1. Refinery Gas	C1 - C4	Below 20°C
2. Petroleum Ether	C5 - C6	20°C − 60°C
3. Light Naphtha	C6- C7	60°C - 100°C
4. Gasoline	C7-C10	80°C - 180°C
5. Kerosine	C11- C15	160°C - 300°C
6. Heavy Oil .	C15 - C18	300°C - 400°C
7. Lubricating Oil	C18 - C20	400°C

IN A PERIODY

- 1. Atomic Radius -> Decrease
- 2. Ionization Energy -> Increase
- 3. Electronegativity -> Increase
- 4. Electron affinity -> Increase
- 5. Metallic character -> Decrease
- 6. Melting and boiling point -> I-A to IV-A increase

 V to VIII decrease
- 7. Electrical Conductance > Decrease
- 8. Hydration Energy -> Increase

IN A GROUP

- 1. Atomic Radius -> Increase
- 2. Ionization Energy Decrease

however IA > II A

VA > VI A

- 3. Electronegativity -> Decrease
- 4. Electronaffinity -> Decrease

however IA >IIA

IVA > VA

A IIIV < A IIV

- 5. Metallic character -> Increase
- 6. Electrical Conductance -> Decrease
- 7. Hydration energy > Decrease

REMEMBER:

C120 + H20 -> 2HOCR

C1207 + H20 -> 2 HC104

Normal Oxide: Peroxide Superoxide:

For Group 1A elements

REACTION OF OXIDES WITH WATER

```
(N_2O + H_2O \rightarrow 2XOH)

(normal oxide) (Metal Hydroxide)
```

$$X_2O_2 + 2H_2O \rightarrow 2XOH + H_2O_2$$

(Peroxide) (Hydrogen Peroxide)

$$2 \times 0_2 + 2 + 2 \times 0 \rightarrow 2 \times 0 + 4 \times 0_2 + 0_2$$
(Super oxide)

FLAME TEST

Li → Red

Na → Yellow

K → Lilac

Rb → Red

Cs → Blue / Violet

Be → No colour

Mg → No colour

Ca → Orange-red

Sr → Red

Ba → Pale Green

* Reactivity of Metals
Period -> Decrease

Group -> Increase

4 Reactivity of Non-metals
Period → Increase
Group → Decrease

1. Brass:

Bronze:

$$Cu = 75 - 90\%$$

 $Sn = 10 - 25\%$

3. Steel:

- * Solubility of Mg(OH)2 is enhanced tremendously by addition of NH4Cl
- * Al(OH)�3 has the capacity of absorbing various dyes forming coloring matter known as lakes
- * Lithium is lightest known metal
- * Group 1A elements are very good reducing agents
- * The ability of a cation to distort an anion is known as its polarizing power.
- * The polarizing power of a cation increase with increasing charge on ion and decreasing radius of ion.
- * Thermal stability of Group 1 and Group 2 increase down the group due to decreasing polarizing power.
- * Bicarbonates of Group 1 are more stable than Group 2
- * Alkaline earth metals donot exist free in nature
- * Electron Affinity Cl >Br>F>I
- * Bond Enthalpy Cl2 > Br2 > F2 > I2
- * Reactivity of metals increase down the group e.g reactivity of alkali metals
- * Reactivity of non metals decrease down the group e.g halogens

~

EXCEPTIONS TO PERIODIC TRENDS

- * IE of Mg is greater than Al
- * IE of Phosphorus is greater than Sulphur
- * Density of potassium is less than sodium
- * IE of radium is higher than Barium
- * IE of Nitrogen is greater than Oxygen

NAMING OF COMPLEX COMPOUNDS

- * The names of neutral ligands are usually unchanged Names of negative ligands end in o (chloro)

 Names of positive ligands end in ium (hydrazinium)
- * Ligands naming order negative, neutral, positive
- * Same type ligands named in alphabetical order
- * In positive and neutral complexes name of the metal remians the same
- * In negative complexes name of metal is followed by ate. (Ferrate, cobaltate, cuprate, argentate)

$$2 \text{ CrO}_4^{2-}_{(aq)} + 2 \text{H}^+_{(aq)} \iff \text{Cr}_2 \text{O}_7^{2-}_{(aq)} + \text{H}_2 \text{O}_{(l)}$$

