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Lecture # 2 

Transfer Function of Mechanical Systems 

The transfer function of the mechanical systems likewise can be obtained from the 

governing differential equations describing the system. Mechanical systems are classified as: 

1. Translational 

2. Rotational 

Like electrical systems, mechanical systems have driving sources and passive elements. We will 

discuss both in addition to electro-mechanical systems. 

Mechanical Translational System 

Mechanical translational system is characterized by driving source, which is Newtonian force 

and three passive, linear components; mass, spring (stiffness) and damper (dissipation). Mass 

and spring are energy-storage devices, whereas the damper dissipates energy. We will see later 

that the two energy-storage devices are analogous to the two electrical energy-storage devices, 

whereas the damper is analogous to electrical resistance. Mechanical systems obey Newton’s 

law; that the sum of the forces equals zero or that the sum of the applied forces must be equal to 

the sum of the reactive or transmitted forces. This is analogous to the Kirchoff’s laws as 

applicable to electrical circuits, in which case the sum of the applied voltages must be equal to 

the voltage drops in a loop (KVL) and currents summing up at node is zero (KCL). Table (1) 

lists the mechanical translational system elements and their equations. 

Table 1   
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Mass: The mass M is the inertial element and the displacements at both its ends are the same. A 

force applied to a mass produces acceleration ‘a’ of the mass. The reaction force fM is equal to 

the product of mass and acceleration, characterizing the equation of motion and is opposite in 

direction to the applied force that is: 

  )()( tMatf   

Since acceleration is the time rate of change of velocity and velocity is time rate of change of 

displacement, the above equation can be expressed in terms of the velocity v(t) and displacement 

x(t), and can be written as: 
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Damper: The damping D also represents viscous fluid friction characterizes the damper, element 

that absorbs and dissipates energy. Damping may be added to a system by use of a dashpot. This 

element has a constructional feature of a housing filled with an incompressible fluid. The basic 

operation of a dashpot is that the applied force acting on the piston causes the piston to do work 

against a fluid, thus resulting in its displacement. Friction in mechanical systems is characterized 

by an equivalent damping effect, since it dissipates energy. The damping force required to move 

the piston inside the housing is proportional to the velocity. The reaction damping force fD is 

approximated by the product of damping D and the relative velocity of the two ends of the 

dashpot. The assumption that the viscous friction is linear simplifies the expression, which is: 
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Spring: The component spring obeys Hooke’s law; thus if stretched, the spring tries to contract; 

if compressed, it tries to expand to its normal length. The stiffness, K provides the necessary 

restoring force. The displacement at the two ends of the spring is different, unless one of its ends 

is fixed at some reference point, where its displacement is then zero. The reaction force on each 

end of the spring is the same and is equal to the product of the stiffness K and the amount of 

deformation (change in the length, governed by the end displacement) of the spring. The force 

equation, in accordance with Hooke’s law, is then: 

  )()( tKxtf           3 

Steps for obtaining the Transfer Function 

1. The equivalent mechanical network is drawn, which comprise of a straight horizontal line 

as reference surface and nodes (displacements) are placed suitably above this reference 

line. 

2. Differential equations are formed for each displacement node using Newton’s Law in 

conjunction with KCL. The force equation is written for each node or displacement by 

equating the sum of the applied forces with the sum of transmitted forces at each node. 

The equations are similar to the nodal equations in an electric circuit, with force 

analogous to current, displacement analogous to voltage, and the mechanical elements 

with their appropriate operators analogous to admittance or impedances.  
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3. The differential equations are then expressed in s-domain by applying laws of Laplace 

Transform. 

4. Output in the form of displacement is defined and the transfer function is finally obtained 

by manipulation and elimination of all other displacements except the defined output 

displacement. The ratio of output to input (driving force) in s-domain is the transfer 

function. 

Example 1: Consider a linear mechanical translational system shown in Figure (1). Obtain its 

governing differential equation and the transfer function. 

