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Preface 

This seventh edition of" FLUID MECHANICS With Engineering Applications" 
has been written to serve as a textbook for a first course in fluid mechanics for 
engineering students. In most curricula this course comes in the junior year and 
the student will already have had courses in differential and integral calculus and 
engineering mechanics. The student may also have had a course in thermodynamics 
and possibly in differential equations. The coverage in this book is broad, so 
that it can be used in a number of ways for a second course in fluid mechanics 
if desired. 

Though this revision was entirely the work of the junior author, the basic 
approach to the presentation of fluid mechanics as an engineering subject that 
was developed by Professor Daugherty over many years of teaching has been 
retained. Both authors have always felt it most important that the engineering 
student clearly visualize the physical situation under consideration. Hence there 
is considerable emphasis on physical phenomena throughout the book. Numerous 
dlustrative examples are given to indicate to the student how the basic principles 
of fluid mechanics can be applied to particular engineering problems. These 
examples also help to clarify the text. 

vii 



viii PREFACE 

In accordance with current educational trends, the fundamental principles of 
fluid mechanics have been developed in a more rigorous fashion than in previous 
editions. The authors feel that the subject matter is best learned by placing heavy 
emphasis on the development of basic principles, the assumptions made in the 
development of these principles, and their limits of applicability. The problems 
presented for assignment purposes have been carefully selected to provide the 
student with a thorough workout in the application of basic principles. Only 
through working numerous problems will the student experience the evolution so 
necessary to the learning process. 

The major change in this revision is the introduction of SI units. Most of 
the world is moving toward the use of a single international system of units: 
Systeme Internationale d'Unites (SI). In this revision, even though English units 
(feet, slugs, seconds, pounds) are used as the primary system of units, the 
corresponding SI units are always given in the text material. Some illustrative 
examples and problems are given in English units and others in SI units. 
Occasionally an illustrative example or problem will be given in English units 
followed by the corresponding SI unit, rounded off to a value approximately 
equal to the English unit, in parentheses. Thus, where data are given in both 
systems of units, the user of the text can follow the illustrative example or work 
the problem in SI units by employing the data given in parentheses. Every effort 
is made to ease the changeover from English units to SI units. A brief discussion 
of SI units is presented with the front matter. 

Another change in this revision that will be apparent to former users of the 
book is that the gas constant and specific heats are expressed in terms of energy 
per unit mass rather than energy per unit weight. This change was made so as 
to conform to current practice and eliminate confusion that might occur when 
reading the literature. Other changes include deleting the chapter on fluid 
couplings and torque converters and rearranging the order of the chapters so 
that forces on immersed bodies are discussed prior to flow in open channels. An 
effort was made throughout this revision to clarify all discussions so that the user 
of the book could follow the text with a minimum of effort. 

The book is essentially '"self-contained." The treatment is such that an 
instructor generally need not resort to another reference to answer any question 
that a student might normally be expected to ask. This has required more 
detailed discussion than would have been necessary if the presentation of certain 
topics had been more superficial. A list of selected references is provided at the 
end of the book to serve as a guide for those students who wish to probe 
deeper into the various fields of fluid mechanics. The Appendix contains 
information on dimensions and units, conversion factors, physical properties of 
fluids, and other useful tables. 

For a brief course it is possible to omit certain chapters of the book without loss 
of continuity. For example. an excellent first course in fluid mechanics can be 
achieved by covering Chapters 1 through 8; however, Chapter 5 could be 
omitted if desired. One might wish to include Chapter 9 and/or 10 and part of 
Chapter 12 in a first course. The book can be used in a variety of ways. 
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Schools having stringent requirements in fluid mechanics might wish to cover the 
entire text in their course or courses required of all engineers. At other schools 
only partial coverage of the text might suffice for the course required of all 
engineers, and other portions of the text might be covered in a second course 
for students in a particular branch of engineering. The book has been used at a 
number of schools for courses in hydraulic machinery. 

The authors wish to acknowledge the many comments and suggestions that 
have been received from users of the book throughout the years. These have 
influenced the content and mode of presentation of the material. Further comments 
and suggestions are always welcome. 

ROBERT L. DAUGHERTY 

JOSEPH B. FRANZINI 



The Metric (SI) 
System of Units 

As of 1976 nearly every major country in the world, except the United States, 
was using, or had officially decided to use the modernized system of metric units 
as their official mode of measurement. Conversion to the metric system is being 
given serious consideration in the United States and it appears very likely that 
the metric system will be officially adopted in the United States within a few 
years. Because of the imminence of metrification in the United States, both sets 
of units-English and metric-are used in this edition of this book. Quantities 
are generally expressed in English units, followed by the corresponding metric 
units enclosed in parentheses. 

Since many of the users of this book may not be familiar with the metric 
system. some introductory remarks seem appropriate. In 1960, the Eleventh 
General Conference on Weights and Measures on the International System of 
L'nits. at which the United States was represented, adopted the Systeme 
I nternationale d'Unites (SI). The SI is a complete system of units based on the 
meter-kilogram-second (MKS) system. The SI is an absolute system where mass 
!kilogram) is a basic unit, and force (newton) is a derived unit. The analogous 
units in the English system are for mass (slug) and for force (pound). 

xi 



xii THE METRIC (SI) SYSTEM OF UNITS 

In terms of the basic dimensions, the basic units and their symbols are: 

Dimension English unit SI unit 

Length (L) Foot (ft) Meter (m) 
Mass (M) Slug Kilogram (kg) 
Time (T) Second (s) Second (s) 
Force (F) Pound (!b) Newton (N) 
Temperature 

Absolute Rankine ("R) Kelvin (K) 
Ordinary Fahrenheit (oF) Celsius (oC) 

A partial list of derived quantities encountered in fluid mechanics and their 
commonly used dimensions in terms of L, M, T, and F is as follows: 

Commonly 
used 

Quantity dimensions English unit SI unit 

Acceleration (a) LT- 2 ft/s 2 m/s 2 

Area (A) L2 ft 2 m2 

Density (p) MC 3 slug/ft 3 kg/m 3 

Energy, work or 
quantity of heat FL ft ·lb N·m 

Flowrate (Q) IJr1 cfs m 3/s 
Frequency T-1 cycle/s (s- 1 ) Hz (hertz) s- 1 

Kinematic viscosity (v) I3T-1 ft 2/s m2/s 
Power FLT- 1 ft ·lb/s N·mjs 
Pressure (p) FC 2 psi N/m 2 (Pa) 
Specific weight (I') FC 3 lb/ft 3 N/m 3 

Velocity (V) LT- 1 fps m/s 
Viscosity (!l) FTC 2 lb ·s/ft 2 N·s/m 2 

Volume (vol) IJ ft 3 m' 

Other derived quantities will be dealt with when they are encountered in the 
text. 

When dealing with unusually large or very small numbers, a series of prefixes 
have been adopted for use with SI units. The most commonly used prefixes are: 

Multiple Prefix Symbol 

109 Giga G 
106 Mega M 
103 Kilo k 
10-2 Centi c 
10-3 Milli m 
10-6 Micro ll 
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Hence Mg (megagram) represents 106 grams, mm (millimeter) represents 10- 3 

meters, and kN (kilonewton) represents 103 newtons. 
In the metric system lengths are commonly expressed in millimeters (mm), 

centimeters (em), meters (m) or kilometers (km), depending on the distance being 
measured. A meter is about 40 inches and a kilometer is approximately six-tenths 
of a mile. Areas are usually expressed in square centimeters (cm 2

), square 
meters (m2

) or hectares (100m x 100m= 104 m 2
), depending on the area being 

measured. The hectare used for measuring large areas is equivalent to about 2.5 
acres. A newton is the force required to accelerate one kilogram of mass one 
meter per second squared. That is, N = kg·mjs 2. A newton is equivalent to 
approximately 0.225 lb. 

In SI units energy, work or quantity of heat are ordinarily expressed in 
joules (J). A joule is equal to a newton-meter, i.e., J = N·m. The unit of power is 
the watt (W) which is equivalent to a joule per second, i.e., W = Jjs = N·mjs. 
Important quantities and conversion factors are presented on the backside of the 
front cover of the book and in Appendix 1. A list of symbols and abbreviations 
is presented on the following pages. 



List of Symbols 

The following table lists the letter symbols generally used throughout the text. 
Because there are so many more concepts than there are English and suitable 
Greek letters, certain conflicts are unavoidable. However, where the same letter 
has been used for different concepts, the topics are so far removed from each 
other that no confusion should result. Occasionally a particular letter will be 
used in one special case only. but this local deviation from the table will be 
clearly indicated, and the usage will not be employed elsewhere. The customary 
units of measurement for each item are given in the English system while the 
corresponding SI unit is given in parentheses or brackets. 

With respect to symbols, the authors have for the most part attempted to 
adhere to generally accepted ones. but not always. 

~ = any area. ft 2 (m 2
) 

= cross-sectional area of a stream normal to the velocity. ft 2 (m 2 ) 

= area in turbines or pumps normal to the direction of absolute velocit; of the fluid. 
ft 2 (m 2

) 

i, =area of a liquid surface as for a reservoir. acre (hectare) 

,, =area in turbines or pumps normal to the relative velocity of the fluid. ft 2 (m 2 ) 

= linear acceleration. fps s (m1s2 ) 



xvi LIST OF SYMBOLS 

B =an:. width. ft (m) 
=width of open channel at water surface, ft (m) 
= width of turbine runner impeller at periphery, in (em) 

h =bottom width of open channel. ft (m) 
C = any coefficient [dimensionless) 

= Chezy coefficient (ft 1 2s- 1 (m 1 2s- 1 )] 

C, = coefficient of contraction ' 
Cd =coefficient of discharge , for orifices, tubes. and nozzles [all dimensionless] 
C, = coefficient of velocity I 
C v =drag coefficient [dimensionless] 
C r = average friction-drag coefficient for total surface [dimensionless J 
CL =lift coefficient [dimensionless] 

c =acoustic (i.e., sonic) velocity (celerity), fps (m;s) 
cf =local friction-drag coefficient (dimensionless] 
cP =specific heat at constant pressure, fl'lb,(slug)(R) (N·m (kg)(K)] 
c, =specific heat at constant volume, ft·lbt(slug)(·R) (N·m.•(kg)(K)] 
D =diameter of pipe, turbine runner. or pump impeller, ft (m) 
E =specific energy in open channels= .r + V 2/2g, ft (m) 

= linear modulus of elasticity, psi (N/m 2
) 

E,. = volume modulus of elasticity, psi (Nim 2 ) 

e =efficiency ( = eh x e.., x e,.) for turbine or pump 
e" = hydraulic efficiency 
e..,= mechanical efficiency 
e, =volumetric efficiency 
F =any force, lb (N) 

F 0 = drag force. lb (N) 
FL = lift force, lb (N) 
f = friction factor for pipe flow (dimensionless] 
G =weight rate of flow= ;·Q. lb•s (N s) 
g =acceleration of gravity= 32.174 fps•s (standard) 

= 32.2 fps s (9.81 m s2
) for usual computation 

H =total energy head= pi;·+ z + V 2 ·2g. ft (m) 
= head on weir. ft (m) 

li =any head. ft (m) 
II =enthalpy per unit mass= gl + p/p. ft·lb/slug (N·m/kg) 
it= enthalpy per unit weight = I + p·;· fHb lb (N·m N) 

lit= head lost in friction. ft (m) 
hr =head put into flow by pump. ft (m) 
h, =head taken from flow by turbine. ft (m) 
1 = moment of inertia of area, ft 4 or in" (m•. em" or mm 4

) 

= internal thermal energy per unit weight. ft·lb lb (N·m N) 
i = internal thermal energy per unit mass. ft·lb slug (N·m kg) 

K =any constant (dimensionless] 
=equivalent volume modulus for fluid in an elastic pipe. psi (N m 2

) 

k =any loss coefficient (dimensionless] 
= c P c,. specific heat ratio [dimensionless) 

L =length. ft (m) 
L, = I ;_=scale ratio= LP L .. 

I= Prandtl mixing length. ft or in (em or mm) 
\1 = mass rate of flow. slug s (kg s) 

.\1 R = manometer reading. ft or in (m. em. or mm) 
"' = mass = W g. slugs (kg) 

= molecular weight 



NF = Froude number= Vl./ui 1 
N M =Mach number= VIc r . . 
N R ld b LV I LVI 

1 all dimensiOnless parameters 
R = eyno s num er = l_fJJJ1_ = v j 

Nw =Weber number= VIJulpL 
n =an exponent or any number in general 

= Manning coefficient of roughness 
= revolutions per minute, min- 1 

Ns = specific speed = nJii>.~Ih314 for pumps 
n5 = specific speed = nJbhp/h514 for turbines 

= n}Qih3
1
4 for pumps and fans 

NPSH = net positive suction head, ft (m) 
P =power, ft·lbls (N·mls) 

= height of weir crest above channel bottom, ft (m) 
=wetted perimeter, ft (m) 

p =fluid pressure, lblft 2 or psi (Nim 2 = Pa) 
Pa =atmospheric pressure, psia (Nim2 , abs) 
p,. =vapor pressure, psia (Nim 2, abs) 
Q =volume rate of flow, cfs (m 3ls) 

QH =heat transferred per unit weight of fluid, ft·lbllb (N·miN) 
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q =volume rate of flow per unit width of rectangular channel, cfs/ft (m 2/s) 
qH = heat transferred per unit mass of fluid, ft·lb;slug (N·m/kg) 
R =gas constant, ft-lb/(slug)CR) [N·m/(kg)(K)] 

Rh =hydraulic radius= AjP, ft (m) 
r =any radius, ft or in (m of em) 

r0 = radius of pipe, ft or in (m or em) 
S =slope of energy grade line= hJL 

S0 = slope of channel bed 
S.., = slope of water surface 

s = specific gravity of a fluid = ratio of its density to that of some standard 
tluid 

T = temperature 
= period of time for travel of a pressure wave, s 
= torque, ft·lb (N·m) 

t =time. s (s) 
=thickness, ft or in (m or em) 

U. U0 =uniform velocity of fluid, fps (mls) 
u =velocity of a solid body, fps (m/s) 

=linear velocity of a point on a rotating body= rw, fps (m/s) 
= local velocity of fluid, fps (m;s) 

u' =turbulent velocity fluctuation in the direction of flow, fps (m/s) 
V =mean velocity of fluid, fps (m;s) 

=absolute velocity of fluid in hydraulic machines, fps (m/s) 
~ = radial component of velocity= V sin ex= r sin p, fps (m;s) 
V. =tangential component of velocity= V cos ex= u + r cos p, fps (m/s) 
VL =total volume, ft 3 (m 3

) 

r =relative velocity in hydraulic machines, fps (m/s) 
=specific volume= lip, ft 3/slug (m 3lkg) 

r' = turbulent velocity fluctuation normal to the direction of flow, fps (m/s) 
u. r, w =components of velocity in general x, y, z directions, fps (mls) 

W =total weight, lb (N) 
=work, ft-lb (N·m) 

x =a distance, usually parallel to !low, ft (m) 
Y = expansion factor for compressible flow 
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y =a distance along a plane in hydrostatics, ft (m) 
= total depth of open channel flow, ft (m) 

Y, =critical depth of open channel flow, ft (m) 
y0 =depth for uniform flow in open channeL ft (m) 
Z =width of flow passage in pump or turbine, ft (m) 
z =elevation above any arbitrary datum plane, ft (m) 

7. (alpha)= angle between V and u in rotating machine~y, measured between their positive 
directions 

= kinetic energy correction factor 
p (beta)= angle between v and u in rotating machinery, measured between +rand + u 

=momentum correction factor 
r (gamma)= circulation, ft 2 s (m 2 s) 
;·(gamma)= specific weight, lb•ft 3 (N.'m 3

) 

i5 (delta)= thickness of boundary layer, in (mm) 
i5

1 
= thickness of laminar sublayer in turbulent flow. in (mm) 

£ (epsilon)= height of surface roughness, in (mm) 
=kinematic eddy viscosity, ft''s (m 2 s) 

'1 (eta)= eddy viscosity 
0 (theta)= any angle 

A (lambda)= model ratio = Lm LP 
11 (mu) =absolute or dynamic viscosity, lb·s ft 2 (N·s m 2

) 

\' (nu) =kinematic viscosity, = ll'P· ft 2 s (m 2 s) 
.':(xi)= vorticity, s- 1 

f1 (pi) = dimensionless parameter 
p (rho)= density, mass per unit volume=; g. slug ft 3 (kg m 3

) 

rJ (sigma)= surface tension, lb ft (N m) 
=cavitation factor in machines 

r (tau)= shear stress,_lb ft 2 (N m 2
) 

<P (phi)= ratio u, v•2gh for turbines and u2;v 2gh for centrifugal pumps 
<P,. =value of rjJ at point of maximum efficiency 

rjJ = velocity potential, ft 2 s (m 2 s) 
= function of 

tjJ (psi)= stream function, ft 2 s (m 2 s) 
(!J (omega) = angular velocity = u r = 2nn 60, rad s 

Values at specific points will be indicated by suitable subscripts. In the use of subscripts 1 and 2, 
the fluid is always assumed to flow from 1 to 2. 



abs =absolute 
atm =atmosphere 
avg =average 
bhp = brake horsepower 
Btu = British thermal units 
cfm =cubic feet per minute 
cfs = cubic feet per second 

fpm =feet per minute 
ft = foot or feet 

gpm = gallons per minute 
ha = hectare 
hp =horsepower 
hr = hour or hours 
Hz= hertz (cycles per second) 
m = inch or inches 
J =joules = N·m 

kg = kilograms= 10-' grams 
I= liter 

I b = pounds of force 
In= log, 

List of Abbreviations 

log= log 10 

m = meter or meters 
mb =millibars= w-J bar 

mb, abs = millibars absolute 
mm =millimeters= 10-J meter 

mph = miles per hour 
N = newton or newtons = kg·m. s2 

N m 2
, abs = newtons per square meter absolute 

P =poise 
Pa = Pascals = N m 2 

psi = pounds per square inch 
psia = pounds per square inch absolute 
psig = pounds per square inch gage 
rpm = revolutions per minute 
rps = revolutions per second 

s = second or seconds 
St =stoke 
W = watt or watts = J s 

whp =water horsepower 

xix 



CHAPTER 

ONE 
PROPERTIES OF FLUIDS 

Fluid mechanics is the science of the mechanics of liquids and gases and is based 
on the same fundamental principles that are employed in the mechanics of solids. 
Fluid mechanics is a more difficult subject, however, because with solids one deals 
with separate and tangible elements, while with fluids there are not separate ele
ments to be distinguished. 

1.1. DEVELOPMENT OF FLUID MECHANICS 

Fluid mechanics may be divided into three branches: fluid statics is the study of 
the mechanics of fluids at rest; kinematics deals with velocities and streamlines 
without considering forces or energy; and hydrodynamics is concerned with the 
relations between velocities and accelerations and the forces exerted by or upon 
fluids in motion. 

Classical hydrodynamics is largely a subject in mathematics, since it deals 
with an imaginary ideal fluid that is completely frictionless. The results of such 
studies, without consideration of all the properties of real fluids, are of limited 
practical value. Consequently, in the past, engineers turned to experiments, and 
from these developed empirical formulas which supplied answers to practical 
problems. This subject was called hydraulics. 

Empirical hydraulics was confined largely to water and was limited in scope. 
With developments in aeronautics, chemical engineering, and the petroleum 
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industry, the need arose for a broader treatment. This has led to the combining of 
classical hydrodynamics with the study of real fluids, and this new science is called 
fluid mechanics. In modern fluid mechanics the basic principles of hydrodynamics 
are combined with the experimental techniques of hydraulics. The experimental 
data can be used to verify theory or to provide information supplementary to 
mathematical analysis. The end product is a unified body of basic principles of 
fluid mechanics that can be applied to the solution of fluid-flow problems of 
engineering significance. 

1.2. DISTINCTION BETWEEN A SOLID AND A FLUID 

The molecules of a solid are closer together than those of a fluid. The attractive 
forces between the molecules of a solid are so large that a solid tends to retain its 
shape. This is not the case for a fluid, where the attractive forces between the 
molecules are smaller. There are plastic solids which flow under the proper cir
cumstances, and even metals may flow under high pressures. On the other hand, 
there are certain very viscous liquids which do not flow readily, and it is easy to 
confuse them with the plastic solids. The distinction is that any fluid, no matter 
how viscous, will yield in time to the slightest stress. But a solid, no matter how 
plastic, requires a certain magnitude of stress to be exerted before it will flow. 

Also, when the shape of a solid is altered by external forces, the tangential 
stresses between adjacent particles tend to restore the body to its original figure. 
With a fluid, these tangential stresses depend on the velocity of deformation and 
vanish as the velocity approaches zero. When motion ceases, the tangential 
stresses disappear and the fluid does not tend to regain its original shape. 

1.3. DISTINCTION BETWEEN A GAS AND A LIQUID 

A fluid may be either a gas or a liquid. The molecules of a gas are much farther 
apart than those of a liquid. Hence a gas is very compressible, and when all 
external pressure is removed, it tends to expand indefinitely. A gas is therefore in 
equilibrium only when it is completely enclosed. A liquid is relatively incompres
sible, and if all pressure, except that of its own vapor pressure, is removed, the 
cohesion between molecules holds them together, so that the liquid does not 
expand indefinitely. Therefore a liquid may have a free surface, i.e., a surface from 
which all pressure is removed, except that of its own vapor. 

A vapor is a gas whose temperature and pressure are such that it is very near 
the liquid phase. Thus steam is considered a vapor because its state is normally 
not far from that of water. A gas may be defined as a highly superheated vapor; 
that is, its state is far removed from the liquid phase. Thus air is considered a gas 
because its state is normally very far from that of liquid air. 

The volume of a gas or vapor is greatly affected by changes in pressure or 
temperature or both. It is usually necessary, therefore, to take account of changes 
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in volume and temperature in dealing with gases or vapors. Whenever significant 
temperature or phase changes are involved in dealing with vapors and gases, the 
subject is largely dependent on heat phenomena (thermodynamics). Thus fluid 
mechanics and thermodynamics are interrelated. 

1.4. DENSITY, SPECIFIC WEIGHT, SPECIFIC VOLUME, AND 
SPECIFIC GRAVITY 

The density p of a fluid is its mass per unit volume, while the specific weighty is its 
weight per unit volume. In the English engineers', or gravitational, system density 
p will be in slugs per cubic foot (kgjm 3 in SI units), which may also be expressed as 
units of lb·s 2/ft4 (N·s 2/m4 in SI units) (Appendix 1). 

Specific weight y represents the force exerted by gravity on a unit volume of 
fluid and therefore must have the units of force per unit volume, such as pounds 
per cubic feet (N/m 3 in SI units). 

Density and specific weight of a fluid are related as follows: 

y 
p=

g 
or y = pg (1.1) 

Since the physical equations are dimensionally homogeneous, the dimensions 
of density are 

. . dimensions of y 
DimensiOns of p =d. . f 

1menswns o g 

In SI units, 

mass 
volume 

slugs 
ft3 

Njm 3 N·s 2 mass kg 
Dimensions of p = -

1 2 = - 4- = = -
m s m volume m3 

It should be noted that density p is absolute since it depends on mass which is 
independent of location. Specific weight y, on the other hand, is not absolute for it 
depends on the value of the gravitational acceleration g which varies with 
location, primarily latitude and elevation above mean sea level. 

Specific volume v is the volume occupied by a unit mass of fluid. It is 
commonly applied to gases and is usually expressed in cubic feet per slug (m3 jkg 
in SI units). Specific volume is the reciprocal of density. Thus 

1 
(1.2) v=-

p 

Specific gravity s of a liquid is the ratio of its density to that of pure water at a 
standard temperature. Physicists use 39.2oF (4°C) as the standard, but engineers 
often use 60°F. In the metric system the density of water at 4°C is 1.00 g/cm3

, 

equivalent to 1000 kgjm 3
, and hence the specific gravity (which is dimensionless) 



4 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

has the same numerical value for a liquid in that system as its density expressed in 
g/cm 3 or in Mg/m 3

. 

The specific gravity of a gas is the ratio of its density to that of either hydrogen 
or air at some specified temperature and pressure, but there is no general agree
ment on these standards, and so they must be stated in any given case. 

Since the density of a fluid varies with temperature, specific gravities must be 
determined and specified at particular temperatures. 

Illustrative Example 1.1. The specific weight of water at ordinary pressure and temperature is 
62.4 lbjft 3 (9.81 kNjm 3

). The specific gravity of mercury is 13.55. Compute the density of water and the 
specific weight and density of mercury. 

i'water 
Pv.ater =-

g 

62.4 lbjft 3 9.81 kNjm 3 

= 1.94 slugs/ft 3 =-. ·-;-
2 

= 1.00 Mg/m 3 = 1.00 g/cm 3 

32.2 ft/s 2 9.81 m.1s 

l'mmucy = Smmucy Ywatec = 13.55(62.4) = 846 lb/ft 3 
= 13.55(9.81) = 133 kN/m 3 

Pmccmy = SmmucyPw'"" = 13.55(1.94) = 26.3 slugsjft 3 
= 13.55(1.00) = 13.55 Mgjm 3 

1.5. COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS 

Fluid mechanics deals with both incompressible and compressible fluids, that is, 
with fluids of either constant or variable density. Although there is no such thing 
in reality as an incompressible fluid, this term is applied where the change in 
density with pressure is so small as to be negligible. This is usually the case with 
liquids. Gases, too, may be considered incompressible when the pressure variation 
is small compared with the absolute pressure. 

Liquids are ordinarily considered incompressible fluids, yet sound waves, 
which are really pressure waves, travel through them. This is evidence of the 
elasticity of liquids. In problems involving water hammer (Sec. 13.6), it is necessary 
to consider the compressibility of the liquid. 

The flow of air in a ventilating system is a case where a gas may be treated as 
incompressible, for the pressure variation is so small that the change in density is 
of no importance. But for a gas or steam flowing at high velocity through a long 
pipeline, the drop in pressure may be so great that change in density cannot be 
ignored. For an airplane flying at speeds below 250 mph (100 m/s), the air may be 
considered to be of constant density. But as an object moving through the air 
approaches the velocity of sound, which is of the order of 700 mph (300 m/s ), the 
pressure and density of the air adjacent to the body become materially different 
from those of the air at some distance away, and the air must then be treated as a 
compressible fluid (Chap. 9). 

1.6. COMPRESSIBILITY OF LIQUIDS 

The compressibility of a liquid is inversely proportional to its volume modulus of 
elasticity. also known as the bulk modulus. This modulus· is defined as 
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Table 1.1. Bulk modulus of water, psi* 

Temperature, oF 
Pressure, 

I 300° psi a 32° 68° 120° 200° 

15 292,000 320,000 332,000 308,000 
1248,000 1,500 300,000 330,000 342,000 319,000 

4,500 317,000 348,000 362,000 338,000 i 271,000 
15,000 380,000 410,000 426,000 405,000 350,000 

* R. L. Daugherty, Some Physical Properties of Water and Other 
Fluids, Trans. ASM E, vol. 57, no. 5, July, 1935. These values can be trans
formed to meganewtons per square meter by multiplying them by 0.0069. 

Ev = -v dp/dv = -(v/dv) dp, where v =specific volume and p =unit pressure. 
As vjdv is a dimensionless ratio, the units of Ev and p are the same. The bulk 
modulus is analogous to the modulus of elasticity for solids; however, for fluids it 
is defined on a volume basis rather than in terms of the familiar one-dimensional 
stress-strain relation for solid bodies. 

In most engineering problems the bulk modulus at or near atmospheric pres
sure is the one of interest. The bulk modulus is a property of the fluid and is a 
function of temperature and pressure. In Table 1.1 are shown a few values of the 
bulk modulus for water. At any temperature it can be noted that the value of Ev 
increases continuously with pressure, but at any one pressure the value of Ev is a 
maximum at about 120oF (50°C). Thus water has a minimum compressibility at 
about 120°F (50°C). 

The volume modulus of mild steel is about 26,000,000 psi (170,000 MN/m 2
). 

Taking a typical value for the volume modulus of cold water to be 320,000 psi 
(2,200 MN/m 2

), it is seen that water is about 80 times as compressible as steel. The 
compressibility of liquids covers a wide range. Mercury, 1 for example, is approxi
mately 8 percent as compressible as water, while the compressibility of nitric acid 
is nearly six times greater than that of water. 

Table 1.1 shows that at any one temperature the bulk modulus does not vary 
a great deal for a moderate range in pressure, and thus as an approximation one 
may use 

V1 - Vz Pz- P1 
--------

vl E,. 

or ( 1.3) 

where Ev is the mean value of the modulus for the pressure range. 

1 "Handbook of Chemistry and Physics," Chemical Rubber Publishing Company, Cleveland, 
Ohio. 
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Assuming Ev to have a value of 320,000 ps~ it may be seen that increasing the 
pressure of water by 1,000 psi will compress it only 3 ~ 0 , or 0.3 percent, of its 
original volume. Therefore it is seen that the usual assumption regarding water as 
incompressible is justified. 

1.7. SPECIFIC WEIGHT OF LIQUIDS 

The specific weight of some common liquids at 68oF (20oC) and standard sea-level 
atmospheric pressure 1 with g = 32.2 ft/s 2 (9.81 m/s 2

) is given in Table 1.2. The 
specific weight of a liquid varies only slightly with pressure, depending on the 
bulk modulus of the liquid (Sec. 1.6); it also depends on temperature, and the 
variation may be considerable. Since specific weight y is equal to pg, the specific 
weight of a fluid depends on the local value of the acceleration of gravity in 
addition to the variations with temperature and pressure. The variation of the 
specific weight of water with temperature under normal conditions, where 

1 The standard sea-level atmospheric pressure is 14.7 psia (1,013 mbar, abs). A millibar is equiva
lent to 100 Njm 2

• The psia and mbar, abs represent absolute pressure (Sec. 2.4). 

Temperature, ·c 
63.2 ror-------'-11 or--------=2,;0 __ ..;3;::..0 ,--...:.4;.0--,-_...:.5-:;.0:._.,--...:.6::;:0:._--r-_...:.,70::._____,__:8:::;0::..., 

63.01----+----+----+---+-----+---+---1--=19.90 

'1= 62.4L---L 
;e 9.80 

~ 62.21-------l---------+-_:::-,..~-+----">...

M .E 
-~ 62.0 
3: 

9.75 ~ 
u 

;;::: 61.81-------l---------+----+-----
al 
c. 9.70 
(/) 61.6 

60.8 

60.6_~~-~~L-~-~~~_L~~~~~-L-~~~~~~o 
30 50 70 90 110 130 150 

Temperature, •f 

Figure 1.1. Specific weighty of pure water for condition where g = 32.2 ftjs 2 (9.81 m/s2
). 

..., 



Table 1.2. Specific weights of common liquids at 
68 F (20oC), 14.7 psia (1,013 mbar, abs) with 
q = 32.2 ftjs 2 (9.81 mfs2

) 

lb/ft 3 kN/m 3 

Carbon tetrachloride 99.4 15.6 
Ethyl alcohol 49.3 7.76 
Gasoline 42 6.6 
Glycerin 78.7 12.3 
Kerosene 50 7.9 
Motor oil 54 8.5 
Water 62.4 9.81 

\' 
\ 
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\ 

g = 32.2 ftjs 2 (9.81 m/s2
), is shown in Fig. 1.1. The presence of dissolved air, salts 

in solution, and suspended matter will increase these values a very slight amount. 
Ocean water may ordinarily be assumed to weigh 64.0 lb/ft3 

( 10.1 kN/m3
). Unless 

otherwise specified or implied by some specific temperature being given, the value 
to use for water in the problems in the text is y = 62.4lb/ft 3 (9.81 kN/m 3

). Under 
extreme conditions the specific weight of water is quite different. For example, at 
500°F (260oC) and 6,000 psi (42 MN/m 2

) the specific weight of water is 51 lb/ft 3 

(8.0 kN/m 3
). 

1.8. EQUATIONS OF STATE FOR GASES 

There is no such thing as a perfect gas, but air and other real gases that are far 
removed from the liquid phase may be so considered. For a perfect gas the 
equation of state is 

where p =absolute pressure 

p 
- = pv = RT 
p 

p =density (mass per unit volume) 
v =specific volume (1/p) 

(1.4) 

R =a gas constant, the value of which depends upon the particular gas 
T =absolute temperature in degrees Rankine or Kelvin1 

For air the value of R is 1,715 ft·lbj(slugWR) [287 N-m/(kg)(K)]. Since y = pg, 
Eq. ( 1.4) may also be written 

(1.5) 

1 Absolute temperature is measured above absolute zero. It may be recalled that absolute zero on 
the Fahrenheit scale occurs at approximately - 460oF (Oo Rankine). On the Celsius scale absolute zero 
is at -273°C (0 Kelvin). 
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from which the specific weight of any gas at any temperature and pressure can be 
computed if Rand g are known. 

Avogadro's law states that all gases at the same temperature and pressure 
under the action of a given value of g have the same number of molecules per unit 
of volume, from which it follows that the specific weight of a gas 1 is proportional 
to its molecular weight. Thus, if m denotes molecular weight, y2 /y 1 = m2 /m1 and 
from Eq. (1.5) y2 /y 1 = R 1 /R 2 for the same temperature, pressure, and value of g. 

Hence 

But this is strictly true for perfect gases only. The exact equation for any real gas is 
more complicated than Eq. (1.4), and hence mR is not strictly constant. For the 
perfect gas mR = 49,710 ft·lb;(slugWR) [8,312 N·m;(kg)(K)], while for actual 
gases the values of mR range between 48,700 and 49,800 ft·lb;(slug)(R) which 
is a variation of less than 3 percent. 

Values of mR and R may be found in texts on thermodynamics and in hand
books, but a value of R may always be estimated by dividing an assumed value of 
mR by molecular weight. Thus water vapor in the air, because of its low partial 
pressure, may be treated as a perfect gas with R = 49,710/18 = 2,760 ft·lb/(slug) 
(cR) [(462 N·m/(kg)(K)]. For steam at higher pressures this value is not applicable. 

As the pressure is increased and the temperature simultaneously lowered, a 
gas becomes a vapor, and as gases depart more and more from the gas phase and 
approach the liquid phase, the equation of state becomes much more complicated 
than Eq. ( 1.4) and specific weight and other properties must then be obtained 
from vapor tables or charts. Such tables and charts exist for steam, ammonia, sulfur 
dioxide, freon, and other vapors in common engineering use. 

Another fundamental equation for a perfect gas is 

pv" = p 1 v~ = constant (1.6) 

where p is absolute pressure, v ( = 1/ p) is specific volume, and n may have any 
value from zero to infinity, depending upon the process to which the gas is 
subjected. If the process is at constant temperature (isothermal), n = 1. If there is 
no heat transfer to or from the gas, the process is known as adiabatic. A frictionless 
adiabatic process is called an isentropic process and n is denoted by k, where 
k = cP;c,., the ratio of specific heat at constant pressure to that at constant 
volume. 2 For expansion with friction n is less than k and for compression with 
friction it is greater than k. Values for k may be found in Appendix 3, Table A.5, 
and in thermodynamics texts and in handbooks. For air and diatomic gases at 
usual temperatures, k may be taken as 1.4. 

1 The specific weight of air (molecular weight::::: 29.3) at 68'F (20'C) and 14.7 psia (1,013 mbar, 
abs) with g = J2.2 ft s 2 (9.81 m s2

) is 0.076 lb/ft 3 (0.012 kN;m 3
). 

2 Specific heat and other thermodynamic properties of gases are discussed in Section 9.1. 
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By combining Eqs. (1.4) and (1.6), it is possible to obtain other useful rela
tions such as 

{1.7) 

1.9. COMPRESSIBILITY OF GASES 

Differentiating Eq. {1.6) gives npv"- 1 dv + v" dp = 0. Inserting this value of dp in 
F., = - (vjdv) dp from Sec. 1.6 yields 

'o that for an isothermal process of a gas Ev = p and for an isentropic process 
E, = kp. 

Thus, at a pressure of 15 psia, the isothermal modulus of elasticity for a gas is 
15 psi, and for air in an isentropic process it is 1.4 x 15 psi. Assuming from 
Table 1.1 a typical value of the modulus of elasticity of cold water to be 
~~0.000 psi, it is seen that air at 15 psia is 320,000/15 = 21,000 times as compres
,Ihle as cold water isothermally, or 15,000 times as compressible isentropically. 
Tll!S emphasizes the great difference between the compressibility of normal atmo
,pheric air and that of water. 

Illustrative Example 1.2. (a) Calculate the density, specific weight, and specific volume of oxygen 
100 F and 15 psia (pounds per square inch absolute). (b) What would be the temperature and 

··:;:,,ure of this gas if it were compressed isentropically to 40 percent of its original volume? (c) If the 
~ -,,c:c's described in (b) had been isothermal, what would the temperature and pressure have been? 

(a) Molecular weight of oxygen (0 2 ) is 32, 

49,710 
R;;:; -- = 1,550 ft·lbi(slug)( R) 

32 

p 15 X 144 lbjft 2 

P = RT = [(550 ft·lb/(slugWR)J[(460 + 1-00)oRj 

p = 0.00248 slug/ft 3 

W!th y = 32.2 ftjs 2
, {' = pg = 0.08 lb/ft 3, 

1.0 3 
v = - = -- = 403 ft ;slug 

p 0.00248 

(h) pt·k = (J5 X 144)(403)14 = (p2 X 144)(0.4 X 403) 14 

p1 = 54.0 psia 

0.00248 
P2 =54 X 144 = pRT = -- (1550)(460 + Tl) 

0.40 
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(c) If isothermal, T2 = T1 = IOOoF and pv =constant, 

(J5 X 144}(403) = (p 2 X 144)(0.4 X 403) 

p2 = 37.5 psia 

Illustrative Example 1.3. Calculate the density, specific weight, and specific volume of chlorine gas 
at 25 C and pressure of 600 kNjm 2

, abs (kilonewtons per square meter absolute). 
Molecular weight of chlorine (Cl 2 ) = 71 

8,312 
R = 7J = 117 Nm/(kg)(K) 

p 600 kN/m 2 

P = R-T = [Jl7N·m/(kg)(K)][{273 + 25}i<.] = 17·2 kg/m
3 

With g = 9.81 m/s2
, y = pg = 169 Njm 3

, 

I I 
v=-= -=0.058 m3/kg 

p 17.2 

1.10. IDEAL FLUID 

An ideal fluid may be defined as one in which there is no friction; that is, its 
viscosity is zero. Thus the internal forces at any internal section are always normal 
to the section, even during motion. Hence the forces are purely pressure forces. 
Such a fluid does not exist in reality. 

In a real fluid, either liquid or gas, tangential or shearing forces always come 
into being whenever motion takes place, thus giving rise to fluid friction, because 
these forces oppose the movement of one particle past another. These friction 
forces are due to a property of the fluid called viscosity. 

1.11. VISCOSITY 

The viscosity of a fluid is a measure of its resistance to shear or angular deforma
tion. The friction forces in fluid flow result from the cohesion and momentum 
interchange between molecules in the fluid. The viscosities of typical fluids are 
shown in Figs. 1.2 and 1.3. As the temperature increases, the viscosities of all 
liquids decrease, while the viscosities of all gases increase. This is because the force 
of cohesion, which diminishes with temperature, predominates with liquids, while 
with gases the predominating factor is the interchange of molecules between the 
layers of different velocities. Thus a rapidly moving molecule shifting into a 
slower-moving layer tends to speed up the latter. And a slow-moving molecule 
entering a faster-moving layer tends to slow it down. This molecular interchange 
sets up a shear, or produces a friction force between adjacent layers. Increased 
molecular activity at higher temperatures causes the viscosity of gases to increase 
with temperature. 
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Consider two parallel plates (Fig. 1.4 ), sufficiently large so that edge condi
tions may be neglected, placed a small distance Y apart, the space between being 
filled with the fluid. The lower surface is assumed to be stationary, while the upper 
one is moved parallel to it with a velocity U by the application of a force F 
corresponding to some area A of the moving plate. Such a condition is approx
imated, for instance, in the clearance space of a flooded journal bearing (any radial 
load being neglected). 

Particles of the fluid in contact with each plate will adhere to it, and if the 
distance Y is not too great or the velocity U too high, the velocity gradient will be 
a straight line. The action is much as if the fluid were made up of a series of thin 
sheets, each of which would slip a little relative to the next. Experiment has shown 
that for a large class of fluids 

AU 
F~

y 

It may be seen from similar triangles in Fig. 1.4 that U/Y can be replaced by the 
velocity gradient dujdy. If a constant of proportionality f.1 is now introduced, the 
shearing stress r between any two thin sheets of fluid may be expressed by 

F U du 
r=~=f.1-=f.1-

A Y dy 
(1.8) 

Equation (1.8) is called Newton's equation of viscosity, and in transposed form 
it serves to define the proportionality constant 

r 
f.l=--

dujdy 
(1.9) 

which is called the coefficient of viscosity, the absolute viscosity, the dynamic visco
sity (since it involves force), or simply the viscosity of the fluid. 

It has been explained in Sec. 1.2 that the distinction between a solid and a 
fluid lies in the manner in which each can resist shearing stresses. A further 
distinction among various kinds of fluids and solids will be clarified by reference to 
Fig. 1.5. In the case of a solid, shear stress is proportional to the magnitude of the 
deformation; but Eq. (1.8) shows that in many fluids the shear stress is propor
tional to the time rate of (angular) deformation. 
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"' "' ~ 
"' 
"' C1> 
..c: 
"' I 
f. 

Elastic solid 

du/dy Figure 1.5 

A fluid for which the constant of proportionality (i.e., the viscosity) does not 
change with rate of deformation is said to be a Newtonian fluid and can be 
represented by a straight line in Fig. 1.5. The slope of this line is determined by the 
viscosity. The ideal fluid, with no viscosity, is represented by the horizontal axis, 
while the true elastic solid is represented by the vertical axis. A plastic which 
sustains a certain amount of stress before suffering a plastic flow can be shown by 
a straight line intersecting the vertical axis at the yield stress. There are certain 
non-Newtonian fluids 1 in which Jl varies with the rate of deformation. These are 
relatively uncommon, hence the remainder of this text will be restricted to the 
common fluids which obey Newton's law. 

In the case of two parallel plates (Fig. 1.4), if U is constant, the shear stress on 
both plates is the same if end conditions are neglected. And since r x (du/dy), the 
velocity gradient is constant throughout the fluid. However, for coaxial cylinders 
(Fig. 1.6) with rotative speed w constant, the shear stress on the inner cylinder will 
be larger than that on the outer because of the different radii, and thus the velocity 
gradient will not be constant across the gap. By equating the resisting torque T,. to 
the driving torque J:t, the relationship between du/dy at r 1 and r2 can be 
determined. As gap distance Y---> 0, du/dy---> U /Y = constant, so when the gap 
distance is very small, the velocity profile can be assumed to be a straight line. 

The dimensions of absolute viscosity are force per unit area divided by velo
city gradient. In the English gravitational, or engineers', system the dimensions of 
absolute viscosity are as follows: 

. . dimensions of r lbjft 2 
2 DimensiOns of Jl = ---------- = --- = lb·s/ft 

dimensions of du/dy fps/ft 

1 Typical non-Newtonian fluids include paints, sludges, and certain plastics. An excellent treatment 
of the subject may be found in W. L. Wilkinson, "NonNewtonian Fluids~" Pergamon Press, New 
York. 1960. 
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T, 

(a) (b) 

' ""re 1.6. Velocity profile, rotating coaxial cylinders with gap completely filled with fluid. (a) Inner 
· ~~~ rotating. (b) Outer cylinder rotating. Z is the dimension at right angles to the plane of the 

. _ . Resisting torque = driving torque and r x (dujdy). 

S I units, 

r 1 (2rrr 17)r 1 = r 2(2rrr 2 Zh 
(dujdy) 1 = (du/dy) 2h 2fr 1

2
) 

. . Njm 2 N·s 
DimensiOns of J1 = --- = --s-1 m2 

_-\ widely used unit for viscosity in the metric system is the poise (P), after 
? .•:,;euille, who was one of the first investigators of viscosity. The poise = 

J1 :\·s;m 2
. The centipoise (cP) ( = O.Ql P = mN·s/m 2) is frequently a more con

:::Jent unit. It has a further advantage in that the viscosity of water at 68.4°F is 
.:P Thus the value of the viscosity in centipoises is an indication of the viscosity 
:he fluid relative to that of water at 68.4°F. 

In many problems involving viscosity there frequently appears the value of 
. ,cosity divided by density. This is defined as kinematic viscosity v, so called 
:--:cause force is not involved, the only dimensions being length and time, as in 
·.:nematics. Thus 

J1 
V=-

p 
(1.10) 

I:: the English system, kinematic viscosity is usually measured in ft 2 /s while in the 
:::etric system the common units are cm 2 /s, also called the stoke (St), after G. G. 
Stokes. The centistoke (eSt) (0.01 St) is often a more convenient unit. 

The absolute viscosity of all fluids is practically independent of pressure for 
:he range that is ordinarily encountered in engineering work. For extremely high 
pressures the values are somewhat higher than those shown in Fig. 1.2. The kin
ematic viscosity of gases varies with pressure because of changes in density. 
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1.12. SURF ACE TENSION 

Capillarity 

Liquids have cohesion and adhesion, both of which are forms of molecular attrac
tion. Cohesion enables a liquid to resist tensile stress, while adhesion enables it to 
adhere to another body. 1 The attraction between molecules forms an imaginary 
film capable of resisting tension at the interface between two immiscible liquids or 
at the interface between a liquid and a gas. The liquid property that creates this 
capability is known as surface tension. The surface tension of liquids covers a wide 
range. Typical values of the surface tension of water are presented in Table 1.3. 
Capillarity is due to both cohesion and adhesion. When the former is ofless effect 
than the latter, the liquid will wet a solid surface with which it is in contact and 
rise at the point of contact; if cohesion predominates, the liquid surface will be 
depressed at the point of contact. For example, capillarity makes water rise in a 
glass tube, while mercury is depressed below the true level, as is shown by the 
insert in Fig. 1.7, which is drawn to scale and reproduced actual size. 

Capillary rise (or depression) in a tube is depicted in Fig. 1.8. From free-body 
considerations, assuming the meniscus is spherical and equating the lifting force 
created by surface tension to the gravity force, 

2nra- cos e = nr2 hy 

h = 2u cos e 
yr 

(1.11) 

1 In 1877 Osborne Reynolds demonstrated that a column of mercury ~ in. in diameter could 
withstand a tensile stress of 3 atm for a time but that it would separate upon external jarring of the 
tube. Liquid tension (said to be as high as 400 atm) accounts for the rise of water in the very small 
channels of xylem tissue in tall trees. For practical engineering purposes, however, liquids are assumed 
to be incapable of resisting any direct tensile stress. 

0.12 
h-capillary rise or depression, in. 

Figure 1.7. Capillarity in clean circular glass tubes. 

0.14 0.16 0.18 0.20 
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u 

Figure 1.8 

·'here a = surface tension in units of force per unit length 
}' = specific weight of liquid 
r = radius of tube 
h = capillary rise 

This expression can be used to compute the approximate capillary rise or 
j;:pression in a tube. If the tube is clean, e = oo for water and about 140° for 
--:1-:rcury. For tube diameters larger than! in (12 mm), capillary effects are negli
?lble. The curves 1 of Fig. 1.7 are for water or mercury in contact with air. If 
~1ercury is in contact with water, the surface-tension effect is slightly less than 
·'hen in contact with air. 

: The curve for tap water in Fig. 1.7 was determined experimentally at the California Institute of 
Tc.:hnology by R. G. Folsom. He found dirty water to give even slightly lower values. The curves for 
~ -~e water and for mercury were computed by methods suggested by N. K. Adam in "The Physics and 
· -.emistry of Surfaces," based upon the analysis of Lord Rayleigh in his "Scientific Papers," vol. VI, 

~ 350. 

Table 1.3. Surface tension of water 

English units SI units 

Surface Surface tension, u 
tension, 

F lb/ft oc mN/m = dyn/cm N/m 

32 0.00518 0 75.6 0.0756 
40 0.00514 10 74.2 0.0742 
60 0.00504 20 72.8 0.0728 
80 0.00492 30 71.2 0.0712 

100 0.00480 40 69.6 0.0696 
140 0.00454 60 66.2 0.0662 
180 0.00427 80 62.6 0.0626 
~12 0.00404 100 58.9 0.0589 
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Surface tension decreases slightly with increasing temperature. Surface
tension effects are generally negligible in most engineering situations; however, 
they may be important in problems involving capillary rise, the formation of 
drops and bubbles, the breakup of liquid jets, and in hydraulic model studies 
where the model is small. 

1.13. VAPOR PRESSURE OF LIQUIDS 

All liquids tend to evaporate or vaporize, which they do by projecting molecules 
into the space above their surfaces. If this is a confined space, the partial pressure 
exerted by the molecules increases until the rate at which molecules reenter the 
liquid is equal to the rate at which they leave. For this equilibrium condition the 
vapor pressure is known as the saturation pressure. 

Molecular activity increases with temperature, and hence saturation pressure 
increases with temperature. At any one temperature the pressure on the liquid 
surface may be higher than this value, but it cannot be any lower, as any slight 
reduction induces a rapid rate of evaporation known as boiling. Thus the satura
tion pressure may be known as the boiling pressure for a given temperature. 

The value of saturation vapor pressure is of practical interest in the case of 
liquids, for if the confining pressure on the liquid becomes less than this value, the 
liquid will vaporize. 1 The wide variation in vapor pressure of various liquids is 
shown in Table 1.4 and in Appendix 3, Table A.4. The very low vapor pressure 
of mercury makes it particularly suitable for use in barometers. Values for the 
vapor pressure of water at different temperatures are presented in Appendix 3, 
Table A.l. 

Illustrative Example 1.4. At approximately what temperature will water boil if the elevation is 
10.000 ft? 

From Appendix 3, Table A.3, the pressure of the standard atmosphere at 10,000-ft elevation is 
10.11 psia. From Appendix 3, Table A.1. the saturation pressure of water is 10.11 psia at about 193"F. 
Hence the water will boil at 193 F: this explains why it takes longer to cook at high elevations. 

1 Values of the saturation pressure for water for temperatures from 32 to 705.4°F may be found in 
J. H. Keenan. "Thermodynamic Properties of Water including Vapor, Liquid and Solid States," John 
Wiley & Sons. Inc .. New York, 1969, and in other steam tables. There are similar vapor tables 
published for ammonia. carbon dioxide, sulfur dioxide, and other vapors of engineering interest. 

Table 1.4. Vapor pressure of selected liquids at 68' F (20oC) 

psia N!m 1
, abs mbar, abs 

Mercury 0.000025 0.17 0.0017 
Water 0.339 2,340 23.4 
Kerosene 0.46 3.200 32 
Carbon tetrachloride 1.76 12.100 121 
Gasoline 8.0 55,000 550 
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PROBLEMS 1 

1.1. If a certain gasoline weighs 45 lb/ft 3 (7,000 Njm 3
), what are the values of its density, specific 

volume, and specific gravity relative to water at 60'F (Appendix 3)? 

(1.2. A certain gas weighs 0.10 lb/ft 3 (16 N/m 3
) at a certain temperature and pressure. What are the 

values of its density, specific volume, and specific gravity relative to air weighing 0.075 lb/ft 3 

(12 N/m 3 )? 

1.3. The specific weight of glycerin in 78.7 lb/ft 3
. Compute its density and specific gravity. What is its 

specific weight in kN/m 3 ? 

1.4. If the specific weight of a liquid is 8.0 kNjm 3
, what is its density" 

1.5. If the specific volume of a gas is 0.72 m3 /kg, what is its specific weight in N/m 3 ? 

1.6. Water in a hydraulic press is subjected to a pressure of 15,000 psi at 68'F. If the initial pressure is 
15 psi, what will be the percentage decrease in specific volume (Table 1.1)? 

t.7. At a depth of 5 miles in the ocean the pressure is 11,930 psi. Assume specific weight at the surface 
is 64 lb/ft 3 and that the average volume modulus is 340,000 psi for that pressure range. (a) What will 
be the change in specific volume between that at the surface and at that depth? (b) What will be the 
specific volume at that depth? (c) What will be the specific weight at that depth? 

1.8. (a) What is the percentage change in the specific volume in Prob. 1.7? (b) What is the percentage 
change in the specific weight in Prob. 1.7° 

1.9. To two significant figures what is the bulk modulus of water in kNjm 2 at 50oC under a pressure of 
30 MN/m 20 (Table 1.1.) 

1.10. Approximately what pressure must be applied to water to reduce its volume 2 percent? 

.-> 1.11. A vessel contains 3 ft 3 (85 f) of water at 50'F (looc) and atmospheric pressure. If it is heated to 
160' F (70'C) what will be the percentage change in its volume? What weight of water must be removed 
to maintain the volume at the original value? 

1.12. A cylindrical tank (diameter= 10 m and depth= 5.00 m) contains water at 20oc and is brimful!. 
If the water is heated to 50'C, approximately how much water will spill over the edge of the tank? 
(Fig. 1.1.) . 

, 1.13. y\ hydrogen-filled cellophane balloon of the type used in cosmic-ray studies is to be expanded to 
Its full size, which is a 100-ft-diameter sphere, without stress in the wall at an altitude of 150,000 ft. If 
the pressure and temperature at this altitude are 0.14 psia and - 6TF respectively, find the volume of 
hydrogen at 14.7 psia and 68'F which should be added on the ground. 

Jl.l4. If natural gas has a specific gravity of0.6 relative to air at 14.7 psia and 60°F, what are its specific 
weight and specific volume at that same pressure and temperature. What is the value of R for the gas? 

1.15 .. A gas at 40°C under a pressure of 20,000 mbar, abs has a unit weight of 340 N/m 3
. What is the 

value of R for the gas? What gas might this be? (Appendix 3, Table A.5.) 

l.l6. If water vapor in the atmosphere has a partial pressure of 0.50 psia (3,500 Pa) and the tempera
ture is 90°F (30"C), what is its specific weight? [Nate: By Dalton's law of partial pressures, the water 
vapor and the air both occupy the same space at the same temperature, but each exerts its own 
pressure as if the other were not present, and it is the partial pressure that is to be used in Eq. ( 1.4 ). The 
pressure read by a barometer is the sum of the partial pressures of the water vapor and of the air.] 

l.l7. If the barometer reads 14.5 psia in Prob. 1.16, what is the partial pressure of the air, and what is 
its specific weight? What is the specific weight of the atmosphere? (Note: Atmosphere here means the 

1
airplus the water vapor present.) 

; 1.18. :(a) Calculate the density, specific weight and specific volume of oxygen at 10'C and 
\m._k.-Njm 2

, abs. 

1 In some of the English unit problems the data are also given in parentheses in rounded SI units. 
Such problems may be1 solved using SI units rather than English units. 
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(b) If the oxygen is enclosed in a rigid container of constant volume, what will be the pressure if the 
temperature is reduced to -120oC? 

-- - ,:? 1.19. Calculate the density, specific weight and specific volume of air at 100oF (38oC) and 70 psia 
(4,800 mbar, abs). 

1.20. If 10 ft 3 (300 t) of carbon dioxide at 80oF (25oC) and 20 psia (140 kN/m 2
, abs) is compressed iso

thermally to 2 ft 3 (60 t), what is the resulting pressure? What would the pressure and temperature have 
been if the process had been isentropic? The isentropic exponent k for carbon dioxide is 1.28. 

__, 1.21. If 10 ft 3 of nitrogen at 30oC and 150 kN/m 2 is permitted to expand isothermally to 25 m\ what 
is the resulting pressure? What would the pressure and temperature have been if the process had been 
isentropic? The isentropic exponent k for nitrogen is 1.40. 

1.22. Prove that Eq. (1.7) follows from Eqs. (1.4) and (1.6). 

1.23. A liquid has an absolute viscosity of 4.8 x 10- 4 lb·s/ft 2 . It weighs 54lb/ft3 What are its absolute 
and kinematic viscosities in SI units? 

1.24. What is the ratio of the viscosity of water at a temperature of 70oF to that of water at 200°F? 
What is the ratio of the viscosity of the crude oil in Fig. 1.2 (s = 0.925) to that of the gasoline 
(s = 0.680), both being at a temperature of 60°F? In cooling from 300 to 80°F, what is the ratio of the 
change of the viscosity of the SAE 30 western oil to that of the SAE 30 eastern oil? 

1.25. At 60oF what is the kinematic viscosity of the gasoline in Fig. 1.3 the specific gravity of which is 
0.680? Give answer in both English and SI units. 

1.26. To what temperature must the fuel oil with the highest specific gravity in Fig. 1.2 be heated in 
order that its kinematic viscosity may be reduced to three times that of water at 40°F? 

1.27. The absolute viscosity of a certain diatomic gas is 0.0206 cP while its kinematic viscosity is 
22 eSt, both measured at 1,013 mbar, abs and 95oC. Calculate its approximate molecular weight, and 
suggest what gas it may be. (Note: mR for the perfect gas is theoretically 8,312 N·m/(kg)(K). Actual 
gases have values which depart slightly from this, but monatomic and diatomic gases are very close to 
it.) 

~ 1.28. Compare the ratio of the absolute viscosities of air and water at 70oF with that of their kinematic 
viscosities under the same temperature and at 14.7 psia. 

t}9. :-A hydraulic lift of the type commonly used for greasing automobiles consists of a 10.000-in-diam 
ram which slides in a 10.006-in-diam cylinder, the annular space being filled with oil having a kinema
tic viscosity of0.004 ft 2/s and specific gravity of0.85. If the rate of travel of the ram is 0.5 fps, find the 
frictional resistance when 10 ft of the ram is engaged in the cylinder. 

1.30. A journal bearing consists of a 6.00-in shaft in a 6.0 l-in sleeve 8 in long, the clearance space 
(assumed to be uniform) being filled with SAE 30 eastern lubricating oil at l00°F. Calculate the rate at 
which heat is generated at the bearing when the shaft turns at 100 rpm. Express answer in Btu/hr. 

1.31. Repeat Prob. 1.30 for the case where the sleeve has a diameter of 6.48 in. Compute as accurately 
as possible the velocity gradient in the fluid at the shaft and sleeve. 

1.32. A journal bearing consists of a 8.00-cm shaft in an 8.03-cm sleeve 10 em long, the clearance space 
(assumed to be uniform) being filled with SAE 30 western lubricating oil at 40 C. Calculate the rate at 
which heat is generated at the bearing when the shaft turns at 120 rpm. Express answer in kN·m/s, Jjs, 
Btu/hr, ft·lb/s, and hp. 

1.33. A space of l-in width between two large plane surfaces is filled with SAE 30 western lubricating 
oil at 80'F. What force is required to drag a very thin plate of 4-ft 2 area between the surfaces at a speed 
of 20 fpm if this plate is equally spaced between the two surfaces? If it is at a distance of 0.33 in from 
one surface? 

7 1.34. In using a rotating-cylinder viscometer, a bottom correction must be applied to account for the 
drag on the flat bottom of the inner cylinder. Calculate the theoretical amount of this torque correc
tion, neglecting centrifugal effects, for a cylinder of diameter d, rotated at a constant angular velocity w, 
in a liquid of viscosity J.l., with a clearance t-.h between the bottom of the inner cylinder and the floor of 
the outer one. 
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1.35. Assuming a velocity distribution as shown in the diagram, which is a parabola having its vertex 
4 in from the boundary, calculate the velocity gradients for y = 0, 1, 2, 3, and 4 in. Also calculate the 
shear stresses at these points if the fluid viscosity is 400 cP. 

Umax = 8 fps 

1.36. In the figure, oil of viscosity Ji. fills the gap of thickness Y. Calculate the torque T required to 
rotate the truncated cone at constant speed w. Neglect fluid stress exerted on the circular bottom. 

Problem 1.36 

1.37. Distilled water at lOoC stands in a glass tube of8.0-mm diameter at a height of25.0 mm. What is 
the true static height? 

1.38. Tap water at 68°F stands in a glass tube of 0.32-in diameter at a height of 4.50 in. What is 
~'true static height? 

( 1.3). Use Eq. (1.11) to compute the capillary rise of water to be expected in a 0.20-in-diameter tube. 
'--1\'ssume pure water at 68°F. Compare result with Fig. 1.7. 

1.40. Use Eq. (1.11) to compute the capillary depression of mercury (8 = 140°) to be expected in a 0.20-
in-diameter tube. At 68oF the surface tension of mercury is 0.0318 lb/ft. Compare result with Fig. 1.7. 

1.41. Derive an expression for capillary rise (or depression) between two vertical parallel plates. 

1.42. At approximately what temperature will water boil in Mexico City (elevation 7,400 ft)? (See 
Appendix 3.) 

1.43. Water at 100oF is placed in a beaker within an airtight container. Air is gradually pumped out of 
the container. What reduction below standard atmospheric pressure of 14.7 psia must be achieved 
before the water boils? 

1.44. At what pressure in millibars absolute will 40oC water boil? 



CHAPTER 

TWO 
FLUID STATICS 

There are no shear stresses in fluids at rest; hence only normal pressure forces are 
present. The average pressure intensity is defined as the force exerted on a unit 
area. IfF represents the total force on some finite area A, while dF represents the 
force on an infinitesimal area dA, the pressure is 

dF 
p=dA (2.1) 

If the pressure is uniform over the total area, then p = F I A. In the English system, 
pressure is generally expressed in pounds per square inch (psi) or pounds per 
square foot (lb/ft 2

) while in SI units the N/m 2 (Pascal) or kN/m 2 is commonly 
used. 

2.1. PRESSURE THE SAME IN ALL DIRECTIONS 

In a solid, because of the possibility of tangential stresses between adjacent par
ticles, the stresses at a given point may be different in different directions. But in a 
fluid at rest, no tangential stresses can exist, and the only forces between adjacent 
surfaces are pressure forces normal to the surfaces. Therefore t!-Je pressure at any 
point in a fluid at rest is the same in every direction. 

This can be proved by reference to Fig. 2.1, a very small wedge-shaped ele
ment of fluid at rest whose thickness perpendicular to the plane of the paper is 

22 
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Pr dy dz 

dx 

-y(lj2)dxdydz 

Figure 2.1 

constant and equal to dy. Let p be the average pressure in any direction in the 
plane of the paper, let rx be defined as shown, and let Px and Pz be the average 
pressures in the horizontal and vertical directions. The forces acting on the ele
ment of fluid, with the exception of those in the y direction on the two faces 
parallel to the plane of the paper, are shown in the diagram. For our purpose, 
forces in the y direction need not be considered. Since the fluid is at rest, no 
tangential forces are involved. As this is a condition of equilibrium, the sum of the 
force components on the element in any direction must be equal to zero. Writing 
such an equation for the components in the x direction, p dl dy cos rx -
Px dy dz = 0. Since dz = dl cos rx, it follows that p = Px. Similarly, summing up 
forces in the z direction gives Pz dx dy - p dl dy sin rx - ~y dx dy dz = 0. The 
third term is of higher order than the other two terms and may be neglected. From 
this it follows that p = Pz. It can also be proved that p = Py by considering a 
three-dimensional case. The results are independent of rx; hence the pressure at 
any point in a fluid at rest is the same in all directions. 

2.2 VARIATION OF PRESSURE IN A STATIC FLUID 

Consider the differential element of static fluid shown in Fig. 2.2. Since the element 
is very small, we can assume that the density of the fluid within the element is 
constant. Assume the pressure at the center of the element is p and that the 
dimensions of the element are h, c5y and c5z. 1 The forces acting on the fluid 
clement in the vertical direction are the body force, the action of gravity on the 
mass within the element, and the surface forces transmitted from the surrounding 
tluid and acting at right angles against the top, bottom, and sides of the element. 
Since the fluid is at rest, the element is in equilibrium and the summation offorces 
acting on the element in any direction must be zero. If forces are summed up in 
the horizontal direction, that is, x or y, the only forces acting are the pressure 
forces on the vertical faces of the element. To satisfy L F x = 0 and L F Y = 0, 
the pressure on the opposite vertical faces must be equal. Thus opjox = op/oy = 0 
for the case of the fluid at rest. 

1 In this instance a left-handed coordinate system is employed. Hence + x is horizontally to the 
right and + z is vertically upwards. 



24 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 
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Figure 2.2 

Summing up forces in the vertical direction and setting equal to zero, 

L Fz = p ---- C5x C5y- p +-- C5x C5y- y C5x C5y (5z = 0 ( 
op Jz) ( op C5z) 
oz 2 oz 2 

This results in opjoz = - y, which, since pis independent of x andy, can be written 
as 

dp 

dz 
-y (2.2) 

This is the general expression that relates variation of pressure in a static fluid to 
vertical position. The minus sign indicates that as z gets larger (increasing eleva
tion), the pressure gets smaller. 

To evaluate pressure variation in a fluid at rest one must integrate Eq. (2.2) 
between appropriately chosen limits. For incompressible fluids (y =constant), 
Eq. (2.2) can be integrated directly. For compressible fluids, however, y must be 
expressed algebraically as a function of z or p if one is to determine pressure 
accurately as a function of elevation. The variation of pressure in the earth's 
atmosphere is an important problem, and several approaches are iiiustrated in the 
following example. 

Illustrative Example 2.1. Compute the atmospheric pressure at elevation 20,000 ft, considering 
the atmosphere as a static fluid. Assume standard atmosphere at sea level. Use four methods: (a) air of 
constant density; (b) constant temperature between sea level and 20,000 ft; (c) isentropic conditions; 
and (d) air temperature decreasing linearly with elevation at the standard lapse rate of0.00356°F/ft. 

From Appendix 3, Table A.2, the conditions of the standard atmosphere at sea level are 
T = 59 F. p = 14.7 psia, y = 0.076 lb ft 3 



(a) Constant density: 

dp 
-~ = ~y 
dz 

dp = ~y dz 

p~pl = ~y(z~zl) 
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p z 

J dp = ~y J dz 
Pt za 

p = 14.7 x 144 ~ 0.076(20,000) = 600 lb/ft2 , abs = 4.15 psia 

(b) Isothermal: 

(c) Isentropic: 

h P P1 ·r . pv = constant, ence - =- 1 g JS constant 

dp 
---= ~y 
dz 

dp Y1 
--- = ~ --dz 
P P1 

Y Y1 

where 

( ~E = In JJ = ~ ~ ( dz = ~ ~ (z ~ z 1) 

P• P P1 P1 z, P1 

!
1 

= exp [ ~ (~;)(z ~ z1}] 

p = 14.7 exp ~- -~~ (20,000} = 7.18 ps1a [ 
0.076 l . 

14.7 X 144 

p 
pvt.4 = -=constant pl.4 hence _!_ __ = constant = !2.. 

yl.4 yJ.4 

dp 
-- = ~y 

dz ( 
p )0.715 

where y = y1 ~ 

p z J p-o.115 dp = ~y1 p1 o.115 J dz 
PI Zl 

p
0

·
285 = (14.7 X 144)0

·
285 ~ 0.285(0.076)(14.7 X 144t 0

·715(20,000) 

p = 950 Ib/ft 2
, abs = 6.60 psia 

(d) Temperature decreasing linearly with elevation: 

T = (460 +59)+ Kz 

dT = K dz 

dp 
-= ~y 
dz 

hence 

where 

where 

dT 
dz=-

K 

rl Tip ·r . y = ~- 1 g IS constant 
Tpl 
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( dp = - /_J_T1 I' T d~ 
·p, p p1 K·T, T 

( 

519 )(0 076)(519) 14.7(144)(-0.00356) 

p = 14.7 ... = 6.8 psia (470 mbar, abs) 
447.8 

The latter approach corresponds to the standard atmosphere, Appendix 
3, Table A.3, where it is assumed the temperature varies linearly from 59oF 
(288 K) at sea level to -69.7cF (216.5 K) at elevation 36,150 ft (11,000 m). This 
region of the atmosphere is known as the troposphere. Beyond elevation 36,150 ft 
( 11,000 m) and up to 80,000 ft (24,000 m) (stratosphere) the temperature has been 
observed to be approximately constant at - 69.7oF (216.5 K). This standard 
atmosphere is generally used in design calculations where the performance of 
high-altitude aircraft is of interest; it serves as a good approximation of conditions 
to be expected in the atmosphere. 

In Illustrative Example 2.la it was shown that, for the case of an incompres
sible fluid, 

p-p1 =-~·(z-zJ) (2.3) 

where p is the pressure at an elevation z. This expression is generally applicable to 
liquids since they are only slightly compressible. Only where there are large 
changes in elevation, as in the ocean, need the compressibility of the liquid be 
considered, to arrive at an accurate determination of pressure variation. For small 
changes in elevation, Eq. (2.3) will give accurate results when applied to gases. 

For the case of a liquid at rest, it is convenient to measure distances vertically 
downward from the free liquid surface. If h is the distance below the free liquid 
surface and if the pressure of air and vapor on the surface is arbitrarily taken to be 
zero, Eq. (2.3) can be written as 

p = yh (2.4) 

As there must always be some pressure on the surface of any liquid, the total 
pressure at any depth his given by Eq. (~.4) plus the pressure on the surface. In 
many situations this surface pressure may be disregarded, as pointed out in 
Sec. 2.4. 

From Eq. (2.4) it may be seen that all points in a connected body of constant 
density fluid at rest are under the same pressure if they are at the same depth 
below the liquid surface (Pascal's law). This indicates that a surface of equal 
pressure for a liquid at rest is a horizontal plane. Strictly speaking, it is a surface 
everywhere normal to the direction of gravity and is approximately a spherical 
surface concentric with the earth. For practical purposes a limited portion of this 
surface may be considered a plane area. 
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2.3. PRESSURE EXPRESSED IN HEIGHT OF FLUID 

In Fig. 2.3 imagine an open tank of liquid upon whose surface there is no pressure, 
though in reality the minimum pressure upon any liquid surface is the pressure of 
its own vapor. Disregarding this for the moment, by Eq. (2.4) the pressure at any 
depth h is p = yh. If y is assumed constant, there is a definite relation between p 

and h. That is, pressure (force per unit area) is equivalent to a height h of some 
fluid of constant specific weight i'· It is often more convenient to express pressure 
in terms of a height of a column of fluid rather than in pressure per unit area. 

Even if the surface of the liquid is under some pressure, it is necessary only to 
convert this pressure into an equivalent height of the fluid in question and add this 
to the value of h shown in Fig. 2.3, to obtain the total pressure. 

The preceding discussion has been applied to a liquid, but it is equally pos
sible to use it for a gas or vapor by specifying some constant specific weight y for 
the gas or vapor in question. Thus pressure p may be expressed in the height of a 
column of any fluid by the relation 

(2.5) 

This relationship is true for any consistent system of units. If p is in pounds 
per square foot, y must be in pounds per cubic foot, and then h will be in feet. In SI 
units, p may be expressed in kilonewtons per square meter, in which case if}' is 
expressed in kilonewtons/cubic meter, h will be in meters. When pressure is ex
pressed in this fashion, it is commonly referred to as pressure head. Because 
pressure is commonly expressed in pounds per square inch (or kN/m2 in SI units), 
and as the value of y for water is usually assumed to be 62.4 lb/ft 3 (9.81 kN/m 3

), a 
convenient relationship is 

144 x psi . 
h(ft of H 20) = ~4 = 2.308 x ps1 

or 
kN/m 2 

h(m of H 20) = 
9

_
81

- = 0.102 x kN/m 2 

Liquid y 

Figure 2.3 
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It IS convenient to express pressures occurring in one fluid in terms of height of 
another fluid, e.g., barometric pressure in millimeters of mercury. 

Equation (2.3) may be expressed as follows: 

z + [J_ = z1 + Pt =constant 
y y 

(2.6) 

This shows that for incompressible fluid at rest the summation of the elevation z at 
any point in a fluid plus the pressure head pjy at that point is equal to the sum of 
these two quantities at any other point. The significance of this statement is that, 
m a fluid at rest with an increase in elevation, there is a decrease in pressure head, 
and vice versa. This concept is depicted in Fig. 2.4. 

2A. ABSOLUTE AND GAGE PRESSURES 

I:' pressure is measured relative to absolute zero, it is called absolute pressure; 
when measured relative to atmospheric pressure as a base, it is called gage pres
<ure. This is because practically all pressure gages register zero when open to the 
J :mosphere and hence measure the difference between the pressure of the fluid to 
"h1ch they are connected and that of the surrounding air. 

If the pressure is below that of the atmosphere, it is designated as a vacuum 
:: :".d Its gage value is the amount by which it is below that of the atmosphere. What 
~ ..:ailed a .. high vacuum" is really a low absolute pressure. A perfect vacuum 
.:.. ould correspond to absolute zero pressure. 

All values of absolute pressure are positive, since a negative value would 
::-:J1cate tension, which is normally considered impossible in any fluid. 1 Gage 
pressures are positive if they are above that of the atmosphere and negative if they 
are vacuum (Fig. 2.5). 

1 For an exception to this statement, see the footnote on p. 16. 
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From the foregoing discussion it can be seen that the following relation holds: 

Pabs = Patm + Pgage (2.7) 

where Pgage may be positive or negative (vacuum). 
The atmospheric pressure is also called the barometric pressure and varies 

with the altitude. Also, at a given place it varies slightly from time to time because 
of changes in meteorological conditions. 

In thermodynamics it is essential to use absolute pressure, because most 
thermal properties are functions of the actual pressure of the fluid, regardless of 
the atmospheric pressure. For example, the equation of state of gas [Eq. (1.4)] is 
one in which absolute pressure must be used. In fact, absolute pressures must be 
employed in most problems involving gases and vapors. 

The properties of liquids are usually not much affected by pressure, and hence 
gage pressures are commonly employed in problems dealing with liquids. Also, it 
will usually be found that the atmospheric pressure appears on both sides of an 
equation and hence cancels. Thus the value of atmospheric pressure is usually of 
no significance when dealing with liquids, and for this reason as welL gage pres
sures are almost universally used with liquids. About the only case where the 
absolute pressure of a liquid needs to be considered is where conditions are such 
that the pressure may approach or equal the saturated vapor pressure. Through
out this text all numerical pressures will be understood to be gage pressures unless 
specifically given as absolute values. 

2.5. BAROMETER 

The absolute pressure of the atmosphere is measured by the barometer. If a tube 
such as that in Fig. 2.6 has its lower end immersed in a liquid which is exposed to 
the atmospheric pressure, and if air is exhausted from the tube, the liquid will rise 
in it. If the air were completely exhausted, the only pressure on the surface of the 
liquid in the tube would then be that of its own vapor pressure and the liquid 
would have reached its maximum height. 



JO FLUD MECHAJ';JCS WITH ENGINEERING APPLICATIONS 

Tube of 
cross-sectional 

Y area A 

Figure 2.6 

From concepts developed in Sec. 2.2 the pressure at 0 within the tube and 
at a at the surface of the liquid outside the tube must be the same; that is, 
p 0 = Pa. From the conditions of statical equilibrium of the liquid above 0 in the 
tube of cross-sectional area A (Fig. 2.6). 

PatmA- PvaporA- yAy= 0 

Patm = /'Y + Pvapor (2.8) 

If the vapor pressure on the surface of the liquid in the tube were negligible, then 
we should have 

Patm = I'Y 

The liquid employed for barometers is usually mercury, because its density is 
sufficiently great to enable a reasonably short tube to be used, and also because its 
vapor pressure is negligibly small at ordinary temperatures. If some other liquid 
were used, the tube necessarily would be so high as to be inconvenient and its 
vapor pressure at ordinary temperatures would be appreciable; hence a nearly 
perfect vacuum at the top of the column would not be attainable. The height 
attained by the liquid would consequently be less than the true barometric height 
and would necessitate applying a correction to the reading. When using a mercury 
barometer, to get as accurate a measurement of atmospheric pressure as possible, 
corrections for capillarity and vapor pressure should be applied to the reading. 

Since atmospheric pressure at sea level is so widely used, it is well to have in 
mind equivalent forms of expression. Application of Eq. (2.5) shows that sea-level 
atmospheric pressure may be expressed as follows: 

14.7 psia or 

29.9 in of Hg or 

101.3 kN/m 2
, abs (1,013 mbars, abs) 

760 mm of Hg (0.76 m of Hg) 

33.9 ft of H 20 or 

These are approximate equivalents and accurate enough for most engineering 
work. 



FLUID STATICS 31 

2.6. MEASUREMENT OF PRESSURE 

There are many ways by which pressure in a fluid may be measured. Some are 
discussed below. 

Bourdon Gage 

Pressures or vacuums are commonly measured by the bourdon gage of Fig. 2.7. In 
this gage a curved tube of elliptical cross section will change its curvature with 
changes in pressure within the tube. The moving end of the tube rotates a hand on 
a dial through a linkage system. A pressure and vacuum gage combined into one is 
known as a compound gage and is shown in Fig. 2.8. The pressure indicated by the 
gage is assumed to be that at its center. If the connecting piping is filled completely 
with fluid of the same density as that in A of Fig. 2.7 and if the pressure gage is 
graduated to read in pounds per square inch, as is customary, then 

( ') d. ( ') yz p A psi = gage rea mg psi + !44. 

where I' is expressed in pounds per cubic foot and z in feet. 
A vacuum gage, or the negative-pressure portion of a compound gage, Is 

traditionally graduated to read in inches or mm of mercury. For vacuums, 

. f H d' (' f H ) yz(29.9) m o g vacuum at A= gage rea mg m o g vacuum - -~--
144 X 14.7 

Here, once again, it is assumed that this fluid completely fills the connecting tube 
of Fig. 2.7. The elevation-correction terms, i.e., those containing z, may be positive 
or negative, depending on whether the gage is above or below the point at which 
the pressure determination is desired. The expressions given are for the situation 
depicted in Fig. 2.7. When measuring gas pressures, the elevation correction terms 
are generally negligible. 

The above expressions, when written in SI units, require no conversion fac
tors; however, care must be taken in dealing with decimal points when adding 
terms. 

Fluid with 
spec. wt. 'Y 

Figure 2.7. Bourdon gage. 
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Piezometer Column 

Figure 2.8. Compound pressure and vacuum gage. Pres
sures in pounds per square inch, vacuums in inches of 
mercury. 

A piezometer column is a simple device for measuring moderate pressures of 
liquids. It consists of a tube (Fig. 2.9) in which the liquid can freely rise without 
overflowing. The height of the liquid in the tube will give the value of the pressure 
head directly. To reduce capillary error the tube diameter should beast least 0.5 in 
(12 mm). 

If the pressure of a flowing fluid is to be measured, special precautions should 
be taken in making the connection. The hole must be drilled absolutely normal to 
the interior surface of the wall, and the piezometer tube or the connection for any 
other pressure-measuring device must not project beyond the surface. All burrs 
and surface roughness near the hole must be removed, and it is well to round the 
edge of the hole slightly. Also, the hole should be small, preferably not larger than 
-fJ in (3 mm). 

p 
T 

Figure 2.9. Piezometer (for measuring p/y in liquids only). 
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Simple Manometer 

Since the open piezometer tube is cumbersome for use with liquids under high 
pressure and cannot be used with gases, the simple manometer or mercury U-tube 
of Fig. 2.10 is a convenient device for measuring pressures. To determine the 
pressure at A, one may write a gage equation based on the fundamental relations 
of hydrostatic pressures [Eq. (2.3)]. Although any units of pressure or head may be 
used in the gage equation, it is generally advantageous to express all terms in feet 
(or meters) of the fluid whose pressure is to be measured. Thus, if s is defined as 
sM /sF, the ratio of the specific gravity (or density) 1 of the manometer or gage fluid 
to that of the fluid whose pressure is being measured, the pressure head at point C 
is sy. This is also the head at B, while the head at A is greater than this by z, 
assuming the fluid in the connecting tube A' B is of the same specific weight as that 
of the fluid at A. For this simple case the head at A can be written down directly, 
but for more complicated gages it is helpful to commence the equation at the open 
end of the manometer with the pressure head there, then proceed through the tube 
to A, adding terms when descending and subtracting when ascending, equating 
the result to the head at A. Thus, for this example (Fig. 2.10), 

0 PA + sy + z =
y 

If the absolute-pressure head at A is desired, then the zero of the first term will 
be replaced by the atmospheric-pressure head expressed in feet (or meters) of the 
fluid whose pressure is to be measured. For measuring the pressure in liquids, an 
air-relief valve V (Fig. 2.10) will provide a means for the escape of gas should any 

1 In SI units the mass density of a liquid when expressed in grams per cubic centimeter has the 
same numerical value as the specific gravity. 

v 

i 
y 
I 

' 
B - c-J-

Figure 2.10. Open-end manometer (for measuring PlY in 
liquids or gases). 
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Figure 2.11 

become trapped in tube A' B. If the fluid in A is a gas, the pressure head contribu
tion from the distance z is generally negligible and can be neglected because of the 
relatively small specific gravity (or density) of the gas. If desired, the analysis of 
Eq. (2.9) could have been accomplished by expressing the terms in units of pres
sure rather than pressure head. 

In measuring a vacuum, for which the arrangement in Fig. 2.11 might be used, 
the resulting gage equation, subject to the same conditions as in the preceding 
case, is 

0- sy + z = PA 
')' 

(2.10) 

Again, it would simplify the equation if one were measuring pressure in a gas 
because the z term could be neglected. In measuring vacuums in liquids the 
arrangement in Fig. 2.12 is advantageous since gas and vapors cannot become 
trapped in the tube. For this case 

p A= - (z + sy) 
y 

(2.11) 

Although mercury is generally used as the measuring fluid in the simple 
manometer, other liquids can be used. As the specific gravity of the measuring 
fluid approaches that of the fluid whose pressure is being measured, the reading 
becomes larger for a given pressure, thus increasing the accuracy of the instru
ment, provided the specific gravities are accurately known. 

Figure 2.12. Negative-pressure manometer. 
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Differential Manometers 

In many cases only the difference between two pressures is desired, and for this 
purpose differential manometers, such as shown in Fig. 2.13, may be used. In 
Fig. 2.13a the measuring fluid is of greater density than that of the fluid whose 
pressure difference is involved. If the fluids in A and B (Fig. 2.13a) are of the same 
density, 

and 

Hence 

PA Po --zA-sy+z0 =-
y y 

PA Po 
-- - - = Z A - Z o + sy 
y y 

E:i_Po= -y+sy=(s-1)y 
y y 

where s = sM /sF as before. 

(2.12) 

Equation (2.12) is applicable only if A and Bare at the same elevation. If their 
elevations are different, an elevation-difference term must be added to the equa
tion. It should be emphasized that by far the most common mistake made in 
working differential-manometer problems is to omit the s - 1 multiplier for the 
gage difference y. The reason for this term is that the effect of the column of fluid of 
specific gravity sM between the levels of A' and B' (distance y) is offset by the effect 
of a column of fluid of specific gravity sF of the same length in the other leg of the 
tube. 

The differential manometer, when used with a heavy liquid such as mercury, is 
suitable for measuring large pressure differences. For a small pressure difference a 

s=sM/sF I 
I 

y 

A' 
I 

! 
__!_ 

I 

ZA 

(a) 

B' 
t 

I 

I 

Za 

-- T 

(b) 

fa\ ~1--l>s _co.6l~'- y )~ 
. , ~ '( -

s 
F 

Figure 2.13. Differential manometers. (a) For measuring !lp in liquids or gases. (b) For measuring 
!lp in liquids only. 
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light fluid, such as oil, or even air, may be used, and in this case the manometer is 
arranged as in Fig. 2.13b. Naturally, the fluid must be one that will not mi~ with 
the fluid in A or B. By the same method of analysis as the preceding, it may be 
shown that for the simple case with identical liquids in A and B, and with both A 
and B at the same elevation, 

(2.13) 

where s' = sM /sF, the ratio of the specific gravities, and has a value less than 1. As 
the density of the measuring fluid approaches that of the fluid being measured, 
1 - s' approaches zero and larger values of y are obtained for small pressure 
differences, thus increasing the sensitivity of the gage. Once again, the equation 
must be modified if A and B are not at the same elevation. 

To determine pressure difference between liquids, it is often satisfactory to use 
air or some other gas as the measuring fluid (Fig. 2.13b). Air can then be pumped 
through valve V until the pressure is such as to bring the two liquid columns to a 
suitable level. Any change in pressure raises or lowers both liquid columns by the 
same amount so that the difference between them is constant. In this case the 
value of s' may be considered to be zero, since the density of gas is so much less 
than that of a liquid, and the difference in pressure head between A and B is given 
by y directly. But for high pressures in A and B, with correspondingly high gas 
pressure and small pressure differences, the value of s' may not be negligible. 

Another scheme for obtaining increased sensitivity is simply to incline the 
gage tube so that a vertical gage difference y is transposed into a reading which is 
magnified by 1/sin IX, where IX is the angle of inclination with the horizontal. 

Illustrative Example 2.2. Liquid A weighs 53.5 lb/ft 3 (8.4 kN/m 3
). Liquid B weighs 78.8 lb/ft 3 

(12.3 kN/m 3
). Manometer liquid is mercury. If the pressure at B is 30 psi (200 kN/m 2

), find the 
pressure at A. 

1.3 ft (40 em) 

6.5 ft (2.0 m) 

t-A 
10.0 ft (3.0 m) 

j 
B JUustrative Example 2.2 



Express all pressure heads in terms of the liquid in bulb B. 

English units: 

SI units: 

!'! - 6.5 53.~ - 1.3 53.5 + 1.3 ! 3.55 -~2.4 + 16.5 = fJil. 
y 78.8 78.8 78.8 y 

PA 30 X 144 
--- 4.41 - 0.88 + 13.95 + 16.5 =- -- = 54.8 ft 
y 78.8 

78.8 fl .... = 29.2 ft 
1' 

PA = 29.2 - = 16.2 psi 
144 

p A 8.4 8.4 13.55 X 9.81 
- - 2.0 -- - 0.4 -- + 0.4 -· -- - + 5.0 = p 

8
/y 

1' 12.3 12.3 12.3 

p.._ 200 kN/m 2 

- - 1.37 - 0.27 + 4.32 + 5.00 = ---- = 16.3 m 
y J2..3 kN/m 3 
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p~ = 8.6 m 
y 

p .. = 8.6 x 12.3 = 106 kN/m 2 

2.7. FORCE ON PLANE AREA 

When a fluid is at rest, no tangential force can exist within the fluid. All forces are 
then normal to the surfaces in question. If the pressure is uniformly distributed 
over an area, the force is equal to the pressure times the area, and the point of 
application of the force is at the centroid of the area. In the case of compressible 
fluids (gases), the pressure variation with vertical distance is very small because of 
the low specific weight; hence, when computing the static fluid force exerted by a 
gas, p may usually be considered constant. Thus, for this case, 

F = I p dA = p I dA = pA (2.14) 

In the case of liquids the distribution of pressure is not uniform; hence further 
analysis is necessary. In Fig. 2.14 consider a vertical plane whose upper edge lies 
in the free surface of a liquid. Let this plane be perpendicular to the plane of the 
paper, so that M N is merely its trace. The pressure will vary from zero at M to N K 
at N. Thus the total force on one side is the summation of the products of the 
elementary areas and the pressure upon them. It is apparent that the resultant of 
this system of parallel forces must be applied at a point below the centroid of the 
area, because the centroid of an area is the point of application of the resultant of a 
system of uniform parallel forces. 

If the plane is lowered to M' N', the proportionate change of pressure from M' 
toN' is less than that from M toN. Hence the center of pressure will be nearer to 



38 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

he 
I 
I 

i 

I 
I 
I 

I 
I 
I 

M Free surface 

Figure 2.14 

the centroid of the plane surface, and the deeper the plane is submerged, the more 
uniform the pressure becomes and the closer these two points will be together. 

In Fig. 2.15 let MN be the trace of a plane area making an angle e with the 
horizontal. To the right is the projection of this area upon a vertical plane. Let h 
be the variable depth to any point andy be the corresponding distance from OX, 
the intersection of the plane produced and the free surface. 

Consider an element of area so chosen that the pressure is uniform over it. 
Such an element is a horizontal strip. If x denotes the width of the area at any 
depth, then dA = x dy. As p = yh and h = y sin 0, the force dF on a horizontal 
strip is 

dF = p dA = rh dA = rY sin 0 dA 

0 Free surface 
o---.-f-'"1 ~~.----x 

I 
h=;sin e 

I I 

§I 
Figure 2.15 
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The pressure distribution over the area forms a pressure prism, the volume of 
which is equal to the total force acting on the area. 

Integrating the preceding expression, 

F = y sin {) J y dA = y sin {)YeA (2.15) 

where Ye is the distance to the centroid of the area A. If the vertical depth of the 
centroid is denoted by he, then he = Ye sin {) and 

(2.16) 

Thus the total force on any plane area submerged in a liquid is found by 
multiplying the specific weight of the liquid by the product of the area and the 
depth of its centroid. The value ofF is independent of the angle of inclination of 
the plane so long as the depth of its centroid is unchanged. 1 

Since yhc is the pressure at the centroid, another statement is that the total 
force on any plane area submerged in a liquid is the product of the area and the 
pressure at its centroid . 

2.8. CENTER OF PRESSURE 

The point of application of the resultant force on an area is called the center of 
pressure. Taking OX in Fig. 2.15 as an axis of moments, the moment of an elemen
tary force yy sin {) dA is 

y dF = y sin {) y 2 dA 
:' 

.. ~.·\ 
-

~' and if yP denotes the distance to the center of pressure, ( I 1: ,, 
yP F = y sin {) J y2 dA = y sin {) I 0 ., 

I 
where I 0 is the moment of inertia of the plane area about an axis through 0. 

If the preceding expression is divided by the value ofF as given in Eq. (2.16), 
the result is ' 

ysin{)I0 I 0 y =- ·----=-·-
p ysin{)yeA YeA 

(2.17) 

That is, the distance of the center of pressure from the axis where the plane or 
plane produced intersects the liquid surface is obtained by dividing the moment of 
inertia of the area A about the surface axis by its static moment about the same 
aXIS. 

1 For a plane submerged as in Fig. 2.15, it is obvious that Eq. (2.16) applies to one side only. As the 
pressures are there identical on the two sides, the net force is zero. In most practical cases where the 
thickness of the plane is not negligible, the pressures on the two sides are not the same. 

-\1 

-
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This may also be expressed in another form, by noting that 

lo=y;A+lc 

where I c is the moment of inertia of an area about its centroidal axis. Thus 

Ay; + Jc Jc 
Yp= A =yc+A 

Yc Yc 
(2.18) 

From this equation it may be seen that the location of the center of pressure is 
independent of the angle e; that is, the plane area may be rotated about axis 0 X 
without affecting the location of the center of pressure. Also, it may be seen that 
the center of pressure is always below the centroid and that, as the depth of 
immersion is increased, the center of pressure approaches the centroid. 

The lateral location of the center of pressure may be determined by consider
ing the area to be made up of a series of elemental horizontal strips. The center of 
pressure for each strip would be at the midpoint of the strip. Since the moment of 
the resultant force, F, must be equal to the moment ofthe distributed force system 
about any axis, say, the y axis, 

where X P is the lateral distance from the selected y axis to the center of pressure of 
the resultant force F, and xP is the lateral distance to the center of any elemental 
horizontal strip of area dA on which the pressure is p. 

Another way of looking at the problem of forces on a plane area is through 
use of the pressure prism concept. The pressure acting on a plane area forms a 
pressure prism, the volume of which is equivalent to the magnitude of the force on 
the area. The center of gravity of the pressure prism is a point through which the 
line of action of the center of pressure must pass. Application of the pressure prism 
concept is convenient for determining the magnitude and location of forces on 
simple areas such as rectangles. 

Illustrative Example 2.3. Find the force exerted by the fluids on the end of the cylindrical tank in 
the accompanying figure, and determine the location of the center of pressure. 

Oil s-0.8 

Water s-1.0 

Section End view Pressure distribution 

IUustrative Example 2.3 
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The confined gas exerts a pressure of 3.0 psi that is transmitted through the other fluids to the end 
of the tank. 

FA= 3.0 x 144(n22
) = 5,450 lb 

The force F 8 on the upper half of the end of the tank due to the presence of oil is 

The force F c on the lower half of the end of the tank due to the presence of oil is 

Fe= pA = (0.8 x 62.4)3(1n2 2
) = 942lb 

The force F 0 on the lower half of the end of the tank due to water is 

The total force F on the end of the tank is therefore 

F = FA + F 8 + F c + F D = 7,401 lb 

The locations of the centers of pressure of the component forces are 

(ypL = 3.o rt (at center of circular area) 

where ( 4 X 2) (yJ 8 = 3- 3;- = 3-0.85 = 2.15 ft 

and 

(Expression for I from Appendix 3, Table A.7.) 

Thus 

Finally, 

( ) 
1.76 

Yp 8 = 2.15 + (' 2 ) = 2.28 ft 
2.15 ];1t2 

4 X 2 
(yp)C = 3 + -- = 3.85 ft 

3n 

Note that (JJ0 = (1,) 8 = 1.76 ft 4 

(at centroid of lower half of circle) 

I, 1.76 
(y ) = 3 + y + -- = 3 + 0.85 + - ·--- = 4.18 ft 

P D ' y, A 0.85(in2 2
) 

F(yp) = F .{yp)A + F 8(Yp)8 + ·· · 

Yp = 3.10 ft 

2.9. FORCE ON CURVED SURF ACE 

On any curved or warped area such as MN in Fig. 2.16a, the forces upon the 
various elements are different in direction and magnitude, and an algebraic sum
mation is impossible. Hence Eq. (2.16) can be applied only to a plane area. But for 
any nonplanar area the resultant forces in certain directions can be found. 
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(b) 

Horizontal Force on Curved Surface 

Figure 2.16. Hydrostatic forces 
on curved surfaces. 

Any irregular curved area (Fig. 2.16) may be projected upon a vertical plane 
whose trace is M' N'. The projecting elements, which are all horizontal, enclose a 
volume whose ends are the vertical plane M'N' and the irregular area MN. This 
volume of liquid is in static equilibrium. Acting on the vertical projection M' N' is 
a force F', and the horizontal force on the irregular area is F x. Gravity W' is 
vertical, and the lateral forces on all the projecting elements are normal to these 
elements and hence normal to F'. Thus the only horizontal forces on M N N' M' 
are F' and F x, and therefore 

Fx = F' (2.19) 

Hence the horizontal force in any given direction upon any area is equal to 
the force upon the projection of that area upon a vertical plane normal to the 
given direction. The line of action ofF x must be the same as that ofF'. Equation 
(2.19) is applicable to gases as well as liquids. In the case of a gas, the horizontal 
force on a curved surface is given by the pressure multiplied by the area of the 
vertical projection of the curved surface. 

Vertical Force on Curved Surface 

The vertical force on a curved or warped area, such as MN in Fig. 2.16b, can be 
found by considering the volume of liquid enclosed by the area and vertical 
elements extending to the free surface. This volume of liquid is in static equili
brium. Disregarding the pressure on the free surface, the only vertical forces are 
gravity W and Fz, the vertical force on the irregular area. The forces on the 
vertical elements are normal to these and hence are horizontal. Therefore 

Fz = W (2.20) 

Hence the vertical force upon any area is equal to the weight of the volume of 
fluid extending above that area to the free surface. The line of action ofF z must be 
the same as that of W; that is, it must pass through the center of gravity of the 
volume. The vertical force exerted by a gas on a curved surface or from pressure 
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acting on the free liquid surface of Fig. 2.16b is equal to the pressure multiplied by 
the area of the horizontal projection of the curved surface. 

In case the lower side of the surface is subjected to a force while the upper side 
is not, the vertical force is equal to the weight of the imaginary volume of liquid 
above the area up to the free-surface level. That is, the result is the same numer
ically as that given by Eq. (2.20). Once again, if a gas is involved, the vertical force 
is computed by multiplying the pressure by the area of the horizontal projection of 
the curved surface. 

Resultant Force on Curved Surface 

In general, there is no single resultant force on an irregular area, for the horizontal 
and vertical forces, as found in the foregoing discussion, may not be in the same 
plane. But in certain cases these two forces will lie in the same plane and then can 
be combined into a single force. 

Illustrative Example 2.4. Find the horizontal and vertical components of the force exerted by the 
fluids on the horizontal cylinder in the accompanying figure if(a) the fluid to the left of the cylinder is a 
gas confined in a closed tank at a pressure of 35.0 kN/m 2 ; (b) the fluid to the left of the cylinder is water 
with a free surface at an elevation coincident with the uppermost part of the cylinder. Assume in both 
instances that atmospheric pressure occurs to the right of the cylinder. 

Illustrative Example 2.4 

(a) The net vertical projection of the portion of the cylindrical surface under consideration is 
4- 2(1 -cos 30°). Hence 

Fx =pAz= 35 kN/m 2[4- 2(1- cos 30o)] m = 35 x 3.73 = 130.5 kN/m 

The net horizontal projection of the portion of the cylindrical surface under consideration is 2 sin 30°. 
Hence 

Fz =pAx= 35 kN/m 2 x 2 sin 30°m= 35 kN/m 

(b) Fx = yh,A = 9.81 kN/m 3 (1 x 3.73 m)(3.73 m) = 68.1 kN/m 

Fz =weight of cross-hatched volume of liquid 

Fz = 9.81 kN/m 3{UZn2 2 + 11 x 1.732 + 1 X 2) m = 100.5 kN/m 
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2.10. BUOYANCY AND STABILITY OF SUBMERGED AND 
FLOATING BODIES 

Submerged Body 

The body DHCK immersed in the fluid in Fig. 2.17 is acted upon by gravity and 
the pressures of the surrounding fluid. On its upper surface the vertical component 
of the force is Fz and is equal to the weight of the volume of fluid ABCHD. In 
similar manner the vertical component of force on the undersurface is F~ and is 
equal to the weight of the volume of fluid ABCKD. The difference between these 
two volumes is the volume of the body DHCK. 

The buoyant force of a fluid is denoted by F 8 , and it is vertically upward and 
equal to F~- Fz, which is equal to the weight of the volume of fluid DHCK. That 
is, the buoyant force on any body is equal to the weight of fluid displaced. If the body 
in Fig. 2.17 is in equilibrium, W = F 8 , which means that the densities of body and 
fluid are equal. If W is greater than F 8 , the body will sink. If W is less than F 8 , the 
body will rise until its density and that of the fluid are equal, as in the case of a 
balloon in the air or, in the case of a free liquid surface, the body will rise until 
the weight of the displaced liquid equals the weight of the body. If the body 
is less compressible than the fluid, there is a definite level at which it will reach 
equilibrium. If it is more compressible than the fluid, it will rise indefinitely, 
provided the fluid has no definite limit of height, as in the case of the earth's 
atmosphere. 

When a body in equilibrium is given a slight displacement, if the forces 
thereby created tend to restore the body to its original position, the body is said to 
be in stable equilibrium. The stability of submerged or floating bodies depends on 
the relative position of the buoyant force and the weight of the body. The buoyant 
force acts through the center of buoyancy, which is coincident with the center of 
mass of the displaced fluid. The criterion for stability of a submerged body (balloon 
or submarine) is that the center of buoyancy must be above the center of mass of the 
body. The validity of this statement may be confirmed by inspecting Fig. 2.18. 

A B 

Figure 2.17 
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w w 
Figure 2.18. Submerged body (balloon). 

Floating Body 

For a body in a liquid with a free surface, if its weight W is less than that of the 
same volume of liquid, it will rise and float on the surface so that W = F 8 . Hence 
a floating body displaces a volume of liquid equivalent to its weight. If a righting 
moment is developed when a floating body lists, the body will be stable 
irregardless of whether the center of buoyancy is above or below the center of 
mass. An example of stable and unstable floating bodies is shown in Fig. 2.19. In 
this example the stable body is the one where the center of buoyancy B is above 
the center of gravity. Figure 2.20 shows the section of a hull of a ship that is stable. 
Its center of buoyancy B is below its center of gravity C. For equilibrium the two 

(a) (b) 

Figure 2.19. (a) Stable. (b) Unstable. 

w 

c 

Figure 2.20 
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forces W and F 8 must be equal and must lie in the same vertical line. Suppose the 
body is rolled through the angle e. The center of gravity C of the body is usually 
fixed in position, but the center of buoyancy B will generally change as shown. 
Thus W and F 8 constitute a couple of magnitude W x a. For the case under 
consideration this is a righting couple since it tends to restore the body to the 
upright position. If liquid in the hull of a ship were unconstrained, the center of 
mass of the floating body would move toward the center of buoyancy when the 
,hip rolled, thus decreasing the righting couple and the stability. For this reason 
!Il]Uid ballast or fuel oil in floating vessels should be stored in tanks or bulkheaded 
compartments. 

Illustrative Example 2.5. A 4-in diameter solid cylinder of height 3.75 in weighing 0.85 lb is 
--- --·.cr,cd in liquid (l' = 52 lb/ft 3

) contained in a tall, upright metal cylinder having a diameter of 5 in. 
:L •cc Jmmer,ion the liquid was 3-in deep. At what level will the solid cylinder float? 

Illustrative Example 2.5 

' = distance solid cylinder falls below original liquid surface 
. ~ distance liquid rises above original liquid surface 
. = depth of submergence 

Volume A = Volume B 

4x = 2.2Sy X= 0.56y 

1.2/: (2)
2

x+y F = weight = 0.85 = 5 n - -- -
B . 12 12 

x + y = 2.24 in x = 0.81 in y = 1.43 in 

k,•::c•m of ,o]id cylinder will be 3.0- 0.81 = 2.19 in above bottom of hollow cylinder. 

2.11. FLL'ID MASSES SUBJECTED TO 
ACCELERATION 

L'nder certain conditions there may be no relative motion between the particles of 
d lluid mass yet the mass itself may be in motion. If a body of fluid in a tank is 
transported at a uniform velocity, the conditions are those of ordinary fluid sta
tics. But if it is subjected to acceleration, special treatment is required. Consider 
the case of a liquid mass in an open tank moving horizontally with a linear 



W=mg 

(b) 

Figure 2.21 

(a) 

(p - ap lix) liy liz 
ax 2 

r 
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Original liquid surface 

(p + ~~ ~z) lix liy 

lix 

liz -y lix liy liz 

! 
(p + ~~ ~x) liy liz 

X 

(c) 

acceleration ax, as shown in Fig. 2.2la. A free-body diagram (Fig. 2.21b) of a 
small particle (mass m) of liquid on the surface indicates that the forces exerted by 
the surrounding fluid on the particle are Fz = W and F x = max; the latter is 
required to produce acceleration ax of the particle. Equal and opposite to these 
forces are F x and Fz of Fig. 2.21a, the forces exerted by the particle on the sur
rounding fluid. The resultant of these forces is F. The liquid surface must be at 
right angles to F, for if it were not, the particle would not maintain its relative 
position in the liquid. Hence tan e =ax/g. The liquid surface and all planes of 
equal hydrostatic pressure must be inclined at angle e with the horizontal. 

In Fig. 2.2lc is shown a free-body diagram of an elemental cube of the liquid 
at the center of which the pressure is p. Applying the equation of motion in the 
x-direction 

( 
op 15x) ( op 15x) y p--- bybz- p+ --. bybz=-bxbybza 
OX 2 OX 2 g X 
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which reduces to 

In the vertical direction 

'}' 
--a =-pax g X 

p - - - bx oy - p + bx by - y bx by (jz = 0 
( 

iJ p bz) _ ( iJ p bz) _ 
i!z 2 i!z 2 

which yields 

i!p 
i!z 

-y = -pg 

Thus for the case where the fluid is subject to a horizontal acceleration ax 

(2.21) 

(2.22) 

(2.23) 

where n is the direction at right angles to and outward from the liquid surface. 
In the foregoing discussion the acceleration of the fluid mass was at right 

. angles to the direction of the gravitational acceleration. When the acceleration of 
the fluid mass is in some other direction, the same general approach can be used. 
For a fluid subject to both horizontal and vertical accelerations ax and az, it can 
be shown that 

i!p 
on 

(2.24) 

When ax = az = 0, this equation reduces to opjon = - y, which is essentially the 
same as the basic hydrostatic equation (Eq. 2.2). Application of Eq. (2.24) indi
cates that, if fluid in a container is subjected to an upward acceleration, there will 
be an increase of pressure within the fluid. A downward acceleration results in a 
decrease in pressure. 

Illustrative Example 2.6. At a particular instant an airplane is traveling downward at a velocity of 
180 m/s in a direction that makes an angle of 40o with the horizontal. At this instant the airplane is 
gaining speed at the rate of 4 m/s 2 Also it is moving on a concave upward circular path having a 
radius of 2,600 m. Determine for the given conditions the position of the free liquid surface in the fuel 
tank of this vehicle. 

v2 1802 

a. = - = - = 12.5 m/s 2 

r 2,600 

ax= 4 cos 40'' + 12.5 sin 40° = 11.06 m/s 2 

a,= -9.81-4 sin 40o + 12.5 cos 40o = -2.87 m/s 2 

2.87 
II= tan- 1 --- = 14° 30' 

11.06 

Liquid surface makes an angle of 14° 30' with the verticaL 
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"'\;; 7 z 12.5 sin 40° 

I} = 12.5 m/s 2 

g = 9.81 m /s2 

Illustrative Example 2.6 

PROBLEMS 

2.1. Neglecting the pressure upon the surface and the compressibility of water, what is the pressure in 
pounds per square inch at a depth of 15.000 ft below the surface of the ocean'? The specific weight of 
ocean water under ordinary conditions is 64.0 lb/ft 3

. 

2.2. Repeat Pro b. 2.1. but consider the effects of compressibility (E;. = 300,000 psi). Neglect changes in 
density caused by temperature variations. 

---) 2.3. A pressure gage at elevation 20.0 ft on the side of a tank containing a liquid reads 12.8 psi. 
Another gage at elevation 13.0 ft reads 15.5 psi. Compute the specific weight, density, and specific 

evity of the liquid. 

'A pressure gage at elevation 8.0 m on the side of a tank containing a liquid reads 57.4 kN,-m 2 

ther gage at elevation 5.0 m reads 80.0 kNjm 2 Compute the specific weight and density of the 
liquid. 

2.5. An open tank contains 5.0 m of water covered with 2.0 m of oil ()· = 8.0 kN;m 3
). Find the 

pressure at the interface and at the bottom of the tank. 

~ 2.6. An open tank contains 10 ft of water covered with 2 ft of oil (s = 0.86). Find the pressure at the 
interface between the liquids and at the bottom of the tank. 

2.7. On a certain day the barometric pressure at sea level is 30.1 in Hg and the temperature is 70 F. 
The pressure gage on an airplane flying overhead indicates that the atmospheric pressure at that point 
is 10.6 psia and that the air temperature is 46"F. Calculate as accurately as you can the height of the 
ajrplane above sea level. 

2.8.\If the specific weight of a sludge can be expressed as)'= 65.0 + 0.2h, determine the pressure in psi 
'\1.!)1 depth of 15 ft below the surface. ; is in lbjft 3

, and h in ft below surface. 

2.9. If air had a constant specific weight of 0.076 lb/ft 3 and were incompressible, what would be the 
height of air surrounding the earth to produce a pressure at the surface of 14.7 psia? 

2.10. The absolute pressure on a gas is 42.5 psia and the atmospheric pressure is 840 mbars, abs. Find 
the gage pressure in ps~ kN/m 2 and mbars. 
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"7 I 
(2.tylf the atmospheric pressure is 920 mbars, abs and a gage attached to a tank reads 400 mm Hg 
'vacuum, what is the absolute pressure within the tank? 

2.12. If the atmospheric pressure is 13.70 psia (945 mbars, abs) and a gage attached to a tank reads 
8.0 in (20 em) Hg vacuum, what is the absolute pressure within the tank? 

__, 2.13. A gage is connected to a tank in which the pressure of the fluid is 40 psi (276 kN/m 2
) above 

atmospheric. If the absolute pressure of the fluid remains unchanged but the gage is in a chamber 
where the air pressure is reduced to a vacuum of 25 in (63.5 em) Hg, what reading in psi (kN/m2

) will 
then be observed? 

2.14. If the atmospheric pressure is 29.9 in Hg, what will be the height of water in a water barometer if 
the temperature of the water is 90"F; 140' F? Be as precise as possible. 

2.15. The tire of an airplane is inflated at sea level to 60 psi. Assuming the tire does not expand, what is 
the pressure within the tire at elevation 30,000 ft? Assume standard atmosphere. Express the answer in 
psi and psia. 

2.16. Same as Prob. 2.15 except replace 60 psi with 350 kN/m 2
, replace 30,000 ft with 12,000 m and 

18,000 m and express answer in kN/m 2 and kN/m 2
, abs. 

2.17. If the atmospheric pressure were equivalent to 32.8 ft of water, what would be the reading on a 
barometer containing an alcohol (s = 0.84) if the vapor pressure of the alcohol at the temperature of 
observation were 2.4 psia? 

2.18. If the atmospheric pressure is 940 mbars, abs what would be the reading in meters on a bar
ometer containing water at 60"C? 

2.19. In the figure, originally there is a 4-in manometer reading. Atmospheric pressure is 14.7 psia. If 
the absolute pressure at A is doubled, what then would be the manometer reading? 

I 
3' 

I 
L_ L 

4' -r 

Mercury Problem 2.19 

2.20. A mercury manometer (Fig. 2.10) is connected to a pipeline carrying water at 150°F and located 
in a room where the temperature is also !50" F. If the elevation of point B is 10 ft above A and the 
mercury reading is 48 in, what is the pressure in the pipe in psi? Repeat, assuming all temperatures 
are 6X F. Be as precise as possible, and note the effect of temperature. 

2.21. Two \esse Is are connected to a differential manometer using mercury (s = 13.55), the connecting 
tubing bcmg filled with water. The higher-pressure vessel is 5 ft ( 1.5 m) lower in elevation than the 
other. Room temperature prevails. If the mercury reading is 4.0 in (10 em), what is the pressure 
difference in feet (m) of water. in psi (kN/m 2 )? If carbon tetrachloride (s = 1.59) were used instead of 
mercury, what would be the manometer reading for the same pressure difference? 

2.22. In Illustrative Example 2.2 suppose the atmospheric pressure at B is 1,035 mbars, abs. What 
would be the absolute pressure at A? Express in mbars, abs and in m of Hg . 

.-..., 2.23. What would be the manometer reading in Illustrative Example 2.2 if p 8 - p A = 150 k N/m 2 ? 

2.24. Refer to the manometer of Fig. 2.13b. A and B are at the same elevation. Water is contained in A 

and rises in the tube to a level 76 in above A. Glycerin is contained in B. The inverted U tube is filled 
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with air at 20 psi and 70°F. Atmospheric pressure is 14.7 psia. Determine the difference in pressure 
between A and B if y is 14 in. Express the answer in psi. What is the absolute pressure in Bin inches of 
mercury, feet of glycerin? 

2.25. Gas confined in a rigid container exerts a pressure of20 psi (140 kN/m 2
) when its temperature is 

40"F (5°C). What pressure would the gas exert if the temperature were raised to 140oF (60oC)? 
Barometric pressure remains constant at 28.0 in Hg. 

2.26. The diameter of tube C in Fig. 2.10 is d P and that of tube B is d 2 . Let z 0 be the elevation of the 
mercury when both mercury columns are at the same level. R is the distance the right-hand column of 
mercury rises above z0 when the fluid in A is under some pressure. Let y' be the specific weight of the 
mercury (or any other measuring fluid), while y is the specific weight of the fluid in A and the 
connecting tubing. Prove that 

where M and N are constants. It is seen that this equation involves only one variable, which is a 

f;J
ing on the scale for column C. It also shows the significance of having d 2 large compared with d 1 . 

· . In the figure, atmospheric pressure is 14.7 psia; the gage reading is 5.0 psi; the vapor pressure of 
e alcohol is 1.7 psia. Compute x and y. 

B 

Alcohol 
s=0.90 

y 

__j 

2.28. In the sketch for Pro b. 2.27 assume the following: atmospheric pressure = 850 mbars, abs; vapor 
pressure of the alcohol= 160 mbars, abs; x = 2.80 m and y = 2.00 m. Compute the reading on the 
pressure gage and on the manometer. 

2.29. At a certain point the pressure in a pipeline containing gas (y = 0.05 lb/ft 3
) is 4.5 in of water. The 

gas is not flowing. What is the pressure in inches of water at another point in the line whose elevation is 
500 ft greater than the first point? Make and state clearly any necessary assumptions. 

2.30. If a triangle of height d and base b is vertical and submerged in liquid with its vertex at the liquid 
surface, derive an expression for the depth to its center of pressure. 

~ 2,31_. Repeat Prob. 2.30 for the same triangle but with its vertex a distance a below the liquid surface. 
' ~.32. ··.If a triangle of height d and base b is vertical and submerged in a liquid with its base at the liquid 

s\.l£lice, derive an expression for the depth to its center of pressure. 

2.33. A circular area of diameter d is vertical and submerged in a liquid. Its upper edge is coincident 
with the liquid surface. Derive an expression for the depth to its center of pressure. 

2.34. A vertical semicircular area has its diameter in a liquid surface. Derive an expression for the 
depth to its center of pressure. 

2.35; Refer to Illustrative E;(ample 2.3. If the air pressure were 5 psi rather than 3 psi, compute the 
total force and determine the location of the center of pressure. 

4 2.36. A rectangular plate submerged in water is 5 by 6 ft, the 5-ft side being horizontal and the 6-ft side 
being vertical. Determine the magnitude of the force on one side of the plate and the depth to its center --- -
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of pressure if the top edge is (a) at the water surface; (b) I ft below the water surface; (c) 100 ft below 
the water surface. 

2.37. Repeat Prob. 2.36 changing all dimensions from feet to meters, i.e., plate is 5 by 6 m. 

2.38. A retangular plate 5 by 6 ft is at an angle of 30 ·with the horizontal, and the 5-ft side is horizontal. 
Find the magnitude of the force on one side of the plate and the location of its center of pressure when 
the top edge is (a) at the water surface; (b) 1 ft below the water surface. 

2.39. A retangular area is 5 by 6 m, with the 5-m side horizontal. It is placed with its centroid 4 m 
below a water surface and rotated about an axis through its centroid. Find the magnitude of the force 
on one side and the distance between the center of pressure and the centroid of the plane when the 
angle e = 90, 60. 30, 0 . 

2.40. Repeat Pro b. 2.36 for the case where the liquids consists of a 2-ft layer of oil (s = 0.8) resting 

above water. 

2.41. A plane surface is circular and 4ft ( 1.2 m) in diameter. If it is vertical and the top edge is I ft 
(0.3 m) below the water surface, find the magnitude of the force on one side and the depth to the center 
of pressure. 

-, 2.42. This Utah-shaped plate is submerged in oil (s = 0.82) and lies in a vertical plane. Find the 
magnitude and location of the hydrostatic force acting on one side of the plate. 

6m 

~Oil surface 

2.5 m 

2m .....___ 

5m 

3.5 m 

Problem 2.42 

2.43. A triangle with a height of 6 ft ( 1.8 m) and a base of 4 ft ( 1.2 m) is placed vertically with its base 
horizontal and I ft (0.3 m) below a liquid surface. Determine the depth and horizontal position of the 
center of pressure. 

2.44. Prove that for a plane area such that a straight line can be drawn through the midpoints of all 
horizontal elements, the center of pressure must lie on this line. 

2.45. A vertical right triangle of height d and base b submerged in liquid has its vertex at the liquid 
surface. Find the distance from the vertical side to the center of pressure by (a) inspection; (b) calculus. 

2.46. A common type of irrigation head gate is a plate which slides over the opening to a culvert. The 
coefficient of friction between the gate and its sliding ways is 0.6. If the top edge of a 60-in-square gate 
weighing 900 lb is 15 ft below the water surface in a closed position, find the force required to open the 
gate if it is set (a) vertically; (b) on a 2: 1 slope, as is frequently the case. (Note: As used here, slope 
means the ratio of the horizontal distance to the vertical distance, or the horizontal distance for a 1-ft 
rise.) 

\r;),. In the drainage of irrigated lands it is frequently desirable to install automatic flap gates to 
p.!)l'vent a flood from backing up into the lateral drains from a river. Suppose a 60-in-square flap gate, 
weighing 2,555 lb. is hinged 40 in above the center, as shown in the figure, and the face is sloped 4' 
from the vertical. Find the depth to which water will rise behind the gate before it will open. 
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Problem 2.47 

2.48. The figure shows a cylindrical tank. What is the force on the bottom? What is the force on the 
annular surface MM? Find the longitudinal tensile stress in the sidewalls BB if (a) the tank is su
spended from the top; (b) it is supported on the bottom. 

I' 
4 

112'diam r 

M 

.____ __ ____,__j 
L-24' diam____j Problem 2.48 

2.49. Find the magnitude and point of application of the force on the circular gate shown in the figure. 

Problem 2.49 

2.50. The gate M N in the figure rotates about an axis through N. If the width perpendicular to the 
plane of the figure is 4ft, what torque applied to that shaft through N is required to hold the gate 
closed? 
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-I 
5' 

M I 

--i 

N 

2' 

I 

3' 

Problem 2.50 

2.51. In the figure, the rectangular flash board M N, 6 m high, is pivoted at B. (a) What must be the 
maximum height of B above N if the flash board is on the verge of tipping when the water surface rises 

below M, what are the reactions at B and N per m of length of crest? 

M 

6m 

Problem 2.51 

2.52. Find the minimum value of z for which the gate in the figure will rotate counterclockwise if the 
gate is (a) rectangular, 4 by 4 ft; (b) triangular, 4-ft base as axis, height 4 ft. Neglect friction in bearings . 

.-- -~ ---

Water 

4 psi 

(a) (b) 
End View 

Problem 2.52 

2.53. Referring to the figure, what value of b is necessary to keep the rectangular masonry wall from 
sliding if it weighs 150 lb/ft 3 and the coefficient of friction is 0.4? Will it also be safe against overturn
ing') Assume that water does not get underneath the block. 
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Problem 2.53 

2.54. Find horizontal and vertical forces per foot of width on the Tainter gate shown in the figure. 
Locate the horizontal force and indicate the line of action of the vertical force without actually 
computing its location. 

ll" 
- -t-

ll" 

Problem 2.54 

Q A tank with vertical ends contains water and is 8 m long normal to the plane of the figure shown. 
~sketch shows a portion of its cross section where MN is one-quarter of an ellipse with semiaxes b 
and d. If b = 4 m, d = 6 m, and a = 1.5 m, find for the surface represented by M N the magnitude and 
position of the line of action of (a) the horizontal component of force; (b) the vertical component of 
force; (c) the ~sultan! force and its direction with the horizontal. 

y·\ 

a 
_j_____ r---ob~-tM 

d 

Problem 2.55 

2.56. Find the answers called for in Prob. 2.55 if a= 1.5 ft, b =4ft, d =6ft, and MN represents a 
parabola with vertex at N. 

2.57. A vertical-thrust bearing for a large hydraulic gate is composed of an 11-in-radius bronze 
hemisphere mating into a steel hemispherical shell in the gate bottom. At what pressure must lubricant 
be supplied to the bearing so that a complete oil film is present if the vertical thrust on the bearing is 
800,000 lb? 
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~--'-

\l.5s.\ The cross section of a tank is as shown in the figure, BC is a cylindrical surface,_ If the tank 
~ins water to a depth of 7 ft (2 m ), determine the magnitude and location of the honzontal- and 
vertical-force compo~ents on the wall ABC 

' Problem 2.58 

> 2.59. Repeat Prob, 2,58 for the case where the tank contains 3ft (1 m) of water overlain with 4ft 
(1.2 m) of oil (s = 0.8), 

2.60. Repeat Prob, 2.58 where the tank is closed and contains gas at a pressure of8 psi (55 kN/m2
). 

2.61. Repeat Prob. 2.58 where the tank is closed and contains 3 ft of water overlain with a gas that 
~der a pressure of 2,0 psi. 

-· 'J l.62J A spherical steel tank of 20-m diameter contains gas under a pressure of 350 kN/m 2 . The tank 
corufists of two half-spheres joined together with a weld. What will be the tensile force across the weld 
in k N/m? If the steel is 20.0 mm thick, what is the tensile stress in the steel? Express in k Njm 2 and in 
psi. Neglect the effects of cross-bracing and stiffeners. 

2.63. The hemispherical body shown in the figure projects into a tank. Find the horizontal and vertical 
forces acting on the hemispherical projection for the following cases: (a) tank is full of water with free 
surface 5 ft above A; (b) tank contains CCI 4 (s = 1.59) to the level of A overlain with water having free 
surface 5 ft above A; (c) tank is closed and contains gas at a pressure of 6 psi; (d) tank is closed and 
contains water to level of A overlain with gas at a pressure of 2 psi. , ,;,... 

' ") ---·-;:- . t_,..~·f,.., . 
• 1:. :-: .L r • \"\ r.:~ 

'· 

Problem 2.63 

2.64. Determine the force required to hold the cone shown in the figure in position. 

Gas 

5' 

0.5psi 

I ---+---
F 

Oil 
s-0.8 

Problem 2.64 
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2.65. The cross section of a gate is shown in the figure. Its dimension normal to the plane of the paper 
is 10m. and its shape is such that x = 0.2y2

. The gate is pivoted about 0. Develop analytic expressions 
in terms of the water depth y upstream of the gate for the following: (a) horizontal force; (b) vertical 
force; (c) clockwise moment acting on the gate. Compute (a), (b), and (c) for the case where y =2m. 

y 

Liquid -y 

Problem 2.65 

2.66. An iceberg in the ocean floats with one-seventh of its volume above the surface. What is its 
specific gravity relative to ocean water? What portion of its volume would be above the surface if ice 
were tloating in pure water 1 

2.67. An hydrometer. Fig. 2.19a, consists of an 8-mm-diameter cylinder of length 20 em attached to a 
25-mm-diameter weighted sphere. The cylinder has a mass of 1.2 g and the mass of the sphere is 12.8 g. 
At what level will this device float in liquids having specific gravities 0.8, 1.0, and 1.2? Is the scale 
spacing on the cylindrical stem uniform'? Why or why not 1 

2.68. Find the approximate value of the maximum specific gravity of liquid for which the device of 
Prob. 2.67 will be stable. 

2.69. Determine the volume of an object that weighs 5 lb in water and 7 lb in oil (s = 0.82). What is the 

(s~ific weight of the object? 

'i.7 . A balloon weighs 250 lb and has a volume of 14,000 ft 3 It is filled with helium. which weighs 
0. 112 lb/ft 3 at the temperature and pressure of the air. which weighs 0.0807 lb;'ft 3

. What load will the 
balloon support, or what force in a cable would be required to keep it from rising 1 

2.71. For the conditions shown in the figure, find the force F required to lift the concrete-block gate if 
the concrete weighs 150 lb/ft 3

. -.j 

1\ \ ..( ~ '"' 
F ~ 

Sea water 
-y=64 pcf 

, sl£' · 
\) \)\' 

Problem 2.71 

2.72. A cylindrical bucket 30 em in diameter and 50 em high weighing 25.0 N contains oil (s = 0.80) 
to a depth of 20 em. (a) When placed in water, to what depth will the bucket sink') (b) What is the 

lfllaximum volume of oil the bucket can hold and still float? 

A metal block I ft square and 10 in deep is floated on a body of liquid which consists of an 8-in 
of water above a layer of mercury. The block weighs 120 Ib;ft 3

. What is the position of the upper 
level of the block? If a downward vertical force of 250 lb is applied to the center of this block, what is 
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the new position of the upper level of the block? Assume that the tank containing the fluid is of infinite 
dimensions. 

/ 2.74. Two spheres, each 1.2 min diameter, weigh 4 and 12 kN respectively. They are connected with a 
short rope and placed in water. What is the tension in the rope and what portion of the lighter sphere 
protrudes from the water? 

2.75. In Pro b. 2.74 what should be the weight of the heavier sphere in order for the lighter sphere to 
float halfway out of the water? Assume sphere volumes remain constant. 

2.76. A 4.0-ft 3 object weighing 500 lb is attached to a balloon of negligible weight and released in the 
ocean. The balloon was originally inflated with 2.0 lb of air to a pressure of20 psi. To what depth will 
the balloon and weight sink? Assume that air temperature within the balloon stays constant at 50oF. 

2.77. Work Prob. 2.76 with all data the same except assume the balloon was originally inflated with 
2.0 lb of air to a pressure of 10 psi. In this latter case the balloon is more elastic because a lower 
pressure is obtained with the same amount of air. 

2.78. A wooden pole weighing 2 lb/ft has a cross-sectional area of 7 in 2 and is supported as shown in 
the figure. The hinge is frictionless. Find 0. 

Hinge 

4' 

Oil 
)'=52 pcf 

Problem 2.78 

2.79. A small metal pan of length 100 em, width 20 em, and depth 4 em is floating in water. When a 
uniform vertical load of 15 N/m is applied as shown, the pan assumes the given configuration. Find the 
weight of the pan and the magnitude of the righting moment developed by the change in position of the 
line of action of the buoyant force. 

1.5 N/m 
4cm 

Problem 2.79 

2.80. What would be the hydrostatic pressure 2t a depth of 25 em in a bucket of oil (s = 0.82) that is in 
an elevator being accelerated upwards at 3.0 m/s 2 ? 

2.81. A tank containing water to a depth of 6 ft (2 m) is accelerated upward at 10 ft/sec 2 (3 m/s 2
). 

Calculate the pressure on the bottom of the tank. 

2.82. Suppose the tank shown in Fig. 2.21 is rectangular and completely open at the top. It is 20ft long, 
4ft wide. and 8 ft deep. If it is initially filled to the top, how much liquid will be spilled if it is given 
a horizontal acceleration a,= 0.3g in the direction of its length? 

2.83. Suppose the tank of Fig. 2.21 is rectangular and completely open at the top. It is 20 m long, 
4 m wide, and 3 m deep. If it is initially filled to the top, how much liquid will be spilled if it is given a 
horizontal acceleration a, = 0.3g in the direction of its length? 
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2.84. If the tank of Prob. 2.83 is closed at the top and is completely filled, what will be the pressure 
difference between the left-hand end at the top and the right-hand end at the top if the liquid has a 
specific weight of 8.0 kN/m 3 and the horizontal acceleration is ax= 0.3g? Sketch planes of equal 
pressure, indicating their magnitude; assume zero pressure in upper right-hand corner. 

2.85. At a particular instant an airplane is traveling upward at a velocity of 150 mph in a direction 
that makes an angle of 30° with the horizontal. At this instant the airplane is losing speed at the rate of 
3 mphfs. Also, it is moving on a concave upward circular path having a radius of 4,000 ft. Determine 
for the given conditions the position of the free liquid surface in the fuel tank of this vehicle. 

2.86. Refer to Illustrative Example 2.6. Suppose the velocity of the airplane is 260 m/s with all other 
data unchanged. What then would be the position of the liquid surface in the tank? 



CHAPTER 

THREE 
KINEMATICS OF FLUID FLOW 

When speaking of fluid flow, one often refers to the flow of an ideal fluid. Such a 
fluid is presumed to have no viscosity. This is an idealized situation which does 
not exist; however, there are instances in engineering problems where the assump
tion of an ideal fluid is helpful. When referring to the flow of a rea/fluid, the effects 
of viscosity are introduced into the problem. This results in the development of 
shear stresses between neighboring fluid particles when they are moving at differ
ent velocities. In the case of an ideal fluid flowing in a straight conduit, all particles 
move in parallel lines with equal velocity (Fig. 3.la ). In the flow of a real fluid the 
velocity adjacent to the wall will be zero; it will increase rapidly within a short 
distance from the wall and produce a velocity profile such as shown in Fig. (3.lb ). 

Flow may also be classified as that of an incompressible or compressible fluid. 
Since liquids are relatively incompressible, they are generally treated as wholly 
incompressible fluids. Under particular conditions where there is little pressure 
variation, the flow of gases may also be considered incompressible, though gen
erally the effects of the compressibility of the gas should be considered. Some of 
the basic concepts governing the flow of compressible fluids are discussed in 
Chap. 9. 

In addition to the flow of different types of fluids, i.e., real, ideal, incompres
sible, and compressible, there are various classifications of flow. Flow may be 
steady or unsteady with respect to time. It may be laminar or turbulent, as di
scussed in the following section. Other classifications of flow include rotational or 
irrotational (Chap. 5), supercritical or subcritical (Chap. 11), etc. 
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(al Ideal fluid. (bl Real fluid. 

Figure 3.1. Typical velocity profiles. (a) Ideal fluid. (b) Real fluid. 

3.1. LAMINAR AND TURBULENT FLOW 

In this chapter we deal only with velocities and accelerations and their distribu
tion in space without consideration of any forces involved. That there are two 
distinctly different types of fluid flow was demonstrated by Osborne Reynolds in 
1883. He injected a fine, threadlike stream of colored liquid having the same 
density as water at the entrance to a large glass tube through which water was 
flowing from a tank. A valve at the discharge end permitted him to vary the flow. 
When the velocity in the tube was small, this colored liquid was visible as a 
straight line throughout the length of the tube, thus showing that the particles of 
water moved in parallel straight lines. As the velocity of the water was gradually 
increased by opening the valve further, there was a point at which the flow 
changed. The line would first become wavy, and then at a short distance from the 
entrance it would break into numerous vortices beyond which the color would be 
uniformly diffused so that no streamlines could be distinguished. Later observa
tions have shown that in this latter type of flow the velocities are continuously 
subject to irregular fluctuations. 

The first type is known as laminar, streamline, or viscous flow. The significance 
of these terms is that the fluid appears to move by the sliding of laminations of 
infinitesimal thickness relative to adjacent layers; that the particles move in 
definite and observable paths or streamlines, as in Fig. 3.2; and also that the flow 
is characteristic of a viscous fluid or is one in which viscosity plays a significant 
part (Fig. 1.4 and Sec. 1.11 ). 

The second type is known as turbulent flow and is illustrated in Fig. 3.3, where 
(a) represents the irregular motion of a large number of particles during a very 
brief time interval, while (b) shows the erratic path followed by a single particle 

-------/~ 
Figure 3.2 
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(a) (b) 

Figure 3.3. Turbulent flow. 

during a longer time interval. A distinguishing characteristic of turbulence is its 
irregularity, there being no definite frequency, as in wave action, and no observ
able pattern, as in the case of eddies. 

Large eddies and swirls and irregular movements of large bodies of fluid, 
which can be traced to obvious sources of disturbance, do not constitute 
turbulence, but may be described as disturbed flow. By contrast, turbulence may be 
found in what appears to be a very smoothly flowing stream and one in which 
there is no apparent source of disturbance. The fluctuations of velocity are com
paratively small and can often be detected only by special instrumentation. 

At a certain instant a particle at 0 in Fig. 3.3h may be moving with the 
velocity OD, but in turbulent flow OD will vary continuously both in direction and 
in magnitude. Fluctuations of velocity are accompanied by fluctuations in press
sure, which is the reason why manometers or pressure gages attached to a pipe in 
which fluid is flowing usually show pulsations. In this type of flow an individual 
particle will follow a very irregular and erratic path, and no two particles may 
have identical or even similar motions. Thus a rigid mathematical treatment of 
turbulent flow is impossible, and instead statistical means of evaluation must be 
employed. 

Criteria governing the conditions under which the flow will be laminar and 
those under which it will be turbulent are discussed in Sec. 8.2. 

3.2. STEADY FLOW AND UNIFORM FLOW 

A steady flow is one in which all conditions at any point in a stream remain 
constant with respect to time, but the conditions may be different at different 
points. A truly uniform flow is one in which the velocity is the same in both 
magnitude and direction at a given instant at every point in the fluid. Both of these 
definitions must be modified somewhat, for true steady flow is found only in 
laminar flow. In turbulent flow there are continual fluctuations in velocity and 
pressure at every point, as has been explained. But if the values fluctuate equally 
on both sides of a constant average value, the flow is called steady flow. However, 
a more exact definition for this case would be mean steady flow. 

Likewise, this strict definition of uniform flow can have little meaning for the 
flow of a real fluid where the velocity varies across a section, as in Fig. 3.lb. But 
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Figure 3.4. Unsteady flow in a canal. 

when the size and shape of cross section are constant along the length of channel 
under consideration, the flow is said to be uniform. 

Steady (or unsteady) and uniform (or nonuniform) flow can exist indepen
dently of each other, so that any of four combinations is possible. Thus the flow of 
liquid at a constant rate in a long straight pipe of constant diameter is steady 
uniform flow, the flow of liquid at a constant rate through a conical pipe is steady 
nonuniform flow, while at a changing rate of flow these cases become unsteady 
uniform and unsteady nonuniform flow, respectively. 

Unsteady flow may be a transient phenomenon which in time becomes either 
steady flow or zero flow. An example may be seen in Fig. 3.4, where (a) denotes 
the surface of a stream that has just been admitted to the bed of a canal by the 
sudden opening of a gate. After a time the water surface will be at (b), later at (c), 
and finally reaches equilibrium at (d). The unsteady flow has then become mean 
steady flow. Another example of transient phenomenon is when a valve is closed 
at the discharge end of a pipeline, thus causing the velocity in the pipe to decrease 
to zero. In the meantime there will be fluctuations in both velocity and pressure 
within the pipe. 

Unsteady flow may also include periodic motion such as that of waves on 
beaches, tidal motion in estuaries, and other oscillations. The difference between 
such cases and that of mean steady flow is that the deviations from the mean are 
very much greater and the time scale is also much longer. 

3.3. PATH LINES, STREAMLINES, AND 
STREAK LINES 

A path line Fig. (3.3b) is the trace made by a single particle over a period of time. If 
a camera were to take a time exposure of a flow in which a fluid particle was 
colored so it would register on the negative, the picture would show the course 
followed by the particle. This would be its path line. The path line shows the 
direction of the velocity of the particle at successive instants of time. 

Streamlines show the mean direction of a number of particles at the same 
instant of time. If a camera were to take a very short time exposure of a flow in 
which there were a large number of particles, each particle would trace a short 
path, which would indicate its velocity during that brief interval. A series of curves 
drawn tangent to the means of the velocity vectors are streamlines. 
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Path lines and streamlines are identical in the steady flow of a fluid in which 
there are no fluctuating velocity components, in other words, for truly steady flow. 
This is because particles always move along streamlines, since these lines show the 
direction of motion of every particle. Truly steady flow may be either that of an 
ideal frictionless fluid or that of one so viscous and moving so slowly that no 
eddies are formed. This latter is the laminar type of flow, wherein the layers of fluid 
slide smoothly, one upon another. In turbulent flow, however, path lines and 
streamlines are not coincident, the path lines being very irregular while the 
streamlines are everywhere tangent to the local mean temporal velocity. The lines 
in Fig. (3.2) represent both path lines and streamlines if the flow is laminar; they 
represent only streamlines if the flow is turbulent. 

In experimental fluid mechanics, a dye or other tracer is frequently injected 
into the flow to trace the motion of the fluid particles. If the flow is laminar, a 
ribbon of color results. This is called a streak line, or filament line. It is an instan
taneous picture of the positions of all particles in the flow which have passed 
through a given point (namely, the point of injection). In utilizing fluid-tracer 
techniques it is important to choose a tracer with physical characteristics 
(especially density) the same as those of the fluid being observed. Thus the smoke 
rising from a cigarette, while giving the appearance of a streak line, does not 
properly represent the movement of the ambient air in the room because it is less 
dense than the air and therefore rises more rapidly. 

3.4. FLOW RATE AND MEAN VELOCITY 

The quantity of fluid flowing per unit time across any section is called the flow 
rate. It may be expressed in terms of volume flow rate using English units such as 
cubic feet per second, gallons per minute, million gallons per day, or in terms of 
weight flow rate (pounds per second), or mass flow rate (slugs per second). In SI 
units cubic meters per second, kilonewtons per second, and kilograms per second 
are fairly standard for expressing volume, weight, and mass flow rate respectively. 
In dealing with incompressible fluids, volume flow rate is commonly used, 
whereas weight flow rate or mass flow rate is more convenient with compressible 
fluids. 

Figure 3.5 presents a streamline in steady flow lying in the xz plane. Element 
of area dA lies in the yz plane. The mean velocity at point Pis u. The volume flow 
rate passing through the element of area dA is 

dQ = u · dA = (u cos 8) dA = u(cos 8 dA) = u dA' (3.1) 

where dA' is the projection of dA on the plane normal to the direction of u. This 
indicates that the wlumefiow rate is equal to the magnitude of the velocity multiplied 
by the .fiow area at right angles to the direction of the velocity. The mass flow 
rate and the weight flow rate may be computed by multiplying the volume flow 
rate by the density and specific weight of the fluid respectively. 



KINEMATICS OF FLUID FLOW 65 

z 

y Figure 3.5 

If the flow is turbulent, the instantaneous velocity component u" along 
the streamline will fluctuate with time, even though the flow is nominally steady. A 
plot of u" as a function of time is shown in Fig. 3.6. The average ordinate of u" over 
a period of time determines the temporal mean value of velocity u at point P. 

The difference between u" and u, which may be designated as u', is called the 
turbulent fluctuation of this component. The temporal mean value of u' must be 
zero, as must the temporal means of all components transverse to the channel, 
such as BD in Fig. 3.3. Thus at any instant 

u" = u + u' (3.2) 

and u may be evaluated for any finite time t as u = (1/t) s~ u" dt. 
In a real fluid the velocity u will vary across the section in some manner, such 

as that shown in Fig. 3.lb, and, hence, the flow rate may be expressed as 
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(3.3) 

Figure 3.6. Fluctuating velocity at a point. 
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or 

or 

G = y f u dA = yAV 
• A 

M = p f u dA = pA V 
• A 

(3.4) 

(3.5) 

where u is the temporal mean velocity through an infinitesimal area dA, while Vis 
the mean, or average, velocity over the entire sectional area A;1 Q is the volume 
flow rate (cfs or m3 /s), G is the weight flow rate (lb/s or kN/s), and M is the mass 
flow rate (slugs/s or kg/s). 2 If u is known as a function of A, the foregoing may be 
integrated. If only average values of V are known for different finite areas into 
which the total area may be divided, then 

Q = Aa V.. + Ab V, + · · · + An V, = A V (3.6) 

Similar expressions may be written for G and M. If the flow rate has been 
determined directly by some method, the mean velocity may be found by 

Q G M 
V=---=-=-

A yA pA 
(3.7) 

3.5. EQUATION OF CONTINUITY 

Figure 3.7 presents a short length of a stream tube, which may be assumed, for 
practical purposes, as a bundle of streamlines. Since the stream tube is bounded 
on all sides by streamlines and since there can be no net velocity normal to a 
streamline, no fluid can leave or enter the stream tube except at the ends. The fixed 
volume between the two fixed sections of the stream tube is known as the control 
volume and its magnitude will be designated by vol. According to newtonian 
physics (i.e., disregarding the possibility of converting mass to energy), mass must 
be conserved. If the mass of the fluid contained in the control volume of volume 

1 Note that area A is defined by the surface at right angles to the velocity vectors. 
2 In Eqs. (3.4) and (3.5) the ;·and p should be to the right of the integral sign if the density of the 

fluid varies across the flow. 

