DMA, DRAMs, Cache Memories,
Coprocessors, and EDA Tools

The major objective of the first six chapters of this book
was to introduce you to structured programming and
to writing 8086 assembly language programs. Chapters
7 through 10 introduced you to the hardware of an 8086
minimum-mode system, showed you how to interface a
microcomputer to a wide variety of input and output

devices, and finally demonstrated how all these pieces '

are put together to build a simple microcomputer-based
instrument or control system. The major goal of the
remaining chapters in the book is to show you the
hardware and software of larger microcomputer systems.

CASSETTE 1/O

SYSTEM EXPANSION SLOTS
ey,

J3

Teeansneee)
T

naniiaseieiy

Niiaaiasane.

As an example of what we mean by a larger system,
look at Figure 11-1, which shows the component side
of the main microprocessor board or “motherboard” for
an IBM PC. As you can see, the board contains an 8088
microprocessor, ROM, and a large block of dynamic
RAM. The board also has a socket for a special 8087 math
auxiliary processor. Finally, note the system expansion
slots in the upper left corner of Figure 11-1. These slots
allow you to plug in additional boards which give the
system the specific interface functions you need. For
example, you may want to add a disk-controller board,

KEYBOARD 1/O

I1BM MATH

/ COPROCESSOR

SYSTEM BOARD
/POWER CONNECTIONS

——CLOCK CHIP

A TRIMMER
READ ONLY .
MEMORY ™| \lNTEL 8088
PROCESSOR
ﬁ\ \DIP SWITCH
g BLOCK 2
[D U H BD D \D'PSW'TCH
___________ BLOCK 1
-
00
|
16 TO 64 K OR }[ﬂ D ey
Ezde;%/ﬁg;e | XT IS VERY SIMILAR
MEMORY IEU D EXCEPT IT HAS EIGHT
[SYSTEM EXPANSION SLOTS
|D] D AT IS SIMILAR EXCEPT
(L IT HAS TWO BANKS OF

EXPANSION SLOTS

o/ \

OUTPUT

SPEAKER \CASSETTE MICROPHONE
OR AUXILIARY SELECT

'FIGURE 11-1 Component layout diagram for IBM PC motherboard. (/BM

Corporation)

345

a serial-port board, a CRT controller board. a board with |

additional memory, an A/D-D/A board, or a board which
allows your PC to function as a logic analyzer. This
“open-system” approach lets you easily customize a
system for your applications and financial state.

Inlater chapters we discuss the operation of peripheral
boards such as CRT controller boards, disk-drive control-
ler boards, and serial communication boards which plug
into these expansion slots.

The first goal of this chapter is to show you how the
circuitry on a microcomputer motherboard such as the
one in Figure 11-1 works. A second goal of this chapter
is to show you how computer-based tools are used to
design, test, debug. and produce the hardware and
software for a board such as this.

OBJECTIVES
At the end of this chapter you should be able to:

1. Show how an 8086 is connected with a controller
device for operation in its maximum mode.

2. Show how a direct memory access (DMA) controller
device can be connected in an 8086 system and
describe how a DMA data transfer takes place.

3. Describe how large banks of dynamic RAM can be
connected in a system.

4. Describe how a cache memory is used to reduce the
number of wait states required in a system which
has a large dynamic RAM main memory.

5. Describe how automatic error detecting-correcting
circuitry works with memories.

6. Show how a coprocessor can be connected to an
8086 or 8088 operating in maximum mode.

7. Describe how an 8086 and an 8087 cooperate during
the execution of a program which contains instruc-
tions for each.

8. Write a simple assembly language program for an
8087. ;

9. Describe how schematic capture programs, simula-
tor programs, and other computer-based tools are
now used to develop a microcomputer system.

INTRODUCTION

After much agonizing we finally decided to use the
original [BM PC for some of the system examples in this
chapter. Although the PC itself is somwhat outdated, it
demonstrates well the concepts of DMA, DRAM interface,
and coprocessors that we want to teach here. Almost all
our discussion of PC operation is also valid for a PC/AT,
and as you will see in later chapters, an understanding
of the basic PC is a good starting point for understanding
later generation systems.

To give you a more detailed idea of where we are going
in this chapter and how it relates to what you have

346 CHAPTER ELEVEN

learned in previous chapters, let’s take a look at Figure
11-2, which shows a block diagram of circuitry on an
IBM PC motherboard. As you louk at this diagram you
should see many familiar parts and a few new ones.
Start on the left side of the diagram and work your way
across it from the 8088 CPU and the 8259A priority-
interrupt controller. Under the 8088 main processor
note the auxiliary processor socket which can be used
for an 8087 math coprocessor.

The next vertical line of devices to the right in Figure
11-2 consists of the address bus buffers, the data bus
buffers, and the 8288 bus controller chip. As we explain
later, a bus controller chip is required to generate control
bus signals when the 8088 is operated in its maximum
mode. The buses from these devices go across the
drawing and connect to the 62-pin peripheral board
connectors so the 8088 can communicate with the
boards in the peripheral expansion slots as well as with
the ROM, RAM, and ports on board. Incidentally, the
layout of the IBM PC/XT motherboard is very similar to
this layout, but the XT has eight /O slots instead of five.

Now find the ROM in the lower center, the keyboard
logic, etc., in the middle right. and the dynamic RAM in
the upper right. Finally, take a look at the column of
devices which contains the 8237A-5 DMA controller.
Starting at the bottom of this column you see an 8253-
5 programmable timer which is nearly identical to the
8254 we described in Chapter 8. Just above this is the
familiar 8255A-5 programmable port device. Now you
are left to ponder just the three devices with DMA in
their labels.

The major parts of this circuit that are new to you are
the DMA section, the dynamic RAM section and its
associated parity check/generator logic, and the auxiliary
processor. In the following sections of the chapter we
discuss each of these types of circuitry in detail. First,
however, we will explain what we mean when we say
that an 8086 or 8088 is operating in maximum mode
because many of the circuits shown in this chapter and
the following chaoters use the devices in this moae.

THE 8086 MAXIMUM MODE

Figure 11-3a, p. 348, shows the pin diagram of the
8086 again. You may remember from our discussion in
Chapter 7 that if pin 33. the MN/MX pin, is tied high,
the 8086 operates in its minimum mode. In minimum
mode the 8086 directly generates the control bus signals
shown in parentheses next to pins 24 through 31 in
Figure 11-3a.

If the MN/MX pin is tied low, the 8086 operates in its
maximum mode and pins 24 through 31 generate the
signals named next to the pins in Figure 11-3a. In
maximum mode the control bus signals are sent out in
coded form on the status lines, SO, S1, and S2. As
shown in Figure 11-3b. an external controller device
such as the Intel 8288 is used to produce the required
control bus signals from these lines. Figure 11-3b shows
the expanded names for each of the control bus signals
generated by the 8288. Note in Figure 11-3b that 8282
octal latches are used to demultiplex the address signals

(uoneiodio) WEI) PIROQIBLROW D¢ WL 1 ABMOID Jo weiBep y30lg T-Li 310K

4

™~
— =< | &« (S018) T10H INOD (ax) sng []tvx) sna F1sann
—1< | € SvNLEL008 "oy viva /| ssauaav {ou1n0D
—< | & As+ ====1] sxae TvNYILX3 SRAZTEIEE]
— < | e—as Jisve 32 : :
—T2is = Tivm
meens | T O 550 300030 n.l'?.{ 21901 u
¢ 9 30vdS WOl ¥ = k uh».“n.am 38 o
o1 N = "oy] 13836/%2010
—1=< | € 8 X X 8 3UVdS €52
— < | € ano [<%) &Y E 7
—< | EF—— A+ ¢
—< | & Au- :
—_— ——— ON
— | &
fom mw Ko, 14 000D §3IM04 Z L0 ;
oH) HIMIL - }
HbAY 04LNOD ONV[]
OHVOBA3N S-£528 : SNIVLS ViV
t : $S3¥OQV w01}
1 <7 :
21901 g K]
HINV3AS €——— uivvaes b S140d 300030 |+
€d o/ s i ¥ITI0UINOD
; r on g LeN¥u3LNI
BOLIINNOD 5 G-wesZe E
3135SvD { v % ves28
21901 * f—
311355V oo : , 55%3)
— 1108 LN
ey L | ¥318193y 3 L aﬂﬂ» 09 and
} SMOLING 0v4 3 38
JOULNOJ YOLOW/NI VIVD NOILY YWO : 8828 B
HNOHINGD 029810¢ —_ B
. F |
[WNVE 3
HOLI3NNOD - S¥D ¥34408 (At
r1 O/1 Nid 29 7 HILVY viva o
z == ssawaav wav]:
T wwa svzsiwe| Oav[:
i 6 % 9 50 6 x X 3L K, ELESINL &
Fawre 6 X % ¥9 HO 6 X X 01 s . [
2 6 X %raHOBX NIl e H344N8 AHH
6 X 3 ¥9 HO B X X 91 I0.LNOD =] ssavaav N384
YWa ceeswe| 0OV 13%208
”V ¥OSS320K4 A|I||L.,
5-viE28 AVITIXNY
J 3
¥344n8 el
21901 H3IX3ILINW 2007 E] L 1 . $S3NAAY ﬂ
woivyan3o | | ¥3iane 53uody 08LNOD S | v3sane ¥344n8 siv}
MI3HD AHOW3W AUOWIN A¥OWIN [Tosova > | wviva SS3WO0V ¥9zSIB? v
Alluvd wy Wy 2 £
SPZSIvL 851STI9L 3 | sveswe wesIne pP2SINL
z)
BS1ST8L = PHZSINL B
4 J 1L woss3ooue
e ey et 21901 C 4 Nivie
: Snevivalias |, _— ;
[] snessauoav Lie-0z T 3T T q T L
0 OH1 dN
323HO O/t

SN8 TOHINOD

A2d

0009

¥3MO04
1353¥d| youvuINID
3507 0 [+
AQV3Y vv8ze

Lo

ZHW BIBLE YL

O
<
I

e I 0 I } : LOCAL BUSES
WN/MX GND cox WRDC | MEMORY READ
8284
2 [l Abiem G,::ﬁﬂw cLk 0 =) TC MEMORY WRITE
3 [J AD17/54 - b - i)
s -] READY S 51 8288 AMWC ADVANCED MW
o RESET 52 2 cr':fn I0RC }——— 110 READ
RDY DEN' TOWC p-——— 1O WRITE
GND r 8086 oT/A AIOWC |——— ADVANCED /0 W
CcrPU =% INTERRUPT
31 [1 AG/GTE (MOLD) ALE L ACKNOWL EDGE
iﬁn'ﬁ?lu-l.on oek Wi
29 [J0Ck (WR)
5] M/T0) .
(DT/A) sTe
(DEN) — 5
(ALE)
8282
*AD! 1 MEGABYTE
TS g e Sl e B2
BHE _‘_
K}

T

o Caan

8286
TRANSCEIVER

16-81T
DATA BUS

(b)

FIGURE 11-3 8086 revisited. (a) 8086 pin diagram. (b) Circuit showing 8086

connections for MAX mode operation.

and 8286 bidirectional drivers are uz=d to buffer the
{ata bus so that it can driac a boardfizt - f devices,

Now we will show you .ome of the wavs that a
microprocessor can tirae.noce its buses in inimum
inode and maximum m’

DIRECT MEMORY ACIZSS (DMA)
DATA TRANSFER

DMA Overview

Up to this point tn the tock we have used program
tastructions to transfer dsta from ports to memory or
from memory to ports. For some applications, such as

(Intel Corporation)

Circuit Connections and Operation
of the Intel 8237 DMA Controller

We chose the 8237 DMA controller as the example for
this section because It is a commonly used device; also,
it is one of the devices you will find if you start poking
aroitnd tnside an IBM PC/XT or PC/AT. Before we dig
into the actual connections and operation of an 8237
circuit, however, let’s take a look at the block diagram
in Figure 11-4 to get an overview of how a DMA transfer
takes place. The main t to keep 1 ur mind here
is that the mmcﬁML—d%:fDmMﬁomml]er
timeshare the use of the address, data, and control -
uses. The three ches in the m of the block
diagram are an attempt to show how control of the buses

transferring data bytes to memeory from a magnetic or / Is transferred.

optical disk, however, the data bytes are coming in from ~

the disk faster than they can be read in with program
instructions. In a case like this we use a dedicated

hardware device called a direct memory access or DMA

controller to manage the data transfer. The DMA control-
ler t the address bus, data bus, and
““control bus from the microprocessor and transfers the
data bytes directly from the disk controller to a series of
memory locations§. Because the data transfer Is handled
totally in hardware, it is much faster than it would be
if done by program instructjéns. A DMA controller can
also transfer data fram m&mory,to a port. Some DMA
devices even can do memory o-m/emory transfers to
implement fast block transfefs. Here's an example of
how a common DMA contfoffer is connected and used
* in an 8086 minimum-mode system.

348

CHAPTER ELEVEN

/ When the system is first turned on, the switches are

in the up position, so the buses are connected from the
microprocessor to system memory and péripherals. We
initialize all the programmable devices in the system
and go on executing our program until we need, for
read a file off a disk. To read a-disk file we
rles of commands to the smart disk controller

data’ffom the disk. When the disk controller has the
first byte of data from the disk block ready, it sends a
DMA request, DREQ, signal to the DMA controller. If
that input (channel) of the DMA controller is unmasked.
the DMA controller will send a hold‘request, HRQ, signal
to the microprocessor HOLD ipput. The microprocessor
will respond to this input by floating its buses and
sending out a hold-acknowledge signal, HLDA, to the

ADDRESS
LATCHES
ADG-AD15
; ADDRESS BUS
ALE
MEMORY
DATA BUS
uP B DATA BUS
[>]
e ° CONTROL BUS
iOR, IOW °
HLOA_HOLD | WEniw, MEW
5 i DATA BUS
HRQ a ‘
DMA CONTROL BUS "
HLDA CONTROLLER A -
IOR, IOW___ | pgRipPHERAL tsxoasx
h} - prea MEINMEMS DEVICE | CONTROLLER)
DACKQ ¥,

FIGURE 114 Block diagram showing how a DMA controller operates in a’

microcomputer system.

HLDA sign
throws

71t will send out a control signal which
three bus switches down, to-their D

and cohnects the DMA controller to the buses.
When the DMA controller gets control of the

signal to the disk controller device to tell it to get ready
to output the b g/ﬁ/ntglly. the DMA controller asserts
both the MEMW and the IOR lines on the control
bus. Asserting the MEMW signal enal
memory to accept data written to it: Asserting
signal enables the disk controller to ofitpu

" data from the disk on the data bus. The ¥yte of data
then is transferred directly from the controller to
the memory location without pa through the CPU
or the DMA controller.

NOTE: For this type of transfer the disk controller
chip select input does not have to be enabled by
the port address decoding circuitry as it does for
normal reading from and writing to registers in
the device. In fact, the normal port-decoding cir-
cuitry Is disabled during DMA operations to pre-
vent the combination of IOR and the output mem-
ory address from turning on unwanted ports.

When the data transfer is complete, the DMA controller
unasserts its hold-request signal to the processor and
releases the buses. The switches in Figure 11-4 are
effectively thrown back up to the CPU position. This lets
the processor take over the buses again until another
DMA transfer is needed. The processor continues execut-
ing from where it left off in the program.

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS

A DMA transfer from memory to the disk controller
proceeds in a similar manner except that the DMA
controller asserts the memory-read control signal,
MEMR, and the output-write control sighal, IOW. DMA
transfers may be done a byte at a time or in blocks.

Now, to give you more practice working your way
through actual microprocessor circuits, let's look at
Figure 11-5, p. 359, to see some of the circuitry we
might add to an 8086 system so that we can do DMA
transfers to and from a disk controller. This circuitry s
simply a more detailed version of the block diagram in
Figure 11-4.

The first thing to do in analyzing this schematic is to
identify the major devices and relate their function,
where possible, to the block diagram. The 8086 and
8284 should be old friends from your exploration of the
SDK-86. The 8237 is, of course, the DMA controller, and
the 8272 is the floppy-disk controller. We discuss the
operatjon of a disk controller more in Chapter 13, but
for now all you need to know about it is the overview of
how it interacts with the 8237, as we described earlier.
The 8282s in this circult are octal latches with three-
state outputs. They are used here to latch addresses
output from either the 8086 or from the DMA controller.
These devices are controlled by ALE from the 8086 and
by AEN and ADSTB from the DMA controller.

When the power is first turned on, the address-enable
signal, AEN, from the DMA controller is low. Devices U1,
U2, and U4 are then ¢nabled, and the ALE signal from
the 8086 goes to the strobe inputs of all three devices.
When the 8086 sends out an address and an ALE signal,
these three devices will grab the address and send it out
on the address bus lines, A19—A0. This is just as would
be done in a simpler 8086 system. Now, when the DMA
controller wants to take over the bus, it asserts its AEN
output high. This does several things. First, it disables

349 -

I_M A19-A16 7 D! oo} A19-A16
BH Gié
8284 RD sTs 8282
OCTAL
| WR 9 EN LatcH
READY
M/10 ‘Sl:
cL
AD15-A08 |2 e
RESET bo
8
AD7-AD@ 7 o
UPPER
ALE oma oM a'i?z
B808€ ADDRESS g:: OCTAL
AT
HOLD LATCH I 0D a
F HLDA | sT8
r D [e]]
AD15-8 8, AB-A15
—— cLk ol oo [us
74L574 sTB P
u2 BIDIRECTIONAL
CLR 8282 BUFFER
T gy OCTAL 18 T
T[:ﬂ LATCH d5e AU
AD7-@ 8 8
7o 00 (4 Us
sT8 8286 T0
ADDRESS A0 BIDIRECTIONAL MEMORY
STROBE =0, LAl BUFFER AND
o _ m b 8 74 PORTS
mexen [© —qEn OCTAL - -)
LATCH H-d O€ A1 7 BHE
5 +— D8-D15
8,’ De-D7
/— AB-A15
7= 9
ATR 8,’ 8, ar-ao
10R
De 8237 1ow
I CLK ADSTB MEMW
RESET AEN MEMR
‘— D87-0 HREQ
HLDA AT-0 L—{pe-n7
DREQO L] AD 4272
S L QRN
C
—{DREC2 MEMW A8 °°g,},‘,‘,°L DATA SIGNALS
—DREQ3 MEMR —1 s
FROM PORT DECODER)———— G5 DACK® DACK
DACR‘ — —4 CLK
+5V READY DACKZ f—o Tc DRQ
EOP DACK 3

FIGURE 11-5 Schematic for 8086 system with 8237 DMA controller and 8272

floppy-disk controller.

device U1 so that address lines A7-AO no longer come
from the 8086 bus. The 8237 directly outputs the lower
8 bits of the memory address for the DMA transfer.
Second. AEN, going high. switches the strobe multi-
plexer so that the strobe for device U2 comes from the
address strobe output of the 8237. To save pins, the
8237 outputs the upper 8 bits of the memory address
for the DMA transfer on its data bus pins and asserts
its ADSTB output high to let you know that this address

350 CHAPTER ELEVEN

is present there. At the start of a DMA transfer, then,
memory address bits A15-A8 will be sent out by the
8237 and latched on the outputs of U2.

Still another effect of AEN going high is to switch the
source of address bits A19-A16 from device U4 to device
U3. The DMA controller does not send out these address
bits during a DMA transfer, so you have to produce them
in some other way. You can either hard-wire the inputs
of U3 to ground or +5 V to produce a fixed value for

these bits, or you can connect these inputs to an output
port so you can specify these address bits under program
control.

Finally, AEN going high switches the source of the
control bus signals from the outputs of the control bus
decoder circuitry to the control bus signal outputs of
the DMA controller. This is necessary because, during
a DMA transfer, the 8237 generates the required control
bus signals such as MEMW and IOR. Incidentally, the
NOR gate decoder circuitry in the upper right corner of
the schematic is necessary to produce processor control
bus signals compatible with those from the 8237.

The final part of the circuit in Figure 11-5 to analyze
is the two 8286 octal bus transceivers. The disk control-
ler has bnly an 8-bit data bus output. If we had connected
these eight lines on the lower eight data bus lines of the
8086 system, the DMA controller would be able to
transfer bytes only to even addresses. Likewise, if we
had connected the disk controller data outputs on the
upper eight data lines of the 8086 system, the DMA
controller would be able to transfer bytes only to odd
addresses in memory. To solve this problem, we connect

the two 8286s as a switch which can route data to/from |

the disk controller from/to either odd or even addresses
in memory. If you work through the glue logic. you
should see that A0 determines which half of the data
bus is connected to the eight data pins of the disk
controller. MEMW determines whether the buffers are
set to transfer data to or from the disk controller. Now
let's look more closely at the signal flow and timing for
this circuit.

A DMA Transfer Timing Diagram

Figure 11-6 shows the sequence of signals that will take
place for a DMA transfer in a system such as that in
Figure 11-5. Keep a copy of Figure 11-5 handy as you

. work your way down through these waveforms. The

labels we have added to each signal should help you. We
will pick up where the 8237 asserts AEN high and gains
control of the buses. After the 8237 gains control of the
bus, it sends out the lower 8 bits of the memory address
on its A7-AO pins and the upper 8 bits of the memory
address on its DBO-DB7 pins. The 8237 pulses ADSTB
high to latch these address bits in the 8282 and then
removes these address bits from the data bus. At about
the same time the 8237 sends a DACK signal to the disk
controller to tell it to get ready for a data transfer.

Now that everything is ready, the 8237 asserts two
control bus signals to enable the actual transfer. For a -
transfer from memory to the disk controller, it will assert
MEMR and IOW. For a transfer from the disk controller
to memory, it will assert MEMW and IOR. Note that the
8237 does not have to put out an IO address to enable
the disk controller for this transfer. When programmed
in DMA mode, the disk controller needs only IOR or IOW
to be asserted to enable it for the transfer. Also note that
the 8237 will not output a new address on A8 thrdugh
A15 when a second transfer is done, unless those bits
have to be changed. This saves time during multiple-
byte transfers.

When the programmed number of bytes have been
transferred, the DMA controller pulses its end-of-proc-

22 | s | s

°“‘_/ \ / \J_/'_/'\./\./'\./'\./\f\f_f_/'\/\.

DREQ
FROM 8272

ANRRRRRRNRAY

HRQ 8237 e
TO 8086

X

HLDA
FROM 8086 ____qw

ARRRRRRRRARNAN

8231 -y £

ADSTB
8237

|

-087 _ Lk
D80-DB7 5 AB-A15

FROM 8237 T Nl

ADDRESS VALID-BYTE 2

AD-A7
FROM 8237

e ;
4 ADDRESS VALID-BYTE 1 X

)______.

DACK 8237
T08272 b 7

IOR, MEMR =
FROM 8237

X

IOW, MEMW i S
FROM 8237 il

el Lof s

|

INT EOP

FIGURE 11-6 Timing diagram for 8237 DMA transfer.

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS

| —

(Intel Corporation)

351

ess, EOP, pin low, unasserts its hold request to the
8086, and drops its AEN signal low. This releases the
buses back to the 8086. Now that you have an idea how
an 8237 is connected and operates in a system, we will
glve you an overview of what is involved in initializing
it.

8237 Initialization Overview

Initializing an 8237 is not difficult, but it does require
a fairly large number of bytes. We do not have space to
show you a complete initialization, but here is an
overview.

The 8237 is connected in a system as a port device,
80 you write Initialization words to it just as you would
to any other port device. Incidentally, several 8237s can
be cascaded In a master-slave arrangement to give more
input channels and each device must be initialized.

As shown by the pin labels on the 8237 in Figure 11-5,
the 8237 has four DMA request inputs or channels, as
they are commonly called. For each channel you need to
send a command word which specifies the general
operation, mode words, the starting memory address,
and the number of bytes to be transferred. Each channel
of the 8237 can be programmed to transfer a single byte
for each request, a block of bytes for each request, or to
keep transferring bytes until it receives a wait signal on
the EOP input/output. Consult the data sheet in an Intel
data book to get the details of each command word.

DMA and the IBM PC

Now that you know how DMA operates, let's take a look
back at the DMA section In the block diagram of the

SIGNAL REAR PANEL SIGNAL

NAME NAME
GND FH-81 & —k— —1/0 CH €K
+RESET DRV M- -1 +D7
+5v s 1 +D8
+IRO2 H— 4 +DS
-5vDC H- -H +D4
+DRQ2 H— -H +03 .
=12v H- -+ +0D2
RESERVED H— -~ +01
+12v H- -+ +00
GND M= 810 A0 +1/0 CH RDY
—MEMW H- 4 +AEN
~MEMR M- - +A19
—1ow H- -+ +A1B
~I10R H- “H +A17
-DACK3 ans “H +A18
+DRQ3 H- -+ +A15
-DACK1 Ft- —H +AI4
+ORQ! H- -+ +A13
~DACKO H- 14 +A12
cLock M- 820 A20—H +A1
+IRQ7 H- L -+ +A10
+IRQE H- - +A9
+IRQS H- e +A8
+1RQa b e A7
+1RQ3 H- B +AB
-DACK2 H- -H +A5
+TIC H- - +Ad
+ALE M- -H “A3
+5v M- - +A2
+0SC M= Al
+GND =831 A3l J__ +A0
COMPONENT
SIDE

(a)

IBM PC motherboard circuitry in Figure 11-2. The

. 8237A-5 is, of course, the DMA controller. The 74L.S373

Jjust under it is used to grab the upper 8 bits of the DMA
address sent out on the data bus by the 8237A-5 during
a transfer. This device has the same function as device
U2 in Figure 11-5. The 74LS670 just below this is used
to output bits A16-A19 of the DMA transfer address,
the same function performed by U3 in the circuit in
Figure 11-5.)

In order that peripheral boards can Interface with the
motherboard circuitry on a DMA basts, the DMA signal
lines are connected to the peripheral connectors shown
in the upper right corner of Figure 11-2. To see how
DMA and other signals go to the peripheral boards, take
a look at the pin descriptions in Figure 11-7.

The signals shown in Figure 11-7a are bused to all
five peripheral connectors in parallel so that any board
can access them. Most of the signals on these connectors

REAR PANE L

GND CH-81 ar—Ho ~1/0 CHCK
RESET DRV s07
+5V DC S06
1RQ9 s05
-5VDC sD4
DRO2 s03
-12vDC sD2
ows 501
+12VDC SDO
GND H—810 A10— ~1/0 CH RDY
—SMEMW AEN
~SMEMR SA19
—1ow SA18
—10R SA17
-DACK3 SA16
DRO3 SA1S
~DACK1 SA14
ORQ1 SA13
~REFRESH SA12
CLK M—820 A20— san
IRQ7 SA10
1RQ6 SA9
1ROS sA8
1RQ4 SA7
1RQ3 SA6
-DACK2 SAS
T/IC SA4
BALE SA3
+5V OC SA2
0sc sAl
GND L__-r—llﬂ AJ1—+ SAQ
~MEM CS16 o1 ci—H{4 SBHE
-1/0 C$16 LA23
1RQ10 LA22
IRan LAY
IRQ12 LA20
IRQ1S LAlg .
IRQ14 LAS
-DACKOD LAY
DROO —MEMR
—DACKS H—010 c10— —MEMW
DRQOS Soo8
~DACKE SD09
DRQS s010
—-DACK7 son
DRQ7? s012
+5VDC sD13
~MASTER SD14
GND _J 018 18— s015
COMPONENT
SIDE
(b)

FIGURE 11-7 Pin names and numbers for peripheral slots. (a) On IBM PC

motherboard. (b) On IBM PC/AT motherboard.

352

CHAPTER FIFVFN

(IBM Corporation)

should be easily recognizable to you. A + in front of a
signal indicates that the signal is active high, and a -
indicates that the signal is active low. AO through A19
on the connectors are the 20 demultiplexed address
lines, and DO through D7 are the eight data lines. IRQ2
through IRQ7 are interrupt request lines which go to
the 8259A priority-interrupt controller so that peripheral
boards can interrupt the 8086 if necessary. Some other
simple signals on the connectors are the power supply
voltages; the standard ALE, - MEMW, —~MEMR, -I0W,
and —IOR control bus signals; and some clock signals.
The VO CH RDY pin on the connector can be asserted
by a peripheral board to cause the 8086 to insert WAIT
states until the peripheral board is ready.

Finally, we are down to the DMA signals on the
expansion connectors. The DMA request pins DRQI-
DRQ3 allow peripheral boards to request use of the
buses. A disk controller board, for example, might
request a DMA transfer of a block of data from system
‘memory. When the DMA controller gains control of the
system buses, it lets the peripheral device or board know
by asserting the appropriate - DACKO through — DACK3
signal. The AEN signal on the connectors is used to gate
the DMA address on the bus, as we described earlier.
When the programmed number of bytes has been trans-
ferred, the T/C pin on the connector goes high to let the
peripheral know that the transfer is complete.

To show you that it is a small step to understand
another bus, Figure 11-7b shows the pin names for the
VO bus connectors on IBM PC/AT. The 80286 micropro-
cessor used in the AT has 24 address lines which are
sent out on the bus as SAO through SA19 and LA20
through LA23. SDO through SD15 are the 16 data lines
for the bus. The AT motherboard uses two 8259A priority
interrupt controllers to produce 15 interrupt inputs.
The 11 interrupt inputs not used in the motherboard
are connected to IRQ pins on the bus. The AT uses two
8237A DMA controllers to produce 7 DMA channels. The
DREQ input signal for each channel and the DACK
signal for each channel are present on the bus. Other
DMA signals present are AEN and T/C. The next signals
to look for in Figure 11-7b are the control bus sig-
nals, -SMEMW, -SMEMR, -IOW, —IOR, —MEMW,
—=MEMR, BALE, and SBHE, which should be fairly
familiar to you from our previous discussions of the
8086. Now, all you have left are a few miscellaneous
signals such as REFRESH, which is used to indicate a
DRAM refresh operation is in process; —MEM CS186,
which lets the motherboard know that the present data
transfer is a 1 wait-state transfer; and - /O CS16, which
Is used to let the motherboard know that the present
data transfer is a 1 waif-state transfer. The OWS line on
the bus is used to tell the motherboard that no wait
states are required to complete the current read or write
cycle. RESET DRV is the system reset line, CLK is the
6.0-MHz system clock, and OSC is a high frequency
clock signal which can be divided down and used on
VO boards. Finally, the —MASTER signal is used by
another processor board to gain control of the bus.

Now that you know how DMA works in a microcom-
puter, the next block of circuitry to talk about is the
RAM section.

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND BDA TOOLS

INTERFACING AND REFRESHING
DYNAMIC RAMs

Review of Dynamic RAM Characteristics

.For small systems such as the SDK-86, where we only

need a few kilobytes of RAM, we usually use static RAM
devices because they are very easy to interface to. For
larger systems, where we want several hundred kilobytes
or megabytes of memory. we use dynamic RAMs, often
called DRAMs. Here's why.

Static RAMs store each bit in an internal flip-flop
which requires four to six transistors. In DRAMs a data
bit Is stored as a charge or no charge on a tiny capacitor.
All that is needed in addition to the capacitor is a single
transistor switch to access the capacitor when a bit is
written to it or read from it. The result of this is that
DRAMs require much less power per bit, and many r-ore
bits can be stored in a given size chip. This makes the
cost per bit of storage much less. The disadvantage of
DRAM s is that each stored data bit must be refreshed
every 2 to 8 ms because the charge stored on the
tiny capacitors tends to change due to leakage. When
activated by an external signal, the refresh circuitry
in the device checks the voltage level stored on each
capacitor. If the voltage is greater than V/2, then that
location is charged to V. If the voltage is less than V/2,
then that location is discharged to O V. Let's take a look
at a typical DRAM to see how we read, write, and refresh
it.

Figure 11-8a, p. 354, shows an internal block diagram
for a Texas Instruments TMS44C256 CMOS DRAM. This
device Is a 256K x 4 device, so it stores 262,144 words

. of 4 bits each in its 20-pin package. You can connect

two of these in parallel to store bytes or 4 in parallel to
store 16-bit words. Since DRAMs are almost always
connected in parallel, several companies now produce
DRAM modules such as the TI TM4256FL8 256K x 8
device shown in Figure 11-8b. The 30-pin single in-line
package (SIP) takes much less PC board space than the
equivalent DIPs.

Now, according to the basic rules of address decoding,
18 address lines should be required to address one of
the 256K or 2'® words stored in the MT44C256 DRAM.
The diagram in Figure 11-8a, however, shows only nine
address inputs, AO—A8. The trick here is that to save
pins, DRAMs usually multiplex in the address one-half
at a time. A look at the timing diagram for a read
operation in Figure 11-8c should help you to see how
this works.

To read a word from a bartk of dynamic RAMs, a DRAM
controller device or other circuitry asserts the write-
enable, W, pin of the DRAMs high to enable them for a
read operation. It then sends the upper half of the
address, called the row address or page address, to the
nine address inputs ¢ “ the DRAMs. The controller then
asserts the row-address-strobe, RAS, input of the DRAM
low to latch the row address in the DRAM. After the
proper timing interval, the controller removes the row
address and outputs the lower half of the address, called
the column address, to the nine address inputs of
the DRAMs. The controller then asserts the column-

353

TM4258FL8 . L SINGLE-IN-LINE PACKAGE

* f F i (TOP VIEW)
ET———
l_) | TG ano contROL [T Vog (1)
DO
CAS (2)
Dar (3) \
A0 (4)
ROW A1 (5)
BUFFERS Doz (6)
L] A2 (7) N o]
256k | row | 2sex Vss (9)
r ARAAY | DECODE |[ARRAY N7 DQ3 (10)
A6 SENSE AMPLIFIERS ey A (1) | .
:; i n::; ol
a3 coumn | vo [2?4 :::;
As BUFFERS
o 'w,:,“' [] cowumw oecooe i A7 (15) eem—— .
as s:ucnou: OATA . DS (16) 1
A? . our A8 (17)
a8 [T] neo T ls NC (18
SENSE AMPLIFIERS o= S (18) X
256K | ROW 258K NC (19)
ARRAY | DECODE |ARRAY DQS6 (20)
P — w21
Vss (22) |
(a) DQ7 (23)
NC (24)
read cycle timing DQ8 (25)
: NC (26) \
- teld) - RAS (27)
b twiRL) e Vim NC (28)
RAE N; *:4‘ :\ va NC (29)
1
y-d b'_. - _,'-_ et e g —d Voo (30) I —— =
| [s—tamcy - =] o ___:
— r-“_f‘_)
g ; o = twiCl) —==} : : ™ L
TAS [N 7 ,\ 0657
bt | Ll | = b
r—=tqALcal | | i fw(CH) == PIN NOMENCLATURE
i et tuical | TM4258FL8
LY | SRS]
e P teicacH . AQ-A8 Address Inputs
| 20-£

| =t
": h (RA)

'hIRLCA) —‘—F::CA“H] !

Column-Address Strobe
Data In/Data Out

No Connection
Row-Address Strobe
5-V Supply

AVYYY
w 55 DON'T CARE

I po—igg
——

Ground
Write Enable

D-T——lamcm—-——*-:

(b)

VALID

Vou
ﬁ}—__

toCA —=f

r———
pat i « Note F
Do4 { R *
s talR) ~e={

li-—l.:GI——-!

}———-'mcum~—-1

«

Vou

NOTE 18: Output may go from high impedance to an invaiid da s -

FIGURE 11-8 TMS44C256 I
diagram. (c) Read-cycle ti

are

10 the specified sccess time.

% diagram. (b) 30-pin SIP

address-strobe, CA*
the column address
delay. the data wor
will appear on the d

The timing diagra-

except that after it
““ the controller

354

3. After a P
. the addressed memor .
é utputs of the 7 "AMs
-rawrite cycl
~ends out the coi...n duu:,:.: dana
asserts the write-enable. W. input

CHAPTER ELEVEN

able the DRAMs for writing. and asserts a signal
sed to gate the data to be written onto the
f the DRAMs.
arow ina DRAM. the row address is applied
¢ss inputs and the RAS input is pulsed low.
, For this particular device each row must be refreshed
at least once every 8 ms. The refresh can be done in

either a burst mode or in a distributed mode. In the
burst mode all 512 rows are addressed and pulsed with
a RAS strobe one right after the other every 8 ms. In the
distributed mode a row is addressed and pulsed after
every 8/512 ms or 15.6 ps. In a particular system you
use the medc which least interferes with the operation
of the system. Now that the operation of dynamic RAMSs
is fresh in your mind, we will show you how you interface
banks of DRAMs to an 8086.

Overview of Interfacing DRAMs
to a Microprocessor

As perhaps you can see from the preceding discussion,
the following are the main tasks you have to do to
interface a bank of DRAMs to a microprocessor:

1. Multiplex the two halves of the address into each
device with the appropriate RAS and CAS strobes.

2. Provide a read/write control signal to enable data
into or out of the devices.

3. Refresh each row at the proper interval.

4. Ensure that a read or write operation and @ refresh
operation do not take place at the same time.

There are many ways to do these tasks. For a start let's
look at how it is done in an IBM PC or PC/XT type
microcomputer.*

DRAM Interfacing and Refreshing in the I1BM PC

As you can see in Figure 11-2, the IBM PC has four
banks of 64K x 1 DRAMs. Two 74LS158 multiplexer
devices are used to separate the two haives of an address
as needed by the DRAMs. Some_simple control logic
generates the RAS, CAS, and RD/W signals. To refresh
the DRAMs on the PC and PC/XT, we use a dummy DMA
read approach. Here’s how it works.

An 8253 timer is programmed to produce a pulse every
15 ps. This pulse is connected into one of the DMA
request inputs (DREQO) of an 8237 DMA controiler,
which has been programmed to read from memory
and write to a nonexistent port. When the 8237 DMA
controller receives this pulse, it sends a hold request to
the 8088 microprocessor. Alter the 8088 responds with
an HLDA signal. the 8237 takes over the buses, sends
out a memory address, sends out a memory-read signal.
and sends out a DMA acknowledge (DACKO) signal. The
lower 8 bits of the memory address it sends out go to
the address inputs of all of the DRAMs. The DACXO
signal from the DMA controller generates a signal whi~h
pulses the RAS lines of all of the DRAM banks low at
this time. After each DMA operation the current addrcss
register in the DMA controller will be automatically
incremented or decremented. depending on how the
device was programmed. [n either case. the next DMA
operation will refresh the next row in the DRAMSs. If the
8237 is programmed for transfer of 64 Kbytes. start al
address O. incrcmcnt‘vcoun(after DMA. and autoinitia-
lize: the sequence of addresses sent out will refresh all

- 47

UMA. DRAMS, CACHE MEMORIES, COPROCESSORS. AND EDA TOOLS

256 rows in the DRAMs over and over. One row in each
of the banks then is refreshed every 15 ps. With the
4.77-MHz clock used in the basic IBM PC, a refresh DMA
cycle takes about 820 ns every 15 ps. or about 5 percent
of the processor’s time.

The DRAM-refresh method used in IBM PC/AT-type
microcomputers is not based on DMA, but it does put
the microcomputer out of action for about 5 percent of
the time. In a system where we don’t want to sacrifice 5
percent of the processor’s time for simply refreshing
DRAMSs, we use a dedicated controller device to do the
refresh, etc. Here's an example of this type of device.

Using an 82C08 DRAM Controller 1C
with an 8086 g e

In high-performance systems where we want DRAM
refreshing to take up a minimum amount of the proces-
sor's time, we usually use a dedicated device which
handles all of the refreshing chores without tying up the
microprocessor or its buses as the DMA approach does.

An example of this type of device is the Intel 82C08.

Figure 11-9, p. 356, shows, in block diagram form, how
an 82CO08 can be connected with an 8086 in maximum
mode to refresh and control 512 Kbytes of dynamic RAM.
The 82C08 takes care of all of the addressing and refresh
tasks we described before.

The memories here are the 256K x 4 devices shown
in Figure 11-8a. As usual for an 8086 system, the
memory is set up as 2-byte-wide banks. In this system
each bank has two DRAM devices, so each bank has 256
Kbytes.

One important point to observe here is that the status
signals, S0-S3. from the 8086 are connected directly to
the control inputs of the 82C08. The 82C08 decodes
these ctatus signals to produce the read and write
Sipe" =o nceicd for the DRAMs. This advanced decoding
rmeans that, excepi when a refresh cycle is in progress,
the 8086 will be able to read a byte or word from the
DRAMSs without WAIT states.

If you look closely at the 82C08 in Figure 11-9, you
should find the port enable input, PE. This input is
asserted low to request access to the DRAM. If the 82C08
is not involved in a refresh operation when PE is asserted
low, the 82C08 will muitiplex the address from_the
address bus into the DRAMs with the appropriate RAS
and CAS strobes. The 82C08 will also send out an AACK
signal which clocks the 74L574 flip-flops to transfer the
A0 and BHE signals to the two memory banks. For a
read operation the addressed byte or word will then be
output on the databus to the 8086. For a write operation
the byte or word on the data bus will be written to the
addressed locations in the DRAMs.

__The output of an address decoder is connected to the
PE input to assert it for the desired range of addresses.
Because the DRAM banks in the circuit in Figure 11-9
are so large. the address decoding is very simple. Each
bank in the circuit contains 256 Kbytes. Since
256K = 2'%. 18 address lines are required to address
one of the bytes in a bank. In most systems we connect
system address lines Al through Al8 to the 82C08
address inputs and the 82C08 multiplexes these signals

355

MAX691

Vee Vour
CEM e
POWER
FAIL IN CEn
WATCH
DOG IN
POWER
[— Vearr FAIL OUT

, =

VOLTAGE UPPER BANK LOWER BANK
REGULATOR|" OTHER
i AACK
CMOS CLOCK
SIGNALS
|cen:anon I —l aD— « PN
v+ D" /]
5 l 256K x 8 256K x B
— - 2 x 2 x
= POCLK Vec CK TMS44C256 TMS44C256
. ; IRESET
—perRa TASO! :>
45V il CASO0.1
c
I " g2co8
WA A0O-8 = -
- b Vv LWE__DI0 WE DI/O
PCTL WE/PCLK /}
Agr—{PE oo POI 1
" PDD AHO-8 ALO-8] =
82844 MNX fo— 20 CLE [l &=
czﬁégﬁ'r(on CLX e 4 0 ggg WWIC|— 741574
READY 51 51 ca:s AMWC p— AD
AEs RESET 2 2 " Rl AACK
CLK »-l—\‘
DEN TOWC |— &)
DT/R AIOWC |—]
—{ALE INTA— 240874
RDY =
LOCK }—NcC —
| i] BHE [}
" 8088 - LYY P
L—{sT8 a
i - AD-A19
ADO-AD1S | 2 8282 = BANK SELECT CIRCUIT
A16-a19 [\ APOR/DATA) LATCH HL
NMI BHE (20R3) >
o= BHE PORT D0
T
D o (A DO-D15
TRANSCEIVER N
2 s

FIGURE 11-9 The 8086 microcomputer system using 82C08 DRAM controller.

into the DRAMS, nine at a time. Address line AO Is used
along with the BHE signal to select the destred bank(s).
This leaves only the A19 system address line unac-
counted for. If we connect the A19 address line directly
to the PE input of the 82C08, then PE will be asserted
whenever the 8086 outputs a memory address with A19
low. In other words, the PE input will be asserted when
the 8086 outputs any address between 00000H and
7FFFFH.

%)

356 CHAPTER ELEVEN

NOTE: The status signals from the 8086 are
decoded in the 82CO08, so it knows .whether an
address is intended for memory or an VO port.

The address decoder here 1s simply a piece of wire or
circuit trace which connects A19 to the PE input. This
connection puts the RAM in the lower half of the 8086
address range, which is appropriate, because for an

8086 we want ROMs containing the startup program to
be at the top of the address range.

The next point to consider in the system in Figure
11-9 is how the controller arbitrates the dispute that
occurs if the CPU tries to read from or write to memory
while the controller is doing a refresh cycle. If the 82C08
in Figure 11-9 happens to be in the middie of a refresh
cycle when the 8086 tries to read a DRAM location, the
82C08 will hold its AACK high until 1t 1s finished with
the refresh cycle. With the connections shown in Figure
11-9, this will cause the 8086 to insert one or more

. WAIT states while the 82C08 finishes its refresh cycle.
In this system then, the occasional access conflict is
arbitrated by the DRAM controller. Inserting a wait state
now and then slows the 8086 down less than the DMA
approach used in the IBM PC/XT-type computers.

Another interesting feature of the system in Figure
11-9 is the battery-backup circuitry. In Chapter 8 we
discussed the use of an 8086 NMI interrupt procedure
to save program data in the case of a power failure. In
the few milliseconds between the time the ac power goes
off and the time the dc power drops below operating
levels, an interrupt procedure copies program data to a

block of CMOS static RAM which has a battery-backup

power supply. When the system is repowered, the saved
data is copied back into the main RAM, and processing
takes up where it left off. In larger systems there may
not be time enough to copy all-of the important data to
another RAM, so we simply use a battery backup for the
entire RAM array, as shown in Figure 11-9.

In this circuit we uséd CMOS DRAMs, because when
these devices are not being accessed for reading, writing,
or refreshing, they take only microwatts of power. During
battery backup of the DRAMs they must still be re-
freshed, so the 82C08 DRAM controller is also connected
to the battery power.

When the power supply voltage drops below a specified
level, the PFO pin on the MAXIM 691 supervisor device
sends a signal to the NMI input of the 8086. The NMI
interrupt procedure saves parameters so the program
can restart correctly when power returns and then sends
a signal to the POWER DOWN DETECT (PDD) input of
the 82C08. In response to this signal the 82C08 switches
from the high-frequency system clock to a lower-fre-
quency clock signal from the CMOS crystal oscillator.
Reducing the clock frequency decreases the amount of
current required by the DRAMs and by the 82C08 to
perform refresh operations. Also, by using the CMOS
oscillator, the high-current 8284 system clock generator
does not need to be kept running.

When the power returns. the MAX691 generates a
power-on-reset signal, RESET, with the correct timing
for the 8086. If a low is output to the PDD input of the
82C08 as part of the startup sequence, the 82C08 will
automatically switch to using the system clock and
operate normally for read, write, and refresh operations.

For the backup battery we use a nickel-cadmium
or some other type which can stand the continuous
recharging and supply the needed current. The diodes
in the circuit prevent the power supply output and the
battery from fighting with each other.

In applications where the entire system must be

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS

kept running during an ac power outage, we use a
noninterruptible power supply or NPS. These power
supplies contain large batteries, charging circuitry, and
circuitry needed to convert the battery voltage to the
voltages needed by the microcomputer.

Dynamic RAM Timing
in Microcomputer Systems

In Chapter 7 we showed you how to determine if a
memory device such as a ROM or RAM is fast enough
to operate in an 8086 system with a given clock fre-
quency. To make these calculations for a ROM or SRAM,
you use its access times. For DRAMs, however, the
limiting time is the read-cycle time, tz,. Here's why.

If you take a close look at the read-cycle timing diagram
for the TMS44C256 in Figure 11-8c¢, you should see that
valid data will be present on the output a time t.g, after
RAS goes low. For the fastest current version of the
device, this time is about 100 ns. Before another row in
the device can be accessed, however, the RAS input has
to be made high and held high for a time labeled t g
This time of about 80 ns is required to precharge the
DRAM so that it is ready to accept the next row address.
(Reading data from a storage location in a row discharges
that location somewhat and the internal circuitry in the
DRAM “precharges” the location again before it allows
access to another row.) .

The precharge time effectively adds to the access time,
so the time before a data bit from another row can be’

~ available on the output is considerably longer than the

access time. The total time from the start of one read
cycle to the start of the next is identified in Figure
11-8c as tyq,. For the fastest version of the TMS44C256
the access time is only 100 ns, but the ty, 18 190 ns.
For applications where the data words are rapidly being
read from random rows, it is this ty, that limits the
rate at which words from random rows can be read.
Let's see how this time fits in a microprocessor read
cycle.

As shown in Figure 7-19, an 8086 requires four clock
cycles for each memory access. If the 8086 is operated
with a 10-MHz clock (100 ns per clock), a memory access
cycle will takeé 400 ns. This means that if you are willing

‘to pay the price, you can get DRAMs which will operate

without wait states in a microcomputer using a 10-MHz
8086. However, as we discuss in Chapter 15, later-
generation processors such as the 80386 require only
two clock cycles for a memory access, and they are
typically operated with a clock signal of 25 MHz or more.
These factors drastically decrease the time available for
memory access. If currently available DRAMs are used
as the main memory in a microcomputer which has a

“clock frequency greater than about 15 MHz, one or more

wait states must usually be inserted in every DRAM read
or write cycle. However, the low cost per bit of DRAMs
makes them attractive enough that several methods
have been developed so they can be used without having
to insert wait states in every memory access cycle. While
the characteristics of DRAMs are fresh in your mind, we
will introduce you to some of these techniques.

357

Page Mode and Static Column
Mode DRAM Systems

Two of the most commonly used techniques to reduce
the number of wait states needed with DRAMs are the
page mode method and the static column method.
Here's how they work.

Remember from our discussion of DRAMs in a previ-
ous section that a precharge time is required each time
a new row (page) is accessed in a DRAM. This precharge
time is the reason that the typical read and write cycle
times are so much longer than the access times for
DRAMs. If successive data words are read from or
wrigten to locations in the same page (row), however, no
precharge time is required. Also, If successive data words
are read from the same page, the row address is the
same, so a new row address does not have to be sent
out and strobed in with an RAS signal. With the proper
DRAM controller these two factors make it possible to
read data from a page or write data to a page without
walit states. Some timing diagrams should help you see
this.

Figure 11-10a shows the read timing waveforms for
a Texas Instruments TMS44C256 DRAM which can be
used for page mode access. For the first access in a row

(page)., the DRAM controller carries out a normal row
address-RAS, column address-CAS sequence of signals.
If the next address the controller sends out is in the
same row, an external comparator will send a signal to
the DRAM controller. In response to this “same-row”
signal, the DRAM controller will hold RAS low, send out
Jjust the column address to the AO-A8 inputs of the
DRAMSs, and pulse CAS low. As long as the microproces-
sor continues to access memory locations in the same
page (row), the controller will simply hold RAS low, send
out the column part of the addresses to the DRAMs, and
pulse CAS low for each new column address. These
accesses within a page are much faster because they
require no row address and RAS time, and because they
require no precharge time.

To determine if a memory access is within the same
page, a device such as the SN74ALS6310 is connected
to the address bus. This device holds the page part of
the previous address in a register and compares it to
the page part of the new address. If the two address
parts are the same, the 6310 signals the DRAM controller
to do a page mode access such as that shown in Figure
11-10a. If the previous page address and the current
page address are different, the centroller will do a normal
RAS and CAS access.

Figure 11-10b shows the read timing waveforms for a
Texas Instruments TMS44C257 DRAM which is de-
signed for static column mode operation. During the
. first access in a row, the DRAM controller carries out a
- normal row address-RAS, column address-CAS sequence
of signals. If the next address the controller sends out
Is in the same row, an external comparator will signal
the DRAM controller. In response to)_this “same-row”
signal, the DRAM controller will hold RAS and CAS low
and send out just the column address to the AO-A8
inputs of the DRAMs. As long as the microprocessor
continues to access memory locations in the same page

358 CHAPTER ELEVEN

(row), the controller will simply hold RAS and CAS low
and send out the column part of the addresses to the
DRAMSs. The static column mode is more difficult to
implement than the page mode, but it is faster than the
page mode because it does not require CAS strobes and
the associated setup and hold times.

In a high-speed microprocessor system, the static
column decode technique can reduce the average num-
ber of wait states per memory access from 2 or 3 to
perhaps 0.8. This is a considerable improvement, but it
is not as much of an improvement as can be gained by |
using a cache system.

Cache Mode DRAM Systems

INTRODUCTION

Traditionally the term cache. which is pronounced
“cash,” refers to a hiding place where you put provisions
for future use. As we describe how a cache memory
system is implemented in a microcomputer, perhaps
you can see why the term is used here.

Figure 11-1¥, p. 360, shows in block diagram form
how a simple cache memory system is implemented in
an 80386 based microcomputer system. In Chapter 15
we discuss the details of the 80386 microprocessor, but
for this discussion all you need to know is that the
80386 has a 32-bit data bus and a 32-bit address bus.
A 32-bit address bus allows the 80386 to address up to
4 Gbytes of memory and a 32-bit data bus allows the
80386 to read or write 4 bytes in parailel.

The cache in a system such as this consists of perhaps
32 or 64 Kbytes of high-speed SRAM. The main memory
consists of a few megabytes or more of slower but
cheaper DRAM. The general principal of a cache system
is that code and data sections currently being used are
copied from the DRAM to the high-speed SRAM cache,
where they can be accessed by the processor with no
wait states. A cache system takes advantage of the fact
that most microcomputer programs work with only
small sections of code and data at a particular time. The
fancy term for this Is “locality of reference.” Here's now
the system works.

When the microprocessor outputs an address, the
cache controller checks to see if the contents of that
address have previously been transferred to the cache.
If the addressed code or data word is present in the
cache, the cache controller enables the cache memory
to output the addressed word on the data bus. Since
this access is to the fast SRAM, no wait states are
required.

If the addressed word is not in the cache, the cache
controller enables the DRAM controller. The DRAM
controller then sends the address on to the main memory
to get the data word. Since the DRAM main memory is
slower, this access requires one or two wait states.
However. when a word Is read from main memory, it
not only goes to the microprocessor, it is also written to
the cache. If the processor needs to access this data
word again. it can then read the data directly from the
cache with no wait states. The percentage of accesses
where the microprocessor finds the code or data word it

enhanced page-mode read cycle timing

- tw(RH) =]
b r Vin
RAS N twiRLIP ﬂ
| i v
[l | ! i i
| e tgtaLc) b t4(CHALI 1
P | oyt te(P) o g
| ™ d(RLCH) T | | ! i
i 3 t ! D bty omr= ! b
! "'CUT"—':] | i s B y
- H
oRs [l NN VA WV / l |
11 | | i .
e — ot
! tdi - |
I E (CACH)
B S W ': | | | i
1 I pea—— ta(cuuml-'—‘*
| = thira) =t = 1 — l""MCA) | I |
vavavavavivavovov v BRI
4 KooNT CARE 30
L_ : T; : , AAAAADAARK
—d |
;...4_1 i " _: ! : P thiCHre)—
s Tsuird) | : ! thiRHrd)
T T T | F ViH
T T Wi
: I : [""nlCM"‘" } VL
1 : ta(C) o=l NOTE 20 Il |
| e taicAl—= ' —— talCP}] —= "'—'Twi-tcm
4 ta(R) NOTE 20 | \
oan- NOTE 18 NOTE 19 VoM
bt 4 'our) ({ vaoonn)
| | Vou
ll - tgi———= :——-—q— is(G)
—'\' j_—_ Vin
g ! ‘
] Vie

! .
NOTES: 18. Output may go from high impedance to an invalid data state priof to the specified access tme.
19. A write cycle or read-modity-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing
specifications are not violated.
20. Access tima is ty(CP) OF ta(CA) dependent.

(a)
static column decode mode read cycle timing
tw(RH) .-u-{
; tw(RLIP =l1]
- :-—lmntc.n———-‘ Kv'"
| I
I | v,
—] p—ty | i
I le—tgiRLCU——=]
—H i ViK
TAS | \| / y--ll-'mnnc.\)
el v
: ! th(RA) : i. te(rd)SC _i { B
""JL“nulRAI

=t umca | T , o
b 1y RL) | II i hiRHrd) ~= r.]
XXPOON L T T H
w o'o: 3 :0:.’ et 150y 1 | m
XX o | | l.(CAII -
(R | : r‘""ll"mcm»
| | H
oa1 7 NOTE von
D04 < T .
i ! £y 1 Vou
r'-‘nml-—l |¢.“5,T....1
G \ /'_ Vi

Vi
NOTE 18 Output may go from high impedance to an invald data state prior to the specified access ume
(D)

FIGURE 11-10 TMS44C256 DRAM. (a) Page mode read-cycle operation.
(b) Static column read-cycle operation. (Texas Instruments Inc.)
359

DAMA DRAMS. CACHE MEMORIES. COPROCESSORS, AND EDA TOOLS

DRAM IM X 32
ggz;;g_ N | CONTROL DRAM
MAIN
P R |
. < ADDRESS BUS 32 8ITS) ‘ N MEmoRry
.
RAS
5 ' CAS
CACvE ENaBLET |
CONTROLLER [~ """ | cache
S AND NABL 32K BYTES ENABLE

A

< _ " DATABUS 328ITS

FIGURE 11-11 80386 microcomputer RAM memory system using high-speed

SRAM cache.

needs in the cache is called the hit rate. Current systems
have average hit rates greater than 90 percent.

For write to memory operations most cache systems
use a posted-write-through method. If the cache control-
ler determines that the addressed word is present in the
cache, the controller will write the new word to the cache
with no wait states and signal the 80386 that the write
is complete. The controller will then write the data word
to main memory. This write to the main memory is
transparent to the main processor unless the main
memory is still involved in a previous write operation.

To keep track of which main memory locations are
currently present in the SRAM cache, the cache control-
ler uses a cache directory. For the Intel 82385 cache
controller shown in Figure 11-11, the cache directory
RAM is contained in the controller. Each location in the
cache is represented by an entry in the directory. The
exact format for the directory entry depends on the
particular cache scheme used. The three basic cache
schemes are direct-mapped, two-way set associative,
and fully associative. We don't have time here to do a
detailed discussion of these three caching schemes, but
we will give you an Introduction to each so you will
understand the terms If you see them In a computer
magazine article or advertisement. We discuss cache
systems further in Chapter 15.

A DIRECT MAPPED CACHE
Figure 11-12a shows a block diagram of how a direct-
mapped 32 Kbyte cache can be implemented in an 80386
system with an 82385 controller. 'As we said before, an
80386 has a 32-bit address bus, so it can address 232
bytes, or about 4 Gbytes, of memory. The 80386 also
has a 32-bit data bus, so it can read up to 4 bytes at a
time from memory. A group of four parallel bytes is
commonly referred to as a line.

The cache memory for the 80386 system in Figure
11-12a is set up to hold 8K 4-byte lines or a total of 32
Kbytes. The 8K lines in the cache are organized as 1024

360 CHAPTER ELEVEN

sets of 8 lines each. The cache controller treats the 4)
Gbytes of main memory as 2'7 or 131,072 pages of 32
Kbytes each. Each page in main memory then is the
same size as the cache.

The term direct mapped here means that a particular
numbered line from a page in main memory will always
be copied to that same numbered line in the cache. For
example, if line 1 from page 0 is in the cache, it will be
stored in line 1 of the cache. If line 1 from page 131,070
Is in the cache, it will be stored in line 1 of the cache.

The cache directory on the left of Figure 11-12a is
used to keep track of which lines from the main memory
currently have coples in the cache. As you can see, the
directory contains a 26-bit entry for each set of 8 lines
in the cache. The upper 17 bits of a directory entry are
called a tag. The tag in a directory entry identifies the
main memory page that a line or set of lines in the cache
duplicates. Each directory entry also contains a tag
valid bit and eight line valid bits (one for each line in
the set). Here's how the 82385 uses this directory during
a read operation.

When the 80386 sends out a 32-bit address to read a
word from memory, address lines Al5 through A31
representa maln memory page, address lines A5 through
Al4 {dentify the set contalning a desired line, and
address lines A2 through A4 identify the number of the
line in the set containing the desired word. Figure11-12b
shows this in diagram form. The cache controller first
uses address bits A5 through A14 to select the directory
entry for the set that contains the addressed line. Then
It compares the upper 17 bits of the address from the
80386 with the 17-bit tag stored in the directory entry.
If the two are equal. the controller checks the tag valid
bit to see If the tag is current. If the tag valid bit is set,
the controller checks the line valid bit for the line
addressed by address bits A2 through A4. If the tag
matches and is valid and the line is valid. the line is in
the cache. This is a cache hit. In this case the controller
will apply address bits A2 through A14 to the cache

TAG VALID

BIT /
17-8IT VLATIED ’
TAG 5

BITS b 32— ;
et =- PAGE SIZE
=32 KB
- (8K DOUBLE
WORDS)
SET1 [,:‘ :
! IO
| ’ 3 >
|
! !
| ‘J | T
| 5 NS NS L 3 7_
: T T T 7 2"-22| 2
SET 1023 EZ:: T //
2
_ 1
PAGE 0
INTERNAL EXTERNAL 4 GIGABYTES MAIN MEMORY =
CACHE DIRECTORY DATA CACHE 2'7 PAGES x 32KB/PAGE
IN 82385 IN SRAM :
(a)
CACHE ADDRESS
[(1 OF &K DOUBLE WORDS)]
A31 A15 A4 AS AL A2
llllllllllllllllll[lIllllIlllT1
I\ 17-BIT TAG ""/J\ SET ADDRESS /Luns
(1 OF 2'7 PAGES) (10F 1024 SETS) SELECT
(1 OF B LINES)

(b

FIGURE 11-12 Cache organization for 32-Kbyte direct-mapped cache. (a) Block
diagram. (b) Use of 32-bit address by 82385 cache controller

memory and enable the cache memory to output the
addressed word on the data bus.

If the upper 17 bits of the address from the 80386 are
not the same as the tag in the directory, the tag bit is
not valid, or the line bit for the addressed line is not
valid, the read operation is a cache miss. In this case
the 82385 will send the complete address from the 80386
along to the DRAM controller. The DRAM controller will
cause the main memory to output the addressed line on
the data bus. When this line appears on the data bus,
the 82385 will enable the cache memory so that the line
gets written to the cache as well as going to the 80386.
The 82385 will also update the cache directory to indicate
that this line is now in the cache. If this line or any part
of it is needed again, it can be read directly from the
cache.

When the 80386 writes a word to memory, the 82385
grabs the address and the data word then signals the
80386 that the transfer is complete. The controller then
enables the main memory so that the word is written to
the correct address in the main memory. If the data
word is present in the cache, it is also written to the
cache. This “posted write” process does not require any

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS

wait states unless the memory is still busy with a
previous write.

A TWO-WAY SET ASSOCIATIVE CACHE SYSTEM

One difficulty with the direct-mapped cache approach
is that if a program happens to use the same numbered

line from two memory pages at the same time, it will be

swapping the two lines back and forth between main
memory and the cache as it executes. This swapping
back and forth is called thrashing. A scheme which
helps avoid thrashing is the two-way set assoctative
cache approach shown in Figure 11-13a, p. 362. In this
approach two separate caches and two separate cache
directories are set up so that the same lines fron: two
different pages can be cached at the same time. Each
cache is half the size of the direct-mapped cache we
discussed in the previous section, so the controller treats
memory as 262, 144 pages of 4096 lines each. To identify
one of these 262,144 pages, the tag in each cache
directory entry contains 18 bits. Each directory entry in
this system also contains a tag valid bit, eight line valid
bits, and a least recently used bit or LRU. Here's how
this system works during a rgad operation.

361

DIRECTORY A D!RECTORY B BANK A BANK B

TAG VALID TAG VALID
BIT BIT
LINE LINE
‘?fg lVALtD 18-BIT | yaLID
BITS \G | BiTs —32— —32—
sev o [JIIID 3 (g TIIID
PAGE SIZE
=16 K8
(4K DOUBLE
WORDS)

SET1 [::‘;:[Hﬂ]]m =

[—

g 3 b 1l ‘] b
SET 51 [::[]IHID]]EE:E’—“ I

’ PAGE 0
INTERNAL EXTERNAL DRAM
CACHE DIRECTORY DATA CACHE 4 GIGABYTES MAIN MEMORY =
IN 82385 . IN SRAM 2'8 PAGES x 16KB/PAGE

(a)

- CACHE ADDRESS .
[~ (1 CF 4K DOUBLE wonm
A31 Ald4 A13 A5 A4 A2

ANSITALIRERERT SR NN R NE NS BN

I\ -8-BIT TAG

/

SET ADDRESS LINE
(1 OF 2'8 PAGES) {1 OF 512 SETS) SELECT
(1 OF 8 LINES)

(o

FIGURE 11-13 Two-way set-associative cache for 32-bit address bus system.
(a) Block diagram. (b) Use of 32-bit address by 82385 cache controller.

When the 80386 outputs an address, the 82385
controller uses address bits A5 through Al13 to select
the appropriate entry in each cache directory. It then
compares the upper 18 bits of the address from the
80386 with the tag in each of the selected directory
entries. If one of the tags matches, the controller checks
the tag valid bit in that directory entry. The controller
also checks the line valid bit for the line specified by
address bits A2 through A4. If these bits are set, the
controller outputs address bits A2 through Al3 to
the cache assoclated with that directory and enables the
cache to output the desired word on the data bus.

If the addressed data word is found in cache A, the LRU
bit in the directory entry is set to indicate that the A
cache was most recently used. If the data word is found
in the B cache, the LRU bit is set to indicate that the B
cache was most recently used. This mechanism is used
to determine which cache should be used to hold a new
line read in from main memory. When a read operation
produces a cache miss, the 82385 will send the adc!ress
and control signals to the main memory to read a line
containing the desired word. When this line comes down
the data bus, the 82385 will write it to the least recently

362 - CHAPTER ELEVEN

used cache and update the corresponding directory
entry. If the coniroller finds that the tag for a read
operation is correct but a line valid bit is invalid, it will
read the line from main memory and write it in the
cache whose directory contains the tag. This ensures
that adjacent lines from a page in main memory end up
in the same cache.

For a write operation this two-way set associative
cache approach uses the same posted write-through
method we described earlier. The controller always writes
an output data word to the main memory. and if the
word is present in one of the caches, 1t also updates the
word in the cache.

Because of the two-tag RAMs, etc.. this approach is
somewhat more complex to implement, but it usually
produces a better hit rate than a direct-mapped cache.
The 25-MHz Compaq Deskpro 386/25 is an example of
a system that uses an [ntel 82385 cache controller and
a two-way set associative cache to minimize wait states.

A FULLY ASSOCIATIVE CACHE SYSTEM

Still another type of cache that you may hear mentioned
is the fully associative type. In this type a 4-byte block

MAIN MEMORY

4G BYTES
/ 32 BITS WIDE

L]
TAG RAM CACHE RAM
30 81TS WIDE 4 BYTES WIDE —
1
([ooossoio EEEEEEE |'>AAAA"“ s
00000004 0000FFFF 00201234
L]
e
L
8k
TAGS) g
00088014
> 17111111 | 00088010
0008800C
00201238 AAAABBBB
L
. L]
L]
e
00000008
A31 A2 A0 > O0O0OFFFF 00000004
00000000
[30-BIT TAG |]

BYTE
ENABLES BEO-BE3

FIGURE 11-14 Fully associative 32-Kbyte cache for 32-bit address bus system.

or line from main memory can be written in any location
in the cache. Figure 11-14 shows in block diagram form
how this works.

The system has a 32-bit address bus, so it can address
4 Gbytes of memory. This corresponds to 1 Gbyte of
4-byte lines. Since 1 Gbyte is equal to 2% bytes, a 30-
bit tag is required to identify each block or line stored
in the cache. Each entry in the directory then must
contain 30 bits for the tag plus any additional bits used
to keep track of how recently the line was used.

A fully associative cache has the advantage that it can
hold the same numbered lines from several different
pages at the same time. I has the disadvantage, however,
that the upper 30 bits of each memory address sent out
by the microprocessor must be compared with all of the
tags in the directory to see if that line is present in the
cache. This can be a time-consuming process. Also,
when a fully associative cache is full, some algorithm
must be used to determine which line to overwrite when
a new line must be brought In from main memory. The
most common algorithm replaces the least recently used
iine with the new line. The 82385, incidentally, is not
designed to work with a fully associative cache system.

