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Lecture # 10 

Simple Gain Controller 

My dear students the previous lecture was based on plotting the root locus, which I mentioned 

that it is very important in the analysis and design of control systems. In this lecture we will 

study the use of root locus plot to design a simple gain controller for maintained the percentage 

overshoot at a fixed value while the settling time is altered in order to make the system (plant) 

fast acting in rejecting disturbances therefore improving its transient performance. Remember 

that the settling time is less when the operating point (desired closed-loop pole on the root locus 

shifts to the left along with the entire root locus. The operating point must lie on the root locus.  

In general control systems are represented by a simplified unity feedback configuration with the 

open-loop transfer function: KG(s)H(s) [H(s) = 1 for unity feedback systems]. However, we can 

separate the K and G(s) and show them as separate blocks as shown in Figure (1). In Figure (1) K 

represents a simple gain controller in cascade with the plant represented by G(s).  

 

Figure 1: General unity feedback configuration 

The controller function is very important as it form an actuating signal for the plant to maintain 

stability and operate at a desired closed-loop pole. However, in the case of simple gain controller 

the parameter of interest is percentage overshoot rather than settling time. In many systems it is 

also desired to limit the overshoot rather than settling time so a simple gain controller will serve 

the purpose. Please remember that there are two important parameters of a system; natural 

frequency ωn and damping coefficient ζ (zeta). The settling time depends on both while the 

overshoot depends only on ζ. For this purpose the damping line on the root locus plot plays an 

important role. 

Steps in Designing of Simple Gain Controller using Root Locus 

Root locus is a very powerful technique, used not only for stability analysis but also widely used 

for designing various controllers for control systems. The most important is the simple gain 

controller. The followings are important for designing simple gain controller. 

Location of the dominant complex pole: 

1. Given the open-loop transfer function, obtain the closed-loop transfer function. 

2. Solve the characteristic equation: )()(1 sHsKG = 0 for a given design value of K. 

3. In case the design value of K is not given, a suitable design value of K can be obtained 

from the range of K values for stability from Routh table. Preferably, that value of K at 
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which the gain margin should be around 5. The gain margin is the ratio of the value of K 

at jω crossing point to the design value of K. 

4. The complex root: 21   nn j  of the characteristic equation in step 2 is then the 

dominant closed-loop complex pole. 

 

Drawing the damping line: 

1. The damping line is the line that extends from the origin that passes through the dominant 

closed-loop pole. 

2. Alternatively if the value of ζ is known, the damping line is drawn at the origin with an 

angle:  1cos180  . 

3. The dominant closed-pole is then the point of intersection of the damping line on the root 

locus. 

 

Setting the design value of K: 

1. Using the magnitude criteria, equate the magnitude of the open-loop transfer function to 

unity that is: 1|)()(| sHsKG . 

2. Find the design value of K from the magnitude criteria above by substituting the 

dominant complex pole: 21   nn j for the value of s. 

 

The Damping Line 

To get started a root locus based on the given open-loop transfer function of a unity 

feedback system as in Figure (1) is drawn. My dear students by this time you would have 

developed good skills of plotting the root locus. Once a root locus is drawn, the next step is to 

draw a damping line by knowing the value of damping coefficient ζ corresponding to a particular 

overshoot of interest. Let us say that we are not interested for the time being in settling time but 

the overshoot is of concern. Remember most of the systems are under-damped with ζ lying 

between 0 and 1. Overshoot is an inverse function of ζ between 0 and 1. Overshoot is maximum 

with ζ close to 0 and is minimum when ζ approaches 1. The damping line is a straight line drawn 

at an angle   at the origin with respect to the real axis as illustrated in Figure (2). The angle   

for the damping line is determined as: 

   10 cos180          1 

From Eq (1) it can be seen that when ζ is less (near 0), the cosine term is large and the difference 

on the RHS of Eq (1) is small therefore the value of ϕ is small and nears 90°. On the other hand 

with ζ closer to unity, cosine term is smaller and the deference on RHS gets larger with angle ϕ 

approaching 180°. So we can end up with variety of angles to draw the damping line. However, 

we have to stick to how much overshoot we are interested in.  

