RULES FOR ASYMPTOTIC BODE PLOT

Constant K term:

Magnitude plot: Straight horizontal line at $20 \log (\mathrm{~K}) \mathrm{dB}$
Phase plot: no phase that is 0°.
The constant K term shifts the entire Magnitude Bode plot up or down by $20 \log (\mathrm{~K}) \mathrm{dB}$.

Zero at the origin (jw) ${ }^{\text {n }}$:

Magnitude plot: Straight line passing through $\omega=1$ with a positive slope of $\mathrm{n} 20 \mathrm{db} / \mathrm{dec}$ (trending upward). (dec means decade or 10 divisions on the graph paper).
Phase plot: Straight horizontal line at $+\mathrm{n} 90^{\circ}$.

Zero not at the origin ($1+\mathrm{jw} / \mathrm{z}$):

Magnitude plot: Straight horizontal line up to $\omega=\mathrm{z}$ at 0 dB and at $\mathrm{w}=\mathrm{z}$, trends upward with a positive slope of $20 \mathrm{~dB} / \mathrm{dec}$.
Phase plot: Straight horizontal line at 0° up to 0.1 z and then slopes upward at $45^{\circ} / \mathrm{dec}$ up to 10 z , where it then stays at $+90^{\circ}$ onwards.

Pole at the origin (jw) ${ }^{-\mathrm{n}}$:

Magnitude plot: Straight line passing through $\omega=1$ with a negative slope of $20 \mathrm{~dB} / \mathrm{dec}$ (trending downward).
Phase plot: Straight horizontal line at $-\mathrm{n} 90^{\circ}$.

Pole not at the origin $(1+j w / p)^{-1}$:

Magnitude plot: Straight horizontal line up to $\omega=\mathrm{p}$ at 0 dB and at $\omega=\mathrm{p}$, trends downward with a negative slope of $20 \mathrm{~dB} / \mathrm{dec}$.
Phase plot: Straight horizontal line at 0° up to 0.1 p and then slopes downward at $45^{\circ} / \mathrm{dec}$ up to 10 p, where it then stays at -90° onwards.

Quadratic zero: $\left(1+a \frac{j w}{w_{n}}+b \frac{(j w)^{2}}{w_{n}{ }^{2}}\right)$
Magnitude plot: Straight horizontal line up to $\omega=\omega_{\mathrm{n}}$ at 0 dB and at $\omega=\omega_{\mathrm{n}}$, trends upward with a positive slope of $40 \mathrm{~dB} / \mathrm{dec}$.
Phase plot: Straight horizontal line at 0° up to $0.1 \mathrm{w}_{\mathrm{n}}$ and then slopes upward at $90^{\circ} / \mathrm{dec}$ up to 10 z , where it then stays at $+180^{\circ}$ onwards.

Quadratic pole: $\left(1+a \frac{j w}{w_{n}}+b \frac{(j w)^{2}}{w_{n}{ }^{2}}\right)^{-1}$
Magnitude plot: Straight horizontal line up to $\omega=\omega_{\mathrm{n}}$ at 0 dB and at $\omega=\omega_{\mathrm{n}}$, trends downward with a negative slope of $40 \mathrm{~dB} / \mathrm{dec}$.
Phase plot: Straight horizontal line at 0° up to $0.1 \mathrm{w}_{\mathrm{n}}$ and then slopes downward at $90^{\circ} / \mathrm{dec}$ up to 10 z , where it then stays at -180° onwards.

