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Compensation 

Carrying out desired tasks and to maintain stability is the main objective of control 

system design. Design of control systems start with the understanding of the controlled process. 

This is accomplished by a controller. The main idea is to design a suitable controller to 

accomplish desired objective(s). Once understood and the parameters defined, the design of the 

controller starts with the development of root locus. The design concept start with selecting a 

desired complex closed-loop pole of the form: 21   nn j , containing two important 

system parameters; ζ and ωn. In order to illustrate the basic design concept for a control system, 

consider a root locus plot of system shown in Figure 1.  

 

(a)        (b) 

Figure 1: (a) Root Locus Plot (b) System Transient Response by Pole Shifting 

As shown in Figure (1a), point P1 is on the root locus that gives us a transient 

performance based on percent overshoot and settling time. If our desired point of operating the 

plant in a control system is P1, lying on the root locus, then a simple gain adjustment from the 

controller is all that is needed for optimization. But, if we desire that transients (disturbances) 

should settle down quickly in a short period of time without disturbing the percent overshoot, 

then the operating point of the system should lie leftward on the damping line, supposing point 

P2. However, P2 does not lie on the root locus. Thus optimization of transient response cannot be 

accomplished by a simple gain adjustment. The design objective is therefore to shift the root 

locus from point P1 to P2, which is located on the same constant damping line (constant zeta), in 

which case the value of percent overshoot will not be affected while both the rise time and 

settling time will reduce, thus speeding up the transient response because both rise time and 

settling time depends on the value of ωn, which will be greater at P2 than that at P1. The process 

of tending to pass root locus through the desired point is referred to as compensation. This is 

accomplished by designing a controller that can fulfill the required purpose and is then referred 

to as compensator. In order to understand the compensation, we will consider two examples in 

which case a system is given to us and let say what we can do to improve its performance. 
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Consider the system shown in Figure 2, which is a unity feedback system. 
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Example 1 is that of the system shown in Figure 1, which is a unity feedback system with the 

forward block containing the transfer function. 

 

Figure 1 

A simple control system can be represented as a unity feedback system with a plant driven by a 

controller connected in series or in the same forward path as shown in Figure 2. 

 

Figure 2 

According to the control system configuration of Figure 2, the system of example 1 can therefore 

be represented as shown in Figure 3. 

 

Figure 3 

Comparison of the two root locus leads us to the following findings: 

1. The root locus for uncompensated system (Figure 2 or 3) is moving from stable half of s-

plane (LH-plane) to an unstable half of s-plane (RH-plane) in search of their zeros lying 

at infinity. On the other hand the root locus for compensated system by including a 

simple zero (zero at origin) is always stable that is it never leaves the left-half of s-plane 

to search for zeros lying at infinity. In this particular case it can be concluded that the 

system becomes stable for all closed-loop poles and thus becomes closer to a minimum 

phase system (gain margin: infinity). 
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2. Further it can be noted that the root locus of compensated system is shifted to the left in 

comparison with that of uncompensated system. This can be ascertained from the break-

away point, which in the compensated case is –5.06 and that for uncompensated system is 

–4. It must be remembered that more the root locus is to the left, faster the transients 

(disturbances) decay that is the system becomes speedier in getting rid of disturbances 

and reverting to steady-state. Thus the settling time of transients is less irrespective of 

percentage overshoot, which means the system is getting better. 

What we have done actually, is simply adding a zero at the origin or including a simple single 

differentiator in the forward path, since: 
dt

d
s  . Including a simple zero can be looked upon as 

including a simple gain differentiator sK as a series controller with the plant as shown in Figure 

4. Thus it can be noted that providing a derivative controller shifts the root locus to the left side 

as a general case. However, as a specific case in this example, the system also becomes 

completely stable.  

 

Figure 4 

 

As Example 3, let us now consider a second order, unity feedback system with an open-loop 

transfer function: 
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This system is always stable and is therefore a minimum phase system with its poles lying in the 

left-half of s-plane. To draw its root locus, it is simple we follow the rules in finding quantities 

essential for plotting the root locus. These are as follows: 



9 

 

 



10 

 

The root locus is shown below: 

 

The root locus is a straight vertical line and therefore does not cross the jw-axis. Thus the system 

does not move into the unstable region (right-half plane) and is therefore always stable. Thus all 

the closed-loop poles lie in the left-half plane. 

 

Now let us add a pure gain integrator in the forward path with transfer function 1/s. The open-

loop transfer function then takes the form: 
)2)(1(
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
sss

K
sHsKG . This is our Example 4. 

To draw the root locus we follow the rules: 
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The root locus plotted is shown on the next page. 
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1. We can see that now the root locus is not a vertically straight line but it follows a curve 

and crosses the jw-axis. Thus adding a pure integrator will make the otherwise stable 

system to a system that may lead to instability if the operating point is not wisely 

selected.  

2. The root locus, on adding a pure integrator in series with the plant will tend to shift the 

root locus more towards the right as can be noted from example 3 and 4 with their break-

away points shifted to right in case of example 4. This means that the transient response 

in-terms of settling time will deteriorate. The settling time will increase in case when 

integrator is included and therefore the transients or disturbance will not die out quickly. 

This may be a bad news in the case of aero-plane auto pilot system. 

3. However, shifting the root locus to the right improves steady-state performance since 

more gain is added into the system.  

4. Adding an integrator in the forward path will also change the system-type. Comparing 

example 3 and 4 indicate that the system type changes from Type-0 (example 3) to Type-

1 (example 4) 

 

Conclusions: 

1. Adding a pure gain derivative controller will improve the transient performance by 

shifting the original root locus to the left. In this cane the settling and rise time 

becomes less and the disturbances die out quickly (speedy transient response) 
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2. Adding a pure gain integrator controller will deteriorate the transient performance by 

shifting the root locus to the right. However, the steady-state performance is 

improved. 

3. Including integrator changes the system type from lower to higher order. 

However, practically pure gain derivative and integrator controller does not exist. Instead 

proportional derivative (PD) and proportional integrator (PI) controllers are used. These 

controllers are incorporated with an added gain element with their transfer functions as follows: 

PD  KsKsG D )(  

And 

PI  K
s

K
sG I )(  

A combination of the above two is the proportional integral derivative (PID) controllers with 

transfer function: 

PID  KsK
s

K
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