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Lecture # 5 

Transient Response 

In analysis of control systems, it is usual to evaluate the output responses with respect to 

time, which is referred to as the time response. In the analysis control systems, a standard 

reference input signal is applied to a system, and the performance of the system is evaluated by 

studying the system response in the time domain. The standard signals used in control system 

analysis are given in Table (1). 

Table 1 

 

Most of the control systems response in time domain is studied by applying a standard 

unit step input, and such response is then referred to as a unit step response. All dynamic systems 

exhibit transient response on the application of input signal. In electrical circuits the closing and 

opening of a switch at some particular time sets the state of the circuit, so that the circuit currents 

and voltages are time dependent and the behavior of the circuit is determined as time-response 

(transient response) due to operation of switch. In circuits analysis we have analyzed electrical 

circuits with representing them by differential equations, which on solution for dependent 

variable provided a complete response (behavior) consisting of two parts; the complementary 

(transient) and particular solution (steady-state) that is: 
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Where ct(t) is the transient component and cSS(t) is the steady-state component of the total 

response (time response) of the system. In control systems, transient response is defined as the 

part of the time response that goes to zero as time becomes very large. Thus ct(t) has the property 

for a stable system if: 

  0)( 


tcLim t
t

         2 

Transient response is responsible for stability and must be closely controlled, besides it is 

a significant part of the dynamic behavior of the system, and is also responsible for deviation 

between the output response and the input (desired response), The steady-state response of a 

control system is equally important, and is the part of the total response which remain after the 

transient component has decayed. Steady-state response indicates where the system output ends 

up when time becomes large. Thus, the steady-state response can still vary in a fixed pattern with 

time, such as a step function, the amplitude of which can remain constant with time or a ramp 

function that increases with time.  

First-Order System 

A first-order system is characterized by a first-order characteristic equation with a single 

pole irrespective of the number of zeros in a transfer function. Many systems are approximately 

first-order. A first-order system without zeros can be described generally by the transfer 

function: 
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Figure 1: Simple First Order System and its Pole Location 

If the input is a unit step function r(t) = u(t), then the Laplace transform of the unit step function 

is: 1/s, thus: ssR /1)(  . The Laplace transform of the step response is C(s), which is then given 

as: 
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Decomposing into partial fractions: 
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Taking inverse Laplace transform of the above expression, we have: 
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The step response is illustrated in Figure (2) the output has an initial value c(0) = 0, 

which approaches c(t) = 1 as its final value for t → ∞ following a trend; ate1 . Since the value 

of the unit-step input is equal to 1 and the final value of the output is also equal to 1, the error 

between input and output as t → ∞ is equal to zero.  

 

 

Figure 2: Unit-Step Response of a First Order System 

Example 1: Obtain the unit-step and unit-ramp response of an RC low-pass filter with value of R 

= 1 and C = ½ F. 

Solution: An RC LP filter is a series combination of R and C in which case the input is applies 

across the combination and output voltage is taken across C. Thus the transfer function of the RC 

low-pass filter is: 
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For unit-step response, the input is r(t) = u(t) = 1 for t ≥ 0, the Laplace transform of the input 

function is: R(s) = 1/s. Therefore: 
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Decomposing into partial fractions, we have: 
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Taking the inverse Laplace transform, we have the unit-step response: 

  tetc 21)(   

To obtain a unit-ramp response, the input function will be a unit-ramp, thus r(t) = t for which the 

Laplace transform is: R(s) = 1/s
2
. Therefore: 
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Decomposing into partial fractions, we have: 
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Taking the inverse Laplace transform yields the ramp response: 
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Second-Order Systems  

Second-order system is characterized by second-order characteristic equation with two 

poles, irrespective of the number of zeros in a transfer function. Physical second-order system 

models contain two independent energy-storage devices which exchange stored energy, and may 

contain additional dissipative devices. Engineers often use second-order system models in the 

preliminary stages of design in order to establish the parameters of the energy-storage and 

dissipation devices required to achieve a satisfactory response.  
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The general form of the closed-loop transfer function of a second-order system as a 

function of ωn and ζ is: 
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The quantities ωn (undamped natural frequency, which describes the oscillatory nature) and ζ 

(damping coefficient or damping ratio, which describes the damping) are regarded as the two 

most important parameters defining the characteristics of a second-order system. The damping 

ratio ζ, will thus determine how much the system oscillates as the response decays toward 

steady-state (final value). The undamped natural frequency ωn, on the other hand will determine 

how fast the system oscillates during any transient response containing a decaying sinusoid with 

a frequency of ωd, where: 21   nd
. 