 

 (a)                           (b) 

Figure 1: (a) Mechanical System (b) Equivalent Mechanical Network  

Solution: From the given mechanical system of Figure (1a), a mechanical network is formed as 

shown in Figure (1b) in which all the elements are connected as mechanical impedances. The 

force is applied to the mass M causing a displacement x(t) acts on the spring and the dashpot so 

that there is only a single displacement. A node representing the displacement x(t) is laid as a line 

over a reference line of zero displacement. One end of the mass is always connected to the 

reference, while the other is connected to the node where the mass suffers a displacement. Mass 

always rests on the reference because it constitutes the mass of the system as a whole. All the 

other elements of the mechanical system are connected in the network in accordance with the 

displacements at their ends. For example, in this case, one end of both the spring and the dashpot 

has the displacement of the mass and their other ends are connected to the reference. The force is 

applied to the mass M causing a displacement x(t) acts on the spring and the dashpot. Thus 

according to Newton’s law in conjunction with KCL: 

  )()()()( tftftftf KDM   

The differential equation for node x(t) is: 
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Taking the Laplace transform of both sides: 

  )()()()( 2 sKXssDXsMXssF   

The transfer function is: 
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Example 2: Obtain the differential equation and transfer function: 
)(

)(2

sF

sX
 of the mechanical 

system shown in Figure (2a).  

 

 

(a) 

 

 (b) 

Figure 2: Mechanical System of Example (2)  

Solution: The system can be viewed as a mass M1 pushed in a compartment or housing of mass 

M2 against a fluid, offering resistance. Or it can be a box in which a rigid object is being pushed 

against a “cushion”, offering resistance. The resistance being offered by the fluid or “cushion” 

provides the necessary restoring force. While pushing mass M2, and due to the resistance being 

offered by fluid or “cushion” to the mass M1, the compartment or the housing or the box so 
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suffers a displacement on a friction surface, which can be a table or floor. The mass M1 is also 

moved along friction surfaces which are the walls of the compartment or box. In forming the 

mechanical network of the system, a reference line of zero displacement is drawn and since there 

are two displacements, so that two nodes are placed above the reference line. One end of masses 

M1 and M2 are connected to the reference with their other ends connected to the respective nodes 

where they suffer displacement. The other components are connected between nodes, which 

corresponds to the ends where they suffer displacements in the actual system. The mechanical 

network obtained as such is shown in Figure (2b). The differential equations are formed for each 

displacement node [referring to Figure (2b)]. For node x1(t), we have: 
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For node x2(t), we have: 
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Expressing Eq (4) and Eq (5) in s-domain, we have: 
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From Eq (7), the expression for X1(s) in terms of X2(s) is: 
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Substituting in Eq (6) to replace of X1(s), simplifying and expressing it as a transfer function: 
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Mechanical Rotational System  

The driving sources of the rotational mechanical systems and translational mechanical 

system have the same effect that is to cause motion, except that torque replaces force. The 

components undergo rotation instead of translation and so angular displacement replaces 
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translational displacement and translational velocity is replaced by angular velocity. The 

mechanical components for rotational systems have the same characteristics as those for 

translational systems, except that the mass is rotating inertial mass accounting for moment of 

inertia and Hooke’s spring is torsional spring, which refers to the ability to resist the twisting of, 

for example a shaft while rotating. The viscous damping accounts for friction and energy 

dissipation. The parameters K, D, and J are called spring constant, coefficient of viscous friction, 

and moment of inertia, respectively.  

Likewise, writing the differential equations is simplified by first drawing the mechanical 

network for the system. Then the torque equation is written for each node by equating the sum of 

the torques at each node to zero. Table (2) shows the components along with the relationships 

between torque and angular velocity, as well as angular displacement.  