SUMMARY

The key point for you to remember about a cache is that
by keeping the currently used code and data in a high-
speed SRAM cache. the processor can use relatively
inexpensive DRAM for its large main memory and still
operate with few wait states. A cache controller device
such as the 82385 automatically keeps the cache and
the cache directory updated. so the process is essentially
“invisible” to the microprocessor and to an executing
program

- 48

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS

Error Detecting and Correcting in DRAM Arrays
PARITY GENERATION/CHECKING

Data read from DRAMs is subject to two types of errors,
hard errors and soft errors. Hard errors are caused by
permanent device failures. These may be.caused by a
manufacturing defect or simply random breakdown in
the chip. Soft errors are one-tiine errors caused by a
noise pulse in the system or, in the case of dynamic
RAMs, perhaps an alpha particle or some other radiation
causing the charge to change on the tiny capacitor
where a data bit is stored. As the size of a RAM array
increases, the chance of a hard or a soft error increases
sharply. This increases the chance that the entire system
will fail. It seems unreasonable that one fleeting alpha
particle may cause an entire system to fail. To prevent
or at least reduce the chances of this kind of failure, we
add circuitry which detects and in some cases corrects
errors in the data read out from DRAMs. There are
several ways to do this, depending on the amount of
detection and correction needed.

The simplest method for detecting an error is with a
parity bit. This is the method used in the IBM PC circuit
shown in Figure 11-2. Note in this circuit that the DRAM
memory bank is 9 bits wide. Eight of these bits are the
data byte being stored, and the ninth bit is a parity bit
which s used to detect errors in the stored data. A
74LS280 parity generator/checker circuit generates a
parity bit for each byte and stores it in the ninth location
as each byte is written to memory. When the 9 bits are
read out, the overall parity Is checked by the parity
generator checker circuit. If the parity is not correct, an
error signal is sent to the NMI logic to interrupt the
processor. When you first turn on the power to an IBM

363

PC or warm boot it by pressing the Ctrl, Alt, and Del
keys at the same time, one of the self-tests that it
performs is to write byte patterns to all of the RAM
locations and check if the byte read back and the parity
of that byte are correct. If any error is found, an error
message is displayed on the screen so you don't try to
load and run programs in defective RAM.

ERROR DETECTING AND CORRECTING CIRCUITS

One difficulty with a simple parity check is that two
errors in a data word may cancel each other. A second
problem with the simple parity method is that it does
not tell you which bit in a word is wrong so that you
can correct the error. More complex error detecting/
correcting codes (ECCs), often called Hamming codes
(after the man who did some of the original work in this
area), permit you to detect multiple-bit errors in a word
and to correct at least one bit error.

Figure 11-15a shows in block diagram form how a TI
74AS632 error detecting and correcting (EDAC) device
can be connected in the data path between a 32-bit
microprocessor and 16-Mbyte DRAM main memory. Note
that the EDAC is connected in parallel with the DRAM
refresh controller and in series with the SRAM cache.
Here's how the EDAC device works.

When a data word is sent from the microprocessor to
memory, it also goes to the EDAC. As the data word is
read in by the EDAC, several encoding or check bits are
generated and written in memory along with the data
word. As shown in Figure 11-15b, the number of encod-
ing bits, K, required is determined by the size of the
data word, M. and the degree of detection/correction
desired. The total number of bits required for a data
word N s equal to M + K. For example, 5 encoding bits
are required to detect and correct a single-bit error in a
16-bit data word, so a total of 21 bits have to be stored
for each 16-bit word. To detect/correct a 1-bit error and
detect 2 wrong bits in a 32-bit word requires 7 encoding
bits. or a total of 39 bits. The encoding bits, incidentally,
are not just tacked on to one end of the data word as a
parity bit is. They are interspersed in the data word.

When the processor reads a data word from memory,
the data word and the check bits from memory go to the
EDAC. The EDAC calculates the check bits for the data
word read out from memory and XORs these check bits
with the check bits that were stored In memory with the
data word. The result of this XOR operation is called a -
syndrome word. The syndrome word is decoded to
determine If the data word has no errors, has a single-
bit error, or has multiple-bit errors.

REFRESH TIMING 1M DRAM
CLK TIMER CONTROLLER CONTROL
GEN & dys TMS4C1024 | CHECK
m T —7 > 1M X 32 BITS | BITS
PALIGRB 8251058 - TMS4C1024 | CHECK
L] 4 1M X 32 BITS [BITS
c 74ALS6301 CAS 7/
o 7 TMSA4C1024 | CHECK
1 B
'ADDRESS s ¢ SFaton /o, - 1M X 32 BITS | BITS
\e 2 o j g::wo :Y > TMS4C1024 | CHECK
i VE 1M X 32 BITS | BITS
= 32-817 (\r
80386 EDAC
cPU ACT2154 | 2K-WORD ¥
CACHE CACHE 6
TAG SRAM 1
7
A
@ 74AS632 CHECK BITS P
4
32
32-BIT DATA BUS 7/

(a)

SINGLE CORRECT/
SINGLE DETECT

~ K <M<
4 4 n
5 12 26
6 27 57
7 58 120
8 121 245

(b)

SINGLE CORRECT/
DOUBLE DETECT

sSM<

1 3
4 10
1 25
26 56
57 19

FIGURE 11-15 (a) Block diagram showing how error detecting and correcting
circuitry is connected in a large DRAM system. (Texas Instruments Inc.)
(b) Hamming-code data bits and encoding bits and number of encoding bits

required for desired degree of detection/correction.

364 CHAPTER ELEVEN

If the data word contains no errors, the 74AS632
EDAC will simply output the data word to the processor
on the data bus. If the data word contains a single-bit
error, the EDAC device uses the syndrome word to
determine which bit is incorrect and simply inverts that
bit to correct the bit. The EDAC then outputs the
corrected data word to the processor on the data bus. If
the data word contains multiple-bit errors, the EDAC
device asserts a signal which is usually connected to an
Interrupt input on the processor. In the case of a
multiple-bit error, the programmer must decide what
action to take and write the appropriate interrupt-
service procedure.)

The 74A5632 EDAC in Figure 11-15a can also work
with the 74ALS6301 DRAM controller to remove errors
in stored data words during refresh operations as well
as during normal read operations. This process is called
scrubbing. Correcting errors during each refresh opera-
tion decreases the chance of multiple-bit errors accumu-
lating between read operations.

For more information on DRAM error detecting/cor-
recting, consult the data sheets for error detecting/

correcting devices such as the Intel 8206, the Texas

Instruments 74AS632, or the National DP8402A.
In the next section of this chapter we show you how
a second processor can directly share the address,

data, and control buses with the main processor in a_

microcomputer. Processors which share the local buses
in this way are referred to as coprocessors. The example
we use for this section is an Intel 8087 math coprocessor.
As shown in Figure 11-2, the IBM PC and PC/XT have a
socket for one of these devices.

A COPROCESSOR — THE 8087
MATH COPROCESSOR

Overview

Many microcomputer programs, such as those used for
scientific research, engineering, business, and graphics,
need to make mathematical calculations such as com-
puting the square root of a number, the tangent of a
number, or the log of a number. Another common need
is to do ®rithmetic operations on very large and very
small numbers. There are several ways to do all this.

One way is to write the number-crunching part of the
program in a high-level language such as FORTRAN,
complle this part of the program, and link in /O modules
written in assembly language. The difficulty with this
approach is that programs written in high-level lan-
guages tend to run considerably slower than programs
written in assembly language.

Another way is to write an assembly language program
which uses the normal instruction set of the processor
to do the arithmetic functions. Reference books which
contain the algorithms for these are readily available.
Our experience has shown that it is often time consum-
ing to get from the algorithm to a working assembly
language program.

Still another approach is to buy a library of floating-
point arithmetic object modules from the manufacturer

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS

of the microprocessor you are working with or from an
independent software house. In your program you just
declare a procedure needed from the library as external,
call the procedure as required, and link the library object
code files for the procedures to the object code for your
program. This approach spares you the labor of writing
all the procedures.

In an application where you need a calculation to be
done as quickly as possible, however, all the previous
approaches have a problem. The architecture and in-
struction sets of general-purpose microprocessors such
as the 8086 are not designed to do complex mathematical
operations efficiently. Therefore, even highly optimized
number-crunching programs run slowly on these gener-
al-purpose machines. To solve this problem, special
processors with architectures and instruction sets opti-
mized for number-crunching have been developed. An
example of this type of number-crunching processor 1s
the Intel 8087 math processor. An 8087 is used in
parallel with the main microprocessor in a system,
rather than serving as a main processor itself. Therefore,
it is referred to as a coprocessor. The major principle
here is that the main microprocessor, an 8088, for
example, handles the general program execution and
the 8087 coprocessor handles specialized math compu-
tations. An 8087 instruction may perform a given mathe-
matical computation 100 times faster than the equiva-
lent sequence of 8086 instructions.

An important point that we need to make about the
8087 is that it is an actual processor with its own,-
specialized instruction set. Instructions for the 8087
are writtén in a program as needed. Interspersed with
the 8088/8086 instructions. To you, the programmer,
adding an 8087 to the system simply makes it appear
that you have suddenly been given a whole new set
of powerful math instructions to use in writing your
programs. When your program is assembled, the opcodes
for the 8087 instructions are put in memory right along
with the codes for the 8086 or 8088 instructions. As the
8086 or 8088 fetches instruction bytes from memory
and puts them in its queue, the 8087 also reads these
instruction bytes and puts them in its internal queue.
The 8087 decodes each instruction that comes into its
queue. When it decodes an instruction from its queue
and finds that it is an 8086 instruction, the 8087 simply
treats the instruction as an NOP. Likewise, when the
8086 or 8088 decodes an instruction from its queue
and finds that it is an 8087 instruction, the 8086 simply”
treats the instruction as an NOP or in some cases reads
a data word from memory for the 8087. The point here
is that each processor decodes all the instructions in
the fetched instruction byte stream but executes ‘only
its own instructions. The first question that may occur
to you is, How do the two processors recognize 8087
instructions? The answer is that all the 8087 instruction
codes have 11011 as the most significant bits of their
first code byte.

To start our discussion of the 8087 we will show you
the data types. internal architecture, and programming
of an 8087: then we will describe how an B087 is
connected and functions in a system. If you have an
IBM PC or PC/XT type of computer, you can plug an

365,

| g

8087 chip in its auxiliary processor socket and run our
example 8087 program or your own 8087 programs.

8087 Data Types

Figure 11-16 shows the formats for the different types
of numbers that the 8087 is designed to work with. The
three general types are binary integer, packed decimal.
and real. We will discuss and show examples of each

type individually.

BINARY INTEGERS

The first three formats in Figure 11-16 show different-
length binary integer numbers. These all have the same
basic format that we have been using to represent signed
binary numbers throughout the rest of the book. The
most significant bit is a sign bit whieh is O for positive
numbers and 1 for negative numbers. The other 15 to
63 bits of the data word .in these formats represent the
r. If the number is negative,
the number is represented in 2's
- Zero, remember, is considered a
r in this format because it has a sign bit

complement
positive nu;

@ INCREASING SIGNIFICANCE

WORD INTEGER MAGNITUDE gm;feusurb

15 0

TWO'S
SHORT INTEGER H MAGNITUDE I (coMFLEuEN'r)

3 0

of 0. Note also in Figure 11-16 the range of values that
can be represented by f the three integer lengths.
is format in memory for
. you put the least significant byte in

cond type of 8087 data format to look at in Figure
11-16 is the packed decimal. In this format a number
Is represented as a string of 18 BCD digits, packed two
per byte. The most significant bit is a sign bit which is
0 for positive numbers and 1 for negative numbers. The
bits indicated with an X are don’t cares. This format is
handy for working with financial programs. Using this
format you can represent a dollar amount as large as
$9,999,999,999,999,999.99, which is probably about
what the national debt will be by the year 2000. Again,
when you are putting numbers of this type in memory

. locations for the 8087 to access, the least significant

byte goes in the lowest address.

REAL NUMBERS
Before we discuss the 8087 real-number formats, we

need to talk a little about real numbers in general.

Approximate Range (Decimal)

-32768 < x = +32767

-2x10%= x €2 x 10°

LONG INTEGER lsl MAGNITUDE

(TWO'S . il -
J COMPLEMENT) 9x10% < x<+9x10

63

[]

PACKED DECIMAL ”AGNHITUE;E

dg) dgy 94 !hdjidu;]

~99..99 < x s +99...99 (18 digits)

79 72 0
SHORT REAL HE,?;‘&E&T SIGNIFICAND] 0.12x10° % < {x «34x10%
31 PE °
('Y
LONG REAL I5| B et SIGNIFICAND] 0,23 %10 %8 < xic 171090
Y 2\ _, . 3
TEMPORARY REAL [Sl ALy h' SIGNIFICAND .] 0.34<10°%992 ¢ xi 11 x 10932

79 6463 °

NOTES

S = Sign bit (0 = positive, 1 =nagative)
dn = Decimal digit (two per byle)

X = Bits have no signili 18087)g
A = Position of implicit binary point

when

o

g. reros when storing

| = Integer bit of significand. stored in temporary real, implicil in short and long real

Exponent Bias (normalized values)
* Short Real: 127 (TFH)

Long Real: 1023 (3FFH)
Temporary Real: 16383 (3FFFM)

FIGURE 11-16 8087 data formats. (/ntel Corporation)

66

| -

CHAPTER ELEVEN

N
N
™~

15 \

l Ihcl I PC ||sn] Imrulou]zﬂn»[m
—— T

EXCEPTION MASKS (1 = EXCEPTION IS MASKED)

=

ROUNDING Ci

(RESERVED)

(a)

15 7 []

INTERRUPT-ENABLE MASK'"
PRECISION CONTROL'?)

INFINITY CONTROLY

INVALID OPERATION
DENOAMALIZED OPERAND

ZERODIVIDE (1) Imoorrupl-Eﬂlbll hénl.
= Interrupts Enabled
OVERFLOW 1 = Interrupts Disabled (Masked)*
UNDERFLOW @) Pvnmozn Control
Dbits
P It 01 = (reserved)
AECISION 10 = 53bis
(RESERVED) A= 84.bns

3) Roundu? Control,
00 ound 10 Nearest or Even”
01 = Round Down (loward - =)
10 = Round Up (toward - x)
11 = Chop (Truncate Toward Zero)
(4) Infinity Control:
0 = Projective”
1 = Affine
“DEFAULT AFTERFINIT

ONTROL'

LN [ex] sT Cz|crjcofim PE JUE |OE | ZE |DE | IE
— | S——
L EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)
INVALID OPERATION
DENORMALIZED OPERAND
ZERODIVIDE
OVERF';OW (1) See descriptions of compare, test,
UNDERFLOW and remainder instructions in section S.7for
condition code interpretalion.
PRECISION (2) ST values:
= register 0 is stack top
(RESERVED) 001 = r:gism 1is stack top
INTERRUPT REQUEST ;
CONDITION CODE!") 111 = register 7 is stack top
STACK TOP POINTER?
BUSY
()

FIGURE 11-19 8087 control and status word formats. (a) Control.

(b) Status. (Intel Corporation)

preceding paragraphs. To hold numbers being worked
on, the BO87 has a register stack of eight 80-bit registers,
labeled (0)—(7) in Figure 11-18. These registers are used
. as a last-in—first-out stack in the same way the 8086
uses a stack. The 8087 has a 3-bit stack pointer which
holds the number of the register that is the current top-
of-stack (TOS). When the 8087 is initialized, the 3-bit
stack pointer in the 8087 is loaded with 000, so register
0O1is then the TOS. When the 8087 reads in the first num-
ber that it is going to work on from memory, it converts
the number to 80-bit temporary-real format if neces-
sary. It then decrements the stack pointer to 111 and
writes the temporary-real representation of the number
in register number 111 (7). Figure 11-20a, p. 370,
shows this in diagram form. As shown by the arrow in
the figure. you can think of the stack as being wrapped
around In a circle so that if you decrement 000 you get
111. From this diagram you can also see that if you
push more than 8 numbers on the stack, they wrap
around and write over previous numbers. After this
write-to-stack operation, register 7 is now the TOS.

In the 8087 instructions the register that is currently

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS

the TOS Is referred to as ST(0), or simply ST. The
register just below this in the stack Is referred to as
ST(1). By the register “just below,” we mean the
register that the stack pointer would be pointing to
if we popped one number off the stack. For the exam-
ple in Figure 11-20a, register 000 would be ST(1)
after the first push.

To help you understand this concept, Figure 11-20b
shows another example. In this example we have pushed
three numbers on the stack after initializing. Register
101 is now the TOS, so it is referred to as ST(0), or just
ST. The preceding number pushed on the stack is in
register 110, so it is referred to as ST(1). Likewise, the
location below this in the stack is referred to as ST(2).
If you draw a diagram such as that in Figure 11-20b, it
Is relatively easy to keep track of where everything is in
the stack as instructions execute. In a program you can
determine which register is currently the ST by simply
transferring the status word to memory and checking
the bits labeled ST in the status-word format in Figure
11-19b. Now let's have a look at the 8087 instruction
set.

369

REGISTER

NUMBER

111 « ST(0) AFTER
110 FIRST PUSH
101 REG 000 NOW

)

100 ST(1)
011
010
001
000 « ST(O)

AFTER RESET

8087 STACK REGISTERS
(a)

REGISTER
NUMBER

x 11 ST(2)

x 110 ST(1)

X 101 « TOS ST(0)
-100 ST(7)
011 ST(6)
010 ST(5)
001 ST(4)
000 ST(3)

8087 STACK REGISTERS
(b)

FIGURE 11-20 8087 stack operation. (a) Condition of
stack after reset and one push. (b) Condition of stack
after reset and three pushes.

8087 Instruction Set

8087 INSTRUCTION FORMATS

Before we work our way through the list of 8087 instruc-
tions, we will use one simple instruction to show you
how 8087 instructions are written, how they operate,
and how they are coded. The instruction we have chosen
to use as an example here is the FADD instruction.

All the 8087 mnemonics start with an F, which stands
for floating point, the form in which the 8087 works
with numbers internally. If you look in the Intel data
book, you will see this instruction represented as FADD //
source/destination,source. Tkis cryptic representation
means that the Instruction can be written in three
different ways.

The // at the start indicates that the instruction can
be written without any specified operands as simply
FADD. In this case, when the 8087 executes the instruc-
tion, it will automatically add the number at the top of
the stack, ST, to the number in the next location under
it in the stack. ST(1). The 8087 stack pointer will be
tncremented by 1, so the register containing the result
will be ST.

The word source by itself in the expresslon means
that the instruction can be written as FADD source. The
source specified here can be one of the stack elements
or a memory location. For example, the instruction
FADD ST(2) will add the number from two locations
below ST to the number in ST and leave the result In

370 CHAPTER ELEVEN

ST. Asanother example, the instruction FADD CORREC-
TION_FACTOR will add a real number from the memory
location named CORRECTION_FACTOR to the number
in ST and leave the result in ST. The assembler will be
able to determine whether the number in memory is a
short-real, long-real, or temporary-real by the way that
CORRECTION_FACTOR was declared. Short-reals, for
example, are declared with the DD directive, long-reals
with the DQ directive, and temporary-reals with the DT
directive. If you want to add an integer number from
memory to ST. you use an instruction such as FIADD
CORRECTION_FACTOR. The I in the mnemonic tells
the assembler to code the instruction so that the 8087
treats the number read in as an integer.

NOTE: The FIADD instruction only works for a
source operand in memory.

The /destination,source in the representation of the
FADD instruction means that you can write the instruc-
tion with both a specified source and a specified destina-
tion. The source can be one of the stack elements or a
number from memory. The destination has to be one of
the stack elements. The instruction FADD ST(2),ST(1),
for example, will add the number one location down
from ST to the number two locations down from ST

. and leave the result in ST(2). The instruction FADD

ST(3),CORRECTION_FACTOR will add the real number
from the memory location named CORRECTION_FAC-
TOR to the contents of the ST(3) stack element.

Another form of the 8087 FADD instruction shown in
the data book is FADDP. The P at the end of this
mnemonic means POP. When the 8087 executes this
form of the FADD Instruction, it will increment the stack
peinter by one after it does the add operation. This is
referred to as “popping the stack.” The instruction
FADDP ST(1),ST(4), for example, will add the number
at ST(4) to the number at ST(1} and put the result in
ST(1). It will then pop the stack, or, in other words,
increment the stack poiiiicr =9 *hat what was ST(1) is
now ST. This form ¢ 1e s~ ction leaves the result
at ST, where it can easily be transferred to memory. Now
let's see how the different forms of this instruction are
coded.

Coding 8087 Instructions

Common 8086 assemblers such as MASM and TASM
accept 8087 mnemonics, and an assembler is the only
practical way to produce codes for 8087 programs.
However, to give you a feeling for how they are coded.
we will show a few examples.

Figure 11-21 shows the coding templates for the 8087
FADD instructions as found in the Intel data book. Note
that the figure shows coding for “8087" encoding and
for “emulator” encoding. The 8087 encoding represents
the codes required by an actual 8087 device. The emula-
tor encoding represents the codes needed to call the
FADD procedure from an available Intel library of 8086
procedures which perform the same functions as the
8087 Instructions. The procedures in this library. writ-
ten in 8086 code, run much slower, but they allow you

Type 1: Stack top and stack element

o087 I 10011011 I 11011400 l 11000() |

Emulator l 11001101 l 00011d 00 [11000() I
®

Type 2: Stack top and memory operand

2087 r 10011011 { 11011 m 00 I mod 000 r/m I

Emultator r 11001101 l 00011 m 00 I 'mod 000 r'm J

m = 0 for short real operand; | for I-ong real operand

Type 3: Pop stack

087 r 10011011 [11011110 l 11000() I
Emulator [11001101 l 00011110 l 11000(i)]
8087 Timing (clocks) TYPICAL RANGE
stack element and stack top 85 70-100
stack element, stack lop + pop 90 75-108
short real memory and stack top 105+EA 90-120+EA
Iongudmmymgmnp 110+EA 95-125+EA
FIGURE 11-21 8087 FADD coding templates. (/ntel

Corporation)

to test an 8087 program without having an actual 8087
in the system. We will concentrate here on the codes for
the actual 8087 device.

First let's look at the coding for the FADD instruction
with no specified operands. This instruction, remember,
will add the contents of ST to the contents of ST(1), put
the results in ST(1), and then pop the stack so that the
result is at ST. The first byte of the instruction code,
10011011, is the code for the 8086 WAIT instruction.
As we explain in detail later, this instruction code is put
here to make the 8086 and 8087 walit until the 8087
has completed this instruction before starting the next
one. The second byte shown is actually the first byte
of the 8087 FADD instruction. The 5 most significant
bits, 11011. identify this as an 8087 instruction. The
lower 3 bits of the first code byte and the middle 3 bits
of the second code byte are the opcode for the particular
8087 instruction. The bit labeled d at the start of these
6 bits is a O if the destination for an FADD ST(N).ST(N)-
type instruction is ST. The d bit is a 1 if the destination
stack element is one other than ST, as it is for the FADD
instruction with no specified operands. For the FADD
instruction with no specified operands, these 6 bits will
be 100 000. The two most significant (MOD) bits in the
second code byte are 1's because this form of the FADD
instruction does not read a number from memory. The
least significant 3 bits of the second instruction byte,
represented by an i infthe template. indicate which stack
element other than ST is specified in the instruction.

- 49

Since the simple FADD instruction uses ST(1) as & j
destination, 001 will be put in these bits. Putting all of
this together for the FADD instruction with no specified
source or destfnation gives 10011011 11011100
11000001 b or 9BH DCH C1H as the code bytes.

For a little more practice with this, see if you can code
the 8087 instrucgion FADD ST,ST(2). Most of the coding
for this instruction is the same as that for the previous
instruction. For this one, however, the d bit is a O
because ST is the specified destination. Also, the R'M
bits are 010, because the other register involved in the
addition is ST(2). The answer is 9BD8C2H. Now let’s try
an example which uses memory as the source of an
operand for FADD.

For an FADD Instruction such as FADD CORREC-
TION_FACTOR, which brings In one operand from
memory and adds it to ST, the memory address can be
specified in any of the 24 ways shown in Figure 3-8. For
the memory reference form of the FADD instruction, the
MOD and R/M bits in the second code byte are used to
specify the desired addressing mode. FADD CORREC-
TION_FACTOR represents direct addressing, so the
MOD bits will be 00 and the R'M bits will be 110, as
shown in Figure 3-8. Two additional code bytes will be
used to put in the direct address, low byte first. Since
we are not using any of the other stack elements other
than ST for this instruction, we don't need the d bit to
specify the other stack element. Instead, as shown in
Figure 11-21, this bit is labeled m. A O in this bit is
used to specify a short-real, and a 1 in this bit is used
for a long-real. Assuming CORRECTION_FACTOR is
declared as a long-real, the code bytes for our FADD
CORRECTION_FACTOR instruction will then be
10011011 11011100 00000110 followed by the 2 bytes
of the direct address.

Now that you have an overview of how 8087 instruc-
tions are written and coded, we-briefly discuss each of
the 8087 instructions.

8087 Instruction Descriptions

The 8087 instruction mnemonics all begin with the
letter F, which stands for floating point and distin-
guishes the 8087 instructions from 8086 instructions.
We have found that if we mentally remove' the F as we
read the mnemonic, it makes it easier to connect the
mnemonic and the operation performed by the instruc-
tion. Here we briefly describe the operation of each of
the 8087 instructions so that you can use some of them
to write simple programs. As you read through these
instructionsthe first time, don't try to absorb themall. or
you probably won't remember any of them. Concentrate
first on the instructions you need to get operands from
memory into the 8087, simple arithmetic instructions,
and the instructions you need to get results copied back
from the 8087 to memory where you can use them. Then
work your way through the example program in the next
section. After that, read through the instructions again
and pay special attention to the transcendental instruc-
tions which allow you to perform trigonometric and
logarithmic operations

The instructions are grouped here in six functional

DMA, DRAMS, C ACHE MEMORIES, COPROCESSORS, AND EDA TOOLS 371

groups so that you can more easily find the instruction
which performs a desired operation.

If the 8087 detects an error condition, usually called
an exception, while it is executing an instruction, it will
set the appropriate bit in its status register. After
the Instruction finishes executing, the status register
contents can be transferred to memory with another
8087 instruction. You can then use 8086 instructions
to check the status bits and decide what action to take
if an error has occurred. Figure 11-19b shows the format
of the 8087 status word. The lowest 6 bits are the
exception status bits. These bits will all be O's if no
errors have occurred. In the instruction descriptions
following, we use the first letter of each exception type
to indicate the status bits affected by each instruction.

If you send the 8087 a control word which unmasks
the exception interrupts, as shown In Figure 11-19a,
the 8087 will also send out a hardware interrupt signal
when an error occurs. This signal can be used to send
the 8086 directly to an exception handling procedure.

Z2ATA TRANSFER INSTRUCTIONS

Real Transfers

FLD source—Decrements the stack pointer by one and
coples a real number from a stack clement or memory
location to the new ST. A short-real or long-real number
from memory is automatically converted to temporary-
real format by the 8087 before it is put in ST. Exceptions:
L D.

EXAMPLES:
FLD ST(3) : Copies €T(3) to ST
FLD LONG_REAL{BX] ; Number from memory copied

s to ST

FST destination—Coples ST to a specified stack position
or to a specified memory location. If a number is trans-
ferred to a memory location, the number and its expo-
nent will be rounded to fit in the destination memory
location. Exceptions: I, O, U, P.

EXAMPLES:
FST ST(2) : Copy ST to ST(2), and

: increment stack pointer
FST SHORT_REAL{BX| ; Copy ST to memory

; at SHORT_REAL|BX]

FSTP destination—Copfes ST to a specified stack element
or memory location and increments the stack pointer
by 1 to point to the next element on the stack. This is
a stack pop operation. It is identical to FST except for
the effect on the stack pointer.

FXCH /Idestination—Exchanges the contents of ST with
the contents of a specified stack element. If no destina-
tion is specified, then ST(1) is used. Exception: 1.

EXAMPLE:
FXCH ST(5)

372

: Swap ST and ST(5)

CHAPTER ELEVEN

Integer Transfers

FILD source—Integer load. Convert integer number from
memory to temporary-real format and push on 8087
stack. Exception: I.

EXAMPLE:

FILD DWCRD PTR [BX] ; Short integer from memory

; at [BX]

FIST destination—Integer store. Convert number from ST
to integer form and copy to memory. Exceptions: I, P.

EXAMPLE:

FIST LONG_INT ; ST to memory locations

: named LONG_INT

FISTP destination—Integer store and pop. Identical to FIST
except that stack pointer is incremented after copy.

Packed Decimal Transfers

FBLD source—Packed decimal(BCD) load. Convert num-
ber from memory to temporary-real format and push on
top of 8087 stack. Exception: I.

EXAMPLE:

FBLD MONEY_DUE ; Ten byte BCD number from
; memory to ST

FBSTP destination—BCD store in memory and pop 8087
stack. Pops temporary-real from stack, converts to 10-
byte BCD, and writes result to memory. Exception: I.

EXAMPLE:

¥BSTP TAX ; ST converted to BCD, sent to memory

ARITHMETIC INSTRUCTIONS

Addition

FADD //source/destination, source—Add real from specified
source to real at specified destination. Source can be
stack element or memory location. Destination must be
a stack element. If no source or destination is specified,
then ST is added to ST(1) and the stack pointer is

incremented so that the result of the addition ts at ST.
Exceptions: I, D, O, U, P.

EXAMPLES:

FADD ST(3), ST : Add ST to ST(3). result in ST(3)
FADD ST,ST(4) ; Add ST(4) to ST, result in ST
FADD INTEREST : Real num from mem + ST

FADD : ST+ ST(1). pop stack-result at ST

FADDP destination, source—Add ST to specified stack
element and increment stack pointer by 1. Exceptions:
I.D,O, U, P

EXAMPLE:

FADDP ST(1) ; Add ST(1) to ST. Increment stack

; pointer so ST(1) becomes ST

FIADD source—Add integer from memory to ST, result
in ST. Exceptions: I, D, O, P.

EXAMPLE:

FIADD CARS_SOLD : Integer number from
; memory + ST

Subtraction

FSUB //source/destination,source—Subtract the real num-
ber at the specified source from the real number at the
specified destination and put the result in the specified
destination. Exceptions: I, D, O, U, P.

" EXAMPLES:

FSUB ST(2),ST : ST(2) becomes ST(2) — ST
FSUB CHARGE ; ST becomes ST — real from memory
FSUB : ST becomes (ST(1) — ST)

FSUBP destination,source—Subtract ST from specified
stack element and put result in specified stack element.
Then increment stack pointer by 1. Exceptions: I, D, O,
U, P.

EXAMPLES:

FSUBP ST(1) :ST(1) — ST. ST(1) becomes new ST.
FISUB source—Integer from memory subtracted from ST,
result in ST. Exceptions: 1, D, O, P.

EXAMPLE:
FISUB CARS_SOLD : ST becomes ST - integer
; from memory

Reversed Subtraction
FSUBR //source/destination,source
FSUBRP //destination,source

BISUBR source—These instructions operate the same as
the FSUB instructions described previously, except that
these instructions subtract the contents of the specified
destination from the contents of the specified source
and put the difference in the specified destination.
Normal FSUB instructions, remember, subtract source
from destination.

DMA, DRAMS, CACHE MEMORIES. COPROCESSORS, AND EDA TOOLS

Multiplication

FMUL //source/destination,source—Multiply real number
from source by real number from specified destination
and put result in specified stack element. See FADD
instruction description for examples of specifying op-
erands. Exceptions: I, D, O, U, P.

FMULP destination source—Multiply real number from
specified source by real number from specified destina-
tion, put result in specified stack element, and increment
stack pointer by 1. See FADDP instruction for examples
of how to specify operands for this instruction. With no
specified operands FMULP multiplies ST(1) by ST and
pops stack to leave result at ST. Exceptions: I, D, O, U,
P.

FIMUL source—Multiply integer from memory times ST
and put result in ST. Exceptions: I. D, O, P.

EXAMPLE:

FIMUL DWORD PTR [BX]

Division
FDIV //source/destination,source—Divide destination real

by source real; result goes in destination. See FADD
formats. Exceptions: 1. D, Z, O, U, P. =

FDIVP destination,source—Same as FDIV, but also incre-
ment stack pointer by 1 after DIV. See FADDP formats.
Exceptions: I, D, Z, O, U. P.

FIDIV source—Divide ST by Integer from memory, resuit
in ST. Exceptions: [, D. Z, O, U, P.

Reversed Division
FDIVR //source/destination source
FDIVP destination,source

FIDIVR source—These three instructions are identical in
format to the FDIV, FDIVP, and FIDIV instructions,
except that they divide the source operand by the
destination operand and put the result in the desti-
nation. ’

Other Arithmetic Operations

FSQRT—Contents of ST are replaced with its square root.
Exceptions: 1. D, P.

EXAMPLE:
FSQRT

FSCALE—Scale the number in ST by adding an integer .
value in ST(1) to the exponent of the number in ST,;’

Fast way of multiplying by integral powers of two.
Excegtlons: 1.0, U

373

FPREM—Partial remainder. The contents of ST(1) are
subtracted from the contents of ST over and over again
until the contents of ST are smaller than the contents
of ST(1). FPREM can be used to reduce a large angle to
less than 7/4 so that the 8087 trig functions can be used
on it. Exceptions: I, D, U.

EXAMPLE:
FPREM

FRNDINT—Round number in ST to an integer. The
round-control (RC) bits in the control word determine
how the number will be rounded. If the RC bits ar= set
for down or chop, a number such as 205.73 will be
ounded to 205. If the RC bits are*set for up or nearest,
205.73 will be rounded to 206. Exceptions: I, P.

FXTRACT—Separates the exponent and the significand
parts of a temporary-real number In ST. After the
Instruction executes, ST contains a temporary-real rep-
resentztion of the significand of the number and ST(1)
onta.as a temporary-real representation of the expo-
v of the number. These two could then be written
arately out to memory locations. Exception: 1.

-ABS—Number in ST is replaced by its absolute value.
Instruction simply makes sign positive. Exception: 1.

FCHS—Complements the sign of the number in ST.
Exception: I.

COMPARE INSTRUCTIONS

The compare instructions with COM in their mnemonic
compare contents of ST with contents of specified or
default source. The source may be another stack element
or real number in memory. These compare instructions
set the condition code bits C3, C2, and CO of the status
word shown in Figure 11-19b as follows:

C3 C2 Co
0O 0 o

0
1
1

ST > source
ST < source
ST = source
numbers cannot be compared

- O O
- OO0

You can transfer the status word to memory with the
8087 FSTSW instruction and then use 8086 instructions
to determine the results of the comparison. Here are the
different compares.

FCOM //source—Compares ST with real number in an-
other stack element or memory. Exceptions: I, D.

EXAMPLES:
FCOM :Compares ST with ST(1)
FCOM ST(3) i Compares ST with ST(3)

FCOM MINIMUM_PAYMENT : Compares ST with real

; from memory

FCOMP //source—Identical to FCOM except that the stack
pointer is incremented by 1 after the compare operation.
Old ST(1) becomes new ST.

374 CHAPTER ELEVEN

FCOMPP—Compare ST with ST(1) and Increment stack
pointer by 2 after compare. This puts the new ST above
the two numbers compared. Exceptions: I, D.

FICOM source—Compares ST to a short or long integer
from memory. Exceptions: I, D.

EXAMPLE:
FICOM MAX_ALTITUDE

FICOMP source—Identical to FICOM except stack pointer
Is Incremented by 1 after compare.

FTST—Compares ST with 0. Condition code bits C3, C2,
and CO in the status word are set as shown above if you
assume the source in this case is 0. Exceptions: I, D.

FXAM—Tests ST to see if it is 0, infinity, unnormalized,
or empty. Sets bits C3, C2, C1, and CO to indicate result.
See Intel data book for coding. Exceptions: None.

TRANSCENDENTAL (TRIGONOMETRIC AND
EXPONENTIAL) INSTRUCTIONS

FPTAN—Computes the values for a ratio of Y/X for an
angle in ST. The angle must be expressed in radians,
and the angle must be tn the range of 0 < angle < w/4.

NOTE: FPTAN does not work correctly for angles
of exactly O and n/4. You can convert an angle from
degrees to radians by dividing it by 57.295779. An
angle greater than n/4 can be brought into range
with the 8087 FPREM Instruction. The Y value
replaces the angle on the stack, and the X value is
pushed on the stack to become the new ST. The
values for X and Y are created separately so you
can use them to calculate other trig functions for
the given angle. Exceptions: I, P.

FPATAN—Computes the angle whose tangent is Y/X. The
X value must be in ST, and the Y value must be in ST(1).
Also, X and Y must satisfy the inequality0 < Y < X < =,
The resulting angle expressed in radians replaces Y in
the stack. After the operation the stack pointer is
Incremented so the result is then ST. Exceptions: U, P.

F2XM1—Computes the function Y = 2¥ —] for an X

+ value in ST. The result, Y, replaces X in ST. X must be

in the range 0 < X =< 0.5. To produce 2%, you can simply
add 1 to the result from this instruction. Using some
common equalities, you can produce values often needed
In engineering and sclentific calculations.

EXAMPLES:
10X = 2):1140(:210)
et = 2XIL0G e

YX = 2X|UDG:Y1

FYL2X—Calculates Y times the LOG to the base 2 of X
or Y(LOG,X). X must be in the range of 0 < X < = and
Y must be in the range — = < Y < +=. X must initially
be in ST and Y must be in ST(1). The result replaces Y

and then the stack is popped so that the result is then
at ST. This instruction can be used to compute the

log of a number in any base, n. using the identity

LOG X = LOG,2(LOG,X). For a given n, LOG,2 is a
constant which can easily be calculated and used as the
. Y value for the instruction. Exceptions: P.

FYL2XP1—Computes the function Y times the LOG to the
base 2 of (X + 1) or Y(LOG,(X + 1)). This instruction is
almost identical to FYL2X except that it gives more
accurate results when computing the LOG of a number
very close to 1. Consult the Intel manual for further
detail.

INSTRUCTIONS WHICH LOAD CONSTANTS

The following instructions simply push the indicated
constant onto the stack. Having these commonly used
constants available reduces programming effort.

FLDZ—Push 0.0 on stack.

FLD1—Push + 1.0 on stack.

FLDPI—Push the value of 7 on stack.

FLD2T—Push LOG of 10 to the base 2 on stack (LOG,IOI‘.

FLDL2E—Push LOG of e to the base 2 on stack (LOGze).

FLDLG2—Push LOG of 2 to the base 10 on stack (LOG 52).
_FLDLN2—Push LOG of 2 to the base e on stack (LOG,2).

PROCESSOR CONTROL INSTRUCTIONS

These instructions do not perform computations. They
are used to do tasks such as initializing the 8087,
enabling interrupts, writing the status word to memory,
etc.

Instruction mnemonics with an N as the second
character have the same function as those without the
N, but they put an NOP in front of the instruction
instead of putting a WAIT instruction there.

FINIT/FNINT—Initializes 8087. Disables interrupt out-
put, sets stack pointer to register 7, sets default status.

FDISI/FNDISI—Disables the 8087 interrupt output pin so
that it cannot cause an interrupt when an exception
(error) occurs.

FENVFNENI—Enables 8087 interrupt output so it can
cause an interrupt when an exception occurs.

FLDCW source—Loads a status word from a named
memory location. into the 8087 status register. This
instruction should be preceded by the FCLEX instruc-
tion to prevent a possible exception response if an
exception bit in the status word is set.

FSTCW/FNSTCW destination—Copies the 8087 control
word to a named memory location where you can deter-
mine its current value with 8086 instructions.

FSTSW/FNSTSW destination—Copies the 8087 status word
to a famed memory location. You can check various
status bits with 8086 instructions and base further
action on the state of these bits.

FCLEX/FNCLEX—Clears all the 8087 exception flag bits in
the status register. Unasserts BUSY and INT outputs.

FSAVEANSAVE destination—Copies the 8087 control word,
status word, pointers, and entire register stack to a
named, 94-byte area of memory. After copying all this,
the FSAVE/FNSAVE instruction initializes the 8087 as
if the FINIT/FNINIT instruction had been executed.

FRSTOR source—Coples a 94-byte named area of memory
into the 8087 control register, status register, pointer
registers, and stack registers.

FSTENV/ENSTENV destination—Copies the 8087 control
register, status register, tag words, and exception point-
ers to a named series of memory locations. This instruc-
tion does not copy the 8087 register stack to memory
as the FSAVE/FNSAVE instruction does.

FLDENYV source—Loads the 8087 control register, status
register, tag word, and exception pointers from a named
area in memory.

FINCSTP—Increments the 8087 stack pointer by 1. If the
stack pointer contains 111 and it is incremented, it will
point to 000.

FDECSTP—Decrements the stack pointer by 1. If the
stack pointer contains 000 and it is decremented, it will
contain 111.

FFREE destination—Changes the tag for the specified desti-
nation register to empty. See the Intel manual for a
discusston of the tag word. (You usually don’t need to
know about it.)

FNOP—Performs no operation. Actually copies ST to ST.

FWAIT—This instruction is actually an 8086 instruction
which makes the 8086 wait until it receives a not-busy
signal from the 8087 to its TEST pin. This is done to
make sure that neither the 8086 nor the 8087 starts
the next instruction before the preceding 8087 instruc-
tion is completed.

An 8087 Example Program —
Pythagoras Revisited

As you may remember from back there somewhere in
geometry, the Pythagorean theorem states that the
hypotenuse (longest side) of a right triangle squared is
equal to the square of one of the other sides plus the
square of the remaining side. This is commonly written
as C? = A? + B2 For this example program we want to
solve this for the hypotenuse C, so we take the square
root of both sides of the equation to give C = VA? + B%

Figure 11-22, p. 376, shows a simple 8087 program
you can use to compute the value of C for given values
of A and B. We have shown the assembler listing for the
program so you can see the actual codes that are
generated for the 8087 instructions. Note, for example.
that each of the codes for the 8087 instructions here
starts with 9BH, the code for the WAIT instruction
whose function we explained before.

At the start of the program we set aside some named
memory locations to store the values of the three sides

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS 375

i ;8087 PROGRAM F11-22.ASM
Z JABSTRACT: NUMERIC DATA PROCESSOR EXAMPLE PROGRAM
3 H This program calculates the hypotenuse of a right
4 : triangle, given SIDE A and SIDE B.
5
[.8087 ; This line tells TASM that the program containe 8087 instructions
7
8 . NAME PYTHAG
9
10 0000 DATA SEGMENT WORD PUBLIC
11 0000 40400000 SIDE_A V) 3.0 ; Set aside space for Side A, short real
12 0004 40800000 SIDE_B DD 4.0 ; Set aside space for Side B, short real
13 D008 00000000 HYPOTENUSE DD 0 ; Set aside space for result, short real
14 ; 5.0 normalized = 40A00000
15 000C 0000 CONTROL_WORD DW 0 ; Space for control word
16 000 0000 STATUS_WORD DW 0 ; Space for status word
17 0010 DATA ENDS
18
19 0000 CODE SEGMENT WORD PUBLIC
20 ASSUME CS:CODE, DS:DATA
21 0000 B8 0000s START: MOV AX, DATA ; Initialize data segment register
22 0003 8t D8 MOV DS, AX
23 0005 98 DB E3 FINIT ; Initialize 8087
24 0008 C7 06 000Cr O3FF MOV CONTROL_WORD, O3FFH ; Put control word in memory so 8087 can access
25 E ; it. Sets round to even & mask interrupts
26 000E 98 D9 2E 000Cr FLOCW CONTROL_WORD ; Load control to 8087
27 0013 98 D9 06 0000r FLD SIDE_A i Put value of SIDE_A on stack top
28 0018 98 DB C8 FMUL ST, ST(O) ; Square SIDE_A
29 0018 98 D9 06 0004r FLD SIDE_8 ; Put value of SIDE_B on stack top
30 0020 98 D8 8 FMUL ST, ST(0) ; Square SIDE_B
31 0023 98 D8 C1 FADD ST, ST(1) ; (AXA + BxB), result at top of stack
32 0026 98 D9 FA FSQRT ; Take square root of ST, result in ST
33 0029 98 DD 3E OOOEr FSTSW STATUS_WORD . Copy status word to mem so 8086 can access it
34 002E A1 OOOEr MOV AX, STATUS_WORD ; Bring status to AX to check for errors
35 0031 24 BF AND AL, OBFH ; Mask unneeded bit
36 0033 75 05 JNZ sToP ; Handle error if found
37 0035 98 D9 1E 0008r FSTP HYPOTENUSE ; No error, copy result from 8087 to memory
38 003A 90 STOP: NOP
39 0038 CODE ENDS
40 END START
FIGURE 11-22 8087 program to compute the hypotenuse of a right triangle.

of our triangle, the control word we want to send the
8087, and the status word we will read from the 8087
to check for error conditions. Remember, the only way
you can pass numbers to and from the 8087 is by using
8087 instructions to read the numbers from memory
locations or write the numbers to memory locations. In
this section of the example program the statement
SIDE_A DD 3.0 tells the assembler to set aside two
words in memory to store the value of one of the sides
of the triangle. The decimal point in 3.0 tells the
assembler that this fs a real number. The assembler
then produces the short-real ‘representation of 3.0
(40400000) and puts it in the reserved memory loca-
tions. Likewise, the statement SIDE_B DD 4.0 tells the
assembler to set aside two word locations and put the
short-real representation of 4.0 in them. The statement
HYPOTENUSE DD O reserves a double-word space for
the result of our computation. ‘When the program is
finished, these locations will contain 40A00000, the
short-real representation for 5.0.

You would normally write the actual code section of
this program as a procedure so that you could call it as
needed. To make it simple here we have written it as a
stand-alone program. We start by initializing the data
segment register to point to our data in memory. We

376

CHAPTER ELEVEN

then initialize the 8087 with the FINIT instruction. The
notations for the control word in Figure 11-19a show
the default values for each part of the control word after
FINIT executes. For most computations these values give
the best results. However, just in case you might want
to change some of these settings from their default
values, we have included the instructions needed to
send a new control word to the 8087. You first load the
desired control word in a reserved memory location with
the MOV CONTROL_WORD,03FFH instruction and then
load this word into the 8087 with the FLDCW CON-
TROL_WORD instruction.

To perform the actual computation, we start at the
Inside of the equation and work our way outward. FLD
SIDE_A brings in the value of the first side and pushes
It on the 8087 stack. FMUL ST,ST(0) multiplies ST by
ST and puts the result in ST, s0 ST = A2, Next we bring
in SIDE_B, push it on the 8087 stack with the FLD
SIDE_B instruction. and square it with the FMUL
ST.ST(0) Instruction. ST now contains B? and ST(1)
now contains A% We add tnese together and leave the
result in ST with the FADD instruction. FSQRT takes
the square root of the contents of ST and leaves the
results in ST. To see if the result is valid, we copy the
8087 status word to the memory location we reserved

for it with the FSTSW STATUS_WORD instruction. We
then use 8086 instructions to check the six exception
status bits to see if anything went wrong in the square
root computation. If there were no exceptions (errors),
these status bits will all be 0's, and the program will
copy the result from ST to the memory location named
HYPOTENUSE using the FSTP HYPOTENUSE instruc-
tion. We used the POP form of this instruction so that
after this instruction, the stack pointer is back at the
same register as it was when we started. This makes it
easier to keep track of which register is ST, if necessary.

For the case where our test found an error had
occurred, we could have program execution go to an
error handling routine instead of simply to the STOP
label as we did for this simple example.

Now that you know how it is programmed, let's look
at how an 8087 is connected in a system and how it
works with an 8086 or 8088 as it executes programs.

8087 Circuit Connections and Cooperation

Figure 11-23, p. 378, shows the first sheet of the
schematics for the 256K version of the IBM PC. We chose
this schematic not only to show you how an 8087 is
connected in a system with an 8088 microprocessor,
but also to show you another way in which schematics
for microcomputers are commonly drawn.

First in Figure 11-23, note the numbers along the
left and right edges of the schematic. These numbers
indicate the other sheet(s) that the signal goes to. This
is an alternative approach to the zone coordinates used
in the schematics in Figure 7-8. In the schematic here
the zone coordinates are not needed because all the

input signal lines are extended to the left edge of the

schematic, and all of the output signal lines are run to
the right edge of the schematic. If you see that an output
signal goes to sheet 10, then it is a simple task to scan
down the left edge of sheet 10 to find that signal. The
wide crosshatched strips in Figure 11-23 represent
the address, data, and control buses. From the pin
descriptions for the major ICs, you know where these
signals are produced. You can then scan along the bus
to see where various signals get dropped off at other
devices. On this type of schematic the buses are always
expanded to Individual lines where they enter or leave a
schematic. Now let's look at how the 8087 and 8088 are
connected. -

First note that the MIN/MX pin of the 8088 is
grounded, so the 8088 is operating in its maximum
mode. Remember that in maximum mode the 8088
sends out encoded control signals on the status lines
$2, S1, and SO and the queue status lines QS1 and QS0
instead of generating the control signals directly. In a
maximum-mode system an external controller such as
the 8288 at the bottom of Figure 11-23 decodes these
status signals to produce the control signals. These
status signals also go to the 8087 so that the 8087 can
track the bus activity of the 8088.

Next observe that the multiplexed address/data lines,
ADO-AD?7, also go directly from the 8088 to the 8087.
The 8088, remember, has the same instruction set as
the 8086, but it has only an 8-bit data bus, so all read

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS

and writes are byte operations. The upper address lines,
A8-A19, also connect directly from the 8088 to the
8087. The 8087 receives the same clock and reset signals
as the 8088. !

Now look at Figure 11-23 to see if you can figure out
that the request/grant signal, RQ/GTO, from the 8087
is connected to the request/grant pin, RQ/GT1, of the
8088. The way you figure this out from the schematic
Is to notice that the signal from the 8087 RQ/GTO pin
is labeled just RQ/GT where it enters the crosshatched
bus. Likewise, the label on the signal coming from the
crosshatched bus to the RQ/GT1 pin of the 8088 is also
just labeled RQ/GT. You know from the fact that the two

‘lines have the same label they are connected together.

For an 8086 or an 8088 operating in maximum mode,
this bidirectional line is used for DMA request/acknowl-
edge signals. The 8087 uses DMA to transfer data
between memory and its internal registers.

When the 8086 or 8088 reads an 8087 instruction
that needs data from memory or wants to send data to
memory, the 8086 sends out the memory address coded
in the instruction and sends out the appropriate mem-
ory-read or memory-write signals to transfer a word of
data. In the case of a memory-read, the addressed word
will be put on the data bus by the memory. The 8087
then simply reads in this word off the data bus. The
8086 or 8088 ignores the data word. If the 8087 needs
only this one word of data, it can then go on and execute
its instruction. However, many 8087 instructions need
to read in or write out up to 80-bit words. In these cases
the 8088 outputs the address of the first data word on
the address bus and outputs the appropriate memory-
read or memory-write control signal. The 8087 reads
the data word put on the data bus by memory or writes
a data word to memory on the data bus. The 8087 then
grabs the 20-bit physical address that was output by
the 8086 or 8088. To transfer additional words it needs
to or from memory, the 8087 then takes over the buses
from the 8086. To take over the bus the 8087 sends out
a low-going pulse on its RQ/GTO pin, as shown in Figure
11-23. The 8086 or 8088 responds to this by sending
another low-going pulse back to the RQ/GTO pin of
the 8087 and by floating its buses. The 8087 then
increments the address it grabbed during the first
transfer and outputs the incremented address on the
address bus. When the 8087 outputs a memory-read or
memory-write signal, another data word will be trans-
ferred to or from the 8087. The 8087 continues the
process until it has transferred all the data words
required by the instruction to or from memory. When
the 8087 is through using the buses for its data transfer,
it sends another low-going pulse out on its RQ/GTO pin
to let the 8086 or 8088 know it can have the buses back
again. The key point here, then, is that the 8087
coprocessor can take over the buses from the host or
bus master processor to transfer data when it needs to
by pulsing the RQ/GTO input of the host processor.

Another important connection to observe in Figure
11-23 is that between the BUSY signal from the 8087
and the TEST input of the 8088. As we mentioned earlier
in the chapter, this connection and the 8086 WAIT
instruction are used to mike sure the 8086 or 8088

377

osc (o
- Pk B3
CApy 047 4
i
P \] A19 18 L]
(10) PWR GOOD ——-o] AES 2 vece T) o QTul 13,4100
L] P sv—e3UFE 5T om0 i . o % QT—AII 3410
Uesvne L] PN n x4 0 P—— a7 oo
I = Alg 0 aP— s 0410
READY 2] oy ael® a9 ALE :n i
ne—Yer 4 L I an 2 A1p L) e
18} ssvie RESET 2\ neser ann Pl Al
L N1 v o A8 .
A ' » Als a1 3
(2) BMAWAIT Haovi O 8a00 A S PR L
n FovmwAIT ——3q AD\ 134001 ;’-3‘ aup o off—an 10
: AD2 14,02 Al A13 A3 3y W ool a3 aaso
ADI LE] PR Akt A12 A2 qo G-’-——A!Z (4.5.6.10)
AD4 Lt Y anpe Al LI Y Pl A wssr0)
aos Al A Al W, f>— a0 wssi0l
+5V ADS 10), 06 M A9 s uf oS ns esem
ADI Hao? asfl L} L Blo GHe _as wssi0)
AQ/GT 05,5] el 2] AE nlo
aso 5] 0e sb2] aen 1 s
as P71 poy = 5
10| = ; s ocx 12
B st tack p LOCx f
AN1 RESET (249)
arxn
2 s) aP— a7 ussin
45V o
o a A6
cayy 087 o U7 ol® i
s _[s
o — Al
0 aft— a3
SOCKET o afs— a2
“sv 2vee o} sV o u.———;’ a1
k] P e] 022 ki [af'— a0 wssi0
Meners = 4rxn G
T OF
READY
®) L [NP2 cu(:s 77 READY a9 : ::: CLKes 1251
o 1Ra1 i vee B ossv e : LK Ate = - L Y
14 . AV P 6.
0ol 1Ra2" 2 GO RESET A7 1
2 = 3B AlB A 8 o8
ao) 1Ra3 R vz = e A S R (T
1o 1nQ4 g B2A gt ADO '8} avo ao1s |2, AlS el
0o IRQS 2% ns n 2 Ap1 :n; 5] 01 antald LYL} ‘ S (PR,
0 Al b
no 1RQ8 IR6_ 02 ADZ ' 02 aonaf " N o
o) Ra7? D3 L1 ADY :DJ 1K) RSy AD12 s AlZ A A Lkd o1
i All
N >" o4} 208 Ao‘ 2 ao4 o A Pyl D0 (5610
o L e 05[5 Aps JY A06 108 Ap10/8 Alg =
[T — pef2 ADS ADS 191 a0 ADg - A9 -
k7
®. x40 —2Hao o7ft Ul i Y aor aos}t :_5:—<
ne—Hcaso :2;“ M e6GT0 5093-5—?—4 S @2
s 25| 7 i 5
ne - casi sinplt aso sipl 2L s
T i iy 1 ast 2] o, b2 52 &
cLkss xus o f32 ALE 1100
= 8087 T = NP NP2
7
[s
s we
8l ©
57
L I
ek
(21 AEN BRD Sdaen iow 15101
Y08 Amwe p AAA i MEMW (S 10}
L [N iowe p- ne 2Ly
= WWTEp2— ne
= 15 == [l A ==
12) AEN CEN IGRC ioR 15100
+svo—2yce wAocE AAA— MEMA (5100
a0

FIGURE 11-23 8088 and 8087 section of IBM PC schematic.

host does not attempt to execute the next instruction
before the 8087 has completed an instruction. There
are two possible problem situations here.

One problem situation is the case where the 8086
needs the data produced by execution of an 8087 irfstruc-
tion to carry out its next instruction. In the instruction
sequence in Figure 11-22, for example, the 8087 must
complete the FSTSW STATUS_WORD instruction before

378 CHAPTER ELEVEN

(IBM Corporation)

the 8086 will have the data it needs to execute the
MOV AX.STATUS_WORD instruction. Without some
mechanism to make the 8086 wait until the 8087
completes the FSTSW instruction, the 8086 will go on
and execute the MOV AX.STATUS_WORD instruction
with erroneous data. This problem is solved by connect-
ing the 8087 BUSY output to the TEST pin of the 8086
or 8088 and putting an 8086 WAIT instruiction prefix.

9BH, before the 8087 FSTSW STATUS_WORD Instruc
tion in the program as shown in Figure 11-27. Here'z
how it works.

While the 8087 is executing an instruction, |f 2sserts
its BUSY pin high. The 8086 WAIT instructidh previx
before the FSTSW STATUS_WORD tnstruction causcs
the 8087 to sit in a wait loop until its TEST pti 18 pulled
low by the 8087 BUSY pin going low. The 8487 asserts ita
BUSY pin low when it compietes the current instruction.

Another case where the host must be made to waii fo
the coprocessor is the case where a program has several
8087 instructions In sequence. The 8087 can chiviously
execute only one instruction at a time, so you have to
make sure that the 8087 has completed one instruction
before you allow the 8086 to fetch the next 8087 instruc-
tion from memory. Here again the BUSY-TEST conner
tion and the FWAIT instruction prefix solve the problem.

As shown in the example program in Figure 11-22
an assembler will automatically insert the 8-bit code for
the 8086 WAIT instruction, 10011011 binary (SBH], as
the first byte of the code for each 8087 instruction.
When the 8086 or 8088 feiches and decodes this code
byte, it will enter on the internal loop and wait for the
TEST input to go low before fetching and decoding the
next 8087 instruction.

The final point we want to mention about the connec-
tions of the,8088 and 8087 in an IBM PC is that the INT
output of the 8087 is connected to the nonmaskable
interrupt (NMI) input of the 8088. This connection !s
made so that an error condition in the Bi87 can inter-
rupt the 8088 to let it know about the error conditton
The signal from the 8087 INT output actually goes
through some circuitry on sheet 2 of ihe schematics
and returns to the input iabeled NMI on the lefi edge of
Figure 11-23. We do not have room here to show and
explain all the circuitry on sheet 2. The main purposes
of the circultry between the INT output of the 8087 und
the NMI input of the 8088 are o make sure that an 1741
signal is not presen” during a reset, to make it pussible
to mask the NMI input, and to make it possible for other
devices such as the parity checker 1o cause an NMI
interrupt.

A couple of pins on the 8087 that we areit't concerned
with in this system are the bus-high-enabie (BHE) and
request/grantl (R@/GT1) pins. When the 8087 is used
with an 8086, the BHE pin is connected to the system
BHE line to enable the upper hank of memory. The RQ/
GT1 input is avallable so tha! another coprocessci can
be connected In parallel with the 8087.

Next here we want to show you the tools and tech-
niques currently used to design and test a microcom-
puter system such as the IBM PC shown in Figure
11-2.

COMPUTER-BASED DESIGMN AND
DEVELOPMENT TOOLS

In more and mote companies the entire design, prototyp-
ing, manufacturing, and testing processes for an elec-
tronic product such as a microcomputer are being done
with the help of a series of computer programs. The

- 50

DMA, DRAMS

CACHE MEMORIES, COPROCESSORS, AND FDVA Tavmi s

term computer-aided englneering (CAE) has been used
in the past to describe the use of these tools, but now
we commonty use the term electronic design autornation
or EDA instead of the more general term, CAE. The EDA
term gives a better indication of the extent to which the
wnirrently avatlablz tools automate much of the design
The following sections describe how a new -
mieiocomputer is designed and developed using design

sutamation tools.

PEess

The Design Review Committee
and Design Overview

‘U1 most hmportant step in the design of any system is
io think very carefully about what you want the system
10 do. In most companies a new product is now defined
by 2 team consisting of design engineers, marketing/
sales representatives, mechanical engineers, and pro-
duction engineers. This team approach is necessary
30 that the product can be designed using current
techinology, manufactured and tested with minimal
problems, and marketed successfully. -

{ace the specifications for the new product are agreed
upon, the design engineers then think about how the
circuit for it can be implemented. The next step in the
design process is to partition the overall instrument
design into major functional blocks or modules. Each
medule can then be Individually designed and tested or
oven assigned to different designers.

Initial Design and Schematic Generation

The next step in the design process is to analyze each
functional block to determine how it can best be imple-
mented. After working out the basic design of each
maodule, the design engineers draw a schematic for cach
module. In the old days (until about 5 years ago) we
drew schemnatics on a large sheet of grid paper with a
mechanlical pencil and a plastic template. If we decided
that a section of circultry did not fit at a particular point
on a schematic, we erased the block of circultry with
our electric eraser and started over again. The process
was very time consuming and tedious. Just the remem-
Lrance of it makes me tired.

Now we use a schematic capture program to draw
schematics on an engineering workstation such as the
Apollo DN4500 shown in Figure 11-24, p. 380. Using a
computer to draw schematics has the same advantage
over hand drawing that using a word processor has
over using a standard mechanical typewriter. Since the
schematic is drawn on the computer screen, you don't
have to erase anything on paper. You can move symbols
around on the screén with a mouse, change connecting
wires, add or delete symbols, and print out the result
on a printer o plotter when the schematic looks just
b= way you want it to. If you change your mind about
s« me part of the schematic. you can just edit the drawing
cry the sceeen and do a new printout.

A further advantage of the computer-atded dralting
approach is that vou usually don't even have to draw
the symbels! Most schematic capture programs have

-

THREE-EIGHTHS S128
MIL-STD-808
ASA ¥32.14- 1962

Barol Ragn
STANDARD LOGIC SymBoLS A-544
.

FIGURE 11-24 Apollo DN45GG workstatdn.
Computers—HP Inc.)

(Apollo

large library files containing commoen device sy'nbaols,
complete with pin numbers snd e'cctrical characteris-
tics. All you have to do wher: you want toput a particular
iC on a schematic is to puil the symnbol for it from the
library file. Once you have the IC symbois for 2 circuit on
the screen, you can use a mouse to draw the connecting
wires between them and then add junctions, connectors,
iabels, etc., to complete the drawing.

Schematic capture programs are available for most
computers. The Ideaware programs from Mentor Graph-
tcs run.on Hewlett-Packard/Apolle engineering work-
stations such as the one shown Figure 11-24. We used
a workstation such as this and the Mentor Graphics
Neted schematic capture program to draw the basic
microcomputer system in Figure 11-25. Workstations
such as this are used for designing large, complex digital
systems or ICs. For small projects we often use an IBM
PC/AT or a Macintosh-type computcruSchcmaUC capture
programs for IBM PC-type computers include CapFast
from Phase Three Logic, Draft from OrCAD Systems
Corporation, Schema Il + from Omation, Inc., and EE
Designer Il from Visionics. Schematic capture programs

380 CHAPTER ELEVEN

avalilable for the Macintosh include Schematic from
Douglas Electronics Inc. and LogicWorks from Capilano
Computing Systems Ltd.

When the schematic design file is completed, it s
processed by a program called a design rule checker or
DRC, which checks that there are no duplicate symbols,
overlapped lines, or dangling lines. This step Is simflar
to checking a text file with a spelling checker program.

After the schematic design file passes the DRC check,
It is processed by a program called an electrical rule
checker or ERC. which checks for wiring errors such as
two outputs connected together or an output connected
to Vee.

When the schematic design file for a module passes
the ERC test, a netlist program produces a netlist or
wiring list for the design. A netlist is a file which lists
all devices in the design and all the connections between
devices.

Prototyping the Circuit — Simulation

After the design is polished, the next step is to prototype
or “breadboard” the circuit design to make sure the logic
and the timing in the circult are correct. In the past
this prototyping was usually done by soldering or wire-
wrapping the circult on a prototype board of some type.
More and more we= now use “software breadboarding” to
test the operation of circuits of ICs. To do this we use a
program called a simulator.

The sinulator uses software models of the devices in
the design to determine the response that the circuit
will make to specified input signals. One big advantage
of simulation or software breadboarding is that you
den't have to order parts and wait for them to come in
beiore you can test the operation of your design. Another
big advantage of simulation is that you can change the
design and resimulate the circuit in a matter of minutes
i hours instead of waiting days for new parts to come
in so you can modify a physical prototype and test it.
Apollc Computer Corporation reportedly used simula-
tion o cut several months from the prototype debug
time for an engineering workstation such as the one
shown in Figure 11-24,

Another advantage of simulation over traditional
breadboarding is that you can simulate the circuit
operation with worst-case timing parameters for all
devices. This often discovers marginal timing problems
that might not show up in a physical prototype because
you can'’t vary the timing parameters of physical parts.
We remember a case where a timing problem did not
show up in the wire-wrapped prototype but caused a 40
percent failure rate {n the first production run of the
instrument.

As we said before, a simulator program uses models
of the devices in the circuit to determine the effect that
specified input signals will have on the outputs of the
circuit. Most models are just software descriptions of
the characteristics of the devices. These descriptions
are usually written in a high-level programming lan-
guage such as Pascal or C. As a simple example, part of

+ the model for a basfc, 3-input AND gate might look

something like the following.

[EEEERLE] T3k EER] 13181 et
A AN
144 3%
2
L4

s LETERT I

taazagaaneli]

B

daagaies § 63

<= al
BeEeEsNa 8z

[EREEERERERERER]

2,
LR

]
4 R
T

[T G
r

[T DI

§
l'l!l!n!!!iil

sslidiis

s 1

8 B0

DEEEGEE

RO R
'l;i 3

i} e: L3
ita beidven 170ds

T d CA

TS

EECEESER PAREAREN

,§ FEEECTH

sl
H TITITIRD i]

» e

FIGURE 11-25 Schematic for simple 8086 microcomputer drawn with Mentor

Graphic's Neted schematic capture program.

381

PROCEDURE ANDGATE ;

CONST TPLH = 15;
TPHL = 10;
VAR IN1, IN2, IN3 INTEGER :
DELAY, OUT INTEGER .
BEGIN
IF (IN1 = 1) AND (IN2 = 1) AND (IN3 = 1}
THEN BEGIN
DELAY : =" TPLH
ouTt = 1;
END
ELSE BEGIN
DELAY : = TPHL
ouT = 0
END
END:

This model is very primitive, but it shouid give vou
the Idea. The constants represent the character i]
th= specific device being simulated (TPLH and T!
The variables represent the Input logic evels (IN1 10
the output jogie level (OUT), and the time belween =
change on the input and the corresponding change o«
the output (DELAY). Some stmulators refer (o {hesr

characteristics as properties. The schematic symbol iy
really part of the modei for a device, so when you draw
a schematic with a schematic capture program, you e

actually cresting a design fiie which contains ihe Io
and tming characteristics of each device as well
schemaiic symbols and connections

When you set up the stmulator to de 3 simulation run,
you specify the signals you want appited 1o the tuputs

to the inputs of a physical circuit. The simulator vises
the model o determine the- effects that the specified
laput signals will have on the output and schedules the
ouiput to chiange appropriately after the delay time for
that device. As you can sec, the model for the 3-input
ANIY gate device tells the simulator program that {f the
Input signals hecome all 1's, the outpui siiculd h
scheduled fo change to a 1 after 15 ns. if the inputs
change to a vase where they are not all 1's, the output
should be scheduled to change to a O after 10 ns
The smallest increment of time used by a simuiator is
called its time step. You can think of the time siep as
the time resolution of the simulator. For simulating 77
and CMOS circults, simulators usually use a iine step
of 1 ns or 0.1 ns because the delay times for these
devices are a few ns. An tmportant point here is tia
the O.1-ns tlme step Is simulator time, riot reai time
The simulater may take 20 mimites to determine (he
eticets that some input signal changes produce on ihe
ouiputs of a complex clrcuit. The physicai efreuit would
respond to the same input changes in a real time of jusi
a few nanoseconds. The simulator essentially exercises
the circuit “in slow motion™ and generates an output
whichrepresents, or“simulates,” the real-time operation
of the ¢ircuit.
Now that you have an overview of how a simulator
uses models, we need to talk briefly about some of the
-commonly used types of models. Three of these types
are:

382 CHAPTER ELFVEN

Gate-level models
veniavicral models

Hardware models

As you may remember from a basic logle course, any
“agital clreult can be implemented with just basic gates.
We didn’t bother to show you, but even a complex device
such as an 8086 or 80386 microprocessor can be
modeird at the baslc gate level for simulation. The
difficuity with using gate-level models for complex de-
vices s that simulation using these models requires a
very long time. The icason for this is that the simulator
must evaluate the effects of each signal change on all
the intermelate circuit points (nodes) in the device.

i the comiplex device is a standard part. we usually
sow that all the tnternal circuitry works correctly, so
we don't aeed to resimulate at the gate level of detall. To
speed up the shinulation of circuits containing complex
Jdovices, we often use behavioral models. Behavioral
miedels stmply describe the effects that input signals
wiil bave oa the utput signals and the signal delays
betvooen inputs and outputs. A behavioral riodel of a D
fp-diup, for example, will indicate that 20 ns after a
postive ciock edge. the logic level on the D input will be
transleived to the ovtput if neither the Preset nor the
Clear input 1s asseited. Behavioral models also contain
progerties such as setup times, hold times, and mini-
s pulse widths so the simulator can check for
viclatiuns of these times by the signals propagating
through the circuit. Sophisticated behavioral models
such 25 the "SmartModels™ from Logic Automation
inc. give detailed error messages to pinpoint a timing
provteny instesd of making you work your way through
A lopic-analyzer- type dispiay to find the problem.

for simudating microprocessors there are two types
of behavioral models available. One type is called a

verlfication model. This type model is essen-

o

& box™ which will, for example, produce the
rreetly timed sddress and control bus signals for a
memoiy-read cycie when given the proper processor
control language (PCL) file. Hardware verification
models are casy 1o use for checking system timing
becavse all they aee? is a simple PCL file as a stimulus.
However, hardware verification models do not allow
dmiation of actus! microprocessor instructions. If we
nead ihis sevel of simulation, we use full functional
" v which do allow the execution of instructions.
siages of full functional models are that
iz more slowly than hardware verification
sodely and you have to develop a file containing the
attund Gidect codes for the microprocessor Instructions
you want to execute,

in cases where a behavioral model of a device is not
fable and it i3 not practical to write a madel or In
ases where (he simuslation must interfere with external
circutiryat real tine speeds, we use hardware modeling.
in this approach the devices to be simulated are plugged
fnto an external wiit such as the Mentor Graphics
Hardware Modeling System (HML) shown in Figure
11-26. When using a unit such as this, the simulator
program sends stimulus sighals to the external devices,

FIGURE 1126 Mentor Graphics HML box

reads back the responses
fncludes these responses in the simulation.