This is dynamic equilibrium and sensitive to the acidity and basicity of solution. According to Le-Chatelier's principle, the addition of acid to the

*2AI + H2O -> AI2O3 + 3H2 Si + 2H20 -> SiO2 + 2H2 * SiO2 + 2H20 300°C; Si(OH)4 * SiO2 + NaOH -> 2 Na2 SiO3+H20 * SnO + NaOH + H20 -> Na2 Sn (OH)4 * PbO + NaOH + H2O -> Na2 Pb(OH)4 * 2 A1(OH)3 + 2NOOH - 2 NO[A1(OH)4] Aluminate Andrew To Restaurants and State of the State

Comparison of the second secon

La Marie - Artio com to a Mico a complete de la companya della com

the state of the second of

LANGE PARTY BUT TO A STATE DEPT. THE RESERVE THE STATE OF THE STATE OF

THE WELLISURY APROPRIES.

provide a reference and the face of the second seco

da kan dan arata 1865 ah - Lawa Santana Tantan Barana ayai . Tina da 1866

- * Hydration of Alkene produce alcohol
- * Hydration of Alkyne produce Aldenyde/Ketone
- * Epoxidation of Alkene produce Glycol
- * Ozonolysis of Alkene produce Carbony) compounds
- * Ozonolysis of Alkyne produce Carboxylic acids.
- * RMgX + Formaldehyde -> 1" Alcohol
- * RMgX- + Higher Aldehyde -> 20 Alcohol
- * RMgx + Ketone -> 3° Alcohol
- > Reduction of Aldehyde → 1° Alcohol Reduction of Ketone → 2° Alcohol
- * Oxidation of 1° Alcohol > Formaldehyde

 Oxidation of 2° Alcohol > Ketone

 Oxidation of 3° Alcohol > Not Possible
- * Oxidation of Aldehyde produce carboxylic acid
- 4 No oxidation of Ketone

- 1. No. of isomers in Alkane: 2 n-4 + 1 2. No. of isomers in Alkene: 2n-2 + 1 [even C] 3. No. of isomers in Alkene: 2n-2 [odd C] 4. No. of isomers in Alkyne: 2n-2n [odd c]
- 5. No. of isomers in Alkyne: $2^{n} (2n-1) \quad \text{[even c]}$
- 6. Total Number of Ring Isomers:

- * Halogens oxidizing agents
- * Halide ions reducing agents
- * For detection of carbon, organic compound is mixed with dry copper oxide in ratio 1:3
- * Proteins are amphoteric in nature bcz they contain both acidic (carboxyl) and basic (amino) groups.
- * Fatty acids are long chain carboxylic acids containing 12-18 carbon atoms per molecule.
- * The most common occuring lipids are triglycerides and phospholipids.
- * Fat soluble vitamins: A, D, E
- * Zinc constituent of enzymes carbonic anhydrase and alkaline phosphatase
- * NH2, NR2 cause Solubility in acids
- * OH, COOH, SO3H cause solubility in basic solutions
- * The azo and anthraquinone nuclei having attached the groups like hydroxyl and carboxyl act as mordant dyes
- * First organic chemical made on large scale from a petroleum base was isopropyl alcohol (isopropanol)

a- Carbon in organic molecule refers to the first carbon atom that attaches to a functional group The second carbon atom beta carbon &-Hydrogen: A hydrogen atom directly attached to a- Carbon

$$F = kq_1q_2$$

$$E = \frac{kq}{\gamma^2}$$

$$U = \frac{Kq_1q_2}{r}$$

* Electric Flux $\phi = EA \cos \theta$

* Magnetic Flux \$\Phi = BA cos0

Cost max when surface is perpendicular to field bcz in such case normal to the surface will be parallel to field.

