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Schematic Parameters

Parameter Configuration 1 Configuration 2 Configuration 3
Vv 10 10 10
n 10 1 1
K N N —
K, 100 150 100
a 100 150 100
R, 8 5 5
Ja 0.02 0.05 0.05
D, 0.01 0.01 0.01
K, 0.5 1 1
K, 0.5 1 1
N, 25 50 50
N, 250 250 250
N3 250 250 250
Jr 1 5 5
D, 1 3 3
Block Diagram Parameters
Parameter Configuration 1 Configuration 2 Configuration 3
Kot 0.318
K J—
K, 100
a 100
K, 2.083
a,, 1.71
K, 0.1

Note: reader may fill in Configuration 2 and Configuration 3 columns after completing
the antenna control Case Study challenge problems in Chapters 2 and 10, respectively.
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This book introduces students to the theory and practice of control systems engineering. The
text emphasizes the practical application of the subject to the analysis and design of
feedback systems.

The study of control systems engineering is essential for students pursuing degrees in
electrical, mechanical, aerospace, biomedical, or chemical engineering. Control systems are
found in a broad range of applications within these disciplines, from aircraft and spacecraft
to robots and process control systems.

Control Systems Engineering is suitable for upper-division college and university
engineering students and for those who wish to master the subject matter through self-study.
The student using this text should have completed typical lower-division courses in
physics and mathematics through differential equations. Other required background
material, including Laplace transforms and linear algebra, is incorporated in the text, either
within chapter discussions or separately in the appendixes or on the book's Companion
Web site. This review material can be omitted without loss of continuity if the student does not
require it.

Key Features

The key features of this seventh edition are:

« Standardized chapter organization

 Qualitative and quantitative explanations

- Examples, Skill-Assessment Exercises, and Case Studies throughout the text

o Cyber Exploration Laboratory, Hardware Interface Laboratory, and Virtual
Experiments

» Abundant illustrations

» Numerous end-of-chapter problems

» Emphasis on design

» Flexible coverage

« Emphasis on computer-aided analysis and design including MATLAB®' and
LabVIEW®?

» Icons identifying major topics

Let us look at each feature in more detail.

"'MATLAB is a registered trademark of The MathWorks, Inc.
2LabVIEW is a registered trademark of National Instruments Corporation.



Preface

Standardized Chapter Organization

Each chapter begins with a list of chapter learning outcomes, followed by a list of case study
learning outcomes that relate to specific student performance in solving a practical case
study problem, such as an antenna azimuth position control system.

Topics are then divided into clearly numbered and labeled sections containing
explanations, examples, and, where appropriate, skill-assessment exercises with answers.
These numbered sections are followed by one or more case studies, as will be outlined in a
few paragraphs. Each chapter ends with a brief summary, several review questions requiring
short answers, a set of homework problems, and experiments.

Qualitative and Quantitative Explanations

Explanations are clear and complete and, where appropriate, include a brief review of required
background material. Topics build upon and support one another in a logical fashion.
Groundwork for new concepts and terminology is carefully laid to avoid overwhelming
the student and to facilitate self-study.

Although quantitative solutions are obviously important, a qualitative or intuitive
understanding of problems and methods of solution is vital to producing the insight
required to develop sound designs. Therefore, whenever possible, new concepts are
discussed from a qualitative perspective before quantitative analysis and design are
addressed. For example, in Chapter 8 the student can simply look at the root locus and
describe qualitatively the changes in transient response that will occur as a system
parameter, such as gain, is varied. This ability is developed with the help of a few simple
equations from Chapter 4.

Examples, Skill-Assessment Exercises, and Case Studies

Explanations are clearly illustrated by means of numerous numbered and labeled Examples
throughout the text. Where appropriate, sections conclude with Skill-Assessment Exercises.
These are computation drills, most with answers that test comprehension and provide
immediate feedback. Complete solutions can be found at www.wiley.com/college/nise.

Broader examples in the form of Case Studies can be found after the last numbered
section of every chapter, with the exception of Chapter 1. These case studies are practical
application problems that demonstrate the concepts introduced in the chapter. Each case
study concludes with a “Challenge” problem that students may work in order to test their
understanding of the material.

One of the case studies, an antenna azimuth position control system, is carried
throughout the book. The purpose is to illustrate the application of new material in each
chapter to the same physical system, thus highlighting the continuity of the design process.
Another, more challenging case study, involving an Unmannered Free-Swimming
Submersible Vehicle, is developed over the course of five chapters.

Cyber Exploration Laboratory, Hardware Interface Laboratory,

and Virtual Experiments

Computer experiments using MATLAB, Simulink®? and the Control System Toolbox are
found at the end of the Problems sections under the sub-heading Cyber Exploration
Laboratory. The experiments allow the reader to verify the concepts covered in the chapter
via simulation. The reader also can change parameters and perform “what if”” exploration to
gain insight into the effect of parameter and configuration changes. The experiments are
written with stated Objectives, Minimum Required Software Packages, as well as Prelab,
Lab, and Postlab tasks and questions. Thus, the experiments may be used for a laboratory
course that accompanies the class. Cover sheets for these experiments are available at
www.wiley.com.college/nise.

3 Simulink is a registered trademark of The MathWorks, Inc.
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Subsequent to the Cyber Exploration Laboratory experiments, and new to this seventh
edition, are Hardware Interface Laboratory experiments in some chapters. These experiments
use National Instruments’ myDAQ to interface your computer to actual hardware to test
control system principles in the real world.

Finally, in this seventh edition are Virtual Experiments. These experiments are more
tightly focused than the Cyber Exploration Laboratory experiments as they let students interact
with virtual models of actual teaching lab equipment produced by Quanser. These experiments
will help students gain a more intuitive understanding of the physical implications of important
control concepts. The experiments are referenced in sidebars throughout some chapters.

Abundant lllustrations

The ability to visualize concepts and processes is critical to the student's understanding. For
this reason, approximately 800 photos, diagrams, graphs, and tables appear throughout the
book to illustrate the topics under discussion.

Numerous End-of-Chapter Problems

Each chapter ends with a variety of homework problems that allow students to test their
understanding of the material presented in the chapter. Problems vary in degree of difficulty and
complexity, and most chapters include several practical, real-life problems to help maintain
students’ motivation. Also, the homework problems contain progressive analysis and design
problems that use the same practical systems to demonstrate the concepts of each chapter.

Emphasis on Design

This textbook places a heavy emphasis on design. Chapters 8, 9, 11, 12, and 13 focus
primarily on design. But. even in chapters that emphasize analysis, simple design examples
are included wherever possible.

Throughout the book, design examples involving physical systems are identified
by the icon shown in the margin. End-of-chapter problems that involve the design of
physical systems are included under the separate heading Design Problems. Design
Problems also can be found in chapters covering design, under the heading Progressive
Analysis and Design Problems. In these examples and problems, a desired response is
specified, and the student must evaluate certain system parameters, such as gain, or
specify a system configuration along with parameter values. In addition, the text includes
numerous design examples and problems (not identified by an icon) that involve purely
mathematical systems.

Because visualization is so vital to understanding design, this text carefully relates
indirect design specifications to more familiar ones. For example, the less familiar and
indirect phase margin is carefully related to the more direct and familiar percent overshoot
before being used as a design specification.

For each general type of design problem introduced in the text, a methodology for
solving the problem is presented—in many cases in the form of a step-by-step procedure,
beginning with a statement of design objectives. Example problems serve to demonstrate the
methodology by following the procedure, making simplifying assumptions, and presenting
the results of the design in tables or plots that compare the performance of the original system
to that of the improved system. This comparison also serves as a check on the simplifying
assumptions.

Transient response design topics are covered comprehensively in the text. They
include:

» Design via gain adjustment using the root locus

» Design of compensation and controllers via the root locus

» Design via gain adjustment using sinusoidal frequency response methods
» Design of compensation via sinusoidal frequency response methods

» Design of controllers in state space using pole-placement techniques

Design
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State Space
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» Design of observers in state-space using pole-placement techniques

» Design of digital control systems via gain adjustment on the root locus

» Design of digital control system compensation via s-plane design and the Tustin
transformation

Steady-state error design is covered comprehensively in this textbook and includes:

» Gain adjustment

» Design of compensation via the root locus

» Design of compensation via sinusoidal frequency response methods
» Design of integral control in state space

Finally, the design of gain to yield stability is covered from the following
perspectives:

» Routh-Hurwitz criterion
» Root locus

» Nyquist criterion

» Bode plots

Flexible Coverage

The material in this book can be adapted for a one-quarter or a one-semester course. The
organization is flexible, allowing the instructor to select the material that best suits the
requirements and time constraints of the class.

Throughout the book, state-space methods are presented along with the classical
approach. Chapters and sections (as well as examples, exercises, review questions, and
problems) that cover state space are marked by the icon shown in the margin and can be
omitted without any loss of continuity. Those wishing to add a basic introduction to state-space
modeling can include Chapter 3 in the syllabus.

In a one-semester course, the discussions of state-space analysis in Chapters 4, 5, 6 and
7,as well as state-space design in Chapter 12, can be covered along with the classical approach.
Another option is to teach state space separately by gathering the appropriate chapters and
sections marked with the State Space icon into a single unit that follows the classical
approach. In a one-quarter course, Chapter 13, Digital Control Systems, could be eliminated.

Emphasis on Computer-Aided Analysis and Design

Control systems problems, particularly analysis and design problems using the root locus,
can be tedious, since their solution involves trial and error. To solve these problems,
students should be given access to computers or programmable calculators configured with
appropriate software. In this seventh edition, MATLAB and LabVIEW continue to be
integrated into the text as an optional feature.

Many problems in this text can be solved with either a computer or a hand-held
programmable calculator. For example, students can use the programmable calculator to
(1) determine whether a point on the s-plane is also on the root locus, (2) find magnitude and
phase frequency response data for Nyquist and Bode diagrams, and (3) convert between the
following representations of a second-order system:

» Pole location in polar coordinates

» Pole location in Cartesian coordinates
 Characteristic polynomial

» Natural frequency and damping ratio
« Settling time and percent overshoot

» Peak time and percent overshoot

« Settling time and peak time

Handheld calculators have the advantage of easy accessibility for homework and exams.
Please consult Appendix H, located at www.wiley.com/college/nise, for a discussion of
computational aids that can be adapted to handheld calculators.
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Personal computers are better suited for more computation-intensive applications,
such as plotting time responses, root loci, and frequency response curves, as well as
finding state-transition matrices. These computers also give the student a real-world
environment in which to analyze and design control systems. Those not using MATLAB
or LabVIEW can write their own programs or use other programs, such as Program CC.
Please consult Appendix H at www.wiley.com/college/nise for a discussion of computa-
tional aids that can be adapted for use on computers that do not have MATLAB or
LabVIEW installed.

Without access to computers or programmable calculators, students cannot obtain
meaningful analysis and design results and the learning experience will be limited.

Icons Identifying Major Topics
Several icons identify coverage and optional material. The icons are summarized as follows:

The MATLAB icon identifies MATLAB discussions, examples, exercises, and
problems. MATLAB coverage is provided as an enhancement and is not required to
use the text.

The Simulink icon identifies Simulink discussions, examples, exercises, and problems.
Simulink coverage is provided as an enhancement and is not required to use the text.

The GUI Tool icon identifies MATLAB GUI Tools discussions, examples, exercises,
and problems. The discussion of the tools, which includes the LTI Viewer, the Simulink LTI
Viewer, and the SISO Design Tool, is provided as an enhancement and is not required to use
the text.

The Symbolic Math icon identifies Symbolic Math Toolbox discussions, examples,
exercises, and problems. Symbolic Math Toolbox coverage is provided as an enhancement
and is not required to use the text.

The LabVIEW icon identifies LabVIEW discussions, examples, exercises,
and problems. LabVIEW is provided as an enhancement and is not required to use the text.

The State Space icon highlights state-space discussions, examples, exercises, and
problems. State-space material is optional and can be omitted without loss of continuity.

The Design icon clearly identifies design problems involving physical systems.

New to This Edition

xiii

MATLAB

Simulink

GUI Tool

Symbolic Math

LabVIEW

State Space

Design

The following list describes the key changes in this seventh edition:

End-of-chapter problems

More than 20% of the end-of-chapter problems are either new or revised. Also, an additional
Progressive Analysis and Design Problem has been added at the end of the chapter
problems. The new progressive problem analyzes and designs a solar energy parabolic
trough collector.

MATLAB

The use of MATLAB for computer-aided analysis and design continues to be integrated into
discussions and problems as an optional feature in the seventh edition. The MATLAB
tutorial has been updated to MATLAB Version 8.3 (R2014a), the Control System Toolbox
Version 9.7, and the Symbolic Math Toolbox Version 6.0

In addition, MATLAB code continues to be incorporated in the chapters in the form of
sidebar boxes entitled Trylt.

Simulink

The use of Simulink to show the effects of nonlinearities upon the time response of open-
loop and closed-loop systems appears again in this seventh edition. We also continue to use
Simulink to demonstrate how to simulate digital systems. Finally, the Simulink tutorial has
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been updated to Simulink 8.3 and a new section has been added: Using Simulink for
Control System Design.

LabVIEW

LabVIEW continues to be integrated in problems and experiments. LabVIEW has been
updated to LabVIEW 2013.

Hardware Interface Laboratory

New to this edition are experiments that use National Instruments’ myDAQ to control an
actual motor. A tutorial to familiarize the reader with myDAQ is added to Appendix D
LabVIEW Tutorial.

Book Companion Site (BCS) at www.wiley.com/college/nise

The BCS for the seventh edition includes various student and instructor resources. This free
resource can be accessed by going to www.wiley.com/college/nise and clicking on Student
Companion Site. Professors also access their password-protected resources on the Instructor
Companion Site available through this url. Instructors should contact their Wiley sales
representative for access.

For the Student:

« All M-files used in the MATLAB, Simulink, GUI Tools, and Symbolic Math Toolbox
tutorials, as well as the Trylt exercises

» Copies of the Cyber Exploration Laboratory experiments for use as experiment

cover sheets

Solutions to the Skill-Assessment Exercises in the text

LabVIEW Virtual Experiments

LabVIEW VIs used in Appendix D

All files required to perform Hardware Interface Laboratory experiments using

National Instruments myDAQ

For the Instructor;

« PowerPoint®* files containing the figures from the textbook
» Solutions to end-of-chapter problem sets
- Simulations, developed by JustAsk, for inclusion in lecture presentations

Book Organization by Chapter

Many times it is helpful lo understand an author's reasoning behind the organization of the
course material. The following paragraphs hopefully shed light on this topic.

The primary goal of Chapter 1 is to motivate students. In this chapter, students learn
about the many applications of control systems in everyday life and about the advantages of
study and a career in this field. Control systems engineering design objectives, such as
transient response, steady-state error, and stability, are introduced, as is the path to obtaining
these objectives. New and unfamiliar terms also are included in the Glossary.

Many students have trouble with an early step in the analysis and design sequence:
transforming a physical system into a schematic. This step requires many simplifying
assumptions based on experience the typical college student does not yet possess.
Identifying some of these assumptions in Chapter 1 helps to fill the experience gap.

Chapters 2, 3, and 5 address the representation of physical systems. Chapters 2 and 3
cover modeling of open-loop systems, using frequency response techniques and state-space
techniques, respectively. Chapter 5 discusses the representation and reduction of systems
formed of interconnected open-loop subsystems. Only a representative sample of physical

“PowerPoint is a registered trademark of Microsoft Corporation.
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systems can be covered in a textbook of this length. Electrical, mechanical (both translational
and rotational), and electromechanical systems are used as examples of physical systems
that are modeled, analyzed, and designed. Linearization of a nonlinear system—one technique
used by the engineer to simplify a system in order to represent it mathematically—is also
introduced.

Chapter 4 provides an introduction to system analysis, that is, finding and describing the
output response of a system. [t may seem more logical to reverse the order of Chapters 4 and 5,
to present the material in Chapter 4 along with other chapters covering analysis. However,
many years of teaching control systems have taught me that the sooner students see an
application of the study of system representation, the higher their motivation levels remain.

Chapters 6, 7, 8, and 9 return to control systems analysis and design with the study of
stability (Chapter 6), steady-state errors (Chapter 7), and transient response of higher-order
systems using root locus techniques (Chapter 8). Chapter 9 covers design of compensators
and controllers using the root locus.

Chapters 10 and 11 focus on sinusoidal frequency analysis and design. Chapter 10,
like Chapter 8, covers basic concepts for stability, transient response, and steady-state-error
analysis. However, Nyquist and Bode methods are used in place of root locus. Chapter 11,
like Chapter 9, covers the design of compensators, but from the point of view of sinusoidal
frequency techniques rather than root locus.

An introduction to state-space design and digital control systems analysis and design
completes the text in Chapters 12 and 13, respectively. Although these chapters can be used as
an introduction for students who will be continuing their study of control systems engineering,
they are useful by themselves and as a supplement to the discussion of analysis and design in
the previous chapters. The subject matter cannot be given a comprehensive treatment in two
chapters, but the emphasis is clearly outlined and logically linked to the rest of the book.
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Introduction

Chapter Learning Outcomes

After completing this chapter, the student will be able to:

Define a control system and describe some applications (Section 1.1)

Describe historical developments leading to modern day control theory (Section 1.2)
Describe the basic features and configurations of control systems (Section 1.3)
Describe control systems analysis and design objectives (Section 1.4)

Describe a control system’s design process (Sections 1.5-1.6)

Describe the benefit from studying control systems (Section 1.7)

Case Study Learning Outcomes

® You will be introduced to a running case study—an antenna azimuth position
control system—that will serve to illustrate the principles in each subsequent
chapter. In this chapter, the system is used to demonstrate qualitatively how a
control system works as well as to define performance criteria that are the basis
for control systems analysis and design.
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Control systems are an integral part of modern society. Numerous applications are all
around us: The rockets fire, and the space shuttle lifts off to earth orbit; in splashing cooling
water, a metallic part is automatically machined; a self-guided vehicle delivering material to
workstations in an aerospace assembly plant glides along the floor seeking its destination.
These are just a few examples of the automatically controlled systems that we can create.

We are not the only creators of automatically controlled systems; these systems also
exist in nature. Within our own bodies are numerous control systems, such as the pancreas,
which regulates our blood sugar. In time of “fight or flight,” our adrenaline increases along
with our heart rate, causing more oxygen to be delivered to our cells. Our eyes follow a
moving object to keep it in view; our hands grasp the object and place it precisely at a
predetermined location.

Even the nonphysical world appears to be automatically regulated. Models have been
suggested showing automatic control of student performance. The input to the model is the
student’s available study time, and the output is the grade. The model can be used to predict
the time required for the grade to rise if a sudden increase in study time is available. Using
this model, you can determine whether increased study is worth the effort during the last
week of the term.

Control System Definition

A control system consists of subsystems and processes (or plants) assembled
for the purpose of obtaining a desired output with desired performance, given
a specified input. Figure 1.1 shows a control system in its simplest form,
where the input represents a desired output.

For example, consider an elevator. When the fourth-floor button is pressed
on the first floor, the elevator rises to the fourth floor with a speed and floor-
leveling accuracy designed for passenger comfort. The push of the fourth-floor
button is an input that represents our desired output, shown as a step function in Figure 1.2. The
performance of the elevator can be seen from the elevator response curve in the figure.

Two major measures of performance are apparent: (1) the transient response and
(2) the steady-state error. In our example, passenger comfort and passenger patience are
dependent upon the transient response. If this response is too fast, passenger comfort is
sacrificed; if too slow, passenger patience is sacrificed. The steady-state error is another
important performance specification since passenger safety and convenience would be
sacrificed if the elevator did not level properly.

Advantages of Control Systems

With control systems we can move large equipment with precision that would otherwise
be impossible. We can point huge antennas toward the farthest reaches of the universe to
pick up faint radio signals; controlling these antennas by hand would be impossible.
Because of control systems, elevators carry us quickly to our destination, automatically
stopping at the right floor (Figure 1.3). We alone could not provide the power required for

A
Input command ‘

Transient
response

Steady-state Steady-state
response error

Elevator response

Elevator location (floor)

Time
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the load and the speed; motors provide the power, and control systems regulate the

position and speed.
We build control systems for four primary reasons:

1. Power amplification
2. Remote control
3. Convenience of input form

4. Compensation for disturbances

For example, a radar antenna, positioned by the low-power rotation of
a knob at the input, requires a large amount of power for its output
rotation. A control system can produce the needed power amplification, or
power gain.

Robots designed by control system principles can compensate for
human disabilities. Control systems are also useful in remote or dangerous
locations. For example, a remote-controlled robot arm can be used to pick
up material in a radioactive environment. Figure 1.4 shows a robot arm
designed to work in contaminated environments.

Control systems can also be used to provide convenience by changing
the form of the input. For example, in a temperature control system, the
input is a position on a thermostat. The output is heat. Thus, a convenient
position input yields a desired thermal output.

Another advantage of a control system is the ability to compensate for
disturbances. Typically, we control such variables as temperature in thermal
systems, position and velocity in mechanical systems, and voltage, current,
or frequency in electrical systems. The system must be able to yield the
correct output even with a disturbance. For example, consider an antenna
system that points in a commanded direction. If wind forces the antenna
from its commanded position, or if noise enters internally, the system must
be able to detect the disturbance and correct the antenna’s position.

FIGURE 1.3 a. Early
elevators were controlled by
hand ropes or an elevator
operator. Here a rope is cut to
demonstrate the safety brake, an
innovation in early elevators;
b. One of two modern Duo-lift
elevators makes its way up the
Grande Arche in Paris. Two
elevators are driven by one
motor, with each car acting as a
counterbalance to the other.
Today, elevators are fully
automatic, using control
systems to regulate position and
velocity.

Hank Mogan/Science Source

FIGURE 1.4 Rover was built to work in
contaminated areas at Three Mile Island in
Middleton, Pennsylvania, where a nuclear accident
occurred in 1979. The remote-controlled robot’s
long arm can be seen at the front of the vehicle.
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Obviously, the system’s input will not change to make the correction. Consequently, the
system itself must measure the amount that the disturbance has repositioned the antenna and
then return the antenna to the position commanded by the input.

1.2 A History of Control Systems

Feedback control systems are older than humanity. Numerous biological control systems
were built into the earliest inhabitants of our planet. Let us now look at a brief history of
human-designed control systems."

Liquid-Level Control

The Greeks began engineering feedback systems around 300 B.c. A water clock
invented by Ktesibios operated by having water trickle into a measuring container at
a constant rate. The level of water in the measuring container could be used to tell time.
For water to trickle at a constant rate, the supply tank had to be kept at a constant level.
This was accomplished using a float valve similar to the water-level control in today’s
flush toilets.

Soon after Ktesibios, the idea of liquid-level control was applied to an oil lamp by
Philon of Byzantium. The lamp consisted of two oil containers configured vertically. The
lower pan was open at the top and was the fuel supply for the flame. The closed upper bowl
was the fuel reservoir for the pan below. The containers were interconnected by two
capillary tubes and another tube, called a vertical riser, which was inserted into the oil in the
lower pan just below the surface. As the oil burned, the base of the vertical riser was exposed
to air, which forced oil in the reservoir above to flow through the capillary tubes and into the
pan. The transfer of fuel from the upper reservoir to the pan stopped when the previous oil
level in the pan was reestablished, thus blocking the air from entering the vertical riser.
Hence, the system kept the liquid level in the lower container constant.

Steam Pressure and Temperature Controls
Regulation of steam pressure began around 1681 with Denis Papin’s invention of the safety
valve. The concept was further elaborated on by weighting the valve top. If the upward
pressure from the boiler exceeded the weight, steam was released, and the pressure
decreased. If it did not exceed the weight, the valve did not open, and the pressure inside
the boiler increased. Thus, the weight on the valve top set the internal pressure of the boiler.
Also in the seventeenth century, Cornelis Drebbel in Holland invented a purely
mechanical temperature control system for hatching eggs. The device used a vial of alcohol
and mercury with a floater inserted in it. The floater was connected to a damper that
controlled a flame. A portion of the vial was inserted into the incubator to sense the heat
generated by the fire. As the heat increased, the alcohol and mercury expanded, raising the
floater, closing the damper, and reducing the flame. Lower temperature caused the float to
descend, opening the damper and increasing the flame.

Speed Control

In 1745, speed control was applied to a windmill by Edmund Lee. Increasing winds pitched
the blades farther back, so that less area was available. As the wind decreased, more blade
area was available. William Cubitt improved on the idea in 1809 by dividing the windmill
sail into movable louvers.

Also in the eighteenth century, James Watt invented the flyball speed governor to
control the speed of steam engines. In this device, two spinning flyballs rise as rotational
speed increases. A steam valve connected to the flyball mechanism closes with the
ascending flyballs and opens with the descending flyballs, thus regulating the speed.

!'See (Bennett, 1979) and (Mayr, 1970) for definitive works on the history of control systems.
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Stability, Stabilization, and Steering

Control systems theory as we know it today began to crystallize in the latter half of the
nineteenth century. In 1868, James Clerk Maxwell published the stability criterion for a
third-order system based on the coefficients of the differential equation. In 1874, Edward
John Routh, using a suggestion from William Kingdon Clifford that was ignored earlier by
Maxwell, was able to extend the stability criterion to fifth-order systems. In 1877, the topic
for the Adams Prize was “The Criterion of Dynamical Stability.” In response, Routh
submitted a paper entitled A Treatise on the Stability of a Given State of Motion and won the
prize. This paper contains what is now known as the Routh-Hurwitz criterion for stability,
which we will study in Chapter 6. Alexandr Michailovich Lyapunov also contributed to the
development and formulation of today’s theories and practice of control system stability. A
student of P. L. Chebyshev at the University of St. Petersburg in Russia, Lyapunov extended
the work of Routh to nonlinear systems in his 1892 doctoral thesis, entitled The General
Problem of Stability of Motion.

During the second half of the 1800s, the development of control systems focused on
the steering and stabilizing of ships. In 1874, Henry Bessemer, using a gyro to sense a ship’s
motion and applying power generated by the ship’s hydraulic system, moved the ship’s
saloon to keep it stable (whether this made a difference to the patrons is doubtful). Other
efforts were made to stabilize platforms for guns as well as to stabilize entire ships, using
pendulums to sense the motion.

Twentieth-Century Developments

It was not until the early 1900s that automatic steering of ships was achieved. In 1922, the
Sperry Gyroscope Company installed an automatic steering system that used the
elements of compensation and adaptive control to improve performance. However,
much of the general theory used today to improve the performance of automatic control
systems is attributed to Nicholas Minorsky, a Russian born in 1885. It was his theoretical
development applied to the automatic steering of ships that led to what we call today
proportional-plus-integral-plus-derivative (PID), or three-mode, controllers, which we
will study in Chapters 9 and 11.

In the late 1920s and early 1930s, H. W. Bode and H. Nyquist at Bell Telephone
Laboratories developed the analysis of feedback amplifiers. These contributions evolved
into sinusoidal frequency analysis and design techniques currently used for feedback control
system, and are presented in Chapters 10 and 11.

In 1948, Walter R. Evans, working in the aircraft industry, developed a graphical
technique to plot the roots of a characteristic equation of a feedback system whose parameters
changed over a particular range of values. This technique, now known as the root locus, takes
its place with the work of Bode and Nyquist in forming the foundation of linear control systems
analysis and design theory. We will study root locus in Chapters 8, 9, and 13.

Contemporary Applications
Today, control systems find widespread application in the guidance, navigation, and control
of missiles and spacecraft, as well as planes and ships at sea. For example, modern ships use
a combination of electrical, mechanical, and hydraulic components to develop rudder
commands in response to desired heading commands. The rudder commands, in turn, result
in a rudder angle that steers the ship.

We find control systems throughout the process control industry, regulating liquid
levels in tanks, chemical concentrations in vats, as well as the thickness of fabricated
material. For example, consider a thickness control system for a steel plate finishing mill.
Steel enters the finishing mill and passes through rollers. In the finishing mill, X-rays
measure the actual thickness and compare it to the desired thickness. Any difference is
adjusted by a screw-down position control that changes the roll gap at the rollers through
which the steel passes. This change in roll gap regulates the thickness.
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Modern developments have seen widespread use of the digital computer as part of
control systems. For example, computers in control systems are for industrial robots,
spacecraft, and the process control industry. It is hard to visualize a modern control system
that does not use a digital computer.

Although recently retired, the space shuttle provides an excellent example of the use
of control systems because it contained numerous control systems operated by an onboard
computer on a time-shared basis. Without control systems, it would be impossible to guide
the shuttle to and from earth’s orbit or to adjust the orbit itself and support life on board.
Navigation functions programmed into the shuttle’s computers used data from the shuttle’s
hardware to estimate vehicle position and velocity. This information was fed to the guidance
equations that calculated commands for the shuttle’s flight control systems, which steered
the spacecraft. In space, the flight control system gimbaled (rotated) the orbital maneuvering
system (OMS) engines into a position that provided thrust in the commanded direction to
steer the spacecraft. Within the earth’s atmosphere, the shuttle was steered by commands
sent from the flight control system to the aerosurfaces, such as the elevons.

Within this large control system represented by navigation, guidance, and control were
numerous subsystems to control the vehicle’s functions. For example, the elevons required a
control system to ensure that their position was indeed that which was commanded, since
disturbances such as wind could rotate the elevons away from the commanded position.
Similarly, in space, the gimbaling of the orbital maneuvering engines required a similar control
system to ensure that the rotating engine can accomplish its function with speed and accuracy.
Control systems were also used to control and stabilize the vehicle during its descent from
orbit. Numerous small jets that compose the reaction control system (RCS) were used initially
in the exoatmosphere, where the aerosurfaces are ineffective. Control was passed to the
aerosurfaces as the orbiter descended into the atmosphere.

Inside the shuttle, numerous control systems were required for power and life support.
For example, the orbiter had three fuel-cell power plants that converted hydrogen and
oxygen (reactants) into electricity and water for use by the crew. The fuel cells involved the
use of control systems to regulate temperature and pressure. The reactant tanks were kept at
constant pressure as the quantity of reactant diminishes. Sensors in the tanks sent signals to
the control systems to turn heaters on or off to keep the tank pressure constant (Rockwell
International, 1984).

Control systems are not limited to science and industry. For example, a home heating
system is a simple control system consisting of a thermostat containing a bimetallic material
that expands or contracts with changing temperature. This expansion or contraction moves a
vial of mercury that acts as a switch, turning the heater on or off. The amount of expansion or
contraction required to move the mercury switch is determined by the temperature setting.

Home entertainment systems also have built-in control systems. For example, in an
optical disk recording system microscopic pits representing the information are burned into
the disc by a laser during the recording process. During playback, a reflected laser beam
focused on the pits changes intensity. The light intensity changes are converted to an
electrical signal and processed as sound or picture. A control system keeps the laser beam
positioned on the pits, which are cut as concentric circles.

There are countless other examples of control systems, from the everyday to the
extraordinary. As you begin your study of control systems engineering, you will become
more aware of the wide variety of applications.

1.3 System Configurations

In this section, we discuss two major configurations of control systems: open loop and
closed loop. We can consider these configurations to be the internal architecture of the total
system shown in Figure 1.1. Finally, we show how a digital computer forms part of a control
system’s configuration.
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Open-Loop Systems
A generic open-loop system is shown in Figure 1.5(a). It starts with a subsystem called an
input transducer, which converts the form of the input to that used by the controller. The
controller drives a process or a plant. The input is sometimes called the reference, while the
output can be called the controlled variable. Other signals, such as disturbances, are shown
added to the controller and process outputs via summing junctions, which yield the algebraic
sum of their input signals using associated signs. For example, the plant can be a furnace or
air conditioning system, where the output variable is temperature. The controller in a heating
system consists of fuel valves and the electrical system that operates the valves.

The distinguishing characteristic of an open-loop system is that it cannot compensate for
any disturbances that add to the controller’s driving signal (Disturbance 1 in Figure 1.5(a)).
For example, if the controller is an electronic amplifier and Disturbance 1 is noise, then any
additive amplifier noise at the first summing junction will also drive the process, corrupting the
output with the effect of the noise. The output of an open-loop system is corrupted not only by
signals that add to the controller’s commands but also by disturbances at the output
(Disturbance 2 in Figure 1.5(a)). The system cannot correct for these disturbances, either.

Open-loop systems, then, do not correct for disturbances and are simply commanded by
the input. For example, toasters are open-loop systems, as anyone with burnt toast can attest.
The controlled variable (output) of a toaster is the color of the toast. The device is designed
with the assumption that the toast will be darker the longer it is subjected to heat. The toaster
does not measure the color of the toast; it does not correct for the fact that the toast is rye, white,
or sourdough, nor does it correct for the fact that toast comes in different thicknesses.

Other examples of open-loop systems are mechanical systems consisting of a mass,
spring, and damper with a constant force positioning the mass. The greater the force, the
greater the displacement. Again, the system position will change with a disturbance, such as
an additional force, and the system will not detect or correct for the disturbance. Or, assume
that you calculate the amount of time you need to study for an examination that covers three
chapters in order to get an A. If the professor adds a fourth chapter—a disturbance—you are
an open-loop system if you do not detect the disturbance and add study time to that
previously calculated. The result of this oversight would be a lower grade than you
expected.

FIGURE 1.5 Block diagrams
of control systems: a. open-loop
system; b. closed-loop system
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Closed-Loop (Feedback Control) Systems

The disadvantages of open-loop systems, namely sensitivity to disturbances and inability to
correct for these disturbances, may be overcome in closed-loop systems. The generic
architecture of a closed-loop system is shown in Figure 1.5(b).

The input transducer converts the form of the input to the form used by the
controller. An output transducer, or sensor, measures the output response and converts it
into the form used by the controller. For example, if the controller uses electrical signals
to operate the valves of a temperature control system, the input position and the output
temperature are converted to electrical signals. The input position can be converted to a
voltage by a potentiometer, a variable resistor, and the output temperature can be
converted to a voltage by a thermistor, a device whose electrical resistance changes with
temperature.

The first summing junction algebraically adds the signal from the input to the signal
from the output, which arrives via the feedback path, the return path from the output to the
summing junction. In Figure 1.5(b), the output signal is subtracted from the input signal.
The result is generally called the actuating signal. However, in systems where both the input
and output transducers have unity gain (that is, the transducer amplifies its input by 1), the
actuating signal’s value is equal to the actual difference between the input and the output.
Under this condition, the actuating signal is called the error.

The closed-loop system compensates for disturbances by measuring the output
response, feeding that measurement back through a feedback path, and comparing that
response to the input at the summing junction. If there is any difference between the two
responses, the system drives the plant, via the actuating signal, to make a correction. If there
is no difference, the system does not drive the plant, since the plant’s response is already the
desired response.

Closed-loop systems, then, have the obvious advantage of greater accuracy than
open-loop systems. They are less sensitive to noise, disturbances, and changes in the
environment. Transient response and steady-state error can be controlled more conveniently
and with greater flexibility in closed-loop systems, often by a simple adjustment of gain
(amplification) in the loop and sometimes by redesigning the controller. We refer to the
redesign as compensating the system and to the resulting hardware as a compensator. On the
other hand, closed-loop systems are more complex and expensive than open-loop systems. A
standard, open-loop toaster serves as an example: It is simple and inexpensive. A closed-loop
toaster oven is more complex and more expensive since it has to measure both color (through
light reflectivity) and humidity inside the toaster oven. Thus, the control systems engineer
must consider the trade-off between the simplicity and low cost of an open-loop system and the
accuracy and higher cost of a closed-loop system.

In summary, systems that perform the previously described measurement and
correction are called closed-loop, or feedback control, systems. Systems that do not
have this property of measurement and correction are called open-loop systems.

Computer-Controlled Systems

In many modern systems, the controller (or compensator) is a digital computer. The
advantage of using a computer is that many loops can be controlled or compensated by the
same computer through time sharing. Furthermore, any adjustments of the compensator
parameters required to yield a desired response can be made by changes in software rather
than hardware. The computer can also perform supervisory functions, such as scheduling
many required applications. For example, the space shuttle main engine (SSME) controller,
which contained two digital computers, alone controlled numerous engine functions. It
monitored engine sensors that provided pressures, temperatures, flow rates, turbopump
speed, valve positions, and engine servo valve actuator positions. The controller further
provided closed-loop control of thrust and propellant mixture ratio, sensor excitation, valve
actuators, spark igniters, as well as other functions (Rockwell International, 1984).
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1.4 Analysis and Designh Objectives

In Section 1.1 we briefly alluded to some control system performance specifications, such as
transient response and steady-state error. We now expand upon the topic of performance and
place it in perspective as we define our analysis and design objectives.

Analysis is the process by which a system’s performance is determined. For example,
we evaluate its transient response and steady-state error to determine if they meet the desired
specifications. Design is the process by which a system’s performance is created or changed.
For example, if a system’s transient response and steady-state error are analyzed and found
not to meet the specifications, then we change parameters or add additional components to
meet the specifications.

A control system is dynamic: It responds to an input by undergoing a transient
response before reaching a steady-state response that generally resembles the input. We
have already identified these two responses and cited a position control system (an elevator)
as an example. In this section, we discuss three major objectives of systems analysis and
design: producing the desired transient response, reducing steady-state error, and achieving
stability. We also address some other design concerns, such as cost and the sensitivity of
system performance to changes in parameters.

Transient Response
Transient response is important. In the case of an elevator, a slow transient response makes
passengers impatient, whereas an excessively rapid response makes them uncomfortable.
If the elevator oscillates about the arrival floor for
more than a second, a disconcerting feeling can result. ~
Transient response is also important for structural
reasons: Too fast a transient response could cause
permanent physical damage. In a computer, transient
response contributes to the time required to read from or
write to the computer’s disk storage (see Figure 1.6).
Since reading and writing cannot take place until the
head stops, the speed of the read/write head’s movement
from one track on the disk to another influences the
overall speed of the computer.

In this book, we establish quantitative definitions
for transient response. We then analyze the system for its
existing transient response. Finally, we adjust parame-

ters or design components to yield a desired transient FIGURE 1.6 Computer hard disk drive, showing disks and
response—our first analysis and design objective. read/write head

Steady-State Response

Another analysis and design goal focuses on the steady-state response. As we have seen,
this response resembles the input and is usually what remains after the transients have
decayed to zero. For example, this response may be an elevator stopped near the fourth
floor or the head of a disk drive finally stopped at the correct track. We are concerned
about the accuracy of the steady-state response. An elevator must be level enough with
the floor for the passengers to exit, and a read/write head not positioned over the
commanded track results in computer errors. An antenna tracking a satellite must
keep the satellite well within its beamwidth in order not to lose track. In this text we
define steady-state errors quantitatively, analyze a system’s steady-state error, and then
design corrective action to reduce the steady-state error—our second analysis and
design objective.

Donald Swartz/iStockphoto
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Stability

Discussion of transient response and steady-state error is moot if the system does not have
stability. In order to explain stability, we start from the fact that the total response of a system
is the sum of the natural response and the forced response. When you studied linear
differential equations, you probably referred to these responses as the homogeneous and the
particular solutions, respectively. Natural response describes the way the system dissipates
or acquires energy. The form or nature of this response is dependent only on the system, not
the input. On the other hand, the form or nature of the forced response is dependent on the
input. Thus, for a linear system, we can write

Total response = Natural response + Forced response (1 .1)2

For a control system to be useful, the natural response must (1) eventually approach
zero, thus leaving only the forced response, or (2) oscillate. In some systems, however, the
natural response grows without bound rather than diminish to zero or oscillate. Eventually,
the natural response is so much greater than the forced response that the system is no longer
controlled. This condition, called instability, could lead to self-destruction of the physical
device if limit stops are not part of the design. For example, the elevator would crash through
the floor or exit through the ceiling; an aircraft would go into an uncontrollable roll; or an
antenna commanded to point to a target would rotate, line up with the target, but then begin
to oscillate about the target with growing oscillations and increasing velocity until the motor
or amplifiers reached their output limits or until the antenna was damaged structurally. A
time plot of an unstable system would show a transient response that grows without bound
and without any evidence of a steady-state response.

Control systems must be designed to be stable. That is, their natural response must
decay to zero as time approaches infinity, or oscillate. In many systems the transient
response you see on a time response plot can be directly related to the natural response.
Thus, if the natural response decays to zero as time approaches infinity, the transient
response will also die out, leaving only the forced response. If the system is stable, the
proper transient response and steady-state error characteristics can be designed. Stability is
our third analysis and design objective.

Other Considerations
The three main objectives of control system analysis and design have already been
enumerated. However, other important considerations must be taken into account. For
example, factors affecting hardware selection, such as motor sizing to fulfill power
requirements and choice of sensors for accuracy, must be considered early in the design.
Finances are another consideration. Control system designers cannot create designs
without considering their economic impact. Such considerations as budget allocations and
competitive pricing must guide the engineer. For example, if your product is one of a
kind, you may be able to create a design that uses more expensive components without
appreciably increasing total cost. However, if your design will be used for many copies,
slight increases in cost per copy can translate into many more dollars for your company to
propose during contract bidding and to outlay before sales.

2 Y ou may be confused by the words transient vs. natural, and steady-state vs. forced. If you look at Figure 1.2, you
can see the transient and steady-state portions of the total response as indicated. The transient response is the sum of
the natural and forced responses, while the natural response is large. If we plotted the natural response by itself, we
would get a curve that is different from the transient portion of Figure 1.2. The steady-state response of Figure 1.2
is also the sum of the natural and forced responses, but the natural response is small. Thus, the transient and
steady-state responses are what you actually see on the plot; the natural and forced responses are the underlying
mathematical components of those responses.
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Another consideration is robust design. System parameters considered constant
during the design for transient response, steady-state errors, and stability change over
time when the actual system is built. Thus, the performance of the system also changes
over time and will not be consistent with your design. Unfortunately, the relationship
between parameter changes and their effect on performance is not linear. In some cases,
even in the same system, changes in parameter values can lead to small or large changes
in performance, depending on the system’s nominal operating point and the type of
design used. Thus, the engineer wants to create a robust design so that the system will not
be sensitive to parameter changes. We discuss the concept of system sensitivity to
parameter changes in Chapters 7 and 8. This concept, then, can be used to test a design for
robustness.

Introduction to a Case Study
Now that our objectives are stated, how do we meet them? In this section we will look at an
example of a feedback control system. The system introduced here will be used in
subsequent chapters as a running case study to demonstrate the objectives of those
chapters. A colored background like this will identify the case study section at the end of
each chapter. Section 1.5, which follows this first case study, explores the design process
that will help us build our system.

Antenna Azimuth: An Introduction to Position Control Systems

A position control system converts a position input command to a position output
response. Position control systems find widespread applications in antennas, robot
arms, and computer disk drives. The radio telescope antenna in Figure 1.7 is one example
of a system that uses position control systems. In this section, we will look in detail at an
antenna azimuth position control system that could be used to position a radio telescope
antenna. We will see how the system works and how we can effect changes in its
performance. The discussion here will be on a qualitative level, with the objective of
getting an intuitive feeling for the systems with which we will be dealing.

An antenna azimuth position control system is shown in Figure 1.8(a), with a more
detailed layout and schematic in Figures 1.8(b) and 1.8(c), respectively. Figure 1.8(d)
shows a functional block diagram of the system. The functions are shown above the
blocks, and the required hardware is indicated inside the blocks. Parts of Figure 1.8 are
repeated on the front endpapers for future reference.

The purpose of this system is to have the azimuth angle output of the antenna, 6,(z),
follow the input angle of the potentiometer, 6;(¢). Let us look at Figure 1.8(<) and describe
how this system works. The input command is an angular displacement. The potentiometer
converts the angular displacement into a voltage. Similarly, the output angular displacement
is converted to a voltage by the potentiometer in the feedback path. The signal and power
amplifiers boost the difference between the input and output voltages. This amplified
actuating signal drives the plant.

The system normally operates to drive the error to zero. When the input and
output match, the error will be zero, and the motor will not turn. Thus, the motor is
driven only when the output and the input do not match. The greater the difference
between the input and the output, the larger the motor input voltage, and the faster the
motor will turn.

11

Peter Menzel

FIGURE 1.7 The search for
extraterrestrial life is being
carried out with radio antennas
like the one pictured here. A
radio antenna is an example of a
system with position controls
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If we increase the gain of the signal amplifier, will there be an increase in the steady-state
value of the output? If the gain is increased, then for a given actuating signal, the motor
will be driven harder. However, the motor will still stop when the actuating signal reaches
zero, that is, when the output matches the input. The difference in the response, however,
will be in the transients. Since the motor is driven harder, it turns faster toward its final
position. Also, because of the increased speed, increased momentum could cause the
motor to overshoot the final value and be forced by the system to return to the commanded
position. Thus, the possibility exists for a transient response that consists of damped
oscillations (that is, a sinusoidal response whose amplitude diminishes with time) about
the steady-state value if the gain is high. The responses for low gain and high gain are
shown in Figure 1.9.

We have discussed the transient response of the position control system. Let us now
direct our attention to the steady-state position to see how closely the output matches the
input after the transients disappear.

We define steady-state error as the difference between the input and the output
after the transients have effectively disappeared. The definition holds equally well for
step, ramp, and other types of inputs. Typically, the steady-state error decreases with an
increase in gain and increases with a decrease in gain. Figure 1.9 shows zero error in the
steady-state response; that is, after the transients have disappeared, the output position

Output with
high gain

/ P
Input \/
\ Output with

low gain

Response

Time

FIGURE 1.8 (Continued)
d. functional block diagram

FIGURE 1.9 Response of a
position control system,
showing effect of high and low
controller gain on the output
response
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equals the commanded input position. In some systems, the steady-state error will not be
zero; for these systems, a simple gain adjustment to regulate the transient response is either
not effective or leads to a trade-off between the desired transient response and the desired
steady-state accuracy.

To solve this problem, a controller with a dynamic response, such as an electrical
filter, is used along with an amplifier. With this type of controller, it is possible to design
both the required transient response and the required steady-state accuracy without the
trade-off required by a simple setting of gain. However, the controller is now more
complex. The filter in this case is called a compensator. Many systems also use dynamic
elements in the feedback path along with the output transducer to improve system
performance. An animation PowerPoint presentation (PPT) demonstrating this system
is available for instructors at www.wiley.com/college/nise. See Antenna (Ch. I).

In summary, then, our design objectives and the system’s performance revolve
around the transient response, the steady-state error, and stability. Gain adjustments can
affect performance and sometimes lead to trade-offs between the performance criteria.
Compensators can often be designed to achieve performance specifications without the
need for trade-offs. Now that we have stated our objectives and some of the methods
available to meet those objectives, we describe the orderly progression that leads us to the
final system design.

1.5 The Design Process

In this section, we establish an orderly sequence for the design of feedback control systems
that will be followed as we progress through the rest of the book. Figure 1.10 shows the
described process as well as the chapters in which the steps are discussed.

The antenna azimuth position control system discussed in the last section is
representative of control systems that must be analyzed and designed. Inherent in
Figure 1.10 is feedback and communication during each phase. For example, if testing
(Step 6) shows that requirements have not been met, the system must be redesigned and
retested. Sometimes requirements are conflicting and the design cannot be attained. In these
cases, the requirements have to be respecified and the design process repeated. Let us now
elaborate on each block of Figure 1.10.

Step 1: Transform Requirements Into a Physical System
We begin by transforming the requirements into a physical system. For example, in the
antenna azimuth position control system, the requirements would state the desire to position

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
. Use the. If multiple Analyze,
Determine schematic .
. . . blocks, reduce design, and test
a physical Draw a Transform to obtain a
. . . the block to see that
system and functional the physical block diagram, . .
N X . . diagramtoa [ requirements
specifications block system into signal-flow .
. . . single block or and
from the diagram. a schematic. diagram, . .
. closed-loop specifications
requirements. or state-space
. system. are met.
representation.
— S N NS N —
S

Analog: Chapter 1 Chapters 2, 3 Chapter 5 Chapters 4, 6-12
Digital: Chapter 13 Chapter 13 Chapter 13
FIGURE 1.10 The control system design process
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the antenna from a remote location and describe such features as weight and physical
dimensions. Using the requirements, design specifications, such as desired transient
response and steady-state accuracy, are determined. Perhaps an overall concept, such as
Figure 1.8(a), would result.

Step 2: Draw a Functional Block Diagram

The designer now translates a qualitative description of the system into a functional block
diagram that describes the component parts of the system (that is, function and/or hardware)
and shows their interconnection. Figure 1.8(d) is an example of a functional block diagram
for the antenna azimuth position control system. It indicates functions such as input
transducer and controller, as well as possible hardware descriptions such as amplifiers
and motors. At this point the designer may produce a detailed layout of the system, such as
that shown in Figure 1.8(b), from which the next phase of the analysis and design sequence,
developing a schematic diagram, can be launched.

Step 3: Create a Schematic

As we have seen, position control systems consist of electrical, mechanical, and
electromechanical components. After producing the description of a physical system,
the control systems engineer transforms the physical system into a schematic diagram.
The control system designer can begin with the physical description, as contained in
Figure 1.8(a), to derive a schematic. The engineer must make approximations about the
system and neglect certain phenomena, or else the schematic will be unwieldy, making
it difficult to extract a useful mathematical model during the next phase of the analysis
and design sequence. The designer starts with a simple schematic representation and, at
subsequent phases of the analysis and design sequence, checks the assumptions made
about the physical system through analysis and computer simulation. If the schematic is
too simple and does not adequately account for observed behavior, the control systems
engineer adds phenomena to the schematic that were previously assumed negligible. A
schematic diagram for the antenna azimuth position control system is shown in
Figure 1.8(c).

When we draw the potentiometers, we make our first simplifying assumption by
neglecting their friction or inertia. These mechanical characteristics yield a dynamic, rather
than an instantaneous, response in the output voltage. We assume that these mechanical
effects are negligible and that the voltage across a potentiometer changes instantaneously as
the potentiometer shaft turns.

A differential amplifier and a power amplifier are used as the controller to yield gain
and power amplification, respectively, to drive the motor. Again, we assume that the
dynamics of the amplifiers are rapid compared to the response time of the motor; thus, we
model them as a pure gain, K.

A dc motor and equivalent load produce the output angular displacement. The speed
of the motor is proportional to the voltage applied to the motor’s armature circuit. Both
inductance and resistance are part of the armature circuit. In showing just the armature
resistance in Figure 1.8(c), we assume the effect of the armature inductance is negligible for
a dc motor.

The designer makes further assumptions about the load. The load consists of a rotating
mass and bearing friction. Thus, the model consists of inertia and viscous damping whose
resistive torque increases with speed, as in an automobile’s shock absorber or a screen door
damper.

The decisions made in developing the schematic stem from knowledge of the physical
system, the physical laws governing the system’s behavior, and practical experience. These
decisions are not easy; however, as you acquire more design experience, you will gain the
insight required for this difficult task.

15
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Step 4: Develop a Mathematical Model (Block Diagram)

Once the schematic is drawn, the designer uses physical laws, such as Kirchhoff’s laws for
electrical networks and Newton’s law for mechanical systems, along with simplifying
assumptions, to model the system mathematically. These laws are

Kirchhoff's voltage law The sum of voltages around a closed path equals zero.
Kirchhoff's current law The sum of electric currents flowing from a node equals zero.
Newton's laws The sum of forces on a body equals zero;® the sum of moments on a

body equals zero.

Kirchhoff’s and Newton’s laws lead to mathematical models that describe the relationship
between the input and output of dynamic systems. One such model is the linear, time-invariant
differential equation, Eq. (1.2):

d"et) ")

d"r(t) 4" r(t)
dr =t g1

by
darm + a1

+ - +doc(t) = b

+ e+ bor(h)

(1.2)*

Many systems can be approximately described by this equation, which relates the output,
(1), to the input, (¢), by way of the system parameters, a; and b;. We assume the reader is
familiar with differential equations. Problems and a bibliography are provided at the end of
the chapter for you to review this subject.

Simplifying assumptions made in the process of obtaining a mathematical model
usually leads to a low-order form of Eq. (1.2). Without the assumptions the system model
could be of high order or described with nonlinear, time-varying, or partial differential
equations. These equations complicate the design process and reduce the designer’s insight.
Of course, all assumptions must be checked and all simplifications justified through analysis
or testing. If the assumptions for simplification cannot be justified, then the model cannot be
simplified. We examine some of these simplifying assumptions in Chapter 2.

In addition to the differential equation, the transfer function is another way of
mathematically modeling a system. The model is derived from the linear, time-invariant
differential equation using what we call the Laplace transform. Although the transfer
function can be used only for linear systems, it yields more intuitive information than the
differential equation. We will be able to change system parameters and rapidly sense the
effect of these changes on the system response. The transfer function is also useful in
modeling the interconnection of subsystems by forming a block diagram similar to
Figure 1.8(d) but with a mathematical function inside each block.

Still another model is the state-space representation. One advantage of state-space
methods is that they can also be used for systems that cannot be described by linear
differential equations. Further, state-space methods are used to model systems for
simulation on the digital computer. Basically, this representation turns an nth-order
differential equation into n simultaneous first-order differential equations. Let this
description suffice for now; we describe this approach in more detail in Chapter 3.

3 Alternately, >~ forces = Ma. In this text the force, Ma, will be brought to the left-hand side of the equation to yield
>~ forces = 0 (D’ Alembert’s principle). We can then have a consistent analogy between force and voltage, and
Kirchhoff’s and Newton’s laws (that is, Y forces = 0; Y voltages = 0).

“#The right-hand side of Eq. (1.2) indicates differentiation of the input, (7). In physical systems, differentiation of
the input introduces noise. In Chapters 3 and 5 we show implementations and interpretations of Eq. (1.2) that do not
require differentiation of the input.
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Finally, we should mention that to produce the mathematical model for a system,
we require knowledge of the parameter values, such as equivalent resistance, inductance,
mass, and damping, which is often not easy to obtain. Analysis, measurements, or
specifications from vendors are sources that the control systems engineer may use to
obtain the parameters.

Step 5: Reduce the Block Diagram Angular

Subsystem models are interconnected to form block diagrams of larger systems,
as in Figure 1.8(d), where each block has a mathematical description. Notice that
many signals, such as proportional voltages and error, are internal to the system.
There are also two signals—angular input and angular output—that are external
to the system. In order to evaluate system response in this example, we need to
reduce this large system’s block diagram to a single block with a mathematical
description that represents the system from its input to its output, as shown in
Figure 1.11. Once the block diagram is reduced, we are ready to analyze and
design the system.

Step 6: Analyze and Design

The next phase of the process, following block diagram reduction, is analysis and design. If
you are interested only in the performance of an individual subsystem, you can skip the
block diagram reduction and move immediately into analysis and design. In this phase, the
engineer analyzes the system to see if the response specifications and performance
requirements can be met by simple adjustments of system parameters. If specifications
cannot be met, the designer then designs additional hardware in order to effect a desired
performance.

Test input signals are used, both analytically and during testing, to verify the
design. It is neither necessarily practical nor illuminating to choose complicated input
signals to analyze a system’s performance. Thus, the engineer usually selects standard test
inputs. These inputs are impulses, steps, ramps, parabolas, and sinusoids, as shown in
Table 1.1.

An impulse is infinite at r = 0 and zero elsewhere. The area under the unit impulse is 1.
An approximation of this type of waveform is used to place initial energy into a system so
that the response due to that initial energy is only the transient response of a system. From
this response the designer can derive a mathematical model of the system.

A step input represents a constant command, such as position, velocity, or acceleration.
Typically, the step input command is of the same form as the output. For example, if the
system’s output is position, as it is for the antenna azimuth position control system, the step
input represents a desired position, and the output represents the actual position. If the system’s
output is velocity, as is the spindle speed for a video disc player, the step input represents a
constant desired speed, and the output represents the actual speed. The designer uses step
inputs because both the transient response and the steady-state response are clearly visible and
can be evaluated.

The ramp input represents a linearly increasing command. For example, if the
system’s output is position, the input ramp represents a linearly increasing position, such as
that found when tracking a satellite moving across the sky at constant speed. If the system’s
output is velocity, the input ramp represents a linearly increasing velocity. The response to
an input ramp test signal yields additional information about the steady-state error. The
previous discussion can be extended to parabolic inputs, which are also used to evaluate a
system’s steady-state error.

Sinusoidal inputs can also be used to test a physical system to arrive at a mathematical
model. We discuss the use of this waveform in detail in Chapters 10 and 11.

input

Mathematical
description
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FIGURE 1.11 Equivalent block
diagram for the antenna azimuth
position control system
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TABLE 1.1 Test waveforms used in control systems

Input Function Description Sketch Use
Impulse a(t) 8(t) = oo for0— <t < 0+ fn Transient response

= (O elsewhere Modeling

0+
/ s@)dt =1 (1)
0—
t

Step u(t) u(t) =1fort >0 fn) Transient response

=0fort <0 i Steady-state error

Ramp tu(r) tu(t) = tfort >0 §(0) Steady-state error
= (O elsewhere

1 1 1 -
Parabola 1 2u(t) Leuwn =Letores0 [ Steady-state error
2 2 2
= O elsewhere
— t
Sinusoid sin wt () Transient response
Modeling

Steady-state error

We conclude that one of the basic analysis and design requirements is to evaluate the
time response of a system for a given input. Throughout the book you will learn numerous
methods for accomplishing this goal.

The control systems engineer must take into consideration other characteristics
about feedback control systems. For example, control system behavior is altered by
fluctuations in component values or system parameters. These variations can be caused
by temperature, pressure, or other environmental changes. Systems must be built so that
expected fluctuations do not degrade performance beyond specified bounds. A sensitivity
analysis can yield the percentage of change in a specification as a function of a change in a
system parameter. One of the designer’s goals, then, is to build a system with minimum
sensitivity over an expected range of environmental changes.

In this section we looked at some control systems analysis and design considerations.
We saw that the designer is concerned about transient response, steady-state error,
stability, and sensitivity. The text pointed out that although the basis of evaluating system
performance is the differential equation, other methods, such as transfer functions and state
space, will be used. The advantages of these new techniques over differential equations will
become apparent as we discuss them in later chapters.
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Now that we have discussed the analysis and design sequence, let us discuss the use of the
computer as a computational tool in this sequence. The computer plays an important role in
the design of modern control systems. In the past, control system design was labor intensive.
Many of the tools we use today were implemented through hand calculations or, at best,
using plastic graphical aid tools. The process was slow, and the results not always accurate.
Large mainframe computers were then used to simulate the designs.

Today we are fortunate to have computers and software that remove the drudgery
from the task. At our own desktop computers, we can perform analysis, design, and
simulation with one program. With the ability to simulate a design rapidly, we can easily
make changes and immediately test a new design. We can play what-if games and try
alternate solutions to see if they yield better results, such as reduced sensitivity to
parameter changes. We can include nonlinearities and other effects and test our models
for accuracy.

MATLAB

The computer is an integral part of modern control system design, and many computational
tools are available for your use. In this book we use MATLAB and the MATLAB Control
System Toolbox, which expands MATLAB to include control system—specific commands.
In addition, presented are several MATLAB enhancements that give added functionality to
MATLAB and the Control Systems Toolbox. Included are (1) Simulink, which uses a
graphical user interface (GUI); (2) the LTI Viewer, which permits measurements to be made
directly from time and frequency response curves; (3) the SISO Design Tool, a convenient
and intuitive analysis and design tool; and (4) the Symbolic Math Toolbox, which saves
labor when making symbolic calculations required in control system analysis and
design. Some of these enhancements may require additional software available from
The MathWorks, Inc.

MATLAB is presented as an alternate method of solving control system problems.
You are encouraged to solve problems first by hand and then by MATLAB so that insight is
not lost through mechanized use of computer programs. To this end, many examples
throughout the book are solved by hand, followed by suggested use of MATLAB.

As an enticement to begin using MATLAB, simple program statements that you can
try are suggested throughout the chapters at appropriate locations. Throughout the book,
various icons appear in the margin to identify MATLAB references that direct you to the
proper program in the proper appendix and tell you what you will learn. Selected end-of-
chapter problems and Case Study Challenges to be solved using MATLAB have also been
marked with appropriate icons. The following list itemizes the specific components of
MATLAB used in this book, the icon used to identify each, and the appendix in which a
description can be found:

MATLAB/Control System Toolbox tutorials and code are found in
Appendix B and identified in the text with the MATLAB icon shown in
the margin.

Simulink tutorials and diagrams are found in Appendix C and
identified in the text with the Simulink icon shown in the margin.

MATLAB GUI tools, tutorials, and examples are in Appendix E at
www .wi ley.com/college/nise and identified in the text with the GUI
Tool icon shown in the margin. These tools consist of the LTI
Viewer and the SISO Design Tool.

MATLAB

Simulink

GUI Tool
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Symbolic Math Toolbox tutorials and code are found in Appendix F
at ww.wiley.com/college/nise and identified in the text with the
Symbol ic Math icon shown in the margin.

MATLAB code itself is not platform specific. The same code runs on PCs and workstations
that support MATLAB. Although there are differences in installing and managing
MATLARB files, we do not address them in this book. Also, there are many more commands
in MATLAB and the MATLAB toolboxes than are covered in the appendixes. Please
explore the bibliographies at the end of the applicable appendixes to find out more about
MATLAB file management and MATLAB instructions not covered in this textbook.

LabVIEW

LabVIEW is a programming environment presented as an alternative to MATLAB. This
graphical alternative produces front panels of virtual instruments on your computer that
are pictorial reproductions of hardware instruments, such as waveform generators or
oscilloscopes. Underlying the front panels are block diagrams. The blocks contain
underlying code for the controls and indicators on the front panel. Thus, a knowledge of
coding is not required. Also, parameters can be easily passed or viewed from the front panel.

A LabVIEW tutorial is in Appendix D and all LabVIEW material is
identified with the LabVIEW icon shown in the margin.

You are encouraged to use computational aids throughout this book. Those not using
MATLAB or LabVIEW should consult Appendix H at www.wiley.com/college/nise for a
discussion of other alternatives. Now that we have introduced control systems to you and
established a need for computational aids to perform analysis and design, we will conclude
with a discussion of your career as a control systems engineer and look at the opportunities
and challenges that await you.

1.7 The Control Systems Engineer

Control systems engineering is an exciting field in which to apply your engineering
talents, because it cuts across numerous disciplines and numerous functions within those
disciplines. The control engineer can be found at the top level of large projects, engaged at
the conceptual phase in determining or implementing overall system requirements. These
requirements include total system performance specifications, subsystem functions, and
the interconnection of these functions, including interface requirements, hardware and
software design, and test plans and procedures.

Many engineers are engaged in only one area, such as circuit design or software
development. However, as a control systems engineer, you may find yourself working in a
broad arena and interacting with people from numerous branches of engineering and the
sciences. For example, if you are working on a biological system, you will need to interact
with colleagues in the biological sciences, mechanical engineering, electrical engineering,
and computer engineering, not to mention mathematics and physics. You will be working
with these engineers at all levels of project development from concept through design and,
finally, testing. At the design level, the control systems engineer can be performing
hardware selection, design, and interface, including total subsystem design to meet specified
requirements. The control engineer can be working with sensors and motors as well as
electronic, pneumatic, and hydraulic circuits.

The space shuttle provides another example of the diversity required of the systems
engineer. In the previous section, we showed that the space shuttle’s control systems cut
across many branches of science: orbital mechanics and propulsion, aerodynamics,
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electrical engineering, and mechanical engineering. Whether or not you work in the space
program, as a control systems engineer you will apply broad-based knowledge to the
solution of engineering control problems. You will have the opportunity to expand your
engineering horizons beyond your university curriculum.

You are now aware of future opportunities. But for now, what advantages does this
course offer to a student of control systems (other than the fact that you need it to graduate)?
Engineering curricula tend to emphasize bottom-up design. That is, you start from the
components, develop circuits, and then assemble a product. In fop-down design, a high-level
picture of the requirements is first formulated; then the functions and hardware required to
implement the system are determined. You will be able to take a top-down systems approach
as a result of this course.

A major reason for not teaching top-down design throughout the curriculum is the
high level of mathematics initially required for the systems approach. For example, control
systems theory, which requires differential equations, could not be taught as a lower-division
course. However, while progressing through bottom-up design courses, it is difficult to see
how such design fits logically into the large picture of the product development cycle.

After completing this control systems course, you will be able to stand back and see
how your previous studies fit into the large picture. Your amplifier course or vibrations
course will take on new meaning as you begin to see the role design work plays as part of
product development. For example, as engineers, we want to describe the physical world
mathematically so that we can create systems that will benefit humanity. You will find that
you have indeed acquired, through your previous courses, the ability to model physical
systems mathematically, although at the time you might not have understood where in the
product development cycle the modeling fits. This course will clarify the analysis and design
procedures and show you how the knowledge you acquired fits into the total picture of
system design.

Understanding control systems enables students from all branches of engineering to
speak a common language and develop an appreciation and working knowledge of the other
branches. You will find that there really is not much difference among the branches of
engineering as far as the goals and applications are concerned. As you study control
systems, you will see this commonality.

Summary
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Control systems contribute to every aspect of modern society. In our homes we find them in
everything from toasters to heating systems to DVD players. Control systems also have
widespread applications in science and industry, from steering ships and planes to guiding
missiles. Control systems also exist naturally; our bodies contain numerous control systems.
Even economic and psychological system representations have been proposed based on
control system theory. Control systems are used where power gain, remote control, or
conversion of the form of the input is required.

A control system has an input, a process, and an output. Control systems can be
open loop or closed loop. Open-loop systems do not monitor or correct the output for
disturbances; however, they are simpler and less expensive than closed-loop systems.
Closed-loop systems monitor the output and compare it to the input. If an error is detected,
the system corrects the output and hence corrects the effects of disturbances.

Control systems analysis and design focuses on three primary objectives:

1. Producing the desired transient response
2. Reducing steady-state errors

3. Achieving stability
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Chapter 1

Introduction

A system must be stable in order to produce the proper transient and steady-state

response. Transient response is important because it affects the speed of the system and
influences human patience and comfort, not to mention mechanical stress. Steady-state
response determines the accuracy of the control system; it governs how closely the output
matches the desired response.

The design of a control system follows these steps:

Step 1 Determine a physical system and specifications from requirements.

Step 2 Draw a functional block diagram.

Step 3 Represent the physical system as a schematic.

Step 4 Use the schematic to obtain a mathematical model, such as a block diagram.
Step 5 Reduce the block diagram.

Step 6 Analyze and design the system to meet specified requirements and specifica-

tions that include stability, transient response, and steady-state performance.

In the next chapter we continue through the analysis and design sequence and learn how to
use the schematic to obtain a mathematical model.

Review Questions

>

15.
16.

Problems

. Name three applications for feedback control systems.
. Name three reasons for using feedback control systems and at least one reason for not

using them.

. Give three examples of open-loop systems.
. Functionally, how do closed-loop systems differ from open-loop systems?
. State one condition under which the error signal of a feedback control system would

not be the difference between the input and the output.

. If the error signal is not the difference between input and output, by what general name

can we describe the error signal?

. Name two advantages of having a computer in the loop.
. Name the three major design criteria for control systems.
. Name the two parts of a system’s response.

10.
11.
12.
13.
14.

Physically, what happens to a system that is unstable?
Instability is attributable to what part of the total response?
Describe a typical control system analysis task.

Describe a typical control system design task.

Adjustments of the forward path gain can cause changes in the transient response.
True or false?

Name three approaches to the mathematical modeling of control systems.
Briefly describe each of your answers to Question 15.

1. A variable resistor, called a potentiometer, is shown

variable, the output variable, and (inside the block)

in Figure P1.1. The resistance is varied by moving a
wiper arm along a fixed resistance. The resistance
from A to C is fixed, but the resistance from B to C
varies with the position of the wiper arm. If it takes 10
turns to move the wiper arm from A to C, draw a
block diagram of the potentiometer showing the input

the gain, which is a constant and is the amount
by which the input is multiplied to obtain the output.
An animation PowerPoint presentation (PPT)
demonstrating this system is available for instructors
at www.wiley.com/college/nise. See Potentiometer.
[Section 1.4: Introduction to a Case Study]
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Input angle, 0;(r) * 50 volts

s

= 50 volts

Output
voltage, v,(f)

b

FIGURE P1.1 Potentiometer

2. A temperature control system operates by sensing the

Roll angle t%

X

difference between the thermostat setting and the actual
temperature and then opening a fuel valve an amount
proportional to this difference. Draw a functional closed-
loop block diagram similar to Figure 1.8(d) identifying
the input and output transducers, the controller, and the
plant. Further, identify the input and output signals of all
subsystems previously described. [Section 1.4: Introduc-
tion to a Case Study]

. An aircraft’s attitude varies in roll, pitch, and yaw as

defined in Figure P1.2. Draw a functional block diagram
foraclosed-loop system that stabilizes the roll as follows:
The system measures the actual roll angle with a gyro and
compares the actual roll angle with the desired roll angle.
The ailerons respond to the roll-angle error by undergoing
anangulardeflection. The aircraftresponds to thisangular
deflection, producing a roll angle rate. Identify the input
and output transducers, the controller, and the plant.
Further, identify the nature of each signal. [Section 1.4:
Introduction to a Case Study]

Pitch angle

— .
= deflection up
=

y

Aileron
deflection down

=
=

Yaw angle

z
FIGURE P1.2 Aircraft attitude defined

4. We can build a control system that will automatically

adjustamotorcycle’s radio volume as the noise generated
by the motorcycle changes. The noise generated by the
motorcycle increases with speed. As the noise increases,
the systemincreases the volume of the radio. Assume that
the amount of noise can be represented by a voltage

6.

23

Problems

generated by the speedometer cable, and the volume of
the radio is controlled by a dc voltage (Hogan, 1988). If
the dc voltage represents the desired volume disturbed by
the motorcycle noise, draw the functional block diagram
of the automatic volume control system, showing the
input transducer, the volume control circuit, and the
speed transducer as blocks. Also, show the following
signals: the desired volume as an input, the actual volume
as an output, and voltages representing speed, desired
volume, and actual volume. An animation PowerPoint
presentation (PPT) demonstrating this system is available
for instructors at www.wiley.com/college/nise. See
Motorcycle. [Section 1.4: Introduction to a Case Study]

. A dynamometer is a device used to measure torque and

speed and to vary the load on rotating devices. The
dynamometer operates as follows to control the amount
oftorque: A hydraulic actuatorattached to the axle presses
atire againstarotating flywheel. The greater the displace-
ment of the actuator, the greater the force that is applied to
the rotating flywheel. A strain gage load cell senses the
force. The displacement of the actuator is controlled by an
electrically operated valve whose displacement regulates
fluid flowing into the actuator (D’Souza, 1988). Draw a
functional block diagram of a closed-loop system that
uses the described dynamometer to regulate the force
against the tire during testing. Show all signals and
systems. Include amplifiers that power the valve, the
valve, the actuator and load, and the tire. [Section 1.4:
Introduction to a Case Study]

During a medical operation an anesthesiologist controls
the depth of unconsciousness by controlling the concen-
tration of isoflurane in a vaporized mixture with oxygen
and nitrous oxide. The depth of anesthesia is measured by
the patient’s blood pressure. The anesthesiologist also
regulates ventilation, fluid balance, and the administra-
tion of other drugs. In order to free the anesthesiologist to
devote more time to the latter tasks, and in the interest of
the patient’s safety, we wish to automate the depth of
anesthesia by automating the control of isoflurane con-
centration. Draw afunctional block diagram of the system
showing pertinent signals and subsystems (Meier, 1992).
[Section 1.4: Introduction to a Case Study]

. The vertical position, x(7), of a grinding wheel is controlled

by a closed-loop system. The input to the system is the
desired depth of grind, and the output is the actual depth of
grind. The difference between the desired depth and the
actual depth drives the motor, resulting in a force applied
to the work. This force results in a feed velocity for the
grinding wheel (Jenkins, 1997). Draw a closed-loop
functional block diagram for the grinding process,
showing the input, output, force, and grinder feed rate.
[Section 1.4: Introduction to a Case Study]
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10.

Chapter 1 Introduction

You are given a high-speed proportional solenoid valve.
A voltage proportional to the desired position of the spool
is applied to the coil. The resulting magnetic field pro-
duced by the current in the coil causes the armature to
move. A push pin connected to the armature moves the
spool. A linear voltage differential transformer (LVDT)
that outputs a voltage proportional to displacement senses
the spool’s position. This voltage can be used in a feed-
back path to implement closed-loop operation (Vaughan,
1996). Draw a functional block diagram of the valve,
showing input and output positions, coil voltage, coil
current, and spool force. [Section 1.4: Introduction to a
Case Study]

. The human eye has a biological control system that varies

the pupil diameter to maintain constant light intensity to
the retina. As the light intensity increases, the optical nerve
sends a signal to the brain, which commands internal eye
muscles to decrease the pupil’s eye diameter. When the
light intensity decreases, the pupil diameter increases.

a. Draw a functional block diagram of the light-pupil
system indicating the input, output, and intermediate
signals; the sensor; the controller; and the actuator.
[Section 1.4: Introduction to a Case Study]

b. Under normal conditions the incident light will be
larger than the pupil. If the incident light is smaller
than the diameter of the pupil, the feedback path is
broken (Bechhoefer, 2005). Modify your block diagram
from Part a. to show where the loop is broken. What will
happen if the narrow beam of light varies in intensity,
such as in a sinusoidal fashion?

c¢. It has been found (Bechhoefer, 2005) that it takes the
pupil about 300 milliseconds toreactto achange in the
incident light. If light shines off center to the retina,
describe the response of the pupil with delay present
and then without delay present.

A Segway®’ Personal Transporter (PT) (Figure P1.3)is a
two-wheeled vehicle in which the human operator stands
vertically on a platform. As the driver leans left, right,
forward, or backward, a set of sensitive gyroscopic
sensors sense the desired input. These signals are fed to
a computer that amplifies them and commands motors to
propel the vehicle in the desired direction. One very
important feature of the PT is its safety: The system
will maintain its vertical position within a specified angle
despite road disturbances, such as uphills and downbhills
oreven if the operator over-leans in any direction. Draw a
functional block diagram of the PT system that keeps

3 Segway is a registered trademark of Segway, Inc. in the United States and/
or other countries.

the system in a vertical position. Indicate the input and
output signals, intermediate signals, and main subsys-
tems. (http://segway.com)

=

D.A. Winstein/Custom Medial Stock photo

FIGURE P1.3 The Segway Personal Transporter (PT)

11.

12.

In humans, hormone levels, alertness, and core body
temperature are synchronized through a 24-hour
circadian cycle. Daytime alertness is at its best when
sleep/wake cycles are in sync with the circadian cycle.
Thus alertness can be easily affected with a distributed
work schedule, such as the one to which astronauts are
subjected. It has been shown that the human circadian
cycle can be delayed or advanced through light stimulus.
To ensure optimal alertness, a system is designed to track
astronauts’ circadian cycles and increase the quality of
sleep during missions. Core body temperature canbe used
as an indicator of the circadian cycle. A computer model
with optimum circadian body temperature variations can
be compared to an astronaut’s body temperatures.
Whenever a difference is detected, the astronaut is sub-
jected to a light stimulus to advance or delay the astro-
naut’s circadian cycle (Mott, 2003). Draw a functional
block diagram of the system. Indicate the input and output
signals, intermediate signals, and main subsystems.

Tactile feedback is an important component in the
learning of motor skills such as dancing, sports, and
physical rehabilitation. A suit with white dots recognized
by a vision system to determine arm joint positions with
millimetric precision was developed. This suitis worn by
both teacher and student to provide position information.
(Lieberman, 2007). If there is a difference between the
teacher’s positions and that of the student, vibrational
feedback is provided to the student through eight
strategically placed vibrotactile actuators in the wrist
and arm. This placement takes advantage of a sensory
effect known as cutaneous rabbit that tricks the subject
to feel uniformly spaced stimuli in places where the
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13.

14.

actuators are not present. These stimuli help the student
adjust to correct the motion. In summary, the system
consists of an instructor and a student having their
movements followed by the vision system. Their move-
ments are fed into a computer that finds the differences
between their joint positions and provides proportional
vibrational strength feedback to the student. Draw a block
diagram describing the system design.

Some skillful drivers can drive and balance a four-
wheeled vehicle on two wheels. To verify that a control
system can also drive a car in this fashion, a prototype
using an RC (remote-controlled) car is equipped with a
feedback control system (Arndt, 2011). In a simplified
system model, the roll angle at which the car balances was
calculated a priori and found to be 52.3°. This value was
used as the desired input. The desired input is compared
with the actual roll angle and the difference is fed to a
controller that feeds a servomotor indicating the desired
wheel steering angle that controls the vehicle’s roll angle
on two wheels. The car’s actual roll angle is measured
using a hinged linkage that rolls along the ground next to
the vehicle and is connected to a potentiometer. Draw a
block diagram indicating the system functions. Draw
blocks for the system controller, the steering servo, and
the car dynamics. Indicate in the diagram the following
signals: the desired roll angle, the steering wheel angle,
and the actual car roll angle.

Moored floating platforms are subject to external
disturbances such as waves, wind, and currents that
cause them to drift. There are certain applications,
such as diving support, drilling pipe-laying, and tank-
ing between ships in which precise positioning of
moored platforms is very important (Musioz-Mansilla,
2011). Figure P1.4 illustrates a tethered platform in
which side thrusters are used for positioning. A control

Y
>
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sea level

N

thrusters

sea floor
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16.
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Problems

system is to be designed in which the objective is to
minimize the drift, Y, and an angular deviation from
the vertical axes, ¢ (not shown). The disturbances
acting on the system’s outputs are the force, F, and the
torque, M, caused by the external environment. In this
problem, the plant will have one input, the force
delivered by the thrusters (F,) and two outputs, Y
and ¢b. Note also that this is a disturbance attenuation
problem, so there is no command input. Draw a block
diagram of the system indicating the disturbances F
and M, the control signal F,,, and the outputs Y and ¢.
Your diagram should also have blocks for a controller,
the one-input two-output plant, and a block indicating
how the disturbances affect each of the outputs.

In the Case Study of Section 1.4, an antenna azimuth angle
is controlled, and its corresponding block diagram is shown
in Figure 1.8(d) in the text. There, the sensor used to
measure the antenna’s azimuth angle is a potentiometer.

a. Modify theblock diagramifthe sensorused tomeasure
the antenna’s angle is an accelerometer.

b. Modify theblock diagramifthe sensorusedto measure
the antenna’s angle is a gyroscope.

Figure P1.5 shows the topology of a photo-voltaic (PV)
system that uses solar cells to supply electrical power to a
residence with hybrid electric vehicle loads (Gurkavnak,
2009). The system consists of a PV array to collect the sun’s
rays, a battery pack to store energy during the day, a dc/ac
inverter to supply ac power to the load, and a bidirectional
dc/dc converter to control the terminal voltage of the solar
array according to a maximum power point tracking
(MPPT) algorithm. In case of sufficient solar power (solar
insolation), the dc/dc converter charges the battery and the
solar array supplies power to the load through the dc/ac
inverter. With less or no solar energy (solar non-insolation),
power is supplied from the battery to the load through the
dc/dc converter and the dc/ac inverter. Thus, the dc/dc
converter must be bidirectional to be able to charge and
discharge the battery. With the MPPT controller providing
the reference voltage, the converter operates as a step-up
converter (boost) to discharge the battery if the battery is
full or a step-down (buck) converter, which charges the
battery if it is not full.”

In Figure P1.5, the Inverter is controlled by the
Power Manager and Controller through the Current
Controller. The Power Manager and Controller directs
the Inverter to take power either from the battery,

FIGURE P1.4 Tethered platform using side thrusters for

via the Bidirectional Converter, or the solar array,
positioning®

depending upon the time of day and the battery state

6 Muiioz-Mansilla, R., Aranda, J., Diaz, J. M., Chaos, D., and Reinoso, A.J.,
Applications of QFT Robust Control Techniques to Marine Systems. 9th
IEEE International Conference on Control and Automation. December
19-21, 2011, pp. 378-385. (Figure 3, p. 382).

"Fora description of all other operational scenarios, refer to the above-listed
reference.
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FIGURE P1.5 Proposed solar powered residential home with plug-in hybrid electric vehicle (PHEV) loads®

17.

of charge (SOC). Draw the following two functional
block diagrams for this system:

a. A diagram that illustrates the conversion of solar
irradiation into energy stored in the battery. In that
diagram, the input is the solar irradiance, r(f), and the
output is the battery voltage, v,().

b. The main diagram, in which the input is the desired
output voltage, v,(¢), and the output is the actual
inverter output voltage, v, (7).

Both of these functional block diagrams should
show their major components, including the PV array,
MPPT controller, dc/dc converter, battery pack, dc/ac
inverter, current controller, and the Power Manager and
Controller. Show all signals, including intermediate
voltages and currents, time of day, and the SOC of
the battery.

Oil drilling rigs are used for drilling holes for identifi-
cation of oil or natural gas sources and for extraction.

8 Gurkaynak, Y., Li, Z., and Khaligh, A. A Novel Grid-tied, Solar Powered
Residential Home with Plug-in Hybrid Electric Vehicle (PHEV) Loads.
IEEE Vehicle Power and Propulsion Conference 2009, pp. 813-816.
(Figure 1, p. 814).

An oil drilling system can be thought of as a drill
inside a straw, which is placed inside a glass. The
straw assembly represents the drill string, the drill
surrounded by fluid, and the glass represents the
volume, the annulus, around the drill string through
which slurry and eventually oil will flow as the drilling
progresses.

Assume that we want to control the drill pres-
sure output, P,(?), with a reference voltage input,
V4 (t). A control loop model (Zhao, 2007) consists
of a drill-pressure controller, drill motor subsystem,
pulley subsystem, and drill stick subsystem. The
output signal of the latter, the drill pressure, P,(?),
is measured using a transducer, which transmits a
negative feedback voltage signal, V,(¢), to the drill
pressure controller. That signal is compared at the
input of the controller to the reference voltage, V,. (1),
Based on the error, e(f) = V,.(t) — Vy(t), the drill
pressure controller sets the desired drill speed, @,
which is the input to the drill motor subsystem whose
output is the actual drill speed, w,, which is the input
to the pulley subsystem. The output of the pulley
system drives the drill stick subsystem. The drill stick
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subsystem may be severely affected by environmental
conditions, which may be represented as disturbances
acting between the pulley and stick subsystems.

Draw a functional block diagram for the above
system, showing its major components as well as all
signals.

Given the electric network shown in Figure P1.6.

[Review]

a. Write the differential equation for the network if
v(t) = u(r), a unit step.

b. Solve the differential equation for the current, i(), if
there is no initial energy in the network.

c. Make a plot of your solution if R/L = 1.

R

M
o\ .

v (1) C:)

FIGURE P1.6 RL network

Repeat Problem 18 using the network shown in
Figure P1.7. Assume R=1Q,L=0.5H, andl/LC=16.
[Review]

V() m T c

FIGURE P1.7 RLC network

Solve the following differential equations using clas-
sical methods. Assume zero initial conditions.

[Review]
d
a. —x+7x=5<:os2t
dt
d’x dx .
b. W+6E+8x=5Sln3t
c d—2x+ 8@+ 25x = 10u(r)
“der dr -

Solve the following differential equations using
classical methods and the given initial conditions:
[Review]

a. d*x

b. d’x
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Problems

d
W+2d—):+2x= sin2t

dx
x(0) = 2; E(O) =-3

dx
— 42— =5 +1
pTE + a +x e~ +

dx
x(0) = 2; E(O) =1

c. d*x

W+4x=t2

dx
x(0) = 1; E(O) =2

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS

22,

23.

Contol of HIV/AIDS. As of 2012, the number of people
living worldwide with Human Immunodeficiency
Virus/Acquired Immune Deficiency Syndrome (HIV/
AIDS) was estimated at 35 million, with 2.3 million
new infections per year and 1.6 million deaths due to
the disease (UNAIDS, 2013). Currently there is no
known cure for the disease, and HIV cannot be com-
pletely eliminated in an infected individual. Drug
combinations can be used to maintain the virus num-
bers at low levels, which helps prevent AIDS from
developing. A common treatment for HIV is the admin-
istration of two types of drugs: reverse transcriptase
inhibitors (RTIs) and protease inhibitors (PIs). The
amount in which each of these drugs is administered
is varied according to the amount of HIV viruses in the
body (Craig, 2004). Draw a block diagram of a feed-
back system designed to control the amount of HIV
viruses in an infected person. The plant input variables
are the amount of RTTs and PIs dispensed. Show blocks
representing the controller, the system under control,
and the transducers. Label the corresponding variables
at the input and output of every block.

Hybrid vehicle. The use of hybrid cars is becoming
increasingly popular. A hybrid electric vehicle (HEV)
combines electric machine(s) with an internal com-
bustion engine (ICE), making it possible (along with
other fuel consumption-reducing measures, such as
stopping the ICE at traffic lights) to use smaller and
more efficient gasoline engines. Thus, the efficiency
advantages of the electric drivetrain are obtained,
while the energy needed to power the electric motor
is stored in the onboard fuel tank and not in a large
and heavy battery pack.

There are various ways to arrange the flow of
power in a hybrid car. In a serial HEV (Figure P1.8),
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the ICE is not connected to the drive shaft. It drives
only the generator, which charges the batteries and/or
supplies power to the electric motor(s) through an
inverter or a converter.

The HEVs sold today are primarily of the parallel
or split-power variety. If the combustion engine can
turn the drive wheels as well as the generator, then the
vehicle is referred to as a parallel hybrid, because both
an electric motor and the ICE can drive the vehicle. A
parallel hybrid car (Figure P1.9) includes a relatively
small battery pack (electrical storage) to put out extra
power to the electric motor when fast acceleration is
needed. See (Bosch, 5th ed., 2000), (Bosch, 7th ed.,
2007), (Edelson, 2008), (Anderson, 2009) for more
detailed information about HEV.

As shown in Figure P1.10, split-power hybrid
cars utilize a combination of series and parallel drives
(Bosch, 5th ed., 2007). These cars use a planetary
gear (3) as a split-power transmission to allow some
of the ICE power to be applied mechanically to the
drive. The other part is converted into electrical energy
through the alternator (7) and the inverter (5) to feed the

Fuel
tank

Electric

FIGURE P1.9 Parallel hybrid drive'”

° Mark Looper, www.Altfuels.org. Alternative Drivetrains, July 2005,
http://www.altfuels.org/backgrnd/altdrive.html. Last accessed 10/13/2009.
"Mark Looper, www.Altfuels.org. Alternative Drivetrains, July 2005,
http://www.altfuels.org/backgrnd/altdrive.html. Last accessed 10/13/2009.

1. internal-combustion engine; 2. tank
3. planetary geatr; 4. electric motor; 5. inverter;
6. battery; 7 alternator.

FIGURE P1.10 Split-power hybrid electric vehicle''

electric motor (downstream of the transmission) and/or
to charge the high-voltage battery (6). Depending upon
driving conditions, the ICE, the electric motor, or both
propel the vehicle.

Draw a functional block diagram for the cruise
(speed) control system of:

a. A serial hybrid vehicle, showing its major compo-
nents, including the speed sensor, electronic control
unit (ECU), inverter, electric motor, and vehicle
dynamics; as well as all signals, including the desired
vehicle speed, actual speed, control command (ECU
output), controlled voltage (inverter output), the
motive force (provided by the electric motor), and
running resistive force;'>

b. A parallel hybrid vehicle, showing its major compo-
nents, which should include also a block that represents
the accelerator, engine, and motor, as well as the signals
(including accelerator displacement and combined
engine/motor motive force);

c. A split-power HEV, showing its major components
and signals, including, in addition to those listed
in Parts a and b, a block representing the planetary
gear and its control, which, depending upon
driving conditions, would allow the ICE, the elec-
tric motor, or both to propel the vehicle, that is, to
provide the necessary total motive force.

""Robert Bosch GmbH, Bosch Automotive Handbook, 7th ed. John Wiley
& Sons, Ltd., UK, 2007.

"2 These include the aerodynamic drag, rolling resistance, and climbing
resistance. The aerodynamic drag is a function of car speed, whereas the
other two are proportional to car weight.
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24. Parabolic trough collector. A set of parabolic mirrors

can be used to concentrate the sun’s rays to heat a
fluid flowing in a pipe positioned at the mirrors’ focal
points (Camacho, 2012). The heated fluid, such as oil,
for example, is transported to a pressurized tank to be
used to create steam to generate electricity or power
an industrial process. Since the solar energy varies
with time of day, time of year, cloudiness, humidity,
etc., a control system has to be developed in order to
maintain the fluid temperature constant. The temper-
ature is mainly controlled by varying the amount of
fluid flow through the pipes, but possibly also with a
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solar tracking mechanism that tilts the mirrors at
appropriate angles.

Assuming fixed mirror angles, draw the func-
tional block diagram of a system to maintain the
fluid temperature a constant. The desired and actual
fluid temperature difference is fed to a controller
followed by an amplifier and signal conditioning
circuit that varies the speed of a fluid circulating
pump. Label the blocks and links of your diagram,
indicating all the inputs to the system, including
external disturbances such as solar variations, cloud-
iness, humidity, etc.

Experiment 1.1

Objective To verify the behavior of closed-loop systems as described in the Chapter 1
Case Study.

Minimum Required Software Packages

LabVIEW and the LabVIEW Control

Design and Simulation Module. Note: While no knowledge of LabVIEW is required for this
experiment, see Appendix D to learn more about LabVIEW, which will be pursued in more
detail in later chapters.

Prelab

1.

From the discussion in the Case Study, describe the effect of the gain of a closed-loop
system upon transient response.

From the discussion in the Case Study about steady-state error, sketch a graph of a step
input superimposed with a step response output and show the steady-state error. Assume
any transient response. Repeat for a ramp input and ramp output response. Describe the
effect of gain upon the steady-state error.

Lab

4.
S.

. Launch LabVIEW and open Find Examples . . . under the Help tab.
. In the NI Example Finder window, open CDEx Effect of Controller Type.vi, found

by navigating to it thourgh Toolkits and Modules/Control and Simulation/Control
Design/Time Analysis/CDEx Effect of Controller Type vi.

On the tool bar click the circulating arrows located next to the solid arrow on the left. The
program is now running.

Move the slider Controller Gain and note the effect of high and low gains.

Change the controller by clicking the arrows for Controller Type and repeat Step 4.

Postlab

1.

Correlate the responses found in the experiment with those described in your Prelab.
Explore other examples provided in the LabVIEW example folders.
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Modeling in the
Frequency Domain

Chapter Learning Outcomes

After completing this chapter, the student will be able to:

Find the Laplace transform of time functions and the inverse Laplace transform
(Sections 2.1-2.2)

Find the transfer function from a differential equation and solve the differential
equation using the transfer function (Section 2.3)

Find the transfer function for linear, time-invariant electrical networks
(Section 2.4)

Find the transfer function for linear, time-invariant translational mechanical
systems (Section 2.5)

Find the transfer function for linear, time-invariant rotational mechanical
systems (Section 2.6)

Find the transfer functions for gear systems with loss and for gear systems with
no loss (Section 2.7)

Find the transfer function for linear, time-invariant electromechanical systems
(Section 2.8)

Produce analogous electrical and mechanical circuits (Section 2.9)

Linearize a nonlinear system in order to find the transfer function
(Sections 2.10-2.11)
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Chapter 2 Modeling in the Frequency Domain

Case Study Learning Outcomes

2.1 Introduction

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

® Given the antenna azimuth position control system shown on the front
endpapers, you will be able to find the transfer function of each subsystem.

® Given a model of a human leg or a nonlinear electrical circuit, you will be able to
linearize the model and then find the transfer function.

FIGURE 2.1 a. Block
diagram representation of a
system; b. block diagram
representation of an
interconnection of subsystems

In Chapter 1 we discussed the analysis and design sequence that included obtaining the
system’s schematic and demonstrated this step for a position control system. To obtain a
schematic, the control systems engineer must often make many simplifying assumptions in
order to keep the ensuing model manageable and still approximate physical reality.

The next step is to develop mathematical models from schematics of physical
systems. We will discuss two methods: (1) transfer functions in the frequency domain
and (2) state equations in the time domain. These topics are covered in this chapter and in
Chapter 3, respectively. As we proceed, we will notice that in every case the first step in
developing a mathematical model is to apply the fundamental physical laws of science and
engineering. For example, when we model electrical networks, Ohm’s law and Kirchhoff’s
laws, which are basic laws of electric networks, will be applied initially. We will sum
voltages in a loop or sum currents at a node. When we study mechanical systems, we will
use Newton’s laws as the fundamental guiding principles. Here we will sum forces or
torques. From these equations we will obtain the relationship between the system’s output
and input.

In Chapter 1 we saw that a differential equation can describe the relationship between
the input and output of a system. The form of the differential equation and its coefficients are
a formulation or description of the system. Although the differential equation relates the
system to its input and output, it is not a satisfying representation from a system perspective.
Looking at Eq. (1.2), a general, nth-order, linear, time-invariant differential equation, we see
that the system parameters, which are the coefficients, appear throughout the equation. In
addition, the output, c(?), and the input, r(¢), also appear throughout the equation.

We would prefer a mathematical representation such as that shown in Figure 2.1(a),
where the input, output, and system are distinct and separate parts. Also, we would like
to represent conveniently the interconnection of several subsystems. For example, we
would like to represent cascaded interconnections, as shown in Figure 2.1(b), where a
mathematical function, called a transfer function, is inside each block, and block functions

Input Output
——— | System [———
(1) c(t)
(@)
Input Output
T» Subsystem [—| Subsystem [—| Subsystem T»
m c

®

Note: The input, (), stands for reference input.
The output, c(1), stands for controlled variable.
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can easily be combined to yield Figure 2.1(a) for ease of analysis and design. This
convenience cannot be obtained with the differential equation.

2.2 Laplace Transform Review

35

A system represented by a differential equation is difficult to model as a block diagram.
Thus, we now lay the groundwork for the Laplace transform, with which we can represent
the input, output, and system as separate entities. Further, their interrelationship will be
simply algebraic. Let us first define the Laplace transform and then show how it simplifies
the representation of physical systems (Nilsson, 1996).

The Laplace transform is defined as

DLW = Fs) = /0 fwear @.1)

where s = ¢ + jw, a complex variable. Thus, knowing f{7) and that the integral in Eq. (2.1)
exists, we can find a function, F(s), that is called the Laplace transform of f(r)."

The notation for the lower limit means that even if f(¢) is discontinuous at r = 0, we
can start the integration prior to the discontinuity as long as the integral converges.
Thus, we can find the Laplace transform of impulse functions. This property has distinct
advantages when applying the Laplace transform to the solution of differential
equations where the initial conditions are discontinuous at t = (. Using differential
equations, we have to solve for the initial conditions after the discontinuity knowing the
initial conditions before the discontinuity. Using the Laplace transform we need only
know the initial conditions before the discontinuity. See Kailath (1980) for a more
detailed discussion.

The inverse Laplace transform, which allows us to find f{(¢) given F(s), is

—1 1 o st
ZF()] = / F(s)e"ds = f(t)u(t) 2.2)

27 —joo

where

ut)y=1 t>0
=0 <0

is the unit step function. Multiplication of f{r) by u(¢) yields a time function that is zero for
t<0.

Using Eq. (2.1), it is possible to derive a table relating f{(¢) to F(s) for specific cases.
Table 2.1 shows the results for a representative sample of functions. If we use the tables, we
do not have to use Eq. (2.2), which requires complex integration, to find f{r) given F(s).

"The Laplace transform exists if the integral of Eq. (2.1) converges. The integral will converge if
JElf@ledt < co. If |f(2)| < Me™,0 < t < oo, the integral will converge if oo > 61 > 6,. We call 0, the
abscissa of convergence, and it is the smallest value of o, where s = ¢ + jw, for which the integral exists.
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TABLE 2.1 Laplace transform table

Item no. f@® F(s)

1. 5(1) 1
1

2. u(t) 5
1

3. tu(t) 2
n!

4. "u(t) e
1

5. e~ u(t) T a
w

6. sin wtu(t) o
N

7. cos wtu(r) Zra?

In the following example we demonstrate the use of Eq. (2.1) to find the Laplace
transform of a time function.

Laplace Transform of a Time Function

PROBLEM: Find the Laplace transform of f(r) = Ae™“u(t).

SOLUTION: Since the time function does not contain an impulse function, we can replace
the lower limit of Eq. (2.1) with 0. Hence,

F(s) = / f)e™" dr = / Ae~@e™" dt = A / O gy
0 0 0
% A

A —_
s+a =0 S+a (2.3)

e—(s+a)t

In addition to the Laplace transform table, Table 2.1, we can use Laplace transform
theorems, listed in Table 2.2, to assist in transforming between f(f) and F(s). In the next
example, we demonstrate the use of the Laplace transform theorems shown in Table 2.2 to
find f(¥) given F(s).

