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Lecture # 12 

Improving Transient Response 

We have learned that transient performance of a system can be improved by changing the 

plant’s parameters; ζ and ωn, since the percent overshoot depends on ζ, whereas the rise time and 

settling time depends on both ζ and ωn. Incorporating such changes can shift or reshape the root 

locus to pass through the desired closed-loop pole. But as discussed in the previous lecture, 

shifting the root locus to the left will improve the transient performance but will deteriorate the 

steady-state performance. On the other hand shifting the root locus to the right is expected to 

improve the steady-state performance, however, at the expense of transient performance. Thus 

improving the transient-response deteriorates the steady-state performance to some extent. A 

compromise between the improvement of transient and steady-state performance is therefore 

essential. We know that incorporating changes in the system without affecting the plant’s 

transfer function for improvement of transient and steady-state response can be accomplished by 

subsystems known as compensators or controllers. The compensator usually adds poles and 

zeros to the transfer function, therefore the transfer function of the overall system is modified for 

gaining optimum performance so that the compensated system has a root locus that goes through 

the desired pole location for some value of gain. This modification of a system to reshape its root 

locus in order to improve system performance is called compensation or stabilization.  

A compensator is commonly placed in series with the plant is referred to as series or 

cascade compensation. A compensator can also be placed in the feedback path of the system will 

modify the shape of the loci with inserting additional poles and zeros and as such the method is 

referred to as feedback or parallel compensation. The good thing about cascade compensation is 

that additional poles and zeros can be added at the input side, before the plant so that it does not 

interfere with the power output of the plant. Compensators and controllers for electrical systems 

can be fabricated with passive components (RL, RC or RLC) or an active network incorporating 

operational amplifiers with passive components.  

Lead Compensator Design 

Lead compensation approximates the function of Proportional Derivative (PD) control 

and acts mainly to speed up a response by lowering rise time and to decrease the overshoot. The 

general transfer function of the lead compensator is given as: 
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Let us say that we desire to keep the percentage overshoot at 10% and try to reduce the 

settling time to get speedy transient response, so that the system rejects disturbances quickly as 

possible. In this case we need to reduce settling time.  

For 10% overshoot the value of ζ can be obtained using: 100%
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 eOS . If we put OS = 0.1 (10%) in this expression the value of ζ = 0.6. For designing a 

lead compensator, we follow certain steps in sequence. Let us re-consider the system in Example 

1 of the previous lecture (11) in which case the system open-loop transfer function was: 
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sHsKG , for which the root locus has already been drawn (please refer 

to notes of lecture 11). 

Step 1: The root locus has to be drawn, which has already been drawn in the previous lecture so 

we don’t redraw it here.  

Step 2: Draw the damping line with angle ϕ, subtended with respect to horizontal axis and with 

origin as center. This angle can be calculated using: 

  01010 127)6.0(cos180)(cos180     

Step 3: The point of intersection between the root locus and the damping line is the present 

operating point P1 of the system. Remember any point on the damping line will have same 10% 

overshoot with value of ζ = 0.6. The coordinated of P1 from the root locus plot are approximated 

to: 

  P1: 
217.21.2   nn jj  

From which: n1.2 . The settling time is then: 9.1
1.2
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seconds. Let us say we 

desire to have it as 1.33 seconds, with overshoot maintained at 10%. This gives us: 3n . 

With ζ = 0.6, ωn comes out to be about 5 rad/sec. Thus: 8.31 2 n
approximately. Thus 

the new operating point to achieve settling time of 1.33 seconds while maintaining 10% 

overshoot is P2. Thus: 

  P2: 
2//

18.33   nn jj  

Step 4: Once the parameters are known, we proceed to design the lead compensator. Draw a 

horizontal line at P2 as shown in root locus diagram. The angle OP2Q is 127° according to 

geometry. Bisect this angle, so that with respect to the bisector, the angle is 127/2 = 63.5° on 

either side. 

Step 5: Let us calculate the angle deviation from 180° at P2, since it does not lie on the root 

locus. This angle is supposed as θ, and is obtained from considering the open loop transfer 

function of the plant with s replaced by 8.33 j and the using angle criteria. Thus: 
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Not caring about the negative sign, simply subtract 180° from it that is: 

  7.511807.231   

Now draw lines at an angle of 51.7/2 = 26° on either side of the bisector. 
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Step 6: Extend the lines so that it cuts the real axis as shown. The first cutting point from the 

origin is where the compensator zero is and in this case it is at –2.8. The second line cutting point 

is where the compensator pole is, which in this case is: –7.2. Thus at this stage the transfer 

function of compensator is: 
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Step 7: In this step we calculate the gain K of the open loop transfer function of plant by 

substituting the point P1: 7.21.2 js  in the transfer function: 
)6)(4)(2(  sss

K
and using 

the magnitude criterion, we can find K that is: 1
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. Once s = –2.1 + 

j2.7 is substituted in each term, then the magnitude of each term is taken that is: 
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Or  23.4274.43.37.2 K  

Step 8: Gain of overall compensated system with transfer function: 
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The gain is evaluated by putting P2: s = –3 + j3.8 in the above expression and using magnitude 

criterion. The gain is then: K1 = 115.34 

Step 9: The gain of the compensator is then: 

  KCK = K1   

Or  73.2
23.42

34.115
CK  

Thus the transfer function of the compensator is: 
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of the compensated system is:
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overshoot with settling time of transients 1.33 seconds. If you draw the root locus it will now 

pass through point P2. 