  100%
21









eOS         2 
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Figure 2: Damping Line 

Considering that we are interested in 10% overshoot that corresponds to 0.1. Substituting this 

value in Eq (2), we have:
21

1.0







 e .Taking natural log of both sides: 

  
21

3.2







  

 Squaring both sides of the above expression and simplifying we have: 

   6.0  

Table (1) gives approximate values of percent overshoot corresponding to particular ζ through 

the relationship given in Eq (2) in addition to the damping line angle: 

Table (1) 

Overshoot 5% 10% 15% 20% 

Zeta ζ 0.7 0.6 0.52 0.45 

Cos
–1 

(ζ) 45 53 59 63 

ϕ 135 127 121 117 

 

It can be seen in Table (1) that as that when overshoot reduces, the angle of damping line 

increases since the difference: 10 cos180  increases due to reduction of the angle associated 

with the inverse cosine term in Eq (2). Figure (3) is an arbitrary root locus drawn with only the 

upper portion considered. If we draw damping lines with the angles as given in Table (1) and 

mark the intersection points of damping lines with the root locus as P1, P2, P3 and P4 

corresponding to ζ; 0.45 (OS = 20%), 0.52 (OS = 15%), 0.6 (OS = 10%) and 0.7 (OS = 5%), we 

can see that the points of shifts relatively to the left as overshoot decreases or zeta increases 

towards unity. Thus P4 is more towards left as compared with other points. At this point P4 both 

the percentage overshoot and settling time are less as compared to other points, and we would 

desire that this may become operating point of our system. As the overshoot reduces, the settling 

time automatically reduces and the system gets rid of disturbances quickly. But remember the 

root locus plot in Figure (3) is that of a third order system with no zeros. In the case of second 
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order system or a third order system with a zero, this will not be the case as the root locus is a 

straight vertical line in the complex plane at the breakaway point. 

 

Figure 3: Root locus with damping lines 

On the damping line as shown in Figure (2), the value of zeta remains constant all along its 

length and therefore this line is also called a constant damping line. The length of a point on the 

line from the origin is the un-damped natural frequency of the system. Therefore the natural 

frequency will vary at each point, selected on the damping line. If an arc is drawn with origin as 

center and operating point on the damping line, then the natural frequency will be constant on the 

this arc, which is also referred to as a constant ωn arc. On this arc the value of zeta will vary. The 

damping line will cut the root locus at a complex closed-loop pole at which the controller’s 

optimum gain K can be determined, which will yield the desired overshoot. Let us consider an 

example to understand setting of controller gain. 

Example 1: A unity feedback system is shown in Figure (4). Estimate the value of K for 

maintaining 10% overshoot. Find also the setting time at this overshoot. 

 

Figure 4 

Solution: The system poles are: –2, –4 and –6. There are no zeros. Thus three zeros are lying at 

infinity. The number of loci are 3, equal to the number of open-loop poles. 
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Real-axis loci: From the location of open-loop poles in the s-plane, the real-axis loci is between  

–2 and –4 and then extends from –6 onward to –∞.  

Breakaway point:  
6

1

4

1

2

1
0










bbb 
 

From which, on simplification:  

  044243
2

 bb   

Which gives: 845.2b and 154.5 . The breakaway point is –2.845 since it lie on the real-

axis loci. 