Inverse Laplace Transform

PROBLEM: Find the inverse Laplace transform of F(s) = 1 /(s + 3)%

SOLUTION: For this example we make use of the frequency shift theorem, Item 4 of
Table 2.2, and the Laplace transform of f(¢) = tu(t), Item 3 of Table 2.1. If the inverse
transform of F(s) = 1/s% is tu(r), the inverse transform of F(s + a) = 1/(s + a)* is e tu(r).
Hence, f,(t) = e >'tu(t).
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TABLE 2.2 Laplace transform theorems

Item no. Theorem Name
1. ZIfO] =F(s) = [;° f(t)e™dt Definition
2 ZNkf(1)] = kF(s) Linearity theorem
3. LLUf1(0) +f2(0)] = Fi(s) + Fa(s) Linearity theorem
4. ZLle f(1)] =F(s+a) Frequency shift theorem
5 ZIft=T) =e>TF(s) Time shift theorem
6. Zf(an)] = lF (i) Scaling theorem
a a
[df . .
7 4 o = sF(s) — f(0-) Differentiation theorem
t
[d>f . _
8 4 o =2 F(s) — sf(0=) —f'(0-) Differentiation theorem
: t
[df n ik ke Differentiation theorem
9. z- =5"F(s) = Y SN0-)
L k=1
+ F(s) .
10. % [ Jo f (T)dr] =7 Integration theorem
0- s
11. f(0) = 11m0 sF(s) Final value theorem'
12. F(0+) = lim sF(s) Initial value theorem?

"For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts, and
no more than one can be at the origin.

%For this theorem to be valid, f{r) must be continuous or have a step discontinuity at t = O (that is, no impulses or
their derivatives at ¢t = 0).

Partial-Fraction Expansion

To find the inverse Laplace transform of a complicated function, we can convert the function to
a sum of simpler terms for which we know the Laplace transform of each term. The result is
called a partial-fraction expansion. If Fi(s) = N(s)/D(s), where the order of N(s) is less than
the order of D(s), then a partial-fraction expansion can be made. If the order of N(s) is greater
than or equal to the order of D(s), then N(s) must be divided by D(s) successively until the
result has a remainder whose numerator is of order less than its denominator. For example, if

S22 +65+7

F =
1(s) 2 +5+5

(2.4)
we must perform the indicated division until we obtain a remainder whose numerator is of
order less than its denominator. Hence,

Fi(s)=s+1+ (25)

s2+s5+5
Taking the inverse Laplace transform, using Item 1 of Table 2.1, along with the differentiation
theorem (Item 7) and the linearity theorem (Item 3 of Table 2.2), we obtain

ds(t)

f10)=—=+6n+Z"! {

dt 52+ 5+ 5} 26)

Using partial-fraction expansion, we will be able to expand functions like F(s) =
2/(s> + s + 5) into a sum of terms and then find the inverse Laplace transform for each
term. We will now consider three cases and show for each case how an F(s) can be
expanded into partial fractions.
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Case 1. Roots of the Denominator of F(s) Are Real and Distinct
An example of an F(s) with real and distinct roots in the denominator is

2

PO =56+

(2.7)
The roots of the denominator are distinct, since each factor is raised only to unity power. We
can write the partial-fraction expansion as a sum of terms where each factor of the original
denominator forms the denominator of each term, and constants, called residues, form the
numerators. Hence,

2 K, K>

F(s) = — + 2.8
= D612 " 6+D  6+2) @8)
To find K, we first multiply Eq. (2.8) by (s + 1), which isolates K. Thus,
2 + 1)K
s+ DK, (2.9)

(s+2)= it (s+2)

Letting s approach —1 eliminates the last term and yields K| = 2. Similarly, K, can be found
by multiplying Eq. (2.8) by (s + 2) and then letting s approach —2; hence, K, = —2.

Each component part of Eq. (2.8) is an F(s) in Table 2.1. Hence, f(¢) is the sum of the
inverse Laplace transform of each term, or

() = (2™ = 27 u(r) (2.10)

In general, then, given an F(s) whose denominator has real and distinct roots, a partial-
fraction expansion,

i)=Y _ Ns)
D(s) (s+p)(s+py)--(s+p,)(s+p,)
K, K> K, K,
Torp) Ay T ew T T T 2.11)

can be made if the order of N(s) is less than the order of D(s). To evaluate each residue, K,
we multiply Eq. (2.11) by the denominator of the corresponding partial fraction. Thus, if we
want to find K,,, we multiply Eq. (2.11) by (s + p,,) and get

_ (s + P, )N(s)
) = oG+ P2 s ) G+ 7)
- (s+pm)(sf—'pl)+(s+pm)ﬁ+ Kk
+(S+pm)(s +jnn) (2.12)

If we let s approach —p,),, all terms on the right-hand side of Eq. (2.12) go to zero except the
term K,,, leaving

s—+P,)N(s)
(s +p)(s+p2) - lsAp, - (s +py) Is— -,
The following example demonstrates the use of the partial-fraction expansion to solve

a differential equation. We will see that the Laplace transform reduces the task of finding the
solution to simple algebra.

=K, (2.13)
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Laplace Transform Solution of a Differential Equation

PROBLEM: Given the following differential equation, solve for y(¢) if all initial conditions
are zero. Use the Laplace transform.

d’y o dy

SOLUTION: Substitute the corresponding F(s) for each term in Eq. (2.14), using Item 2 in
Table 2.1, Items 7 and 8 in Table 2.2, and the initial conditions of y(¢) and dy(¢)/dt given
by y(0—) = 0 and y(0—) = 0, respectively. Hence, the Laplace transform of Eq. (2.14) is

s7Y(s) + 12sY(s) + 32Y(s) = o (2.15)
Solving for the response, Y(s), yields

o3
TS24+ 1254 32)  s(s+4)(s+8)

Y(s) (2.16)
To solve for y(7), we notice that Eq. (2.16) does not match any of the terms in Table 2.1. Thus,
we form the partial-fraction expansion of the right-hand term and match each of the resulting
terms with F(s) in Table 2.1. Therefore,

32 K] KZ KS
Y(s) = =2 2.17
= GTa618 5 618 619 @17
where, from Eq. (2.13),
32
Ki=— =1 2.18
LT G +8) -0 (2.182)
32
Ky=—""_ = 2.18b
: s(s+8)ls——4 ( )
32
== = 2.18
’ s(s+4)ls—-3 (2.18¢)
Hence,
Y(s) =l 2 ! (2.19)

s_(s+4)+(s+8)

Since each of the three component parts of Eq. (2.19) is represented as an F(s) in
Table 2.1, y(¢) is the sum of the inverse Laplace transforms of each term. Hence,

y(t) = (1 =2 + e 3u(r) (2.20)

Students who are using MATLAB should now run ch2pl through ch2p8
in Appendix B. This is your first MATLAB exercise. Youwill learn
how to use MATLAB to (1) represent polynomials, (2) find roots of
polynomials, (3) multiply polynomials, and (4) find partial-
fraction expansions. Finally, Example 2.3 will be solved using
MATLAB.
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Trylt 2.1

Use the following MATLAB
and Control System Toolbox
statement to form the linear,
time-invariant (LTI) transfer
function of Eq. (2.22).

F=zpk@,[-1 -2 -21,2)

Trylt 2.2

Use the following MATLAB
statements to help you get
Eq. (2.26).

numf=2;

denf=poly(-1 -2 -2J];

[K,p,kIresidue. ..
(numf, denf)

Chapter 2 Modeling in the Frequency Domain

The u(t) in Eq. (2.20) shows that the response is zero until # = 0. Unless otherwise
specified, all inputs to systems in the text will not start until # = 0. Thus, output responses
will also be zero until # = 0. For convenience, we will leave off the u(f) notation from now
on. Accordingly, we write the output response as

Wt)=1=2e4 4% (2.21)
Case 2. Roots of the Denominator of F(s) Are Real and Repeated
An example of an F(s) with real and repeated roots in the denominator is
2
F(s) (2.22)

- (s + 1)(s+2)2

The roots of (s +2)* in the denominator are repeated, since the factor is raised to an
integer power higher than 1. In this case, the denominator root at —2 is a multiple root of
multiplicity 2.

We can write the partial-fraction expansion as a sum of terms, where each factor of the
denominator forms the denominator of each term. In addition, each multiple root generates
additional terms consisting of denominator factors of reduced multiplicity. For example, if

— 2 _ Kl + K2 n K3
T DsH2? D (5427 (5+2)

F(s)

(2.23)

then K; = 2, which can be found as previously described. K, can be isolated by multiplying
Eq. (2.23) by (s + 2)°, yielding

2 ,» Ki
- o)
s+1 (s+ )(s+1)

Letting s approach —2, K, = —2. To find K3 we see that if we differentiate Eq. (2.24) with
respect to s,

+ Ky + (s +2)K;3 (2.24)

-2 (s+2)s

(2.25)

K3 is isolated and can be found if we let s approach —2. Hence, K3 = —2.
Each component part of Eq. (2.23) is an F{(s) in Table 2.1; hence, f(¥) is the sum of the
inverse Laplace transform of each term, or
f(t) =2e" = 21e™H — 27 (2.26)
If the denominator root is of higher multiplicity than 2, successive differentiation would
isolate each residue in the expansion of the multiple root.

In general, then, given an F(s) whose denominator has real and repeated roots, a
partial-fraction expansion

F(s) = %
_ N(s)
S (s+p) (s+py) e (s+p,)
Kl KZ Kr Kr+1 Kn

(2.27)

Totn) apy T T swe) T T Tt
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can be made if the order of N(s) is less than the order of D(s) and the repeated roots are of
multiplicity r at —p;. To find K through K, for the roots of multiplicity greater than unity,
first multiply Eq. (2.27) by (s + p;)" getting F(s), which is

Fi(s) = (s+p) F(s)

_ (s +p1)'N(s)
(s+p)(s+py)---(s+p,)

=K +(+p)Ks+(s+p) Kz + - +(s+p) 'K,

+Kr+1(s+p1)r Kn(s+p1)r
(s+P2) (s+p,) (2.28)

Immediately, we can solve for K if we let s approach —p;. We can solve for K, if we
differentiate Eq. (2.28) with respect to s and then let s approach —p,. Subsequent
differentiation will allow us to find K3 through K,. The general expression for K through
K, for the multiple roots is

1 d™'Fy(s) .
Ki= oD sy, 1= 12ear O1=1 (2.29)

Case 3. Roots of the Denominator of F(s) Are Complex or Imaginary
An example of F(s) with complex roots in the denominator is

3
F(§)=—5——— 2.30
® s(s2+ 25 +5) 230)
This function can be expanded in the following form:
3 K, Krs + K3
s(s2+2s+5) s s2+25+5 @31

K is found in the usual way to be % K> and K3 can be found by first multiplying Eq. (2.31)
by the lowest common denominator, s(s>+ 2s+5), and clearing the fractions. After
simplification with K| =2, we obtain

3 6
3= (Kz +5)s2 + <K3 +5>s +3 (2.32)

Balancing coefficients, (K> +32) =0 and (K3 +%) =0. Hence K, = -2 and K3 = -4
Thus,

F(s) 3 353 s+2 (2.33)

=s(s2+2s+5)_ s 58242545

The last term can be shown to be the sum of the Laplace transforms of an
exponentially damped sine and cosine. Using Item 7 in Table 2.1 and Items 2 and 4 in
Table 2.2, we get

A(s + a)

Z[Ae™ cos wt] = ———5——
(s+a) +w?

(2.34)

Trylt 2.3

Use the following MATLAB
and Control System Toolbox
statement to form the LTI
transfer function of Eq. (2.30).

F=tf@3L[1 2 5 0D
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Trylt 2.4

Use the following MATLAB

and Symbolic Math Toolbox

statements to get Eq. (2.38) from

Eq. (2.30).

syms s

f=ilaplace. ..
GBAs(s"2+2*s+5));

pretty(f)

Chapter 2 Modeling in the Frequency Domain

Similarly,
B
F|Be sinwt] = — 2 (2.35)
(s + a)* + ?
Adding Egs. (2.34) and (2.35), we get
A B
ZAe ™ cos wt + Be™“sin wt] = Als+a)+ Bo (2.36)
(s + a)* + ?

We now convert the last term of Eq. (2.33) to the form suggested by Eq. (2.36) by
completing the squares in the denominator and adjusting terms in the numerator without
changing its value. Hence,

3/5_36+1+1/202)

F(s) = 2.37
©=""3 (s+1)* +22 (2.37)
Comparing Eq. (2.37) to Table 2.1 and Eq. (2.36), we find
3 3 1
f() = 575 e’ (cos 2t + 3 sin Zz‘) (2.38)

In order to visualize the solution, an alternate form of f{f), obtained by trigonometric
identities, is preferable. Using the amplitudes of the cos and sin terms, we factor out

V14 /2)2 from the term in parentheses and obtain
3 3
[y =5-3\ 1P+ 0/

cos 2t + sin 2¢ (2.39)

1 1/2
12+ (1/2)? 12+ (1/2)

Letting 1/1/1% + (1/2)* = cos ¢ and (1/2)/4/1% + (1/2)* = sin ¢,

[ = % - % \/ 12 4 (1/2)¢™*(cos ¢ cos 2t + sin ¢p sin 27) (2.40)
or
f(t) =0.6 —0.671e "cos (2t — ¢) (2.41)

where ¢ = arctan 0.5 = 26.57°. Thus, f(¢) is a constant plus an exponentially damped
sinusoid.

In general, then, given an F(s) whose denominator has complex or purely imaginary
roots, a partial-fraction expansion,

_NG) _ N(s)
S D(s)  (s+p)+as+b)---

_ K] (KZS + K3) L
C(s+p) (SPHas+b) (2.42)

F(s)
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can be made if the order of N(s) is less than the order of D(s) p, is real, and (s> + as + b)
has complex or purely imaginary roots. The complex or imaginary roots are expanded
with (K;s + K3) terms in the numerator rather than just simply K, as in the case of real roots.
The K;’s in Eq. (2.42) are found through balancing the coefficients of the equation
after clearing fractions. After completing the squares on (s* + as + b) and adjusting the
numerator, (K,s + K3)/(s*> + as + b) can be put into the form shown on the right-hand side
of Eq. (2.36).

Finally, the case of purely imaginary roots arises if a =0 in Eq. (2.42). The
calculations are the same.

Another method that follows the technique used for the partial-fraction expansion of
F(s) with real roots in the denominator can be used for complex and imaginary roots.
However, the residues of the complex and imaginary roots are themselves complex
conjugates. Then, after taking the inverse Laplace transform, the resulting terms can be
identified as

Jjo —jo
e coso (2.43)
2
and
JjO _ ,—if
& Tl sing (2.44)
2j

For example, the previous F(s) can also be expanded in partial fractions as

3 3
F = =
) s(s2+2s+35)  s(s+1+2)(s+1—-,2)
K K K
==ty
s os+14+72 s+1-)2 (2.45)

Finding K>,

3

3
Ki=——> 224l 2.46
2T 1-02) 202+ (2:46)

s——1-2

Similarly, K3 is found to be the complex conjugate of K, and K is found as previously

described. Hence,
3/5 3 241 2—jl1
F(s)=——— 2.47
() == 20(s+l+j2+s+1—j2 (247)

from which

(2 +j1)e” M 4 (2 — j1)e 1 2)]

&2 4 o2t @2 4 o2
4 +2 -
2 2j (2.48)

Using Egs. (2.43) and (2.44), we get

S|

f) =

=—_ = e_t

WDl W W

8|

3 3 1
f@o) = 5~ ge" (cos 2t + 3 sin 2t> =0.6 —0.671e"cos (2t — ¢) (2.49)

where ¢ = arctan 0.5 = 26.57°.

Trylt 2.5

Use the following MATLAB
statements to help you get
Eq. (2.47).

numf=3

denfH{1 2 5 0]

[K,p,kIresidue. ..
(numf, denf)
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Symbolic Math

Chapter 2 Modeling in the Frequency Domain

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch2spl and ch2sp2 in Appendix F at www.wiley.com/
college/nise. Youwill learn how to construct symbolic objects and
then find the inverse Laplace and Laplace transforms of frequency
and time functions, respectively. The examples in Case 2 and Case 3
in this section will be solved using the Symbolic Math Toolbox.

Skill-Assessment Exercise 2.1

PROBLEM: Find the Laplace transform of f(f) = te™".

ANSWER: F(s) = 1/(s +5)*

The complete solution is at www.wiley.com/college/nise.

Skill-Assessment Exercise 2.2

PROBLEM: Find the inverse Laplace transform of F(s) = 10/[s(s + 2)(s + 3)*].

ANSWER: (1) = g —5¢7 + 13—0te_3t + %e‘y

The complete solution is at www.wiley.com/college/nise.

2.3 The Transfer Function

In the previous section we defined the Laplace transform and its inverse. We presented the
idea of the partial-fraction expansion and applied the concepts to the solution of differential
equations. We are now ready to formulate the system representation shown in Figure 2.1 by
establishing a viable definition for a function that algebraically relates a system’s output to
its input. This function will allow separation of the input, system, and output into three
separate and distinct parts, unlike the differential equation. The function will also allow us to
algebraically combine mathematical representations of subsystems to yield a total system
representation.

Let us begin by writing a general nth-order, linear, time-invariant differential
equation,

d"c(t) d"le(r)
n =g T =1 g

d"r(t)
drm

4" r(1)
d m— 1

+ --+ +apc(t) = by,

+ by

+ +oe 4 bor(t)
(2.50)
where c(?) is the output, r(¢) is the input, and the a;’s, b;’s, and the form of the differential
equation represent the system. Taking the Laplace transform of both sides,
a,s"C(s) + a,—15"1C(s) + -+ + apC(s) + initial condition
terms involving c(f)
= bys"R(S) + byu_15"'R(s) + - -+ + boR(s) + initial condition
terms involving r(¢) (2.51)
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2.3 The Transfer Function

Equation (2.51) is a purely algebraic expression. If we assume that all initial conditions are
zero, Eq. (2.51) reduces to

(anS" + ap 18"+ -+ +a0)C(s) = (bys™ + bpu_15™ " + -+ + bo)R(s) (2.52)

Now form the ratio of the output transform, C(s), divided by the input transform, R(s):

C(s)
")~

_ (bms™ + bp_15™ '+ -+« +by)
T (ans" + oS+ - +ap)

G(s) (2.53)

Notice that Eq. (2.53) separates the output, C(s), the input, R(s), and the system, which is the
ratio of polynomials in s on the right. We call this ratio, G(s), the transfer function and
evaluate it with zero initial conditions.

45

The transfer function can be represented as a block diagram, as shown

R(s) (™ + by 8™ 4 - - -+ by) C(s)

in Figure 2.2, with the input on the left, the output on the right, and the >
system transfer function inside the block. Notice that the denominator of

(aﬂsn + an_lsnfl +o At a())

the transfer function is identical to the characteristic polynomial of the

differential equation. Also, we can find the output, C(s) by using function

C(s) = R(5)G(s) (2.54)

Let us apply the concept of a transfer function to an example and then use the result to find
the response of the system.

Example 2.4

Transfer Function for a Differential Equation
PROBLEM: Find the transfer function represented by

de(t) _
— 20 =10 (2.55)

SOLUTION: Taking the Laplace transform of both sides, assuming zero initial conditions,

we have
sC(s) +2C(s) = R(s) (2.56)
The transfer function, G(s), is
C(s) 1
G(s)=—== 2.57
(s) R(s) s+2 ( )

FIGURE 2.2 Block diagram of a transfer

Students who are using MATLAB should now run ch2p9 through ch2p12
in Appendix B. Youwill learn how to use MATLAB to create transfer
functions with numerators and denominators in polynomial or fac-
tored form. You will also learn how to convert between polynomial
and factored forms. Finally, you will learn how to use MATLAB to
plot time functions.

MATLAB
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Symbolic Math

Trylt 2.6

Use the following MATLAB
and Symbolic Math Toolbox
statements to help you get
Eq. (2.60).

syms s

C=1/(s (s +2))
C=ilaplace(C)

Trylt 2.7

Use the following MATLAB
statements to plot Eq. (2.60) for ¢
from O to 1 sat intervals of 0.01 s.

t=0:0.01:3;
plot...
(t, (/2 -1/2%exp (-2*t))

Chapter 2 Modeling in the Frequency Domain

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch2sp3 in Appendix F at ww.wiley.com/college/nise.
You will learn how to use the Symbolic Math Toolbox to simplify
the input of complicated transfer functions as well as improve
readability. You will learn how to enter a symbolic transfer
function and convert it to a linear, time-invariant (LTIl) object as
presented in Appendix B, ch2p9.

System Response from the Transfer Function

PROBLEM: Use the result of Example 2.4 to find the response, c(f) to an input,
r(t) = u(t), a unit step, assuming zero initial conditions.

SOLUTION: To solve the problem, we use Eq. (2.54), where G(s) = 1/(s + 2) as found
in Example 2.4. Since r(¢) = u(t), R(s) = 1/s, from Table 2.1. Since the initial conditions
are zero,

1
C(s) = R(s)G(s) = 2.58
()= ROIG6) = i (258)
Expanding by partial fractions, we get
/2 1)2
C(s)=—— 2.59
(s) T T a2 (2.59)
Finally, taking the inverse Laplace transform of each term yields
1 1
c(f)==—=e (2.60)

2 2

Skill-Assessment Exercise 2.3

PROBLEM: Find the transfer function, G(s)= C(s)/R(s), corresponding to the differential

. dc _dc _dc d’r  dr
equation ﬁ+3ﬁ+ 7 +5c¢ _d2+4d +3r.
C(s) s> 4+4s5+73
ANSWER: G _—
()= R(s) $3+3s2+7s+5

The complete solution is at www.wiley.com/college/nise.

Skill-Assessment Exercise 2.4

PROBLEM: Find the differential equation corresponding to the transfer function,

25+ 1
G(S)_s2+6s+2
d*c  dc dr
ANSWER: d2+6d_+2 2d—+r

The complete solution is at www.wiley.com/college/nise.
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Skill-Assessment Exercise 2.5

PROBLEM: Find the ramp response for a system whose transfer function is

S
Gis)=—
(s) (s + 4)(s + 8)
. _ _1 a1y
ANSWER: () =5~z + e

The complete solution is at www.wiley.com/college/nise.

In general, a physical system that can be represented by a linear, time-invariant
differential equation can be modeled as a transfer function. The rest of this chapter will be
devoted to the task of modeling individual subsystems. We will learn how to represent
electrical networks, translational mechanical systems, rotational mechanical systems, and
electromechanical systems as transfer functions. As the need arises, the reader can consult
the Bibliography at the end of the chapter for discussions of other types of systems, such as
pneumatic, hydraulic, and heat-transfer systems (Cannon, 1967).

2.4 Electrical Network Transfer Functions

In this section, we formally apply the transfer function to the mathematical modeling of
electric circuits including passive networks and operational amplifier circuits. Subsequent
sections cover mechanical and electromechanical systems.

Equivalent circuits for the electric networks that we work with first consist of three
passive linear components: resistors, capacitors, and inductors.” Table 2.3 summarizes the
components and the relationships between voltage and current and between voltage and
charge under zero initial conditions.

We now combine electrical components into circuits, decide on the input and output,
and find the transfer function. Our guiding principles are Kirchhoff’s laws. We sum voltages
around loops or sum currents at nodes, depending on which technique involves the least

TABLE 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Impedance Admittance
Component Voltage-current Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s) =1I(s)/V(s)
1/t dv(r) 1 1
_| g =z /0 i(t)dr i(r)=C— = V(1) = 40 I Cs
Capacitor
. . 1 dq(t) 1
A/W— Wb) = Rir) i(1) = 2v(0) W) =REZ R ==G
Resistor
di(r) o1t d*q(1) 1
N =127 0= [voar o =124 s L
Inductor

Note: The following set of symbols and units is used throughout this book: v(f) — V (volts), i(f) — A (amps), g(t) — Q (coulombs), C — F (farads),
R — Q (ohms), G — Q (mhos), L — H (henries).

2 . . .
Passive means that there is no internal source of energy.
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Example 2.6

v(t)

+
> € A~ ve®  SOLUTION: In any problem, the designer must first decide what the input and
i(1) /‘\

Chapter 2 Modeling in the Frequency Domain

effort in algebraic manipulation, and then equate the result to zero. From these relationships
we can write the differential equations for the circuit. Then we can take the Laplace
transforms of the differential equations and finally solve for the transfer function.

Simple Circuits via Mesh Analysis

Transfer functions can be obtained using Kirchhoff’s voltage law and summing voltages
around loops or meshes.” We call this method loop or mesh analysis and demonstrate it in
the following example.

Transfer Function—Single Loop via the
Differential Equation

PROBLEM: Find the transfer function relating the capacitor voltage, V¢(s), to
the input voltage, V(s) in Figure 2.3.

output should be. In this network, several variables could have been chosen to be the
output—for example, the inductor voltage, the capacitor voltage, the resistor voltage,

FIGURE 2.3 RLC network or the current. The problem statement, however, is clear in this case: We are to treat the

capacitor voltage as the output and the applied voltage as the input.
Summing the voltages around the loop, assuming zero initial conditions,
yields the integro-differential equation for this network as

d;(t) T Ri(t) + / i(X)dz = v(1) 2.61)

Changing variables from current to charge using i(¢) = dq(t)/dr yields

d*q(t) . dq(r)

L a2 R—+— q(t) = (1) (2.62)
From the voltage-charge relationship for a capacitor in Table 2.3,
q(t) = Cvc(1) (2.63)
Substituting Eq. (2.63) into Eq. (2.62) yields
dzvc(f) dvc(?)
LC a2 RC 7 +ve(f) = (1) (2.64)

Taking the Laplace transform assuming zero initial conditions, rearranging terms, and
simplifying yields

. (LCs* + RCs + 1)V¢(s) = V(s) (2.65)
V(s T \%
v 1§C ; v >  Solving for the transfer function, V¢(s)/V(s), we obtain
2+ s + =
LC
Vels) 1/LC (2.66)
FIGURE 2.4 Block diagram of V(s) Pt — '
series RLC electrical network L LC

as shown in Figure 2.4.

3 A particular loop that resembles the spaces in a screen or fence is called a mesh.
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Let us now develop a technique for simplifying the solution for future problems. First,
take the Laplace transform of the equations in the voltage-current column of Table 2.3
assuming zero initial conditions.

For the capacitor,

V(s) = é](s) (2.67)
For the resistor,

V(s) = RI(s) (2.68)
For the inductor,

V(s) = LsI(s) (2.69)

Now define the following transfer function:

Vi(s) _
o =20 (2.70)

Notice that this function is similar to the definition of resistance, that is, the ratio of
voltage to current. But, unlike resistance, this function is applicable to capacitors and
inductors and carries information on the dynamic behavior of the component, since it
represents an equivalent differential equation. We call this particular transfer function
impedance. The impedance for each of the electrical elements is shown in Table 2.3.

Let us now demonstrate how the concept of impedance simplifies the solution for the
transfer function. The Laplace transform of Eq. (2.61), assuming zero initial conditions, is

1
(Ls +R+ —) I(s) = V(s) (2.71)
Cs
Notice that Eq. (2.71), which is in the form
[Sum of impedances]/(s) = [Sum of applied voltages] (2.72)

suggests the series circuit shown in Figure 2.5. Also notice that the circuit of Figure 2.5
could have been obtained immediately from the circuit of Figure 2.3 simply by replacing
each element with its impedance. We call this altered circuit the transformed circuit.
Finally, notice that the transformed circuit leads immediately to Eq. (2.71) if we add
impedances in series as we add resistors in series. Thus, rather than writing the differential
equation first and then taking the Laplace transform, we can draw the transformed circuit
and obtain the Laplace transform of the differential equation simply by applying Kirchhoff’s

V(s)
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Ls R

1 +
: T~ Ve(s)
1(s)

voltage law to the transformed circuit. We summarize the steps as follows: FIGURE 2.5 Laplace-transformed

network

1. Redraw the original network showing all time variables, such as v(z), i(f), and v¢(7), as
Laplace transforms V(s), I(s), and V¢(s), respectively.

2. Replace the component values with their impedance values. This replacement is similar
to the case of dc circuits, where we represent resistors with their resistance values.

We now redo Example 2.6 using the transform methods just described and bypass the
writing of the differential equation.
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Example 2.7
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Transfer Function—Single Loop via Transform Methods

PROBLEM: Repeat Example 2.6 using mesh analysis and transform methods without
writing a differential equation.

SOLUTION: Using Figure 2.5 and writing a mesh equation using the impedances as we
would use resistor values in a purely resistive circuit, we obtain

<Ls +R+ i) I(s) = V(s) (2.73)
Cs
Solving for I(s)/V(s),

1) _ ! (2.74)

V(s) 1
Ls+R+—
s Cs

But the voltage across the capacitor, V(s), is the product of the current and the impedance
of the capacitor. Thus,

Vels) = 1(s) é (2.75)

Solving Eq. (2.75) for I(s) substituting I(s) into Eq. (2.74), and simplifying yields the same
result as Eq. (2.66).

Example 2.8

Simple Circuits via Nodal Analysis

Transfer functions also can be obtained using Kirchhoff’s current law and summing currents
flowing from nodes. We call this method nodal analysis. We now demonstrate this principle
by redoing Example 2.6 using Kirchhoff’s current law and the transform methods just
described to bypass writing the differential equation.

Transfer Function—Single Node via Transform Methods

PROBLEM: Repeat Example 2.6 using nodal analysis and without writing a differential
equation.

SOLUTION: The transfer function can be obtained by summing currents flowing out of the
node whose voltage is V(s) in Figure 2.5. We assume that currents leaving the node are
positive and currents entering the node are negative. The currents consist of the current
through the capacitor and the current flowing through the series resistor and inductor. From
Eq. (2.70), each I(s) = V(s)/Z(s). Hence,

Ves) Vel = V) _
1/Cs R+Ls

(2.76)

where V(s)/(1/Cs) is the current flowing out of the node through the capacitor, and
[Ve(s) — V(s)]/(R + Ls) is the current flowing out of the node through the series resistor
and inductor. Solving Eq. (2.76) for the transfer function, V¢(s)/V (s), we arrive at the same
result as Eq. (2.66).
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Simple Circuits via Voltage Division
Example 2.6 can be solved directly by using voltage division on the transformed network.
We now demonstrate this technique.

Example 2.9

Transfer Function—Single Loop via Voltage Division

PROBLEM: Repeat Example 2.6 using voltage division and the transformed circuit.

SOLUTION: The voltage across the capacitor is some proportion of the input voltage,
namely the impedance of the capacitor divided by the sum of the impedances. Thus,

Vet =L v
<LS +R+ a)

Solving for the transfer function, Vc(s)/V(s), yields the same result as Eq. (2.66).
Review Examples 2.6 through 2.9. Which method do you think is easiest for this
circuit?

(2.77)
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The previous example involves a simple, single-loop electrical network. Many
electrical networks consist of multiple loops and nodes, and for these circuits we must
write and solve simultaneous differential equations in order to find the transfer function, or
solve for the output.

Complex Circuits via Mesh Analysis
To solve complex electrical networks—those with multiple loops and nodes—using mesh
analysis, we can perform the following steps:

Replace passive element values with their impedances.

Replace all sources and time variables with their Laplace transform.
Assume a transform current and a current direction in each mesh.
Write Kirchhoff’s voltage law around each mesh.

Solve the simultaneous equations for the output.

AN o e

Form the transfer function.

Let us look at an example.

Example 2.10

Transfer Function—Multiple Loops

PROBLEM: Given the network of Figure 2.6(a), find the transfer function, I5(s)/V(s).

SOLUTION: The first step in the solution is to convert the network into Laplace transforms
forimpedances and circuit variables, assuming zero initial conditions. The resultis shown in
Figure 2.6(b). The circuit with which we are dealing requires two simultaneous equations to
solve for the transfer function. These equations can be found by summing voltages around
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FIGURE 2.6 a. Two-loop
electrical network;

b. transformed two-loop
electrical network; c. block
diagram

Chapter 2 Modeling in the Frequency Domain

Ry Ry
+
V(1) t) L C =< vl
i1(0) ir(1)
(@)
Ry Ry
ANN——AN—
N
V(s) f> Ls é P~y
Ii(s) Ir(s)
()
V(s) LCs? I(s)

(Ry+ Ry) LCs2+(R\R,C + L)s + R,

(c)

each mesh through which the assumed currents, 7, (s) and I>(s), flow. Around Mesh 1, where
I,(s) flows,

Ry I1,(s) + LsI{(s) — LsI,(s) = V(s) (2.78)
Around Mesh 2, where I,(s) flows,
1
LsI(s) + RyIo(s) + alz(s) —Lsli(s)=0 (2.79)
Combining terms, Egs. (2.78) and (2.79) become simultaneous equations in /;(s) and I5(s):

(Ry + Ls)I () — LsI,(s) = V() (2.80a)
—LsI(s) + (Ls + Ry + é) L(s)=0 (2.80b)

We can use Cramer’s rule (or any other method for solving simultaneous equations)
to solve Eq. (2.80) for I,(s).* Hence,

(Ry +Ls) V(s)
‘ —Ls 0 | LsV(s)
A A

Ir(s) = (2.81)

where

“See Appendix G (Section G.4) at www.wiley.com/college/nise for Cramer’s rule.
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Forming the transfer function, G(s), yields

Iy(s) _Ls _ LCs?
V() A (R +Ry)LCs? + (RiR,C + L)s + R,

(2.82)

as shown in Figure 2.6(c).

We have succeeded in modeling a physical network as a transfer function: The
network of Figure 2.6(a) is now modeled as the transfer function of Figure 2.6(c). Before
leaving the example, we notice a pattern first illustrated by Eq. (2.72). The form that
Eqgs. (2.80) take is

_ Sum of ~ L
Sum of ) Sum of applied
. impedances
impedances | I;(s) — I,(s) = | voltages around (2.83a)
common to the
| around Mesh 1 L Mesh 1
two meshes
Sum of
. Sumof [ Sum of applied 7
impedances .
- Ii(s)+ | impedances |[Ix(s)= | voltages around (2.83b)
common to the
| around Mesh 2 | L Mesh 2
two meshes

Recognizing the form will help us write such equations rapidly; for example, mechanical
equations of motion (covered in Sections 2.5 and 2.6) have the same form.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch2sp4 in Appendix F at ww.wiley.com/college/nise,
where Example2.10 issolved. Youwill learnhow to use the Symbolic
Math Toolbox to solve simultaneous equations using Cramer’s rule.
Specifical ly, the Symbolic Math Toolboxwill be used to solve for
the transfer function in Eq. (2.82) using Eq. (2.80).

Symbolic Math

53

Complex Circuits via Nodal Analysis
Often, the easiest way to find the transfer function is to use nodal analysis rather than mesh
analysis. The number of simultaneous differential equations that must be written is equal to
the number of nodes whose voltage is unknown. In the previous example we wrote
simultaneous mesh equations using Kirchhoff’s voltage law. For multiple nodes we use
Kirchhoff’s current law and sum currents flowing from each node. Again, as a convention,
currents flowing from the node are assumed to be positive, and currents flowing into the
node are assumed to be negative.

Before progressing to an example, let us first define admittance, Y(s), as the reciprocal
of impedance, or

Y() = 5= (2.84)

When writing nodal equations, it can be more convenient to represent circuit elements by
their admittance. Admittances for the basic electrical components are shown in Table 2.3.
Let us look at an example.
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Example 2.11

Chapter 2 Modeling in the Frequency Domain

Transfer Function—Multiple Nodes

PROBLEM: Find the transfer function, V(s)/V(s), for the circuit in Figure 2.6(b). Use
nodal analysis.

SOLUTION: For this problem, we sum currents at the nodes rather than sum voltages
around the meshes. From Figure 2.6(b) the sum of currents flowing from the nodes
marked V,(s) and V¢(s) are, respectively,

Vi(s)=V(s)  Vils)  Vils)=Ve(s)
R, s T Ry B
Vels) = Vils) _
R B

Rearranging and expressing the resistances as conductances,” G; = 1 /Ry and G, = 1 /Ry,
we obtain,

0 (2.85a)

CsVe(s) + 0 (2.85b)

(Gl + Gy + Lis> Vi(s) — GyVe(s) = V()G (2.86a)

—GyV1(s) + (Ga + Cs)V(s) = 0 (2.86b)

Solving for the transfer function, V¢(s)/V(s), yields Eq. (2.87) as shown in Figure 2.7.

Figure 2.6

GG
Vo) s Vels) GGy
G+ Gyt + GG C Gy Vels) L — (2.87)
L +
Le < V(s) (G + Gy)s? + b s+ =

FIGURE 2.7 Block diagram of the network of

LC LC

Another way to write node equations is to replace voltage sources by current sources.
A voltage source presents a constant voltage to any load; conversely, a current source
delivers a constant current to any load. Practically, a current source can be constructed from
a voltage source by placing a large resistance in series with the voltage source. Thus,
variations in the load do not appreciably change the current because the current is
determined approximately by the large series resistor and the voltage source. Theoretically,
we rely on Norton’s theorem, which states that a voltage source, V(s), in series with
an impedance, Z(s), can be replaced by a current source, I(s) = V(s)/Z(s), in parallel
with Z(s).

In order to handle multiple-node electrical networks, we can perform the following
steps:

1. Replace passive element values with their admittances.

2. Replace all sources and time variables with their Laplace transform.

3. Replace transformed voltage sources with transformed current sources.

5 In general, admittance is complex. The real part is called conductance and the imaginary part is called susceptance.

But when we take the reciprocal of resistance to obtain the admittance, a purely real quantity results. The reciprocal
of resistance is called conductance.
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4. Write Kirchhoff’s current law at each node.
5. Solve the simultaneous equations for the output.

6. Form the transfer function.

Let us look at an example.

Transfer Function—Multiple Nodes with Current Sources

PROBLEM: For the network of Figure 2.6, find the transfer function,
Ve(s)/V(s), using nodal analysis and a transformed circuit with current

sources.

SOLUTION: Convertallimpedances to admittances and all voltage sources V()G (D
in series with an impedance to current sources in parallel with an admittance

using Norton's theorem.

the inductor and the capacitor—have been identified as V(s) and V(s),
respectively. Using the general relationship, I(s) = Y(s)V(s), and summing
currents at the node V. (s),

1
GVi(s)+ s Vi(s)+ Go[Vils) = Ve(s)] = V(s)G (2.88)
Summing the currents at the node V(s) yields

CVe(s) + Ga[Vels) = Vi(s)] = 0 (2.89)

Combining terms, Egs. (2.88) and (2.89) become simultaneous equations in V¢(s) and
V1 (s), which are identical to Eq. (2.86) and lead to the same solution as Eq. (2.87).

An advantage of drawing this circuit lies in the form of Eq. (2.86) and its direct
relationship to Figure 2.8, namely

Sum of admittances
] Vi(s) — | common to the two | V¢(s) = {
nodes

Sum of admittances Sum of applied ]

connected to Node 1 currents at Node 1

(2.90a)

Sum of admittances .
Sum of admittances

Sum of applied
]9~ |t o2

— | common to the two | V(s) +
connected to Node 2 currents at Node 2

nodes
(2.90b)

Redrawing Figure 2.6(b) to reflect the changes, we obtain Figure 2.8, FIGURE 2.8 Transformed network ready
where G = 1/Ry, G, = 1/R,, and the node voltages—the voltages across  for nodal analysis
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A Problem-Solving Technique

In all of the previous examples, we have seen a repeating pattern in the equations that we can use
to our advantage. If we recognize this pattern, we need not write the equations component by
component; we can sum impedances around a mesh in the case of mesh equations or sum
admittances at a node in the case of node equations. Let us now look at a three-loop electrical
network and write the mesh equations by inspection to demonstrate the process.
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Mesh Equations via Inspection

PROBLEM: Write, but do not solve, the mesh equations for the network shown in
Figure 2.9.

1
s

|
\
l s
1 3 4s

1
v () 3
2s )
FIGURE 2.9 Three-loop e G

electrical network

SOLUTION: Each of the previous problems has illustrated that the mesh equations and
nodal equations have a predictable form. We use that knowledge to solve this three-loop
problem. The equation for Mesh 1 will have the following form:

Sum of
Sum of impedances
impedances | 71(s)— | common to | I5(s)
around Mesh 1 Mesh 1 and
Mesh 2
(2.91)
Sum of
impedances Sum of applied
— | common to |I5(s) = | voltages around
Mesh 1 and Mesh 1
Mesh 3
Similarly, Meshes 2 and 3, respectively, are
Sum of Sum of
impedances Sum of impedances Sum of appied
— | commonto |I;(s)+ | impedances |I(s)— | common to |/3(s)= | voltages around
Mesh 1 and around Mesh 2 Mesh 2 and Mesh 2
Mesh 2 Mesh 3

(2.92)
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and

Sum of Sum of
impedances impedances
— | commonto |/i(s) —| commonto |I(s)
Mesh 1 and Mesh 2 and
(2.93)
Mesh 3 Mesh 3
Sum of Sum of applied
+| impedances |/I3(s) = | voltages around
| around Mesh 3 Mesh 3
Substituting the values from Figure 2.9 into Egs. (2.91) through (2.93) yields
+ (25 + 2)I1(s) — (25 + 1)I5(s) —I3(s) = V(s) (2.94a)
—(2s+ DIi(s) + (9s + 1)I5(s) —4sl3(s) =0 (2.94b)
1
—1(s) —4sl(s) + <4s +1+ —) I:(s) =0 (2.94¢)
s

which can be solved simultaneously for any desired transfer function, for example,

I:(s)/ V().
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Trylt 2.8

Use the following MATLAB and
Symbolic Math Toolbox
statements to help you solve for
the electrical currents in

Eq. (2.94).

symss I1 12 I3 V
A=[(2*s +2) —(2*s+1)...

-1

-(2*s+1) (9*s+1)...

—4*s

-1-4*s_..

(4*s + 1+ 1/9));
B=[11;12;13];
C=[V;0;0];

B=inv(A)*C;
pretty(B)

Passive electrical circuits were the topic of discussion up to this point. We now discuss
a class of active circuits that can be used to implement transfer functions. These are circuits
built around an operational amplifier.

Operational Amplifiers
An operational amplifier, pictured in Figure 2.10(a), is an electronic amplifier used as a
basic building block to implement transfer functions. It has the following characteristics:

1. Differential input, vo(¢) — vy(¢)
2. High input impedance, Z; = oo (ideal)
3. Low output impedance, Z, = 0 (ideal)

4. High constant gain amplification, A = oo (ideal)

The output, v,(t), is given by

Vo(1) = A(va(1) — vi(1)) (2.95)
Inverting Operational Amplifier

If v,(¢) is grounded, the amplifier is called an inverting operational amplifier, as shown in
Figure 2.10(b). For the inverting operational amplifier, we have

vo(t) = —Avy (1) (2.96)
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FIGURE 2.10 a. Operational
amplifier; b. schematic for an
inverting operational amplifier;
c. inverting operational
amplifier configured for transfer
function realization. Typically,
the amplifier gain, A, is omitted.

Example 2.14

Chapter 2 Modeling in the Frequency Domain

+v1(0)

+va(1)

®)
Zo(s)
Vi), A8 i) R
— V()
1,(s) Ia(S)
()

If two impedances are connected to the inverting operational amplifier as shown in
Figure 2.10(c), we can derive an interesting result if the amplifier has the characteristics
mentioned in the beginning of this subsection. If the input impedance to the amplifier is
high, then by Kirchhoff’s current law 7,(s) = 0 and I;(s) = —I,(s). Also, since the gain A is
large, vi(t) = 0. Thus, I;(s) = Vi(s)/Z(s), and —I(s) = —V,(s)/Zy(s). Equating the two
currents, V,(s)/Z2(s) = =Vi(s)/Z,(s), or the transfer function of the inverting operational
amplifier configured as shown in Figure 2.10(c) is

Vo(s) _ _ Za(s)
Vi(s) Zi(s)

(2.97)

Transfer Function—Inverting Operational Amplifier Circuit
PROBLEM: Find the transfer function, V,(s)/V;(s), for the circuit given in Figure 2.11.

Ry= G =
20kQ 0.1 uF

H

o)

FIGURE 2.11 Inverting
operational amplifier circuit for
Example 2.14 =
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SOLUTION: The transfer function of the operational amplifier circuit is given by
Eq. (2.97). Since the admittances of parallel components add, Z(s) is the reciprocal of
the sum of the admittances, or

1 1 360 x 10°
Z1(8) = - I " 2016s+1 (2.98)
Cis+— 56+100%+——— =
Ry 360 x 10
For Z,(s) the impedances add, or
1 , 107
Zy(s) =Ry + —=220%x 10" + — (2.99)
Cas )
Substituting Eqgs. (2.98) and (2.99) into Eq. (2.97) and simplifying, we get
v, 2 +45.955 +22.55
() _ _j p3p i +45.955+ (2.100)
Vi(s) s

The resulting circuit is called a PID controller and can be used to improve the
performance of a control system. We explore this possibility further in Chapter 9.
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Noninverting Operational Amplifier

Another circuit that can be analyzed for its transfer function is the noninverting
operational amplifier circuit shown in Figure 2.12. We now derive the transfer function.
We see that

Vo(s) = A(Vi(s) = Vi(s) (2.101)

But, using voltage division,

26y (2.102)

VI(S) = m 0

Substituting Eq. (2.102) into Eq. (2.101), rearranging, and simplifying, we obtain

Vo($) A
- 2.103
Vi)~ T4 AZ () + Z2) 2109
For large A, we disregard unity in the denominator and Eq. (2.103) becomes
Vo Z V4
(s) _ 1(s) + Za(s) (2.104)
Vi(s) Z(s)

Let us now look at an example.

Zy(s)

Vi(s)

- V{)(S)
Vis)

% -

FIGURE 2.12 General
noninverting operational
amplifier circuit
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Example 2.15

Transfer Function—Noninverting Operational

V(@) ~ o D
Vi) >”_ 1
+ Zi(s)=R; + Cis
1
Rl
and
T"

R(1/C
Zs(s) = Rol1/Co)
R, + (1 /CQS)
FIGURE 2.13 Noninverting

operational amplifier circuit  Substituting Egs. (2.105) and (2.106) into Eq. (2.104) yields
for Example 2.15

VO(S) _ C2C1R2R1S2 + (C2R2 + CiR, + C1R1)S +1
Vi(s) N C>C{RyR;s? + (CoRy + CiRy)s + 1

Amplifier Circuit
C2
I < PROBLEM: Find the transfer function, V,(s)/V;(s), for the circuit given in Figure 2.13.
R, SOLUTION: We find each of the impedance functions, Z; (s) and Z,(s), and then substitute
AVAVAY them into Eq. (2.104). Thus,

(2.105)

(2.106)

(2.107)

Skill-Assessment Exercise 2.6

the two methods yield the same result.

1H
1Q 1Q

W

AVATAY AVATAY
v (%)

1H
FIGURE 2.14 Electric circuit %
for Skill-Assessment

Exercise 2.6

ANSWER: V. (s)/V(s) = (s* + 25 + 1)/(s* + 55 + 2)

The complete solution is at www.wiley.com/college/nise.

PROBLEM: Find the transfer function, G(s) = V(s)/V(s), for the circuit given in
Figure 2.14. Solve the problem two ways—mesh analysis and nodal analysis. Show that

+

v (1)
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Skill-Assessment Exercise 2.7

PROBLEM: If Z,(s) is the impedance of a 10 uF capacitor and Z,(s) is the impedance of
a 100 kQ resistor, find the transfer function, G(s) = V,(s)/V(s), if these components
are used with (a) an inverting operational amplifier and (b) a noninverting amplifier as
shown in Figures 2.10(c) and 2.12, respectively.

ANSWER: G(s)=—s for an inverting operational amplifier; G(s)=s+1 for a noninverting
operational amplifier.

The complete solution is at www.wiley.com/college/nise.
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In this section, we found transfer functions for multiple-loop and multiple-node
electrical networks, as well as operational amplifier circuits. We developed mesh and nodal
equations, noted their form, and wrote them by inspection. In the next section we begin our
work with mechanical systems. We will see that many of the concepts applied to electrical
networks can also be applied to mechanical systems via analogies—from basic concepts to
writing the describing equations by inspection. This revelation will give you the confidence
to move beyond this textbook and study systems not covered here, such as hydraulic or
pneumatic systems.

2.5 Translational Mechanical System Transfer Functions

We have shown that electrical networks can be modeled by a transfer function, G(s), that
algebraically relates the Laplace transform of the output to the Laplace transform of the
input. Now we will do the same for mechanical systems. In this section we concentrate on
translational mechanical systems. In the next section we extend the concepts to rotational
mechanical systems. Notice that the end product, shown in Figure 2.2, will be mathemati-
cally indistinguishable from an electrical network. Hence, an electrical network can be
interfaced to a mechanical system by cascading their transfer functions, provided that one
system is not loaded by the other.®

Mechanical systems parallel electrical networks to such an extent that there are
analogies between electrical and mechanical components and variables. Mechanical
systems, like electrical networks, have three passive, linear components. Two of them,
the spring and the mass, are energy-storage elements; one of them, the viscous damper,
dissipates energy. The two energy-storage elements are analogous to the two electrical
energy-storage elements, the inductor and capacitor. The energy dissipator is analogous to
electrical resistance. Let us take a look at these mechanical elements, which are shown in
Table 2.4. In the table, K, f,, and M are called spring constant, coefficient of viscous friction,
and mass, respectively.

We now create analogies between electrical and mechanical systems by comparing
Tables 2.3 and 2.4. Comparing the force-velocity column of Table 2.4 to the voltage-current
column of Table 2.3, we see that mechanical force is analogous to electrical voltage and
mechanical velocity is analogous to electrical current. Comparing the force-displacement
column of Table 2.4 with the voltage-charge column of Table 2.3 leads to the analogy
between the mechanical displacement and electrical charge. We also see that the spring is

©The concept of loading is explained further in Chapter 5.
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TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships for
springs, viscous dampers, and mass

Impedence
Component Force-velocity Force-displacement Zy(s) =F(s)/X(s)
Spring
«T—» x(1) ;
, =K / v(r)dr f(t) = Kx(t) K
0 0
K
Viscous damper
—— x(7) ) dx(t
T 10 =210 10 =120 s
— f(0) 4
5
Mass
= () ()
Y x(t
=M — =M 2
o B fioy =M= fioy =M% Ms

Note: The following set of symbols and units is used throughout this book: f(¢#) = N (newtons), x(f) = m (meters),
v(r) = m/s (meters/second), K = N/m (newtons/meter), f, = N-s/m (newton-seconds/meter), M = kg (kilograms =
newton-seconds’/meter).

analogous to the capacitor, the viscous damper is analogous to the resistor, and the mass
is analogous to the inductor. Thus, summing forces written in terms of velocity is
analogous to summing voltages written in terms of current, and the resulting mechanical
differential equations are analogous to mesh equations. If the forces are written in terms
of displacement, the resulting mechanical equations resemble, but are not analogous to,
the mesh equations. We, however, will use this model for mechanical systems so that we
can write equations directly in terms of displacement.

Another analogy can be drawn by comparing the force-velocity column of
Table 2.4 to the current-voltage column of Table 2.3 in reverse order. Here the analogy
is between force and current and between velocity and voltage. Also, the spring is
analogous to the inductor, the viscous damper is analogous to the resistor, and the mass
is analogous to the capacitor. Thus, summing forces written in terms of velocity is
analogous to summing currents written in terms of voltage and the resulting mechanical
differential equations are analogous to nodal equations. We will discuss these analogies
in more detail in Section 2.9.

We are now ready to find transfer functions for translational mechanical systems.
Our first example, shown in Figure 2.15(a), is similar to the simple RLC network of
Example 2.6 (see Figure 2.3). The mechanical system requires just one differential
equation, called the equation of motion, to describe it. We will begin by assuming a
positive direction of motion, for example, to the right. This assumed positive direction of
motion is similar to assuming a current direction in an electrical loop. Using our assumed
direction of positive motion, we first draw a free-body diagram, placing on the body all
forces that act on the body either in the direction of motion or opposite to it. Next we use
Newton’s law to form a differential equation of motion by summing the forces and setting
the sum equal to zero. Finally, assuming zero initial conditions, we take the Laplace
transform of the differential equation, separate the variables, and arrive at the transfer
function. An example follows.
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Example 2.16

Transfer Function—One Equation of Motion

PROBLEM: Find the transfer function, X(s)/F(s), for the system of Figure 2.15(a).

e

M , Fes) |1 | X
0 Ms2+fs+K
- FIGURE 2.15 a. Mass,
I spring, and damper system;
(@) ) b. block diagram

SOLUTION: Begin the solution by drawing the free-body diagram shown in Figure 2.16(a).
Place on the mass all forces felt by the mass. We assume the mass is traveling toward the
right. Thus, only the applied force points to the right; all other forces impede the motion
and act to oppose it. Hence, the spring, viscous damper, and the force due to acceleration
point to the left.

We now write the differential equation of motion using Newton’s law to sum to zero
all of the forces shown on the mass in Figure 2.16(a):

d*x(t) . dx(r)

Solving for the transfer function yields

X1

G(s) =0 " MFiGTE (2.111)

which is represented in Figure 2.15(b).

M ——+ Kx(t) =f(t 2.108
o+ S Kalt) = £(0) (2.108)
>0 — > X0)
Kx(t) < T KX(s) < f
St - M fsX@) = M F(y
; FIGURE 2.16 a. Free-body
dx Ms?X(s) <— diagram of mass, spring, and
dr* damper system; b. transformed
(@) ®) free-body diagram
Taking the Laplace transform, assuming zero initial conditions,
Ms*X(s) + f.sX(s) + KX(s) = F(s) (2.109)
or
(Ms* + f.5 + K)X(s) = F(s) (2.110)
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Now can we parallel our work with electrical networks by circumventing the writing
of differential equations and by defining impedances for mechanical components? If so, we
can apply to mechanical systems the problem-solving techniques learned in the previous
section. Taking the Laplace transform of the force-displacement column in Table 2.4, we
obtain for the spring,

F(s) = KX(s) (2.112)
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for the viscous damper,

F(s) = f,sX(s) (2.113)

and for the mass,

F(s) = Ms’X(s) (2.114)

If we define impedance for mechanical components as

Zu(s) = }% (2.115)

and apply the definition to Eqgs. (2.112) through (2.114), we arrive at the impedances of each
component as summarized in Table 2.4 (Raven, 1995 ).
Replacing each force in Figure 2.16(a) by its Laplace transform, which is in the format

F(s) = Zy(s)X(s) (2.116)

we obtain Figure 2.16(b), from which we could have obtained Eq. (2.109) immediately
without writing the differential equation. From now on we use this approach.
Finally, notice that Eq. (2.110) is of the form

[Sum of impedances]X(s) = [Sum of applied forces] (2.117)

which is similar, but not analogous, to a mesh equation (see footnote 7).

Many mechanical systems are similar to multiple-loop and multiple-node electrical
networks, where more than one simultaneous differential equation is required to describe the
system. In mechanical systems, the number of equations of motion required is equal to the
number of linearly independent motions. Linear independence implies that a point of
motion in a system can still move if all other points of motion are held still. Another name
for the number of linearly independent motions is the number of degrees of freedom. This
discussion is not meant to imply that these motions are not coupled to one another; in
general, they are. For example, in a two-loop electrical network, each loop current depends
on the other loop current, but if we open-circuit just one of the loops, the other current can
still exist if there is a voltage source in that loop. Similarly, in a mechanical system with two
degrees of freedom, one point of motion can be held still while the other point of motion
moves under the influence of an applied force.

In order to work such a problem, we draw the free-body diagram for each point of
motion and then use superposition. For each free-body diagram we begin by holding all
other points of motion still and finding the forces acting on the body due only to its own
motion. Then we hold the body still and activate the other points of motion one at a time,
placing on the original body the forces created by the adjacent motion.

Using Newton’s law, we sum the forces on each body and set the sum to zero. The
result is a system of simultaneous equations of motion. As Laplace transforms, these

7 Notice that the impedance column of Table 2.4 is not a direct analogy to the impedance column of Tabel 2.3, since
the denominator of Eq. (2.115) is displacement. A direct analogy could be derived by defining mechanical
impedance in terms of velocity as F(s)/V(s). We chose Eq. (2.115) as a convenient definition for writing the
equations of motion in terms of displacement, rather than velocity. The alternative, however, is available.
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equations are then solved for the output variable of interest in terms of the input
variable from which the transfer function is evaluated. Example 2.17 demonstrates this
problem-solving technique.

Example 2.17

Transfer Function—Two Degrees of Freedom

PROBLEM: Find the transfer function, X(s)/F(s), for the system of Figure 2.17(a).

x1(1) xo(1)
— Jo, —
A1) — - |
Kl - _|_|_ K3
M, K, M,
J\‘\lll\J\‘\lll\J\‘\lll\\}\‘\lll\J\‘\lll\J\‘\\\lll\l\‘\lll“\‘\
J
fv, fvz
(@)
F(S) (fv S+K2) XQ(S) FIGURE 2.17 a. Two-
— zf — degrees-of-freedom
translational mechanical
®) system;® b. block diagram

SOLUTION: The system has two degrees of freedom, since each mass can be moved in
the horizontal direction while the other is held still. Thus, two simultaneous equations of
motion will be required to describe the system. The two equations come from free-body
diagrams of each mass. Superposition is used to draw the free-body diagrams. For
example, the forces on M, are due to (1) its own motion and (2) the motion of M,
transmitted to M through the system. We will consider these two sources separately.

If we hold M, still and move M to the right, we see the forces shown in Figure 2.18(a).
If we hold M still and move M, to the right, we see the forces shown in Figure 2.18(b). The
total force on M is the superposition, or sum, of the forces just discussed. This result is
shown in Figure 2.18(c). For M;, we proceed in a similar fashion: First we move M, to the
right while holding M still; then we move M| to the right and hold M still. For each case
we evaluate the forces on M,. The results appear in Figure 2.19.

KiX(s) N
£ 5X1(5) FosK1(s) K>Xo(s)
‘ M, KpXi(s) M,
Fs Jr5Xa(s)
M 52X (s)
(@) (b)

(K1 + Kp)X(s)

(f,+1,)5X1(5) K>X5(s) FIGURE 2.18 a. Forces on

M, M due only to motion of M;

Fi
5 ) JusXo(s) b. forces on M, due only to
M;57X,(s) motion of M>; c¢. all forces
() on M,

8 Friction shown here and throughout the book, unless otherwise indicated, is viscous friction. Thus, £, and f,, are
not Coulomb friction, but arise because of a viscous interface.
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Virtual Experiment 2.1
Vehicle Suspension

Put theory into practice
exploring the dynamics of
another two-degrees-of-
freedom system—a vehicle
suspension system driving
over a bumpy road and
demonstrated with the
Quanser Active Suspension
System modeled in
LabVIEW.

© Debra Lex

Virtual experiments are found
on Learning Space.
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K2X2(S)
Jo,5X(5) KoXy(s)
’ M, K3X5(s) M,
J5X2(s) FrsXi(9)
Mys2X5(s)
(@) (b)
(K> + K3)X(s)
FIGURE 2.19 a. Forces on JosXi(s)
M, due only to motion of M»; (v, + f,)sXo(s) M,
b. forces on M, due only to , KX (s)
motion of M; c. all forces Mas°Xa(s)
on M, (©

The Laplace transform of the equations of motion can now be written from
Figures 2.18(c) and 2.19(c) as

[M15*(F,, +£.)s + (K1 + K2)IX1(s) = (f,,5 + K2)Xa(s) = F(s) (2.118a)

— (f,s + K2)X1(5) + [Mas® + (f, +£,)s + (K2 + K3)]Xa(s) = 0 (2.118b)

From this, the transfer function, X,(s)/F(s), is

Xa(s) _ (f,s+K2)
Fs) - G(s) = A (2.119)
as shown in Figure 2.17(b) where
A [Mys* + (f;, +£,)s + (K1 + K>)] —(f,,s +K>)
—(fi,s + K2) [M2s* + (f,, +£,)s + (K2 + K3)]

Notice again, in Eq. (2.118), that the form of the equations is similar to electrical mesh
equations:

Sum of
) Sum of
impedances ) Sum of
impedances )
connected Xi(s) — X5(s) = | applied forces (2.120a)
) between
to the motion at x|
X1 and X2
at x; -
Sum of
Sum of )
. impedances Sum of
impedances )
- Xi(s) +| connected X»(s) = | applied forces (2.120b)
between .
to the motion at x,
X1 and X2
- at xp |

The pattern shown in Eq. (2.120) should now be familiar to us. Let us use the concept to
write the equations of motion of a three-degrees-of-freedom mechanical network by
inspection, without drawing the free-body diagram.



Example 2.18

of Figure 2.20.

2.5 Translational Mechanical System Transfer Functions

Equations of Motion by Inspection

PROBLEM: Write, but do not solve, the equations of motion for the mechanical network

Sum of
impedances
connected [ X(s)—
to the motion

atxy

Sum of

impedances
X 1 (S ) +

between

X1 and X2

L X1 andxz i

x1 and x3

= x3(0)
fv3\ M3 fv
p—=n0 0
K K, '
WO ] e |

T T T T T T T T T T T \f\\\ C T T T T T T T T T T T C T 1T FIGURE 2.20 Three-degrees-
I I I I I I I I I I I I I j\ I I I I I I I I I I I I T I I I In} Of—freedom translational

Fo Fr, mechanical system

SOLUTION: The system has three degrees of freedom, since each of the three masses
can be moved independently while the others are held still. The form of the equations
will be similar to electrical mesh equations. For M,

Sum of

impedances
Xa(s)
between

(2.121)

Sum of
) Sum of
impedances

X;(s) applied forces
between

at xp

Similarly, for M, and M3, respectively,

Sum of
impedances
connected | X,(s)
to the motion

at x, (2.122)
Sum of
) Sum of
impedances )
X;(s) = | applied forces
between
at xp

xp and x3
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Sum of Sum of
impedances impedances
- Xi(s) - Xo(s)
between between
x1 and x3 X and x3
Sum of (2.123)
impedances Sum of

+ | connected |X3(s)= | applied forces
to the motion at x3

at x3

M has two springs, two viscous dampers, and mass associated with its motion.
There is one spring between M| and M, and one viscous damper between M; and M;.
Thus, using Eq. (2.121),

[Mys* + (f,, +£,)5 + (K1 + K2)1X1(s) — K2Xa(s) — f,,5X3(s) = 0 (2.124)
Similarly, using Eq. (2.122) for M,
—KoX1(s) + [Mas” + (£, +1,,)s + K2)Xa(s) = f;,5X3(s) = F(s) (2.125)
and using Eq. (2.123) for M3,
~5,5X1(5) = ,,5X2(5) + [M35” + (f;, +£,)51X3(5) = 0 (2.126)

Equations (2.124) through (2.126) are the equations of motion. We can solve them for any
displacement, X(s), X»(s), or X3(s), or transfer function.

Skill-Assessment Exercise 2.8

FIGURE 2.21 Translational
mechanical system for Skill-
Assessment Exercise 2.8

PROBLEM: Find the transfer function, G(s)=X5(s)/F(s), for the translational mechanical
system shown in Figure 2.21.

—t+ x(1) —— x5(1)

[
fv,=1N-s/m K=1N/m
S ——— M =1kg - My=1kg

fv,=1N-s/m
fv.= 1 N-s/m . fv,= 1 N-s/m
2 \ I
[

35+ 1
s(s?+7s2+5s+1)

ANSWER: G(s) =

The complete solution is at www.wiley.com/college/nise.
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2.6 Rotational Mechanical System Transfer Functions

2.6 Rotational Mechanical System Transfer Functions

Having covered electrical and translational mechanical systems, we now move on to
consider rotational mechanical systems. Rotational mechanical systems are handled the
same way as translational mechanical systems, except that torque replaces force and angular
displacement replaces translational displacement. The mechanical components for rotational
systems are the same as those for translational systems, except that the components undergo
rotation instead of translation. Table 2.5 shows the components along with the relationships
between torque and angular velocity, as well as angular displacement. Notice that the symbols
for the components look the same as translational symbols, but they are undergoing rotation
and not translation.

Also notice that the term associated with the mass is replaced by inertia. The
values of K, D, and J are called spring constant, coefficient of viscous friction, and
moment of inertia, respectively. The impedances of the mechanical components are also
summarized in the last column of Table 2.5. The values can be found by taking the
Laplace transform, assuming zero initial conditions, of the torque-angular displacement
column of Table 2.5.

The concept of degrees of freedom carries over to rotational systems, except that
we test a point of motion by rotating it while holding still all other points of motion. The
number of points of motion that can be rotated while all others are held still equals the
number of equations of motion required to describe the system.

Writing the equations of motion for rotational systems is similar to writing them for
translational systems; the only difference is that the free-body diagram consists of torques
rather than forces. We obtain these torques using superposition. First, we rotate a body while
holding all other points still and place on its free-body diagram all torques due to the body’s
own motion. Then, holding the body still, we rotate adjacent points of motion one at a time
and add the torques due to the adjacent motion to the free-body diagram. The process is
repeated for each point of motion. For each free-body diagram, these torques are summed
and set equal to zero to form the equations of motion.

TABLE 2.5 Torque-angular velocity, torque-angular displacement, and impedance rotational
relationships for springs, viscous dampers, and inertia

Torque-angular Torque-angular Impedence
Component velocity displacement Zyu(s) =T(s)/6(s)
T(t) O(1)
Spring
T(t) = K [ya(c)dz T(r) = KO(1) K
K
Viscous 7(7) 0 (1)
d
“mper () = Dax(t) T() = D%(’) Ds
t
D
T(t) 6(1)
Inertia do(t) )
wl? d-o(t)
0)=J— TW)=J=—3 Ts
J

Note: The following set of symbols and units is used throughout this book: 7(¢) — N-m (newton-meters),
6(t) — rad (radians), w(r)—rad/s (radians/second), K — N-m/rad (newton-meters/radian), D — N-m-s/rad (newton-
meters-seconds/radian). J — kg-m?(kilograms-meters®> — newton-meters-seconds>/radian).
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Example 2.19

FIGURE 2.22 a. Physical
system; b. schematic; ¢. block
diagram

FIGURE 2.23 a. Torques on
J1 due only to the motion of J;
b. torques on J; due only to the
motion of J;; c. final free-body
diagram for J,

Chapter 2 Modeling in the Frequency Domain

Two examples will demonstrate the solution of rotational systems. The first one uses
free-body diagrams; the second uses the concept of impedances to write the equations of
motion by inspection.

Transfer Function—Two Equations of Motion

PROBLEM: Find the transfer function, 0,(s)/7(s), for the rotational system shown in
Figure 2.22(a). The rod is supported by bearings at either end and is undergoing torsion.
A torque is applied at the left, and the displacement is measured at the right.

D, %

T(@®) 0,(r) 0x(1)

T 0

I

1 [k] 6
L2 ]

(c)

1(0) 0x(1)

() )00
K

)

Bearing
D,

Torsion

(a)

D,

SOLUTION: First, obtain the schematic from the physical system. Even though torsion
occurs throughout the rod in Figure 2.22(a),” we approximate the system by assuming
that the torsion acts like a spring concentrated at one particular point in the rod, with an
inertia J to the left and an inertia J, to the right.'” We also assume that the damping
inside the flexible shaft is negligible. The schematic is shown in Figure 2.22(b). There
are two degrees of freedom, since each inertia can be rotated while the other is held still.
Hence, it will take two simultaneous equations to solve the system.

Next, draw a free-body diagram of J;, using superposition. Figure 2.23(a) shows the
torques on J if J; is held still and J; rotated. Figure 2.23(b) shows the torques on J; if J;
is held still and J, rotated. Finally, the sum of Figures 2.23(a) and 2.23(b) is shown
in Figure 2.23(c), the final free-body diagram for J;. The same process is repeated in
Figure 2.24 for J,.

0,(s) Direction 0,(s) Direction 0,(s) Direction
T(s) - J15%0,(s) ( @ ?(s) ~ J1526,(s)
S D1S01(S) ~ ~ /DISGI(A‘)
K0,(s) KOy(s) K6,(s)
~—__
Ko, (s)
(@) (b) ()

?In this case the parameter is referred to as a distributed parameter.
19 The parameter is now referred to as a lumped parameter.
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equations of motion,

A

Sum of
impedances
connected | 0(s) —
to the motion

atd,

Sum of
impedances
0,(s) +
between 1()

L 01 and 92

(.11s2 + Dys + K)O(s)

—K61(5) + (J25* + Das + K)ba(s) = 0

62(5‘) _ K

T(s) A

as shown in Figure 2.22(c), where

_ (J1S2 + Dqs +K)

-K

Sum of
impedances
[ =
between 2(5)

01and 6, |

Sum of
impedances
connected | 0,(s) =
to the motion

at 6,

— K6(s) = T(s)

6,(s) Direction 6,(s) Direction 6,(s) Direction
KO,(s) K0,(s)

N o5205(s) ™ "X 25205(9)
@/ Dys05(s) @ @/‘Dzsaz(s)
~ P

KO5(s) K&(s)
(a) ®) ()

Summing torques, respectively, from Figures 2.23(c) and 2.24(c) we obtain the

from which the required transfer function is found to be

-K
(]2S2 + Djs + K)
Notice that Egs. (2.127) have that now well-known form

(2.127a)
(2.127b)
(2.128)
Sum of
applied torques (2.129a)
ato,
Sum of
applied torques (2.129b)
at 6,

71

FIGURE 2.24 a. Torques on
J> due only to the motion of J;;
b. torques on J;, due only to the
motion of Ji; c. final free-body
diagram for J,

Trylt 2.9

Use the following MATLAB
and Symbolic Math Toolbox
statements to help you get
Eq. (2.128).

symssJl D1 KT J2 D2...
thetal theta2
A(J1*s72+D1*s+K) —K
—K (J2*s72+D2*s +K)];
B thetal
theta2];
cHT
(O]
B=inv(A)*C;
theta2 =B(2);
"theta2*®
pretty (theta2)

Example 2.20

0,(1)

()

RO E T
D, K D, Dy

Equations of Motion by Inspection

0(1)

PROBLEM: Write, but do not solve, the Laplace transform of the equations of motion
for the system shown in Figure 2.25.

05(1)

FIGURE 2.25 Three-degrees-
of-freedom rotational system
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equations:

Sum of
impedances
connected
to the motion
at 6,

Sum of
impedances

between
0 1 and 92

Sum of
impedances

between
91 and 93

Hence,

01(s) —

01(s) +

61(5‘) —

+

(J152 + Dis + K)i(s)

-0 01 (S)

Modeling in the Frequency Domain

Sum of
impedances

between

L 91 and 92 i

Sum of
impedances

between

L 9] and03 i

Sum of
impedances
connected
to the motion
at 6,
Sum of
impedances

between

Sum of
impedances

between

Sum of
impedances
connected
to the motion

at0s

L 92 and 63 i

L 92 and 93 1

01(s)

05(s) =

(92 (S)

0s(s) =

0a(s)

05(s) =

_KHQ(S)

—K91(s) +(]2S2 + Dys + K)az(s)

SOLUTION: The equations will take on the following form, similar to electrical mesh

(2.130a)
Sum of
applied torques
at 91
(2.130b)
Sum of
applied torques
at 6,
(2.130c)
Sum of
applied torques
at 65
—06s(s) = T(s)
—D2S93 (S) =0

—Dzsez(s) '|'(J3S2 + Ds3s + D2S)93(S) =0

(2.131a,b,c)
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Skill-Assessment Exercise 2.9

PROBLEM: Find the transfer function, G(s) = 6»(s)/T(s), for the rotational mechanical
system shown in Figure 2.26.

(1) 1 N-m/rad 0(0)

1 N-m/rad
TL@ e ) 0000 [
LE— 1
FIGURE 2.26 Rotational

1 N-m-s/rad
L‘j 1 N-m-s/rad
mechanical system for

] Skill-Assessment Exercise 2.9

1

The complete solution is at www.wiley.com/college/nise.

2.7 Transfer Functions for Systems with Gears

Now that we are able to find the transfer function for rotational systems, we realize that these
systems, especially those driven by motors, are rarely seen without associated gear trains
driving the load. This section covers this important topic.

Gears provide mechanical advantage to rotational systems. Anyone who has ridden a
10-speed bicycle knows the effect of gearing. Going uphill, you shift to provide more torque
and less speed. On the straightaway, you shift to obtain more speed and less torque. Thus, gears
allow you to match the drive system and the load—a trade-off between speed and torque.

For many applications, gears exhibit backlash, which occurs because of the loose fit
between two meshed gears. The drive gear rotates through a small angle before making
contact with the meshed gear. The result is that the angular rotation of the output gear does
not occur until a small angular rotation of the input gear has occurred. In this section, we
idealize the behavior of gears and assume that there is no backlash.

The linearized interaction between two gears is depicted in Figure 2.27. An input gear
with radius r; and N teeth is rotated through angle 6,(¢) due to a torque, T(¢). An output
gear with radius r, and N, teeth responds by rotating through angle 6,(7) and delivering
a torque, T»(¢). Let us now find the relationship between the rotation of Gear 1, 6(z), and
Gear 2, 6,(1).

From Figure 2.27, as the gears turn, the distance traveled along each gear’s circumference

is the same. Thus, o 6o N, 0,(t) Tx(1)
ri6, =6, (2.132) < < ﬁ > >
Input
or drive gear,

Gear 1  Output

driven gear,
& _n_M (2.133) Gear 2
6 rn N
FIGURE 2.27 A gear system
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since the ratio of the number of teeth along the circumference is in the same proportion as the
ratio of the radii. We conclude that the ratio of the angular displacement of the gears is
inversely proportional to the ratio of the number of teeth.

What is the relationship between the input torque, 7'y, and the delivered torque, 7, ? If
we assume the gears are lossless, that is, they do not absorb or store energy, the energy into
Gear 1 equals the energy out of Gear 2."" Since the translational energy of force times
displacement becomes the rotational energy of torque times angular displacement,

T10, = T20, (2.134)

Solving Eq. (2.134) for the ratio of the torques and using Eq. (2.133), we get

I = ! = M2 (2.135)
T, 6, N;

0, Ny 0, T, N, T, Thus, the torques are directly proportional to the ratio of the number of

A N, [~ teeth. All results are summarized in Figure 2.28.
Let us see what happens to mechanical impedances that are driven
@ ®) by gears. Figure 2.29(a) shows gears driving a rotational inertia, spring,
FIGURE 2.28 Transfer functions for a. angular ~ and viscous damper. For clarity, the gears are shown by an end-on view.
displacement in lossless gears and b. torque in We want to represent Figure 2.29(a) as an equivalent system at 8; without
lossless gears the gears. In other words, can the mechanical impedances be reflected

from the output to the input, thereby eliminating the gears?
From Figure 2.28(b), T can be reflected to the output by multiplying by N, /N;. The
result is shown in Figure 2.29(b), from which we write the equation of motion as

(Js*> + Ds + K) 05(s) = T (s) % (2.136)
1

Now convert 65(s) into an equivalent 8, (s), so that Eq. (2.136) will look as if it were written
at the input. Using Figure 2.28(a) to obtain 0;(s) in terms of 0;(s), we get

N N
(J$* + Ds + K)—L0,(s) = T1(s) — (2.137)
N, N,

T 60,0

T,(t) Ny
N 05(0) D

®)

FIGURE 2.29 a. Rotational
system driven by gears;

b. equivalent system at the
output after reflection of input
torque; c. equivalent system at
the input after reflection of
impedances

"'This is equivalent to saying that the gears have negligible inertia and damping.
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After simplification,

N\ 2 , N\ 2 N\ 2
J| — D|— K|—] |0:i(s)=T 2.138
(W) #+o(3) s+&(3) |0 =76 (.138)
which suggests the equivalent system at the input and without gears shown in Figure 2.29(c).
Thus, the load can be thought of as having been reflected from the output to the input.
Generalizing the results, we can make the following statement: Rotational mechanical

impedances can be reflected through gear trains by multiplying the mechanical impedance
by the ratio

Number of teeth of 2

gear on destination shaft

Number of teeth of
gear on source shaft

where the impedance to be reflected is attached to the source shaft and is being reflected to
the destination shaft. The next example demonstrates the application of the concept of
reflected impedances as we find the transfer function of a rotational mechanical system with
gears.

Example 2.21

Transfer Function—System with Lossless Gears

PROBLEM: Find the transfer function, 65(s)/T(s), for the system of Figure 2.30(a).

Ty(n) 0,(n)

Ty(s) N,/Ny 05(s)
Js2+Dys + K,

(a) ® (c)

FIGURE 2.30 a. Rotational mechanical system with gears; b. system after reflection of torques and impedances to the output
shaft; c¢. block diagram

SOLUTION: It may be tempting at this point to search for two simultaneous equations
corresponding to each inertia. The inertias, however, do not undergo linearly independent
motion, since they are tied together by the gears. Thus, there is only one degree of
freedom and hence one equation of motion.

Let us first reflect the impedances (J; and D;) and torque (7'1) on the input shaft to
the output as shown in Figure 2.30(b), where the impedances are reflected by (N, /N, )2
and the torque is reflected by (N,/N;). The equation of motion can now be written as

N
(Jo5* + Des + K )02(s) = T, (s)N—j (2.139)
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where
N>\ 2 N>\ 2
Jo=J (=) +J; D.=D,|[=2) +Dy; K. =K
1<N1> 2 1(N1 2 2

Solving for 8,(s)/T(s), the transfer function is found to be

_(s) _ N> /N,

= = 2.140
Ti(s) J.s>+D.s+K, ( )

G(s)

as shown in Figure 2.30(c).

O In order to eliminate gears with large radii, a gear train is used to
N N implement large gear ratios by cascading smaller gear ratios. A schematic
1 . I . . .
0= N, diagram of a gear train is shown in Figure 2.31. Next to each rotation, the
'\ angular displacement relative to 8, has been calculated. From Figure 2.31,
N, TN N, o NiNs
3= v 27 1
3TN T NN,
NiN3Ns
Ny C Ns N5 NyN;Ns 04 = NoN.N- 0 (2.141)
0,=—03= 0, 2V4lN6
Neg Ny Ny Ng

-

FIGURE 2.31 Gear train

Ty(1) 6,(n

T&P M
Ji. D,

N,
Dy, J,
Ny
Jy
(@)

FIGURE 2.32 a. System using a gear train; b. equivalent system at the input; ¢. block diagram

For gear trains, we conclude that the equivalent gear ratio is the product of
the individual gear ratios. We now apply this result to solve for the transfer
function of a system that does not have lossless gears.

Transfer Function—Gears with Loss

PROBLEM: Find the transfer function, 8;(s)/T(s), for the system of Figure 2.32(a).

Ty(t) 0,(1)

N3 e
2 2
J3 Ny NiN3
J=dy+ Uy +Jy) |2 + g+ a5 |22
=J1+ (It J3) <N2> (g +J5) (N2N4
J
’ N, 2 T(s) 1 0,(s)
De=Dy+ Dy Ny, Jos2+D,s
) (c)

SOLUTION: This system, which uses a gear train, does not have lossless gears. All of
the gears have inertia, and for some shafts there is viscous friction. To solve the
problem, we want to reflect all of the impedances to the input shaft, #;. The gear ratio is
not the same for all impedances. For example, D, is reflected only through one gear ratio
as Do(N I/Nz)z, whereas J4 plus Js is reflected through two gear ratios as
(J4 +J5)[(N3/N4)(N1/N2)]2. The result of reflecting all impedances to 6, is shown
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in Figure 2.32(b), from which the equation of motion is
(Jo5* + Ds)01(s) = T'(s) (2.142)

where

N1N3>2

Jo=J1+ (s +J3) M 2+(J +Js)
e —J1 2 3 N2 4 5 N2N4

and

From Eq. (2.142), the transfer function is

_ 91(6‘) _ 1

G(s) = -
(s) Ti(s) J.s2+ D,s

(2.143)

as shown in Figure 2.32(c).
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Skill-Assessment Exercise 2.10

PROBLEM: Find the transfer function, G(s) = 6,(s)/T(s), for the rotational mechanical
system with gears shown in Figure 2.33.

T(t
® 1 N-m-s/rad

1 kg-m2 f Ny =25

0,(1)

N, =50 f\
] 0000

4 N-m/rad

FIGURE 2.33 Rotational mechanical system with gears for Skill-Assessment Exercise 2.10

1/2

ANSWER: G(s) = Tasal

The complete solution is at www.wiley.com/college/nise.

2.8 Electromechanical System Transfer Functions

In the last section we talked about rotational systems with gears, which completed our
discussion of purely mechanical systems. Now, we move to systems that are hybrids of
electrical and mechanical variables, the electromechanical systems. We have seen one
application of an electromechanical system in Chapter 1, the antenna azimuth position
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FIGURE 2.34 NASA flight
simulator robot arm with
electromechanical control
system components

Chapter 2 Modeling in the Frequency Domain

Debra Lex

control system. Other applications for systems with electromechanical components are
robot controls, sun and star trackers, and computer tape and disk-drive position controls. An
example of a control system that uses electromechanical components is shown in
Figure 2.34.

A motor is an electromechanical component that yields a displacement output for a
voltage input, that is, a mechanical output generated by an electrical input. We will derive the
transfer function for one particular kind of electromechanical system, the armature-controlled
dc servomotor (Mablekos, 1980). The motor’s schematic is shown in Figure 2.35(a), and the
transfer function we will derive appears in Figure 2.35(b).

In Figure 2.35(a) a magnetic field is developed by stationary permanent magnets or a
stationary electromagnet called the fixed field. A rotating circuit called the armature,
through which current i, (¢) flows, passes through this magnetic field at right angles and feels
a force, F = Bli,(t), where B is the magnetic field strength and [ is the length of the
conductor. The resulting torque turns the rofor, the rotating member of the motor.

There is another phenomenon that occurs in the motor: A conductor moving at right
angles to a magnetic field generates a voltage at the terminals of the conductor equal to

Fixed
L field

, Armature E,(s) 0,(s)
et circuit ) "0 > G(s) =
O] - 0,,()
(@) ®

FIGURE 2.35 DC motor: a. schematic;'? b. block diagram

12See Appendix I at www.wiley.com/college/nise for a derivation of this schematic and its parameters.


http://www.wiley.com/college/nise

2.8 Electromechanical System Transfer Functions

e = Blv, where e is the voltage and v is the velocity of the conductor normal to the magnetic
field. Since the current-carrying armature is rotating in a magnetic field, its voltage is
proportional to speed. Thus,

d6,(1)
dt

vp(t) = K (2.144)

We call v,(r) the back electromotive force (back emf); K, is a constant of
proportionality called the back emf constant; and df,(r)/dt = w,,(¢) is the angular
velocity of the motor. Taking the Laplace transform, we get

Viu(s) = KpsO,(s) (2.145)

The relationship between the armature current, i,(¢), the applied armature voltage,
e4(t), and the back emf, v,(¢), is found by writing a loop equation around the Laplace
transformed armature circuit (see Figure 3.5(a)):

Rul,(s) + LysI () + Vi(s) = Eq(s) (2.146)
The torque developed by the motor is proportional to the armature current; thus,
Tw(s) = K1 ,(s) (2.147)

where T, is the torque developed by the motor, and K; is a constant of proportionality,
called the motor torque constant, which depends on the motor and magnetic field
characteristics. In a consistent set of units, the value of K, is equal to the value of
K. Rearranging Eq. (2.147) yields

L(s) = KitTm(s) (2.148)

To find the transfer function of the motor, we first substitute Egs. (2.145) and (2.148)
into (2.146), yielding

R, + L,s)T
w + K;50,,(5) = Eq(s) (2.149)
t
Now we must find 7,,(s) in terms of ,,(s) if we are to separate the input and output . © 0.
variables and obtain the transfer function, ,,(s)/Eq(s). P

Figure 2.36 shows a typical equivalent mechanical loading on a motor. J,, is ’

the equivalent inertia at the armature and includes both the armature inertia and, as D,,
we will see later, the load inertia reflected to the armature. D,, is the equivalent

viscous damping at the armature and includes both the armature viscous damping ~FIGURE 2.36  Typical equivalent
and, as we will see later, the load viscous damping reflected to the armature. From mechanical loading on a motor
Figure 2.36,

Tn(s) = (Ju8* + Dyp5)0u(s) (2.150)
Substituting Eq. (2.150) into Eq. (2.149) yields

(Ry + LyS)(J n5* + Dyu5)0,(s)
K,

+ K50,,(s) = Eu(s) (2.151)
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If we assume that the armature inductance, L,,, is small compared to the armature resistance,
R,, which is usual for a dc motor, Eq. (2.151) becomes

{% (J s + D) + Kb} 56,,(s) = E(s) (2.152)

After simplification, the desired transfer function, 6,,(s)/E.(s), is found to be

Qm(s) _ Kt/(RaJm)
- 13
E(s) S[H JL (Dm +K1,eKb)] (2.153)

Even though the form of Eq. (2.153) is relatively simple, namely
O K
ﬁ =— (2.154)
E.s) s(s+a)

the reader may be concerned about how to evaluate the constants.
Let us first discuss the mechanical constants, J,, and D,,. Consider

Figure 2.37, which shows a motor with inertia J, and damping D, at the
Motor 4| Ny armature driving a load consisting of inertia J;, and damping D;. Assuming
that all inertia and damping values shown are known, J;, and D;, can be
Ja> Da N, ’ reflected back to the armature as some equivalent inertia and damping to be

D, added to J, and D,, respectively. Thus, the equivalent inertia, J,,, and
equivalent damping, D,,, at the armature are
FIGURE 2.37 DC motor driving a rotational

; Ni\? N1\’
mechanical load Jn=Ja+JL L : D,=D,+ Dy L (2.155)14
N2 N2

Now that we have evaluated the mechanical constants, J,, and D,,, what about the
electrical constants in the transfer function of Eq. (2.153)? We will show that these constants
can be obtained through a dynamometer test of the motor, where a dynamometer measures
the torque and speed of a motor under the condition of a constant applied voltage. Let us first
develop the relationships that dictate the use of a dynamometer.

Substituting Eqgs. (2.145) and (2.148) into Eq. (2.146), with L, = 0, yields

Rq
T T(s) + KpsO,,(s) = Eq(s) (2.156)
t
Taking the inverse Laplace transform, we get

% m(?) + Kpwn(t) = eq(t) (2.157)
t
where the inverse Laplace transform of s0,,(s) is d0,,(t)/dt or, alternately, w,,(t).

If a dc voltage, e,, is applied, the motor will turn at a constant angular velocity, @,,,
with a constant torque, 7',. Hence, dropping the functional relationship based on time from
Eq. (2.157), the following relationship exists when the motor is operating at steady state
with a dc voltage input:

R
FaTm + Ky, = e, (2.158)

t

"3The units for the electrical constants are K, = N-m-A (newton-meters/ampere), and K, = V-s/rad
(volt-seconds/radian).

'1f the values of the mechanical constants are not known, motor constants can be determined through laboratory
testing using transient response or frequency response data. The concept of transient response is covered in Chapter 4;
frequency response is covered in Chapter 10.
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Solving for T, yields

K,K K
S .

T, =
" R, Rq

(2.159)

Equation (2.159) is a straight line, 7, vs. w,, and is shown in
Figure 2.38. This plot is called the torque-speed curve. The torque axis
intercept occurs when the angular velocity reaches zero. That value of torque
is called the stall torque, Tgqy. Thus,

Toall = o €a (2.160)

R,

The angular velocity occurring when the torque is zero is called the no-load
speed, Wyo10ad- Thus,

€a

Wno-load = 7~

o (2.161)

The electrical constants of the motor’s transfer function can now be found
from Egs. (2.160) and (2.161) as

K: Ty
—_—=— 2.162
R e ( )
and
e
Ky=—2" (2.163)
@no-load

Tgan

Torque
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®no-load

Speed

FIGURE 2.38 Torque-speed curves with an
armature voltage, ¢,, as a parameter

The electrical constants, K; /R, and K, can be found from a dynamometer test of the motor,

which would yield T, and @ne10aq for a given e,.

Transfer Function—DC Motor and Load

transfer function, 0y (s)/E(s).

Eq. (2.155), the total inertia at the armature of the motor is

A 1\2
Jo=Jo+J [=L) =5+700(—) =12
L<N2> (10)

and the total damping at the armature of the motor is

N\ 2 1\?
D,=D,+D; (=) =2 —) =1
o+ L<N2> +800<10> 0

PROBLEM: Given the system and torque-speed curve of Figure 2.39(a) and (b), find the

SOLUTION: Begin by finding the mechanical constants, J,, and D,,, in Eq. (2.153). From

(2.164)

(2.165)

Virtual Experiment 2.2
Open-Loop Servo Motor

Put theory into practice
exploring the dynamics of the
Quanser Rotary Servo System
modeled in LabVIEW. It is
particularly important to
know how a servo motor
behaves when using them in
high-precision applications
such as hard disk drives.

Virtual experiments are found
on Learning Space.
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T
Fixed
field 500
R, % 2
ez

N, =100
0,(1)

N, =1000
J, =5 kg-m? ’ Jy =700 kg-m?

D,=2 N-m s/rad

Speed (rad/s)

D; =800 N-m s/rad
(@) ()

Ea® | oom7 | O®
1 sGs + 1.667)

(c)
FIGURE 2.39 a. DC motor and load; b. torque-speed curve; ¢. block diagram

Now we will find the electrical constants, K;/R, and Kj. From the torque-speed
curve of Figure 2.39(b),

T = 500 (2.166)
Wno-load = 50 (2167)
e0 = 100 (2.168)

Hence the electrical constants are

Kt _ Tstall _ 500 _

(2.169)

R, e, T 100

and

e, 100
K, = ==

= =—=2 2.170
Wno-load 50 ( )

Substituting Egs. (2.164), (2.165), (2.169), and (2.170) into Eq. (2.153) yield

Onls) 5/12 0.417

_ - (2.171)
1 .
E,(s) S{S+E[10+(5)(2)]} s(s +1.667)
In order to find 0;(s)/E,(s), we use the gear ratio, Ny /N, = 1/10, and find
.041
Ouls) _ _0.0417 2.172)

Eu(s)  s(s+ 1.667)

as shown in Figure 2.39(c).
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Skill-Assessment Exercise 2.11

PROBLEM: Find the transfer function, G(s) = 6.(s)/E.(s), for the motor and load
shown in Figure 2.40. The torque-speed curve is given by 7, = —8w,, + 200 when the
input voltage is 100 volts.

+ Nl =20
e,(t) | Motor
= =2
J, = 1kg-m?2 N, =100 Ny=25
D, =5N-m-s/rad 0 D; = 800 N-m-s/rad

®
Ny= 100 S - — E FIGURE 2.40
Jp = 400 kg-m ! E Electromechanical system for
Skill-Assessment Exercise 2.11

1/20

ANSWER: G(s) = s[s + (15/2)]

The complete solution is at www.wiley.com/college/nise.
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2.9 Electric Circuit Analogs

In this section, we show the commonality of systems from the various disciplines by
demonstrating that the mechanical systems with which we worked can be represented by
equivalent electric circuits. We have pointed out the similarity between the equations
resulting from Kirchhoff’s laws for electrical systems and the equations of motion of
mechanical systems. We now show this commonality even more convincingly by producing
electric circuit equivalents for mechanical systems. The variables of the electric circuits
behave exactly as the analogous variables of the mechanical systems. In fact, converting
mechanical systems to electrical networks before writing the describing equations is a
problem-solving approach that you may want to pursue.

An electric circuit that is analogous to a system from another discipline is called an electric
circuit analog. Analogs can be obtained by comparing the describing equations, such as the
equations of motion of a mechanical system, with either electrical mesh or nodal equations.
When compared with mesh equations, the resulting electrical circuit is called a series analog.
‘When compared with nodal equations, the resulting electrical circuit is called a parallel analog.

Series Analog
Consider the translational mechanical system shown in Figure 2.41(a), whose equation of
motion is

(Ms* + .5 + K)X(s) = F(s) (2.173)

Kirchhoff’s mesh equation for the simple series RLC network shown in Figure 2.41(b) is
1
<Ls +R+ C) I(s) = E(s) (2.174)
s

As we previously pointed out, Eq. (2.173) is not directly analogous to Eq. (2.174)
because displacement and current are not analogous. We can create a direct analogy by


http://www.wiley.com/college/nise

84

FIGURE 2.41 Development
of series analog: a. mechanical
system; b. desired electrical
representation; c. series analog;
d. parameters for series analog

Example 2.24

Chapter 2 Modeling in the Frequency Domain

B > 2() A(RLW)A R

M = fi) e (%) > =
— i)

A
O

Jo
(@) ®)
M S mass =M — inductor = M henries
OOOO VVYV viscous damper = f,, —= resistor = f, ohms
+ o — ; _ 1
) 1T spring = K —= capacitor = _ farads
o ) ~¥ K
® - applied force = f{r) — voltage source = f{t)
v(t
velocity = v(f) —= mesh current = v(f)
© @

operating on Eq. (2.173) to convert displacement to velocity by dividing and multiplying the
left-hand side by s, yielding

wsx@ - (Ms +f+ g) V(s) = F(s) (2.175)

Comparing Eqs. 2.174 and 2.175, we recognize the sum of impedances and draw the circuit
shown in Figure 2.41(c). The conversions are summarized in Figure 2.41(d).

When we have more than one degree of freedom, the impedances associated with a
motion appear as series electrical elements in a mesh, but the impedances between adjacent
motions are drawn as series electrical impedances between the two corresponding meshes.
We demonstrate with an example.

Converting a Mechanical System to a Series Analog

PROBLEM: Draw a series analog for the mechanical system of Figure 2.17(a).

SOLUTION: Equations (2.118) are analogous to electrical mesh equations after
conversion to velocity. Thus,

{M1s+(ﬁl+ﬁ3)+w}‘/()—(% )vz(s) F(s) (2.1762)

(2+)

(fw + >V1(S)+ {MzH(ﬁz +f)+——|Va(s) =0 (2.176b)

Coefficients represent sums of electrical impedance. Mechanical impedances associated
with M, form the first mesh, where impedances between the two masses are common to
the two loops. Impedances associated with M, form the second mesh. The result is shown
in Figure 2.42, where v((¢) and v,(¢) are the velocities of M and M,, respectively.




o )

Vl([)

K

Vp_([)

2.9 Electric Circuit Analogs

FIGURE 2.42 Series analog
of mechanical system of
Figure 2.17(a)
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Parallel Analog
A system can also be converted to an equivalent parallel analog. Consider the
translational mechanical system shown in Figure 2.43(a), whose equation of motion
is given by Eq. (2.175). Kirchhoff’s nodal equation for the simple parallel RLC network
shown in Figure 2.43(b) is

<Cs + 116 iF i) E(s) = I(s)

(2.177)

Comparing Eqgs. (2.175) and (2.177), we identify the sum of admittances and draw the
circuit shown in Figure 2.43(c). The conversions are summarized in Figure 2.43(d).
When we have more than one degree of freedom, the components associated with a
motion appear as parallel electrical elements connected to a node. The components of
adjacent motions are drawn as parallel electrical elements between two corresponding

nodes. We demonstrate with an example.

%» x(1)

fo (X)) M

M fln)
—
I
(@)
v(1)
— 1 1
d v K

e(t)

i(0) Q c=< R L
®)
mass =M — capacitor = M farads
viscous damper = f, — resistor = fl ohms
Vv
spring = K — inductor = I% henries

applied force = f(r) —»

velocity = v(f) —=

(d)

node voltage

current source = f{7)

=v(1)

FIGURE 2.43 Development
of parallel analog: a. mechanical
system; b. desired electrical
representation; c. parallel analog;
d. parameters for parallel analog
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Converting a Mechanical System to a Parallel Analog

PROBLEM: Draw a parallel analog for the mechanical system of Figure 2.17(a).

SOLUTION: Equation (2.176) is also analogous to electrical node equations. Coefficients
represent sums of electrical admittances. Admittances associated with M form the elements
connected to the first node, where mechanical admittances between the two masses are
common to the two nodes. Mechanical admittances associated with M, form the elements
connected to the second node. The result is shown in Figure 2.44, where v|(t) and v,(¢) are
the velocities of M| and M5, respectively.

vi(®) VvV va(1)

FIGURE 2.44 Parallel analog §(0) Q M = L €1 €1 M, =< - €L
of mechanical system of
Figure 2.17(a)

Skill-Assessment Exercise 2.12

PROBLEM: Draw a series and parallel analog for the rotational mechanical system of
Figure 2.22.

ANSWER: The complete solution is at www.wiley.com/college/nise.

2.10 Nonlinearities

The models thus far are developed from systems that can be described approximately by
linear, time-invariant differential equations. An assumption of linearity was implicit in the
development of these models. In this section, we formally define the terms linear and
nonlinear and show how to distinguish between the two. In Section 2.11, we show how to
approximate a nonlinear system as a linear system so that we can use the modeling
techniques previously covered in this chapter (Hsu, 1968).
A linear system possesses two properties: superposition and homogeneity. The property
of superposition means that the output response of a system to the sum of inputs is the sum of
) ) the responses to the individual inputs. Thus, if an input of ry ()
yields an output of ¢(¢) and an input of r,(7) yields an output of
c>(1), then an input of r1 (¢) + r,(¢) yields an output of ¢, (¢) + ¢5(¢).

g2 22 The property of homogeneity describes the response of the system
81 31 to a multiplication of the input by a scalar. Specifically, in a linear
system, the property of homogeneity is demonstrated if for an

0 i é é "l x 0 i é é zll x  inputof ri(¢) that yields an output of ¢ (¢), an input of Ar| (¢) yields

an output of Ac;(¢); that is, multiplication of an input by a scalar
yields a response that is multiplied by the same scalar.