Figure 3.7. Length of stream tube as control 
volume. 
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(vol) at timet is mass" then the mass of fluid contained in vol at timet+ dt would 
be: 

masst+dt = mass1 + (p 1u1 dAd dt- (p 2 u2 dA 2 ) dt 

But, the mass contained in vol at t + dt can also be expressed as: 

cp 
masst+dt = mass1 + - -- dt(vol) at 

where cp/ct is the time rate of change of the mean density of the fluid in vol. 
Equating these two expressions for masst+dt yields 

and PI f ul dA - Pz f Uz dA = f 
• A1 • A2 • val 

ap 
at d(vol) (3.8) 

This is the general equation of continuity for flow through regions with fixed 
boundaries. It states that the net rate of mass inflow to the control volume is equal 
to the rate of increase of mass within the control volume. This equation can be 
reduced to more useful forms. 

or 

or 

For steady flow, cpjct = 0 and 

P1 f u 1 dA = p2 ,. u2 dA 
"A1 "A2 

p,Al VI= pzAz Vz = M 

Y1A1 VI= YzAz Vz = G 

(3.9a) 

(3.9b) 

These are the continuity equations that apply to steady, compressible or incom
pressible flow within fixed boundaries. 

If the fluid is incompressible, p = constant and thus 

J u1 dA = f u2 dA 
A1 "A2 

or (3.10) 

This is the continuity equation that applies to incompressible fluids for both 
steady and unsteady flow within fixed boundaries. 

Equations (3.9) and (3.10) are generally adequate for the analysis of flows in 
conduits with solid boundaries, but for the consideration of flow in space, as that 
of air around an airplane, for example, it is desirable to express the continuity 
equation in another form, as indicated in Sec. 5.1. Or, for the case of unsteady flow 
of a liquid in a canal (Fig. 3.4 ), the principle of conservation of mass indicates that 
the rate of flow past section 1 minus the rate of flow past section 2 is equal to the 
time rate of change of storage volume between the two sections. Thus, 

Q1 - Q2 = dS/dt (3.11) 

where S is the volume of liquid contained in the canal between the two sections. 
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Velocity low 

(a) 

~ ~ 
Velocity low 

Section through MN 
(b) 

Figure 3.8. Two- and three-dimensional (axially symmetric) flow of an ideal fluid. 

3.6. ONE-, TWO-, AND THREE-DIMENSIONAL FLOW 

In true one-dimensional flow the velocity has at all points the same direction and 
1 for an incompressible fluid) the same magnitude. Such a case is rarely of practical 
mtcrest. However, the term one-dimensional method of analysis is applied to the 
flow between boundaries which are really three-dimensional, with the understand
mg that the "one dimension" is taken along the central streamline of the flow. 
~ \ crage values of velocity, pressure, and elevation across a section normal to this 
, trcamline are considered typical of the flow as a whole. Thus the equation of 
.:c~ntinuity in Sec. 3.5 is called the one-dimensional equation of continuity, even 
::wugh it may be applied to flow in conduits which curve in space and in which 
:he \ e locity varies across any section normal to the flow. It will be of increasing 
::nportance in the following chapters to recognize that, when high accuracy is 
C:,>Ired. the equations derived by the one-dimensional method of analysis require 
~o:!lnement to account for the variation in conditions across the section. 

If the flow is such that all streamlines are plane curves and are identical in a 
,.:nes of parallel planes, it is said to be two-dimensional. In Fig. 3.8a the channel 
:~cl' a constant dimension perpendicular to the plane of the figure. Thus every 
-:rchS section normal to the flow must be a rectangle of this constant width. 
T::-.rce-dimensional flow is illustrated in Fig. 3.8b, although in this particular case 
: :~..: flow is axially symmetric, which simplifies the analysis. A generalized three
~:rncn,ional flow, such as the flow of cool air from an air conditioning outlet into 
.1 room. 1s quite difficult to analyze. Such flows are often approximated as two
c: t:nen,ional or as axially symmetric flow. This offers an advantage in that it is 
~a,lcr w draw diagrams describing the flow and the mathematical treatment is 
:;wch ,1mpler. 

3.7. THE FLOW NET 

The streamlmes and velocity distribution in the case of steady two-dimensional 
flow of an ideal fluid within any boundary configuration may be determined by a 
How ne1. such as is shown in Fig. 3.9. This is a network of streamlines and lines 

• 

I 

• 
II 

I 
I 

I 
I 

I 



KINEMATICS OF FLUID FLOW 69 
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/ ' lines 
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Figure 3.9. Flow net-two-dimensional flow. 

normal to them so spaced that the distances between both sets of lines are in
versely proportional to the local velocities. The streamlines show the mean direc
tion of flow at any point. A fundamental property of the flow net is that it provides 
the one and only representation of the ideal flow within the given boundaries. It is 
also independent of the actual magnitude of the flow and, for the ideal fluid, is the 
same whether the flow is in one direction or the reverse. 

In a number of simple cases it is possible to obtain mathematical expressions. 
known as srreamfimctions (Sec. 5.4 ), from which one can plot streamlines. But even 
the most complex cases can be solved by plotting a flow net by a trial-and-error 
method. Although it is possible to construct nets for three-dimensional flow, 
treatment here will be restricted to the simpler two-dimensional net, which will 
more clearly illustrate the method. Consider the two-dimensional stream tube of 
Fig. 3.10. Assuming a constant unit thickness perpendicular to the paper, the 
continuity equation gives V1 ,1n 1 = V2 ,1n2 . 

Consider next a region of uniform flow divided into a number of strips of 
equal width, separated by streamlines, as in Fig. 3.8a. Each strip represents a 

Figure 3.10 
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stream tube, and the flow is equally divided among the tubes. As the flow 
approaches a bend or obstruction, the streamlines must curve so as to conform to 
the boundaries, but each stream tube still carries the same flow. Thus the spacing 
between all streamlines in the entire field is everywhere inversely proportional to 
the local velocities, so that, for any section normal to the velocity, 

V ~n = constant (3.12) 

To draw the streamlines, it is necessary to start by estimating not only the 
spacing between them but also their directions at all points. As an aid in the latter 
we make use of normal, or equipotential, lines. As an analogy consider the flow of 
heat through a homogeneous material enclosed between perfectly insulated boun
daries. The heat might be considered to flow along the equivalent of streamlines. 
As there can be no flow of heat along a line of constant temperature, it follows that 
the heat flow must be everywhere perpendicular to isothermal lines. In like 
manner streamlines must be everywhere perpendicular to equipotential lines. As 
solid boundaries, across which there can be no flow, also represent streamlines, it 
follows that equipotential lines must meet the boundaries everywhere at right angles. 

If the equipotential lines are spaced the same distance apart as the streamlines 
in the region of uniform two-dimensional flow, the net for that region is composed 
of perfect squares. In a region of deformed flow the quadrilaterals cannot remain 
square, but they will approach squares as the number of streamlines and equi
potential lines are increased indefinitely. It is frequently helpful, in regions where 
the deformation is marked, to introduce extra streamlines and equipotential lines 
spaced midway between the original ones. 

In drawing a flow net the beginner will make considerable use of the eraser, 
but with some practice a net can be sketched with fair facility to represent any 
boundary configuration. It is even possible to construct an approximate flow net 
for cases where one solid boundary does not exist and the fluid extends laterally 
indefinitely, as in the flow around an immersed object. Such a case reveals an 
advantage of the flow net that is not evident from Fig. 3.9. In the flow between 

b 

I 

l 
Figure 3.11. Two-dimensional flow of a frictionless fluid past a solid whose surface is perpendicular 
to the plane of the paper. Streamlines or path lines for steady flow. 
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confining solid boundaries it is always possible to determine the mean velocity 
across any section by dividing the total flow by the section area. For flow around 
an immersed object, as in Fig. 3.11, there is no fixed area by which to divide a 
definite flow, but the flow net affords a means of determining the velocity in the 
region of such an object. 

Where a channel is curved, the equipotential lines must diverge inasmuch as 
they radiate from centers of curvature. The distance between the associated 
streamlines must vary in the same way as that between the equipotential lines. 
Therefore, as in Fig. 3.9, the areas are smallest along the inner radius of the bend 
and increase toward the outside. 

The accuracy of the final flow net can be checked by drawing diagonals, as 
indicated by a few dashed lines in Fig. 3.9. If the net is correct, these dashed lines 
also form a network of lines that cross each other at right angles and produce 
areas that approach squares in shape. 

3.8. USE AND LIMITATIONS OF FLOW NET 

Although the flow net is based on an ideal frictionless fluid, it may be applied to 
the flow of a real fluid within certain limits. Such limits are dictated by the extent 
to which the real fluid is affected by factors which the ideal-fluid theory neglects, 
the principal one of which is fluid friction. 

The viscosity effects of a real fluid are most pronounced at or near a solid 
boundary and diminish rapidly with distance from the boundary. Hence, for an 
airplane or a submerged submarine, the fluid may be considered as frictionless, 
except when very close to the object. The flow net always indicates a velocity next 
to a solid boundary, whereas a real fluid must have zero velocity adjacent to a 
wall. The region in which the velocity is so distorted, however, is confined to a 
relatively thin layer called the boundary layer, outside of which the real fluid 
behaves very much like the ideal fluid. 

The effect of the boundary friction is at a minimum when the streamlines are 
converging, but in a diverging flow there is a tendency for the streamlines not to 
follow the boundaries if the rate of divergence is too great. In a sharply diverging 
flow, such as is shown schematically in Fig. 3.12, there may be a separation of the 
boundary layer from the wall, 1 resulting in eddies and even reverse flow in that 
region. The flow is badly disturbed in such a case, and the flow net may be of 
limited value. 

A practical application of the flow net may be seen in the flow around a body, 
as shown in Fig. 3.11, which may represent, for example, the upstream portion of a 
bridge pier at a distance below the surface where surface wave action is not a 
factor. Except for a thin layer adjacent to the body, this diagram represents the 
flow in front of and around the sides of the body. The central streamline is seen to 

1 If the flow is laminar (Sec. 3.1), there will be no separation. 
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Point of separation', 
\ 

Figure 3.12. Separation in diYerging flow. 

branch at the forward tip of the body to form two streamlines along the walls. 
At the forward tip the velocity must be zero, hence this point is called the 
stagnation point. 

Considering the limitations of the flow net in diverging flow, it may be seen that, 
while the flow net gives a fairly accurate picture of the velocity distribution in the 
region near the upstream part of any solid body, it may give little information 
concerning the flow conditions near the rear because of the possibility of separa
tion and eddies. The disturbed flow to the rear of a body is known as a turbulent 
wake. The space occupied by it may be greatly diminished by streamlining the 
body, i.e., giving the body a long slender tail, which tapers to a sharp edge for 
two-dimensional flow or to a point for three-dimensional flow. 

3.9. FRAME OF REFERENCE IN FLOW PROBLEMS 

In flow problems we are really concerned only with the relative velocity between 
the fluid and the body. It makes no difference whether the body is at rest and the 
fluid flows past it or whether the fluid is at rest and the body moves through it. There 
are thus two frames of reference. In one the observer (or the camera) is at rest with 
respect to the solid body. If the observer at rest with respect to a bridge pier views 
a steady flow past it or is on a ship moving at constant velocity through still water, 
the streamlines appear to him to be unchanging and therefore the flow is steady. 
But if he floats with the current past the pier or views a ship going by while he 
stands on the bank, the flow pattern which he observes is changing with time. 
Thus the flow is unsteady. 

The same flow may then be either steady or unsteady according to the frame 
of reference. The case that is usually of more practical importance is the one of 
steady flow, and for this case streamlines and path lines are identical. In unsteady 
flow streamlines and path lines are entirely different from each other and also 
bear no resemblance to those of steady flow. 
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Illustrative Example 3.1. An incompressible ideal fluid flows at 0.5 cfs through a circular pipe 
into a conically converging nozzle. Determine the average velocity of flow at sections A and B of the 
accompanying figure. 

As a first step an approximate flow net is sketched to provide a general picture of the flow. Since 

this is an axially symmetric flow, the net is not a true two-dimensionalflow net. 

A 
• 8" diam 

! 

Illustrative Example 3.1 

At section A the streamlines are parallel and hence the area at right angles to the velocity vectors 
is a plane circle. Thus 

Q 0.5 
V, = · = --; 

8
-

2 
= 1.42 fps 

A, (n14)(n) 

At section B, however, the area at right angles to the streamlines is not clearly defined; it is a 
curved, dish-shaped section. As a rough approximation it might be assumed to be the portion of the 
surface of a sphere of radius 2.0 in that is intersected by a circle of diameter 2.82 in. Thus 

Q Q 0.5 
v. = A

8 
= lnRh = [2n(2)(0~S9)]/lM = 9'75 

fps 

If the data for this example had been given in Sf units, the solution would have been similar to the 
foregoing except the conversion from inches to feet would not have been necessary. 

3.10. VELOCITY AND ACCELERATION IN STEADY FLOW 

In a typical three-dimensional flow field the velocities are everywhere different in 
magnitude and direction. Also, the velocity at any point in the field may change 
with time. Let us first consider the case where the flow is steady and thus indepen-
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dent of time. If the velocity of a fluid particle has components u, v, and w parallel 
to the x, y, and z axes, then for steady flow, 

u,, = u(x, y, z) 

v,, = v(x, y, z) 

w,, = w(x, y, z) 

(3.13a) 

(3.13b) 

(3.13c) 

Applying the chain rule of partial differentiation, the acceleration of the fluid 
particle for steady flow can be expressed as 

d av dx av dv av dz 
as,= dt V(x, y, z) =a-; dt + ay dt + -az dt (3.14) 

where 

Noting that dxjdt = u, dyjdt = v, and dz/dt = w, 

av av av 
asl = u a- + v -a + w 

;X y az 
(3.15) 

This equation can be written as three scalar equations: 

au au au 
(axtr = u a-.- + v a-. + w -a 

X )' Z 
(3.16a) 

cv av av 
(ay)s, = u -;;- + v -a + w -a 

ox y z 
(3.16b) 

aw aw aw 
(az),, = u -a + v -a- + wa· -

·X y Z 
(3.16c) 

These equations show that even though the flow is steady, the fluid may 
possess an acceleration by virtue of a change in velocity with change in position. 
This type of acceleration is commonly referred to as convective acceleration. 

3.11. VELOCITY AND ACCELERATION 
IN UNSTEADY FLOW 

If the !low is unsteady, then Eqs. (3.13a) to (3.13c) take the form 

u = u(x, y, z, t) · · · (3.17a) 

Following a similar procedure to that of the preceding section results in the 
following set of scalar equations: 

a = (u ~u + v ~~ + w a~) + ~~ 
X ax ay az at 

(3.18a) 
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a,.= (u cv clv ~v) + clv (3.18b) -- +v ~ + w ox ry clz ot 

az = ( U 

cw cw ~) cw 
(3.18c) -::,- + v ,- + w + -

ex CJ' az ot 

In the above set of equations the three terms in parentheses are recognized as 
the convective accelerations, while the ("'u/ct, cvjDt, and ow/ot terms represent the 
acceleration caused by the unsteadiness of the flow. This type of acceleration is 
commonly referred to as the local acceleration. 

In the case of uniform flow (streamlines parallel to one another) the convec
tive acceleration is zero and 

av 
a=--

Dt 
(3.19) 

At times it is helpful to superimpose the coordinate system on the instantan
eous streamline pattern in such a fashion that the x axis is coincident with the 
streamline at a particular point of concern. In such a case the position s will 
indicate location along the instantaneous streamline. Thus, generally, V = V(s, t) 
and the acceleration of the particle can be conveniently expressed as 

cV (IV 
a=V-+--

(ls ct 
(3.20) 

In uniform flow the first term of the above expression is zero, while in steady flow 
the second term becomes zero. In Eq. (3.20) a represents the acceleration of the 
fluid particle along the streamline. In the terminology of curvilinear motion this is 
referred to as the tangential acceleration. At this point in our discussion we should 
recall that a particle moving steadily along a curved path has a normal acceleration 
an toward the center of curvature of the path. From mechanics, 

a = n 

v2 
r 

(3.21) 

where r is the radius of the path. A particle moving on a curved path will always 
have a normal acceleration, though its tangential acceleration may be zero. 

Illustrative Example 3.2. Refer to the figure of Illustrative Example 3.1. The flow is steady at 
0.5 cfs. Find the acceleration in the flow at sections A and B. 

(because the flow is uniform at section A and also steady) 

For any point in section B, 

av av 
a 8 = u - + r 

ex cy 

For the point B on the axis of the pipe at section B, 
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The effective area through which the flow is occurring in the vicinity of the nozzle may be expressed 
approximately as A= 2nhr, where h = r(l -cos 45°) = 0.293r and r is the distance from point C. 

Thus A = 2n(0.293r2 ) = 1.84r2
, and the velocity in the converging nozzle (assuming the stream

lines flow radially toward C) may be expressed approximately as 

Q 0.5 
V=-=--

A 1.84r2 

At section B (r = 2 in), 

and 

Thus 

y 

8 LIT 

0.5 
V = - - = 9.75 fps 

1.84r2 

av av 0.54 
- = - -- = ---- = 118 fps/ft 
ilx ilr r3 

iJV 
= 9.75(118) = 1,150 ft/s 2 

ilx 

4f------

3 

(convective acceleration) 

0o~----~~------~2------~3~----4L---~~5L------------x 

r..-one Lj 

(a) 

IUustrative Example 3.3. Coordinates of A(x = 3.5, y = 1.2); (aA)x = 2x = 7.0 fps/s; (aA)y = 2y = 2.4 
fps/s; a A= [(7.0)2 + (2.4) 2

] 112 = 7.4 fps/s. (a) True vector diagram of acceleration at A. (b) Approxi
mate vector diagram of acceleration at A. 
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Illustrative Example 3.3. A two-dimensional flow field is given by u = 2y. v = x. Sketch the flow 
field. Derive a general expression for the velocity and acceleration (x and yare in units of length L; u 
and v are in units of L/T). 

Velocity components u and rare plotted to scale, and streamlines are sketched tangentially to the 
resultant velocity vectors. This gives a general picture of the flow field. 

au au 
ax= u - + v - = 2y(O) + x(2) = 2x ax ay 

ov ov 
a = u - + v - = 2y(l) + x(O) = 2y 

y ex oy 

To get a rough check on the acceleration imagine a velocity vector at point A in the accompanying 
figure. This vector would have a magnitude approximately midway between that of the adjoining 
vectors, or VA ;::::; 4L/T. The radius of curvature of the sketched streamline at A is roughly 3L. Thus 
a.;::::; 42/3 "'=' 5.3L/T2 The tangential acceleration of the particle at A may be approximated by noting 
that the velocity along the streamline increases from about 3.2L/T, where it crosses the x axis, to about 
8L/T at B. The distance along the streamline between these two points is roughly 4L. Hence a very 
approximate value of the tangential acceleration at A is 

a, = V - ;::::; 4 - - · ;::::; 4.8L/T iJV (8 - 3.2) 2 

cs 4 

Vector diagrams of these roughly computed normal and tangential acceleration components are 
plotted for comparison with the true acceleration as given by the analytic expressions. It will be proved 
later, in Chap. 5, that the flow in this example must be that of a compressible fluid. 

PROBLEMS 

3.1. Classify the following cases of flow as to whether they are steady or unsteady, uniform or 
nonuniform: (a) water flowing from a tilted pail; (b) flow from a rotating lawn sprinkler; (c) flow 
through the hose leading to the sprinkler; (d) natural stream during dry-weather flow; (e) natural 
stream during flood; (f) flow in a city water-distribution main in a straight section of constant 
diameter and no side connections. (Note: There is room for legitimate argument in some of the above 
cases, which should stimulate independent thought.) 

3.2. In the laminar flow of a fluid in a circular pipe the velocity profile is exactly a true parabola. The 
rate of discharge is then represented by the volume of a paraboloid. Prove that for this case the ratio of 
the mean velocity to the maximum velocity is 0.5. 

3.3. The velocities in a circular conduit 200 mm in diameter were measured at radii 0, 36, 65, and 
87 mm and were found to be 7.0, 6.8, 6.1, and 5.0 m/s respectively. Find approximate values of the 
volume flow rate and the mean velocity. Also determine the ratio of the mean velocity to the 
maximum velocity. 

3.4. A gas (y = 0.04lb/ft 3
) flows at the rate of 1.0 lb/s past section A through a long rectangular duct of 

uniform cross section 2 by 2ft. At section B some distance along the duct the gas weighs 0.065 lb/ft 3
. 

What is the average velocity of flow at sections A and B? 
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3.5. The velocity of a liquid (s = 1.26) in a 4-in (10-cm) pipe line is 1.5 fps (0.5 m s). Calculate the rate 
oftlow in cfs, gal/m, lb/s, and slugs/s. (For the metric data calculate the flow rate in f!s. m 3 js, kN/s, and 
kg/s.) 

3.6. Oxygen tlows in a 2-in by 2-in duct at a pressure of 40 psi and a temperature of !OOC F. If the 
atmospheric pressure is 13.4 psia and the velocity of flow is 18 fps. calculate the weight flow rate. 

3.7. Air at 40 C and under a pressure of 3,000 mbars. abs flows in a 250-mm diameter conduit at a 
mean velocity of 10 m/s. Find the mass flow rate. 

3.8. Water flows at 300 cm 3/s through a small circular hole in the bottom of a large tank. Assuming 
the water in the tank approaches the hole radially, what is the velocity in the tank at 5. 10, and 20 em 
from the hole'' 

3.9. Gas tlows at a steady rate in a 10-cm-diameter pipe that enlarges to a IS-em-diameter pipe. At a 
certain section of the 10-cm pipe the density of the gas is 200 kg. m·' and the velocity is 20 m;s. At a 
certain section of the 15-cm pipe the velocity is 14 m:s. What must be the density of the gas at that 
section'' If these same data were given for the case of unsteady flow at a certain instant, could the 
problem have been solved'? Discuss. 

3.10. Gas is flowing in a long 6-in-diameter pipe from A to B. At section A the flow is 0.35lb;s while at 
the same instant at section B the !low is 0.38 lb s. The distance between A and B is 800 ft. Find the 
mean value of the time rate of change of the specific weight of the gas between sections A and Bat that 
instant. 

3.11. A compressible fluid flows in a 400-mm-diamcter leaky pipe. Measurements are made simultan
eously at two points A and B along the pipe that are 12.000 m apart. Two sets of measurements are 
taken with a span of exactly 30 min between them. The data are as follows: 

Time 

0 
30 min 

300 
340 

20 
16 

350 
400 

16 
13 

Assuming the !low rate is decreasing linearly with respect to time, compute the approximate average 
rate of leakage between A and B. 

3.12. Water flows in a river. At 9 A.M. the flow past bridge 1 is 2,000 cfs (55m 3 s). At the same instant 
the !low past bridge 2 is 1,600 cfs (45m 3 s). At what rate is water being stored in the river between the 
two bridges at this instant? Assume zero seepage and negligible evaporation. 

3.13. Make an approximate plot of the frictionless velocity along both the inner and the outer boun
daries of Fig. 3.9. By what percent is the ideal maximum inner velocity greater than the ideal minimum 
outer velocity'> 

3.14. Consider the two-dimensional tlow about a 2-in-diameter cylinder. Sketch the flow net for the 
ideal !low around one-quarter of the cylinder. Start with a uniform net of 1-in squares, and fill in with 
±-in squares where desirable. (Note: The velocity at the stagnation point is zero, and it can be proved 
by classical hydrodynamics that the velocity tangent to the cylinder at a point 90 from the stagnation 
point is twice the uniform velocity.) Make a plot of the velocity along the center streamline from a 
point upstream where the velocity is uniform to the stagnation point, and then along the 
boundary of the cylinder from the stagnation point to the 90' point. Compare the result thus obtained 
with the value given by the equation V = 2U 0 sin IJ, where U 0 is the undisturbed stream velocity and IJ 
is the angle from the stagnation point to any point on the cylinder where V is desired. 

3.15. The figure shows the flow net for two-dimensional tlow from a rounded, long-slotted exit from a 
tank. If a is 3 in and U 0 is 10 fps. approximately how long will it take a particle to move from point A 
to point Bon the same streamline'' (Note: Between each pair of equipotential lines, measure tl.s, and 
then compute the average velocity and time increment.) 
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Problem 3.15 

3.16. Repeat Pro b. 3.15 using the following data: a= 15 em and U 0 = 0.5 m/s. Find also the approxi
mate velocity where the flow crosses equipotential line 3. 

3.17. Assume that the streamlines for a two-dimensional flow of a frictionless incompressible fluid 
against a flat plate normal to the initial velocity may be represented by the equatio·n xy = constant and 
that the flow is symmetrical about the p1ane through x = 0. A different streamline may be plotted for 
each value of the constant. Using a scale of 1 in= 6 units of distance, plot streamlines for values of the 
constant of 16, 64. and 128. 

3.18. For the case in Prob. 3.17, it can be shown that the velocity components at any point are u = ax 
and t' = -ay, where a is a constant. Thus the actual velocity is V = aj'? + y 2 = ar, where r is the 
radius to the origin. Let a = ~; then if 1 in = 6 ft for the streamlines. I in = 2 fps for the velocity scale. 
Draw curves of equal velocity for values of 2, 4, 6, 8, and 10 fps. How does the velocity vary along the 
surface of the plate? 

3.19. For three-dimensional flow with they axis as the centerline, assume that the equation for the 
bounding streamline of a jet impinging vertically downward on a flat plate is x 2 y = 64. Plot the flow 
showing the centerline and bounding streamlines of the jet. (a) What is the approximate average 
velocity in the vertical jet at y = 10 if the average velocity in the vertical jet is 5.0 m/s at y = 16? 
(b) For the above conditions find the approximate velocity along the plate at r = 12, 24, and 36. 

3.20. In Fig. 3.11 assume that b = 5 ft and the uniform velocity is lO fps. Make a plot of the velocity 
along the boundary of the solid. By what percent does the maximum velocity along the boundary 
exceed the uniform velocity? 

3.21. The velocity along a streamline lying on the x axis is given by u = 10 + x 112
. What is the 

convective acceleration at x = 3 '? Assuming the fluid is incompressible, is the flow converging or 
diverging'? Sketch to approximate scale the adjoining streamlines. If the fluid were compressible, what 
could one say about its density? 

3.22. Sketch the flow field defined by u = 3y, v = 2, and derive expressions for the x andy components 
of acceleration. Find the magnitude of the velocity and acceleration for the point having the coordin
ates (3. 4). 

3.23. Sketch the flow field defined by u = 0, v = 3xy, and derive expressions for the x and y compon
ents of acceleration. Find the acceleration at the point (2, 2). 
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3.24. Sketch the flow field defined by u = -2y, v = 3x, and derive expressions for the x andy compon
ents of acceleration. As in Illustrative Example 3.3, find approximate values of the normal and 
tangential accelerations of the particle at the point (2, 3). Compare the value of (a~ + an 112 with the 
computed value (a;+ a;) 1

12 . 

3.25. The velocity along a circular streamline of radius 5 ft is 3 fps. Find the normal and tangential 
components of the acceleration if the flow is steady. 

3.26. A large tank contains an ideal liquid which flows out of the bottom of the tank through a 
6-in-diameter hole. The rate of steady outflow is 10 cfs. Assume that the liquid approaches the center of 
the hole radially. Find the velocities and convective accelerations at points that are 2 and 3 ft from the 
center of the hole. 

3.27. Refer to Prob. 3.26. Suppose the flow is unsteady and Q = 10 - 0.5t, where Q is in cfs and t is in 
s. Find the local acceleration at a point 2 ft from the center of the hole at time t = 10 s. What is the 
local acceleration at this point at t = 15 s? Find the total acceleration at a point 3 ft from the center of 
the hole at t = 15 s. 

3.28. An ideal liquid flows out the bottom of a large tank through a 10-cm-diameter hole at a steady 
rate of0.40 m3/s. Assume the liquid approaches the center of the hole radially. Find the velocities and 
convective accelerations at points 0.5 and 1.0 m from the center of the hole. 

3.29. Refer to Prob. 3.28. Suppose the flow is unsteady and Q = 0.40- 0.02t0
·
5

, where Q is in m 3/s and 
t in s. Find the local and convective accelerations at a point 0.5 m from the center of the hole at time 
t = 20 s. What is the total acceleration? 

3.30. A flow field is defined by u = 2, v = 3, w = 4. What is the velocity of flow? 

3.31. A flow is defined by u = 2(1 + t), v = 3(1 + r), w = 4(1 + r). What is the velocity of flow at the 
point (3, I, 4) at t = 2 s? What is the acceleration at that point at t = 2 s? 

3.32. A two-dimensional flow field is given by u = 3 + 2xy + 4t 2
, v = xy 2 + 3t. Find the velocity and 

acceleration of a particle of fluid at point (2, I) at t = 5. 

3.33. The figure shows to scale a two-dimensional stream tube. The flow rate is 40 m3/s per meter 
perpendicular to the plane of the sketch. Determine approximate values of the normal and 
tangential accelerations of a fluid particle at A. What is the resultant acceleration of a particle at A? 

2m 
Problem 3.33 

3.34. Refer to Prob. 3.33. If the flow rate was (20- 3t) m 3/s per meter with tins, find the approximate 
values of normal and tangential accelerations of a fluid particle at A when t = 4 s. What is the resultant 
acceleration of a fluid particle at A? 



CHAPTER 

FOUR 
ENERGY CONSIDERATIONS IN 

STEADY FLOW 

In this chapter fluid flow is approached from the viewpoint of energy considera
tions. The first law of thermodynamics tells us that energy can be neither created 
nor destroyed. Moreover, all forms of energy are equivalent. In the following 
sections the various forms of energy present in fluid flow are briefly discussed. 

4.1 KINETIC ENERGY OF A FLOWING FLUID 

A body of mass m when moving at a velocity V possesses a kinetic energy, 
KE = !m V2

. Thus if a fluid were flowing with all particles moving at the same 
velocity, its kinetic energy would also be !m V2

; this can be written as: 

KE !mV2 !(p(vol)]V2 V2 

~-- --- ------~ 

Weight (y)(vol) (y)(vol) 2g 
(4.1) 

In English units V2 j2g is expressed in ft·lb/lb = ft and in SI units as N·m/N = m. 
In the flow of a real fluid the velocities of the different particles will usually not 

be the same, so it is necessary to integrate all portions of the stream to obtain the 
true value of the kinetic energy. It is convenient to express the true value in terms 
of the mean velocity V and a factor rx. Hence, 

True KE V2 

Weight= rx 2g (4.2) 

81 
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Consider the case where the axial components of the velocity vary across a section 
(Fig. 3.lb ). If u is the local axial velocity component at a point, the mass flow 
through an elementary area dA is p dQ = pu dA. Thus the true flow of kinetic 
energy per unit of time across area dAis (pu dA)(u 2/2) = (y/2g)u 3 dA. The weight 
rate of flow through dA is yQ = yu dA. Thus for the entire section 

True KE/time true KE y/2g J u3 
dA J u3 

dA 
--------

Weight/time weight 
(4.3} 

y J u dA 2g J u dA 

Comparing Eq. (4.3} with Eq. (4.2} we get 

1 r u3 dA . 
a= V2 "-~--~~ = A~3 .I u3 dA 

f u dA 

(4.4) 

As the average of cubes is greater than the cube of the average, the value of a will 
always be more than 1. The greater the variation in velocity across the section, the 
larger will be the value of a. For laminar flow in a circular pipe, a = 2; for 
turbulent flow in pipes, a ranges from 1.01 to 1.15, but it is usually between 1.03 
and 1.06. 

In some instances it is very desirable to use the proper value of a, but in most 
cases the error in neglecting its divergence from 1.0 is negligible. As precise values 
of a are seldom known, it is customary to assume that the kinetic energy is V2 j2g 
per unit weight of fluid, i.e., ft-Ib/lb = ft (N·m/N =min SI units). 

4.2. POTENTIAL ENERGY 

The potential energy of a particle of fluid depends on its elevation above any 
arbitrary datum plane. We are usually interested only in differences of elevation, 
and therefore the location of the datum plane is determined solely by considera
tions of convenience. A fluid particle of weight W situated a distance z above 
datum possesses a potential energy of Wz. Thus its potential energy per unit 
weight is z, i.e., ft-lb/lb = ft (N·m/N = m in SI units). 

4.3. INTERNAL ENERGY 

Internal energy is more fully presented in texts on thermodynamics since it is 
thermal energy, but in brief, it is energy due to the motion of molecules and forces 
of attraction between them. Internal energy! is a function of temperature; it can be 

1 In the technical literature internal energy per unit mass is commonly represented by the symbol u. 
In this text, however, we use i for internal energy per unit mass since u is used in several situations for 
velocity. 
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expressed in terms of energy per unit of mass i or in terms of energy I per unit of 
weight. Note that i = gl. 

The zero of internal energy may be taken at any arbitrary temperature, since 
we are usually concerned only with differences. For a unit mass, !!i = cv !! T, 
where cv is the specific heat at constant volume whose units are ft-lb/(slugWR) 
[N·m/(kg)(K) in SI units]. Thus !!i is expressed in ft·lb/slug (N·m/kg in SI units). 
Internal energy I per unit of weight is expressed in ft·lb/lb = ft (N·m/N = m 
in SI units). 

4.4. GENERAL EQUATION FOR STEADY 
FLOW OF ANY FLUID 

The first law of thermodynamics states that for steady flow the external work done 
on any system plus the thermal energy transferred into or out of the system is 
equal to the change of energy of the system. 

Thus, for steady flow, 

Work+ heat=!! energy 

It should be noted that work, heat, and energy all have the same units and thus are 
interchangeable under certain conditions. 

Let us now apply the first law of thermodynamics to the fluid system defined 
by the fluid mass contained at timet in the control volume between sections 1 and 2 
of the stream tube in Fig. 4.1. The control volume is fixed in position and does not 
move or change shape (Fig. 4.1b ). The fluid system we are dealing with consists of 
the fluid that was contained between sections 1 and 2 at time t. This fluid system 
moves to a new position during time interval dt, as indicated in Fig. 4.1. During 

(2) 

(a) 

Figure 4.1 

Dotted line is boundary 
of fluid system 
at time (I+ dt). 

Solid line is boundary 
of control volume, also 
boundary of fluid 
system at time t. 

(b) 
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this short time interval we shall assume that the fluid moves a short distance ds 1 at 
section 1 and ds 2 at section 2. In this discussion we restrict ourselves to steady flow 
so that y1 A1 ds 1 = y2 A 2 ds 2 • In moving these short distances, work is done on 
the fluid system by the pressure forces p1 A1 and p2 A2 • This work is referred to as 
flow work. It may be expressed as 

Flow work= p1 A1 ds 1 - p2 A 2 ds 2 

The minus sign in the second term indicates that the force and displacement are in 
opposite directions. 

In addition to flow work, if there is a machine between sections 1 and 2 there 
will be shaft work. During the short time interval dt we can write 

weight energy . 
Shaft work = --. - - x -.-· x tlme 

tlme weight 

where hM is the energy put into the flow by the machine per unit weight of flowing 
fluid. If the machine is a pump, hM is positive; if the machine is a turbine, hM is 
negative. It should be noted that frictional shear stresses at the boundary of the 
fluid system do work on the fluid within the system. The shear stresses are not 
external to the system and the work they do is converted to heat which tends to 
increase the temperature of the fluid within the system. 

The heat transferred from an external source into the fluid system over time 
interval dt is 

where QH is the energy put into the flow by the external heat source per unit 
weight of flowing fluid. If the heat flow is out of the fluid, the value of QH is 
negative. 

In using the concept of the control volume, we consider a fluid system defined 
by the mass of fluid contained in the control volume at t. At timet + dt this same 
mass of fluid has moved to a new position as indicated in Fig. 4.lb. At that instant 
the energy E2 of the fluid system (cross-hatched area of Fig. 4.1b) equals the 
energy £ 1 that was possessed by the fluid mass when it was coincident with the 
-control volume at time t plus the energy ~Eout that flowed out of the control 
volume during time interval dt minus the energy ~Ein that flowed into the control 
volume during time interval dt. Thus, 

E2 = E1 + ~Eout- ~Ein 

Hence the change in energy ~E of the fluid system under consideration during 
time interval dt is 
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During time interval dt the weight of fluid entering at section 1 is i't A1 ds 1, 

and for steady flow an equal weight must leave section 2 during the same time 
interval. Hence the energy /1Ein which enters at section 1 during time dt is 
y1 A1 ds 1 (z 1 + a Vi /2g + I 1), while that which leaves (11Eout) at section 2 is repre
sented by a similar expression. Thus 

11 Energy= 11E = y2 A 2 ds 2 ( z 2 + a2 ~; + I 2 )- y1A1 ds1( z1 + a1 ~; + I 1) 

Applying the first law of thermodynamics (work + heat = 11 energy), at the 
same time factoring out y1 A 1 ds 1 = y2 A2 ds 2 for steady flow and rearranging, we 
get 

P 1 P 2 ( v~ ) ( Vi ) --- +hM+QM= Zz+az-+Iz.- z1+a1-
2 

+It 
Yt Yz 2g g 

or ( 
Pt Vi ) ( Pz V~ ) Z1 + y~ + \/.1 2g + I1 + hM + QH = Zz + Yz + \/.z ·2g + Iz (4.5) 

This equation applies to liquids, gases, and vapors, and to ideal fluids as well 
as to real fluids with friction. The only restriction is that it is for steady flow. The 
p/y terms represent energy possessed by the fluid per unit weight of fluid by virtue 
of the pressure under which the fluid exists. Under proper circumstances this 
pressure will be released and transformed to other forms of energy, i.e., kinetic, 
potential, or internal energy. Likewise it is possible for these other forms of energy 
to be transformed into pressure energy. 

In turbulent flow there are other forms of kinetic energy besides that of 
translation described in Sec. 4.1. These are the rotational kinetic energy of eddies 
initiated by fluid friction and the kinetic energy of the turbulent fluctuations of 
velocity. They are not represented by any specific terms in Eq. (4.5) because their 
effect appears indirectly. The kinetic energy of translation can be converted into 
increases in pjy or z, but these other forms of kinetic energy can never be trans
formed into anything but thermal energy. Thus they appear as an increase in the 
numerical value of I 2 over the value it would have if there were no friction, or else 
they produce an equivalent change in the numerical values of some other terms. 

The general energy equation (4.5) and the continuity equation are two impor
tant keys to the solution of many problems in fluid mechanics. For compressible 
fluids it is necessary to have a third equation, which is the equation of state which 
provides a relationship between density (or specific volume) and the absolute 
values of the pressure and temperature. 

In many cases Eq. (4.5) is greatly shortened because certain quantities are 
equal and thus cancel each other, or are zero. Thus, if two points are at the same 
elevation, z 1 - z 2 = 0. If the conduit is well insulated or if the temperature of the 
fluid and that of its surroundings are practically the same, QH may be taken as 
zero. On the other hand, QH may be very large, as in the case of flow of water 
through a boiler tube. If there is no machine between sections 1 and 2, then the 
term hM drops out. If there is a machine present, the work done by or upon it may 
be determined by solving Eq. (4.5) for hM. 
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4.5. ENERGY EQUATION FOR STEADY FLOW OF 
INCOMPRESSIBLE FLUIDS 

For liquids, and even for gases and vapors when the change in pressure is very 
small, the fluid may be considered as incompressible for all practical purposes, 
and thus we may take y1 = y2 = y = constant. In turbulent flow the value of a is 
only a little more than unity, and as a simplifying assumption, it will be assumed 
equal to unity. If the flow is laminar, V2 /2g is usually very small compared to the 
other terms in Eq. (4.5), hence little error is introduced if a is set equal to 1.0 rather 
than 2.0, its true value. Thus, for an incompressible fluid, Eq. (4.5) becomes 

(
p, Vi) (P2 V~) y-+z,+ 2g +hM+QH= y+z2+

2
g +(12 -11 ) (4.6) 

Fluid friction produces eddies and turbulence, and these forms of kinetic 
energy are eventually transformed into thermal energy. If there is no heat transfer, 
the effect of friction is to produce an increase in temperature so that I 2 becomes 
greater than I 1 . 

Suppose there is a loss of heat QH at such a rate as to maintain the tempera
ture constant so that I 2 = I 1 . In this event there is an actual loss of energy from 
the system equal to the mechanical energy which has been converted into thermal 
energy by friction. 

A change in the internal energy of a fluid is accompanied by a change in 
temperature and is equal to the external heat added to or taken away from the 
fluid plus the heat generated by fluid friction. Thus 

ll Internal energy . . . 
--Unit~Tmass- = L'lt = 12- t, = c(T2- Td 

ll I_n~ernal e~erg)' = M = lli = I 
2 

_ I 
1 

= ~ (T
2 

_ Td 
Umt of wetght g g 

= QH + hL (4.7) 

where c is the specific heat' of the incompressible fluid and hL is the fluid-friction 
energy loss per unit weight of fluid. The foregoing can be expressed as 

c 
hL = (I 2 - It}- QH =- (T2 - T1 ) - Qu 

g 
(4.8) 

If the loss of heat (QH negative) is greater than hL, then T2 will be less than T1 . If 
there is any absorption of heat (QH positive), T2 will be greater than the value 
which would have resulted from friction alone. A large value of hL produces only a 
very small rise in temperature if there is no heat transfer or, stated another way, 
only a very small transfer of heat is required to maintain isothermal flow. 

1 For water, c = 1 Btuj(lb of mass)(oR). In SI units, c for water= 1 cal/(g of mass)(K). These can 
also be expressed as 25,000 ft·lb;(slugWR) and 4,187 N·m/(kg)(K), equivalent to 25,000 ft 2/(s2 WR) and 
4,1H7 m2 j(s2 )(K) respectively. See Appendix 1. 
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If there is no machine between sections 1 and 2 and if no heat is gained or lost, 
by substituting Eq. (4.8) into Eq. (4.6) the energy equation for an incompressible 
fluid becomes 

P1 v~ P2 v~ 
-y+zt+2g=-y +z2+2g+hL (4.9) 

where hL (commonly referred to as head loss) represents the energy loss per unit 
weight of fluid. In some cases the value of h1• may be very large, and although for 
any real fluid it can never be zero, there are cases when it is so small that it may be 
neglected with small error.1 In such special cases 

P v2 
I+ + I 

")' Zt 2g 
P2 v~ -- + z2 + 

")' 2g 
(4.10) 

and from this it follows that 

P v2 
- + z + - = constant 

")' 2g 
( 4.11) 

The equation in either of these last two forms is known as Bernoulli's theorem, in 
honor of Daniel Bernoulli, who presented it in 1738. Note that Jernoulli's 
theorem is for a frictionless incompressible fluid. However, it can be a~d to real 
incompressible fluids with good results in situations where fricti~'"\:cts are 
very small. 

Illustrative Example 4.1. A liquid with a specific gravity of 1.26 flows in a pipe at a rate of 25 cfs 
(700 f/s). At a point where the pipe diameter is 24 in (60 em), the pressure is 45 psi (300 kN/m 2

). Find 
the pressure at a second point where the pipe diameter is 12 in (30 em) if the second point is 3 ft 
(1.0 m) lower than the first point. Neglect head loss. 

English units: 
25 25 

V1 = = 7.95 fps 
n 

V2 = = 31.8 fps 
n/4 

45(144) (7.95) 2 p2 (144) (31.8) 2 

FromEq.(4.10)0+- - +-- =-3+ --+-
1.26( 62.4) 64.4 1.26( 62.4) 64.4 

p 2 = 38.4 psi 

SI units: 

l'watec = (62.4)(157.1) = 9,800 N/m 3 = 9.8 kN/m 3 

0.70m 3/s 
V1 = ( ---

2 2 = 2.48 m/s 
n 0.3) m 

V2 = 4V1 = 9.92 m/s 

300 (2.48)2 p2 (9.92) 2 

0 + - + - - = -1.0 + ---- + ---
1.26(9.8) 2(9.81) 1.26(9.8) 2(9.81) 

p2 = 254 kN/m 2 

1 Recognizing when frictional effects are so small that frictionless flow may be assumed is impor
tant. For example, the pressure around the nose of a streamlined body (Fig. 3.11) may be determined 
quite accurately by assuming frictionless flow; however frictional effects must be considered if the shear 
stresses at the boundary are to be determined. 
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Illustrative Example 4.2. Water flows at 10 m 3fs in a !50-em-diameter pipe; the head loss in a 
1,000-m length of this pipe is 20 m. Find the increase in water temperature assuming no heat enters or 
leaves the pipe. 

Eq. (4.8) 

4.6. HEAD 

c 
hL = 20 m =- (T2 - T1 ) 

g 

c for water= 4,187 N·m/(kg)(K) 

ghL (9.81 m/s 2)(20 m) 
!'J.T= T

2
- T

1 
=--- = -- -- -----

c 4,187[(kg·m/s2 )·m]/(kg)(K) 

= 0.047 K 

In Eq. (4.9) each term has th'e dimensions of length. Thus p/y, called pressure head, 
represents the energy per unit weight stored in the fluid by virtue of the pressure 
under which the fluid exists; z, called elevation head, represents the potential 
energy per pound of fluid; and V2/2g, called velocity head, represents the kinetic 
energy per pound of fluid. The sum of these three terms is called the total head and 
is denoted by H, where 

P v2 
H=-+z+-

y 2g 
( 4.12) 

Each term in this equation, although ordinarily expressed in feet (or meters), 
represents foot pounds of energy per pound of fluid flowing (newton meters of energy 
per newton of fluid flowing in SI units). 

For a frictionless incompressible fluid with no machine between 1 and 2, 
H 1 = H 2 , but for a real fluid, 

( 4.13) 

which is merely a brief way ofwriting Eq. (4.9). For a real fluid it is obvious that if 
there is no input of energy head hM by a machine between sections 1 and 2, the 
total head must decrease in the direction of flow. 

If there is a machine between sections 1 and 2, then 

(4.14) 

If the machine is a pump, hM = hP, where hP is the energy head put into the flow by 
the pump. If the machine is a turbine, hM = - h,, where h, is the energy head 
extracted from the flow by the turbine. 
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4.7. POWER CONSIDERATIONS IN FLUID FLOW 

In deriving Eq. (4.5), the term yA ds representing weight of fluid was factored out; 
thus every term of the equation represents energy per unit weight (i.e., energy 
head). If the energy head is multiplied by the weight rate of flow, the resulting 
product represents power. Thus, 

Power= e~ergy = en;rgy x ~~ight = H x G = HyQ 
time wetght time 

In English units, 

while in metric units 

yQH 
Horsepower = 

550 

"I yQH KI owatts = --
1,000 

where y = the unit weight of fluid, lb/ft 3 (Njm 3 in SI units) 
Q =the rate of flow, ft 3/s (m 3/s in SI units) 
H = the energy head, ft (m in SI units) 

Note: 1 hp = 550 ft·lb/s = 0.746 kW. 

(4.15) 

(4.16) 

(4.17) 

In these equations H may be any head for which the corresponding power is 
desired. For example, to find the power extracted from the flow by a turbine 
substitute h, for H, to find the power of a jet substitute VJ /2g for H where l'} is the 
jet velocity, to find the power lost because of fluid friction substitute hL for H. 

With respect to power, it may be recalled from mechanics that the power 
developec when a force Facts on a translating body, or when a torque T acts on a 
rotating body, is given by 

Power = Fu = Tw (4.18) 

where u is linear velocity in feet per second (or meters per second) and w is angular 
velocity in radians per second. The force F represents the component force in the 
direction of u. These equations will be referred to in Chap. 6, where the dynamic 
forces exerted by moving fluids are discussed, and again in Chaps. 14 through 17, 
in the discussion of turbomachinery. 

Illustrative Example 4.3. A liquid with a specific gravity of 1.26 is being pumped in a pipeline 
from A to B. At A the pipe diameter is 24 in (60 em) and the pressure is 45 psi (300 kN/m 2

). At B the 
pipe diameter is 12 in (30 em) and the pressure is 50 psi (330 kN/m 2

). Point B is 3 ft (1.0 m) lower than 
A. Find the flow rate if the pump puts 22 hp (16 kW) into the flow. Neglect head loss. 



90 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

English units: 

HP = 22 = (1.26 X 62.4)Qhp 
550 

154 
h = 

p Q 

45(144) (Q rr) 2 154 50(144) [Q 1(0.25rr}j' 
0 + + + = -3 + + 

1.26(62.4) 64.4 Q 1.26(62.4) 64.4 

By trial Q = 14.5 cfs. 
SJ units: 

(1.26 X 9.810)Qitr 
kW = 16 = 

1.29 
h = 

r Q 

1,000 

300 [Q rr(0.3) 2
]

2 1.29 330 [Q rr(0.15) 2
]

2 

0 + + + = - 1.0 + + 
1.26(9.g I) 2(9.81) Q 1.26(9.81) 2(9.81) 

By trial Q = 0.49 m 3 s. 

Illustrative Example 4.4. Find the rate of energy loss due to pipe friction for the pipe of Illustra

tive Example 4.2. 

QH 
Rate of energ\ loss = ' 

~ 1,000 
where 

(9,glO N m 3 )(10 m 3 s)(20 m) 

1.000 

= 1.960 kW 

4.8. CAVITATION 

In liquid flow problems the possibility of cavitation must be investigated. Accord
ing to the Bernoulli theorem [Eq. (4.11 )], if at any point the velocity head in
creases, there must be a corresponding decrease in the pressure head. For any 
liquid there is a minimum absolute pressure possible, namely, the vapor pressure 
of the liquid. The vapor pressure depends upon the liquid and its temperature. If 
the conditions are such that a calculation results in a lower absolute pressure than 
the vapor pressure, this simply means that the assumptions upon which the calcu
lations are based no longer apply. Expressed in equation form, the criterion with 
respect to cavitation is as follows: 

( p~~it) 
I abs 

But ( £c_rit) = f_atm + (fJcrit) 
:' ab~ j' }' gage 
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Thus, (£~;it_) 
1 gage 

-(Patm _ Pv) 
""' "' I I 

( 4.19) 

where Patm' p,., and Pcrit represent the atmospheric pressure, the vapor pressure, and 
the critical (or minimum) possible pressure, respectively, in liquid flow. Equation 
(4.19) shows that the gage pressure head in a flowing liquid can be negative, but no 
more negative than Patm;;· - P);'. 

If at any point the local velocity is so high that the pressure in a liquid is 
reduced to its vapor pressure, the liquid will then vaporize (or boil) at that point 
and bubbles of vapor will form. As the fluid flows into a region of higher pressure, 
the bubbles of vapor will suddenly condense; in other words, they may be said to 
collapse. This action may produce very high dynamic pressure upon the adjacent 
solid walls, and since this action is continuous and has a high frequency, the 
material in that zone may be damaged. Turbine runners, pump impellers, and ship 
screw propellers are often severely and quickly damaged by such action, because 
holes are rapidly produced in the metal. Spillways and other types of hydraulic 
structures are also subject to damage from cavitation. The damaging action is 

(a) 

(b) 

(c) 

(d) 

Figure 4.2. Cavitation phenomena. (Photographs hy Hydrodynamics Laboratory, California Institute of 
Technology.) 
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commonly referred to as pitting. Not only is cavitation destructive, but it may 
produce a drop in efficiency of the machine or propeller or other device. 

In order to avoid cavitation, it is necessary that the absolute pressure at every 
point be above the vapor pressure. To ensure this, it is necessary to raise the 
general pressure leveL either by placing the device below the intake level so that 
the liquid flows to it by gravity rather than being drawn up by suction or by 
designing the machine so that there are no local velocities high enough to produce 
such a low pressure. 

Figure 4.2 shows photographs of blades for an axial-flow pump set up in a 
transparent-lucile working section where the pressure level can be varied. For a, b, 
and c there was the same water velocity on the same vane but with decreasing 
absolute pressures. This resulted in the formation of a vapor pocket of increasing 
size. The stream flow and the pressure for d were the same as forb, but the nose of 
the blade was slightly different in shape, which gave a different type of bubble 
formation. This shows the effect of a slight change in design. 

Illustrative Example 4.5. A liquid (s = 0.86) with a vapor pressure of 3.8 psia flows through the 
horizontal constriction in the accompanying figure. Atmospheric pressure is 26.7 in Hg. Find the 
maximum theoretical flow rate (i.e~ at what Q does cavitation occur?). Neglect head loss. 

3'diam 

26.7 
Patm = - (14.7) = 13.2 psia 

29.9 

( Pc~•) = - [ 13~- 3-llj 144 = -25.2 ft 
7 ... e 0.86(62.4) 

0 + 1()(1~) + (Q/2.25x)
2 

= 0 _ 25.2 + ~Qf0.25xr 
0.86(62.4) 64.4 64.4 

Q = 45.8 cfs 

Q 

Illustrative Example 4.5 

4.9. ENERGY EQUATION FOR STEADY FLOW OF 
COMPRESSIBLE FLUIDS 

If sections 1 and 2 are so chosen that there is no machine between them, and if IX is 
assumed as unity, Eq. (4.5) becomes 
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For most compressible fluids, i.e., gases or vapors, the quantity p/y is usually very 
large compared with z 1 - z 2 because of the small value of y, and therefore the z 
terms are usually omitted. But z 1 - z2 should not be ignored unless it is known to 
be negligible compared with the other quantities. 

The p/y and the I terms are usually combined for gases and vapors into a 
single term called enthalpy, indicated by a single symbol such as h = I + p/y, 
where his energy per unit weight. 1 With these changes Eq. (4.20) becomes 

~ vf ~ v~ 
h1 + 

29 
+ QH = h2 + 

29 
(4.21) 

This equation may be used for any gas or vapor and for any process. Some 
knowledge of thermodynamics is required to evaluate the h terms, and in the case 
of vapors it is necessary to use vapor tables or charts, because their properties 
cannot be expressed by any simple equations. Various aspects of the flow of 
compressible fluids are discussed in Chap. 9. 

4.10. EQUATION OF STEADY MOTION ALONG A 
STREAMLINE FOR IDEAL FLUID 

Referring to Fig. 4.3, let us consider frictionless steady flow of a fluid along the 
streamline. We shall consider the forces acting on a small cylindrical element of 
the fluid in the direction of the streamline and apply Newton's second law, that is, 
F = rna. The forces tending to accelerate the fluid mass are pressure forces on the 
two ends of the element 

p dA - (p + dp) dA = - dp dA 

1 Enthalpy represents the energy possessed by a given mass (or weight) of gas or vapor by virtue of the 
absolute temperature under which it exists. In thermodynamics enthalpy is commonly expressed in 
terms of energy per unit mass (h) rather than energy per unit weight (h). Thus h = gh = gf + 
pjp = i + pv. Values of h for vapors commonly used in engineering, such as steam, ammonia, freon, 
and others, may be obtained from vapor tables or charts. For a perfect gas and practically for real gases 
!'1h = g(1'1h) = cP 1'1 T, where cP is specific heat at constant pressure. For air at usual pressures C

0 
has a 

value of 6,000 ft·lb/(slugWR) [or 1,003 N·m/(kg)(K)]. These are equivalent to 6,000 ft 1/(s1 WR) [or 
1,003 m1/(s 2)(K)]. 

s 
(p+dp) dA 

"(dAds 
Figure 4.3. Element on stream tube (ideal fluid). 
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where d A is the cross section of the element at right angles to the streamline, and 
the weight component in the direction of motion 

- pg ds dA (dz/ds) = - pg dA dz 

The mass of the element is p dA ds, while its acceleration for steady flow can be 
expressed by Eq. (3.15) as V(dV/ds). Thus 

Dividing by - p dA, 

dV 
- dp dA - pg dA dz = p ds dA V-

ds 

dp 
- + V dV + g dz = 0 
p 

( 4.22) 

This equation is commonly referred to as the one-dimensional Euler equation, 
because it was first derived by Leonhard Euler in about 1750. It applies to both 
compressible and incompressible flow since the variation of p over the elemental 
length ds is small. Equation (4.22) can also be expressed as 

dp V2 

- + d-- + dz = 0 
I 2g 

( 4.23) 

For the case of a compressible fluid, since ;· t constant, an equation of state 
relating;· top and T must be introduced before integrating Eq. (4.23). 

For the case of an incompressible fluid(/·= constant), Eq. (4.23) can be in
tegrated to give, 

. dp . V2 • 

J Y + J dig+ J dz = constant ( 4.24) 

Thus 
p vz 
- + - + z =constant= total head= H 
i' 2g 

(4.25) 

This is Bernoulli's equation [Eq. ( 4.11)] for steady flow of a frictionless incom
pressible fluid along a streamline. Thus we have developed the Bernoulli equation 
from two viewpoints, first from energy considerations and now from Newton's 
second law. 

If there is no flow, 

z +£=constant 
" I 

(4.26) 

This equation is identical to Eq. (2.6); it shows that for an incompressible fluid 
at rest, the summation of the elevation z at any point in the fluid plus the pressure 
head p/;· at that point is equal to the sum of these two quantities at any other 
point. 
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4.11. EQUATION OF STEADY MOTION ALONG A 
STREAMLINE FOR REAL FLUID 

Let us now follow the same procedure as in the last section, except that now we 
shall consider a real fluid. The fluid element (Fig. 4.4) is similar to the one of 
Fig. 4.3, except that with a real fluid there is an additional force acting because of 
fluid friction, namely, r(2nr) ds, where r is the shear stress at the boundary of the 
element and 2nr ds is the area over which the shear stress acts, r being the radius 
of the cylindrical element under consideration. Writing F = ma, we get for steady 
flow 

dV 
-dp dA- pg dA dz- r(2nr) ds = p ds dA V -d.~ 

In this case dA = nr2 . Making this substitution for dA and dividing through by 
- pnr 2 gives 

dp 2r ds 
- + V dV + g dz = - ~--
p pr 

(4.27) 

This equation is similar to Eq. (4.22), except that it has an extra term. The extra 
term - (2t ds )/ pr accounts for fluid friction. 

Equation (4.27) may also be expressed as 

dp V2 2t ds - + d - + dz = - ---- ( 4.28) 
y 2g yr 

This equation applies to steady flow of both compressible and incompressible 
real fluids. However, once again an equation of state relating/' top and T must be 
introduced before integration if we are dealing with a compressible fluid. For an 
incompressible fluid (y =constant), we can integrate directly. 

Integrating from some section 1 to another section 2, where the distance 
between them is L, we get 

or 

Pz Pt V~ Vi 2tL -----+----- +Zz-Zt=----
}' }' 2g 2g }'f 

(
fJ_l_ +Vi+ Zt) - ~'__!._ = (Pz + _llj + Zz) 
y ~ ~ y ~ 

(4.29) 

')'dAds Figure 4.4. Element on stream tube (real fluid). 
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Comparing Eq. (4.29) with Eq. (4.9), we see that 

2rL 
hL=-

yr 

This expression will be referred to in Chap. 8. 

4.12. HYDRAULIC GRADE LINE AND ENERGY LINE 

(4.30) 

The term z + pjy is referred to as the static head, or piezometric head, because it 
represents the level to which liquid will rise in a piezometer tube (Sec. 2.6). The 
piezometric head line, or hydraulic grade line (HGL), is a line drawn through the 
tops of the piezometer columns. A pi tot tube (Sec. 12.3), a small open tube with its 
open end pointing upstream, will intercept the kinetic energy of the flow and 
hence indicate the total energy head, z + p/y + u2 /2g. Referring to Fig. 4.5, which 
depicts the flow of an ideal fluid, the vertical distance from point A on the stream 
tube to the level of the piezometric head at that point represents the pressure head 
in the flow at point A. The vertical distance from the liquid level in the piezometer 
tube to that in the pi tot tube is V2 j2g. In Fig. 4.5, the horizontal line sketched 
through the pitot-tube liquid levels is known as the energy line (EL). For flow of 
an ideal fluid, the energy line is horizontal since there is no head loss. 

A pitot tube intercepts the total energy in the flow field at the point at which it 
is located (Fig. 4.6). Hence the level above datum to which liquid will rise in a 
pitot tube is z + p/y + u 2 /2g, where u is the local velocity. For a pi tot tube to 
indicate the true level of the energy line, it must be placed in the flow at a point 
where u2 j2g = a(V2/2g), or where u = ~ V. If a (Sec. 4.1) is assumed to have a 
value of 1.0, then to indicate the energy line, the tube must be placed in the flow at 

E.L. 
--~---++-----+-~--~-------4+--b~~--__Lvi 

H.G.L. ---Y-=t+==--~2i' 

Figure 4.5. Ideal fluid. 
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E.L (not horizontal) 

H.G.L 

Figure 4.6. Real fluid. 

a point where u = V. One rarely knows ahead of time where in the flow u = V; 
hence the correct positioning of a pitot tube, in order that it indicate the true 
position of the energy line, is generally unknown. 

Illustrative Example 4.6. Water flows in a wide open channel as shown in the accompanying 
figure. Two pilot tubes are connected to a differential manometer containing a liquid (s = 0.82). Find 
uA and u 8 . 

t 
I 2' 

___l 
3' 

!f \1 H.G.L. 
--~II" 

UA- c==:_j 

IDustrative Example 4.6 

The water surface is coincident with the hydraulic grade line. Hence, 

u> 
-"=3ft 
2g 

u. = 13.9 fps 
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Applying Eq. (2.13), noting that a pilot tube intercepts z + pjy + t~ 2 /2g, 

ll
2 

ll
2 24 

~--IJ= (1-0.82) 
2g 2g 12 

from which t1 8 = 13.0 fps 

Familiarity with the concept of the energy line and hydraulic grade line is 
useful in the solution of flow problems involving incompressible fluids. If a 
piezometer tube is erected at B in Fig. 4.7, the liquid will rise in it to a height BB' 
equal to the pressure head existing at that point. If the end of the pipe at E were 
closed so that no flow would take place, the height of this column would then be 
BM. The drop from M to B' when flow occurs is due to two factors, one of these 
being that a portion of the pressure head has been converted into the velocity head 
which the liquid has at B, and the other that there has been a loss of head due to 
fluid friction between A and B. 

If a series of piezometers were erected along the pipe, the liquid would rise in 
them to various levels. The line drawn through the summits of such an imaginary 
series of liquid columns is called the hydraulic grade line. It may be observed that 
the hydraulic grade line represents what would be the free surface if one could 
exist and maintain the same conditions of flow. 

The hydraulic grade line indicates the pressure along the pipe, as at any point 
the vertical distance from the pipe to the hydraulic grade line is the pressure head 
at that point, assuming the profile to be drawn to scale. At C this distance is zero, 
thus indicating that the absolute pressure within the pipe at that point is atmo
spheric. At D the pipe is above the hydraulic grade line, indicating that there the 
pressure head is -DN, or a vacuum of DN ft (or m) of liquid. 

If the profile of a pipeline is drawn to scale, then not only does the hydraulic 

;Energy grade line 

Figure 4.7. Hydraulic and energy grade lines. 
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-~--\ 

't 
1', 
I 
I 
I 
I 

I 

I 

I 

grade line 

grade line 

z 
Datum-. 

Figure 4.8. (Plotted to scale from measurements made by Daugherty.) 

grade line enable the pressure head to be determined at any point by measurement 
on the diagram, but it shows by mere inspection the variation of the pressure in 
the entire length of the pipe. The hydraulic grade line is a straight line only if the 
pipe is straight and of uniform diameter. But for the gradual curvatures that are 
often found in long pipelines, the deviation from a straight line will be small. Of 
course, if there are local losses of head, aside from those due to normal pipe 
friction, there may be abrupt drops in the hydraulic grade line. Changes in 
diameter with resultant changes in velocity will also cause abrupt changes in the 
hydraulic grade line. 

If the velocity head is constant, as in Fig. 4.7, the drop in the hydraulic grade 
line between any two points is the value of the loss of head between those two 
points, and the slope of the hydraulic grade line is then a measure of the rate of 
loss. Thus in Fig. 4.8 the rate of loss in the larger pipe is much less than in the 
smaller pipe. If the velocity changes, the hydraulic grade line might actually rise in 
the direction of flow, as shown in Figs. 4.8 and 4.9. 

~";~-
-- ----- f---- ----- --- -----.-·- ----r 

' ' hL h 

G 
E.L 

~2 ' 

----- - r=== ;r 
1\ / I 

•( ! 

p 
")' 

_.._ 
-~ 

Figure 4.9. (Plotted to scale from measurements made by Daugherty.) 
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The vertical distance from the level of the surface at A in Fig. 4.7 down to the 
hydraulic grade line represents V2 /2g + hL from A to any point in question. Hence 
the position of the grade line is independent of the position of the pipe. Thus it is 
not necessary to compute pressure heads at various points in the pipe to plot the 
hydraulic grade line. Instead, values of V2 /2g + hL from A to various points can be 
laid off below the horizontal line through A, and this procedure is often more 
convenient. If the pipe is of uniform diameter, it is necessary to locate only a few 
points, and often only two are required. 

If Fig. 4.7 represents to scale the profile of a pipe of uniform diameter, the 
hydraulic grade line can be drawn as follows. At the intake to the pipe there will be 
a drop below the surface at A, which should be laid off equal to V2 /2g plus a local 
entrance loss. (This latter is explained in Chap. 8.) At E the pressure is EF, and 
hence the grade line must end at F. If the pipe discharged freely into the air at E, 
the line would pass through E. The location of other points, such as B' and N, may 
be computed if desired. In the case of a long pipe of uniform diameter the error is 
very small if the hydraulic grade line is drawn as a straight line from the liquid 
surface directly above the intake to the liquid surface directly above the discharge 
end of the pipe if the latter is submerged or to the end of the pipe if there is a free 
discharge into the atmosphere. 

If values of hL are laid off below the horizontal line through A, the resulting 
line represents values of the total energy head H measured above any arbitrary 
datum plane inasmuch as this line is above the hydraulic grade line a distance 
equal to V2/2g. This line is the energy grade line. It shows the rate at which the 
energy decreases, and it must always drop downward in the direction of flow 
unless there is an energy input from a pump. The energy grade line is also indepen
dent of the position of the pipeline. 

Energy grade lines are shown in Figs. 4.7 to 4.9. The last one, plotted to scale 
from measurements made by Daugherty, shows that the chief loss of head is in the 
diverging portion and just beyond the section of minimum diameter. 

4.13. METHOD OF SOLUTION OF FLOW PROBLEMS 

For the solutions of problems of liquid flow there are two fundamental equations, 
the equation of continuity and the energy equation in one of the forms from 
Eqs. (4.5) to (4.10). The following procedure may be employed: 

1. Choose a datum plane through any convenient point. 
2. Note at what sections the velocity is known or is to be assumed. If at any point 

the section area is great as compared with its value elsewhere, the velocity head 
is so small that it may be disregarded. 

3. Note at what points the pressure is known or is to be assumed. In a body of 
liquid at rest with a free surface the pressure is known at every point within the 
body. The pressure in a jet is the same as that of the medium surrounding the 
jet. 
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4. Note whether or not there is any point where all three terms, pressure, eleva
tion, and velocity, are known. 

5. Note whether or not there is any point where there is only one unknown 
quantity. 

It is generally possible to write an energy equation that will fulfill conditions 4 
and 5. If there are two unknowns in the equation, then the continuity equation 
must be used also. The application of these principles is shown in the following 
illustrative examples. 

Illustrative Example 4.7. A pipeline with a pump leads to a nozzle as shown in the accompanying 
figure. Find the flow rate when the pump develops a head of 80 ft. Assume that the head loss in the 
6-in-diameter pipe may be expressed by h~_ = 5VU2g, while the head loss in the 4-in-diameter pipe is 
hL = 12V~/2g. Sketch the energy line and hydraulic grade line, and find the pressure head at the 
suction side of the pump. Select the datum as the elevation of the waterr surface in the reservoir. Note 
from continuity that 

and 

where V3 is the jet velocity. Writing an energy equation from the surface of the reservoir to the jet, 

vz vz vz 
0 + 0 + 0- 5. 6 + 80- 12 4 

= 10 + 0 +- 3 

2g 2g 2g 

B 

Illustrative Example 4. 7 
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Express all velocities in terms of V3 : 

5(0.25 v,) 2 (0.563 v,) 2 v~ - - -- + 80 - 12 _c -- - = 10 + 
2g 2g 2g 

V3 = 29.7 fps 

rr ( 3 ) 
2 

Q = A 3 V1 = 
4 12 

29.7 = 1.45 cfs 

Head loss in suction pipe: 

h1. = 
5 
v~ 5(0.25 V3 )

2 0.312 v~ 
2g 2g 2g 

= 4.2 ft 

Head loss in discharge pipe: 

v~ 12(0.563 v,) 2 

!JL = 12 - = 52.1 ft 
2g 2g 

v2 
3 

= 13.7 ft 
2g 

vz 
-~ = 4.3 ft 
2g 

vz 
-

6 
= 0.86 ft 

2g 

The energy line and hydraulic grade line are drawn on the figure to scale. Inspection of the figure shows 
that the pressure head on the suction side of the pump is p 8 = 14.94 ft. Likewise, the pressure head at 
any point in the pipe may be found if the figure is to scale. 

Illustrative Example 4.8. Given the two-dimensional flow as shown in the accompanying figure. 
Determine the flow rate. Assume no head loss. The hydraulic grade line is represented by the water 
surface in the region where the streamlines are parallel. The energy line is a distance V 2/2g 
above the water surface, assuming 'l. = 1.0. If there is no head loss, the energy line is horizontal. Writing 
the energy equation from section 1 to 2, we have 

vz vz 
2.0 + l = 0.8 + - 2 

2g 2g 

But from continuity, 

(2 X 1)V1 = (0.8 X 1)V2 

Substituting Eq. (b) into Eq. (a), and using g = 9.81 mjs2 

V1 = 2.12 m/s V2 = 5.30 m/s 

Q = (2 x 1)2.12 = 4.24 m 3/s (for 1m of width perpendicular to figure) 

v2 
1 

= 0.23 m 
2g 

v2 
_2 = 1.43 m 
2g 

Illustrative Example 4.8 

(a) 

(b) 
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4.14. PRESSURE IN FLUID FLOW 

Strictly speaking the equations that have been derived apply to flow along a single 
streamline. They may, however, be used for stream tubes of large cross-sectional 
area by taking average values. The case of pressure over a section will now be 
considered. 

Figure 4.10 shows a small prism of a flowing fluid. The forces acting on the 
faces of the prism at right angles to the direction of flow and in the plane of the 
sketch are p 1 A and p 2 A as shown. Forces in the direction of motion balance out if 
the flow is steady and uniform. Summing forces in the direction at right angles to 
the flow, we get 

p 1 A + rAy cos :t. - p2 A = 0 

where y is the dimension of the prism as shown, and A is its cross-sectional area. 
From this we get p 2 - p 1 = }'J' cos :t. = ;·h = i'(z 1 - z2 ) = - y(L1z), which is simi
lar to Eq.(2.3). That is, in any plane normal to the direction of flow, the pressure 
varies according to the hydrostatic law if the flow is uniform and steady. The 
average pressure is then the pressure at the center of gravity of such an area. 
The pressure is lowest near the top of the pipe, and cavitation, if it were to occur, 
would appear there first. On a horizontal diameter through the pipe the pressure 
is everywhere the same. Since the velocity is higher near the center than near the 
walls, it follows that the local energy head is also higher near the center. This 
emphasizes the fact that a flow equation applies along the same streamline, but not 
between two streamlines, any more than between two streams in two separate 
channels. 

Static Pressure 

In a flowing fluid the pressure measured at right angles to the flow is called the 
static pressure. This is the value given by piezometer tubes and other devices 
explained in Sec. 12.2. 

Figure 4.10 



104 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

Stagnation Pressure 

The center streamline in Fig. 3.11 shows that the velocity becomes zero at the 
stagnation point. If p0 jy denotes the static-pressure head at some distance away 
where the velocity is V0 , while Ps jy denotes the pressure head at the stagnation 
point, then, applying Eq. (4.10) to these two points, Po /y + 0 + V~ /2g = Ps/Y + 
0 + 0, or the stagnation pressure is 

( 4.31) 

The quantity y V5 /2g, or p V5 /2, is called the dynamic pressure. 
Equation ( 4.31) applies to a fluid where compressibility may be disregarded. 

In Sec. 9.4 it is shown that for a compressible fluid 

v2( v2 ) 
Ps = Po + Yo 2; 1 + 4c~ + · · · (4.32) 

where c is the acoustic velocity (Appendix 2). For air at 68oF(20°C), c ;:::; 1,130 fps 
(345 m/s). If V0 = 226 fps (69 m/s) the error in neglecting the compressibility 
factor, which is the value in the parentheses, is only 1 per cent. But for higher 
values of V0 , the effect becomes much more important. Equation (4.32) Is, 
however, restricted to values of V0 /c less than 1. 

4.15. JET TRAJECTORY 

A free liquid jet in air will describe a trajectory, or path under the action of gravity, 
with a vertical velocity component which is continually changing. The trajectory 
is a streamline, and consequently, if air friction is neglected, Bernoulli's theorem 
may be applied to it, with all the pressure terms zero. Thus the sum of the 
elevation and velocity head must be the same for all points of the curve. The 
energy grade line is a horizontal line at distance V~ /2g above the nozzle, where V0 

is the initial velocity of the jet as it leaves the nozzle (Fig. 4.11 ). 
The equation for the trajectory may be obtained by applying Newton's equa

tions of uniformly accelerated motion to a particle of the liquid passing from the 
nozzle to point P, whose coordinates are x, z, in time t. Then x = Vxo t and 
z = ~0 t -1gt2

• Evaluating t from the first equation and substituting it in the 
second gives 

(4.33) 

By setting dz/dx = 0, we find that Zmaxoccurs when X= vxo vzofg. Substituting this 
value for X in Eq. (4.33) gives Zmax = v;o/2g. Thus Eq. (4.33) is that of an inverted 
parabola having its vertex at x 0 = V,

0 
~0 /g and z0 = v;

0
/2g. Since the velocity at 



ENERGY CONSIDERATIONS IN STEADY FLOW 105 

Total head= Energy grade line 

2 
Yxo 
2g 

Vc 2 
0 -~ 

I zmax- 2g ~ 

I L z 
}-~0= Vacos 8 L 

-------- ------

1----- V,o~o ------1 
g 

1-----------x-----

Figure 4.11. Jet trajectory. 

the top of the trajectory is horizontal and equal to vxo• the distance from this point 
to the energy gradient is evidently V~0 /2g. This may be obtained in another way 
by considering that V~ = v;o + v;

0
• Dividing each term by 2g gives the relations 

shown in Fig. 4.11. 
If the jet is initially horizontal, as in the flow from a vertical orifice, Vxo = V0 

and ~o = 0. Equation ( 4.33) is then readily reduced to an expression for the initial 
jet velocity in terms of the coordinates from the vena contracta to any point of the 
trajectory, z now being positive downward: 

(4.34) 

Illustrative Example 4.9. If a jet is inclined upward 30° from the horizontal, what must be its 
velocity to reach over a 10-ft wall at a horizontal distance of 60 ft, neglecting friction? 

From Newton's laws, 

x = 0.866 V0 t = 60 

z = 0.5 V0 t- 16.lt2 = 10 

From the first equation, t = 69.3/V0 . Substituting this in the second equation, 

69.3 1 (69.3) 
2 

0.5 V0 - - - x 32.2 --- = 10 
V0 2 V0 

from which V5 = 3,140, or V0 =56 fps. 
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~ 
\ 
r 
\ 

Figure 4.12 

4.16. FLOW IN A CURVED PATH 

The energy equations previously developed applied fundamentally to flow along a 
streamline or along a stream of large cross section if certain average values were 
used. Now conditions will be investigated in a direction normal to a streamline. In 
Fig. 4.12 is shown an element of fluid moving in a horizontal plane 1 with a 
velocity V along a curved path of radius r. The element has a linear dimension dr 
in the plane of the paper and an area dA normal to the plane of the paper. The 
mass of this fluid element is p dA dr, and the normal component of acceleration is 
V2 jr. Thus the centripetal force acting upon the element toward the center of 
curvature is p dA dr V2 /r. As the radius increases from r tor + dr, the pressure will 
change from p to p + dp. Thus the resultant force in the direction of the center of 
curvature is dp dA. Equating these two forces, 

vz 
dp = p-- dr 

r 
( 4.35) 

When horizontal flow is in a straight line for which r is infinity, the value of dp is 
zero. That is, no difference in pressure can exist in the horizontal direction trans
verse to horizontal flow in a straight line. 

As dp is positive if dr is positive, the equation shows that pressure increases 
from the concave to the convex side of the stream, but the exact way in which it 
increases depends upon the way in which V varies with the radius. In the next two 
sections two important practical cases will be presented in which V varies in two 
different ways. 

1 A more generalized analysis of flow along a curved path in a vertical or inclined plane leads to a 
result that includes z terms. 
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4.17. FORCED VORTEX 

A fluid may be made to rotate as a solid body without relative motion theo
retically between particles, either by the rotation of a containing vessel or by 
stirring the contained fluid, so as to force it to rotate. Thus an external torque is 
applied. A common example is the rotation ofliquid within a centrifugal pump or 
of gas in a centrifugal compressor. 

Cylindrical Forced Vortex 

If the entire body of fluid rotates as a solid, then V varies directly with 
r; that is, V = rw, where w is the imposed angular velocity. Inserting this value in 
Eq. (4.35), we have 

Between any two radii r 1 and r2 , this integrates as 

2 

P2 - E! = ())__ (d - ri) 
y y 2g 

If Po is the value of the pressure when r 1 = 0, this becomes 

2 
P W 2 Po -=-r +
y 2g y 

(4.36) 

( 4.37) 

which is seen to be the equation of a parabola. In Fig. 4.13 it is seen that, if the 

Datum) 

(a) 

Figure 4.13. Forced vortex. (a) Open vessel. (b) Closed vessel. 

I 
' 

~ ' 

(b) 

p 
y 
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fluid is a liquid, the pressure head p/( at any point is equal to z, the depth of the 
point below the free surface. Hence the preceding equations may also be written as 

2 
w ( 2 2) Z2- Z1 = -- ~'2- ~'1 
2g 

( 4.38) 

and ( 4.39) 

where z0 is the elevation when r 1 = 0. Equations (4.38) and (4.39) are the equa
tions of the free surface, if one exists, or in any case are the equations for any 
surface of equal pressure; these are a series of paraboloids as shown by the dotted 
lines in Fig. 4.13a. 

For the open vessel shown in Fig. 4.13a, the pressure head at any point is 
equal to its depth below the free surface. If the liquid is confined within a vessel, as 
shown in Fig. 4.13b, the pressure along any radius will vary in just the same way 
as if there were a free surface. Hence the two are equivalent. 

In the preceding discussion the axis of the vessel was assumed to be vertical: 
however the axis might be inclined. Since pressure varies with elevation as well as 
radius, a more general equation applicable to an inclined axis is 

P2 P1 W
2 

2 2 - - - + z 2 - z 1 = - (r 2 - r t) 
y y 2g 

(4.40) 

Equation (4.36) is the special case where z1 = z2 (closed tank with vertical axis). 
and Eq. (4.38) is the special case where p1 = p2 (open tank with vertical axis). If 
the axis of rotation of a closed vessel were horizontal, the paraboloid that repre
sents the pressure would be substantially distorted, since, at a given radius, the 
pressure at the top would be less than that at the bottom by the amount z 2 - .:: 1 . 

Inserting the value of p/;· from Eq. ( 4.37), but letting p0 if· = 0, in the expres
sion for total head, which is the constant in the Bernoulli equation ( 4.11 ), we have 
H = p;;· + V2 j2y = (rw) 2 !2y + V2 /2g. As p and V both increase or decrease 
together, which is just the opposite of the situation in linear flow, it is seen that H 
cannot be the same for different circular streamlines. In fact, as in this special case 
V = rw, it follows that H = 2(rw )2 12g. That is, II increases as the square of r. 

Spiral Forced Vortex 

So far the discussion has been confined to the rotation of all particles in concentric 
circles. Suppose that there is now superimposed a flow with a velocity having 
radial components, either outward or inward. If the height of the walls of the open 
vessel in Fig. 4.13a were less than that of the liquid surface, and if liquid 
were supplied to the center at the proper rate by some means, then it is obvious 
that liquid would flow outward. If, on the other hand, liquid flowed into the tank 
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Figure 4.14. Flow through rotor. 

over the rim from some source at a higher elevation and were drawn out at the 
center, the flow would be inward. The combination of this approximately radial 
flow with the circular flow would result in path lines that were some form of 
spirals. 

If the closed vessel in Fig. 4.13h is arranged with suitable openings near the 
center and also around the periphery, and if it is provided with vanes, as shown in 
Fig. 4.14, it becomes either a centrifugal pump impeller or a turbine runner, as the 
case may be. These vanes constrain the flow of the liquid and determine both its 
relative magnitude and its direction. If the area of the passages normal to the 
direction of flow is a, the equation of continuity fixes the relative velocities, since 

This relative flow is the flow as it would appear to an observer or a camera, 
revolving with the rotor. The pressure difference due to this superimposed flow 
alone is found by the energy equation, neglecting friction losses, to be 
Pz h- Pt IY = (vf - d)/2g. 

Hence, for the case of rotation with flow, the total pressure difference between 
two points is found by adding together the pressure differences due to the two 
flows considered separately. That is, for the case of a vertical axis, 

]J_z - Pt = w~ (d -d)+ vL=!~ 
y )' 2g 2g 

( 4.41) 

Of course, friction losses will modify this result to some extent. It is seen that 
Eq. (4.36) is a special case ofEq. (4.41) when v1 = v2 either when both are finite or 
when v1 = v2 = 0. 

For a forced vortex with spiral flow, energy is put into the fluid in the case of a 
pump and extracted from it in the case of a turbine. In the limiting case of zero 
flow, when all path lines become concentric circles, energy input from some exter
nal source is still necessary for any real fluid in order to maintain the rotation. 
Thus a forced vortex is characterized by a transfer of mechanical energy from an 
external source and a consequent variation of H as a function of the radius from 
the axis of rotation. 
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4.18. FREE OR IRROTATIONAL VORTEX 

In the free vortex there is no expenditure of energy whatever from an outside 
source, and the fluid rotates by virtue of some rotation previously imparted to it 
or because of some internal action. Some examples are a whirlpool in a river, the 
rotary flow that often arises in a shallow vessel when liquid flows out through a 
hole in the bottom (as is often seen when water empties from a bathtub), and the 
flow in a centrifugal-pump case just outside the impeller or that in a turbine case 
as the water approaches the guide vanes. 

As no energy is imparted to the fluid, it follows that neglecting friction, H is 
constant throughout; that is, p/y + z + V2/2g =constant. 

Cylindrical Free Vortex 

The angular momentum with respect to the center of rotation of a particle of mass 
m moving along a circular path of radius rat a velocity Vis m Vr. Newton's second 
law states that, for the case of rotation, the torque is equal to the time rate of 
change of angular momentum. Hence, torque= d(m Vr )/dt. In the case of a free 
vortex there is no torque applied; therefore, m Vr = constant and thus Vr = C, 
where the value of C is determined by knowing the value of V at some radius r. 
Inserting V = C/r in Eq. (4.35), we obtain 

C2 dr y C2 

dp = p-- = -- dr 
r2 r g r 3 

Between any two radii r 1 and r2 this integrates as 

p:- PY
1 

= ~; (h- r1~) = ~; r 1 - G:r 1 (4.42) 

If there is a free surface, the pressure head p/y at any point is equal to the 
depth below the surface. Also, at any radius the pressure varies in a vertical 
direction according to the hydrostatic law. Hence this equation is merely a special 
case where z1 = z2 . 

As H = p/y + z + V2 /2g = constant, it follows that at any radius r 

~ + z = H - ~; = H - 2~:i = H - ~; (r: r ( 4.43) 

Assuming the axis to be vertical, the pressure along the radius can be found from 
this equation by taking z constant; and for any constant pressure p, values of z 
determining a surface of equal pressure, can be found. If p is zero, the values of z 
determine the free surface, if one exists. 

Equation (4.43) shows that H is the asymptote approached by p/y + z as r 
approaches infinity and V approaches zero. On the other hand, as r approaches 
zero, V approaches infinity, and p/y + z approaches minus infinity. Since this is 
physically impossible, the free vortex cannot extend to the axis of rotation. In 
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z 

j_ 

(a) (b) 

Figure 4.15. Free vortex. (a) Free surface. (b) Fluid enclosed. 

reality, since high velocities are attained as the axis is approached, the friction 
losses, which vary as the square of the velocity, become of increasing importance 
and are no longer negligible. Hence the assumption that H is constant no longer 
holds. The core of the vortex tends to rotate as a solid body as in the central part 
of Fig. 4.15b. 

Spiral Free Vortex 

If a radial flow is superimposed upon the concentric flow previously described, the 
path lines will then be spirals. If the flow is out through a circular hole in the 
bottom of a shallow vessel, the surface of a liquid takes the form shown in 
Fig. 4.15a, with an air core sucked down the hole. If an outlet symmetrical with 
the axis is provided in the arrangement shown in Fig. 4.15b, we might have a flow 
either radially inward or radially outward. If the two plates shown are a constant 
distance B apart, the radial flow with a velocity V,. is then across a series of 
concentric cylindrical surfaces whose area is 2nrB. Thus 

Q = 2nrBV,. =constant 

from which it is seen that r V,. = constant. Thus the radial velocity varies in the 
same way with r that the circumferential velocity did in the preceding discussion 
of the free cylindrical vortex. Hence the pressure variation with the radial velocity 
is the same, and thus the pressure distribution shown in Fig. 4.15b applies to the 
case of spiral flow, as well as to pure rotation in a free vortex. 

Illustrative Example 4.10. An air duct of2- by 2-ft-square cross section turns a bend of radius 4ft 
as measured to the center line of the duct. If the measured pressure difference between the inside and 
outside walls of the bend is 1 in of water, estimate the rate of air flow in the duct. Assume standard 
sea-level conditions in the duct, and assume ideal flow around the bend. 
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This is an application of the free vortex of Sec. 4.18. From Appendix 3, Table A.3, p (air)= 
0.002377 slug/ft 3 Thus 

- = -- -- - = 68 ft of a1r P2 P1 I ( 1.94 ) . 
I' 1' 12 0.002377 

From Eq. (4.44), 

Thus, with r 1 = 3 ft r2 = 5 ft 

C=248ft2/s 

Thus. with Q = J V dA and V = C;r. while dA = B dr, where B is the width of the duct, 

r 2 dr r 
Q = BC J - = BC In 

2 
= 2 x 248 In 1 

rj r rl 

= 2 x 248 x 0.511 = 254 cfs = 15,240 ft 3 jmin 

PROBLEMS 

4.1. In laminar flow through a circular pipe the velocity profile is a parabola, the equation of which is 
u =urn[! - (rlr 0 )

2
], where u is the velocity at any radius r, urn is the maximum velocity in the center of 

the pipe where r = 0, and r 0 is the radius to the wall of the pipe. From Pro b. 3.2, V = O.Surn. Prove that 
:x = 2. (Note: Let dA = 2nr dr.) 

4.2. Assume the velocity profile for turbulent flow in a circular pipe to be approximated by a parabola 
from the axis to a point very close to the wall where the local velocity is u = 0.7urn, where urn is the 
maximum velocity at the axis. The equation for this parabola is u = urn[l - 0.3(rjr 0 )

2
]. Prove that 

:J( = 1.03. 

4.3. Assume an open rectangular channel with the velocity at the surface twice that at the bottom and 
with the velocity varying as a straight line from top to bottom. Prove that :x = ¥-
4.4. Find :x for the case of a two-dimensional laminar flow. 

4.5. Assume frictionless flow in a long, horizontal, conical pipe, the diameter of which is 2 ft at one end 
and 4 ft at the other. The pressure head at the smaller end is 16 ft of water. If water flows through this 
cone at the rate of 125.6 cfs, find the velocities at the two ends and the pressure head at the larger end. 

4.6. Water flows through a long, horizontal, conical diffuser at the rate of 4.0 m 3 js. The diameter of the 
diffuser changes from 1.0 m to 1.5 m. The pressure at the smaller end is 7.5 kN/m 2 Find the pressure 
at the downstream end of the diffuser, assuming frictionless flow. Assume also, that the angle of the 
cone is so small that separation of the flow from the walls of the diffuser does not occur. 

4.7. A vertical pipe 3 ft ( 1.0 m) in diameter and 60 ft (20 m) long has a pressure head at the upper end 
of 18 ft (5m) of water. When the flow of water through it is such that the mean velocity is 
15 fps ( 5 m Is). the friction loss is h L = 4 ft ( 1.25 m ). Find the pressure head at the lower end of the pipe 
when the flow is (a) downward; (b) upward. 

4.8. A conical pipe has diameters at the two ends of 1.5 and 4.5 ft and is 50 ft long. It is vertical, and the 
friction loss is hL = 8 ft for flow of water in either direction when the velocity at the smaller section is 
30 fps. If the smaller section is at the top and the pressure head there is 6.5 ft of water, find the pressure 
head at the lower end when the flow is (a) downward; (b) upward . 

._.. 4.9. A pipeline supplies water to a hydroelectric power plant, the elevation of which is 2,000 ft below 
the level of the water at intake to the pipe. If 10 per cent of this total, or 200 ft, is lost in friction in the 
pipe, what will be the value of M, and what will be the rise in temperature if there is no heat transfer 0 
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4.10. Water is flowing at 12 m3 js through a long pipe. The temperature of the water drops 0.25'- C even 
though heat is transferred to the water at the rate of 6000 k N·mjs. Find the head loss in the pipe. 

4.11. A pipeline supplies water to a hydroelectric plant from a reservoir in which the water tempera
ture is 60°F. (a) Suppose that in the length of the pipe there is a total loss of heat to the surrounding air 
of 0.30 Btu/lb of water and the temperature of the water at the power house is 59.9CF. What is the 
friction loss per pound of water? (b) With the same flow rate as in (a) what will be the temperature 
of the water at the power house if there is absorption of heat from hot sunshine at the rate of 
3.0 Btu/lb of water? 

4.12. In the figure, the pipe AB is of uniform diameter. The pressure at A is 20 psi and at B is 30 psi. In 
which direction is the flow, and what is the friction loss in feet of the fluid if the liquid has a specific 
weight of (a) 30 lb/ft 3

; (b) 100 lb/ft 3
'' 

A 

Problem 4.12 

__. 4.13. Refer to the figure for Prob. 4.12. If the difference in elevation between A and B is 8 m and the 
pressures at A and Bare 150 and 250 kN/m 2 respectively, find the direction of flow and the head loss in 
meters of liquid. Assume the liquid has a specific gravity of 0.85. 

__. 4.14. A pipeline conducts water from a reservoir to a powerhouse, the elevation of which is 
800 ft (250 m) lower than that of the surface of the reservoir. The water is discharged through a nozzle 
with a jet velocity of 220 fps (68 m;s) and the diameter of the jet is 8 in (20 em). Find the horsepower 
(kW) of the jet and the horsepower (kW) lost in friction between reservoir and jet. 

4.15. A pump lifts water at the rate of 200 cfs (6.0 m 3 1s) to a height of 400ft (120m) and the friction 
loss in the pipe is 30ft (10m). What is the horsepower (kW) required if the pump efficiency is 
90 per cent? Sketch energy line and hydraulic grade line. 

4.16. A turbine is located at an elevation 600 ft below that of the surface of the water at intake. The 
friction in the pipeline leading to it is 25 ft, and the turbine efficiency is 90 percent. What will be the 
horsepower delivered by it if the flow is 100 cfs? Sketch energy line and hydraulic grade line. 

4.17. A pump circulates water at the rate of 2,000 gpm ( 125 f/s) in a closed circuit holding 10,000 gal 
(40m 3

). The net head developed by the pump is 300ft (100m) and the pump efficiency is 90 percent. 
Assuming the bearing friction to be negligible and that there is no loss of heat from the system, find the 
temperature rise in the water in 1 hr. 

4.18. The diameters of the suction and discharge pipes of a pump are 6 and 4 in, respectively. The 
discharge pressure is read by a gage at a point 5 ft above the center line of the pump, and the suction 
pressure is read by a gage 2 ft below the center line. If the pressure gage reads 20 psi and the suction 
gage reads a vacuum of lU in Hg when gasoline (s = 0.75) is pumped at the rate of 1.2 cfs, find the 
power delivered to the fluid. Sketch the energy line and hydraulic grade line. 

4.19. An air compressor takes 60"F air at 0.076lbjft 3 and discharges it at 0.12 lb/ft 3 at 80"F in a 10- by 
14-in duct. If the rate of flow is 4 lb/s, find the horsepower put into the fluid by the compressor. 

4.20. Water enters a pump through a lO-in-diameter pipe at 5 psi. It leaves the pump at 20 psi through 
a 6-in-diameter pipe. If the flow rate is 5 cfs, find the horsepower delivered to the water by the pump. 

--t 4.21. Oil (s = 0.82) enters a pump through a 20-cm-diameter pipe at 40 kN;m 2 It leaves the pump at 
125 kN/m 2 through a 15-cm-diameter pipe. If the flow rate is 75 1/s, find the rate at which energy is 
delivered to the oil by the pump. 

4.22. In Fig. 4.9, neglect head loss and assume water is flowing. If h = 16 ft (5 m) and the water 
surface in the lower reservoir is 15ft (4.5 m) higher than the constriction, find the highest permissible 
temperature of the water in order that there be no cavitation. The diameter of the constriction is 
three-fourths the diameter of the pipe where it joins the downstream tank. Atmospheric pressure is 
14.2 psia (98 kN/m 2, abs). 
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4.23. Repeat Prob. 4.22, but in this case let the water temperature be 60°F. Find the minimum 
permissible diameter of the constriction in order that there be no cavitation. 

4.24. In Fig. 4.9 neglect head loss and assume water is flowing. If h = 3 m, find the flow rate. What is 
the gage pressure and what is the absolute pressure in the constriction if the atmospheric pressure is 
equal to standard atmospheric pressure at 2,000 m elevation? Assume that the water surface in the 
lower reservoir is 5 m above the constriction and that the diameter of the constriction is three-fourths 
the diameter of the pipe where it joins the downstream tank. Diameter of constriction = 30 em. 

4.25. Repeat Pro b. 4.24 assuming head losses as follows: head loss in converging section of pipe equals 
to 0.2 m, head loss in diverging section of pipe equals 0.7 m. 

4.26. Refer to the figure for Illustrative Example 4.5. Find the maximum theoretical flow rate for water 
at SO"C if the diameters are 60 em and 20 em respectively, the upstream pressure is 50 k N/m 2, and the 
atmosphere pressure is 695 mm of mercury. Neglect head loss. 

4.27. Air flows isothermally through a long, horizontal pipe of uniform diameter. At a section where 
the pressure is 150 psia the velocity is 80 fps. Because of fluid friction, the pressure at a distant section 
is 30 psia. (a) What is the increase in kinetic energy per pound of air? (b) What is the amount of 
thermal energy in Btu/lb of air that must be transferred in order to maintain the temperature constant? 

4.28. If the temperature of the air in Prob. 4.27 is 70"F and the diameter of the pipe is 3 in, find the 
total heat transferred in Btu/hr. 

4.29. Air ( i' = 0.075 lb/ft 3
) is flowing. If u = 13.0 fps, and ~ = 15 fps, determine the readings on man

ometers a and b in the figure. 

Water 

(a) 

Problem 4.29 

~c..----, v ---,1 
----"-.. ~- -, 1 I 

~-..,, 11 
II II 

Air 11 11 
II II 

Oil (s-0.86) 

(b) 

4.30. Refer to the figure for Pro b. 4.29. A gas (p = 1.30 kg/m 3 ) is flowing. If u = 50 m/s and ~ = 70 m/s, 
determine the readings on the manometers in (a) and (b). 

- 4.31. Assume ideal fluid. The pressure at section 1 in the figure is 10 ps~ V1 = 12 fps, V2 = 45 fps, and 

CCI
4 

(s= 1.59) 

Problem 4.31 
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r =54 lb/ft 3
. (a) Determine the reading on the manometer. (b) If the downstream piezometer were 

replaced with a pitot tube, what would be the manometer reading? 

4.32. Refer to the figure for Prob. 4.31. Assume an ideal fluid with p = 850 kg/m 3
. The pressure at 

section l is 100 kN/m 2
; V1 = 5 mjs, V2 = 18 mjs. (a) Determine the reading on the manometer. (b) If 

the downstream piezometer were replaced with a pitot tube, what would be the manometer reading? 

4.33. Take the situation depicted in Illustrative Example 4.7. Suppose all data are the same except for 
the pump, which, instead of developing 80 ft of head, delivers 100 hp to the water. Determine the flow 
rate. Plot the energy line and hydraulic grade line, and determine the pressure on the suction side of the 
pump. 

4.34. Referring to the figure, assume the flow to be frictionless in the siphon. Find the rate of discharge 
in cfs (m 3/s) and the pressure head at B if the pipe has a uniform diameter of6 in (15 em). 

M 

Problem 4.34 

4.35. In Prob. 4.34 assume that the friction loss between intake and B is 2 ft and between B and N 
is 3 ft. What is the pressure head at B? 

__.. 4.36. Neglect friction and assume that the minimum pressure allowable in the siphon of Prob. 4.34 is a 
vacuum of -32 ft ( -10 m) of water. What would then be the maximum difference in elevation 
between M and N, instead of the 16ft (5 m) shown in the sketch? 

4.37. Referring to the figure, assume that liquid flows from A to C at the rate of 200 tjs and that 
the friction loss between A and B is negligible but that between B and C it is 0.1 V1/2g. Find the 
pressure heads at A and C. 

