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Lecture # 8 

Root Locus 

Dear students, this lecture is very important as it covers more than 50% control system 

design and analysis. It is therefore essential that you understand this lecture; not only browsing 

through lecture notes but going through similar topics in control system book(s).  

Remember that the main objective of control system is to keep the desired output within 

allowable limits with maintaining stability. Not only must the system be stable in steady-state, 

but also the transients must die out in a sufficiently short time for the system to settle to the 

desired steady-state value. The stability can be ascertained from the characteristic polynomial; 1 

+ G(s)H(s) of the closed-loop transfer function of the form: 
)()(1

)(

sGsH

sG


. Equating the 

characteristic polynomial to zero will yield the characteristic equation that is: 0)()(1  sGsH . 

Solving the characteristic equation will give the roots or closed-loop poles of the system. Any 

closed-loop pole placed in the RHP (right-half plane) will lead to the fact that the given system is 

unstable. Forming Routh table from the characteristic polynomial and applying Routh-Hurwitz 

criterion, it is possible to determine stability without solving for the roots of the characteristic 

equation. However, Routh-Hurwitz criterion only provides information about the absolute 

stability. The control system engineer is interested in relative stability of the system. The answer 

lies in the Root Locus. 

Root locus is a graphical method, pioneered by Walter R. Evans, for stability analysis and 

control system design that includes plotting of the closed-loop poles by varying the system gain.  

Root locus plot allows a control system engineer to observe ranges of stability, and the 

conditions that cause a system to break into oscillation and resorting to unstable operation. 

Root Locus of Second-order System 

A second-order system is a simple system that is mostly used as a benchmark in control 

system studies. Consider a second-order system represented by the transfer function: 

Kass

K

2
. The characteristic equation from the closed-loop transfer function is: 

02  Kass , and the roots of the characteristic equation (closed-loop poles) are:  

Kaas 4
2

1

2

1 2          1 

When K is varied from –∞ to +∞, Eq (1) gives infinite roots. However, values of K > 0 

are considered. Thus for a > 0 and small values of K the roots or poles will be real and for larger 

values of K the roots will be complex conjugate. Supposing a = 10 is selected, then for various 

values of K the poles of the transfer function will have range of values that are listed in Table (1). 

Thus for each pole, there is a collection of point for different values of gain forming a locus on 

which the characteristic roots or closed-loop poles of the system lies as shown in Figure (1). 

Thus the designer will be able to choose the closed-loop poles which give a desired transient 

performance for a given value of gain.  
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The root-locus technique is limited to only one variable parameter in K. In many control-

systems problems, the effects of varying several parameters should be investigated. When more 

than one parameter varies continuously from – ∞ to + ∞, the root loci are referred to as the root 

contours. Root contours still possess the same properties as the single-parameter root loci, so that 

the methods of construction thus far are all applicable. 

Table 1 

 

 

 

Figure 1 
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The root-locus method can also be extended to the analysis and design of higher-order systems. 

Open-Loop Transfer Function 

Stability analysis from closed-loop transfer function is more difficult to handle in terms 

of finding the closed-loop poles, unless the system's characteristic polynomial is factorized. 

Further, the closed-loop poles change with changes in system gain. On the other hand open-loop 

transfer function is friendlier for determination of open-loop poles and their location do not 

change with system gain. The open-loop transfer function is the ratio of feedback signal B(s) to 

the error signal E(s), and is easily obtained from the closed-loop transfer function. Consider a 

closed-loop feedback control system as shown in Figure (2).  

 

 

Figure 2 

From Figure (2), the closed-loop transfer function is: 
)()(1

)(

sHsKG

sKG


and from which the 

open-loop transfer function is the term: KG(s)H(s) of the denominator (characteristic 

polynomial). It must be remembered that the zeros of the open-loop transfer function are the 

zeros of G(s) and H(s) and the poles of open-loop transfer function are the poles of G(s) and 

H(s), whereas; closed-loop transfer function T(s) consist of the zeros of G(s) and the poles of 

H(s). For example, if:  

  
)2(

)1(
)(






ss

sK
sG        

And  
)4(

)3(
)(






s

s
sH        

Then the open-loop transfer function is: 