We can visualize linearity as shown in Figure 2.45.
FIGURE 2.45 a. Linear system; b. nonlinear system Figure 2.45(a) is a linear system where the output is always

Input Input
(a) ®)
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Amplifier saturation Motor dead zone Backlash in gears
Jx) Sfx) )
[

Z Z .

= = 2.

o o = =X

L1/
> X > X
Input Input Input

one half the input, or f(x) = 0.5x, regardless of the value of x. Thus each of the two
properties of linear systems applies. For example, an input of 1 yields an output of% and an
input of 2 yields an output of 1. Using superposition, an input that is the sum of the original
inputs, or 3, should yield an output that is the sum of the individual outputs, or 1.5. From
Figure 2.45(a), an input of 3 does indeed yield an output of 1.5.

To test the property of homogeneity, assume an input of 2, which yields an output of 1.
Multiplying this input by 2 should yield an output of twice as much, or 2. From Figure 2.45(a),
an input of 4 does indeed yield an output of 2. The reader can verify that the properties of
linearity certainly do not apply to the relationship shown in Figure 2.45(b).

Figure 2.46 shows some examples of physical nonlinearities. An electronic amplifier is
linear over a specific range but exhibits the nonlinearity called saturation at high input
voltages. A motor that does not respond at very low input voltages due to frictional forces
exhibits a nonlinearity called dead zone. Gears that do not fit tightly exhibit a nonlinearity
called backlash: The input moves over a small range without the output responding. The
reader should verify that the curves shown in Figure 2.46 do not fit the definitions of linearity
over their entire range. Another example of a nonlinear subsystem is a phase detector, used in a
phase-locked loop in an FM radio receiver, whose output response is the sine of the input.

A designer can often make a linear approximation to a nonlinear system. Linear
approximations simplify the analysis and design of a system and are used as long as the
results yield a good approximation to reality. For example, a linear relationship can be
established at a point on the nonlinear curve if the range of input values about that point is
small and the origin is translated to that point. Electronic amplifiers are an example of
physical devices that perform linear amplification with small excursions about a point.

2.11 Linearization
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FIGURE 2.46 Some physical
nonlinearities

The electrical and mechanical systems covered thus far were assumed to be linear. However,
if any nonlinear components are present, we must linearize the system before we can find the
transfer function. In the last section, we defined and discussed nonlinearities; in this section,
we show how to obtain linear approximations to nonlinear systems in order to obtain
transfer functions.

The first step is to recognize the nonlinear component and write the nonlinear
differential equation. When we linearize a nonlinear differential equation, we linearize it
for small-signal inputs about the steady-state solution when the small-signal input is equal to
zero. This steady-state solution is called equilibrium and is selected as the second step in the
linearization process. For example, when a pendulum is at rest, itis at equilibrium. The angular
displacement is described by a nonlinear differential equation, but it can be expressed with a
linear differential equation for small excursions about this equilibrium point.

Next we linearize the nonlinear differential equation, and then we take the Laplace
transform of the linearized differential equation, assuming zero initial conditions. Finally,
we separate input and output variables and form the transfer function. Let us first see how to
linearize a function; later, we will apply the method to the linearization of a differential
equation.
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fio) If we assume a nonlinear system operating at point A, [xg, f(xp)] in
Figure 2.47, small changes in the input can be related to changes in the output
about the point by way of the slope of the curve at the point A. Thus, if the slope of
the curve at point A is m,,, then small excursions of the input about point A, J,, yield

f(x)

y 15720 R S ; small changes in the output, Jf(x), related by the slope at point A. Thus,
& I
3 ! - =~ my(x — 2.178
SHY . | S [f(x) = f(x0)] = ma(x — xo) ( )
|
i ! from which
|
! I
i ! . 5F(x) = mydx (2.179)
0 X0 X
Input and
FIGURE 2.47 Linearization about
point A ) =f(x0) + ma(x — x0) = f(x0) + madx (2.180)

This relationship is shown graphically in Figure 2.47, where a new set of axes, J, and
Of (x), is created at the point A, and f(x) is approximately equal to f(xy), the ordinate of
the new origin, plus small excursions, m,dx, away from point A. Let us look at an
example.

Example 2.26

Linearizing a Function

PROBLEM: Linearize f(x) = 5 cos x about x = 7/2.

SOLUTION: We first find that the derivative of f(x) is df /dx = (=5 sin x). Atx = 7 /2, the
derivativeis —5. Alsof(xo) = f(x/2) = 5 cos (z/2) = 0. Thus, from Eq. (2.180), the system
can be represented as f(x) = —5 éx for small excursions of x about /2. The process is
shown graphically in Figure 2.48, where the cosine curve does indeed look like a straight
line of slope —5 near /2.

Sx)

5
Slope = -5

(98]

FIGURE 2.48 Linearization
of 5 cos x about x = 7/2
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The previous discussion can be formalized using the Taylor series expansion, which
expresses the value of a function in terms of the value of that function at a particular point,
the excursion away from that point, and derivatives evaluated at that point. The Taylor series
is shown in Eq. (2.181).

f| o mx) f =0

d
— — 2.181
dx X=X( 1 ' dx2 X=X( 2' ( )

Jx) =f(x0) +
For small excursions of x from xp, we can neglect higher-order terms. The resulting
approximation yields a straight-line relationship between the change in f{x) and the
excursions away from xp. Neglecting the higher-order terms in Eq. (2.181), we get

1® -~ 2| ) (.182)

or

Sf(x)~m| __ ox (2.183)

X=X(

which is a linear relationship between Jf(x) and x for small excursions away from xg. It is
interesting to note that Eqs. (2.182) and (2.183) are identical to Egs. (2.178) and (2.179),
which we derived intuitively. The following examples illustrate linearization. The first
example demonstrates linearization of a differential equation, and the second example
applies linearization to finding a transfer function.

Example 2.27

Linearizing a Differential Equation

PROBLEM: Linearize Eq. (2.184) for small excursions about x = /4.

d*x 4 dx
dr? dt

+cosx=0 (2.184)
SOLUTION: The presence of the term cos x makes this equation nonlinear. Since we
want to linearize the equation about x = z/4, we let x = éx + /4, where Sx is the small
excursion about /4, and substitute x into Eq. (2.184):

& (5x+f) d(6x+§) ;
5 4/ 19 - 4 +cos<5x+z) =0 (2.185)
But
2 7[
d <5x+z) P o6
e dr ’
and
T
d<5x+7) d6
N4 (2.187)

dt dt

89




Chapter 2 Modeling in the Frequency Domain

Finally, the term cos (6x + (7/4)) can be linearized with the truncated Taylor series.
Substituting f(x) = cos (6x + (x/4)), f(x0) =f(x/4) = cos (x/4), and (x — xo) = Sx into
Eq. (2.182) yields

() o) 45

8x = —sin G) Sx (2.188)

_r
A=y

Solving Eq. (2.188) for cos(éx + (z/4)), we get

T /1 . (T \/5 \/E
COS (6x + Z) = COS (Z) — Sin (Z) ox = T - Téx (2189)
Substituting Eqgs. (2.186), (2.187), and (2.189) into Eq. (2.185) yields the following
linearized differential equation:

2
deox dox V2o V2 (2.190)

P T )

This equation can now be solved for dx, from which we can obtain x = 6x + (7/4).

Even though the nonlinear Eq. (2.184) is homogeneous, the linearized Eq. (2.190) is
not homogeneous. Eq. (2.190) has a forcing function on its right-hand side. This additional
term can be thought of as an input to a system represented by Eq. (2.184).

Another observation about Eq. (2.190) is the negative sign on the left-hand side. The
study of differential equations tells us that since the roots of the characteristic equation are
positive, the homogeneous solution grows without bound instead of diminishing to zero.
Thus, this system, linearized around x = z /4, is not stable.

Example 2.28

Transfer Function—Nonlinear Electrical Network

0V

network

PROBLEM: Find the transfer function, V(s)/V(s), for the electrical network
v,(t) shown in Figure 2.49, which contains a nonlinear resistor whose voltage-current
relationship is defined by i, = 2¢%1r where i, and v, are the resistor current and

]
LB voltage, respectively. Also, v(¢) in Figure 2.49 is a small-signal source.

obtain the nonlinear differential equation, but first we must solve for the voltage
across the nonlinear resistor. Taking the natural log of the resistor's current-voltage
relationship, we get v, = 10 ln%ir. Applying Kirchhoff’s voltage law around the

;
m IH
v (J:) c Non.linear
TeSIIOr SOLUTION: We will use Kirchhoff's voltage law to sum the voltages in the loop to
—_— 2
I

FIGURE 2.49 Nonlinear electrical loop, where i, = i, yields

di 1
L—+10In=i—-20 = 2.191
dt+ 0n21 0= (1) (2.191)

Next, let us evaluate the equilibrium solution. First, set the small-signal source, v(7),
equal to zero. Now evaluate the steady-state current. With v(z) = 0, the circuit consists of a
20 V battery in series with the inductor and nonlinear resistor. In the steady state, the
voltage across the inductor will be zero, since v, (t) = Ldi/dt and di/dt is zero in the steady

state, given a constant battery source. Hence, the resistor voltage, v,, is 20 V. Using the
characteristics of the resistor, i, = 2¢%"", we find that i, = i = 14.78 amps. This current,




2.11 Linearization

io, is the equilibrium value of the network current. Hence i = iy + di. Substituting this
current into Eq. (2.191) yields
d(ip + 6i)
Li
dt
Using Eq. (2.182) to linearize ln%(io + oi), we get

1
+ 10102 (io + i) ~ 20 = v(1) (2.192)

1.
In L Gig + i) — In i d(ln2’){ si=1| si=Lsi (2.193)
— 1) — —ly=—— = — = -0l .
20 2" di iz il g
or
1 o1
In= (io + 61) = In 2+ —6i (2.194)
2 2 1o
Substituting into Eq. (2.192), the linearized equation becomes
déi o1
L2+ 10 <1n’°+,5i> —20 = u(r) (2.195)
dt 2 i
Letting L = 1 and iy = 14.78, the final linearized differential equation is
déi
d—t’ +0.6778i = (1) (2.196)

Taking the Laplace transform with zero initial conditions and solving for di(s), we get

V(s)

i(s) = ———— 2.1
0i9) = 370,677 (2197)
But the voltage across the inductor about the equilibrium point is
d déi
t)=L—(ip +6i) = L— 2.198
v(e) = L2 (o +6) = L (2.198)
Taking the Laplace transform,
Vi(s) = Lséi(s) = si(s) (2.199)
Substituting Eq. (2.197) into Eq. (2.199) yields
V(s)
= 2.2
Vi) =5 o em (2.200)
from which the final transfer function is
Vils) s (2.201)

V(s) s+0.677

for small excursions about i = 14.78 or, equivalently, about v(r) = 0.

21

Skill-Assessment Exercise 2.13

PROBLEM: Find the linearized transfer function, G(s) = V(s)/I(s), for the electri-
cal network shown in Figure 2.50. The network contains a nonlinear resistor whose
voltage-current relationship is defined by i, =e'. The current source, i(f), is a
small-signal generator.
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ANSWER: G(s) = s-i-%

The complete solution is at www.wiley.com/college/nise.

v(1)

M
V]
7
-

: Nonlinear
2A CAD i CD resistor
FIGURE 2.50 Nonlinear
electric circuit for Skill-

Assessment Exercise 2.13

Antenna Control: Transfer Functions
This chapter showed that physical systems can be modeled mathematically with transfer
functions. Typically, systems are composed of subsystems of different types, such as
electrical, mechanical, and electromechanical.
The first case study uses our ongoing example of the antenna azimuth position
control system to show how to represent each subsystem as a transfer function.

PROBLEM: Find the transfer function for each subsystem of the antenna azimuth
position control system schematic shown on the front endpapers. Use Configuration 1.

SOLUTION: First, we identify the individual subsystems for which we must find

transfer functions; they are summarized in Table 2.6. We proceed to find the transfer
function for each subsystem.

TABLE 2.6 Subsystems of the antenna azimuth position control system

Subsystem Input Output
Input potentiometer Angular rotation from user, 6;(¢) Voltage to preamp, v;(t)
Preamp Voltage from potentiometers, Voltage to power amp, v, (t)
ve(t) = vi(t) — vo(?)
Power amp Voltage from preamp, v,(t) Voltage to motor, e,(f)
Motor Voltage from power amp, e,(t) Angular rotation to
load, 6y(t)
Output potentiometer Angular rotation from load, 0y(z) Voltage to preamp, v (f)

Input Potentiometer; Output Potentiometer

Since the input and output potentiometers are configured in the same way, their transfer
functions will be the same. We neglect the dynamics for the potentiometers and simply
find the relationship between the output voltage and the input angular displacement. In
the center position the output voltage is zero. Five turns toward either the positive
10 volts or the negative 10 volts yields a voltage change of 10 volts. Thus, the transfer
function, V;(s)/6;(s), for the potentiometers is found by dividing the voltage change by
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the angular displacement:

Viis) _ 10 1
T (2.202)

Preamplifier; Power Amplifier

The transfer functions of the amplifiers are given in the problem statement. Two
phenomena are neglected. First, we assume that saturation is never reached. Second, the
dynamics of the preamplifier are neglected, since its speed of response is typically much
greater than that of the power amplifier. The transfer functions of both amplifiers are
given in the problem statement and are the ratio of the Laplace transforms of the output
voltage divided by the input voltage. Hence, for the preamplifier,

V() =K (2.203)
Ve(s)
and for the power amplifier,
E, 100
© _ (2.204)

V,(s) "~ s+ 100

Motor and Load
The motor and its load are next. The transfer function relating the armature displacement
to the armature voltage is given in Eq. (2.153). The equivalent inertia, J,,, is

i S dlpard) 2 2—002+1 ! =0.03 (2.205)
mTreTi250) T 100 '
where J; =1 is the load inertia at 6y. The equivalent viscous damping, D,,, at the
armature is

25\? 1
Dy,=D,+Dr|—) =0.014+1—=0.02 2.206
t <250) 100 (2.206)
where Dy is the load viscous damping at 8. From the problem statement, K;, = 0.5 N-m/A,
K, = 0.5 V-s/rad, and the armature resistance R, = 8 ohms. These quantities along with
Jm and D,, are substituted into Eq. (2.153), yielding the transfer function of the motor from
the armature voltage to the armature displacement, or

On(s) K:/(RuJ ) 2083
Eu(s) U(p KK Cos(s+ 1.71) (2:207)
& |:S + E < m + Ra>:|

To complete the transfer function of the motor, we multiply by the gear ratio to arrive at the
transfer function relating load displacement to armature voltage:

00(s) _ o, Onls) _ 02083
EJ(s)  Eus) s(s+1.71)

The results are summarized in the block diagram and table of block diagram parameters
(Configuration 1) shown on the front endpapers. An animation PowerPoint presentation
(PPT) demonstrating this system is available for instructors at www.wiley.com/college/nise.
See Antenna (Ch. 2).

(2.208)

CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives: Referring to the antenna azimuth position control system schematic
shown on the front endpapers, evaluate the transfer function of each subsystem. Use

93
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Configuration 2. Record your results in the table of block diagram parameters shown on
the front endpapers for use in subsequent chapters’ case study challenges.

Hip joint

Transfer Function of a Human Leg
In this case study we find the transfer function of a biological system. The
system is a human leg, which pivots from the hip joint. In this problem, the
component of weight is nonlinear, so the system requires linearization before
the evaluation of the transfer function.

PROBLEM: The transfer function of a human leg relates the output angular
rotation about the hip joint to the input torque supplied by the leg muscle. A
simplified model for the leg is shown in Figure 2.51. The model assumes an
applied muscular torque, 7,,(f), viscous damping, D, at the hip joint, and
inertia, J, around the hip joint.'> Also, a component of the weight of the leg,
FIGURE 2.51 Cylinder model of a Mg, where M is the mass of the leg and g is the acceleration due to gravity,
human leg creates a nonlinear torque. If we assume that the leg is of uniform density, the
weight can be applied at L/2, where L is the length of the leg (Milsum, 1966).
Do the following:

a. Evaluate the nonlinear torque.

b. Find the transfer function, 0(s)/T,(s), for small angles of rotation, where
6(s) is the angular rotation of the leg about the hip joint.

de SOLUTION: First, calculate the torque due to the weight. The total weight of the

0 Dar legis Mg acting vertically. The component of the weightin the direction of rotation

0 dtz is Mg sin 6. This force is applied at a distance L/2 from the hip joint. Hence the

torque in the direction of rotation, Ty (¢), is Mg(L/2) sin 6. Next, draw a free-body

diagram of the leg, showing the applied torque, T,,(7), the torque due to the

weight, Ty (?), and the opposing torques due to inertia and viscous damping (see
Figure 2.52).

Summing torques, we get

m(t) Tw(t)

FIGURE 2.52 Free-body diagram of
leg model

d29 do L .

We linearize the system about the equilibrium point, & = 0, the vertical position of the leg.
Using Eq. (2.182), we get

sin@ — sin0 = (cos0)6 6 (2.210)

from which, sin 6 = 86. Also, Jd*0/dt*> = Jd*60/dt*> and Dd6/dt = Dd50/dt. Hence
Eq. (2.209) becomes

4’50 dso L
4D ——+Mg=50="T,t 2211
J gz TPt Mes (®) ( )

Notice that the torque due to the weight approximates a spring torque on the leg. Taking
the Laplace transform with zero initial conditions yields

(Js +Ds+ Mg )56(s) Tn(s) (2.212)

15 o T : i : :
For emphasis, J is not around the center of mass, as we previously assumed for inertia in mechanical rotation.
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from which the transfer function is

50 1/J
) _ / (2.213)
To(s) D MgL
mO) s
70T 2

for small excursions about the equilibrium point, € = 0.

CHALLENGE: We now introduce a case study challenge to test your "
knowledge of this chapter’s objectives. Although the physical system V@ Cf)
is different from a human leg, the problem demonstrates the same
principles: linearization followed by transfer function evaluation.
Given the nonlinear electrical network shown in Figure 2.53, find
the transfer function relating the output nonlinear resistor voltage, V ,(s),

m

1H

Nonlinear
resistor

to the input source voltage, V(s).

FIGURE 2.53 Nonlinear electric circuit
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v,(0) = 2i7(2)

Summary

In this chapter, we discussed how to find a mathematical model, called a transfer function,
for linear, time-invariant electrical, mechanical, and electromechanical systems. The
transfer function is defined as G(s) = C(s)/R(s), or the ratio of the Laplace transform of
the output to the Laplace transform of the input. This relationship is algebraic and also
adapts itself to modeling interconnected subsystems.

We realize that the physical world consists of more systems than we illustrated in this
chapter. For example, we could apply transfer function modeling to hydraulic, pneumatic,
heat, and even economic systems. Of course, we must assume these systems to be linear, or
make linear approximations, in order to use this modeling technique.

Now that we have our transfer function, we can evaluate its response to a specified
input. System response will be covered in Chapter 4. For those pursuing the state-space
approach, we continue our discussion of modeling in Chapter 3, where we use the time
domain rather than the frequency domain.

Review Questions

1. What mathematical model permits easy interconnection of physical systems?
2. To what classification of systems can the transfer function be best applied?

3. What transformation turns the solution of differential equations into algebraic
manipulations?

4. Define the transfer function.

5. What assumption is made concerning initial conditions when dealing with transfer
functions?

6. What do we call the mechanical equations written in order to evaluate the transfer
function?

7. If we understand the form the mechanical equations take, what step do we avoid in
evaluating the transfer function?

8. Why do transfer functions for mechanical networks look identical to transfer functions for
electrical networks?

9. What function do gears perform?
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10. What are the component parts of the mechanical constants of a motor’s transfer function?

11. The motor’s transfer function relates armature displacement to armature voltage.
How can the transfer function that relates load displacement and armature voltage be

determined?

12. Summarize the steps taken to linearize a nonlinear system.

Problems

. Use MATLAB and the Symbolic Math

. Derive the Laplace transform for the following time

functions: [Section: 2.2]
a. u(r)

b. tu(?)

c. sin wr u(r)

d. cos wrt u(r)

. Using the Laplace transform pairs of Table 2.1 and the

Laplace transform theorems of Table 2.2, derive the
Laplace transforms for the following time functions:
[Section: 2.2]

a. e “sin wr u(r)
b. e~*cos wt u(r)
c. Pu(t)

. Repeat Problem 19 in Chapter 1, using Laplace

transforms. Assume zero initial conditions. [Sections:
2.2;2.3]

. Repeat Problem 20 in Chapter 1, using Laplace trans-

forms. Assume that the forcing functions are zero prior
to t = 0—. [Section: 2.2]

. Repeat Problem 21 in Chapter 1, using Laplace trans-

forms. Use the following initial conditions for each part
as follows: (a) x(0)=4, x¥(0)=—-4; (b) x(0)=4,

X(0)=1; (¢) x(0)=2,x¥'(0)=3, where x’(0)=%(0).

Assume that the forcing functions are zero prior to
t=0—-. [Section: 2.2]

. Use MATLAB and the Symbolic Math symbolic Math

Toolbox to find the Laplace
transform of the following time
functions: [Section: 2.2]

a. f(t) = 8t°cos (3t + 45°)

b. f(t) = 3te~?'sin (4t + 60°)

Symbolic Math
Toolbox to find the inverse [ SM |
Laplace transform of the following
frequency functions: [Section: 2.2]

(s? + 35+ 10)(s + 5)
(s + 3)(s + 4)(s? + 25 + 100)

P +452+25+6

(s+8)(s2+8s+3)(s2+5s5+7)

a. G(s) =

b. G(s) =

8. A system is described by the following differential

equation:
>y d*y dy d’x d*x dx
——+4+3—=+5—= =—+4—+6—+38
ar Car Ca T T Tt

Find the expression for the transfer function of the
system, Y(s)/X(s). [Section: 2.3]

. For each of the following transfer functions, write the

corresponding differential equation. [Section: 2.3]

X(s) 7
“Fs) 2455+ 10
b, X6) _ 15
T F(s)  (s+10)(s+11)
. &_ s+3

F(s) s*+11s2+ 125418

. Write the differential equation for the system shown in

Figure P2.1. [Section: 2.3]

R(s) S +2s*+ 453+ 52+ 4 C(s)
—
SO+ 755+ 35+ 253 + 52+ 5

FIGURE P2.1

. Write the differential equation that is mathematically

equivalent to the block diagram shown in Figure P2.2.
Assume that r(r) = 3¢3. [Section: 2.3]

R(s) s*+ 353+ 252+ 5+ 1 C(s)
—
S+ 454+ 353+ 252+ 35+ 2

FIGURE P2.2

. A system is described by the following differential equa-

tion: [Section 2.3]

dizx + 4@
dr? dt

+5x=1

with the initial conditions x(0) = 1, x(0) = —1. Show a
block diagram of the system, giving its transfer function
and all pertinent inputs and outputs. (Hint: the initial



13.

G(s)

14.
15.

16.

17.

1Q 1Q 1H
+ AN 16666 \:|+
vi () ( ) 1H % 2Q \% vo(t) vi(t) 1Q 2F ,I\ vo(t)
@ ) ®) .

18.

conditions will show up as added inputs to an effective
system with zero initial conditions.)

Use MATLAB to generate the MATLAB
transfer function: [Section: 2.3] [T

_ 5(s +15)(s + 26)(s + 72)
"~ s(s +55)(s? + 5s + 30)(s + 56)(s2 + 27s + 52)

in the following ways:

a. the ratio of factors;
b. the ratio of polynomials.

Repeat Problem 13 for the MATLAB
fol lowing transfer function: [ ML |
[Section: 2.3]

_ s*+25s%+20s? + 155 + 42
" s5+13s% + 953 + 3752 + 355 + 50

G(s)

Use MATLAB to generate the partial-
fraction expansion of the following
function: [Section: 2.3]

10%(s +5)(s + 70)

F@)zs@+¢5xs+sa@2+7s+11m@2+68+9&

Use MATLAB and the Symbolic Math symbolic math
Toolbox to input and form LTI [ SM |
objects in polynomial and factored form

for the following frequency functions:

[Section: 2.3]

45(s? + 37s + 74)(s® + 28s? + 32 + 16)

- G(s)=
a. &) (s+39)(s +47)(s? + 2s + 100)(s® + 27s2 + 18s + 15)

56(s + 14)(s® + 49s? + 62s + 53)
(s® + 81s2 + 76s + 65)(S2 + 88s + 33)(s2 + 56s + 77)

b. G(s) =

Find the transfer function, G(s) = V,(s)/Vi(s), for each
network shown in Figure P2.3. [Section: 2.4]

FIGURE P2.3

Find the transfer function, G(s) = V(s)/V(s), for each
network shown in Figure P2.4. [Section: 2.4]
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1
2H 20 3F
20
vo 20
v(1) 2Q § + (1) +
2HY v %F /I\ QHS v, ()
(a) ®)

FIGURE P2.4

19. Find the transfer function, G(s) = V,(s)/ Vi(s), for each
network shown in Figure P2.5. Solve the problem using
mesh analysis. [Section: 2.4]

+Vo(H)— I H
70000
vi(t) 10 TE .
/‘\ vi(1) 1H 1F 1F=<v,()
(@) ®
FIGURE P2.5

20. Repeat Problem 19 using nodal equations. [Section: 2.4]

21. a. Write, but do not solve, the mesh and nodal equations
for the network of Figure P2.6. [Section: 2.4]

b. Use MATLAB, the Symbolic Math symbolic Math
Toolbox, and the equations [ SM |
found in partato solve for the
transfer function, G(s) = V,(s)/V(s)- Use
both the mesh and nodal equations and
show that either set yields the same
transfer function. [Section: 2.4]

1
§F
|
AN
20 40  6H
20
.
o (1) 8 Q § V(1)
4H -
FIGURE P2.6

22. Find the transfer function, G(s)= V,(s)/Vi(s), for
each operational amplifier circuit shown in Figure P2.7.
[Section: 2.4]
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100 k2

24. Find the transfer function, G(s) = X;(s)/F(s), for the

translational mechanical system shown in Figure P2.9.
[Section: 2.5]

x1(7)
Vo) 4 N-s/m +> : 5 N/m

F sk —0000—

(1)

500 kQ 2 uF

FIGURE P2.9

25. Find the transfer function, G(s) = X5(s)/F(s), for the
@ translational mechanical network shown in Figure P2.10.
[Section: 2.5]
100 kQ

i) = 000)
1 1 N/m l
S0 OOOO
— 1 kg 1 N-s/m 1 kg
—MAH v,(0)
O O B B e B M
100kQ 2 uF
} Frictionless
FIGURE P2.10
b)

26. Find the transfer function, G(s) = X»(s)/F(s), for the
translational mechanical system shown in Figure P2.11.
FIGURE P2.7 (Hint: place a zero mass at x,(#).) [Section: 2.5]

x(1)
operational amplifier circuit shown in Figure P2.8.
[Section: 2.4] fiy —= — sk H
110kQ 4 uF 2 N/m 4 N-s/m 2 N-s/m
VYV ¢ FIGURE P2.11
o no v,(1) 27. For the system of Figure P2.12 find the transfer function,
v,
e — G(s) = X1(s)/F(s). [Section: 2.5]
400 kQ
Ki=4Nm — [ "9k —snm 700
T4 —/0000"— —= /o
=3 N-s/m
1 fv,=3N-s/m|M;=1kg fva My=2kg| f,.= 2 N-s/m
f B = :
(a) \‘\‘\‘I‘\‘\‘\‘I‘\‘\‘\‘I‘\‘\‘\‘I‘\‘\‘\‘I \‘\‘\‘I‘\ \‘\‘I‘\‘\‘\‘I‘\

110 kQ

FIGURE P2.12

28. Find the transfer function, G(s) = X3(s)/F(s), for the

translational mechanical system shown in Figure P2.13.
[Section: 2.5]

600 kQ
V](t)

4 uF

2 N-s/m —+> 00 —= 030
T T
ﬂ_> ) 6 N/m 2 N-s/m

6N/m [T ] 2N-s/m |*ke 4kg—|

4 uF /m\ 4kg —| |_ —— (1)
e s B e B o B e o 8B it e e

®)
FIGURE P2.8

Frictionless

FIGURE P2.13
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29. Find the transfer function, X3(s)/F(s), for each system d. What will be the oscillation frequency in Hz for this
shown in Figure P2.14. [Section: 2.5] system?

M

x(1)

FIGURE P2.16

32. For each of the rotational mechanical systems shown
in Figure P2.17, write, but do not solve, the equations
of motion. [Section: 2.6]

0,0 | N-m-s/rad L 020

8 N-m-s/rad

16 N-s/m 15 N/m 000
Frictionless 9 N-(T‘Tll;rad
I(0) Ds
O e ) %) o o %)
FIGURE P2.14 K »

30. Write, but do not solve, the equations of motion for the FIGURE P2.17

translational mechanical system shown in Figure P2.15. 33 g0 the rotational mechanical system shown in

[Section: 2.5] Figure P2.18, find the transfer function G(s)=
0>(s)/T(s) [Section: 2.6]
‘T” x3(8)

Kl = 5 N/m |
My=5ke () 1 N-m/rad (1)

o ] =3 i
em ) =

—fm\— L 1 N-m-s/rad

1 N-m-s/rad
K> =4 N/
2 l_.m My =4kg — (000 M. =5 ket—= 1) |:J 1 N-m-s/rad
f K3=4N/m
Jv, =2 N-s/m
\f|I\‘\‘f‘|I\‘\‘f‘|I\‘\‘\L‘|I\‘\‘f‘|ll‘\‘[){ll‘\‘f|i m
Frictionless FIGURE P2.18
T x;(0) T x(0)
FIGURE P2.15

34. Find the transfer function, QI—(S), for the system shown in
31. For the unexcited (no external force applied) system of Figure P2.19. I(s)
Figure P2.16, do the following:
a. Write the differential equation that describes the
system.

1 N-m/rad

() 6,(0)
b. Assuming initial conditions x(0) = xy and x(0) = x,
write a Laplace transform expression for X(s).

. .. . 1 N-m-s/rad
c. Find x(¢) by obtaining the inverse Laplace transform

from the result in Part c. FIGURE P2.19
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35. For the rotational mechanical system with gears shown in
Figure P2.20, find the transfer function, G(s) = 05(s)/T(s).
The gears have inertia and bearing friction as shown.
[Section: 2.7]

1(t)
TL M
J,,D,

N, N

Jp. Dy I3, D3 9,(1)

Ny
Js D, E Js. Dy

FIGURE P2.20

36. For the rotational system shown in Figure P2.21, find the
transfer function, G(s) = 6,(s)/T(s). [Section: 2.7]

()

— > N] =4
J1 =2kg-m Dy =1 N-m-s/rad
_ 0,(1) _
I 2 O P T
Jo> =1kg-m?
D=2 Nemesiiaa | 0727 1 kem)

N4 =16
D3 =32 N-m-s/rad

K =64 N-m/rad

FIGURE P2.21

37. Find the transfer function, G(s) = 0,(s)/T(s), for the
rotational mechanical system shown in Figure P2.22.
[Section: 2.7]

500 N-m-s/rad

|_

’ 100 kg-m?

T(t)

Nl =5
300 N-m/rad

0,(1)
0000

()
%NIZS

N,
DA

‘ 150 kg-m?

FIGURE P2.22

38. Find the transfer function, G(s) = 04(s)/T(s), for the
rotational system shown in Figure P2.23. [Section: 2.7]

T(1) 0,(n) 04(1) 26 N-m-s/rad

N; =26 Ny=120 \ I
0,(8) 05(1)

No=110 N3=23

2 N-m/rad
FIGURE P2.23
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39. For the rotational system shown in Figure P2.24, find the

transfer function, G(s) = 6,(s)/T(s). [Section: 2.7]

2 N-m-s/rad 2 N-m/rad

=20 -] Thewe )

0.02 N-m-s/rad

FIGURE P2.24

40. For the rotational system shown in Figure P2.25, write
the equations of motion from which the transfer function,
G(s) = 6,(s)/T(s), can be found. [Section: 2.7]

1(zt) 6,(t)

Jy X D
P
I J3
) %
L
Js D,

FIGURE P2.25

41. Given the rotational system shown in Figure P2.26, find
the transfer function, G(s) = 0¢(s)/0:(s). [Section: 2.7]
0,(1)

.
Ji D
N, N, K
J, D I D TO g
N, | /“
4 I
Js Je
7))
D

K

FIGURE P2.26

42. In the system shown in Figure P2.27, the inertia, J, of
radius, r, is constrained to move only about the stationary
axis A. A viscous damping force of translational value f,
exists between the bodies J and M. If an external force,
S0, is applied to the mass, find the transfer function,
G(s) = O(s)/F(s). [Sections: 2.5; 2.6]

0

vvvvvvvv
L O O O L O L L L |

FIGURE P2.27




43. For the combined translational and rotational system
shown in Figure P2.28, find the transfer function,
G(s) = X(s)/T(s). [Sections: 2.5; 2.6; 2.7]

70 J=3kg-m? 1 N-m-s/rad
! Radius =2 m
N =10
g vl e
Ny=60]

N> =20
D; =1 N-m-s/rad

FIGURE P2.28

44. Given the combined translational and rotational system
shown in Figure P2.29, find the transfer function,
G(s) = X(s)/T(s). [Sections: 2.5; 2.6]

T(t)

f

FIGURE P2.29

45. For the motor, load, and torque-speed curve shown in
Figure P2.30, find the transfer function, G(s) = 6.(s)/
E,(s). [Section: 2.8]

R,

Nl = 50
D; = 8 N-m-s/rad

(= 55rm)

[ ]

ealt) CO—f) =4 kem?
]

- N2 =150

D, =36 N-m-s/rad

Or(n)

T (N-m)

150
S0V

w (rad/s)

100
FIGURE P2.30
46. The motor whose torque-speed characteristics are shown
in Figure P2.31 drives the load shown in the diagram.

Some of the gears have inertia. Find the transfer function,
G(s) = 0a2(s)/E,(s). [Section: 2.8]

101
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+ —
eq(t)

Ny =10
Motor

_|

Ny=20
J=2kg-m?
N4=20

Ji=1kg-m2
N;=10

J3=2kg-m?
3 g 0,(1)

D =36 N-m-s/rad
’ J,=18 kg-m? }—E

T(N-m)

5V

RPM
600
T

FIGURE P2.31

47. A dc motor develops 55 N-m of torque at a speed of
600 rad/s when 12 volts are applied. It stalls out at this
voltage with 100 N-m of torque. If the inertiaand damping
of the armature are 7 kg-m? and 3 N-m-s/rad, respectively,
find the transfer function, G(s) = 0.(s)/E,(s), of this
motor if it drives an inertia load of 105 kg-m? through
a gear train, as shown in Figure P2.32. [Section: 2.8]

0,,(0)

]
¢,(1)| Motor C Ny =12
N, =25 Ny=25
0,(1)
e )

FIGURE P2.32

48. In this chapter, we derived the transfer function of a dc
motor relating the angular displacement output to the
armature voltage input. Often we want to control
the output torque rather than the displacement. Derive
the transfer function of the motor thatrelates output torque
to input armature voltage. [Section: 2.8]

Find the transfer function, G(s) = X(s)/E,(s), for the
system shown in Figure P2.33. [Sections: 2.5-2.8]

49.

+ —

e,(1)| Motor ~{ Ny =10
- — J=1keg-m? D =1 N-m-s/rad
N, =20 I
Radius = 2 nf Ideal
gear 1:1

For the motor:

M=1kg—4¢»

J, =1kg-m? x(1)

D, =1N-m-s/rad l

R, =1Q fy=1N-s/m
K, =1 V-s/rad

K, =1 N-m/A

FIGURE P2.33
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50.

51.

52,

53.

54.

5S.

Chapter 2

Find the series and parallel analogs for the translational
mechanical system shown in Figure 2.20 in the text.
[Section: 2.9]

Find the series and parallel analogs for the rotational
mechanical systems shown in Figure P2.17(b) in the
problems. [Section: 2.9]

A system’s output, c, is related to the system’s input, r, by
the straight-line relationship, ¢ = 5 + 7. Is the system
linear? [Section: 2.10]

Consider the differential equation

d*x _dx
—+3—+2x=

dr? ar f&)

where f(x) is the input and is a function of the output, x. If
f(x) = sin x, linearize the differential equation for small

excursions. [Section: 2.10]

a.x=0

b.x=zx

Consider the differential equation
d*x d*x dx
—+ 10— +20—+ I5x =
ars T ar T et )

where f(x) is the input and is a function of the output, x. If
f(x) = 3¢7*, linearize the differential equation for x near
0. [Section: 2.10]
Many systems are piecewise linear. That is, over a large
range of variable values, the system can be described
linearly. A system with amplifier saturation is one such
example. Given the differential equation
d*x dx
a7 +17 7
assume that f{x) is as shown in Figure P2.34. Write the
differential equation for each of the following ranges
of x: [Section: 2.10]
a. —o0 <x< =3
b. -3 <x<3
c.3<x<

+50x = f(x)

fx)

-6

FIGURE P2.34

56.

57.

Modeling in the Frequency Domain

For the translational mechanical system with a nonlinear
spring shown in Figure P2.35, find the transfer function,
G(s) = X(s)/F(s), for small excursions around f(r) = 1.
The spring is defined by x,(r) = 1 — e (), where x,(t) is
the spring displacement and f,(f) is the spring force.
[Section: 2.10]

Nonlinear
spring

0000

|
L
2 N-s/m

FIGURE P2.35

Enzymes are large proteins that biological systems use to
increase the rate at which reactions occur. For example, food
is usually composed of large molecules that are hard to
digest; enzymes break down the large molecules into small
nutrients as partof the digestive process. One suchenzymeis
amylase, contained in human saliva. It is commonly known
that if you place a piece of uncooked pasta in your mouth its
taste will change from paper-like to sweet as amylase breaks
down the carbohydrates into sugars. Enzyme breakdown is
often expressed by the following relation:

—— x(1)

2kg  |— f()

kg k
S+E2C —P
ki

In this expression a substrate (S) interacts with an
enzyme (E) to form a combined product (C) at a rate
k. The intermediate compound is reversible and gets
disassociated at a rate k_;. Simultaneously some of the
compound is transformed into the final product (P) at a
rate k,. The kinetics describing this reaction are known
as the Michaelis-Menten equations and consist of four
nonlinear differential equations. However, under some
conditions these equations can be simplified. Let £, and
So be the initial concentrations of enzyme and substrate,
respectively. It is generally accepted that under some
energetic conditions or when the enzyme concentration
is very big (Ep > Sy), the kinetics for this reaction are
given by

as -

E = klI/(Ks c-395)
dc -

E = kW(S - KM C)
dpP

E = sz

where the following constant terms are used (Schnell,
2004):

ky = kiEy
-1

bl
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59.

and

Ru =K, +2
M — By ky/

a. Assuming the initial conditions for the reaction are
S(0) = Sy, E(0) = Ey, C(0)=P0)=0, find the
Laplace transform expressions for S, C, and P:
Z{S}, Z{C}, and Z{P}, respectively.

b. Use the final theorem to find S(c0), C(c0), and P(c0).

Humans are able to stand on two legs through a complex
feedback system that includes several sensory inputs—
equilibrium and visual along with muscle actuation. In
order to gain a better understanding of the workings of
the postural feedback mechanism, an individual is
asked to stand on a platform to which sensors are
attached at the base. Vibration actuators are attached
with straps to the individual’s calves. As the vibration
actuators are stimulated, the individual sways and
movements are recorded. It was hypothesized that
the human postural dynamics are analogous to those
of a cart with a balancing standing pole attached
(inverted pendulum). In that case, the dynamics can
be described by the following two equations:

2

d=0
J— =mglsinO(t) + Ty + Ty(2)

dr? _
Tva(t) = —mgl sin O(t) + kJO(t) — nJ O(t)

—pJ /0 tG(t)dt

where m is the individual’s mass; [ is the height of the
individual’s center of gravity; g is the gravitational
constant; J is the individual’s equivalent moment of
inertia; 7, p, and k are constants given by the body’s
postural control system; 6(¢) is the individual’s angle
with respect to a vertical line; Tpy(¢) is the torque
generated by the body muscles to maintain balance;
and T4(¢) is the external torque input disturbance. Find

() (Johansson, 1988).

Tu(s)

Figure P2.36 shows a crane hoisting a load. Although the
actual system’s model is highly nonlinear, if the rope is
considered to be stiff with a fixed length L, the system can
be modeled using the following equations:

the transfer function

mpX;, = mLg¢
mrip = fr—migp
XLg = XT — XL,
X = L(ﬁ

where m; is the mass of the load, m7 is the mass of the cart,
xr and x;, are displacements as defined in the figure, ¢ is the
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Problems

rope angle with respect to the vertical, and f is the force
applied to the cart (Marttinen, 1990).

a. Obtain the transfer function from cart velocity to rope
(s)

b. Assume thatthe cartis driven ata constant velocity V
and obtain an expression for the resulting ¢(¢). Show
that under this condition, the load will sway with a

frequency wy = \/%

c. Find the transfer function from the applied force to the

Xr(s)

Fr(s)

d. Show that if a constant force is applied to the cart, its
velocity will increase without bound as ¢ — co.

cart’s position,

m
X EXp
—_— -

FIGURE P2.36'¢

In 1978, Malthus developed a model for human
growth population that is also commonly used to
model bacterial growth as follows. Let N(f) be the
population density observed at time . Let K be the rate
of reproduction per unit time. Neglecting population
deaths, the population density at a time ¢ + At (with
small Af) is given by

N(t+ Ar) = N(t) + KN(1)At
which also can be written as
N(t+ Ar) — N(z)
At

Since N(f) can be considered to be a very large number,
letting At — 0 gives the following differential equation
(Edelstein-Keshet, 2005):

= KN(t)

dN(1)
7R KN(1)

16 Marttinen A., Virkkunen J., Salminen R.T. Control Study with Pilot Crane.
IEEE Transactions on Education, Vol. 33, No.3, August 1990. Fig. 2. p. 300.

IEEE Transactions on Education by Institute of Electrical and Electronics

Engineers; IEEE Education Group; IEEE Education Society. Reproduced

with permission of Institute of Electrical and Electronics Engineers, in the
format Republish in a book via Copyright Clearance Center.
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61.

62.

63.

Chapter 2

a. Assuming an initial population N(0) = Ny, solve the
differential equation by finding N(7).

b. Find the time at which the population is double the
initial population.

In order to design an underwater vehicle that has the

characteristics of both a long-range transit vehicle

(torpedo-like) and a highly maneuverable low-speed

vehicle (boxlike), researchers have developed a thruster

that mimics that of squid jet locomotion (Krieg, 2008). It

has been demonstrated there that the average normalized

T .
thrust due to a command step input, U(s) = s
s

given by:
T(1) = T,(1 - e™) + a sin(2xft)

where Tref is the reference or desired thrust, A is the

system’s damping constant, a is the amplitude of the
oscillation caused by the pumping action of the actuator,
fistheactuator frequency, and 7(¢)istheaverageresulting
normalized thrust. Find the thruster’s transfer function
T(s)
U(s)
The Gompertz growth model is commonly used to
model tumor cell growth. Let v(7) be the tumor’s volume,
then

Show all steps.

av(t)

ar

where 1 and a are two appropriate constants (Edelstein-
Keshet, 2005).

a. Verify that the solution to this equation is given by

Aa1=¢™) " where v, is the initial tumor

Ae” (1)

w(t) = vpe
volume.

b. This model takes into account the fact that when
nutrients and oxygen are scarce at the tumor’s core,
its growth is impaired. Find the final predicted tumor
volume (let t — 00).

c. For a specific mouse tumor, it was experimentally
found that A =2.5days, a =0.1days with vy =
50 x 1073 mm? (Chignola, 2005). Use any method
available to make a plot of v(?) vs. t.

d. Check the result obtained in Part b with the results
from the graph found in Part c.

A muscle hanging from a beam is shown in Figure P2.37(a)
(Lessard, 2009). The a-motor neuron can be used to
electrically stimulate the muscle to contract and pull the
mass, m, which under static conditions causes the muscle to
stretch. An equivalent mechanical system to this setup is
shown in Figure P2.37(b). The force F,, will be exerted
when the muscle contracts. Find an expression for the
displacement X;(s) in terms of F(s) and Fj.(s).

Modeling in the Frequency Domain

Reference

a-motor neuron
velocity
Vi

F
(@)

FIGURE P2.37 a. Motor neuron stimulating a muscle;!”
b. equivalent circuit'®

64. A three-phase ac/dc converter supplies dc to a battery
charging system or dc motor (Graovac, 2001). Each
phase has an ac filter represented by the equivalent circuit

in Figure P2.38.
Ls
Iu cF (‘)
R
\mnCD (}LMM
1/Cs _|_
FIGURE P2.38 AC filter equivalent circuit for a three-phase

ac/dc converter

Derive that the inductor current in terms of the
two active sources is

1+ RCs Cs

Lo =My s
r) = Tea v res 310" Y e T ROy 11

Va(s)

65. A photovoltaic system is used to capture solar energy to
be converted to electrical energy. A control system is
used to pivot the solar platform to track the sun’s
movements in order to maximize the captured energy.
The system consists of a motor and load similar to that
discussed in Section 2.8. A model has been proposed
(Agee, 2012) that is different from the model developed
in the chapter in the following ways: (1) the motor
inductance was not neglected and (2) the load, in
addition to having inertia and damping, has a spring.
Find the transfer function, 6,,(s)/E,(s), for this
augmented system assuming all load impedances
have already been reflected to the motor shaft.

17Lessard, C. D. Basic Feedback Controls in Biomedicine, Morgan &
Claypool, San Rafael, CA, 2009. Figure 2.8, p. 12.
lsLessard, C. D. Basic Feedback Controls in Biomedicine, Morgan &
Claypool, San Rafael, CA, 2009 Figure 2.9, p. 13.



66. In a paint mixing plant, two tanks supply fluids to a

mixing cistern. The height, &, of the fluid in the cistern
is dependent upon the difference between the input
mass flow rate, g, and the output flow rate, g,. A
nonlinear differential equation describing this depen-
dency is given by (Schiop, 2010)

where A = cross-sectional area of the cistern, A, =

cross-sectional area of the exit pipe, g = acceleration

due to gravity, and p = liquid density.

a. Linearize the nonlinear equation about the
equilibrium point (hg, go) and find the transfer
function relating the output cistern fluid level,
H(s), to the input mass flow rate, Q(s).

b. The color of the liquid in the cistern can be kept
constant by adjusting the input flow rate, g, assum-
ing the input flow’s color is specifically controlled.
Assuming an average height, A, of the liquid in
the cistern, the following equation relates the net
flow of color to the cistern to the color in the
cistern.

d
elg—eq, = E(pAehm)

where e; = fractional part of flow representing color
into the cistern, and e = fractional part of the cistern
representing color in the cistern. Assume that the
flow out of the cistern is constant and use the
relationship, g, = pA.+/2gh.y, along with the given
equation above to find the transfer function,
E(s)/O(s), that relates the color in the cistern to
the input flow rate.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
67. Control of HIV/AIDS. HIV inflicts its damage by

infecting healthy CD4 + T cells (a type of white blood
cell) that are necessary to fight infection. As the virus
embedsinaT cell and the immune system produces more
of these cells to fight the infection, the virus propagates
in an opportunistic fashion. As we now develop a simple
HIV model, refer to Figure P2.39. Normally T cells are
produced at a rate s and die at a rate d. The HIV virus is
present in the bloodstream in the infected individual.
These viruses in the bloodstream, called free viruses,
infect healthy T cells at a rate . Also, the viruses
reproduce through the T cell multiplication process or
otherwise at arate k. Free viruses die at arate c. Infected
T cells die at a rate p.

68.
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Problems

[ g

Free virus Infected cell

0. +—0
oL

FIGURE P2.39"7
A simple mathematical model that illustrates
these interactions is given by the following equations
(Craig, 2004):

[,

Healthy cell

dT
E=S—dT—ﬁTV
dr” .
— =pTv—ul
7 PTv—p

d "

d_‘; =kT —cv

where

T = number of healthy T cells
T" = number of infected T cells
v = number of free viruses

a. The system is nonlinear; thus linearization is
necessary to find transfer functions as you will
do in subsequent chapters. The nonlinear nature of
this model can be seen from the above equations.
Determine which of these equations are linear,
which are nonlinear, and explain why.

b. The system has two equilibrium points. Show that

these are given by

(To, T}y, vo) = (3 0, 0)

and
s cd

(To. T, vo) (c,u sk d)
05 s Vo) =\ o7 = — y T o
0 Pk’ u Pk cu B
Hybrid vehicle. Problem 23 in Chapter 1 discusses the
cruise control of serial, parallel, and split-power hybrid

electric vehicles (HEVs). The functional block diagrams
developed for these HEVs indicated that the speed of a

19 Crai g, 1. K., Xia, X., and Venter, J. W. Introducing HIV/AIDS Education
Into the Electrical Engineering Curriculum at the University of Pretoria.
IEEE Transactions on Education, vol. 47, no. 1, February 2004, pp. 65-73.
Fig. 1, p. 66. IEEE Transactions on Education by Institute of Electrical and
Electronics Engineers; IEEE Education Group; IEEE Education Society.
Reproduced with permission of Institute of Electrical and Electronics
Engineers, in the format Republish in a book via Copyright Clearance
Center.



vehicle depends upon the balance between the motive
forces (developed by the gasoline engine and/or the
electric motor) and running resistive forces. The resistive
forces include the aerodynamic drag, rolling resistance,
and climbing resistance. Figure P2.40 illustrates the
running resistances for a car moving uphill (Bosch, 2007).

FIGURE P2.40 Running resistances>

The total running resistance, F,, is calculated as
F,, = Fg, + F1 + Fg,, where Fp, is the rolling resistance,
Fy is the aerodynamic drag, and Fg, is the climbing
resistance. The aerodynamic drag is proportional to the
square of the sum of car velocity, v, and the head-wind
velocity, vp,, or v + vy,,. The other two resistances are
functions of car weight, G, and the gradient of the road
(given by the gradient angle, @), as seen from the
following equations:

Fro =fGcosa =fmgcosa
where

f = coefficient of rolling resistance

m = car mass, in kg

g = gravitational acceleration, in m/s?
Fr = 0.5pCA(V + viw ).

= air density, in kg/m?

!
SN
1

coefficient of aerodynamic drag

A = largest cross-section of the car, in kg/m?

Fg, = Gsina = mg sin a.
The motive force, F, available at the drive wheels is:

Ti P

v

20 Robert Bosch GmbH, Bosch Automotive Handbook, Tth ed. John Wiley &
Sons Ltd. UK, 2007. P. 430. Figure at bottom left.
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where
T = motive torque
P = motive power
i,y = total transmission ratio
r = tire radius
Mo = total drive-train efficiency.

The surplus force, F — F,,, accelerates the vehicle (or

w

. . F -

retards it when F,, > F). Lettinga =
-
the acceleration and k,,, is a coefficient that compensates
for the apparent increase in vehicle mass due to rotating

masses (wheels, flywheel, crankshaft, etc.):

, where a is

a. Show that car acceleration,?! a, may be determined
from the equation:

F =fmgcosa+mgsina+ 0.5pC,,A(v + vhw)2 + k,, ma

b. Assuming constant acceleration and using the average
value for speed, find the average motive force, F,,
(in N), and power, P,, (in kW) the car needs to
accelerate from 40 to 60 km/h in 4 seconds on a level
road, (a=0°), under windless conditions, where
vy = 0. You are given the following parameters:
m=1590kg, A =2m?, f=0.011, p = 1.2kg/m’,
¢, =023, n, =009, k, = 1.2. Furthermore, calcu-
late the additional power, P4, the car needs after
reaching 60 km/h to maintain its speed while climbing
a hill with a gradient a = 5°.

c. The equation derived in Part a describes the non-
linear car motion dynamics where F(r) is the input
to the system, and v(¢) the resulting output. Given
that the aerodynamic drag is proportional to v> under
windless conditions, linearize the resulting equation
of motion around an average speed, v, = 50 km/h,
when the car travels on a level road,22 where a = 0°.
(Hint: Expand v* — v in a truncated Taylor series).
Write that equation of motion and represent it with a
block diagram in which the block G, represents the
vehicle dynamics. The output of that block is the car
speed, v(f), and the input is the excess motive force,
F,(t), defined as: F, = F — F5, — Fg, + F,, where F,
is the constant component of the linearized aerody-
namic drag.

d. Use the equation in Part ¢ to find the vehicle transfer
function: G,(s) = V(s)/F.(s).

69. Parabolic trough collector. In a significant number of
cases, the open-loop transfer function from fluid flow to

2L Other quantities, such as top speed, climbing ability, etc., may also be
calculated by manipulation from that equation.

*2Note that on a level road the climbing resistance, Fy =0, since
sina = sin0° = 0.
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fluid temperature in a parabolic trough collector can be b. Make a sketch of the unit step response of the

approximated (Camacho, 2012) by:

open-loop system. Indicate on your figure the time

delay, the settling time, the initial and final values

P(s) = l—e_ST of the response, and the value of the response
+175) when t =7+ T.
a. Write an analytic expression for the unit step response c. Call the output temperature h(f) and the input
of the open-loop system assuming that /(¢) represents fluid flow ¢(7). Find the differential equation that
the output temperature and ¢(¢) the input fluid flow. represents the open-loop system.

Cyber Exploration Laboratory

Experiment 2.1

Objectives To learn to use MATLAB to (1) generate polynomials, (2) manipulate
polynomials, (3) generate transfer functions, (4) manipulate transfer functions, and (5) perform
partial-fraction expansions.

Minimum Required Software Packages MATLAB and the Control System
Toolbox

Prelab

1.

Calculate the following by hand or with a calculator:

a. The roots of P; = s® + 7s° + 25s* + 95% 4+ 105> + 125 + 15
b. The roots of Py = s° + 9s° + 8s* + 957 + 1252 + 155 + 20
¢. Py=Py+Py; Py=P —Py; Ps=P\P,

Calculate by hand or with a calculator the polynomial

Ps=(s+7)(s+8)(s+3)(s+5)(s+9)(s+10)
Calculate by hand or with a calculator the following transfer functions:
Gi(s) = 20(s +2)(s + 3)(s + 6)(s + 8) ’
s(s 4+ T)(s + 9)(s + 10)(s + 15)
represented as a numerator polynomial divided by a denominator polynomial.
s*+ 1753 + 9952 + 2235 + 140
§% 4+ 32s% + 36353 + 209252 + 50525 + 4320°

expressed as factors in the numerator divided by factors in the denominator, similar to
the form of G, (s) in Prelab 3a.

c. Gs(s) = Gi(s) + Ga(s); Ga(s) = Gi(s) — Ga(s); Gs(s) = Gi(s)Ga(s)

expressed as factors divided by factors and expressed as polynomials divided by
polynomials.

b. G2 (S) =

Calculate by hand or with a calculator the partial-fraction expansion of the following
transfer functions:

S5(s+2)
L Ge=——o TS
AT (2 1 85+ 15)
S5(s+2)
b. Gy =22
Gr s(s2 + 65 +9)
2
e Gy 5(s+2)

- s(s% + 65+ 34)
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Lab

1. Use MATLAB to find P53, P4, and Ps in Prelab 1.

2. Use only one MATLAB command to find Pg in Prelab 2.

3. Use only two MATLAB commands to find G(s) in Prelab 3a represented as a
polynomial divided by a polynomial.

4. Use only two MATLAB commands to find G,(s) expressed as factors in the numerator

divided by factors in the denominator.

5. Using various combinations of G (s) and G;(s), find G3(s), Ga(s), and Gs(s). Various
combinations implies mixing and matching G;(s) and G,(s) expressed as factors and
polynomials. For example, in finding G3(s), G(s) can be expressed in factored form and
G>(s) can be expressed in polynomial form. Another combination is Gi(s) and G,(s)
both expressed as polynomials. Still another combination is Gj(s)and Gy(s) both
expressed in factored form.

6. Use MATLAB to evaluate the partial fraction expansions shown in Prelab 4.
Postlab

1. Discuss your findings for Lab 5. What can you conclude?

2. Discuss the use of MATLAB to manipulate transfer functions and polynomials. Discuss
any shortcomings in using MATLAB to evaluate partial fraction expansions.

Experiment 2.2

Objectives To learn to use MATLAB and the Symbolic Math Toolbox to (1) find
Laplace transforms for time functions, (2) find time functions from Laplace transforms,
(3) create LTI transfer functions from symbolic transfer functions, and (4) perform solutions
of symbolic simultaneous equations.

Minimum Required Software Packages MATLAB, the Symbolic Math Tool-
box, and the Control System Toolbox

o T Prelab
Ay H 1. Using a hand calculation, find the Laplace transform of:
5 Qi~‘(t)<>11{ 20 £(t) = 0.0075 — 0.00034¢~>>cos(22t) + 0.087¢>'sin(22¢) — 0.0072¢~%

1
F

s 1
3u(f) (*+

1(z)>

1

2

"~ s(s 4 8)(s2 + 10s + 100)

3. Use a hand calculation to solve the circuit for the Laplace transforms of the

H 2. Using a hand calculation, find the inverse Laplace transform of
L1 2(s+3)(s+5)(s+7

. >3F Py = 20+ 6+ s +7)

i,(1)

FIGURE P2.41

loop currents shown in Figure P2.41.

Lab
1. Use MATLAB and the Symbolic Math Toolbox to
a. Generate symbolically the time function f{f) shown in Prelab 1.

b. Generate symbolically F(s) shown in Prelab 2. Obtain your result symbolically in both
factored and polynomial forms.

Find the Laplace transform of f{#) shown in Prelab 1.

&0

. Find the inverse Laplace transform of F(s) shown in Prelab 2.

e. Generate an LTI transfer function for your symbolic representation of F(s) in Prelab 2
in both polynomial form and factored form. Start with the F(s) you generated
symbolically.

f. Solve for the Laplace transforms of the loop currents in Prelab 3.
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Postlab

1.

Discuss the advantages and disadvantages between the Symbolic Math Toolbox and
MATLAB alone to convert a transfer function from factored form to polynomial form
and vice versa.

Discuss the advantages and disadvantages of using the Symbolic Math Toolbox to
generate LTI transfer functions.

Discuss the advantages of using the Symbolic Math Toolbox to solve simultaneous
equations of the type generated by the electrical network in Prelab 3. Is it possible to
solve the equations via MATLAB alone? Explain.

. Discuss any other observations you had using the Symbolic Math Toolbox.

Experiment 2.3

Objectives To learn to use LabVIEW to generate and manipulate polynomials and
transfer functions.

Minimum Required Software Packages LabVIEW and the LabVIEW Control
Design and Simulation Module.

Prelab

1.
2.
3.

Study Appendix D, Sections D.1 through Section D.4, Example D.1.

Perform by hand the calculations stated in Prelab 1 of Experiment 2.1.

Find by a hand calculation the polynomial whose roots are: —7, —8, —3, =5, -9, and — 10.
55+ 10

Perf by hand rtial-fracti i fG(s)=5——F5——.
erform by hand a partial-fraction expansion of G(s) 3182 1 155

. Find by a hand calculation Gi(s) + G(s), Gi(s) — G2(s), and G{(s)Gz(s), where

s+1

1
GO = ™M= a s

Lab

A A

Open the LabVIEW functions palette and select the Mathematics/Polynomial palette.
Generate the polynomials enumerated in Prelab 1a and lb of Experiment 2.1.
Generate the polynomial operations stated in Prelab 1c of Experiment 2.1.

Generate a polynomial whose roots are those stated in Prelab 3 of this experiment.

Generate the partial-fraction expansion of the transfer function given in Prelab 4 of this
experiment.

Using the Control Design and Simulation/Control Design/Model Construction
palette, construct the two transfer functions enumerated in Prelab 5.

Using the Control Design and Simulation/Control Design/Model Interconnection
palette, display the results of the mathematical operations enumerated in Prelab 5 of this
experiment.

Postlab

1.
2.
3.

Compare the polynomial operations obtained in Lab 3 to those obtained in Prelab 2.
Compare the polynomial displayed in Lab 4 with that calculated in Prelab 3.

Compare the partial-fraction expansion obtained in Lab 5 with that calculated in
Prelab 4.

Compare the results of the mathematical operations found in Lab 7 to those calculated in
Prelab 5.

109
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Hardware Interface Laboratory

Note: Before performing experiments in this section, please study Appendix D—
LabVIEW Tutorial, including the section discussing myDAQ. When an experiment
indicates a provided file, the file is obtained at www.wiley.com/college/nise.

Experiment 2.4 Programming with LabVIEW Part 1

Objectives
1. To learn how to program LabVIEW, Part 1
2. To learn how to write basic LabVIEW programs and understand LabVIEW flow

Material Required Computer with LabVIEW Installed
Prelab  Go to the website http://www.learnni.com/getting-started/. Complete modules 0-7.

Lab

1. Write a LabVIEW program that executes an equivalent of the following C-like code,
where x is an input and y is an output (Formula Nodes are not allowed):

if (abs(x)<0.1)

y=1;
else
if (x>=0)
y=0;
else
y=2;

Run your program for the following inputs: x = 0.05,—-0.05,1, —1.

2. Write a LabVIEW program that receives three colors representing a resistor’s value and
returns the numeric resistor value in ohms. Your interface should be similar to the one
shown in Figure P2.42. The third band should include silver and gold colors.
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File Edit View Project Operate Tools Window Help EE
Id> I@| @IEH 15pt Application Font |~ ”31:!‘ ”'-l']-n‘ "g‘ | |>\ Search Q ” @I 4
1st Band 2nd Band 3d Band

a] Brown a] Black ajked

Resistor Value

[wo—

m

fH \

Main Application Instance] < 1 »

L

FIGURE P2.42
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Hardware Interface Laboratory

Run your program at least for the following inputs:

Red Red Black
Brown Black Orange
Orange White Gold

Experiment 2.5 Programming with LabVIEW Part 2

Objectives
1. To learn how to program LabVIEW, Part 2

2. To learn how to use loops, do basic math inside loops, and graph numerical information
using LabVIEW

Material Required Computer with LabVIEW Installed

Prelab  Go to the website http://www.learnni.com/getting-started/. Complete modules 8-10.

Lab

1. It is well known that 1 +x+ x> +x> 4 «++ = ﬁ when x| < 1.

Write a LabVIEW program that takes as an input a value for x, and a number of
iterations. The program will use a loop to calculate the sum of the geometric series for
the specified number of operations. It will also calculate the closed-form expression for
the series. The program will display the two results, and will also display the absolute
error of the difference.

Demonstrate your program with x = 0.5 and 3, 10, and 200 iterations.

2. Write a LabVIEW program that generates a 50% duty-cycle square-wave signal between
0 and Xp,.x volts, where X, <10V, with a nonzero variable frequency. The
amplitude and frequency will be inputs. Display the waveform on a waveform chart,
which will be an output. In this part you are not allowed to use the LabVIEW-provided
function generation blocks.

Demonstrate this program for amplitudes of 1, 5, and 10 V and for 1 Hz and 5 Hz.

Experiment 2.6 MyDAQ Programming

Objectives To become familiar with the data acquisition and signal generation
capabilities of myDAQ

Material Required Computer with LabVIEW installed, and myDAQ

Files Provided at www.wiley.com/college/nise
Battery Meter.ctl

Prelab

Go to the website https://decibel.ni.com/content/docs/DOC-11624. Go over Unit 4—DAQ:
Lesson 1. Then go over the measuring voltage tutorial in http://zone.ni.com/devzone/cda/
epd/p/id/6436.

Lab

1. Write a battery-tester program using LabVIEW and myDAQ as an acquisition device.
The battery tester should work for three nominal values of batteries: 1.5V,6 V,and 9 V.
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{3 Battery Measurement.vi Front Panel
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The batteries are considered dead for voltage values 20% or under the nominal. Between
20% and the nominal value the batteries are in a warning area, and for values above the
nominal the batteries are OK. Your interface should be similar to the one shown Figure
P2.43. A custom control accepting inputs from 0 to 120 has been created under the name
Battery Meter.ctl.

2. Use the LabVIEW program that you wrote in Experiment 2.5 to generate a 50% duty-
cycle square-wave signal. Output your signal through one of the myDAQ’s analog
channels and read the signal using the myDAQ oscilloscope function (available from
myDAQ file: NI ELVISmx Instrument Launcher) to verify the generated signal. Print
two examples using the scope’s automatic measurements.
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Modeling in the Time
Domain

This chapter covers only state-space methods.

Chapter Learning Outcomes

State Space

After completing this chapter, the student will be able to:

® Find a mathematical model, called a state-space representation, for a linear, time-
invariant system (Sections 3.1-3.3)

® Model electrical and mechanical systems in state space (Section 3.4)

® Convert a transfer function to state space (Section 3.5)

® Convert a state-space representation to a transfer function (Section 3.6)

@ Linearize a state-space representation (Section 3.7)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

® Given the antenna azimuth position control system shown on the front endpapers,
you will be able to find the state-space representation of each subsystem.

® Given a description of the way a pharmaceutical drug flows through a human
being, you will be able to find the state-space representation to determine drug
concentrations in specified compartmentalized blocks of the process and of the
human body. You will also be able to apply the same concepts to an aquifer to
find water level.
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3.1 Introduction

Chapter 3 Modeling in the Time Domain

Two approaches are available for the analysis and design of feedback control systems. The
first, which we began to study in Chapter 2, is known as the classical, or frequency-domain,
technique. This approach is based on converting a system’s differential equation to a transfer
function, thus generating a mathematical model of the system that algebraically relates a
representation of the output to a representation of the input. Replacing a differential equation
with an algebraic equation not only simplifies the representation of individual subsystems
but also simplifies modeling interconnected subsystems.

The primary disadvantage of the classical approach is its limited applicability: It
can be applied only to linear, time-invariant systems or systems that can be approximated
as such.

A major advantage of frequency-domain techniques is that they rapidly provide
stability and transient response information. Thus, we can immediately see the effects of
varying system parameters until an acceptable design is met.

With the arrival of space exploration, requirements for control systems increased
in scope. Modeling systems by using linear, time-invariant differential equations and
subsequent transfer functions became inadequate. The state-space approach (also referred to
as the modern, or time-domain, approach) is a unified method for modeling, analyzing, and
designing a wide range of systems. For example, the state-space approach can be used to
represent nonlinear systems that have backlash, saturation, and dead zone. Also, it can
handle, conveniently, systems with nonzero initial conditions. Time-varying systems, (for
example, missiles with varying fuel levels or lift in an aircraft flying through a wide range of
altitudes) can be represented in state space. Many systems do not have just a single input and
a single output. Multiple-input, multiple-output systems (such as a vehicle with input
direction and input velocity yielding an output direction and an output velocity) can be
compactly represented in state space with a model similar in form and complexity to that
used for single-input, single-output systems. The time-domain approach can be used to
represent systems with a digital computer in the loop or to model systems for digital
simulation. With a simulated system, system response can be obtained for changes in system
parameters—an important design tool. The state-space approach is also attractive because of
the availability of numerous state-space software packages for the personal computer.

The time-domain approach can also be used for the same class of systems modeled by
the classical approach. This alternate model gives the control systems designer another
perspective from which to create a design. While the state-space approach can be applied to
a wide range of systems, it is not as intuitive as the classical approach. The designer has to
engage in several calculations before the physical interpretation of the model is apparent,
whereas in classical control a few quick calculations or a graphic presentation of data rapidly
yields the physical interpretation.

In this book, the coverage of state-space techniques is to be regarded as an
introduction to the subject, a springboard to advanced studies, and an alternate approach
to frequency-domain techniques. We will limit the state-space approach to linear,
time-invariant systems or systems that can be linearized by the methods of Chapter 2.
The study of other classes of systems is beyond the scope of this book. Since state-space
analysis and design rely on matrices and matrix operations, you may want to review this
topic in Appendix G, located at www.wiley.com/college/nise, before continuing.

3.2 Some Observations

We proceed now to establish the state-space approach as an alternate method for
representing physical systems. This section sets the stage for the formal definition of
the state-space representation by making some observations about systems and their
variables. In the discussion that follows, some of the development has been placed in
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footnotes to avoid clouding the main issues with an excess of equations and to ensure that
the concept is clear. Although we use two electrical networks to illustrate the concepts, we
could just as easily have used a mechanical or any other physical system.

We now demonstrate that for a system with many variables, such as inductor
voltage, resistor voltage, and capacitor charge, we need to use differential equations only
to solve for a selected subset of system variables because all other remaining system
variables can be evaluated algebraically from the variables in the subset. Our examples
take the following approach:

1. We select a particular subset of all possible system variables and call the variables in this
subset state variables.

2. For an nth-order system, we write n simultaneous, first-order differential equations in
terms of the state variables. We call this system of simultaneous differential equations
state equations.

3. If we know the initial condition of all of the state variables at £, as well as the system input
for t > 9, we can solve the simultaneous differential equations for the state variables for
t > ty.

4. We algebraically combine the state variables with the system’s input and find all of the
other system variables for > #y. We call this algebraic equation the output equation.

5. We consider the state equations and the output equations a viable representation of the
system. We call this representation of the system a state-space representation.

Let us now follow these steps through an example. Consider the RL network shown in
Figure 3.1 with an initial current of i(0).

1. We select the current, i(f), for which we will write and solve a differential equation
using Laplace transforms.

2. We write the loop equation,

di
L—+Ri= .1
7 + Ri = (1) (3.1)

3. Taking the Laplace transform, using Table 2.2, Item 7, and including the initial
conditions, yields

L[sI(s) — i(0)] + RI(s) = V(s) (3.2)

Assuming the input, v(z), to be a unit step, u(f), whose Laplace transform is V(s) = 1/s,
we solve for I(s) and get

{1 1 (0
=1t |+ 1O (33)

Rls o B (R

TL L

from which
1
() — — _ ,—(R/L) . —(R/L)t

i) R(l ¢ )+l(0)e (3.4)

The function i(7) is a subset of all possible network variables that we are able to find from
Eq. (3.4) if we know its initial condition, i(0), and the input, v(f). Thus, i(?) is a state
variable, and the differential equation (3.1) is a state equation.

R
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4. We can now solve for all of the other network variables algebraically in terms of i(¢) and
the applied voltage, v(r). For example, the voltage across the resistor is

vr(t) = Ri(1) (3.5)
The voltage across the inductor is
vi(t) = (1) — Ri(7) (3.6)!
The derivative of the current is

di 1 2

— = —[v(t) — Ri(t 3.7

= [0 = Ri(o)] (3.7)
Thus, knowing the state variable, i(f), and the input, v(f), we can find the value, or state, of
any network variable at any time, ¢ > fy. Hence, the algebraic equations, Egs. (3.5)
through (3.7), are output equations.

5. Since the variables of interest are completely described by Eq. (3.1) and Egs. (3.5)
through (3.7), we say that the combined state equation (3.1) and the output
equations (3.5 through 3.7) form a viable representation of the network, which
we call a state-space representation.

Equation (3.1), which describes the dynamics of the network, is not unique. This
equation could be written in terms of any other network variable. For example, substituting
i =vg/R into Eq. (3.1) yields

L L dVR

R
/\/\/\/ R dr VR V( ) ( )
which can be solved knowing that the initial condition vg(0) = Ri(0) and
V(1) o /‘\ ¢ knowing v(¢). In this case, the state variable is v (7). Similarly, all other network
1"t

variables can now be written in terms of the state variable, vz(f), and the input,
v(?). Let us now extend our observations to a second-order system, such as that
FIGURE 3.2 RLC network shown in Figure 3.2.

1. Since the network is of second order, two simultaneous, first-order differential equations
are needed to solve for two state variables. We select i(f) and ¢g(f), the charge on the
capacitor, as the two state variables.

2. Writing the loop equation yields

di 1
Ld—;+Ri+E/idt =v(7) (3.9)

Converting to charge, using i(f) = dg/dt, we get

d*q dg 1
L—+R—+—q= 1
i + I + o (1) (3.10)

"'Since vy (1) = v(t) — vg(t) = v(t) — Ri(2).
dinee L o ] &
ince — = ZVL(I) =7 [v(7) = Ri(1)].
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But an nth-order differential equation can be converted to n simultaneous
first-order differential equations, with each equation of the form

% =a;X; +apx; + -+ + apx, + b,f(t) (311)
where each x; is a state variable, and the a;’s and b; are constants for linear, time-
invariant systems. We say that the right-hand side of Eq. (3.11) is a linear combination
of the state variables and the input, f(f).

We can convert Eq. (3.10) into two simultaneous, first-order differential equations
in terms of i(r) and ¢(z). The first equation can be dq/dt = i. The second equation can be
formed by substituting [ i dr = g into Eq. (3.9) and solving for di/dt. Summarizing the
two resulting equations, we get

d

d_?=,~ (3.12a)
di 1 R. 1

A Yol R A A G120

3. These equations are the state equations and can be solved simultaneously for the state
variables, g(¢) and i(¢), using the Laplace transform and the methods of Chapter 2. In
addition we must also know the input, v(¢), and the initial conditions for ¢(¢) and i(z).

4. From these two state variables, we can solve for all other network variables. For example,
the voltage across the inductor can be written in terms of the solved state variables and
the input as

v (t) = — % q(t) — Ri() + v(r) (3.13)°

Equation (3.13) is an output equation; we say that v;(¢) is a linear combination of the
state variables, g(f) and i(f), and the input, v(¢).

5. The combined state equations (3.12) and the output equation (3.13) form a viable
representation of the network, which we call a state-space representation.

Another choice of two state variables can be made, for example, vz(f) and v(f), the
resistor and capacitor voltage, respectively. The resulting set of simultaneous, first-order
differential equations follows:

dw R R R ]
o _—LvR—LvC+Lv(t) (3.14a)
ch 1

cC_ - .14b
dr _RC'® (3-14b)

Again, these differential equations can be solved for the state variables if we know the initial
conditions along with v(f). Further, all other network variables can be found as a linear
combination of these state variables.

Is there a restriction on the choice of state variables? Yes! Typically, the minimum
number of state variables required to describe a system equals the order of the differential
equation. Thus, a second-order system requires a minimum of two state variables to describe it.

*Since v, (t) = L(di/dt) = —=(1/C)q — Ri + v(z), where di/dt can be found from Eq. (3.9), and [idt = g.
*Since vg(t) = ()R, and ve(r) = (1/C) [idt, differentiating ve(t) yields dvg/dt = R(di/dt) = (R/L)v =
(R/L)[v(t) — vg — vc), and differentiating vc(7) yields dvc /dt = (1/C)i = (1/RC)vg.

119



120

Chapter 3 Modeling in the Time Domain

We can define more state variables than the minimal set; however, within this minimal set the
state variables must be linearly independent. For example, if vx(?) is chosen as a state variable,
then i(f) cannot be chosen, because vi(f) can be written as a linear combination of
i(f), namely vg(¢) = Ri(r). Under these circumstances we say that the state variables are
linearly dependent. State variables must be linearly independent; that is, no state variable can
be written as a linear combination of the other state variables, or else we would not
have enough information to solve for all other system variables, and we could even have
trouble writing the simultaneous equations themselves.

The state and output equations can be written in vector-matrix form if the system is
linear. Thus, Eq. (3.12), the state equations, can be written as

X = Ax +Bu (3.15)

[dq/dt] [ 0 1
X = ; A=
di/dt -1/LC -R/L

1o

1/L
Equation (3.13), the output equation, can be written as

where

»
Il

} u=v(1)

y=Cx+Du (3.16)

where

y=v(t); C=[-1/C -R]; X=l?
l

D=1, u=v)

)

We call the combination of Egs. (3.15) and (3.16) a state-space representation of the
network of Figure 3.2. A state-space representation, therefore, consists of (1) the simultaneous,
first-order differential equations from which the state variables can be solved and (2) the
algebraic output equation from which all other system variables can be found. A state-space
representation is not unique, since a different choice of state variables leads to a different
representation of the same system.

In this section, we used two electrical networks to demonstrate some principles that
are the foundation of the state-space representation. The representations developed in this
section were for single-input, single-output systems, where y,D, and u in Egs. (3.15)
and (3.16) are scalar quantities. In general, systems have multiple inputs and multiple
outputs. For these cases, y and u become vector quantities, and D becomes a matrix. In
Section 3.3 we will generalize the representation for multiple-input, multiple-output
systems and summarize the concept of the state-space representation.

3.3 The General State-Space Representation

Now that we have represented a physical network in state space and have a good idea of the
terminology and the concept, let us summarize and generalize the representation for linear
differential equations. First, we formalize some of the definitions that we came across in the
last section.

Linear combination. A linear combination of n variables, x;, for i = 1 to n, is given by
the following sum, S:

S=K,x, +K—1x-1 + -+ +Kix; (317)

where each K; is a constant.
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Linear independence. A set of variables is said to be linearly independent if none of
the variables can be written as a linear combination of the others. For example, given x, x,,
and x3, if x, = 5x; + 6x3, then the variables are not linearly independent, since one of
them can be written as a linear combination of the other two. Now, what must be true so
that one variable cannot be written as a linear combination of the other variables? Consider
the example Kpx, = K1x; + K3x3. If no x; =0, then any x; can be written as a linear
combination of other variables, unless all K; = 0. Formally, then, variables x;, for i = 1 to n,
are said to be linearly independent if their linear combination, S, equals zero only if every K; = 0
and no x; =0 for all t > 0.

System variable. Any variable that responds to an input or initial conditions in a
system.

State variables. The smallest set of linearly independent system variables such that the
values of the members of the set at time 7, along with known forcing functions completely
determine the value of all system variables for all ¢ > ¢.

State vector. A vector whose elements are the state variables. ve

State space. The n-dimensional space whose axes are the state !
variables. This is a new term and is illustrated in Figure 3.3, where the
state variables are assumed to be a resistor voltage, vg, and a capacitor L
voltage, v¢. These variables form the axes of the state space. A trajectory 2

State space

can be thought of as being mapped out by the state vector, x(¢), for arange
of t. Also shown is the state vector at the particular time ¢ = 4.

State equations. A set of n simultaneous, first-order differential
equations with n variables, where the n variables to be solved are the state
variables.

Output equation. The algebraic equation that expresses the output L
variables of a system as linear combinations of the state variables and the L
inputs.

Now that the definitions have been formally stated, we define the

> Vp

state-space representation of a system. A system is represented in state  gpace and a state vector

space by the following equations:

x = Ax + Bu (3.18)

y=Cx+Du (3.19)

for ¢ > ty and initial conditions, x(#;), where

state vector

derivative of the state vector with respect to time

output vector
input or control vector

system matrix

input matrix
output matrix

X
X
y
u
A
B
C
D = feedforward matrix

Equation (3.18) is called the state equation, and the vector x, the state vector, contains
the state variables. Equation (3.18) can be solved for the state variables, which we
demonstrate in Chapter 4. Equation (3.19) is called the output equation. This equation
is used to calculate any other system variables. This representation of a system provides
complete knowledge of all variables of the system at any ¢ > f.

121

State vector, x()
State vector trajectory

State vector, x(4)

FIGURE 3.3 Graphic representation of state



122

Chapter 3 Modeling in the Time Domain

As an example, for a linear, time-invariant, second-order system with a single input
v(t), the state equations could take on the following form:

d

% =apx; +apx; + blv(t) (3.20a)
de

E = a1 X] +axyx; + bzv(l‘) (3.20b)

where x; and x, are the state variables. If there is a single output, the output equation could
take on the following form:

y = c1x) + caxa +div(1) (3.21)
The choice of state variables for a given system is not unique. The requirement in choosing

the state variables is that they be linearly independent and that a minimum number of them
be chosen.

3.4 Applying the State-Space Representation

In this section, we apply the state-space formulation to the representation of more
complicated physical systems. The first step in representing a system is to select the state
vector, which must be chosen according to the following considerations:

1. A minimum number of state variables must be selected as components of the state vector.
This minimum number of state variables is sufficient to describe completely the state of
the system.

2. The components of the state vector (that is, this minimum number of state variables) must
be linearly independent.

Let us review and clarify these statements.

Linearly Independent State Variables

The components of the state vector must be linearly independent. For example, following the
definition of linear independence in Section 3.3, if x, x,, and x3 are chosen as state variables,
but x3 = 5x; + 4x,, then x5 is not linearly independent of x; and x,, since knowledge of the
values of x; and x, will yield the value of x5. Variables and their successive derivatives are
linearly independent. For example, the voltage across an inductor, vy, is linearly independent
of the current through the inductor, iy, since v, = Ldi; /dt. Thus, v; cannot be evaluated as a
linear combination of the current, i;.

Minimum Number of State Variables
How do we know the minimum number of state variables to select? Typically, the minimum
number required equals the order of the differential equation describing the system. For
example, if a third-order differential equation describes the system, then three simultaneous,
first-order differential equations are required along with three state variables. From the
perspective of the transfer function, the order of the differential equation is the order of
the denominator of the transfer function after canceling common factors in the numerator
and denominator.

In most cases, another way to determine the number of state variables is to count
the number of independent energy-storage elements in the system.” The number of

5 Sometimes it is not apparent in a schematic how many independent energy-storage elements there are. It is
possible that more than the minimum number of energy-storage elements could be selected, leading to a state vector
whose components number more than the minimum required and are not linearly independent. Selecting additional
dependent energy-storage elements results in a system matrix of higher order and more complexity than required for
the solution of the state equations.
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these energy-storage elements equals the order of the differential equation and the number
of state variables. In Figure 3.2 there are two energy-storage elements, the capacitor and
the inductor. Hence, two state variables and two state equations are required for
the system.

If too few state variables are selected, it may be impossible to write particular output
equations, since some system variables cannot be written as a linear combination of the
reduced number of state variables. In many cases, it may be impossible even to complete the
writing of the state equations, since the derivatives of the state variables cannot be expressed
as linear combinations of the reduced number of state variables.

If you select the minimum number of state variables but they are not linearly
independent, at best you may not be able to solve for all other system variables. At worst
you may not be able to complete the writing of the state equations.

Often the state vector includes more than the minimum number of state variables
required. Two possible cases exist. Often state variables are chosen to be physical
variables of a system, such as position and velocity in a mechanical system. Cases arise
where these variables, although linearly independent, are also decoupled. That is, some
linearly independent variables are not required in order to solve for any of the other
linearly independent variables or any other dependent system variable. Consider the case
of a mass and viscous damper whose differential equation is M dv/dt + Dv = f(t), where v
is the velocity of the mass. Since this is a first-order equation, one state equation is all
that is required to define this system in state space with velocity as the state variable.
Also, since there is only one energy-storage element, mass, only one state variable is
required to represent this system in state space. However, the mass also has an
associated position, which is linearly independent of velocity. If we want to include
position in the state vector along with velocity, then we add position as a
state variable that is linearly independent of the other state variable, velocity.

Figure 3.4 illustrates what is happening. The first block is the transfer

function equivalent to Mdv(t)/dt + Dv(t) = f(t). The second block shows o
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V(s)

X(s)

that we integrate the output velocity to yield output displacement (see Table 2.2,
Item 10). Thus, if we want displacement as an output, the denominator, or

+ —_
E\ug‘

=

characteristic equation, has increased in order to 2, the product of the two transfer =~ FIGURE 3.4 Block diagram of a mass
functions. Many times, the writing of the state equations is simplified by including ~ and damper

additional state variables.

Another case that increases the size of the state vector arises when the added
variable is not linearly independent of the other members of the state vector. This
usually occurs when a variable is selected as a state variable but its dependence on the
other state variables is not immediately apparent. For example, energy-storage elements
may be used to select the state variables, and the dependence of the variable associated
with one energy-storage element on the variables of other energy-storage elements may
not be recognized. Thus, the dimension of the system matrix is increased unnecessarily,
and the solution for the state vector, which we cover in Chapter 4, is more difficult.
Also, adding dependent state variables affects the designer’s ability to use state-space
methods for design.’

We saw in Section 3.2 that the state-space representation is not unique. The following
example demonstrates one technique for selecting state variables and representing a system
in state space. Our approach is to write the simple derivative equation for each energy-
storage element and solve for each derivative term as a linear combination of any of the
system variables and the input that are present in the equation. Next we select each
differentiated variable as a state variable. Then we express all other system variables in the
equations in terms of the state variables and the input. Finally, we write the output variables
as linear combinations of the state variables and the input.

©See Chapter 12 for state-space design techniques.
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Representing an Electrical Network

PROBLEM: Given the electrical network of Figure 3.5, find a state-space representation
if the output is the current through the resistor.

/W)-O-\ Node 1

n 1
FIGURE 3.5 Electrical ) l R T¢
network for representation in ic(t)

ir(?)
state space

SOLUTION: The following steps will yield a viable representation of the network in state
space.

Step 1 Label all of the branch currents in the network. These include i;, i, and ic, as
shown in Figure 3.5.

Step 2 Select the state variables by writing the derivative equation for all energy-storage
elements, that is, the inductor and the capacitor. Thus,

de
— = 3.22
dr Ilc ( )

dip,
L—= 3.23
=L (3.23)

From Egs. (3.22) and (3.23), choose the state variables as the quantities that are
differentiated, namely v and i;. Using Eq. (3.20) as a guide, we see that the state-space
representation is complete if the right-hand sides of Eqs. (3.22) and (3.23) can be written
as linear combinations of the state variables and the input.

Since i and v;, are not state variables, our next step is to express ic and v, as linear
combinations of the state variables, v¢ and i, and the input, v(f).

Step 3 Apply network theory, such as Kirchhoff’s voltage and current laws, to obtain i
and v; in terms of the state variables, v¢ and i;. At Node 1,

ic=—ig+iL
1 ‘ (3.24)
=——vc+
R Ve T 1L
which yields ic in terms of the state variables, v¢ and i;.
Around the outer loop,
vp = —ve + (1) (3.25)

which yields v; in terms of the state variable, v, and the source, v(z).

Step 4 Substitute the results of Eqgs. (3.24) and (3.25) into Egs. (3.22) and (3.23) to
obtain the following state equations:

dv 1 .
d—tc = —pvetis (3.26a)
i

A ) (3.26b)

dt
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or
ch 1 1 .
a ~ rcCtct (G-272)
dip, 1 1
= — 3.27b
7 7ve + I v(t) ( )

Step 5 Find the output equation. Since the output is ig(f),

. 1

ir = pve (3.28)
The final result for the state-space representation is found by representing Egs. (3.27)
and (3.28) in vector-matrix form as follows:

ic] [-1/@®e)  1/¢] [ve 0
[J =i . iL] + L/L] Y0 (3.29a)
ix=[1/R 0] {ﬂ (3.29b)

where the dot indicates differentiation with respect to time.
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In order to clarify the representation of physical systems in state space, we will look at
two more examples. The first is an electrical network with a dependent source. Although we
will follow the same procedure as in the previous problem, this problem will yield increased
complexity in applying network analysis to find the state equations. For the second example,
we find the state-space representation of a mechanical system.

PROBLEM: Find the state and output equations for the electrical network shown in
Figure 3.6 if the output vector is y = [vg, iz, |, where T means transpose.’

C
Node 1 +/- Node 2
[N

i(t) §R1 L R, <A 4vy (1)

ig (1) ir(f) ir,(1) FIGURE 3.6 Electrical
) network for Example 3.2

SOLUTION: Immediately notice that this network has a voltage-dependent current source.

7See Appendix G for a discussion of the transpose. Appendix G is located at www.wiley.com/college/nise.

Representing an Electrical Network with a Dependent Source



http://www.wiley.com/college/nise

126

Chapter 3 Modeling in the Time Domain

Step 1 Label all of the branch currents on the network, as shown in Figure 3.6.

Step 2 Select the state variables by listing the voltage-current relationships for all of the
energy-storage elements:

i
f = (3.30a)
dVC

e _; 3.30b
e ( )

From Egs. (3.30) select the state variables to be the differentiated variables. Thus, the state
variables, x; and x,, are

X1 = iL; X2 = V¢ (331)
Step 3 Remembering that the form of the state equation is
x = Ax + Bu (3.32)

we see that the remaining task is to transform the right-hand side of Eq. (3.30) into linear
combinations of the state variables and input source current. Using Kirchhoff’s voltage
and current laws, we find v; and i in terms of the state variables and the input current
source.

Around the mesh containing L and C,

v =Ve + Vg, =ve +ig, Ry (3.33)
But at Node 2, ig, = ic + 4v,. Substituting this relationship for ig, into Eq. (3.33) yields
vp =ve+ (ic + 4VL)R2 (3.34)

Solving for v;, we get

vy = (Vc + icRg) (335)

1
1-4R,

Notice that since v¢ is a state variable, we only need to find ic in terms of the state
variables. We will then have obtained v; in terms of the state variables.
Thus, at Node 1 we can write the sum of the currents as

ic = l(l) - iR] - iL

. VR, .
=1t)———
i(t) R, 173
. VL .
=ilt)— = - .
i(t) R, ir (3.36)

where vg, = v;. Equations (3.35) and (3.36) are two equations relating v, and ic in
terms of the state variables i; and vc. Rewriting Egs. (3.35) and (3.36), we obtain two
simultaneous equations yielding v; and i as linear combinations of the state variables
iL and Ve

(1 - 4R2)VL - Rzic =Vc (3373)

1 . ..
——vp —ic =i — (1) (3.37b)
R,
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Solving Eq. (3.37a) simultaneously for v, and ic yields

v = %[RziL —ve = Ryi(t)] (3.38)
and
ic = % [(1 — 4Ry)iy, + Rilvc —(1- 4R2)i(t)} (3.39)
where
A=- [(1 —4Ry) + ﬁ—j (3.40)

Substituting Egs. (3.38) and (3.39) into (3.30), simplifying, and writing the result in
vector-matrix form renders the following state equation:

lﬁ] B [ Ry /(LA) —1/(LA) ] lh]
Ve (1-4Ry)/(CA) 1/(RiCA)] | vc
[ —Ry/(LA) 1 "

+ (3.41)
—(1 - 4R,)/(CA)

Step 4 Derive the output equation. Since the specified output variables are vg, and ig,,
we note that around the mesh containing C, L, and R,,

VR, = —Vc + VL (3.42a)
ig, = ic +4vL (3.42b)

Substituting Eqgs. (3.38) and (3.39) into Eq. (3.42), vg, and i, are obtained as linear
combinations of the state variables, i; and v¢. In vector-matrix form, the output equation is

ve, | [R/A —(1+1/A) i), [-Re/A ©  643)
B ve ~1/A '

/A (1-4R))/(ARy)

iR,
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In the next example, we find the state-space representation for a mechanical
system. It is more convenient when working with mechanical systems to obtain the state
equations directly from the equations of motion rather than from the energy-storage
elements. For example, consider an energy-storage element such as a spring, where F' = Kx.
This relationship does not contain the derivative of a physical variable as in the case of
electrical networks, where i = C dv/dt for capacitors, and v = L di/dt for inductors. Thus, in
mechanical systems we change our selection of state variables to be the position and velocity
of each point of linearly independent motion. In the example, we will see that although there
are three energy-storage elements, there will be four state variables; an additional linearly
independent state variable is included for the convenience of writing the state equations. It is
left to the student to show that this system yields a fourth-order transfer function if we relate the
displacement of either mass to the applied force, and a third-order transfer function if we relate
the velocity of either mass to the applied force.
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Representing a Translational Mechanical System

PROBLEM: Find the state equations for the translational mechanical system shown in

Figure 3.7.
7 e i
| o X
I
& o oa HO000- My, =0
e e e |
............................. L AR AN AR
FIGURE 3.7 Translational
mechanical system Frictionless

SOLUTION: First write the differential equations for the network in Figure 3.7, using
the methods of Chapter 2 to find the Laplace-transformed equations of motion. Next
take the inverse Laplace transform of these equations, assuming zero initial conditions,
and obtain

dle dxl
M=+ DL + Kx; —Kx, =0 3.44
e PP R Re (3.44)
dZ)CQ
—KX] +M2W+K.X2 =f(t) (345)

Now let a’z)q/dt2 = dv,/dt, and dzxz/dt2 = dv,/dt, and then select x;, v{, X», and v, as state
variables. Next form two of the state equations by solving Eq. (3.44) for dv,/dt and
Eq. (3.45) for dv,/dt. Finally, add dx,/dt = v| and dx,/dt = v, to complete the set of state
equations. Hence,

dx1
= = + 3.46a
Y7 Vi (3.46a)

dv; K D K
— =X —— V] +—2X .46b
dt M, ! MIVI M, 2 (3.46b)

de _

e 3.46¢
7t +vy ( )
de K K 1
ey - —f(t 3.46d
i +M2x1 M, X2 + sz( ) ( )
In vector-matrix form,
X 0 1 0 0 X1 0
fil -K M1 -D M1 K M1 0 Vi 0
) = / / / + f(@) (3.47)
X2 0 0 0 1 X2 0
\.12 K/M2 0 —K/M2 0 1% 1/M2

where the dot indicates differentiation with respect to time. What is the output equation if
the output is x(r)?
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Skill-Assessment Exercise 3.1

PROBLEM: Find the state-space representation of the electrical network shown in
Figure 3.8. The output is v,(¢).
G R
|/
1€ M\
+
o (F = v,(t
i (2 L <" HIGURE 38  Blectric circuit
for Skill-Assessment
Exercise 3.1
ANSWER:
/¢, 1/C¢; -1/C 0
x=| —-1/L 0 0 x+ |1 |{v(?)
1/C, 0 -1/C, 0
y= [0 0 l]x
The complete solution is at www.wiley.com/college/nise.
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Skill-Assessment Exercise 3.2

PROBLEM: Represent the translational mechanical system shown in Figure 3.9 in state
space, where x3(¢) is the output.

+>XI(I)1 N-s/m +>XZ(T)1 N/m +>X3(r)1 N-

1 N/m s/m
ke — 1 ke PO000Y 1k [ F
Siy—>

FIGURE 3.9 Translational mechanical system for Skill-Assessment Exercise 3.2

ANSWER:
F 0 1 0 0 0 07 07
-1 -1 0 1 0 0 1
) 0 0 0 1 0 0 0 0
7= Z+ t
0 1 -1 -1 1 0 0
0 0 0 0 0 1 0
L O 0 1 0 -1 -1] L0 ]
y:[ o 0 0 O 1 0 ]z
where

. . . T
Z=[)C1 X1 X2 X2 X3 X3]

The complete solution is at www.wiley.com/college/nise.
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3.5 Converting a Transfer Function to State Space

In the last section, we applied the state-space representation to electrical and mechanical
systems. We learn how to convert a transfer function representation to a state-space
representation in this section. One advantage of the state-space representation is that it
can be used for the simulation of physical systems on the digital computer. Thus, if we want
to simulate a system that is represented by a transfer function, we must first convert the
transfer function representation to state space.

At first we select a set of state variables, called phase variables, where each
subsequent state variable is defined to be the derivative of the previous state variable.
In Chapter 5 we show how to make other choices for the state variables.

Let us begin by showing how to represent a general, nth-order, linear differential
equation with constant coefficients in state space in the phase-variable form. We will then
show how to apply this representation to transfer functions.

Consider the differential equation

d"y d" 'y dy
- a2 =b 3.48
g Tt T ar o+ aoy = bou (3.48)

A convenient way to choose state variables is to choose the output, y(#), and its (n — 1)
derivatives as the state variables. This choice is called the phase-variable choice. Choosing
the state variables, x;, we get

x| =Yy (3.49a)
Xy = % (3.49b)
X3 = % (3.49¢)
X = z;ly (3.49d)
and differentiating both sides yields

X = % (3.50a)
Xy = % (3.50b)
X3 = % (3.50c)

, .d"y
= (3.50d)

where the dot above the x signifies differentiation with respect to time.
Substituting the definitions of Eq. (3.49) into Eq. (3.50), the state equations are
evaluated as
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X1 =x (3.51a)

X = X3 (3.51b)

ot =y 3.51c)

).Cn = —apX| —a1Xp -+ —dy—1X, + bQM (351d)

where Eq. (3.51d) was obtained from Eq. (3.48) by solving for d "y/dt" and using Eq. (3.49).
In vector-matrix form, Eq. (3.51) become

X1 0 1 0 0 0 0 e 0 X1
X 0 0 1 0 0 0 e 0 X3
X3 0 0 0 1 0 0 e 0 X3
= + u
o 0O 0 0 0 0 0 - 1 ||x, 0
L X, | —ap —a; —ay —az3 —as —as -+ —dp-1 || x, | | Do
(3.52)

Equation (3.52) is the phase-variable form of the state equations. This form is easily
recognized by the unique pattern of 1’s and 0’s and the negative of the coefficients of the
differential equation written in reverse order in the last row of the system matrix.
Finally, since the solution to the differential equation is y(f), or x;, the output
equation is
F g T
X2

x3
y=[1 00 - 0] . (3.53)

Xn—1

Xn

In summary, then, to convert a transfer function into state equations in phase-variable
form, we first convert the transfer function to a differential equation by cross-multiplying and
taking the inverse Laplace transform, assuming zero initial conditions. Then we represent the
differential equation in state space in phase-variable form. An example illustrates the process.

Example 3.4

Converting a Transfer Function with a Constant Term in
the Numerator

PROBLEM: Find the state-space representation in phase-variable form for the transfer
function shown in Figure 3.10(a).