 

 

 

Figure (1) Root locus diagram with illustrations  

It can be noted that when compensator is included the overall system becomes a 4
th

 order system. 

The original system is 3
rd

 order. In order to maintain the order, we can select compensator zero 

such that it cancels the system finite pole which is nearest to the origin. Thus if we choose 

compensator zero at –2, then the numerator will have a term (s + 2), which cancels with the pole 

in the term (s + 2) in the denominator. The system order in this case is maintained. Try this 

yourself as a practice problem by following the steps. Everything else remaining unchanged, 

from step 1 to 5. We start at step 6 and proceed as follows: 

Step 6: As illustrated in Figure (2), join P2 to a point –2 on the real axis. This becomes the zero 

of the compensator. Thus the zero of the compensator is at s = –2. Now draw a line subtending 

an angle of 51.7° with respect to the line connecting P2 and the zero on the real axis that is –2. 
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Extend this line to cut the real axis at a point which then becomes the compensator’s pole. In the 

present problem, this line cuts the real axis at point –6.8. Thus the compensator pole is at s = –

6.8. The transfer function of the compensator up to this stage is: 
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Figure 2: Illustration of alternative technique 

Step 7: Same as step 7 already described. 

Step 8: Once the compensator pole and zero are selected, the next task is to find out the gain Kc 

of the compensator and get the complete expression. Before that we have to compute the gain of 

the overall compensated system using the desired dominant closed-loop pole: s = –3 + j3.8. The 

overall compensated system will have a transfer function: 
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The gain is evaluated by putting P2: s = –3 + j3.8 in the above expression and using magnitude 

criterion that is: 
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Obtaining the magnitude of each of the bracketed term of the denominator and cross multiplying, 

we have:   

  14.10237.584.493.31 K  

The gain is then: K1 = 102.14 

Step 9: The gain of the compensator is then: KCK = K1  Or 42.2
23.42

14.102
CK  

Thus the transfer function of the compensator is: 
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of the compensated system is:
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with settling time of transients 1.33 seconds. If you draw the root locus it will now pass through 

point P2. This technique maintains the system order, however, at the expense of slight reduction 

in gain, but that does not matter. The first method is preferred for accuracy.  

Important Note: 

Consider the root locus of the plant as quoted in example 1 in one of the previous lectures with 

open-loop transfer function: 
)6)(4)(2(

)()(



sss

K
sHsKG . For simplicity only the upper 

portion of the root locus is re-drawn as in Figure (3) on the next page. 

1. It must be remembered that root locus starts at the open-loop poles and ends at open-loop 

zeros but these are not included in the root locus. All points on the root locus are the 

closed-loop poles of the system. 

2. The gain at open-loop poles is K = 0 and that at open-loop zero is K = ∞. Thus as we 

move away from the open-loop pole, the gain has a finite value other than zero and it 

increases as we go further from the open-loop pole. 

3. The root locus possesses conjugate symmetry that is w.r.t the real axis, the root loci 

above and below is the mirror images. 
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Figure 3: Root locus of example 1 (only upper portion) 

4. Consider the real axis loci between –2 and –4. The system gain increases above zero and 

as we move out of the open-loop poles, we enter the territory of closed-loop poles. On the 

real axis the closed loop poles of the system are real and unequal and the system is over-

damped with ζ > 1. Thus at points A and B (just out of open-loop poles) the system is 

highly over-damped, this nature gradually fades out as we move nearer to the breakaway 

point at C. At C the system roots are real and equal and behaves as critical damping 

system with ζ = 1, with the real axis gain maximum.  

5. At the breakaway point the system departs from the real axis and move into the complex 

region with all the closed loop poles occurring in the form of complex conjugate pairs. 

Here the general expression for the step response of the system will have the form: 

 



Lecture 12 [DR. MUHAMMAD NAEEM ARBAB] 

 

8 Control System Engineering 

 

  )cos()(    tAetc d
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Where: A is the amplitude and ϕ is the phase angle. Thus the system possesses a damped-

oscillatory nature and the system becomes under-damped with 0 < ζ < 1. The value of 

zeta is near to 1 (but less than 1) near the breakaway point in the complex region and 

gradually decreases and approaches zero as the root locus moves from C towards D. The 

step response of the system thus becomes more oscillatory as it approaches D. 

6. At point D the damping coefficient ζ = 0 and the system becomes pure oscillatory with no 

damping. At point D on the jω-axis the system characteristic roots (closed-loop poles) are 

purely imaginary with no real part and system possesses un-damped nature with sustain 

oscillations. The above expression for zeta equals 0 is: 

 

)cos()(   tAtc d  

7. When the root locus crosses D it then enters into the unstable region (right-half plane). 

The system oscillations keep on increasing with zeta less than 0 (ζ < 0) or negative, so 

that in the general expression given above, the exponential term becomes a rising 

quantity that is for negative zeta: 
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Note: Please check the calculations. 

  

 


