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Lecture # 14 

Frequency Response 

My dear students, so far as the system behavior is concerned, we have understood the 

transient and steady-state response and have known their parameters and quantities that are 

essential in the t-domain analysis using some standard inputs applied, namely; step, ramp and 

parabolic. The step function input is generally preferred by engineers in time-domain analysis in 

order to evaluate the performance based on time specifications of control systems. The steady-

state performance is evaluated in terms of steady-state error to a specific standard input 

mentioned above depending on whether the system is Type-0, 1 or 2.  

On the contrary in the analysis and design of communication systems the frequency 

response is more important, since most of the standard signals are sinusoids with magnitude, 

frequency and phase. Frequency-response techniques provide a comprehensive study of a system 

based on frequency response Bode plots.  

The t-domain analysis is facilitated by Laplace transform that converts a t-domain 

function into frequency domain (s-domain). Solution of t-domain differential equations becomes 

lot more easy using Laplace transform technique. The Fourier transform (FT) is another powerful 

method for representing signals and systems in the frequency domain. The FT of a function f(t) is 

designated by F(jω) and is given by Fourier integral as: 
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According to Fourier an aperiodic signal can be thought as a periodic signal with a period, 

sufficiently large, extending from – to +. Fourier transform is usually considered as special 

type of bilateral Laplace transform, with the real part of the complex frequency set equal to zero. 

FT has wider applications as compared to Laplace transform in communication and signal 

processing world. Likewise, the Inverse Fourier Transform (IFT) is used to convert from jω to t-

domain and is given by integral: 
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The closed-loop transfer function T(s) of a system is then a function of the complex variable jω 

and is represented as T(jω) that has a magnitude and phase angle. The basic disadvantage of the 

frequency-response method for analysis and design is the indirect link between the frequency-

domain and time-domain.  

The Basis Concept 

Frequency response means the response of a system to a sinusoidal input. A sinusoidal 

quantity has three ingredients; magnitude, phase-angle and frequency. It must be remembered 

that in the steady-state, sinusoidal inputs to a linear system produces sinusoidal response of the 

same frequency in the output, so that there is no change in the frequency whereas both the 
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magnitude and phase-angle are subject to changes. The changes and differences in magnitude 

and phase at the input and output are, however, functions of frequency. This is illustrated in 

Figure (1). 

 

Figure 1  

Sinusoids are dealt under the subject of complex quantities. The value of the complex quantity is 

the magnitude whereas its angle α represents the phase. A sinusoid of the form: )cos(  tA

can be represented as A  (polar) or jAe (exponential). Since a system causes both the 

amplitude and phase angle of the input to be changed, the system itself can be represented by a 

complex system function, defined such that the product of the input phasor and the system 

function yields the phasor representation of the output. Consider a system shown in Figure (2), 

the input is sinusoidal, the steady-state output response of the system is also sinusoidal and 

having the same frequency as the input.  

 

 

Figure 2  

Thus:  )()().()()()( 00  iiAAA   

Or  )]()([)().()()( 00  iiAAA   

Where the magnitude frequency response is: 
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And the phase frequency response is: 
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In other words, the magnitude-frequency response is defined as the ratio of the output magnitude 

of sinusoid to the input magnitude. The phase-frequency response is defined as the difference in 

phase angle between the output and the input sinusoids. Both responses are a function of 

frequency and apply only to the steady-state sinusoidal response of the system. Most systems 

giving frequency response are termed as filters.  

Example 1: Obtain the expression for magnitude and phase belonging to a second-order unity 

feedback system, whose forward function is given as: 
)4(
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Solution: The given forward transfer function is: 
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The magnitude |T(jω)| = M  is: 
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The phase of the function can be obtained from the argument of G(jω) expression as: 
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We can find the magnitude and phase-angle of the given system at any frequency, simply by 

substituting the value of desired frequency in Eq (5) and (6). Thus at ω = 1 rad/s, we have: 

Magnitude: 015.1
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In order to check out which type of filter the system is, we can substitute extreme values of 

frequency; 0 and ∞. Therefore: 
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At ω = 0: 1
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At ω = ∞: 0
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The phase is: 

At ω = 0:   00tan 1    

At ω = ∞:   90tan 1    

Apparently the filter behaves like a low-pass, since the magnitude is maximum at low frequency 

and attenuated to zero at high frequency. The system behavior therefore is that of a second-order 

low-pass filter.  