SOLUTION:
Step 1 Find the associated differential equation. Since

CGs) _ 24
R(s) (83 +9s2 + 265 + 24)

(3.54)
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R(s) 24 C(s)
3+ 952+ 265+ 24

(a)

(1) x(0) ¥

==

26 |

®)
FIGURE 3.10 a. Transfer function; b. equivalent block diagram showing phase variables.
Note: y(t) = c(1).

cross-multiplying yields

(5% 4+ 957 4 265 + 24)C(s) = 24R(s) (3.55)
The corresponding differential equation is found by taking the inverse Laplace transform,
assuming zero initial conditions:

F 4 9¢ + 26¢ + 24¢ = 24r (3.56)

Step 2 Select the state variables.
Choosing the state variables as successive derivatives, we get

Xy =c¢ (3.57a)
Xy =c¢ (3.57b)
x3=¢ (3.57¢)

Differentiating both sides and making use of Eq. (3.57) to find X; and x,, and Eq. (3.56) to
find ¢ = x3, we obtain the state equations. Since the output is ¢ = x|, the combined state
and output equations are

X = X2 (3.58a)
Xy = X3 (3.58b)
X3 = —24x; — 26x, — 9x3 + 24r (3.58¢)
y=c=x (3.58d)

In vector-matrix form,

i 0 1 07[x
ol=l 0 0 1||lxn|+]0]r (3.592)
i 24 =26 -9 |x 24
X1
y=[1 0 0]|x (3.59b)

A3
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Notice that the third row of the system matrix has the same coefficients as the denominator
of the transfer function but negative and in reverse order.

At this point, we can create an equivalent block diagram of the system of Figure 3.10(a)
to help visualize the state variables. We draw three integral blocks as shown in Figure 3.10(b)
and label each output as one of the state variables, x,(f), as shown. Since the input to
each integrator is x,(f), use Egs. (3.58a), (3.58b), and (3.58¢) to determine the combination of
input signals to each integrator. Form and label each input. Finally, use Eq. (3.58d) to form
and label the output, y(¢) = c(¢). The final result of Figure 3.10(b) is a system equivalent
to Figure 3.10(a) that explicitly shows the state variables and gives a vivid picture of the
state-space representation.

Students who are using MATLAB should now run ch3pl through ch3p4
inAppendix B. Youwill learn how to represent the systemmatrixA,
the input matrix B, and the output matrix C using MATLAB. You
will Tearn how to convert a transfer function to the state-space
representation inphase-variable form. Finally, Example 3_.4will
be solved using MATLAB.
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MATLAB

The transfer function of Example 3.4 has a constant term in the numerator. If a transfer
function has a polynomial in s in the numerator that is of order less than the polynomial in
the denominator, as shown in Figure 3.11(a), the numerator and denominator can be
handled separately. First separate the transfer function into two cascaded transfer functions,
as shown in Figure 3.11(b); the first is the denominator, and the second is just the numerator.
The first transfer function with just the denominator is converted to the phase-variable
representation in state space as demonstrated in the last example. Hence, phase variable x;
is the output, and the rest of the phase variables are the internal variables of the first block, as
shown in Figure 3.11(b). The second transfer function with just the numerator yields

Y(s) = C(s) = (bys* + bys + bo) X1 (s) (3.60)

where, after taking the inverse Laplace transform with zero initial conditions,

d*x dx;
H=by—+b—+b 3.61
(1) 2t oot box (3.61)
R(S) _ b252 + bIS + bo C(S)

a3s3 + a2s2 + ags + ap

(@)

R(s) 1 Xi(s) N

a3s3 + 0232 +ays+ay

C(:
b2S2 + blS + bo i»

Internal variables:
Xo(s), X3(5)
)

FIGURE 3.11 Decomposing
a transfer function
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FIGURE 3.12 a. Transfer
function; b. decomposed
transfer function; c. equivalent
block diagram Note: y(¢) = c(t).

Chapter 3 Modeling in the Time Domain

But the derivative terms are the definitions of the phase variables obtained in the first block.
Thus, writing the terms in reverse order to conform to an output equation,

Y(t) = boxi + bixs + baxs

(3.62)

Hence, the second block simply forms a specified linear combination of the state variables

developed in the first block.

From another perspective, the denominator of the transfer function yields the state
equations, while the numerator yields the output equation. The next example demonstrates

the process.

Converting a Transfer Function with a Polynomial in

the Numerator

PROBLEM: Find the state-space representation of the transfer function shown in

Figure 3.12(a).

R(s) s2+7s+2 Cls)
34952+ 265+ 24
(@)
R(s) 1 X(s) ) C(s)
> > sc+Ts+2 F——»
$3+ 952+ 265+ 24
Internal variables:
Xo(s), X3(s)
®)
1 —
+1 L0
7 »@J—»
+
0 X,(0) x,(0)
ol e

24

()
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SOLUTION: This problem differs from Example 3.4, since the numerator has a polynomial
in s instead of just a constant term.

Step 1 Separate the system into two cascaded blocks, as shown in Figure 3.12(b). The
first block contains the denominator and the second block contains the
numerator.

Step 2 Find the state equations for the block containing the denominator. We notice
that the first block’s numerator is 1/24 that of Example 3.4. Thus, the state
equations are the same except that this system’s input matrix is 1/24 that of

Example 3.4. Hence, the state equation is

i 0 1 07 [x 0
X | = 0 0 1 x|+ |07 (363)
X3 -24 =26 -9 X3 1

Introduce the effect of the block with the numerator. The second block of
Figure 3.12(b), where b, =1, by =7, and by = 2, states that

Step 3

C(s) = (bys* 4+ bys + bo)X1(s) = (s* + Ts + 2)X;(s) (3.64)
Taking the inverse Laplace transform with zero initial conditions, we get
c =X +Tx +2x; (3.65)
But,
X =X
X =X
X| = X3
Hence,
y = c(t) = baxz + bixp + boxy = x3 + xp + 2x; (3.66)

Thus, the last box of Figure 3.11(b) “collects” the states and generates the output equation.
From Eq. (3.66),

X X1
y= [b() bl hg] X2 = [2 7 1] X2 (367)
X3 X3

Although the second block of Figure 3.12(b) shows differentiation, this block was
implemented without differentiation because of the partitioning that was applied to the
transfer function. The last block simply collected derivatives that were already formed by
the first block.

Once again we can produce an equivalent block diagram that vividly represents
our state-space model. The first block of Figure 3.12() is the same as Figure 3.10(a)
except for the different constant in the numerator. Thus, in Figure 3.12(c) we reproduce
Figure 3.10(b) except for the change in the numerator constant, which appears as a change in
the input multiplying factor. The second block of Figure 3.12(b) is represented using
Eq. (3.66), which forms the output from a linear combination of the state variables, as shown
in Figure 3.12(c).

Trylt 3.1

Use the following MATLAB
statements to form an LTI
state-space representation
from the transfer function
shown in Figure 3.12(a). The
A matrix and B vector are
shown in Eq. (3.63). The C
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vector is shown in Eq. (3.67).

num={17 2];

den=1 9 26 247];

[A,B,C,Dtf2ss. ..
(num, den);

P40 0 1;0 1 0;1 0 OF;

A=inv(PY*A*P
B=inv(P)*B
C=CaP
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Skill-Assessment Exercise 3.3

PROBLEM: Find the state equations and output equation for the phase-variable repre-
25+ 1

sentation of the transfer function G(s) = S o
sc+Ts+9

ANSWER:

The complete solution is at www.wiley.com/college.nise.

3.6 Converting from State Space to a Transfer Function

In Chapters 2 and 3, we have explored two methods of representing systems: the transfer
function representation and the state-space representation. In the last section, we united
the two representations by converting transfer functions into state-space representations.
Now we move in the opposite direction and convert the state-space representation into a
transfer function.

Given the state and output equations

x = Ax + Bu (3.68a)
y = Cx+Du (3.68b)

take the Laplace transform assuming zero initial conditions:®

sX(s) = AX(s) + BU(s) (3.69a)
Y(s) = CX(s) + DU(s) (3.69b)
Solving for X(s) in Eq. (3.69a),
(sT — A)X(s) = BU(s) (3.70)
or
X(s) = (sT — A)"'BU(s) (3.71)

where I is the identity matrix.
Substituting Eq. (3.71) into Eq. (3.69b) yields

Y(s) = C(sI — A)"'BU(s) + DU(s) = [C(sI - A)"'B + D] U(s) (3.72)

We call the matrix [C(sI - A)_IB + D] the transfer function matrix, since it relates
the output vector, Y(s), to the input vector, U(s). However, if U(s) = U(s) and Y(s) = Y(s)
are scalars, we can find the transfer function, Thus,

8 The Laplace transform of a vector is found by taking the Laplace transform of each component. Since X consists of the
derivatives of the state variables, the Laplace transform of X with zero initial conditions yields each component with the
form sXi(s), where X;(s) is the Laplace transform of the state variable. Factoring out the complex variable, s, in each
component yields the Laplace transform of x as s X(s), where X(s) is a column vector with components X;(s).
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3.6 Converting from State Space to a Transfer Function

T(s) = % =CG6I-A)'B+D (3.73)

Let us look at an example.

Example 3.6

State-Space Representation to Transfer Function

PROBLEM: Given the system defined by Eq. (3.74), find the transfer function,
T(s) = Y(s)/U(s), where U(s) is the input and Y(s) is the output.

0 1 0 10

x:[ 0 0 l]x+{0]u (3.74a)
-1 -2 -3 0

y=[1 0 0]x (3.74b)

SOLUTION: The solution revolves around finding the term (sI — A)~" in Eq. (3.73).° All
other terms are already defined. Hence, first find (sI — A):

s 0 0 0 1 0 s -1 0
(sI-A)=|0 s 0Of - 0O O 1l=(0 s -1 (3.75)
0 0 = -1 -2 -3 1 2 s+3

Now form (sI — A)™":

(s +3s+2) s+3 1

-1 s(s+3) s
2
-1 adj(sI—A) s —(2s+1) s
I-A)"' = = 3.76
(s ) det(sI — A) $3+3s2+ 25+ 1 (3.76)
Substituting (sI — A)_l, B, C, and D into Eq. (3.73), where
10
B=|0
0
cC=[1 0 0]
D=0
we obtain the final result for the transfer function:
10(s® + 35+ 2
T(s) = L0 +35+2) (3.77)

34352425+ 1

°See Appendix G. It is located at www.wiley.com/college/nise and discusses the evaluation of the matrix inverse.
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MATLAB

Symbolic Math

Chapter 3 Modeling in the Time Domain

Students who are using MATLAB should now run ch3p5 in Appendix B.
You will learn how to convert a state-space representation to a
transfer function using MATLAB. You can practice by writing a
MATLAB program to solve Example 3.6.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch3spl in Appendix F located at www.wiley.com/
college/nise. Youwill learn how to use the Symbolic Math Toolbox
to write matrices and vectors. You will see that the Symbolic
Math Toolbox yields an alternative way to use MATLAB to solve
Example 3.6.

Skill-Assessment Exercise 3.4

Trylt 3.2

Use the following MATLAB
and the Control System
Toolbox statements to obtain
the transfer function shown in
Skill-Assessment Exercise 3.4
from the state-space
representation of Eq. (3.78).

Ad-4 -1.5;4 0J;
B{207;

Cq1.5 0.625];
D=0;
T=ss(A,B,C,D);
T=tf(T)

PROBLEM: Convert the state and output equations shown in Eq. (3.78) to a transfer

function.
X = [_j _l(ﬂﬁ [(2)]u(t) (3.78a)
y=[15 0.625]x (3.78b)
ANSWER:

The complete solution is located at www.wiley.com/college/nise.

3.7 Linearization

In Example 3.6, the state equations in phase-variable form were converted to transfer
functions. In Chapter 5, we will see that other forms besides the phase-variable form can be
used to represent a system in state space. The method of finding the transfer function
representation for these other forms is the same as that presented in this section.

A prime advantage of the state-space representation over the transfer function representation
is the ability to represent systems with nonlinearities, such as the one shown in Figure 3.13.
The ability to represent nonlinear systems does not imply the ability to solve their state
equations for the state variables and the output. Techniques do exist for the solution of some
nonlinear state equations, but this study is beyond the scope of this course. However, in
Appendix H, located at www.wiley.com/college/nise, you can see how to use the digital
computer to solve state equations. This method also can be used for nonlinear state equations.

If we are interested in small perturbations about an equilibrium point, as we were
when we studied linearization in Chapter 2, we can also linearize the state equations about
the equilibrium point. The key to linearization about an equilibrium point is, once again, the
Taylor series. In the following example, we write the state equations for a simple pendulum,
showing that we can represent a nonlinear system in state space; then we linearize the
pendulum about its equilibrium point, the vertical position with zero velocity.


www.wiley.com/college/nise
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3.7 Linearization

Example 3.7

Representing a Nonlinear System

Bruce Frisch/S.S./Photo Researchers, Inc.
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FIGURE 3.13 Walking
robots, such as Hannibal shown
here, can be used to explore
hostile environments and rough
terrain, such as that found on
other planets or inside
volcanoes

PROBLEM: First represent the simple pendulum shown in Figure 3.14(a) (which
could be a simple model for the leg of the robot shown in Figure 3.13) in state
space: Mg is the weight, T is an applied torque in the € direction, and L is the
length of the pendulum. Assume the mass is evenly distributed, with the center of
mass at L/2. Then linearize the state equations about the pendulum’s equilibrium
point—the vertical position with zero angular velocity.

Mg sin 0
®)

(a) (c)

Put theory into practice by
simulating the linear and non-linear
model of the Quanser Rotary
Inverted Pendulum in LabVIEW.
The behavior of an inverted
pendulum is similar to a variety of
systems, such as Segway
transporters and human posture.

Virtual experiments are found on
Learning Space.

Virtual Experiment 3.1
Rotary Inverted Pendulum

FIGURE 3.14 a. Simple pendulum; b. force components of Mg; c. free-body diagram

SOLUTION: First draw a free-body diagram as shown in Figure 3.14(c). Summing the
torques, we get

4’0

MgL
dr?

> sinfd=T

+ (3.79)
where J is the moment of inertia of the pendulum around the point of rotation. Select the
state variables x; and x, as phase variables. Letting x; = 8 and x, = df/dt, we write the

state equations as
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)'61 =X (3808.)

Mgl T
- 25’; sinx, + (3.80b)

Xy =

where X, = d?0/ds? is evaluated from Eq. (3.79).

Thus, we have represented a nonlinear system in state space. It is interesting to note
that the nonlinear Eqgs. (3.80) represent a valid and complete model of the pendulum in
state space even under nonzero initial conditions and even if parameters are time varying.
However, if we want to apply classical techniques and convert these state equations to a
transfer function, we must linearize them.

Let us proceed now to linearize the equation about the equilibrium point,
x1=0,x, =0, that is, =0 and d6/dt=0. Let x; and x, be perturbed about the equilibrium
point, or

x1=040x (3.81a)
X =046x, (3.81b)
Using Eq. (2.182), we obtain
dsi
sinxy —sin0 =MD s (3.82)
'xl X1=0
from which
sinx; =6x; (383)

Substituting Eqs. (3.81) and (3.83) into Eq. (3.80) yields the following state equations:

Sx) =6x) (3.84a)

. MgL T
Oxy=——"-0x1+— .84b
X2 T + 7 (3.84b)
which are linear and a good approximation to Eq. (3.80) for small excursions away from the

equilibrium point. What is the output equation?

Skill-Assessment Exercise 3.5

Exercise 3.5

PROBLEM: Represent the translational mechanical system shown in Figure 3.15 in state
space about the equilibrium displacement. The spring is nonlinear, where the relationship
between the spring force, fi(#), and the spring displacement, x,(7), is f,(t) = 2x%(¢).
The applied force is f(¢) = 10 + 5f(¢), where &f(r) is a small force about the 10 N
constant value.

Assume the output to be the displacement of the mass, x(f).

Nonlinear —— x(1) ANSWER:
spring
lkg — f() . 0 1 0
X = X+ of (¢
[—4\6 0 A
FIGURE 3.15 Nonlinear translational y= [1 O]X

mechanical system for Skill-Assessment

The complete solution is located at www.wiley.com/college/nise.
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Case Studies

Antenna Control: State-Space Representation
We have covered the state-space representation of individual physical subsystems in this
chapter. In Chapter 5, we will assemble individual subsystems into feedback control
systems and represent the entire feedback system in state space. Chapter 5 also shows how
the state-space representation, via signal-flow diagrams, can be used to interconnect these
subsystems and permit the state-space representation of the whole closed-loop system. In
the following case study, we look at the antenna azimuth position control system and
demonstrate the concepts of this chapter by representing each subsystem in state space.

PROBLEM: Find the state-space representation in phase-variable form for each dynamic
subsystem in the antenna azimuth position control system shown on the front endpapers,
Configuration 1. By dynamic, we mean that the system does not reach the steady state
instantaneously. For example, a system described by a differential equation of first order
or higher is a dynamic system. A pure gain, on the other hand, is an example of a
nondynamic system, since the steady state is reached instantaneously.

SOLUTION: In the case study problem of Chapter 2, each subsystem of the antenna
azimuth position control system was identified. We found that the power amplifier and the
motor and load were dynamic systems. The preamplifier and the potentiometers are pure
gains and so respond instantaneously. Hence, we will find the state-space representations
only of the power amplifier and of the motor and load.

Power amplifier:

The transfer function of the power amplifier is given on the front endpapers as
G(s) = 100/(s + 100). We will convert this transfer function to its state-space
representation. Letting v, (¢) represent the power amplifier input and e,(?) represent
the power amplifier output,

_E.(s) 100
T V() (s+100)

G(s) (3.85)

Cross-multiplying, (s + 100)E,(s) = 100V ,(s), from which the differential equation can
be written as
de,
dt

+100e, = 100v,(7) (3.86)

Rearranging Eq. (3.86) leads to the state equation with e, as the state variable:

de,
dt

= —100e, + 100v,(7) (3.87)

Since the output of the power amplifier is e,(f), the output equation is

Yy =eq (3.88)

Motor and load:

We now find the state-space representation for the motor and load. We could of course use
the motor and load block shown in the block diagram on the front endpapers to obtain the
result. However, it is more informative to derive the state-space representation directly
from the physics of the motor without first deriving the transfer function. The elements of
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the derivation were covered in Section 2.8 but are repeated here for continuity. Starting
with Kirchhoff’s voltage equation around the armature circuit, we find
do

ea(t) = ia()Ry + K 7;" (3.89)

where e,(f) is the armature input voltage, i,(¢) is the armature current, R, is the armature
resistance, K}, is the armature constant, and 8, is the angular displacement of the armature.

The torque, 7,,(f), delivered by the motor is related separately to the armature current
and the load seen by the armature. From Section 2.8,

d*0,, . 9On
" dr? " dt
where J,, is the equivalent inertia as seen by the armature, and D,,, is the equivalent viscous

damping as seen by the armature.
Solving Eq. (3.90) for i,(#) and substituting the result into Eq. (3.89) yields

RiJw\ d*0  (DuR, o,
1) = K, | — 3.91
eu) = (R ) o+ (P k) (391)

T(t) = K,ia(t) = J (3.90)

Defining the state variables x; and x, as

X1 =6, (3.92a)
do,,
== 3.92b
n=— ( )
and substituting into Eq. (3.91), we get
RaJm dX2 DmRa
=|—|— K .
ea(t) ( K, ) o ol < K, + b)xz (3 93)

Solving for dx,/dt yields

dx, 1 KK} K,
= D 94
dt I ( " R, 2 RoJm ealt) (3.94)

Using Egs. (3.92) and (3.94), the state equations are written as

d.X1
- = 3.95a
=% ( )
d)CQ 1 Kth Kt

“=—— (D, (T 3.95b
0 I ( + R, )xz + <R0Jm>e () ( )

The output, 6,(¢), is 1/10 the displacement of the armature, which is x;. Hence, the output
equation is

y=0.1x; (3.96)
In vector-matrix form,
0 1 0
X = 1 KK\ |x+ | K& |eut 3.97a
Jm Ra avm

y=[01 0]x (3.97b)




Case Studies

But from the case study problem in Chapter 2, J,, = 0.03 and D,, = 0.02. Also,
K,/R, = 0.0625 and K;, = 0.5. Substituting the values into Eq. (3.97a), we obtain the final
state-space representation:

[0 1 0
Xz[o —1.71]”[2.083]6“0) (3.982)

y=[01 0]x (3.98b)

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. Referring to the antenna azimuth position control system shown on the
front endpapers, find the state-space representation of each dynamic subsystem. Use
Configuration 2.

Pharmaceutical Drug Absorption
An advantage of state-space representation over the transfer function representation is the
ability to focus on component parts of a system and write n simultaneous, first-order
differential equations rather than attempt to represent the system as a single, nth-order
differential equation, as we have done with the transfer function.
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Also, multiple-input, multiple-output systems can be conveniently Dosage Abs;rtg tion Blood _—_—
represented in state space. This case study demonstrates both of

these concepts. X1 i I *s
PROBLEM: In the pharmaceutical industry we want to describe ‘

the distribution of a drug in the body. A simple model divides

the process into compartments: the dosage, the absorption site,

the blood, the peripheral compartment, and the urine. The rate of X4

change of the amount of a drug in a compartment is equal to the Peripheral

input flow rate diminished by the output flow rate. Figure 3.16 compartment

summarizes the system. Here each x; is the amount of drug in
that particular compartment (Lordi, 1972). Represent the system
in state space, where the outputs are the amounts of drug in each
compartment.

SOLUTION: The flow rate of the drug into any given compartment is proportional to the
concentration of the drug in the previous compartment, and the flow rate out of a given
compartment is proportional to the concentration of the drug in its own compartment.

We now write the flow rate for each compartment. The dosage is released to the
absorption site at a rate proportional to the dosage concentration, or

% = _lel (399)
The flow into the absorption site is proportional to the concentration of the drug at the
dosage site. The flow from the absorption site into the blood is proportional to the
concentration of the drug at the absorption site. Hence,
dﬁzlel —Kz)Cz (3100)
dt
Similarly, the net flow rate into the blood and peripheral compartment is

d
§=K2)C2 — K3x3 + Kyxy — Ks5x3 (3101)

dX4 _

E = K5X3 — K4)C4 (3102)

FIGURE 3.16 Pharmaceutical drug-level
concentrations in a human
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FIGURE 3.17 Aquifer system
model

Chapter 3 Modeling in the Time Domain

where (K4x4 — Ksx3) is the net flow rate into the blood from the peripheral compartment.
Finally, the amount of the drug in the urine is increased as the blood releases the drug to the
urine at a rate proportional to the concentration of the drug in the blood. Thus,

dX5
—_— = K3)€3

3.103
It (3.103)

Equations (3.99) through (3.103) are the state equations. The output equation is a
vector that contains each of the amounts, x;. Thus, in vector-matrix form,

-k, 0 0 0 0
Ki -K, 0 0 0
x= K, —(K3;+Ks) Ks Ofx (3.104a)
Ks Ky 0
L K; 0 0
1 0 0 0 0
01 00O
y=/0 0 1 0 0]x (3.104b)
00010
(0 00 0 1

You may wonder how there can be a solution to these equations if there is no input. In
Chapter 4, when we study how to solve the state equations, we will see that initial conditions
will yield solutions without forcing functions. For this problem, an initial condition on the
amount of dosage, x;, will generate drug quantities in all other compartments.

CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives. The problem concerns the storage of water in aquifers. The principles are similar
to those used to model pharmaceutical drug absorption.

Underground water supplies, called aquifers, are used in many areas for agricultural,
industrial, and residential purposes. An aquifer system consists of a number of interconnected
natural storage tanks. Natural water flows through the sand and sandstone of the aquifer
system, changing the water levels in the tanks on its way to the sea. A water conservation policy
can be established whereby water is pumped between tanks to prevent its loss to the sea.

A model for the aquifer system is shown in Figure 3.17. In this model, the aquifer is
represented by three tanks, with water level #; called the head. Each g, is the natural water

qi1 902 4i2 %)3 qi3
421 = Gy (H =hy) ‘
| e AAILLIANE
T T L v vy I L LU \_._Ill‘\‘lll‘\‘l__
R hy LT h2 LN
BT LI NI
PR T
. i FLFEELE ML
q1=G1h1 o s A AT AT AL s o o s e o e B AL AT BT B B T 1 T T 1 1 |
B e B e s e ot s e e e e e e e B L L B e s s ey
T T e e e e e e e e e e e e e e e I Y
q2= Gy(hy=hy) q3= G3(h3=hy)




Summary

flow to the sea and is proportional to the difference in head between two adjoining tanks, or
g, = Gp(h, — h,_1), where G,, is a constant of proportionality and the units of g,, are m*/yr.

The engineered flow consists of three components, also measured in m*/yr: (1) flow
from the tanks for irrigation, industry, and homes, g,,,; (2) replenishing of the tanks from
wells, ¢;,; and (3) flow, ¢,;, created by the water conservation policy to prevent loss to the
sea. In this model, water for irrigation and industry will be taken only from Tank 2 and
Tank 3. Water conservation will take place only between Tank 1 and Tank 2, as follows.
Let H, be a reference head for Tank 1. If the water level in Tank 1 falls below H;, water
will be pumped from Tank 2 to Tank 1 to replenish the head. If 4, is higher than H,, water
will be pumped back to Tank 2 to prevent loss to the sea. Calling this flow for conservation
g1, we can say this flow is proportional to the difference between the head of Tank 1, A,
and the reference head, Hy, or g,; = Ga1(Hy — hy).

The net flow into a tank is proportional to the rate of change of head in each
tank. Thus,

Cndhn/dl =din —9on T A1 —49n t+ 9(n+1)n — Dn(n-1)

(Kandel, 1973).
Represent the aquifer system in state space, where the state variables and the outputs
are the heads of each tank.
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Summary

This chapter has dealt with the state-space representation of physical systems, which took
the form of a state equation,

X = Ax + Bu (3.105)
and an output equation,

y =Cx+Du (3.106)

for t > ty, and initial conditions x(7y). Vector x is called the state vector and contains
variables, called state variables. The state variables can be combined algebraically with the
input to form the output equation, Eq. (3.106), from which any other system variables can be
found. State variables, which can represent physical quantities such as current or voltage, are
chosen to be linearly independent. The choice of state variables is not unique and affects
how the matrices A, B, C, and D look. We will solve the state and output equations for x and
y in Chapter 4.

In this chapter, transfer functions were represented in state space. The form selected
was the phase-variable form, which consists of state variables that are successive derivatives
of each other. In three-dimensional state space, the resulting system matrix, A, for the
phase-variable representation is of the form

0 1 0
0 0 1 (3.107)
—ap —aj —da)

where the a;’s are the coefficients of the characteristic polynomial or denominator of the
system transfer function. We also discussed how to convert from a state-space representation
to a transfer function.

In conclusion, then, for linear, time-invariant systems, the state-space representation
is simply another way of mathematically modeling them. One major advantage of applying
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the

state-space representation to such linear systems is that it allows computer

simulation. Programming the system on the digital computer and watching the system’s
response is an invaluable analysis and design tool. Simulation is covered in Appendix H
located at www.wiley.com/college/nise.

Review Questions

L N AU R W N =

10.
11.
12.
13.

14.

. Give two reasons for modeling systems in state space.

. State an advantage of the transfer function approach over the state-space approach.
. Define state variables.

. Define state.

. Define state vector.

. Define state space.

. What is required to represent a system in state space?

. An eighth-order system would be represented in state space with how many state

equations?

. If the state equations are a system of first-order differential equations whose solution

yields the state variables, then the output equation performs what function?
What is meant by linear independence?

What factors influence the choice of state variables in any system?

What is a convenient choice of state variables for electrical networks?

If an electrical network has three energy-storage elements, is it possible to have a
state-space representation with more than three state variables? Explain.

What is meant by the phase-variable form of the state equation?

Problems
1. Represent the electrical network shown in Figure P3.1in 3. Find the state-space representation of the network shown
state space, where v,(7) is the output. [Section: 3.4] in Figure P3.3 if the output is v,(?). [Section: 3.4]
1Q 30 1Q

vi(t)

vi(t)

2Q

W
[3([) <>
¢

FIGURE P3.1

1H
2. Represent the electrical network shown in Figure P3.2 in V() Cr) /\ L5 m 20 § 1, (0)

state space, where i(?) is the output. [Section: 3.4]

3@, ) 2H

3F == 41,00

i(0) ir(n)

FIGURE P3.3
A 3Q ig(0)

4. Represent the system shown in Figure P3.4 in state space
where the output is x5(¢). [Section: 3.4]

FIGURE P3.2
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fya=1N-s/m ] x5(
— s
]
M;=1k
T fyy =1 N-s/m 3 £ fos=1N-s/m
LT_L
8 O
ol foy =1 N-s/m fop=1 Nos/m
an I Mi=2kg| " My=1kg | —= /(1)
& T
an K=2N/m
J\TJL‘\;\;J;l;\;J;l;\;J;l;\;J;l;\ \;w‘\L‘\‘J‘I‘\'J‘I‘M'J‘I‘M'J‘I‘m‘l RN |
N T T T T T T T T ITATT T T T T T
] () Frictionless ] X(0)
FIGURE P3.4
5. Represent the translational mechanical system shown

f(t) —

6.

in Figure P3.5 in state space, where x,(7) is the output.
[Section: 3.4]

R e .71 () [ N Y ()
Mz =1kg
K;=1N/m fv1= I N-s/m
_/m\_ M;=2kg fy,= 1 N-s/m
AR
K>=1N/m
m=1ke 0000
fv.= 1 N-s/m
v

FIGURE P3.5

Represent the rotational mechanical system shown in
Figure P3.6 in state space, where () is the output.
[Section: 3.4]

T(1) 0,(n)

e VT s S
100 N-m/rad 100 N-m-s/rad
FIGURE P3.6

7.

Represent the system shown in Figure P3.7 in state space
where the output is 0(¢). [Section: 3.4]

|1vl 30

—
[l

2 N-m/rad 3 N-m-s/rad

N-m/rad ;=300 0000 I:

Ny= 100 }—4€9L(;)

200 N-m-s/rad I_“

FIGURE P3.7

8.

10.

11.

14.

147

Problems

Show that the system of Figure 3.7 in the text
yields a fourth-order transfer function if we relate the
displacement of either mass to the applied force, and a
third-order one if we relate the velocity of either mass to
the applied force. [Section: 3.4]

. Find the state-space representation in phase-variable

form for each of the systems shown in Figure P3.8.
[Section: 3.5]

R(s) 100 C(s)

5442053+ 1052 + 7s + 100

(a)

R(s) 30 C(s)

§2+ 85%+ 953 + 652+ 5+ 30
)
FIGURE P3.8

Repeat Problem 9 using MATLAB. MATLAB

[Section: 3.5] [ ML |

For each system shown in Figure P3.9, write the state
equations and the output equation for the phase-variable
representation. [Section: 3.5]

R(s) 8s+ 10 C(s)
st 4553 +52+55+13
(@)
R(s) s4+253+ 1252+ 7s+6 | €6
§5+ 954+ 1353 + 852

®)
FIGURE P3.9

Repeat Problem 11 using MATLAB. MATLAB
[Section: 3.5] [ ML |

Represent the following transfer function in state
space. Give your answer in vector-matrix form.
[Section: 3.5]

s(s+2)
(s+ 1)(s*>+2s5+5)

T(s) =

Find the transfer function G(s) = Y(s)/R(s) for each
of the following systems represented in state space:
[Section: 3.6]

0 1 0 0
A X=| 0 0 1|x+]| 0]r
-3 -2 -5 10
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[ 2 -3 -8 1]
b.x=| 0 5 3(x+ (4|7
|3 -5 —4 6
y=[1 3 6]x

3 =5 2 5]

c. x=| 1 =8 7|x+|-3]|r
-3 -6 2 2|

15.

16.

17.

y=[1 -4 3]x

Use MATLAB to find the transfer MATLAB
function, G(s)=Y(s)/R(s), for [T
eachofthefollowingsystemsrepresented
in state space: [Section: 3.6]

0 1 5 0 0
a g _ 0O 0O 1 ©O - 5 .
O O O 1 8
-7 -9 -2 -3 2
y=[1 3 6 6]x
[ 3 1 0 4 -2] [27]
-3 5 -5 -1 7
b.x=| 0 1 -1 2 8(x+|8]|r
-7 6 -3 -4 O 5
-6 0 4 -3 1] | 4 |
y=[1 -2 -9 7 6]x

Repeat Problem 15 using MATLAB,  Symbolic Math
the Symbolic Math Toolbox, and [
Eq. (3.73). [Section: 3.6]

A missile in flight, as shown in Figure P3.10, is subject

to four forces: thrust, lift, drag, and gravity. The

missile flies at an angle of attack, «, from its longitu-

dinal axis, creating lift. For steering, the body angle

from vertical, ¢, is controlled by rotating the engine at

the tail. The transfer function relating the body angle,

¢, to the angular displacement, §, of the engine is of

the form

D(s) K.s+ Ky
5(5‘) - K3S3 + K2S2 + Kis+ Ky

18.

19.

20.

FIGURE P3.10 Miissile

Represent the missile steering control in state space.
[Section: 3.5]

Given the dc servomotor and load shown in Figure P3.11,
represent the system in state space, where the state
variables are the armature current, i,, load displacement,
01, and load angular velocity, ;. Assume that the output
is the angular displacement of the armature. Do not
neglect armature inductance. [Section: 3.4]

Fixed
field

0,0

Armature
g0

0,(1)

Ny

)~ ) HE
Dy

FIGURE P3.11 Motor and load

Consider the mechanical system of Figure P3.12. If the
spring is nonlinear, and the force, Fy, required to stretch
the spring is Fy = Ex%, represent the system in state space
linearized about x; = 1 if the output is x,. [Section: 3.7]

S0 0
i 2 N-s/m i
FIGURE P3.12 Nonlinear mechanical system

Image-based homing for robots can be implemented by
generating heading command inputs to a steering system
based on the following guidance algorithm. Suppose the
robot shown in Figure P3.13(a) is to go from point R to a
target, point 7, as shownin Figure P3.13(b). If R, R, and
R, are vectors from the robot to each landmark, X, Y, Z,
respectively,and T,, T,, and T are vectors from the target
to each landmark, respectively, then heading commands

F,=2x2N

1 kg

— A0




would drive the robot to minimize R, — T,, R, = T,,
and R, — T, simultaneously, since the differences will
be zero when the robot arrives at the target (Hong, 1992).
If Figure P3.13(c) represents the control system that
steers the robot, represent each block—the controller,
wheels, and vehicle—in state space. An animation
PowerPoint presentation (PPT) demonstrating this system
is available for instructors at www.wiley.com/college/nise.
See Robot. [Section: 3.5]

Spherical
mirror

Camera

(a)

Heading Heading Controller Steering Wheels Wheel Vehicle Actual
command  error command angle heading
+ Ki(s+a) c

1
s

= (s +b)

(©)
FIGURE P3.13 a. Robot with television imaging system;'’

b. vector diagram showing concept behind image-based homing;'°
¢. heading control system

21. Modern robotic manipulators that act directly upon their
target environments must be controlled so that impact
forces as well as steady-state forces do not damage the
targets. At the same time, the manipulator must provide
sufficient force to perform the task. In order to develop a
control system to regulate these forces, the robotic manip-
ulator and target environment must be modeled. Assum-
ing the model shown in Figure P3.14, represent in state
space the manipulator and its environment under the
following conditions (Chiu, 1997). [Section: 3.5]

Contact
point

1 N/m |

1 N/m

1 N/m

1kg

1 N-s/m 1 N-s/m

N\ —

Manipulator Sensor

1 N/m 1 N-s/m 1 N-s/m

H_J

Internal force Environment

model

FIGURE P3.14 Robotic manipulator and target environment'"

10 Hong, J.; Tan, X.; Pinette, B.; Weiss, R.; and Riseman, E. M. Image-Based
Homing, /IEEE Control Systems, Feb. 1992, pp. 38-45. © 1992 IEEE.

" Based on Chiu, D. K., and Lee, S. Design and Experimentation of a Jump
Impact Controller. IEEE Control Systems, June 1997, Figure 1, p. 99. 1997
IEEE.

22. In

23.
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Problems

a. The manipulator is not in contact with its target
environment.

b. The manipulator is in constant contact with its target
environment.

the past, Type-1 diabetes patients had to inject
themselves with insulin three to four times a day.
New delayed-action insulin analogues such as insulin
Glargine require a single daily dose. A similar procedure to
the one described in the Pharmaceutical Drug Absorption
case study of this chapter is used to find a model for
the concentration-time evolution of plasma for insulin
Glargine. For a specific patient, state-space model matrices
are given by (Tarin, 2007)

~0.435 0209 0.02 1
A=| 0268 —039%4 0 |; B=|0];

0227 0 ~0.02 0
C=1[00003 0 0]; D=0

where the state vector is given by

X1

The state variables are

insulin amount in plasma compartment

X1

X, = insulin amount in liver compartment

x3 = insulin amount in interstitial (in body tissue)
compartment

The system’s input is # = external insulin flow.
The system’s output is y = plasma insulin
concentration.

a. Find the system’s transfer function.
b. Verify your result using MATLAB

MATLAB. [ ML |

A linear, time-invariant model of the hypothalamic-
pituitary-adrenal axis of the endocrine system with
five state variables has been proposed as follows
(Kyrylov, 2005):

= apoXo + appx2 + do

= ajpxo +apx, +apx

= apXo + a1 X1 + axnxy + ax3 + az4xy
—— = azxnXy +dzzx;

d)C()
dr
dxy
dr
dXQ
dr
dX3
dt
d)C4
s A42X7 + A44X4


http://www.wiley.com/college/nise
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where each of the state variables represents circulatory
concentrations as follows:

Xp = corticotropin-releasing hormone
X| = corticotropin

x, = free cortisol

x3 = albumin-bound cortisol

x4 = corticosteroid-binding globulin
dop = an external generating factor

Express the system in the form x = Ax + Bu.

In this chapter, we described the state-space representation
of single-input, single-output systems. In general, systems
can have multiple inputs and multiple outputs. An autopilot
is to be designed for a submarine as shown in Figure P3.15
to maintain a constant depth under severe wave distur-
bances. We will see that this system has two inputs and two
outputs and thus the scaler # becomes a vector, u, and the
scaler y becomes a vector, y, in the state equations.

v: mean sea level

O
/E ’
6
o

Uy

(1)

Js

w(t)

FIGURE P3.15?

It has been shown that the system’s linearized dynamics
under neutral buoyancy and at a given constant speed
are given by (Liceaga-Castro, 2009):

X = Ax + Bu

y=Cx

w

q Z

| o[l o
0

where

B

12 Liceaga-Castro E., van der Molen G.M. Submarine H* Depth Control
Under Wave Disturbances. IEEE Trans. on Control Systems Technology,
Vol. 3 No. 3, 1995. Figure 1, p. 339.

25.

26.

Modeling in the Time Domain

[—0.038 0.896 0 0.0015
0.0017 -0.092 0 —0.0056
A= 1 0 0 -3.086
| 0 1 0 0
[—-0.0075 —0.023
0.0017 —0.0022 0 0 1 0]
B= C=
0 0 0 0 0 1
. 0 0
and where

w = the heave velocity

q = the pitch rate

z = the submarine depth

6 = the pitch angle
op = the bow hydroplane angle
0s = the stern hydroplane angle

Since this system has two inputs and two outputs, four
transfer functions are possible.

a. Use MATLAB to calculate the MATLAB
system’s matrix transfer
function.
b. Using the results from Part a, write the transfer
function 1) , ) , 9(5‘), @
op(s)" os(s)” Im(s) Js(s)

Experiments to identify precision grip dynamics
between the index finger and thumb have been
performed using a ball-drop experiment. A subject
holds a device with a small receptacle into which an
object is dropped, and the response is measured
(Fagergren, 2000). Assuming a step input, it has
been found that the response of the motor subsystem
together with the sensory system is of the form

_@_ s+c

Gls) = R(s) (s> +as+b)(s+d)

Convert this transfer function to a

representation.

state-space

State-space representations are, in general, not unique.
One system can be represented in several possible ways.
For example, consider the following systems:

a. x=-5x+3u
y="Tx



Show that these systems will result in the same transfer
function. We will explore this phenomenon in more
detail in Chapter 5.

27. Figure P3.16 shows a schematic description of the global
carbon cycle (Li, ). In the figure, ma(f) represents the
amount of carbon in gigatons (GtC) present in the
atmosphere of earth; m(f) the amount in vegetation;
my(t) the amount in soil; mgo(f) the amount in surface
ocean; and m;po(f) the amount in intermediate and deep-
ocean reservoirs. Let uz(f) stand for the human generated
CO, emissions (GtC/yr). From the figure, the atmospheric
mass balance in the atmosphere can be expressed as:

d% (1) = up(t) — (kor + kri)ma(t) + kpamy (1)

+koamso(t) + kpams(t)

where the k’s are exchange coefficients (yr™').

a. Write the remaining reservoir mass balances. Namely,

. . dmso(l) dmu_)o(t) di(l)
t t fi
write eq(u? fons for — ==, et
dmg(t
d —~
an di

b. Express the system in state-space form.

| ez |
g (1) ——>» Atmosphere )

Vegetation

| iy

_‘<o7l_ _ _koz_ |

| Surface ocean |
Msol |

| ko;al Tko4 l
I

my

ku¢ |

Soil |

Intermediate and deep ocean Land sink

Mipo

Ocean sink

FIGURE P3.16 Global carban cycle'

13Li, S., Jarvis, AJ., and Leedal, D.T. Are response function representa-
tions of the global carbon cycle ever interpretable? Tellus, vol. 61B, 2009,
pp. 361-371. (Fig. 1 p. 363).
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Problems

28. Given the photovoltaic system described in Problem 65
in Chapter 2 (Agee, 2012) and defining the following
state variables, system input and outputas y = x; = 6,
Xy = 9,,,, x3 =1,, and u = e,, write a state-space
representation of the system in the form x = Ax + Bu,
y = Cx.

29. A single-pole oil cylinder valve contains a spool that
regulates hydraulic pressure, which is then applied to a
piston that drives a load. The transfer function relating
piston displacement, X,(s) to spool displacement from
equilibrium, X,(s), is given by (Qu, 2010):

_Xp(s) an)ﬁ/Al

G(s) = =
®) Xo(s)  s(s? + 2¢wps + @3)

where A; = effective area of a the valve’s chamber,
K, = rate of change of the load flow rate with a
change in displacement, and @, = the natural fre-
quency of the hydraulic system. Find the state-space
representation of the system, where the state variables
are the phase variables associated with the piston.

30. Figure P3.17 shows a free-body diagram of an
inverted pendulum, mounted on a cart with a mass,
M. The pendulum has a point mass, m, concentrated at
the upper end of a rod with zero mass, a length, /, and a
frictionless hinge. A motor drives the cart, applying a
horizontal force, u(t). A gravity force, mg, acts on m at
all times. The pendulum angle relative to the y-axis, 6,
its angular speed, 6', the horizontal position of the
cart, x, and its speed, x’', were selected to be the state
variables. The state-space equations derived were
heavily nonlinear.'* They were then linearized around
the stationary point, Xg = 0 and u( = 0, and manipulated
to yield the following open-loop model written in
perturbation form:

i ox = Adx + Bou
dt

However, since xo = 0 and uy =0, then let: x = Xy + 6x =
ox and u = uy + ou = ou. Thus the state equation may
be rewritten as (Prasad, 2012):

x = Ax + Bu
where
0 1 00 O1
(M +m)g 00 0 o
A= Ml and B =
0 0 0 1 (1)
mg
-— 0 0 O —
M M

' As noted in the introduction to Section 3.7, the techniques for solving
such nonlinear state equations are beyond the scope of this course.
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Assuming the output to be the horizontal position of
m =X, =x+[sin@ = x+ 10 for a small angle, 8, the
output equation becomes:

y=W0+x=Cx=[l 0 1 0]

LR BN TIAN A

Giventhat: M=2_.4kg, m=0.23 kg, MATLAB
1=0.36m, g=9.81m/s?, use [ ML |
MATLAB to find the transfer

function, G(s)=Y(s)/U(s)= X (s)/U(s).-

y
<7x4>ilsinﬁi<—
e 1o
I
I
P
I
[cos® |
I
i
0, X
N
u —>| M
(o] (o]

FIGURE P3.17 Motor-driven inverted pendulum
cart system'

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS

31.

Control of HIV/AIDS. Problem 67 in Chapter 2
introduced amodel for HIV infection. If retroviral drugs,
RTIsand PIs asdiscussed in Problem 22 in Chapter 1, are
used, the model is modified as follows (Craig, 2004):

dT
E=S—dT—(1—M1)ﬂTV
dr’ N
W:(l—ul)/}TV—uT
d *
d—::(l—uz)kT —cv

where 0 < u; <1, 0 <u, < 1 represent the effectiveness

of the RTI and PI medication, respectively.

a. Obtain a state-space representation of the HIV/AIDS
model by linearizing the equations about the

(T T ) cuy s cd sk d
Vi = e p———
05 0> YO /}kvlu ﬂk’cy ,B

15 Prasad, L., Tyagi, B.,and Gupta, H. Modeling & Simulation for Optimal
Control of Nonlinear Inverted Pendulum Dynamical System using PID
Controller & LQR. [EEE Computer Society Sixth Asia Modeling Sympo-

sium,

IEEE

2012, pp. 138-143. Figure 1 p. 139. Reproduced with permission of
in the format Republish in a book via Copyright Clearance Center.

A=

A=

Modeling in the Time Domain

equilibrium with w9 = upo =0. This equilibrium
represents the asymptomatic HIV-infected patient.
Note that each one of the above equations is of the
form ).C,‘ =fl-(x,-, up, uz), i= 1, 2, 3.
b. If Matrices A and B are given by

(of O Oh] [Of O]
Ox; Oxp Oxs Ou,  Ouy
8x1 6)62 8)63’ B 6u1 3%2
s s s s 9fs
LOx;  Oxy ax3_T0,T;,v0 L Ou;  Ous | To.T} v

and we are interested in the number of free HIV viruses
as the system’s output,

cC=[0 0 1]
show that
—(d+pvo) 0 —pTo PTovo O
Pvo -u PTo |; B=|—-pTovo O
0 k  —c 0  —kT,

c. Typical parameter values and descriptions for the

HIV/AIDS model are shown in the following table.
Substitute the values from the table into your model and
write as

x = Ax + Bu
y=0Cx

Table of HIV/AIDS Model Parameters'®

t | Time days
d | Death of uninfected T cells 0.02/day
k | Rate of free viruses produced per 100 counts/cell
infected T cell
s | Source term for uninfected T cells 10/mm*/day
S | Infectivity rate of free virus particles | 2.4 x 107> /mm?/day
¢ | Death rate of viruses 2.4/day
u | Death rate of infected T cells 0.24/day
32. Hybrid vehicle. For Problem 23 in Chapter 1 we

developed the functional block diagrams for the
cruise control of serial, parallel, and split-power

16 Craig, I. K., Xia, X., and Venter, J. W. Introducing HIV/AIDS Education
Into the Electrical Engineering Curriculum at the University of Pretoria.
IEEE Transactions on Education, vol. 47, no. 1, February 2004, pp. 65-73.
Table II, p. 67. Modelling Symposium (AMS), 2012 Sixth Asia by IEEE.
Reproduced with permission of IEEE in the format Republish in a book via
Copyright Clearance Center.
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Vehlc!e
X . Load dynamics
Control Amplifier Armature Motive 0a
command, output current, torque, torque, Angular
u.(t) voltage, 1,(t) () T.() speed
ug(t) + _Au(® Y- 1 (1)
— K Ge(s) > K —QQ—> >
_ A- Jior$
Friction
Back emf, torque,
ep(t ’
kf le—
ky <
In<t)f v o(f)

FIGURE P3.18 Block diagram representation of an HEV forward path'’

hybrid electric vehicles (HEV). Those diagrams
showed that the engine or electric motor or both
may propel the vehicle. When electric motors are the
sole providers of the motive force, the forward paths
of all HEV topologies are similar. In general, such a
forward path can be represented (Preitl, 2007) by a
block diagram similar to the one of Figure P3.18.

Assume the motor to be an armature-controlled dc
motor. In this diagram, K, is the power amplifier gain;
G.(s) is the transfer function of the motor electric circuit
and consists of a series inductor and resistor, L, and R,,,
respectively; K, is the motor torque constant; J,,,, is the
sum of the motor inertia, J,,, the inertias of the vehicle,
Joen» and the two driven wheels, J,,, both of which
are reflected to the motor shaft; k¢ is the coefficient of
viscous friction; and k, is the back emf constant.

The input variables are u.(f), the command
voltage from the electronic control unit and T7.(?),
the load torque. The output variables in this block
diagram are the motor angular speed, w(f), and its
armature current, /().

33.

a. Write the basic time-domain equations that charac-
terize the relationships between the state, input, and
output variables for the block diagram of Figure
P3.18, given that the state variables are the motor
armature current, /,(¢), and angular speed, w(f).

b. Write the resulting state-space equations and then

represent them in matrix form. Regard the load
torque 7.(f) as an extra input to the system. Thus, in
your resulting state-space representation, the system
will have two inputs and two outputs.

Parabolic trough collector. A transfer function model
from fluid flow to fluid temperature for a parabolic trough
collector was introduced in Problem 69, Chapter 2. A more
detailed model for the response of this system is given
under specific operation conditions (Camacho, 2012) by:

3 137.2%x 107
T 24+0.02245 4+ 196 X 107°

—39s

g(s)

Find an appropriate state-space representation for the
system.

'7 Preitl, Z., Bauer, P., and J. Bokor, J. A Simple Control Solution for Traction Motor Used in Hybrid Vehicles. 4th International Symposium on Applied
Computational Intelligence and Informatics. IEEE, 2007. Adapted from Figure 2, p. 2
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Experiment 3.1
Objectives

To learn to use MATLAB to (1) generate an LTI state-space representation

of a system and (2) convert an LTI state-space representation of a system to an LTI transfer

function.

Minimum Required Software Packages
Toolbox

MATLAB and the Control System
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Prelab

1. Derive the state-space representation of the translational mechanical system shown
in Skill-Assessment Exercise 3.2 if you have not already done so. Consider the output to
be x3(1).

X;3(s)
F(s)
mechanical system shown in Skill-Assessment Exercise 3.2.

Lab
1. Use MATLAB to generate the LTI state-space representation derived in Prelab 1.

2. Use MATLAB to convert the LTI state-space representation found in Lab 1 to the LTI
transfer function found in Prelab 2.

Postlab

1. Compare your transfer functions as found from Prelab 2 and Lab 2.

2. Derive the transfer function, , from the equations of motion for the translational

2. Discuss the use of MATLAB to create LTI state-space representations and the use of
MATLAB to convert these representations to transfer functions.

Experiment 3.2

Objectives To learn to use MATLAB and the Symbolic Math Toolbox to (1) find a
symbolic transfer function from the state-space representation and (2) find a state-space
representation from the equations of motion.

Minimum Required Software Packages MATLAB, the Symbolic Math Toolbox,
and the Control System Toolbox

Prelab

1. Perform Prelab 1 and Prelab 2 of Experiment 3.1 if you have not already done so.

2. Using the equation 7(s) = C(sI — A)™'B to find a transfer function from a state-space
representation, write a MATLAB program using the Symbolic Math Toolbox to find the
symbolic transfer function from the state-space representation of the translational
mechanical system shown in Skill-Assessment Exercise 3.2 and found as a step in
Prelab 1.

3. Using the equations of motion of the translational mechanical system shown in
Skill-Assessment Exercise 3.2 and found in Prelab 1, write a symbolic MATLAB
program to find the transfer function %0 for this system.

’ F(S) ’
Lab

1. Run the programs composed in Prelabs 2 and 3 and obtain the symbolic transfer
functions by the two methods.

Postlab

1. Compare the symbolic transfer function obtained from 7'(s) = C(sI — A)™'B with the
symbolic transfer function obtained from the equations of motion.

2. Discuss the advantages and disadvantages between the two methods.

3. Describe how you would obtain an LTI state-space representation and an LTI transfer
function from your symbolic transfer function.

Experiment 3.3

Objectives To learn to use LabVIEW to (1) generate state-space representations
of transfer functions, (2) generate transfer functions from state-space representations,
and (3) verify that there are multiple state-space representations for a transfer function.
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Minimum Required Software Packages LabVIEW, the LabVIEW Control
Design and Simulation Module, and the MathScript RT Module.

Prelab
1. Study Appendix D, Sections D.1 through D.4, Example D.1.
2. Solve Skill-Assessment Exercise 3.3.

3. Use your solution to Prelab 2 and convert back to the transfer function.

Lab

. 25+ 1
1. Use LabVIEW to convert the transfer function, G(s) = i

s2+7s+9
representation using both the graphical and MathScript approaches. The front panel will
contain controls for the entry of the transfer function and indicators of the transfer
function and the two state-space results. Functions for this experiment can be found in
the following palettes: (1) Control Design and Simulation/Control Design/Model
Construction, (2) Control Design and Simulation/Control Design/Model Conversion,
and (3) Programming/Structures Hint: Coefficients are entered in reverse order when
using MathScript with MATLAB.

2. Use LabVIEW to convert all state-space representations found in Lab 1 to a transfer
function. All state-space conversions should yield the transfer function given in Lab 1.
The front panel will contain controls for entering state-space representations and
indicators of the transfer function results as well as the state equations used.

Postlab

1. Describe any correlation found between the results of Lab 1 and calculations made in the
Prelab.

2. Describe and account for any differences between the results of Lab 1 and calculations
made in the Prelab.

, into a state-space

3. Explain the results of Lab 2 and draw conclusions from the results.
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Time Response

Chapter Learning Outcomes

After completing this chapter the student will be able to:

Use poles and zeros of transfer functions to determine the time response of a
control system (Sections 4.1-4.2)

Describe quantitatively the transient response of first-order systems (Section 4.3)

Write the general response of second-order systems given the pole location
(Section 4.4)

Find the damping ratio and natural frequency of a second-order system (Section 4.5)

Find the settling time, peak time, percent overshoot, and rise time for an
underdamped second-order system (Section 4.6)

Approximate higher-order systems and systems with zeros as first- or second-
order systems (Sections 4.7-4.8)

Describe the effects of nonlinearities on the system time response (Section 4.9)
Find the time response from the state-space representation (Sections 4.10-4.11)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

Given the antenna azimuth position control system shown on the front
endpapers, you will be able to (1) predict, by inspection, the form of the
open-loop angular velocity response of the load to a step voltage input to
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the power amplifier; (2) describe quantitatively the transient response
of the open-loop system; (3) derive the expression for the open-loop
angular velocity output for a step voltage input; (4) obtain the open-loop
state-space representation; (5) plot the open-loop velocity step response
using a computer simulation.

® Given the block diagram for the Unmanned Free-Swimming Submersible (UFSS)
vehicle’s pitch control system shown on the back endpapers, you will be able to
predict, find, and plot the response of the vehicle dynamics to a step input
command. Further, you will be able to evaluate the effect of system zeros and
higher-order poles on the response. You also will be able to evaluate the roll
response of a ship at sea.

In Chapter 2, we saw how transfer functions can represent linear, time-invariant systems.
In Chapter 3, systems were represented directly in the time domain via the state and output
equations. After the engineer obtains a mathematical representation of a subsystem,
the subsystem is analyzed for its transient and steady-state responses to see if these
characteristics yield the desired behavior. This chapter is devoted to the analysis of system
transient response.

It may appear more logical to continue with Chapter 5, which covers the modeling
of closed-loop systems, rather than to break the modeling sequence with the analysis
presented here in Chapter 4. However, the student should not continue too far into system
representation without knowing the application for the effort expended. Thus, this chapter
demonstrates applications of the system representation by evaluating the transient
response from the system model. Logically, this approach is not far from reality, since
the engineer may indeed want to evaluate the response of a subsystem prior to inserting it
into the closed-loop system.

After describing a valuable analysis and design tool, poles and zeros, we begin
analyzing our models to find the step response of first- and second-order systems. The order
refers to the order of the equivalent differential equation representing the system—the
order of the denominator of the transfer function after cancellation of common factors
in the numerator or the number of simultaneous first-order equations required for the
state-space representation.

4.2 Poles, Zeros, and System Response

The output response of a system is the sum of two responses: the forced response and the
natural response.’ Although many techniques, such as solving a differential equation or
taking the inverse Laplace transform, enable us to evaluate this output response, these
techniques are laborious and time-consuming. Productivity is aided by analysis and design
techniques that yield results in a minimum of time. If the technique is so rapid that we feel
we derive the desired result by inspection, we sometimes use the attribute qualitative to
describe the method. The use of poles and zeros and their relationship to the time response of
a system is such a technique. Learning this relationship gives us a qualitative “handle” on
problems. The concept of poles and zeros, fundamental to the analysis and design of control

' The forced response is also called the steady-state response or particular solution. The natural response is also
called the homogeneous solution.
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systems, simplifies the evaluation of a system’s response. The reader is encouraged to
master the concepts of poles and zeros and their application to problems throughout this
book. Let us begin with two definitions.

Poles of a Transfer Function
The poles of a transfer function are (1) the values of the Laplace transform variable, s, that
cause the transfer function to become infinite or (2) any roots of the denominator of the
transfer function that are common to roots of the numerator.

Strictly speaking, the poles of a transfer function satisfy part (1) of the definition.
For example, the roots of the characteristic polynomial in the denominator are values of
s that make the transfer function infinite, so they are thus poles. However, if a factor of
the denominator can be canceled by the same factor in the numerator, the root of this
factor no longer causes the transfer function to become infinite. In control systems, we
often refer to the root of the canceled factor in the denominator as a pole even though
the transfer function will not be infinite at this value. Hence, we include part (2) of the
definition.

Zeros of a Transfer Function

The zeros of a transfer function are (1) the values of the Laplace transform variable, s, that
cause the transfer function to become zero, or (2) any roots of the numerator of the transfer
function that are common to roots of the denominator.

Strictly speaking, the zeros of a transfer function satisfy part (1) of this definition. For
example, the roots of the numerator are values of s that make the transfer function zero and
are thus zeros. However, if a factor of the numerator can be canceled by the same factor in
the denominator, the root of this factor no longer causes the transfer function to become
zero. In control systems, we often refer to the root of the canceled factor in the numerator as
a zero even though the transfer function will not be zero at this value. Hence, we include part
(2) of the definition.

Poles and Zeros of a First-Order System: An Example

Given the transfer function G(s) in Figure 4.1(a), a pole exists at s = —5, and a zero exists at
—2. These values are plotted on the complex s-plane in Figure 4.1(b), using an X for the pole
and a O for the zero. To show the properties of the poles and zeros, let us find the unit
step response of the system. Multiplying the transfer function of Figure 4.1(a) by a step
function yields

_(+2 A B _2/5 35

C(s) = == = 4.1
®) s(s+5) s+s+5 s +s+5 @.1)
where
_(s+2) 2
T (s+5)),, S
B=(s+2) =§
s s—=5 5
Thus,

2.3
c()=5+ze (4.2)
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Jjo
[
s-plane
1 G(s)
R6)=5 [T+2] CO) o
ls+5 " _’;_ 5 T
(@) ®
Input pole System zero System pole

Output
transform |

Output |
time
response |

I LI | 1
Forced response  Natural response

(c)

FIGURE 4.1 a. System showing input and output; b. pole-zero plot of the system; ¢. evolution of a
system response. Follow blue arrows to see the evolution of the response component generated by the
pole or zero.

From the development summarized in Figure 4.1(c), we draw the following
conclusions:

1. A pole of the input function generates the form of the forced response (that is, the pole at
the origin generated a step function at the output).

2. A pole of the transfer function generates the form of the natural response (that is, the pole
at —5 generated e™>").

3. A pole on the real axis generates an exponential response of the form e~*, where —a is
the pole location on the real axis. Thus, the farther to the left a pole is on the negative real

axis, the faster the exponential transient response will decay to zero (again, the pole at —5

generated e™'; see Figure 4.2 for the general case).

Jjo
Pole at —a generates A
response Ke~al

LV
N
—a

s-plane

FIGURE 4.2 Effect of a real-axis pole upon transient response.
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4. The zeros and poles generate the amplitudes for both the forced and natural responses
(this can be seen from the calculation of A and B in Eq. (4.1)).

Let us now look at an example that demonstrates the technique of using poles to obtain
the form of the system response. We will learn to write the form of the response by
inspection. Each pole of the system transfer function that is on the real axis generates an
exponential response that is a component of the natural response. The input pole generates
the forced response.

Example 4.1

Evaluating Response Using Poles

_1
PROBLEM: Given the system of Figure 4.3, write the output, ¢(¢), in R =5 - +3) s

general terms. Specify the forced and natural parts of the solution. (s +2)(s + His+3)

SOLUTION: By inspection, each system pole generates an exponential FIGURE 4.3 System for Example 4.1

as part of the natural response. The input’s pole generates the forced
response. Thus,

Kl K2 K3 K4
Cs) = — + + + 4.3
(s) LS Is+2 s+4 s+5I (“3)
Forced Natural
response response
Taking the inverse Laplace transform, we get
()= K +Kre X +Kze + Ky 4.4)
| | | ]
Forced Natural
response response
Skill-Assessment Exercise 4.1
10(s + 4)(s + 6)

PROBLEM: A system has a transfer function, G(s)=

(s + (s +7)(s + 8)(s + 10)

Write, by inspection, the output, c(f), in general terms if the input is a unit step.

ANSWER: c(t)= A+ Be™' + Ce " + De™® + Ee™1*

In this section, we learned that poles determine the nature of the time response:
Poles of the input function determine the form of the forced response, and poles
of the transfer function determine the form of the natural response. Zeros and poles
of the input or transfer function contribute to the amplitudes of the component
parts of the total response. Finally, poles on the real axis generate exponential
responses.
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4.3 First-Order Systems

jo We now discuss first-order systems without zeros to define a performance
specification for such a system. A first-order system without zeros can be
G® [ s-plane  described by the transfer function shown in Figure 4.4(a). If the input is a
R % o0 X = ¢ unit step, where R(s) = 1/s, the Laplace transform of the step response is
—a ‘ C(s), where
@ ®) C(s) = R(s)G(s) = —2— (4.5)
s(s+a)
FIGURE 4.4 a. First-order system; b. pole plot

Taking the inverse transform, the step response is given by

ct)=ct)+ci(t)=1—-e (4.6)

Virtual Experiment 4.1
First-Order
Transfer Function

Put theory into practice and find
a first-order transfer function
representing the Quanser
Rotary Servo. Then validate the
model by simulating it in
LabVIEW. Such a servo motor
is used in mechatronic gadgets
such as cameras.

Virtual experiments are found
on Learning Space.

where the input pole at the origin generated the forced response c¢(f) = 1, and the system
pole at —a, as shown in Figure 4.4(b), generated the natural response c,(t) = —e .
Equation (4.6) is plotted in Figure 4.5.

Let us examine the significance of parameter «, the only parameter needed to describe
the transient response. When 7 = 1/a,

e st =e€" =037 (4.7)

or

cOi=1/a =1~ e_‘”|,=1/a =1-037=0.63 (4.8)
We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response performance
specifications.

Time Constant

We call 1/a the time constant of the response. From Eq. (4.7), the time constant can be
described as the time for e to decay to 37% of its initial value. Alternately, from Eq. (4.8)
the time constant is the time it takes for the step response to rise to 63% of its final value
(see Figure 4.5).

c(t)

3 Initial slope = 1

. —a
time constant

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

T
AN

63% of final value
at t = one time constant

0

Q=
o
alw
INJFS
N

TS

FIGURE 4.5 First-order system response to a unit step



4.3 First-Order Systems

The reciprocal of the time constant has the units (1/seconds), or frequency. Thus, we
can call the parameter a the exponential frequency. Since the derivative of e is —a when
t = 0, a is the initial rate of change of the exponential at # = 0. Thus, the time constant can be
considered a transient response specification for a first-order system, since it is related to the
speed at which the system responds to a step input.

The time constant can also be evaluated from the pole plot (see Figure 4.4(b)). Since
the pole of the transfer function is at —a, we can say the pole is located at the reciprocal of
the time constant, and the farther the pole from the imaginary axis, the faster the transient
response.

Let us look at other transient response specifications, such as rise time, 7', and settling
time, Ty, as shown in Figure 4.5.

Rise Time, T,

Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final value. Rise
time is found by solving Eq. (4.6) for the difference in time at ¢(z) = 0.9 and ¢(¢) = 0.1.
Hence,

2.31 A1 2.2
7 =231 0l _22 4.9)

a a a

Settling Time, T,

Settling time is defined as the time for the response to reach, and stay within, 2% of its
final value.? Letting ¢(r) = 0.98 in Eq. (4.6) and solving for time, 1, we find the settling
time to be

Ty=- (4.10)

First-Order Transfer Functions via Testing

Often it is not possible or practical to obtain a system’s transfer function analytically.
Perhaps the system is closed, and the component parts are not easily identifiable. Since the
transfer function is a representation of the system from input to output, the system’s step
response can lead to a representation even though the inner construction is not known. With
a step input, we can measure the time constant and the steady-state value, from which the
transfer function can be calculated.

Consider a simple first-order system, G(s) = K/(s + a), whose step response is

K K/a Ka
_s(s+a)_T_(s+a)

C(s)

(4.11)

If we can identify K and a from laboratory testing, we can obtain the transfer function of the
system.

For example, assume the unit step response given in Figure 4.6. We determine that it
has the first-order characteristics we have seen thus far, such as no overshoot and nonzero
initial slope. From the response, we measure the time constant, that is, the time for the
amplitude to reach 63% of its final value. Since the final value is about 0.72, the time
constant is evaluated where the curve reaches 0.63 X 0.72 = 0.45, or about 0.13 second.
Hence, a = 1/0.13 =7.7.

2 Strictly speaking, this is the definition of the 2% setting time. Other percentages, for example 5%, also can be used.
We will use setrling time throughout the book to mean 2% settling time.
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FIGURE 4.6 Laboratory results of a system step response test

To find K, we realize from Eq. (4.11) that the forced response reaches a steady-state
value of K/a = 0.72. Substituting the value of ¢, we find K = 5.54. Thus, the transfer
function for the system is G(s) = 5.54/(s + 7.7). It is interesting to note that the response of
Figure 4.6 was generated using the transfer function G(s) = 5/(s + 7).

Skill-Assessment Exercise 4.2

50
PROBLEM: A system has a transfer function, G(s) = ——. Find the time constant, T,
. L s+ 50
settling time, T, and rise time, 7',

ANSWER: T.=0.02s, T, =0.08s, and T, = 0.044 s.

The complete solution is located at www.wiley.com/college/nise.

4.4 Second-Order Systems: Introduction

Let us now extend the concepts of poles and zeros and transient response to second-order
systems. Compared to the simplicity of a first-order system, a second-order system exhibits
a wide range of responses that must be analyzed and described. Whereas varying a
first-order system’s parameter simply changes the speed of the response, changes in the
parameters of a second-order system can change the form of the response. For example, a
second-order system can display characteristics much like a first-order system, or, depending
on component values, display damped or pure oscillations for its transient response.

To become familiar with the wide range of responses before formalizing our
discussion in the next section, we take a look at numerical examples of the second-order
system responses shown in Figure 4.7. All examples are derived from Figure 4.7(a), the
general case, which has two finite poles and no zeros. The term in the numerator is simply a
scale or input multiplying factor that can take on any value without affecting the form of the
derived results. By assigning appropriate values to parameters a and b, we can show all
possible second-order transient responses. The unit step response then can be found using
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System Pole-zero plot Response
G(s)
1
R(s)=3 b C(s)
(@ s
sZ+as+b
General
c(t) c(f)=1+0.171¢ 7854 —
jo Lok 1171711400
G(s) s-plane
1
®) B9=5 B ) % % s 05|
N N -
52495 +9 ~7.854 ~1.146
Overdamped
1 1 1 1 1 t
0 1 2 3 4 5
c(t) () = 1-e7(cosV8t +J§ sinV8r)
jo 1.4 =1-1.06¢"" cos(/8-19.47°)
G s-plane )
. (s) j g
© R(s) =5 9 C(s) -
s2+25+9 -1
Underdamped X | =i
()
jo b c(t)=1-cos 3t
s-plane
G(s) S-p .
R(s)=§ &0 "
@ =2 2 ‘ o 1t
249
Undamped 73
1 1 1 t
0 1 2 3 4 5
jw o(r)
GGs) s-plane o c(t)y=1-3te3" -
1 .
R(s)=73 9 C(s) 0.8
(e) : ST X o 06
- -3 0.4
Critically damped 0.2

0

C(s) = R(s)G(s), where R(s) = 1/s, followed by a partial-fraction expansion and the inverse
Laplace transform. Details are left as an end-of-chapter problem, for which you may want to

review Section 2.2.

We now explain each response and show how we can use the poles to determine the
nature of the response without going through the procedure of a partial-fraction expansion

followed by the inverse L

aplace transform.

Overdamped Response, Figure 4.7(b)

For this response,

C(s)

9

9

T2 +95+9)  s(s+7.854)(s + 1.146)

(4.12)

This function has a pole at the origin that comes from the unit step input and two real poles
that come from the system. The input pole at the origin generates the constant forced
response; each of the two system poles on the real axis generates an exponential natural
response whose exponential frequency is equal to the pole location. Hence, the output
initially could have been written as c(f) = K| + Koe /8% + K3e7 1146/ This response,
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FIGURE 4.7 Second-order
systems, pole plots, and step
responses
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c(t)
[

Exponential decay generated by ; . : -
real part of complex pole pair amplitude generated by the real part of the system pole times a sinusoidal

Sinusoidal oscillation generated by
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shown in Figure 4.7(b), is called overdamped.> We see that the poles tell us the form of the
response without the tedious calculation of the inverse Laplace transform.

Underdamped Response, Figure 4.7 (c)

For this response,
9

Cls) = s(s+2s+9)

(4.13)
This function has a pole at the origin that comes from the unit step input and two complex poles
that come from the system. We now compare the response of the second-order system to the
poles that generated it. First we will compare the pole location to the time function, and then we
will compare the pole location to the plot. From Figure 4.7(c), the poles that generate the natural
response are ats = —1 = j4/8. Comparing these values to c(f) in the same figure, we see that the
real part of the pole matches the exponential decay frequency of the sinusoid’s amplitude, while
the imaginary part of the pole matches the frequency of the sinusoidal oscillation.
Let us now compare the pole location to the plot. Figure 4.8
shows a general, damped sinusoidal response for a second-order
system. The transient response consists of an exponentially decaying

waveform generated by the imaginary part of the system pole. The time
constant of the exponential decay is equal to the reciprocal of the real
part of the system pole. The value of the imaginary part is the actual
frequency of the sinusoid, as depicted in Figure 4.8. This sinusoidal
frequency is given the name damped frequency of oscillation, wg.
Finally, the steady-state response (unit step) was generated by the
input pole located at the origin. We call the type of response shown in

imaginary part of complex pole pair Figure 4.8 an underdamped response, one which approaches a steady-

=, state value via a transient response that is a damped oscillation.

The following example demonstrates how a knowledge of the

FIGURE 4.8  Second-order step response components relationship between the pole location and the transient response

generated by complex poles

Example 4.2

R(s) = %

200

can lead rapidly to the response form without calculating the inverse
Laplace transform.

Form of Underdamped Response Using Poles

PROBLEM: By inspection, write the form of the step response of the system in Figure 4.9.

C(s) SOLUTION: First we determine that the form of the forced response is a step.

52+ 10s + 200

Example 4.2

FIGURE 4.9 System for

™ Next we find the form of the natural response. Factoring the denominator of the
transfer function in Figure 4.9, we find the poles to be s = —5 £;13.23. The real
part, —5, is the exponential frequency for the damping. It is also the reciprocal
of the time constant of the decay of the oscillations. The imaginary part, 13.23,
is the radian frequency for the sinusoidal oscillations. Using our previous discussion
and Figure 4.7(c) as a guide, we obtain ¢(f) = K| + ¢~ (K, cos 13.23¢ + K3 sin 13.23¢) =
K1 + K4e™'(cos 13.23¢ — ), where ¢ = tan"'K3/K», K4 = /K3 + K3, and c(?) is a
constant plus an exponentially damped sinusoid.

3 So named because overdamped refers to a large amount of energy absorption in the system, which inhibits the
transient response from overshooting and oscillating about the steady-state value for a step input. As the energy
absorption is reduced, an overdamped system will become underdamped and exhibit overshoot.
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We will revisit the second-order underdamped response in Sections 4.5 and 4.6,
where we generalize the discussion and derive some results that relate the pole position to
other parameters of the response.

Undamped Response, Figure 4.7(d)

For this response,

_ 9
T s(s2+9)

C(s) (4.14)

This function has a pole at the origin that comes from the unit step input and two imaginary
poles that come from the system. The input pole at the origin generates the constant forced
response, and the two system poles on the imaginary axis at *;3 generate a sinusoidal
natural response whose frequency is equal to the location of the imaginary poles. Hence, the
output can be estimated as c¢(f) = K| + K4 cos(37 — ¢). This type of response, shown in
Figure 4.7(d), is called undamped. Note that the absence of a real part in the pole pair
corresponds to an exponential that does not decay. Mathematically, the exponential is
e =1,

Critically Damped Response, Figure 4.7 (e)

For this response,

_ 9 9
Ts(s24+65+9)  s(s +3)

C(s)

(4.15)

This function has a pole at the origin that comes from the unit step input and two multiple
real poles that come from the system. The input pole at the origin generates the constant
forced response, and the two poles on the real axis at —3 generate a natural response
consisting of an exponential and an exponential multiplied by time, where the exponential
frequency is equal to the location of the real poles. Hence, the output can be estimated as
c(t) = K1 + Koe™3 + K3te™. This type of response, shown in Figure 4.7(e), is called
critically damped. Critically damped responses are the fastest possible without the over-
shoot that is characteristic of the underdamped response.

We now summarize our observations. In this section we defined the following natural
responses and found their characteristics:

1. Overdamped responses
Poles: Two real at —oy, —o>

Natural response: Two exponentials with time constants equal to the reciprocal of the
pole locations, or

c(t) = Kie " + Kpe ™'

2. Underdamped responses
Poles: Two complex at —c, *jw,

Natural response: Damped sinusoid with an exponential envelope whose time
constant is equal to the reciprocal of the pole’s real part. The radian frequency of
the sinusoid, the damped frequency of oscillation, is equal to the imaginary part of the
poles, or

c(t) = Ae ™" cos(wyt — ¢)
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c(t)
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FIGURE 4.10 Step responses for second-order system damping cases

3. Undamped responses

Poles: Two imaginary at =+ jw,
Natural response: Undamped sinusoid with radian frequency equal to the imaginary part
of the poles, or

c(t) = A cos(wit — )
4. Critically damped responses

Poles: Two real at —o;

Natural response: One term is an exponential whose time constant is equal to the
reciprocal of the pole location. Another term is the product of time, ¢, and an exponential
with time constant equal to the reciprocal of the pole location, or

c(t)=Kie " + Kyte™ "

The step responses for the four cases of damping discussed in this section are
superimposed in Figure 4.10. Notice that the critically damped case is the division between
the overdamped cases and the underdamped cases and is the fastest response without
overshoot.

Skill-Assessment Exercise 4.3

PROBLEM: For each of the following transfer functions, write, by inspection, the
general form of the step response:
a. 6= 73 14220+ 400

900
b G0) = 3 505 900
¢ G)=57 32()is+ 225

625

d. G(s) = 71605




4.5 The General Second-Order System

ANSWERS:

a. c(t) = A+ Be™ cos(19.08¢ + ¢)
b. ¢(f) = A + Be 854 4 Cem11461
c. c(t)=A+ Be ' + Cte™"

d. ¢(t) = A+ Bcos(25t + ¢)

The complete solution is located at www.wiley.com/college/nise.
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In the next section, we will formalize and generalize our discussion of second-
order responses and define two specifications used for the analysis and design of
second-order systems. In Section 4.6, we will focus on the underdamped case and
derive some specifications unique to this response that we will use later for analysis and
design.

4.5 The General Second-Order System

Now that we have become familiar with second-order systems and their responses, we
generalize the discussion and establish quantitative specifications defined in such a way that
the response of a second-order system can be described to a designer without the need for
sketching the response. In this section, we define two physically meaningful specifications
for second-order systems. These quantities can be used to describe the characteristics of the
second-order transient response just as time constants describe the first-order system
response. The two quantities are called natural frequency and damping ratio. Let us
formally define them.

Natural Frequency, @,

The natural frequency of a second-order system is the frequency of oscillation of the system
without damping. For example, the frequency of oscillation of a series RLC circuit with the
resistance shorted would be the natural frequency.

Damping Ratio, ¢

Before we state our next definition, some explanation is in order. We have already seen
that a second-order system’s underdamped step response is characterized by damped
oscillations. Our definition is derived from the need to quantitatively describe this
damped oscillation regardless of the time scale. Thus, a system whose transient
response goes through three cycles in a millisecond before reaching the steady state
would have the same measure as a system that went through three cycles in a
millennium before reaching the steady state. For example, the underdamped curve
in Figure 4.10 has an associated measure that defines its shape. This measure
remains the same even if we change the time base from seconds to microseconds or
to millennia.

A viable definition for this quantity is one that compares the exponential decay
frequency of the envelope to the natural frequency. This ratio is constant regardless of the
time scale of the response. Also, the reciprocal, which is proportional to the ratio of
the natural period to the exponential time constant, remains the same regardless of the
time base.


http://www.wiley.com/college/nise

170

Chapter 4  Time Response

We define the damping ratio, {, to be

_ Exponential decay frequency 1 Natural period (seconds)

" Natural frequency (rad/second) — 2 Exponential time constant

Let us now revise our description of the second-order system to reflect the new
definitions. The general second-order system shown in Figure 4.7(a) can be transformed to
show the quantities { and w,. Consider the general system

(4.16)

Without damping, the poles would be on the jw-axis, and the response would be an
undamped sinusoid. For the poles to be purely imaginary, a = 0. Hence,

G(s) = (4.17)

s2+b

By definition, the natural frequency, ,, is the frequency of oscillation of this system. Since
the poles of this system are on the jw-axis at * j \/l;,

w, = Vb (4.18)

Hence,

S

Il

g
()

(4.19)

Now what is the term a in Eq. (4.16)? Assuming an underdamped system, the
complex poles have a real part, o, equal to —a/2. The magnitude of this value is then the
exponential decay frequency described in Section 4.4. Hence,

_ Exponential decay frequency _ |o| a/2 (4.20)
* Natural frequency (rad/second)  ®, @, '
from which
a=2w, (4.21)
Our general second-order transfer function finally looks like this:
2
@
G(s)=—"2"—— 4.22
(s) 5% + 2L w,s + w2 “422)

In the following example we find numerical values for { and w, by matching the
transfer function to Eq. (4.22).
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Example 4.3

Finding { and w,, For a Second-Order System
PROBLEM: Given the transfer function of Eq. (4.23), find ¢ and w,,.

36

Gls)=—— 20
(s) s24+4.25+36

(4.23)

SOLUTION: Comparing Eq. (4.23) to (4.22), @2 =36, from which w, = 6. Also,
2w, = 4.2. Substituting the value of w,, { = 0.35.
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Now that we have defined { and w,, let us relate these quantities to the pole location.
Solving for the poles of the transfer function in Eq. (4.22) yields

51,2 = —Cwn T wy\/ -1

From Eq. (4.24) we see that the various cases of second-order response are a function of {;
they are summarized in Figure 4.11.*

(4.24)

¢ Poles Step response
Jjo c(t)
s-plane
n
0 o
Oy t
Undamped
jo s-plane c()
X Jjo,\1-¢2
0<¢<1 o
_Cwn
. t
X T, m Underdamped
Jo e
s-plane
f=1 X o
*é’(l),,
t
Critically damped
Jo e
7§wn+wn\/ 4,2 -1
\‘ s-plane
£>1 X—% o i
~{o,~w,\/2-1 t

Overdamped

“The student should verify Figure 4.11 as an exercise.

FIGURE 4.11 Second-order
response as a function of
damping ratio
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In the following example we find the numerical value of { and determine the nature
of the transient response.

Example 4.4

Characterizing Response from the Value of ¢

PROBLEM: For each of the systems shown in Figure 4.12, find the value of { and report
the kind of response expected.

R(s) 12 Ce) R(s) 16 Ce)

2+ 8s+12 s2+8s+ 16
(a) (b)

R(s) 20 C(s)
s2+8s+20

()

FIGURE 4.12 Systems for Example 4.4

SOLUTION: First match the form of these systems to the forms shown in Egs. (4.16) and
(4.22). Since a = 2{w, and », = \/b,

a

»p (4.25)

C:

Using the values of a and b from each of the systems of Figure 4.12, we find
¢ = 1.155 for system (a), which is thus overdamped, since { > 1; { = 1 for system (b),
which is thus critically damped; and { = 0.894 for system (c), which is thus underdamped,
since { < 1.

Skill-Assessment Exercise 4.4

PROBLEM: For each of the transfer functions in Skill-Assessment Exercise 4.3, do the
following: (1) Find the values of { and w,; (2) characterize the nature of the response.

ANSWERS:

a. { = 0.3, w, = 20; system is underdamped
b. { =1.5, w, = 30; system is overdamped

c. { =1, w, = 15; system is critically damped
d. { =0, w, = 25; system is undamped

The complete solution is located at www.wiley.com/college/nise.

This section defined two specifications, or parameters, of second-order systems:
natural frequency, @,, and damping ratio, {. We saw that the nature of the response obtained
was related to the value of {. Variations of damping ratio alone yield the complete range of
overdamped, critically damped, underdamped, and undamped responses.
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Now that we have generalized the second-order transfer function in terms of { and w,,, let us
analyze the step response of an underdamped second-order system. Not only will this
response be found in terms of { and w,, but more specifications indigenous to the
underdamped case will be defined. The underdamped second-order system, a common
model for physical problems, displays unique behavior that must be itemized; a detailed
description of the underdamped response is necessary for both analysis and design. Our first
objective is to define transient specifications associated with underdamped responses. Next
we relate these specifications to the pole location, drawing an association between pole
location and the form of the underdamped second-order response. Finally, we tie the pole
location to system parameters, thus closing the loop: Desired response generates required
system components.

Let us begin by finding the step response for the general second-order system of
Eq. (4.22). The transform of the response, C(s), is the transform of the input times the
transfer function, or

2
K Kys+ K
C(s) w, 1 28 3

= =t -
(2 +28wps+@2) s 5P+ 2lw,s + @

(4.26)

where it is assumed that { < I (the underdamped case). Expanding by partial fractions,
using the methods described in Section 2.2, Case 3, yields

(s + Can) +\/1C_—§260n\/1 _o

(s + Cw,)* + w2(1 = %)

C(s) = o (4.27)

Taking the inverse Laplace transform, which is left as an exercise for the student,
produces

e
=1 _\/11_—446_@"’ cos(wp\/1 =t — )

c(t) =1 —e¢ont (cos w1 =t +#sin wu\/ 1 — §2t>

(4.28)

where ¢ = tan~'({/\/1 = %).

A plot of this response appears in Figure 4.13 for various values of {, plotted along a
time axis normalized to the natural frequency. We now see the relationship between the
value of ¢ and the type of response obtained: The lower the value of £, the more oscillatory
the response. The natural frequency is a time-axis scale factor and does not affect the nature
of the response other than to scale it in time.

We have defined two parameters associated with second-order systems, { and w,,.
Other parameters associated with the underdamped response are rise time, peak time,
percent overshoot, and settling time. These specifications are defined as follows (see also
Figure 4.14):

1. Rise time, T,. The time required for the waveform to go from 0.1 of the final value to 0.9
of the final value.

2. Peak time, Tp. The time required to reach the first, or maximum, peak.
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c(w,t)
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FIGURE 4.13 Second-order underdamped responses for damping ratio values

3. Percent overshoot, %0S. The amount that the waveform overshoots the steady-state, or
final, value at the peak time, expressed as a percentage of the steady-state value.

4. Settling time, T,. The time required for the transient’s damped oscillations to reach and
stay within 2% of the steady-state value.

Notice that the definitions for settling time and rise time are basically the same as the
definitions for the first-order response. All definitions are also valid for systems of order
higher than 2, although analytical expressions for these parameters cannot be found unless
the response of the higher-order system can be approximated as a second-order system,
which we do in Sections 4.7 and 4.8.

Rise time, peak time, and settling time yield information about the speed of the
transient response. This information can help a designer determine if the speed and
the nature of the response do or do not degrade the performance of the system. For
example, the speed of an entire computer system depends on the time it takes for a hard
drive head to reach steady state and read data; passenger comfort depends in part on the

c(®)
A
Cmax L
10260 / \
Cfinal ; /
0'98Cﬁnal
0-9Cﬁna1
O-lcﬁnal >
> 7
- T, - T, T

FIGURE 4.14 Second-order underdamped response specifications
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suspension system of a car and the number of oscillations it goes through after hitting
a bump.

We now evaluate T, %0S, and T, as functions of { and w,. Later in this chapter we
relate these specifications to the location of the system poles. A precise analytical expression
for rise time cannot be obtained; thus, we present a plot and a table showing the relationship
between ¢ and rise time.

Evaluation of T,

T, is found by differentiating c(¢) in Eq. (4.28) and finding the first zero crossing after t = 0.
This task is simplified by “differentiating” in the frequency domain by using Item 7 of
Table 2.2. Assuming zero initial conditions and using Eq. (4.26), we get

w?

L) = 5C6) = o (@.29)

w? 16014'2@"V1_€2
Z[e@)] = = =
(s + o) + @21 =) (s+ Cwn) + w(1 = %)

Completing squares in the denominator, we have

(4.30)

Therefore,

()]
o(f) = ———=e"*"sinw,\/ 1 — %t (4.31)
Vi-¢

Setting the derivative equal to zero yields

o1 =Ct=nn (4.32)

or
(4.33)

. nm
w1 -2

Each value of n yields the time for local maxima or minima. Letting n = 0 yields ¢t = 0, the
first point on the curve in Figure 4.14 that has zero slope. The first peak, which occurs at the
peak time, T, is found by letting n = 1 in Eq. (4.33):

7
T,=—F—7++—
P o1 (4.34)
Evaluation of %OS
From Figure 4.14 the percent overshoot, %0S, is given by
%08 = Smax ~ Chinal ) (4.35)

Cfinal

The term cpay i found by evaluating c(7) at the peak time, c(T),). Using Eq. (4.34) for T, and
substituting into Eq. (4.28) yields

S8}

Coax = (T,) = 1 — e~ CF/VI=E) [ cos 7 + ¢ sin 7
mar = €(T) V-2 (4.36)
=1 4 e C/V1-0)

For the unit step used for Eq. (4.28),
Cfinal = 1 (437)
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FIGURE 4.15 Percent
overshoot versus damping ratio
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Damping ratio,

Substituting Egs. (4.36) and (4.37) into Eq. (4.35), we finally obtain

%0S = e~/V1-E) % 100 (4.38)

Notice that the percent overshoot is a function only of the damping ratio, .
Whereas Eq. (4.38) allows one to find %OS given ¢, the inverse of the equation allows
one to solve for ¢ given %OS. The inverse is given by

—In(%0S/100)

- /7 +102(%05/100) (4.39)

The derivation of Eq. (4.39) is left as an exercise for the student. Equation (4.38) (or,
equivalently, (4.39)) is plotted in Figure 4.15.

Evaluation of T

In order to find the settling time, we must find the time for which ¢(¢) in Eq. (4.28) reaches
and stays within £2% of the steady-state value, cgp,. Using our definition, the settling time
is the time it takes for the amplitude of the decaying sinusoid in Eq. (4.28) to reach 0.02, or

1
et ———==10.02 (4.40)

Vie

This equation is a conservative estimate, since we are assuming that
cos(w, /1 — % — ¢p) = 1 at the settling time. Solving Eq. (4.40) for ¢, the settling time is

- —In(0.024/1 = &%)

s
Cw,

(4.41)

You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as { varies from
010 0.9. Let us agree on an approximation for the settling time that will be used for all values
of £; let it be

4

s =
Cwp

(4.42)

Evaluation of T,
A precise analytical relationship between rise time and damping ratio, {, cannot be found.
However, using a computer and Eq. (4.28), the rise time can be found. We first designate w,,t
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as the normalized time variable and select a value for . Using the computer, we solve for the
values of w,t that yield ¢(¢) = 0.9 and ¢(¢) = 0.1. Subtracting the two values of w,t yields
the normalized rise time, @, T,, for that value of {. Continuing in like fashion with other
values of ¢, we obtain the results plotted in Figure 4.16.° Let us look at an example.

Damping | Normalized
A ratio rise time
30 0.1 1.104
B 0.2 1.203
; 28 0.3 1.321
g 26 0.4 1.463
T
84l 0.5 1.638
= 0.6 1.854
522r 0.7 2.126
<
Z 20k 0.8 2.467
X 0.9 2.883
Q
£
2
3
10 1 1 1 1 1 1 1 | .
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

Damping ratio

FIGURE 4.16 Normalized rise time versus damping ratio for a second-order underdamped response

Example 4.5

Finding T,,, %OS, T;, and T, from a Transfer Function

PROBLEM: Given the transfer function

100

= r 44
O() = T 1557 100 (443)

find T, %0S, T, and T,

SOLUTION: @, and ¢ are calculated as 10 and 0.75, respectively. Now substitute
{ and w, into Eqgs. (4.34), (4.38), and (4.42) and find, respectively, that 7, = 0.475
second, %OS =2.838, and T, = 0.533 second. Using the table in Figure 4.16, the
normalized rise time is approximately 2.3 seconds. Dividing by w, yields T, = 0.23
second. This problem demonstrates that we can find 7, %OS, T, and T, without the
tedious task of taking an inverse Laplace transform, plotting the output response, and
taking measurements from the plot.
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Virtual Experiment 4.2
Second-Order
System Response

Put theory into practice studying
the effect that natural frequency
and damping ratio have on
controlling the speed response
of the Quanser Linear Servo in
LabVIEW. This concept is
applicable to automobile cruise
controls or speed controls of
subways or trucks.

Virtual experiments are found
on Learning Space.

3 Figure 4.16 can be approximated by the following polynomials: @, T, = 1.76 % — 0.417¢% +1.039¢ + 1 (maximum
error less than 1 % for 0 < ¢ < 0.9),and ¢ = 0.115(w, 7,)* — 0.883(w,T,)* + 2.504(e, T,;) — 1.738 (maximum error
less than 5% for 0.1 < ¢ < 0.9). The polynomials were obtained using MATLAB’s polyfit function.
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We now have expressions that relate peak time, percent overshoot,
and settling time to the natural frequency and the damping ratio. Now let
us relate these quantities to the location of the poles that generate these

_________ Lt o,V - 2 =jay characteristics.

: The pole plot for a general, underdamped second-order system,

: previously shown in Figure 4.11, is reproduced and expanded in

: 0 Figure 4.17 for focus. We see from the Pythagorean theorem that the
~fon=-0y radial distance from the origin to the pole is the natural frequency, w,, and

|

|

Jjo

& s-plane

the cos § = (.
Now, comparing Eqs. (4.34) and (4.42) with the pole location, we
X - V1= & =jo, evaluate peak time and settling time in terms of the pole location. Thus,

Tym— = — (4.44)

FIGURE 4.17 Pole plot for an underdamped
second-order system 4 Jrs

S z (4.45)

{w, 04

where @, is the imaginary part of the pole and is called the damped frequency of
oscillation, and o, is the magnitude of the real part of the pole and is the exponential
damping frequency.

Equation (4.44) shows that T, is inversely proportional to the imaginary part of
the pole. Since horizontal lines on the s-plane are lines of constant imaginary value, they
are also lines of constant peak time. Similarly, Eq. (4.45) tells us that settling time is
inversely proportional to the real part of the pole. Since vertical lines on the s-plane are
lines of constant real value, they are also lines of constant settling time. Finally, since
¢ = cos 6, radial lines are lines of constant {. Since percent overshoot is only a function
of ¢, radial lines are thus lines of constant percent overshoot, %OS. These concepts
are depicted in Figure 4.18, where lines of constant T, T, and %OS are labeled on the
s-plane.

At this point, we can understand the significance of Figure 4.18 by examining the
actual step response of comparative systems. Depicted in Figure 4.19(a) are the step
responses as the poles are moved in a vertical direction, keeping the real part the same.

%0S,

T
%08,

s-plane

FIGURE 4.18 Lines of
constant peak time, T, settling
time, 7'y, and percent overshoot, T, Ty,
%0S. Note: T, < Ty,;
sz < Tpl; %0S| < %0S2.
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c(t)

w

Jjo

S8

Envelope the same

s-plane
2 [
Pole
! 1 motion
2
3
t
(a)
c(t)
Frequency the same ;
2 1
1 %X
2 s-plane
o
Pole
motion
%X
2 1

®)

Same overshoot 3 Jjo
¥ 2
1 s-plane
Pole
1 | motion
2
3

c(t)

(c)

As the poles move in a vertical direction, the frequency increases, but the envelope remains
the same since the real part of the pole is not changing. The figure shows a constant
exponential envelope, even though the sinusoidal response is changing frequency. Since all
curves fit under the same exponential decay curve, the settling time is virtually the same for
all waveforms. Note that as overshoot increases, the rise time decreases.

Let us move the poles to the right or left. Since the imaginary part is now
constant, movement of the poles yields the responses of Figure 4.19(b). Here the
frequency is constant over the range of variation of the real part. As the poles move to
the left, the response damps out more rapidly, while the frequency remains the same.
Notice that the peak time is the same for all waveforms because the imaginary part
remains the same.

Moving the poles along a constant radial line yields the responses shown in
Figure 4.19(c). Here the percent overshoot remains the same. Notice also that the responses
look exactly alike, except for their speed. The farther the poles are from the origin, the more
rapid the response.

We conclude this section with some examples that demonstrate the relationship
between the pole location and the specifications of the second-order underdamped
response. The first example covers analysis. The second example is a simple design problem
consisting of a physical system whose component values we want to design to meet a transient
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FIGURE 4.19 Step responses
of second-order underdamped
systems as poles move: a. with
constant real part; b. with
constant imaginary part; ¢. with
constant damping ratio
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Example 4.6
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response specification. An animation PowerPoint presentation (PPT) demonstrating
second-order principles is available for instructors at www.wiley.com/college/nise. See
Second-Order Step Response.

Finding T,,, %08, and T, from Pole Location

MATLAB

ji') PROBLEM: Given the pole plot shown in Figure 4.20, find
X 7= oy ¢, wy, Ty, %08, and T.
SOLUTION: The damping ratio is given by ¢ = cos @ = cos|arctan (7/3)] =
s-plane 0.394. The natural frequency, w,, is the radial distance from the origin to the
pole, or @, = V/7* + 3% = 7.616. The peak time is
0
T,=-—=2=0.449 second (4.46)
>0 @q 7
3= —0yq
The percent overshoot is
%0S = ¢~ ¢/V1=0) % 100 = 26% (4.47)
The approximate settling time is
—i7 =—i
" o T 4 1.333 d (4.48)
= — = - = 1.333 seconds .
FIGURE 4.20 Pole plot for Example 4.6 ‘T ey 3

Students who are using MATLAB should now run ch4pl in Appendix B.
Youwi Il Iearn how to generate a second-order polynomial from two
complex poles as well as extract and use the coefficients of the
polynomial to calculate Ty, %0S, and Ts. This exercise uses MATLAB
to solve the problem in Example 4.6.

Example 4.7

Design

Transient Response Through Component Design

PROBLEM: Given the system shown in Figure 4.21, find J and D to yield 20%
overshoot and a settling time of 2 seconds for a step input of torque 7(?).

() 0()

K =5 N-m/rad

FIGURE 4.21 Rotational mechanical system for Example 4.7



http://www.wiley.com/college/nise

4.6 Underdamped Second-Order Systems

SOLUTION: First, the transfer function for the system is

1/J
G(s) = 7& DK (4.49)
J J
From the transfer function,
K
= 1/— 4.50
” \fj (450)
and
D
2w, =— 451
fon == (451)
But, from the problem statement,
4
T,=2= (4.52)
{w,
or {w, = 2. Hence,
D
2w, =4 = 7 (4.53)

Also, from Egs. (4.50) and (4.52),

4 J
(=5 = 2\/; (454)

From Eq. (4.39), a 20% overshoot implies { = 0.456. Therefore, from Eq. (4.54),

J
=24/==0.456 4.55
=2 (55)
Hence,
J
— =10.052 4.56
= (4.56)

From the problem statement, K = 5 N-m/rad. Combining this value with Egs. (4.53) and
(4.56), D=1.04 N-m-s/rad, and J = 0.26 kg-m>.
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Second-Order Transfer Functions via Testing

Just as we obtained the transfer function of a first-order system experimentally, we can do
the same for a system that exhibits a typical underdamped second-order response. Again, we
can measure the laboratory response curve for percent overshoot and settling time, from
which we can find the poles and hence the denominator. The numerator can be found, as in
the first-order system, from a knowledge of the measured and expected steady-state values.
A problem at the end of the chapter illustrates the estimation of a second-order transfer
function from the step response.



