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A ~ CHAPTER
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THE LEARNING GOALS FOR THIS
CHAPTER ARE:

W Review the Sl system of units and standard prefixes

= Know the definitions of basic electrical
quantities: voltage, current, and power

W Know the symbols for and definitions of
independent and dependent sources

W Be able to calculate the power absorbed by a circuit
element using the passive sign
convention

Courtesy NASA/JPL-Caltech ',; h
o
= e o T o o 4"?‘-
8 | LECTRIC CIRCUITS ARE OUT OF THIS Cameras, antennae, and a computer receive energy from the :'_‘
woRrLD! In January 2007, the Mars Rovers— electrical system. In order to analyze and design electrical ST
== Opportunity and Spirit—began their fourth systems for the rovers or future exploratory robots, we must ==
e year of exploring Mars. Solar panels on the rovers collect have a firm understanding of basic electrical concepts such as b
’ ‘ energy to power the electrical systems. Batteries are utilized to  voltage, current, and power. The basic introduction provided in A
e
store energy so that the rovers can operate at night. The rovers  this chapter will lay the foundation for our study of engineering -
i
are propelled and steered by electric motors on the six wheels.  circuit analysis. ¢ << o3
- I: L‘v:-‘
















6 CHAPTER 1 BASIC CONCEPTS

EXAMPLE 1.1

Suppose that your car will not start. To determine whether the battery is faulty, you turn on
the light switch and find that the lights are very dim, indicating a weak battery. You borrow
a friend’s car and a set of jumper cables. However, how do you connect his car’s battery to
yours? What do you want his battery to do?

SOLUTION

Figure 1.10 »-
Diagram for Example 1.1.

i(r)
[ U(!) qj

& e
Figure 1.11 '}

H

Sign convention for power.

[hint]

The passive sign convention
is used to determine whether
power is being absorbed or
supplied.

Essentially, his car’s battery must supply energy to yours, and therefore it should be
connected in the manner shown in Fig. 1.10. Note that the positive current leaves the posi-
tive terminal of the good battery (supplying energy) and enters the positive terminal of the
weak battery (absorbing energy). Note that the same connections are used when charging a
battery.

In practical applications there are often considerations other than simply the electrical
relations (e.g., safety). Such is the case with jump-starting an automobile. Automobile
batteries produce explosive gases that can be ignited accidentally, causing severe physical
injury. Be safe—follow the procedure described in your auto owner’s manual.

We have defined voltage in joules per coulomb as the energy required to move a positive
charge of | C through an element. If we assume that we are dealing with a differential amount
of charge and energy, then

v = 2w 1.2
dq t
Multiplying this quantity by the current in the element yields
. dw dq) dw
"’"dq(dr i 2

which is the time rate of change of energy or power measured in joules per second, or watts
(W). Since, in general, both v and / are functions of time, p is also a time-varying quantity.
Therefore, the change in energy from time ¢, to time #, can be found by integrating Eq. (1.3);

that 1s,
1 1
Aiu=/pdr=fvidt 1.4
L] I

At this point, let us summarize our sign convention for power. To determine the sign of
any of the quantities involved, the variables for the current and voltage should be arranged as
shown in Fig. 1.11. The variable for the voltage »(r) is defined as the voltage across the ele-
ment with the positive reference at the same terminal that the current variable i(r) is entering.
This convention is called the passive sign conventrion and will be so noted in the remainder
of this book. The product of v and i, with their attendant signs, will determine the magnitude
and sign of the power. If the sign of the power is positive, power is being absorbed by the ele-
ment; if the sign is negative, power is being supplied by the element.
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Given the two diagrams shown in Fig. 1.12, determine whether the element is absorbing or
supplying power and how much.

4A =

(a) (b)

EXAMPLE 1.2

¢~ Figure 1.12

Elements for Example 1.2.

In Fig. 1.12a the power is P = (2 V)(—4 A) = —8 W. Therefore, the element is supplying SOLUTION
power. In Fig. 1.12b, the power is P = (2 V)(—2 A) = —4 W. Therefore, the element is
supplying power.
_ld*'il‘ig ASSESSMENT
E1.1 Determine the amount of power absorbed or supplied by the elements in Fig. E1.1. ANSWER:
(a) P=—48W;
(b) P =8W.

Figure E1.1

(b)

®

We wish to determine the unknown voltage or current in Fig. 1.13.

5A I=2
A =4
Vi=7? P=-20wW 5V P=40w 5V
4
- =
(a) (b)

EXAMPLE 1.3

4+ Figure 1.13

Elements for Example 1.3.

[ ]

In Fig. 1.13a, a power of —20 W indicates that the element is delivering power. Therefore,
the current enters the negative terminal (terminal A), and from Eq. (1.3) the voltage is 4 V.
Thus, B is the positive terminal, A is the negative terminal, and the voltage between them is
4V.

In Fig 1.13b, a power of +40 W indicates that the element is absorbing power and, there-
fore, the current should enter the positive terminal B. The current thus has a value of —8 A.
as shown in the figure.

SOLUTION
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Given the two networks shown in Fig. 1.17, we wish to determine the outputs. EXAMPLE 1.5

In Fig. 1.17a the output voltage is V, = wVyor V, = 20 V; = (20)(2 V) = 40 V. Note that SOLUTION
the output voltage has been amplified from 2 V at the input terminals to 40 V at the output
terminals; that is, the circuit is a voltage amplifier with an amplification factor of 20.

Ig=1mA 7 ¢ Figure 1.17
o)
e _? 2 Circuits for Example 1.5.
V.S' =2V ZOVS = VO V()
0 o

(a) (b)
In Fig. 1.17b, the output current is /, = B/ = (50)(1 mA) = 50 mA; that is, the circuit has
a current gain of 50, meaning that the output current is 50 times greater than the input current.

Learning ASSESSMENT

E1.4 Determine the power supplied by the dependent sources in Fig. E1.4.

I,=2A
@ES 4V ¢1OVS+

ANSWER:
(a) Power supplied = 80 W:
(b) power supplied = 160 W.

Figure E1.4
Calculate the power absorbed by each element in the network of Fig. 1.18. Also verify that EXAMPLE 1.6
Tellegen’s theorem is satisfied by this network.
12V - Figure 1.18
1A + e ¢~ Fig
13 ] Circuit used in Example 1.6.
-8V, A
[ 4 2 ]
FrEid e e Dl s
+
24v<i> 16V [ 4 12v<i)
3A | 1A 2A
Let’s calculate the power absorbed by each element using the sign convention for power. SOLUTION

B = (16)(1) = 16 W
P=(4)(1) = 4W
P=(12)(1) = 12W
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P, = (8)(2) =16 W
Pyy = (24)(=3) = —12W
Note that to calculate the power absorbed by the 24-V source, the current of 3 A flowing up
through the source was changed to a current -3 A flowing down through the 24-V source.
Let’s sum up the power absorbed by all elements: 16 +4 + 12+ 16 + 24 =72 =0
This sum is zero, which verifies that Tellegen’s theorem is satisfied.

a

EXAMPLE 1.7

Figure 1.19 3
Circuit used in Example 1.7.

Use Tellegen’s theorem to find the current /, in the network in Fig. 1.19.

ﬂl

SOLUTION

First, we must determine the power absorbed by each element in the network. Using the sign
convention for power, we find

Ba=(6)(~2) = 12 W

P, = (6)(1,) = 61, W
P, = (12)(=9) = —108 W
P, = (10)(=3) = -30W

Bry=1(4)\=8) = =32W

Pps = (82,)(11) = (16)(11) = 176 W

Applying Tellegen’s theorem yields,
—-12 4+ 6I,— 108 —30 — 32 + 176 = 0

or
61, + 176 = 12 + 108 + 30 + 32
Hence,
I, =1A
Learning ASSESSMENT
E1.5 Find the power that is absorbed or supplied by the circuit elements in the network in ANSWER:

Fig. EL.5.

Figure E1.5

Py v = 96 W supplied;
P, = 32 W absorbed;
Py, = 64 W absorbed.




The charge that enters the BOX is shown in Fig. 1.20. Calculate and sketch the current flow-

SECTION 1.3

ing into and the power absorbed by the BOX between 0 and 10 milliseconds.

CIRCUIT ELEMENTS 13

EXAMPLE 1.8

i (1) ¢+ Figure 1.20
Diagrams for Example 1.8.
12V BOX
4 q(r) (mC)
3-4
2
4=
5 6
I t i i {
1 2 3 4 7 8 9 10 f(ms)
—1
_2...
_3...
dq(t >
Recall that current is related to charge by i(7) = %_) The current is equal to the slope of SOLUTION
the charge waveform.
i(r) =0 0=r=1ms
, 3X 107 —1x 107
'(I)—2x10‘3—1x10‘3_2A l=t=2ms
i(1) =0 2=r=3ms
-2 X10°=3x 107
[ = = = = =
i(r) TR 25A 3=1=5ms
i(t) =0 5=r=6ms
, 2 X107 — (-2 X 107%)
i(r) = =133A 6=1=9ms

9x10°-6x107°
i() =0

t=9ms

The current is plotted with the charge waveform in Fig. 1.21. Note that the current is zero
during times when the charge is a constant value. When the charge is increasing, the current
is positive, and when the charge is decreasing the current is negative.
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Figure 1.21 w3

Charge and current
waveforms for Example 1.8.

Figure 1.22 «3

Power waveform for
Example 1.8.

q(r) (mC), i(r) (A)

1V e

The power absorbed by the BOX is 12 - i(1).

p(t) =12%0 =0 0=r=1lms
p(r) = 12%2 = 24 W l=1=2ms
p(t) =12¥0 =0 2=r=3ms
p(t) = 12%(=2.5) =-30 W 3=r=5ms
p(r) = 12%0 =0 S=t=6ms
p(1) = 12*%133 =16 W 6=t=9ms
p(t) = 12%0 =0 1=9ms

The power absorbed by the BOX is plotted in Fig. 1.22. For the time intervals, 1 = r = 2 ms
and 6 = 1 = 9 ms, the BOX is absorbing power. During the time interval 3 = r = 5ms, the
power absorbed by the BOX is negative, which indicates that the BOX is supplying power
to the 12-V source.

p(1) (W)
36

24

12 4

—12 -

—24 -

—36
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[ ]

A Universal Serial Bus (USB) port is a common feature on both desktop and notebook
computers as well as many handheld devices such as MP3 players, digital cameras, and cell
phones. The new USB 2.0 specification (www.usb.org) permits data transfer between a
computer and a peripheral device at rates up to 480 Megabits per second. One important fea-
ture of USB is the ability to swap peripherals without having to power down a computer.
USB ports are also capable of supplying power to external peripherals. Figure 1.23 shows
a Motorola RAZR® and Apple iPod® being charged from the USB ports on a notebook
computer. A USB cable is a four-conductor cable with two signal conductors and two con-
ductors for providing power. The amount of current that can be provided over a USB port
is defined in the USB specification in terms of unit loads, where one unit load is specified
to be 100 mA. All USB ports default to low-power ports at one unit load, but can be changed
under software control to high-power ports capable of supplying up to five unit loads or
500 mA.

1. A 680 mAh Lithium-ion battery is standard in a Motorola RAZR®. If this battery
is completely discharged (i.e., 0 mAh), how long will it take to recharge the battery
to its full capacity of 680 mAh from a low-power USB port? How much charge is
stored in the battery at the end of the charging process?

2. A third-generation iPod® with a 630 mAh Lithium-ion battery is to be recharged
from a high-power USB port supplying 150 mA of current. At the beginning of the
recharge, 7.8 C of charge are stored in the battery. The recharging process halts when
the stored charge reaches 35.9 C. How long does it take to recharge the battery?

EXAMPLE 1.9

4 Figure 1.23

Charging a Motorola RAZXR®
and Apple iPod® from USB
ports. (Courtesy of Mark
Nelms and Jo Ann Loden)

1. A low-power USB port operates at 100 mA. Assuming that the charging current
from the USB port remains at100 mA throughout the charging process, the time
required to recharge the battery is 680 mAh/100 mA = 6.8 h. The charge stored in
the battery when fully charged is 680mAh - 60 s/h = 40,800 mAs = 40.8 As =
40.8 C.

2. The charge supplied to the battery during the recharging process is
359 — 7.8 = 28.1 C. This corresponds to 28.1 As = 28,100 mAs - 1h/60s =
468.3 mAh. Assuming a constant charging current of 150 mA from the high-power
USB port, the time required to recharge the battery is 468.3 mAh/150 mA = 3.12 h.

SOLUTION
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' Be able to use Ohm’s law to solve electric circuits

1 Be able to apply Kirchhoff’s current law and
Kirchhoff's voltage law to solve electric circuits

M Know how to analyze single-loop and single-
node-pair circuits

Know how to combine resistors in series and parallel

1 Be able to use voltage and current division to
solve simple electric circuits

1 Understand when and how to apply wye-delta
transformations to solve electric circuits

" Know how to analyze electric circuits containing
dependent sources

YBRID VECHICLES SUCH AS THE of a hybrid powertrain results in reduced emissions and improved
ToyoTA Prius utilize a gasoline engine gas mileage. The electrical system in a Toyota Prius is a dc system
and an electric motor to provide propul- with a sealed Nickel-Metal Hydride battery with a rated voltage of

sion. The gasoline engine may drive the vehicle, or it may charge 201.6 volts. The analysis and design of the electrical system in
the battery in the electrical system. The electric motor may drive hybrid vehicles require knowledge of fundamental circuit laws
the vehicle by itself. It is possible that the gasoline engine and such as Ohm’s law, Kirchhoff's current law, and Kirchhoff's
electric motor may work together to propel the vehicle. Utilization  voltage law. These laws will be introduced in this chapter. ¢ € £

23 @
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The power absorbed by the 10-k(} resistor in Fig. 2.4b is 3.6 mW. Determine the voltage
and the current in the circuit.

EXAMPLE 2.2

Using the power relationship, we can determine either of the unknowns.

Vi/R=P
Vi = (3.6 X 107%)(10k)
Vs=6V
and
I’R=P
12 = (3.6 x 1073)/10k
I =0.6mA

Furthermore, once V; is determined, / could be obtained by Ohm’s law, and likewise once
[ is known, then Ohm'’s law could be used to derive the value of V. Note carefully that the
equations for power involve the terms /? and V3. Therefore, / = —0.6 mA and V; = =6 V
also satisfy the mathematical equations and, in this case, the direction of borh the voltage and
current is reversed.

SOLUTION

Given the circuit in Fig. 2.4c, we wish to find the value of the voltage source and the power
absorbed by the resistance,

EXAMPLE 2.3

The voltage is

Ve = 1/G = (0.5%102) /(50 10°%) = 1OV
The power absorbed is then

= I2/G = (0.5X102)3/(50 X 107°%) = SmW
Or we could simply note that
R=1/G =20k
and therefore
Ve = IR = (0.5 X 107°)(20k) = 10 V

and the power could be determined using P = I’R = Vi/R = VI

SOLUTION

Given the network in Fig. 2.4d, we wish to find R and V.

EXAMPLE 2.4

Using the power relationship, we find that
R = P/I? = (80 x 107%)/(4 x 107) = 5kQ
The voltage can now be derived using Ohm’s law as
Vs =IR = (4 X 107)(5k) =20V

The voltage could also be obtained from the remaining power relationships in Egs. (2.2)
and (2.3).

SOLUTION
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CHAPTER 2

RESISTIVE CIRCUITS

which states that the sum of the currents entering a node is equal to the sum of the currents
leaving the node. Both of these italicized expressions are alternative forms of Kirchhoff’s
current law.

Once again it must be emphasized that the latter statement means that the sum of the
variables that have been defined entering the node is equal to the sum of the variables that have
been defined leaving the node, not the actual currents. For example, r'j(!) may be defined enter-
ing the node, but if its actual value is negative, there will be positive charge leaving the node.

Note carefully that Kirchhoff’s current law states that the algebraic sum of the currents
either entering or leaving a node must be zero. We now begin to see why we stated in
Chapter 1 that it is critically important to specify both the magnitude and the direction of a cur-
rent. Recall that current is charge in motion. Based on our background in physics, charges
cannot be stored at a node. In other words, if we have a number of charges entering a node,
then an equal number must be leaving that same node. Kirchhoff’s current law is based on this
principle of conservation of charge.

EXAMPLE 2.5

Let us write KCL for every node in the network in Fig. 2.5 assuming that the currents
leaving the node are positive.

SOLUTION

The KCL equations for nodes 1 through 5 are

—i(t) + (1) + i3(t) = 0

i(t) — iy(t) + is(r) = 0

—iy(r) + iy(1) — is(t) + ix(r) = 0
—iy(1) + is(r) — ig(t) = 0

—ig(t) — iz(¢) + is(r) = 0

Note carefully that if we add the first four equations, we obtain the fifth equation. What
does this tell us? Recall that this means that this set of equations is not linearly independent.
We can show that the first four equations are, however, linearly independent. Store this idea
in memory because it will become very important when we learn how to write the equations
necessary to solve for all the currents and voltages in a network in the following chapter.

EXAMPLE 2.6

Figure 2.6 w3

Topological diagram for
the circuit in Fig. 2.5.

The network in Fig. 2.5 is represented by the topological diagram shown in Fig. 2.6. We
wish to find the unknown currents in the network.

@
L 60 mA 20 mA
Iy ® I
® @
11 40 mA 30 mA
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Assuming the currents leaving the node are positive, the KCL equations for nodes 1 through
4 are
—1, + 0.06 + 0.02 = 0
1‘ e 14 + Ib = 0
—0.06 + I, — Is + 0.04 =0
=0:02 -+l —0.03:=0
The first equation yields /; and the last equation yields /. Knowing /s we can immediately
obtain /; from the third equation. Then the values of /; and 7, yield the value of J; from the
second equation. The results are /; = 80 mA, I, = 70 mA, /5 = 50 mA, and /[, = —10 mA.
As indicated earlier, dependent or controlled sources are very important because we

encounter them when analyzing circuits containing active elements such as transistors. The
following example presents a circuit containing a current-controlled current source.

SOLUTION

31

Let us write the KCL equations for the circuit shown in Fig. 2.7.

Ry
VWAA

i1(1)

i4(1)

EXAMPLE 2.7

4§+ Figure 2.7

Circuit containing a

dependent current source.

®

The KCL equations for nodes 1 through 4 follow.
i(1) +ix(r) —is(1) = 0
—iy(1) + i5(t) — 30i(r) = 0
—i(t) + 500(¢) + ig(t) =0
is(1) = is(1) = iy(r) =0
If we added the first three equations, we would obtain the negative of the fourth. What does
this tell us about the set of equations?

Finally, it is possible to generalize Kirchhoff’s current law to include a closed surface. By
a closed surface we mean some set of elements completely contained within the surface that
are interconnected. Since the current entering each element within the surface is equal to that
leaving the element (i.e., the element stores no net charge), it follows that the current enter-
ing an interconnection of elements is equal to that leaving the interconnection. Therefore,
Kirchhoff’s current law can also be stated as follows: The algebraic sum of the currents
entering any closed surface is zero.

SOLUTION
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EXAMPLE 2.8 Let us find I, and /, in the network represented by the topological diagram in Fig. 2.6.

SOLUTION This diagram is redrawn in Fig. 2.8; node 1 is enclosed in surface 1, and nodes 3 and 4 are
enclosed in surface 2. A quick review of the previous example indicates that we derived a
value for I, from the value of 5. However, /s is now completely enclosed in surface 2. If we
apply KCL to surface 2, assuming the currents out of the surface are positive, we obtain

I, — 0.06 — 0.02 — 003 +0.04=0
or
I, = 70 mA

which we obtained without any knowledge of /. Likewise for surface 1, what goes in must
come out and, therefore, ;; = 80 mA. The reader is encouraged to cut the network in Fig. 2.6
into two pieces in any fashion and show that KCL is always satisfied at the boundaries.

Figure 2.8 «3}

Diagram used to demon- s -"Su‘rlace-,i S 7
strate KCL for a surface. i S
I 60 mA 20 mA
L
Iy ¥
Iy 40 mA 30 mA
learning ASSESSMENTS
E2.3 Given the networks in Fig. E2.3, find (a) 7, in Fig. E2.3a and (b) /; in Fig. E2.3b. ANSWER:
50 mA (a) I, = =50 mA;
(b) I = 70 mA.
€ ()
10 mA 40 mA 20 mA
(a) (b)
Figure E2.3
E2.4 Find (a) [, in the network in Fig, E2.4a and (b) /; and L in the circuit in Fig. E2.4b. ANSWER: (a) I, =6 mA;
e (b) , =8 mA and
10 mA 2 2 o 2
4 mA 5 3mA G 4mA
(@) (b)

Figure E2.4
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E2.5 Find the current i in the circuits in Fig. E2.5.

107, 10i
C) 44 mA R SR 2 120mA SR
i i.'l'

4 12mA

(@) (b)

Figure E2.5

ANSWER: (a) i, = 4mA;
(b) i, = 12 mA.

Kirchhoff’s second law, called Kirchhoff's voltage law (KVL), states that the algebraic sum of
the voltages around any loop is zero. As was the case with Kirchhoff’s current law, we will defer
the proof of this law and concentrate on understanding how to apply it. Once again the reader is
cautioned to remember that we are dealing only with lumped-parameter circuits. These circuits
are conservative, meaning that the work required to move a unit charge around any loop is zero.

In Chapter 1, we related voltage to the difference in energy levels within a circuit and
talked about the energy conversion process in a flashlight. Because of this relationship
between voltage and energy, Kirchhoft’s voltage law is based on the conservation of energy.

Recall that in Kirchhoffs current law, the algebraic sign was required to keep track of whether
the currents were entering or leaving a node. In Kirchhoff’s voltage law, the algebraic sign is used
to keep track of the voltage polarity. In other words, as we traverse the circuit, it is necessary to
sum to zero the increases and decreases in energy level. Therefore, it is important we keep track
of whether the energy level is increasing or decreasing as we go through each element.

In applying KVL, we must traverse any loop in the circuit and sum to zero the increases
and decreases in energy level. At this point, we have a decision to make. Do we want to con-
sider a decrease in energy level as positive or negative? We will adopt a policy of consider-
ing a decrease in energy level as positive and an increase in energy level as negative. As we
move around a loop, we encounter the plus sign first for a decrease in energy level and a
negative sign first for an increase in energy level.

Consider the circuit shown in Fig. 2.9. If V;, and Vj, are known quantities, let us find Vg,

a Ry b C c
+ —_

VR 1 5V Ir
30V (1) Rz?_ Vg,
R; I :
:f = VR3+ e d

EXAMPLE 2.9

$ Figure 2.9
Circuit used to illustrate KVL.

Starting at point @ in the network and traversing it in a clockwise direction, we obtain the

equation
Vet SR e alE=i0)

which can be written as
Vo + Ve + Ve =5+ 15+ 30

= 50
Now suppose that V;, and V, are known to be 18 V and 12V, respectively. Then Vg, = 20 V.

SOLUTION
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Co_nsider the network in Fig. 2.12a. Let us apply KVL to determine the voltage between two
points. Specifically, in terms of the double-subscript notation, let us find V,, and V..

EXAMPLE 2.11

16V 16V 12V 4+ Figure 2.12
7E =F = h HE -
YW * VWV Network used in
R, Example 2.11.
24V 24V 4 v
Ry ¢
o =qov? o =qov? sl 2
(a) (b)
The circuit is redrawn in Fig. 2.12b. Since points @ and e as well as e and c are not physi- SOLUTION

cally close, the arrow notation is very useful. Our approach to determining the unknown
voltage is to apply KVL with the unknown voltage in the closed path. Therefore, to deter-
mine V,, we can use the path aefa or abcdea. The equations for the two paths in which V,,
is the only unknown are

Ve +10—24=0

and
6—-12+4+6-V,=0

Note that both equations yield V,, = 14 V. Even before calculating V,,, we could calculate
V.. using the path cdec or cefabc. However, since V,, is now known, we can also use the path

ceabe. KVL for each of these paths is

4+6+V,. =0
V. +10-24+16-12=0
and

V.=V, +16-12=0

Each of these equations yields V,. = —10 V.

In general, the mathematical representation of Kirchhoff’s voltage law is

N

>out) =0

j=l1

2.8

where vj.(r) is the voltage across the jth branch (with the proper reference direction) in a loop
containing N voltages. This expression is analogous to Eq. (2.7) for Kirchhoff’s current law.

[hint]

KVL is an extremely important
and useful law.

Given the network in Fig. 2.13 containing a dependent source, let us write the KVL equa-
tions for the two closed paths abda and bedb.

g
'|'>

Vs CI) Vr:g Ry

EXAMPLE 2.12

¢ Figure 2.13

Network containing a
dependent source.
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9

SOLUTION The two KVL equations are

Vo + Vo, — V=0
2OVR| AF VR_\ = VR; = 0

learnino ASSESSMENTS
o A

E2.6 Find V,, and V,, in the network in Fig. E2.6. ANSWER: V,, = 26V,

Veb = 10V.

Figure E2.6 f +8v- e *12v- d
E2.7 Find V,, in the circuit in Fig. E2.7. ANSWER: V,;, =11V,
a. VRI _b+sz=1v_C
12V 9 10 Vg,
Figure E2.7

(hint]

The subtleties associated
with Ohm's law, as described
here, are important and must
be adhered to in order to
ensure that the variables
have the proper sign.

Figure 2.14 3

Circuits used to explain
Ohm’s law.

Before proceeding with the analysis of simple circuits, it is extremely important that we
emphasize a subtle but very critical point. Ohm’s law as defined by the equation V = IR
refers to the relationship between the voltage and current as defined in Fig. 2.14a. If the direc-
tion of either the current or the voltage, but not both, is reversed, the relationship between the
current and the voltage would be V = —/R. In a similar manner, given the circuit in
Fig. 2.14b, if the polarity of the voltage between the terminals A and B is specified as shown,
then the direction of the current [/ is from point B through R to point A. Likewise, in
Fig. 2.14c, if the direction of the current is specified as shown, then the polarity of the voltage
must be such that point D is at a higher potential than point C and, therefore, the arrow rep-
resenting the voltage V is from point C to point D.

(a) (b) (©)
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Note that the equations satisfy Kirchhoff’s voltage law, since
R, R,
v(t) + v
R, + R, (1) R, + R,

(1) =0

—v(r) +

G—

EXAMPLE 2.13 Consider the circuit shown in Fig. 2.16. The circuit is identical to Fig. 2.15 except that R,
is a variable resistor such as the volume control for a radio or television set. Suppose that

Vs = 9V, R, = 90k}, and R, = 30 k(L

Figure 2.16 «3
Voltage-divider circuit.

Let us examine the change in both the voltage across R, and the power absorbed in this
resistor as R, is changed from 90 k() to 15 k{).

1'

SOLUTION  Since this is a voltage-divider circuit, the voltage V, can be obtained directly as

R,
V= | —2— |V
N

30k
5 [901( = SUk](g)

=225V
Now suppose that the variable resistor is changed from 90 k() to 15 k(). Then

30k
Y= [30]( + '15k]9

=6V

The direct voltage-divider calculation is equivalent to determining the current / and
then using Ohm’s law to find V5. Note that the larger voltage is across the larger resist-
ance. This voltage-divider concept and the simple circuit we have employed to describe it
are very useful because, as will be shown later, more complicated circuits can be reduced
to this form.

Finally, let us determine the instantaneous power absorbed by the resistor R, under the
two conditions R, = 90 k() and R, = 15k} For the case R, = 90 k(}, the power absorbed

by R: iS
P,=1IR, = (L)E(BOk)
? 2 120k
= 0.169 mW
In the second case
9 2
= () o0
= 1.2 mW

The current in the first case is 75 wA, and in the second case it is 200 wA. Since the
power absorbed is a function of the square of the current, the power absorbed in the two
cases is quite different.
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Let us now demonstrate the practical utility of this simple voltage-divider network.

39

Consider the circuit in Fig. 2.17a, which is an approximation of a high-voltage dc transmis-
sion facility. We have assumed that the bottom portion of the transmission line is a perfect
conductor and will justify this assumption in the next chapter. The load can be represented by
a resistor of value 183.5 (). Therefore, the equivalent circuit of this network is shown in
Fig. 2.17b.

Line resistance is 0.04125 (Q/mile 2 KA

as
A

2 kA 1650 +

C:) 400 kV Load [:I Cj) 400 kV Vicad S 18350

Perfect conductor

et ot
L\ A

400-mile transmission line

(@) (b)

Let us determine both the power delivered to the load and the power losses in the line.

EXAMPLE 2.14

¢+ Figure 2.17
A high-voltage dc

transmission facility.

5]

Using voltage division, the load voltage is
183.5
Vit = | ——— |4
= [ 183.5 + |6.5] 2
= 367 kV
The input power is 800 MW and the power transmitted to the load is
Poaa = IRigas
= 734 MW
Therefore, the power loss in the transmission line is
Plin: = PI = P]oad = IzR!in:
= 66 MW
Since P = VI, suppose now that the utility company supplied power at 200 kV and 4 kA. What
effect would this have on our transmission network? Without making a single calculation, we
know that because power is proportional to the square of the current, there would be a large

increase in the power loss in the line and. therefore, the efficiency of the facility would decrease
substantially. That is why, in general, we transmit power at high voltage and low current.

MULTIPLE-SOURCE/RESISTOR NETWORKS At this point we wish to extend our
analysis to include a multiplicity of voltage sources and resistors. For example, consider the
circuit shown in Fig. 2.18a. Here we have assumed that the current flows in a clockwise
direction, and we have defined the variable i(r) accordingly. This may or may not be the
case, depending on the value of the various voltage sources. Kirchhoff’s voltage law for this
circuit is

Fop, + (1) = v3(r) + vg, + vg(r) +ous(t) — () =0
or, using Ohm’s law,

(R + Ro)it) = vy(t) — (1) + ws(r) — va(r) — ws(t)

which can be written as
(R, + Ry)i(1) = v(t)

SOLUTION

[ ]
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Note also that for any resistor R; in the circuit, the voltage across R, is given by the expression

R.

Ay _
, RSU() 2.15

Ur
which is the voltage-division property for multiple resistors in series.
Equation (2.13) illustrates that the equivalent resistance of N resistors in series is simply
the sum of the individual resistances. Thus, using Eq. (2.13), we can draw the circuit in
Fig. 2.19b as an equivalent circuit for the one in Fig. 2.19a.