To develop complex systems such as the engineering
workstation sho'vn in Figure 11-24 we use multilevel
simulators. An example of a multilevel simulator is
Mentor Graphics Quicksim, which ean simulate combi-
nations of gate, behavioral, and hardware models.
{ulcksim runs on engineering workstations such as the
one in Figure 11-24. Another useful but somewhat less
powerful, mulitlevel simulator s SUSIE from Aldec Corp.
SUSIE runs on PC-iype computers and is available to
scho erous discount. Multilevel simulators
such as this even allow the JEDEC flles for PALs to be

inchided in the sim

5 at a gen

lation.

¢ circuits, you can use an analog
circuit shinulator such as PSPICE from Microsim Corpo-
ration or Accusim from Mentor Graphlics. For circuits
uch as A/D converters, which have both analog and
diglial circuitry, you can use a mixed-mode simulator

such as SABER from Analogy, Inc. or LSIM from Mentor
Graphics.

P
T'o stmulate an

A ﬁuﬁuu(-z.lit:pu:-?r Simulation Example

We drew the schematic for the bastc 8086 based micro-
computer in Figure 1125 using Mentor Graphics Neted
and Logic Automution Smartmodels. As you can see in
the figure, the circuit uses SN74AS373s as address
latches and SN74AS245s as data bus buffers.
The ROM i this systems consists of two 127256
EPROMSs, one for the even bank and one for the odd
bank. A Lattice GAL16V8 EPLD is used as an address
decoder for the ROMs The RAM in this basic system
v of two MCME164 static RAM devices, one for
the even bank and one for the odd bank. A second
: is used as an address decoder
nnectors go to a second sheet
timers. etc. For)
he basic microprocessor and

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS

of the external devices, and

The Logic Automation Smartmodel for the 8086 pro-
cessor in Figure 11-25 is a hardware verification type.
As we said above, this type model allows us to verify that
the signa! connecttons, address decoding, and timing
of the system are correct. To refresh your memory as to
what s involved in the timing of a system such as this,
take another look at Figure 7-13.

As you can see in Figure 7-13a, the 8086 and memories
essentially form a loop. To read a word from memory the
8086 sends out an address and control signals, and
after some propagation delay the memory sends the data
word back to the 8086. In order for the data word to be
accepted by the 8086, it has to get back to the 8086
within a certain time period. In Figure 7-20 and the
accompanying discussion, for example, we showed you
hiow to determine ii the address access time of a 2716
EPROM was fast ¢riough for the device to work in a 4.9-
MHz 8086 system.

When you use Smartmodels to simulate a system such
as that in Figure 11-25, the simulator will automatically
perform all the memory timing computations and give
you an error message if it finds any timing violations.
You can then redesign the ctrcuit and resimulate until
you get no error messages.

To sjmulate the circuit you have to give the simulator
several types of information in addition to the basic
neilist produced from the schematic. These additional
parts are put in files which the simulator will read out
as it nceds them. The process is really quite simple.
Here is a list of the parts you need.

1. A fusemap or JEDEC file for each of the GAL16V8
EPLD address decoders. These can be produced with
a PAL programming tool such as ABEL from Data
V0. Figure 11-27a, p. 384, shows an ABEL source
file for the U1l ROM decoder.

2. A memory image file for each of the memory devices.
These are simple test files which essentially initialize
the memory devices with known contents so you will
know if data is read ‘back correctly. Figure 11-27b
shows a memory tmage file which will initialize the
first 100H locations of a memory device with 88H.

3. A processor control (PCL) file which tells the simula-
tor the bus operations you want the processor to
perform. For Logic Automation Smartmodels this
file is written in C. Figure 11-27c shows an example
of a PCL file for our 8086 system. The instructions
in the first block write bytes to a sequence of RAM
locations starting at address OCOOOH. After it is
written, each byte is read back. After the simulation
is run the results from this part help us determine
if the address decoding, contrel signals, and timing
are correct for the RAM part of the circuit. The next
block in Figure 11-27c¢ reads data words from a
series of ROM locations to verify the address decod-
ing, control signals, and timing of the ROM section of
the circuit. If we were also simulating programmable
peripheral devices, we would include a scction in
the PCL file to Initialize the devices and exercise
their functions.

4. Astimulus file which tells the simulator what signals

383

module rompal

title '8086 SYSTEM ROM DECODER - DOUG HALL 1988
un DEVICE 'P16V8S';
AO,BHE ,M10 PIN 2,3,4;

A16,A17,A18,A19 PIN 6,7,8,9;
ROMF_EVEN, ROMF_0DD PIN 19,18;
ROME_EVEN, ROME_ODD PIN 17,16;

EQUATIONS
TROMF_EVEN = A19 & A18 & A17 & A16 & 1AD & MIO;
IROMF_00D = A19 & A18 & A17 & A16 & IBHE & MIO;
IROME_EVEN = A19 & A18 & A17 & IA16 & 1A0 & MIO;
IROME_ODD = A19 & A18 & A17 & !A16 & IBHE & MIO;

END rompal -

(a)

0:100/88;

(b)

#include <iB08&min.cmd>
int i,addr;

main()

(
trace_on();
set_trace_level(1);’
addr = 0x0000;

for (i=0; i<=16; i++)

< :

write(1,addr,i);

read(1,addr);

idle(5); ;

addr++;

) !

addr = 0xf0000;
i=0;

for (i=0; i<=16; i++)

{ .

read(2,addr);

addr++;

addr++;

)

(c)
CLOCK PERIOD 125

FORCE CLOCK 0 0 -R

FORCE CLOCK 1 62.5 -R

FORCE RESET 0 0
FORCE RESET 1 1000

(d)

FIGURE 1127 Files required for simulating
microcomputer circuit in Figure 11-25. (a) ABEL source
file for PAL address decoder. (b) Memory image file.
(c) Processor control file. (d) Simulator stimulus file.

to apply to the signal Inputs of the system so that it
runs through the operations in the PCL file. Figure
11:27d shows an example. The first three statements
generate an 8-MHz clock for the external clock input

384 CHAPTER ELEVEN

of the 8284 clock generator. The next two statements
generate a RESET signal. Note that the numbers
such as 125, 62.5, and 1000 In these statements
represent times in nanoseconds.

Once you have generated the necessary files, all you
have to do is run the simulation. Figure 11-28 shows
the screen messages produced as Quicksim {s invoked
and run on our microcomputer system design. As you
can see, Quicksim first loads the required files In mem-
ory. When the Quicksim prompt appears, we execute
the stimulus file in Figure 11-27d with DO MICRO.DO
command. Then we run the simulator for 100,000 time
units of 1 ns with the RUN 100000 command.

When the simulator started running, 1t immediately
gave an error message indicating that we did not hold
the RESET input of the 8086 low for the four clock
periods required by the manufacturer's specifications.
The problem here is that in our force file shown in Figure
11-27d, we generated an 8-MHz clock on the external
clock input of the 8284 clock generator and held RESET
low for 1000 ns, or eight of these clock cycles. The 8284,
however, divides the external clock signal by 3 tc produce
the clock signal actually applied to the processor. This
means that in actuality our reset stimulus was holding
the RESET input low for only a little more than two
cycles of the clock applied to the 80886, rather than the
required four. This is a good example of the Intelligence
bullt into the models.

When we discovered this error, we stopped the simula-
tion, corrected the stimulus file, and ran the simulation
again. The second time we ran the simulation it did not
show the RESET error. As directed by the trace settings

~ we put in the PCL file, the simulator produced a trace

of each state as the 8086 wrote to and read from memory.
The bottom few lines of Figure 11-28 show some exam-
ples of the type of information the trace gives you. Note
that the first operations the simulator carries out are to
write to and read back from RAM locations as specified
in the PCL file. A careful study of the trace showed that
values were written to- memory and read back correctly.
This indicates that the address decoders are working
correctly and that the circuit connections are correct.
After we fixed the RESET problem described before, we
ran the simulator again and got no significant timing
warnings, so we felt reasonably sure the system would
work correctly when we designed and bullt a PC board
for it.

A very important point here is that it took only about
10 to 12 hours to design the system in Figure 11-25,
draw the schematic for the system. and completely
simulate it. Perhaps you can see that when designing a
more complex system such as the microcomputer system
in Figure 11-15a, simulation is the only practical way
to determine if all the timing requirements are met in
the design.

Design for Test

Once a system has passed simulation, the next step 1s
to design in some circuitry which allows the system to
be easily tested when it goes to production. Many

Executing object named: -'/idea/sys/lib/lsim_server.mod*
LOGIC SIMULATION SERVER V6.1_1.10 Monday, April 18, 1988 6:01:59 pm (POT)
LAI Version: MG_A3_610_970_200 May 17, 1988
SmartModels: All pictorial, graphic, and audiovisual works, collective works
representations, compilations, and arrangements therof,
Copyright 1984-1988 Logic Automation Incorporated.

Note: Loading the PCL program from file “/user/doug/micro2/MICRO_0BJ".
Instance [$4(U2:18086-2), sheetl of micro2 at time 0.0

Warning: Input pin MNMX is not allowed to change (will continue in MIN mode)
' Instance 1$4(U2:18086-2), sheet 1 of micro2 at time 0.0

: Note: Loading the JEDEC file “/user/doug/micro2/ull.JED"
Instance [$62(U11:GAL16vV8-15), sheetl of micro2 at time 0.0
==+ 173 fuses have been blown.

Instance [$11(UB:GAL16V8-15), sheetl of micro2 at time 0.0
--- 169 fuses have been blown.

Note: Loading the memory image file "/user/doug/micro2/RAMOEVEN"
Instance [861(U10:MCM6164P70), sheet! of micro2 at time 0.0
--- 257 values have been initialized.

Note: Loading the memory image file "/user/doug/micro2/RAMOODD"
Instance 1341(U9:MCM6164P70), sheetl of micro2 at time 0.0
=== 257 values have been initialized.

Note: Loading the memory image file "/user/doug/micro2/RAMFEVEN" .
Instance 1$63(U13:127256-25), sheet! of micro2 at time 0.0
=== 257 values have been initial;zed.

Note: Loading the memory image file “/user/doug/micro2/RAMFODD"
[nstance [815(U12:127296-25), sheetl of micro2 at time 0.0
: --- 257 values have been_initialized.
VIEw Sheet ’
QuickSim>
DO MICRO.DO
RUN 100000

#
#
#
#
1
#
#
#
#
#*
#
#
#
#
"
]
#
Note: Loading the JEDEC file "/user/doug/micro2/u8.JED"
#
#
#
#
#
#
#
#
#
#
#
#
]
#
#
#»
#
#

! Warning: RESET did not last 4 Clock Cycles. ..
! Instance I$4(U2:I8086-2), sheetl of micro2 at time 1562.5

Trace: Trace is turned on
Instance I$4(U2:18086-2), sheetl of micro2 at time 4812.5

Trace: Trace level is now set to 1 (internal timing states shown)
Instance 1$4(U2:18086-2), sheetl of micro2 at time 4812.5

Trace: CPU state T1
Instance I$4(U2:18086-2), sheetl of micro2 at time 4937.5

Trace: Write Memory (l-byte) location 00000 with 0000
Instance I$4(U2:18086-2), sheetl of micro2 at time 4937.5

Trace: CPU state T2
. Instance I1$4(U2:18086-2), sheetl of micro2 at time 5312.5

Trace: CPU state T3
Instance I$4(U2:1I8086-2), sheetl of micro2 at time 5687.5 : ”

Trace: CPU state T4
Instance I$4(U2:18086-2), sheetl of micro2 at time 6062.5

Trace: CPU state T1
Instance I$4(U2:18086-2), sheetl of micro2 at time 6437.5

Trace: Read Memory (l-byte) location 00000
Instance I$4(U2:18086-2), sheetl of micro2 at time 6437.5

O AR WR W W WE W W W W S W W W W W N e T M W WET NGE W W MR W Nk 3% 3%

FIGURE 11-28 Screen messages during simulator invocation and run.

DMA, DRAMS, CACHE MEMORIES, COPROCFSSORS, AND EDA TOOLS 385

microcomputers now contaln bullt in sell-test (BIST)
circuitry so that the unit does a complete Internai test
each time the power is turned on. If the unit fails any
test, it sends a message to the CRT.

After the test circuitry is added, the circuit is simulated
again to make sure the added test circuitry has not
adversely alfected tt= operation of the circuit.

Printed-Circuit-Board Design

In the old says we used a light table and large plastic
sheets to develop the layout for a PC board. To produce
“pads” for IC pins, transistor leads, resistor leads. etc.,
we stuck opaque "donuts” on the sheets. To produce
traces between pads we used opaque tape. The plastic
sheets were photographed and the resulting films were
used to produce the desired patterns of traces on copper
plated circuit boards.

Now we use automatic place-and-route programs such
as Board Statlon from Mentor Graphics, Allegro from
Valid Logic Systems, or Tango PCB from ACCEL Technol-
ogies, Inc., to lay out PC boards. These programs work
with the netlist file and determine the best placement
of components and the most efficient route for traces
between components. The programs allow user interac-
tion so that specific paths can be optimized If needed.
For example, in designing a PC board for a very high
speed system, you might determine the actual signal
delays from an initial layout attempt and then resimulate
the system with these delays. If the resimulation shows
a problem, you can manually alter the layout to solve
the problem before going on.)

The file produced by the PC board layout program is
sent to a laser printer to directly produce film negatives
for each layer of the board. The negative Is used o
photographically produce the desired pattern on a cop-
per-plated PC board. A chemical solution then etches
copper from all the areas of the board except those where
component pads, traces, ground planes, and power
planes are desired. For a multilayer board, several indi-
vidual boards are produced and then epoxled together
under pressure to form a single board.

The board is then drilled under computer conirol.
Finally, the plated-through holes and other vias which
connect trates on different layers are electrochemically
added to the board.

After manufacture, the “bare” PC boards are tested
with a computer-based tester to check for shorts and
opens. On a prototype PC board, minor problems can
often be solved by, for example. drilling out a plated-
through hole which accidentally got shorted to a power
plane. A jumper wire can be added to make a missed
connection.

Case Design i

Once the PC board, power supply. and display have been
designed for an instrument. the mechanical engineer
can design the case for the system. A program such as
the Mentor Graphics Package Station can be used to do
much of this design. This program allows the designer

386 CHAPTER ELEVEN

i case and the

. The Package

to draw a three-dimensional view
placement of the components in the ¢

Station program also a'lows a designer to delermine the
temperature that will be present at cavii location in the
prototype case for a specified amblenl temperature and

airflow. This feature allows the designer to determine if
the airtlow Is great enough, the placenient of the PC
board(s) in the case Is reasonable, and perhaps f devices
which produce a large amount of heat are placed too
close together on 2 PC board. Here Is another exampie
of “software breadboarding,” which saves much worls
and materials because, tf a problem is found, you can
simply go back to the computer <creen and ity a new
design instead of producing a new physical box and
trying it

Developing the System Software

In addition to designing the hardware of a microcomni-
puter, you also have to develop the BIOS software which
allows programs to interact with the hardware. As we
said earlier, the logic automation hardware verification
model for a processor such as the 8086 allows you
to include statements in a PCL file to initlalize the
programmable peripheral device medels, write data to
them, and read data froin them. This is a way to verify
the address, operation, and timing of these devices. If a
fully functtonal model {s available for the microprocessor.,
you can write sections of actual vode for the microproces-
sor and run the code as part of the stimulation.

When a prototype PC board for the system hecomes
available, an emulator such as we described in Chapier
3 can be used to develop the more complex sotiware
procedures of the BIOS.

Production and Test

Once the prototype ot 2 svs em is debugged 2nd any
necessary changes are made, the design is finalized and
released to production. Many parts of the production,
testing, and troubleshooting of the instrument are done
with the aid of computer programs

Programs are available to generate a parts list from
the netlist for a design. Other available programs direct
a robot to collect the needed parts from the warehouse
for the production run. A computer program running
on an automatic tester tests the bare PC boards for
shorts and opens before parts are inserted. Another
program controls the machine that automatically places
the components on the printed circuit board. The ma-
chine which solders all the components on the board is
most likely controlled by a microcomputer program. Still
another computer program controls the machine which
automatically tests the finished PC boards. The program
for this automatic test system uses test vectors which
were developed as part of the design process. [T the
product does not have a complcte built-in self-test, the
finished product is also tested with an automatic test
system. The linking together of al! the computer-based
tools used in the production of a product is called
computer integrated manufacturing. or CIM,

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms in the following
list, use the index to help you find them in the chapter
for review. -

Motherboard and system expansion slots

8086 minimum mode and maximum mode
" DMA operation

DMA channel

DRAM
RAS and CAS strobes
Refresh: burst and distributed modes
82C08 DRAM controller IC
Error detecting and correcting
Hard and soft errors
Parity check
Hamming codes and syndrome word
Page mode read/write access
Static column read/write access
Cache memory system
Direct-mapped cache

Two-way set associative cache
Fully associative cach7

8087 math coprocessor
.Data types and terms

Word, short, and long integers

Packed decimals

Short-, long-, and temporary-reals

Fixed-point numbers

Floating-point numbers

Normalizing

Significand, mantissa, exponent, biased exponent
Single- and double-precision representation

Electronic Design Automation

Schematic capture

Simulation
Gate-level model
Behavioral model
Hardware model
Time step
Stimulus file

Design for test

PC board layout

Case design)

Computer integrated manufacturing

REVIEW QUESTIONS AND PROBLEMS

1. Why are microcomputers such as the IBM PC
designed with peripheral expansion slots instead of
having functions such as a CRT controller designed
into the motherboard?

2. Describe how the control bus signals are produced
for an 8086 system operating in maximum mode.

3. Why is DMA data transfer faster than doing the
same data transfer with program instructions?

4. Describe the series of actions that a DMA controller
will perform after it receives a request from a
peripheral device to transfer data from the periph-
eral device to memory.

5. Describe how the 20-bit memory address for a DMA
transfer is produced by the circuit in Figure 11-5.

6. Describe the function and operation of devices US
and U6 in Figure 11-5.

7. Sketch the sequence of signals that must occur to
read a data word from a dynamic RAM such as the
TMS44C256.

8. List the major tasks that must be done to support
dynamic RAM in a microcomputer system.

9. How does a dynamic controller in a system
such as that in Figure i11-9 arbitrate the dispute
that occurs when the CPU attempts to read from
or write to a bank of dynamic RAMs while the
controller is doing a refresh cycle?

- 51

10

11.

12

13.

DMA, DRAMS, CACHE MEMORIES, COPROCESSORS, AND EDA TOOLS

. a. What timing parameter limits the rate at which
data words can be read from random rows
(pages) in a DRAM? '

b. Explain how page mode operation of a bank of
DRAMs makes it passible for a microprocessor
to read data words without wait states.

c. What is the main difference between page mode
operation and static column mode operation of
a bank of DRAMs?

a. Describe how an SRAM cache reduces the
average number of wait states required by a
microprocessor which uses DRAM for its main
memory.

b. How does a cache controller keep track of which
blocks from the main memory are present in
the cache? :

c. With a direct-mapped cache system, what does
each entry in the cache tag RAM represent?

d. Inadirect-mapped cache system, only one block
with a particular number can be present in
the cache at a time. How does a two-way set
assoclative cache overcome this problem?

Describe how parity is used to check for RAM data
errors In microcomputers such as the IBM PC.
What {s a major shortcoming of the parity method
of error detection? N

When using a Hamming code error detection/correc-
tion scheme for DRAMs, how many encoding bits
must be added to detect and correct a single-bit
error in a 64-bit data word?

387

14.

18.

16.

17. .

18.

19.

%,
2%

2.

' 388

How can you tell from the schematic that the 8088
i Figure 11-23 is configured in maximum mode?

Device U7 in Figure 11-23 has a signal named AEN
connected to its OE input. If. in troubleshooting
this system, you find that this signal Is not getting
asserted, on which schematic sheet would you first
look to see how this signal is produced?

In what ways are a standard microprocessor and a
coprocessor different from each other?

a. Convert the decimal number 2435.5625 to
binary, normalized binary, long-real, and tem-
porary-real format.

b. Why are most floating-point numbers actually
approximations?

Which 8087 stack register is ST after a reset?
Which 8087 stack register will be ST after one
data item 1s read into the 80877

¢. Describe the operation that will be done by the

8087 FADD ST(2),ST(3) instruction.

d. How does the operation of the instruction
FADDP ST(2).ST(3) differ from the operatlon of
the instruction in 18¢?

Describe the operation performed by each of the
followlng 8087 instructions.
FLD TAX_RATE

oo

; b. FMUL INFLATION_FACTOR

c. FSQRT

d. FLDPI

€. FSTSW CHECK_ANSWER
J. FPTAN

Why does the assemhi= ir.ert 9BH, the coddz fra
the 8086 WAIT Instruci o, <ivre the code for maost
of the 8087 instructinns”

Using the example program in Figure 11-24 as a
guide, write.an 8087 program whici. computes the
volume of a sphere. The formula is V = 4/3%R3.

a. When a coprocessor and a standard processor
are connected together in a systei such as

CHAPTER ELEVEN

that in Figure 11-23, why are the S2—-S0 status
lines, the QS1-QS0 lines, the address, and the
data lines of the two devices connected directly
together?

b. Where does the 8087 coprocessor in Figure
11-23 get its Instructions from?

¢. How does the main processor distinguish its

Instructions from those for the 8087 as it
fetches fnstructions from memory?

d. Describe how the 8087 and 8088 work together

to load a long-real data item from memory to
the 8087 ST.

e. How does the 8087 in Figure 11-23 signal the

8088 that It needs to use the buses?

J. How can you prevent the 8088 in Figure 11-23

from going on with its next instruction before
the 8087 has completed an instruction? What
hardware connection in Figure 11-23 is part of
this mechanism?

a. Describe how a schematic is drawn using a
schematic capture program.

b. Whatare the major advantages of the schematic
capture approach over the traditional drafting
approach?

a. What is meant by the term software bread-
board?

b. Describe the major advantages of simulation
aver hardware prototyping.

c. What information does the simulation model
for a device contain?

d. Briefly describe the steps involved in simulating
a microcomputer such as the one in Figure
11-25.

e. What information does simulation give you
about a circuit such as the one in Figure
11-25?

Briefly describe the sequence of steps in the elec-
tronic design automation m:thod of designing,
debugging, and producing an electronic product
such as a microcomputer.

'C, a High-level Langu

age

for System Programming

In the last chapter we {ntroduced you to the operation
of the motherboard hardware of a typical microcomputer
system. Before we discuss the operation of system
peripherals such as CRTs, hard disks, and telecommuni-
cations links, we need to introduce you to the languages
and tools which are now commonly used to write applica-
tion and system-level programs.

Up to this point in the book we have used assembly .

language for all the programming examples because we
were working very close to the hardware. As we said
earlier in the book, assembly language is appropriate
for initializing peripheral devices, writing programs
which manipulate a lot of hardware, or writing programs
which have to execute very fast. Writing large system-
level programs in assembly language is slow and tedious,
so we usually write major parts of these programs in a
high-level languvage such as Pascal or C.

As you are probably aware, there are many differen(
high-level languages. For the high-level language pro-
gramming examples throughout the rest of this book,
we use the C language. We chose C bécause it is very
widely used in industry, it is a good stepping-stone to a
modern programming language called C+ +, and it is
very easy to learn if you are already familiar with 8086-
type assembly language programming.

To develop a system-level program, the overall design
is broken down into a group of modules. A decision is
then made whether each module can be written in a
high-level language or must be written in assembly
language. The high-level modules are written, debugged,
and complled to produce .OBJ files. Likewise, the assem-
bly language modules are written, debugged, and assem-
bled to .OBJ files. All the .OBJ files are then linked
together to produce a .EXE file which can be run. This
is basically the same process we described in Chapter 5
for writing multimodule assembly language programs.
In this chapter we will first show you how to write some
simple programs in C, and then we will show you
how to write programs which contain both high-level
language modules and assembly language modules.

OBJECTIVES
At the conclusion of this chapter, you should be able to:

~ 1. Describe how the tools in an integrated program-
ming environment such as Borland's Turbo C+ +

IDE are used to edit, compile, link, run, and debug
C programs.

2. Describe the data types that are available in C.

3. Declare and initialize simple variables, arrays, and .
structures in C.

4. Implement standard programming structures such
as IF-THEN-ELSE, SWITCH (CASE), WHILE-DO, DO-
WHILE, and FOR-DO in C.

5. Declare, define, and call functions lproccdum)'ln C
programs.

6. Write C programs which implement simple algo-
rithms.

7. Write simple programs which consist of C modules
and assembly language modules.

INTRODUCTION—A SIMPLE
C PROGRAM EXAMPLE

As we salid before, it is very easy to learn the C program-
ming language if you are already familtar with 8086 .
assembly language programming. To give you some
feeling for how easy It is to make- this transition and to
give you an Introduction to the general structure of a C -
program, we will first show how the cost-price array
example program in Figure 4-23 can be written in C.

If you look back at the program in Figure 4-23, you
will see that this program adds a profit of 15 to each of
eight costs. More specifically, the program reads ina
value from an array called COST, adds a profit of 15 to
the value read in, and puts the computed price in the
corresponding element of an array called PRICES.

Figure 12-1a on page 390 shows a simple C program
which will perform basically the same operations and
also write the results out on your computer screen. The
first point to observe in this program is that any text
enclosed between /* and */ is a comment, not part of the
actual program. The next parts to look at in this program
are the statements which define the data the program
is going to work with. The statement int cost{]=
{20.28,15,26.19.27.16.29,39,42}; declares an array of
10 integers called cost and initializes the 10 elements

. of the array with the specified values. This corresponds

389

/* C PROGRAM F12-01A.C */

/* COMPUTE THE SELLING PRICE OF 10 ITEMS */

#include <stdio.h>
#define PROFIT 15
#define MAX_PRICES 10

int cost(] = (20,28,15,26,19,27,16,29,39,42); /* array of 10 costs */

. fint prices(10);
int index;

main()
4

for (index=0; index <MAX_PRICES; index++)

prices(index]) = cost[index] + PROFIT;

for (index=0; index <10; index++)

/* array to hold 10 prices */
/* varisble to use as index */

/* for loop to compute */
/* 10 prices */

/* for loop to display results */

pristf(“cost = Xd, price = Xd, \n", cost[index], prices(index]);

)
(a)
cost = 20,
cost = 28,
cost = 15,
cost 26,
cost = 19,
cost = 27,
cost = 16,
cost = 29,
cost = 39,
cost = 42,

price = 35,
price = 43,
price = 30,
price = 41,
price 34,
price = 42,
price = 31,
price = 44,
price = 54,
price = 57,

(b)

FIGURE 12-1
(b) Printout of program results.

to the COST DB 20, . . . statement in the program of
Figure 4-23. The statement int prices|10]; declares an
array of 10 integers called prices. Since no values are
given, the elements of this array are not initialized. Note
that the C program statements are terminated with
semicolons.
Program lines which begin with a # are preprocessor
- directives. These lines do not generate any code: they
give instructions to the compiler. The #define PROFIT
15 line in Figure 12-1a, for example, tells the compiler
to replace the name PROFIT with the constant 15 each
time it finds PROFIT in the program. This is equivalent
to the PROFIT EQU 15 line in the assembly language
version in Figure 4-23. The #define MAX_PRICES 10
line in Figure 12-1a is another example. As we pointed
out in our earlier discussions of assembly language
programming techniques, it is very important to define
constants at the start of a program in this way. rather
than using “hard” numbers directly in the program. The
reason is that if you have to change the number, you
only have to change the value in the equ or the #define,
instead of finding and changing the value each place it
occurs in the program. Note that we always use upper-
case letters for constants such as PROFIT, so that we

390 CHAPTER TWELVE

(a) Simple C program to add profit of 15 to each of 10 items.

can tell them from variables, which we put in lowercase
letters.

. The int index; statement in Figure 12-1a declares a
variable called index. The int at the start of the statement
indicates that the variable can have only integer values.
This index will be used to point to the array element
being processed at a particular time and to keep track
of how many elements have been processed. Now that
you have an overview of the data, let's take a look at the
action part of the program.

All the action statements in C programs, even those
in the mainline part of a program, are written in
functions. In Pascal and some other languages, a func-
tion is the name given to a procedure which returns
some value(s) to the calling program. In C all procedures
are referred to as functions whether they return a value
or not.

Every C program must have a function, usually called
main, which gets called when your program starts
executing. Other functions are called from main as
needed. As you can see, the main() function in Figure
12-1a contains a for structure and two statements. You
use the “curly braces” { and } to enclose the parts of a
function. The parentheses () after the name of the

function are used to contain mecters and the names
of variables that you want passed | ‘ﬁ the function. Later
we will show you examples of how to do this. Empty
parentheses after a function name mean that no parame-
ters are being passed to the function.

The statement for (index=0; index <MAX_PRICES;
index + +) implements a FOR-DO loop which executes
the statements contained in the second set of curly
braces 10 times (index values of O through 9). The
index+ + term in the parentheses means that the value

of index will be incremented each time through the loop.

The prices{index] = cost{index] + PROFIT statement and
the printf statement will also be implemented each time
through the loop.

As perhaps you can figure out, the prices{index]=cost
[index]+ PROFIT; statement reads an indexed location
in the cost array, adds a PROFIT of 15 to the value read,
and writes the result to the same indexed location in
the prices array. Note how the variable index is used
here to access the elements in each array and also to
determine how many times the loop executes.

Each time through the loop the printf statement
calls the predefined printf({) function which sends the
specified text and values to the screen. The parentheses
after printf contain the parameters we are passing to
the function. Characters enclosed in “ ” inside the
parentheses are printed out as written until a % is
encountered. A % indicates that the value of a variable
is to be inserted at that point. The name of that variable
is included in a list of variables after the second " in
the print statement. In this example the first variable
encountered after the second " is cost[index], so the

value of this variable will be printed out after cost= is:

printed out. The d after the % tells the function to print
the decimal value of costlindex]. When the function
encounters the second %d in the parentheses, it will
print the decimal value of prices|index], the next variable
after cost{index| in the variables list. The \n in the
statement stands for “newline” and tells the printf
function to send a carriage-return character and a
linefeed character. This will move the cursor to the start
of the next line down on the screen. Figure 12-1b shows
the printout produced by the printf function when this
program was run.

As you can see in Figure 12-1a, the printf function is
not present in our program. The printf function is found
in a library of input/output functions that comes with
the program development software. The #include
<stdio.h> at the start of the program tells the preproces-
sor part of the compiler that the prototype for the printf
function is in a file called stdio.h. The linker will use
this prototype to get the object code for the printf
function from a library file and link it with the object
code for our price.c program so that it will be part of the
final executable file. In a later section we will tell you
more about predefined functions.

If you compare the number of statements in our C
program with the number of statements needed to do
the job in the assembly language version in Figure 4-23,
you should immediately sce one of the advantages of
writing as many programs as possible in a high-level
language. In the next section we discuss some software

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

tools you can use to develop your own C programs. Then
in the following sections we show you much more of the
structure and syntax of the C language.

PROGRAM DEVELOPMENT TOOLS FOR C

To develop a C program you need an editor to create a
source program such as the one in Figure 12-l1a. a
compiler to convert the source program to an object code
file, a linker to link the various object code modules of
your program into an executable (.exe) file, and a power-
ful debugger to help you get the program working
correctly. For the examples in this section we chose the
Borland Turbo C+ + Integrated Development Environ-
ment which has ali these features and many more. As
the name implies, the Turbo C+ + tools also fully
support AT&T C + + version 2.0 as well as ANSi1 standard
C. We don't have the space or the need in this book to
teach C+ +, but the Borland documentation contains
a tutorial and many examples which will help you learn
it if you want to later.

The term Integrated Development Environment means
that you can access all the programming tools from one
on-screen menu. We chose the Borland IDE system
because it is very powerful but easy to use, the company
has a generous educational pricing policy, and the
company gives very good support if you encounter
problems. Other available tool sets such as Programmer’s
Workbench from Microsoft are very similar, so you
should have little trouble adapting the following discus-
sion if you have some other set of programming tools.

The purpose of this section is not to make you an
expert with the Borland tools but to show you enough
about using tools such as these that you can enter, run,
and experiment with the simple program examples in
the later sections of the chapter. Even if you don't have
tools such as these available, this section should show
you how programs are developed in a modern program-
ming environment and some of the features you should
look for when you buy a toclset.

For the following discussions we assume your Borland
Turbo C + + Integrated Environment tools and libraries
are all installed in a hard-disk directory named C:\c, as
described in the Borland manual, and the path com-
mand In your autoexec.bat file contains C:itc and
ciAtc\bin. We further assume that your work disk is a
floppy in the A drive. Here's how you use these tools to
develop a program such as the SELL.C program in
Figure 12-1a.

To bring up the turbo C environment you simply type
tc and press the Enter key. After a short pause the main
menu screen shown in Figure 12-2a. page 392, will
appear. Each of the entries in the banner at the top of
the display represents a pull-down menu of commands.
To get to one of these menus you hold down the Alt key
and press the letter key which corresponds to the first
letter of the desired menu’s name. If you have a mouse
on your system, you can use the mouse to move the
cursor to the desired menu box and click the left mouse
key. Incidentally, almost all commands in the Turbo C
environment can be executed by pressing 1 “hot key”

391

= File Edit Search Run Compile Debug Project Options

NONAMEO0O.C

Window Help
1

=—=q

Fil ﬁe P Space View source <« Edit source F1l0 Menu

Message

(a)

Options Window Help
Full menus Ooff
Compiler >
Make...

Directories...
Environment >
Save

()
=[-] Directories

Include Directories»
C:\TC\INCLUDE

Library Directories
C:\TC\LIB

Output Directory

OK I Cancel l

Helﬁ .

(c)

FIGURE 12-2 Borland Turbo C+ + Integrated Development Environment
screen displays. (a) Main menu and edit window 2. (b) Options submenu.
(c) Directories submenu of Options submenu.

392

CHAPTER TWELVE

combination such as Alt-F1, which executes the com-
mand directly, or by working your way through a se-
quence of menus with a mouse or the arrow keys. When
you are first learning a new system, the menu method
helps you better learn the available features, so we will
emphasize that approach. Here's an example of how you
work your way through one of these menus.

One thing you have to do when you create a program
Is to tell the comptler, linker, etc., where to put the .obj
and .exe files they create. You use a command in the
Options menu to do this. To get to the Options menu
you hold down the Alt key and press the O key. Figure 12-
2b shows the Options menu that appears. The command
you want in the Options menu is the Directories com-
mand. To get to the submenu for this command, you
simply press the D key. and the wirdow display shown
in Figure 12-2¢ wlll appear. You want, to assign an
Output directory, so you hold the Alt key down and press
the O key to get to that line.

Now, suppose that you don't understand just exactly
what you are supposed to put in this line. If you hit the
F1 key, the system will display an explanation of the -
command requirements and, in some cases, examples.
In this case the help window tells you that the .obj, .exe,
and .map files will be stored in the location you enter as
the output directory. After you have read the help
window, you press the Esc key to close it.

Since you want your output files to go to your work
disk in the A drive, you just type A: and press the Enter
key. We don’t expect you to remember all this; we just
used it as an example of how you work your way down
through a sequence of menus to perform a desired

= File Edit Search Run Compile

include <stdio.h>
int prices[lO],
int index;

void main ()

for (index=0; index <10; index++)
prices ([index) = cost[index] + 15;

Debug Project Options
SELL.C 1
/* COMPUTE THE SELLING PRICE OF 10 ITEMS #*/

int cost[]=(20,28,15,26,19,27,16,29,39,42};/* array of 10 costs %/

operation and how to get help with a command if you
need it.

The next step in developing a program is to use the
editor to enter the source text for the program. For a
new program you go to the File menu and press the N
key. A blinking cursor will appear in the large window
on the screen and you can type in the text of your source
program. To work on an old file you go to the File menu
and press the O key. When a list of files appears, you
select the desired file from the list and the file will be
loaded into the editor window. In either case you edit
the program just as you would with any text editor. You
may find 1t helpful to use spaces instead of tabs to format
your programs, because the default tab setting of most
printers is 8, and with this setting C programs do not
usually fit easily on 8.5-in.-wide paper. Incidentally, the
IDE editor accepts Wordstar commands such as Ctrl g
to delete a character, Ctrl t to delete a word, and Ctrl y
to delete a line, so if you are familiar with Wordstar you
should find the editor very easy.

After you type in the source file you need to save it on
your work disk. To do this go to the File menu, select
the Save As line and press the Enter key. When a small
window appears, you can type in a file name such as
a:SELL.C and press the Enter key.

The next step is to compile the program to genefate

- the .obj file. To do this go to the Compile menu and

press the C key. If the compiler finds any errors, 1t will

display a window with a flashing error message. When

you press a key, the error message(s) will be displayed
in the message window at the bottom of the screen.
Figure 12-3 shows the error messages we produced

Window Help

/* array to hold 10 prices %/
/* variable to use as index */

’

/* for loop to compute #/
/* for 10 prices #/

Error D:\TEMP\CH12\SELL.C 15:

— ."'_,:

F1 flelp Space View source <«

Edit source

for (index=0; index <10; index++) /* for loop to display results #*/
3:9
=[] Message 2=[t]=
Compiling D:\TEMP\CH12\SELL.C: A
Error D:\TEMP\CH12\SELL.C 3: Declaration syntax error #
Error D:\TEMP\CH12\SELL.C 12: Undefined symbol 'cost' in function main

Invalid indirection in furction main

' F‘J:O Menu

FIGURE 12-3 Compiler error messages generated by omitting # in

#include<stdio.h> directive.

C. A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

393

when we intentionally left out the # sign in front of the
include directive in SELL.C. A highlighted line in the
source program indicates the statement which caused
the error highlighted in the message window. You can
press the Enter key to switch from the message window
to the edit window and correct the error. For this error
all we had to do was insert the missing # before the
include directive. A major error such as this will cause
many errors throughout the program, so when you find
one of these it is a good idea to compile the program
again before you start chasing down the other indicated
€rrors. .

To recompile the program all you have to do is go to
the Compile menu and press the C key. Once the compile
is successful, you should always save your source file
before continuing. To do this just go to the File menu
and press the S key. This is important, because if your

program locks up the machine when you run it, your

program will be lost.

The next step in developing a program is to generate
an executable file which you can run. For this example
the file will be given the name sell.exe by the linker
which generates it. There are two ways to generate the
.exe file. One way is to go to the Compile menu and press
the M key to make a .EXE file. The second way to
generate the .exe file is to go to the Run menu and
press the R key to run the program. This sequence of
commands generates the .exe file and also runs it.
For a single-module program, this second method is
obviously the easiest.

When the program has finished running, the display
will return to your source program. If you wrote a
program such as sell.c which outputs to the screen. this
display will be left in an alternate screen buffer. To see
the output of your program hold down the Alt key and
press the F5 key. To toggle back to the IDE screen, hold
down the Alt key and press the F5 key again.

Now, suppose that your program doesn’t work cor-
rectly the first time you run it. The Turbo C+ + IDE
contains a powerful “source-level” debugger. A source-
level debugger allows you to view your source program
on the screen and single-step through it one statement
at a time or run to a breakpoint you placed on a
statement and watch the values of variables change as
program statements execute. The debugger is integrated
with the editor, compiler, and linker, so when you find
an error, you can just go back to the edit window, fix
the error, compile the program, and run the program
again, all from the same main menu. In most cases this
integrated approach is much more efficient than the
independent tools approach. Here's a short example of
how you might watch the values of some variables
change as you single step your way through our example
program, sell.c.

NOTE: For this process to work as described, the
program must have been just compiled and linked
so the debugger has the needed “hooks."

As a first step let's assume that you want to observe
the values of index, cost/index], and prices|index]|change
as you single-step through the program. To get ready to

394 CHAPTER TWELVE

single-step you go to the Run menu and press the T key
to Trace into the program. A highlighted bar will then
appear on the first line of your program. To put a “watch”
on each of the desired variables, you go to the Debug
menu and press the W key to bring up the Watch
submenu. Then press the A key to add a watch. When
a small window appears, type in the name of the first
variable you want to watch and press the Enter key. The
name of the variable that you placed a watch on should
appear in the Watch window at the bottom of the screen.
You can repeat the procedure to put watches on other
variables.

To execute the first line of the program, you press the
F7 key. The highlighted bar will move to the next
statement, and the values of the variables in the Watch
window will be updated to show the results of executing
that instruction. Figure 12-4 shows the result after
stepping through the for loop in sell.c a couple of times.

If you want to determine the value of some variable
that you did not put in the Watch window, you go to the
Debug menu and then press the I key to execute the
Inspect command. When a small window appears, you
type in the name of the variable that you want to look
at and press the Enter key. The current value ot the
specified variable will be returned in the Inspect window.
You press the Esc key to get back to stepping through
the program.

If you find an error as you step through your program,
you can just edit the source code version. After you save
the new version you can run the program again by
simply going to the Run menu and pressing the T key.
In this case the IDE tools will detect that the source
program has been modified. and they will automatically
compile, link, and put the highlighted bar on the first
line of your program. You can then single-step through
the program by just pressing the F7 key.

Again, the point here is not for you to remember all
this key pressing, but to see how easy it is to use a
source-level debugger and an integrated environment
such as IDE to wiite arw der ag your C programs.

Before we leave this section, there is one additional
point we want to mention. Modern compilers such as
the one in the Turbo C+ + IDE allow you specify how
you want the generated object code to be optimized. In
its default mode the compiler compiles your program to
a binary instruction sequence which uses minimum
memory. An alternative is to tell the compiler to produce
code which is optimized for speed. You can also tell the
compiler to make maximum use of registers to hold
variables and to rearrange the code so that loops and
other jumps are optimized.

We usually leave the compiler optimization in its
default mode when debugging a program, and then when
we know the program works correctly, we recompile it
with speed. register, and jump optimizations “"on” to
produce the final version of the program. The reason we
initially leave these optimizations off is that it is very
difficult to step through a program which has been
highly optimized unless you are familiar with the algo-
rithms used by the compiler.

Now that you have an overview of the tools used to
develop C programs, we will show you, more of the

Run Compile Debug Project Options

= File Edit Search Window Help
\SELL.C 3)
\SELL.C 1
int index:; /* variable to use as index */
void main ()
{ : ‘ i
for (index=0; index <10; index++) /* for loop to compute */
prices -[index]) = cost[index] + 15; /* for 10 prices */
for (index=0; index <10; index++) ,* for loop to display results */
printf("cost = %4, price = %d, \n", cost[index], prices[index]);
)
L-—-—-"— 15:1
=[] Watch
index: 1

cost[index]: 28
prices[index]: 43

-

F1 Help F7 Trace

F8

ep

s Add Del Delete

F10 Menu

FIGURE 12-4 Debugger screen display showing watch values.

structure and syntax of the C language so you can write
son e programs of your own.

PFOGRAMMING IN C
Introduction

One 1eason 1t Is easy to learn a second programming
language is that you already know what features to look
for. When you have to learn a new language, we suggest
a “"bottom-up” approach, roughly as follows.

1. First explore the data types that are available in the
language and how these data types are represented.
In 8086 assembly language, for example, you have
worked with bytes, words, double words, and ASCII
characters.

2. Then look at how basic *latements such as variable
declarations are written in the language. The DB,
DW, DD, and array declaration statements are exam-
ples of this in 8086 assembly language.

3. Next, find out what logical, mathematical, and bit
“operators™ are available in the language. This is
equivalent to looking at available 8086 instructions
such as AND, ADD, INC, RCR, etc. It is best to just
skim through these and pick out some commonly_
used ones. Don't try to remember them all the first
time through.

4. Since you should always try to write programs in a
structured way. the next step is to see how standard
programming structures such as IF-THEN-ELSE,
CASE, RE/PEAT-UNT!L. WHILE-DO, and FOR-NEXT

- 52

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

are implemented in the language. Look for examples
of these such as the 8086 assembly language exam-
ples we showed you in Chapter 4.

5. Most programs contain many procedures, so next
find out how procedures are defined and called in
the language and how parameters are passed to
procedures. Look for some examples such as the
assembly language examples we showed you in Chap-
ter 5. =

6. The final step in the discovery process is to use the
new language to write some simple programs that
you have written successfully in another language.
Since the algorithms are already very familiar, all
you have to do is determine the syntax needed to
express the algorithms in the new language. You
are really just translating each program from one
language to another. The simple program in Figure
12-1a is an example of translating a familiar algo-
rithm to C.

In the following sections we will lead you through the
C language along the path described in the preceding
steps. If you have some C programming tools available,
we suggest that you work your way through the exercises
at the end of the chapter and those in the accompanying
lab manual to develop some skill in C.

C Data Types

In the first 10 chapters of this book you worked with
integer data types such as bytes, words. double words,
and ASCII charactcr codes. Then in Chapter 11 you met
a variety of floating-point data types. Figure 12-5 shows

395

C data types, sizes, and ranges

type subtype size(bits)
char
unsigned char 8
char 8
enum 16
int
unsigned short 16
short - 16
unsigned int 16
int 16
unsigned long 32
long 32
float
float 32
double 64
long double 80
pointer .
near 16
far or huge 32

0
-2,147,483,648

range

255
*#127
+32,767

0
=128
-32,768

4

4

4

65,535

+32,767

65,535

+32,767
4,294,967,295
+2,147,483,647

0
-32,768
0

-32,768

LI T T A

3.4E-38 - 3.4E+38
1.7E-308 = 1.07E+308
3.4E-4%32 -~ 1.1E+4932
-32,768 - +32,767

=2,147,483,648 -~ +2,147,483,647

(on 80386 and 80486 machines)

FIGURE 12-5 C data types and sizes.

' the data types available in Turbo C, the number of
' memory bits used to store each type, and the range of
values that can be represented by each type. You have
' met most of these data types before, so they should be
readily understandable.

| You use type char mostly for ASCII character codes.
You use one of the six integer types to represent whole
numbers according to the range needed. Likewise, you
use one of the three floating-point types to represent
real numbers, depending on the range of values you
need for that variable. The C flcating-point types shown
in Figure 12-5 correspond to the three 8087 floating-
point formats shown in Figure 11-18 and described in
detail {n the corresponding section of Chapter 11. Later
in this chapter we will show you how the 8087 floating-
point Pythagoras program in Figure 11-22 can be written
in C.

As In 8086 assembly language, C has near pointers
and far pointers. You use a near (16-bit) pointer if you
need to represent only the ofiset of a code or data word
in a segment, and you use a far or huge (32-bit) pointer
. If you need to represent both the segment base and the

offset of a code or data word. The enumerated data type
shown as enum in Figure 12-5 is a user-defined type
which can have integer values. You probably won't use

this type in your first programs.

Declaring and Initializing Simple Variables in C

CHAR VARIABLES

In your 8086 assembly language programs you declared
and initialized variables with DB, DW, and DD state-
ments. The example program in Figure 12-1a showed
you a few examples of how you declare and initialize

_ simple variables and arrays in a C program. In this and

the following sections we show how to declare and
initialize variables of all the different C types. To start,
Figure 12-6 shows some exampls of how you declare
and Initialize char-type variables. '

The first five variable declarations in Figure 12-6 are
all extern, which means that they are outside of any
function. Varlables declared outside any function are
“global.” so they can be accessed by any function in a

/*Examples Bf declaring and initializing chg type variables*/

char key;

/* declare variable key but don't initialize */

char yes = 's'; /* declare and initialize in one statement */

char bell = '\x07';
char message[20];
char err_mess(] = “Turn off the power";
void main()
(
char command(15];

/*initialize with ASCII bell code */
/* message declared as array for 20 char - not initialized */
/*array of char initialized with specified string */

/* automatic array for 15 char */

/* accessible only within main */

)

FIGURE 12-6 Declaring and initializing char variables in C.

396 CHAPTER TWELVE

program. If you declare a variable within a function, the
variable is by defauit automatic, which means that it is
“local” and can be accessed only within that function.
For example, the declaration “char command{15};" in
Figure 12-6 Is in function main, so the variable com-
mand is automatic and can be accessed only within
main. Later, when we, show you how to declare and use
functions, we will discuss in more detail how you decide
whether to make a variable ¢xtern or automatic. The
general rule is to declare variables inside of main unless
they need to be accessibie to other program modules.
This avolds a conflict if a module written by some other
programmer has a different variable with the same name
as one in the main module. Now, iet’s take a closer look
at the syntax of declaring and initializing char-type
variables.

As shown in Figure 12-5, a single char type variable
uses 1 byte of memory. A declaration such as “char key"”
declares a variable named key and reserves 1 byte of
storage for it. If the declaration is outside of main, the
variable will be {nitialized with a default valu= of 0.

The second char example in Figure 12-6 shows how

you can declare a variable named yes and initialize the"

variable with the ASCII code for a lowercase y. Note that
the ASCII character is enclosed In single quotes.

If you want te initialize a char variable with the ASCII
code for a nonprinting character, you can enter a \
followed by the hex code for the character. The \x07 {n
the third char example initializes the variable bell with
the ASCII code which will sound a “bell” on your
computer.

A char variable declaration such as one of the first
three examples reserves space for just 1 byte, but the
char message{20] example shows how you can declare

an array of characters. In this case all 20 locations in

the array will be initialized with the default value of 0.

The char message{]="Turn off the power"; statement
in Figure 12-6 declares an array of characters and
initializes the locations in the array with the ASCII codes
for the characters enclosed in double quotes. Note that
you use single quotes to Initialize a single-character
variable, but you use double quotes to initialize the

/* Examples of declaring and initializing int

int headcount; 1
‘/'l
void main()
(
int index = 10; r*
int address = Oxffff; il
int i=10, j=20, k=30; "
int prices(10]; "
int cost()=(20,28,15,26,19,27,16,29,39,42);/*
int test_scores(25][4); g
int av_temp (5] [12) (31]; 7
unsigned long population_1990; I
b}

FIGURE 12-7 Declaring and initializing int variables in C.

C, A HIGH-LEVEL LANGCUAGE FOR SYSTEM PROGRAMMING

elements in an array of characters. We did not need to put
a number in the [], because the compiler automatically
counts the number of characters enclosed in the double
quotes and allocates the required memory bytes. The
array actually contains one more byte than the number
of characters In the string because the compfler automat-
ically inserts an ASCI null character, OOH, as a sentinel
after the last byte of the string. This sentinel character
is used by many functions to identify the end of the
string.

The declaration char command|15] in main in Figure
12-6 declares a 15-byte array of type char. As we said
before, the declaration Is in procedure main, so this
array is automatic and can be accessed only in main.
We did not initialize the array, so the locations in the
command array will contain whatever random garbage
happens to be in the memory locations set aside for the
array. In some cases 0's get put in these locations, but
you can't count on it, so you might tuck in a back corner
of your mind that the defauit initialization for external
arrays is O and the default initialization for automatic

arrays is garbage.

INT VARIABLES

As shown in Figure 12-5, a simple INT variable uses 16
bits and can represent integers in the range —32,768
to +32,767. The example declarations in Figure 12-7
are all declared as simple int type, but you can replace
the int at the start of any of these with one of the other
int types shown in Figure 12-5 to get the range you need
for a specific application. .

The first int example in Figure 12-7 declares an int-
type variable named headcount, reserves a 16-bit word
in memory for it, and leaves the location initialized with
a default value of 0. Headcount is declared outside of
main, so it {s extern.

The second int example shows you how to initialize a
variable to 10 decimal, and the third int example shows
you how to initialize a declared variable with FFFFH.
The Ox in front of the fTff tells the compiler that the ffIff
represents a hexadecimal number. Note that since type

type variables */

declare but don't initialize variable headcount */
headcount is extern */

declare and initialize with 10 decimal */
initialize with hex ffff */

declare and init 3 int variables */

array of 10 int, uninitialized */

array of 10 int, initialized with values shown */
2 dimensional array with 25 rows and &4 colums */
Three dimensional array- pages, rows, colums */
32-bit unsigned integer */

397

int rcpresents a signed value, ffffH is actually equal to
—1. If you want to declare a variable and Initialize it
with a value of + ffffH, you can use a statement such as
“unsigned int hex_value = Ox{fff;."”

The int 1=10, j=20, k=30: example in Figure 12-7
shows how you can declare and initialize three or more
variables of the same type in a single statement to make
your program more compact.

The following two examples declare arrays. These
examples should be very familiar to you from the program
in Figure 12-1a. The int prices(10]; statement declares
anarray of 10 words and leaves the 10locations uninitial-
ized. The int cost|]={20,28,15,26,19,27.16,29,39,42};
declares an array of 10 words and initializes the 10
locations with the specified values. Note that you do not
have to include the length of the array in the [] for
the cost declaration, because the compiler counts the
number of specified values and makes the array long
enough to hold that number.

The last two int examples in Figure 12-7 show how
to declare two- and three-dimensional arrays. A two-
dimensional array consists of rows and columns. An
instructor’s grade roster is an example of a two-dimen-
sional array. The rows represent the names of the
students and the columns represent the scores on tests,
quizzes, and labs. The statement int test_scores{2514];
declares a two-dimensional array that might be used to
store 4 test scores for each of 25 students. The 25 in
this declaration represents the number of rows and the
4 represents the number of columns. We did not initialize
this array, because a program that uses this array would
probably prompt the instructor to enter the values for
the array from the keyboard. To see how to initialize a
two-dimensional array as part of the declaration, see the
array declarations under the float type in Figure 12-8.

You can think of the three-dimensional array declared
by the int av_temp{5[12131]; statement in Figure 12-7
as consisting of 5 “pages” with 12 horizontal rows and
31 vertical columns on each page. This array represents
the form in which the average temperature values for a
5-year period might be stored. The program that uses
this array would probably compute the value for each
element in the array using maximum and minimum
values entered by a friendly weatherperson. Later we
show you how to access elements in multidimensional
arrays such as this.

FLOAT VARIABLES

As shown in Figure 12-5, the three floating-point num-
ber types available in C are float, double, and long
double. The basic format of float-type declarations is the
same as that for Int type declarations, so we have just
shown a couple of examples of this type in Figure 12-8.
The first example again shows how you can declare and
initialize several variables in a single statement. The
second example shows how you can declare and initialize
a two-dimensional array of real numbers. Note how the
inner curly braces are used to set off the rows and the
outer curly braces are used to enclose all the rows. The
final float example in Figure 12-8 shows how to declare
a long-double-type variable. I suppose that we will have
to create a new floating-point type when the national
debt becomes too large to be represented with a long-
double-type variable.

Declaring, Initializing, and Using Pointers in C

INTRODUCTION

People who have not worked with an 8086-type assembly
language often have trouble understanding pointers
when they are first learning C. By now you have several
chapters of experience with 8086 assembly language
pointer instructions such as MOV AX,[BX] and MOV
AL,COSTIBX], so if we do our job well, you should have
little trouble with C pointers. .

To help you with the transition to C, we will not nnly
show you how to declare and initialize pointers, we will
show you how they are used in simple programs. To
further help you, we will show the 8086 assernbly
language equivalents for some of the C examples we
use. ‘Read through this section until you thoroughly
understand it, because much of the power of the C
language is based on the use of pointers.

A SIMPLE INT POINTER

The first statement in the pointer example in Figure 12-
9a declares an integer-type variable called headcc.unt
and initializes the variable with a value of 5. The sec ond
statement In this example declares a pointer na.ned
present and initializes the pointer with the address of

/* Examples of declaring and initializing float type variables */

long double national_debt; i
,.

void main()

(.

float side_a = 3.0, side_b = 4.0, side_c; /*

float max_min_temp(2) [7]=
((37.3,42.0,42.9,46.0,51.7,44.2,40.0),
(29.4,32.2,30.1,34.2,37.2,36.1,32.3}); /*

)
FIGURE 12-8 Declaring and initializing float variables in C.

398 CHAPTER TWELVE

80-bit floating point number */
extern, anybody can access */

Init side_a and side_b, but not side_c*/

declare and initialize 2 dimensional
array of 2 rows and 7 columns */

/* declaring and initializing a simple int pointer */

#include <stdio.h>
void main()
{
int headcount = 5;
int *present = Eheadcount;

/* detlare variable and initialize to 5 */
/* declare pointer named present and initialize

the pointer with the address of headcount */

printf(" headcount= %d \n &headcount = Xd \n present = Xd \n"
» *present = %d \n &present = Xd \n", headcount, &headcount,

present, *present, &present);

v\
*present = *present + 1#,'

printf(*\nheadcount= %d \n &headcount = Xd \n present = Xd \n"

* #regent = % \n &present= Xd \n", headcount, &headcount,
present, *present, &present); -
)
(a)
Turbo Assembler Version 1.0 04-04-90 22:08:54 Page 1
APX-9R.ASM
1 ;8086 assembly language program to demonstrate int pointers
2
3 0000 data segment
& 0000 0005 headcount dw 5
S 0002 0000r present dw offset headcount
& 0004 data ends
7
8 0000 code segment
9 . assume cs:code, ds:data .
10 0000 B8 0000s start: mov ax, data ; initialize ds register
11 0003 8t D8 - mov ds, ax
12 0005 8B 1E 0002r mov bx, present ; copy pointer to bx register
13 0009 88 07 mov ax, [bx]) ; use pointer to copy value
14 ; of headcount to ax
15 0008 code ends *
16 end start
(b)
headcount =5
&headcount = 404
present = 404
*present &5
Epresent /= 406

(€)

FIGURE 12-9 (a) Declaring and initializing a simple int pointer. (b) Assembly
language example of initializing and using int pointer. (c) Results produced by

printf statement in Figure 12-9a.

the variable headcount. There are three points to store
in your mind from this example.

First, the type for a pointer is the type of the data
pointed to. Second. the * in front of the name present
in the declaration tells the complier that present is a
pointer. Third, the & in front of headcount is the
“address of " operator. This operator tells the compiler
that you want to initialize the pointer present with “the
address of " the variable headcount. To summarize then,
this statement declares a pointer-type variable named
present and initializes it with the address of the int
variable called headcount.

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

To help you relate all this to your previous experience.
the DATA SEGMENT in Figure 12-9b shows the 8086
assembly language equivalent for these two C declara-
tions. As you can see by the comments, the first DW
statement sets aside a word of storage for (declares)
HEADCOUNT and initializes headcount with 5. The
second DW statement sets aside a word of storage for
(declares) a variable named PRESENT and initializes it
with the OFFSET of the variable HEADCOUNT. Since
the offset of a variable is its address within a segment,
PRESENT is then a pointer to HEADCOUNT. To access
HEADCOUNT you can copy the pointer into BX with the

399

instruction MOV BX,PRESENT and then copy the value
of HEADCOUNT into AX with the instruction MOV
AX.|BX)].

The thought that probably comes to mind now s, Why
didn’t you just MOV AX.HEADCOUNT to get the value
of HEADCOUNT into AX instead of using the indirect
method? The answer is that for this case you can use
the direct approach, but for other cases we show you
later, you can't. To make sure you understand what
Is pointed to and what is doing the pointing in the
declarations in Figure 12-9a, let's look at the actual
values produced by the terms in the C declarations.

Figure 12-9¢ shows the results produced by the printf
statement in Figure 12-9a. Work your way carefully
through these so you see the two ways of representing
the value of headcount and the two ways of expressing
the address of headcount in programs.

You can refer to the value of headcount directly by
name or with the *present representation. When used
In a program statement, the * in front of a pointer name
means “the contents of the memory location pointed
to by that pointer.” The *present term in the printf
statement then means the value of the variable pointed
fo by present. The standard programming jargon for
using a * in front cf a pointer to refer to the value pointed
to by the pointer is dereferencing the pointer. As you can
see in our example here, present points to headcount, so
the value printed for *present is the same as that printed
for headcount. The only confusion here is that in a
pointer declaration the * is used to indicate that the
declared variable is a pointer, and in other program
statements the * means the value of the variable pointed
to by the pointer named after the *. The * in this context
means the same thing as the!] in an assembly language
statement such as MOV AX.[BX). Remember how we told
you to read these (] as “the contents of the memory
location(s) pointed to by the value in the BX register.”

The output of the printf function in Figure 12-9¢
also shows that you can represent the address where
headcount is stored in two ways. One way Is with the
“address of" operator, & The term &headcount is a
shorthand way of saying “the address where the variable
headcount is stored in memory.” In its default mode the
compiler assigns the same segment base address to your
data segment, stack segment, #nd extra segment, so the
address produced by printf for &headcount is just the
offset of headcount in the segment. The second way to
refer to the address of headcount is with the pointer,
present. In'the int *present = &headcount; statement,
we declared ‘present as a pointer and “pointed it" at
headcount. AN shown by the printout, the value of
present then is the same as the value of &headcount.

Finally, in the printf output note the value produced
by &present. This value represents the memory address
where the compiler decided to store the pointer present.
If you take another look at the assembly language
equivalent of this program in Figure 12-9b, you can see
how this corresponds to the offset where PRESENT is
stored in the data segment.)

Now that you know a little about C pointers, we want
to take a moment to show you one reason why they are
important.

400 CHAPTER TWEL VE

When you call a C function you often want to pass
parameters (arguments) to the function. The statement
printf(*%d", sum):, for example, calls the printf function
and passes it a varfable called sum. What is actually
passed to the function is a copy of the variable sum.
The function then is given the value of the variable sum
but is not given access to the actual variable itself. The
technical term for this method 1s passtng by value. If
only the value of a variable is passed to a function, then
the function cannot modify the actual varfable. For a
function such as printf this is no problem, because
printfl is not intended to change the values of variables.

However. if you call a function which is intended to
change the value of a variable, you must pass the address
of the variable to the function. The function can then
use the address it receives to access and change the
value of the variable. As an example of this, the C
statement scanf("%d", &headcount): calls the predefined
function scanf to read a decimal value from the keyboard
and assign the value to a variable called headcount. The
&headcount in this statement passes the address of
headcount to scanf so that scanf can write the new value
in headcount. If present has been previously declared
and initialized as a pointer to headcount with int
*present = &headcount; statement, then another way to
write the scanf statement Is scanfl*%d", present);,

In a later section we discuss C functions in great
detail, but to give you a head start you might store in
your mind the fact that when you call a C function to
change the value of a variable, you must pass the address -
of the variable to the function instead of passing the
value of the variable. The technical term for this is
passing by reference. For a simple variable such as
headcount, you can use &headcount to represent the
address of the variable headcount. However, for many
applications, declaring a separate pointer is a much
more versatile technique. In the following section we
show you how to declare and use pointers with simple,
one-dimensional arrays. Throughout the rest of the book
we will show many more examples of how you use
pointers in programs.

USING POINTERS WITH INT ARRAYS

The program in Figure 12-10a shows three different
ways to add a profit to each of 10 costs from an array of
ints. As in the example in Figure 12-1a, we first declare
an int array called cost, iritialize the cost array with 10
values, and declare an empty array of 10 elements to hold
the computed prices. In the third line of declarations we
declare a simple variable called index and declare two
pointers. The *cpntr =cost term declares a pointer called
cpntr and Initializes the pointer with the address of the
first element In the array cost. The *ppntr = prices term
in the third line declares a pointer called ppntr and
Initializes it with the address of the first element in the
prices array. Now let's look at the three methods of
accessing the elements in these arrays.

The first method shown in Figure 12-10a is the array-
indexX method we showed you in Figure 12-1a. When
you declare an array such as cost[]. C treats the name
cost as a pointer to the first element in the array.

/* C PROGRAM F12-10A.C - COMPUTE THE SELLING PRICE OF 10 ITEMS */
#include <stdio.h>

#define PROFIT 15

#define MAX_PRICES 10

void main()

(

int cost(] = { 20,28,15,26,19,27,16,29,39,42 };
int prices(10];
int index, *cpntr = cost, *ppntr = prices;

/* array index method */

for (index=0; index <MAX_PRICES; index++)

{

prices(index] = cost[index] + PROFIT;

printf(“cost = Xd, price = Xd, \n", castlindex],
prices[index]};

)

/* pointer method */ :

for (index =0; index<MAX_PRICES; index++)

¢

*ppntr = *cpntr + PROFIT;

printf(“cost = Xd, price = %d,\n" *cpntr, *ppntr);
cpntr++; ppntr++;

)

/* pointer arithmetic method */

for (index =0; index<10; index++)

8

*(prices +index) = *(cost +index) + PROFIT;
printf(“cost = Xd, price = %d, \n",

*(cost + index), *(prices + index));

)

;8086 PROGRAM F12-10B.ASM

;ABSTRACT : Assembly language program to add profit to costs using pointers

PROFIT
ARRAYS

ARRAYS
CODE

START:

DO_NEXT:

~ DAA

CODE
(b)

; Program adds a profit factor to each element in a 8
; COST array and puts the result in an PRICES array.

EQU 154 ; profit = 15 cents

SEGMENT

cosT DB 20H,28H,15H,26H, 19K, 27H, 16H, 29H,39H 42K
PRICES DB 10 DUP(0D)

CPNTR DW OFFSET COST

PPNTR DW OFFSET PRICES

ENDS

SEGMENT

ASSUME CS:CODE, DS:ARRAYS

MOV AX, ARRAYS ; Initialize data segment
MOV DS, AX ; register

MOV CX, 0010 ; Initialize counter

MOV BX, CPNTR ; Load cost pointer in BX

MOV SI1, PPNTR ; Load price pointer in Sl

MOV AL, [BX) ; Get element pointed to by CPNTR
ADD AL, PROFIT ; Add the profit to value read

; Decimal adjust result

MOV [SI1], AL ; Store result at location pointed
to by PPNTR in PRICES

; Increment pointers

INC CPNTR
INC PPNTR
LOOP DO_NEXT ; 1f not last element, do again
ENDS

END START

FIGURE 12-10 (a) C program which uses pointers to compute selling prices.
(b) 8086 assembly language equivalent of program in 12-10a.