Table 2 

 

 

Inertia: The torque applied to rotate an object with having moment of inertia J will produce 

angular acceleration α that is: 

 JtT )(  

In terms of angular velocity ω(t) and angular displacement θ(t), the relation between torque and 

moment of inertia can be expressed as: 

  
2
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Damper: Damping occur whenever a body moves through a fluid, which may be a liquid or a 

gas such as air. To produce motion of the body, a torque must be applied to overcome the 
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reaction damping torque that depends on the viscous friction coefficient D. The angular 

displacement of the two ends of the dashpot is different because some of the energy is dissipated. 

Damper in mechanical rotational systems is also provided where there is friction, such as that at 

points where a shaft is passed through bearings or power loss between gears or where two 

rotating wheels, representing moment of inertia are sliding over each other during transmission 

of motion, for example in automobile clutch system. In case one end is fixed to the reference or 

the point of zero angular displacement, then the torque acting on the damper will produce an 

angular displacement θ(t) at the end where the torque is applied, so that: 

  
dt

td
DtDtT
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
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Spring: This component represents the torsion created in a rotating body such as shaft. In case 

when one end of the spring is connected to the reference with zero angular displacement, then 

the only displacement θ(t) will take place at the end where torque is applied, so that: 

  )()( tKtTK           10 

Example 3: Obtain the differential equations and transfer function of the rotational mechanical 

system shown in Figure (4). 

Solution: First of all a mechanical network of the given system is formed. A reference node of 

zero angular displacement is laid down as a base line. As seen in Figure (3) there are two angular 

displacements possible, so that two nodes are laid above the reference line (reference node). The 

components are then connected between nodes and the reference according to the angular 

displacements suffered on the application of torque as according to the system diagram given in 

Figure (3). The mechanical network is shown in Figure (4). 

 

 

 

Figure 3: Mechanical System of Example (3) 

The differential equations are formed for each displacement node [referring to Figure (4)]. For 

node representing the angular displacement θ1(t), we have: 
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Figure 4: Mechanical Network 

For node representing the angular displacement θ2(t), we have: 
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Expressing Eq (11) and Eq (12) in s-domain, we have: 
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From Eq (14), the expression for θ1(s) in terms of θ2(s) is obtained as: 
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Substituting in Eq (13) and expressing it as a transfer function as: 
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Transfer Function of Electromechanical System 

Electromechanical systems consist of electrical and mechanical subsystems that find 

extensive applications in modern control systems, for example robots. Majority of 

electromechanical systems incorporate a servomotor, which is an electromechanical component 

that yields a displacement output for a voltage input, that is, a mechanical output generated by an 

electrical input. The servomotor simply refers to a motor that is used for the function of control. 

Figure (5) is a simple outlay of a servomotor comprising of a magnetic field that constitutes the 

stator (stationary component). A rotating member, called the armature comprise of winding fixed 

in slots. The working is same as any electric motor, which you would have studied in electrical 

machines course. 

Thus the machine can be modelled for its rotating member (armature) only since it carries 

mechanical load. The armature is composed of the current-carrying conductors that have total 

resistance Ra and inductance La, and are considered as series combination. The rotating armature 
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conductors under the influence of magnetic field produces a back emf vb(t), which is proportional 

to the angular speed ω(t). Thus: 

  
dt

td
tKtv bb

)(
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
         16  

Kb is a constant of proportionality called the back emf constant and θ(t) is the angular 

displacement at the motor shaft. Taking the Laplace transform of Eq (16), we obtain: 

  )()( ssKsV bb          17 

 

Figure 5: Electric Servo-Motor 

The relationship between the armature current, ia(t), the applied armature voltage, ea(t), and the 

back emf, vb(t), is formed by writing a loop equation based on KVL around the Laplace 

transformed armature circuit having resistance Ra and inductance La that is:. 

