RULES FOR ASYMPTOTIC BODE PLOT

Constant K term:

Magnitude plot: Straight horizontal line at $20\log(K)$ dB **Phase plot**: no phase that is 0°. The constant K term shifts the entire Magnitude Bode plot up or down by $20\log(K)$ dB. **Zero at the origin (jw)**ⁿ:

Magnitude plot: Straight line passing through $\omega = 1$ with a positive slope of n20db/dec (trending upward). (dec means decade or 10 divisions on the graph paper). Phase plot: Straight horizontal line at +n90°.

Zero not at the origin (1 + jw/z):

Magnitude plot: Straight horizontal line up to $\omega = z$ at 0dB and at w = z, trends upward with a positive slope of 20dB/dec.

Phase plot: Straight horizontal line at 0° up to 0.1z and then slopes upward at 45° /dec up to 10z, where it then stays at +90° onwards.

Pole at the origin (jw)⁻ⁿ:

Magnitude plot: Straight line passing through $\omega = 1$ with a negative slope of 20dB/dec (trending downward).

Phase plot: Straight horizontal line at -n90°.

Pole not at the origin $(1 + jw/p)^{-1}$:

Magnitude plot: Straight horizontal line up to $\omega = p$ at 0dB and at $\omega = p$, trends downward with a negative slope of 20dB/dec.

Phase plot: Straight horizontal line at 0° up to 0.1p and then slopes downward at 45° /dec up to 10p, where it then stays at -90° onwards.

Quadratic zero:
$$\left(1 + a \frac{jw}{w_n} + b \frac{(jw)^2}{w_n^2}\right)$$

Magnitude plot: Straight horizontal line up to $\omega = \omega_n$ at 0dB and at $\omega = \omega_n$, trends upward with a positive slope of 40dB/dec.

Phase plot: Straight horizontal line at 0° up to $0.1w_n$ and then slopes upward at $90^{\circ}/\text{dec}$ up to 10z, where it then stays at $+180^{\circ}$ onwards.

Quadratic pole:
$$\left(1 + a \frac{jw}{w_n} + b \frac{(jw)^2}{w_n^2}\right)^{-1}$$

Magnitude plot: Straight horizontal line up to $\omega = \omega_n$ at 0dB and at $\omega = \omega_n$, trends downward with a negative slope of 40dB/dec.

Phase plot: Straight horizontal line at 0° up to $0.1w_n$ and then slopes downward at 90° /dec up to 10z, where it then stays at -180° onwards.