Example 2: A second-order system is represented by a closed-loop transfer function: 

106
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sT . Find its natural frequency and damping ratio. 

Solution: Comparing with the general form as given in Eq (5), we have: 

   10n 3.16 rad/sec 
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6
 0.95 

Step Response of Second Order System 

The unit-step response can likewise be found by multiplying the transfer function of the 

given system by 1/s, followed by a partial-fraction expansion and the inverse Laplace transform. 

The type of transient or natural response, however, depends on the characteristics of poles, which 

may be real and equal, real and unequal, complex conjugate or purely imaginary. The types of 

transient response depending on the nature of the roots and categorizing the system in terms of 

its damping type, depending on value of ζ. These are summarized as follows: 

Overdamped response (ζ > 1): When the two poles are real but different. The system attains a 

steady-state value gradually and without oscillations. The natural response is of the type: 

  btat BeAetc  )(  

The overdamped system is a slow acting and does not oscillate about the final position. This may 

be necessary in some systems, for example, an elevator (lift). 

Critically damped response (ζ = 1): When the two poles are real and equal, the system attains a 

steady-state value gradually without oscillations but the rise time is less than that of over-damped 

system. The natural response of the type: 

  atat BteAetc  )(  
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Underdamped response (0 < ζ < 1): When the two complex conjugate (a and b), the system 

transient response is associated with overshoot and the system settles to a steady-state value 

through oscillations. The natural response of the type: 

  btat BeAetc  )(  

The natural response is damped sinusoid with an exponential envelope whose time constant is 

equal to the reciprocal of the pole's real part. The radian or angular frequency of the sinusoid, the 

damped frequency of oscillation, is equal to the imaginary part of the poles.  

Undamped response (ζ = 0): When the two poles are purely imaginary conjugate. The natural 

response of the type: 

  )cos()(   tAtc n  

Where: ωn is the undamped natural frequency of the system. Natural response is undamped 

sinusoid with frequency equal to the imaginary part of the poles. Figure (3) shows the response 

of each category of the system. 

 

Figure 3: Response of a Second-order System 

Since majority of systems we come across are under-damped, so in this lecture emphasis will be 

given to the step response of under-damped system only. The roots of the characteristic equation 

have for an under-damped system have a general form: 21   nnd jj . Thus 

for a unit step response: 
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For the unit-step response, the input has a Laplace transform of 1/s. Thus the unit-step response 

can be expressed as: 
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In order to obtain the response, Eq (6) is decomposed into partial fractions as follows: 

  
22

321

22

2

2)2(
)(

nnnn

n

ss

ksk

s

k

sss
sC











  

The constants k1, k2 and k3 are:1, 1 and n2  respectively. Therefore: 
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Multiplying and dividing the second term in the numerator of the above expression by: 21  , 

we have: 
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Taking the inverse Laplace transform of both sides, we have: 
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Supposing that:  sin1 2   and  cos . Then: 
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Where: 
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. Alternatively we can suppose that:  cos1 2   and  sin . 

Then the unit step response is in the form:  
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. The unit-step response can also be obtained by 

factorizing the denominator of the closed-loop transfer function into complex factors as follows: 
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For a unit-step response: R(s) = 1/s, so that the above expression can be written as: 
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For making the mathematics simpler and for convenience, let us suppose that: 

  aj nn  21   

And  bj nn  21   
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Rearranging and taking the inverse Laplace transform of both sides and using the trigonometric 

relationship with complex exponent, we have: 
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The unit-step response of the second-order underdamped system is shown in Figure (4).  

As illustrated in Figure (4), the unit-step response of the second-order system starts at zero and 

goes above the final value (for a unit-step response, final value is 1). The response increases in 

the magnitude well-beyond the final value is termed as overshoot and in control system studies it 

is usually determined in terms of percentage of the final value, referred to as percentage 

overshoot. Overshoot is important and is closely related to damping ratio and is independent of 

the undamped natural frequency. In a second-order system, percent overshoot depends entirely 

upon damping ratio. As the damping ratio increases, the percent overshoot decreases. When the 

damping ratio attains a value around 0.8, the overshoot becomes almost unobservable. 