401

This pointer, however, is a constant, so it cannot be
incremented to access the other elements in the array.
To access the other elements in the array, you have to
in some way add an index to cost. The term costlindex]
in the array-index example in Figure 12-10a tells the
compiler to generate the effective address by adding the
value of index to the address represented by the name
cost. Likewise the term prices{index] tells the compiler
to generate the effective address of the variable by adding
the value of index to the address represented by the
name prices. The first time through the for loop. index
will have a value of zero, so the first element in each array
will be accessed when the prices{index]= costlindex]
+profit; statement is executed. The second time through
the for loop, index will have a value of 1, so the second
element in each array will be accessed. .

The method described for this C example is exactly
the same method we used to access the array elements
in the assembly language program in Figure 4-23. If you
look back at that program, you will see that we loaded
the index in BX, used the instruction MOV AL,COSTIBX]
to copy an element from the cost array to AL, and
used the instruction MOV PRICES|BXI|.AL to copy the
computed price back to the indexed location in’the
PRICES array.

The second method of accessing the elements in our
arrays uses the pojnters, cpntr and ppntr, that we
declared. The statement *ppntr="cpntr+ profit; says
read the value pointed to by cpntr, add a profit of 15 to
the value, and write the result at the location pointed
to by ppntr. In the initial declarations we initialized
cpntr with the address of the first element in cost and
ppntr with the address of the first element in prices.
Therefore, the first execution of the for loop will read the
first element in cost, perform the specified computation,
and write the resuit in the first element of prices. The
cpntr and ppntr pointers are variables, so they can be
incremented, decremented, added to, subtracted from.
etc., to access other elements in the arrays. The
cpntr+ +: statement increments cpntr to point to the
next element in cost, and the ppntr+ +; statement
Increments ppntr to point to the next element in prices.

NOTE: Both cpntr and ppntr were declared as
pointers to int type variables, so the compiler
automatically generates instructions which incre-
ment the pointers as needed to access the next
elements in the two arrays. Since int variables take
2 bytes, the compiler will generate instructions
which add 2 to the value of cpntr and add 2 to the
value of ppntr. The next time through the for loop
then, cpntr will point to the second element in cost
and ppntr will point to the second element in
prices. With this pointer method you do not need
lindex] to {dentify the desired elements in the
arrays, because the pointers are incremented to
point to the desired elements. The printf() state-
ment in the pointer method example in Figure 12-
10a also uses the *cpntr notation to represent “the
contents of the memory location(s) pointed to by
cpntr” and *ppntr to represent “the contents of
the memory location pointed to by ppatr.” We

402 CHAPTER TWELVE

didn't bother to show you, but this second method
produces the same printout as that shown In
Figure 12-1b.

To help you further understand how this pointer
version of the program works, Figure 12-10b shows how
you could write it in 8086 assembly language. The
program in Figure 12-10b actually generates machine
code very close to that generated by the compller for the
C pointer example we have just discussed except that it
works with bytes instead of words, and it obviously does
not produce the code for the printf function.

In this assembly language example you can see that
we first use a DW statement to declare and initialize a
pointer to the first element in cost and another DW
statement to declare and Initialize a pointer to the first
element in prices. Then in the code section of the
program we load CPNTR into BX and PPNTR into Sl so
we can use them to access the arrays. We use MOV
AL,[BX] to read in an element from cost and MOV [SI].AL
to copy the result to prices. We then increment the
pointers so they point to the next elements in the arrays
and loop back to do the next add and store operation.

The third method of accessing the elements in the two
arrays is the pointer arithmetic method shown in Figure
12-10a. As we said before, the name of an array such
as cost is a pointer to the first element in the array. To
access the other elements in the array you need to add
an offset to the value of cost. One way to indicate this
addition is with an expression such as cost{index] that
we showed you in the first array-access method. Another
way to indicate this addition is with an expression such
as (cost +index). Putting a * in front of this expression
gives *(cost + index), which translates to “the value in
memory pointed to by the sum of cost + index.” The ex-
pression °*(cost + index) is exactly equivalent to the ex-
pression cost{index]and the compiler generates the same
code for each expression. Note that since cost is a pointer
to an int-type array, the compiler generates instructions
which add two times the value of index to cost when it
translates the expression ,zost + index).

Now that you have seen the three methods of accessing
an array, the question that may occur to you is, Which
one is best? The answer is that usually you can use any
of them. The array-index method is probably more
intuitive when you are first learning about arrays, but
most experienced C programmers use the direct pointer
or the pointer arithmetic method because they generate

. considerably more efficient machine code. If for no other

reason, you should use these last two methods in your
programs so that you can easily follow them in other
people’s programs.

Another point we want to briefly make about the
program in Figure 12-10a is the format in which the
data is stored and manipulated. Cost is declared as type
int, so according to Figure 12-5. 2 bytes are set aside
for each element in cost. The compiler converts the
decimal value supplied for each element to a 16-bit
signed equivalent. When the program is loaded into
memory to be run, these 16-bit signed values are loaded
in the memory locations allocated for cost. When the
program is run, the binary equivalent of 15 is added to

FORMAT SPECIFIER PRINT

SYMBOL,

Xd decimal integer

) unsigned integer

Xld long decimal integer

Xp pointer value

Xt floating point format

x6.21 floating point format round off to

_two digits of decimal point, total ~

of six digits

Xe exponential format
floating point

Xc ASCI1 character for value

xs string

Xx or XX hex value of integer

FIGURE 12-11 C format specifiers for use in printf,
scanf, and other library functions,

each value from cost and the 16-bit signed result is put
in the appropriate location in prices. The %d format
specifiers in the printf{) statement cause the printf
function to convert the *cpntr and *ppntr values to their
decimal equivalents before sending the values to the
screen. The result is the decimal printout shown in
Figure 12-1b. For reference Figure 12-11 shows the
formats for some of the specifiers you can use with
printf, scanf, and other predefined functions.

A FLOAT POINTER EXAMPLE

By now you are probably getting tired of the cost-price
example, but we will use it one more time to quickly
show you a few useful techniques that make the program
more realistic.

Figure 12-12, page 404, shows the new “improved”
version. The first improvement is to make the program
able to work with floating-point numbers instead of just
integers. We did this by declaring the two arrays as type
float instead of type int.

The second improvement is to make it easy to change
the program so it can work with some number of
values other than 10. Note how we use the preprocessor
directive #define MAX_PRICES 10 at the start of the
program to declare a constant called MAX_PRICES and
then use MAX_PRICES in the for loops and every time
we refer to the number of eicments in the arrays. If we
want to change the number of elements in the arrays,
all we have to do is change the value of MAX_PRICES
in the #define and pile the program. The compiler
will automatically replace each occurrence of MAX_
PRICES with the new value. This shows the advantage
of using defined constants instead of hard numbers in
a program.

- 53

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

A third In)lprovement in the program is to add a section
which allows you to enter any desired values instead of
using just the fixed values we put in cost for the previous
examples. To do this we declare the array cost as shown,
but we do not initialize the array with fixed values. After
using the predefined function printf to send a prompt
message to the user, we use another predefined function
called scanf and a for loop to read in 10 values entered
on the keyboard.

The actual code for the scanf function is contained in
a library file. The #include <stdio.h> preprocessor
directive at the start of the program tells the compliler
to look in the file stdio.h for the prototype of the scanf{)
function. When the program is linked, the code for
scanf{) and printf{) functions will be linked with the
code for the rest of the program to generate the execut-
able (.exe) file. ;

The scanf(“%f", cpntr) statement in the program calls
the function and passes the parameters needed by the
function. The scanf function needs to know what type
of data you want it to read and where you want it to put
the data. As with the printf function we used before,
you use a format specifier to indicate the type of data
you want it to rezd. In this program we want scanf to
read floating-point values, so we pass a %{ to scanf by
putting it first in the (). As we said earlier, the scanf
function requires that you pass it a pointer to tell it
where to put the data read. We want the data values to
be put in the cost array, so we pass the pointer cpatr
that we initialized with the starting address of the cost
array. Each time through the for loop, cpntr will be
incremented so that it points to the next element in
cost.

This is a good time to show you why the type of each
variable is important. Accogding to Figure 12-5, a float-
tvpe variable uses 4 bytes of memory, so the elements
of .." . asc au intervals of 4 in memory. Since cost is an
array of floats, we declared cpntr as a type float pointer.
When the compliler translates the cpntr+ + statement,
it automatically generates an- 8086 instruction which
adds 4 to the value of cpntr so it points to the next
element in cost.

; When this first section of the program runs, it will

‘send the “Enter 10 costs...” message to the screen and
/. walit for you to enter a value. After you enter a value and

press the space bar or the Enter key, the program will
put the value In the array and wait for you to enter the

" next value. i

After all 10 values are read in, the cpntr pointer is

-mcttopomtatthestartofthecmtanayvtﬂnhe

cprntr=cost; statement, so we can process the 10 values
read. To process the 10 values we use a for loop, as in

.the previous examples. Now let's see how we compute

each cost.
In the previous examples we added a fixed profit of 15

“toeach cost, but this is not very realistic. A more realistic

approach Is to compute profit as a percentage of the cost
and add the computed profit to the initial cost for each
item. The statement °*ppntr="‘*cpntr+0.25°(*cpntr);
does this. In more English-like terms it says, “get the
cost pointed to by cpntr, multiply that value by 0.25,
add the value pointed to by cpntr to the result, and write

403

/* C PROGRAM F12-12.C */

7* float pointers and reading data from the keyboard */

#include<stdio.h>
#define MAX_PRICES 10
void main ()

<

float cost [MAX_PRICES), prices (MAX_PRICES];
float *cpntr = cost, *ppntr = prices;

int i;

printf(“Enter Xd costs. After each cost press “
"space or enter.\n", MAX_PRICES);
for(i=0; i < MAX_PRICES; i++)

C
scanf("Xf", cpntr);
cpntre+;

)

cpntr = cost;

/* reset cost pointer to start of array */

for(i=0; i < MAX_PRICES; i++)

(¢

*ppntr = *cpntr + .25 * (*cpntr);
printf("cost= X6.2f, price= X6.2f \n", *cpntr, *ppntr);

cpntr++; ppntre++;
b
)

FIGURE 12-12 Program using float pointers and the scanf function.

the result to the memory locations pointed to by ppntr.”
Note that the * symbol is used to represent the multiplica-
tion operation as well as to represent tne “contents of
the memory location pointed to by" a pointer. The
meaning of a * in a statement is usually clear from how
it is used.

After we compute each selling price, we call printf to
display the entered costs and the computed prices on
the screen. Since we want to print floating-point values,
we use %f format specifiers. The 2 between the % and
the f indicates that we want the values rounded off to
two digits to the right of the decimal point. This is
appropriate for money values. The 6 between the % and
the f indicates that the values will have a maximum of
6 digits, including the two to the right of the dec'nal
point. This number is optional. Note that we use *cpu‘r
to pass the current cost value to printf and *ppatr to
pass the current price value to printf. We then increment
the two pointers, cpntr and ppntr, so they point to the
next locations in their arrays.

Now that you have some experience with int and float
pointers, let's take a look at some char pointers which
work just a little bit differently.

CHAR POINTERS AND CHARACTER STRINGS

Some programming languages such as BASIC have a
string data type which is used for ASCII code sequences.
In C you just use an array of type char to store strings.
The last two™examples in Figure 12-6 show how to
declare char arrays. The next-to-last example in Figure
12-6 shows how you can initialize a char array with a
desired string of ASCII codes. Remember that when
you initialize a -char array in this way, the compiler

404 CHAPTER TWELVE

automatically includes a null character as a sentinel at
the end of the string.

As with int and float arrays, the name of a char array
is a pointer to the first element in the array, but again,
this pointer s a constant, so it cannot be incremented,
etc. It is often useful to declare a variable pointer to the
start of a char array and use this pointer to access the
array. Figure 12-13 shows you how to declare char
pointers and some of the different ways to work with
character strings in C programs.

At the top of Figure 12-13 note that you can use the
#define preprocessor directive to declare a constant
string. Whenever the compller finds the identifier exit-
mess, it will substitute the constant string “password
incorrect.” Since this string {s a constant, it cannot be
modified ir ‘i:e program.

The nrst char example in Figure 12-13 does several
jobs. It declares a char-type pointer called greeting and
sets aside 2 bytes of memory to store the pointer. It
allocates 14 bytes of memory and initializes these bytes
with the ASCII codes for the string “Good Morning”
and a null character. Finally, it initializes the pointer,
greeting, with the address of the first character in the
string.

The printf(“%s\n", greeting): statement in main shows
how you can get this message printed out on the screen.
To let printf know that you are passing it a string, you
use the %s format specifier. To Identify the string you
want to send to the screen, you simply use the name of
the pointer to the string. Note that you do not have to
put a * in front of the name of the pointer as we did for
the float pointer in the printf{) statement in Figure 12-
11. For string operations the compller assumes that the
name of the pointer rel.s to the whole string. Since the

/* examples of declaring and using char type pointers */

#include <stdio.h>

#define exitmess “password incorrect"
void main()

(

char *greeting = "Good morning, "; /* pointer to type char location, initialized with string */
char wakeup(20]1 = “Good morning\n"; /* array of 20 char initialized 4ith string shown ®*/
char *message; /* declare pointer named message,

but allocate no storage */

char name (20];
printf("Xs\n", exitmess);

printf("Xs\n", greeting);
printf(“Xs\n", wakeup);

; |

message = "Hello there."; /* allocate storage and load string into locations
starting where pointer.message points */

printf(""The message is, Xs\n", message);

printf("Please type in your name and press the Enter key.\n");

gets(name);
printf("%sXs\n", greeting, name);
)

FIGURE 12-13 Declaring and using char type pointers. »

pointer greeting initially points to the first element in
the string, a term such as *greeting would refer only to
the first element in the string rather than to the whole
string. Don’t make this overly complicated in your mind.
Just remember that you don't use a * in front of a
pointer to a string unless you want to refer to just the
first character in the string or individual elements in
the string.

The char wakeup|{]="Good morning.\n"; statement
in Figure 12-13 declares an array of characters and
initializes the elements of the array with the ASCII codes
for the specified string. An ASCII null character, OOH,
will automatically be inserted as a sentinel at the end of
the string. As we said before. the name of an array is a
pointer to the first element in the array, so you can print
this message with a statement such as printf("%s \n",
wakeup);. Note that here agaln*gou do not have to use
a * in front of wakeup to tell printf that you want to
print the contents of string named wakeup.

The char *message: declaration in Figure 12-13 de-
clares a char-type pointer and sets aside a couple of
memory locations for the pointer. However, this state-
ment does not assign any value to the pointer, and it
does not allocate any memory for storing a string.
When the compiler reads the message ="Hello there.";
statement in main, it will allocate some memory loca-
tions for the string “"Hello there.” and store the ASCII
codes for the string in the allocated memory bytes. The
compiler will also initialize the pointer namged message
with the starting address of the memory allocated for
the string. Note again that we referred to the string
simply with the name message. The compiler is smart
enough to know that message refers to the entire string.

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

" The char name{20}; statement in Figure 12-13 allo-
cates 20 bytes of memory for an array of characters but
does npt initialize these bytes. The last three statements
in main show how you can read a string in from the
keyboard and put it in this array.

The printf() statement at the start of this section
simply prompts the user to enter his or her name and
press the Enter key. The second line in this section of
the program uses the predefined function gets() to read
characters entered on the keyboard. You tell gets() where
to put the characters by passing it a pointer to some
char-type locations. In this example, name is a pointer
to the array we declared, so we just pass name to gets()
by including it in the (). Gets() keeps reading ASCII
codes from the keyboard and putting them in the array
until it reads theé code for a carriage return. When it
reads a carriage return, gets() puts a null cHaracter at
the end of the stored string and returns to main. The
final printf{) statement sends the declared string “Good
morning,” to the screen and then sends the string read
in from the keyboard to the screen.

As you look at this last example the question that may
occur to you is, Why didn't we use the scanf() function
that we showed you in Figure 12-12 to read in the
string? The answer to this is that scanf terminates when
it finds a space, a tab, or a carriage return. Therefore,
the space between a first name and a last name would’
terminate scanf, and only the first name would be read
in and put in the array. The scanf function with a %s
format spectfier works fine If you want to read in only a
single character or a single word.

Two important points to remember when working
with character arrays or strings are as follows: -

405

1. Use just the name of the array or the name of the
pointer to refer to the array. You don't need an * in
front of the name unless you want to refer to just
the first chargcter in the array or individual elements
in the string.

2. You must tell the compiler to allocate storage for a
string with a statement such as char name{20];
before you can read in a string from the keyboard.
You cannot just declare a pointer with char *mes-
sage; and then gets(message); because the char
*message declaration doesn't allocate any space to
put the characters read from the keyboard. It just
declares a, pointer.

Now that you know how to declare different C data
types, how to send messages to the screen, and how to
read strings from the keyboard. you should be able to
write some simple programs to entertain your friends.
To make your programs more interesting, you need
some more instructions in your toolbox. In the next
sections we show you the different C “instructions” or
operators you can use to perform computations, etc., in
your programs.

ARITHMETIC OPERATORS

C Operators

THE ASSICNMENT OPERATOR

The assignment operator in C is simply the = sign.
We have already used the assignment operator in the
preceding program examples without bothering to give it
a name. A statement such as side_a=3.0;, for example,
assigns a value of 3.0 to the variable side_a. This
corresponds to an assembly language instruction such
as MOV SIDE_A.3.

The = sign says “evaluate the expression to the right
of the = and write the result in the variable to the left
of the =." The statement prices(index]=cost[in-
dex] + 15;, for example, adds 15 to an element from the
cost array and puts the result in the corresponding
element in the prices array.

In 8086 assembly language you used MOV instructions
to copy the contents of one memory location to another.
One way to do this in C is with a simple assignment
statement. If you have two variables such as maxval and
curval of the same type, you can copy the value of curval
to maxval with the statement maxval = curval;.

Operation Symbol Examples
Addition + a=c+d;
Subtraction = a=c—d;
Multiplication a=4eb
Division a=c/d;
Modulus a=c%d; /* a=remainder of ¢/d */
Increment index + +; /* increment index by one */
a=a+b+ +; /* postfix increment */
/* add b to a, then inc b */
a=a+ ++b; /* prefix increment */
/* inc b, add result to a */
Decrement - - count — —; /* decrement count by one */
a=a— b-—; /* postfix decrement */
/* subtract b from a, decrement b */
/* prefix decrement */

a=a+ - -b;

BITWISE OPERATORS

These operators correspond to assembly language in-
structions such as AND, OR, XOR, NOT, ROL, and
ROR. As with the assembly language instructions, they
perform the specified operation on a bit-by-bit basis.

Operation Symbol Examples
AND & a=a&b:
a=a & Oxff;
OR | a=a|b:
; a=a | 0x8000:
XOR a=a’ " b;
a=a ~ 0x000f;
NOT) a="a;

406 CHAPTER TWELVE

/* decrement b, then add b to a */

The AND operator, for example, logically ANDs each bit
of one operand with the corresponding bit of the other
operand. For reference, here are the C bit operators and
some examples of each.

/* each bit of b ANDed with corresponding
bit in a, result in a */

/* mask upper 8 bits of int a */

/* each bit of b ORed with corresponding
bit in a. result in a */

/* set MSB of int in a */

/*eachbitinb is XORed with corresponding
bit in a, result in a */

/* invert low nibble int a */

/* invert bits in a, result in a */

Operation Symbol Examples “?’

Shift-left << a=a << 4; /* shift bits in a 4 bit positions left around
loop. This corresponds to 8086 assembly
language sequence MOV CL, 04H, ROL
a, CL.

' Shift-right >> a=a>> 8; /* shift bits in 8 bit positions right around

loop. This corresponds to 8086 assembly
language sequence MOV CL,08H, ROR a,
CL. It effectively swaps the bytes of a if a
is type int.

COMBINED OPERATORS

It seems that many experienced C programmers have a
habit of trying to pack as much action as possible in a
single program statement. This often makes the state-
ment somewhat difficult to decipher. As we go through
the rest of the book we will try to show you some of the
‘nore common shortcuts so that you can use them or at
least recognize them when you see them. To start we
“will show how expressions using the operators in the
previous sections are commonly written in shortened
form. Ags in, the best way to do this seems to be with a
list of examples that you can easily refer to. Once you
see the pattern of these, you will find them quite easy.

Operation Standard Form Combined Form
Addition a=a+b; a +=b;
Subtraction a=a-b; a —=b;
Multiplication a=asbh; as*=b;
Division a=a/b; a/=b;
Modulus a=a%b; a%=b;
AND a=a&b; a&=b;
OR a=alb: a|=b;
XOR a=a"b; a’"=b;
Shift-left a=a<<b; a <<=b;
Shift-right a=a>>b; a>>=h;
RELATIONAL OPERATORS

Relational operators are used in expressions to compare
the values of two operands. If the result of the compari-
son is true, then the value of the expression is 1. If the
result of the comparison is false, then the value of the
expression is 0. These comparisons are usually used to
determine which of two actions to take. You will see
many more examples in a later section which discusses
how the standard program structures are implemented
in C, but a simple example here using the “greater than
or equal to” operator should help you see how these are
used.

Remember in Chapter 4 we showed you how to imple-
ment an algorithm which turned on a light if the
temperature in a printed-circuit-board-making machine
was equal to or greater than a preset value. To implement
this decision we used a compare instruction and a
conditional jump Instruction. In C you might implement
this action with a couple of statements such as:

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

if (current_temp > = run_temp)

heater (off):
green_light (on);

We assume here that the value of current_temp was
read from an A/D converter by calling an assembly
language procedure before the If statement. (Later in
the chapter we show you how to do this.) If the value
of curreni_temp is not equal to or greater than the
predeclared value of run_temp, then the comparison is
false, and the statements in the curly braces will-be
skipped over. If the expression in () evaluates to true,
then the two statements in the curly braces will be
executed. In the first of these statements we call a
function called heater and pass it a value which will
turn the heater off. Likewise, in the second statement
we call a function called green_light and pass it a
value to turn on the green light. Tne heater function
and the green_light function would most likely call
assembly language procedures to manipulate the actual
hardware.

Here is a list of the C relational operators. As you read
each of these, mentally insert them in a statement such
as “if (a = = b) { }.” to help you remember how they are
used. Note that the = = used here has a very different
meaning from the single = used for assignment.

Operator Symbol
Equal to ==
Not equal to |=
Greater than >

Greater than or equal to >
Less than
Less than or equal to <

AN

LOGICAL OPERATORS

In the last section we showed you how the relational
operators are used to choose between two actions
in, for example, an IF-THEN-ELSE structure. The C
logical operators allow you to include two or more
conditions in a decision such as this. The three logical
operators and the symbols which represent them are
as follows.

407

Operator

OR

Symbol
&&

Examples

if (curtemp < maxtemp && curpress < maxpress)
green_light(on);

/* green light on only If both conditions true */
if (curtemp > maxtemp | | curpress > maxpress)

{

red_light(on);

}

/* red light on if either condition met */

NOT ! if (ta)

{

statements;

}

/* do statements If a is false (= 0)
skip over statements if a is true (= 1} %/

OPERATOR PRECEDENCE

In the preceding sections we have shown you most of
the C operators. We will show you the few remaining
operators in later program examples where they may
make more sense. The next topic we have to discuss
here 1s the priority or precedence of the C operators. To
properly. evaluate or write an expression which has
several operators, you have to know the order in which
‘the operations are done. As an example of this, in
the statement *prices = *cost + 0.25°(*cost);, how did we
know that the 0.25 would first be multiplied by *cost
and then the result added to *cost? The answer to this
is that the multiplication operator has a higher priority
or precedence than the addition operator, so the multi-
plication gets done before the addition.

As another simple example of this, suppose you have
an expression such as a’/b + ¢/d. From ordinary algebra
you know that division also has a higher precedence
than addition, so the two divisions will be done first,
and then the results of the two divisions will be added
together.

Shown below in descending order is the precedence
of the C operators. For reference we have included some
operators that we haven't discussed yet, so don't worty
if you don't recognize all of these. To help you identify the
different operators, we have included simple exampies of
each. In the paragraphs following this list we show you
some more examples to help stick the impcrtant ones
in your mind.

NOTE: All the operators in a group have the same

priority.
Operator Example
) 4+(9+2) /* operation in parentheses done first */
[l cost (3] /* fourth element in array cost */
. class.ssnmbr /* pointer to ssnmbr member of structure */
->) /* indlirect structure operator */
- a=-23; /* negation */
* a=+28; /* positive value */
) a="a; /* invert each bit in a */
* *cpntr /* contents of location pointed to by cpntr */
& &headcount /* address of headcount */ ’
ok index + + /* increment operator */
S count — — /* decrement operator */
sizeof count = sizeof cost; /* determine # of bytes in cost */
. asb /* multiplication */
/ a/b /* division */
% a%b /* modulus-remainder from division */
a+b /* addition */
- a-b /* subtraction */
<< a<<4 /* shift bits of a left 4 bit positions */
>> a>>8 /* shift bits of a right 8 bit positions */

408 - CHAPTER TWELVE

Operator Example

< if (a<10) /* less than */

> if (temp>30) /* greater than */

<= if (a<=10) /* less than or equal to */

>= if (temp>=5) /* greater than or equal to */

== if (a==b) /* relational equal */

I= if (a!=b) /* relational not equal ¢/

& a & Oxdifo /*AND a with fffOH to mask lowest nibble®/
| a | 0x8000 /* OR a with 8000H to set MSB */

" a " 0x000f /* XOR a with 000fH to invert 4 LSBs
&& If (condition 1 && condition 2) /* both 1 AND 2 */

|1 If (condition 1 | | condition 2)

/*10R2*%

simple assignment
= a=4;

combined assignment (see previous examples)
s= = %= 4= —=<<=>>= &= l= =

As we showed before, the precedence of C arithmetic
operators is basically the same as in ordinary algebra,
so you should have little trouble with these. In an
expression such as 3+4°%a, the multiplication will be
done before the addition, because multiplication has a
higher precedence than addition. If you want the addi-

tion to be done first, you can write the expression as .

(3 +4)%a. Parentheses have a higher precedence than
multiplication, so any operations within parentheses
will be done first. If there is any possibility of miisinter-
preting an expression, you should use parentheses to
make it clear.

The only case where you may initfally need a little help
to understand the precedence of operators is with the
increment and decrement operators, so we will discuss
these.

If you use the increment operator, + +, in a simple
statemeni such as index+ +:, you can write the + +
after index or in front of it. In other words, the statement
+ + index: and the statement index + +; will each incre-
ment the value of index by 1. When + + or — — is used
in more complex expressions, hcwever, the placement
of the operator is important.

In a statement suchasY=(a+ + +b)/10;, for example,
the value of b will first be incremented by 1 and the
result added to a. The sum of a and the incremented b
is then divided by 10 and the result assigned (copied) to
the variable y. Incrementing or decrementing a variable
before it is used in the expression is often referred to as
a prefix operation.

If you write the statement as Y=(a+ b+ +)10;, the
current value of b will be added to a. Next the result of
this addition will be divided by 10 and assigned to Y.
Finally. the value of b will be incremented by 1. Using a
variable and then incrementing or decrementing it is
often referred to as a postfix operation.

The simple rules here then are: Put the + + or - —
operater In front of the variable name if you want the
variable incremented or decremented before it is used
to evaluate the expression. Put the + + or — — operator

C, A HICH-LEVEL LANCUAGE FOR SYSTEM PROGRAMMING

/* simple assignment */

after the variable name if you want the current value of
the variable used to evaluate the expression.

Statements such as those shown in the preceding
paragraphs are usually quite stralghtforward, once you
understand the prefix and postfix concept. Another
situation where you will often see the increment and
decrement operators is in conditional expressions such
as while (a+ + <20), which might be used at the start
of a WHILE-DO structure. The + + Is ~fter the vaiiable
a, 80 you know that the current valuc of a is used to
evaluate the expression, and then a is incremented. The
expression then says “compare the current value of a to
20 and then increment a.” If the value of a is less than
20, do the statements following the while.

To see if you understand how this works, try interpret-
ing the statement while (- -b >0) {}. The - - i3
before the variable b, so b will be decremented and
the decremented value of b compared with 0. If the
decremented value is greater than O, the statements
following the while will be executed. If the decremented
value of b is equal to 0, execution will go to the next
statement in the program after the while block.

Throughout the preceding discussions we have given
you little glimpses of how the standard programming
structures are implemented in C. In the next section we
take a closer look at these.

Implementing Standard Program Structures in C

As we tried to show you in Chapter 3, the most sucressful
way to write any program is to solvc the problem
mentally; write the algorithm for the solution using the
basic IF-THEN-ELSE, CASE, REPEAT-UNTIL, WHILE-
DO, and FOR-DO structures shown in Figure 3-3; and
finally translate the algorithm to an appropriate pro-
gramming language. The C implementation of these
structures |s very close to the pseudocode for them, so
the translation is usually quite easy. In this section we
discuss each of these and show you some more C
programming techniques.

409

IF-THEN AND IF-THEN-ELSE IMPLEMENTATION
The general format of the IF-THEN-ELSE structure in C
is:

if (condition)

{

statement;
statement;
}
else
{
Sstatement;
statement;
}

Condition (n this format represents some expression
such as currtemp = = maxtemp. If the condition expres-
sion evaluates to 1 or any nonzero value, the block of
statements under the if will be executed. If the condition
expression evaluates to 0, the bloc!: of statements under
the else will be executed. The else lock can be omitted
if you want just an IF-THEN instead of an IF-THEN-
ELSE. Note that the curly braces are not needed for the
case where the if block contains only one statement.
Likewise, the curly braces are not needed in the else
block if it contains only one statement.

The program section in Figure 12-14 shows a simple
IF-ELSE structure and introduces you to getch(), an-
other predefined function which you will probably want
to use in your programs. This example also gives you a
little more practice with operator precedence.

At the start of the program we declare a char-type
variable and give it the traditional name ch. After
printing a couple of prompt messages, we use an IF-
ELSE to determine a course of action based on the user's
response. To evaluate an expression such as the if
condition in Figure 12-14, you start with the innermost
parentheses and work your way out. The getch() part of
the if exprgssion calls the predefined function getch().
The getch() function sits in a loop untll the user presses

/* C PROGRAM F12-14.C */
#include <stdio.h>

a key on the keyboard. When the user presses a key,
getch() terminates and returns the ASCII code for the
key pressed. In this example the ch = getch() means that
the returned ASCII value will be assigned (copied) to the
variable named ch. This completes the action in the
inner parentheses. The value produced by these actions
is the ASCII code stored in ch.

The = = ‘n"next in the expression compares the value
in ch with the ASCII code for a lowercase n. If the values
are the same, the entire expression is true (evaluates to
1) and the statements in the if block will be executed. If
the value in ch is not equal to the value of the ASCII
code for a lowercase n, the || ch == ‘N’ part of the
expression compares the value of ch with the ASCII code
for an uppercase N. Remember that the || symbol
represents the logical OR operation, so the overall expres-
sion s true if ch=n OR ch=N. If the entered character
was an N, the statements in the if block will be executed.
If the character was not an n or an N, the entire
expression evaluates to 0, and statements in the else
block will be executed.

NOTE: The expression for the if statement is
evaluated from left to right, so the (ch=getch()) is
done first and the result compared with n. For the
second comparison you just write ch ='N’, because
ch already has the value read in from the keyboard.
If we had used (ch =getch()) = = ‘N" here, execution
would sit in getch() until the user pressed another
key! Incidentally, if you want the key pressed by
the user to be echoed to the CRT, you can use the
getche() function instead of the getch() function.

The exit(}; statement in the if block calls a predefined
function which terminates the program and returns
control to the operating system (DOS prompt).

In the else block we dispiay a message to let the user
know that something is happening, then we use the
“gotostart”statement to send execution to the beginning
of the program. The goto statement in C corresponds to
the unconditional JMP instruction in assembly lan-

void maing)
{
char ch;
start: printf(“Game over.\n"):
printf(“Enter y to play another game, n to quit.\n");
if ((ch = getch()) == 'N' || ch == 'n')
(¢
printf({"Goodbye.\n");
exit();
2}
else

(

printf(“Here we go again.\n");

goto start;
>
)

FIGURE 12-14 Basic if-else example.

410 CHAPTER TWELVE

guage. As In assembly language, the name start repre-
sents a label which you place in front of the instruction
statement that you want execution to go to. In C you
write a : after the label, just as you do in assembly
language. In this example we put the start label next to
the first printf statement, just to show you how to write
labels.

NOTE: The label for a goto must be in the same
function as the goto statement.

Some structured programming fanatics say that ysu
should never use even a single goto in a program. This
attitude is probably a reaction to the way goto statements
were abused in old BASIC programs. To us, however,

- using a simple goto to rerun the entire program is the
clearest way to do it. In reality, even if you hide the
action in some other structure, the compiler will usually
generate an unconditional jump instruction to imple-
ment the action.

The program fragment in Figure 12-14 has a minor
problem. It thoroughly tests to see if the user entered -
an n or an N and exits if either of these was entered.
However, if any other key is pressed, the else-block
statements start the game over again. Figure 12-15
shows how you can use a nested if-else structure to
provide three alternative actions based on the key
pressed. For an n or N the statements in the first if block
will be executed. For a y or a Y the statements in the
second if block will be executed. For any other key the
statements after the final else will be executed. In a later
example we show you how a “real C programmer” might
write this program segment to avoid the direct goto
statement in the final else block.

/* C PROGRAM F12-15.C */
#include <stdio.h>
void main()
{
char ch;
printf("Game over.\n");

prompt:

MULTIPLE CHOICES—THE SWITCH STATEMENT

To implement algorithms with more than three choices,
you can nest additional if-else sections, but often a more
efficient way to do tfns is with the switch structure. The
C switch structure is essentially the same as the CASE
structure we showed you in Figure 3-3. The general
format for the switch statement is:

switch (variable)
{
case valuel:
{
statements:
break;
}
case value2: statement(s); break;
case value3: statement(s); break; .
default: statement; /* optional */

Variable in this statement must be some quantity such
as an int or char which can be evaluated as an integer.
Valuel in the first case line represents some value of the
variable used to make the decision. After each case line
you write the statement(s) you want executed if the
variable has that value. If, for example, the value of
variable is equal to valuel, the statements after case
valuel: will be executed. The break statement at the end
of this block of statements will cause execution to skip
over the rest of the choices in the structyre. If you leave
out the break statement, the actions for the next case
after the selected case will be executed. The Optional
default directive at the end of the switch structure allows
you to specify the action(s) you want taken if the value
of variable does not match any of the specified values.

printf(“Enter y to play another game, h to quit.\n");

if C(ch = getch()) == 'N' || ch == 'n') "’

{

printf(“Goodbye.\n");

exit();
)

else if ‘(ch == 'Y'|| ch == 1y!)
{

printf("Here we go again.\n");

/* goto start; */
)
else

(¢

ch = getchar(); /* clear buffer */

goto prompt;
)
)

FIGURE 12-15 Nested if-elbe example.
- 54

C, A HIGH-LEVEL LANGUAGF FOR SYSTFM PROGRAN "+~

2e9

Figure 12-16 shows how you might use the switch
statement to implement a “command recognizer” in one
of your programs. This example is modeled after the
commands available at the highest menu level in the
Borland TC development environment we discussed
carlier in the chapter. To get to the main menu in TC,
you press the F10 key. To select the desired submenu
you then press the key which corresponds to the first
letter in the name of the submenu. The choices are F,
E, R, C, P, O, D, and B. Each of these options brings
up a lower-level menu or carries out a command.

In the program in Figure 12-16 we use our new friend
getch() to read a character from the keyboard. We then
use a switch structure to evaluate the character and
decide what action to take. To simplify the basic struc-
ture of this example, we call a function to implement
each of the desired actions. Actually, for this example
we show the function calls as comments, because we
did not want to declare and define all these functions.
When execution returns from the called function, the
break statement at the end of that line will cause
execution to skip to the next statement after the switch

structure, If the key pressed by the user does not -

match any of the choices, the default: edit_ window();
statement at the end of the block sends execution back
to the edit operation. You can have only one value in
each case evaluation, so if you want the program to
accept lower- or uppercase letters, you have to put case
lines in for each. The line case 'F': followed by the line
case ‘f": file();wbreak;, for example, will call the file
Iunction if the user enters either a lower- or uppercase
1. A more versatile alternative is to wrife a smali functign
which converts all entered characters to lowercase before
ciitzring the switch structure. e jesve this for you to
do as an exercise at the end of the chapter.

THE WHILE AND DO-WHILE IMPLEMENTATIONS

‘In Chapter 3 we showed you how the WHILE-DO and
the REPEAT-UNTIL structures are used to loop through
@ series of statunents. In C these two structures are
called the while and the do-while. respectively. The major

#include<stdio.h>

void main()

(4 !’

char ¢h;

chegetchar();

“awiteh (eh) €

case 'F':

case 'fl /% dile_menu();
. case 'e'; /* edit_window(); */ bresk;

case 'r's /* run menu(); */ break;

case ‘c's /* compile_merw(); */ break;

case 'p's /* project_menu(); */ break;

case 'o'i /* options_menu(); */ bresk;

case 'd': /* debug_meru(); ¥/ break;

case 'b': /* break_merw(); */ break;

default 7+ edit_windew(); */

) !

*/ break;

)
FIGURE 1216 Example of C switch structure,

a2

-

CHAPTER TWELVE

.,

difference between the two structures is when the exit
test is done. For comparison, Figure 12-17 shows how
the two are implemented in C.

As you can see, in the while loop in Figure 12-17a,
the condition is evaluated before any statements are
executed. If the condition expression initially evaluates
to 0, execution will simply bypass the block of statements
under while and go on with the rest of the program. In
this case none of the statements in the while block
will be executed. If the condition expression initially
evaluates to a nonzero value, the statements in the
while block will be executed once. Then the condition
expression will be evaluated again, and if the result of
the evaluation is still nonzero, the statements in the
while block will be executed again. Looping will continue
until the condition expression evaluates to 0.

The key point of a while loop is that the condition is
tested before any statements are executed. In most cases
this “look before you leap™ approach is the best one, and
most loop algorithms can be written in this way.

For those cases where you want the loop statements
to be executed once before the condition is checked, C
has the do-while structure shown in Figure 12-17b. In
this structure the statements In the do-while block
are executed once, and then the specified condition
expression is evaluated. If the condition expression
evaluates to O, the do-while terminates and execution
goes on to the rest of the program. With this structure,
then, the statements In the do-while block will always
be executed at least once. If the condition expression
evaluates to a nonzero value after executing these state-
ments, the statements in the do-while block will be
executed again and the condition expression evaluated
again. Looping will continue until the condition expres-
sion evaluates to 0. Note that in this structure there is
a semicolon at the end of the while line.

Figure |2-18a shows how you can use a while loop to
make a user enter a Y or an N in response to a prompt.
This approach avoids using a goto such as the goto
prompt: statement in Figure 12-15. The declaration
statement for ch at the start of the program gives it a
null value. so the first time the condition for the while

/% while format */

while(condition)
[4
statement(s);
)

(@

/* dorwhile format */

do
4
statement(s);

),
while(condition);
(b)

FIGURE 12-17 (a) Basic format of C while structure.
(b) Basic formal of C do-while structure.

/* while example */
#include <stdio.h>
void main()

(4
char ch = 0x00; /* assign initial value to ch %/
while(ch!='n"88 chi='N'g chi='y'4k chisty!)

<

printf(*Enter y to play another game, n to quit.\n%);

chagetch();
)
it (eb--'n'll ches 1)

. printf('w \n"),
exit();
)
else
(

printf("Here we go again.\n");

/* goto start */
)

/* do-while example */
#include <stdio.h>

void mein()

<
char ch;
do
L4
ch=getch();
)

(@)

\

s
printf(“Enter -y to play another game, n to quit.\n");

Mile(ch!-"n'u chi='N'h chi='y'8L chi='Y!);

if (chas'n'|| ch=='N')
(
printf("Goodbye.\n");
exit();
)

else
(¢

printf(“Nere we go again.\n");

/* goto start */
)

G

FIGURE 12-18 (a) Example of C while structure. (b) Example of C do-while '

structure.

statement is tested, the result is false. Therefore, the
ch=getch(): statement part of the while is executed.
When getch() returns a new value to ch, the condition
expression for the while will be checked again. Execution
will stay in this while loop until getch() returns a y, Y,
n, or N. After it exits the loop, execution goes to the if-
else section of the program to determine the actions to
take based on the value returned by getch() and assigned
to ch.

Figure 12-18b shows how the same program section
can be implemented as a do-while. In this example we
did not need to give ch an initial value, because the
ch =getch(): statement at the start of the do-while gives
ch a value before any tests are made. The ch =getch()

C, A HIGH—LEVEL LANCUAGE FOR SYSTEM PROGRAMMING

statement will be repeated until the value of ch matches
one of the values in the condition test part of the do-
while.

It is not obvious in the examples shown In Figure 12-
18, but in most cases the while structure is a better
choice than the do-while, because the condition is
checked before any action is done.

THE FOR LOOP

A-weshowedyoumoevenlprevlmpmgnmwmplu
a for loop can be used to do a sequence of statements a
specified number ol times. The general format of a for
loop is:

413

for (initialization(s); test; modify)

statement(s)

}

To refresh your memory, Figure 12-19 shows a simple
example of a for loop. The initialization in this example
assigns a value of O to the variable count. If you want
to, you can include more than one initialization here.
You might, for example, include two initialization state-
ments such as count=0; b=23; to initialize a variable
called b with a value of 23 as well as initialize the loop
variable count.

The test part of this example compares the value of
count with the terminal value. If the value of count is
not equal to the terminal value, the statements in the
loop will be repeated.

The count — — in our example represents the “modify”
part of the for. This is where you specify what you want
to change each time around the loop so that the loop
eventually terminates. In some C programs you may see
more than one action statement in the modify section
of the for{). You might, for example, see something such
as “count+ +, index = index +4;" in the modify section.
These two statements will increment count by 1 and
increment index by 4 each time through the loop. Our
personal feeling is that the program is more readable if
you put only the loop variable initialization and loop
variable modification in the for parentheses.

To give you a little more challenging example of a for
loop and teach you more about arrays, the first part of
the program in Figure 12-20a shows how you can
use nested for loops to read maximum and minimum
temperature values from the keyboard and put the values
in a two-dimensional array. The last section of the
program uses another for loop to compute the average
temperature for each day and display all the results.

The int temps|{7k3]; statement at the start of the
program declares .an array of seven rows and three
columns. To help you visualizé this, Figure 12-20b
shows the array in diagram form. As you can see, there
is one row for each of the 7 days of the week. Also, there
Is one column for the daily maximum temperatures, one
column for the daily minimum temperatures, and one
column for the averages that will be calculated. The
arrow looping through the array shows the sequence
that the array values are stored in memory. As you can
see, the three elements in the first row are stored in the

¥include<stdio.h>

int count;
void main()
{
int count;
for (count=10; count>0; count--)
(
printf(“Xd\n ¥, count);
)

printf("blastoffiv);
H

FIGURE 12-19 Example of simple count-down for loop.

414 . CHAPTER TWELVE

three lowest memory locations. the three elements in
the next row are stored in the next three memory
locations, etc.

The elements of the array are stored in sequence in
memory, so you could access the elements in this array
as if it were a one-dimenslonal array of 21 elements. In
other words, you could set up a pointer to the first
element in the array and then keep inciementing the
pointer to access the other elements in the array. The
problem with this method is that you lose the row and
column information.

A much more versatile way to access the elemenrts in
this array is with row and column index values. The
index for an array starts from zero, so the term
temps{0]0] is a way to refer to the element in the first
row of the first column. Likewise, the term temps{O[1]
is a way to refer to the element in the second column of
the first row, and the term temps(6]2} is a way to refer
to the value of the third element of the seventh row.

In the program in Figure 12-20a we use the variable
{ to index a desired row and the variable j to index a
desired column in the array. The inner for loop in the
program uses j to access the elements in a row. The first
time the inner loop executes it will put the value returned
by scanf in the first element in the row. The second time
the inner for loop executes, it will put the value returned
by scanf in the second element in the row. Since the
inner loop is set to terminate for j < 2, the inner loop
will then terminate and execution will go back to the
outer for loop.

The outer for loop uses { to access the desired row in
the array. The first time through the outer loop i = 0,
so the first row in the array will be accessed. The next
time through the loop { has been incremented to 1, so
the second row in the array will be accessed. This process
is essentially the same as the nested delay loops that
you met in earlier chapters.

The scanf function requires that you pass it a format
specifier to tell it what type of data it will be reading and
that you pass it the address of the location where you
want the data put. You use the %d specifier to indicate
that you want the data treated as a decimal value, and
you use the term &temps{ilj] to pass the address of the
desired element in the array to scanf. Remember that
tempslilj] is a way to refer to the value of an element in
the array, so &tempsiilj| Is a simple way to refer to the
address of that element. Note that we used i + 1 for the
value of the day instead of just {. An array index starts
from zero, but we want the days to te numbered 1
through 7.

After all fourteen temperature values are read in and
put in the appropriate locations in the array, we use a
single for loop to compute the average temperature for
each day and put the computed results in the appropriate
row of the third column in the array. The tempslilj + 2] =
(tempslillj] + tempslilj + 1]¥2 statement shows how you
can add a constant to the j index value to access the
different elements in a row. Likewise, in the last printf
statement in Figure 12-20a, we add constants to the J
index to access the three elements in a row. Textbooks
often refer to this as “pointer arithmetic."

Now that you know the array-index method of ac-

/* C PROGRAM F12-20A.C */ -
/*Program to read max and min temperatures, then compute average */

#include <stdio.h>
int temps(7])(3]; /* extern so other modules can access */

void main()
(¢
int i, j;
for (i=0; i<7; i++)
L4
printf("Enter max temp for day Xd,"
“then min temp.\n", i+1);
for(j=0; j<2; j++) /* read max, then min */
scanf ("Xd", &temps[il[jl);
}
j=0; /* reset column index */
for(i=0; i<7; ie+) _
{
temps (il (j+2) = (temps(il[j) + temps([i)[j+1))/2;
printf(*For day Xd max = Xd min = Xd av = Xd \n",
(i+1), temps[il[j]l, temps(i)[j+1], temps[il (j+2]);

)
)
(a)
MAX MIN AV
DAY TEMP TEMP TEMP
1 0,0 i 0.1 | + 0.2
D e X D)
2~ 10 | [1] [2 |
3 2,0 _Il 2,1 Il ;Il 2,2 Ij
:
5 :—l 4,0 = J—I 41 l' 4,2
6 :—l 50 = Il 51 II ——II 52 Ij
s EXE [6.1] [&2 |
(b)
MAX MIN AV
temps{0](0]
temps — tempslo)] —{_00 | 01 | 02 |
temps(1] ———{ | | }
temps(2] ———={ | | 1
temps|3] ———{ | [IE
temps(4] —{ | | |
temps|5] ——{ | | 1
temps(6] —{ | | |

()

FIGURE 12-20 (a) Program showing index method of accessing elements in two-dimensional array. (b) Two-
dimensional array of 7 rows and 3 columns used to store maximum, minimum, and average temperatures for 7 days.
NOTE: Arrow shows order that values are stored in memory, going from lowest to highest memory acdress. (c) Two-
dimensional array shown as 7-element array of one-dimensianal 3-element arrays. (See also next page.)

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING 415

/* C PROGRAM F12-20D0.C */

/*Program to read max and min temperatures, then compute aversge */ -

#include <stdio.h>
int temps(7)(3);

void main()
L4
int i, j;
for (i=0; i<7; i+e)
4

/* read values entered */

printf(“Enter max temp for day Xd,"
“then min temp.\n", i+1);

for(j=0; j<2; j++)

scanf ("Xd“, (*(temps+i)+j));

)
for(i=0; §<7; j+e)
(4

/* read m,.lhcn min */

/* compute averages and print all values */

((temps+i)+2) = (*(*(temps+i)+0) + *(*(temps+i)+1))/2;
printr(“For day X%d mex = Xd min = Xd av = Xd \n¥,
Ciel), *(*(temps+i)+j), *(*(temps+i)+1), *(*(temps+i)+2));

)
)

(@)

For day 1 max = 98 min = 68 av = 83

For day 2 max = 89 min = 65 av = 77

For day 3 max = 87 min = 59 av = 73

For day 4 max = 90 min = 67 av = 78

For day 5 max = 86 min = 58 av = 72

For day 6 max = 78 min = 68 av = 73

\ For day 7 max = 83 min = 69 av = 76
(e)

FIGURE 12-20 (Clntinued) (d) Program in Figure 12-20a rewritten using pointer notation.

(e) Results produced by program in 12-20a or 12-20d.

cessing the elements in a two-dimensional array such
as this, we will briefly show you the direct pointer
method, which is very commonly used by experienced C
programmers. Even if you don't choose to use this
pointer method yoursell, you should understand it well
enough to follow it in other peoples’ programs.

As we said before, one way of thinking about the array *

temps{713] is as a two-dimensional array with seven
rows and three columns. Another common way of think-
Ing of the array named temps fs as seven one-dimen-
sional arrays of three elements each. In this view
shown in Figure 12-20c, temps{0] is the name of the

first three-element array, temps{1] s the name of the

second three-clement array, and temps{6] is the name
of the last three-element array.

The key to understanding how you work with this
form is to remember that the name of an array is.a
polnter to the first element in the array. The name
terhps then is a pointer to the first element in the array
of arrays. In this view the first element in the array is
the subarray temps|0]. so temps Is a pointer to temps|O0].
One way to represent this relationship in C syntax is
temps = &temps(0]. The other way to represent this
relationship is *temps = temp|(0].

Now. templO] is the name of an array of three ints.
so temp{O] is a pointer to the first element iu the

416 CHAPTER TWELVE

array temps{0]. You can refer to the value of the first
element in temps(0] with the expression *temps{O].
This expression simply says “the value pointed to by the
pointer temps|0].” In the last paragraph we showed you
that *temps = temps|0], so with a little substitution the
expression *temps{0] can be written as **temps. The
**temps expression, which is the pointer form we wanted
to get to, means “the contents of the memory location
pointed to by the contents of the memory location
pointed to by temps.” This is easier to understand if you
mentally put parentheses around *temps and think of
it as a pointer to the first subarray, temps{0].

The result of all this is that the three equivalent ways
to refer to the value of the first element in the first
subarray of temps are:

temps{0J0] =*temps|0] = **temps

The expression temps{0f0] is the two-dimensional array
method we showed you in Figure 12-20a. The expression
*temps|0] takes advantage of the fact that temps(0] is a
pointer to the first subarray and *temps(0] represents
the value pointed to. The expression **temps is just an
indirect way to point to temps[0] and then to the value
pointed to by temps|0]. The two-dimensional-array form
is probably the most intuitive, but most compilers

*

convert it to the pointer form to produce the actual
machine code. Therefore, many programmers write
array expressions directly in the pointer form.

If you follow that **temps is a valid way to refer to the
first element in the first subarray or row of temps, the
question that may occur to you is, How do you access
the other elements in the array using the pointer form?
The answer to this question is that you add index values
to the pointer to access the desired element. If you use
{ as the row or subarray index and j as the column index
as we did in Figure 12-20a, then

" tempslilj]=*(*(temps + 1) +J)

The *(temps + i) in the second expression points to the
desired subarray. Adding j to this changes the value of
the pointer to point to the desired element in the sub-
array. For reference, Figure 12-20d shows how the pro-
gram in Figure 12-20a can be written using the pointer
notation we have just shown you. If you work your way
through this example, you should be well on your way
to understanding C pointers. Note that we used the
numbers 0, 1, and 2 to index the desired column in the

statement which computes the average and in the printf

statement. The +0 is not needed in the second term,
but we included it to emphasize the position of the
column index in the term. Figure 12-20e shows the re-
sults produced by either the program in 12-20a or the
one in 12-20d.

C Functions

DECLARING, DEFINING, AND
CALLING C FUNCTIONS

As we have told you many times before, often the best
way to write a large program is to break it down
into manageable modules and write each module as a
tion or a series of functions. The C functions we used
in the preceding program examples are all “predefined.”
The code for these functions is contained in library files.
All you have to do to use one of these functions is to put
#include<> at the start of your program to tell the
compller the name of the file which contains the proto-
type of the function, call the function by name, and in
some cases pass some parameters to the function. Now
we need to show you how to write and use your own C
functions,

To create and use a function in a program, you must
declare the function, define the function, and call the
function, Figure 12-21a, page 418, shows a template or
model of how you do each of these, and Figure 12-
21b shows a simple program example. To help you
understand the terms in the templates, we suggest that
you lork at the corresponding parts in the example
program as we discuss the templates, Don't worry about
the details of the example program, because after we
work through the templates we will discuss the example
program more thoroughly, The three templates in Figure
12-2]a are shown in the order that they appear in
programs, but we will discuss them in the order that
you usually construct them as you write a program.,

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

The first step in writing a function is to define the
actual function. Functions are always defined outside of
main(), because you cannot define one function within
another. To actually write the function you will probably
work from the inside out. In other words, you will
probably first write the data declarations and the action
statements which implement the algorithm for the body
of the function. Note that the statement block for the
function is enclosed in curly braces. After you write the
body of the function, you can then decide what values
have to be passed to the function and what value, if any.
will be returned from the function to the calling program.
When you arrive at these decisions you can write the
header for the function.

As shown in Figure 12-21a, the function header starts
with a type such as int, float, char, etc. The type in this
case represents the type of the variable returned from
the function to the calling program. A C function can
return the value of only one variable to the calling
program. If the function does not directly retura a value
to the calling program, you give the function a type void.

NOTE: Most programmers don't bother to assign
a type to the main function..but the Turbo C+ +
compiler will give a warning if no type is given.
You can either make main type void or ignore the
warning.

After the function name, you enclose in parentheses

the type and name for each function varfable that will
. receive values passed from the calling program. These

variables declared in the function header are often called

formal arguments or formal parameters. The trick here
is that you usually use different names for particular
variables in the calling program and in the function.
This makes the function “generic,” because you can
then pass any variables of the same types to the function
in place of the “local” variables declared in the function
definition header. Later. when we discuss the details of
the example program in Figure 12-21b, you will better
see how this works.

As an example of a function header, the function
header int c2flint ¢) in Figure 12-21b declares a function
called ¢2f which returns an int value and requires an
int value to be passed to it. The int value passed to the
function will be automatically assigned to the int variable
called ¢ in the function, Also In Figure 12-21b the
function header void get_temp(int *ptr) defines a func-
tion called get.temp which does not return a value, but
requies that a pointer (o an Int type variable be passed
to 1t. Note that function header lines do not have
semicolons after them,

After you write the function definition, the next step
is to declare the function by writing a prototype for the
function. This declaration is equivalent to declaring a
variable at the start of your program. Note in Figure 12-
21a that the function prototype declaration at the start
of the program has the same format as the function
defini.ion header, but it is [ollowed by a ;. This prototype
lets the compiler know the name of the function and the
types of data to be passed to the function. The compiler
uses this Information to make sure that the correct data

4417

TEMPLATES FOR DECLARING, CALLING AND DEFINING C FUNCTIONS

DECLARATION (PROTOTYPE) *
type
t

tyge of data
returned by function

CALL

void main()
{

function_name(variable list);
t

type and formal parameter (dummy)
name for each variable to be passed

function_name(actual arguments);
t

names of variables or pointers
to be passed to function this call

DEFINITION
type
1

type of data
returned by
function

{
statements;

return(variable) ;
t

function_name(formal arguments)

ay
note: no ;

types and names of local
variables which correspond to
actual variables passed to function

name of variable returned to

calling function

FIGURE 12-21 Declaring, callAing. and defining C functions. (a) Template. (See also next page.)

types are passed to the function when it is called. In
large programs the function prototypes are put in a
separate header file and pulled into the program at
compile time with a #include<> directive. This reduces
the “clutter” at the start of the main program.

As shown in the CALL section of Figure 12-21a, you '

call a function with its name and a set of parentheses
which enclose the name(s) of the variables being passed
to the function. If no variables are passed to the function,
you put the term vold in the parentheses after the
function name.

The variables named in the function call are commonly
called actual arguments or actual parameters. Remem-
ber from a previous discussion that when you pass a
variable to a function in C, you pass just the value of
the variable, or—in other words—iust a copy of the
variable. If you want the function to be able to access
and change the actual value of a variable, you must pass
the function a pointer to the variable. Now that you have
an overview of the three tasks, let's take a little closer
look at the example program in Figure 12-21b.

In this example program we first declare an int variable
named tempc which will hold the value of a Celsius
temperature entered by the user and an int variable
called tempf which will hold the value of a Fahrenheit
temperature calculated by a function in the program.

418 CHAPTER TWELVE

The int c2f(int c); statement next in the program is
the function prototype declaration for the c2f function.
As you should be able to teii from the statement, the c2f
function returns an int value and expects to receive a
single int value from the calling program. Before we look
at the next function prototype, let's work our way
through the call and execution of the c2f function.

We call the c2f function with the statement tempf=
c2f{tempc); statement. This statement will pass the
value of tempc to the function and assign the value
returned by the function to tempf. This second effect Is
the same as you met earlier in statements such as
ch=getch().

Note that the variable name tempc does not appear in
the c2f function block. As we said before, the actual
argument passed In the function call is given to the
corresponding formal argument identified in the func-
tion header. In this case the only formal argument in
the header is c. so the value of the actual argument
tempc will be assigned to the variable c in the function.
In a case where several arguments are being passed to
the function, each actual argument will be assigned to
the corresponding numbered formal argument.

In the c2f function we declare an additional int variable
named f and then we use a familiar formula to calculate
the equivalent Fahrenheit temperature for the Celsius

!
/* Declaring, calling, and defining functions */

#include<stdio.h>

int tempc, tespf;
int c2f(int ¢);

/* external (global) variables */
/* declare function c2f which returns an int value */

void get_temp(int *ptr); /* declare function which modifies a value
pointed to, but does not directly return a value */

void main()
<
get_temp(&tempc);

/* call function get_temp.

get_temp writes directly to tempc */

tempf = c2f(tempc);

/% call c2f function, pass value

of tempc to function. Returned value
assigned to tempf */

printf("The temperature in Celsius is Xd\n", tempc);
printf("The temperature in Fahrenheit is Xd\n", tempf);

)} /* end of main */

int c2f(int c)
«
int f;
f = 9%c/5 + 32;
return (f);
b

void get_temp(int *ptr)
C

/* define function c2f. Note no ; at end */

/* automatic (local) variable */

/* define function get_temp */

printf(“Please enter the Celsius temperature.\n");

scanf("Xd",ptr);
)

FIGURE 12-21 (Continued) (b) Examples in a program.

value passed to the function. The operator precedence
rules we showed you earlier in the chapter tell you that
¢ will first be multiplied by 9 and the result divided by
5. Then 32 will be added to the quotient and the result
assigned to the variable f. The return(f); statement at
the end of the function returns execution to the calling
program and passes back the value of f. As we said
before, this value is assigned to tempf in the calling
program. Incidentally, the parentheses after the return
statement can contain any expression which evaluates
to an int. You could, for example, write the return
statement as return(9*c/S +32);. For your first pro-
grams, however, it Is probably better to keep the action
“spread out” as we did in the example so you can follow
it more easily. Now let's work through the second
function in Figure 12-21b.

The void get_temp(int *ptr); prototype declaration
tells you that the function get_temp does not directly
return a value and that the function expects to receive'
a pointer to an int type variable when called. We call the
function with the statement get_temp(&tempc), so the
address of the variable tempc Is passed to the function.
In the get_temp function header, we declared a pointer
named ptr with the (int *ptr) after the function name,
so the address of tempc will be assigned to ptr when it
is passed to the function. In other words, ptr = &tempc.

- 55|

C, A HIGH-LEVEL LANCUAGE FOR SYSTEM PROGRAMMING

In the get_temp function we send a prompt message
to the user and then use scanf to read the user's
response. As you may remember from previous exam-
ples, the predefined scanf function requires a format
specifier and a pointer to the location where you want
it to put the data read from the keyboard. In this call to
scanf we pass ptr to it, so the result read from the
keyboard will be written to the location pointed to by
ptr. Since ptr = &tempc, the value read from the keyboard
will be written to tempc. This function has no return
statement, because no value is returned to the calling
program, but when the scanf("%d",ptr) call is finished,
execution will return to the calling program.

Now that you know more about C functions, we need
to talk again about the difference between variables
declared In a function and variables declared outside
any function.

EXTERN, AUTOMATIC, STATIC, AND
REGISTER STORAGE CLASSES

Any variable or function declared in a program has two
properties, which are sometimes referred to as lifetime
and visibility or scope. These terms are best explained
by some examples. As we mentioned in an earlier section,
variables declared outside of main are by default extern,

41"

or—in other words—global. This means that they are
visible to or accessible from anywhere in the source file
where they are defined or from other files which will be
linked with that file. Extern variables are created in
memory when the program is loaded and remain there
or “live” as long as the program is running. In Figure
12-21b tempc and tempf are examples of variables which
are extern by default.

‘We also mentioned earlier that variables declared in a
function are by default automatic. An automatic variable
is “local,” which means that it is accessible or visible

“only within the function where it is declared. Each time
you call a function which contains an automatic variable,
a temporary storage space is allocated on the stack for
that variable. When the function returns execution to
the calling program, this storage space is deallocated.
An automatic vartable then only lives during the execu-
tion of the function block where it is declared. In Figure
12-21b the variables ptr, ¢, and f are examples of
antomatic variables.

‘“ow, suppose that you want to declare a variable
within a function so the whole world can’t aceess it, but
yi: want the variable to keep its value from one call of
the function to the next. You can do this by putting the
wrd static in front of the varlable declaration. For
«~.umple, {f the declaration “static int count;” is located
i a function, count will be visible only in the function
bul will hold its value of “live” all the time that the
program I8 running. If you put the word static in front
of a variable declaration that !s outside = main, the
elfect 18 to make the variabic acessible or visthle only
iti the source file where 1t is dxciared.

Another useful storage class /or va:iables is reglsioer,
Ve might, for example, declors = vaslable i a function

regiater at the start of this declar «iion azk. ‘he comptler
to assign this variable to one oi the 8086 registers. The
reason for doing this is that it i& much faster to, for
wremple, increment the contents of a repister than it
i« to increment the contents of a memory location
dynamically allocated to an automatic varizble. If all
segisters are in use, the compller wili ignore the register
storage request and treat the variable as a normal
eatomatic variable. .

“unctions also have storage classes. By default, func-
‘#zms are extern or global. This means that they can be

accessed from other flles. To access a function from
another file, you write a copy of the function prototype
in that file and put the word extern in front of it.

Il you give a function the storage class static, the
function Is accessible only from within the file where it
is defined.

To summarize the different storage classes and their
characteristics, Figure 12-22 shows examples of each.
You can use these examples to help you decide which
storage class to use for particular applications In your

programs.

FUNCTIONS AND ARRAYS

One of the main reasons to learn about C pointers is so
that you can use them with functions. As we said before,
if you want a function to modify the value of a variable,
you must pass the function a pointer to the variable. In
Figure 12-21b we showed you how to pass a simple
variable polnter and in Figure 12-12 we showed you how
to pass an array pointer to the predefined scanf function.
Now we need to show you how to pass array pointers to
functions you write. .

Figure 12-23 shows how you can declare, define, and
call a function to add profit to costs Instead of doing the
operations in main as we did in previous examples. The
first section of main prompts the user and then calls
scanf to read in 10 costs and put the 10 values in a float
array called cost. Remember that scanf requires a format
specifier and a pointer to where you want to put the
value read. In Figure 12-12 we used a declared pointer
as the argument for scanf, but here we use the expression
{cost + () as a polnter to the desired element in cost.
Cost is a pointer to the first element in the array, and
as we cxpiained earlier, (cost + () is a pointer to element
{ in the array. When the compiler performs pointer
arithmetic on the expression (cost +), it automatically
multiplies times the number of bytes in the data type
so that the computed pointer accesses the desired
element.

After all the values are read into the cost array, we call
the function add_profit to compute the selling price for
each and print the results. The add_profit function Is
type void, because it does not return a value directly
to main. The expression in the parentheses of the
add_profit function header declares a float pointer called

VARIABLE EXAMPLE LIFETIME ACCESSIBILITY
int tempf; program all source files
static int tempc; program this file only
extern int book_total program defined in another file
int c2f(inc ¢); program all source files
- static int fa¢(intf) program " this source file only
void main ()
{
int count; block block and sub blocks

static int interrupt_cnt; progrlm

register int index block

v

after declared
block and sub blocks
after declared
block and sub blocks
after declared

FIGURE 12-22 Examples of variable and function storage classes.

420 CHAPTER TWELVE

/* C PROGRAM F12-23.C */
/* Passing array pointers to functions */

float cost(10]1, prices[10]; /* array declarations */

/* function declarstion or prototype */

void add_profit(float *pp, float *cp, int count); L

void main ()
(4
int i;
int number=10;

printf(“Enter Xd costs. After each cost press enter.\n",number);

for(i=0; i < number; i++)
scanf("Xf", (cost+i));

/* read in costs */

add _profit(prices, cost, number); I" function call ¥/

} /* end of main */

/* function definition */

void udd__p;'ofit(!loot *pp, float *cp, int count)

(<

int i;

for(i=0;
4

i < count; fe+)

*(ppti) = *(cpi) + .25 * *(cpri);

printf(“cost=%6.2f, price=X%5.2f \n" *(cp+i),*(pp+i));

)
b

FIGURE 12-:23 Program showing how to pass array pointers to functions. .~

pp that will be used to receive a pointer to prices and a
float pointer called cp that will be used to receive a
pointer to cost. The header also declares an int which
will receive the number of elements in the array. Here's
why we declared these three.

The procedure reads a value from the array cost,
computes the selling price, and puts the result in the
array prices. Since we are changing values in the prices
array, we have to pass the function a pointer to prices.
For this simple example, however, we are not modifying
the values in cost, so we did not actually have to pass a
pointer to cost. The array cost could have been accessed
directly from the function. (Remember, cost is declared
outside of main, so it is extern and accessible globally.)

If you refer to cost directly in the function, then the
function will work only with values from the array cost.
We passed both the source and the destination pointers
to the function so that the function will work with any
array of costs and any array of prices. Likewise, we pass
the number of elements in the array to the function.
The for loop in the function uses this passed number
instead of a fixed number to determine how many
elements to process. The function then can process
arrays with any number of elements up to the limit of
int, which is +32.767.

In a more realistic program you might declare the
arrays large enough to hold 1000 or more clements and

then get the value for number by counting how many
costs a user actually entered before entering an EOF
character (Ctrl Z). The main point we are trying to make
here is that by passing pointers and lengths to functions
instead of passing directly named variables, you make
the function more universally useful or “portable.”

Since the name prices is a pointer to the prices array
and the name cost is a pointer to the cost array, the
actual call of add_profit in Figure 12-23 passes prices
to pp. cost to cp, and nurhber to count.

The example we have just discussed shows you how
to write a function which accesses two one-dimensional
arrays. Figure 12-24, page 422, shows how you can
declare, define, and call a function which accesses the
elements in a two-dimensional array. Specifically. the
function in this program converts each Celsius tempera-
ture in a two-dimensional array of temperatures to its
Fahrenheit value. This program is simply an extension
of the program in Figure 12-20a.

In Figure 12-24 the first for loop in main reads the
max and min Celsius temperatures for 7 days and puts
them in the first two columns of a 7 x 3 array. The
second for loop in main computes the average tempera-
ture for each day and writes the result in the third
column of the appropriate row in the array.