182 Chapter 4  Time Response

Skill-Assessment Exercise 4.5

PROBLEM: Find (, w,, Ty, T, T,, and %OS for a system whose transfer
361

52+ 165+ 361"

Trylt 4.1

Use the following MATLAB function is G(s) =
statements to calculate the

answers to Skill-Assessment

Exercise 4.5. Ellipses mean ANSWERS:

code continues on next line.

— £=0421, w, =19, T, =05s, T, = 0.182s, T, = 0.079 s, and %O0S = 23.3%.

deng=[1 16 3617];
omegan=sqrt(deng(3). - . The complete solution is located at www.wiley.com/college/nise.
/deng (1))
zeta=(deng(2)¥deng(1)). - -
/(2*omegan)
Ts=4/(zeta*omegan)
Tp=pi/Aomegan*sqrt. ..
(1-zetan2))
pos=100*exp(-zeta*. ..
pi/sqrt(l-zetan2))
Tr=(1.768*zeta™3 -. ..
0.417*zeta™2+1.039* ..
zeta+ 1)y omegan

Now that we have analyzed systems with two poles, how does the addition of another
pole affect the response? We answer this question in the next section.

4.7 System Response with Additional Poles

In the last section, we analyzed systems with one or two poles. It must be emphasized that
the formulas describing percent overshoot, settling time, and peak time were derived
only for a system with two complex poles and no zeros. If a system such as that shown in
Figure 4.22 has more than two poles or has zeros, we cannot use the formulas to calculate the
performance specifications that we derived. However, under certain conditions, a system
with more than two poles or with zeros can be approximated as a second-order system that
has just two complex dominant poles. Once we justify this approximation, the formulas for
percent overshoot, settling time, and peak time can be applied to these higher-order systems
by using the location of the dominant poles. In this section, we investigate the effect of an
additional pole on the second-order response. In the next section, we analyze the effect of
adding a zero to a two-pole system.

Let us now look at the conditions that would have to exist in order to approximate the
behavior of a three-pole system as that of a two-pole system. Consider a three-pole system
with complex poles and a third pole on the real axis. Assuming that the complex poles are at

—w, £ jw,\/1 — ¢* and the real pole is at —a,, the step response of the system can be
determined from a partial-fraction expansion. Thus, the output transform is

A B(s+{wn) + Coyg D
C(s)=—+ T
s (s+lwy) +w; Star

(4.57)

or, in the time domain,
c(r) = Au(t) + e 5" (B cos wat + C sin wgt) + De™ ! (4.58)

The component parts of c¢(f) are shown in Figure 4.23 for three cases of a,. For Case I,
a, = a,, and is not much larger than {w,; for Case II, @, = a,, and is much larger than {w,;
and for Case III, a, = co.
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FIGURE 4.22 Robot follows
input commands from a human
trainer

FIGURE 4.23 Component
responses of a three-pole
system: a. pole plot;

b. component responses:
Nondominant pole is near
dominant second-order

pair (Case I), far from the
pair (Case II), and at infinity
(Case III)
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Let us direct our attention to Eq. (4.58) and Figure 4.23. If a, > {w, (Case II), the
pure exponential will die out much more rapidly than the second-order underdamped step
response. If the pure exponential term decays to an insignificant value at the time of the
first overshoot, such parameters as percent overshoot, settling time, and peak time will be
generated by the second-order underdamped step response component. Thus, the total
response will approach that of a pure second-order system (Case III).

If @, is not much greater than {w, (Case I), the real pole’s transient response will not
decay to insignificance at the peak time or settling time generated by the second-order pair.
In this case, the exponential decay is significant, and the system cannot be represented as a
second-order system.

The next question is, How much farther from the dominant poles does the third pole
have to be for its effect on the second-order response to be negligible? The answer of course
depends on the accuracy for which you are looking. However, this book assumes that the
exponential decay is negligible after five time constants. Thus, if the real pole is five times
farther to the left than the dominant poles, we assume that the system is represented by its
dominant second-order pair of poles.

What about the magnitude of the exponential decay? Can it be so large that its
contribution at the peak time is not negligible? We can show, through a partial-fraction
expansion, that the residue of the third pole, in a three-pole system with dominant
second-order poles and no zeros, will actually decrease in magnitude as the third pole is
moved farther into the left half-plane. Assume a step response, C(s), of a three-pole
system:

B bc _A+ Bs+C N D
T s(s2+as+b)(s+c) s sP+as+b s+c

C(s) (4.59)

where we assume that the nondominant pole is located at —c on the real axis and that the
steady-state response approaches unity. Evaluating the constants in the numerator of
each term,

ca—c

A=1, = 4.60
' 2+b—ca (4.602)

ca* — c*a — bc b
= ; D= 4.60b
A+b—ca ’ 2+b-ca ( )
As the nondominant pole approaches oo, or c—o0,

A=1;B=-1;C=-a; D=0 (4.61)

Thus, for this example, D, the residue of the nondominant pole and its response, becomes
zero as the nondominant pole approaches infinity.

The designer can also choose to forgo extensive residue analysis, since all system
designs should be simulated to determine final acceptance. In this case, the control systems
engineer can use the “five times” rule of thumb as a necessary but not sufficient condition to
increase the confidence in the second-order approximation during design, but then simulate
the completed design.

Let us look at an example that compares the responses of two different three-pole
systems with that of a second-order system.
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Example 4.8

Comparing Responses of Three-Pole Systems

PROBLEM: Find the step response of each of the transfer functions shown in Egs. (4.62)
through (4.64) and compare them.

24.542

1= G as v 2w (4.62)
245.42
Ta(s) = 4.
29 = G T0) (2 + 45 + 24.592) (463)
73.626
Ts(s) = (4.64)

(s +3)(s? + 45 +24.542)

SOLUTION: The step response, C;(s), for the transfer function, 7;(s), can be found by
multiplying the transfer function by 1/s, a step input, and using partial-fraction expansion
followed by the inverse Laplace transform to find the response, ¢;(z). With the details left
as an exercise for the student, the results are

c1(f) = 1 = 1.09¢ ¥ cos (4.5321 — 23.8°) (4.65)
e(t) =1 —0.29¢71% — 1.189¢ ¥ cos (4.5321 — 53.34°) (4.66)
c3(t) =1 —1.14e7 +0.707¢ * cos (4.5321 + 78.63°) (4.67)

The three responses are plotted in Figure 4.24. Notice that ¢, (z), with its third pole at
—10 and farthest from the dominant poles, is the better approximation of ¢(z), the pure
second-order system response; c3(¢), with a third pole close to the dominant poles,
yields the most error.

—_
~
T

c1(®)

—
NS}
T

(1)

—
(=]

I
%
T

c3(n)

I
o

Normalized response

o
~
T

e
¥}
T

0 0.5 1.0 1.5 2.0 2.5 3.0

Time (seconds)

FIGURE 4.24 Step responses of system T(s), system T5(s), and system T5(s)
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MATLAB Students who are using MATLAB should now run ch4p2 in Appendix B.
m You will learn how to generate a step response for a transfer
function and how to plot the response directly or collect the
points for future use. The example shows how to collect the points
and then use them to create a multiple plot, title the graph, and
label the axes and curves to produce the graph in Figure 4.24 to

solve Example 4.8.

simulink System responses can alternately be obtained using Simulink.
| SL | Simulink is a software package that is integrated with MATLAB
to provide a graphical user interface (GUI) for defining systems
and generating responses. The reader is encouraged to study
Appendix C, which contains a tutorial on Simulink as well as some
examples. One of the illustrative examples, Example C.1, solves

Example 4.8 using Simulink.

GUI Tool Another method to obtain systems responses is through the use of
[ GUIT | MATLAB"s LTI Viewer. An advantage of the LTI Viewer is that it
displays the values of settling time, peak time, rise time, maximum
response, and the final value on the step response plot. The reader
is encouraged to study Appendix E at ww.wiley.com/college/nise,
which contains a tutorial on the LTI Viewer as well as some

examples. Example E.1 solves Example 4.8 using the LTI Viewer.

Skill-Assessment Exercise 4.6

PROBLEM: Determine the validity of a second-order approximation for each of these

Trylt 4.2 .
ry two transfer functions:

Use the following MATLAB

and Control System Toolbox G(s) 700

statements to investigate the a. §) =

effect of the additional pole (S + 15)(S2 +as+ 100)
in Skill-Assessment 360
Exercise 4.6(a). Move the b. G(S) =
higher-order pole originally (S + 4)(S2 + 25+ 90)
at —15 to other values by

changing “a” in the code. ANSWERS:

a=15

numga=100*a; a. The second-order approximation is valid.
denga=conv(1al.- - -
[1 4 100];

Ta=tf (numga,denga); L . .
numg=100; The complete solution is located at www.wiley.com/college/nise.
deng1 4 100];

T=tf (numg,deng);

step(Ta,”.",T,"-9)

b. The second-order approximation is not valid.

4.8 System Response with Zeros

Now that we have seen the effect of an additional pole, let us add a zero to the second-order
system. In Section 4.2, we saw that the zeros of a response affect the residue, or amplitude,
of a response component but do not affect the nature of the response—exponential, damped
sinusoid, and so on. In this section, we add a real-axis zero to a two-pole system. The zero
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4.8 System Response with Zeros

will be added first in the left half-plane and then in the right half-plane and its effects noted
and analyzed. We conclude the section by talking about pole-zero cancellation.

Starting with a two-pole system with poles at (—1 % 2.828), we consecutively add
zeros at —3, —5, and —10. The results, normalized to the steady-state value, are plotted in
Figure 4.25. We can see that the closer the zero is to the dominant poles, the greater its effect on
the transient response. As the zero moves away from the dominant poles, the response
approaches that of the two-pole system. This analysis can be reasoned via the partial-fraction
expansion. If we assume a group of poles and a zero far from the poles, the residue of each pole
will be affected the same by the zero. Hence, the relative amplitudes remain appreciably the
same. For example, assume the partial-fraction expansion shown in Eq. (4.68):

(s+a) A B
(s+Db)s+c) _s+b+s+c
=(—b+a)/(—b+c)+(—c+a)/(—c+b)

T(s) =

(4.68)
s+b s+c
If the zero is far from the poles, then a is large compared to b and ¢, and
1/(-b 1/(-c+b
T(s)~a [Gb+eo)  1/(=e+b)] _ a (4.69)

s+b s+c T (s+b)(s+c)

Hence, the zero looks like a simple gain factor and does not change the relative amplitudes of
the components of the response.

Another way to look at the effect of a zero, which is more general, is as follows
(Franklin, 1991): Let C(s) be the response of a system, 7(s), with unity in the numerator. If
we add a zero to the transfer function, yielding (s + a)7T'(s), the Laplace transform of the
response will be

(s +a)C(s) = sC(s) + aC(s) (4.70)

Thus, the response of a system with a zero consists of two parts: the derivative of the original
response and a scaled version of the original response. If a, the negative of the zero, is very
large, the Laplace transform of the response is approximately aC(s), or a scaled version of
the original response. If a is not very large, the response has an additional component
consisting of the derivative of the original response. As a becomes smaller, the derivative
term contributes more to the response and has a greater effect. For step responses, the
derivative is typically positive at the start of a step response. Thus, for small values of q,
we can expect more overshoot in second-order systems because the derivative term will be
additive around the first overshoot. This reasoning is borne out by Figure 4.25.

zero at —3
zero at —5
zero at —10
no zero

Normalized c()

0 2.0 4.0 6.0
Time (seconds)

FIGURE 4.25 Effect of adding a zero to a two-pole system
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Use the following MATLAB and
Control System Toolbox
statements to generate

Figure 4.25.

deng={1 2 9];
Ta=tf([1 3F}9/3,deng);
Th=tf([1 5}9/5,deng);
Te=tf(1 10F}9/10,deng);
T=tf(9,deng);
step(T,Ta,Th,Tc)
text(0.5,0.6,"no zero")
text(0.4,0.7,. ..
"zeroat -10%)
text(0.35,0.8,. ..
“zeroat -5)
text(0.3,0.9,"zeroat -3")
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A
151
1.0
T 05
0 | | | | | | >
1.0 2.0 3.0 4.0 5.0 6.0
Time (seconds)
-0.5 -

FIGURE 4.26 Step response of a nonminimum-phase system

An interesting phenomenon occurs if a is negative, placing the zero in the right
half-plane. From Eq. (4.70) we see that the derivative term, which is typically positive
initially, will be of opposite sign from the scaled response term. Thus, if the derivative term,
sC(s), is larger than the scaled response, aC(s), the response will initially follow the
derivative in the opposite direction from the scaled response. The result for a second-order
system is shown in Figure 4.26, where the sign of the input was reversed to yield a positive
steady-state value. Notice that the response begins to turn toward the negative direction even
though the final value is positive. A system that exhibits this phenomenon is known as a
nonminimum-phase system. If a motorcycle or airplane was a nonminimum-phase system, it
would initially veer left when commanded to steer right.

Let us now look at an example of an electrical nonminimum-phase network.

Transfer Function of a Nonminimum-Phase
System

PROBLEM:

a. Find the transfer function, V,(s)/Vi(s) for the operational

Va(s)

Vi)
1(s) —»
Vi(‘\') f\/ww ( )
Ry

~ C attenuating or amplifying their magnitude (Dorf, 1993). We

Ay

FIGURE 4.27 Nonminimum-phase electric circuit®

- Vo(®) amplifier circuit shown in Figure 4.27.
+ b. If R = Ry, this circuit is known as an all-pass filter, since it

passes sine waves of a wide range of frequencies without

will learn more about frequency response in Chapter 10. For
now, let R; = R,, R;C = 1/10, and find the step response of the
filter. Show that component parts of the response can be
identified with those in Eq. (4.70).

SOLUTION:
a. Remembering from Chapter 2 that the operational amplifier has a high input impedance,
the current, I(s), through R; and R;, is the same and is equal to

_Vi(s) = Vo(s)

1) == (4.71)

6 Adapted from Dorf, R. C. Introduction to Electric Circuits, 2nd ed. (New York: John Wiley & Sons, 1989, 1993),
p. 583. © 1989, 1993 John Wiley & Sons. Reprinted by permission of the publisher.
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Also,

Vo(s) = A(Va(s) = Vi(s)) (4.72)
But,

Vi(s) = 1(s)R1 + Vo(s) (4.73)

Substituting Eq. (4.71) into (4.73),

1
Vils) = R\Vi(s) + R,V 4.74
19) = g, RIVAS) + RaVos) (4.74)
Using voltage division,

1/Cs
Va(o) = Vi) @75

R -

3+Cs

Substituting Eqgs. (4.74) and (4.75) into Eq. (4.72) and simplifying yields

VO(S) _ A(R2 - R1R3CS)
Vi(s)  (RsCs+ 1)(R; + Ry(1 + A))

(4.76)

Since the operational amplifier has a large gain, A, let A approach infinity. Thus, after
simplification

R,
Vos) Ry —RR:Cs _ R (s _R1R3C>

= = - 4.77
Vl'(S) RyR3Cs + R, R, S+ L ( )
R;C
b. Letting Ry = R, and R;C = 1/10,
(~xe)
§——
-1
Vo(s) _ RC) _ (s —10) 4.78)
Vi(s) ( 1 ) (s +10)
S+ ——
Rs:C
For a step input, we evaluate the response as suggested by Eq. (4.70):
(s —10) 1 1
C(s) =— =— 10 =s5C,(s) — 10C 4.79
® s(s + 10) s+ 10 * s(s +10) $Cols) (%) (479)
where
1
= 4.
Cols) s(s + 10) (4.80)

is the Laplace transform of the response without a zero. Expanding Eq. (4.79) into
partial fractions,

1 1 1 1 1 1 2
+ 10 = - +—— = —
s+ 10 s(s + 10) s+10 s s+10 s s+10

C(s) = —

(4.81)
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or the response with a zero is
c(t)=—e 41 -1 =] — 271 (4.82)

Also, from Eq. (4.80),

1/10 1/10
Co(s) =——+ 4.83
) s s+ 10 ( )
or the response without a zero is
_ 1 Lo
co(t) = 10+ ¢ (4.84)

The normalized responses are plotted in Figure 4.28. Notice the immediate reversal
of the nonminimum-phase response, c(t).

1.0
—10c,(1)
0.5
[0}
2 c (1)
19)
2,
5] 0 | | | | !
[
0 0.1 0.2 0.3 04 0.5
Time (seconds)
-0.5
-1.0

FIGURE 4.28 Step response of the nonminimum-phase network of Figure 4.27 (c(7)) and
normalized step response of an equivalent network without the zero (—10¢,(?))

Example 4.10

We conclude this section by talking about pole-zero cancellation and its effect on our
ability to make second-order approximations to a system. Assume a three-pole system with
azero as shown in Eq. (4.85). If the pole term, (s + p5), and the zero term, (s + z), cancel out,

we are left with
K
I(s) = - KE*T (4.85)

"~ (s47p3)(s2 +as+b)

as a second-order transfer function. From another perspective, if the zero at —z is very close
to the pole at —pjs, then a partial-fraction expansion of Eq. (4.85) will show that the residue
of the exponential decay is much smaller than the amplitude of the second-order response.
Let us look at an example.

Evaluating Pole-Zero Cancellation Using Residues

PROBLEM: For each of the response functions in Eqs. (4.86) and (4.87), determine
whether there is cancellation between the zero and the pole closest to the zero. For any
function for which pole-zero cancellation is valid, find the approximate response.

26.25(s + 4)

Ci(s) = s(s +3.5)(s +5)(s +6)

(4.86)
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26.25(s + 4)
Ca(s) = 4.87
(%) s(s+4.01)(s+5)(s +6) (4.87)
SOLUTION: The partial-fraction expansion of Eq. (4.86) is
1 35 3.5 1
- _ - 4.88
G s s+5+s+6 s+3.5 (4-88)

The residue of the pole at —3.5, which is closest to the zero at —4, is equal to 1 and is not
negligible compared to the other residues. Thus, a second-order step response approxi-
mation cannot be made for C;(s). The partial-fraction expansion for C;(s) is

087 53 4.4

0.033
C =——
2(5) K s+5+s+6

+s+4.01

(4.89)

The residue of the pole at —4.01, which is closest to the zero at —4, is equal to 0.033, about
two orders of magnitude below any of the other residues. Hence, we make a second-order
approximation by neglecting the response generated by the pole at —4.01:

087 53 4.4

Cy(s) = —— 4.90
2(s) s s+5 * s+6 (490)
and the response c¢;(¢) is approximately

() =0.87 =53¢ + 4.4¢7% (4.91)

Trylt 4.4

Use the following MATLAB
and Symbolic Math Toolbox
statements to evaluate the effect
of higher-order poles by finding
the component parts of the time
response of ¢;(t) and ¢, (t) in

Example 4.10.

syms s

C1=26.25%(s+4Y. . .

(s (s+3.5)~ ..
(st5)(st+6));

C2=26.25%(s+4Y. . .

(s(s+4.01) ...
(s+5)(s+6));
cl=ilaplace(Cl1);

“c1”
cl=vpa(cl,3)
c2=ilaplace(C2);
"co"
c2=vpa(c2,3)
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Skill-Assessment Exercise 4.7

PROBLEM: Determine the validity of a second-order step-response approximation for
each transfer function shown below.

185.71(s +7)

2 G = 5365)6 + 10 £ 20)
C197.04(s+7)

b- G6) = 53696+ 10)(s 1 20)

ANSWERS:

a. A second-order approximation is not valid.

b. A second-order approximation is valid.

The complete solution is located at www.wiley.com/college/nise.

In this section, we have examined the effects of additional transfer function poles and
zeros upon the response. In the next section we add nonlinearities of the type discussed in
Section 2.10 and see what effects they have on system response.
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4.9 Effects of Nonlinearities upon Time Response

In this section, we qualitatively examine the effects of nonlinearities upon the time response
of physical systems. In the following examples, we insert nonlinearities, such as saturation,
dead zone, and backlash, as shown in Figure 2.46, into a system to show the effects of these
nonlinearities upon the linear responses.

The responses were obtained using Simulink, a simulation software package that is
integrated with MATLAB to provide a graphical user interface (GUI). Readers who would
like to learn how to use Simulink to generate nonlinear responses should consult the
Simulink tutorial in Appendix C. Simulink block diagrams are included with all responses
that follow.

Let us assume the motor and load from the Antenna Control Case Study of Chapter 2
and look at the load angular velocity, w,(s), where w,(s) = 0.1 s6,,(s) = 0.2083 E,(s)/
(s + 1.71) from Eq. (2.208). If we drive the motor with a step input through an amplifier of
unity gain that saturates at * 5 volts, Figure 4.29 shows that the effect of amplifier saturation
is to limit the obtained velocity.

Without saturation

L/

With saturation

0.5

Load angular velocity (rad/second)

[e=]
[\

4 6 8 10
Time (seconds)

(@)

0.2083
s+ 1.71

Step Saturation Motor, load, I:l
10 volts +5 volts & gears

Mux Scope

0.2083
s+ 1.71

Motor, load,
®) & gears
FIGURE 4.29 a. Effect of amplifier saturation on load angular velocity response; b. Simulink block
diagram
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1.2

' /V\V ithout dead zone \ /\ /\

o
o0

AaLdnl Inln
NN

o
~

Load angular displacement (radians)
=)
o

0
0 5 10 15 20 25
Time (seconds)
(@)
N _| 02083 |1
\J s+ 1.71 s
Sine wave Dead zone Motor, load, Integrator ]
Amplitude = 5 —21to+2 & gears
Frequency = 1 rad/s Mux Scope
0.2083 1
s+ 1.71 s
Motor, load, Integrator
& gears

®)

FIGURE 4.30 a. Effect of dead zone on load angular displacement response; b. Simulink block
diagram

The effect of dead zone on the output shaft driven by a motor and gears is shown in Figure
4.30. Here we once again assume the motor, load, and gears from Antenna Control Case
Study of Chapter 2. Dead zone is present when the motor cannot respond to small voltages.
The motor input is a sinusoidal waveform chosen to allow us to see the effects of dead zone
vividly. The response begins when the input voltage to the motor exceeds a threshold. We
notice a lower amplitude when dead zone is present.

The effect of backlash on the output shaft driven by a motor and gears is shown in
Figure 4.31. Again we assume the motor, load, and gears from the Antenna Control Case
Study of Chapter 2. The motor input is again a sinusoidal waveform, which is chosen to allow
us to see vividly the effects of backlash in the gears driven by the motor. As the motor reverses
direction, the output shaft remains stationary while the motor begins to reverse. When the
gears finally connect, the output shaft itself begins to turn in the reverse direction. The resulting
response is quite different from the linear response without backlash.
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0.25 -
Without backlash

é /
=
£ With backlash
£ 0.15 |
=]
153
2
&
3
g
9
<
Q
|

N \/ \/ \j

0
0 5 10 15 20 25

Time (seconds)

(@)

N\ 0.2083 1
\J s+ 1.71 s #
Sine wave Motor, load, ~ Integrator ~ Backlash ]
Amplitude = 5 and gears deadband width
Frequency = 1 rad/s 0.15 Mux  Scope
0.2083 1
s+ 1.71 s

Motor, load, ~ Integrator
and gears

®
FIGURE 4.31 a.Effect of backlash on load angular displacement response; b. Simulink block diagram

Skill-Assessment Exercise 4.8

Simulink PROBLEM: Use MATLAB"s Simulink to reproduce Figure 4.31.

ANSWER: See Figure 4.31.

Now that we have seen the effects of nonlinearities on the time response, let us return
to linear systems. Our coverage so far for linear systems has dealt with finding the time
response by using the Laplace transform in the frequency domain. Another way to solve for
the response is to use state-space techniques in the time domain. This topic is the subject of
the next two sections.

4.10 Laplace Transform Solution of State Equations

State Space In Chapter 3, systems were modeled in state space, where the state-space representation
“ consisted of a state equation and an output equation. In this section, we use the Laplace
transform to solve the state equations for the state and output vectors.




4.10 Laplace Transform Solution of State Equations

Consider the state equation
X = Ax + Bu (4.92)
and the output equation
y=Cx+Du (4.93)
Taking the Laplace transform of both sides of the state equation yields
sX(s) — x(0) = AX(s) + BU(s) (4.94)

In order to separate X(s), replace sX(s) with sIX(s), where I is an n X n identity matrix, and n
is the order of the system. Combining all of the X(s) terms, we get

(sI — A)X(s) = x(0) + BU(s) (4.95)

Solving for X(s) by premultiplying both sides of Eq. (4.95) by (sI — A)_l, the final solution
for X(s) is

X(s) = (s — A)7'x(0) + (sT — A)"'BU(s)

_adj(sT - A) (4.96)
e [x(0) + BU(s)]

Taking the Laplace transform of the output equation yields

Y(s) = CX(s) + DU(s) (4.97)

Eigenvalues and Transfer Function Poles

We saw that the poles of the transfer function determine the nature of the transient
response of the system. Is there an equivalent quantity in the state-space representation
that yields the same information? Section 5.8 formally defines the roots of det(sI — A) = 0
(see the denominator of Eq. (4.96) to be eigenvalues of the system matrix, A Let us
show that the eigenvalues are equal to the poles of the system’s transfer function. Let the
output, Y(s), and the input, U(s), be scalar quantities Y(s) and U(s), respectively. Further,
to conform to the definition of a transfer function, let x(0), the initial state vector, equal 0,
the null vector. Substituting Eq. (4.96) into Eq. (4.97) and solving for the transfer
function, Y(s)/U(s), yields

Y(s) _[adj(sI-A)
Us) {det(sl - A)} B+D
(4.98)
_ Cadj(sT— A)B + D det(sI - A)
B det(sI — A)

The roots of the denominator of Eq. (4.98) are the poles of the system. Since the denominators
of Egs. (4.96) and (4.98) are identical, the system poles equal the eigenvalues. Hence, if a
system is represented in state-space, we can find the poles from det(sI — A) = 0. We will be
more formal about these facts when we discuss stability in Chapter 6.

The following example demonstrates solving the state equations using the Laplace
transform as well as finding the eigenvalues and system poles.

7 Sometimes the symbol 1 is used in place of the complex variable s when solving the state equations without using
the Laplace transform. Thus, it is common to see the characteristic equation also written as det(Al — A) = 0.
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Laplace Transform Solution; Eigenvalues and Poles

PROBLEM: Given the system represented in state space by Egs. (4.99),

0 1 0 0
x=| 0 0 1|x+|0]e” (4.992)
—24 -26 -9 1
y=[1 1 0]x (4.99b)
1
x(0) = [0] (4.99¢)
2

do the following:

a. Solve the preceding state equation and obtain the output for the given exponential
input.

b. Find the eigenvalues and the system poles.

SOLUTION:

a. We will solve the problem by finding the component parts of Eq. (4.96), followed by
substitution into Eq. (4.97). First obtain A and B by comparing Eq. (4.99a) to Eq. (4.92).

Since
s 0 0
sI=]0 s O (4.100)
0 0 s
then
s -1 0
(sI-A)= [ 0 K —1} (4.101)
24 26 s+9
and

(s* +9s +26) (s+9) 1
—24 5% +9s s
—24s —(265 +24) s?

§3 4+ 952 + 265 + 24

(sI-A)"' = (4.102)

Since U(s) is 1/(s+ 1) (the Laplace transform for ¢™*), X(s) can be calculated.
Rewriting Eq. (4.96) as

X(s) = (sI = A)'[x(0) + BU(s)] (4.103)
and using B and x(0) from Egs. (4.99a) and (4.99c¢), respectively, we get

(s* + 10s% + 37s + 29)
s+ D +2)(s+3)(s+4)

X,(s) = (4.104a)
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(252 — 21s — 24)
(s+ D(s+2)(s +3)(s+4)

Xa(s) = (4.104b)

5(2s% — 21s — 24)
s+ D(s+2)(s+3)(s+4)

X3(s) = (4.104c)

The output equation is found from Eq. (4.99b). Performing the indicated addition
yields

X1(s)
Yi)=[1 1 0]|Xas) | = Xi(s) + Xa(s) (4.105)

X3(s)
or

Y(s) = (s + 1257 + 165 + 5)
s+ DE+2)(s+3)(s+4)

_ =65 19 11.5

_s+2+s+3_s+4

(4.106)

where the pole at —1 canceled a zero at —1. Taking the inverse Laplace transform,

y(t) = =6.5¢7% + 19¢73 — 11.5¢* (4.107)

b. The denominator of Eq. (4.102), which is det(sI — A), is also the denominator of the
system’s transfer function. Thus, det(sI — A) = 0 furnishes both the poles of the system
and the eigenvalues —2, — 3, and —4.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB"s Symbolic Math Toolbox
should now run ch4spl in Appendix F at www.wiley.com/college/
nise. Youwill learn how to solve state equations for the output
response using the Laplace transform. Example 4.11 will be solved
using MATLAB and the Symbolic Math Toolbox.

Symbolic Math
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Skill-Assessment Exercise 4.9

PROBLEM: Given the system represented in state space by Egs. (4.108),

. [0 2 0] _,
X = 3 _S]X+L]e (4.108a)
y=[1 3]x (4.108Db)
[2
x(0) = 1] (4.108¢)

do the following:

a. Solve for y(¢) using state-space and Laplace transform techniques.

b. Find the eigenvalues and the system poles.

Trylt 4.5

Use the following MATLAB
and Symbolic Math Toolbox
statements to solve Skill-
Assessment Exercise 4.9 .

syms s

Aq0 2;-3 -5]; BG;1];

Cq1 3];x0q2;1];

U=1/(s+1);

141 0;0 1];

X=((s*I-A)"-1)~. ..
(X0 +B*U);

Y=C*X; Y=simplify(Y);

y=ilaplace(Y);
pretty(y)
eig(A)
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ANSWERS:
a. y(t) = 0.5 — 1272 4+ 17.5¢7
b. -2, -3

The complete solution is located at www.wiley.com/college/nise.

4.11 Time Domain Solution of State Equations

State Space

We now look at another technique for solving the state equations. Rather than using the

Laplace transform, we solve the equations directly in the time domain using a method

closely allied to the classical solution of differential equations. We will find that the final

solution consists of two parts that are different from the forced and natural responses.
The solution in the time domain is given directly by

x(f) = eA'x(0) + /0 t AIBu(r)de
(4.109)

= d(1)x(0) + /0 t ®(t — 7)Bu(r)dr

where ®(¢) = ¢’ by definition, and which is called the state-transition matrix. Eq. (4.109)
is derived in Appendix I located at www.wiley.com/college/nise. Readers who are not
familiar with this equation or who may want to refresh their memory should consult
Appendix I before proceeding.

Notice that the first term on the right-hand side of the equation is the response due to
the initial state vector, x(0). Notice also that it is the only term dependent on the initial state
vector and not the input. We call this part of the response the zero-input response, since it is
the total response if the input is zero. The second term, called the convolution integral, is
dependent only on the input, u, and the input matrix, B, not the initial state vector. We call
this part of the response the zero-state response, since it is the total response if the initial
state vector is zero. Thus, there is a partitioning of the response different from the forced/
natural response we have seen when solving differential equations. In differential equations,
the arbitrary constants of the natural response are evaluated based on the initial conditions
and the initial values of the forced response and its derivatives. Thus, the natural response’s
amplitudes are a function of the initial conditions of the output and the input. In Eq. (4.109),
the zero-input response is not dependent on the initial values of the input and its derivatives.
It is dependent only on the initial conditions of the state vector. The next example vividly
shows the difference in partitioning. Pay close attention to the fact that in the final result the
zero-state response contains not only the forced solution but also pieces of what we
previously called the natural response. We will see in the solution that the natural response is
distributed through the zero-input response and the zero-state response.

Before proceeding with the example, let us examine the form the elements of ()
take for linear, time-invariant systems. The first term of Eq. (4.96), the Laplace transform of
the response for unforced systems, is the transform of ®(7)x(0), the zero-input response from
Eq. (4.109). Thus, for the unforced system

ZIx(1)] = Z[®(1)x(0)] = (sI — A)~'x(0) (4.110)

from which we can see that (sI — A)™! is the Laplace transform of the state-transition
matrix, ®(f). We have already seen that the denominator of (sI — A)™' is a polynomial
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in s whose roots are the system poles. This polynomial is found from the equation
det(sI — A) = 0. Since

ZI-A) " =2 {%::ﬂ = ®(/) (4.111)

each term of ®(f) would be the sum of exponentials generated by the system’s poles.

Let us summarize the concepts with two numerical examples. The first example solves
the state equations directly in the time domain. The second example uses the Laplace
transformlto solve for the state-transition matrix by finding the inverse Laplace transform of
(sI—A)".

Example 4.12

Time Domain Solution

PROBLEM: For the state equation and initial state vector shown in Egs. (4.112), where
u(?) is a unit step, find the state-transition matrix and then solve for x(7).

. 0 1 0
X(r) = [_8 e |XO+ [1 u(t) (4.112a)
1
x(0) = [0] (4.112b)
SOLUTION: Since the state equation is in the form
x(1) = Ax(?) + Bu(r) (4.113)

find the eigenvalues using det(sI — A) = 0. Hence, s*> + 65 + 8 = 0, from which
s1 = —2 and s, = —4. Since each term of the state-transition matrix is the sum of responses
generated by the poles (eigenvalues), we assume a state-transition matrix of the form

K1€_2t + K2€_4t K3€_2t + K4€_4t
O(t) = ( ) ) (4.114)
(Kse™ + Kge™)  (K7e7% + Kge™)

In order to find the values of the constants, we make use of the properties of the
state-transition matrix derived in Appendix J located at www.wiley.com/college/nise.

Since
P0)=1 (4.115)

then
Ki+K,=1 (4.116a)
K:;+K4=0 (4.116b)
Ks+Ke=0 (4.116¢)

K;+Kg=1 (4.1164d)
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And, since

e ®(0) = A (4.117)
2K, —4K> =0 (4.118a)
—2K3 — 4K, =1 (4.118b)
—2Ks5 — 4K = —8 (4.118¢)
—2K; —4Kg = —6 (4.118d)

The constants are solved by taking two simultaneous equations four times. For
example, Eq. (4.116a) can be solved simultaneously with Eq. (4.118a) to yield the
values of K; and K,. Proceeding similarly, all of the constants can be found. Therefore,

(26—21 _ e—4z) (l e—2t _ le—4t)

D(r) = 2 2 (4.119)
(—de™ 2 +de™) (=M 4+ 2e7H)
Also,
(1 e—2(t—1) _ 16—4(t—r))
Ot -1)B= | \2 2 (4.120)
( _ 20 40 e—4(l—r))
Hence, the first term of Eq. (4.109) is
(Ze—2t _ e—4t)
D(1)x(0) = {(_46_% tde (4.121)
The last term of Eq. (4.109) is
[1 -2t ' 2t 1 —4t ' 47
. Ee e dr—ie e'dr
/ @(7 — 7)Bu()dr = ° "
0
—e™ / e¥dr + 2e7 / etdr
- 0 0 (4.122)
M 1
RE 2 +§ oM
- 1 —2t 1 —4t
L 2¢ 72°¢

Notice, as promised, that Eq. (4.122), the zero-state response, contains not only the forced
response, 1/8, but also terms of the form Ae™? and Be™* that are part of what we
previously called the natural response. However, the coefficients, A and B, are not
dependent on the initial conditions.

The final result is found by adding Eqs. (4.121) and (4.122). Hence,

1+ze—2t _ ze—4z
! 8 4 8
x(r) = ®(¢)x(0) + / ®(t — 7)Bu(r)dr = (4.123)
0 _ze—Zt + ze—4z

2 2
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Example 4.13

State-Transition Matrix via Laplace Transform

PROBLEM: Find the state-transition matrix of Example 4.12, using (sT — A)™".

SOLUTION: We use the fact that ®() is the inverse Laplace transform of (sI — A)™".
Thus, first find (sI — A) as

(1-A)=| (5116)] (4.124)
from which
[s +6 1 1 s+6 1
-8
(sI—A)! =g :8 _ ¥ +_6;+8 S2+is+8 (4.125)

s2+6s+8 s2+65+8
Expanding each term in the matrix on the right by partial fractions yields

2 1 1/2 1/2
. <s+2_s+4> <s+2_s+4>
(sI-A)" = (4.126)

—4 N 4 -1 N 2
s+2 s+4 s+2 s+4
Finally, taking the inverse Laplace transform of each term, we obtain

1 1
(26_2’ _ e_4l) <§ e—2t _ Ee_4t)

(—4e™ ¥ +4e™)  (—e? 4 2e7H)

@) = (4.127)

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB"s Symbolic Math Toolbox
should now run ch4sp2 in Appendix F at www.wiley.com/college/
nise. You will learn how to solve state equations for the output
response using the convolution integral . Examples 4.12 and 4.13
will be solved using MATLAB and the Symbol ic Math Toolbox.
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Symbolic Math

Systems represented in state space can be simulated on the digital computer. Programs
such as MATLAB can be used for this purpose. Alternately, the user can write specialized
programs, as discussed in Appendix H.1 at www.wiley.com/college/nise.

Students who are using MATLAB should now run ch4p3 in Appendix B.
This exercise uses MATLAB to simulate the step response of systems
represented in state space. In addition to generating the step
response, you will learn how to specify the range on the time axis
for the plot.

MATLAB
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Skill-Assessment Exercise 4.10

PROBLEM: Given the system represented in state space by Eqgs. (4.128a):

= | 0 2 Ol g 4.128
X_[—Z _5}x+[l]e (4.128a)
y=[2 1]x (4.128Db)
1
x(0) = [2} (4.128¢)

do the following:

a. Solve for the state-transition matrix.
b. Solve for the state vector using the convolution integral.
c. Find the output, y(7).

ANSWERS:

b. x(t) =

3
5 8
(— 3 e +e T+ 3 e“”)

c. y(t)=5¢"—e

The complete solution is located at www.wiley.com/college/nise.

Antenna Control: Open-Loop Response
In this chapter, we have made use of the transfer functions derived in Chapter 2 and the
state equations derived in Chapter 3 to obtain the output response of an open-loop system.
We also showed the importance of the poles of a system in determining the transient
response. The following case study uses these concepts to analyze an open-loop portion of
the antenna azimuth position control system. The open-loop function that we will deal
with consists of a power amplifier and motor with load.

PROBLEM: For the schematic of the azimuth position control system shown on the front
endpapers, Configuration 1, assume an open-loop system (feedback path disconnected).
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a. Predict, by inspection, the form of the open-loop angular velocity response of the load
to a step-voltage input to the power amplifier.

b. Find the damping ratio and natural frequency of the open-loop system.

c¢. Derive the complete analytical expression for the open-loop angular velocity response
of the load to a step-voltage input to the power amplifier, using transfer functions.

d. Obtain the open-loop state and output equations.

e. Use MATLAB to obtain a plot of the open-loop angular velocity
response to a step-voltage input.

SOLUTION: The transfer functions of the power amplifier, motor, and load as shown on
the front endpapers, Configuration 1, were discussed in the Chapter 2 case study. The two
subsystems are shown interconnected in Figure 4.32(a). Differentiating the angular position
of the motor and load output by multiplying by s, we obtain the output angular velocity, ,, as
shown in Figure 4.32(a). The equivalent transfer function representing the three
blocks in Figure 4.32(a) is the product of the individual transfer functions and is shown
in Figure 4.32(b).®

a. Using the transfer function shown in Figure 4.32(b), we can predict the nature of the
step response. The step response consists of the steady-state response generated by the
step input and the transient response, which is the sum of two exponentials generated
by each pole of the transfer function. Hence, the form of the response is

wo(t) = A+ Be 1% 4 Cem! 1 (4.129)

b. The damping ratio and natural frequency of the open-loop system can be found by
expanding the denominator of the transfer function. Since the open-loop transfer
function is

20.83
s2+101.71s + 171

G(s) = (4.130)

@, =/171 = 13.08, and { = 3.89 (overdamped).

c. In order to derive the angular velocity response to a step input, we multiply the transfer
function of Eq. (4.130) by a step input, 1/s, and obtain

20.83
W,(s) = 4.131
o(5) s(s +100)(s + 1.71) ( )
Convert to
Power amp Motor and load angular velocity
Vip(s) 100 E,(s) 0.2083 0,(s) s @,(5)
(s+100) T os(s+1.71) o
(@)
Vp(s) 20.83 @y($)

| (s+100)(s+1.71)

®)

FIGURE 4.32 Antenna azimuth position control system for angular velocity: a. forward path;
b. equivalent forward path

8 This product relationship will be derived in Chapter 5.
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Expanding into partial fractions, we get

0.122 2.12x107  0.124

= - 4.132
@) ==+ 00 s+ 171 (4.132)

Transforming to the time domain yields
wo(f) = 0.122 4+ (2.12 x 1073)e7100" _ 0, 1247171 (4.133)

d. First convert the transfer function into the state-space representation. Using
Eq. (4.130), we have

@,(5) 20.83
Vo(s)  s2+101.71s+171

(4.134)

Cross-multiplying and taking the inverse Laplace transform with zero initial
conditions, we have

w, +101. 71w, + 171w, = 20.83v, (4.135)

Defining the phase variables as
X1 = w, (4.136a)
Xy =@, (4.136b)
and using Eq. (4.135), the state equations are written as
X =x (4.137a)
X = —171x; — 101.71x, 4+ 20.83v, (4.137b)

where v, = 1, a unit step. Since x; = w, is the output, the output equation is

y=x (4.138)

Equations (4.137) and (4.138) can be programmed to obtain the step response
using MATLAB or alternative methods described in Appendix H.1 at www.wiley
.com/college/nise.

e. Students who are using MATLAB should now run ch4p4 in Appendix
B. This exercise uses MATLAB to plot the step response.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. Refer to the antenna azimuth position control system shown on the front
endpapers, Configuration 2. Assume an open-loop system (feedback path disconnected)
and do the following:

a. Predict the open-loop angular velocity response of the power amplifier, motor, and
load to a step voltage at the input to the power amplifier.

b. Find the damping ratio and natural frequency of the open-loop system.
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c. Derive the open-loop angular velocity response of the power amplifier, motor, and load
to a step-voltage input using transfer functions.

d. Obtain the open-loop state and output equations.

e. Use MATLAB to obtain a plot of the open-loop angular velocity
response to a step-voltage input.

Unmanned Free-Swimming Submersible

Vehicle: Open-Loop Pitch Response
An Unmanned Free-Swimming Submersible (UFSS) vehicle is shown in Figure 4.33. The
depth of the vehicle is controlled as follows. During forward motion, an elevator surface
on the vehicle is deflected by a selected amount. This deflection causes the vehicle to
rotate about the pitch axis. The pitch of the vehicle creates a vertical force that causes the
vehicle to submerge or rise. The pitch control system for the vehicle is used here and in
subsequent chapters as a case study to demonstrate the covered concepts. The block
diagram for the pitch control system is shown in Figure 4.34 and on the back endpapers for
future reference (Johnson, 1980). In this case study, we investigate the time response of
the vehicle dynamics that relate the pitch angle output to the elevator deflection input.

FIGURE 4.33 Unmanned Free-Swimming Submersible (UFSS) vehicle

Courtesy of the Naval Research Laboratory.

Commanded

Pitch elevator Elevator Elevator Vehicle
command Pitch gain deflection actuator deflection dynamics Pitch

0.5) + + B (5) 2 8,(5) —0.125(s +0.435) 0(s)

R -K, e 5
s+2 (s+1.23)(s"+ 0.2265+ 0.0169)
Pitch rate
sensor
—K,s$

FIGURE 4.34 Pitch control loop for the UFSS vehicle
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PROBLEM: The transfer function relating pitch angle, 6(s), to elevator surface angle,
Se(s), for the UFSS vehicle is

0(s) —0.125(s + 0.435)
Se(s) (s + 1.23)(s% + 0.2265 + 0.0169)

(4.139)

a. Using only the second-order poles shown in the transfer function, predict percent
overshoot, rise time, peak time, and settling time.

b. Using Laplace transforms, find the analytical expression for the response of the pitch
angle to a step input in elevator surface deflection.

c. Evaluate the effect of the additional pole and zero on the validity of the second-order
approximation.

d. Plot the step response of the vehicle dynamics and verify your conclusions found in (c).
An animation PowerPoint presentation (PPT) demonstrating this system is available for
instructors at www.wiley.com/college/nise. See UFSS Vehicle.

SOLUTION:

a. Using the polynomial s* + 0.226s + 0.0169, we find that > = 0.0169 and 2{w,, = 0.226.
Thus, w, = 0.13 rad/s and ¢ = 0.869. Hence, %0S = e‘g”/MIOO = 0.399%.
From Figure 4.16, w,T, = 2.75, or T, = 21.2s. To find peak time, we use
T,=n/w,\/1- 2 = 48.9 5. Finally, settling time is Ty = 4/lw, =35.4s.

b. In order to display a positive final value in Part d. we find the response of the system to a

negative unit step, compensating for the negative sign in the transfer function. Using
partial-fraction expansion, the Laplace transform of the response, 6(s), is

B 0.125(s + 0.435)
(s + 1.23)(s? + 0.2265 + 0.0169)

0(s)

1
=2.616—40.064
6 6S+OO6 5s+1.23

2.68(s +0.113) + 3.4784/0.00413

(s +0.113)* +0.00413 (4.140)
Taking the inverse Laplace transform,
0(t) = 2.616 + 0.0645¢~123
— ¢ %1132, 68 cos 0.0643¢ + 3.478 sin 0.06437)
=2.616 4 0.0645¢ 123 — 4.39¢70113¢05(0.06431 + 52.38°) (4.141)

c. Looking at the relative amplitudes between the coefficient of the e~!'?3 term and the
cosine term in Eq. (4.165), we see that there is pole-zero cancellation between
the pole at —1.23 and the zero at —0.435. Further, the pole at —1.23 is more than
five times farther from the jw axis than the second-order dominant poles at
—0.113+;0.0643. We conclude that the response will be close to that predicted.

d. Plotting Eq. (4.141) or using a computer simulation, we obtain the step response shown
in Figure 4.35. We indeed see a response close to that predicted.
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3.0

25 |

1.0 |

Negative pitch angle response (radians)
&
T

Time (seconds)

FIGURE 4.35 Negative step response of pitch control for UFSS vehicle

Students who are using MATLAB should now run ch4p5 in Appendix B. MATLAB
This exercise uses MATLAB to find ¢, w, Ts, Tp, and T, and plot a step m
response. Table lookup is used tofind T,.. The exercise applies the

concepts to the problem above.

CHALLENGE: You are now given a problem to test your
knowledge of this chapter’s objectives. This problem uses
the same principles that were applied to the Unmanned
Free-Swimming Submersible vehicle: Ships at sea undergo
motion about their roll axis, as shown in Figure 4.36. Fins
called stabilizers are used to reduce this rolling motion. The
stabilizers can be positioned by a closed-loop roll control
system that consists of components, such as fin actuators
and sensors, as well as the ship’s roll dynamics.

Assume the roll dynamics, which relates the roll-angle

output, 0(s), to a disturbance-torque input, Tp(s), is FIGURE 4.36 A ship at sea, showing roll axis

Roll axis

os) 225
Tp(s) (s2+0.55 +2.25)

(4.142)

Do the following:

a. Find the natural frequency, damping ratio, peak time, settling time, rise time, and percent
overshoot.

b. Find the analytical expression for the output response to a unit step input in voltage.

c. Use MATLAB to solve a and b and to plot the response found in b. MATLAB
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In this chapter, we took the system models developed in Chapters 2 and 3 and found the
output response for a given input, usually a step. The step response yields a clear picture of
the system’s transient response. We performed this analysis for two types of systems, first
order and second order, which are representative of many physical systems. We then
formalized our findings and arrived at numerical specifications describing the responses.

For first-order systems having a single pole on the real axis, the specification of
transient response that we derived was the time constant, which is the reciprocal of the
real-axis pole location. This specification gives us an indication of the speed of the transient
response. In particular, the time constant is the time for the step response to reach 63% of its
final value.

Second-order systems are more complex. Depending on the values of system
components, a second-order system can exhibit four kinds of behavior:

1. Overdamped

2. Underdamped

3. Undamped

4. Critically damped

We found that the poles of the input generate the forced response, whereas the system
poles generate the transient response. If the system poles are real, the system exhibits
overdamped behavior. These exponential responses have time constants equal to the reciprocals
of the pole locations. Purely imaginary poles yield undamped sinusoidal oscillations whose
radian frequency is equal to the magnitude of the imaginary pole. Systems with complex poles
display underdamped responses. The real part of the complex pole dictates the exponential
decay envelope, and the imaginary part dictates the sinusoidal radian frequency. The exponential
decay envelope has a time constant equal to the reciprocal of the real part of the pole, and the
sinusoid has a radian frequency equal to the imaginary part of the pole.

For all second-order cases, we developed specifications called the damping ratio, ¢,
and natural frequency, ®,. The damping ratio gives us an idea about the nature of the
transient response and how much overshoot and oscillation it undergoes, regardless of time
scaling. The natural frequency gives an indication of the speed of the response.

We found that the value of { determines the form of the second-order natural response:

« If { =0, the response is undamped.

If £ < 1, the response is underdamped.

If { =1, the response is critically damped.

o If { > 1, the response is overdamped.

The natural frequency is the frequency of oscillation if all damping is removed. It acts
as a scaling factor for the response, as can be seen from Eq. (4.28), in which the independent
variable can be considered to be w,t.

For the underdamped case we defined several transient response specifications,
including these:

o Percent overshoot, %0S
e Peak time, T),

Settling time, T’

« Rise time, T,



Review Questions

The peak time is inversely proportional to the imaginary part of the complex pole. Thus,
horizontal lines on the s-plane are lines of constant peak time. Percent overshoot is a
function of only the damping ratio. Consequently, radial lines are lines of constant percent
overshoot. Finally, settling time is inversely proportional to the real part of the complex
pole. Hence, vertical lines on the s-plane are lines of constant settling time.

We found that peak time, percent overshoot, and settling time are related to pole location.
Thus, we can design transient responses by relating a desired response to a pole location and then
relating that pole location to a transfer function and the system’s components.

The effects of nonlinearities, such as saturation, dead zone, and backlash, were
explored using MATLAB’s Simulink.

In this chapter, we also evaluated the time response using the state-space approach.
The response found in this way was separated into the zero-input response, and the
zero-state response, whereas the frequency response method yielded a total response
divided into natural response and forced response components.

In the next chapter we will use the transient response specifications developed here
to analyze and design systems that consist of the interconnection of multiple subsystems.
We will see how to reduce these systems to a single transfer function in order to apply the
concepts developed in Chapter 4.

Review Questions
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. Name the performance specification for first-order systems.

. What does the performance specification for a first-order system tell us?

. In a system with an input and an output, what poles generate the steady-state response?
. In a system with an input and an output, what poles generate the transient response?

. The imaginary part of a pole generates what part of a response?

. The real part of a pole generates what part of a response?

N SN R W N =

. What is the difference between the natural frequency and the damped frequency of
oscillation?

8. If a pole is moved with a constant imaginary part, what will the responses have in
common?

9. If a pole is moved with a constant real part, what will the responses have in common?

10. If a pole is moved along a radial line extending from the origin, what will the responses
have in common?

11. List five specifications for a second-order underdamped system.
12. For Question 11 how many specifications completely determine the response?

13. What pole locations characterize (1) the underdamped system, (2) the overdamped
system, and (3) the critically damped system?

14. Name two conditions under which the response generated by a pole can be neglected.
15. How can you justify pole-zero cancellation?
16. Does the solution of the state equation yield the output response of the system? Explain.

17. What is the relationship between (sI — A), which appeared during the Laplace transfor-
mation solution of the state equations, and the state-transition matrix, which appeared
during the classical solution of the state equation?

18. Name a major advantage of using time-domain techniques for the solution of the
response.

19. Name a major advantage of using frequency-domain techniques for the solution of the
response.

State Space

State Space

State Space
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20. What three pieces of information must be given in order to solve for the output
response of a system using state-space techniques?

21. How can the poles of a system be found from the state equations?

Problems
1. Derive the output responses for all parts of Figure 4.7. e x() 6 NS/
[Section: 4.4] f@©) 1 ,—_Ism
M
2. Find the output response, c(z), for each of the systems L
shown in Figure P4.1. Also find the time constant, rise
time, and settling time for each case. [Sections: 4.2, 4.3] FIGURE P4.3

. Plot the step responses for

. Plot the step response for

5 C(s)
=
s+5

1
S
E—

(a)

wl—

20 C(s)

s+ 20

®)
FIGURE P4.1

MATLAB

Problem 2 using MATLAB.

. Find the capacitor voltage in the network shown in

Figure P4.2 if the switch closes at = 0. Assume zero
initial conditions. Also find the time constant, rise
time, and settling time for the capacitor voltage.
[Sections: 4.2, 4.3]

MA

(g 20
05F =<
5V _—
FIGURE P4.2

MATLAB
Problem 4 using MATLAB. From [ ML |
your plots, find the time constant, rise
time, and settling time.

. For the system shown in Figure P4.3, (a) find an equation

that relates settling time of the velocity of the mass to M;
(b) find an equation that relates rise time of the velocity of
the mass to M. [Sections: 4.2, 4.3]

10.

. Plot the step response for

. Use MATLAB to find the poles of

MATLAB
Problem 6 using MATLAB. From your [JITH
plots, find the time constant, rise time,
and settling time. UseM=1andM=2.

. For each of the transfer functions shown below, find

the locations of the poles and zeros, plot them on the
s-plane, and then write an expression for the general
form of the step response without solving for the
inverse Laplace transform. State the nature of each
response (overdamped, underdamped, and so on).
[Sections: 4.3, 4.4]

a. T(s) = H_iz

b T(s)= ——>
T =536+0)

_10(s+7)
1) = 531006+ 20)
20

4 TO = 56 v 144

e. T(s) = %

£, T(s) = (S‘:%;Z

MATLAB

[Section: 4.2]

s24+2s+2

T(s) =
®) sS4 4653 +4s24+7s+2

Find the transfer function and poles of the system
represented in state space here. [Section: 4.10]



3 -4 2 -1
x=|-2 0 1|x+[=2]|u(®)

4 7 =5 | 3

[0

y=[1 7 1]xx(0)= |0

L0

11. Repeat Problem 10 using MATLAB.
[Section: 4.10]

12. Write the general form of the capacitor voltage for
the electrical network shown in Figure P4.4.
[Section: 4.4]

MATLAB

R = 10kQ

MW

W =u) (5) Ry=10k0 § L=200HS) =< C=104F

FIGURE P4.4

13. Use MATLAB to plot the capacitor  MATLAB
voltage inProblem12.

[Section: 4.4]

14. Solve for x(f) in the system shown in Figure P4.5
if f(¢) is a unit step. [Section: 4.4]

M=2kg —1 0
K,=6N/m
f,=2N-s/m M > f(1)
f(t>= u(t)N T T T T T T T T T TT \I
L L L L L P R PP L |

FIGURE P4.5

15. The system shown in Figure P4.6 has a unit step input.
Find the output response as a function of time. Assume
the system is underdamped. Notice that the result will be
Eq. (4.28). [Section: 4.6]

R(s) w} C(s)

$2+ 2w,s + w?

FIGURE P4.6

16. Derive the relationship for damping ratio as a function
of percent overshoot, Eq. (4.39). [Section: 4.6]

17. Calculate the exact response of each system of
Problem 8 using Laplace transform techniques, and

18.

19.

20.

21.

22,

23.

24.

25.
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Problems

compare the results to those obtained in that problem.
[Sections: 4.3, 4.4]

Find the damping ratio and natural frequency for each
second-order system of Problem 8 and show that the
value of the damping ratio conforms to the type of
response (underdamped, overdamped, and so on)
predicted in that problem. [Section: 4.5]

A system has a damping ratio of 0.15, a natural
frequency of 20 rad/s, and a dc gain of 1. Use inverse
Laplace transforms to find an analytic expression
of the response of the system to a unit-step input.
[Section: 4.6]

For each of the second-order systems that follow, find
§, wn, Ty, Tp, T, and %OS. [Section: 4.6]

a. T( )_176
YT 2 35+ 16
0.04
b. T(s)=——
)= 730025 1 0.04
1.05 x 107
c. T(s)=

2+ 1.6x10%s + 1.05 x 107

Repeat Problem 20 using MATLAB
MATLAB. Have the computer [ ML |
program estimate the given specifica-
tions and plot the step responses.
Estimate the rise time from the plots.
[Section: 4.6]

Use MATLAB's LTI Viewer and GUI Tool
obtain settling time, peak time,
rise time, and percent overshoot for
each of the systems in Problem 20.
[Section: 4.6]

For each pair of second-order system specifications that
follow, find the location of the second-order pair of poles.
[Section: 4.6]

a. %0S = 12%; T, = 0.6 second
b. %0S = 10%; T, = 5 seconds
c. T, =Tseconds; T, = 3 seconds

Find the transfer function of a second-order system
that yields a 15% overshoot and a settling time of
0.7 second. [Section: 4.6]

For the system shown in Figure P4.7, do the following:
[Section: 4.6]
a. Find the transfer function G(s) = X(s)/F(s).

b. Find {, w,, %0S, Ty, T),, T, and Cgyyy for a unit-step
input.
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26.

T(t)

T e )

27.

28.

Chapter 4  Time Response
20 N/m =)
S5kg b= 1)
|_
2 N-s/m
FIGURE P4.7

For the system shown in Figure P4.8, a step torque is
applied at 0;(r). Find:
a. The transfer function, G(s) = 0,(s)/T(s)

b. The percent overshoot, settling time, and peak time
for 0,(¢). [Section: 4.6]

0,(2)

1 N-m-s/rad 1 N-m/rad

FIGURE P4.8

The derivation of Eq. (4.42) to calculate the settling

time for a second-order system assumed an under-

damped system ({ < 1). In this problem you will

calculate a similar result for a critically damped

system (£ = 1).

a. Show that the unit-step response for a system with
C(s) a?

transfer function ——=——=1isc(t)=1—e (1 +at).
R(S) (s+a)2 ( ) ( )

1
(Note: & {—2} =te~ . Optional: You can derive
(s+a)
this result similarly to Example 2.2.)
b. Show that the settling time can be found by solving
for Ty in e~Ts(1 + aT) = 0.02.
c. Use MATLAB toplote™(1 + x) =

0.02 vs. x. Use the plot to show

.834
thatTS = %-

MATLAB

An autonomous robot to pick asparagus (Dong, 2011)
capable of following planting rows has an orientation
system with transfer function

0 53.176
O 4.652+31.281s +53.176

Make a sketch of 6(¢) in response to 6,.¢(f) = 3u(t).
Indicate in your plot Cfinai, Cpuax, 1), and T;. (Hint: You
may use the result of Problem 27c¢).

29.

Vi(s) (V)

Voltage change

Figure P4.9 shows five step responses of an auto-
matic voltage regulation system as one of the system
parameters varies (Gozde, 2011). Assume for all five
responses that they are those of a second-order
system with an overshoot of 20%. Make a sketch
of the positions of the poles in the complex plane for
each one of the responses. Label the curves A through
E from left to right.

14
1.2
1.0

o
©

© o
> o

o
N

o
o

05 10
Time (seconds)

1.5

FIGURE P4.9 Time responses for an automatic voltage regulation
system

30.

31.

32.

Derive the unit step response for each transfer function in
Example 4.8. [Section: 4.7]

Find the percent overshoot, settling time, rise time,
14.65

(52 + 0.842s + 2.93)(s + 5)

and peak time for T(s) =
[Section: 4.7]

For each of the three unit step responses shown in
Figure P4.10, find the transfer function of the system.
[Sections: 4.3, 4.6]

3
2
Q
Z
5]
o
5
~ /
1
0
0 0.05 0.1 0.15 0.2 0.25
Time (seconds)
(@)

FIGURE P4.10 (figure continues)
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FIGURE P4.10 (Continued)
33. For the following response functions, determine if pole-

34.

35.

zero cancellation can be approximated. If it can, find
percent overshoot, settling time, rise time, and peak time.
[Section: 4.8].

B (s+4)

a. C(s) = s(s + 2)(s2 + 3s + 10)
B (s +2.5)

b. C(s) = s(s + 2)(s? + 4s + 20)
B (s+2.2)

c. C(s) = s(s+2) (2 +s+3)

@ )=t

s(s +2)(s*> + 55 + 20)

Using MATLAB, plot the time MATLAB
response of Problem 33a and from [JTHH
the plot determine percent overshoot,
settling time, rise time, and peak time.
[Section: 4.8]

Find peak time, settling time, and percent overshoot for

only those responses below that can be approximated as
second-order responses. [Section: 4.8]

36.

37.

38.
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Problems

a. c(t) = 0.003500 — 0.001524¢=4
—0.001976e¥cos(22.16¢)
—0.0005427¢~3'sin(22.16¢)

b. c(t) = 0.05100 — 0.007353¢~*
—0.007647¢ % cos(8t)
—0.01309¢sin(87)

c. c(t) = 0.009804 — 0.0001857¢~5 1"
—0.009990¢~2 cos(9.796¢)
—0.001942¢~%'sin(9.7967)

d. c(t) = 0.007000 — 0.001667¢~'*
—0.008667¢*c0s(9.9517)
—0.0008040e~%5in(9.9511¢)

For each of the following transfer functions with zeros,
find the component parts of the unit step response:
(1) the derivative of the response without a zero and
(2) the response without a zero, scaled to the negative
of the zero value. Also, find and plot the total response.
Describe any nonminimum-phase behavior. [Section: 4.8]

s+2
a. G = 373736
s—2
b. Gis)=———=
O6) = 3335736

Use MATLAB’s Simulink to obtain simulink
the step response of a systenm, [ sL |
G(s) = 1
)= r3s+10

under the following conditions: [Sec-
tion: 4.9]

a. The system is linear and driven by an
amplifier whose gain is 10.

b. An amplifier whose gain is 10 drives the
system. The amplifier saturates at
+0.25 volts. Describe the effect of
the saturation on the system’ s output.

c. An amplifier whose gain is 10 drives the
system. The amplifier saturates at
+0.25 volts. The system drives a 1:1
gear train that has backlash. The dead-
band width of the backlash is0.02 rad.
Describe the effect of saturation and
backlash on the system’s output.

A system is represented by the state and State Space
output equations that follow. Without

solving the state equation, find the poles of the system.
[Section: 4.10]

(Problem continues)
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39.

40.

41.

42,

43.

Chapter 4

-1 3 3
4 X + | u(t)

y= [5 l]x

Time Response

(Continued)

A system is represented by the state and State Space
output equations that follow. Without

solving the state equation, find [Section: 4.10]

a. the characteristic equation;

b. the poles of the system

0 2 3 0
x=[0 6 5(x+ |1 u®)
1 4 2 1

y=[1 2 0]x

State Space

Given the following state-space
representation of a system, find Y(s):

[Section: 4.10]
1 2 1|
X + sin 3¢
-3 -1 1

3
[1 2]x; x(0) = L]

X =

y:

Given the following system represented in State Space

state space, solve for Y(s) using the
Laplace transform method for solution of the state
equation: [Section: 4.10]

0 1 0 0
x=|-2 -4 1{x+|[0fe?!

0 0 -6 1

0

y=[0 0 1]x; x(0)= [0

0

Solve the following state equation and output State Space
equation for y(f), where u(¢) is the unit
step. Use the Laplace transform method. [Section: 4.10]

5 el
X = X+ u(t)
-1 -1 1

v=[1 0]x x©0)= m

Solve for y(r) for the following system represented
in state space, where u(f) is the unit step. Use the

Laplace transform approach to solve the state equation.
[Section: 4.10]

-3 1 0 0
X = 0 -6 1 |x+ [1][|u®
0 0 -5 1
0
y=1[0 1 1]x;x(0)=|0
0

44. Use MATLAB to plot the step
response of Problem 43.
[Section: 4.10]

Repeat Problem 43 using Symbolic Math
MATLAB’ s Symbolic Math Toolbox m
and Eq. (4.96). Inaddition, run

your programwith an initial condition,

MATLAB

45.

1
1|.[Section : 4.10]
0

x(0) =

46. State Space

Using classical (not Laplace) methods only,
solve for the state-transition matrix, the state
vector, and the output of the system represented here.

[Section: 4.11]

1
o
0

Using classical (not Laplace) methods only,
solve for the state-transition matrix, the state
vector, and the output of the system represented here,
where u(f) is the unit step: [Section: 4.11]

0 1 0
X=[ ]+[ ]u@
-1 0 1

y=[3 4]x; x(0)= [z]

47. State Space

48. Solve for y(¢) for the following system State Space

represented in state space, where u(t) is



the unit step. Use the classical approach to solve the
state equation. [Section: 4.11]

-2 1 0 1
x=| 0 0 1|x+]|0u
0 -6 -1 0
0
y=1[1 0 0]x; x(0)= {0

0

49. Repeat Problem 48 using MATLAB’ s Symbolic Math
Symbolic Math Toolbox and
Eg-(4.109). In addition, runyour program
with an initial condition,

1
1|.[Section : 4.11]
0

x(0) =

50. State Space

Using methods described in Appendix H.1
located at www.wiley.com/college/nise,

simulate the following system and plot the step
response. Verify the expected values of percent over-

shoot, peak time, and settling time.

T(s)=
S T 24085 +1

51. Use MATLAB to simulate the
following system and plot the
output, y(t), forastep input. Markon the
plot the steady-state value, percent
overshoot, and the rise time, peak time,
and settling time.

State Space

—

Step 1: Light source on

I % )

Step 2: Recognize light source

Problems 215
0
x=|-12 - l|x+ [0 u(t)
0
0
y=[1 1 0]x; x(0)= |0
0

52. A human responds to a visual cue with a physical
response, as shown in Figure P 4.11. The transfer
function that relates the output physical response, P(s),
to the input visual command, V(s), is (Stefani, 1973).

Pl) _
v(s)

Gs) = _ (s+0.5)
(s+2)(s+5)

Do the following:

a. Evaluate the output response for a unit step input
using the Laplace transform.

b. Represent the transfer function in state  State Space

space.

c. Use MATLAB to simulate the
systemand obtainaplotof
the step response.

MATLAB

. Upper motor neuron disorder patients can benefit and
regain useful function through the use of functional
neuroprostheses. The design requires a good under-
standing of muscle dynamics. In an experiment to
determine muscle responses, the identified transfer
function was (Zhou, 1995)

2.5¢700085(1 4 0.172s)(1 + 0.008s)

M) = 007971 + 0,055

Find the unit step response of this transfer function.

P(1)

Step 3: Respond to light source

FIGURE P4.11 Steps in determining the transfer function relating output physical response to

the input visual command


http://www.wiley.com/college/nise
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54.

55.

Chapter 4  Time Response

When electrodes are attached to the mastoid bones (right
behind the ears) and current pulses are applied, a person
will sway forward and backward. It has been found
that the transfer function from the current to the
subject’s angle (in degrees) with respect to the vertical
is given by (Nashner, 1974)

0s) _ 5.8(0.3s + 1)e™01s

I(s)  (s+1)(s2/1.2> +0.6s/1.2 + 1)

a. Determine whether a dominant pole approximation
can be applied to this transfer function.

b. Find the body sway caused by a 250 pA pulse of
150 msec duration.

A MOEMS (optical MEMS) is a MEMS (Micro
Electromechanical Systems) with an optical fiber
channel that takes light generated from a laser diode.
It also has a photodetector that measures light intensity
variations and outputs voltage variations proportional
to small mechanical device deflections. Additionally, a
voltage input is capable of deflecting the device. The
apparatus can be used as an optical switch or as a
variable optical attenuator, and it does not exceed
2000 pm in any dimension. Figure P4.12 shows
input-output signal pairs used to identify the parameters
of the system. Assume a second-order transfer function
and find the system’s transfer function (Borovic, 2005).

X[nm]: V[V]

56.

Open-Loop Responses
T T

10
1 1
___________ o — Open-Loop Response _
i e PoE (simulated, d = 0.8)
. 1
6k ----1 YA _SK AR A
1 1
Py R Y A Open-Loop Response _ _ _ _
1 (experimental)
ol o] Y S e
1 1
1 1
0 AR mpdd— = = = = : ——————————— : ———————————
1 1
) 1 i
0 500 1000 1500

t[us]
FIGURE P4.12°

The response of the deflection of a fluid-filled catheter to
changes in pressure can be modeled using a second-order
model. Knowledge of the parameters of the model is
important because in cardiovascular applications the
undamped natural frequency should be close to five
times the heart rate. However, due to sterility and other
considerations, measurement of the parameters is
difficult. A method to obtain transfer functions using
measurements of the amplitudes of two consecutive peaks
of the response and their timing has been developed
(Glantz, 1979). Assume that Figure P4.13 is obtained
from catheter measurements. Using the information
shown and assuming a second-order model excited by a
unit step input, find the corresponding transfer function.

Step Response

: System: T 1
L Time (sec): 0.0505
+ Amplitude: 1.15
Lececceeaa 1

-
o PR '
1 System: T 1
_______ 4 Time (sec): 0.0674 J
| Amplitude: 0,923 |

]

_8 ...........
2
g 0.8 .
]
<
0.6 R
0.4 s
0.2 4
0 I I
0.05 0.1 0.15
Time (sec)
FIGURE P4.13

° Borovic B., Liu A.Q., Popa D., Lewis F.L. Open-loop versus closed-loop
control of MEMS devices: choices and issues J. Micromech. Microeng.

Vol. 15, 2005. Figure 4, p. 1919.
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Step response

58.

Several factors affect the workings of the kidneys.
For example, Figure P4.14 shows how a step change
in arterial flow pressure affects renal blood flow in rats. In
the “hot tail” part of the experiment, peripheral thermal
receptor stimulation is achieved by inserting the rat’s tail
in heated water. Variations between different test subjects
are indicated by the vertical lines. It has been argued that
the “control’”” and “hot tail”’ responses are identical except
for their steady-state values (DiBona, 2005).
a. Using Figure P4.14, obtain the normalized (Cfina = 1)
transfer functions for both responses.
b. Use MATLAB to prove or disprove MATLAB
the assertion about the
vcontrol” and “hot tail” responses.

0.030 l

sy i TSR
I \Wetssnasesssatnsd

0.020

0.015 7

0.010

0.005 --0- HOT TAIL
. —e— CONTROL

0.000 hdll T T T T T 1

1 0 1 2 3 4 5 6
Time (sec)

FIGURE P4.14%°

The transfer function of a nano-positioning device
capable of translating biological samples within a few
pm uses a piezoelectric actuator and a linear variable
differential transformer (LDVT) as a displacement sensor.
The transfer function from input to displacement has been
found to be (Salapaka, 2002)

9.7 x 10*(s> — 14400s + 106.6 x 10°)

Gs) = 6 3
(s% + 3800s + 23.86 x 10°)(s% + 240s + 2324.8 x 10°)

Use a dominant-pole argument to find an equivalent
transfer function with the same numerator but only three
poles.

Use MATLAB to find the actual
size and approximate system
unit step responses, plotting
them on the same graph.

MATLAB

Explain the differences between both responses given
that both pairs of poles are so far apart.

"“DiBona, G.F. Physiology in perspective: The Wisdom of the Body.
Neural control of the kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol

Vol.

289, 2005. Fig. 6, p. R639. Used with permission.
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Problems

59. Atsome pointin their lives most people will suffer from at

least one onset of low back pain. This disorder can trigger
excruciating pain and temporary disability, but its causes
are hard to diagnose. It is well known that low back pain
alters motor trunk patterns; thus it is of interest to study
the causes for these alterations and their extent. Due to the
different possible causes of this type of pain, a “control”
group of people is hard to obtain for laboratory studies.
However, pain can be stimulated in healthy people and
muscle movement ranges can be compared. Controlled
back pain can be induced by injecting saline solution
directly into related muscles or ligaments. The transfer
function from infusion rate to pain response was
obtained experimentally by injecting a 5% saline solution
at six different infusion rates over a period of 12 minutes.
Subjects verbally rated their pain every 15 seconds on a
scale from O to 10, with O indicating no pain and 10
unbearable pain. Several trials were averaged and the
data was fitted to the following transfer function:

G(s) = 9.72 x 1078(s + 0.0001)
(s 4 0.009)%(s2 + 0.018s + 0.0001)

For experimentation, it is desired to build an automatic
dispensing system to make the pain level constant as
shown in Figure P4.15. It follows that ideally the
injection system transfer function has to be

1
M(s) = 0
to obtain an overall transfer function M(s)G(s)= 1.
However, for implementation purposes M(s) must
have at least one more pole than zeros (Zedka, 1999).
Find a suitable transfer function, M(s) by inverting G(s)
and adding poles that are far from the imaginary axis.

Infusion Pump  Human Response

Constant
infusion ——P»]

rate

Constant

back pain

M(s) » G(s)

FIGURE P4.15

60. An artificial heart works in closed loop by varying its

pumping rate according to changes in signals from the
recipient’s nervous system. For feedback compensation
design itis important to know the heart’s open-loop transfer
function. To identify this transfer function, an artificial
heart is implanted in a calf while the main parts of the
original heart are left in place. Then the atrial pumping rate
in the original heart is measured while step input changes
are effected on the artificial heart. It has been found that, in
general, the obtained response closely resembles that of a
second-order system. In one such experiment it was
found that the step response has a %OS =30% and a
time of first peak T, = 127 sec (Nakamura, 2002). Find
the corresponding transfer function.
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61.

62.

63.
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An observed transfer function from voltage potential to
force in skeletal muscles is given by (lonescu, 2005)

450

T = Gr56+20)

a. Obtain the system’s impulse response.
b. Integrate the impulse response to find the step response.

c. Verify the result in Part b by obtaining the step
response using Laplace transform techniques.

In typical conventional aircraft, longitudinal flight
model linearization results in transfer functions with
two pairs of complex conjugate poles. Consequently,
the natural response for these airplanes has two modes
in their natural response. The “short period” mode is
relatively well-damped and has a high-frequency oscilla-
tion. The “plugoid mode” is lightly damped and its
oscillation frequency is relatively low. For example, in
a specific aircraft the transfer function from wing elevator
deflection to nose angle (angle of attack) is (McRuer, 1973)

0s) _
So(s)

26.12(s + 0.0098)(s + 1.371)

(24 8.99 X 1075 +3.97 x 1073)(s2 + 4.21s + 18.23)

a. Find which of the poles correspond to the short
period mode and which to the phugoid mode.

b. Peform a “phugoid approximation” (dominant-pole
approximation), retaining the two poles and the zero
closest to the; w-axis.

c. Use MATLAB to compare the step
responses of the original
transfer function and the
approximation.

MATLAB

A crosslapper is amachine that MATLAB
takes as an input a light fiber

fabric and produces a heavier fabric by
laying the original fabric in layers
rotated by 90 degrees. A Tfeedback
system is required in order to maintain
consistent product width and thickness
by controlling its carriage velocity.
The transfer function from servomotor
torque, T,(s), to carriage velocity,
Y(s), was developed for such a machine
(Kuo, 2008). Assume that the transfer
function is:

Y(s)

G(S) =

Tn(s)
33s* 4+ 202s® 4+ 10061s? 4+ 24332s + 170704

64.

65.

T S7 + 856 + 464s5 + 241154 + 52899s3 + 16782952 + 913599s + 1076555

a. Use MATLAB to find the partial fraction
residues and poles of G(s).

b. Find an approximation to G(s) by
neglecting the second-order terms
found in a.

c. Use MATLAB to plot on one graph the
step response of the transfer function
given above and the approximation
found in b. Explain the differences
between the two plots.

Although the use of fractional
calculus incontrol systems is
not new, in the last decade there is
increased interest in its use for
several reasons. The most relevant are
that fractional calculus differential
equations may model certain systems
with higher accuracy than integer
differential equations, and that
fractional calculus compensators might
exhibit advantageous properties for
control system design. An example of a
transfer function obtained through
fractional calculus is:

1
s25+4s17 +3s95+5

MATLAB

G(s) =

This function can be approximated with
an integer rational transfer function
(integer powers of s) using Oustaloup’s
method (Xue, 2005). We ask you now to do
a little research and consult the afore-
mentioned reference to find and run an
M-file that will calculate the integer
rational transfer function approxima-
tion toG(s) and plot its step response.

Mathematical modeling and control of pH processes
are quite challenging since the processes are highly
nonlinear, due to the logarithmic relationship between
the concentration of hydrogen ions [H+] and pH level.
The transfer function from input pH to output pH is
Yi(s) 14.49¢733

Yo(s) 1478265+ 1
of 3.3 seconds. G,(s) is amodel for the anaerobic process
in a wastewater treatment system in which methane
bacteria need the pH to be maintained in its optimal range
from 6.8 to 7.2 (Jiayu, 2009). Similarly, (Elarafi, 2008)
used empirical techniques to model a pH neutralization
plantas asecond-order system with a pure delay, yielding
the following transfer function relating output pH to
input pH:

G.(s) = , where we assume adelay

Yp(s) 1.716 x 1072¢72%
X,(s)  s2+6.989x 1035 +1.185x 107°

where we assume a delay of 25 seconds.

Gp(s) =



66.

=

< o =

67.

68.

a. Find analytical expressions for the unit-step responses
va(?) and y, () for the two processes, G,(s) and G,(s).
(Hint: Use the time shift theorem in Table 2.2).

b. Use Simulink to plot y,(f) and
yp(?) on a single graph.

Simulink

Using wind tunnel tests, insect flight dynamics can be
studied in a very similar fashion to that of man-made
aircraft. Linearized longitudinal flight equations for a
bumblebee have been found in the unforced case to be

—8.792x 107 0.56x107°  —1.0x107 —13.79%x 1077 [u
-0.347x 107 —11.7x 107 -0.347x 1073 0 w
0.261 -20.8x 107 —96.6 x 1073 0 q

0 0 1 0 0

where u=forward velocity; w = vertical velocity, g=

angular pitch rate at center of mass, and 6 = pitch angle

between the flight direction and the horizontal (Sun, 2005).

a. Use MATLAB to obtain the MATLAB
system’s eigenvalues. m

b. Write the general form of the State Space
state-transition matrix. How many “
constants would have to be found?

A dc-dc converter is a device that takes as an  State Space

input an unregulated dc voltage and provides

a regulated dc voltage as its output. The output voltage
may be lower (buck converter), higher (boost converter),
or the same as the input voltage. Switching dc-dc
converters have a semiconductor active switch (BJT or
FET) that is closed periodically with a duty cycle d in a
pulse width modulated (PWM) manner. For a boost
converter, averaging techniques can be used to arrive
at the following state equations (Van Dijk, 1995):

dip
L— =—-(1-du.+E;
7 ( u ‘
duc . Uc
e _ i =2
el G Al

where L and C are, respectively, the values of internal
inductance and capacitance; iy, is the current through the
internal inductor; R is the resistive load connected to the
converter; E is the dc input voltage; and the capacitor
voltage, uc, is the converter’s output.

a. Write the converter’s equations in the form

X = Ax + Bu

y =Cx
assuming d is a constant.
b. Using the A, B, and C matrices of Part a, obtain the
Uc(s)
E(s)
An IPMC (ionic polymer-metal composite)

is a Nafion sheet plated with gold on both
sides. An IPMC bends when an electric field is applied

converter’s transfer function

State Space
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across its thickness. IPMCs have been used as robotic
actuators in several applications and as active catheters
in biomedical applications. With the aim of improving
actuator settling times, a state-space model has been
developed for a 20 mm X 10 mm X 0.2 mm polymer
sample (Mallavarapu, 2001):

X —-8.34 226 |x 1
= + u
)'62 1 0 X2 0
y =[12.54 2.26]
X

where u is the applied input voltage and y is the deflection

at one of the material’s tips when the sample is tested in a

cantilever arrangement.

a. Find the state-transition matrix for the system.

b. From Eq. (4.109) in the text, it follows that if a system
has zero initial conditions, the system output for any
input can be directly calculated from the state-space
representation and the state-transition matrix using

() = Cx(r) = /CdD(t —7)Bu(r)dr

Use this equation to find the zero initial condition unit

step response of the IPMC material sample.

c. Use MATLAB to verify that your
step response calculation in
Partb is correct.

MATLAB

69. Figure P4.16 shows the step response of an electric
vehicle’s mechanical brakes when the input is the drive
torque (N-m) and the output is the hydraulic brake

pressure (bar) (Ringdorfer, 2011).

-600

|
|

-1400

n
o

1200

Hydraulic brake pressure p (bar)
Traction motor drive torque Tgy, [Nm]

0 0
0.8 0.9 1 1.1 12 1.3 14 1.5 1.6

t[s]

FIGURE P4.16 Step response of an electric vehicle’s mechanical
brake'’

" Ringdorfer M., and Horn M. Development of a Wheel Slip Actuator
Controller for Electric Vehicles using Energy Recuperation and Hydraulic
Brake Control, 2011 IEEE International Conference on Control Applica-
tions (CCA), Denver, CO, USA. September 28-30, 2011, pp. 313-318.
Figure 4, p. 315. Modelling Symposium (AMS), 2012 Sixth Asia by IEEE.
Reproduced with permission of IEEE in the format Republish in a book via
Copyright Clearance Center.
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a. Find the transfer function of the system.

b. Use the values of the parameters for the transfer

70.

function obtained in Part a to find an expression for
the brake pressure as a function of time.

c. Find the output in bars of the system 0.2 sec after the
inputis applied. Check your result against Figure P4.16.

Figure P4.17 shows the free-body diagrams for planetary
gear components used in the variable valve timing (VVT)
system of an internal combustion engine (Ren, 2011).
Here an electric motor is used to drive the carrier. Analysis
showed that the electric motor with planetary gear
load (Figure P4.17) may be represented by the following
equation:

Q.(8) = Ge(S)E(S) + Gu($)T cam(s)

where Q.(s) is the output carrier angular speed in rad/s,
E (s) is the input voltage applied to the armature, and
T.am(s) is the input load torque. The voltage input transfer
function, G.(s), is

K. 45
R.(Js+D)+K.K, 02s+1

G.(s)=

and the load torque input transfer function, G,,(s), is
—R,k )
R,(Js+D)+K.K, 02s+1

G(s)=

Find an analytical expression for the output carrier
angular speed, w.(t), if a step voltage of 100 volts is
applied at # = 0 followed by an equivalent load torque
of 10 N-m, applied at r = 0.4 sec.

(c) Planet Gear 3 (d) Carrier 2

FIGURE P4.17 Free-body diagrams of planetary gear system
components'?

2Ren Z., and Zhu G. G. Modeling and Control of an Electric Variable
Valve Timing System for SI and HCCI Combustion Mode Transition.

Amer
Figur

ican Control Conference, San Francisco, CA, 2011, pp. 979-984.
e 2, p. 980. Reproduced with permission of IEEE in the format

Republish in a book via Copyright Clearance Center.

71. A drive system with elastically coupled load
(Figure P4.18) has a motor that is connected to the load
via a gearbox and a long shaft.

The system parameters are: Jy; = drive-side inertia =
0.0338 kg-m?, J, = load-side inertia = 0.1287 kg-m”,
K = Cy = torsional spring constant = 1700 N-m/rad, and
D = damping coefficient = 0.15 N-m-s/rad.

This system can be reduced to a simple two-
inertia model that may be represented by the following
transfer function, relating motor shaft speed output,
Q(s), to electromagnetic torque input (Thomsen, 2011):

J. » D
~ Q(S) B 1 C—TS +C—TS+1
Tem(s) S(JM+JL) IuJL S2+25+1
C T(J u+J L) Cr

G(s)

Assume the system is at standstill MATLAB

at t = 0, when the electromagnetic

torque, Te,, developed by the motor

changes from zero to 50 N-m. Find and plot

on one graph, using MATLAB or any other

program, the motor shaft speed, w(t),

rad/sec, for the following two cases:

a. No load torque is applied and, thus,
W = Wy -

b. A load torque, T_.=02w(t) N-m Iis
appliedand w = o -

Drive Gear
motor box

Speed

Stator signal

currents

Inertia

Load

Torsional
driveshaft

FIGURE P4.18 Partial topology of a typical motor drive system'>

72. An inverted pendulum mounted on a motor-driven cart
was presented in Problem 30 of Chapter 3. The nonlinear
state-space equations representing that system were
linearized (Prasad, 2012) around a stationary point
corresponding to the pendulum point-mass, m, being in
the upright position (xo = 0 at ¢t = 0), when the force

13Th0msen, S., Hoffmann, N., and Fuchs, F. W. PI Control, PI-Based
State Space Control, and Model-Based Predictive Control for Drive
Systems With Elastically Coupled Loads—A Comparative Study. /IEEE
Transactions On Industrial Electronics, Vol. 58, No. 8, August 2011,
pp. 3647-3657. Portion of Figure 1, p. 3648. American Control Conference
(ACC), 2011 by IEEE. Reproduced with permission of IEEE in the format
Republish in a book via Copyright Clearance Center.



applied to the cart was zero (ug = 0). The state-space
model developed in that problem is

x=AXx+Bu
The state variables are the pendulum angle relative to the
y-axis, 6, its angular speed, @', the horizontal position
of the cart, x, and its speed, x". The horizontal position
of m (for a small angle, 6), x,, = x + [sin 0 = x + [0, was
selected to be the output variable.

Given the state-space model MATLAB

developed in that problem along m
with the output equation you developed in
thatproblem, use MATLAB (or any other com-
puter program) to find and plot the output,
X,(t), in meters, for an input force, u(t),
equal toaunit impulse, 5(t), in Newtons.*

DESIGN PROBLEMS

73. Find an equation that relates 2% settling time to the
value of f, for the translational mechanical system
shown in Figure P4.19. Neglect the mass of all compo-
nents. [Section: 4.6]

fy

J@ A{ E

2 N/m
FIGURE P4.19
74. Consider the translational mechanical system shown in
Figure P4.20. A 1-pound force, f{t), is applied at t = 0.
If f, = 1, find K and M such that the response is character-

ized by a 4-second settling time and a 1-second peak time.
Also, what is the resulting percent overshoot? [Section: 4.6]

5 Lot
|
M. 1@

K
FIGURE P4.20

75. Given the translational mechanical system of Figure

P4.20, where K = 1 and f{¥) is a unit step, find the values

of M and f, to yield a response with 17% overshoot and a
settling time of 10 seconds. [Section: 4.6]

76. Find J and K in the rotational system shown in
Figure P4.21 to yield a 30% overshoot and a settling
time of 3 seconds for a step input in torque. [Section: 4.6]

() 1 @

K
FIGURE P4.21

' Hint: Use the command “impulseplot” over a time period from 0 to 11.0
seconds with a step of 0.1 seconds.
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77. Given the system shown in Figure P4.22, find the
damping, D, to yield a 30% overshoot in output angular
displacement for a step input in torque. [Section: 4.6]

T(1) 0,(1)

)
Ny=5 Ny=10
b 1
Ny=5 7 N-m/rad E

FIGURE P4.22

78. For the system shown in Figure P4.23, find N /N, so
that the settling time for a step torque input is 16 seconds.
[Section: 4.6]

Nl=25

T(1)

Tty
le/ad H
000
o) e ) B
1 N-m-s/rad -
FIGURE P4.23

79. Find M and K, shown in the system of Figure P4.24, to
yieldx(f) with 16% overshootand 20 seconds settling time
for a step input in motor torque, 7,(z). [Section: 4.6]

T,(0)

Motor K Ny =10
J=1 kg—m2
\ K
N, =20
) éi Ideal
Radius =2 m = gear 1:1
For the motor: M —‘—
J, =1kg-m?
D,=1N-m-s/rad x(®)
R,=1Q
Kj, =1 V-s/rad fy,=1N-s/m
K, = 1 N-m/A
FIGURE P4.24

80. If v;(7) is a step voltage in the network shown in Figure
P4.25, find the value of the resistor such that a 20%
overshoot in voltage will be seen across the capacitor if
C =10"°Fand L = 1 H. [Section: 4.6]

R L

v(t) C
1

FIGURE P4.25
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82.

83.

Chapter 4  Time Response

If v(r) is a step voltage in the network shown in
Figure P4.25, find the values of R and C to yield a 20%
overshoot and a 1 ms settling time for v.(r) if L =1 H.
[Section: 4.6]

Given the circuit of Figure P 4.25, where C = 10 uF, find
R and L to yield 15% overshoot with a settling time of
7 ms forthe capacitorvoltage. The input,v(¢), is aunit step.
[Section: 4.6]

For the circuit shown in Figure P4.26, find the values of
R, and C to yield 8% overshoot with a settling time of
1 ms for the voltage across the capacitor, with v;(r) as a
step input. [Section: 4.6]

1H R,
"
vi(0) I MQ C A~ v
FIGURE P4.26

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS

84. Control of HIV/AIDS. In Chapter 3,

State Space

Problem 31, we developed a linearized

state-space model of HIV infection. The model assumed

that two different drugs were used to combat the spread of

the HIV virus. Since this book focuses on single-input,
single-output systems, only one of the two drugs will be
considered. We will assume that only RTIs are used as an

input. Thus, in the equations of Chapter 3, Problem 31,

uy = 0 (Craig, 2004).

a. Show that when using only RTIs in the linearized
system of Problem 31, Chapter 3, and substituting
the typical parameter values given in the table of
Problem 31¢, Chapter 3, the resulting state-space
representation for the system is given by

T -0.04167 0  —0.0058
75| =1 00217 -024 0.0058
v 0 100 -2.4
T 5.2
x| 1T +[—5.2 u
% 0
T
y=[0 0 1]| T
v

b. Obtain the transfer function from RTI efficiency to
Y(s)
Ui(s)

virus count; namely, find

85.

86.

[oe]

~

[e]

()]

w

Outlet Oil Temperature Change (C)
N £

_

0
0 0.02

c. Assuming RTIs are 100% effective, what will be the
steady-state change of virus count in a given infected
patient? Express your answer in virus copies per ml
of plasma. Approximately how much time will the
medicine take to reach its maximum possible
effectiveness?

Hybrid vehicle. Assume that the car motive dynamics
for a hybrid electric vehicle (HEV) can be described by
the transfer function

AV(s) 1
AF,(s)  1908s+ 10

where AVis the change of velocity inm/sec and AF, is the

change in excess motive force in N necessary to propel

the vehicle.

a. Find an analytical expression for Av,, for a step
change in excess motive force AF,=2650 N.

b. Simulate the systemusing MATLAB
MATLAB. Plot the expression [[JTH
found in Part a together with your
simulated plot.

Parabolic trough collector. Figure P4.27 illustrates
the results of an open-loop step-response experiment
performed on a parabolic trough collector setup
(Camacho, 2012). In this experiment, the fluid flow
on the system is suddenly decreased 1 liter/sec at =0
hours, resulting in a temperature increase as shown in
Figure P4.27. Use the figure to find an approximate
transfer function for the system. (Note: Since no further
information is given on the system dynamics and due to
visual approximations, several solutions are possible.)

/

0.06 0.08
Time (hours)

FIGURE P4.27

0.04 0.1 0.12

0.14
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Experiment 4.1

Objective To evaluate the effect of pole and zero location upon the time response of
first- and second-order systems.

Minimum Required Software Packages MATLAB, Simulink, and the Control
System Toolbox

Prelab
1. Given the transfer function G(s) = j_ , evaluate settling time and rise time for the
S a
following values of a: 1, 2, 3, 4. Also, plot the poles.
b
2. Given the transfer function G(s) = 5———
s?+as+b

a. Evaluate percent overshoot, settling time, peak time, and rise time for the following
values: a =4, b = 25. Also, plot the poles.

b. Calculate the values of @ and b so that the imaginary part of the poles remains the
same but the real part is increased two times over that of Prelab 2a, and repeat
Prelab 2a.

c. Calculate the values of a and b so that the imaginary part of the poles remains the
same but the real part is decreased by one half over that of Prelab 2a, and repeat
Prelab 2a.

3. a. For the system of Prelab 2a, calculate the values of a and b so that the real part of the
poles remains the same but the imaginary part is increased two times over that of
Prelab 2a, and repeat Prelab 2a.

b. For the system of Prelab 2a, calculate the values of a and b so that the real part of the
poles remains the same but the imaginary part is increased four times over that of
Prelab 2a, and repeat Prelab 2a.

4. a. For the system of Prelab 2a, calculate the values of @ and b so that the damping ratio
remains the same but the natural frequency is increased two times over that of Prelab
2a, and repeat Prelab 2a.

b. For the system of Prelab 2a, calculate the values of a and b so that the damping ratio
remains the same but the natural frequency is increased four times over that of Prelab
2a, and repeat Prelab 2a.

5. Briefly describe the effects on the time response as the poles are changed in each of
Prelabs 2, 3, and 4.

Lab

1. Using Simulink, set up the systems of Prelab 1 and plot the step response of each of the
four transfer functions on a single graph by using the Simulink LTI Viewer (See
Appendix E.6 online for tutorial). Also, record the values of settling time and rise time
for each step response.

2. Using Simulink, set up the systems of Prelab 2 . Using the Simulink LTI Viewer, plot the
step response of each of the three transfer functions on a single graph. Also, record the
values of percent overshoot, settling time, peak time, and rise time for each step response.

3. Using Simulink, set up the systems of Prelab 2a and Prelab 3. Using the Simulink LTI
Viewer, plot the step response of each of the three transfer functions on a single graph.
Also, record the values of percent overshoot, settling time, peak time, and rise time for
each step response.
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4. Using Simulink, set up the systems of Prelab 2a and Prelab 4. Using the Simulink LTI
Viewer, plot the step response of each of the three transfer functions on a single graph.
Also, record the values of percent overshoot, settling time, peak time, and rise time for
each step response.

Postlab

1. For the first-order systems, make a table of calculated and experimental values of settling
time, rise time, and pole location.

2. For the second-order systems of Prelab 2, make a table of calculated and exper-
imental values of percent overshoot, settling time, peak time, rise time, and pole
location.

3. For the second-order systems of Prelab 2a and Prelab 3, make a table of calculated and
experimental values of percent overshoot, settling time, peak time, rise time, and pole
location.

4. For the second-order systems of Prelab 2a and Prelab 4, make a table of calculated and
experimental values of percent overshoot, settling time, peak time, rise time, and pole
location.

5. Discuss the effects of pole location upon the time response for both first- and second-

order systems. Discuss any discrepancies between your calculated and experimental
values.

Experiment 4.2
Objective To evaluate the effect of additional poles and zeros upon the time response of

second-order systems.

Minimum Required Software Packages MATLAB, Simulink, and the Control
System Toolbox

Prelab

1 . . 25
*a. G the transfer function G(s) = 5—F——,
a. Given the transfer function G(s) A5 135

settling time, peak time, and rise time. Also, plot the poles.

evaluate the percent overshoot,

b. Add a pole at =200 to the system of Prelab la. Estimate whether the transient
response in Prelab la will be appreciably affected.

c. Repeat Prelab 1b with the pole successively placed at —20, — 10, and —2.

2. A zero is added to the system of Prelab la at —200 and then moved to
—50, —20, —10, —5, and —2. List the values of zero location in the order of the
greatest to the least effect upon the pure second-order transient response.

(25b/a)(s + a)

(s + b)(s% + 4s + 25)

3.3,3.5, and 4.0. Which values of b will have minimal effect upon the pure second-order

transient response?

3. Given the transfer function G(s) = let a =3 and b =3.01, 3.1,

(25006 /a)(s + a)
(s + b)(s% + 40s + 2500)’

30.1, 30.5, 31, 35, and 40. Which values of b will have minimal effect upon the pure
second-order transient response?

Lab

1. Using Simulink, add a pole to the second-order system of Prelab la and plot the step
responses of the system when the higher-order pole is nonexistent, at =200, — 20, — 10,

4. Given the transfer function G(s) = let a = 30 and b = 30.01,
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and —2. Make your plots on a single graph, using the Simulink LTI Viewer.
Normalize all plots to a steady-state value of unity. Record percent overshoot, settling
time, peak time, and rise time for each response.

2. Using Simulink, add a zero to the second-order system of Prelab la and plot the step
responses of the system when the zero is nonexistent, at —200, — 50, —20, — 10, -5,
and —2. Make your plots on a single graph, using the Simulink LTI Viewer.
Normalize all plots to a steady-state value of unity. Record percent overshoot, settling
time, peak time, and rise time for each response.

3. Using Simulink and the transfer function of Prelab 3 with a = 3, plot the step responses
of the system when the value of b is 3, 3.01, 3.1, 3.3, 3.5, and 4.0. Make your plots on a
single graph using the Simulink LTI Viewer. Record percent overshoot, settling time,
peak time, and rise time for each response.

4. Using Simulink and the transfer function of Prelab 4 with a = 30, plot the step responses
of the system when the value of b is 30, 30.01, 30.1, 30.5, 31, 35, and 40. Make your
plots on a single graph, using the Simulink LTI Viewer. Record percent overshoot,
settling time, peak time, and rise time for each response.

Postlab

1. Discuss the effect upon the transient response of the proximity of a higher-order pole to
the dominant second-order pole pair.

2. Discuss the effect upon the transient response of the proximity of a zero to the dominant
second-order pole pair. Explore the relationship between the length of the vector from
the zero to the dominant pole and the zero’s effect upon the pure second-order step
response.