Unit-step input is important and is often used as test input to determine how well a 

system is performing. In addition, the shape of the step response; how fast it occurs, how much it 

oscillates, etc. help the designer to predict the ability of the system’s response to other inputs.  
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Figure 4: Unit Step Response for Different Values of Damping Ratio 

The Damping Line 

When the complex poles of a second order under-damped system are plotted in s-plane, 

they are symmetrically placed above and below the real axis as shown in Figure (5). The length 

of the line connecting the origin to the pole: 2

1 1   nn jp is equal to ωn from 

Pythagoras theorem: )1( 2222   nn .The line making an angle:  1cos at the origin 

with the negative real axis or angle   = 1cos180 o at the origin with the positive real axis 

that passes through the pole p1 is referred to as the constant damping line; the line on which the 

value of damping ratio ζ is constant.  

 

Figure 5: Complex Pole Location and Constant Damping Line   
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The angle β will lie in the second quadrant; therefore the damping line will make and angle of   

with origin with respect to the real-axis given by:  1cos180  o . It must be remembered that 

two second-order systems having the same value of ζ but different values of ωn will have the 

same overshoot and same oscillatory pattern. Such systems are then said to have the same 

relative stability.  

The damping ratio is constant along the radial line drawn at the origin, whereas the 

natural frequency ωn changes. On the other hand the damping ratio varies from 0 to 1 along the 

arc of radius ωn drawn at the origin from +jω-axis to –σ-axis. Thus the +jω-axis is referred to as 

a zero damping line. A system pole lying on the jω-axis will be that of an undamped system and 

system poles lying on the negative real axis will be that of a critical damped system. Pole 

location is an important element for predicting responses of all kinds of inputs, and is a function 

of damping ratio as illustrated in Figure (5). Changing the damping ratio or the natural frequency 

changes the location of the closed-loop pole. For example changing the natural frequency by 

keeping the damping ratio same will shift the closed-loop pole up along the damping line 

leftward or rightward, respectively for increasing and decreasing the value of the natural 

frequency of the system. 

Inter-conversion of Standard Inputs 

The standard inputs are inter-related through mathematical operations of integration and 

differentiated as can be seen in Table (2)  

Table 2 

Function Integral Derivative 

Unit impulse δ(t) 
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dt

t
t

  (jerk function) t
t

dt

d
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







2

2

 (ramp) 

 

Important point to remember: In classical time domain control systems are represented by 

differential equation whereas in modern time domain they are represented in state-space. 

However, the most important is the transfer function which is in s-domain. All three 

representations are convertible from one to the other.  
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Transient-Response Specifications of Second-Order Systems 

The unit-step response of a second-order system consists of two parts; natural response 

and forces response. The type of natural responses depends of the characteristics of poles, which 

may be real and equal, real and unequal, complex conjugate or purely imaginary. Most of the 

real time systems we come across in our daily life have underdamped transient response, which 

for a second-order system is characterized by damped oscillations before reaching a steady-state 

under the application of a step input. It is meaningful to mention that the damping ratio remains 

the same regardless of the time scale of the response.  

The transient response of a second-order system is governed by time-reponse specifications, 

which are rise time Tr, peak time Tp, percent overshoot %OS, and settling time TS. These time-

response specifications are discussed as follows: 

Rise Time (Tr): Rise time refers to the time required for the response to go from 0.1 of its final 

value to 0.9 of its final value.  
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Peak Time (Tp): Peak time Tp refers to the time required for the response to reach maximum 

peak.   
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Percent Overshoot (%OS): The amount that the waveform overshoots the steady-state, or final, 

value at the peak time, expressed as a percentage of the steady-state value. Usually in the 

analysis of transient response, the first overshoot is important since its magnitude is the highest 

and it determines the ability of a system to sustain these magnitudes. 
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It can be seen from Eq (13) that the percent overshoot depends only on the damping ratio ζ. Thus 

any system’s closed-loop pole placed on the constant damping line will exhibit the same percent 

overshoot, irrespective of the value of the un-damped natural frequency ωn. Since percent 

overshoot is only a function of ζ, radial lines are thus lines of constant percent overshoot. 

Settling Time (Ts): Settling time is the time it takes for the amplitude of the oscillatory term of 

the step response to reach 0.02, or: 

 
n

S

n
T


          14 
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Thus for a tolerance band of ±2%, which will be used for calculating the settling time. This 

yield: 

  
n

ST


4
          15 

Example 3: Find the transient-response specifications of a second-order system for a unit-step 

input, whose transfer function is: 
163

16
2  ss

. 