f 

I 

(60 em) 

~~~-~- C-(30cm) 

Problem 4.37 

4.38. In the figure, the diameter of the vertical pipe is 4 in, and that of the stream discharging into the 
air at E is 3 in. Neglecting all losses of energy, what are the pressure heads at B, C, and D? 

Ill~' ~ .............................. _ 
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40' 

Problem 4.38 

4.39. Referring to the figure, at B the diameter of the tube is 1 in, and the diameter of the water jet 
discharging into the air at Cis 1.5 in. If h = 6 ft and all friction losses are neglected, what are the values 
of the velocity and the pressure head at B'? Assume the tube flows full. 

: 
I 
h 

Problem 4.39 

4.40. What is the rate of discharge in cfs in Pro b. 4.39? What would it be if the tube were cut off at B? 

4.41. Refer to the figure for Pro b. 4.39. Assume the diameter at B is 5 em, and the diameter of the jet 
discharging into the air is 6.5 em. If h = 3.5 m and all friction losses are neglected, what is the flow rate 
assuming the tube flows full '1 What is the pressure head at B? What would be the flow rate if the tube 
were cut off at B? 

4.42. Pump P in the figure draws up liquid in a suction pipe at a velocity of 10 fps. Assume that the 
friction losses in the pipe are 2 V2 ;2g and that the barometer pressure is 14.50 psia. What would be the 
maximum allowable value of z if the liquid were (a) water at a temperature of 60uF: (b) gasoline with a 
vapor pressure of 8 psia and a specific weight of 45 lb/ft 3 ? 1 

z 
' ,. 

Problem 4.42 

'-(, 
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4.43. The upper circular plate in the figure is horizontal and is fixed in position, while the lower 
annular plate is free to move vertically and is not supported by the pipe in the center. Water is admitted 
at the center at the rate of 2 cfs and discharges into the air around the periphery. The annular plate 
weighs 5 lb, and the weight of water on it should be considered. If the distance between the two plates 
is maintained at 1 in, what total weight W can be supported? 

Problem 4.43 

4.44. In Pro b. 4.43 what is the pressure head where the radius is 3 in, and what is it at a radius of 6 in? 

4.45. In Fig. 3.11 the velocity of the undisturbed field is 20 fps and the velocities very near the surface 
at radii from the "source" making angles with the axis of 0, 60, 120, 150° are 0, 18.6, 25.2, 23.3 fps 
respectively. What will be the elevation of the surface of a liquid relative to that of the free surface of the 
undisturbed field? (This problem illustrates the way in which the water surface drops alongside a 
bridge pier or past the side of a moving ship.) 

4.46. If the body shown in Fig. 3.11 is not two-dimensional but is a solid of revolution about a 
horizontal axis, the flow will be three-dimensional and the streamlines will be differently spaced. Also, 
the distance between the stagnation point and the" source" will be d/4, where d is the diameter at a 
great distance from the stagnation point. At points very near the surface at radii from the source making 
angles with the axis ofO, 60, 120, and 150°, the velocities are 0, 15.0, 22.8, and 21.2 fps respectively when 
the velocity of the undisturbed field is 20 fps. If the body is an airship and the atmospheric pressure in 
the undisturbed field is 12 psia, what will be the pressures at these points, for air temperature of 
39.3 F? 

4.47. In Prob. 4.46 assume the body is a submarine with diameters at the four points ofO, 8.0, 13.86, 
and 15.44 ft respectively. If the submarine is submerged in the ocean with its axis 50 ft below the 
surface. find the pressures in pounds per square inch at these points along the top and along the 
bottom. 

4.48. Refer to Illustrative Example 4.8. If the depths upstream and downstream of the gate were 
5.0 ft and 2.0 ft respectively, find the flow rate. 

4.49. Refer to Illustrative Example 4.8. Suppose the gate opening is reduced so the depth downstream 
is 0.6 m. Find the upstream depth under these conditions if the flow rate remains constant at 
4.24 m3/s perm of width. 

4.50. Find the stagnation pressure on the nose of a submarine moving at 15 knots in sea water 
(i· = 64 lb/ft 3

) when it is 80 ft below the surface. 

4.51. Plot the stagnation pressure on an object as it passes through air at sea level as a function of 
velocity. Repeat for movement through air at 5,000-ft elevation. Let V vary from zero to c. 

4.52. Wind blows at a velocity of 15 m/s against the trunk of a tree at an elevation of 2,000 m above 
sea level. What is the stagnation pressure assuming standard atmospheric conditions? Express answer 
as a gage pressure and as an absolute pressure in kN/m 2

, Pa, and mm of Hg. 

4.53. Find the stagnation pressure on a chimney at elevation 500 m if the wind speed is 12 m/s. 

4.54. By manipulation of Eq. (4.33), demonstrate that it represents a standard parabola of the form 
~ - z0 = a(x- x0 )

2
, where a is a constant and x0 and z0 are the coordinates of the vertex. 

4.55. Find the maximum ideal horizontal range of a jet having an initial velocity of 100 fps. At what 
angle of inclination is this obtained? 

4.56, It is required to throw a fire stream so as to reach the window in the wall shown in the figure. 
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Assuming a jet velocity of 80 fps and neglecting air friction, find the angle (or angles) of inclination 
which will achieve this result. 

L 

l 
45' 

--75'---...j Problem 4.56 

4.57. A jet issues horizontally from an orifice in the vertical wall of a large tank. Neglecting air 
resistance, determine the velocity of the jet for the following variety of trajectories: (a) x = 4.0 m, 
y = 1.0 m: (h) x = 4.0 m, y = 2.0 m; (c) x = 4.0 m; y = 4.0 m; (d) x = 4.0 m, y = 8.0 m. Express ans
wers in m s. 

Problem 4.57 

4.58. Freshwater sewage effluent is discharged from a horizontal outfall pipe on the floor of the ocean 
at a point where the depth is 100 ft. The jet is observed to rise to the surface at a point 85 ft 
horizontally from the end of the pipe. Assuming the ocean water to have a specific gravity of 1.03 and 
neglecting fluid friction and mixing of the jet with the ocean water, find the velocity at the end of the 
outfall. [Note· In this case the jet is submerged, and it is no longer possible to neglect the density of the 
surrounding medium; hence the value of gin Eqs. (4.33) and (4.34) must be adjusted accordingly.] 

4.59. A closed vessel 18 in in diameter completely filled with fluid is rotated at 1,700 rpm. What will be 
the pressure difference between the circumference and the axis of rotation in feet of the fluid and in 
pounds per square inch if the fluid is (a) air with a specific weight of 0.075 lb/ft 3

: (b) water at 68"F; (c) 
oil with a specific weight of 50 lb/ft 3 ? 

4.60. A closed vessel 100-cm in diameter is completely filled with oil (y = 8J kN/m 3
) and is rotated at 

600 rpm. What will be the pressure difference between the circumference and axis of rotation'? Express 
answer in Pa. 

4.61. An open cylindrical vessel partially filled with water is 3 ft in diameter and rotates about its axis, 
which is vertical. How many revolutions per minute would cause the water surface at the periphery to 
be 4 ft higher than the water surface at the axis? What would be the necessary speed for the same 
conditions if the fluid were mercury? 
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4.62. In Fig. 4.14 suppose that the vanes are all straight and radial, that r 1 = 0.25 ft, r2 = 0.75 ft, and 
that the height perpendicular to the plane of the figure is constant at b = 0.2 ft. Then a = 2nrb. If the 
speed is 1,200 rpm and the flow of liquid is 7.54 cfs, find the difference in the pressure head between the 
outer and the inner circumferences. neglecting friction losses. Does it make any difference whether 
the flow is outward or inward '1 

4.63. In the figure, a centrifugal pump with an impeller 12 in in diameter is surrounded by a casing 
which has a constant height of 1.5 in between sections a and b and then enlarges into the mlute at c. 
Water leaves the impeller at a with a velocity of60 fps at an angle with the tangent of :x = 15·. (a) What 
will be the magnitude and direction of the velocity at b? (b) Neglecting friction, what will be the gain in 
pressure head from a to b? 

c Problem 4.63 

4.64. For the case given in Prob. 4.63, find the magnitude and direction of the velocity at c. What is the 
gain in pressure head between band c? Assume there is no fluid friction. 

4.65. In the figure is shown a two-dimensional ideal flow in vertical plane. Data are as follows: 
r = 10 ft, b = 4ft, ;.· = 62.4 lb/ft 3

, V = 20 fps. If the pressure at A is 5 psi, find the pressure at B. 

I 

Problem 4.65 

4.66. Repeat Prob. 4.65. Let V = Q!A = 20 fps, but assume a parabolic velocity profile. 

4.67. Refer to the figure for Prob. 4.65. Flow occurs in a vertical plane. Data are as follows: r = 5 m, 
b =2m,{'= 9.81 kN/m 3

, V = 6 m/s. Find the pressure at A if the pressure at B is 125 kN;m 2 



CHAPTER 

FIVE 

BASIC HYDRODYNAMICS 
t 

In this chapter we discuss various mathematical methods of describing the flow of 
fluids. The presentation here provides only an introduction to the vast subject of 
hydrodynamics, but gives some notion of the possibilities of a rigorous mathema
tical approach to flow problems. 

5.1. DIFFERENTIAL EQUATION OF CONTINUITY 

In Chap. 3 a very practical, but special, form of the equation of continuity was 
presented. For some purposes a more general three-dimensional form is desired. 
Also, in that chapter the concept of the flow net was explained largely on an 
intuitive basis. To reach a more fundamental understanding of the mechanics of 
the flow net, it is necessary to consider the differential equations of continuity and 
irrotationality (Sec. 5.2) which give rise to the orthogonal network of streamlines 
and equipotential lines. 

Aside from application to the flow net, the differential form of the continuit~ 
equation has an important advantage over the one-dimensional form which was 
derived in Sec. 3.5 in that it is perfectly general for two- or three-dimensional fluid 
space and for either steady or unsteady flow. 

Figure 5.1 shows three coordinate axes x, y, z mutually perpendicular and 
fixed in space. Let the velocity components in these three directions be u, r. 11. 

respectively. Consider now a small parallelepiped, having sides ln, ~y, ~z. In the 

120 
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w 

tL:.u 
a(pu) 

pu + ----a;- ll.x 

~-------Y-------------x 
Figure 5.1 

x direction the rate of mass flow into this box through the left-hand face is 
approximately pu ~Y ~z, this expression becoming exact in the limit as the box is 
shrunk to a point. The corresponding rate of mass flow out of the box through the 
right-hand face is {pu + [o(pu)jC:x] ~x} ~y ~z. Thus the net rate of mass flow into 
the box in the x direction is -[o(pu)jcx] ~x ~Y ~z. Similar expressions may be 
obtained for they and z directions. The sum of the rates of mass inflow in the three 
directions must equal the time rate of change of the mass in the box, or 
(cpjct) ~x ~Y ~z. Summing up, applying the limiting process, and dividing both 
sides of the equation by the volume of the parallelepiped, which is common to all 
terms, we get 

c(pu) ci(pv) c(pw) cp 
------ ----

ex oy oz ct 
(5.1) 

which is the equation of continuity in its most general form. This equation as well 
as the other equations in this section are, of course, valid regardless of whether the 
fluid is a real one or an ideal one. If the flow is steady, p does not vary with time, 
but it may vary in space. Since c(pu)/ex = p(ou/ex) + u(cp/ox), it follows that for 
steady flow the equation may be written 

i'p . cp op (au cr cw) u - + l' - + w - - + p - + - + - = 0 ex cy cz ex cy cz (5.2} 

In the case of an incompressible fluid (p =constant). whether the flow is steady or 
not, the equation of continuity becomes 

(5.3) 

For two-dimensional flow, application of the same procedure to an elemtntal 
volume in polar coordinates yields for steady flow the following equation;: 

For compressible fluid: 

(5.4) 
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For incompressible fluid: 

v, au, ·av, 
-+- + -=0 
r or r ao (5.5) 

where v, and v, represent the velocities in the radial and tangential directions, 
resioctively. 

Illustrative Example 5.1. Assuming p to be constant, do these flows satisfy continuity 1 (a) 
u = -2y, v = 3x; (b) u = 0, v = 3xy; (c) u = 2x, t' = -2y. Continuity for incompressible fluids is 
satisfied if iJujcy + ill'/i1y = 0. 

(a) i!(- ~y) + il(3x) = 0 + 0 = 0 
,lx ay (continuity is satisfied) 

il(O) iJ(3xy) 
(b) +--=0+3x=f0 

ilx ay 
(continuity is not satisfied) 

(c) <1(2x) + iJ( -2fl = 2- 2 = 0 
ax iJy 

(continuity is satisfied) 

Note: If (b) does indeed describe a flow field, the fluid must be compressible. 

5.2. ROTATIONAL AND IRROTATIONAL FLOW 

The discussion in the remainder of this chapter is restricted to incompressible 
fluids. Irrotational flow may be briefly described as flow in which each element of 
the moving fluid suffers no net rotation from one instant to the next, with respect 
to a given frame of reference. The classic example of irrotational motion (although 
not of a fluid) is that of the carriages on a Ferris wheel. Each carriage describes a 
circular path as the wheel revolves, but does not rotate with respect to the earth. 
In irrotational flow, however, a fluid element may deform as shown in Fig. 5.2a, 
where the axes of the element rotate equally toward or away from each other. As 
long as the algebraic average rotation is zero, the motion is irrotational. 

In Fig. 5.2b is depicted an example of rotational flow. In this case there is a net 
rotation of the fluid element. Actually, the deformation of the element in Fig. 5.2b 
is less than that of Fig. 5.2a. 

Let us now express the condition of irrotationality in mathematical terms. It 

Figure 5.2. Two-dimensional flow along a curved path. (a) Irrotational flow. (b) Rotational flow. 
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au 

D
<a-t:.y)t:.t 
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--- D.a ax 
-- J X 

A, A' L--Llx__!_! B 

(b) 

will help to restrict the discussion at first to two-dimensional motion in the xy 
plane. Consider a small fluid element moving as depicted in Fig. 5.3a. During a 
short time interval Ill the element moves from one position to another and in the 
process it deforms as indicated. Superimposing A' on A, defining an x axis along 
AB, and enlarging the diagram, we get Fig. 5.3b. The angle i\a between AB and 
A' B' can be expressed as 

BB' [(ovjox) i\x] Ill ov 
i\a = - = ------- - - = - i\t 

i\x i\x ox 

Hence the rate of rotation of the edge of the element that was originally aligned 
with AB is 

Likewise i\fJ = CC' 
i\y 

i\a ov 
w =--=-

> Ill ox 

[ -(ou/oy) i\y] Ill 
----------

i\y 

au 
---Ill ay 

and the rate of rotation of the edge of the element that was originally aligned with 
AC is 

i\fJ ou 
wp = 11( =- ay l 

with the negative sign because + u is directed to the right. The rate of rotation of 
the element about the z axis is now defined to be wz, the average of w, and wp, 
thus: 

w = !(iJv _ ou) 
z 2 ax ay (5.6) 
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But the criterion we originally stipulated for irrotational flow was that the rate of 
rotation be zero. Therefore the flow is irro.tational in the xy plane if cvjcx -
cu/cy = 0. In three-dimensional flow there are corresponding expressions for the 
components of angular-deformation rates about the x and y axes. Finally, for the 
general case, irrotational.fiow is defined to be that for which 

t (5.7) 

The primary significance of irrotationai flow is that ideal (frictionless) flow is 
irrotational. This is discussed in Sec. 5.6. 

lllustrative Example 5.1. Determme w'net'm:Y t'ne>e '1\.~:>w> ?.R '.1:>\?.\\l:l"-'~<\ "' \.'.'.~:>\-o.\\.l:l"-'~<\. \u\ 
u = -2y, t = 3x; (b) u = 0, r = 3xy; (c) u = 2x. r = -2r. 

If (flow is irrotational) 

r'(3x) c(- 2y) 
(a) · - - · = 3 + 2 "'= 0 

c'x i'r 
(flow is rotational) 

(b) 
?(3xy) c(O) 

- - - = 3r- 0 + 0 
('CJ.x ?y . 

(flow is rotational) 

r1 (- 2r) i'(2x) 
(c) - -- =0-0=0 

?x r'y 
(flow is irrotational) 

5.3. CIRCULATION AND VORTICITY 

To get a better understanding of the character of a flow field, we should acquaint 
ourselves with the concept of circulation. 1 Let the streamlines of Fig. 5.4 represent 

1 In Sees. 10.10 and 10.11 the concept of circulation is utilized to develop an expression for lift force 

on an air foil. 

Figure 5.4. Circulation around a closed 
path in a two-dimensional velocity field 
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a two-dimensional .flow field, while L represents any closed path in this field. The 
circulation r is defined mathematically as a line integral of the velocity about a 
closed path. Thus 

r = 4 V · dL = 4 V cos /3 dL 
• L ·L 

(5.8) 

where V is the velocity in the flow field at the element dL of the path, and f3 is the 
angle between V and the tangent to the path (in the positive direction along the 
path) at that point. Equation (5.8) is analogous to the common equation in 
mechanics for work done as a body moves along a curved path while the force 
makes some angle with the path. The only difference here is the substitution of a 
velocity for a force. 

Evaluation of Eq. (5.8) about any closed curve generally involves a tedious 
step-by-step integration. Some valuable information is acquired, however, by eva
luating the circulation of the two-dimensional flow field of Fig. 5.5 by taking the 
line integral around the boundary of the indicated element. Since the element is of 
differential size. the resulting circulation is also differential. Thus, starting at A and 
proceeding counterclockwise, 

uA+u 8 v8 +L·c uc+uv rv+rA 
dr = -2 -- dx + 

2
- dy - --

2 
dx - -

2 
- dy (5.9) 

where the values ofuA, u8, uc, uv and rA, v8, Vc, Vv are as indicated in Fig. 5.5. 
Substituting these values into Eq. (5.9), expanding, combining terms, and dis
regarding those of higher order yields 

dr = (~r - ~u) dx dy 
ex cy 

(5.10) 

y 

au v+ ilv dx+ i!.!!_dy 'Jdy r ,, 
u + -~~-dy___.,~ Dy dx u + ~~ dx+ ~~ dy 

u+~dx 
u ilx 

At r 
'-------------------- x Figure 5.5 
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The vorticity ~ (xi) is defined as the circulation per unit of enclosed area. Thus 

dr 01' au c = ---- =. 
- dx dy Dx cy ( 5.11) 

Comparing Eq. (5.11) with Eq. (5.7), we see that an irrotational flow is one for 
which the vorticity ~ = 0. Similarly, if the flow is rotational, ~ =f 0. 

tfsing a similar procedure for polar coordinates, we find 

e cv, r, cv, 
(=---+ - cr r rae (5.12) 

Illustrative Example 5.3. Check these flows for continuity and determine the vorticity of each: (a) 
r, = 6r. ,., = 0: (h),.,= 0, ,., =-Sir. Applying Eqs. (5.5) and (5.12). 

0 ?(0) !'(6r) 
(a) + + -- = 0 

r rr r NJ 
(continuity is satisfied) 

?(6r) 6r ?(0) 
( = -- + - = 6 + 6- 0 = 12 
· ?r r rNI 

(flow is rotational) 

5r c(-5r- 1
) !'(0) 5 5 

(h) - + + = - + + 0 = 0 
r ?r r ?0 r2 r2 

(continuity is satisfied) 

(flow i:-; irrotational) 

5.4. THE STREAM FUNCTION 

The stream function !/;, based on the continuity principle, is a mathematical ex
pression that describes a flow field. In Fig. 5.6 are shown two adjacent streamlines 
of a two-dimensional flow field. Let !j;(x, y) represent the streamline nearest the 
origin. Then !/; + d!j; is representative of the second streamline. Since there is no 

y 

Figure 5.6. Stream function. 
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flow across a streamline, we can let t/J be indicative of the flow carried through the 
area from the origin 0 to the first streamline. And thus dt/J represents the flow 
carried between the two streamlines of Fig. 5.6. From continuity referring to the 
triangular fluid element of Fig. 5.6, we see that for an incompressible fluid 

dt/J = - v dx + u dy 

The total derivative dt/J may also be expressed as 

ct/1 ot/J 
dt/J = rl . dx + a dy 

CX ,y 

Comparing these last two equations, we note that 

ct/J ct/J 
u=-

oy 
and V= --

OX 

(5.13) 

( 5.14) 

(5.15) 

Thus, if t/J can be expressed as a function of x and y, we can find the velocity 
components (u and t·) at any point of a two-dimensional flow field by application 
of Eq. (5.15). Conversely, if u and rare expressed as functions of x andy, we can 
find t/J by integrating Eq. (5.13). However, it should be noted that since the deriva
tion of t/1 is based on the principle of continuity, it is necessary that continuity be 
satisfied for the stream function to exist. Also, since vorticity was not considered in 
the derivation of t/J, the flow need not be irrotationalfor the stream function to exist. 

The equation of continuity 

cu c't• 
- +--=0 
ox (1 _\' 

may be expressed in terms of t/1 by substituting the expressions for u and t' from 
Eq. (5.15); doing so we get 

[J2t/f o2t/J 
or 

OX cy oy ex 
which shows that, if t/J = t/f(x, y), the derivatives taken in either order give the 
same result and that a flow described by a stream function automatically satisfies 
the continuity equation. 

5.5. BASIC FLOW FIELDS 
l 

In this section several basic flow fields that are commonly encountered will be 
discussed. The simplest of all flows is that where the streamlines are straight. 
parallel. and evenly spaced as indicated in Fig. 5.7. In this case r = 0 and 
u =constant. Thus, from Eq. (5.13}, dt/1 = u dy, and hence t/1 = Ur, where U is the 
velocity of flow. If the distance between streamlines is a, the values of t/1 for the 
streamlines are as indicated in Fig. 5.7. 
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y 

c l/1=4Ua 

a l/;=3Ua . 
a l/;=2Ua 

a 
1/I=Ua 

' ' a 1/;=0 
'-----'----------'----- x Figure 5.7. Rectilinear flow field. 

Another flow field of general interest is that of a source or a sink. In the case of 
a source, the flow field consists of radial streamlines symmetrically spaced as 
shown in Fig. 5.8. If q is the source strength, or rate of flow from the source, it is at 
once apparent that rj; = q8/2n. Customarily, for this case, the rj; = 0 streamline is 
defined as that coincident with the direction of the x axis. From inspection of the 
flow field it is obvious that c, = 0 and v, = q/2nr. Thus r,--+ 0 as r--+ oc. For a sink 
(inward flow), the stream function is expressible as rj; = -q0/2n. 

Flow fields may be combined to give other fields of importance. For example, 
let us combine a source and sink of equal strength with a rectilinear flow. Let 2a be 
the distance between the source and sink. Referring to Fig. 5.9 and defining 01 and 
02 as shown, we can write for the combined field 

' q81 q02 rj; = [n· + - - - --
- 2n 2n 

(5.16) 

Transforming the last two terms of this equation to cartesian coordinates by 
replacing the O's with appropriate trigonometric functions, we get 

rj; = U y + - arctan - - arctan - -' - -q ( r \" ) 
2n x +a x- a 

(5.17) 

This equation will permit one to plot streamlines by determining values of rj; at 
\ arious points in the flow field having coordinates (x. y). Lines of constant rj; are 
,treamlines. The resulting flow field for this case is shown in Illustrative Example 

l/;=q/4 

1/l=q/8 

I 

~ I 
• = 5q!B I 

Figure 5.8. Source flow field_ 
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y P(x,y) 

-~!J;a=Uy 

(a) (b) (c) 

Figure 5.9. Superposition of flow tields. (a) Uniform rectilinear flow. (b) Source. (c) Sink. Source and 
sink are of equal strength and a distance 2a apart along the x axis. 

5.4. The ljJ = 0 line produces a closed curve (oval), and thus the flow field repre
sents ideal flow past a body of that shape. By using different values of a and 
different relationships between U and q, it is possible to describe a whole array of 
two-dimensional flow fields about ovals of various shapes. As 2a, the distance 
between the source and sink gets smaller, the oval approaches a circle. However, 
when a = 0, the flow field reduces mathematically to uniform rectilinear flow since 
the source and sink will cancel each other out. The location of stagnation points S 
may be found by differentiating Eq. (5.17) to obtain an expression for u = (1 !/J/cly 
and then to determine the values of x for which u = 0. 

The flow field of Illustrative Example 5.4 is for an ideal fluid and, of course, 
does not represent the flow picture for a real fluid, where there may be separation 1 

with the formation of a wake on the downstream side of the body (Fig. 10.12). 
However, on the upstream side of the body where the boundary layer is thin. the 
flow of a real fluid is well represented by this example. 

Illustrative Example 5.4. A flow field for a source and sink of equal strength combined with a 
uniform rectilinear flow. As an example let c· = 0.80, q = 2rr. a = 2. Thus, 

if; = L1· + tan 1 
· ~ tan 1 ' q ( - \' - \' ) 

2rr x +a x ~a 

Thus 
\' y 

if; = O.ROy + tan- 1 
· ; ~ tan- 1 

x+- x~2 

1 Refer to Sec. 10.6 for a discussion of the conditions under which separation will take place on the 
back side of a solid body. 
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--
t 

--- rl= -3 

Illustrative Example 5.4. Flow field for source and sink of equal strength in uniform rectilinear flow 
field. 

Let 

I 
y y 

X y - ·-

x+2 x-2 

0 2 2 2 
2 -2 

0 3 3 3 
2 -2 

0 4 4 - 4 
2 2 

2 2 2 
fXj 4 

2 3 3 
00 4 

5 I I I 
7 3 

5 2 2 2 
7 3 

8 I I I 
TO 6 

8 2 2 2 
TO 6 

A=- y 
x+2 

and 

Degrees 

tan- 1 A tan- 1 B 

45"00' 135"00' 
56°19' 123°41' 
63"26' 1W34' 
26°34' 90"00' 
36°54' 90"00' 

8"08' 18"26' 
15"55' 33"42' 
5"43' 9°28' 

11"19' 18"26' 

B= y 
x-2 

0.8y 

1.60 
2.40 
3.20 
1.60 
2.40 
0.80 
1.60 
0.80 
1.60 

Radians 

tan- 1 A tan- 1 B 1/1 

0.78 2.36 0.00 
0.98 2.16 1.22 
1.11 2.04 2.27 
0.46 1.57 0.49 
0.64 1.57 1.47 
0.14 0.32 0.62 
0.28 0.59 1.29 
0.10 0.17 0.73 
0.19 0.32 1.47 

Suppose we define a doublet as a source-sink combination for which 2qa = m, 
a constant. Permitting a to approach zero, the stream function of the doublet 
imposed on the uniform field is then 

m sin(} 
1/1= Uy---

2nr 
(5.18) 

Taking 1/1 = 0 to determine the form of the closed-body contour and noting that 
y = r sin 0, we get 

m sin 0 
0 =Ursin 0 ---·-

2nr 



BASIC HYDRODYNAMICS 131 

or r =~=constant 
Therefore the closed-body contour for this case is a circle and Eq. (5.18) is the 
stream function for two-dimensional flow about a circular cylinder. Further 
mention of this flow is made in Sec. 10.10, where lift and circulation are 
discussed. 

5.6. VELOCITY POTENTIAL 

For two-dimensional flow the velocity potential cp(x, y) may be defined 1 in car
tesian coordinates as 

U= 
acp 
ax 

and v= 
ocp 
ay 

The corresponding expressions in polar coordinates are 

acp 
v = ---

t rae and 

(5.19) 

(5.20) 

If we substitute the expressions of Eq. (5.19) into the continuity equation 
[Eq. (5.3)], we get 

( 5.21) 

This is known as the Laplace equation; it is of importance in both solid mechanics 
and fluid mechanics. 

If the expressions of Eq. (5.19) are substituted into the equation for vorticity 
[Eq. (5.11)], we get 

~ = :~- :~ = 1~ (- ~~) -:y (- };) = - a~
2

~y + a:2

rx = 0 

Since ~ = 0, the flow is irrotational, and thus, if a velocity potential exists, the flow 
must be irrotational. Conversely, if the flow is rotational, the velocity potential cp 
does not exist. 

The rotation of fluid particles requires the application of torque, which in turn 
depends on shearing forces. Such forces are possible only in a viscous fiu,d. In 
inviscid (or ideal) fluids there can be no shears and hence no torques. Hence the 
flow of an ideal fluid is irrotational. 

1 Some authors prefer for the potential to increase in the direction of flow by defining u "" cif!/cx 
and v"" cif!/cy. 
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5.7. ORTHOGONALITY OF STREAMLINES AND 
EQUIPOTENTIAL LINES 

It was noted in Eq. (5.14) that 

t 
ci/J ci/J 

dljf = dx + d\' ex c1y . 

Similarly, 
r<p ?<p 

d<p=--dx+ dr ex cy . 

From Eqs. (5.15) and (5.19) we can express these two equations as 

and 

dljf = - t' dx + u dy 

d<p = - u dx - v dy 

Along a streamline, 1/1 = constant, so dljf = 0, and from the first equation we get 
dy/dx = v/u. Along an equipotential line, <p = constant, so dcp = 0, and from the 
second equation we get dyjdx = - u/r. Geometrically, this tells us that the stream
lines and equipotential lines are orthogonal, or everywhere perpendicular to each 
other. 

The equipotential lines <p = C; and the streamlines ljJ = K;, where the C; and 
the K; have equal increments between adjacent lines, form a network of intersect
ing perpendicular lines which is called the flow net (Fig. 5.10). The small quadri
laterals must evidently be squares as their size approaches zero, for 
lrcp/cxl = 111 1/1/cyl, or for finite increments, IL1<p/L1xl = IL11/J/L1yl. The differ
ence in value of the stream function between adjacent streamlines is called the 

v--o¢/oy 

Figure 5.10 
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str,ength of the stream tube bounded by the two streamlines, and it represents the 
two-dimensional flow through the tube. 1 

Referring to Fig. 5.10, the maximum velocity at any point 0 is seen to be 
tangential to the streamline. This velocity is given by V = -ct:p/cs, where s is 
measured along the streamline. The expression ct:pjcs is also known as the gradient 
of the velocity potential. Thus the velocity is often written in convenient vector 
n<ttation as V = -grad t:p, which holds for either two- or three-dimensional flow. 
The absolute velocity may always be written as the vector sum of its components; 
thus, in three dimensions, 

(5.22) 

Stream functions can exist in the absence of irrotationality and potential 
functions are possible even though continuity is not satisfied. But, since lines of t:p 
and 1/J are required to form an orthogonal network, a flow net can only exist if 
irrotationality (the condition for the existence of t:p) and continuity (the condition 
for the existence of t/1) are satisfied. The Laplace equation (Eq. 5.11) was derived 
assuming the existence of velocity potentials and the satisfaction of continuity. 
Thus, if a given flow satisfies the Laplace equation, a flow net can be constructed 
for that flow. Such flows which satisfy continuity and irrotationality are referred 
to as potential flow. Because of the irrotationality requirement such flows are 
usually those of ideal fluids. An exception where a real fluid satisfies the conditions 
for potential flow is that of laminar flow through porous media. In such a case the 
velocity head is negligible and the energy equation may be written as 

where the head loss hL is directly proportional to velocity for laminar flow. 
Taking the differential, we get 

v 
= dh1 = - ds . K 

where ds is the distance along the streamline. and 1 K is a constant of proportional
ity. Hence. 

(5.23) 

Thus we see that t:p = K(pjy + z). The constant K is commonly referred to as the 

1 Consider flow in the direction of the x axis in a stream tube (of unit thickness perpendicular to 
the plane of the paper) bounded by 1/J = K 1 and 1/1 = K 2 . Let y 1 and y 2 represent the graphical 
locations of the two streamlines. The flow through the tube is then given by 

n naljJ ~ Q=r udy=-f -dy=-r di/I=K 1 -K2 ·y, " ay ·K, 
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coefficient of permeability. Excellent discussions of the application of flow nets to 
flow through porous media are available i.n the literature. 1 

Illustrative Example 5.5. A flow is defined by u = 2x and 1' = - 2y. Find the stream function and 
potential function for this flow and plot the flow net. 

Check continuity: 

1 cu iJr 
+ =2-2=0 

?x iJy 

Hence continuity is satisfied and it is possible for a stream function to exist 

dljl = - r dx + u dy = 2y dx + 2x dy 

1/1 = 2xy + C 1 

Check to see if the flow is irrotational: 

i'r 

i)x 

i'u 
=0-0=0 or 

Hence the flow is irrotational and a potential function exists. 

dcp = - u dx - v dy = - 2x dx + 2y dy 

({J = - (x2 - yz) + C 2 

The location of lines of equalljl can be found by substituting values of ljJ into the expression 1/1 = 2xy. 
Thus for 1/J = 60, x = 30/y. This line is plotted (in the upper right-hand quadrant) on the adjoining 
figure. In a similar fashion lines of equal potential can be plotted. For example, for cp = 60 we have 
-(x2 - y 2 ) = 60andx = ±jy2 --W.Thislineisalsoplottedonthefigure.Theflownetdepictsjlowin 
a corner. Mathematically the net will plot symmetrically in all four quadrants. 

1 H. R. Vallentine. "Applied Hydrodynamics." chap. 3, Butterworth & Co. (Publishers), Ltd., 
London, 1959. A. Casagrande, "Seepage through Dams," J. New Engl. Water Works Assoc., vol. 51, 
pp. 131-172. 1937. 

y 

5 

11; ~ 120 
11; ~ 90 
y ~ 60 

r-----v ~3o 
10 15 

Flow net Illustrative Example 5.5 
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PROBLEMS 

5.1. Why are Eqs. (5.2) and (5.3) applicable to real fluids as well as ideal fluids? 

5.2. Derive Eqs. (5.4) and (5.5). 

5.3. Given a flow defined by u = 3 + 2x. If this flow satisfies continuity, what can be said about 
the density of the fluid? 

5.4. The flow of an incompressible fluid is defined by u = 2, t" = 8x. Does a stream function exist for 
this flow? If so. determine the expression for the stream function. 

5.5. Sketch streamlines (1/1 = 0, 1, 2, 3) for the following flow fields, note the values of u and v, and 
verify that continuity is satisfied in all cases. (a) 1/1 = lOy, (b) 1/1 = -20x, (c) 1/1 =lOy- 20x. 

5.6. Write an expression for the stream function of each of the following flows. Assume p = constant. 
(Note: they may not all have stream functions.) 

(a) u = 2 (f) u = 3xy v = l.5x 2 

(b) u=2 r=3 (g) u=3y v=O 
(c) u = 2 + 3x r = 4 (h) u = 3x t" = 3y 
(d) u = 2y r = 3x (i) u = 3x v = - 3y 
(e) u = 2y r = - 3x (j) u = 4 + 2x r = -6 - 2y 

5.7. Given is the two-dimensional flow described by u = x 2 + 2x - 4y, r = - 2xy- 2y. (a) Does this 
satisfy continuity? (b) Compute the vorticity. (c) Plot the velocity vectors for 0 < x < 5 and 0 < y < 4 
and sketch the general flow pattern. (d) Find the location of all stagnation points in the entire flow 
field. (e) Find the expression for the stream function. 

5.8. A flow field is described by the equation 1/J = 1.2xy. Sketch the streamlines in one quadrant for 

"' = 0, 1, 2, 3, 4. 

5.9. Plot the streamlines in the upper right-hand quadrant for the flow defined by 1/J = 1.5x2 + y2 and 
determine the value of the velocity at x = 4, y = 2. 

5.10. A flow field is described by 1/J = x2 
- y. Sketch the streamlines for !}! = 0, 1, and 2. Derive an 

expression for the velocity at any point in the flow field and determine the vorticity of the flow. 

5.11. A source discharging 10 cfs/ft is at (-I, 0) and a sink taking in 10 cfs/ft is at ( + 1, 0). If a uniform 
flow with velocity 5 fps from left to right is superimposed on the source-sink combination, what is the 
length of the resulting body? 

5.12. Which of the flows in Pro b. 5.6 are irrotational? 

5.13. Which of the flows in Pro b. 5.6 can be described by a flow net? Write expressions for the stream 
functions and the potential functions. 

5.14. Given the stream function 1/J = 3x- 2y. Is this a potential flow'? Does it satisfy the Laplace 
equation? 

5.15. A source of strength 8n is located at (2, 0). Another source of strength 16n is located at (- 3, 0). 
For the combined flow field produced by these two sources: (a) find the location of the stagnation 
point; (b) plot the 1/J = 0, 1/J = 4n, 1/J = 8n lines; (c) find the values of 1/J at (0, 2) and at (3, -I); (d) find 
the velocity at (- 2, 5). 

5.16. For the two-dimensional now of a frictionless incompressible nuid against a flat plate normal to 
the initial velocity, the stream function is given by 1/1 = - 2axy, while its conjugatefunction, the velocity 
potential, is 

. 
where a is a constant and the flow is symmetrical about the yz plane (Fig. 5.1 ). By direct differentiation 
demonstrate that these functions satisfy Eq. (5.21 ). Using a scale of I in= I unit of distance, plot the 
streamlines given by 1/J = ± 2a, ± 4a, ± 6a, ± 8a, and the equipotential lines given by t.p = 0, ± 2, 
± 4a, ± 6a, ±Sa. Observe that this now net also gives the ideal now around an inside square corner. 
Compare your results with Illustrative Example 5.5 and note the effect of changing the sign of 1/1 and l.fJ. 

5.17. In Prob. 5.16 determine the velocity components u and t', and demostrate that they satisfy the 
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differential equations for continuity and irrotational flow. In which direction is the flow? Prove that 
the absolute velocity is given by V = 2ar, where r is the radius to the point from the origin. Now 
assume that the linear scale is 1 in = 1 ft. Determine tht; constant a such that the flow net of Prob. 5.16 
will represent a flow of 3 ft 2/s between any two adjacent streamlines. What are the dimensions of a? 

Draw curves of equal velocity for values of 3, 6, 9, 12 fps. How does the velocity vary along the surface 
of the plate? 

5.18. The three-dimensional counterpart of the flow in Probs. 5.16 and 5.17 is that of flow along the r 
axis tpproaching the plate in the xz plane. As the flow must be symmetrical about they axis, the traces 
of stream and equipotential surfaces in the xy plane will be representative of those in all planes 
containing the y axis. The velocity potential is now given by qJ = -a(x2/2- y2

), and the stream 
function by !/! = - ax 2 v. Notice that these functions no longer satisfy Eq. (5.21 ). Why not? Again plot 
streamlines and equipotential lines for the values given in Prob. 5.16. The velocities u and v may still be 
determined by Eq. (5.19). Prove that the absolute velocity for this case is given by V = aJ x2 + 4?. 
With the value of a = !.5 s- 1 found in Pro b. 5.17, draw curves of equal velocity for values of 3, 6, 9, 12 fps. 
How does the velocity vary along the surface? What is the total flow between any two adjacent stream 
surfaces'' 

5.19. For the two-dimensional flow around any angle a, the velocity potential and stream function are 
given in polar coordinates as qJ = -arrr" cos (rr,1a)ll and !jJ = -arrr' sin (n/a)O, respectively. Prove 
that the functions given in Pro b. 5.16 are a specialization of these expressions for 1. = rr/2. Take the case 
of x = 3rr1 2, and plot streamlines and equipotential lines for the values given in Pro b. 5.16. Compare the 
velocity at the corner with that at the corner in Prob. 5.16. 

5.20. The flow around the body of Fig. 3.11 may be considered as that due to the sum of two velocity 
potentials, qJ 1 = - Ux. representing an undisturbed flow of velocity U in the x direction, and 
qJ 2 = - S ln r. representing the radial flow from a source located inside the body behind the stagnation 
point. To relate U and S. it is observed that the total flow 2rrS from the source (which is hydrodyna
mically equivalent to the body itself) must be equal to the flow of the main stream which is not passing 
through the body of width h. or 2rrS = L'h. This gives 

Uh 
!{J 2 = - ln r 

2rr 

The distance from the stagnation point to the source is determined by setting the radial velocity from 
the source. r, = -i'qJ/(1r. equal and opposite to the undisturbed velocity U. Prove that this establishes 
the source at a distance h 2n behind the stagnation point. The absolute velocity at any point of the field 
may be determined by the vector sum of the two components U and t',. 

There follows an ingen;ous method of plotting the boundary of such a streamlined body, as 
shown in the figure. Suppose that the streamlines in the undisturbed flow are spaced a distance a apart, 
where h/2a = n, an integer. Next divide the upper half of the source into n radial sectors, each of angle 
a, that is, na = n. Then the undisturbed flow between the x axis and the first streamline is associated 
with the source flow in the first sector from the stagnation point. Thus the intersection of the first 
streamline with the first radial line must be a point on the boundary of the body, through which 

Problem 5.20 
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:~ere can be no flow. Similarly, the intersection of the horizontal line at 2a with the radial line at 
:1 forms another point, and so on. Further streamlines can be plotted by connecting successive 
:~tersections of the original horizontal lines with the radial lines, recognizing that the same flow must 
ntst between any adjacent pair of streamlines. Thus the intersection of a horizontal line ea above the 
a \IS with a radial line at frx from the stagnation point must lie on a streamline which is (e- f)a 
jJ<Jant from the axis in the undisturbed region. 

Assume a value of U = 20 fps and a two-dimensional flow past a streamlined body for which 
" = 36ft. Compute the distances from the source to the stagnation point and to the surface of the body 
at a radius 90° to the axis. What is the value of the source velocity at the latter point? 

5.21. What is the magnitude of the velocity of the fluid along the surface at the 90o point in the 
preceding problem? (Compare with the results of Pro b. 3.20.) What is its direction relative to the 
d \iS? 

5.22. Find the distance and the two velocities called for in the preceding two problems for an angle of 
~0 . (Compare with Prob. 3.20.) 

5.23. Superimpose a point source (Q = 100 cfs) on a rectilinear flow field (L' = 20 fps). Plot the body 
contour at IJ = 30, 60, 90, 120, 150, 180° using a scale of 1 in= 1 ft. Compute the velocities along the 
hody contour at these points. Determine the pressures at these points assuming p = 1.94 slugjft 3 with 
7ero pressure in the undisturbed rectilinear flow field. What is the velocity and pressure in the 
combined flow field at the following points? Hint: Refer to Prob. 5.20. 

(a) IJ = 45 r = 4.0 ft 
(h) IJ = 90 r = 2.0 ft 
(c) II= 90 r = 4.0 ft 
(d) IJ = 135 r = 2.0 ft 

5.24. A source discharging 20 m 3;(s)(m) is located at the origin and a uniform flow with a velocith of 
3 m.s from left to right is superimposed on the source flow. Determine the stream function of the flow 
in polar and rectangular coordinates. 

5.25. For the flow of the preceding problem find the location of the stagnation points and find 
the velocity at x = 3 m, y = 4 m. 

5.26. Refer to Pro b. 5.24. Find the difference in pressure head between point A ( -10 m, 0) and 
point B (0, 1.67 m). 

5.27. Using the method described in Illustrative Example 5.4, plot the boundary M the body and a set 
of streamlines for a steady two-dimensional flow past a body such as that of Fig. 3.11. for h = 15m 
using a scale of I em = 2 m. 

5.28. An ideal fluid flows in a two-dimensional90" bend. The inner and outer radii of the bend are 0.4 
and 1.4 ft. Sketch the flow net and estimate the velocity at the inner and outer walls of the bend if the 
velocity in the 1.0-ft-wide straight section is 10 fps. Develop an analytic expression for the stream 
function, in this case noting that v, = -cJ/!jDr and v, = DJ/!Ir Ni. 

5.29. Combine the uniform flow defined by u = 16 fps with the doublet 2qa = m. where q = 10 cfs/ft 
and a = 2 in. Sketch the streamlines for J/! = -3, -2, -1. -1, 0, 1. 1. 2, and 3 cfs;ft. Use a scale of 
1 in= lin. 

5.30. A flow field is defined by the stream function J/! = 15r sin (} - 30 In r- (20/r) sin (}.Sketch this 
flow field. Calculate the velocities at r = 3 for IJ = 0, 45, 90, 150, 210, and 315. 

5.31. The components of the velocities of a certain flow system are 

U= 
X Q 

+ Br+ C 
2nx2 + l · 

\" 
t"=-A 

2
" 

2
+Dx+E 

X.+.\' 

(a) Calculate a value of A consistent with continuous flow. (h) Sketch the streamlines for this flow 
system, assuming B = C = D = E = 0. 
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5.32. A cylindrical drum with a 2-ft radius is securely held in position in an open channel of rectangu
lar section. The channel is 10 ft wide. and the flow rate is 240 cfs. Water flows beneath the drum as 
shown in the figure. Sketch the flow net, and determine from flow net measurements the pressure at 
several points along the surface AB. Neglect fluid friction. Sketch the pressure distribution, and by 
numerical integration determine an approximate value of the horizontal thrust on the cylinder. 

-~ 6 fps ---:--=: 
----------- __ _____.. 

5.33. Refer to Illustrative Example 6.6. Sketch a flow net. Using the given dimensions in English units 
through application of Bernoulli's principle, determine the approximate pressure distribution along 
the channel bottom and around the curved structure. By numerical integration estimate the magnitude 
of the horizontal and vertical components of the force of the water on the structure. 

5.34. Work Prob. 5.33 using the dimensions as given in SI units. 
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CHAPTER 

SIX 
MOMENTUM AND FORCES IN 

FLUID FLOW 

Previously, two important fundamental concepts of fluid mechanics were pre
sented: the continuity equations and the energy equation. In this chapter a third 
basic concept, the impulse-momentum principle will be developed. This concept is 
of particular importance in flow problems where the determination of forces is 
involved. Such forces occur whenever the velocity of a stream of fluid is changed in 
either direction or magnitude. By the law of action and reaction, an equal and 
opposite force is exerted by the tluid upon the body producing the change. After 
developing the impulse-momentum principle its application to a number of im
portant problems is discussed. 

6.1. DEVELOPMENT OF THE 1;\IIPLJLSE-MOMENTUM 
PRINCIPLE 

' The impulse-momentum principle will be derived from Newton's second la\v. The 
flow may be compressible or incompressible, real (with friction) or ideal (fric
tionless), steady or unsteady, and the equation need not be applied along a stream
line. In Chap. 4 when applying the energy equation to real fluids we found that the 
energy loss must be computed. This difficulty is not encountered in momentum 
analysis. 

139 
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Newton's second law may be expressed as 

IF= d02V) 
dt 

(6.1) 

Thllti, the sum of the external forces on a body is equal to the rate of change of 
mJmentum of that body. The bold face symbols F and V represent vectors and 
hence the change in momentum is in the same direction as the force. Equation 
(6.1) can also be expressed as I (F) d1 = d(mV), i.e., impulse equals change of 
momentum, hence the terminology impulse-momentum principle is used. 

Let us apply Eq. (6.1) to a body defined by the mass of fluid contained at 
time t in the control volume of Fig. 6.1. Henceforth we shall refer to this mass of 
fluid as thefiuid system. The control volume is fixed in position: it does not move, 
nor does it change shape or size. At time ( t + ~~) the fluid mass we are dealing 
with (i.e., the fluid system) has moved to a new position indicated by the shaded 
area of Fig. 6.1. Let us now define some terms. 

(m V)1 =momentum at time 1 of the fluid system (coincident with the control 
volume at time t) 

(mV)r+M =momentum at time (1 + M) of the fluid system (coincident with the 
shaded area of Fig. 6.1 at timet+ M) 

(m' V')1 = momentum of the fluid mass contained within the control volume at 
timet 

(m'V')r+M =momentum of the fluid mass contained within the control volume at 
time (t + ~t) 

~(m V)out = momentum of the fluid mass that leaves the control volume during 
time interval M 

~(m V)in = momentum of the fluid mass that enters the control volume during 
time interval ~~ 

At time t the momentum of the fluid system is equal to the momentum of the 

Vectors represent 
forces on the fluid 
system. 

(a) 

(
Dashed line represents 

. bpundary of fluid 
( system at time (I+ !l.t). 

Control surface for control 
volume (fixed in space). 
This also represents the 
bounds of the fluid 
system at time t. 

(b) 

Figure 6.1. Control volume for 
general case. (a) Fluid mass acted 
on by certain forces. (b) Location 
of the fluid system at times t and 
(t + ~t). 



MOMENTUM AND FORCES IN FLUID FLOW 141 

fluid mass contained in the control volume at time t because the same fluid mass 
is involved in both cases. Thus 

(mV), = (m'V'), 

At time (r + L1t) the momentum of the fluid system is equal to the momentum 
of the fluid mass in the control volume at (t + M) plus the momentum of the 
mass that has flowed out of the control volume during time interval M minus that 
which has flowed into the control volume during time interval M. Thus 

(mV),+~r = (m'V'),+~r + L'1(mV)out- L'1(mV)in 

The change of momentum of the fluid system is 

L1(mV) = (mV),Hr- (mV), 

Substituting the two preceding expressions into Eq. (6.2), we get 

L1(mV) = (m'V'),+~r- (m'V'), + L1(mV)oct- L'1(mV)in 

(6.2) 

Applying Eq. (6.1 ). dividing through by M. rearranging. and noting that the 
limit of L'1(m V);M = d(m V);dt as L1t--+ 0, we get 

L F = lim L'1(mV) = d(mV) = d(mV)out - d(nly)in 
r~o M dt dt 

(m'V')r+t.r- (m'V'), 
+ dt 

(6.3) 

The above equation states that the force acting on a fluid mass is equal to the rate 
,,f change of the momentum of the fluid mass which. in turn, is equal to the sum of 
:1e two terms on the right-hand side of the equation. The first term on the right 
,IJe of the equation represents the net rate of outflow of momentum across the 
~,>ntrol surfaces while the second term represents the rate of accumulation of 
-:1omentum within the c.ontrol volume. Equation (6.3) is perfectly general. It 
.1rplies to compressible or incompressible, real or ideal, and steady or unsteady 
-',>\\. In the case of steady flow, the last term of Eq. (6.3) is equal to zero and the 
~-.;uation is 

L F = ~(mV)out- d(mV)_i_Jl = d(mV)out _ ~(IJ1~irJ 
dt dt dt 

(6.4) 

Thus. for steady flow the force on the fluid mass is equal to the net rate of outflow 
::-~· momentum across the control surface. 

Since Eqs. (6.1) through (6.4) are vectorial equations they can also\le ex
=-~essed as scalar equations in terms of forces and velocities in the x, y, and z 
.: :~ectlons respectively. 

It is advantageous to select a control volume such that the control surface is 
:- ~~~al to the velocity where it cuts the flow. Consider such a situation in Fig. 6.2. 
-\:•,•. let the velocity be constant where it cuts across the control surface. In 
F :g 6.2 the fluid system we are dealing with is contained between sections 1 and 2 
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"--- Cross-hatched region 
indicates location of 
fluid system at time (t +dt). 

Solid line is boundary 
of control volume, also 
boundary of fluid system 
at timet. 

Figure 6.2. Control volume for 
steady flow with control surface 
cutting a constant velocity stream 
at right angles. 

at time r. This fluid system moves to a new position during time interval dt, as 
indicated in Fig. 6.2. During this short interval we will assume the fluid moves a 
short distance ds 1 at section I and ds 2 at section 2. Also, we are restricting ourselves 
to steady flow so that Eq. (6.4) is applicable. The momentum crossing the control 
surface at section I during the interval dt is (p 1 A 1 ds 1 ) V1 while that crossing 
section 2 is (p 2 A 2 ds 2 )V2 . Substituting these expressions into Eq. (6.4), noting 
that since the control surface cuts the velocity at right angles, V = ds/dt and 
Q = A V, we get for steady flow along a stream tube 

(6.5) 

From continuity, for steady flow, pQ = p 1 Q 1 = p2 Q2 ; thus we can write 

L F = pQ(V 2 - Vd = pQ(llV) (6.6) 

The direction of L F will be the same as that of L1 V. The L F represents the 
vectorial summation of all forces acting on the fluid mass including gravity forces, 
shear forces, and pressure forces including those exerted by fluid surrounding the 
fluid mass under consideration as well as the pressure forces exerted by the solid 
boundaries in contact with the fluid mass. 

Since Eq. (6.6) is vectorial it can be expressed by the following scalar 
equations 

L Fx = PzQz v2x- PI Ql ~X= pQ(!lVx} 

L Fy = P2 Q2 Vz,- PI Ql vly = pQ(!l Vy) 

L Fz = P2 Qz Vz,- Pt Ql vl, = pQ(!l ~) 

(6.7a) 

(6.7b) 

(6.7c) 

In Sec. 6.3 and succeeding sections these equations will be applied to several 
situations that are commonly encountered in engineering practice. If the flow in 
a single stream tube splits up into several streamtubes, the pQ V's of each stream 
tube are computed separately and then substituted into Eqs. (6.5) to (6.7). (See 
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Illustrative Example 6.1.) The big advantage of the impulse-momentum principle 
is that one need not be concerned with the details of what is occurring within 
the flow; only the conditions at the end sections of the control volume govern 
the analysis. 

6.2. MOMENTUM CORRECTION FACTOR 

If the velocity is not uniform over a section, the momentum transferred across that 
section is greater than that computed by using the mean velocity. Thus the 
momentum transferred across an elementary area dA, where the local velocity is u, 
is (pu dA)u = pu 2 dA, and the momentum transfer across the entire section is 
p J A u2 dA, while that computed by using the mean velocity is pQV = pAV2

. 

Hence the correction factor by which the latter should be multiplied is 

1 . 
[3 = - j u2 dA 

AV2. A 
(6.8) 

For laminar flow in a circular pipe, [3 = 1, but for turbulent flow in circular pipes, 
it usually ranges from 1.005 to 1.05, as shown by Eq. (8.32b ). For open-channel 
flow it may be greater. Unless otherwise specified, the value of [3 in the ensuing 
discussion will be taken as 1.0. 

6.3. FORCE EXERTED ON PRESSURE CONDUITS 

Consider the case of horizontal flow to the right through the reducer of Fig. 6.3a. 
A free-body diagram of the forces acting on the fluid mass contained in the 
reducer is shown in Fig. 6.3b. We shall apply Eq. (6.7a) to this fluid mass to 
examine the forces that are acting in the x direction. The forces p

1 
A

1 
and p

2 
A 2 

represent pressure forces exerted by fluid located just upstream and just down
stream of the fluid mass under consideration. The force (F R/F)x represents the force 
exerted by the reducer on the fluid in the x direction. Neglecting shear forces at the 
boundary of the reducer, the force (F R!F )x is the integrated effect of the normal 
pressure forces that are exerted on the fluid by the wall of the reducer. The 
intensity of pressure at the wall will decrease as the diameter decreases because of 
the increase in velocity head. A typical pressure diagram is shown in Fig. 6.4. 

1 

~~-v....;;.._2-
(a) (b) 

Figure 6.3 
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I 
1---/ 
\ / 
\/ . 
"' ' Figure 6.4. Pressure distribution in 

a reducer. 

Applying Eq. (6.7a) and assuming the fluid to be ideal with (F R;F)x directed as 
shown, we get · 

(6.9) 

In Eq. (6.9) each term can be evaluated independently from given flow data, 
except (F R;F)x, which is the quantity we wish to find. Rewriting Eq. (6.9), the result 
IS 

(6.10) 

This gives the value of the total force exerted by the reducer on the .fluid in the x 
direction. This force acts to the left as assumed in Fig. 6.3b and as applied in 
Eq. (6.9). The force of the fluid on the reducer is, of course, equal and opposite to 
that of the reducer on the fluid. If friction were considered with flow to the right. 
(F RIF)x would be somewhat larger than indicated by Eq. (6.10). If the flow were to 
the left in Fig. 6.3, a similar analysis would apply, but it is necessary to be consist
ent in regard to plus and minus signs. 

Consideration of the weight of fluid between sections 1 and 2 in Fig. 6.3 
results in the conclusion that pressures are larger on the bottom half of the pipe 
than on the upper half. It should be noted that it is the conditions at the end 
sections of the control volume that govern the analysis. What occurs within the 
flow between sections I and 2 is unimportant so far as the determination of forces 
is concerned. Figure 6.4 gives a schematic representation of the pressure distribu
tion within the reducer. The integrated effect of all these pressures is equivalent in 
the x direction to (F 8 /F)x and in the y direction to the weight of fluid between 
sections I and 2. 

If the fluid undergoes a change in both direction and velocity, as in the 
reducing pipe bend in Fig. 6.5, the procedure is similar to that of the preceding 
case. except that it is convenient to deal with components. Assuming the flow is in 
a horizontal plane so that the weight can be neglected, applying Eq. (6.7a) by 
summing up forces acting on the fluid in the x direction, and equating them to the 
change in fluid momentum in the x direction gives 

(F 8/F)x = Pt At- P2A2 cos()- pQ(Vz COS()- Vt) 

Similarly, in the y direction, 

(F 8/F)v = p2 A2 sin()+ pQV2 sin 0 

( 6.11) 

(6.12) 



MOMENTUM AND FORCES IN FLUID FLOW 145 

Figure 6.5. Forces on a reducing bend. 

In a specific case, if the numerical values determined by these equations are 
positive, then the assumed directions are correct. A negative value for either one 
merely indicates that that component is in the direction opposite from that 
assumed. 

Note that F = pQ L1 V is the resultant of all the forces acting on the fluid, 
which includes the pressure forces on the two ends, while F B'F is the force exerted 
by the bend on the fluid. The value ofF s;F is J (F B!F); +(F:;r);, and it is repre
sented by the closing line in the force diagram shown in Fig. 6.5. The total force 
exerted by the fluid on the bend is equal to F Bil· but it is opposite to the direction 
shown in the figure. 

It may be seen that such a force tends to move the portion of the pipe 
considered. Hence, where such changes in velocity or alignment occur, a large pipe 
\~ill usually be "anchored" by attaching it to a concrete block of sufficient weight 
:o provide the necessary resistance. 

If the flow had been in the vertical plane the weight of the fluid between 
;cections 1 and 2 would have to be estimated and included in Eq. (6.12). The effect 
.,,:· shear stresses due to fluid friction could be introduced into the problem, 
'"'.c•weYer, these effects are often very small. 

Illustrative Example 6.1. Determine the magnitude and direction of the force exerted by the 
__ .-.: 1·. = 9.81 k N m-') on this double nozzle. Both nozzle jets have a velocity of 12 mls. The axes of 
-, =''!'" and both nozzles lie in a horizontal plane. Neglect friction. • l 

Continuity• 

V, = 8.33 filS 
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Free-body diagram 
of liquid 

Illustrative Example 6.1 

Energy equation: 

r, ~J3' 12' 
+ =0+ 

-; 2(9.S I) 2(9.81) 

r, = 3.8 m 

t~. = V2 cos 15 = 12(0.976) = 11.7 m s 

V1 , = t, cos 30 = 12(0.S66) = 10.4 m s 

1' 1 A 1 = 0.656 kN 

0.656- (F, 1_), = 10 3 (0.094)(11.7) + Hl'(0.053)(10.4) 

- 10 3(0.147)8.33 = 0.425 kN 

(F, I),= 0.656-0.425 = 0.241 kN 
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IF,= (F, 1),. = (pQ, V2 , + pQ 3 V3 ) ~ pQ, V1 , 

V2 . = v, sin 15 = 12(0.258) = 3.1 m s 

~~- = ~ V3 sin 30 = ~ 12(0.50) = ~ 6.0 m •s 

(F, 1),. = 10 3 (0.094)(3.1) + 103 (0.053)( ~6.0) ~ 10'(1.47)(0) 

= 0.292 ~ 0.318 = ~0.026 kN 

The minus sign indicates that the assumed direction of (F, J, was wrong. Therefore (F, 1 ), acts in the 
negative y direction. Equal and opposite to F, 1 is F1 , 

(F 1 ,Jx = 0.241 kN 

(F 1 ,),. = 0.026 kN 

(in positive x direction) 

(in positive r direction) 

6.4. FORCE EXERTED ON A STATIONARY VANE OR BLADE 

A procedure similar to that of Sec. 6.3 may be employed to find the force exerted 
on a stationary vane or blade. The main difference is that with a vane or blade the 
fluid is in contact with the atmosphere; hence the pA forces disappear. Another 
difference is that in many types of fluid machinery where vanes or blades are used 
the velocities are often so high that the neglect of friction may introduce a sizeable 
error. In such cases, for accurate results, friction should be considered. The follow
ing example illustrates these points. 

Illustrative Example 6.2. In the figure it rna; be assumed that 0 = 30 , V, = 100 fps, and the 
stream is a jet of water with an initial diameter of 2 in. Assume friction losses such that V2 = 95 fps. 
Find the force of the water on the blade. Assume that flow occurs in a horizontal plane. 

This problem is best solved by taking a free-body diagram of the element of fluid in contact with 
the blade. The forces acting on this element are as shown in the sketch. The forces (F 8 .,)., and (F 8 w).. 
represent the components of force of blade on water in the x and y directions. These forces include 
shear stresses tangential to the blade as well as pressure forces normal to the blade. 

Applying Eq. (6.7a) along the x axis. 

~ (F 8 wlx = pQ( V2 , ~ V1 J = 1.94(0.0218 X 100)(0.866 X 95 ~ 100) 

= 4.22( ~ 17.6) = ~ 73.2 1b 

Hence (f 8 .,),= +73.2lh 

The plus sign indicates that the assumed direction of (F 8 wlx was correct. 

~~ (FB/W):r 

. (FB/W)y 

Illustrative Example 6.2 

' 
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Applying Eq. (6.7b) along they axis, 

+ (F 81w), = pQ(V2,- V1J = 422(0.50 x 95- 0) = 200 lb 

Thus the force of the blade on the fluid is the resultant of a 73.2-lb component to the left and a 200-lb 
component upward in the y direction. Equal and opposite to this is the force of the fluid on the blade 
(downward and to the right). The resultant force is 213 lb at an angle of 70° below the horizontal. 

t 1f friction were neglected (i.e., V2 = V1 = 100 fps), the forces should have been calculated as 
(F 8 ,wlx = 56.5 lb and (F o;w)y = 211 lb. When the angle of deflection 8 from the initial direction of the 
jet is less than 90', friction increases the value of (F 81w)x over the value it would have if there were no 
friction. When 8 is greater than 90°, fnction decreases the value of F x. On the other hand, friction 
decreases the value ofF r for any value of angle 8. 

If the flow had been in the vertical plane, the effect on V 2 of the higher elevation at exit from the 
blade would have to be considered and the weight of the liquid on the blade would have to be 
estimated and added to pQ(L'. Vr) to get the total value of (F 81w )y. 

6.5. RELATION BETWEEN ABSOLUTE AND 
RELATIVE VELOCITIES 

In much of the work that follows it will be· necessary to deal with both absolute 
and relative velocities of the fluid. The absolute velocity V of a body (Fig. 6.6) is its 
velocity relative to the earth. The relative velocity v of a body is its velocity relative 
to a second body, which may in turn be in motion relative to the earth. The 
absolute velocity V of the first body is the vector sum of its velocity v relative to 
the second body and the absolute velocity u of the latter. The relation of the three 
is thus 

V=u+v (6.13) 

Let us define a and f3 as the angles made by the absolute and relative velocities of a 
fluid, respectively, with the linear velocity u of some solid body. It is seen from 
Fig. 6.9 that, whatever the shape of the velocity vector triangle, 

~~ .. ~v•. 

L 
u . 

---v.. _ __j 

V sin a = v sin f3 

v cos \J. = u + v cos f3 

Figure 6.6. Relative and absolute velocity relations. 
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6.6. FORCE UPON A MOVING VANE OR BLADE 

The force exerted by a stream upon a single moving object can be determined by 
Eq. (6.6) provided the· flow is steady and the body has a motion of translation 
along the line of action of the stream initially. If the latter condition is not fulfilled, 
the case becomes the complex one of unsteady flow. 

There are two principal differences between the action upon a stationary and 
a moving object. One is that it is necessary to consider both absolute and relative 
\ elocities, which may make the determination of f1 V more difficult The other is in 
~egard to the amount of fluid that strikes the single moving object in any time 
mterval. Ifthe cross-sectional area of a stream is A 1 and its velocity is V1, then the 
rate at which fluid is emitted from the nozzle is G = /'Q = }'A 1 V 1 • But the amount 
of fluid which strikes the body per unit time will be less than this if the single body 
Is moving away from the nozzle. As an extreme case, suppose the object to be 
moving in the same direction as the jet and with the same or a higher velocity. It is 
clear that none of the fluid will act upon it. If it is moving with a velocity less than 
that of the jet, the amount of fluid that strikes it per unit time will be proportional 
to the difference between the two velocities, i.e., to t: 1 = V1 - u. If G' denotes the 
weight of fluid per second striking a single object moving with a velocity u in the 
same direction as V1, then 

(6. 14) 

An explanation for the difference between G and G' may also be seen by 
considering Fig. 6.7, where the fluid issues from a nozzle at the rate of G = }A 1 V1 

per unit time. But in this unit of time the object will have moved away from the 
nozzle the distance u, and the volume of fluid between the two will have been 
increased by the amount A 1 u. 

-v, 

Figure 6.7. Jet acting on a vane in translation. 
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Thus, for this special case of a single object moving in the same direction as 
the stream initially, the component of the force exerted by the vane on the fluid is 

G' yAl Vt 
Fu=-11V.,= ...... 11V., 

g g 
(6.15) 

acting to the left in Fig. 6. 7. Equal and opposite to this is the force of the jet on the 
v~e acting to the right. The subscript u represents the component in the same 
direction as u. It will be seen later that this same subscript is used to represent the 
tangential direction at a point on a rotating body. 

It should be noted that there is a force exerted in the direction at right angles 
to u but we will not concern ourselves with it here. 

It can be proved that 11 V.. = 11v". Referring to Fig. 6.7, it is seen that 
Vz, = Vz cos IXz and VI, = vl cos IX 1 = vl. Therefore 

11 v.. = Vz, - vl" = Vz cos IX a - VI 

But vl = u + Vt, so 11Vu = Vz cos IXz- Vt- u. Now, Vz, = Vz cos f3z and 
v1 , = v1 cos /3 1 = v1 . Therefore 11v" = v2,- v1, = v2 cos /3 2 - t' 1 • But 

v2 cos /3 2 = V2 cos IX 2 - u. 

So 

11v., = V2 cos rx 2 - u - v1 

Hence 11 V.. = 11vu. Thus Eq. (6.15) for the u component of the force on a single 
body may also be written as 

G' yA 1 v1 F = -· 11v = -- 11v 
u g u g u 

( 6.16) 

In Fig. 6.7, by the time a particle of fluid which strikes the moving vane at the 
instant it is in the position shown by the solid line has reached the point of outflow 
from the vane, the latter will have reached the position shown by the dotted line. 
Thus two paths may be traced for the fluid, one relative to the moving vane, which 
is as it would appear to an observer (or a camera) moving with the vane, and the 
other relative to the earth, termed the absolute path, as it would appear to an 
observer (or a camera) stationary with respect to the earth. 

A study of Fig. 6.7 shows that the direction of the relative velocity at outflow 
from the vane is determined by the shape of the latter, but the relative velocity at 
entrance, just before the fluid strikes the vane, is determined solely by the relation 
between V1 and u. Just after the fluid strikes the vane, its relative velocity must be 
tangent to the vane surface. To avoid excess energy loss, these two directions 
should agree; otherwise there will be an abrupt change in velocity and direction of 
flow at this point. 

There are few instances where a stream of fluid impinges on a single body or 
vane. More commonly, the jet is directed on a series of vanes as with a Pelton 
wheel (Fig. 15.1 ). In such a case the effective flow impinging on each of the series 
of closely spaced buckets is Q = A1 V1, since whatever flow does not impinge on 
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~':c first bucket will impinge on the second one, and so on around the circle. Thus 
~'lc u component of the force exerted by the fluid on a series of vanes is expressible 

F" = G ~V., = yAt Vt ~V., = yA~ ~v" 
g g g 

(6.17) 

Once again, the force of the vanes on the fluid is in the direction of~ V.,, that is, to 
:he left in Fig. 6.7. 

Illustrative Example 6.3. A 2-in-diameter water jet with a velocity of 100 fps impinges on a single 
.,Jnc moving in the same direction (thus Fx =F.) at a velocity of 60 fps. If {J 2 = 150 and friction 
··'"es over the vane are such that v2 = 0.9r" compute the force exerted by the water on the vane. 

The velocity vector diagrams at entrance and exit to the vane are shown in the accompanying 
~gure. Since r• 2 = 0.9 x 40 = 36 fps. 

V2 Sin ~2 = l'2 sin {J 2 = 36 X 0.5 = 18 fps 

v2 cos ~ 2 = u + r 2 cos {J 2 = 60 + 36(- 0.866) = 28.8 fps 

5L1hing (a) and (b) simultaneously yields v2 = 34 fps. ~2 = 32". Hence 

- F x = pQ'( V2 cos ~ 2 - V,) = 1.94(0.0218)( 100 - 60)(28.8 - 100) = -120.3 lb 

(a) 

(b) 

So F, = 120.3 lb. The force of vane on water is to the left as assumed; hence force of water on vane is 
i :OJ lb to the right. 

-F, = pQ'(V2 sin ~ 2 - 0) = 1.94(0.0218)(40)( -18) = -30.3 lb 

Thus F, = 30.3 lb in the direction shown. The force of water on the vane is equal and opposite and 
:hus 30.3 lb upward. If the blade were one of a series of blades, 

-Fx = pQ(V2 COS cx 2 - V1 ) = 1.94(0.0218)(100)(28.8- 100) = -301 lb 

For the case of a series of blades, energy considerations could have been used for the solution. 
The horsepower of the original jet is 

;·Q( Vf ;2g) 62.4(0.0218 x 100)[( 100)2 /64.4] 
HP = = -- - ---- = 38.4 

"' 550 550 

l-1 -100 
~CCII 

(a) 

Illustrative Example 6.3 

Entrance velocrty 
vectors 

VJ. -100 --u-60 v-40 

Free-body diagram 

(b) 

t+y 
L_.+x 

l 
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The horsepower of the water as it leaves the system is 

"Q(V2 12g) 
HP = I -~-- = 4.44 

""' 550 

The horsepower transferred to the blades (i.e., out of the fluid) is 

t 
Fu (301)(60) 

HP = - = - - = 32.8 
ltan•fec 550 550 

An equation for conservation of energy expressed in terms of power is 

HPin - HP out - HPtransfcr - HPfriction loss = 0 

Thus 38.4- 4.4- 32.8 = HPftidton !o% 

Therefore HPfriction loss= }.2 

That this is so may be verified by computing 

·,-Q(rfi2g)- ;·Q(t·U2g) 62.4(0.0218 x 100)[(40) 2
- (36) 2

] 
-- ---- --- -- = --- -- ------ = 1.2 

550 550( 64.4) 

It should be noticed that the horsepower loss due to friction is small. Commonly, in problems of this 
type, an assumption that r 1 = t' 2 will give reasonably good results. 

6.7. REACTION OF A JET 

In Fig. 6.8 consider a jet issuing steadily from a tank with is large enough so that 
the velocity within it may be neglected. Let the area of the jet be A 2 and its 
velocity V2 , and assuming an ideal fluid, V2 = figh. In this case with the jet 
flowing to the right, a force equal to pQ 2 V2 is exerted to the left on the tank. That 
this is so may be seen by applying Eq. (6.7a) to the free-body diagram (Fig. 6.8b) 

l 
h 

I 

L._~~~ 

(a) (b) 

Figure 6.8 
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0·· :he liquid in the tank. In Fig. 6.8b the boldface vectors represent the forces of 
::-.c tank on the liquid while the distributed load represents the force of the liquid 
.:-:-. the tank. In the figure it is the distributed load in the vertical plane of the 
.x:. ter line of the jet that is shown. 

Applying Eq. (6.7a)·to the liquid, we get 

Fx = (FT/L)x = pQ 2(V2 - 0) = pA 2 V~ = pA 2 (2gh) = 2yhA 2 (6.18) 

F.:~ is the net force of the tank on the liquid in the x direction; its acts to the right 
.L:._: causes the change of velocity of the flowing liquid from zero to V2 . Equal and 
~;'osite to this force is the force of the liquid on the tank, often referred to as the 
.'"': 'c'cJction. If the tank were supported on frictionless rollers, it would be moved to 
:jc left by this action. The net force pQ 2 V2 is equal to the difference in the 
T...ignitude of the pressure forces on the two ends of the tank. On the left end of the 
u:-.. -. a normal hydrostatic pressure exists while on the right end of the tank there 
"5 .1 lowering of the pressure near the orifice because of the increase in velocity 
w:::-.;:1 the tank in that region. 

Refer now to Fig. 6.9 where a jet of liquid of cross-sectional area A 1 is dis
c±:..i: ged in to the tank with a velocity V1 . In this case a force F = pQ 1 V 1 is exerted 
t.>:• ::...e jet on the liquid which, in turn, transmits the force to the tank. This is 
re-:ic:-:ed to as jet action. 

T.1e resultant force on the tank caused by one jet entering the tank at section 1 
~ :~e other jet leaving the tank at section 2 is the vector sum of pQ 1 V 1 and 
#Q: \:where the first vector (jet action) acts in the direction of V1 (downward to 
'lk ~ :gh t in Fig. 6.9) and the second vector (jet reaction) acts in the direction 
~c,<lte to that of V2 . Thus a jet entering a system acts on the system in the 
llbr~..:::,_>n in which the jet is traveling while a jet leaving a system acts on the 

m the direction opposite to that in which the jet is traveling. 

\ 

l 

Jet reaction pQ2 v2 

(b) 
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(b) (c) 

Illustrative Example 6.4 

Illustrative Example 6.4. In the accompanying figure (a) is shown a curved pipe section that is 
attached to the straight pipe section as shown. Determine the force of the liquid (i' = 55 lb ft 3

) on the 
curved pipe. and find the horizontal component of the jet reaction. All significant data are given in the 
figure. Assume an ideal liquid. The energy equation between sections l and 3 gives 

and 

30 X 144 ~·~ 
+ 35 = 20 + . 

55 2q 

l ~ = 77.6 fps (jet velocity) 

Q = .41 v, = 3.81 cfs 

1"2 = Q = 43.5 fps 
A, 

Energy equation between section 2 and J gives 

1'2( 144) (43.5) 2 (77.6) 2 

10 + + = 20 + 
55 64.4 2q 

and I' 2 = 28.3 psi 

The free-body diagram of the forces acting on the liquid contained in the curved pipe is shown in (h) of 
the figure. Applymg Eq. (6.7a), 
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• -ere (f, ,J, represents the force of the curved pipe on the liquid in the x direction. Since section 3 is a 
:n contact with the atmosphere, p 3 = 0. Thus 

2g.3(: X 42
)- (f, J, = ( 1.94 X 6~

5

4 )(381)(77.6 X 0.94- 43.5) 

356- (F, Lt = 192 

(F, J, = + 164 lb 

' -.ere the plus sign indicates that the assumed direction is correct. In they direction the p 2 A 2 force has 
- • .:omponent. Estimating the weight of liquid Was 7 lb, 

(F, ,) .. = pQ(77.6 x o.342 - o) + 7 = + 1 go Ib 

. , resultant force of liquid of the curved pipe is equal and opposite to that of the curved pipe on 
~~1d. The resultant force of liquid on the curved pipe is [(164) 2 + (180) 2 ] 1 2 = 244lb downward and 

· · the right at an angle of 47 40' with the horizontal. 
The horizontal jet reaction is best found by taking a free-body diagram of the liquid in the system 

"' ·hown in (c) of the figure: 

(F, I),= pQ( v, cos 20 - 0) = 475 lb 

,, ~ere (F s ,). represents the force of the system on the liquid in the x direction. (F, Llx is equivalent to 
· -.: mtegratcd effect of the x components of the pressure vectors shown in (c). Equal and opposite to 
f, ,), is the force of the liquid on the system. i.e., the jet reaction. Hence the horizontal jet reaction is a 
~-'-lb force to the left. Thus there is a 164-lb force to the right tending to separate the curved pipe 
·c.:t1on from the straight pipe section. while at the same time there is a 475-lb force tending to move the 
,-me system to the left. 

6.8. JET PROPULSION 

1:1 Sec. 6.7 an expression was derived for the reaction of a jet from a stationary 
:-1nk. Assume now that the tank in Fig. 6.8 moves to the left with a velocity u. If 
:~;e orifice is small compared with the size of the tank, the relative velocity within 
:~~l' latter may be disregarded. as may also any change in h for a short interval of 
::me. Thus the absolute velocity of the fluid within the tank is V1 = u to the left. If 
: '1e jet issues from the orifice with a relative velocity r 2 , taking velocities to the 
~1ght as positive, the absolute velocity of the jet will be v~ = r 2 - u. Hence 

~V= v~- VI =(rz-11)-(-u)=l'z 

The same result is obtained by referring to Fig. 6.8 for the case of a stationary tank 
:c .. u = 0). In this instance ~ V = v~ - 0 = r 2 . Thus the force of reaction is 
:1dependent of the velocity of the tank, and Eq. ( 6.18) applies for either rest or 
:~wtion. l 

Rocket 

BL)th the fuel and the oxygen for combustion are contained within a rocket which 
' analogous to the tank of Fig. 6.8. The only difference is that the exit pressure p0 

,,f the gases leaving the orifice or nozzle at section 2 may exceed the atmospheric 
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pressure Pa. If A2 equals the area of the jet, the rocket thrust is 

F = pA1 V~ + (Pu - Pa)Az (6.19) 

where v2 is the velocity at which the jet issues from the rocket. The thrust F is 
independent of the speed of the rocket. 

Jet lngine 

By jet engine is meant a device which carries only its fuel and takes in the air for 
combustion from the atmosphere. It is analogous to the tank of Fig. 6.9, including 
the intake of fluid at section 1, except that the velocity of the air received is usually 
in the same straight line as the velocity of the exit jet at section 2. There are three 
forms of jet engines, but the equation is the same for all three. The ramjet must be 
brought up to a high speed by rockets or some other means, and then it scoops in 
the air from in front and compresses it by virtue of the stagnation pressure due to 
its speed. The turbojet can take off from the ground, for in it the air is compressed 
by a compressor driven by a gas turbine, the exhaust from which supplies the jet 
propulsion. Then there is a pulsating machine, which scoops in air in cycles. The 
inlet is then closed, the fuel-air mixture is exploded; a jet then gives the device a 
spurt; and the process is repeated. 

The thrust of a jet engine is 

F = (G"-+G f)vz--=-(;a_~ 
g 

where Ga =weight of air taken in per second 
G f = weight of fuel consumed per second 
v1 = velocity of exhaust with respect to the engine 

(6.20) 

u = velocity of flight = velocity of air entry with respect to the engine 
The thrust will vary with the speed of flight. Usually p 0 = Pa, and so the second 
term of Eq. (6.19) is not included in Eq. (6.20). 

6.9. TORQUE IN ROTATING MACHINES 

When a fluid flows through a rotor, its radius usually varies along its path. Hence 
it is desirable to compute torque rather than a force. The resultant torque is the 
summation of the torques produced by all the elementary forces, but it has been 
shown that the latter may be considered as equivalent to two single forces, one 
concentrated at entrance to and the other at exit from any device. For steady flow 
these equivalent forces have been shown to be pQV1 and pQV1 . Referring to 
Figs. 6.10 and 6.11 and taking moments, the torque produced is 

( 6.21) 

If T as given by this equation is positive, it is the value of the torque exerted by 
the fluid on the runner of a turbine. The torque output from the shaft of the turbine 
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Figure 6.10. Radial-flow hydraulic turbine. 

is less than this by virtue of the mechanical friction. If the value ofT is negative, it 
represents the torque exerted on the fluid by the impeller of a pump or compressor 
or fan. The torque input to the shaft of such a machine is greater than this because 
of mechanical friction. 

Equation (6.21) and subsequent equations that may be derived from it are 
correct, but it is difficult to determine the numerical values to be used in them. 
Thus fluid particles in different streamlines may flow with different velocities, and 

Relative path 

Figure 6.11. Centrifugal-pump impeller with radial flow. 
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it is necessary to estimate what the average velocity may be. Also, it is known that 
the average direction of a stream is often different from that of the vane which it is 
supposed to follow, but as yet there is no exact knowledge as to the amount of 
deviation in every case. Thus even the average velocity is not given precisely by 
dividing the flow by the cross-sectional area of a rotor passage. Furthermore, the 
entrance or exit edges of vanes are not always parallel to the axis of rotation, and 
t~us the radii will be different for different streamlines. 

Despite these defects, the theory is useful. It shows the shape or nature of the 
performance curves of a given machine; it shows the influence of each separate 
factor; and it shows the direction in which changes in design should be made in 
order to alter the characteristics which have been found by test of an existing 
machine. 

It is immaterial in the use ofEq. (6.21) and subsequent equations whether the 
fluid flows radially inward, as in Fig. 6.10, or radially outward, as in Figs. 6.11 and 
6.12, or remains at a constant distancefrom the axis, as in Figs. 6.13a and 6.13h. In 
any case. r 1 is the radius at entrance and r2 is that at exit. In Figs. 6.10 through 
6.13 the absolute and the relative flow paths are shown. 

Figures 6.10 through 6.12 show two-dimensional flow in planes normal to 
the axis of rotation. This is known as radial flow. The streamlines and velocity 

Figure 6.12. Radial-flow-pump impeller rotating at 200 rpm. (a) Instantaneous photo showing 
relative flow. (b) Time exposure showing ab;olute flow. (Piwtographs.from Hydrodynamics Laboraton. 

Califi>rnia Institute of Technology.) 
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ll 

ll 

(a) 

Pivoted 
guide 
vanes 

Dashed I i nes 
represent the 
absolute path 
of the water 

\'2 
v2 

~--~ 

ll 

(h) 

flfUI< 6.13, (a) Axial-flow hydraulic turbine. (h) Axial-How pump. 

:~ ..:~gles lie in the plane of the paper and are readily represented. In axial flow, as 
::- F :gs. 6.13a and 6.13b, a particle of fluid remains at a constant distance from the 
.i..' ·'· and the streamlines are helices on coaxial cylinders. A streamline and its 
.-;;_:,c:t: triangles are shown on a developed cylinder for the corresponding radius. 

\!iwd flow is intermediate between these two extremes, and velocities have 
:-~.: . ..,:. a\iaL and tangential components. A streamline is a conical helix with a 
·, ~:-:. :-.g radius from the axis of rotation. Needless to say, this is a complicated 
:_- ~-:-..:-J 1mensional-flow situation. 

6.10. HEAD EQUIVALENT OF MECHANICAL WORK 

I_. E..: '6.~ 1) is multiplied by angular velocity w, the product represents the rate at 
-.- :c:-. :nechanical energy is delivered by the fluid to a turbine or at which mechan-
1:::2.: ~:-.~rg: is delivered to the fluid by a pump. From Eqs. (4.15) anci ~4.18), 
·•:!-~ = TcJ. Replacing H by a specific value h" and noting that, when Eq. (6.21) 

:> :-:-..;itplied by w, r1w = u1 and r2 w = u2 , we have yQh" = Tw = 
.:(!' .. ::cos :xl- 112 v2 cos :x2), or 

h" = 111 Vl_cos :x 1_- u2_V2 c~s_~ 
g 

(6.22) 
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which is the head utilized by a turbine or, when h" is negative, the head imparted to 
the fluid by the impeller of a pump. 

If the value of h", as determined by Eq: (6.22), is positive, it is the mechanical 
work done by the fluid on the vanes of a turbine runner per unit weight of fluid. If 
the value is negative, it is the mechanical work done on the fluid by the impeller of 
a pump or similar device per unit weight of fluid. Obviously, the work done by or 
on Vie fluid is equal to the loss or gain of energy, respectively, of the fluid. 

6.11. FLOW THROUGH ROTATING CHANNEL 

The equation to be derived is sometimes called the equation of relative velocities, 
because the absolute velocities of the energy equation are replaced by relative 
velocities. The usual energy equation may be written between entrance to and exit 
from a passage which is itself rotating about some axis, but in addition to the 
friction loss hL there is an additional loss h", due to the fact that the fluid is 
delivering mechanical work and losing energy thereby. (If the passage is that of a 
pump, the numerical value of h" will be negative.) Thus 

(PI Vi) (P2 V~) u1 VI -- + z I + -- - -- + z 2 + = hI" + --
}' 2g }' 2g 

By trigonometry, V2 = v2 + u2 + 2vu cos [3, and 

uV cos rx = u(u + v cos /3) 

Inserting these values, the equation is reduced to 

g 

(PI vi - ui) (P2 v~ - u~) y- + z 1 +- 2g- - y + z 2 + 2g = hL (6.23) 

If there is no flow, both v1 and v2 become zero and the equation reduces to that of 
a forced vortex [Eq. (4.40)]. If there is no rotation, both u1 and u2 become zero, the 
relative velocities become absolute velocities, and the equation becomes the usual 
energy equation. The frame of reference having been changed, the mechanical 
work done does not appear as a separate term in Eq. (6.23). 

6.12. REACTION WITH ROTATION 

The force of reaction of a jet from a stationary body is given in Sec. 6.7 and from a 
body in translation in Sec. 6.8. Since Sec. 6.11 develops the equation for the flow 
through a channel in rotation, we are now ready to consider the force of reaction 
of a fluid discharged from a rotating body. 

A familiar object to illustrate this subject is the rotating lawn sprinkler. In 
Fig. 6.14 assume that the cross-sectional area of the arms is so large relative to the 
area of the jets that fluid-friction loss in the arms may be neglected. Water enters 
at the center, where r1 = 0, so that in Eq. (6.23), u1 = 0. With the sprinkler arms 
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Figure 6.14 

lying in a horizontal plane, z 1 - z 2 = 0, and for the jets discharging into the air, p2 

is atmospheric pressure and will be regarded as zero. Since friction is neglected, 
hL = 0, and if we let h = p1 h + vi /2g, Eq. (6.23) applied to Fig. 6.14 becomes 

Vz =fi9h+~ (6.24) 

where h is the static head at entry to the sprinkler. 
If a2 denotes the sum of the areas of all the jets (two in the figure shown), then 

Q = a2 v2 . This shows that the discharge is a function of the rotative speed, since 
ll 2 = r2 w. The tangential component of the absolute velocity of discharge is 
V,.

2 
=liz+ v2 cos {3 2, and hence the tangential component of the force of reaction 

IS 

yQ yaz v2 ya2 v2 Fu = - Ll V., = - (0- V., ) = ---(liz+ Vz COS f3z) 
g g 2 g 

As the radius is a factor in any rotating body, it is usually better to compute 
torque rather than a force. In this case the torque is 

·yaz vz ) T = Fur 2 = ----- r2 (ll 2 + v2 cos {3 2 (6.25) 
' g 

The ideal maximum, or runaway, speed is when T = 0, and this will be the case 
when ll 2 = - v2 cos {3 2 and when V2 cos a2 = 0 or a2 = 90°, Because of mechani
cal friction this condition will never be realized, Of the total power supplied to the 
sprinkler, the greater part is lost in the kinetic energy of the jets. The total power 
developed by the sprinkler is used in overcoming friction in the bearings and air 
resistance. If there were more arms, with larger orifices, so as to discharge more 
water, there could be a surplus of power which would be useful power delivered. A 
primitive turbine contructed in this manner was known as Barker's mill. 

6.13. MOMENTUM PRINCIPLE APPLIED TO 
PROPELLERS AND WINDMILLS 

In the case of a fan in a duct, the cross section of the fluid affected by the fan is the 
same upstream as it is downstream, and the principal effect of a fan is to increase 
the pressure in the duct. In the case of a propeller revolving in free air, however, 



162 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

this is not so. The pressure must necessarily be the same at a distance either 
upstream or downstream from the propeller. How, then, may the revolving blades 
be considered to do work on the air? This situation may be analyzed by consider
ation of the slipstream, or propeller race, which is nothing more than the body of 
air affected by the propeller (Fig. 6.15). It is customary to replace the propeller in 
simple slipstream theory with a stationary actuating disk across which the pressure 
is ~-de to rise, as shown in the pressure profile below the slipstream of Fig. 6.15 
and also in Fig. 6.16. We thereby neglect the rotational effect of the propeller, 
together with the helical path of vortices shed from the blade tips (Sec. 10.8). 
The thrust force will be given by the pressure change at the disk times the 
area of the disk, 

v 1 --
-vl ----- ~-V1 +2.V 

-- -----:-4------
I 

,t,~ 
+ t --+----1 
v, I 

t 
V1 + t.V 

! 

(6.26) 

Figure 6.15. Slip stream of propeller 
in free fluid. V1 represents the >elocity 
of the undisturbed fluid relative to the 
propeller: ro represents the undis
turbed pressure in the fluid. 
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-x 

Figure 6.16. Forces acting on the fluid 
within the slipstream of Fig. 6.15. Net 
force on fluid. IFx=p 3 A-p2 A= 
(Llp)A. 

where D and A represent the diameter and area of the actuating disk and p2 and p3 

represent the pressures just upstream and downstream of the propeller, as in
dicated in Figs. 6.15 and 6.16. It should be noted that the pressures exerted on 
the boundary of the slipstream between sections 1 and 2 balance one another out 
and need not be considered. 

By Newton's second law. the force F T must equal the rate of change of 
momentum of the fluid upon which it acts. If we let Q be the rate of flow through 
the slipstream, 

F1 = AVp(V4 - Vd = Qp(L1V) (6.27) 

where V represents the mean velocity through the actuating disk and V1 and V4 

are the velocities at sections 1 and 4 of Fig. 6.15 where the pressures correspond to 
the normal undisturbed pressure p 0 in the flow field. 

The propeller we are considering could be a stationary one like a fan or a 
moving one such as the propeller of a moving aircraft or ship. Let us take the 
propeller as our frame of reference. Thus, in Fig. 6.15, if we are dealing with a 
stationary propeller, vl = 0 while, if we are dealing with a moving propeller. vl 
represents the velocity at which the propeller is moving with respect to the un
disturbed fluid. 

Writing the Bernoulli equation from a point upstream where the velocity is V1 

to a point downstream where it is V1 + 11 V, recognizing that the pressure terms at 
these points cancel and (assuming an Ideal fluid) that the disk adds L1pi;· units of 
energy to the fluid per unit weight of fluid, we get 

(6.28) 

-Equating Eqs. (6.26) and (6.27) and solving for Q in terms of L1p, and then 
substituting into this expression for Q. the expression for L1p that results from 
solving Eq. (6.28} gives 

(6.29) 
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This may be expressed as 

Q =A( VI+ !,'4 ~ _!'t_) = A(Vt; V4) = AV 

This shows that the velocity V at the disk is the average of the upstream and 
downstream velocities. It also shows that one-half of~ V occurs upstream of the 
pr<l'eller while the other half of~ V occurs downstream. 

Solving Eq. (6.28) for ~ V and substituting F T I A for ~p gives 

fo 2FT 
V=-V1 + + 

Ap 
(6.30) 

We may utilize the slipstream analysis to determine the maximum efficiency 
possible by a propulsive device of any kind. The power output is given by 

pout= FT VI= (pQ ~V}VI 

The power lost in kinetic energy of the slipstream is 

(~V)z 
plost = Qp 

2 
·· 

The total power input is the output plus the loss (and this neglects the eddy losses 
from a rotating propeller), and the efficiency is given by the ratio of power output 
to power input: 

QpVI ~V e = ·--· ··--·· -- - -·-
Qp VI ~ v + Qp[(~ V)2 /2) 

VI 
--- -----

1 + ~Vj2V1 V 
( 6.31) 

The efficiency is seen to be a function of the ratio d V / V1 • The efficiency 
approaches 100 percent as d V approaches zero, but if d V = 0, the propeller 
produces no force. The actual maximum efficiency of aircraft propellers is in the 
neighborhood of 85 percent. 

A windmill is essentially the opposite of a propeller in that the function of a 
windmill is to extract energy from the wind. The slipstream for a windmill expands 
as it passes the actuated disk, and the pressure drops as does the velocity. By a 
procedure similar to the one for a propeller, it can be shown that the maximum 
theoretical efficiency of a windmill is 59.3 percent. Because of friction and other 
losses the actual efficiency of windmills rarely exceeds 40 percent. 

Illustrative Example 6.5. Find the thrust and efficiency of two 6.5-ft-diameter propellers through 
which flows a total of 20,000 cfs of air (0.072 lb/ft 3

). The propellers are attached to an airplane moving 
at 150 mph through still air. Neglect eddy losses. Velocity of air relative to airplane is 

ISO X 44 
V1 = ISO mph= = 220 fps 

30 
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\"elocity of air through the actuating disk is 

Thus 

t;V 1 20,000 
V! + 2 = 2 X (rr/4)(6.5)2 = 301 fps 

L'1 V = 2(301 - 220) = 162 fps 

0.072 
F 1 = pQ L'1V = - (20,000)(162) 

32.2 

= 7,250 lb (total thrust of both propellers) 

1 
e = = 0.732 = 73.2 percent 

I+ L';V/2V1 I+ 162/440 

6.14. OTHER APPLICATIONS OF THE MOMENTUM 
PRINCIPLE 

In addition to the cases that have already been discussed, there are numerous 
other fluid-flow situations where the momentum principle is useful. It is used to 
develop an expression for the head loss in an expansion (Sec. 8.19), the concept of 
the shock wave (Sec. 9.9), and the equations of the hydraulic jump (Sec. 11.19). 
Another application is that of finding the forces exerted on open-flow structures. 
The magnitudes of such forces may generally be found by application of the 
momentum principle. The application to this type of problem can best be dis
cussed with an illustrative example 

Illustrative Example 6.6. This water passage is 10 ft (3 m) wide normal to the accompanying 
figure. Determine the horizontal force acting on the shaded structure. Assume ideal flow. 

In free-surface flow such as this where the streamlines are parallel, the water surface is coincident 
with the hydraulic grade line. Writing an energy equation from the upstream section to the down
stream section, 

vf v~ 
6+--=3+-

2g 2g 
(a) 

From continuity, 

6(lO)V1 = 3(10)V2 (b) 

Illustrative Example 6,6 
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Substituting Eq. (b) into Eq. (a) yields 

V1 = 8.05 fps · V2 = 16.1 fps 

Q = A1 V1 = A2 V2 = 483 cfs 

Next take a free-body diagram of the element of water shown in the figure and apply Eq. (6.7a), 

t 
where F x represents the force of the structure on the water in the horizontal direction. 

and 

62.4(3)(10 X 6)- 62.4(1.5)(10 X 3)- Fx = 1.94(483)(16.1- 8.05) 

Fx=890lb 

The positive sign means that the assumed direction is correct. Hence the force of the water on the 
structure is equal and opposite, namely, 890 lb to the right. 

The momentum principle will not permit one to obtain the vertical component of the force of the 
water on the shaded structure because the pressure distribution along the bottom of the channel is 
unknown. The pressure distribution along the boundary of the structure and along the bottom of the 
channel can be estimated by sketching a flow net and applying Bernoulli's principle. The horizontal 
and vertical components of the force can be found by computing the integrated effect of the 
pressure-distribution diagram. 

Employing the given SJ units the solution to the problem is as follows: 

Vi v~ 
2 + = 1 + ---

2(9.81) 2(9.81) 

2(3)V1 = 1(3)V2 

Substituting Eq. (b) into Eq. (a) yields: 

V1 = 2.56 m/s V2 = 5.12 m/s 

From the free-body diagrams, 

PROBLEMS 

9.81(1)(2)(3)- 9.81(0.5)(1)(3)- Fx = 1.0(15.4)(5.12- 2.56) 

Fx = 4.6 kN 

6.1. For laminar flow as in Prob. 4.1, prove that fJ = 1-
6.2. For the turbulent-flow case as approximated in Prob. 4.2, prove that fJ = 1.014. 

(a) 

(b) 

6.3. For laminar flow between two stationary parallel plates such as to give two-dimensional flow, find 
(a) the ratio of mean velocity to maximum velocity; (b) :x; (c) {J. Once again, for this case the velocity 
profile is parabolic as in Prob. 6.1. 

6.4. On the end of a 6-in (15-cm)-diameter pipe is a nozzle which discharges a 2-in (5-cm)-diameter jet. 
The pressure in the pipe is 57 psi (380 kN/m 2

), and the pipe velocity is 10 fps (3 m/s). The jet 
discharges into the air. If the fluid is water, what is the axial force exerted upon the nozzle? Find 
also the head loss in the nozzle. 

6.5. On the end of a 6-in-dia horizontal pipe is a diverging nozzle which discharges a 6.5-in-dia jet. 
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-:--' . elocity in the pipe is 10 fps and the jet discharges into the air. If the fluid is water, what is the axial 
-.-:exerted by the tluid on the nozzle? In which direction does this force act? Neglect fluid friction. 

t~-.6. Water under a pressure of 50 psi (350 kN/m 2
) flows with a velocity of 10 fps (3 m•s) through a 

-~~.:-angle bend having a uniform diameter of 12 in (30 em). Assuming no drop in pressure, what is the 
-~'i..ltant force acting upon the bend? What is its direction? 

1:> -. Water enters a reducing right-angle bend with a velocity of8 fps (2.5 m.s) and a pressure of5.0 psi 
--~' ~:'\i m2

). The diameter of the bend at entrance is 24 in (60 em), and at exit it is 18 in (45 em). 
'-cglecting any friction loss, find the magnitude and the direction of the resultant force on the bend. 

o.8. In Fig. 6.3 the diameters are 36 in (90 em) and 24 in (60 em). At the larger end the pressure is 
· ,-1 psi (700 k N/m 2

) and the velocity is S fps (2.5 m •s). Find the resultant force on the conical reducer, 

·cglecting any friction, if the flow is (a) to the right: (h) to the left. 

6.9. Determine the magnitude and direction of the force exerted by the liquid(!·= 62.4 lb·ft 3
) on the 

~,,uble nozzle of the figure. Both nozzle jets have a velocity of 40 fps. The axes of the pipe and both 
~.,)zzles all lie in a horizontal plane. Neglect friction. 

\_ 3' diam jet 

4' diam jet J Problem 6.9 

6.10. In Pro b. 6.9. what angle should the 4-in jet make with the axis of the pipe so that the resultant 
force is along the pipe axis') 

6.11. Find the pull on the bolts in the figure. Neglect the weight of the water and assume ideal flow. 
•I 

J 
Otl -y-50 pcf 

I 
6' 

_l 

Problem 6.11 
l 

6.12. Repeat Prob. 6.11 for the case where the diameters are 5. 10, and 2.5 em respectively. Assume a 
180-cm manometer reading with a manometer liquid having a specific gravity of 0.80. 

6.13. If a jet of any fluid of an area A and with a velocity Vis deflected through an angle 0 without any 
change in the magnitude of the velocity. prove that F = (2yA;g)V2 sin (6/2). 

6.14. If a jet of any fluid is deflected through an angle 6 and fluid friction reduces Jl2 to 0.8 Jl1, derive an 
equation for the dynamic force exerted. 
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6.15. In Illustrative Example 6.2 assume that e = 120', that the jet is water with a velocity of 100 fps, 
and that the jet diameter is 2 in. If friction loss is neglected, find (a) the component of force in the same 
direction as the jet; (b) the component of the force normal to the jet; (c) the magnitude and direction of 
the resultant force exerted on the body. 

6.16. Solve Prob. 6.15 assuming that friction is such as to reduce V2 to 80 fps. 

6.1W~ Suppose the jet in Pro b. 6.15 were to strike a large flat plate normally. Approximately, what 
would be the force on the plate'' 

6.18. In Prob. 6.17 what would be the stagnation pressure. and what would be the average pressure on 
a circular plate if the area of the plate were 20 times the area of the jet'' Assume that the center of the jet 
is coincident with the center of the plate. 

6.19. Plotted to scale are streamlines in the plane of the center of a free jet impinging vertically on a 
horizontal circular plate. Determine as accurately as you can by scaling off the pertinent dimensions 
the velocity of the water as it leaves the plate and the total force exerted by the water on the plate. 
Include the weight of the water. The jet diameter is 30 em and stagnation pressure at point S is 
6.0 kN/m 2 

I I 
l 

I - Streamlines 

I I 

=~j ,\.~---------
Problem 6.19 

6.20. Repeat Pro b. 6.19 for the case where the jet diameter is 4 in and the jet velocity is 20 fps. 

6.21. A horizontal jet of water issues from an orifice in the side of a tank under a head h1 and strikes a 
large plate a short distance away which covers the end of a horizontal tube in the side of a second tank. 
The second tank contains oil (i· = 52 lb;ft 3

) at rest. The height of the oil above the tube is h2 . The jet 
diameter is three-fourths of the inside diameter of the tube. The jet and tube are at the same elevation. 
If the impact of the water isjust sufficient to hold the plate in place, find the relation between h1 and h2 . 

Neglect the weight of the plate and assume ideal flow. 

6.22. In Prob. 6.21 consider the effect of the weight of the plate. Find h2 if h 1 = 10ft, weight of 
plate = 50 lb, jet diameter = 1.5 in, and coefficient of friction between plate and tube = 0.6. 

6.23. A 6-in-diameter water jet having a velocity of 30 fps at section A is directed vertically upward 
against the cone as shown in the figure. What must be the weight of the cone if it is held in the position 
shown'' Neglect friction. 
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I ,jl 
-rlt Problem 6.23 

6.24. Repeat Prob. 6.23 for the case where the jet velocity is 20 m/s and the dimensions are 2 and 3 In 
~ .tt her than 2 and 3 ft. Jet diameter = 0.5 m. 

6.25. Repeat Prob. 6.23 for the case where the jet velocity is 15 fps. Make appropriate assumptions. 

6.26. A jet of water 3 in in diameter has a velocity of 120 fps. It strikes a single vane, which has an 
angle f3 2 = 90'' and which has a motion of translation in the same direction as the jet, with a velocity u. 

When u has values ofO, 40, 60, 80, 100, and 120 fps, find values of(a) G'; (b) V2 cos iX 2 ; (c) AV.; (d) At'.; 
(e) f •. Assume v2 = 0.9t• 1 • 

6.27.: If the jet in Prob. 6.26 strikes a single vane for which f3 2 = 180 , all other data remaining the 
same, find values of (a) G'; (b) t· 2 ; (c) V2 ; (d) AV; (e) Av; (f) F •. Assume r 2 = 0.9t· 1 . 

6.28. In Prob. 6.27 assume all data the same except that friction loss in flow over the vane is such that 
r2 = 0.8r 1 • Find the results called for in Prob. 6.27. 

6.29. Assume that all data are the same as in Prob. 6.28 except that {3
2 

= 150°. Find (a) 1•
2 

cos {3
2

; 

(b) V
2 

cos 1X 2 ; (c) M~; (d) Av.; (e) F •. 

6.30. Suppose the single vane of Illustrative Example 6.3 is traveling to the left toward the nozzle at 
20 fps. What then would be the force components exerted by the water on the vane? 

6.31. A series of vanes is acted on by a 3-in water jet having a velocity of 100 fps, IX 1 = {3 1 = 0 . Find 
the required blade angle {3 2 in order that the force acting on the vane in the direction of the jet is 200 lb. 
Neglect friction. Solve for vane velocities of 100, 80, 50 and 20 fps. 

6.32. A 2-in-diameter air jet impinges on a series of blades. The absolute velocities are shown in the 

figure. Assume 7 = 0.076 lb/ft 3 and neglect friction. What horsepower is transmitted to the blades? 
Find also the velocity of the blades. 

l 

Problem 6.32 

6.33. In Pro b. 6.32 determine the necessary blade angles at entrance and exit. Assume the air enters the 
blade smoothly. 
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6.51. When a turbine runner is held so that it cannot rotate. the discharge under a head of 50 ft is 
found to he 29.5 cfs. :x 1 = 35. {3 2 =!55. r 1 = 0.70 ft. r 2 = 0.42 ft. A1 = 0.837 ft 2

, a 2 = 0.882 ft 2
. What 

is the value of the torque at zero speed'' Neglect sho~k loss. 

6.52. Develop Eq. (6.23) by making the substitutions indicated in the text. 

6.53. A paddlewheel with vanes that are all straight and radial is to be used as a crude centrifugal 
pump. r 1 = 3 in. r2 = 9 in. and the height perpendicular to the plane of the figure is 0.2 ft. If the speed is 
1.200 rpm and the flow is 3,380 gpm. find the difference in pressure between the inner and outer 
circ~ference, neglecting friction losses. Express the answer in pounds per square inch. Which point is 
at the higher pressure'' Compute the torque required to drive the pump. What is the horsepower 

requirement'' Verify that the horsepower requirement is equal to the difference between the horse

power of the outflow minus the horsepower of the inflow. 

Problem 6.53 

6.54. Repeat Proh. 6.53 where the data arc given in SI units as follows: r 1 = 7.5 em. 1· 2 = 22.5 em. 
height perpendicular to plane of figure = 6.0 em. Speed is 1.200 rpm and flow is :200 ( s. Express 
pressure difference in k N m 2 and power in k W. 

6.55. Gi1cn a lawn sprinUer such as that in Fig. 6.14 with fl 2 = 160. and the total area of the jets at a 
radius at 15 in is O.OOOX ft 2 When h = 144 ft. compute the rate of discharge. the torque exerted by the 
water. and the horsepower de~ eloped if the rotati1e speed of the sprinkler is 400 rpm. Neglect fluid 
friction. hut note that the calculated torque is that required to 01ercomc mechanical friction and air 
resistance. 

6.56. Repeat Proh. 6.55 for the case where some external object prcvcnts the sprinkler from rotating. 

6.57. How fast would the sprinkler of Proh. 6.55 rotate if there were no mechanical friction or air 
resistance (i.e .. consider the case where T = 0)'' This is known as runaway speed. 

6.5!1. At what speed will the sprinkler of Prob. 6.55 develop maximum horsepower'' 

6.59. The flow from a lawn sprmklcr such as Fig. 6.14 is 120 ( min,fi 2 = 180 . and the total area of the 
jets is 110 mm 2 The jets are located 25 em from the center of rotation. Determine the speed of rotation 
if there is no fnction. 

6.60. For the case depicted in Illustrative Example 6.5. determine the pressure rise across the propel
lers and the required horsepower input to each propeller. 

6.61. Consider the case of a windmill (essentially the opposite of a propeller). apply the momentum and 
energy principles. and determine the maximum theoretical efficiency based on an input energy available 
from the wind vclocit) in a stream tube having a cross section equivalent to that of the windmill blade 
circle. 

6.62. A 20-in-diamcter household fan drives air(;·= 0.076 lb ft 3
) at a rate of 1.60 lh s. Find the thrust 

exerted by the fan. What is the pressure difference on the two sides of the fan., Find the required 
horsepower to drive the fan. Neglect losses. 
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O('-~- A 2.0-m-diameter fan drives air (-;• = 12 N;m 3
) at a rate of 45 N/s. Find the thrust exerted by 

- ~ :·.m. What is the pressure difference on the two sides of the fan'? Find the required kilowatts to 
~- . o the fan. Neglect losses. 

t>.6~ . .\ 14-in (35 em) electric fan is placed on a frictionless mount and is observed to exert a thrust of 
' lb (2.25 N). Find the approximate velocity of the slipstream of standard air (sea level) which it 

~ :,,J uccs. If 45 percent of the power supplied to the blades is lost in eddies and friction and if the 
~: 'mg motor has an efficiency of 60 percent, find the required electrical input in watts. 

6.65. A fan sucks air from outside to inside a building through an 18-in-diameter duct. The density of 
· ·;: air is 0.0022 slug!ft 3 If there is a vacuum just upstream of the fan equivalent to 1.8 in of water. 
~ctcrmine the flow rate of the air in cubic feet per second. What thrust must the fan support be 
,;_,, tgncd to withstand '1 

6.66. In Illustrative Example 6.6 suppose the passage narrowed down to a width of 8 ft (2.5 m) at the 
<ccond section. With the same depths find the flow rate and the horizontal force of the water on the 
'tructurc. 

6.67. Flow occurs over a spillway of constant width as shown in the figure. Determine the horizontal 
:·,,rce of water on the spillway per foot of spillway length. Assume ideal flow. 

4' 
I 

·. - . ~ 
';/;;~ Problem 6.67 

6.68. Repeat Pro b. 6.67 for the case where the water depths are 4.0 and 0.6 m respectively In this case 
find the force per meter of spillway length. 

6.69. A hydraulic jump (Sec. 11.19) occurs in a '"diamond-shaped'" transparent closed conduit as 
shown in the figure. The conduit is horizontal. and the water depth just upstream of the jump is 2.0 ft. 
The conduit is completely full of water downstream of the jump. Pressure-gage readings are as shown 
in the figure. (a) Compute the tlow rate. Note that, because of turbulence in the jump, there is a 
substantial loss. Hence ideal tlow cannot be assumed. (b) Determine the horsepower in the jet. 

3' -- ~ 

Patm 
4' 

Water 
2' 

(a) (b) 

Problem 6.69 



CHAPTER 

SEVEN 

SIMILITUDE AND 
DIMENSIONAL ANALYSIS 

t 

7.1. DEFINITION AND USES OF SIMILITUDE 

It is usually impossible to determine all the essential facts for a given fluid flow by 
pure theory, and hence dependence must often be placed upon experimental 
investigations. The number of tests to be made can be greatly reduced by a 
systematic program based on dimensional analysis and specifically on the laws of 
similitude or similarity, which permit the application of certain relations by which 
test data can be applied to other cases. 

Thus the similarity laws enable us to make experiments with a convenient 
fluid such as water or air, for example, and then apply the results to a fluid which 
is less convenient to work with, such as gas, steam, or oil. Also, in both hydraulics 
and aeronautics, valuable results can be obtained at a minimum cost by tests 
made with small-scale models of the full-size apparatus. The laws of similitude 
make it possible to determine the performance of the prototype, which means the 
full-size device, from tests made with the model. It is not necessary that the same 
fluid be used for the model and its prototype. Neither is the model necessarily 
smaller than its prototype. Thus the flow in a carburetor might be studied in a 
very large model. And the flow of water at the entrance to a small centrifugal
pump runner might be investigated by the flow of air at the entrance to a large 
model of the runner. 

A few other examples where models may be used are ships in towing basins, 
airplanes in wind tunnels, hydraulic turbines, centrifugal pumps, spillways of 

174 
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~-. mer channels, and the study of such phenomena as the action of waves and 
:::U·.:'' on beaches, soil erosion, and the transportation of sediment. 

It should be emphasized that the model need not necessarily be different in 
>:z;: :·rom its prototype. In fact, it may be the same device, the variables in the case 
":">:: :-.g the velocity and the physical properties of the fluid . 

.. . 2. G EO METRIC SIMILARITY 

0:-.e of the desirable features in model studies is that there be geometric similarity, 
,.. ~.Ich means that the model and its prototype be identical in shape but differ only 
:-. size. The important consideration is that the flow patterns be geometrically 

-::-niiar. If the scale ratio 1 is denoted by 4, which means the ratio of the linear 
..: :;nensions of the prototype to corresponding dimensions in the model, it follows 
::.at areas vary as L; and volumes as L:. Complete geometric similarity is not 
.1lways easy to attain. Thus the surface roughness of a small model may not be 
~educed in proportion unless it is possible to make its surface very much smoother 
:han that of the prototype. In the study of sediment transportation, it may not be 
possible to scale down the bed materials without having material so fine as to 
be impractical. Thus fine powder does not simulate the behavior of sand. Again in 
the case of a river, the horizontal scale is usually limited by the available floor 
space, and this same scale used for the vertical dimensions may produce a stream 
so shallow that capillarity has an appreciable effect and also the slope may be such 
that the flow is laminar. In such cases it is necessary to use a distorted model, 
which means that the vertical scale is larger than the horizontal scale. If the 
horizontal scale ratio is denoted by 4 and the vertical scale ratio by L,., the cross 
section area ratio is 4 4· . 

7.3. KINEMATIC SIMILARITY 

Kinematic similarity implies geometric similarity and in addition it implies that 
the ratio of the velocities at all corresponding points in the flow is the same. If 
subscripts p and m denote prototype and model, respectively, the velocity ratio V,. 
IS 

(7.1) 

' and its value in terms of 4 will be determined by dynamic considerations, as 
explained in the following section. 

1 In this text we shall define L, = LP/Lm as the scale ratio. The reciprocal of this, A.= Lm!L •• will be 
referred to as the model ratio, or model scale. Thus a model ratio of I : 20 corresponds to a scale ratio 
of 20: 1. 
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As time T is dimensionally L/V, the time scale is 

(7.2) 

and in a similar manner the acceleration scale is 

t 
4 v; 

a=---=-
r T?- 4 (7.3) 

7.4. DYNAMIC SIMILARITY 

If two systems are dynamically similar, corresponding forces must be in the same 
ratio in the two. Forces that may act on a fluid element include those due to 
gravity F c, pressure F P, viscosity F v, and elasticity FE. Also, if the element of 
fluid is at a liquid-gas interface, there are forces due to surface tension FT. If the 
summation of forces on a fluid element does not add up to zero, the element will 
accelerate in accordance with Newton's law. Such an unbalanced force system can 
be transformed into a balanced system by adding an inertia force F r that is equal 
and opposite to the resultant R of the acting forces. Thus, generally, 

IF= Fc + Fp + Fv +FE+ Fy = R 

and Fr = -R 

Thus Fc + Fp + Fv +FE+ FT + Fr = 0 

These forces may be expressed in simplest terms as follows: 

Gravity: 

Pressure: 

Viscosity: 

Elasticity: 

Surface tension: 

Inertia: 

Fc = mg = pL3g 

Fp = (~p)A = (~p)L2 

Fv =~(~~)A= ~(~)L2 
= ~VL 

FE= EvA= E,,L2 

F T = aL 

In many flow problems some of these forces are either not present or 
insignificant. In Fig. 7.1 are depicted two geometrically similar flow systems. Let it 
be assumed that they also possess kinematic similarity and that the forces acting 
are Fe;, F P, F v, and F1 . Then dynamic similarity will be achieved if 

Fe Fp Fv F1 
-- p == - p == -- p == - p 

Fc;m Fpm Fvm Flm 
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----, 

----:-: -----~ ___ j 

(a) (b) 

Figure 7.1. (a) Prototype. (b) Model. L, = Lp!Lm: ~ = VJVm. 

\\here subscripts p and m refer to prototype and model as before. These relations 
.:an be expressed as 

Each of the quantities is dimensionless. With four forces acting, there are three 
independent expressions that must be satisfied; for three forces there are two 
independent expressions; and so on. The significance of the dimensionless ratios is 
discussed in the following paragraphs. 

Reynolds Number 

In the flow of a fluid through a completely filled conduit, gravity does not affect 
the flow pattern. It is also obvious that capillarity is of no practical importance, 
and hence the significant forces are inertia and fluid friction due to viscosity. The 
same is true of an airplane traveling at speeds below that at which compress¥>ility 
of the air is appreciable. Also, for a submarine submerged far enough so a~ not to 
produce waves on the surface, the only forces involved are those of friction and 
inertia. 

Considering the ratio of inertia forces to viscous forces, the parameter ob
tained is called the Reynolds number," or N R, in honor of Osborne Reynolds, who 
presented this in a publication of his experimental work in 1882, but it was Lord 



178 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

Rayleigh ten years later who developed the theory of dynamic similarity. The ratio 
of these two forces is 

LVp 

J1 

LV 

v 
(7.4) 

For any consistent system of units, N R is a dimensionless number. The linear 
diJt.ension L may be any length that is significant in the flow pattern. Thus, for a 
pipe completely filled, it might be either the diameter or the radius, and the 
numerical value of N R will vary accordingly. General usage prescribes Las the 
pipe diameter. 

If two systems, such as a model and its prototype, or two pipelines with 
different fluids, are to be dynamically equivalent so far as inertia and viscous 
friction are concerned, they must both have the same value of N R. For the same 
fluid in both cases, the equation shows that a high velocity must be used with a 
model of small linear dimensions. It is also pos~ible to compare the action of fluids 
of very different viscosities provided only that Land V are so chosen as to give the 
same value of N R. 

Illustrative Example 7.1. If the Reynolds number of a model and its prototype are the same, find 
an expression for V,, T,, and a,. 

Froude Number 

v p 

V=--~= ~--=--=-V, L,vP v, (v) 
' Vm Lp vm L, L , 

Considering inertia and gravity forces alone, a ratio is obtained called a Froude 
number, or N F, in honor of William Froude, who experimented with flat plates 
towed lengthwise through water in order to estimate the resistance of ships due to 
wave action. The ratio of inertia forces to gravity forces is 

pL2V2 vz 
pgL3 gL 

Although this is sometimes defined as a Froude number, it is more common to use 
the square root so as to have V in the first power, as in the Reynolds number. Thus 
a Froude number is 

v 
NF = jgL (7.5) 

Systems involving gravity and inertia forces are the wave action set up by a 
ship, the flow of water in open channels, the forces of a stream on a bridge pier, the 
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1'!\.c·.., ~·\er a spillway, the flow of a stream from an orifice, and other cases where 
g=J.·, :ty is a dominant factor. 

.\.comparison of Eqs. (7.4) and (7.5) shows that the two cannot be satisfied at 
:_-_:,;arne time with a fluid of the same viscosity, since one requires that the velocity 
·, .:.~:· mversely as L, while the other requires it to vary directly as JL. If both 
:':-:~::on and gravity are involved, it is necessary to decide which of the two factors 
:< :nore important or more useful. In the case of a ship, the towing of a model will 
~:·. e the total resistance, from which must be subtracted the empirically computed 
''· :n friction to determine the wave-making resistance, and the latter may be 
<:-:-:aller than the former. But for the same Froude number, the wave-making 
~emtance of the full-size ship may be determined from this result. A computed 
,:.; in friction for the ship is then to be added to this value to give the total ship 
~esistance. The details of S)lch calculations are deferred to Chap. 10. 

In the flow of water in open channels fluid friction is a factor, as well as gravity 
:md inertia, arid apparently we face the same difficulty here. However, for flow in 
an open channel there is ·usually fully developed turbulence, so that the hydraulic 
iriction loss is exactly proportional to V 2

, as will be shown later, and thus fluid 
iriction in open channels is independent of the Reynolds number with rare excep
tions, and thus is a function of the Froude number alone. 

The only way to satisfy Eqs. (7.4) and (7.5) for both a model and its prototype 
is to use fluids of very different viscosities in the two cases. Sometimes this can be 
done, but often it is either impractical or impossible. 

For the computation of N F, the length L must be some linear dimension that 
is significant in the flow pattern. For a ship it is commonly taken as the length at 
the waterline. For an open channel it is taken as the depth of flow. 

From Eq. (7.5), V varies as .Jfii, and if g is considered a constant, as is 
usually the case, then from Eq. (7.1), 

and from Eq. (7.2) the ratio of time for prototype to model is 

while a, = 1. 
A knowledge of the time scale is useful in the study of cyclic phenomen;lsuch 

as waves and tides. • 
Since the velocity varies as jY; and the cross section area as I.;, it follows 

that 

Q !.)12 
Q - p-
r- Qm- -1-
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As previously stated, for river models it is usually necessary to use an enlarged 
vertical scale. In this case the velocity varies as jL;, and hence 

Qp 4i~P - = ---~--
Qm 1 

t 
Mach Number 

Where compressibility is important, it is necessary to consider the ratio of the fluid 
velocity (or the velocity of a body through a stationary fluid) to that of a sound 
wave in the same medium. This ratio, called the Mach number in honor of the 
Austrian scientist Mach, is 

v 
NM=- (7.6) 

c 

where cis the acoustic velocity (or celerity) in the medium in question. 1 If NM is 
less than 1, the flow is called subsonic; if it is equal to 1, the flow is sonic; if it is 
greater than 1, the flow is called supersonic; and for extremely high values of N M 

the flow is called hypersonic. 

Weber Number 

In a few cases of flow, surface tension may be important, but normally it is 
negligible. The ratio of inertia forces to surface tension is p V 2 L2 /CJ L, the square 
root of which is known as the Weber number: 

v 
Nw= --_ 

JcifPL 
(7.7) 

An illustration of its application is at the leading edge of a very thin sheet of liquid 
flowing over a surface. 

Euler Number 

A dimensionless quantity related to the ratio of the inertia forces to the pressure 
forces is known as the Euler number. It is expressed in a variety of ways, one form 
being 

v v 
NF = c~ = c===~== 

. j2(ll.p/p) J2g(ll.p/{·) 
(7.8) 

1 The ratio of inertia forces to elastic forces p V2 L2 1 Ev L2 = p V2 IE, is called the Cauchy number. 

Appendix 2 shows that the celerity c of an acoustic wave is given by jE)p. Hence the Cauchy number 
is the square of the Mach number. 
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1: o:1ly pressure and inertia influence the flow, the Euler number for any boundary 
fc~:-:-~ will remain constant. If other parameters (viscosity, gravity, etc.) cause the 
:=.o·;~. pattern to change, however, N E will also change. The expression for N E 

: Eq. 7.8)] may be recognized as being equivalent to the coefficient of velocity, 
.:>.:ussed in Chap. 12. 

Illustrative Example 7.2. A certain submerged body is to move horizontally through oil 
= '2 lb/ft 3, 11 = 0.0006 lb·s/ft 2

) at a velocity of 45 fps. To study the characteristics of this motion, an 
! - .~rged model of the body is tested in 60°F water. The model ratio 2 is 8 : I. Determine the velocity at 
.. - .:'1 this enlarged model should be pulled through the water to achieve dynamic similarity. If the 
~' ~g iorce on the model is 0.80 lb, predict the drag force on the prototype. Body is submerged, hence 
·- oc~ is no wave action. Reynolds criterion must be satisfied. 

where 

Vm = 1.22 X 10- 5 lb·sjft 2 (Appendix 3, Table A .I) 

J1 0.0006 
v = = -- - · = 0.000322 lb·s/ft 2 

p p 52/32.2 

D"(45) 

0.000322 

(8Dv)Vm 
1.22~ lo-s 

vm = 0.213 fps 

F X p V 2 1.3 Fv Pv v;Lj 
Fm Pm V!L! 

hence 

Fv (52/32.2)(45)2 1 
- = . -- = 580 
F m 1.94(0.213)2 (8) 2 

F" = 580Fm F" = 580(0.8) = 465 lb 

7.5. SCALE RATIOS 

The Reynolds number, the Froude number, and the Mach number are the dimen
sionless parameters most commonly encountered in fluid mechanics. In the 
preceding section the scale ratios for velocity, time, and acceleration for the Rey
nolds and Froude numbers were developed. Scale ratios for other quantiti~~an 
be developed in a similar fashion. Such relations are presented in Table 7.1. These 
enable one to quickly calculate the scale ratio (prototype divided by model) of any 
desired quantity for the case where the given dimensionless number is the same in 
both prototype and model. The computed ratio, of course, gives a realistic result 
only if the flow is predominantly governed by the particular dimensionless 
number. 
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Table 7.1. Flow characteristics and similitude scale ratios (ratio of prototype 
quantity to model quantity) 

Scale ratios for laws of 

Characteristic Dimension Reynolds Froude Mach 

. 
G~metric 

Length L L, L, L, 
Area L2 L; L; L2 

' 
Volume I] L; L; L; 

Kinematic 

Time T (L;), 
(L1'2g-112), ( Lp1;2) 

£1'2 
v ' 

Velocity LT- 1 (£J (I.Ji2g112), ( ~~~2) 
pl/2 ' 

Acceleration LT- 2 (?~3), g, (:;), 
Discharge L3T-1 (~~), (IJf2g112), ( L

2 
Ev) 

p1/2 ' 

Dynamic 
Mass M (Ilp), (Up), (Ilp), 

Force MLT- 2 (~} (lJpg), (L2E), 

Pressure MC 1T- 2 (~~), (Lpg), (Ev), 

Impulse and 
momentum MLT- 1 (1311), (L712pg112), (1Jp112£~f2), 

Energy and 

(L;l work MI3r 2 (L4pg), (L3Ev), 

Power MI3T- 3 

(:;2), 
(L7;2pg3i2), (L2E~;2) 

pl/2 ' 

Note: Usually g is the same in model and prototype. 

7.6. COMMENTS ON MODELS 

In the use of models it is essential that the fluid velocity should not be so low that 
laminar flow exists when the flow in the prototype is turbulent. Also, conditions in 
the model should not be such that surface tension is important if such conditions 
do not exist in the prototype. For example, the depth of water flowing over the 
crest of a model spillway should not be too low. 

While model studies are very important and valuable, it is necessary to exer-
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~ 'orne judgment in transferring results to other cases, and often a scale effect 
:::-. _ < be allowed for. 

'\either is it always necessary or desirable that these various ratios be adhered 
w.c ::-. e\ ery case. Thus, in tests of model centrifugal pumps, geometric similarity is 
~s;-:1tiaL but it is desirable to operate at such a rotative speed that the peripheral 
·,-: :ocity and all fluid velocities are the same as in the prototype, since only in this 
-a.:.:. may cavitation be detected. 

The roughness of a model should be scaled down in the same ratio as the 
,' :'".er linear dimensions, which means that a small model should have surfaces 
::-.at are much smoother than those in its prototype. But this requirement imposes 
.! ::mit on the scale that can be used if true geometric similarity is to be had. 
H,•weYer, in the case of a river model with a vertical scale larger than the horizon
:a: scale, it may be necessary to make the model surface rough in order to 
'::-:10late the flow conditions in the actual stream. As any distorted model lacks the 
:-~c,per similitude, no simple rule can be given for this; the roughness should be 
.::etermined by trial until the flow conditions are judged to be typical of those in 
: '-.e prototype. 

In models of systems involving liquids where large negative pressures are 
e\pected, such as in siphons, the model must be placed in an air-tight chamber in 
,, hich a partial vacuum is maintained so as to produce an absolute pressure in the 
:-:1odel identical to that in the prototype. 1 

When modeling a subsonic airplane in a wind tunnel, it is commonly necessary 
:o conduct the test under high pressure in order to satisfy the Reynolds criterion 

without introducing compressibility effects. For example, suppose L, = 
D P D m = 20. If the viscosity 11 and density p of the air were the same in the 
model and prototype, then to satisfy Reynolds' criterion, vm = 20 X vp. For an 
airplane operating at normal speed this would make the model Mach number 
much greater than one, and compressibility effects would invalidate the behavior 
of the model. If, however, the test were conducted under a pressure of 20 atm 
with identical model and prototype temperatures, Pm = 20 x pP and 11m~ Jlp 
since the viscosity of air changes very little with pressure (or density). In this 
case the model should be operated at a velocity equal to that of the prototype 
in order for the Reynolds numbers to be the same. 

Illustrative Example 7.3. A 1 :50 model of a boat has a wave resistance of0.02 N when operating 
at 1.0 m/s. Find the corresponding prototype wave resistance. Find also the horsepower requirement 
for the prototype. What velocity does this test represent in the prototype? 

Gravity and inertia forces predominate; hence the Froude criterion is applicable. l 

1 Hydraulic Models, Manual of Engineering Practice, no. 25, American Society of Civil Engineers, 
1942. 
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Since both the model and prototype are acted upon by the earth's gravitational field, the g's can be 
canceled out. Thus 

and 

t 

Since 

Therefore F.= L;F m = (5W(0.02) = 2,500 N = 11,150 lb 

v. = .jL. X vm = .j50 X I = 7.1 m/s = 23.3 fps 

F. v" HP =-
p 550 

11, !50 X 23.3 
-· --- = 473 

550 

7.7. DIMENSIONAL ANALYSIS 

Fluid-mechanics problems may be approached by dimensional analysis, a math
ematical technique making use of the study of dimensions. Dimensional analysis is 
related to similitude; however, the approach is different. In dimensional analysis, 
from a general understanding of fluid phenomena, one first predicts the physical 
parameters that will influence the flow, and then, by grouping these parameters in 
dimensionless combinations, a better understanding of the flow phenomena is 
made possible. Dimensional analysis is particularly helpful in experimental work 
because it provides a guide to those things that significantly influence the phen
omena; thus it indicates the direction in which experimental work should go. 

Physical quantities may be expressed in either the force-length-time (FLT) 
system or in the mass-length-time (ML T) system. These two systems are inter
related through Newton's law which states that force equals mass times accelera
tion, F = rna, or 

L 
F=Myz 

Through this relation, conversion can be made from one system to the other. The 
dimensions used in either system may be in English units or in metric units. 
Details on the English and metric (SI) systems of units and conversion factors 
are presented in the front matter and also in Appendix 1. 

To illustrate the steps in a dimensional-analysis problem, let us consider the 
drag force F v exerted on a sphere as it moves through a viscous liquid. We must 
visualize the physical problem to consider what physical factors influence the drag 
force. Certainly, the size of the sphere must enter the problem; also, the velocity of 
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:.-~ .;phere must be important. The fluid properties involved are the density p and 
:~.~ \ 1scosity 1.1. Thus we can write 

fv=.f(D, V,p,fl) 

H~re D, the sphere diameter, is used to represent sphere size. 
We want to determine how these variables are interrelated. Our approach is 

:_, ~atisfy dimensional homogeneity. That is, we want the dimensions on one side 
_-:· the equation to correspond to those on the other. The preceding expression 
:-:~a\ be written as a power equation 

f D = CDaVbpcfld 

·.\here Cis a dimensionless constant. Using the MLT system and substituting the 
_:'roper dimensions, 

To satisfy dimensional homogeneity the exponents of each dimension must be 
Identical on both sides of the equation. Thus 

ForM: l=c+d 

For L: 1 =a+ b- 3c- d 

ForT: -2= -b-d 

Since we have three equations with four unknowns, we must express three of the 
unknowns in terms of the fourth. Solving for a, b, and c in terms of d, we get 

a=2-h b=2-d c=l-d 

Thus 

and grouping variables according to their exponents, 

It may be noted that the quantity VDp 11 is a Reynolds number. Thus the original 
power equation can be expressed as 

or 
l 

The result indicates that the drag on a sphere is equal to some coefficient times 
pD 2 V 2

, where the coefficient is a function of the Reynolds number. This is indeed 
true, as indicated by the discussion of drag on a sphere in Sec. 10.7. 

The foregoing approach to dimensional analysis is commonly referred to as 
the Rayleigh method, after Lord Rayleigh. who originally proposed it. Another 
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more generalized approach is through use of the Buckingham n theorem. 1 This 
theorem states that if there are n dimensional variables in a dimensionally hom
ogeneous equation, described by m fundamental dimensions, they may be grouped 
in n - m dimensionless groups. Thus, in the preceding example, n = 5 and m = 3 
(M, L, and T) and n- m = 2; these dimensionless groups were N R and 
Fv/pD 2 V 2

• Buckingham referred to these dimensionless groups as n terms. The 
advtiTtage of the n theorem is that it tells one ahead of time how many dimen
sionless groups are to be expected. 

Applying the n theorem to the preceding example, one would proceed as 
follows: 

f'(F D, D, V, p, p) = 0 

where n = 5, m = 3, so n - m = 2. Thus we .can write 

¢(0 1, 0 2 ) = 0 

The problem now is to find the ll's by arranging the five parameters into two 
dimensionless groups. Taking p, D, and Vas the primary variables, 2 the n terms 
are: 

n
1 

= pa'Db' yc, 11d, 

n
2 

= pazDbzyczF~2 

The values of the exponents are determined as before, noting that since the ll's are 
dimensionless, they can be replaced with M 0L0 T 0

. Experience in fluid mechanics 
has shown that these dimensionless groups commonly take the form of a Reynolds 
number, Froude number, or Mach number. Hence one should always be on the 
lookout for them when using dimensional analysis. Working with 0 1, 

M: 

L: 

T: 

Thus 

0 = a 1 + d1 

0 = - 3a 1 + b 1 + c 1 - d 1 

0 = -c1 - d1 

1 E. Buckingham, Model Experiments and the Form of Empirical Equations, Trans. ASME, 
vol. 37, pp. 263-296, 1915. 

2 It is generally advantageous to chose primary variables that relate to geometry, kinematics, and 
mass. 
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Working in a similar fashion with TI 2 , one gets 

Fv 
nz = pJ52v2 

Fmally, cp(TI 1, TI 2 ) = 0 may be expressed as 

or 

So 
F 

pD:Vz = cp"(NR) 

.. md F v = cp"(N R)pD 2 V2 

It should be emphasized that dimensional analysis does not provide a com
plete solution to fluid problems. It provides a partial solution only. The success of 
Jimensional analysis depends entirely on the ability of the individual using it to 
Jefine the parameters that are applicable. If one omits an important variable, the 
results are incomplete and this may lead to incorrect conclusions. For example, 
with a compressible fluid at high velocities, compressibility effects may be 
~ignificant in which case the volume modulus Ev of the fluid must be considered an 
Important physical property. Introducing E,. into the previous example of dimen
sional analysis of the drag on a sphere will show that for the more general case the 
drag may depend on the Mach number as well as the Reynolds number. If one 
includes a variable that is totally unrelated to the problem, an additional 
insignificant dimensionless group will result. Thus, to use dimensional analysis 
successfully, one must be familiar with the fluid phenomena involved. 

Illustrative Example 7.4. Derive an expression for the flow rate q over the spillway shown in the 
accompanying figure per foot of spillway perpendicular to the sketch. Assume that the sheet of water is 
relatively thick so that surface-tension effects may be neglected. Assume also that gravity effects 
predominate so strongly over viscosity that viscosity may be neglected. 

Under the assumed conditions the variables that effect q would be the head H, the acceleration of 
gravity g, and possibly the spillway height P. Thus 

or 

q =f(H, g, P) 

f'(q, H, g, P) = 0 

In this case n = 4, and m = 2, since only kinematic properties are involved. Hence, according to the IT 
theorem, there are n - m = 2 dimensionless groups, and 

l 

Illustrative Example 7.4 
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Using q and H as the basic variables. 

Working with f1 1• 

t 

L: 

T: 

Hence 

Working with f1 2 . 

L: 

T: 

Hence 

Ill= q"'Hb'f!" 

I1 2 = q"'Hb'P" 

LOTO = -- !';• (L
3

)"' (L)" 
TL T 2 

0 = 2a 2 + h2 + c2 

0 = -a2 

c, = -h, 

Finally, ¢( f1 1, n 2 ) = 0 can be written as 

or 

vY:', = cp·G) 

q=¢'(~),igH3' 

Thus dimensional analysis indicates that the flow rate per unit length of spillway is proportional to, </ 

and to H 3 2 The flow rate also is affected by the HiP ratio. This relationship is discussed in Sec. 12.11 
If viscosity were included as one of the variables, another dimensionless group would ha1 e 

resulted. This dimensionless group would have had the form of a Reynolds number. With surface 
tension included as a variable. the resulting dimensionless group would have been a Weber number 

PROBLE:\1S 

7.1. \\hat " the 1alue of Reynolds number for water at 68 F flowing with a velocity of 5 fps in a 
6 In-diameter p1pc ' :\ote that L = D. 

7.2. What is the Reynolds number for oil (s = 0.85 and 11 = 0.24 N·s·m 2
) flowing with a velocity c•· 

:1.6 m s in a pipe having a diameter of 10 em., 

7.3. What is the value of Reynolds number for air at a pressure of 100 psia (700 kN m 2
• abs) and" 

temperature of !50 F (65 C) flowing at a velocity of 80 fps (25m s) in a pipe having a 6-in ( 15 err~ 

diameter'' 
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7.4. What is the Reynolds number for air at an absolute pressure of 200 kNim 2 and a temperature of 
150 -c flowing at a velocity of 15 m s in a 20-cm diameter pipe? 

7.5. A model airplane has linear dimensions that are one-twentieth those of its prototype_ If the plane 
1s to fly at 400 mph, what must be the air velocity in the wind tunnel for the same Reynolds number if 

the air temperature and pressure are the same? 

7.6. A model airplane has dimensions that are one-twentieth those of its prototype_ It is desired to test 
It in a pressure wind tunnel at a speed the same as that of the prototype. If the air temperature is the 
same and the Reynolds number if the same, what must be the pressure in the wind tunnel relative to the 
atmospheric pressure? 

7. 7. What flow rate of 70 -F air at 50 psia in a l-in-diameter pipe will give dynamic similarity to a 
250-gpm flow of 60 F water in a 4-in-diameter pipe'? 

7.8. A drag force of 10 N is exerted on a submerged sphere when it moves through 20 C water at 
LS m/s_ Another sphere having three times the diameter is placed in a wind tunnel where the air 
pressure and temperature are LS MN!m 2 and 300 K respectively_ What air velocity is required for 
dynamic similarity and what will be the drag force on the larger sphere'? 

7.9. A I : 30 scale model of a submarine is tested in a wind tunneL It is desired to know the drag on the 
submarine when it is operating at 10 knots in 40 F ocean water_ At what ~>elocity should the object be 
tested in a wind tunnel containing 70 Fair at atmospheric pressure'' If the drag on the model is XO lb. 
what would be the drag on the prototype'' At what velocity should the test be conducted when testing 
in a water tunnel if the water temperature is 65 F'? What would be the drag on this model'' 

7.10. Develop the scale ratios given in Table 7.1 for the case (a) where prototype and model Reynolds 
numbers are the same: (h) where the Froude numbers arc identical: (c) where the Mach numbers arc 
the same. 

7.11. A flowmeter for gas measurement registers a pressure drop of LO psi when the t1ow through it is 
0.16 lb;s. The gas(;·= OJS lb·ft 3

• II= 2.4 X 10- 6 lb·s ft 2
) is flowing in a i-in-diameter pipe. An en

larged model that is geometrically similar is to be tested in a 6-in-diameter pipe. What flow rate of SO F 
water will achieve dynamic similarity 0 What would be the pressure drop across the water meter., 

7.12. What flow rate (kg s) of 80 C air in a 5-cm-diameter pipe will give dynamic similarity to a 

50 (;'s t1ow of 60 C water in a 40-cm-diameter pipe if the pressure on the t'! _i~ ,4,00 ~.J'! ~~·!, .... 
7.13. A ship 600ft long is to operate at a speed of 25 mph. If a model is ICJ ft long. wh~t should by its 
speed in fps to give the same Froude number'' What is the ~>alue,o[_ths.froude, ~umber'' i/- ~]; 7 

7.14. The flow over a spillway is 5.000 cfs. For dynamic similarit)~.\~hai'should.hc the model scale if 
the model flow rate is to be 45 cfs ''The force on a certain area of the model is measured to he 1.0 !h. 
What would be the force on the corresponding area of the prototype., 

7.15. In a I : 40 model of the tlow over the crest of a spillway the velocity at a particular point is 
0.5 m!s. What velocity does this represent in the prototype'' The force exerted on a certain area in the 
model is 0.12 N. What would be the force on the corresponding area in the prototype'! 

7.16. A ship 600 ft long is to operate at a speed of 25 mph in ocean water whose, iscosit)' is 1.~ cP and 
specific weight is 64 lb ftJ What should be the ~inematic viscositv of a fluid used with the model so 
that both the Reynolds number and the F roudc number would be the same., Does such a liquid exist., 
Assume the model is 10 ft long. 

7.17. A I : 500 model is constructed to study tides. What length of time in the model corresponds to a 
day in the prototype'' Suppose this model could be transported to the moon and tested there. What 
thep would he the time relationship between the model and prototype., l 

7.18. On the earth a vertical water jet issuing upward from a nozzle at a velocity of80 fps will rise to a 
height of approximately 100 fL To get a water jet to rise to a height of 100 ft on the moon. what must 
be-rts,velocity'' Neglect atmospheric resistance. Gravity of moon equals~ x gravity of earth. 

7.19. A sectional model of a spillway 3 ft high is placed in a laboratory flume of 10-in width. Under a 
head of0-375 ft the flow is 0.70 cfs. What tlo'.\ does this represent in the prototype if the model scale is 
I : 25 and the spillway is 650 ft long'' 



190 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

7.20. The flow over a model spillway is 0.086 m3 /(s )(m) of width. What flow does this represent in the 
prototype spillway if the model scale is 1 : 18? 

7.21. One wishes to model the flow about a missile when traveling at 1,000 mph through the atmo
sphere at elevation 10,000 ft. The model is to be tested in a wind tunnel at standard atmospheric 
conditions with 70' F air. What air speed in the wind tunnel is required for dynamic similarity? 

7.22. A model of a supersonic aircraft is tested in a variable density wind tunnel at 1,200 fps (360 m/s). 
The air is at !OO'F (38T) with a pressure of 18 psia (125 kNjm 2

, abs). At what velocity should this 
moc1tl"be tested to maintain dynamic similarity if the air temperature is raised to 120oF (50oC) and the 
pressure increased to 24 psia ( 170 k N /m 2, abs)? 

7.23. The flow about a ballistic missile which travels at 1,500 fps (450 m/s) through air at 60cF (15'C) 
and 14.7 psia (101.3 kN/m 2• abs) is to be modeled in a high-speed wind tunnel with a 1: 8 model. If the 
air in the wind tunnel test section has a temperature of S'F ( -15'C) at a pressure of 11 psia 
(75 k N/m 2

• abs ). what velocity is required in the model test section? If the drag force on the model is 
80 lb (360 N), approximately what is the drag force on the prototype? 

7.24. A ship's model with a scale of I : 40 has a wave resistance of0.25lb when traveling at a velocity of 
1.8 fps which is kinematically similar to the design velocity of the ship. What is the design velocity of 
the ship and what is its wave resistance at that velocity? 

7.25. Arrange the following groups into dimensionless parameters: (a) T, V, p; (b) !lp, V, y, g; (c) F, p, L, 
V; (d) V. L, p, CJ. 

7.26. Find the dimensions of torque, energy. power, force, and momentum in the FL T system. Repeat 
fnr the ML T system. 

7.27. By dimensional analysis derive an expression for the power developed by an engine in terms of 
the torque and rotative speed. 

7.28. Derive an expression for the velocity of rise of an air bubble in a stationary liquid. Consider the 
effect of surface tension as well as other variables. 

7.29. Derive an expression for the drag on a submerged torpedo. The parameters involved are the size 
of the torpedo L, the velocity of the torpedo V, the viscosity of the water p, and the density of the 
water p. The size of a torpedo may be represented by its diameter or its length. 

7.30. Derive an expression for the drag on a surface vessel. Use the same parameters as in Prob. 7.29, 
and add the acceleration due to gravity g, to account for the effect of wave action. 

7.31. Derive an expression for the drag on an aircraft flying at supersonic speed. 

7.32. Using dimensional analysis, derive an expression for small flow rates over a spillway. The 
parameters involved are height of spillway P, head on the spillway H, acceleration due to gravity g, 
viscosity of liquid p, density of liquid p, and surface tension CJ. 

7.33. Use dimensional analysis to derive an expression for the height of capillary rise in a glass tube. 

7.34. By dimensional analysis determine the expression for the shear stress at the wall when an 
incompressible fluid flows in a pipe under pressure. The significant parameters are velocity of flow V, 
diameter of pipe D. and viscosity p and density p of the fluid. 
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CHAPTER 

EIGHT 
STEADY INCOMPRESSIBLE FLOW 

IN PRESSURE CONDUITS 

In this chapter some of the aspects of steady flow in pressure conduits are dis
cussed. The discussion is limited to incompressible fluids, that is, to those for 
which p ~ constant. This includes all liquids. In this chapter isothermal condi
tions are assumed so as to eliminate thermodynamic effects, some of which are 
discussed in Chap. 9. Gases flowing with very small pressure changes may be 
considered incompressible, for then p ~ constant. 

8.1. LAMINAR AND TURBULENT FLOW 

If the head loss in a given length of uniform pipe is measured at different values of 
the velocity, it will be found that, as long as the velocity is low enough to secure 
laminar flow, the head loss, due to friction, will be directly proportional to the 
velocity, as shown in Fig. 8.1. But with increasing velocity, at some point B, where 
visual observation in a transparent tube would show that the flow changes from 
laminar to turbulent, there will be an abrupt increase in the rate at which 1Me head 
loss varies. If the logarithms of these two variables are plotted on linear scales or if 
the values are plotted directly on logarithmic cross-sectional paper, it will be 
found that, after a certain transition region has been passed, lines will be obtained 
with slopes ranging from about 1.75 to 2.00. 

It is thus seen that for laminar flow the drop in energy due to friction varies as 
V, while for turbulent flow the friction varies as V", where n ranges from about 

191 
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Figure 8.1. Log-log plot for flow in a uniform 
pipe. 

1.75 to 2. The lower value of 1.75 for turbulent flow is found for pipes with very 
smooth walls; as the wall roughness increases, the value of n increases up to its 
maximum value of 2. 

The points in Fig. 8.1 were plotted directly from Osborne Reynolds' measure
ments and show decided curves in the transition zone where values of n are even 
greater than 2. If the velocity is gradually reduced from a high value, the line BC 
will not be retraced. Instead, the points lie along curve CA. Point B is known as 
the higher critical point, and A as the lower critical point. 

However, velocity is not the only factor that determines whether the flow is 
laminar or turbulent. The criterion is Reynolds number, which has been discussed 
in Sec. 7.4. For a circular pipe the significant linear dimension L may be taken as 
the diameter D. and thus 

DVp DV 
NR = ---

Jl v 
(8.1) 

where any consistent system of units may be used, since N R is a dimensionless 
number. 1 

1 It is sometimec; corn enient to use a·· hybrid'" set of units and compensate with a correction factor, 

Thus by substituting I = Q A and 1· = G >4 into Eq. (8.1 ). we get N R = 1.27Q \'D = 1.27G pgD. 
where Q and G arc defined Ill the :--.;otation in the front of the book. The last form is especial!) 

convenient in the case of gase'. 1t c;hows that in a pipe of uniform diameter the Reynolds number is 
constant along the pipe, even for a compressible fluid where the density and \elocity vary. if there is no 
appreciable 'ariation in temperature to alter the viscosity of the gas. 
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8.1. CRITICAL REYNOLDS NUMBER 

: -~ upper critical Reynolds number, corresponding to point B of Fig. 8.1, is really 
-.:~terminate and depends upon the care taken to prevent any initial disturbance 

: _ _ v:l affecting the flow. Its value is normally about 4,000, but laminar flow in 
~ ::-cular pipes has been maintained up to values of N R as high as 50,000. However, 
::--. mch cases this type of flow is inherently unstable, and the least disturbance will 
:~ .msform it instantly into turbulent flow. On the other hand, it is practically 
:~:possible for turbulent flow in a straight pipe to persist at values of N R much 
"~low 2,000, because any turbulence that is set up will be damped out by viscous 
:·riCtion. This lower value is thus much more definite than the higher one and is 
~~ally the dividing point between the two types of flow. Hence this lower value will 
~ defined as the true critical Reynolds number. However, this lower critical value 
!' subject to slight variations. Its value will be higher in a converging pipe and 
:,,wer in a diverging pipe than in a straight pipe. Also, its value will be less for flow 
m a curved pipe than in a straight one, and even for a straight uniform pipe its 
\ alue may be as low as 1,000, where there is an excessive degree of roughness. 
However, for normal cases of flow in straight pipes of uniform diameter and usual 
roughness, the critical value may be taken as N R = 2,000. 

For water at 75°F the kinematic viscosity is 1.00 X w- 5 ft 2 /s, and for this 
case the critical Reynolds number is obtained when 

Thus, for a pipe 1 in (25 mm) in diameter, 

V::rit = 12 X 2,000 X 10- 5 = 0.24 fps (0.073 mjs) 

Or if the velocity were 2.4 fps (0.73 m/s) the diameter would be only 0.1 in 
(2.5 mm). Velocities or pipe diameters as small as these are not often encountered 
with water flowing in practical engineering, though they may be found in certain 
laboratory instruments. Hence, for such fluids as water and air. practically all 
cases of engineering importance are in the turbulent-flow region. But if the tluid 
is a viscous oil, laminar flow is often encountered. 

Illustrative Example 8. I. An oil (I = o.g 5. \' = J.g X 10- s m' s) flows in a 1 0-cm-d iameter pipe at 
0.50 f s. Is the flow laminar or turbulent·> 

l 
Q 500 em's 

V = = , = 6J5 em s = 0.0635 m s 
.4 rr(10) 2 em· 4 

DV O.!Om(0.0635ms) 
N R = = ' ' = 334 \' 1.8 X 10 . m· S 

Since N R < 2.000. the flow is laminar. 
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8.3. HYDRAULIC RADIUS 

For conduits having noncircular cross sections, some value other than the 
diameter must be used for the linear dimension in the Reynolds number. Such a 
characteristic is the hydraulic radius, defined as 

t (8.2) 

where A is the cross-sectional area of the flowing fluid, and P is the wetted 
perimeter, that portion of the perimeter of the cross section where there is contact 
between fluid and solid boundary. For a circular pipe flowing full, Rh = nr2/2nr = 
r/2, or D/4. Thus Rh is not the radius of the pipe, and hence the term "radius" is 
misleading. If a circular pipe is exactly half full, both the area and the wetted 
perimeter are halfthe preceding values; so Rh is r/2, the same as if it were full. But if 
the depth of flow in a circular pipe is 0.8 times the diameter, for example, 
A = 0.674D2 and P = 2.21D, then Rh = 0.304D, or 0.608r. 

The hydraulic radius is a convenient means for expressing the shape as well as 
the size of a conduit, since for the same cross-sectional area the value of Rh will 
vary with the shape. 

In evaluating Reynolds number for a noncircular conduit it is customary to 
substitute 4Rh for D in Eq. (8.1 ). 

8.4. GENERAL EQUATION FOR FRICTION 

The following discussion applies to either laminar or turbulent flow and to any 
shape of cross section. 

Consider steady flow in a conduit of uniform cross section A (Fig. 8.2). The 
pressures at sections 1 and 2 are p1 and p 2 , respectively. The distance between 
sections is L. For equilibrium in steady flow, the summation of forces acting on 

v2/:f -<-iJ. ___ lh;:-

+----J:i.G.L -
I ~ 
I 

PJY[ 
I 
I 

Figure 8.2 
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.:n! fluid element must be equal to zero (i.e., L F = ma = 0). Thus, in the direction 
,•f flow. 

PtA- P2A- r·LA sin r:J.- To(PL) = 0 (8.3) 

where To is the shear stress (shear force per unit area) at the pipe wall. Noting that 
,;in x = (z 2 - zt)/L and dividing each term by yA, 

}' 

'\oting from the left-hand sketch of Fig. 8.2 that 

hL = (zt + P1 /y)- (z2 + P2h·) 

and substituting Rh for A/ P, 

L 
hL =To-R ., 

hi 

(8.4) 

(8.5) 

For a smooth conduit, where wall roughness may be neglected for the 
present, it may be assumed that the fluid shear stress at the wall is some function 
of p, fl, V and some characteristic linear dimension, which will here be taken as the 
hydraulic radius Rh. Thus 

To= KR~pbflcvn (8.6) 

where K is a dimensionless number. Substituting in Eq. (8.6) dimensional values 
ofF, L, and T for force, length, and time, we get 1 

F C 2 = KE(F C 4 T 2 )b(F C 2 T)c(LT- 1 )" 

As the dimensions on the two sides of the equation must be alike, 

For F: 

For L: 

ForT: 

l=b+c 

- 2 = a - 4b - 2c + n 

0 = 2b + c- 11 

The solution of these three simultaneous expressions in terms of 11 is a = n - 2, 
b = ll - 1, c = 2 - ll. 

Inserting these values of the exponents in Eq. (8.6), the result is 

(8.7) 

This may be rearranged as 

(
R V p) n- 2 V2 

T 0 =K _hp pV2 =2KN~- 2p 
2 

- '(8.8) 

for it is seen that Rh V p/fl is a Reynolds number~ with Rh as the characteristic length. 

1 Here we are using the F LT system. while in Chap. 7 the .'H LT system was used. It makes no 
difference which system is used since the results are the same. 
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Grouping the dimensionless terms on the right side of Eq. (8.8) into a single 
term C f' we get 

Hence 

. 

Cf = 2KN~~z 

vz 
To=Cfp2 

Ins&ting this value of To in Eq. (8.5) and noting that /' = pg, 

L V 2 

hL = Cf- ~ 
Rh 2g 

which may be applied to any shape of cross section. 

8.5. PIPES OF CIRCULAR CROSS SECTION 

(8.9) 

(8.10) 

(8.11) 

In Sec. 8.3 it is shown that for a circular pipe flowing full Rh = D/4. Substituting 
this value in Eq. (8.11 ), the result is 

L V2 

hL = f D 2g (8.12) 

where (8.13) 

Equation (8.12) is known as the pipejriction equation, and is also commonly 
referred to as the Darcy-Weisbach equation. 1 Like the coefficient C1 , the friction 
factor f is dimensionless and is also some function of Reynolds number. Modern 
research has been directed toward determining the way in whichfvaries with N R 

and also with pipe roughness. As LID is the ratio of two linear dimensions, it is 
also an abstract number. The pipe-friction equation expresses the fact that the 
head lost in friction in a given pipe can be expressed in terms of the velocity head. 
The equation is dimensionally homogeneous and may be used with any consistent 
system of units. 

Applying Eq. (8.5) to a circular pipe, h1. = T 0 2L/r0 {',where r0 is the radius to 
the pipe wall. Likewise, for any concentric cylindrical body of fluid of smaller 
diameter than the pipe, h~. = T2L/r{', where r is the radius to any point. From this it 
follows that the shear stress in the flow in a circular pipe at any radius r is 

(8.14) 

or the shear stress is zero at the center of the pipe and increases linearly with the 
radius to a maximum value To at the wall as in Fig. 8.3. 

1 In a slightly different form where Dis replaced by the hydraulic radius R,. Eq. (8.1~) is known ~h 

the Fanning equation. 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 :-.-------- T ~ 
' 0 

---. v 
-Umax 

Figure 8.3. Velocity profile in laminar flow and distribution of shear stress. 

From Eqs. (8.5) and (8.12) and substituting Rh = D;4 for a circular pipe, we 
obtain 

.f vz f vz 
T 0 = 4 p 2 = 4 /' lg (8.15) 

By the aid of this equation. To may be computed for any experimentally 
determined value off 

Dimensional analysis gives us the proper form for an equation but does not 
vield a numerical result since it is not concerned with abstract numerical factors. 
Hence it shows in Eq. (8.7) that whatever the value of the exponent of V, the 
exponents of all the other quantities involved are then determined. It also shows 
that Eq. (8.12) is a rational expression for pipe friction. But the numerical values 
of such quantities as K, 11, and f must be determined by experiment or other 
means. 

8.6. LAMINAR FLOW IN CIRCULAR PIPES 

In Sec. 1.11 it was noted that for laminar flow T = J1 du/dy, where u is the value of 
the velocity at a distance y from the wall. As y = r0 - r, it is also seen that 
T = - J1 du/dr; in other words, the minus sign indicates that u decreases as r 
increases. The coefficient of viscosity p is a constant for any particular fluid at a 
constant temperature, and therefore if the shear varies from zero at the center of 
the pipe to a maximum at the wall. it follows that the velocity profile must have a 
zero slope at the center and have a continuously steeper velocity gradient as the 
wall is approached. • • 

In order to determine the velocity profile for laminar flow in a circular pipe 
the expression for T in laminar flow will be inserted in the general relation. From 
Eq. (8.5). 
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thus 

From this 

du L 
hL = -j1- 2 

.dr ry 

hLY 
du = - - r dr 

2J1L 

Irvegrating and determining the constant of integration from the fact that 
u = umax when r = 0, we obtain 

hLy 2 
U=U -----r 

max 4J1L (8.16) 

From this equation it is seen that the velocity profile is a parabola, as shown in 
Fig. 8.3. 

From the fact that the velocity at the wall is zero, that is, u = 0 when r = r 0 , 

the value of the centerline velocity ~ is 

(8.17) 

Equation {8.16) may be multiplied by a differential area dA = 2nr dr and the 
product integrated from r = 0 to r = r0 to find the rate of discharge. As in 
previous cases, the rate of discharge is equivalent to the volume of a solid bounded 
by the velocity profile. In this case the solid is a paraboloid with a maximum 
height indicative of umax. The mean height of a paraboloid is one-half the maxi
mum height, and hence the mean velocity V is 0.5umax. Thus 

(8.18) 

From this last equation, noting that y = gp and fliP= v, the loss ofhead in friction 
is given by 

J1 L L 
hL = 32- - - V = 32v- V 

y Dz gDz 
(8.19) 

which is the Hagen-Poiseuille law for laminar flow in tubes. Hagen, a German 
engineer, experimented with water flowing through small brass tubes and pub
lished his results in 1839. Poiseuille, a French scientist, experimented with water 
flowing through capillary tubes in order to determine the laws of flow of blood 
through the veins of the body and published his studies in 1840. 

From Eq. (8.19) it is seen that in laminar flow the loss of head is proportional 
to the first power of the velocity, or n = I. This is verified by experiment, as shown 
in Fig. 8.1. The striking feature of this equation is that it involves no empirical 
coefficients or experimental factors of any kind, except for the physical properties 
of the fluid such as viscosity and density (or specific weight). From this it would 
appear that in laminar flow the friction is independent of the roughness of the pipe 
wall. That this is true is also borne out by experiment. 
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Dimensional analysis shows that the friction loss may also be expressed by 
E~ (8.12). Equating (8.12) and (8.19) and solving for the friction factor f, we 
x·:am for laminar flow under pressure in a circular pipe, 

f = 64v = 64 
DV NR 

(8.20) 

Hence, if N R is less than 2,000, we may use Eq. (8.19) to find pipe friction head loss 
,,r we may use Eq. (8.12) with the value off as given by Eq. (8.20). 

8.7. ENTRANCE CONDITIONS IN LAMINAR FLOW 

In the case of a pipe leading from a reservoir, if the entrance is rounded so as to 
a\oid any initial disturbance of the entering stream, all particles will start to flow 
with the same velocity, except for a very thin film in contact with the wall. 
Particles next to the wall have a zero velocity, but the velocity gradient is here 
extremely steep, and with this slight exception, the velocity is uniform across the 
diameter, as shown in Fig. 8.4. As the fluid progresses along the pipe, the stream
lines in the vicinity of the wall are slowed down by friction emanating from the 
wall, but as Q is constant for successive sections, the velocity in the center must be 
accelerated, until the final velocity profile is a parabola, as shown in Fig. 8.3. 
Theoretically, an infinite distance is required for this, but it has been established 
both by theory and by observation that the maximum velocity in the center of the 
pipe will reach 99 percent of its ultimate value in the distance L = 0.058N RD. 
Thus, for the critical value N R = 2,000, the distance L of Fig. 8.4 equals 116 pipe 
diameters. In other cases of laminar flow with Reynolds numbers less than 2,000, 
the distance L will be correspondingly less. 1 

1 H. L. Langhaar, Steady Flow in the Transition Length of a Straight Tube, J. App/. Mech .. vol. 10, 
p. 55, 1942. 

t---------- Unestablished flow ---------!--Established flow 

Figure 8.4. Velocity profiles along a pipe in laminar flow. 
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In the entry region of length L the flow is unestablished; that is, the velocity 
profile is changing. In this region the flow can be visualized as consisting of a 
central core in which there are no friction·al effects and an annular zone extending 
from the core outward to the pipe wall. This outer zone increases in thickness as it 
moves along the wall and is known as the boundary layer. Viscosity in the boun
dary layer acts to transmit the effect of boundary shear inwardly into the flow. At 
seition AB the boundary layer has grown until it occupies the entire section of the 
pipe. At this point, for laminar flow, the velocity profile is a perfect parabola. 
Beyond section AB the velocity profile does not change, and the flow is known as 
established flow. 

As shown in Pro b. 4.1 for a circular pipe, the kinetic energy of a stream with a 
parabolic velocity profile is 2 V2 j2g, where Vis the mean velocity. At the entrance 
of the pipe the velocity is uniformly V across the diameter, except for an extremely 
thin layer next to the wall. Thus, at the entrance to the pipe, the kinetic energy per 
unit weight is practically V 2 /2g. Hence, in the distance L, there is a continuous 
increase in kinetic energy accompanied by a corresponding decrease in pressure 
head. Therefore, at a distance L from the entrance, the pressure head is less than 
the static value by 2 V2 /2g plus the friction loss in this distance. 

Laminar flow has been dealt with rather fully, not merely because it is of 
importance in problems involving fluids of very high viscosity, but especially 
because it permits a simple and accurate rational analysis. The general approach 
used here is of some assistance in the study of turbulent flow, where conditions are 
so complex that rigid mathematical treatment is impossible. 

Illustrative Example 8.2. For the case of Illustrative Example 8.1 find the centerline velocity. the 

velocity at r = 2 em, the friction factor. the shear stress at the pipe wall, and the head loss per meter of 

pipe length. 

Since the flow is laminar. 

v,=2V=12.7cms 

um,n= l~.= 12.7ctns 

When r = 5 ern 

1/=0 hence 0 = 12.7- k(5) 2 

k=0.51 (em)(s) u2 '"' = 12.7- 0.51(2) 2 = 10.7 ern s 

64 64 
/= = = 0.19 

NR 334 

f V2 0.19 (6.35 ern s) 2 

r = · I' = (0.85 g em 3
) 0 4 2 4 . 2 

g "i·s' 100 em 
2 r 0 =0.81 

2 
=0.081 Nm 

(ern)(s ) kg·m m 

1 1·2 (0.0635 m s) 2 

hL L = I = 0 19 = 0 000:19 rn 'rn 
· D 2y · 0.10 m 2(9.8 m's 2 ) · • 
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Velocity u------

(a) Velocity profile (h) Laminar flow (c) Turbulent flow 

Figure 8.5. (a) Velocity profile. (h) Laminar llo\\ (transfer of molecules across ah). (c) Turbulent 
·','" (transfer of finite fluid masses across ah). 

8.8. TURBULENT FLOW IN CIRCULAR PIPES 

In Sec. 3.1 it was explained that in laminar flow the fluid particles move in straight 
lines while in turbulent flow they follow random paths. Consider the case of 
laminar flow as shown in Fig. 8.5a and 8.5h where the velocity u increases withy. 
Even though the fluid particles are moving horizontally to the right, because of 
molecular motion, molecules will cross line ah and will thereby transport momen
tum. On the average. the velocities of the molecules in the slower moving fluid 
below the line will be less than those of the faster moving fluid above: the result is 
that the molecules which cross from below tend to slow down the faster moving 
fluid. Likewise, the molecules which cross the line ah from above tend to speed up 
the slower moving fluid below. The result is the production of a shear stress along 
the surface whose trace is ah, the value of which is given in Sec. 1.11 as 
T = 11 du.dy. This equation is applicable to laminar flow only. 

Let us examine some of the characteristics of turbulent flow to see how it 
differs from laminar flow. In turbulent flow the local velocity fluctuates in both 
magnitude and direction. 1 As a consequence a multitude of small eddies are 
created by the viscous shear between adjacent particles. These eddies grow in size 
and then disappear as their particles merge into adjacent eddies. Thus ther~is a 
continuous mixing of particles. with a consequent transfer of momentum. • 

1 The \elocil) at a poi Ill in a so-called .. stead:.'" turbulent flow can he best Yisuali7ed as a \ector 
that fluctuates in both direction and magnitude. Tlje mean temporal velocity at that point corresponds 
to the '"a\crage ·· of those vectors. 
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First Expression 

In the modern conception of turbulent flow, a mechanism similar to that 
described in the foregoing for laminar· flow is assumed. However, the molecules 
are replaced by minute but finite masses (Fig. 8.5c). Hence, by analogy, the shear 
stress along the plane through ab in Fig. 8.5 may be defined in the case of turbu
lept flow as 

' du 
Turbulent shear stress = 1J dy (8.21) 

But unlike f.i, the eddy-viscosity 1J is not a constant for a given fluid at a 
given temperature, but depends upon the turbulence of the flow. It may be viewed 
as a coefficient of momentum transfer, expressing the transfer of momentum from 
points where the velocity is low to points where it is higher, and vice versa. Its 
magnitude may range from zero to many thousand times the value of f.i· However, 
its numerical value is of less interest than its physical concept. In dealing with 
turbulent flow it is sometimes convenient to use kinematic eddy viscosity E = IJI p 
which is a property of the flow alone, analogous to kinematic viscosity. 

In general, the total shear stress is the sum of the laminar shear stress plus the 
turbulent shear stress, i.e., 

du du 
T=f.i-+1]-

dy dy 
(8.22) 

In turbulent flow the second term of this equation is usually many times larger 
than the first term. 

In turbulent flow the local axial velocity has been shown, in Sec. 3.4 (see 
Fig. 3.6 ), to have fluctuations of plus and minus u', and there are also fluctuations 
of plus and minus t-' and w' normal to u as shown in Fig. 8.6b. As it is obvious that 
there can be no values oft-' next to and perpendicular to a smooth wall, turbulent 
flow cannot exist there. Hence, near a smooth wall, the shear is due to laminar 

u + t>u 

u 

(a) 

Velocity at a particular instant = 

J (u ± u')2 + (v')2 + (w')2 

(b) 

Figure 8.6. (a) Prandtl's mixing length /. (b) Instantaneous local velocity in turbulent flow. 
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.z,: ·' .1lone and r = f.1 du/dy. It should be noted that the shear stress always 

.:.~:- :~'cause the velocity distribution to become more uniform. 
\ t ~orne distance from the wall the value of du/dy becomes very small in 

· _ -~ ...:knt flow. and hence the viscous shear becomes negligible in comparison 
" :- the turbulent shear. The latter can be large, even though du/dy is small, 
""'r: • . ,:.J,e of the possibility of 1J being very large. This is due to the great turbulence 
·-.:.: may exist at an appreciable distance from the wall. But at the center of the 
:: ;-o:. \\here du/dy is zero, there can be no shear at all. Hence, in turbulent flow 
.:.·.;ell as in laminar flow, the shear stress is a maximum at the wall and decreases 
.::--.early to zero at the axis, as shown in Fig. 8.3 and proved in Sec. 8.5. 

Second Expression 

\:1other expression for turbulent shear stress may be obtained which is different 
·~c'Il1 that in Eq. (8.21 ). Thus in Fig. 8.5a, if a mass m of fluid below ab, where the 
:cmporal mean axial velocity is u, moves upward into a zone where the temporal 
::1ean axial velocity is u + ~u, its initial momentum in the axial direction must be 
:ncreased by m ~u. Conversely, a mass m which moves from the upper zone to the 
lower will have its axial momentum decreased by m ~~~- Hence this transfer of 
momentum back and forth across ab will produce a shear in the plane through ab 
proportional to ~u. This shear is possible only because of the velocity profile 
shown. If the latter were verticaL ~u would be zero and there could be no shear. 

In detail (Fig. 8.6b) consider that at every point in turbulent flow there are ve
locity fluctuations of+ u' and - u' in the axial direction and velocity fluctuations in 
the normal directions as well. Consider in Fig. 8.5a an area dA in the plane of ab 
and normal to ~··. Because of turbulent velocity t1uctuations, small fluid masses of 
density p will be carried across this area at a rate of pT?T dA and undergo a 
change in velocity and, hence, in momentum in the axial direction. ;n this case 
TIT! represents the mean value of all + 1''. The temporal mean value of 1'' is zero, 
i.e., v' = 0 but the mean value of the + v' is given by: 

Consider a mass moving upward from below ab with a velocity + ~; = F·'-1; it 
will transport into the upper zone. where the velocity is u + 11:/i, a momentum 
which is on the average equal to PT?T dA(u). The slower moving mass from 
below ab will tend to retard the flow above ab: this creates a shear force along the 
plane of ab. If the distance ~y in Fig. 8.5a is so chosen that the average valut of 
+ u' in the upper zone is equal to ~u, i.e., ~u = 17f, the two streams wiil be 
separated by what is known as the Prandtl mixing length /, which will be referred 
to later. 

Because of the momentum transfer across ab there will be a shear force 
exerted along plane ~Applying the momentum principle [Eq. (6.6)), 
F = r dA = pQ(~V) =Pit·' I dA(u + ~~~- u) ='*'IdA ~u = -p dA u'r', where 
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u'v' is the temporal average of the product. Thus, along ah the turbulent shear 
stress is 

r = -pu'v' (8.23) 

which is an alternate form for Eq. (8.21). 
t "fhe minus sign appears in Eq. (8.23) because the product u'v' on the average 

is negative. By inspecting Fig. 8.5a it can be seen that + z;' is associated with - u' 

values more than with + u' values. The opposite is true for - v'. Even though the 
temporal mean values of u' and v' are individually equal to zero, the temporal 
mean value of their product is not zero. This is so because combinations of + v' 
and - u' and of - v' and + u' predominate over combinations of+ v' and + u' and 
- v' and - u' respectively. 

Prandtl reasoned that in any turbulent flow fUl and fVl must be proportional 
to each other and of the same order of magnitude. He also introduced the concept 
of mixing length /, which is defined as the distance one must move transversely to 
the direction of flow such that L1u = ~'l From FiS:_~6a it can_~e seen that 
L1u = l du/dy and hence I u' I = l du/dy. If I u' I ~ I v' I, then u'v' varies as 
l2(du/dy) 2

. Permitting l to account for the constant of proportionality, we get 

r = -pu'v' = p/2 
-_ (du) 2 

dy 
(8.24) 

This equation expresses terms that can be measured. Thus in any experiment 
where the pipe friction is determined, r 0 can be computed by Eq. (8.5), and r at 
any radius is then found by Eq. (8.14). A traverse of the velocity across a pipe 
diameter will give u at any radius, and the velocity profile will give du/dy at any 
radius. Thus Eq. (8.24) enables the Prandtl mixing length l to be found as a 
function of the pipe radius. The purpose of all of this is to enable us to develop 
theoretical equations for the velocity profile in turbulent flow, and from this in 
turn to develop theoretical equations for f, the friction coefficient. 1 

8.9. VISCOUS SUBLAYER IN TURBULENT FLOW 

In Fig. 8.4 it is shown that, for laminar flow, if the fluid enters with no initial 
disturbance, the velocity is uniform across the diameter except for an exceedingly 
thin film at the wall, inasmuch as the velocity next to any wall is zero. But as flow 
proceeds down the pipe, the velocity profile changes because of the growth of a 

1 T. von Karmim has developed an equation from which I may be determined from the velocity 
profile alone, but the value will not be identical with that determined by Eq. (8.24). His expression is 
I= K(du/dl")/(d 2ujdy2

), where K is a universal constant the value of which has been determined by 
many experiments to be 0.40. See T. von Karman, Turbulence and Skin Friction, J. Aeronaut. Sci., 
vol. I, no. I. January, 1934, and Some Aspects of the Turbulence Problem, Mech. Eng., July, 1935. 
p. 407. 
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:0.::-:-: mar boundary layer which continues until the boundary layers from opposite 
"-:cos meet at the pipe axis and then there is fully developed laminar flow. 

If the Reynolds number is above the critical value, so that the flow is turbu
knt. the initial condition is much like that in Fig. 8.4. But as the laminar boundary 
la~ er increases in thickness, a point is soon reached where a transition occurs and 
:he boundary layer becomes turbulent. This turbulent boundary layer generally 
.:-. ..:reases in thickness much more rapidly, and soon the two from opposite sides 
-:-:cct at the pipe axis, and there is then fully developed turbulent flow. 

This initial laminar boundary layer may be given a Reynolds number such as 
\ R, = U x/v, where U is the uniform velocity and xis the distance measured from 

~ nc initial point. When X has such a value that this N Rx is about 500,000, the 
~ransition occurs to the turbulent boundary layer. Fully developed turbulent flow 
... ill be found at about 50 pipe diameters from the pipe entrance for a smooth pipe 
.., ith no special disturbance at entrance; otherwise the turbulent boundary layers 
:·rom the two sides will meet within a shorter distance. It is this fully developed 
· urbulent flow that we shall consider in all that follows. 

There can be no turbulence next to a smooth wall since it is impossible for v' 
!o have any value at a solid boundary. Therefore immediately adjacent to a 
smooth wall there will be a laminar or viscous sublayer, as shown in Fig. 8.7, 
within which the shear is due to viscosity alone. This viscous sublayer is extremely 
thin, usually only a few hundredths of a millimeter, but its effect is great because of 
the very steep velocity gradient within it and because r = 11 du/dy in that region. 
At a distance from the wall the viscous effect becomes negligible, but the turbulent 
shear is then large. Between the two there must be a transition zone where both 
types of shear are significant. It is evident that there can be no sharp lines of 
demarcation separating these three zones, inasmuch as one must merge gradually 
into the other. 

By plotting a velocity profile from the wall on the assumption that the flow is 
entirely laminar and plotting another velocity profile on the assumption that the 
flow is entirely turbulent (Sec. 8.10), the two will intersect, as shown in Fig. 8.8. It 

Laminar boundary layer 

---
Fully developed 

turbulence 

Viscous sublayer 

Figure 8.7. Development of boundary layer in a pipe (scales much distorted). 

l 
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y 

I 
Turbulent 

t zone 

t--
Transition 

zone 

u 

Nominal thickness of 
viscous sublayer 

Figure 8.8. Velocity profile near a solid wall (vertical scale great!) exaggerated). 

is obvious that there can be no abrupt change in profile at this point of intersec
tion, but that one curve must merge gradually into the other, as shown by the 
experimental points. 

Any value taken for the thickness of this viscous sublayer must be purely 
arbitrary. The simultaneous solution of the equations for the two curves, together 
with some experimental factors. will give the value of y for point b as 

(8.25) 

where b1 is referred to as the nominal thickness of the viscous sublayer. The 
transition curve ac determined by measurements indicates that a is a better limit 
of the viscous-sublayer thickness. Present information is that the thickness of the 
viscous sublayer out to point a is approximately 

(8.26) 

In a circular pipe the laminar velocity profile has been shown to be a parabola, but 
in this extremely thin region near the wall it can scarcely be distinguished from a 
straight line. 

The transition zone may be said to extend from a to c in Fig. 8.8. For the latter 
point the value of y has been estimated to be about 60v/jr;;!p. Beyond this the 
flow is so turbulent that viscous shear is negligible. 
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F~~·m Eq. (8.15) 

r:-= making this substitution in Eq. (8.25), we obtain 

(8.27) 

·~ c'~ which it is seen that the higher the velocity or the lower the kinematic 
·. :,;cosity, the thinner the viscous sublayer. Thus. for a given constant pipe 
.: ::1meter, the thickness of the viscous sublayer decreases as the Reynolds number 
:-. ..:reases. 

It is now in order to discuss what is meant by a smooth wall. There is no such 
:;...ing in reality as a mathematically smooth surface. But if the irregularities on any 
Jctual surface are such that the effects of the projections do not pierce through the 
. ~-;cous sublayer (Fig. 8.8), the surface is hydraulically smooth from the fiuid
:nechanics viewpoint. If the effects of the projections extend beyond the sub layer, 
:he laminar layer is broken up and the surface is no longer hydraulically smooth. 
To be more specific, in Fig. 8.9 if 61 > 5£, the pipe will behave as though it is 
hydraulically smooth, while if 61 < 0.3£, the pipe will behave as wholly rough, 
the significance of which is discussed in Sec. 8.10. In between these values, i.e., 
with 5£ > 61 > 0.3£, the pipe will behave in a transitional mode; that is, neither 
hydraulically smooth nor wholly rough. 

Inasmuch as the thickness of the viscous sub layer in a given pipe will decrease 
\Vith an increase in Reynolds number, it is seen that the same pipe may be hydrau
lically smooth at low Reynolds numbers and rough at high Reynolds numbers. 
Thus, even a relatively smooth pipe may behave as a rough pipe if the Reynolds 
number is high enough. It is also apparent that, with increasing Reynolds number, 
there is a gradual transition from smooth to rough pipe flow. These concepts are 
depicted schematically in Fig. 8.9, where E is the equivalent height of the 
roughness projection. 

J;~~);t//Jdw,J;)~?JM 
(a) 

WJJ~}~~;,/#ffi 
(b) 

l 

Figure 8.9. Turbulent flow near boundary. (a) Relatively 
low N R. i5 1 >elf ,\1 > 5£ pipe behaves as a smooth pipe. 
(/J) Relatively high N R. ii1 < c If i5 1 < OJr pipe behaves 
as a wholly rough pipe. 
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8.10. VELOCITY PROFILE IN TURBULENT FLOW 

Prandtl reasoned that turbulent flow in a pipe is strongly influenced by the flow 
phenomena near the wall. In the vicinity of the wall, r :::::; r 0 . He assumed that the 
mixing length I near the wall was proportional to the distance from the wall, i.e., 
I= K~. By experiment it has been determined that K has a value of0.40. 1 Using 
thes~ assumptions and applying Eq. (8.24), we get 

(
du)

2 

(du)
2 

r:::::; ro = pF dy = pKzyz dy 

1 nodY du = -- -- ---
K p y 

or 

from which u = 2.5 ~ In y + C 

The constant C may be evaluated by noting that u = umax when y = r0 . Substitut
ing the expression for C, replacing y by r0 - r, and transforming to log, the 
equation becomes 

(8.28) 

Although this equation is derived by assuming certain relations very near to 
the wall, it has been found to hold practically to the axis of the pipe. 

Starting with the derivation of Eq. (8.24), this entire development is open to 
argument at nearly every step. But the fact remains that Eq. (8.28) agrees very 
closely with actual measurements of velocity profiles for both smooth and rough 
pipes. However, there are two zones in which the equation is defective. At the axis 
of the pipe dujdy must be zero. But Eq. (8.28) is logarithmic and does not have 
a zero slope at r = 0, and hence the equation gives a velocity profile with a 
sharp point (or cusp) at the axis, whereas in reality it is rounded at the axis. 
This discrepancy affects only a very small area and involves very slight error in 
computing the rate of discharge. 

Equation (8.28) is also not applicable very close to the wall. In fact it indicates 
that when r = r 0 , the value of u is minus infinity. The equation indicates that 
u = 0, not at the wall, but at a small distance from it, shown as y 1 in Fig. 8.8. 
However, this discrepancy is well within the confines of the viscous sublayer, 
where the equation is not supposed to apply. Moreover as the viscous sublayer 
is very thin, the flow within it has very little effect upon the total rate of discharge. 

Hence, although Eq. (8.28) is not perfect, it is reliable except for these two 
small areas, and thus the rate of discharge may be determined with a high degree 

1 If the fluid is not clear, i.e .. if it is carrying particles in suspension, K will have a value less than 
0.40. 
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a.::.:-~ acy by using the value of u given by it and integrating over the area of the 
ro 

E us Q = J u dA = 2n r ur dr, and dividing by the pipe area nr~ and inte
• 0 

:::-.g.. the mean velocity is 1 

v = Umax- 2.5 In ro - 2 r r In (ro - r) dr l 2 ro J 
ro · o 

T:·:- equation reduces to 

V = Umax - ~ X 2.5 ~ = Umax - 1.33 V J7 (8.29) 

From this last equation the pipe factor, which is the ratio of the mean to the 
-.l.\!mum velocity, may be obtained. It is 

v 1 
Umax = l.+i33y7 

(8.30) 

L smg the relation of Eq. (8.30) in Eq. (8.28) and replacing j!;jp by j!Vf78, the 
~esult is 

u = (1 + 1.33y7)v- 2.04y7 v Iog~--
r0 - r 

(8.31) 

which enables a velocity profile to be plotted for any mean velocity and any value 
off in turbulent flow. In Fig. 8.10 may be seen profiles for both a smooth and a 
rough pipe plotted from this equation. The only noticeable difference between 

1 The integral results in indeterminate values at r = r 0 , as we should expect, inasmuch as the 
equation for u does not really apply close to the wall. However, these have been shown to reduce to 
negligible quantities. See B. A. Bakhmeteff, "The Mechanics of Turbulent Flow," p. 70, Princeton 
University Press, Princeton, N.J., 1941. 

~---v---~ 

Smooth pipe 
NR= 10~ {=0.012 

I 
I 

Figure 8.10. Velocity profiles for equal flow rates. 

Laminar flow 
NR<2,000 
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these and measured profiles is that the latter are more rounded at the axis of the 
pipe. 1 

Comparing the turbulent-flow-velocity profiles with the laminar-flow-velocity 
profile (Fig. 8.10) shows the turbulent-flow profiles to be much flatter near the 
central portion of the pipe and steeper near the wall. It is also seen that the 
turbulent profile for the smooth pipe is flatter near the central section (i.e., blun
ter) tfian for the rough pipe. In contrast, the velocity profile in laminar flow is 
independent of pipe roughness. 

As a theoretical equation has now been derived for the velocity profile for 
turbulent flow, in circular pipes, it is also possible to derive equations for the 
kinetic-energy and momentum-correction factors when mean velocities are used. 
These values are 2 

(/. = 1 + 2.7f (8.32a) 

f3 = 1 + 0.98/ (8.32b) 

Illustrative Example 8.3. The head loss in 200 ft of 6-in-diameter pipe is known to be 25 ft·lb/lb 
when oil (s = 0.90) of viscosity 0.0008 lb·s/ft 2 flows at 20 cfs. Determine the centerline velocity, the 
shear stress at the wall of the pipe, and the velocity at 2 in from the centerline. 

The first step is to determine whether the flow is laminar or turbulent. 

Q 2 
V = - = - = 10.2 fps 

A 0.196 

DVp 0.5(10.2)(0.9 x 1.94) 
NR= = - -- =11,!00 

i' 0.0008 

Since !V R > 2,000. the flow is turbulent. Using Eq. (8.12), the friction factor can be found: 

= h1D(2q) = 25(0.5)64.4 = 
0019 f LV 2 200(10.2) 2 . -

From Eq. (8.30). 

Equation (8.15) yields 

fi> V2 o.039(0.9 x 1.94)( 10.2)2 
2 t 0 = =- - -- =0.89lb-ft 

8 8 

1 Although the preceding theory agrees very well with experimental data. it is not absolutely 
correct throughout the entire range from the axis to the pipe wall, and present indications are that 
some slight shift in the numerical constants will agree somewhat more closely with test data. Thus. in 
Eqs. (8.30) and (8.31) the 1.33 may he replaced by 1.44, and in Eq. (8.31). although many writers use 2 
instead of 2.04. a better practical 'alue seems to be 2.15. 

2 L. F. Moody. Some Pipe Characteristics of Engineering Interest. Houi/le Blanche, May-June, 
1950. 
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J'o 3 u2 ;n = 12.9 - 5.75 -- log -
p I 

U 2 ;n = 12.9 - 1.96 = 10.94 fps 

· ·3: if the flow had been laminar, the velocity profile would have been parabolic and the 
;:- :- ~.e 'elocity would have been twice the average velocity. 

8.11. PIPE ROUGHNESS 

L ~:·'-•rtunately, there is as yet no scientific way of measuring or specifying the 
~: _ghness of commercial pipes. Several experimenters have worked with pipes 
"' ::-: artificial roughness produced by various means so that the roughness could 
-.~ measured and described by geometrical factors, and it has been proved that the 
'~ ..:tion is dependent not only upon the size and shape of the projections, but also 
_::'c•n their distribution or spacing. Much remains to be done before this problem 
, completely solved. 

The most noteworthy efforts in this direction were made by a German engin
;:;:.>r '-iikuradse, a student ofPrandtl's. He coated several different sizes of pipe with 
'Jnd grains which had been segregated by sieving so as to obtain different sizes of 
,::rain of reasonably uniform diameters. The diameters of the sand grains may be 
~'-'presented by (, which is known as the absolute roughness. In Sec. 8.4 dime~
'lonal analysis of pipe flow showed that for a smooth-walled pipe the friction 
:·actor f is a function of Reynolds number. A general approach, including ( as a 
parameter, reveals thatf= rjJ(NR, £/D). The term (/Dis known as the relatil'e 
roughness. In his experimental work Nikuradse had values of ( ID ranging from 
0.000985 to 0.0333. 

In the case of artificial roughness such as this, the roughness is uniform, 
whereas in commercial pipes it is irregular both in size and in distribution. 
However, the roughness of commercial pipe may be described by (, which means 
that the pipe has the same value off at a high Reynolds number that would be 
obtained if the pipe were coated with sand grains of a uniform size 1. 

For pipes it has been found that if 61 > 5(, the viscous sublayer completely 
submerges the effect of(. Von Karman, using information from Eq. (8.28) and 
data from Nikuradse's experiments, developed an equation for friction factor for 
such a case: 

f
" Smooth-pipe" flow j 1 _ 1 • 

, 1 . - 2 log N R yl./ - 0.8 
Uz > 5( vi 

.~.33) 