3. Discuss the effect of pole-zero cancellation upon the transient response of a dominant
second-order pole pair. Allude to how close the canceling pole and zero should be and
the relationships of (1) the distance between them and (2) the distance between the zero
and the dominant second-order poles.

Experiment 4.3

Objective To use LabVIEW Control Design and Simulation Module for time
performance analysis of systems.

Minimum Required Software Packages LabVIEW with the Control Design
and Simulation Module

Prelab  One of the experimental direct drive robotic arms built at the MTT Artificial
Intelligence Laboratory and the CMU Robotics Institute can be represented as a feedback
control system with a desired angular position input for the robot’s joint position and an
angular position output representing the actual robot’s joint position.

The forward path consists of three transfer functions in cascade; (1) a compensator,
G,(s), to improve performance; (2) a power amplifier of gain, K, = 1; and (3) the transfer
function of the motor and load, G(s) = 2292/s(s + 75.6). Assume a unity-feedback system.
Initially the system will be controlled with G.(s) =0.6234, which is called a proportional
controller (McKerrow, 1991).

1. Obtain the closed-loop system transfer function and use MATLAB to make a plot of
the resulting unit step response.
2. Repeat with G.(s) = 3.05 + 0.04s, which is called a PD controller.

3. Compare both responses and draw conclusions regarding their time domain
specifications.

225
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Lab Create a LabVIEW VI that uses a simulation loop to implement both controllers
given in the Prelab. Plot the responses on the same graph for comparison purposes.

Postlab  Compare the responses obtained using your LabVIEW VI with those obtained
in the Prelab.

Experiment 4.4

Objective To use the LabVIEW Control Design and Simulation Module to evaluate the
effect of pole location upon the time response of second-order systems.

Minimum Required Software Packages LabVIEW with the Control Design
and Simulation Module.

Prelab  Solve the Cyber Exploration Laboratory Experiment 4.1 Prelab, Part 2.

Lab Build a LabVIEW VI to implement the functions studied in the Prelab of Cyber
Exploration Laboratory 4.1, Part 2.

Specifically for Prelab Part 2a, your front panel will have the coefficients of the second-
order transfer function as inputs. The front panel will also have the following indicators:
(1) the transfer function; (2) the state-space representation; (3) the pole locations; (4) the step
response graph; (5) the time response of the two states on the same graph; (6) the time
response parametric data including rise time, peak time, settling time, percent overshoot,
peak value, and final value.

For Prelab, Part 2b, your front panel will also have the following indicators: (1) the step
response graph, and (2) the parametric data listed above for Prelab, Part 2a, but specific to
Part 2b.

For Prelab, Part 2¢, your front panel will also have the following indicators: (1) the step
response graph, and (2) the parametric data listed above for Prelab, Part 2a, but specific to
Part 2c.

Run the VI to obtain the data from the indicators.

Postlab  Use your results to discuss the effect of pole location upon the step response.

Hardware Interface Laboratory

Experiment 4.5 Open-Loop Speed Control of a Motor

Objectives To control the speed of a motor in open-loop fashion and verify the
functions of the motor control setup as preparation for future experiments.

Material Required Computer with LabVIEW Installed; myDAQ; dc brushed gear-
motor with Hall Sensor quadrature encoder (—10 V to +10 V normal operation range); and
motor control chip BA6886N or a transistor circuit substitute. (Note: For simplicity the input to
the motor will be analog. PWM will be avoided as it adds an additional layer of complexity to
these experiments. Plan accordingly if you decide to substitute the motor control chip.)

File Provided at www.wiley.com/college/nise
Open Loop Control.vi

Prelab  Plan how you will wire your motor to the breadboard. A possibility is to solder a
header to six matching color wires that will allow you to connect and disconnect the motor
from the myDAQ in an efficient manner. You can also solder wires to the motor’s cables.


http://www.wiley.com/college/nise
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FIGURE P4.28 Open loop control.vi: a. Front Panel; b. Block Diagram

Lab

Software: The front panel for the Open Loop Control VI is shown in Figure P4.28(a).
The input to the system is the voltage applied to the motor. The output is the motor
speed in revolutions per second (rps). The corresponding block diagram is shown in
Figure P4.28(b).

Note the value indicated by the blue arrow in Figure P4.28(b). In order to get a meaningful
reading for the speed of the motor, this value needs to be modified depending on the gear ratio
of your motor and the counts of your encoder. To understand how this value is calculated, note
that the DAQ Assistant block on top of the diagram reads the encoder input from the myDAQ.
One would reasonably assume that the frequency of this signal is proportional to the speed of
the motor, which is theoretically true. However, at very low speeds the DAQ assistant “times
out” and fails to provide a reading if frequency is measured directly. To avoid this problem, a
different method is used to calculate the signal frequency. The DAQ assistant measures the
rising edges of the encoder signal every 100 msec and subtracts that number from the ones
accumulated during the previous 100 msec period. The frequency of the encoder signal
(in edges/msec) is found by dividing the value of this subtraction by the period (100 msec).
See the Block Diagram to understand how this algorithm was implemented.

We use an example to illustrate the calculation of the constant pointed to with the red arrow.
If a 9.7:1 gear ratio is used with a 48 CPR encoder, with each revolution the encoder will
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generate a total of 48 edges in each of the encoder channels. Using one channel only and
positive edges, there are 12 positive edges/rev of the motor shaft. The total number of counts
(positive edges) generated by each revolution of the external shaft is 9.7 X 12 = 116.4
positive edges/rev.

In order to find the rotational speed, the frequency (edges/msec) of the signal is divided by
the total number of counts generated by the external shaft, adjusting the units for time from
msec to sec: Rotational Speed (rps) = Freq x 1000/(9.7 x 12) = Freq X 8.591. This value has
to be set as illustrated in the Block Diagram.

The DAQ Assistant2 block transmits the voltage from the control slider to the myDAQ
and to the motor control chip. The DAQ Assistant3 block makes sure that the output to the
chip is zeroed when the VI terminates.

Hardware: Connect the myDAQ, the motor, and the motor controller as shown in
Figure P4.29.

Procedure:

1. Verify the operation of your circuit by running the VI and changing the position of the
slider. If everything is correct, the motor speed will vary as the slider’s position changes.

2. Verify that you are using the correct scaling factor for your motor by setting your
motor to rotate at 0.5 rps. Count the number of rotations in the shaft of the motor
over 10 sec using a stopwatch. Repeat by setting the rotational speed at 1 rps. Your
measurements must be consistent.

MyDAQ Motor

b

i—
S
3

BAG886N

10Q

Ob6 8 L 9 S v € 2 |}

FIGURE P4.29 Wiring diagram'

SMyDAQ right slot shown on left is taken from Multisim program module NI myDAQ design and also
reproduced in White-Paper 11423, Figure 2. Both Multisim and the White Paper are from National Instruments.
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3. Perform the following measurements moving the slider:
a. Increase the voltage starting at zero and record the minimum voltage for the motor
to start rotating.
b. Starting the slider at a rotating speed, reduce the voltage until the motor stops.
Record this voltage.
Are these values equal? These values are important and will be used in future labs.
Keep them in a safe place so that you don’t have to repeat these measurements
again.
4. Make a graph where the x-axis is the input voltage, and the y-axis is the speed in rps.
Include the results in Part 3.

5. Draw a functional block diagram of the system (similar to Chapter 1), labeling each
of the components in the diagram.

6. The circuit and the VI above allow the motor to rotate in one direction only. Modify
the VI and the circuit so that the motor direction and speed can be controlled
from the VI

Note that the reference input to the chip can only accept positive voltage values.
The motor control data sheet indicates that direction of rotation must be changed by
flipping the logical values of Pin 2 and Pin 10 on the motor control chip. However, a
careful reading of the data sheet indicates that there must be an instant of time (of
unspecified duration) in which both inputs must be False before switching direction.
You may want to use a LabVIEW ring to simulate a three-way switch. Use two of the
selections of the ring to control the motor’s rotation direction. The third selection in the
ring should provide low inputs to the motor controller logical inputs to be able to stop
the motor before switching direction.

Experiment 4.6 Transfer Function Identification

Objective To identify the transfer function of a motor from voltage input to angular
motor speed using myDAQ and LabView.

Material Required Computer with LabVIEW Installed; myDAQ; dc brushed
gearmotor with Hall sensor quadrature encoder (—10 to +10 V normal operation range);
and motor control chip B6886N (or a transistor circuit substitute).

File Provided at www.wiley.com/college/nise
Plant Identification 2.vi

Prelab  Answer the following questions:
K

1. What is the unit-step response of a system with transfer function G(s) = e
ST

where K and t are constants > 0?
2. Make a hand-sketch of the response of the unit-step response of the system in Part 1.
3. What is the value of the step response of the system in Part 1 when ¢t = t?

4. Find or derive the expression for the transfer function from voltage to angular speed
of an unloaded permanent magnet dc motor. Compare this transfer function to the
first-order system in Part 1.

LLab Connect the myDAQ, the motor, and the motor controller as shown in Figure P4.30.
This setup is identical to the one that was used initially in Experiment 4.5, except that we
have connected the two analog input channels to the two analog output channels. This will
allow us to use the myDAQ oscilloscope for measurements. If you decide to use an external
oscilloscope, these connections are not necessary.

1. Open the Oscilloscope and Plant Identification 2.vi shown in Figures P4.31 and
P4.32, respectively. You can also choose to use an external oscilloscope. Use
settings similar to the ones shown in Figure P4.31.
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'® MyDAQ right slot shown on left is taken from Multisim program module NI myDAQ design and also reproduced
in White-Paper 11423, Figure 2. Both Multisim and the White Paper are from National Instruments.
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FIGURE P4.32 Plant Identification 2.vi Front Panel

2. In your Plant Identification 2.vi choose the value of amplitude and offset shown in
Figure P4.32. A LabView error will be generated if the square wave generates
negative values as these are not allowed as inputs to the chip. The value of the
frequency is irrelevant; you just have to make sure the input is slow enough so that
the motor speed reaches steady state as shown in Figure P4.32.

3. Run the Plant Identification 2.vi and the Oscilloscope. Press the Stop button on
the Oscilloscope as soon as it shows a full semi-cycle of positive speed, similar to
Figure P4.31.

4. Click on the Log button in the Oscilloscope, give the file a name, and save it to disk.
Open the file using a spreadsheet program.

5. Note that the response of the system in the Oscilloscope is in all likelihood that of
a first-order system, consistent with theoretical expectations. Thus, the transfer

Q K
function will be of the form: (s) = .
Ei(s) st+1
K can readily be found from the Oscilloscope or the Plant Identification 2.vi.
9.71

In the example shown, K = o5 = 1.079. We will use the spreadsheet data to find

the time constant, T.

6. Use your spreadsheet data to find the time constant. For help on completing this task,
go to www.wiley.com/college/nise.

7. Repeat the experiment for input voltages of 2 V, 5 V, and 9 V.

Postlab

1. Is your system linear? How do you know?

2. If your system is linear for a range of inputs, find a judicious interpolation between
the three transfer functions you found in Part 7 of the lab. Write down your final
transfer function result and save it for use in subsequent experiments.
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Reduction of Multiple
Subsystems

Chapter Learning Outcomes

After completing this chapter the student will be able to:

Reduce a block diagram of multiple subsystems to a single block representing
the transfer function from input to output (Sections 5.1-5.2)

Analyze and design transient response for a system consisting of multiple
subsystems (Section 5.3)

Convert block diagrams to signal-flow diagrams (Section 5.4)
Find the transfer function of multiple subsystems using Mason’s rule (Section 5.5)
Represent state equations as signal-flow graphs (Section 5.6)

Represent multiple subsystems in state space in cascade, parallel, controller
canonical, and observer canonical forms (Section 5.7)

Perform transformations between similar systems using transformation
matrices; and diagonalize a system matrix (Section 5.8)

Case Study Learning Outcomes

State Space

State Space

State Space

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

Given the antenna azimuth position control system shown on the front
endpapers, you will be able to (a) find the closed-loop transfer function
that represents the system from input to output; (b) find a state-space
representation for the closed-loop system; (c) predict, for a simplified system
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State Space

5.1 Introduction

Chapter 5  Reduction of Multiple Subsystems

model, the percent overshoot, settling time, and peak time of the closed-loop
system for a step input; (d) calculate the step response for the closed-loop
system; and (e) for the simplified model, design the system gain to meet a
transient response requirement.

® Given the block diagrams for the Unmanned Free-Swimming Submersible

(UFSS) vehicle’s pitch and heading control systems on the back endpapers, you
will be able to represent each control system in state space.

We have been working with individual subsystems represented by a block with its input and
output. More complicated systems, however, are represented by the interconnection of
many subsystems. Since the response of a single transfer function can be calculated, we
want to represent multiple subsystems as a single transfer function. We can then apply the
analytical techniques of the previous chapters and obtain transient response information
about the entire system.

In this chapter, multiple subsystems are represented in two ways: as block diagrams
and as signal-flow graphs. Although neither representation is limited to a particular analysis
and design technique, block diagrams are usually used for frequency-domain analysis and
design, and signal-flow graphs for state-space analysis.

Signal-flow graphs represent transfer functions as lines, and signals as small-circular
nodes. Summing is implicit. To show why it is convenient to use signal-flow graphs for
state-space analysis and design, consider Figure 3.10. A graphical representation of a system’s
transfer function is as simple as Figure 3.10(a). However, a graphical representation of a
system in state space requires representation of each state variable, as in Figure 3.10(b). In
that example, a single-block transfer function requires seven blocks and a summing
junction to show the state variables explicitly. Thus, signal-flow graphs have advantages
over block diagrams, such as Figure 3.10(b): They can be drawn more quickly, they are
more compact, and they emphasize the state variables.

We will develop techniques to reduce each representation to a single transfer function.
Block diagram algebra will be used to reduce block diagrams and Mason’s rule to reduce
signal-flow graphs. Again, it must be emphasized that these methods are typically used as
described. As we shall see, however, either method can be used for frequency-domain or
state-space analysis and design.

5.2 Block Diagrams

As you already know, a subsystem is represented as a block with an input, an output, and
a transfer function. Many systems are composed of multiple subsystems, as in Figure 5.1.
When multiple subsystems are interconnected, a few more schematic elements must be
added to the block diagram. These new elements are summing junctions and pickoff
points. All component parts of a block diagram for a linear, time-invariant system are
shown in Figure 5.2. The characteristic of the summing junction shown in Figure 5.2(c)
is that the output signal, C(s), is the algebraic sum of the input signals, R;(s), R(s), and
R;3(s). The figure shows three inputs, but any number can be present. A pickoff point, as
shown in Figure 5.2(d), distributes the input signal, R(s), undiminished, to several
output points.

We will now examine some common topologies for interconnecting subsystems
and derive the single transfer function representation for each of them. These common
topologies will form the basis for reducing more complicated systems to a single block.
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FIGURE 5.1 The recently retired space shuttle consisted of multiple subsystems. Can you identify
those that are control systems or parts of control systems?
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Cascade Form

Figure 5.3(a) shows an example of cascaded subsystems. Intermediate signal values are
shown at the output of each subsystem. Each signal is derived from the product of the input
times the transfer function. The equivalent transfer function, G.(s), shown in Figure 5.3(b), is
the output Laplace transform divided by the input Laplace transform from Figure 5.3(a), or

G.(s) = G3(5)Ga2(s)G1(s) 5.1

which is the product of the subsystems’ transfer functions.
Equation (5.1) was derived under the assumption that interconnected subsystems do
not load adjacent subsystems. That is, a subsystem’s output remains the same whether or not
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FIGURE 5.3 a. Cascaded
subsystems; b. equivalent
transfer function

FIGURE 5.4 Loading in
cascaded systems
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Xo(s) = Xi(s) = C(s) =
R(s) G()R(s) Go(5)G($)R(s) G5(5)Ga(5)G(5)R(s)
— G Go(s) Gs(s)
(a)
R(s) C(s)
— G3()Go(5)Gy(s) —
(®)

the subsequent subsystem is connected. If there is a change in the output, the subsequent
subsystem loads the previous subsystem, and the equivalent transfer function is not the
product of the individual transfer functions. The network of Figure 5.4(a) demonstrates this
concept. Its transfer function is

1
Vi(s R
Gi(s) = V]'((s)) = L Cll (5.2)
1 + -
*TRIC
Similarly, the network of Figure 5.4(b) has the following transfer function:
1
V(s R
Gols) = 228 FaCa (5.3)
Vils) S+ —F
R,C,

If the networks are placed in cascade, as in Figure 5.4(c), you can verify that the transfer
function found using loop or node equations is

1
Va(s) R\ CiR,Cy
- - 5.4
= (L L TN ©4
) S
RiC RCy RaCh ) T RICIRAC
Rl RZ
+ +
Vi(s) Cr 1~ Vi(s) Vi(s) G~ Vals)
Gy(s) = LW Gas) = 129
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Gr(s) = ZZ—(Y) * Gy5)Gy(9) Gr)= 29 = kGG (s)
(s (s
© @



5.2 Block Diagrams
But, using Eq. (5.1),

1

RiCi1R,Cy

G(s) = G2(5)Gi(s) = (5.5)

1 I
2+ + +
g <R1C1 R2C2>S RiCiR:C>

Equations (5.4) and (5.5) are not the same: Eq. (5.4) has one more term for the coefficient of
s in the denominator and is correct.

One way to prevent loading is to use an amplifier between the two networks, as
shown in Figure 5.4(d). The amplifier has a high-impedance input, so that it does not
load the previous network. At the same time it has a low-impedance output, so that it
looks like a pure voltage source to the subsequent network. With the amplifier included,
the equivalent transfer function is the product of the transfer functions and the gain, K, of
the amplifier.

Parallel Form

Figure 5.5 shows an example of parallel subsystems. Again, by writing the output of each
subsystem, we can find the equivalent transfer function. Parallel subsystems have a common
input and an output formed by the algebraic sum of the outputs from all of the subsystems.
The equivalent transfer function, G.(s), is the output transform divided by the input
transform from Figure 5.5(a), or

Ge(s) = £Gi(s) = Ga(s) = Ga(s) (5.6)

which is the algebraic sum of the subsystems’ transfer functions; it appears in
Figure 5.5(b).
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FIGURE 5.5 a. Parallel
subsystems; b. equivalent
transfer function
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FIGURE 5.6 a. Feedback
control system; b. simplified
model; c. equivalent transfer
function
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Feedback Form

The third topology is the feedback form, which will be seen repeatedly in subsequent
chapters. The feedback system forms the basis for our study of control systems engineering.
In Chapter 1, we defined open-loop and closed-loop systems and pointed out the advantage
of closed-loop, or feedback control, systems over open-loop systems. As we move ahead,
we will focus on the analysis and design of feedback systems.

Let us derive the transfer function that represents the system from its input to
its output. The typical feedback system, described in detail in Chapter 1, is shown in
Figure 5.6(a); a simplified model is shown in Figure 5.6(b).' Directing our attention to the

simplified model,

E(s) = R(s) ¥ C(s)H(s)

But since C(s) = E(s)G(s),

C(s
E(s) = Q
G(s)
Input
transducer Controller Plant
R(s) + E(s) C(s)
— G(s) - Gy(s) > Gs(s) >
Input Actuating Output
signal
(error)
Hy(s) = Hi(s) =
Feedback Output
transducer
(@)
Plant and
controller
Ci
Ges) (S)=
Output
H(s) [=
Feedback
®)
R(s) G(s) C(s)
_— —————————————— | ———
Input | 1+ G(s)H(s) | Output
(c)

(5.7)

(5.8)

! The system is said to have negative feedback if the sign at the summing junction is negative and positive feedback

if the sign is positive.
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Substituting Eq. (5.8) into Eq. (5.7) and solving for the transfer function, C(s)/R(s) = G(s),
we obtain the equivalent, or closed-loop, transfer function shown in Figure 5.6(c),

G(s)

Gels) = T GWHE)

(5.9)

The product, G(s)H(s), in Eq. (5.9) is called the open-loop transfer function, or loop gain.

So far, we have explored three different configurations for multiple subsystems. For
each, we found the equivalent transfer function. Since these three forms are combined
into complex arrangements in physical systems, recognizing these topologies is a
prerequisite to obtaining the equivalent transfer function of a complex system. In this
section, we will reduce complex systems composed of multiple subsystems to single
transfer functions.

Moving Blocks to Create Familiar Forms

Before we begin to reduce block diagrams, it must be explained that the familiar forms
(cascade, parallel, and feedback) are not always apparent in a block diagram. For
example, in the feedback form, if there is a pickoff point after the summing junction,
you cannot use the feedback formula to reduce the feedback system to a single block.
That signal disappears, and there is no place to reestablish the pickoff point.

This subsection will discuss basic block moves that can be made in order to establish
familiar forms when they almost exist. In particular, it will explain how to move blocks left
and right past summing junctions and pickoff points.

Figure 5.7 shows equivalent block diagrams formed when transfer functions are
moved left or right past a summing junction, and Figure 5.8 shows equivalent block
diagrams formed when transfer functions are moved left or right past a pickoff point. In
the diagrams the symbol = means “equivalent to.” These equivalences, along with the
forms studied earlier in this section, can be used to reduce a block diagram to a single
transfer function. In each case of Figures 5.7 and 5.8, the equivalence can be verified by
tracing the signals at the input through to the output and recognizing that the output

R(s) + G6s) C(s) — R(s) 66s) + C(s)
¥ ¥
X(s)
G(s)
X(s)
(@)
R(s __ R( C(s
& G(s) f— © ¢ G(s) &
e
X(s) 1
G(s)
X(s)

®)

241

FIGURE 5.7 Block diagram
algebra for summing
junctions—equivalent forms for
moving a block a. to the left past
a summing junction; b. to the
right past a summing junction
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FIGURE 5.8 Block diagram
algebra for pickoff points—
equivalent forms for moving a
block a. to the left past a pickoff
point; b. to the right past a
pickoff point

FIGURE 5.9 Block diagram
for Example 5.1
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R(s)G(s) R(5)G(s)
| G(S) F———»
R(s) R(s) Ry 1 R(s)
— —| G co
R(s) 1 R(s)
G(s)
(@)
R(s)G(s) R(s)G(s)
> G(s) [——
R(s) R(s)G(s) R ’—' R(s)G(s)
G(s) — G(s)
R(s)G(s) L R(5)G(s)
L - G(s) ———
®)

signals are identical. For example, in Figure 5.7(a), signals R(s) and X(s) are multiplied by
G(s) before reaching the output. Hence, both block diagrams are equivalent, with
C(s) = R(5)G(s) F X(s)G(s). In Figure 5.7(b), R(s) is multiplied by G(s) before reaching
the output, but X(s) is not. Hence, both block diagrams in Figure 5.7(b) are equivalent,
with C(s) = R(s)G(s) F X(s). For pickoff points, similar reasoning yields similar results
for the block diagrams of Figure 5.8(a) and (b).

Let us now put the whole story together with examples of block diagram
reduction.

Block Diagram Reduction via Familiar Forms

PROBLEM: Reduce the block diagram shown in Figure 5.9 to a single transfer function.

L 60 R+ o) e Gls)
g -
i)
Hy(s) |=
Hi(s) [

SOLUTION: We solve the problem by following the steps in Figure 5.10. First, the
three summing junctions can be collapsed into a single summing junction, as shown in
Figure 5.10(a).




R(s)
—_—

Gi(s)

R(s)
—

Gi(s)

R(s)

e Gao) |-
Hi(s) =
Hy(s)
H3(5) |

(@)

C
G(5)Gafs) L)
Hi(s) — Hy(s) + H3(s)
b)
G3(5)Go(5)G1(s) C(s)

1+ G5(5)Go(s)[H(s) — Hy(s) + H3(s)]

(c)
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Second, recognize that the three feedback functions, H,(s), H»(s), and Hs(s), are
connected in parallel. They are fed from a common signal source, and their outputs are
summed. The equivalent function is H,(s) — Ha(s) + H3(s). Also recognize that G,(s)
and G;(s) are connected in cascade. Thus, the equivalent transfer function is the product,
G3(5)Go(s). The results of these steps are shown in Figure 5.10(b).

Finally, the feedback system is reduced and multiplied by G(s) to yield the
equivalent transfer function shown in Figure 5.10(c).

FIGURE 5.10 Steps in
solving Example 5.1:

a. Collapse summing junctions;
b. form equivalent cascaded
system in the forward path and
equivalent parallel system in the
feedback path; c. form
equivalent feedback system and
multiply by cascaded G(s)

Gi(s)

Vo(s) +

Block Diagram Reduction by Moving Blocks

V3(s)

+
Va(s) + < Vs(s)

= G(s)

Y19 1 ) e

H(s)

Vg(s)

PROBLEM: Reduce the system shown in Figure 5.11 to a single transfer function.

Gs(s)

CGs)

HS(S)

FIGURE 5.11 Block
diagram for Example 5.2
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SOLUTION: In this example we make use of the equivalent forms shown in Figures 5.7
and 5.8. First, move G(s) to the left past the pickoff point to create parallel subsystems,
and reduce the feedback system consisting of G3(s) and H3(s). This result is shown in
Figure 5.12(a).

Second, reduce the parallel pair consisting of 1/G,(s) and unity, and push G(s) to
the right past the summing junction, creating parallel subsystems in the feedback. These
results are shown in Figure 5.12(b).

Third, collapse the summing junctions, add the two feedback elements together, and
combine the last two cascaded blocks. Figure 5.12(c) shows these results.

Fourth, use the feedback formula to obtain Figure 5.12(d).

Finally, multiply the two cascaded blocks and obtain the final result, shown in
Figure 5.12(e).

Ga(s)
Vas) +h Gy(s) C(s)
4 3¢ .
G(s) G(s) > % GO0
Hy(s) =
Hi(s) =
(@)
R(s) + Vi(s) + Va(s) LI Gs(s) C(s)
2 . G(5)G(s) " 50 SR g b A -
Hy(s)
Gi(s)
H(s) |
)
R
© ¥ G(5)Go(s) V4(s)— < ! + 1>< Gs(s) >  ,
= Gy(s) 1+ G3(s)H3(s)
Hy(s)
G\) + Hy(s)
()
R(s) G1(5)Ga(s) Vi) [/ 1 Gro) > Cls)
— +1 >
1+ Go(s)H(s) + G(5)Ga(s)H (s) <G2(S) ><1 + G3(s)H3(s)
(d)
R(s) G1(5)G3(9)[1+ Gy(s)] C(s)
&S -

FIGURE 5.12 Steps in the
block diagram reduction for
Example 5.2

[1+ Go($)Hy(s) + G1()Go()H ($)][1 + G3(s)H3(5)]

(e)




5.3 Analysis and Design of Feedback Systems

Students who are using MATLAB should now run ch5pl in Appendix B to
perform block diagram reduction.

Skill-Assessment Exercise 5.1

PROBLEM: Find the equivalent transfer function, T(s) = C(s)/R(s), for the system
shown in Figure 5.13.

R(s) + C(s)

)

FIGURE 5.13 Block diagram for Skill-Assessment Exercise 5.1

ANSWER:

$+1

T()=——F+——
(s) 25* + 52 + 28

The complete solution is at www.wiley.com/college/nise.
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MATLAB

Trylt 5.1

Use the following MATLAB
and Control System Toolbox
statements to find the closed-
loop transfer function of the
system in Example 5.2 if all
Gi(s)=1/(s+ 1) and all
Hi(s)=1/s.

G1=tf(1,[11D;
G2=61;G3=G1;
H1=tf(1,[10D;
H2=H1;H3=H1;
System=append. . .
(G1,G2,G3,H1,H2,H3);
input=1;output=3;
Q=[1L -4 0 O O
2 1 -5 0 O
3 2 1 -5 -6
4 2 0 0 O
5 2 0 0 O
6 3 0 0 O0F
T=connect(System, ...
Q, input,output);
T=tf(T); T=minreal(T)

In this section, we examined the equivalence of several block diagram configurations
containing signals, systems, summing junctions, and pickoff points. These configurations
were the cascade, parallel, and feedback forms. During block diagram reduction, we attempt to
produce these easily recognized forms and then reduce the block diagram to a single transfer
function. In the next section, we will examine some applications of block diagram reduction.

5.3 Analysis and Design of Feedback Systems

An immediate application of the principles of Section 5.2 is the analysis and @)
s +

K C(s)

design of feedback systems that reduce to second-order systems. Percent
overshoot, settling time, peak time, and rise time can then be found from the -
equivalent transfer function.

Consider the system shown in Figure 5.14, which can model a control

s(s + a)

system such as the antenna azimuth position control system. For example, the
transfer function, K /s(s + a), can model the amplifiers, motor, load, and gears.

From Eq. (5.9), the closed-loop transfer function, 7(s), for this system is system
K
T(s) = 5.10
(s) s2+as+K (510

where K models the amplifier gain, that is, the ratio of the output voltage to the input voltage.
As K varies, the poles move through the three ranges of operation of a second-order system:

FIGURE 5.14 Second-order feedback control
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overdamped, critically damped, and underdamped. For example, for K between 0 and a? /4,
the poles of the system are real and are located at

a? — 4K
2

H+

(5.11)

N

S12=—

’

As Kincreases, the poles move along the real axis, and the system remains overdamped
until K = a® /4. At that gain, or amplification, both poles are real and equal, and the system is
critically damped.

For gains above a®/4, the system is underdamped, with complex poles located at

V4K — a?

£ (5.12)

_a
S12 = )
Now as K increases, the real part remains constant and the imaginary part increases. Thus,
the peak time decreases and the percent overshoot increases, while the settling time remains
constant.

Let us look at two examples that apply the concepts to feedback control systems. In
the first example, we determine a system’s transient response. In the second example, we
design the gain to meet a transient response requirement.

R(s) + o cw)_ Finding Transient Response

5
- ) PROBLEM: For the system shown in Figure 5.15, find the peak time,

percent overshoot, and settling time.

FIGURE 5.15 Feedback system for SOLUTION: The closed-loop transfer function found from Eq. (5.9) is
Example 5.3
T6) = 5o (5.13)
VT2 ss+25 '

From Eq. (4.18),
w, =V25=5 (5.14)

From Eq. (4.21),
2w, =5 (5.15)

Substituting Eq. (5.14) into (5.15) and solving for { yields

{=0.5 (5.16)
Using the values for { and w, along with Eqs (4.34), (4.38), and (4.42), we find,
respectively,
T,=—— =0.726second (5.17)
o |
%0S = e~"/V1=¢ % 100 = 16.303 (5.18)
T, = 1.6 seconds (5.19)

- {wy,



5.3 Analysis and Design of Feedback Systems

Students who are using MATLAB should now run ch5p2 in Appendix B.
Youwill learn how to performblock diagram reduction fol lowed by
an evaluation of the closed-loop system®™s transient response by
finding, Tp,%0S, and Ts. Finally, youwill learnhow to use MATLAB to
generate a closed-loop step response. This exercise uses MATLAB
to do Example 5.3.
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MATLAB

MATLAB’s Simulink provides an alternative method of simulating
feedback systems to obtain the time response. Students who are
performing the MATLAB exercises and want to explore the added
capability of MATLAB’s Simulink should now consult Appendix C.
Example C.3 includes a discussion about, and an example of, the use
of Simulink to simulate feedback systems with nonlinearities.

Example 5.4

Gain Design for Transient Response

PROBLEM: Design the value of gain. K, for the feedback control system of Figure 5.16

Simulink

so that the system will respond with a 10% overshoot.

R(s) + C(s)

s(s+5)

FIGURE 5.16 Feedback
system for Example 5.4

SOLUTION: The closed-loop transfer function of the system is

Virtual Experiment 5.1
Gain Design

Put theory into practice designing
the position control gain for the
Quanser Linear Servo and
simulating its closed-loop
response in LabVIEW. This
concept is used, for instance, to
control a rover exploring the
terrain of a planet.

Virtual experiments are found on
Learning Space.

T(s) K (5.20)
§)=———"—— .
s2+55+K

From Egq. (5.20),

2w, =5 (5.21)
and

w, = VK (5.22)
Thus,

5
=—— (5.23)
: 24K

Since percent overshoot is a function only of {, Eq. (5.23) shows that the percent
overshoot is a function of K.

A 10% overshoot implies that = 0.591. Substituting this value for the damping
ratio into Eq. (5.23) and solving for K yields

K=179 (5.24)

Although we are able to design for percent overshoot in this problem, we could not
have selected settling time as a design criterion because, regardless of the value of K, the
real parts, —2.5, of the poles of Eq. (5.20) remain the same.
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Skill-Assessment Exercise 5.2

PROBLEM: For a unity feedback control system with a forward-path transfer function

16
G(s)=——

) s(s+a)
overshoot.

ANSWER:

, design the value of a to yield a closed-loop step response that has 5%

a=5.52

The complete solution is at www.wiley.com/college/nise.

Trylt 5.2

Use the following MATLAB and Control
System Toolbox statements to find ¢, w,, %O0S,
Ty, T, and T, for the closed-loop unity feedback
system described in Skill-Assessment Exercise
5.2. Start with a = 2 and try some other values.
A step response for the closed-loop system will
also be produced.

a=2;

numg=16;
deng=polyJO0 -aD;
G=tf(numg, deng);
T=Ffeedback(G, 1);

[numt, dent}...
tfdata(T,"v");
wn=sqrt(dent(3))
z=dent(2¥/(2*wn)
Ts=4/z*wn)
Tp=pi/wn*. ..
sqr(l -z"2))
pos=exp(-z*pi - - -
/sqr(1 -z~2)y<100
Tr=(1.76*z"3-. ..
0.417*z"2+1.039*. ..
z+1)wn
step(T)

5.4 Signal-Flow Graphs

FIGURE 5.17 Signal-flow
graph components: a. system;
b. signal; c. interconnection of
systems and signals

Signal-flow graphs are an alternative to block diagrams. Unlike block diagrams, which
consist of blocks, signals, summing junctions, and pickoff points, a signal-flow graph
consists only of branches, which represent systems, and nodes, which represent signals.
These elements are shown in Figures 5.17(a) and (), respectively. A system is represented
by a line with an arrow showing the direction of signal flow through the system. Adjacent to
the line we write the transfer function. A signal is a node with the signal’s name written

adjacent to the node.

Figure 5.17(c) shows the interconnection of the systems and the signals.
Each signal is the sum of signals flowing into it. For example, we see that the
signal V (s) = R () Gi(s) — Ra(s) G2(s) + R3 (s) Gs(s); the signal Ca (s) = V(s)Gs(s) =

G(s)
—_— O
V(s)
(a) ®)

(c)
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5.4 Signal-Flow Graphs

Ri(5)G1(s)Gs (5) — R2(5) G2 (s)Gs (5) + R3(s)G3(s)Gs (s); and the signal Cs(s) =
=V (5)Gs(s) = =R (5) G1(5)Ge () + R2(5) G2 (s) Ge (5) — R3(5)G3(s)Ge (s). Notice that
in summing negative signals we associate the negative sign with the system and
not with a summing junction, as in the case of block diagrams.

To show the parallel between block diagrams and signal-flow graphs, we will take
some of the block diagram forms from Section 5.2 and convert them to signal-flow graphs in
Example 5.5. In each case, we will first convert the signals to nodes and then interconnect
the nodes with system branches. In Example 5.6, we will convert an intricate block diagram
to a signal-flow graph.

Converting Common Block Diagrams to Signal-Flow
Graphs

PROBLEM: Convert the cascaded, parallel, and feedback forms of the block diagrams
shown in Figures 5.3(a), 5.5(a), and 5.6(b), respectively, into signal-flow graphs.

SOLUTION: In each case, we start by drawing the signal nodes for that system. Next
we interconnect the signal nodes with system branches. The signal nodes for the
cascaded, parallel, and feedback forms are shown in Figure 5.18(a), (c), and (e),
respectively. The interconnection of the nodes with branches that represent the
subsystems is shown in Figure 5.18(b), (d), and (f) for the cascaded, parallel, and
feedback forms, respectively.

Gy(s) G(s) G3(s)
RO O O O  Re)O——tO— OO )

Va(s) Vi(s) Vo(s) Vi(s)
(@) ®
@)
Vi(s)
R(5)O O O )
Va(s)
FIGURE 5.18 Building
@) signal-flow graphs:
V3(s) Vi(s) a. cascaded system nodes (from
© @ Figure 5.3(a)); b. cascaded

system signal-flow graph;
c. parallel system nodes (from
| : Figure 5.5(a)); d. parallel
R(s)O O Ocs) R(s) O——< C;( ) C(s) system signal-flow graph;
E(s) E(s) e. feedback system nodes
—H(s) (from Figure 5.6(b));
f. feedback system signal-flow
(@] @) graph
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Example 5.6

Converting a Block Diagram to a Signal-Flow Graph

PROBLEM: Convert the block diagram of Figure 5.11 to a signal-flow graph.

SOLUTION: Begin by drawing the signal nodes, as shown in Figure 5.19(a). Next,
interconnect the nodes, showing the direction of signal flow and identifying each
transfer function. The result is shown in Figure 5.19(b). Notice that the negative signs at
the summing junctions of the block diagram are represented by the negative transfer
functions of the signal-flow graph. Finally, if desired, simplify the signal-flow graph to
the one shown in Figure 5.19(c) by eliminating signals that have a single flow in and a
single flow out, such as V,(s), Ve(s), V7(s), and Vg(s).

R(s) O O @) @) O O O )
Vi(s) Va(s) V3(s) Va(s) Vs(s)
O O O
V(s) V(s) Vg(s)
(@)

1 Gs(s)
R(s) O C(s)
Hj(s)
V()
H(s)
(®)
1
Gy(s) Ga(s) 1 Gs(s)
R(s) O > O— > C(s)
Va(s) Vs(s)
—Hj(s)

—H(s)
©

FIGURE 5.19 Signal-flow graph development: a. signal nodes; b. signal-flow graph;
c. simplified signal-flow graph
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Skill-Assessment Exercise 5.3

PROBLEM: Convert the block diagram of Figure 5.13 to a signal-flow graph.

ANSWER: The complete solution is at www.wiley.com/college/nise.

5.5 Mason’s Rule

Earlier in this chapter, we discussed how to reduce block diagrams to single transfer
functions. Now we are ready to discuss a technique for reducing signal-flow graphs to single
transfer functions that relate the output of a system to its input.

The block diagram reduction technique we studied in Section 5.2 requires successive
application of fundamental relationships in order to arrive at the system transfer function.
On the other hand, Mason’s rule for reducing a signal-flow graph to a single transfer function
requires the application of one formula. The formula was derived by S. J. Mason when he
related the signal-flow graph to the simultaneous equations that can be written from the
graph (Mason, 1953).

In general, it can be complicated to implement the formula without making
mistakes. Specifically, the existence of what we will later call nontouching loops
increases the complexity of the formula. However, many systems do not have non-
touching loops. For these systems, you may find Mason’s rule easier to use than block
diagram reduction.

Mason’s formula has several components that must be evaluated. First, we must be
sure that the definitions of the components are well understood. Then we must exert care in
evaluating the components. To that end, we discuss some basic definitions applicable to
signal-flow graphs; then we state Mason’s rule and do an example.

Definitions
Loop gain. The product of branch gains found by traversing a path that starts at a node and
ends at the same node, following the direction of the signal flow, without passing through

any other node more than once. For examples of loop gains, see Figure 5.20. There are Gy(s)
four loop gains:
k6 O Gi(s) _ Gas) _ Gals) _ Gals) @ Gr(s) O o
S )
1. Ga(s)H,(s) (5.25a) va V3(s) Vi(s)
2. Gu(s)Hx(s) (5.25b)
3. G4(5)Gs(s)H3(s) (5.25¢) H(s)
4. Ga(5)Ge(s)H3(s) (5.25d) s

Forward-path gain. The product of gains found by FIGURE 5.20 Signal-flow graph for demonstrating Mason’s rule
traversing a path from the input node to the output

node of the signal-flow graph in the direction of signal flow. Examples of forward-path gains

are also shown in Figure 5.20. There are two forward-path gains:

1. Gi(5)G2(5)G3(5)Ga(s5)Gs(s)G(s) (5.26a)
2. G1(5)Ga(5)G3(5)Ga(s)Gs(5)G7(s) (5.26b)

Nontouching loops. Loops that do not have any nodes in common. In Figure 5.20, loop
G, (s)H,(s) does not touch loops G4(s)H(s), G4(s)Gs(s)H5(s), and G4(s)Gg(s)H3(s).

Nontouching-loop gain. The product of loop gains from nontouching loops taken two, three,
four, or more at a time. In Figure 5.20 the product of loop gain G,(s)H,(s) and loop gain
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G4(s)H,(s) is a nontouching-loop gain taken two at a time. In summary, all three of the
nontouching-loop gains taken two at a time are

1. [Ga(s)H1(5)][Ga(s)H2(s)] (5.27a)
2. [Ga()H (5)][G4(5)Gs(s)H3(s)] (5.27b)
3. [Ga()H (5)][Ga(5)Ge(s)H3(s)] (5.27¢)

The product of loop gains [G4(s)Gs(s)H3(5)][G4(5)Ge(s)H3(s)] is not a nontouching-loop

gain since these two loops have nodes in common. In our example there are no nontouching-

loop gains taken three at a time since three nontouching loops do not exist in the example.
We are now ready to state Mason’s rule.

Mason’s Rule
The transfer function, C(s)/R(s), of a system represented by a signal-flow graph is

_C(s) _ i Tk

Gls) = & =1 (5.28)

where

k = number of forward paths

T} = the kth forward-path gain

A =1 —Zloop gains + X nontouching-loop gains taken two atatime — X
nontouching-loop gains taken three at a time + X nontouching-loop gains
taken four ata time — . . .

Ay = A — X loop gain terms in A that touch the kth forward path. In other words, Ay
is formed by eliminating from A those loop gains that touch the kth forward path.

Notice the alternating signs for the components of A. The following example will help
clarify Mason’s rule.

Example 5.7

Transfer Function via Mason’s Rule

PROBLEM: Find the transfer function, C(s)/R(s), for the signal-flow graph in Figure 5.21.

Gi(s) . Go(s) . G(s) . Gy(s) - Gs(s)

Va(s) Va(s) w Vi(s)

Hy(s)

R(s) O

C(s)

Ge(s)

FIGURE 5.21 Signal-flow
graph for Example 5.7 Hy(s)
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SOLUTION: First, identify the forward-path gains. In this example there is only one:

G1(5)G2(s5)G3(5)Ga(s)Gs(s) (5.29)
Second, identify the loop gains. There are four, as follows:
1. Gy(s)H (s) (5.30a)
2. G4(s)H(s) (5.30b)
3. G7(s)H4(s) (5.30c)
4. G(5)G3(5)G4(5)G5(5)Ge(5)G7(5)Gs(s) (5.30d)

Third, identify the nontouching loops taken two at a time. From Egs. (5.30) and
Figure 5.21, we can see that loop 1 does not touch loop 2, loop 1 does not touch
loop 3, and loop 2 does not touch loop 3. Notice that loops 1, 2, and 3 all touch loop 4.
Thus, the combinations of nontouching loops taken two at a time are as follows:

Loop 1 and loop 2: Gy(s)H(s)G4(s)H(s) (5.31a)
Loop 1 and loop 3: G,(s)H1(5)G7(s)H4(s) (5.31b)
Loop 2 and loop 3: G4(s)H2(5)G7(s)H4(s) (5.31¢)

Finally, the nontouching loops taken three at a time are as follows:
Loops 1, 2,and 3 Ga(s)H (s)Ga(s)H2(s)G7(5)Ha(s) (5.32)
Now, from Eq. (5.28) and its definitions, we form A and A;. Hence,
A =1—[Ga(s)H (s) + Ga(s)H(s) + G7(s)H4(s)
+ Ga2(5)G3(5)Ga(s5)Gs(s5)Ge(5)G7(s)Gs(s)]
+[G2(S)H] (S)G4(S)H2(S) + Gz(S)H] (S)G7(S)H4(S)
+ Gu()Ha(s)G7(s)Ha(s)]
—[Ga()H 1(5)Ga(s)H2(5)G7(s)Ha(s)] (5.33)
We form A; by eliminating from A the loop gains that touch the kth forward path:
Al =1- G7(S)H4(S) (534)

Expressions (5.29), (5.33), and (5.34) are now substituted into Eq. (5.28), yielding
the transfer function:

T1A1 _ [Gi(5)Ga(5)G3(5)Ga(5)Gs(s)][1 = Gr(s)Ha(s)]
A A

Since there is only one forward path, G(s) consists of only one term, rather than a sum of

terms, each coming from a forward path.

Gs) = (5.35)
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Skill-Assessment Exercise 5.4

PROBLEM: Use Mason’s rule to find the transfer function of the signal-flow diagram
shown in Figure 5.19(c). Notice that this is the same system used in Example 5.2 to find
the transfer function via block diagram reduction.

ANSWER:

T(s) = Gi(5)G3(s)[1 + Ga(s)]
[1+ G2(5)Ha(5) + Gi(5)Ga(s)H 1 (5)][1 + Gs(5)H3(s)]

The complete solution is at www.wiley.com/college/nise.
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5.6 Signal-Flow Graphs of State Equations

State Space In this section, we draw signal-flow graphs from state equations. At first this process will
“ help us visualize state variables. Later we will draw signal-flow graphs and then write
alternate representations of a system in state space.
Consider the following state and output equations:

X1 =2x; —5xp + 3x3 + 2r (5.36a)
Xy = —6x; — 2xp + 2x3 + 57 (5.36b)
X3 =x1 —3x —4x3 +Tr (5.36¢)

y = —4x; + 6x2 + 9x3 (5.36d)

First, identify three nodes to be the three state variables, x;, x,, and x3; also identify
three nodes, placed to the left of each respective state variable, to be the derivatives of the
state variables, as in Figure 5.22(a). Also identify a node as the input, r, and another node as
the output, y.

Next interconnect the state variables and their derivatives with the defining
integration, 1/s, as shown in Figure 5.22(b). Then using Egs. (5.36), feed to each node
the indicated signals. For example, from Eq. (5.36a), x| receives 2x; — 5xp + 3x3 + 2r, as
shown in Figure 5.22(c). Similarly, x, receives —6x; — 2x, + 2x3 + 57, as shown in
Figure 5.22(d), and x3 receives x; — 3x, — 4x3 + 7r, as shown in Figure 5.22(e). Finally,
using Eq. (5.36d), the output, y, receives —4x; + 6x, + 9x3, as shown in Figure 5.19(f), the
final phase-variable representation, where the state variables are the outputs of the
integrators.

R(s) O @) O O @) @) @) O 1)
sX53(s) X5(5) sX5(s) Xy(s5) sX,(s) X,(s)
(@)

1 1 1

s s K
RO o———o0 o———o0 o——-o0 Ox)
sX5(s) X3(.\~) sX5(s) X5(s) sX,(s) X,(s)

®)

1
s =5
O O

X5(5) sX5(s) X5(s)

R(s)

3
(©)

FIGURE 5.22 Stages of development of a signal-flow graph for the system of Egs. (5.36): a. Place
nodes; b. interconnect state variables and derivatives; ¢. form dx,/dt; (figure continues)
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R(s)

O ¥s)
X,(5)

R(s)

R(s)

1
)
FIGURE 5.22 (Continued) d. form dx,/dt; e. form dxs/dt; f. form output
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Skill-Assessment Exercise 5.5

Chapter 5  Reduction of Multiple Subsystems

PROBLEM: Draw a signal-flow graph for the following state and output equations:

-2 1 0 0
x=| 0 -3 1|x+|0fr
-3 -4 -5 1

y=[0 1 0]x

ANSWER: The complete solution is at www.wiley.com/college/nise.

In the next section, the signal-flow model will help us visualize the process of
determining alternative representations in state space of the same system. We will see that
even though a system can be the same with respect to its input and output terminals, the
state-space representations can be many and varied.

5.7 Alternative Representations in State Space

State Space

In Chapter 3, systems were represented in state space in phase-variable form. However,
system modeling in state space can take on many representations other than the phase-
variable form. Although each of these models yields the same output for a given input, an
engineer may prefer a particular one for several reasons. For example, one set of state
variables, with its unique representation, can model actual physical variables of a system,
such as amplifier and filter outputs.

Another motive for choosing a particular set of state variables and state-space model is
ease of solution. As we will see, a particular choice of state variables can decouple the
system of simultaneous differential equations. Here each equation is written in terms of only
one state variable, and the solution is effected by solving n first-order differential equations
individually.

Ease of modeling is another reason for a particular choice of state variables. Certain
choices may facilitate converting the subsystem to the state-variable representation by using
recognizable features of the model. The engineer learns quickly how to write the state and
output equations and draw the signal-flow graph, both by inspection. These converted
subsystems generate the definition of the state variables.

We will now look at a few representative forms and show how to generate the state-
space representation for each.

Cascade Form
We have seen that systems can be represented in state space with the state variables chosen
to be the phase variables, that is, variables that are successive derivatives of each other. This
is by no means the only choice. Returning to the system of Figure 3.10(a), the transfer
function can be represented alternately as

C(s) 24

R(s)  (s+2)(s+3)(s+4) (5.37)

Figure 5.23 shows a block diagram representation of this system formed by cascading each
term of Eq. (5.37). The output of each first-order system block has been labeled as a state
variable. These state variables are not the phase variables.

We now show how the signal-flow graph can be used to obtain a state-space
representation of this system. In order to write the state equations with our new set of
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RO | 5 e i S KON
SH2 [ X300 | s+3 | Xals) | s+4 | X(5)

state variables, it is helpful to draw a signal-flow graph first, using Figure 5.23 as a guide.
The signal flow for each first-order system of Figure 5.23 can be found by transforming each
block into an equivalent differential equation. Each first-order block is of the form

C,'(S) 1
= 5.38
Ri(s) (s+a) -38)
Cross-multiplying, we get
(s +a;)Ci(s) = Ri(s) (5.39)
After taking the inverse Laplace transform, we have
dei(t
50 | giei(t) = rit) (5.40)
dt
Solving for dc,(f)/dt yields
dei(t
cdg ) i) + rt) (5.41)

Figure 5.24(a) shows the implementation of Eq. (5.41) as a signal-flow graph. Here again, a
node was assumed for ¢;(¢) at the output of an integrator, and its derivative was formed at
the input.

Cascading the transfer functions shown in Figure 5.24(a), we arrive at the system
representation shown in Figure 5.24(h).> Now write the state equations for the new
representation of the system. Remember that the derivative of a state variable will be at
the input to each integrator:

i1 = —4x) + X0 (5.422)
= —3xm4as (5.42b)
X3 = — 2x3 + 24r (5.42¢)
1
1 s
R;(s) Ci(s)
sC;(s)
—q;
(@)
1 1 1
24 s 1 s 1 s 1
R(s) = - - C(s)
X3(s) X(s) Xi(s)
-2 -3 -4
)

FIGURE 5.24 a. First-order subsystem; b. Signal-flow graph for Figure 5.23 system

2 Note that node X5(s) and the following node cannot be merged, or else the input to the first integrator would be
changed by the feedback from X,(s), and the signal X3(s) would be lost. A similar argument can be made for X,(s)
and the following node.
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FIGURE 5.23 Representation
of Figure 3.10 system as
cascaded first-order systems
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The output equation is written by inspection from Figure 5.24(b):
y=c(t) = x (5.43)

The state-space representation is completed by rewriting Eqgs. (5.42) and (5.43) in vector-
matrix form:

4 1 0 0

x=| 0 =3 1|x+| 0fr (5.442)
0 0 -2 24

y=[1 0 0]x (5.44b)

Comparing Eqgs. (5.44) with Figure 5.24(b), you can form a vivid picture of the meaning of
some of the components of the state equation. For the following discussion, please refer
back to the general form of the state and output equations, Eqs. (3.18) and (3.19).

For example, the B matrix is the input matrix since it contains the terms that couple the
input, 7(7), to the system. In particular, the constant 24 appears in both the signal-flow graph
at the input, as shown in Figure 5.24(b), and the input matrix in Egs. (5.44). The C matrix is
the output matrix since it contains the constant that couples the state variable, x;, to the
output, c(¢). Finally, the A matrix is the system matrix since it contains the terms relative to
the internal system itself. In the form of Egs. (5.44), the system matrix actually contains the
system poles along the diagonal.

Compare Egs. (5.44) to the phase-variable representation in Eqs. (3.59). In that
representation, the coefficients of the system’s characteristic polynomial appeared along the
last row, whereas in our current representation, the roots of the characteristic equation, the
system poles, appear along the diagonal.

Parallel Form

Another form that can be used to represent a system is the parallel form. This form leads to
an A matrix that is purely diagonal, provided that no system pole is a repeated root of the
characteristic equation.

Whereas the previous form was arrived at by cascading the individual first-order
subsystems, the parallel form is derived from a partial-fraction expansion of the system
transfer function. Performing a partial-fraction expansion on our example system,
we get

C(s) 24 12 12
RO 0+2)643)0+4) (+2) 6+3) T 65+4)

(5.45)

Equation (5.45) represents the sum of the individual first-order
subsystems. To arrive at a signal-flow graph, first solve for C(s),

12 24

CO) = RO) (3~ RO 37+ R

(s) (5.46)

12
(s+4)
C(s)

and recognize that C(s) is the sum of three terms. Each term is a first-
order subsystem with R(s) as the input. Formulating this idea as a
signal-flow graph renders the representation shown in Figure 5.25.

Once again, we use the signal-flow graph as an aid to
obtaining the state equations. By inspection the state variables
are the outputs of each integrator, where the derivatives of the state

FIGURE 5.25 Signal-flow representation of Eq. (5.45)  variables exist at the integrator inputs. We write the state equations
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by summing the signals at the integrator inputs:

X = =2x +12r (5.47a)
5C2 = —3XQ —24r (547b)
X3 = —4x3 +12r (5.47¢c)

The output equation is found by summing the signals that give c(?):
y=c(t)=x1+x2+x3 (5.48)

In vector-matrix form, Eqs. (5.47) and (5.48) become

-2 0 0 12
X = 0 -3 0f(x+ |24 |r (5.49)
0O 0 -4 12
and
y=[1 1 1]x (5.50)

Thus, our third representation of the system of Figure 3.10(«a) yields a diagonal system
matrix. What is the advantage of this representation? Each equation is a first-order
differential equation in only one variable. Thus, we would solve these equations
independently. The equations are said to be decoupled.

Students who are using MATLAB should now run ch5p3 in Appendix B.
You wi Il Tearn how to use MATLAB to convert a transfer function to
state space in a specified form. The exercise solves the previous
example by representing the transfer function in Eq.(5.45)by the
state-space representation in parallel form of Eq.(5.49)

If the denominator of the transfer function has repeated real roots, the parallel form
can still be derived from a partial-fraction expansion. However, the system matrix will not
be diagonal. For example, assume the system

) (s+3)
R(s) ™ (s+172(s+2)

(5.51)

which can be expanded as partial fractions:

Cw_ 2 1 1
R(s)_(s+1)2 (s+1) (s+2)

(5.52)

Proceeding as before, the signal-flow graph for Eq. (5.52) is
shown in Figure 5.26. The term —1/(s + 1) was formed by creating
the signal flow from X,(s) to C(s). Now the state and output equations
can be written by inspection from Figure 5.26 as follows:

X1 =-x1 +x (5.53a)
Xy = - X + 2r (5.53b)
X3 = =23+ r (5.53¢)
1
y = c(t) = x1- 5)52 + X3 (5.53d)

MATLAB
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FIGURE 5.26 Signal-flow representation of Eq. (5.52)
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or, in vector-matrix form,

11 0 0

k=] 0 -1 o0fx+|2]r (5.542)
0 0 -2 1

y={1 _% 1}( (5.54b)

This system matrix, although not diagonal, has the system poles along the diagonal. Notice
the 1 off the diagonal for the case of the repeated root. The form of the system matrix is
known as the Jordan canonical form.

Controller Canonical Form

Another representation that uses phase variables is called the controller canonical form, so
named for its use in the design of controllers, which is covered in Chapter 12. This form is
obtained from the phase-variable form simply by ordering the phase variables in the reverse
order. For example, consider the transfer function

_C(s) s>+ Ts+2

G(s) = = 5.55
)= Re) = +97  265+ 24 (5:55)
The phase-variable form was derived in Example 3.5 as
X 0 1 07 [x
X | = 0 0 1 x| +|0]|r (5.56a)
X3 24 =26 -9 [x3
X1
y=[2 7 1]|x (5.56b)
X3
where y = ¢(f). Renumbering the phase variables in reverse order yields
jC3 0 1 0 X3 0
X | = 0 0 1 x| +|0]|r (5.57a)
X 24 =26 -9] [x 1
X3
y=1[2 7 1]|xn (5.57b)
X1

Finally, rearranging Eqs. (5.57) in ascending numerical order yields the controller canonical
form® as
Trylt 5.3

Use the following MATLAB and Xy -9 =26 -24] [x

Control System Toolbox 0 0 x|+ |0]|r (5.582)

statements to convert the transfer

function of Eq. (5.55) to the X3 1 0 X3

controller canonical state-space

representation of Egs. (5.58). X1

numgd1 7 2J; y=[1 7 2]|x (5.58b)

deng{1 9 26 24];

[Acc, Bcc, Ccc, Dccl. - -

=tf2sg(numg, deng)

—_

X | =

(e

A3

? Students who are using MATLAB to convert from transfer functions to state space using the command tf2ss will
notice that MATLAB reports the results in controller canonical form.
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FIGURE 5.27 Signal-flow graphs for obtaining forms for G(s) = C(s)/R(s) = (s> + 7s +2)/
(s* + 957 + 265 + 24): a. phase-variable form; b. controller canonical form

Figure 5.27 shows the steps we have taken on a signal-flow graph. Notice that the controller
canonical form is obtained simply by renumbering the phase variables in the opposite order.
Equations (5.56) can be obtained from Figure 5.27(a), and Egs. (5.58) from Figure 5.27(b).

Notice that the phase-variable form and the controller canonical form contain the
coefficients of the characteristic polynomial in the bottom row and in the top row,
respectively. System matrices that contain the coefficients of the characteristic polynomial
are called companion matrices to the characteristic polynomial. The phase-variable and
controller canonical forms result in a lower and an upper companion system matrix,
respectively. Companion matrices can also have the coefficients of the characteristic
polynomial in the left or right column. In the next subsection, we discuss one of these
representations.

Observer Canonical Form

The observer canonical form, so named for its use in the design of observers (covered in
Chapter 12), is a representation that yields a left companion system matrix. As an example,
the system modeled by Eq. (5.55) will be represented in this form. Begin by dividing all
terms in the numerator and denominator by the highest power of s, s°, and obtain

1 N 7 N 2

c iyl 4Z
% =9 SQ26 SB24 (5-59)

) 2y 45
s
Cross-multiplying yields
1 7 2 9 26 24
|:—+—2+—3:|R(S)= |:1 +—+—2+—3:| C(S) (5.60)
s s s s s s
Combining terms of like powers of integration gives
1 1 1

C(s) = S [R(s) —9C(s)] + 2 [7R(s) — 26C(s)] + 3 [2R(s) — 24C(s)] (5.61)

or

C(s) =

© | =

N

[R(s) — 9C(s)] + % ([7R(s) —260(s)] + L [2R(s) — 24C(s)]>} (5.62)

261
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FIGURE 5.28 Signal-flow
graph for observer canonical
form variables: a. planning;
b. implementation

Trylt 5.4

Use the following MATLAB
and Control System Toolbox
statements to convert the transfer
function of Eq. (5.55) to the
observer canonical state-space
representation of Egs. (5.65).

numgd1 7 2];

deng1 9 26 24];
[Acc, Bcc, Ccc, Dccl. - -
=tf2sg(numg, deng);

Aoc=transpose(Acc)
Boc=transpose(Ccc)
Coc=transpose(Bcc)

Chapter 5  Reduction of Multiple Subsystems

s s 1
RO O——0O——0——0———0——0——0cCv

®)

Equation (5.61) or (5.62) can be used to draw the signal-flow graph. Start with three
integrations, as shown in Figure 5.28(a).

Using Eq. (5.61), the first term tells us that output C(s) is formed, in part, by
integrating [R(s) — 9C(s)]. We thus form [R(s) — 9C(s)] at the input to the integrator closest
to the output, C(s), as shown in Figure 5.28(b). The second term tells us that the term
[7R(s) — 26C(s)] must be integrated twice. Now form [7R(s) — 26C(s)] at the input to the
second integrator. Finally, the last term of Eq. (5.61) says [2R(s) — 24C(s)] must be
integrated three times. Form [2R(s) — 24C(s)] at the input to the first integrator.

Identifying the state variables as the outputs of the integrators, we write the following
state equations:

X1 = =9 +x +r (5.63a)
Xy = —26x; +x3+7r (5.63b)
X3 = —24x, +2r (5.63¢)

The output equation from Figure 5.28(b) is
y=c(t) =x (5.64)

In vector-matrix form, Eqgs. (5.63) and (5.64) become

9 1 0 1

x=|-26 0 1|x+|7]|r (5.652)
24 0 0 2

y=[1 0 0]x (5.65b)

Notice that the form of Egs. (5.65) is similar to the phase-variable form, except that the
coefficients of the denominator of the transfer function are in the first column, and the
coefficients of the numerator form the input matrix, B. Also notice that the observer
canonical form has an A matrix that is the transpose of the controller canonical form, a B
vector that is the transpose of the controller canonical form’s C vector, and a C vector that is
the transpose of the controller canonical form’s B vector. We therefore say that these two
forms are duals. Thus, if a system is described by A, B, and C, its dual is described by
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Ap =A", Bp = C”, Cp = B”. You can verify the significance of duality by comparing the
signal-flow graphs of a system and its dual, Figures 5.27(b) and 5.28(b), respectively. The
signal-flow graph of the dual can be obtained from that of the original by reversing all
arrows, changing state variables to their derivatives and vice versa, and interchanging C(s)
and R(s), thus reversing the roles of the input and the output.

We conclude this section with an example that demonstrates the application of the
previously discussed forms to a feedback control system.

Example 5.8

State-Space Representation of Feedback Systems

PROBLEM: Represent the feedback control system shown in Figure 5.29

in state space. Model the forward transfer function in cascade form. k) ¢

SOLUTION: First we model the forward transfer function in cascade

E(s)

263

100(s + 5)
(s+2)(s+3)

C(s)

form. The gain of 100, the pole at —2, and the pole at —3 are shown cascaded
in Figure 5.30(a). The zero at —5 was obtained using the method for
implementing zeros for a system represented in phase-variable form,
as discussed in Section 3.5.

Next add the feedback and input paths, as shown in Figure 5.30(b). Now, by
inspection, write the state equations:

Example 5.8

X =-3x14+x2 (5.66a)

Xy = —2x3 + 100(r — ¢) (5.66b)
But, from Figure 5.30(b),

c=5x14+(—3x1)=2x1+x, (5.67)

Substituting Eq. (5.67) into Eq. (5.66b), we find the state equations for the system:

X1 = —=3x + X (5.68a)
Xy = =200x; — 102x, + 1007 (5.68b)
1
1 1
100 s 1 s
Es) O O O O C(s)
Uz(f)
R(s) O

FIGURE 5.29 Feedback control system for

FIGURE 5.30 Creating a
signal-flow graph for the
Figure 5.29 system: a. forward
transfer function; b. complete
system
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The output equation is the same as Eq. (5.67), or

y=c(t) =2x +x, (5.69)
In vector-matrix form
-3 1 0
- [—200 —102]’“r [moy (5.702)
y=[2 1]x (5.70b)

Skill-Assessment Exercise 5.6

PROBLEM: Represent the feedback control system shown in Figure 5.29 in state space.
Model the forward transfer function in controller canonical form.

. -105 =506 1
X = X+ r
1 0 0

=[100 500]x

ANSWER:

The complete solution is at www.wiley.com/college/nise.

In this section, we used transfer functions and signal-flow graphs to represent systems
in parallel, cascade, controller canonical, and observer canonical forms, in addition to the
phase-variable form. Using the transfer function C(s)/R(s) = (s + 3)/[(s + 4)(s + 6)] as an
example, Figure 5.31 compares the aforementioned forms. Notice the duality of the controller
and observer canonical forms, as demonstrated by their respective signal-flow graphs and state

Form

Transfer function Signal-flow diagram State equations

Phase
variable

Parallel

1
1 #(s+3) R(s) O O m Cts) k=

0

0 1}
X+

- . r
(52 + 105 +24) X,(5) ] X,(s) —24-10
y=[3 11x

1

-1/2 32
(s+4) s+6

FIGURE 5.31 State-space forms for C(s)/R(s) = (s + 3)/[(s + 4)(s + 6)]. Note: y = ¢(¢) (figure continues)
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Form Transfer function Signal-flow diagram State equations

1

! 1 ! 3 X -6 1 X+ 0
1 (s +3) 1 s $ =l o -4 1"
Cascade * R(s)O O O O C(s)
G114 (546 UXZ(” AL y=[3 1]x
-4 -6
- -10 24 4+ 1 p
Controller 1 1 oo 0
: — % (s+3)
canonical (s2+ 105 + 24) y=11 30x
.3 101 1
Observer xlO s.24 X=14 o*|3]"
canonical l+5 + 57 y=[1 0]x

FIGURE 5.31 (Continued)

equations. In the next section, we will explore the possibility of transforming between
representations without using transfer functions and signal-flow graphs.

5.8 Similarity Transformations

In Section 5.7, we saw that systems can be represented with different state variables even
though the transfer function relating the output to the input remains the same. The various
forms of the state equations were found by manipulating the transfer function, drawing a
signal-flow graph, and then writing the state equations from the signal-flow graph. These
systems are called similar systems. Although their state-space representations are different,
similar systems have the same transfer function and hence the same poles and eigenvalues.

We can make transformations between similar systems from one set of state equations
to another without using the transfer function and signal-flow graphs. The results are
presented in this section along with examples. Students who have not broached this subject
in the past or who wish to refresh their memories are encouraged to study Appendix L at
www.wiley.com/college/nise for the derivation. The result of the derivation states: A system
represented in state space as

x = Ax + Bu (5.71a)

y = Cx +Du (5.71b)

can be transformed to a similar system,

z=P 'APz+ P 'Bu (5.72a)

y = CPz + Du (5.72b)
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where, for 2-space,

P=[U,U,]= """ (5.72¢)
P21 P2
sl LU I (5.72d)
Py Pn||22
and
z=P'x (5.72¢)

Thus, P is a transformation matrix whose columns are the coordinates of the basis vectors
of the z;z, space expressed as linear combinations of the x;x, space. Let us look at
an example.

Similarity Transformations on State Equations

PROBLEM: Given the system represented in state space by Egs. (5.73),

0 1 0 0

x=| 0 0 1|x+|0]|u (5.73a)
-2 -5 -7 1

y=[1 0 0]x (5.73b)

transform the system to a new set of state variables, z, where the new state variables are
related to the original state variables, X, as follows:

2= 2% (5.74a)
20 =3x1 +2x (5.74b)
73 = X1 +4x; + 5x3 (5.74¢)

SOLUTION: Expressing Eqgs. (5.74) in vector-matrix form,
2 00
z=|3 2 0|x=P'x (5.75)
1 4 5

Using Egs. (5.72) as a guide,

2 0 0 0 1 0 05 0

P'AP= |3 2 0 0 0 1|[-075 05

1 4 5|2 -5 -7 05 04 02

—-1.5 1 0

=|-125 07 04 (5.76)
| -25 04 —62
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2 0 07170 0
P'B=|3 2 0| |0]|=]0 (5.77)
1 4 5] |1 5
0.5 0 0
CP=[1 0 0] |-075 05 0 [=[05 0 O] (5.78)
0.5 —04 02

Therefore, the transformed system is

~15 1 0 0

i=|-125 07 04|z+ |0 |u (5.79a)
255 04 -62 5

y=[05 0 0OJz (5.79b)

Students who are using MATLAB should now run ch5p4 in Appendix B.
You will learn how to perform similarity transformations. This
exercise uses MATLAB to do Example 5.9.
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MATLAB

Thus far we have talked about transforming systems between basis vectors in a
different state space. One major advantage of finding these similar systems is apparent in the
transformation to a system that has a diagonal matrix.

Diagonalizing a System Matrix

In Section 5.7, we saw that the parallel form of a signal-flow graph can yield a diagonal
system matrix. A diagonal system matrix has the advantage that each state equation is a
function of only one state variable. Hence, each differential equation can be solved
independently of the other equations. We say that the equations are decoupled.

Rather than using partial fraction expansion and signal-flow graphs, we can decouple a
system using matrix transformations. If we find the correct matrix, P, the transformed system
matrix, P"'AP, will be a diagonal matrix. Thus, we are looking for a transformation to another
state space that yields a diagonal matrix in that space. This new state space also has basis
vectors that lie along its state variables. We give a special name to any vectors that are collinear
with the basis vectors of the new system that yields a diagonal system matrix: they are called
eigenvectors. Thus, the coordinates of the eigenvectors form the columns of the transformation
matrix, P, as we demonstrate in Eq. L.7 in Appendix L at www.wiley.com/college/nise.

First, let us formally define eigenvectors from another perspective and then show that
they have the property just described. Then we will define eigenvalues. Finally, we will
show how to diagonalize a matrix.

Definitions
Eigenvector. The eigenvectors of the matrix A are all vectors, x; # 0, which under the
transformation A become multiples of themselves; that is,

AXi = ﬂ,'Xi (5'80)

where A;’s are constants.

Figure 5.32 shows this definition of eigenvectors. If Ax is not collinear with x after the
transformation, as in Figure 5.32(a), x is not an eigenvector. If Ax is collinear with x after
the transformation, as in Figure 5.32()), x is an eigenvector.
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FIGURE 5.32 To be an
eigenvector, the transformation
Ax must be collinear with x;
thus, in (@), X is not an
eigenvector; in (), it is.

Example 5.10
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X2 X2
Ax
X

/V

> X

(a) ®)

Eigenvalue. The eigenvalues of the matrix A are the values of 4; that satisfy
Eq. (5.80) for x; #0.

To find the eigenvectors, we rearrange Eq. (5.80). Eigenvectors, X;, satisfy
0=>GAI-A)x; (5.81)

Solving for x; by premultiplying both sides by (41— A)™" yields
adj(4,I—A)

= (1I=A) 0= {2
X =(l-8)70= oy (5.82)

Since x; # 0, a nonzero solution exists if
det(Z,I-A)=0 (5.83)

from which 4;, the eigenvalues, can be found.
We are now ready to show how to find the eigenvectors, x;. First we find the
eigenvalues, 4;, using det(4,I — A) = 0, and then we use Eq. (5.80) to find the eigenvectors.

Finding Eigenvectors

PROBLEM: Find the eigenvectors of the matrix

=3 1
A:{ ) _3] (5.84)

SOLUTION: The eigenvectors, x;, satisfy Eq. (5.81). First, use det(4,1 — A) = 0 to find
the eigenvalues, 4;, for Eq. (5.81):

A0 -3 1

0 2 1 -3

A+3 -1
-1 A+3
=12+61+8 (5.85)

det(Al — A) =

from which the eigenvalues are 4 = -2, and —4.
Using Eq. (5.80) successively with each eigenvalue, we have

AXi = ),Xi

X 5.86
==L ”
X2 X2
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or
=3x1 +x = —2x3 (5.87a)
X1 — 3)62 = —2)(2 (587]3)
from which x; = x,. Thus,
X = H (5.88)
c

Using the other eigenvalue, —4, we have

C
X = [ 1 (5.89)
—c

Using Egs. (5.88) and (5.89), one choice of eigenvectors is

—1 d = ! 5.90
X1—1 and x; = . (5.90)
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We now show that if the eigenvectors of the matrix A are chosen as the basis vectors
of a transformation, P, the resulting system matrix will be diagonal. Let the transformation
matrix P consist of the eigenvectors of A, x;.

P = [X17 X27 X37 ct Xn] (591)

Since x; are eigenvectors, AX; = 4;X;, which can be written equivalently as a set of equations
expressed by

AP =PD (5.92)
where D is a diagonal matrix consisting of 4;s, the eigenvalues, along the diagonal, and P is
as defined in Eq. (5.91). Solving Eq. (5.92) for D by premultiplying by P~!, we get

D =P 'AP (5.93)

which is the system matrix of Eq. (5.72).

In summary, under the transformation P, consisting of the eigenvectors of the system
matrix, the transformed system is diagonal, with the eigenvalues of the system along the
diagonal. The transformed system is identical to that obtained using partial-fraction
expansion of the transfer function with distinct real roots.

In Example 5.10, we found eigenvectors of a second-order system. Let us continue
with this problem and diagonalize the system matrix.

Diagonalizing a System in State Space

PROBLEM: Given the system of Egs. (5.94), find the diagonal system that is similar.

= ! : 5.94
x—[ | _3}x+[2]u (5.94a)

y=[2 3]x (5.94b)
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SOLUTION: First find the eigenvalues and the eigenvectors. This step was performed in
Example 5.10. Next form the transformation matrix P, whose columns consist of the
eigenvectors.
P= ! ! (5.95)
Tl -t '
Finally, form the similar system’s system matrix, input matrix, and output matrix,
respectively.
/2 1/27[-3 111 1 -2 0
P'AP = = 5.96
{1/2 —1/2H 1 —3H1 —1} { 0 —4] -962)
1/2 17271 3/2
P'B= = 5.96b
Ry | R 200
1 1
CP=[2 3] ) ! =[5 —1] (5.96¢)
Substituting Eqgs. (5.96) into Egs. (5.72), we get
. -2 0 3/2
7= z+ u (5.97a)
0 —4 -1/2
y=[5 -1]z (5.97b)
Notice that the system matrix is diagonal, with the eigenvalues along the diagonal.

MATLAB Students who are using MATLAB should now run ch5p5 in Appendix B.
m Thisproblem, which uses MATLAB to diagonalize asystem, issimilar
(but not identical)to Example 5.11.

Skill-Assessment Exercise 5.7

PROBLEM: For the system represented in state space as follows:

<[ I}

y=[1 4]x
convert the system to one where the new state vector, z, is
3 =2
Z= X
1 —4

ANSWER:
. |65 -85 -3
7= Z + u
9.5 -11.5 -11
y=[08 -14]z

The complete solution is at www.wiley.com/college/nise.
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Skill-Assessment Exercise 5.8

PROBLEM: For the original system of Skill-Assessment Exercise 5.7, find the
diagonal system that is similar.

-2 o0 18.39
7= Z+ u
0 -3 20

y=[-2121 2.6]z

ANSWER:

Trylt 5.5

Use the following MATLAB and
Control System Toolbox statements
to do Skill-Assessment Exercise 5.8.

A1 3; -4 -6];

B{1; 3];

Ccq1 47;

D=0;S=ss(A, B, C, D);
Sd=canon(S,"modal®)

The complete solution is at www.wiley.com/college/nise.
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In this section, we learned how to move between different state-space representations
of the same system via matrix transformations rather than transfer function manipulation
and signal-flow graphs. These different representations are called similar. The characteristics
of similar systems are that the transfer functions relating the output to the input are the same,
as are the eigenvalues and poles. A particularly useful transformation was converting a
system with distinct, real eigenvalues to a diagonal system matrix.

We now summarize the concepts of block diagram and signal-flow representations
of systems, first through case study problems and then in a written summary. Our
case studies include the antenna azimuth position control system and the Unmanned
Free-Swimming Submersible vehicle (UFSS). Block diagram reduction is important for
the analysis and design of these systems as well as the control systems on board Alvin
(Figure 5.33), used to explore the wreckage of the Titanic 13,000 feet under the Atlantic in
July 1986 (Ballard, 1987).

© Rob Catanach, Woods Hole Oceanographic Institution.

FIGURE 5.33 Alvin, a manned submersible, explored the wreckage of the Titanic with a tethered
robot, Jason Junior.


www.wiley.com/college/nise

272

Design

State Space

State Space

Chapter 5  Reduction of Multiple Subsystems

Antenna Control: Designing a Closed-Loop Response
This chapter has shown that physical subsystems can be modeled mathematically with
transfer functions and then interconnected to form a feedback system. The interconnected
mathematical models can be reduced to a single transfer function representing the system
from input to output. This transfer function, the closed-loop transfer function, is then used
to determine the system response.

The following case study shows how to reduce the subsystems of the antenna
azimuth position control system to a single, closed-loop transfer function in order to
analyze and design the transient response characteristics.

PROBLEM: Given the antenna azimuth position control system shown on the front
endpapers, Configuration 1, do the following:

a. Find the closed-loop transfer function using block diagram reduction.

b. Represent each subsystem with a signal-flow graph and find the state-space
representation of the closed-loop system from the signal-flow graph.

c. Use the signal-flow graph found in b along with Mason’s rule to find the closed-loop
transfer function.

d. Replace the power amplifier with a transfer function of unity and evaluate the
closed-loop peak time, percent overshoot, and settling time for K = 1000.

e. For the system of d, derive the expression for the closed-loop step response of the
system.

f. For the simplified model of d, find the value of K that yields a 10% overshoot.

SOLUTION: Each subsystem’ transfer function was evaluated in the case study in
Chapter 2. We first assemble them into the closed-loop, feedback control system block
diagram shown in Figure 5.34(a).

a. The steps taken to reduce the block diagram to a single, closed-loop transfer function
relating the output angular displacement to the input angular displacement are shown in
Figure 5.34(a—d). In Figure 5.34(b), the input potentiometer was pushed to the right
past the summing junction, creating a unity feedback system. In Figure 5.34(c), all the
blocks of the forward transfer function are multiplied together, forming the equivalent
forward transfer function. Finally, the feedback formula is applied, yielding the
closed-loop transfer function in Figure 5.34(d).

b. In order to obtain the signal-flow graph of each subsystem, we use the state equations
derived in the case study of Chapter 3. The signal-flow graph for the power amplifier is
drawn from the state equations of Eqgs. (3.87) and (3.88), and the signal-flow graph of
the motor and load is drawn from the state equation of Eq. (3.98). Other subsystems are
pure gains. The signal-flow graph for Figure 5.34(a) is shown in Figure 5.35 and
consists of the interconnected subsystems.

The state equations are written from Figure 5.35. First define the state variables as the
outputs of the integrators. Hence, the state vector is

X1
X= | x (5.98)

€aq
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Input Power Motor, load,
potentiometer Preamplifier amplifier and gears
0i(s) 1 + o L2 100 |Ed)| 02083 | 0o
™ s+ 100 s(s + 1.71)
1
A
Output
potentiometer
(@)
Preamplifier Power Motor, load,
and potentiometers  amplifier and gears
0i(s) + kK [ ] 100 |Ea) | 02083 | Ools)
X z s+ 100 s(s+ 1.71)
®)
0;(s 0,(s
ks 663 K o), FIGURE 5.34 Block diagram
s(s + 1.71)(s + 100) .
= reduction for the antenna
azimuth position control
(¢) system: a. original; b. pushing
input potentiometer to the right
0,(s) 6.63 K 0,(s) past the. summing junction;
3 ) c. showing equivalent forward
s+ 101.71s* + 171s + 6.63 K .
transfer function; d. final
@) closed-loop transfer function
2 100 3 2.083 ! : 0.1
K § d 5 s b
Hi (s) O - O : O O . O - O 0{1 (s)
U@(x) szm X\(s)
100 =171 FIGURE 5.35 Signal-flow

Using Figure 5.35, we write the state equations by inspection:

X1 = + X7
Xy = —1.71x, +2.083¢,
e, = —3.18Kx; — 100e, + 31.8K0;

along with the output equation,

y= 90 = 0.1x1
where 1/z = 0.318.
In vector-matrix form,
0 1 0 0
X = 0 —-1.71 2.083 [x+ 0 0;
—-3.18K 0 —100 31.8K
y=[01 0 O0]x

graph for the antenna azimuth
position control system

(5.992)
(5.99b)
(5.99¢)

(5.100)

(5.101a)

(5.101b)
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. We now apply Mason’s rule to Figure 5.35 to derive the closed-loop transfer function of

the antenna azimuth position control system. First find the forward-path gains. From
Figure 5.35 there is only one forward-path gain:

1= (oo (eosn(2) (DYoo= i
T S S S S

Next identify the closed-loop gains. There are three: the power amplifier loop, Gy,(s),
with e, at the output; the motor loop, G,(s), with x; at the output; and the entire system
loop, Gy3(s), with 6, at the output.

—100
Gri(s) = — (5.103a)
-1.71
Gpa(s) = — (5.103b)
1 1\ /1 -1 —6.63K
G3(s) = (K)(100) (—) (2.083) (—) (—) (0.1) (—) = 5 (5.103c¢)
s s)\s P2 s
Only Gy (s) and G;,(s) are nontouching loops. Thus, the nontouching-loop gain is
171
Gri(5)Gra(s) = - (5.104)

Forming A and A; in Eq. (5.28), we have

A = 1—=[Gpi(s) + Gra(s) + Gr3(s)] + [GL1(5)Gra(s)]

100 1.71 6.63K 171
+—+—+ —

. (5.105)

1

s 53 s

and
A =1 (5.106)

Substituting Eqs. (5.102), (5.105), and (5.106) into Eq. (5.28), we obtain the closed-
loop transfer function as

C(S) _ T]A] 6.63K

(5.107)

. Replacing the power amplifier with unity gain and letting the preamplifier gain, K, in

Figure 5.34(b) equal 1,000 yield a forward transfer function, G(s), of

66.3

=s(s+ 1.71) (>-108)

G(s)

Using the feedback formula to evaluate the closed-loop transfer function, we obtain

66.3

T) = 377715 1 66.3

(5.109)

From the denominator, w, = 8.14, { = 0.105. Using Egs. (4.34), (4.38), and (4.42),
the peak time = 0.388 second, the percent overshoot =71.77%, and the settling
time = 4.68 seconds.
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e. The Laplace transform of the step response is found by first multiplying Eq. (5.109)
by 1/s, a unit-step input, and expanding into partial fractions:

3 66.3 _1 s+1T1
TS24+ 17154+ 66.3) s s24 1.71s+66.3

1 (s+0.855) +0.106(8.097)

C(s)

=— 5.110
s (s+0.855)" + (8.097) ©-110)
Taking the inverse Laplace transform, we find
c(t) =1 — e85 (cos 8.097¢ + 0.106 sin 8.097) (5.111)
f. For the simplified model we have
0.0663K
G(s)=—F7— 5.112
© s(s+ 1.71) ( )
from which the closed-loop transfer function is calculated to be
0.0663K
T(s) (5.113)

T &2 +1.71s + 0.0663K

From Eq.(4.39) a 10% overshoot yields { =0.591. Using the denominator of
Eq. (5.113), @, = 1/0.0663K and 2{w, = 1.71. Thus,
1.71

24/0.0663K -

0.591 (5.114)

from which K = 31.6.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives: Referring to the antenna azimuth position control system shown on the front
endpapers, Configuration 2, do the following:

a. Find the closed-loop transfer function using block diagram reduction.

b. Represent each subsystem with a signal-flow graph and find the state-space
representation of the closed-loop system from the signal-flow graph.

c. Use the signal-flow graph found in (b) along with Mason’s rule to find the closed-loop
transfer function.

d. Replace the power amplifier with a transfer function of unity and evaluate the
closed-loop percent overshoot, settling time, and peak time for K = 5.

e. For the system used for (d), derive the expression for the closed-loop step response.

f. For the simplified model in (d), find the value of preamplifier gain, K, to yield 15%
overshoot.

UFSS Vehicle: Pitch-Angle Control Representation
We return to the Unmanned Free-Swimming Submersible (UFSS) vehicle introduced in
the case studies in Chapter 5 (Johnson, 1980). We will represent in state space the pitch-
angle control system that is used for depth control.

PROBLEM: Consider the block diagram of the pitch control loop of the UFSS vehicle
shown on the back endpapers. The pitch angle, 6, is controlled by a commanded pitch
angle, 6,, which along with pitch-angle and pitch-rate feedback determines the elevator
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deflection, 6., which acts through the vehicle dynamics to determine the pitch angle. Let
K| = K, = 1 and do the following:

a. Draw the signal-flow graph for each subsystem, making sure that pitch angle, pitch
rate, and elevator deflection are represented as state variables. Then interconnect the
subsystems.

b. Use the signal-flow graph obtained in a to represent the pitch control loop in state
space.

SOLUTION:

a. The vehicle dynamics are split into two transfer functions, from which the signal-
flow graph is drawn. Figure 5.36 shows the division along with the elevator
actuator. Each block is drawn in phase-variable form to meet the requirement that
particular system variables be state variables. This result is shown in Figure 5.37(a).
The feedback paths are then added to complete the signal-flow graph, which is
shown in Figure 5.37(b).

FIGURE 5.36 Block diagram el . .
. actuator Vehicle dynamics
of the UFSS vehicle's elevator 5(5) 5.05)
5 g o \S AL =
and vehicle dynamics, from A R 0.125(s +0.435) N 1 | 06)
which a signal-flow graph can s+2 (s+1.23) 5% +0.2265 +0.0169
be drawn

-0.0169
(a)

FIGURE 5.37 Signal-flow
graph representation of the
UFSS vehicle’s pitch control
system: a. without position
and rate feedback; b. with
position and rate feedback.
(Note: Explicitly required
variables are x| = 0,

X, =d0/dt, and x4 = 5,.) (®)
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b. By inspection, the derivatives of state variables x; through x4 are written as

X = X2 (5.115a)
Xy = —0.0169x; — 0.226x; + 0.435x3 — 1.23x3 — 0.125x4 (5.115b)
X3 = —1.23x3 — 0.125x4 (5.115¢)
X4 = 2x1 + 2x — 2x4 —20c (5.115d)

Finally, the output y = x;.
In vector-matrix form the state and output equations are

0 1 0 0 0
—-0.0169 —0.226 -0.795 -0.125 0

X = X+ 0. (5.116a)
0 0 123  -0.125 0
2 2 0 -2 )

y=[1 0 0 0]x (5.116b)

CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives. The UFSS vehicle steers via the heading control system shown in
Figure 5.38 and repeated on the back endpapers. A heading command is the input.
The input and feedback from the submersible’s heading and yaw rate are used to
generate a rudder command that steers the submersible (Johnson, 1980). Let K| =
K> =1 and do the following:

a. Draw the signal-flow graph for each subsystem, making sure that heading angle, yaw
rate, and rudder deflection are represented as state variables. Then interconnect the
subsystems.

b. Use the signal-flow graph obtained in a to represent the heading control loop in state
space.

c. Use MATLAB to represent the closed-loop UFSS heading control
system in state space in controller canonical form.

Commanded Heading
Heading Heading rudder Rudder Rudder Vehicle (yaw)
command gain deflection actuator deflection dynamics rate Heading
Vel + + 6:.) 2 5() | -0125(s+0437) (VO | |
Q= -« =X 542 (+120G+0193)[ | 5

Yaw

rate

sensor

_Kzs p—
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FIGURE 5.38 Block
diagram of the heading
control system for the
UESS vehicle
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One objective of this chapter has been for you to learn how to represent multiple subsystems
via block diagrams or signal-flow graphs. Another objective has been to be able to reduce
either the block diagram representation or the signal-flow graph representation to a single
transfer function.

We saw that the block diagram of a linear, time-invariant system consisted of four
elements: signals, systems, summing junctions, and pickoff points. These elements were
assembled into three basic forms: cascade, parallel, and feedback. Some basic operations
were then derived: moving systems across summing junctions and across pickoff points.

Once we recognized the basic forms and operations, we could reduce a complicated
block diagram to a single transfer function relating input to output. Then we applied the
methods of Chapter 4 for analyzing and designing a second-order system for transient
behavior. We saw that adjusting the gain of a feedback control system gave us partial control
of the transient response.

The signal-flow representation of linear, time-invariant systems consists of
two elements: nodes, which represent signals, and lines with arrows, which represent
subsystems. Summing junctions and pickoff points are implicit in signal-flow graphs. These
graphs are helpful in visualizing the meaning of the state variables. Also, they can be drawn
first as an aid to obtaining the state equations for a system.

Mason's rule was used to derive the system’s transfer function from the signal-flow
graph. This formula replaced block diagram reduction techniques. Mason’s rule seems
complicated, but its use is simplified if there are no nontouching loops. In many of these
cases, the transfer function can be written by inspection, with less labor than in the block
diagram reduction technique.

Finally, we saw that systems in state space can be represented using different sets of
variables. In the last three chapters, we have covered phase-variable, cascade, parallel,
controller canonical, and observer canonical forms. A particular representation may be
chosen because one set of state variables has a different physical meaning than another set,
or because of the ease with which particular state equations can be solved.

In the next chapter, we discuss system stability. Without stability we cannot begin to
design a system for the desired transient response. We will find out how to tell whether a
system is stable and what effect parameter values have on a system’s stability.

Review Questions

1. Name the four components of a block diagram for a linear, time-invariant system.
2. Name three basic forms for interconnecting subsystems.

3. For each of the forms in Question 2, state (respectively) how the equivalent transfer
function is found.

4. Besides knowing the basic forms as discussed in Questions 2 and 3, what other
equivalents must you know in order to perform block diagram reduction?

5. For a simple, second-order feedback control system of the type shown in Figure 5.14,
describe the effect that variations of forward-path gain, K, have on the transient
response.

6. For a simple, second-order feedback control system of the type shown in Figure 5.14,
describe the changes in damping ratio as the gain, K, is increased over the underdamped
region.

7. Name the two components of a signal-flow graph.

8. How are summing junctions shown on a signal-flow graph?



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Problems

. If a forward path touched all closed loops, what would be the value of A;?

Name five representations of systems in state space.

Which two forms of the state-space representation are found using the same method?
Which form of the state-space representation leads to a diagonal matrix?

When the system matrix is diagonal, what quantities lie along the diagonal?

What terms lie along the diagonal for a system represented in Jordan canonical form?

What is the advantage of having a system represented in a form that has a diagonal
system matrix?

Give two reasons for wanting to represent a system by alternative forms.

For what kind of system would you use the observer canonical form?
Describe state-vector transformations from the perspective of different bases.
What is the definition of an eigenvector?

Based upon your definition of an eigenvector, what is an eigenvalue?

What is the significance of using eigenvectors as basis vectors for a system
transformation?

27

O

State Space

State Space

State Space

State Space

State Space

State Space

State Space

State Space

State Space

State Space

State Space

State Space

Problems
1. Reduce the block diagram shown in Figure P5.1 to a Hl
single transfer function, 7(s) = C(s)/R(s) Use the
following methods: R(s) 47 P B + o .
a. Block diagram reduction [Section: 5.2] ! 2 +§ 3 ®

R(s) + 1 |+ 50 . + C(s)
A §2 = s+1 A G1
R(s) + < G
2 5 X
S
G3
FIGURE P5.1
G4
2. Find the closed-loop transfer function, T'(s) = C(s)/R(s)

b. MATLAB MATLAB

[ ML | FIGURE P5.2

3. Find the equivalent transfer function, 7(s) = C(s)/R(s),

for the system shown in Figure P5.3. [Section: 5.2]

G7

for the system shown in Figure P5.2, using block diagram

reduction. [Section: 5.2] FIGURE P5.3
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4. Reduce the system shown in Figure P5.4 to a single
transfer function, T(s) = C(s)/R(s). [Section: 5.2]

G3

+
R(s) + + + C(s)

Gl G2

G4

H

FIGURE P5.4

5. Find the transfer function, T(s) = C(s)/R(s), for the
system shown in Figure P5.5. Use the following
methods:

a.
b.

R(s) +

Block diagram reduction [Section: 5.2]

MATLAB. Use the following MATLAB
transfer functions: m
G1(s)=1/(s+7),G2(s) =1/(s? +2s+3),
Gs(s)=1/(s+4),6a(s)=1/s,
Gs(s)=5/(s+7),Ge(s) = 1/(s? + 5s + 10),
G7(s)=3/(s+2),Gs(s)=1/(s+6).

Hint: Use the append and connect com-
mands in MATLAB’'s Control System
Toolbox.

6. Reduce the block diagram shown in Figure P5.6 to a

single block, T(s) = C(s)/R(s). [Section: 5.2]

Gg

R(s) +_§§ G

Gs

C(s)

G2

&

Go

G4

G3

FIGURE P5.6

i

7. Find the unity feedback system that is equivalent to

the system shown in Figure P5.7. [Section: 5.2]

R(S) +«

C(s)‘

Gg
+
G1 : G3 4 I
) FIGURE P5.7
T G G4
8. Given the block diagram of a system shown in
Gs Figure P5.8, find the transfer function G(s) = 0(s)/
011(s). [Section: 5.2]
FIGURE P5.5
011 (5) + & 0
)y Gi(s) = Gi(s) = Gx(s) 219,
Gals) = Gs(s) o Gyls) |—— 229,

FIGURE P5.8



9. Reduce the block diagram shown in Figure P5.9
to a single transfer function, T(s) = C(s)/R(s).
[Section: 5.2]

G1
R(s) +x + +<
G Gs —>®—> Ge

4]

- +r +
G3

G4

G7

FIGURE P5.9
10. Reduce the block diagram shown in Figure P5.10 to a

single block representing the transfer function,
T(s) = C(s)/R(s). [Section: 5.2]
Hi(s) |-
/ H(s)
-
R(_s)i®_> Gy(s) = Gos) Gy [ S
-A _ 42
Hy(5) |
Hy(s)[=
FIGURE P5.10

11. For the system shown in Figure P5.11, find the percent
overshoot, settling time, and peak time for a step input if
the system’s response is underdamped. (Is it? Why?)
[Section: 5.3]

R(s) + E(s) 225
% s(s + 15)

FIGURE P5.11

Ces)_

12. For the system shown in Figure P5.12, find the output,
c(1), if the input, (), is a unit step. [Section: 5.3]

R(s) + E(s) 4
/% s(s+3)

FIGURE P5.12

C(s)
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13. For the system shown in Figure P5.13, find the poles
of the closed-loop transfer function, 7(s) = C(s)/R(s).
[Section: 5.3]

R(s) C(s)

=

FIGURE P5.13

14. For the system of Figure P5.14, find the value of
K that yields 10% overshoot for a step input.
[Section: 5.3]

R(s) + K
s(s+30)

C(s)

FIGURE P5.14

15. For the system shown in Figure P5.15, find K and «a
to yield a settling time of 0.12 second and a 20%
overshoot. [Section: 5.3]

R(s) + E(s) K
% s(s +a)

FIGURE P5.15

C(s)

16. For the system of Figure P5.16, find the values of K,
and K, to yield a peak time of 1 second and a settling
time of 2 seconds for the closed-loop system’s step
response. [Section: 5.3]

+ 8 50
Ky s(s+1)

L KzS -t

FIGURE P5.16

R(s) + C(s) -~

17. Find the following for the system shown in Figure P5.17:
[Section: 5.3]
a. The equivalent single block that represents the transfer
function, T'(s) = C(s)/R(s).
(problem continues)
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(Continued)

b. The damping ratio, natural frequency, percent
overshoot, settling time, peak time, rise time,
and damped frequency of oscillation.

R(s) + C(s)

s+12 s

+ g

VA
FIGURE P5.17

18. For the system shown in Figure P5.18, find {, w,,

percent overshoot, peak time, rise time, and settling
time. [Section: 5.3]

R(s) + ?E(s)

FIGURE P5.18

19. A motor and generator are set up to drive a load as shown
in Figure P5.19. If the generator output voltage is
e (t) = Kyif(t), where i/ () is the generator’s field current,
find the transfer function G(s) = 6,(s)/E;(s). For the
generator, Ky =2€Q. For the motor, K; =2N-m/A,
and K, = 2 V-s/rad.

Generator
1

10 0.2s

7350 C(s)

s(s + 100)

Motor

e () Jg= 0.75 kg—m2
o)

:

4 N-m-s/rad

10
| 0,
|
T
} 20 4 kg-m?

FIGURE P5.19

20. Find G(s) = Ey(s)/T(s) for the system shown in
Figure P5.20.
()

|

10V
210
N, e1) %l Turn pot
— c

+
Buffer _|

amplifier

gain =1 R eo(d)

1

FIGURE P5.20

Reduction of Multiple Subsystems

21. Find the transfer function G(s) = E,(s)/T(s) for the
system shown in Figure P5.21.

T(1)
‘ Jy =0.25 kg-m?2 ‘ 5
K =5N-m/rad

20 1

25V

10 Turn pot
D=2 N-m-s/rad

25V 10pF

Buffer _{ §
amplifier | y00kQ o
gain =1 o

FIGURE P5.21

22. Label signals and draw a signal-flow graph for each of
the block diagrams shown in the following problems:
[Section: 5.4]

a. Problem 1
b. Problem 3
c. Problem 5

23. Draw a signal-flow graph for each of the State Space

following state equations: [Section: 5.6]

0o 1 0 0
a x= 0 0 1|x+|0fr
|2 -4 —6] 1]
y=[1 1 0]x
[0 1 0] (0]
b. x=| 0 =3 1|x+|1]|r
-3 -4 -5 1]
y=[1 2 0]x
7 1 0 1
c. x=|-3 2 —-1(|x+|2|r
-1 0 2 1
y=[1 3 2]x

24. Given the system below, draw a signal-flow  State Space

graph and represent the system in state space
in the following forms: [Section: 5.7]

a. Phase-variable form
b. Cascade form

200

U = 1006 + 2006+ 30)




25.

26.

27.

R(s) O

28.

29.

30.

31.