* Electric Field Intensity

1. Due to an infinite sheet of charge:

2. But two oppositely charged parallel plates

For Capacita)V :	
GeC	V	
E = V		
C		
Cyac =	EDA	
	d	

DOY: MITIWITIFISIS Ay303

Stored In A Capacitor:

$$* U = \frac{QV}{2}$$

$$* U = \frac{CV^2}{2}$$

$$+ U = \frac{Q^2}{2C}$$

	The state of the s				the same of the sa	the state of the s
+ D:	LAMETER	RELATION	WITH	T'	AND	eR,
		$I \propto d^2$				
		Ral				
erizette depositor de positivo e en el esta de la companio del companio de la companio de la companio del companio de la companio del la companio de la companio del la companio de la com		6	2			

stretched n times then new resistance When a wire is X of wire $R' = n^2 R$ times then * When radius of is decreased n wire a new resistance of wire $R' = n^4 R$ * When a wire is bent into circle then new resistance of wire is given by R' = R/4When three wires are combined to form an ¥ equilateral triangle then new resistance $R' = \frac{2}{3} \times R$ Possible combination of conductor of equal resistance given by: 15 2 2 1-1

If resistance of n conductor different then possible

combinations are

22

Scanned with CamScanner

$$* R = \underbrace{p^2 Q^2}_{m}$$

* When wire stretched en' times

$$R' = n^2 R$$

AND = NAMA

AND = 10-47

FORMULA SHEET

4 F = BIL sind

* O = BA cos 0

φ: Magnetic Flux

* B = Mo I

40 = 4x x 10-7 Wb A-1 mi

2 TY

* EB. DQ = uoI , > Ampere's Law

* Magnetic Field due to current carrying solenoid:

BL = Nu.I

B = nuoI

n=N/L

* F= qvB sind

* F = 9,B

f: cyclotron frequency

27m

* e/m in terms of velocity:

Br

in terms of voltage: * e/m

* Torque on current carrying loop / coil:

> = NIAB cos 0

* For Galvanometer:

 $T = C\theta$

NAB

* For Ammeter:

 $R_s = R_g I_g$ $I - I_g$

* For Voltmeter:

 $R_h = V - R_g$ I_g

* Loventz Force = q, [E+(vxB)]

4 E = DAYE

* RIGHT HAND RULE When a Steady current passes through a conducting wire, it creates a magnetic field around the wire. The direction of such field is determined by Right Hand Rule. Curl your fingers in direction of magnetic field, thumb indicates direction of current. + FLEMING'S LEFT HAND RULE Whenever a current carrying conductor comes under a magnetic field, there will be a force acting on the conductor. The direction of this force can be found using Fleming's Left Hand Rule F: Force -> Thumb B: Magnetic Field > First Finger T: Current -> Middle Finger + FLEMING'S RIGHT HAND RULE If a conductor is forcefully brought under a magnetic field, there will be induced current in the conductor. The direction of this force can be found using Fleming's Right Hand Rule. F: Force / Motion > Thumb B: Magnetic Field -> Fore Finger I: current > Middle Finger

- * Nucleophility increase as the density of negative charge increase (OH- > H2O)
- * A highly electronegative atom is a poor nucleophile
- * Nucleophility increase with increasing size of anion
- Esters on hydrolysis produce both alcohol as well as carboxylic acid
- * Charge on alpha particle: +2e
- * When wire is cut in n different pieces then resistance become R/n
- * In PN Junction, the potential developed across barrier layer is called barrier potential which is 0.7 volt for silicon diode and 0.3 volt for germanium diode.
- * Light Emitting Diode (LED) : operated under forward bias
- * Photo diode operated under reverse bias
- * Solar cell no biasing

- * Galvanometer is always connected in series with the circuit component through which we need to detect current.
- * For Ammeter : low resistance wire (shunt resistance) connected in parallel to Galvanometer
- * For Voltmeter: high resistance connected in series with galvanometer
- * Ammeter connected in series with device
- * Voltmeter connected in parallel with device

* Self Inductance

* Mutual Inductance

$$M = \frac{N\phi}{I}$$

For a Solenoid:

14		
*	Average Power Dissipated	
	P= 12 Im R	7 3 3
	OV	
1	P = Irms R	
*	Trms	
	Irms = Im	
	OY	
	Irms = 0.707 Im	250
	P = Irms Vrms Cosp	
		•