Given the circuit in Fig. 2.20a, let us find I, V,;, and the power absorbed by the 30-k()
resistor. Finally, let us use voltage division to find V...

A= 10RGN She—o0k0 | 0 0k0  p
ev 12v G)GV 20 k0
I 30kn
€ d 2

(a) (b)

EXAMPLE 2.15

¢+ Figure 2.20
Circuit used in Example 2.15.

KVL for the network yields the equation

10k7 + 20k/ + 12 + 30kl — 6 =10
60k/ = —6
I = —0.1mA

Therefore, the magnitude of the current is 0.1 mA, but its direction is opposite to that
assumed.

The voltage V,, can be calculated using either of the closed paths abdea or bedb. The
equations for both cases are

10k/ + Viy + 30k — 6 = 0
and
20kl +12 -V, =0

Using I = —0.1 mA in either equation yields V,, = 10 V. Finally, the power absorbed by
the 30-k{] resistor is

P=1IR=03mW

Now from the standpoint of determining the voltage V., we can simply add the sources
since they are in series, add the remaining resistors since they are in series, and reduce the
network to that shown in Fig. 2.20b. Then

B0k
" 20k + 40k
=-2V

Vbc‘ (_6)

SOLUTION



42 CHAPTER 2 RESISTIVE CIRCUITS

*r—

EXAMPLE 2.16 A dc transmission facility is modeled by the approximate circuit shown in Fig. 2.21. If the
load voltage is known to be Vi,g = 458.3 kV, we wish to find the voltage at the sending end
of the line and the power loss in the line.

Figure 2.21 w3} I} Riine
Circuit used in Example 2.16. S0 T
e VS Rigags 2200 Vload = 458.3 kV

[ ]

SOLUTION Knowing the load voltage and load resistance, we can obtain the line current using
Ohm’s law:

|

= 458.3Kk/220
= 2.083kA

The voltage drop across the line is
vlim: = (I.L)(Rhnc)

= 41.66 kV
Now, using KVL,
VS = vlinc i vlu;ul
= 500 kV
Note that since the network is simply a voltage-divider circuit, we could obtain V5 immediately
from our knowledge of Ry, Ry and V., That is,

Rigus ]
V=i =gV
s {Rluad =17 R]inu :

and V; is the only unknown in this equation.
The power absorbed by the line is
Fiinc i [:}_Rlin:
= 86.79 MW

Problem-Solving straTEGY

@)

¢

Single-Loop Circuits Step 1. Define a current i(r). We know from KCL that there is only one current for a
0 single-loop circuit. This current is assumed to be flowing either clockwise or
counterclockwise around the loop.
Step 2. Using Ohm’s law, define a voltage across each resistor in terms of the defined
current.

Step 3. Apply KVL to the single-loop circuit.

Step 4. Solve the single KVL equation for the current i(f). If i(1) is positive, the current
is flowing in the direction assumed; if not, then the current is actually flowing
in the opposite direction.
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The problem can also be approached in the following manner. The total resistance seen by
the current source is 40 k(), that is, 60 k() in parallel with the series combination of 40 k{}
and 80 k() as shown in Fig. 2.23c. The voltage across the current source is then

Vv, = (0.9 x 107)40k
=36V

Now that V; is known, we can apply voltage division to find V,.

v—( 80k )v
¢ 80k + 40k /!

80k
= (120!-:)36
=24V
I
+ Il
G 09mA  J60kQ %40 kQ
I, 40k
v 0 Vi $——0
S 11 -+ + +
0.9 mA D Vi 60k 80k03 V, soka S Vo C‘) 0.9mA V; 3 40k
= 0 0 -
(@) (b) (©
"°" Figure 2.23
Circuits used in Example 2.17.
A typical car stereo consists of a 2-W audio amplifier and two speakers represented by EXAMPLE 2.18

the diagram shown in Fig. 2.24a. The output circuit of the audio amplifier is in essence a
430-mA current source, and each speaker has a resistance of 4 (). Let us determine the
power absorbed by the speakers.

The audio system can be modeled as shown in Fig. 2.24b. Since the speakers are both 4-() SOLUTION
devices, the current will split evenly between them, and the power absorbed by each speaker is
P=1IR
= (215 x 107)*(4)
= 1849 mW

§+- Figure 2.24
Circuits used in

3 Example 2.18.
[j 430 mA C) 40 340

Audio I:
amplifier

(@) (b)
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i,(1) = 0(0) + (1) + -+ iy(1)
(L + — 4 v 4 l ) (1) 2.21
R B Ry)" '
or
_ v(r)
(1) = — ;
i(1) R 2.22
where
i L 223
= R -

so that as far as the source is concerned, Fig. 2.26a can be reduced to an equivalent circuit,

Thc current d1\'1510n for any branch can be calculated using Ohm’s law and the preceding
equations. For example, for the jth branch in the network of Fig. 2.26a,

_ o)

Using Eq. (2.22), we obtain

which defines the current-division rule for the general case.

SINGLE-NODE-PAIR CIRCUITS
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Given the circuit in Fig. 2.27a, we wish to find the current in the 12-k{} load resistor.

EXAMPLE 2.19

To simplify the network in Fig. 2.27a, we add the current sources algebraically and combine SOLUTION
the parallel resistors in the following manner:
=l S Ll I
R, 18 9k 12k
R, = 4kQ
Using these values we can reduce the circuit in Fig. 2.27a to that in Fig. 2.27b. Now,
applying current division, we obtain
4k
Er=—l o [ i e
£ [4!( - IZk](l i
= —0.25mA
1 mA 2mA I I
- <
S 18kQ 9 kO (D 12kQ) %RL= 12 k0 CD aka  312k0
4 mA 1mA

(@)

(b)

'4" Figure 2.27
Circuits used in
Example 2.19.
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2kQ 2k0 10 kQ 2k0 2kQ
A O—— M —— g —— M ———— A O——M——a——
6kQ < 6k0 6k 12k = 10kQ +
Rap— + 4k 6 kQ 3 ko Kap———= 4ka 6 kO 3 (6 kO in parallel
[ with 3 k2)
B o- — L Bo ——N—
9kQ 2k0 9k
(a) (b)
2k 2 k)
Ao VWNV——¢ Ao VA
J 6kQ=2kQ + J 12kQ = 9KQ +
Rap —+ 4k0 26k < (6kQin parallel Rap—+ 4k2 3 g (6 k(2 in parallel
i " with 12 k() with 6 k)
Bo s A Bo
9 kO
(c) (d)
2 k)
A
Rop —~ 3KQ = (4 kQ in parallel with 12 k()
B
(e)

“1" Figure 2.28
Simplification of a resistance

network.
IMINC ASSESSMENT
E2.12 Find the equivalent resistance at the terminals A-B in the network in Fig. E2.12. ANSWER: R,, = 22 k().

6 k() 3k

Ao——p— W\
18 kQ g: 6 k2
Rap —»
10 k2

Figure E2.12 Bo
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Problem-S0lving sTRATEGY

Simplifying Resistor When trying to determine the equivalent resistance at a pair of terminals of a network com-
Combinations posed of an interconnection of numerous resistors, it is recommended that the analysis
) begin at the end of the network opposite the terminals. Two or more resistors are combined
to form a single resistor, thus simplifying the network by reducing the number of compo-
nents as the analysis continues in a steady progression toward the terminals. The simplifi-
cation involves the following:

Step 1. Resistors in series. Resistors R, and R, are in series if they are connected
end to end with one common node and carry exactly the same current. They
can then be combined into a single resistor Rg, where Rg = R, + R,.

Step 2. Resistors in parallel. Resistors R, and R, are in parallel if they are connected to
the same two nodes and have exactly the same voltage across their terminals. They
can then be combined into a single resistor Rp, where R, = RiR,/ (R, + Ra).

These two combinations are used repeatedly, as needed, to reduce the network to a
single resistor at the pair of terminals.

LeAINING ASSESSMENT

E2.13 Find the equivalent resistance at the terminals A-B in the circuit in Fig. E2.13. _g ANSWER: R ;= 3 k.
4kQ 4 k()
Ao ¢ VAW g VWA
BRI S 12 k) S 8ko
Figure E2.13 B o- ¢ !
EXAMPLE 2.21 A standard dc current-limiting power supply shown in Fig. 2.29a provides 0-18 V at 3 A to

a load. The voltage drop, Vj, across a resistor, R, is used as a current-sensing device, fed
back to the power supply and used to limit the current /. That is, if the load is adjusted so
that the current tries to exceed 3 A, the power supply will act to limit the current to that
value. The feedback voltage, V;, should typically not exceed 600 mV.

If we have a box of standard 0.1-£2, 5-W resistors, let us determine the configuration of

Figure 2.29 -c- these resistors that will provide V;, = 600 mV when the current is 3 A.
Circuits used in o
Example 2.21.
- I s
e 3
+ O0A é . 0.10
de VR < FOSSETY
power |— Re==
supply 0A 3 ?
Load 010 g 4
—o—‘_' All resistors
= o 010

(a) (b) (c)
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Using Ohm’s law, the value of R should be

=

R=-"

I
_o06

=020

Therefore, two 0.1-() resistors connected in series, as shown in Fig. 2.29b, will provide the
proper feedback voltage. Suppose, however, that the power supply current is to be limited
to 9 A. The resistance required in this case to produce V; = 600 mV is

g 06
9

0.0667 £}

We must now determine how to interconnect the 0.1-) resistor to obtain R = 0.0667 ().
Since the desired resistance is less than the components available (i.e., 0.1-{2), we must
connect the resistors in some type of parallel configuration. Since all the resistors are of
equal value, note that three of them connected in parallel would provide a resistance of
one-third their value, or 0.0333 {). Then two such combinations connected in series, as
shown in Fig. 2.29¢, would produce the proper resistance.

Finally, we must check to ensure that the configurations in Figs. 2.29b and ¢ have not
exceeded the power rating of the resistors. In the first case, the current / = 3 A is present in
each of the two series resistors. Therefore, the power absorbed in each resistor is

P =1I°R
= (3)%(0.1)
=09 W

which is well within the 5-W rating of the resistors.

In the second case, the current / = 9 A. The resistor configuration for R in this case is a
series combination of two sets of three parallel resistors of equal value. Using current
division, we know that the current / will split equally among the three parallel paths and,
hence, the current in each resistor will be 3 A. Therefore, once again, the power absorbed
by each resistor is within its power rating.

RESISTOR SPECIFICATIONS Some important parameters that are used to specify
resistors are the resistor’s value, tolerance, and power rating. The tolerance specifications for
resistors are typically 5% and 10%. A listing of standard resistor values with their specified
tolerances is shown in Table 2.1.

The power rating for a resistor specifies the maximum power that can be dissipated by the
resistor. Some typical power ratings for resistors are 1/4 W, 1/2 W, 1 W, 2 W, and so forth,
up to very high values for high-power applications. Thus, in selecting a resistor for some par-
ticular application, one important selection criterion is the expected power dissipation.

SOLUTION

51
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TABLE 2.1 Standard resistor values for 5% and 10% tolerances (values available with a 10%
tolerance shown in boldface)

1.0 10 100 1.0k 10k 100k 1.0M 10M
1.1 11 110 1.1k 11k 110k 1.1M 1M
1.2 12 120 1.2k 12k 120k 1.2M 12M
1.3 13 130 1.3k 13k 130k 1.3M 13M
1.5 15 150 1.5k 15k 150k 1.5M 15M
1.6 16 160 1.6k 16k 160k 1.6M 16M
1.8 18 180 1.8k 18k 180k 1.8M 18M
2.0 20 200 2.0k 20k 200k 2.0M 20M
2.2 22 220 2.2k 22k 220k 2.2M 22M
2.4 24 240 2.4k 25k 240k 2.4M

2.7 27 270 2.7k 27k 270k 2.7M

3.0 30 300 3.0k 30k 300k 3.0M

33 33 330 3.3k 33k 330k 3:3M

3.6 36 360 3.6k 36k 360k 3.6M

3.9 39 390 3.9k 39k 390k 3.9M

4.3 43 430 4.3k 43k 430k 4.3M

4.7 47 470 4.7k 47k 470k 4.7M

5.1 51 510 5.1k 51k 510k 5.1M

5.6 56 560 5.6k 56k 560k 5.6M

6.2 62 620 6.2k 62k 620k 6.2M

6.8 68 680 6.8k 68k 680k 6.8M

75 75 750 7.5k 75k 750k 7.5M

8.2 82 820 8.2k 82k 820k 8.2M

9.1 91 910 9.1k 91k 910k 9.1M

EXAMPLE 2.22

Given the network in Fig. 2.30, we wish to find the range for both the current and power
dissipation in the resistor if R is a 2.7-k{} resistor with a tolerance of 10%.

SOLUTION

10V C_D SR

Figure 2.30 “F"

Circuit used in Example 2.22.

Using the equations I = V/R = 10/R and P = V?/R = 100/R, the minimum and maxi-
mum values for the resistor, current, and power are outlined next.

Minimum resistor value = R(1 — 0.1) = 0.9 R = 2.43 k()

Maximum resistor value = R(1 + 0.1) = 1.1 R = 2.97 k)

Minimum current value = 10/2970 = 3.37 mA

Maximum current value = 10/2430 = 4.12 mA

Minimum power value = 100/2970 = 33.7 mW

Maximum power value = 100/2430 = 41.2 mW
Thus, the ranges for the current and power are 3.37 mA to 4.12 mA and 33.7 mW to
41.2 mW, respectively.

EXAMPLE 2.23

Given the network shown in Fig. 2.31: (a) find the required value for the resistor R; (b) use
Table 2.1 to select a standard 10% tolerance resistor for R; (c) using the resistor selected in
(b), determine the voltage across the 3.9-k{) resistor; (d) calculate the percent error in the
voltage V,, if the standard resistor selected in (b) is used; and (e) determine the power rat-
ing for this standard component.
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a. Using KVL, the voltage across R is 19 V. Then using Ohm’s law, the current in the loop is

I =5/39k = 1.282 mA

The required value of R is then
R = 19/0.001282 = 14.82 k()

b. As shown in Table 2.1, the nearest standard 10% tolerance resistor is 15 k().

C. Using the standard 15-k() resistor, the actual current in the circuit is
I = 24/18.9k = 1.2698 mA

and the voltage across the 3.9-k(} resistor is
V = IR = (0.0012698)(3.9k) = 4952V

d. The percent error involved in using the standard resistor is
% Error = (4.952 — 5)/5 X 100 = —0.96%

€. The power absorbed by the resistor R is then
P = IR = (0.0012698)*(15k) = 24.2 mW

Therefore, even a quarter-watt resistor is adequate in this application.
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SOLUTION

R

24V (Z) i

3.9kfl V1 =5V

'T' Figure 2.31
Circuit used in Example 2.23.

C\t this point we have learned many techniques that are fundamental to circuit analysis. Now
we wish to apply them and show how they can be used in concert to analyze circuits. We will
illustrate their application through a number of examples that will be treated in some detail.

We wish to find all the currents and voltages labeled in the ladder network shown in

Fig. 2.32a.

2.6

Circuits with
Series-Parallel
Combinations
of Resistors )

@

EXAMPLE 2.24

(a)
1 3 S
I 1mA +9V_ AL mA gV _
MA AW AW A
9 k0 9k 1ma 3kn mA  9kQ
+ ] +] 2 + + J
12v<_> Ve 3 3kn 12v 3v2 6k %v ) %v > 3k0

() (d)

?' Figure 2.32
Analysis of a ladder network.
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SOLUTION

To begin our analysis of the network, we start at the right end of the circuit and combine the
resistors to determine the total resistance seen by the 12-V source. This will allow us to cal-
culate the current /,. Then employing KVL, KCL, Ohm’s law, and/or voltage and current
division, we will be able to calculate all currents and voltages in the network.

At the right end of the circuit, the 9-k{} and 3-k{) resistors are in series and, thus, can be
combined into one equivalent 12-k{) resistor. This resistor is in parallel with the 4-k(} resis-
tor, and their combination yields an equivalent 3-k{) resistor, shown at the right edge of the
circuit in Fig. 2.32b. In Fig. 2.32b the two 3-k{) resistors are in series, and their combina-
tion is in parallel with the 6-k() resistor. Combining all three resistances yields the circuit
shown in Fig. 2.32c.

Applying Kirchhoff’s voltage law to the circuit in Fig. 2.32c yields

Il

I,(9 + 3k)
If

12
1 mA

V, can be calculated from Ohm'’s law as

V.=

a

or, using Kirchhoff’s voltage law,

=
|

=12 — 9K/,
=12-9
=3V

Knowing /; and V,, we can now determine all currents and voltages in Fig. 2.32b. Since
V, = 3V, the current /, can be found using Ohm’s law as

L =

2w

3| —

Then, using Kirchhoff’s current law, we have

Il:ll+[3
1
1><10‘-‘=§><10‘-‘+13
I 1A
=—m
22

Note that the I could also be calculated using Ohm’s law:

V, = (3k + 3k)L
_ 3
6k

1
ﬁEmA

L

Applying Kirchhoff’s voltage law to the right-hand loop in Fig. 2.32b yields

V(:_Vh::;klfl
3
V, =2
3 b 2
4
isgV
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or, since V, is equal to the voltage drop across the 3-k() resistor, we could use Ohm’s law as

V, = 3kl

3
=V
2

We are now in a position to calculate the final unknown currents and voltages in Fig. 2.32a.
Knowing V,. we can calculate 7, using Ohm’s law as

V, = 4k,
3
=
4k
3
= §mA

Then, from Kirchhoff’s current law, we have

I3=l4+!5
1 3
— X102 ==X 102 +1
B 8 3
I L A
5 =i
8

We could also have calculated /5 using the current-division rule. For example,

— 4k
>4k + (9 + 3k)
I

=-mA
Sm

h;

Finally, V. can be computed as

V. can also be found using voltage division (i.e., the voltage V, will be divided between the
9-kQ) and 3-k() resistors). Therefore,

Vc:

3k ]
|}
3k + 9k

Vv

OO RF N =y

Note that Kirchhoff’s current law is satisfied at every node and Kirchhoff’s voltage law
is satisfied around every loop, as shown in Fig. 2.32d.

The following example is, in essence, the reverse of the previous example in that we
are given the current in some branch in the network and are asked to find the value of the
input source.

55
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®

EXAMPLE 2.25

Given the circuit in Fig. 2.33 and I, = 1/2 mA, let us find the source voltage V,.

SOLUTION IfI, = 1/2 mA, then from Ohm’s law, V;, = 3 V. V, can now be used to calculate /; = 1 mA.

Figure 2.33 »3
Example circuit for analysis.

Kirchhoff’s current law applied at node y yields
L=L+1,
= 1.5mA
Then, from Ohm’s law, we have
Ve = (1:5-X107%)(2k)
=3V
Since V, + Vj, is now known, /5 can be obtained:

[__Va+vb
S TEE
= 1.5mA

Applying Kirchhoff’s current law at node x yields
L=15L+I
= 3mA

Now KVL applied to any closed path containing V, will yield the value of this input source.
For example, if the path is the outer loop, KVL yields

—V, + 6kl, + 3kl + kI, + 4kl, = 0

Since /; = 3mA and /s = 1.5 mA,
V, =36V

If we had selected the path containing the source and the points x, v, and z, we would obtain
=V, + 6kl +V,+V, + 4kl =0

Once again, this equation yields

V,=36V
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‘el

m-S0lVINng STRATEGY

Step 1. Systematically reduce the resistive network so that the resistance seen by the
source is represented by a single resistor.

Step 2. Determine the source current for a voltage source or the source voltage if a
current source is present.

Step 3. Expand the network, retracing the simplification steps, and apply Ohm’s law,

KVL, KCL, voltage division, and current division to determine all currents and
voltages in the network.

Learning ASSESSMENTS

Analyzing Circuits
Containing a
Single Source and
a Series-Parallel
Interconnection
of Resistors

124

E2.14 Find V, in the network in Fig. E2.14. o/

20 k€ 40 k()
AA 3 A%

a)
+

12v<i) 30 kQ 20k9§ v,

Figure E2.14

E2.15 Find V; in the circuit in Fig. E2.15.

20 k)
AN
Vs C‘_) S 60 k0 2120 k0
- 0.1 mA
Figure E2.15
E2.16 Find I in the circuit in Fig. E2.16.

90 kQ
J\N‘ &)

ISCD 60 k02 30k 3 3V

Figure E2.16

ANSWER: V, = 2 V.

ANSWER: Vi = 9V.

ANSWER: Iy = 0.3 mA.

(Fo provide motivation for this topic, consider the circuit in Fig. 2.34. Note that this network has
essentially the same number of elements as contained in our recent examples. However, when
we attempt to reduce the circuit to an equivalent network containing the source V; and an equiv-
alent resistor R, we find that nowhere is a resistor in series or parallel with another. Therefore,
we cannot attack the problem directly using the techniques that we have learned thus far. We
can, however, replace one portion of the network with an equivalent circuit, and this conversion
will permit us, with ease, to reduce the combination of resistors to a single equivalent resist-
ance. This conversion is called the wye-to-delta or delta-to-wye transformation.

o~ s

Wye — Delta
Transformations
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Let us determine the voltage V, in the circuit in Fig. 2.37.

I} 3k /\
{ +
V, = 2000 I
12V 5k0 V,

EXAMPLE 2.27

§+ Figure 2.37
Circuit used in Example 2.27.

Applying KVL, we obtain
—12 + 3kl — V, + 5kI, = 0
where
Vy = 2000/,

and the units of the multiplier, 2000, are ohms. Solving these equations yields

I, = 2mA
Then
V, = (5k)I,
=10V

SOLUTION

Given the circuit in Fig. 2.38 containing a current-controlled current source, let us find the
voltage V,.

2k0
10 mA D 3 kO 4], Vs

+
v, i

EXAMPLE 2.28

4 Figure 2.38
Circuit used in Example 2.28.

Applying KCL at the top node, we obtain

10 X 107 + Yo % g0
A A

where
Vi
l =—
4R gK

Substituting this expression for the controlled source into the KCL equation yields

e Vel vy & 4l
e =
= 6k 3k 3k ¢
Solving this equation for V;, we obtain
VS — 12 V

The voltage V, can now be obtained using a simple voltage divider; that is,

4k
Yo = [2k o 4k]v5

=8V

SOLUTION
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EXAMPLE 2.29 The network in Fig. 2.39 contains a voltage-controlled voltage source. We wish to find V, in
this circuit.
Figure 2.39 w¥% I 3k E
- A 4, y——0
Circuit used in wy < > s
Example 2.29. 2V,
12V 1k0 3 Vo

SOLUTION  Applying KVL to this network yields

—12 + 3kl + 2V, + ki =0
where

V, = 1kI
Hence, the KVL equation can be written as

=12 + 3kl + 2kI + 1kl =0

or
I =2mA
Therefore,
V, = 1kl
=22y
EXAMPLE 2.30 An equivalent circuit for a FET common-source amplifier or BJT common-emitter

amplifier can be modeled by the circuit shown in Fig. 2.40a. We wish to determine an
expression for the gain of the amplifier, which is the ratio of the output voltage to the
input voltage.

Figure 2.40 =3 i1(t) Ry
Example circuit containing a Vol ! I ! s
voltage-controlled current +
source. ‘Ui(f) I) R2 <l Em ’Ug(f) R3 R4 RS 7—’0(!)
V(1)
(a)
() R
1(7) i =
+
+
v,'(t) Ry Em 'Ug(f) Ry 'Uo(f)
V(1)

(b)
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Note that although this circuit, which contains a voltage-controlled current source, appears

to be somewhat complicated, we are actually in a position now to solve it with techniques

we have studied up to this point. The loop on the left, or input to the amplifier, is essential-

ly detached from the output portion of the amplifier on the right. The voltage across R, is

vg(r), which controls the dependent current source. :
To simplify the analysis, let us replace the resistors R;, R, and Rs with R, such that

1

1 1

1
R. R Ry R
Then the circuit reduces to that shown in Fig. 2.40b. Applying Kirchhoff’s voltage law to
the input portion of the amplifier yields
(1) = iy()(R, + R,)
and

Solving these equations for vg(r) yields

R,

v (1) = R, +_ R. v (1)

From the output circuit, note that the voltage v (1) is given by the expression
-vn(r) = _gmvg('r)RL
Combining this equation with the preceding one yields

= mR R1
i

1) = ;
v,(t) RAR

Therefore, the amplifier gain, which is the ratio of the output voltage to the input voltage,
is given by

U,,(f) — ngLRZ

Uj(f) R| ap R:

Reasonable values for the circuit parameters in Fig. 2.40a are R, = 100, R, = 1 k(},
g, = 0.048, R, = 50k, and R, = Rs; = 10 k(). Hence, the gain of the amplifier under
these conditions is

v,(1) _ —(0.04)(4.545)(10°)(1)(10°)

u(t) (L.1)(10%)
= —165.29

Thus, the magnitude of the gain is 165.29.

At this point it is perhaps helpful to point out again that when analyzing circuits with
dependent sources, we first treat the dependent source as though it were an independent source
when we write a Kirchhoff's current or voltage law equation. Once the equation is written,
we then write the controlling equation that specifies the relationship of the dependent source
to the unknown variable. For instance, the first equation in Example 2.28 treats the dependent
source like an independent source. The second equation in the example specifies the relation-
ship of the dependent source to the voltage, which is the unknown in the first equation.

SOLUTION
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RESISTIVE CIRCUITS

[earning ASSESSMENTS

E2.19 Find V, in the circuit in Fig. E2.19.

ANSWER: V, = 12V.

Va - ZVA
S J_> ° O
5 Mol =
ev( 8 k0 Vo
Figure E2.19 o
E2.20 Find V, in the network in Fig. E2.20. ANSWER: V, =8V.
1kQ
+
Vs <
5 <1> Vs % 6 k0 - Q 2 mA
2k V,
Figure E2.20 =
i _
") () In addition to the resistors shown in Fig 2.1, three types are employed in the modern elec-
‘:" * < tronics industry: thick-film, thin-film, and silicon-diffused resistors.
Resistor
TEChﬂOlOgiES THICK-FILM RESISTORS  Thick-film resistor components are found on all modern
for Electronic surface mount technology (SMT) printed circuit boards. They come in a variety of shapes,
- sizes, and values. A table of standard sizes for thick-film chip resistors is shown in Table 2.2,
Manufactu FINg  and some examples of surface mount thick-film ceramic resistors can be seen in Fig. 2.41.

Thick-film resistors are considered “low-tech,” when compared with thin-film and sili-
con-diffused components, because they are manufactured using a screen printing process
similar to that used with T-shirts. The screens utilized in thick-film manufacturing use a much
finer mesh and are typically made of stainless steel for a longer life time. The paste used in
screen printing resistors consists of a mixture of ruthenium oxides (Ru0O,) and glass.

Once the paste is screen printed, it is fired at temperatures around 850°C, causing the
organic binders to vaporize and to allow the glass to melt and bind the metal and glass filler

TABLE 2.2 Thick-film chip resistor standard sizes

SIZE CODE SIZE (MILS) POWER RATING (WATTS)

0201 20 X 10 1/20
0402 40 % 20 1/16
0603 60 X 30 1/10
0805 80 X 50 1/8
1206 120 X 60 1/4
2010 200 X 100 1/2
2512 250 X 120 1
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T

1]

APPLICATION
EXAMPLE 2.31

The eyes (heating elements) of an electric range are frequently made of resistive nichrome
strips. Operation of the eye is quite simple. A current is passed through the heating element
causing it to dissipate power in the form of heat. Also, a four-position selector switch,
shown in Fig. 2.45, controls the power (heat) output. In this case the eye consists of two
nichrome strips modeled by the resistors R, and R,, where R} < R,.

1. How should positions A, B, C, and D be labeled with regard to high, medium, low, and
off settings?

2. If we desire that high and medium correspond to 2000 W and 1200 W power dissipa-
tion, respectively, what are the values of R, and R,?

3. What is the power dissipation at the low setting?

SOLUTION

Figure 2.45 «3
Simple resistive heater
selector circuit.

Position A is the off setting since no current flows to the heater elements. In position B, cur-
rent flows through R, only, while in position C current flows through R, only. Since R, < R,
more power will be dissipated when the switch is at position C. Thus, position C is the medi-
um setting, B is the low setting, and, by elimination, position D is the high setting.

When the switch is at the medium setting, only R, dissipates power, and we can write R, as

_vi_me
LT P {900
or
R, = 44.08 Q)

On the high setting, 2000 W of total power is delivered to R, and R,. Since R, dissipates 1200 W,
R, must dissipate the remaining 800 W. Therefore, R, is

Vi :
R s el
TP 800
or
R, = 6613 Q)

Finally, at the low setting, only R, is connected to the voltage source; thus, the power dissi-
pation at this setting is 800 W.

A
o B
(o,

C
e

Vg = 230V @)

APPLICATION
EXAMPLE 2.32

Have you ever cranked your car with the headlights on? While the starter kicked the engine,
you probably saw the headlights dim then return to normal brightness once the engine was
running on its own. Can we create a model to predict this phenomenon?
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Yes, we can. Consider the conceptual circuit in Fig. 2.46a, and the model circuit in
Fig. 2.46b, which isolates just the battery, headlights, and starter. Note the resistor Riq-
It is included to model several power loss mechanisms that can occur between the battery
and the loads, that is, the headlights and starter. First, there are the chemical processes with-
in the battery itself which are not 100% efficient. Second, there are the electrical connec-
tions at both the battery posts and the loads. Third, the wiring itself has some resistance,
although this is usually so small that it is negligible. The sum of these losses is modeled by
Ry, and we expect the value of Ry, to be small. A reasonable value is 25 m().

Headlights Rpant

SOLUTION

VIV

H+12V=

Vbatt C, I
X HE
12V _P

!Sml'l

Igniton
Headlight switch
switch

(a)

Next we address the starter. When energized, a typical automobile starter will draw
between 90 and 120 A. We will use 100 A as a typical number. Finally, the headlights will
draw much less current—perhaps only 1 A. Now we have values to use in our model
circuit.

Assume first that the starter is off. By applying KCL at the node labeled V;, we find that
the voltage applied to the headlights can be written as

Vi = Vour — TrRpan

Substituting our model values into this equation yields V;, = 11.75 V—very close to 12 V.
Now we energize the starter and apply KCL again.

Vi = Voar — ([HL £t Istan)Rbm

Now the voltage across the headlights is only 9.25 V. No wonder the headlights dim!
How would corrosion or loose connections on the battery posts change the situation? In this
case, we would expect the quality of the connection from battery to load to deteriorate,
increasing R,,, and compounding the headlight dimming issue.