Once all the Celsius values are in place, we call
the function ¢2f to convert each Celsius value to its

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING 421

/* C PROGRAM F12-24.C */
/* Program to read max and min Celsius temperatures, compute average,
convert all values to Fshrenheit, and display results */

#include <stdio.h>
int ctemps (71 (3);
int ftemps(7)(3];
void c2f(int ct{) (3], int ftl1(3), int rows);

void main()
(
int days = 7;
int i, j;
for (i=0; i<days; i++)
4

/* function declaration */

/* note i and j separate variables in main and c2f */

printf(“Enter max Celsius temp for day Xd,»
“then min Celsius temp for day Xd.\n", i+1,§+1);

for(j=0; j<2; je+)
schnf (“Xd“, Lctemps(i)[jl);
)

for(i=0; i<days; i++)
{

/* read max, then min */

ctemps [i) (2] = (ctemps[i} (0] + ctemps (il [11)/2; /* average */
printf(“Celsius temperatures for day Xd: max = Xd min = Xd *
“av = Xd \n", (i+1), ctemps[il(0), ctemps[i] (1], ctemps[il [2));

)
c2f(ctemps, ftemps, days);
for(i=0; i<days; i++)

/* call c2f function */

printf("Fahrenheit temperatures for day %d: max = %d min = Xd *

“av = Xd \n", i+1,

fremps [i1(0), ftemps(i)(1), ftemps[i](2));

} /* end of main */

/* define c2f function */
void c2f(int ct() (3], int ft[) (3], int rows)
¢
int i, j;
for(i=0; i < rows; i++)
for(j=0; j<3; je+)
fElid[j) = 9*ctlil(j1/5 + 32;
)

/* note these variasbles different from 1,J in main */

FIGURE 12-24 Program using pointers and functions with a two-dimensional

array.

Fahrenheit equivalent and put the results in an array
called ftemps. As with the previous example, we want to
pass pointers to the two arrays and pass the length of
the arrays so that the function Is as versatile as possible.

The expression int ctf [3] in the c2f function header -

in Figure 12-24 shows.one way to declare the pointer
needed to receive a pointer to a two-dimensional array.
The empty brackets between ct and [3) indicate that ct
Is a pointer to an array of three elements. When we call
the c2f function, we pass ctemps as the actual argument.
As shown in Figure 12-20c, the name ctemps is a pointer
to the first three-element array, temps|0], so the call
glves the c2f access to the first three-element array. In
the c2f function a nested for loop is used to access the
elements In ctemps|0]. ctemps{1], ctemps|2), etc.

In the same way the int ft{ 3] expression in the c2f
function header declares another pointer to an array of

422 CHAPTER TWELVE

three elements. This formal parameter is used to receive
a pointer to ftemps during the call. Incidentally, you can
declare a pointer to a three-dimensional array with an
expression such as float hrs_worked| [12]31]. The trick
here Is to simply leave the first set of brackets after the
array name empty.

Another method of declaring the formal argument for
passing the ctemps pointer to the function is with the
expression int (*ct)(3]. This expression likewise declares
Ctas a pointer to a three-element array. The parentheses
around “ctare required to indicate that you are declaring
a pointer to an array. The expression int *ct[3] declares
an array of three pointers which each point to int-type
variables.

To summarize the operation of all this, the c2f(ctemps,
ftemps, days) statement in Figure 12-24 calls the func-
tion. The ctemps in the function call passes a pointer

to the cten;ps array to the function pointer variable ct.
The ftemps in the function call passes a pointer to the

ftemps array to the function pointer variable ft. The ':V

days in the function call passes the value of the variable
days to the function variable called rows. The function
uses these passed values and a nested for loop to
read an element from ctemps, compute the Fahrenheit
equivalent, and write the result to the same element in
ftemps. Note that since the number of rows is a variable
in the functjon, the function can be called to process
any number of three-element arrays.

DECLARING AND USING
POINTERS TO FUNCTIONS

In the preceding sections we have shown you how to
declare pointers to simple variables and pointers to
arrays. You can also declare and initialize a pointer
to a function. This is an advanced technique and it is
unlikely that you will use pointers to functions in your
initial programs. However, we want to show you a couple
of examples so that you will recognize them in someone
else’s programs. Here is how you could declare a pointer

to the c2f function in Figure 12-21c and call the function °

using the pointer instead of using a direct call.

int c2f (int c);
int (*convert) (int c);
convert = c2f;

/* declare the function c2f */

/* declare a pointer to a function */

/* initialize the pointer to point
toc2f*/

/* call c2f with pointer and pass */

/* value of temp c to the function */

/* c2f function definition header */

tempf = (*convert)
(tempc);
int c2f(int c¢)

The basic function declaration and definition here
are the same as those in Figure 12-21b. The second
statement declares a pointer called convert that points
to a function. The key to recognizing that convert is a
pointer to a function is the double set of parentheses in
the declaration. The int at the start of the declaration
indicates that the function pointed to returns an int
value. The int c in the second set of parentheses indicates
that the function pointed to expects to receive an int
value. The parentheses around the name of the function
pointer are required to indicate that convert is a pointer
to a function. The statement int *convert(int c):;, which
does not have these parentheses, declares a function
that returns a pointer to an int value.

The tempf=(*convert)(tempc); statement calls the c2f
function using the pointer called convert. The term
*convert represents the contents of convert. which we
initialized with the address of the c2f function. The
value of tempc is passed to the function. and the int
value returned by c2f is assigned to tempf.

Now that you know much more about functions, in
the next section we will take a closer look at some of the
predefined functions available to you in libraries.

C Library Functions

INTRODUCTION

Throughout this chapter we have used predefined func-
tions such as printf(), scanf(). and getch() in many of

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

the example programs. The functions we have used are
just a small sample of those available. Turbo C+ +
comes with a Run Time Library containing over 450
predefined functions and macros. These library func-
tions allow you to perform /O operations with a variety
of devices, dynamically allocate memory in a program,
produce graphics displays, read from and write to disk
files, perform complex mathematical computations, etc.
For many applications you can use one of these prede-
fined functions instead of writing your own function.
The source code for all these functions is available from
Borland, so if the predefined function does not quite fit
your application, you can modify a copy of the source
code for the function to produce a custom version which
does.

The declarations or prototypes for the predefined
functions are contained in files called header files or
include files. These files have names such as stdio.h,
string.h. math.h. graphics.h, and alloc.h. The preproc-
essor #Include directive tells the compiler which header
files to search for the predefined functions you use in a
program. The directive #include<stdio.h>, for example,
tells the compiler to look in the header file called stdio.h
to find the prototypes for functions such as printf(),
scanf(), and getch().

The actual codes for the predefined functions are
contained in library (.lib) files. When you call a function,
the object code for the function gets linked with the code
for the rest of your program when the .exe file is created.

In the following sections of the chapter we review the
functions we have used previously and show some more
functions and examples that you may find useful in'your
programs. In later chapters we show you how to use
other predefined functions for graphics, disk file, and
communications programs. To help you refer to the
examples here, we have separated them according to the
type of operation they perform. For discussions of all
450+ functions and macros consult the Turbo C+ +
Reference Guide.

KEYBOARD INPUT FUNCTIONS
Function Prototypes in stdio.h

getch() /* read char as soon as
pressed */

/* read char and echo to
CRT */

/* wait for Enter, read
char*/

/* reads characters from
keyboard until Enter
and writes string to
location pointed to
by s. Reads spaces
and tabs.*/

int scanf(const char *format,(address, . . .])

int getch(void)

getche() int getche(void)

getchar() int getchar{void)

gets() char *gets(char *s)

scanf()

Scanf reads characters from the keyboard until it
reads a blank, a tab, or an Enter. Data read in is
formatted according to the format specifier in the call
and written to the address passed in the call. The
three dots after address indicate that the number of

423

arguments to be passed to scanf Is variable. This means
that you can include several format specifiers and several
addresses in one scanf call to read in multiple vaiues.

Scanf normally returns the number of values read and
stored. If the first entered character that scanf reads
cannot be converted to the specified format, scanf will
not store the value, and it will return a value of 0. For
example, if the scanf call statement contains a %f format
specifier and you accidentally enter a T, scanf will
terminate and return a 0.

The input loop in Figure 12-12 can be rewritten as
follows to make sure that the pointer does not get
incremented iIf no-value was written to one of the
elements in the array:

for(i=0:1<10; 1+ +)
if((scanf("%f",cpntr)) = =0)
{

/ correct index value */

fsiy

fAlush(stdin); /* clear unread characters from
keyboard buffer */
continue; /* skip rest of loop actions */

}

else cpntr+ +;

The continue statement here will cause the cpntr+ +
to be skipped over In this trip through the loop If the
value returned by scanf is zero.

NOTE: This cure does not work if an illegal charac-
ter Is entered in any but the first digit position.

OUTPUT FUNCTIONS
Functton Prototype in stdio.

'\\ /* outputs passed

putchar() int putchar
(intc) \ character to screen.
\Qretums ~1(EOF)if
Tor. */
puts() int puts(const

char *s)

Puts sends a null terminated string pointed to by s to
the screen. If an error occurs, puts returns a value of
—1 (EOF). For outputting simple strings. puts uses
much less memory and time than printf.
printfl) int printf{const char *format, [argument,

wss

As shown by the many examples in the preceding
programs, the format here consists of text and format
specifiers. The arguments are a list of variables, one for
each format specifier. The general form of the format
specifiers i1s as follows:

% flags width . precision (F.N. h.1, L] type

flags = output justification, numeric signs and other
= = left justify printed digits
+ = print + or minus sign In front of value

424 CHAPTER TWELVE

blank = positive values start with blank instead of +
width = total number of digits left of decimal point
[F.N.h.L.L] = override default size of argument with
F = far pointer, N = near pointer, h = short int,
1 = long. L = long doubie
type = conversion specifier as shown in Figure 12-11

Consult the Turbo C+ + Reference Manual for a com-
plete explanation of the print controls in printf.

int fprintf (FILE *stream, constant char
*format (,argument, . . .))

fprintfl)

With the proper setup fprintfi) will send program
output to the printer tnstead of to the CRT screen. As
we discuss further in a later chapter, we often think of
data going to or coming from a disk file as a “stream.”
The same term can be used to refer to data going to the
CRT. The fprintf() function allows a stream of data to
be sent to the printer. Figure 12-25 shows how this
function can be used to send the output of our old prices
program to the printer.

Before you can call the fprintf{) function, you must
use the predefined setmode() function to tell the com-
pller that you are going to send a text file to the printer.
The 0004 in this call is a “handle” which identifies the
printer, and the O_TEXT is a predefined term for text
mode. The prototype for setmode() s in fentl.h, so we
put #include<fcntl.h> at the top of the program.

The fprintfl) function call is the same as a call to
printf, except that we include the term stdprn before
the usual printf arguments. The term stdprn tells fprintf
to direct the data stream to the standard printer device.
Incidentally, the \f in the final fprintf statement is a
formfeed character, which tells the printer to advance
to the top of the next page.

STRING FUNCTIONS

Function Prototype in string.h

strecat() char *strcat(char *dest, cons char *src)

Strceat() adds a copy of string pointed to by src to the
string pointed to by dest. and returns a pointer to the
start of the combined string.
strchr() char *strchr(const char *s, int c);

Strchr scans a string ppinted to by s for the first
occurrence of c. Strchr returns a pointer to the first
occurrence of ¢ or returns a null if ¢ was not found In
the string.

strlen() size_t strlen(const char *s);

Strlen returns length of string pointed to by s.

stremp() intstrcmp(const char ‘s 1, const char *s2);
Stremp compares each character in s1 with the corres-
ponding character in s2. Stremp() returns 0 if the two
strings are equal. a positive number if s1 1s greater than
s2. and a negative number if s2 Is greater than s1. The

/* C PROGRAM F12-25.C %/
/* Sending program output to a printer %/

#include <stdio.h>
#include <fentl.h>

int cost() = (20,28,15,26,19,27,16,29,39,42); /* array of 10 costs */

int prices[10];

void main()
[§
int index;
setmode(0004, O_TEXT);
for (index=0; index <10; index++)
prices[index] = cost[index] + 15;

for (index=0; index <10; index++)

/* array to hold 10 prices */

/* for loop to compute */
/* 10 prices */

/* for loop to display results */

fprintf(stdprn,"cost = %d, price = Xd, \n",
costlindex], prices(index]);

fprintf(stdprn, "\f¥);
b

FIGURE 12-25 Program using predefined fprintf function to send program

output to a printer instead of to the CRT. .

stricmp() function is the same as strcmp(), except that
it ignores the case of the characters in the strings.
Figure 12-26 shows how you can use the stricmp()
function to implement an improved version of the pass-
word check program from Figure 5-3.

At the start of the program we declare the required
character arrays and a counter. Then we prompt the
user and use gets() to read the response. The while loop
compares the value returned by stricmp with 0 to see if

/* C PROGRAM F12-26.C */
/* Password program in C */

#include<stdio.h>
#include<string.h>
void mein()
(
char password[] = “failsafe";
char input_word(8];
int try = 0;
printf("Please enter your password.\n");
gets(input_word);)
while(stricmp(password, input_word) 1= 0 && try++ <2)
&
printf("Entered password is incorrect,try again.\n");
gets(input_word);
)
if(stricup(pauuord,input_uord) 1= 0)
(
printf("This computer does not know you'!");
/* alarm() *//* call ASM function to sound alarm */
exit();
)
printf(“Welcome, what can I do for you?");
)

FIGURE 12-26 Program using predefined string function
to compare passwords.

C. A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

the entered password is correct. If the password is
correct, execution exits the while loop and goes on to
the if structure, If the entered password is incorrect, the
while loop gives the user two more tries to enter the
correct password before going on to the if structure.

If the value returned by stricmp() is equal to zero,
execution will simply fall through the {f structure and
print the welcome message. If the user did not get the
password correct in three tries, then the if structure
prints a message, sounds an alarm, and exits. In a more
realistic program you would probably call a function
which locks up the machine at this point instead of
doing a simple exit.

MATH FUNCTIONS
Function Prototype in math.h

sqrt() double sqrt (double x);

Sqrt() returns the positive square root of x. If x is
negative, sqrt returns zero. We don't have space here to
discuss the prototypes for the many 8087 type math
functions found in math.h. However, to keep a promise
we made earlier, Figure 12-27, page 426, shows how the
Pythagoras program from Chapter 11 can be writte
in C. ’

Remember. this program calculates the value of the
hypotenuse of a right triangle by taking the square root
of the sum of the squares of the two legs. In the program
in Figure 12-27 we call the predefined function sqrt()
to take the square root. Wr pass sqrt a value which is
equal to side_a squared +side_b squared. Sqrt returns
the square root of the sum and assigns it to side_c.
Note that we wrote a #include<math.h> directive at
the start of the prbgram to tell the compiler where to
look for the prototype of the sqrt() function.

When the compiler compiles this program, it will use
the default mode of “emulator” for the instructions

425

/* C PROGRAM F12-27.C */
/*PYTHAGORAS REVISITED */

#include <stdio.h>

#include <math.h>

void main ()

4
float side_a, side_b, side c;
side_a = 3.0;
side_b = 4.0;

side_c = sqrt (side_a * side_a + side_b * side_b);
printf(“side a = X2.2f side b = X2.2f
side C = X2.2f\n", side_a, side_b, side_c);
>

FIGURE 12-27 C version of 8086/8087 Pythagoras
program in Figure 11-22.

which act on floating-point numbers. When you run

the program, a predefined function determines if your-

system contains an 8087 or 80287. If an 8087 is present,
the program will use 8087 instructions to implement
floating-point operations in the program. If your system
does not contain an 8087, the program will use floating-
point library functions which emulate the 8087 instruc-
tions. If you are sure that a floating-point program will
be run only on systems which have 8087s present, you
can work your way through the menu path Options-
>Compller->Code generation in the Turbo C+ + IDE
and toggle the Floating-point line to 8087/80287. This
will shorten the length of the .exe program produced,
because the emulation functions do not have to be
included.

Writing Programs Which Contain C
and Assembly Language

INTRODUCTION

The C language is very useful for writing user-interface
programs, but code produced by a C compiler does not
execute fast enough for applications such as drawing a
complex graphics display on a CRT. Therefore, system
programs are often written with a combination of C and
assembly language functions. The main user interface
may be written in C and specialized, high-speed func-
tions written’ in assembly language. These assembly
language functions are simply called from the C program
as needed.

Also, when writing a program that is mostly assembly
language, you may find it useful to call one of the
predefined C functions to do some task that you don't
want to take the time to implement in assembly lan-
guage.

The main points you have to consider when interfacing
C with assembly language are

1. How do you call a desired function?

2. How do you pass parameters to the called function?

3. How are parameters passed back to the calling
program from the function? ‘

426 CHAPTER TWELVE

4. How do you declare code and data segments in the
function so that they are compatible with those in
the calling program?

The easiest way to answer these questions iIs to look
closely at how the compliler does each one. Here's how
you get a look at how a compiler treats a C program.

Earlier in the chapter we described how you can
use the Turbo C+ + IDE to compile, run, and debug
programs. In addition to the compiler in the IDE, the
Turbo C+ + toolset has a separate compiler called tcc.
The tcc compiler has a few advanced features that the
integrated compiler doesn’t have. The tcc compiler, for
example, will compile a C program to its assembly
language equivalent. The command tcc —S 12-28a.c,
for example, will produce a file called 12-28a.asm which
contains the assembly language equivalent for the spec-
ified C source file. The C source program statements are
included as comments in the .asm file.

THE ASSEMBLY LANGUAGE EQUIVALENT
OF A C PROGRAM

Figure 12-28a shows a simplified version of the tempera-
ture conversion program in Figure 12-21b, and Figure
12-28b shows an edited version of the .asm program
produced from it by tcc. To make the program easier to
follow, we removed all the debug information normally
put in by the compiler, shortened the list of DBs at the
end of the program, and added some comments. Read
the C program in Figure 12-28a, skim through the .asm
version in Figure 12-28b to see how much you can
intuitively understand, and then come back to the
discussion here to get more details. The analysis of this

/* C PROGRAM F12-28A.C /*
/* Simple temperature conversion function
definition and call */

#include<stdio.h> .
int tempc = 25, tempf;/* external (global) variables*/

/* declare function c2f which
returns an int value */

int c2f(int ¢);

void main()

(4

tempf = c2f(tempc); /* call c2f function, pass value
of tempc to function. Returned
value assigned to tempf */

pr{ntf("Celsius = Xd,Fahrenheit=Xd \n", tempc,tempf);
} /* end of main */

/* define function c2f.
Note no ; at end */

int c2f(int c)

{

int f;

f = 9*%/5 + 32;
return (f);

)

/* automatic (local) variable */

(a)
FIGURE 12-28 (a) Simplified version of Figure 12-21b.

;8086 PROGRAM F12-288.ASM

_TEXT
DGROUP

_TEXT

_DATA
_TEMPC

_DATA

_TEXT

_MAIN
PUSH
CALL

POP -

MOV
PUSH
PUSH
MOV
PUSH
CALL

RET
_MAIN

_C2F

iDlv

_c2F
_TEXT

_BSS
_TEMPF

_Bss

SEGMENT BYTE PUBLIC 'CODE’

GROUP _DATA,_BSS ; Assign same start to segments
ASSUME CS:_TEXT, DS:DGROUP, SS:DGROUP

ENDS

SEGMENT WORD PUBLIC 'DATA'
LABEL WORD

DW 25

ENDS

SEGMENT BYTE PUBLIC .'CODE'
PROC NEAR

WORD PTR DGROUP:_TEMPC
NEAR PTR _C2F

X

WORD PTR DGROUP:_TEMPF,AX
WORD PTR DGROUP:_TEMPF
WORD PTR DGROUP:_TEMPC
AX,OFFSET DGROUP:Sa@

AX

NEAR PTR _PRINTF

sP,6

ENDP

PROC
BP
BP,SP
sl
AX,WORD PTR [8P+4]
oX,9

DX

BX,5

NEAR

\

BX
SI,AX
s1,32
AX,S1
sl
BP

ENDP
ENDS

SEGMENT WORD PUBLIC
LABEL WORD

L] 2 DUP (?)
ENDS

'BSS!

.
.
.
.
'
.
.
.
.
.
.
I

= ws ws me we we

; Initialized variables here

Declare and init TEMPC

Code always in _TEXT segment

Pass value of TEMPC on stack

; Call C2F function

Increment SP over TEMPC arg
Save TEMPF returned in AX
Put_value of TEMPF on stack
Put value-ef TEMPC on stack
Put pointer to' text string
) on stack

Call PRINTF fucntion

; Increment SP over three passed arguments
; Return from main

C2F function definition

Save old BP

Copy of SP To BP

Save S| reg because used here
Get value of TEMPC from stack
prepare to multiply by 9
Multiply value of TEMPC by 9
Prenare to divide result by 5

Do division, int result in AX
Sl used for local variable F
Add 32 to F

Value' of F returned in AX
Restore SI

Restore old BP value

Return. to main

; Uninitialized variables here :

Declare TEMPF

(b)

FIGURE 12-28 (Continued) (b) Assembly Ianguége equivalent of C program'
in 12-28a produced by tcc compiler with -S switch. (Continued on next page.)

- 56

C, A HIGH-LEVEL LANGUAGE FOR SY>72:4 PROGRAMMING

427

_DATA SEGMENT WORD PUBLIC 'DATA' ; Text string and format
S8 LABEL BYTE ; Specifiers for/PI(luI’F here
DB 67
DB 101
s ; List shortened to save space
DB 116 ’
DB 32
DB 61
DB 100
1] 32
0B 10
DB 0 -
_DATA ENDS
_YEXT SEGMENT BYTE PUBLIC 'CODE'
EXTRN _PRINTF:NEAR ; Let compiler know PRINTF() '
_TEXT ENDS ; function is external
PUBLIC _TEMPF ; Make extern variables and
PUBLIC _MAIN ; functions public
PUBLIC _TEMPC
PUBLIC _C2F
END

\

\

(b)

FIGURE 12-28 (Continued) (b) Assembly language equivalent of C program

in 12-28a produced by tcc compiler with -S switch.

\ N

program should help you better understand some of the
earlier discussions of passing arguments to functions
and variable storage classes.

The C program in Figure 12-28a calls our c2f function
to compute the Fahrenheit equivalent of 25°C and calls
the predefined printf function to display the result. The
first feature we need to talk about in the assembly
equivalent for this program is how the segments are
defined and grouped. |

Turbo C allows you to compile a program for any of
six memory models. The six memory models are tiny,
small, medium, compact, large, and huge. The meinory
model used determines the location of segments :n
memory and the size pointers used to refer to code and
data. Here is a short discussion of each.

Tiny—All four segment registers are set to the same
physical address, so only 64 Kbytes are available for all
" code and data. Since everything Is in one 64-Kbyte
space, near pointers are used for all code and data
references. The tiny model is used to generate .com-type
programs which automatically get loaded into memory
at 100H. '

Small—This model uses one 64-Kbyte code segment. One

64-Kbyte segment is shared by the data segment, the -

stack segment, and the extra segment, so these segments

all start at the same address. This memory model is tne

default for the Turbo C + + compilers. Near pointers are
-used for all code and data references.

428 CHAPTER TWELVE

Medium—Far pointers are used for references in code,
so code references can be anywhere in the 1-Mbyte
address space. The data segment, extra segment, and
stack segment share one 64-Kbyte space, so near point-
ers are used for data references.

Compact—This model uses one 64-Kbyte code segment,”
so near pointers are generated for code references. Far
pointers are generated for data references, so data can
be accessed anywhere in the 1-Mbyte range.

Large—¥%ar pointers are used for both code and data
references, so Foth have a 1-Mbyte range. If a program
has a code file or a data file larger than 64 Kbytes,
however, the file must be broken Into files smaller than
64 Kbytes and the resulting files linked.

Huge—Huge is similar to the large model, except that
the far pointers are always normalized. A far pointer is
normalized by generating the 20-bit physical address
from the segment and offset and then using the upper
4 nibbles of the physical address as the segment and
the lower nibble of the physical address as the offset. A
pointer reference of 4057:3244 produces a 20-bit ad-
dress of 437B4 and a normalized pointer value of
437B:0004. The advantage of normalized pointers is
that they can be accurately compared in expressions
using the = =, . >=, <, and <= operators.

== 1=, =

We used the default memory model to compile the
program in Figure 12-28a, so the data. stack, and extra

segments all share one 64-Kbyte address space. The
DGROUP GROUP _DATA, —BSS statement at the top of
Figure 12-28b groups the logical segments _DATA and
_BSS together in a group called DGROUP. The ASSUME
statement just after this indicates that DS will be
initialized to point to DGROUP and SS will also be
initialized to point to DGROUP.

Note that the assembly language for this program does
not show any instructions for initializing the segment
registers and the stack pointer register. These instruc-
tions are contained in a special startup section of code
that Is linked with your program when the .exe file is
created.

If you look again at Figure 12-28b, you can see
that the _TEXT segment is used to hold program
instructions. The _DATA segment is used to hold initial-
1zed extern variables and text strings such as those used
in printf statements. The _BSS segment is used to hold
uninitialized extern variables. You should use .these
same conventions when you write an assembly language
function to be called from a C program.

\ The next point to consider here is how C passes

arguments to a function. If you call an .asm function

from a C program, this is the way the arguments will be
passed to the function. If you call a C function from an

.asm program, this is how you have to pass arguments

to the C function.

C passes almost all arguments to functions by pushing
them on the stack. The first instruction in main in
Figure 12-28b pushes the value of TEMPC on the stack
to pass to C2F. As we said earlier, this call just passes
a copy of CTEMP to the function, so the function-cannot
change the actual value of CTEMP. Remember, if*you
want a function to change the value of a variable, you
pass the offset of the variable to the function.

Now let's look at how the function accesses the
CTEMPS value passed to it on the stack. The process
here is the same one we introduced you to in Figure 5-
17. We first save the old value of BP by pushing it on
the stack and then copy the value of SP to BP so that
BP is a second pointer to the stack. As we told you in
Chapter 5, the easiest way to keep track of where
everything is in the stack is with a simple stack map
such as that in Figure 12-29. We pushed ctemps on the
stack in main, the return address (IP) got pushed on
the stack during the call, and BP got pushed on the
stack at the start of the C2F function. The BP register
then points to the stack at the location where the old
value of BP is stored. You can access any value on the
stack by simply adding a displacement to BP. The value
of CTEMPS is in the stack at [BP + 4], so the instruction
MOV AX.WORD PTR[BP+4] will copy the value of
CTEMPS to AX. The 8086 arithmetic Instructions after
this perform the specified computations.

Note that the compiler assigned the local variable
named f in the C program to the Sl register. even though
we did not tell it to make f a register variable. If you
declare more than two automatic or register variables.
the compiler will allocate space for them on the stack
below BP. as shown in Figure 12-29. Since they are
dynamically allocated on the stack. automatic variables
are re-created each time a function is called.

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

Stack map
stack pointer stack

before push -

after push - ctemps = [BP+4]
after call - 1P - [BP+2)
after push BP - BP « [BP)
after push SI - SI «~ [BP-2)
automatic = — - [BP-4)
varisble

automatic =) — - [BP-6)
variable

FIGURE 1229 Stack map showing use of BP to access ’
arguments passed to a function on the stack.

The computed value of f is returned to the calling
program in the AX register. If the function were re-
turning a 32-bit value, it would return the high word in
DX and the low word in AX.

If you look at the stack map tn Figure 12-29 again,
you should see that when execution returns to main
from the procedure, SP will be pointing to the value of
ctemps in the stack. The POP CX instruction in main
will “clean up” the stack by incrementing SP to its initial
value. Since C doesn't use the CX reglister for anything
special, we don't care about the value put in CX by the
POP CX instruction.

The next part of the program pushes the specified
arguments on the stack and then calls printf to display
the results of the computation. The C compiler pushes
arguments on the stack in the reverse order from the
order they are written in the function call parentheses.
For our example here, then, the value of ftemp will be
pushed on the stack first. Next the value of ctemp will
be pushed on the stack. Finally, a pointer to the text
string In the printf() call will be pushed on the stack.
This final step Is done with the two instructions MOV
AX,OFFSET DGROUP:S@ and PUSH AX.

The printf() function is obviously not present in this
source module. The statement EXTRN _PRINTF: near
the bottom of Figure 12-28b indicates that the code for
this function will be linked later. When execution returns
from the printf function, the ADD SP.,6 Instruction
cleans up the stack by incrementing it up over the three
arguments’passed to printf on the stack.

Finally in Figure 12-28b, note that the variables and
functions declared outside of main are made public so
that they can be accessed from other source modules.
As we showed you in Chapter 5. if you want to access
one of these from another source module, you have to
declare it extrn in that module.

Now that you have some ideas about how a C compiler
“thinks,” let's talk about how you can use this to write
assembly language functions you can call from your C

‘

429

programs and how you can call C functions from your
assembly language programs.

A PROGRAM WITH C AND ASSEMBLY
LANGUAGE MODULES

Figure 12-28b sliows you almost everything you need to
know to interface C and assembly language, but to make
it a little clearer, Figure 12-30 shows a C program which
calls two assembly language functions and also shows
the two assembly language functions. To show a C
function call from assembly language, one of the assem-
bly language functions calls the predefined C function,
printf().

In the C program in Figure 12-30¢, we put the term
extern in the two function declarations tolet the compiler
know that these functions are in another source module.
We then call the functions by name and pass any
required arguments, just as we would call C functions.

In the assembly language part of the program in Figure
12-30b, we declare segments using the names shown in
Figure 12-28b. Note that you put underscores (_) in
front of all segment names, function names, and variable
names in the assembly language module. This is re-
quired for compatibility with the C compiler conven-
tions. i
The c2f function in Figure 12-30b is exactly the same
as that produced by the compiler in Figure 12-28b. It is
very common practice to write a function in C, compile
the function to its assembly language equivalent, and
then "hand optimize” the .asm equivalent for maxtmum
efficiency in the specific application. As we will show
you, the .asm file can be assembled and the resulting
object file linked with the object file for the mainline
program.

The show function in Figure 12-30b calls printf to
display the Celstus temperature, the Fahrenheit temper-
ature, and appropriate text. We declare the text in the
data segment with a simple DB statement. The OAH at
the end of the declaration represents a carriage return,
and the O0H is a NULL character required as a terminator
on the string. From the string you can see that'we need
to pass three arguments to printf, just as we did in
Figure 12-28a. The three arguments are a pointer to the
~ string, the value of tempc, and the value-of tempf. The
three push statements in Figure 12-30b put these
arguments on the stack in reverse order as required by
the C calling convention. When execution returns from
printf, we add six to SP to increment it up over the three
arguments we passed to printf.

A very important point to observe in Figure 12-30 1s
the use of the extern or extrn directives and the use of
the public directive. In the C program we use the extern
directive to tell the compiler that c2f and show are in
another source module. In the assembly module in
Figure 12-30b we use the public directive to make the
procedures c2f and show accessible to other source
modules. Note that the public declarations are put in
the code segment. Also in Figure 12-30b use the extrn
directive to tell the assembler that the variables tempf
and tempc are defined in another source module. Note
that the extrn directives are put in the segments where
the named variables are found.

430 CHAPTER TWELVE

As we told you in Chapter 5, the rules here are very
simple. You declare a function or varfable public in the
module where it is defined if you want other modules to
be able to access it. You use the extern or extrn directive
to tell the assembler/compiler that a function or variable
is located in some other source module.

SIMPLIFIED SEGMENT DIRECTIVES

Newer versions of TASM and MASM allow you to use a
simplified set of segment directtves in assembly language
programs. You can use these simplified segment direc-
tives in many stand-alone assembly language programs,
but their main use Is in writing assembly language
modules which interface with high-level language pro-
gram modules.

Figure 12-30c shows in skeleton form how the assem-*

bly language module from\Figure 12-30b can be written
using these simplified directives. The DOSSEG directive
at the start tells the linker to put the segments in an
order which is compatible with DOS and high-level
languages. Basically the order is code segment, data
segment containing initialized variables, data segment
containing uninitialized variables, and stack segment.

The .MODEL directive tells the assembler to use the
SMALL memery model, which consists of one 64-Kbyte
code segment and one 64-Kbyte data segment. This is
the default model for the Turbo C+ + compiler.

The .CODE directive sets up the code segment. With
this directive the assembler automatically gives the code
segment the name required by the memory model used
and generates the required ASSUME directive. For the
small memory model the code segment will be assigned
the name _TEXT, as shown in Figure 12-30b.

Ina similar way the .DATA directive declares a segment
for initialized variables and the .DATA? directive de-
clares a segment for uninitialized variables. In a small
model program the assembler will automatically “group”
these two segments, as we described for the standard
segment directive version in Figure 12-30b. Incidentally,
you do not need to declare a stack or initialize the stack

/* C PROGRAM F12-30A.C */ N
/* Temperature conversion function */

#include<stdio.h> E
int tempc = 25, tempf; /* external (global) variables*/
int extern c2f(int c); /* declare function c2f which */
/* returns an int value */
void extern show(void);/* function show is in
another module */
void main()
(¢
tempf = c2f(tempc); /* call c2f function, pass
ot value of tempc to function.
Returned value assigned
to tempf */
show();
}/* end of main */
(a)

FIGURE 12-30 Program with C and assembly language
modules. (a) C mainline module. (See also pp. 431-2.)

; 80BS PROGRAM F12-30B.ASM

_TEXT SEGMENT BYTE PUBLIC *CODE’
DGROUP GROUP _DATA,_BSS
ASSUME CS:_TEXT,DS:DGROUP, SS:DGROUP
_TEXT ENDS
_DATA - SEGMENT WORD PUBLIC 'DATA'
s? DB 'CELSIUS = XD, FAHRENHEIT = XD' ,OAH, OOH ; PRINTF STRING .
_DATA . ENDS ' '
|
_TEXT SEGMENT BYTE PUBLIC 'CODE'’
PUBLIC _C2F '
" PUBLIC _SHOW i

EXTRN _PRINTF:NEAR

_C2F PROC NEAR ! ; C2F function definition
PUSH BP : Save old BP
MoV i" BP,SP ; Copy of SP to BP
PUSH Sl ; Save SI
MoV AX,WORD PTR. [BP+4) ; Get TEMPC from stack
MOV bX,9
MUL DX
MOV BX,S
cwo
101V BX
MOV S1,AX
ADD S1,32 7
MOV AX,SI ; Return value of F in AX
POP SI

- POP BP : Restore old BP

RET

_CeF ENDP

_SHOW PROC WEAR .
PUSH WORD PTR DGROUP:_TEMPF ; Put value of TEMPF on stack

PUSH WORD PTR DGROUP:_TEMPC ; Put value of TEMPC on stack
MOV AX,OFFSET DGROUP:Sa ; Put offset of string on stack
PUSH AX N
CALL NEAR PTR _PRINTF g
ADD sP,6 ; Increment SP over arguments
RET !

_SHOW ENDP

_TEXT ENDS

_DS_S SEGMENT WORD PUBLIC 'BSS'

' EXTRN _TEMPF :WORD

_Bss ENDS

_DATA SEGMENT WORD: PUBLIC 'DATA'
EXTRN _TEMPC:WORD
_DATA ENDS
END

(b)

FIGURE 12-30 (Continued) (b) Assembly language functions. (See also next page.)

C, A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING

431

DOSSEG
.MODEL SMALL
.CODE

PUBLIC _C2F

PUBLIC _SHOM

EXTRN _PRINTF:NEAR

C2F PROC NEAR

RET
_C2F ENDP

_SHOW PROC NEAR

RET
_SHOW ENDP
.DATA)
S8 DB 'CELSIUS = XD, FAHRENHEIT = XD!
DB OAH, OOH ; PRINTF STRING
EXTRN _TEMPC:WORD
.DATA? |
EXTRN _TEMPF :WORD

END
()

FIGURE 12-30 (Continued) (c) Assembly language
module using simplified segment directives.

pointer in a program intended to run on a PC type
computer, because this is done by DOS and/or the C
startup code. If you are writing a program for some other
environment, you can declare a stack and initialize the
 stack pointer with a simple directive such as .STACK
200H.

We showed you the standard segment directive version
of an assembly language module first, so that you could
see how all the pleces fit together, but the simplified
directives are obviously easlier to use in yaur programs.
Now that you know how to write C and assembly
language modules that interface with each cther, we will
outline how you produce an executable program from
these modules.

PRODUCING A .EXE FILE FOR
MULTIMODULE PROGRAMS

If you are using the Turbo C + + environment, the steps
In producing a .exe file from a multimodule program
such as the one in Figure 12-30 are as follows. If you
are using some other environment, the steps are very
similar.

432‘ CHAPTER TWELVE

1. Create the C module using the editor. Don't forget
any required extern directives.

2. Compile the module and repeat the edit-compile
cycle until the compile is successful.

3. Create the assembly language module with the
editor. Don't forget to include any required public
and extrn directives. Save the module in a file with
a .asm extension.

4. ° Press the Alt key and the spacebar to get to the menu
containing Turbo Assembler. Move the highlighted
box to the TurboAssembiler line and press the Enter
key.)

5. Repeat the edit-assemble loop until the assemble is
successful.

6. Go to the Project menu and select Open Project.
When the dialog box appears, type in some appro-
priate name for your project and give it a .prj
extension.

7. Use the Add Item line in the Project menu to add
the name(s) of the C source (.C) files and the names
of your assembly language object (.obj) files to the
project file. Press the Esc key to get back to the
project window.

8. Go to the Options menu and select Linker. In this
menu go to the case sensitive link and press the
Enter key to turn it off. TASM produces uppercase
for all names, and this toggle will prevent link errors
caused by uppercase/lowercase disagreements.

9. G» to the Compile menu, select build all, and press
- the Enter key. This tells the IDE tools todo a “make”
on the files specified in the project list. Make checks

the times and dates on the .obj files and the
associated source files. If the times are different,
the source modules are automatically recompiled.
The resulting object files are linked with object
files from .asm modules and object modules from

libraries to produce the final .exe file.

10. Go to the Run menu and press the R key to run
the program.

NOTE: For complex muitimodule programs, you
may want to use the separate tcc compiler and
Tlink linker, which have some options not available
in the integrated environment. We don't have space
here to describe the operation of tcc.

In this chapter we used your knowledge of assembly
language to quickly teach you about the C programming
language. In the following chapters we will show you
how C can be used for graphics, file handling, and
communications programming.

CHECKLIST OF IMPORTANT TERMS AND

CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms in the following
list. use the index to help you find them in the chapter
for review. ’

Integrated program development environment
Compiler of)ttml}.atlons

. C language
Variable types
Variable declarations
Simple pointers
Array pointers
Dereferencing a pointer
Passing a parameter by value
Passing a parameter by reference ‘
Preprocessor directives
Assignment operator, =
Arithmetic operators +,
Bitwise operators &, |, *,7,
Combined operators
Relational operators = =
Logical operators &&, | |, !
Operator precedence id

=% 0 % ey, ==
C

If-else

Switch and break statements !
Goto statement

While and do-while loops

For loops

Function prototype, function declaration
Function definition

Function call '

Formal arguments

Actual arguments

Return statement

Extern, automatic, static, and regtster storage classes
Lifetime and visibility of variables |
Passing pointers to functions]
Pointers to functions

Predefined library functions

Turbo C+ + memory models

Cleaning up the stack

Simplified segment directives

REVIEW QUESTIONS AND PROBLEMS

1. a. What is the index value for the first element in
the cost array in Figure 12-1a?

b. Which element in the cost array is accessed by
the term cost[index| during the second execu-
tion of the for loop? —

c. What is the purpose of/ the #include<stdio.h>
line at the top of the program In Figure 12-1a?

d. What does the word printf in the statement in
Figure 12-1a refer to?

2. a. Describe the advantages of an integrated pro-
gram environment such as the Turbo C+ +
IDE over the.separate tools approach.

b. How does the IDE compiler let you know if
it finds any errors when it compiles your
program?

c¢. What is meant by the term watch in the IDE?

3. Give the range of values that can be represented by
each of the following C data types.

a. Char

b. Int

c. Unsigned int
d. Long

e. Float

4. Write C declaration statements for each of the

following variables:

a. An integer named total_boards.

b. A character named no, Initialized with the
ASCII code for lowercase n. ,

c. A floating-point variable named body_temp,
initialized with 98.6.

d. A five-element integer array called scores.

e. A six-element integer array called scores and
initialized with the values 95, 89. 84, 93. and
92 (last element uninitialized).

JS. A pointer called ptr which points to the array
declared in e.

g. Atwo-dimensional character array called screen
which has 25 rows and 40 columns.

h. A three-dimensional character array called
screen_bulffer which has 4 pages of 25 rows
and 80 columns.

{. An integer called monitor_start, initialized

with +FEOOH.

A character pointer named answer.

A pointer named ptr, initialized with the ad-

dress of an integer variable called setpoint.

l. A pointer named wptr, initialized with the start
of the array declared with the statement float
net_weights[100];.

&

5. Describe the operation or sequence of operations
performed by each of the following expressions:

5-4°7/9

(a+4)*17-B/2+6

x+y+ +

L 4

count + =4;

strobe_val & 00001

y=a>>4;

a=4;

b=39%a;

i. if(ch =
goto start;

se-noAanTe

Y[|ch== y)

6. Write printf statements which

a. Print the decimal value of an integer named

" count.

b. Print a prompt message which tells the user to
enter his or her weight.

c. Print the value of a float variable named conver-
sion_factor with 4 decimal places and a total
of 10 digits.

d. Print the value of a float variable called aver-
age_lunar_distance in exponential format.

7. Given the array declared by int nums| }={45, 65,
38, 72}:.. write a program which computes the
average and prints the result.

C., A HIGH-LEVEL LANGUAGE FOR SYSTEM PROGRAMMING 433

10.

11.

12.

13.

434

Use Figure 12-12 to help you write a program which

Declares a six-clement array of integers.

Reads five test scores entered by a user into the
array.

Computes the average of the five scores and puts
the computed average in the sixth element in the
array.

Prints out the scores and the average with appro-
priate text.

Write a program which

Declares an array for 25 characters.

Prompts the user to enter his or her name.

Reads an entered name into the array.

Determines the number of characters in the name.
Prints out appropriate text and the number of
letters.

a. Write a program section which calls the prede-
fined exit function if the user entersaqora Q
on the keyboard.

b. The predefined character constant called EOF

has a value of —1 {7FH). To produce this

character on the keyboard. you hold the Ctrl
key down and press the Z key. Write a program
which
Declares an array for up to 1000 characters.
Reads characters from the keyboard and puts
them in the array until the array is full or until

the user enters an EOF character Ctrl Z.

Prints a “buffer full” message if 1000 charac-
ters entered.

Prints a “goodbye" message and exits to DOS
if the EOF character is entered.

The character display on a CRT screen can be
thought of as an array of 25 rews and 80 columns.
Write a program which

Declares a character array of 25 rows and 80
columns. w

Declares a character array initialized with your
name.

Uses a nested for loop to write the ASCII code for
a blank, 20H, to each element in the array.

Writes your name in the array elements which
approximately correspond to the center of the
screen.

Use the array-index method as shown in Figure 12-
20a to write a program which

Declares a two-dimensional array of 7 rows and
3 columns.

Reads in the maximum temp and minimum temp
for each of 7 days and puts the values in the array.

Computes the average temperature for each day

and puts the result in the appropriate position in .

the third column of the array.

Computes the average maximum temperature for
the week.

Computes the average minimum temperature for
the week. i

Computes the average temperature for the entire
week.

Prints out the results with appropriate labeling.

Rewrite the program in problem 12 using pointer
notation instead of array-index notation.

CHAPTER TWELVE

14.

15.

17.

18.

19.

21.

22,

26.

Explain the difference between formal arguments
and actual arguments.

Write the declaration, definition, and call for a
function which converts a Fahrenheit temperature
to its Celsius equivalent. The formula is F = 9C/5
+ 32.

Write a program which reads characters from the
keyboard until an EOF (Ctrl Z) Is entered, uses a
function to detect and convert the ASCII codes for
uppercase letters to their lowercase equivalents,
and writes the codes in an array.

Given the array declared by int nums||=
45,65,38,72;, write a function which computes the
average of the four values and passes the average
back to the calling program to print out.

Rewrite the answer to problem 12 so that it uses a
function to compute the desired averages and print
the result.

Give the lifetime and accessibility of each of the
variables and functions declared here.

a. int scale_factor=12;

b. char *text;

c. float tax(float income, float deductions);

d. static double debts;

e. static weight=145;
J. register count=23;
g. int tare;

Modify problem 11 to read in two sets of row,
column coordinates from a user, store these values,
and then call a function which ORs each element
in the array between the specified coordinates with
80H.

What are the main advantages and the main disad-
vantages of using predefined C.library functions?

Rewrite the Pythagoras program in Figure 12-27 so
that it allows a user to enter values for side_a
and side_b, does the computation, and sends the
results to a printer.

What are the main points you have to consider when
you want to write assembly language functions that
will be called from a C program?

a. Name the six Turbo C + + memory models.

b. What are the main features which distinguish
one memory model from another?

c. Describe the default memory model for the
Tdrbo C+ + compiler.

d. Show the simplified segment directives you
wauld use for a small model assembly language
module that contains only code and initialized
variables.

Briefly describe the process used to develop a pro-
gram which consists of assembly language modules
and C modules. g

Given the array declared with int screen(25)80]:.
write a C mainline which calls an assembly language
function to write 20H in the low byte of each
element and O7H in the high byte of each element.

CHAPTER

Peripherals

Microcomputer System

"\
|

In Chapter 11 we discussed the circuitry commonly
found on the motherboard of a microcomputer. Included
in this discussion was a section on the IO connectors
that allow you to plug in boards which interface with
system peripherals. In this chapter we discuss the
“hardware and software of system péripherals such as
keyboards, CRT displays, disk drives, printers, and

speech VO devices. Then in the next chapter we discuss

serial data.communication and'network peripherals.

One important goal of this chapter is to help you
understand the terminology of displays, disk drives, and
printers so you feel comfortable with these when you
rcad your BYTE magazine or when you walk into a
computer store. Another important goal is to show you
how to interface with displays, disk drives, and printers
in your programs. For most of the examples in this and
ithe following chapters we use IBM PC- and PS/2-type
microcomputers.

OBJECTIVES

At the conclusion of this chapter, you should be able te:

1. Read and interpret data from the keyboard of an
IBM PC- or PS/2-type microcomputer.

2. Describe the operation of basic hardware needed to
produce rasler scan text or graphics CRT displays.

3. Calculate the freé;uencies. frame buffer memory
requirements, and memory access rate for a given-
resolution raster scan display.

4. Describe how avideo adapter such as a VGA displays
256 colors from a palette of 256K colors.

5. Use BIOS calls to display a text message on the CRT
display of-an IBM PC-compatible computer.

6. Use BIOS calls to produce graphics displays on the
CRT display of an IBM PC-compatible computer.

7. Write simple C programs which use pred:fined
functions to produce graphics displays on a CRT.

8. Describe how text and graphics displays are pro-
duced on large LCDs and plasma displays

9. Show in general terms the formats in which digital
data is stored on magnetic and optical disks.

- 57

10. Describe the operation of disk controller circuitry.

11. Use DOS function calls and C function calls to
open, read, write, and close disk files.

12. Describe the print mechanism used in several
common types of computer printers.

13. Describe how computer vision systems produce an
image that can be stored in a digital memory.

14. Briefly describe how phoneme, formant filters, and
linear predictive coding synthesizers produce hu-
man-sounding speech {rom a computer.

15. Briefly describe the basic princlple used in spcceh-
recognition systems.

16. Describe the operation and significance of a Digital
Video interactive system.

SYSTEM-LEVEL KEYBOARD INTERFACING

7 cuapur 9 we discussed the tasks involved in getting
meaningful dai« from a keyboard and in Figure 9-22 we
showed you the hardware typically used to do these
tasks in an IBM PC-type computer. Now we will show
you how to read and interpret keyboard data in system-
level programs.

When you press a key on an IBM PC-type computer,
type 9 interrupt is executed. The procedure for this
interrupt reads the scan codes generated by the keyboard
circuitry and determines the action to take, based on
the code read. For certain special key combinations such
as Shift-Print Screen or Ctrl-Alt-Del. the type 9 procedure
will call other procedures to carry out the specified
action. For standard keys the type 9 procedure will
convert the scan codes to an ASCII equivalent code and
put the ASCII'code in a buffer. For special keys such
as function keys and cursor-move keys the procedure
generates extended ASCII codes.

To read the ASCII or extended ASCII codes from the
buffer at the assembly language level, you use the BIOS
INT 16H procedure. Perhaps you remember from the
discussion of software interrupts in Chapter 8 that the
ROMS in a microcomputer contain procedures for many
input and output operations. Figure 8-9. for example.
showed how you load some parameters in AH and AL

435

\
\
\

PARAMETERS FOR BIOS INT 164 KEVYBOARD PROCEDURE

then execute the INT 1 7H instruction to send a character
to a printer.

input: AN =0 Figure 13-1 shows the format for the INT 16H proce-
function: Wait for next key pressed, return code dure which you can use to read characters from the
return: key code in AL, scan code in A demm,wm,‘mmw‘um
call the procedure with AH =0, execution will sit in a
ey An=1 loop until a key is pressed. When a key is pressed. the
function: Determine if cheracter resdy in buffer procedunvlﬂutumlvﬂlumhx.lfﬂlemm
return: Zero flag = 1 - no charscter in buffer in AL is not 0. then the value in AL is the ASCH code
2ero flag - 0 - character in buffer for the sing key or key bination shown i
fnput: AN = 2 Figure 13-2a. Note that you can generate any desired
function: Return status of Alt, shift, Ctrl keys hekelive InAL by peesning the A ey il (2 SRS
FIGURE 13-1 Parameters for BIOS INT 16H BIOS Wbﬁ*mmmhms’ ';:'Fﬂ"
BrAceEere kelyl'y:ukgdl the INT 16H procedure with 1 in AH. the
procedure will return with the carry flag set if there is
no character in the buffer waiting to be read. if the
Value Value Value Value Velus
Hex | Dec | Symbol | Keystrokes | | Hex | Dec | Keystrokes | * | Hex | Oec | Keystrokes | | Hex | Dec | Keystrokes | | Hex | Dec | Keystrones
00 | 0 | Blank | Ctri2 18 | 24 | Cti X ¥ |@ / TSR J s |0 0
£ . 19 |25 |[Cmy 3 | ° @|s K e |02 f
o1 | © joma 1A | 28 | cnz n|e| < | o W] o
2/2| @ |cms 18 | 27 | cwl, 2 |%0]| 2 w|n| w o [we]
@ilel X o8 ue el 3 | 5 3 €|m| W ® |wos]|
04 | 4 ¢ |cwiD Esc ~% I B oy = - o Toet '
Ea W] OuE 1C 128 | cmn ® | 8 s w|w| P e [wr] ¢
06 | 6 & |adF 10|29 | 2 | 8¢ s ® | a ™ .
o7 | 7 e |cmG 1€ | 30 | Crie 3 | 58 y 2 | &2 n o |00 =
o8] @ oas. F {31] Crl— 1= [s || s o [1h0] n
wn 2% - 3 [s1] s MO o [m] o
Specs, | | 3a | s8 85 | os u 70 [112 »
:: 190 2:: E'J's?u'f' 38 | s se | o v n |1l o
Curl 2 |33 ! ac | e < 7 |87 | w 72 | 1e '
oB|n| d |cwk 22 [3a| - 0|6 - 5e | X 73 |ns .
oc|2| Q |[onL 23 | 38 ’ *|[a2a| » 9| Y 7% |1e '
13|) Cg’I' i’:'j' 26 | 2 s * | & ? sA | 90 z 7™ |17 v
- 25 | 7 % 0 |6 @ .88 | 9 I 7% |18 v
el i ﬁ et 26| 38 & s |es A sC | 92 \ 77| w
OF | 15 o] Ctrl O 277 | ' Qe [] S0 | 9) 78 | 120 o
10 | 16 = |CwP 28 | o (43 | 67 c SE | %4 U ” |2 v
1n | - |cma 2 | 4) 44 | o8 D I |» - 7A | 122 ?
122 | 18 1 CtiR 2A | 42 s e E 0 | % i 78 | 123 {
1[w| 11 [cws 8|4 . |70 f 0 |n s 1 |12 :
uwl2]| § |cnT 2 | 44 a|n G CHE b 70 |28)
15 | 2 § |cwlu 20 | 45 N 48|72 H K c 7€ [120 .
18|2| = |Cv. 2 | 4 CRRE]) ¢4 | 100 d w || owm-
17 {23 1 Ctrl W
— @

436 CHAPTER THIRTEEN

FICURE 13-2 IBM PC keys and keycodes. (a) Standard key codes returned in AL. (Continued on next page.)

Sacond

Code Function

3 '] Nul Character

L] -

16-28 JARQ.W.EART.Y.U.LOP

30-28 | ARAS.D.F.GHJKL

4450 JARZ X,C.V.B.N. M

$0-88 - | P1 to F10 Punction Keys Base Case

n Home 2

” t

” Page Up and Home Cursor

”» - o

n” -

” End

0 ¢

:; rmwnmmmcm

o Del(Detete)

84-83 | F11 10 F20 (Uppercase F1 to F10)
94-103 | F2% 10 F30 (Carl F1 10 F10)
104-113 mnmmnurm

114 | Curl PriSic (Seart/Seop Echo to Printer)
1§ | Cort —{Reverse Word)

18 - (Advance Word)

117 | Cerl End [Erase to End of Line (EOL)]
18 cvlmllunb!nddwm(t(ml
119 | Cirl Home (Clear Screen and
120-131 All.!.l.l.i.lﬂ 8.9,0,-, -(Im!-m i
e mnquuudrmmmw

(1]

SHIFT STATYS SYTE RETURNED BY BIOS INT 6M
SIT MEASISS iF 01T I8 A O

- Right shift key pressed
@ Left ohIfE hoy prosesd
< Contrel key presesd

- Alt hey preseed

L Seroll leck ective

S amric leck active

24 Caps leck active

” Insert state active

()

FIGURE 13-2 (Continued) (b) Extended ASCII codes
returned in AH. (c) Status byte returned in AL with
AH =2 during call.

t
procedure returns with the carry flag = 0. the buffer
contained a character. and that character has been read
into AX as described before. This aption allows you to
check If a key has been pressed without having to sit in
a loop until a key Is pressed.

Finally. if you call the INT 16H procedure with a 2 In
AH. the procedure will return the status of the Shift.
Alt. and Ciri keys. as shown in Figure 13-2¢.

From the preceding discussion you can see that to
interface with the keyboard from an assembly language
program all you have to do is load the desired subfunc-
tion number (0, 1. or 2) in AH and execute the INT 18H
instruction. The next question to answer is. How do you
interface with the keyboard from a C program?

In the last chapter we showed you how to use prede-
fined C functions such as scanf, getche, and gets to read
characters from the keyboard. The problem with these
functions is that they do not allow you to read anything
but the standard ASCII codes (00—-7FH). In many system
programs you want to use the function keys, arrow keys,
or other special keys to specify some course of action,
so you need to be able to read in codes for these. The
Turbo, C+ + run time libraries contain two predefined
functions which you can call to read in key codes directly.
Both of these use the BIOS INT 16H procedure.

The predefined function int bioskey (int cmd) will call
the INT 16H procedure and pass it the subprocedure
specified as cmd in the call. The statement key=bi-
oskeyl0):. for example, will wait until a key is pressed
and assign the value returned in AX to key. You can
then manipulate the value in key to determine which

key was pressed.

" The second way to read the keyboard is with the
int86() function. The example program in Figure 13-3,
page 438, shows how you can use this function to call
the BIOS INT 16H procedure, but this function can be
used to call any of the BIOS procedures. The key to
using this function is to understand how the register
values are passed to the function and how register values
are returned to the calling program. The technique used
to do this is a C data structure called a union. In simple
terms a union is a memory location assigned to, two or
more variables, so that the contents can be accessed in
two different ways. You might, for example, create a
union of an integer and an unsigned character so that

" you could access either the entire 16 bits or the two 8-

bit halves.

The header file dos.h contains the’ prototype for a
union called REGS. This union is composed of two
structures which represent the register set of the 8086.
One structure represents the registers as 8-bit values.
The other structure represents the registers as 16-bit
values. This allows you to initialize an 8-bit register or
a 16-bit register and read a value from an 8-bit register
or from a 16-bit register.

In the example program in Figure 13-3, we declare a
union of type REGS called'rg. The statement rg.h.ah=0;
then Initializes the ah element in the structure with a
value of 0. The .h in the reference to the union indicates
that we want to access the structure of 8-bit registers.
To initialize the DX register with a value of 0, we would
use a statement such as rg.x.dx=0:.

The prototype for the int86 function is int86(int intno,
unfon REGS *inregs. union REGS ®outregs). What all
this means is that you pass the INT number, a pointer
to the union which contains the register values to pass
to the function, and a pointer to the union which will
receive the register values passed back to' the calling
program. In the program in Figure 13-3 we use the same
union. rg. for the inregs and the outregs. The statement
ch=rg.h.al coples the value placed in the al element of

* the rg union to the variable named ch.

The rest of the example In Figure 13-3 shows you how
to examine the value returned by INT 16H to determine
the action to take. If the value returned in AL is not
zero. then the code is in the range of 00—FFH. We use

MICROCOMPUTER SYSTEM PERIPHERALS 437

/* C PROGRAM F13-03.C */
#include<dos.h>
#include<stdio.h>
#include<conioc.h>
#include<ctype.h>

void show_it(char c);

void main ()
{ \
int count = 0;

char ch; char *bptr;

bptr = malloc(10000); /* allocate memory for text buffer */
do
¢
union REGS rg; /* declare union called rg */
rg.h.ah = 0; /* initialize ah element with 0 */
int86(0x16, &rg, &rg); /* call BIOS INT16H procedure */
T~ if((ch=rg.h.al) 1=0) /* standard ASCII if AL 1=0 #/
{
if(isprint(ch)) /* if ch is a printable character, */
¢
bptr =ch; / write to buffer */
putchar(ch); /* write to screen */
bptr++; count++; /* increment counter, pointer */
) v
else /* if control code, decide action */
< i
switch (ch)(
case Ox0d: /* example, insert linefeed after CR */
« 5
bptr =ch; / write CR to buffer */
putchar(ch); - /* write CR to screen */
bptr++; count++; /* increment counter, pointer */
ch = Ox0a; /* code for linefeed */
bptr =ch; / write LF to buffer */
putchar(ch); /* write LF to screen */
hptéﬂ; count++; /* increment counter, pointer */
break;
3
)
)
b
else /* character is extended ASCI] */
(
ch = rg.h.ah; iad scan code 'returned in AH */
~ switch (ch) (
case 0x43: (
4 show_it(ch); break; /* F9 key */
)
case Oxéé: (
show_it(ch); exit(); /* F10 key */
)
)
)
) .
while(count<10000);
)
void show_it(char c) /* display ASCII equivalent */ =
(/* for scan code */
- putchar(c); 3 ¥
)

| .
FIGURE 13-3 C program showing how to use int86() function call to read
keyboard and decode the value read.

438 CHAPTER THIRTEEN

the predefined function Isaprint() to detérmine if the
code is a printable ASCII clodc and If it is we write it to
a buffer and send it to the'screen. If it is not a printable

code, we use a swltch structure to determine what action

to take. For the cxamplc here we showed you how to
insert a linefeed character after a carriage return. You
can add more case statements to perform the desired
action for other special keys such as backspace.

If the yalue returned in AL is zero, the rg.h.ah element
of the union will contain the scan code for the pressed
key according to the values shown in Figure 13-2b. In
the example in Figure 13-3 we show you how to use
another switch structure to choose some action based
on the code returned.

Now that you know more about reading characters
from a microcomputer keyboard, let's dig into-how
character and graphics displays are produced.

H

MICROCOMPUTER DlSPLAYS

Currently Lhelzc are geveral different technologles used
to display characters and graphics for a microcomputer.’
The most common type display is still. the cathode-ray
tube (CRT), so we will start the chapter with a discussion
of the hardware and software for these displays.+ater in
the chapter we will discuss large liguid-crystal displays
(LCDs) and;plasma displays which are often used on
laptop microcomputers.

Raster Scan Character Displays
RASTER SCAN BASICS,

A CRT is basically a large, bottle-shaped vacuum tube.
An electron gun at the rear of the tube produces a beam
of electronb which {s directed toward the front of the
tubé by a high voltage. The inside surface of the front
of the tube is coatéd with a phosphor substance which
gives off light when it is struck by electrons. The color
of the light given. off is determined by the particular
phosphor used.

The most common method of produclng images on a
CRT screen is to sweep the electron beam back and forth
from left to right across the screen. When the beam
reaches the right side of the screen, it is turned off
(blanked) and retraced rapldly back to the left side of
the screen to start over. If the beam is slowly swept from
the top of the screen to the bottom of the screen as it Is
swept back and forth horizontally. the entire screen

appears lighted. When the beam reaches the bottom of*

the screen. it is blanked and rapidly retraced back to
the top to start over. A display produced in this way is
referred to as a raster scan display. To produce an
image. the electron beam is turned on or off as it sweeps
across the screen. The trick here is to get the beam
intensity or video information synchrormized with the
horizontal and vertical sweeping so the display is stable.

For a first example. Figure 13-4 Shows the’'scanning
used to produce pictures on a TV set and displays on
some computer monitors. To get better picture resolu-

START OF FIELD 1 STARTOF FIELD 2

END OF FIELD 1

END OF FIELD 2

262% LINES/FIELD

2 FIELDS/FRAME

525 LINES/FRAME FOR 15,750 Hz : 4
HORIZONTAL AND 60 Hz VERTICAL

(a)
/START OF FIELD

-

J
ay 914
END OF FIELD

260 LINES/FIELD

1 FIELD/FRAME

260 LINES/FRAME FOR
15,600 Hz HORIZONTAL AND
60Hz VERTICAL

(b}

FIGURE 134 CRT scanning methods. (a) Interlaced.
(b) Noninterlaced.

tion and avoid flicker, TVs use interlaced scanning. As
shown in Figure 13-4a. this means the scan-lines for
one sweep of the beam from-the top of the screen to
bottom (field) are offset and interleaved with those of -
the next field. After every other field the scan lines repeat.
Therefore, two fields are required to make a complete
picture or frame. To give you some numbers for refer-
ence, black-and-white TVs in the United States use a
horizontal sweep frequency of 15,750 Hz and a vertical
sweep frequency of 60 Hz. Sixty fields per second are
then swept out. Since each complete picture or frame

MICROCOMPUTER SYSTEM PERIPHERALS 439

consists of two fields, the frame rate is 30 frames/second.
This is fast enough to avoid flicker. The beam sweeps
horizontally 15,750 times per second. so during the & s
required for the beam to go from the top of the screen to
the bottom, the beam will have swept out 15,750/60 or
262.5 horizontal scan lines. A complete frame therefore
consists of 525 horizontal scan lines.

Some computer monitors use noninterlaced scanning
such as that shown in Figure 13-4b. In this case the
beam traces out the same path on each trip from the
top of the screen to the bottom. For a noninterlaced
display the frame rate and the field rate are the same. A
horizontal sweep rate of 15.600 Hz and a vertical sweep
rate of 60 Hz gives 15.600/60 or 260 horizontal sweep
lines per field.

The three basic circuits required to produce a display
on a CRT are the vertical oscillator, which produces
the vertical sweep signal for the beam: the horizontal
oscillator. which produces the horizontal sweep signal
for the beam: and the video amplifier, which controls
the intensity of the electron beam. A CRT or video
monitor contains just a CRT and this basic drive cir-
" cuitry. ACRT terminal contains this basic drive circultry
plus a keyboard. memory, comni¥inication clrcuitry, and
a dedicated microprocessor to control all these parts.

The basic control circuitry for a monochrome (one-
color) CRT monitor requires three input signals to
operate properly. It must have horizontal sync pulses to
keep the horizontal oscillator synchronized, vertical sync
pulses to keep the vertical oscillator synchronized, and
video information that controls the intensity of the beam
as it sweeps across the screen. It is-important that these
three signals be synchronized with each other so that a
particular dot of video information is displayed at the
same point on the screen during each frame. If you have
seen a TV picture rolling or a TV picture with jagged
horizontal lines In it, you have seen what happens If the
horizontal, vertical, and video information get out of
‘synchronization. Now let's see how we generate these
three signals to display characters on a CRT screen.

OVERVIEW OF CHARACTER DISPLAY
CONTROL SYSTEM

Characters or graphics are generated on a CRT screen
as a pattern of light and dark dots. The dots are created
by turning the electron beam on and off as it sweeps
across the screen. Figure 13-5 shows how the letters P

——0085-08-0-0-8—— scanune
—0—9—5-04—6—-0—8—9—0—9—-\‘—— SCAN LINE
—e-8-B-0-8-0-5-8-e8-

ONE CHAR ONE CHAR
P) H)

FIGURE 13-5 Producing a character display on a CRT
screen with dots.

440 CHAPTER THIRTEEN

and H can be displayed In the upper-left corner of the

.screen in this way. The round dots in the figure represent

the beam on, and the square boxes represent the beam
off. As you can see, In this example the dot matrix for
cach character is 5 dots wide and 7 dots high. Other
common dot-matrix sizes for character displays are 7 by
9, and 7 by 12, and 9 by 14.

Figure 13-6 shows a block diagram of the circuitry
needed to keep the pattern of dots for a page of text
displayed on the screen of a-CRT monitor. For this
exampie assume that the display has 25 rows of charac-
ters with 80 characters per row.

The ASCII codes for the characters to be displayed on
the screen are stored in a RAM. This RAM s often
referred to as the frame byffer or the display refresh
RAM. The RAM must contain at least one byte location
for each character to be displayed. A display size of 25
rows with 80 characters in each row then requires 25
X 80 or about 2 Kbytes RAM. In an actual circuit this
RAM is set up so that the microprocessor can access it
to change the stored characters. or the display refresh
circuitry can access it to keep the display refreshed on
the screen.

The dot patterns for each scan line of each character
to be displayed are stored in a ROM called a character
generator ROM. Figure 13-7 shows the matrix for a
typical character-generator ROM. This ROM uses a 7 by
9 matrix for the actual . but the total dot space
for each character is a 9 by 14 dot matrix. The extra
dots are included to leave space between characters and
between rows of characters. Also. the extra space allows
lowercase Ictters to be dropped in the matrix so that
descenders are shown correctly. Each dot row in Figure
13-7 represents the pattern of dots for a horizontal scan
line of the character.

To start the display in the upper left comer. the
character counter and the character row counter cutputs
are all 0's so the ASCII code for the first character in the
display RAM is addressed. The ASCII code from the
addressed location is output by the RAM to the addresa
inputs of the character-generator ROM. These inputs
essentlally tell the character generator which character
is to be displayed.

To keep track of which line in a character row s
currently being swept out. we use a scan line counter,
For our example here each row of characters has 14 dot
rows or scan lines, so the scan line counter is a modulo-
14 counter. The outputs of this counter are connected
to four additional address inputs on the character
generator ROM.

Given an ASCII code and a dot row count. the charae-

 ter-generator ROM will output the 9-bit dot pattern for

one dot row in the character. For the first scan across
the screen. the counter will output 0000. so the dot
pattern output will be that for dot row 0000 of the
character.

The output from the character generator is in paraliel
form. In order to turn the beam on and off at the correct
time as It sweeps across the screen. this dot pattern
must be converted to serial form with a parallei-in. serial-
out shift register. The high-frequency clock used to clock
this shift register is called the dot clock because it

SERIAL
VIDEO DATA
rl SHIFT REGISTER l————-‘ T

J.

[

XXX I3

. FIGURE 136 Block diagram of circuitry to produce dot-matrix character

display on CRT.

controls the rate at which' dot information is sent out
to the video amplifier. As you can see in Figure 13-6. we
used a dot clock frequency of 16.257 MHz for this

After the nine dots for the first scan line of the first
character are shifted out, the character counter is
incremented by 1. The outputs of the character counter
are connected to some of the address inputs of the
display refresh RAM. so when this count is incremented,
the ASCII code for the next character in the top row is
addressed in the refresh RAM. The ASCIlI code for
this second character will be output to the character-
generator ROM. Since the dot line counter inputs to the

ROM are still 0000, the ROM will output the 9-bit dot
pattern for the top soan line of the second character in
the top row of characters on the screen. When all the
dots far the top scan line of this character are all shifted
out, the character counter will be incremented by 1
again, and the process will be repeated for the third
character in the top row of characters. The protess
continues until the first scan line for all 80 characters
in the top row of characters is traced out.

