084×1022m)]2

8π(6.67×10−11N ·m2/kg2)
(6.02×1023/mol)
(0.001 kg/mol)

= 5.9/m3.

P52-7 (a) The force on a particle in a spherical distribution of matter depends only on the matter
contained in a sphere of radius smaller than the distance to the center of the spherical distribution.
And then we can treat all that relevant matter as being concentrated at the center. If M is the total
mass, then

M ′ = M
r3

R3
,

is the fraction of matter contained in the sphere of radius r < R. The force on a star of mass m a
distance r from the center is

F = GmM ′/r2 = GmMr/R3.

This force is the source of the centripetal force, so the velocity is

v =
√
ar =

√
Fr/m = r

√
GM/R3.

The time required to make a revolution is then

T =
2πr
v

= 2π
√
R3/GM.

Note that this means that the system rotates as if it were a solid body!
(b) If, instead, all of the mass were concentrated at the center, then the centripetal force would

be
F = GmM/r2,

so
v =
√
ar =

√
Fr/m =

√
GM/r,

and the period would be

T =
2πr
v

= 2π
√
r3/GM.
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P52-8 We will need to integrate Eq. 45-6 from 0 to λmin, divide this by I(T ), and set it equal to
z = 0.2×10−9. Unfortunately, we need to know T to perform the integration. Writing what we do
know and then letting x = hc/λkT ,

z =
15c2h3

2π5k4T 4

∫ λm

0

2πc2h
λ5

dλ

ehc/λkT − 1
,

=
15c2h3

2π5k4T 4

2πk4T 4

h3c2

∫ xm

∞

x3 dx

ex − 1
,

=
15
π4

∫ ∞
xm

x3 dx

ex − 1
.

The result is a small number, so we expect that xm is fairly large. We can then ignore the −1 in
the denominator and then write

zπ4/15 =
∫ ∞
xm

x3e−xdx

which easily integrates to
zπ4/15 ≈ xm

3exm .

The solution is
x ≈ 30,

so

T =
(2.2×106eV)

(8.62×10−5eV/K)(30)
= 8.5×108K.
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