(b)
'? Figure 2.46

A conceptual (a) model and
(b) circuit for examining the
effect of starter current on
headlight intensity.

A Wheatstone Bridge circuit is an accurate device for measuring resistance. The circuit,
shown in Fig. 2.47, is used to measure the unknown resistor R,. The center leg of the cir-
cuit contains a galvanometer, which is a very sensitive device that can be used to measure
current in the microamp range. When the unknown resistor is connected to the bridge, R; is
adjusted until the current in the galvanometer is zero, at which point the bridge is balanced.
In this balanced condition

so that

APPLICATION
EXAMPLE 2.33
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Figure 2.47 «¥

The Wheatstone bridge
circuit.

Il

Engineers also use this bridge circuit to measure strain in solid material. For example. a
system used to determine the weight of a truck is shown in Fig. 2.48a. The platform is sup-
ported by cylinders on which strain gauges are mounted. The strain gauges, which measure
strain when the cylinder deflects under load, are connected to a Wheatstone bridge as shown
in Fig. 2.48b. The strain gauge has a resistance of 120 {) under no-load conditions and
changes value under load. The variable resistor in the bridge is a calibrated precision device.

Weight is determined in the following manner. The AR, required to balance the bridge
represents the A strain, which when multiplied by the modulus of elasticity yields the
A stress. The A stress multiplied by the cross-sectional area of the cylinder produces the
A load, which is used to determine weight.

Let us determine the value of R; under no load when the bridge is balanced and its value
when the resistance of the strain gauge changes to 120.24 () under load.

&
r—

SOLUTION Using the balance equation for the bridge, the value of R; at no load is

o= (2
= R: x

(;—?g—)(lzo)

109.0909

100
= | — 20.2
R, (110)(1-0.._4)

109.3091 O

Il

Under load, the value of R; is

Therefore, the AR5 is
AR, = 109.3091 — 109.0909
= (0.2182 (}

Figure 2.48 -3 ‘m . Platform

i . Q s
Diagrams used in 77777777 ] O [

@— Strain gauge h—-@

(a)

Example 2.33.

Ry =1000 Ry =1100Q

Strain gauge
Ry

(b)
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@51 of this text is concerned with circuit analysis; that is, given a circuit in which all the =y 4 4
components are specified. analysis involves finding such things as the voltage across some "4 |
element or the current through another. Furthermore, the solution of an analysis problem is Design Exam p[es
generally unique. In contrast, design involves determining the circuit configuration that will
meet certain specifications. In addition, the solution is generally not unique in that there may
be many ways to satisfy the circuit/performance specifications. It is also possible that there
is no solution that will meet the design criteria.

In addition to meeting certain technical specifications. designs normally must also meet
other criteria. such as economic, environmental, and safety constraints. For example, if a cir-
cuit design that meets the technical specifications is either too expensive or unsafe, it is not
viable regardless of its technical merit.

At this point, the number of elements that we can employ in circuit design is limited prima-
rily to the linear resistor and the active elements we have presented. However, as we progress
through the text we will introduce a number of other elements (for example, the op-amp,
capacitor, and inductor), which will significantly enhance our design capability.

We begin our discussion of circuit design by considering a couple of simple examples that
demonstrate the selection of specific components to meet certain circuit specifications.

An electronics hobbyist who has built his own stereo amplifier wants to add a back-lit dis- DESIGN

play panel to his creation for that professional look. His panel design requires seven light EXAMPLE 2.34
bulbs—two operate at 12 V/15 mA and five at 9 V/5 mA. Luckily, his stereo design already i

has a quality 12-V dc supply; however, there is no 9-V supply. Rather than building a new

dc power supply, let us use the inexpensive circuit shown in Fig. 2.49a to design a 12-V to

9-V converter with the restriction that the variation in V5 be no more than £5%. In particu-

lar, we must determine the necessary values of R, and R.

First, lamps L, and L, have no effect on V;. Second, when lamps L+L, are on, they each  SOLUTION
have an equivalent resistance of

v 9
w=—=——= 18k
Req I 0.005
As long as V; remains fairly constant, the lamp resistance will also be fairly constant. Thus,
the requisite model circuit for our design is shown in Fig. 2.49b. The voltage V, will be at
its maximum value of 9 + 5% = 9.45V when Ly-L, are all off. In this case R, and R, are

in series, and V5 can be expressed by simple voltage division as

v—945—12[ Ry ]
SRS | T

Re-arranging the equation yields

B _ o

R-

A second expression involving R, and R, can be developed by considering the case when
L:—L are all on, which causes V; to reach its minimum value of 9-5%, or 8.55 V. Now, the
effective resistance of the lamps is five 1.8-k() resistors in parallel, or 360 {). The corre-

sponding expression for V; is

R,//360 ]

V, =855 = lz[Rl + (Ry//%0)

which can be rewritten in the form

360R,
T + 360 + R,

2

=14

12
360 8.55
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Figure 2.49 ¥

12-V to 9-V converter circuit
for powering panel lighting.

2v )

6
—

e

l

T
=
L% L@

bk

+
R, ‘gvz

1.8 k0 3 1.8 k0

1.8 k(2

1.8 k()

b
Y

18k2 S

(b)

Substituting the value determined for R;/R, into the preceding equation yields

R, = 360[1.4 — 1 — 0.27]

or

and so for R,

DESIGN
EXAMPLE 2.35

?

Ry =4810Q

R2=

1783 Q

Let’s design a circuit that produces a 5-V output from a 12-V input, We will arbitrarily fix
the power consumed by the circuit at 240 mW. Finally, we will choose the best possible
standard resistor values from Table 2.1 and calculate the percent error in the output voltage
that results from that choice.

SOLUTION

The simple voltage divider, shown in Fig. 2.50, is ideally suited for this application. We

know that V, is given by

V= Vin[

R,

R+ R,
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which can be written as

Via
R = Rz[;ﬂ = l] R,
Since all of the circuit’s power is supplied by the 12-V source, the total power is given by i Vd)
7
P=—™m_ <024 Ry
R, + R,

Using the second equation to eliminate R,, we find that R, has a lower limit of
V.V, 5)(12 “TFi
Ry = oY 2 (5)(12) — a0 i Figure 2.50
P 0.24 A simple voltage divider
Substituting these results into the second equation yields the lower limit of R,, that is

ol
Ri=R|——-1|=3500Q
Yo

Thus, we find that a significant portion of Table 2.1 is not applicable to this design.
However, determining the best pair of resistor values is primarily a trial-and-error operation
that can be enhanced by using an Excel spreadsheet as shown in Table 2.4. Standard resis-
tor values from Table 2.1 were entered into Column A of the spreadsheet for R,. Using the
equation above, theoretical values for R, were calculated using R, = 1.4-R,. A standard
resistor value was selected from Table 2.1 for R, based on the theoretical calculation in
Column B. V; was calculated using the simple voltage-divider equation, and the power
absorbed by R, and R, was calculated in Column E.

TABLE 2.4 Spreadsheet calculations for simple voltage divider

R1 Vo

1 R2 R1 theor Pabs

2 300 420 430 4.932 0.197
3 330 462 470 4.950 0.180
4 360 504 510 4.966 0.166
5 390 546 560 4.926 0.152
6 430 602 620 4914 0.137
7 470 658 680 4.904 0.125
8 510 714 750 4.857 0.114
9 560 784 750 5.130 0.110
10 620 868 910 4.863 0.094
19 680 952 910 5.132 0.091
12 750 1050 1000 5.143 0.082
13 820 1148 1100 5.125 0.075
14 910 1274 1300 4.941 0.065
15 1000 1400 1300 5.217 0.063
16 1100 1540 1500 5.077 0.055
17 1200 1680 1600 5.143 0.051
18 1300 1820 1800 5.032 0.046
19 1500 2100 2000 5.143 0.041
20 1600 2240 2200 5.053 0.038
21 1800 2520 2400 5.143 0.034
22 2000 2800 2700 5.106 0.031
23 2200 3080 3000 5.077 0.028
24 2400 3360 3300 5.053 0.025
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Note that a number of combinations of R, and R, satisty the power constraint for this cir-
cuit. The power absorbed decreases as R, and R, increase. Let’s select R, = 1800 () and
R, = 1300 (), because this combination yields an output voltage of 5.032 V that is closest
to the desired value of 5 V. The resulting error in the output voltage can be determined from

the expression
032 =5
Percent error = [ﬂ—s—‘]loo% = 0.64%

It should be noted, however, that these resistor values are nominal, that is, typical values.
To find the worst-case error, we must consider that each resistor as purchased may be as much
as +5% off the nominal value. In this application, since V/, is already greater than the target of
5 V. the worst-case scenario occurs when V,, increases even further, that is, R, is 5% too low
(1710 Q) and R, is 5% too high (1365 1). The resulting output voltage is 5.32 V, which yields
a percent error of 6.4%. Of course, most resistor values are closer to the nominal value than
to the guaranteed maximum/minimum values. However, if we intend to build this circuit with
a guaranteed tight output error such as 5% we should use resistors with lower tolerances.

How much lower should the tolerances be? Our first equation can be altered to yield the
worst-case output voltage by adding a tolerance, A, to R, and subtracting the tolerance from
R,. Let’s choose a worst-case output voltage of Vi, = 525V, that is, a 5% error.

- s =y e 8 ] - 1] o |
Vomes =525 =Vl (7= A) + Ry(1 + A)) -L1800(1 — &) + 1300(1 + A)

The resulting value of A is 0.037, or 3.7%. Standard resistors are available in tolerances of
10, 5, 2, and 1%. Tighter tolerances are available but very expensive. Thus, based on nom-
inal values of 1300 £ and 1800 €2, we should utilize 2% resistors to ensure an output volt-
age error less than 5%.

DESIGN

EXAMPLE 2.36

Sy

In factory instrumentation, process parameters such as pressure and flowrate are measured,
converted to electrical signals, and sent some distance to an electronic controller. The con-
troller then decides what actions should be taken. One of the main concerns in these sys-
tems is the physical distance between the sensor and the controller. An industry standard
format for encoding the measurement value is called the 4-20 mA standard, where the
parameter range is linearly distributed from 4 to 20 mA. For example, a 100 psi pressure
sensor would output 4 mA if the pressure were 0 psi, 20 mA at 100 psi, and 12 mA at 50 psi.
But most instrumentation is based on voltages between 0 and 5 V, not on currents.

Therefore, let us design a current-to-voltage converter that will output 5 V when the cur-
rent signal is 20 mA.

SOLUTION

The circuit in Fig. 2.51a is a very accurate model of our situation. The wiring from the sen-
sor unit to the controller has some resistance, R;.. If the sensor output were a voltage pro-
portional to pressure, the voltage drop in the line would cause measurement error even if the
sensor output were an ideal source of voltage. But, since the data are contained in the cur-
rent value, R, does not affect the accuracy at the controller as long as the sensor acts as
an ideal current source.

As for the current-to-voltage converter, it is extremely simple—a resistor. For 5 V at
20 mA, we employ Ohm’s law to find

R=——=2
ooy = 2500

The resulting converter is added to the system in Fig. 2.51b, where we tacitly assume that
the controller does not load the remaining portion of the circuit.
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Controller

Sendsolr Sensor

mode :

e S

i i IV E ;

3 i Soreter Controller E ¢ i 250 Q)
el [ :

F o= : ]

H - = .

"""" (@) (b)

Note that the model indicates that the distance between the sensor and controller could
be infinite. Intuitively, this situation would appear to be unreasonable, and it is. Losses that
would take place over distance can be accounted for by using a more accurate model of the
sensor, as shown in Fig. 2.52. The effect of this new sensor model can be seen from the
equations that describe this new network. The model equations are

V. %
IS_—S -

= T . —
Ry Ry + 250
and

e

O R F D50

Combining these equations yields
I

signal |

IS i R\h‘ir: 47 250
Rs

Thus, we see that it is the size of Ry relative to (R, + 250 () that determines the
accuracy of the signal at the controller. Therefore, we want Ry as large as possible. Both the
maximum sensor output voltage and output resistance, R, are specified by the sensor man-
ufacturer.

We will revisit this current-to-voltage converter in Chapter 4.

....... Y §_______ Rwire
g W ’
Improved i /¢ Rg! @ Controller
sensor | |
H i
mode : : Seon
= ;

+ Figure 2.51

The 4-20 mA control loop
(a) block diagram, (b) with
the current-to-voltage
converter,

¢+ Figure 2.52

A more accurate model for
the 4—20 mA control loop.

The network in Fig. 2.53 is an equivalent circuit for a transistor amplifier used in a stereo
preamplifier. The input circuitry, consisting of a 2-mV source in series with a 500-Q resis-
tor, models the output of a compact disk player. The dependent source, R; . and R, model
the transistor, which amplifies the signal and then sends it to the power amplifier. The 10-k{)
load resistor models the input to the power amplifier that actually drives the speakers. We
must design a transistor amplifier as shown in Fig. 2.53 that will provide an overall gain of
—200. In practice we do not actually vary the device parameters to achieve the desired gain;
rather, we select a transistor from the manufacturer’s data books that will satisfy the

DESIGN
EXAMPLE 2.37
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required specification. The model parameters for three different transistors are listed as
follows:
Manufacturer’s transistor parameter values
Part Number R, (k€2) R, (k) g, (MA/V)
1.0 50 50
2.0 75 30
3 8.0 80 20
Design the amplifier by choosing the transistor that produces the most accurate gain.
What is the percent error of your choice?
SOLUTION The output voltage can be written

Using voltage division at the input

Vr: = -gmv(Ro//RL)
to find V,

Rin

Vo= V| ——
S(Rin+RS

Combining these two expressions, we can solve for the gain:

Vo

Av=_"

Vs

Rin

= —gﬂl Rm + RS

(

w7,

Using the parameter values for the three transistors, we find that the best alternative is tran-
sistor number 2, which has a gain error of

Percent error = (

Figure 2.53 =¥

Transistor amplifier circuit
model.

211.8 — 200

X 100% = 5.9%
200 ) e = 59%

+
R. =10kQ3V,

SUMMARY

Ohm’s law V=IR

The passive sign convention with Ohm’s
Iaw The current enters the resistor terminal with the
positive voltage reference.

Kirchhoff’s current law (KCL) The algebraic
sum of the currents leaving (entering) a node is zero.

Kirchhoff’s voltage law (KVL) The algebraic
sum of the voltages around any closed path is zero.

Solving a single-loop circuit Determine the loop
current by applying KVL and Ohm’s law.

Solving a single-node-pair circuit Determine
the voltage between the pair of nodes by applying KCL and
Ohm'’s law.

The voltage-division rule The voltage is divided
between two series resistors in direct proportion to their
resistance.

The current-division rule The current is divided
between two parallel resistors in reverse proportion to their
resistance.

The equivalent resistance of a network of
resistors Combine resistors in series by adding their
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This value is then substituted into the second equation to yield

(2 v,
— | =V 4 +—== =4 X 107
61((3‘/”4) 3k

or
W =-15V

This value for V; is now substituted back into the equation for V; in terms of V,, which yields

2
-V, +
3 %2 4

=6V

Vi

The circuit equations can also be solved using matrix analysis. The general form of the
matrix equation is

GV =1
where in this case
e L
e o S |IZLRA0E
G= e ,V—|:V2],andl—|:_4x]0_3:|
6k 3k
The solution to the matrix equation is
V=G
and therefore,
1 i
Vi|_| 4k ¢k 1x107
e - | S -4 x 107
6k 3k

To calculate the inverse of G, we need the adjoint and the determinant. The adjoint is

= E
3= IN8la=6k
AdjG = B
6k 4k
and the determinant is
1 1 =1\ /=1
ez -Gl
Sy
18k*
Therefore,
[RGenE
% 1073
Vil _ gl X6 1 104
Vs 1 1 {L-4x107
| 6k 4k
_-1—_ :
_ el XK
Lo I
| 6k K
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The MATLAB solution begins with the set of equations expressed in matrix form as
G*V=1

where the symbol * denotes the multiplication of the voltage vector V by the coefficient
matrix G. Then once the MATLAB software is loaded into the PC, the coefficient matrix
(G) and the vector V can be expressed in MATLAB notation by typing in the rows of the
matrix or vector at the prompt >>. Use semicolons to separate rows and spaces to separate
columns. Brackets are used to denote vectors or matrices. When the matrix G and the vec-
tor I have been defined, then the solution equation

V=inv(G)*I

which is also typed in at the prompt >>, will yield the unknown vector V.
The matrix equation for our circuit expressed in decimal notation is

0.00025 —0.00016666 || V; | | 0.001
—0.00016666  0.0003333 v, | | —0.004
If we now input the coefficient matrix G, then the vector I and finally the equation

V = inv(G)*I, the computer screen containing these data and the solution vector V appears as
follows:

>> 6 = [0.00025 -0.000166666;
-0.000166666 0.000333331]

G =
1.0e-003 *
0.2500 -0.1667
-0.1667 0.3333
>> I = [0.001; -0.0041
=
0.0010
-0.0040
>> V = inv(G)*I
vV =
-6.0001
-15.0002

Knowing the node voltages, we can determine all the currents using Ohm’s law:

B R
V=Y, =6=/(=15) =3
1: — = -
2= =D 6k S
e = LR
3" 6k 6k S

Figure 3.5 illustrates the results of all the calculations. Note that KCL is satisfied at every node.

V]=—6V V2=-15V
_a_mA 6 k()

1mA CD 12 kQ 4 mA

1
— mA
> m

5
= mA
5 m

6 k2

ANA
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4 Figure 3.5
Circuit used in Example 3.1
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SOLUTION The equations are

!\ & : 7
"U(L)_U(L)‘fv(l‘*"_l"""_]_‘)-o
"\ R, 2\ R, NRE==Ry Rl

which can also be written directly in matrix form as

i A 0 =
R, R, R,
v =1
1 ] 1 - A
0 L e — hicd, o Y
R OR R, i ta—1p
| I R 0
RI RJ R| R4 RS__

Both the equations and the G matrix exhibit the symmetry that will always be present in cir-
cuits that contain only resistors and current sources.
If the component values are now used, the matrix equation becomes

L ]
2%
L 2 211‘ v, —0.004
0 —+— - v | =| 0002
4 4k 4k
Vs 0
| T e |
2k T RTERT AR T
or
0.001 0 -0.0005 |[ 2, —0.004
0 0.0005 —0.00025 || v, | =| 0.002
| —0.0005 —0.00025 0.00175_|| v 0

If we now employ these data with the MATLAB software, the computer screen containing
the data and the results of the MATLAB analysis is as shown next.

>> 6 = [0D.001 O -0.0005 ; 0O 0.0005 -0.00025;
-0.0005 -0.00025 0.001751

G =
0.0010 0 -0.0005
0 0.0005 -0.0003
-0.0005 -0.0003 0.0018
>> I = [-0.004; 0.002; 01
=
-0.0040
0.0020
0
>> V = inv(G)*I
V =
-4.3636
3.6364

=0, 7275
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E3.1 Write the node equations for the circuit in Fig. E3.1. A1N SWE R:1

Vs e s
e die—==10k

Vi
120 e e R i
1) iy § e -
4’“ACD Bk 6k @ 2mA
1 !

Vit

Figure E3.1

E3.2 Find all the node voltages in the network in Fig. E3.2 using MATLAB. ANSWER: V; = 54286V,
V, = 2.000 V,
RS V, = 3.1429 V.

Vi 2k Vo 4kQ V3

4mA d) 1kQ C) 2mA

Figure E3.2

CIRCUITS CONTAINING DEPENDENT CURRENT SOURCES The presence of a
dependent source may destroy the symmetrical form of the nodal equations that define the
circuit. Consider the circuit shown in Fig. 3.8, which contains a current-controlled current
source. The KCL equations for the nonreference nodes are

and

where i, = v,/R;. Simplifying the equations, we obtain
(G, + G)v, — (G, — BG3)v, = 0
_G: (21 + (G} o5 G;)Uz = 1"_1

(e e S - L]

Note that the presence of the dependent source has destroyed the symmetrical nature of the
node equations.

or in matrix form

Bio

N vy & Figure 3.8
J[\Q; Circuit with a dependent
N source.
Ry R3 CD ia
L
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EXAMPLE 3.3

Let us determine the node voltages for the network in Fig. 3.8 given the following parameters:

B =2 R, = 6 kQ iy =2mA
R, = 12k R, = 3kQ

SOLUTION

Figure 3.9 3
Circuit used in
Example 3.3.

Using these values with the equations for the network yields

HE it
T T
) e
Solving these equations using any convenient method yields V; = —24/5V and

V; = 12/5 V. We can check these answers by determining the branch currents in the net-
work and then using that information to test KCL at the nodes. For example, the current
from top to bottom through R, is

V, 12/5 4

Sk

TR
Similarly, the current from right to left through R, is

=W 12/5-(-24/5) 6,

1 — —
. R, 6k 5k

All the results are shown in Fig. 3.9. Note that KCL is satisfied at every node.

EXAMPLE 3.4

Figure 3.10 =%
Circuit containing a
voltage-controlled
current source.

Let us determine the set of linearly independent equations that when solved will yield the
node voltages in the network in Fig. 3.10. Then given the following component values, we
will compute the node voltages using MATLAB: R, = 1k}, R, = Ry = 2k{),
R, =4kQ, i, =2mA, iz = 4mA,and a = 2.

o
S,




Applying KCL at each of the nonreference nodes yields the equations
G, +Gv,—v,) —iy=0
iy + Gi(v, — v) + av, + Gy(v, — v3) = 0
Gyvs — v,) + Gyvs — iy =0
where v, = v, — v;. Simplifying these equations, we obtain
(G] + Gy)v, — Gyv, = iy
—Giv; + (Gy + o + GoJv, — (o + Gy)vs = —i,
—Gyvy + (Gy + GaJus = iy

Given the component values, the equations become

SECTION 3.1 NODAL ANALYSIS

SOLUTION

| I
it !
v, 0.002
sl —(2+L) 0.002
K 2K o ||| i =000
Vs 0.004
] i
0 == e
i 2k % 4k |
or
0.0015 —0.001 0 v 0.002
—0.001 2.0015 —2.0005 || v, | = | —0.002
0 —0.0005 000075 || v 0.004

The MATLAB input and output listings are shown next.

>> G = [0.0015 -0.001 0; -0.001 2.0015 -2.0005;
0 -0.0005 0.000751
G =
0.0015 -0.0010 0
-0.0010 2.0015 -2.0005
0 -0.0005 0.0008
>> 1 = [0.002; -0.002; 0.0041
e =
0.0020
-0.0020
0.0040
>> V = inv(G)*I
vV =
11.9940
15.9910

15.9940

107
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LearningassESSMENTS
E3.3 Find the node voltages in the circuit in Fig. E3.3. ANSWER: V=16V,
V] V2 V3 =—8V.
& 'mA &
10 k2
2l
10ke S < S 10k0
7 4 mA
Figure E3.3 -L-
E3.4 Find the voltage V, in the network in Fig. E3.4. ANSWER: V, =4 V.
e
N
Vi
2mA 3k 6000 12 kQ 12 k0 Vo
Figure E3.4 -l-

CIRCUITS CONTAINING INDEPENDENT VOLTAGE SOURCES As is our practice,
in our discussion of this topic we will proceed from the simplest case to more complicated
cases. The simplest case is that in which an independent voltage source is connected to the
reference node. The following example illustrates this case.

!

EXAMPLE 3.5

Consider the circuit shown in Fig. 3.11a. Let us determine all node voltages and branch currents.

SOLUTION

[hint]

Any time an independent
voltage source is connected
between the reference node
and a nonreference node, the
nonreference node voltage is
known.

This network has three nonreference nodes with labeled node voltages Vi, V,, and V;. Based
on our previous discussions, we would assume that in order to find all the node voltages we
would need to write a KCL equation at each of the nonreference nodes. The resulting three
linearly independent simultaneous equations would produce the unknown node voltages.
However, note that V, and V; are known quantities because an independent voltage source is
connected directly between the nonreference node and each of these nodes. Therefore,
V, = 12V and V; = —6 V. Furthermore, note that the current through the 9-k<Q resistor is
[12 — (—6)]/9k = 2 mA from left to right. We do not know V, or the current in the remain-
ing resistors. However, since only one node voltage is unknown, a single-node equation will
produce it. Applying KCL to this center node yields

=V V-0 _-W=N
+ +

12k 6k T
or
V'l =2 Vs V; i (_6)
- G T
12k 6k 12k
from which we obtain
3
V1 ==V
% 2

Once all the node voltages are known, Ohm’s law can be used to find the branch currents
shown in Fig. 3.11b. The diagram illustrates that KCL is satisfied at every node.

Note that the presence of the voltage sources in this example has simplified the analysis,
since two of the three linear independent equations are V; = 12V and V; = —6 V. We will
find that as a general rule, whenever voltage sources are present between nodes, the node
voltage equations that describe the network will be simpler.
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9k0 2A sk
VA — AN
7 5
12k Vy 12k0 A @ &
V] ¢—M—— V3 @-»—-—«w =M
12 kQ 12kQ
12vé’> 6 kO @)sv 12V i) ) Ct)ev
23 1 21
Bk e gk
L i

(a) (b)
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¢+ Figure 3.11

Circuit used in
Example 3.5.

E3.5 Use nodal analysis to find the current I, in the network in Fig. E3.5.

6V Ci)

Figure E3.5

ANSWER: I, = %mA.

Next let us consider the case in which an independent voltage source is connected between
two nonreference nodes.

&

Suppose we wish to find the currents in the two resistors in the circuit of Fig. 3.12a.

EXAMPLE 3.6

If we try to attack this problem in a brute force manner, we immediately encounter a prob-
lem. Thus far, branch currents were either known source values or could be expressed as
the branch voltage divided by the branch resistance. However, the branch current through
the 6-V source is certainly not known and cannot be directly expressed using Ohm’s law.
We can, of course, give this current a name and write the KCL equations at the two non-
reference nodes in terms of this current. However, this approach is no panacea because this
technique will result in two linearly independent simultaneous equations in terms of three
unknowns—that is, the two node voltages and the current in the voltage source.

To solve this dilemma, we recall that N — 1 linearly independent equations are required
to determine the N — 1 nonreference node voltages in an N-node circuit. Since our net-
work has three nodes, we need two linearly independent equations. Now note that if some-
how one of the node voltages is known, we immediately know the other; that is, if V, is
known, then V, = V|, — 6. If V; is known, then V, = V, + 6. Therefore, the difference in
potential between the two nodes is constrained by the voltage source and, hence,

‘/l_‘v::_=6

This constraint equation is one of the two linearly independent equations needed to deter-
mine the node voltages.

SOLUTION
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Figure 3.12 ..,..
Circuits used in
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Next consider the network in Fig. 3.12b, in which the 6-V source is completely enclosed
within the dashed surface. The constraint equation governs this dashed portion of the net-
work. The remaining equation is obtained by applying KCL to this dashed surface, which
is commonly called a supernode. Recall that in Chapter 2 we demonstrated that KCL must
hold for a surface, and this technique eliminates the problem of dealing with a current
through a voltage source. KCL for the supernode is

ex107+ A+ 2 100 =0
6k 12k
Solving these equations yields V; = 10V and V, = 4 V and, hence, /;, = 5/3mA and
L = 1/3mA. A quick check indicates that KCL is satisfied at every node.

Note that applying KCL at the reference node yields the same equation as shown above.
The student may feel that the application of KCL at the reference node saves one from having
to deal with supernodes. Recall that we do not apply KCL at any node—even the reference
node—that contains an independent voltage source. This idea can be illustrated with the cir-

Example 3.6.  cuit in the next example.
6V g N
Vv V- Yz | 729
T O A N
U ‘\ U o
4 mA o R L
6 mA D 6 k(2 12kQ CD 6 k) 12kQ (Dz;mA

6 mA I b
L i =

(a) (b)

L ]

EXAMPLE 3.7

Let us determine the current /, in the network in Fig. 3.13a.

SOLUTION

Figure 3.13 «¥

Example circuit with

Superncdes.

Examining the network, we note that node voltages V; and V, are known and the node volt-
ages V| and V; are constrained by the equation

W-hKh=12
The network is redrawn in Fig. 3.13b.
Vl ' V3 + 12
7 T
1 1}
4 :
-+ < : i 1 <
QRQE C_)w.v €2kﬂ 2kn§ ,] C_Dmv: gzkn
\ |
Vs Vi Vy Y V3 v
1kQ 1 kO 1kQ - | .- 1kQ
= < g < "
6V (1 2 kO (_Dmv 2 kQ T)12v
Iy Iy
T T
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Since we want to find the current /,, V; (in the supernode containing V, and V;) is writ-
ten as V5 + 12. The KCL equation at the supernode is then

ht12—(6) W+l-12 K-(6 K-12 V

2K 2K T T oy 1
Solving the equation for V, yields
F=a=h
I, can then be computed immediately as
i
f,=—=~2ma
ST
 § st S
1.€4d1 EiiﬂgASS ESSMENT
E3.6 Use nodal analysis to find /, in the network in Fig. E3.6. ANSWER: 7, = 3.8 mA.
Vi Vs ’/2{ Vs Vs
'W © \j VW
2k 2 k()
6V C:) 1kQ 3,2 kQ @) 4V
1{)
1

Figure E3.6

CIRCUITS CONTAINING DEPENDENT VOLTAGE SOURCES As the following examples will
indicate, networks containing dependent (controlled) sources are treated in the same manner
as described earlier.

We wish to find /, in the network in Fig. 3.14. EXAMPLE 3.8

Since the dependent voltage source is connected between the node labeled V; and the SOLUTION
reference node,

V] = 2kl\
KCL at the node labeled V4 is
V] Ll ‘/] 4 Vﬁ
= s L )
2k k 1k
where
e
i — 1k
Solving these equations yields V, = 8 V and V| = 16 V. Therefore,
e |

L="%
= 4 mA

[ ]
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Figure 3.14 =3
Circuits used in
Example 3.8.

NODAL AND LOOP ANALYSIS TECHNIQUES

D

%mn
>

EXAMPLE 3.9

Let us find the current /, in the network in Fig. 3.15.

SOLUTION

Figure 3.15 «3

Circuit used in
Example 3.9.

This circuit contains both an independent voltage source and a voltage-controlled voltage
source. Note that V; = 6 V, V, = V,, and a supernode exists between the nodes labeled V,
and V5.