This equation applies to any pipe as long as 61 > 5(; when this condition prevails, 
the flow is known as smooth flow. The equation has been found to be reliable for 
smooth pipes for all values of N R over 4,000. For such pipes, i.e., drawn tubing. 
brass, glass, etc., it can be extrapolated with confidence for values of N R far 
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beyond any present experimental values because it is functionally correct, assum
ing wall surface so smooth that the effects of the projections do not pierce the 
viscous sublayer, which becomes increasingly thinner with increasing N R. That 
this is so is evident from the fact that the formula yields a value off= 0 for 
N R = oo. This is in accord with the facts because N R is infinite for a fluid of zero 
viscosity, and for such a case f must be zero. 

Blasius 1 has shown that for Reynolds numbers between 3,000 and 100,000 the 
fri~ion factor for a very smooth pipe may be expressed approximately as 

f
= 0.316 

No.2s 
R 

(8.34) 

He also found that over this range of Reynolds numbers the velocity profile in a 
smooth pipe is closely approximated by the expression 

(8.35) 

where y = r0 - r, the distance from the pipe wall. This equation is commonly 
referred to as the seventh-root law for turbulent-velocity distribution. Though it is 
not absolutely accurate, it is useful because it is easy to work with mathematically. 
At Reynolds numbers above 100,000 a somewhat smaller exponent must be used 
to give good results. 

At high Reynolds numbers <\becomes smaller. If ()1 < 0.3~:, it has been found 
that the pipe behaves as a wholly rough pipe; i.e., its friction factor is independent 
of the Reynolds number. For such a case von Karman found that the friction 
factor could be expressed as 

f
" Rough-pipe" flowJ !__ _ I!_ 

~ 
0 3 17 - 2 log + 1.14 u, < · ( -vf £ 

(8.36) 

The values off from this equation correspond to the values from the chart 
(Fig. 8.11 ), where the lines become horizontal. 

In the gap where 5£ > ()1 > 0.3( neither smooth flow [Eq. (8.33)] nor wholly 
rough flow [Eq. (8.36)] applies. Colebrook 2 found that in this intermediate range 
an approximate relationship was 

[
Transitional flow l ~~= = _ 2 log ((/D + ~) 

5E > (), > 0.3( J j f 3.7 NRj7 
(8.37) 

1 H. Blasius, Das Ahnlichkeitsgesetz bei Reibungsvorgiingen in Fliissigkeiten, F orsch. Gebiete 
lngenieurw., vol. 131. 1913. 

2 C. F. Colebrook, Turbulent Flow in Pipes, with Particular Reference to the Transition Region 
between the Smooth and Rough Pipe Laws, J. Inst. Ciri/ Engrs. (London), February, 1939. 
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8.12. CHART FOR FRICTION FACTOR 

-\s the preceding equations for fare very inconvenient for use. it is preferable to 
obtain numerical values from a chart, such as Fig. 8.11, prepared by Moody. This 
~hart is based on the best information available and has been plotted with the aid 
of the equations of the preceding section. As a matter of convenience, values for air 
and water at 60oF have been placed at the top of the chart to save the necessity of 
computing Reynolds number for those two typical cases. 

The chart shows that there are four zones: laminar flow; a critical range where 
'alues are uncertain because the flow might be either laminar or turbulent; a 
transition zone, where f is a function of both Reynolds number and relative pipe 
roughness; and a zone of complete turbulence where the value of! is independent 
of Reynolds number and depends solely upon the relative roughness. 

There is no sharp line of demarcation between the transition zone and the 
zone of complete turbulence. The dashed line of Fig. 8.11 that separates the 
two zones was suggested by R. J. S. Pigott; the equation of this line is 
NR = 3500/(E/D). 

For use with this chart, values of c may be obtained from Table 8.1. As the 
ratio E/D is dimensionless, any units may be used provided they are the same for 
both. Values of E/D for commercial pipe may conveniently be found from Fig. 8.12, 
which has also been prepared by Moody. In the use of these charts, as well as in 
Eq. (8.12), the exact value of the internal diameter of the pipe should be used. 
Except in large sizes, these values differ somewhat from the nominal sizes, and 
especially so in the case of very small pipes. 

Table 8.1. Values of absolute roughness £ for new pipes 

Feet 

Drawn tubing, brass, lead, glass, centrifugally 
spun cement, bituminous lining, transite .. 

Commercial steel or wrought iron ......... . 
Welded-steel pipe .... 
Asphalt-dipped cast iron 
Galvanized iron 
Cast iron, average 
Wood stave .. 

Concrete ..... 

Riveted steel 

0.000005 
0.00015 
0.00015 
0.0004 
0.0005 
0.00085 

I 0.0006 to 
I o.oo3 
10.001 to 
I o.o1 

.... I 0.003 to 
1003 

Note: 
<infeet £inmm _

1 
£inmm 

-· -~~ = ---- = 10 X ---
D D in feet D in mm D in em 

Millimeters 

0.0015 
0.046 
0.046 
0.12 
0.15 
0.25 
0.18 to 
0.9 • 0.3 to 
3. 
0.9 to 
9. 
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Figure 8.11. Friction factor for pipes. 
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Pipe diam, D, ft 

0.1 0.2 0.3 0.4 0.6 0.8 1 2 3 4 6 8 10 20 

Pipe d1am, in 

Figure 8.12. Roughness factors (( expressed in feet) for commercial pipes. 
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With reference to the values of£, it must be observed that these are given here 
for new, clean pipes, and even in such cases there may be considerable variation in 
the values. Consequently, in practical cases, the value off may be in error by ± 5 
percent for smooth pipes and by ± 10 percent for rough ones. For old pipes values 
of£ may be much higher, but there is much variation in the degree with which pipe 
r04lghness increases with age, since so much depends upon the nature of the fluid 
IJeing transported. In small pipes there is the added factor that deposits materially 
reduce the internal diameter. In addition, the effect of the roughness of pipe joints 
may increase the value off substantially. Hence much judgment must be used in 
estimating a value of E, and consequently off 

For complete turbulence, where the friction is directly proportional to V 2 and 
independent of Reynolds number, values off may be determined for any assumed 
relative roughness. Most practical problems come within the transition zone, and 
there it is necessary to have also a definite value of Reynolds number. Hence, if the 
problem is to determine the friction loss for a given size of pipe with a given 
velocity, the solution is a direct one. But if the unknown quantities are either the 
diameter or the velocity or both, the Reynolds number is unknown. However, 
the value off changes very slowly with large changes in Reynolds number; so 
the problem may readily be solved by assuming either a Reynolds number or a 
value off to start with and then obtaining the final solution by trial. Since fwill 
generally have a value between 0.01 and 0.07, it is best to assume f initially and 
work from there (Illustrative Example 8.4). Only one or two trials will usually 
suffice. This procedure is practically the only one that can be employed where 
other losses in addition to pipe friction enter into the problem. 1 

Illustrative Example 8.4. Water at 20'C flows in a 50-em-diameter welded-steel pipe. If the energy 
gradient is 0.006, determine the flow rate. Find also the nominal thickness of the viscous sublayer. (Note: 
£1D = 0.046/500 = 0.00009.) 

First we must assume a value off; letf= O.o3. Applying Eq. (8.12), 

h~. 1 V2 

-- = 0.006 = 0.03 ---- - ----
L 0.5 m 2(9.81 m;s 2

) 

V = 1.4 m/s 

DV 0.5 m(1.4 m/s) 
5 NR= = =7x10 

v 1 x 10 6 m 2 /s 

For N R = 7 x 105 and £/D = 0.00009 the pipe friction chart (Fig. 8.11) indicates!= 0.0135. Since the f 
versus N R curve is relatively flat, we will assume f = 0.0135 for the next trial. 

1 V 2 

0.006 = 0.0135----
0.5 2(9.81) 

V = 2.12 m/s 

0.5(2.12) 6 
N = -----;:,; 10 

R 10-6 

1 Charts involving these same functional relations may be plotted with different coordinates from 
those in Fig. 8.11 and may be more convenient for certain specific purposes, but it is believed that the 
form shown is best both for instruction purposes and for general use. 
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J.-:e chart indicates!= 0.0135; hence that is the answer and V = 2.12 rn/s. 

Eq. (8.27) 

n(O 5j2 
Q = AV = - ·- · (2.12) = 0.415 rn 3js 

4 

32.8v 32.8(10- 6 rn 2 /s) 
i)- ·-- ------···-···-· 
I- V Jj- 2.12 mjsj0.0f35 

i)1 = 133 X 10· 6 In= 0.133 mm 

Note b1 = 2.9<, therefore the flow is in the transition zone. 

8.13. FLUID FRICTION IN NONCIRCULAR CONDUITS 

~ost closed conduits used in engineering practice are of circular cross section; 
however, rectangular ducts and cross sections of other geometry are occasionally 
used. Some of the foregoing equations may be modified for application to noncir
cular sections by use of the hydraulic-radius concept. 

The hydraulic radius was defined (Sec. 8.3) as Rh = A/P, where A is the cross
sectional area and P is the wetted perimeter. For a circular pipe flowing full, 

(8.38) 

or (8.39) 

These values may be substituted into Eq. (8.12} and into the expression for 
Reynolds number. Thus 

f I v2 
h = ----·~ 

L 4 Rh 2g 

NR = (4Rh}Vp 
J.l, 

(8.40} 

(8.41} 

From these two expressions the head loss in noncircular conduits can be cal
culated by use of Fig. 8.11, where £/Dis replaced by £/4Rh. This approach gives 
good results for turbulent flow, but for laminar flow the results are poor, because 
in such flow frictional phenomena are caused by viscous action throughout the 
body of the fluid, while in turbulent flow the frictional effect is accounted for 
largely by the region close to the wall; i.e., it depends on the wetted perime~r. . 

8.14. EMPIRICAL EQUATIONS FOR PIPE FLOW 

The presentation of friction loss in pipes given in Sees. 8.1 to 8.12 incorporates the 
best knowledge available on this subject, as far as application to Newtonian fluids 
(Sec. 1.11) is concerned. Admittedly, however, the trial-and-error type of solution, 
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especially when encumbered with computations for relative roughness and Rey
nolds number, becomes tedious when repeated often for similar conditions, as 
with a single fluid such as water. It is natural, therefore, that empirical design 
formulas have been developed, applicable only to specific fluids and conditions 
but very convenient in a certain range. Perhaps the best example of such a formula 
is that of Hazen and Williams, applicable only to the flow of water in pipes larger 
th!n 2 in (5 em) and at velocities less than 10 fps (3 m/s), but widely used in the 
waterworks industry. This formula is given in the form 

English units: 

(8.42a) 

SI units: 

(8.42b) 

where Rh (ft or m) is the hydraulic radius (Sec. 8.3), and S = hrfL, the energy 
gradient. The advantage of this formula over the standard pipe-friction formula is 
that the roughness coefficient Cuw is not a function of the Reynolds number and 
trial solutions are therefore eliminated. Values of Cuw range from 140 for very 
smooth. straight pipe down to 110 for new riveted-steel and vitrified pipe and to 
90 or 80 for old and tuberculated pipe. 

Another empirical formula, which is discussed in detail in Sec. 11.5, is the 
Manning formula, which in English units is 

V = 1.49 Rz;3SL2 
n ,, (8.43) 

where n is a roughness coefficient, varying from 0.009 for the smoothest brass or 
glass pipe, to 0.014 for average drainage tile or vitrified sewer pipe, to 0.021 for 
corrugat(;d iron, and up to 0.035 for tuberculated cast-iron pipe. The Manning 
formula applies to about the same flow range as does the Hazen-Williams 
formula. 

Nomographic charts and diagrams have been developed for the application of 
Eqs. (8.42) and (8.43). The attendant lack of accuracy in using these formulas is 
not important in the design of water-distribution systems, since it is seldom pos
sible to predict the capacity requirements with high precision. 

8.15. MINOR LOSSES 

Losses due to the local disturbances of the flow in conduits such as changes in 
cross section, projecting gaskets, elbows, valves, and similar items are called minor 
losses. In the case of a very long pipe or channel, these losses are usuall: 
insignificant in comparison with the fluid friction in the length considered. But if 
the length of pipe or channel is very short, these so-called minor losses rna: 
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b.::-.::;\ be major losses. Thus, in the case of the suction pipe of a pump, the loss of 
:-~..::..: J: en trance, especially if a strainer and a foot valve are installed, may be very 
- -~- greater than the friction loss in the short inlet pipe. 

\\ nene\er the velocity of a flowing stream is altered either in direction or in 
- ..:.o::- :tude. eddy currents are set up and a loss of energy in excess of the pipe 
- _: ,,n in that same length is created. The magnitude of this localized loss is 

::- .· :'~'rt ional to the abruptness of the velocity change. Though the disturbing 
..:. :c'~ is usually confined to a very short length of path, the effects may not 

..: ·..1;:>pear for a considerable distance downstream. Thus an elbow in a pipe may 
.-:Jp;. only a small length but the disturbance in the flow will extend for a long 

..: <..tnce downstream. 
The most common sources of minor loss are described in the remainder of this 

_ -.apter. Such losses may be represented in one of two ways. They may be ex
:'~essed as k V2 /2g, where k must be determined for each case, or they may be 
~_,presented as being equivalent to a certain length of straight pipe, usually ex
;:-ressed in terms of the number of pipe diameters. 

8.16. LOSS OF HEAD AT ENTRANCE 

Referring to Fig. 8.13, it may be seen that, as fluid from the reservoir enters the 
pipe, the streamlines tend to converge, much as though this were a jet issuing from 
a sharp-edged orifice, so that at B a maximum velocity and a minimum pressure 
are found. 1 At B the central-stream is surrounded by fluid which is in a state of 

1 Section B. the point of maximum contraction of the flow. is referred to as the t•ena contracta. 

-----=-==-~ -' \ 
\ 
\ 1-o-=,___--! 
I EL. 

l 

Figure 8.13. Conditions at entrance. 
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(a) k.=0.04 (b) k.=0.5 (c) k.""o.a 

Figure 8.14. Entrance losses. 

turbulence but has very little forward motion. Between B and C the fluid is in a 
very disturbed condition because the stream expands and the velocity decreases 
while the pressure rises. From C to D the flow is normal. 

It is seen that the loss of energy at entrance is distributed along the length AC, 
a distance of several diameters. The increased turbulence and vortex motion in 
this portion of the pipe cause the friction loss to be much greater than in a 
corresponding length where the flow is normal, as is shown by the drop of the 
total-energy line. Of this total loss, a portion h' would be due to the normal pipe 
friction. Hence the difference between this and the totaL or h~, is the true value of 
the extra loss caused at entrance. 

The loss of head at entrance may be expressed as 

v2 
h~ = ke 2g (8.44) 

where V is the mean velocity in the pipe, and ke is the loss coefficient whose 
general values are shown in Fig. 8.14. 

The entrance loss is caused primarily by the turbulence created by the en
largement of the stream after it passes section B, and this enlargement in turn 
depends upon how much the stream contracts as it enters the pipe. Thus it is very 
much affected by the conditions at the entrance to the pipe. Values of the 
entrance-loss coefficients have been determined experimentally. If the entrance to 
the pipe is well rounded or bell-mouthed (Fig. 8.14a), there is no contraction of 
the stream entering and the coefficient ofloss is correspondingly small. For a flush 
entrance, such as shown in Fig. 8.14b, ke has a value of about 0.5. A reentrant tube, 
such as shown in Fig. 8.14c, produces a maximum contraction of the entering 
stream because the streamlines come from around the outside wall of the pipe, as 
well as more directly from the fluid in front of the entrance. The degree of the 
contraction depends upon how far the pipe may project within the reservoir and 
also upon how thick the pipe walls are, compared with its diameter. With very 
thick walls, the conditions approach that of a flush entrance. For these reasons 
the loss coefficients for reentrant tubes vary; for very thin tubes ke ~ 0.8. 



_.,, ------------------··········"'''''_, __ _ 
STEADY INCOMPRESSIBLE FLOW IN PRESSURE CONDUITS 221 
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I y 

I -I-
------~ ~(b) I --

Figure 8.15. Discharge loss. 

8.17. LOSS OF HEAD AT DISCHARGE 

When a fluid with a velocity Vis discharged from the end of a pipe into a reservoir 
which is so large that the velocity within it is negligible, the entire kinetic energy of 
the stream is dissipated. Hence the discharge loss is 

vz 
hd =-

2g 
(8.45) 

That this is true may be shown by writing an energy equation between (a) and 
(c) in Fig. 8.15. Taking the datum plane through {a) and recognizing that the 
pressure head of the fluid at (a) is y, its depth below the surface, Ha = y + 0 + 
V2 j2g and He = 0 + y + 0. Therefore 

vz 
hd'=H -H =-a c 

29 

The discharge loss coefficient is 1.0 under all conditions; hence the only way to 
reduce the discharge loss is to reduce the value of V by means of a diverging tube. 
This is the reason for a diverging draft tube from a reaction turbine (Sec. 16.6). 

As contrasted with entrance loss, it must here be emphasized that discharge 
loss occurs after the fluid leaves the pipe, 1 while entrance loss occurs after the fluid 
enters the pipe. 

8.18. LOSS DUE TO CONTRACTION 

' Sudden Contraction 

The phenomena attending the sudden contraction of a flow are shown in Fig. 8.16. 
There is a marked drop in pressure due to the increase in velocity and to the loss 

1 In a short pipe where the discharge loss may be a major factor, greater accuracy is obtained by 
using the correction factor a, as explained in Sec. 4.1 [see also Eq. (8.32)]. 
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t 

A B c 

Figure 8.16. Loss due to sudden contraction. (Plotted to 'cu/e .from ohsermtions made by Daugherty.) 

of energy in turbulence. It is noted that in the corner upstream at section C there is 
a rise in pressure because the streamlines here are curving, so that the centrifugal 
action causes the pressure at the pipe wall to be greater than in the center of the 
stream. The dashed line indicates the pressure variation along the centerline 
streamline from sections B to C. 

From C to E the conditions are similar to those described for entrance. The 
loss of head for a sudden contraction may be represented by 

vz 
h~ = kc _2 

2g 

where kc has the values given in Table 8.2. 
The entrance loss of Sec. 8.16 is a special case where D2 /D 1 = 0. 

Gradual Contraction 

(8.46) 

In order to reduce the foregoing losses, abrupt changes of cross section should be 
avoided. This may be accomplished by changing from one diameter to the other 
by means of a smoothly curved transition or by employing the frustum of a cone. 

Table 8.2 

D2 /D, 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

k, 0.50 0.45 0.42 0.39 0.36 0.33 0.28 0.22 0.15 0.06 0.00 
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\\' ith a smoothly curved transition a loss coefficient kc as small as 0.05 is possible. 
For conical reducers a minimum kc of about 0.10 is obtained with a total cone 
angle of 20 to 40°. Smaller or larger total cone angles result in higher values of kc. 

8.19. LOSS DUE TO EXPANSION 

Sudden Expansion 

The conditions at a sudden expansion are shown in Fig. 8.17. There is a rise in 
pressure because of the decrease in velocity, but this rise is not so great as it would 
be if it were not for the loss in energy. There is a state of excessive turbulence from 
C to F beyond which the flow is normal. The drop in pressure just beyond section 
C, which was measured by a piezometer not shown in the illustration, is due to the 
fact that the pressures at the wall of the pipe are in this case less than those in the 
center of the pipe. 

Figures 8.16 and 8.17 are both drawn to scale from test measurements for the 
same diameter ratios and the same velocities and show that the loss due to sudden 
expansion is greater than the loss due to a corresponding contraction. This is so 
because of the inherent instability of flow in an expansion where the diverging 
paths of the flow tend to encourage the formation of eddies within the flow. 
Moreover, separation of the flow from the wall of the conduit induces pockets of 
eddying turbulence outside the flow region. In converging flow there is a dampen
ing effect on eddy formation and the conversion from pressure energy to kinetic 
energy is quite efficient. 

l 

A B I .;) .;:; .;:; f3Gr:::-:--a 
C D E F 

Figure 8.17. Loss due to sudden enlargement. (Plotted to scale from observations h\' Daugherty. 
Velocity the same as in Fig. 8.16.) 
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p'j 

t 

-@p 
2 

Figure 8.18 

An expression for the loss of head in a sudden enlargement can be derived as 
follows. In Fig. 8.18, section 2 corresponds to section F in Fig. 8.17, which is a 
section where the velocity profile has become normal again and marks the end of 
the region of excess energy loss due to the turbulence created by the sudden 
enlargement. In Fig. 8.18 assume that the pressure at section 2 in the ideal case 
without friction is p0 . Then in this ideal case 

Po Pt Vi V~ 
-~=--+---
y ")' 2g 2g 

If in the actual case the pressure at section 2 is p 2 while the average pressure on the 
annular ring is p', then, equating the resultant force on the body of fluid between 
sections 1 and 2 to the time rate of change of momentum between sections 1 and 2, 
we obtain 

From this 

Pz 
}' 

At p t A 2 - At p' At Vi V~ -- +- - ~~- +----
A 2 y A 2 y A2 g g 

The loss of head is given by the difference between the ideal and actual 
pressure heads at section 2. Thus h~ = (p0 - p2 )/'y, and noting that 

At Vt = Az Vz 

and that At Vi= At Vt Vt = A 2 V2 Vt, we obtain 

h~ = {_li- Vz)~ + ( 1 _ ~!) (Pt _ p'_) 
2g A2 y y 

It is usually assumed that p' = p1, in which case the loss of head due to sudden 
enlargement is 

h' = (J.'t =:-_Vz)z 
X 2g (8.47) 

Although it is possible that under some conditions p' will equal p1 , it is also 
possible for it to be either more or less than that value, in which case the loss of 
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'".ead will be either less or more than that given by Eq. (8.47). The exact value of p' 
·.o :ll depend upon the manner in which the fluid eqdies around in the corner 
.:.J1acent to this annular ring. However, the deviation from Eq. (8.47) is quite small 
.1:1d of negligible importance. 

The discharge loss of Sec. 8.17 is seen to be a special case where A 2 is infinite 
.::ompared with A1 or V2 = 0, so that Eq. (8.47) will reduce to Eq. (8.45). 

Gradual Expansion 

To minimize the loss accompanying a reduction in velocity, a diffuser such as 
,;hown in Fig. 8.19 may be used. The diffuser may be given a curved outline, or it 
may be a frustum of a cone. In Fig. 8.19 the loss of head will be some function of 
the angle of divergence and also of the ratio of the two areas, the length of the 
diffuser being determined by these two variables. 

In flow through a diffuser the total loss may be considered as made up of two 
factors. One is the ordinary pipe friction loss, which may be represented by 

f V2 

hL = f -- dL 
. D 2g 

In order to integrate the foregoing, it is necessary to express the variables .f, D, 
and Vas functions of L. For our present purpose it is sufficient, however, merely to 
note that the friction loss increases with the length of the cone. Hence, for given 
values of D 1 and D 2 , the larger the angle of the cone, the less its length and the less 
the pipe friction, which is indicated by the curve marked F in Fig. 8.20a. However, 
in flow through a diffuser, there is an additional turbulence loss set up by induced 
currents which produce a vortex motion over and above that which normally 
exists. This additional turbulence loss will naturally increase with the degree of 
divergence, as is indicated by the curve marked Tin Fig. 8.20a, and if the rate of 
divergence is great enough, there may be a separation at the walls and eddies 
flowing backward along the walls. The total loss in the diverging cone is then 
represented by the sum of these two losses, marked k'. This is seen to have a 
minimum value at 6° for the particular case chosen, which is for a very smooth 
surface. If the surface were rougher, the value of the friction F would be increased. 

l 

c E Figure 8.19. Loss due to gradual enlargement. 
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Figure 8.20. Loss coefficient for conical diffusers. 

Cone angle, a 

(b) 

This increases the value of k', which is indicated by the dotted curve, and also 
shifts the angle for minimum loss to 8 . Thus the best angle of divergence increases 
with the roughness of the surface. 

It has been seen that the loss due to a sudden enlargement is very nearly 
represented by (V1 - V2 f/2g. The loss due to a gradual enlargement is expressed 
as 

h' = k' ~1_=!'2)2 
2g 

(8.48) 

Values of k' as a function of the cone angle rx are shown in Fig. 8.20b, 1 for a wider 
range than appears in Fig. 8.20a. It is of interest to note that at an angle slightly 
above 40 the loss is the same as that for a sudden enlargement, which is 180°, and 
that between these two the loss is greater than for a sudden enlargement, being a 
maximum at about 60). This is because the induced currents set up are worse 
within this range. 

8.20. LOSS IN PIPE FITTINGS 

The loss of head in pipe fittings may be expressed as k V2 j2g, where V is the 
velocity in a pipe of the nominal size of the fitting. Typical values of k are given in 
Table 8.3. If preferred, the actual pipe length may be increased by values obtained 

1 A. H. Gibson, Engineering (London). Feb. 16, 1912. These values were based on area ratios of I : 9. 
1 : 4. I : 2.25 and gave one curve up to an angle of about 30 . Beyond that the three ratios gave three 
curves which differed as much as about 18 percent at 60 • where the turbulence was a predominating 
factor, and then drew together again as 180 was approached. The curve here shown is a composite of 

these three. 
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Table 8.3. Values of loss factors for pipe 
fittings* 

Fitting k LID 

Globe valve, wide open 10 350 
Angle valve, wide open 5 175 
Close return bend 2.2 75 
T. through side outlet 1.8 67 
Short-radius elbow 0.9 32 
Medium-radius elbow 0.75 27 
Long-radius elbow 0.60 20 
45' elbow 0.42 15 
Gate valve, wide open 0.19 7 

* Adapted from Flow of Fluids through 
Valves, Fittings. and Pipe, Crane Co., Tech. 
Paper 410, 1965. 

·-;: L D ratios given in the table. However, it must be recognized that these 
~- ~~;:.1te so much turbulence that the loss caused by them is proportional to 

.:.:-.: :-.::nee this latter method should be restricted to the case where the pipe 
.. ,,:cton \\~e\\ \~ m \ne 2one o\ comp\ete \ur\:m\ence. r or very ~moot'n p1pe~. 1t 1~ 
better to use the k values when determining the loss through fittings. 

8.21. LOSS IN BENDS AND ELBOWS 

In flow around a bend or elbow, because of centrifugal effects, there is an increase 
in pressure along the outer wall and a decrease in pressure along the inner wall. As 
a result of this unbalanced condition a secondary flow develops as shown in 
Fig. 8.21. This combines with the axial velocity to form a double spiral flow which 
persists for some distance. Thus not only is there some loss of energy within the 
bend itself, but this distorted flow condition persists for some distance down
stream until dissipated by viscous friction. Thus the velocity in the pipe may not 
become normal again within as much as 100 pipe diameters downstream from the 

Outside 

l 

Inside Figure 8.21. Secondary flow in bend. 
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Figure 8.22. Vaned elbow 

bend. In fact, more than half the friction loss produced by a bend or elbow takes 
place in the straight pipe following it. 

Most of the loss of head in a sharp bend may be eliminated by the use of a 
vaned elbow, such as is shown in Fig. 8.22. The vanes tend to impede the forma
tion of the secondary flows that would otherwise occur. 

The head loss produced by a bend (hb = kb V2 /2g) is greatly dependent upon 
the ratio of the radius of curvature to the diameter of the pipe, and combinations 
of different pipe bends placed close together cannot be treated by adding up the 
losses of each one considered separately. The total loss depends not only upon the 
spacing between the bends, but also upon the relations of the directions of 
the bends and the planes in which they are located. Bend loss is not proportional 
to the angle of the bend; for 22.5 and 45" bends the losses are respectively about 40 
and 80 percent of the loss in a 90° bend. Information on values of kb is available 
in the literature. 1 

8.22. SOLUTION OF PIPE-FLOW PROBLEMS 

We have examined the fundamental fluid mechanics associated with the frictional 
loss of energy in pipe flow. While the interest of the scientist extends very little 
beyond this, it is the task of the engineer to apply these fundamentals to various 
types of practical problem. Pipe-flow problems may be classified according to 
whether the solution may be obtained by direct computation or whether it requires 
a trial-and-error procedure. In the direct-solution problem the size, length, and 
roughness of the pipe are given, together with the rate of discharge. The head loss 
may be found by application of the pipe-friction equation, together with consider
ation of minor losses. This determines the slope of the energy grade line and such 
quantities as the water-surface elevation in one or more reservoirs. 

The indirect-solution problems are of two principal types: ( 1) given pipe 
lengths, diameters, and head loss, find the flow; and (2) given the flow and the 
hydraulic gradient, find the required diameter. The feature of these problems 

1 R. J. S. Pigott, Pressure Losses in Tubing, Pipe, and Fittings, Trans. ASM E. vol. 72, p. 679, Jul!. 
1950. See also: H. W. King and E. F. Brater, "Handbook of Hydraulics," 5th ed., McGraw-Hill Booh 
Co., New York, N.Y., 1963. 
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• -:ch require a trial-and-error solution, is the variation of fwith the Reynolds 
!L ~xr. The usual procedure (see Illustrative Example 8.4) is to assume a reason
L:' .. : \ alue off by referring to Fig. 8.11. This will then lead, through the pipe
r:...:::on and energy equations, to a computed velocity and Reynolds number. This 
~c::rmines a more accurate value off, and it will generally be necessary to repeat 
::-:: .;olution for new values of V and Q. Asfvaries but little within a small range of 
\ ; . a third trial will rarely be necessary. 

The following example illustrates the method of solution for flow through a 
;:: :;:'"<'line of uniform diameter. 

Illustrative Example 8.5. Referring to Fig. 8.23, find the flow rate through a new lO-in-diameter 
~-~-:-Jron pipe of length 5,000 ft, with z 1 =260ft. Consider the entrance to be sharp-cornered, 
- • ~proJecting. 

From Fig. 8.12. r j D ;:,; 0.00 I. Referring to Fig. 8.11, assume f = 0.020. From Sec. 8.16 we choose a 
. ": Je of k, = 0.5 for the loss at entrance. Then, writing the energy equation between the water surface 
~-J the free jet, 

V
2 

( s ooo) V
2 

0 + 260 + Q = Q + Q + 2 + 0.5 + 0.02 X '
1 

O 
2 

2g T2 2g 

Th 1s gives V~j2g = 2.14 ft and V2 = 11.75 fps. We may now confirm the trial value off by returning to 
F 1g. 8.11, with D" V = 10 x 11.7 5 = 117.5 and r /D = 0.00 I. Again, the chart shows[= 0.020, so no 

~epeat solution is required. The flow is Q = A 2 V2 = 0.545 x 11.75 = 6.40 cfs. 

In the foregoing example it may be seen that with this length of pipe it would 
have made very little difference if the entrance loss and also the velocity head at 
discharge had been neglected altogether. It is generally conceded that, for pipes of 
length greater than 1,000 diameters, the error incurred by neglecting minor losses 
is less than that inherent in selecting a value off In applying this rule one must of 
course use common sense and recall that a valve, for example, is a minor loss only 
when it is wide open. Partially closed, it may be the most important loss in the 
system. 

If the pipe discharged into a fluid that was at a pressure other than atmo
spheric, the proper value of p2 /y would have to be used in the energy equation. 

l 

~ f liz 

v~ l 2g 

'---=---11-----::: 

(a) (b) 

Figure 8.23. Discharge from a reservoir. (a) Free discharge. (b) With nozzle. As L/D gets larger the 
E.L. and H.G.L. approach one another. 
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Another example of flow from a reservoir is that of a penstock leading to an 
impulse turbine. In this case the pipe d~es not discharge freely but ends in a 
nozzle, which has a known or assumed loss coefficient. The head loss in the nozzle 
is associated with the high issuing velocity head and is therefore not a minor loss. 
The procedure is to employ the equation of continuity to place all losses in terms 
of tile velocity head in the pipe. This is the logical choice for the "common 
unlnown" because the trial-and-error solution will again be built around the pipe 
friction loss rather than the nozzle loss. 

Illustrative Example 8.6. In Fig. 8.23 suppose that the pipeline of the preceding example is now 
fitted with a nozzle at the end which discharges a jet 2.5 in in diameter and which has a loss coefficient 
of 0.11. Find the flow rate. Let point 2 now refer to the pipe at the base of the nozzle and point 3 be in 
the jet. The head loss in the nozzle is 0.11 V~ ;2y. Writing the energy equation between 1 and 3, 
neglecting entrance loss. 

V 2 V 2 V 2 

0 + 260 + 0 = 0 + 0 + 3 + 6,000/ 
2 + 0.11 

3 

2y . 2g 2g 

By the continuity equation. V~ 2g = ( 10/2.5) 4 V~ 2g = 256 V~ ,2g. Thus 

v2 
260 = ( l.JJ X 256 + 6,000/) 2 

2y 

A trial value off is selected. Letf = 0.02 for the first assumption. Then 260 = (284 + 120) V~ 12g. from 
which 

v~ 
2y 

260 
= 0.644 ft 

404 

and 1"2 = 8.02.,/0.644 = 6.45 fps. With 10 x 6.45 = 64.5 and 1/D = 0.001, Fig. 8.11 shows f = 0.02. 
In this case the first solution may be considered sufficiently accurate, but in general the value off 
determined from the chart may be materially different from that assumed, and a second trial may be 
necessan. 

The rate of discharge is Q = A 2 V2 = 0.545 x 6.45 = 3.52 cfs, and 

V3 = 16V2 = 16 x 6.45 = 103.2 fps 

As additional information, H 2 = Pz !;· + v~ 2g = 260- 0.02 X 6,000 X 0.644 = 182.72 ft. and the 
pressure head p2 ;· = 182.72 - 0.644 = 182.08 ft. 

This example shows that the addition of the nozzle has reduced the discharge but has given a 
much higher jet velocity. 

We may change Illustrative Examples 8.5 and 8.6 into type-2 problems by 
specifying the rate of discharge and finding the required diameter. Although this 
type of problem can be attacked in exactly the same way as by the foregoing 
procedure. the solution is facilitated by a slightly different procedure if the length 
IS so great that the minor losses are negligible. From the continuity equation, 

· Q A = 4Q nD 2
. Substituting this expression for V in the pipe-friction 

1011. 
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.1-: ~;::arranging, we obtain 

f 
8LQ 2 

2 = constant 
1T ghL 

(8.49) 

~ .. J.!ue off may be assumed more or less arbitrarily and an approximate value of 
·- ~ pipe diameter computed by this equation. This determines the velocity, Rey
- .<Js number, and relative roughness. A new value off is determined with the aid 

·Fig. 8.11, and the computation may be repeated if necessary. In general, the 
: :J.meter so obtained will not be a standard pipe size, and the size selected will 
_,ually be the next largest commercially available size. In planning for the future it 
-:~ ust be recalled that scale deposits will increase the roughness and reduce the 
~ross-sectional area. For pipes in water service, the absolute roughness ( of old 
:--1pes (twenty years and more) may increase over that of new pipes by threefold for 
concrete or cement-lined steel, up to twentyfold for cast iron, and even to fortyfold 
:·or tuberculated wrought-iron and steel pipe. 

If the minor losses and the velocity head in the pipe are not negligible in 
comparison with the pipe friction, the problem may be handled by expressing such 
losses in equivalent lengths of pipe, if possible. and the solution reduces to the 
case just described. In considering problems of pipe size, it is important to realize 
that, for constant[, Q varies as D 5 2

, or to achieve a 100 percent increase in flow, 
the diameter need be increased only 32 percent. 

8.23. PIPELINE WITH PUMP OR TURBINE 

If a pump lifts a fluid from one reservoir to another, as in Fig. 8.24, not only does 
it do work in lifting the fluid the height ~z, but also is has to overcome the friction 
loss in the suction and discharge piping. This friction head is equivalent to some 
added lift, so that the effect is the same as if the pump lifted the fluid a height 
~z + I h1_, without loss. Hence the power delivered to the liquid by the pump is 

.- F 
---·-I-~~..:____~~ 

l 

c 
I 

A __j_ 

B 

Figure 8.24. Pipeline with pump between two reservoirs. 
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H.G.L. 

t 

Figure 8.25. Pipeline with pump and nozzle. 

yQ(L1z + I hL). The power required to run the pump is greater than this, depend
ing on the efficiency of the pump. The total pumping head hP for this case is 

hP = dz + I hL (8.50) 

If the pump discharges a stream through a nozzle, as shown in Fig. 8.25, not 
only has the liquid been lifted a height dz, but also it has received a kinetic energy 
head of V~j2g, where V2 is the velocity of the jet. Thus the total pumping head is 
now 

vz 
h = dz + -~ + " h 

P 2g L., L 
(8.51) 

In any case the total pumping head may be determined by writing the energy 
equation between any point upstream from the pump and any other point down
stream, as in Eq. (4.14). For example, if the upstream reservoir were at a higher 
elevation than the downstream one, then the dz's in the two foregoing equations 
would have negative signs. 

The machine that is employed for converting the energy of flow into mechani
cal work is called a turbine. In flowing from the upper tank in Fig. 8.26 to the 
lower, the fluid loses potential energy head equivalent to dz. This energy is ex
pended in two ways, part of it in hydraulic friction in the pipe and the remainder 
in the turbine. Of that which is delivered to the turbine, a portion is lost in 
hydraulic friction and the rest is converted into mechanical work. 

The power delivered to the turbine is decreased by the friction loss in the 
pipeline, and its value is given by yQ(dz - I h1J The power delivered by the 
machine is less than this, depending upon both the hydraulic and mechanical 
losses of the turbine. The head under which the turbine operates is 

(8.52) 

where I hL is the loss of head in the supply pipe and does not include the 
head loss in the draft tube (DE in Fig. 8.26), since the draft tube is considered an 
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E 

Figure 8.26. Pipeline with turbine. 

integral part of the turbine. The draft tube has a gradually increasing cross
sectional area which results in a reduced velocity at discharge. This enhances the 
efficiency of the turbine because of the reduced head loss at discharge (Sec. 8.17). 
It should be noted that the h1 of Eq. (8.52) represents the energy head removed 
from the fluid by the turbine; this, of course, is identical to the energy head 
transferred to the turbine from the fluid. 

Illustrative Example 8.7. In this problem we will assume that the Reynolds number is high 
enough to assure turbulent flow. A pump is located 15 ft above the surface of a liquid (i' =52 lb/ft 3

) in 
a closed tank. The pressure in the space above the liquid surface is 5 psi. The suction line to the pump 
is 50ft of 6-in-diameter pipe (f = 0.025). The discharge from the pump is 200 ft of S-in-diameter pipe 
(f = 0.030). This pipe discharges in a submerged fashion to an open tank whose free liquid surface is 
10-ft lower than the liquid surface in the pressure tank. If the pump puts 2.0 hp into the liquid, 
determine the flow rate and find the pressure in the pipe on the suction side of the pump. 

From Eq. (4.16), 

Thus 

yQhp 52Qhp 
HP =- = 2 = ---

550 550 

21.2 
h = 

p Q 

Writing the energy equation from one liquid surface to the other, 

- --· - 0.5 6 
- 0.025 . 6 + h - 0.030 8 = - 10 + 8 5(144) V

2 
( 50) V

2 
( 200) V

2 
V

2 

52 2g 6/12 2g p 8112 2g 2g ' 

This reduces to 

or 

By trial, 

23.9 + hp - 2.48Q 2 = 0 

21.2 
23.9 + - 2.48Q 2 = 0 

Q 

Q = 3.48 cfs 
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To obtain pressure. at the suction side of the pump, 

5(144) v~ ( so ) v~ p v~ 
52 - 0.5 2.g - o.o25 6;'12 2g = 15 + ;· + 2g 

where 

t 

from which 

3.48 
v6 = - = 17.7 fps 

0.196 

p=-20.5ft 
i' 

In this type of problem one should check the absolute pressure against the vapor pressure of the 

liquid to see that vaporization does not occur. 

8.24. BRANCHING PIPES 

Suppose that three reservoirs A, B, and C of Fig. 8.27 are connected to a common 
junction J by pipes 1, 2, and 3, in which the friction losses are h1, h2 , and h3 , 

respectively. It is supposed that all pipes are sufficiently long, so that minor losses 
and velocity heads may be neglected. Actually. any one of the pipes may be 
considered leading to or from some destination other than the reservoir shown by 
simply replacing the reservoir with a piezometer tube in which the water level is 
the same as that of the reservoir surface. The continuity and energy equations 
require that the flow entering the junction equal the flow leaving it and that the 
pressure head at J (which may be represented schematically by the open 
piezometer tube shown. with water at elevation P} be common to all pipes. That 
is. for the condition shown: 

l. Q 1 = Qz + Q3 · 
2. Elevation P is common to all. 

If Pis below the surface of B, then the flow will be out of Band Q1 + Q2 = Q3 . 

The diagram suggests several problems, three of which will be discussed below: 

A 

Figure 8.27. Branching pipes. 
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1. Given all pipe lengths and diameters, the surface elevations of two reservoirs, 
and the flow from one, find the surface elevation of the third reservoir. This is a 
direct-solution problem. Suppose that Q1 and the elevations of A and B are 
given. The head loss h1 is determined directly by the pipe-friction equation, 
using Fig. 8.11 to determine the proper value off This fixes P and h2 . The flow 
in pipe 2 may then be determined, assuming a reasonable value off and adjust
ing it if necessary. Condition 1 then determines Q3 , which in turn determines h3 

and the surface elevation of C. 
2. Given all pipe lengths and diameters, the elevations of water surfaces of two 

reservoirs, and the flow to the third, find the elevation of the surface in the third 
reservoir. Suppose Q2 and the surface elevations of A and Care given. Then the 
quantities Q1 - Q3 and h1 + h3 are known. These relations are solved simultan
eously for their component parts in one of two ways: (a) by assuming successive 
distributions of the flows Q1 and Q2 satisfying the first relation, until a distribu
tion is found which also satisfies the head-loss relation; (b) by assuming succes
sive elevations of the piezometer level P, which is to say, distributions of h1 and 
h3 satisfying the second relation above, until a level is found which also satisfies 
the discharge relation. With P known and h2 determined by the given discharge 
Q2 , the elevation of B is easily obtained. 

3. Given all pipe lengths and diameters and the elevations of all three reservoirs, 
find the flow in each pipe. This is the classic three-reservoir problem, and it 
differs from the foregoing cases in that it is not immediately evident whether the 
flow is into or out of reservoir B. This direction is readily determined by first 
assuming no flow in pipe 2; that is, the piezometer level Pis assumed at the 
elevation of the surface of B. The head losses h1 and h3 then determine 
the flows Q1 and Q3 , and depending on whether Q1 > Q3 or Q1 < Q3 , 

the condition of continuity is determined as Q1 = Q2 + Q3 or Q1 + Q2 = Q3 , 

respectively. From this point the solution proceeds as in (b) of case 2 above. 
The piezometer level is moved up or down by trial until the resulting flow 
distribution satisfies the continuity relation. In reaching the final adjusted level 
it is helpful to make a small plot such as is shown in Fig. 8.28 for the case where 

40 

-8 -6 -4 -2 0 2 4 6 8 

QI-(Q2+Q3) 

l 

Figure 8.28 
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Q1 = Q2 + Q3 . Two or three points, with one fairly close to the axis, determine 
a curve which intersects the vertical axis at the equilibrium level of P, that is. for 
the condition Q1 - (Q 2 + Q3 ) = 0. 

8.25. PIPES IN SERIES 

t 
The discussion in Sec. 8.22 was restricted to the case of a single pipe. If the pipe is 
made up of sections of different diameters, as shown in Fig. 8.29, the continuity 
and energy equations establish the following two simple relations which must be 
satisfied: 

(8.53} 

(8.54} 

If the rate of discharge is given, the head loss may be found directly by adding the 
contributions from the various sections. as in Eq. (8.54}. If the total head loss is 
given and the flow is required, the procedure is to write Eq. (8.54) for the head loss 
in each length in terms of the dimensions applying to it; i.e .. 

I . L1 Vi . L2 V~ 
1~.=f1D 7 +f2D,., +··· 

1 _g 2 -Y 

where the values of the friction factorfare chosen from Fig. 8.11 to be in the range 
of reasonable values for the given pipes. By the equation of continuity, the indivi
dual section losses may be expressed in terms of one of the velocity heads. When 
minor losses are to be included, these may also be placed as additive terms in 
Eq. (8.54) and expressed in terms of the same velocity head. Thus. for any pipeline. 
no matter how complex, the total loss of head may be written as 

v2 
h = \" 

L . 2g (8.55) 

This equation may now be solved for V, and then Q can be computed. For better 
accuracy the assumed values off may be adjusted and a second solution obtained. 

---------- --- -- ---.----
A 

h 

! 

B 

Figure !1.29. Pipes in series. 
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.'...nother method of solving this problem is to place all pipes in terms of 
_..: .. l\ alent lengths of one given pipe size, usually the one which figures most 
:-~c•minently in the system. By equivalent length is meant a length Le of pipe of a 
.c~:ain diameter D" which for the same flow will give the same head loss as the 
- re of length Land diameter D under consideration. Thus, from the pipe-friction 
.::~J continuity equations, 

(8.56) 

In case empirical formulas or pipe diagrams are being used, the equivalent length 
;, established by the relation S = h1_ L or Le = L(S/Se), where the values of the 
hydraulic slope are obtained for any assumed rate of discharge. 

The equivalent-length method is especially useful where there are minor 
losses, such as bends, which are already expressed in terms of equivalent lengths of 
pipe. The compound-pipe problem is then reduced to that of a single pipe of a 
certain total length, and it may be solved by the methods previously outlined. 

Illustrative Example 8.8. Suppose in Fig. X.29 the pipes I. 2. and 3 are 300 m of 30-cm-diameter. 
ISO m of 20-cm-diameter. and 250 n1 of 25-cm-diamcter. respecti,elv of new cast iron and are convey

ing 15 C water. If h = 10 m. find the rate of !low from A to B. 

(a) HY THE H)t:IVALf]';T-HLOCITY-HEAD \IETHOD. For cast-iron pipe 1 = 0.25 111111 (Table 8.1): 
hence the corresponding values for' Dare: 0.00083.0.00125. and 0.001. and from Fig. 8.11 we will 
assume j 1 = O.oi9. / 2 = ll.021. and /, = 0.020. Then. 

From continuity 

Similarly 

and thus 

from which 

Hence 

10=0.019 1 +0.021 2 +0.o20 3 
(

300) V
2 

( 150) V
2 

( 250) V
2 

0.3 2y 0.2 2y 0.25 2y 

V2 ~- 2 D " V2 '10 " V' 
1= I( I) = I(·) =5.06 I 

2y 2y D2 2y 20 2g 

V 2 V 2 
3 = 2.08 I 

2y 2g 

Vi ( 1.000 750 1,000 ) 
10 = 

2
il 0.019 l + 0.021 I 5.06 + 0.020 l 2.08 

l'' 
I = 0.072 m 

2y 

11 = , 2(9.81 m s 2 )(0.072 m) = 1.18 m s 

The corresponding \alues of .V Rare 0.31 x 106
• 1.05 x 106

• and 0.54 x 106
: the corre~onding 

friction factors arc only slight!) different from those originally assumed smcc the Aow is at"Reynolds 
numbers very close to those at which the pipes behave as rough pipes. 

Hence 

Greater accuracy would have been obtained if the friction factors had been adjusted to match the 
pipe-friction chart more closely and if minor losses had been included. In that case. Q = 0.086 m 3 s. 
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(h) BY THE'EQUIVALENT-LENGTII METHOD. Choose the 30-cm pipe as the standard. Using the 
above values offin Eq. (8.56) 

Pipe 2: 

.Pipe 3: 
t 

Thus 

as above. 

(
0.021) (30)

5 

L, = 150 
0

_
019 20 

= 1,260 m of 30-cm pipe 

L. = 25o(
0

·
020

) ( 
30

) 
5 

= 650 m of 30-cm pipe 
' 0.019 25 

Add pipe I = 300 m of 30-cm pipe 

Total L, = 2,210 m of 30-cm pipe 

10 = 0.019 2,210 Vi 
0.30 2g 

v2 
1 

= 0.072 m 
2g 

V1 = 1.18 mjs and 

8.26. PIPES IN PARALLEL 

In the case of flow through two or more parallel pipes, as in Fig. 8.30, the continu
ity and energy equations establish the following relations which must be satisfied: 

smce 

(8.57) 

(8.58) 

as the pressures at A and Bare common to all pipes. If the head loss is given, the 
total discharge may be computed directly by adding the contributions from the 
various circuits, as in Eq. (8.57). If the total flow is given and the head loss and 
distribution of the flow among the circuits are required, the procedure is to write 
Eq. (8.58) for the flow in each circuit in terms of the dimensions applying to it. 

------··-------~ ---,---
h 
1.__ 

Figure 8.30. Pipes in parallel. 
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This may be accomplished by observing that the loss of head in any circuit is 

where I k is the sum of the minor-loss coefficients, which may usually be neg
lected if the pipe is longer than 1,000 diameters. Solving for V and then Q, the 
following is obtained for pipe I: 

Ql =A! v! = A!r;r~:~~!h)\ ~k =CIA (8.59) 

where C1 is constant for the given pipe, except for the change infwith Reynolds 
number. The flows in the other pipes may be similarly expressed, using reasonable 
values off from Fig. 8.11. Finally, Eq. (8.57) becomes 

Q = c!JhL + CzJh~ + c3JhL = A(Cl + Cz + C3) 

This enables a first determination of hL and the distribution of flows and velocities 
in the pipes. Adjustments in the values off may be made next, if indicated, and 
finally a corrected determination of hL and the distribution of flows. 

As a variation of the foregoing method, an approximate solution of parallel 
pipes may be obtained by assuming a reasonable value of hL and computing the 
resulting individual flows and the percentage distribution of flow. This percentage 
distribution will not change greatly with the magnitude of the flow and may then 
be applied to find the actual distribution of the total discharge. The accuracy of 
the solution may be checked by comparing the computed head losses in the 
separate circuits. They should be the same. 

It is instructive to compare the solution methods for pipes in parallel with 
those for pipes in series. The role of the head loss in one case becomes that of the 
discharge rate in the other, and vice versa. The student is already familiar with this 
situation from the elementary theory of d-e circuits. The flow corresponds to the 
electrical current, the head loss to the voltage drop, and the frictional resistance to 
the ohmic resistance. The outstanding deficiency in this analogy occurs in the 
variation of potential drop with flow, which is with the first power in the electrical 
case (E = I R) and with the second power in the hydraulic case (hL ~ V2 ~ Q2

) for 
fully developed turbulent flow. 

8.27. PIPE NETWORKS 
l 

An extension of compound pipes in parallel is a case frequently encou;tered in 
municipal distribution systems, in which the pipes are interconnected so that the 
flow to a given outlet may come by several different paths, as shown in Fig. 8.31. 
Indeed, it is frequently impossible to tell by inspection which way the flow travels, 
as in pipe BE. Nevertheless, the flow in any network, however complicated, must 
satisfy the basic relations of continuity and energy as follows: 
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Figure 8.31. Pipe network. 

1. The flow into any junction must equal the flow out of it. 
2. The flow in each pipe must satisfy the pipe-friction laws for flow in a single 

p1pe. 
3. The algebraic sum of the head losses around any closed circuit must be zero. 

Pipe networks are generally too complicated to solve analytically, as was 
possible in the simpler cases of parallel pipes (Sec. 8.26). A practical procedure is 
the method of successive approximations, introduced by Cross. 1 It consists of the 
following elements, in order: 

1. By careful inspection assume the most reasonable distribution of flows that 
satisfies condition 1. 

2. Write condition 2 for each pipe in the form 

hL = KQ" (8.60) 

where K is a constant for each pipe. For example, the standard pipe-friction 
equation in the form ofEq. (8.59) would yield K = l/C 2 and n = 2 for constant 
f The empirical formulas (8.42) and (8.43) are seen to be readily reducible to 
the desired form. Minor losses within any circuit may be included, but minor 
losses at the junction points are neglected. 

3. To investigate condition 3, compute the algebraic sum of the head losses 
around each elementary circuit, L h1. = L KQ". Consider losses from clock
wise flows as positive, counterclockwise negative. Only by good luck will these 
add to zero on the first trial. 

4. Adjust the !low in each circuit by a correction, ~Q, to balance the head in that 
circuit and give L KQ" = 0. The heart of this method lies in the determination 
of ~Q. For any pipe we may write 

Q = Qo + ~Q 

1 Hardy Cross. Analysis of Flow in Networks of Conduits or Conductors. L'nir I 1/. Eng. Expt. Sta. 
Bull. 286, 1936. 
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where Q is the correct discharge and Q0 is the assumed discharge. Then, for 
each pipe, 

h1. = KQ" = K(Q 0 + ~Q)" = K(Q0 + nQ0- 1 ~Q + · · ·) 
If ~Q is small compared with Q0 , the terms of the series after the second one 
may be neglected. Now, for a circuit with ~Q the same for all pipes, 

I hL =I KQ" =I KQ'O + ~Q I KnQ0- 1 = 0 

As the corrections oT head loss in all pipes must be summed arithmetically, we 
may solve this equation for ~Q, 

-I hL 
~~ t f h-~./Qo I (8.61) 

as, from Eq. (8.60), hdQ = KQ"- 1
. It must be emphasized again that the 

numerator ofEq. (8.61) is to be summed algebraically, with due account of sign, 
while the denominator is summed arithmetically. The negative sign in Eq. (8.61) 
indicates that when there is an excess of head loss around a loop in the clock
wise direction, the ~Q must be subtracted from clockwise Q0 's and added to 
counterclockwise ones. The reverse is true if there is a deficiency of head loss 
around a loop in the clockwise direction. 

5. After each circuit is given a first correction, the losses will still not balance 
because of the interaction of one circuit upon another (pipes which are 
common to two circuits receive two independent corrections, one for each 
circuit). The procedure is repeated, arriving at a second correction, and so on, 
until the corrections become negligible. 

Either form of Eq. (8.61) may be used to find ~Q. As values of K appear in 
both numerator and denominator of the first form, values proportional to the 
actual K may be used to find the distribution. The second form will be found most 
convenient for use with pipe-friction diagrams for water pipes. 

An attractive feature of the approximation method is that errors in com
putation have the same effect as errors in judgment and will eventually be 
corrected by the process. 

The pipe-network problem lends itself well to solution by use of a digital 
computer. 1 Programming takes time and care, but once set up, there is great 
flexibility and many man-hours of labor can be saved. 

IllustratiYe Example 8.9. The method of succcssi\e approximations is applied to a simpf pipe 
network of two loops. For simplicit,. 11 is taken equal to~ and the \alue of K for each pipe is-made a 
simple integer. 

1 Lyle N. Hoag and Gerald Weinberg. Pipeline Network Analysis by Electronic Digital Computer . 
.! . . ·1111. Water (Yorks Assoc .. 'ol. 49. pp. 517- 5~9. 1957. 
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Left loop 

2:KQ~ 

1 X 602 = 3,6QQ 

4 X 102 = 4QQ 

4,000/ 

1 X 2 X 60 = 120 

4 X 2 X 10 = 80 

3 X 402 = 4, 8QQ J 3 X 2 X 40 = 240 

• 800} 440 

800 
D.Ql = 446"" 2) 

1 X 62 2 = 3,844 1 X 2 X 62 = 124 
4 X 21 2 = 1,764 4 X 2 X 21 = 168 

First approximation 

5,608) After first correction 

3 X 382 = 4,332) 3 X 2 X 38 = 228 

1,276 I 520 

D.Q = 1,276"" 2) 
2 520 

PROBLEMS 

After second correction 

Right loop 

:::KQ3 :::iKnQ3-'I 

4 X 502 = JQ,QQQ 4 X 2 X 50= 4QQ 

2 X 252 = 1,250 2 X 2 X 25 = 1QQ 

11,2501 

4 X 102 = 4QQ 4 X 2 X 1 Q = 8Q 
5 X 25 2 = 3,125 5 X 2 X 25 = 250 

3,525; 830 

7.725} 

j.Q =7,725"'9) 
1 830 

4X41 2 = 6.724 4 X 2 X 41 = 328 

2 X 162 = 512 2 X 2 X 16 = 64 

7,236) 

4x21 2 = 1.764 4 X 2 X 21 = 168 

5 X 34 2 = 5.780 5 X 2 X 34 = 340 

7,544) 900 

308; 

D.Q = 308"' 0 
2 900 

8.1. An oil with a kinematic viscosity of0.00015 ft 2;s (0.135 St) flows through a pipe of diameter 6 in 
(1'i em). Below what velocity will the now be laminar? 

8.2. An oil with a kinematic viscosity of0.005 ft 2 1s flows through a 3-in-diameter pipe with a velocity 
of 10 fps. Is the now laminar or turbulent'' 

8.3 Hydrogen at atmospheric pressure and a temperature of 50°F has a kinematic viscosity of 
0.0011 ft 2 /s. Determine the maximum laminar flow rate in pounds per second in a 2-in-diameter pipe. 
At this flow rate what is the average velocity'1 

8.4. Air at a pressure of approximately 1,500 kNjm 2
, abs and a temperature of lOO'C flows in a 

!.S-cm-diameter tube. What is the maximum laminar flow rate 0 Express answer in liters per second, 
newtons per second, and kilograms per second. At this flow rate what is the average velocity? 

-~5. What is the hydraulic radius of a rectangular air duct 6 by 14 in'' 

'8.6 .. Steam with a specific weight of 0.25 lb/ft 3 (40 N/m 3
) flows with a velocity of 100 fps (30 m/s) 

through a circular pipe. The friction factorfwas found to have a value of0.016. What is the shearing 
stress at the wall? 

8.7. If the oil of Pro b. 8.2 weighs 58 lb/ft 3
, what will be the flow rate and head loss in a 3,000-ft length 

of 4-in-diameter pipe when the Reynolds number is 800'1 

8.8. In Prob. 8.2 what will be the approximate distance from the pipe entrance to the first point at 
which the flow is established'' 

8.9. With laminar flow in a circular pipe, at what distance from the centerline does the average 

\'elocity occur'1 

'-&.10'. Find the head loss when oil (s = 0.9) of viscosity 0.007 ft 2/s (0.00065 m2/s) flows in a 3-in
(i:S-cn;)-diameter pipe at a rate of 5 gpm (0.30 (Is). 
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1.11 ·,\ :'1 laminar flow in a circular pipe, find the velocities at O.lr, 0.3r, 0.5r, 0.7r, and 0.9r. Plot the 
'"~ •:·: . : rrofile. 

1.1: P~o\e that the centerline velocity is twice the average velocity when laminar flow occurs in a 
~-~ __ ~~ rtpe. 

'll ~- \\hen laminar flow occurs in a two-dimensional passage, find the relation between the average 
l': -· J. \tmum velocities. 

\.I-'· Tests made on a certain 12-in-diameter pipe showed that, when V = 10 fps,f = 0.015. The fluid 
_ ·-= ~ ,, as water at 6<YF, at which temperature its specific weight is 62.37 lb/ft 3

. Find the unit shear at 
·~: .'J.II and at radii of 0, 0.2, 0.3, 0.5, 0.75 times the pipe radius. 

i I::. The absolute viscosity of water at 60 F is 0.0000236 lb·s/ft 2 . If at a distance of 3 in from the 
..;_o;;.:- :er of the pipe of Pro b. 8.l4 the velocity profile gives a value for dujdy of 4.34 per second, find the 

,.,:,•us shear and the turbulent shear at that radius. 

1-16. What is the value of the mixing length I in Prob. 8.15, and what is the value of the ratio ljr0 ? 

~. 6. Water at 40· C flows in a 20-cm-diameter pipe with V = 5 mjs. Head loss measurements indicate 
.:-:;_ t ( = 0.022. Determine the value of (. Find the shear stress at the wall of the pipe and at r = 4 em. 
·,\c. at is the value of dujdy at r = 4 em? 

>U8. If water at 60 F enters a pipe with a uniform velocity of 10 fps, what is the distance at which the 
-- J.nsition occurs from a laminar to a turbulent boundary layer? 

S.19. If the thickness of this initial laminar boundary layer is given by 4.91 Jvx/U, what is the 
· ~.1ckness reached by it at the point of transition in Pro b. 8.18? 

IUO. If water in a pipe is at a temperature of60 F ( 15"C), the mean velocity is 12 fps (3.5 m/s), and the 
.alue ofjis 0.015, what is the nominal thickness rl1 of the viscous sublayer? 

8.21. What will be the thickness of the viscous sublayer for the preceding problem if the velocity is 
:ncr eased to 20 fps? 

8.22. For the data in Prob. 8.20, what is the distance from the wall to the assumed limit of the 
rra-n_sition region where true turbulent flow begins 0 

8.23) What is the thickness of the viscous sub layer for the flow ofProb. 8.17. Is this pipe behaving as a 
v.'liolly rough pipe? 

8.24. Express Eq. (8.25) in terms of pipe diameter, friction factor, and Reynolds number. 

8.25. Find the head loss in a 6-in-diameter pipe having 1 = 0.042 in when oil (s = 0.90) having a 
\ iscosity of0.0008 lb·s/ft 2 flows at a rate of 15 cfs. Determine the shear stress at the wall of the pipe and 
the velocity at 2.0 in from centerline. 

8.26. When water at 150 F flows in a 0.75-in-diameter copper tube at 1.0 gpm, find the head loss per 
100 ft. What is the centerline velocity, and what is the value of i51? 

8.27. Repeat Pro b. 8.26 for flow rates of 0.05 and 20 gpm. 

8.28,, Find the head loss in a 10-cm-diameter pipe having r = 0.85 mm when oil (s = 0.82) having a 
viscosity of0.0052 N·s/m 2 flows at a rate of 40 fjs. Determine the shear stress at the wall of the pipe. 
Find the velocity 2 em from the centerline. Under these conditions is this pipe behaving as a wholly 
rough, transitional, or smooth pipe') 

8.29. Refer to the data of Prob. 8.28. Above what flow rate will this pipe behave as a wholly rough 
pipe? Below what flow rate will it behave as a smooth pipe? 

8.30. The velocities in a 90-cm-diameter pipe are measured as 5.00 m/s on the centerline and 4.82 mjs at 
r = 10 em. Approximately what is the flow rate? l 

8.31. The velocities in a 36-in-diameter pipe are measured as 15.0 fps at r = 0 in and 14.5 fps at 
r = 4 in. Approximately what is the flow rate? 

8.32. When water at 50 F flows at 3.0 cfs in a 24-in pipeline, the head loss is 0.0003 ft/ft. What will be 
the head loss when glycerin at 68· F flows through this same pipe at the same rate? 

8.33. With turbulent flow in a circular pipe prove that the mean velocity occurs at a distance of 
approximately 0.78r0 from the center line of the pipe. 
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8.11. With laminar flow in a circular pipe, find the velocities at 0.1r, 0.3r, 0.5r, 0.7r, and 0.9r. Plot the 
velocity profile. 

8.12. Prove that the centerline velocity is twice the average velocity when laminar flow occurs in a 
circular pipe. 

8.13. When laminar flow occurs in a two-dimensional passage, find the relation between the average 
and maximum velocities. 

8.14. Tests made on a certain 12-in-diameter pipe showed that, when V = 10 fps,f = 0.015. The fluid 
used was water at 60' F, at which temperature its specific weight is 62.37 lb/ft 3 Find the unit shear at 
the· :-vall and at radii of 0, 0.2, 0.3, 0.5, 0.75 times the pipe radius. 

1 8.15. The absolute viscosity of water at 60"F is 0.(Xl00236 lb·s/ft 2 If at a distance of 3 in from the 
'\"-enter of the pipe of Prob. 8.l4 the velocity profile gives a value for dujdy of 4.34 per second, find the 

v-iscous shear and the turbulent shear at that radius. 

~~-~· What is the value of the mixing length I in Prob. 8.15, and what is the value of the ratio /fr 0 ? 

~.1j. Water at 40 C flows in a 20-cm-diameter pipe with V = 5 mjs. Head loss measurements indicate 
that f = 0.022. Determine the value of'. Find the shear stress at the wall of the pipe and at r = 4 em. 
What is the value of dujdy at r = 4 em? 

8.18. If water at 60 F enters a pipe with a uniform velocity of 10 fps, what is the distance at which the 
transition occurs from a laminar to a turbulent boundary layer? 

8.19. If the thickness of this initial laminar boundary layer is given by 4.91 JvxjU, what is the 
thickness reached by it at the point of transition in Pro b. 8.18? 

8.20. If water in a pipe is at a temperature of60 F (15'C), the mean velocity is 12 fps (3.5 m/s), and the 
value off is 0.015, what is the nominal thickness,), of the viscous sublayer? 

8.21. What will be the thickness of the viscous sub layer for the preceding problem if the velocity is 
increased to 20 fps '1 

8.22. For the data in Prob. 8.20, what is the distance from the wall to the assumed limit of the 
tr:m_sition region where true turbulent flow begins'' 

8.23,) What is the thickness of the viscous sublayer for the flow of Pro b. 8.17. Is this pipe behaving as a 
wholly rough pipe? 

8.24. Express Eq. (8.25) in terms of pipe diameter, friction factor, and Reynolds number. 

8.25. Find the head loss in a 6-in-diameter pipe having £ = 0.042 in when oil (s = 0.90) having a 
viscosity of0.0008 lb·s/ft 2 flows at a rate of 15 cfs. Determine the shear stress at the wall of the pipe and 
the velocity at 2.0 in from centerline. 

8.26. When water at 150"F flows in a 0.75-in-diameter copper tube at 1.0 gpm, find the head loss per 
100 ft. What is the centerline velocity, and what is the value of ,)

1 
'? 

8.27. Repeat Pro b. 8.26 for flow rates of 0.05 and 20 gpm. 

8.28~ Find the head loss in a 10-cm-diameter pipe having 1 = 0.85 mm when oil (s = 0.82) having a 
viscosity of0.0052 N·s/m 2 flows at a rate of 40 f/s. Determine the shear stress at the wall of the pipe. 
Find the velocity 2 em from the centerline. Under these conditions is this pipe behaving as a wholly 
rough, transitional, or smooth pipe'' 

8.29. Refer to the data of Prob. 8.28. Above what flow rate will this pipe behave as a wholly rough 
pipe'' Below what flow rate will it behave as a smooth pipe? 

8.30. The velocities in a 90-cm-diameter pipe are measured as 5.00 m/s on the centerline and 4.82 mjs at 
r = 10 em. Approximately what is the flow rate? • • 

8.31. The velocities in a 36-in-diameter pipe are measured as 15.0 fps at r = 0 in and 14.5 fps at 
r = 4 in. Approximately what is the flow rate? 

8.32. When water at 50 F flows at 3.0 cfs in a 24-in pipeline, the head loss is 0.0003 ft/ft. What will be 
the head loss when glycerin at 68· F flows through this same pipe at the same rate'' 

8.33. With turbulent flow in a circular pipe prove that the mean velocity occurs at a distance of 
approximately 0.78r0 from the center line of the pipe. 
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8.34. Repeat Prob. 8.33 for the case of laminar flow. 

8.35. Kerosene (s = 0.81) flows at a temperature of 80 F (26.5C) in a 2-in (5-cm)-diameter brass 
pipeline at a rate of 10 gpm (160 /js). (a) Find the head loss. (h) For the same head loss what would be 
the rate of flow if the temperature of the kerosene were raised to l20°F ( 50°C) 1 

8.36. Air flows at 50 lb/min in a 4-in-diameter welded-steel pipe at 100 psia and 60 F. Determine the 
head loss and pressure drop in 150 ft of this pipe. Assume the air to be of constant density. 

8.37. ~ir flows at an average velocity of 0.5 m/s through a long 3.2-m-diameter circular tunnel. Find 
the ll:ad-loss gradient at a point where the air temperature and pressure are 15 C and 108 kN!m 2

• abs 
respectively. Find also the shear stress at the wall and the thickness b1 of the viscous sublayer. 

8.38. Repeat Prob. 8.37 for the case where the average velocity is 5.0 m:s. 

8.39. Make a plot of the values of a and f3 versus N R for brass pipes. Take anN R range from 102 to 106 

On the same plot show values of umax' V. 

8.40. The flow rate in a 12-in (30-cm)-diameter pipe is 8 cfs (0.225 m 3 1s). The flow is known to be 
turbulent, and the centerline velocity is 12.0 fps (3. 70 m/s ). Plot the velocity profile, and determine the 
head loss per foot of pipe. 

8.41. What is the head loss per foot of pipe when oil (s = 0.90), having a viscosity of2 x 10· 4 lb·s:ft 2 

(9.6 X 10- 3 N·s m 2 ) flows in a 2-in (5-cm)-diameter welded-steel pipe at 0.15 cfs (4.2 l/s) 1 

8.42. Air at 60'F and atmospheric pressure flows with a velocity of 20 fps through a 2-in-diameter 
_pipe. Find the head loss in 50ft of pipe.(' = 0.0001 in.) 

~.43; Consider water at 50"'F flowing in a 36-in-diameter concrete pipe (1 = 0.02 in). Determine N R, 

um.,'V, r 0 , and 61 for flow rates of 200, 20, 2, 0.2, and 0.02 cfs. Also compute ii1 1. 

8.44. Find the flow rate when 60 F water causes a head loss of 0.25 ft in 100 ft of average cast-iron 
pipe. Diameter of pipe is 6 in. 

8.45. Gasoline with a kinematic viscosity of0.000006 ft 2
, s flows in a 12-in-diameter smooth pipe. Find 

the flow rate when the head loss is 0.4 ft per 100 ft. 

8.46. What size pipe is required to carry oil having a kinematic viscosity of 0.0002 ft 2 s at a rateof 
8.0 cfs if the head loss is to be 0.4 ft·Jb.Jb per 100ft of pipe length"' Assume' = 0.00015 ft. 

8.47. Compute ,\1 for the data of Illustrative Example 8.3. 

8.48. Substitute into Eq. (8.37) the given and computed data of Illustrative Example 8.4 to verify the 
validity of the equation. 

8.49. A straight. new. asphalted cast-iron pipe is 42 in in diameter and 1,000 ft long. Using the value of 
f as determined from Fig. 8.11. find the shear force on the pipe if the fluid is water at 72 F and the 
a\erage velocity is 10 fps. What will be the shear force if the average velocity is reduced to 5 fps '' 

8.50. A steel pipe (1 = 0.0002 ft) of length 15,000 feet is to convey oil (v = 0.0006 ft 2is) at a rate of 
10 cfs from a reservoir of surface elevation 625 ft to one of surface elevation 400 ft. What pipe size 
would you select'' 

8.51. Air at 50 psia and temperature of !50 F flows in a 12- by 18-in rectangular air duct at the rate of 
I Jb min. Find the head loss per 100ft of duct. Express answer in feet of air flowing and in pounds per 
square inch. Assume r = 0.0005 in. 

8.52. Find the approximate rate at which 60 F ( 15 C) water will flow in a conduit shaped in the form 
of an equilateral triangle if the head loss is 2ft per 100ft (2m per 100m). The cross-sectional area of 
the duct is 120 in 2 (775 cm 2

) and r = 0.0018 in (0.045 mm). 

8.53. Find the value of the Hazen-Williams coefficient for the water flow in Prob. 8.32. 

8.54. Find the value of the Hazen-Williams coefficient for the case where water flows at 0.18 m 3 
'S in a 

60-cm-diameter pipeline with a head loss of 0.0012 m m. 

8.55. In a field test of the !6-ft-diameter Colorado River aqueduct Manning's 11 was found to have a 
value of 0.0132 when 50·F water was flowing at a Reynolds number of 10.5 x 106 Determine the 
average value of r for this conduit. 
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8.56. Prove that for a constant rate of discharge and a constant value of.fthe friction loss in a pipe 
varies inversely as the fifth power of the diameter. 

8.57. Two long pipes are used to convey water between two reservoirs whose water surfaces are at 
different elevations. One pipe has a diameter twice that of the other. If both pipes have the same value 
off and if minor losses are neglected. what is the ratio of the flow rates through the two pipes? 

8.58. A 12-in-diameter pipe with a friction factor(= 0.02 conducts fluid between two tanks at 10 fps 
(3 mis). The entrance and exit conditions to and from the pipe are flush with the wall of the tank. Find 
the ratio of the minor losses to the pipe friction loss if the length of the pipe is (a) 5 ft ( 1.5 m); (b) 100 ft 
(30m): (c) 2.000 ft (600 m). 

8.59. For a diameter ratio of l : 2 and a velocity of 20 fps in the smaller pipe. find the loss of head due 
to (a) sudden contraction; (h) sudden enlargement: (c) expansion in a conical diffuser with a total angle 
of 20 and 6 . 

8.60. A smooth pipe 12 in (30 em) in diameter and 300 ft (90 m) long has a flush entrance and a 
submerged discharge. The velocity is 10 fps (3m s). If the fluid is water at 60CF (15 'C). what is the total 
loss of head'' 

8.61. Suppose that the fluid in Prob. 8.60 were oil with a kinematic viscosity of 0.001 ft 2is 
(9.3 x w- 5 m 2 /s) and a specific gravity of0.925. What would be the head loss in feet (m) of oil and in 
pounds per square inch (k N m 2 )'I 

8.62. A smooth pipe consists of 50ft (15m) of 8-in (20-cm) pipe followed by 300ft (90 m) of 
24-in (60-cm) pipe with an abrupt change of cross section at the junction. It has a flush entrance and a 
submerged discharge. If it carries water at 60 F ( 15 C) in the smaller pipe, with a velocity of 18 fps 
(5.5 mis), what is the total frictional head loss'' 

8.63. In a 100-ft length of 4-in-diameter wrought-iron pipe there are one open globe valve. one 
medium-radius elbow, and-one pipe bend (k. = 0.10) with a radius of curvature of 40 in. The bend is 
90~. and its length is not included in the 100ft. No entrance or discharge losses are involved. If the 
fluid is water at 72"F and the velocity is 6 fps, what is the total frictional head loss? 

8.64. It has been found that with great care laminar flow can be maintained up to N" = 50,000. 
Compute the friction head per 100 ft of pipe for a Reynolds number of 50.000 if (a) the flow is laminar; 
(b) the flow is turbulent in a smooth pipe; (c) the flow is turbulent in a rough pipe with <I D = 0.05. 
Consider two situations, one where the fluid is 60 T water. the other where the fluid is SAE 10 oil at 
150 F. Pipe diameter is 2.0 in. 

8.65. Water at 60T flows through 10,000 ft of 12-in-diamcter pipe between two reservoirs whose 
water-surface elevation difference is 200ft. (a) Find the flow rate if< = 0.0018 in. (b) Find the flow rate 
if< were twenty times larger. 

8.66. How large a wrought-iron pipe is required to convey oil (s = 0.9. p = 0.0008 lb·s·ft 2
) from one 

tank to another at a rate of 1.0 cfs if the pipe is 3.0lXl ft long and the difference in elevation of the free 
liquid surfaces is 40 ft? 

8.67. If the dtameter of a pipe is doubled. what effect does this have on the !low rate for a gi' en head 
loss'1 Consider (a) laminar How; (h) turbulent flow. 

8.68. A 6-in (15-cm)-diamcter pipeline 400ft (120m) long discharges a 2-in (5-cm)-diameter .JCt into 
the atmosphere at a point which is 200ft (60 m) below the liquid surface at intake. The entrance to the 
pipe is a projecting one, with ke = 0.9. and the nozzle loss coefficient is 0.05. Find the flow rate and the 
pressure head at the base of the nozzle, assuming/= 0.03. Water is flowing. 

8.69. A 2.0-m-diameter concrete pipe of length 1560 m for which 1 = 1.5 mm conveys 12}-.. water 
he tween two reservoirs at a rate of 8.0 m 3 s. What must he the difference in water surface elevation 
~cl\\ een the two reservoirs., 

8.70. A pipe with an average diameter of 62 in is 6,272 ft long and delivers water to a powerhouse at a 
~,,tnt l.V5 ft lower in cle,ation than the water surface at intake. Assume(= 0.0::'5. When the pipe 
~eli\ cr> )()() cis. what i' tt> cftictenc\ ., What is the horsepower delivered to the plant'' 

X."l. Ftnd the kilowatt lo" m 1.00 . .1 m of '0-cm-diameter pipe for which 1 = 0.05 mm when 45 C 

-.:-_:~c 1JJ! (, =0.~.:'_.;;) tlov." at tl~2 tT' 
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8.72. California crude oil at 100'F, at which temperature its kinematic viscosity is 0.0004 ft 2/s, is 
pumped through a 2-in pipe (£ = 0.001 in). Its specific weight is 59.8 lb/ft 3

. (a) At what maximum 
velocity would the flow still be laminar? (b) What ~ould then be the loss in energy head in pounds per 
square inch per 1,000 ft of pipe? (c) What would be the loss in energy head per 1,000 ft if the velocity 
were three times the value in (a)? 

8.73. Water flows in a 6-in (15-cm) vertical pipe with a velocity of 10 fps (3 m/s). The end of the pipe is 
3ft (0.9 m) below the surface. Considering all losses and withf= 0.025, find the pressure at a point 
10rfr(3 m) above the surface of the water when the flow is (a) upward; (b) downward. 

8.74. A horizontal pipe 6 in in diameter and for which f = 0.025 projects into a body of water 3 ft 
below the surface. Considering all losses, find the pressure at a point 13ft from the end of the pipe if the 
velocity is 10 fps and the flow is (a) from the pipe into the body of water; (b) from the body of water 
into the pipe. 

8.75. A pipe runs from one reservoir to another, both ends of the pipe being under water. The intake is 
nonprojecting. The length of pipe is 500ft (150m), its diameter is 10.25 in (26 em), and the difference 
in water levels in the two reservoirs is 110 ft (33.5 m). Iff= 0.02, what will be the pressure at a point 
300ft (90 m) from the intake, the elevation of which is 120ft (36m) lower than the surface of the 
water in the upper reservoir? 

8.76. A pipeline runs from one reservoir to another, both ends being under water, and the intake end is 
nonprojecting. The difference in water levels in the two reservoirs is 110 ft, and the length of pipe is 
500 ft. (a) What is the discharge if the pipe is 10.25 in in diameter and f = 0.022? (b) When this same 
pipe is old, assume that the growth of tubercles has reduced the diameter to 9.5 in and thatf = 0.06. 
What then will be the rate of discharge? 

8.77. A pump delivers water through 300 ft of 4-in fire hose to a nozzle which throws a l-in-diameter 
jet. The loss coefficient of the nozzle is 0.04. and the value off is 0.025. The nozzle is 20ft higher than 
the pump, and it is required that the jet velocity be 70 fps. What must be the pressure in the hose at the 
pump 0 

8.78. A jet of water is discharged through a nozzle at a point 200 ft below the water level at intake. The 
jet is 4 in in diameter, and the loss coefficient of the nozzle is 0.15. If the pipeline is 12 in in diameter, 
500 ft long, with a nonprojecting entrance, what is the pressure at the base of the nozzle? Assume 
J=O.oJ5. 

8.79. A riveted-steel pipeline 2,000 ft (600 m) long is 5 ft ( 1.5 m) in diameter. The lower end is 140 ft 
( 42.5 m) below the level of the surface at intake and is joined to a turbine at this lower end. If the 
efficiency of the pipeline is 95 percent. find the power delivered to the turbine. 

8.80. Water at 140'F flows in 0.824-in-diameter iron pipe (< = 0.00015 ft) of length 400 ft between 
points A and B. At point A the elevation of the pipe is 104.0 ft and the pressure 8.20 psi. At point B the 
elevation of the pipe is 99.5 ft and the pressure is 6.05 psi. Compute the flow rate as accurately as you 
can. 

8.81. A 10-in pipeline is 3 miles long. Let f = 0.022. If 4 cfs of water is to be pumped through it, the 
total actual lift being 20 ft, what will be the horsepower required if the pump efficiency is 70 percent 0 

8.82. In Fig. 8.24 assume pipe diameter= 10 in, BC =20ft, DE= 3,000 ft, and l'.z = 135 ft. Assume 
f = 0.022. If Q = 7 cfs of water and the pump efficiency is 80 percent, what is the power required? 

8.83. In Prob. 8.82, if the elevation of C above the water surface is 13 ft, that of Dis 15 ft, and that of E 
is 110 ft, compute the pressures at C. D, and E. 

8.84. In Fig. 8.24 assume a pipe diameter of 40 em, BC = 10 m, DE= 850 m, and l'.z = 45 m. Assume 
f = 0.0 18. Find the maximum theoretical flow rate if 15 T water is being pumped at an altitude of 
2,000 m above sea level. Point C is 5.0 m above the water surface of the lower reservoir. 

8.85. In Fig. 8.24 assume that the pipe diameter is 3 in, BC = 20 ft, DE= 200 ft, and l'.z = 70 ft. The 
elevation of C above the water surface is 15 ft. Assume!= 0.04. (a) If the pressure head at Cis to be no 
less than -25 ft, what is the maximum rate at which the water is pumped 0 (b) If the efficiency of the 
pump is 60 percent. what is the power required 0 

8.86. Refer to Fig. 8.25. Suppose that water-surface elevation, elevation of pump, and elevation of 
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nozzle tip are 100,90, and 120ft, respectively. Pipe BC is 40ft long, 8 in in diameter.! = 0.025; pipe DE 
is 200 ft long, 10 in in diameter, f = 0.030; jet diameter is 6 in, and nozzle loss coefficient is 0.04. 
Assume the pump is 80 percent efficient under all conditions of operation. Make a plot of flow rate and 
Pc h' versus pump horsepower input. At what flow rate will cavitation occur in the pipe at C if the water 
is at 50°F and atmospheric pressure is 13.9 psia? 

8.87. A 12-in (30-cm) pipe 10,000 ft (3,000 m) long for which.f = 0.02 discharges freely into the air at 
an elevation 15 ft (4.5 m) lower than the surface of the water at intake. It is necessary that the flow be 
doubled by inserting a pump. If the efficiency of the latter is 70 percent, what will be the power 
required? 

8.88. When a certain pump is delivering 1.2 cfs of water, a pressure gage at D (Fig. 8.25) reads 2~ psi, 
while a vacuum gage at C reads 10 in Hg. The pressure gage at Dis 2 ft higher than the vacuum gage at 
C. The pipe diameters are 4 in for the suction pipe and 3 in for the discharge pipe. Find the power 
delivered to the water. 

8.89. A certain turbine in a testing laboratory has been found to discharge 12 cfs (340 (.s) under a 
head of64 ft (19.5 m). It is to be installed at the end of a 12-in (30-cm) pipe 500ft (150m) long with a 
flush entrance. The total fall from the surface of the water at intake to the surface of the tailwater is 
48ft (14.5 m). Assume f = 0.02 for the pipe. What will be the net head on the turbine, the rate of 
discharge, and the power delivered to it? Note that for turbines, Q x Jh~ (Eq. 14.11). 

8.90. If in Illustrative Example 8.7 the vapor pressure of the liquid is 2.0 psia and the atmospheric 
pressure is 14.4 psi, what is the maximum theoretical flow rate? 

8.91. In Fig. 8.26 assume pipe diameter= 12 in (30-cm), BC =200ft (60 m); t.z = 120ft (36.5 m), 
and{= 0.021. The entrance to the pipe at the intake is flush with the wall. (a) If Q = 8 cfs (225 f s) of 
water, what is the head supplied to the turbine? (b) What is the power delivered by the turbine if its 
efficiency is 75 percent? (c) What is the efficiency of the penstock? 

8.92. Assume the total fall from one body of water to another is 120 ft. The water is conducted through 
200 ft of 12-in pipe with the entrance flush with the wall. Let f = 0.021. At the end of the pipe is a 
turbine and draft tube which discharged 5 cfs of water when tested under a head of 43.8 ft in another 
location. What would be the rate of discharge through the turbine and the net head on it under the 
present conditions? Note that for turbines, Q x Jh, (Eq. 14.11 ). 

8.93. Refer to Fig. 8.23b. Suppose M =50ft (15m) and the pipe is 600ft (180 m) of 8-in (20-cm)
diameter pipe (f = 0.025). Find the jet diameter that will result in the greatest jet horsepower. Assume 
the nozzle loss coefficient is 0.05. 

8.94. A 6-in-diameter pipe (f = 0.032) of length 100 ft connects two reservoirs whose water-surface 
elevations differ by 10 ft. The pipe entrance is flush, and the discharge is submerged. (a) Compute the 
flow rate. (b) If the last 10ft of pipe were replaced with a conical diffuser with a cone angle of 10', 
compute the flow rate. 

8.95. Suppose that, in Fig. 8.27, pipe I is 36-in smooth concrete, 5,000 ft long; pipe 2 is 24-in new cast 
iron, 1,500 ft long; and pipe 3 is 18-in new cast iron. 4,000 ft long. The elevations of water surfaces in 
reservoirs A and Bare 200 and 150 ft. respectively, and_the discharge Q 1 is 50 cfs. Find the elevation of 
the surface of reservoir C. 

8.96. With the sizes and lengths of pipes given in Prob. 8.95, suppose that the surface elevations of 
reservoirs A and Care 200 and 125 ft. respectively, and the discharge Q2 is 20 cfs into reservoir B. Find 
the surface elevation of reservoir B. 

8.97. Suppose, in Pro b. 8.96, that the discharge Q 2 is known to be 20 cfs from reservoir B. Find the 
elevation of the surface of reservoir B. l 

8.98. Suppose, in Fig. 8.27, that pipes I, 2, and 3 are 900 m of 60 em, 300 m of 45 em, and 1,200 m of 
40 em, respectively, of new welded-steel pipe. The surface elevations of A, B, and Care 30, 18, and 0 m, 
respectively. Find the water flow in all pipes. Assume a normal temperature. 

8.99. Suppose that, in Fig. 8.27. pipe I is 1,500 ft of 12-in new cast-iron pipe, pipe 2 is 800 ft of 6-in 
wrought-iron pipe, and pipe 3 is 1,200 ft of 8-in wrought-iron pipe. The water surface of reservoir B is 
20 ft below that of A, while the junction J is 35 ft below the surface of A. In place of reservoir C. pipe 3 
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leads away to some other destination but its elevation at Cis 60 ft below A. When the pressure head at 
J is 25 ft, find the flow in each pipe and the pressure head at C. 

8.100. Suppose that in Fig. 8.29 pipes 1. 2. and 3 art: 500 ft of 3.068-in. 200 ft of 2.067-in. and 400 ft of 
2.469-in wrought-iron pipe. With a total head loss of 20 ft from A to R find the flow of 60 F water by 
the equivalent-velocity-head method. 

8.101. Repeat Prob. 8.98 for the case where the tluid is an oil (s = 0.9. I'= 0.0008 lb · s ft 2
). 

8.10~ Suppose that in Fig. 8.30 pipes I. 2. and 3 are 500 ft of 2-in, 300 ft of 3-in. and 700 ft of 4-in. 
re~ectively. The pipes are all smooth brass. When the total flow of 80 F crude oil (.1 = 0.855) is 0.6 cfs. 
find the head loss from A to B and the flow in each pipe. 

8.103. Repeat Prob. 8.102 for the case where the flow rate is 0.06 cfs. 

8.104. Suppose that in Fig. 8.30 pipes I. 2. and 3 are copper tubing as follows: 80 m of 3 ern. 100m of 
4 ern and 80 m of 5 em. respectively. When the total flow of 40 C crude oil (s = 0.855) is 5 f s, find the 
head loss from A to B and the flow in each pipe. 

8.105. Repeat Prob. 8.104 for the case where the total flow rate is 0.40 !is. 

8.106. A pipeline 800ft long discharges freely at a point 150ft below the water level at intake. The pipe 
projects into the reservoir. The first 500 ft is 12 in in diameter. and the remaining 300 ft is 8 in in 
diameter. Find the rate of discharge, assuming/= 0.04. 

8.107. The junction of the two sizes of pipe in Pro b. 8.106 is 120ft below the surface of the water level. 

Find the pressure just above C and just below C. where C denotes the point ofjunction. Assume a 
sudden contraction at this point. 

8.108. Three new cast-iron pipes. having diameters of 30. 24. and 18 in. respectively. each 500ft long. 
are connected in series. The 30-in pipe leads from a reservoir. and the 18-in pipe discharges into the air 

at a point 12 ft below the water surface in the reservoir. Assuming all changes in section to be abrupt. 
find the rate of discharge of water at 60 F. 

8.109. The pipes in the system shown in the figure are all new cast iron. With a flow of 20 cfs. find the 
head loss from A to D. 

3,500' of 14' 

2 

3,000' of 24" 2,500' of 12' 5,000' of 30' 

A 1 B 3 C 5 D 

3,000' of 16" 

4 Problem 8.109 

8.110. With the same head loss as found in Prob. 8.109, find the percentage increase in the capacity of 
the system to be gained by adding another 12-in pipe 2,500 ft long between B and C. 

8.111. What should be the diameter of a single pipe from B to C of Prob. 8.109 such that it replaces 
pipes 2. 3, and 4 without altering the capacity for the same head loss from A to D ') 

8.112. Compute the flow in each pipe of the system shown in the figure, and determine the pressures at 
Band C. Pipe AB is 1,000 ft long. 6 in in diameter, andf= 0.03: pipe BC (upper) is 600 ft long, 4 in in 
diameter. and/= 0.02: pipe BC (lower) is 800ft long. 2 in in diameter, and f = 0.04: pipe CD is 400ft 
long, 4 in in diameter, andf = 0.02. The elevations are reservoir water surface, 100ft: A, 80ft: B, 50ft: 

C. 40ft: and D, 25 ft. 
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Problem 8.112 

~.113. Refer to the figure for Prob. ~.112. Compute the flow in each pipe and determine the pressures 
_, Band C. Pipe AB is 500 m long. 20 em in diameter. andl = 0.03: pipe BC (upper) is 400 m long, 

. '' em in diameter. and f = 0.02. pipe BC (lower) is 300 m long, 15 em in diameter, and f = 0.025: pipe 
l [) is XOO m long. 30 em in diameter. and/= 0018. The clnations are reservoir water surface. 100 m: 
; = XO m. B = 50 m. C = 40 m. and D = I :i m. There is free discharge to the atomosphere at D. 

8.114. A pump is installed to deliver water from a reservoir of surface elevation Lero to another of 
ck1ation 200ft. The 12-in-diameter suction pipe (f= 0.020) is 40ft long, and the lO-in-diameter 
Jhcharge pipe U = 0.032) is 4.500 ft long. The pump head may be defined ash,= 300- 20Q 2

• where 
the pump head. is in feet and Q in cubic feet per second. Compute the rate at which this pump will 

deliver the water. Also, what is the horsepower input to the water'' 

8.115. When fluid of specific weight 50 lb ft 3 flows in a 6-in-diameter pipe, the fricticnal stress between 
the fluid and the pipe wall is 0.5 lb ft 2

. Calculate the head loss per foot of pipe. If the flow rate is 2.0 cfs. 
how much power is lost per foot of pipe'' 

8.116. How much power is lost per meter of pipe length when oil with a viscosity of0.20 1\·s m 2 flows 

in a 20-cm-diameter pipe at 0.50 f s ., The oil has a density of 840 kg m '-
8.117. Referring to the figure. when the pump develops 25 ft of head. the velocity oftlow in pipe Cis 
4 fps. Neglecting minor losses, find (a) the flow rates in cubic feet per second in pipes A and B under 
these conditions and (h) the elevation of pipe Bat discharge. The pipe characteristics are as follows: 
pipe A. 4,000 ft long. 2 ft in diameter. and f = O.m. pipe B. 4.000 ft long. I ft in diameter. and/= 0.03: 
pipe C. 4.000 ft long. 2 ft in diameter. and f = 0.02. 

Elev. 20.0' 

Problem 8.117 

8.118. Repeat Prob. 8.117 for the case where the velocity in pipe C is 5 fps with all other data 
remaining the same. 

8.119. Refer to the figure for Pro b. X.l17. Assume the water surface in the resen oir is at elevation 
100m. Pipes A. B. and C are all 800 m long. and they all have a diameter of 60 ern with f '1.0.025 
Neglecting minor losses, find (a) the flow rates in all pipes and (h) the ele1ation of pipe Bat <tischarge 
under conditions where the pump develops 10 rn of head when the \elocity in pipe C is .1.0 rn s. 

8.120. An 8-in new cast-iron pipe 1.000 ft long forms one link of a pipe network. If the vclocttics to be 
encountered are assumed to fall within the range of 2 to 8 fps, derive an equation for the flow of"ater 
at 60 F in this pipe in the form h~. = KQ". (Hint. Using the information in Figs 8.11 and X.l2. set up 
two simultaneous equations corresponding to the ends oT the desired \elocit: range. then so he for the 
unknowns K and n.) 
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8.121. Solve the pipe network shown in the figure, to find the flow in each pipe. For simplicity, take 
n = 2.0 and use the value off for complete turbulence, as given in Fig. 8.11. All pipe is new cast iron. If 
the pressure head at a is 100 ft. find the pressure he<!d at d (which might represent a fire demand, for 
example). 

c-s 
12" 

t a b -~ 
A 

8" 8" 400' 

t/ I 
8" ...,. C) 

8" ' -j c d 

6" B 6" c 6" 400' 
I 
I 

'" f 
10" g 10" h _1 

'0'::>" i 
500' ___j 0

5 Cf, f..---500'- s Problem 8.121 

8.122. Solve the pipe network shown in the figure. The 12- and 16-in pipes are of new cast iron, while 
the 18- and 24-in sizes are of average concrete. Again. assume n = 2.0 and use the values off from 
Fig. 8.11 for complete turbulence. If the pressure at h is 80 psi. find the pressure at f 

r-----1,000' 500' ----r-- 500' I "'" I I 'l. 

a 18" b 18" (" 18" d 1 
I 

16" B 16" c 16" 800' 

e 12" f 12" 

' ~ 24" A 7 ~ 
I 

18" D 18" 800' 

I 
h 24" i 24" j __ 1 

"'" \<:J Problem 8.122 

·-----------.................... _. .. 



CHAPTER 

NINE 
STEADY FLOW OF 

COMPRESSIBLE FLUIDS 

When dealing with a compressible fluid, if the density change is gradual and not 
more than a few percent, the flow may be treated as incompressible by using an 
average density for best results. However, if Ap/p > 0.05, the effects of compressi
bility must be considered. The purpose of this chapter is to investigate 
compressible-fluid problems that require such considerations. The discussion will 
be limited to steady one-dimensional flow of compressible fluids. It will be seen 
that such problems are more difficult than incompressible-fluid problems because 
of thermodynamic considerations. 

9.1. THERMODYNAMIC CONSIDERATIONS 

To further our understanding of the flow of compressible fluids, it will be aivan
tageous in our discussion to review briefly some thermodynamic principles. The 
thermodynamic properties of a gas (Appendix 3, Table A.5) include the gas con
stant R, specific heat cP at constant pressure, specific heat c" at constant volume, 
and the isentropic exponent k = cp)cv. The density (or specific volume) of a gas 
depends on the absolute pressure and absolute temperature under which it exists; 
for real gases the relationship between these is closely defined by the perfect-gas 

251 



252 FLCID MECHANICS WITH E~GI~EERll\;G APPLICATIONS 

law p/p = pt' = RT, which was discussed in Sec. 1.8. Then we have the equation of 
state of the gas, which is: 

For isothermal conditions, pt· = constant 
For isentropic conditions, prk =constant 
For adiabatic conditions, pr" = constant 

t (Expansion with friction, n < k) 
(Compression with friction, n > k) 

An isothermal process is one in which there is no change in temperature, while 
an adiabatic process is one in which no heat is added to or taken away from the 
flow system. An isentropic process is a frictionless adiabatic process. The solution 
of a compressible-flow problem is similar to that of an incompressible one except 
that the equation of state of the compressible fluid must be introduced into the 
problem. 

The enthalpy h per unit mass of a gas is defined by h = i +pip= ( + RT, 
where i, the internal energy per unit mass due to the kinetic energy of molecular 
motion and the forces between the molecules, is a function of temperature. The 
enthalpy per unit weight is /1 = h!g = I + p/~· = I + R T/ g. Hence enthalpy 
represents the energy possessed by a gas by virtue of the absolute temperature 
under which it exists. 

The specific heat cP at constant pressure is defined as the increase in enthalpy 
per unit of mass when the temperature of a gas is increased one degree with its 
pressure held constant. Thus, 

(9.1) 

where h is the enthalpy per unit of mass. 
The specific heat c, at constant volume is defined as the increase in internal 

energy per unit of mass when the temperature is increased one degree with its 
volume held constant. Thus, 

( ci) 
c,. = fT ,. (9.2) 

where i is the internal energy per unit of mass. 
For perfect gases these equations can be written as dh = cP dT and di = c, dT. 

Now since h = i + p p = i + RT, dh = di + R dT. Combining these relationships 
leads to 

cP = c,. + R (9.3) 

Introducing the specific heat ratio k = cP ;C,. and combining with Eq. (9.3) gives 

k 
c = R 

p k- 1 
and 

R 
c, = k- 1 (9.4) 
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The first law of thermodynamics was discussed in Sec. 4.4. The second law of 
thermodynamics deals with the reversibility of processes. A reversible process is 
one in which after the process the gas returns precisely to its initial state. A 
frictionless adiabatic (isentropic) process is reversible. The flow through a con
verging nozzle where there is little friction and little or no heat transfer can be 
approximated as a reversible process. Flow in a pipeline, however, is an irrever
sible pr-Jcess because of the pipe friction. 

Illustrative Example 9.1. Compute the change in internal energy and the change in enthalpy of 
15 kg of air if its temperature is raised from 20 to 30"C. The initial pressure is 95 kN m 2

• abs. 
Properties of gases are given in Appendix 3. Table A.5. 

N·m 
l'!.i = c (T2 - T1 ) = 716 (30- 20) K 

' (kg)(K) 

l'!.i = 7160 N·m/kg or l'!.i x (15 kg)= 107.400 N·m 

l'!.h = c)T2 - T,) = 1.003(10) = 10.030 N·m kg or l'!.h x (15 kg)= 150.000 N·m 

Illustrative Example 9.2. Suppose the 15 kg of air ( T1 = 20 C) of Illustrative Example 9.1 were 
compressed isentropically to 40 percent of its original volume. Find the final temperature and 
pressure. the work required. and the changes in internal energy and enthalpy. 

The following relations apply: pr- = RT and p1·' = constant. where k = 1.40 for air. 

RT 
pr-' = - c' = RTt·'- 1 =constant 

Since R =constant. T1·'- 1 =constant and 

- (~"')'-! 1.0)""0 T2 - T1 = (273 + 20)( = 422 K = 149 C 
L'2 0.4 

pt• 
= R =constant 

T 

p,r, P2 L'2 

T
1 

~T2 

951· 1 p2(0.4c 1 ) 

293 422 

p 1 = 95 kN m 2
• abs 

and 

Since this is an isentropic process. the work required is equal to the change in internal energy. This 

can be confirmed by computing the values of the pressure and corresponding volumes occupied b; 
the gas during the isentropic process. plotting a pressure-vs-volume curve. and finding the area under 
the curve and thereby determining the work done on the fluid. Thus work is 

8o \'" 1DI2 J -F ds =_I· (F A)A d.,= ( p tf(,ol) 
, lOll 

l'!.i = c,(T2 - T1 ) = 716(422- 293) = 92.400 N·m kg 

l'!.i x 15 kg = 1,386.000 N·m = work required 

l'!.h = c)T2 - T1 ) = 1.003(129) = 129.400 N·m kg 

l'!.h x 15 kg = 1.940.000 Xm 

l 
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9.2. FUNDAMENTAL EQUATIONS APPLICABLE TO 
THE FLOW OF COMPRESSIBLE FLUIDS 

The fundamental equations for the flow of compressible fluids have already been 
stated in Chaps. 3, 4, and 6. For convenience we restate them here. 

w 

C 
t . 

ontmmty 

The expression for continuity for one-dimensional flow of a compressible fluid is 

or 

G = ;A V = constant 

M = pA V =constant 

where G and M are the weight flow rate and mass flow rate respectively. 

Energy Equation 

(9.5a) 

(9.5b) 

For one-dimensional flow of a compressible fluid if there is no machine between 
sections I and 2 the energy equation 1 is expressible as: 

- Vi - v~ 
h, + 7- + Qu = h2 + 7-

~g _g 

where the enthalpy per unit of weight h = I + p/y. 

Impulse-Momentum Equation 

(9.6) 

The impulse-momentum equation (Sec. 6.1) for one-dimensional flow of a com
pressible fluid is: 

(9.7) 

Euler Equation 

For one-dimensional compressible flow m a circular pipe the Euler equation 
(Sec. 4.11) may be expressed as 

dp 
-+ V dV = 
p 

2r ds 
(9.8) 

pr 

In this equation and in Eq. (9.6) the z terms were dropped, for in the flow of 
compressible fluids they arc almost always negligible compared with the other 
terms in the energy equation. 

1 The reader should review Sees. 4.4 and 4.9 for a discussion of the energy equation as it apphcs to 

compressible fluids. 
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Acoustic (Sonic) Velocity 

In Appendix 2 it is shown that the acoustic veloci_ty c = jF;/p = jkRT. This 
represents the celerity at which a pressure wave will travel through a compressible 
fluid. In Chap. 7, an important dimensionless parameter, the Mach number N M, 

was mentioned. NM = V /c, where V is the velocity of flow. If N M < 1, the flow is 
subsonic; if NM = 1, the flow is sonic; if NM > 1, the flow is supersonic. 

9.3. ADIABATIC FLOW (WITH OR WITHOUT FRICTION) 

If heat transfer Q11 is zero, the flow is adiabatic. Hence Eq. (9.6) may be written as 

~ vf - v~ 
h+···=h+-

1 2 2 2 g g 

Since 1111 = (cp/g) 11T, we get for adiabatic flow, 

2 2 - -V2 - V1 = 2g(h 1 - h2 ) = 2cp(T1 - T2 ) 

(9.9) 

(9.10) 

From Eq. (9.4), cP = kR/(k- 1) and for a perfect gas pv = RT. Substituting these 
into Eq. (9.10) gives for adiabatic flow 

2 2 2k ) 2k ( T2 ) 
Vz - VI = k- 1 (Pil'l - Pzl'2 = k- 1 RTI 1 - Tl (9.11) 

The preceding equations are valid for flow either with or without friction. 
Equation (9.9) can be written as 

cP Vf cP V~ cP 
-TI +-=-T,+-=-T 
g 2g g - 2g g ' (9 .12) 

where T, is the stagnation temperature (where Vis zero). Thus, in adiabatic flow, 
the stagnation temperature is constant along a streamline regardless of whether or 
not the flow is frictionless. 

9.4. STAGNATION PRESSURE 

An expression for stagnation pressure in compressible flow may be developed by 
assuming isentropic conditions (Q 11 = 0 and pz·" =constant). From Appendix 2, 
the acoustic (sonic) velocity c = vkp/p = ftRT. Substituting this relation in 
Eq. (9.11 ), noting that V1 = cNM 

1
, where Nw is the Mach number (Sec. l-•). and 

applying Eq. ( 1.7) under isentropic conditions. we get 

, - N + --- I- --v_j - 2 2 r (Pz)(k-l);k I 
C"j M! k- 1 Pi 

(9.13) 

Refer now to Fig. 9.1. which shows a stagnation point in compressible flow. At the 
stagnation point s the increased pressure causes a rise in density and temperature. 
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Figure 9.1. Stagnation point. 

t 
At this point, V2 = v; = 0. Hence, for the situation depicted in Fig. 9.1, Eq. (9.13) 
may be expressed as 

0- . + 1 - --_ ( V0 ) 
2 

2 r ( Ps ) (k- I lik j 
c k- I Po 

where c = acoustic velocity 
V0 = velocity in undisturbed flow 
p0 = pressure in undisturbed flow 

Rearranging this equation, we get 

r (v)2 1k;(k-1) 

~~ = II + co (k - 1 )/2 J 

Substituting k = p0 c6 Po and expanding by the binomial theorem. 

I 2 ( V6 ) p, = Po + 2 Po Vo I + 4c2 + · · · 

V
2 

( 1 ) = p + ·· ___ll. I +- N 2 + · · · 0 I 0 2 4 M 0 g 

(9.14) 

(9.15) 

This equation is identical with Eq. ( 4.32). mentioned earlier. It is applicable only if 
N 11 < I. In determining stagnation pressure, the error from neglecting compres
sibility depends on the Mach number of the flow. At low Mach numbers the error 
is insignificant. but as N,11 approaches unity, the error is sizable. 

Illustrative Example 9.3. Find the stagnation pressure and temperature in nitrogen flowing at 
600 fps if the pressure and temperature in the undisturbed Aow field are 100 psia and 200 F. respec· 

tively. (Sec Appendix 3. Table A.S. for properties of gases.) 

c =, I.:RT = v•(1.4)(1.773)(660) = 1.282 fps 

600 
N ,1 = = 0.468 

. 1.2~2 

kJ>o 1.4(100 x 144) . , 
I' =- = --- - = 0.0123 slug ft· 

0 cf, (1.2X2) 2 

1\ = 100(144) + ~(0.0123)(600) 2 (1 + l(0.46X) 2
] 

= 14AOO + 2.200( I + 0055) = 16.720 lb ft 2 = 116 psi 
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Applying Eq. (9.12). 

6.210 (600) 2 6.210 
--- (660) + -- = -- T. 
32.2 64.4 32.2 ' 

T_ = 695 R = 235 F 

9.5. ISENTROPIC FLOW 

Frictionless adiabatic (QH = 0) flow is referred to as isentropic flow. Such flow 
does not occur in nature. However, flow through a nozzle or flow in a free stream 
of fluid over a reasonably short distance may be considered isentropic because 
there is very little heat transfer and fluid-friction effects are smalL Equations for 
isentropic flow can be derived by substituting pr-k = constant in Eq. (9.11 ). The 
resulting equations for isentropic flow are 

(9.16) 

This equation may also be derived by integrating the Euler equation dp/~· + 
V dVg = 0 along a stream tube. while noting that prk =constant_ 

9.6. EFFECT I 

ONE-DIMENS 

In steady flow the 
This is not the cas 
also influence the v 
there is a change in 
(N11 < I) or super so 
discussion we shall c 

The continuity e, 

Noting that c2 = dp df 
ideal fluid may be expr 

(/ 

-~-+
tip f! 

{ 

;--LOW 

varies inversely with the area. 
usc variations in density will 
)[a compressible fluid. when 
whether the flow is suhsonic 
ne this phenomenon. In this 

differential form as 

~.17) 

tier equation (9.8) for an 

-, dp 
I dl = c-- + V dV = 0 

fl 
(9.18) 
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Applying Eq. (9.12 ). 

c V2 c 
_!'_T, + ···' = JT 
!I 2g g ' 

6.210 (600) 2 6.210 
-- (660) + --- = -- T 
32.2 64.4 32.2 ' 

T, = 695 R = 235 F 

9.5. ISENTROPIC FLOW 

Frictionless adiabatic (Qu = 0) flow is referred to as isentropic flow. Such flow 
does not occur in nature. However. flow through a nozzle or flow in a free stream 
of fluid over a reasonably short distance may be considered isentropic because 
there is very little heat transfer and fluid-friction effects are small. Equations for 
isentropic flow can be derived by substituting pt'k =constant in Eq. (9.11 ). The 
resulting equations for isentropic flow are 

(9.16) 

This equation may also be derived by integrating the Euler equation dp 1;· + 
V dV g = 0 along a stream tube. while noting that pt·k =constant. 

9.6. EFFECT OF AREA VARIATION ON 
ONE-DIMENSIONAL COMPRESSIBLE FLOW 

In steady flow the velocity of an incomprt>ssiblc fluid varies inversely with the area. 
This is not the case with a compressible fluid because variations in density will 
also influence the velocity. Moreover, the behavior of a compressible fluid, when 
there is a change in cross-sectional area. depends on whether the flow is subsonic 
(NM < 1) or supersonic (N~1 > 1 ). We shall now examine this phenomenon. In this 
discussion we shall confine our remarks to ideal flow. 

The continuity equation (9.5h) may be written in differential form as 

dA dp dV 
-+- +-=0 
A p 1· 

(9.17) 

' 
Noting that c2 = dp dp [Appendix 2. Eq. (A.3)]. the Euler equation (9.8) for an 
idt>al fluid may be expressed as 

(9.18) 
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Combining the two preceding equations, replacing V/c with N M, and rearranging, 
we get 

(9 .19) 

Frollol this equation we can arrive at some significant conclusions as follows: 
t 

L For subsonic flow (NM < 1): 

If dV/V > 0, dA/A < 0 (area must decrease for increase in velocity). 
If dV/V < 0, dA/ A > 0 (area must increase for a decrease in velocity). 

2. For supersonic flow (N M > 1 ): 

If dV/V > 0, dA/ A > 0 (area must increase if velocity is to increase). 
If dV/V < 0, dA/ A < 0 (area must decrease if velocity is to decrease). 

3. For sonic flow (NM = 1): 

dA 
- =0 
A 

Thus it is seen that subsonic and supersonic flows behave oppositely if there is 
an area variation. To accelerate a flow at subsonic velocity, a converging passage 
is required just as in the case of an incompressible flow. To accelerate a flow at 
supersonic velocity, however, a diverging passage is required. This is so because 
the decrease in fluid density exceeds the increase in flow velocity; hence, to satisfy 
continuity, the passage must diverge. 

For sonic velocity it is noted that dA/ A = 0. This condition occurs at the 
throat of a converging passage. The occurrence of sonic velocity in the throat of 

V increases 
p decreases 

V decreases 
p Increases 

(a) 

N.,>l---

V decreases 

p increases 

(b) 

Figure 9.2. Effect of area variation on compressible flow. (a) Subsonic flow. (b) Supersonic flow. 
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the passage requires a high pressure differential to accelerate the flow the neces
sary amount to reach sonic velocity. The velocity at the throat will be a maximum, 
but will not necessarily be as great as sonic velocity. If sonic velocity is attained in 
the throat, the flow will become supersonic if the converging passage is followed 
by a diverging one. On the other hand, if the flow in the throat were not sonic, 
there would be a decrease in velocity in the following diverging passage. In 
Fig. 9.2 is shown the behavior of subsonic and supersonic flow through converg
ing and diverging passages. 

9.7. COMPRESSIBLE FLOW THROUGH CONVERGING 
NOZZLE DISCHARGING FROM A LARGE TANK 

Let us now consider one-dimensional flow of a compressible fluid through the 
converging nozzle of Fig. 9.3. We shall assume isentropic conditions. If the velo
city of approach is negligible, Eq. (9.16) can be expressed as 

v~ 
2g 

Noting that c2 = jkgp2 h·2 , the above equation can be rearranged to give 

(9.20) 

(::r = N~2 = k ~ d (;:rk-l)k _ 11 (9.21) 

Thus it is seen that the velocity of flow at the throat (section 2 of the figure) 
depends on the p 1 jp 2 ratio. If there is a large enough pressure differential between 
the inside and outside of the tank, sonic velocity will occur at section 2. From the 
discussion of Sec. 9.6 it is recognized that supersonic flow is impossible in this 
situation. 

Let us now assume the condition of sonic flow at the throat (that is, 
NM 2 = 1.0). Substituting NM 2 = 1.0 into Eq. (9.21), we get the critical pressure 
ratio 

( 
p 2) = ( 2 ) k (k- 1) 

P! c k + 1 
(9.22) 

Figure 9.3. Flow through converging nozzle. 
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This critical pressure ratio exists whenever the flow through the throat is at sonic 
velocity. If the flow through the throat is subsonic, then p2/p1 must be larger than 
the ratio given by Eq. (9.22). 

The rate of flow through the nozzle of Fig. 9.3 may be found by substituting 
V2 from Eq. (9.20) into G = y2 A2 V2 . Making use of the isentropic relation be
tween the p's and ;-'s and rearranging, we get 

G = AzJ;~~-~~~l{~~rk- e~rk+1Jfj t 
(9.23) 

This expression is applicable so long as P/P 1 > (p 2 IPdc• as given by Eq. (9.22). 
To determine the flow through the nozzle when p2 /p 1 < (p 2 /Pdc· we substitute 
P2 /P 1 = (p 2/P 1 )c = [2/(k + l)Jk (k-

11 into Eq. (9.23). The result is 

G' - A J 2g k . , (- 2 ) z <k-= n k - i 
- 2 k - 1 p 1 

I 
1 k + 1 k + I 

(9.24) 

This equation may also be expressed as 

G' = g J~11 J ~(k~-~)~+W~-11 (9.25) 

In this equation the second term depends only on the properties of the gas. Thus a 
simple device for metering compressible flows is a converging nozzle at whose 
throat the sonic velocity is produced. 

If the flow through the throat is subsonic, the pressure at the throat is identi
cal with that outside the tank (p 2 = p~). If the flow through the throat is sonic, the 
pressure at the throat may be equal to, but is generally greater than, that outside 
the tank (p 2 > p~). For air (k = 1.4) the value of(p 2 ipdc = 0.528. Isentropic con
ditions have been assumed in the preceding equations; hence the flows represent 
those for an ideal fluid. The flows for real fluids through converging nozzles are 
only slightly less than those given by these equations. 

lllustratiw Example 9.4. Air at 80 F flows from a large tank through a converging noZ?le of 

2.0-in exit diameter. The discharge is to an atmospheric pressure of 13.5 psia. Determine the flow 
through the nozzle for pressures within the tank of 5. 10. and 20 psig. Assume isentropic conditions. 
Plot Gas a function of p 1 . Assume that the temperature within the tank is 80 Fin all cases. 

From Eq. (9.22) the critical pressure ratio is (p 2 'I',),= 0.528. 
If p'

2 
p 1 > 0.528, then subsonic flow will occur at the throat. Sonic flow occurs at the throat if 

or 
I'~ 

1'! > 0.528 

Since p'2 = 13.5 psia. sonic tlow occurs if p 1 > 25.6 psia (12.1 psig). When p 1 = 25.6 psia. the flow rate 
is found from Eq. (9.25). 

14) ( 2 )240.4-
- 1.84 lh s 

1715 24 

As p
1 

is increased beyond 12.1 psig. sonic flow prevails at the throat and the tlow rate increases linear!: 

with 1'.»•· as indicated b) Eq. (9.25). Hence when p 1 = 20 psig (.1.1.5 psia). 
G = (.1.1.5 25.6) X 1.84 = 240 lb s. 
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psi a 

psig 

Pressure within tank Illustrative Example 9.4 

To find the flow rate for the conditions where p 1 < 12.1 psig (subsonic flow at throat). we use 
Eq. (9.23). Substituting the appropriate value of r 1 into the equation and noting that for this condition 

!', = r~ = 13.5 psia. we get 

For p 1 = 5 psig (18.5 psia): G = 1.20 lb s 

For r 1 = 10 psig (23.5 psia)· G = 1.69 Ibis 

The variation of the flow rate with r 1 is shown in the accompanying sketch. Other information 
~c,ncerning various aspects of this problem can he found by applying the equations that ha\e been 
:->"c,ented. namely. the gas law (p1 = RT or ;· = yp RT). the equation of state (p1·' =constant or 
- ·=constant). continuity (G = ;·AV), and the energy equation. Eq. (9.20). Applying these. for exam

:' e. f,,r the case where p 1 = 5 psig (18.5 psia) yields ;· 1 = 0.093 lh ft 3
• ;· 2 = 0.0743 lb ft 3

, 12 = 740 fps, 

:: ~ 491 R. and p 2 = 13.5 psia. Note that p 2 = p~. 

9.8. THE CONVERGING-DIVERGING NOZZLE 
DISCHARGING FROM A LARGE TANK 

I J comerging nozzle has attached to it a di\erging section. it is possible to attain 
- .. ::'-:r.;onic \ elocities in the diverging section. This will happen if sonic flow exists 
- :':.: throat. In such a case the gas or vapor will continue to expand in the 
~ ~~gmg section to lower pressures. and the velocity will continue to increase. 

-
1

c>\\ through such a comerging-di\erging nozzle is shown in Fig. 9.4. Ifthere 
- · enough pressure differential to attain sonic \elocity at the throat, the ga~or 

_;- ~ ·.,ill beha\e in much the same manner as a liquid. with acceleration in the 
_ -- ~ll' to the throat and deceleration in the diverging section beyond the 

\ plot of the pre,sure in the t1ow for such a condition is shown by 
.. _ .:.:<eJ lmcs 1BD of Ftg. 9.-+. 

' .. ::':''''" m Ftg. 9-+ th,ll the pressure at 3' is gradually reduced while p1 

r-:-.:- · :,,:~'tc~nt. In 'uch a case 1' 3 = p'3 • and the pressure at the throat (2) 
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Figure 9.4. Flow of compressible fluid through converging-diverging nozzle. 

decreases while the velocity at the throat increases until the limiting acoustic 
velocity is reached at the throat when the pressure plot is ACE. If the pressure at 3' 
is further reduced to H, the pressure plot is AC FGH, the jump from F toG being a 
pressure shock, or normal shock wave, similar to the hydraulic jump, or standing 
wave, often seen in open channels conveying water. Through the shock wave the 
velocity is reduced abruptly from supersonic to subsonic, while at the same time 
the pressure jumps as shown by the lines FG, F'G', and F"G". The flow through a 
shock wave is not isentropic, since part of the kinetic energy is converted into heat. 

Further reduction of the pressure at 3' causes the shock wave to move farther 
downstream until at some value given by H"' the shock wave is located at the 
downstream end of the nozzle. If the pressure at 3' is lowered below the level of 
H"', the shock wave occurs in the flow field downstream of the nozzle exit. Such 
flow fields are either two- or three-dimensional and cannot be described by the 
foregoing one-dimensional equations. 

If the pressure are 3' is lowered to H"", the flow will be supersonic throughout 
the entire region downstream from the throat, the velocity will increase contin
uously from I to its maximum value at 3 and the pressure will drop continuously 
from 1 to 3. As long as p'3 is above H"", then p3 = p'3 , but if p'3 drops below H"", 
then p3 > p'3 . 
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If the pressure at 3' is above E in Fig. 9.4, the flow rate through the 
converging-diverging nozzle is given by Eq. (9.23). In this instance the p2 of 
Eq. (9.23) must be replaced by the p'3 of Fig. 9.4. If the pressure at 3' is below E in 
Fig. 9.4, critical pressure, as defined by Eq. (9.22), will occur at the throat and the 
flow rate will be given by Eq. (9.25). 

If p 1 is increased, the sonic velocity may be shown to remain unaltered, but 
since the density of the gas is increased, the rate of discharge will be greater. The 
converging nozzle and the converging-diverging nozzle are alike insofar as 
discharge capacity is concerned. The only difference is that with the converging
diverging nozzle, a supersonic velocity may be attained at discharge from the 
device, while with the converging nozzle, the sonic velocity is the maximum value 
possible. 

Illustrative Example 9.5. Air discharges from a tank through a converging-diverging nozzle with 
a 2.0-in-diameter throat. Within the tank the pressure is 50 psia and the temperature is 80"F, while 
outside the tank the pressure is 13.5 psia. The nozzle is to operate so that the pressure at the outlet 
(Fig. 9.4, section 3) is 13.5 psia. Find the required diameter of the nozzle outlet. Determine the flow 
rate and the velocities and temperatures at sections 2 and 3. Assume isentropic flow. 

Assume pressure at the throat will be such that sonic velocity will occur there. Hence 
p2 = p, = 0.528p1 = 26.4 psia. Later it will be shown that sonic velocity occurs at the throat. 

The velocity at the outlet may be found from Eq. (9.16 ). 

V~=RTt k r~-(p')('-t'.'j=l,715(540)1.411-(l3.5)o.4;1.4]=31400ft 
2g g k - I p 1 32.2 0.4 50 ' 

V1 = 1.400 fps 

The flow rate is computed from Eq. (9.25) 

_ (32.2)0.0218(50 X 144) f(1.4) ( 2 )t:•;oA _ 
G - - .. / - 3.6 lb/s 

,/540 \ 1.715 2.4 

The temperature at 3 may be determined by using Eq. (9.10): 

V~- V~ = 2cr(T1 - T3 ) 

(1,400)2 = 2(6,000)(540- T3 ) 

T3 = 372 R = - 88 F 

From the perfect-gas law p 3 ;· 3 = RT3 g . 

.. _ 32.2(13.5 X 144) . 3 - . .. - - ---- = 0.098 lb;ft 
• 

3 1.715(372) 

Isentropic flow between 2 and 3 tml\ he assumed. since the shock wave does not occur within that 
region. Thus p2 ;·;i_. = P 3 /;·~·". 

26.4 13.5 l 
·;~ 4 (0.098) 1

" 

1'2 = 0.158 lb/ft·' 
The velocity at 2 may now be computed. 

(j 3.6 
~, = ~- -~- ~-_ - - - = I 045 fps 
- ·,, 4, 0.158(0.0218) , 
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The temperature at 2 results from application of Eq. (9.10): 

(1,400) 2
- (1.045) 2 = 2(6,000)(7~- 372) 

T2 = 452 R = - 8 F 

The area at _, is computed from 

t 

Finally, D
3 

= 2.18 in, required outlet diameter. Also c2 = vkRT2 ~ 1045 fps = 1·,. 

9.9. ONE-DIMENSIONAL SHOCK WAVE 

In Fig. 9.5 is shown a one-dimensional shock wave where the approaching super
sonic flow changes to subsonic flow. This phenomenon is accompanied by a 
sudden rise in pressure. density. and temperature. Applying the impulse
momentum principle to the fluid in the shock wave. we get 

G 
Lfx=PtAt-P2A2= (Vz-Vt) 

(} 
(9.26) 

Substituting the continuity conditions (G = ·: 1 A 1 V1 = ·: 2 .4 2 V2 ) and noting that 
A 1 = A 2 • we get 

(9.27) 

which is the pressure jump across the wave. 
The flow across the shock wave may be considered adiabatic and can be 

expressed as 

vz v2- 2k 
2 - 1 - k _ 

1 
(Pt~'t - Pzl'z) (9.28) 

This is identical with Eq. (9.11). It is suggested that the reader review the develop
ment of this equation. in Sec. 9.3. 

PI p2 

1-j >cl 
PI p2 

\-2< ('2 --
T 

I 1~ 

Figure 9.5. A one-dimensional normal shock wave. 
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Equations (9.27) and (9.28) may be solved simultaneously and rearranged 
algebraically to give some significant relationships. Several such relations are as 
follows: 

and 

p2 = 2kN~ 1 - (k-:- I) 
p1 k + I 

V2 _ (k- I)N~, + 2 
II- (k + I)N.~t, 

N 2 _ 2+ (k- l)N,~, 
Jt 2 - 2kN~1 ,- (k- 1) 

(9.29) 

(9.30) 

(9 .31) 

These equations permit one to find the physical properties of the flow on the two 
sides of the one-dimensional shock wave. These equations, of course, are applic
able only if N\1 , > I; that is, the oncoming flow must be supersonic. lt will be seen 
that the shock wave is analogous to the hydraulic jump in open-channel flow 
(Sec. 11.19). 

Jllustratin> Example 9.6. A normal shock wave occurs in the flow of air where p 1 = 10 psia 
(70 ~ m 2

). T, = 40 F (5 C). and V, = 1400 fps (425 m s). Find p 2 • ~~.and T2 

From Eq. (9.29) 

From Eq. (9.30). 

In Sl units: 

p, 10(144) 
p 1 = RT = = 0.00168 slug ft 1 

1 1,715(460+40) 

c 1 = 's kRT1 = 's '1.4 X 1.715 X (460 + 40) = 1096 fps 

1,400 
= 1.28 

1,096 

v, 
- = 0.675 

v 1 

p2 = 17.5 psia 

1'2 = 945 fps 

0 00168 ' , 1 
p, = = 0.00~49 slug ft 

- 0.6 75 

I' 
p1 = = RT T, = p, = 590 R = 130 F 

- p,R I' 

70 . , ' - =S.Sx!O-~kgm· 
287(273 + 5) 

l 
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From Eq. (9.29) 

From Eq. (9.30) 

t 

P_
2 

= 1.75 . p2 = 122.5 N/m 2 

Pt 

Vz 
- = 0.675 v, V2 = 225 mjs 

10-4 
p 2 = 8.8 X - -- = 1.3 X 10- 3 kg/m 3 

0.675 

p2 122.5 
T = - = - - ·-- = 328 K = 55oC 2 P2 R 1.3 x 10- 3(287) 

9.10. THE OBLIQUE SHOCK WAVE 

When the velocity of a body through any fluid, whether a liquid or a gas, exceeds 
that of a sound wave in the same fluid, the flow conditions are entirely different 
from those for all velocities lower than this value. Thus, instead of streamlines 
such as are shown in Fig. 3.11, the conditions might be represented in Fig. 9.6, 
which is a schlieren photograph of supersonic flow past a sharp-nosed model in a 
wind tunnel. It could also represent a projectile in flight through still air. A conical 
compression or shock wave extends backward from the tip, as may be seen by the 
strong density gradient revealed as a bright shadow in the photograph. A stream
line in the undisturbed fluid is unaffected by the solid boundary or by a moving 

Figure 9.6. Schlieren photograph of head wave on 30' (total angle) cone at at N M = 1.38. (Photo by 
Guggenheim Aeronautical Laboratory, California Institute of Technology.) 
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projectile until it intersects a shock-wave front, when it is abruptly changed in 
direction, proceeding roughly parallel to the nose form. Where the conical nose is 
joined to the cylindrical body of the model, dark shadows may be seen, represent
ing rarefaction waves. The streamlines are again changed in direction through this 
region, becoming parallel to the main flow again. 

The reason why streamlines are unaffected in front of a projectile is that the 
body travels faster than the disturbance can be transmitted ahead. This will be 
illustrated by reference to Fig. 9.7. Consider a point source of an infinitesimal 
disturbance moving at a supersonic velocity V through a fluid. At the instant when 
this source passes through the point A0 , the disturbance commences to radiate in 
all directions with the velocity c of a sound wave in this medium. In successive 
instants the source passes through the points A 1, A 2 , and A 3 , the last of which 
may represent the position of the source at the instant of observation. While the 
source has covered the distance A 0 A 3 with velocity V, the sound wave, traveling 
at the slower acoustic velocity c, has progressed only as far as radius A 0 B0 . 

Similar termini of disturbances emanating from A 1 and A 2 form a straight-line 
envelope, which is the shock wave. The angle f3 is called the Mach angle, and it is 
seen that 

. A0 B0 c 
Sill f3 = -- - = 

A0 A3 V 
(9.32) 

where the dimensionless velocity ratio V/c is the Mach number as derived in 
Sec. 7.4. 

In the case of the finite projectile of Fig. 9.6, the shock wave leaves the tip at 
an angle with the main flow which exceeds the Mach angle, on account of the 
conical nose which follows the tip. Appropriate corrections can be applied, 
however, and the shock-wave angle from such a sharp-nosed object can serve as 
an accurate means of measuring supersonic velocities. 

l 

Figure 9.7. Schematic diagram of 
disturbance moving with super
sonic velocity. 
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9.11. ISOTHERMAL FLOW 

Most of the flows discussed thus far in this chapter are characterized by substan
tial changes in temperature. In isentropic flow (pvk = constant) through a nozzle, 
for example, large changes in temperature occur because the variation in cross
sectional flow area causes substantial changes in V, p, p, and T. 
t Let us now examine some aspects of isothermal (T = constant) flow. In this 
case pv =constant and I 1 = I 2 , so that h1 = h2 and Eq. (9.6) reduces to 

Vi v~ - + QH = ---
2g 2g 

(9.33) 

This equation is applicable to both real and ideal fluids. It shows that, if A 1 = A 2 , 

heat energy must be added to the fluid in the isothermal case if there is to be an 
increase in kinetic energy. If there is friction, less heat is absorbed from the 
surroundings, and since Q11 is numerically smaller there will be less increase in 
kinetic energy. 

9.12. ISOTHERMAL FLOW IN A PIPE OF 
UNIFORM DIAMETER 

To obtain some understanding of the characteristics of compressible flow with 
friction, let us consider isothermal flow in a pipe of uniform diameter. The flow of 
a gas through a long, uninsulated pipe in an isothermal environment may be 
assumed to approximate isothermal flow. Applying the energy equation 
[Eq. (4.28)] in differential form to a short length dx of pipe, expressing the head 
loss due to pipe friction in the form of the Darcy-Weisbach equation [Eq. (8.12)], 
disregarding variations in z as we are dealing with a gas, and noting that 
d(V2 j2g) = V dVjg, we can write 

dp dx V2 V dV 
- ;;- = J -D-

29 
+ 9 - (9.34) 

Recalling from Sec. 7.4 that the Mach number N M = V /c, where 
c = JkPiP = jkRT = constant for isothermal flow, one can restate Eq. (9.34) as 
follows: 

dp + kN~(cl_f!M + f ~!_) = 0 
p NM 2D 

(9.35) 

It has been observed that thefvalues given in Fig. 8.11 are applicable to compres
sible flow if NM < 1. For NM > 1, the values for fare about one-half of those of 
Fig. 8.11. 

From continuity pA V = constant, and hence p V = constant, since we are 
dealing with a pipe of uniform diameter. Combining this with the perfect-gas law 
(p = p/RT), we get pV = RT =constant for isothermal flow. Substituting this 
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expression into Eq. (9.35), we get for isothermal flow in a pipe of constant 
diameter, 

dp dV dN M kN}.; dx 
- = -- - = - --- = - ----- f -
p v NM 1-kN'f,- 2D 

(9.36) 

This equation shows that, when N M < lljk, tll_e pressure will decrease in the 
direction of flow. On the other hand, if NM > lljk, the pressure increases in the 
direction of flow. 

The weight flow rate G = !'A V, hence Reynolds number may be expressed as 

DVp GDp GD 
NR=--

fl. Ayfl. J1.9A 
(9.37) 

At usual pressures the viscosity f1. of a gas depends only on temperature and is 
constant for a given temperature; therefore for steady isothermal flow 
(G =constant and T =constant), the Reynolds number is constant along the 
entire length of a uniform-diameter pipe for any given flow. From the perfect-gas 
law, y = pg = pgiRT, and from continuity, V = G/yA. Hence V = GRTipgA. Sub
stituting these values in Eq. (9.34) and rearranging, we obtain 

- (2g2 A2)p dp = £ dx + 3_3~ 
G2RT D V 

For isothermal flow in a pipe of uniform diameter this equation is readily 
integrated for a length L = x2 - x 1 to give 

2 2 G
2
RT( L p1 ) 

PI - P2 = g2 Ai f D + 2 In P2 (9.38) 

where ptfp2 has replaced V2 I~. That this substitution is valid can be seen by 
combining pV =constant from continuity with PIP= RT =constant for isother
mal flow. Equation (9.38) may be used to find G if all other values are given, but if 
G and other values at (1) are given, p2 may be found by successive approximation. 
In most cases the last term is small compared withf LID and may be neglected as a 
first approximation. If it proves to be significant, a second solution, using an 
approximate value of p1 lp2 , may be made if greater accuracy is desired. It may be 
noted that p and A involve the same area units, and so, for numerical work in 
English units it is usually more convenient to use p in pounds per square inch and 
A in square inches. 

There is a restriction to Eq. (9.38) similar to that discussed in Sec. 9.]'and 
inferred in Eq. (9.36). To illustrate, disregarding the logarithmic term, Eq. (9.38) 
can be expressed asp~ = Pi - N L, where N is a constant for the given conditions 
and L is the distance along the pipe from section 1 to section 2. According to the 
equation as L gets larger, p2 will get smaller until it eventually drops to zero 
which, of course, is physically impossible. Actually what happens is that as L gets 
larger, p gets smaller as does p: and since p V = constant, V gets larger. However, 
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there is a limit to how large V can get. This occurs when NM = 1 1Jk as can 
be seen by examining Eq. (9.36). Thus Eq. (9.38) is applicable as long as 
N 11 < 1 jk. Another way of stating th.is is that for isothermal flow in a pipe of 
constant diameter there is a maximum length of pipe for which the given isothermal 
flow will proceed continuously. If the pipe exceeds this limiting length, there is a 
choking of the flow in the form of a shock discontinuity which limits the mass 
t;r weight) flow rate. 

Another way of expressing Eq. (9.38) is to divide it by pf, substitute ;' 1 A 1 V1 

for G, and note that N 11 , I NM 
2 

= p2 /p 1 for this situation. Upon rearrangement, we 
get 

(9.39) 

Equation (9.39) is a particularly useful form of the equation as it can be handily 
employed to determine the maximum length of pipe such that 'sonic flow will 
occur at the downstream end of the pipe. This is shown in the following illustrative 
example. 

Illustrathe Example 9.7. Air flows isothermally at 65 F through a horizontallO- by 14-in rectan
gular duct at 100 lb s. If the pressure at a section is 80 psia. find the pressure at a second section 500ft 
downstream from the first. Assume the duct surface is \Cry smooth: hence the lowest curve of Fig. g.11 
may be used to determine f 

First of all determine the applicability of Eq. (9.38). 

A 
R, = p 

140 

48 
= 2.92 in = 0.243 ft 

NR, = 
DVp CD !00( 4 X 0.243) 

6 
-- 714o=g.2xl0 

I' pgA 3.78 X 10 (3L)ff.j 

NR, = NR, smce fit v, = p, v, and 

From Fig. X. II./= 0.0085 . 

.. = p_q = (80 X ~~~32.2 = 0.41 Jb ft3 

'' RT 1.715(460+65) 

G 100 
~, = --- = -- · = 250 fps 

;,A (0.41}-!%~ 

c = v'kRT = ,/1.4 x 1,715 x 525 = 1,123 fps 

v 250 
IY..,11 = -

1 
= 0.222 

c 1.123 

The limiting value of Nw, is I ,I 1~4 = 0.845. Substituting into Eq. (9.39). 

(0.222)
2 

2 r~ O.S45 L J 
(6~~ 45 ) 2 = 1 - 1.4(0.222) ~In 0~222 + 0.0085 4'(o.i4..l) 

L = 1,240 ft 
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Thus Eq. (9.3X) applies for all values of L < 1.240 ft. Substituting L =500ft in Eq. (9.38) and neglect
ing the logarithm term, 

80 X 144-- - = 0.0085 X 
' ' (100)

2
(1.715)(525) f 500 j 

( ) p, (32.2) 2 (140 144)2 4(0.243) 

from which p 2 = 66.7 psia. Substituting this value of p2 into Eq. (9.38) and considering the logarithmic 
term yields p2 = 66.0 psia. 

Illustrative Example 9.8. For the case of Illustrative Example 9.7 with a duct length of 500 ft, 
compute the thermal energy (heat) that must be added to the fluid to maintain isothermal conditions. 

Since the flow is isothermal. p 1 1' 1 = p 2 p 2 = RT =constant: p 1 = 80 psia and p2 = 66.0 psia. 
Thus p 1 p2 = ~ = 1.21 and v~ ~ 1 = 1.21 since pl.= constant from continuity. 

So ~·, = 1.21(250) = 303 fps. appl)ing Eq. (9.33), Q11 = (303) 2 64.4- (250) 2 64.4 = 45X ft lb lb 
of air. Since G = 100 lb s. the rate at which heat must be added to the fluid is 100 x 
45X = 45,800 ft·lb s. Note, if Q 11 > 45S ft·lb lb of air. T2 > T1• and if Q 11 < 458 ft ·lb lb of air. T2 < T1. 

9.13. ADIABATIC FLOW IN A PIPE OF 
UNIFORM DIAMETER 

The flow of fluids in well-insulated pipes is a case that approaches adiabatic flow 
(i.e .. Q,1 = 0). The usual applications of insulation are to pipes conveyin12 steam 
-·~refrigerating fluids, such as ammonia vapor. In some situations such pipes are 
short, the pressure drops are relatively small, and the problem can be solved as if 
the fluid were incompressible. However, there are situations where the effects of 
compressibility must be considered. 

Let us consider the case of steady adiabatic flow with friction in a pipe of 
uniform diameter. Substituting V1 = G;~· 1 A and V2 = G/-i2 A into Eq. (9.11), we 
get 

(9.40) 

where G is the weight rate of flow and A is the cross-sectional area of the pipe. 
This equation can be rewritten as 

G2 2k G2 2k 
.,2.42 + k _ 1 fltL"t = _, 2 .4 2 + k _ 1 fl21·2 =X (9.41) 
I 1 I 2 

where X is a constant evaluated from known conditions at section 1. Thus, in 
general, 

pc = P = k- 1 (x- G2 ) 
p 2k /A 2 

l 

or P = ~-; 1 
( Xp -g2~

2

2 p) (9.42) 

Hence 
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Multiplying b'oth sides by p and integrating, 

J
1

2 

pdp= k_; 
1 fx(t~ ;p_i) + g?~2 In ;~j (9.43) 

The value of Ji p dp may be obtained from Eq. (9.43) inasmuch asp may be found 
for any flow G and any value of p by Eq. (9.42). Practically it will be better to 
<J;~ume values of p and find the corresponding values of p by Eq. (9.41). 

Next let us rewrite Eq. (9.34). Multiplying each term by p2g so that the first 
term becomes pdp, and substituting p V = G/gA and p dV = - V dp (from the 
differential of pA V =constant), we obtain 

p dp - u~r ~: + !v e,~r dx = 0 

Integrating this (assumingfto be constant) 1 and rearranging with x 2 - x 1 = L, 

.Ll(G) 2 
-

2 (G) 2 
p 1 

j D 2 gA = - .1
1 

p dp - gA In p~ (9.44) 

Since Ji p dp may be evaluated by Eq. (9.43), it is possible to solve Eq. (9.44) to 
obtain a value off if p1 and p2 have been measured for a known distance L,or the 
value of L may be found for any assumed values of p 1 and P1 (or preferably p 1 and 
p2 ) if I is given or assumed. 

Thus it is possible through successive calculations to plot a curve such as that 
in Fig. 9.8 for any assumed flow and initial conditions where p2 represents any 
pressure along the pipe at any distance x 2 . However, as in the case of isothermal 
flow, there is a minimum value of p2 where the velocity has attained its maximum 
value. It can be proved that in adiabatic flow critical conditions occur when 
N'-.1 = 1.0. 

Illustrative Example 9.9. Air flows adiabatically through a 10· by 14-in rectangular duct at 
100 lb;s. At a certain section the pressure is 80 psia and the temperature is 65oF (same data as 
Illustrative Example 9.7). Find the distance along the pipe to the section where p2 = 0.80p 1. Assume 
the duct surface is very smooth; hence the lowest curve of Fig. 8.11 may be used to determine f 

From Illustrative Example 9.7, 

}', 0.41 3 
p 1 =- = - = 0.0127 slug/ft 

g 32.2 

V1 = 250 fps 

From Eq. (9.41), 

X= 1()()2 - + 2(1._4) (8~_><__1~) = 6 413 000 ft2/s2 
(0.41 X 0.97)2 0.4 0.0127 ' ' 

1 In adiabatic flow in a pipe of uniform diameter the Reynolds number is not constant along the 
pipe because of changes in viscosity caused by variations in temperature. Thus, since N R varies,fmust 
vary. For most situations, however,/ may be assumed to have a constant value without introducing 
much error. 
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Temperature-adiabatic 

VelocitV 

£Adiabatic £Isothermal 

Distance along pipe 

Figure 9.8. Subsonic flow of a compressible fluid in a pipe of constant diameter. 

Equation (9.42) yields 

0.4 ( 1002 ) 
Pz = 2.S 6,413,000 x 0.8 x 0.0127- 3l.li(o.9i)2(0.S- x -0.0l27) 

p2 = 9170 Ib/fe, abs = 63.6 psia 
2 

From Eq. (9.43), r pdp= -26.9. Putting this value in Eq. (9.44) yields 
"! 

L =550ft 

Thus at a section 550ft downstream from the first section, p 2 = 0.8p 1 = 0.0102 slug/ft 3 and 
p2 = 63.6 psia. Also, 

G 100 
V

2 
= --·· - = -- - ---- --- = 315 fps 

p 2 gA 0.0102 X 32.2 X 0.97 

Pl 63.6 X 144 
T2 = = - = 523 R = 63 F 

p 2 R 0.0102 x 1,715 

By assuming other values of p2 , one can get a complete picture of the flow at various sections along the 
pipe. 

l 

9.14. OTHER TYPES OF FLOW 

The two types of compressible flow in pipelines that were just discussed are special 
cases which are often approximated in practice and which are amenable to math
ematical treatment. For fluids which do not follow the perfect-gas laws, such as 
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wet steam, for example, the preceding equations are only rough approximations. 
A more complicated thermodynamic treatment is necessary than is within the 
scope of this text. 

In Fig. 9.8 are shown curves plotted to scale for the flow of air through a pipe 
for both isothermal and adiabatic conditions, assuming the same initial values for 
each. Inspection of this diagram shows that for small pressure drops from the 
injial, such as up to f...p/p 1 = 0.10 (or p2 !p 1 = 0.90), there is very little difference 
between the two curves. Thus, for such a situation where p2 /p 1 > 0.90, adiabatic 
flow in a pipe can be analyzed as isothermal flow without introducing much error. 
The flow of gas in a pipe is rarely either isothermal or adiabatic. Isothermal flow 
requires that heat be transferred into the flowing fluid from the surrounding 
atmosphere at just the right rate, and this rate must increase along the length of 
the pipe. If the rate of heat transfer is less than this required amount, the perfor
mance curves will lie between the isothermal and the adiabatic curves in Fig. 9.8. 
Heat transfer is proportional to the temperature difference between the fluid and 
the surrounding atmosphere. If these temperatures are denoted as T1 and I;,, 
respectively, the heat transfer is some function of I;, - T1 . Isothermal flow is 
possible only if I;, is greater than T1 . 

If the fluid in the pipe is very much colder than the surroundings, its absorp
tion of heat might be such as to cause the pressure in the pipe to be higher than for 
isothermal flow. On the other hand, for example. air at a high temperature might 
be discharged directly from a compressor into a pipe so that T1 might be greater 
than I;,, which would cause heat to flow from the fluid in the pipe to the surround
ing atmosphere. In this case the pressure along the pipe would decrease even faster 
than for adiabatic flow. 

Because the energy equation for compressible fluids does not contain a term 
for friction and the momentum equation which contains a term for friction 1 does 
not include any term for heat transfer, it is seen that there is no simple analytical 
solution of such cases. An approximate approach to such problems is to divide the 
entire length of pipe into short reaches and employ the equations of incompres
sible flow using average values of density and velocity within each reach. This 
step-by-step method will give results that are approximately correct if the lengths 
of the reaches are made small enough. Small reach lengths are particularly impor
tant in the regions where the curves of Fig. 9.8 are sharply curved. 

9.15. CONCLl 1DING REMARKS 

In this chapter we have seen that in order to solve problems of compressible flow 
the equation of state of the gas must be combined with the energy equation and 
the continuity principle. Hence thermodynamics is commonly involved in 
compressible-flow problems and the expressions relating the various physical 

1 Friction is accounted for as one of the forces acting on the fluid element in the equation 

IF= pQV. 
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parameters are generally quite complicated. In the discussion we have restricted 
ourselves to one-dimensional flow, and have not c;onsidered multidimensional 
flow, which is of course an extremely important topic, especially when dealing 
with aircraft and missiles. The intent here was merely to provide an introduction 
to the flow of compressible fluids. Among the references cited at the end of the 
book will be found some excellent treatments of compressible flow. 

PROBLEMS 

9.1. Compute the change in enthalpy of 500 lb (2.200 N) of oxygen if its temperature is increased from 
120 F (50 C) to 155 F (70 C). 

9.2. Suppose the 500 lb (2,200 N) of oxygen of Pro b. 9.1 were compressed isentropically to 80 percent 
of its original volume. Find the final temperature and pressure, the work required, and the change in 
enthalpy. Assume T

1 
= 120 F (50 C) and p1 = 200 psia (1,400 kNim 2

, abs). 

9.3. Determine the acoustic velocity in air at sea level and at elevations 5,000, 10,000. 20.000. and 
30,000 ft. Assume standard atmosphere (Appendix 3, Table A.3). 

9.4. Repeat Prob. 9.3 for sea level. 2.000 and 10,000 m, expressing the answers in Sl units. 

9.5. Find the stagnation pressure and temperature in air flowing at 88 fps if the pressure and tempera
ture in the undisturbed field are 14.7 psia and 50 F respectively. 

9.6. Air flows past an object at 600 fps. Determine the stagnation pressures and temperatures in the 
standard atmosphere at elevations of sea level. 5,000 and 30,000 ft. 

9.7. Repeat Prob. 9.6 for an air speed of 200 m/s and elevations of sea level, 2,000 and 10,000 m, 
expressing the answers in SI units. 

9.8. Air at 250 psia is moving at 500 fps in a high-pressure wind tunnel at a temperature of 
100-F. Find the stagnation pressure and temperature. Note the magnitude of the sonic velocity for the 
250-psia I 00 F air. 

9.9. Show that Eq. (9.15) results from the binomial expansion of Eq. (9.14). 

9.10. Air at a pressure of 150 psia and a temperature of 100 F expands in a suitable nozzle to 15 psia. 
If the flow is frictionless and adiabatic and the initial velocity is negligible, find the final velocity by 
Eq. (9.16). 

9.11. For the case in Prob. 9.10 find the final temperature at the end of the expansion through use of 
Eq. (9.10). 

9.12. Derive Eq. (9.16) for isentropic flow by integrating the Euler equation. 

9.13. Carbon dioxide flows isentropically. At a point in the flow the velocity is 50 fps and the tempera
ture is 125 F. At a second point on the same streamline the temperature is 80 F. What is the velocity at 
the second point'' 

9.14. Refer to Prob. 9.13. If the pressure at the first point were 20 psia, determine the pressure and 
temperature on the nose of a streamlined object placed in the flow at that point. 

9.15. Show in detail the development of Eq. (9.19) from Eqs. (9.18) and (9.17). 

9.16. Verify that Eq. (9.22) results from the substitution of .V 11 at throat equals unity in Eq. ~.21). 

9.17. Start with Eq. (9.20) and deri\e Eq. (9.23). 

9.18. Differentiate Eq. (9.23) with respect to p 2 p 1 and set to t'ero to find the value of p 2 p 1 for which 
(; is a maximum. The answer should correspond to Eq. (9.24). 

9.19. Air flows at 150 F from a large tank through a 1.5-in-diameter converging nozzle. Within the 
· Jnk the pressure is 85 psia. Calculate the !low rate for external pressures of 10, 30. 50, and 70 psia. 
>."ume isentropic conditions. Plot Gas a function of p'2 • Assume that the temperature within the tank 
• I~() Fin all cases. Compute abo the temperature at the nozzle outlet for each condition. 
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9.20. Air flows at 25'C from a large tank through a 10-cm-diameter converging nozzle. Withtf' ·-~ ~ 
the pressure is 50 kN/m 2

, abs. Calculate the flow rate for external pressures of 30, 20. and lO •' n=_ 
abs. Assume isentropic conditions. Plot Gas a function of p'2 . Assume that the temperature y,n~ .. - :w 
tank is 25'C in all cases. Compute also the tempe~ature at the nozzle outlet for each condllJO~. 
9.21. Air within a tank at l20°F flows isentropically through a 2-in-diameter convergent noz.z.e -~,, 

a 14.2-psia atmosphere. Find the flow rate for air pressures within the tank of 5, 10, 20. and JJ• :---,. 

~22. Carbon dioxide within a tank at 40 psia and 80cF discharges through a convergent nozzle -:: ~ 
!"4.2-psia atmosphere. Find the velocity, pressure, and temperature at the nozzle outlet. Assume :>-::-

tropic conditions. 

9.23. In Prob. 9.22 if the pressure and temperature within the tank had been 20 psia and 100 F. "- .;,· 
would have been the velocity, pressure, and temperature at the nozzle outlet? Assume isentrt';:'..: 
conditions. 

9.24. Air discharges from a large tank through a converging-diverging nozzle with a 2.5-cm-diamc:e
throat into the atmosphere. The pressure and temperature in the tank are 700 kNjm 2 and 40 C 
respectively, the barometric pressure is 995 bars. (a) Find the nozzle-tip diameter required for p 3 to tx 
equal to the atmospheric pressure. For this case, what are the flow velocity, sonic velocity, and Mac 
number at the nozzle exit? (b) Determine the value of p'3 which will cause the shock wave to be locate.: 
at the nozzle exit. 

9.25. Air enters a converging-diverging nozzle at a pressure of 120 psia (830 kN/m 2, abs) and a 
temperature of 90''F (32'C). Neglecting the entrance velocity and assuming a frictionless process. find 
the Mach number at the cross section where the pressure is 35 psia (240 kN/m 2

, abs). 

9.26. Work Illustrative Example 9.5 with all data the same except for the pressure within the tanl.. 
which is 100 rather than 50 psia. 

9.27. Air discharges from a large tank through a converging-diverging nozzle. The throat diameter is 
3.0 in, and the exit diameter is 4.0 in. Within the tank the air pressure and temperature are 40 psia and 
150 'F, respectively. Calculate the flow rate for external pressures of 39, 38, 36, and 30 psia. Assume no 
friction. 

9.28. Nitrogen flows from a large tank through a converging-diverging nozzle which has an outlet 
diameter of 3.0 in (7.5 em). Within the tank the pressure and temperature are 60 psia (415 kNjm 2

, abs) 
and 100 F (38C). Outside the tank the pressure is 10.0 psia (70 kN/m 2, abs). Find the maximum 
possible flow rate through this nozzle, and find the required throat diameter. Assume isentropic flow. 

9.29. Air is to flow through a converging-diverging nozzle at 18 lb/s. At the throat the pressure, 
temperature, and velocity are to be 20 psia, IOO"F, and 500 fps, respectively. At outlet the velocity is to 
be 200 fps. Determine the throat diameter. Assume isentropic flow. 

9.30. Air in a tank under a pressure of 140 psia and 70''F flows out into the atmosphere through a 
1.00-in-diameter converging nozzle. (a) Find the flow rate. (b) If a diverging section (outlet diameter = 
1.50 in) were attached to the converging nozzle, what then would be the flow rate? Neglect friction. 

9.31. Repeat Prob. 9.30 for the case where the air within the tank is at 20 psia. Assume all other data to 
be the same. 

9.32. The pressure, velocity, and temperature just upstream of a normal shock wave in air are 10 psia, 
2,200 fps, and 23"F. Determine the pressure, velocity, and temperature just downstream of the wave. 

9.33. Just downstream of a normal shock wave the pressure, velocity, and temperature are 52 psia 
(360 kN/m 2

, abs), 400 fps (110 m/S) and 120oF (SOT). Compute the Mach number upstream of the 
shock wave. Consider air and carbon dioxide. 

9.34. Assuming the tip of the model in Fig. 9.6 to be a point source of infinitesimal disturbance, find 
the air velocity if the temperature is - 60· F and k = 1.4. If the actual Mach number is 1.38, what is the 
percentage error involved in the preceding assumption? 

9.35. A schlieren photograph of a bullet shows a Mach angle of 30°. The air is at a pressure of 14 psia 
and 50"F. Find the approximate speed of the bullet. 

9.36. Refer to Illustrative Example 9.4. If the pressure in the tank is 5 psig, confirm that 
G = 1.20 lbjs, p2 = 14.2 psia, and T2 = 500°R. 
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9.20. Air flows at 25'C from a large tank through a 10-cm-diameter converging nozzle. Within the tank 
the pressure is 50 kN/m 2

, abs. Calculate the flow rate for external pressures of 30, 20, and 10 kN(m 2
, 

abs. Assume isentropic conditions. Plot G as a functi.on of p'2 . Assume that the temperature within the 
tank is 25oC in all cases. Compute also the temperature at the nozzle outlet for each condition. 

9.21. Air within a tank at !20oF flows isentropically through a 2-in-diameter convergent nozzle into 
a 14.2-psia atmosphere. Find the flow rate for air pressures within the tank of 5, 10, 20, and 40 psi. 

9.i:" Carbon dioxide within a tank at 40 psia and 80'F discharges through a convergent nozzle into a 
14.2-psia atmosphere. Find the velocity, pressure, and temperature at the nozzle outlet. Assume isen
tropic conditions. 

9.23. In Prob. 9.22 if the pressure and temperature within the tank had been 20 psia and IOO"F, what 
would have been the velocity, pressure, and temperature at the nozzle outlet? Assume isentropic 
conditions. 

9.24. Air discharges from a large tank through a converging-diverging nozzle with a 2.5-cm-diameter 
throat into the atmosphere. The pressure and temperature in the tank are 700 k Njm 2 and 40 'C. 
respectively, the barometric pressure is 995 bars. (a) Find the nozzle-tip diameter required for p3 to be 
equal to the atmospheric pressure. For this case. what are the flow velocity, sonic velocity, and Mach 
number at the nozzle exit? (b) Determine the value of p'3 which will cause the shock wave to be located 
at the nozzle exit. 

9.25. Air enters a converging-diverging nozzle at a pressure of 120 psia (830 kN(m 2, abs} and a 
temperature of 90''F (32°C}. Neglecting the entrance velocity and assuming a frictionless process, find 
the Mach number at the cross section where the pressure is 35 psia (240 kN/m 2

• abs). 

9.26. Work Illustrative Example 9.5 with all data the same except for the pressure within the tank, 
which is 100 rather than 50 psia. 

9.27. Air discharges from a large tank through a converging-diverging nozzl\!. The throat diameter is 
3.0 in, and the exit diameter is 4.0 in. Within the tank the air pressure and temperature are 40 psia and 
150°F, respectively. Calculate the flow rate for external pressures of 39, 38, 36, and 30 psia. Assume no 
friction. 

9.28. Nitrogen flows from a large tank through a converging-diverging nozzle which has an outlet 
diameter of 3.0 in (7.5 em). Within the tank the pressure and temperature are 60 psia (415 kN(m 2

, abs) 
and !OO·F (38·C). Outside the tank the pressure is 10.0 psia (70 kN/m 2, abs}. Find the maximum 
possible flow rate through this nozzle. and find the required throat diameter. Assume isentropic flow. 

9.29. Air is to flow through a converging-diverging nozzle at 18 lb/s. At the throat the pressure, 
temperature, and velocity are to be 20 psia, !OO''F, and 500 fps, respectively. At outlet the velocity is to 
be 200 fps. Determine the throat diameter. Assume isentropic flow. 

9.30. Air in a tank under a pressure of 140 psia and 70"F flows out into the atmosphere through a 
1.00-in-diameter converging nozzle. (a) Find the flow rate. (b) If a diverging section (outlet diameter = 
1.50 in) were attached to the converging nozzle, what then would be the flow rate? Neglect friction. 

9.31. Repeat Pro b. 9.30 for the case where the air within the tank is at 20 psia. Assume all other data to 
be the same. 

9.32. The pressure, velocity, and temperature just upstream of a normal shock wave in air are lO psia, 
2,200 fps, and 23''F. Determine the pressure, velocity, and temperature just downstream of the wave. 

9.33. Just downstream of a normal shock wave the pressure, velocity, and temperature are 52 psia 
(360 kN;'m 2

, abs), 400 fps (110 mjs) and 120oF (50°C}. Compute the Mach number upstream of the 
shock wave. Consider air and carbon dioxide. 

9.34. Assuming the tip of the model in Fig. 9.6 to be a point source of infinitesimal disturbance, find 
the air velocity if the temperature is -60'F and k = 1.4. If the actual Mach number is 1.38, what is the 
percentage error involved in the preceding assumption? 

9.35. A schlieren photograph of a bullet shows a Mach angle of 30°. The air is at a pressure of 14 psia 
and 50F. Find the approximate speed of the bullet. 

9.36. Refer to Illustrative Example 9.4. If the pressure in the tank is 5 psig, confirm that 
G = !.20 lb/s, p2 = 14.2 psia, and T2 = 500'R. 
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9.37. Refer to Illustrative Example 9.7. Find the pressures at sections 100, 300, and 800 ft downstream 
of the section where the pressure is 80 psia. Plot the pressure as a function of distance along the pipe. 

9.38. Carbon dioxide flows isothermally at 100 F through a horizontal 6-in-diameter pipe. The pres
sure changes from 150.0 to 140.0 psi in a 100-ft length of pipe. Determine the flow rate if the atmo
spheric pressure is 14.5 psi and ' for the pipe is 0.002 ft. 

9.39. Air flows isothermally in a long pipe. At one section the pressure is 90 psia, the temperature is 
80 F. and the velocity is 100 fps. At a second section some distance from the first the pressure is 
15 psia. Find the energy head loss due to friction, and determine the thermal energy that must have 
been added to or taken from the fluid between the two sections. The diameter of the pipe is constant. 

9.40. Air flows isothermally through a long horizontal pipe of uniform diameter. At a section where 
the pressure is 100 psia, the velocity is 120 fps. Because of fluid friction the pressure at a distant point is 
40 psia. (a) What is the increase in kinetic energy per pound of air? (b) What is the amount of thermal 
energy in Btu per pound of air that must be transferred in order to maintain the temperature constant? 
(c) Is this heat transferred to the air in the pipe or removed from it'' (d) Has the fluid friction in this 
length of pipe resulted in a loss of total energy or a loss of useful energy? 

9.41. If the temperature of the air in Prob. 9.40 is IOOcF and the diameter of the pipe is 3 in, find the 
total heat transferred in Btu per hour. 

9.42. Methane gas is to be pumped through a 24-in-diameter welded-steel pipe connecting two com
pressor stations 25 mi apart. At the upstream station the pressure is not to exceed 60 psia, and at the 
downstream station it is to be at least 20 psia. Determine the maxtmum allowable rate of flow (in cubic 
feet per day at 60 F and I atm). Assume isothermal flow at 60'F. 

9.43. Refer to Illustrative Example 9.9. Find the distance along the pipe to (a) where p 2 = 0.9p 1 : (b) 
where p 2 = 0.7p 1. Compute the corresponding values of p and V and plot them as a function of 
distance along the pipe. 

9.44. Air flows adiabatically at 100 lb/s in a 12-in-diameter horizontal pipe. At a certain section the 
pressure is 150 psia and the temperature 140°F. Determine the distance along the pipe to the section 
where p2 = 0.80p 1 . Assume 11 D = 0.0004. 

l 
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CHAPTER 

TEN 
FORCES ON IMMERSED BODIES 

In this chapter the discussion relates primarily to fluid phenomena encountered in 
incompressible flow or in low-velocity compressible flow where the effects of 
compressibility are negligible. Near the end of the chapter in Sec. 10.14 there is a 
brief discussion of the effects of compressibility on drag and lift. These become 
important at Mach numbers above 0.7. 

10.1. INTRODUCTION 

A body which is wholly immersed in a homogeneous fluid may be subject to two 
kinds of forces arising from relative motion between the body and the fluid. These 
forces are termed the drag and the lift, depending on whether the force is parallel 
to the motion or at right angles to it, respectively. Fluid mechanics draws no 
distinction between two cases giving ris~; to relative motion, namely, when a body 
moves rectilinearly at constant speed through a stationary fluid or when a fluid 
travels at constant velocity past a stationary body. Thus it is possible to test 
airplane models in wind tunnels and torpedo models in water tunnels and predict 
with confidence the behavior of their prototypes when moving through still fluid. 
For instructional purposes it is somewhat simpler to fix our ideas on the station
ary body in the moving fluid, while the practical result desired is more frequently 
associated with a body moving through still fluid. 

In this chapter we shall first consider the drag, or resistance, forces. As we 
shall not be concerned with wave action at a free surface, gravity does not enter 
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the problem and the forces involved are those due to inertia and viscosity. 1 The 
drag forces on a submerged body can be viewed as having two components: a 
pressure drag F P and a fi"iction or surface, drag F 1 . The pressure drag is equal to 
the integration of the components in the direction of motion of all the pressure 
forces exerted on the surface of the body. It may be expressed 2 as the dynamic 
component of the stagnation pressure [from Eq. ( 4.31)] acting on the projected 
area A of the body normal to theflow times a coefficient C P which is dependent on 
the geometric form of the body and generally determined by experiment. Thus, 

vz 
Fp=Cpp2.A ( 10.1) 

The friction drag is equal to the integration of the components of the shear 
stress along the boundary of the body in the direction of motion. For convenience, 
the friction drag is commonly expressed in the same general form as Eq. ( 10.1 ). 
Thus, 

(10.2) 

where C 1 = friction-drag coefficient, dependent on viscosity, among other factors 
L = length of surface parallel to flow 
B = transverse width, conveniently approximated for irregular shapes by 

dividing total surface area by L 
It is important to note that for a body such as a plate with both sides immersed in 
the fluid, Eq. (10.2) gives the drag for one side only. 

From our experience with pipe flow we should expect that the friction drag 
would be more amenable to a theoretical approach than pressure drag. This is not 
necessarily the case. In previous chapters the boundary layer was described as a very 
thin layer of fluid adjacent to a surface, in which viscosity is important, while 
outside of this layer the fluid can be considered as frictionless or ideal. This 
concept, originated by Prandtl, is one of the important advances in modern fluid 
mechanics. It means that the mathematical theory of ideal fluid flow, including the 
flow-net method studied in Chap. 3, can actually be used to determine the stream
lines in the real fluid at a short distance away from a solid wall. The Bernoulli 
theorem may then be used to determine the normal pressures on the surface, for 
such pressures are practically the same as those outside of this thin layer. 

1 Actually, without viscosity there could be no drag force at all. The flow of a frictionless fluid 
about any body, as constructed mathematically or by the flow-net technique of Chap 3. ploduces 
opposing stagnation points at the nose and tail of the body. The pressure distribution, as ;omputed 
from the Bernoulli theorem and integrated over the entire body, always adds up to zero in the direction 
of the flow. This situation is known as D'Alembert's paradox. 

2 Note that Eq. ( 10.1) is of the same general form as the expression for the drag on a sphere that 
was developed by dimensional analysis in Sec. 7.7. The comparison indicates C P = rjJ(N R). If the effects 
of compressibility had been considered in Sec. 7.7, the comparison would have shown 
CP = rjJ(NR, N 14 ). 
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The boundary layer may be entirely laminar, or it may be primarily turbulent 
with a viscous sublayer, as in Fig. 8.7. The boundary layer increases in thickness 
with distance from the leading edge of·a surface, as shown in both Figs. 8.4 and 
8.7. The important difference between the case at hand and that of pipe flow, 
however, is that in pipe flow the boundary layers from the opposite walls of the 
pipe merge together after a certain distance and the flow becomes "all boundary 
f'Yer," while with airplanes, submarines, trains, etc., the boundary layer even 
though it may reach a thickness of several inches, is still small compared with the 
dimensions of the "ideal fluid" outside of the boundary layer in which the stream
lines are determined by the presence of the body. 

10.2. FRICTION DRAG OF BOUNDARY 
LAYER-INCOMPRESSIBLE FLOW 

In Fig. 10.1 is shown the growth of a boundary layer along one side of a smooth 
plate in steady flow of an incompressible fluid. Let us consider the control volume 
shown in Fig. 10.2 which extends a distance f> from the plate, where f> is the 
thickness of the boundary layer at a distance x along the plate. 1 Along control 
surface AB the undisturbed velocity U exists. The pressure forces around the 
periphery of the control volume will cancel one another out since the undisturbed 
flow field pressure must exist along AB and DA, and the distance BC ( = f>) is so 
small it will have a negligible effect on pressure variations. 

Applying Eq. (6.7a), we get 

- F x = -drag = momentum leaving through BC 

+momentum leaving through AB (10.3) 

-momentum entering through DA 

1 Here we use c5 to indicate the thickness of the boundary layer, usually defined as the distance from 
the boundary to the point where the velocity u = 0.99U. In this analysis, however, we will assume that 
u = U at the edge of the boundary layer. 

Undisturbed flow 

-u-

Figure 10.1. Growth of boundary layer along a smooth plate (vertical scale exaggerated). 
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Figure 10.2. Control volume for flow over one side of a flat plate. 

Since Qac < QvA, there is flow out of the control volume across control surface 
AB and QAB = QvA- Qsc· 

If the width of the plate is B, neglecting edge effects, the flows and momentums 
across the control surfaces can be expressed as follows: 

Control surface Flow Momentum 

DA UBb p(UBb)U 

• b 

BC B r u dy pB J u2 dy 
• 0 0 

• 
p( UBb- B (u dy)u AB UBb- B r u dy 

• 0 

Substituting these momentum values in Eq. (10.3) gives 
b 

Fx=pBJ u(U-u)dy 
0 

( 10.4) 

where F x is the total friction drag of the plate on the fluid from the leading edge up 
to x directed to the left, as shown on Fig. 10.2. Equal and opposite to this is the 
drag of the fluid on the plate. 

It will now be assumed that the velocity profiles at various distances along the 
plate are similar to each other: 

y 
1]=-

b 

There is experimental evidence that this assumption is valid if there is no 
pressure gradient along the surface and if the boundary layer does not ~8ange 
from laminar to turbulent within the region considered. Then, substituting for u in 
Eq. (10.4) and changing the variable y to the dimensionless 1], dy = b dl], and the 
limits become 0 to 1, giving 

I 

Fx = pBV2 15 f /('7)(1- /('7)] d'7 
·o 
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which, for convenience, may be written 

(10.5) 

where r:t. is a function of the boundary-layer velocity distribution only and is given 
by the indicated integral (not to be confused with the kinetic-energy factor r:t. 
discussed in Chap. 4). 

t • We next investigate the local wall shear stress To at distance x from the leading 
edge. From the definition of surface resistance, dF x = T 0 B dx, or 

To = l ~!_x = ·~ _(/_ (pBU 2 b r:t.) 
B dx Bdx 

and as all terms in the expression for F x are constant except b, 

2 db 
To = pU ll. I 

IX 
(10.6) 

This expression for the shear stress is valid for either laminar or turbulent flow 
in the boundary layer, but in this form it is not useful until the quantities r:t. and 
dbjdx are evaluated. 

10.3. LAMINAR BOUNDARY LAYER FOR INCOMPRESSIBLE 
FLOW ALONG A SMOOTH FLAT PLATE 

As in the case of laminar flow in pipes, we may examine the shear stress at the 
plate wall by aid of the velocity gradient and the definition of viscosity, 

which may be abbreviated to 

J1Uf3 
To=·--

b 
(10.7) 

where {3, like r:t., is a dimensionless function of the velocity-distribution curve and is 
given by the expression in brackets. 

Equations (10.6) and ( 10.7) are two independent expressions for To. Equating 
them to one another results in a simple differential equation, 

b db= Jl/3 dx 
pUr:t. 

with solution 
b2 11/3 -- = ---- X+ C 
2 pUr:t. 
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where C = 0, since b = 0 at x = 0. Therefore 
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Figure 10.3. Velocity distribution in 

laminar boundary layer on flat plate. 
(Blasius curve adapted from Fig. 30 
of NACA Tech. Mem. 1217, 1949.) 

b = fft;: = J?! j~~ ( 10.8) 

where N Rx = xUpjp may be called the local Reynolds number. It should be noted 
that N Rx increases linearly in the downstream direction. Examination of the first 
expression of Eq. (10.8) shows that the thickness of the laminar boundary layer 
increases with distance from the leading edge; thus the shear stress [Eq. (10.7)] 
decreases as the layer grows along the plate. 

To evaluate Eq. (10.8), we must know or assume the velocity profile in the 
laminar boundary layer. The velocity distribution may be closely represented by a 
parabola, as shown in Fig. 10.3. In dimensionless terms this curve becomes 

u 
-- = f(r!) = 21] - 1] 2 

u (10.9) 

The other velocity profile in Fig. 10.3 was derived by Blasius from the fundamen
tal equations of viscous flow, with all factors considered, and has been closely 
checked by experiment. 1 This curve is based on the thickness b being defined as 
that for which u = 0.99 U. ' 

As can be demonstrated by Prob. 10.2, the parabolic distribution wil1 give 
numerical values for a and f3 of 0.133 and 2.0, respectively. The Blasius curve 
yields rx = 0.135 and f3 = 1.63. the principal difference lying in the milder slope of 

'See H. Schlichting, "Boundary Lner Theory." 4th ed .. pp. 116-125, McGra-w-Hill Book Co .. 
;'\Jew York. 1960. 
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the velocity gradient at the wall. With the Blasius values substituted in Eq. (10.8) 
we obtain 

6 (2x 1.63 1 4.91 
X= V -0.1J5- JN: = JN: (10.10) 

tw If the value of 6 from Eq. (10.10) is substituted in Eq. (10.7) with [J = 1.63, 
there results for the shear stress 

p.U !M
r0=0.332- yNRx 

X 
( 10.11) 

But we have another expression for shear stress, given in Eq. (8.10), 
r 0 = c1 pU 2 /2. 1 Setting this equal to Eq. (10.11) allows a determination of the 
local friction coefficient 

0.332p.U}N;;x 0.664 c - - - -~ - - - --~ -
I- pxUz/2 - fo~: 

(10.12) 

If the boundary layer remains laminar over the length of L of the plate, the 
total friction drag on one side of the plate is given by integrating Eq. ( 10.11): 

L L 

Fr = B r To dx = 0.332BJpp.U3 r x-
1 2 dx = 0.664Bvfpp.LU 3 (10.13) 

. 0 • 0 

Comparing Eq. (10.13) with the standard friction-drag equation (10.2), and substi
tuting U for the more general velocity V, it may be seen that for a laminar 
boundary layer 

;-p 1.328 
C; = 1.328V pLU = Jiv: (10.14) 

where it is noted that N R is based on the characteristic length of the whole plate. 
The laminar boundary layer will remain laminar if undisturbed, up to a value of 
N Rx of about 500,000. In this region the layer becomes turbulent, increasing 
noticeably in thickness and displaying a marked change in velocity distribution. 

Illustrative Example IO.l. Find the friction drag on one side of a smooth flat plate 6 in ( 15 em) 

wide and I~ in (50 em) long. placed longitudinally in a stream of crude oil (s = 0.925) at 60 F (20 C) 
flowing with undisturbed velocity of 2 fps (60 em s ). 

From Fig. 1.2 

\" = 0.00 I ft 2 
iS 

1 The reader will observe an apparent inconsistency between the notation used here and that used 
in Chap. X. Thus. in pipe flow. the significant reference velocity is the mean velocity I' in the pipe, \\hile 

in flow over a plate. it is the uniform velocity U of the undisturbed fluid. Likewise. C 1 has been 
employed in Chap. ~ to denote a friction coefficient for the fully developed boundary layer in a pipe. 
while c1 is used here to denote the local friction coefficient of the growing Ia; cr. 
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Then 
LL' 

NR = 
1.5 X 2 

= 3000 
0.001 ' 

well within the laminar range; that is. NR < 500,000. 
From Eq. (10.14) 

1.328 1.328 
C1 = . .· ... = 0.0242 

' NR ,· 3.000 
From Eq. ( 10.2) 

22 6 X 18 
F J = 0.0242 X 0.925 X 1.94 2 = 0.065 lb 

144 

Find the thickness of the boundary layer and the shear stress at the trailing edge of the plate. 
From Eq. (10.10) 

b 4.91 
. - = 0.0898 

x v' 3,000 

6 = 0.0898 x 1.5 = 0.1348 ft = 1.62 in 

From Eq. (10.11) 

(0.00 I X 0.925 X 1.94 )2 •. - 2 
r 0 = 0.332 x - v 3,000 = 0.0434 lb ft 

1.5 

In the given SI units: 
From Fig. 1.3 

v = 0.79 x 10· 4 m 2 s 

Then 
LU (0.50 m)(0.60 m•s) 

N R = = _.. 4 -· = 3,800 
" o.79 x 10-

well within the laminar range: that is NR < 500,000. 
From Eq. (10.14) 

1.33 
C 1 = . =0.0216 

' N, 
From Eq. ( 10.2) 

10 3 kg I 
F.1 = 0.0216 x 0.925 ·3 x (0.6 m s) 2 (0.15 x 0.50 m2 ) 

m· 2 

. _ 
1 

kg·m N 
F I - 0._7 2 X ' = 0.27 N 

s kg·m s· 

Find the thickness of the boundar', lawr and the shear stres,; at the trailing edge of the plate. 
From Eq. (10.10) 

hom Eq. (10.11) 

= ll.OXO 
, 3.K1Xl 

ri = 0.080 x 50 em = 4.0 em 

(il 'J> ' 10 3 )1() "9 X ]() 
4 )(0.6) 

'" -~ () ·'·' ' 3.800 
I l :-\ ~ ) 

• 
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10.4. TURBULENT BOUNDARY LAYER FOR 
INCOMPRESSIBLE FLOW ALONG A SMOOTH FLAT PLATE 

Comparing the laminar and turbulent boundary layers in Fig. 10.4, the velocity 
w distribution in the turbulent boundary layer shows a much steeper gradient near 

t the wall and a flatter gradient throughout the remainder of the layer. As would be 
expected, then, the wall shear stress is greater in the turbulent boundary layer than 
in the laminar layer at the same Reynolds number. In this case, however, it is not 
practical to proceed along the lines ofEqs. ( 10.6) and ( 10.7), determining the shear 
stress from the velocity gradient at the wall. We turn instead to turbulent flow in a 
circular pipe because of the wealth of experimental information in that field 
compared with that of flow in a turbulent boundary layer along a smooth flat 
plate. We learned in Eq. (8.15) that the shear stress at the wall of a pipe is given by 

v2 
ro =fp g- (10.15) 

where V again denotes the average velocity in the pipe. Now we shall assume that 
the turbulent boundary layer occupies all the region between the wall and the 
center line of the pipe as in Fig. 10.5. The radius of the pipe then becomes the 
thickness of the boundary layer, and by analogy, the velocity at the center of 
the pipe, here denoted by U, corresponds to the undisturbed velocity at the outer 
edge of the boundary layer. We may obtain a relation between V and U by use of 
the pipe-factor equation (8.30). Taking a middle value off= 0.028 and allowing 
for the 1 percent difference in velocity between the edge of the boundary layer and 
the free stream, we have 

u = 1.235 v (10.16) 

To proceed further, we need a simple relation betweenfand N R for turbulent pipe 
flow in a smooth pipe. The Blasius equation (8.34) provides a useful relationship. 

-Transition -T--- Turbulent----......,._ 

I 
u 

~ .,.___ ~ ~ ..,._._._ 

Laminar zone 
( T

0 
decreasing with x) 

I 
Transition zone I Turbulent zone 

T
0 
> T

0 
of laminar zone 

( T
0 

decreasing slowly with x) 

Figure 10.4. Laminar and turbulent boundary layers along a smooth llat plate (vertical scale greatly 
exaggerated). 
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Figure 10.5. Flow in a pipe as a turbulent boundary layer. 

Substituting Eqs. (8.34) and (10.16) into (10.15) gives 

0.316 pV
2 0.316 p( U ) 2 0.023pU 2 

To= (DVjv)l/4 8 = [{26/~Y(U/I.i35)]174 8 1.235 = (bUjv)IT4 ( 10.17) 

If we now equate the two expressions for T 0 ((10.6) and ( 10.17)], there results 

2 db 0.023pU 2 

pU ad; -(6Ufv)114 (10.18) 

Upon integrating this expression (with the condition b = 0 at x = 0), there results 

b = (0.0~87) 4/5 (;~) 1/5 X ( 10.19) 

If we now equate the two expressions for T0 ((10.6) and (10.17)], there results 
foregoing equations. To do this requires that we know or assume the velocity 
distribution in the turbulent boundary layer. Of the many formulas for this dis
tribution that have been proposed, the most convenient for our purpose IS 

Eq. (8.35), the seventh-root law, which can be expressed as 

(10.20) 

Recalling the integral definition of a from Eq. ( 10.5), this yields a = 0.0972. Substi
tuting this value in Eq. (10.19) gives 

X 

while substituting this value of (i in Eq. ( 10.17) yields 

or 

u2 ( v ) 1/5 
T 0 =0.0587p- ~ 

2 Ux 

(10.21) 

(10.22) 

' (10.23) 

With this value for c f the total friction drag on one side of the plate becomes 

F1 = B j T0 dx = 0.0735p-- --- BL 
• L U2 ( V ) 1/5 

·o 2 UL 
( 10.24) 

-
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or in Eq. (10.2) t~e friction-drag coefficient for a turbulent boundary layer is 

(10.25) 

where it is again noted that the characteristic length in N R is L, the total length of 
tthe plate parallel to the flow. For Reynolds numbers above 10 7

, Schlichting has 
proposed a modification of Eq. (10.25) which agrees better with experimental 
results, 1 

for NR > 10 7 (10.26) 

Illustrative Example 10.2. Find the frictional drag on the top and sides of a box-shaped moving 
van 8ft wide, 10ft high, and 35ft long, traveling at 60 mph through air(;·= 0.0725 lbjft 3 ) at SOT 
Assume that the vehicle has a rounded nose so that the flow does not separate from the top and sides 
(see Fig. 10.12b ). Assume also that even though the top and sides of the van are relatively smooth there 
is enough roughness so that for all practical purposes a turbulent boundary layer starts immediately at 
the leading edge. 

From Fig. 1.3, for air at 50 F, v = 0.00015 ft 2 /s. Then 

LU 
NR =-

I' 

35 X 88 
o.ooo 15 = 2o.sso.ooo 

As NR > 10 7
• use Eq. (10.26): 

0.455 c = - -- = 0.00268 
J (7.31)2 58 

Then. by Eq. ( 10.2), 

0.0725 (88)2 

Ff = 0.00268 X ---X- - X (10 + 8 + 10)35 = 22.9 lb 
32.2 2 

Find the thickness of the boundary layer and the shear stress at the trailing edge. 
By Eq. (10.21) 

35 X 0.377 
b = - - = 0.455 ft 

(205.5) 1 5 
X 10 

By Eq. (10.23) 

and 

0.0587 
c = -- -. --- = 0.00202 

f (20.55jl• 5 X 10 

0.0725 (88)2 

r 0 = 0.00202 x x --- - = 0.176 lb/ft 2 

32.2 2 

1 H. Schlichting, Boundary Layer Theory, Part II, N ACA Tech. Mem. 1218, p. 39, 1949. 
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10.5. FRICTION DRAG IN TRANSITION REGIME 

In the two preceding sections we have treated separately the resistance due to 
laminar and turbulent boundary layers on a smooth flat plate. When the plate is of 
such length that there is a transition from the laminar to the turbulent boundary 
layer on the plate surface, the friction drag may be computed as follows. 

Let xc in Fig. 10.6 be the distance from the leading edge to the point where the 
boundary layer becomes turbulent, which will normally occur at a value of N Rx of 
about 500,000. The drag of the turbulent portion of the boundary layer may be 
approximated as the drag which would occur if a turbulent boundary layer ex
tended along the whole plate, less the drag of a fictitious turbulent layer from the 
leading edge to xc. Thus 

Fturb :::::; Ftotal turb - Fturb to Xc 

When this is added to the drag from the laminar boundary layer up to xc, we have, 
from Eqs. (10.2), (10.14), (10.26), and (10.25), for the total drag, assuming the plate 
is long enough so that N R > 10 7 , 

U 2 f1.328xc 0.455 0.0735xcj 
Ff = p 2 B l JN~ + (IOg-N R)2.S8-- N1~5 

where NRc is based on the length xc to the point of transition, while N R is based on 
the total length L of the plate, as before. Next we observe that 

or 

and thus 

F.= p U~ BL f 1.32S JFR! + ... 0.455_ _ ~.0735 f!_~~sl 
1 2 [ NR (log NR) 2

·
58 NR 

which, for NRc = 500,000, reduces to 

0.455 1,700 
cf =(log N R)2S8- -N--; (10.27) 

Equations (10.14), (10.26), and (10.27) are plotted in Fig. 10.7, together with 
some comparison measurements and indicated ranges of applicability. 

All the treatment of laminar and turbulent boundary layers has so far been 
based upon the surface of the immersed body being smooth. The laminar layer can 

----------L 

• 

Figure 10.6. Boundary layers along a 
smooth flat plate of finite length. 
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0.008 

ts l r-Turbulent ( Eq.10.26) I 
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··-----r--- o Plane areas 
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0.004 ~· x Wing profiles 
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flight 

Figure 10.7. Drag coefficients for a smooth flat plate. (Adapted from N AC A Tech Mem. 1218, p. 117, 
1949.) 

be "tripped" into becoming a turbulent layer by a local region of excessive 
roughness. The height of this critical roughness is given approximately by 1 

c = . 15v __ = 26 v Nt/4 
c JryP U Rx 

( 10.28) 

where r 0 is determined by Eq. (10.11). 
We see that the height of the critical roughness depends on the distance from 

the leading edge. As the boundary layer grows along the plate, the roughness must 
be greater in order to upset the stability of the layer. It must be recalled that when 
N Rx reaches a value in the neighborhood of 500,000, the laminar layer of itself 
becomes unstable, however smooth the surface, and changes to a turbulent boun
dary layer with a thin viscous sublayer lying close to the surface. As in the case of 
flow in pipes, the surface is considered hydraulically smooth if the effect of the 
roughness points does not project through this sublayer. 

The thickness of the viscous sublayer is not a clearly determinable quantity, 
but it appears to be well agreed that the thickness of the strictly laminar region is 
given approximately by [see Eq. (8.26) for pipe flow] 

3.5v 
!)s = vhalP (10.29) 

1 I. Tani, J. Hama, and S. Mituisi, On the Permissible Roughness in the Laminar Boundary Layer, 
Aeronaut. Res. Jnst., Tokyo Imp. Univ., Rept. !5, p. 419, 1940. 
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while a transition layer extends to 

b = _ 60v 
r JTaiP (10.30) 

In both these equations r 0 /p may be obtained from Eq. (10.22). If the roughness 
height is only of the order of bs and a little greater, the surface may still be 
considered smooth, but if the roughness height is greater than b., the surface is 
truly rough and the drag is materially increased. 

It may be remarked finally that a plate or wing which is to incur minimum 
drag must be very smooth near the leading edge, where the laminar layer or 
sublayer is thinnest, while greater roughness may be tolerated near the trailing 
edge. Since the wall shear is so much greater in a turbulent boundary layer than in 
a laminar one, anything that can be done to delay the breakdown of the laminar 
boundary layer will greatly reduce the frictional drag force on a body. The laminar 
flow wing for aircraft is one for which suction slots along the leading edge of the 
wing help to maintain a favorable pressure gradient (Sec. 10.6) along the upper 
surface of the wing. This delays the breakdown of the laminar boundary layer, and 
thus such wings have much less drag than conventional ones. 

Illustrative Example 10.3. A small submarine, which may be supposed to approximate a cylinder 
10ft in diameter and 50ft long, travels submerged at 3 knots (5.06 fps) in sea water at 40°F. Find the 
friction drag. 

From Fig. 1.3, by interpolation v = 0.000018 ft 2/s. Then 

5.06 X 50 
N =- - - = 1.406 X 107 

R 0.000018 

From Eq. 10.27 or Fig. 10.7 

c, = 0.00272 

and 
64 (5.06) 2 

f f = 0.00272 X 
32

_
2 

X -
2 
-- X TC X 10 X 50 = 109 lb 

Find the value of the critical roughness for a point I ft from the nose of the submarine. 
At x =I ft 

5.06 X I 
NR = - - = 281 000 

X 0.000018 ° 

By Eq. (10.28) 

26 X 0.000018 
£, = - - -- (281.000) 1 4 = 0.00214 ft 

5.06 
l 

r :~.d the height of roughness at the mid-section of the submarine which would class the surface as truly 
~gh 

.\ t X = 25 ft 

'·()6 X 25 
.\ . = = 7.03 X 106 

•· O.OCXl018 

\ 

\._/ 
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By Eq. ( 10.22) 

(506) 2 I 
To /p = 0.0587 X ---- • · 5 S = 0.0322 ft 2js 2 

2 (70.3 X 10 )1 

Then, by Eq. ( 10.30) 

t 

. 60 X 0.000018 
o, = - J0:0322 = 0.006 ft 

10.6. BOUNDARY-LAYER SEPARATION AND 
PRESSURE DRAG 

The motion of a thin stratum of fluid lying wholly inside the boundary layer is 
determined by three forces: 

1. The forward pull of the outer free-moving fluid, transmitted through the lam
inar boundary layer by viscous shear and through the turbulent boundary layer 
by momentum transfer (Sec. 8.8). 

2. The viscous retarding effect of the solid boundary which must, by definition, 
hold the fluid stratum immediately adjacent to it at rest. · 

3. The pressure gradient along the boundary. The stratum is accelerated by a 
pressure gradient whose pressure decreases in the direction of flow and is 
retarded by an adverse gradient. 

The treatment of fluid resistance in the foregoing sections has been restricted 
to the drag of the boundary layer along a smooth fiat plate located in an 
unconfined fluid, that is to say, in the absence of a pressure gradient. In the 
presence of a favorable pressure gradient the boundary layer is "held" in place. 
This is what occurs in the accelerated flow around the forebody, or upstream 
portion, of a cylinder, sphere, or other object, such as that of Fig. 3.11. If a particle 
enters the boundary layer near the forward stagnation point with a low velocity 
and high pressure, its velocity will increase as it flows into the lower pressure 
region along the side of the body. But there will be some retardation from wall 
friction (force 2 above) so that its total useful energy will be reduced by a corre
sponding conversion into thermal energy. 

What happens next may best be explained by reference to Fig. 10.8. Let A 
represent a point in the region of accelerated flow, with a normal velocity distribu
tion in the boundary layer (either laminar or turbulent), while B is the point where 
the velocity outside the boundary layer reaches a maximum. Then C, D, and E are 
points downstream where the velocity outside the boundary layer decreases, re
sulting in an increase in pressure in accordance with ideal-flow theory. Thus the 
velocity of the layer close to the wall is reduced at C and finally brought to a stop 
at D. Now the increasing pressure calls for further retardation; but this is impos
sible, and so the boundary layer actually separates from the wall. At E there is a 
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Figure 10.8. Growth and separation of boundary layer owing to increasing pressure gradient. Note 
that U has its maximum value at B and then gets smaller. 

backflow next to the wall, driven in the direction of decreasing pressure
upstream in this case-and feeding fluid into the boundary layer which has left the 
wall at D. 

Downstream from the point of separation the flow is characterized by irregu
lar turbulent eddies, formed as the separated boundary layer becomes rolled up in 
the reversed flow. This condition generally extends for some distance downstream 
until the eddies are worn away by viscous attrition. The whole disturbed region is 
called the turbulent wake of the body (Fig. 10.9). 

Because the eddies cannot convert their kinetic energy of rotation into an 
increased pressure, as the ideal-fluid theory would dictate, the pressure within the 
wake remains close to that at the separation point. Since this is always less than 
the pressure at the forward stagnation point, there results a net pressure difference 
tending to move the body with the flow, and this force is the pressure drag. 

_Although the laminar and turbulent boundary layers behave in essentially 
the same manner at a point of separation, the location of the separation point on a 
given curved surface will be very different for the two cases. In the laminar layer 
the transfer of momentum from the rapidly moving outer strata through the 
viscous-shear process to the inner strata is slow and ineffective. Consequently, the 

l 

Figure 10.9. Turbulent wake behind a flat plate held normal to 
the tlo~> 

\./ 
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laminar boundary layer is "weak" and cannot long stick to the wall against an 
adverse pressure gradient. The transition to a turbulent boundary layer, on the 
other hand, brings a violent mixing of the faster-moving outer strata into the 
slower-moving inner strata, and vice versa. The mean velocity close to the boun
dary is greatly increased, as shown in Fig. 10.4. This added energy enables 
the boundary layer better to withstand the adverse pressure gradient, with 
they-esult that with a turbulent boundary layer the point of separation is moved 
downstream to a region of higher pressure. An example of this is shown in 
Fig. 10.11. 

10.7. DRAG OF THREE-DIMENSIONAL BODIES 
(INCOMPRESSIBLE FLOW) 

The total drag on a body is the sum of the friction drag and the pressure drag. 

Fv=F1 +FP 

In the case of a well-streamlined body, such as an airplane wing or the hull of a 
submarine, the friction drag is the major part of the total drag and may be 
estimated by the methods of the preceding articles on the boundary layer. Only 
rarely is it desired to compute the pressure drag separately from the friction drag. 
Usually, when the wake resistance becomes significant, one is interested in the 
total drag only. Indeed, it is customary to employ a single equation which gives 
the total drag, 1 

(10.31) 

in terms of an overall drag coefficient CD, with the other quantities the same as in 
Eq. ( 10.1 ), except that in the case of the lifting vane (as an airplane wing) the area 
A is defined as the product ofthe span and the mean chord (Figs. 10.15 and 10.21). 
In such a case the area is neither strictly parallel to nor normal to the flow. 

In the case of a body with sharp corners, such as the plate of Fig. 10.9 set 
normal to the flow, separation always occurs at the same point, and the wake 
extends across the full projected width of the body. This results in a relatively 
constant value of Cv, as may be seen from the plot for the flat disk in Fig. 10.10. If 
the body has curved sides, however, the location of the separation point will be 
determined by whether the boundary layer is laminar or turbulent. This location 
in turn determines the size of the wake and the amount of the pressure drag. 

The foregoing principles are vividly illustrated in the case of the flow around a 
sphere. For very low Reynolds numbers (DV /v < 1, in which Dis the diameter of 

the equations for total drag on submerged bodies, we revert to the use of V to designate a 
renee velocity. 



10' 
8 

10 
8 

I 

10- 2 

~-

·"- ! 

1 
1"\! L 

--
: 

---~ t l 
~ 

~ '"" '- ' c-0 
I', t-... t I'\, I 

_ Stokes law: CIJ=24/NR ~ 

-
,_1 __ 1 I 

--t I --
I 

H ! 

~·--r ~-- i-t-
i _J i 
I 

I : II 
I I i i I 

--

~~ 
I ......, 

i 

2 X 10-1 4 6 8 1 4 6 8 10 . 

!": 

! 

' 

i 

I : I I ! I 

I I I 
I 

i 

I 

I I 

Ellipsoid 1 : 0.75 
f-

Disk 
L L 

v--~J\ V-+- D Q -f-
1-1-
r--.t-... -- - r ~ --r- . -

""" -~--f-
I 

i___ ~/r-v-n 0 1--- - I 

I 

i 

\ 
I 

I' r- J 

I 

Sphere ' ~ 
I 

I 

I V-+-~Q.A',~ 
L--

~ ' 
Ellipsoid 1 : 1.8 \ / -

i 

.L_ ':.,_ 

i I 

v-n~ 
I ...--

I Airship hull j I 
i I I I I I I 

4 6 8 104 2 

Figure flf.tO. Drag coefficient for bodies of revolution. (Adapted from L. Prandtl, "Ergebnisse der aerodynamischen Versuchsanstalt zu 
Giittingen," p. 29, R. Olden bourg, Munich and Berlin, 1923; and F. Eisner, "Das Widerstandsproblem," Proc. 3d Internatn. Congr. 
App/. Mech., p. 32, 1930.) 



296 FLLID MECHANICS WITH E]';GJNEERING APPLICATJO]';S 

(a) (b) 

Figure 10.11. Shift in point of separation on 8.5-in-diameter bowling ball at a velocity of approximately 
~5 fp, in \\atcr. (a) Smooth sphere- laminar boundary layer. (h) Sphere with 4-in-diameter patch 
of sand grains cemented to nose turbulent boundary layer. Reynolds numbers are the same. 

(Phorographs hy L".S. Naml Ordnance Tes1 Swtion. Pasadena Annex.) 

the sphere) the flow about the sphere is completely viscous and the friction drag is 
given by Stokes' law, 

(10.32) 

Equating this equation to Eq. ( 10.31 ). where A is defined as nD 2 /4, the frontal area 
of the projected sphere, gives the result that C 0 = 24/N R. The similarity between 