Center of asymptotes: 4
03

0642











 

zp

zp ii

C       

Angles of asymptotes: 
03

180)12(180)12( 00











m

zp

m
C  

For m = 0; 060C , for m = 1; 0180C , for m = 2; 0300C . The angles are repeated in the 

same sequence for m = 3, 4, 5 … 

The jω-crossing: The jω-crossing points can be obtained from the characteristic polynomial of 

the closed-loop transfer function. The closed-loop transfer function is: 

  
Ksss

K
sT




484412
)(

23
      3 

The characteristic polynomial is: )48(4412 23 Ksss   in which we substitute s = jω and 

then equate it to zero that is: 

  0)48(4412 23  Kjj        4 

Equating the imaginary terms collectively to zero, we have: 0443   jj . From which we 

have: ω = 6.63 rad/sec. Thus: 63.6jj  . Equating real parts collectively to zero of Eq (4), we 

have: 

  04812 2  K  

Or  048)63.6(12 2  K  

Or  480K  

This is the gain at jω-crossing point where the system will be purely oscillatory and will be on 

the verge of moving into RH-plane (unstable region). The root locus is shown plotted in Figure 

(5). The damping line can be drawn at the origin with an angle of: 
010 127)6.0(cos180   . 
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This line is shown on the root locus of Figure (5), which intersect the root locus at point P 

allowing us to locate the dominant complex closed-loop pole of the form: 

21   nn js . At point P the dominant complex pole from Figure (5) is: 8.22 js  . 

Thus comparing with the general expression of complex closed-loop pole, we have:

33.3
6.0

2
2  nn  rad/sec. The peak time for the first overshoot is: 

  






22 6.0133.31







n

pT  1.17 sec. 

The settling time of transients is: 



33.36.0

44

n

ST


2 sec. 

 

(a) (b) 

Figure 5: (a) Root Locus Plot (b) Location of the Dominant Closed-loop Pole 

The system gain at the dominant pole is determined by using the magnitude criteria that is:

1)()( sHsKG . Or: 
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|)()(|

1

sHsG
K   at 8.22 js   

Therefore: 
8.22|)6)(4)(2(| jssssK   

Thus:  K = 47 

We can look into the problem in terms of setting the gain of the controller at: K = 47, the desired 

transient performance can be achieved. The situation can be viewed as connecting the controller 

K in cascade with the plant, whose transfer function is: 
)6)(4)(2(

1
)(




sss
sG . This is 

shown in Figure (6). 

 

Figure 6: Plant with simple gain controller 

Thus to obtain the desired transient performance in terms of limiting the overshoot to 10%, the 

controller gain should be adjusted to 47. This will result in the peak time of 1.17 sec and settling 

time of 2 sec. By altering the value of K from the controller will change the location of system 

dominant pole and the value of damping ratio and natural frequency will thus change. This will 

vary the system transient performance specifications such as; percent overshoot, time to peak, 

rise time and settling time. But remember that any operating point must lie on the root locus. 

Thus by adjusting the gain of controller within which the stability of the system is maintained an 

optimum desired transient response can be achieved. The gain margin GM (ratio of gain at jω-

crossing to the gain calculated at the desired operating point) can be determined by using: 

 21.10
47

480)(


K

jK
GM


 

Thus the system has sufficient gain margin, so the desired overshoot of 10% is quite reasonable. 

It is advisable to allow a gain margin of at-least 5 with many systems. 

Example 2: Let us now consider the unity feedback system of the type shown in Figure (4), but 

in this case the plant transfer function is: 
)6)(4(

)2(
)(






sss

s
sG so that the open-loop transfer 

function of the system will be: 
)6)(4(

)2(
)()(






sss

sK
sHsKG . This system is still a third order but 

differs from the system in example 1 in terms of presence of a zero and that the system is Type-

1. However, the system in example 1 is third order with no zero and is Type-0.  

Let us draw the root locus for which the requirements are as follows: 
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Poles and Zeros: The system poles are: 0, –4 and –6, and a zero at –2. There are two zeros are 

lying at infinity.  

Real-axis loci: From the location of open-loop poles in the s-plane, the real-axis loci is between 

0 and  –2 and between –4 and –6.  

Breakaway point:  
6

1

4

11

2

1







 bbbb 
 

From which, on simplification:  

  024208
23

 bbb   

Which gives: 93.4b and two other roots are complex and cannot be regarded as breakaway 

points. Thus the breakaway point is –4.93 since it lie on the real-axis loci. 