A horizontal sync pulse Is then produced to cause the
beam to sweep backito the left side of the screen. After
the beam retraces to the left, the character counter is
rolled back to zero to point to the ASCII code for the first

0000

0001

0010

0011

0100

b

0101

0110

0

1000

1001

1010

wn

1100

olo|o|e|c|®|@®|® @®|c|c|e|e|e]

olo|jojojo|o|o|jo|jo|jeo|o|o |0}

olo|e|o|eo|e|e|c|c|@® @ ®|c|c

olo|e|o|o|o|o|o|@®@|e|c|c|@®@]|e

olo|lelo]le|e|e|eo|@|lec|o|c|@®lo
olo|e|o]lo|o|o|ec|@|o|o|a|@®@|e
olo|e|e|e|e|o|o|@®@|eo|eo|c|@|c

1101

olojojojojojojojlojojo|jojeo o
clc |9 0000 0® ®|c|c|c|e

o|lojo|o|o|@|c|o|@|lo]lo|e|eje

olo|e|o|@]|e|e|olo|@®@|ec|ele|e

ole|o|o|@|e|leo|o|eo|@®@|eo|c]|e]|e

oflelo|o|@|c]|o|e|o|@|eo|o]|e]|e

o|lo|ojojojo|jo|jo|o|o|jo|ojo |

CAPITAL OR UPPERCASE

FIGURE 13-7 Dot matrix for 9 x 14 charactér-generator ROM.

SMALL OR LOWERCASE

4

v

MICROCOMPUTER SYSTEM PERIPHERALS 441

character In the row again. The dot line counter (RO—
R3) is incremented to 0001 so that the character genera-
tor will now output the dot patterns for the second scan
line of each character. Alter the dot pattern for the
second scan line of the first character in the row is
shifted out to the video amplifier, the character counter
is incremented to point to the ASCII code for the second
character in the display RAM. The process repeats until
all the scan lines for one row of characlers have been
scanned.

The character row counter is then incremented by 1.
The outputs of the character counter and the character
row counter now point to the display RAMaddress where
the ASCII code for the first character of the second row
of characters is stored. The process we described for the
first row will be repeated for the second row of characters.
After the second row of characters is swept out, the
process will go on to the third row of characters, and
then on to the fourth, and so on until all 25 rows of
¢haracters have been swept out.

| When all the character rows have been swept out, the
cam is at the lower right corner of the screen. The
counter circuitry then sends out a horizontal sync pulse
to retrace the beam to the left side of the screen and a
vertical sync pulse to-retrace the beam (o the top of the
screen. When the beam reaches the top left corner of the
screen, the whole screen-refresh process that we have
described will repeat. As we mentioned before, the entire
screen must be scanned (refreshed) 30 to 75 times a
second to avoid a blinking display. For the example in
Figure 13-6 we used 50 Hz for the frame-refresh rate.

Now let’s look at a simple example of an actual CRT

controller;

THE IBM PC MONOCHROME ADAPTER

Figure 13-8 shows a block diagram for the IBM PC
monochrome display adapter board. This adapter is
somewhat obsolete. but it is a good next step from the
generic circuit in Figure 13-6. Take a look at Figure 13-8
and see what parts you recognize from our previous
discussions. You should quickly find the CRT controller,
character generator. and dot shift register. Next, find
the 2-Kbyte memory where the ASCIl codes for the
characters to be displayed are stored. To the right of
this memory is another 2-Kbyte memory used to store
an attribute code for each character. An attribute code
specifies whether the character is to be displayed nor-
mally, with an underline, with increased or decreased
Intensity, blinking, etc. You may have observed, for
example. that it is common practice to display a §creen
menu at reduced intensity so it does not distract from
the main text on the screen. For future reference Figure
13-9 shows the meaning of the bits in the attribute byte.
If the B bit is a 1, the displayed character will blink. If
the Ibitisa 1, the character will be highlighted: in other
words. it will have increased intensity. These bits give
you several choices for how you want ‘cach character
displaged on the screen.

As we discussed in a preceding section, ASCII codes
from the display refresh RAM go to the character genera-

tor. Also going to the character generator arc four -

address lines which specify the dot line of the character

442 CHAPTER THIRTEEN

PROCESSOR _ (12)
ADDRESS (11

MEMORY

ADDRESS h
MULTIPLEXER Ium l”"'
2 K MEMORY
CHARACTER
CODE

CHARACTE#R
CcLOCK

2K MEMORY
ATTRIBUTE

DATA

PROCESSOR __|
DATA

BUS
GATING

, -—ﬁ\“ [LATCH I | LATCH
RA CHARACTER ATTRIBUTE
) GENERATOR DECODE

OCTAL oCTAL]

AQ -

I DoTELK !
CHIP MC6845
SELECT CRTC SHIF T =
REGISTER VIDEQ
TIMING - PROCESS
SIGNALS. / SEAIAL DOTS LOGIC
HSYNC. VSYNC. CURSOR DISPEN

==l

MONITOR DIRECT
DRIVE OUTPUTS

CHARACTER CLOCK

FIGURE 13-8 Block diagram of 1BM PC monochrome
adapter board.

scanned. The counter which generates this address is
contained in the MC6845 CRT controller device. The

“output from the character generator goes to a shift

register to be converted to serial form for the video
amplifier. The shift register is clocked by the 16.257-
MHz dot clock. Circuitry in the video process logic
section divides this dot clock signal by 9 to produce the
character clock signal of 1,787,904 Hz. This character
clock signal pulses each time a new ASCII character
needs to be fetched from the display refresh RAM and a
new attribute from the attribute RAM.

Next observe that there is a multiplexer in series with
the address lines going to the character and attribute
memories. This multiplexer is connected so that either
the CPU or the CRT controller can access the display
refresh RAM.

To keep the display refreshed, the 6845 CRT controller
device sends out the memory address for a character
code and an attribute code. The character clock signal

DISPLAY-CHARACTER CODE BYTE

| 7

ATTRIBUTE BYTE

4 <3 42 i3 ‘0 l 7 6 5 4
EVEN ADDRESS ODD ADDRESS

o]

(a)

\

ATTRIBUTE FUNCTION ATTRIBUTE BYTE
7 6 5 4 3 2 1 0
B R G B | R G B

FG | BACKGROUND FOREGROUND

NORMAL "B 0 0 0 | A
REVERSE VIDEO) B 1. 1 1 | 0 0 ©
NONDISPLAY (BLACK) B 0 0 0 I 0 0 0
NONDISPLAY (WHITE) B L TR | | A

| = HIGHLIGHTED FOREGROUND (CHARACTER,
B = BLINKING FOREGROUND (CHARACTER)

(b)
FIGURE 13-9 [-jafa;storage format for IBM PC character

displays. (a) Character byte and attribute byte in word.
(b) Attribute byte format.

0

latches the code from memory for the character generator
and the attribute code for the attribute decode circuitry.
The character clock also increments the address counter
in. the 6845 to point to the next character code in
memory. The next character clock transfers the next
codes to the character generator and attribute decoder.
The process cycles through all of the characters on the
page and then repeats.

Now, when you want to display some new characters
on the screen, you simply have the CPU execute some
instructions which write the ASCII codes for the new
characters to the appropriate address in the display
RAM. When the address decoding circuitry detects a
display RAM address, it produces a signal which toggles
the multiplexers so that the CPU has access to the
display RAM. The question that probably occurs to
you at this point is, What happens if the 6845 and
the CPU both want to access the display RAM at the
same time? There are several solutions to this problem.
One solution is to allow the CPU to access the RAM *
only during horizontal and/or vertical retrace times.
Another solution is to Interleave 6845 accesses -and
CPU accesses. This is how it Is donc on the IBM,,‘
monochrome board.

The CPU is allowed to access the RAM during one-half
of the character clock signal and the 6845 is allowed to
access the RAM during the other half of the character
clock signal. If the CPU tries to access the display RAM
during the controller’s half of the character clock cycle,
a not-ready signal from the CRT controller board will
cause the processor to insert WAIT states until the half
of the character clock signal when it can access the
. display refresh RAM.

The 6845 CRT controller in Figure 13-8 contains the
chain of counters shown in Figure 13-6 and other
circuitry needed to produce horizontal blanking putses,
vertical blanking pulses, a cursor, scrolling, and high-
lighting for a CRT display. Several manufacturers offer
CRT controller ICs that contatn different amounts of the
required circuitry. The Motorola MC6845 is used in both
the monochrome and the color/graphics adapter boards
for the IBM PC.

CRT DISPLAY TIMING AND FREQUENCIES

There are many different horizontal, vertical, and dot
clock frequencies commonly used in raster scan CRT
displays. The horizontal sweep frequency #s usually In
the range of 15 to 50 kHz, the vertical sweep frequency
Is usually 50 or 60 Hz. and the dot clock frequency is
usually in the range of 10 to 100 MHz. As a first example,
let's look a little closer at the.frequencies used in
the IBM PC monochrome adapter we discussed in the
preceding section.

To refresh your memory, the IBM PC monochrome
display adapter produces a display of 25 rows of 80
characters/row. Each character is produced as a 7 by 9
matrix of dots in a 9 by 14 dot space. This means that
because clear space is left around each actual character,
each character actually uses 9 dot spaces horlzontally
and 14 scan lines vertically:

The active horizontal display area then is 9 dots/
character x 80 characters/line or 720 dots per line. The

- 58

active vertical display area is 25 rows x 14 scan lines/
row or 350 scan lines.

Now, according to the IBM Technical Reference Man-
ual, the monochrome adapter uses a dot clock frequency
of 16.257 MHz. This means that tiie video shift register
is shifting out 16,257,000 dots/second. The manual
also indicates that the board uses a horizontal sweep
frequency of 18,432 lines/second. Dividing 16,257,000
dots per second by 18,432 lines per second tells you that
the board is shifting out 882 dots/line. Just above we
showed you that the active display area of a line is only
720 dots. The extra 162 dot times actually present give
the beam time to get from the right edge of the active
display to the right edge of the screen, retrace to the left
edge of the screen, and sweep to the left edge of the
active display area. The large number of extra dot times
is necessary because most monitors have a large amount
of overscan. Overscan means that the beam is actually
swept far off the left and right sides of the screen.
This is done so that the portion of the sweep actually
displaying the characters is linear and the characters
do not run off the edges of the screen.

The manual for the monochrome display adapter also
indicates that the frame rate is 50 Hz. In other words,
the beam sweeps from the top of the screen to the bottom
and back again 50 times/s. To see how many horizontal
lines are in each frame, you can divide the 18,432 lines/s
by 50 frames/s to give 369 scan lines/frame. As we
showed before, the active vertical display area is 350
lines. The 19 extra scan line times give the beam time
to get to the bottom of the screen, retracé to the top of :
the screen, and get to the start of the active display area
again.

Another point it is appropriate to mention here con-
cerns the bandwidth required by the video amplifier in
the monitor. In order to produce a sharp display the
video amplifier in the monitor must be able to turn on

.as.a 011 1ast enough so that dots and undots don’t smear

together. For our example here, the dot clock frequency
is 16.257 MHz. This means that the dot shift register is
shifting out 16,257,000 dots/s. If alternating dots and
undots are being shifted out, then the waveform on the
serial output pin of the shift register will be a square
wave with a frequency of half that of the dot clock or
8.1285 MHz. In order to produce a clear display with
this many dots per line, then, the video amplifier in the
monttor connected to the display adapter must have a
bandwidth of at least 8 MHz.

This bandwidth requirement s the reason that normal
TV sets connected to computers cannot display high-
resolution 80-character lines for word processing, etc.
In order to filter out the 4.5-MHz sound subcarrier signal
and the 3.58-MHz color subcarrier, the bandwidth of TV
video amplifiers is limited to 3 MHz or less.

A final point we want to make about CRT timing is
how often the display-refresh RAM has to be accessed.
As the circuitry scans one line of the display. it has to
access a new character in RAM after each 9 dots are
shifted out, assuming 9 dots horizontally per character.
Dividing the dot clock frequency of 16,257,000 dots per
second by 9 dots/character tells you that characters are
read from RAM at a rate of about 1,806,333 characters/

MICROCOMPUTER SYSTEM PERIPHERALS 443

s. or one character every 553 ns! As we discussed in the
last section, the CRT controller device accesses the
display refresh RAM during one haif of this time, and
the microprocessor accesses the frame buffer RAM dur-
ing the other half of this time. Only about 200 ns 7 -e
actually available for access to the RAM during each half
of the character clock time. As we show later, higher
resolution and color displays require even faster memory
access.

Raster Scan Graphics Displays

MONOCHROME GRAPHICS

As we discussed previously, characters can be displayed
on a CRT screen by sending out a series of dots and
undots to the video amplifier. Tiie ASCII codes for the
characters to be displayed are stored in a display-refresh
RAM. As shown In Figure 13-6, the character-genera.~r
ROM uses an ASCII code from RAM and a 4-bit code
from the dot row couiter to produce the dot pattern ior
the specified scan line in the character.

Now, suppose that the character generator is left out
of tais circuit ana the outputs of the RAM 2 re connected
directly to the inputs of an 8-bit dot shift register. And
further suppose that instead of storing the ASCII codes
for characters in the RAM, we store in successive memory
locations the dot patterns ve want for each 8 dots of a
scan line.

When a byte is read from the RAM and loaded into the
shift register, the stored aot pattern will be shifted out
to the CRT beam to produce the desired pattern for 8
dots along a section of a scan line ¢t the screen. When
the next RAM byte is transferred to the shift register, it
will produce the n=xt 8 dots along the scan line. Th.
process is continued unti' .'l the dot positions on the
screen have been refreshicd. The entire screen then can
Ye thought of as a matrix of dots. Each dot can be
progra' .med to be on or off by putting a 1 or a O in the
corresponding bit location in RAM. A graphics display
produced in this way is known as a bit-mapped raster
scan display. Each dot or, in some cases, block of dots
on the screen is called a picture element. Most people
shorten this to pixel or .e'. For our ciscussions here
let's asstune a pixel is 1 dot.

Now, suppose that we want a mor.ochrome grajhics
display of 640 pcls horizontally by 200 pels verticaily.
This gives a total of 200 x 640 or 128,000 dots on the
screen. Since each dot corresponds to a bit location in
memory, this means that we have to have at least
128,000 bits or 16 Kbytes <f RAM to hold the pel
information for just one display screen. Compare this
with the 4 Kbytes needed to hold the ASCII codes and
attributes fcr an 80 by 25 character display. As we will
show you alittle later. prcducing a color graphics display
with a large n'imber of pels requires even more memory.

Monochrome graphics displays get boring after a
while. so let’s see how you can get some color in the
picture.

COLOR MONITORS AND COLOR GRAPHICS:

The screen of a monochrome CRT is coated with a single
type phosphor, which produces a color specific to that

444 CHAPTER THIRTEEN

phosphor when bombarded with electrons from the
single electron gun at the rear of the tube. To produce
a color CRT display. we applydots or bars of red. green,
and blue phosphors to the inside of the CRT. One very
common approach is { - have dots of the three phosphors
in a line pattern as shown in Figure 13-10. The dots are
close enough together so that to your eye they appear
as a single dot or pixel. Three separate electron beams
are used to bombard the three different phosphors. A
“shadow mask” just behind the screen of the CRT helps
prevent electrons intended for one color phosphor from
falling on the other color phosphors. The distance
between the holes in the shadow mask of a color CRT
or the distance between pixels on the screen is referred
to as its pitch. The pitch of commonly available CRTs is
in the range of 0.21 mm to %.66 mm. Smaller pitch and
smaller dots mean that aore dots can be put on the
screen and therefore the screen has better resolution.
Tne trade-off, however, is that as the pitch and dot size
are made smalle., the beam current must be increased
to get acceptable intensity. A large percentage of the
beam current hits the shadow mask, and if this current
is too high, it may overheat and warp the shadow mask
and permanently distort the image on the screen.

A CRT monitor designed to produce color displays is
commonly rcferred to as an RGB monitor or an RGB!
monitor. In addition to red, green, and blue signal
inputs, an RGB monitor has a horizontal sync input, a
vertical sync input, and—in some cases—an intensity
input. An RGB monitor must be designed to work with
the display format and sync frequencies of the circuitry
iii the microcomputer. Fortunately, some monitors such
as the NEC MultiSync, the Sony Multiscan, and the
Magnavox MVX9CM will work correctly with a wide range
of display formats and sync frequencies.

The apparent color of a pixel to your eye is determined
by the intensity ratio of the three electron beams and
the total intensity of the three beams. Figure 13-11

BLUE -
GREEN ELEC'!‘ON
. GUNS
RED
METAL
MASK
PHOSPHORS = |
ON GLASS

FACEPLATE

FIGURE 13-10 Three-color phosphor dot pattern used
to produce color pixels on a CRT screen.

COLOR

o

BLACK

BLUE

GREEN

CYAN

RED

MAGENTA
BROWN

WHITE

GRAY

LIGHT BLUE
LIGHT GREEN
LIGHT CYAN
LIGHT RED
LIGHT MAGENTA
YELLOW

HIGH INTENSITY WHITE

- = 2 A 3 e - - 00 0000 O0OC
- - = - 0 00O - = - - OO0 O ©O
- - 0O 0 - = 00 - -0 0 = =00l
- 90 - 0 -0 -0 -0 -0 -0 =-0|®

FIGURE 13-11 Sixteen colors produced by different on
and off combinations of red, green, and blue beams at -
normal and increased intensity. ’

shows 16 colors that can be produced when different
combinations of on and off signals are applied to the
three beams and to an overall intensity input. A 1 in the
- 1 bit means that the overall intensity of the beam is
increased to lighten the color, as shown. If all three
beams are off, the dot is. of course, black. If the beams
are all turned on, then the dot will appear white. Other
combinations give the other 14 shades shown.

To give a greater range of colors, newer monitors are
designed to accept analog RGB signals instead of just
digital RGB signals. The signals for these analog inputs
are produced with D/A converters. Using a 2-bit D/A
converter to produce each color signal, for example,
gives 4 X 4 X 4 or 64 colors. However, as we discuss
in the next section, increasing the number of colors
increases the amount of memory needed in the frame
buffer and the rate at which the memory must be
accessed.

PALETTES, PIXEL PLANES, AND VRAMS

For a monochrome graphics display, the data for each
pixel is stored in a single bit in the display-refresh RAM.
Color displays require more than 1 bit per pixel, because
the red. green, and blue data for each pixel must be
stored. For example, 2 bits are required to specify one
of 4 colors, 3 bits are required to specify one of 8 colors,
8 bits are required to specify one of 256 colors, etc. The
number of colors we want to produce on a display then
has a direct impact on the amount of memory required
for the frame buffer. As an example of this, suppose that
we want a 640 x 480 pixel display with 256 colors on
an 8086 system. The total number of pixels in the
display is 640 x 480, or 307.200. To specify one of 256
colors. 8 bits (1 byte) are required for each pixel. The
total amount of frame buffer memory needed then is
307.200 bytes. Aside from the cost, this is an excessive

amount of memory to devote to the display in a system
that can address a total,of only 1 Mbyte of memory.

To reduce the number of bits required for storing pixel
data and still be able to display a wide range of colors,
we use a palette scheme. The term palette is used here
in about the same way an artist uses the term. An
artist’s palette holds the paint colors that he or she has
available. The artist, for example, may have 16 colors
on the palette, but for a particular painting he or she
may use only 4 of the colors. We might say, then, that
the artist has chosen 4 colors from a palette of 16.

As a first graphics example of this, the IBM Color
Graphics Adapter board (CGA) can display medium
resolution (320 x 200 pixel) graphics with 4 colors from
a palette of 16 colors. Since only 4 colors are used at a
time, only 2 bits of memory are required to hold the data
for each pixel. :

As a second example of a graphics palette, we might
for our 640 x 480 pixel system decide to display 16
colors from a palette of 256, instead of all 256 colors.
Only 4 bits are required to store the pixel data for 1 of
16 colors, so the frame buffer can be half the size it
would be for a direct 256-color display. A little later we
will take a look at how different systems implement the
palette approach in hardware.

Another limiting factor in the design of a high-resolu-
tion color graphics system is the rate at which pixel data
can be read from the frame buffer. For example, suppose
that we want a 640 x 480 pixel display with 256 colors.
As we said before, this requires 1 byte of memory per
pixel, or a total of 307,200 bytes of memory. Assuming
a frame rate of 50 Hz, each byte would have to be read
from memory 50 times per second. This corresponds to
15,360.000 bytes per second, or 1 byte every 65 ns. (The
time is actually shorter than this because all 307,200
accesses must occur during the active display time.) As
we explained in Chapter. 11, the read cycle times for
common DRAMs is considerably longer than 65 ns. This
means that we can't use DRAMs for the frame buffer
unless we can find some way to allow more time for each
access. There are several ways to do this.

The first step we take to give more time for the refresh
controller access to the frame buffer is to allow the
microprocessor to access the buffer only during hori-
zontal and vertical retrace times. This gives all the time
between characters or pixels to the controller instead of
timesharing as we described for the monochrome
adapter board.

A second way to reduce the required memory access
rate is to use the palette scheme to reduce the number
of bits required to store the data for each pixel. As we
showed before, reducing a display to 16 colors from a
palette of 256 instead of a direct 256-color display cuts
the size of the display memory in half. Since only 4 bits
are required to specify one of 16 colors, the data for 4
pixels can be packed in a single word, as shown in
Figure 13-12a, page 446. Each memory access then
reads in the data for 4 pixels.

A third method of reducing the access rate for the
frame buffer is to set the memory up as parallel planes.
Figure 13-12b attempts to show this in diagram form
for a system which requires 4 bits per pixel. As you can

MICROCOMPUTER SYSTEM PERIPHERALS 445

PIXEL

PIXEL O

P,lP,[P,[Po- Dr

D, D, D, D, D,

= ;

TPl]

DISPLAY
MEMORY

(a)

[r
T ‘
PIXEL 0
PIXEL 1

meyy

DISPLAY
MEMORY

(b

PLANAR ORGANIZATION-
D|§ DD D, D‘ Do
Ji

—

PACKED PIXEL STORAGE

FIGURE 13-12 Frame buffer memory configurations. (a) Packed pixel.

(b) Planar.

see. the 4 data bits for a pixel are stored at the same bit
position in four different memory locations. When the
controller transfers a word from each of the four memory
locations to its internal registers. it has all the data it
needs for 16 pixels. During the time that these 16 pixels
are being swept out, the DRAMs will recover and can be
accessed again. Additional planes can be added in
parallel to store more bits per pixel.

Still another method of solving the memory-access
rate problem is to build the frame buffer with special
DRAMs called video RAMs or VRAMs. Figure 13-13
shows a block diagram of the TI TMS44C251 VRAM.
The DRAM section of the device consists of four arrays.
which each store 256 Kbits. To the DRAM controller and
the microprocessor circuitry, this device functions as a
256K x 4 device for read and write operations. The
DRAM controller will supply RAS. CAS. multiplexed
address. and refresh signals to it just as it would to any
other DRAM.

To output data to a video controller, however. the 512
bits stored in each row in a DRAM array are transferred
in parallel to a 512-bit register. The outputs of the
register are connected to a 512-input multiplexer. which
routes one of the register outputs to an SDQ output. As
the multiplexer is stepped through its 512 positions. it
outputs the 512 data bits one after the other to the SDQ
output. The point here is that a VRAM can rapidly shift

446 CHAPTER THIRTEEN

out the data for 512 pixels. A TMS44C251. for cxample,
can shift out bits at up to 33 MHz, which is more than
fast enough for a 800 x 512 pixel display. (Not counting
overscan. this calculation is: (800 x 512 pixels/frame)
x 60 frames/s = 24.576.000 pixels/s).

VRAMs can be used to store data in packed pixel

Fd
>
L

WRITE CONTROL

(e
>
w

|

TRG
WE
i
WRITE Al
c?h?i%g d ACOLUMN DECODER| A:
w LRI = A,
s A .
A?
o1O, A,
oo, 0—={ o Ay
DY/O, O—={ BUFFER '
DO, O— —0 Vcc
W O Vs
5 r‘. .
[AT
SV0, SERIAL L
s10. O—f — AseniaL peaisTER sc
SI’0, O—={ BUFFER
SV0; O— SERIAL
ADORESS
COUNTER

FIGURE 13-13 Block diagram of Tl TMS44C251 video
RAM (VRAM). (Courtesy Texas Instruments Inc.)

format or in planar format. Probably the easiest format
to visualize is the planar. A single TMS44C251 can store
four complete bit planes for a 512 x 512 pixel display.
The devices can be cascaded to give scan lines longer
than 512 pixels, or more than 4 bit planes. VRAMS are
somewhat more expensive than standard DRAMS. but
they make it relatively easy to implement a high-resolu-
tion display.

Now that you have a general awareness of how color
graphics are produced, let’s look at some specific ex-
amples.

Common Microcomputer Display
Formats and Hardware

INTRODUCTION

There are an almost unbelievably large number of hard-
ware configurations and formats for microcomputer
displays. Figure 13-14 is an attempt to show the major
display formats avallable on various IBM-type microcom-
puters. Reading the table from top to bottom essentially
traces the development steps for IBM personal computer
graphics during the last 10 years.

The IBM PC, the PC/XT, and the PC/AT do not have
bullt-in graphics capability. For these computers you
choose the text/graphics capability you want, buy the

appropriate adapter board, plug it into one of the VO

slots in the motherboard. and connect a compatible
monitor.

As we described in the preceding section, the IBM
monochrome adapter board produces an 80 x 25 char-
acter display, but it does not produce graphics. An
improvement on the basic monochrome adapter was the
Hercules. Inc. monochrome adapter, which can display
monochrome text or graphics in a 720 x 348 pixel
format.

ADAPTER MODE RESOLUTION COLORS SIGNAL COMPUTERS
. PALETTE
CGA ALPHA 5x80 4716 DIGITAL PC,XT,AT
LOM RES 160x100 4/16 DIGITAL PC,XT,AT
MED RES 320x200 4/16 DIGITAL PC,XT,AT
Wl RES &40x400 2/16 DIGITAL PC,XT,AT
HERCULES MONO T20x348 2 DIGITAL PC,XT,AT
COLOR 720x348 16/66 DIGITAL PC,XT,AT
EGA 640x350 16/64 DIGITAL PC,XT,AT
MGA 320x200 256 ANALOG PS2-25,30
640x4B0 2 ANALOG PS2-25,30
VGA 1M 640x480 2 - ANALOG PS2-50,80
124 640x480 16/256K ANALOG
13N 640x200 256/256K AMALOG
SUPER VGA 640x480 256/256K ANALOG ADAPTER
8514/A 1024xT68 256/256K ANALOG ADAPTER

FIGURE 13-14 Major display formats available on
various |BM-type microcomputers.

The most commonly used graphics format on the IBM
Color Graphics Adapter (CGA) adapter is the medium-
resolution (320 x 200 pixel) graphics mode. which
displays 4 colors from a palette of 16 colors. A CGA
adapter also has an alphanumeric or character mode,

‘but in this mode it uses only an 8 x 8 dot matrix for

each character. This makes its text display unpleasant
to look at for long periods of time.

To solve this problem IBM developed the Enhanced
Graphics Adapter (EGA) board. The EGA board has 25
x 80 text mode. which uses an 8 x 14 dot matrix for
characters so text is more readable than that produced
by a CGA card. The EGA board can operate in the CGA
graphics modes and other graphic modes such as a
640 x 350 display with 16 colors from a palette of
64. To be able to display all the 64 colors in this
mode. the monitor used must have a red-intensified
input, a green-intensified input, and a blue-intensified
input in addition to the standard red. green. and blue
inputs. '

Further improvement came with the IBM PS/2 line of
microcomputers, which have CRT controllers included
on their motherboards. The Multicolor Graphics Array
(MCGA) found on the PS/2 Models 25 and 30 gives these
machines all the display modes of an EGA and several
others. Among the additional display modes are a 320
x 200 pixel display mode with 256 colors and a 640 X
480 pixel two-color display mode.

“In the PS/2 models 50, 60, 70, and 80. a video graphics
array (VGA) device produces a wide variety of display
modes. In addition to EGA-compatible modes, a VGA
has a 640 x 480 graphics display with 16 colors from
a palette of 256K, a 320 x 200 graphics mode with 256
colors from a palette of 256K, and 25 x 80 text mode
which uses an 8 x 16 dot matrix for-characters.

To achieve 256 colors the MCGA and VGA circuits
generate analog red, green. and blue signals instead of
the digital RGB signals produced by EGA and earlier
display adapters. The monitor for an MCGA or VGA
system must be able to accept the analog color signals.
Incidentally, VGA and other high-resolution graphics
boards are availble for PC-, PC/XT-, and PC/AT-type
computers.

In addition to built-in VGA capability, the PS/2 models
60. 70, and 80 have an VO slot especially designed for
a high-resolution graphics board such as the 8514/A.
The 8514/A uses a custom two-chip set to provide
graphics modes with up to 1024 x 768 pixels and 256
from a palette of 256K. . :

Obviously we can't describe here all the details of all
the graphics adapters and modés shown in Figure 13-
14. In the following sections we will briefly discuss the
hardware used to implement a CGA adapter, an EGA
adapter. afid a VGA adapter. In a later section we show
you how to write characters or dots of a desired color to
each of these basic display types.

THE 1BM PC COLOR GRAPHICS ADAPTER BOARD

Figure 13-15. page 448. shows a block diagram of the
IBM PC Color Graphics Adapter (CGA) board. This board
again uses the Motorola MC6845 CRT controller device
to do the overall display control. As we described In a

MICROCOMPUTER SYSTEM PERIPHERALS 447

:%%%EESSSSOR DISPLAY INPUT PROCESSOR
ADDRESS -— BUFFER RUFFER [~ ¢ DATA
LATCH (16 K BYTES)
! ouTPUT
I) LATCH
ADDRESS DATA DATA
PDRA?&ESSOH aads LATCH LATCH LATCH
CRT
CONTROLLER 1 GRAPHICS
SERIALIZER
R
CHARACTER — G
ALPHA COLOR
GENERATOR =
it SERIALIZER ENCODER |— . g
p——e |
PALETTE/
OVERSCAN HORIZONTAL
VERTICAL
COMPOSITE
MODE TIMING COLOR
S— CONTROL GENERATOR GENERATOR
& CONTROL

FIGURE 13-15 The block diagram of the IBM PC Color Graphics Adapter

(CGA) board.

previous section, the 6845 produces the sequential
addresses required for the display-refresh RAM, the
horizontal sync pulses, and the vertical sync pulses. As
you can see by the signals shown in the lower right
corner of Figure 13-15, the adapter board is designed
to drive either a monitor with separate red, green, and
blue inputs or a composite video color monttor, which
has all the required signals combined on a single line.
The 16-Kbyte display-refresh RAM on the CGA board is
dual-ported so that it can be accessed by either the
system processor or the CRT controller.

This adapter board can operate in either a character
mode or a graphics mode. In the character mode it uses
a character-generator ROM and shift registers (alpha
serfalizer) to produce the serial dot information for the
RGB outputs: In the character or alphanunieric mode
each character is represented by 2 bytes in the display-
refresh RAM in the format shown in Figure 13-9a. The
even-addressed or lower byte contains the 8-bit ASCII
code for the character to be displayed. The odd-addressed
or upper byte contains an attribute code, as shown in
Figure 13-9b. The lower 4 bits of this attribute byte use
the codes shown in Figure 13-11 to specify the color of
the displayed characters. Bits 4-7 of the attribute byte
allow you to specify the background color from among
the first eight choices shown in Figure 13-11. The B bit
in the attribute byte allows you to specify that the
character will blink. Only 4 Kbytes are needed to hold
the character and attribute codes for an 80-character
by 25-row display. so the codes for up to four pages can
be present in the 16-Kbyte display RAM.

As a preview of video programming, perhaps you can
see how you can display a character at a particular
location on the screen of a CGA system by directly
writing to the display RAM. The frame buffer in a CGA
system starts at absolute address BSOOOH and 2 bytes
are required to hold the character code and attribute for
each character. You can just count up by 2 from BEOOOH

448 CHAPTER THIRTEEN

to get the address which corresponds to a particular
character position on the screen. You then use a MOV
instruction to write the ASCII code for the character to
that address and the attribute byte to the next higher
address.

When operating in a color graphics mode, a CGA board
uses separate shift registers (graphics serializer) to
produce the dot information for each of the color guns
and for the overall intensity. The pixel data for the
graphics serializer comes directly from the display-
refresh RAM.

For displaying graphics, a CGA adapter board can be

operated in low-resolution mode. medium-resolution
mode, or high-resolution mode. The low-resolution mode
is not of much interest, because the display has only
100 rows of pels with 160 pels in each row. The high-
resolution mode displays 200 rows with 640 pels in each
row, but it can produce only monochrome graphics
displays.
"~ In the medium-resolution mode the display consists
of 200 rows of pels with 320 pels in each row, or a total
of 64,000 pels. The 16 Kbytes of display-refresh RAM
corresponds to 16 Kbits x 8 or 128 Kbits. Dividing the
number of pels into the number of bits available for
storage tells you that in this mode there are only 2 bits
per pel available to store color information. With 2 bits
you can specify only one of four colors for each pel.

Figure 13-16a shows how the 2 bits for each pel are
positioned in display-refresh RAM bytes. Figure 13-16b
shows the codes used to specify the color desired for a
pixel. The 2 bits for each pel specify whether that pel is
to have the background color or a color from one of two
color sets. Figure 13-16¢ shows the two available color
sets. The desired color set can be selected by outputting
a control byte through port 3D9H to the palette circuit
shown on the left edge of Figure 13-15. As we show you
later in the section on video programming, an easler
way to do it is with the BIOS INT 10H procedure.

7 6 § 4 .3 27 1 0

61 co|ct cofct co|ct co
FIRST SECOND | THIRD FOURTH
DISPLAY | DISPLAY | DISPLAY | DISPLAY
PEL PEL PEL PEL
(a)
c co FUNCTION
8 DOT TAKES ON THE COLOR OF 1 of 16
0 PRESELECTED BACKGROUND COLORS
" SELECTS FIRST COLOR OF PRESELECTED
0 COLOR SET 1 OR COLOR SET 2
: 5 SELECTS SECOND COLOR OF PRESELECTED

COLOR SET 1 OR COLOR SET 2

SELECTS THIRD COLOR OF PRESELECTED
COLOR SET 1 OR COLOR SET 2

(b)

COLCRSET 1 COLOR SET 2

COLOR 1 ISCYAN
COLOR 2 ISMAGENTA
COLOR 3 ISWHITE

COLOR 1 IS GREEN
COLOR 2 IS RED
COLOR 3 1S BROWN

()

FIGURE 13-16 CGA 320 x 200 pixel storage formats.
(a) Position of pel bits in memory byte. (b) Codes used
to specify the color desired for a pixel. (c) Two-color
sets.

You can write dots directly to a CGA screen by writing
the byte for each 4 pixels on a line to the appropriate
memory location. A CGA adapter uses interlaced scan-
ning, so the pixel codes for the even scan lines are put
in memory starting at BBOOOH and the pixel codes for
the odd scan lines are put in memory starting at
BAOOOH. You can count up from these starting addresses
to find the memory location that corresponds to a given
pixel location on the screen. In a later section we show
you how to use the BIOS INT 10H procedure to write
dots to the screen.

ENHANCED GRAPHICS
ADAPTER (EGA) HARDWARE

The Enhanced Graphics Adapter has a programmable
CRT controller which allows you to set the display mode
much as you do with the MC6845 on a CGA board.
However, the key parts of EGA hardware that we need
to talk about are the frame buffer and the palette
registers. We can't show you how all the different EGA
display modes use these, but Figure 13-17 shows how
they function for the most commonly used format, a
640 x 350 pixel display with 16 colors from a palette of
64.

In this mode the frame buffer memory is configured
as four planes. Each plane holds one of the 4 bits
required to specify the color of each pixel. A 4-bit value
read from the four planes is used to address one of the
sixteen 8-bit palette registers. The lowest 6 bits from
the addressed palette register are output to the color
monitor.

PALETTE REGISTERS
X X RIGIBIRGB
0
PLANE 3 104 1
. 2
PLANE 2 |0 —— 3
4
PLANE 1 Dyf== 5
]
6
PLANE 0 [Cof~ 7
8
9

-
o

-
-y

-
~

-
w

-
ry

15
BLUE
GREEN
RED
BLUE INTENSIFIED
GREEN INTENSIFIED
_RED INTENSIFIED

5

TO RGBI MONITOR INPUTS —=

FIGURE 13-17 Functions of the frame buffer and palette
registers for the most commonly used EGA display
modes.

NOTE: To work with this mode the monitor must
have red-intensified, green-intensified. and blue-
intensified inputs as well as standard red, green,
and blue inputs.

There are 64 possible combinations for the 6-bit value
in each palette register, but since there are only 16
palette registers. only 16 of the 64 possible combinations
can be stored at a time. The 16 values in the palette
registers at any particular time then specify 16 colors
from a palette of 64. During bootup the palette registers
in an EGA are initialized with values which correspond -
to the 16 colors available on a CGA system, but you can
load the palette registers with values which produce
your favorite colors.

VIDEO GATE ARRAY (VGA) DISPLAY HARDWARE

A proprietary gate array CRT controller device in a VGA
based system allows you to select the dot clock frequency.
the number of horizontal scan lines, the vertical refresh
rate, the amount of overscan. etc. You can program a
VGA system to operate in the previously described CGA
modes. in the various EGA modes, or in several other
modes. One of the standard display modes of a VGA
allows you to display up to 256 colors at a time from a
palette of 262.144 colors. In order to produce 256 colors.
a VGA system generates analog red. green. and blue
signals instead of the digital RGB signals used by
previously described CRT adapters. As shown in Figure
13-18a (page 450). a 6-bit D/A converter. commonly
called a video DAC, is used to produce each of the color

MICROCOMPUTER SYSTEM PERIPHERALS 449

signals. With a 6-bit D/A converter each signal can have
2% or 64 possible values, so the total possible number of
combinations {or the three signals is 64 x 64 x 64 or
262.144. which we refer to as 256K.

As also shown in Figure 13-18a, the 18-bit values for
the colors to be displayed are stored In 256 color regis-
ters. Since there are only 256 color registers, the maxi-
mum number of colors that you can display at a time is
256. Incidentally, several companies produce ICs called
RAMDACS, which contain both the color registers and
the D/A converters.

For each pixel an 8-bit value is used to select the color

.

register which drives the D/A converters. This 8-bit value
is produced in several different ways, depending on the
selected display mode.

The left side of Figure 13-18a shows how this 8-bit
color register “address” is generated for a 320 x 200 x
256 color display. The 8-bit values for four successive
pixels are stored in.four memory planes as shown. When
an 8-bit pixel value is read from one of the memory
planes, the upper 4 bits of the pixel value are used
directly as part of the color register address. The lower
4 bits of the pixel value from the memory plane are used
to address one of 16 palctie/reglsters. (These palette

(b)

18-BIT
COLOR REGISTERS
0
DISPLAY EGA COLORS
MEMORY 15
16
31
8 32
247
VIDEO
I L 258 DACs
G e
:I > GREEN
' ! >— RED
(a)
EALETIE 18-8IT PALETTE - 18-BIT
REGISTERS COLOR REGISTERSU REGISTERS | COLOR REGlSTEnsu
w F
o |4 &
w BANK 0 o, |& R
1 g o o] 15
MEMORY < o4 oiseeay LA Q 16
—
] OuTPUT MEMORY]
5 0 - BANK 1 1 OISITPDUT —
15
127 T ~ Y]
0 | [)
PSS FIELD 5 | 3 :
I] cOLOR SELECT REGISTER | PSS FIELD COLOR SELEGT REGISTER |
MODE CONTROL [[l ! Ll | I I |
REGISTER 6 MODE CONTROL L 7 i
192 REGISTER 5 506
BANK SELECT 7 BANK 3 Yioen BANK SELECT BANK 15 VIDED
y y DACs
O ZSSBLUE T T 255
BLUE

[GHEEN

FIGURE 13-18 Hardware configurations for common VGA display modes.

(a) 320 x 200 x 256 color—38 bits per pixel directly select one of 256 color . .
registers. (b) 640 x 480 x 16 color—2 bits from color-select register select one

of four banks of 64 color registers. Four bits from color planes select one of 16

palette registers. Six-bit value from palette register selects one of the 18-bit

color registers. (c) Alternative 640 x 480 x 16 color—4 bits from color-select

register select a bank of 16 color registers. Lower 4 bits from palette register

value select one of 16 color registers in that bank.

450 CHAPTER THIRTEEN

registers were included for downward compatibility with
EGA graphics modes.) The lower 4 bits of the value from
the addressed palette register are used as the lower 4
bits of the color register address.

Figure 13-18b shows one way the VGA hardware is
configured for a 640 x 480 pixel display with 16 colors.
The 4-bit pixel values are stored in four bit-mapped
planes. To the CRT controller each of these bit planes
has the same address, so the controller reads out all the
bits for a pixel at the same time. The 4 bits read from
the four memory planes are used to address one of the
16 palette registers. The lower 6 bits from the addressed
palette register are used as the lower 6 bits of the 8-bit
address for the color registers. A 6-bit value from the
palette register can address any one of 64 color registers.
However, since there are only 16 palette registers, only
16 of the 64 color registers can be accessed at a time.
This means that the display can only have 16 colors at
a time.

The upper 2 bits of the address for the color registers
come from bits C7 and C6 of a special register called the
Color Select Register. These bits are user programmable.
You can think of these bits as selecting one of four banks
of 64 colors in the 256 color registers. You can change
these bits to rapidly change from one set of 16 colors to
another.

Figure 13-18c shows another way the VGA hardware
can be configured for a 640 x 480 pixel display with 16
colors. In this configuration the 4 bits from the memory
planes select one of the 16 palette registers, but only the
lower 4 bits of the 6 bits from the palette register are
used to address the color registers. The other four bits
of the color register address come from the Color Select
Register. You can think of these four bits as selecting
one of 16 banks of colors in the 256 color registers.
Again, the advantage of this approach is that you can
very quickly switch from one set of 16 colors to another.

After reading through the preceding discussions of
the CGA, EGA, and VGA adapters the question that
probably occurs to you is. With all these different pixel
storage formats, palette registers, and color registers,
how on earth do I put text or graphics to the screen as
part of a program? In the next section of the chapter we
show you some ways to do this.

Video Programming
INTRODUCTION

There are three major methods of writing programs to
control the video hardware we have described in the
preceding sections. One method is to use assembly
language instructions to write the required values di-
rectly to the CRT controller registers. the palette regis-
ters, the frame buffer, etc. A program written at this
level usually runs faster than one written at a higher
level. but programming at this level is quite complex
because you have to keep track of many register bits,
memory addresses. pixel storage formats, etc. Also, when
programming at this register level it is easy to forget to
restore some register to the correct value at the end of
an operation. This may cause the display to “hang.”

- 59

The next-higher level of CRT programming 1s to use
the BIOS INT 10H procedures. In some cases the INT
10H procedures execute very slowly, but they are easy
to use and programs written using them have a high
degree of portability to different systems.

Still another level of video programming is to use a
high-level language such as C. The advantage of this
high-level-language approach, of course, is that you do
not have to “reinvent the wheel.” You can simply call
library functions to draw lines and boxes, create win-
dows, move images on the screen, etc. The Turbo C
graphics functions manipulate the display hardware
directly rather than using the BIOS INT 10H procedure,
so they are quu.e fast. Our choice is to use C wherever
possible, but your choice will depend on the program-
ming environment you have available. To give you
choices we will first show you how to use the BIOS INT
10H procedures to initialize a graphics adapter, write
characters to the screen, and write pixels of a desired
color to the screen. Then we will show you how to write
pixel data directly to the frame buffer of an EGA or VGA

system. Finally, we will show you how to use some of

the Turbo C graphics functions.

USING BIOS INT 10H PROCEDURE
FOR VIDEO PROGRAMMING

Figure 13-19, page 452, shows you the different sub-
procedures or functions of the BIOS INT 10H procedure
and the registers used to pass parameters to these
functions. Some of these functions are: set display mode, -
set cursor position, scroll page up, scroll page down,
write dot, and write character to screen. An important
point here is that the BIOS procedures on an EGA
system are a “superset” of the BIOS procedures for a
CGA system. The INT 10H procedure in an EGA system
$.7 .y mas Jdditional subprocedures to access the pal-
ette registers, etc. un an EGA system. Likewise, the VGA
BIOS INT 10H procedures are a superset of the BIOS
procedures for CGA and EGA systems. The significance
of this is that a VGA system, for example, can be
programmed to operate as an EGA system or as a CGA
system so that programs written for those systems can
be run without problems.

The first step In a video program is to set the system
to the desired display mode. An INT-10H procedure call -
Is an easy way to do this. As a simple example of this,
the following instructions use the BIOS INT 10H to
initialize a CGA, EGA, or VGA adapter to a color text
mode with 80 columns x 25 rows.

MOV AH, 00 ; Call set mode function of INT 10H
MOV AL, 03 : Code for 80 x 25 color text mode
INT 10H ; Call BIOS procedure

To put a system in some other mode you simpy put
the display mode number from Figure 13-19 in AL
instead of the O3H used for this example.

Once you get the adapter or system in the desired
display mode, the next stepiis to write characters or dots
to the desired positions on the screen. The following
Instructions use the BIOS INT 10H procedure to put the

 MICROCOMPUTER SYSTEM PERIPHERALS 451

BI0OS INT 10H SUBPROCEDURES AND PARAMETERS

AH
(]

01

02

03

05

07

FIGURE 13-19 BIOS INT 10H subprocedures and parameters.

452

AL =

FUNCTIOM

Set display mode using value in AL
AL = 0 40 x 25 BW

AL 40 x 25 COLOR

AL 80 x 25 BW

AL 80 x 25 COLOR

AL 320 x 200 COLOR

AL-= 5 320 x 200 BY

AL 640 x 200 x 2 COLOR

AL = 80 x 25 BW

AL = 320 x 200 x 16 COLOR
640 x 200 x 16 COLOR
AL = F 640 350 BW

AL = 10 640 x 350 x 16 COLOR
AL = 11 640 x 4B0 x 2 COLOR
AL = 12 640 x 480 x 16 COLOR
AL = 13 320 x 200 x 256 COLORS

MmO N WV~ W -

® XM M X X X M

Set cursor type

CH = bottom line number for cursor
CL = top line rumber for cursor

Set cursor position
DH = row, DL = column, BH = page

Read cursor posftion

"BH = page

Returns: DH = row, DL = column
CH, CL = cursor mode

Read light pen position
Returns: AH = light pen active
DH = character row of pen

DL = character colum of pen

CH = raster scan line #
BX = pixel column number

Select active display page
AL = desired page

scroll active page up, blanks at bottom’

AL = number of lines to scroll
AL = 0 blanks entire window
CH = row, CL = column of upper left

corner of scroll. DH = row, DL = colum

of lower right corner of scroll.

BH = attribute to be used on blanked lines

Scroll active page down, blank top line

AL = number of lines to scroll
AL = 0 blanks entire window
CH = row, CL = column of upper
left carner of scroll

DH = row, DL = colum of lower right

corner of scroll

BH = attribute to be used on blanked lines
L]

CHAPTER THIRTEEN

AH

DAH

0BH

OCH

ODH

OEH

OFH

FUNCTTON

Read character and attribute at cursor
BH = display page

Returns: AH = attribute, AL = character

Write character and attribute at cursor
BH = display page, CX = number of characters
AL = character, BL = attribute

Write just character at cursor position
BH = display page, CX = number of characters
AL = character

Set CGA color palette

BH = 0 - set background color
BL = color

BH = 1 - select color set

BL = color set - 0 or 1

Write pixel at graphics cursor
DX = row, CX = column, AL = color

Read pixel value
DX = row, CX = column
Returns AL = pixel value

Write character and advance cursor
AL = character, BH = page(text mode)
BL = color(graphics modes)

Get current video state

Returns: AL = current video mode
AH = rumber of character columns
BH = current display page

Set EGA/VGA palette registers
AL = 00 ‘- program a single palette reg

AL = 01 - program border color register
AL = 02 - program all pulette registers
AL = 03 - enable blink or intensify

AL = 07 - read a single palette register
AL = 08 - read the border color register
AL = 09 - read all palette registers

AL = 10H - program a single VGA color reg
AL = 12H - program several VGA color regs
AL = 13H - select color subset

AL = 15H - read a single VGA color reg

AL = 17H - reed several VGA color regs

AL = 1AH - get color page state

AL = 1BH - convert color register set to
gray scale values

Loed Character generator

Subfunction number determines character set.
For example, if AL = 3, value in BL
determines which of four EGA character sets
is loaded.

cursor at position 24 in row 7 and write a blinking A to
the screen at that position.

MOV AH,02H : Load subfunction number for set cur-
sor position

MOV DH,07 : load row number of cursor position
MOV DL,24 :load column number of cursor position
MOV BH,00 ; load display page number
INT 10H ; call BIOS video procedure

; write character at cursor position
MOV AH,09 ; subfunction # for write character/attri-

bute at cursor position

MOV BH,00 :load display page number
MOV CX.,01 ;load number of characters to send
MOV AL,41H : ASCII code for A
MOV BL, : Attribute code for blinking,

10001001B : black background, light blue character
:SeeFigure 13-9 for attribute byte format

INT 10H ; Call BIOS video procedure

The first call of the INT 10H puts the cursor in the
desired location on the screen. Note that as part of the
setup for this call, we loaded the desired dispiay page n
the BH register. As we pointed out earlier, an 80 x 25
character display requires only 4 Kbytes of frame buifer
memory. The IBM CGA board has a 16-Kbyte frame
buffer, so with one of these boards you can have up to
four pages stored in the frame buffer at a time. You can
use subfunction 5 of the INT 10H procedure to flip the
display from one page to another.

The second call of the INT 10H procedure simply sends
the character and attribute bytes to the correct locations
in the frame buffer. The character code to be sent is put
In AL and the attribute byte is put in BL. If CX contains
a 1, the character will be written to just the location
where the cursor is located. After the write the cursor
will not be advanced to the next position. If CX contains
a number other than 1, the same character will be
written to the number of sequential locations contained
in CX. The cursor will be left on the last character
written.

if you want to write a sequence of characters to the
disptay, functicn 14 of the INT 10H procedure is more
efficient because it automatically advances the cursor to
the next position alter a write, To call this function you
load 14 in AH. load the ASClI code for the character to
be sent in AL, and execute the INT 10H {nstruction.

The obvious advantage of using the BIOS procedure

here is that you don't have to figure out the memory
location which corresponds to the position of the charac-
ter on the screen.

lucidcmany.ﬁ CGA system has only one text font and
the characler generator for that font is in ROM, as
showm in Figure 13-15. On an $GA or VGA system the
character generator is located in RAM. The default
character generator data for a specified made is loaded
into RAM when the system {s put In that mode with an
INT 10H function. However, you can use subfunction
17 cf the INT 1CH procedure to load one of several
available character fonts or a cusiom character font.

“Now that you know how to display characters on the

screen, let's take a look at how you can produce a
graphics display. Earlier we mentioned that you could
write a dot on the screen by writing the appropriate
pixel code directly to the corresponding memory location.
An easifer way to do this is with the BIOS INT 10H
procedure.

The program in Figure 13-20, p. 454, shows you how
to put an EGA or VGA system in 640 x 350 x 16 color
mode, set the background color for light blue, draw a
magenta window near the center of the screen, and write
a message in the window. The first major step in the
program is to use the INT 10H procedure to put the
system in mode 10H, which according to Figure 13-19
is the 640 x 350 x 16 color graphics mode. The next
step in the program is to set the background color to
light blue. For an EGA or VGA in this mode, the
background color is the color code stored in palette
register zero. To change the background color, then, ail
you have to do {s use subfunction 16 of the INT 10H
precedure (o lead the code for the destred color in palette
register 0.

The next part of the program uses a nested loop and
the “write dot” subfunction of INT 10H to draw a
magenia window on the screen. The window is produced
by drawing horizontai lines. You can draw a window of
any size by simply changing the start and stop coordi-
nates in this loop.

The final section of the program in Figure 13-20 uses
function 2 of INT 10H to position the cursor in the
window and then uses function 14 to write a message
at the cursor position. We included this last section to
show you that you can use the INT 10H text functions
to write characters to the screen even though you are in
graphics mode. After writing the message to'tne screen
we I6ad AX with 4COOH and use software interrupt 21H
to return execution to the DOS prompt.

A DIRECT WRITE VIDEO GRAPHICS EXAMPLE

The program in Figure 13-20 takes about 10 s just to
draw the smail window on the screen of a 25-MHz 80386-
based microcomputer. For some applications this may
be an unreasonably long time, so we decided to show
you how to do the job by directly manipuiating the
controlier “rs and writing to the video RAM.

The progr furc 13-21, p. 455, puts an EGA or
VGA syster in the 640 X 350 x 16 color graphics mode
and draws a @ ta window just as the program in
Figure s s, but to save paper we did not show the
writ sase portton. This program draws the window
in less than ! 5. The program would be much faster,
except tor the fact that when an EGA or VGA system is
operating tr gheresolution graphics mode. the proc-
essor can access the video RAM only about 20 percent of
the time.

After we initialize the system to the desired mode and
set the background color with the INT 10H procedure,
we use three custom procedures to set the controller
registers, write dots to draw the window, and restore
the controller registers to thelr Initial values. We don't
to discuss all the detalls of the EGA and
VGA controller registers, but we will try to give you

have space here

MICROCOMPUTER SYSTEM PERIPHERALS 453

; 8086 PROGRAM F13-20.ASM .

;ABSTRACT : This program use the BIOS INT 10H procedure to put
; on EGA or VGA system in 640 x 350 x 16 color graphics
; mode, set the background io light blue, draw a magenta
; window and display a message in the window

DATA SEGMENT
TEXT DB 'GRAPHICS PROGRAMMING 1S FUN',24h
DATA ENDS
CODE SEGMENT
‘ ASSUME CS:CODE, DS:DATA
START: MOV AX, DATA ; Initialize DS
MOV DS, AX
MOV AL, 10M ; Set up for 640 x 350
MOV AH, O H graphics mode
INT 104
MOV AH, 10H ; Set background color Light blue
MOV AL, O ; with subprocedure 10H of BIOS
MOV BL, O ; INT 10H. AL = palette function
MOV BH, 09 ; BL =reg #, BH = color
INT 10H
MOV BX, O000SH ; Display page and color for window
MOV CX, 160 ; start column number for window
MOV DX, 100 ; start row number for window
L1: MOV AH, OCH ; INT 10H write dot sub function
MOV AL, BL ; color from store
INT 10K ; video BIOS routine
INC CX ; Increment column count
CMP CX, 480 ; check for end of row
J8 L1 ; No, write another dot
INC DX ; Yes, increment row count
CMP DX, 250 ; Check if all rows done
JE DONE ; Yes, go write message
MOV CX, 160 ; No, point at start of line
Jup L1 ; Draw next dot row
DONE: MOV AH, 02 ; Set cursor position
MOV DH, 12 ; Load character row number
MOV DL, 27 ; Load character column number
MOV BL, O ; Display page number
INT 10H
8, ; Write messsage in window
MOV DX, 00 ; Use DX to hold pointer
MOV BL,OFH ; BL contains desired character color
NXTCHR:MOV SI, DX ; SI destroyed in INT 10H
MOV AH, 14 ; Write character at cursor and
MOV AL, TEXT[SI] ; increment cursor position
CMP AL, 24H ; Check if sentinel: character
JE EXIT
INT 10H
INC DX ; Point to next character in string
JMP- NXTCHR g
EXIT: MOV AX, &4COOH ; return to DOS
INT 21H
CODE ENDS
" END START
FIGURE 13-20 Program using BIOS INT 10H to draw a window on an EGA
or VCA.
enough information so you can comfortably use parts As the name implies. the SETUP procedure gets the

of Figure 13-21 in your own programs. For further attention of the video controller device and puts some
detatils consult one of the EGA/VGA programming books .of its registers in the required mode. EGA and VGA
listed in the Bibliography. controllers each have an incredible number of registers

454 CHAPTER THIRTEEN

; 8086 PROGRAM F13-21.ASM 1
; ABSTRACT: This program puts an EGA or VGA in 640 x 350 x 16 color
; graphics mode, sets the background light blue, then
; uses direct controller writes to draw a magenta window.

CODE SEGMENT
ASSUME CS:CODE

START:
MOV AL, 10H ; Put system in 640 x 350
MOV AH, O ; graphics mode
INT 10H ;
MOV AH, 10H ; INT 10 H subprocedure #
MOV AL, O ; Write to single palette register
MOV BL, O ; Palette register number
MOV BH, O9H ; Code for Light blue
INT 10K
CALL SETUP ; Set up graphics controller for set/reset
; mode of writing to display buffer
MOV BX, 160 ; start column number for window
MOV AX, 100 ; start row number for window
L1: CALL WRITE_DOT ; Fast write pixel procedure
INC BX
CMP BX, 480 ; check for end of row
J8 L1
INC AX ; Increment row count
CMP AX, 250 ; Check if all rows done
JE EXIT ; Yes, done
MOV BX, 160 ; No, point at start of line
JMP L1 ; Draw next dot row
EXIT:CALL RESTORE
MOV AX, 4COOH ; return to DOS
INT 214
PROC SETUP
MOV DX, O3CEM ; Address of controller reg _
MOV AX, 000Sh ; Enable Write Mode 0. AH-write mode, AL-index
OUT DX, AX
MOV AH, 05 ; Load Set/Reset register with
MOV AL, O ; code for magenta, AL - index
OUT DX, AX
MOV AX, OFO1h . ; Enable all four color planes =
OUT DX,AX ; AH - enable bits, AL - index
RET -
ENDP

PROC WRITE_DOT y
; The Video Controller must be set for Write Mode 0, and have the
; Map Mask Set for the desired color outputs.
PUSH AX
PU.H BX
PUSH CX
PUSH DX : |
; Compute address of pixel in video buffer. Pixel address = row x 80 + column/8
MoV DX, 80
MUL DX ; AX now = row * B0
MOV CX, BX ; Save column for later use
SHR BX, 1
SHR BX, 1
SHR BX, 1 ;BX=col /8
ADD BX, AX ; BX = row ™ 80 +col /8
MOV AX, 0AOOOh ; Point ES at video buffer base
MOV ES, AX

FIGURE 13-21 Program using direct controller write to draw a window. .

MCROCOMPUTER SYSTEM PERIPHERALS 455

AND CL, 7 ; Use lowest 3 bits in column
i to determine pixel # in byte

MOV AX, B008h ;
SHR AH, CL :
MOV DX, O3CEh ;
OUT DX, AX g ;

generate and set the BitMask
in graphics controller, so
so.don't write color to all
8 pixels in byte

OR ES:BX, AL ; Write the Pixel - (Contents of AL ignored).

POP DX

POP CX

POP BX

POP AX

RET
ENDP

PROC RESTORE
Mov ox, O%cEn

MOV AX, 0000H ; Default Set/Reset register value

OUT DX, AX

MOV AX, 0001H ; Default Enable Set/Reset value

ouT DX, AX

MOV AX, OFFO8H ; Default bit mask value

OUT DX, AX
RET

ENDP

CODE ENDS
END START

FIGURE 13-21 (Continued)

that are used to hold the values of parameters for
various display modes, etc. To reduce the number of O
addresses required to access all these registers. an index
system is used. Here's how it works.

Each group of registers in the controlier has two O
addresses. As an example. the group of registers we
access in this program uses the addresses 03CEH and
O3CFH. The lower address is used to send the index
number for the regisier we want to access, and the upper
address is used to write the desired value to the selected
register or read a value from the selected register. To
speed up write operations. the index and the value can
be sent with a single 16-bit QUT instruction,

There are several ways to write pixel values to the
memory planes of an EGA or VGA system. For this
example we chose the “set/reset” method. because it is
very efficient for drawing lines or filling regions of the
screen. To give you an overview before we get into the
details, the major steps E]\lhis method are

1. Put the video controller in write mode 0 so that the
set/reset write mode will work.

2. Enable the planes we want affected by the color value
we will load into the set/reset register.

3. Load setreset register with the desired color value,

4. Generate and send a mask byte so that only the
desired pixel bits in the dispiay memory bvtes are
set or reset.

5. Activate the controller to set/reset the desired bits
: in the display memory.

456 CHAPTER THIRTEEN

The first group of instructions in the SETUP procedure
enables the controller for Write Mode O so the set/reset
operation will work. The second MOV and OUT group of
Instructions in the SETUP procedure is used to enable
the desired color planes in the video RAM for a write. In
this case we want to write to all four planes, so we put
I's in the lower 4 bits of the data word in AH. The SETUP
procedure needs to be done only once before a series of
dots is written. <

The next procedure to look at in Figure 13-21 is the
WRITE_DOT procedure. The first task of the WRITE_

.DOT procedure is to combute the viden RAM address

which corresponds to the desired pixel coordinates. As
shown in Figure 1517, the pixel data for this display
mode is stored in four paraiicl pianes. ine 4-bit value
for each pixel is stored as the same numbered bits in
the four planes. Fach byte in one of the piance then
contains 1 bit of the pixel data for 8 pixels. so it takes
80 bytes of memory in ench plane, to store the pixel
data for one hne of 510 dots on the screen. From the
MICroprocessor’s star it the four planes all occupy
the same sysieny address space, starting at address
OAQOOH. The offset of the byte which contains the bit
for a particular pixcl can be calculated with the
simpie expression Offset = {row x 80} + colummn:&. [n the
WRITE_DOT procedure in Figure 13-21, we used the
MUL instruction to multiply the row number by 30, but
for the divide instruction we used a shift-right operation
because it is faster than DIV,

The next step in the WRITE_DOT procedure is to
generate a mask which will be used to make sure a new
pixel code is written only to the desired bit in each of

the display planes. The number of a bit in a byte is
represented by the lowest three bits of the column
number. The MOV CX,BX instruction in the procedure
saves the column number in CX. so the AND CL.O7H
instruction gives the number of the bit in the memory
byte. To actually generate the mask word, we load 80H
in AH and shift this value CL times to the right. The 1
in the data word in AH will be left in the bit position we
want to write to in the RAM byte. (As we show you in a
problem at the end of the chapter, it is sometimes useful
to set all the bits in.this mask so that the pixel data is
written to all 8 bits in a byte at the same time.) Once
the mask is generated we send it and the index of 08H
in AL out to the controller.

As we mentioned before, the four planes of the video
buffer RAM all occupy the same address space. starting
at OAOOOH. For the write mode we have chosen, this
means that we have to send pixel codes to the RAM
through the controller rather than writing them directly.
Remember that in the WINDOW procedure, we sent
the pixel code to the Set/Reset (color) register of the
controller. The first step in this indirect process is to
point ES at the base of the Video RAM segment. The
next step is to tell the controller to write the pixel
code to the desired address with the OR ES:BX] AL
instruction.

Normally, the OR memory, register instruction reads
a byte from memory, ORs AL with this word. and writes
the result back to the specified memory location. In this
program the read part of the operation causes the
controller to read a byte from each of the display planes
into four latches_in the controller. The controller then
sets or resets the unmasked bits in each of these
registers with the new pixel code. During the write part
of the OR operation the updated.bytes are written back
to the specified address in the planes. The byte in AL is
ignored during this operation.

The RESTCRE procedure at the end of the program
is used to return all the registers in the video controller
to their default values. We wanted to show you how to
do this, but in most cases it is not really necessary.
because other procedures will usually put the controller
in the mode needed for that procedure.

DRAWINC DIAGONAL LINES ON THE SCREEN

The program in Figure 13-21 uses the WRITE_DOT
procedure to draw horizontal lines acress the screen.
Perhaps you can see that the WRITE_DOT procedure
could easily be used to draw a vertical line on the screen.
However, drawing a diagonal line is much more difficult,
because most of the pixel positions do not fall exactly

on the desired line. As an example of this. Figure 13-22¢

shows the pixels which best approximate a line from’
coordinates (0. 0) to (10, 4). For each horizontal pixel
position‘a calculation must be done to determine which
of two vertical positions more closely approximates the
desired line. To compute the “best-fit" pixel locations,
we usually use Bresenham's algorithm. This algorithm
determines the closer pixel by determining whether a
point halfway between the pixels is above or below the
actual line. A couple of examples should help you see
how this works. ’

A0V 2
A%

O = NW s

012345678910
(a)

=

4
3
2
i 0) MIDPOINT
0 x
012345678910

(b)

MIDPOINT ——2.

O =N Wwa

012345678910
()

FIGURE 13-22 Drawing diagonai lines with pixels.

(a) Graph of 4X x 10Y = 0. (b) Method to determine
pixel to use for an X value of 4. (c) Method to determine
pixel for X = 8 and best-fit pixels for entire line.

The equation for the line in Figure 13-22a is 4X -
10Y = 0. Figure 13-22b shows how we determine which
pixel to use for an X value of 4. The two choices for the
pixel are the Y = 1 pixel and the Y = 2 pixel. To
determine which pixel. we first compute the value of the
function at the midpoint between these two. For this
example the midpoint is at (4. 1.5). so the function is 4
x 4 — 10 x 1.5 = +1. A positive result here indicates
that the midpoint value is not large enough to make the
funiction equal to zero: in other words, the midpoint is
below the line. This means that the pixel at (4. 2) Is
closer to the actual line. In this case. all we do Is
increment the X value from that for the previous pixel.
increment the Y value from that for the previous pixel,
and write the pixel to the video RAM.

Figure 13-22¢ shows the results this technique pro-
duces for the pixel at X = 8. The midpoint here is (8.
3.5). so the function at this pointis 4 x 8 = 10 x 3.5
= -3. The negative result tells you that the midpoint
is above the line. This means that the pixel at (8. 3) is
closer to the line than the pixel at (8. 4). In this case we
increment the X value from that of the preceding pixel.
keep the Y value the same as that of the preceding pixel.
and write the pixel to the video RAM.

The example in Figure 13-22 assumcs the line is in
the first octant of a standard graph. but the basic
principle can be extended to a line in any octant. To
draw a line in the second octant. you increment the Y

MICROCOMPUTER SYSTEM PERIPHERALS 457

value by one and compute appropriate pixel value for X
Instead of incrementing X and computing Y. To draw a
line in the third octant, you reverse the starting and
ending points so the line is drawn left to right instead
of right to left. We don't have space here to show you an
assembly language program for this algorithm. but
almost every graphics book has at least one.

One point we hope you gained from the preceding
discussion is that it takes considerable computing just
to draw a sequence of lines on the screen. Another type
of graphics programming that requires considerable
computation is the creation and manipulation of win-
dows. The programs in Figures 13-20 and 13-21 showed
you how to draw simple graphics windows by writing
pixel data to locations in the frame buffer. but in most
real applications there is considerably more to do than
just draw the window.

Suppose, for example, that in a program you are
writing you want to have a pull-down menu window
which lists a series of commands that a user can
select from, similar to the mz2r.us in the tc integrated
environment. When you create a window, you write over
the old pixel values in the frame buffer. Therefore, you
must save the pixel codes for the region where you are
going to put the window so that you can restore the
original display when you close the window. The transfer
of pixel codes from the frame buffer to another buffer,
from the buffer back to the frame buffer. or from one
location to another in the frame buffer is commonly
called a bit-aligned block transfer or BITBLT (pro-
nounced bit blit).)

Diagonal lines and BITBLT operations are required
in almost every graphics program, so predefined C
functions have been developed to implement these and
other graphics functions. In the next section we show
you how to use some of the Turbo C predefined graphics
functions.