this case and the value of the friction factor for laminar flow in pipes is at once 
apparent. This regime of the flow about a sphere is shown as the straight line at 
the left of the log-log plot of C 0 versus N R in Fig. I 0.1 0. 

As N R is increased beyond 1, the laminar boundary layer separates from the 
surface of the sphere, beginning first at the rear stagnation point, where the 
adverse pressure gradient is the strongest. The curve of Cv in Fig. 10.10 begins to 
level off as the pressure drag becomes of increasing importance and the drag 
becomes more proportional to V2

. With further increase in N R, the point of 
separation moves forward on the sphere, until at N R ::::: 1,000 the point of separa
tion becomes fairly stable at about 80 from the forward stagnation point. 

For a considerable range of Reynolds numbers conditions remain fairly 
stable. the laminar boundary layer separating from the forward half of the sphere 
and Cn remaining fairly constant at about 0.45. At a value of N R of about 250,000 
for the smooth sphere, however. the drag coefficient is suddenly reduced by about 
50 percent, as may be seen in Fig. 10.10. The reason for this lies in a change from a 
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laminar to a turbulent boundary layer on the sphere. The point of separation is 
moved back to something like 115c, from the stagnation point, with a consequent 
decrease in the size of the wake and the pressure drag. 

If the "level" of turbulence in the free stream is high, the transition from 
laminar to turbulent boundary layer will take place at lower Reynolds numbers. 
Because this phenomenon of shift in separation point is so well defined, the sphere 
is often used as a turbulence indicator. The Reynolds number producing a value of 
Cn of0.3-which lies in the middle ofthe rapid-drop range-becomes an accurate 
measure of the turbulence. 1 

As was mentioned previously. the transition from a laminar to a turbulent 
boundary layer may also be prematurely induced by artificially roughening the 
surface over a local region. The two pictures of Fig. 10.11 clearly show the effec
tiveness of this procedure. By roughening the nose of the sphere the boundary 
layer is made turbulent and the separation point moved back. The added 
roughness and turbulent boundary layer cause an increase in friction drag, to be 
sure, but this is of secondary importance compared with the marked decrease in 
the size and effect of the wake. This explains the main reason why the surface of a 
golf ball is perforated. A smooth-surfaced ball would have greater overall drag 
and would not travel as far when driven. 

Plots of C n versus N R for various other three-dimensional shapes are also 
shown in Fig. 10.10. It may be pointed out here that the object of streamlining a 
body is to move the point of separation as far back as possible and thus to 
produce the minimum size of turbulent wake. This decreases the pressure drag. 
but by making the body longer so as to promote a gradual increase in pressure, 
the friction drag is increased. The optimum amount of streamlining, then, is that 
for which the sum of the friction and pressure drag is a minimum. Quite evidently. 
from what we have learned. attention in streamlining must be given to the rear 
end. or downstream part. of a body as well as to the front. The shape of the 
forebody is important principally to the extent that it governs the location of the 
~eparation point(s) on the afterbody. A rounded nose produces the least distur
bance in the streamlines and is therefore the best form for incompressible or 
compressible flow at subsonic velocities. This is illustrated in Fig. 10.12 where 
:1ow about a blunt-nosed motor vehicle is compared to that about a rounded
·;o,;e vehicle. 

}llustrati'e Example lOA. L'mg the data of Illustrati\c Example 10.2 determine the total drag 
<:cted b) the air on the \dn \"umc that C" ~ 0.45 (see Fig. 10.12). 

l' 00"25) (88) 2 

Fn = Cnl' , l cc ll.-+'( (X x 10) 
I -:;""~"'' "'' 

. -·- -

1,,=.'1-+1b 

:''" prc,,ure drag cc ; 1-l- ~; = 291 lb. in this case the pressure drag is responsible for about 
· ~::.:en! of the total drag '' h :]-: ::,c fr1ct1on drag comprises only 7 percent of the total. 

H Dnden. Reduc'lic'" ,•: L.-" .... " \\'md Tunneb. NACA Tech. Reporl 392. 19:11 
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(a)- Cn ""0.75 

Point of separation 

t 

r.:> ,.-:;, "' ,.-:;, 

(b) 
,-:> ~ 

Cv ""0.45 - ..:> -.::> ..::> 

'"' ..:> ..:> .::> 

Point of separation 

Figure 10.12. Flow about a motor vehicle (delivery van). (a) Angular nose with separated flow along 
the entire side wall and a large drag coefficient C 0 = 0.75. (b) Round nose with separation at the 
rear of the vehicle and smaller drag coefficient C 0 = 0.45. (Adapted from H. Schlichting, "Boundary 
Layer Theory," 4th ed., p. 34, McGraw-Hill Book Co., New York, 1960.) 

Illustrative Example 10.5. Find the" free-fall" velocity of a 8.5-in-diameter sphere weighing 16 lb 
when falling through the following fluids under the action of gravity: (a) through the standard atmo
sphere at sea level; (b) through the standard atmosphere at 10,000-ft elevation; (c) through water at 
60"F; (d) through crude oil (s = 0.925) at 60cF. 

When first released the sphere will accelerate because the forces acting on it are out of balance. 
This acceleration results in a buildup of velocity which causes an increase in the drag force. After a 
while the drag force will increase to the point where the forces acting on the sphere are in balance, as 
indicated in the figure. When that point is reached the sphere will attain a constant or terminal 
(free-fall) velocity. Thus for free-fall conditions, 

IF,= W- F 8 - Fv =mass x acceleration= 0 

where W is the weight, F 8 the buoyant force, and Fn the drag force. The buoyant force is equal to the 
unit weight of the fluid multiplied by the volume (nD 3/6 = 0.186 ft 3

) of the sphere. The given data are 
approximately as follows: 

Fluid lbjft 3 slug/ft 3 ft 2 /s F(lb) 

Air (sea level) 0.0765 0.00238 1.57 x w-• 0.0142 
Air (10,000 ft) 0.0564 0.00175 1.57 x w-• O.Dl05 
Water. 60 F 62.4 1.94 1.22 X JO-S 11.6 
OiL 60 F 57.6 1.79 0.001 10.7 

The detailed analysis for the sphere falling through the standard sea-level atmosphere is as follows: 

vl 

where 

16-0.0I-C0 p- A=O 
2 

p = 1.94 slugsift ·' and 
n(8.5112)2 

2 A = . = 0.394 ft 
4 



or 

Fn (becomes larger) 

Fu 

1 v Ja (becomes t smaller) 

w 

(a) 

Fu ~ 'Ytluid X (vol) 

1 V ~ constant 

II ~weight 

(b) 
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Illustrative Example 10.5 

vz 
15.99 = c/)(0.00238) 

2 
(0.394) = o.00047 c/) V2 

A trial-and-error solution is required. Let C n = 0.2, then V = 412 fps. 

DV (85 12)412 
6 N = = = I.R6 X 10 

R \' J.57 X w-< 

The values of c/) and N R check Fig. 10.10; hence c/) = 0.2 and v = 412 fps. 
Following a similar procedure for the other three fluids gives the following free-fall velocities: 

Standard atmosphere at 10.000 ft = 470 fps 
Water at 60 F = 7.4 fps 1 

Crude oil {s = 0.925) at 60 F = 6.15 fps 

10.8. DRAG OF TWO-DIMENSIONAL BODIES 
(INCOMPRESSIBLE FLOW) 

Two-dimensional bodies are also subject to friction and pressure drag. However, 
the flow about a two-dimensional body exhibits some peculiar properties which 
are not ordinarily found in the three-dimensional case of flow around a sphere. 
For example, with Reynolds numbers less than 1, the flow around a cylinder is 
completely viscous and the drag coefficient is given by the straight -line part of the 
curve at the left of Fig. 10.13. As the Reynolds number increases from 2 to about 
30, the boundary layer separates symmetrically from the two sides of the cylinder 
and two weak, symmetrical standing eddies are formed. The equilibrium of the 
standing eddies is maintained by the flow from the separated boundary layeP,\nd 

1 In this instance the Reynolds number is 430,000 which, for the case of a sphere. generally 
indicates a turbulent boundary layer (Fig. 10.10). This is very close to the point where the boundary 
layer changes from laminar to turbulent. If the water had bce_n at a somewhat lower temperature and, 
hence. more viscous. a laminar boundar) hner might have been present. in which case the free-fall 
velocity would have been only 5.1 fps. 



__ _)__ 

I 
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-r-1 

I 

NR=DV/v 

Figure 10.13. Drag coeflicient for two-dimensional bodies. (Adapted from L. Prandtl. "Ergebnisse der aerodynamischen Versuchsanstalt zu 
Clottingen."' p. 24. R. Oldenbourg. Munich and Berlin. 1923: F. Eisner ... Das Widerstandsproblem ... Proc. 3d Internatn. Congr. App/. 

Mech.. p .12. 19.10; A. F. Zahm, R. H. Smith, and G. C. Hill . .. Point Drag and Total Drag of Navy Struts No. I Modified ... N ACA 

Rept. 137. p. 14. 1972; and W. F. Lindsey ... Drag of Cylinders of Simple Shapes," N ACA Rept. 619. pp. 4-5, 193S.) 
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Figure 10.14. The Karman vortex street following a cylinder. 

if the cylinder is of finite length the eddies increase in length with increase in 
velocity in order to dissipate their rotational energy to the free-streaming fluid. 

At some limiting Reynolds number, usually about 60, depending on the shape 
of the cylinder (not necessarily circular), the width of the confining channel, and 
the turbulence in the stream, the eddies break off, having become too long to hang 
on, and wash downstream. This gives rise to the beginning of the so-called 
Karman vortex street. Above this critical N R, and visibly up to a value of about 
120, the vortices are shed first from one side of the cylinder and then from the 
other. The result is a staggered double row of vortices in the wake of the object as 
shown in Fig. 10.14. This alternating shedding of vortices and the accompanying 
forces gives rise to the phenomenon of aerodynamic instability. of such impor
tance in the design of tall smoke stacks and suspension bridges. It is also under
stood to account for the" singing" of wind blowing across wires. The frequency at 
which the vortices are shed has been given by G. F. Taylor and substantiated by 
Lord Rayleigh to be about 

I= 0.20 _~'" ( 1 -
2

()_) 
D NR 

(10.33) 

For Reynolds numbers above 120 or so it is difficult to perceive the vortex 
,;treet, but the eddies continue to be shed alternately from each side up to a value 
of N R of about 10,000. Beyond this the viscous forces become negligible, and it is 
not possible to say how the eddies form and leave the cylinder. As in the case of 
the sphere, the boundary layer for a circular cylinder becomes turbulent at a value 
llf N R of about 350,000. The corresponding sharp drop in C n may be seen in 
Fig. 10.13. 

Values ofC D for various other two-dimensional shapes are given in Fig. ~C.13 . 
.\' may be noted from the curve for the finite cylinder. the resistance is decreased if 
:'nee-dimensional flow can take place around the ends. This decrease in CD 
•-:curs because the vortices can extend laterally into the flow field and permit 
~ ..;,;ipation of energy over a larger region. 

lllustrathe Example 10.6. What frcyuenc\ c)f '"cdlation is produced by a 15 n11s wind at -20 C 
- ·" ;ng across a 2-n1m-dian1eter \\ 1rc c1; -.c-,i !c\ ~~ ·) 
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From Appendix 3, Table A.2b: 

Dv 2 x w- 3 (15) 
N R = = . = 2,600 

v 1.15 x w-s 

E't ~10.33), 15 ( 20 ) 
f= 0.20 2 X w-3 I- 2,600 = 1,500 Hz 

10.9. LIFT AND CIRCULATION 

At the start of this chapter we briefly mentioned the lift as a force which acts on an 
immersed body normal to the relative motion between the fluid and the body. The 
most commonly observed example of lift is that of the airplane wing suspended in 
the air by this force. The elementary explanation for such a lift force is that the air 
velocity over the top of the wing is faster than the mean velocity, while that along 
the underside is slower than the mean (Fig. 10. !Sa). The Bernoulli theorem then 
shows a lower pressure on the top and a higher pressure on the bottom 
(Fig. 10. 1Sb ), resulting in a net upward lift. 

The increased velocity over the top of the wing of Fig. ( 10. !Sa) and the 
decreased velocity around the bottom of the wing can be explained by noting that 
a circulation (Sec. S.3) is induced as the wing moves relative to the flow field. The 
strength of the circulation depends, in the real case, on the shape of the wing and 
its velocity and orientation with respect to the flow field. A schematic diagram of 
the situation is presented in Fig. 10.16. 

The relationship between lift and circulation is one that has been studied 
exhaustively for years by many investigators. An understanding of this relation
ship is essential to the analysis of various aerodynamic and hydrodynamic prob
lems. To illustrate the theory of lift, we shall consider the flow of an ideal fluid past 

p 

----------
(a) 

--- Chord, c ----- ·~ 

~ Negative pressure 
I on upper surface 

\_ Positive pressure on 
lower surface of foil 

\-stagnation point, S 

(b) 

Figure 10.15. Streamlines and pressure distribution about a cambered airfoil, at angle of attack 
:x = 8.6 . (Data from L. Prandtl, "Ergebnisse der aerodynamischen Versuchsanstalt zu Giittingen," 
R. Oldenbourg, Munich and Berlin, 1923.) 
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--
(a) (c) --

Figure 10.16. Schematic superposition of circulation on uniform rectilinear flow field. (a) Uniform 
rectilinear flow field. (h) Circulation. (c) :-.;et effect. 

a cylinder and assume that a circulation about the cylinder is imposed on the flow. 
First, though, let us consider the Yelocity field surrounding a free vortex 
(Fig. 10.17). The equation for this field was given in Sec. 4.18 as rr = C, a 
constant. The circulation can be readily computed by application ofEq. (5.8) if we 
choose the closed path as the circular streamline L 1 concentric with the center of 
the vortex. The velocity is evidently around this path and tangent to it (cos fJ = 1), 
and the line integral of dL is simply the circumference of the circle. Applying the 
same treatment to another concentric circle L 2 , we get 

But from the vortex velocity field 1· 1 r1 = 1· 2 r2 = C, and hence 

r = 2nC = 2nrr ( 10.34) 

which demonstrates that the circulation around two different curves, each com
pletely enclosing the vortex center. is the same. It may be proved more rigorously 
that the circulation around any path enclosing the vortex center is given by 
r = 2nC. The circulation is seen to depend only on the vortex constant C, which is 
called the strength of the vortex. 

l 

Figure 10.17. Circulation about a vortex center. 
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A corollary states that the circulation around a path not enclosing the vortex 
center is zero. Let us take the path EFGH of Fig. 10.17. Along the two radial lines 
EF and G H, cos f3 = 0, while along the two circular arc segments, r FG = v2 </Jr 2 

and r HE= -v 1 </Jr 1, resulting in a net circulation of <P(v 2 r2 - v1 r 1 ) = 0. 

t 
10.10. IDEAL FLOW ABOUT A CYLINDER 

Let us first consider uniform flow of an ideal fluid about a cylinder that is 
infinitely long. From classical hydrodynamics 1 it has been shown that with 
steady flow of uniform velocity U (Fig. 10.18a) the velocity V11 at the periphery 
of the cylinder is given by 

V
11 

= 2U sine ( 10.35) 

The pressure distribution on the cylinder may be computed by writing the Ber
noulli theorem between a point at infinity in the free-streaming fluid and a point 
on the cylinder wall. Since the pressure distribution is completely symmetrical 
about the cylinder, there is no net lift or drag for this ideal case. 

Putting this uniform flow aside for the moment, we next suppose a circulatory 
flow about the cylinder (Fig. 10.18b). Adopting the positive clockwise direction of 

1 Eq. ( 10.35) can be developed by noting that v, = iJtit/or where t/J is given by Eq. (5.18). 

v,, =2U sine 

(a) (b) 

(c) 

Figure 10.18. Circulation and lift from unsymmetrical flow about a cylinder. 



FORCES ON IMMERSED BODIES 305 

circulation r the peripheral velocity v
12 

on the surface of the cylinder due to 
circulation may be expressed as 

(10.36) 

where R is the radius of the cylinder. Thus in the flow field outside the cylinder, 
v

11 
= rj2nr. This velocity distribution produces a pressure variation which is 

radially symmetrical, in accordance with the free-vortex theory. We see that the 
solid cylinder has replaced the vortex center in the circulation theory. If the 
reader wishes an explanation for the existence of the circulation, it may be 
supposed to arise from rotating the cylinder, which indeed may be demonstrated 
in a real fluid. 

Next let us superpose the circulatory flow onto the uniform motion, to form 
the unsymmetrical flow of Fig. 10.18c. The velocity at the periphery is the sum of 
the two contributions, or 

. /) r 
l't = 2U Sill (7 + -2-

nR 
(10.37) 

The general equation for the pressure p at any point on the circumference of 
the cylinder is obtained as follows: 

Po U2 p v2 - + -- = -- + t 
}' 2g }' 2g 

where p0 is the pressure at some distance away where the velocity is uniform. 
From these two equations 

P- Po=~ r U 2 
- ( 2U sin 8 + 2:R) 

2

] 

Since the elementary area per unit of length of the cylinder is R d(] and the lift F Lis 
the summation of all the components normal to the direction of U, the resulting 
value of F L is obtained from 

21t 

FL = -B f (p- p0 )R sin 8 d(] 
• 0 

Substituting the expression for p - p0 and integrating, this reduces to 

FL = pBur 

where F L is the lift force and B is the length of the cylinder. 

( 10.38) 

The existence of this transverse force on a rotating cylinder is known \if. the 
.\1agnus effect, after the man who first observed it in 1852. Equation (10.38)-the 
Kutta-Joukowski theorem-is known by the name of the two men who pioneered 
the quantitative investigation of the lift force shortly after the turn of the century. 
The great importance of this theorem is that it applies not only to the circular 
cylinder but to a cylinder of any shape. including in particular the lifting vane, or 
airfoil, as shown in Fig. 10.15. 
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It is clear from Fig. 10.18c that the stagnation points have shifted downward 
from the horizontal axis, but they are still symmetrical about the vertical axis. At 
the point of stagnation on the cylinder, rt in Eq. (10.37) will be zero. Thus we have 
at the stagnation point 

t 

. e r -2U sm = ----
2nR 

This shows that if we can measure the angle to the stagnation point and know the 
free-stream velocity, we may obtain the circulation from 

r = -4nRU sin 8s (10.39) 

where es represents the angle between the horizontal diameter and the stagnation 
point in Fig. 10.18c. Figure 10.18c illustrates a case where r < 4nRU, that is, 
where I sin() I < 1. For the case ofr = 4nRU, sin()= -1, and the two stagnation 
points meet together at the bottom of the cylinder as shown in Fig. 10.18d. The 
two streamlines make angles of 60c with the tangent to the cylinder and the 
maximum velocity in the flow for this case occurs at the top of the cylinder and is 
equal to 

4nRU 
r = 2U + - = 2U + 2U = 4U 

max 2nR 

Thus according to ideal-flow theory 1
, if the cylinder is rotated so that t't = 2 U 

(that is, at w = t)R = 2U/R), the circulation thus produced will cause the stagna
tion point to occur at the bottom of the cylinder as in Fig. 10.18d. If the cylinder is 
rotated at still greater speed, the stagnation point is removed entirely from the 
cylinder surface, and a ring of fluid is dragged around with the cylinder. 

Illustrative Example 10.7. A cylinder 4 ft in diameter and 25 ft long rotates at 90 rpm with its axis 
perpendicular to an airstream with a wind velocity of 120 fps (81.8 mph). The specific weight of the air 
is 0.0765 lb/ft 3 Assuming no slip between the cylinder and the circulatory flow, find {a) the value of the 
circulation; (h) the transverse or lift force; and (c) the position of the stagnation points. 

(a) Peripheral velocity: 

2nRn 90 
r·, = - = 2n x 2 x - = 18.84 fps 

60 60 

From Eq. (10.34). 
I ....... 

I= 2nRr, = 2n x 2 x 18.84 = 237 ft 2/s 

(b) From Eq. {10.38), 

0.0765 
Fl = pBUI = X 25 X 120 X 237 = 1,685 lb 

. 32.2 

1 In the case of a real fluid, because of viscosity, the required velocity to bring the stagnation point 
to the bottom of the cylinder is about twice that indicated by ideal-flow theory. 



(c) From Eq. (10.39), 

1 
sin 0 = -- -

' 4rrRU 
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237 
- - = -0.0786 

4rr2 x 120 

Therefore 0, = 184.5", 355.5" 

Actually, the real circulation produced by surface drag of the rotating cylinder would be only 
about one-half of that obtained above for the no-slip assumption. 

10.11. LIFT OF THE AIRFOIL 

The reader may well ask why so much attention is given to the flow about a 
cylinder when it is obvious that there are few practical applications of the lift on a 
cylinder. 1 The answer is that one of the most remarkable applications of math
ematics to engineering is conformal transformation, 2 by which the flow about one 
body may be mapped into the flow about a body of different (though mathema
tically related) shape. Certain quantities, notably the circulation and relative posi
tion of the stagnation points, remain unchanged in the mapping. The importance 
of the circular cylinder, then, is that it can be mapped into a perfectly workable 
airfoil by the so-called Joukowski transformation. The position of the stagnation 
points is determined from the physical requirements of the flow about the airfoil, 
and these stagnation points, mapped back onto the cylinder, determine the circu
lation, by Eq. (10.39), and the lift, by Eq. (10.38). 3 

Let us examine the airfoil of Fig. 10.19. As fluid flows past the foiL there will 
be a tendency for stagnation points to form at the points of the foiL corresponding 
to the 0 and 180° points of the corresponding cylinder (Fig. 10.18a). Just where 
these points occur on the foil depends on the angle of attack rJ., or the attitude of the 
foil with respect to the oncoming flow, as shown in the figure. We shall assume a 
positive angle of attack in Fig. 10.19a, with corresponding initial stagnation 
points a and b. While the location of these stagnation points involves no difficulty 
in the case of the ideal fluid, we see at once that the condition at the trailing 
edge--with the air from the underside trying to flow around the sharp cusp of the 
foil-becomes a point of violent separation in real fluid flow. 

This condition lasts no more than an instant, however, for stagnation point b 
is soon swept back to the trailing edge of the foil (Fig. 10.19b), where it stays. This 

1 In the early 1920s A. Flettner developed the "rotorship," which substituted motor-driven cylin
drical rotors for sails. The ship was then driven by the Magnus effect but still required wind.~ few 
trans-Atlantic crossings were made, but the rotorship was ultimately found to be uneconomicaJ.~ee A. 
Flettner, "The Story of the Rotor," Willhoft, New York, 1926. 

2 For an excellent discussion of conformal transformation see H. R. Vallentine, "Applied 
Hydrodynamics," Butterworth & Co. (Publishers), Ltd., London, 1959. 

3 It must be understood that while the Joukowski profile is a workable lifting vane, the modern 
airfoil has undergone man: modifications to improve its performance for various special purposes. The 
mapping theory described here applie, exact!: to the Joukowski foil and in principle to any lifting 
\ane. 
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--aa ... a~£! .. --~±L~b~ 
(a) . 

Figlre 10.19. Adjustment of stagnation points to avoid infinite velocity at trailing edge. 

stable position of the point b is necessary, according to the so-called stagnation 
hypothesis of N. Joukowski, in order to avoid an infinite velocity around the sharp 
cusp of the foil. Now this shift in the rear stagnation point of the foil corresponds 
to a shift in the rear stagnation point of the related cylinder to a negative angle, 
somewhat as shown in Fig. 10.18c. Vertical symmetry of the flow about the cylin
der requires that the forward stagnation point move downward by the same angle. 
This in turn maps a new location of the forward stagnation point on the airfoil, 
and such a shift also takes place in the real flow. We see, then, that a circulation 
has become established about the airfoil, the magnitude of which is determined 
by the location of the stagnation points on the corresponding cylinder. The lift 
may then be determined analytically by Eq. (10.38). 

Although the Joukowski hypothesis appears perfectly reasonable, we must 
investigate whether or not nature will actually perform this adjustment of the 
stagnation point to the cusp of the airfoil profile. Our acceptance of this hypoth
esis is complicated by the perfectly valid theorem of Thomson (Lord Kelvin), 
which states that "the circulaSion around a closed curve in the fluid does not 
change with time if one moves with the fluid." How is a circulation created around 
the airfoil where none existed before? The answer was first suggested by Prandtl 
and has been well substantiated with photographs. He showed that the initial 
separation point at the cusp caused a starting vortex to form, as shown in 
Fig. 10.20a. In order to satisfy Thomson's theorem, an equal and opposite circula
tion must automatically be generated around the foil (Fig. 10.20b ). After this 
circulation has been established, the starting vortex breaks off and is left behind as 
the airplane moves forward, but just to satisfy Thomson's theorem, the starting 
vortex keeps whirling around (Fig. 10.20c) until it dies out from viscous effects. 
The net circulation around a curve including the profile and this vortex is still 
zero. When the airfoil comes to a stop or changes its angle of attack, new vortices 
are formed to effect the necessary change in circulation. 

Velocity discontinuity 

at trail~ng edge ~r {r [ _ r r@] --· ........... ~ c=::::::s u ~j ~ 
~ ~--------------------

(a) 
r=o 

(b) 

Figure 10.20. Life history of the starting vortex. 

r=o 
(c) 
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10.12. INDUCED DRAG ON AIRFOIL 
OF FINITE LENGTH 
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The discussion of lift has so far been limited to strictly two-dimensional flow. 
When the foil or lifting vane is of finite length in a free fluid, however, there are end 
conditions which affect both the lift and the drag. Since the pressure on the 
underside of the vane is greater than that on the upper side, fluid will escape 
around the ends of the vane and there will be a general flow outward from the 
center to the ends along the bottom of the vane and inward from the ends to 
the center along the top. The movement of the fluid upward around the ends of 
the vane results in small tip vortices which are cast off from the wing tips. In 
theory, the Thomson theorem still holds, for the tip vortices are of equal and 
opposite magnitude. If the circulation is computed about a hypothetical path 
passing through the foil and along the axes of the tip and starting vortices, as 
shown in Fig. 10.21, it will still add up to zero. Practically, of course, the circula
tion about the foil continues to exist, but the tip and starting vortices soon die out 
from viscous resistance. 

The closed path consisting of the finite wing, the tip vortices, and the starting 
vortices of Fig. 10.21 constitutes a large vortex ring inside of which there is a 
downward velocity induced by the vortices. Prandtl showed this induced, or 
downwash, velocity U; to be a constant if the wing is so constructed as to produce 
an elliptical distribution of lift over a given span. The downwash changes the 
direction of the flow in the vicinity of the foil from U to U 0 thus decreasing the 
effective angle of attack from r:t. to r:t. 0 . The decrease in the effective angle of attack 
r:t.; = r:t.- r:t. 0 =arctan (U;!U), as shown in Fig. 10.22. 

The wing may be analyzed on the basis of a foil of infinite length set in a 
stream of uniform velocity U 0 , at angle of attack r:t. 0 . The lift FLO generated from 
the circulation about the infinite foil must be normal to U 0 . This force is seen to 
be resolved into two components, the true lift F L normal to U and a component 

Figure 10.21. Wing of finite span. 
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t • U;, downwash velocity 

-==nJ-t--, 
Figure 10.22. Definition sketch for induced drag. 

parallel to U called the induced drag F Di. In conformity with our other drag terms, 
we represent the induced drag in the standard form 

v2 
Fvi = CviP2A (10.40) 

It is now necessary to distinguish between the two- and three-dimensional 
cases of drag. The skin friction and pressure drag discussed earlier in this chapter 
will be lumped into the profile drag F vo, which includes all drag forces acting on 
the profile of infinite length. The total drag on the finite span is then the sum of the 
profile and induced drags, or 

Fv = Fvo + Fvi (10.41) 

As the angle r:xi is small 

U0 ~ U 

It should be noted at this point that in addition to expressing the lift force by 
Eq. (10.38), it is convenient to express it as 

v2 
FL = CLp- A (10.42) 

2 

where C L is the lift coefficient whose value depends primarily on the angle of 
attack and the shape of the airfoil, and A is the projected area of the airfoil or body 
normal to the lift vector. 

The computations for the elliptical distribution of lift are too complex to 
appear here, but they result in the simple relation 

ui ( . ) cL U = r:xi radians = n(B2 /A) (10.43) 
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where B is the span of the airfoil and A is its plan area. The quantity B2 I A is 
referred to as the aspect ratio; it is sometimes expressed as Blc, where cis the mean 
chord length. 

From Eqs. (10.40), (10.41 ), and (10.42), together with the above expression for 
F n;, we have 

(10.44) 

Dividing Eq. (10.41) by pV2 AI2 and substituting Eq. (10.44) gives for the 
coefficient of total drag on a foil of finite length, 

Ci 
Cn = Cno + Cn; = Cno + n:(B2IA) (10.45) 

As would be expected, C n; is seen to depend on the lift coefficient, i.e., the 
angle of attack cx 0 and the aspect ratio B 2 I A. For zero lift or infinite aspect ratio 
the induced drag would be zero. These equations are important in comparing data 
for an airfoil tested at one aspect ratio with data for another foil at a different 
aspect ratio. 

The explanation of how the induced drag, occurring as it does in the 
ideal-fluid theory, fits into the D'Alembert paradox, which states that there is no 
drag on a body in ideal flow is that the work done against the flow by the induced 
drag is conserved in the kinetic energy of the tip vortices cast from the ends of the 
foil. In a real fluid, evidence of the tip vortices may frequently be seen in the form 
of vapor trails extending for miles across the sky. The decreased temperature 
caused by the decreased pressure at the center of the vortex causes condensation 
of the moisture in the air. 

10.13. LIFT AND DRAG DIAGRAMS 

A wealth of data on the lift and drag of various airfoils has been obtained from 
wind-tunnel tests. The results of such tests may be presented graphically as plots 
of the lift and drag coefficients vs. the angle of attack. Since the efficiency of the 
airfoil is measured by the ratio of lift to drag, the value of C L IC n is generally 
plotted also. These three curves can be combined neatly into a single curve, 
suggested by Prandtl, known as a polar diagram (Fig. 10.23). 

The coordinates of the polar diagram are the lift and drag coefficients .. '-vhile 
the angles of attack are represented by different points along the curve. The ratio 
of lift to drag is the slope of the line from the origin to the curve at any point. 
Evidently, the maximum value of the ratio occurs when this line is tangent to the 
curve. The lift is seen to increase with the angle of attack up to the point of stall. 
Beyond this point the boundary layer along the upper surface of the foil separates 
and creates a deep turbulent wake. 
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-Cr 

a of maximum lift 
(stall point) 

A~
lSepar~ 

· .. ~.Theoretical curve for Cv; for B2 /A~ B/c=5 

ci ) 
( Cm= 1r (Bfc) 

~a of zero lift 

-9" 

Figure 10.23. Polar diagram for wing of aspect ratio 5. (Cun e from Prandtl-Tietjens ... Applied 
Hydro- and Aeromechanics." p. 152. McGraw-Hill Book Company. Inc .. New York. 1934.) 

The polar diagram is notably instructive with regard to the drag coefficient, 
consisting of the coefficients of profile and induced drag as shown in Eq. ( 10.45). 
The dashed line in Fig. 10.23 is the parabola of Eq. (10.44). For an aspect ratio of 
5, as shown. the induced drag is a major part of the total drag. For larger aspect 
ratios the parabola remains closer to the vertical axis, and the total drag is 
correspondingly decreased. 

The polar diagram of a Clark Y airfoil. rectangular in plan. 6-ft chord by 36-ft 
span, is shown in Fig. 10.24. It will be observed that the angle of attack is read 
from a geometric reference which has little meaning by itself. The important 
reference angle is the angle of attack for zero lift. in this case - 5.6 . In generaL this 
is also the angle for minimum drag. The lift coefficient can be shown theoretically 
to be given by 

C L = 2nrp.~ (10.46) 
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Theoretical curve for induced 
drag vs. lift, from Eq. (10.47) 
for B!c=6 

' o----o Measured values for rectangular 
wing of aspect ratio B/c=6, 

- 56'----o----

-6.8' 1 . 

-8.2'~ 
: I 

0.1 

at various values of a, total 
angle of attack 

c·,,,~ 

L- c ~ 6' ________; 

I x c 
N R = =4.77 x 106 at zero lift 

r· -4.20 x 106 at max. lift 

Figure 10.24. Polar diagram for rectangular Clark Y airfoil of 6-ft chord by 36-ft span. (Data from 
A. Silverstein. NAC.4 Rept. 502. p. 15. 1934.) 

where CJ:~ is the angle of attack (for the airfoil of infinite span) measured in radians 
from the attitude of no lift. and 11 is a correction factor for frictional effects, having 
a value of about 0.9 for modern airfoil sections. 

It will be recalled from Sec. 10.12 that the induced-drag theory assumed an 
elliptical distribution of lift over the span of the finite airfoil. Such a distrill~tion 
of lift is only an approximation. and for the rectangular airfoil the expressions for 
induced angle of attack and induced-drag coefficient given in Eqs. (10.43) and 
( 10.44) must be corrected as follows: 

xi(radians)= c~. (1~r) 
~(B c) 

( 10.47) 
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0.18 

2 4 6 
Aspect ratio, B I c 

and 

0.02 
Figure I 0.25. Correction factors for trans
forming rectangular airfoils from finite to 
infinite aspect ratio. (From A. Silverstein. 
N AC A Repr. 502. Fig. 7, 1934.) 

( 10.48) 

where rand CJ are correction factors given in Fig. 10.25. Information on airfoils of 
shapes other than rectangular may be found in the literature. 1 

Illustrative Example 10.8. For a rectangular Clark Y airfoil of 6-ft chord by 36:ft span, find the 
value of the friction coefficient ry if the angle of attack Y. = 5.4 when the wing is moving at 300 fps 
through standard atmosphere at altitude 10.000 ft. Find the weight which the wing will carry and the 
horespower required to drive it. 

From Fig. 10.24, withY.= 5.4. C1• =OX C" = 0.047. From Fig. 10.25, for B;c = 6, r = 0.175. 
From Eq. ( 10.47). 

O.X 
Y., = (I+ 0.175) = 0.0498 rad = 2.85 

rr(36 6) 

From Fig. 10.22. Y.o = a - Y.; = 5.40 - 2.85 = 2.55 and since the angle of zero lift is - 5.6 , 

Y.~ = 2.55 + 5.6 = 8.15 = 0.1424 rad 

From Eq. (10.46). 

c~. o.s 
ry = ~ = 0.894 

2trY.~ 2rr x 0.1424 

The wing will support a weight equal to the lift force. 

vz 
Fl.= c~.fl ") (B X c) 

From Appendix 3. Table A.2(a). at 10,000 ft. f! = 0.001756 slug;ft 3 

. - (300) 2 

f- 1 = 0.8 X 0.0017)6 X X 36 X 6 = IJ,680 lb . 2 

1 Ira H. Abbott and Albert E. von DocnholT. "'Theory of Wing Sections Including Summary of 
Airfoil Data,"" Dover. New York. 1959. 
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while 
0.047 

F/) = X 13,680 = 803 lb 
0.8 

803 X 300 
Horsepower required = = 438 hp 

550 

10.14. EFFECTS OF CO:\IPRESSIBILITY ON 
DRAG AND LIFT 

In Sec. 9.IO it was pointed out that when a body moves through a fluid at 
supersonic velocity a shock wave is formed. The wave pattern (Fig. 9.6) is the 
same whether the body is moving through the fluid or whether the fluid is moving 
past the body. Unlike subsonic flow (Fig. 3. I I), in supersonic flow the streamlines 
in front of the body are unaffected because the body is moving faster than the 
disturbance can be transmitted ahead. This is demonstrated in Fig. 9.7. 

With most bodies the drag coefficient tends to increase drastically at a Mach 
number of about 0.70. This is so because the body is encountering transonic flow 
phenomena, which means that at some place in the flow field supersonic flow is 
occurring. With a streamlined body the highest velocity in the flow field occurs at 
some point such ash in Fig. I0.26 near the body and away from its nose. The local 
Mach number at h will reach unity when the free-stream Mach number at a has a 
value of perhaps only 0.7 or 0.8. Thus a shock wave will form at h. Through the 
shock wave there is a sudden jump in pressure which causes an adverse pressure 
gradient in the boundary layer. resulting in separation and an increase in drag. 
Drag coefficients for several bodies as a function of the free-stream Mach number 
are given in Fig. 10.27. The increased drag is caused not only by the separation 
effects; a substantial amount of energy is dissipated in the shock wave. Skin 
friction also contributes to the drag. and at Mach numbers above 2 or 3 heating in 
the boundary layer from skin friction may be an important phenomenon. As the 
\alue of the Mach number increases beyond about 2. for most bodies there is a 
drop in the value of the drag coefficient because of a shift in the point of 
~eparation. 

Earlier it was mentioned that for streamlining against subsonic flow a 
rounded nose and a long. tapered afterbody generally result in minimum drag. I 11 

supersonicflmr the hest nosef(mn is a sharp point. This tends to minimize the efl'ect 
of the shock wave. 

b 

:. 

b 

i.\'.11 ln > C"-'.\1 la 

\Vhen L\' 11 ), = 1 0. 

I\' \II, "' 0.7 

l 

Figure 10.26. Local Mach number 
greater than free-stream Mach num
ber. 
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2.0 .-------r----.,..----,-----, 

1.5 r----~~--+-

0 2 3 4 
Figure 10.27. Drag coefficients as a function of Mach 
number. 

With respect to lift it has been found that for Mach numbers less than about 
0.7 the lift coefficient for compressible fluids may be estimated by dividing the lift 
coefficient for incompressible flow by J 1 - Ni.t, where N M is the Mach number 
of the free stream. The reduced pressures on the top of the airfoil are responsible 
for this trend. 

At N M ::;::; 0.8 there is a rather abrupt drop in the lift coefficient because the 
shock wave induced by the local supersonic flow creates high pressures on the top 
side of the airfoil which may result in shock stall. At somewhat higher values of the 
Mach number a shock wave forms on the bottom of the airfoil which tends to 
compensate for the preceding action and there is an increase in the value of the 
lift coefficient. Although there have been tremendous advances in theory, the best 
way to predict the drag and lift of a particular airfoil is by conducting model 
tests in a wind tunnel. 

10.15. CONCLUDING REMARKS 

There are some other aspects of drag that ought to be mentioned. One of these is 
drag under conditions of supercavitation. This occurs when bodies move at high 
speeds through liquids. It is particularly prevalent with blunt bodies. A large 
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cavity is formed behind the body. This alters the pressure distribution because the 
limiting minimum absolute pressure in the cavity is the vapor pressure. Such 
problems require special treatment; experimental data provide the best 
information. 

Another interesting drag problem is that of an object moving at the interface 
of two fluids of different density. A good example of this is that of a ship or boat 
moving through water. In such a case energy is expended in the generation of 
waves. The drag of the ship is caused primarily by skin friction and wave action; 
hence in a model test both the Reynolds and Froude criteria ought to be satisfied, 
but this is not practical. The modeling procedure usually employed involves 
determining the total drag of the model by testing it at the prototype Froude 
number. The frictional drag of the model is then estimated by using boundary
layer theory, as presented in Sees. 10.3 through 10.5, and subtracted from the 
total drag to get an estimate of the drag on the model caused by wave action. 
This is then translated by model laws to an estimate of the wave-action drag on 
the prototype to which is added the prototype friction drag as estimated by 
boundary-layer theory to give the total prototype drag. 

Illustrative Example 10.9. A 20-cm-diameter round-nosed projectile whose drag coefficient is 
shown in Fig. 10.27 travels at 600 m 1s through the standard atmosphere at an altitude of6,000 m. Find 
the drag. 

From Appendix 2, the acoustic velocity is given by c = jkRT. From Appendix 3, Table A.3h, the 
temperature is -24 C, or 249 K. Then with k = 1.4 and R ~ 287 m2/(s 2)(K), 

C = jfA X 287x-M9 = 317 m/s 

and so N.H = ~~~ = 1.89 

From Fig. 10.27, C" = 0.62 

and 

PROBLEMS 

P = RT 
p 

p 
p= 

RT 

47.22 kN/m 2, abs kN·s 2 
3 

p = (287 m2/(s2)(K)]249 K = 0.00066 m• = 0.66 kg;m 

(600f n(0.2W 
F D = 0.62 X 0.66 X 2 X 4 .. = 2.310 N 

10.1. Commencing with the general equation for a parabola u = ay 2 +by+ c, derive the velocity 
distribution of Eq. ( 10.9) in the dimensionless form shown. 

10.2. For the parabolic velocity distribution of Eq. (10.9). derive the numerical value~~f cx 
[Eq. (10.5)] and {J [Eq. (10.7)] of 0.133 and 2.0. respectively. 

10.3. Derive Eq. (10.19) along the lines suggested in the text. 

10.4. For the Prandtl seventh-root law given in Eq. ( 10.20) derive the value of cx = 0.0972 for the 
turbulent boundary layer. 

10.5. Derive Eq. ( 10.22) from the information given. 

10.6. Demonstrate the equality of the two expressions of Eq. (10.28) . 
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10.7. A smooth, flat plate 12ft (3.6 m) wide and 2.5 ft (0.75 m) long parallel to the flow is immerse-: 
in water at 60'F (15'C) flowing at an undisturbed velocity of 2 fps (0.6 m/s ). Find the thickness of th" 
boundary layer and the shear stress (a) at the center. and (b) at the trailing edge of the plate, assuming d 

laminar boundary layer over the whole plate. Also. find the total friction drag on one side of the plate 

10.8. Assume that the boundary layer of Prob. 10.7 is disturbed near the leading edge. Compute the 
corresponding quantities for the turbulent boundary layer covering the whole plate, and compare the 
results. 

11\i. For the critical Reynolds number of 500,000 or transition from laminar to turbulent flow in the 
boundary layer, find the corresponding critical Reynolds number for flow in a circular pipe. How doe, 
this compare with the value given in Chap. 8'1 (Hint: Consider the boundary-layer thickness to 
correspond to the radius of the pipe in laminar flow. while the undisturbed velocity U of the 
boundary-layer theory represents the centerline velocity urn"' of the pipe flow.) 

10.10. A streamlined train is 300ft (90 m) long, with sides 9ft (2.75 m) high and the top 9ft (2.75 m) 
wide. Assuming the skin-friction drag on sides and top to be equal to that on one side of a flat plate 
27 ft (8.25 m) wide and 300 ft (90 m) long, compute the horsepower required to overcome the skin
friction drag when the train is traveling at 100 mph (45 m;s) through standard atmosphere air at sea 
level. 

10.11. A smooth. thin, flat plate with sharpened edges is 10ft by 2ft and is submerged in water the 
temperature of which is 60 F. If it moves through the water with a velocity of 1.22 fps in the direction 
of the 10-ft length. what is the total drag? 

10.12. A harpoon is~ in ( 19 mm) in diameter and 5 ft ( 1.5 m) long. with a sharp tip. If this harpoon is 
launched in the water at 60 F ( 15 C) at a speed of 25 fps (7.5 m s), find the friction drag. What will be 
the maximum thickness of the boundary layer'1 

10.13. An airplane wing having a chord length parallel to the flow of 6.5 ft moves through standard 
atmospheric air at an altitude of 10.000 ft and a speed of 250 mph. Find the critical roughness for a 
point one-tenth the chord length back from the leading edge. Find the surface drag on a section of this 
wing of 20-ft span. 

10.14. It is well known that when one is at the beach one can lie down to get out of the wind. Suppose 
the wind velocity 6ft (2m) above the beach is 20 fps (6 m's). Approximately what would be the 
velocity at 0.5 ft (0.15 m) and at 1.0 ft (0.30 m) above ground level'1 

10.15. Compare the values of C1 as computed by Eqs. (10.25) and (10.26) for NR = 10 7 

10.16. A tlat plate 20 ft long is towed at 6 fps through a liquid (i' =50 lb,ft 3
, f1 = 0.00026 lb·s/ft 2

). 

Determme the drag on the plate. Plot the boundary-layer profile, showing its thickness along the plate. 
Plot the local shear stress r 0 as a function of x. and determine the area under this curve. Compare this 
v aluc with the computed value of the drag. Assume that the boundary-layer changes from laminar to 
turbulent at a Reynolds number of 300,000. The plate is I ft wide. 

10.17. Refer to the harpoon of Prob. 10.12. Determine the drag on the harpoon for various velocities 
from 0 to 50 fps. Consider movement through (a) 60 F water; (b) 60 Fair at sea leveL and (c) 60·F air 
at elevation 5,000 ft. Plot curves of drag vs. velocity. 

10.18. Refer to the plate of Prob. 10.16. Make the necessary calculations to plot drag vs. velocity for 
velocities ranging from 0 to 50 fps. 

10.19. A steel sphere (s = 7.8) of diameter 0.25 in is released in a tank of oil('= 0.825). The sphere is 
observed to have a terminal velocity of 2.0 fpm. What is the viscosity of the oil" 

10.20. What will be the terminal velocity of the sphere of Pro b. 10.19 in 100 F water '1 Assume negli
gible wall effect. 

10.21. Compute the drag on a 15-in (38-cm)-diameter sphere from wind under sea-level conditions. 
Plot drag vs. velocity for a range of velocities from 0 to 100 fps (30 m 1s). 

10.22. Repeat Prob. 10.21 for wind at 10,000-ft elevation. 

10.23. A metal hall of diameter 1.0 ft and weight 90 lb is dropped from a boat into the ocean. 
Determine the maximum velocity the hall will achieve as it falls through the water. Properties of the 
ocean water: p = 2.0 slugs ft 3.Jt = 3.3 x I0- 5 lb·s1ft 2 
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10.24. Suppose a well-streamlined automobile has a body form corresponding roughly to the airship 
hull of Fig. 10.10, while a poorly streamlined car has a body approximating the 1 : 0.75 oblate ellipsoid, 
each with a diameter of 6 ft. Find the horsepower (k W) required to overcome air resistance in each of 
the two cases if the velocity is 60 mph (27 m 's) through standard air at sea level (Appendix 3, Table 
A.2). 

10.25. It is desired to calculate approximately the pressure drag on the streamlined train of 
Prob. 10.10. As a rough approximation. assume that the nose and tail of the train are of the shape of 
the two halves of the prolate ellipsoid of Fig. 10.10, of 9 ft diameter. Find the drag on the ellipsoid 
(pressure drag on the train). and compare with the skin-friction drag on the train determined earlier. 

10.26. Suppose that the 10- by 2-ft flat plate of Prob. 10.11 is dragged through the water at the same 
velocity as before, but with the flat side normal to the direction of motion. What is the approximate 
drag force. and by what percent is it increased over the result of Pro b. 10.11? [Hint: Assume that the 
drag coefficient for the plate of finite length is in the same ratio to the coefficient for the infinite plate as 
is the ratio of coefficients for the finite cylinder (L D = 5) and the infinite cylinder of Fig. 10.13, for the 
same Reynolds number.] 

10.27. Compare the velocity of a 0.1-in (2.5-mm)-diameter spherical bubble of air rising through water 
with that of a 0.1-in (2.5-mm) drop of water falling through air. Assume standard air at sea level and 
water at the same temperature. 

10.28. The drag coefficient for a hemispherical shell with the concave side upstream is approximately 
1.33 if N R > 103 Find the diameter of a hemispherical parachute required to provide a fall velocity no 
greater than that caused by jumping from an 8-ft height. if the total load is 200 lb. Assume 5tandard air 
at sea level. 

10.29. Find the rate of fall of a particle of sand (s = 2.65) in water at 60 F if the particle may be 
assumed spherical in shape and the diameter is (a) 0.1 mm; (b) 1.0 mm; (c) 10 mm. Express answers 
in centimeters per second. 

10.30. Particles of sediment are removed from water supplies by continuous-flow settling basins so 
designed that the particles fall to the bottom while they are detained in the basin. To settle the 1-mm 
particle of Prob. 10.29. what should be the ratio of depth to detention time. in feet per second? Show 
that this quantity is exactly the same as the rate of discharge through the basin divided by its surface 
area. (Note: This quantity is called the 01-erjiow rate and is the first criterion in the design of any 
settling basin.) 

10.31. A regulation football is approximately 6.78 in in diameter and weighs 14.5 oz. Its shape is not 
greatly different from the prolate ellipsoid of Fig. 10.10. Find the resistance when the ball is passed 
through still air (14.7 psia and 80 F) at a velocity of 40 fps. Neglect the effect of spin about the 
longitudinal axis. What is the deceleration at the beginning of the trajectory'' Assuming no change in 
drag coefficient, find the percentage change in resistance if the air temperature is 20 F rather than 80 F. 

10.32. What drag force is exerted at sea level by a 3-m-diameter braking parachute when the speed is 
25 m,'s'' Assume CD= 1.20. At what speed will the same braking force be exerted by this parachute at 
elevation 2.000 m '' Assume CD remains constant. 

10.33. An eight-oar racing shell is travelling through 60 F water at a mean velocity of 12 mph. Assume 
each oar is 9 ft long. with a length of 6 ft from the oarlock to the center of the .. spoon," which may be 
supposed to have a projected area of 120 in 2 and a drag coefficient equal to that of a disk. If the 
"stroke" is 32 per min and if each oarsman sweeps a right angle in one-fourth of his rowing cycle, what is 
the maximum thrust of the oars'' It must be assumed that the shell moves at something Jess (say, 
20 percent) than its mean velocity when the oars arc in the water. The maximum velocity occurs <llring 
the backstroke when the oarsmen shift their weight toward the stern. Why., • 

10.34. Referring to Pro b. I 0.33. the oarsman on his backstroke moves at half the angular velocity of 
his forward stroke. while the shell moves at perhaps 10 percent above its mean velocity. Find the drag 
in 60 F air resulting from a "feathered .. oar vs. an unfeathered one. in percentage of the forward 
thrust from Prob. 10.33. 

10.35. Find the bending moment at the base of a C\lmdrical radio antenna 0.30 in in diameter ex
tended to 6 ft in length on an automobtle tra\ cling through standard air at 80 mph. 
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10.36. Find the bending moment at the base of a cylindrical light post ..!0 em in diameter and 10 m 
high when it is subject to a uniform wind velocity of 25 m s at standard sea level. Neglect end effects. 

10.37. Repeat Prob. 10.36 for the case where the pole has a uniform taper from ..!()cern-diameter at the 
base to 30 em at its top. 

10.38. Approximately what frequency of oscillation is produced when a 60-mph wind blows across a 
0.125-in-diameter wire at (a) standard sea level: (b) standard atmosphere at 10,000-ft elevation·> 

Jf~9. Commencing with the expression above Eq. (10.38) fill in the steps leading to Eq. (10.38). 
Take care to account for all changes in sign. 

10.40. Calculate the value of the lift coefficient for the rotating cylinder in Illustrative Example 10.7, 
assuming the effective circulation to be half the theoretical. If the drag coefficient may be assumed to be 
unchanged by the rotation of the cylinder, find the total force of the wind on the rotor and its direction. 

10.41. Assume the rotor of Illustrative Example 10.7 to be installed upright on a ship which is 
proceeding due north at 30 fps. The wind has an absolute velocity of 50 fps due cast. If the drag 
coefficient of the cylinder is 1.0 and the "lines" of stagnation are separated by 120 on the rotor, find 
approximately the component of the total air force on the rotor in the direction of the ship's motion. 
Assume standard air. 

10.42. Consider a cylinder of radius a in a stream of ideal fluid in which the undisturbed velo.city and 
pressure are V and p 0 and the density is p. Utilizing Eq. ( 10.35) and the Bernoulli theorem, evaluate the 
dimensionless pressure coefficient (p ~ p0 )/(p V1 2) for every 10 over the surface of one quadrant of 
the cylinder, and plot to scale. measuring the pressure radially from the cylinder surface. What is the 
actual pressure in pounds per square inch on the surface of a cylinder I ft in diameter, 70 from the 
forward stagnation point, if the cylinder is 20 ft below the free surface of a stream of water at 60 F. 
flowing at 10 fps? 

10.43. Suppose a circulation of 20 ft 1 is is superposed about the cylinder of Prob.' 10.42. Find the 
location of the stagnation points and the lift for a length of 30 ft. 

10.44. A double-stagnation point is observed to occur on a cylinder 3 ft in diameter. rotating in a 
stream of standard air (sea level) having a velocity of 50 fps. Find the lift force per foot of the cylinder. 
What is the lift coefficient '1 

10.45. There have often been arguments over the validity and extent of the curve of a pitched baseball. 
According to tests (Life, July 27, 1953), a pitched baseball was found to rotate at 1,400 rpm while 
traveling at 43 mph. The horizontal projection of the trajectory revealed a smooth curve of about 
800ft radius. If the ball were 9 in in circumference and weighed 5 oz. find the transverse force required 
to produce the observed curvature. Assuming the shape of the ball to be roughly that of a cylinder 
having a diameter equal to the ball's diameter and a length of two-thirds its diameter, find the value of 
the circulation that would be required to produce the transverse force. Compare this with that ob
tained by assuming no slip at the equator of the ball. Assume standard air at sea level. 

10.46. An airplane having a Clark Y airfoil wing of 6-ft chord by 36-ft span, with polar diagram given 
in Fig. 10.24, weighs 1,500 lb. Neglecting the aerodynamic forces on the fuselage and tail, find the 
speed required to get the airplane off the ground. Find the horsepower required. Find the circulation 
about the wing and the strength of the starting vortex. Assume standard air at sea level and angle of 
attack for maximum ratio of lift to drag. 

10.47. A wing of 40-ft span and 320-ft 2 "plan-form" area moves horizontally through standard atmo
sphere at 10,000 ft with a velocity of200 fps. If the wing supports 3,000 lb. find (a) the required value of 
the lift coefficient; (b) the downwash velocity, assuming an elliptical distribution of lift over the span; 
(c) the induced drag. 

10.48. If the plan form of the wing in Pro b. I 0.47 were rectangular, what would be the proper values of 
the induced angle of attack and induced drag? 

10.49. For the Clark Y airfoil of Fig. 10.24, evaluate the friction coefficient 11 ofEq. ( 10.46) for values of 
C L of 0.6, 1.0, and 1.4. 

10.50. A wing with a 20-m span and 60-m 2 " plan-form" area moves horizontally through the standard 
atmosphere at 10,000 m with a velocity of 800 km/hr. If the wing supports 250,000 N, find (a) the 
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required value of the lift coefficient; (h) the downwash velocity, assuming scmielliptical distribution of 
lift over the span; (c) the induced drag. 

10.51. A kite has a shape corresponding rough!:;. to a rectangular airfoil of 2-ft chord and 4-ft span. 
When rigged as shown in the figure, the guideline exerts a tension of II lb when the wind velocity is 
30 mph in standard air at LOOO ft altl!ude. Evaluate C 1 • C 00 , and the friction coefficient tl· 

v -

Prob. 10.51 

10.52. A rectangular airfoil with a 2-m chord and 12-m span has a drag coefficient of0.062 and a lift 
coetlicient of 0.94 at an angle of attack of 6K. What would be the corresponding lift coetlicient, drag 

coefficient, and angle of attack for a wing having the same profile but with an aspect ratio of 7.5 ° 
10.53. If the mean velocity along the top of a wing having a 2-m chord is 150 km/hr and that along the 
bottom of the wing is 120 kmjhr when the wing moves through still air(·;= 0.072 lb ·ft 3 ) at 12X km hr. 
estimate the lift per meter of span. 

10.54. A sailplane weighing 400 lb including its load has a 4-ft-chord by 24-ft-span wing of the Clark Y 
section. Assuming that its characteristics are the same as those for the larger wing of the same aspect 
ratio shown in Fig. 10.24, find the angle of glide through standard air at 2,000 ft which will produce the 
greatest horizontal distance range. Neglect air forces on the fuselage and tail. (Note· The aspect ratio of 
6 is here chosen for convenience in working the problem with the available data. Actually, the sailplane 
may be constructed with an aspect ratio of about twice this, so as to reduce drag to minimum.) 

10.55. At what angle of glide will the sailplane of Pro b. 10.54 reach a minimum velocity of descent; in 
other words, at what angle will it remain in the air the longest time'' Compare angles and velocities 
with those obtained in Prob. 10.54. (Note: A trial-and-error type of solution will be required here.) 

10.56. If the round-nosed and sharp-nosed projectiles of Fig. 10.27 each represent a 900-lb bomb 
having a diameter of 20 in, find their terminal velocities in standard air at sea level. Assume 
that the bombs travel nose first vertically downward. 

10.57. If a supersonic jet aircraft traveling horizontally at 1,600 mph passes overhead at an elevation of 
'.000 ft, approximately how soon thereafter will the shock wave he felt at sea leveP 

10.58. Determine the rate of deceleration that will be experienced by the blunt-nosed projectile of 
Fig. 10.27 when it is moving (a) horizontally at LOOO mph; (h) upward at an angle of 40 with the 
horizontal at a velocity of 1,000 mph. Assume standard sea-level atmosphere. The projectile has a 
d1ameter of 18 in and it weighs 600 lb. 

l 



CHAPTER 

ELEVEN 
STEADY FLOW IN 
OfEN CHANNELS 

11.1. OPEN CHANNELS 

An open channel is one in which the stream is not completely enclosed by solid 
boundaries and therefore has a free surface subjected only to atmospheric pres
sure. The flow in such a channel is caused not by some external head, but rather by 
the gravity component along the slope of the channel. 

The principal types of open channel are natural streams and rivers; artificial 
canals: and sewers, tunnels, and pipelines not completely filled. Artificial canals 
may be built to convey water for purposes of water-power development, irrigation 
or city water supply, and drainage or flood control and for numerous other 
purposes. While there are examples of open channels carrying liquids other than 
water, there are few experimental data for such and the numerical coefficients 
given here apply only to water at natural temperatures. 

The accurate solution of problems of flow in open channels is much more 
difficult than in the case of pressure pipes. Not only are reliable experimental data 
more difficult to secure, but there is a wider range of conditions than is met with in 
the case of pipes. Practically all pipes are round, but the cross sections of open 
channels may be of any shape, from circular to the irregular forms of natural 
streams. In pipes the degree of roughness ordinarily ranges from that of new 
smooth metal or woodstave pipes, on the one hand, to that of old corroded iron or 
steel pipes, on the other. But with open channels the surfaces vary from that of 
smooth timber to that of the rough or irregular beds of some rivers. Hence the 
choice of friction coefficients is attended by greater uncertainty in the case of open 
channels than in the case of pipes. 

322 
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Figure 11.1. Steady flow down a chute or spillway. 

Uniform flow was described in Sec. 3.2 as it applies to hydraulic phenomena 
in general. In the case of open channels uniform flow means that the water cross 
section and depth remain constant over a certain reach of the channel. This 
requires that the drop in potential energy due to the fall in elevation along the 
channel be exactly consumed by the energy dissipation through boundary friction 
and turbulence. 

Uniform flow will eventually be established in any channel which continues 
sufficiently far with a constant slope and cross section. This may be stated in 
another way, as follows. For any channel of given roughness, cross section, and 
slope, there exists for a given flow one and only one water depth. called _l'o. at 
which the flow will be uniform. Thus. in Fig. 11.1, the flow is accelerating in the 
reach from A to C, becomes established as uniform flow from C to D, suffers a 
violent deceleration due to the change of slope between D and E, and finally 
approaches a new depth of uniform flow somewhere beyond E. There is accelera
tion in the reach from B to C because the gravity component along the slope is 
greater than the boundary shear resistance. As the flow accelerates, the boundary 
shear increases because of the increase in velocity, until at C the boundary shear 
resistance becomes equal to the gravity component along the slope. Beyond C 
there is no acceleration, the velocity is constant. and the flow is uniform. The 
depth in uniform flow is commonly referred to as the normal depth r 0 . 

Open-channel flow is usually wholly rough. that is. it occurs at high Reynolds 
numbers. For open channels the Reynolds number is defined by N R = Rh V/l·, 
where R 11 is the hydraulic radius. Since Rh = Dl4, the critical value of Reynolds 
number at which the changeover occurs from laminar flow to turbulent flow in 
open channels is 500, whereas in pressure conduits the critical value is 2,000 . 

• 
11.2. HYDRAULIC SLOPE 

In open-channel flow we refer to the slope of the channel bed S0 , the slope of the 
water surface S"', and the energy gradient S. It is quite evident that in the case of 
uniform flow in an open channel the hydraulic grade line coincides with the water 
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surface, for if a piezometer tube is attached to the side of the channel, the water 
will rise in it until its surface is level with that of the water in the channel. 
Moreover, in uniform flow the cross section is constant along the channel, and 
therefore so also is the velocity. Hence the channel bed, water surface (hydraulic 
grade line), and energy line are all parallel to one another in uniform flow. 

The channel-bed slope and water-surface slope are defined as the drop in 
ele~tion of channel bed and water surface per unit of horizontal distance along the 
channel. Thus S0 =tan 80 and Sw =tan Ow, where 80 and (}ware the angles the 
channel bed and the water surface make with the horizontal, respectively. 

The energy gradient (or hydraulic slope) is defined by 

S = hL (11.1) 
L 

where hL is the head loss, and L is the length measured along the channel (not the 
horizontal). Thus S =sin (}, where (} is the angle the energy line makes with the 
horizontal. 

In most open channels the bed slope is small, that is, 80 < 5°, and thus for 
uniform flow sin (} >:::: tan (} and S0 = Sw >:::: S. 

11.3. EQUATION FOR UNIFORM FLOW 

In Sec. 8.4 a general equation for frictional resistance in a pressure conduit was 
developed. The same reasoning may now be applied to uniform flow with a free 
surface. Consider the short reach of length L between stations 1 and 2 of a channel 
in uniform flow with area A of the water section (Fig. 11.2). As the flow is neither 
accelerating nor decelerating, we may consider the body of water contained in the 
reach in static equilibrium. Summing forces along the channel, the hydrostatic
pressure forces F 1 and F 2 balance each other, since there is no change in the depth 
y between the stations. The only force in the direction of motion is the gravity 

v 
)' AL sin 6 -

-yAL 

Figure 11.2. Resistance to uniform flow. 
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component, and this must be resisted by the boundary shear stress r 0 , acting over 
the area PL, where P is the wetted perimeter of the section. Thus 

yAL sin()= r0 PL 

But sin()= hL/L = S. Solving for r 0 , we have 

( 11.2) 

where Rh is the hydraulic radius, discussed in Sec. 8.3. Substituting the value of r
0 

from Eq. (8.10), 

This may be solved for V in terms of either the friction coefficient C J or the 
conventional friction factor f to give 

(11.3) 

11.4. CHEZY FORMULA 

In 1775 Chezy proposed that the velocity in an open channel varied as J Rh S, 
which led to the formula 

V= cJR;:S ( 11.4) 

which is known by his name. It has been widely used both for open channels and 
for pipes under pressure. Comparing Eqs. ( 11.4) and ( 11.3 ), it is seen that 
C = J8ilf. Despite the simplicity ofEq. (11.4), it has the distinct drawback that 
Cis not a pure number but has the dimensions L112 T- 1, requiring that values of C 
in metric units be converted before being used with English units in the rest of the 
formula. 

As C and fare related, the same considerations that have been presented 
regarding the determination of a value for fin Chap. 8 apply also to C. For a small 
open channel with smooth sides, the problem of determining/ or C is the sfme as 
that in the case of a pipe. But most channels are relatively large compared with 
pipes, thus giving Reynolds numbers which are higher than those commonly 
encountered in pipes. Also, open channels are frequently rougher than pipes, 
especially in the case of natural streams. A study of Fig. 8.11 reveals that, as the 
Reynolds number and the relative roughness both increase, the value offbecomes 
practically independent of N R and depends only on the relative roughness. 
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11.5. MANNING FORMULA 

One of the best as well as one of the most widely used formulas for open-channel 
flow is that of Robert Manning, who published it in 1890. 1 Manning found from 
many tests that the value of C varied approximately as R~ 16 , and others observed 
that the proportionality factor was very close to the reciprocal of n, the coefficient 
of rtughness in the classical Kutter formula 2 This led to the formula which has 
since spread to all parts of the world. In metric units, the Manning formula is 

V(m/s) = ~ R~ 13S 112 
n 

( 11.5) 

The dimensions 3 of n are seen to be TC 113 . To avoid converting the numerical 
value of n for use with English units, the formula itself is changed so as to leave the 
value of n unaffected. Thus, in English units, the Manning formula is 

( 11.6) 

where 1.49 is the cube root of 3.28, the number of feet in a meter. Despite the 
dimensional difficulties of the Manning formula, which have long plagued those 
attempting to put all fluid mechanics on a rational dimensionless basis, it 
continues to be popular because it is simple to use and reasonably accurate. 
Representative values of n for various surfaces are given in Table 11.1. 

In terms of flow rate Eqs. ( 11.6) and ( 11.5) may be expressed as 

In English units: 

In SI units: 

Q(cfs) = 
1 .4~ AR~13S 112 

n 
(11.7a) 

(11.7b) 

It was mentioned in Sec. 8.11 that t is a measure of the absolute roughness of 
the inside of a pipe. The question naturally arises as to whether ( and n may be 
functionally related to one another. Such a relation has been proposed by Powell 

1 Robert Manning, Flow of Water in Open Channels and Pipes, Trans. Inst. Civil Engrs. (Ireland), 

vol. 20. 1890. 
2 The Kutter formula, for many years the most widely used of all open-channel formulas, is now of 

interest principally for its historical value and as an outstanding example of empirical hydraulics. This 
formula, which may be found in several handbooks. included terms to make C a function of S, based on 
some river-flow data which were later proved in error. The reader is referred to E. Ganguillet and 
W. R. Kutter, "Flows of Waters in Rivers and Other Channels," trans!. by R. Hering and J. C. 
Trautwine. Jr., John Wiley & Sons. Inc .. New York, 1869. 

3 As it is unreasonable to suppose that the roughness coefficient should contain the dimension T, 
the Manning equation is more properly adjusted so as to contain Jy within the constant in the 
numerator, thus yielding the dimension of L1 6 for n. 
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Table 11.1. Values of n in Manning's formula 
Prepared by R. E. Horton and Others 

n 

Nature of surface Min Max 

Neat cement surface 0.010 0.013 
Wood-stave pipe 0.010 0.013 
Plank flumes, planed 0.010 0.014 
Vitrified sewer pipe 0.010 0.017 
Metal flumes, smooth 0.011 0.015 
Concrete, precast 0.011 0.013 
Cement mortar surfaces 0.011 0.015 
Plank flumes, unplaned 0.011 0.015 
Common-clay drainage tile 0.011 0.017 
Concrete, monolithic 0.012 0.016 
Brick with cement mortar 0.012 0.017 
Cast iron 0.013 0.017 
Cement rubble surfaces 0.017 0.030 
Riveted steel 0.017 0.020 
Canals and ditches, smooth earth 0.017 0.025 
Metal flumes, corrugated 0.022 0.030 
Canals: 

Dredged in earth, smooth 0.025 0.033 
In rock cuts, smooth 0.025 0.035 
Rough beds and weeds on sides 0.025 0.040 
Rock cuts, jagged and irregular 0.035 0.045 

Natural streams: 
Smoothest 0.025 0.033 
Roughest 0.045 0.060 
Very weedy 0.075 0.150 

(Fig. 11.3) on the basis of experimental data using the Prandtl-Karman equation 
for rough pipes as a guide. In terms of the hydraulic radius Powell's relation is: 

1 ( Rh) JJ = 2 log 14.8 -( 

Combining Eq. (11.3) with Eqs. (11.6) and (11.5), we get 

In English units: 

In SI units: 

Substituting numerical values for g gives 

In English units: 

In SI units: 

n = 1.49 Rf6 (7 ysg 
R 16 ,IJ 

11 = h I 
\) 8g 

11 = 0.093f 1 2 R~ 6 

n = 0.113! 1 2 R~ 6 

( 11.8) 

• 

(11.9a) 

(11.9b) 
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I 

n./8i IT 
=~log (5.16-¥) 

,j8g 

0.03 

Figure 11.3. Correlation of n with absolute roughness. 

0.04 

Thus we see that n is related to the friction factor, which depends on the relative 
roughness and Reynolds number and on the hydraulic radius which is indicative 
of the size of the channel. 

Equating Eq. (11.9a) with Eq. (11.8) provides a correlation between E and n, 
which is plotted as the solid lines in Fig. 11.3 for three representative values of the 
hydraulic radius. The dashed line is the plot of another correlation proposed by 
Powell that gave a better fit to experimental data for small values of hydraulic 
radius. 1 The salient feature of these curves is that a large relative error in E results 
in only a small error in n. Another observation is that, iff < 0.02 ft, the value of n 
increases with increasing conduit size. 2 For example, a conduit withE = 0.001 ft 
with a hydraulic radius of 1.0 ft will have ann ofO.Oll while another conduit with 
the same surface roughness but with Rh = 8.75 ft will have an n of 0.013. 

1 R. W. Powell, Resistance to Flow in Rough Channels, Trans. Am. Geophys. Union, vol. 31, no. 4., 

pp. 575-582, 1950. 
2 J. B. Franzini and P. S. Chisholm, Current Practice in Hydraulic Design of Conduits, Water and 

Sewage Works, vol. llO, pp. 342-345, Oct., 1963. 
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11.6. SOLUTION OF UNIFORM FLOW PROBLEMS 

Uniform flow problems usually involve the application of Manning's equation 
[Eqs. ( 11. 7)]. The selection of an appropriate value for the Manning roughness 
factor n is critical to the accuracy of the results of a problem. When the channel 
surface is concrete or some other structural material, it is possible to select a 
reasonably accurate value for n, but for the case of a natural channel one must rely 
on judgment and experience, and in many instances the selected value may be 
quite inaccurate. 

There are a number of different types of problems that are encountered when 
using Manning's equation. For example, to find the normal depth of flow for a 
particular flow rate in a given channeL a trial-and-error solution is required. On 
the other hand, the expected flow in a particular channel under given conditions 
can be solved for directly. Various types ofsliderules, nomographs, and tables 1 are 
available to serve as an aid to the solution of open-channel problems. 

In applying Manning's equation to channel shapes such as Fig. 11.4, which 
simulates a river with overbank flow conditions, the usual procedure is to break 
the section into several parts, as indicated in the figure. It is assumed that there is 
no resistance along the dashed vertical line. Actually the flow in area A 2 tends to 
speed up the flow in area A 1, while the flow in A 1 tends to slow down the flow in 
area A 2 . These two effects come very close to balancing out one another. If A/P 
for the total cross section had been computed by the usual method i.e., 
Rh = (A 1 + A 2 + A3)/(P 1 + P2 + P 3 ), it would imply that the effect of boundary 
resistance is uniformly distributed over the flow cross section, which, of course, is 
not the case. 

Another advantage of breaking the total section into parts is that possible 
variations in Manning's n can be taken into consideration. Thus, for the channel 
shown in Fig. 11.4, in English units, 

Q = 1.49 A R2t3stt2 + 1.49 A R2!3stt2 + ... 
1 ht 2 h2 nt n2 

(11.10) 

where Rh1 = At/P1, Rh 2 = A2 /P2 , etc. The A and Pare defined in Fig. 11.4. An 
equation of similar form can be written for SI units in which case the 1.49 becomes 
unity. 

1 H. W. King and E. F. Brater, "Handbook of Hydraulics," 5th ed., McGraw-Hill Book Company, 
New York, 1963. 

Figure 11.4 
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~-~·_-____ ]' _____ ~~ 
10' J . 

IllustYative Example ll.l 

Illustrative Example ll.l. Find the depth for uniform flow in this channel when the flow rate is 
225 cfs if S

0 
= 0.0006 and n is assumed to be 0.016. Compute the corresponding value of 1. 

A=(l0+2r)r 

and 
A (10 + 2y)y 

Rh = -- = 
P 10 + 2 x ,is r 

1.49 [ (10+2r)r ]
23 

Q=225=- (10+2r)r -- ---- c- (0.0006)12 

0.016 · · 10 + 2 x "iSy 
Thus 

By triaL .\" 0 = 3.4 ft, uniform flow depth. 

Rearranging Eq. ( 11.9a), 

Final!:. using Eq. (11.8). 

A= (10 + 2(3.4)]3.4 = 57.0 ft 2 

p = 10 + 2 X /5(3.4) = 25.2 ft 

A 57.0 
Rh = - = -- = 2.26 ft 

p 25.2 

116n2 

I = R I 3 = 0.0227 
h 

( = 0.0164 ft 

11.7. VELOCITY DISTRIBUTION IN OPEN CHANNELS 

Vanoni 1 has demonstrated that the Prandtl universal logarithmic velocity
distribution law for pipes [Eq. (8.28)] also applies to a two-dimensional open 
channel, i.e., one which is infinitely wide. This equation may be written 

u- umax 

-Jgys 
2.3 y' 
K log Y 

1 V. A. Vanoni. Velocity Distribution in Open Channels. Ciri/ Enq .. voL 11. pp. 356-357. 1941. 



STEADY FLOW IN OPE!\ CHANNELS 331 

2.3 y' 
U=Umax+ K ms logy 

-·-1- ~ , I 368 

0~~~~~~--~------~_L--~ 
1 3 4 5 

Velocity, fps 

Figure ll.S. Velocity profile at center of a flume ~T: ft wide for a ftow 0.59 deep. (After \'anon1 I 

where y = depth of water in channel 
u = velocity at a distance y' from channel bed 

K =von Karman constant. having a \alue of about 0.40 for clear water 1 

This expression can be integrated over the depth to yield the more useful relation 

u = v + 
1 

..., gys( 1 + 2.3 log y') 
K y 

(11.11) 

·' "'.:..:h expresses the distribution law in terms of the mean velocity V. This equa
~ :~ ;s plotted in Fig. 11.5. together with velocity measurements that were made 
::-. :':e center line of a rectangular flume 2.77 ft wide and 0.59 ft deep. The filament 
,. :- >e 'elocity 11 is equal to F is seen to lie at a distance of 0.632y beneath the 

\ elocity measurements made in a trapezoidal canal. reported by O'Bricn. 2 

p.::: ~"'.e distribution contours shown in Fig. 11.6. with the accompanying values 
:.- ·-::: -:orrect1on factor' tor k:metic energy and momentum. The point of maxi
:r.: _:- . e:~'cll; is seen to he beneath the surface. and the correction factors for 
&::::·.;::-.erg: and momentum are greater than in the corresponding case ofpijle 
6:-- ::X';-::;: the added importance of these factors. however. the treatment in this 

·. "' -~ c' }\_ :::a\ be a, low as 0.~. 
~ v ~ . ... ~ _l \\ r.- ~-, :-.. \;. :- ... ::. H~dJ Correction for Hydraulic Flow, Eng. 1'-lews-
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Figure 11.6. Velocity distribution in trapezoidal canal. V = 3.32 fps. A = 230.5 ft 2• S = 0.00005~. 

e< = 1.105, fl = 1.048. (After O'Brien.) 

chapter follows the earlier procedure of assuming the values of 11. and f3 to be unity. 
unless stated otherwise. Any thoroughgoing analysis would of course have to take 
account of their true values. 

11.8. MOST EFFICIENT CROSS SECTION 

Any of the open-channel formulas given above show that, for a given slope and 
roughness, the velocity increases with the hydraulic radius. Therefore, for a given 
area of water cross section, the rate of discharge will be a maximum when Rh is a 
maximum, which is to say, when the wetted perimeter P is a minimum. Such a 
section is called the most efficient cross section for the given area. Or for a given 
rate of discharge, the cross-sectional area will be a minimum when the design is 
such as to make Rh a maximum (and thus P a minimum). This section would be the 
most efficient cross section for the given rate of discharge. 

Of all geometric figures the circle has the least perimeter for a given area. The 
hydraulic radius of a semicircle is the same as that of a circle. Hence a semicircular 
open channel will discharge more water than one of any other shape, assuming 
that the area, slope, and surface roughness are the same. Semicircular open chan
nels are often built of pressed steel and other forms of metal, but for other types of 
construction such a shape is impracticaL For wooden flumes the rectangular 
shape is usually employed. Canals excavated in earth must have a trapezoidal 
cross section, with side slopes less than the angle of repose of the saturated bank 
materiaL Thus there are other factors besides hydraulic efficiency which determine 
the best cross section. 

The shape of the most efficient trapezoidal cross section can be determined by 
expressing the wetted perimeter P as a function of the section area A, the depth y, 
and the angle of side slope. By differentiating P with respect to the depth y, while 
holding A and the angle of side slope constant, it can be shown that the hydraulic 
radius of the most efficient cross section is one for which Rh = y/2. This corresponds 
to a rectangle whose depth is one-half the width. It also indicates that the most 
efficient trapezoid is the half-hexagon. 
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11.9. CIRCULAR SECTIONS NOT FLOWING FULL 

In circular pipes, flow frequently occurs at partial depth. The maximum rate of 
discharge is such a section occurs at slightly less than full depth, as may be shown 
by reference to Fig. 11.7. Thus 

D2 D2 
A= 

4 
(8-sin8cos8)= 4-(8-~sin28) 

P =D8 

where () is expressed in radians. This gives 

For the maximum rate of discharge, the Manning formula indicates that 
AR~ 3 must be a maximum. 

Substituting the preceding expressions for A and Rh into ARr3 and differen
tiating with respect to 0, setting equal to zero and solving for(} gives 8 = 151.2 , 
which corresponds to y = 0.938D for the condition of maximum discharge. By 
differentiating R~ 3 the maximum velocity is found to occur at 0.81 D. 1 Despite the 
foregoing analysis, circular sections are usually designed to carry the design capa
city when flowing full, since the conditions producing maximum flow frequently 
include sufficient backwater to place the conduit under slight pressure. 

The simplest way to handle the problem of a partially full circular section is to 
compute the velocity or flow rate for the pipe-full condition and adjust to partly 
full conditions by using a chart such as Fig. 11.8. 

1 The above derivation is based upon a roughness coefficient which remains constant as the depth 
changes. Actually, the value of n has been shown to increase by as much as 28 percent from the full to 
about one-quarter full depth, where it appears to be a maximum. This effect causes the actual maxi
mum discharge and velocity to occur at water depths of about 0.97 and 0.83 full depth, respectively. See 
Design and Construction of Sanitary and Storm Sewers. ASCE Manual Eng. Practice. vol. 37, 
pp. 94-95, 1960. 

Figure 11. 7. Circular section not full. 
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Figure 11.9. Depth-discharge curve for constant specific energy. 

0.8 1.0 

This is the equation of the curve which is shown in dimensionless form in 
Fig. l1.9h. It is seen that the maximum discharge for a given specific energy occurs 
when the depth is between 0.6E and 0.7 E. This may be established more exactly by 
differentiating Eq. ( 11.14) with respect to y and equating to zero. Thus 

dq ; ( '-- 1 J' ) = v 2g v E - y - J ___ = 0 
dy 2 E- y 

from which " = :±£ j c 3 (11.15) 

where y,. is called the critical depth for the given specific energy. The maximum 
rate of discharge for a given specific energy may now be determined by substitut
ing from Eq. (11.15) into Eq. (11.14): 

q . = Jg-· (:±£)3/2 = lg;.3 
max , 3 V . Yc (11.16) 

Figure 11.9 shows that any rate of discharge less than the maximum can occur 
at two different depths for a given value of specific energy. On the upper lim~of 
the curve, the flow is said to be upper-stage, or tranquil, while on the lower limb it 
is called lower-stage, or rapid, flow. The velocity and rate of discharge occurring at 
the critical depth arc termed ~: and q,. = qmax, the critical velocity and flow. 
respectively. On account of the greater area. the velocity of upper-stage flow is 
slower than the critical and is called suhcritical velocity; likewise supercritical 
l'elocity occurs at lower-stage conditions. Hence the flow is most commonly 
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y2 <;;. 

-~ 

Figure 11.10. Specific-energy diagram for three constant rates of discharge. (Bottom slopes are 
greatly exaggerated.) 

referred to as subcritica/ or supercritia/. 1 Combining Eqs. ( 11.15) and ( 11.12) 
yields a simple expression for critical velocity, 

v; Yc 
2g 2 

or (11.17) 

Thus a condition of subcritical or supercritical flow may readily be tested by 
determining whether the velocity head is less than or greater than half the depth, 
respectively. This critical velocity bears no relation to the one which separates 
laminar from turbulent flow. It should be noted that, because of the relationship 
between velocities and depths, whenever the depth of flow is greater than Yo the 
flow is subcritical; also, if the depth is less than Yo the flow is supercritical. 

All the foregoing treatment of alternate depths has been based on a specific 
energy which has been assumed constant while different depths and rates of 
discharge were considered. The case may now be put differently, and we may ask 
about the possible depths corresponding to different specific energies for a given 
rate ()[discharge. Equation ( 11.13) is plotted on the specific-energy diagram in 
Fig. 11.10 for three successively increasing constant rates of discharge per unit 
width, q, q', and q". In this diagram the critical depth appears as the depth of 
minimum specific energy for a given flow. As this has the same meaning as the 

1 It may be shown that. when the Froude number N,. < I. the flow in an open channel is subcritical 
while if N, > I, the flow is supercritical. 
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depth producing maximum discharge for a given specific energy, Yc may be eva
luated from Eq. (11.16) for any value of q: 

Yc=(:2)1;3 (11.18) 

This result may be obtained independently by differentiating Eq. ( 11.13) with 
respect to y and equating to zero. 

It will be observed in Fig. 11.10 that the depth, while plotted vertically to 
determine the curve, is also represented by the horizontal distance from the verti
cal axis to the 45 line. It is also seen that the upper limb of the curve corresponds 
to subcritical flow, while the lower limb refers to the alternate condition of super
critical flow, as was the case in Fig. 11.9. 

We may summarize much of the foregoing discussion as axioms of open
channel flow related to conditions at a given section in a wide rectangular channel: 

l. A flow condition, i.e., a certain rate of discharge flowing at a certain depth, is 
completely specified by any two of the variables y, q, V, and E, except the 
combination q and E, which yields in general two alternate stages of flow. 

2. For any value of E there exists a critical depth, given by Eq. (11.15), for which 
the flow is a maximum. 

3. For any value of q there exists a critical depth, given by Eq. (11.18), for which 
the specific energy is a minimum. 

4. When flow occurs at critical depth, both Eqs. (11.15) and (11.17) are satisfied 
and the velocity head is one-half the depth. 

5. For any flow condition other than critical, there exists an alternate stage at 
which the same rate of discharge is carried by the same specific energy. The 
alternate depth may be found from either the discharge curve (Fig. 11.9) or the 
specific-energy diagram (Fig. 11.10 ), by extending a vertical line to the alter
nate limb of the curve. Analytically, the alternate depth is found by solvin~ 
Eq. ( 11.13 ). 

11.11. CHANNEL SLOPE AND ALTERNATE 
DEPTHS OF FLOW 

It will now be emphasized again that uniform flow occurs at a depth which 
depends only on the rate of discharge, the shape and roughness of the cross 
section, and the slope of the stream bed. If, for a given roughness and shape1 'he 
channel slope is such that the uniform flow is subcritical, the slope is said to be 
mild. If the uniform flow is supercritical, the slope is termed steep. Thus the 
hydraulic steepness of a channel slope is determined by more than its elevation 
gradient. A steep slope for a channel with a smooth lining could be a mild slope 
for the same flow in a channel with a rough lining. Even for a given channel, the 
slope may be mild for a low rate of discharge and steep for a higher one. 
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The slope of a channel which will just sustain the given rate of discharge in 
uniform flow at critical depth is termed the critical slope Sc. Evidently, for a given 
cross section and rate of discharge, the uniform flow is upper-stage if S < Sc and 
lower-stage if S > Sc. In Fig. 11.10 it is seen that, when the flow is near critical a 
small change in specific energy results in a large change in depth. With flow at or 

,near critical depth there will be an undulating stream surface. Because of this it is 
' undesirable to design channels with slopes near the critical. 

11.12. CRITICAL DEPTH IN NONRECTANGULAR 
CHANNELS 

For simplicity of explanation, the treatment of critical depth in Sec. 11.10 was 
confined to wide rectangular channels. We shall now consider an irregular section 
(Fig. 11.11) of area A carrying a flow Q. Thus Eq. (11.13) becomes 

Differentiating with respect to y, 

Q2 
E=v+---. 2gA 2 

(11.19) 

This may now be set equal to zero and solved for the value of the critical depth for 
the given flow. As A may or may not be a reasonable function of y, it is helpful to 
observe that dA = B dy, and thus dA/dy = B, the width of the water surface. Sub
stituting this in the above expression results in 

( 11.20) 

as the equation which must be satisfied for critical flow. For a given cross section 
the right-hand side is a function of y only. A trial-and-err-or solution is generally 
required to find the value Yc of y which satisfies Eq. ( 11.20). 

Figure 11.11 
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We may next solve for v;., the critical velocity in the irregular channel, by 
observing that Q = Ac v;.. Substituting this in Eq. (11.20) yields 

v; A, or V = {iA.c (11.21) 
q B, c V Be 

If the channel is rectangular. A, = Be Yc, and the above is seen to reduce to 
Eq. (11.17). 

It has already been pointed out that the cross section most commonly en
countered in open-channel hydraulics is not rectangular but trapezoidal. As 
repeated trial-and-error solutions of Eq. ( 11.20) become ve1 y tedious, the practic
ing hydraulic engineer avails himself of numerous tables and curves which have 
been prepared for finding the critical depth in trapezoidal channels of any bottom 
width and side slopes. 1 

Illustrative Example 11.2. In the accompanying figure, water flows uniformly at a steady rate of 
14.0 cfs in a \Cry long triangular flume which has side slopes I: I. The bottom of the flume is on a slope 
of 0.006. and 11 = 0.0 12. Is the llow subcritical or supercritical" 

P = 2, 2 r = 2.83r 

A 
Rh = P = 0.354r 

From Eq. (11.7a) 

].49 1 " 1 I ' 14 = r (0 ~54r )- · (0.006) -
0.012. 0 . () 

from which l'o = 1.495 ft. uniform flow depth. 

Q2 4' 

y B 

( 14)2 (r;} 3 

1 S. Kolupaila, Universal Diagram Gives Critical Depth in Trapezoidal Channels. c;, i/ f~ny .. 
\OI. 20. p. 7X5. 1950: discussion of this. with simplified single curve. by C. G. Edson in ilnd .. \OI. 21. 

p. 159. 1951. See also tables X.4 to X.X in H. W. King and E. F. Brater. ··Handbook of Hydraulics ... 5th 
ed .. McGraw-Hill Book Compam. Nev. York, 1963. 

2y 

lllustratiH~ Example 11.2 



340 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

and _v, = 1.65 ft 

Since _v, is greater than uniform flow depth, the flow is supercritical. If the data in this problem had 
been given in SI units rather than in English units, the procedure for solution would have been the 
same except that Eq. ( 11.7b) would have been used instead of Eq. ( 11.7a). 

' 11.13. OCCURRENCE OF CRITICAL DEPTH 

When flow changes from subcritical to supercritical or vice versa, the depth must 
pass through critical depth. In the former, the phenomenon gives rise to what is 
known as a control section. In the latter a hydraulic jump (Sec. 11.19) usually 
occurs. In Fig. ll.l2 is depicted a situation where the flow changes from subcriti
cal to supercritical. Upstream of the break in slope there is a mild slope, the flow is 
subcritical, and Yo, > Yc. Downstream of the break there is a steep slope, the flow 
is supercritical, and y02 < Yc. At the break in slope the depth passes through 
critical depth. This point in the stream is referred to as a control section since the 
depth at the break controls the depth upstream. A similar situation occurs when 
water from a reservoir enters a canal in which the uniform depth is less than 
critical. In such an instance (Fig. ll.l3), the depth passes through critical depth in 
the vicinity of the entrance to the canal. Once again, this section is known as a 
control section. By measuring the depth at a control section, one can compute a 
reasonably accurate value of Q by application of Eq. ( 11.18) for rectangular chan
nels or Eq. (11.20) for nonrectangular channels. 

Another instance where critical depth occurs is that of a free outfall ( 11.14a) 
with subcritical flow in the channel prior to the outfall. Since friction produces a 
constant diminution in energy in the direction of flow, it is obvious that at the 
point of outfall the total energy must be less than at any point upstream. As 
critical depth is the value for which the specific energy is a minimum, one 
would expect critical depth to occur at the outfall. However, the value for 
the critical depth is derived on the assumption that the water is flowing in straight 
lines. In the free outfall gravity creates a curvature of the streamlines, with 
the result that the depth at the brink is less than critical depth. It has been found 
by experiment that the depth at the brink Yb ~ 0.72yc. Also, critical depth gen-

Figure J 1.12. Change in flow from subcritical to supercritical at a break in slope. 
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Figure 11.13. Hydraulic drop entering steep slope. 

erally occurs upstream of the brink a distance of somewhere between 3yc and 10yc. 
If the flow is supercritical, there is no drop-down curve (Fig. 11.14b ). 

Critical depth may occur in a channel if the bottom is humped or if the 
sidewalls are moved in to form a contracted section. In such cases critical depth 
will not always occur (Illustrative Example 11.3). Generally, the head loss through 
such a contraction is very small and may usually be neglected without introducing 
a sizable error. 

(b) 

Figure 11.14. Free outfall. (a) Mild slope. (h) Steep slope. 

Illustrative Example 11.3. In the accompanying figure, subcritical uniform flow of water occurs in 
a 4-ft-wide rectangular flume at a depth of 2.0 ft. A hump of height 0.3 ft is placed in the bottom of the 
flume. Compute the water depth on the hump if the flow rate is 27 cfs. Neglecting head loss, 

vl vl 
2.0+ 

1
=0.3+y2+ 

2 

2g 2g 
(a) 

By continuity, • 

and 

27 
But ~ 1 = = 3.38 fps 

4 X 2 
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rt;?/2g • 2 
~ !2r.; 

I 

iyl 
y 

2 

I ??~ ~/~+' // 

' 7 
)Z2 

General case 

Illustrative Example 11.3. 

Hence 

Solving Eqs. (a) and (h) simultaneously gives 

From Eq. ( 11.1 X). 

( q') I J 
!" = 
' !I 

E.L 

H.G.L. 

!" . 2 

r, = 1.6 ft 

v . 2 

OL_ __ L_ __________ ~ 

0 0.49 

.. . = 1.12 ft 1
(~4=)']1 3 
32.2 

(b) 

Since .1· 2 = 1.6 ft > r, = 1.12 ft. the flow is subcril!cal and the depth on the hump is 1.6 ft. Thus. on the 
hump. there is a drop in the water surface of 0.10 ft. 

A' a 'econd part of this problem. find how high the hump must he in order for critical-depth to 
,,ccur on 1t when the !low rate is 27 cfs. 

~ 2 ~ ; 

2.0 + 
2 

I = Z 2 + 1.12 + 
!I 2!1 

(a') 

27 
V, = = 6.03 fps 

- 4 X 1.12 
(b') 

27 
V1 = 

4 
x 

2 
= 3.38 fps (c') 

Substituting (h') and (c') in (a') gi;es 

:2 = 0.49 ft 

Thus the minimum-height hump that will produce critical depth on the hump is 0.49 ft. Lesser humps 
will depress the water surface as shown in the left-hand sketch. Humps higher than 0.49 ft will raise the 
upstream water level. The higher type of hump is commonly built of concrete and used for flow
measuring purposes. Such structures are discussed under broad-crested weirs. in Sec. 12.13. The right
hand sketch shows the relation between the hump height z 2 • and the water depths y 1 and y 2 for the 

condition where Q = 27 cfs. 

In the foregoing example the water surface dropped in the v1c1mty of the 
hump. However, if the flow had been supercritical, the water surface would have 
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risen. That this is so may be seen be referring to Fig. 11.10. The specific energy 
is reduced at the hump section by an amount equivalent to the height of the hump. 
The reduction in specific energy corresponds to an increased depth (Fig. 11.10) 
on the lower limb (supercritical flow) or a decreased depth on the upper limb 
(subcritical flow). A similar pattern ofreasoning applied to Fig. 11.9 demonstrates 
that if the channel were contracted laterally, the water surface would drop for 
subcritical flow or rise for supercritical flow. 

11.14. NONUNIFORM, OR VARIED, FLOW 

As a rule, uniform flow is found only in artificial channels of constant shape and 
slope, although even under these conditions the flow for some distance may be 
nonuniform, as shown in Fig. 11.1. But with a natural stream the slope ofthe bed 
and the shape and size of the cross section usually vary to such an extent that true 
uniform flow is rare. Hence the application of the equations given in Sees. 11.3 
through 11.5 to natural streams can be expected to yield results that are only 
approximations to the truth. In order to apply these equations at all, the stream 
must be divided into lengths within which the conditions are approximately the 
same. 

In the case of artificial channels which are free from the irregularities found in 
natural streams. it is possible to apply analytical methods to the various problems 
of nonuniform flow. In many instances. however, the formulas developed are 
merely approximations, and we must often resort to trial solutions and even 
purely empirical methods. 1 

In the case of pressure conduits, we have dealt with uniform and nonuniform 
flow without drawing much distinction between them. This can be done because 
in a closed pipe the area of the water section, and hence the mean velocity, is fixed 
at every point. But in an open channel these conditions are not fixed, and the 
stream adjusts itself to the size of cross section that the energy gradient (i.e., slope 
of the energy line) requires. 

In an open stream on a falling grade the effect of gravity is to tend to produce 
a flow with a continually increasing velocity along the path. as in the case of a 
freely falling body. The gravity force is opposed by the frictional resistance. The 
frictional force increases with velocity, while gravity is constant; so eventually the 
two will be in balance. and uniform flow will occur. When the two forces are not in 
balance, the flow is nonuniform. 

There are two types of nonuniform flow. In one the changing condit¥:>ns 
extend over a long distance, and this may be called yrwluallr mried flow. Ih the 
other the change may take place very abruptly and the transition is thus confined 
to a short distance. This may be designated as a local nonuniform phenomenon or 

1 For the treatment of many l\ pc' of Ao11 ;ce Yen Te Chow. "'Open-channel Hydraulics." 
McGraw-Hill Book Company, New York. 19'9. 
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rapidly varied flow. Gradually varied flow can occur at either subcritical or super
critical flow, but the transition from one stage to the other is ordinarily abrupt, as 
between D and F in Fig. 11.1. Other cases. of local nonuniform flow occur at the 
entrance and exit of a channel, at changes in cross section, at bends, and at 
obstructions such as dams, weirs, or bridge piers. 

11.\s. ENERGY EQUATION FOR GRADUALLY 
VARIED FLOW 

The principal forces involved in flow in an open channel are inertia, gravity, 
hydrostatic force due to change in depth, and friction. The first three represent the 
useful kinetic and potential energies of the liquid, while the fourth dissipates useful 
energy into the useless kinetic energy of turbulence and eventually into heat 
because of the action of viscosity. Referring to Fig. 11.15, the total energy of the 
elementary volume of liquid shown is proportional to 

vz 
H=z+y+ct-

2g 
( 11.22) 

where z + y is the potential energy head above the arbitrary datl;Jm, and r:t. V2 j2g is 
the kinetic energy head, V being the mean velocity in the section. Each term of the 
equation represents energy in foot-pounds per pound of fluid (or newton-meters 
per newton of fluid in SI units). 

The value of e< will generally be found to be higher in open channels than in 
pipes, as was explained in Sec. 11.7.1t may range from 1.05 to 1.40, and in the case 
of a channel with an obstruction the value of r:t. just upstream may be as high as 
2.00 or even more. As the value of r:t. is not known unless the velocity distribution is 
determined, it is often omitted, but an effort should be made to employ it if 
accuracy is necessary. In the numerical problems in this chapter it is assumed to 
be unity. 

Figure 11.15. Energy relations ror nonunirorm flow. 
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Differentiating Eq. ( 11.22) with respect to x, the distance along the channel, 
the rate of energy dissipation is found to be (with ex= 1) 

dH dz dy 1 d(V2
) = -+ -+ ----

dx dx dx 2g dx 
( 11.23) 

The slope of the energy line is defined as S = -dHjdx, while the slope of the 
channel bed is S0 = - dz;dx. and the slope of the hydraulic grade line or water 
surface is given by S,... = - dz dx - dyldx. 

The energy equation for steady flow between two sections (1) and (2) of 
Fig. 11.15 a distance L apart is 

Vi v~ 
Zt +Yt +ext 2g =zz+Yz+exzlg +hL (1 1.24) 

As z 1 - z 2 = S0 L and h1. = SL, the energy equation may also be written in the 
form (with ex 1 = ex 2 = I) 

v2 v2 
Yt + 

1

1 = y 2 + -2-~ + (S- S0 )L (11.25) 
-Y g 

The Manning equation for uniform flow can be applied to nonuniform flow 
with an accuracy dependent on the length of the reach taken. Thus a long stream 
will be divided into several reaches of varying length such that the change in depth 
is roughly the same within each reach. Then, within a reach, the Manning formula 
gives 

In English units: ( 
nV )

2 

s = 1.49;;/3 (11.26a) 

In SI units: ( 
nV )

2 

S= R§3 (11.26b) 

where Vm and Rm are the means of the respective values at the two ends of the 
reach. With S0 and n known and the depth and velocity at one end of the reach 
given, the length L to the end corresponding to the other depth can be computed 
from Eq. ( 11.25), rearranged as follows: 

L = (Jj2_ Vi /2g)-=-(y2 ±_!'V2g) 
S- S0 

(11.27) 

l 
Illustrative Example 11.4. At a certain section in a very smooth 6-ft-wide rectangular channel 

the depth is 3.00 ft when the flow rate is 160 cfs. Compute the distance to the section where the 
depth is 3.20 ft if S0 = 0.002 and n = 0.012. 

1.49 , ( 1.49) ( 6v0 )
2

'
3 

Q = ARh- 35 1 2 = J 6r0 -· J (0.002) 112 = 160 cfs 
n O.OL 6 +-Yo 

By triaL .1 0 =3.5ft 
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Critical depth occurs when 

Ql .4 .\ (16W (6rJ' 
or . 

B 32.2 6 

from which .1·, = 2.8 ft. Since .1· 0 > r,. the t1ov. is subcritical and the depth increases toward normal 
depth as one proceeds upstream. The calculations arc shown in the following table. The total distance 
is calculated to he 73ft. The accuraC\ could he improved by taking more steps. In computing S- S 0 • a 
sl¥ht error in the calculated value of Swill introduce a sizable error in the calculated value of L. Thus 
it is important that S be calculated as accurately as possible. preferably hy usc of an electric calculator. 

p i\umerator 
Denom1-

\'. ~- (o + 21). Rh. I. I : ~t/, I' A(l +I') 
l\f:' R nat or L 

ft ft' 
ft ft fps ft \+ fps ft s s. so ft 

~.(/ 2y 

.100 IX.OO I2.00 I.501J X.X9 1.227 -L~27 

0.022 X.74 I .512 0.002S4 O.OOOS4 26 

.1.10 IS.60 I 2.20 1.525 X.60 1.149 4.249 

llll:'9 X.47 1.536 ().()0262 0.00062 47 

3.20 I 9.20 t:'.J() 1.54X X . .1.1 l.ll7X 4.2"X 

L ~ 73 

If the data for this problem had been given in Sl units rather than in English units. the procedure for 
.solution v. ould have been the same except that Eqs. ( 11.26h) and ( 11.7h) would have been used rather 

than Eqs. (1!.26u) and (11.17u). Because of the extensive calculations required. this type of problem 
is commonly sol\ed through use of a digital computer. 

11.16. CRITICAL VELOCITY AND CELERITY OF 
GRAVITY WAVES 

Consider a solitary wave progressing to the left in an open channel with celerity c 
(Fig. I 1.16a). We may replace this situation with the equivalent steady-flow case 
(Fig. 11.16h) in which the wave stands still while the flow enters at velocity 
~~ = -c. Writing the energy equation (11.24) between points I and 2 (with 
z 1 = z 2 , :,: 1 = :,: 2 = 1, and neglecting friction), we have 

Vi v~ 
Y1 + 2 = Yz + 2 g g 

By continuity, y 1 V1 = y 2 V2 . Substituting for V2 and rearranging terms results in 

Vi Y2 - .1'1 

2g I - (y1 ;}·2f 

If we now let V1 = -c. y 1 = y, the undisturbed depth, and y 2 = y + ~y. where ~J' 
is the wave height, and drop terms of order higher than the first, we have, approxi
mately. for the wave celerity, 

(11.28) 
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(b) 

Figure 11.16. Gravity wave of small amplitude. 

The latter expression applies if the surface disturbance is relatively small, that 
is, L1y ~ y. Equation ( 11.28) is valid only for waves in shallow water, i.e., for waves 
of great length and moderate amplitude relative to the depth. 

From Eq. ( 11.28) it is seen that the celerity of a wave will increase as the depth 
of the water increases. But this is the celerity relative to the water. If the water is 
flowing, the absolute speed of travel of the wave will be the resultant of the two 
velocities. When the stream is flowing at its critical depth Yc, the stream velocity 
and the wave celerity will be equal. This means that when the surface is disturbed 
from any cause, the wave so produced cannot trarel upstream. Quite evidently this 
also applies to any portion of the stream in supercritical flow, at depth less than 
Yc. If the disturbance is a permanent one, such as that produced by an obstruction 
or a change in the channel, the wave remains stationary and is therefore called a 
standing wave. 

When the depth is greater than Yc the velocity of flow is less than critical and 
the wave celerity c is greater than critical velocity. Consequently, under these 
conditions, any surface disturbance will be able to travel upstream against the 
flow. Hence the entire stream picture is dependent on whether the stream velocity 
is smaller or greater than the critical velocity. The situation is analogous to that of 
the acoustic velocity as described in Sec. 9.6. The standing wave which exists 
because of a permanent disturbance, when the flow velocity is above the critical, 
will be at such a direction that sin fJ = c/ V = ,/y_\· · V, where {J is the angle between 
the direction of flow and the wave front as shown in Fig. 9.7. 

11.17. WATER-Sl'RFACE PROFILES IN 
GRADUALLY VARIED FLOW 

A~ there are some 12 different circumstances giving rise to as many difft)r~nt 
fundamental types of varied flow. it is helpful to have a logical scheme of type 
classification. In generaL any problem of varied flow, no matter how complex it 
may appear. with the stream passing over dams, under sluice gates. down steep 
chutes. on the leveL or even on an upgrade. can be broken down into reaches such 
that the flow within any reach is either uniform or falls within one of the given 
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nonuniform classifications. The stream is then analyzed one reach at a time. 
proceeding from one reach to the next until the desired result if obtained. 

The following treatment is based, for simplicity, on channels of rectangular 
section. The section will be considered sufficiently wide and shallow so that we 
may confine our attention to a section I ft wide through which the velocity is 
essentially uniform. It is important to bear in mind that all the following 
jevelopment is based on a constant value of q, the discharge per unit width, and 
upon one value of 11, the roughness coefficient. 

Commencing with the last term of Eq. (11.23), we may observe that since 
v = q/y, 

1 ~(V2J = 1 cl_(q2) =- q~ -~ ~y 
2g dx 2g dx y2 g y 3 dx 

Substituting this, plus the Sand S0 terms defined earlier, in Eq. (11.23), yields 

dy ( q2) -S = -S0 + 1-
dx gy 3 

or 
dy S0 - S 
dx l - -(j2 /gy 3 

( 11.29) 

Evidently. if the value of dy/dx as determined by Eq. (1 1.29) is positive, the 
water depth will be increasing along the channel; if negative, it will be decreasing. 
Looking first at the numerator, S may be considered as the slope [such as would 
be obtained from Eq. ( 11.26)) which would carry the given discharge at depth y 
with uniform flow. Let y 0 denote the depth for uniform flow on the bed slope S0 . 

Then. by Eqs. ( 11.7), written for the unit-width flow, 

q=Qb=vV=rl.491.23S'2=r ~49Y23su 
' • • 11. .0 11 0 0 

This demonstrates that, for constant q and n, SiS0 = (y 0 !y) 10 3 and, consequently, 
for y > y0 • S < S0 , and the numerator is positive. Conversely, for y < y0 , S > S0 , 

and the numerator is negative. 
To investigate the denominator of Eq. (11.29) we observe that, for critical 

flow. y, = V~.g by Eq. (I 1.17). When the depth is greater than critical, the deno
minator of Eq. (I 1.29) is positive. Conversely, when y < Yc, the denominator is 
negative. The term V2;gr is seen to have the dimensions of a Froude number 
squared [see Eq. (7 .5)]. It is sometimes called the Froude number; also the kinetic
flo\\' jiu·tor. Evidently. a Froude number greater than I corresponds to supercriti
cal !low. ""bile N F < I means subcritical flow. 

The foregoing analyses have been combined graphically into a series of water
surface profiles [Fig. (I I. I 7)]. The surface profiles are classified according to slope 
and depth as follows. If S0 is positive, the bed slope is termed mild (M) when 
Yo> r,. critical (C) when Jo = y,, and steep (S) when Yo< rc; if S0 = 0. the 
channel is hori::omal (H): and if S0 is negative. the bed slope is called adtwse (A). 
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If the stream surface lies above both the normal (uniform flow) and critical depth 
lines, it is of type 1; if between these lines, it is of type 2; and if below both lines, it 
is of type 3. The 12 forms of surface curvature are labeled accordingly in 
Fig. 11.17. 

It must be pointed out that the scale of the drawings in Fig. 11.17 is greatly 
reduced in the horizontal direction. The problems at the end of this chapter 
'~Cmonstrate that gradually varied flow generally extends over many hundreds of 
feet, and if plotted to an undistorted scale, the rate of change in depth would be 
scarcely discernible. It may be noted further that, since even a hydraulically steep 
slope varies but a few degrees from the horizontal, it makes little difference 
whether the depth y is measured vertically (as shown) or perpendicular to the bed. 

It will be observed that some of the curves of Fig. 11.17 are concave upward 
while others are concave downward. Although the mathematical proof for this is 
not given. the physical explanation is not hard to find. In the case of the type I 
curves, the surface must approach a horizontal asymptote as the velocity is pro
gressively slowed down because of the increasing depth. Likewise, all curves which 
approach the normal or uniform depth line must approach it asymptotically, 
because uniform flow will prevail at sections sufficiently remote from distur
bances, as pointed out in Sec. 11.1. Theoretically the curves which cross the 
critical-depth line must do so vertically, as the denominator of Eq. (11.29) be
comes zero in this case. The critical-slope curves, for which y0 = Yc, constitute 
exceptions to both the foregoing statements, since it is not possible for a curve to 
be both tangent and perpendicular to the critical-uniform depth line. 

To the right of each water-surface profile is shown a representative example of 
how this particular curve can occur "in nature." Many of the examples show a 
rapid change from a depth below the critical to a depth above the critical. This is a 
local phenomenon, known as the hydraulic jump, which is discussed in detail in 
Sec. 11.19. 

The qualitative analysis of water-surface profiles has been restricted to rectan
gular sections of large width. The curve forms of Fig. 11.17 are, however, applic
able to any channel of uniform cross section if y0 is the depth for uniform flow and 
Yc is the depth which satisfies Eq. ( 11.20). The surface profiles can even be used 
qualitatively in the analysis of natural stream surfaces as well, provided that local 
variations in slope, shape, and roughness of cross section, etc., are taken into 
account. The step-by-step method presented in Sec. 11.15 for the solution of 
nonuniform-flow problems is not restricted to uniform channels and is therefore 
suited to water-surface-profile computations for any stream whatever. 

11.18. EXAMPLES OF WATER-SURFACE PROFILES 

TheM 1 curve 

The most common case of gradually varied flow is where the depth is already 
above the critical and is increased still further by a dam, as indicated in Fig. 11.18. 
Referring to the specific energy diagram of Fig. 11.10, this case is found on the 
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Figure 11.18. Backwater curve in natural stream. 

upper limb of the diagram, for here also, as the depth increases, the velocity 
diminishes without any abrupt transitions, so that a smooth surface curve is 
obtained. In the case of flow in an artificial channel with a constant bed slope, the 
water-surface curve would be asymptotic at infinity to the surface for uniform 
flow, as we noted before. But the problems that are usually of more important 
interest are those concerned with the effect of a dam on a natural stream and the 
extent to which it raises the water surface at various points upstream. The result
ing water-surface profile in such a case is commonly known as a backwater curve. 

For an artificial channel where the conditions are uniform, save for the varia
tion in water depth. the problem may be solved by use ofEqs. ( 11.26) and (11.27). 
Usually, the solution commences at the dam, where conditions are assumed to be 
known, and the lengths of successive reaches upstream, corresponding to assumed 
increments of depth, are computed. A tabular type of solution (Illustrative 
Example 11.4) is the most helpful, with column headings corresponding to the 
various elements of Eqs. ( 11.26) and ( 11.27), the last column being L.L, which 
sums up the length from the dam to the point in question. It is important, if 
accuracy is desired. to keep the depth increment small within any reach; a depth 
change of 10 percent or less is fairly satisfactory. The smaller the depth increment 
used in this step-by-step procedure, the greater the accuracy of the final result. 
This type of problem where successive calculations are required can advanta
geously be solved through use of a digital computer. 

For a naturat :,Ueam, :>ucn <b t"hat &hown m Fig. 12.10, the solution is not so 
direct, because the form and dimensions of a cross section cannot be assumed and 
then the distance to its location computed. As there are various slopes and cross 
sections at different distances upstream, the value of L in Eq. ( 11.25) must be 
assumed. and then the depth of stream at this section can be computed by trial, as 
in Pro b. 11.60. The solution is then pursued in similar fashion on a reach by reach 
basis. The accurac: of the results depends on the selection of a proper value 
for Manning's 11. \\hiCh i.; difficult when dealing with natural streams. For this 
rea.;on and because of Irregularities in the flow cross sections, the refinements 
.: Eq ( 11.25) are not always justified and it is often satisfactory to ass~me 

:- :~ 1 lc•rm !low by applying Eq. ( 11.7) to each successive reach. · 

The .'¥1 2 Curve 

This curve, representing accelerated subcritical flow on a slope which is flatter 
chan critical, exists, like theM 1 curve. because of a control condition downstream. 
In this case, however, the control is not an obstruction but the removal of the 
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hydrostatic resistance of the water downstream, as in the case of the free overfall 
shown in Fig. 11.14a. As in the M 1 curve, the surface will approach the depth for 
uniform flow at an infinite distance upstream. Practically, because of slight wave 
action and other irregularities. the distinction between the M 2 , or drop-down. 
curve and the curve for uniform flow disappears within a finite distance. 

' The M 3 Curve 

This occurs because of an upstream control, as the sluice gate shown in Fig. 11.17. 
The bed slope is not sufficient to sustain lower-stage flow, and at a certain point 
determined by energy and momentum relations, the surface will pass through a 
hydraulic jump unless this is made unnecessary by the existence of a free overfall 
before the M 3 curve reaches critical depth. 

The S Curves 

These may be analyzed in much the same fashion as the M curves, having due 
regard for downstream control in the case of subcritical flow and for upstream 
control for supercritical flow. Thus a dam or an obstruction on a steep slope 
produces an S 1 curve (Fig. 11.17) which approaches the horizontal asymptotically 
but cannot so approach the uniform depth line, which lies below the critical depth. 
Therefore this curve must be preceded by a hydraulic jump. The S 2 curve shows 
accelerated lower-stage flow, smoothly approaching uniform depth. Such a curve 
will occur whenever a steep channel receives flow at critical depth, as from an 
obstruction (as shown) or reservoir. The sluice gate on a steep channel will pro
duce the S 3 curve, which also approaches smoothly the uniform depth line. 

The C Curves 

These curves, with the anomalous condition at y0 = rc, have already been dis
cussed. Needless to say, the critical-slope profiles are not of frequent occurrence. 

The H and the A Curves 

These curves have in common the fact that there is no condition of uniform flow 
possible. The H 2 and A 2 drop-down curves are similar to theM 2 curve, but even 
more noticeable. The value of yb = 0.72yc given in Sec. 11.13 applies strictly only to 
the H 2 cun·e, but is approximately true for the M 2 curve also. The sluice gate on 
the horizontal and adverse slopes produces H 3 and A 3 curves which are like the 
M 3 curve, but they do not exist for as great a distance as the M 3 curve before a 
hydraulic jump occurs. Of course, it is not possible to have a channel of any 
appreciable length carry water on a horizontal grade, and even less so on an 
adverse grade. 
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Figure 11.19. Suhcritical !low water-surface profiles" (a) Constant section with change in slope" (h) 
Constant mild slope with change in width" 

Other Examples 

Some other interesting water-surface profiles occur when the slope of a channel of 
uniform section changes abruptly from a mild to a milder slope or to a less mild 
slope. In this case the now is everywhere subcritical. Similar water-surface profiles 
occur when a channel on a constant slope that is mild throughout its entire length 
has an abrupt change in width to an either narrower or wider channel. These 
possibilities are depicted in Fig. ll.l9. • 

Other water-surface profiles include those that occur when the slope of a 
channel changes abruptly from steep to either steeper or less steep. In this case the 
f1ow is supercritical. Similar profiles occur when a channel on a constant slope 
that is steep throughout its entire length has an abrupt change in width to an 
either wider or narrower cha nne!. As an e\ercise it is suggested that the reader 
sketch profiles similar to Fig. 11.19 for the steep-slope situations. In these cases it 
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hydrostatic resistance of the water downstream, as in the case of the free overfall 
shown in Fig. 11.14a. As in the M 1 curve, the surface will approach the depth for 
uniform flow at an infinite distance upstream. Practically, because of slight wave 
action and other irregularities, the distinction between the M 2 , or drop-down, 
curve and the curve for uniform flow disappears within a finite distance . 

The M 3 Curve 

This occurs because of an upstream control, as the sluice gate shown in Fig. 11.17. 
The bed slope is not sufficient to sustain lower-stage flow, and at a certain point 
determined by energy and momentum relations, the surface will pass through a 
hydraulic jump unless this is made unnecessary by the existence of a free overfall 
before the M 3 curve reaches critical depth. 

The S Curves 

These may be analyzed in much the same fashion as the M curves, having due 
regard for downstream control in the case of subcritical flow and for upstream 
control for supercritical flow. Thus a dam or an obstruction on a steep slope 
produces an S 1 curve (Fig. 11.17) which approaches the horizontal asymptotically 
but cannot so approach the uniform depth line, which lies below the critical depth. 
Therefore this curve must be preceded by a hydraulic jump. The 5 2 curve shows 
accelerated lower-stage flow, smoothly approaching uniform depth. Such a curve 
will occur whenever a steep channel receives flow at critical depth, as from an 
obstruction (as shown) or reservoir. The sluice gate on a steep channel will pro
duce the S 3 curve, which also approaches smoothly the uniform depth line. 

The C Curves 

These curves, with the anomalous condition at y0 = .r,, have already been dis
cussed. Needless to say, the critical-slope profiles are not of frequent occurrence. 

The H and the A Curves 

These curves have in common the fact that there is no condition of uniform flow 
possible. The H 2 and A 2 drop-down curves are similar to the M 2 curve, but even 
more noticeable. The value of yb = 0.72y, given in Sec. 11.13 applies strictly only to 
the H 2 curve, but is approximately true for the M 2 curve also. The sluice gate on 
the horizontal and adverse slopes produces H 3 and A3 curves which are like the 
M 3 curve, but they do not exist for as great a distance as the M 3 curve before a 
hydraulic jump occurs. Of course, it is not possible to have a channel of any 
appreciable length carry water on a horizontal grade, and even less so on an 
adverse grade. 
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Figure 11.19. Suhcritical f1ow water-surface profiles. (a) Constant section with change in slope. (h) 
Constant mild slope with change in width. 

Other Examples 

Some other interesting water-surface profiles occur when the slope of a channel of 
un1i"urm 'ectil'n changes abruptly from a mild to a milder slope or to a less mild 
,Jope. In th~:-, c<he the tlo\\ is e\erywhere subcritical. Similar water-surface profiles 
c'c·cur when a channel una constant slope that is mild throughout its entire length 
· .:' .111 abrupt change in width to an either narrower or wider channel. These 
:',•":i,I!Ities are depicted in Fig. 11.19. ,l 

Other water-surface profiles include those that occur when the slope of a 
~·h,innel changes abruptly from steep to either steeper or less steep. In this case the 
rlc>\\ is ,;upercritical. Similar profiles occur when a channel on a constant slope 
that is ,;teep throughout its entire length has an abrupt change in width to an 
either \\ ider or narrower channel. As an exercise it is suggested that the reader 
'ketch profiles similar to Fig. 11.19 for the steep-slope situations. In these cases it 
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will be found that, with steep slopes (supercritical flow), uniform flow occurs 
upstream of the change in either slope or width, while with mild slopes (subcritical 
flow), uniform flow prevails downstream of the change. 

l1.19. THE HYDRAULIC JUMP . 
By far the most important of the local nonuniform-flow phenomena is that which 
occurs when supercritical flow has its velocity reduced to subcritical. We have 
seen in the surface profiles of Fig. 11.17 that there is no ordinary means of chang
ing from supercritical to subcritical flow with a smooth transition, because theory 
calls for a vertical slope of the water surface. The result, then, is a marked 
discontinuity in the surface, characterized by a steep upward slope of the profile, 
broken throughout with violent turbulence, and known universally as the hydrau
lic jump. 

The specific reason for the occurrence of the hydraulic jump can perhaps best 
be explained by reference to the M 3 curve of Fig. 11.17. Downstream of the sluice 
gate the flow decelerates because the slope is not great enough to maintain super
critical flow. The specific energy decreases as the depth increases (proceeding to 
the left along the lower limb of the specific-energy diagram, Fig. 11.10). Were this 
condition to progress until the flow reached critical depth, an increase in specific 
energy would be required as the depth increased from the critical to the uniform 
flow depth downstream. But this is a physical impossibility. Therefore the jump 
forms before critical depth is reached. 

The hydraulic jump can also occur from an upstream condition of uniform 
supercritical flow to a nonuniform S 1 curve downstream when there is an obstruc
tion on a steep slope, as illustrated in Fig. 11.17, or again from a nonuniform 
upstream condition to a nonuniform downstream condition, as illustrated by the 
H 3 , H 2 or the A3 , A2 combinations. In addition to the foregoing cases, where the 
channel bed continues at a uniform slope, a jump will form when the slope 
changes from steep to mild, as on the apron at the base of the spillway, illustrated 
in Fig. 11.20. This is an excellent example of the jump serving a useful purpose, for 

E. L. 
----------~ 

_2_ hL 
2g 

Figure 11.20. Hydraulic jump on horizontal bed following spillway: vertical dimensions to scale for 
q = 10.8 cfs/ft; horizontal scale foreshortened between points I and 2, approximately 21;: I. 
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it dissipates much of the destructive energy of the high-velocity water, thereby 
reducing downstream erosion. 

The equation relating the depths before and after the hydraulic jump will be 
derived for the case of a horizontal channel bottom (the H 3 , H 2 combination of 
Fig. 11.17). For channels on a gradual slope (i.e., less than about 3°) the gravity 
component of the weight is relatively small and may be neglected without intro
ducing significant error. The friction forces acting are negligible because of the 
short length of channel involved and because the shock losses are large in compar
ison. Applying Newton's second law [Eq. (6.7a)] to the element of fluid contained 
between sections 1 and 2 of Fig. 11.20 we have 

which can be reordered to give 

(11.30) 

This states that the momentum plus the pressure force on the cross-sectional area 
is constant, or dividing by y and observing that V = Q/ A, 

F m = Q
2 

+ Ahc = constant 
Ag 

This equation applies to any shape of cross section. 

(11.31) 

In the case of a rectangular channeL this reduces for a unit width to: 

qz vz 
f, =---+,_I 

m Yt9 2 
(11.32) 

A curve of values of fm for different values of y is plotted to the right of the 
specific-energy diagram shown in Fig. 11.21. Both curves are plotted for the con
dition of 2 cfs/ft of width. As the loss of energy in the jump does not affect the 
"force" quantity fm, the latter is the same after the jump as before, and therefore 
any vertical line intersecting the fm curve serves to locate two conjugate depths y 1 

and y 2 . These depths represent possible combinations of depth that could occur 
before and after the jump. 

Thus. in Fig. 11.21. the line for the initial water level y 1 intersects thefm curve 
1: .;. .:..< .;hown. giving the value of!;.,. which must be the same after the jumP.. The 
·=-~ ~..1: !me ab then fixes the value of y 2 . This depth is then transposed·'o the 
';:-.::-:- .ri-:--cnergy diagram to determine the value cd of V~ /2g. The value of Vi j2g is 
:'-,~ '-~rtical distance et: and the head loss hLi caused by the jump is the drop in 
:::-.erg:- from 1 to 2. Or 

(11.33) 
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Figure 11.21. Energy and momentum relations in hydraulic jump. 

On Fig. 1 1.21 the head loss in the hydraulic jump is given by either the horizontal 
distance hd or the vertical distance fh. 

When the rate of flow and the depth before or after the jump are given. it is 
seen that Eq. (11.32) becomes a cubic equation when solving for the other depth. 
This may readily be reduced to a quadratic. however. by observing that .d - ri = 

(y 2 + y 1 )(y2 - yt) and substituting the known depth in the resulting expression: 

q2 v + J 
- = .h.\'2 · 

1 2 

y 2 
( 11.34) 

This equation can be rearranged to give an explicit expression for the depth after 
jump in a rectangular channel, 

(11.35) 

This equation gives good results if the channel slope is less than about 0.05. 
For steeper channel slopes the effect of the gravity component of the weight of 
liquid between sections 1 and 2 of Fig. 11.21 must be considered. 

Figure 11.22. Hnlraulic jump. (Phorogrupl1 hr Hrdrodrnamin Lahoratorr. Cali/im1ia lmtitute of 

Teclmo/oy_t·.) 
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Figure 11.23. Examples of location of a lndraulic jump. Note: r~ is the conjugate depth of (I, 11 

and r'1 is the conjugate depth of (1'0 ) 2 . 

Although the length of jump is difficult to determine, a good approximation 
may be obtained by assuming the jump section to be a trapezoid with bases y 1 and 
Yz and altitude (i.e .. length of jump) of about 5r2 . This relation may be seen to 
be approximately true by examination of Fig. 11.22, a photograph of a hydraulic 
jump in a horizontal channel, caused by a sluice gate upstream. 

11.20. LOCATION OF HYDRAULIC JUMP 

The problem of determining the location of a hydraulic jump involves a combined 
application of the principles discussed in Sees. 11.18 and 11.19. Examples of the 
location of a hydraulic jump are shown in Fig. 11.23. In case (I) the jump occurs 
downstream of the break in slope. while in case (2) the jump is located upstream of 
the break. The rea-;ons for this are illustrated by the following example. 

1llustratil~ h.arnplt- 115. -\nah ze the water-surface profile in a long rectangular channel with 
_,,ncrete lming (11 = U (I I; 1 r,c ,·h.mnel i' 10 ft wide. the llow rate is 400 cfs. and there is an abrupt 
.-"-,:c: :n channel slope from IIIII''' :,•ilt\(111> Find abo the horsepower loss in the jump. 

J..t'J ! (I'· . 2 ' ' 
400 = (I010 1( . ~ ) (0.01.') 1

-
0.0 13 I 0 - - , 0 

_\ 0 , = 2. I 7 ft (normal depth on upper slope) 

L ,mg a similar procedure. the normal depth r 0 , on the lower slope is found to be 4.80 ft. 
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Thus flow is supercritical (y01 < rcl before break in slope and subcritical (r0 , > yJ after break, so a 
hydraulic jump must occur. 

Applying Eq. (11.35) to determine the depth conjugate to the 2.17-ft (upper-slope) normal depth, 
we get 

' 2.171 [ 8(40)
2 j' 2 l 

.l'l = 2 I -I + I + 32.2(2.17)3 I 

' = 5.75 ft 

Therefore the depth conjugate to the upper-slope normal depth of 2.17 ft is 5. 75 ft. This jump cannot 
occur because the normal depth .l'o, on the lower slope is less than 5.75 ft. 

Applying Eq. (11.35) to determine the depth conjugate to the 4.80-ft (lower-slope) normal depth, 
we get 

- y', [ (" 8(40)2)1/2] 4.8- -I+ I+ 
3 2 32.2y, 

.\.', = 2.76 ft 

The lower conjugate depth of 2.76 ft will occur downstream of the break in slope. Thus the condition 
here is similar to that depicted in Fig. 11.23a. The location of the jump (i.e., its distance below the 
break in slope) may be found by applying Eq. (11.27): 

From Eq. ( 11.26a), 

Finally, 

L = E I - r;l 
S- S 0 

(400/21.7) 2 

E =2.17+-- -- =7.53ft 
I 64.4 

(400/27.6 )2 

£2=2.76+ ·=6.02ft 
64.4 

1(400 400) ~~. = + = 16.45 fps 
2 21.7 27.6 

1 ( 21.7 27.6) Rm = · + = 1.645 ft 
2 14.34 15.52 

s = 1(0.913)(16.45)]2 = 0.0107 
1.49( 1.645)2!3 

7.53- 6.02 
L = =165ft 

0.0107 -0.0016 

Thus depth on the upper slope is 2.17 ft; downstream of break the depth increases gradually (M 3 

curve) to 2.76 ft over a distance of approximately 165 ft; then a hydraulic jump occurs to depth 4.80 ft; 
downstream of jump the depth remains constant at 4.8 ft. 

··Qh 
HP loss= ' I., 

550 

62.4( 400)( 1.51) 
HP loss= = 68 

550 
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11.21. FLOW AROUND CHANNEL BENDS 

The flow around the bend of a channel provides an application of the fundamen
tals of flow in a curved path, discussed in Sec. 4.16. As there is no torque applied 
to the fluid, the flow should follow the laws of the free vortex, given in Sec. 4.18, 
and indeed it would, were it not for the effect of friction on the walls and bottom of 
the channel. The free-vortex flow of an ideal fluid around a bend is illustrated in 
the flow net of Fig. 3.9. 

In the case of a real liquid in an open channel, it is necessary to differentiate 
between the behavior at subcritical and supercritical velocities. Subcritical flow in 
a rectangular channel has been investigated experimentally and has been found to 
conform fairly well to ideal conditions, especially within the first part of the bend. 1 

As the flow continues around the bend, the velocity distribution becomes com
plicated by the phenomenon of spiral flow, which for open channels is analogous 
to the secondary counterrotating currents found at bends in closed pipes, dis
cussed in Sec. 8.21. 

The existence of spiral flow is readily explained by reference to Fig. 11.24. The 
water surface is superelevated at the outside wall, following approximate)~ the 
profile given by Eq. (4.43) for the cylindrical free vortex. The element EF is 
subjected to a centrifugal force m V 2 /r which is balanced by an increased hydrosta
tic force on the left side, due to the superelevation of the water surface at C above 
that at D. The element GH is subjected to the same net hydrostatic force inward, 
but the centrifugal force outward is much less because the velocity is decreased by 
friction near the bottom. This results in a cross flow inward along the bottom of 
the channel, which is balanced by an outward flow near the water surface; hence 
the spiral. This spiral flow is largely responsible for the commonly observed 
erosion of the outside bank of a river bend, with consequent deposition and 
building of a sand bar near the inside bank. 

It is generally not possible to perceive the convex surface profile, given by the 
free-vortex theory and shown in Fig. 11.24. For most purposes the water surface 
may be supposed to be a straight line from A to B. 

1 C -\ \fodmore. Flow around Bends in Stable Channels. Trans. ASCE. vol. 109. p. 593. 19.:14. 

Figure 11.24. Schematic sketch of !low 
around a bend in a rectangular channel 
look mg downstream with spiral !low count
er-clockwise. 
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Figure 11.25. Flow in an open-channel bend. 

Normal acceleration 
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When a body moves along a curved path of radius rat constant speed it has a 
normal acceleration a11 = V2 lr toward the center of the curve, and hence the body 
must be acted on by a force in that direction. In Fig. 11.25 it may. be seen that this 
force comes from the unbalanced pressure forces due to the difference in liquid 
levels between the outer and inner banks of the channel. Assuming that the 
velocity V across the rectangular section is uniform and that r ~ B, we can write, 
for a unit length of channel, I F" = man, 

2 
I B . 1_ . -., ( \' + \'o) V

2 

g 2 r 

which b\ algebraic transformation can be written as 

V2 B 
L1y = .\'2- y, = 

gr 
(11.36) 

where B is the top width of the water surface as shown in Fig. 11.25. It can be 
shown that Eq. ( 11.36) applies to any shape of cross section. If the effect of velocity 
distribution and variations in curvature across the stream are considered, the 
difference in water depths between the outer and inner banks may be as much as 
20 percent more than that given by Eq. (I 1.36 ). If the actual velocity distribution 
across the stream is known, the width may be divided into sections and the differ
ence in elevation computed for each section. The total difference in surface eleva
tion across the stream is the sum of the differences for the individual sections. 

With supercritical flow the complicating factor is the effect of disturbance 
waves. generated by the very start of the curve. These waves, one from the outside 
wall and one from the inside. traverse the channel. making an angle [J with the 
original direction of flow. as discussed in Sec. 11.16. The water surface along the 
outside wall will rise from the beginning of the curve. reaching a maximum at 
the point where the wave from the inside wall reaches the outside wall. The wave is 



STEADY FLOW IN OPEN CHANNELS 361 

then reflected back to the inside walL and the outer surface falls again, and so on 
around the bend. The maximum rise in water surface on the outer wall of the curve 
for supercritical flow is approximately twice the value computed by Eq. ( 11.36). 

Several schemes to lessen the surface rise from wave effect have been 
investigated. 1 The bed of the channel may be banked so that all elements of 
the flow are acted upon simultaneously, which is not possible when the turning 
force comes from the walls only. As in a banked-railway curve, this requires a 
transition section with a gradually increasing superelevation preceding the main 
curve. Another method is to introduce a counterdisturbance to offset the 
disturbance wave caused by the cun e. Such a counterdisturbance can be provided 
by a section of curved channel of twice the radius of the main section, by a 
spiral transition curve, or by diagonal sills on the channel bed, all preceding 
the main curve. 

11.22. TRANSITIONS 

Special transition sections are often used to join channels of different size and 
shape in order to avoid undesirable flow conditions and to minimize head lo~'- If 
the flow is subcritical, a straightline transition (Fig. 11.26) with an angle of about 
12.5 is fairly satisfactory and will result in a head loss of about one-tenth of the 
difference in velocity heads for accelerating flow and three-tenths of the difference 
in velocity heads for decelerating flow. Without the transition, i.e., with an abrupt 

1 R. T. Knapp. Design of Channel Curves for Supcrcritical Flo'>'<. Trans. ASCE. vol. 116. p. 296. 
19:'il. 
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change in section with square corners, the corresponding head losses are about 0.5 
and 1.0 times the difference in velocity heads. At Froude numbers between about 
0.5 and 1.0, complex warped transitions are advisable. In supercritical flow 
(N F > 1 ), surface waves are formed and special procedures are required for transi
tion design. 1 

, At channel entrance from a reservoir or from a larger channel the head loss 
fol a square-edged entrance is about 0.5 times the velocity head. By rounding the 
entrance (Illustrative Example 11.6) the head loss can be reduced to slightly less 
than 0.2 times the velocity head. 

Illustrative Example 11.6. Consider a rectangular flume 4.5 m wide, built of unplaned planks 
(n = 0.014), leading from a reservoir in which the water surface is maintained constant at a height of 
1.8 m above the bed of the flume at entrance (see accompanying figure). The flume is on a slope of 
0.001. The depth 300m downstream from the head end of the flume is 1.20 m. Assuming an entrance 
loss of 0.2 Vi /2g, find the flow rate for the given conditions. 

For a first approximate answer we shall consider the entire flume as one reach. The equations to 
be satisfied are 
Energy at entrance: 

1.2Vi 
y, +.-- = 1.80 

2g 

Energy equation ( 11.25) for the entire reach: 

v2 v2 
r 1 + 1 =1.20+ 2 +(S-O.OOI)L 
- 2g 2g 

where S is given by Eq. (l1.26b }: 

(a) 

(b) 

(c) 

1 Arthur T. lppen, Design of Channel Contractions, Trans. ASCE, vol. 116, pp. 326-346, 1951. 

Illustrative Example 11.6. Mild-slope flume leading from reservoir. 
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The procedure is to make successive trials of the upstream depth y 1 . This determines correspond
ing values of V1, q, V2 , Vm, Rm, and S. The trials are repeated until the value of L from Eq. (b) is close to 

300m. The solution is conveniently set in tabular form as follows: 

Trial v,, 
q = .r, v,. v~ = L, 

Eq. (a), q 1.20. l Rh,, Rh,• Rh,.,· S, Eq. (b). _\·I, 
m2/s m" 

m m,'s m s ms m m m Eq. (c) m 

1.50 2.22 333 2.7X 2.50 0.90 0.78 0.89 0.00143 358 

1.48 2.29 3J9 2.82 2.56 0.89 0.78 0.835 0.00163 226 

Thus r 1 :::: 1.49 m and the flow rate Q = qB:::: 3.36 x 4.5:::: 15.1 m 3js. The accuracy of the result, of 
course. depends on one's ability to select the correct value for Manning's n. If n was assumed to be 
0.0 15, for example. rather than 0.0 14, the result would have been quite different. Also, a more accurate 
result can be obtained by dividing the flume into reaches in which the depth change is about 10 percent 

of the depth. 

PROBLEMS 

ILl. For the channel of Illustrative Example 11.1 compute the ··open-channel Reynolds number" 
assuming that water at 50 F is flowing. Refer to Fig. 8.11 to verify whether or not the flow is wholly 
rough. Determine 1 from Fig. 8.11 and compare it with the value computed in the example. 

I 1.2. Following the method used in Sec. 8.6 in connection with laminar flow in a pipe, derive an 
expression for laminar flow along a flat plate which may be considered as infinitely wide (see figure). 
Prove that for a given discharge q per unit width the depth for uniform !low is given by y 0 = j3vqjgS. 
(Note. The difference between the true vertical and the perpendicular to the channel bed may be 
neglected here but must sometimes be taken into account.) 

Prob. 11.2 

11.3. Evaluate the friction factorffor the laminar flow of Pro b. I 1.:' in terms of the Reynolds number, 

and compare with Eq. (X.20) for pipe flow. (Note: Recall that for a wide channel the hydraulic radius is 
approximately equal to the depth.) 

II A. Eastern lubricating oil (SAE .10) at '0 F tlows down a flat plate 10 ft wide. What is the maximum 
c.1:c ,)f di,chargc at which laminar !low may he ensured. assuming that the critical Reynolds number is 
'UII' \\.hat should be the slope of the plate to secure a depth of 6 in at this tlow rate"' l 
11.5. Assuming the values off versus N Rand 1 'D given for pipes in Fig. 8.11 to apply to open channels 
.!• \\CII. find the rate of discharge of water at 60 Fin a tOO-in-diameter smooth concrete pipe flowing 

·· .il: full. if the pipe is laid on a grade of 2ft mi. Note that D should be replaced by 4R. 

11.6. In ,oJving Proh. 112. the vclocitv di,trihution vvas found to he u -= (gS:21')rMt - (r 1·0 )
2 1. where 

... ,, ,-a,e is the variable distance dovvnward from the surface. Evaluate 'l.. ami compare it with the 

,,f Proh. 4.1 
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11.7. At what rate (cfs ft of width) will 60 F water flow in a wide rectangular channel on a slope of 

0.00015 if the depth is 0.0 I ft 0 Assume laminar flow and justify this assumption by computing Rey
nolds number. (Hint· Refer to Pro b. 11.2). 

ll.8. At what rate [f;(s)(m) of width J will water at 15 C flow in a wide. smooth, rectangular channel on 

a slope of 0.0003, if the depth is 8.0 mm ., Assume laminar flow and justify the assumption by comput
ing Reynolds number. 

I 1..9. For the channel of Illustrative Example 11.1, compute the flow rate for depths of 1, 3, 5. and 7 ft. 
Plot a curve of Q versus r. 

11.10. The figure shows a cross section of a canal forming a portion of the Colorado River Aqueduct, 
which is to carry 1.600 cfs. The canal is lined with concrete, for which n is assumed to be 0.0 14. What 

must be the grade of the canal. and what will be the drop in elevation per mile o 

1----------- 50.6' _______ __, 

i----20'- \""' / 

Prob. 11.10 

11.11. In Pro b. 11.10 find the corresponding value of< and compare it with values previously given for 
concrete pipe. Does it fall in the range given., 

11.12. If the flow in the canal of Prob. 11.10 were to decrease to 800 cfs, all other data, including the 
slope, being the same. what would be the depth of the water. 

11.13. What would be the capacity of the canal of Prob. 11.10 if the grade were to be 1.2 ft·mi 0 

11.14. Water flows uniformly in a 2-m-wide rectangular channel at a depth of 45 em. The channel 

slope i, 0.002 and 11 = 0.014. Find the flow rate in m 3;s. 

11.15 . . \t what depth will water flow in a 3-m-wide rectangular channel if n = 0.017, S = 0.00085, and 
Q = 4 m' s·: 
11.16. The figure shows a tunnel section on the Colorado River Aqueduct. The area of the water cross 

,ection b 191 ft
2

. and the wetted perimeter is 39.1 ft. The flow is 1.600 cfs. If 11 = 0.013 for a cement 
lming. find the ,lope . 

..._ 12'-4r -- Prob. 11.16 

11.17 . .\ monolithic concrete imerted siphon on the Colorado Ri\cr Aqueduct is circular in eroS> 
,cction and h 16ft in diameter. Ob,iousl,_ 1t is complete!) filled with water. unlike the case of 

Pro b. II .16. If 11 - llll I J. f!nd the slope of the 11\ draulic grade line for a flow of 1.600 ct\. 
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11.18. Solve Pro b. 11.17, using the methods of Chap. 8 and assuming a mean value of' from Table 8.1 
for concrete pipe. Compare the result with that of Prob. 11.17. 

11.19. A 30-in-diameter pipe is known to have a Manning's n of0.021. What is Manning's n for a 
96-in-diameter pipe having exactly the same ' as the smaller pipe? 

11.20. Refer to Fig. 11.4. Suppose the widths of A I' A 2 , and A 3 are 100, 30, and 200 ft and the total 
depths are 2. 10, and 3 ft. Compute the flowrate if S = 0.0016, n1 = n 3 = 0.04, and 11

2 
= 0.025. 

11.21. Find the flow rate at water depths of I. 2, 3, 4, and 5 ft if 11 = 0.020 and S = 0.0015. The 
dimensions are as follows: a = 3 ft. h = 6 ft. d = 5 ft, and w = 36 ft. 

dl...._____. r 
b Prob. 11.21 

11.22. Refer to the figure for Prob. 11.21. Suppose a= 2 m, h = 5 m, d = 3 m, and w = 25 m. If 
n = 0.014, what slope is required so that the flow will be 30 m 3/s when the depth of flow is 2.50 m 0 

11.23. Using Eq. (11.11), determine the depth below the surface at which the velocity is equal to the 
mean velocity. Also find the average of the velocities at 0.2 and 0.8 depths. Let _r =4ft. S = 0.00 I. and 
11 = 0.025. 

11.24. Water flows uniformly in a very wide rectangular channel at a depth of 1.5 m. If S = 0.006 and 
11 = 0 015. plot the velocity profile and note the value of the maximum velocity at the water surface. 

11.25. Consider a \ ariety of rectangular sections all of which have a cross-sectional area of 20 ft 2 Plot 
the h;draulic radii \ersus channel widths for a range of channel widths from 2 to 20 ft and note the 
depth: width ratio when R, is maximum. 

11.26. Set up a general expression for the wetted perimeter P of a trapezoidal channel in terms of the 
-:ross-sectional area A, depth _r. and angle of side slope </>. Then differentiate P with respect to r with A 

~d r}l held cnn"~~n! F!"0rn ~h!, r:n\·e ~h2.! R r. = ::·~~or tt-.e .;;:ection Clf greatest hydraulic efficiency (i.e.~ 
-cnallest P for a given A). 

11.27. Using the results of Prob. 11.26 prove that the most efficient triangular section is the one with a 
'-Ill \ ertex angle. 

11.28. The amount of water to be carried by a canal excavated in smooth earth (11 = 0.030) is 370 cfs.lt 
- "' •Ide slopes of 2: I. and the depth of water is to he 5 ft or less (see figure). If the slope is 2.5 ft/mi, 
-• ·:.it must he the width at the bottom., How does th" compare with the most efficient trapezoidal 
<ctlon for these side ,lopes'' (This problem can he,t he sohed by trial.) 

H - 10' Proh. 11.2!! • 
11.29. In Proh.II.~X.ifthedischargeistohe200cfswlllkthc\elocit) i'nottoexceed 150ft•min.what 
-- .. <he the width at the hLlttom and the drop in elevation per mile'' Compare this with the bottom 
·' ·,'th lor ma"\imum cfticienc' 

I L>(l. -\ rectangular flume of planed t 1m her I'' = 11 11 I~) slope' I ft per LOOO ft. Compute the rate of 
· •c!larg:c 1f the width IS 6ft and the depth ,,1 "ate! I• -~fl. What would he the rate of discharge if the 
·' ,ni- "ere' ft and the depth ol water h II'\\ t1~ch ol the' two forms ;o.ould re4uirc lcso. lumber" 
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11.31. What diameter of semicircular channel will have the same capacity as a rectangular channel of 
width 8 ft and depth 3 ft. Assume S and n are the same for both channels. Compare the length of the 

wetted perimeters. 

11.32. Prove that the value of IJ given in Sec. 11.9 for the point of maximum discharge is correct. After 
differentiating, a trial-and-error type of 'olution will be found most practical here. 

11.33. Water flows uniformly in a circular concrete pipe (n = 0.014) of diameter 10 ft at a depth of 4ft. 
~sing Fig. 11.8, determine the flow rate and the average velocity of flow. S = 0.0003. 

11.34. At what depth will water flow at 0.25 m 3;s in a 100-cm-diameter concrete pipe on a slope of 

0.004? 

11.35. Consider a wide rectangular channel on a given slope. With what power of the discharge does 
the depth vary 0 With what power of the discharge does the critical depth vary'' As the flow increases, 
does it tend toward subcritical or supcrcritical conditions'' Assume Manning equation, with constant 

value of 11. 

11.36. Differentiate Eq. (11.12) to obtain the expression for y, given in Eq. (11.18). 

11.37. A rectangular channel 10 ft wide carries a flow of 200 cfs. Find the critical depth and the critical 

velocity for this flow. Find also the critical slope if n = 0.020. 

11.38. A trapezoidal canal with side slopes of 2: I has a bottom width of 10 ft and carries a flow of 

600 cfs. Find the critical depth and critical velocity. 

11.39. If the canal of Prob. 11.38 is lined with brick (n = O.oJ5), find the critical slope for the given rate 

of discharge. 

11.40. Water !lows with a velocity of 4 fps and at a depth of 2 ft in a wide rectangular channel. Is the 
!low subcritical or supercritical ''Find the alternate depth for the same discharge and specific energy by 
two methods: (a) by direct solution of Eq. (11.13): (h) by use of Fig. 11.9. 

11.41. For a circular conduit with a diameter of 10 ft, compute the specific energy for a flow of 100 cfs 
at depths of L 3. 5. and 8 ft assuming e>: = 1.0. At what depth is E the least? Check to see ifEq. ( 11.20) is 

satisfied at this depth. 

11.42. Water !lows down a wide rectangular channel of concrete (11 = 0.014) laid on a slope of 0.002. 
Find the depth and rate of flow in SI units for critical conditions in this channel. 

I 1.43. Water is released from a sluice gate in a rectangular channel 5 ft ( 1.5 rn) wide such that the 
depth is 2ft (0.6 m) and the velocity is 15 Ips (4.5 ms). Find (a) the critical depth for this specific 
energy: (h) the critical depth for this rate of discharge: (c) the type of flow and the alternate depth by 

either direct solution or the discharge curve. 

11.44. For the conditions of Pro b. 11.43, find the necessary channel slope if the discharge from the 
sluice gate is to be carried at uniform flow in a rectangular t1ume 5 ft wide and made of unplaned 

timber (n = 0.013). 

11.45. A flow of 10 cfs (0.28 nr'·s) of water is carried in a 90 triangular flume built of planed timber 
(n = O.oJ I). Find the critical depth and the critical slope. 

11.46. A long straight rectangular channel 10 ft wide is observed to have a wavy water surface at a 

depth of about 6 ft. Estimate the rate of discharge. 

11.47. A circular conduit of well-laid brickwork when flowing half full is to carry 400 cfs at a velocity 
of 10 fps. What will be the necessary fall per mile'' Will the !low be subcritical or supercritical'' 

11.48. A tlov. of 100 cfs is carried in a rectangular channel10 ft wide at a depth of 1.2 ft.lfthe channel 
is made of smooth concrete (11 = 0.0 12). find the slope necessary to sustain uniform flow at this depth. 
What change in the roughness coefficient would be required to produce uniform critical flow for the 
given rate of discharge on this slope'' 

11.49. This figure depicts the cross section of an open channel for which S0 = 0.02 and n = 0.015. The 
sketch is drav.n to the scale shown. When the !low rate is 50 cfs. find (a) the depth for uniform flow and 

(h) the critical depth. 
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Scale: 

4' 

Prob. 11.49 

11.50. Refer to the figure for Prob. II 49. Replace the 4-ft dimension on the scale with 4 m. Let the 
slope be 0.007 with n = 0.015. When the tlo\\ rate is 18.5 m 3 /s, find (a) the depth for uniform flow; (b) 
the critical depth. 

11.51. Work both part> of Illustrative Example I U for the case where the flow rate is 16 cfs. 

11.52. Work Illustrative Example 11.3 for the case where the flow rate is 50 cfs. 

11.53. A rectangular channel 10 ft wide carries 20 cfs in uniform flow at a depth of 0.90 ft. Find the 
local change in water-surface elevation caused b' an obstruction 0.20 ft high on the floor of the 
channel. 

11.54. Suppose that the channel of Prob. 11.53 is so sloped that uniform flow of 20 cfs occurs at a 
depth of0.30 ft. Find the local change in water-surface elevation caused by the 0.20-ft-high obstruction. 

11.55. A rectangular channel4 ft (1.2 m) wide carries 40 cfs (1.1 m 3/s) of water in uniform flow at a 

depth of 2.SO ft (O.X5 m). If a bridge pier I ft (0.3 m) wide is placed in the middle of this channel, find 
the local change in the water-surface elevation. What is the minimum width of constricted channel 
which will not cause a rise in water surface upstream'' 

11.56. Suppose that the depth of uniform !low in the channel of Pro b. 11.55 is 0.90 ft. Fmd the change 
in water-surface elevation caused by the bridge pier. The flow rate is -+0 cfs. 

11.57. Fifty cubic feet per second ( 1.4 m 3 /s) of water flows uniformly in a channel of width 6 ft ( 1.8 m) 
at a depth of 2.5 ft (0.75 m). What is the change in water-surface elevation at a section contracted to a 
4-ft (1.2 m) width with a 0.2-ft (6 em) depression in the bottom? 

11.58. A rectangular flume of planed timber (11 = 0.012) is "ft (1.5 m) wide and carries 60 cfs 
( 1.7 m 3 s) of water. The bed slope is 0.0006. and at a certain section the depth is 3 ft (0.9 m). Find the 
distance (in one reach) to the section where the depth is 2.5 ft (0.75 m). Is this distance upstream or 
downstream'' 

11.59. Suppose that the slope of the flume in Pro b. 11.5X is now changed so that, with the same flow, 
:he depth varies from 4 ft ( !.2 m) at one section to 3 ft (0.9 m) at a section 1,000 ft (300 m) down
meam. Find the new bed slope of the tlume. Sketch the flume, the energy grade line. and the water 
surface to assure that the answer is reasonable. 

11.60. Suppose that the slope of the flume in Prob. 11.58 is now increased to 0.01. With the same flow 
J' before, find the depth 1,000 ft downstream from a section where the flow is 1.5 ft deep. Is the flow 
,ubcritical or supercritical 0 [Note: In this case it will not he possible to make a direct solution from 
Eq (1125). A trial-and-error solution may best be set in the form of a table with the headings .1 2 • 1 2 • 

I . P. R. R _ R~ '. S. e•c l 

11.61. \ c,· "Z .. cc ~'·'" :1urne lilm \VIde )IClded the following data on a reach of 30-ft 
:ength 1\tth ,uJI ·'.l:~- - :, = 0009 ft: with a measured flow of 0.1516 cfs, y1 = 0.361 ft, 

. = 11 .. ~66 ft Find the \cilL.c, ... :: -,•:Jghness coefficient 11. 

II 1:>~. Fx :1-:e t1ume of Prob. 11.-+Y rir:,' :c:e ,ll'tance between a section where the depth is 3.0 ft to 
,.- ·''·ere rhe depth is 2.5 ft. Which ,ectlon h up,tream' l 

11.6 .. <. \ ;e,·rdngular flume 10ft wide is built of planed timber (n = 0.012) on a bed slope of0.2 ft per 
• "'·ending Ill a free overfall. If the measured depth at the fall is 1.82 ft. find (a) the rate of flow; (b) the 

~.<.!nee upstream from the fall to where the depth is 4 ft. (Note: Assume that critical depth occurs at a 
.. : :<drKe of ~1·, upstream from the falL and employ reaches with end depths of 2.7, 3.0, 3.4, and 4.0 fi.) 

11.64. A thin rod is placed \crticall} in a stream which is 3 ft deep, and the resulting small disturbance 

·' J, e h observed to make an angle of about 55 with the axis of the stream. Find the approximate 
. e locitv of the stream. 
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11.65. At a pomt in a shallow lake, the wave from a passing boat i:, ob,erved to n...: I ft nbott 
undisturbed water surface. The observed speed of the wave 15 10 mph. Find the appro,~t~matc dept! 

the lake nt thts point. 

11.66. Class1fy the water-surface profile of Prob. 11.58 as one of the forms shown in Fig. 11 .17 
all necessary calculations 

11.67. Repeat Prob. 11.66 for tbe channel of Prob. 11.59 . 

• 1.68. The flow in a 15-ft-wide rectangular channel which has a constant bottom slope 1~ 1,400 c 
computation using Manning's equation indicates that the normal depth IS 6.0 ft. At a certam ~cct 
the depth of flow in the channel is 2.8 ft. Wtll the depth mcrcase, decrease, or remain the ~a me as 
proceed~ downstream from this ~tion? Sketch a physical situation where thi~ type of flow w1ll oca:: 

11.69. Cla.\\lfy the water-surface profile of Prob. 11.60 as one of the forms shown in Fig. 11 .17. Sh 
all necessary calculations. 

11.70. Repeat Prob. 11.69 for the channel of Prob. 11.61. 

11.71. A w1de rectangular channel dredged in earth (n = 0.035) is laid on a slope of 10 ft /mi and carr10 
a flow of 100 cfs1ft of w1dth Fmd the water depth 2 mi upstream of a section where the depth 1s 28 9 f 
Compute, usmg a single reach, and compare the result with that obtamed usmg three reaches. 

11.72. The slope of a stream of rectangular cross section is S0 = 0.0002, the width is 160 ft, and th< 
value of the Chl:zy C is 78.3 ft 1' 2/s. Find the depth for a uniform flow of 88.55 cfs per unit width o 
the stream. If a dam raises the water level so that at a certain distance upstream the increase is 5 ft 
how far from this latter section wiU the mcrease by only I ft? 
11.73. When the flow m a certain natural stream is 7,600 cfs, 11 is required to find the elevation of the 
water surface at different sections upstream from a certain mJtial point. A survey of the channel sho .... s 
that conditions are fairly similar for a length of 1,500 ft upstream from the initial point, and then 
beyond that there ~ another stretch of 2.200 ft, and so on Assuming a ra-e m the water surface in the 
distance of 1,500 ft to be 0.20 ft. a study of the stream bed show:. the average values of the area and 
wetted perimeter to be a:. g1ven in the table below. The computed head los, based on average vclocll) 
and hydraulic radius, i.~ seen to be 0.283 ft, which is greater than that as:;umed. Hence ~ume a larger 
value. and repeat . Complete the following table, and find the probable rise m elevation m the firs! 
1,500 ft . In a s1milar manner !he risel> in o1her lengths may be computed, and the sum of all of them up 
to the des1red pomt w1ll g1ve the elevation at that point above the imtial . A~oSurne n • 0.036 

Assumed rLse SL. .4 average, Paverage, R average, Y average, SL = LY2 C2 R, 
ft ftl ft ft fps ft 

0.20 3,100 350 8.86 2.45 0.283 
0.25 3.11!0 359 8.86 
0.26 3,190 360 8.86 
0.27 3,220 363 8.86 
0.28 3,2:\0 364 8.86 

11.74. A trape7oidal canal dredged in smooth earth (n 0.030) has a bottom width of 15 n s1de slopes 
of I I, and a bed slope S0 O.<Xl03. Wtth a flow of 800 cfs, y, -= 4.05 ft, and Yo 10.8 rt. Find the 
length of M 2 curve extcndmg from a free overfall back to where the depth is 10 ft. Use reaches with end 

depth\ of 6. 8, and 10 ft 
11.75. A portiOn of an outfall sewer is approximately a circular conduit 5 ft in diameter and with a 
slope of I n m 1.100 ft. II as of bricl, for which n = 0.0 13. What would be us muimum capacity for 
uniform 0<lW'! If 11 discharges 120 cr, "'ith a depth at the end of 3.15 rt. how far back from the end must 
1t become a pressure conduit unless the size or the slope is changed'! Proceeding from the mouth 
upstream. find by tabular solution the lengths of the reaches indicated and the total length to the 
sect1on where r - 4.75 ft. 

11.76. In Prob. 11.75 ;mume the rate of d~harge to be 84.3 cCs, and find the depth of water at the 



368 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

11.65. At a point in a shallow lake, the wave from a passing boat is observed to rise I ft above the 
undisturbed water surface. The observed speed of the wave is 10 mph. Find the approximate depth of 
the lake at this point. 

11.66. Classify the water-surface profile of Prob. 11.58 as one of the forms shown in Fig. 11.17. Show 
all necessary calculations. 

11.67. Repeat Prob. 11.66 for the channel of Prob. 11.59. 

I ,68. The flow in a 15-ft-wide rectangular channel which has a constant bottom slope is 1,400 cfs. A 
computation using Manning's equation indicates that the normal depth is 6.0 ft. At a certain section 
the depth of flow in the channel is 2.8 ft. Will the depth increase, decrease. or remain the same as one 
proceeds downstream from this section? Sketch a physical situation where this type of flow will occur. 

11.69. Classify the water-surface profile of Prob. 11.60 as one of the forms shown in Fig. 11.17. Show 
all necessary calculations. 

11.70. Repeat Prob. 11.69 for the channel of Prob. 11.61. 

11.71. A wide rectangular channel dredged in earth (n = 0.035) is laid on a slope of 10 ft/mi and carries 
a flow of 100 cfs/ft of width. Find the water depth 2 mi upstream of a section where the depth is 28.9 ft. 
Compute, using a single reach, and compare the result with that obtained using three reaches. 

11.72. The slope of a stream of rectangular cross section is S0 = 0.0002, the width is 160 ft, and the 
value of the Chezy Cis 78.3 ftli 2/s. Find the depth for a uniform flow of 88.55 cfs per unit width of 
the stream. If a dam raises the water level so that at a certain distance upstream the increase is 5 ft, 
how far from this latter section will the increase by only 1 ft? 

11.73. When the flow in a certain natural stream is 7,600 cfs, it is required to find the elevation of the 
water surface at different sections upstream from a certain initial point. A survey of the channel shows 
that conditions arc fairly similar for a length of 1,500 ft upstream from the initial point, and then 
beyond that there is another stretch of 2,200 ft, and so on. Assuming a rise in the water surface in the 
distance of 1,500 ft to be 0.20 ft, a study of the stream bed shows the average values of the area and 
wetted perimeter to be as given in the table below. The computed head loss, based on average velocity 
and hydraulic radius. is seen to be 0.283 ft, which is greater than that assumed. Hence assume a larger 
value, and repeat. Complete the following table. and find the probable rise in elevation in the first 
1,500 ft. In a similar manner the rises in other lengths may be computed, and the sum of all of them up 
to the desired point will give the elevation at that point above the initiaL Assume n = 0.036. 

Assumed rise SL, A average, P average, R average, V average, SL = LV2jC 2 R, 
ft ft 2 ft ft fps ft 

0.20 3,100 350 8.86 2.45 0.283 
0.25 3,180 359 8.86 
0.26 3,190 360 8.86 
0.27 3,220 363 8.86 
0.28 3,230 364 8.86 

11.74. A trapezoidal canal dredged in smooth earth (n = 0.030) has a bottom width of 15 ft side slopes 
of 1 : I, and a bed slope S0 = 0.0003. With a flow of 800 cfs, y, = 4.05 ft, and Yo= 10.8 ft. Find the 
length of M 2 curve extending from a free over fall back to where the depth is 10 ft. Use reaches with end 
depths of 6. 8, and 10 ft. 
11.75. A port ion of an outfall sewer is approximately a circular conduit 5 ft in diameter and with a 
slope of 1 ft in 1.100 ft. It is of brick, for which n = 0.0 13. What would be its maximum capacity for 
uniform flow'' If it discharges 120 cfs with a depth at the end of 3.15 ft, how far back from the end must 
11 become a pressure conduit unless the size or the slope is changed? Proceeding from the mouth 
upstream, find by tabular solution the lengths of the reaches indicated and the total length to the 
section where .r = 4.75 ft. 

11.76. In Prob. 11.75 assume the rate of discharge to be 84.3 cfs, and find the depth of water at the 
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section of free outfall and the distance from the mouth to the point at which the depth would equal 
4.50 ft. Assume Y, at free outfall. 

11.77. In a rectangular channel 10ft (~ m) wide with a flow ~f 200 cfs (5.65 m 3 /s) the depth is I ft 
(0.3 m). If a hydraulic jump is produced. what will be the depth after it? What will be the loss of 
energy" 

11.78. The hydraulic jump may be used as a crude flowmeter. Suppose that in a horizontal rectangular 
channel 5 ft wide the observed depth> before and after a hydraulic jump are 0.66 and 3.00 ft. respec
tively. Find the rate of flow and the head lms 

11.79. Repeat Prob. 11.77 for the case where the channel is on a 10 percent grade. For this slope, jump 
length ::c 4r2 . Assume friction force = 400 lb. Also find horsepower loss. 

11.80. The tidal bore, which carries the tide mto the estuary of a large river, is an example of an abrupt 
translatory wave, or moving hydraulic jump. Suppose such a bore is observed to rise to a height of 12 ft 
above the normal low-tide river depth of~ ft. The speed of travel of the bore upstream is observed to be 
15 mph. Find the approximate velocity of the undisturbed river. Does this represent subcritical or 
supercritical flow? (Nate: The theory developed in Sec. 11.19 is based on the hydraulic jump in a fixed 
position. In the case of a moving jump. all kinematic terms must be considered relative to the moving 
wave as a frame of reference.) 

11.81. A hydraulic jump occurs in a triangular flume having side slopes 1 : I. The flow rate is 15 cfs 
(0.45 m 3;s) and the depth before jump is 1.0 ft (0.3 m). Find the depth after jump and the horsepower 
loss in the jump. 

11.82. A hydraulic jump occurs in a rectangular channel carrying 200 cfs on a slope of 0.00' The 
depth after jump is 4.5 ft. What must be the depth before jump., The channel is I" ft wide. 

ll.83. A rectangular channel 10 ft wide carries 100 cfs in uniform flow at a depth of 1.67 ft. Suppose 
that an obstruction such as a submerged weir is placed across the channel, rising to a height of 6 in 
above the bottom. Will this obstruction cause a hydraulic jump to form upstream? Why o Find the 
water depth over the obstruction, and classify the surface profile. if possible. to be found upstream from 
the weir. 

11.84. Suppose that the slope and roughness of the channel in Pro b. 11.83 are such that uniform flow 
of 100 cfs occurs at 1.00 ft. Consider an obstruction rising 4 in above the bottom of the channel. Will a 
hydraulic jump form upstream? As in Pro b. 11.83. classify the surface profile found just upstream from 
the obstruction. 

11.85. The rectangular flume of planed timber (11 = 0.012) 20ft wide, 1,000 ft long, with horizontal bed 
leads from a reservoir in which the still-water surface is 10 ft above the flume bed. Assume that the 
~epth of the downstream end of the flume is fixed at 8 ft by some control section downstream. 
\::,,wing 0.2 velocity head loss at entrance. find the capacitv of the flume. 

11.86. Suppose that the flume of Pro b. 11.85 ends in a free fall. all other conditions remaining the same. 
The critical depth may be supposed to occur at about 6t, back from the fall. In this case. then. the 
:ength of the reach is 1.000 - 6r, where t, mav be gl\ en a reasonable value. say.~ ft. and left cotbtant 

:~rc•ug~_,•;.:: :"e :~·al' The 'oluuon rrc•ceeds a, m Prob. 11.85. except that r 2 is no longer fixed but 
~e.:ome, .· g:·.o:~. ~ .. E~. 1'1 ior each assumed value of y 1 . 

11.8-. Anal! zc the "J tcr·- .. :· -'~" ;:'~c•iile in a long rectangular channel (n = 0.0 13). The channel is 10 ft 
A ~" .cc ~"" rate is 400 cf,. a:•C.: :~e~e :; an abrupt change in slope from 0.0016 to 0.0150. Refer to 

_,·· " .. c E\J:nrle 11.5 for information ,•n nc•rmal depths and critical depth. 

II"~ ? c~·~c· Prob ll.R 7 for the case where the tlo\1 rate ts 150 cfs. 

II~- Rc;:-e"t Prob. 11.88 for the case where the slope change is from 0.0016 to 0.0006. 

II"''· -\ . crv "tcle rectangular channel with bed slope S0 = 0.0003 and roughness 11 = 0.020 carries a 
---. ··,,.,, c•c' 'i'l ci, it c'f \\Jdth. li a ,lltlce gate (Fig. 12.30) is so adjusted as to produce a minimum 

_.. ·: : ' :·t m the channel. de term me whether a hydraulic jump will form downstream, and if so, 
-- _ ··c ~:-:J:cce from the gate to the JUmp. 

II ~I. I- J '-'-!·!·\'Ide rectangular channel (5 0 = 0.002. n = 0.013) water flows at 250 cfs. A low dam 
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(broad-crested weir) placed in the channel raises the water to a depth of 8.9 ft. Analyze the water
surface profile upstream from the dam. 

11.92. Solve Prob. 11.91 if the channel slope is O.oo05. Repeat for S0 = 0.0008. 

11.93. A rectangular channel 10 ft wide carries 300 cfs in uniform flow at a depth of 4 ft. By how much 
should the outside wall be elevated above the inside wall for a bend of 40-ft radius to the center line of 
channel? 
11.94. Repeat Prob. 11.93 for the same conditions except that the normal depth is 2 ft. 

11.ls. A rectangular channel4 m wide carries 6m 3/sin uniform flow at a depth of 1.5 m. What will be 
the maximum difference in water-surface elevations between the inside and outside of a circular bend 
in this channel if the radius of the bend is 25 m? 

11.96. Refer to Fig. 11.26. A rectangular channel changes in width from 4 to 6 ft. Measurements 
indicate that y 1 = 2.50 ft and Q =50 cfs. Determine the depth y2 by (a) neglecting head loss; (b) 
considering the head loss to be given as shown on the figure. 



372 FLUID MECHANICS WITH ENGINEERIC\iG APPLICATIO:\IS 

A 
~ Figure 12.1. Tube-type viscometer. 

viscometer. Various types of viscometers are available. They all depend on the 
creation of laminar-flow conditions. We shall confine our discussion to the meas
urement of the viscosity of liquids. Since viscosity varies considerably with 
temperature. it is essential that the fluid be at a constant temperature when a 
measurement is being made. This is generally accomplished by immersing the 
device in a constant-temperature bath. 

Several types of rotational viscometers are available. These generally consist of 
two concentric cylinders that are rotated with respect to one another. The narrow 
space between them is filled with liquid whose viscosity is to be measured. The 
rate of rotation under the influence of a given torque is indicative of the viscosity 
of the liquid. One difficulty with this type of viscometer is that mechanical friction 
must be accounted for. and this is difficult to deal with accurately. 

The tube-type riscometer is perhaps the most reliable. Figure 12.1 shows the 
Saybolt viscometer. In this device the liquid is originally at M, with the bottom of 
the tube plugged. The plug is removed, and the time required for a certain volume 
of liquid to pass through the tube is a measure of the kinematic viscosity of the 
liquid. In this device the flow is unsteady and the tube is of such small diameter 
that the flow may be assumed to be laminar. As an approximation let us apply 
Eq. (8.19). From this equation, 

( 12.1) 

where hL is the average imposed head on the liquid during the flow period, and 
Q ~ Vu t, where ~ ~- is the 'olume of liquid that flows out of the tube in time t. 
Substituting Q = VL t into Eq. (12.1), we get 
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Since D, L, Vr., and h~. are constants of the device, v = Kgt, and the kinematic 
viscosity is seen to be proportional to the measured time. Equation ( 12.2) gives 
good results if the tube is relatively long. However, for a short tube, as with the 
Saybolt viscometer, a correction factor 1 must be. applied if the tube is too short for 
the establishment of laminar flow (Sec. 8.7). 

There are several other types of tube viscometers, but they are all based on the 
same principle. Some come with a set of tubes of various diameters so that 
measurements can be made on liquids with a wide range of viscosities in a conven
ient time period. Because the dimensions of such fine tubes cannot be perfectly 
duplicated, each tube is individually calibrated by measuring the time for a liquid 
of known viscosity at a given temperature to discharge the standard volume. 

A third type of viscometer is the falling-sphere type. In such a device the liquid 
is placed in a tall transparent cyclinder and a sphere of known weight and 
diameter is dropped in it. If the sphere is small enough, Stokes' law (Sec. 10.7) will 
prevail and the fall velocity of the sphere will be approximately inversely propor
tional to the absolute viscosity of the liquid. That this is so may be seen by 
examining the free-body diagram of such a falling sphere (Fig. 12.2). The forces 
acting include gravity, buoyancy, and drag. Stokes' law states that if D V/v < 1. the 
drag force on a sphere is given by F v = 3nJ1 VD, where V is the velocity of the 
sphere and Dis its diameter. When the sphere is dropped in a liquid, it will quickly 
accelerate to terminal velocity, at which time Lfz = 0. Thus 

nD 3 nD 3 

W - F - F = ·· -- - ·.· -- - - 3n'l VD = 0 
B D .s 6 ' 6 t 

where 'Ys and y represent the specific weight of the sphere and liquid, respectively. 
Solving the above equation, we get 

( 12.3) 

1 Exact procedures for viscosity determinations are aYailable in the standards of the American 

SocietY for Testing Materials. 

' 

F'~ I~ '-=-~·:•: · _ ~~ c ··;>here falling at terminal velocity. 



374 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

In the preceding development it was assumed that the sphere was dropped into a 
liquid of infinite extent. In actuality, the liquid will be contained in a tube and a 
wall effect will influence the drag force a:nd hence the fall velocity. It has been 
found that wall effect1 can be expressed approximately as 

V 9D (9D) 2 

r:; = 1 + 4D, + 4D, 
(12.4) 

' where D, is the tube diameter, and v; represents the fall velocity in the tube. 
Equation (12.4) is applicable only if D/D, < l 

Other fluid properties such as surface tension, elasticity, vapor pressure, 
specific heats at constant pressure and constant temperature, and gas constant are 
commonly determined by physicists, and the techniques for their measurement 
will not be discussed here. 

12.2. MEASUREMENT OF STATIC PRESSURE 

To get an accurate measurement of static pressure in a flowing fluid, it is impor
tant that the measuring device fit the streamlines perfectly so as to create no 
disturbance to the flow. In a straight reach of conduit the static pressure is or
dinarily measured by attaching to a piezometer a pressure gage or a U-tube 
manometer. The piezometer opening in the side of the conduit should be normal 
to and flush with the surface. Any projection, such as (c) in Fig. 12.3, will result in 
error. Allen and Hopper, 2 for example, found that a projection ofO.lO in (2.5 mm) 
will cause a 16 percent change in the local velocity head. In this case the recorded 
pressure is depressed below the pressure in the undisturbed fluid because the 

1 J. S. McNown, H. M. Lee, M. B. McPherson, and S.M. Engez, Influence of Boundary Proximity 
on the Drag of Spheres, Proc. 7th Intern. Congr. Appl. Mech., 1948. 

2 C. M. Allen and L. J. Hopper, Piezometer Investigation, Trans. ASME, vol. 54, no. 9, May, 1932. 
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Figure 12.4. Piezometer ring. 

disturbance of the streamline pattern increases the velocity, hence decreasing the 
pressure according to the Bernoulli equation. 

When measuring the static pressure in a pipe, it is desirable to have two or 
more openings around the periphery of the section to account for possible imper
fections of the wall. For this purpose a piezometer ring (Fig. 12.4) is used. 

To measure the static pressure in a flow field, the static tube (Fig. 12.5) is used. 
In this device the pressure is transmitted to a gage or manometer through 
piezometric holes that are evenly spaced around the circumference of the tube. 
This device will give good results if it is perfectly aligned with the flow. Actually, 
the mean velocity past the piezometer holes will be slightly larger than that of the 
undisturbed flow field; hence the pressure at the holes will generally be somewhat 
below the pressure of the undisturbed fluid. This error can be minimized by 
making the diameter of the tube as small as possible. If the direction of the flow is 
unknown for two-dimensional flows, a direction-finding tube (Fig. 12.6) may be 

Figure 12.5. Static tube. 

u 
l 

Figure 12.6. Direction-finding tube. 
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used. This device is a cylindrical tube having two piezometer holes located a~ 
shown. Each piezometer is connected to its own measuring device. The tube rna~ 
be rotated until each tube shows the same reading. Then, from symmetry, one can 
determine the direction of flow. It has been found that if the piezometer openings 
are located as shown, the recorded pressures will correspond very closely to those 
of the undisturbed flow. 

' 
12.3. MEASUREMENT OF VELOCITY WITH 
PITOT TUBES 

One means of measuring the local velocity u in a flowing fluid is the pitot tube, 
named after Henri Pitot, whose used a bent glass tube in 1730 to measure veloci
ties in the River Seine. In Sec. 4.14 it is shown that the pressure at the forward 
stagnation point of a stationary body in a flowing fluid is Ps = p0 + 1j2pu 2

, where 
p 0 and u are the pressure and velocity, respectively, in the undisturbed flow 
upstream from the body. If Ps - p0 can be measured, the velocity at a point is 
determined by this relation. The stagnation pressure can be measured by a tube 
facing upstream, such as (b) in Fig. 12.3. For a liquid jet or· open stream with 
parallel streamlines, only this single tube is necessary, since the height h to which 
the liquid rises in the tube above the surrounding free surface is equal to the 
velocity head in the stream approaching the tip of the tube. 

For a closed conduit under pressure it is necessary to measure the static 
pressure also, as shown by tube (a) in Fig. 12.3, and to subtract this from the total 
pitot reading to secure the differential head h. The differential pressure may be 
measured with any suitable manometer arrangement. The formula for the pitot 
tube for incompressible flow may be derived by writing the energy equation 
between points m and n of Fig. 12.3, 

from which 

and finally 

2 

Po+!l-=£! 
y 2g y 

uz = 2g(fJ__s _Po) 
y y 

u = J2g(p~- Po) 
}' }' 

(12.5) 

( 12.6) 

This equation gives the ideal velocity of flow 1 at the point in the stream where the 
pitot tube is located. In actuality the right-hand side of this equation must be 
multiplied by a factor varying from 0.98 to 0.995 to give the true velocity. This is 

1 Equations (12.5) and (1~.6) as well as those presented in Sees. 12.6 through 12.9 apply strictly to 
incompressible fluids. However these equations will all give very good results when applied to com· 
pressible fluids if N., < 0.1. At high values of NM the effects of compressibility must be considered as 
discussed in Sec. 12.10. 
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Figure 12.7. Pitot-static tube. 

FLUID MEASUREMENTS 377 

Total head 

so because the directional velocity fluctuations of turbulence cause a pi tot tube to 
read a value somewhat higher than the temporal mean axial component of 
velocity. 

Where conditions are such that it is impractical to measure static pressure at 
the wall, a combined pitot-static tube, as in Fig. 12.7, may be used. The static 
pressure is measured through two or more holes drilled through an outer tube 
into an annular space. Rarely are the piezometer holes located in precisely the 
correct position to indicate the true value of p0 Hence Eq. (12.6) is modified ch 

follows: 

(12.7) 

where C1 , a coefficient of instrument. is introduced to account for this 
discrepancy. Either English units or SI units may be used with this equation since 
C 1 is dimensionless. However, when a coefficient possesses dimensions [see 
Eq. (12.26), for example]. an equation developed for English units must be 
modified for application to SI units, and vice versa. A particular type of pilot
static tube with a blunt nose, the Prandtl tube, is designed so that C 1 = 1. For 
other pitot-static tubes, coefficient Cr must be determined by calibration in the 
laboratory. 

Another instrument, the pitometer. consists of two tubes, one pointing 
upstream and the other downstream, such as tubes (b) and (d) of Fig. l2J. The 
reading for tube (d) will be considerably below the level of the static head. The 
equation applicable to a pitometer is identical to Eq. (12.7), except that Pol"/ is 
replaced by the pressure head sensed by the downstream tube. 

Most of these devices will gi\ e reasonably accurate results even if the tube is 
as much as ± 15 out of alignment with the direction of flow. .t 

Still greater insensitivity to angularity ma:- be obtained by guiding the flow 
past the pitot tube by means of a shroud, as shown in Fig. 12.8. Such an arrange
ment, called a Kiel prohc. is used extensively in aeronautics. The stagnation
pressure measurement with thi~ device is accurate to within I percent of the 
dynamic pressure for yaw angb up to =54 . A disadvantage is that the static 
pressure must be measured independent]:. 
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' 

Figure 12.8. Kiel probe. 

The direction-finding tube (Fig. 12.6) may be used to determine velocity. The 
procedure is to orient it properly so that both piezometers give the same reading. 
This reading is the static head. Then turn the tube through 39-!o to obtain the 
stagnation pressure head. The difference in the two readings is the velocity head. 
This device has been used extensively in wind tunnels and in the Investigation of 
hydraulic machinery. 

12.4. MEASUREMENT OF VELOCITY BY 
OTHER METHODS 

Other methods for measuring local velocity will be discussed in this section. 

Current Meter and Rotating Anemometer 

These two instruments, which are the same in principle, determine the velocity as 
a function of the speed at which a series of cups or vanes rotate about an axis 
either parallel or normal to the flow. The instrument used in water is called a 
current meter, and when designed for use in air, it is called an anemometer. As the 
force exerted depends upon the density of the fluid as well as upon its velocity, the 
anemometer must be so made as to operate with less friction than the current 
meter. 

If the meter is made with cups which move in a circular path about an axis 
perpendicular to the flow, it always rotates in the same direction and at the same 
rate regardless of the direction of the velocity, whether positive or negative, and it 
even rotates when the velocity is at right angles to its plane of rotation. Thus this 
type is not suitable where there are eddies or other irregularities in the flow. If the 
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meter is constructed of vanes rotating about an axis parallel to the flow, resem
bling a propeller, it will register the component of velocity along its axis, especially if 
it is surrounded by a shielding cylinder. It will rotate in an opposite direction for 
negative flow and is thus a more dependable type of meter. 

Hot-Wire Anemometer 

The hot-wire aneomometer measures the instantaneous velocity at a point. It 
consists of a small sensing element that is placed in the flow field at the point 
where the velocity is to be measured. The sensing element is a short thin wire, 
which is generally of platinum or tungsten, connected to a suitable electronic 
circuit. The operation depends on the fact that the electrical resistance of a wire 
is a function of its temperature; that the temperature, in turn, depends upon the 
heat transfer to the surrounding fluid: and that the rate of heat transfer increases 
with increasing velocity of flow past the wire. 

In one type of hot-wire aneomometer the wire is maintained at a constant 
temperature by a variable voltage which changes the current through the wire. 
Thus, when an increase in velocity tends to cool the wire, a balancing device 
creates an increase in voltage to increase the current through the wire. This tend.; 
to heat up the wire to counteract the cooling and thus maintain it at constant 
temperature. The voltage provides a measure of the velocity of the fluid. The 
hot-wire anemometer is a very sensitive instrument particularly adapted to the 
measurement of turbulent velocity fluctations as in Fig. 3.6. A hot~film anemometer, 
though similar to the hot-wire. is more rugged in that its sensing element consists 
of a metal film laid over a glass rod and provided with a protective coating. 

Float ~easurements 

A crude technique for estimating the average velocity of flow in a river or stream 
is to observe the velocity at which a float will travel down a stream. To get 
good results the reach of stream should be straight and uniform with a minimum 
of surface disturbances. The average velocity of flow V will generally be about 
(0.85 ± 0.05) times the float velocity. 

Photographic ~ethods 

The camera is one of the most valuable tools in a fluid-mechanics research labora
tory. In studying the motion of water, for example, a series of small spheres 
consisting of a mixture of benzene and carbon tetrachloride adjusted to the slrne 
specific gravity as the water can be introduced into the flow through suitable 
nozzles. When illuminated from the direction of the camera, these spheres will 
stand out in a picture. lf successive exposures are taken on the same film. the 
velocities and the accelerations of the particles can be determined. 

In the study of compressible tluid~ many techniques have been devised to 
measure optically the\ ariatiLln' In der.' 1 ty. crs gi\ en by the interferometer, or the rate 
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at which density changes in space, as determined in the shadowgraph and schlieren 
methods. 1 From such measurements of density and density gradient it is possible 
to locate shock waves. Although of grea·t importance, these photographic methods 
are too complex to warrant further description here. 

'12.5. MEASUREMENT OF DISCHARGE 

There are various ways of measuring discharge. In a pipe, for example, the velocity 
may be determined at various radii using a pitot-static tube or a pitot tube in 
combination with a wall piezometer. The cross section of a pipe may then be 
considered as a series of concentric rings, each with a known velocity. The flow 
through these rings is summed up, as in Fig. 12.9, to determine the total flow rate. 

To determine the flow in a river or stream, a similar technique is used. The 
stream is divided into a number of convenient sections, and the average velocity in 
each section is measured. A pitot tube could be used for such measurements, but a 
current meter is more commonly used. It has been found that the average velocity 
occurs at about 0.6 x depth (Sec. 11.7), so the velocity is generally measured at 
that level. Another widely used method is to take the average of the velocities at 
0.2 x depth and 0.8 x depth. This procedure for determining stream discharge is 
shown in Fig. 12.10. A crude estimate of the flow in a river or stream can be 
made by multiplying (0.85 x float velocity) times the area of the average cross 
section in the reach of stream over which the float measurement was made. 

Devices for the direct measurement of discharge can be divided into two 
categories, those which measure by weight or positive displacement a certain 
quantity of fluid and those which employ some aspect of fluid mechanics. An 
example of the first type of device is the household water meter in which a 

1 For an excellent discussion of optical methods used in the study of fluid flow, see Irving Shames, 
"Mechanics of Fluids," appendix A.7, pp. 528-535, McGraw-Hill Book Company, New York, 1962. 
Another good reference is H. Liepmann and A. Roshko, .. Elements of Gas Dynamics," pp. 153-170, 
John Wiley & Sons, Inc., New York, 1957. 

Figure 12.9. Determination of pipe 
discharge 