Center of asymptotes: 4
13

)2(640











 

zp

zp ii

C       

Angles of asymptotes: 
13

180)12(180)12( 00











m

zp

m
C  

For m = 0; 090C , for m = 1; 0270C . The angles are repeated in the same sequence for m = 

2, 3, 4, … 

There is no jω-crossing as the angles of asymptotes that guides the root locus are 90 and 270, so 

that the asymptotes, and hence the root locus will be a straight vertical line in the s-plane as 

shown in Figure (7). Let us set two operating points on the root locus such that one gives 10% 

overshoot corresponding to ζ = 0.6 and the other giving 5% overshoot corresponding to ζ = 0.45. 

In order to set the points on the root locus, damping lines have to be drawn; one at angle 127° 

corresponding to ζ = 0.6 and the other at 135° corresponding to ζ = 0.45 as shown in Figure (7). 

These lines can be seen to intersect the root locus at P1 and P2 respectively.  

Consider point P1, where the closed-loop pole is: 35.693.4 js  , which when substituted for 

the value of s in the open-loop transfer function of the system and using the magnitude criteria 

will give us the gain K of the controller that is: 

  1
)6)(4(

)2(
)()( 






sss

sK
sHsKG  

Or  1
|)635.693.4)(435.693.4)(35.693.4(|

|)235.693.4(|






jjj

jK
 

Or  K = 47.55 
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Comparing the closed-loop pole on the root locus at P1 with the general form of the closed-loop 

pole: 21   nn js , the value of ζ = 0.61. This gives the percent overshoot amounting 

to 8.9%. Let us also compute the steady-state error at P1 for the system which is Type-1. For this 

purpose, the static error constant Kv (due to constant velocity) is to be evaluated using: 

  Kv = )]([
0

ssGLim
s

= 
0S

Lim  




















)6)(4(

)2(55.47

sss

s
s = 3.96  

The steady-state error is: 

  
VK

e
1

)(  =
96.3

1
 = 2523.0 or 25.23% 

 

Figure 7: Root locus of Example 2 

Consider point P2, where the closed-loop pole is: 78.493.4 js  , which when substituted for 

the value of s in the open-loop transfer function of the system and using the magnitude criteria 

will give us the gain K of the controller that is: 
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  1
)6)(4(

)2(
)()( 






sss

sK
sHsKG  

Or  1
|)678.493.4)(478.493.4)(78.493.4(|

|)278.493.4(|






jjj

jK
 

Or  K = 29.16 

Likewise comparing the closed-loop pole on the root locus at P2 with the general form of the 

closed-loop pole: 21   nn js , the value of ζ = 0.71. This gives the percent overshoot 

amounting to 4.2%. Likewise let us also compute the steady-state error at P2 for the system 

which is Type-1. For this purpose, the static error constant Kv is: 

  Kv = )]([
0

ssGLim
s

= 
0S

Lim  




















)6)(4(

)2(16.29

sss

s
s = 2.43  

The corresponding steady-state error is: 

  
VK

e
1

)(  =
43.2

1
 = 4115.0 or 41.15% 

We note that as the operating point move up on the root locus, the percentage overshoot will 

increase and the steady-state error will reduce. All we need to do is to make a compromise 

between overshoot and steady-state error to fix the operating point on the root locus. In this 

particular case we need not worry about gain margin. Since the root locus does not cross the jω-

axis, the system has very large gain margin for any point all along the root locus and will always 

be stable.  

We can conclude that simple gain controller will improve the transient performance by reducing 

the percentage overshoot but at the expense of steady-state performance. Thus as we increase the 

controller gain, the percentage overshoot will increase but the steady-state error will reduce. On 

the other hand decreasing the controller gain will reduce the percentage overshoot but will 

increase the steady-state error. Thus a suitable gain from the controller can make a compromise 

between overshoot and steady-state error for optimization. 

        

 

 