Applying KCL to the supernode, we obtain

V=% Vi % VW
6k 12k 6k 12k
where the constraint equation for the supernode is
VE = Vl == 2vr
The final equation is
Va =0
Solving these equations, we find that
)
V==V
=
and, hence,
1, = —lﬁ = —mA
6 k2
VWA
4 V, 12kQ
VI'—<> ——M—s V3
+
12k03 6kQ3V, Cﬁ 6V
I, =
1,-

Finally, let us consider two additional circuits that, for purposes of comparison, we will
examine using more than one method.

EXAMPLE 3.10

Let us find V, in the network in Fig. 3.16a. Note that the circuit contains two voltage
sources, one of which is a controlled source, and two independent current sources. The
circuit is redrawn in Fig. 3.16b in order to label the nodes and identify the supernode sur-
rounding the controlled source. Because of the presence of the independent voltage
source, the voltage at node 4 is known to be 4 V. We will use this knowledge in writing
the node equations for the network.
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Since the network has five nodes, four linear independent equations are sufficient to
determine all the node voltages. Within the supernode, the defining equation is

Vi= =2V
where

and thus
Vi =3V,
Furthermore, we know that one additional equation is
V, =4

Thus, given these two equations, only two more equations are needed in order to solve for
the unknown node voltages. These additional equations result from applying KCL at the
supernode and at the node labeled V4. The equations are

2 V. V.-V V.-V, 3V.-4
=+ =4 = + = + =
k 1k 1k 1k 1k
A
1k T
Combining the equations yields the two equations
8V, - 2V, =
—4V, + 2V, =

Solving these equations, we obtain

V,=2V and V, =5V
V, =3V, - %=1V

113

:-r:Lm
A
oA

2mA D

(a) (b)
'?’ Figure 3.16

Circuit used in Example 3.10.

)

We wish to find 7, in the network in Fig. 3.17a. Note that this circuit contains three voltage EXAMPLE 3.11

sources, one of which is a controlled source and another is a controlled current source.
Because two of the voltage sources are connected to the reference node, one node voltage
is known directly and one is specified by the dependent source. Furthermore, the difference
in voltage between two nodes is defined by the 6-V independent source.
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The network is redrawn in Fig. 3.17b in order to label the nodes and identify the supernode.
Since the network has six nodes, five linear independent equations are needed to determine the

unknown node voltages.
The two equations for the supernode are

V,—V,=—6
V=12 ¥V =V Vo=V, V vV, — Ve
I l 3+2]‘+4 "+_4.+L__5=0
1k : 1k 1k 1k
The three remaining equations are
V: = 12
v‘# = 2v\
Ve—Va - Vs
4+ —= =21,
1k 1k
The equations for the control parameters are
=W =1
V
==
1k
Combining these equations yields the following set of equations
"2v| & 5V.; == V5 = —36
V] T V_' =—6
-3V, + 2V, = 0
Solving these equations by any convenient means yields
V,=-38V
V_; = ‘32 A%
V; = —48V
Then, since V; = 2V, V5 = —100 V. I, is —48 mA. The reader is encouraged to verify that

KCL is satisfied at every node.

+
Vi21kQ 1kQ 6
= 1 kO
VWA AN —

v
1k0

o vW\—'_J'

1kQ
12V C_r) 1k0 2

ZV-" 1.\'
1
(a)
et

Figure 3.17 %

Circuit used in Example 3.11.

(b)
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¢+ Figure 3.19
A two-loop circuit.

Us1

Substituting these values into the two KVL equations produces the two simultaneous
equations required to determine the two loop currents; that is,

fl(Rt + Ry + Ry) — i(Ry) = vy
—i\(Rs) + i(Ry + Ry + R5) = —v5,

Rl + RI + R3 _R.‘ il . US,
_R3 R3 + R4 + Rs I’z —Us2

At this point, it is important to define what is called a mesh. A mesh is a special kind of loop
that does not contain any loops within it. Therefore, as we traverse the path of a mesh, we do not
encircle any circuit elements. For example, the network in Fig. 3.19 contains two meshes defined
by the paths A-B-E-F-A and B-C-D-E-B. The path A-B-C-D-E-F-A is a loop, but it is not a mesh.
Since the majority of our analysis in this section will involve writing KVL equations for meshes,
we will refer to the currents as mesh currents and the analysis as a mesh analysis.

or in matrix form

117

[ ]

Consider the network in Fig. 3.20a. We wish to find the current /,. EXAMPLE 3.12

We will begin the analysis by writing mesh equations. Note that there are no + and —signs SOLUTION
on the resistors. However, they are not needed, since we will apply Ohm’s law to each resis-
tive element as we write the KVL equations. The equation for the first mesh is

—12 + 6kl + 6k(I, — L) = 0
The KVL equation for the second mesh is

6k(l, — 1) + 3khL +3=10
where I, = I, — I,.
Solving the two simultaneous equations yields [, = 5/4 mA and [, = 1/2 mA. Therefore,
I, = 3/4 mA. All the voltages and currents in the network are shown in Fig. 3.20b. Recall
from nodal analysis that once the node voltages were determined, we could check our analy-
sis using KCL at the nodes. In this case, we know the branch currents and can use KVL around
any closed path to check our results. For example, applying KVL to the outer loop yields

155223
SRR )
2= D)

0=0
Since we want to calculate the current I,, we could use loop analysis, as shown in

Fig. 3.20c. Note that the loop current I, passes through the center leg of the network and,
therefore, I, = I,. The two loop equations in this case are

—12 + 6k(f, + L,) + 6kI, = 0
and
—12 + 6k(l, + L) + 3k, + 3 =0

Solving these equations yields I, = 3/4 mA and I, = 1/2 mA. Since the current in the
12-V source is I, + I, = 5/4 mA, these results agree with the mesh analysis.
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)

Let us write the mesh equations by inspection for the network in Fig. 3.21. Then we will
use MATLAB to solve for the mesh currents.

EXAMPLE 3.13

The three linearly independent simultaneous equations are
(4k + 6k)I, — (0), — (6k)l; = —6
—(0)f, + (9% + 3K)I, — (3K); = 6
—(6k)I, — (3k)I, + (3k + 6k + 12k);; = 0

or in matrix form

10k 0 —6k || /] -6
0 12k =3k |[L]|=]| 6
-6k —3k 21k _|[ £ 0
Note the symmetrical form of the equations. The general form of the matrix equation is
RI=V
and the solution of this matrix equation is
I=RYW

The input/output data for a MATLAB solution are as follows:

>> R = [10e3 0 -6e3;
-6e3 -3e3 21e31]

0 12e3 =3e3;

R =
10000 0 -6000
0 12000 -3000
-6000 -3000 21000
>> V = [=6; 6; 01
=
-6
6
0
>> I = inv(R)*V
Ia=:
1.0e-003 *
~D. 6757
0.4685
-0.1261
4 k()
A
o
K-_;_\ - 6 k() .
) VWV ——

6V
<
9 kQ @ @ 3.121@
3 k(2

CIRCUITS CONTAINING INDEPENDENT CURRENT SOURCES Just as the pres-
ence of a voltage source in a network simplified the nodal analysis, the presence of a current
source simplifies a loop analysis. The following examples illustrate the point.

SOLUTION

¢+ Figure 3.21

Circuit used in
Example 3.13.
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s@&%fﬁﬁlgASSESSMENT

E3.8 Use mesh equations to find V, in the circuit in Fig. E3.8. ANSWER: V. = 33 v
- 0 — 5 .

Figure E3.8

EXAMPLE 3.14 Let us find both V, and V; in the circuit in Fig. 3.2,

SOLUTION  Although it appears that there are two unknown mesh currents, the current /; goes directly
through the current source and, therefore, /; is constrained to be 2 mA. Hence, only the
current /; is unknown. KVL for the rightmost mesh is

k(L — L) — 2+ 6k, =0
And, of course,

I, =2x107
These equations can be written as
e Zk!, + Sklz =2
I =2/k

The input/output data for a MATLAB solution are as follows:

>> R = [-2000 8000; 1 01
R =
-2000 8000
1 0

>> V = [2; 0.002]

vV =
2.0000
0.0020
>> 1 = inv(R)*V
1=
0.0020

0.0008
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>> format Llong

0.00200000000000
0.00075000000000

Note carefully that the first solution for /; contains a single digit in the last decimal place.
We are naturally led to question whether a number has been rounded off to this value. If we
type “format long” MATLAB will provide the answer using 15 digits. Thus, instead of
0.008, the more accurate answer is 0.0075. And hence,

V=6kIn=%V

o F

To obtain V; we apply KVL around any closed path. If we use the outer loop, the KVL
equation is

—V; + 4k, — 2 + 6k, = 0
And therefore,

Note that since the current /, is known, the 4-k() resistor did not enter the equation in finding V..
However, it appears in every loop containing the current source and, thus, is used in finding ;.

v 2V
1
R
4 k)

LOOP ANALYSIS 121

§- Figure 3.22
Circuit used in
Example 3.14.

We wish to find V, in the network in Fig. 3.23.

EXAMPLE 3.15

Since the currents /; and , pass directly through a current source, two of the three required

equations are
]] = 4 X 10-3

L=-2%107
The third equation is KVL for the mesh containing the voltage source; that is,
4k(l, — L) + 2k(E — L) + 6kl — 3 =10
These equations yield

Iy

—mA

and hence,

\4,=6k13—3=_—3V

SOLUTION

L]
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Figure 3.23 3
Circuit used in
Example 3.15.

NODAL AND LOOP ANALYSIS TECHNIQUES

What we have demonstrated in the previous example is the general approach for dealing
with independent current sources when writing KVL equations; that is, use one loop through
each current source. The number of “window panes” in the network tells us how many equa-
tions we need. Additional KVL equations are written to cover the remaining circuit elements
in the network. The following example illustrates this approach.

EXAMPLE 3.16

Let us find I, in the network in Fig. 3.24a.

SOLUTION

(hint]

In this case the 4-mA current
source is located on the
boundary between two mesh-
es. Thus, we will demonstrate
two techniques for dealing
with this type of situtation.
One is a special loop tech-
nique, and the other is known
as the supermesh approach.

First, we select two loop currents /7, and /, such that /, passes directly through the 2-mA
source, and I, passes directly through the 4-mA source, as shown in Fig. 3.24b. Therefore.
two of our three linearly independent equations are

L=2%x107
L=4x103

Il

The remaining loop current /; must pass through the circuit elements not covered by the two
previous equations and cannot, of course, pass through the current sources. The path for this
remaining loop current can be obtained by open-circuiting the current sources, as shown in
Fig. 3.24c. When all currents are labeled on the original circuit, the KVL equation for this
last loop, as shown in Fig. 3.24d, is

—6+ Ikl + 2k(h + L)+ 2k(5+ L= L) + k(L= 1,) =0

Solving the equations yields

and therefore,

4
~ L =—mA

=" —1 :

o

Next consider the supermesh technique. In this case the three mesh currents are specified
as shown in Fig. 3.24e, and since the voltage across the 4-mA current source is unknown,
it is assumed to be V,. The mesh currents constrained by the current sources are

L, =2%10=
L—1=4x107
The KVL equations for meshes 2 and 3, respectively, are
2k, + 2k(L — 1) -V, =0
—6 + Ikl + V, + k(- L) =0
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(a)
;V\ 1kQ
) e
1kQ i
Wy 0| ([o—¢

: 2k 2k2 3 Q @Ekn% @ 32k0

‘ 1kQ E‘éﬁ? .......... @ :
L) 1kQ ; i
<mA 2ka| | :

D™ 2 (oaz O 0FE () 20
2mAs =k s 2mA~ [, __________

(e) (f)

Adding the last two equations yields
—6 + 1kk + 2k, + 2k(l, — 1) + 1k(l; — L) = 0

Note that the unknown voltage V, has been eliminated. The two constraint equations,
together with this latter equation, yield the desired result.

The purpose of the supermesh approach is to avoid introducing the unknown voltage V..
The supermesh is created by mentally removing the 4-mA current source, as shown in
Fig. 3.24f. Then writing the KVL equation around the dotted path, which defines the super-
mesh, using the original mesh currents as shown in Fig. 3.24e, yields

—6 + Ikl + 2k, + 2k(, — 1) + 1k(l; = I,) = 0

Note that this supermesh equation is the same as that obtained earlier by introducing the
voltage V,.

LOOP ANALYSIS

4 Figure 3.24
Circuits used in
Example 3.16.
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NODAL AND LOOP ANALYSIS TECHNIQUES

learningAssessmenTs

E3.9 Find V, in the network in Fig. E3.9.

Figure E3.9

E3.10 Find V, in the network in Fig, E3.10.

Figure E3.10

ANSWER: V, = %v.
o) e =
- W—t
X 6 kO
21«1% 43
32
ANSWER: V, = == V.
4 mA
ya—
S
—— WV ———— A o
2kQ 1kQ P

2mACD 4y Sk —=V-

CIRCUITS CONTAINING DEPENDENT SOURCES We deal with circuits containing
dependent sources just as we have in the past. First, we treat the dependent source as though
it were an independent source when writing the KVL equations. Then we write the control-
ling equation for the dependent source. The following examples illustrate the point.

EXAMPLE 3.17

Let us find V, in the circuit in Fig. 3.25, which contains a voltage-controlled voltage source.

SOLUTION

The equations for the loop currents shown in the figure are
-2V, + 2k(, + L) + 4kl =0
-2V, + 2k(L, + L) =3+ 6kl =0

where
V., = 4kl
These equations can be combined to produce
— 2ki, + 2k, =0
— 6kI, + 8k, = 3

The input/output data for a MATLAB solution are

>> R = [-2000 2000; -6000 80001
Re=

-2000 2000
-6000 8000



>> V = [0; 3]
vV =
0
3
>> I = inv(R)*V
I =

0.00150000000000
0.00150000000000

and therefore,
V,=6khLb =9V

SECTION 3.2 LOOP ANALYSIS

For comparison, we will also solve the problem using nodal analysis. The presence of the
voltage sources indicates that this method could be simpler. Treating the 3-V source and its
connecting nodes as a supernode and writing the KCL equation for this supernode yields

V=2, V,  V.+3
—_— + = + =
2k 4k 6k
where
Vo=V, +3
These equations also yield V, = 9 V.
Vx 3V
e\ ———y r s
2k

2Vx<i> IE ‘éﬂtﬂ

Let us find V, in the circuit in Fig. 3.26, which contains a voltage-controlled current source.

The currents 7, and I, are drawn through the current sources. Therefore, two of the equations

needed are
V.
I, =—=
' 2000
L=2 X107

The KVL equation for the third mesh is
—3+2k(l,—I,) + 6kl =0
where
V. =4k (I, = L)
Combining these equations yields
-~ L+2L=0
L=2/k

— 2kl + 8k = 3

¢ Figure 3.25
- + Circuit used in
Example 3.17.
VO

125

SOLUTION

EXAMPLE 3.18
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The MATLAB solution for these equations is

> R =0[-12 0; 01 0; -2000 0 80001
R =
=1 2 0
0 1 0
-2000 0 8000
>> V = [0; 0.002; 31
Vo=
0
0.00200000000000
3.00000000000000
>> I = inv(R)*V
e=

0.00400000000000
0.00200000000000
0.00137500000000

And hence, V, =825V

(¢

Figure 3.26 =3
Circuit used in v
X

Example 3.18. 200 <T> h 2 kQ
s
— W I3 3 ka  V,
4 kO
2mA CD L @)3 v

i

EXAMPLE 3.19 The network in Fig. 3.27 contains both a current-controlled voltage source and a voltage-
controlled current source. Let us use MATLAB to determine the loop currents.

SOLUTION  The equations for the loop currents shown in the figure are
Il ==

L=

—1kI, + 2k(L — L) + k(L — ) =
Ik(Z, — E) + 1k(I, - L) + 12 =

{en] (] ~|
SR

where
V. =2k(L — I)
L=li=1
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Combining these equations yields
L=

I] + 1: — 1_; =
IKE, + 3kI, — 2kI, =
1kl, + 1kl; — 2kI, = 12

0 O s

In matrix form the equations are

G 0 @ I,
1 -1 0 h
1k 3k -2 || 4
1k 1k -2k ||/

oo = =
o O Kl

2

The input and output data for the MATLAB solution are as follows:

>R RE=R RO OROESETE==1= 0 0 1000 3000 -2000;
0 1000 1000 -20001

RO=
1 0 0 0
1 1 -1 0
0 1000 3000 -2000
0 1000 1000 -2000
>> V = [0.004; 0; 8; 121
vV =
0.0040
0
8.0000
12.0000
>> I = inv(R)*V
TRE=
0.0040
-0.0060
-0.0020
-0.0100

LOOP ANALYSIS

4 Figure 3.27
Circuit used in
Example 3.19.
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L ]

EXAMPLE 3.20

Figure 3.28 w3
Circuit used in
Example 3.20.

At this point we will again examine the circuit in Example 3.10 and analyze it using loop
equations. Recall that because the network has two voltage sources, the nodal analysis was
somewhat simplified. In a similar manner, the presence of the current sources should
simplify a loop analysis.

Clearly, the network has four loops, and thus four linearly independent equations are
required to determine the loop currents. The network is redrawn in Fig. 3.28 where the loop cur-
rents are specified. Note that we have drawn one current through each of the independent cur-
rent sources. This choice of currents simplifies the analysis since two of the four equations are

I =2/k
13 — _2/k
The two remaining KVL equations for loop currents [, and I, are
=2V, + 1kh + (L — L)1k = 0
where
V.= 1k(I, — I = I)
Substituting the equations for /; and I; into the two KVL equations yields
2kl + 2k, = 6

4k, = 8
Solving these equations for I, and /,, we obtain
I, = 2mA
L, = 1mA
and thus
V, =1V

EXAMPLE 3.21

Let us once again consider Example 3.11. In this case we will examine the network using
loop analysis. Although there are four sources, two of which are dependent, only one of
them is a current source. Thus, from the outset we expect that a loop analysis will be more
difficult than a nodal analysis. Clearly, the circuit contains six loops. Thus, six linearly inde-
pendent equations are needed to solve for all the unknown currents.

The network is redrawn in Fig. 3.29 where the loops are specified. The six KVL equa-
tions that describe the network are

Ikl + 1k(, — L) + 1k(l; = I,) = 0
k(L= 1) — 6+ 1k(h, — ) =0
= 21.:
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12 + 1k(l, - L) + 2V, =0
-2V, + k(I — B) + 1k(ls — 1) =0
1k(I, — ) + 1k(1, = L) + 1k, =0

And the control variables for the two dependent sources are

V, = —Ikl,
L=1I-1,

X

Substituting the control parameters into the six KVL equations yields

3, —-L 0 -, 0 0
-, +2L 0 0 ==L O
0 0 L 0 =215 +2i,
=31, 0 0 +, 0 O
2, -, 0 0 +2I ~—I,
0 0 0 0 =3I +5I
which can be written in matrix form as
= 50— 0 S| [
= 2-0 0 =La0 || &
oy T T Tt Do | TS
=SRE0 S0 ] )R I
ot =10 0 2 =1 ||
| TR R e S | ]

=0
= 6/k
=0
= 12/k
=0
=0

6/k
0
12/k
0
0

LOOP ANALYSIS

$ Figure 3.29
Circuit used in
Example 3.21.

Although these six linearly independent simultaneous equations can be solved by any con-
venient method, we will employ a MATLAB solution. As the following results indicate, the

current /, is —48 mA.

>> R = [E3 ~1 0 =100 » -1 20
=SS RS () (AR () =2 =1 S
R =

-1 0 -1 0

-1 2 0 0 =1

0 0 1 0 -2

-3 0 0 1 0

2 -1 0 0 2

0 0 0 0 -3

>> V = [0; 0.006; 0; 0.012; 0; 01

U =180

2 Au ) o ) =
0.0 0 08=3} 51

u-=DMNOO

.
r
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Problem-Solving sTraTEGY

Step 1. Determine the number of independent loops in the circuit. Assign a loop cur- Loop Analysis
rent to each independent loop. For an N-loop circuit, there are N-loop currents. 1L
As a result, N linearly independent equations must be written to solve for the
loop currents.
If current sources are present in the circuit, either of two techniques can be
employed. In the first case, one loop current is selected to pass through one
of the current sources. The remaining loop currents are determined by open-
circuiting the current sources in the circuit and using this modified circuit to
select them. In the second case, a current is assigned to each mesh in the circuit.

Step 2. Write a constraint equation for each current source—independent or dependent—
in the circuit in terms of the assigned loop current using KCL. Each constraint
equation represents one of the necessary linearly independent equations, and M
current sources yield M linearly independent equations. For each dependent
current source, express the controlling variable for that source in terms of the
loop currents.

Step 3. Use KVL to formulate the remaining N — A linearly independent equations.
Treat dependent voltage sources like independent voltage sources when formu-
lating the KVL equations. For each dependent voltage source, express the
controlling variable in terms of the loop currents.

LearningASSESSMENTS

E3.11 Use mesh analysis to find V, in the circuit in Fig. E3.11. Q ANSWER: V, = 12 V.

2k0 12V

2000/, <+>

E3.12 Use loop analysis to solve the network in Example 3.5 and compare the time and effort
involved in the two solution techniques.

Figure E3.11

E3.13 Use nodal analysis to solve the circuit in Example 3.15 and compare the time and effort
involved in the two solution strategies.

[ 3.3

Application
Example

A_ conceptual circuit for manually setting the speed of a dc electric motor is shown in APPLICATION
Fig. 3.31a. The resistors R, and R, are inside a component called a potentiometer, or pot, EXAMPLE 3.22
which is nothing more than an adjustable resistor, for example, a volume control. Turning s

the knob changes the ratio @ = R,/(R; + R,), but the total resistance, R, = R; + R,, is
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() A simple dc motor

APTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES

Figure 3.31 «3

driver and (b) the circuit
model used to analyze it.

1

unchanged. In this way the pot forms a voltage divider that sets the voltage Vipeea- The
power amplifier output, V,,, is four times Vipeea- Power amplifiers can output the high cur-
rents needed to drive the motor. Finally, the dc motor speed is proportional to Vi that is,
the speed in rpm is some constant k times V. Without knowing the details of the power
amplifier, can we analyze this system? In particular, can we develop a relationship between
rpm and a?

R; fa =1 Power

J'u =7 . a1 amp + 1
v s]'.iced VM/ Vspeed =4 ‘CM ?ncOtOf
1L

5V =

2 —_—

-

[l
lll‘ -

Power amp

SOLUTION

Since the power amplifier output voltage is proportional to its input, we can model the
amplifier as a simple dependent source. The resulting circuit diagram is shown in
Fig. 3.31b. Now we can easily develop a relationship between motor speed and the pot posi-
tion, . The equations that govern the operation of the motor, power amplifier, and the volt-
age divider are

speed (rpm) = K, V),

Vi = 4Vspced
=D 5[&} =5
speed — Rl + Rz —4 Rpg[ e

R, = aR,, Ry = (1 - a)Ry

Combining these relationships to eliminate V,..q yields a relationship between motor speed
and a, that is, rpm = 20a. If, for example, the motor constant K, is 50 rpm/V, then

rpm = 1000«

This relationship specifies that the motor speed is proportional to the pot knob position.
Since the maximum value of & is 1, the motor speed ranges from 0 to 1000 rpm.

Note that in our model, the power amplifier, modeled by the dependent source, can
deliver any current the motor requires. Of course, this is not possible, but it does demon-
strate some of the tradeoffs we experience in modeling. By choosing a simple model, we
were able to develop the required relationship quickly. However, other characteristics of an
actual power amplifier have been omitted in this model.
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3.4 )

Design Example

DESIGN An 8-volt source is to be used in conjunction with two standard resistors to design a voltage
EXAMPLE 3.23 divider that will output 5 V when connected to a 100-p.A load. While keeping the consumed
¥ power as low as possible, we wish to minimize the error between the actual output and the

required 5 volts.

!

SOLUTION  The divider can be modeled as shown in Fig. 3.32. Applying KCL at the output node yields
the equation

VS = Vo Va
i
R, R,

Using the specified parameters for the input voltage, desired output voltage, and the current
source, we obtain
3R,
Ri=— ——
5 + (100p)R,
By trial and error, we find that excellent values for the two standard resistors are
R, = 10k() and R, = 27 k(). Large resistor values are used to minimize power consump-
tion. With this selection of resistors the output voltage is 5.11 V, which is a percent error of

only 2.15%.
¢+ Figure 3.32
A simple voltage-divider
Ry 3 circuit with a 100-pA load.
s
Vs
O
8V i
R.E V, @
100 pA
SUMMARY
Nodal Analysis for an N-node Circuit A voltage source—independent or dependent—may be

connected between a nonreference node and the reference
node or between two nonreference nodes. A supernode is
formed by a voltage source and its two connecting nonrefer-
ence nodes.

®m Determine the number of nodes in the circuit. Select one
node as the reference node. Assign a node voltage between
each nonreference node and the reference node. All node
voltages are assumed positive with respect to the reference

node. For an N-node circuit, there are N — | node voltages. ®
As aresult, N — 1 linearly independent equations must be
written to solve for the node voltages.

® Write a constraint equation for each voltage source—
independent or dependent—in the circuit in terms of the
assigned node voltages using KVL. Each constraint
equation represents one of the necessary linearly independent
equations, and N, voltage sources yield N, linearly
independent equations. For each dependent voltage source, L
express the controlling variable for that source in terms of
the node voltages.

Use KCL to formulate the remaining N — 1 — N, linearly
independent equations. First, apply KCL at each nonrefer-
ence node not connected to a voltage source. Second, apply
KCL at each supernode. Treat dependent current sources like
independent current sources when formulating the KCL
equations. For each dependent current source, express the
controlling variable in terms of the node voltages.

Loop Analysis for an N-loop Circuit

Determine the number of independent loops in the circuit.
Assign a loop current to each independent loop. For an
N-loop circuit, there are N-loop currents. As a result,
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Courtesy of Mark Nelms and Jo Ann Loden

HEN CELL PHONES FIRST EMERGED

IN THE marketplace, they were very

crude when compared with today’s
ubiquitous devices. As strange as it may sound today, the first
phones simply initiated and received phone calls. Because of
the tremendous advances that have been made in integrated
circuit technology, modern cell phones continue to evolve in
such a way that they are capable of numerous functions. For
example, in addition to a regular telephone the device is a
camera, a GPS device, and a sophisticated microcontroller for
Internet access, and it also functions as a modem. In addition,

THE LEARNING GOALS FOR THIS
CHAPTER ARE:
# Learn how to model the op-amp device

® Learn how to analyze a variety of circuits that employ
op-amps =

¥ Understand the use of the op-amp in a number of
practical applications

many phones employ Bluetooth, which permits the exchange
of data between two individuals by simply pointing the
phones at one another.

Although cell phones are a relatively new phenomenon,
the idea has been around for many decades. One issue was
the public’s acceptance of large towers covering the land-
scape. Another, and this is a critical one, was the need for
very high speed electronics to ensure that there was no dead
zone in the telephone call as one moved from one antenna
sector to another. However, it was the advances in electron-
ics that not only solved the problem of maintaining a call as b
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OP-AMP MODELS
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15
‘ { [
10 /
g s N
:;C //1' I
g, 0 . ‘
= \ /
] | 7 (
-5 !
=
e
pe= |
O -10 y
— LM324@%/_15V
-15 —— LMC6492@*.5V [
— MAX42408+_1.5V
20 | | | Yr— .

250 -200 -150 <100 -50 O 50 100 150 200 250
Input voltage, Vi, (V)

¢+ Figure 4.6

80 T
‘ f / Transfer plots for the
60 ‘ | i 4 op-amps listed in
L | | | | A Table 4.1. The supply
s ' / voltages are listed in
S 29 \ ‘ the plot legends.
g Va Note that the
= o s i =1 | LMC6492 and
< ! | ‘ \ MAX4240 have rail-
5 20 ; _
=1 / — LM324@% 15V to-rail output volt-
© 4 / | —— MAX2240@4_15V [ ages (output voltage
-60 | /| | — raoser.msv range exten:js \,t:l-
7T 1] LMC6432@+.5V POINEFBUPECY
80 | | —— ; ues), while the

-1.0 -08 -06 -04 -02 00 02 04 06 08 1.0

Input voltage, v;, (MV)

LM324 and PA03
do not.

Even though the op-amp can function within the minimum and maximum supply volt-
ages, because of the circuit configuration, an increase in the input voltage may not yield a cor-
responding increase in the output voltage. In this case, the op-amp is said to be in saturation.

The following example addresses this issue.

The input and output signals for an op-amp circuit are shown in Fig. 4.7. We wish to deter-
mine (a) if the op-amp circuit is linear and (b) the circuit’s gain.

EXAMPLE 4.1

a. We know that if the circuit is linear, the output must be linearly related, that is,
proportional, to the input. An examination of the input and output waveforms in Fig. 4.7
clearly indicates that in the region t = 1.25 to 2.5 and 4 to 6 ms the output is constant
while the input is changing. In this case, the op-amp circuit is in saturation and therefore

not linear.

b. In the region where the output is proportional to the input, that is, t = 0 to 1 ms, the
input changes by 1 V and the output changes by 3.3 V. Therefore, the circuit’s gain is 3.3.