  
)4)(2(

)3)(1(
)()(






sss

ssK
sHsG        2 

The poles of G(s)H(s) are 0, –2 , and –4. The zeros of G(s)H(s) are –1 and –3. Now consider a 

closed-loop transfer function: 

  
KsKsKs

ssK
sT

3)84()6(

)4)(1(
)(

23 


      3 
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Thus, the zeros of T(s) consist of the zeros of G(s) and the poles of H(s). The poles of 

T(s) are not immediately known without factoring the denominator since they are a function of 

K. Since the transient response and stability of the system are dependent upon the poles of T(s), 

we cannot know about the performance of the system unless the denominator for specific values 

of K is factorized. The root locus can make it easy.  

Every transfer function should have equal number of poles and zeros if we include the 

infinite poles and zeros as well as the finite poles and zeros. The number of poles and zeros are 

balanced, therefore a missing zero or pole in a transfer function is an indication that it is lying at 

infinity. Thus the root locus must start at a point where the system gain is zero (open-loop pole) 

and will end up at a point where the system gain is infinite (open-loop zero).  

Angle-Magnitude Criteria 

Consider the control system as shown in Figure (2) for which the closed-loop transfer 

function is: 

  
)()(1

)(
)(

sHsKG

sKG
sT


  

The closed-loop poles of the system can be determined from the characteristic equation that is: 

  0)()(1  sHsKG  

Or  
oksHsKG 180)12(11)()(        4 

Where k = 0, ±1, ±2, ±3, and so on. Remember s is complex in nature and so )()( sHsKG  is a 

complex quantity with a magnitude and an angle. Therefore for K > 0, the magnitude criterion is 

expressed as: 

  1|)()(| sHsKG         5 

The angle criterion is: 

  
oksHsKG 180)12()()(         6 

Simply: 1)()( sHsKG  

Or  
K

sHsG
1

)()(    

Or  
|)()(|

1

sHsG
K   

For K < 0, the magnitude criterion is same as that for K > 0, whereas the angle criterion is: 

  
oksHsKG 360)()()(   
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Points to remember (the 10 commandments):  

1. Plotting the root locus requires the open-loop transfer function of the form: KG(s)H(s). 

2. The root locus starts at open-loop pole and terminate (end) at open-loop zero. The open-

loop poles and open-loop zeros are not included in the root locus.  

3. Any point that must lie on the root locus will be a system’s closed-loop pole at a 

particular value of K, and at that point both the angle and magnitude criteria are satisfied.  

4. At open-loop poles, the value of K = 0. Thus K = 0 are points on the root loci on which 

poles of G(s)H(s) will lie.  

5. At open-loop zeros, the value of K = ± ∞. Thus the K = ± ∞ are points on the root loci 

which are the zeros of G(s)H(s).  

6. The poles and zeros referred to here also include those at infinity, if any.  

7. As the magnitude of K approaches zero, G(s)H(s) approaches infinity, so s must approach 

the poles of G(s)H(s).  

8. As the magnitude of K approaches infinity, the zeros of G(s)H(s) must also approach 

infinity.  

9. When a system has zero(s) lying at infinity, the system will have infinite number of 

closed-loop poles. 

10. When the number physical of poles and zeros of open-loop transfer function are equal, 

the system will have finite closed-loop poles. 

Characteristics of Root Locus 

The followings are the important characteristics of a root locus that are helpful in 

sketching the root locus. 

1. The root locus starts at a point where the system gain: K = 0 (open-loop pole) and will 

end up at a point where the system gain: K = ∞. Therefore the root locus will exist 

beyond the real-axis segments in case of zero lying at infinity.  

2. The root locus is symmetrical about the real axis. This is because that the closed-loop 

transfer function of all real-time physical systems have characteristic equation that have 

complex poles in the form of complex conjugate pairs. Thus the root locus will have a 

mirror image with respect to the real axis of the complex s-plane. 

Rules for Plotting Root Locus 

Poles and zeros: 

1. For plotting root locus, the open-loop transfer function is necessary. If closed-loop 

transfer function is given, then the open-loop transfer function has to be obtained from 

the given closed-loop transfer function based on unity feedback system. 