A COMPANY TO A COMPANY	AC Through Resistance
	V= Vmslnwt
	I = Imsnwt
	P= Vm x Im = Vrms Irms
	52 52
Y	AC Through Pure Inductance
	I = Imsinwt
	V = Vm Sin (wt+90°)
	$X_{L} = \omega L = 2\pi f L$
	P = 0
The second secon	
¥	AC Through Capacitance
	I = Im Sin (wt +90°)
	V = Vm Sinwt
	$X_c = 1$
	wc 2xfc
	P=0
and the same of th	

and voltage

· For RL Series

$$Z = \int R^2 + \chi_L^2$$

. For RC Series

$$Z = \int R^2 + X_c^2$$

· For RLC Series

· RL Series

tano

COSO

. RC Series

-XC R RZ

. RLC Series

Xi-Xc

R/Z

POWER FACTOR COSO

* For a pure resistive circuit: coso = 1

* For a pure L or C circuit: coso = 0

* For RLC circuit, coso lies bow 0 and 1

$$Q$$
-Factor = X_L = ωL
 R

Q-Factor = 27 x Max. Energy Stored

Energy Dissipated per cycle

RESONANCE IN AC CIRCUIT
Resonance in an AC circuit refers
to that state of the circuit in which the
inductive reactance of the circuit is equal to
its capacitive reactance.
The value of angular frequency of
alternating emf for which resonance is
established in the circuit is called resonance
trequency
frequency f = 1
frequency $f = 1$ $2\pi \int Lc$
f = 1
f = 1
f = 1 27 Jic

*	Elastic Modulus = Stress
	Strain
*	Young's Modulus:
	Y = FL how the man de and
	AAL
*	Shear or Rigidity Modulus:
	SEE DAMESTO LINE DE LA COMPANIONE DE LA
	A0
×	Bulk Modulus
//	$B = F/A = FV$ $(-\Delta V/V) = A(\Delta V)$
	ox $B = \Delta P$
	$o_{Y} R = \Delta P $ $(-\Delta V_{V})$
	Stress = k x strain Hooke's Law
*	Siless
	Strain Energy
•	
	<u>U= 1 Fe</u>
Y	Strain energy per unit volume
	$\mu = 1$ (stress x strain)
	2

Contract of the contract of th	
ж	B= Hxuo
:	H: Magnetic Field Strength
	B: Magnetic Flux Density
<u>. y.</u>	Y= 4FL
	Td2AL
,	
S	Relation between DL and r2
	AL & L (For same Force and)
-	y2 same Y
V	Strain Energy per unit volume
	$u = 1 \times Y \times (strain)^2$
	2 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×

		111111100
1:	$E = mc^2$	
- North Control		
2.	1 = 1 1 1 1 2	
	$\frac{L = L_0 \left 1 - V^2 \right }{c^2}$	
	J. C.	
3.	t = to	
	1- V2	
	C2-	
	7	
Ч.	$m = m_0$	
	1-V2	
	C2	
po .	7 T 11.1	
5.	Pmax T = Wein's constant (0.2898 x	(10° mK)
		A Section
6.	Stefann-Bolts Mann Law	•
	$E = \sigma T^4$	1
	0 = 5.67 × 10-8 Wm2K-4	
	S - SIGI XIO DAM N	
7	E= hf	*
8	E = hc	
	7	
9.	K.E = eV	
	K.E = q.V	
	,	

\ <u>\</u>	ENERGY REQUIREMENTS		
	1. For photoelectric effect	E < 0.1 MeV	
P	2. For Compton effect	0.1 MeV < E < 1 MeV	
	3. For Pair production	E > 1MeV	
			-

For Hydrogen Atom:

First Excitation Potential = 10.2 V

Second Excitation Potential = 12.1 V

X RYDBERG'S CONSTANT:

RH = Eo = 1.0974 x 107 m⁻¹

hc

* Mass of electron:

-> 9 x 10-31 kg

-> 5.4 × 10-4 u

7 0.51 MeV

* Mass of Proton:

-> 1.67 × 10-27 kg

> 1.007 u

> 937 MeV

* Mass of Neutron:

7 1.67 × 10-27 kg

7 1.008 U

-> 938 MeV

BINDING FACTOR:

-> Binding energy per nucleon (i-e protons and neutrons) is called binding factor

* Binding Factor, $f = B \cdot E$

-> It is used to measure stability of nucleus.