Voltage (V)

f Output

3

2 Input

1

N 2 aNe 6 _7 t(ms)
-1

Input

T Output
=3
-4

SOLUTION

4 Figure 4.7
An op-amp input-output
characteristic.
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4 3 As a general rule, when analyzing op-amp circuits we write nodal equations at the Op-amﬂ
. input terminals, using the ideal op-amp model conditions. Thus, the technique is straight-

Fundamental forward and simple to implement.
Op-Amp Circuits

EXAMPLE 4.2 Let us determine the gain of the basic inverting op-amp configuration shown in Fig. 4.13a
using both the nonideal and ideal op-amp models.
VA
R R
1
A% ® > @
el

(@ (b)

o@—. O RAA _@j SAA
“r R R =
B o + 1

=
VA
=
40
N
=
+
|
It:."
L]
S
=
VA

v; P Yo 9
— = v
+ @ > r
— 'v_ —
O == ©_ S AR
(c) (d)
vy Vo
V‘W‘ VW . 4
Ry Ry +
- R,
Vs C_‘) R; 3 Ve v,
Av,
+
Figure 4.13 ‘T ']7'
Op-amp circuit. )

SOLUTION  Our model for the op-amp is shown generically in Fig. 4.13b and specifically in terms of the
parameters R;, A, and R, in Fig. 4.13c. If the model is inserted in the network in Fig. 4.13a,
we obtain the circuit shown in Fig. 4.13d, which can be redrawn as shown in Fig. 4.13e.
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The node equations for the network are

'Dl e 'US T)l vl — 1)0

+— + =0
R, R, R,
Vo — U Uy — AU!'
+ =0
R, R,
where v, = —v,. The equations can be written in matrix form as

= ] ( 1 )

—+ —4+ = —|—= Vg

B, R R, R, |:v,:| s
== 1

_(L i) D s 0

R, R

1 1 1
= e Vs
v]_1|R R R; —
A —A— - T '
== 50
R- Ro RI Ri RD
where
e an) )
A=l—+—+—]||l=—+=]-|=]||=—-=
e T AT Byliho —R,
Hence,

which can be written as
Cio— —(R./R,)
Ci (Cex RNy ey
Rl Rs’ RZ RZ Ru RZ Rl Rn

If we now employ typical values for the circuit parameters (e.g.., A = 10°, R, = 10° (),
R, =100, R, = 1k, and R, = 5k()), the voltage gain of the network is

(<!

— = —4.9996994 = —5.000
Vs

However, the ideal op-amp has infinite gain. Therefore, if we take the limit of the gain equa-
tion as A — co, we obtain

. U, R2
lim | — ) = —— = —-5.000
A—»:!C ’Us R'

Note that the ideal op-amp yielded a result accurate to within four significant digits of that
obtained from an exact solution of a typical op-amp model. These results are easily repeated
for the vast array of useful op-amp circuits.

We now analyze the network in Fig. 4.13a using the ideal op-amp model. In this model

e e e )

V. = U

157
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As shown in Fig. 4.13a, v, = 0 and, therefore, v_ = 0. If we now write a node equation at
the negative terminal of the op-amp, we obtain

'US_O ’UO—O
- =
R, R,
or
% B
Us R,

and we have immediately obtained the results derived previously.

Notice that the gain is a simple resistor ratio. This fact makes the amplifier very versatile in
that we can control the gain accurately and alter its value by changing only one resistor. Also,
the gain is essentially independent of op-amp parameters. Since the precise values of A,, R,,
and R, are sensitive to such factors as temperature, radiation, and age, their elimination results
in a gain that is stable regardless of the immediate environment. Since it is much easier to
employ the ideal op-amp model rather than the nonideal model, unless otherwise stated we will
use the ideal op-amp assumptions to analyze circuits that contain operational amplifiers.

Op-Amp Circuits

Step 1. Use the ideal op-amp model: A, = oo, R; = o0, R, = 0.

24 o iy, = =10 e U, =
Step 2. Apply nodal analysis to the resulting circuit.
Step 3. Solve nodal equations to express the output voltage in terms of the op-amp
input signals.
EXAMPLE 4.3 Let us now determine the gain of the basic noninverting op-amp configuration shown in Fig. 4.14.
Figure 4.14 - Vin ——>
gure 4.14 =} el
The non- {_‘

inverting op-amp
configuration.

VA
Rp

R;'f

SOLUTION

Once again we employ the ideal op-amp model conditions, that is, v~ = v, and i_ = i..
Using the fact that i_ = 0 and v_ = v;,, the KCL equation at the negative terminal of the
op-amp is

Vin = v, Uin
R Ry
or
bl
Y\® " R-) R
Thus
i) i =L &
in RI

Note the similarity of this case to the inverting op-amp configuration in the previous exam-
ple. We find that the gain in this configuration is also controlled by a simple resistor ratio
but is not inverted; that is, the gain ratio is positive.
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The remaining examples, though slightly more complicated, are analyzed in exactly the
same manner as those outlined above.

Gain error in an amplifier is defined as

actual gain — ideal gain
GE = [ = 2 } X 100%

ideal gain
We wish to show that for a standard noninverting configuration with finite gain A , the gain

error 1s

—100%

GE = ———
1+ A,B

where B = R,/(R, + R,).

EXAMPLE 4.4

The standard noninverting configuration and its equivalent circuit are shown in Fig. 4.15a
and b, respectively. The circuit equations for the network in Fig. 4.15b are
i U i R,
Vs = v, + Uy, vy, =— and v =
S in 1 in A 1 Rl AT R2

a

Y, = B’Un

The expression that relates the input and output is

b= 'U“[ALO 2 B] £ u,,[l +Az:r,ﬁ}

and thus the actual gain is
Tt
vS 1+ AnB

Recall that the ideal gain for this circuit is (R, + R,)/R, = 1/B. Therefore, the gain
error i

A, I
GE=|1+AB B |100%
/B
which when simplified yields
= or
GE = 100%
14 A,B
Vs o0——0 =0,
+
Vin onin
—0 U, =
O =
U1 AN
Ry

(@) (b)

SOLUTION

¢ Figure 4.15
Circuits used in Example 4.4.
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EXAMPLE 4.5 Consider the op-amp circuit shown in Fig. 4.16. Let us determine an expression for the
output voltage.
Figure 4.16 Ry
i . / AAA
Differential amplifier
operational 3
amplifier circuit. o
+ \ O
3 S
Uy v,
o 0

1

SOLUTION The node equation at the inverting terminal is

V=V VO
R, R,

At the noninverting terminal KCL yields
U2 - 'U+ 'U.,. A
=5 - e p
R, T o
However, i, = i. = 0 and v, = v_. Substituting these values into the two preceding equa-
tions yields

TJ]_’U_+'U,,_'U_

=0
R, R,
and
v: ) B = v
Solving these two equations for v, results in the expression
R2(1+R') R v sz
v, = — =l =
% R Rs) Ry BiRa e Ry

Note that if R, = R, and R; = R,, the expression reduces to

Therefore, this op-amp can be employed to subtract two input voltages.

EXAMPLE 4.6 The circuit shown in Fig. 4.17a is a precision differential voltage-gain device. It is used to
provide a single-ended input for an analog-to-digital converter. We wish to derive an expres-
sion for the output of the circuit in terms of the two inputs.

SOLUTION  To accomplish this, we draw the equivalent circuit shown in Fig. 4.17b. Recall that the volt-
age across the input terminals of the op-amp is approximately zero and the currents into the
op-amp input terminals are approximately zero. Note that we can write node equations for
node voltages v, and v, in terms of v, and v,. Since we are interested in an expression for
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v, in terms of the voltages v, and v,, we simply eliminate the v, terms from the two node
equations. The node equations are

L S + vy v

- =10
R, R, R
V; — U, vy — ¥ Vs
2 242 14229
R Re R,
Combining the two equations to eliminate v,, and then writing v, in terms of », and v,, yields
R, 2R,
=i =)l L+ =—k=—
R, Rg
Ylo—r~_ 5
| >—v—01, oY
3 R, SR,
fedl Lt
(5 0

vzo—\_,va ERG —e gRG

>

(@) (b)

’E.aﬂ;ﬂ%;a'n’:aitng ASSESSMENTS

§- Figure 4.17
Instrumentation amplifier
circuit.

E4.1 Find [, in the network in Fig. E4.1. 5

- <
12VCI> 310k

Figure E4.1

ANSWER: [, = 8.4 mA.

(continues on the next page)
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E4.2 Determine the gain of the op-amp circuit in Fig. E4.2.

v >
ANSWER: — =1 + R'.
Vs R,

Figure E4.2

E4.3 Determine both the gain and the output voltage of the op-amp configuration shown in ~ ANSWER: V, = 0.101 V;

Fig. E4.3. E

Figure E4.3

gain = 101.

100 k)

1k

EXAMPLE 4.7

The two op-amp circuits shown in Fig. 4.18 produce an output given by the equation

V, = 8V, — 4V,
where
[ENVE=Y= 28\ —and = 2aVi=N Sy

We wish to determine (a) the range of V, and (b) if both of the circuits will produce the full
range of V, given that the dc supplies are +£10 V.

SOLUTION

a. Given that V, = 8 V{ — 4 V; and the range for both V, and V,as | V=V, = 2 V and
2V =V, =3V, we find that

Vomax = 8(2) —4(2) =8V and Vg, = 8(1) — 4(3) = -4V

and thus the range of V, is —4 V to +8 V.

b. Consider first the network in Fig. 4.18a. The signal at V,, which can be derived using the
network in Example 4.5, is given by the equation V, = 2 V; — V,. V, is a maximum
whenV; = 2 Vand V, = 2 V, thatis, V,,,, = 2(2) — 2 = 2 V. The minimum value for
V. occurs when V; = 1 Vand V, = 3V, thatis, V,;, = 2(1) — 3 = —1 V. Since both
the max and min values are within the supply range of £10 V, the first op-amp in
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Fig. 4.18a will not saturate. The output of the second op-amp in this circuit is given by
the expression V, = 4V,. Therefore, the range of V, is —4 V = V, = 8 V. Since this range
is also within the power supply voltages, the second op-amp will not saturate, and this
circuit will produce the full range of V,,.

Next, consider the network in Fig. 4.18b. The signal V, = —8V] and so the range of V, is
—16 V =V, = —8V and the range of V, is outside the power supply limits. This circuit will
saturate and fail to produce the full range of V.

lpo———rng Vi

= V,
VAA
10 k2
310 kQ2
Vo el
(a)
80 kO
WA
10 k
Vi o— -

/_I_/ vy 10 k2 10 kQ
= — W\ — VAA

AA M B

V’ O—'\\_ V- 10 k€ .\r -L/l\\ VO
30 k2
10kQ %
(b)

If you review the op-amp circuits presented in this chapter to this point, you will note one
common characteristic of all circuits. The output is connected to the inverting input of the
op-amp through a resistive network. This connection where a portion of the output voltage is
fed back to the inverting input is referred to as negative feedback. Recall from the model of an
ideal op-amp that the output voltage is proportional to the voltage difference between the input
terminals. Feeding back the output voltage to the negative input terminal maintains this voltage
difference near zero to allow linear operation of the op-amp. As a result, negative feedback is
necessary for the proper operation of nearly all op-amp circuits. Our analysis of op-amp
circuits is based on the assumption that the voltage difference at the input terminals is zero.

Almost all op-amp circuits utilize negative feedback. However, positive feedback is uti-
lized in oscillator circuits, the Schmitt trigger, and the comparator, which will be discussed in
the following section. Let’s now consider the circuit in Fig. 4.19. This circuit is very similar
to the circuit of Fig. 4.13a. However, there is one very important difference. In Fig. 4.19,
resistor R, is connected to the positive input terminal of the op-amp instead of the negative

4w Figure 4.18

Circuits used in
Example 4.7.
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TABLE 4.4 A listing of some of the features of the LM339 and MAX917 comparators

PRODUCT MIN. SUPPLY MAX. SUPPLY SUPPLY CURRENT MAX. OUTPUT CURRENT TYPICAL Ry up

LM339 36V 50 mA 3k
MAXg19 2.8 V 55V 0.8 ;LA 8 mA NA

~— Input 4+ Figure 4.21

— Output
o - o (a) A zero-crossing
- 3k 4 detector and (b) the
+ e . .
e S , . i |- corresponding input/
0O @ output waveforms.
+ o 0
. ©
-5V V, S \ / U \
Vs C:) = Q |
. = .l
= -6 { —— ‘
- .. Time

(@) (b)

ﬁtbis point, we have a new element, the op-amp, which we can effectively employ in both 4 5

applications and circuit design. This device is an extremely useful element that vastly e X
expands our capability in these areas. Because of its ubiquitous nature, the addition of the Appllcatlon
op-amp to our repertoire of circuit elements permits us to deal with a wide spectrum of Examples
practical circuits. Thus, we will employ it here, and also use it throughout this text.

L ]

In a light meter, a sensor produces a current proportional to the intensity of the incident APPLICATION
radiation. We wish to obtain a voltage proportional to the light’s intensity using the circuit EXAMPLE 4.8
in Fig. 4.22. Thus, we select a value of R that will produce an output voltage of 1 V for each

10 A of sensor current. Assume the sensor has zero resistance.

R ¢+ Figure 4.22
Light intensity to voltage
converter.
O
1 +
Incident =
light

N~ | o
sensor v,

Applying KCL at the op-amp input, SOLUTION

I =V,/R
Since V,/1 is 10°,
R = 100 kQ
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APPLICATION
EXAMPLE 4.9

The circuit in Fig. 4.23 is an electronic ammeter. It operates as follows: the unknown cur-
rent, /, through R; produces a voltage, V,. V, is amplified by the op-amp to produce a volt-
age, V,, which is proportional to /. The output voltage is measured with a simple voltmeter.
We want to find the value of R, such that 10 V appears at V, for each milliamp of unknown
current.

SOLUTION

Figure 4.23 «¥
Electronic ammeter.

Since the current into the op-amp + terminal is zero, the relationship between V; and / is
Vi = IR,
The relationship between the input and output voltages is
R,
= iR
R

or, solving the equation for V,/ 1, we obtain

vn R,

1 R,
Using the required ratio V,/ I of 10* and resistor values from Fig. 4.23, we can find that
R, = 9kQ
o P
I e
—_—— L
Unknown -?I-
S : T Volmeter | |
VISR =1k | AR v,
- R, 7 ]
< oA o4
Ry =1k() — -
O ¥

APPLICATION
EXAMPLE 4.10

Let us return to the dc motor control example in Chapter 3 (Example 3.22). We want to
define the form of the power amplifier that reads the speed control signal, V..., and outputs
the dc motor voltage with sufficient current to drive the motor as shown in Fig. 4.24. Let us
make our selection under the condition that the total power dissipation in the amplifier
should not exceed 100 mW.

SOLUTION

Figure 4.24 %
The dc motor
example from

Chapter 3.

From Table 4.1 we find that the only op-amp with sufficient output voltage—that is, a max-
imum output voltage of (4)(5) = 20 V—for this application is the PA03 from APEX. Since

5V

I
il

R, =" Power
e am
Rpot j

R, Q=0 " VM/Vspeed = + ]

o

Vspccd Vv i,»—"«,\ de
o l M \,ff’ motor
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S~ 4 Figure 4.25
/_L/ 5 The power amplifier
= configuration using the
Ry S A+
5V = VA 7\ PA03 op-amp.
B E R Vi
T Ry Vipeed B r -
- Rq
— = = = :l.__

the required gain is +4, we can employ the standard noninverting amplifier configuration
shown in Fig. 4.25. If the PAQ3 is assumed to be ideal, then

Rg| _
Vic= vspccd[‘ i E:] = 4Vspccd
There are, of course, an infinite number of solutions that will satisfy this equation.

In order to select reasonable values, we should consider the possibility of high currents
in R, and R, when V), is at its peak value of 20 V. Assuming that R;, for the PA03 is much
greater than R, the currents in R and R, essentially determine the total power dissipated.
The total power dissipated in R, and Ry is

e v 2 200 400
TR AR, R Ry KRR,

Since the total power should not exceed 100 mW, we can use 1/4 W resistors—an inexpen-
sive industry standard—with room to spare. With this power specification, we find that

W 400
R, + Ry = —2 = —— = 4000
4 ¥ Plul:ll 0-1
Also, since
Ry
1 +—2=4
R:\

then Rz = 3 R,. Combining this result with the power specification yields R, = 1 k{} and
Rz = 3 k(). Both are standard 5% tolerance values.

An instrumentation amplifier of the form shown in Fig. 4.26 has been suggested. This APPLICATION
amplifier should have high-input resistance, achieve a voltage gain V,/(V; — V,) of 10, EXAMPLE 4.11
employ the MAX4240 op-amp listed in Table 4.1, and operate from two 1.5 V AA cell bat-

teries in series. Let us analyze this circuit, select the resistor values, and explore the validity

of this configuration.

As indicated, the op-amp on the right side of the circuit is connected in the traditional SOLUTION
differential amplifier configuration. Example 4.5 indicates that the voltage gain for this
portion of the network is

And if R, = Rj, the equation reduces to

V, =V, =¥

o x ¥
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Figure 4.26 «3 Differential amplifier
Aninstrumentaliomiseie sus = = & - © - = FERSESlE, RS ;;\';"-
amplifier using the f/‘\} 5 I~

MAX4240 op-amp. _J'"\l —9—1=0)...
RB = RA = JT- VU

It we can find a relationship between V;, V5, and V, and V], then an expression for the over-
all voltage can be written. Applying KCL at node A yields

V-V, V.-V
K+ R

R

In a similar manner, at node B we obtain

or

V=W Yol
TR

R, R,
Vo= =W =X | W) likies

By combining these equations, the output voltage can be expressed as

V.=V —v[1+R'] V[R']+V|:R2] v[1+R1]
o Ern y Xl R 2 R 1 R 2 R

If the resistors are selected such that R, = R,, then the voltage gain is

or

v, 2R,
et R

For a gain of +10, we set R, = 4.5 R. To maintain low power, we will use fairly large values
for these resistors. We somewhat arbitrarily choose R = 100 kQ) and R, = R, = 450 k(). We
can use 100 k{2 resistors in the differential amplifier stage as well.

Note that the voltage gain of the instrumentation amplifier is essentially the same as
that of a generic differential amplifier. So why add the cost of two more op-amps? In this
configuration the inputs V; and V, are directly connected to op-amp input terminals; there-
fore, the input resistance of the intrumentation amplifier is extremely large. From
Table 4.1 we see that R;, for the MAX4240 is 45 M(). This is not the case in the tradi-
tional differential amplifier where the external resistor can significantly decrease the
input resistance.
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(

’ -
I L
£ 3

| )
e \J

Design Examples

We are asked to construct an amplifier that will reduce a very large input voltage (i.e., V,
ranges between +680 V) to a small output voltage in the range ¥5 V. Using only two resis-
tors, we wish to design the best possible amplifier.

DESIGN

EXAMPLE 4.12

Since we must reduce +680 V to —5 V, the use of an inverting amplifier seems to be appro-
priate. The input/output relationship for the circuit shown in Fig. 4.27 is

Since the circuit must reduce the voltage, R, must be much larger than R,. By trial and
error, one excellent choice for the resistor pair, selected from the standard Table 2.1, is
R, = 27k and R, = 200 ). For V;, = 680 V, the resulting output voltage is 5.037 V,
resulting in a percent error of only 0.74%.

Ry
—_M_‘
=
AT \
L O 4
T

-0

SOLUTION

§- Figure 4.27

A standard inverting

amplifier stage.

There is a requirement to design a noninverting op-amp configuration with two resistors
under the following conditions: the gain must be +10, the input range is +2 V, and the total
power consumed by the resistors must be less than 100 mW.

DESIGN

EXAMPLE 4.13

For the standard noninverting configuration in Fig. 4.28a, the gain is

Vo R2
V;n RI

?—-—s+ a-)—r—ch
Vin = Va 2V 2V = Vo =20V
—w— 7
R, o R, ?
R - L 1
(

(b)

a)

SOLUTION

4w Figure 4.28

The noninverting op-amp

configuration employed in

Example 4.13.
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For a gain of 10, we find R,/R; = 9.1f R, = 3kQ and R, = 27 k{), then the gain require-
ment is met exactly. Obviously, a number of other choices can be made, from the standard
Table 2.1, with a 3/27 ratio. The power limitation can be formalized by referring to
Fig. 4.28b where the maximum input voltage (2 V) is applied. The total power dissipated by
the resistors is

g2 (20 = 2)° " e

Pp=—4+——"=—+"<(.
&R R, R, ' 9R, 2,

The minimum value for R, is 400 ().

9

DESIGN
EXAMPLE 4.14

We wish to design a weighted-summer circuit that will produce the output
V,=—-09V, — 0.1V,

The design specifications call for use of one op-amp and no more than three resistors.
Furthermore, we wish to minimize power while using resistors no larger than 10 k).

SOLUTION

Figure 4.29 w3
A standard weighted-
summer configuration.

A standard weighted-summer configuration is shown in Fig. 4.29. Our problem is reduced
to finding values for the three resistors in the network.
Using KCL, we can write

where

Therefore, we require

R R

— =09 and — = 0.

3 0.9 an R,
From these requirements, we see that the largest resistor is R, and that R is the smallest.
Also, note that the R/R, ratio can be expressed as 27/30. Finally, to minimize power, we
should use the largest possible resistor values. Based on this information, the best resis-
tor values are R = 270 (), R, = 300 (2, and R, = 2.7 kQ), which yield the desired per-
formance exactly.

0

||}A
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In Example 2.36, a 250-() resistor was used to convert a current in the 4- to 20-mA range
to a voltage such that a 20-mA input produced a 5-V output. In this case, the minimum cur-
rent (4 mA) produces a resistor voltage of 1 V. Unfortunately, many control systems oper-
ate on a 0- to 5-V range rather than a 1- to 5-V range. Let us design a new converter that will
output 0 V at 4 mA and 5 V at 20 mA.

DESIGN
EXAMPLE 4.15

The simple resistor circuit we designed in Example 2.36 is a good start. However, the
voltage span is only 4 V rather than the required 5 V, and the minimum value is not zero.
These facts imply that a new resistor value is needed and the output voltage should be
shifted down so that the minimum is zero. We begin by computing the necessary resistor
value.

o Vorin = =
lom — lo 002 — 0.004

The resistor voltage will now range from (0.004)(312.5) to (0.02)(312.5) or 1.25t0 6.25 V.
We must now design a circuit that shifts these voltage levels so that the range is 0 to 5 V.
One possible option for the level shifter circuit is the differential amplifier shown in Fig.
4.30. Recall that the output voltage of this device is

R:

= 31250

R,
Vo=V —Vase) F}
Since we have already chosen R for a voltage span of 5 V, the gain of the amplifier should
be I (i.e., R, = R,). Clearly, the value of the required shift voltage is 1.25 V. However, we
can verify this value by inserting the minimum values into this last equation
R,
0 = [(312.5)(0.004) ~ V] 22
1
and find
Vaie = (312.5)(0.004) = 1.25V

There is one caveat to this design. We don’t want the converter resistor, R, to affect
the differential amplifier, or vice versa. This means that the vast majority of the
4-20 mA current should flow entirely through R and not through the differential ampli-
fier resistors. If we choose R, and R, >> R, this requirement will be met. Therefore,
we might select R, = R, = 100 k€2 so that their resistance values are more than 300
times that of R.

Differential amplifier with shifter

SOLUTION

¢~ Figure 4.30
A 4—20mAto o-5V
converter circuit.
















































SECTION 5.1

LINEARITY All the circuits we have analyzed thus far have been linear circuits, which are
described by a set of linear algebraic equations. Most of the circuits we will analyze in the
remainder of the book will also be linear circuits, and any deviation from this type of network
will be specifically identified as such.

Linearity requires both additivity and homogeneity (scaling). It can be shown that the cir-
cuits that we are examining satisfy this important property. The following example illustrates
one way in which this property can be used.

INTRODUCTION

185

L ]

For the circuit shown in Fig. 5.1, we wish to determine the output voltage V,,,. However,
rather than approach the problem in a straightforward manner and calculate /,, then /;, then
I, and so on, we will use linearity and simply assume that the output voltage is V,,, = 1 V.
This assumption will yield a value for the source voltage. We will then use the actual value
of the source voltage and linearity to compute the actual value of V.

EXAMPLE 5.1

If we assume that V,,, = ¥, = 1 V, then

V2
L=-==05mA

ok
V, can then be calculated as
=4k, + 1,
= 33V
Hence,
ol
I, = i = 1mA

Now, applying KCL,
I,=1 +L=15mA

Then
V, =2kl + V
=6V

Therefore, the assumption that V,,, = 1 V produced a source voltage of 6 V, However, since
the actual source vo!tage is 12V, the actual output voltage is 1 V(12/6) = 2 V.

SOLUTION

I V. = Figure 5.1
o o I Vs E {-- Figure 5
2 k0 EfS Circuit used
in Example 5.1.
12v () 3kO 2k Viy
4] Er
.L_ $ :
learning ASSESSMENT
E5.1 Use linearity and the assumption that I, = 1 mA to compute the correct current I, in the ANSWER: I, = 3 mA.

circuit in Fig. E5.1 if I = 6 mA.

VIAA P WA
4 k() 2k

< <
éakn 6 kQ éskn

Figure E5.1 | L Iy
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CHAPTER 5

ADDITIONAL ANALYSIS TECHNIQUES

N Y

5

Superposition

1 S

3

EXAMPLE 5.2

e

To provide motivation for this subject, let us examine the simple circuit of Fig. 5.2a in which
two sources contribute to the current in the network. The actual values of the sources are left
unspecified so that we can examine the concept of superposition.

SOLUTION

Figure 5.2 ..g..
Circuits used to illustrate
superposition.

3k

The mesh equations for this network are

6kiy (1) — 3kiy(1) = v(r)
—3ki; (1) + 9kiy(1) = —us(1)

Solving these equations for i) (1) yields

b= 15k

In other words, the current #,(7) has a component due to v,(r) and a component due to v,(r). In
view of the fact that i,(#) has two components, one due to each independent source, it would be
interesting to examine what each source acting alone would contribute to #(r). For (1) to act
alone, v,(1) must be zero. As we pointed out in Chapter 2, v,(¢) = 0 means that the source v,(r)
is replaced with a short circuit. Therefore, to determine the value of i|(r) due to v,(r) only, we
employ the circuit in Fig. 5.2b and refer to this value of |(1) as ii(r).

el v (1) _ (1)
)= (3k)(6k) 5k
e

Let us now determine the value of i|(¢) due to v,(7) acting alone and refer to this value as
i(1). Using the network in Fig. 5.2c,

e ., (1) _ —2u(t)
B0 = - GyE T Bk
Sk 3k + 3k

Then, using current division, we obtain

—2vy(t) ( 3k ) = —vy(t)
15k 3k + 3k 15k

ii(t) =

Now, if we add the values of i{(7) and i{(r), we obtain the value computed directly; that is,

%) _ i)

AR ORRHOESS e

Note that we have superposed the value of i{(r) on i{(r), or vice versa, to determine the
unknown current.

U]U)C

AAA

@ ]

3k0

) iy(r) 3k 6 k0 i1(r) 3ka 6kﬂ i45(1)
A WA - !

WA VWA

@ vy(0) -ul(r)@) 3K 3Kk0 (:) 0

(@)

(b) (c)
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What we have demonstrated in Example 5.2 is true in general for linear circuits and is a
direct result of the property of linearity. The principle of superposition, which provides us
with this ability to reduce a complicated problem to several easier problems—each contain-
ing only a single independent source—states that

In any linear circuit containing multiple independent sources, the current or voltage at any

point in the network may be calculated as the algebraic sum of the individual contributions of

each source acting alone.

When determining the contribution due to an independent source, any remaining voltage
sources are made zero by replacing them with short circuits, and any remaining current sources
are made zero by replacing them with open circuits.

Although superposition can be used in linear networks containing dependent sources, it is
not useful in this case since the dependent source is never made zero.

As the previous example indicates, superposition provides some insight in determining the
contribution of each source to the variable under investigation.

We will now demonstrate superposition with two examples and then provide a problem-
solving strategy for the use of this technique. For purposes of comparison, we will also solve
the networks using both node and loop analyses. Furthermore, we will employ these same
networks when demonstrating subsequent techniques, if applicable.

187

SUPERPOSITION

Let us use superposition to find V, in the circuit in Fig. 5.3a.

EXAMPLE 5.3

ViV 4 -1 > ==X W
2 k) = : 2k I +
3V 0
‘g 1kQ 2mA 6 k0 Vo 3 1kQ 2mA 3 6 k() Vo
(a) (b)
2k 3V
YW + e WA —+ ==
2 kQ + +
3Vv
'211(11 GO = W 1kn§|fl | () 14 6 kQ = =
-« Figure 5.
o ¢~ Figure 5.3
= = Circuits used
¥ i in Example 5.3.
(c) (d) =
The contribution of the 2-mA source to the output voltage is found from the network in SOLUTION

Fig. 5.3b, using current division
1k + 2k ) 2

%=@x“ﬁmm+2k+& i

and -
vV, =1I,(6k) =4V

The contribution of the 3-V source to the output voltage is found from the circuit in
Fig. 5.3c. Using voltage division,

— 6k
Ve 3(Ek = 6k>

=2V
Therefore,
V=V, +V =6V

Although we used two separate circuits to solve the problem, both were very simple.
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If we use nodal analysis and Fig. 5.3a to find V, and recognize that the 3-V source and
its connecting nodes form a supernode, V, can be found from the node equation

v, -3
1k + 2k

which yields V, = 6 V. In addition, loop analysis applied as shown in Fig. 5.3d produces
the equations

v,
XA +—=10
6k

L= —2%107"

and

which yield , = 1 mA and hence V, = 6 V.

EXAMPLE 5.4 Consider now the network in Fig. 5.4a. Let us use superposition to find V,.
+ +
sv(t) 4KO ev(j) 34k
2k J 2 k0
6 kQ 2 Vo —AM—s 6 kO 3 v,
2ma(} 2k 22k
>
(a) (b)
s =
6 kQ |7 4kQ
+
) = 2k 2
6V<j> Vi 4k : { 6k0 S | 74
‘2 2k 2ma ('} 2kQ
2kQ =
“AN— .
(c) (d)
+ 7 T % +
ll ’l
-‘alkn eV E) @ g
: '
A 1 Il : V 8
— ._|_M\_4.
2 mA (D 6 ki Ve \Yi__s./ L 1 @ gekn 7]
2k2 3 (D @ % 2kQ
2mA et
(e) ()

- C o
Figure 5.4

:
Circuits used in example 5.4.
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SUPERPOSITION

The contribution of the 6-V source to V, is found from the network in Fig. 5.4b, which is
redrawn in Fig. 5.4c. The 2 kQ + 6 k{2 = 8-k{} resistor and 4-k(] resistor are in parallel,
and their combination is an 8 /3-k{} resistor. Then, using voltage division,

Applying voltage division again,

NIE 6k 18
V"_V'(Gk+2k)- 7Y

The contribution of the 2-mA source is found from Fig. 5.4d, which is redrawn in Fig. 5.4e.
V! is simply equal to the product of the current source and the parallel combination of the
resistors; that is,

10 30
e 10'3)(?k//6k) =
Then
V= V4 vi= 2V

A nodal analysis of the network can be performed using Fig. 5.4f. The equation for the
supernode is
el =% V-9 %

—_ =3 - —_—=
PAZL MU e X yon +6k 0

The equation for the node labeled V; is
WV h-(h-8 Vi _
4k 2k 2k

Solving these two equations, which already contain the constraint equation for the super-
node, yields V, = 48/7 V.
Once again, referring to the network in Fig. 5.4f, the mesh equations for the network are
-6+ 4k(h — L)+ 2k(l, - L) =0
T =B 0=
2k(l; — L) + 4k(L, — I) + 6kl = 0
Solving these equations, we obtain /; = 8/7 mA and, hence, V, = 48/7 V.