  )())(()( sVsLRsIsE baaa   

Or  )())(()( ssKsLRsIsE baaa        18 

When a current flow in the armature conductors, they are acted upon by a torque. The torque 

developed by the motor shaft or the shaft torque TS(t) is proportional to the armature current that 

is: )()( titT aS  ; thus: 

 )()( tiKtT aTS   

Where TS(t) is the torque developed at the motor shaft and KT is a constant of proportionality, 

called the motor torque constant, which depends on the motor and magnetic field characteristics. 

In a consistent set of units, the value of KT is equal to the value of Kb. Taking the Laplace 

transform of the above expression, we have: 

  )()( sIKsT aTS   
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Substituting Ia(s) from Eq (19) in Eq (18), we have: 
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Now we must find TS(s) in terms of θ(s) if we are to separate the input and output variables and 

obtain the transfer function of the form: 
)(

)(

sE

s
. Since the motor shaft has a mechanical load, 

which can be in the form of pulley mounted on the motor shaft, which is usually supported on 

bearing will have a combined effect of inertia and viscous damping that can be represented as 

shown in Figure (6). So that the mechanical system is modeled as: 

  )()()( 2 ssDsJssTS          21 

 

 

Figure 6: Representation of Mechanical Load 

Substituting TS(s) from Eq (21) in Eq (20), we have: 
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Analogous Systems 

Analogy between electrical and mechanical system and their components parameters and 

quantities can be drawn by comparing the governing equation of each element in addition to the 

loop or nodal equations of an electrical system with the equation of motion of a mechanical 

system. Consider an RLC series circuit as shown in Figure (7a). The source voltage is v(t) which 

drives a current i(t) that flows in a single loop forming series combination of R, L and C. 

Applying KVL, the loop equation is: 

  dtti
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Ltv )(

1
)(

)(
)(       24 

 

       (a)             (b)   

Figure 7: Series RLC Circuit and its Mechanical Analog 

Since, electric current is the rate of flow of charges that is: 
dt

tdq
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)(  , Eq (24) can then be 

expressed as: 
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Now let us consider that the three mechanical components M, D and K are connected in a 

mechanical system in such a way so as to form a mechanical network shown in Figure (7b). By 

applying Newton’s law, the equation of motion is: 
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Since: 
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Comparing Eq (24) and Eq (27), an analogy between electrical system and mechanical system 

can be drawn. The driving mechanical quantity (force) is analogous to driving electrical quantity 

(voltage) and the mechanical quantity, velocity is analogous to the electrical quantity, current. 

On the other hand, comparing Eq (25) and Eq (26), it can be noted that the driving mechanical 

quantity (force) is analogous to driving electrical quantity (voltage) and the mechanical quantity, 

displacement is analogous to the electrical charge.   

Thus it can be seen that in both cases the electrical element with L (inductance) is analogous to 

mechanical element M (mass). In mechanical systems mass is the measure of inertia, so that 

inductance can be regarded as the measure of magnetic inertia in electrical systems. Now 

consider a simple RLC parallel circuit as shown in Figure (8). 

 

 

Figure 8: Simple RLC Parallel Circuit 

Assuming that the node voltage is v(t), the nodal equation is: 
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Another analogy can be drawn by comparing the force-velocity Eq (27) to the current-voltage Eq 

(28). Here the analogy is between force and current and between velocity and voltage. In this 

case the spring is analogous to the inductor, the viscous damper is analogous to the resistor, and 

the mass is analogous to the capacitor. Table (3) summarizes the analogies between mechanical 

system and series and parallel electric circuit.  

Table 3    

Property Mechanical Electrical Series Analogy Parallel Analogy 

Inertia Mass (M) Inductance (L) M (Henry) 1/K  (Henry) 

Dissipation Viscous Damper (D) Resistance (R) D (Ohm) 1/D (Ohm) 

(Conductance) 

Stiffness Spring (1/K) Capacitance (C) 1/K (Farad) M (Farad) 

Dependent quantity Velocity  Loop current Node Voltage 

Independent quantity Applied Force  Voltage source Current source 

 