* Steps of Finding Binding Factor:

4(1) Find mass defect of the nucleus (in amu)

Dm = (mass of individual protons + neutrons) - Total mass

(2) Find binding energy Eb (in MeV)

Eb = 931 x Amc2

As 1u = 931 MeV

(3) Find Binding Factor $f = E_b$

A

$$\frac{1}{T_n} = R \left(\frac{1}{m_1^2} - \frac{1}{m_2^2} \right)$$

* P.E =
$$-\frac{ke^2}{4\pi}$$

- * Alpha Emission:
 - -Atomic Number reduce by 2
 - -> Mass Number reduce by 4
- * BETA EMISSION:
 - -> Atomic Mass remain same
 - -> Atomic Number: increase or decrease by 1

+1 for B

-- 1 for B+

Time	Undecayed	Decayed
D Sec	No (100-1.)	Zero 0.1.
1 1/2	No/2 (50%)	No/2 (50%)
2 T ₁ / ₂	No/4 (25.1.)	No-No = 3No/4 (75-1)
3 TV2	No/8 (12.5.1.)	7No/8 (87.5%)
4 Ty2	No/16 (6.251.)	15 No/16 (93.75%)

- * If current in two parallel conductors be flowing in same direction, then the two conductors will repel eachother.
- If current flows in opposite direction, they attract
- * If motor is overloaded, the back emf decreases and allows the motor to draw more current.
- * In RLC AC circuit, voltage across inductor leads current by 90° and voltage across capacitor lags behind the current by 90°. So voltage across LC combination will be zero
- * The impedence of the circuit at resonance is only resistive so the current and voltage are in phase. The power factor is 1.
- The type of current which is due to changing electric flux is called displacement current
- The ionization energy of the atom is numerically equal to the ground state energy of the atom
- * Neutrino is emitted with beta positive
- * Anti neutrino is emitted with beta negative
- Solid state detector operated under reverse bias

$$\frac{\Delta N}{\Delta N} = - N$$

N: undecayed Nuclei

$$77_{12} = \frac{0.693}{7}$$

* For Undecayed Nuclei:

$$N = \frac{N_0}{2^n}$$

* For Decayed Muclei:

$$N = N_0 - \frac{N_0}{2^n}$$

FIELD PARTICLES OR QUANTA

Force

Field Particles

- 1. Electromagnetic induction (force) -> Photons
- 2. Strong Force -> Gluons
- 3. Weak Force -> W and z bosons
- 4. Gravitational Force -> Gravitons

- Moderator slows down neutrons to thermal energies.
- Usually graphite and heavy water (water containing deutrium instead of hydrogen) are used as moderator.
- Control rods absorb neutrons e.g cadmium, boron and hafnium
- * Co-60 used for treatment of various types of cancer
- * I-131 for treatment of cancerous thyroid
- * A meson consist of a quark and an antiquark
- Pion is the lightest of known mesons
- * Baryons consist of three quarks
- * Proton u, u, d
- * Neutron d, d, u
- * In coils, take direction of magnetic field from South to north
- When circuit is in resonance, the amplitude of current is maximum
- DNA replication begins at origin of replication and requires primer
- Transcription begins at promoter region and does not require primer

Codon	Nuclear DNA	Mitochondrial DNA	
UGA	Stop codon	Tryptophan	
AUA	Iso leucine	Methionine	
AGA & AGG	Arginine	Stop Codon	

Molar mass of important elements (in g)

- 1. Carbon = 129
- 2. Nitrogen = 149
- 3. Oxygen = 169
- 4. Fluorine = 199
- 5. Sodium (Na) = 23q
- 6. Aluminium = 279
- 7. Phosphorus = 319
- 8. Sulphur = 329
- 9. Chlorine = 35.5q
- 10. Potassium (K) = 39g
- 11. Calcium = 409
- 12. Copper = 639

Molecules and Compounds

- 1. Water (H20) = 1899
- 2. Glucose (C6H12O6) = 1809
- $3. H_2 SO_4 = 989$
- 4. Nac1 = 589
- 5. Cusoy = 160g
- 6. NaOH = 409
- 7. C2H5OH = 469