USING C GRAPHICS FUNCTIONS

Almost every C compiler comes with a library of graphics
functions. Also, several other companies market pack-
ages of graphics functions which provide capabilities
beyond those of the basic graphic functions that come
with the compilers. One difficulty with all these is
that the names, operations, and prototypes for these
functions vary widely from company to company. For
our discussions here we use just the graphics functions
that come with Turbo C version 2.0. If you have some
other compiler, you should be able to find similar
functions in the libraries for it.

Figure 13-23 shows a C program which uses Turbo C
library functions to initialize the graphics adapter, draw
an eight-segment “pie” graph on the screen. open a
graphics window, draw some figures in the window. and
close the window on user command.

To get an overview of how the program works. read
just the comments in Figure 13-23: then read the
discussion here to get the details ef how the described
action is done. You should then be able to use these
functions to produce some interesting displays.

After we declare some variables, the first action in

458 CHAPTER THIRTEEN

main is to call the initgraph function to initialize the
display adapter. The arguments you pass this function
are the address of a variable containing the desired
graphics driver. the address of a variable containing the
desired mode, and a pointer to a string containing the
path to the specified graphics driver (.BGI) file. For this
example we used the predefined constant VGA for the
graphics driver and the predefined constant VGAHI for
the display mode. These values produce a 640 x 480
16-color display. On an EGA system you could use the
constants EGA and EGAHI to initialize the adapter
for a 640 x 350 16-color display. Note in the string
containing the path to the graphics drivers you have to
insert the \ twice to get the compiler to accept a\.

The setbkcolor function next in the program sets
the background color to the predefined constant
LIGHTBLUE. The choices here are BLACK, BLUE.
GREEN, CYAN, RED, MAGENTA, BROWN, LIGHTGRAY,
DARKGRAY. LIGHTBLUE, LIGHTGREEN. LIGHTCYAN.
LIGHTRED, LIGHTMAGENTA, YELLOW, and WHITE.

The for loop next in the program draws eight different-
colored pie slices on the screen. The pie is centered at
pixel coordinates X = 320 and ¥. = 175 and has a radius
of 100 pixels. The starting point for the first slice is the
3 o'clock position. The angles are incremented so that
the other slices are added in a counterclockwise direc-
tion. The predefined colors in the previous paragraph
are really an enumerated list, where BLACK has a value
of 0, BLUE has a value of 1, GREEN has a value of 2.
etc. The color value of i + .1 that is passed to the
setfillstype function starts with blue, then goes to green,
then cyan, etc. as the loop executes.

After we draw the pie slices, we change the drawing
color to white, draw a couple of white circles around the
pie. and move the current position of the graphics cursor
to the upper left corner of the screen for future reference.

NOTE: The graphics cursor is normally invisible,
so you have to keep track of where it is or. perhaps,
on the screen draw an arrow which points to the
current position.

The demo_window function called next in the program
contains some really important programming points. As
we mentioned, before you draw a window on the screen
you have to first save everything from the current display
S0 you can restore it when you close the window. This
is equivalent to pushing registers on the stack when
you call a procedure in assembly language.

The first data you need to save is the current position
of the graphics cursor. The getx and gety functions
determine the coordinates of the cursor and store them
in the local variables X and Y.)

The next data you have to save is the pixel data for
the section of the screen where you are going to draw
the window. The first step in this process is to call the
imagesize function to determine how many bytes of
memory are needed to store the pixel data. The value
returned by imagesize is then passed to the function
malloc. Malloc (memory allocate) creates a buffer of the
requested size in an area of memory called the heap.

/* C PROGRAM F13-23.C */

/* Program to demonstrate Turbo C graphics functions and windous */

#include<stdlib.h>
#include<stdio.h>
#include<graphics.h>

void main()

(8

int driver = VGA, mode = VGANI;

int i, start_angl = 0, end angl = 45;
void demo_window(void);

initgraph(&driver,tmode, "c:\\tc");
setbkcolor(LIGHTBLUE);

for(i=0; i<8; i++)
. :
setfillstyle(SOLID_FI'L, i+1);
pieslice(320,175,start_angl,end_angl,100);
start_sngl = start_angl + 45;
end_angl = end_angl + 45;

)

setcolor(WHITE);
circle(320,175,101);
circle(320,175,102);

moveto(0,0);
demo_window();-
exit(0);

)

void demo_window(void)
4

int x,y,i;

unsigned window_size;
void * window_buffer;

x=getx(); y=gety();

window_size = imagesize(160,100,480,250);
window_buffer = melloc(uindow_size);
getimage(160,100,480,250,window_buffer);
setviewport(160,100,480,250,1);
setcolor(RED);
for(i=0; i<150; i++)
line(0,i,319,i);
setcolor(WHITE);
circle(25,25,10);
rectangle(160,75,320,150);
while(getchar()!='e’)

“gontinue;
setviewport(0,0,639,349,1);
putimage(160,100, window_buffer,0);
free(window_buffer);
moveto(x,y);

)

I'

,.

,.
,.

,t
Y ad

IAd
/'

L

,I

VAl
VA
,.

II'

I'
I'

I.

I'
I.
/.
I.

YA
,t
YA
/*

640 x 480 x 16 color */
function declaration */

initialize adapter */
set background color */

dravw 8 pie wedges */

change drawing color for each.*/
center, angls, radius */
increment angles */

change drawing color to white */
drau circles around pie */

set cursor to home position */
call window demo function */
return to DOS */

-+ s Save current cursor position */
determine size of imege to store */
find # bytes for image */

dynamically allocate memory*/

store bit mep under window */

create window */

change drawing color */

paint window red */

change drawing color ¢/

draw circle in window */

drew rectangle to show clipping */ |
wait for e to exit */

restore to full screen */

restore original display */
release allocated memory */
put cursor beck in position
where it Was before call */

FIGURE 13-23 C program which uses Turbo C library functions to initialize the
graphics adapter, draw an eight-segment pie graph on the screen, open a

graphics window, draw some figures in the window, and close the window on
user command. '

MICROCOMPUTER SYSTEM PERIPHERALS

459

The heap is above the normal data area and below the
stack. If there is not memoriy left in the heap for the
requested buffer, malloc returns an error code of 00.
Since this is such a small program, we did not bother
to check for an error condition. but in a larger program
you should. Jf malloc succeeds, it returns a pointer to
the start of the buffer. Once you have the buffer set up.
you use the getimage function to copy the pixel data from
the display refresh RAM to the buffer. The arguments
passed to getimage are: the X and Y coordinates of the
upper-left corner of the area, the X and Y coordinates of
the lower-right corner of the area, and a pointer to the
buffer created by malloc. Now you are ready to actually
create the window.

The setviewport function is used to create the window.
The first four arguments passed to setviewport are the
- coordinates of the upper-left and the lower-right corners
of the window. The final argument in the setviewport
call is the clip flag. If this flag is set and you attempt to
draw a figure which would extend outside the window,
the figure will be clipped so it stops at the edge of lhe
window.

The setviewport function creates the window and
moves the graphics cursor to the upper left corner of
the window. However, the created window has the same
background color as the main screen, so it is not visible.
To make th. window visible we set the drawing color to
red and draw the window full of lines. There are other
ways to fill a rectangle, but this method gave us an
excuse to show you how to draw lines.

Just for fun we drew a small circle and a rectangle {n
the window. Note that the coordinates for the circle are
relative to the upper left corner of the window, not the
upper left corner of the screen as they were for the
preceding circles. Also note that the coordinates given
for the rectangle would cause it to extend outside the
window. We set the clip flag in the setviewport call, so
the rectangle will not be allowed to extend outside the
window. This is important. because anything drawn
outside the window would not be replaced by the ortginal
display when you close the window.

When the user presses the e key and then the Enter
key, we close the window and restore everything. The
setviewport call here sets up the whole screen as the
window again. The putimage function copies the pixel
data from the window_buffer back to the display refresh
RAM. The free(window_buffer) function call releases the
memory allocated for the window_buffer by malloc. This
step is very important, because If the memory is not put
back in the heap when you are done with it. the heap
will grow up until it runs into the stack. The principle
here is the same as cleaning up the stack when returning
from a function call.

The final step before returning to main Is to put the
graphics cursor back in the location where it was before
the call. The moveto function puts the graphics cursor
at the X and Y coordinates passed to it.

The C library functions we used in this program are
obviously much elleer to work with than the assembly
language equivalents. They write" directly to the video
hardware instead of using the INT 10H procedures, so

they are quite fast. However, they are still relatively)

460

CHAPTER THIRTEEN

low level. More advanced graphics packages such as
Windows from Microsoft, DGIS from Graphic Software
Systems, and GEM from Digital Research contain all the
basic procedures needed to create and move windows.
Also. they contain tools needed to draw text and graphics
in windows. Packages 3uch as this better Insulate an
applications programmer from the hardware details.

HIGH-RESOLUTION GRAPHICS
AND GRAPHICS PROCESSORS

In the preceding sections we mostly discussed CGA.
EGA. and VGA systems so that you could experiment
with the examples on your own system. For many
applications such as advanced CAD (computer-aided
drafting). CAE (computer-aided engineering), or EDA
(electronic design automation). however, the resolution
of even a VGA screen is not nearly enough. For these
applications a screen resolution of 1024 x 768 or greater
is required. There are several problems in producing
these high-resolution displays.

First, it is nearly a full-time job keeping the display
refreshed and the display RAM refreshed. Second. ma-
nipulating complex images on the screen requires a
great many computations. As we discussed earlier, even
drawing a diagonal line or a circle on the screen requires
considerable computation to determine the pixel values.
Drawing a three-dimensional view of an airplane model
on the screen, for example, requires several hundred

~ thousand floating-point computations. Rotating the im-

age to see a slightly different view requires hundreds of
thousands of floating-point computations. Manufactur-
ers have attempted to solve these problems in a number-
of ways.

As shown in Figure 13-14, IBM's next step up from
the VGA is the 8514/A adapter, which plugs into a
special slot in PS/2-type computers. This adapter uses
a two-chip graphics processor to produce a display of
1024 x 768 pixels. One part of the 8514/A chip set
keeps the display and the frame buffer RAM refreshed.
The graphic processor part has hard-wired instructions
to draw lines, perform BITBLT operations, and generate
addresses for pixel coordinates. The 8514/A graphics
processor, however, does not have Instructions for
drawing arcs and other more complex shapes. so the
burden for these operations is still left with the main
processor.

Another common example of a “hard-wired” graphic
processor is the Intel 82786 Graphics coprocessor.
which works with the main processor in about the same
way that 8087 math coprocessor we described in Chapter
11 works with the main processor. The 82786 contains
circuitry to refresh DRAMs as well as circuitry to refresh
the screen. The 82786 has hard-wired instructions to
draw lines. draw polygons. perform BITBLT operations,
create multiple windows, and manipulate windows. The
advantages of these hard-wired instructions are that
they execute very rapidly and they require very little
main processor overhead. The disadvantage of the 82786
is that if the desired operation is not one of the hard-
wired Instructions, you have to implement it with main
processor instructions.

Still other commen examples of graphics processors,

FIGURE 13-24 A TMS34020 (“three-forty-twenty")
subsystem which can be connected to the main
processor buses to control a 1024 x 1024 x 8-bit/pixel
display.

are the Texas Instruments TMS34010 and TMS34020.
Figure 13-24 shows how a TMS34020 (“three-forty-
twenty”) subsystem can be connected to the main proces-

sor buses to control a 1024 x 1024 x 8 bits/pixel °

display. As we explained earlier, the VRAM is used for
the actual video buffer, because it can get data out fast
enough to refresh pixels. The outputs of the VRAMs go
to the palette registers, and the outputs of the palette
registers go to D/A converters, which produce the analog

- RGB signals for the monitor. The standard DRAM and

ROM in this subsystem are used to hold the programs
and data for the graphics coprocessor. Note that a
TMS34082 floating-point graphics coprocessor can be
connected (n the system to handle floating-point compu-
tations. .

The major advantage and the major disadvantage of
a TMS34020 system is its programmability. The device
has basic graphics instructions such as draw line, pixel
move, and area fill, and it can be programmed to
impiement much more complex graphics functions than
common hard-wired devices. but the programmer has
the burden of developing the required programs. To
make this casler TI has a development system and an
extensive library of programs for common operations.

Another step that Texas Instruments has taken to
', make the programmer’s job casier is to develop the Texas
" Instruments Graphics Architecture (TIGA) standard and
- release this standard to the industry. TIGA establishes
a standard interface between PC applications and the
TMS34010 or TMS34020 hardware. What this means
is that an applications programmer developing. for
example. a drafting program can write his or her pro-
gram to interface with TIGA and not worry about the
actual hardware underneath it. TIGA does. however,
allow the developer to write custom extensions if needed.

A still-higher level of graphics hardware is the Intel
1860™, whose architectural block diagram is shown in
Figure 13-25. This device is intended for use as the CPU
in an engineering workstation which has advanced 3-
dimensional imaging capability. As we discussed before.,
this requires a great many floating-point computations.
With a 40-MHz clock the 1860™ can perform at a peak

rate of 80 million floating point operations per second

ADDR 22 al

MEMORY
INSTRUCTION CACHE | | MANAGEMENT|| DATA CACHE
UNIT
mstal 0 1 Foarafcacwe
aoR 7 ADDR| DATA
o4 FP INSTR (128
COREINSTR {32 {32 ':z{':z
EXT BUS CONTROL| FLOATING POINT
DATA UNIT pes i CONTROL UNIT
Joafou Lo
DEST
SRC1
SRC2 x
GRAPHICS UNIT| -
WENGE ADDER UNIT - || MuLTIPLIER UNIT

FIGURE 13-25 Block diagram of the Intel’s i860™,

(MEGAFLOPS or MFLOPS). The 1860™ achieves this
speed by putting many functions on a single chip
and by doing many operations in parallel, rather then
serially. :

As you can see in Figure 13-25, the device contains a
RISC processor core, an integer processor, a floating-
point processor, and a graphics processor. The device
also. contains an instruction cache and a data cache.
The separate caches mean that instructions and data
can be read at the same time by a processof. Also, the
64-bit external data bus allows a 32-bit data word
and a 32-bit instruction word to be read in at the
same time.

The main processor in the 1860™ is a reduced (nstruc-,
tion set computer or RISC. As the name implies, this
type processor has a very simple set of instructions
which operate very fast. A RISC processor typically has
only logical, simple arithmetic, shift, load, store, and
Jump instructions. When programming a RISC proces--
sor you use these simple instructions to “custom make"
the more complex operations you need for a specific
application. The advantage of a RISC approach over the
complex instruction set computer or CISC approach of
a processor such as the 8086 is that you don't have the
overhead of, for example. string instructions which you
may never use. RISC instructions typically execute in
one or two clock cycles. Another advanced feature inte-
grated in the i860™ is a complete memory-management
unit shown at the top of Figure 13-25. In Chapter
15 we describe the operation of memory-management
units.

Other Display Technologies
ALPHANUMERIC/GRAPHICS LCD DISPLAYS

In Chapter 9 we discussed the operation, advantages,
and interfacing of LCD for displaying individual num-
bers and letters as individual digits. Because of their

MICROCOMPUTER SYSTEM PERIPHERALS 461

It]

light weight. thin profile, and low power dissipation.
LCD displays are commonly used in laptop computers.
To make a screen-type display the liquid-crystai eiemenis
are constructed in a large X-Y matrix of dots, The
elements in each row are connected together, and the
clements in each column are connected tog ther. An
individual element is activated by driving both the row
and the column that contain that element. LCD elements
cannot be tumed on and off fast enough to be scanned
one dot at a time 'in the way that a CRT display iIs
scanned. Therefore. the data for one dot line of one
character or for an entire line across the screen is applied
to the X axis of the matrix. and that dot row or linc is
activated. After a-short time, that line is deactivated.

The data for the next dot row is applied to the X axis.

and the Y line for that dot line is activated. The process
is continued until the bottom of the screen is reached
and then the process starts over at the top of the screen.
For large LCDs the matrix may be divided'into several
blocks of perhaps 40 dot lines each. Since each block of
dot rows can be refreshed individually, this reduces the
speed at which each liquid-crystal element must be
switched in order to keep the entire display refreshed.
Large LCDs usually come with the multiplexing circuitry
built in so that all you have to do is send the display
data to the unit in the format specified by the manufac-
turer for that unit.

Most laptop computers in lhe past have used reflective
type LCD displays because these displays use very low
power. However, reflective displays have the disadvan-
tages that they have low contrast, a rélatively narrow
viewing angle. and only monochrome displays. A com-
mon method .of improving these displays has been to
display different colors as different shades of gray. The
shade of gray Is determined by the duty cycle for which
the pixel is activated. A device such as the 82C455
graphics controller from Chips and Technologies con-
tains all the circuitry needed to interface with a VGA,
EGA. or CGA LCD display with gray scaling.

To produce color displays some portable computers
now usc transmission-type LCD displays. In this type
display the light from a strong fluorescent backlight is
passed through the LCD elements and some filters to
produce the desired display. As with color CRTs. a triad
consisting of a red element, a green element, and a blue
element makes.up each pixel. The color of the pixel
{s determined by the relative intensity of the three
elements.

In addition to their use as direct display devices
. transmission type LCD displays can be used to display
the output of a computer on an overhead projector. A
transparent frame containing the LCD panel and the
interface electronics is simply placed on the overhead
projector in place of the usual plastic overhead transpar-
ency. An example of this type unit is the PC Viewer from
In Focus Systems: it produces a 640 x 480 X 16 color
display.

The major disadvantages of the transmission-type
LCDs currently are their high cost and the relatively
large amount of power used by the backlight. The
backlight power limits their use In battery-powercd
laptops.

462 CHAPTER THIRTEEN

PLASMA DISPLAYS

Another type display commonly used in portable com-
puters is the plasma type. Plasma displays take advan-
tage of the fact that some gases give off light when an
electric current 'is passed through them. You have no
doubt seen neon signs. which use this same principle.

A CRT plasma display consists of an X-Y matrix of

" pixels which contain neon gas between two electrodes

in a tiny glass envelope. When a voltage is applied to
both the X and the Y electrodes for a pixel. the pixel will
light. A line on the display can be refreshed by applying
the data to the X inputs for that line and applying a
voltage to the Y input for that line.

Most plasma displays are orange because of the ncon
gas used, but different shades are commonly used to
represent different colors. Color plasma displays are
under development. Plasma displays typically have better
contrast than reflective LCD, but they also require more

power.

COMPUTER MICE AND TRACKBALLS

Figure 13-26a shows a eommon three-button mouse
and Figure 13-26b shows a common trackball. As we're
sure you know, devices such as these are.commonly
used to move the cursor around on a CRT screen to
make drawings or execute commands by selecting a
command from a menu. On the bottom of most mice
there is a ball which rotates as you move the mouse
around on your desk. As the ball rotates. it turns two
optical encoder disks. One disk detects mouse motion
in the X, or horizontal. direction and the other encoder
detects motion in the Y, or vertical, direction. A trackball
is essentially a mouse turned upside down so that you
rotate the ball directly. instead of moving the. mouse
around to rotate the ball. The output data from a mouse
or trackball consists of the condition of the switches
and the amount of motion in the X and Y direction.
There are three major ways that mice and trackballs
are interfaced to a computer. Serial mice connect to an
RS-232-type serial port such as COM1 on the computer.’
Bus mice use an interface board which plugs into a
slot in the motherboard of the computer. PS/2-type
computers have a direct rear panel input especially
designed for mice and other “pointer”-type devices.
When you buy a mouse .or trackball. it usually
comes with a diskful of programs and a fairly large
instruction manual. Included on the disk for a mouse
are two “drivers,” typically called MOUSE.COM and
MOUSE.SYS. You install one of these drivers to allow
application programs to interface with the mouse. To
install the standard mouse driver. MOUSE.COM. you
simply copy the file to the DOS subdirectory on your
hard disk and insert the command MOUSE in your

. AUTOEXEC.BAT file. To use the alternate driver.

MOUSE.SYS, you copy this tile to the DOS subdirectory
on your hard disk and inscrt the statement device =
mouse.sys in your GONFIG.SYS file. Either of these
methods will load the mouse driver automatically when
you boot up the system.

A ’ (b)

FIGURE 13-26
(LOGITECH.)

In addition to the mouse drivers, the disk that comes
with the mouse also contains a program which allows
you to create pop-up menus containing a list of com-
mands. To execute one of the commands in a pop-up
menu, you move the mouse until a highlighted box
appears on the desired command and then press a
specified mouse key. For many people this sequence of
operations is easier than typing in a command at the
DOS prompt. To develop a menu you can choose from
one of several menu templates supplied on the disk. or
you can generate a custom menu format.

The question that may occur to you at this point is.
How do 1 read mouse data to use in a program? If you
are programming at the assembly language level. then
the answer is to use the INT 33H procedure which is
loaded into RAM as part of the mouse driver. As an
introduction, Figure 13-27 shows some of the INT 33H
subprocedures, the registers you use Lo pass parameters
to these procedures, and the parameters that are passed
back by the procedure. For more information on these
consult the IBM Technical Reference Manual for the PS/
2 Model 80 Microcomputer.

For high-level-language interfacing with a mouse.
some mouse manufacturers supply a library of mouse

(a) Three-button mouse. (b) Trackball.

INTROOUCTION TO INT 33H MOUSE INTERFACE SUBPROCEDURES
AX FUNCTION

1 Show visible pointer

2 Hide visible pointer

3 Get position and button status
Returns: BX:bit 0 = 1 - left
BX bit 1 =1 - right
¥ BX bit 2 = 1 - center
CX = X coordinate
DX = Y coordinate

4 Set pointer position
CX = new horizontal position
DX = new vertical position

11 Read mouse motion counters
Returns: CX = horizontal mickeys count
DX = vertical mickeys count

15 Set mickey/pixel ratio (sensitivity)
cX = horizontal #mickeys/8 pixels
DX = vertical #mickeys/8 pixels

FIGURE 13-27 Some INT 33H mouse-interface
subprocedures.

functions which you can call from your programs. The
disk which comes with the Mouse systems mouse,
for example, includes the file. MSMOUSE.LIB, which
contains a C function called mousec(). To use the
mousec() function, you first declare four integer variables
named ml, m2, m3, and m4 and then load these
variables with the values that you want to pass to the
AX, BX. CX. and DX registers, respectively. in the INT
33H procedure. You then call the function with the
statement mousec (&ml, &m2, &m3, &m4).. The
mbusec function will put the mouse data in these
variables In the same order that it would be returned in
8086 AX. BX. CX. and DX registers for a direct INT 33H ~
call.

If you are programming in C and you do not have the
library file containing the mousec function, you can use
a function such as the Turbo C int86() to directly call
the INT 33H procedure. The keyboard interface program
in Figure 13-3 showed you an example of how to use the
int86() function. =

\
s

COMPUTER VISION

For many applications a microcomputer needs to be able
to “see” its environment or perhaps a part that the
machine it controls is working on. As part of a microcom-
puter-controlled security system. for example, we might
want the microcomputer to “look™ down a corridor to
sec if any intruders are present. In an automated factory
application, we might want a microcomputer-controlled
robot to "look” in a bin of parts. recognize a specified
part, pick up the part, and mount the part on an engine
being assembled. There are several mechanisms that
can be used to allow a computer to see.

Cameras used in TV stations and for video recorders

MICROCOMPUTER SYSTEM PERIPHERALS 463

use a special vacuum tube called a vidicon. A light-
scnsitive coating on the inside of the face of the vidicon
Is swept horizontally and vertically by a beam of elec-
trons. The beam is swept in the same way as the beam
In a TV set displaying the picture will be swept. The
amount of beam current that flows when the beam is at
a particular spot on the vidicon is proportional to the
intensity of the light that falls on that spot. The output
signal from the vidicon for each scan line then is an
analog signal proportional to the amount of light falling
on the points along that scan line. In order to get this
analog video information into a digital form that a
- computer can store and process, we have to pass it
through an A/D converter. For a color camera we need
an A/D converter on each of the three color signals. Each
output value from an A/D converter then represents a
dot of the picture. The number of bits of resolution in
the A/D converter will determine the number of intensity
levels stored for each dot.

Standard video cameras and the associated digitizing
circuitry are relatively expensive, so they are got cost-
cffective for many applications. In cases where we don't
need the resolution available from a standard video
camera, we often use a CCD camera.

Charge-coupled devices or CCDs are constructed as
long shift registers on semiconductor material. Figure
13-28 shows the structure for a CCD shift register
section. As you can see, the structure consists of simply
a P-type substrate, an insulating laycr.t,and isolated
gates. If a gate 1s made positive with réspect to the
substrate, a “potential well” is created under that gate.
What this means is that if a charge of electrons is
Injected into the region under the gate, the charge will
be held there. By applying a sequence of clock signals
to the gates, this stored charge can be shifted along to
the region under the next gate. In this way a CCD can
function as an analog or a digital shift register.

To make an image sensor. several hundred CCD shift

registers are bulilt in parallel on the same chip. A

photodiode is doped in under every other gate. When
all the gates with photodiodes under them are made
positive, potential wells are created. A camera lens is
used to focus an image on the surface of the chip. Light
shining on the photodiodes causes a charge proportional
to the light intensity to be put in each well which has a
diode. These charges can be shifted out to produce the
dot-by-dot values for the scan lines of a picture. Improved
performance can be gained by alternating nonlighted
shift registers with the lighted ones. Information for a
scan line is shifted in parallel from the lighted register
to the dark and then shifted out serially.

The video Information shifted out from a CCD register
Is in discrete samples, but these samples are analog

GATE ISOLATION

"~ GATE

§ T esostaare 1

FIGURE 13-28 Structure for a CCD shift-register section.

464

CHAPTER THIRTEEN

because the charge put in a well is simply a function of
the light shining on the photodiode. To get the video
information into a form that can be stored in memory
and processed by a microcomputer, it must be passed
through an A/D converter or in some way converted to
digital, For many robot and surveillance applications, a
black-and-white image with no gray tones is all we need.
In this case the video information from the CCD registers
can simply be passed through a comparator to produce
a 1 or a 0 for each dot of the image. CCD cameras have
the advantages that they are smaller in size, more
rugged, ‘more sensitive, less expensive, and easier to
interface to computer circuitry than vidicon-based cam-
eras. For these reasons CCD cameras were used in the
space telescope recently placed in orbit.

Plug-in boards are available to interface inexpensive
CCD cameras to IBM PC- and PS/2-type microcomputers.
With one of these boards installed, you can display
images on the CRT screen. adjust display parameters
under program control, and save images on a disk: Once -
Yyou get the bit pattern for an image into memory, you
can then experiment with programs which attempt to
recognize, for example, a bolt In the image.

Another example of the use of computer vision is in
optical scanners. These devices read text from a plece
of paper or some other source and convert the text to a
string of ASCII codes which can be displayed, edited,
and written to a file.

On a more whimsical note, Figure 13-29 shows an

FIGURE 13-29 Sumitomo Electric Company robot
playing an organ. ’ ¢ "

example of what a little vision can do for a robot. The
Sumitomo Electric Company robot shown here can play
an organ using both hands on the keys and both feet
on the pedals. It can press up to 15 keys per second.
The robot can play selections from memory when verbally
told to do so. Using its vision it can read and play songs
from standard sheet music. The robot uses seventeen
16-bit microprocessors and fifty 8-bit controllers to
control all its activities. ’

If you think some about what is involved in recognizing
complex visual shapes—in any of their possible orienta-
tions—with a computer program, it should give you a
new appreciation for the pattern recognition capabilities
of the human eye-brain system.

Another area where the human brain excels is in that
of data storage. Only very recently have the devices used
to store computer data approached the capacity of the
human brain. In the next section we look at how some
of these mass data storage systems operate and how
‘they are Interfaced to microcomputers.

MAGNETIIC-DISK DATA-STORAGE SYSTEMS

The most common devices used for mass data storage
are magnetic tape, floppy magnetic disks, hard magnetic
disks, and optical disks. Magnetic tapes are used mostly
for backup storage. because the access time to get to
data stored in the middle of the tape is usually too long
to be acceptable for general computing. Therefore. in
this section we will concentrate mostly on the three
types of disk storage. :

Floppy-Disk Overview

Common sizes for floppy disks are 8, 5} and 3{ in.
Figure 13-30a shows the flexible protective envelope
used for 8 and 5%-in. disks and Figure 13-30b shows the
rigid plastic package used for the 3i-in. disks.

The disk itself is made of Mylar and coated with a
magnetic material such as iron oxide or barium ferrite.
The Mylar disk is only a few thousandths of an inch
thlgk thus the name floppy. When the disk is inserted

drive unit, a spindle clamps in the large center hole
or in the center hub and spins the disk at a constant
speed of perhaps 300 or 360 rpm.

Data is stored on the disk in concentric, circular
tracks. There is no standard number of tracks for any
size disk. Older 8-in. disks have about 77 tracks/side,
common 54-in. disks about 40 tracks/side, and the new
8)-in. disks about 80 tracks/side. Early single-sided
drives recorded data tracks on only one side of the disk.
Current double-sided disk drives store data on both
sides of the disk.

Data is written to or read from a track with a read/
write head such as that shown diagrammatically In
Figure 13-31, page 466. During read and write opera-
tions the head is pressed against the disk through a slot
in the envelope.

To write data on a track a current is pasaed through
the coil in the head. This creates a magnetic flux in the
iron core of the head. A gap in the iron core allows the
magnetic flux to spill out and magnetize a section of the
magnetic material along the track. Once a region on the
track is magnetized in a particular direction, it retains
that magnetism. The polarity of the magnetized region

PERMANENT LABEL TEMPORARY ID LABEL
¥ Al
‘Y /L
INDEX HOLES
o)
o ’E' SLIDING PRCTECTIVE COVER
2 DRIVE
88 SPINDLE HEAD SLOT
@O HOLE - T
s INDEX HOLE
5
) DRIVE
w
HEAD SLOT b . [~ SPINDLE
PROTECT HOLE
NOTCH WRITE
. 12 a _a —i - PROTECT
NOTCH
e 6.25 IN (159 mm) ————| *—-vii‘/le (89 mml_.-{
——— 8.00 IN (200 mm) ‘

{a)

(b)

FIGURE 13-30 Common floppy-disk packages. (a) Package for 8- and 5.-in.

disks. (b) Hard plastic package used for 3}-in. disks. "

L]

465

MICROCOMPUTER SYSTEM PERIPHERALS

RECORD HEAD GAP

MAGNETIC,

COATED
DISK
FLUX
IN CORE IRON CORE
J_-HOUSING

FIGURE 13-31 Diagram of read/write head used for
magnetic-disk recording.
U

is determined by the direction of the current through
the coil. We will say more about this later.

Data can be read from the disk with the same head.
Whenever the polarity of the magnetism along the track
changes as the track passes over the gap in the read/
write head, a small pulse of typically a few millivolts is
induced in the coil. An amplifier and comparator convert
this small signal to a standard logic level pulse.

The write-protect notch in a floppy disk envelope can
be used to protect stored data from being written over,
as do the knock-out plastic tabs on video tape cassettes.
An LED and a phototransistor in the drive unit deter-
mine if the notch is present and enable the write circuits
if it is.

On 8-in. and 5}-in. disks, an index hole punched in
the disk indicates the start of the recorded tracks. An
LED and a phototransistor are used to detect when the
index hole passes as the disk rotates. On 3}-in. disks
the start of a track is indicated by the position of the
hub in the center-of the disk.

The motor used to spin the floppy disk is usually a dc
motor whose speed is precisely controlled electronically.
It takes about 250 ms for the motor to start up after a
start-motor command.

One common method of positioning the read/write
head over a desired track on the disk iIs with a stepper
motor. A lead screw or a let-out-take-in steel band such
as that shown in Figure 13-32 converts the rotary motion
of the stepper motor to the linear motion needed to
position the head over the desired track on the disk. As
the stepper motor in Figure 13-32 rotates. the steel band
is let out on one side of the motor pulley and pulled in
on the other side. This slides the head along its carriage.

To find a given track. the motor is usually stepped to
move the head to track zero near the outer edge of the
disk. Then the motor is stepped the number of steps
required to move the head to the desired track. It usually
takes a few hundred milliseconds to position the head
over a desired track.

Once the desired track is found. the head must be
pressed against the disk or loaded. It takes about 50
ms to load thg head and allow it time to settle against
the disk.

466 CHAPTER THIRTEEN

DOUBLE-SIDED
HEAD ASSEMBLY

STEPPING MOTOR

MAGNETIC
HEADS

\ . \

\ CARRIAGEWAY DOUBLE-SIDED
\ DISKETTE

\\ METAL BAND CARRIAGE

\

BASE CASTING
MOUNTING PLATE

CAPSTAN

FIGURE 13-32 Common head-positioning mechanism for
floppy-disk drive units.

If you add the time to start the motor, position the
head over the desired track, and load the head, you can
see that these operations take 100 to 500 ms., depending
on the particular drive. When referring to disk drives,
two different access times are usually given. One access
time is the time required to get the head to the required
track. This time is often called the seek tlr%: The other
access time is the time required to get to the first byte
of a desired block of data on a track. This time is
commonly called the latency time. For comparing the
performance of drives, the average seek time is added
to the average latency time to give an average access
time. Average access times for currently available floppy
disk drives range from 100 to 500 ms.

Magnetic Hard-Disk Overview

The floppy disks that we discussed in the previous
section have the advantage that they are inexpensive
and removable. However, because the disks are flexible,
the data tracks cannot be put too close together, and
the rate at which data can be read off a disk is limited
by the fact that a floppy disk can be rotated at only 300
or 360 rpm. To solve these problems. we use a hard-
disk system such as that shown in Figure 13-33.

The disks in a hard-disk system are made of a metal
alloy, coated on both sides with a magnetic material.
Common hard-disk sizes are 3}, 5}, 8, 10}, 14, and 20
in. Most hard disks are permanently fastened in the
drive mechanism and sealed in a dust-free package. but
some systems do have removable disk packages. To
Increase the amount of storage per drive, several disks
or “platters,” as they are sometimes called, may be
stacked with spacers between as shown in the Conner
Peripherals’ drive in Figure 13-33. A separate read-write
head is used for each disk surface. On disk drives with
more than one recording surface. the tracks are often
called cylinders because if you mentally, connect same
numbered tracks on the two sides of a disk or on

FIGURE 13-33 Cutaway photo of Conner Peripherals’
CP3100 3-in., 100-Mbyte hard-disk drive.

different disks, the result is a cylinder. The cylinder
number then is the same as the track number.

Hard disks are more dimensionally stable than flop-
ples, so they can be spun faster. Large hard disks are
rotated at about 1000 rpm and smaller hard disks are

rotated at about 3600 rpm. Because the rotational speed’

is about 10 times that of a floppy disk, data is read out
0 times as fast, about 5 to 10 Mbits/s.

he dimensional stability of hard disks also means
that tracks and the bits on the tracks can be put closer
together. There are no standards for the number of
tracks on a hard disk, but typically there are several
hundred tracks on each side of a disk. The high rota-
tional speed and the closely spaced tracks on a hard
disk also produce much faster access times than those
of floppy disks. The fastest currently availabie hard disks
have average access times of less than 20 ms.

The high rotational speed of hard disks not only makes
it possible to read and write data faster, it creates a thin
cushion of air that floats the read-write head 10 to 100
win. off the disk. Unless the head crashes, it never

touches the recorded area of the disk, so disk and head |

wear are minimized. Hard disks must be kept in a dust-
free environment because the diameter of dust and
smoke particles may be 10 times the distance the head
floats off the disk. If dust does get into a hard-disk
system, the result will be the same as that which occurs
when a plane does not fly high enough to get over a
mountain. The head will crash and often destroy the
data stored on the disk. When power to the drive is
turned off. most hard disk drives retract the head to a
parking zone where no data is recorded and lock the
head in that position until power is restored.

In some early hard-disk drives the read-write heads
were positioned over the desired track by a stepper
motor and a band actuator, as shown in Figure 13-32.
Most current hard-disk drives, however, use a linear
voice co{l mechanism or a rotary voice coil mechanism
such as that shown in Figure 13-33 to position the read-
write heads. This mechanism is essentially a linear
motor. A feedback system adjusts the position ‘of the

- 61

head over the desired track until the strength of the
signal read from the track is at its maximum.

Incidentally, hard-disk drives are sometimes called
“Winchesters.” Legend has it that the name came from
an early IBM dual-drive unit with a planned storage of
30 Mbytes per drive. The 30-30 configuration apparently
reminded someone of the famous rifle, and the name
stuck.

Magnetic Disk Data Bit Formats

On a magnetic disk a 1" data bit is represented as a
change in the polarity of the magnetism on the track. A
“0" bit is represented as no change in the polarity of
t.he magnetism. This form of recording is often called
* nonreturn-to-zero or NRZ recording because the mag-
netic field is never zero on a recorded track. Each point
on the track is always magnetized in one direction or
the other. The read head produces a signal when a
region where the magnetic field changes passes over it.

—__Clock pulses are usually recorded along with the data

bitson a track. The clock pulses read from the track are
used to synchronize a phase-locked loop circuit. The
output of the phase-locked loop is used to clock a D flip-
flop at the center of the bit cell time where the data
bits are written. The phase-locked loop is required to
synchronize the read out circuits because the actual
distance, and therefore time, between data bits read
from an outer track is longer than it is for data bits read
from an inner track. The phase-locked loép adjusts its
frequency to that of the clock transitions and produces
a signal which clocks the D flip-flop at the center of each
bit time, regardless of the data rate. Recording clock
information along with data information not only makes
it possible to acturately read data from different tracks,
but it also reduces the chances of a read error caused
b emall changes in disk speed.

Figure 13-34, page 468, shows the three common
methods used to code data bits on magnetic disks. The
top waveform in the figure shows how the example
data bits are represented in a format called frequency
modulation, FM, F2F, or single-density recording. Note
the clock transition labeled C at the start of each bit cell
in this format. These transitions represent the basic
frequency., If the data bit in a cell time is a 1, the
magnetic flux is changed again at the center of that bit
time. If the data bit in a cell time is a 0, the magnetic
flux is left the same at the center of that bit time. Putting
in the 1 data transitions modifies the frequency. thus
the name frequency modulation or F2F.

One major factor which determines how many data
bits can be stored on a track is how close flux changes can
be without interfering with each other. A disadvantage of
standard F2F recording !s that two transitions may be’
required to represent each data bit. A format which uses
only half as many transitions to represent a given set of
data bits is the modified frequency modulation, MFM,
ar double-density recording format shown as the second
waveform in Figure 13-34. The basic principle of this
format is that both clock transitions and 1 data transi-
tions are used to keep the phase-locked loop and read
circuitry synchronized. Clock transitions are not put in

MICROCOMPLITER SYSTEM PERIPHERALS 467 .

= =5 e > BT S
/ RLL GROUPS
1 1 1 0 1 0 0 0 1 q/ 0 1 0 JDATh BII,S
o et Ll K

c Cc Cc Cc c C C [+ C c

MFM
Cc C

I RLL

IOIO OIIOD 0|100 0|0000100 OOO!OOO'

RLL PATTERNS

FIGURE 13-3¢ Comparison of FM, MFM, and RLL coding used for magnetic

recording of digital data.

unless 1 transitions do not happen to come often enough
in the data to keep the phase-locked loop synchronized.
A clock transition will be put in at the start of the bit
cell time only if the current ddta bit is a O and the
previous data bit was a 0. If you work your way across
the second waveform in Figure 13-34, you should see
. that where two 0's occur in the data sequence, a clock
\transition is written at the start of the bit cell for the
second 0. The MFM waveform in Figure 13-34 is shown
on the same scale as the F2F waveform, but since it
contains only half as many transitions as the F2F
waveform for the same data string, it can be written in

half as much distance on a track. This means that twice

as much data can be written on a track and ~xplains
why this coding is often called double aensity.

A still more efficlent coding for recording data on
floppy disks Is the RLL 2,7 format shown as the third
waveform in Figure 13-34. In this format groups of data
bits are represented by specific patterns of recorded
transitions, as shown in Figure 13-35. The two 1’s at
the start of our data string, for example, are represented
by the pattern 0100. To convert a data string to this
coding, the data string is separated into groups chosen
from the possibilities in the data column of Figure 13-35.
The transition pattern which corresponds to that data
bit combination is then written on the track. In MFM
format there is at most one O between transitiois. but
in RLL 2,7 there are between two and seven 0's betv.cer
transitions, depending on the sequence of data bits. :is

‘you can see in Figure 13-34, RLL requires considerably
fewer transitions than MFM to represent the example
data string. Fewer transitions mean that the data string

DATA BIT GROUP RLL 2,7 CODE
10 1000
11 0100
0o0o0 100100
0110 001000
011 000100 "
0010 00001000
00 A A 00100100

FIGURE 13-35 RLL 2, 7 data bit groups.

468 CHAPYER THIRTEEN

can be written In a shorter section ‘of the track or, in
other words, more data can be stored on a given track.
RLL coding typically increases the storage capacity about
40 percent over MFM coding.

Most of the magnetic floppy and hard disks of the last
15 years have used longitudinal recording. This means
that the magnetic regions are oriented parallel to the
disk surface along the track. Advances in read/write head
design have made it possible to orient the magnetized
regions vertically along the track. Vertical recording
makes it possible to store several times as much data
per track as can be stored with longitudinal recording.
Toshiba and several other companies now market a disk
drive which uses vertical recording to store 4 Mbytes of
data on a single 3}-in. floppy disk such as that in Figure
13-30b. Some hard disks now available use vertical
recording to store over a gigabyte of data in a single
drive unit and transfer data at a rate of 3 Mbyles per
seeond.

Magnetic-Disk Track Formats
and Error Detection

In the preceding section we described the coding
schemes commonly used to record data bits on floppy-
disk or hard-disk tracks. The next level up from this is
to show yo- he format in which blocks of data bytes
are recorded along a track,

There are many slightly different formats commonly
used to organize the data on a track, so we can't begin
to show you all of them. However, to give you a general
idea, Figure 13-36 shows an old standard, the IBM 3740
format, which is the basis of most current formats.

Each track on the disk is divid:d into $ectors. In the
3740 format a track has three types of fields. An index
field identifies the start of the track. ID fields contain
the track and sector identification numbers for each of
the 26 data sectors on the track. Each of the 26 sectors
also contains a data field which consists ‘of 128 bytes
of data plus 2 bytes for a ERC error checking code. As
you can see, besides the bytes used to store data.
many bytes are used for track and sector identification,
synchronization, error checking, and buffering between
sectors. Address marks shown at several places In this

Ky

ONE TRACK

Ve

INDEX

TOR | SECTOR | SECTOR
srEaigLEl aDOHESS POST secron SECTOR sscroa semoa sec‘o s gso S| ;:so POSTAMBLE
INDEX GAP 2 2
MARK
INDEX % | 1 | a3 P 188 S
HOLE YTE BYTES BYTES
(o] BYTES |] T - Tiag -
_ =3 ~ -
= E ol - 7= =
o \\ o
P o= = S
=" .l g
1D ADDRESS | TRACK/SECTOR DATA ADDRESS NEXT ID
MARK I 1DGAP MARK DATA ADDRESS MARK
1 17 1 33
BYTE | BYTES BYTE \ BYTES
/ % \ \
/ L8 \ \
/ N\ \ \
/ N \ \
/ B \ N
N\ \
\ I N \ N
\ | N
TRACK SECTOR :
NUMBES NUMBER CHECKSUM DATA CHECKSUM

I’_— 128 BYTES—+2 BYTES-—|

FIGURE 13-36 IBM 3740 floppy-disk soft-sectored track format.

format, for example, are used to identify the start of a
field. Address marks, incidentally, have an extra clock
pulse recorded with their D2 data bit so they can be
distinguished from data bytes.

Two bytes at the end of each ID field and 2 bytes at
the end of each data field are used to store cyclic
redundancy characters. These are used to check for
errors when the ID and the data are read out. One way
the 2 CRC bytes can be produced is to treat the 128 data
bytes as a single large binary number and divide this
number by a constant. The 16-bit remainder from this
division is written in after the data bytes as the CRC
bytes. When the data bytes and the CRC bytes are read
out, the CRC bytes are subtracted from the data string.
The result is divided by the original constant. Since the
original remainder has already been subtracted. the
result of the division should be zero if the data was read
out correctly. Higher-quality systems usually write data
to a disk and immediately read it back to see if it was
written correctly. If an error i¢ detected. then another
attempt to write can be made. If 10 write attempts are
unsuccessful, then an error message can be sent to the
CRT or the write can be directed to another sector on
the disk.

The IBM 3740 format shown in Figure 13-36 is set up
for single-density recording. An 8-in. disk in this format
has one index track and 76 data tracks. Since each track
has 26 sectors with 128 data bytes in each sector. the
total is about 250 Kbytes. If double-density recording is
used, the capacity increases to about 500 Kbytes. Using
both sides of the disk increases the storage to about 1
Mbyte per disk. For reference. Figure 13-37 shows the

number of tracks, number of sectors, and some other
information for floppy disks commonly used with IBM
PC and PS/2 computers. There are no real standards for
the number of tracks and sectors on hard disks, but
later we will give you a few examples.

Magnetic Disk Hardware Interfacing

AN 8272 FLOPPY DISK INTERFACE

As you can probably tell from the preceding discussion,
writing data to a floppy disk and reading the data back
requires coordination at several levels. One level is the
drive motor and head-positioning signale. Another level
is the actual writing and reading to the disk at the bit
level. Still ancther level is interfacing with the rest
of the clrcullry of a microcomputer. Doing all this

3 1/2-INCM DISKS 5 1/4-INCH DISKS
1.44MB 720K | 1.2M8B 360K
HD LD HD DSDD
SECTORS
PER TRACK 18 9 15 9
TOTAL NUMBER
OF SECTORS 2,880 1,440 2,400 720
NUMBER OF
TRACKS 80 80 80 40
SECTORS PER
CLUSTER 1 2 1 2
ALLOWABLE ENTRIES
iN ROOT DIRECTORY 224 12 224 12

FIGURE 13-37 Comparison of common floppy-disk
tracks and sectors.

MICROCOMPUTER SYSTEM PERIPHERALS 469

coordination is a full-time job, so we use a specially
designed floppy-disk controller device to do it. As our
example device here we will use the Intel 8272A control-
ler. which is equivalent to the NEC uPD765A device
used in many disk' controller boards for IBM PC-type
computers. We chose the 8272A because data sheets
and application notes for it are available in Intel Micro-
processor and Peripheral Handbook if you want more
information than we have space for here.

Figure 11-5 showed you how an 8272A controller can
be connected in an 8086-based microcomputer system
to transfer data to and from a disk on a DMA basis. Now
we want to take a closer look at the controller itself to
show you the types of signals it produces and the
operations it can perform.

To start, take a look at the block diagram of the 8272A
in Figure 13-38. The signals along the left side of the
diagram should be readily recognizable to you. The data
bus lines, RD, WR, A0, RESET, and CS are the standard
peripheral interface signals. The DRQ, DACK, and INT
signals are used for DMA transfer of data to and from
the controller. To refresh your memory from Chapter
11, here's a review of how the DMA works for a read
operation.

When a microcomputer program needs some data off
the disk, it sends a series of command words to registers
inside the controller. The controller then proceeds to

find the specified track and sector on the disk. When
the controller reads the first byte of data from a sector,
it sends a DMA request, DRQ. signal to the DMA
controller. The DMA controller sends a hold request
signal to the HOLD Input of the CPU. The CPU floats its
buses and sends a hold-acknowledge signal to the DMA
controller. The DMA controller then sends out the first
transfer address on the bus and asserts the DACK input
of the 8272 to tell it that the DMA transfer is underway.
When the number of bytes specified in the DMA controller
Initialization has been transferred, the DMA controller
asserts the TERMINAL COUNT input of the 8272. This
causes the 8272 to assert its interrupt output signal,
INT. The INT signal can be connected to a CPU or 8259A
intérrupt input to tell the CPU that the requested block
of data has been read in from the disk to a buffer in
memory. The process would]:\irocccd in a similar manner
for a DMA write-to-disk operation.

Now let's work our way through the drive control
signals shown in the lower right corner of the 8272
block diagram in Figure 13-38. Reading through our
brief descriptions of these signals should give you a
better idea of what is involved In the interfacing to the
disk drive hardware. Note the direction of the arrow on
each of these signals.

The READY input signal from the disk drive will be
high if the drive is powered and ready to go. If, for

y CLOCK AND
“ TIMING CIRCUIT |
WRITE arae
DATA
I PRECOMPENSATE
DATA BUS CIRCUIT
0Be; < "Burrer. K| K| RecisTers -
WRITE DATA
— PRE-SHIFT 0
- PRE-SHIFT 1 DATA READ DATA
oK) INTERFACE e SERADUDIY
% 8 CONTROLLER |__VCO SYNC SEPARATOR
- STD. DATA
TERMINAL s DATA WINDOW
COUNT] &
ora —] E
DACK —q o < - READY
== 5 l~—— WRITE PROTECT/TWO SIDE
INT WRITE 8]
AD——q DMA <:> T INDEX
R CONTROL FAULT/TRACK 0
WR —=q
LOGIC -
A " DRIVE DRIVE SELECT 0
RESET —— K| INTERFACE DRIVE SELECT 1
o5 }’ CONTROLLER ——= MFM MGDE
e <:> OUTPUT |- Awrseek
PORT HEAD LOAD
CLK —— HEAD SELECT
Vee —— LOW CURRENT/DIRECTION
GND —— | FAULT RESET/STEP

FIGURE 13-38 Block diagram of INTEL 8272A floppy-disk controller system.

(Intel Corporation.)

470 CHAPTER THIRTEEN

example, you forget to close the disk-drive door, the
READY signal will not be asserted.

The WRITE PROTECT/TWO SIDE signal indicates
whether the write protect notch is covered when the
drive is in the read or write mode. When the drive is
operating in track-seek mode, this signal indicates
whether the drive is two-sided or one-sided.

The INDEX signal will be pulsed when the index hole
in the disk passes between the LED and phototranslstor
detector.

The FAULT/TRACK 0 signal indicates some disk-drive
problem condition during a read/write operation. During
a track-seck operation this signal will be asserted when
the head {s overtrack 0. the outermost track on the
disk.

The DRIVE SELECT output signals, DSO and DS1,
from the controller are sent to an external decoder which
uses these signals to produce an enable signal for one
to four drives.

The MFM output signal will be asstrtcd high if the
controller is programmed for modified frequency modu-
lation and low if the controller is programmed for
slanda_rg_ frequency modulation (FM).

The RW/SEEK signal is used to tell the drive to operate
in read-write mode or in track-seek mode. Remember,
some of the other controller signals have different mean-
ings in the read-write mode than they do in the seek
mode.

The HEAD LOAD signal is asserted by the controller
to tell the drive hardware to put the read/write head in
contact with the disk. When interfacing to a double-
sided drive, the HEAD SELECT from the controller is
used-dlong with this signal to indicate which of the two
heads should be loaded.

During write operations on inner tracks of the disk,
the LOW CURRENT/DIRECTION signal is asserted. by
the controller. Because the bits are closer together on
the inner tracks, the write current must be reduced to
prevent recorded bits from splattering over each other.
When executing a seek-track command this signal pin
Is used to tell the drive whether to step outward toward
the edge of the disk or inward toward the center.

The FAULT RESET/STEP output signal is used to
reset the fault flip-flop after a fault has been corrected
when doing a read or write command. When the control-
ler is carrying out a track-seek command, this pin is
used to output the pulses which step the head from
track to track.

Now that we have led you quickly through the drive
interface signals, let's take a look at the 8272A signals
used to read and write the actual clock and data bits on
a track. To help with, this, the upper right corner of
Figure 13-38 shows a block diagram of the circuitry
between these pins and the read/write head.

Remember from our discussion of FM, MFM, and RLL
data formats that a phase-locked-loop circuit is required
to tell the controller when to sample data bits in the

_input data stream. The Vo SYNC signal from the control-
ler tells an exterfial phase-locked-loop circuit to synchro-
nize its frequency with that of the clock and/data pulses
being read off the disk. The output from the phase-
locked-loop circuitry is a DATA WINDOW signal. This

signal is sent to the controller to tell it where to find the
data pulses in the data stream coming in on the READ
DATA input.*

For writing pulses to the disk, the story isa) little more
complex. External circuitry supplies a basic WR CLOCK
signal. On its WR DATA pin the 8272 outputs the serial
stream of clock bits and data bits that are to be written
to the disk. During a write operation the 8272 asserts
its WR ENABLE signal to turn on the external circuitry
that actually sends this serial data “fo the réad/write
head. However, data bits written on a disk will tend to
shift in position as they are read out. A 1 bit, for example,
will tend to shift toward-an adjacent O bit. This shift
could cause errors in readout unless it were compensated
for. The PRE-SHIFT O and PRE-SHIFT 1 signals from
the controller go to external circuitry which shifts bits
forward or backward as they are being written. The bits

'will then be in the correct position when read out.

8272 COMMANDS

The 8272 can execute 15 different commands. Each of
these commands is sent to the data register in the
controller as a series of bytes. After acommand has been

‘'sent to the 8272, it carries out the command and returns

the results to status registers in the 8272 and/or to the
data register in the 8272. In programs you will almost
always be interfacing with disks on a much higher level,
but to give you an idea of the kinds of operations the
8272A controller-can do, we list them here with a short
description for each.

SENSE INTERRUPT STATUS—Return lntenupt status in-
formatton.

SPECIFY—Initialize head load time, head step time, DMA/
non-DMA.

SENSE DRIVE STATUS—Return drive status information.

SENSE INTERRUPT STATUS—Poll the 8272 interrupt
signal.

SEEK—Position read/write head over specified track.
RECALIBRATE~Position head over track 0.

FORMAT TRACK—Write ID field, gaps, and address marks
on track.

READ DATA—Load head, read specified amount of data
from sector.

READ DELETED DATA—Read data from sectors marked
as deleted.

WRITE DATA—Load head, write data to specified sector.

WRITE DELETED DATA—Write deleted data address mark
in sector.

READ TRACK—Load head. read all sectors on track.
READ ID—Return first ID field found on track.

SCAN EQUAL—Compare sector of data bytes read from
disk with data bytes sent from CPU or DMA controller
until strings match. Set bit in status register if match
occurs.

MICROCOMPUTER SYSTEM PERIPHERALS 471

SCAN HIGH OR'EQUAL Set flag if data string from disk
sector s greater than or equal to data string from CPU
or DMA controller.

SCAN LOW OR EQUAL—Set flag if data string from disk
sector is less than or equal to data string from CPU or
DMA controller.

Working out a series of cormmands for a disk controller
such as the 8272 on a bit-by-bit basis is quite tedious
and time-consuming. Fortunately, you usually don't
have to do this, because in most systems, you can use
higher-level procedures to read from and write to a disk.
In a later section we show you some of the software used
to interface to disk drives.

ST-506, ESDI, AND SCSI HARD-DISK INTERFACES

The hardware interface for a hard disk is very similar
to that for a floppy .disk. Data is transferred to and
from main memory on a DMA basis, as we described
previously. However, in an attempt to maximize the rate
of data transfer to and from the disk, several interface
standards have developed. In order to understand these
standards you first need to have an overview of how a
hard disk is connected to microcomputer buses. The
block diagram in Figure 13-39a shows how the hard
disk in PC-type computers is usually connected. A board
containing the hard-disk controller plugs into one of the
expansion slots in the motherboard and a ribbon cable
connects the controller {o the hard disk.

One of the first standards for the interface connections
between the controller card and the disk drive was the
Seagate Technologies ST-506. This standard specified
data and handshake signals very similar to those shown
for the floppy interface in Figure 13-38. Standard 5.25-
in. ST-506 hard disks use MFM recording with 17
sectord per track, 512 bytes per sector, and a rotation
speed. of 60 revolutions per second. The maximum rate
at which data bits.can be read from the track then is 60
tracks/s x 17 sectors/track x 512 bytes/sector x 8 bits/
byte = 4,177,920 bits/s, or about 5 Mbits/s. The clocking
of the ST-506 is set up to transfer data at a maximum
rate of 5 Mbits/s, and this rate was more than adequate
for early PC-type computers. In fact, it was necessary to
use an interleave factor when writing data to the disk
and reading data from the disk because the microproces-
sor and controller circuitry was not fast enough to read
and transfer one sector directly after another. If the
controller is programmed for an interleave factor of
three, it will read a sector. skip over two sectors, and
then read another sector. The skipped sectors give the
controller time to transfer the data read from the first
sector to main memory. Unfortunately, an interleave
factor of three reduces the data transfer rate by a factor
of three. As processors and controllers have become

faster, 1t has become possible to decrease the interleave

factor so that now an interleave factor of 1 is common.
The limiting factor for data transfer then becomes the
ST-506 transfer rate and the rate at which data bits can
be read off the disk. -

"As we explained earlier, RLL encoding allows more
data bits to be written on a track, so if RLL encoding is

472 CHAPTER THIRTEEN

DAISY CHAIN CONTROL l ~]
CABLE 34-WIRE

DRIVE DRIVE
1 2
ST-506 OR
it RADIAL DATA CABLE
CONTROLLER
RADIAL DATA CABLES 20 WIRES
\[MAIN COMPUTER BUSES :]
(a)

DRIVE OR DRIVE OR DRIVE OR
OTHER OTHER OTHER
PERIPHERAL PERIPHERAL PERIPHERAL
CONTROLLER | | CONTROLLER CONTROLLER
1 2 7

SCSIBUS 50 WIRES
p
scsi
.-~ HOST
ADAPTER
% MAIN COMPUTER BUSES 1\

(b)

FIGURE 13-39 Common hard-disk controller interface
connections. (a) ST-506 or ESD! controller. (b) SCSI 110
bus.

used, more sectors can be put on a track and the
maximum data transfer rate increases to about 7.5
Mbits/s for an ST-506/RLL interface.

The next evolutionary hard disk interface step was
the enhanced small device interfacz (EST3i) standard.
Asshown In Figure 13-39a. an ESDI controller interfaces
the system bus with-hard-disk drives similarly to the
way an ST-506 controller does. However, an ESDI con-
troller can access up to seven hard drives using a daisy-
chained control cable and individual data cables. Also,
an ESDI controller sends higher-level commands to the
drive than ST-506. so-the drive must have more built-
in"intelligence” to interpret these commands. A 10-MHz
clock is used for the controller, so the maximum data
transfer rate is 10 Mbits/s or 1.25 Mbytes/s. The ESDI
standard allows communication with hard disks with

maximums of 4096 cylinders, 16 heads, 256 sectors per’

track, and 4096 bytes per sector. The IBM PS/2 Model
80 uses an ESDI controller.

Another interface standard which was developed about
the same time as ESDI is the small computer systems

interface (SCSI), which 1Is commonly pronounced
“scuzzy.’ Aq shown in Figure 13-39b, this standard is
very different from the ST-506 and ESDI, because it
defines a separate /O bus. Many different VO devices
such as hard disks, streaming tape drives, optical disk
drives, and printers can be connected on this VO bus.
The SCSI host adapter co..verts operating system com-
mands into SCSI bus commands. These commands are
interpreted and carried out by the individual peripheral
controllers. An ESDI controlier, for example, might be
used to interface the SCSI bus with a couple of hard
drives. The question that may immediately come to
mind here is, Why would anyone want to put the extra
layer of hardware between the microcomputer bus and
the hard drive controller? The answer to this question
is that with a separate /O bus, many data transfers can
take place with very little effort on the part of the main
microprocessor. For example, data can be transferred
directly from a hard disk to a streaming tape backup on
the SCSI bus without havll';g to pass though the main
microcomputer data bus. SCSI is designed to allow data
transfer at up to 32 Mbits (4 Mbytes) per second.
A newer standard, SCSI-I, is designed to allow data
transfers at greater than 80 Mbits (10 Mbytes) per
second. A still newer standard called enhanced intelli-
gent peripheral Interface (EIPI) is designed to allow data
transfer at up to 50 Mbytes/s.
|

Disk Formatting ‘

FLOPPY-DISK 'FORMATTING

As you probably well know by now, before you can store
data on a new floppy disk you have to format it. To do
this you use the DOS FORMAT command. The first
operation this command performs is to establish a irack
and sector format such as that in Figure 13-36 on the
disk. The second operation performed by the FORMAT
command is to set up a boot record, file allocation table,
and directary on the disk. Figure 13-40 shows how these
are arranged, starting from track 0, sector 0.

The boot record in the first sector of the first track
indicates whether the disk contains the DOS files needed
to load DOS into RAM and run it. Loadlng DOS and
running it are commonly referred to as “"booting” the
system.

The directory on the disk contains a 32-byte entry for

First copy of file allocation
table—variable size

Second copy of file allocation
table—variable size

FIGURE 13-40 DOS organization of boot record, FATs,
directory, and data starting from track 0.

]
each file. Let's take a quick look at the use of these bytes
to get an overview of the directo er‘ormatlon stored
/
for each file.

Byti munber . \

(degiir \
B
0-7 Filené&ne
8-1 ., Filename extension
11 File attribute”
01H—read only)
02H—hidden file &
04H—system file |
08H—volume label in ﬁrst 11 bytes. not
filename
10H—file is a subdirectory of files in lower
level of hierarchical file tree
20H—file has been written to and closed
12-21 Reserved
22-23 Time the file was created or last updated
24-25 Date the file was created or last updated
2627 Starting cluster number —
28-31 Size of the file in bytes

Most of these parameters—should be familiar to you,
but the term cluster may be new. DOS allocates disk
space in clusters of one or more sectors. As shown in
Figure 13-37, the number of sectors per cluster depends
on the disk size and format. The file allocation table or
FAT put on the disk during the FORMAT operation
contains an entry for each cluster. The code stored in a
FAT entry indicates whether the cluster is available,
used, or defective. When you tell DOS to write a file to
disk, it searches through the FAT until it finds a cluster
which is marked as unused, writes the data to the
cluster, and writes the code for used In the FAT entry.
If the file is larger than one cluster, DOS searches the
FAT until it finds another unused cluster, writes data
to the cluster, and writes a used code in the FAT entry
for the cluster. To establish a link with the first cluster
of the file, DOS writes the number for the second cluster
in the FAT entry for the first. The process continues
until enough clusters are allocated to contain the file.
To summarize, then, the file is stored as a chain of
clusters and the FAT entry for each cluster contains the
number of the next cluster in the chain. When DOS
finishes writing the file to the disk, it updates the
directory entry for the file with the time, date, and the
number of the starting cluster for the file. Incidentally,
DOS actually maintains two identical FATs to provide a
backup in case one is damaged.

Also notice in the directory entry format stiown here
that an entry can represent a file or the name of a

. subdirectory. Each subdirectory can also rcfer directly

to program or data files, or it can refer to a lower
subdirectory. The point here is that this “tree” structure
allows you to group similar files together and to avoid
going through along list of filenames to find a particular
file you need. To get to a file in a lower-level directory.
you simply specify the path to that file. The path is
simply the series of directory names that you go through
to get to that file.

473

MICROCOMPUTER SYSTEM PERIPHERALS

HARD-DISK FORMATTING

Formatting a hard disk usually now involves three
different operations, low-level formatting, partitioning,
and high-level formatting. To do the low-level format you
use DEBUG to execute a program supplied by the
manufacturer of the hard-disk controllér card. The low*
level format operation involves telling the controller the
coding. the number of tracks, the number éf sectors,
the number of data bytes per sector, etc. In a low-level
format you also specify the location(s) of any bad
sector(s) on the disk. These bad sectors then will not
be listed as available. Still another important value
you specify in a low-level format is the interleave
factor. As we explained before, the interleave factor is
the number of sectors between consecutively numbered
sectors on a track.

An important point about low-level formatting is that
the format generated by a controller card from one
manufacturer may not be the same as the format gener-
ated by one from another one. This means that if you
move a hard disk from one _ontroller card to another,
you usually have to do a low-level format with the new
controller before you can write to the disk.

Tp partition a hard disk, you use the DOS FDISK
command. This command allows you to divide a large
hard disk into as many as four logical drives. Each
partition is assigned a drive identifier-such as C:, D:,
E:, etc..DOS versions before 4.0 limited the maximum
size of each partition to 32 Mbytes, but later versions
allow partitions of up to 2 Tbytes each. A sector called
the partition table at the very start of the disk stores the
start and stop cylinder numbers for each partition and
a pointer to the partitiof that the system should boot
from 'when the power is turned on.

To perform high-level formatting on a hard disk, you
execute the DOS FORMAT command for each partition.
The FORMAT command sets up the boot record, FAT,
and directory for that partition 'in the same way as we
described previously for a floppy. If the /s option is
specified with the FORMAT command. the two system
files needed to load the qperating system from disk to
RAM will automatically be copled to the disk. When the
formatting is done, the rest of the DOS files are copled
to the boot partition. -

Disk-Drive Interface Software

BIOS-LEVEL INTERFACING

There are several different software levels at which you
can interact with a disk drive. You can program directly
at the controller level, but this is very tedious. Another
approach is to use the BIOS INT 13H procedures to
interface with a hard or floppy disk. The difficulty with
this procedure is that you-have to specify the particular
track and sector(s) that you want to read or write and
several other parameters. DOS function calls are much
easier to use.

USING DOS FUNCTION CALLS
A large part of an operating system such as DOS is a

collection of procedures which perform tasks such as

474 CHAPTER THIRTEEN

;

formatting disks, creating disk files, writing data to
files, reading data from files, and communicating with
system peripherals such as modems and printers. DOS
allows you to call these procedures from your programs:
with an INT 21H instruction, similar to the way you call |
BIOS procedures. \

Each DOS function (procedure) has an identification i
number. To call a DOS function you put the function
number in the AH register, put any required parameters |
in the specified registers, and then execute the INT 21H
instruction. As a first example, DOS function call 40H
can be used to print a string. To use this procedure, set
up the registers as follows:

1. Load the function number, 40H, into the AH register.

2. Load the DS register with the segment base of the
segment which contains the string.

3. Load the DX register with the offset of the start of
the string.

4. Load the CX register with the number of bytes in
the string.

5. Load the BX register with 0004H, the fixed “file
handle” for the printer.

Then, to call the DOS procedure, execute the INT 21H
Instruction. Note that the DOS function allows you to
send an entire string to the printer, rather than just a
single character at a time as the BIOS INT 17H does.

As another example, the DOS 0AH function will read
in a string from the keyboard and put the string in a
buffer pointed to by DS:DX. Characters will also be
displayed on the CRT as they are entered on the key-
board. The function terminates when a caxriage return
is entered. To use this function, first set up a buffer in
the data segment with the DB directive. The first byte
of the buffer must contain the maximum number of
bytes the buffer can hold. The OAH call will return the
actual number of characters read in the second byte.
The function does not require you to pass it a file handle,
because the file handle is implied in the function.

You can also exit from one of your programs and
return to the DOS command level using the DOS 4AH
function. To do this, load AL with 00 and AH with 4CH
and then execute the INT 21H instruction.

The main feature of DOS function calls that we want
to discuss here, however, Is working with disk files.
Many disk operating systems and earlier versions of PC
DOS require you to construct a file control block or FCB
in order to access disk files from your programs. The
format of a file control block differs from system to
system, but basically the FCB must contain, among
other things. the name of the file, the length of the file,
the file attribute, and information about the blocks in
the file. Version 2.0 and later versions of PC DOS simplify
calling DOS file-handling procedures by letting you refer
to a file with a single 16-bit number called a file handle
or token. You simply put the file handle for a file you
want to access in a specified register and call the DOS
procedure which performs the desired action on that
file. DOS then constructs the FCB needed to access the

file. Thci question that may occur to you at this point is,
How do | know what the file handle is for a file | want to
access on a disk? The answer is that to get the file
handle for a disk file, you simply call a DOS procedure

which returns the file handle in a register. You can then

pass the file handle to the procedure that you want to
call to access the file. The point here is that file handles
make it easy for you to access files.