Solution: By comparing the given transfer function with the general transfer function of the 

second-order system, we have: 4n rad/sec and 375.0 . Thus:  

 22 375.0141  nd
3.7 rad/s 

The rise time is: 

  53.0
7.3

18.114.3cos)( 1













dd

r

rads
T








sec  

The peak time Tp is: 

  85.0
7.3

14.3


d

pT



sec. 

The percentage overshoot (%OS) is evaluated as: 

  100%
21/


 
eOS  

Or  100%
2375.01/375.0  eOS = 28% 

The settling time is: 

  66.2
4375.0

44





n

ST


sec 

Summarizing the results: 

ωn ζ Tr Tp %OS TS 

4 rad/sec 0.375 0.53 sec 0.84 sec 28% 2.66 sec 

 

Example 4: Evaluate the transient-response specifications for a system whose state-space 

representation matrices are: 
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











15100

10
A , 










100

0
B ,  01C  and D = [0] 

Solution: From the matrices; A, B, C and D, the transfer function is: 

  DCAsIBsT  1][)(  

Substituting the given matrices, we have the transfer function as: 

 
10015

100
)(

2 


ss
sT .  

By comparing the given transfer function with the general transfer function of the second-order 

system, we have: 10n rad/sec and 75.0 . Therefore:  

  6.675.01101 22   nd
rad/sec 

The rise time is: 

  36.0
6.6

72.014.3cos)( 1













dd

r

rads
T








sec  

The peak time Tp is: 

  47.0
6.6

14.3


d

pT



sec. 

The percentage overshoot (%OS) is evaluated as: 

  100%
21/


 
eOS  

Or  100%
275.01/75.0  eOS = 2.8% 

The settling time is: 

  53.0
1075.0

44





n

ST


sec 

Summarizing the results: 

ωn ζ Tr Tp %OS TS 

10 rad/sec 0.75 0.36 sec 0.47 sec 2.8% 0.53 sec 
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Example 5: A mechanical system is shown in Figure (6). Find the transient-response 

specifications; Tr, Tp, %OS and Ts. The input is the torque T(t) and the output is angular 

displacement θ2(t). 

 

 

Figure 6 

Solution: The equations of motion can be built-up either by drawing the equivalent mechanical 

network or simply by inspection. Referring to Figure (6), the torque T(t) causes an angular 

displacement θ1(t) to the point of application on inertia of 1 kg-m
2
, which transforms to θ2(t) 

after the parallel combination of spring and damper due to dissipation and storage of energy. 

Thus the equations of motion are: 

  )(
)(

)(
)()(

)( 2
2

1
1

2

1

2

t
dt

td
t

dt

td

dt

td
tT 





  

And  )(
)(

)(2
)(

20 1
1

2
2 t

dt

td
t

dt

td






  

In terms of s-domain: 

  )()1()()1()( 21

2 ssssssT         16 

And  21 )1(2)()1(0   sss        17 
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Eliminating θ1(t) between Eq (16) and (17), we have the transfer function: 

  
12

1

)(

)(
)(

2

2




sssT

s
sG


 

Or  













2

1

2

1

2/1

)(

)(

2

2

ss
sT

s
 

Comparing the transfer function with the general transfer function of the second-order system, 

we have: 707.0n rad/sec and 35.0 . Therefore:  

  66.035.01707.01 22   nd
rad/sec 

The rise time is: 

  92.2
66.0

21.114.3cos)( 1













dd

r

rads
T








sec  

The peak time Tp is: 

  75.4
66.0

14.3


d

pT



sec. 

The percentage overshoot (%OS) is evaluated as: 

  100%
21/


 
eOS  

Or  100%
235.01/35.0  eOS = 31% 

The settling time is: 

  2.16
707.035.0

44





n

ST


sec 

Summarizing the results: 

ωn ζ Tr Tp %OS TS 

0.707 rad/sec 0.35 2.92 sec 4.75 sec 31% 16.2 sec 

 

Example 6: An electrical system has the form of RLC series circuit with R = 1Ω, L = 1H and C = 