Type of Vectors	Insert DNA Size (In kb)
Plasmid-cloning vectors	0.5 to 8
Bacteriophage cloning vectors	9 to 2.5
Cosmid-cloning vectors (combination of plasmid and phage DNA)	30 to 45
Yeast artificial chromosomes (YACs)	250 to 1000
Bacterial artificial chromosomes (BACs)	50 to 300
Animal and plant vectors (Shuttle vectors)	>1000

Nitrogen Fixing bacteria:

Free Living

Azotobacter (aerobic)

Clostridium (anaerobic)

- 2. Symbiotic with leguminous plants Rhizobium
- 3. Symbiotic with non leguminous plants Frankia Anabaena azolla (cyanobacteria)
- * Nitrogenase
- ~ an enzyme complex in nitrogen fixing bacteria
- sensitive to oxygen (inactivates when exposed to oxygen)

Rh + : Rh antigen present, Antibody absent DD/Dd

Rh-: Rh antigen absent, Antibody present (dd)

Donors for Rh+: both Rh+ and Rh-

Donors for Rh-: only Rh-

Maternal foetal incompatibility:

Mother Rh-

Foetus Rh+

K2CrOy + H2O -> Yellow Solution
K2Cr2O7 + H2O -> Orange Solution

$$2CrO_{4}^{-2} + 2H^{+} \rightleftharpoons Cr_{2}O_{7}^{-2} + H_{2}O$$

Yellow Orange

R-C-H Immine -> Oxime Hydrazine -> NH2NH2 Hydrazone ->

- * In SiO2 every silicon atom is tetrahedrally attached with four oxygen atoms and every oxygen atom is attached to two silicon atoms.
- * Monoclonal antibodies are typically made by fusing myeloma cells (cancerous B-lymphocytes) with the spleen cells from a mouse that has been immunized with the desired antigen. The technique is called somatic cell hybridization.
- * 2nd Ionization Energy greatest for Group 1A elements
- * 3rd Ionization Energy greatest for Group 2A elements
- * Potassium chromate forms yellow while dichromaye forms orange solution in water. Addition if acid promote dichromate yield (orange) while addition of base promote chromate yield (yellow)
- * Tertiary amines donot react with acid chloride.
- * Cleavage of 1,2 diols (glycols) in the presence of strong oxidizing agent produce formic acid while in presence of weak oxidizing agent produce formaldehyde

- * Ether react with sulphuric acid to form oxonium salts Ether react with halogen acids to form alcohol and alkyl halide
- Ether react with acetyl chloride to form alkyl chloride (RCI) and ester
- * Cyanohydrins are compounds with hydroxyl and cyano group attached to same carbon
- * Aldehydes and ketones react with HCN to form Cyanohydrins.
- * Oxidation of alkyl benzene (toluene) produce carboxylic acid.
- * Esters can be prepared by reacting alcohol with carboxylic acid, acid halide or acid anhydride.
- * Decarboxylation of carboxylic acids is also known as Kolbe's electrolysis which produce alkane.
- * Nitriles react with Grignard reagent to produce ketones.

* BENZENE NOMENCLATURE

If the substituents are different, they are named in alphabetical order. The last named substituent is understood to be at position 1 e.g

NO ZBY 2-Bronitrobenzene

MCQ: When benzene is substituted by halogens only, which one of the following halogens is given the number one position in the ring while writing the name of compound (a) Bromine (b) Fluorine

- (c) Chlorine
- v(d) Iodine

Gene Locations

antigens

- * Gene I (Blood Group) Chromosome 9
- * Se (Secreter Gene) Chromosome 19
- * H Gene Chromosome 19 H Substance is prexursor to chromosome A and B
- * Insulin Gene Chromosome 11

* STRUCTURE OF TASTE RECEPTORS

- 1. Filiform Papillae cone shaped and found all over the tongue (which is why tongue look rough)
- 2. Fungiform Papillae mushroom shaped and found at the tip and sides of the tongue
- 3. Foliate Papillae a series of folds along the sides of the tongue
- 4. Circumvalate Papillae shaped like flat mounds surrounded by a trench and found at the back of the tongue

Pain receptors are the most numerous types of receptors.

