EE-287 Engineering Economics

Lecture Title:
Single Payment \& Uniform Series Payment Formulas
Instructor:
Dr. Muhammad Amir (DEE, UET, Peshawar)

Single Payment Formulas (F/P \& P/F)

Single payment formula is the most fundamental equation in EE
Used for: Determines the amount of money " F " accumulated after " n " years (or Periods) from a single present worth " P " with interest compounded one time per year (or Period)
Therefore, if P is invested at time $t=0$, the amount F_{1} accumulated in 1 year hence at an interest rate of i percent per year will be:
$F_{1}=P+P i$
So, $F_{1}=P(1+i)$

End of Year 2:

Now F_{2} is the amount accumulated (and F_{2} is the amount after Year 1 plus the interest from the end of Year 1 to the end of Year 2 on the entire F_{1})
$F_{2}=F_{1}+F_{1} i \quad A s, F_{1}=P(1+i)$
So, $F_{2}=P(1+i)+P(1+i) i \quad$ (After simplifying) $F_{2}=P(1+i)^{2}$
Similarly, for End of Year 3: $\quad \boldsymbol{F}_{\mathbf{3}}=\boldsymbol{P}(\mathbf{1}+\boldsymbol{i})^{3}$
Thus, for Any number of Years: $F_{n}=P(1+i)^{n} \quad$ or $\quad P=F_{n} /(1+i)^{n}$

Single Payment Formulas (Continued)

Remember:	$(1+i)^{n}$ is Single Payment Compound Amount Factor
While,	$1 /(1+i)^{n}$ is known as Single Payment Present Worth Factor

Example: You have Rs.10,00,000/- to invest now at 9\% per year for 30 years. Find the future value of your investment?

Solution: As we know, $F_{n}=P(1+i)^{n}$ So, $F_{30}=P(1+i)^{30}$
So, $\quad F_{30}=10,00,000(1+0.09)^{30}$
$F_{30}=13,267,678.4691 \quad$ (Answer - Compounded Interest)

* Assignment for you regarding this is uploaded so check it out and submit.

Uniform Series Payment Formulas (P/A, A/P, A/F, F/A)

$$
\begin{align*}
& P \leftrightarrow A \\
& P=A\left[(1+i)^{n}-1 / i(1+i)^{n}\right] \tag{1}\\
& A=P\left[i(1+i)^{n} /(1+i)^{n}-1\right] \tag{2}\\
& F \leftrightarrow A \\
& F=A\left[(1+i)^{n}-1 / i\right] \tag{3}\\
& A=F\left[i /(1+i)^{n}-1\right] \tag{4}
\end{align*}
$$

Example 1: How much money YOU will have to invest to get Rs.400,000/- per year for 5 years starting next year at RoR of 15% per year?

Solution: Use Uniform Series Formula (1): $P=A\left[(1+i)^{n}-1 / i(1+i)^{n}\right]$

$$
\begin{aligned}
& P=400,000\left[(1+0.15)^{5}-1 / 0.15(1+0.15)^{5}\right] \\
& P=1340862.03932 R s \quad \text { (Answer) }
\end{aligned}
$$

Example 2: YOUR company earns at a rate of 16% per year. YOU want to know the FUTURE worth of Rs.10,00,000/- per year investment for 5 years?

Solution: Use Uniform Series Formula (3): $F=A\left[(1+i)^{n}-1 / i\right]$

$$
\begin{aligned}
& F=10,00,000\left[(1+0.16)^{5}-1 / 0.16\right] \\
& F=6877135.36 R s
\end{aligned}
$$