Repeat Problem 24 for State Space

20
s(s=2)(s+5)(s+38)

G(s) =

[Section: 5.7]

Using Mason’s rule, find the transfer function,
T(s) = C(s)/R(s), for the system represented in
Figure P5.22. [Section: 5.5]

Gi(s) Go(s) G5(s) Gy(s)

FIGURE P5.22

Using Mason’s rule, find the transfer function,
T(s) = C(s)/R(s), for the system represented by
Figure P5.23. [Section: 5.5]

Gi(s) Go(s) Gy(s) Ge(s) 1 G(s)
@, @, @, O Q

H(s)
FIGURE P5.23

Use Mason’s rule to find the transfer function of
Figure 5.13 in the text. [Section: 5.5]

Use block diagram reduction to find the transfer function
of Figure 5.21 in the text, and compare your answer with
that obtained by Mason’s rule. [Section: 5.5]

Represent the following systems in state
space in Jordan canonical form. Draw the
signal-flow graphs. [Section: 5.7]

_(s+D(s+2)

State Space

& O = e+ a)
_ (s+2)
b O = s+ 77
c. G(s) = k)
(s+2)(s+5)(s+6)

Represent the systems below in state space  State Space
in phase-variable form. Draw the signal-flow “
graphs. [Section: 5.7]

s+3
.G(s) =———7—
a. Gls) 2 4+2s+7
s24+25+6
b. G(s)=—V——+———
(5) s34+ 5524+ 25+ 1
34282 +7 1
c.G(s): s+ 287+ /s +

st +3534+552 + 65+ 4

32. Repeat Problem 31 and represent each

33. Represent the feedback control systems

34. You are given the system shown in

Problems 283

State Space
system in controller canonical and observer

canonical forms. [Section: 5.7]

State Space
shown in Figure P5.24 in state space. When

possible, represent the open-loop transfer functions sep-
arately in cascade and complete the feedback loop with the
signal path from output to input. Draw your signal-flow
graph to be in one-to-one correspondence to the block
diagrams (as close as possible). [Section: 5.7]

R(s) + E(s) 50 Cs)_
4'(%—' GG +8)G+2)
(@)
R(s) + 10 C(s)
ﬁ% s(s2+ 65 + 24)
®)
E(s) + 1 C(S)‘
A 160 b s(s+1)
N -+
()
R(s) + E(s) 16(s +2) C(s)
A (s+ 1)2
d

FIGURE P5.24

State Space

a. Represent the system in state space in phase-variable
form.

Figure P5.25. [Section: 5.7]

b. Represent the system in state space in any other form
besides phase-variable.

R(s) + E(s) 30 C(s)
\,% s(s+3)(s+5)

FIGURE P5.25




and G,(s) is represented in state space as

X2 = Axxs + Byy,
¥y =Cxp

show that the entire system can be represented in state
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35. Repeat Problem 34 for the system shown in
Figure P5.26. [Section: 5.7]
R(s) + 10(s +2)(s +3) Cs)
X s+ D(s+4)(s+5)(s+6) -
FIGURE P5.26
36. Use MATLAB to solve Problem 35. MATLAB

37. Represent the system shown in Figure P5.27 State Space

in state space where x (), x3(f), and x4(¢), as
shown, are among the state variables, c(t) is the output,
and x,(¢) is internal to X;(s)/X3(s). [Section: 5.7]

R(s) + E(s) X4(s) X305) | 1 C(s)

Xi(s)

Gl—

s=5

Gl—

§242

FIGURE P5.27

38. Consider the rotational mechanical system  State Space

shown in Figure P5.28.

a. Represent the system as a signal-flow graph.

b. Represent the system in state space if the output
is 92([).

01(1) T(1) 0x(1)

2 N-m-s/rad 3 N-m-s/rad

1 N-m/rad

FIGURE P5.28

MATLAB

State Space

39. Given aunity feedback system
with the forward-path transfer
function

G(s)

_ 8
"~ s(s+8)(s +10)

use MATLAB to represent the closed-loop
system in state space in

a. phase-variable form;
b. parallel form.

State Space

40. Consider the cascaded subsystems shown
in Figure P5.29. If G (s) is represented in
state space as

Xl = A1X1 + Blr
yi =Cixq

B,

space as
X1
c e + r
X2

X1 Ar. O
o) - BZCIE Ay

0

. X1
yz = |: 0 Cz :| PR
X2

R(s) Gi(s) Yi(s) Gos) Ya(s)

FIGURE P5.29

41. Consider the parallel subsystems shown State Space

in Figure P5.30. If G(s) is represented in
state space as

5(1 =A1x; +Byr
i =Cixq

and G»(s) is represented in state space as

Xy = Ayxy + Byr
¥ = Caxp

show that the entire system can be represented in state

space as
f(l A1 .0 X1 B1
R T I S + |- r
Xa 0 A X2 B,
X1
I
X3
. Gy A9
R(s) A0
Y.
Gas) 2(s)
FIGURE P5.30
42. Consider the subsystems shown in State Space

Figure P5.31 and connected to form a



feedback system. If G(s) is represented in state
space as

X1 = A1x; + Bye
y=Cixq

and H,(s) is represented in state space as

X2 = Azxz + By
p=Crx2

show that the closed-loop system can be represented in
state space as

X1 A -BiG | T x4 B,
“ oo = e e e et e e e e + P r
5(2 BzC] Az X2 0
. Xl |
y = {C1 20f |-
: X2 |
G(s) ©,
P©) H(s) [=
FIGURE P5.31
43. Given the system represented in state space  State Space
as follows: [Section: 5.8]
-1 -7 6 -5
x=|-8 4 8|x+|-7|r
4 7 =8 5
y=[-9 -9 -8]x

convert the system to one where the new state vector, z, is

-4 9 -3
z= 0 -4 71x
-1 -4 -9

44. Repeat Problem 43 for the following system: State Space
[Section: 5.8]

-5 1 1 9
x=| 9 -9 —9|x+|-4|r
9 -1 8 0

45.

46.

47.

48.

49.

50.

S1.
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and the following state-vector transformation:

5 —4 9
z=|6 -7 6|x
6 -5 -3

State Space

Diagonalize the following system:
[Section: 5.8]

-5 -5 4 -1
x=| 2 0 2(x+| 2|r
0 -2 -1 -2
y = [—1 1 2]x

Repeat Problem 45 for the following system: State Space
[Section: 5.8]

-10 -3 7 1
x = | 18.25 6.25 —11.75 |x+ |3 |r
-7.25 =225 5.75 2
y = [1 -2 4]x

Diagonalize the systemin MATLAB
Problem 46 using MATLAB. [ ML |

Find the closed-loop transfer function of the
Unmanned Free-Swimming Submersible vehicle’s
pitch control system shown on the back endpapers
(Johnson, 1980).

Repeat Problem 48 using MATLAB. MATLAB

Use Simulink to plot the effects  simulink

of nonlinearities upon the

closed-loop step response of the antenna
azimuth position control system shown
on the front endpapers, Configuration 1.
In particular, consider individually
each of the following nonlinearities:
saturation (x5volts), backlash (dead-
band width 0.15), deadzone (-2 to +2),
as well as the linear response. Assume
the preamplifier gain is 100 and the step
input is2radians.

Problem 8 in Chapter 1 describes a high-speed pro-
portional solenoid valve. A subsystem of the valve is
the solenoid coil shown in Figure P5.32. Current
through the coil, L, generates a magnetic field that
produces a force to operate the valve. Figure P5.32 can
be represented as a block diagram (Vaughan, 1996).
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FIGURE P5.32 Solenoid coil circuit

a. Derive a block diagram of a feedback system that
represents the coil circuit, where the applied voltage,
V,(?), is the input, the coil voltage, v,(?), is the error
voltage, and the current, i(f), is the output.

b. For the block diagram found in Part a, find the
Laplace transform of the output current, I(s).

c¢. Solve the circuit of Figure P5.32 for I(s), and com-
pare to your result in Part b.

52. Figure P5.33 shows a noninverting operational

amplifier.
Lt A Yo
17| R
R, +R,
®)

FIGUREP5.33 a. Noninverting amplifier; b. block diagram

Assuming the operational amplifier is ideal,

a. Verify that the system can be described by the
following two equations:

Vo = AV —v,)
R;

Vv = v,

! R; + Ry ¢

b. Check that these equations can be described by the
block diagram of Figure P5.33(b).

c. Use Mason’s rule to obtain the closed-loop system
Vo(s)

Vi(s)” V,(s) R
d. Show that when A — co, —~ 2 Ef

i\s
53. Figure P5.34 shows the diagram of an inverting
operational amplifier.

transfer function

i (O

} v,

FIGURE P5.34 Inverting operational amplifier

Reduction of Multiple Subsystems

a. Assuming an ideal operational amplifier, use a simi-
lar procedure to the one outlined in Problem 52 to
find the system equations.

b. Draw a corresponding block diagram and obtain the

transfer function Vo(s) .
Vi(s) V. (s) R
¢. Show that when A — oo, ML
(5) R;

54. Figure P5.35(a) shows an n-channel enhancement-mode
MOSFET source follower circuit. Figure P5.35(b)
shows its small-signal equivalent (where R; = R;[ R,)
(Neamen, 2001).

a. Verify that the equations governing this circuit are
VR
v, R+ Ry ’

Vos = Vin = Vo; Vo = gm(Rs”ro)vgs

b. Draw a block diagram showing the relations between
the equations.

. . V(s
c. Use the block diagram in Part b to find of ).
Vi(s)
Vvbb Ry vig 4 Vgs — v
R; 8mVys GD Ry To
(@) ®)

FIGURE P5.35 a. An n-channel enhancement-mode MOSFET
source follower circuit; b. small-signal equivalent

55. A car active suspension system adds an active hydraulic
actuator in parallel with the passive damper and spring
to create a dynamic impedance that responds to road
variations. The block diagram of Figure P5.36 depicts
such an actuator with closed-loop control.

¢ Tx1 1 ¢ IT'
[ 2+ o} | Mus |

+

=

[l =2 e |5
| s+e

FIGURE P5.36%

In the figure, K, is the spring constant of the tire, Mg
is the wheel mass, r is the road disturbance, x; is

“Lin, J.-S., Kanellakopoulos, I. “Nonlinear Design of Active Suspensions.”
IEEE Control Systems Magazine, Vol. 17, Issue 3, June 1997 pp. 45-59.
Figure 3, p. 48. IEEE Control Systems by IEEE Control Systems Society.
Reproduced with permission of Institute of Electrical and Electronics
Engineers, in the format Republish in a book via Copyright Clearance
Center.



56.

SL

the vertical car displacement, x5 is the wheel vertical

K
displacement, w3 = M—Z is the natural frequency of the
Us

unsprung system and ¢ is a filtering parameter to be
judiciously chosen (Lin, 1997). Find the two transfer
functions of interest:

X5(s)
R(s)
Xi(s)
R(s)

b.

The basic unit of skeletal and cardiac muscle cells is a
sarcomere, which is what gives such cells a striated
(parallel line) appearance. For example, one bicep cell
has about 10° sarcomeres. In turn, sarcomeres are
composed of protein complexes. Feedback mechanisms
play an important role in sarcomeres and thus muscle
contraction. Namely, Fenn’s law says that the energy
liberated during muscle contraction depends on the initial
conditions and the load encountered. The following
linearized model describing sarcomere contraction has
been developed for cardiac muscle:

-100.2 =20.7 —30.7 2003 ][ A 208
40 -2022 49.95 5261 || T —208
= + u(t)
0 1022 —59.95 =526.1 | | U -108.8
0 0 0 0 SL -1
A
y= [0 1570 1570 59400 ] — 6240u(?)
SL

where

A = density of regulatory units with bound calcium
and adjacent weak cross bridges (uM)

T = density of regulatory units with bound calcium
and adjacent strong cross bridges (M)

U = density of regulatory units without bound
calcium and adjacent strong cross bridges (M)

SL = sarcomere length (m)

The system’s input is u(¢) = the shortening muscle
velocity in meters/second and the output is y(r) =
muscle force output in Newtons (Yaniv, 2006).

Do the following:

a. Use MATLAB to obtain the MATLAB
transfer function @ m
U(s)
b. Use MATLAB to obtain a partial- MmATLAB
vis) T

fraction expansion for —=~.
P U(s)
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c. Draw a signal-flow diagram of the State Space

system in parallel form.

d. Use the diagram of Part ¢ to express the State Space
system in state-variable form with
decoupled equations.

57. An electric ventricular assist device (EVAD) has been

designed to help patients with diminished but still
functional heart pumping action to work in parallel
with the natural heart. The device consists of a
brushless dc electric motor that actuates on a pusher
plate. The plate movements help the ejection of blood
in systole and sac filling in diastole. System dynamics
during systolic mode have been found to be:

X 0 1 0 x 0
=10 -683 72| v | +|4254 |e,
P, 0 3.2 =0.7] LP, 0

The state variables in this model are x, the pusher plate
position, v, the pusher plate velocity, and P,,, the
aortic blood pressure. The input to the system is e,,,
the motor voltage (Tasch, 1990).

a. Use MATLAB to find a similarity MATLAB
transformation to diagonalize m
the system.

b. Use MATLAB and the obtained MATLAB
similarity transformation of m
Partatoobtainadiagonalizedexpres-
sion for the system.

58. In an experiment to measure and identify postural arm

reflexes, subjects hold in their hands a linear hydraulic
manipulator. A load cell is attached to the actuator
handle to measure resulting forces. At the application
of a force, subjects try to maintain a fixed posture.
Figure P5.37 shows a block diagram for the combined
arm-environment system.

Environment Arm

FIGURE P5.37

In the diagram, H,(s) represents the reflexive length
and velocity feedback dynamics; H,,(s) the activation
dynamics, H,(s) the intrinsic act dynamics; H(s)
the hand dynamics; H,(s) the environmental dynam-
ics; X,(s) the position of the arm; X,(s) the measured
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60.

61.
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position of the hand; F,(s) the measured interaction
force applied by the hand; F;,(s) the intrinsic force;
F,.4(s) the reflexive force; A(s) the reflexive activation;
and D(s) the external force perturbation (de Viugt,
2002).

a. Obtain a signal-flow diagram from the block
diagram.
F(s)

b. Find D)’

Use LabVIEW’s Control Design and State Space

Simulation Module to obtain the
controller and the observer
canonical forms for:

LabVIEW
s24+7s+2
S3 4952 +26s+24

G(s) =

A virtual reality simulator with haptic (sense of touch)
feedback was developed to simulate the control of a
submarine driven through a joystick input. Operator
haptic feedback is provided through joystick position
constraints and simulator movement (Karkoub, 2010).
Figure P5.38 shows the block diagram of the haptic
feedback system in which the input u, is the force
exerted by the muscle of the human arm; and the
outputs are y,, the position of the simulator, and y;, the
position of the joystick.

T
hs

FIGURE P5.38°

Y(s)

Un(s)

Y;(s)

Un(s)

Some medical procedures require the insertion of a
needle under a patient’s skin using CT scan monitoring

a. Find the transfer function

b. Find the transfer function

5 Karkoub, M., Her, M-G., and Chen, J. M. Desi gn and Control of a Haptic
Interactive Motion Simulator for Virtual Entertainment Systems. Robotica,
vol. 28, 2010, Figure 8, p. 53. Reproduced by permission of Cambridge
University Press.

Vs .
—  manipulator

Reduction of Multiple Subsystems

guidance for precision. CT scans emit radiation, posing
some cumulative risks for medical personnel. To avoid
this problem, a remote control robot has been developed
(Piccin, 2009). The robot controls the needle in position
and angle in the constraint space of a CT scan machine
and also provides the physician with force feedback
commensurate with the insertion opposition encountered
by the type of tissue in which the needle is inserted. The
robot has other features that give the operator the similar
sensations and maneuverability as if the needle was
inserted directly. Figure P5.39 shows the block diagram
of the force insertion mechanism, where F}, is the input
force and X, is the output displacement. Summing
junction inputs are positive unless indicated with a
negative sign. By way of explanation, Z=impedance;
G =transfer function; C;=communication channel
transfer functions; F'=force; X = position. Subscripts &
and m refer to the master manipulator. Subscripts s and
e refer to the slave manipulator.

a. Assuming Z, =0,C; = C;,Cr =1+ Cg and Cy =
—C,, use Mason’s Rule to show that the transfer
function from the operators force input Fj, to needle
displacement X, is given by

Xiu(s) _ Z,'Cy(1 + G,Cy)
Fiu(s) 14 G,Cy+Z (e + C2Z.G,Cy)

Xn(s) _ Y(s)
Fh(S) - 1+ Y(S)Zh

Y(s) =

b. Now with Z, # 0 show that

Slave

Master
manipulator

FIGURE P5.39°

® Piccin, O., Barbé, L., Bayle, B., and Mathelin, M. A Force Feedback
Teleoperated Needle Insertion Device for Percutaneous Procedures. Int. J.
of Robotics Research, vol. 28, p. 1154. Figure 14. Copyright © 2009.
Reprinted by Permission of SAGE.
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63.

FIGURE P5.40

A hybrid solar cell and diesel power distribution
system has been proposed and tested (Lee, 2007).
The system has been shown to have a very good
uninterruptible power supply as well as line voltage
regulation capabilities. Figure P5.40 shows a signal-
flow diagram of the system. The output, V.4, is the
voltage across the load. The two inputs are I¢p the
reference current, and Ip,;, the disturbance represent-
ing current changes in the supply.

a. Refer to Figure P5.40 and find the transfer function
VLoad (S)

Icr(s)

b. Find the transfer function Vi0ad ()

Ipisi(s)

Continuous casting in steel production is essentially a
solidification process by which molten steel is solidified
into a steel slab after passing through a mold, as shown
in Figure P5.41(a). Final product dimensions depend
mainly on the casting speed V), (in m/min), and on the
stopper position X(in %) that controls the flow of molten
material into the mold (Kong, 1993). A simplified
model of a casting system is shown in Figure P5.41
(b) (Kong, 1993) and (Graebe, 1995). In the model,
H,,=mold level (in mm); H, = assumed constant height
of molten steel in the tundish; D,=mold thickness =
depth of nozzle immerged into molten steel; and W, =
weight of molten steel in the tundish.
For a specific setting let A,,=0.5 and

0.63
s+ 0.926

Also assume that the valve positioning loop may be
modeled by the following second-order transfer function:

G.(s) =

B 100
"~ Ye(s)  s2+10s+ 100

Problems 289
A | o | 1
LfA Cfs ™ Vioad
Ry e
and the controller is modeled by the following transfer
function:
1.6(s> + 1.25s5 + 0.25)
Ge(s) =
S
LADLE
I | X SET-
TUNDISH HYDRAULIC |I | REGULATOR |POINT
<1 UNIT  [*] UNIT
Hi
NKK
t t ELECTRONIC| Him
Dz_Hm ¢ UNIT
=" | MOLD
A SEGMENT 1
n "
@ SEGMENT 2 SEGMENT 3
~ SQJ_S
@_ SLAB
O o O
(@)
Change in casting
speed, A Vp(s)
L . . Change
Mold level Valve-position Linearized in mold
controller loop flow Mold eyl
Setpoint, LY v ¥ -140,(5) AH (5)
: + ] g L o 1 AH,,(:
R(s) G 29 6,9 XY 6,69 e
Feedback 40(s)
signal, Level sensor
BAH,(5) sensitivity
B L
- T

®)

FIGURE P5.41 Steel mold process: a. process;’ b. block diagram

The sensitivity of the mold level sensor is f=0.5
and the initial values of the system variables at r=0—
are:  R(0-)=0;Y¢(0-)=X(0-)=41.2;AH,,(0-)=0;

(problem continues)

7 Kong, F., and de Keyser, R. Identification and Control of the Mould Level
in a Continuous Casting Machine. Second IEEE Conference on Control
Applications, Vancouver, B.C., 1993. pp. 53-58. Figure 1. p. 53.
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(Continued)

H,,(0—) = =75;AV,(0-) = 0; and V,(0—) = 0. Do the

following:

a. Assuming v,(f) is constant [Av, =0], find the
closed-loop transfer function T(s) = AH,,(s)/R(s).

b. For r(t)=5u(t),v,(t) =0.97 u(t),
and Hy(0-) = -75mm, use
Simulink to simulate the system.
Record the timeandmold level (inarray
format) by connecting them to Work-
space sinks, each of which should carry
the respective variable name. After
the simulation ends, utilize MATLAB
plot commands to obtain and edit the
graph of h,(t) from t=0 to 80 seconds.

State Space

Simulink

A simplified second-order transfer function
model for bicycle dynamics is given by

\%4
@_aV (s+z>

8(s) ~ bh (Sz _ §>
h

The input is (s), the steering angle, and the output is
@(s), the tilt angle (between the floor and the bicycle
longitudinal plane). In the model parameter a is the hori-
zontal distance from the center of the back wheel to the
bicycle center of mass; & is the horizontal distance between
the centers of both wheels; / is the vertical distance from the
center of mass to the floor; V is the rear wheel velocity
(assumed constant); and g is the gravity constant. It is also
assumed that the rider remains at a fixed position with
respect to the bicycle so that the steer axis is vertical and that
all angle deviations are small (fistrom, 2005).

a. Obtain a state-space representation for the bicycle
model in phase-variable form.

b. Find system eigenvalues and eigenvectors.

c. Find an appropriate similarity transformation matrix
to diagonalize the system and obtain the state-space
system’s diagonal representation.

It is shown in Figure 5.6(c) that when negative feedback
is used, the overall transfer function for the system of
Figure 5.6(b) is

Cls)_ G

R(s) 1+ G(s)H(s)
Develop the block diagram of an alternative feedback
system that will result in the same closed-loop
transfer function, C(s)/R(s), with G(s) unchanged
and unmoved. In addition, your new block diagram
must have unity gain in the feedback path. You can
add input transducers and/or controllers in the main
forward path as required.

The purpose of an Automatic Voltage Regulator is to
maintain constant the voltage generated in an electrical

67.
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power system, despite load and line variations, in an
electrical power distribution system (Gozde, 2011).
Figure P5.42 shows the block

Controller Plant
KKK,
uls T,7,T, AV, (s)
Gpip(s) © .
s+ 1 s+ s s+ 1
T, T, T,
PID Compensator Amplifier, Exciter, Generator
A VS(S ) Feedback
KS
T,
1
(s . f)
Sensor
FIGURE P5.42
diagram of such a system. Assuming K, = 10, 7, = 0.1,

K,=1,T,=04,K,=1,T,=1,K,=1,T,=0.001, and

0.4
the controller, Gpip(s) = 1.6 + — + 0.3s, find the
s
AV,
closed-loop transfer function, 7'(s) = 7’“), of the
AVrgf(S)

system, expressing it as a rational function.

A drive system with an elastically coupled load was
presented in Problem 71, Chapter 4. The mechanical
part of this drive (Thomsen, 2011) was reduced to a
two-inertia model. Using slightly different parameters,
the following transfer function results:

Q(s) 25(s + 1.2s5 + 12500)
T(s)  s(s2 +5.65 + 62000)

Here, T(s) = T,,,(s) — Ty(s), where T,,,(s) = the electro-
magnetic torque developed by the motor, 7;(s) = the
load torque, and € (s) = the load speed.

The drive is shown in Figure P5.43 as the con-
trolled unit in a feedback control loop, where
Q,(s) = the desired (reference) speed. The controller

K 0.5
K, +—’—4+— and

G(s) =

transfer function is Ge(s) =

provides an output voltage = 0 — 5.0 volts The motor
and its power amplifier have a gain, K); = 10 N-m/volt.

a. Find the minor-loop transfer MmATLAB
- Qu(s)
function, D(s)=—=
(s) Ton(S)

analytically or using MATLAB.

b. Given that at t = 0, the load speed
o (t) =0 rad/sec and a step reference
input o.(t) = 260 u(t), rad/sec, is
applied, use MATLAB (or any other pro-
gram) tofind and plot o (t). Mark on the
graph all of the important character-
istics, such as percent overshoot,
peak time, rise time, settling time,
and final steady-state value.



0.1 |

TL
Q,A(S) + Tem(s) ~ QL(S)

Ge(s) = Ky - G(s)

FIGURE P5.43

68. Integrated circuits are manufactured through a litho-
graphic process on a semiconductor wafer. In lithography,
similarly to chemical photography, a semiconductor
wafer is covered with a photosensitive emulsion and
then selectively exposed to light to form the electronic
components. Due to miniaturization, this process is to be
performed with nanometer accuracy and at the highest
possible speed. Sophisticated apparatus and methods
have been developed for this purpose. Figure P5.44 shows
the block diagram of a scanner dedicated to this purpose
(Butler, 2011). Use Mason’s Rule to find:

Xs(s
a. The transfer function ﬁ

R(s)

Xs(s
b. The transfer function i ).

R(s)

El.v +
Ci(s) Hy(s) Xis
- + +
Diff

s 5§
R + Ess + +
(%)_‘ Cyi(s) H(s) Xs

FIGURE P5.44°
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69. A boost converter is a dc-to-dc switched power supply in

70.

which the voltage output is larger than the voltage input.
A block diagram for a peak current mode controlled
converter (Chen, 2013) is shown in Figure P5.45. Find
Vo(s)

Vi)

In Problem 64 of Chapter 2, a three-phase ac/dc converter
that supplies dc to a battery charging system (Graovac,
2001) was introduced. Each phase had an ac filter
represented by the equivalent circuit of Figure P2.38.
You were asked to show that the following equation gives
the s-domain relationship between the inductor current,
1,..(s), and two active sources: a current source, I,,.z(s),
representing a phase of the ac/dc converter, and the
supply phase voltage, V,(s):

the transfer function

1+ RCs
LCs> +RCs+1

Va(s)

IacF(s) = IacFl(S) + IacFZ(s) = IacR(S)

+ Cs
LCs? +RCs + 1

a. Derive an s-domain equation for V.(s).

b. Given that R=1Q,L=1mH, and _Simulink

C = 20 pF, i acr(t)= 10 u(t)amps, [HIETH
Va(t)= 20 t u(t) volts,'® and assuming
zero initial conditions, use Simulink
tomodel thissystemand plotthe induc-
tor current, i, (1), and the capacitor
voltage, v.(t), over a period from O to
15ms.

DESIGN PROBLEMS

71.

The motor and load shown in Figure P5.46(a) are used
as part of the unity feedback system shown in
Figure P5.46(b). Find the value of the coefficient of

K

L

FIGURE P5.45°

8 Butler, H. Position Control in Lithographic Equipment. JEEE Control
Systems Magazine, October 2011, pp. 28-47. Figure 18, p. 37.

°Chen, S.-Y. Block diagrams and transfer functions of control-to-output
and line-to-output for peak current-mode controlled boost converters. /IET
Power Electron, Vol. 6, Iss. 1, pp. 60-66, 2013. Figure 4, p. 62. © The
Institution of Engineering and Technology.

1% Noting that a ramp is the integration of a step, we used an integrator with
limits.
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viscous damping, D;, that must be used in order to
yield a closed-loop transient response having a 20%

overshoot.
K, =2 N-m/A Om(s)
Kj, =2 V-s/rad
J, =2kg-m? 1
D,=2 N-m-s/rad
R,=2Q
10 1
Or(s)
Dy
2 ’ Jp =800 kg-m?
(@)
R ¢ n EG) |00 Moor 10w, | Gear |0,
A load train

®)

FIGURE P5.46 Position control: a. motor and load; b. block
diagram

72. Assume that the motor whose transfer function is
shown in Figure P5.47(a) is used as the forward
path of a closed-loop, unity feedback system.

a. Calculate the percent overshoot and settling time
that could be expected.

b. You want to improve the response found in Part a.
Since the motor and the motor constants cannot be
changed, an amplifier and a tachometer (voltage
generator) are inserted into the loop, as shown in
Figure P5.47. Find the values of K; and K, to
yield a 20% overshoot and a settling time of
0.25 second.

Motor
Els) 25
s(s+ 1)

R(s) + C(s)

(a)

Motor

Amp
Els) © + 25
! s(s+ 1)

R(s) + C(s)

Kys

Tachometer

®)

FIGURE P5.47 a. Position control; b. position control with
tachometer

73. The system shown in Figure P5.48 will have its transient
response altered by adding a tachometer. Design K and

Reduction of Multiple Subsystems

K5 in the system to yield a damping ratio of 0.69. The
natural frequency of the system before the addition of the
tachometer is 10 rad/s.

Tachometer

KzS

R(s) + E(s) + 1

C(s) -~
K s(s+1)

Power amplifier
and motor

Preamplifier

FIGURE P5.48 Position control

74. The mechanical system shownin Figure P5.49(a)is used
as part of the unity feedback system shown in
Figure P5.49()). Find the values of M and D to yield
20% overshoot and 2 seconds settling time.

~{N1=10
;
,_%
L

+ —
eq(1) | Motor

Ny =20 I
Radius =2 m :E; Ideal
J=1 kg_mz Sgear 1:1
For the motor: Iy
Ja =1 kg.m2
Dg = 1 N-m-s/rad x(0)
Ry=1Q
Kp =1 V-s/rad £ =1 N-s/m
K; =1 N-m/A
(@)
R(s) + E(s) 00 Ey(s) Mgltor e X(s)
% load
)

FIGURE P5.49 a.Motor and load; b. motor and load in feedback
system

75. Assume ideal operational amplifiers in the circuit of
Figure P5.50.
a. Show that the leftmost operational amplifier works
as a subtracting amplifier. Namely, v| = v, — vj,.
b. Draw a block diagram of the system, with the
subtracting amplifier represented with a summing
junction, and the circuit of the rightmost operational
amplifier with a transfer function in the forward
path. Keep R as a variable.
c. Obtain the system’s closed-loop transfer function.
. For a unit step input, obtain the value of R that will
result in a settling time 7, = 1 msec.

[=7



e. Using the value of R calculated in Part d, make a
sketch of the resulting unit step response.

0.1 F

10 k

Vin WA

10k§ =

FIGURE P5.50

76. Given the rotational system shown in Figure P4.23

(Problem 78 of Chapter 4), do the following:

a. Using the transfer function you derived for that
system, G(s) = O,(s)/T(s), where O(s) is the
angular displacement of the first shaft, find the
value of n = N;/N, that yields a settling time of
10 seconds for a step input in torque.

b. If this rotational system is the controlled unit, G(s),
in the feedback system of Figure P5.51, find the
values of {, w,, %0.S., and T, for a controller gain
K = 4 N-m/rad and r(f) = u(¢) radians.

R(s) + — E(s) C(s)

G(s)

FIGURE P5.51

77. A process is simulated by the second-order passive
circuit, shown in Figure P5.52, where the feedback
amplifier, controller, and final control element are
represented by op-amp circuits.

a. Denoting the input and output as R(s) = V;(s) and
C(s) =V,(s), with R(s) — C(s) = E(s), and noting that
the feedback amplifier has a unity gain, draw a block
diagram for this feedback control system, where
Gc(s), Gr(s), and Gp(s) are the transfer functions of
the controller, final control element, and the process,
respectively.

b. Find the value of Rp that makes the circuit repre-
senting the process critically damped.

c. Noting that the proportional controller is simply an
amplifier, G (s) = Kp, find the value of its gain K p that
results in dominant closed-loop poles with a damping
ratio, { = 0.5, and a settling time, T = 4 ms. Verify
that the other pole is nondominant. What would be the
appropriate value of the controller potentiometer, R,
given that its tolerance is +10%?
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Final control element
0.018 pF

Proportional controller

V(1) 10 KQ
0 Process

Feedback
amplifier =

100 KQ

FIGURE P5.52
PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS

78. Control of HIV/AIDS. Given the HIV
system of Problem 84 in Chapter 4 and
repeated here for convenience (Craig, 2004):

State Space

T —-0.04167 0 —0.00587 [T
7| =| 00217 -024 0.0058 || T"
v 0 100 —2.4 v
5.2
+ | =52 |u
0
T
y=1[0 0 1]| T
v

Express the system in the following forms:
a. Phase-variable form

b. Controller canonical form

c. Observer canonical form

Finally,

d. Use MATLAB to obtain the MATLAB
system’s diagonalized

representation.

79. Hybrid vehicle. Figure P5.53 shows the block diagram
of a possible cascade control scheme for an HEV driven
by a dc motor (Preitl, 2007).

40
Let the speed controller Ggc(s) = 100 + —, the
s

6
torque controller and power amp K4Grc(s) = 10 +—,
s

the current sensor sensitivity Kcg=0.5, the speed
sensor sensitivity Kgg=0.0433. Also, following the

1
development in previous chapters = I;n,, K, = 1.8;
1 1
D=k =01— :

ks = 2; et
b Jior 7226 " iy
.

i

= 0.0615;

and pC,,Avo — = 0.6154.

tot
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Torque  Amplifier
controller  output

Armature
Ref. Speed Speelcll [ggn?nTmCij) &po}ver voltage circuit Armature
signal 2“’0"' controller Uots) amplifier — {/ (5) current
R(s) 1 W) % 1,(5)
Gicls) F—Q—»{K, Gye(s)
R A

Feedback Feedback

speed signal current signal

KssQ(s) Kes I(s) Ey(s)

Back emf

Iz
pCAY, —
Aero- Lot
Motive | dynamic
torque drag torque Angular Vehicle
(s) T,(s) speed,
speed, V(s)
X + 1 Qs) | z
(i R S R " >
Friction
torque
Ty(s)
=k

Current sensor ks
sensitivity (
Kes |
I_I Speed sensor
sensitivity
Kss
FIGURE P5.53

a. Substitute these values in the block diagram, and find
the transfer function, 7(s) = V(s)/R,(s), using block-
diagram reduction rules. [Hint: Start by moving the
last li block to the right past the pickoff point.]

tot

b. Develop a Simul ink model for Simulink
the original system in
Figure P5.53. Set the reference wmamas
signal input, ry(t)=4u(t), [T
as a step input with a zero
initial value, astep time=0seconds,
and a final value of 4 volts. Use X-Y
graphs to display (over the period
from O to 8 seconds) the response of
the following variables to the step
input: (1) change in car speed (n/s),
(2) car acceleration (n/s?), and (3)
motor armature current (A).

To record the time and the above three
variables (in array format), connect
them to four Workspace sinks, each of
which carries the respective variable
name. After the simulation ends, uti-
lize MATLAB plot commands to obtain
and edit the three graphs of interest.

80. Parabolic trough collector. Effective controller design
for parabolic trough collector setups is an active area
of research. One of the techniques used for controller
design (Camacho, 2012) is Internal Model Control
(IMC). Although complete details of IMC will not
be presented here, Figure P5.54(a) shows a block
diagram for the IMC setup. Use of IMC assumes a
very good knowledge of the plant dynamics. In
Figure P5.54(a), the actual plant is P(s). P(s) is a
software model that mimics the plant functions. G(s)

is

the controller to be designed. It is also assumed that

all blocks represent linear time-invariant systems and
thus the superposition theorem applies to the system.

a.

Use superposition (by assuming D(s) = 0) and
Mason’s gain formula to find the transfer function
C(s)

m from command input to system output.
s

. Use superposition (by assuming R(s) = 0) and

Mason’s gain formula to find the transfer function

C
% from disturbance input to system output.
N

. Use the results of Parts a and b to find the combined

output C(s) due to both system inputs.

d. Show that the system of Figure P5.54(a) has
the same transfer function as the system in
G
Figure P5.54(b) when G¢(s) = i
1 — G(s)P(s)
D(s)
+ ++
R(s) G(s) P(s) —= C(s)

R(s)

Pe) )

(@)
D(s)
+
G,(5) P(s) |—= —= C(s)
(b)
FIGURE P5.54
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Experiment 5.1

Objectives To verify the equivalency of the basic forms, including cascade, parallel,
and feedback forms. To verify the equivalency of the basic moves, including moving blocks
past summing junctions, and moving blocks past pickoff points.

Minimum Required Software Packages MATLAB, Simulink, and the Control
System Toolbox

Prelab
1
1. Find the equivalent transfer function of three cascaded blocks, Gi(s)= T
1 s+3
G2(S) = S-|-—4’ and G3(S) = S+ 5
1
2. Find the equivalent transfer function of three parallel blocks, Gi(s) = wy
s
1 s+3
Ga(s) = ——, and G3(s) = .
2(9) s+4 and Gis(s) s+5
3. Find the equivalent transfer function of the negative feedback system of Figure P5.55 if
s+ 1 s+3
G(s) =———, and H(s) = .
© s(s+2) and H(s) s+4

4. For the system of Prelab 3, push H(s) to the left past the summing junction and draw the
equivalent system.

5. For the system of Prelab 3, push H(s) to the right past the pickoff point and draw the
equivalent system.

Lab

1. Using Simulink, set up the cascade system of Prelab 1 and the equivalent single block.
Make separate plots of the step response of the cascaded system and its equivalent single
block. Record the values of settling time and rise time for each step response.

2. Using Simulink, set up the parallel system of Prelab 2 and the equivalent single block.
Make separate plots of the step response of the parallel system and its equivalent single
block. Record the values of settling time and rise time for each step response.

3. Using Simulink, set up the negative feedback system of Prelab 3 and the equivalent
single block. Make separate plots of the step response of the negative feedback system
and its equivalent single block. Record the values of settling time and rise time for each
step response.

4. Using Simulink, set up the negative feedback systems of Prelabs 3, 4, and 5. Make
separate plots of the step response of each of the systems. Record the values of settling
time and rise time for each step response.

Postlab
1. Using your lab data, verify the equivalent transfer function of blocks in cascade.
2. Using your lab data, verify the equivalent transfer function of blocks in parallel.

3. Using your lab data, verify the equivalent transfer function of negative feedback
systems.

4. Using your lab data, verify the moving of blocks past summing junctions and pickoff
points.

5. Discuss your results. Were the equivalencies verified?

R(s) +

G(s)

H(s)

FIGURE P5.55

C(s)
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Experiment 5.2

Objective To use the various functions within LabVIEW’s Control Design and
Simulation Module to implement block diagram reduction.

Minimum Required Software Packages LabVIEW with the Control Design
Simulation Module

Prelab  Given the block diagram from Example 5.2, replace G;, G,, G3, H;, H,, H; with
the following transfer functions and obtain an equivalent transfer function.

1 1 +1 +1
u _S ‘H2=2;H3=1

G = 1Gy = 1G3 = Hy = ;
YT 100 T T s B T 2 ras+4 T T 52

Lab Use LabVIEW to implement the block diagram from Example 5.2 using the
transfer functions given in the Prelab.

Postlab  Verify your calculations from the Prelab with that of the equivalent transfer
function obtained with LabVIEW.

Experiment 5.3

Objective To use the various functions within LabVIEW’ Control Design and
Simulation Module and the Mathematics/Polynomial palette to implement Mason’s rule
for block diagram reduction.

Minimum Required Software Packages LabVIEW with Control Design and
Simulation Module, Math Script RT Module, and the Mathematics/Polynomial palette.

Prelab Given the block diagram created in the Prelab of Cyber Exploration
Laboratory 5.2, use Mason’s rule to obtain an equivalent transfer function.

Lab UseLabVIEW’ Control Design and Simulation Module as well as the Mathematics/
Polynomial functions to implement block diagram reduction using Mason’s rule.

Postlab  Verify your calculations from the Prelab with that of the equivalent transfer
function obtained with LabVIEW.
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Stability

Chapter Learning Outcomes

After completing this chapter the student will be able to:
® Make and interpret a basic Routh table to determine the stability of a system
(Sections 6.1-6.2)

® Make and interpret a Routh table where either the first element of a row is zero
or an entire row is zero (Sections 6.3-6.4)

® Use a Routh table to determine the stability of a system represented in state
space (Section 6.5)

Case Study Learning Outcomes

State Space

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

® Given the antenna azimuth position control system shown on the front
endpapers, you will be able to find the range of preamplifier gain to keep the
system stable.

® Given the block diagrams for the UFSS vehicle’s pitch and heading control

systems on the back endpapers, you will be able to determine the range of gain
for stability of the pitch or heading control system.
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6.1 Introduction

Chapter 6 Stability

In Chapter 1, we saw that three requirements enter into the design of a control system:
transient response, stability, and steady-state errors. Thus far we have covered transient
response, which we will revisit in Chapter 8. We are now ready to discuss the next
requirement, stability.

Stability is the most important system specification. If a system is unstable, transient
response and steady-state errors are moot points. An unstable system cannot be designed for
a specific transient response or steady-state error requirement. What, then, is stability? There
are many definitions for stability, depending upon the kind of system or the point of view. In
this section, we limit ourselves to linear, time-invariant systems.

In Section 1.5, we discussed that we can control the output of a system if the steady-
state response consists of only the forced response. But the total response of a system is the
sum of the forced and natural responses, or

c(t) = Crorced(t) + Cnaturar(?) 6.1)

Using these concepts, we present the following definitions of stability, instability, and
marginal stability:

A linear, time-invariant system is stable if the natural response approaches zero as time
approaches infinity.

A linear, time-invariant system is unstable if the natural response grows without bound as
time approaches infinity.

A linear, time-invariant system is marginally stable if the natural response neither decays
nor grows but remains constant or oscillates as time approaches infinity.

Thus, the definition of stability implies that only the forced response remains as the natural
response approaches zero.

These definitions rely on a description of the natural response. When one is looking at
the total response, it may be difficult to separate the natural response from the forced
response. However, we realize that if the input is bounded and the total response is not
approaching infinity as time approaches infinity, then the natural response is obviously not
approaching infinity. If the input is unbounded, we see an unbounded total response, and
we cannot arrive at any conclusion about the stability of the system; we cannot tell whether
the total response is unbounded because the forced response is unbounded or because the
natural response is unbounded. Thus, our alternate definition of stability, one that regards
the total response and implies the first definition based upon the natural response, is this:

A system is stable if every bounded input yields a bounded output.

We call this statement the bounded-input, bounded-output (BIBO) definition of stability.

Let us now produce an alternate definition for instability based on the total response
rather than the natural response. We realize that if the input is bounded but the total response is
unbounded, the system is unstable, since we can conclude that the natural response
approaches infinity as time approaches infinity. If the input is unbounded, we will see an
unbounded total response, and we cannot draw any conclusion about the stability of the
system; we cannot tell whether the total response is unbounded because the forced response is
unbounded or because the natural response is unbounded. Thus, our alternate definition of
instability, one that regards the total response, is this:

A system is unstable if any bounded input yields an unbounded output.
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These definitions help clarify our previous definition of marginal stability, which
really means that the system is stable for some bounded inputs and unstable for others. For
example, we will show that if the natural response is undamped, a bounded sinusoidal input
of the same frequency yields a natural response of growing oscillations. Hence, the system
appears stable for all bounded inputs except this one sinusoid. Thus, marginally stable
systems by the natural response definitions are included as unstable systems under the BIBO
definitions.

Let us summarize our definitions of stability for linear, time-invariant systems. Using
the natural response:

1. A system is stable if the natural response approaches zero as time approaches infinity.

2. A system is unstable if the natural response approaches infinity as time approaches
infinity.

3. A system is marginally stable if the natural response neither decays nor grows but
remains constant or oscillates.

Using the total response (BIBO):

1. A system is stable if every bounded input yields a bounded output.
2. A system is unstable if any bounded input yields an unbounded output.

Physically, an unstable system whose natural response grows without bound can
cause damage to the system, to adjacent property, or to human life. Many times systems are
designed with limited stops to prevent total runaway. From the perspective of the time
response plot of a physical system, instability is displayed by transients that grow without
bound and, consequently, a total response that does not approach a steady-state value or
other forced response.'

How do we determine if a system is stable? Let us focus on the natural response
definitions of stability. Recall from our study of system poles that poles in the left half-plane
(Ilhp) yield either pure exponential decay or damped sinusoidal natural responses.
These natural responses decay to zero as time approaches infinity. Thus, if the closed-loop
system poles are in the left half of the plane and hence have a negative real part, the system
is stable. That is, stable systems have closed-loop transfer functions with poles only in the left
half-plane.

Poles in the right half-plane (rhp) yield either pure exponentially increasing or
exponentially increasing sinusoidal natural responses. These natural responses approach
infinity as time approaches infinity. Thus, if the closed-loop system poles are in the right half
of the s-plane and hence have a positive real part, the system is unstable. Also, poles of
multiplicity greater than 1 on the imaginary axis lead to the sum of responses of the form
At" cos (wt + ¢), where n=1,2,..., where the amplitude approaches infinity as time
approaches infinity. Thus, unstable systems have closed-loop transfer functions with at
least one pole in the right half-plane and/or poles of multiplicity greater than I on the
imaginary axis.

Finally, a system that has imaginary axis poles of multiplicity 1 yields pure sinusoidal
oscillations as a natural response. These responses neither increase nor decrease in
amplitude. Thus, marginally stable systems have closed-loop transfer functions with
only imaginary axis poles of multiplicity 1 and poles in the left half-plane.

As an example, the unit step response of the stable system of Figure 6.1(a) is
compared to that of the unstable system of Figure 6.1(b). The responses, also shown in

! Care must be taken here to distinguish between natural responses growing without bound and a forced
response, such as a ramp or exponential increase, that also grows without bound. A system whose forced
response approaches infinity is stable as long as the natural response approaches zero.
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FIGURE 6.1 Closed-loop
poles and response: a. stable
system; b. unstable system
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Figure 6.1, shows that while the oscillations for the stable system diminish, those for the
unstable system increase without bound. Also notice that the stable system’s response in this
case approaches a steady-state value of unity.

It is not always a simple matter to determine if a feedback control system is stable.
Unfortunately, a typical problem that arises is shown in Figure 6.2. Although we know the
poles of the forward transfer function in Figure 6.2(a), we do not know the location of
the poles of the equivalent closed-loop system of Figure 6.2(b) without factoring or
otherwise solving for the roots.

However, under certain conditions, we can draw some conclusions about the stability
of the system. First, if the closed-loop transfer function has only left-half-plane poles, then
the factors of the denominator of the closed-loop system transfer function consist of
products of terms such as (s + a;), where q; is real and positive, or complex with a positive
real part. The product of such terms is a polynomial with all positive coefficients.” No term
of the polynomial can be missing, since that would imply cancellation between positive and
negative coefficients or imaginary axis roots in the factors, which is not the case. Thus, a

2 The coefficients can also be made all negative by multiplying the polynomial by —1. This operation does not
change the root location.
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R(s) + E(s) 10(s +2) C(s)
s(s +4)(s + 6)(s + 8)(s + 10) o

(@)

R(s) 10(s +2) C(s)
55 + 285 + 28453 + 123252 + 19305 + 20

®

sufficient condition for a system to be unstable is that all signs of the coefficients of the
denominator of the closed-loop transfer function are not the same. If powers of s are missing,
the system is either unstable or, at best, marginally stable. Unfortunately, if all coefficients
of the denominator are positive and not missing, we do not have definitive information about
the system’s pole locations.

If the method described in the previous paragraph is not sufficient, then a computer
can be used to determine the stability by calculating the root locations of the denominator of
the closed-loop transfer function. Today some hand-held calculators can evaluate the roots
of a polynomial. There is, however, another method to test for stability without having to
solve for the roots of the denominator. We discuss this method in the next section.

6.2 Routh-Hurwitz Criterion
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FIGURE 6.2 Common cause
of problems in finding closed-
loop poles: a. original system;
b. equivalent system

In this section, we learn a method that yields stability information without the need to solve
for the closed-loop system poles. Using this method, we can tell how many closed-loop
system poles are in the left half-plane, in the right half-plane, and on the jw-axis. (Notice
that we say how many, not where.) We can find the number of poles in each section of the
s-plane, but we cannot find their coordinates. The method is called the Routh-Hurwitz
criterion for stability (Routh, 1905).

The method requires two steps: (1) Generate a data table called a Routh table and (2)
interpret the Routh table to tell how many closed-loop system poles are in the left half-plane,
the right half-plane, and on the jw-axis. You might wonder why we study the Routh-Hurwitz
criterion when modern calculators and computers can tell us the exact location of system
poles. The power of the method lies in design rather than analysis. For example, if you have
an unknown parameter in the denominator of a transfer function, it is
difficult to determine via a calculator the range of this parameter to yield

stability. You would probably rely on trial and error to answer the stability R(s)

N(s)

Cls)

question. We shall see later that the Routh-Hurwitz criterion can yield a .
closed-form expression for the range of the unknown parameter.

3 2

aus™ + ass” + ays” + aps +ag

In this section, we make and interpret a basic Routh table. In the next

section, we consider two special cases that can arise when generating this .
function

data table.
Generating a Basic Routh Table
Look at the equivalent closed-loop transfer function shown in Figure 6.3. Since we are
interested in the system poles, we focus our attention on the denominator. We first create the
Routh table shown in Table 6.1. Begin by labeling the rows with powers of s from the
highest power of the denominator of the closed-loop transfer function to s°. Next start with
the coefficient of the highest power of s in the denominator and list, horizontally in the first
row, every other coefficient. In the second row, list horizontally, starting with the next
highest power of s, every coefficient that was skipped in the first row.

FIGURE 6.3 Equivalent closed-loop transfer

TABLE 6.1 Initial layout for

Routh table
54 ay ay [21%)
s> as a; 0
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Example 6.1

FIGURE 6.4 a. Feedback
system for Example 6.1;

b. equivalent closed-loop
system

Chapter 6 Stability

TABLE 6.2 Completed Routh table

4

K ay a ao
s> as a; 0
as ap (27 ag 0
2 as ap| _ a; 0 _ az 0 _
s o =by s ) —1=0
as  aj as 0 as 0
Sl blb bz =c blb 0 =0 blb 0 =0
1 1 1
B by b B by 0 B by 0
0 cg O c O c 0
’ a =a a =0 o =0

The remaining entries are filled in as follows. Each entry is a negative determinant of
entries in the previous two rows divided by the entry in the first column directly above the
calculated row. The left-hand column of the determinant is always the first column of the
previous two rows, and the right-hand column is the elements of the column above and to
the right. The table is complete when all of the rows are completed down to s°. Table 6.2
is the completed Routh table. Let us look at an example.

Creating a Routh Table

PROBLEM: Make the Routh table for the system shown in Figure 6.4(a).

R(s) + E(s) 1000 C(s)
—_— >
- (5+2)(s +3)(s+5) R(s) 1000 )

§3+ 1052+ 31s + 1030
(a) (b)

SOLUTION: The first step is to find the equivalent closed-loop system because we
want to test the denominator of this function, not the given forward transfer function,
for pole location. Using the feedback formula, we obtain the equivalent system of
Figure 6.4(b). The Routh-Hurwitz criterion will be applied to this denominator. First
label the rows with powers of s from s> down to s in a vertical column, as shown in
Table 6.3. Next form the first row of the table, using the coefficients of the denominator
of the closed-loop transfer function. Start with the coefficient of the highest power
and skip every other power of s. Now form the second row with the coefficients
of the denominator skipped in the previous step. Subsequent rows are formed with
determinants, as shown in Table 6.2.

For convenience, any row of the Routh table can be multiplied by a positive constant
without changing the values of the rows below. This can be proved by examining the
expressions for the entries and verifying that any multiplicative constant from a previous
row cancels out. In the second row of Table 6.3, for example, the row was multiplied by
1/10. We see later that care must be taken not to multiply the row by a negative constant.
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TABLE 6.3 Completed Routh table for Example 6.1

$3 1 31 0
§2 1 1 1030 103 0
‘1 31‘ '1 o’ ‘1 0‘
! Lo103]_ o, 0 0f_ L ol_
1 7 1 0 1 0
‘ 1 103' ‘ 1 o‘ ‘ 1 o‘
0 -72 0 -72 0 -72 0
s 721 = =
-72 03 -72 0 -72 0

Interpreting the Basic Routh Table

Now that we know how to generate the Routh table, let us see how to interpret it. The
basic Routh table applies to systems with poles in the left and right half-planes. Systems
with imaginary poles and the kind of Routh table that results will be discussed in the next
section. Simply stated, the Routh-Hurwitz criterion declares that the number of roots of
the polynomial that are in the right half-plane is equal to the number of sign changes in
the first column.

If the closed-loop transfer function has all poles in the left half of the s-plane, the
system is stable. Thus, a system is stable if there are no sign changes in the first column of
the Routh table. For example, Table 6.3 has two sign changes in the first column. The first
sign change occurs from 1 in the s* row to —72 in the s' row. The second occurs from —72 in
the s' row to 103 in the s° row. Thus, the system of Figure 6.4 is unstable since two poles
exist in the right half-plane.

Skill-Assessment Exercise 6.1

PROBLEM: Make a Routh table and tell how many roots of the following polynomial
are in the right half-plane and in the left half-plane.

P(s)=3s"+9s° +65° +45s* + 757 + 85> + 25+ 6

ANSWER: Four in the right half-plane (rhp), three in the left half-plane (Ihp).

The complete solution is at www.wiley.com/college/nise.

Now that we have described how to generate and interpret a basic Routh table, let us
look at two special cases that can arise.

6.3 Routh-Hurwitz Criterion: Special Cases

Two special cases can occur: (1) The Routh table sometimes will have a zero only in the first
column of a row, or (2) the Routh table sometimes will have an entire row that consists of
zeros. Let us examine the first case.
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Example 6.2

Trylt 6.1

Use the following MATLAB
statement to find the poles of
the closed-loop transfer
function in Eq. (6.1).

roots@1 2 36 5 3D

TABLE 6.4 Completed Routh table for

Chapter 6 Stability

Zero Only in the First Column

If the first element of a row is zero, division by zero would be required to form the next
row. To avoid this phenomenon, an epsilon, ¢, is assigned to replace the zero in the first
column. The value € is then allowed to approach zero from either the positive or the
negative side, after which the signs of the entries in the first column can be determined.
Let us look at an example.

Stability via Epsilon Method

PROBLEM: Determine the stability of the closed-loop transfer function

10
8§54+ 25* 4+ 353+ 652+ 55+ 3

T(s) = (6.2)

SOLUTION: The solution is shown in Table 6.4. We form the Routh table by using the
denominator of Eq. (6.2). Begin by assembling the Routh table down to the row where
a zero appears only in the first column (the s° row). Next replace the zero by a small
number, €, and complete the table. To begin the interpretation, we must first assume
a sign, positive or negative, for the quantity e¢. Table 6.5 shows the first column of
Table 6.4 along with the resulting signs for choices of e positive and e negative.

TABLE 6.5 Determining signs in first column of a Routh table with zero as

Example 6.2 first element in a row
5 3 Label First column €=+ €=—
s 2 6 s 1 + +
4
5’ 0 € 7 0 S 2 + +
6c — 7 2 s 0 € + —
2 € —
Ky 2 6e -7
¢ 3 0 s € - _ N
s' 42 — 49 - 6¢ 0 0 J 42¢ — 49 — 6¢2
12¢— 14 Te—14 + +
s° 3 0 0 0 3 N .

Symbolic Math

Studentswho are performing the MATLAB exercises andwant toexplore

If € is chosen positive, Table 6.5 will show a sign change from the s> row to the s*
row, and there will be another sign change from the s* row to the s' row. Hence, the system
is unstable and has two poles in the right half-plane.

Alternatively, we could choose € negative. Table 6.5 would then show a sign change
from the s* row to the s row. Another sign change would occur from the s row to the s°
row. Our result would be exactly the same as that for a positive choice for €. Thus, the
system is unstable, with two poles in the right half-plane.

the added capability of MATLAB's Symbolic Math Toolbox should
now run chéspl in Appendix F at www.wiley.com/college/nise. You
will learn how to use the Symbolic Math Toolbox to calculate the
values of cells inaRouth table even if the table contains symbolic
objects, such as e¢. You will see that the Symbolic Math Toolbox
and MATLAB yield an alternate way to generate the Routh table for
Example 6.2.
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6.3 Routh-Hurwitz Criterion: Special Cases

Another method that can be used when a zero appears only in the first column of a row
is derived from the fact that a polynomial that has the reciprocal roots of the original
polynomial has its roots distributed the same—right half-plane, left half-plane, or imaginary
axis—because taking the reciprocal of the root value does not move it to another region.
Thus, if we can find the polynomial that has the reciprocal roots of the original, it is possible
that the Routh table for the new polynomial will not have a zero in the first column. This
method is usually computationally easier than the epsilon method just described.

We now show that the polynomial we are looking for, the one with the reciprocal
roots, is simply the original polynomial with its coefficients written in reverse order
(Phillips, 1991). Assume the equation

S Fap s e+ ais4+ag=0 (6.3)

If 5 is replaced by 1/d, then d will have roots which are the reciprocal of s. Making this
substitution in Eq. (6.3),

1" N\’ 1
(d) + a,—; (d) + - Fa (d> +ay=0 (6.4)

Factoring out (1/d)",

" 1 -1 1 (1-n) 1\ ™"
@ [rom(s) +oraly) ral)
1 n
= (3) [1+ap1d+ - +a1d"" +apd"] =0 (6.5)

Thus, the polynomial with reciprocal roots is a polynomial with the coefficients written in
reverse order. Let us redo the previous example to show the computational advantage of
this method.

Example 6.3

Stability via Reverse Coefficients
PROBLEM: Determine the stability of the closed-loop transfer function

10

T =
(s) §5+25% + 353 + 652+ 55+ 3

(6.6)

SOLUTION: First write a polynomial that has the reciprocal roots of the denominator of
Eq. (6.6). From our discussion, this polynomial is formed by writing the denominator
of Eq. (6.6) in reverse order. Hence,

D(s) = 35" +55* + 65° + 35> + 25 + 1 (6.7)

We form the Routh table as shown in Table 6.6 using Eq. (6.7). Since there are two sign
changes, the system is unstable and has two right-half-plane poles. This is the same as
the result obtained in Example 6.2. Notice that Table 6.6 does not have a zero in the
first column.

307

TABLE 6.6 Routh table for
Example 6.3

§° 2
st 1
5 42 1.4

5 1.33 1

5! -1.75

0 1
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Example 6.4
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Entire Row is Zero

We now look at the second special case. Sometimes while making a Routh table, we find
that an entire row consists of zeros because there is an even polynomial that is a factor of
the original polynomial. This case must be handled differently from the case of a zero in
only the first column of a row. Let us look at an example that demonstrates how to
construct and interpret the Routh table when an entire row of zeros is present.

Stability via Routh Table with Row of Zeros

PROBLEM: Determine the number of right-half-plane poles in the closed-loop transfer
function

10
TS5+ Ts% 4 653 + 4252 + 85 + 56

T(s)

(6.8)

SOLUTION: Start by forming the Routh table for the denominator of Eq. (6.8) (see
Table 6.7). At the second row we multiply through by 1/7 for convenience. We stop at
the third row, since the entire row consists of zeros, and use the following procedure.
First we return to the row immediately above the row of zeros and form an auxiliary
polynomial, using the entries in that row as coefficients. The polynomial will start with
the power of s in the label column and continue by skipping every other power of s. Thus,
the polynomial formed for this example is

P(s)=s"+65+8 (6.9)
Next we differentiate the polynomial with respect to s and obtain

dP
_dgs) =45 412540 (6.10)

Finally, we use the coefficients of Eq. (6.10) to replace the row of zeros. Again, for
convenience, the third row is multiplied by 1/4 after replacing the zeros.

The remainder of the table is formed in a straightforward manner by following the
standard form shown in Table 6.2. Table 6.7 shows that all entries in the first column are
positive. Hence, there are no right-half-plane poles.

TABLE 6.7 Routh table for Example 6.4

s 1 6 8

s 7 1 42 6 56 8

s> o 4 1 4 12 3 4 0 0

5 3 8 0

5! ! 0 0
3

s° 8 0 0
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Let us look further into the case that yields an entire row of zeros.
An entire row of zeros will appear in the Routh table when a purely even
or purely odd polynomial is a factor of the original polynomial. For cx
example, s* 4+ 55° + 7 is an even polynomial; it has only even powers N
of s. Even polynomials only have roots that are symmetrical about the
origin.® This symmetry can occur under three conditions of root position: 4

Jjo

309

s-plane

(1) The roots are symmetrical and real, (2) the roots are symmetrical and
imaginary, or (3) the roots are quadrantal. Figure 6.5 shows examples of
these cases. Each case or combination of these cases will generate an
even polynomial.

It is this even polynomial that causes the row of zeros to appear.
Thus, the row of zeros tells us of the existence of an even polynomial
whose roots are symmetric about the origin. Some of these roots could be
on the jw-axis. On the other hand, since jw roots are symmetric about the
origin, if we do not have a row of zeros, we cannot possibly have jw roots.

Another characteristic of the Routh table for the case in question is
that the row previous to the row of zeros contains the even polynomial
that is a factor of the original polynomial. Finally, everything from the
row containing the even polynomial down to the end of the Routh table
is atest of only the even polynomial. Let us put these facts together in an
example.

Example 6.5

Pole Distribution via Routh Table with Row of Zeros
PROBLEM: For the transfer function

20
T8 457 4+ 1256 + 2255 + 395% + 5953 + 4852 + 385 + 20

T(s) ©.11)

tell how many poles are in the right half-plane, in the left half-plane, and on the jw-axis.

SOLUTION: Use the denominator of Eq. (6.11) and form the Routh table in Table 6.8.
For convenience the s° row is multiplied by 1/10, and the s° row is multiplied by 1/20.
At the s row we obtain a row of zeros. Moving back one row to s* we extract the even
polynomial, P(s), as

P(s)=s"+352+2 (6.12)
This polynomial will divide evenly into the denominator of Eq. (6.11) and thus is a
factor. Taking the derivative with respect to s to obtain the coefficients that replace the
row of zeros in the s> row, we find

ar)

s =45 +65+0

(6.13)

Replace the row of zeros with 4, 6, and 0 and multiply the row by 1/2 for convenience.
Finally, continue the table to the s° row, using the standard procedure.

3 The polynomial s° + 55 + 7s is an example of an odd polynomial; it has only odd powers of 5. Odd polynomials
are the product of an even polynomial and an odd power of s. Thus, the constant term of an odd polynomial is
always missing.

A: Real and symmetrical about the origin
B: Imaginary and symmetrical about the origin
C: Quadrantal and symmetrical about the origin ————-

FIGURE 6.5 Root positions to generate even
polynomials: A, B, C, or any combination
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TABLE 6.8 Routh table for Example 6.5

§8 1 12 39 48 20

s’ 1 22 59 38 0

6 ——1 —20 -2 19 1 20 2 0

§d 20 1 60 3 46 2 0 0

st 1 3 2 0 0

s o 4 2 4 6 3 4 0 0 0 0

2 % 3 2 4 0 0 0
1

5! - 0 0 0 0
3

0 4 0 0 0 0

How do we now interpret this Routh table? Since all entries from the even
polynomial at the s* row down to the s° row are a test of the even polynomial, we begin
to draw some conclusions about the roots of the even polynomial. No sign changes exist
from the s* row down to the s° row. Thus, the even polynomial does not have right-half-
plane poles. Since there are no right-half-plane poles, no left-half-plane poles are present
because of the requirement for symmetry. Hence, the even polynomial, Eq. (6.12), must
have all four of its poles on the jw-axis.* These results are summarized in the first column
of Table 6.9.

The remaining roots of the total polynomial are evaluated from the s® row down to
the s* row. We notice two sign changes: one from the s’ row to the s° row and the other
from the s° row to the s° row. Thus, the other polynomial must have two roots in the right
half-plane. These results are included in Table 6.9 under Other. The final tally is the sum
of roots from each component, the even polynomial and the other polynomial, as shown
under Total in Table 6.9. Thus, the system has two poles in the right half-plane, two poles
in the left half-plane, and four poles on the jw-axis; it is unstable because of the right-half-
plane poles.

TABLE 6.9 Summary of pole locations for Example 6.5

Polynomial
Even Other Total
Location (fourth-order) (fourth-order) (eighth-order)
Right half-plane 0 2 2
Left half-plane 0 2 2
jo 4 0 4

# A necessary condition for stability is that the jw roots have unit multiplicity. The even polynomial must be checked
for multiple jew roots. For this case, the existence of multiple jw roots would lead to a perfect, fourth-order square
polynomial. Since Eq. (6.12) is not a perfect square, the four jw roots are distinct.
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We now summarize what we have learned about polynomials that
generate entire rows of zeros in the Routh table. These polynomials have a
purely even factor with roots that are symmetrical about the origin. The even
polynomial appears in the Routh table in the row directly above the row of
zeros. Every entry in the table from the even polynomial’s row to the end of
the chart applies only to the even polynomial. Therefore, the number of sign
changes from the even polynomial to the end of the table equals the number
of right-half-plane roots of the even polynomial. Because of the symmetry
of roots about the origin, the even polynomial must have the same number
of left-half-plane roots as it does right-half-plane roots. Having accounted
for the roots in the right and left half-planes, we know the remaining roots
must be on the jw-axis.

Every row in the Routh table from the beginning of the chart to the row
containing the even polynomial applies only to the other factor of the
original polynomial. For this factor, the number of sign changes, from the
beginning of the table down to the even polynomial, equals the number of
right-half-plane roots. The remaining roots are left-half-plane roots. There
can be no jo roots contained in the other polynomial.

Skill-Assessment Exercise 6.2

closed-loop system, 7(s), are in the rhp, in the lhp, and on the jw-axis:

s+ 752 =21s+ 10

T =
(s) SO+ —65*+0s3—52—5+6

ANSWER: Two rhp, two lhp, and two jo

The complete solution is at www.wiley.com/college/nise.

Virtual Experiment 6.1
Stability

Put theory into practice and evaluate the stability
of the Quanser Linear Inverted Pendulum in
LabVIEW. When in the upward balanced
position, this system addresses the challenge of
stabilizing a rocket during take-off. In the
downward position it emulates the construction
gantry crane.

Virtual experiments are found on
Learning Space.

PROBLEM: Use the Routh-Hurwitz criterion to find how many poles of the following

Let us demonstrate the usefulness of the Routh-Hurwitz criterion with a few additional

examples.

6.4 Routh-Hurwitz Criterion: Additional Examples

The previous two sections have introduced the Routh-Hurwitz criterion. Now we need to
demonstrate the method’s application to a number of analysis and design problems.

Example 6.6

Standard Routh-Hurwitz

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and on

the jw-axis for the system of Figure 6.6.
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FIGURE 6.6 Feedback

control system for Example 6.6

Chapter 6 Stability

R(s) + E(s) 200 C(s)
S(s3 + 652+ 11s + 6)

SOLUTION: First, find the closed-loop transfer function as

200

) = T 67 7 1152 1 65 1 200

(6.14)

The Routh table for the denominator of Eq. (6.14) is shown as Table 6.10. For clarity,
we leave most zero cells blank. At the s' row there is a negative coefficient; thus, there
are two sign changes. The system is unstable, since it has two right-half-plane poles and
two left-half-plane poles. The system cannot have jw poles since a row of zeros did not
appear in the Routh table.

TABLE 6.10 Routh table for Example 6.6

st 1 11 200
5 6 1 6 1

'S 11 2007 20

5! -19

0 20

Example 6.7

The next example demonstrates the occurrence of a zero in only the first column
of a row.

Routh-Hurwitz with Zero in First Column

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and on
the jw-axis for the system of Figure 6.7.

R(s) + E(s) 1 C(s)
s2s*+352 + 252+ 35+ 2)

FIGURE 6.7 Feedback a
control system for Example 6.7

SOLUTION: The closed-loop transfer function is

1
T2 35 4253 + 352+ 25 + 1

T(s)

(6.15)

Form the Routh table shown as Table 6.11, using the denominator of Eq. (6.15). A zero
appears in the first column of the s* row. Since the entire row is not zero, simply replace
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the zero with a small quantity, ¢, and continue the table. Permitting ¢ to be a small,
positive quantity, we find that the first term of the s* row is negative. Thus, there are
two sign changes, and the system is unstable, with two poles in the right half-plane.
The remaining poles are in the left half-plane.

TABLE 6.11 Routh table for Example 6.7

3
K -0 €

WA W N

5 3¢ -4
€
] 12¢ — 16 — 3¢?
9¢ — 12
s° 1

—_

We also can use the alternative approach, where we produce a polynomial whose
roots are the reciprocal of the original. Using the denominator of Eq. (6.15), we form a
polynomial by writing the coefficients in reverse order,

S 4+ 25" +38° + 257 + 35+ 2 (6.16)

The Routh table for this polynomial is shown as Table 6.12. Unfortunately, in this case
we also produce a zero only in the first column at the s> row. However, the table is
easier to work with than Table 6.11. Table 6.12 yields the same results as Table 6.11:
three poles in the left half-plane and two poles in the right-half-plane. The system
is unstable.

TABLE 6.12  Alternative Routh table for Example 6.7

s 1 3 3

st 2 2 2

5 2 2

5> o e 2

1 2¢ -4

N

€

0 2
Students who are using MATLAB should now run ch6pl in Appendix B. MATLAB
You will learn how to perform block diagram reduction to find m

T(s), followed by an evaluation of the closed-loop system’s
poles to determine stability. This exercise uses MATLAB to do
Example 6.7.

In the next example, we see an entire row of zeros appear along with the possibility of
imaginary roots.
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Example 6.8

FIGURE 6.8 Feedback
control system for Example 6.8

Trylt 6.2

Use MATLAB, The Control
System Toolbox, and the
following statements to find the
closed-loop transfer function,
T1(s), for Figure 6.8 and the
closed-loop poles.

numg=128;

deng={1 3 10 24 ...
48 96 128 192 0];

G=tf(numg, deng);

T=Ffeedback(G, 1)

poles=pole(T)

Chapter 6 Stability

Routh-Hurwitz with Row of Zeros

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and on
the jw-axis for the system of Figure 6.8. Draw conclusions about the stability of the
closed-loop system.

R(s) + E(s) 128 ()
(57 + 350 + 1055 + 245 + 4853 + 9652 + 1285 + 192) o

SOLUTION: The closed-loop transfer function for the system of Figure 6.8 is

128

T =
() = 53357 7 1056 1 2455 1 4857 + 9657 + 12857 1 1925 + 128

6.17)

Using the denominator, form the Routh table shown as Table 6.13. A row of zeros appears
in the s° row. Thus, the closed-loop transfer function denominator must have an even
polynomial as a factor. Return to the s° row and form the even polynomial:

P(s) = s° + 85s* + 325> + 64 (6.18)

TABLE 6.13 Routh table for Example 6.8

s 1 10 48 128 128
s’ 3 1 24 8 96 32 1927 64
s° 2 1 16 8 64 32 128 64
s> 4 6 3 4 32 16 o 64 32 o O 0
8 64
st 5 1 = 8 64 24
s —8=1 40 -5
2 3 1 24 8
5! 3
50 8

Differentiate this polynomial with respect to s to form the coefficients that will replace the
row of zeros:

dP
d(s) = 65° +325° + 645+ 0 (6.19)

Replace the row of zeros at the s° row by the coefficients of Eq. (6.19) and multiply through
by 1/2 for convenience. Then complete the table.

We note that there are two sign changes from the even polynomial at the s° row
down to the end of the table. Hence, the even polynomial has two right-half-plane poles.
Because of the symmetry about the origin, the even polynomial must have an equal
number of left-half-plane poles. Therefore, the even polynomial has two left-half-plane
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poles. Since the even polynomial is of sixth order, the two remaining poles must be on
the jow-axis.

There are no sign changes from the beginning of the table down to the even
polynomial at the s® row. Therefore, the rest of the polynomial has no right-half-plane
poles. The results are summarized in Table 6.14. The system has two poles in the
right half-plane, four poles in the left half-plane, and two poles on the jw-axis, which
are of unit multiplicity. The closed-loop system is unstable because of the right-half-
plane poles.

TABLE 6.14 Summary of pole locations for Example 6.8

Polynomial
Even Other Total
Location (sixth-order) (second-order) (eighth-order)
Right half-plane 2 0 2
Left half-plane 2 2 4
jo 2 0 2

The Routh-Hurwitz criterion gives vivid proof that changes in the gain of a feedback
control system result in differences in transient response because of changes in closed-loop
pole locations. The next example demonstrates this concept. We will see that for control
systems, such as those shown in Figure 6.9, gain variations can move poles from stable
regions of the s-plane onto the jw-axis and then into the right half-plane.

Thrusters Syntactic

Long baseline & s .
. Lifting bail (1of7) flotation module

emergency beacon

Fiber-optic
tether

Side-scan
transceiver array
(1 0f2)

Aluminum
tubular frame

camera

Still film
Wiring junction box
(1of2)

Telemetry housing w/lasers
Manipulator electronics housing
Manipulator with Computer housing w/gyro

coring tool
Side-scan sonar

electronics housing FIGURE 6.9 Jason is an

Flash for 250-watt
sl photoeraphy (llag}p% Electronic compass underwater, remote-controlled

vehicle that has been used to
explore the wreckage of the
Lusitania. The manipulator and
cameras comprise some of the
vehicle’s control systems
(Courtesy of Woods Hole
Oceanographic Institution)



316

Example 6.9

Chapter 6 Stability

Stability Design via Routh-Hurwitz

PROBLEM: Find the range of gain, K, for the system of Figure 6.10 that will cause the
system to be stable, unstable, and marginally stable. Assume K > 0.

R(s) + E(s) K Cls)
s(s+7)(s+11)

FIGURE 6.10 Feedback
control system for Example 6.9

SOLUTION: First find the closed-loop transfer function as

K

T =
R S R L P

(6.20)

Next form the Routh table shown as Table 6.15.

TABLE 6.15 Routh table for Example 6.9

s 1 77
s 18 K
. 1386 — K

‘ 18

0 K

Since K is assumed positive, we see that all elements in the first column are always
positive except the s' row. This entry can be positive, zero, or negative, depending upon
the value of K. If K < 1386, all terms in the first column will be positive, and since there
are no sign changes, the system will have three poles in the left half-plane and be stable.

If K > 1386, the s' term in the first column is negative. There are two sign changes,
indicating that the system has two right-half-plane poles and one left-half-plane pole,
which makes the system unstable.

If K =1386, we have an entire row of zeros, which could signify jw poles.
Returning to the s* row and replacing K with 1386, we form the even polynomial

P(s) = 185* + 1386 6.21)
Differentiating with respect to s, we have

dP(s) _

36s+0 (6.22)

Replacing the row of zeros with the coefficients of Eq. (6.22), we obtain the
Routh-Hurwitz table shown as Table 6.16 for the case of K = 1386.

TABLE 6.16 Routh table for Example 6.9 with K = 1386

K 1 77
52 18 1386
s! & 36

0 1386
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Since there are no sign changes from the even polynomial (s*> row) down to the
bottom of the table, the even polynomial has its two roots on the jw-axis of unit
multiplicity. Since there are no sign changes above the even polynomial, the remaining
root is in the left half-plane. Therefore the system is marginally stable.

Students who are using MATLAB should now run ch6p2 in Appendix B.
You will learn how to set up a loop to search for the range of gain
toyield stability. This exercise uses MATLAB to do Example 6.9.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch6sp2 in Appendix F at www.wiley.com/college/
nise. Youwill learn how to use the Symbolic Math Toolbox to calcu-
late the values of cells inaRouth table even if the table contains
symbolic objects, such as avariable gain, K. Youwill see that the
Symbolic Math Toolbox and MATLAB yield an alternative way to solve
Example 6.9.
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MATLAB

Symbolic Math

The Routh-Hurwitz criterion is often used in limited applications to factor
polynomials containing even factors. Let us look at an example.

Example 6.10

Factoring via Routh-Hurwitz
PROBLEM: Factor the polynomial

s*+ 35> + 305 + 30s + 200 (6.23)

SOLUTION: Form the Routh table of Table 6.17. We find that the s' row is a row of
zeros. Now form the even polynomial at the s> row:

P(s) = s> + 10 (6.24)

TABLE 6.17 Routh table for Example 6.10

st 1 30 200
5 3 1 30 10

52 200 1 2000 10

5! o 2 o 0

0 10

This polynomial is differentiated with respect to s in order to complete the Routh table.
However, since this polynomial is a factor of the original polynomial in Eq. (6.23),
dividing Eq. (6.23) by (6.24) yields (s> + 3s + 20) as the other factor. Hence,

s* 4353 +305% 4+ 305 + 200 = (s + 10)(s> + 35 + 20)
= (s +/3.1623)(s — j3.1623)
X(s+1.5+4.213)(s + 1.5 — j4.213) (6.25)
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Skill-Assessment Exercise 6.3

PROBLEM: For a unity feedback system with the forward transfer function

_ K(s+20)
Gls) = s(s+2)(s + 3)

find the range of K to make the system stable.
ANSWER: 0 <K <2

The complete solution is at www.wiley.com/college/nise.

6.5 Stability in State Space

State Space

Up to this point we have examined stability from the s-plane viewpoint. Now we look at
stability from the perspective of state space. In Section 4.10, we mentioned that the values of
the system’s poles are equal to the eigenvalues of the system matrix, A. We stated that the
eigenvalues of the matrix A were solutions of the equation det (sI — A) = 0, which also
yielded the poles of the transfer function. Eigenvalues appeared again in Section 5.8, where
they were formally defined and used to diagonalize a matrix. Let us now formally show that
the eigenvalues and the system poles have the same values.

Reviewing Section 5.8, the eigenvalues of a matrix, A, are values of A that permit a
nontrivial solution (other than 0) for x in the equation

Ax = Ax (6.26)

In order to solve for the values of A that do indeed permit a solution for x, we rearrange
Eq. (6.26) as follows:

AX—Ax =0 (6.27)
or
(A-A)x=0 (6.28)
Solving for x yields
x=(I-A)"0 (6.29)
or
s

We see that all solutions will be the null vector except for the occurrence of zero in
the denominator. Since this is the only condition where elements of x will be 0/0, or
indeterminate, it is the only case where a nonzero solution is possible.

The values of 1 are calculated by forcing the denominator to zero:

det(I-A)=0 6.31)
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6.5 Stability in State Space

This equation determines the values of A for which a nonzero solution for x in Eq. (6.26)
exists. In Section 5.8, we defined x as eigenvectors and the values of A as the eigenvalues of
the matrix A.

Let us now relate the eigenvalues of the system matrix, A, to the system’s poles. In
Chapter 3 we derived the equation of the system transfer function, Eq. (3.73), from the state
equations. The system transfer function has det(sI — A) in the denominator because of the
presence of (sI —A)~". Thus,

det(sI— A) =0 (6.32)

is the characteristic equation for the system from which the system poles can be found.

Since Egs. (6.31) and (6.32) are identical apart from a change in variable name, we
conclude that the eigenvalues of the matrix A are identical to the system’s poles before
cancellation of common poles and zeroes in the transfer function. Thus, we can determine
the stability of a system represented in state space by finding the eigenvalues of the system
matrix, A, and determining their locations on the s-plane.

Example 6.11

Stability in State Space
PROBLEM: Given the system

0o 3 1 10
X = 2 8 1{x+| O|u (6.33a)
-10 =5 =2 0
y=[1 0 O]x (6.33b)

find out how many poles are in the left half-plane, in the right half-plane, and on the
Jjw-axis.

SOLUTION: First form (sT — A):

s 00 0 3 1 s =3 -1
(sI-A)=[0 s 0] - 2 8 1|=|-2 s-8 -l (6.34)
0 0 s -10 -5 -2 10 5 s+2
Now find the det(sI — A):
det(sT — A) = s° — 65° — 75 — 52 (6.35)

Using this polynomial, form the Routh table of Table 6.18.

TABLE 6.18 Routh table for Example 6.11

s> 1 -7

$2 -6 -3 =57 —26
47

g! —/31—1 & 0

319
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Since there is one sign change in the first column, the system has one right-half-
plane pole and two left-half-plane poles. It is therefore unstable. Yet, you may question the
possibility that if a nonminimum-phase zero cancels the unstable pole, the system will be
stable. However, in practice, the nonminimum-phase zero or unstable pole will shift due to
a slight change in the system’s parameters. This change will cause the system to become

unstable.
MATLAB Students who are using MATLAB should now run ch6p3 in Appendix B.
m You will learn how to determine the stability of a system repre-

sented in state space by finding the eigenvalues of the system
matrix. This exercise uses MATLAB to do Example 6.11.

Skill-Assessment Exercise 6.4

PROBLEM: For the following system represented in state space, find out how many

poles are in the left half-plane, in the right half-plane, and on the jw-axis.
Trylt 6.3

Use the following MATLAB
statements to find the 21 1 0
eigenvalues of the system %= 17
described in Skill-Assessment

Exercise 6.4. 3 4 _5 1

A2 1 1

17 1

-3 4 5] y=[0 1 0]x
Eig=eig(A)

1|x+ |0]r

ANSWER: Two rhp and one lhp.

The complete solution is at www.wiley.com/college/nise.

In this section, we have evaluated the stability of feedback control systems from
the state-space perspective. Since the closed-loop poles and the eigenvalues of a system
are the same, the stability requirement of a system represented in state space dictates
that the eigenvalues cannot be in the right half of the s-plane or be multiple on the
Jjw-axis.

We can obtain the eigenvalues from the state equations without first converting to a
transfer function to find the poles: The equation det(sI — A) = 0 yields the eigenvalues
directly. If det(sI — A), a polynomial in s, cannot be factored easily, we can apply the
Routh-Hurwitz criterion to it to evaluate how many eigenvalues are in each region of
the s-plane.

We now summarize this chapter, first with case studies and then with a written
summary. Our case studies include the antenna azimuth position control system
and the UFSS. Stability is as important to these systems as it is to the system shown
in Figure 6.11.
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FIGURE 6.11 A FANUC
M-410iB™ has 4 axes of
motion. It is seen here
performing bag palletizing

Courtesy of FANUC Robotics.

Antenna Control: Stability Design via Gain
This chapter has covered the elements of stability. We saw that stable systems have their Design
closed-loop poles in the left half of the s-plane. As the loop gain is changed, the locations
of the poles are also changed, creating the possibility that the poles can move into the right
half of the s-plane, which yields instability. Proper gain settings are essential for the
stability of closed-loop systems. The following case study demonstrates the proper setting
of the loop gain to ensure stability.

PROBLEM: You are given the antenna azimuth position control system shown on the
front endpapers, Configuration 1. Find the range of preamplifier gain required to keep the
closed-loop system stable.

SOLUTION: The closed-loop transfer function was derived in the case studies in
Chapter 5 as

6.63K
s> +101.71s% + 1715 + 6.63K

Using the denominator, create the Routh table shown as Table 6.19. The third row of
the table shows that a row of zeros occurs if K = 2623. This value of K makes the
system marginally stable. Therefore, there will be no sign changes in the first column
if 0 <K <2623. We conclude that, for stability, 0 < K < 2623. An animation
PowerPoint presentation (PPT) demonstrating this system is available for instructors
at www.wiley.com/college/nise. See Antenna (Ch. 6).

T(s) = (6.36)

TABLE 6.19 Routh table for antenna control case study

s> 1 171
52 101.71 6.63K
st 17392.41-6.63K 0

s° 6.63K
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CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives. Refer to the antenna azimuth position control system shown on the front
endpapers, Configuration 2. Find the range of preamplifier gain required to keep the
closed-loop system stable.

UFSS Vehicle: Stability Design via Gain

For this case study, we return to the UFSS vehicle and study the stability of the pitch
control system, which is used to control depth. Specifically, we find the range of pitch gain
that keeps the pitch control loop stable.

PROBLEM: The pitch control loop for the UFSS vehicle (Johnson, 1980) is shown on
the back endpapers. Let K, = 1 and find the range of K that ensures that the closed-loop
pitch control system is stable.

SOLUTION: The first step is to reduce the pitch control system to a single, closed-loop
transfer function. The equivalent forward transfer function, G,(s), is

0.25K (s + 0.435)

(5) = .37
Gels) s* +3.456s3 + 3.4575> 4+ 0.719s + 0.0416 (6.57)
With unity feedback the closed-loop transfer function, 7'(s), is
0.25K 0.435
T(s) = 1(s +0.435) (6.38)

s* +3.4565% + 3.4575% + (0.719 + 0.25K1)s + (0.0416 + 0.109K ;)

The denominator of Eq. (6.38) is now used to form the Routh table shown as Table 6.20.

TABLE 6.20 Routh table for UFSS case study

st 1 3.457 0.0416 + 0.109K,
s> 3.456 0.719 + 0.25K,
2 11.228 — 0.25K, 0.144 + 0.377K,

: —0.0625K2 + 1.324K, +7.575
11.228 — 0.25K;
0 0.144 + 0.377K,

Note: Some rows have been multiplied by a positive constant for convenience.

Looking at the first column, the s*and s> rows are positive. Thus, all elements of the
first column must be positive for stability. For the first column of the s> row to be positive,
—00 < K| < 44.91. For the first column of the s' row to be positive, the numerator
must be positive, since the denominator is positive from the previous step. The solution to
the quadratic term in the numerator yields roots of K| = —4.685 and 25.87. Thus, for a
positive numerator, —4.685 < K; < 25.87. Finally, for the first column of the s row to
be positive, —0.382 < K; < oo. Using all three conditions, stability will be ensured if
—0.382 < K; < 25.87.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. For the UFSS vehicle (Johnson, 1980) heading control system shown on the
back endpapers and introduced in the UFSS Case Study Challenge in Chapter 5, do the
following:

a. Find the range of heading gain that ensures the vehicle’s stability. Let K, = 1
b. Repeat Part a using MATLAB.




Review Questions

In our case studies, we calculated the ranges of gain to ensure stability. The student
should be aware that although these ranges yield stability, setting gain within these
limits may not yield the desired transient response or steady-state error characteristics.
In Chapters 9 and 11, we will explore design techniques, other than simple gain
adjustment, that yield more flexibility in obtaining desired characteristics.
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Summary

In this chapter, we explored the concepts of system stability from both the classical and
the state-space viewpoints. We found that for linear systems, stability is based on a natural
response that decays to zero as time approaches infinity. On the other hand, if the natural
response increases without bound, the forced response is overpowered by the natural response,
and we lose control. This condition is known as instability. A third possibility exists: The
natural response may neither decay nor grow without bound but oscillate. In this case, the
system is said to be marginally stable.

We also used an alternative definition of stability when the natural response is not
explicitly available. This definition is based on the total response and says that a system is
stable if every bounded input yields a bounded output (BIBO) and unstable if any bounded
input yields an unbounded output.

Mathematically, stability for linear, time-invariant systems can be determined from
the location of the closed-loop poles:

e If the poles are only in the left half-plane, the system is stable.
e If any poles are in the right half-plane, the system is unstable.

e If the poles are on the jw-axis and in the left half-plane, the system is marginally stable as
long as the poles on the jw-axis are of unit multiplicity; it is unstable if there are any
multiple jw poles.

Unfortunately, although the open-loop poles may be known, we found that in higher-order
systems it is difficult to find the closed-loop poles without a computer program.

The Routh-Hurwitz criterion lets us find how many poles are in each section of the
s-plane without giving us the coordinates of the poles. Just knowing that there are poles in
the right half-plane is enough to determine that a system is unstable. Under certain limited
conditions, when an even polynomial is present, the Routh table can be used to factor the
system’s characteristic equation.

Obtaining stability from the state-space representation of a system is based on the
same concept—the location of the roots of the characteristic equation. These roots are
equivalent to the eigenvalues of the system matrix and can be found by solving
det(sI — A) = 0. Again, the Routh-Hurwitz criterion can be applied to this polynomial.
The point is that the state-space representation of a system need not be converted to a
transfer function in order to investigate stability. In the next chapter, we will look at steady-
state errors, the last of three important control system requirements we emphasize.

Review Questions

1. What part of the output response is responsible for determining the stability of a linear
system?

2. What happens to the response named in Question 1 that creates instability?
3. What would happen to a physical system that becomes unstable?
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13.

14.

15.

16.

. Why are marginally stable systems considered unstable under the BIBO definition of

stability?

. Where do system poles have to be to ensure that a system is not unstable?
. What does the Routh-Hurwitz criterion tell us?

. Under what conditions would the Routh-Hurwitz criterion easily tell us the actual

location of the system’s closed-loop poles?

. What causes a zero to show up only in the first column of the Routh table?
. What causes an entire row of zeros to show up in the Routh table?

10.
11.
12.

Why do we sometimes multiply a row of a Routh table by a positive constant?
Why do we not multiply a row of a Routh table by a negative constant?

If a Routh table has two sign changes above the even polynomial and five sign
changes below the even polynomial, how many right-half-plane poles does the
system have?

Does the presence of an entire row of zeros always mean that the system has
Jjo poles?

If a seventh-order system has a row of zeros at the s> row and two sign changes below
the s* row, how many jw poles does the system have?

Is it true that the eigenvalues of the system matrix are the same as the closed-loop
poles?

How do we find the eigenvalues?

1. Tell how many roots of the following polynomial are

Determine how many closed-loop poles lie in the right

in the right half-plane, in the left half-plane, and on the
Jjw-axis: [Section: 6.2]

P(s)=5 +3s* + 55> + 45> +5+3

. Tell how many roots of the following polynomial are in
the right half-plane, in the left half-plane, and on the
Jw-axis: [Section: 6.3]

P(s) =5 + 65 + 55> + 85 + 20

. Using the Routh table, tell how many poles of the
following function are in the right half-plane, in the left
half-plane, and on the jw-axis. [Section: 6.3]

s+ 8
T(S)_ss—s4+3s3—3s2+3s—2

. The closed-loop transfer function of a system
is [Section: 6.3]

S 4+252 +7s+21
§9 =25 4+ 353 — 652+ 25 — 4

T(s) =

. Use MATLAB and the Symbolic

half-plane, in the left half-plane, and on the jw-axis.

. How many poles are in the right half-plane, in the left

half-plane, and on the jw-axis for the open-loop system
of Figure P6.17 [Section: 6.3]

R(s) P+ds—3 Cls)
s*+ 453 + 852+ 205 +15

FIGURE Pé.1

. How many poles are in the right half-plane, the left

half-plane, and on the jw-axis for the open-loop system
of Figure P6.27? [Section: 6.3]

R(s) -6 C(s)
=8 o
O+ -6+ s2+5-6
FIGURE Pé6.2
. Use MATLAB to find the pole MATLAB
locations for the systemof m

Problem6.

Symbolic Math
Math Toolbox to generate a [ SM |
Routh table to solve Problem 3.



9.

10.

11.

12.

13.

14.

15.

Determine whether the unity feedback system of
Figure P6.3 is stable if [Section: 6.2]

240
0 = I D6+ 26+ 3619

Problems

16. Repeat Problem 15 using MATLAB.
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MATLAB

17. Consider the following Routh table. Notice that the s’

C(s)

row was originally all zeros. Tell how many roots of
the original polynomial were in the right half-plane, in
the left half-plane, and on the jw-axis. [Section: 6.3]

R(s) +% E(s) GGs)

FIGURE Pé6.3

Use MATLAB to find the pole
locations for the system of

MATLAB

Problem9.
Consider the unity feedback system of Figure P6.3 with
1
G(s)=———=
® 45%(s? + 2)

a. Using the Routh-Hurwitz criterion, find the region
of the s-plane where the poles of the closed-loop
system are located.

b. Use MATLAB to verify your MATLAB
answer and find the poles of m
T(s) - Indicate whether this system
is stable, unstable, or marginally
stable. [Section: 6.3]

In the system of Figure P6.3, let

K(s+1)
s(s = 2)(s +3)

Find the range of K for closed-loop stability. [Section: 6.4]

G(s) =

Given the unity feedback system of Figure P6.3 with

84

G(s)

T 5(s7 + 555 + 1255 + 255% + 4553 + 5052 + 825 + 60)

tell how many poles of the closed-loop transfer function
lie in the right half-plane, in the left half-plane, and on
the jw-axis. [Section: 6.3]

Using the Routh-Hurwitz criterion and the unity
feedback system of Figure P6.3 with

1
25* 4+ 553 + 52 4+ 2s

G(s) =
tell whether or not the closed-loop

stable. [Section: 6.2]
Given the unity feedback system of Figure P6.3 with

8
s(s6 =285 — st + 253 + 452 — 85— 4)

system is

G(s) =

tell how many closed-loop poles are located in the right
half-plane, in the left half-plane, and on the jw-axis.
[Section: 6.3]

R(s) + 450
—

s 1 -1 -2

6 1 -1 -2
§° 3 -1 0
st 1 -1 -3 0
5 7 8 0 0
5 -15 -21 0 0
g! -9 0 0 0
§0 —21 0 0 0

. For the system of Figure P6.4, tell how many closed-

loop poles are located in the right half-plane, in the left
half-plane, and on the jw-axis. Notice that there is
positive feedback. [Section: 6.3]

R(s) + E(s) 18
2+ st =753 =752 - 18s

C(s) -~

+

FIGURE Pé6.4

. Using the Routh-Hurwitz criterion, tell how many

closed-loop poles of the system shown in Figure
P6.5 lie in the left half-plane, in the right half-plane,
and on the jw-axis. [Section: 6.3]

C(s) _

s*+353+105%4+305+150

[1]
5]

FIGURE Pé6.5

20. Determine if the unity feedback system of Figure P6.3

with

_ K(s*>+1)
O =5r6+2)

can be unstable. [Section: 6.4]

21. For the unity feedback system of Figure P6.3 with

K(s+6
Gy = K6+6)
s(s+ 1)(s+4)
determine the range of K to ensure stability.
[Section: 6.4]
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22,

23.

24.

25.

26.

27.

28.

29.

30.

31.
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In the system of Figure P6.3, let

_K(s—a)
"~ s(s—b)

G(s)

Find the range of K for closed-loop stability when:
[Section: 6.4]

a.a<0, b<O0
b.a<0, b>0
c.a>0, b<0
da>0, b>0
For the unity feedback system of Figure P6.3 with
Gs) = K(s+3)(s+5)
(s=2)(s—4)

determine the range of K for stability. [Section: 6.4]

MATLAB

Repeat Problem 23 using MATLAB.

Use MATLAB and the Symbolic Math symbolic Math
Toolbox to generate aRouth table [T
in terms of K to solve Problem 23.

Find the range of K for stability for the unity feedback
system of Figure P6.3 with [Section: 6.4]

_K(s+4)(s—4)
="y

For the unity feedback system of Figure P6.3 with
_K(s+1)
T sMs+4)

find the range of K for stability. [Section: 6.4]

Find the range of gain, K, to ensure stability in the unity
feedback system of Figure P6.3 with [Section: 6.4]

G(s)

K(s—=2)(s+4)(s+5)

Gls) = (s + 12)

Find the range of gain, K, to ensure stability in the unity

feedback system of Figure P6.3 with [Section: 6.4]
K(s+2)

2+ D(s+Ds-1)

G(s) =

Using the Routh-Hurwitz criterion, find the value of K
that will yield oscillations for the unity feedback system
of Figure P6.3 with [Section: 6.4]

K
(s+77)(s+27)(s +38)

G(s) =

Use the Routh-Hurwitz criterion to find the range of K for
which the system of Figure P6.6 is stable. [Section: 6.4]

C(s)

K(s>= 25 +2)

1
s2+2s+4

FIGURE Pé6.6

32. Repeat Problem 31 for the system of Figure P6.7.
[Section: 6.4]

R(s) + E(s) K(s+1) Cs)
A s(s+2)(s+3)
s+5
s+7 h
FIGURE P6.7

33. Given the unity feedback system of Figure P6.3 with

_ K(s+4)

0= GT126+2)

find the following: [Section: 6.4]
a. The range of K that keeps the system stable
b. The value of K that makes the system oscillate

c. The frequency of oscillation when K is set to the
value that makes the system oscillate

34. Repeat Problem 33 for [Section: 6.4]
Kis—1)(s—2
Gy = K= 16 =2)
(s+2)(s*>+25+2)

35. For the system shown in Figure P6.8, find the value of
gain, K, that will make the system oscillate. Also, find

the frequency of oscillation. [Section: 6.4]

R(s) + + 1 C(s)

K S(5+4)(5+6)

FIGURE P6.8

36. Given the unity feedback system of Figure P6.3 with
[Section: 6.4]

Ks(s +2)

OO = +8013)

a. Find the range of K for stability.

b. Find the frequency of oscillation when the system is
marginally stable.



37.

38.

39.

40.

41.

42.

43.

Repeat Problem 36 using MATLAB. MATLAB

For the unity feedback system of Figure P6.3 with

_ K(s+2)
T+ Ds+A)s-1)

G(s)

find the range of K for which there will be only two
closed-loop, right-half-plane poles. [Section: 6.4]

For the unity feedback system of Figure P6.3 with
[Section: 6.4]

K

)= e D+ a

a. Find the range of K for stability.

b. Find the frequency of oscillation when the system is
marginally stable.

Given the unity feedback system of Figure P6.3 with
[Section: 6.4]

K
(s +49)(s> +4s+5)

G(s) =

a. Find the range of K for stability.
b. Find the frequency of oscillation when the system is
marginally stable.

Using the Routh-Hurwitz criterion and the unity
feedback system of Figure P6.3 with [Section: 6.4]

K

) = T 6126+ 6)

a. Find the range of K for stability.
b. Find the value of K for marginal stability.

c. Find the actual location of the closed-loop poles
when the system is marginally stable.

Find the range of K to keep the system shown in
Figure P6.9 stable. [Section: 6.4]

R(s) + E(s) K C(s)
- T -
s—1 B
s2+2s+1
FIGURE P6.9

Find the value of K in the system of Figure P6.10
that will place the closed-loop poles as shown.
[Section: 6.4]

44.

45.