½ F. Find the transient-response specifications; Tr, Tp, %OS and Ts. The input is the voltage v(t) 

and the output is the voltage vC(t) across the capacitor. 
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Solution: Applying KVL, the loop equation of the system is: 

   dtti
Cdt

tdi
LtRitv )(

1)(
)()(  

Since the output is the voltage across the capacitor and the current through the capacitor is i(t), 

therefore: 
dt

tdv
Cti C )(

)(  . The loop equation of the system is: 

  )(
)()(

)(
2

2

tv
dt

tdv
RC

dt

tvd
LCtv C

CC   

Putting the values of R, L and C and taking the Laplace transform we have: 

  )(1
2

1

2

1
)( 2 sVsssV C








  

The transfer function is: 
2

2

)(

)(
)(

2 


sssV

sV
sT C  

By comparing the given transfer function with the general transfer function of the second-order 

system, we have: 414.1n rad/sec and 35.0 . Therefore:  

  32.135.01414.11 22   nd
rad/sec 

The rise time is: 

  46.1
32.1

21.114.3cos)( 1













dd

r

rads
T








sec  

The peak time Tp is: 

  38.2
32.1

14.3


d

pT



sec. 

The percentage overshoot (%OS) is evaluated as: 

  100%
21/


 
eOS  

Or  100%
235.01/35.0  eOS = 31% 

The settling time is: 

  1.8
414.135.0

44





n

ST


sec 
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Summarizing the results: 

ωn ζ Tr Tp %OS TS 

1.414 rad/sec 0.35 1.46 sec 2.38 sec 31% 8.1 sec 

 

Effect of Pole Shifting on System Response  

Shifting of poles in the s-plane horizontally (right or left), vertically (up and down) or 

radially provide valuable insight into the system transient response.  

Shifting pole vertically: Altering the imaginary component of the system’s complex pole: 

21   nnd jj  with real component unchanged, the movement of the complex 

pole will be along the vertical line as shown in Figure (7). Both the damping ratio ζ and ωn will 

change and since the product n is constant (real pole unchanged) the corresponding increase in 

frequency will be accompanied by corresponding decrease in damping ratio. This will affect the 

transient-performance parameters; rise time Tr, peak time Tp, %OS and settling time TS. 

 

Figure 7: Effect of Shifting the Pole Vertically 

Shifting pole horizontally: When a pole: 21   nnd jj is shifted 

horizontally (left or right), the real component of the pole n  is altered while the imaginary 

component ωd is unchanged as shown in Figure (8).  

Shifting of pole to the left would change the real component (both ζ and ωn). In this case 

both the damping ratio ζ will and the natural frequency ωn will increase. The transient response 

damps out more rapidly. The rise time will increase slightly, and the transient response thus 

becomes steeper. The peak time will of course be the same so long as the imaginary part remains 

the same, however, the percentage overshoot will be reduce as the real pole is shifted further 

towards left. The settling time will reduce when the pole is shifted towards left, meaning that the 
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transient due to disturbances or otherwise will die out quickly and the system will tends to be 

more stable.  

 

Figure 8: Effect of Pole Shifting Horizontally 

Shifting pole radially: Shifting the pole: 21   nnd jj  along a constant 

radial line (constant damping line) yields the responses as illustrated in Figure (9). In this case 

the percent overshoot remains the same because the damping ratio ζ is constant along this line. 

When the complex pole is shifted up along the radial line, it tends to move towards the left in the 

s-plane. Since ωn is inversely proportional to the rise time, peak time and settling time, therefore 

the rise time, peak time and settling time all decreases as ωn increases. Thus the transient 

response speeds up as the complex pole is shifted upward radially making the system more 

stable.  

 

Figure 9: Effect of Pole Shifting Radially 

On the other hand, when the pole is shifted downwards along the radial line, it tends to 

move to the right in the s-plane, thereby increasing the rise time, peak time and settling time, 

whereas the percent overshoot remains unchanged. The transient response will be slow. Thus the 

pole location and the transient-response specifications of the second-order under-damped 

response are related.  
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The effect of the transient-response specifications on the pole shifting is summarized in 

Table (3). 

Table 3 

Pole Shifting Pole 

Component 

Rise Time Peak 

Time 

Percent 

Overshoot 

Settling 

Time 

Behavior 

Up  Imaginary 

component 

Decrease Decrease Increases Unaffected Envelope 

same 

Left  Real 

component 

Increase Unaffected Decreases Decreases Frequency 

same 

Radial Upward  Both 

components 

Decreases  Decreases Unaffected  Decreases Rapid 

response 

 