SOLUTION
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Let us demonstrate the power of superposition in the analysis of op-amp circuits by deter-
mining the input/output relationship for the op-amp configuration shown in Fig. 5.5a.

EXAMPLE 5.5

The contribution of V| to the output V, is derived from the network in Fig. 5.5b where V; is
set to zero. This circuit is the basic inverting gain configuration and
Vc)l R2

Vi R
The contribution due to V; is shown in Fig. 5.5¢ where V] is set to zero. This circuit is the
basic noninverting configuration and
Vi R,
—_— + —
1z R

SOLUTION
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Figure 5.5 =3

(a) a superposition
example circuit; (b) the
circuit with V; set to zero;
(c) the circuit with V, set
to zero.

Therefore, using superposition,

R" R'J
2=+ Bl - 5]y

Thus, in this case, we have used what we learned in Chapter 4, via superposition, to imme-
diately derive the input/output relationship for the network in Fig. 5.5a.

Ry
VWA

Ry e
AA
R | & o
VW : «..>_—___ (b)
U T
= R>
V‘@) 4 Yo
= = & J >
(a) VZCi) Ry Vo2

()

Problem-Solving sTraTEGY

Applying
Superposition
»

Step 1. In a network containing multiple independent sources, each source can be
applied independently with the remaining sources turned off.

Step 2. To turn off a voltage source, replace it with a short circuit, and to turn off a
current source, replace it with an open circuit.

Step 3. When the individual sources are applied to the circuit, all the circuit laws
and techniques we have learned, or will soon learn, can be applied to obtain a
solution.

Step 4. The results obtained by applying each source independently are then added
together algebraically to obtain a solution.

Superposition can be applied to a circuit with any number of dependent and independent sources.
In fact, superposition can be applied to such a network in a variety of ways. For example, a
circuit with three independent sources can be solved using each source acting alone, as we
have just demonstrated, or we could use two at a time and sum the result with that obtained
from the third acting alone. In addition, the independent sources do not have to assume their
actual value or zero. However, it is mandatory that the sum of the different values chosen add
to the total value of the source.
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To determine the Norton equivalent circuit at the terminals of the load, we must find the
short-circuit current as shown in Fig. 5.8e. Note that the short circuit causes the 3-V source
to be directly across (i.e., in parallel with) the resistors and the current source. Therefore,
I, = 3/(1k + 2k) = | mA. Then, using KCL, I, = 3 mA. We have already determined R,
and, therefore, connecting the Norton equivalent to the load results in the circuit in Fig. 5.8f.
Hence, V, is equal to the source current multiplied by the parallel resistor combination,
which is 6 V.

Consider for a moment some salient features of this example. Note that in applying the theorems
there is no point in breaking the network to the left of the 3-V source, since the resistors in
parallel with the current source are already a Norton equivalent. Furthermore, once the network
has been simplified using a Thévenin or Norton equivalent, we simply have a new network with
which we can apply the theorems again. The following example illustrates this approach.

EXAMPLE 5.7

Let us use Thévenin's theorem to find V, in the network in Fig. 5.9a.

SOLUTION  If we break the network to the left of the current source, the open-circuit voltage V,, is as
shown in Fig. 5.9b. Since there is no current in the 2-k{) resistor and therefore no voltage
across it, V,, is equal to the voltage across the 6-k{} resistor, which can be determined by
voltage division as

6k
V=12 ———=l|==8V
= (Gk + BR)
3k 2 k) 4 k() 3 k() 2 k)
VWA VA AAA = AN
+ +
12v<i> 6 kQ akng> vV, 12V 6 kQ Veon,
2 mA )
. & O
(@) (b)
3 k) 2 kQ 4 k() 4 k()
VWA vW—-o0 VWA W *
-+
6kQ «Rm, 8V Ci) 8 kQ V,
2 mA -
o . e
(©) (d)
4 k) 4 kQ 4 k() 4 k(1
VWA O VWA =
+ +
oY @) Voc, «—Rm, 16V Ci) 8 kQ v
2 mA
O
(e) (f) (@

Figure 5.9 '*'
Circuits used in Example 5.7.
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The Thévenin equivalent resistance, Ry, . is found from Fig. 5.9¢ as

(3)(6K) _

=4k
3k + 6k

Ry =2kt
Connecting this Thévenin equivalent back to the original network produces the circuit
shown in Fig. 5.9d. We can now apply Thévenin’s theorem again, and this time we break
the network to the right of the current source as shown in Fig. 5.9e. In this case V,, is

Voe, = (2 X 107%)(4k) + 8 =16V

and Ry, obtained from Fig. 5.9f is 4 k(). Connecting this Thévenin equivalent to the
remainder of the network produces the circuit shown in Fig. 5.9g. Simple voltage division
applied to this final network yields V, = 8 V. Norton’s theorem can be applied in a similar
manner to solve this network; however, we save that solution as an exercise.
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It is instructive to examine the use of Thévenin’s and Norton’s theorems in the solution of
the network in Fig. 5.4a, which is redrawn in Fig. 5.10a.

EXAMPLE 5.8

L

If we break the network at the 6-k() load, the open-circuit voltage is found from Fig. 5.10b.
The equations for the mesh currents are

—6 + 4kl + 2k(l, — L) = 0

and
L= 2% 10%

from which we easily obtain J; = 5/3 mA. Then, using KVL, V,_ is
V,. = 4kl, + 2kl

= 4k(§ 3 10—-’) + 2k(2 x 107%)

32
3
Ry, is derived from Fig. 5.10c and is

1
Ro = (2k//4k) + 2k = ?Ok().

Attaching the Thévenin equivalent to the load produces the network in Fig. 5.10d. Then
using voltage division, we obtain

32 6k
Sl i
Blcb=—lc
3
48
=—V
7

In applying Norton’s theorem to this problem, we must find the short-circuit current
shown in Fig. 5.10e. At this point the quick-thinking reader stops immediately! Three mesh
equations applied to the original circuit will immediately lead to the solution, but the three
mesh equations in the circuit in Fig. 5.10e will provide only part of the answer, specifi-
cally the short-circuit current. Sometimes the use of the theorems is more complicated than
a straightforward attack using node or loop analysis. This would appear to be one of those
situations. Interestingly, it is not. We can find /. from the network in Fig. 5.10e without using

SOLUTION
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:
6V 9 4kQ
2k )
$6k2V,
0 2kQ
2 mA -
(a)
4kQ
2k
4—R’I‘h
2kQ
(c)
@ (1 gom
2 k)
ISC

2 mA

Figure 5.10 '?'
Circuits used in Example 5.8.

2kQ
VOC
@ @ 2k0
2mA -
(b)
10
Tk
WV——y o
+
Cj) 2y 62V,
(d)
+
16 10 :
? mA ? k) é 6 k2 VO

()

the mesh equations. The technique is simple, but a little tricky, and so we ignore it at this time.
Having said all these things, let us now finish what we have started. The mesh equations for
the network in Fig. 5.10e are

—6 + 4k(l, — L) + 2k(, -2 % 107%) = 0
2k(I, — 2% 107) + 4k(f, - 1) =0

where we have incorporated the fact that /, = 2 X 107 A. Solving these equations yields
I. = 16/5 mA. Ry, has already been determined in the Thévenin analysis. Connecting the
Norton equivalent to the load results in the circuit in Fig. 5.10f. Solving this circuit yields
V, = 48/7V.
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E5.3 Use Thévenin's theorem to find V, in the network in Fig. E5.3.

Figure E5.3

6 k0 2kQ
VWA—— o AAA
lsm

BVCiD
d‘,mv

E5.4 Find V, in the circuit in Fig. E5.2 using both Thévenin’s and Norton’s theorems. When
deriving the Norton equivalent circuit, break the network to the left of the 2-k{} resistor. Why?

ANSWER: V, = —3V.

ANSWER: V, = %v.

CIRCUITS CONTAINING ONLY DEPENDENT SOURCES As we have stated earlier,
the Thévenin or Norton equivalent of a network containing only dependent sources is Ryy,.
The following examples will serve to illustrate how to determine this Thévenin equivalent

resistance.

We wish to determine the Thévenin equivalent of the network in Fig. 5.11a at the terminals A-B.

- Vi s
WA
1k
2k0 1o | A
3
éwn 2V, 3 2k0
B

@)

EXAMPLE 5.9

Our approach to this problem will be to apply a 1-V source at the terminals as shown in
Fig. 5.11b and then compute the current /, and Ry, = 1/1,.

The equations for the network in Fig. 5.11b are as follows. KVL around the outer loop

specifies that

Vit V=1

The KCL equation at the node labeled V; is

Vi i

V-1
- =

-+
1k 2k

1k 0

W g
VA
1 k)
2 k0 1k L A
Vig—w - Vi
| 7
§P1 kO 2V, 2k0 1V
I
< ' B
(b) "f' Figure 5.11
Networks employed
in Example 5.9.
SOLUTION
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Solving the equations for V, yields V, = 3/7 V. Knowing V,, we can compute the cur-
rents I;, I,, and ;. Their values are

I—V"—3mA
LTk 7
I_1—2v,,_| A
E= e g
P ]
L=—=—-mA
SaEok =
Therefore,
L= 1+ hitd
"EmA
14
and
1
Ry = —
LN
14
= —kf)
15

EXAMPLE 5.10

Let us determine Ry, at the terminals A-B for the network in Fig. 5.12a.

SOLUTION

Our approach to this problem will be to apply a 1-mA current source at the terminals A-B and
compute the terminal voltage V, as shown in Fig. 5.12b. Then Ry, = V5/0.001.
The node equations for the network are

M -2000L Vi %=V

+ —
2k 1k 3k 0
VZ_V‘+VE—I><10‘3
3k 2%k
and
Vi
= 9k
Solving these equations yields
10
Vo=—V
- 7
and hence,
R V2
e
Figure 5.12 .}. 10
Networks used By 7](9
in Example 5.10.
2kQ 3kQ A Vi ol
AA VA ' — A'A A 7 VWA O
2 k() 3k
<—> 20001, 1k0 2k0 <:> 20001, 1kQ 2k
I E 1mA
5 B L FanTug

(a) (b)
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CIRCUITS CONTAINING BOTH INDEPENDENT AND DEPENDENT SOURCES In
these types of circuits we must calculate both the open-circuit voltage and short-circuit cur-
rent to calculate the Thévenin equivalent resistance. Furthermore, we must remember that we
cannot split the dependent source and its controlling variable when we break the network to
find the Thévenin or Norton equivalent.

We now illustrate this technique with a circuit containing a current-controlled voltage source.

199

Let us use Thévenin's theorem to find V, in the network in Fig. 5.13a. EXAMPLE 5.11

To begin, we break the network at points A-B. Could we break it just to the right of the 12-V ~ SOLUTION

source? No! Why? The open-circuit voltage is calculated from the network in Fig. 5.13b.
Note that we now use the source 2000I; because this circuit is different from that in
Fig. 5.13a. KCL for the supernode around the 12-V source is

V. + 12) = (=20007", e
(Ve +12) = (20000) V412

oc
Ik 2k T
where
’ VUC
f_, = i : .
yielding V,, = -6 V. i Figure 5.13

I,. can be calculated from the circuit in Fig. 5.13c. Note that the presence of the short  Circuits used
circuit forces /] to zero and, therefore, the network is reduced to that shown in Fig. 5.13d.  in Example 5.11.

—— MWW
+ 1kQ

Vo <1> 2000/ 2k

o

(a) (b)

12V 12v
. 4 4
1k NS
2000/, 2 kQ) 2k I. 31 320 I
Iy
B = B
(©) (d)
A - -
ik 1 kO %
ko
(_ 6V 1k V,
x )

(e)

2 k()
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Therefore,

Then

Connecting the Thévenin equivalent circuit to the remainder of the network at terminals A-B
produces the circuit in Fig. 5.13e. At this point, simple voltage division yields

EXAMPLE 5.12

Let us find V, in the network in Fig. 5.14a using Thévenin’s theorem.

B +
Ve 2D (o i
2000 2000
ey
Vo 1 4"’an“ [ Voe
e (D () Do
(@) (b)

Figure 5.14 i 1

Circuits used
in Example 5.12.

() (d)

(e)
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V. is determined from the network in Fig. 5.14b. Note that SOLUTION
Vi
L ==
2k
L, = 2mA
and

= 4k(v—; =)o 10‘3)
- 2k

Solving these equations yields /; = 4 mA and, hence,
V.=2kl, +3=11V

I, is derived frora the circuit in Fig. 5.14¢. Note that if we collapse the short circuit, the net-
work is reduced 1o that in Fig. 5.14d. Although we have temporarily lost sight of /.., we can
easily find the branch currents and they, in turn, will yield .. KCL at the node at the bot-
tom left of the network is

L 2% 107
4k 2000
or
V=8V
Then since
3
L==—=>mA
R
as shown in Fig. 5.14c
I. = s + I
% 2000/ = 2
11
= —2-mA
Then
V.
R = 7"3 =)

Connecting the Thévenin equivalent circuit to the remainder of the original network pro-
duces the circuit in Fig. 5.14e. Simple voltage division yields

v,,=n( 6k )
2k + 6k

4

®

We will now reexamine a problem that was solved earlier using both nodal and loop analy- EXAMPLE 5.13
ses. The circuit used in Examples 3.10 and 3.20 is redrawn in Fig. 5.15a. Since a depend-
ent source is present, we will have to find the open-circuit voltage and the short-circuit cur-
rent in order to employ Thévenin's theorem to determine the output voltage V,,.

As we begin the analysis, we note that the circuit can be somewhat simplified by first form- SOLUTION
ing a Thévenin equivalent for the leftmost and rightmost branches. Note that these two

branches are in parallel and neither branch contains the control variable. Thus, we can sim-

plify the network by reducing these two branches to one via a Thévenin equivalent. For the

circuit shown in Fig. 5.15b, the open-circuit voltage is

2
Voo = = (1K) + 4 =6V
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1k i

1 k()

%ACD Voe,
() av v

:r)|>m
PR
\

(a) (b)

+
o () 2V :> 1k 2V, Voc,
—/W— o
1 k)

0A @

2 2
MORE . TA Iy, = A

1k 3

2V @) 1kQ Vo

(9)
. ate%
Figure 5.15 "}
Circuits used in Example 5.13.
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And the Thévenin equivalent resistance at the terminals, obtained by looking into the ter-

minals with the sources made zero, is
RTh, =1 kQ

The resultant Thévenin equivalent circuit is now connected to the remaining portion of the
circuit producing the network in Fig. 5.15c.

Now we break the network shown in Fig. 5.15¢ at the output terminals to determine the
open-circuit voltage V., as shown in Fig. 5.15d. Because of the presence of the voltage
sources, we will use a nodal analysis to find the open-circuit voltage with the help of a
supernode. The node equations for this network are

Vi =3V,
V= GaVi== 2V
+ = —
1k 1k k
and thus V' = 2V and V; = 6 V. Then, the open-circuit voltage, obtained using the KVL

equation

2
A g W E(]k) =0

Vi, = 2V

The short-circuit current is derived from the network shown in Fig. 5.15e. Once again we
employ the supernode, and the network equations are

Y, =3V,
+ ==
1k 1k k
The node voltages obtained from these equations are V7 = 2V and V, = 6 V. The line
diagram shown in Fig. 5.15f displays the node voltages and the resultant branch currents.
(Node voltages are shown in the circles, and branch currents are identified with arrows.)

The node voltages and resistors are used to compute the resistor currents, while the remain-
ing currents are derived by KCL. As indicated, the short-circuit current is

I, = 2mA

5Cp

Then, the Thévenin equivalent resistance is

g'<

Ry = — = 1k
Thy Isc:

The Thévenin equivalent circuit now consists of a 2-V source in series with a 1-k{) resistor.
Connecting this Thévenin equivalent circuit to the load resistor yields the network shown in
Fig. 5.15g. A simple voltage divider indicates that V, = 1 V.

Problem-Solving sTratecy

Step 1. Remove the load and find the voltage across the open-circuit terminals, V... All Applying Thévenin’s
the circuit analysis techniques presented here can be used to compute this voltage. Theorem

Step 2. Deterrnine the Thévenin equivalent resistance of the network at the open (€4
terminals with the load removed. Three different types of circuits may be
encountered in determining the resistance, Ry,.
(@) If the circuit contains only independent sources, they are made zero by
replacing the voltage sources with short circuits and the current sources with
open circuits. Ry, is then found by computing the resistance of the purely
resistive network at the open terminals.

(continues on the next page)
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We will now demonstrate how to find V, in the circuit in Fig. 5.16a using the repeated appli-
cation of source transformation.

EXAMPLE 5.

If we begin at the left end of the network in Fig. 5.16a, the series combination of the 12-V
source and 3-k{} resistor is converted to a 4-mA current source in parallel with the 3-k(}
resistor. If we combine this 3-k{) resistor with the 6-k{) resistor, we obtain the circuit in
Fig. 5.16b. Note that at this point we have eliminated one circuit element. Continuing the
reduction, we convert the 4-mA source and 2-k{) resistor into an 8-V source in series with
this same 2-k() resistor. The two 2-k{} resistors that are in series are now combined to
produce the network in Fig. 5.16¢. If we now convert the combination of the 8-V source and
4-k() resistor into a 2-mA source in parallel with the 4-k() resistor and combine the result-
ing current source with the other 2-mA source, we arrive at the circuit shown in Fig. 5.16d.
At this point, we can simply apply current division to the two parallel resistance paths and
obtain

4k

e 10’“(m

) = 1 mA
and hence,
V,=(1x107)(8k) =8V

The reader is encouraged to consider the ramifications of working this problem using any

SOLUTION

L. Figure 5.16
Circuits used in

of the other techniques we have presented. Example 5.14.
V- 7 AN A'A' ‘ —0 VWA AA -
3k 2 k) 4k + 2ka 4 k0
12VC1D 6 k) G 2 mA ska V, <D4mA 3 2k 2 mA 8 k)
(a) (b)
WW————— e el
4 k() 4 kel EE 4 k() +
% &
8V Q) 2 mA gk V, 4 mA 3_4 kQ gka V,
(c) (d)

Note that this systematic, sometimes tedious, transformation allows us to reduce the net-
work methodically to a simpler equivalent form with respect to some other circuit element.
However, we should also realize that this technique is worthless for circuits of the form
shown in Fig. 5.4. Furthermore, although applicable to networks containing dependent
sources, it is not as useful as other techniques, and care must be taken not to transform the
part of the circuit that contains the control variable.

14

VO

Learning ASSESSMENT

E5.6 Find V, in the circuit in Fig. E5.2 using source exchange.

ANSWER: V, = %v.
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where R, and R,y are in k(). Superposition can be used effectively to find V,.. If the 12-V

source is replaced by a short circuit
G 6[ : :|
~ LR, +4

Applying this same procedure for the 6-V source yields

Vi = 12

ocs

and the total open-circuit voltage is

Ve = 12 G[R] 58
R, + 4 5

In EXCEL we wish to (1) vary R, between 0 and 10 k{), (2) calculate Ry, and V. at each
R, value, and (3) plot V. and Ry, versus R,. We begin by opening EXCEL and entering col-
umn headings as shown in Fig. 5.18a. Next, we enter a zero in the first cell of the R, column
at column-row location A4. To automatically fill the column with values, go to the Edit menu
and select Fill/Series to open the window shown in Fig. 5.18b, which has already been edited
appropriately for 101 data points. The result is a series of R, values from 0 to 10 kQ in 100 Q)
steps. To enter Eq. (5.8), go to location B4 (right under the V,, heading). Enter the following
text and do not forget the equal sign:

=12-6*A4/ (A4+4)

This is Eq. (5.8) with R, replaced by the first value for R, which is at column-row location
A4. Similarly for Ry, enter the following expression at C4.

=4*AL/ (AG+E)

: crosoft Exéel - Book2

THEVENIN'S AND NORTON'S THEOREMS
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..:.. Figure 5.18

(a) The EXCEL spreadsheet
for Example 5.15 showing
the desired column
headings. (b) The
Fill/Series window edited
for varying R, and (c) the
final plot of V,_ and Ry,

Type
@® Linear
O Growth
Opata | 1
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= - — Step value L'Ill ] Stop value: (10
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2 [ = ] Bl Lok ][ concel ]
120 RKQ) | Voc (v) | Rth (k9
4
| 7 (b)
B T —s |
8 s 125 © | = i PY-
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N | < i \-\1 g |
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To replicate the expression in cell B4 for all R, values, select cell B4, grab the lower right
corner of the cell, hold and drag down to cell B104, and release. Repeat for Ry, by replicating
cell C4.

To plot the data, first drag the cursor across all cells between A4 and C104. Next, from
the Insert menu, select Chart. We recommend strongly that you choose the XY (Scatter)
chart type. EXCEL will take you step by step through the basic formatting of your chart,
which, after some manipulations, might look similar to the chart in Fig. 5.18c.

5 /i

) . &
- &

Maximum Power
Transfer

v Ct) R,

oi%e
H
:

Figure 5.19

Equivalent circuit for
examining maximum power
transfer.

In circuit analysis we are sometimes interested in determining the maximum power that can bc]
delivered to a load. By employing Thévenin’s theorem, we can determine the maximum power
that a circuit can supply and the manner in which to adjust the load to effect maximum power
transfer.

Suppose that we are given the circuit shown in Fig. 5.19. The power that is delivered to
the load is given by the expression

2
Do v
P]aadsz.'._(R_i_R)RL
L

We want to determine the value of R; that maximizes this quantity. Hence, we differentiate
this expression with respect to R, and equate the derivative to zero.

Py _(R+ R,)v? = 20°Ry(R + R,)
dR; (R + R.)

which yields
R, =R

In other words, maximum power transfer takes place when the load resistance K, = R.
Although this is a very important result, we have derived it using the simple network in
Fig. 5.19. However, we should recall that v and R in Fig. 5.19 could represent the Thévenin
equivalent circuit for any linear network

qi

EXAMPLE 5.16

Let us find the value of R, for maximum power transfer in the network in Fig. 5.20a and the
maximum power that can be transferred to this load.

SOLUTION

To begin, we derive the Thévenin equivalent circuit for the network exclusive of the load.
V.. can be calculated from the circuit in Fig. 5.20b. The mesh equations for the network are

L =2x%x107
k(L — L) + 6k +3 =0
Solving these equations yields [, = 1/3 mA and, hence,
V,. = 4kI, + 6kl
=10V

Ry, shown in Fig. 5.20c, is 6 k(); therefore, R, = Ry, = 6 k) for maximum power trans-
fer. The maximum power transferred to the load in Fig. 5.20d is
25

10 \2
I = (ﬁ) (6k) = ?mw



4 k0 l

Py,

6 k)

3k0

(c)

Let us find R; for maximum power transfer and the maximum power transferred to this load

in the circuit in Fig. 5.21a.

SECTION 5.4

6 k2

6 k1
0V

(d)

MAXIMUM POWER TRANSFER

¢+ Figure 5.20

Circuits used in
Example 5.16.
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WLy WA s —
1kQ N 4k 1kQ N *
2000 I, | 2000 I';
3 ki) 2k R; é 3k 2k Voo
4 mA ’

‘I.'t' 1." =

(b)

/\
WA - ’
1kQ N
2000 I",
33k (D 2k0 L % 3k 1L QL B 4
4 mA u
X
(d)
—ANV- WAV—
2k 4kQ
= ¢+ Figure 5.21
(—) 8V Ry =6k Circuits used in
Example 5.17.

We wish to reduce the network to the form shown in Fig. 5.19. We could form the Thévenin

(e)

SOLUTION

equivalent circuit by breaking the network at the load. However, close examination of the
network indicates that our analysis will be simpler if we break the network to the left of the

EXAMPLE 5.17

L ]
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4-k() resistor. When we do this, however, we must realize that for maximum power trans-
fer R, = Ry, + 4 k(. V,. can be calculated from the network in Fig. 5.21b. Forming a

supernode around the dependent source and its connecting nodes, the KCL equation for this
supernode is

e S HL (A0 S g
1k + 3k ( ) Rl 7
where
oA
he= o

These equations yield V. = 8 V. The short-circuit current can be found from the network in
Fig. 5.21c. It is here that we find the advantage of breaking the network to the left of the 4-k()
resistor. The short circuit shorts the 2-k() resistor and, therefore, I” = 0. Hence, the circuit
is reduced to that in Fig. 5.21d, where clearly I. = 4 mA. Then

v(l.'

I
Connecting the Thévenin equivalent to the remainder of the original circuit produces the
network in Fig. 5.21e. For maximum power transfer R, = Ry, + 4 kQ) = 6k, and the
maximum power transferred is

8\’ 8
P, = (E) (6k) = JmW

Y@YEJTffASSESSMENT

power transferred.

E5.7 Given the circuit in Fig. E5.7, find R, for maximum power transfer and the maximum ANSWER: R, = 6 k();
P = %mw.
6 !(Q% 3,‘12 k() Ry

Figure E5.7

EXAMPLE 5.18

Given the network in Fig. 5.22 with Vj, = 5V and R, = 2 (), let us graphically examine a
variety of aspects of maximum power transfer by plotting the parameters V. /, P, B, and
the efficiency = P,,/P, as a function of the resistor ratio R,/R,.

SOLUTION

The parameters to be plotted can be determined by simple circuit analysis techniques. By

voltage division
R, R,
= - v = = 5
o = | e = [ 22 @
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Ri=2Q - Figure 5.22
VWA } Circuit used in maximum
= power transfer analysis.

From Ohm’s law
e e
R,+R, 2+R,

The input and output powers are

Vi:“ 5 Vin :|2 [ 5 :Iz
" T RiE R SLE R = % [ :

Finally, the efficiency is

P()Ul Rl R‘)

PR LR

efficiency =

The resulting plots of the various parameters are shown in Fig. 5.23 for R, ranging from
0.1R, to 10R,. Note that as R, increases, V,, increases toward V,, (5 V) as dictated by volt-
age division. Also, the current decreases in accordance with Ohm’s law. Thus, for small val-
ues of R,, V., is small, and when R, is large, [ is small. As a result, the output power (the
product of these two parameters) has a maximum at R,/R, = 1 as predicted by maximum
power transfer theory.

Maximum power does not correspond to maximum output voltage, current, or efficien-
cy. In fact, at meximum power transfer, the efficiency is always 0.5, or 50%. If you are an
electric utility supplying energy to your customers, do you want to operate at maximum
power transfer? The answer to this question is an obvious “No” because the efficiency is
only 50%. The utility would only be able to charge its customers for one-half of the energy
produced. It is not uncommon for a large electric utility to spend billions of dollars every
year to produce clectricity. The electric utility is more interested in operating at maximum
efficiency.

¢ Figure 5.23
Maximum power transfer
parameter plots for the
network in Fig. 5.22. (The
i units for voltage, current,
‘ and power have volts,
amperes, and watts,

& respectively.)
‘Pogrl’lpin |

Max. Power Transfer
Parameters (V, A, W)
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Print i

Current Printer:  Brother HL-2070N series on USBOO1

l Select All |

~Scaling o] Page Sewp... |

! " Autofit one schemalic page per printer page ‘

Printer Select...
@ Userdefinable zoomfactor: [125 %
e e
; * Poitrait
¥ Only Print Selected Area —Canc.l;J

create, a scale of 125% to 200% will do fine. Other options are self-explanatory. Finally,
select OK to print.

If you prefer that the grid dots not appear in the printout, go to the Options/Display Options
menu and de-select the GRID ON option. To change the grid color, go to the Options/Display
Preferences men, select Grid, and select a color from the drop-down edit box.

To incorporate your schematic into other applications such as text processors, draw a box
around the diagram as described above, then under the Edit menu, select Copy to Clipboard.
You can now paste the circuit into other programs.

4 Figure 5.45
The Schematics Print
window.

Let us use PSPICE to find the voltage V, and the current I, in the circuit in Fig. 5.46.

EXAMPLE 5.19

I, 400 20 Q) o
g R ¢+ Figure 5.46
v Ry + R Circuit used in
in | I Example 5.19.
100V C:) Ry2V, CD 5A
400 -
The PSPICE Schematics diagram is shown in Fig. 5.47. From the diagram, we find that SOLUTION

V, =150V and I, = —1.25 A.

4 Figure 5.47
The Schematics diagram for
the network in Fig. 5.46.

17idSd
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EXAMPLE 5.20

Let us use both PSPICE and MATLAB to determine the voltage V, in the network in Fig. 5.48.

Vi

Figure 5.48 w3

Circuit used in

Example 5.20. 2k 3, CD4 mA S2k0

V.
1kQ 5V +
i < <
12v(§> T1RQ $1kﬂ V,
-L =
SOLUTION The PSPICE Schematics diagram is shown in Fig. 5.49. From this diagram we find that
V,=17692V.
The MATLAB solution is obtained from the node equations of the network. The KCL
equations at nonreference nodes V;, V5, and the supernode, including nodes V; and V,, are
K S % M i W 4
+ =
2k 2k k
V12
V4 T V3 = 6
V ]
4 leth B VW Ve s
k 1k 1k 2k 1k

Figure 5.49 =3

Schematics diagram for
network in Fig. 5.48.

The simplified equations and MATLAB analysis are as follows:

2vl - v2 + 0v3 - v4 = 8
Ovl + v2 + 0v3 + 0Ové = 12
Ov1l + 0v2 = v3 + v4 = 6
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-v1 = 2ve + 4v3 + 3v4 = -8
>>06 = E2 =1 0 =1; 031=00; 0 0=1"12=1 =24 31

i 9 =)
(Al e o)
OO =GR
SRS 4 S

12

-8
>> v=inv(G)*i

v =
13.8462
12.0000
1.6923
T.6923

>> vout=v(4)

vout =
7.6923

Once again, we find that V, = V, = 7.692 V.
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[ ]

As a final example in this section on PSPICE, we will examine a circuit containing
dependent sources that was analyzed in Chapter 3 using both node and loop equations. The
network is shown in Fig. 5.50. We streamline this presentation by skipping the steps, already
described in detail earlier, that are used to set up resistors and independent sources, and con-
centrate on the method employed to place dependent sources in the schematic.