~~~~~~~~" Q = L A,V; = A 1 V1 + A2 V2 + ···. 
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3 4 5 

Figure 12.10. Determination of discharge in a stream. 

nutating disk oscillates in a chamber. On each oscillation a known quantity of 
water passes through the meter. The second type of flow-measuring device, depen
dent on basic principles of fluid mechanics in combination with empirical data. 
will be discussed in the following sections. 

12.6. ORIFICES, NOZZLES, AND TUBES 

-\mong the devices used for the measurement of discharge are orifices and nozzles. 
Tubes are rarely so used but are included here because their theory is the same 
a.r:d experiments upon tubes provide information as to entrance losses from reser
·, 01rs into pipelines. An or~fice is an opening in the wall of a tank or in a plate 
:-.erma! to the axis of a pipe. the plate being either at the end of the pipe or in some 
::::=r:n=dtate !0-:ation. An orifice is characterized by the fact that the thickness of 
:.::.: co~. a.:: 0~ rl.l:e :s Yery small relati\e to the size of the opening. A standard or~ce 
.5 .JOe .... ,::; 3 :;t:a..rp edge as in Fig. 12.11a or an absolutely square shoulder as in 
F~ :.:.. : !~ so ~! there lS on!~ a line contact with the fluid. Those shown in 
f.:f .:..--::a.:-::-.:< s:.3.:-.-:.i~C: "ecause the flow through them is affected by 

· ·-: ::-..::::: :':-e roughness of the surface, and for (d) the radius of 
-= r:=:-~:;: ·--- - :'~' <hould be calibrated if high accuracy is desired. 

Alk1::.< :..<.:.: -.~~::,·;:_~·-= .:<:r:Fig.l2.12.ifitisusedforliquids;butfora 
• 1 'd;:'c.•r a nozzle may t]r,t cc.>r:\ crge and then diverge again (Sec. 9.i) to 

111-*oc::: S-;x'rsomc flow. In addition to poss1blc use as a flow measuring device a 
: .. b other important uses. such as providing a high-velocity stream for fire 

o-~ :'0r power in a steam turbine or a Pelton water wheel. 
A ~ 1:s a short pipe whose length is not more than two or three diameters. 

·::!- -: ,:...ur distinction between a tube and the thick-walled orifices of 
::.:: . .::-.: ,; .-\ tube may be of uniform diameter, or it may diverge. 
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(a) (b) (c) (d) 

Figure 12.11. Types of orifice. 

A jet is a stream issuing from an orifice, nozzle, or tube. It is not enclosed by 
solid boundary walls but is surrounded by a fluid whose velocity is less than its own. 
The two tluids may be different or they may be of the same kind. A free jet is a 
stream of liquid surrounded by a gas and is therefore directly under the influence 
of gravity. A submerged jet is a stream of any fluid surrounded by a fluid of the 
same type, that is, a gas jet discharging into a gas or a liquid jet discharging into a 
liquid. A submerged jet is buoyed up by the surrounding fluid and is not directly 
under the action of gravity. 

(a) 

(c) 
/ 

cc = 1.0 c,"' 0.98 

(b) 

Figure 12.12. Nozzles. (a) Conical nozzle. (h) Straight-tip nozzle. (c) Fire nozzle. 
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Figure 12.13. Jet contraction. 

Jet Contraction 

Where the streamlines converge in approaching an orifice, as shown in Fig. 12.13, 
they continue to converge beyond the upstream section of the orifice until they 
reach the section xy where they become parallel. Commonly this section is about 
11)Do from the upstream edge of the opening. where Do is the diameter of the 
c>rifice. The section xy is then a section of minimum area and is called the 1 enu 
0 ,,,:rracta. Beyond the vena contracta the streamlines commonly diverge because 
,' :

0 

:orictional effects. 1 In Fig. 12.11 c the minimum section is referred to as a sub
':, ,.,,ed rena contracta as it is surrounded by its own fluid. In Fig. 12.11d there is 

-,• \ ena contracta as the rounded entry to the opening permits the streamlines to 
~ .tdually comerge to the cross-sectional area of the orifice. 

Jet \'elocit~ and Pre'<sure 

. , . , . ·. :- ~~n :-:ej a,- the a\ erage \ elocity at the vena contracta in Fig. 12.11a 
.:c:-.: - .l:-.2 ..:. : :'-.;; C:c''-\ :-.'cream edge of the orifices in Fig. 12.11c and d. The velocity 
.:c: ::-.~ s:~:-x:- :< :'~..!~::.:all; constant across the section except for a small 
L::.::_:.a.: ~ef.:::- ..:.~.::-:-.~ :'-.~ o;.m1de !Fig. 121-+b). In all four ofthejets of Fig. 12.11 * j1iiC55UIL!:: !i ;-:-.:::..:a::: . ..:c:-:'!ar.: acrl''' the diameter of the jet wherever the 
s:::-...lLT".·~ :t.-! ::a.:-1..~:~- ,;,:-.:: :-' =-~=---~~ :.JUst be equal to that in the medium 
~ :·-- ~ - ~ ·- _ : • ~ 0 

·-..:.: -.e.:: .:::-.. -\: ,~ct1ons mn in Fig. 12.11 where the stream-
.- 0 0 =: 0 ° • = ..:~0''-~c: 1onal area of the flow (at right angles to 

.::. : :-;; :-r.m1m u m section and, hence, the average 
--, ··· ·. '"~;: -:, .. __ _ . :~,,than the jet velocities. l 

: o,- ~~g~d 'ertically downward, the accleration due to gravity will cause 
-. "~~-' :o decrease continuously, so that there may be no apparent section 

11':1. '. oO 

0 ·~·:o.~. ~dses. the \ena contracta should be taken as the place where marked 
---mr -= 0

: :~e place where gra\ity has increased the velocity to any appreciable 
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X 

y 

(a) (b) 

Figure 12.14. Pressure and velocit:
variation in jet. (a) At section aob 
of Fig. 12.13. (b) At vena contracta 
(section xy) in Fig. 12.13. 

In Fig. 12.14a the velocity and pressure distributions at section aob of 
Fig. 12.13 are shown. These variations are the result of the curvature of the 
streamlines and centrifugal effects (Sec. 4.16 ). 

Coefficient of Contraction C c 

The ratio of the area of a jet, A (Fig. 12.11 ), to the area of the orifice or other 
opening, A

0
, is called the coefficient of contraction. Thus A = C c Ao. 

Coefficient of Velocity Cv 

The velocity that would be attained in the jet if friction did not exist may be termed 
the ideal velocity v; .1 It is practically the value of uc in Fig. 12.14. Because of friction, 
the actual average velocity Vis less than the ideal velocity, and the ratio V/V; is 
called the coefficient of velocity. Thus V = Cv v;. 

Coefficient of Discharge C a 

The ratio of the actual rate of discharge Q to the ideal rate of discharge Q; (the flow 
that would occur if there were no friction and no contraction) is defined as 
the coefficient of discharge. Thus Q = Cd Q;. By observing that Q = A V and 
Q; = Ao v;, it is seen that cd =CCCV. 

Determining the Coefficients 

The coefficient of contraction can be determined by using outside calipers to 
measure the jet diameter at the vena contracta and then comparing the jet area 
with the orifice area. The contraction coefficient is very sensitive to small changes 
in the edge of the orifice or in the upstream face of the plate. Thus slightly 

1 This is frequently called the theoretical velocity, but the authors feel this is a misuse of the word 
"theoretical." Any correct theory should allow for the fact that friction exists and affects the result. 
Otherwise it is not correct theory but merely an incorrect hypothesis. 
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rounding the edge of the orifice in Fig. 12.11b or roughening the orifice plate will 
increase the contraction coefficient materially. 

The average velocity V of a free jet may be determined by a velocity traverse of 
the jet with a fine pitot tube or it may be obtained by measuring the flow rate and 
dividing by the cross-sectional area of the jet. The velocity may also be computed 
approximately from the coordinates of the trajectory of the jet, as discussed in 
Sec. 4.15. The ideal velocity v; is computed by the Bernoulli theorem. Thus C" for 
an orifice, nozzle, or tube may be computed by dividing V by v;. 

The coefficient of discharge is the one that can most readily be obtained and 
with a high degree of accuracy. It is also the one that is of the most practical value. 
For a liquid the actual Q can be determined by some standard method such as a 
volume or a weight measurement over a known time. For a gas one can note the 
change in pressure and temperature in a container of known volume from which 
the gas may flow. Obviously, if any two of the coefficients are measured, the third 
can be computed from them. Thus, in equation form 

Ideal flow rate 

Actual flow rate 

and 

Q; = A; v; = A
0
j2g(AHj 

Q = AV = CcAo(C"fi{J(Aii)) 

Q 
Cd= Q; =CCCV 

(12.8) 

(12.9) 

(12.10) 

'llo here AH is the total difference in energy head between the upstream section and 
the minimum section of the jet (section A of Fig. 12.11 ). It should be recalled 
Ll-J..l: the total energy head H = :: + p .,. + V 2 2g. If the flow is from a tank, the 
\t:i<-Xlty of approach is negligible and may be neglected. If the discharge is to the 
aro:osphere (free jet), the downstream pressure head is zero, whereas if the jet is 

the downstream pressure head is equal to the depth of submergence 
~ 12T). 

Typical values of the coefficients for orifices, nozzles, and tubes are as in
::1 Figs. 12.11. 1 12.12, and 12.15 respectively. It is apparent from Fig. 12.15 

rounJ 1:-:g the entrance to a tube increases the coefficient of velocity. Any device 
pronJe-5 a uniform diameter for a long enough distance before exit, such as 

o( Fig. 12.15 or the nozzle tip of Fig. 12.12b, will usually create a 
~ this increases the size of the jet from the given area, it also 

• ~ -::-:·"'"e :·nction. 
• ~ ~: -r::: :-. : _- : '-.e orifice, nozzle or tube is standard such as those of Figs. 

L.:.: .i:-.·~ . ~ : ~ :-"' -:ocfficients should be very close to the values indicated 
~-:=-' H "'~. ;:r. the best way to determine the coefficients of a device, 

:'".cs= c•:· unusual shape, is by experiment in the laboratory. Also;lone 
.& :..l:.: "''::-::-:a :e of the contraction by sketching the flow net. If one wishes 

~ o:- - ~. --=~:-: -:-.:--: ~:.:c: when orifices operate under low heads. The coefficient of 
.n· ~~..t. •. -,_·-:-=::,:::_ :.-~ <-.i~~~cged orifices such as those of Fig. 12.lla and 12.11h 

&.· - r :.- -: -:.- -.. :;- : -_,_- :-: _ · -~: •1.62 when operating under heads less than about 
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(a) (b) 

Figure 12.15. Coefficients for tubes. 

(c) 

Cv ""'0.74 
Cc= 1.00 

to estimate the coefficient of discharge of an orifice, nozzle, or tube it is usually 
best to estimate velocity and contraction coefficients separately and calculate the 
discharge coefficient from them. 

Borda Tube 

Tubes (b) and (c) in Fig. 12.15 are shown as flowing full, and because of the 
turbulence, the jets issuing from them will have a "broomy" appearance. Because 
of the contraction of the jet at entrance to these tubes the local velocity in the 
central portion of the stream will be higher than that at exit from the tubes, and 
hence the pressure will be lower. If the pressure is lowered to that of the vapor 
pressure of the liquid, the streamlines will then no longer follow the walls. In such 
a case tube (b) becomes equivalent to orifice (b) in Fig. 12.11, while tube (c) 
behaves as shown in Fig. 12.16. If its length is less than its diameter, the reentrant 

Figure 12.16. Borda tube. 
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tube is called a Borda mouthpiece. Because of the greater curvature of the stream
lines for a reentrant tube, the contraction coefficient is lower than for any other 
type and the velocity coefficient is also lower (Fig. 12.15c ). But if the jet springs clear 
as in Fig. 12.16, the velocity coefficient is as high as for a sharp-edged orifice. 

The Borda mouthpiece is of interest because it is one device for which the 
contraction coefficient can be very simply calculated. For all other orifices and 
tubes there is a reduction of the pressure on the walls adjacent to the opening, but 
the exact pressure values are unknown. But for the reentrant tube, the velocity 
along the wall of the tank is almost zero at all points, and hence the pressure is 
essentially hydrostatic. In the case of a Borda tube the only unbalanced pressure 
is that on an equal area A0 opposite to the tube (Fig. 12.16), and its value is 1•hA

0
• 

The time rate of change of momentum due to the flow out of the tube is 
pQ V = yA V 2 /g, where A is the area of the jet. Equating force to time rate of 
change of momentum, yhA

0 
= r·AV 2/g, and thus, V 2 = ghAofA. Ideally, V 2 = 2gh, 

and thus, ideally, Cc = A/A
0 

= 0.5. The actual values ofthe coefficients for a Borda 
tube are cc = 0.52, ct' = 0.98, and cd = 0.51. 

Head Loss 

The relationship between the head loss and the coefficient of velocity of an 
onfice. nozzle, or tube may be found by comparing the ideal energy equation 
., Jth the actual (or real) energy equation between points 1 and 2 in Fig. 12.12a. 
T~e ideal energy equation is 

n y2 p yz 
_ +I 1 + _1 _ + _2 + ~ 
~1 - Zz 

.. 2g y 2g 

I:: the C35-: o:· a :·:-:-: 1ct. !': = 0 while for the most general case of a submerged 
~: :--- :::: 1_1 F:-\..':11 ~~..,ntn1un: .-1 1 l.1 == A. 2 l ~.hence we can write 

-I-{. 
(12.11) 

- ~ _: · _- :- :·~~: ~ead loss and is expressed as 

l 

2g 

.. 
- .jl. -, 

(12.12) 
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Remembering that V..ctuat = C,, V:cteat, and combining this with the above expres
sions for V:cteal and V..ctual gives 

h = (-
1
- -1) [1- (A2 )

2

~lj· L, 2 c2 A 2g 
v 1 

(12.13) 

This equation is perfectly general; it expresses the head loss between a section 
tupstream of an orifice and the jet (section A in Fig. 12.11) or between sections 1 
and 2 in Fig. 12.12a, etc. If the orifice or nozzle takes off directly from a tank 
where A1 ~ A 2 , then the velocity of approach is negligible and Eq. (12.13) reduces 
to 

h - --1 ____2. 
( 

1 ) v
2 

Lt-2- c~ 2g (12.14} 

For the tubes of Fig. 12.15 with Cv = 0.98, 0.82, and 0.74, Eq. (12.14} yields 
hL = 0.04 V~ /2g, 0.5 V~ /2g, and 0.8 V~ /2g respectively. These correspond to the 
values for minor loss at entrance shown in Fig. 8.14. 

Submerged Jet 

For the case of a submerged jet, as shown in Fig. 12.17, the ideal energy 
equation is written between 1 and 2, realizing that the pressure head on the jet 
at 2 is equal to h3 . Thus 

or 

v2 
hl = h3+. I 

2g 

v; = j2g(ht - h3) = ~2g(Aii} 

where v; is the icleal velocity at the vena contracta of the submerged jet. Hence 
Q = CcCvAoj2g(!1H) as in Eq. (12.9). 

For a submerged orifice, nozzle, or tube the coefficients are practically the 
same as for a free jet, except that, for heads less than 10 ft and for very small 
openings, the discharge coefficient may be slightly less. It is of interest to observe 

3 

h1 

l -- h 2 ) 3 

...i,J_::::::~~ ----~-L 
-.--T~;:-... 
Ao A2 i~ Diffusing jet 

-/ 
Figure 12.17. Submerged jet. 
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that, if the energy equation is written between 1 and 3, the result is 
hL

1
_

3 
= h1 - h3 = AH. Actually. the head loss in this case is that of Eq. (12.14) 

plus that of a submerged discharge, as described in Sec. 8.17. Hence 

hL 1 _ 3 = (j~- 1) ~~ + ~: 
where V2 = Cv Y;, the velocity at the vena contracta. 

Illustrative Example 12.1. A 2-m circular orifice (not standard) at the end of a 3-in-diameter pipe 
discharges into the atmosphere a measured flow of 0.60 cfs of water when the pressure in the pipe is 
10.0 psi. The jet velocity is determined by a pitot tube to be 39.2 fps. Find the values of the coeffi
cients C,, C,, Ca. Find also the head loss from inlet to throat. 

Define the inlet as section I and the throat as section 2. 

JJ_l = w( 1~4 ) = n.1 ft 
i' 62.4 

Q 0.60 
V1 = - = - -- = 12.23 fps 

A 1 0.0491 

vz 
I = 2.32 ft 

2g 

Express the ideal energy equation from I to 2 to determine the ideal velocity at 2 

' 

P1 Vi - + --
1 2g 2g 

vz 
23.1+2.3= 2 

2g 

I 
c = 

! ~; 

( V2 );d,1 = 40.4 fps 

39.2 
= 0.97 

40.4 

Q 0.60 , 
4. = = = 0.0153 ft" 

- I 39.2 

:~ 2.-

0.0153 
- -- = 0.70 

0.0218 

= l :-+ ft 

-.-....____ 

lllustrati'e Example 12.1 

l 
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As a check, determine the actual velocity at 2 by expressing the real energy equation from I to 2. 

Jhich checks. 

P! v2 v2 -- + 1- h - .f 
y 2y [., 2 - 2g 

v2 
23.1 + 2.3 - 1.24 = -

2 

2g 

12.7. VENTURI TUBE 

( v2 laotual = 39.2 fps 

The converging tube is an efficient device for converting pressure head to velocity 
head, while the diverging tube converts velocity head to pressure head. The two 
may be combined to form a venturi tube, named after Venturi, an Italian, who 
investigated its principle about 1791. It was applied to the measurement of water 
by Clemens Herschel in 1886. As shown in Fig. 12.18, it consists of a tube with a 
constricted throat which produces an increased velocity accompanied by a reduc
tion in pressure, followed by a gradually diverging portion in which the velocity is 
transformed back into pressure with slight friction loss. As there is a definite 
relation between the pressure differential and the rate of flow, the tube may be 
made to serve as a metering device. The venturi meter is used for measuring the 
rate of flow of both compressible and incompressible fluids. 1 In this section we 
shall consider the application of the venturi meter to incompressible fluids. In 
Sec. 12.10 the application of the venturi meter to compressible fluids will be 
discussed. 

Writing the Bernoulli equation between sections 1 and 2 of Fig. 12.18, we have, 
for the ideal case, 

Pt Vf Pz V~ - + Zt + - =- + Zz + 
( 2g ( 2g 

Substituting the continuity equation, V1 = (A 2 /Ar}V2 , we get for the ideal throat 
velocity 

( Vz )ideal = J 1 _ (};I :4
1 

) 2 2g r ( £
1
; + z 1) - ( ~~ + z z) 1 

As there is some friction loss between (1) and (2), the true velocity is slightly less 
than the value given by this expression. Hence we may introduce a discharge 
coefficient C, so that the flow is given by 

(12.15) 

1 As mentioned previously, if N'~ < 0.1. a compressible fluid can be dealt with as if it were incom
pressible without introducing much error. 
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Values of D 2 "V2 for water at 72°F (diameter in inches X velocity in fps) 

1.00 
025 06251.25 25 625 125 25 62.5 125 250 625 

I 

~ I 200" X 100" 

8" X 4" -· I 
i ~ ~"X~" 
t-~ 

0.95 #"---+- ---·- --V/, . 
/Y 1-+--~ 

II I . 

II I 
I 

i' Q ~ CA 2 
2gh 

--- 1 - (D2/Dt )4 

I I I r-- D 1 ~ inlet diameter 

1 
------+----

D2 ~ throat diameter 

I A 2 ~ throat area 
I I h ~ (z1 + t_t) - (z 2 + '!.;)-) 
1 l I I --

0.90 

i 
' I 
I _1___.] 

0.85 
103 2 5 5 5 5 

EL 

h 

D2 V2P2 
Reynolds number at throatNR~---

112 

----------------------~~----~hL 
y2 

2i 

• 

t ·ture 12.18. \"cnturt tuhc ";th conical entrance and llow coetlicients for D2 D 1 = 0.5. 
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In the preceding ~quation it should be noted by reference to Eq. (2.12) that if a 
differential manometer is used with piezometric connections at sections ( 1) and 
(2), . 

(p; +z 1)- (P¢+z2 ) =MR(:~-1) (12.16) 

wh~re MR is the manometer reading, and sm and sf are the specific gravities of the 
manometer and flowing fluids, respectively. 

The venturi tube provides an accurate means for measuring flow in pipelines. 
With a suitable recording device the flow rate can be integrated so as to give the 
total quantity of flow. Aside from the installation cost, the only disadvantage of 
the venturi meter is that it introduces a permanent frictional resistance in the 
pipeline. This loss is practically all in the diverging part from (2) to (3) (Fig. 4.9) 
and is ordinarily from 0.1h to 0.2h, where his the static-head differential between 
the upstream section and the throat, as indicated in Fig. 12.18. 

Values of D 2 / D 1 may vary from i to ~, but a common ratio islA small ratio 
gives increased accuracy of the gage reading, but is accompanied by a higher 
friction loss and may produce an undesirably low pressure at the throat, sufficient 
in some cases to cause liberation of dissolved air or even vaporization ofthe liquid 
at this point. This phenomenon, called cavitation, has been described in Sec. 4.8. 
The angles of convergence and divergence indicated in Fig. 12.18 are considered 
optimum, though somewhat larger angles are sometimes used to reduce the length 
and cost of the tube. 

For accuracy in use, the venturi meter should be preceded by a straight pipe 
whose length is at least 5 to 10 pipe diameters. The approach section becomes 
more important as the diameter ratio increases, and the required length of straight 
pipe depends on the conditions preceding it. Thus the vortex formed from two 
short-radius elbows in planes at right angles, for example, is not eliminated within 
30 pipe diameters. Such a condition can be alleviated by the installation of straight
ening vanes preceding the meter. 1 The pressure differential should be obtained 
from piezometer rings (Fig. 12.4) surrounding the pipe, with a number of suitable 
openings in the two sections. In fact, these openings are sometimes replaced 
by very narrow slots extending most of the way around the circumference. 

Unless specific information is available for a given venturi tube, the value of C 
may be assumed to be about 0.99 for large tubes and about 0.97 or 0.98 for small 
ones, provided the flow is such as to give reasonably high Reynolds numbers. A 
roughening of the surface of the converging section from age or scale deposit will 
reduce the coefficient slightly. Venturi tubes in service for many years have shown 
a decrease in C of the order of 1 to 2 percent. 2 Dimensional analysis of a venturi 

1 W. S. Pardoe, The Effect of Installation on the Coefficients of Venturi Meters, Trans. ASME, 
vol. 65, p. 337, 1945. 

2 C. M. Allen and L. J. Hooper, Venturi and Weir Measurements, Mech. Eng., June, 1935, p. 369. 
W. S. Pardoe, Mech. Eng., January, 1936, p. 60. 
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tube indicates that the coefficient C should be a function of Reynolds number and 
of the geometric parameters D 1 and D 2 . Values of venturi-tube coefficients are 
shown in Fig. 12.18. This diagram is for a diameter ratio of D2 /D 1 = 0.5, but it is 
reasonably valid for smaller ratios also. For best results a venturi meter should be 
calibrated by conducting a series of tests in which the flow rate is measured over a 
wide range of Reynolds numbers. 

Occasionally, the precise calibration of a venturi tube has given a value of C 
greater than 1. Such an abnormal result is sometimes due to improper piezometer 
openings. But another explanation is that the a's at sections 1 and 2 are such that 
this is so. 

12.8. FLOW NOZZLE 

If the diverging discharge cone of a venturi tube is omitted, the result is a flow 
nozzle of the type shown in Fig. 12.19. This is simpler than the venturi tube and 
can be installed between the flanges of a pipeline. It will answer the same purpose. 
though at the expense of an increased friction loss in the pipe. Although the 
venturi-meter equation [Eq. ( 12.15 )] can be employed for the flow nozzle. 1t 1' more 
convenient and customary to include the correction for velocity of approach with 
the coefficient of discharge, so that 

_ ; r(P1 -) (P2 -)1 Q - K A\ 2g [ ·,·- + - 1 - ~· + - 2 j (12.17) 

where K is called the flow coefficient and A 2 is the area of the nozzle throat. 
Comparison with Eq. ( 12.15) establishes the relation 

L 
~==~==aD:~====~ - ~ -. 

D<
-- _ _! 

(12.18) 

l 

Figure 12.19. Flow nozzle. 
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Values of (D{V,) for water at 72°F (diameter in inches x velocity in Ips) 
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Figure 12.21. Flow coefficients for !SA noale. (Adapted from ASME Flow Measurement. 1959.) 
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Although there are many designs of flow nozzles, the ISA (International 
Standards Association) nozzle (Fig. 12.20) has become an accepted standard form 
in many countries. Values of K for \arious diameter ratios of the ISA nozzle are 
shown in Fig. 12.21 as a function of Reynolds number. Note that in this case the 
Reynolds number is computed for the approach pipe rather than for the nozzle 
throat, which is a convenience since ;V R in the pipe is frequently needed for other 
computations also. 

As shown in Fig. 12.2 L many of the values of K are greater than unity, which 
is a result of including the correction for approach velocity with the conventional 
coefficient of discharge. There have been many attempts to design a nozzle for 
which the velocity-of-approach correction would just cancel the discharge 
coefficient, leaving a value of the flow coefficient equal to unity. Detailed informa
tion on these so-called long-radius nozzles may be found in the ASME publica
tions on fluid meters and flow measurement. 1 

As in the case of the venturi meter, the flow nozzle should be preceded by at 
least 10 diameters of straight pipe for accurate measurement. Two alternative 
locations for the pressure taps are shown in Fig. 12.20. 

12.9. ORIFICE METER 

An orifice in a pipeline, as in Fig. 12.22, may be used as a meter in the same 
manner as the venturi tube or the flow nozzle. It may also be placed on the end of 
the pipe so as to discharge a free jet. The flow rate through an orifice meter is 

1 Flow Measurement by Means of Standardized Nozzles and Orifice Plates, pt. 5, chap. 4. in 
ASME Power Test Codes on /nstrumellts and Apparatll.\. 1959. 

Figure 12.22. Thin-plate orifice in a p1pc (\c,dc JJ,tc>rtcd. the region of eddying turbulence will 

usually extend 4 toR x D1 downstrcan• JcpcJ,J!!1g upon the Reynolds number.) 
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commonly expressed as 

(12.19) 

This is in the same form as Eq. ( 12.17) except that A2 is replaced by A
0

, the 
cross-sectional area oft he orifice opening. Typical values of K for a standard orifice 
meter are given in Fig. 12.23. The variation of K with Reynolds number is quite 

0 6:0c · 
0.60 

I a.~ 
o.Bol__l __ L.....J._j__...L_L......l~:::::t==±=l:::::=±==±=::io.t::3:::o=±=:=::l 

107 2 5 103 2 5 104 2 5 105 2 5 106 2 5 107 

Dl v; P1 
Reynolds number of approach, N R = --

.ul 

Inside diam 
of pipe D 1 

I 
1_ __ ~ 

Q=KAo/fiii 
h ~ l1(z +ph) 

Figure 12.23. VOl orifice meter and flow coefficients for flange taps. (Adapted from N AC A Tech. 
Mem. 952.) 
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j 1tTerent than the trend of the flow coefficients for venturi tubes and flow nozzles. 
\ t high Reynolds numbers K is essentially constant, but as the Reynolds number 
, lowered, an increase in the value of K for the o0rifice is noted with maximum 
.!lues of K occurring at Reynolds numbers between 200 and 600, depending on 
1c D of D 1 ratio of the orifice. The lowering of the Reynolds number increases 
'cous action which causes a decrease in C" and an increase in Cc. The latter 

::->parently predominates over the former until Cc reaches a maximum value of 
:"Out 1.0. With a further decrease in Reynolds number K then becomes smaller 
-:cause C,. continues to decrease. 

The difference between an orifice meter and a venturi tube or flow nozzle is 
.1 t for both of the latter there is no contraction, so that A 2 is also the area of the 
·clat and is fixed, while for the orifice, A 2 is the area of the jet and is a variable 
-J i;, less than A 0 , the area of the orifice. For the venturi tube or flow nozzle the 
<harge coefficient is practically a velocity coefficient, while for the orifice it is 
_.ch more affected by variations in Cc than it is by C, .. 

The pressure differential may be measured between a point about one pipe 
: ·~1cter upstream of the orifice and the vena contracta, approximately one-half 
_ }'lpe diameter downstream. The distance to the vena contracta is not a 

,tant. but decreases as D0 /D 1 increases. The differential can also be measured 
·' ccn the two corners on each side of the orifice plate. These flange taps have 

_ .:J \ antage that the orifice meter is self-contained; the plate may be slipped into 
- :'cline without the necessity of making piezometer connections in the pipe. 

The orifice has merit as a measuring device for it may be installed in a 
- _::nc with a minimum of trouble and expense. Its principal disadvantage is the 

cr frictional resistance offered by it as compared with the venturi tube or 
:wzzle. 1 

lllu~rrari•r Examplt 12.2. \ ~-rn 1:., '1. tlo" nozzle'' ubtalkd in a ~-in pipe carrying water at 7YF 
- ,·,·c-Jrr :-!JJ~om~tc• ,hL'"' a d1ffercntial of 2m. find the flow. 

-- ~·-.JT".,:~rrL'f tl)'lc of ,oJution. First assume a reasonable value of K. From Fig. !2.2!, 
_ •••• ; 1 cf: ,,:·:he cur\ c. K = 1.06. Then from Eq. (12.17). 

··= =1il6-ft 

Q = ~I~ .r ,-'I ." • " 

. ".'·.c.:r mformation on orifice,. sec .. Fluid \leter, Their Theory and Application," 6th ed., 

.. · "'""'et' of Mechanical Engineer,. \;ew York, 1971. 
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Then D'; ~ l = :1 X 1.54 = 4.62 

From Fig. 12.2 I. K = 1.04 and 

1.04 
Q = x 0.0757 = 0.0743 cfs 

1.06 

No further correction is necessary. 

12.10. FLOW MEASUREMENT OF 
COMPRESSIBLE FLUIDS 

Strictly speaking, most of the equations that have been presented in the preceding 
part of this chapter apply only to incompressible fluids, but practically, they may 
be used for all liquids and even for gases and vapors where the pressure differential 
is small relative to the total pressure. As this is the condition usually encountered 
in the metering of all fluids, even compressible ones, the preceding treatment has 
extensive application. However, there are conditions in metering fluids where 
compressibility must be considered. 

As in the case of incompressible fluids, equations may be derived for ideal 
frictionless flow and then a coefficient introduced to obtain a cor.rect result. The 
ideal condition that will be imposed on the compressible fluid is that the flow be 
isentropic, i.e., frictionless with no transfer of heat. The latter is practically true for 
metering devices, as the time for the fluid to pass through is so short that very little 
heat transfer can take place. An expression applicable to pitot tubes for subsonic 
flow of compressible fluids can be derived by introducing the conditions at the 
upstream tip of the tube (i.e., V2 = 0 and p2 = p,) in Eq. (9.11) and substituting the 
first expression for R from Eq. (9.4). Doing so gives 

-cT1 -- -1 -cT 1-Vf _ . !(Pz)(k-IJ!k ~ _ ~ (p' )(k-IJ;kJ 
2 P p, P 2 Pz (12.20) 

The static pressure p 1 may be obtained from the side openings of the pitot tube or 
from a regular piezometer, and the stagnation pressure p

5
( = p 2 ) is indicated by the 

pitot tube itself. A coefficient must be applied if the side openings do not measure 
the true static pressure. Equation ( 12.20) does not apply to supersonic conditions 
because a shock wave would form upstream of the stagnation point. In such a case 
a special analysis considering the effect of the shock wave is required. 

To develop an expression applicable to compressible flow through venturi 
ruin's we take Eq. (9.16) and combine it with continuity (G = ';' 1 A 1 V, = ~· 2 A 2 V2 ) 

to get 

(12.21) 

This equation can be transformed into an equation for the actual weight rate 
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•1\ by introducing the discharge coefficient C (Fig. 12.18) and an expansion 
_ '~ r.' The resulting equation is 

I Pt - Pz G == CY.4 2 J 2g{' 1 -------
\) I - (Dz/Dt}4 

(12.22) 

_ ·;: C has the same value as for an incompressible fluid at the same Reynolds 
"'cr and ;· 1 may be replaced by p1 RT1 if desired. Values of Y fork= 1.4 are 

· :c:J in Fig. 12.24. 
I :1 Fig. 12.24 it may be observed that for the venturi meter no values for Yare 
·.r: for p2 /p 1 ratios less than 0.528. This is so beacuse, for air and other gases 
· g an adiabatic constant k = 1.4. the p2 /p 1 ratio will always be greater than 

~ • lf the flow is subsonic, as was pointed out in Sec. 9.7. 

•c a \Cnturi or noule throat where C, = L 

; 0 

r= j[k(k-l)](r,rtl''[l-(p,p,)l'-'1'] 1-(D,~D,)' 

\j I-- (p, r,) I- (D 2 !D 1)'(p2 p1 )
2

' 

• ..:_.~:_r : .... Je :,. ~J.zzl~ 
T:rca: d,a....-. -D~ 

k=-~4 

0.9 0.8 

Square-edged onf1ces 

D1am.=D0 -l 
k=!A 

-- ' \ 

[I 
\ 

~0 
\05 

. . 0.6 

-~ 

c _r, 12.2-t E.\pansion factor' 
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Equation ( 12.22) is directly applicable to the flow of compressible fluids 
through venturi tubes where Cc = 1.0, provided the flow is subsonic. The equa
tion can also be used for flow nozzles and orifice meters, though for flow nozzles C 
should be replaced by Ky T ~ (n;:i5~)'~ [from Eq. (12.18)], so that Fig. 12.21 can 
be used directly. For orifice meters the C of Eq. ( 12.22) should be replaced by 
KJl ~ (D

0
/D 1 )

4
, D2 should be replaced by Do and A 2 should be replaced by A0 

where Do is the diameter of the orifice opening and A0 its area. 
For compressible fluids the Cc of an orifice meter depends on the p2 /p 1 ratio; 

hence Y varies in a different manner than in the case of a venturi. Values of Y for 
orifice meters are shown in Fig. 12.24. In the case of an orifice meter the maximum 
jet velocity is the acoustic velocity c, but this does not impose a limit on the rate of 
discharge because the jet area continues to increase with decreasing values of 
p2 /p 1 . For this reason the values of Y for the orifice are extended in Fig. 12.24 to 
lower values of p2 /p 1 . 

The general case of flow measurement under supersonic conditions will not be 
discussed in this text. If supersonic flow occurs in a converging or converging
diverging nozzle attached to the end of a pipe or to a tank Equations (9.23), 
(9.24), and (9.25) may be employed to compute ideal flow rates where the velocity 
of approach is negligible. These can be transformed into actual flow rates by 
introducing a proper flow coefficient. 

Illustrative Example 12.3. Determine the weight flow rate when air at 20 'C and 700 k N1m 2
, abs 

flows through a venturi meter if the pressure at the throat of the meter is 400 k N/rn 2
, abs. The diameters 

at inlet and throat are 25 and 12.5 ern respectively. Assume that C = 0.985. 
Substitute the given data into Eq. ( 12.22), obtaining the value of Y from Fig. 12.24. 
For p

2
!p

1 
= ~gg = 0.57 and D2 D1 = 0.50, Y ~ 0.72. Thus, 

rr(O.l25) 2 I 700- 400 
G=0.985x0.72x - 2(9.81)1• 1 4 4 \ I- (0.5) 

We find ;· 1 from pr = RT or;·= py;RT, 

(700 k Nirn 2 )(9.81 rn/s 2
) 1 ·• = ------~- - - = 0.0815 k Nlrn 11 

[287 rn 2i(s 2 )(K)](273 + 20) K 

Substituting this value for ·; 1 into the first expression gives 

G = 425 N/s 

If the relation between C and (N R) 2 for this meter is known, the value of(N R) 2 for the computed value 
ofG can be determincd.lfthe assumed value ofC does not correspond with this value of(N R) 2, a slight 
adjustment in the value of C can be made to give a more accurate answer. 

12.11 RECTANGULAR WEIRS 

The weir has long been a standard device for the measurement of water in an open 
channel. In its simplest form the water flows over the top of a plate as shown in 
Fig. 12.25. The rate of flow is determined by measuring the height H (head), 
relative to the crest, at a distance upstream from the crest at least four times the 
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Figure 12.25. Flow over sharp-crested weir. (a) Side view. (b) Looking upstream. 

maximum head that is to be employed. The amount of drawdown at the crest 1s 
typically about 0.15H. 

The upstream face of the weir plate should be smooth, and the plate should be 
~trictly vertical. The crest should have a sharp, square upstream edge, and a bevel 
on the downstream side. so that the nappe springs clear, making a line contact for 
all but the very lowest heads. If it docs not spring clear, the flow cannot be 
considered as true weir flow and the experimentally determined coefficients do 
:wt apply. The velocity at any point in the nappe is related to the energy line as 
, hown in Fig. 12.25. The approach channel should be long enough so that normal 
:locity distribution exists and the surface should be as free of waves as possible. 

Suppressed Rectangular Weir 

T'·1, t\ re of weir is as wide as the channeL and the width of the nappe is the same 
• • ..:·

1
· ,, .. the crc't -\-;there arc no contractions of the stream at the sides. it 

·- ~ -~ .·..:. ···.:,·.·:·,.He ,:,rrr'-''''-'d. It is essential that the sides of the 
~ ~ ..1:-.:-.:: . ..~~-:~c..1~. :--c ,:-:·_,•,•:!-: and regular. It is common to extend the sides of the 
• ~,,:-,r.el do.,.,n.;rr;;-arr. "c:.,•:-:J the crest so that the nappe is confined laterally. 
T'lc tlov. mg \\a ter tends :,• c:~: ram air from this enclosed space under the nappe, 
r·.J unless thb space is adequate!~ >entilated. there will be a partial vacuum and 
xrhaps all the air may eventually be swept out. The water will then cling to the 
..:,,.,., nstream face of the plate. and the discharge will be greater for a given head 
· ·an when the space is vented. Therefore venting of a suppressed weir is necessary 

·f1e standard formulas are to be applied. 
To derive the flow equation for a rectangular weir having a crest of length L, 

nsider an elementary area dA = L dh in the plane of the crest, as shown in 
.g. 12.25. This elementary area is in effect an horizontal slot of length Land 
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height dh. Neglecting velocity of approach, the ideal velocity of flow through this 
area will be equal to fi{ih. The apparent flow through this area is 

dQ = L dhJ2gh = Lj29 h112 dh 

and this is to be integrated over the whole area, i.e., from h = 0 to h = H. 

Performing this integration, we obtain an ideal Qi which is 

H 

Qi = 'vlg L r h';2 dh = jJ2g LH3!2 
0 0 

The actual flow over the weir will be less than the ideal flow because the effective 
flow area is considerably smaller than L x H due to drawdown from the top and 
contraction of the nappe from the crest below. Introducing a coefficient of 
discharge Cd to account for this, 

Q = Cdjfig LH 3 2 (12.23) 

Dimensional analysis of weir flow leads to some interesting conclusions that 
provide a basis for an understanding of the factors that influence the coefficient of 
discharge. The physical variables that influence the flow Q over the weir of 
Fig. 12.25 include L, H, P, g, Jl, (J, and p. Using the Buckingham n theorem 
(Sec. 7.7). and without going into the details, the following results: 

_ ( p) r I 3!2 Q- cp Nw, NR, H LV gH 

Thus, comparing this expression with Eq. (12.23), we conclude that CJ depends on 
N 11 • NR. and P/H. It has been found that P/H is the most important of these 
(Probs. 12.67 and 12.75). The Weber number Nw, which accounts for surface
tension effects, is important only at low heads. In the flow of water over weirs the 
Reynolds number is generally quite high, so viscous effects are generally 
insignificant. If one were to calibrate a weir for the flow of oil, however, N R would 
undoubtedly affect Cd substantially. Typical values of Cd for sharp-crested weirs 
with water flowing range from about 0.62 for H;P = 0.10 to about 0.75 for 
H/P = 2.0 

Small-scale but precise experiments covering a wide range of conditions led 
Rehbock 1 of the Karlsruhe Hydraulic Laboratory in Germany to the following 
expression for Cd in Eq. (12.23). 

1 H 
cd = o.605 + 

305
Ji + o.o8 fi (12.24) 

This equation was obtained by fitting a curve to the plotted values of Cd for a great 
many experiments and is purely empirical. Capillarity is accounted for by the 
second term, while velocity of approach (assumed to be uniform) is responsible for 
the last term. Rehbock's formula has been found to be accurate within 0.5 percent 
for values of P from 0.33 to 3.3 ft and for values of H from 0.08 to 2.0 ft with 
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the ratio HIP not greater than 1.0. It is even valid for greater ratios than 1.0 if 
the bottom of the discharge channel is lower than that of the approach channel so 
that backwater does not affect the head. 

It is convenient to express Eq. (12.23) as 

where C w, the weir coefficient, 1 replaces Cdj-J2g. 
Using a value of 0.62 for C d in Eq. ( 12.23 ), we can write 

~ J3.33LH 3 2 

Q ~ \ 1.84LH 3 2 

in English units 

in SI units 

( 12.25) 

(12.26) 

These equations give good results if H/P < 0.4, which is well within the usual 
operating range. If the velocity of approach V0 is appreciable, a correction must be 
applied to the preceding equations either by changing the form of the equation or. 
more commonly, by changing the value of the coefficient. 

Rectangular Weir with End Contractions 

When the length L of the crest of a rectangular weir is less than the width of the 
channel, there will be a lateral contraction of the nappe so that its width is less 
than L. Experiments by Francis 2 indicated that under the conditions depicted in 
Fig. 12.26 the effect of each side contraction is to reduce the effective width of the 
nappe by 0.1H. Hence for such a situation the flow rate may be computed by 
employing any of the three preceding equations and substituting (L- O.lnH) for 
L, where n is the number of end contractions, normally 2 but sometimes 1. 

1 Since Cw is not dimensionless, its value in English units is different from that in SI units as 
--,1,,·,llcd 1n ELJ (1~.26). 

·· B f r.!n,·I, --Lowell H\draulic Experiments." 5th ed., D. Van Nostrand Company. Inc .. 

' 

~zH-~~-L >3H--- -2H---1 

Figure 12.26. Limiting proportions of 
standard contracted weirs. 



404 FLUID MECHANICS WITH ENGINEERING APPLICATIONS 

Cipolletti Weir 

In order to avoid correcting for end contractions a Cipolletti weir is often used. It 
has a trapezoidal shape with four vertical on one horizontal side slopes. The 
additional area is supposed to add enough to the effective width of the stream to 
offset the lateral contraction. 

Illustrative Example 12.4. Flow is occurring in a rectangular channel at a velocity of 3 fps and 
depth of 1.0 ft. Neglecting the effect ofvelocity of approach and employing Eq. (12.26), determine the 
height of sharp-crested suppressed weir that must be installed to raise the water depth upstream of the 
weir to 4 ft. 

L = length of weir crest = width of channel 

Q = AV = LyV = L(l)(3) = 3.33LH 3 2 

3'2 3.0 
H · = = 0.90 H=0.93ft 

3.33 

P = height of weir = 4.00 - 0.93 = 3.07 ft 

12.12. TRIANGULAR, OR V-NOTCH, WEIR 

For relatively small flows the rectangular weir must be very narrow and thus of 
limited maximum capacity, or else the value of H will be so small that the nappe 
will not spring clear but will cling to the plate. For such a case the triangular weir 
has the advantage that it can function for a very small flow and also measure 
reasonably large flows as well. The vertex angle is usually between 10 and 90o but 
rarely larger. 