46.

G(s) =

47.
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R(s) , |+ K C(s)

s 2
A K}

+

1 +
K
1
s+3

Jjo

FIGURE P6.10 Closed-loop system with pole plot

The closed-loop transfer function of a system is

S+ Kis+K,

T =
(s) s+ K183 +Kos2+5s+ 1

Determine the range of K in order for the system to be
stable. What is the relationship between K| and K, for
stability? [Section: 6.4]
For the transfer function below, find the constraints on
K, and K, such that the function will have only two
Jjo poles. [Section: 6.4]

K]S+K2

T =
(s) P K i3+ 52+ Kos+ 1

The transfer function relating the output engine fan
speed (rpm) to the input main burner fuel flow rate
(Ib/h) in a short takeoff and landing (STOL) fighter
aircraft, ignoring the coupling between engine fan
speed and the pitch control command, is (Schierman,
1992) [Section: 6.4]

1.357 +90.55° + 19705 + 15,000s* + 3120s> — 41,300s> — 50005 — 1840
T S+ 10357 + 1180s° + 404055 + 21505* — 89605 — 10, 600s2 — 15505 — 415

a. Find how many poles are in the right half-plane, in
the left half-plane, and on the jw-axis.

b. Is this open-loop system stable?

An interval polynomial is of the form
P(s)=ap +ays+ ars® + azs® + ass* + ass® + - -

with its coefficients belonging to intervals x; < a; < y;,
where x;, y; are prescribed constants. Kharitonov’s
theorem says that an interval polynomial has all its
roots in the left half-plane if each one of the following



328

48.

49.

50. A system is represented in state space as
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four polynomials has its roots in the left half-plane
(Minichelli, 1989):

K1(s) = Xo + X185 + Y587 + 35 + x48* + x55° + ygs® + -+
Ko(s) = Xo + ¥;S + Y287 + 355 + x45" 4+ y55° + ygs® + -+
K3(5) = yo + X185 + X287 4+ y35° + yu5* 4+ 1557 + x5 + - - -
K4(s) = yo +v;5 + 128% + 1355 + y,5* + y55° + x5 + - -
Use Kharitonov’s theorem and the Routh-Hurwitz
criterion to find if the following polynomial has any zeros
in the right half-plane.

P(s) = ag + ais + a»s* + azs’
2<ay <4 1<a L2

A linearized model of a torque-controlled crane hoisting
a load with a fixed rope length is

Xr(s) 1 52 + o}
P(s) = = 2 2
Fr(s) mr s2(s? + awy)
where wy = /¥, L=the rope length, my= the mass of

the car, a = the combined rope and car mass, f = the
force input applied to the car, and x; = the resulting
rope displacement (Marttinen, 1990). If the system is
controlled in a feedback configuration by placing it in a
loop as shown in Figure P6.11, with K > 0, where will
the closed-loop poles be located?

R(s) + C(s)

K P(s)

FIGURE P6.11

The read/write head assembly arm of a computer hard
disk drive (HDD) can be modeled as arigid rotating body
with inertia ;. Its dynamics can be described with the
transfer function
X(s) 1
PO =) T 12

where X(s) is the displacement of the read/write head
and F(s) is the applied force (Yan, 2003). Show that if
the HDD is controlled in the configuration shown in
Figure P6.11, the arm will oscillate and cannot be
positioned with any precision over a HDD track. Find
the oscillation frequency.

State Space

0 1 3 0
x= 1|2 2 —4|x+ 1|u
1 -4 3 0

51.

4 <a <6; az=1 52.

53.
54.

55.

Determine how many eigenvalues are in the right
half-plane, in the left half-plane, and on the jw-axis.
[Section: 6.5]

Use MATLAB to find the eigenvalues
of the following system:

MATLAB

0O 1 0 0 State Space
x=| 0 1 -a|x+|ofu EESE
-1 1 8 0

y=[0 0 1]x

The following system in state space State Space
represents the forward path of a unity “
feedback system. Use the Routh-Hurwitz criterion
to determine if the closed-loop system is stable.
[Section: 6.5]

0o 1 0 0

x=10 1 2|x+|1|u
-5 -4 -3 0

y=1[1 0 1]x

Repeat Problem 52 using MATLAB. MATLAB

A Butterworth polynomial is of the form

2n
B =1+ 1 (2) n>0
.
Use the Routh-Hurwitz criteria to find the zeros of a
Butterworth polynomial for:

a. n=1;
b. n=2

An inverted pendulum, mounted on a motor-driven cart
was presented in Chapter 3, Problem 30. The system’s
state-space model was linearized around a stationary
point, X9 = 0, corresponding to the pendulum point-
mass, m, being in the upright position at ¢t = 0, when
the force applied to the cart uy = 0 (Prasad, 2012). We'll
modify that model here to have two output variables: the
pendulumanglerelative to the y-axis, 8, and the horizontal
position of the cart, x. The output equation becomes:

0
0 1 0 0 0]]6@

= :C:
ny[oo1o}x
b

Using MATLAB, find out how many
eigenvalues are in the right
half-plane, in the left half-plane, and
on the jw-axis. What does that tell us
about the stability of that unit? [Sec-
tion: 6.5]

MATLAB



DESIGN PROBLEMS

56. A model for an airplane’s pitch loop is shown in
Figure P6.12. Find the range of gain, K, that will keep
the system stable. Can the system ever be unstable for
positive values of K?

Commanded Controller Aircraft dynamics
pitch angle 4+ K(is+1) s+ 10 Pitch angle
X (s +4.85) s240.65+9

1

Gyro
FIGURE P6.12 Aircraft pitch loop model

57. A common application of control systems is in regulating
the temperature of a chemical process (Figure P6.13). The
flow of a chemical reactant to a process is controlled by an
actuator and valve. The reactant causes the temperature in
the vat to change. This temperature is sensed and com-
pared to a desired set-point temperature in a closed loop,
where the flow of reactant is adjusted to yield the desired
temperature. In Chapter 9, we will learn how a PID
controller is used to improve the performance of such
process control systems. Figure P6.13 shows the control
system prior to the addition of the PID controller. The PID
controller is replaced by the shaded box with a gain of
unity. For this system, prior to the design of the PID
controller, find the range of amplifier gain, K, to keep the
system stable.

Actuator Chemical
Desired Future PID Al aiu]ld heatv '
temperature controller mprther valve process Actual
set point 4 i 1 0.7 temperature
1 = K |
X | s+0.5 2+ 1.7s+0.3
0.1
s+0.1

Temperature
sensor

FIGURE P6.13 Block diagram of a chemical process control
system

58. A transfer function from indoor radiator power, Q(s), to
room temperature, 7(s), in an 11 m? room is

T(s)  1x107°%%+1.314x107%s +2.66 X 107"

Pls) =+ "= 2 -7 -1
O(s) 7 4+0.00163s> +5.272 x 10™"s +3.538 X 10

where Q is in watts and T'is in °C (Thomas, 2005). The
room’s temperature will be controlled by embedding it
in a closed loop, such as that of Figure P6.11. Find the
range of K for closed-loop stability.

59. During vertical spindle surface grinding, adjustments are

made on a multi-axis computer numerical control (CNC)

60.

61.

329

Problems

machine by measuring the applied force with a dyna-
mometer and applying appropriate corrections. This
feedback force control results in higher homogeneity
and better tolerances in the resulting finished product.
In a specific experiment with an extremely high feed
rate, the transfer function from the desired depth of cut
(DOC) to applied force was

F(s) _
DOC(s)

Kc

Ke Ko/ 1
ms?>+bs+k Kp \Ts+1

where k = 2.1 x 10*N/m, b = 0.78 Ns/m, m = 1.2 x
107*kg, K¢ = 1.5 x 10* N/mm, and 7= 0.004s. The
parameter K is varied to adjust the system. Find
the range of K, under which the system is stable
(Hekman, 1999).

In order to obtain a low-cost lithium-ion battery charger,
the feedback loop of Figure P6.3 is used, where
G(s) = G.(s)P(s). The following transfer functions
have been derived for G(s) (Tsang, 2009):

R1R2C1C2S2 + (R1C1 + R, C,y +R2C2)S +1

1+

P =
(s) Ci(1 + RoCo)s
K
@@=@+%

If R1=0.15Q;R,=0.44Q;C; =7200F; and C,=170F,
use the Routh-Hurwitz criteria to find the range of
positive Kp and K; for which the system is closed-loop
stable.

Figure P6.14 is a simplified and linearized block diagram
of a cascade control system, which is used to control
water level in a steam generator of a nuclear power plant
(Wang, 2009).

In this system, the level controller, G;(s), is the
master controller and the feed-water flow controller,
Grc(s), is the slave controller. Using mass balance
equations, the water level would ordinarily be regarded
as a simple integration process of water flow. In a steam
generator, however, steam flow rate and the cooling
effect of feed-water change the dynamics of that process.
Taking the latter into account and ignoring the much-less
pronounced impact of changes in steam flow rate, a first-
order lag plus time delay is introduced into the transfer
function, Gy,(s), relating the controlled level, C(s), to
feed-water flow rate, Q,,(s) as follows:

_C(s) Ky 2e7®
Gruls) = 0,(s) s(Tis+1) s25s+1)
2

~ s(25s +1)(2s2 + 25+ 1)

where K| = 2 is the process gain, 7; = 2 is the pure time
delay, and 7|, =25 is the steam generator’s time
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Set point

62.

63.
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X@s), Y (s)

R(s) +

O (s)

g

Controlled
level

C is)

Grc (s)

A4

Gre (s) Gy (s)

>

Gy ()

FIGURE Pé6.14

constant. (The expression e™"'* represents a time delay.
This function can be represented by what is known as a
Pade approximation. This approximation can take on
many increasingly complicated forms, depending upon
the degree of accuracy required. Here we use the Pade

X~

approximation, e™* ~ and specific numeri-

29

1+X+E

cal values for the considered steam generator.)
The dynamic characteristics of the control
valve are approximated by the transfer function

Qw(s): K, _ 1
Y(s) Tys+1 3s+1

where K, is the valve gain and 7, is its time constant.

Given that: Gpe(s) = Kp,. + Kp,.s =0.5 +2s
and Gie(s) =Kp,. +Kp,.s =05+ Ks, use the
Routh-Hurwitz criterion to find the range of the level
controller’s derivative gain, Kp,. = K > 0, that will
keep the system stable.

G,(s) =

Look-ahead information can be used to automatically
steer a bicycle in a closed-loop configuration. A line is
drawn in the middle of the lane to be followed, and an
arbitrary point is chosen in the vehicle’s longitudinal
axis. A look-ahead offset is calculated by measuring
the distance between the look-ahead point and the
reference line and is used by the system to correct the
vehicle’s trajectory. A linearized model of a particular
bicycle traveling on a straight-line path at a fixed
longitudinal speed is

14 —-11.7 68 616K 71IK|[V
Pl | -35 24 —669K 84K ||r

W 0 1 0 0 W
Y, 1 0 -10 0 Y,

In this model, V=bicycle’s lateral velocity, »=bicycle’s
yaw velocity, y =bicycles yaw acceleration, and Y, =
bicycle’s center of gravity coordinate on the y-axis. K is
a controller parameter to be chosen by the designer
(Ozguner, 1995). Use the Routh-Hurwitz citerion to find
the range of K for which the system is closed-loop stable.

Figure P5.42 Shows the block diagram of an Automatic
Voltage Regulator (Gozde, 2011). Assume in this diagram

64.

65.

the following parameter values: K, =10,7,=0.1, K, =1,
T,=04,K,=1,T,=1,K;=1, and T, = 0.001. Also
assume that the PID transfer function is substituted by

K
a simple integrator, namely Gpjp(s) = — . Find the range
s

of K for which the system is closed-loop stable.

It has been shown (Pounds, 2011) that an unloaded
UAYV helicopter is closed-loop stable and will have a
characteristic equation given by

mgh
S+ (Tg (qs + kkg) + q1g> $

mgh

h
+kTs+$(kk,-+ql) =0

where m is the mass of the helicopter, g is the gravitational
constant, /is the rotational inertia of the helicopter, / is the
height of the rotor plane above the center of gravity,
q; and g are stabilizer flapping parameters, k, k;, and k,
are controller parameters; all constants > 0. The UAV is
supposed to pick up a payload; when this occurs, the
mass, height, and inertia change to m', /', and I', respec-
tively, all still > 0. Show that the helicopter will remain
stable as long as
m'gh'  q, +kk; —q,gk
I k(C]2 + kkd)

Figure P6.15 shows the model of the dynamics of an
economic system (Wingrove, 2012). In this diagram x
represents the rate of growth in real Gross National
Product (GNP), x, the long-term trend (dc value) of the
GNP, Ax the change over the long-term trend of the
GNP, r, the real and psychological disturbance inputs
that affect the economy, r,, the random monetary inputs,
and Au fluctuations in unemployment rate. The diagram
has two feedback loops: one through Friedman’s model
in which the economy dynamics are approximated by

Fs) = K,s

2
(i) 426 (i) +1
W, w,

and a second loop through Okun’s law that relates the
GNP to unemployment changes. Assuming the following
parameter values: K, =2 years, w, =1.5rad/year, {=0.8,
K,=0.4 and G,=-0.4. Find the range of G, for closed-
loop stability.
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r/\' xO
Friedman’s model Okun’s law
+ P ++é Ax ++é X K, | Au
+ s ]
+
G.X
Gll
FIGURE Pé6.15

The system shown in Figure P6.16 has G(s) =
1/s(s+2) (s+4). Find the following:

R(s) + E(s) + C(s)

Gi(s)

K,

Ky s

FIGURE P6.16

a. The value of K, for which the inner loop will have
two equal negative real poles and the associated
range of K; for system stability.

b. The value of K, at which the system oscillates and
the associated frequency of oscillation.

c. The gain K; at which a real closed-loop pole is at
s = =5. Can the step response, c(), be approximated
by a second-order, underdamped response in this
case? Why or why not?

d. If the response in Part d can be approximated as a
second-order response, find the %OS and settling
time, T, when the input is a unit step, r(f) = u(?).

67.

331

Problems

A drive system with an elastically coupled load was
presented in Problems 71 and 67 in Chapters 4 and 5,
respectively (Thomsen, 2011). That drive was shown in
Figure P5.43 as the controlled unit in a feedback control
system, where Q,(s) = the load speed and Q,(s) = the
desired (reference) speed. If the controller transfer

K
function is Ge(s) = K, + —, while all of the other
S

parameters and transfer functions are the same as in
Problem 67 in Chapter 5, find the range of K p for stability
of the system if K; = 0.1.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS

68.

Control of HIV/AIDS. The HIV infection linearized
model developed in Problem 84, Chapter 4, can be shown
to have the transfer function
P(s) Y(s) —520s — 10.3844
s) = =
Ui(s) s3+2.6817s2+0.11s+0.0126

Desired virus

count change +

69.

U,(s) Virus count change, Y(s)

G(s) P(s)

FIGURE Pé6.17

It is desired to develop a policy for drug delivery to
maintain the virus count at prescribed levels. For the
purpose of obtaining an appropriate u(t), feedback will
be used as shown in Figure P6.17 (Craig, 2004).

As a first approach, consider G(s) = K, a constant
to be selected. Use the Routh-Hurwitz criteria to find the
range of K for which the system is closed-loop stable.

Hybrid vehicle. Figure P6.18 shows the HEV system
presented in Chapter 5, where parameter values have

0.6154 |«
Torque
Rei Speed controller Armature Armature Motive
signal  error Speed & power resistance current torque | 77, (s) Motor .
R.(s) EJ(s) controller Uc(s) amplifier  Ua(s) Ru(s) I(s) T(s) angular Vehicle
W v p a a a\s speed speed
+ K, s+40 + 10546 + ¥ 1 Q) 0.3 V(s)
—> 2 —>®—> . —| 1.8 e >
_@? TS > s _QP 72265 4875
Feedback Friction
Feedback . torque
speed signal current signal q )
§ Siong - Ti(s
K Q (s) Kes 1) 0.1 |e
[ |
Current sensor

sensitivity

0.5 e

Speed sensor
sensitivity

0.0443

FIGURE Pé6.18
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been substituted. It is assumed here that the speed
controller has a proportional gain, K,, to be adjusted.
Use the Routh-Hurwitz stability method to find the range
of positive K, for which the system is closed-loop stable
(Graebe, 1995).

70. Parabolic trough collector. The fluid temperature of a
parabolic trough collector (Camacho, 2012) will be

Use the Routh-Hurwitz criteria to find the range of
gain K that will result in a closed-loop stable system.
Note: Pure time-delay dynamics, such as the one in the
transfer function of the parabolic trough collector,
cannot be treated directly using the Routh-Hurwitz
criterion because it is represented by a nonrational
factor. However, a Padé approximation can be used for

the nonrational component. The Padé approximation
was introduced in Problem 6.61, but it can appear in
different forms. Here, it is suggested you use a first-order
approximation of the form

controlled by using a unity feedback structure as shown
in Figure P6.11. Assume the open-loop plant transfer
function is given by

T
1——=s
137.2%x 107 s 2
P(s) = 37.2x10 . 39 T z
52 1 0.0224s + 196 X 10 14+ L
2
Cyber Exploration Laboratory
Experiment 6.1
RE) + oo Objectives  To verify the effect of pole location upon stability. To verify the effect

G upon stability of loop gain in a negative feedback system.

Minimum Required Software Packages MATLAB, Simulink, and the Control
H(s) System Toolbox

Prelab

1. Find the equivalent transfer function of the negative feedback system of Figure P6.19 if

FIGURE Pé6.19

G(s) = and H(s)=1

K
s(s +2)°
2. For the system of Prelab 1, find two values of gain that will yield closed-loop,

overdamped, second-order poles. Repeat for underdamped poles.

3. For the system of Prelab 1, find the value of gain, K, that will make the system critically
damped.

4. For the system of Prelab 1, find the value of gain, K, that will make the system
marginally stable. Also, find the frequency of oscillation at that value of K that makes
the system marginally stable.

5. For each of Prelab 2 through 4, plot on one graph the pole locations for each case and
write the corresponding value of gain, K, at each pole.

Lab

1. Using Simulink, set up the negative feedback system of Prelab 1. Plot the step response
of the system at each value of gain calculated to yield overdamped, underdamped,
critically damped, and marginally stable responses.

2. Plot the step responses for two values of gain, K, above that calculated to yield marginal
stability.

3. At the output of the negative feedback system, cascade the transfer function

1

G0=5a
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Set the gain, K, at a value below that calculated for marginal stability and plot the step
response. Repeat for K calculated to yield marginal stability.

Postlab
1. From your plots, discuss the conditions that lead to unstable responses.
2. Discuss the effect of gain upon the nature of the step response of a closed-loop system.

Experiment 6.2

Objective To use the LabVIEW Control Design and Simulation Module for stability
analysis.

Minimum Required Software Package LabVIEW with the Control Design and
Simulation Module

Prelab

1. Select six transfer functions of various orders and use Routh-Hurwitz to determine their
stability.

Lab

1. Create a LabVIEW VI that receives the order and the coefficients of the characteristic
equation and outputs the location of the poles and information regarding stability.

Postlab
1. Verify the stability of the systems from your Prelab.
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Steady-State Errors

Chapter Learning Outcomes

After completing this chapter the student will be able to:

Find the steady-state error for a unity feedback system (Sections 7.1-7.2)
Specify a system’s steady-state error performance (Section 7.3)

Design the gain of a closed-loop system to meet a steady-state error specification
(Section 7.4)

Find the steady-state error for disturbance inputs (Section 7.5)

Find the steady-state error for nonunity feedback systems (Section 7.6)

Find the steady-state error sensitivity to parameter changes (Section 7.7)

Find the steady-state error for systems represented in state space (Section 7.8)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

Given the antenna azimuth position control system shown on the front
endpapers, you will be able to find the preamplifier gain to meet steady-state
error performance specifications.

Given a video laser disc recorder, you will be able to find the gain required to
permit the system to record on a warped disc.
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Chapter 7 Steady-State Errors

In Chapter 1, we saw that control systems analysis and design focus on three specifications:
(1) transient response, (2) stability, and (3) steady-state errors, taking into account the
robustness of the design along with economic and social considerations. Elements of
transient analysis were derived in Chapter 4 for first- and second-order systems. These
concepts are revisited in Chapter 8, where they are extended to higher-order systems.
Stability was covered in Chapter 6, where we saw that forced responses were overpowered
by natural responses that increase without bound if the system is unstable. Now we are ready
to examine steady-state errors. We define the errors and derive methods of controlling them.
As we progress, we find that control system design entails trade-offs between desired
transient response, steady-state error, and the requirement that the system be stable.

Definition and Test Inputs

Steady-state error is the difference between the input and the output for a prescribed test
input as ¢ — 0. Test inputs used for steady-state error analysis and design are summarized
in Table 7.1.

In order to explain how these test signals are used, let us assume a position control
system, where the output position follows the input commanded position. Step inputs
represent constant position and thus are useful in determining the ability of the control
system to position itself with respect to a stationary target, such as a satellite in geostationary
orbit (see Figure 7.1). An antenna position control is an example of a system that can be
tested for accuracy using step inputs.

Ramp inputs represent constant-velocity inputs to a position control system by their
linearly increasing amplitude. These waveforms can be used to test a system’s ability to follow
a linearly increasing input or, equivalently, to track a constant-velocity target. For example, a
position control system that tracks a satellite that moves across the sky at a constant angular
velocity, as shown in Figure 7.1, would be tested with a ramp input to evaluate the steady-state
error between the satellite’s angular position and that of the control system.

TABLE 7.1 Test waveforms for evaluating steady-state errors of position control systems

Waveform Name Physical interpretation Time function Laplace transform

(1) Step Constant position 1 1

N

(1) Ramp Constant velocity t 1

r(t) Parabola Constant acceleration 1, 1

—t —
2
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Satellite in geostationary orbit N
Satellite orbiting at
constant velocity @

Accelerating
missile

'//‘1 /

Tracking system

\

Finally, parabolas, whose second derivatives are constant, represent constant-
acceleration inputs to position control systems and can be used to represent accelerating
targets, such as the missile in Figure 7.1, to determine the steady-state error performance.

Application to Stable Systems

Since we are concerned with the difference between the input and the output of a feedback
control system after the steady state has been reached, our discussion is limited to stable
systems, where the natural response approaches zero as t — ©0. Unstable systems represent
loss of control in the steady state and are not acceptable for use at all. The expressions we
derive to calculate the steady-state error can be applied erroneously to an unstable system.
Thus, the engineer must check the system for stability while performing steady-state error
analysis and design. However, in order to focus on the topic, we assume that all the systems
in examples and problems in this chapter are stable. For practice, you may want to test some
of the systems for stability.

Evaluating Steady-State Errors

Let us examine the concept of steady-state errors. In Figure 7.2(a) a step input and two
possible outputs are shown. Output 1 has zero steady-state error, and Output 2 has a finite
steady-state error, e;(00). A similar example is shown in Figure 7.2(b), where a ramp input is
compared with Output 1, which has zero steady-state error, and Output 2, which has a finite
steady-state error, e;(o0). Errors are measured vertically between the Input and Output 2
after the transients have died down. For the ramp input another possibility exists. If the
output’s slope is different from that of the input, then Output 3, shown in Figure 7.2(b),
results. Here the steady-state error is infinite as measured vertically between the Input and
Output 3 after the transients have died down, and ¢ approaches infinity.

Let us now look at the error from the perspective of the most general block diagram.
Since the error is the difference between the input and the output of a system, we assume a
closed-loop transfer function, 7(s), and form the error, E(s), by taking the difference
between the input and the output, as shown in Figure 7.3(a). Here we are interested in
the steady-state, or final, value of e(¢). For unity feedback systems, E(s) appears as shown
in Figure 7.3(b). In this chapter, we study and derive expressions for the steady-state
error for unity feedback systems first and then expand to nonunity feedback systems.
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FIGURE 7.1 Test inputs for
steady-state error analysis and
design vary with target type
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FIGURE 7.2 Steady-state
error: a. step input; b. ramp
input

FIGURE 7.3 Closed-loop
control system error: a. general
representation; b. representation
for unity feedback systems
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Before we begin our study of steady-state errors for unity feedback systems, let us look
at the sources of the errors with which we deal.

Sources of Steady-State Error

Many steady-state errors in control systems arise from nonlinear sources, such as
backlash in gears or a motor that will not move unless the input voltage exceeds a
threshold. Nonlinear behavior as a source of steady-state errors, although a viable topic
for study is beyond the scope of a text on linear control systems. The steady-state errors
we study here are errors that arise from the configuration of the system itself and the type
of applied input.

For example, look at the system of Figure 7.4(a), where R(s) is the input, C(s) is
the output, and E(s) = R(s) — C(s) is the error. Consider a step input. In the steady state,
if c(7) equals r(¢), e(¢) will be zero. But with a pure gain, K, the error, e(f), cannot be zero
if ¢(f) is to be finite and nonzero. Thus, by virtue of the configuration of the system
(a pure gain of K in the forward path), an error must exist. If we call cgeady-stae the

+
R(s) o 705) C(s) — %E(s) R(s) +§ E(s) GGs) C(S),

(a) ®
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R(s) + E(s) K C(s) R(s) + ? E(s) K C(s)
C i) s

(a) )

steady-state value of the output and egeaqy-siace the steady-state value of the error, then
Csteady-state = Kesleady-statev or

1

€steady-state = E Csteady-state (7.1)

Thus, the larger the value of K, the smaller the value of egieady-stare WOuld have to be to yield
a similar value of ceady-state- The conclusion we can draw is that with a pure gain in the
forward path, there will always be a steady-state error for a step input. This error
diminishes as the value of K increases.

If the forward-path gain is replaced by an integrator, as shown in Figure 7.4(b), there
will be zero error in the steady state for a step input. The reasoning is as follows: As c()
increases, e(f) will decrease, since e(t) = r(f) — ¢(t). This decrease will continue until there is
zero error, but there will still be a value for ¢(#) since an integrator can have a constant output
without any input. For example, a motor can be represented simply as an integrator. A
voltage applied to the motor will cause rotation. When the applied voltage is removed, the
motor will stop and remain at its present output position. Since it does not return to its initial
position, we have an angular displacement output without an input to the motor. Therefore, a
system similar to Figure 7.4(b), which uses a motor in the forward path, can have zero
steady-state error for a step input.

We have examined two cases qualitatively to show how a system can be expected to
exhibit various steady-state error characteristics, depending upon the system configuration.
We now formalize the concepts and derive the relationships between the steady-state errors
and the system configuration generating these errors.

7.2 Steady-State Error for Unity Feedback Systems
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FIGURE 7.4 System with

a. finite steady-state error for a
step input; b. zero steady-state
error for step input

Steady-state error can be calculated from a system’s closed-loop transfer function, 7(s), or
the open-loop transfer function, G(s), for unity feedback systems. We begin by deriving
the system’s steady-state error in terms of the closed-loop transfer function, 7(s), in order
to introduce the subject and the definitions. Next we obtain insight into the factors
affecting steady-state error by using the open-loop transfer function, G(s), in unity
feedback systems for our calculations. Later in the chapter we generalize this discussion
to nonunity feedback systems.

Steady-State Error in Terms of T(s)
Consider Figure 7.3(a). To find E(s), the error between the input, R(s), and the output, C(s),
we write

E(s) = R(s) — C(s) (7.2)
But
C(s) = R(s)T(s) (7.3)
Substituting Eq. (7.3) into Eq. (7.2), simplifying, and solving for E(s) yields

E(s) = R(s)[1 — T(s)] (7.4)
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Although Eq. (7.4) allows us to solve for e(?) at any time, 7, we are interested in the final
value of the error, e(c0). Applying the final value theorem,' which allows us to use the
final value of e(¢) without taking the inverse Laplace transform of E(s), and then letting ¢
approach infinity, we obtain

e(o0) = lim e(r) = lim s(s) (7.5)

Substituting Eq. (7.4) into Eq. (7.5) yields

e(o0) = lijré SR(s)[1 — T(s)] (7.6)

Let us look at an example.

Steady-State Error in Terms of T{(s)

PROBLEM: Find the steady-state error for the system of Figure 7.3(a) if T(s) =
5/(s* +7s + 10) and the input is a unit step.

SOLUTION: From the problem statement, R(s)=1/s and T(s) =5/(s* + 7s + 10).
Substituting into Eq. (7.4) yields

_ s+ 7s+5
~ s(s2+ 75+ 10)

E(s) (7.7)

Since T(s) is stable and, subsequently, E(s) does not have right-half-plane poles or jw
poles other than at the origin, we can apply the final value theorem. Substituting Eq. (7.7)
into Eq. (7.5) gives e(oc) = 1/2.

Steady-State Error in Terms of G(s)
Many times we have the system configured as a unity feedback system with a forward
transfer function, G(s). Although we can find the closed-loop transfer function, 7(s), and

"'The final value theorem is derived from the Laplace transform of the derivative. Thus,

i) = /0  j0edn = sF(s) = 1(0-)

[ F 01 = 10) = 0-) = timsr ()= 0-)

or
f(o0) = lilré sF(s)

For finite steady-state errors, the final value theorem is valid only if F(s) has poles only in the left half-plane and, at
most, one pole at the origin. However, correct results that yield steady-state errors that are infinite can be obtained if
F(s) has more than one pole at the origin (see D Azzo and Houpis, 1988). If F(s) has poles in the right half-plane or
poles on the imaginary axis other than at the origin, the final value theorem is invalid.

2 Valid only if (1) E(s) has poles only in the left half-plane and at the origin, and (2) the closed-loop transfer
function, 7(s), is stable. Notice that by using Eq. (7.5), numerical results can be obtained for unstable systems. These
results, however, are meaningless.
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then proceed as in the previous subsection, we find more insight for analysis and design by
expressing the steady-state error in terms of G(s) rather than 7(s).

Consider the feedback control system shown in Figure 7.3(b). Since the feedback,
H(s), equals 1, the system has unity feedback. The implication is that E(s) is actually the
error between the input, R(s), and the output, C(s). Thus, if we solve for E(s), we will have an
expression for the error. We will then apply the final value theorem, Item 11 in Table 2.2,
to evaluate the steady-state error.

Writing E(s) from Figure 7.3(b), we obtain

E(s) = R(s) — C(s) (7.8)

But
C(s) = E(s)G(s) (7.9)

Finally, substituting Eq. (7.9) into Eq. (7.8) and solving for E(s) yields

_ R(s)
E) =116

(7.10)

We now apply the final value theorem, Eq. (7.5). At this point in a numerical
calculation, we must check to see whether the closed-loop system is stable, using, for
example, the Routh-Hurwitz criterion. For now, though, assume that the closed-loop system
is stable and substitute Eq. (7.10) into Eq. (7.5), obtaining

e(0) = lim—— (7.11)

Equation (7.11) allows us to calculate the steady-state error, e(00), given the input,
R(s), and the system, G(s). We now substitute several inputs for R(s) and then draw conclusions
about the relationships that exist between the open-loop system, G(s), and the nature of the
steady-state error, e(c0).

The three test signals we use to establish specifications for a control system’s
steady-state error characteristics are shown in Table 7.1. Let us take each input and evaluate
its effect on the steady-state error by using Eq. (7.11).

Step Input. Using Eq. (7.11) with R(s) = 1/s, we find

. s(1)s) 1
= €y :1 = =
€(00) = egep(0) G 1 +lim Gy (7.12)
§—
The term
lin(1) G(s)

is the dc gain of the forward transfer function, since s, the frequency variable, is approaching
zero. In order to have zero steady-state error,

lim G(s) = %0 (7.13)

Hence, to satisty Eq. (7.13), G(s) must take on the following form:

_ (s+z1)(s+2)---
) = s+ P0Gt pa) -

(7.14)
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For the limit to be infinite, the denominator must be equal to zero as s goes to zero. Thus,
n > 1; that is, at least one pole must be at the origin. Since division by s in the frequency
domain is integration in the time domain (see Table 2.2, Item 10), we are also saying that
at least one pure integration must be present in the forward path. The steady-state
response for this case of zero steady-state error is similar to that shown in Figure 7.2(a),
Output 1.

If there are no integrations, then n = 0. Using Eq. (7.14), we have

lim G(s) = it

(7.15)
50 PPy

which is finite and yields a finite error from Eq. (7.12). Figure 7.2(a), Output 2, is an
example of this case of finite steady-state error.

In summary, for a step input to a unity feedback system, the steady-state error will be
zero if there is at least one pure integration in the forward path. If there are no integrations,
then there will be a nonzero finite error. This result is comparable to our qualitative
discussion in Section 7.1, where we found that a pure gain yields a constant steady-state
error for a step input, but an integrator yields zero error for the same type of input. We now
repeat the development for a ramp input.

Ramp Input. Using Eq. (7.11), with R(s) = 1/s?, we obtain

. os(1/s7) 1 1
) = eramp(0) =1 =1 = —
€(%0) = ramp() 01+ G(s) 205 + sG(s) lim sG(s) (7.16)
To have zero steady-state error for a ramp input, we must have
Iirr& sG(s) = 00 (7.17)

To satisfy Eq. (7.17), G(s) must take the same form as Eq. (7.14), except that n > 2. In
other words, there must be at least two integrations in the forward path. An example of
zero steady-state error for a ramp input is shown in Figure 7.2(b), Output 1.

If only one integration exists in the forward path, then, assuming Eq. (7.14),

<122
pipy:

ling sG(s) = (7.18)

which is finite rather than infinite. Using Eq. (7.16), we find that this configuration leads to a
constant error, as shown in Figure 7.2(b), Output 2.
If there are no integrations in the forward path, then

lim sG(s) = 0 (7.19)

and the steady-state error would be infinite and lead to diverging ramps, as shown in
Figure 7.2(b), Output 3. Finally, we repeat the development for a parabolic input.

Parabolic Input. Using Eq. (7.11), with R(s) = 1/s*, we obtain

Cos(1/s . 1 1
E(OO) = eparabola(oo) = lim ( / ) 1

01 +G(s) 2052 + $2G(s) lim s2G(s) (7.20)
s
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In order to have zero steady-state error for a parabolic input, we must have

lim s?G(s) = o0 (7.21)

To satisfy Eq. (7.21), G(s) must take on the same form as Eq. (7.14), except that n > 3. In
other words, there must be at least three integrations in the forward path.
If there are only two integrations in the forward path, then

21220
Pipacc

lim $°G(s) = (7.22)

is finite rather than infinite. Using Eq. (7.20), we find that this configuration leads to a

constant error.
If there is only one or less integrations in the forward path, then

lim $G(s) =0 (7.23)

and the steady-state error is infinite. Two examples demonstrate these concepts.

Example 7.2

Steady-State Errors for Systems with No Integrations

PROBLEM: Find the steady-state errors for inputs of Su(z),

5tu(t), and 57°u(r) to the system shown in Figure 7.5. The R(s) + E(s)
function u() is the unit step. _

120(s +2)

C(s)‘

(s+3)(s+4)

SOLUTION: First we verify that the closed-loop system is

indeed stable. For this example we leave out the details.
Next, for the input 5u(r), whose Laplace transform is 5/s,
the steady-state error will be five times as large as that given
by Eq. (7.12), or

5 _ 5 5
1+lir%G(s)_1+20_21
§—

e(00) = egep(20) = (7.24)

which implies a response similar to Output 2 of Figure 7.2(a).
For the input 5:u(f), whose Laplace transform is 5/s%, the steady-state error will be
five times as large as that given by Eq. (7.16), or

5 5

—_—— = —=00 2
lim0 sG(s) O (7.25)
§—

e(oo) = eramp(oo) =

which implies a response similar to Output 3 of Figure 7.2(b).
For the input 5°u(f), whose Laplace transform is 10/s, the steady-state error will be
10 times as large as that given by Eq. (7.20), or

10 10

lir%szG(s) 0 (26)
S

e(OO) = eparabola(oo) =

FIGURE 7.5 Feedback control system for Example 7.2
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R(s)

+

E(s)
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Steady-State Errors for Systems with One Integration

100(s + 2)(s + 6) C(s) PROBLEM: Find the steady-state errors for inputs of Su(f),

s(s +3)(s +4) Stu(t), and 5f°u(f) to the system shown in Figure 7.6. The

function u(f) is the unit step.

SOLUTION: First verify that the closed-loop system is

FIGURE 7.6 Feedback control system for Example 7.3

indeed stable. For this example we leave out the details. Next
note that since there is an integration in the forward path, the
steady-state errors for some of the input waveforms will be less than those found in
Example 7.2. For the input 5u(f), whose Laplace transform is 5/s, the steady-state error
will be five times as large as that given by Eq. (7.12), or

5 5

- 727
I+1limG(s) ~ o0 (7.27)

e(OO) = estep(oo) =
which implies a response similar to Output 1 of Figure 7.2(a). Notice that the integration
in the forward path yields zero error for a step input, rather than the finite error found
in Example 7.2.

For the input 5zu(), whose Laplace transform is 5/s2, the steady-state error will be
five times as large as that given by Eq. (7.16), or
5 5 1

T == = 7.28
1jr% sG(s) 100 20 (7.28)

€(00) = eramp(o0) =
which implies a response similar to Output 2 of Figure 7.2(b). Notice that the integration
in the forward path yields a finite error for a ramp input, rather than the infinite error
found in Example 7.2.
For the input, 5t2u(t), whose Laplace transform is 10/ 53, the steady-state error will
be 10 times as large as that given by Eq. (7.20), or
10 10

S R 7.29
lir% s*G(s) O (7:29)

e(OO) = eparabola(oo) =

Notice that the integration in the forward path does not yield any improvement in
steady-state error over that found in Example 7.2 for a parabolic input.

Skill-Assessment Exercise 7.1

PROBLEM: A unity feedback system has the following forward transfer function:
10(s + 20)(s + 30)

s(s +25)(s + 35)

a. Find the steady-state error for the following inputs: 15u(?), 157u(z), and 152%u(?).

G(s) =

b. Repeat for
10(s + 20)(s + 30
G(s) = (s )s )

"~ 52(s 4+ 25)(s + 35)(s + 50)

ANSWERS:

a. The closed-loop system s stable. For 15u(t), eiep(20) = 0; for 151u(t), eamp(o0) = 2.1875;
for 15(t2)u(t), eparabola(oo) = 0.

b. The closed-loop system is unstable. Calculations cannot be made.

The complete solution is at www.wiley.com/college/nise.
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We continue our focus on unity negative feedback systems and define parameters that we
can use as steady-state error performance specifications. These definitions parallel our
defining damping ratio, natural frequency, settling time, percent overshoot, and so on as
performance specifications for the transient response. The steady-state error performance
specifications are called static error constants. Let us see how they are defined, how to
calculate them, and, in the next section, how to use them for design.

Static Error Constants
In the previous section we derived the following relationships for steady-state error.
For a step input, u(?),

(00) = eep(00) = ——
T e T T  1im Gl) (7.30)
For a ramp input, fu(?),
_ _ 1
€(00) = eramp(o0) = linasiG(s) (7.31)
- 1,
For a parabolic input, Et u(r).
_ _ 1
€(00) = eparabola(00) = hn(}st(s) (7.32)
§—

The three terms in the denominator that are taken to the limit determine the
steady-state error. We call these limits static error constants. Individually, their names
are

position constant, K,,, where

K, = gg‘% G(s) (7.33)
velocity constant, K,, where
K, = limsG(s) (7.34)
acceleration constant, K, where
K, = gi_lgszG(S) (7.35)

As we have seen, these quantities, depending upon the form of G(s), can assume values
of zero, finite constant, or infinity. Since the static error constant appears in the denominator
of the steady-state error. Eqgs. (7.30) through (7.32), the value of the steady-state error
decreases as the static error constant increases.
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In Section 7.2, we evaluated the steady-state error by using the final value theorem.
An alternate method makes use of the static error constants. A few examples follow:

Steady-State Error via Static Error Constants

PROBLEM: For each system of Figure 7.7, evaluate the static error constants and find
the expected error for the standard step, ramp, and parabolic inputs.

R(s) + E(s) 500(s + 2)(s + 5) C(s)‘
(s+8)(s+ 10)(s + 12)

(a)

R(s) + E(s) 500(s +2)(s + 5)(s + 6) C(s)
s(s + 8)(s + 10)(s + 12) -

®)

R(s) + E(s) | 500(s +2)(s +4)(s+5)(s+6)(s+7) C(s)
s2(s + 8)(s + 10)(s + 12)

(c)
FIGURE 7.7 Feedback control systems for Example 7.4

SOLUTION: First verify that all closed-loop systems shown are indeed stable. For this
example we leave out the details. Next, for Figure 7.7(a),

. 500X 2 %5
K, = lir% sG(s)=0 (7.37)
K, =1lim 5?G(s) =0 (7.38)
§—>
Thus, for a step input,
= =0.161 7.39
)= g (739)
For a ramp input,
1
e(o0) X (7.40)
For a parabolic input,
1
e(0) e (7.41)

a

Now, for Figure 7.7(b),

K, = lim G(s) = o0 (7.42)
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500x2%x5x%x6

K, =1limsG(s) = ———— =31.25 7.43
i sG(s) = =g Tox 12 (7:43)
and
K, = liIr& 5°G(s) =0 (7.44)
Thus, for a step input,
1
= =0 7.45
() 1+K, (7.45)
For a ramp input,
1 1
=—=-—-=0.032 7.46
A0 = =315 (7.40)
For a parabolic input,
1
=—=00 7.47
() = - (7.47)
Finally, for Figure 7.7(c),
K, = lin(1) G(s) = (7.48)
K, = lin(} sG(s) = (7.49)
§—
and
500X2X4x5x6%x7
Ka = l 2 = = .
lims"G(s) 8x 10X 12 875 (7:50)

Thus, for a step input,

e(o0) = 1 +1Kp =0 (7.51)
For a ramp input,
1
() = 1~ =0 (7.52)
For a parabolic input,
e(o00) = Ki = % =1.14x1073 (7.53)

Students who are using MATLAB should now run ch7pl in Appendix B.
You will learn how to test the system for stability, evaluate
static error constants, and calculate steady-state error using
MATLAB. This exercise applies MATLAB to solve Example 7.4 with
System (b).

347

MATLAB

System Type

Let us continue to focus on a unity negative feedback system. The values of the static error
constants, again, depend upon the form of G(s), especially the number of pure integrations
in the forward path. Since steady-state errors are dependent upon the number of integrations
in the forward path, we give a name to this system attribute. Given the system in
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REs) + H\E) K(s +21)(s +2p) cis)  Figure 7.8, we define system type to be the value of 7 in the denominator
(s +p)(s+py) - or, equivalently, the number of pure integrations in the forward path.
Therefore, a system withn = 0 is a Type O system. If n = 1 orn = 2, the
corresponding system is a Type 1 or Type 2 system, respectively.

Table 7.2 ties together the concepts of steady-state error, static
error constants, and system type. The table shows the static error
constants and the steady-state errors as functions of input waveform
and system type.

FIGURE 7.8 Feedback control system for defining
system type

TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors

Type 0 Type 1 Type 2
Steady-state error Static error Static error Static error
Input formula constant Error constant Error constant Error
1 1
Step, u(t) 1+K, K, = Constant 1+K, K, = 0 K, = 0
1 1
Ramp, ru(?) E K,=0 o0 K, = Constant E K, =00 0
Parabola ! u(r) ! !
) u X, K,=0 0 K,=0 00 K, = Constant X,
Skill-Assessment Exercise 7.2
Trylt 7.1 PROBLEM: A unity feedback system has the following forward transfer function:

Use MATLAB, the Control 1000(s + 8)

SYSICII.I Toolbox, and the (s) = (s + 7)(s ¥ 9)

following statements to find K,

€step(0), and the closed-loop a. Evaluate system type, K,, K,, and K.

poles to check for stability for the

system of Skill-Assessment b. Use your answers to a. to find the steady-state errors for the standard step, ramp, and

Exercise 7.2. parabolic inputs.

numg=1000*1 8];

deng=poly[-7 -9D; ANSWERS:

G=tf(numg,deng); .

Kp=dcgain(G) a. The closed-loop system is stable. System type=Type 0. K, = 127, K, = 0, and

estep=1/1+Kp) K,=0.

T=feedback(G,1); — - - =

Poleearees b. eyep(00) = 7.8 X 1073, eramp(00) = 90, and epurapiota(90) = %0

The complete solution is at www.wiley.com/college/nise.

In this section, we defined steady-state errors, static error constants, and system type.
Now the specifications for a control system’s steady-state errors will be formulated, followed
by some examples.

7.4 Steady-State Error Specifications

Static error constants can be used to specify the steady-state error characteristics of control
systems, such as that shown in Figure 7.9. Just as damping ratio, £, settling time, T, peak time,
T, and percent overshoot, %0S, are used as specifications for a control system’s transient
response, SO the position constant, Kp, velocity constant, K,,, and acceleration constant, K, can
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FIGURE 7.9 A robot used in
the manufacturing of
semiconductor random-access
memories (RAMs) similar to
those in personal computers.
Steady-state error is an
important design consideration
for assembly-line robots

Chuck O'Rear/Westlight/Corbis Images.

be used as specifications for a control system’s steady-state errors. We will soon see that a
wealth of information is contained within the specification of a static error constant.

For example, if a control system has the specification K, = 1000, we can draw several
conclusions:

1. The system is stable.

2. The system is of Type 1, since only Type 1 systems have K,’s that are finite constants.
Recall that K, = 0 for Type O systems, whereas K, = % for Type 2 systems.

3. A ramp input is the test signal. Since K, is specified as a finite constant, and the
steady-state error for a ramp input is inversely proportional to K,, we know the test
input is a ramp.

4. The steady-state error between the input ramp and the output ramp is 1/K, per unit of
input slope.

Let us look at two examples that demonstrate analysis and design using static error
constants.

Example 7.5

Interpreting the Steady-State Error Specification

PROBLEM: What information is contained in the specification K, = 1000?

SOLUTION: The system is stable. The system is Type 0, since only a Type 0 system
has a finite K,,. Type 1 and Type 2 systems have K, = 00. The input test signal is a step, since
K,, is specified. Finally, the error per unit step is

I
1+K, 1+1000 1001

¢(00) = (7.54)
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Gain Design to Meet a Steady-State Error Specification

R(s) + E(s)

K(s+5)

s(s +6)(s +7)(s+8)

C(s) PROBLEM: Given the control system in Figure 7.10, find the
- value of K so that there is 10% error in the steady state.

Example 7.6

MATLAB

FIGURE 7.10 Feedback control system for

SOLUTION: Since the system is Type 1, the error stated in the
problem must apply to a ramp input; only a ramp yields a finite
error in a Type 1 system. Thus,

1
=—=0.1 7.55
o) = & (7.55)
Therefore,
Kx5

K,=10=1 = 7.56
XEPG@) 6Xx7x%x8 ( )

which yields
K =672 (7.57)

Applying the Routh-Hurwitz criterion, we see that the system is stable at this gain.

Although this gain meets the criteria for steady-state error and stability, it may
not yield a desirable transient response. In Chapter 9 we will design feedback control
systems to meet all three specifications.

Students who are using MATLAB should now run ch7p2 in Appendix B.
You will learn how to find the gain to meet a steady-state error
specification using MATLAB. This exercise solves Example 7.6
using MATLAB.

Skill-Assessment Exercise 7.3

Trylt 7.2

Use MATLAB, the Control
System Toolbox, and the
following statements to solve
Skill-Assessment Exercise 7.3

for stability.

numg{1 127;
deng=poly([-14 -187];
G=tf(numg,deng);
Kpdk=dcgain(G);
estep=0.1;
K=(1/estep-1YKpdk
T=Ffeedback(G, 1);
poles=pole(T)

and check the resulting system

PROBLEM: A unity feedback system has the following forward transfer function:

K(s+12)

0= G196+ 18)

Find the value of K to yield a 10% error in the steady state.

ANSWER: K = 189

The complete solution is at www.wiley.com/college/nise.



www.wiley.com/college/nise

7.5 Steady-State Error for Disturbances

This example and exercise complete our discussion of unity feedback systems. In
the remaining sections, we will deal with the steady-state errors for disturbances and the
steady-state errors for feedback control systems in which the feedback is not unity.

7.5 Steady-State Error for Disturbances
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Feedback control systems are used to compensate for distur-

bances or unwanted inputs that enter a system. The advantage Controller

D(s)

of using feedback is that regardless of these disturbances, RGs) + EGs)
the system can be designed to follow the input with small G(s)

Plant

ey

or zero error, as we now demonstrate. Figure 7.11 shows a -
feedback control system with a disturbance, D(s), injected

Go(s)

C(s)

between the controller and the plant. We now re-derive the
expression for steady-state error with the disturbance included.
The transform of the output is given by

C(s) = E(5)G1(5)Ga(s) + D(s)Ga(s) (7.58)
But
C(s) = R(s) — E(s) (7.59)

Substituting Eq. (7.59) into Eq. (7.58) and solving for E(s), we obtain

_ 1 Ga(s)
B = 16060 " TT 6060

D(s) (7.60)

where we can think of 1/[1 + G;(s)G2(s)] as a transfer function relating E(s) to R(s) and
—Gy(s)/[1 + G1(s)Ga(s)] as a transfer function relating E(s) to D(s).

To find the steady-state value of the error, we apply the final value theorem® to
Eq. (7.60) and obtain

. L s 3628
) ) S T G eGe O BT GeGe | a6

= eg(00) + ep(c0)

where
, s
er() =i 560 )
and
L sGa(s)
p() = =l 566 2

The first term, eg(c0), is the steady-state error due to R(s), which we have already obtained.
The second term, ep(o0), is the steady-state error due to the disturbance. Let us explore the
conditions on ep(o0) that must exist to reduce the error due to the disturbance.

3Remember that the final value theorem can be applied only if the system is stable, with the roots of
[1+ Gi(s)Ga(s)] in the left—half—plane.

FIGURE 7.11 Feedback control system showing disturbance



352 Chapter 7 Steady-State Errors

At this point, we must make some assumptions about D(s), the controller, and the
plant. First we assume a step disturbance, D(s) = 1/s. Substituting this value into the second
term of Eq. (7.61), ep(co), the steady-state error component due to a step disturbance is

found to be
1
(%) ; ] (7.62)
i &) T im G1(s)

Plant This equation shows that the steady-state error produced by a step disturbance can
D(s) + Gols) —E(s) be reduced by increasing the dc gain of G(s) or decreasing the dc gain of Gy(s).
< This concept is shown in Figure 7.12, where the system of Figure 7.11
has been rearranged so that the disturbance, D(s), is depicted as the input and
the error, E(s), as the output, with R(s) set equal to zero. If we want to
Gyls) |- minimize the steady-state value of E(s), shown as the output in Figure 7.12,
we must either increase the dc gain of G;(s) so that a lower value of E(s) will
Controller be fed back to match the steady-state value of D(s), or decrease the dc value of
] G»(s), which then yields a smaller value of e(o0) as predicted by the feedback

FIGURE 7.12 Figure 7.11 system formula.

rearranged to show disturbance as input

. Let us look at an example and calculate the numerical value of the
and error as output, with R(s) =0

steady-state error that results from a disturbance.

Example 7.7

Steady-State Error Due to Step Disturbance

Virtual Experiment 7.1 PROBLEM: Find the steady-state error component due to a step disturbance for the
Steady-State Error with system of Figure 7.13.
Disturbance
Put theory into practice finding
the steady-state error of the Gi(s) D(s) Gals)
Controller Plant

Quanser Rotary Servo when "
subject to an input or a Ris) + E(s) 1000 +c ; 1 C(S)V
disturbance by simulating it in s(s +25)
LabVIEW. This analysis becomes
important when developing
controllers for bottle labeling
machines or robot joint control. FIGURE 7.13 Feedback control system for Example 7.7

SOLUTION: The system is stable. Using Figure 7.12 and Eq. (7.62), we find

1 1 1

ep(o0) = — = - = -
. . 0+ 1000 1000
lim o)+ imGi(s)

(7.63)

The result shows that the steady-state error produced by the step disturbance
is inversely proportional to the dc gain of G (s). The dc gain of G,(s) is infinite in
this example.

Virtual experiments are found on
Learning Space.
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Skill-Assessment Exercise 7.4

PROBLEM: Evaluate the steady-state error
component due to a step disturbance for the
system of Figure 7.14.

ANSWER: ¢p(00) = —9.98 x 107

The complete solution is at
www.wiley.com/college/nise.

D(s)

E(s)

R(s) +

FIGURE 7.14 System for Skill-Assessment Exercise 7.4

1000

;&g_

s+2
s+4

353

C(s)

7.6 Steady-State Error for Nonunity Feedback Systems

Control systems often do not have unity feedback because of the compensation used to
improve performance or because of the physical model for the system. The feedback path
can be a pure gain other than unity or have some dynamic representation.

A general feedback system, showing the input transducer, G1(s), controller and plant,
G (s), and feedback, H,(s), is shown in Figure 7.15(a). Pushing the input transducer to the
right past the summing junction yields the general nonunity feedback system shown in

R .
ﬂ. Gi(s) + Eq(s)
(@)
R(s) + E.(s) GGs) C(s) -~
H(s) [=
®)
R(s) + E(s) GGs) Cls) R(s) +
H(s)—1 [=—

@)

Go(s)

C(s) N

Hy(s)

G(s)

)

H(s) |=

E(s)

(c)

G(s)

Cls)

1+ G(s)H(s) — G(s)

(e)

FIGURE 7.15 Forming an
equivalent unity feedback
system from a general nonunity
feedback system
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Example 7.8

R(s) + Eq(s) 100
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Figure 7.15(b), where G(s) = G1(s)G2(s) and H(s) = H1(s)/G1(s). Notice that unlike a
unity feedback system, where H(s) = 1, the error is not the difference between the input
and the output. For this case we call the signal at the output of the summing junction the
actuating signal, E,(s). If r(¢) and c(¢) have the same units, we can find the steady-state
error, e(o0) = r(00) — ¢(o0). The first step is to show explicitly E(s) = R(s) — C(s) on
the block diagram.

Take the nonunity feedback control system shown in Figure 7.15(b) and form a
unity feedback system by adding and subtracting unity feedback paths, as shown in
Figure 7.15(c). This step requires that input and output units be the same. Next combine
H(s) with the negative unity feedback, as shown in Figure 7.15(d). Finally, combine the
feedback system consisting of G(s) and [H(s) — 1], leaving an equivalent forward path
and a unity feedback, as shown in Figure 7.15(e). Notice that the final figure shows
E(s) = R(s) — C(s) explicitly.

The following example summarizes the concepts of steady-state error, system type,
and static error constants for nonunity feedback systems.

Steady-State Error for Nonunity Feedback Systems

) PROBLEM: For the system shown in Figure 7.16, find the system type,

s(s + 10)

1

the appropriate error constant associated with the system type, and the
steady-state error for a unit step input. Assume input and output units
are the same.

(s+5)

system for Example 7.8

Trylt 7.3

Use MATLAB, the Control
System Toolbox, and the
following statements to find
G.(s) in Example 7.8.
G=zpk([].[0 -10],100);
H=zpk (1. -5.1);
Ge=feedback. . .

(G, (H-1));
“Ge(sy
Ge=tf(Ge)
T=Ffeedback (Ge, 1);
“Poles of T(s)"
pole(T)

FIGURE 7.16 Nonunity feedback control may impulsively declare the system to be Type 1. This may not be the

SOLUTION: After determining that the system is indeed stable, one

case, since there is a nonunity feedback element, and the plant’s

actuating signal is not the difference between the input and the output.
The first step in solving the problem is to convert the system of Figure 7.16 into an
equivalent unity feedback system. Using the equivalent forward transfer function of
Figure 7.15(e) along with

100

and
1
H(s) = G+5) (7.65)
we find
Guls) = G(s) 100(s + 5) (7.66)

1+ G(s)H(s) — G(s) _ 8> + 1552 — 50s — 400

Thus, the system is Type O, since there are no pure integrations in Eq. (7.66). The
appropriate static error constant is then K,,, whose value is

: 100 x 5 5
KP—?L%GE(S)— —100 -1 (7.67)
The steady-state error, e(20), is
1 1
e(o0) = (7.68)

1+K, 1-(/4)
The negative value for steady-state error implies that the output step is larger than
the input step.
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To continue our discussion of steady-state error for systems with
nonunity feedback, let us look at the general system of Figure 7.17,

D(s)

Gi(s)

e

which has both a disturbance and nonunity feedback. We will derive a  R(s) +
general equation for the steady-state error and then determine the X
parameters of the system in order to drive the error to zero for step
inputs and step disturbances.*
The steady-state error for this system, e(c0) = r(00) — ¢(20), is
. . Gi(s)Ga(s)
() = 113(1) SE(s) = !LT% S{ [1 1x G1(5)G2(5)H(5) R(s) with disturbance
Ga(s)
- D 7.69
L FGGEHE ) (769

Now limiting the discussion to step inputs and step disturbances, where R(s) = D(s) = 1/s,
Eq. (7.69) becomes

lim[G1(5)G2(s)] lim G (s)
€00) = s = 4 1= 1 G GHO | [l + G OIG0AE]
(1.70)
For zero error,
im[Gy(s)Ga(s)] o lim Gy(s) 0 i
{1+ G ()G () H )] (1 + G ()G ()H )]

The two equations in Eq. (7.71) can always be satisfied if (1) the system is stable, (2) G;(s) is
aType 1 system, (3) G,(s) is a Type O system, and (4) H(s) is a Type 0 system with a dc gain
of unity.

To conclude this section, we discuss finding the steady-state value of the actuating
signal, E,(s), in Figure 7.15(a). For this task there is no restriction that the input and output
units be the same, since we are finding the steady-state difference between signals at the
summing junction, which do have the same units.” The steady-state actuating signal for
Figure 7.15(a) is

SR(5)G(s)

eq1(%0) = lﬂm (7.72)

The derivation is left to the student in the problem set at the end of this chapter.

Example 7.9

Steady-State Actuating Signal for Nonunity
Feedback Systems

PROBLEM: Find the steady-state actuating signal for the system of Figure 7.16 for a
unit step input. Repeat for a unit ramp input.

“Details of the derivation are included as a problem at the end of this chapter.

5 For clarity, steady-state error is the steady-state difference between the input and the output. Steady-state actuating
signal is the steady-state difference at the output of the summing junction. In questions asking for steady-state error
in problems, examples, and skill-assessment exercises, it will be assumed that input and output units are the same.

Go(s)

355

C(s)

H(s)

FIGURE 7.17 Nonunity feedback control system




356

Chapter 7 Steady-State Errors

SOLUTION: Use Eq. (7.72) with R(s)=1/s, a unit step input, Gi(s) =1,
Gy (s) = 100/[s(s + 10)], and H;(s) = 1 /(s + 5). Also, realize that e,;(20) = e,(c0), since

Gi(s) = 1. Thus,
)
oL
eq(0) = lim a =0 (1.73)

T <s<slf()10>> <(s ; 5)> _

Now use Eq. (7.72) with R(s) = 1/s%, a unit ramp input, and obtain

()
s ! (1.74)

eq(0) = lim =_

R (s(sli)olm) <<sis>> 2

Skill-Assessment Exercise

RS) + . Ef9) | 100 cs) PROBLEM:
- st a. Find the steady-state error, e¢(c0) = r(c0) — ¢(c0), for a unit step input given
the nonunity feedback system of Figure 7.18. Repeat for a unit ramp input.
Y%l Assume input and output units are the same.
b. Find the steady-state actuating signal, e,(c0), for a unit step input given
FIGURE 7.18 Nonunity feedback the nonunity feedback system of Figure 7.18. Repeat for a unit ramp input.

system for Skill-Assessment Exercise 7.5

ANSWERS:
A, €yep(00) = 3.846 X 1072 erymp(00) = ©

b. For a unit step input, e,(c0) = 3.846 x 1072; for a unit ramp input,
ea(OO) = 00

The complete solution is at www.wiley.com/college/nise.

7.7 Sensitivity

In this section, we have applied steady-state error analysis to nonunity feedback
systems. When nonunity feedback is present, the plant’s actuating signal is not the actual
error or difference between the input and the output. With nonunity feedback we may
choose to (1) find the steady-state error for systems where the input and output units are the
same or (2) find the steady-state actuating signal.

We also derived a general expression for the steady-state error of a nonunity feedback
system with a disturbance. We used this equation to determine the attributes of the
subsystems so that there was zero error for step inputs and step disturbances.

Before concluding this chapter, we will discuss a topic that is not only significant for
steady-state errors but generally useful throughout the control systems design process.

During the design process, the engineer may want to consider the extent to which changes in
system parameters affect the behavior of a system. Ideally, parameter changes due to heat or
other causes should not appreciably affect a system’s performance. The degree to which
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7.7 Sensitivity

changes in system parameters affect system transfer functions, and hence performance, is
called sensitivity. A system with zero sensitivity (that is, changes in the system parameters
have no effect on the transfer function) is ideal. The greater the sensitivity, the less desirable
the effect of a parameter change.

For example, assume the function F = K/(K +a). If K =10 and a = 100, then
F = 0.091. If parameter « triples to 300, then F' = 0.032. We see that a fractional change in
parameter a of (300 — 100)/100 = 2 (a 200% change) yields a change in the function F
of (0.032—0.091)/0.091 = —0.65 (—65% change). Thus, the function F has reduced
sensitivity to changes in parameter a. As we proceed, we will see that another advantage
of feedback is that in general it affords reduced sensitivity to parameter changes.

Based upon the previous discussion, let us formalize a definition of sensitivity:
Sensitivity is the ratio of the fractional change in the function to the fractional change in the
parameter as the fractional change of the parameter approaches zero. That is,

Fractional change in the function, F

Sr.p =
PP = 0 Fractional change in the parameter, P
AF/F
= lim ——
AP—0AP/P
. PAF
= lim ——
AP—0FAP
which reduces to
P 6F
Srp = =—e 7.75
FP=Esp (7.75)

Let us now apply the definition, first to a closed-loop transfer function and then to the
steady-state error.

Example 7.10

Sensitivity of a Closed-Loop Transfer Function

K
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C(s)

s(s +a)

R(s) +
PROBLEM: Given the system of Figure 7.19, calculate the sensitivity of h
the closed-loop transfer function to changes in the parameter a. How

would you reduce the sensitivity?

SOLUTION: The closed-loop transfer function is

K

T(s)= >~
(s) s2+as+K

(7.76)

Using Eq. (7.75), the sensitivity is given by

a 6T a —Ks —as

Sta =7 — = 7] =3 (7.77)

T éa K (s> +as+K) s +as+K
s2+as+K

which is, in part, a function of the value of s. For any value of s, however, an increase in K
reduces the sensitivity of the closed-loop transfer function to changes in the parameter a.

FIGURE 7.19 Feedback control system
for Examples 7.10 and 7.11
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Example 7.11

Chapter 7 Steady-State Errors

Sensitivity of Steady-State Error with Ramp Input

PROBLEM: For the system of Figure 7.19, find the sensitivity of the steady-state error
to changes in parameter K and parameter a with ramp inputs.

SOLUTION: The steady-state error for the system is

1 a
®)=—=— 7.78
)= = ¢ (178)
The sensitivity of e(00) to changes in parameter a is
ade a |1
Spg=——=—|=| =1 7.79
Y eda a/K {K} (7.79)
The sensitivity of e(o0) to changes in parameter K is
K oe K |[—a
K =———=—— || =— 7.80
KT esK  a/K [KZ} (7.80)

Thus, changes in either parameter a or parameter K are directly reflected in e(o0), and
there is no reduction or increase in sensitivity. The negative sign in Eq. (7.80) indicates
a decrease in e(o0) for an increase in K. Both of these results could have been obtained
directly from Eq. (7.78) since e(o0) is directly proportional to parameter « and inversely
proportional to parameter K.

Example 7.12

Sensitivity of Steady-State Error with Step Input

pretty(Sea)

R PROBLEM: Find the sensitivity of the steady-state error to changes in
(s) + E(s) K C(s) - .
GraGih) > parameter K and parameter a for the system shown in Figure 7.20 with a
- step input.
FIGURE 7.20 Feedback control system SOLUTION: The steady-state error for this Type 0 system is
for Example 7.12 1 1 b
e(00) = = = ¢ (7.81)
1+K, |, K ab+K
Trylt 7.4 ab
Use MATLAB, the Symbolic The sensitivity of e(00) to changes in parameter a is
Math Toolbox, and the 5
following statements to find S, S = a E — a (ab+ K)b — ab _ K (7.82)
in Example 7.12. “ e ba ab (ab + K)* ab+K '
symsKabs ab+ K
G=KA(s+a)y(s+b)); . . .
Kp=subs(G,s,0); The sensitivity of e(o0) to changes in parameter K is
=AU F K de K —ab -K
Sea=(a/eydiff(e,a); Sexk =——= = (7.83)
Sea=simplify(Sea); e 6K ab (ab+K)* ab+K
"Sea” ab+ K

Equations (7.82) and (7.83) show that the sensitivity to changes in parameter K and
parameter a is less than unity for positive a and b. Thus, feedback in this case yields
reduced sensitivity to variations in both parameters.




7.8 Steady-State Error for Systems in State Space
Skill-Assessment Exercise 7.6

in K for the system of Figure 7.21. >

PROBLEM: Find the sensitivity of the steady-state error to changes R(s) + E(s)

K(s+17)

359

C(s)

S +2s+10

-7K
ANSWER: S, = —
*T10+7K
The complete solution is at www.wiley.com/college/nise. Exercise 7.6

FIGURE 7.21 System for Skill-Assessment

In this section, we defined sensitivity and showed that in some cases feedback
reduces the sensitivity of a system’s steady-state error to changes in system parameters.
The concept of sensitivity can be applied to other measures of control system performance,
as well; it is not limited to the sensitivity of the steady-state error performance.

7.8 Steady-State Error for Systems in State Space

Up to this point, we have evaluated the steady-state error for systems modeled as transfer
functions. In this section, we will discuss how to evaluate the steady-state error for systems
represented in state space. Two methods for calculating the steady-state error will be
covered: (1) analysis via final value theorem and (2) analysis via input substitution. We will
consider these methods individually.

Analysis via Final Value Theorem

A single-input, single-output system represented in state space can be analyzed for steady-
state error using the final value theorem and the closed-loop transfer function, Eq. (3.73),
derived in terms of the state-space representation. Consider the closed-loop system
represented in state space:

x = Ax + Br (7.84a)
y=Cx (7.84b)

The Laplace transform of the error is
E(s) = R(s) = Y(5) (7.85)

But
Y(s) = R(s)T(s) (7.86)

where 7(s) is the closed-loop transfer function. Substituting Eq. (7.86) into (7.85), we obtain
E(s) = R(s)[1 = T(s)] (7.87)

Using Eq. (3.73) for T1(s), we find
E(s) = R(s)[1 — C(sI — A)"'B] (7.88)

Applying the final value theorem, we have

lim sE(s) = lim sR(s)[1 — C(sI A)'B] (7.89)

Let us apply the result to an example.
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Example 7.13

Trylt7.5

Use MATLAB, the Symbolic
Math Toolbox, and the
following statements to find
the steady-state error for a
step input to the system of
Example 7.13.

syms s
AH{-5 1 O

0 -2 1

20 -10 1];
B0; 0; 1];
Cqd-1 1 0F;
141 00

010

0 0 1F;
E=(1/sy{1-C*...
[(s*1-AY*-1TBL;
%New command:
%subs(X,old, new):
%Replaceold in. ..
%X(old) with new.
error=subs(s*E,s,0)

Chapter 7 Steady-State Errors

Steady-State Error Using the Final Value Theorem

PROBLEM: Evaluate the steady-state error for the system described by Egs. (7.90) for
unit step and unit ramp inputs. Use the final value theorem.

-5 10 0
A=| 0 -2 1|; B=|0|; C=[-1 1 0] (7.90)
20 —-10 1 1

SOLUTION: Substituting Egs. (7.90) into (7.89), we obtain

s+4
) = limsR(s)( 1 -
e(0) = lims (s)( s3+6s2+13s+20>

(7.91)

= lim sR(s) §3 + 652 + 125+ 16
50 53 + 652 + 135 + 20

For a unit step, R(s) = 1/s, and e(o0) = 4/5. For a unit ramp, R(s) = 1/s?, and e(c0) = 0.
Notice that the system behaves like a Type 0 system.

Analysis via Input Substitution

Another method for steady-state analysis avoids taking the inverse of (sI — A) and can be
expanded to multiple-input, multiple-output systems; it substitutes the input along with an
assumed solution into the state equations (Hostetter, 1989). We will derive the results for
unit step and unit ramp inputs.

Step Inputs. Given the state Egs. (7.84), if the input is a unit step where r = 1, a
steady-state solution, X, for X, is

Vi
Vs
Xs=| . | =V (7.92)
Vi
where V; is constant. Also,
Xgs = 0 (7.93)

Substituting r = 1, a unit step, along with Eqgs. (7.92) and (7.93), into Egs. (7.84) yields

0=AV+B (7.94a)
yss = CV (7.94b)

where yy is the steady-state output. Solving for V yields

V=-A"'B (7.95)
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But the steady-state error is the difference between the steady-state input and the steady-
state output. The final result for the steady-state error for a unit step input into a system
represented in state space is

e(0)=1-y,=1-CV=1+CA™'B (7.96)

Ramp Inputs. For unit ramp inputs, r = ¢, a steady-state solution for x is

Vit+ Wy

Vot + W,
Xes = _ =Vi+W (7.97)

Vait+ W,

where V; and W; are constants. Hence,

Vi

Vs
xe=| | =V (7.98)

Vi
Substituting r = ¢ along with Egs. (7.97) and (7.98) into Eqgs. (7.84) yields

V=A(Vi+ W)+ Bt (7.99a)
Ve = C(Vt+ W) (7.99b)

In order to balance Eq. (7.99a), we equate the matrix coefficients of #, AV = —B, or
V=-A"B (7.100)
Equating constant terms in Eq. (7.99a), we have AW =V, or
W=A"vV (7.101)

Substituting Egs. (7.100) and (7.101) into (7.99b) yields

2

¥ =C[-A7'Br+ A" (-A7'B)] = —C[A"'Br + (A™")"B] (7.102)

The steady-state error is therefore

(o) = lim (¢ - y,,) = lim[(1+ CA™'B)r + C(A™') B] (7.103)

Notice that in order to use this method, A" must exist. That is, detA #0.
We now demonstrate the use of Egs. (7.96) and (7.103) to find the steady-state error
for step and ramp inputs.

Example 7.14

Steady-State Error Using Input Substitution

PROBLEM: Evaluate the steady-state error for the system described by the three
equations in Eq. (7.90) for unit step and unit ramp inputs. Use input substitution.
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SOLUTION: For a unit step input, the steady-state error given by Eq. (7.96) is
e(0)=14+CA'B=1-02=0.8 (7.104)

where C, A, and B are as follows:

-5 1 0 0
A=| 0 -2 1|; B=|0o|; Cc=[-1 1 0] (7.105)
20 -10 1 1

For a ramp input, using Eq. (7.103), we have

e(o0) = [lim[(1 + CA™'B)|r + C(A)B] = 1im (0.8¢ +0.08) = (7.106)

Skill-Assessment Exercise 7.7

PROBLEM: Find the steady-state error for a step input given the system represented in
state space below. Calculate the steady-state error using both the final value theorem and
input substitution methods.

ANSWER:

2
estep(oo) ==

3

The complete solution is at www.wiley.com/college/nise.

Design

In this chapter, we covered the evaluation of steady-state error for systems represented
by transfer functions as well as systems represented in state space. For systems represented
in state space, two methods were presented: (1) final value theorem and (2) input
substitution.

Antenna Control: Steady-State Error Design via Gain
This chapter showed how to find steady-state errors for step, ramp, and parabolic inputs to
a closed-loop feedback control system. We also learned how to evaluate the gain to meet a
steady-state error requirement. This ongoing case study uses our antenna azimuth position
control system to summarize the concepts.

PROBLEM: For the antenna azimuth position control system shown on the front
endpapers, Configuration 1,

a. Find the steady-state error in terms of gain, K, for step, ramp, and parabolic inputs.
b. Find the value of gain, K, to yield a 10% error in the steady state.
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SOLUTION:

a. The simplified block diagram for the system is shown on the front endpapers. The
steady-state error is given by

e(e0) = lim sE(s) = lim SR(s) (7.107)

s—0 1 + G(s)
From the block diagram, after pushing the potentiometer to the right past the summing
junction, the equivalent forward transfer function is

6.63K

= 5(s+ L71)(s + 100) (7.108)

G(s)

To find the steady-state error for a step input, use R(s) = 1/s along with
Eq. (7.108), and substitute these in Eq. (7.107). The result is e(c0) = 0.

To find the steady-state error for a ramp input, use R(s) — 1/s*> along with
Eq. (7.108), and substitute these in Eq. (7.107). The result is e¢(o0) = 25.79/K.

To find the steady-state error for a parabolic input, use R(s) = 1/s along with
Eq. (7.108), and substitute these in Eq. (7.107). The result is e(co) = 0.

b. Since the system is Type 1, a 10% error in the steady state must refer to a ramp input.

This is the only input that yields a finite, nonzero error. Hence, for a unit ramp input,
1 (1.71)(100) 25.79
=0.1=—-= = 7.10
(=) K, 663K K (7.109)

from which K = 257.9. You should verify that the value of K is within the range of
gains that ensures system stability. In the antenna control case study in the last chapter,
the range of gain for stability was found to be 0 < K < 2623.29. Hence, the system is
stable for a gain of 257.9.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives: Referring to the antenna azimuth position control system shown on the front
endpapers, Configuration 2, do the following:

a. Find the steady-state errors in terms of gain, K, for step, ramp, and parabolic inputs.

b. Find the value of gain, K, to yield a 20% error in the steady state.

Video Laser Disc Recorder: Steady-State

Error Design via Gain
As a second case study, let us look at a video laser disc focusing system for recording. Design

PROBLEM: In order to record on a video laser disc, a 0.5 um laser spot must be focused
on the recording medium to burn pits that represent the program material. The small laser
spot requires that the focusing lens be positioned to an accuracy of =0.1 gm. A model of
the feedback control system for the focusing lens is shown in Figure 7.22.

Power Motor &
Desired Detector Filter amplifier lens Actual
lens lens
position 4 Ki(s + 800 K position
0.12 Ki(s + 800) K, = -
S (s +40,000) s

FIGURE 7.22 Video laser
disc recording: control system
for focusing write beam
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The detector detects the distance between the focusing lens and the video disc by
measuring the degree of focus as shown in Figure 7.23(a). Laser light reflected from the
disc, D, is split by beam splitters B; and B, and focused behind aperture A. The remainder
is reflected by the mirror and focuses in front of aperture A. The amount of light of each
beam that passes through the aperture depends on how far the beam’s focal point is from
the aperture. Each side of the split photodiode, P, measures the intensity of each beam.
Thus, as the disc’s distance from the recording objective lens changes, so does the focal
point of each beam. As a result, the relative voltage detected by each part of the split
photodiode changes. When the beam is out of focus, one side of the photodiode outputs a
larger voltage. When the beam is in focus, the voltage outputs from both sides of the
photodiode are equal.

A simplified model for the detector is a straight line relating the differential voltage
output from the two elements to the distance of the laser disc from nominal focus. A
linearized plot of the detector input-output relationship is shown in Figure 7.23(b)

Mirror

A, pinhole P, split
aperture photodiode
B,, 50-50

beam splitter *

O-X/1Y plate

L, condensing

lens B, polarizing

beam splitter ]
P L,, recording

objective lens

(@)

Differential

voltage
0.6
L L - Distance from
-5 5 nominal focus
(pm)
0.6 -

®)

FIGURE 7.23 Video disc laser recording: a. focus detector optics;® b. linearized transfer function
for focus detector®

STsailovi¢, J. Videodisc and Optical Memory Technologies, 1st Edition, © 1985. Reprinted by permission of
Pearson Education, Inc., Upper Saddle River, NJ.



Summary

(Isailovic, 1985). Assume that a warp on the disc yields a worst-case disturbance in the
focus of 1072 um. Find the value of K, K,Kj in order to meet the focusing accuracy required
by the system.

SOLUTION: Since the system is Type 2, it can respond to parabolic inputs with finite
error. We can assume that the disturbance has the same effect as an input of 10> um.
The Laplace transform of 10¢% is 20/s%, or 20 units greater than the unit acceleration used
to derive the general equation of the error for a parabolic input. Thus, () = 20/K,.
But K, = 11_% 52 G(s).

From Figure 7.22, K, = 0.0024K,K,K3. Also, from the problem statement, the
error must be no greater than 0.1 um. Hence, e(co0) = 8333.33/KK,K3 = 0.1. Thus,
K K>K3 > 83333.3, and the system is stable.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives: Given the video laser disc recording system whose block diagram is shown in
Figure 7.24, do the following:

a. If the focusing lens needs to be positioned to an accuracy of +0.005 ym, find the
value of K| K,Kj if the warp on the disc yields a worst-case disturbance in the focus
of 15¢2um.

b. Use the Routh-Hurwitz criterion to show that the system is stable when the conditions
of a. are met.

c. Use MATLAB to show that the system is stable when the conditions
of a. are met.

Power Motor &

Lt Detector Filter amplifier lens AiGiEl
lens lens
position K position
+ 02 | Kj(s+600) - R _
X (s +20,000) s2

FIGURE 7.24 Video laser disc recording focusing system
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Summary

This chapter covered the analysis and design of feedback control systems for steady-state
errors. The steady-state errors studied resulted strictly from the system configuration. On the
basis of a system configuration and a group of selected test signals, namely steps, ramps,
and parabolas, we can analyze or design for the system’s steady-state error performance.
The greater the number of pure integrations a system has in the forward path, the higher the
degree of accuracy, assuming the system is stable.

The steady-state errors depend upon the type of test input. Applying the final value
theorem to stable systems, the steady-state error for unit step inputs is

1

e(00) = Hh—r%c;(s) (7.110)
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The steady-state error for ramp inputs of unit velocity is

1

0) = ——— 7.111
e(%0) lim sG(s) (7.1
and for parabolic inputs of unit acceleration, it is
(o0) ! (7.112)
e(0) =——5— .
lim s2G(s)
§—

The terms taken to the limit in Eqgs. (7.110) through (7.112) are called static error
constants. Beginning with Eq. (7.110), the terms in the denominator taken to the limit are
called the position constant, velocity constant, and acceleration constant, respectively.
The static error constants are the steady-state error specifications for control systems. By
specifying a static error constant, one is stating the number of pure integrations in the
forward path, the test signal used, and the expected steady-state error.

Another definition covered in this chapter was that of system type. The system type
is the number of pure integrations in the forward path, assuming a unity feedback
system. Increasing the system type decreases the steady-state error as long as the system
remains stable.

Since the steady-state error is, for the most part, inversely proportional to the static
error constant, the larger the static error constant, the smaller the steady-state error.
Increasing system gain increases the static error constant. Thus, in general, increasing
system gain decreases the steady-state error as long as the system remains stable.

Nonunity feedback systems were handled by deriving an equivalent unity feedback
system whose steady-state error characteristics followed all previous development. The
method was restricted to systems where input and output units are the same.

We also saw how feedback decreases a system’s steady-state error caused by
disturbances. With feedback, the effect of a disturbance can be reduced by system gain
adjustments.

Finally, for systems represented in state space, we calculated the steady-state error
using the final value theorem and input substitution methods.

In the next chapter, we will examine the root locus, a powerful tool for the analysis
and design of control systems.

Review Questions

1. Name two sources of steady-state errors.

2. A position control, tracking with a constant difference in velocity, would yield how much
position error in the steady state?

3. Name the test inputs used to evaluate steady-state error.

4. How many integrations in the forward path are required in order for there to be zero
steady-state error for each of the test inputs listed in Question 3?

5. Increasing system gain has what effect upon the steady-state error?

6. For a step input, the steady-state error is approximately the reciprocal of the static error
constant if what condition holds true?

7. What is the exact relationship between the static error constants and the steady-state
errors for ramp and parabolic inputs?

8. What information is contained in the specification K, = 10,000?
9. Define system type.



10.

11.
12.

13.

14.
15.

16.

Problems

The forward transfer function of a control system has three poles at —1, -2, and —3.
What is the system type?

What effect does feedback have upon disturbances?

For a step input disturbance at the input to the plant, describe the effect of controller and
plant gain upon minimizing the effect of the disturbance.

Is the forward-path actuating signal the system error if the system has nonunity
feedback?

How are nonunity feedback systems analyzed and designed for steady-state errors?

Define, in words, sensitivity and describe the goal of feedback-control-system
engineering as it applies to sensitivity.

Name two methods for calculating the steady-state error for systems represented in
state space.
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Problems
1. For the unity feedback system shown in Figure P7.1, 3. For the unity feedback system shown in Figure P7.1,
where where
60(s + 3)(s + 4)(s + 8)
G(s) =
G(s) = 450(s + 8)(s + 12)(s + 15) (s) 261 6)6+17)

. Figure P7.2 shows the ramp input r(f) and the output

s(s + 38)(s2 + 25 + 28)

find the steady-state error if the input is 807%u(z).

find the steady-state errors for the following test inputs: [Section: 7.2]

25u(t), 37tu(t), 471%u(t). [Section: 7.2]

4. For the system shown in Figure P7.3, what steady-state

error can be expected for the following test inputs:

R(s) +§ EOL 6o CGs)

10u(t), 10tu(t), 107%u(t). [Section: 7.2]

FIGURE P7.1

G| —

c(t) of a system. Assuming the output’s steady state
can be approximated by a ramp, find [Section: 7.1]

a. the steady-state error;

C(s)

|

1]
+
~

b. the steady-state error if the input becomes r(z) = tu(z). 6s
Mag
FIGURE P7.3
ol ()

4o -, ¢ where

5. For the unity feedback system shown in Figure P7.1,

500

G(s)

T (5+28)(s2 + 8s + 12)

find the steady-state error for inputs of 20u(f), 60tu(r),
> f(sec) and 817%u(t). [Section: 7.3]

3 6. An input of 25¢3u(¢) is applied to the input of a Type 3
FIGURE P7.2 unity feedback system, as shown in Figure P7.1,
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10.

11.

12.

where 13. For the system shown in Figure P7.4, [Section: 7.3]
Gls) = 210(s +4)(s + 6)(s + 11)(s + 13) a. Find K, K, and K,.
3
s s+7)(s + 14)(s +19) b. Find the steady-state error for an input of 50u(?),
Find the steady-state error in position. [Section: 7.3] 50tu(t), and 5072 u(t).
. The steady-state error in velocity of a c. State the system type.
system is defined to be
R(s) + 5 C(s)

ﬂ_@ s(s+ 1)(s+2)

dt dt)|,_ 1T
where r is the system input, and c is the system output. +3) =
Find the steady-state error in velocity for an input of
u(f) to a unity feedback system with a forward FIGURE P7.4

transfer function of [Section: 7.2]
14. A Type 3 unity feedback system has r(f) = 10> applied

(s) = 100(s + 1)(s +2) to its input. Find the steady-state position error for this
s2(s +3)(s + 10) input if the forward transfer function is [Section: 7.3]

. What is the steady-state error for a step input of 15 units Gls) = 1030(s* + 85 + 23) (s* + 215 + 18)
applied to the unity feedback system of Figure P7.1, (s)= s3(s 4+ 6)(s + 13)
where [Section: 7.3]

1020(s + 13)(s + 26)(s + 33) 15. Find the system type for the system of Figure P7.5.
G(s) = ion:
(s) (5+65)(s + 75)(s + 91) [Section: 7.3]

. A system has K, = 4. What steady-state error can be  g() + 100(s + 2) 1000 C(s)
expected for inputs of 70u(f) and 70tu(f)? [Section 7.3] X T s+ 5) -l s >
For the unity feedback system shown in Figure P7.1,
where [Section: 7.3]

10
5000
G(s)=——=
® s(s +75)
FIGURE P7.5
a. What is the expected percent overshoot for a unit step
input? 16. What are the restrictions on the feedforward transfer
b. What is the settling time for a unit step input? function G(s) in the system of Figure P7.6 to obtain
c. What is the steady-state error for an input of 5u(f)? zero steady-state error for step inputs if: [Section: 7.3]
d. What is the steady-state error for an input of Stu(z)? a. G(s)is a Type 0 transfer function;
e. What is the steady-state error for an input of 5¢%u(t)? b. G,(s)is a Type 1 transfer function;
Given the unity feedback system shown in Figure P7.1, ¢. G(s) is a Type 2 transfer function?
where
6(s) 500000(s + 7)(s + 20)(s + 45) > Go)
s) =
s(s + 30)(s + a)(s + 50)
find the value of a to yield a K, = 35000. R(s) . Es) L o )
[Section: 7.4] { Gi(s) ®_’ s(s+3)
For the unity feedback system of Figure P7.1, where
G(s) = K(s+2)(s +4)(s+6)
T (s +5)(s+7) FIGURE P7.6

find the value of K to yield a static error constant of  17. The steady-state error is defined to be the difference in
10,000. [Section: 7.4] position between input and output as time approaches



infinity. Let us define a steady-state velocity error,
which is the difference in velocity between input and
output. Derive an expression for the error in velocity,
é(00) = i(o0) — ¢(c0), and complete Table P7.1 for the
error in velocity. [Sections: 7.2, 7.3]

TABLE P7.1
Type
0 1 2
Step
E
E. Ramp
Parabola

18.

19.

20.

For the system shown in Figure P7.7, [Section: 7.4]

a. What value of K will yield a steady-state error in
position of 0.01 for an input of (1/10)#?

b. What is the K, for the value of K found in Part a?

c. What is the minimum possible steady-state position
error for the input given in Part a?

R(s) + E(s) K(s+7) C(s)

s(s+5)(s+8)(s+12)

FIGURE P7.7

Given the unity feedback system of Figure P7.1, where

K(s+ a)

Gls) = s(s +2)(s + 15)

find the value of Ka so that a ramp input of slope 30 will
yield an error of 0.005 in the steady state when compared
to the output. [Section: 7.4]

Given the system of Figure P7.8, design the value of K
so that for an input of 1007u(f), there will be a 0.01 error
in the steady state. [Section: 7.4]

R(s) + K C(s)

s(s+2)

Ss

K

FIGURE P7.8

21.

22,

23.

24.

25.

26.

27.
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Problems

Find the value of K for the unity feedback system shown
in Figure P7.1, where

_K(s+3)
T s2(s+7)

G(s)

if the input is 107%u(f), and the desired steady-state
error is 0.061 for this input. [Section: 7.4]

The unity feedback system of Figure P7.1, where

K (s> + 35 +30)

Gls) = s"(s+5)

is to have 1/6000 error between an input of 107u(r)
and the output in the steady state. [Section: 7.4]

a. Find K and n to meet the specification.
b. What are K, K,, and K,?

For the unity feedback system of Figure P7.1,
where [Section: 7.3]

K(s2+6s+6)

Gls) = (5 +5 (s +3)

a. Find the system type.
b. What error can be expected for an input of 12u(r)?
c. What error can be expected for an input of 127u(r)?

For the unity feedback system of Figure P7.1, where

_ K(s+13)(s +19)
0= G+ 06+96+22)

find the value of K to yield a steady-state error of 0.4 for
a ramp input of 27¢u(z). [Section: 7.4]

Given the unity feedback system of Figure P7.1, where

K(s+6)

G0 = G2 +10s 7 29)

find the value of K to yield a steady-state error of
8%. [Section: 7.4]

For the unity feedback system of Figure P7.1, where

_ K
T s(s+4)(s +8)(s + 10)

G(s)

find the minimum possible steady-state position error if
a unit ramp is applied. What places the constraint upon
the error?

The unity feedback system of Figure P7.1,where
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28.

29.

30.

31.

32.
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is to be designed to meet the following specifications:
steady-state error for a unit step input = 0.1; damping
ratio = 0.5; natural frequency = \/ﬁ Find K, a, and
p. [Section: 7.4]

A second-order, unity feedback system is to follow a
ramp input with the following specifications: the
steady-state output position shall differ from the input
position by 0.01 of the input velocity; the natural
frequency of the closed-loop system shall be 10 rad/s.
Find the following:

a. The system type

b. The exact expression for the forward-path transfer
function

c. The closed-loop system’s damping ratio

The unity feedback system of Figure P7.1 has a transfer
Cis) K

E(s)  s(s+a)
input, r(f) = tu(f), so that the steady-state output position
differs from the input position by 0.01 of the input velocity

function G(s) =

and is to follow a ramp

(e.g., e(o0) = KL = 0.01). The natural frequency of the

closed-loop systvem will be w, = 5rad/s. [Section: 7.4]

Find the following:

a. The system type

b. The values of K and o

c¢. The closed-loop system’s damping ratio, {

d. If Kisreduced to4 and @ = 0.4, find the corresponding
new values of e(0), w,, and (.

The unity feedback system of Figure P7.1, where

_K(s+a)
G(s) = s(s + p)

is to be designed to meet the following requirements:
The steady-state position error for a unit ramp input
equals 1/10; the closed-loop poles will be located
at —1xj1. Find K, a, and f in order to meet the
specifications. [Section: 7.4]

Given the unity feedback control system of Figure P7.1,
where

Gs)

- s"(s + a)

find the values of n, K, and a in order to meet specifi-
cations of 12% overshoot and K, = 110. [Section: 7.4]
Given the unity feedback control system of Figure P7.1,

where

K

Gls) = s(s+a)

33.

34.

35.

find the following: [Section: 7.4]

a. K and a to yield K, = 1000 and a 20% overshoot

b. K and a to yield a 1% error in the steady state and a
10% overshoot.

Given the system in Figure P7.9, find the following:
[Section: 7.3]

a. The closed-loop transfer function

. The system type

. The steady-state error for an input of Su()
. The steady-state error for an input of 57u(r)

o & 0 T

. Discuss the validity of your answers to Parts ¢ and d.

C(s)

s2(s+3)

FIGURE P7.9

Repeat Problem 33 for the system shown in Figure P7.10.
[Section: 7.3]

10 C(s)

s(s+1)(s+3)(s+4)

2s |-

FIGURE P7.10

MATLAB

For the system shown in
Figure P7.11, use MATLAB to find
the following: [Section: 7.3]

a. The system type

b. Ky, Ky, and K4

c. The steady-state error for inputs of
100u(t), 100tu(t), and 100t%u(t)

(s+9) + 6(s +9)(s +17) C(s)

s(s+06)(s+12)(s+ 14) (s+12)(s+32)(s+68)

13

FIGURE P7.11



36. The system of Figure P7.12 is to have the following

specifications: K, = 20; { = 0.7. Find the values of K,
and Kyrequired for the specifications of the system to
be met. [Section: 7.4]

gi(s) + + 5 Gp(s)
K A s(s +2) -
KfS ]
FIGURE P7.12

37. The transfer function from elevator deflection to

altitude change in a Tower Trainer 60 Unmanned
Aerial Vehicle is

_ h(s)

8(s),

_ =34.165° — 144.45% + 70475 + 557.2

T 85 +13.185* + 95.9353 + 14.6152 + 31.94s

P(s)

An autopilot is built around the aircraft as shown in
Figure P7.13, with F(s) = H(s) = 1 and

~0.00842(s + 7.895)(s* +0.108s + 0.3393)

G(s) (s +0.07895)(s2 + 4s + 8)

(Barkana, 2005). The steady-state error for a ramp
input in this system is e = 25. Find the slope of the
ramp input.

R(s) C(s)
— >

F(s) G(s) P(s)

e

H(s)

FIGURE P7.13

38. Find the total steady-state error due to a unit step

input and a unit step disturbance in the system of
Figure P7.14. [Section: 7.5]

D(s)
+ %
R(s) + 1 + 100 C(s) -~
_% s+5 s+2
FIGURE P7.14
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Problems

39. Design the values of K; and K, in the system of

Figure P7.15 to meet the following specifications:
Steady-state error component due to a unit step
disturbance is —0.00001; steady-state error component
due to a unit ramp input is 0.002. [Section: 7.5]

D(s)

Ki(s+2) C(s)

R(s) + %

7
40. In Figure P7.16, let G(s) = 5 and P(s) = )

41.

42,

s(s+4)

FIGURE P7.15

(s+3)

+2
a. Calculate the steady-state error due to a command

3
input R(s) = — with D(s) = 0.
s

b. Verify the resultofParta simulink
using Simulink. “

c. Calculate the steady-state error due to a disturbance
1
input D(s) = —— with R(s) = 0.
s
d. Verify the resultofPartc Simulink

using Simulink. “

e. Calculate the total steady-state error due to a

3
command input R(s) = " and a disturbance D(s) =

1
—— applied simultaneously.
S

Simulink

f. Verify the resultofParte
using Simulink.

Cls).

G(s) P(s)

R(s) + 8

FIGURE P7.16

Derive Eq. (7.72) in the text, which is the final value of
the actuating signal for nonunity feedback systems.
[Section: 7.6]

For each system shown in Figure P7.17, find the
following: [Section: 7.6]

a. The system type
b. The appropriate static error constant

c. The input waveform to yield a constant error
(problem continues)
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(Continued)

d. The steady-state error for a unit input of the waveform
found in Part ¢

e. The steady-state value of the actuating signal.

R(s) + 10(s + 10)

s(s+2)

C(s)

(s+4)

System 1

R(s) + 10(s + 10)

s(s+2)

C(s)

(s+1)

System 2
FIGURE P7.17 Closed-loop systems with nonunity feedback

43. For each system shown in Figure P7.18, find the appro-
priate static error constant as well as the steady-state error,
r(ce) — ¢(c0), for unit step, ramp, and parabolic inputs.
[Section: 7.6]

s+4 C(s)
(s+3)(s+7)
10 |-
System 1
R(s) + s+4 NS
20 X (s+3)(s+7) 10

B
System 2
FIGURE P7.18
44. Given the system shown in Figure P7.19, find the
following: [Section: 7.6]
a. The system type
b. The value of K to yield 0.1% error in the steady state.

R(s) + (s+1)

s2(s+2)

Cs)

K |

FIGURE P7.19

45. For the system shown in Figure P7.20, [Section: 7.6]

o

. What is the system type?

b. What is the appropriate static error constant?

c. Whatis the value of the appropriate static error constant?
d. What is the steady-state error for a unit step input?

K(s+1) C(s)
sXs+4)

R(s) +

(s+5)
(s+2)

FIGURE P7.20

46. For the system shown in MATLAB
Figure P7.21, use MATLAB to find [T
the following for K =10, and K =10°8:
[Section: 7.6]

a. The system type
b. Ky, Ky, and Ky

c. The steady-state error for inputs of
30u(t), 30tu(t), and 30t2u(t)

R(s) + K(s+1)(s+2) C(s)

S2(s+4)(s+5)(s+6)

(s+6)
(s+8)(s+9)

FIGURE P7.21

47. A dynamic voltage restorer (DVR) is a device that is
connected in series to a power supply. It continuously
monitors the voltage delivered to the load, and compen-
sates voltage sags by applying the necessary extra voltage
to maintain the load voltage constant.

In the model shown in Figure P7.22, u, represents
the desired reference voltage, u, is the output voltage,
and Z; is the load impedance. All other parameters are
internal to the DVR (Lam, 2004).

L, and f§ # 1, find the system’s type.
sC L

b. Find the steady-state error to a unit step input as a

function of /.

a. AssumingZ; =

1
Kr (KL, + TSJ

FIGURE P7.22 DVR Model



48. Derive Eq. (7.69) in the text. [Section: 7.6]
49. Given the system shown in Figure P7.23, do the
following: [Section: 7.6]
a. Derive  the  expression for  the
E(s) = R(s) — C(s), in terms of R(s) and D(s).
b. Derive the steady-state error, e(o0), if R(s) and D(s)
are unit step functions.
c. Determine the attributes of G(s), Ga(s), and H(s)

necessary for the steady-state error to become
zZero.

€errTor,

D(s)

+
+ £ C(s)

FIGURE P7.23 System with input and disturbance

R(s) +

Gi(s) Go(s)

H(s) |-

50. Given the system shown in Figure P7.24, find the
sensitivity of the steady-state error to parameter a.
Assume a step input. Plot the sensitivity as a function
of parameter a. [Section: 7.7]

R(s) + K
s(s+2)(s+5)

C(s)

(s+a) -

FIGURE P7.24

51. a. Show that the sensitivity to plant changes in the
system of Figure P7.13 is

_per_ 1
TSP 1+ L(s)

Sr.p

where L(s) = G(s)P(s)H(s) and

_C0)_F) L)
TO) =25 " HE) T+L0)"
b. Show that S7.p(s) + % =1 for all values of s.

52. In Figure P7.13, P(s) = §, H(s)=1
s
C 200K
T(s) = Ck) _

TR(s) (54 1)(s +3)(s2 + 25 + 20)
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Problems
and

Sy = _ 52 +2s
TP T6P T s 425420
a. Find F(s) and G(s).
b. Find the value of K that will result in zero steady-state
error for a unit step input.

53. For the system shown in Figure P7.25, find the
sensitivity of the steady-state error for changes in K;
and in K,, when K; = 100 and K, = 0.1. Assume step
inputs for both the input and the disturbance. [Section: 7.7]

D(s)

y

R(s) + + K,

Cts)

st+1 |-

FIGURE P7.25 System with input and disturbance

54. Given the block di