Every sqare cm of our skin contain around:

200 pain receptors

15 pressure receptors

6 receptors for cold

1 receptor for warmth

0-00243 mm

- * Ortho/para directing groups increase the reactivity of benzene ring (except halogens)

 Meta directing groups decrease the reactivity of benzene
- * Moment of inertia is inversely proportional to angular speed
- * Shear Modulus and Young's modulus is a characteristic of solids only while Bulk Modulus is maximum for solids and minimum for gases.
- * Lines of force always flow from north to south outside a magnet and from south to north within a magnet.

Laws Based on:

- 1. Law of conservation of momentum Newton's Thurd law of motion
- 2. Equation of continuity Law of conservation of mass
- 3. Bernoulli's Equation Law of conservation of energy
- Young's Double Slit Experiment Division of wavefront (or wavelength)
- 5. Interference in a thin film Division of amplitude
- 6. Diffraction Grating Interference and diffraction
- 7. Michelson's Interferometer Division of amplitude
- 8. First Law of Thermodynamics Law of conservation of energy
- 9. Lenz Law Law of conservation of energy
- 10. KCL Law of conservation of charge
- 11. KVL Law of conservation of energy

- * Aristotle Scala Naturae or ladder of nature
- * George Cuvier Theory of catastrophism
- * James Hutton and Charles Lyell Uniformitarianism (earth is eternal ie no vestige of a beginning, no prospect of an end)
- * Lamark organisms evolved through the Inheritance of acquired characters
- * Charles Darwin and Alfred Russell Driving force behind evolutionary change was natural selection
- * Jean Baptiste De Lamark Lamarckism
- * Darwin Natural Selection
- * Herbert Spencer Survival of the fittest
- * Von Baer Recapitulation theory

		4 1 19
Pnemonic For Rem	nembering Nature	of Cranial Nerves
Some + Sen	sory	
	sory	
Marry - Mot		
Money - Mot		
	(Mixed) I	
My - Moto	Y	
	(Mixed) VII	
<u> </u>	ory VII	
	(Mixed) IX	
-	(Mixed) X	
Matter - Moto	or XI	
	or XI	
Bensory > 1.	2,8	
Motor → 3,	4, 6, 11, 12	
Mixed → 5,	, 9, 10	

- * aldehyde/ketone react with alcohol to produce hemiacetal
- * hemiacetal react with alcohol to produce acetal
- * Oxidation of alkyl benzene produce carboxylic acids.
- * Nitriles react with RMgX to produce ketone
- * Nucleophility is directly proportional to size of anion
- * As electronegativity increase, Nucleophility decrease
- * the bulkier a nucleophile is, the weaker the nucleophile becomes
- * Hemiacetals are formed by the reaction between alcohol and aldehyde

* Thickness of more to more than

DNA -> 2nm

Nucleosome string -> 10 nm

Chromatin fiber or solenoid > 30nm

Supercoil -> 200mm that have sometime

chromatid > 700mm

* DNA - negatively charged bcz of phosphate groups

- A Histone proteins -> Positively charged bcz of basic amino acids such as arginine and lysine
- * DNA Gyrase (tropoisomerase) -> opens the turns of DNA duples
- + DNA helicase breaks down base pairs of DNA so the two strands gradually separate from each other
- + Single stranded Binding (SSB) proteins > Prevent pairing up of base pairs

DNA Polymerase Enzymes:

I → important role in termination phase

II → involved in repairing processes of DNA damages

II → synthesize daughter strands + proof reading

* Fragments of Lagging strands

In Prokaryotes -> 100 to 200 nucleotides

In eukaryotes -> 1000-2000 nucleotides

& Binding Sites In Promotor:

1. In Prokaryotes:

TATAAT -> 10 sequence
TTGACA -> 35 sequence

2. In Eukaryotes:

TATA → 25 sequence

CAAT → 70 sequence

* RNA polymerase:

I → synthesize TRNA

II → synthesize mRNA

III -> synthesize tRNA

* Coding or Sense Strand > 5' to 3' end * Antisense strand > 3' to 5' end

Start Codon: Aug (Methionine)

Stop Codon: UGA, UAG, HEAD UAA