In Fig. 12.27 is a triangular weir with a vertex angle 8. The rate of discharge 
through an elementary area dA is dQ = Cdj2{jh dA. Now dA = 2x dh, and 
x (H - h)= tan 8/2. Substituting in the foregoing, the following result is obtained 
for the entire notch: 

e H 
Q = Cd2ftg tan - j' (H - h)h 112 dh 

2 0 

Figure 12.27. Triangular weir. 
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Integratmg between limits and reducmg, the fundamenta l equation for all triangu
lar weirs is obtained: 

s · e 
Q = C ffg tan - H 5

'
2 

( 12.27) "15 .... - 2 

For a given angle 0 and assuming C11 is constant, this may be reduced to 

Q = KH 5 '
2 (12.28) 

The value of the constant K in English units will be different from that in SI units. 
In Fig. 12.28 are presented experimental values for Cd for water flowing over 

V-notch weirs wtth central angles \arying from 10 to 90 . The solid lines represent 
tests by Lenz;1 the dotted lines are from data taken at Cornell University ;2 the 
dashed line represents a 90 ' weir with a fine sharp edge, reported by Barr.3 The 
nse in c., at heads less than 0.5 ft is due to incomplete contraction. At lower heads 
the frictional effects reduce the coefficient. At very low heads, when the nappe 
clings to the wetr plate, the phenomenon can no longer be classed as weir flow and 
Eqs. ( 12.27) and ( 12.28) are inapplicable. 

1 ArnoT. Len2, V•scosity and Surface Tension Effects on V-notch Weir Coefficienh, Trans. ASCE, 
vol. 108, pp. 759-802, 1943. 

1 Eng N~ws, vol 73, p. 636, 1915 
• Jame~ Barr, Experiments upon the Flow of Water over Triangular Notches, Enginuring, 

Apr. 8-15, 1910. 

H.tt ~ad ft 

Fi&ure 12.28. CoeffiCients for triangular ~eirs 
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E l ~ 

W¥1#~$$#/~J ,;,~?."#YJ~#~ 
Figure 12.29. Broad-crested wear. 

12.13. BROAD-CRESTED WEIR 

Another type of weir is the broad-crested weir (Fig. 12.29), which is usually built 
of concrete. One of its advantages is that it is rugged and can stand up well under 
field conditions. 

The broad-crested we1r, as mentioned in Illustrative Example I 1.3, is a 
critical-depth meter; that is, if the weir IS high enough, critical depth occurs on the 
crest of the weir. In Eq. ( 11 15} it was shown that, for a rectangular channel, 
E = ·h·,. while Eq. ( 1l.l8) stated that y, = (q2fg)1 3

• Employing these relations, we 
can write for the flow over a broad-crested weir: 

(12.29) 

Let us now substitute this expression into Eq. (12.23}, which is applicable to 
broad-ere ted weirs as well as sharp-crested ones, since both have rectangular now 
cross sections. This yields 

(12.30) 

For very high weirs (that is, P/Il large) the velocity of approach becomes small, so 
that H-+ E, and thus C4 -+ 1/ J3 = 0.577. Hence it is seen that C4 depends on the 
P/H ratio. When P/H is small, C4 is large, and vice versa. 

12.14. SLUICE GATE 

The slUJce gate shown in Fig. 12.30 is a device used to control the passage of water 
in an open channel. When properly calibrated, it may also serve as a means of flow 
measurement. As the lower edge of the gate opening is flush with the floor of the 
channel, contraction of the bottom side of the issuing stream is entirely sup
pressed. S1de contractions will of course depend on the extent to which the open
ing spans the width of the channel. The complete contraction on the top s1de, 
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Figure 12.30. f"low thrt)Ugh \ IUICC gate. (11) f-ree now [yl = C,a] (b) Submerged now. 

.. 
" 

.. 

however, because of the larger velocity components parallel to the face of the gate, 
will ofTset the suppressed bottom contraction. resulting in a coefficient of contrac
tion nearly the same as for a slot with contractions at top and bottom. 

Flow through a sluice gate differs fundamentally from flow through a slot in 
that thejet is not free but guided by a horv.ontal floor Consequent!), the final jet 
pressure IS not atmosphenc, but distributed hydrostatically in the vertical section. 
Writing the energy equation with respect to the stream bed as datum from point 
I to point 2 in the free-flo~ case (F1g. 12 30a) and neglectmg head loss. 

~ti v~ 
"> + y, =., + Y2 
-Y -g 

from which, introducing continuit}. 

I 1 ( ) 

1 _(A 'A )2 " 2g Y1 - Y2 
V 2 I 

( 12.31) 

The actual A ow rate Q - C4 Q; = C( C,.(A V2 .), where A = aB is the area of the gate 
opening. 

Absorbing the effects of flow contraction, friction, velocity of approach, and 
the downstream depth v2 into an experimental flow coefficient, a simple discharge 
equation for flow under a sluice gate results: 

Q = KsAftiY, (12.32) 

where K. 1s defined as the .\/uiet coe.Uiciem 1 

Values of K 5 arc usually between 0.55 and 0.60 for free How, but are materially 
reduced when the flow conditions downstream are such as to produce submerged 
flow. as shown in F1g. 12 JOb 

1 Valu.: of dc.charge codlic.ent for Jut~ and other l)pe~ 01 gale, ma) be found m Uunter Rouse 
(ed.). ·· Engmeenng ll)drauhcs." pp 5.36 54' John\\ ale) & Son' Inc .. !"e~ Yor~. 1950 



408 FLUID MllCHANJCS WITH ENGINEERING APPLICATIONS 

12.15. MEASUREMENT OF LIQUID SURF ACE ELEVATION 

To determine the head H on a weir the elevation difference between the crest of 
the weir and the liquid surface must be measured. In the field the elevatiOn of the 
water surface is often determined through use of a stilling well connected by a pipe 
to the main water body. A float 10 the well is used to actuate a clod.-driven 
water-level recorder so that a continuous record of the water-surface elevation is 
obtained. In the laboratory a hook gage or point gage (Fig. 12.25) is commonly 
employed for water-surface level determinations. The pomt gage IS particularly 
suitable for fast-moving liqutds where a hook gage would create a local dtsturb
ance in the water surface. In all water-surface level determinations care should be 
taken to make the measurements in regions where there is no curvature of stream
lines; otherwise centrifugal effects will give a false reading of the piezometric head. 

12.16. OTHER METHODS OF MEASURING DISCHARGE 

In addition to the foregoing "standard " devices for measuring the flow of fluids, 
there are a number of supplementary devices less amenable to exact theoretical 
analysis but worthy of brief mention. One of the simplest for measuring flow 10 a 
pipeline IS the elbow meter, which consists of noth10g more than piezometer taps at 
the inner and outer walls of a 90 elbow in the line. The pressure difference. due to 
the centrifugal effects at the bend, wiJl vary approximately as the velocity head 10 
the pipe. Like other meters, the elbow should have sections of stra1ght pipe 
upstream and downstream and should be calibrated in place. 1 

The rotameter (Fig. 12.31) consists of a vertical glass tube that is slightly 
tapered, in which the metering float is suspended by the upward motion of the 

1 W. M. Lansford, The Use of an Elbow m a Pipe Line for Determining the Rate off low rn the 
P1pe, Univ. Ill. Eng. Expt. Sta. Bull. 289, December, 1936. 

Float 

Tapered tube 

Figure 12.31. Rotameter. 
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fluid around it. Directional notches cut in the float keep it rotating and thus free of 
wall friction. The rate of flow determmes the equilibrium height of the float, and 
the tube is graduated to read the flow direcily. The rotameter is also used for 
gas flow, but the wetght of the tloat and the graduation must be changed 
accordingly. 

Other techniques for measuring flow rate include the salt-t•elocicy method. In 
this method a charge of concentrated salt ts injected into the flow at an upsteam 
station. Its arrival at a downstream station is detected from conductivity measure
ments. In flowing bet\\een the two ~tations. the salt disperses and its armal at the 
downstream station ts spread out over a considerable period of time. The time of 
travel between the two stat tons is taken as the time from the instant of injection at 
the upstream station to the ttme at which the centroid of the imposed conductivity
time curve passes the downstream station. Knowing the travel time and the 
distance, the velocity may be determined, and then by multiplying by the cross
sectional area, we get the flow rate. 

PROBLEMS 

12.1. A small ObJeCt weights 1.32 lb in air and 1.02 lb in a liquid. The volume of this object IS known to 
be 0.0060 ft 1 What 1s the density of the hqu1d? 

12.2. A hydrometer is made m the form of a !-in (1.0-cm)-diameter cyhnder of length 10 in (25 em). 
Attached to the end of the cylinder IS a l-in-diameter sphere. The entire device weighs 14.0 g. What 
range of specific gra~ttie can be measured "'1th thb de' ice? 

12.3. To what depth w1ll the hydrometer of Pro b. 12.2 sink when placed in a liquid havmg a densuy of 
1.74 slug:. ft 1? 

12.4. Carbon tetrachloride (s = 1.59) as placed in an open u tube. A hquid is poured mto one of the 
legs of the tube. A hquid column 15.4 in high balances a carbon tetrachloride column 10.0 in high. 
What il. the spec1fic we1ght of the hquid? The text states that this method will g1ve only approximate 
~alues. Why IS thh o? 

12.5. A small obJeCt weighs 14.0 N m air and 9.8 N in a liquid. The volume of this object is known to 
be 292 cm 1 What 1s the dcns1ty of the liqu1d? 

12.6. A rotational viscometer is constructed of two concentric cylinders ofhe~ght 10.0 m. The OD of 
the mner cylinder IS 3.950 m, and the ID of the outer cyclioder is 4.050 in. When a torque ofS.O ft-lb is 
applied to the out C\ n 11 was found to rotate at I revolution per 3.5 s. Find the VISCOSity of the 
flu1d :Seglect mechamcal rn~uon. 

12.7. A tube nscomc:ter ~1m1lar to the one of Fig. 12.1 has a tube diameter of0.0422 in and a tube 
length of 3.05 10. The \CrUea! diStance from the liquid surface in the reservoir to the tube outlet 
changed from 9.50 to 9.00 10 during a run. The flow volume was 50 cm3, and the time was 126.4 s. Find 

the kinematic viscosity or the liquid. 

12.8. Fifty cubic centimeters of water at 80 I- flows through a tube-type Vl!iCOmeter in 50.5 s An equal 
volume of oil at 60 F flows through the same viscometer in 800 s. Find the absolute viscos1ty of the oil 
if\ 0.86. 

12.9. A hqu1d (p 880 kg mJ) flo\\~ through a glass tube of diameter 2.0 mm and length 4 5 m under 
a head of 50 em at a steady rate of30 cm1jmm. Find the absolute viscosity and the kinematic viscosity 
of the tiqu1d Ex pres.\ the answers in 'tokes and poises. 

12.10. Water at 50 F (10 C) flow, through a tube-t}~\iscometer m 100.0 s. How long w1U it take 
90 'F (38 C) water to pass through the same \ iscometer? 
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12.11. A 0.25-in-diamctcr lead sphere (s = 11.4) falls through an oil (s = 0.86) at a constant velocity of 
0.150 fps. The oil is contained in a 2.25-in-diameter tube. Find the viscosity Qfthc oil. Check N R to sec 
if it is less than 1.0. 

12.12. A 16-mm-diameter glass bead (s = 2.60) falls through a liquid (~ "" 1.59) at a constant velocit) 
of I-I 5 em min. The liquid 1' contained in a 10-cm-diameter tube. Fmd the absolute 'iscosit) and 
kinematic v1scosity of the liquid. 

12.13. A 4-in-dlametcr tube contains oil (s = 0.9) having a \iscosity of 0.005 lb·s ft 2. Find the ma:\lmum 
size of steel sphere (s = 7.8) that ~ill satisfy Stokes' law. What will be the fall velocity of thi\ sphere'? 

12.14. A 0.10-in-diameter sphere has a fall velocity of0.005 fps when a certain liqu1d 1s contamed m a 
LO-in-diameter tube. Compute the fall velocities in tubes of diameter 0.50. 2.0, 4.0. and 10.0 in. Plot fall 
velocity vs. tube diameter 

12.15. In the figure, pressure gage A reads 10.0 ps~ while pressure gage B reads 11.0 psi. Find the 
velocity if 50 F air is flowing. Atmospheric pressure is 26.8 in Hg. Assume C1 = 1.0 and neglect 
compressibility effects. 

Prob. 12.15 

12.16. In Prob 12.15. if the two pressure gages were replaced by a differential manometer containing 
water, what would be the reading on the manometer? 

12.17. In the figure for Prob. 12.15 kerosene (s = 0.81) is flowing. The pressure gage' at A and 8 read 
65 and 140 !"< m2

• Find the velocity u assuming C1 = 1.0. 

12.18. The pltometer in the figure is connected to a mercury manometer. and the readmg 1\ 4.0 m. The 
velocity ll> known to be 11.8 fps. If carbon tetrachloride (s = 1.59) IS flo\\ing. \\hat 1s C, for the 
instrument? 

Prob. 12.18 

12.19. In the sketch for Prob. 12.18 suppose air at 50°F is flowing. The pitometer is attached to a 
manometer containing a liquid (s = 0.85). Plot the velocity u versus the manometer reading assuming 
C, = 0.92. As,umc the air is at standard atmospheric pressure. 

12.20. A pitot tube is placed in a pipe carrying water at 6<YF ( l s•c). The pilot tube and a wall 
piezometer tube arc connected to a water-mercury manometer which registers a differential of 3 in 
(7.5 em). Assuming C1 ,_ 0.99, what is the velocity approaching the tube? 

12.21. Suppo~e that the fluids of Prob. 12.20 are reversed so that mercury is flowing in the pipe and 
water ~~ the gage nuid (with the manometer now inverted). With the same gage differential. what would 
be the velocity of the mercury? 

12.22. A Prandtltube is placed on the center line of a smooth 12-in-diamcter pipe in which 80 F water 
is flowmg. The reading on a differential manometer attached to this Prandtl tube " 10 in of carbon 
tetrachloride (s = 1.59). Find the flow rate. 
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12.23. A pltot-~tatic tube for wh1ch C1 ""0.9S " connected to an inverted U tube containmg 011 
(., - O.lS5). Water is flowing. What 1s the \c:IOCit} 1f the manometer reading IS 4.0 m ( 10 em)? 

12.24. In the figure. with uniform flow m the open channel. ~ - 2.80 ft. Find b 1f n = 0.020. 

3' 

' 4' -
Prob. 12.24 

12.25. In Fig. 12.9 let the p1pe diameter be 24 in and suppose the flow is lammar. that 1s, 
u um .. - l.r2• Oiv1de the cirde mto concentric rmgs with radii 3, 6. 9, and 12 in, and compute the flow 
rate by the method of l·ig. 12.9 by ta~ing the velocities at radii of 1.5. 4.5, 7.5. and 105 in as representa· 
tive of the rmgs. Usc a value of 10 fp~ for u.,., Compare the result with that obtained by integration. 

12.26. Water 1ssues from a circular orifice under a head of 40ft. The diameter of the orifke is 4 in.lf the 
discharge IS found to he 479 lt 3 10 J mm. what is the coefficient of discharge? If the diameter at the 
vena contracta ts mc;~surcd to be J.l5 111. what 1s the cocffic1ent of contraction and what 1' 
the coefficient of velocity 'I 

12.21. A 1et discharges from an on lice in a \erllcal plane under a head of 12 ft (3.65 m) The diameter 
of the orifice 1' 1.5 in (J75 em~ and the measurc:d thscharge is 0 . .206 ds (6.0 IJs). The coordmates of 
the center hne of the Jet arc 11.54 ft {'.46 m) horilontaUy from the vena contracta and J.O ft (0.9 m) 
below the center of the onlice. Fmd the coeffi.:ICnts of dL~charge. \C)oelt}, and contraction. 

12.28. The \eloclt) ofvo.atcr m a 4-m (Uhm)-dJamcter p1pe 1s 10 fps (3m .. ). At the end of the p1pe" 
a nonk who--c \elOctl\ cocffi .. ,cnt "09X Hthe prc-.sure m the pipe is X psi (~5 t.;S m2). "'hat 1' the 
\eloc1ty m the jet? What IS the dramctcr of the jet? What is the rate of discharge? What is the head 
loss? 

12.29. A jet of water J in m d~ameter IS dLscharged through a noale v.hose \elocity coefficient 1s 0.96. 
If the p essure m the prpe IS 12 ps1 and the p1pe d1ametcr IS 8 in and if it I!> a~sumed that there is no 
contraction of the Jet. what 1s the vclocit) at the tip of the no7.zle? What is the rate of d1\chargc? 

12..30. ThenouJc m the figure throw' a 'trcam of water vertically upward such that the power ava1lahle 
m the Jel at pomt 2 IS l42 hp (2-~5 ~ W). If the pres ... ure at the base of the nonle. pomt I." 21 0 psi 
(145lPa). fmd (a) the thcorctu.:al hc1ght to wh1ch the Jet will ri,c; (h) the co.:ffic1cnt ohclocll}: (c) the 
head lou bet.-een po ts I and 2, (d) 1he theoretical diameter of the jet at a point 20 ft (6 m) abo\e 

11' 

Prob. 12.30 
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12.31. The loss of head due to friction in an orifice, nozzle, or tube may be expressed as hL = kV2/2g, 
where V is the acJual velocity of the jet. (a) Compute k for the three tubes in Fig. 12.15. (b) If the tubes 
discharge water under a head of 5 ft. compute the lpss of head in each case. 

12.32. The divergmg tube shown in the figure discharges water when h = 5 n. The area A is twice area 
A •. Neglectmg all friction lo~~es. find (a) velocity at throat; (b) pressure head at throat. 

A 

Prob. 12.32 

12.33. lfthe barometric pressure is 14.7 psia and the water temperature is 80°F, what is the maximum 
value of It at which the tube will now full, all other data being the same as in Prob. 12.32? What will 
happen if the value of h is made greater than this? 

12.34. For a rounded entrance and tube flowing full as in the sketch for Prob. 12.32, C< = 1.0 both for 
the throat and the exit. and thus C,. = C4 for both sections. For the throat, assume the value of C,. as 
given for (a) in Ftg. 12.15, and assume that for the tube as a whole the discharge coefficient applied to 
the exit end is 0.70. If h = 5 ft, find the velocity at the throat and the pressure head at the throat, and 
compare with Prob. 12.32. 
12.35. Suppose that the diverging tube shown in the figure for Prob. 12.32 is discharging water when 
h 2.5 m. The area A is 1.8 x A •. Neglecting all friction losses. find (a) the ~elocit} at the throat; (b) 
the pressure head at the throat. 
12.36. If the tube of Prob. 12.35 is operating at standard atmospheric conditions at 2,000-m elevation, 
what would be the maxtmum value of hat which the tube will flow full? 

12.37. Find the maximum theoretical head at which the Borda tube of Fig. 12.16 wtll now full if the 
liquid IS water at 80 F and the barometer reads 28.4 in Hg. Assume C4 = 0.72 for the tube flowing full. 

12.38. In the figure, the pilot tube in a water jet at elevation 60 ft registers a pressure of 16.5 psi. The 

Elev. 100 -1==~--=='="'=~,J 

Water 

Elev.SO _ ._ __ ..., 

\II 
Jet 

Elev. 60 

Prob. 12.38 
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12.52. What is the value of the throat velocity in Prob. 12.50? 

12.53. Air flows through a 15- by 7.5-cm venturi meter. At inlet the air temperature is 15 C and the 
pressure is 140 kN/ m2• Determme the flow rate if. a mercury manometer reads 15 em. Assume an 

atmo~pheric pressure of 10 I 3 1.. !\ m '. abs. 

12.54. Natural gas, for which k = 1.3 and R = 3,100 ft·lb/(slug)("R~ flows through a venturi tube 
with pipe and throat diameters of 12 and 6 in, respectively. The initial pressure of the gas IS 150 psia, 
and its temperature is 60 F. If the meter coefficient is 0.98, find the rate of How for a throat pressure of 

JOO psia. 
12.55. Helium, for wh1ch k ""' 1.66, and R = 12,400 ft-lb/(slug)(<R), is in a tank under a pressure of 
50 psia and a temperature of80 F. It flows out through an orifice1 in in diameter. For such an orifice, 
C, = 0.98, and C,- 0.62 for liquids. Find the rate of flow if the pressure into which the gas discharges 

is 40 psia. Assume Y = 0.95. 

12.56. A1r tS m a tank under a pressure of200 psia and at a temperature of 100 F. It flows out through 
an orifice hav10g an area of 1.5 in 2 into a space where the pressure is 80 psia. Compute the rate of 

discharge assuming cd 0.60. 

12.57. Using the same data as in Pro b. 12.56, what would be the How if the air discharged into a space 
where the pressure is 15 psia? 

12.58. Suppose that air at the initial pressure and temperature of20 psia and 70'F were flowing with a 
velocity one-half that of a sound wave in the medium. What would be the dynamic pressure? 

12.59. Find the critical pressure ratios p,/p1 for the natural gas of Prob. 12.54 and the helium of 

Prob. 12.55. 

12.60. For the data in Prob. 12.55 find the rate of discharge if p2 = p,. 

12.61. A1r 10 a tanl.. under a pressure of 140 psia (965 kN/m 2 • abs) and a temperature of 70 F (21 C) 
flows out into the atmosphere where the barometric pressure is 14 psia (97 kN;m 2

, abs) through a 
sharp-edged orifice l in (6 mm) 10 diameter. Find the rate of discharge. 

12.62. For air at p 1 = 100 ps1a (700 Njm2, abs) and a temperature of 70 F (20 C~ find the cntlcal 
pressure and the corresponding throat velocity in a suitable nozzle, neglecting the velocity of approach. 

What wiU the values be if D2 /D1 = 0.80'? 

12.63. Atr 10 a tank at 1500 kN m 2, abs and 40'C flows out through a 5.0-cm-diameter orifice into a 
space where the pressure is 500 kN m2, abs. Compute the rate of discharge assuming C4 = 0.60. 

J 2.64. Repeat Prob. 12.63 for external pressures of 750, 1,000, and 1,250 k N m2
, abs. 

12.65. A rectangular sharp-crested weir 3.0 ft (0.9 m) high extends across a rectangular channel which 
LS 8 ft (2.4 m) wide. When the head is 1.200 ft (36 em) find the rate of discharge by neglecting the 

veloc1ty of approach. 

12.66. Suppose the rectangular weir of Prob. 12.65 is contracted at both ends. Find the rate of 
discharge for a head of 1.200 ft (36 em) by the Francis formula. What would be the maximum value of 
H for which the f-rancis formula could be used? 

12.67. Plot a family of curves of C4 versus P/H with H as a parameter. Use the Rehbock formula. 
These curves give a complete picture of the variation of C4 for sharp-crested rectangular weirs. 

12.68. (a) What is the rate of discharge of water over a 45 ' triangular weir when the head is 0.5 ft? (h) 
With the same head, what would be the increase in discharge obtained by doubling the notch angle, i.e., 
for a 90" weir'! (Usc curves of C4 versus H.)(c) What would be the head for discharge of2.0 cfs of water 
over a 60 triangular weir? 

12.69. For the Cipolletti weir, derive the expression for the slope ! : I of the sides of the trape7oid by 
settmg the reducuon 10 discharge due to contraction equal to the increase m discharge due to the 

triangular area added 

12.70. All the weir crests discussed in this chapter produce flow rates which vary as the head to some 
power greater than I. In certain cases, such as in the outlet of a eonstant-veloclly sedimentation 
chamber, it is de'irablc to employ a weir form in which Q varies d1rectl} with II. The proportional-jim-.· 
we1r is 'et nush w11h the bottom of the channel, as shown in the figure. while the sides taper inward, 
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Ptob. 12.70 

followmg the hyperbola ><v} = k. a con~tanl. Commenctng with the head h • II - y, on the element 
of area JA • 2:.: dy = 2(ky .r) dy, prove that the di,charge equation for such a weir may be wrinen as 
Q C~nl.. • ../2g II, and evaluate k tn terms of the width 8 and the velocity V in the rectangular 
approach channel. 

12.71. Develop tn general terms an expression for the percent of error in Q over a triangular wetr if 
there is a small error in the measurement of the ~ertex angle. Assume there 1s no error in the weir 
coefficient. Compute the percent error in Q if there is a 2 error in the measurement of the total vertex 
angle of a tnangular we1r having a total \C:rtcx angle of 75 . 

12.72. A 60 V -notch we1r and a rectangular weir wuh end contracuons haHng a crest length of 2 ft are 
both used to measure a flow rate of approximately 0.25 cfs. Assuming C~ ts l.nown precisel) for both 
weir~. compute the percentage of error in Q that would re~ult from an error of0.02 ft in the respective 
head measurement•. 

12.73. A broad-crested weir rise~ 1.0 ft abo\e the bottom of a horizontal channel Wuh a measured 
head of 2.0 ft above the crest. what is the rate of d~:>Charge per untt v.idth '! 

12.74. 1\ broad-crested weir of height 2.00 ft (0.6 m) in a channel5.00 ft (1.5 m) wide has a flow over it 
of 9.50 cr.~ (0.27 m3/s). What IS the water depth, just upstream of the weir'/ 

12.75. Usmg [:q (12 ~0). plot c~ ver,us I' II for hroad-crested WeirS. Select a SUitable parameter so 
that an enure famtl) of cunes can be: plotted 

12. 76. A rectangular channel6 ft ( I.R m) wrde con tams a slutce gate which extends acroSli the width of the 
channel. If the gate produces free flow when Ills opened 0.4 ft (0.12 m) with an upstream depth of 3.5 ft 
(1.05 m) find the rate of d1~charge. assummg C~ • 0.60 and Cc = 0.62. Evaluate K • • 

12.17. Refa to Illustratne Example 4.8. H c. • 0.9K. what IS the flov. rate? If Cc • 0.62, what ts the 
o(lhe openmg., Fmd K •. 
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Prob. 12.70 

folio\\ mg the hnxrbola \" ~~ = k. a constant. Commencing wtth the head h H -}.on the element 
of area dA h dy = 2(k...; r) t/)', prove that the d1scharge equauon for such a weir may be written as 
Q • C4 rrkj211 H, and evaluate k in terms of the width B and the velocity V in the rectangular 
approach channel 

12.71. De~elop 10 general terms an expression for the percent of error in Q over a triangular we1r if 
lhere is a small error 10 the measurement of the vertex angle. Assume there 1, no error in the weir 
coeffic1ent. Compute the percent error in Q if there is a 2• error in the measurement of the total vertex 
rglc of a tnangular weir ha\ ing a total \ertex angle of 75". 

12. -z. A 60 V ·notch we1r and a rectangular weir 'll.lth end contractions ha• ing a cre.tlength of 2 ft are 
used to measure a now rate of approximately 0.25 cfs. Assummg C 1 1s l..nown precisely for both 
compute the percentage of error 10 Q that would result from an error of0.02 ft in the respective 

U. 3. A broad-crested 'II. CIT mes I 0 ft abme the bottom of a honzontal channel Wnh a measured 
of 2.0 (t abO\e the crCSl, \\hat IS the rate of dt-;charge per UOit width? 

':..c. A broad-crested we1r of height 2.00 ft (0.6 m) in a channel5.00 ft (1.5 m) wide has a now over It 
.50 ds (0.27 m, s). Whut is the water depth. just upstream of the wetr? 

u mg I q (1.2.30~ plot cl \'CTSU pH for brood-crested \\C "S Sele..t a suitable parameter so 
an enure Camd) of cuf\'tS can be plotted. 

A rectangular channcl6 ft ( 1.8 m) 'II. 1de conta10s a sluice gate which extends across the w1dth of the 
If the gate produces free flow when it is opened 0.4 ft (0.12 m) with an upstream depth of 3.5 ft 

the rate of dascharge, assummg C1 • 0.60 and C, = 0 61. E\aluate K, . 

I If c.= 0.9 • \\hat i> the flow rate? If C, = 0.62, what is the 



CHAPTER 

THIRTEEN 
UNSTEADY-FLOW PROBLEMS 

13.1. INTRODUCTION 

This text deals mostly with steady flow, since the majority of cases of engineering 
interest are of this nature. However, there are a few cases of unsteady flow that are 
very important, some of which are discussed in this chapter. It has been explained 
that turbulent flow is unsteady in the strictest sense of the word, but if the mean 
temporal values are constant over a period of time, it ts called mean steady flow. 
Attention is here directed to cases where the mean temporal values continuously 
vary. 

There are two main types of unsteady flow to be considered. The first is where 
the water level in a reservoir or pressure tank is steadily rising or falling, so that 
the rate of flow varies continuously, but where change takes place slowly. The 
second is where the velocity in a pipeline is changed rapidly by the fast closing or 
opening of a valve. 

In the first case, of slow change, the flow is subject to the same forces as have 
prevtously been considered. Fast changes, of the second type, require the consider
ation of elastic forces. 

Unsteady flow also includes such topics as oscillations in connected reservotrs 
and in U tubes and such phenomena as tidal motion and flood waves. Ltkewise, 
the field of machinery regulation by servomechanisms is intimately connected 
with unsteady motion. However, none of these topics will be constdered here. 

416 
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13.2. DISCHARGE WITH VARYING HEAD 

When flow occurs under varying head, the rate of discharge will continuously 
vary. Let us consider the situatiOn depicted in Fig. 13.1 in which VL represents 
the volume of liquid contained in the tank at a particular instant of time. There 
is inflow at the rate Q1 and outflow at rate Q2 • The change in volume during a 
small time interval dt can be expressed as 

dVL = Ql dt - Q2 dt 

If A,= area of the surface of the volume while dz is the change in level of the 
surface, then dVL = A, dz. Equating these two expressions for dVc., 

d Jf -::.. A. dz = Q1 dt- Q2 dt (13.1) 

Either Q1 or Q2 or both may be variable. The outflow Q2 is usually a function of z. 
For example, if liquid is dischar~ through an orifice or a pipe of area A under a 
differential head z, Q2 = Cd A.J2gz, where Cd is a numerical discharge coefficient 
and z is a variable. If the liquid flows out over a weir or a spillway of length L. 
Q2 = CLz3' 2, where C is the appropriate coefficient. In either case z is the variable 
height of the liquid surface above the appropriate datum. The inflow Q1 is 
commonly expressible as a function of t, however such problems will not be 
considered here. 

Rewriting Eq. (13.1) and integrating gives an expression fort, the time for the 
water level to change from z 1 to z2 • Thus 

f
=2 A dz t- _..::...• __ 

·=· Q.- Q2 
( 13.2) 

The right-hand side of this expression can be integrated if Q1 is zero or constant 
and if A, and Q

2 
can be expressed as functions of z. In the case of natural 

reservoirs, the surface area cannot be expressed as a simple mathematical function 
of z but values of it may be obtained from a topographic map. In such 
a case. Eq. (13.2) may be solved graphically by plotting values of A.f(Q1 - Q2 ) 

Q 

r Datum Figure 13.1 
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against simultaneous values of z. The area under such a curve to some scale is 
the numerical value of the integral. 

It may be observed that instantaneous values for Q have here been expressed 
in the same manner as for steady flow. This is not strictly correct, since for unsteady 
flow the energy equation should also include an acceleration head (Eq. (13.6)]. The 
introduction of such a term renders the solution much more difficult. In case:; where 
the value of z does not vary rapidly, no appreciable error will result if this 
acceleration term is disregarded. Therefore the equations will be written as for 
steady flow. 

lllustrati~e Example 13.1. The open wedge-shaped tank in the accompanying figure has a length 
of 15 fl pcrpcndicular to the sketch. It is drained with a 3-in diameter pipe of length 10 fl whose 
discharge end Ill at elevation zero. The coefficient of loss at pipe entrance is 0.50, the total of the bend 
lo" cocffic~ents 15 0.20, andffor the p1pe IS 0.018. Find the time requ•red to lower the water surface in 
the tank from elevauon 8 to 5 ft . Neglect the possible change off w1th N •· and assume that the 
aocelerauon effects in the pipe are negligible. 

Energy equation from water surface to jet at discharge: 

z - fo.s + 0.2 + o.ot8(0~5) J ~ ~ ~; 
vz vz 

z - 1.42 = 
2g 2g 

v - 5.16;::111 

X 
Q2 = AV =- (0.25f5.16z1

'
2 = 0.254z111 

4 

The area of the water surface may be expressed as 

A. "" 15b = l5Kz 

At the top of the tank, A, = 15 x 6 • 15K(10~ K = 0.6. Thu1o 

A. - 15(0.6)z = 9z 

llhlstratin Example 13.1 
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Applytng Eq. (13.2), 

' 9z d• 9 ' 
I • f -- - -~ r zl12 d• 

• 0 - 0254= 1 2 - 0.254 • • • 

• - 35.4{ izs 2U = 270 s 

Note that if the p1pe had discharged at an elevallon other than zero, the integral would have been 
different. because the head on the p1pe would then bave been z + h, where his the vertical dJ)tanoc of 
the discharge end of the pipe below or abo\e point A of tbe figure. 

13.3. UNSTEADY FLOW OF INCOMPRESSIBLE 
FLUIDS IN PIPES 

When the flow in a pipe is unsteady, the energy equation has a term, the accelera
tke head (L/g)(d V/dt ), which accounts for the effect of the acceleration of the fluid 
let us refer back to Sec. 4.11 where the energy equation for one-dtmensional 
steady flow of a real fluid was developed. We shall follow the same procedure that 
was used there by writing L F = rna; however in this situation, with unsteady 
flow at a parttcular point on the streamline at a particular instant of time, we 
ex.press the acceleration as V(dV/ds) + dVfdt. This comes from the general 
expre sion for acceleration in unsteady flow [Eq. (3.20)]. Applying L F = rna to the 
cylindrical fluid element of Fig. 4.4, we get for unsteady flow 

( 
dV dV\ 

-dp dA - pg dA dz- t(2nr) ds = p ds dA V ds + di J 

In this case dA = nr2• Making this substitution for dA and dividing through by 
- pnr2 gives 

dp dV 2t ds 
+ V dV + g dz + ds - = - -

p dt pr 
{13.3) 

tmilar to Eq. (4.27), except that it has an extra term. This 
a:ounts for the effect of acceleration caused by the unstea-

also be expressed as 

dp J 2 ds dV 2t ds + d- T d= T - = - --
}' 2g g de yr 

(13.4) 

This equation applies to unsteady flow of both compressible and incompress
ceal fluids. Howe\er, once again an equation of state relating}' top and T must 

be mtroduced before integration if we are dealing with a compressible fluid. For an 
rompressible fluid (y =constant~ we can integrate directly. 
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Integrating from some section 1 to another section 2, where the distance 
between them is L, we get 

Vi LdV 
2 

+zz-z,+-d = 
g g t 

2rL 
yr 

or ( 13.5) 

For the case of a circular p1pe of radius r0 we recognize the term 2-rLfyr as 
representing the head loss in the pipe over the length L This can be seen by 
examining Eq. (8.5) and noting that the hydraulic radius R = r0 /2 and r = r 0 
when r = r0 . Thus, subst1tutmg h1• for 2r:L/yr in Eq. (13.5), we get the general 
energy equation apphcable to incompressible unsteady flow, 

(
Pt Vi ) (p2 Vi ) LdV 
y + 2g + Zt - IJL = y + 2g + Zz + g dt ( 13.6) 

where L/g dV/dt represents the accelerative head. In this equation hL represents 
the head loss between sections 1 and 2 while L is the distance between the 
sections. It is presumed that the head loss at any instant is equal to the steady-flow 
head loss for the flow rate at that instant. Experimental evidence md icates that 
this presumption IS reasonably valid. 

If the p1pe consists of two or more pipes in series, an (Lig)(dV/dt) term for 
each pipe should appear in the equation just as there would be a separate term for 
the head loss in each pipe. To clarify the discussion further, the simple case of 
unsteady flow of an incompressible fluid in a horizontal pipe is shown in Fig. 13.2. 
The left-hand sketch shows the steady-How case, while unsteady flow IS depicted in 
the two right-hand sketches. The analysis below the sketches indicates that, with 
the same mstantaneous flow rates, the pressure is depressed at sectiOn 2 1f the 
acceleration is positive or mcreased if it is negative. 

lllustrati\e f.xample 13.2. Although the unrealistic ;mumptions of mslantaneous change 10 

pump speed and head are made m this example. it will serve to illustrate application of Eq. (13.6). 
When the ccntnfugal pump 10 the accompanying figure IS rotating at 1,650 rpm the stea~ flow rate as 
1.600 gpm Let us suppose that the pump speed can be increased instantaneously to 2,000 rpm. 
Determme the flow rate as a function of time. Assume that the head developed by the pump is 
proportional to the square of the rotative speed. Writing the unsteady-flow energy equation, 

v~ L 1 v~ L2 v~ v~ L, dV1 L 2 dV2 SO - 0.5 -/1 - + h -/2 -- == - + - + -
2y D1 29 ' D2 29 29 9 dr 9 tit 

where the subscnpts I and 2 refer to the 10- and 6-in diameter papes, respectively Note that the 
accelerative head for each pipe depends on the respective Land dV!dc values. 

hom contmuaty, 

Hence 

Vl == Az Vz = ( 6)2 V2 =0.36V2 
AI 10 

dV1 = ~ dV1 = 0.36 dV1 

de .4 1 de de 



"'" t-.> 

f ,., 
hL 

I. Pz' < P2 ~" >p? 

I (b) (c) 

nd unitcady flow of lncomprcssil>le flu1d m a honzontal pipe. (Flow 1' in~tant:uu.:,,usly equal m 1111 three pipes.) 
dt- ()) (h) Un't'~ldy llow (dl'/dl ~~ posi!Jve). (c) Unsteady now (dVjdr IS negative) 

\ " I ... lllrl • (, 

,., ,1 - /'2'1 - r 0 /'/, • 0 

I' I f' l r0 1'L - -i' i' i'A 

I ro L 
lt_ -

I z ;~R,. 

, 
(a) 

P ~ wetted pen meter , R• = hydraulic rad1us. 

L;l ma .P 0 

p,A P2A - r0 PL = 7ALdV 

g de 

fit P~ roi'L LdV 
- · - = - -+ -

i' )' ;•A . g d1 

P1 Pi LdV ·= -- +, + 
i' f I . g dt 

r, Pi L d ~ ' 
--- =IlL+ 

l' l' g Jr 

(b) 

PI 

}' 

Pi I I . ,/1" ,, + 
'( (j til 

where tiV/dr is negative 

(c) 
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200', 10" d1am. 

f - 0.030 

IDustrathe Example 13.2 

Thus 

so o.s (0.36V1 )
1 

_ o.o30( 200 ) (0.36V1 )
1 

+ h _ o.o20( 750) v~ 
2g 10/12 2g , 6/12 2g 

evaluating and combmmg terms, 

SO 
v~ 822dV1 + h,=32.0 -+ 
2g g dt 

Wnh the original steady-flow cond1ttons (dVfdt = 0~ 

Q 1.600 449 
V1 • = --=18.2fp~ 

A 1 0.196 

and 
y2 "p - 32 2; 50= 115ft 

After the speed is increased to 2,000 rpm, 

Substuuung mto (a~ 

(
2,000)2 h, • liS = 169ft 
1,650 

v~ 822dV1 so+ 169 = 32-+-
2g g dt 

Expressing the foregoing in terms of Q, 

219 - 12.9Q2 + 130 dQ 
dt 

50ft 

l 

Vf 200( )dV1 150dV1 
- 2g + - 0.36 + g dt g dt 

(a) 

(b) 

Solving for dt and tntegrating, nottng that at 1 = 0, Q = 3.56 cfs (1,600 gpm) 

I Q dQ 

f dt - 130 r 2 
0 '3162 19 -12.9Q 

I - 1.22 In 
4

'
1 + Q- 3.20 

4.1 - Q 

~0 12r+lf>~ = 41 t- Q 

4.1 Q 
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j, 

,.o 82~+2 6~ _I 
Q 4.10----.. o ~zr• 2.65 + I 

that as 1 gets larger, Q approach~ 4.10 cfs (1,840 gpm1 the steady-state now rate for the condition 
e h, • 169ft 
It houiJ be noted that the ~peed of a pump cannot be changed instantaneously from one value to 

her. as wa, assumed m thts example. To solve this problem correctly the operating charactenstics 
pump and motor and the moment of menta of the rotating system would have to be known. 

13.4. ESTABLISHMENT OF STEADY FLOW 

ermming the time for the flow to become steady in a pipelme when a valve is 
enl) opened at the end of the ptpe can be accomplished through application 

Eq. (13.6). Immediately after the valve is opened (Fig. 13.3), the head H is 
ilable to accelerate the flow. Thus flow commences, but as the velocity m

~"T!'·-· ..... -, the accelerating head is reduced by fluid friction and minor losses. Let us 
me the total head loss h1• can be expressed as k V2/2g, where k is constant. 

gh it may "ary somewhat with velocity unless the ptpe ts very rough W tt
Eq (13.6) between sections 1 and 2 in Fig. 13.3 gives 

V 2 V2 LdV L 
H - k 2g = 2g + g dt ; " ="I + I D 

define the :;teady-flow velocity by V0 and note that 

(1 + k)V~ = 2gH 

mg this in the preceding equation after multiplying by 2g, we get 

d _ 2L dV 
,_ 1 + k v~- v2 

L V0 + V 
f=(l-k)Voln Vo- V 

(13.7) 

(a) (b) 

1'\ 1 Est bhshment of steady fto10 (I = \eloett} at ,tead} Oo"-). 
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This equation ind icates that equilibrium will be attained only after an infinite time 
(F ig. 13.3b), but it must be remembered that this is an idealized case. In reality 
there will be elastic waves and damping, so that true equilibrium will be reached in 
a finite time. 

lllustrati~e Example 13.3. Two large water reservotrs are connected to one another with a tO-em
diameter ptpe (/ 0.02) of length 15m. The water-surface elevation dtfference between the reservou-s 
is 2.0 m. A valve m the ptpe. mittaUy closed, is suddenly opened. Determine the ttmes requi red for the 
flow to reach i i, and i of the steady-state Dow rate. Assume the water-surface ele\ations remam 
constant. Repeat for ptpe length> of 150 m and 1,500 m with all other data remammg the same. In the 
first case LtD - 15i0.10 = 150, hence minor losses are signtficant. Assume square-edged entrance. 

For steady flow· 

Vol 15 Vol V1 
H - 0.5 - - 0.02- = ....!! 

2g 0. 10 2g 2g 

( I + k)V~ = (1 + 3.5)V~ = 2gll = 2(9.8 1)(2) 

V0 = }'2(9.81 )(2/4.5) = 2.95 m/s 

For unsteady flow use Eq. (13.7): 

1 
= L In V0 + V = _ 15 In 2.95 + V 

(1 + k)V0 V0 - V 4.5(2.95) 2.95 V 

2.95 + v 
1 .. 1.13 ln -

2.95- v 

For Q • ! Q0 ~ubstitute V • !~0 • etc.: 

Q In 11. s 

0.2SQ0 0.74 1.67 0.51 0.58 
0.50Q0 1.48 2.99 1.10 1.24 
07SQ0 2 22 7.00 1.95 2.20 

I or the other two lengths the results are as follows. 

Q L • 150m L = 1.500 m 

0.25Q0 2.2!. 70s 
0.50Q0 4.7 s 152 s 
0.7~Q0 8.4 s 270 s 

13.5. VELOCITY OF PRESSURE WAVE IN PIPES 

Unsteady phenomena, with rapid changes taking place, frequently involve the 
transmtsston of pressure in waves or surges. As shown in Appendix 2, the vcloctty 
of a pressure wave is 

I-

C= g E 
v ;· .. 

1£ 
' (13.8) 

\i p 
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where E,. is the volume modulus of the medium. For water, a typical value of E, is 
300.000 psi (2.07 x 106 kN m 2

). and thus the velocity of a pressure wave in \\ater 
is c = 4,720 fps (1,440 m 's). But for water in an elastic pipe, this \alue IS modified 
by the stretching of the pipe walls. and as shown in Appendix 2, E, 1s replaced by 
K. such that 

K = -- E=-v ,.-----
1 + (D t)(EJ E) 

v.here D and rare the d1ameter and wall thickness of the p1pe, respectively, and E 
IS the modulus of elasticity of the pipe material. As the ratios D l t and E,/ E are 
dunens10nless, any consistent units may be used in each. 

The velocity of a pressure wave in an elastic pipe is then 

Cp = ~ = cj- ~ E (13.9) ~,n. 1+ ____£ 

t E 

Values of the modulus of elasticity for stee~ cast iron, and concrete are about 
30.000,000, 15,000,000 and 3,000,000 psi, respectively. Values of the \olume 
modulus E,. for various liquids are given in Appendix 3. Table A.4. 

For normal pipe dimensions the velocity of a pressure wave m a water pipe 
usual!) ranges between 2,000 and 4,000 fps (600 and 1,200 m/s), but it will always 
be less than 4,720 fps ( 1,440 m/s). 

B.6. WATER HAMMER 

In the preceding unstead) -flo\\ cases in this chapter, the changes of velocity were 
pre ... umed to tal\e place slow!). But if the velocity of a liquid in a pipeline is 
bruptl) decrea cd b) a 'alve movement, the phenomenon encountered is called 

u hammer. This is a very important problem in the case of hydroelectric plants, 
re the flo\\ ofv.ater must be rapidly varied in proportion to the load changes 

me \\ ater hammer occurs in liquid-flow pressure systems whenever a 
molog) ater hammer is perhaps misleadmg smce the 

an) liquid. 

ough 11 1 ph) tcall) ampo,stble to dose a 'ahe instantaneous!}. such a con
apt u cful as ,m mtroducuon to the stud\ of real cases. For convc111ence let us 
start off b) considering stead) flow in a horizontal pipe (Fig. l3.4a) with partly 

vahe. Then let us a ume that the valve at t.. is closed instantaneously . 
lamina of liquid next to the \alve will be compressed by the rest of the 

umn of liquid flowing against it. At the same time the walls of the pipe 
surrounding thi lamina \\ill be stretched b) the excess pressure produced The 
next up tream lamina wtll then be brought to rest. and so on. The liquid m the 
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(a) 

(b) 

L Instantaneous closure 

i -;--.......::~~~nt H.G.L 
I ·~/q, --
1 $-tJ 
1~/o 

l(j 
X I 

~-------L------~-1 

At pointB 

0 0 
At pointM 

Figure 13.4. Water hammer. (a) Valve at end of pipeline. (b) Water-hammer pressure heads 
at N, B, and M as a function of time for instantaneous valve closure. Effect of pipe friction and 
damping neglected. 

pipe does not behave as a rigid incompressible body but the phenomenon is affected 
by the elasticity of both the liquid and the pipe. The cessation of now and the 
resulting pressure increase move upstream along the pipe as a wave with the 
velocity cP as given by Eq. (13.9). 

After a short interval of time the liquid column BN will have been brought to 
rest, while the liquid in the length MB will still be flowing with its initial velocity 
and initial pressure. When the pressure wave finally reaches the inlet at M, the 
entire mass in the length L will be at rest but will be under an excess pressure 
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throughout. During travel of the pressure wave from N to M there will be a 
transient hydraulic grade line parallel to the original steady flow grade line X P 
but at a height P,/1' above it, where p~ represents the water hammer pressure. 

It is impossible for a pressure to extst at M that is greater than that due to 
depth MX, and so when the pressure wave arrives at M, the pressure at M drops 
instantly to the value tt would ha'c for zero flow. But the entire pipetS now under 
an excess pressure; so the liquid in it IS compressed, and the pipe walls are 
stretched. Then some liquid starts to flow back into the reservoir. and a wave of 
pressure unloading travels along the pipe from M to N. Assuming there is no 
damping. at the instant this unloading wave reaches N, the entire mass of liquid 
will be under the normal pressure indicated by the line XP, but the liquid IS still 
flowing back into the reservo1r. This reverse velocity will produce a drop in pressure 
at N that ideally wtll be as far below the norma~ steady-flow pressure as the 
pressure an instant before was above it. Then a wave of rarefaction travels back 
up the pipe from N to M. Ideally, there would be a series of pressure waves 
traveling back and forth over the length of the pipe and alternating equally 
between high and low pressures. Actually, because of damping due to fluid 
friction and imperfect elasticity of liquid and pipe, the total pressure at any point 
in the pipe will fluctuate back and forth heading gradually toward the pre sure for 
the no-flow condition indicated by XX in Fig. 13.4a. 

The time for a round trip of the pressure wave from N to M and back agam is 

L 
T,= 2-

c,. 
(13.10) 

where Lis the length of pipe, and so for an instantaneous valve closure the excess 
pressure remains constant for this length of time, before tt is affected by the return 
of the unloading pressure wave: and in like manner the pressure defect durmg the 
period of rarefaction remains constant for the same length of time. At a distance x 
from the inlet, such as at B, the time for a round trip of a pressure wave IS only 
2xfc ,., and hence at that point the time duration of the excess or deficient pressure 
will be 2x/c,., as shown in Fig. 13.41>. At the inlet .\1. where x = 0, the excess 
pressure occurs for only an instant. 

In Fig. 13.5 i:. shown a close-up in the vicinity of the valve. If the valve is 
closed abruptly. a pressure wa\e tra\eb up the pipe with a celerity c,.. In a short 
interval of time dt an clement of liquid of length c,. dt is brought to rest. Applymg 
Newton's second law, f dr - \1 dV, and neglecting friction, 

or 

(pA - (p + dp)A] dt = (pAc,. dt) dV 

- dp = pc,. dV 

lip - - pc,.(~ V) 

which indicates the change m pre ure lip that results from an mstantancous 
change in velocll) A J 
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r c,. dt 
Valve 

pAo~···" 
Pressure wave 

Figure 13.5. Definition sketch for anal)'is of water hammer in ptpes. 

In the case of instantaneous and complete closure of a valve the veloc1ty is 
reduced from V to zero, 1.e., A V = V; llp then represents the increase in pressure 
due to valve closure, so the water hammer pressure ph - !lp. Thus for instantaneous 
valve closure 

Ph = pep V (13.11) 

It will be observed that the pressure increase is independent of the length of 
the pipe and depends solely upon the celerity of the pressure wave in the pipe and 
the change in the velocity of the water. The total pressure at the valve immediately 
after closure IS Ph · p, where p is the pressure m the pipe just upstream of the valve 
prior to closure. 

Con~ider now conditions at the valve as affected b} both pipe friction and 
damping. In Fig. 13.4a, when the pressure wave from N has reached 8, the water 
in BN will be at rest and for zero flow the hydraulic grade line should be a 
horvontal line. There IS thus a tendency for the grade line to flatten out for the 
port1on B'V Hence, instead of the transient gradient having the slope imposed by 
frrction. as shown m the figure, 1t will approach a honzontalline starting from the 
transient value at B. Thus the pressure head at N will be raised to a slightly higher 
\aluc than 'VS short!} after the valve closure. 

This slight mcrease m pressure head at the \alve over the theoretrcal value 
c,. Vfg has been borne out by tests. In Fig. 13.6 the line ab is shown as sloping 

s-T 
2 h+y_ p,\ 

L 2g -
x__j 'Y 

Cl 

valve closure 

b 

~ igure l.l6. Pressure ht,tor) at \ahe wtth mstantaneous clo,ure. considertng ptpe fm:uon and 
d.unpmg 



UNSTEADY-FLOW PROBLEMS 429 

upward because of this adverse pressure gradient, and for the same reason ef may 
slope slightly downward, as all conditions are now reversed. Also, because of 
damping, the waves will be of decreasing amplitude until the final equilibrium 
pressure is reached. 

All of the preceding analysis assumes that the ·wave of rarefaction will not cause 
the minimum pressure at any point to drop down to or below the vapor pressure. 
If it should do so, the water would separate and produce a discontinuity. 

Rapid Closure (tc < 2L/cP) 

It is physically impossible for a valve to be closed instantaneously; so we shall 
now consider the real case where the valve is closed in a finite time tc which is more 
than zero but less than 2Ljcp. In Fig. 13.7 are shown actual pressure recordings 
for such a case. The shape of the curve during the time tc depends entirely upon the 
operation of the valve and its varying effect upon the velocity in the pipe. But the 
maximum pressure rise is still the same as for instantaneous closure. The only 
differences are that it endures for a shorter period of time and the vertical lines of 
Fig. 13.6 are changed to the sloping lines of Fig. 13.7. If the time of valve closure 
were exactly 2L/cp, the maximum pressure rise at the valve would still be the same 
but the curves in Fig. 13.7 would all end in sharp points for both maximum and 
minimum values. since the time duration of maximum pressure would be reduced 
10 zero. 1 

"So matter how rapid the Yalve closure may be, so long as it is not the 
idealized instantaneous case, there will be some distance from the intake, such as 
Iii in Fig. 13.4a, within which the valve closure time is more than 2x0 /cp. Thus, in 
my real case, the maximum pressure rise cannot extend all the way to the reser
IOi:r intake. In the actual case, the maximum pressure rise will be constant at the 

ures 13.7 and 13.8 are from water-hammer studies made by the Southern California Edison 
an experimental pipe with the following data: L = 3,060 ft, internal diameter= 2.06 in, 
'I fps.. J' = 1.11 fps. Cp V g = !51 ft, 2L/cp = 1.40 s, static head= 306.7 ft, head before valve 
o ::01! 6 ft.lrL = 5.1 ft. In Fig. 13.7 the time of closure= Is, and it will be noted that the actual 
~ ~ ts slightly more than 151 ft. In Fig. 13.8 the time of closure= 3 s. 

Time, sec 

Figure 13.7. Rapid valve closure 
in time t, less than 2L/cp. Actual 
measurement of pressure changes 
at valve. 
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instantaneous value Ph for a distance from the valve up to this point a distance x 0 

from the intake. From this point the excess pressure will diminish to zero at the 
intake. This is shown as a uniform rate of decrease in Fig. l3.4a. 

Slow Closure (tc > 2L/cp) 

The preceding discussion has assumed a closure so rapid (or a pipe so long) that 
there is an insufficient time for a pressure wave to make the round trip before the 
valve is closed. Slow closure will be defined as one in which the time of valve 
movement is greater than 2Ljcp. In this case the maximum pressure rise will be 
less than in the preceding because the wave of pressure unloading will reach the 
valve before the valve is completely closed and will stop any further increase in 
pressure. 

Thus in Fig. 13.8 the pressure would continue to rise if it were not for the fact 
that at a time 2Ljcp a return unloading pressure wave reaches the valve and stops 
the pressure rise at a value of about 53 ft as contrasted with about three times that 
value in Fig. 13.7. Subsequent pressure changes as elastic waves travel back and 
forth are very complex and require a detailed step-by-step analysis that is beyond 
the scope of this text. In brief, the method consists in assuming the valve move
ment to take place in a series of steps each of which produces a pressure t:..p 
proportional to each /':,. V. 1 

Tests have shown that for slow valve closure, i.e., in a time greater than 2Ljcp, 
the excess pressure produced decreases uniformly from the value at the valve to 
zero at the intake. The water-hammer pressure p~ developed by gradual closure of 
a valve when tc > 2Ljcp is given approximately by 

, 2Ljcp 2Lph 2LVp 
Ph~--Ph=--= -- ( 13.12) 

tc Cptc tc 

where tc is the time of closure. 

1 For details of computing successive pressures for slow valve closure and for further explanation 
of much of this condensed treatment, see John Parmakian, "Waterhammer Analysis," Prentice-Hall, 
Inc., Englewood Cliffs, N.J., 1955. 

;~::t? I 1\£\J 
012 3 4 56 7 

Time, sec 

Figure 13.8. Slow valve closure in 
time tc greater than 2L/cp. Actual 
measurement of pressure changes 
at valve. 
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A pipe can be protected from the effects of high water-hammer pressure 
through the use of slow-closing valves, the use of automatic relief valves which 
permit water to escape when the pressure exce~ds a certain value, or through 
applicati<?n of surge chambers as explained in the following section. 

Illustrative Example 13.4. In Fig. 13.4a the elasticity and dimensions of the pipe are such that the 
celerity of the pressure wave is 3,200 fps. Suppose the pipe has a length of 2,000 ft and a diameter of 
4ft. The flow rate is initially 30 cfs. Water is flowing. Find (a) the water-hammer pressure for instan
taneous valve closure; (b) the approximate water-hammer pressure at the valve if it were closed in 
4.0 s; (c) the water-hammer pressure at the valve if it is manipulated so that the flow rate drops almost 
mstantly from 30 to 10 cfs; (d) the maximum water-hammer pressure at a point in the pipe 300 ft from 
the reservoir if a 1.0-s valve closure reduces the flow rate from 10 cfs to zero. 

Q 30 
V = - = -- = 2.38 fps 

A n2 2 

(a) ph= pep V = 1.94(3,200)(2.38) = 14,800 lb/ft 2 = 102.6 psi 

' 4,000/3,200 1.25 . 
(b) Ph~- -- Ph=- - (102.6) = 32.1 pst 

4.0 4.00 

(c) For this case of partial closure Eq. (13.11) may be written as 11ph = pcp(/1 V). 

30- 10 
11 V = - 2 = 1.59 fps 

n2 

!1ph = 1.94(3,200)(1.59) = 9,000 lb/ft 2 = 68.5 psi 

(d) If 2x0 /cp = 1.0 s, x 0 = 1,600 ft, so that full water-hammer pressure will be developed in the 
pipe only in the region that is farther than 1,600 ft from the reservoir. 

For this case, at valve 

2.38 
ph= 1.94(3,200)--:;- = 4,920 lb/ft 2 = 34.2 psi 

\00 ft from reservoir: 

300 
Ph = 34.2 -- = 6.4 psi 

1.600 

l.l..-_ ~ &Ll ( H \\181-.R~ 

Ia a ~j6ockc:llic .,._ die Bow of water to a turbine must be decreased very 
~ •t.c.IICC ~ a a sudden drop in load. This rapid decrease in flow will 
~ • ... -.-r•"""" ~and u.ay result in the need for a very strong 
_.111::8ae apensn-e pipe. lbere are se\eral..., a:• s to handle a situation of this sort; 
.3K i5 by me of a surge rank. or surge chamber.:\ simple surge chamber is a vertical 
.-dpipe connected to the pipeline as shown in Fig. 13.9. With steady flow in the 
~ tbe "~~~~·ater le\·el::: 1 in the surge chamber is below the static level (z = 0). When 
31: 'llllhc is suddenly closed. water rises in the surge chamber. The water surface in diE.-. .,-ill then fluctuate up and down until damped out by fluid friction. The 
~ of pipe upstream of the surge tank is in effect afforded protection from the 
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Static level z max 

'===~====~==~~~~----~--~z=O 

Hydraulic gradeliile-::r z.; 
L,f,D A8 ", 

' 

Figure 13.9. Definition sketch for 
surge-chamber analysis. 

high water-hammer pressures that would exist on valve closure if there were no 
chamber. 

An approximate analysis for this simple surge tank may be acquired by writ
ing the energy equation for unsteady flow between the surface of the reservoir and 
the water surface in the surge chamber. Neglecting fluid friction, velocity head, 
and inertial effects in the chamber and neglecting pipe and surge chamber 
entrance losses, we get 

0 f 
L V 2 LdV dz 

- --=z+--
D 2g g dz dt 

(13.13) 

In this equation z represents the level of the water surface in the surge chamber 
measured positively upward from the static level where z = 0. 

With the valve completely closed, the continuity equation "is 

dz 
AV=A

s dt 
(13.14) 

where A and As are the cross-sectional areas of the pipe and surge chamber, 
respectively. Combining these two equations, integrating, and solving for V yields 

(13.15) 

which expresses the relation between velocity in the pipe and water-surface level in 
the tank over the interval from valve closure to the top of the first surge. Equation 
(13.15) may be usedto estimate the maximum height of surge zmax by finding the 
constant of integration C for steady-state conditions at the instant of closure 
(z = z 1 ) and then solving for zmax when V = 0. Since the derivation neglected fluid 
friction, velocity head, and inertial effects in the surge chamber as well as minor 
losses at pipe entrance and surge tank junction and assumed instantaneous valve 
closure, the value of zmax as computed by Eq. (13.15) will be larger than the true 
value and thus the results provide a conservative estimate for preliminary design 
of simple surge tanks. 

Surge chambers are usually open at the top and of sufficient height so that 
they will not overflow. In some instances they are permitted to overflow if no 
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damage will result There arc many types of surge chambers. Some have a restric
tion at entry; others have a closed top so that there is an air cushion within the 
tank during operation. 

The surge chamber, in addition to providing protection agamst water
lhammer pressures. fulfills another desirable function. That IS, in the event of a 
udden demand for mcreascd flo\\. it can provide some excess \\:ater. Y.htle the 

.:ntirc mass of Y.ater in a long pipeline i:. being accelerated. The acceleration of 
masses of liquids in pipeline" \\as discussed in Sec. 13.4. 

PROBLEMS 

13.1. Suppo~e a ship lock ha~ verueal Sides and that water enters or di~charges through a conduit area 
A uch that Q C~ tj'!.q:. where : is the variable difference in level between the surface of the loci.. 
and that outside. Prove that for the water level in the lock to change from z1 to : 2 the time is 

I = ( 2A_!_ ) (=l 2 - =~ 2) 
C4 A..../2g 

~ou If the lod. i-. being filled, the ~1gns must be reversed.) 

13.~. Suppo e a rc,enolr ha' \erucal sides and that inuiall) there is a 'lead~ flow mto 11 such that the 
ht of the 'urfa~:e ubo\e the level of a ~pillway (Q = C,. LH3 2 ) is : 1. If the mflow is suddenly cut 
PfO\C that the ume requm:..l fM the water le,el to fall from z1 to : 2 1s 1 (:!A, C,. L) 

(I , : 2 - I , : 1) Hov. long v.tlllltnl..e theoreueall} for t'le outfl v. to cease cntirel}? :Sote: = II. 

U.3. Suppose a htp lock b of umform re~:tangular eros" ~ecuon and " 300 ft (90 m) long b) 90 ft 
.5 m) 'll."ide Suppose the water enters the lock through a conduit for v.hich the di.,charge codlic~ent 

• trthe '!later urfacc m the lock IS imually 36ft {II m) below the lc'el of the surface of the v.ater 
::ream. boll large mu t the condun be 1f the lock h to he filled m 5 mm? 

U..C.. 1be crest of the O\erflov. p1llv.a) of a re<;enolr i' 100ft long. and the value of C 11 (Eq. 12.2S) 
,c S ppose that for the range of le\els here con~idered the area of the water surface ts constant 

2 I t :ae a flO'Il mto the resen01r at such a rate that the he1ght of the 
p lv.1l) crest stabtlt7ed at 3 ft and then the mflov. is \uddenly 

or the v.ater urface to fall to a he1ght of I ft above the level of 
"' ta e for the outflow to reduce to zero ' 

~ r 1 ;oft long. and the \aluc of c., (E4 12.25) 
med constant at 600.000 tt1 for the range of hc1ghh 

IS 3 ft below the level of the spillway crest If 
.. of ~oo cfs. what will be the height of water in 

'll I be reqUired for th1s he1ght to be reached? 
to reach a he1ght of 2 ft abo\e the lc~el 

} te~allon arter \Ub\litUttng \ 1 for :.l•l 

tegral tables tiO'Ile\cr. n v.1ll be ea,~<:r to >ohe 11 graphically either by plottmg 
g the area the cur\e or b~ compuung the latter b) 'orne method. ~uch 

enters a rescnmr at uch a rate that the he1ght of v.ater abo\c the lc\.:1 of the 'Jllllv.a) 
The ptlllla) (Q • C,. Ul 1) 1 100ft long, and the \aluc of C,. 1' '-45 The area 
urfacc for \'ilrtous \\'iller le\ch ts a follo~~o, 
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z, ft A,, 'ft 2 

3.00 860,000 
2.50 830,000 
2.00 720,000 
1.50 590,000 
1.25 535,000 
1.00 480,000 

If the inflow is suddenly reduced to 150 cfs, what will be the height of water for equilibrium? How long 
will it take, theoretically, for equilibrium to be attained? How long will it take for the level to drop 
from 3 to 1 ft above that of the spillway? 

13.7. Work Prob. 13.6 using the same numbers but changing ft tom, ft 2 to m2
, and cfs to m3/s. 

13.8. The figure shows a tank with vertical sides containing a liquid with a surface area A,. The liquid 
discharges through an orifice under a head z which varies from the initial height h to 0 as the tank 
empties down to the orifice level. Neglecting friction losses, what is the total kinetic energy of the jet 
during the time required for the liquid surface to drop from h to 0? How does this kinetic-energy 
summation compare with the total energy of the mass of fluid initially in the tank above the orifice 
level? 

h 

I 

Prob. 13.8 

13.9. Suppose that in Pro b. 13.8 the value of A, is 10 ft 2
, his 16 ft, and the jet diameter is 4 in. (a) How 

long will it take the tank to empty down to the orifice level? (b) If the liquid is water, what will be the 
total kinetic energy of the jet during that time? 

13.10. Suppose in Pro b. 13.8 that the value of A, is 20m 2, h = 5 m, and the jet diameter is 10 em. (a) 
How long will it take the tank to empty down to the orifice level? (b) If the liquid is water, what will be 
the total kinetic energy of the jet during that time? 

13.11. The figure shows a tank whose shape is the frustrum of a cone with a 2-ft2 orifice in the bottom. 

36' 

I ~~ 

~ ~\j-1 ___ -- _l Prob. 13.11 
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Assume Cd = 0.62. If the water level outside of the tank is constant at section 2, how long will it take 
the water level in the tank to drop from section I to section 2? (Note: Diameter of tank= Ky, and 
y = z + h2 , where z is the variable distance between surface levels.) 

13.12. If in the figure for Pro b. 13.11 the water surface outside the tank is constant at section I and the 
tank is initially empty, how long will it take for the water level in the tank to rise from section 2 to 
section I? Assume a 2-ft 2 orifice with Cd = 0.62. 

13.13. The tank in the figure has vertical sides and is 5 ft ( 1.5 m) in the dimension normal to the plane 
of the paper. It is divided by a vertical plate in which is a submerged orifice 0.5 ft 2 (0.045 m2

) in area. 
Assume C" = 0.65. How long a time will be required for the two water surfaces to equalize? 

I 
12' (3.6 m) 

l 
I Prob. 13.13 

13.14. Work Prob. 13.13 using the given SI dimensions. 

13.15. A l-in-diameter smooth brass pipe 1,000 ft long drains an open cylindrical tank which contains 
oil (p = 1.8 slugs ft 3

• 11 = 0.0006 lb·s/ft 2
). The pipe discharges at elevation 100 ft. Find the time 

required foc the oil level to drop from elevation 120 to elevation 108 ft if the tank is 4ft in diameter. 

13.16. Verify that the neglect of the (L g)(d!' dt) term was justified in lllustrative Example 13.1 by 
liDding its \alue when :: = 5 ft. 

13.17. A large reservoir is being drained with a pipe system as shown in the figure. Initially, when the 
pump is rotating at 200 rpm. the flow rate is 6.3 cfs. If the pump speed is increased instantaneously to 
!50 rpDL determine the flow rate as a function of time. Assume that the head hP developed by the pump 
• P£opon:ional to the square of the rotative speed; that is. h_ x n2 

40ft 

~--------J~~ 
Prob. 13.17 

a ll.qJair ~ EJ- ••m <~~.1 .:..;.:. ~same except use a 24-in-diameter pipe rather than a 12-in 
1r: .... -.Ill' llllr Gill!:., a ~ diameter pipe. 

ft lldi:r 110 ~ E:umple IJ~ Bod .Ue .a pk>t of flow rate \ersus time. 

:.. W.rt 1-.str.une Eumpk B~ fO£ the case "'here the pipe lengths are 400 and 1,500 ft rather 
a :!10 -s -50 ft .. -\ll odlef' data are the same. 

:1.. Suppose that in Illustratl\e Example 13.2 the pump speed had been reduced instantaneously 
• U.:'o) to l.l50 rpm. What then would have been the rate of deceleration of the flow immediately • * change in pump speed., 

ll. -\ttached to the tank in the figure is a flexible l-in-diameter hose(!= O.D15) of length 200ft. 
~ I:U1 is hoisted in such a manner that h = 20 + Jr. where h is the head in feet and t is the time in 
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h 

_l 
%~~~~~~~~;,-: Prob. 13.22 

seconds. (a) Find as accurately as you can the flow rate at t = 10 s. (b) Suppose h were decreasing at the 
same rate. What, then, would be the flow rate when h =50 ft 0 

13.23. Repeat Pro b. 13.22 for the case of a 4-in-diameter hose with all other data to remain the same. 

13.24. In Prob. 13.22 suppose h was changed instantaneously from 20 to 50 ft. Under these conditions 
find the flow rate at t = 10 s. 

13.25. A 4-in-diameter pipe of length 3,000 ft drains a reservoir. The elevation difference between the 
reservoir water surface and the pipe outlet is 100ft. Initially there is no flow since there is a plug at the 
pipe outlet. The plug is then removed. Plot Q versus t, assumingf= 0.020. 

13.26. Repeat Prob. 13.25 for the case where the pipe length is 300 ft rather than 3.000 ft. 

13.27. A 15-cm-diameter pipe of length 500 m drains a reservoir. The elevation difference between the 
reservoir water surface and the pipe outlet is 60 m. Initially there is no flow because a valve at the pipe 
outlet is closed. The valve is suddenly opened; plot Q versus t assumingf= 0.03. 

13.28. A lO-in-diameter pipe (f = 0.020) of length 300ft is connected to a reservoir. At the discharge 
end of the pipe is a nozzle that produces a 4-in-diameter jet. The elevation difference between the jet 
and the water surface in the reservoir is 40 ft. The nozzle has a coefficient of velocity of 0.95. Initially, 
there is a tight-fitting plug in the nozzle, which is then removed. For this situation derive an equation 
similar to Eq. (13.7) and plot flow rate vs. time. Assume that the liquid level in the reservoir does not 
drop. 

13.29. A large water reservoir is drained by a pipeline that consists of 200 ft of 6-in-diameter pipe 
(f = 0.030) followed by 500 ft of lO-in-diameter pipe (f = 0.020 ). The point of discharge is 100 ft below 
the elevation of the reservoir water surface. A valve at the discharge end of the pipe is initially closed. It 
is then quickly opened. Derive an equation similar to Eq. (13.7) applicable to this situation, and plot 
flow rate versus time. Neglect minor losses. 

13.30. An open tank containing oil (s = 0.85, J1 = 0.0005 lb·s/ft 2
) is connected to a 2-in-diameter 

smooth pipe of length 3,000 ft. The elevation drop from liquid surface in tank to point of discharge is 
15 ft. A valve on the discharge end of the pipe, initially closed, was then opened. Plot the ensuing flow 
rate vs. time. 

13.31. A vertical l-in-diameter pipe 10ft long is full of oil of specific gravity 0.88 and viscosity 
0.004 lb·s/ft 2

. Find the time required to drain the pipe after a plug is removed from the lower end. 
Assume that the head loss is given by the equation of established laminar flow and that surface-tension 
effects are negligible. 

13.32. An open tank containing oil (s = 0.82, v = 0.002 m2/s) is connected to a 10-cm-diameter pipe of 
length 400 m. The elevation drop from the oil surface in the tank to the pipe outlet is 2.5 m. A valve at 
the end of the pipe, initially closed, is suddenly opened. Plot the ensuing flow rate as a function of time. 

13.33. What is the celerity of a pressure wave in a water pipe 5 ft in diameter if it is (a) steel with a 
thickness of 0.5 in; (b) concrete with a thickness of 4 in? 

13.34. If the steel pipe in Prob. 13.33 is 4,000 ft long, what is the time required for a pressure wave to 
make the round trip from the valve? If the initial water velocity is 8 fps, what will be the rise in pressure 
at the valve if the time of closure is less than the time of a round trip? 

13.35. If the valve in Prob. 13.34 is closed at such a rate that the velocity in the pipe decreases 
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uniformly with respect to time and clo,ure is completed in a time 1< = 5Licp . appro"matcly what 
will be the pressure at the vahe when the first pressure unloading wave reaches the \alve '? 

13.36. Find the celcrit) of a pre"ure wa \ e m benzene (Appel\dix l Table A.4a) contamed in a 
6-m-drameter steel prpe ha\ing a wall thrcl.ne>s of0.285 in. 

13.37. For the situauon deprctcd m lllu,trame Example 13.4 find the water-hammer pre"ure at the 
\ahe 1f a Aow of RO cf, '' reduced to ~5 cf, rn 3.0 s. Linder these condition~ what would be the 
maximum water-hammer pre"urc, at poinb 500 and 1.500 ft from the resenorr? 

13.38. Water 1s AO\\ ing thro u!!h a 30-cm-{hameter welded-steel pipe of length .:!.000 m that drains a 
reservoir under a head of-10m . rhe prpe has a thickness of8 mm. (a) If a valve at the end of the prpe 1s 
closed rn 10 s. appro \imatel) \\hat wa1er-hammer pressure will be developed'! (b) If the steady-state 
flow is instantancou'l) reduced to one-half it~ original value. what water-hammer pressure would you 
expect? 

13.39. In the figure. the total length of pipe is 10.000 ft, its diameter is 36 in, and its thickness is {in. 
Assume E - 30,000.000 psi and £ , - 300,000 p~i. If the initial velocity for steady How is 10 fps and the 
valve a1 G is partially closed so as to reduce the flow to half of the initial velocity in 4 s, find (a) 
maxnnum pressure rise from the water hammer; (b) the location of the point of maximum total pressure. 

A 

Hydraulic gradient f 
or normal flow 

100' 

s.ooo· Valve 

E 

B 

Prob. 1339 

I.~AO. U mg fq (13 II) and (13 12) and the data for Figs. 13.7 and 13.8 al> gi\en in the footnote. 
compute the \\ er-hammer pre,~ure for each ca,c and compare the answers with the actual measure
ments. 'o. for the gt\ en da ta. compute f. 
13..41. D:r :e Eq (I' IS~ 

() ft long , upphe' water to a small power plant. What height would be 
n 6 ft m drameter situated 50 ft up,trcam from the vahe at a point where 

110 ft beiO\\ the water surface in the reservoir if the tank is to protect 
ce at the p lant'! The valve is I 50 ft below reservoir level, and the 

a be.J-mouthed entrance to the pipe from the reservoir. 

diameter of surge tank that wil l produce a surge 

pplies wa ter to .a small power plant. What 
dJa eter -nuated 100 m up~arcam from the 

o the p pe m below the water ~urface in the reservoir? 
\C The \ahe rs 50 m below reservoir level and the flow IS 



CHAPTER 

FOURTEEN 
SIMILARITY LAWS AND 
FACTORS FOR TURBOMACHINES 

In this and the next three chapters1 our discussion will be confined to turboma
chines (i.e., those that rotate} conveying constant-density fluids. Chapters 15 and 
16 deal with hydraulic turbines while centrifugal and axial-flow pumps are con
sidered m Chapter 17. In Sees. 6.9, 6.10, and 6.11 there is a discussion of the torque 
developed in rotating machinery and of flow in rotating channels; it is suggested 
that the reader review that material before proceeding further. Other types of 
fluid machinery, none of which will be considered in this text, include steam 
turbines, blowers, compressors, and positive-displacement pumps such as rotary 
pumps and piston-in-a-cylinder reciprocating pumps. 

14.1. EFFICIENCY DEFINJTIONS 

The efficiency of a turbine or pump can be broken down into three components: 
the volumetric efficiency, the hydraulic efficiency, and the mechanical efficiency. 

1 English units of measurement are used exclusively in Chaps. 14 through 17. If SI units are given, 
they should be converted to English units before using an equation that is not dimensionally correct. 

438 
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Turbine 

The overall efficiency e of a turbine is defined as 

Power delivered to the shaft Tw 
e= . =-

Power available in the water yQh 
(14.1) 

where Tis the torque delivered to the shaft by the turbine, w is the rotattve speed 
m radians per second, Q is the flow rate, and his the net head on the turbine (Sees. 
15.4 and 16.7). 

The volumetnc efficiency el refers to the possible loss of efficiency through 
leakage around the outside of the rotor or rotating element. 1 In other words, not 
all of the fluid flowing is necessarily effective in the energy transfer process. In the 
case of a turbine, let QL represent this leakage while Q represents the net flow 
passing through the turbine. Then Q - QL represents the flow that is effectively 
cting on the rotor. Consequently, the volumetric efficiency is 

e = Q- QL 
v Q ( 14.2) 

Ordmarily this leakage is a very small percentage of the flow and for snmt ~a
chine-. it docs not exist, but under unfavorable conditions it may be important. 

The hydraulic efficiency eh of a turbine is the ratio of T(Q - QL)h", the power 
transferred from the water to the rotor, to y(Q - QL)h, the available power in the 

id that effectively flows through the rotor. In Sec. 6.10 it was shown that the 
bead utilized by the r tor. 1 = (u 1 V1 cos :x 1 - u2 l; cos :xJ. g. This can also be 
apressed ash = h -1t1 , \\here h1 is the fluid-friction head loss in flow through 

turbme including lo ... s at the exit. Thus the hydraulic efficiency of a turbine is 

h- 111 h 
e• = h h ( 14.3) 

• of a turbine is the ratio of the power available at the 
voater on the rotor. Thus, 

Tw 
T. 

bp 

Dp ~ fp 
( 14.4) 

rred to overcome mechanical friction. The 
po\\er a\ ailable at the shaft of the machine, 
used up in overcoming mechanical friction, 

"turfing boxes and disk friction be
t ~ adJacent casing. The mechanical 

""+-".....- tS u ua1l) relamel) htgh. about 95 to 98 percent. 
1e q can be found by noting that bp + fp, the power 
vo ter to the rotor. can be expressed as t'(Q QL) 
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x (II- 11
1

). Substituting this into Eq. (14.4) and comparing with Eq. (14. L) gives 
for the overall efficiency of a turbine, 

( 14.5) 

Pump 

For a pump the efficiencies are analogous to those for a turbine but they are 
essentially inverted. If there is leakage at a rate QL back from the high-pressure 
side to the low-pressure side of a pump, there is a loss of energy because work is 
done upon the fluid that has leaked. For a pump the volumetric efficiency is 

Q 
e = - -
" Q + QL 

( 14.6) 

where Q represents the flow actually delivered. The hydraulic efficiency of a pump 
is 

h 
( 14.7) 

where h represents the net head delivered to the fluid by the pump while h" is the 
head transferred from the rotor to the fluid. In this case II= II" - 111 , where h 1 
is the hydraulic head loss. The mechanical efficiency of a pump is 

bp - fp 
em= bp ( 14.8) 

where bp is the power at the pump shaft ( = Tw) whilefp represents the power lost 
to mechanical friction in the bearings and stuffing boxes as well as in the disk 
friction. 

The total, or oeera/1, efficiency of a pump can be found by noting that 
bp - fp, the power that is transmitted from the rotor to the water, can be 
expressed as y(Q + QJ(h + h1). Relating this to the preceding equations gives for 
the overall efficiency of a pump, 

Power put into the fluid yQh 
e = Power available at shaft = Tw = e,.ehem ( 14.9) 

These same equations apply to compressors. blowers, and fans, but if there is an 
appreciable change in the density of the fluid, some modifications may be neces
sary. In Fig. 17.13 the various losses of power (and, hence, of energy) are shown 
for the case of a pump. Details on the nature of the hydraulic losses are presented 
for turbmes in Sec. 16.11 and for pumps in Sec. 17.8. 
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14.2. SIMILARITY LAWS 

Slllilarity laws permit the prediction of the performance of a pro tot} pe machine 
rom the test of a scaled model. These laws also permit prediction of the perfor-

11 .:.nee of a given machine under different conditions of operation from those 
u:1der which it may have been tested. Similarity laws are based on the concept that 
t'\\o geometrically similar machines with similar velocity diagrams at entrance to 
and exit from the rotating element are homologous. This means that their stream
line patterns will be geometricall} similar, i.e., that their behaviors will bear a 
resemblance to one another. 

Similarity laws can be derived by dimensional analysis. The most significant 
nnables 1 affecting the operation of a turbomachine are the head h, the discharge 
Q the rotative speed n, the diameter of the rotor D, and the acceleration of gravity 

Thus. from the Buckingham n-theorem (Sec. 7.7), since there are five dimen
al variables and two fundamental dimensions (L and T), there will be three 
en,ionless groups. We have 

[(h. Q, n, D. g)= 0 

n grouping these variables into dimensionless quantities. we get 

1' ( 11~3' n;D' ~) = O 

te t on turbomachmes h:ne demonstrated that the second dimen-
q m~ mn:r el~ proportional to the third. hence. we can combine 
ge H n2D2 

Q gH) = 0 
nD3 ' tz:D: 

(14.10) 

turbme and the pump individually to confirm the 

r me runner. and in Fig. 6.10 is shown 
ne at right angles to the runner shaft. 

pecial form of orifice in that the !1ow 
.,.,.e a '>elocit} and the latter is some 

_rea IS A~ ~DB. where f is the 
pa::e. the \ane~ tak.mg up the rest. The 

For a ::.ene::. of homologous runners BID= 
~mD~. 

operauon of one turboma.:.-hme to anoth~r \lith d•fT~rcnt nuids m each. 
be as gnmC':lnl \anable. 
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D- -----

Figure 14.1. Profile of turbme runner or pump 1mpellcr 

The radial component of the velocity entermg the runner IS (F1g. 6.10) 
V. = V1 sin cx1 = C, .y 2gh, where C, is a factor determined by test and influenced 
by the type of runner, though it is substantially constant for a series of homologous 
runners. As 

Q = Ac V. = (JnmC,.jfg)D 2jh 

the expression within the parentheses may be replaced by K9 so that 

Q = K 9 D2Jh ( 14.11) 

where K
9 

is a constant for a series of homologous runners. Note that K
9 

has 
the same dimensions as Jg. 1 

From Fq. (6.21) torque is a function of pQ, r 1, r 2 , V1, and V2 • Now r 1 and 
r 2 arc proportional to D, and V1 and V2 are both functions of v h. Hence 
torque is proportional to pQ r V which is proportional to p(D2 jh)D.jh. or 

T = K,1D3h (14.12) 

where K, is also constant for a series of homologous runners. 
The rotative speed i:> w = 11 r, where w is expressed m radians per second, 

though for practical engineering purposes it is customary to use revolutions per 
minute for most hydraulic machinery. As 

and u 1 is proportional to v It, 

60w 60111 
n=-

2n nD 

-.;h 
n= K 

n D 

Power P =- Tw, and as w = 2nnf60, it follows that 

p = Kp rD2h3i2 

(14.13) 

( 14.14) 

Since P- e;·Qit, Eq (1414) could also have been obtained by inserting in this 
expression the value ofQ from Eq. (14.11). 

1 We are assummg here 1ha1 g i~ a constant and hence its effect drops out StriCtly speaking. 
howe\cr. the q should be retamed. For example, Eqs. ( 14.11) to ( 14.18) must be modlf1cd 10 
account for \anation m g when comparing the performance of a aurbomachme on the earth wuh one 
on the moon 
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Pump 

The same F1g. 14.1 will sene to illu,trate the case of a pump, but for the centrifu
gal pump the flow is out'.'ard. There is. however, a practical difference in usage. 
For a turbmc we are u uall) mtere ted in its operation under a certain head '.'hich 
b, fixed b) nature. For a pump "e are usually interested m its operation at a 
certain rotati\e ~peed, detenmned b~ the motor which drives it. For thi~ reason, 
"hen dealing with pump . it is comenient to have n in the equations. 

From Eq. (14.13) 

II= K 1 D
2n2 

and substituting this expression for II in Eq. (14.11), we obtain 

Q = K 2 D3 n 

T = K 3 1•D5 n2 

p = K4}'Dsn3 

(14.15) 

(14.16) 

(14.17) 

( 14. 18) 

For any one de~ 1gn of a turbine or a pump these constants can be evaluated. 
preferabl) from test data. and then used for a series of different sizes. pro' ided 
the) are all homologou~ Also. note that the relations predicted in Eq. ( 14.10) were 
confirmed in Eqs. (14.16) and (14.15). 

14.3. PERIPHERAL-VELOCITY FACTOR 

For a turbine runner (Fig. 6.10) or a pump impeller (Fig. 6.1 1) the ratio of it~ 
peripheral \elocn) to , 2gh as almost uni\ersall) denoted by </J. Thu~. for a 
turbine. 

htle for a centrifugal pump. 

= "1gh or h = ) , II~ 
<P- 2g 

(14.19) 

( 14.:20) 

the designations of the peripheral speeds of these 
ov. machme it is the vane-t1p speed u, that is 

w= 
II </J, ?.gh 

practical engmeermg u e. 

rt= 

r r 

60u 

nD 
60</J, 2gh 

nD 
( 14.21) 
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which may be reduced to the convenient form 

nD ;= 153.2¢Jh {14.22) 

For any machine its peripheral velocity might be any value from zero up to 
some maximum under a given head, and ¢ would consequently vary through as 
wide a range. But the speed which is of the most practical significance is that at 
which the efficiency is a maximum. The value of this dimensionless factor for this 
particular speed may be designated as ¢e, but frequently the subscript is omitted. 
It is the numerical value of tPe that is usually inserted into Eq. (14.22). 

The numerical value of tPe depends upon the type of the machine, but for a 
series of homologous machines it is a constant. lls numerical value in a specific 
case may be estimated by theory, but practically it is determined by test. 

14.4. RESTRICTION ON USE OF SIMILARITY LAWS 

Similarity laws arc of great practical value and are also reliable, but they are 
restricted to certain conditions in their application. Thus, in comparing two ma
chines of different sizes, the two must be homologous, as has been stated 
previously. But even for the same machine there is a restriction, which will now be 
explained. 

Consider Fig. 14.2, which may represent the rate of discharge through a 
hydraulic turbine at different rotative speeds under a constant head, which we 
shall assume to be h2 . There is no simple or accurate theory which will determine 
this relationship, and so the curve shown must be established by test. There is thus 
no theoretical relation between any two points on the same curve. But suppose we 
have the complete curve from experiment and we wish to compute the corre
sponding curve for some other head, such as h1. This may be done by the use of 
Eqs. {14.11) and ( 14.13) together, but not by one of them alone. Thus, if we use the 
former equation to give Q1 = Q2 jh;7h;, this-value will be found only at a speed 
n1 = n2 jh 1 /h2 • As both Q and n are seen to vary as jh, it follows that corre
sponding points are on straight lines through the origin. 

n - rpm Figure 14.2. Performance at various constant heads. 
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Q Figure 14.3. Performance at vanous constant speeds. 

If n varies as Jh, Eq. (14.22) shows that¢ must be constant, and this is the 
tion that must be imposed on use of the similarity laws. If corresponding 
on the two curves arc thus related, there is also a definite relation between 

quantities such as horsepower, but in any case the two values arc for the 
\Slue of¢. 

a .urther illustration of this principle, consider Fig. 14.3, which shows the 
n between h and Q for a centrifugal pump running at some constant speed 

gam, this curve is one which cannot be calculated by an) simple or accurate 
and is determined experimentally. At some other speed n2 , Eq. ( 14.15) 

us h2 111(n2 nJ)2
• but at the same time Eq. (14.16) gives Q2 = Q1(n2 /n1). 

correspondmg \alues for hand Q at the same value of</> lie along parabolas 
the ongin Hence.. once again. for the similarit) laws to apply, ¢ must in 

e1se be the me or the tv. o pomts, but the nature of the constant ¢-lines on 
.. ""''~''" depe upon the particular coordinates. 

P ED 

rbmes is the expression commonly known as 
Q - Sec. 14.2 we can express the brake 

_g me,) D2h3 2 

traduced to account for the 

he \'alue of D2 as obtained from Eq. ( 14.21 ), we 

bhp = ""'n1C 
e-if(2g)3 ~(60f -' J h5 2 

-so "' , -2 ) ;: n 
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It is seen that, in addition to numerical constants, the expression in brackets 
contains certain design factors. If the expression within the brackets is represented 
by n:, then, taking the square root orthis equation and rearranging, we obtain the 
specific speed, which is 

nJbhp 
n.= ~ (14.23} 

Although under a given head any value of rotative speed and corresponding brake 
horsepower might be used, the only ones that will yield a significant value for "• are 
those for which the efficiency is a maximum. Hence the value of n to be used 
should be the most efficient speed for the given head, and the brake horsepower 
should be that for maximum efficiency at that speed. 

The only justification for the terminology specific speed is that if the turbine 
is made of such a size as to develop 1 bhp under 1 ft head, then n. would be the 
revolutions per minute, but the dimensions of n. are really F 1

'
2C 3

'
4 T - 3

'
2

. An 
inspection of the terms in the brackets will show that n, is a function of the design 
factors <f>JmC,, and therefore its value depends on the design of the turbine. In 
fact, it might better be called type characteristic, or some similar name, because it 
does indicate the type of the turbine. In Fig. 15.6 is shown the runner of an impulse 
wheel with a specific speed ns = 5 while in Fig. 16.2 are section views of the 
runners of reaction turbines with specific speeds of 21.3, 80, and 160.1 

Pumps 

A specific-speed factor is equally useful for pumps, but it will appear in a different 
form. In the case of a turbine, we are primarily interested in the power it will 
deliver, whereas in the case of a pump or similar machine, we are primarily 
mterested in the quantity rate at which it will deliver fluid. Substituting the value 
of D2 from Eq. (14.21) in the expression Q =A(~ (Sec. 14.2} we obtain 

Q = </>2mC, [
f(2g)3f2(60)2 ] 173/2 

1t 112 

As in the case of the turbine, the expression in brackets contains not only numeri
cal constants but also design factors, and if this expression is represented by n;, we 
obtain the specific speed 

(14.24) 

For a given pump this expression might have any value from zero at no flow to 
infinity at maximum Q and zero head, but the only value that is significant is that 
at the point of maximum efficiency, i.e., 11 = n., the speed for maximum efficiency. 

1 The specific speed of turbines is sometimes computed using metric units. i.e .. I. W for brake 
horsepower and meters for head. In that case. (n,)""'";c = 3.8 x (rt,)e.•h••. 
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In the case of pumps handling liquids. it is customary to use cubic feet per 
econd for large flows and to u'e gallons per minute for most usual capac1tres. 

Employing this common unit. 

( 14.25) 

vohere N s = 21 .2n SJ~Jiarl) to the turbine. the specific speed for a pump is the 
re\olutions per mmute for a pump of such a size as to dehver unit volume of fluid 
per unit time at a head of I ft. although the actual dimensions are L3 4 T 3 2 . The 
real value of the expression is that it indtcates the type of pump. In Fig. I 7. I 7 are 
section views of the impellers of centrifugal and axial-flow pumps over a range of 

ue:. of N. from 600 to 12.000.1 

For a multistage pump the value of h to be used in computing specific speed is 
tread per stage. For a double-suction pump the specific speed is sometimes 

on the total capacity, but in general it is preferable to compute it by using 
-half of the total capacity on the basis that a double-suction impeller is the 

:alent of two single-suction impellers placed back to back. 

trathe Example 14.1. At its optimum potnt of operation a gi\cn centnfugal pump With an 
dtameter o SO em deh\er' 12 m 3/s of water against a head of 25 m when rotating at 

rpm. 
If 1ts effiCICnC) IS :2 percent, what 1s the brake power of the driving sha ft? 
H a homologous pump "1th an 1mpeUer dtameter of ,.0 em IS rotating at 1,200 rpm. what 
tbe d head. a d hat pooer? A ume b01h pump> operate at the same efficiency. 

C peafic speed of both pump,. 

Ti - iQ 
e 

25 } 
• 955 !.: :-> m s = 955 kW = 1.280 hp 

- s.-oo k\\ 

pi p mps JS somet mes computed b) usmg mctrtc unlls. 1.e .• m3 s 

t 1 case, (n,)_ • 00 19~ x (JV,)tn11,.h · 
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As a check, from Eq. (14.18~ P oc D 5n3
, 

(bp}z = (bp)
1 

' = 955 X 10.4 X 0.51 = 5,700 kW (
80) 

5
( 1 200) J 

50 1,450' 

(c) Converting to English units: 

h1 - 27.1 ft Q1 = 50,700 gpm h2 =144ft Q2 = 172,000 gpm 

1,450v 50,700 1.200vfl72,000 
N., = 34 = 12,000 N., = - 144314 "" 12,000 

27.1 

Since the pumps are homologous we expect them to have the same specific speed. 

PROBLEMS 

14.1. At a hydroelectric plant the difference in elevation between the surface of the water at intake and 
at the tailrace is 600 ft. When the flow is 80 efs, the friction loss in the penstock is 60 ft and the head 
utilized by the turbine is 460 ft. The mechanical friction in the turbine is 100 hp, and the leakage loss is 
3 cfs. Find (a) hydraulic efficiency; (b) volumetric efficiency; (c) power delivered to shaft; (d) brake 
horsepower; (e) mechanical efficiency; (f) overall efficiency. 

14.2. A turbine rotating at 200 rpm and operating under a net head of 150m delivers a torque of 
772 kN·m to its shaft when the flow rate is 12 m3js. What is the efficiency of the turbine? 

14.3. A turbine runs at 150 rpm, discharges 200 cfs, and develops 1,600 bhp under a net head of81 ft. 
(a) What as us efficaency? (b) What would be the revolutions per minute, Q, and brake horsepower of 
the same turbine under a net head of 162ft for homologous conditions? 

14.4. If a turbine homologous to that in Prob. 14.3 has a runner of twice the diameter, what would be 
the revolutions per minute, Q, and brake horsepower under the same head of81 ft? 

14.5. What arc the values of the torque exerted by the runners in Probs. 14.3 and 14.4? What is the 
specific speed for the runners of Probs. 14.3 and 14.4? 

14.6. If tP for the runner in Prob. 14.3 is 0.72, what is the diameter of the runner? What, then, are the 
value~ of K,. K,, K •• and K,. for that series? 

14. 7. An 18-in..<Jaameter centrifugal-pump runner discharges 25 cfs at a bead of 100 ft when running at 
1,200 rpm. If its efficiency is 85 percent, what is the brake horsepower? If the same pump were run at 
1,800 rpm, what would be h, Q, and brake horsepower for homologous conditions? 

14.8. For the pump in Prob. 14.7, what are the values of K 1, K 2 , and K 4 ? What is the specific speed? 

14.9. What head will the pump of Prob. 14.7 develop if it is operating on the moon at 1200 rpm and 
delivering 25 cfs? 
14.10. An axial-flow pump delivers 300 tjs at a head of 6.0 m when rotating at 2,000 rpm. If its 
efficiency is 80 percent, how many kilowatts of power must the shaft deliver to the pump? lfthissame 
pump were operated at 2,400 rpm, what would be h, Q, and the power delivered by the shaft for 
homologous conditions? 
14.1 t. (a) At peak efficiency a Pelton waterwheel under a net head of 2,350 ft delivers 17,500 bhp 
at 450 rpm. What is its specific speed? (b) At peak efficiency a reaction turbine under a head of 
92 ft delivers 35,000 bhp at 100 rpm. What is its specific speed? (c) If tf> 0.46 for the former and 
0.75 for the latter, what is the diameter of each runner? 

14.12. A model centrifugal pump is made with a scale ratio of 1: 10. The model was tested at 
3,600 rpm and delivered 3 cfs at a head of 125 ft with an efficiency of 90 percent. Assuming the 
prototype to have an efficiency of 91 percent and to develop the same head, what will be its speed, 
capacity, and horsepower required? Liquid pumped is water. 

14.13. All dimensions of pump A are one-third as large as the corresponding dimensions of pump B. 
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~ operating at 300 rpm, 8 delivers 100 gpm of water against a head of 50 ft. Assummg the same 
diciency (a) What will be the speed and capacity of A when it develops a head of 50ft; (b) what will 

&he speed and head of A when it deli\ers 100 gpm; (cl what will be the head and capacity of A when 

operates at 300 rpm? 

4 .. 14 A model centrifugal pump has a 'cale ratio of I : 15. The model was tested at 3200 rpm 
ddJ\ered 0.10 m3,'s of water at a head of 40 m with an efficiency of 86 percent. Assuming 

pc-ototype has an efficienC) of88 percent., what will be its speed, capacity and power requirement 

a bead or 50 m? 



CHAPTER 

FIFTEEN 
IMPULSE TURBINES 

15.1. DEFINITION 

An impulse turbine, whether for water, steam, or gas, is one in which the total 
drop m pressure of the fluid takes place in one or more stationary nozzles and 
there 1s no change in pressure of the fluid as it flows through the rotating wheel. As 
there is no pressure variation in flow over the buckets or vanes, the fluid does not 
fill the passageway between one bucket or vane and the next. Customarily, only a 
portion of the circumference of the wheel is acted upon by the fluid at any one 
instant. 

The energy of the fluid entering the rotor is in the form of kinetic energy of the 
jets. In flow over the buckets or vanes of the runner this kinetic energy is absorbed 
by transformation into the mechanical work delivered to the shaft, a part is 
dissipated in fluid friction, and there is some residual kinetic energy of the fluid 
leaving the rotor. 

The foregoing statements and the theory presented in this text apply to all 
types of turbine, but steam and gas turbines involve thermodynamic principles in 
addition, and so their complete theory is outside the scope of this book. Because of 
practical features, the mechanical construction of hydraulic turbines differs widely 
from that of steam or gas turbines, and physically they bear little resemblance to 
each other. In this text the descriptive material will be confined to the hydraulic 
turbine. 

450 
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fi 15.1. Douhle-o\erhung 1mpul,c: ~heel. 

15.2. THE HYDRAULIC IMPULSE TURBINE 

I t) pes of hydraulic impulse turbines have been produced in the past, but 
I~ one that has :-.urvived ts the Pelton wheel (Fig. 15.1}, so called m honor of 
A. Pelton (IS29 19011), \\hO contributed much to its development in the 

gold-mining da)s in California. Pelton was granted a patent tn • \S Jon an 
O\ed type of bucket, ih principal feature bemg a !>plitter in the mtddle, since 

---~· .. .,1~ the bucket \\ere merel) cups. Later, W. A. Doble brought out the 
I bucket. "htch i the ba is of the modern forrns. 1 

a re u uall~ set" tth the haft horizontaL and there is usuall) only 
electr generator 1 drhen b) one wheel, the generator is 

be rmgs. "tth the "heel outside. It is then called a .single
le enerator is drhen b) two wheels, as to Fig. 15.1, and 

e ets ma) be employed on one wheel to increase the 
but more commonly the multijet arrangement 

m fig. 15.2. 

in elevation between headwater 
e " thm the case of an impulse 
the pressure at which the Jet is 

te a type and doe~ not nece ,ani) 1mpl} that the 
• In fact. 11 u the des1gnauon commonl) U.'ed 



452 fl.UIO MECHANICS WITH FNGINEERJNG APPLICATIONS 

Figure 15.2. Vertical-shaft impulse turbine with six nozzles at Bridge River plant m British 
Columb1a Gross head 1,226 rt, net head = 1,118 rt, 62,000 hp, n = 300 rpm, pitch diameter 95 in. 
(Courtesy of Pelton Water Wheel Co.) 

discharged. Thus the portion z is unavailable; so the gross head on the wheel itself 
is Y only This is also called the static head It is impractical to set the wheel too 
near the surface of the tailwater because it might then be submerged with any rise 
in level of the latter. However, as Pelton wheels are usually installed under high 
heads, the percentage loss due to this settmg is small. Thus, if the head is 2,000 ft 
and z is 10 ft. the loss is only 0.5 percent. 

The net, or effective, head on the wheel is the static head minus the pipe 
friction losses. Smce the nozzle lS considered an integral part of the turbme, the 

E.L ------ n 
Y Gross 

head 

Fipre 15.3 
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net head is that at B in Fig. 15.3; so the effective, or net, head is 

h=Pa+ V~ 
y 2g 

( 15.1) 

The energy, or head, supplied at the nozzle is expended in four ways. A small 
amount is lost in fluid frictiOn in the nozzle [Eq. (12.13)], a portion IS expended in 

uad ·riction over the bud.ets, kinetic energy is carried away in the water dis
cbarged from the buckets, and the rest is delivered to the buckets. Thus 

J'1 = jet velocity 
v2 = velocity of water relative to bucket at exit from bucket 
v2 = absolute velocity of water leaving the bucket 
It" = energy head delivered to the buckets 

( 15.2) 

greater part of the energy delivered to the buckets is transferred to the shaft, 
me of it is used m overcoming mechanical friction in the bearings and in 
~ loss . 

.. c; t"\OZZLES 

bme. m order to maintain a constant speed of rotation. it is necessary 
v. ra e be aned m propomon to the load on the machine ; and for the 

1 th as done by 'ary ing the size of the jet. This is accomplished b) 
the needle in the needle nozzle of Fig. 15.4. The shape of 

d be such as to cause a minimum friction loss for 

.. ,e deflector 
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all positions of the needle and also such as to avoid cavitation damage to the 
needle at any position. 

An Important feature in attaining high efficiency m an impulse wheel ts that 
the jet be uniform, the ideal being to have all particles of water moving in parallel 
lines with equal velocities and with no spreading out of the jet. Air friction retards 
the water on the outs1de of the jet, and the needle causes the velocity m the center 
to be slightly reduced. Careful design of both nozzle tip and needle will mm1m1ze 
these effects, and a gam in turbine efficiency of several percent has been made by 
improved nozzle design producing better jets. Values of C, for needle nozzles vary 
from about 0.95 when partly closed to permit one-half of maximum flow to 0 .99 at 
the fully opened position. 

For a given pipeline there is a unique jet diameter that will deliver maximum 
power to a jet. Refer to F 1g. 15.3 and note that the power of the jet 1ssu ing from the 
nozzle may be expressed as 

v2 
PJ•• = yQ 2; (15.3) 

where V; is the jet velocity [equal to V1 of Eq. (15.2)]. As the size of the nozzle 
openmg is increased. the flow rate Q gets larger while the jet velocity V; gets 
smaller. Hence. from Eq. ( 15.3) and from the preceding statement, we must con
clude that there is some intermediate size of nozzle opcnmg (and, hence, of jet 
diameter) that w 1ll provide maximum power to the jet. This is best illustrated by 
an example. 

lllu\lrathe t::~.ample 15.1. A 6-m-diameter pipe (f = 0.020) of length 1.000 ft dch\ers water from 
a rc,en 01r w llh a water-,urface dc,ation of 500 fl to a noule at ele,auon .300 fl I he jet from the 
noule as used to dme a 'mall ampul-< turbmc If the head )o, through the nonle ~an he e\pre sed a, 
0.04 I; 2g. find the Jet d.ametc:r that will result m ma.umum power m the: Jet. :\cgl.:ct the head los at 
entran~-c to the r•rc from the rc:,enoir. E'aluate the power in the Jet. 

Encrg) equauon 

. 1.0001; IJ I J 
500 - 0.0:! - 0.04 - .300 + 

0.5 2g 2g 2g 

If we define the ptpe dtameter and velocity as D • and v. and the jet diameter and 'elocll) a' D, .1nd I J. 

from contmuit; we get : 

Su1ce the pipe diameter D, 0.50 ft. 

and 

Sub~tllutmg this cxprc.,.,ion for 1, in the encrg) equation gi'e' 

\•~uming dtff~n:nt \alue, for Dr we can compute corre,pondmg 'aluc' of I 1and Q. and then th~ 
Jet po"er can be computed u'mg F.q (15.3). The result' are a, follow~· 
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DJ. ~). .-t, Q =A,~~. pjet, 

ft fp, ftZ cr,, hp. 

O.OS3 Ill 00054 060 12.8 
0 1~5 00122 I 2 24.2 
0 16~ 0021 .?00 29.8 
0~0 OOH ~- 26.2 

0 0-491 ~ 9~ 18.8 

00S7' 3 29 8.4 
0 197 349 1.9 

a 2- -chameter JCt 1> the optimum, 11 will haYe about 30 hp. 
A a! ernate pro..."Cdure for ,oh mg thh problem is to set up an algebraic expression for the power 

P , as a fun.:uon of the Jet lllameter, DJ' and differentiate PJ., with respect to D1and equate 
find the value of D1 for which P,., t' a maximum. 

PEED REG LA TION 

tt\e peed of an 1mpuhe turbme is maintained constant through u~c -a 
\\hen the load on a turbme drops the wheel tends to ~peed up. th1s 
go\ernor \\hich, in turn. actuates a mechanism to reduce the power of 

ge<> on the buckeb. In most designs this is accomplished by 
le to reduce the flow in the delivery pipe. 1 This may result in 

, ... ,, .... ""r pre ure There are se\eral ways in \\hich this problem 

0 
thiS problem b the use of a jet deflector. as shown in 

can be mO\ed rapidly b)c the governor to deflect a 
,t,...,.....,..,c • ...t amount of'' ater actuall) hits the buckets. 

\e-<1 to decrease the flow in the pipe gradually. As 
1multaneously withdrawn from the jet. 

x or~ needle nozzle below the main one. As 
~ to reduce the flow of water to the buckets, 

13r) nozzle. which discharges a jet that misses 
no change in flow in the pipe. However, 

m v·ill slowly close the auxiliary nonle. 
e c •ng needle nozzle. where the entire 
e c r., :L .. ~ base. The governor can then 

downward from the horizontal, only a 
restored to I.s mitial position as the 

a ~~menh are such as to reduce the flow 
) and ~et bring about a reduction of flow in 

n tlut for ma\tmum Jet power. the nouh: will 
t decreasmg the power of the jet as indicated in 
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Figure 15.6. Integral cast runner. 

Figure 15.5. Runner at 81g Creek 
2A plant of Southern Californ1a 
fdJSon Co. Static head= ~,418ft, 
net head = 2.200 ft. n = 250 rpm, 
pitch d1ameter -= 162 in. (Th1s 
was one of the original runner' 
for 50-cycle generation. All ha\c 
been replaced by 300-rpm runner' 
for 60-cycle generation.) 
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the pipeline more slowly and with a minimum waste of water. However, in case of 
a sudden demand for more pov.oer, the governor will move the needle rapidly to 
prm·ide a bigger nozzle opening. but it will take time for the flow in a long pipe to 
be accelerated. The onl) possible aid in this case is to have a big surge chamber 
(Sec. 13.7) located as close to the power plant as topography permits. Fortunately, 

i1e there may be sudden dc:c::rea!iCS in load, as when a circuit breaker opens, 
maease~ in load u ually oome on more gradually. 

5.7. WHEEL CONSTRUCTION 

re 15.5 shows an impulse runner where the buckets are bolted to a rim, but 
ft"M',.,._..., are also cast in one piece, as shown in Fig. 15.6. 

In both cases there is a notch to permit the bucket to attain a posttion more 
ly tangent to the direction of the jet before the bucket lip intercepts the jet. 
Jel then strikes a splitter, which divides it so that equal quantities Aow out 

c:x:b 1de, thus eliminating end thrust on the shaft. 
The faces of the bucket-; are surfaces of double curvature more or less ell•pso•
in hape and are smooth-ground. The buckets are made of bronze or steel. The 

t and width of the bucket should each be 2.5 to 4 times the jet diameter; 
ise bucket efficiency will suffer. The exact proportions depend on the ratio 
I diameter to jet diameter. 

CflON OF JI..T 

15.7 it is seen that a bucket initially intercepts the jet at a and, as the bucket 
toward b, a growing portion of the jet is intercepted. When the tip of the 

et reaches b, the entire jet will be intercepted unless the succeeding bucket has 
mto the path of the jet. With the bucket in position c, the profile of the 

pon 11 is bx. The last bit of the water to "catch up" with a bucket 
the bu et IS somewhere between c and e. Thus at first the directiOn 

t). is downward relative to the direction of the jet; when the 
A..-...... 11-r the a •~ of rotation, u and V1 will be in the same 

uentl) the direction of u will be upward relative to 
the Jel In other v.ords, u "aries in direction dunng the time when 

cntenn the bucket. and the angle :x varies from a' to a". Hence, to 
ul:lngle £or the entrance velocities, it is necessary to usc an angle 

an \"Cnnge value. The average value of this angle w1ll decrease as the 
mcreases from zero. The triangle shown in Fig. 15.7 is for average 

c:=a:Xle relataons when the •heel is running at the proper speed for maximum 



458 FLUID MECHANICS WITH El'Gil'EERING APPLICATIOI'OS 

Figure 15.7 

/ 
D 

/ 
I 

I 

Figure 15.8. Instantaneous photograph of a 12-in Pelton wheel at 1.1 ~5 rpm. tP = 0.8. (Courrew of 
Cali/i>mia ln.,llllllt' of Technologr .. \fechanica/ Engineering Laborarorr.) 
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Although the last particle of water may have overtaken the bucket when the 
tter has reached the position indicated b} '1.", water contmucs to flow O\er the 

bucket and be discharged from the side of the iatter beyond that location. Thus 
-ater "ill be discharging from the bucket m position e. This is not sho" n in 

F~,g. 15.7 but can be seen in the in!->tantaneous photograph of Fig. 15.8. If all the 
ter from the nonle i to be used b) the wheel, it is necessar) for the last 

drop to leave the bucket before the latter passes beyond position/ The attainment 
of this result depend upon the relation between u and V. and also upon the ratio 
of the diameter of the "heel to the d1ameter of the jet and upon the bucket 

cing. 
It rna) be seen from the dra" mg in Fig. 15.7 and the photograph m Fig. 15.8 

t the water is acting upon SC\eral buckets at the same time. T hus, although the 
ount of"ater per unit 11me stnkmg a single mO\mg bucket 1s G', as m Sec. 6.6, 

t tota dtscharge from the nozzle G acts upon the wheel as a unit, because, unlike 
the m ... obJeCt, the "heel as a whole is not moving away from the nozzle 
Hov.e\er, if the wheel runs at a speed that is in excess of the proper speed, some of 

-ater rna) go st .11ght through without ever catching up with a bucket bcfort 
tter swings up abo-.c the line of action. 

The \elocity relations at d1-.charg~.:. as ~hown in Fig. 15.9. must at o repre ent 
a >erage \'alue . The view here shown 1s that m a plane at right angles to tha t of 

15- and represent!. the case where the bucket is directly below the axis of 
ton and the bucket \elocit} 11 and the jet veloctty V1 are in the same straight 

Inspection of Fig. 15.7 ho"s that .... hen the bucket is entermg the jet at a, the 
of the" heel at which the water enters 1s greater than that at wh1ch it leaves, 
~ ''hen the bucket has traveled to the pointe where it IS mo,mg up.\ard 

ter is le.t\ ing the bucket at a ma:-.imum radius. Hence initiall}. r 1 IS greater 
r2 • and lattr it i:-. ; Ll..,t the rever,e. A' an a\erage 1t may be assumed that 

2 , which 1s a close approximation to reality. 

u 

\_;? .. ,r 
• 2 l 
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15.9. WHEEL DIAMETER 

The diameter D that is used in equations and calculations for the impulse wheel is 
the diameter of the pitch circle. This, as shown in Fig. 15.7, is the circle to which 
the center line of the jet IS tangent. 

The ratio of the pitch diameter to the diameter of the jet may be very large, and 
there is no theoretical upper limit. An extreme case in practice is that of a Pelton 
wheel which was direct-connected to a reciprocating air compressor. Because of 
the high head, the bucket velocity was 138.5 fps, but the compressor required a 
rotative speed as low as 80 rpm. Thus the diameter of the wheel was 33 ft. The 
exact size of the jet is not known to the authors, but since the buckets were only 5 
by 7 in, the diameter of the jet could not have been very far from 1.5 in. Thus 
D/d = 264. In Valais, Switzerland, are some Pelton wheels 11.67 ft in diameter 
with jets 1.5-in diameter, giving a ratio of 93.4. 

On the other hand, there are limiting minimum values of this ratio, which 
depend in part upon the spacing of the buckets. For good efficiency with bolted 
buckets a ratio of 12 is very good; this means that the diameter of the wheel in 
feet equals the diameter of the jet in inches. However, with some sacrifice in 
efficiency, a value as low as 9 seems to be the practical lower limit for bolted 
buckets, but a ratio as low as 6 may be used for the integral type of Fig. 15.6. 

15.10. TORQUE AND POWER FOR IDEAL CASES 

Case 1 

The ideal case first considered will be obtained by assuming a 1 = 0 and 
/32 = 180 , although such values are physically impossible in a real wheel. 
However, these assumptions permit a convenient analysis, for all velocities are in 
the same straight line, and it is not necessary to solve velocity triangles. Assume, 
further, that r 1 = r2 = D/2, that there is no fluid friction in flow over the buckets, 
and that all the water discharged by the nozzle acts upon the buckets. For these 
ideal conditions (Fig. 15.10) the simple relations are v1 = V1 - u, v2 = v1, 

V2 = u - v2 = 2u - V1, and 

u 

(a) 

llV= Vz - VI =2(u- v,) 

u 

(b) 

Figure 15.10. Velocit; vector diagrams for 
idealized situation (case 1). (a) At entrance 
to bucket. (b) At exit from bucket. 
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!---~- Net brake torque reduced 
to values under 1-ft head 

I I 

Va!ues of~( =u 

peed at ron,tant head. (From tc,h made by F. G Switzer 

e water is pQ(6 V); hence for this ideal case the 

( 15.4) 

m Fig. 15.11, and shows that the torque 
~d and decreases to zero when u - V1 or 

- per minute or peripheral velocity, the 
~~-= the peed. since the numerical values of 

ns :-..r any size of wheel under any 
m Fig 15.1 J for torque and 

~~ ":ue-. for the 24-in wheel to their 
Ia"~ then enable values to be computed from 
~~I under any head. 

btamed b) multiplying F. by u; this is the equation 
n n F1g. 15.12. The power will be zero when the wheel 

he the torque b zero. In this ideal case the only loss is 
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Figure 15.12. Relation between power and speed at constant head with maxtmum nozzle opening. 
(From tests made by F. G. Switzer and R. L. Daugherty.) 

that due to the kinetic energy at discharge from the buckets. As V2 = 211 - V1, it is 
seen that this kinetic energy is zero when u = V1 /2. Hence, for this speed ratio, i.e., 
when </>- Cu/ 2, the power of the wheel is a maximum for this idealized case and 
is equal to the power of the jet. 

Inasmuch as the power input to the wheel is independent of the wheel speed 
and is therefore constant, the efficiency curve is the same as the power curve, but 
to some suitable scale. 

Case 2 

A closer approach to reality may be realized by using the factor k to take account 
of friction loss in How through the buckets, as in Eq. (15.2), and also considering 
the true bucket angle {32 , which is usually about 165°. Using the velocities of the 
water relative to the buckets, the ~ equation can be expressed as t•i/2g -
kv~/2g = v~/2g. Hence, v2 = etf-J 1 + k. From Fig. 15.13 we observe that 
v2 cos !X2 = II + v2 cos p2 = II+ vl cos P2!../1 + k, from whiCh, noting that t·, = 
V

1 
II and 6 V = V2 COS 0: 2 - Vi' We get for the tangential force acting On the 
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buckets, 

(15.5} 

which is still the equation of a straight line if k is considered as constant. This 
approach is still somewhat idealized since a 1 is taken as zero along with other 
simplifying assumptions. Howe\ cr. the value of the torque at all speeds is lower 
than that given by application of Eq. {15.4} and is thus nearer to the true value. 

For this case the power and efficiency curves are still parabolas, with their 
maximum values at u = V1 /2 or <J> = C,/ 2, but both these maximum values will be 
ower than in case 1, because fluid friction in flow over the buckets is now being 

considered. 
Although a 1 is not zero, as here assumed, an approximate expression for 

ydraulic efficiency may be obtained by multiplying Eq. (15.5) by u and dividing 
;·Qh. lf V1 and u are replaced by cvJ2gh and <J>J2{ih, respectively, the result is 

e = 2 (I - cos p 2 ) ( C - </> )</> 
h JT+k v 

( 15.6) 

'!'he special significance of this equation is that it shows that the hydraulic 
efficiency is independent of the head and depends only upon dtmensionless 

uantities. 

15.11. ACTUAL TORQUE AND POWER1 

In F ig. 15.11 are shown the brake-torque curves for a Pelton wheel with different 
nozzle openings, the maxtmum being when the needle, the position of which is 
controlled by a ... creY. thread, has been opened 8.48 revolutions from its closed 
position. Referring to Fig. 15.7 and the accompanying discussion, it is obvious 

t. when the wheel is prevented from rotating, the torque exerted by the jet upon 
ill ury withm certain limits, depending upon the position of the bucket or 
ets upon which the jet is acting. This variation is shown for the wide-open 

are three powers that may be used for a turbine: the rated power which is that guaranteed 
nufacturer; the nunimum power, which is usually a little more than the rated power; and 

power, which is that for maximum efficiency. Turbines are usually operated close to 
power. 

+ 

• (b) 

Figure 15.13. Velocity vector dia
grams for the ideahzed real situa
tion (case 2). (a) At entrance to 
bucket. (b) At exit from bucket. 
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nozzle o.nly in Fig. 15.11. but it exists for all the other nozzle openings. When the 
wheel was permitted to run at a slow speed, the observed fluctuation was less but 
was still very definite. as shown for ifJ·= 0.07, but when the wheel was run at higher 
speeds, the brake torque became constant. It should be made clear that the torque 
exerted by the fluid on the wheel fluctuates at all speeds, but what is recorded and 
plotted in Fig. 15.11 is the torque measured by a brake. The inertia of the rotating 
parts at the higher speeds produces an almost uniform torque output. 

The difference between the ideal torque shown in Fig. 15 11 and the actual 
brake torque for the wide-open nozzle is due in part to the effect of k and P2 in 
case 2 of Sec. 15.10. Also, an 1mportant factor is the value of the average angle a 1, 

especially at very low values of f/J. As the wheel speed increases, the average value 
of~, decreases, but is probably never zero. 

It 1s observed that the torque curves of Fig. 15.11 are very nearly straight lines 
for the lower speeds, but at higher speeds the torque decreases more rapidly and 
becomes zero at a maximum peripheral velocity much less than V1, that is, for ifJ 
much less than 1.0. This is due to two factors, one of them being that at speeds 
above the design value some of the water fails to complete its action upon the 
buckets or even to overtake them at all, as explained in Sec. 15.8. Another factor 1s 
that at these higher speeds the back of the bucket line hits the water that has 
previously been intercepted by it and throws it up around the case. Thus the back 
of the bucket is doing work upon some of the water. In addition, there is some 
normal mechanical friction and windage as shown in Fig. 15.12. Hence, for all 
these reasons, the actual brake-torque curve differs from the purely ideal. 

There are some very practical observations to be made from an mspectton of 
the cunes of F1gs. 15.11 and 15.12. While the value of¢ for max1mum effic1ency is 
not C, /2. as for the ideal case, It IS only a ver) httle less than that, usually 0.43 to 
0.47. Also, it is seen that ifJ for maximum efficiency decreases shght1y for smaller 
noz.zle openings. It is also seen that the torque at zero speed is nearly twice the 
torque at normal .\peed, the latter being the speed at which the effic1ency IS a 
maximum. But the important feature is that the maximum speed possible. or the 
runaway speed, is only about 70 percent more than the normal speed. If the wheel 
and the generator are designed to withstand a speed only that much above 
normal, no damage can result if some failure of the governor permitS the wheel 
to run away. 

From the torque-speed relations of Fig. 15.11, the power-speed curves can be 
plotted; that for the maximum nozzle opening is shown as a solid line in 
Fig. 15.12. Power curves for smaller nozzle openings have lower values, and their 
maximum points are found at lower values of l/J, as indicated by the dotted lines in 
Fig. 15.12. Because the actual brake-torque curve is not a straight line, the actual 
power curve ts not a parabola, the right-hand side of the curve being steeper than 
the left-hand side. 

The power consumed in mechanical friction in the bearings and in windage 
was determined by a separate test and is shown in Fig. 15.12. For this particular 
wheel at normal speed the mechanical friction and wmdage are about 1.5 percent 
of the max1mum brake horsepower. 
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For a constant nozzle opening and a constant head, the tangential force or the 
torque varies as 6 V.., which is the tangential component of the vector change of 
absolute velocity. As shown by the photographs in Fig. 15.14 and the velocity 
diagrams below each, the value of 6 V.. is a maximum when the wheel is at rest and 
IS a minimum at runaway speed. The velocity diagrams show also that the value of 
l 2 decreases as the wheel speed increases from zero until it reaches some mini
mum value and then increases again. Hence, at some intermediate speed, the 
kinetic energy lost at discharge from the buckets is a minimum. There is no simple 
or exact theory to determine this point, but as a close approximation, the 
diScharge velocity will be close to mmimum when u = v2 , and consequently a 2 

•·ill then be only a little less than 90". However, the efficiency is a maximum when 
the sum of all the losses is a minimum. Because the relative velocity of flow over 
the buckets decreases with increasing wheel speed, the fluid-friction losses in the 
buckets decrease with speed. But in Fig. 15.12 it is seen that mechanical-friction 
and windage losses increase with speed. The summation of these three losses 
reaches a minimum at a speed slightly greater than the one for which the discharge 
k · · is a minimum. Hence the maximum overall efficiency is usually not far from 
th~ -,peed where a 2 = 90°. 

lllu~trative Example 15.2. Assume case of an impulse wheel with :x 1 = 0 ./J1 = 160. k- 0.44, 
6 = 0.46. C, - 0.98, a jet diameter of 10 in, and a pitch diameter of 10 ft. For operation under the 
purel) artificial value of I ft net head, u = 4>.j2g = 8.024>, V1 = 0.98.j2g = 7.86 fps, and 

}'Q = 62.4 X 0.545 X 7.86 = 267 Jb 's 

Hentt, usmg Eq. (15.5~ the expression for the torque exerted on the wheel by the water is 

F ( 
267) ( 0.940) T .. r x • = 5 ., I + 8.02(C,- t/>) 
L2 1.2 

Cr = 0.98 and t/J = 0.46, T = 308 ft·lb. The power transferred from the water to the buckets is 

U (0.46 X 8.02) 
F.u = Tw = T;= 308 

5 
= 227 ft-lb/s 

put is yQI1 = 267 x I = 267 ft·lb/s. The hydraulic efficiency is~~~= 0.85. This could have 
mmcd directly from Eq. ( 15.6). 
I ft head, 1• 1 = 7.86- 3.68 = 4.18 fps and v2 = 4.18/JIM = 3.48 fps. Hence the head loss 

me 100 is 0.44(3.48)1 '2y = 0.083 ft, or 8.3 percent. 

J: cos a2 = u + v2 cos {J2 = 3.68 + 3.48 cos 160° = 3.68 - 3.27 = 0.41 fps 

12 sm al = t 2 S•ll P2 - 3.48 sin 160° = 1.19 fps 

19 = 0.34-l or :r 2 = 71 • and V2 = 1.19/0.945 = 1.26 fps from wh1ch the energy 
• lS I 262 .g = 0.0::!5 ft, or 2.5 percent. The head loss in the noule IS approxi

J 2 2g about 40 percent; ~o the total h)draulic loss 1s 8.3 t 2.5 + 4.0:::: 14.8 
a close check on the computed h}draulic efficiency of 85 percent. 
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15.12. EFFICIENCY VARIATIO~ WITH 
SIZE AND HEAD 
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Ideally, the efficiency of homologous impulse wheels IS independent of SIZe and 
head. However, the large~t of a :,erie~ of homologous wheels will ha\e a shghtly 
higher efficiency becau e mechanical-friction and windage losses do not increase 
at the same rate as the hydraulic properties. For the same reason a gi .. en wheel of 
any sLZe will generally operate at a slightly higher efficiency at higher heads 

However, there is a factor that 11 ay operate to decrease the efficiency with an 
mcrease in head. The absolute velocity of the water discharged from the buckets 
··ill rncrease as , h, and the rebound velocity from the vertical sides of the setting 
Wig. 15.1) writ vary rn proportion. Ifthrs rebound velocity is h1gh enough, some of 
the water reflected from the walls will hit the wheel. This will result in an increased 
v of the windage type. Hence, for high-head installations, the width of the 

chamber in which the lower part of the wheel resides should be made great enough 
to prevent this. 

15.13. OPERATIOl\, AT CONSTANT SPEED 

A turbine r u ually operated at a constant rotative speed. and this is neces~anl) 
some S)nchronou:; peed if it dri\es an ac generator. In the Unrted States, 
60-c)cle current is most common. and under such conditions the rotatrve spc ·d of 
the turbine in re\olution~ per minute is given by n = 7.200 ¥. where \ ' 1 the 
number of pole:. m the generator and must be an even integer. Most generators 

tte from 12 to 96 poles. 
The foregoing discussion shows that there is one speed ratio that is most 

nt for any one nozzle opening but that this optimum speed ratio varies 
) with the nozzle opening. as shown in Fig. 15.11 Also. the statrc, or gross. 

\1lf1Cs wrth changmg level in the reservoir at intake and the net head varies 
because of this but with the flow through the pipe. Thus, at the San 

u1to plant I of the City of Los Angeles, the head on the plant \aries from 
tatic to 830ft at full load. Not only will <P vary with wheel speed, but e\cn rf 

QCCd of rotation is constant, it will vary if the head changes. Hence the 
effictency of a turbmc at some constant speed might not be the maxi
nc) of which the turbrne rs capable. 

F g 15.15 is shown an efficiency curve for an impulse turbine at a constant 
speed w1th varymg load If this speed were at some other "value, but for the 

the cune \\Ould be different. This figure shows that for an impulse 
e:.!lo:JelrlC}' cunei relati\el) fiat over a wide load range. Thus this type of 

ble for a \'ariable load, especrally if the load i!> light over long 
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% of power at maximum efficiency 

Fieure 15.15. Eflicicncy or 1mpulsc turhme at constant speed. 

15.14. SPECIFIC SPEED 

In Sec. 14.5 the expression for the specific speed n., of a turbine was derived. In 
English units, it is expressed as 

( 15.7) 

where ~~~ is defined as the rotative speed in revolutions per minute at operating 
conditions of highest possible efficiency, bhp is the brake horsepower delivered 
to the shaft of the turbine under these conditions, and II is the net operating 
head.1 For multijet impulse turbines the specific speed is based on the brake 
horsepower per jet. 

It i instructive to see what factors determine the numerical value of the 
specific speed for the Pelton wheel. Thus 

11 = 60u = 60<P .J2glt 
nD nD 

Q V1 (m/2/4), where d is the jet diameter, and bhp = yQhe/550. Making these 
various substitutions and reducing, 

60(2g )3
!
4 <P e.Jyc v e d 

II= ------
! 2~ D 

(15.8) 

As the factors <P~· Cv, and e should vary only slightly, it ts seen that the value of 
the specific speed depends principally upon the ratio of the wheel to the jet dtameter. 

1 Somc:llmes the term rated spec1fic speed is used. Th~ refers to a guaranteed bhp that can be 
achle\C:d, II IS grcau:r than that at normal operating conditions but is at a lower efficiency. 
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Figure 15.16. Plotted from test values given by R S. Quick, Problems Encountered in the Design 
and Operation of Impulse Turbines, Trans. ASM £, vol. 62, no. I, Jan. 1940. 

h was mentioned in Sec. 15.9 that there is no definite physical limit to the maxi
mum value of the ratio DjJ, but a large value results m a relatively large and 
therefore more co tl} wheel, and the efficiency suffers because of the propor
tionally large bearing friction and windage loss. 

Ho\\e\er. if the ratio D/d becomes too small the size of the buckets becomes 
nable in relation to the wheel diameter; it is physically impossible to space 

buckets close enough together; and some of the water from the nozzle will not 
act cpon the wheel at all, as explained in Sec. 15.8. But even before this pomt is 
--;:::;:~ed, the efficiency of the wheel will suffer because of the increased departure 

the tangential action, which is the ideal. 
Thus. as seen in Ftg. 15.16, the impulse wheel attains its best effic1ency at a 

1 specific speed of about 45, and the upper limit for a single nozzle wheel is 
6 or 7. for beyond that value the efficiency drops too much. It should be 

that these values are for single-nozzle wheels only. H two or more 
oom:s are used on one whee~ the specific-speed values here mentiOned are to be 

lied b) the square root of the number of nozzles. 
O\\n m F1g. 15.16:-hould be understood to indicate a trend rather 

al.!~ .... ...- \ m all cases. Wheel\ of poor destgn or small size, operating 
d or other unfa\orable conditions. will have efficiencies lower than 

ed b) t mgle cune. 
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IUustrathe Eumple 15.3. (a) A turbme is to operate at 400 rpm under a net head of 1.320 ft . If a 
smgle 6-in-daameter water jet i~ used, find the specific speed of this mach me assuming C, = 0.9!1, 
tP • 0.45, and e .. 0.85. lind also the required pit~h diameter of the wheel. 

V C "\. 2gh = 0.98 X 8.02 X 36.4 = 286 fps 

Q H"- 0.196 X 286 = 56.0 cfs 

'/Qh (62.4 X 56 X 1,320) 
bhp - I' = 0.85 ""7, 130 

550 550 

''-"/bhp 400jf,I30 
n • = -- = 422 
• h5 4 

( 1,320)5 4 

U • tPJi9h 0.45 X 8.02 X 36.4 = 131.5 fps 

u(60) 131.5 x 60 
n • 400 rpm = = - --

nD xD 

D 6.26 ft = 75 in 

(b) In lieu of the single impulse wheel of the preceding example, suppose that three identical 
smgle-nozzle wheels are to be used, operating under the same head of 1,320 ft The total now rate is to 
be 56.0 cfs Dctcrmme the requared specific speed of these turbines, thear pitch daa~eter, the Jet 
diameter, and the operating speed. Once again, assume C.= 0.98, tP 0.45, and e ... 0.85. 

As bo fore. V 286 fp:. and u - 131 5 fps. 

Q - ' 6 = 18 7 cfs 

7,130 
bhp = 3 = 2.377 

n " r2.-377 
n, = ( 1.3.20 ~) = n x 0.0062 

n = 
131.5(60) 2.510 

xD D 

From the t prc'"-..-Jing expressions 11 is apparent that the required n. depend~ on the operatmg speed, 
as does D. Hence there arc a number of possible answers. If we let the operaung speed be 400 rpm, 

n, = 400 x 0.0062 = 2.48 

2.510 
D = - = 6.26 ft = 75 in 

n 

Thus three n, 2.41! wheeb of pitch diameter 75 m operaung at 400 rpm would suffice. At such a low 
specific speed the opumum cfficacncy of impulse wheels is usually less than 0.85. An alternative 
~oluuon. for example would be to use an operating speed of600 rpm (12-pole generator). For this 
case, 

n, = 600 x 0.0062 = 3.72 

., 510 
D =... = 4.18 ft = 50.2 in 

n 

Thu' three n, -= 3 72 wheels of pitch diameter 50.2 in operating at 600 rpm "1\0uld suOa\.'C. 
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Let us now determine the required jet diameter for the 50.2-in-diametcr wheel operating at 
600 rpm. 

nd2 

Q =A V = 286 = 18.7 cfs 
4 

d = 0.276 ft = 3.46 in 

As a rough check. refer to hg. 15.16, \\hich shows that Dfd = 14.5 for n, • 3.72. Th•~ confirms the 
preceding calculauons \\here D d = 50.:! 3.46 = 14.5. 

15.15. INSTALLATIONS 

The impulse wheel is especially adapted for use under high heads. For heads 
above 1,500 ft it is the only type that can be considered, and for many years it was 
the only one ever used for heads above 800 ft. Among some interesting installa
uons are the following. 

\t Dixence, Switzerland, a double-overhung unit operates under a gross h.:aJ 
of 5 -15 ft and a net head of 5,330 ft, giving a jet velocity of approximatcl.> 58., fps. 
Eac~· smgle-nozzle wheel delivers 25,000 hp, or 50,000 hp for the unit, and runs at 
500 rpm. The tets are 3.71 in in diameter, and the pitch diameter of the wheels is 
10 9ft. 

At Rei .... eck, Austria. an impulse wheel delivers 31,000 hp at 750 rpm under a 
gross head of 5. 00 ft. 

The Full) plantm Valais, Switzerland, operates under a gross head of 5,410 rt 
d a net head of 4.830 ft. There are four wheels of 3,000 hp each running at 

rp The Jet are I 5 in in d1ameter. and the wheels are 11.67 ft in diameter. 
muluple-n<~ale \\-heel at Pragnieres, France, delivers 100,000 hp at 

rpm under a gross head of 3,920 ft. 
The Kitimat plant in British Columbia of the Aluminum Company of Canada 
three four-nozzle vertical-shaft units that operate at 327 rpm under a net head 
~ ft Each unit is rated at 140,000 hp. 

highest-head plant in South America is 3,460 ft at Ros Molles, Chile. 
develops 11,500 hp at 1,000 rpm. 

N 1rth America there are a number of plants operating under heads of 
000 and 2,500 ft. 
Btg Creek-2A plant of the Southern California Edison Co. is an Allis

de uble-ovcrhung single-jet impulse turbine 137 in in diameter with an 
on each wheel and a similar Pelton Water Wheel Co. impulse turbine 
m diameter\\ than 8.5-in jet on each wheel. Each unit runs at 300 rpm, 

urn tatJc head with a full reservoir is 2,418 ft. With both units 
t e net head is 2.200 ft, and the maximum output is 65,100 bhp 
mer~ unit and 67.300 bhp for the Pelton umt. At maximum 

2....1()() ft head. the former deli,ers 50,000 bhp, and the latter 
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The Bucks Creek plant of the Feather River Power Co. has a gross head of 
2,562 ft and a net head of 2,350 ft. The double-overhung unit has a capacity of 
35.000 hp and runs at 450 rpm. · 

At the Balch plant of the former San Joaquin Light and Power Co., now the 
Pacific Gas and Electnc Co .• is an Allis-Chalmers double-overhung unit with 
wheels 115 m m diameter" ith a 7.5-in jet on each wheel. Its runs at 360 rpm and 
develops 49,000 hp under a net head of 2,243 ft. 

One of the largest jets in the world is 14 in in diameter from a nozzle with an 
orifice diameter of 16.75 m This IS in an Allis-Chalmers double-overhung unit in 
the San Francisquito plant I of the City of Los Angeles. Each wheel is 176 in in 
diameter, and the speed 1s 171.6 rpm. The maximum static head on the plant is 
940 ft, but when the ent1rc plant IS running, the net head is 830 ft. In a test of this 
one unit under a net head of 870 ft, each nozzle discharged 250 cfs and the unit 
delivered 40.100 hp with an efficiency of 81 percent. The maximum efficiency was 
obtained at apprOXImately 20,000 hp and was 86 percent. 

PROBLEMS 

15.1. Repeat lllu tratJ\C l·xamplc 15.1 for the case where the length of the papc is 10.000 rt. All other 

data to remam the: 'amc. 

15.1. Repc:at lllu trati\C Example 15.1 for the case where the pipe diameter i, 12 in. All other data to 
remam the "lime. 

15.3. A 16-m papchne (/ • 0.020) of length 10,000 rt connects a reservoir whose water surface elevation 
as 1.1!00 ft to 11 no.ule at cle,auon of 1.000 fL The JCt from the nozzle is used to dr i' e an impulse 
turbine. If the head lo" through the no.ule IS expressible a.' 0.04VJ 2g. determme thCJCt d1amcter that 
w1ll g1ve the Jet of max•mum horsepower. Evaluate this horsepower 

15.4. \ senes of \"3nes IS acted on b) a 3-in water tet having a velocit) of 100 fps, :x 1 • /1 1 = 0 • f md 
the required blade angle {12 m order that the force acting on the vane' m the dtrcctlon of the jet b 
200 lb ~cglect fnction . Solve for vane velocities of 85, 50, and 0 fp\, 

15.5. Repeat Prob. 15.4 hut include friction by assuming t·2 = 0.9t1• 

15.6. I ake the ca\C of 11 • 50 fps m Pro b. 15.5 and compute k using each of the follow10g equations: 

yl yz krz 
i'Q 21 Fu + ··Q-2 + .. Q 2 (I) 

g I 2g 1 2g 

f l , , l ["2 
I _ k 2 2 (2) 

2g 2g 2g 

Ho\\ do the \3lues of k compare? 
15.7. A 'mallampul~e whccl2.5 ft 10 diameter is driven by the jet oflllustrativc f.xample I~. I (a 1 0, 
p 2 = 160 ). A ~uming 1 2 = 0.8r 1. compute the horsepower output and hydraulic effictenC)' of the 
turb10c for 4> 0.2, OJ. 0.4, 0.5. 0 6. and 0.8 using Jet diameters of I. 2, and 3 10 

15.8. An tmpui\C turb10e (n,::::: 5) develops 100.000 hp under a head of 2.000 ft (a) for 60-cycle 
electncll~ calculate the turb10e speed (rpm~ wheel dl3meter (ft~ and number ofpolc:.10 the generator. 
(b) Sohe the pnlblem for a 'ix-noule unit using the same n,, bhp. and head. ln both 10'tances a'~ume 
4> = 0 45. 
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15.9. A double-overhung impul,e-turbine mstallation is to develop 20,000 hp at 257 rpm under a net 
head of 1,120 ft. Dctcrmme n,. wheel-ptt~-h d1ameter, and approximate jet diameter. Repeat for the 
followmg cases: (a) smgle wheel with single no//le: (b) single wheel with four noulcs. 

15.10. A multinoule impuhc turhme" to be des1gned to develop 60.000 hp at 300 rpm under a head 
of 1.200 ft. How many noules hould thiS turbme have? Specify the approximate 11oheel drameter for 
this des1gn How many :.mgle-Jel rnachmes ought one to use to satisfy the,e requliement ? Spec1fy the 
JCI d1ameters in both mstances assummg c.= 096. 

15.11. A Pelton wheel!\ 6 ft 10 diameter and 1s acted upon by a jet that is 6 in m d1ametcr. The \elocuy 
of the Jet i~ 400 fps. The bucket angle 1> 165 , and J.i may be assumed to be 0.21. As~ummg 1deal case 2, 
find the torque in foot-pound, for bucket speed~ of 0, 100, 200, 300, and 400 fps. 

15.12. If the \elocll~ coclhclc:nt of the noulc IS 0.98 approx. what are I he hor,cpo11oer and c:ffic~enC} 
for the fhc ,pceds m Proh. I~ II? In th1> case 1/J, 0.49. 

15.13. At the bucket speed of 200 f(h m Prob. 15.11, 11ohat is the value of the head (o,t m fncllon in the 
bucket,, and what IS the head lost in the kmetic energy at discharge? 

15.14. Usmg the data of Pro h. 15.11, find values of (a) head lost in bucket friction; (b) vcloc1ty head at 
discharge; (c) total head lost, for bucket speeds of 180, 185, 190, 195, 200, 205 fps. (This is best solved 
by tabulation.) At what speed 1s I he discharge loss a minimum? At what speed is the total head (o,, a 
mmtmum'1 

15.15. f·md the apprOximate hydraulic efficiency of an impulse wheel for which the noule \CIOCII) 
coefficJCnt 1s 0.97 and the hud.et angle is 160 , if 1/J = 0.46 and k - 0.1. 

15.16. f·or the Pelton wheel of Fig. 15.11 with the noale wide open and Q = 0.286 cfs, find the torque 
for I ft head for zero speed (1/J.., 0) and for 4> .. 0.49. assuming the 1deal case 2 11ollh C', = 0.9!<, 
fJ1 = 165 , and I 0 7 

I 5.17. Sohe Prob. 15 16 for n "'heel that is 8 ft in diameter and w1th the jet also four limes the diameter 
of that 10 fig 15.11. 

15.18. hnd the torque. po"er, efficiency, and rotatne speed of the impulse 11oheel of Illustrative 
EAample I 5.2 1f 11 11oere to operate under a head of 60 ft. 