2. Obtain the open-loop poles and zeros from the open-loop transfer function 

Real axis loci: 

1. From the given open-loop transfer function KG(s)H(s), plot all the open-loop poles and 

zeros in the s-plane. 
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2. The real axis loci will exist to the left of real axis odd number of pole or zero. 

3. The real axis loci must exist between two real axis poles or two real axis zeros or 

between a real axis pole and a real axis zero. 

4. In case a zero is lying at infinity, the loci will exist between a real axis pole and infinity 

(indicating a zero lying at infinity). 

 

Breakaway and break-in point: 

1. A breakaway point exists on the real axis loci formed between two poles. 

2. A break-in point exists on the real axis loci formed between two zeros. 

3. To find these points: 

a. Equate the open-loop transfer function KG(s)H(s) to –1. 

b. Rearrange and take the derivative: )(K
ds

d
. 

c. Equate the derivative in part b equal to zero for s = sb, forming an equation. 

d. Solve the equation for sb to yield breakaway and break-in point. Suitable choice is 

necessary between multiple roots. 

4. Alternatively the poles and zeros of the open-loop transfer function are arranged in the 

form of partial fractions as follows and then the breakaway point is obtained by solving 

the equation for s. For example, consider the open-loop transfer function: 

)6)(4(

)2(
)()(






sss

sK
sHsKG . The partial fraction type of equation with poles on one side 

and zeros on the other side in the form of fractions is formed below as: 

 

6

1

4

11

2

1







 ssss
 

 

Centre and angles of asymptotes: 

1. The centre of asymptotes σC can be obtained using: 
n

zp
C

 
 , where: n is the 

difference of the number of poles and zeros. 

2. Angle of asymptotes can be obtained using: 
n

k
C

)12(180 
 . Repetitions are not 

considered. 

 

Imaginary axis crossing points: 

1. Obtain the closed-loop transfer function from the given open-loop transfer function. 

2. Get the characteristic equation from the closed-loop transfer function: 0)()(1  sHsKG  

3. Obtain the Fourier transform of the characteristic equation that is: 0)()(1  jwHjwKG . 

4. Equate separately the imaginary and real components of the Fourier transformed 

characteristic equation to zero and solve them for w and K. The quantity w gives the 

jw  points symmetrically above and below the origin with the value of K for which the 
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system is marginally stable. Alternatively use the Routh table and apply the all-zero row 

rule to get the auxiliary equation. Solving the auxiliary equation will give w for jw 

crossing and the condition of equating to zero on the expression containing K at the 

calculated value of w will give the gain at jw crossing. 

 

Angle of departure from a complex pole: 

1. In the given open-loop transfer function, remove the complex pole of the form: 

jbas  at which the angle of departure is to be calculated. 

2. Find the angle of the resultant open-loop transfer function for: jbas  . Let this angle 

be α. 

3. The angle of departure θD is then:  180D . 

 

Angle of arrival at a complex zero: 

1. In the given open-loop transfer function, remove the complex zero of the form: 

jdcs  at which the angle of arrival is to be calculated. 

2. Find the angle of the resultant open-loop transfer function for: jdcs  . Let this angle 

be β. 

3. The angle of arrival θA is then:  180A . 

 

Let us now take an example of drawing the Root Locus for a unity feedback system of the form 

as shown in Figure E with forward transfer function of: 
)5)(3)(1(

)(



sss

K
sG . 

 

Figure E 

Since: H(s) = 1for a unity feedback system, the open-loop transfer function with gain takes the 

form: 

  
)5)(3)(1(

)()(



sss

K
sHsKG  

The system open-loop poles are –1, –3 and –5. There are no physical zeros, so that the system 

has three zeros lying at infinity. Thus: p – z = 3 – 0 = 3. The number of loci will be equal to the 

number of open-loop poles, so that the complete root locus will consists of three loci. 
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In order to plot the root locus for the given system, we will proceed step-by-step according to the 

rules mentioned above. 

Step 1: Obtain the open-loop poles and zeros from the open-loop transfer function and plot them 

on the s-plane; poles designated by X and zeros by O. In this example, there are three open-loop 

poles; –1, –3 and –5, and there are three open-loop zeros lying at infinity. They are plotted as 

shown in Figure (E1). 