Frequency Response Specifications 

Direct analogy between the frequency response and the transient-response quantities is not very 

well defined. The t-domain transient response specifications or time specifications describes the 

constraints; the rise time, peak time, overshoot and settling time that are function of two vital 

parameters; ζ and ωn. These specifications belonging to the t-domain are not directly used in the 

frequency domain. For frequency response analysis and design of the system alternate 

specifications are used. The following frequency-domain specifications: 

1. Gain margin Kg: The gain margin is the measure of relative stability of a system that is 

the factor by which the gain must be altered in order to cause instability. Kg in most cases 

should be between 5 and 10 and is a function of phase cross-over frequency ωϕ. 

2. Phase margin PM: The phase margin is the additional phase-lag at the gain crossover 

frequency required in order to cause instability. PM in most cases should be between 40° 

and 50° and is function of gain cross-over frequency ωg. 

3. Resonance frequency ωr: Resonance frequency is that frequency at which the magnitude 

of the system transfer function is maximum. 

4. Resonant peak Mp: The magnitude of the closed-loop transfer function at resonance 

frequency is called resonant peak. 

5. Bandwidth ωb: Bandwidth refers to the frequency range at which the magnitude is 0.707 

as that of magnitude at resonance.   

 

In frequency-response approach, the transient-response performance is specified indirectly. That 

is, gain margin, phase margin and resonant peak magnitude provides a rough estimate of the 

damping in a system. The gain crossover frequency, resonant frequency, bandwidth give a rough 

estimate of the speed of transient response. In order to understand the evaluation of the system 

response parameters for frequency response analysis, we consider an example. 

Example 2: Evaluate the frequency response specifications of a unity feedback control system as 

shown in Figure (3).  
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Figure 3 

Solution: The forward function of the transfer function of the plant is:
)4)(2(
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
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sss
sG . 

The corresponding closed-loop transfer function is then: 
1086

10
)(

23 


sss
sT . We will 

proceed in sequence and follow the steps. 

A. Gain Margin: The steps are: 

1. Take the Fourier transform of both G(s) and T(s) by replacing s with jω and obtain their 

magnitudes.  

2. In the T(s) expression, consider the characteristic polynomial and replace s with jω and 

equate it to zero to form characteristic equation. Equating separately the imaginary part of 

the characteristic equation to zero, obtain the frequency ω = ωϕ (phase crossover 

frequency). 

3. Obtain |G(jωϕ)| for substituting ω = ωϕ in |G(jω)|. 

4. The reciprocal of |G(jωϕ)| is Kg. 

Step 1:  
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Step 2: The characteristic polynomial of the corresponding closed-loop transfer function is:

1086 23  sss . The corresponding characteristic equation is: 

  01086 23  sss  

Let us substitute: s = jω for ω = ωϕ in the characteristic equation: 

  010)(8)(6)( 23    jjj  

Separately equating the imaginary part to zero that is: 

  08
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Or  83.2  rad/sec 

Step 3: Substituting the value  = 2.83 rad/sec in the expression for the |G(jω)|, at ω =   we 

have: 

58.0
])83.2()83.2(8[)2(36

10
|)(|
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Step 4: The gain margin is therefore: 

  72.1
58.0

1
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Kg  

B. Phase Margin: The followings are the steps: 

1. Obtain the Fourier transform G(jω) and get its magnitude: |G(jω)| and angle )( jG . 

2. Equate: |G(jω)| = 1, solve for ω, which gives ωg (gain crossover frequency). 

3. Evaluate )( jG for ω = ωg.  

4. The PM = 180
0
 + )( jG . 

Step 1:  
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Step 2: Applying the condition for obtaining the gain crossover frequency: ω = ωg in the 

magnitude Mg of the open-loop function of the given system that is: 

  1
)8(36
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|)(|

234






jG  

Or  100)8(36 234    

Simplifying: 01006420 246    

Supposing that ω
2
 = x, we have: 

  01006420 23  xxx  

Among the three roots, the reasonable value is: 

  136.1x  or 06.1 g  rad/sec 
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Step 3: Using this value of frequency; ωg = 1.06 rad/sec, the angle contribution of the plant 

transfer function G(s) is determined as follows: 

  
)406.1()206.1(06.1

0
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


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jjj
jG g  

Or  
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Thus:  
084.132)(  gjG   

Thus the phase margin is: )(1800

gjGPM   

  000 15.4784.132180 PM  

The phase margin and the damping ratio are directly related. It has been observed that for a 

second-order system, phase margin PM and the damping ratio ζ are related approximately by a 

relationship: 
100

PM
 . Thus a phase margin of 60

o
 will corresponds to a damping ratio of 0.6.  