15.19. Under a net head of I ft the Pelton 11oheel of Fig. 15.12 discharges 0.286 cfs at full nozzle 
opc:n10g and the max1mum po11oer IS 0.025 bhp for a value of 4> = 0.465. The corresponding brake 
torque JS 369ft lb as sho11on 10 fig. IS II Assuming that the ~1m1lant) laws apply prc."CISely. dc:ter
mme the diSCharge, torque power, and rota II\ e speed of this "'heel "'hen 11 operate' under a head or 

ft 

15.l0. A "'heel and nonle s1m1lar to that of Figs. 15.11 and 15.12 wnh a pitch d1ameter of 12 ftl> used 
t::Xier a net head of 1.600 ft. What" the torque. po"er and rpm at pomt of best effic1ency for full nozzle 

mg' 
H.ll. 24-in laboratory wheel was tested under a head of 65.5 ft Wuh the nozzle open 6turns oft he 

the net brake load at 275 rpm was 40 lb at a brake arm of 5.25 ft and the diScharge was 
fmd values of brake hor,epowcr and enic1enc} under operaung conditions. What would be 
of torque and brake horsepower under I ft head'? 

~ "2. At 275 rpm the bcaring-fnction and windage losses of the Pelton wheel in Prob I ~.2 1 were 
to b-- 0.2 hp. What percentage is this of the brake horsepower'? What is the value of the 
:.ale licicncy'! What 1., the value of the hydraulic efficiency? 

P 1on wheel of Proh. 15.22 were run at double the speed, or 550 rpm. the head should be 
-62 ft for the o;ame \alue of¢>. At th1' h1gher head the po11oer mput w1ll be 4 1 

l, or 8 times 
found 10 Prob. 1521; the hydraulic los'<!' wtll also be m the \arne proportion, and so the 

IIC) will rc:rna10 unchanged A spcc1altest showed that at 550 rpm the bearing friction 
\\-et'C 0 hp 

be the po11oer mput to the shaft? What will be the brake horsepowcr'1 What 
p of the brake hor,epo11oer' \\hat are tbe \·alue, of the mechamcal eflic1cncy and of 

65.5 ft head for the nozzle openings sho"' n in Fig. 15.11 were OJ97, 0.773, 
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1.114, 1.414. 1.896, and 2.315 cb. At a constant speed of 275 rpm. or ~ - 0.443, the net brake \calc 
reading' at a brake arm of 5.25 ft were 6.8, 14.9. 22.0, 28.9 40.0. and 48.0 lb. respecti\CI). When there 
was no load at 275 rpm. the discharge was 0.110 cfs. Compute and plot po\\-er mput and efficiency 
" brake hor...:power. 

15.25. When the 'f""'Cd of1hc wheclm Prob. 15.24 was rai:;cd to 300 rpm. the di.~charg.: at no load \\a' 
0.1~~ cf, , for the 'amc head of 65.5 f1 1he net scale reading' were 5.9, 12.9. 19.8. 25.5, :16.0 and 
43.~ lb. rc ... pc:ci \CI) . Compute and plot power mput and effic~enc) \S. brake hor\epo\\cr. 

15.26. The prc\\urc of the water at the base of a nozzle of a Pelton wheel is 700 p,i, and the \eloclt) at 
that 'a me: pomt ts 20 fp, . The Jet drameter is 8 in, and the \eloclt) coefficient of the noule i, 0.9!1. If the 
effic1cnc) of the whcd 1s 86 percent. find the brake horsepower 

15.27. In Proh 1526 if the pitch tltameter of the wheel is 8 ft. what should be the normal opera ling 
'Jl<.>ed '! What" an appm\lmale -.alue for 1he runaway speed? 

15.28. \\hat " 1hc 1orque e\erled on the wheel m Prob. 15.26, and what h. an appro"mate \alue of I he 
torque at tero 'peed ? 

15.29. \\\llmmg a general case for any type of impulse turhme where x • r2 ;r1, pro\C that 1hc 

ClJUallon l1lr wrquc " 

r 

15.30. A nonlc havtng a velocity cocffictcnt of0.98 discharges a jet 7 in in diameter under a ncl head of 
1,600 ft 1 h1s JCI ach upon a wheel with the followmg d•mension\ . D 7 ft, x 1 I~ • P 2 160 , and it 
ts a"umed k • 0 .6. I· ind the tangential force exerted upon the bud.ets when t/J = 0 45. 

1~~'1 . \ tes t of the impulse turbine shown m Fig. 15.2 gave a max1mum ertic1ency of 92 percent at 
) <;()()() bhp and 8995 pcru:nt at the rated 62,000 bhp. The net head b 1.118 ft at full load, and the 
peed 1' JOO rpm The 'tauc head i.' 1.2::!6 ft. What is the net head at the load for ma~imum efficienC}? 

What are the normal and the rated values of specific speed per Jet? 

1~.32. Compute the pec1fic ~r-.'ed for the turbine of 1-tg. I ' .2. 

1~.33. ( ornpu1e the normal and the rated ~pecific speeds for the Alli1.·Chalrner~ unit. at the San 

r rancl'lJUilO plam. 

15-14. It IS de,trcd to de\ clop 15.000 bhp under a head of 1.000 f1. \1ake an) nccc,sar) a'>!iumpuons. 
,,n J ( tate the drametcr of the wheel requ ired and the rotathc speed. 

15.35. \ smglc·nonlc 1mpuhe wheel is required to de\elop 20,000 bhp under a net head of 1,190 ft and 
at .:!~5 rpm What \hould he the appro.x•mate dtametcr of the \\heel ! 

1~.36. \ noulc having a \elocity coefficient of0.98 di:;charges a jet 6 in m diameter under a head of 
900 fl . h .1 '1mphfymg a\\umpuon lake oc 1 = 0 . The wheel diameter h 8ft, P2 - 165 . and 11 may be 
a~sumed 1h.1t k OS The mc:chamcal cfficienC) of the ""heel j, 97 percent. What is the h)drauhc 
cfi1C1eney? What •~ the gross efficiency'! (Assume a reasonable value of 1/J.) 
15.37. In Prob. I U6 find the power lost m hydraulic fnction in the bucket•. Find the \alue of~ 2 , and 
dcternune the power earned away 111 the water di:;charged from the buckets. 

15.38. Refer to Illustrative Fxample 15.3. Suppose a two-nozzle single-wheel installation were designed 
to opcrale under a head of 1,320 ft with a total Aow (for both nozzles) of 56 cfs. Dctermmc the rcqutred 
spectfic 'peed of this turbine. ih pitch diameter. and jet diameter for rolative speeds of 300. 400. and 
600 rpm. 

15~'9. ,\ ' 1'- •JCt unpul'c turhme operating at 300 rpm de\elop' 60.000 hp under a net head of 1,060 fl . 
The runner has a d1amcter of 6 .0 ft. How large a homologous runner would he needed for a single-Jet 
mach1nc opcr.lllng unJer the same head and developing the same horsepower'! 



CHAPTER 

SIXTEEN 

REACTION TURBINES 

16.1. DEFINITION 

A reaction turbine is one in which the major portiOn of the pressure drop takes 
place in the rotating wheel. As a consequence the proportions must be such that 
the fluid fills all the runner passages co-npletel). This makes it neccssar) that the 
fluid be admitted to the rotor around its entire circumference Smce the entire 
circumference of the reaction turbine is in action, its rotor need not be as large as 
that of an impulse wheel for the same power. 

16.2. EVOLUTION OF THE REACTION TURBINE 

The first reaction turbine known is the steam turbine of Hero in Egypt about 
120 B.c. It may never even have been built, but the drawings for it are still in 
existence and show a sphertcal vessel in which steam was generated and dis
charged through two small nonles m a tangential direction. The reaction of these 
_JetS ould cause the dev1ce to rotate. 

In the hydrauhc field the rotating lawn sprinkler is an elementary rcacuon 
turome. As stated in Sec. 6.12, the addition of more arms to permit a greater How, 
so as to produce a net power output, developed a power machine known as 
Bar er· mdl A continuing increase in the number of arms terminated in a com
plete \\heel "1th passages separated by\ anes, but the device was not very efficient, 

nul m I 26. a Frenchman b) the name of Fourne}ron added statiOnary guide 

475 
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vanes in the central portion. These guide vanes gave the water a definite tangential 
component, thereby imparting angular momentum to the fluid entering the rotor. 
This outward-flow turbine was efficient, but the mechanical construction was not 
good because the rotating element was on the outside with the fixed guide vanes 
ncar the axis. 

The inward-flow turbine permits a better mechanical construction since the 
rotor and shaft form a compact unit in the center, while the statiOnary guide vanes 
are on the outside. Several crude inward-Bow turbines were constructed around 
1838. but the first to be well designed was built in 1849 by the eminent hydraulic 
engineer James B Francis, who made an accurate test of this turbine.' All inward
flow reaction hydraulic turbtnes are known as Francis turbines, both in this 
country and in Europe, even though they have developed into very different forms 
from the original. 

The design of the original Francis turbine is shown in Fig. 16.1. It is a purely 
radial-flow turbme with both entrance and discharge edges of the runner vanes 
parallel to the axis of rotation, so that the radii at entrance are the same for all 
streamlines, as they are at exit. The inner diameter of the runner was almost as 
large as the outer diameter. 

To make a more compact runner, the inner diameter was reduced and the 
water was discharged with a velocity having an axial as well as a radial compon
ent. a<; in Fig. 16.2a. Carrying this a step further, the dimensions of the runner 
parallel to the shaft were increased. resultmg in the mixecl-jlow runner of 
Fig. 16.2h, also called a Francis runner. In this runner all flo\\- hne:> have both axial 
and radial components throughout. The velocity at exit near the hand, or shroud 
ring. may even have a slight outward component at high specific speeds. Inasmuch 
as the different streamlines vary so much from crown to band. it is obv1ous that the 
application of any simple theory to this type of runner is impossible. 

The pecific speeds of Francis runners range from 10 to 110, but the usual 
practice i-. from 20 to 80 or 90 In order to obtain both speed and power under 

1 J B I ram:''· "Lowell Hydraulic Experiments." 5th ed .. D. Van No~trand Company. Inc .. 
Princeton. N J. 1909. 

Figure 16.1. FranC!\ turh1ne 
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n, - 21.3. ¢, • 0 70 

______ ..., 

n,-80. ¢r; 0 8 

Dd ------

(b) 

·--' 
B 

\ n, - 160, ~- 2.0 

~ lle$ <~f d11Teren1 t} pe:. ol runner for 1he same power under the same he.:,\ d. 
) hxed·flO\\ Franck (,)Axial-no"' (propeller) 

axml-lloY., or propeller. 1;. pe of runner shown in Fig. 16.2c is 
pecific peed' are from 100 to 250. 

------" -- t)pe ofrunner ma) ha\e fixed blade~. or the pitch 
\ r) the area between then in proportion to the 

ceo mph hed through the actuati1 l)f a go . ~.; "nor. 
\\ th ad u table blade;) i~ called a Kaplan CLtrhine. It 

part load than the fixed-blade propeller. 
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16.3. SIGNIFICANCE OF SPECIFIC SPEED 

Figure 16.2 shows the decrease in the size of a Francis runner for the same power 
under the same head as the specific speed is increased. It also shows that there IS a 
definite relation between the profile of the runner, or the type, and the value of the 
specific speed Thus the numertcal value of the latter at once fixes the type or 
des•gn of the runner. 

For a small power under a high head a Pelton wheel with its low specific 
speed is used to keep the rotative speed down to a suitable value, while for a large 
power under a low head a reaction turbine with tts hi~er specific speed is used to 
raise the rotative speed to a suitable value. Since nrJ"bhp n,hs14 (Eq. 15.7), it is 
apparent that for a given specific speed and a fixed bead any number of comb ina 
Lions of rotative speed and power are possible. If the power ts low, the speed can 
be high, or vice versa. It is also obvious that if both speed and power arc high, 
the specific speed must be high if the head is low. 

lllustrathe Example 16.1. (a) In Sec. 15.15 an impubc wheel is described, running at 500 rpm 
under a head or 5.330 rt and producmg 25,000 hp. The ~pccific speed of this turbmc IS 1.74. lnvesllgate 
the poss1hihty or usmg a reaction turbine at this installation. 

Suppose we use the turbine or Fig. 162a, for which n, "' 21.3. Applymg Eq. (15.7~ we find 
n 6.110 rpm. wh1ch is impractical. Moreover, it would not be econom1cally feasible to construct a 
casmg des1gned to withstand such high pressures. 

(b) AI Keokuk on the M1Ssb~1ppi R1ver are reaction turbines with runner:. 16 rt in diameter and 
12ft h1gh. They run at 57.7 rpm and develop 10,000 hp under a net head of 32 rt and thu:. have a 
peetfic speed of 76. lmestigate the possibility of using an impuhe wheel at thl'> mstallation. 

Suppose we as.,ume an impulse wheel with n, = 5. Applymg Eq. (15.7~ we lind n, • 3.8 rpm, 
which is impraclical It should be noted, however, that an impulse wheel is apphcable at a 32-fl head if 
the power to be dc\eloped is quile low. For example, with a rotative speed of 100 rpm, an impulse 
wheel with n, • 5 w11l develop 14.5 hp. 

(c) Suppose n IS desired to produce 22,500 hp at 600 rpm under a head of81 ft. Then, applying 
Et:~ (15.7). ~e lind n, .. 370. whJCh IS 1mpossible. Either the power may be divided among sc~eral 
units or a ~ingle umt may be used if the speed is reduced to a lower value. One poss1ble soluuon ._.,to 
usc four umts of 5,625 hp, each having a specific speed of 1!15. Another solution 1s to use a single unit 
operating at 240 rpm with a specific speed of 148. From a practical vicwpomt it ts advantageous to 
ha\e more I han one unit at any installation so that power can be developed even when a unit is shu I 
down for rcpa1n. 

16.4. CONSTRUCfiON OF REACTION TURBINES 

A Francis runner is shown in Fig. 16.3, and a Kaplan runner in Fig. 16.7. Francis 
runners arc cast in one piece unless the size is too large for shipment, in which case 
the) are cast in sectiOns and bolted together The blades are warped surfaces, and 
sometime.,. a die is made and the blades are formed from sheet steel. These blades 
arc then welded to the crown and to the shroud ring. 

Axial runners with fixed blades may be cast in one piece, or again the blades 
may be formed by a die and then welded or bolted to the hub. Of course, Kaplan 
runners must be made with separate movable blades. 
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Fipre 16.3. Runner at Niagara 
Falls. h =214ft, 11 • 107 rprn, C' • 

93.8 percent at 72,500 hp, dia· 
meter = 176m, overall diameter at 
band -= 183: in. (Cour/1'1} of 
Al/is·Cha/men Mfg Co.) 

Franczs runners are surrounded by pivoted guide vanes, 1 as shown in 
610 and 16.4. The water is greatly accelerated in the gUide-vane passages 

a de e tangenual-\elocity component as it enter'i the runner The 
~~.-u~ the flo\\ rate by rotating these vanes about their pivots so as to 

:-een them This abo has the effect of varying the angle a 1 from 
' ues of 15 to 40 for maximum gate opening. depending 

of the turbine. At maximum efficiency the value of a 1 

5 degrees. The \alue of V1, however, is not much affected by the 
gulde-\1Ule angle. 
rotates a a free \Ortex in the space between the ends of the guide 
entrance edges of the turbine runner. The guide vanes for the 

are placed in the same way as for a Francis runner, but there is 
cc between them and the propeller. In the case of the Kaplan 

mor moves the guide vanes about their pivots and at the same 
gle of the blades by means of a mechanism m the hub. 

there is also a stay ring, or speed ring, outside of the 
Tins contains stay vanes which are fixed in position and 

10n 1S to serve as columns to aid in supporting the weight of 
The \1llles hould be so shaped as to conform to the natural 

character. The water velocity increases in passing 
==,_.4.1'.., .......... _.., ..... of the decreasing cross-sectional area. 

COIIIIDCX!Jy rei:rrcd to as 'lricket gates. 
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Figure 16.4. Guide-vane assembly. (Courtesy of S. Morgan Smith Co.) 

Figure 16.5. Scroll case. (Courresr of 
The Jame-' Lt'jfe/ and Co.) 
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IFi t 16.6. rurbme at Hoover Dam on the Colorado River. Rated at 115,000 hp at I ~0 rpm 
a head of 4 0 ft Runner diameter= 171 in. (Courresy of Allis-Chalmers Mfg. Co.) 

a \\atts Bar Dam. ~:2.000 hp at 9~.7 rpm under a head of 52 ft. 
Corporauon) 
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The guide-vane assembl), or the stay-vane assembly tf there IS one, is sur
rounded in turn by a spiral case (scroll case) such as shown in Fig. 16.5, whtch 
maintains a uniform velocit) around the turbine circumference. For htgh heads 
the case is of metal, but for low heads it may be merely formed in the concrete. It is 
preferably circular 10 cross section as in Figs. 16.5 and 16.6, but if formed m 
concrete, it may be rectangular as in Fig. 16.7. 

16.5. SEITINGS 

Some reaction turbmes are set wtth a horizontal shaft, espectally m small stzes or 
for very high heads. But the majority of reaction turbines are set with vertical 
shafts, as shown in l-tgs. 16.6 through 16.9. One advantage or the verttcal setting ts 
that the draft tube is then more efficient. 

16.6. DRAFT TUBES' 

The draft tube is an integral part of a reaction turbme, and its design cnteria 
should be specified by the turbine manufacturer. It has two functions. One is to 
enable the turbine to be set above the tailwater level without losmg an} head 
thereby. A reduced pressure is produced at the upper end of the draft tube, which 
compensates for the height at which the turbine runner is set. Wtthm hmtts the 
turbine can be set at different elevations without altering the net head. By tts use 
there is an unbroken stream of liquid from headwater to tailwater 

Figw-e 16.8. Moody ~prcadmg draft tube. 
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The second function of the draft tube is to reduce the head loss at submerged 
discharge to thereby increase the net head available to the turbine runner. This is 
accomplished by using a gradually diverging tube whose cross-sectional area at 
discharge is considerably larger than the cross-sectional area at entrance to the 
tube. Applying the energy equation to the draft tube of Fig. 16.8 and letting z 1 

( ~ ;: .) signify the elevation of the entrance (or top) of the draft tube above the 
surface of the water in the tailrace, the absolute pressure head at that section is 
ghen by 

( ) 
1 P. Vf V~ 

p1 1 bafi' = "/ - z1 - 2ii + hL + 2g (16.1) 

here p. is the atmospheric pressure, h1• is the friction head loss in the diverging 
be, and V~ f2g is the submerged-discharge kinetic~nergy head loss at exit from 

tube. The latter can be reduced by increasing the cross-sectional area A2 at exit 
from the tube. However there is a practical upper limit to this because of tube 
lmgth, since the angle of divergence of the tube must be kept reasonably small to 

rent or at least minimize separation of the flow from the tube wall. The friction 
lo in the tube can be estimated through application ofEq. (8.48) using the 

coefficients of Fig. H.20. It should be noted that there is an upper limit on the 
able value of .:1, as discussed in Sec. 16.13. 
ian) different designs of draft tube have been developed to turn the water 

ough \Hth the least loss of energy. Among them is the Moody spreading 
tube hown in Fig. 16.8. In some cases the central cone is extended up to 
the runner o as to form a solid core in the entire central portion ofthe tube. 

ter lea\es the turbine with any whirl, there will be a free vortex in the 
t has been hoY. n that, as the radius of a free vortex approaches zero, 

r 
Gross 
head 

Draft tub< 
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the whirl component approaches infinity. Since this is physically impossible, the 
central core of a free vortex cannot follow the free-vortex law, and this is condu
cive to eddy losses, which are avoided by the solid core. In some cases, as at 
Hoover Dam, a little air is bled into the central section of the draft tube to provide 
smoother operation with less vibration, but not enough air is admitted to impair 
the vacuum materially. 

Figures 16.6 and 16.8 show draft tubes where the principal reduction in velocity 
is in the vertical conical portion and the 90° turn at the bottom has been made 
with a flattened cross section, but one of increasing cross-sectional area. This 
design has been found to give good efficiency and is extensively used. There are 
still other forms, a simple design being a vertical diverging tube. In a few installa
tions a nondiverging draft tube has been used. 

16.7. NET HEAD 

For a reaction turbine the net head his the difference between the energy level just 
upstream of the turbine and that of the tailrace. Thus in Fig. 16.9 the net heat: on 
the turbine ish= ll 8 - Ilc, or 

h= z +-+- - -( 
Ps v~) v~ 

8 y 2g 2g 
(16.2) 

where ~cis the velocity in the tailrace. By comparing Eq. (16.2) with Eq. (15.1) 
it IS apparent that, for the same setting, the net head on a reaction turbine will 
be greater than that on a Pelton wheel. The difference is of small importance in 
a high-head plant, but 1! is important for a low-head plant. 

The draft tube is considered an integral part of the turbine, thus the head h' 
that is effecti\cl} a\ailable to act on the runner of a reaction turbine is 

h' = h- k' (Vl - V2)2 + iV2 - Vc)2 
2g 2g 

( 16.3) 

where h is the net head as defined in the foregoing and the other two terms refer to 
the friction head loss in the draft tube and the loss at submerged discharge from 
the tube. The head h" (Sec. 14.1) that is actually extraced from the water by the 
runner is smaller than h' by an amount equal to the hydraulic friction losses and 
shock losses in the scroll case, guide vanes, and runner, as discussed in Sec. 16.11. 

16.8. OPERATION AT VARIABLE SPEED 

The characteristics of a typical reaction turbine at various speeds under a 
constant-head and a constant-gate opening are shown in Fig. 16.10. These are 
similar to those for the impulse turbine in Figs. 15.11 and 15.12, with certain 
exceptions. The flow is no longer independent of the runner speed because of the 
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F'lglll'e 16.10. FranC! turbine operatmg at ~ariable speed under con•tant head \\tth con~tant gate 
opcnq Runner dJameter • '1.7 m, head= 140.5 rt. 

bro en flo\\ from head\\ater to tail\\ater. and an} change within the runner will 
!!ect the flo\\. In Sec. 6.12 it \\as seen that, for the rotating lawn sprinkler, the rate 

mcreased with the rota the :.peed. This would also be true for any outward-
.. ~ ......... turbme 

for the anward-flow Francis turbine the centrifugal action decrea<>es the flo\\ 
creasing wheel peed, as shown in Fig. 16.10. The next important difference 
the \alue of 4> for max1mum efficienc} ts not less than 0.5. as in the Pelton 
but greater. In this ~pecific case it •~ about 0.8, but in general it ranges 

0 7 and 0.85 for Francis turbines. The runaway speed 1s still only about 
more than the normal speed, but the maximum \alue of 4> is greater 
ad of les . Also, inasmuch as the power input is not a constant, the 

efficiency occurs at a sltghtly higher speed than the maximum power 

Pf. R \TIO. ~ AT CONSTAl';T SPEED 

n on of operation is usually at constant speed with a gate 
\\ uh the load. It will here be assumed that the head is 

_,_ .. ....,..<=·· generall) It decreases slight!) with increased load because the 
pproxtmately as Q1

• Also. the static head may change from 
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Figure 16.11. Francis turbine operating at constant speed and variable gate opening. Runner 
d1ameter - 27 in. 

time to time, for the level of both headwater and tailwater may vary. This is 
important for low-head plants, where in time of flood the tailwater level usually 
rises more than the headwater level. This decrease in head may cause a serious 
reduction in the power that can then be generated. 

Figure 16.11 shows the performance of a certain reaction turbine at constant 
speed. The efficiency curve is not as flat as that for the impulse wheel in Fig. 15.15. 
Figure 16.12 shows typical efficiency curves for various types of turbines. The 
impulse turbine and the Kaplan turbine both have very flat efficiency curves. The 
power at maximum efficiency for both is much lower than the rated power (see 
footnote, Sec. J 5.11 ). The Francis turbine has a high maximum efficiency but a 
poorer partload efficiency than either the impulse wheel or the Kaplan turbine. 
The fixed-blade propeller turbine has a high efficiency at the maximum point but 
a very low part-load efficiency. The normal power of the Francis turbine is closer 
to the rated power than it is with either the impulse turbine or the Kaplan turbine, 
while the normal power of the fixed-blade propeller turbine is very close to the 
rated power. 

For the reaction turbine operating at constant speed the requirement that the 
runner passages be completely filled means that the relative velocity through the 
fixed areas must decrease as the load is decreased. That is, the continuity equation 
Q = A 1 V1 = a 1 l' 1 = a 2 r·2 must be satisfied. At part load the area A 1 is decreased 
by the movement of the guide vanes about their pivots. This also decreases 
the angle cx 1 (Fig. 6.10) and Q is reduced substantially. The net result is that 
the velocity diagrams at entrance and exit are changed. With reduced load, at 
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Fq:urr 16.12. T)ptc.ll clliciency curve~ for the various types of turbines at constant speed under 
co tant head 

entrance the floy, doc~ not enter the runner tangentially to the blades, resulting in 
k lo s.. and nt exit. V2 rna} increase. resulting in an mcrease m the kinettc 

I at d charge from the runner . .\lso. an mcrea~cd "ht~l at dt charge 
the Y.<lter to now through the draft tube with spiral streamline-., \\ hich 

ease the draft-tube cflictcncy. In addttiOn, the quantity of Y.ater leak 111g past 
I rmgs y, til not be d m, mtshed e\en though Q 1s less. thus reducing the 
tnc cflicienc). For the'c reasons the efficiency of a reaction turbine tends 

on light load than that of a Pelton wheel, although it may be more 
t normal load. 

of maximum eflicienc} of turbines as a function of specific speed is 
Fag 16.13. These are optimum \Slues and apply to large turbines Small 
o matter hoY. Y.CJI designed or constructed, should not be expected to 

hagh a the c. 
r the difference between large and small turbine~ j.., that of 

.... 4 ... '",!0"· For a large turbine the leakage loss is \Cry small. being of the 
pe oe t for a mall runner the clearance distances in the seal rings 
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n {bhp 
Normal specrf1c speed, n,- • • 

hYc 

Fi&ure 16.13. Optrmum values of turbine cflicrcncy. 

cannot he reduced in proportion to other dimensions, and thus the leakage loss 
becomes a larger percentage value. Also, for the same average velocity, the fluid 
friction in flow through the small passages is greater than that through the larger 
pas age , because of greater relative roughness and steeper velocity gradients 
re ultmg in larger 'hear stress at the boundary. 

The effect of size on turbine efficiency is of tmportance in transferring test 
results on small models to their prototypes. For both Francts turbines and propel
ler turbines this can be done by the Moody step-up formula, which is 

1 - e, = (.!!..) 1 s 
1- e D1 

( 16.4) 

This applic,, of cour~e. onl) to homologous machines. It has some theoretical 
basi and has been found in practice to give satrsfactory results. 

Equation ( 16.4) docs not apply to Pelton wheels since it is assumed that their 
eflkiencic~ arc nearly independent of size. This is logrcal because they have no 
leakage losses to make a difference. Thus, although a large reaction turbme may 
be more cffictent than a Pelton wheel, a small one may be less efficient. It is 
impossible to give an absolute value of size below which a reaction turbine would 
be less efficient than an impulse turbine, but a rough approximation would be that 
if the diameter of the reaction runner is less than about 20 in, its efficiency may be 
le:s:s than that of a Pelton wheel. 

It will be observed in Fig. 16.13 that the most favorable specific speed for a 
Francis turbine is around 50 and that the efficiency ts lower at both extremes. A 
Franct~ runner of low specific speed will have a large dtameter D and a narrow 
width B for a given power. Disk friction loss due to the drag exerted by the water 
in the spaces between the runner and the case varies as D 5

, and so this loss is 
proportionally large. Also. there is increased fluid friction in the long and narro\\o 
runner pas age characteristic of the low-specific-speed Francis runner. 
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At a high specific speed the:.e effects diminish in importance and the efficiency 
increases But at very high pecific speed the fluid friction Js greater because of the 
higher relative velocity through the runner.· Also. the kinetic energy lo:.t at 
discharge is greater. Therefore the maximum efficiency decreases.. as 11J exceeds 
about 50; the propeller turbine becomes more desirable at specific speeds above 
90. 

16.11. THEORY' 

The primary object in this chapter is to explain the operating characteristics of 
·eaction turbines and to point out some features in their design. An understanding 
of these 1s of.,alue to many engmeers. However. very fe\\ engineers will ever have 
occasion to design the detail of a runner vane, and that topic will not be discussed 
here. 

The energy losses in a reaction turbine may be very simply described as the 
so-<:alled shock loss at entrance to the runner if the relative velocity of the watt:r 
lea\'ing the gu1de \anes is abruptly changed in either magnitude or direction or 
both \\hen it enters the runnl!r. fluid friction in the casing, through the guide-\ane 
pa agt: and through the runner passages : kinetic energy loss due to tht: ,th~olutc 
\elocit) head of the water at discharge from the runner. of which up to RO percent 
might be rcgamed in the most efficient draft tube; and mechanical friction of the 
bearmg and tuffing boxes, as well as disk friction. All these losses \ar) in dif
ferent way • and H b not possible to haH! all of them a minimum at the same 
pomt. 

In order to a'oid shock loss at entrance, it is necessary that the runner-vane 
wh1ch will be designated by {f1 and which is fixed by construction, should be 

(J1• determined b) the \elocit) triangle. The latter \\ill 'ar) with the 
g conduJOn~ . The relations as determined by the velocity triangle 

6 10) are 
1'1 sin :x 1 = r 1 sin P1 

V1 cos :x 1 = u 1 ;- r 1 cos p, 

t 1 between thc~c two equations, 

sin (P1 -ex t) 
lit = . p - VI 

Sin 1 

tgned a fixed 'nlue of P'1, this is the relation between u1 and V1 for 
hock los,. I ( on th other hand. u 1 and V1 arc given, the 
t into a more convenient form as 

P 
V, COS :X 1 - U 1 

cot 1 = , . --
l1 SIO ~ 1 

the reader re\ te\\ Sec. 6.9 gi' tng particular attention to F1g. 6.10. 
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which, upon letting p 1 = /f1, determines the value of the vane angle P'1 for no 
shock loss. Employing V1 = C 1 J2ih and u 1 = f/JJ2gh, the above equations can 
be expressed in dimensionless forms as 

and 

fjJ =sin V!1 - a 1 ) c, 
SID Pt 

P 
c,cosa,-f/J 

cot 1 = . -cl sm a, 

(16 5) 

( 16.6) 

Values of the runner vane angle /f1 smaller than 90" have been found to cause 
cavitation at the inlet and to give poor efficiency; so the angle is generally made 
90" or more. A value for /f1 in the vicinity of 95 to 100 is fairly common. 

The hydraulic efficiency of turbines is e,. = h" h. From Eq. (6.22} we have II" = 

(u I V1 COS a I - U2 V2 COS a2}/g. Defining V1 = C 1 J2gh, V2 = C 2 j2gll, and U 1 = 
f/JJ2gll, we get for the hydraulic efficiency of a turbine. 

h" u, v, cos a, - 112 v2 cos a2 2A.(c '2 c ) {16.7) - --= '+' 1 cosa1 - 2 cosa2 h gil rt 

For maximum efficiency a 2 will be close to 90°, for then the value of V2 • and hence 
the loss of kinetic energy at discharge from the runner, will be a mmimum. 
Experimental evidence indicates that a 2 for maximum efficiency varies from 85 
for low-specific-speed Francis turbines to about 75° for high-specafic-spccd ones. 
As a simplifying assumption for this discussion let us assume a2 = 90°. Equation 
(16.7} then becomes 

( 16.8) 

From this equation it is seen that i/Jr and C 1 are inversely proportional to each 
other. For the Pelton wheel. tP is a little less than 0.5 and C 1 = Cv• the nozzle 
velocity coefficient. is nearly I. For the reaction turbine, where less than half of the 
net head is converted into the kinetic energy leaving the guide vanes and entering 
the runner, the value of C 1 must be of the order of 0.6, and therefore i/Jr is 
correspondingly high. As the specific speed increac;es, values of C 1 decrease and 
i/Jr. As mentioned previously f/J,. for Francis turbines ranges from about 0.70 to 
0.85. Typical values of tP,. for axial-flow turbines range from 1.4 to 2.0. 

16.12. TURBINE PROPORTIONS AND FACTORS 

Figures 16.2 and 16.14 show the nomenclature used. In a high-specafic-spced 
Francis runner the diameter at the entrance varies from crown to band and the 
nominal diameter Dis taken at the mid-height of the guide vanes. For our purpose 
much usc will be made of this dimension. For the designer, however, an amportant 
dimension is the throat diameter D,. which is less than D for low-spec1fic-spced 
Francis runners and greater than D for high-specific-speed Francis runners. The 
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Figure 16.14 

diameter Dd of the upper end of the draft tube is slightly less than D, for low
spl!cific-speed Franc1s runners and slightly greater than D, for high-specific-speed 
FranCL' runners. For axial-flo\\ runners D - D4 = D, (fig. 162c). 

Values of certain runner proportions and factors are shown in Fig 16.1" \II 
quantities which may vary with either load or speed are here shown as the values 

a: 
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for the point of maximum efficiency. The exact form of a runner profile and the 
values of these factors will vary from one manufacturer to the next and are 
developed as a result of experience. However, the values shown are representative 
and do show the tread of each as a function of specific speed. 

The theory as presented in thiS chapter represents the capacity of a runner as a 
function of D, but the quantity which determines capacity is the discharge area of 
the runner. This area is determmed on the drafting board and is carefully checked 
in manufacture. 

The circumferential area of the runner is 

Ac = 0.95nBD = 0.95n(~)D2 

where 0.95 IS a factor arbitrarily inserted to correct for the area occupied by the 
runner vanes. In a specific design the precise value could be obtained. The ratio 
B/D is a function of specific speed. 

The radial component of the velocity at entrance is V,. = C, J2iii and 
Q = V,. Ac. Since bhp = eyQh/550 and also bhp = n;h5

'
2fn2

, where 
n = 153.2¢.jh/D from Eq. (14.22), it is possible to employ all these relations to 
obtain 

nz 

C, = 67,340¢~(B/D)e (16.9) 

if i is assumed as 62.4 lb/ ft 3 . (For any other specific weight }", multiply 67,340 by 
;t i'·) Then. by employing values of¢~ and B/D from Fig. 16.15, a value of eC, may 
be obtained for any specific speed. It is seen that in any given case the value of C, 
depends upon the turbine efficienq, which is proper, because, for a given power 
for a given specific speed, the quantity Q required will depend upon the turbine 
ctliciency The \alue of the efficiency e is not necessarily that shown in Fig. 16.13, 
for those in the figure are merely typical values. 

Abo, V,. = V1 sin C£ 1, and it is therefore clear that, as C, and V,. depend upon 
the turbine efficiency, so also must a 1 depend upon turbine efficiency. That is, in 
order to provide a greater flow for a turbine of lower efficiency, the gates must be 
opened to a larger angle to provide a larger area for the flow. Hence the values of 
IX 1 shown in Fig. 16.15 are only approximations. 

The foregoing discussion and equations apply to the Francis turbine. For the 
axial-flow turbine, D is replaced by D1 and the value of <l>c becomes that forD, , the 
maximum diameter. If the diameter of the guide-vane-tip circle is D0 , Eq. ( 16.9) is 
replaced by 

2D2 
C = ns t 

' 67,340¢;BD 0 e 
(16.10) 

Often D
0 

is slightly greater than D,. but in many cases the two are practically 
identical If the latter is the case. then Eq. (16.10) reduces to the same form as 
Eq. (16.9). 
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IUustrative Example 16.2. (a) Find t)ptcal \alues for the blade angles x 1 and {f
1 

of a I ranCt\ 
turbine having a specific speed 11, = ~0 

From Figs. 16.13 and 16.15, e = 0.9~5. B D = 0.10. and-<fo • = 0. 72. Assume e• = 0 94 and Clz = 90 
Then 

.wo 
C, = _,n1 , -- ) = 0.124 

67,3""10.72)"(0.10){0.925 

From Eq. (16.8~ C, co., :~r, = •'• :!¢,. Tho, 

0.94 c, co, :x, - = 0.653 
2 X 0.72 

C 1 sin :x, C, 0.124 
tan :x1 = = = = 0.190 c, cos :x, c, cos x, 0.653 

i1Jm which :x1 • 10 45'. Hence C1 C, sin :x 1 0.124/0.186 = 0.665. Applying Eq. (16.6), 

0.653 - 0.72 = -0.53 
0.124 

~. = 118 . which should also be the blade angle /J'1• 

) If the turbine of (a) above is to be used to develop 3,600 bhp under a head of 402ft nl 
rpm. determine approxtmate values of Band D; find' V, and Q. 

600j3,600 
II,= (402)14 = 20 as in (a) 

D 
153.2tf>/ir 

II 

153.2 X 0.72 X 20.05 
-- = 3.69 ft 

600 

F~,g. 16 15. 8 .. 0.10 x 3 69 .. 0.37 ft. and D, = 0.735 x 3.69 = 2.71 ft. Thus A,= 0.95nDB = 
z J,- 0 124 x .02 x 20.05 = 19.9 fps, and Q = 4.06 x 19.9 = 81 cfs. 

13. C !\ \"JTATIO~ IN TURBINES 

~ec 4.8) ts undesirable because it results in ptttmg (Fig. 16.16), 
brat ion. and loss of efficiency. In reaction turbines, the most likely 

occurrence of cavitation is on the back sides of the runner blades ncar 
edc~ Cavitation may be avoided by designing, installing, and oper

uch a manner that at no point will the local absolute pressure 
por pressure of the water. The most critical factor in the installation 
b is the vertical distance from the runner to the tailwater (drafi 

the ca\ nation characteristics of turbines it is convenient to 
ameter as 

Patm.fr' - PJi' - ZB a= -
h 

( 16.11) 

ed m Fig. 16.9. The term Patmii' - pJ; represents the 
nse m a \\ater barometer. At sea level with 70 F water. 
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Figure 16.16. Cavuation pltling of Francis wheel and scroll case at Mammoth Pool Powerhouse after 
2~ yr of operation. Conditions of service are relatively severe. Turbine rating: 88,000 hp at effective 
head of 950 ft: operatmg speed 360 rpm. The bright shiny spots are stainless-steel welds that have 

'nllh~tood cavitation p1tting for over a )ear. (Courresr of Southem California Edi,on Co.) 

Patmh'- pJy = 33.1 ft. At higher elevations and at higher water temperatures it is 
smaller than 33.1 ft. The minimum value of a at which cavitation occurs is a,. Its 
value can be determined experimentally for a given turbine by noting the operat
ing conditions under which cavitation first occurs as evidenced by the presence of 

noise, vibration, or loss of efficiency. 
From Eq. ( 16.11) we see that the maximum permissible elevation of the tur-

bine runner above tailwater is given by 

Typical values of ac are as follows: 

l 
II, I '0 T\ 
G, I 0.025 

Francis wrhines 

40 1 60 I so 
0.10 \ 0.23 \ 0.40 

l\ Propeller turbines 

\ 

100 1\ 100 
0.64 \1 0.43 

150 
0.73 

200 
1.5 

(16.12) 
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Figure 16.17. Recommended 
hmns of ,pecitic speed for 
turbine\ under various etfecme 
heads at sea le\Cl wuh water 
temperature at 80 F. (After 
Mood), in Da\ls (ed.~ .. Hand
book of Applied H)draulrcs, ~ 
McGroY.-HIII Book Compan}. 
1952.) 

mpectton ofthe e \alues shows that a turbine of high specific speed must be 
lower than one of to~ ~pectfic speed. In fact. for a high net head h, it 

be necessar~ to set a high specific-speed turbine below the level of the 
urface (i e~ with negative draft head). This is a factor which restricts 

peiJer turbine~ to the lo~ head range, which ts fortunately the 
.. ~htch the) are best suited in other ways also. 

haws recommended limits of safe spectfic speed of turbmes for 
and ~ttings based on experience at extstmg power plants. 

Eumple 16.3. Find the maximum permissible head under which a Francis turbine 
tIS set 10 rt nbme tnll\\ater at an ele\ation of5.000 ft with water temperature 

P. 

p 

12.2 X 144 
62.4 = 28.2 ft 

026 X 144 
c 0.5 ft 

62.4 

u, - 0.31 

per 1ble head to a'sure again,t ca\ itation) 
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16.14. SELECTION OF TURBINES 

Inspection of Eq. ( 14.23) indicates that at high heads for a given speed and power 
output, a low-specific :.peed machme such as an impulse wheel is required. On the 
other hand, an axial-how turbine with a high "s is indicated for low heads. An 
impulse turbine may, ho\\-ever, be suitable for a low-head installation if the flo\\ 
rate (or power requirement) is smalL but often under such conditions the required 
size of the impulse wheel is prohibitive. Impulse wheels have been used for heads 
as low as 50 ft if the capacity ts smalL but they are more commonly employed for 
heads greater than 500 or 1,000 ft. The limiting head for Francis turbines is about 
1,500 ft because of possible cavitation and the difficulty of building casings to 
withstand such high pressures. By choosing a high speed of operation and, hence, 
a high-specific-speed turbine, the runner size and thus first cost are reduced. 
However, there is some loss of efficiency at high specific speeds. Nonetheless, the 
modern trend is toward the selection of high-specific-speed turbines. 

In the selection of a turbine or turbines at a given installation options are 
available w1th respect to the number and type (n5 } of turbines. Generally 1t is 
considered good practice to have at least two turbines at an installation so that the 
plant can continue operation while one of the turbines is shut down for repa1rs or 
inspection The head II is determined primarily by topography, and the flow Q by 
the hydrolog) of the watershed and characteristics of the reservoir. Some of the 
factors mfluencing the choice of turbines are apparent in the following example. 

IUu~trati\e Eumple 16.3. Two or more identical turbmes are to be ~elected for an instalL1rion 
where the ncr head b 350 ft and the total flow is to be 600 cfs. Select turbmcs for this msrallauon 
llli~ummg 90 percent cnic~enc} . 

The rotal 3\311ahle po~~ocr is 

62.4 X 6()0 X 350 X 0.90 
~ ... 21.:!00 hp 

Assume t~~oo rurbmes at an operating speed of 75 rpm (96-pole generators for 60-cycle elcctncuy). 

75v'21,200 2 
n, • 350s 4 = .5.15 

Thus, if the operating spel!d IS 75 rpm, usc two turbines with n, • 5.15. The rcqu1rcd wheel d1amcrer of 
these turhmcs is found from Eq. (14.22): 

D 
153.3j35o x 0.45 

7-5-- -= 17.2 ft 

A wheel diamerer of 17.1 fr 1s quire large; a -.maller size is poss1ble by incrcasmg rhl! rorauvc ,p~cd If 
n = 100 rpm, n,.,. (5.15 x 100)75 = 6.9, and D = (17.2 x 75) 100 12.9 ft. Or her combination-. or n, 
and D could be used with orher speeds, however, in accordance with Fig. 15.16, n, should be lcs-. than 
abour 7 0 ro ensure h1gh efficiency if impulse wheels are selected. Another pos,lhle ,oJuuon j, four 
identical rurbmcs ~~oirh n,"' S 8 and D = 10.7 rt operating at 120 rpm. 

Fmally, let u-. explore the possibthty of usmg FranciS rurbme~. A''umc t~~oo Franc•-. turbmes 
operatmg at 600 rpm ( 12·pole generator ror 60<ycle electricity). 

600\i 21,200 2 
n,= 3~=41 
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According to F1g. 16.17 theo;c turbtne 11.111 be safe against cavitauon onl} 1f they are set at zero or 
negallve draft head (i.e .. wuh the runner at the 'arne elevation as the tail water or belo11. the tatl11.ater) 

To prO\ ide greater ,afeguard agamst cantauon '1\e might select a lower-spectfic- peed rnaebme, 
but then lis eflic1cncy may not be so good as mc.hcatcd by Fig. 16.13. A good ch01ce 11.ould be ti!.O 
Franc•~ turbme~ wllh n, .. 30.8 operaung at 450 rpm. The required diameter of these turbmes I!.Ould 
be about 4.1! ft assummg ~ = 0.75. There are actually an mfinlle number of alternatnes The thmg, to 
11.atch out for are: (a) freedom from cantauon (F1g. 16.17): (b) reasonabl) hl&h efllctenC) (F~g 16.13). 
and (c) sJZe not too large (I q {14 22)) FlexJblhl) of choice IS achieved through \arJallon m the 
number of units (and hence brate horsepo11.er per unit) and in the operatmg speed \'anauon m the 
draft-head ~cuing also proHdes some fte:ub1lit}. 

16.15. PUMP TURBINE 

In recent years the pump-turbine hydraulic machine has been developed. It is very 
imilar in design anti construction to the Francis turbine. When water enter:. the 

rotor at the periphery anti flows inward the machine acts as a turbme. With water 
entering at the center (or eye) and flowing outward, the machine acts as a pump 
The direction of rotatton is. of course. opposite in the two cases. The pump turbme 

connected to a motor generator \',hich acts as either a motor or generator 
dependlllg on the direction of rotatiOn. 

The pump turbme ts used at pumped-storage h)droelectnc plants which 
p \\ater from a lower reservoir to an upper reservoir during off-peak load 

p:nod o that water is a\ailable to drive the machme as a turbine during the ttme 
peak po\\er generation is needed. 

n example of a pump turbine are those at the K1senyama Pumped Storage 
of the Kansai Electric Compan)' in Japan. There are two identtc. I p mp 
at that in tnllation. Under the normal range of operating condition" e.tch 

the foliO\\ mg characteristic .... 

(n = 225 rpm): 
p 322.000 hp at maximum net head of 7'22 ft. 

23 ,000 hp at minimum net head of 607 ft. 
= 225 rpm): 

cr ... at minimum net head of 649 ft. 
cfs at maximum net head of 755 ft. 

"LLATIONS 

lly adapted for use under moderately lo\\ heads and 
tble maximum of 1,500 ft for large powers. if the 

't1.0uld cut the clearance rmg~ and produce exce~si\e 
r t) pe of reaction turbine is particularly suitable for the 

th large po\\er. Its ca\ ttation characteri~tic~ limit it 
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Among some interesting installations of reaction turbines are the following. 
At Fionnay, Switzerland, a Francis turbine operates under a head of 1,490 ft and 
delivers 63,200 hp at 750 rpm. In Austria a head of 1,430 ft is used for a 77,700-hp 
turbine at 500 rpm. In Norway a head of 1,360 ft is used to develop 69,000 hp at 
500 rpm. In Italy a reaction turbine running at 1,000 rpm develops 20,140 hp 
under a head of 1,320 ft. At Oak Grove, Ore., a Francis turbine under a head of 
850ft delivers 35,000 hp at 514 rpm. These are all low-specific-speed reaction 
turbines. 

Examples of higher specific speeds are a Francis turbine in France, which 
delivers 154,000 hp at 187.5 rpm under a head of 336 ft and another one, also in 
France, which runs under a head of233 ft and develops 135,000 hp at 150 rpm. At 
Conowingo on the Susquehanna River 54,000-hp units run at 81.8 rpm under a 
head of 89ft. The Conowingo runners are 18 ft in maximum diameter. Another 
example of large reaction turbines are the four vertical-shaft Francis turbines that 
Mitsubishi has recently manufactured for installation at the Kootenay Canal 
Power Station in British Columbia, Canada. These are each designed to develop 
196,000 hp when operating at 128.6 rpm under a net head of 268 ft. 

Kaplan turbines are represented by one in Sweden which develops 105,600 hp 
at 125 rpm under a head of 130ft and one in Italy which runs at 600 rpm under a 
head of 141 ft and delivers 7,500 hp. At Bonneville, on the Columbia River, are 
units which have runners 280 in in diameter and with only five blades. They 
deliver 66.000 hp at 75 rpm at 50 ft head. At Safe Harbor on the Susquehanna 
River are six units with runners 220 in in diameter running at 109.1 rpm under a 
head of 53 ft and delivering 42,500 hp each. At Wheeler Dam in Alabama a 
fixed-blade propeller unit delivers 45,000 hp at 85.7 rpm under a head of 48 ft. At 
Rock River in Illinois a Kaplan turbine runs under a head of only 7 ft. It has a 
runner 138 in in diameter and develops 800 hp at 80 rpm. 

PROBLEMS 

16.1. When operating at optimum efficiency of 90 percent the How through a small radial reaction 
turbine, Fig. 6.10, is 4.0 cfs. The head on the machine is 29.6 ft. Its dimensions arc: r 1 = 0.8 ft, 
r2 = 0.2 ft, P1 60°, P2 = 140", and vane height Z = 0.4 ft. Determine the specific speed of this 
turbine. Also compute 1/1 and compare it with typical values given in the text. 

16.2. Water enters a rotating wheel with a relative velocity of 200 fps; r 1 4.0 ft, and 11 - 420 rpm. 
There is no pressure drop in How over the vanes. Assume k = 0.2. Find the relative velocity at 
discharge if (a) r2 3.0 ft; (b) r2 = 5.0 ft. 
16.3. Water enters a rotating wheel which is so proportioned that the passage~ are completely filled. 
Q = 400 cfs, a 1 = 10 ft 2

, a2 8 ft 2
, r 1 = 1.5 ft, r2 = 1.0 ft, and n = 540 rpm. Assume k = 0.2. Find the 

drop 111 pressure head between entrance and exit. 

16.4. In the figure IS shown a sptral case for a large vertical-shaft turbine. To assist m supporting the 
weight of a generator on the floor above the turbine, columns are insert«l in the casing in the form of 
stay vanes in a casting known as a speed ring. These vanes should conform to natural streamlines. 
(Guide vanes, whteh do direct the course of the water, are inside the speed ring. and the runner is in the 
very center. These details are not shown.) In the figure let r 1 = 18ft, r 2 =8ft, r3 =6ft. A 1 - 200 ft 2, 
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Prob. 16..t 

Bl"" 3ft, 8 3 - 2.5 fl, a 1 = 40. If the water enters the lurbine case at (1) with a vcloc•ly of8 fps, find 
tar ~tenual and radial componenh of velocity at entrance to and eJtit from the speed ring. What 
ld be the d1recuons of the 'tay vanes at entrance and at eJtlt? 

Refer to lllu,truthc Example 16.lc. Suppose two units are to be used. Select several d1ITcrent 
fic-.,peed opcrat10g-speed combinations that would satisfy the requirements. 

(a) At a plant of the Utah Power and Light Co. is a turbine runner 76 10 10 d1ameter ~hrch 
8,500 hp ar 100 rpm under a head of 440ft (b) At Niagara Fall~ a turb10e runner 176 an 

"'-''""'""'" de\elops 72.500 hp at 107 rpm under a head of214 ft (c) At Cedar Rap1ds a turblllC ru 
n dramcter develop~ 10,800 hp at 55.6 rpm under a head of32 ft. (d) At Rock Rl\er m llhnor a 
runner 1.3!! in in maximum diameter develops 800 hp at 80 rpm under a head of7 ft.l·or each 

compute I he spectfic speed and the value of tf>. 
h dcsued lo develop 300.000 hp under a head of 49 ft and to operate at 600 rpm. (a) lhurbmc' 

a specdic speed of npproxtmately ISO are to be used. ho\\ many unit:; w1ll be required? (b) If 
turbmes \\'lib a specific speed of 80 were to be used. how man) unil.; ~ould be requ~red 1 

lbe Cornell Unl\erslt) turbme for which the test curves are 'hown in Fig:.. 16.11 and 16.12 has a 
27 an m d1ame1er and a max1mum effic•eney of 88 percenl when discharg10g 38.8 cr, and 

~---v--6 550 bhp at 600 rpm under a net head of 141.8 ft. Compute n., t/>,. and C,, assummg 

to the data of Prob 16.8, the mechanical-fnction losse:. in the Cornell Um\-ersll) 
ured and found to be 2.7 hp. Assuming that the leakage is I peru:nt or the mca,ured 
a: • 90, find \alues of e1 , :x1• and p,. 

homologous to that 10 Pro b. 16.8 ~ere made w1th a runner diameter of 135 m, what 
le efficient) under the same head? 

o Prob 16.8 has a horizontal shaft, and at the ume of the test the center line of the 
abo\e the ,urfacc ol the water m the tailrace. The d1scharge edge of rhe runner at th 

abo\e the centerline of the shaft. If the temperature of the waler were as high as 
•e • 0 5 ps1a) and the barometer pressure were 14.6 psia, what would be the \aluc 

thealtJCal \&lue of the cavitation factor for the turbine tn Prob. 16.8 is 0.06 
Pr b 16 II are used, what would be lhe maximum allowable heigh! or the 

the tadwatcr surface 'I 

a!UCli the same except that the net head on the turbine is 400 ft. What 
height of the centerline of the shaft above the ta1lwater level 1 

t rbme tn Prob. 16.8 is 24.5 in ;n diameter, where it join' the 
the runner, the latter being on a horizontal shaft. The top of the 

JOD IS 11.0 ft ab<)\e the surface of the water m the tailrace. 
be IS 4] m to drarneter. and the velocity in the ta1lrace may be 

the draft tube IS 0.15 Vi 2g plus the diSCharge lo-.s of Vi f2g, 
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where subhcripts 2 and 3 refer to the top and bottom ends of the draft tube, respectively. When the flow 

is 38.8 cfs, what is the pressure at the top of the draft tube? 

16.15. Suppose the draft tube in Prob. 16.14 wen: of uniform diameter, what would then be the 
pressure at the top of the tube? How much head is saved by the di,erging tube? Assume the draft tube 

has a length of 18 ft and f = 0.020. 

16.16. This Francis turbine 1' to produce 9,000 hp at 300 rpm under a net head of 150 ft. If the 
mechamcal efficiency is 96 percent and the overall efficiency 84 percent, what guide vane angle should 
be used? Do not use any plotted data m the solution of this problem. State clearly any assumption~ 

you make. 

Prob. 16.16 

16.17. For 50-cycle electricity how many poles would you recommend for a generator which is con
nected to a turbine operating under a design head of 3,000 ft with a flow of 80 cfs 'I Assume turbine 
effic~encies as given in Fig. 16.13 and be sure the turbine L~ free of cavitation. 

16.18. It IS dc>Ired to install a single turbine that will develop 4,200 hp under a head of 247 ft. If a 
turbme wnh n, :::: .25 were selected. what rotative speed would you suggest for 50-cycle electricity? How 
many poles do you recommend for the generator? Using Fig. 16.15 and Eq. (14.22) specify the values 

of t/1,. D. D,, 8, and a 1. 

16.19. A Kaplan turbme is to run at 75 rpm and develop 66,000 hp at a head of 50 ft. Assume that for 
this particular design t/1,- 1.61 at D, and that 8 D, = 0.40. (These values are not identical with those 
in Fig. 16.15 because of a difference in the practice of different compames.) Compute the maximum 
diameter of the runner and the height of the guide vanes. 

16.20. In the test of the Cornell University turbine the pressure at th~ tlange at the entrance to the 
spiral-turbme case where the diameter is 30 in was read by a mercury manometer. At a flow of ~~.5 cfs 
the manometer differential reading in the U tube was 9.541 ft Hg, the top of the lower mercury column 
bemg 9.730 ft above the surface of the water in the tailrace. Neglecting the small velocity head in the 
tailrace. find the net head on the turbine. 

16.21. Francis gave the following dimensions for the turbine (Fig. 16.1) designed and tested by him. 
D 9.338 ft, 0 1 = 7.987 ft, 8 = 0.9990 ft, 8 2 = 1.2300 ft, minimum distance between runner vanes at 
exit 0.1384 ft, minimum distance between guide vanes at exit = 0.1467 ft, 40 runner vanes made of 
-l-in iron plate, 40 guide vanes made of f6-in iron plate. (To avoid pulsating flow, the number of runner 
vanes should not be the same as the number of guide vanes or any multiple of them.) From these data 
and scaling the drawings. it is estimated that approximately a 1 = 13°, {J2 = 168°, fJ'1 115, and 
a2 "" 6.65 ft2. At the most erficient speed Francis reported the test data ash"' 13.378 ft. Q 113 cfs. 
n .... 40.3 rpm, bhp = 136.6, and e = 0.797, from which 4> = 0.672. u 1 = 19.7 fps. u2 = 16.85 fps. and 
.J2gh 29.3 fps. 
Compute (a) specific speed, (b) C,. (c) C 1, (d) {3 1, and compare with the vane angle P\. as measured. 

16.22. From the data given in Prob. 16.21, compute (a) ~ 2 ; (b) t•2 cos P2 : (c) a2 ; (d) ~-2 • (e) percent of 
the head lost in the kinetic energy at discharge from the runner. (This turbine was submerged below 
tailwater level and had no draft tube.) 

16.23. In the test of the turbine of Prob. 16.21 at zero speed h = 13.565 ft and Q 110.3 cf!,. (a) Deter
mine the magnitude and direction of the absolute velocity at discharge from the runner. (b) What 
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percentage of the head was the unit kinetic energ) at discharge from the runner? (c) Ho\1. wa the rest 
of the head expended? 

16.14. In the te~t of the turbme of Prob. 16.21 at runaway speed. h = 13 ~96 ft. Q 99 cfs, 
•• 37 7 fps. 11 2 • 32.3 fps. (a) l.Ntermme the magnitude and direc!lon of the absolute \'eloc t) at 
diSCharge from the runner'? (b)\\ hat percentage of the head was the unit lmc!lc energ) at diScharge 
&-om the runner"! (c) Ho\1, ~A as the rest of the head expended? (d) What was the max1n1um \1llue of ,P? 

16..25.. \ small Francis runner (n,- 30, D = ~ ft) IS tested and found to ha\e an efficJenC) of O~'i93 
.-ben operating under optimum condlllon.<. Approximately what would be the ma:umum eltkicnc) of 
a homologous runner (n, = 30) haHng a diameter of 6ft? 

16.26. \ 12-ft-diameter reaction IUrbme b to be operated at 100 rpm under a net head of96 fl. A I : 8 
I of thiS turbme IS burlt and tested in the laboratory. If the model is operated at 450 rpm. under 
net head hould 11 be tested to s1mulate normal operating conditions in the prototype? 

.,-. A I . 8 model of a 1::!-ft-diameter turbme is operated at 600 rpm under a net head of 54.0 ft. 
thiS mode of operauon the brake horsepower and Q of the model were observed to be 332 and 
respecti\CI). (a) From the above data compute the specific speed of the model and the value of 

C'alculare the efficiency and shaft torque of the model. (c) What would be the efficiency of the 
-d meter protOI)pe? (.I) The protOt)pe is to operate at 144 rpm under a net head of 200 ft Fmd 

po"er output of the protot)pc and the flow rate. 

\\ould )OU exp.:ct problems with cavitation in the above mentioned protot)pc of pari (d) 1f 
t abmc tadwatcr elc\'ation? 

Grand Coulee turbmes ha\e runner diameters of 197 in. The height of the guade \an 
1be dl3merer of the throat of the runner and also the diameter of the draft tt:r•,· .UJI •• cent to 
are 172 10 Each turbme is rated at 150,000 hp under a head of JJO ll at 120 rpm At th" 

9 pcr<:.:nt and the absolute velocity of the water entering the runner as 77.2 fps. 
pecllic •peed. (b) t/J; (c) C 1 ; (d) C,; (e) a 1 and /3 1 for this full gate opening. 

orProb. 16.29 have a maximum efficienc~ of93 percent at 125.000 hp under a head 
The ax tal component of velocity at the top of the draft tube is 23 fps. and if it is 

normal load the angle of whirl in the draft tube is 7 . wh1ch JJ good practice .. wme 
lead 10 an c,umare of (r 1 r1 )C1 cos x 2 = 0.013. Compute (a) normal specific spt.-ed: 
:z 1, as ummg hydraulic efficienC} = 94 percent; (d) a 1 and p 1 for normal power, (e) 

-"--"·lA]~ reacuon turbme has the follo\l.mg characteristics: Ac = a 1 =40m 2
• az = 28 tn 2 

2. r 1 - 10 in. r2 = 5 in. {f1 = 140·, /3 2 = 155. Assume shod less entrance and 
rorame speed under these condiuons. Fmd aho the torque, the brake 

and the \alue of C 1• Assume t/1, = 0.75. 

be mstalled "here the net available head is 185ft. and the available flow w1ll 
pe ohurbme would you recommend? Specify the operating speed and number 

de ele.tncit) tf a turbine with the highest tolerable specific speed that will 
scledcd Assume the turbine is set 5 ft above tatlwater. A~sume turbme 

pro:o. rna tel) what size of runner is required'! 

rmiSSablc head under which in axial-flow turbine (11,- 160) can operate 1f 
mstullation is at elevation 3, ISO ft. and the water temperature h, 65 F. 

s for the \arious turbines for which data arc given in Sec. 16.16. 
at a pomt \!,here the available head is 175ft and the available flow 

turbine would you recommend? Specify the operating speed and 
e~-tnctt) tf a turbine with the htghes t tolerable specific speed to 

Assume static draft head of 10 ft and 90 percent turbine 
t rbmc runner is required? 

5 select a set of two idenucalturbme~ to be operated in parallel. 

ent cal turbines that can be used at a powerhouse where the 
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a\ailable head is 1.200 ft and Q • l6SO cfs? As:.ume turbine effic~ency i~ 90 percent and speed of 
opera 1on 138.5 rpm. Specify the tze and specific speed of the un1b. 

16.38. Select two, four. and 'IX 1den11cal turbines.for an installation where h =400ft and total 
Q '00 cfs. Develop 60-cyclc elec:tne~ty U>ing either 36- or 72-pole genera ton.. Be sure your selection 
1s safe from cavitation 

16.39. Determine the approximate \alue' oft he specific speeds of the Kisenyama pump turbines when 
operating as a pump and when operating as a turbine. 
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AXIAL-FLOW PUMPS 

·--·~11"gal pump is so called because the pressure increase within its rotor 
.....--•T~,f~".-.1 action is an important factor in its operation. In brief. it consiSt 

tmg \\ithin a ca c. as in Fig. 17.1. Fluid enters the impeller m 
n. called the e)C, Oows radiall)' outward. and is discharged 

mference into a casing. Durmg flow through the rotating 
recel\es energ) from the vanes, resulting in an increase in both 

e \elocit). Since a large part of the energy of the fluid leaving 
t necessar) to reduce the absolute velocity and transform 

th \elocJt) head into pressure head. This is accomplished in 
ndmg the impeller (Fig.l7.1) or in flow through d1ITuscr 

~loCJt) vector at cnt·ance to and ex1t from the \ancs of a 
n m Fig. 6.11. 

b the demand for greater capacity. without mcrcas-
~-ulted m an increase in the dimensions parallel to 

ed an mcrea~e in the eye diameter to accommodate 
change in the vanes at entrance, resultmg in 

pecafic peed is higher than that of a rad~al-llow 

pecafic peed i::; obtained with the propeller. or 
In thiS t)pe there is no change in radius of a given 

503 
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Figure 17.1. Volute centrifugal pump. 

Stationary 
vanes 

Figure 17.2. Dtffuser (or turbine) pump. This tl
lustration is not t}pical of modern practice and 
would be found onl} in large pump> where the 
diffuser vanes arc needed for structural reasons 
In modern turbine pumps the dtffuser vanes are 
three-dimensional as in Ftg. 17.4 and cannot 
readily be shown m a drawing. 

streamline, and hence centrifugal action plays no part. However, the theorem of 
angular momentum applies alike to all types. 

The principles of this chapter apply equally to fans and blowers as well as to 
centrifugal pumps providing there is only a small change in density of the air 
or other gas. 

17.2. CLASSIFICATION 

Centrifugal pumps are divided into two general classes: (1) volute pumps and (2) 
diffuser, or turbine, pumps. In the former the impeller is surrounded by a spiral 
case. as in Fig. 17.1, the outer boundary ofwhich may be a curve called a rofll(e. 
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The absolute velocity of the fluid lea\ ing the impeller is reduced in the volute 
casing, with a resultant increase in pressure. In the diffuser pump, shown in Fig. 
17.2. the impeller is surrounded b) diffuser vanes which provide graduall) enlarging 
passages to effect a gradual reduction in velocity. Because of the superficial resem
blance to a reaction turbine, thb t)pc is often called a turbine pump. Howe\er. it is 
still a centrifugal pump. Thc~e diffusion \anes are usually fixed or immo\able. but 
in a very few instances the) ha\e been pivoted like the guide vanes in a turbine in 
order that the angle might be changed to conform to conditions \\'ith different 
rates of flow. 

Centrifugal pumps are also di\ided into single-suction pumps, as m Fig. 17.3, 
an .. double-suction pumps. The latter have the advantage of symmetry, which 
ide_Jy should eliminate end thrust. They also provide a larger inlet area with 

~r intake velocities than would be possible with a single-suction pump of the 
same outside diameter of the impeller. 

' types of pumps may be single-stage or multistage. With the latter, two or 
identical impellers are arranged in series, usually on a vertical shaft. The 

lit) of flow is the same as for one alone, but the total head developed by the 
the product of the head of one stage times the number of stages. 
\Cr) special type is the deep-well pump of Fig. 17.4. Since this must be 
d m a well casmg of limited size, the total diameter of the pump assembly 

be relati\el) smalL and thus the impellers are even smaller in diameter. 
~--.... of the mall diameter of the impeller, the head developed is not very great 

of ln<ter>oli-Rand.) 
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Figure 17.4. Deep-'>~>ell mu)ll,tage mt\CU·ftO\\ turbmc pump. (Courtt'H 
~ B1ron Juchon CompanJ .) 

in one stage, and so for a deep well it is necessary to have a number of stages in 
order to lift the water to the desired height. 

Smce the casmgs, or bowls, of the deep-well pump are usually concentric and 
arc not volutes and the water must be Jed from the discharge from one impeller 
into the eye of the next, it is customary to employ diffusion vanes in the intevening 
passages. 

Figure 17.5 shows the impeller for Fig. 17.4.lt is of the mixed-flow type and is 
al o an open, or unshrouded, impeller. The stationar) casmg forms one boundary 
\\UII for the rotor passage, which necessitates the vanes havmg a small clearance 
with the casing. Ry contrast Fig. 17.6 shows a shrouded Impeller for another dcep
"'ell pump, and in this the rotor passages are completcl) enclosed as in Fig. 17 .3. 
Open impellers arc used where the material being pumped 1s likely to clog the 
passages of a shrouded impeller. 
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D R TI~ G OF P MPS 

Figure 17.5. Open. or unshrouded, 
impeller for pump of Fig. 17.4. 
(Courtt'S,I oj 8_1ron Jachon 
Company.) 

Figure 17.6. Shrouded mi.\ed-tlo11. 
impeller for deep-well pump. (CourCt s,1 
of Brron Jachmr Company.) 

e of a pump b) the internal diameter of the flange 
............. "'_ thts mdtcate' the size of the dtscharge pipe that 

diCatlon as to the siZe of the Impeller, which is in 
ere the impeller diameter is usually given. 

paett) (i.e~ discharge) and head at the point of 
rotam e 'peed. Of course. both these values 

pec1fied. These values \\Ill be referred to as the 
head for that speed. 
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17.4. HEAD DELIVERED 

The mode of operation of a pump depends on the system in which it is operating. 
The pump characteristic curee (Fig. 17.7) shows the relation between the head 
developed by the pump and its rate of discharge when the pump is operating at a 
given rotative speed. If the pump is delivering fluid through a piping system with 
a static lift ~z. the head that the pump must develop is equal to the static lift plus 
the total head loss (proportional approximately to Q2

). The system characteristic 
curve shows the relation between the required pumping head and the flow rate in 
the pipe line. The actual pump-operating head and flow rate are determined by 
the intersection of the two curves. 

The particular values of h and Q determined by this intersection may or may 
not be those for the maximum efficiency of the particular pump. If they are not, 
this means that the pump is not exactly suited to the specific conditions. Further 
discussion of the behavior of pumps and their relationship to the systems in which 
they operate is presented in Sec. 17.14. 

In the test of a pump the head is determined by measuring the pressures on 
both the suction and discharge sides of the pump, computing the velocities by 
dividing the measured discharge by the respective cross-sectional areas, and 
notmg the difference in elevation between the suction and discharge sides. The net 
head h delivered by the pump to the fluid is 

I H (
Pd V~ ) (P• v; ) 

1 = 4 - H.= y + 2g + z4 - y + 2g + z. (17.1) 

where the subscripts d and s refer to the discharge and suction sides of the pump, 
as shown in Fig. 17.8. If the discharge and suction pipes are the same size, the 
velocity heads cancel out, but frequently the intake pipe is larger than the 
discharge pipe. It should be noted that h, the head put into the fluid by the pump, 
was previously referred to as hP in Sec. 4.6. 

The official test code provides that the head on a pump be the difference 
between the total energy heads at the intake and discharge flanges. However, flow 

Q Figure 17.7. Pump and pipeline. 
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deYdoped b) pump. In thi, case p,h is negative. 

rge flange are usually too irregular for accurate pressure 
re reliable to measure the pressure at 10 or more pipe 

pump and to add an estimated p1pe fnct1on head for that 
take ide. prerotation sometimes exists in the pipe near 

the pressure reading on a gage to be higher than the 
t section. 

. ~ (17.2) 

.umum efficiency and Ns = 2l.2ns. Pumps 
~---~ per mmute; hence N, JS the more commonly 

e referred to m this text. Computed values 
r ughout its entire operating range from 

._._--.,~ .. m discharge) would give values from 
ue that has any real significance is that 
d dtscharge, and speed at the point of 

rbme. the numencal value of the specific speed 
the gallons-per-minute basis specific speeds for 
from 500 to 5,000, for mixed-flow pumps from 
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4,000 to 10,000, and for axial-flow pumps from 10,000 to 15,000 as approxi
mate limits. 

For a double-suction pump 1t IS cliStomary to base the specific speed on 
one-half of the total capacity of the pump, on the assumption that a double
suction impeller is the equivalent of two single-suction impellers placed back to 
back. 

lllustrathe Example 17.1. (a) It is desired to deliver 1,600 gpm at a head of900 ft with a single
stage pump. What would be the minimum rotative speed that could be used? 

Assuming that the mimmum practical specific speed is 500, we get 

N,h3 4 500(900)314 
n. = --= ----= 2,060 rpm 

vgpm JL600 
(b) For the conditions of (a), how many stages must the pump (N, = 500) have if a rotative speed 

of 600 rpm is to be used? 

314 n,~ 600ft,600 
11 = -- = =48 

N. 500 

or lr = 175 ft per stage 

Hence m = 5.14 (6 stages are required) 

To m«t the exact >pec•fications of head and capacity. either the rotative speed or the specific speed or 
both could be changed slightly. 

Il lustrathe Example 17.2. (a) Determine the specific speed of a pump that is to deliver :1.000 gpm 
agamst a head of 150 ft \Hth a rotati,·e speed of 600 rpm. 

(b) If the rotative speed were doubled, what would be the flow rate and the head developed by 
th pump" \"ume no change in efficiency. 

Eq (14.16) · 

Eq. (14.15): 

Q <X 11, so Q = 2 x 2,000 = 4,000 gpm 

11 OC 11 2, SO 11 = 22 X 150 = 600 ft 

(c) Check the specific speed for the conditions given in (b). 

1,200J4,000 
N, = (600)314 - = 625 

ThiS result ~>.as expected, for the same impeller was involved in (a) and (b). 
(J) Fmd the required operating speed of a two-stage pump (N, = 625) to satisfy the requirements 

in (11). 

N = 625 = n.J2.000 
' (75)3 4 

n. = 356 rpm 
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17.6. CHARACTERISTICS AT CONSTANT SPEED 

Though some centrifugal pump' are driven by variable-speed motors, the usual 
mode of operation of a pump i~ at constant speed and typical characteristics of a 
centrifugal pump for -;uch operation are shown in Fig. 17 .9. The head-versus
diScharge curve 1 may be transformed into that for some other speed b} means 
o the ,jmilarit) lay; (Q t:. 11 and h x n2

); however, the efficienq of the pump 
ops off as the rotatne :>peed i:> moYed away from the optimum speed. To 

trate thi::. point. the head-\ersus-discharge curves for a certain centrifugal 
p at <:e\eral different rotative speeds as determined by laboratory test are 
ted m Frg. 17.10 together with contours of equal efficiency. Thus, we see that 

tunum operating conditions this pump will deliver 700 gpm against a head of 
at a rotati\e speed of 1,450 rpm. The important feature shown in Fig. 17.10 
if a pump i~ not operating near the optimum point, its efficiency drops oiT. 
:ng on hO\\ far the mode of operation is from optimum. 

-e apphcable to a famtl} of homologous pumps of different sizes operating at dtfferent 
eloped b} plotting it n2D 2 \ersus Q nD 3

• 

D= 13.5m 
B= 1.75 in 

~--- 13; = 160 
De =7! tn 

---.:::....-....J 7 vanes 

~------'!-----~--~ .v. = 1,885 

200 1,600 
Ca :lC!t•ty, gpm 

a ce tnfugal pump at constant speed. 
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--

Flow rate Q, gpm 

Figure 17.10. Characteristics or a centrirugal pump at vanous speeds or rotation wuh contours or 
equal effic.ency. 

By different impeller and casing designs it is possible to vary the character
IStiCS, as shown in Fig. 17.11; each one has special advantages for particular 
conditions. Thus a flat characteristic permits a considerable variation in the rate of 
discharge with but very little change in head, while a steep characteristic gives only 
a small variation in the flow for a relatively large change in head. 

The axial-flow pump has a much steeper head-capacity curve than does any 
centrifugal pump, and instead of the power at shutoff being a minimum, as for the 
centrifugal pump, it not only is a maximum but is very much larger than the 
pO\~er requtred at the point of maximum efficiency. This :is a disadvantage both in 
starting up and in continued operation at low capacity. The characteristics of the 
axial-flow pump shown in Fig. 17.11 are for the fixed-blade type. In a few in
stances this type of pump is made with adjustable blades similar to the runner of 
the Kaplan turbine, and the blades can be adjusted during operation to suit 
conditions. 
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8
2
-90• from lnger.;oii-Rand Co 

All others from Byron Jackson Co 

Constant speed 

160 180 
os c.&;JKI!y at maJOmum efficiency 

=x~:cruoucs for different types of centrifugal and axial-flow pumps. 

fluid to be pumped is operated at normal speed with 
he2d de\ eloped is called the shutoff head. Ideally, 

case of a fo rced vortex with a pressure-head difference 
tpbe-r~ of the impeller of (u~ - ui)/2g. However, it is 
there is no flow delivered, there is a great deal of 

:le fer. Y.hich causes a rotation of the fluid in the eye of 
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the impeller and for a distance of several pipe diameters in the intake pipe. The 
result of this prerotation is that the actual shutoff head is approximately given by 
u~ 2g. However, the flow conditions are so complex that any precise theoretical 
analysis is out of the question. It lS known that the actual shutoff head IS affected 
by the value of the tmpdler-\ ane angle at exit, b} the design of the case. and even 
by the nature of the intake. since the latter has some influence on the prerotatJOn. 
Thus, in one mstance. where the same impeller was tested at the same speed but 
with several different types of intakes, the shutoff head ranged from 240 to 282 ft. 

17.8. ENERGY LOSSES IN PUMPS 

The de!->ign of a pump is a specialized field which is beyond the scope of this text. 1 

The discussion presented here is to enable one to understand those characteristics 
of pumps that should be of value to users of pumps. In Sec. 6.9 it was shown that 
the torque exerted on the fluid by the impeller of a centrifugal pump (Fig. 6.1 I) is 
given by 

T pQ(r2 V2 cos a2 - r 1 V1 cos a.) (17.3) 

B} sett ing T x ct> I'Qh", we find the head lz" imparted to the flutd by the impeller 
of the pump i" gi\en b} 

h" = u2 v2 cos <X2 - ul vl co~ 
g 

The net head h [Eq. (17.1)) may be expressed as 

"= h"- hi.. 

(17.4) 

( 17.5) 

where 111• represents the hydraulic head loss in the flow through the impeller. An 
expres ion [Eq. (6.23)) for hL was derived in Sec. 6.11. Combinmg Eq. (6.23) with 
Eq (1-.1) and (17.5) gives 

2 2 v2 vz 2 2 
h" = U2- Ut + _2-=-2. + ~-~ 

2g 2g 2g 
(17.6) 

The first term of this expression is the increase in pressure due to centrifugal 
action, the second term is the increase in kinetic energy, and the third term shows 
the gain or loss of pressure in flowing through the impeller passages according to 
whether the areas arc such that the relative velocity decreases or increases. 

The head loss h1.. has several components. First of a ll, as water enters the vanes 
of the impeller. there may be a shock loss due to turbulence because of an im
proper relative-\eloclly angle at vane inlet. This loss is relatively large at low and 

1 For de1a1led methods of design see A. J. StepanofT, "Centrifugal and Axial Flow Pumps," 2d ed .. 
John Wtle} & Son' Inc, "'e"'" York. 1957. 
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Figure 17.12. Effect of circulatory flow at 
vane exit. The solid \ector~ are 1deal With 
angle of efflux P2 ""' blade angle p; . The 
dashed vector~ show the actual \·alues of 
P2 and 7 2 . 

at high flow rates; it grows smaller as optimum operating conditions are ap
proached and is a lmost nonexistent at optimum conditions. T he second loss is 
that of fluid friction in the passages between the vanes. This loss varies approxi
mately as Q2• The third loss is due to circulatory flow at discharge from the 
impeller created by the difference m pressure on the two sides of each vane. This 
results in a decrease m the velocity along the working face of the vane and an 
increase in relative velocity on the back face of the vane. The result of thb unequal 
velocity distribution is that the average angle P2 of the fluid leavmg the impeller 
greater than the vane angle P2 (Fig. 17.12). Thus the fu ll value of V2 co IX2 IS 

achieved. This component of the hydraulic head loss changes ver) little "1th flo" 
rate. 

In addition to these hydraulic head losses the efficiency of a pump is reduced 
by bearing and packing friction and by disk friction as well as by the effect of 
leakage as descnbed m Sec. 14.1 A typ1cal relationship among these vanous 
losses is shown in F1g. 17 13. 

Hydraul ic 
losses 

Mechan1cal 
losses 

( 

Shaft power = -,Qh 

(

Power tra:smitted to tmpeller = ~ 
Power transmttted to 
the water = -yQh 

Ctrculatory loss at ell it 

Otscharge 

Figure 17.13. DispOSition of power 10 a pump operating at variable head and constant speed. 
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17.9. CAVITATION 

An important factor in satisfactory operation of a pump is the avoidance of 
cavitation, both for the sake of good efficiency and for the prevention of impeller 
damage (Sees. 4.8 and 16.13). For pumps a cavitation parameter has been defined 
as 

(p.).t.a iY + v:12g - pvfy 
a=-- --

h 
( 17.7) 

where subscript s refers to values at the pump intake (i.e., suction side of the 
pump), h is the head developed by the pump, and Pv is the vapor pressure. As the 
latter is normally given in absolute units, it follows that p, must also be absolute 
pressure. 

With a long straight inlet pipe it may be possible to measure p, with precision 
and to compute an accurate value of the mean V. from the continuity equation. 
But where prerotation exists or a fitting, such as an elbow, precedes this section by 
a short distance, neither of these values can be accurately determined. It is then 
preferable to write the energy equation between the surface of the liquid source 
and the pump intake (Fig. 17.8). Thus, using absolute pressures, 

(Po).~ _ h = z + (p,)•b• + v; 
y l.. $ y 2g 

where z, is the elevation of the pump intake above the surface of the liquid, as in 
Fig. 17.8, and (p0).bt is the absolute pressure upon that surface. If the liquid is 
drawn from a closed tank, this pressure could be either greater or less than the 
atmospheric pressure. Making this substitution in Eq. (17.7), 

{po).bt/y - p,/y - z, - h1.. 
a= (17.8) 

h 

The critical value a, is that at which there is an observed change in efficiency 
or head or ~orne other property indicative of the onset of cavitation. The value will 
depend not only upon what criterion is used, but also upon the conditions of 
operation. In Fig. 17.14 is shown an experimental curve where the total head and 
capacity were kept constant while the intake pressure was decreased, resulting in a 

90 

/ 

7 
1----- f-

>---

70 

....,., 
I 
I 
I 

~; 
~I 

l 
cr, 

Values of e1 

Figure 17.14. Effect of varymg the 
cavitation parameter 
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decrease in u. The critical value is fixed by the point where the efficiency was found 
to drop. A different value of u. would be found for a different capacity. For safe 
operation it is desirable to operate at values above the critica.J for the capacity 
involved. The critical value uc for any specified operating condition depends upon 
the design of the par ticular pump, and in any importan t installation it should be 
determined experimentally upon a model. 

Since cavitation is determined by conditions at entrance to the 1mpeller and 
not by those at discharge, an expression has been devised known as suction specific 
speed, which is analogous to the usual specific speed except that the net head is 
replaced by the total suction head above the vapor pressure head. This is the 
numerator of either Eq. ( 17.7) or ( 17.8) and is designated as NPSH, which stands 
for net positive suction head. The suction specific speed is then 

nJgPm 
s = NPSH314 

For a double-suction pump the total capacity should be divided by 2 for the 
determination of S. 

Inasmuch as the critical value u. has been found to depend upon both the 
usual specific speed and the suction specific speed, there has been devised the 
relation 

u = NPSH = (Ns)
413 

t h s (17.9) 

which is obtained by eliminating nJgPm between the expressions for N sand S. In 
order to obtain u •. it is necessary to use the critical value ofNPSH in evaluating S. 

Critical values of the cavitation parameter vary with the design of the pump, 
but typ1cal approximate values for u. are 0.05 for a specific speed of N, = 1,000, 
O.lO for Ns = 2,000, and 0.30 for Ns = 4,000. For values of N.greater than 4,000 
the Hydraulic Institute recommends that the value of S should be less than 8,140. 

Introducing the crit1cal value of u into Eq. (17.8), we obtain 

(z ) = (Po)ab$ _ Pv _ q h _ h 
smax Y Y t L 

(17.10) 

which will give the maximum allowable elevation of the pump intake above the 
surface of the liquid. It is apparent from inspection of Eq. ( 17.10) that, to ensure 
freedom from cavitation, the pump should be set lower, particularly if( a) it is to be 
operated at a high elevation above sea level, (b) the total head developed is 
increased, (c) the specific speed for a g•ven head is increased, or (d) the vapor 
pressure of the hquid is increased. 

If the value of (:s)m .. determined by this equation is negative, it indicates that 
the pump must be placed belo" lhe surface of the liquid. Recommended limiting 
beads for the pre,ention of ca' union for ingle-stage, single-suction pumps as a 
function of specific peed sucuon lift (the elevation difference between the 
energy line at suction eye of the impeller) are given in Fig. 17 .15. 
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F'~;g~Ut 17.15. Recommended limiting heads for single-stage, single-suction pumps as a function of 
s:pca1lc peed and suct1on lift. At sea level with water temperature of 80 F. 

lllustrathe £,ample 17.3. In the accompanymg figure IS shown the eiTect of net positive suction 
head~ at mtake (also e\pre,'<:d as vacuums) on the operating characteristics of a double-sucuon 
a:ntnfugal pump as determined b) e"<perirnental test at sea Je,el. At the pomt of maAimum effictenC} 
the cnucal ,aJue of "PSH 15 10.4 ft Determme the value of uc for th~ pump, and find ~here the 
pump should be set ·o a'sure agamst ca\itation for this operaung condition Assume that the fnction 

Double-suction pump 
impeller d1ameter- l6 in 
~~-1.450 rpm 

~PSH1nft----------------~--1 

Vacuums at mtake in in 

Capac1ty 

11lustralite EX1mple 17.3 

20' 15' 
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los\ in the mtal..c ptpe is 3 ft. 

' ... 1.~50, 600 2 = 617 
• (140)34 

•.~so, 600.12 
.'\ • (J0.4) I 4 = 4,330 

From this. 11, = (617 4,330)
4 3 

r 0 0~45 B) dtrect computation, using Eq. ( 17.8). 

10~ 
11, = ... 0.0743 

140 

which is a clo\e check. The fact that th" critical \aluc i~ larger than the t)pical \alue mdicated in the 
text for such a low specific speed merel) emphasiZe\ the fact that \ariation in de ign wtll gi\e \a]ues 
which dtiTer from the norm. 

As thi~ particular pump was te~tcd at sea level and with cold water. 11 may be assumed that 
(r0).b,/r::::: 34ft nnd P.l7::::: 1 ft. Assuming the frictwn losses in the intake ptpmg to be 3 ft, employing 
Eq. (17.10), we get (z,)m .. = 34-3 0.074(140)- 3"" 19.6 ft, which would be the maximum allow
able elevation above the surface to avoid cavitation at this one operating point. l f it is desired to 
a\Otd cavnation at an) point. even for maxtmum discharge, the test results in the figure show that 

PSH should be about 33ft. In tht~ case(:,),.,..= 34- l - 33- 3"" -3ft. whtch means the pump 
should be submerged by that amount to be safe from cavitation. It ts doubtful. howe,er that the 
pump would be operated close to maximum dtschargc as its efficienc) would be \Cr} lo11 at that point. 

Figure 17.16. C.ntr 
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17.10. VISCOSITY EFFECT 

Centrifugal pumps are also used to pump liquids with viscosities different from 
that of water. Figure 17.16 shows actual test curves of performance for the very 
extreme range, from water to an oil with a kinematic viscosity 3,200 times that of 
water. It is seen that, as the viscosity is increased, the head-capacity curve becomes 
steeper and the power required increases. The dashed line indicates the maximum 
dficiency points for each viscosity curve. It is seen that both the head and the 
capacity at the point of maximum efficiency decrease with increasing viscosity. As 
these are accompanied by an increase in the brake horsepower, there is a marked 
decrease in efficiency. 

17.11. EFFICIENCY 

Figure 17.17 presents what are believed to be approximate optimum efficiencies 
of modern pumps of large capacity. The figure also shows typical runner profiles 
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Figure 17.17. Optimum efficiency of pumps as a function of specific speed. 
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Figure 17.18. Efficiency of commercial pumps as a function of capacity. 

for a few specific speeds. It is seen that there is a gradual merging of one type 
into another, and so the dashed line indicates the probable maximum values in 
these border zones. These curves do not necessarily represent absolute maximum 
values nor is it to be expected that all pumps will attain efficiencies as high as 
shown, since these efficiencies apply to pumps of large size whose design and 
construction has been done with great care. Generally, the larger the pump the 
higher the attainable efficiency. In Fig. 17.18 are shown typical efficiency curves 
for normal commercial pumps as a function of capacity. 

For most purposes the specific speed of a double-suction pump is computed 
by using one-half of the total capacity, and this is especially necessary in con
sidering conditions at entrance to the impeller and with regard to cavitation. 
But the efficiency of a pump is largely determined by the conditions at exit from 
the impeller and in the casing and is practically unaffected by subdividing the inlet. 
Hence, for efficiency diagrams such as Figs. 17.17 and 17.18, the specific speed 
for double-suction pumps is based on the total capacity. 

The relation between the efficiency of a model pump and its prototype can be 
estimated with reasonable accuracy through application of the Moody formula for 
turbines [Eq. (16.4)]. 

17.12. NORMAL C.-\.PACIT) 

The discharge fro:-:· .:~~· :_. ~·= · · :...~;x.1e~. F1g. 17.19) may be found by multiplying 
the outlet area b:- :'".e ·.::::...-:::· P:~ ..i~ea that is most readily computed is the 
circumferential .:~:.:. '.:-·~ :-.a..:..:._-:",y• .::1pellers and corresponding areas for other 

;. 
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rD=Da ' 
~~ 

~D.+ 
(a) 

(c) 

~D.---t-
(b) 

(d) 

F12ure 1 ~.19. '.omenclature for pump factors and proportions. (a) Radial flow. (b) Mixed flow. (c) Axial 
o,, ~ ; , Dctir:Jt10n of{!~. (Note: In the radial-flow pump, the extreme diameter D. is the same as 
the mean e:-.Jt diameter D. In the axial-flow pump, D =D.-Band the eye diameter D, =D •. ) 

types. It is fnDB, where f is a factor to allow for the space taken up by the vanes. 
This area is to be multiplied by the component of velocity that is normal to it, 
which is the radial component for the pure centrifugal impeller, or the axial 
component for the propeller type, or in general for all types the meridional 
-''""l'''!1Cnt. 1\ hich we shall designate at discharge by vrn. Then the discharge of 
~-'~--~:-:;(\\\ and mixed-flow pumps i~ given by fnDBVm. This meridional com
;:'L•:1cnt Is proportional to u2 or to figh, but the exact relationship must be deter
mined by experience. 

The ratio of Vrn to u2 depends primarily upon the specific speed but is also 
affected by the vane angle at exit, the number of vanes, and the casing design. Thus 
the same impeller might be used in different sizes of case and give a different 
normal rate of discharge in each. 

17.13. PROPORTIONS AND FACTORS 

Figure 17.19 shows the nomenclature to be used, and Fig. 17.20 shows some basic 
ratios and factors for pumps with a specific speed range of 500 to 15,000. These 
particular values are not the only ones which may be used, for each manufacturer 
will have values based upon experience that apply to the particular designs 
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100 150 200 300 400 500 700 

1,000 2,000 

lleJgpm 
N = 

... lr~ 4 

- i~ure 17.20. Factors and proportions for pumps. (u 0 is the peripheral velocity at the ex trerne 

Jmeter D
0

.) 

:nployed. However, the values shown in Fig. 17.20 are typical; data from various 
)urces will lie either on these curves or reasonably close to them, and they do 
ww the trend as a function of specific speed. 

Illustrative Example 17.4. A pump that will deliver 84,500 gpm against a head of 225ft when 
•crating at 600 rpm is desired. Determine the specific speed of this pump and its approximate 
·ncnsions. 

\' . ' 
600/R4,500 

(22")'" = 3,000 

,,ume [3~ = I 55 . so that Fig. 17.::>0 is applicable. From Fig. 17.20, ¢e = Ll at diameter D. Hence 

_ = l.lj2gh = !32.5 fp,. hom Eo.] ! i-+ :: ). 

f) - :'' 
'\ ~25 

= 4.22 ft = 50.7 in 
600 
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From Fig. 17.20, 

Hence 

The eye diameter is 

D.= 1.07 
D 

D, = 0.6 
D. 

I!__= 0.155 
D. 

vm = 0.15 
u. 

D.= 1.07 x 50.7 = 54.3 in 

B = 0.155 x 54.3 = 8.42 in 

D, = 0.6 x 54.3 = 32.6 in 

\, an exercise it is suggested that the reader make a sketch of this impeller similar to those of 
F 1g l- .19. The peripheral velocity of the impeller at D" is 

D.= 1.07 x 132.5 = 142 fps 

(Vm)l = 0.15 X 142 = 21.3 fps 

50.7 2 
Circumferential area = 0.95n x -- x 8.42 = 8.85 ft 

144 

Q = A,,,'"m(Vm)1 = 8.85 X 21.3 = 188.5 cfs = 84,500 gpm 

' check' the initial value. 

17.14. PuMP AND SYSTEM CHARACTERISTICS 

For a particular situation a pump (or pumps) should be chosen so that under 
normal conditions of operation the speed and capacity are such that operation is 
occurring close to peak efficiency. If this is not the case, energy will be wasted and 
the operation will be uneconomic. 

The choice of a pump (or pumps) for a particular situation is complicated by 
• 1:c: large number of alternatives that are possible. First of all, there are many 
_: :';;~o:n t designs of pumps with a variety of specific speeds (Fig. 17.21a). By chang
.:-:g the speed of operation of a particular pump (Fig. 17.21b) its operating charac
tenstics can be changed. Also, selecting from among different-sized homologous 
pumps (Fig. 17.21c) will provide a variation in characteristics. In addition, differ
ent speeds of operation can be used with various sizes of homologous pumps as in 
Illustrative Example 14.1. Under certain conditions it may be advantageous to 
install pumps in series (Fig. 17.2ld) or in parallel (Fig. 17.2le). When pumps are 
installed in series or parallel it is very important that they have reasonably similar 
head-capacity characteristics throughout their range of operation; otherwise, one 
;'..:n:p will carry most of the load and, under certain conditions, all of the load, 
wah the other pump acting as a hindrance rather than a help. In fact, in parallel, if 
the operating characteristics of the pumps are quite different, a condition of 
back flow can occur in one of the pumps. Finally, one must always be sure that the 
selected pump (or pumps) will not encounter cavitation problems over the full 
range of operating conditions. 

The mode of operation is best determined by plotting the pumping character
istics and the pipe system characteristics on the same diagram (Fig. 17.7); the 
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Figure 17.21. Pumping alternatives: (a) Different pumps with different characteristics. (b) A particular 
pump at different speeds. (c) Homologous pumps of different size. (d) Two identical pumps in series. 
(e) Two identical pumps in parallel. (Note: in series or parallel the pumps need not be identical. 
but their operating characteristics should be close to one another.) 

point at which the two curves intersect gives an indication of what will take place. 
Generally, one can choose between changing the speed of a given pump or select
ing a particular size of homologous pump in order to obtain the proper character
istics. The latter is usually preferable because pump efficiency tends to decrease 
rather rapidly as the speed is changed from the optimum (Fig. 17.10). Several 
aspects of the relationship between pump and system characteristics are 
demonstrated in the following example. 

Illustrative Example 17.5. Two reservoirs A and B are connected with a long pipe which has 
characteristics such that the head loss through the pipe is expressible as h L = 20Q 2, where h L is in feet 
and Q is the flow rate in !DO's of gpm. The water surface elevation in reservoir B is 35 ft above that in 
reservoir A. Two identical pumps are available for use to pump the water from A to B. The charac
teristic curve of the pump when operating at 1,800 rpm is given in the following table. 

Operation at 1,800 rpm 

Head (ft) Flowrate ( gpm) 

100 0 
90 I 10 

80 1..,1_1 

60 ~~1) 

40 ~· 
20 ~~ 
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200 

150 

h (ft) 

/Two pumps 
- ...f in series 

.......... 
..... 

...... 

' ' ' 

lllustrathe Example 17.5 

Pipe system curve 
h = 35 + 20Q2 

Single pump 

400 

Q(gpm) 

At the optimum point of operation the pump delivers 200 gpm at a head of 75 ft. Determine · 
specific speed N, of the pump and find the rate of flow under the following conditions: (a) A -:
pump operating at 1.800 rpm; (h) two pumps in series, each operating at 1,800 rpm: (c) two pum;:-· 
paralle1 each operating at 1,800 rpm. The head-capacity curves for the pumping alternatilc• ~ 

plotted and so is the hL versus Q curve for the pipe system. In this case h = tJ.z + hL = 35 + 20Q' -:
answers are found at the points of intersection of the curves. They are as follows: (a) single r- -~ 

156 gpm; (h) two pumps in series, 224 gpm; (c) two pumps in parallel. 170 gpm. 
If.'.: had been greater than 100 ft, neither the single pump nor the two pumps in parallel"',. 

· ~ .. c Jeli1 ered any water. If tJ.z had been -20 ft (i.e., with the water surface elevation in resen o1r i' 
:ccr b"low that in A), the flows would have been: (a) 212 gpm; (h) 258 gpm; and (c) 232 gpm. 

17.15. INSTALLATIONS 

-\ few examples of pump construction and installation will be presented as 1!: 
tratlons of modern practice. 

The Byron Jackson Company has built pumps with as many as 54 
Water has been lifted to heights of several thousand feet by multistage pm:· 
Ingersoll-Rand produced a 6-in 10-stage pump operating at 3,750 rpm \\t. 

delivers 1,600 gpm at a head of 6,000 ft, the shutoff head being 7,000 ft. 
Worthington Corporation installed a pump at Rocky River to deliver 279.5 C:· 
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a head of 238.84 ft and running at 327 rpm. The brake horsepower was 8.259. 
giving an efficiency of 91.7 percent. The impeller diameter was approximate!~ 
7.54 ft. and the width at outlet approximately 0.72 ft, with an eye diameter of 
4.24 ft. 

On the Colorado River Aqueduct the Worthington Corporation built three 
pumps for the Hayfield plant to deliYer 200 cfs each at a head of 444 ft when 
running at 450 rpm and three similar pumps for Eagle Mountain with a head of 
440 ft. The impeller diameters are approximately 81.6 in, and the eye diameters 
34 in. The Byron Jackson Company built three pumps for the Gene plant to 
deliver 200 cfs each at a head of 310 ft when running at 400 rpm. The impeller 
diameters are 78 in. At the Intake plant, where the head is 294 ft, the impeller 
diameters are 76 in. The Allis-Chalmers Company built three pumps for the Iron 
Mountain plant to deliver 200 cfs each at a head of 146 ft when running at 
300 rpm. 

A typical moderate-sized large-capacity pumping plant is that at Cartersville, 
Georgia where the Johnston Pump Company installed a two-stage mixed-flow 
vertical-shaft pump that delivers 95,000 gpm against a head of95 ft when operating 
at 394 rpm. At Marineland of the Pacific in Palos Verdes, California three-stage 
Johnston vertical turbine pumps are used to pump salt water to tanks housing 
marine life. Because of the corrosive action of the sea water the pump bowls are of 
iron with vitreous enamel coating. All moving parts that come in contact with the 
sea water are constructed of corrosion-resistant material. 

A noteworthy pumping project is that at Grand Coulee on the Columbia 
River, for which pumps have been built by the Byron Jackson Company and the 
Pelton Water Wheel Company jointly. The head and capacity for the point of 
maximum efficiency have been given in Prob. 17.7, but the pumps may also 
operate at a head as low as 270 ft and discharge 1,650 cfs, at which point they 
require approximately 60,000 bhp. 

The Allis-Chalmers Company has built a combination reversible pump
turbine for the Hiwasee plant of the TVA, which as a pump will deliver 3,900 cfs at 
a head of 205 ft at the point of maximum efficiency while requiring approximately 
100,000 bhp. The impeller diameter is 266 in, and it runs at 105.9 rpm. The maxi
mum capacity is 5,200 cfs at 135ft head. 

In Italy is a pump built in Switzerland which discharges 250,000 gpm, or 
558 cfs, at a head of 787 ft at 450 rpm. It requires 62,000 bhp. 

A hot-oil pump to deliver 875 gpm at a head of 8,600 ft with 19 stages has 
been built by the Byron Jackson Company; this is one of the highest-head pumps 
in existence. 

One of the world's largest pumping installations is the Edmonston Pumping 
Plant of the State of California water project. This plant lifts water over the 
Tehachapi mountains. At this plant there are 14 four-stage vertical-shaft centrifugal 
pumps. Each is capable of delivering 315 cfs against a head of 1,970 ft when 
rotating at 600 rpm. Their maximum efficiency is about 92 percent. The maximum 
energy requirements for this plant are approximately 6 x 109 kilowatt-hours per 
year. 
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PROBLEMS 

17.1. The diameter of the discharge pipe of a pump is 6 in, and that of the intake pipe is 8 in. The 
pressure gage reads 30 psi, and the vacuum gage at intake reads 10 in Hg. If Q = 3.0 cfs of water and 
the brake horsepower is 35.0, find the efficiency. The intake and discharge are at the same elevation. 

17.2. This sketch shows the dimensions and angles of the diffuser vanes of a centrifugal pump. The 
vane passages are 0.80 in wide perpendicular to the plane of the sketch. If the impeller delivers water at 
the rate of 1.40 cfs under ideal and frictionless conditions, what is the rise in pressure through the 
diffuser? 

Prob. 17.2 

1".3. Water leaves the impeller of a centrifugal pump with a velocity of 70 fps at an angle a 2 = 10°. It 
~o"' s through a whirlpool chamber consisting of parallel sides before it reaches the volute case. The 
mner and outer radii of this chamber are 6 and 10 in, respectively. What will be the values of V cos a, 
I~. and V for the water as it leaves the chamber and enters the volute? If there were no loss of energy, 
what would be the gain in pressure head? 

17.4. Suppose 10 stages were to be used for a total head of900 ft, a capacity of 1,600 gpm, and a pump 
speed of 600 rpm. What would be the specific speed in both gallons-per-minute and cubic-feet-per
second units? 

17.5. A pump is to discharge 10.0 m3/s at a head of 5.0 m when running at 300 rpm. What type of 
rump will be required? Suppose the required speed is 450 rpm. What could then be done? 

1".6. -\,su:11mg ¢ = l in Eq. (14.22), compute the diameter for the impeller in Illustrative Example 

l". 7. The Grand Coulee pumps on the Columbia River have impellers with a diameter of 167i in and 
a wtdth at exit of 19.5 in. The speed is 200 rpm, and the maximum efficiency 90.8 percent. At the point 
of maximum efficiency the discharge is 1,250 cfs at a head of ~ 44 ft. The shutoff head is 422 ft. 
Compute </J for maximum efficiency, Vm, and Vmju 2 • Assume that the fractional part of area which is 
free space is 0.95. (See Fig. 17.19 for definition of Vm .) 

17.8. A 54-in pump at Rocky River has an impeller 90 in in diameter, and B is 0.75 ft. It runs at 
327 rpm. If <P = 1.034 and Vm iu 2 = 0.128, compute the head and capacity. Assume f = 0.95. 

17.9. The pump of Fig. 17.9 is placed in a lO-in-diameter pipe (f = 0.020), 1,300 ft long, that is used to 
··· v.ater from one reservoir to another. The difference in water-surface elevations between the reser

·. ocrs fluctuates from 20 to 100ft. Plot a curve showing delivery rate versus water-surface-elevation 
dt!Terence. Plot also the corresponding efficiencies. The pump is operated at a constant speed of 
1,450 rpm. Neglect minor losses. 

17.10. Repeat Prob. 17.9 for the case of the same pump operating at 1,200 rpm. Assume efficiency 
pattern and values remain the same. 

17.11. Repeat Pro b. 17.9 for the case of a homologous pump whose diameter is 80 percent as large as 
the pump of Prob. 17.9. Assume efficiency pattern and values remain the same. 
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17.12. If the maximum efficiency of the pump ofProb. 17.9 is 82 percent, approximately what would be 
the maximum efficiency of the pump of Pro b. 17.11? Equation ( 16.4) may be considered applicable. 

17.13. Repeat Pro b. 17.9 for the case of a homologous pump with diameter 80 percent as large as the 
pump of Prob. 17.9 when operating at 1,200 rpm. Assume efficiency pattern and values remain the 
same. 

17.14. A pump homologous to the one whose dimensions and operating characteristics are shown in 
Figure 17.9 has a diameter d = 27 in. When operating at 1,000 rpm this pump delivers 30 cfs through a 
very long pipeline that connects two reservoirs whose water surface elevations are identical. What will 
be the flow rate if the pump speed is increased to 1,200 rpm? Assume constant value for the pipe 
friction factor f and neglect any differences or changes in pump efficiency. 

17.15. Under normal operation a centrifugal pump with an impeller diameter of 2.84 in delivers 
250 gpm of water at a head of 700 ft with an efficiency of 60 percent at 20,000 rpm. Compute the 
peripheral velocity, the specific speed and if>. 
17.16. Under normal operating conditions a centrifugal pump with an impeller diameter of 8.0 em 
delivers 12 1/s of water at a head of 262 m with an efficiency of 60 percent at 18,000 rpm. Compute the 
peripheral velocity, the specific speed and <fl. 
17.17. Suppose the pump of Illustrative Example 17.3 were to be operated at its maximum efficiency 
point at a speed of 3,600 rpm, what would be the minimum allowable value ofNPSH and what would 
be the maximum allowable elevation above the water surface, assuming a barometric pressure of 32 ft 
of water, a vapor pressure of 1 ft of water, and intake-pipe friction of 3ft? (Note: (J, is constant at the 
value found in the illustrative example.) 

17.18. Suppose the pump in Illustrative Example 17.3 were to pump gasoline with a vapor pressure of 
4.42 psia. Assume the specific gravity of the gasoline to be 0.72. When h = 140ft, V, = 10 fps. Using the 
same value of (J, as for water, what is the minimum allowable intake pressure in feet of gasoline and in 
pounds per square inch? (For gasoline the head-capacity curve is practically the same as that for water. 
if the head is expressed in feet of gasoline.) 

17.19. Suppose a pump were to pump water at a head of 130ft, the water temperature being !OOoF and 
the barometric pressure being 14.3 psia. At intake the pressure is a vacuum of l7 in Hg and the 
velocity is 12 fps. What are the values of NPSH and (J? 

17.20. The pump of Illustrative Example 17.3 when pumping gasoline delivered 600 gpm at a head of 
140 ft of gasoline with an intake pressure of 0 gage. With a vacuum-gage reading of 10 in Hg at the 
intake, the pump delivered 600 gpm with h =94ft of gasoline; with a vacuum-gage reading of 15 in 
Hg. it delivered 250 gpm with h = 88 ft of gasoline. These points are neither the points of maximum 
efficiency nor the points of incipient cavitation. Assume the vapor pressure of the gasoline to be 
4.42 psia and the specific weight to be 45 lb/ft 3

. If the barometric pressure is 14.7 psia, compute the 
values of NPSH and of a for these points, assuming the velocity head to be negligible. 

17.21. A pump with a critical value of (J of 0.10 is to pump against a head of 500ft. The barometric 
pressure is 14.3 psia, and the vapor pressure of the water is 0.5 psia. Assume the friction losses in the 
intake piping are 5 ft. Find maximum allowable height of the pump relative to the water surface at 
intake. 

17.22. A boiler feed pump delivers water at 212oF which it draws from an open hot well with a friction 
loss of 2 ft in the intake pipe between it and the hot well. The barometer pressure is 29 in Hg, and the 
value of rJ, for the pump is 0.10. What must be the elevation of the water surface in the hot well relative 
to that of the pump intake? The total pumping head is 240ft. 

17.23. In a model pump delivering 5.14 cfs with a total head of 400 ft the efficiency started to drop 
when the gage pressure head plus velocity head at inlet was reduced to 10 ft. What was the value of (J, if 
the barometric pressure was 14.3 psia and the water temperature 80°F? 

17.24. Select the specific speed of the pump or pumps required to lift 15 cfs of water 375 ft through 
10,000 ft of 3-ft-diameter pipe (f = 0.020). The pump rotative speed is to be 1,750 rpm. Consider the 
following cases: single pump. two pumps in series, three pumps in series, two pumps in parallel, three 
pumps in parallel. 
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17.25. Consider a pump to deli\er 84.500 gpm at a head of 225 ft, as in Illustrative Example 17.4. 
Determine the rotative speeds and tmpeller diameters D and Do for specific speeds of500, 1.000. 2,000. 
5.000. 8,000, 10.000. and 15,000. 

17.26. For a constant maximum or outside diameter D
0 

= 4 ft and a constant head of 81 ft, compute 
the rotative speeds and capacities for specific speeds (N,) of 500, 1,000, 2,000, 5,000. 10,000. and 15,000. 

17.27. A pump is required to deliver 2.420 gpm at a head of 150ft when running at 1,750 rpm. 
Determine the principal impeller dtmensions. 

17.28. A pump is required to deliver 9.'S0 gpm at a head of 36ft when running at 1.200 rpm. Deter
mine the principal impeller dimenstons. 

17.29. A centrifugal-pump impeller (Fig. 17.19a) has dimensions B = 3.0 in and D = 10.0 in. When 
operating at optimum conditions the pump delivers 16,000 gpm against a head of 75 ft at 1,450 rpm. 
The required shaft horsepower is 44.0. Assuming the hydraulic efficiency is 0.83, determine the required 
"L,Jc angle at discharge. 

17 . .30. -\ ·htage pump is to be designed to deliver 7.500 gpm against a head of 960 ft at a speed of 
1,200 rpm. The four impellers are identical. Using the design factors of Fig. 17.20 determine their 
approximate dimensions B, D. and Do. Assume the fractional free space = 0.95. Find also the exit blade 
angle {3~ assuming 100 percent efficiency. 

17.31. If the pumps of Prob. 17.30 are delivering water at 140 F and the barometric pressure is 
13.8 psia. determine the reading on a pressure gage in inches of Mercury vacuum at the suction flange 
when cavitation is incipient. Assume the suction pipe diameter equals D., and neglect effect ofprerota
tion. Take a value of CJ, in accordance with those mentioned in the textbook. 

P .. 12. Suppose the pumps of Prob. 17.30 deliver water at 50 Fat an elevation of 5.000 ft. Determine 
-.oc',,g •'11 a pressure gage (inches of Mercury vacuum) at the suction flange when cavitation is 

L-: the dtameter of the suction pipe equal D,. and usc rr, as given in the text. 

1-.. lJ. -\ Jeep-well pump is to deliver 800 gpm against a total head of 200 ft at 1,500 rpm. If the 
tc-:cpclkrs can be no larger than 7 in. how many stages should be used assuming all impellers are 
tdentrcal" 

17.34. Specify the dimensions (D. D
0

• D.,, and B) of alternate single-suction pumps to deliver 
1,500 gpm against a head of 40 ft. Use motor speeds of 400,800, 1200. 2,000. and 2.800 rpm. Use design 

factors of Fig. 17.20. 
Determine the required motor horsepowers for these pumps using the efficiencies of Figure 17.17. 

Determine the minimum :\IPSH for each of these pumps. If the suction-pipe diameters are equal to D,. 
I :• ·· = 0.65 ft. determine the values of the absolute pressure heads at suction below which cavita-

'" l•r \"ume sea-level atmosphere. 

1- . .'3. lXterrmne the value of¢> for the pumps of Illustrative Example 14.1. Compare these values with 
·-·>C c>l Ftg. 17.20. 

17.36. A centrifugal pump with a 12-in-diameter impeller is rated at 600 gpm against a head of 80 ft 
when rotating at 1,750 rpm. What would be the rating of a pump of identical geometric shape with a 
6-in impeller') Assume pump efficiencies and rotative speeds are identical. 

17.37. Refer to Illustrative Example 17.5. For the case of the single pump operating at 1.800 rpm plot a 
curve showing delivery rate versus ~z for ~z values ranging from -20 to + 80 ft. Repeat for rotative 
speeds of 1.440 rpm and 2.160 rpm. Assume no problem with cavitation. 

17.38. Suppose the pumps of Illustrative Example 17.5 were operated at 1,500 rpm. What then would 
· .,· hecn the now rates for: (a) single pump: (b) two in series: (c) two in parallel. All other data to 

:e~:Jtr. the same. 

17.39. Tv.o pumps whose characteristics are given in Illustrative Example 17.5 are to be used in 
parallel. They mmt develop a head h = 35 + 20Q 2 as in the illustrative example. One pump is to be 
operated at 1,800 rpm. The speed of the other pump is to be gradually reduced until it no longer 
delivers water. At approximately what speed will this happen? 

17.40. A pump is installed to deliver water from a reservoir of surface elevation zero to another of 
elevation 300 ft. The 12-in-diameter suction pipe (f = 0.020) is 100 ft long and the JO-in-diameter 
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discharge pipe (f = 0.026) is 5,000 ft long. The pump characteristic at 1,200 rpm is defined by 
hr = 375- 24Q 2 where hP, the pump head, is in feet and Q is in cubic feet per second. Compute the 
rate at which this pump will deliver water under these conditions assuming the setting is low enough to 
avoid cavitation. 

17.41. Repeat Pro b. 17.40 determining the flow rate if two such pumps were installed in series. Repeat 
for two pumps in parallel. 

17.42. A centrifugal pump, whose operating characteristics at 1,800 rpm are given in Illustrative 
Example 17.5, is to be placed in a 6-in-diameter pipe line and used to deliver water from reservoir A to 
reservoir B. The water-surface level in B is 10.0 ft lower than that in A. The pipe line is 1,500 ft 
long. has a diameter of 6 in and f = 0.03. The pump is located very close to reservoir A. If the 
suction side of the pump is set 5 ft below the water-surface elevation of reservoir A, at what rate 
could water be reliably pumped? Assume the pump speed can be changed to any value and the 
pump efficiency remains constant. The water temperature is 50' F, and this installation is in the 
mountains at elevation 10,000 ft. (a) Solve for the maximum reliable flow rate by computing N, and 
using the value of rr, suggested in the text. (/J) Determine the maximum operating speed of the pump 
below which cavitation will not occur. (c) What size homologous pump and rotative speed would you 
recommend for this situation? 

17.43. Compute the specific speed of the pumps at Grand Coulee and of those on the Colorado River 
Aqueduct at Hayfield, Gene. and Iron Mountain plants. 

17.44. Determine the approximate specific speed of the pumps at the Edmonston Pumping Plant In 

California. 



APPE~DIX 

ONE 
DIMENSIONS AI'\D L:\ITS, 

CONVERSION FACTORS 

The systems of dimensions and units used in mechanics are based on Newton's second law 
of motion, which is force equals mass times acceleration, or F = ma, if suitable units are 
chosen. In the English system, engineers define a pound of forGe as the force required to 
accelerate one slug of mass 1 at the rate of one foot per second per second: that is. 

1 lb = 1 slug x 1 ftjs 2 

while in the metric (SI) system, engineers define a newton of force as the force required 
to accelerate one kilogram of mass at the rate of one meter per second per second; that is, 

1 N = 1 kg x 1 mjs 2 

Physicists, on the other hand, ordinarily use the dyne of force defined as the force 
required to accelerate one gram of mass at the rate of one centimeter per second per 
second. 

Unfortunately, these different systems tend to create confusion. In many parts of the 
world engineers use the kilogram for both force and mass units. With universal adop
tion of SI metric, however, this confusion should gradually disappear. 

Any system based on length (L), mass (M), and time (T) is absolute because it is 
independent of the gravitational acceleration g. A system based on length (L), weight, 
i.e., force (F), and time (T) is referred to as a gravitational system, since weight depends 

1 A slug of rnas, has a ~>eight of approximately 32.2 lb when acted upon by the acceleration of 

gravity present at :c.c ·-'·"~" ,.- :~-" ~Mth. 

533 
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on the value of g which in turn varies with location (i.e., altitude and latitude). Hence 
the weight ( W) of a certain mass varies with its location. This variation is not generally 
considered in this text as the variation in the value of g is small as long as we are 
analyzing a problem on the earth's surface. Fluid problems for other locations, such as the 
moon where g is quite different than on earth, can be handled by the methods presented 
in this text if proper consideration is given to the value of g. 

On the back side of the front cover of the book a table is presented for converting 
from the English system of units to SI units. For convenience a similar table is presented 
here for converting from SI units to English units. 

l ""' ersion factors 

To convert Multiply by To obtain 
metric (SI) unit English unit 

Acceleration m/s 2 3.28 flis 2 

Area cm 2 0.155 in 2 

m' 10.76 ft 2 

hectare (ha) 2.47 acre 

1 1_· ,11 kg m 3 = w- 3 g'cm 3 0.00194 slug •ft 3 

"-'~r Joule (.I)= N·m 0.738 ft·lb 
:-;::-.._1:) ~ \\ hr 2.65 X 10 6 ft·lb 

Joule (J) = N·m 0.000948 Btu = 778 ft·lb 

Fkll<ratc m 3 /s = (10 3 (s) 35.33 cfs 
r s = (io- 3 m 31s) 15.85 gpm 

Force newton (:-.J) 0.225 lb 

Kinematic \iscosity m2 's = (10 4 St) 10.76 ft 2 
'S 

Length 01111 0.0394 m 
m 3.28 ft 
J..m 0.621 mile 

'. " kg 0.0685 slug 
453.6 g (mass) 1.0 lb (mass) 

Po"er W = J s = N·m s 0.7375 ft·lbis 
(watt) 0.00134 hp = 550 ft·lb s 

Pressure N m 2(Pa) 0.000145 psi 
N/m 1 0.02089 lb ft 2 

Specific heat Nm (kg)(K) 5.98 ft·lb (slug)( R I 

Specific weight N/m 3 0.006365 lb.ft 3 

\"-:kiCJt~ m,s 3.28 fps 
km'hr 0.621 mph 

Viscosity N·s, m'( 10 P) 0.02089 lb·s ft' 

Volume m3 35.34 ft 3 

f=(l0-3m3) 0.2642 U.S. gallon 

Weight (see Force) 
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English system conversions 

Area 

Energy 

Flowrate 

Length 

Mass 

Power 

Velocity 

Volume 

Weight 

Other conversions 

1 acre = 43.560 ft 2 

1 Btu = 77~ ft lb 

1 cfs = 44~ ~:; gpm 

1 ft = 1 ~ m. 1 \ d = 3 ft, 1 mi = 5,280 ft 

slug= 3~.2 lb (mass) 

1 hp = 550 ft·lb s = 0.708 Btu s 

1 mph = 1.46" fps (30 mph ~ 44 fps) 
1 knot = 1.689 fps = 1 152 mph 

1 ft 3 = 7.48 gal 

1 U.S. gal= 231 in 3 = 0.1337 ft 3 

= 8.34 lb of water at 60 f' 
British Imperial' gal = 1.2 US gal 

U.S. (short) ton= 2,000 lb 

Metric ton = 2,204 lb 
British (long) ton = 2,240 lb 

Engineering gas constant R 

Heat 

1 ft·lb (slug)( R) = 0.1672 N·m'(kg)(K) 

'viet ric 

English 

Tcm perature 
Metric 

English 

I cal= 4.187 J (heat required to raise a 1.0 g mass of water l.OK) 

1 Btu = 252 cal (heat required to raise a 1.0 lb mass of water 1.11 R I 

K = .273 + C 
R=460- f' 

1'1 T of 1 C = 1'1 T of 1 K = L'1 T of 1.8 F = L'1 T of 1 8 R 

Relationship between temperatures 

F c c f' 

~20 ~28.9 ~20 ~4 

0 ~ 17.8 ~ 10 14 
20 ~6.7 0 '" 32 0.0 10 50 
40 4.5 20 68 
60 15.5 _10 86 
80 26.6 40 104 

100 .\7.8 'O I.=.= 

120 48.9 60 140 
140 60 () "() 158 
160 71 I \II I-A 

180 ."-:-= ~ 'Ill ;y...; 

212 ]()()(I :IH! 



APPENDIX 

TWO 

VELOCITY OF 
PRESSURE WAVE 

Consider an elastic fluid at rest in a rigid pipe of cross-sectional area A. Suppose a piston at 
one end is suddenly moved with a velocity V for a time dt. This will produce an increase in 
pressure which will travel through the fluid with a velocity c. While the piston moves the 
distance I' d1. the wave front will move the distance c dt. During this time the piston will 
di-;place a mass of flUid p A V dt, and during this same time the increase in pressure dp will 
· • ·,· ',,. : 

1
1c densitv of the portion between 1 and 2 by dp. Equating the mass displaced 

· ·: ;--.<c•r. to the gain in mass between 1 and 2 due to increased density, pAV dt = 
... irom which (Fig. A. I) 

Vp 
c = ---

dp 
(A. I) 

From mechanics the impulse of a force equals the resulting increase in momentum 
The impulse of the force produced by the piston is A dp dt. The mass p Ac dt is initially at 
rest, but as the pressure wave travels through it, each element of it will have its velocit! 
increased to V, so that at the end of the time dt the entire mass up to section 2 will have the 
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Figure A.l 
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velocity V. Hence the increase in momentum is pAcV dt. Thus A dp dt = p . .Jd Jr. and 

dp 
c= 

Vp 

Multiplying Eqs. (A.l) and (A.2). we have 

' dp c- =--
dp 

(A.3) 

In Sec. 1.6 the volume modulus of elasticity is defined as E,. = - (r·/dr) dp. Since p = lh. 
pv = 1.0 = constant, and thus p dv + v dp = 0. and - t'/dr = + p. dp. Hence E,. = p dp;dp. 
Substituting this value of dp/dp in Eq. (A.3 ), we have 

c = = E JE,. f!-
p :· ' 

(A Ji 

This is the velocity of a pressure (or sound) wave, commonly referred to a, :::: .:.~: _,: _ 
velocity. 

An acoustic, or pressure, wave travels through a fluid with such a high 1eloc:::- ·- .:c: 
there is no time for any appreciable heat transfer from any heat of compression. ;-:·,ort'O\ e~. 
the fluid friction is negligible and thus the process is isentropic. In Sec. 1.9 it is shown that 
the modulus of elasticity for a perfect gas under isentropic conditions is E,. = kp. Inserting 
this value in Eq. (A.4) gives for a gas, 

c = fJ/J = jkp = jkRT 
I' p 

(A.5) 

This shows that for a gas the acoustic velocity is a function of its absolute temperature 
The foregoing analysis has considered the pipe to be rigid. In reality the pipe is elastic. 

and the stretching of the pipe walls due to the pressure wave makes the modulus of tht' 
combination less than that of the fluid alone. 

This new modulus will be expressed by K. and we shall let dr = dr' + dv", where dr' is 
due to compression of the fluid and dr" is due to stretching of the pipe wall. Thus 
K = - v dp/(dr' + dr"). from which 

dr' dv" 

K r dp r dp 

The first term on the right is seen to be 1; E,.. In mechanics E = incremt'nt oi 
stress/increment of unit deformation. From the concept of hoop tension the increment of 
stress in the wall of the pipe is r dp;r where r is the radius of the pipe and r is its thickness. 
If the circumference is stretched an amount dl. the increment of unit deformation is dl/2nr. 
Since dl = 2n dr, this last expression becomes dr r. From these relations we obtain 
dp = Et drjr 2 Per unit length of pipe t' = nr 2

, and the increase in volume is equal to 
the increase in area, so that dr" = 2nr dr. Substituting these quantities for the three items 
in the second term of the equation for l;K, it reduces to 2r!Et = D/Et. Therefore 1/K = 
l/E,. + D/Et, from which 

E, 
/(= 

1 ~ (D t)(E,./E) 
(A.6) 
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The velocity of a pressure wave in an elastic fluid in an elastic pipe is then 

(A7) 

In every case c is the velocity of the pressure wave relative to the fluid. If the fluid b 

moving with a velocity V. the absolute velocity of the pressure wave is 

(A.6) 
from which it is seen that. if the fluid velocity is equal to or greater than c, no effect of a 
pressure wave can then appear upstream. As the velocity of a pressure wave is not a velocity 
of physical matter, it is often called celerity. 

.... 
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Table A.la. Physical properties of water in English units 

Specific 

1

1 weight 

Temp, i'· 
F !b.ft 3 

32 
40 
50 
()() 

70 

80 
90 

100 
110 
120 

130 
140 
150 
160 
170 

180 
190 
200 
212 

62.42 
62.43 
62.41 
62.37 
62.30 

62.22 
62.11 
62.00 
61.86 
61.71 

6155 
61.38 
61.20 
61.00 
60.80 

6o.sg 

60.36 
60.12 
59.fD 

I 
I , 
1

1 
Density I 
p, 

! slu"sift 3 
, . ~ . . I 

1.940 
1.Y40 
1.940 
1.938 
1.936 

1.934 

Kine
matic 

Viscosity 'iscosit! 
f.1 x lOs. I v x lOs. 
lb·s, ft 2 ft' s 

3.746 
3.229 
2.735 
2.359 
2.050 

l.79Y 
1.595 
1.424 
1.284 

1.931 
1.664 
1.410 
1.217 
1.059 

i 1.931 
1.927 

I ).923 

1.918 , 1.16X 

0.930 
0.826 
0.739 
0.667 
0.609 

1.913 
1.908 
1.902 
1.896 
1.890 

1.8:>U 
1.8"6 
1.%k 
l ~111) 

1.069 
0.981 
0.905 
0.83~ 

0.7XO 

0.726 
I) 6-, 

no_;-
I\ .:::y-: 

0.558 

0.514 
0.476 
0.442 
0.41.\ 

0.385 

1 Surface Vapor 
1 

Vapor 
pressure 
head tension pressure I 

2 I 
a X 10 1 p,., P,./}', 
lb ft psta 

1 
ft 

' 0.518 
0.~14 

0.509 

0.'04 
0.500 

0.492 
0.4R6 

' 0.480 
I 0.473 

0.465 

' 0.460 
0.454 
0.447 
0.441 
0.433 

0.426 
II 419 
11412 
11.-\04 

0.09 
0.12 
0.18 
0.26 
OJ6 

0.51 

0.70 ' 
0.95 
J.n 
1.69 

2.22 
2.89 
3.72 
4.74 
5.99 

7.51 
9.34 I 

11.52 
14.70 

0.20 
0.28 
0.41 
0.59 
O.R4 

1.17 
1.61 
2.19 
2.Y5 
3.91 

5.13 
6.67 
8.58 

10.95 
13.83 

17.33 
2155 
26.59 
33.90 

Bulk 
modulus 
of 
elasticity 
E,. x w·-'. 
psi 

293 
294 
305 
31 i 
320 

322 
323 
327 
331 
333 

334 
330 
328 
326 
322 

318 
313 
308 
300 

539 
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Table A.lb. Physical properties of water in SI units 

I 
Bulk 

Specific I 

Kine- Vapor modulus 

Tern- rna tic Surface Vapor pressure , of 

pera- weight Density VbCLNty ! viscosity tension pressure head elasticity 
ture, ,, p, II X IO-'- \' X 106, (J, Jl, Jl, E,, X w- b 

c kN.-m 3 kg;m 3 ~-.;; rn.:: m 2 s N;m kN m 2
• abs 111 kN m 2 

0 9.S05 999.R l.~Bl UR5 0.0756 0.61 0.06 2.02 

9.R07 1000.0 1.518 1.519 0.0749 0.87 0.09 2.06 

10 9.R04 999.7 1.307 1.306 0.0742 1.23 0.12 2.10 

I' 9.798 999.1 1.139 1.139 0.0735 1.70 0.17 2.15 
=I) CJ7R9 99R.2 1.002 1.003 0.0728 2.34 0.25 2.!8 ,, 9 -~- 997.0 0.890 0.893 0.0720 3.17 0.33 '" 
.ill 9.164 995.7 0.798 0.800 O.D712 4.24 0.44 2.25 
40 9.730 992.2 0.653 0.658 0.0696 I 7.38 0.76 2.28 

50 9.689 ns.o i 0.547 0.553 0.0679 12.33 1.26 I 2.29 

60 9.M2 983.2 0.466 0.474 0.0662 19.92 203 ~.~X 

70 9.589 977.8 0.404 0.413 0.0644 31.16 3.20 2.25 

80 9.530 971.S 0.354 0.364 0.0626 47.34 4.96 2.20 

90 9.466 965.3 0.315 0.326 0.0608 70.10 7 18 2.14 
!00 9.399 958.4 0.282 0.294 0.0589 IOIJ3 10 3J 2.07 

Table A.2a. Physical properties of air at standard atmospheric pressure in 
English units 

Temperature Specific Kinematic 
Dcnsit: weight Viscosity Yisco"ity 

T. T. f! X 10', i' X 10'. /l X 10-. \"X 10". 
F c slugs ft 3 lb ft 3 lb·slft 2 ft' s 

-40 -40.0 2.94 9.46 3.12 1.06 
-- ~:-;.9 2.80 9.03 3.25 1.16 
-1~, 2.6~ S.62 3.38 1.26 

·~-~ -12.2 2.6.1 8.46 3.45 1.31 
2t! -6.7 2.57 8.27 3.50 IJ6 

_1() -1.1 2.52 8.11 3.58 1.42 
40 -lA 2.47 7.94 3.62 1.46 
50 10.0 2.42 7.79 3.68 1.52 
60 15.6 2.37 7.63 3.74 1.58 
~() 21.1 2J3 7.50 3.82 1.64 

80 26.7 2.28 7.35 3.85 1.69 
91) 12.2 2.24 7.23 3.90 I 7-l 

Jll() .'7.8 2.20 709 3.96 1.80 
] =I I 48.9 2.1::; 6.84 4.07 1.89 
1-lU oOO 2.06 661 4.14 201 

160 71.1 1.99 6.-ll -+.22 2.12 
180 82.2 1.93 6.21 4.34 2.25 
200 Y~.-~ 1.~' 0.02 4.-N 2-lO 

2'0 121 I I ~-l ' All 4.87 2.80 



Table A.2h. Physical properties of air at standard atmospheric pressure in SI 
units 

Temperature Specific Kinematic 
Dens it\ weight \'hcosity viscosity 

T. T. p. U X 10 5 
V X 10 5

• 

c F kg.m 3 :\ m' '-,-, m' m 2 -s 

-40 -40 1.515 1H6 149 0.98 
-20 - 4 1J95 13.68 1.61 L15 

0 ~2 1.293 12.68 I 'I IJ2 
10 50 1.248 12.24 1.~6 1.41 
20 68 1.205 1!.82 1.81 !.50 
30 86 1.165 11.43 LK6 1.6'• 
40 104 1.128 11.06 1.90 : h'-

60 140 1.060 10.40 2.00 l ' 

80 176 !000 9.81 2.09 2 09 
J(XJ 212 0.946 9.28 2.18 2 .~I 
200 392 0.747 7J3 2.58 -: ~' 

Table A.3a. The ICAO standard atmosphere in English units 

Specific 
weight Detbit) Viscosity 

·\ltttudc. Temp. Pressure. ,. I'· II X 10'. 
ft r psia lb;ft 3 slugs ft 3 lb·s ft 2 

0 59.0 14.70 0.07648 0.002377 3.737 

SJ)(kl -112 12.2-l 0.06'8~ I) (!1211-l-' -~.()_~-

10.000 ~3.4 10.11 0.05643 0.001756 3.534 

15.000 5.6 SJO 0.04807 0.001496 '-!<0 
20.000 ' ' -- 1---~ 0 76 0.0-lil~ll 11.011 126" -~--;~s 

25.000 -30.1 5.46 0.03422 0.001066 3.217 

_;u_uuu -47.8 4J7 0.02858 0.000891 3.107 
35.000 -n5.6 347 0.02~67 0.000738 2.995 
-10.000 .. 69.7 2.73 () 01882 0.000587 2.969 

45.000 -69.7 2.15 0.01481 0.000-162 2.969 
50.000 -69.7 1.69 () 01165 0.000364 2.969 

60.0lXI 69.7 1.05 o.oon~ 0.000226 2 Y6lJ 

70,000 -69.7 0.6S 0.00447 0.000140 2.969 
80.0(XI -69.7 0.40 () lXl277 0.000087 2.969 

90.000 -5-:'.2 0.25 0.00168 ()()()(XI" 3 11-1~ 

100.01Xl --10.9 U. 16 0.00102 O.lXl0032 3.150 
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Table A.3b. The ICAO standard atmosphere in Sl units 

Specific 
weight Density Viscosity 

Altitude, Temp, Pressure. y, p, Jl X 10 5
, 

km oc kN/m 2
• abs N/m 3 kg/m 3 Ns/m 2 

0 15.0 101.33 12,01 1.225 1.79 

2 2.0 79.50 9.86 1.007 1.73 

4 -4.5 60.12 8,02 0.909 1.66 

6 -24.0 47.22 6.46 0.660 1.60 

8 -36.9 35.65 5.14 0.526 1.53 

-49.9 26.50 4.o4 0.414 1.46 

12 -56.5 19.40 3.05 0.312 1.42 

14 -56.5 14.20 2.22 0.228 1.42 

16 -56.5 10.35 1.62 0.166 1.42 

18 -56.5 7.57 1.19 0.122 1.42 

20 -56.5 5.53 0.87 0.089 1.42 

25 -51.6 2.64 0.41 0.042 1.45 

30 -40.2 1.20 0.18 O.oi8 1.51 

T 
Table \.4a. Ph~sical properties of common liquids at standard atmospheric pressure in English units 

Temper- Surface Vapor Modulus of 
ature Density Specific Viscosity tension pressure elasticity 
T, p, gravity, Jl X 105

, (J, p, .• E, .• 
Liquid F slug/ft 3 lb·s/ft 2 lb/ft psi a psi 

Benzene 68 1.74 0.90 1.4 0.002 1.48 150,000 J 

Carbon c 
1c'ir3chloriJc 68 3.08 1.59 2.0 0.0018 1.76 160,000 ( 

( ~ ~Jc ~._JJ! 68 1.66 0.86 IS 0.002 !-
~.,__,~ulme 68 1.32 0.68 0.62 8.0 --
lf!:•('Cftn 68 2.44 1.26 3100 0.004 0.000002 630,000 .. 
H :-Jrogen -430 0.14 0.072 0.043 0.0002 3.1 ' 
Kerosene 68 1.57 0.81 4.0 0.0017 0.46 c 
Mercur) 68 26.3 13.56 3.3 0.032 0.000025 3.800.000 \\ 

Oxygen -320 2.34 1.21 0.58 0.001 3.1 
SAE 10 oil 68 1.78 0.92 170 0.0025 
SAE 30 oil 68 1.78 0.92 920 0.0024 
Water 68 1.936 1.00 2.1 0.005 0.34 300.000 

__________________________ ..__ 
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Table A.4b. Physical properties of common liquids at standard atmospheric pressure in SI units 

Temper- Surface Vapor \L<- -· 
ature Density Specific Viscosity tension pressuro ~ ~.=..:< . .: 
T, p. gravity, II x 104, u, p,. E 

Liquid oc kg m 3 N·s/m 2 N/m k!\ m'. ab-s '\ -: 

Benzene 20 895 0.90 6.5 0.029 10.0 ---

Carbon 
tetrachloride 20 1,588 1.59 9.7 0.026 12.1 1.100 

Crude oil 20 856 0.86 72 O.D3 
Gasoline 20 678 0.68 2.9 55 
Glycerin 20 1,258 1.26 14,900 0.063 0 ()(0} 14 .!. :~I' 

Hydrogen -257 72 0.072 0.21 0.00:1 
Kerosene 20 808 0.81 19.2 0.0::'" ~ :n 
Mercury 20 13,550 13.56 15.6 0.51 I loll . 
Oxygen -195 1,206 1.21 2.8 0.015 -
SAE 10 oil 20 918 0.92 820 

SAE 30 oil 20 918 0.92 4,400 
Water 20 998 1.00 10.1 0.0'73 2.34 

Table A.5a. Physical properties of common gases at standard sea-level atmosphere and 68aF in Engli<ih units 

Specific heat, 
Specific Gas constant ft·lb/(slugWR) Specific 
weight, Viscosity R, [ = ft2/(s2WR)] heat 

Chemical Molecular ,., II x 10, ft·lb/(shig)(oR) rat H.) 

Gas formula weight lb/ft 3 lb·s/ft2 [ = ft2/(s2WR )] cP c 

Air 29.0 0.0753 3.76 1,715 6,000 4,285 1 .~[1 

Carbon dioxide C02 44.0 0.114 3.10 1.123 5.132 -t009 1.2~ 

Carbon monoxide co 28.0 0.0726 3.80 1,778 6,218 4,440 1.40 

Helium He 4.00 0.0104 4.11 12,420 31,230 18,810 1.66 

Hydrogen H2 2.02 0.00522 1.89 24,680 86,390 61,710 1.40 

Methane CH4 16.0 0.0416 2.80 3,100 13,400 10,300 1.30 
Nitrogen N2 28.0 0.0728 3.68 1,773 6,210 4,437 1.40 

Oxygen 02 32.0 0.0830 4.1R 1,554 5.437 3.883 1.40 

Water vapor H 20 18.0 0.0467 2.12 2,760 11,110 8.350 1." 



544 FLUID MECHANICS WITH ENGI~EERING APPLICATIONS 

Table A.Sb. Physical properties of common gases at standard sea-level and 68'F in Sl units 

Specific heat, 

Gas constant N·m/(kg)(K) Specific 

Density Viscosity, R, [( = m 2/(s 2)(K)J heat 

Chemical Molecular p. J1 X 105 Nm/(kg)(K) ratio 

Gas formula weight 1\g m3 N·s/m 2 [ = m2/(s2)(K)] c p c,. k = Cp/CL' 

Air 29.0 1.205 1.80 287 1,003 716 1.40 

Carbon dioxide C02 44.0 1.84 1.48 188 858 670 1.28 

Carbon monoxide co 28.0 1.16 1.82 297 1,040 743 1.40 

Helium He 4.00 0.166 1.97 2,077 5,220 3143 1.66 

H: .. ::-.•;. Hz 2.02 0.0839 0.90 4,120 14,450 10,330 1.40 
M,:~.dnc CH 4 16.0 0.668 1.34 520 2,250 1,730 1.30 

Nitrogen '\, 28.0 1.16 1.76 297 1,040 743 1.40 
Oxygen 02 32.0 1.33 2.00 260 909 649 1.40 
Water vapor H 20 18.0 0.747 1.01 462 1,862 1,400 1.33 

Table A.6a. Areas of circles (English Table A.6b. Areas of circles (SI 

units) units) 

Area Diameter, Area, 
~1 .... ::1eter. em m2 

tn in 2 ft2 

5 0.00196 

0.25 0.049 0.00034 10 0.00785 

0.5 0.196 0.00136 15 0.01767 
1.0 0.785 0.00545 20 0.03142 
2.0 3.142 0.0218 25 0.04910 
3.0 7.069 0.0491 30 0.07069 
4.0 12.57 0.0873 50 0.1963 
6.0 28.27 0.196 100 0.7854 
'II 50.27 0.349 150 1.767 

'I_)\_) 78.54 0.545 200 3.142 

; = il 113.10 0.785 
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Table A.7. Properties of areas 

Location of 
Sketch Area centroid I 0~ 

~b----1 

Rectangle 
h 

bh I' = L .c 2 
Ic Yc~~ l_i 

* [Sf bh .., r-

Triangle Ic ! h -

_'.t> Yc ~S,_i 2 

t~b---1 

~ I"Ycr=fth nD' w· 
- \ = Circle 

4 t-~ Yc L___1 

C2J :Yc i nD 2 4r nD 4 

Semicircle I - v=- I= [2s 
8 -' 3n 

~ nbh h nbh' 
Ellipse !c h - I'=- I,= M 4 -' 2 

(·'-: Semiellipse I 
hl nbh 4h nbh 3 

I \ Yc - \' = - 1=--
~b--1 4 -' 3n 16 

r--b--J I 

2hh' I 
! 2bh 3b 

Parabola 

IJUZ=Iy, I 

- X=- I=--
I 3 -' 8 7 

I 
3b 

I' = -
i -' 5 

XC I 
I 
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Table A.B. Properties of solid bodies 

Slo.etch 

Cyhnder Yc£J=h 
~ 

y~lh Cone 
ct~ 

D 

Sphere Ycrei 
• 81 HemiSphere Yc 

Paraboloid 

REFERENCES 

Volume 

11D2h -
4 

~ (~~2~) 

~Dl 
-
6 

7tD) 
-
12 

Location of 
center of mass 

h 
Y, = 

2 

h 
)', = 4 

}', 

r. = 

r. 

D 

2 

3r 

8 

h 

3 

There is a great volume of literature available on the various aspects of fluid 
mechanics. The results of original research may be found in papers published in 
technical journals. A list of books covering various topics of fluid mechanics is 
presented here for the convenience of the student. This Jist by no means includes 
all the important books that have been written; the intent here is merely to 
provide a representative list of books. The student is encouraged to "probe 
deeper·· and to widen his horizons by further reading. 

Batchelor, G. K.: "An Introduction to Fluid Dynamics." Cambridge University Pres~. Cambridge. 
1967 

Bergeron. L. J. P.: .. Water Hammer in Hydrauhcs and Wave Surges m Electricity.- trans. by American 
Soc~ety of Mechanical Engineers. John Wiley & Sons. Inc. New York. 1961. 
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