 

 

Figure E1 
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Step 2: Draw the real axis loci (see Figure E2). Real axis loci exist between: an open-loop pole 

and an open-loop zero, between two open-loop poles, and between two open-loop zeros. In this 

example, real axis loci will exist between –1 and –3, and between –5 and a zero at infinity. Thus 

the locus between –5 and infinity is finished as it had started from open-loop pole and has 

terminated on open-loop zero lying at infinity. On the other hand the loci between –1 and –3 

need consideration. 

 

Figure E2 
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Step 3: There is no break-in point, however, there is one breakaway point (lying on the root 

locus between two consecutive open-loop poles). In order to determine the breakaway point, we 

proceed as follows: 

Method 1: Using the gain-magnitude criteria: 1)()( sHsKG  on the open-loop transfer 

function, we have: 

  1
)5)(3)(1(


 sss

K
 

Or  15239 23  sssK  

Or  023183 2  ss
ds

dK
 

This yield: 84.1s and –4.15 

The real root: –1.84 is within the real-axis loci between –1 and –3, therefore the real root; 

84.1s  is the breakaway point. 

Method 2: Arranging the open-loop poles and zeros in partial fraction form, with poles on one 

side and zeros on the other side, we have: 

  
)5(

1

)3(

1

)1(

1
0










sss
 

From which: 02318 22  sss  

This gives: 84.1s  and –4.15 (same as above) 

The breakaway point is located on the real axis loci between –1 and –3, at s = –1.84 as shown in 

Figure E3. 
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Figure E3 

Step 4: In this step we compute the center and angles of asymptotes as follows 

Center of asymptotes:  3
03

0)531(











 

zp

zp ii

C       
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Angles of asymptotes: 
03

180)12(180)12( 00











k

zp

k
C  

For k = 0; 060C , for k = 1; 0180C  and for k = 2; 0300C . The angles are repeated in 

the same sequence for k = 3, 4, 5, … The angles of asymptotes are measured and drawn from the 

center of asymptotes with respect to the real axis counter-clockwise as illustrated in Figure E4. 

 

Figure E4 
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Step 5: The asymptotes shows that the root locus when drawn from the breakaway point will 

cross the imaginary axis (jω-axis) to search for the two other zeros lying at infinity. The jω 

crossing point can be determined from the following two methods: 

Method 1: The closed-loop transfer function of the given unity feedback system is: 

Ksss

K

 15239 23
. From which the characteristic equation is: Ksss  15239 23 . 

Replacing s = jω in characteristic equation, we have: 

  Kjj  15239 23   

Equating the imaginary parts in a group to zero, we have: 

  0233   jj  

Which gives: 8.4  or 8.4jj   

Which give two symmetrical points; one above and other below on the imaginary axis at which 

the root locus will cross in search of the zeros lying at infinity. The root locus will follow the 

asymptotes, which are supposed to act as guide-paths.  

Method 2: The jω-crossing point can also be obtained by considering the characteristic 

polynomial of the closed-loop transfer function: Ksss  15239 23 from which the Routh 

table is formed below: 

s
3
 1 23 

s
2
 9 K + 15 

s
1
 

9

192 K
 

0 

s
0
 K + 15 0 

 

Forcing the term of the first column of s
1
 row (odd row) to be zero, we can form an auxiliary 

equation of the preceding even row. Thus for K = 192, we will have an all-zero row. The 

auxiliary equation of the preceding row of even power of s is then: 0159 2 Ks . Substituting 

K = 192 in this equation will result in: 02079 2 s  which yields: 

  8.4js   
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Which are the required points of jω-crossing. The root locus is drawn in the form of a smooth 

curve between breakaway point and the jω points above and below the real axis. The smooth 

curve should follow the asymptotes without touching and extended beyond the jω points 

becoming almost in-parallel and closer to the asymptotes. The asymptotes and the root locus 

finally touch each other at infinity where zero is located for termination. The complete labeled 

root locus plot of the given system is shown in Figure E5. 

 

Figure E5 