C. Resonance Frequency ωr: The following steps helps to find the resonance frequency 

1. Obtain the Fourier transform T(jω) of the closed-loop transfer function T(s) and get its 

magnitude |T(jω)|. 

2. Take the derivative: |)(| 


jT
d

d
 and equate it to zero. The frequency obtained is the 

resonance frequency: ω = ωr. 

 

Step 1: Given: 
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transfer function is:
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Step 2: The derivative of |T(jω)| with equating it to zero is as follows: 
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  0])8()610[(])8()610[(5|)(| 23222/32322   
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  0])8()610[( 2322  
d

d
 

  0)38)(8(2)12)(610(2 232    

  0)38)(8(2)12)(610(2 232    

  038246472120 5333    

  056403 24    

Considering ω
2
 = x, the above expression can be re-written as: 

  056403 2  xx  

Which gives:  x = 1.277 as a reasonable root. Thus: 

  ωr = 1.13 rad/sec 

D. Resonant Peak; This is evaluated through the following steps: 

 

1. Given the open-loop transfer function G(s), obtain the Fourier transform of the closed-

loop transfer function T(jω) and get its magnitude: |T(jω)|. 

2. Obtain the magnitude |T(jωr)| = Mp by substituting ω = ωr in |T(jω)|. 

 

Step 1: Given that: 
)4)(2(

10
)(




sss
sG , the corresponding closed-loop transfer function is:  

1086
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23 

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sT . The Fourier transform of T(s) is:
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jT . The 

magnitude of the Fourier transform of the closed-loop transfer function is: 
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
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Step 2: Substitute ω = ωr = 1.13 rad/sec in the expression for |T(jω)| above 

   
2322 ])13.1()13.1(8[])13.1(610[
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  25.1pM  
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A large value is an indication of the closed-loop poles having a small damping ratio, which 

results in larger overshoot. Thus we can say that Mp is somewhat an inverse function of damping 

coefficient. 

E. Bandwidth: In order to find the bandwidth, the following steps are essential. 

 

1. Given the open-loop transfer function G(s), obtain the closed-loop transfer function 

T(s). Get the magnitude of the Fourier transform of T(s) as |T(jω)|. 

2. Equate |T(jω)| = 
2

1
 and solve for ω, which is ωb. 

Step 1: Given that: 
)4)(2(

10
)(




sss
sG , the corresponding closed-loop transfer function is:  

1086

10
)(

23 


sss
sT . The Fourier transform of T(s) is: 

1086

10
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23 





jj
jT . 

The magnitude of the Fourier transform of the closed-loop transfer function is: 

  
2322 )8()610(

10
|)(|





jT  

Step 2: Equating |T(jω)| to 
2

1
or 0.707 according to the definition:  

  
2322 )8()610(

10

2

1

 
  

Squaring both sides of the above expression and cross-multiplying, we have: 

  200)8()610( 2322    

Or  200166412036100 46224    

Or  01005620 246    

Letting: ω
2
 = x, the above expression can be re-written as: 

  01005620 23  xxx  

The above third-order equation have three roots, the reasonable and positive is: x = 3.566. 

Thus:  ωb
2
 = 3.566 

Or  ωb = 1.88 rad/sec 

The bandwidth decreases with increasing damping coefficient ζ. Therefore the rise-time and 

bandwidth are inverse function of each other.  
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Dear students please check and correct the numerical calculations as you go through the lecture 

handout. As an exercise to keep you busy, consider a zero: (s + 2) included in the system open-

loop transfer function. The transfer function modifies to: 
)4)(2(

)2(10
)(






sss

s
sG . This zero (s + 2) 

behaves like a PD controller, if you compare it with the general transfer function of the PD 

controller: sKD + K. On comparison, it can be noted that controller gain: KD = 1 and the 

proportional added gain is K = 2. Remember that a PD controller or lead compensator is used to 

improve the transient response of a system. You may get some interesting results. Good luck. 

 

           

 