-

V3 1ka 1 kO C;) 6V <1>2[

- X

VWA
1k0

12v<_+> v T kQ 31k
Iy
' 16

53

1k

EXAMPLE 5.21

$-- Figure 5.50

Circuit for Example 5.21.

Using the techn:ques introduced earlier, the complete PSPICE schematic, shown in Fig. 5.51,
can be created. Of particular interest are the dependent sources. The voltage-controlled volt-
age source part (VCVS) is called E in PSPICE. Conceptually, we consider the part to consist
of a virtual voltmeter and a virtual voltage source. This “virtual meter” is connected across
the dependent voltage, V,, and the voltage across the “virtual source” is the output of the

SOLUTION

1J1dSd
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Figure 5.51 «$
PSPICE schematic for
Example 5.21

Figure 5.52 «=3
The Attribute window used

to set the dependent
source gain.

F1

% R1 %R? BV @
1K 1k va

i

R3 1k R4
M AMAN— AW
E1 1K R6 1k

 —

. RS <1k P S RT
vi L E?EH«

12V e
T i3 om]

VCVS. To input the gain factor for the dependent source, simply double click on the E part
to open the window shown in Fig. 5.52 and input the gain constant, 2 in this case.

Similarly, the current-controlled current source part (CCCS) is called F in PSPICE and
should be viewed as a virtual ammeter-current source combination. Note how the dependent
current, /., flows through the virtual meter. The CCVS gain is set just as it was in the VCVS
case. Be aware that the directions of the metered current and output current of the depend-
ent source do not necessarily have to match those in the original circuit since the sign of the
gain can be used to compensate for any changes.

Finally, using the Display Results on Schematic option, we find 7, is —48 mA, in agree-
ment with our earlier analyses.

5.6

Application
Example

]

APPLICATION
EXAMPLE 5.22

On Monday afternoon, Connie suddenly remembers that she has a term paper due Tuesday
morning. When she sits at her computer to start typing, she discovers that the computer
mouse doesn’t work. After disassembly and some inspection, she finds that the mouse con-
tains a printed circuit board that is powered by a 5-V supply contained inside the computer
case. Furthermore, the board is found to contain several resistors, some op-amps, and one
unidentifiable device, which is connected directly to the computer’s 5-V supply as shown in
Fig. 5.53a. Using a voltmeter to measure the node voltages, Connie confirms that all resis-
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tors and op-amps are functioning properly and the power supply voltage reaches the mouse
board. However, without knowing the mystery device’s function within the circuit, she can-
not determine its condition. A phone call to the manufacturer reveals that the device is
indeed linear but is also proprietary. With some persuasion, the manufacturer’s representa-
tive agrees that if Connie can find the Thévenin equivalent circuit for the element at nodes
A-B with the computer on, he will tell her if it is functioning properly. Armed with a single
1-kQ) resistor and a voltmeter, Connie attacks the problem.

To find the Thévenin equivalent for the unknown device, together with the 5-V source, SOLUTION
Connie first isolates nodes A and B from the rest of the devices on the board to measure the
open-circuit voltage. The resulting voltmeter reading is V,; = 2.4 V. Thus, the Thévenin
equivalent voltage is 2.4 V. Then she connects the 1-k{2 resistor at nodes A-B as shown in
Fig. 5.533b. The voltmeter reading is now V,, = 0.8 V. Using voltage division to express V,z
in terms of Vg, Ry, and R, in Fig. 5.53b yields the expression
1k
08 =Vyl =——
“’( 1k + RT,,)
R A R =2k

Unknown oA MA A e oA

element
V=5v<i> Vin Riegr = 1kQ 3 Vag =08V (i Vip =24V

oB O —O0f
B

(a) (b)
Solving the equations for Ry, we obtain
Ry, = 2.0k}

Therefore, the unknown device and the 5-V source can be represented at the terminals A-B
by the Thévenin equivalent circuit shown in Fig. 5.53c. When Connie phones the manufac-
turer with the cata, the representative informs her that the device has indeed failed.

()
3%
¢ Figure 5.53

Network used in
Example 5.22.

| I 4
) f
- o |

Design Examples

We often find that in the use of electronic equipment, there is a need to adjust some quantity
such as voltage. frequency, contrast, or the like. For very accurate adjustments, it is most con-
venient if coarse and fine-tuning can be separately adjusted. Therefore, let us design a circuit
in which two inputs (i.e., coarse and fine voltages) are combined to produce a new voltage of

the form
i |
Vtune = |:5i|vcnarsc Ar [E:| Viine

DESIGN
EXAMPLE 5.23

Because the equation to be realized is the sum of two terms, the solution appears to be an
excellent application for superposition. Since the gain factors in the equation (i.e., 1 /2 and 1/20)

SOLUTION
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are both less than one, a voltage divider with two inputs would appear to be a logical choice.
A typical circuit for this application is shown in Fig. 5.54a. The two superposition subcircuits
are shown in Figs. 5.54b and c. Employing voltage division in the network in Fig. 5.54b

yields
vlune_C = |: R//R.’! :| = l
Vcomu (R//Rl) + RI 2
and therefore,
R//R, = R,
In a similar manner, we find that
Vtunc_F: [ R//Rl :| __1_
Vﬁne (R//Rl) 2k R: 20

which requires that

Ry = 19(R//Ry)

V,

coarse

(a) (b) (c)

Figure 5.54 %"
(a) The coarse/fine adjust-
ment circuit, (b) with Viine
set to zero and (c) with

Vi oarse S€L t0 Zero.

Note that the two constraint equations for the resistors have three unknowns—R, R, and
R,. Thus, we must choose one resistor value and then solve for the two remaining values.
If we arbitrarily select R = 1k(), then R, = 900 ) and R, = 9 k(). This completes the
design of the circuit. This example indicates that superposition is not only a useful analysis
tool but provides insight into the design of new circuits.

DESIGN Coaxial cable is often used in very-high-frequency systems. For example, it is commonly
EXAMPLE 5.24 used for signal transmission with cable television. In these systems resistance matching, the
kind we use for maximum power transfer, is critical. In the laboratory, a common apparatus
used in high-frequency research and development is the attenuator pad. The attenuator pad
is basically a voltage divider, but the equivalent resistance at both its input ports is careful-
ly designed for resistance matching. Given the network in Fig. 5.55 in which a source, mod-
eled by V5 and R (50 £2), drives an attenuator pad, which is connected to an equivalent load.

Figure 5.55 3 Attenuator pad

The model circuit for the Rg
attenuator pad design.
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Let us design the pad so that it has an equivalent resistance of 50 {) and divides (i.e., atten-
uates) the input voltage by a factor of 10.

@

Since the attenuator or *“T-Network™ must have an equivalent resistance of 50 (), we require
that Ry, and Ry, be 50 €. Since these Thévenin resistance values are the same and the
circuit is symmetric, we can use the label R, twice to indicate that those resistors will be
the same value.

Rmvin = Ry + [Ri//(Ry + 50)] = 50
Rryow = Ry + [R//(Ry + 50)] = 50

Since the equarions are identical, we refer to both Thévenin equivalent resistance parame-
ters simply as Ry,. The Thévenin equivalent voltage, Vi;,, can be easily derived trom the cir-
cuit in Fig. 5.55 a using voltage division.

SOLUTION

VA A7 [L
Thi — ¥§ R, + R, + 50
Rg Ry Ry Ry, 4§+ Figure 5.56
?9'; 2 L 2 (a) The circuit used in
1 + finding Vy,, and (b) the
< .
VSG_D é Ry Vi V' RLé o resulting model.
-— 500 -
o
Ry

(a) (b)
From the Thévenin equivalent circuit in Fig. 5.56b, we find

50 Vin
V=1L —_— | = —
out Th[RTh + 50:| 2

Combining these equations yields the attenuation from Vs to V,,

Vnm . [Voul][h] ) _]_|: Rl :l _ L
A (720 | (R T | T W] )

The Thévenin equivalent resistance equation and this attenuation equation provide us
with two equations in the two unknowns R; and R,. Solving these equations yields
R, = 20.83 Q) and R, = 33.33 (). For precise resistance matching, these resistors must be
very accurate.

With such low resistor values, the power dissipation can become significant as Vg is
increased. For example, if Vg = 10V, V,,, = 1 V and the power dissipated in the R, resis-
tor connected to the input source is 333 mW. To keep the temperature of that resistor at rea-
sonable levels, the power rating of that resistor should be at least 0.5 W.

227

Let us design a circuit that will realize the following equation.

V, = =3V, — 20001

DESIGN

EXAMPLE 5.25

An examination of this equation indicates that we need to add two terms, one of which is
from a voltage source and the other from a current source. Since the terms have negative
signs, it would appear that the use of an inverting op-amp stage would be useful. Thus, one
possible circuit for this application appears to be that shown in Fig. 5.57.

SOLUTION
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Figure 5.57 w3
Circuit used in
Example 5.25.

Figure 5.58 w3
Circuits used in deriving a
Norton equivalent circuit.

The Norton equivalent circuit at the terminals A-B will provide a composite view of the
op-amp’s input. Superposition can also be used in conjunction with the Norton equivalent
to simplify the analysis. Using the network in Fig. 5.58a, we can determine the contribution
of V; to the short-circuit current, I, which we call I

I, = :—Sl
R 4 R A R A&
vs(®) Iz 15D B R
\®)
B B B

(a) (b) (c)

In a similar manner, using Fig. 5.58b, we find that the contribution of /s to the short-circuit
current is
M =

Employing superposition, the sum of these two currents yields the actual short-circuit current

I —V"+1
ac_Rl s

The Thévenin equivalent resistance at nodes A-B is obtained from the network in Fig. 5.58¢c as
Rn =Ry

The equivalent circuit is now redrawn in Fig. 5.59 where we have employed the ideal op-
amp conditions (i.e., Vi, = 0), and the current into the op-amp terminals is zero. Since V,,
is directly across R, the current in this resistor is also zero. Hence, all the current /.. will
flow through R,, producing the voltage

V, = —R, R + | = —EVS = IsR;

A comparison of this equation with the design requirement specifies that

R,
— =3 and R, = 20000
R, G

which yields R, = 667 (). Combining a 1-k {2 and a 2-k{} resistor in parallel will yield the
necessary 667 () exactly.
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Ry
A
ISC 0A
==
oAy Vip=o0v _?—- O
I Rmg = I

4+ Figure 5.59

The required circuit
containing the Norton
equivalent.
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Fans are frequently needed to keep electronic circuits cool. They vary in size, power require-
ment, input voltage, and air-flow rate. In a particular application, three fans are connected in
parallel to a 24-V source as shown in Fig. 5.60. A number of tests were run on this configura-
tion, and it was found that the air flow, fan current, and input voltage are related by the follow-
ing equations.

Fep = 2001 Vp = 1001,

where Fepy represents the air-flow rate in cubic feet per minute, Vi is the fan voltage in volts,
and I is the fan current in amperes. Note that fan current is related to fan speed, which in
turn is related to air flow. A popular and inexpensive method for monitoring currents in appli-
cations where high accuracy is not critical involves placing a low-value sense resistor in
series with the fan to “sense” the current by measuring the sense-resistor’s voltage.

24V(1> Vi

We wish to design a circuit that will measure the air flow in this three-fan system.
Specifically, we want to

a. determine the value of the sense resistor, placed in series with each fan, such that its
voltage is 2% of the nominal 24-V fan voltage, and specify a particular 1% component
that can be obtained from the Digikey Corporation (Website: www.digikey.com).

b. design an op-amp circuit that will produce an output voltage proportional to total air
flow, in which 1 V corresponds to 50 CFM.

DESIGN
EXAMPLE 5

¢~ Figure 5.60
A trio of 24-V fans.

The fan’s voltage—current relationship specifies that each fan has a resistance of 100 ().
Since the voltage across the sense resistor should be 2% of 24 V, or 0.48 V, the fan current,
derived from the network in Fig. 5.61, is

24 — 0.48
= =12352mA
Iy 100 2352 m
and the required value of the sense resistor is
0.48
Riewe = 357 = 2040

SOLUTION

.26
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Figure 5.61 «3

The equivalent circuit
for one fan and its sense
resistor.

Figure 5.62 =%

The complete air-flow
measurement system.

The power dissipation in this component is only
Pscnsc = [%Rsense =011W

And thus a standard 1/4 W 2-() resistor will satisfy the specifications.

The op-amp circuit must be capable of adding the air-flow contributions of all three fans
and scaling the result such that 1 V corresponds to 50 CEM. A summing op-amp circuit
would appear to be a logical choice in this situation, and thus we select the circuit shown in
Fig. 5.62 where the second stage is simply an inverter that corrects for the negative sign result-
ing from the summer output. In order to determine the summer’s gain, we calculate the
volts/CFM at the sense resistors. For a single fan, the air flow is

FCF;'-;' = 200[}: = 47.04 CFM
And the volts per CFM at the input to the summer are

048V

rree——— = 00102V CE
47.04 CFM 0:0102:%/ CEM

Hence, the gain of the summer op-amp must be

V, _ 1V/50CFM
V. 0.0102 V/CFM

sense

=196 V/V

This is a gain close to 2, and therefore we will use resistors that produce a 2:1 ratio, that is,
very close to 1.96. At this point, one additional consideration must be addressed. Note that
the resistors at the summer input are essentially connected in parallel with the sense resistors.
To ensure that all the fan current flows in the sense resistors, we select very large values for
the op-amp resistors. Let us choose R, = R, = R; = 100 k{) and then R, = 200 k().

Ir
Vi
24V i)
+ Vo
Rsﬂnse VSCHSC‘ % 0
=

Finally, the values for R; and R, can be somewhat arbitrary, as long as they are equal. If we
select a value of 100 k{), then only two different resistor values are needed for the entire
op-amp circuit.
















































CAPACITANCE AND
INDUCTANCE

THE LEARHING GOAI.S I’OR TI'IIS

Know how to use circuit models for inductors
and capacitors to calculate voltage, current,
and power

2 Be able to calculate stored energy for capacitors
and inductors

& Understand the concepts of continuity of current
for an inductor and continuity of voltage for a
capacitor

Be able to calculate voltages and currents for
capacitors and inductors in electric circuits with
dc sources

% Know how to combine capacitors and inductors
in series and parallel

RONT-IMPACT AIR BAGS ARE STANDARD

EQUIPMENT ON ALL automobiles manufactured

today, and side-impact air bags are available on
some automobiles. In spite of their cost, the well-documented
effectiveness of air bags in saving lives in automobile accidents
| justifies their inclusion in automobiles. When a sensor in the
automobile detects a crash, it signals an igniter to inflate the air
bag. The photograph above shows an electronic component that
can be utilized as an air-bag igniter. The metal can in this photo is
approximately 2 millimeters in diameter and contains a tiny
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Courtesy of Pacific Scientific Energetic Materials
Company

microelectronic chip approximately the diameter of a human hair.

Energy stored in a capacitor is very rapidly discharged into the I

metal can, causing a chemical reaction that creates extremely hot | ‘

(>3000 °C) molten metal particles. These particles explode out of

the can and initiate inflation of the air bag. |
Electrical analysis of the air-bag igniter circuit requires us to '

introduce two electrical components: the capacitor and the

inductor. The inflation of an air bag happens in milliseconds,

so the energy stored in the capacitor is transferred rapidly

into the metal can. During discharge of this capacitor, >
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dc” or “blocks de.” Capacitors are often utilized to remove or filter out an unwanted dc volt-
age. In analyzing a circuit containing dc voltage sources and capacitors, we can replace the
capacitors with an open circuit and calculate voltages and currents in the circuit using our
many analysis tools.

Note that the power absorbed by a capacitor, given by Eq. (6.5), is directly proportional to
the time rate of change of the voltage across the capacitor. What if we had an instantaneous
change in the capacitor voltage? This would correspond to dv/dr = oo and infinite power.
Back in Chapter 1, we ruled out the possibility of any sources of infinite power. Since we
only have finite power sources, the voltage across a capacitor cannot change instantaneously.
This will be a particularly helpful idea in the next chapter when we encounter circuits con-
taining switches. This idea of “continuity of voltage™ for a capacitor tells us that the voltage
across the capacitor just after a switch moves is the same as the voltage across the capacitor
just before that switch moves.

The polarity of the voltage across a capacitor being charged is shown in Fig. 6.1b. In the
ideal case, the capacitor will hold the charge for an indefinite period of time, if the source is
removed. If at some later time an energy-absorbing device (e.g., a flash bulb) is connected
across the capacitor, a discharge current will flow from the capacitor and, therefore, the
capacitor will supply its stored energy to the device.

EXAMPLE 6.1

If the charge accumulated on two parallel conductors charged to 12 V is 600 pC, what is the
capacitance of the parallel conductors?

SOLUTION

Using Eq. (6.1), we find that
(600)(107'2)
12

Q -
= = 500F
v Sk

EXAMPLE 6.2

The voltage across a 5-pF capacitor has the waveform shown in Fig. 6.4a. Determine the
current waveform.

SOLUTION

Figure 6.4 w3

Voltage and current
waveforms for a
5-w.F capacitor.

Note that
24
v(f)=mr 0=t=6ms
=L‘_1;+96 6=1<8ms
20107
=( Sms =¢
u(t) (V) i(t) (mA)
20
T S e : 0 6| |8 t (ms)
1
; 60 —
0 6 8 1 (ms)
(@) &)
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Using Eq. (6.2), we find that

] dv (1)

i(r)y =C &
=5 X 107%(4 % 10%) 0=<t=6ms
= 20 mA 0=tr=6ms

i(1)=5x10%-12%10°) 6=r=<8ms
= —60 mA 6=t <8ms

and
i(t) =0 8§ms =1

Therefore, the current waveform is as shown in Fig. 6.4b and i(r) = 0 fort > 8 ms.
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Determine the energy stored in the electric field of the capacitor in Example 6.2 atr = 6 ms.

EXAMPLE 6.3

Using Eq. (6.6), we have

w(t) = %Cvl(t)

SOLUTION

Atr = 6 ms,
w(6ms) = %(5 X 107%)(24)?
= 1440 pJ
LearningAsSessSMENT

E6.1 A 10-uF capacitor has an accumulated charge of 500 nC. Determine the voltage across the
capacitor.

ANSWER: 0.05V.

The current in an initially uncharged 4-.F capacitor is shown in Fig. 6.5a. Let us derive the
waveforms for the voltage, power, and energy and compute the energy stored in the electric
field of the capacitor att = 2 ms.

EXAMPLE 6.4

The equations for the current waveform in the specific time intervals are

16 X 107%
i(1) = —— 0=:r=<2
i1 =55 100 =
= -8 x 107° 2ms =t =4ms
=0 dms <t

Since v(0) = 0, the equation for v(7) in the time interval 0 = 7 = 2 ms is

1 ) / 8(107)x dx = 10°4
0

0= @

and hence,
v(2ms) = 1032 x 107 = 4 mV

SOLUTION
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Voltage (mV)

Current (A)
V.
15— 35
10— =
2.5
5 2
5 4 1.5
0 el L ) i
05 1 1.5 25 3 35 Time
=5 (ms) 0.5
0 il T 1 I | | I | =
-10— 05 1 15 2 25 3 35 4 Time
(ms)
(a) (b)
Energy (pJ)
Power (nW) =l
30—
60 — el
50 —
40 - 20
] 15
20 —
10 - 10—
5 2 35
| | | 1 | I d
5
104 05 1 15 25 3 4 Fm;s
ms -
-20 1 0 T T o e b lacal o ol i
-30 - 05 1 15 2 25 3 B35 4 'Ime
(ms)

Figure 6.5 m

Waveforms used in
Example 6.4.

() (d)

In the time interval 2 ms =< t = 4 ms,

r

= 1 = 6\ dx -3
00 = G5 oy = B0 + ($007)

=-2r+8 X107

The waveform for the voltage is shown in Fig. 6.5b.

Since the power is p(t) = w(¢)i(), the expression for the power in the time interval
0 <t =<2msis p(t) = 8>3 In the time interval 2 ms = ¢ =< 4 ms, the equation for the
power is

I

p(t) = —(8)(107°)(=2¢ + 8 X 107%)

16(107¢)r — 64(107%)

The power waveform is shown in Fig. 6.5c. Note that during the time interval
0 = t = 2 ms, the capacitor is absorbing energy and during the interval 2 ms = t = 4 ms,
it is delivering energy.

The energy is given by the expression

w(t) = /Ip(x)dx + w(ty)
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In the time interval 0 < ¢ =< 2 ms,

w(t) = /83’3 de = 2t}
0

w(2ms) = 32 pl

Hence,

In the time interval 2 = 1 = 4 ms,
/ (16 X 107°)x — (64 X 107°)] dx + 32 X 107"
%107
= [(8 x 107)x? — (64 X 107)x]so= + 32 X 1072
= (8 X 107°) — (64 X 107°)r + 128 X 107"

From this expression we find that w(2 ms) = 32 pJ and w(4 ms) = 0. The energy wave-
form is shown in Fig. 6.5d.

T
|

i “;U"Hlﬂg ASSESSMENTS

E6.2 The voltage across a 2-F capacitor is shown in Fig. E6.2. ANSWER:
Determine the waveform for the capacitor current.

(1) (V) i(t) (mA)
12

12
) 6
1

[ 6= e e O e s e BULD)
Figure E6.2
E6.3 Compute the energy stored in the electric field of the ANSWER: w = 144 pJ.

capacitor in Learning Assessment E6.2 at 1 = 2 ms.

An inductor is a circuit element that consists of a conducting wire usually in the form of a & %)
coil. Two typical inductors and their electrical symbol are shown in Fig. 6.6. Inductors are -/ « &
typically categorized by the type of core on which they are wound. For example, the core  |nductors
material may be air or any nonmagnetic material, iron, or ferrite. Inductors made with air
or nonmagnetic materials are widely used in radio, television, and filter circuits. Iron-core
inductors are used in electrical power supplies and filters. Ferrite-core inductors are wide-
ly used in high-frequency applications. Note that in contrast to the magnetic core that con-
fines the flux, as shown in Fig. 6.6b, the flux lines for nonmagnetic inductors extend beyond
the inductor itself, as illustrated in Fig. 6.6a. Like stray capacitance, stray inductance can
result from any element carrying current surrounded by flux linkages. Figure 6.7 shows a
variety of typical inductors,

From a historical standpoint, developments that led to the mathematical model we
employ to represent the inductor are as follows. It was first shown that a current-carrying
conductor would produce a magnetic field. It was later found that the magnetic field and the
current that produced it were linearly related. Finally, it was shown that a changing magnetic

0 e
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Therefore, the energy stored in the magnetic field is

w, (1) = /JL d;(_:)}(.r)m

Following the development of Eq. (6.6), we obtain

1
wy(1) = SLi(1) ] 6.12

Now let’s consider the case of a dc current flowing through an inductor. From Eq. (6.8),
we see that the voltage across the inductor is directly proportional to the time rate of
change of the current flowing through the inductor. A dc current does not vary with time,
so the voltage across the inductor is zero. We can say that an inductor is “a short circuit to
dc.” In analyzing a circuit containing dc sources and inductors, we can replace any induc-
tors with short circuits and calculate voltages and currents in the circuit using our many
analysis tools.

Note from Eq. (6.11) that an instantaneous change in inductor current would require
infinite power. Since we don’t have any infinite power sources, the current flowing
through an inductor cannot change instantaneously. This will be a particularly helpful idea
in the next chapter when we encounter circuits containing switches. This idea of “conti-
nuity of current” for an inductor tells us that the current flowing through an inductor just
after a switch moves is the same as the current flowing through an inductor just before
that switch moves.
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Find the total energy stored in the circuit of Fig. 6.8a.

EXAMPLE 6.5

60 Li=2mH 30 Ly=4mH 4 Figure 6.8
Circuits used in
Example 6.5.
9V = 260
(@)
gn Iy A 28 Ir2
& o MA o
3 1
<
9V Val 3A Vo 360
(b) »
This circuit has only dc sources. Based on our earlier discussions about capacitors and induc- ~ SOLUTION

tors and constant sources, we can replace the capacitors with open circuits and the inductors
with short circuits. The resulting circuit is shown in Fig. 6.8b.

This resistive circuit can now be solved using any of the techniques we have learned in
earlier chapters. If we apply KCL at node A, we get

Ijn=1,;+3
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Applying KVL around the outside of the circuit yields
61[_] 5 311‘2 + 611_2 =9
1.8 A. The voltages V-, and Vi, can

Solving these equations yields I;; = —1.2 A and I},
be calculated from the currents.

VC-, = _6.“_] + 9 = 16.2V

VC! = 611_-_- — 6(18) == IOSV
The total energy stored in the circuit is the sum of the energy stored in the two inductors
and two capacitors.

wy = =(2 X 107)(=1.2)? = 1.44 mJ

b= | —

wy, = = (4 X 107)(1.8)* = 6.48 mJ

1 :
Wey = ;(20 X 107°)(16.2)> = 2.62 mJ

1

Wey = 5(50 X 107)(10.8)* = 2.92 mJ

The total stored energy is 13.46 mlJ.

The inductor, like the resistor and capacitor, is a passive element. The polarity of the volt-
age across the inductor is shown in Fig. 6.6.

Practical inductors typically range from a few microhenrys to tens of henrys. From a cir-
cuit design standpoint it is important to note that inductors cannot be easily fabricated on an
integrated circuit chip, and therefore chip designs typically employ only active electronic
devices, resistors, and capacitors that can be easily fabricated in microcircuit form.

EXAMPLE 6.6

&—
L 4

The current in a 10-mH inductor has the waveform shown in Fig. 6.9a. Determine the
voltage waveform.

SOLUTION  Using Eq. (6.8) and noting that
i) = 20 X 107 I
2 X 1073 T
—20 X 107%
i(t) =———— + 40 x 107 2=!=
‘( ) 2 % IO-_} ! 4 ms
and
i()=0 4ms<r
i(1) (mA) o(t) (mv)
20 , 100
1
l 2 4 t(ms) 2 4 t (ms)
-100
(a) (b)

Figure 6.9 “

Current and voltage waveforms for a 10-mH inductor.
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In the time interval 0 = r = 2 ms,
1
w(t) = f&r" dx = 2r*
0
Hence,
w(2 ms) = 32 pJ
In the time interval 2 = t = 4 ms,
w(r) =f [(16 X 107°)x — (64 X 107°)]dx + 32 X 1072
2x10™
= [(8 X 107)x? — (64 X 107)x]supo + 32 X 1072
= (8 X 107°)* — (64 X 107°)r + 128 x 1077
From this expression we find that w(2 ms) = 32 pJ and w(4 ms) = 0. The energy wave-
form is shown in Fig. 6.5d.
| earning ASSESSMENTS
E6.2 The voltage across a 2-wF capacitor is shown in Fig. E6.2.  ANSWER:
Determine the waveform for the capacitor current.
u(1) (V) i(t) (mA)
12
12
: 6
: 01 e [ T | t (ms)
[t BB () -5
Figure E6.2

E6.3 Compute the energy stored in the electric field of the ANSWER: w = 144 pl.

capacitor in Learning Assessment E6.2 at t = 2 ms.

An inductor is a circuit element that consists of a conducting wire usually in the form of a

coil. Two typical inductors and their electrical symbol are shown in Fig. 6.6. Inductors are
typically categorized by the type of core on which they are wound. For example, the core
material may be air or any nonmagnetic material, iron, or ferrite. Inductors made with air
or nonmagnetic materials are widely used in radio, television, and filter circuits. Iron-core
inductors are used in electrical power supplies and filters. Ferrite-core inductors are wide-
ly used in high-frequency applications. Note that in contrast to the magnetic core that con-
fines the flux, as shown in Fig. 6.6b, the flux lines for nonmagnetic inductors extend beyond
the inductor itself, as illustrated in Fig. 6.6a. Like stray capacitance, stray inductance can
result from any element carrying current surrounded by flux linkages. Figure 6.7 shows a
variety of typical inductors.

From a historical standpoint, developments that led to the mathematical model we
employ to represent the inductor are as follows. It was first shown that a current-carrying
conductor would produce a magnetic field. It was later found that the magnetic field and the
current that produced it were linearly related. Finally, it was shown that a changing magnetic

6.2

Inductors
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we find that
20 X 1072
v(t) = (10 X 107%) ———— ==
(1) = ( )2><10‘3 0=r=2ms
= 100 mV
and
-20 % 107?

v(r) = (10 x 107%)

(R}
IA
I\
&+
B

2 x 107
= —100 mV

and v(z) = 0 fort > 4 ms. Therefore, the voltage waveform is shown in Fig. 6.9b.
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The current in a 2-mH inductor is
i(t) = 2sin377t A

Determine the voltage across the inductor and the energy stored in the inductor.

EXAMPLE 6.7

From Eq. (6.8), we have

v(r) =L %

(2 x 10‘-‘)%(2 sin377t)

1.508 cos 377t V

and from Eq. (6.12),
15
w(t) = ﬂz—Lf'(f)
= %(2 X 107)(2sin377t)?

= 0.004 sin*3771 J

SOLUTION

The voltage across a 200-mH inductor is given by the expression
v(t)=(1-3t)e*mV 1=0
=0 1 <0

Let us derive the waveforms for the current, energy, and power.

EXAMPLE 6.8

The waveform for the voltage is shown in Fig. 6.10a. The current is derived from Eq. (6.10) as

. ]0‘ : =3x
i(r) = 200 /, (1 — 3x)e"dx

{ { I
= 5{ [e“"" dx — 3]):3‘3" dx]
J0 0

-]

=5 mA =0
=0 i)

SOLUTION
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A plot of the current waveform is shown in Fig. 6.10b.
The power is given by the expression

p(t) = v(1)i(r)
= 5t(1 = 3t)e™ uW
=0

The equation for the power is plotted in Fig. 6.10c.
The expression for the energy is

() = ;LF(:)
= 2.5¢%™ pJ

=10

This equation is plotted in Fig. 6.10d.

=)

I

t=0
<0

<0

Voltage (mV) Current (mA)
1.0 - )
0.8 el
0.5+
0.6 - 0.4
0.4 - 0.3
0.2 5 0.2 1
0.5
0 T T T T T 0.1+
D22 s g 3.5 7
-0.2 4 Tmeis) 0 T T T T T T T
05 1 15 2 25 3 35 Time()
(a) (b)
Energy (nJ)
Power (W)
1 40
024 . 35 -
0.15- | 0
0.1 25
] 20 4
0.05-
154
0 T L [ L
- ] 10 al
0.5 1:5 2 2.5 f
Ly Time (s) l
-0.1+4 T T T T
0 0.5 1 1.5 25  Time (s)

Figure 6.10

(c)

it

Waveforms used in Example 6.8.
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Learning ASSESSMENTS
E6.4 The current in a 5-mH inductor has the waveform shownin  ANSWER:
Fig. E6.4. Compute the waveform for the inductor voltage. E
i) v(t) (mv)
20F—===- . 100
: 0 1] 2 3
10} -f--L--o D
E | ! 50 | L t (ms)
: | i
0 ) 2 3

4
1 (ms)
Figure E6.4

E6.5 Compute the energy stored in the magnetic field of the ~ANSWER: W = 562.5 nJ.
inductor in Learning Assessment E6.4 at 1 = 1.5 ms.

CAPACITOR AND INDUCTOR SPECIFICATIONS There are a couple of important parame-
ters that are used to specify capacitors and inductors. In the case of capacitors, the capac-
itance value, working voltage, and tolerance are issues that must be considered in their
application. Standard capacitor values range from a few pF to about 50 mF. Capacitors
larger than 1 F are available but will not be discussed here. Table 6.1 is a list of standard
capacitor values, which are typically given in picofarads or microfarads. Although both
smaller and larger ratings are available, the standard working voltage, or dc voltage rat-
ing, is typically between 6.3 V and 500 V. Manufacturers specify this working voltage
since it is critical to keep the applied voltage below the breakdown point of the dielec-
tric. Tolerance is an adjunct to the capacitance value and is usually listed as a percent-
age of the nominal value. Standard tolerance values are + 5%, + 10%, and =+ 20%.
Occasionally, tolerances for single-digit pF capacitors are listed in pF. For example,
5 pF £0.25 pF.

TABLE 6.1 Standard capacitor values

100 1000 0.010 0.10 1.0 100 1000 10,000

12 120 1200 0.012 0.12 1.2 12 120 1200 12,000

1.5 15 150 1500 0.015 0.15 1.5 15 150 1500 15,000
18 180 1800 0.018 0.18 1.8 18 180 1800 18,000

2 20 200 2000 0.020 0.20 2.0 20 200 2000 20,000
22 220 2200 0.022 0.22 2.2 22 220 2200 22,000

27 270 2700 0.027 0.27 2.7 27 270 2700 27,000

3 33 330 3300 0.033 0.33 3.3 33 330 3300 33,000
4 39 390 3900 0.039 0.39 39 39 390 3900 39,000
5 47 470 4700 0.047 0.47 4.7 47 470 4700 47,000
6 51 510 5100 0.051 0.51 5.1 51 510 5100 51,000
7 56 560 5600 0.056 0.56 5.6 56 560 5600 56,000
8 68 680 6800 0.068 0.68 6.8 68 680 6800 68,000
9 82 820 8200 0.082 0.82 8.2 82 820 8200 82,000
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We wish to find the possible range of capacitance values for a 51-mF capacitor that has a
tolerance of 20%.

EXAMPLE 6.9

The minimum capacitor value is 0.8C = 40.8 mF, and the maximum capacitor value is
1.2C = 61.2 mE.

SOLUTION

The capacitor in Fig. 6.11a is a 100-nF capacitor with a tolerance of 20%. If the voltage
waveform is as shown in Fig. 6.11b, let us graph the current waveform for the minimum and
maximum capacitor values.

EXAMPLE 6.10

The maximum capacitor value is 1.2C = 120 nF, and the minimum capacitor value is
0.8C = 80 nF. The maximum and minimum capacitor currents, obtained from the equation

do(r)

i(t)=C "
are shown in Fig. 6.11c.
e
2 A \
S Ll
= ES
= Y I
e hE |
i(2) i L\ i
_2 ]
=3
B e L | . !
v(0) ") c _40 1 2 3 4 5 6 7
Time (s)
(a) (b)
4 ——l — 800
L | == i(r) at Cpin | -
3 e ((1) @t Cppax — 600
| ! —{400
o ——] {200 <
= E
% | 0 ‘q‘::
S e -200 O
. -400
——{-600
' -800
4 5 6 7
Time (s)

(c)

SOLUTION

§-- Figure 6.11

Circuit and graphs used
in Example 6.10.
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 EXAMPLE 6.11

The inductor in Fig. 6.12a is a 100-pH inductor with a tolerance of 10%. If the.cyrrent
waveform is as shown in Fig. 6.12b, let us graph the voltage waveform for the minimum

and maximum inductor values.

SOLUTION The maximum inductor value is 1.1L = 110 pH, and the minimum inductor value is
0.9L =90 pH. The maximum and minimum inductor voltages, obtained from the equation
di(r)
t)=1L
v(1) it
are shown in Fig. 6.12c.
Figure 6.12 = s
Circuit and graphs used in ir) I& } (1)
Example 6.11.
(a)
— (1)
== (1) at Ly,
150 150 = W) at Liix 2
100 /\ / 100 = —— 1
b = - >
= 50 \/ = 5h : " : =
-100 -100 -3
150 e -150 — : ‘ : : 4
0 10 20 30 40 50 &0 0 10 20 30 40 50 60
Time (s) Time (ps)
(b) (c)
K\ Q., SERIES CAPACITORS If a number of capacitors are connected in series, their equi\’u\
L".‘ =" lent capacitance can be calculated using KVL. Consider the circuit shown in Fig. 6.13a. For
Capacitor this circuit

and Inductor

Combinations

Figure 6.13 «%

Equivalent circuit for
N series-connected
capacitors.

v(r) = (1) + v,(1) + vy(2) + -+ vy(t) 6.13
but
vi(t) = C /f(r)dr + vy(1o) 6.14
oy V1) va()  w3(0)
o LN AT S
ol I\ IV It -
v(1) G G C3 :
B vp(D) !
e | NSO O O ... 1
Re=i — N =
C‘\ﬁ

(b)
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Therefore, Eq. (6.13) can be written as follows using Eq. (6.14):

N ] /
v(t) = (2 CL)] i(r)dr + iv,—(ro) 6.15
i=1 i [ i=1

0

l T
=— / i(t)dr + (1) 6.16
CS Ji
where
N
v(te) = D vit)
i=1
and [ h int ]
N Capacitors in series combine
1 1 1 1 1 > :
— = 2 e e Lo 6.17 like resistors in parallel.
(G G T B i 65 I

Thus, the circuit in Fig. 6.13b is equivalent to that in Fig. 6.13a under the conditions stated
previously.

It is also important to note that since the same current flows in each of the series capaci-
tors, each capacitor gains the same charge in the same time period. The voltage across each
capacitor will depend on this charge and the capacitance of the element.

Determine the equivalent capacitance and the initial voltage for the circuit shown in Fig. 6.14. EXAMPLE 6.12

Note that these capacitors must have been charged before they were connected in seriesor SOLUTION
else the charge of each would be equal and the voltages would be in the same direction.
The equivalent capacitance is
1%
Cs

| =

1
=—+ -+
2

W=

where all capacitance values are in microfarads.
Therefore, Cg = 1 pF and, as seen from the figure, v(tn) = —3 V. Note that the total
energy stored in the circuit is

w(ty) = 5 [2x107(2)% +3 X 107%(—4)% + 6 X 107%(—1)?]
=31 pJ

However, the energy recoverable at the terminals is

we(ty) = %Cs’vz(f )

[1 X 107%(=3)?]

1
2
45pud

¢--- Figure 6.14

Circuit containing multiple
capacitors with initial
voltages.
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EXAMPLE 6.13

Two previously uncharged capacitors are connected in series and then charged with a 12-V
source. One capacitor is 30 wF and the other is unknown. If the voltage across the 30-p.F
capacitor is 8 V, find the capacitance of the unknown capacitor.

SOLUTION

[hint]

Capacitors in parallél combine
like resistors in series.

Figure 6.15 «3
Equivalent circuit for

N capacitors connected
in parallel.

The charge on the 30-pF capacitor is
Q = CV = (30 WF)(8 V) = 240 nC

Since the same current flows in each of the series capacitors, each capacitor gains the same
charge in the same time period.

Q 240 pC

C =
4V

= 60 uF

=<|

PARALLEL CAPACITORS To determine the equivalent capacitance of N capacitors
connected in parallel, we employ KCL. As can be seen from Fig. 6.15a,

i(r) = iy(r) + ix(r) + i5(r) + -+ iy(r) 6.18
L do(t) du(r) du(r) do(r)
=G a G a OB Tg T Cw dr

do(t)

N

> C,»)

i=1 fh
do(t)

— C}

" dt

I
> T )

6.19

where

G=1C + G e G 6.20

i(r)

= bm fu) is(1) JjN(F)
v(t) =

‘l\ C| TCz = C3 'J~ CN

(a)

Determine the cquivalent capacitance at terminals A-B of the circuit shown in Fig. 6.16.

EXAMPLE 6.14
SOLUTION

Figure 6.16 =}
Circuit containing
multiple capacitors
in parallel.

C,=15pF

P

(1) ==4 uF

=~ 6 pF == 2 pnF ]‘[\Sp.F

Al
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LearningASSESSMENTs

E6.6 Two initially uncharged capacitors are connected as shown in Fig. E6.6. Aftera period of ANSWER: C, = 4 wE
time, the voltage reaches the value shown. Determine the value of C,- I

Figure E6.6
E6.7 Compute the equivalent capacitance of the network in Fig. E6.7. ANSWER: C,, = 1.5 pF.
3 pF
|
o—it
2 uF == =4 pF
Ceq—""' T=2unF
=3 puF
o—it
Figure E6.7 12 pF

SERIES INDUCTORS If N inductors are connected in series, the equivalent inductance
of the combination can be determined as follows. Referring to Fig. 6.17a and using KVL, we

see that
v(t) = vy(1) + vy(1) + v3(8) + - + vy(2) 6.21
and therefore,
di(1) di(t) di(r) di(1)
= ; ; + e Ly 6.22
v =L v Ly v Ly by
N di(t)
i (2[’) dt
Ji
= 5”(’) 6.23
dr
where
y int
Ls = S dy=iLy il 5 Ly 6.24 [h ]
i=1

Inductors in series combine
like resistors in series.

Therefore, under this condition the network in Fig. 6.17b is equivalent to that in Fig. 6.17a.
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Determine the equivalent inductance and the initial current for the circuit shown in
Fig. 6.20.

EXAMPLE 6.16

Y

The equivalent inductance is

where all inductance values are in millihenrys
L,=2mH

and the initial current is i(ro) =—1A.

i(1)

3A 6A 2A

12 mH 6 mH 4 mH

The previous material indicates that capacitors combine like conductances. whereas
inductances combine like resistances.

LearningAsszssmzm

SOLUTION

¢ Figure 6.20

Circuit containing
multiple inductors with
initial currents.

E6.8 Determine the equivalent inductance of the network in Fig. E6.8 if all inductors are 6 mH.

o -

i

Figure E6.8 O—Luw

ANSWER: 9.429 mH.

CHIP CAPACITORS In Chapter 2, we briefly discussed the resistors that are used in mod-
ern electronic manufacturing. An example of these surface mount devices was shown in
Fig. 2.41, together with some typical chip capacitors. As we will indicate in the material that
follows, modern electronics employs primarily resistors and capacitors and avoids the use of
inductors when possible.

Surface-mounted chip capacitors account for the majority of capacitors used in electron-
ics assembly today. These capacitors have a large range of sizes, from as small as 10 mils on
a side up to 250 mils on a side. All ceramic chip capacitors consist of a ceramic dielectric
layer between metal plates. The properties of the ceramic and metal layers determine the type
of capacitor, its capacitance, and reliability. A cut-away view of a standard chip capacitor is
shown in Fig. 6.21. The inner metal electrodes are alternately connected to the opposing sides
of the chip where metal terminators are added. These terminators not only make connection
to the inner electrodes, but also provide a solder base for attaching these chips to printed
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Thus, the output of the op-amp circuit is proportional to the derivative of the input.
The circuit equations for the op-amp configuration in Fig. 6.25b are

Ui =i d - .-
R[ + C?. df (Uﬂ ’u*) -

but since v_ = 0 and i_ = 0, the equation reduces to

v dv,

R, 2 dr
or

v,(t) = Rié': [x?;|(.r)(}_\'

e | t

- EI—(_‘; ' v (x)dx + v,(0) 6.31

If the capacitor is initially discharged, then v (0) = 0; hence,

= t
v,(t) = ﬁ L‘Ul(.t) dx 6.32
162

Thus, the output voltage of the op-amp circuit is proportional to the integral of the input
voltage.

EXAMPLE 6.17

The waveform in Fig. 6.26a is applied at the input of the differentiator circuit shown in
Fig. 6.25a. If R, = 1 k) and C| = 2 pF, determine the waveform at the output of the
op-amp.

L]

SOLUTION

v1(0) (V)

10f---

Using Eq. (6.30), we find that the op-amp output is
dv,(r)
dt

N L dvy(1)
=—{2y0d=

dv,(1)/dt = (2)103 for 0 = t < 5 ms, and therefore,
v,(t) =4V 0=1<5ms
dv,(1)/dt = —=(2)10% for 5 =< t < 10 ms, and therefore,

V(1) = —R,Cy

v(t) =4V S=1t<10ms

Hence, the output waveform of the differentiator is shown in Fig. 6.26b.

(1) (V)

5 10 t (ms) 0 5 10 t (ms)
(a) (b)
Figure 6.26

Input and output waveforms for a differentiator circuit.
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If the integrator shown in Fig. 6.25b has the parameters R, = 5k and C, = 0.2 puF, deter-
mine the waveform at the op-amp output if the input waveform is given as in Fig. 6.27a and
the capacitor is initially discharged.

EXAMPLE 6.18

The integrator output is given by the expression

o) = mi [ n(oas

which with the given circuit parameters is

v,(1) = —103-/"7:,(.1')&\'
0

In the interval 0 = ¢ < 0.1 s, »(7) = 20 mV. Hence,

v,(1) = =10°(20)107% 0=<:<O0ls
= —20¢

Att = 0.1's,v,(r) = —2 V. In the interval from 0.1 to 0.2 s, the integrator produces a pos-
itive slope output of 20 from v,(0.1) = =2V tov,(0.2) = 0V. This waveform from¢ = 0
tor = 0.2 s is repeated in the interval t = 0.2 tot = 0.4 s, and therefore, the output wave-
form is shown in Fig. 6.27b.

SOLUTION

é.,. Figure 6.27
Input and output
waveforms for an
integrator circuit.

vy(f) (mv)
f) (V
- 00(0) (V)
0 0.1 0.2 0.3 0.4
0 0.1 0.2 0.3 0.4 t(s) E E (s)
i = 1 i
(a) (b)
learningASSESSMENT
E6.9 The waveform in Fig. E6.9 is applied to the input ANSWER:
terminals of the op-amp differentiator circuit. Determine the
differentiator output waveform if the op-amp circuit parameters
are C; = 2Fand R, = 2 ().
vy(1) (V) V(1) (V)
6 : 24
| 1 2
: = (s)
2 3 4 { (.S‘) —24

Figure E6.9




274 CHAPTER 6 CAPACITANCE AND INDUCTANCE

B 1

Application
Examples
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APPLICATION
EXAMPLE 6.19

Figure 6.28 «}

SEM Image (Tom Way/
Ginger Conly. Courtesy of
International Business
Machines Corporation.
Unauthorized use not
permitted.)

In integrated circuits, wires carrying high-speed signals are closely spaced as shown by the
micrograph in Fig. 6.28. As a result, a signal on one conductor can “mysteriously” appear
on a different conductor. This phenomenon is called crosstalk. Let us examine this condi-
tion and propose some methods for reducing it.

[

SOLUTION

Figure 6.29 3

A simple model for
investigating crosstalk.

The origin of crosstalk is capacitance. In particular, it is undesired capacitance, often called
parasitic capacitance, that exists between wires that are closely spaced. The simple model
in Fig. 6.29 can be used to investigate crosstalk between two long parallel wires. A signal
is applied to wire 1. Capacitances C, and C, are the parasitic capacitances of the conductors
with respect to ground, while C,; is the capacitance between the conductors. Recall that we
introduced the capacitor as two closely spaced conducting plates. If we stretch those plates
into thin wires, certainly the geometry of the conductors would change and thus the amount
of capacitance. However, we should still expect some capacitance between the wires.

"
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In order to quantify the level of crosstalk, we want to know how much of the voltage on
wire | appears on wire 2. A nodal analysis at wire 2 yields

in(r) = CII[%I(I_) d %J =ix(t) = Cz[dv;f”]
Solving for dv,(t)/dt, we find that
dv,(r) =2 [ Cn :’dvl(f)
dt | Ca + C, dt
Integrating both sides of this equation yields
w) = | g2 oo

Note that it is a simple capacitance ratio that determines how effectively v(r) is “coupled”
into wire 2. Clearly, ensuring that C,, is much less than C, is the key to controlling
crosstalk. How is this done? First, we can make Cj, as small as possible by increasing the
spacing between wires. Second, we can increase C, by putting it closer to the ground
wiring. Unfortunately, the first option takes up more real estate, and the second one slows
down the voltage signals in wire 1. At this point, we seem to have a typical engineering
tradeoff: to improve one criterion, that is, decreased crosstalk, we must sacrifice another,
space or speed. One way to address the space issue would be to insert a ground connection
between the signal-carrying wires as shown in Fig. 6.30. However, any advantage achieved
with grounded wires must be traded off against the increase in space, since inserting
grounded wires between adjacent conductors would nearly double the width consumed
without them.

Wire Ground Wire §+ Figure 6.30

1 wire 2 R
Use of a ground wire in the

crosstalk model.

I
i\ 4

i
I Cic G
Ul(r) Cl I C2 ’J: UZ(I)

Redrawing the circuit in Fig. 6.31 immediately indicates that wires | and 2 are now elec-
trically isolated and there should be no crosstalk whatsoever—a situation that is highly
unlikely. Thus, we are prompted to ask the question, “Is our model accurate enough to
model crosstalk?” A more accurate model for the crosstalk reduction scheme is shown in
Fig. 6.32 where the capacitance between signal wires 1 and 2 is no longer ignored. Once
again, we will determine the amount of crosstalk by examining the ratio vy(r)/v,(1).
Employing nodal analysis at wire 2 in the circuit in Fig. 6.33 yields

: dvy(t)  dv,y(r) . dv,(r)
inn(t) = CJ:[‘TIH— = || ir(t) = (C2 + Cy5) dr
Wire W;re ¢+ Figure 6.31
: Electrical isolation using
a ground wire in crosstalk
model.

-1

vy (1) ¢, == G167 G Cazk vy(1)
I iGround

v = wire
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Figure 6.32 »3
A more accurate
crosstalk model.

Figure 6.33 «+$

A redrawn version of
the more accurate
crosstalk model.

CAPACITANCE AND INDUCTANCE

Solving for dv,(t)/dt, we obtain

a’v;ft) = [

Cin
Cpt+ G+ Cyp

] dv;ft)

Integrating both sides of this equation yields

s = [c.z+—f:f+TJ”'“>

Note that this result is very similar to our earlier result with the addition of the C,; term.
Two benefits in this situation reduce crosstalk. First, C,, is smaller because adding the
ground wire moves wires | and 2 farther apart. Second, C,; makes the denominator of
the crosstalk equation bigger. If we assume that C,; = C, and that C,, has been halved by the
extra spacing, we can expect the crosstalk to be reduced by a factor of roughly 4.

Ci2
Il
N
Wire Ground Wire
1 wire 2
J It IL A
‘r A LY h
+
Cic G
-vl(t) Cl == G == vy(1)
Ci2
K
i12(1)

W1ire J/ ire
B2
I

v1(1)
C2 vy(0)

—}
)
a
Q
S
Q
H

APPLICATION
EXAMPLE 6.20

L ]

An excellent example of capacitor operation is the memory inside a personal computer. This
memory, called dynamic random access memory (DRAM), contains as many as four billion
data storage sites called cells (circa 2007). Expect this number to roughly double every two
years for the next decade or two. Let us examine in some detail the operation of a single
DRAM cell.

SOLUTION

Figure 6.34a shows a simple model for a DRAM cell. Data are stored on the cell capacitor
in true/false (or 1/0) format, where a large-capacitor voltage represents a true condition and
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Vi / 1% C/
/0 ol I/O £

- l 1 -
sense
Coul "Ieak C [Icak cell out

l+
amps I450 fF 50 pA~ 50 fF I”ccll(‘) 50 pA~T” 50 F I”ccll(f) 1. 5VI450 fF I 4

(@) (b) ()

a low-voltage represents a false condition. The switch closes to allow access from the '?' Figure 6.34
processor to the DRAM cell. Current source /i, is an unintentional, or parasitic, current 5 simple circuit model
that models charge leakage from the capacitor. Another parasitic model element is showing (a) the DRAM
the capacitance, C_, the capacitance of the wiring connected to the output side of the cell.

Both I, and C_ have enormous impacts on DRAM performance and design.

Consider storing a true condition in the cell. A high voltage of 3.0 V is applied at node
I/O and the switch is closed, causing the voltage on C_,; to quickly rise to 3.0 V. We open
the switch and the data are stored. During the store operation the charge, energy, and number
of electrons, n, used are

memory cell, (b) the effect
of charge leakage from the
cell capacitor, and (c) cell
conditions at the beginning
of a read operation.

Q = ¢V = (50 x 10715)(3) = 150 fC

W= %cvz = (0.5)(50 X 1075)(3) = 2251

n= Qg =150 x 1075/(1.6 x 107'%) = 937,500 electrons

Once data are written, the switch opens and the capacitor begins to discharge through /.
A measure of DRAM quality is the time required for the data voltage to drop by half, from
3.0V to 1.5 V. Let us call this time ;. For the capacitor, we know

1 .
vcc]l(‘r) = C - /’ccll dtV
cel

where, from Fig. 6.34b, i, (t) = —1,,- Performing the integral yields

1 /e
ver(t) = =— [ (~lew)dt =— "=t + K
CL‘tll C

cell

We know thatatt = 0, v_,, = 3 V. Thus, K = 3 and the cell voltage is

cell

1
Vear(t) =3 — =21V 6.33
Ccell

Substituting 1 = t,; and v (1) = 1.5 V into Eq. (6.33) and solving for t; yields
t;; = 15 ms. Thus, the cell data are gone in only a few milliseconds! The solution is rewrit-
ing the data before it can disappear. This technique, called refresh, is a must for all DRAM
using this one-transistor cell.

To see the effect of C_,, consider reading a fully charged (vce" = 3.0 V) true condition.
The I/O line is usually precharged to half the data voltage. In this example, that would be
1.5V as seen in Fig. 6.34c. (To isolate the effect of C_,, we have removed I.,.) Next, the
switch is closed. What happens next is best viewed as a conservation of charge. Just before
the switch closes, the total stored charge in the circuit is

Q Qnut + Qccll = “/Ocom RV cell Cccl]
Or = (1.5)(450 x 107"%) + (3)(50 x 107"%) = 825 fC
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When the switch closes, the capacitor voltages are the same (let us call it V,) and the total charge
is unchanged.

Op = 825 fC = V,Cy + VoCooy = V,(450 X 10715 + 50 X 1075)

out

and
V. =165V

Thus, the change in voltage at V; ,, during the read operation is only 0.15 V. A very sensitive
amplifier is required to quickly detect such a small change. In DRAMs, these amplifiers are called
sense amps. How can v, change instantaneously when the switch closes? It cannot. In an actu-
al DRAM cell, a transistor, which has a small equivalent resistance, acts as the switch. The result-
ing RC time constant is very small, indicating a very fast circuit. Recall that we are not analyzing
the cell’s speed—only the final voltage value, V,. As long as the power lost in the switch is small
compared to the capacitor energy, we can be comfortable in neglecting the switch resistance. By
the way, if a false condition (zero volts) were read from the cell, then V, would drop from its
precharged value of 1.5V to 1.35 V—a negative change of 0.15 V. This symmetric voltage change
is the reason for precharging the I/0 node to half the data voltage. Review the effects of /., and
C,,- You will find that eliminating them would greatly simplify the refresh requirement and
improve the voltage swing at node I/O when reading data. DRAM designers earn a very good liv-
ing trying to do just that.

6.6

Design
Examples

®

DESIGN
EXAMPLE 6.21

We have all undoubtedly experienced a loss of electrical power in our office or our home.
When this happens, even for a second, we typically find that we have to reset all of our dig-
ital alarm clocks. Let’s assume that such a clock’s internal digital hardware requires a cur-
rent of 1 mA at a typical voltage level of 3.0 V, but the hardware will function properly down
to 2.4 V. Under these assumptions, we wish to design a circuit that will *hold™ the voltage
level for a short duration, for example, | second.

L ]

SOLUTION

Figure 6.35 3

A simple model for a
power outage ride-
through circuit.

We know that the voltage across a capacitor cannot change instantaneously, and hence its
use appears to be viable in this situation. Thus, we model this problem using the circuit in
Fig. 6.35 where the capacitor is employed to hold the voltage and the 1-mA source repre-
sents the [-mA load.

As the circuit indicates, when the power fails, the capacitor must provide all the power
for the digital hardware. The load, represented by the current source, will discharge the
capacitor linearly in accordance with the expression

Opens on

c/ power outages
(e,
J, 1-mA

3V ¢ ’J: load
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v(t) = 3.0 — %[ﬁ(:) dr

After 1 second, v(t) should be at least 2.4 V, that is, the minimum functioning voltage, and
hence

1 1
24 =30 - E[ (0.001) dr

Solving this equation for C yields
C = 1670 nF

Thus, from the standard capacitor values in Table 6.1, connecting three 560-p.F capacitors
in parallel produces 1680 pF. Although three 560-F capacitors in parallel will satisfy the
design requirements, this solution may require more space than is available. An alternate
solution involves the use of “double-layer capacitors” or what are known as Supercaps.
A Web search of this topic will indicate that a company by the name of Elna America, Inc.
is a major supplier of double-layer capacitors. An investigation of their product listing
indicates that their DCK series of small coin-shaped supercaps is a possible alternative in
this situation. In particular, the DCK3R3224 supercap is a 220-mF capacitor rated at 3.3 V
with a diameter of 7 mm, or about I /4 inch, and a thickness of 2.1 mm. Since only one of
these items is required, this is a very compact solution from a space standpoint. However,
there is yet another factor of importance and that is cost. To minimize cost, we may need to
look for yet another alternate solution.

279

Let us design an op-amp circuit in which the relationship between the output voltage and
two inputs is

v,(t) = S/Ul(f)df = 2u,(1)

DESIGN
EXAMPLE 6.22

In order to satisfy the output voltage equation, we must add two inputs, one of which must
be integrated. Thus, the design equation calls for an integrator and a summer as shown in
Fig. 6.36.

Using the known equations for both the integrator and summer, we can express the out-
put voltage as

i == ] = [ me [roa) = mig [roa =[50

C Ry
R . — i —_———
T } AA ES |
RS I er f}* T
(1) =T i L

SOLUTION

¢+ Figure 6.36

Op-amp circuit with
integrator and summer.

L]




































CHAPTER

FIRST- AND SECOND-ORDER
TRANSIENT CIRCUITS

1 Be able to calculate initial values for inductor currents and
capacitor voltages in transient circuits

¥ Know how to calculate voltages and currents in first-order
transient circuits

% Know how to calculate voltages and currents in second-
order transient circuits

Be able to use PSPICE to determine voltages and currents
in transient circuits

Courtesy of the National Oceanic and
Atmospheric Administration/Department of

Commerce
.
A
| "f; BOUT 100 LIGHTNING STROKES OCCUR  computer causes a transient. The sudden change in power
| T' around the earth every second. The dura- consumption by the CPU in a laptop computer as it transi-
I 4 Y »
S == u=tion of a lightning stroke is between 100 tions from a low-power mode to a high-performance mode is

and 1000 ps, and the current involved can range between 1
and 200 kA. The damage caused by a lightning stroke may
interrupt the power to your home. Or the lightning stroke may
cause the lights in your home to blink. This momentary varia-
tion of the current and voltage due to the lightning stroke is
referred to as a transient. Lightning is not the only source for
transients. On a hot summer day, the startup of your air con-
ditioner will produce a transient on the electrical system of

your home. Plugging a peripheral into a USB port on a

another example of a transient.

Because transients are very common, it is important to
understand how to analyze electric circuits subjected to
transients. The variations in voltages and currents in a
transient circuit are described by differential equations
instead of the algebraic equations that we have solved
so far. In our study, we will discover that the duration and
extent of a transient are determined by the elements in

a circuit and their arrangement. L ¢
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Hence.

is the complete solution. Note that if we wish to calculate the voltage across the resistor, then
vh(1) = Ri(1)
_R
Vs (I -e "’)

I

Therefore, we find that the voltage across the capacitor in the RC circuit and the voltage
across the resistor in the RL circuit have the same general form. A plot of these functions is
shown in Fig. 7.3c.

297

Consider the circuit shown in Fig. 7.4a. Assuming that the switch has been in position 1 for EXAMPLE 7.1

a long time, at time ¢t = 0 the switch is moved to position 2. We wish to calculate the cur-
rent i(¢) fort = 0.

0
e

t=0 .

1 Ry () i)
o——e: W— o Wi
6 k2 6 k(2

C—

%3»«1

12VC_+>VS < C+1oow ?taRin 12VC1) ve(0-)

I4—o0

= .
(a) ()t = 0-
Ry o) i) e
0 VWA ;
== NG

[
<
{_
B4
Al
il
0
AN
=
(%]

(c) (d)
o .
¢ Figure 7.4

Analysis of RC circuits.

At ¢t = 0— the capacitor is fully charged and conducts no current since the capacitor acts SOLUTION
like an open circuit to dc. The initial voltage across the capacitor can be found using volt-
age division. As shown in Fig. 7.4b,

3k
’UC(O—) = l2(m) =4V

The network for ¢+ > 0 is shown in Fig. 7.4c. The KCL equation for the voltage across the
capacitor is

v(1) 0 Cdv(r) ; v(t) =

R, dt R, 4
Using the component values, the equation becomes
dv(t)
+ Sv(r) =0

dt
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The form of the solution to this homogeneous equation is
(1) = Kze'”
If we substitute this solution into the differential equation, we find that 7 = 0.2 5. Thus,
v(t) = K