DOS extends the concept of a file to include any device
that can imput or output data. DOS treats externai
devices such as printers, the keyboard, and the CRT as
files for read and write operations. These devices are
assigned fixed file handles by DOS as follows: 0000—
keyboard, 0001—CRT. 0002—error output to CRT,
0003—serial port, 0004—printer. The significance of
this is that you can use the same DCS function call to
write the data in a buffer to a disk file, to the CRT
screen, or to a printer. Also, a stream of data can be
redirected from one file (device) to another. The DOS
command DIR A: > LPT1, for example, will redirect the
stream of data produced by the DIR command to the
printer instead of sending it toxthe CRT, which is the
normal output device for the DIR command.

As a final example here, Figure 13-41 shows you how
DOS function calls can be used to open a file, read data
from a file into a buffer in memory, and close the file.
Opening a file means copying the file parameters from
the directory to a file control block in memory and
marking the file as open. Closing a file means updating
the directory information for the file and marking the
file closed. To open a file and get the file handle, we use
DOS function call 3DH. For this call DS:DX must point
to the start of an ASCIIZ string which contains the disk
drive number, the path, and the filename. An ASCIIZ
string is a string of ASCII characters which has a byte

;8086 PROGRAM FRAGMENT
;ABSTRACT : This code shows how to use DOS functions
; to open a file, read the file contents
; into a buffer in memory, and close the file
; Point at start of buffer containing file name
MGV DX, OFFSET FILE_NAME
MOV AL, 00 ; open file for read

MOV AH, 30H ; and get file handle
INT 21H

MOV BX, AX save file handle in BX
PUSH BX and push for future use
MOV CX, 2048 set up maximum read

MOV DX, OFFSET FILE_BUF point at memory buffer
reserved for disk file

contents

me ma we me e s s

MOV AH, 3FH read disk file
INT" 21H "
POP BX ; get back file handle for close
PUSH AX ; save file length returned by
; 3FH function call
MOV AH, 3EM ; close disk file
INT 21H

; use the fﬂe now stored in memory

FIGURE 13-41
read a file.

- 62

Using DOS €unction calls to open and

of all O's ad"#s dast byte. Also, AL must contain an
access code which tes the type of operation that
you want to perform on the file. Use an access code
of 00 for read only. 01 for ‘write only, and-02 for read
and write. Again, to actually call the function, you
load 3DH into AH and execute the INT 21H instruction.
The handle for the opened file is returned in the BX
register. The first part of Flgure 13-41 shows how
these pieces are put together.

To read a file we use function call 3FH. For this call
BX must contain the file handle and CX the number of
bytes to read from the file. DS:DX must point to the
buffer location in RAM-that the data from the file will be
read into. To do the actual cMad 3FH into AH and
do an INT 21H instruction. After the file is read. AX
contains the number of bytes actually read from the file.

To close the file we load function number 3EH into
AH, load the file handle into BX, and execute the INT
21H instruction. The last half of Figure 13-41 shows the
instructions you can use to read and close a file. Consult
the IBM DOS Technical Reference Manual for the details
of all of the available function calls.

DISK INTERFACING IN C

lntcrfaclng with disk drives in C is in some ways very
similar to using the DOS function calls as we described
in the preceding section. In C as in DOS any device that
can input or output data is referred to as a file. To make
it easy for programmers to interface with this variety of
files ANSI' C buffers the files, similar to,the way DOS
does. Remember that DOS function calls buffer you from
the track and sector details by allowing you to refer to
a file with a simple file handle. The buffering also
produces a uniform data stream regardless of the physi-
cal device characteristics. As we sald above, this means
that you can use the same DOS function call to send
e aaia stream to any one ‘of several different devices.

The predefined C functions for buffered VO also allow
you to work with a data stream in your programs instead
of having to worry about the characteristics of the actual
physical device or file. To refer to a file C uses a special
pointer of type FILE. Type FILE is defined in stdio.h as
a pointer to a data structure which is essentially the
template for a file control block. To declare a file pointer
for use in your program, you use a statement such as
FILE *{p:. When you open a file you assoclate the pointer
fp with the file, and for any further interactions with
the file you can use fp. just as you use the file handle in
DOS function cdlls. To give you a better idea of how this
works, Figure 13-42, page 476, sho¥s a program which
opens a file for write, writes a line of text to the file, and
then closes the file. The program then opens the file for
read, writes the contents of the file to the screen, writes
the contents of the file to the printer, and again closes
the file. Note that this program requires very few state-
ments to do a considerable amount of work.

To get you used to the way professional ¢ programmers
write code, we have included a few statements which
contain several actions. The key to interpreting state-
meénts such as these, remember, is to start with the
innermost parentheses and work your way out from
there.

MICROCOMPUTER SYSTEM PERIPHERALS 475

/* C PROGRAM F13-42.C */

‘#include<stdio.h>
#include<dos.h>
#include<conio.h>

main()

<

FILE *fp;

char fllmﬂn 3
char ch;

char textbuf [100];
char *tp =textbuf;
int count;

/* Open file, write line of text to

it, close file */

printf("\n Please enter name of file you want to create.\n");

gets(fijename);

if((fp=tfopen(filename, “wt“))==0) /* fopen returns 0 if error */

- perror(filename); /* it error, ;;rint error message */

\ <
exit();

\ V2
printf(“Enter a line of text.\n");
" gets(tp); ”
count = strien(tp); /"
furite(tp,1,count, fp); Vil
fclose(fp); "™

/* Open file for read and display file contents on screen */

if((fp=fopen(filename, "rt"))==0) /*

.

read string into edit buffer */
determine number of bytes */
copy buffer to file */

close file */

open for read, check for error */

<
perror(filename); /* if error, print error message */
exit(); g ;
)
while(!feof(fp)) /* while not end of file, read */
fputc(fgetc(fp),stdout); /* file and send to screen */
/* Send contents of file to printer */
rewind(fp); /* reset file pointer to start of file buffer */

while(!feof(fp)) /* send characters from buffer to printer */

fprintf(stdprn, “Xc*,

fprintf(stdprn, "“\n"); /* carriage return to printer */

' fclose(fp); /* close file */
exit();
)

fgetc(fp));

FIGURE 13-42 C program which uses predefined functions to perform file

ope rations.

The program in Figure 13-42 first declares a FILE
pointer, as we described earlier, and then declares an
array to contain a user-entered file name. and an array
to contain a user entered line of text. The program then
prompts the user to enter a file name and readd the
entered filename into the array named filename. After
this the action gets more interesting.

The fp = fopen(filename, “wt") part of the if statement

476 CHAPTER THIRTEEN

opens the file named filename for write text operations
and initializes the file pointer fp to point to the file -
control block for that file. In programming jargon we say
that we have opened a stream named fp. The ifl = =0)
part of this statement compares the value assigned to
fp with 00. A value of O for fp indicates that some error
occurred when the attempt was made to open the file.
The drive door. for example, might have been open.

If an error occurred, we call the perror function,
which determines the error that occurred and prints
an appropriate error message to the screen. Thcl exit
function then returns execution to DOS.

If the file was opened without errors, we then prompt
the user to enter a line of text and read the text into the
array pointed to by tp. We then use the strlen function
to determine how many bytes are in the entered string,
so that we can pass this value to the fwrite function.
The arguments you pass to the fwrite() function are a
pointer to the array you want to write to the disk, the
number of bytes in each data item in the array, the
number of elements in the array, and the file pointer
which identifies the file. The fwrite function actually
writes the contents of the array to a buffer maintatned
by the buffering software, and this software takes care
of actually writing the data to the disk. The fclose(fp)
function closes the stream to this bufier, writes any
data remaining in the buffer to the file, and closes
the file.

In the next section of the program we open the file for
read by passing the “rt" string to the fopen function.
Again we print an error message if the file-open operation
was unsuccessful. We then use a while loop to read
characters from the fp stream and send ‘them to the
stdout stream until the end of file character is detected.
The fgetc(fp) function reads a character from the fp
stream. The character returned by fgetc() 1s passed to
the fpute() function, along with the destination stream
of stdout. Stdout is one of the predefined streams that
is opened automatically by the C 'startup code. The
predefined streams are stdin, stdout, errout, and stdaux,
which refer to the CRT, and stdpim. which refers to the
default printer. Now let's look at how we can send the
contents of the file to the printer. -

To keep track of the current location in a stream, the

C buffering system maintains a stream pointer. After "

reading the characters in from the file and sending the
characters to the CRT, the stream pointer for fp will be
pointing at the end of the file. Before we can perform
any other operation on this stream, we have to reset the
Stream pointer to the start of the file. The rewind(fp)
function call does this. '

The final part of the program in Figure 13-42 uses
another while loop to read characters from the fp stream
and send them to the printer until the end of file
character s found. The arguments you pass to the
fprintfl) function are the destination stream, a format
specifier, and the value of the variable you want to print.
In this call the value to be printed is the value returned
from the fp stream by the fgete(fp) function call. Finally,
we close the stream and the file with the fclose() function.
An exercise in the accompanying lab manual gives you
a further chance to work with these operations.

RAM DISKS

The VDISK command found in DOS versions 3.3 and
later allows you to set aside an area of RAM in such a
way that it appears to DOS as simply another disk drive.
In a computer that has actual drives A:, B:, and C:, you
can create a RAM or virtual drive which you access as
D:. You can copy files to and from this RAM disk by

name just as.you would for any other drive. Here's an
example of why you might want to set up a virtual drive.

When you load a large program such as Wordstar
into memory to run it, the basic and some
commands are loaded, but some of the program remains
ondlak.fl‘hulsdom:soﬂﬁtthemwmnmlnr
systems that do not have a large amount of memory:
When you.execute a command that has not been loaded
into memory, the code for thdt command is read from
the disk and executed. If you have enough memory in
yoursystcm.ywunmteamndnveandeopyall
the Wordstar files to that drive. The commands can
then be accessed much faster because there is no
mechanical access time as there is with an actual
disk. The advantage of configuring the RAM as a disk
dﬂnhthuunnﬂwmmmltmtuun
were on an actual disk.

DISK CACHES

Ammercommonlyneentumlncmmteompq, ter peri-
odicals is disk cache. A disk cache functions
to the RAM ¢ache we discussed in Chapter 11. The
principle of a RAM cache, remember, is to keep often-
used sections of code and data in a fast SRAM cache
where it can be accessed without wait states,
TheDOSBUFFERSooqlmand.whlchwuusuallypm
in your CONFIG.SYS file with a statement such as
BUFFERS =20, sets aside RAM to hold data read in
from disk files. Each buffer created with this command '
contalmSﬁSbyteu.Thepmblem\vlmthba'pplmchb
that if you create too many buffers, the overhead of
determining if a desired file section is present becomes
too long and performance actually decreases. Another
problemwiththeBUFFERSapproachhmatonlythe
requested data is read into the buffers. ;
Programs such as IBMCACHE which come with the
PS/2 .50, Go.lndweompuminowyoutooetupa
separate block of 16 Kbytes to 512 Khytes as a cache for
dalamdfmmduk.Whend.lskmdpecum.anorat
leaatnhrgepanoftlnﬂlemnbe‘mdll_ltothe
disk cache. This reduces the number of disk accesses
required and makes “disk-intensive” programs execute
two or three times faster. When a program writes data
toaﬂ!ethatlslnthemche.theda!ahwrmentothe
cache and to thee actual file on the disk, so that the data
will not be lost in case of a power fatlure.

Hard-Disk Backup Storage

To prevent data loss in the event of a head crash, hard
disk files are backed up on some other medium such as .
ﬂoppydhksornnmeuctape.mdlfﬂctmywnhulmg
floppy disks for backup is the number of disks required.
Backing up a 70-Mbyte hard disk with 1.2-Mbyte floppies
requires about 60 disks and considerable time shoving
disks in and out. Most systems with large hard disks
now use a high-speed magnetic tape system for backup.
A typlcal:treammgmpemtcm.uﬂmehlgh-peed
systems are often called, can dump or load the entire
contents of a large hard disk to a single tape In a few
minutes.

MICROCOMPUTER SYSTEM PERIPHERALS 477

OPTICAL DISK DATA STORAGE

The same optical disk technology used to store audio on
compact disks can be used to store very large quantities
of digital data for computers. One unit now avalilable,
the Maxtor Tahiti [, for example, stores up to a total of
1 Gbyte (1000 Mbytes) of dataon a single, removable 5}-
in. disk. This amount of storage corresponds to about
400,000 pages of text. Besides their ability to store large
" amounts of data, optical disks have the advantages that
they are relatively inexpensive and immune to dust. and
most are removable. Also, since data is written on the
disk and read off the disk with the light from a tiny laser
diode, the read/write head does not have to touch the
disk. The laser head is held in position about 0.1 in.
away from the disk, so there is no disk wear. Also, the
increased head spacing means that the head will not
crash on small dust particles and destroy the recorded
data as it can with magnetic hard disks.

The djsk sizes now available in different systems are
3.5. 4.72 (the compact audio disc size), 5.25, 12, and
14 in. Data storage per disk ranges from 60 Mbytes to
several gigabytes. The actual drive and head-positioning

mechanisms for optical disk drives are very similar to"

those for magnetic hard-disk drives. A feedback system
1s used to precisely control the speed of the motor which
rotates the disk. Some units spin the disk at a constant
angular velocity (CAV) in the range of 700 to 3000 rpm.
Other systems such as those based on the compact
audio (CD) format adjust the rotational speed of the disk
so that the track passes under the head with a constant
linear velocity (CLV). With CLV the disk is rotated slower
when reading outer tracks. =

Some optical disk systems record data in concentric
circular tracks as magnetic disks do. Other systems,
such as the CD disk systems, record data on a single
spigal track in the same way a phonograph record does.
A linear voice coil mechanism with feedback control is
used to precisely position the read head over a desired
track. The head positioning must be very precise, be-
cause the tracks on an optical disk are very narrow and
very close together. The tracks are typically about 20
pin. wide and about 70 pin. between centers. This
spacing allows tens of thousands of tracks to be put on
a disk.

Optical disk systems are available in three basic types:
read only, write once/read many, and read/write.

Read-only systems allow only prerecorded disks to be
. read out. A disk which can only be read from is often
called an optical ROM or OROM. Examples of this type
are the 4.7-in. compact audio disks and the optical disk
encyclopedias.

Write once/read many or WORM systems allow you to
write data to a disk, but once the data is written, it
cannot be erased or changed. The stored data can be
read out as many times as desired.

Erasable optical or EO systems allow you to erase
recorded data and write new data on a disk. The re-
cording materials-and the recording methods are differ-
ent for these different types of systems.

Disks used for read only and write once/read many
systems are coated with a substance which is altered

478 CHAPTER THIRTEEN

when a high-intensity laser beam is focused on it with
alens. The principle here is similar to using a magnifying
glass to burn holes in paper. as you may have done in
your earlier days. In some systems the focused laser
light produces tiny pits along a track to repre.ent 1's.
In other systems a special metal coating is applied to
the disk over a plastic polymer layer. When thelaser beam
is focused on a spot on the metal, heat is transferred to
the polymer, causing it to give off a gas. The gas given
off produces a microscopic bubbile at that spot on the
thin metal coating to represent a stored 1. Both of these
recording mechanisms are irreversible, so once written,
the data can only be read. Datd can be read from
this type of disk using the same laser diode used for
recording, but at reduced power. A system might for
example use 25 mW for writing, but only 5 mW for
reading.

To read the data from the disk, the laser beam is
focused on the track and a photodiode is used to detect
the beam reflected from the data track. A pit or bubble
on the track will spread out the laser beam light so that
very little of it reaches the photodiode. A spot on the,
track with no pit or bubble will reflect kght to the
photodiode. Read-only and write-once systems are less
expensive than read/write systems, and for many data-
storage applications the inability to erase and rerecord
is not a major disadvantage. One example of a WORM
optical drive 1s the Control Data Corporation LaserDrive
510, which stores 654 Mbytes on a removable ANSVISO
standard 5}-in. disk cartridge.

Most current read/write optical disk systems use disks
coated with an exotic metal alloy which has the required
magnetic properties. The read/write head in this type of
system has a laser dlode and a coll of wire. ‘A current is
passed. through the coil to produce a magnetic field
perpendicular to the disk. At room temperature the
applied vertical magnetic field is not strong enough to
change the horizontal magnetization present on the
disk. To record a 1 at a spot in a data track, a pulse of
light from the laser diode is used to heat up that spet.
Heating the spot makes it possible for the applied
magnetic field to flip the magnetic domains around at
that spot and create a tiny vertical magnet. This is called
magneto-optical or MO recording.

To read data from this magneto-optical type disk,
polarized laser light is focused on the track. When the
polarized light reflects from one of the tiny vertical
magnets representing a 1, its plane of polarization is
rotated a few degrees. Special optical circuitry can detect
this shift and convert the reflections from a data track
to a data stream of 1's and O’s. A bit is erased by turning
off the vertical magnetic field and heating the spot
corresponding to that bit with the laser. When heated
with no field present, the magnetism of the spot will flip
around in line with the ho: .zontal field on the disk. One
example of a currently available read/write optical drive
that uses MO recording is the Maxtor Corporation Tahitl
I. which stores about 600 Mbytes on an ANSIISO
standard 5}-in. disk cartridge or 1 Gbyte on a special
5}-in. cartridge. The Tahiti | has an average access time
of 30 ms, which compares favorably with the 16- to 25-
ms access times of the fastest current hard-disk drives.

The maximum data transfer rate for the Tahiti I is 1Q
Mbits/s, which is the same order of magnitude as the
transfer rate for the leading hard disk units. Incidentally,
. most optical disk drives use the SCSI interface we
described previously.

The amount of data storage on one optical disk is
impressive, but to store even more data there are now
available several “jukebox” optical disk systems, which
can hold up to 256 removable disks. Typically, it takes
only a few seconds to load a desired disk-into the actual
drive so it can be accessed. Optical disks have the further
advantage that the disk cartridge Is easily removable
and can be locked away for safety and security purposes.

The potentially low cost of a few cents per megabyte
and the hundreds of gigabytes of data storage possible
for optical disk systems may change the whole way
our soclety transfers and processes information. The
contents of a sizable library, for example, can be stored
on a few disks. Likewise, the entire financial records of
a large company can be kept on a single disk. “Experty
systems for medical diagnosis or legal defense can use
~ amassive data base stored on disk to do a more thorough
analysis. Engineering workstations can use optical disks
to store data sheets, drawings, graphics, or IC-mask
layouts. The point here is that optical disks bring directly
to your desktop computer a massive data base that
previously was available only through a link to large
mainframe computers or, in many cases, was not avail-
able at all. The large data storage capacity of optical
disks also make them useful for a system called Digital
Video Interactive, which we discuss in the last section
of this chapter.

PRINTER MECHANISMS
AND INTERFACING

Many different mechanisms and techniques are used to -

produce printouts or “hard” copies of programs and
data. This section is intended to give you an overview
of the operation and trade-offs of some of the common
printer mechanisms. We start with those that ’Qechanl-
cally hit the paper in.some way.

Dot-Matrix Tmpact Print Mechanisms

Figure® 13-43 shows an impact-type dot-matrix print
head. Thin print wires driven by solenoids at the rear
of the print head hit the ribbon against the paper to
produce dots. The print wires are arranged in a vertical
column so that characters are printed out one dot
column at a time as the print head is moved across a
line of characters. As we mentioned in an earlier chapter,
a stepper motor is commonly used to move the print
head across the paper. and another stepper motor is
used to advance the papgr to the next character row.
Early dot-matrix* print heads had only seven print
wires, so print quality of these units was not too good.
Currently available dot-matrix printers use S. 14, 18, or
even 24 print wires in the print head. Using a large
number of print wires and/or printing a line twice, with

RIBBON CONTAINED
IN CASSETTE

DUAL COLUMN BIDIRECTIONAL
MATRIX PRINTING HEAD

FIGURE 13-43 Impact dot-matrix printer mechanism.
(Courtesy DATAPRODUCTS Corporation.)

the dots for the second printing offset slightly from those
of the first, produces “letter-quality” print. Dot-matrix
printers can also print graphics. To do this the dot
pattern for each column of dots is sent out to the print-
head solenoids as the print head is moved across the
paper. The principle is similar to the way we produce
bit-mapped raster graphics on a CRT screen. By using
different-color ribbons and making several passes across
a line. some dot-matrix impact printers allow you to
print color graphics. Most dot-matrix printers now con-
tain one or more microprocessors to control all this.
Print speeds for dot-matrix impact printers range up
to 350 cps. Some units allow you to use a low-resolution
mode of 200 cps for rough drafts, a medium resolution
mode of 100 cps for finish copy. or 50 cps for near-letter-
quality printing. The advantages of dot-matrix impact
printers are their relatively low cost and their ability to
change fonts or print graphics under program control.

Dot-Matrix Thermal Print Mechanisms

Most thermal printers require paper which has a special
heat-sensitive coating. When a spot on this special paper
is heated. the spot turns dark. Characters or graphics
are printed with a matrix of dots. There are two main
print-head shapes for producing the dots. For one of.
these the print head consists of a5 by 7 or 7 by 9 matrix
of tiny heating elements. To print a character the head
is moved to a character position and the dot-sized
heating elements for the desired character are turned
on. After a short time the heating elements are turned
off and the head is moved to the next character position.
Prinung then is done one complete character at a time.

The second print-head configuration for thermal dot-
matrix printers has the heating elements along a metal
bar which extends across'the entire width of the paper.

MICROCOMPUTER SYSTEM PERIPHERALS 479

There is a heating element for each dot position on a
, Print line, so this type can print an entire line of dots
atatime. The metal bar removes excess heat. Characters
and graphics are printed by stepping the paper through
the printer one dot line at a time. A few thermal printers
can print up to 400 lines/min.

Some of the newer thermal printers have the heat-
sensitive material on a ribbon instead of on the paper.
When a spot on the ribbon is heated. a dot of ink is
transferred to the paper. This approach makes it possible
to use standard paper and, by switching ribbons, to
print color graphics as well as text.

The main advantage of thermal printers is their low
‘noise. Their main disadvantages are: the special paper
or ribbon is expensive, printing carbon copies is not
possible. and most thermal printers with good print
quality are slow.

Laser and Other Page Printers

These printers operate on the same principle as most
office copiers. The basic approach is to first form an
Image of the page that is to be printed ona photosensitive
drum in the machine. Powdered ink, or “toner,” is then
applied to the image on the drum. Next the image is
electrostatically transferred from the drum to a sheet of
paper. Finally the inked image on the paper is “fused”
with heat.

In an office copy machine a camera lens is used to
produce an ‘image of the original on the photo-sensitive
drum. In page printers used with computers, there are
three common methods of producing the image on the
drum. The most common methoa and the one that gives
us the name laser printer is with a laser, as shown in
Figure 13-44. A rotating mirror sweeps a laser beam
across the photosensitive drum as it rotates. The laser
beam is turned on and off as it is swept back-and forth

OuTPUT
PAPER

CLEANING UNIT

IMAGE
TRANSFER
POINT

PRE-CHARGING
ELECTRODE

SCAN PATH OF
LIGHT BEAM ON
INTERMEDIATE ™
SURFACE

PAPER
FROM
STACK

DEVELOPER UNIT

PHOTO-CONDUCTIVE
INTERMEDIATE SURFACE
ON ROTATING DRUM

MULTIPLE MIRRORS
MOUNTED ON
ROTATING DRIM

LIGHT BEAM MODULATOR
(CONTROLLED BY
CHARACTER GENERATOR)

s
Rl

/ ~—+LASER
LIGHT
BEAM
SOURCE

MIRROR

—
PATH OF LIGHT
BEAM FROM LASER

FIGURE 13-44 Laser printer mechanism.
DATAPRODUCTS Corporation.)

480

(Courtesy

CHAPTER THIRTEEN

across the drum to produce an image in about the same
way that an image is produced on a raster scan CRT
Alter the image on the drum is inked and transferred
to the paper. the drum is cleaned and is ready for the
next page. i

A second way of producing the dots on the photosensi-
tive drum is with a linear array of tiny LEDs. The image
Is generated one line at a time as the drum rotates. This
approach has less moving parts than the laser approach,
but if an LED bumns out, it will leave a blank streak
through the printout.

The third common method of producing the image on
the drum is with a linear array of tiny liquid-crystal
“shutters.” When the shutter is opened, the light from
a bright backlight exposes a spot on the drum. As with
the other methods, the image Is produced on the drum

- one line at a time.

One major advantage of laser and other page printers
Is their high print quality. Commonly available lower-
priced units have a resolution of 300 dots per inch, and
the next generation will probably extend this to 600 dots
per inch. For comparison, 1200 to 2400 dots per inch
are commonly used for high-quality typesetting. Print
speeds are in the range of 10 to 12 Ppages per minute for
text and 1 to 4 pages per minute for graphics.

The control circuitry in, for example, a laser page
printer is much more complex than that in an impact-
type dot-matrix printer because the image is deve!opcd
as a large dot matrix with many dots. To genkrate
complex images as rapidly as possible, these printers
often use a high-speed microprocessor with a graphics
processor, similar to the CRT system shown in Figure
13-23. The dot patterns for several different character -
fonts are usually included in the ROMs in the controller
so that you are not restricted to Jjust one characier set.
Some of these printers also allow you to download
custom character fonts to RAM in the printer. Several
megabytes of RAM are needed in the printer to hold the
data for complex graphics images. '

To produce graphics and Page layouts you write a
program using a printer control language or PCL. The
three most common languages are HP's PCL-4, Cannon's
CaPCL, and Adobe’s Postscript. These languages allow
you to specify where to draw lines on the page. the scale
factor for characters, gray shading, and many other
page features. /

Ink-Jet Printers

Still another type of printer that “uses a dot-matrix
approach to produce text and graphics is the ink-jet.
Early ink-jet printers used a pump and a tiny nozzle to
send out a continuous stream of tiny ink globules. These
ink globules were passed through an electric field, which
left them with an electrical charge. The stream of charged
ink globules was then electrostatically deflected to pro-
duce characters on the paper in the same way that the
electron beam is deflected to produce an image on a CRT
screen. Excess ink was deflected to a gutter and returned
to the ink reservoir. Ink-jet printers are relatively quiet,
and some of these electrostatically deflected ink-jet print-
€rs can print up to 45,000 lines/min. Several disadvan-

tages, however, prevented them from being used more
widely. They tend to be messy and difficult to keep
__ working well. Print quality at high speeds is poor and
multiple copies are not possible.-

Newer ink-jet printers use a variety of approaches to.

solve these problems. Some, such as the HP Thinkjet,
bise ink cartridges which contain a column of tiny
heaters. When one of these tiny heaters is pulsed on, it
causes a drop of ink to explode onto the paper. Others,
such as the IBM Quietwrit.r, for example, use an electric
current to explode microscopic ink bubbles from a
special ribbon directly onto the paper. These last two
approaches are really hybrids of thermal and ink-jet
technologies. They can produce very near letter-quality
print at speeds comparable to those of slower dot-matrix
impact printers. A disadvantage of some ink-jet printers
is that they require special paper for best results.

SPEECH SYNTHESIS AND RECOGNITION
WITH A COMPUTER

In a great many cases it is very convenient for a computer
to communicate verbally with a user. Some examples of
the use of computer-created speech are talking games,
talking cash registers, and text-to-speech machines used
by blind people. Other examples are medical monitor
systems that give verbal warnings and directions when
some emergency condition exists. This use demon-
strates some of the major advantages of speech readout.
The verbal signal attracts more attention than a simple
alarm, and the user does not have to search through a
series of readouts to determine the problem.

Adding speech recognition circuitry to a computer so
that it can interpret verbal commands from a user also
makes the computer much easier to use. The pilot of a
rocket ship or space shuttle, for example, can operate
some controls verbally while operating other controls
manually. (It probably won't be too long before we
eliminate the verbal/manual link and control the whole
ship directly from the brain, but that is another story,
perhaps in the next book.) Voice entry systems are
also useful for handicapped programmers and other
computer users. We will first describe for you the differ-
ent methods used to create speech with a computer and
then describe some speech-recognition methods.

Speech-Synthesis Methods

There are several common methods of producing speech
from a computer. The trade-offs between the different
methods are speech quality and the number of bits that
must be stored for each word. In other words. the higher
the speech quality you want, the more bits you have to
. store in m¢€mory to represent each word and the faster
you have to send bits to the synthesizer circuitry. All
the common methods of speech synthesis fall into two
general categories: waveforrn modification and direct
digitization. In order to explain how the waveform-
modification approaches work. we need to talk briefly
about how humans produce sounds.

|

VAVEFORM-MODIFICATION SPEECH SYNTHESIS

Some speech sounds, called voiced sounds, are produced
by vibration of the vocal cords as air passes from the
lungs. The frequency of vibration ar pitch, the position
of the tongue, the shape of the mouth, and the position
of the lips determine the actual sound produced. The
vowels A and E are examples of voiced sounds. Another
type of sound, called unvoiced sound, is produced by
modifying the position of the tongue and the shape of
the mouth as a constant stream of air comes from the
i}ungs. The letter S is an example of this type of sound.
‘A third type of sound. the nasal sounds—called frica-
'tives—consist of a mixture of voiced and unvoiced
sounds. In electronic terms then. the human vocal
system consists of a variable-frequency signal generator
as the source for voiced sounds, a “white” noise signal
source for unvoiced sounds, and a series of filters which
modify the outputs from the two signal sources to
_produce the desired sounds. Figure 13-45 shows this in
block diagram form.

The three main approaches to implementing this
model electronically are linear- predictive coding or
LPC; formant filtering, and phoneme synthesis. These
methods differ mostly in the type of filter used and in
how often the filter characteristics are updated.

LPC synthesizers, such as that in the Texas Instru-
ments “Speak and Spell,” use a digital filter such as we
described in Chapter 10 to modify the signals from a
pulse and a white noise source. For this type of filter the
parameters that must be sent from the microcomputer
are the coefficients for the filter and the pitch for the
pulse source. Remember from the discussion in Chapter
10 that for a digital filter, the current output value is
computed or “predicted” as the sum of the current input
value and portions of previous input valucs. A high-
quality LPC synthesizer may require as'many as 16
Kbits/s. An example of a.currently available LPC speech
chip is the TI TSP50C10. For further information about
LPC synthesis, consult the data sheet for this device.

The formant filter speech-synthesis approach' uses
several resonant or formant filters to massage the signals
from & variable-frequency signal source and a white
noise source. Figure 13-46, page 482, shows how the
frequencies of these formant filters might be arranged
for a male apt for a female voice. For this type of system
the parameters that must be sent from the computer
are the pitch of the variable-frequency signal. the center
frequency for each formant filter, and the bandwidth of
each formant filter. The data rate for direct formant

VOICED
SIGNAL
VARIABLE

FREQUENCY
GENERATOR

SPEAKER

PROGRAMMABLE
FILTER(S)

UNVOICED
SIGNAL
WHITE 1 s =
NOISE
SOURCE

" FIGURE 13-45 Electronic model of human vocal tract.

"MICROCOMPUTER SYSTEM PERIPHERALS 481

|
+
F, s Fy F, Fe |
FIRST SECOND THIRD FOURTH |
FORMANT FGRMANT FORMANT FORMANT

FREQUENCY

FIGURE 13-46 Filter responses for formant speech
synthesizer.

synthesis is only about 1 Kbit/s, but the parameters
must be determined with complex equipment. It is
not easy to develop a custom vocabulary for a specific
‘application. A phoneme approach solves this problem
and requires a still lower data rate at the expense of
lower speech quality.

I'honemes are fragments of words. An example of a
phoneme speech synthesizer-is the Artic Technologies
263A, which can be interfaced with a microcomputer
port or in some cases interfaced directly to microproces-
sor buses. Words are produced by sending a series of 6-
bit phoneme codes to the device. Five internal 8-bit
registers also allow you to control parameters such as
speech rate, pitch, amplitude, articulation rate, and
vocal tract filter response. Inside the 263A the 6-bit
phoneme code is used to control the characteristics
of some formant filters, as described in the previous
paragraph. Since only one code is sent out for a relatively
long period of speech, the required bit rate is only about
70 bits/s. However, the long period between codes gives
less control over waveform details and, therefore. sound
quality. A phoneme synthesizer has a mechanical sound.
One big advantage of phoneme synthesizers is that you
can make up any message you want by simply putting
together a sequence of phoneme codes.

DIRECT DIGITIZATION SPEECH SYNTHESIS

Direct digitation speech synthesis produces the highest-
quality speech, because it is essentially just a playback
of digitally recorded speech. To start, the word you
want the computer to speak is spoken clearly into a
microphone. The output voitage from the microphone
is amplified and applied to the input of perhaps a 12-
bit A/D converter. One approach at this point might be
to simply store the A/D samples for the word in a ROM
and read the values out to a D/A converter when you
want the ‘computer to speak the word. The difficulty
with this approach is that if the samples are taken often
enough to produce good speech quality, a lot of memory
is required to store the samples for a word. To reduce
the amount of memory required, several speech-com-
pression algorithms are used. These algorithms are too
complex to discuss here, but the basic principles involve
storing repeated waveforms only ance, taking advantage
of symmetry in waveforms, and not storing values for
‘silent periods. Even with compression. however, direct
digital speech requires considerable inemory and a bit
rate as high as 64 Kbits/s. To further reduce the memory

482 CHAPTER THIRTEEN

required for direct digital speech, some systems use
differential or delta modulation. In these systems
only a 3-bit or 4-bit code, representing how much a
sample has changed from the last sample, is stored
in memory Instead of storing the complete 12-bit value.
This system works well for audio signals, since they
change slowly.

The OKI Semiconductor MSM6388 device contains
much of the circuitry needed to digitize and reproduce
speech using adaptive-differential pulse code modula-
tion (ADPCM). This device contains a microphone pre-
amplifier, A/D converter, D/A converter, and some low-
pass filters. The digital values produced by the A/D
converter are stored in external memory. About 260 s of
speech can be stored in 4 Mbits of external memory.

Another example of a direct digital synthesis system
is the National Semiconductor Digitalker. For further
information, consult the data sheets for these devices.

Speech Recognition

Speech recognition is considerably more difficult than
speech synthesis. The process is similar to trying to
recognize human faces with a computer vision system.
With most speech-recognition systems the first step is

_ totrain the system,or, in other words, produce templates

for each of the words that the system needs to recognize
and store these templates in memory. To produce a
template for a word, the intended user speaks the word
several times into a microphone connected to the system.
The system then determines several parameters or fea-
tures for each repetition of the word and averages them
to produce the actual template.

Different systems extract different parameters to form
the template. One of the most common methods uses a
set of formant filters with their center frequencies ad-
justed to match those of the average speaker. The output
amplitude of each formant filter is averaged to produce
a signal proportional to the energy in that frequency
band. Also used are one or more zero-crossing detectors
to give basic frequency information. The pulse train from
the zero-crossing detector is converted to a proportional
voltage, so it can be digitized along with the outputs
from the formant averagers.

When a word is spoken,.samples of each of the features
are taken and digitized at evenly spaced intervals of 10

" to 20 ms during the duration of the word. The features

are stored in memory. If this is a training run, the set

. of samples will be averaged with others to form the

template for the word. If this is a recognition run, this
set of features will be compared with the templates
stored in memory. The best match is assumed to be the
correct word. Currently none of the available voice-
recognition systems is 100 percent accurate, but they
are improving.

The best current example of speech recognition is
probably the Dragon Systems Inc. DragonDictate which
consists of a PC- or PS/2-compatible plug-in board and
software. This system has a built-in vocabulary of 25.000. "
words and allows the user to define up to 5000 more
words. This unit is intended for-use in speech-to-text
applications such as.generating reports. When a user

speaks a word, the system looks up the most likely

match and sends the match word to the screen. If the
word is incorrect, the user can correct the word verbally
ar with the keyboard. The system is adaptive. so its
recognition rate improves with continued use. Inciden-
tally, the DragonDictate systemn uses a TMS32010 digital
signal processor device we described in Chapter 10 to
filter the input signal.

A less expensive PC-compatible speech-recognition
unit is the VPC 2000 from VOTAN Inc. In addition to
recognizing words or phrases, this unit also has a
buiit-in voice-activated telephone dialing and answering
service. Another PC-compatible unit, the VocaLink from
Interstate Voice Products, permits the programming of
up to 240 spoken commands to control standard PC
- software such as word processors and business pro-
grams. Perhaps the HAL 9000 is not too far away.

DIGITAL VIDEO INTERACTIVE

In this chapter we have shown you how text and graphics
images are produced on a CRT: how text, speech, and
graphics data are stored on magnetic or optical disks:
and how a computer can be used to recognize and
generate speech. To us the mest exciting applications
of all these technologies are compact digital-interactive
(CD-1) and digital vicdeo interactive (DVI). CD-I was
developed by Phillips and DVI was developed by the
David Sarnoff Research Center and later purchased by
Intel Corporation, which is continuing its development.
The systems are very similar, but we will concentrate on
DV1 for this discussion.

The Intel DVI system consists of some very powerful
software and two circuit boards which plug into a PC-
or PS/2-type computer. This systern allows up to 72 min
of full-motion video images and stereo sound to be
produced on the computer from a single 5§°in. optical
disk. There are two very significant peints about tiis.

First, the system is interactive. This means that the
image and sound output at any particular time depends

cn the input that you supply with the keyboard, a -

mouse, or perhaps a joystick. One example called Design
and Decorate, which was developed to demonstraté DVI,
allows you to place furniture in a room, move the

furniture around in the room, and even reupholster the -

furniture with different fabrics. Another DVl demonstra-
tion allows you to fly a plane around “real” landscapes.
Another demo allows you to landscape an image of your
house and sce how It will look as the plants mature. Still
another demo teaches you how to use a camera. This
demo allows you to focus the camera and see the effect
of i-stop on depth of field. etc. Perhaps you can see
from these brief discussions that DVI has great potential
for individualized education. entertainment. and mar-
keting. d
The technique that makes DVI possible is audio and

vidco compression. As we explained in a previous section

on digitizing speech signals, adaptive-differential pylsc
code modulation carr be used to,reduce the amount of
_data required to store a digitized audio signal. This
technique is based on the fact that audio signals change

- 63

‘relatively slowly, so instead of storing a value for the

entire amplitude at each point on the signal, only a value
for the change from the previous data point is stored.

Most of the time video images also change relatively
slowly. The amount of data required to store a sequence
of video images can be drastically reduced by storing the
data for the first frame in the sequence and then just
storing changes from that frame for the rest of the
frames in the sequence. Further reduction can be accom-
plished by taking advantage of the fact that the resolu-
tion of the human eye is not as fine for color images as
it is for monochrome images. The DVI system stores the
color data for every fourth pixel and interpolates to get
the color values for the pixels in between these.

To give you an idea of how impertant this video
compression is, remember from the discussions earlier
in the chapter that about 153 Kbytes of memory are
required to store the pixel data for one frame ofw 640
X 480 x 16 color display. With a refresh rate of 60
frames/s, a 648-Mbyte optical disk could hold only about
70 s of video frames. The VI system requires an average
of only about 5 Kbytes to store the data for a frame.

The steps involved in developing an application using
the DVI system are as follows:

1. Use the edit level video (ELV) editor that comes with
the system to digitize the basic video image sequence
and reduce the resolution of the images to 256 X
240 pixels. .

2. Digitize the audio signal.

3. Use ELV editor to select the desired video and audio
Sequerices.

4. Add text,
gramming.

and control pro-

graphics images,

»» Send the original video and the editor output to Intel
or some other vendor who will use a high-speed
paraliel computer to produce the compressed video
and audio data. This output is called presentation

. level video (PLV).

6. Combine the PLV with the ELV editor output and
use the result to program a WORM or EO disk.

For further information on developing DVI1 applica-
tions, see the references in the Bibliography.

Once the DVI disk is programmed. it can be “played”
on a compatible optical disk drive and run with the DVI
software. The DVI boards decompress the video image
data, decompress the audio and data, and interact with
the usér. Perhaps in the not-too-distant future, systems
such as this will let you pilot the “Enterprise” through
an adventure of your own.)

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms in the following
list. use the index to help you find them in the chapter
for review.

MICROCOMPUTER SYSTEM PERIPHERALS - 483

Extended ASCI codes

CRT operation
Raster scan display

Field

Interlaced and noninterlaced scanning
Frame rate
Video monitor
CRT terminal
Horizontal and vertical sync pulses
Composite video
Character generator
Display-refresh RAM or frame buffer
Dot clock
Overscan °
Attribute code
Bit-mapped graphics display

cture element, pixel, or pel
Packed pixel storage
Planar pixel storage
Palette DAC, RAMDAC

VRAM
CGA. EGA, VGA, 8514/A display adapters

Bresenham's algorithm

BITBLT

Graphics processor, RISC processor, CISC processor
Megalflops, Mflops

TIGA

Liquid Crystal computer displays

Plasma computer displays

Computer mouse, trackball

Computer vision
Video cameras—vidicon
CCD cameras

484

Floppy disks and hard disks
FM. MFM, and RLL encoding
Access time
Hard and soft sectoring__
Index holes
Index. ID. and data fields, gaps, address marks
Cyclic redundancy character :
Cylinders ‘
ST-506, ESDI, and SCSI disk interfaces
Low-level format. high-level format
Cluster, file allocation table, directory
DOS function calls—how called
File-control block, file handle
Open and close a file
C FILE pointer data type
C buffered VO and streams
RAM disk
Disk cache

Optical disk systems
OROM, WORM, EO type systems

‘Printer mechanisms
DOT-matrix impact and Dot-matrix thermal
Laser and other page printers
Ink jet °

Speech synthesis
Pitch, unvoiced sounds, and fricatives
Linear predictive coding, formant, phoneme
Direct digitization

Speech recognition
Digital video interactive

REVIEW QUESTIONS AND PROBLEMS

a. Why are the predefined functions such as scanf

With the help of a simple drawing, explain how a

and getche not always suitable for reading
keycodes from a PC- or PS/2-type computer?
Use the program in Figure 13-3 to help you
write a C program section which calls the BIOS
INT 16H procedure to wait until a key is pressed.
and then returns the code for the pressed key
(assume only standard ASCII).

noninterlaced raster is produced on a CRT.

Use a simple drawing to help you describe how a
display of the letter X is produced by the electron
beam on a noninterlaced raster-scan CRT display.

Refer toF lgu‘e 13-6 to help you answer the following
questions. '

a.
b.

C.

What is the purpose of the RAM in this circuit?
At what point(s) in displaying a frame do the
address Inputs of this RAM get changed?
Atwhat point(s) in displaying a frame do the RO-
R3 address inputs of the character-generator
ROM get changed?

CHAPTER THIRTEEN

d.

&

f.

What is the purpose of the shift register on the
output of the character generator ROM?

At what point(s) in displaying a frame are
horizontal sync pulses produced?

At what point(s) in displaying a frame are
vertical sync pulses produced?

S. A CRT display is designed to display 24 character
rows with 80 characters in each, row. The system
uses a 7 by 9 character generator in a 9 by 12 dot -
matrix. Asspyming a 60-Hz noninterlaced frame
rate, three additional character times for horizontal
overscan, and 120 additional scan lines for vertical
overscan, find the following values.

sanca

.

" Total number of character times/row

Total number of scan lines/frame

Horizontal frequency (number of lines/second)
Dot-clock frequency (dots/second) '
Minimum bandwidth required for video am-
plifier

Time between RAM accesses .

6. The IBM PC color adapter board uses a 14-MHz dot

12.

13.

15,

clock frequency, a 15.750-kHz horizontal scan rate,

and a 60-Hz frame rate. Characters are produced

in an 8 by 8 dot matrix. There are 80 characters/

row and 25 rows/frame.

a. What is the total number of dot times per scan
line?

b. How many dot times then are left for horizontal
overscan?

¢. What is the total number of scan lines per frame
including overscan?

d. How many scan lines then are left for vertical
overscan?

How does the CRT display system in Figure 13-5
arbitrate the dispute that occurs when the 6845
CRT controller and the microprocessor both want
to access the display RAM at the same time?

Write a program which uses the [BM BIOS proce-
dures to read a string of characters entered from
the keyboard, put the key codes in a buffer in
memory, and display the characters for the pressed
keys on the CRT.

How much memory is required to store the pel data
for a bit-mapped monochrome 640 by 480 display?

Describe how three electron beams are used. to
produce all possible colors on a color CRT screen.

a. How many memory bits are required to store
the data for a pixel that can be any one of 256
colors?

b. How much memory is required to store the pel
data for a 1024 by 768 display where each pel
can be any one of 16 colors?

c. Usediagrams to help you explain the difference
between packed pixel storage and planar pixel
storage.

Use a diagram to help you explain how an EGA
system uses palette registers to produce a display
of 16 colors from a palette of 64 colors.

Mode 13H of a VGA system produces a display of

256 colors from a palette of 256K possible colors.

a. How many bits are required to specify one of
256K colors?

b. Why is it currently impractical to store the pixel
data for a direct display of 256K colors?

c. Draw a diagram showing how the VGA color
registers and palette registers are used to spec-
ily one of 256 colors out of a palette of 256K.

d. Describe how the actual red. green, and blue
drive signals are produced from the color regis-
ter values in a VGA system.

a. Write assembly language instructions which
use the BIOS INT 10H procedure to initialize
a VGA adapter for 320 x 200 x 256 color
modec.

b. Add instructions which position the cursor
approximately in the center of the screen and
write your name at that location.

Explain the purpose of the following statements or

16.

17.

19.

21.

22.

groups of statemnents in the C graphics program in
Figure 13-23)
a. Initgraph(&driver.&mode,"c:\tc\BGI");
b. window_size =imagesize(160,100,480
,250); window_buffer = malloc
(window_size):

c. getimage(160,100,480,250):

d. putimage(160,100,window_buffer,0):

e. free(window_buffer)

a. Why do many microcomputers now use a dedi-

cated graphics processor instead of having
the main processor compute pixel values for
graphics images?

b. Why is a math coprocessor often included in
the design of a graphics processor system?

What are the major advantages of LCD displays over
CRT displays for use in portable microcomputers?

The vector graphics approach is an alternative to
the raster scan approach of producing graphics
displays on a CRT screen. In a vector graphics
display system the beam is directly moved from
point to point on the CRT screen to trace out
images. The most common way to direct the beam
is by connecting a D/A converter to the X axis drive
and another D/A converter to the Y axis drive. For
this problem, assume the inputs of an 8-bit D/A
converter are connected to port FFF8H of a micro-
computer and the output of the D/A converter is
connected to the X axis of an oscifloscope. The

. inputs of another 8-bit D/A converter are connected

to port FFFAH of a microcomputer, and the output
of this D/A is connected to the Y axis of the
oscilloscope. Write a program which uses these D/A
converters to display a square on the screen of the
oscilloscope. Then modify the program so that the
square enlarges after each 100 refreshes.

Describe how a CCD camera produces pixel data
which can be stored in computer memory.

a. Describe the mechanical mechanisms used to
move the read/write head to the desired track
on a floppy or hard disk.

b. Explain why a magnetic hard disk can store
much more data than a floppy disk and why
data can be read from a hard disk much faster
than it can from a floppy.

c¢. Explain why a phase-locked loop is used as part
of the interface circuitry for a floppy or hard
disk drive.

d. What is the major advantage of RLL 2.7 encod-

* ing over MFM encoding for recording data on
magnetic disks?

a. Whatis the main improvement of an ESDI hard
disk interface over the older ST-506 interface?

b. Draw adiagram to help explain how an SCSI VO
bus is connected in a system and how it op-
erates.

a. Describe the purpose of the CRC bytes included
with each block of data recorded on the disk.

MICROCOMPUTER SYSTEM PERIPHERALS 485

b. Describe how you format a floppy disk on a

DOS-based system

. €. Describe the three steps involved in formatting

27.

486

and partitioning a blank magnetic hard disk.

a. Describe the purpose of the file allocation table
written on a disk by DOS.

b. If a data file requires several clusters on a disk,
how does a DOS keep track of where the pieces
of the file are located?

c. List the major types of lnformation contained
in the directory entry for each file in a DOS
system.

Write a program which uses the IBM PC DOS
function calls to read in a string containing your
name from the keyboard to a buffer in memory and
sends the string to a printer. Remember to use the
DOS 4CH function call to retum to DOS at the end
of the program.

Write a program which uses DOS function calls
to read a line of text from the keyboard to a
buffer in memory and then, when the carriage
return key is pressed, opens a file and writes the
text to the file.

Explain the operation performed in Figure 13-42
by each of the following C statements or group of
statements more thoroughly than the comments.
a. FILE *fp;
b. ifi(fp= opcn(ﬂlcname ‘wt”)) =

{

perror{filename)
}

c. [close();
d. while(!feof(fp))
fputc(fgetc(fp), sldout)

a. Describe the operation of a RAM disk and
* explain how it speeds up the execution of some
programs.

CHAPTER THIRTEEN

29,

31

32.

3.

b. Explain the operation of a disk cache and
explain how it is different from a RAM disk.

a. Describe how stored data is read from optical
disks and describe the advantages this readout
method has over that used for hard magnctlc
disks.

b. List the major advantages of optical disk data
storage over magnetic hard disk data storage.

c. Describe how databits are recorded in magneto-
optic erasable optical (EO) disk systems.

A human brain can store about 10'? bits of data
and has an access time in the order of about a
second. Compare these parameters with those of
an optical disk system such as the Maxtor Tahiti I
discussed in the text.

Describe the operation of the print mechanism for
each of the following types of printer. Also give an
advantage and a disadvantage for each type.

a. Impact-type dot-matrix

b. Thermal
c. Laser A
d. Ink-jet

What are the major differences between an LPC
speech synthesizer and a formant speech synthe-
sizer?

Describe the operation of a direct-digitization
spcgch synthesizer. As pari of the description give
the major advantage and the major disadvantage
of this type speech synthesis.

a. Digital video interactive systems allow up to 72
min of full motion video and sound to be
recorded on a single 5-in. optical disk. Describe
the techmques used to store this immense
amount of data on the disk.

b. Describe how a DVI system might be used to
teach you how to fly a space shuttle.

Data Communication
and Networks

In Chapter 2 we discussed “computerizing” an electron-
ics factory. What this means is that computers are
integrated into all the operations of the factory and that
each person in the company has access to a computer.
The company may have a large centrally located main-
frame computer, several minicomputers that serve
groups of users, individual computer engineering
workstations, and portable computers spread around
the world with its salespeople. In order for all these
computers to work together, they must be able to
communicate with each other int an organized manner.
In this chapter we show you some of the devices, signal
standards, and systems used for commumcanon with
and between computers.

In the first section of the chapter we discuss the
hardware and low-level software required to interface
microcomputer buses to serial data communication
lines. Then we discuss how the serial data signals are
transmitted from one place to another. This discussion
includes RS-232C-type standards, modems, and fiber-
optic cables. The next section of the chapter shows you

how to write programs which perform simple serial data’

communication. As an example in this section we use
~ a program which allows you to download programs from
a PC- or PS/2-type computer to an SDK-86 board. In the
final sections of the chapter we discuss the operation of
several common computer networks.

-

OBJECTIVES
At the end of this chapter, you should be able to:

1. Show and describe the meaning of the bits in the

format used for sending asynchronous serial data.

2. Initialize a common UART for transmitting serial
data in a specified format.

3. Describe several voltage, current, and light (fiber-
optic) signal methods used to transmit serial data.

4. Describe the function of the major signals in the
RS-232C standard.

5. Show how to connect RS-232C equipment directly
or with a "null-modem™ connection.

6. Describe the different types of modulation com-
monly used by modems.

7. Use the IBM PC BIOS, DOS and C. procedurcs to
send ?nd receive serial data.

8. Show the formats for a byte-oriented protocol and
for a bit-oriented protocol used in synchronous
serial data transmission.

'

9. Draw diagrams to show the common computer
network topologies.

10. Describe the operation of an Ethernet system.

_11. Describe the operation of a tcken-passing ring

system.

12. Show the major signal groups for the GPIB (IEEE
488) bus, describe how bus control is managed,
and describe how data is transferred on a hand-
shake basis for the GPIB.

INTRODUCTION TO ASYNCHRONOLUS .
SERIAL DATA COMMUNICATION

Overview

Serial data communication is a somewhat difficult sub-
ject toapproach, because you need pieces of information
from several different topics in order for each part of the
subject to really make sense. To make this approach
easier, we will first give an overview of how all the pieces
fit together and then describe the detalls of each plece
later in specific sections. A problem with this subject is.
that it contains a great many terms and acronyms. To
help you absorb all of these, you may want to mMmake a
glossary of terms as you work your way through the
chapter.

Within a microcomputer data is transferred in parallel,
because that is the fastest way to do it. For transferring
data over long distances, however, parallel data trans-
mission requires too many wires. Therefore, data to be
sent long distances is usually converted from parallel
form to serial form so that it can be sent cn a single
wire or pair of wires. Serial data received from a distant
source is converted to parallel form so that it can easily
be transferred on the microcomputer buses. Three terms
often encountered in litérature on serial data systems
are simplex, half-duplex, and full-duplex. A simplex
data line can transmit data only in one directicn. An
earthquake sensor sending data back from Mount St.

487

Helens or a commercial radio station are examples of
simplex transmission. Half-duplex transmission means
that communication can ‘take place in either direction
between two systems, but can only occur in one direction
at a time. An example of half-duplex transmission is a
two-way radio system, where one user always listens
while the other talks because the receiver circuitry is
turned off during transmit. The term full-duplex fneans
that each system can send and receive data at the same
time. A normal phone conversation is an example of a
full-duplex operation.

Serial data can be sent synchronously or asynchro-
nously. For synchronous transmission, data is sent in
blocks at a constant rate. The start and end of a block
are identified with specific bytes or bit patterns. In a
later section of the chapter we discuss synchronous data
transmission in detail. For asynchronous transmission,
each data character has a bit which identifies its start
and 1 or 2 bits which identify its end. Since each
character is individually identified, characters can be
sent at any time (asynchronously). in the same way that
a person types on a keyboard.

Figure 14-1 shows the bit format often used for
transmitting asynchronous serial data. When no.data
Is'being sent, the signal line is in a constant high or
marking state. The beginning of a data character is
indicated by the line going low for 1 bit time. This bit
is called a start bit. The data bits are then sent out on
theline one after the other. Note that the least significant
bit is sent out first. Depending on the system, the data
word may consist of 5, 6, 7, or 8 bits. Following the
data bits is a parity bit, which—as we explained in
Chapter 11—is used to check for errors in received data.
Some systems do not insert or look for a parity bit. After
the databits and the parity bit, the signal line is returned
high for at least 1 bit time to identify the end of the
character. This always-high bit is referred to as a stop
bit. Some older systems use 2 stop bits. For future
reference note that the efficiency of this format is low,
because 10 or 11 bit times are required to transmit a
7-bit data word such as an ASCII character.

The term baud rate is used to indicate the rate at
which serial data is being transferred. Baud rate is
defined as 1/(the time between signal transitions). If the
signal is changing every 3.33 ms, for example, the baud
rate Is 1/(3.33 ms), or 300 Bd. There is an almost
unavoidable, but incorrect. tendency to refer to this as
300 bits/s. In some cases, the two do correspond, but
In other cases 2 or more actual data bits are encoded in
one signal transition, so data bits per second and baud

ALWAYS
Low

do not correspond. Common baud rates are 300, 600,
1200, 2400, 4800, 9600, and 19,200.

To interface a microcomputer with serial data lines,
the data must be converted to and from serial form.
A parallel-in-serial-out shift register and a serial-in-
parallel-out shift register can be used to do this. Also
needed for some cases of serial data transfer is hand-
shaking circuitry to make sure that a transmitter does
not send data faster than it can be read in by the
receiving system. There are available several programma-
ble LSI devices which contain most of the circuitry

needed for serial communication. A device such as the

National INS8250. which can only do asynchronous
communication, is often referred to as a universal
asynchronous rece{ver-transmitter or UART. A device
such as the Intel 8251A, which can be programmed to do
either asynchronous or synchronous communication,
+is often called a untversal synchronous-asynchronous
receiver-transmitter or USART.

Once the data is converted to serial form. it must in
some way be sent from the transmitting UART to the
receiving UART. There are several ways in which serial
data is commonly sent. One method is to use a current
to represent a 1 in the signal line and no current to
represent a 0. We discuss this current-loop approach in
a later section. Another approach is to add line drivers
on the output of the UART to produce a sturdy voltage
signal. The range of each of these methods, however, is
limited to a few thousand feet.

For sending serial data over long distances, the stand-
ard telephone system is a convenient path, because the
wiring and connections are already in place. Standard
phone lines, often referred to as switched lines because
any two points can be connected together through a
series of switches, have a bandwidth of only about 300
to 3000 Hz. Therefore, for several reasons, digital signals
of the form shown in Figure 14-1 cannot be sent directly
over standard phone lines.

NOTE: Phone lines capable of carrying digital
datadirectly can be leased, but these are somewhat
costly and are limited to the specific destination of
the line.

The solution to this problem is to convert the digital
signals to audio-frequency tones, which are in the
frequency range that the phone lines can transmit.
The device used to do this conversion and to convert
transmitted tones back to digital information is called
a modem. The term is a contraction of modulator-

ALWAYS HIGH

—p—

'

My

| |
START | DO | ~Qy
| |

%
: oz " B
I |

N

L)

! i

]

] 1
o4 | : 'PARITY' STOP | STOP
I | | | |

—)

ONE CHARACTER

FIGURE 14-1 Bit format used for sending asynchronous serial data.

488 CHAPTER FOURTEEN

MICROCOMPUTER

CONTROLLED MODEM MO A
TERMINAL COMPUTER
va0 | TEL::;:#EONE e =
AxD fo—i| —={ RxD
CTS o —={CT3
CD —=CD
OTR }— r*—4 DTR
DSR fo—od) —1 OSR

1
DCE / DCE
OTE OTE

DOTE = DATA TERMINAL EQUIPMENT
DCE = DATA COMMUNICATION EQUIPMENT

FIGURE 14-2 Digital data transmission using modems and
standard phone lines.

demodulator. In a later section of this chapter we discuss
the operation of some common types of modems. For
now, take a look at Figure 14-2, which shows how two
modems can be connected to allow a remote terminal to
communicate with a distant mainframe computer over
a phone line. Modems and other equipment used to
send serfal data over long distances are known as data
communication equipment or DCE. The terminals and
computers that are sending or receiving the serial data
are referred to as data terminal equipment or DTE.

The data and handshake signal names shown in
Figure 14-2 are part of a serial data communications
standard called RS-232C, which we discuss in detail in
a later section. For now you just need enough of an
overview of these signals so that the initialization of the
8251A UART in the next section makes sense to yOui
Note the direction arrowheads on each of these signals.
Here is a sequence of signals that might occur when a
user at a terminal wants to send sorge data to the
computer.

After the terminal power is turned on and the terminal
runs any self-checks, it asserts the data-terminal-read
(DTR) signal to tell the modem it is ready. When it is
powered up and ready to transmit or recefie data, the
modem will assert the data-set-ready (DSR) signal to
the terminal. Under manual control or terminal control,
the modem then dials up the computer.

- Ifthe computer is available, it will send back a specified
tone. Now. when the terminal has a character actually
ready to send, it will assert a request-to-send (RTS)
signal to the modem. The modem will then assert its
carrier-detect (CD) signal to the terminal to indicate
that it has established contact with the computer. When
the modem is fu_llchady to transmit data. it asserts the-
clear-to-send (CTS) signal back to the terminal. The
terminal then sends serial data characters to the modem.
When the terminal has sent all the characters it needs
to. it makes its RTS signal high. This causes thie modem
to unassert its CTS signal and stop transmitting. A
similar handshake occurs between the modem and the

computer at thie other end of the data link. The important
° A]

\

point at this time is that a set of handshake signals is

defined for transferring serial data to and from a modem.

Now that you have an overview of asynchronous serial
data. modems, and handshaking, we will describe the
operation of a device commonly used | to interface a
microcomputer to a modem or other dévice which re-
quires serial data. '

An Example USART—The Intel 8251A

SYSTEM CONNECTIONS AND SIGNALS

As we showed you in Chapter 7, an 8251A is used as
the serial port on SDK-86 boards. It is also used on the
IBM PC synchronous communication board and on
many other boards. so we chose to use it as an example
here. =

Figure 14-3, page 490, shows a block diagram and
the pin descriptions for the 8251A. and Figure 7-6, shect
9, shows how an 8251A is connected on the SDK-86
board. Keep copies of these two handy as you work your-
way-through the following discussion.

As shown in the SDK-86 schematic, the eight parallel
lines, D7-DO: connect to the system data bus so that
data words and control/status words can be transferred
to and f®m the device. The chip select (CS) input is
connected to an address decoder so the device is enabled
when addressed. The 8251A has two internal addresses,
a control address, which is selected when the C/D input
is high, and a data address, which is selected when the
C/D input is low. For the SDK-86 the control/status
address is FFF2H and the data read/write address is.
FFFOH. The RESET. RD, and WR lines are connected to
the system signals with the same names. The clock
input qf the 8251A is usually connected to a signal
derived from the system clock to synchronize the internal
operations of the USART with the processor timing. In
the case of the SDK-86 the clock input is conngcted to
the 2.45-MHz PCLK signal, which is derived from the
processor clock but has a frequency the 8251A can
handle.

The signal labeled TxD on the upper right corner of
the 8251A block diagram is the actual serial-data
output. The pin labeled RxD Is the serial-data input.
The additional circuitry connected to the TxD pin on
the SDK-86 board is needed to convert the TTL logic
levels from the 8251A to current loop or RS-232C signals.
The circuitry connected to the RxD pin performs the
opposite conversion. We will discuss current loop and
RS-232C signal standards a little later. '

The shift registers in the USART require clocks to
shift the serial data in and out. TxC is the transmit
shift-register clock input, and RxC is the receive shift-
register clock input. Usually these two inputs are tied
together so they are driven by the same signal. If you
look at Figure 7-6. sheet 9. you should see how some
wire-wrap jumpers are used to select the desired clock
frequency from one of the outputs of a_counter. The
frequency of the signal you choose for TxC and RxC
must be 1, 16, or 64 times the transmit and receive
baud rate. depending on the mode in which the 8251A
Is initialized. Using a clock frequency higher than the

DATA COMMUNICATION AND NETWORKS 489

DATA TRANSMIT
<{‘:’\> BUS <::> BUFFER |— TxD
BUFFER (P ~5S)
D7-D0
]
oot
RESET
ECSLK HERD <":’> = TxROY
‘ WRITE TRANSMITYL _ ¢ empTY
€40 CONTROL CONTROL ik
v;__is""’ LOGIC g —T' TRC
¥ I
|
i
Dsﬁ-—.d .
TTR ~—a RECEIVE
by MODEM | BUFFER |—RxD
&T5 —d CONTROL — i5-p)
RTS =
INTERNAL L~ RxRDY
DATA BUS L] fgﬁ;‘& b+ RxC
< SYNDET/
BRKDET

(a)

8251 Pin Functions

Pin Name Pin Function
D7-DO Data bus (8 bits)
c/D Control or data 1s to be writien or read
RD Read data command
WR Write data or control command
cs Chip select
CLK Clock pulse (TTL)
RESET Reset
T<C Transmitter clock
TxD Trans‘mmer data
RxC Receiver clock
RxD Receiver data
RxRDY Recewer ready (has character for CPU)’
TxRDY Transmitter ready (ready for char from CPU)
DSR Data set ready -
DTR Data terminal ready
SYNDET /8D Sync detec!/break detect
RTS . Request to send data
CTS Clear to send data
TxEMPTY Transmutter empty
Vee +5-V supply \
GND Ground

(b)

FIGURE 14-3 Block diagram and pin descriptions for the Intel 8251A USART.

(a) Block diagram. (b) Pin descriptions.

baud rate allows the receive shift register to be clocked
at the center of the bit times rather than at leading
edges. This reduces the chance of signal noise at the
start of the bit time causing a read error.

The 8251A is double-buffered. This means that one
character can be loaded into a holding bulfer while
another character is being shified out of the actual
transmit shift register. The TxRDY output from the
8251A will go high when the holding buffer is empty,
and another character can be sent from the CPU. The
TXxEMPTY pin on the 8251A will go high when both the
holding buffer and the transmit shift register are empty.

The RxRDY pin of the 8251A will go high when a.

character has been shifted into the receiver buffer and

. Is ready to be read out by the CPU. Incidentally, if a
character is not read out before another character is
shifted in, the first character will be overwritten and
lost.

The sync-detect/break-detect (SYNDET/BD) pin has
two uses. When the device 1s operating in asynchronous
mode, which we are interested in here. this pin will go
high if the serial data input line, RxD, stays low for more
than 2 character times. This signal then indicates an
intentional break in data transmissicn, or a break in
‘the signal line. When programmed for synchronous data

490

CHAPTER EGURTEEN

transmission, this pin will go high when the 8251A
finds a specified sync character(s) in the incoming string
of data bits.

The four signals connected to the box labeled MODEM
CONTROL in' the 8251A block diagram are handshake
signals, which we described in the previcus section.

INITIALIZING AN. 8251A

To initialize an 8251A you must send first a mode word
and then acommand word to the control register address
for the device. Figure 14-4 shows the formats for these
words and for the 8251A status word which is read from
the same.address. Baud rate factor, specified by the two
least significant bits of the mode word. is the ratio
between the clock signal applied to the TxC-RxC inputs
and the desired baud rate. For example, if you want to
use a TxC of 19.200 Hz and transmit data at 1200 Bd,
the baud rate factor is 19,200/1200 or 16 x . If bits DO
and DI are both made 0's, the 8251A is programmed
for synchronous data transfer. In this case the baud
rate will be the same as the applied TxC and RxC. The
other three combinations for these 2 bits represent
asyrchronous transfer. A baud rate factor of 1 can be
uaed for asynchronous transfer only if the transmitting
systerm and the receiving system both use the same TxC

D7 D6 D5 D4 D3 D2 DI DO
[s2]s Jer Jeen] 2 T TBZM
BAUD RATE FACTOR

L o | .1 o | 1

0 0 1 1
SYNC
MODE (1) |(16X) | (84X)

CHARACTER LENGTH

o] 1 0 1
- 0 0 1 1
5 6 7 8

BITS | BITS | BITS [BITS

PARITY ENABLE
1 = ENABLE 0 = DISABLE

EVEN PARITY
GENERATION/CHECK
1=EVEN 0 =00D
NUMBER OF STOP BITS
0 1 0 !
0 o 1] 1
R
INVALID g 151 giTS | BITS

(ONLY EFFECTS Tx; Rx
NEVER REQUIRES MORE
THAN ONE STOP BIT)

(a)

D7 D6 D5 D4

D7 o6 D5 D4 D3 D2 D' OO

[EHI IR LRTSI ER ISBRKIR-ET' ‘~"'-E\J

TRANSMIT ENABLE
1= ENABLE
0 = DISABLE

L.

DATA TERMINAL READY
HIGH WILL FORCE
DTR OUTPUT TG ZERO

RECEIVE ENABLE
1 = ENABLE RXRDY
¢ = DISABLE RXRDY

SEND BREAK CHARACTER
1 =FORCES TXD LOW
0= NORMAL OPERATION

ERROR RESET
1= RESET ALL ERROR
FLAGS (PE, OE, FE}

REQUEST TO SEND
HIGH WILL FORCE
RTS OUTPUT TO ZERO

INTERNAL RESET
HIGH RETURNS 8251
TO MODE INSTRUCTION
FORMAT

ENTER HUNT MODE
1 = ENABLE SEARCH FOR
SYN CHARACTERS

(b)

D3 D2 D1

[DSR ISYNDETI FE I QE

[e | T | rxrov | Txrov |

DATA SET READY
DSR is general purpose. Normally
used to test modem conditions such as
Data Set Ready.

SYNC DETECT
When set for internal sync detect
indicates that character sync has been
achieved and 8251 is ready for data.

TRANSMITTER READY
Indicates USART is ready to accept
a data character or command.

. RECEIVER READY

Indicates USART has received a
character on its serial input and
is ready to transfer it to the CPU.

TRANSMITTER EMPTY

OVERRUN ERROR

Indicates that parallel to serial
converter in transmitter is empty.

FRAMING ERROR (ASYNC ONLY)
FE flag is set when a valid stop bit is'not
detected at end of every character. It is
reset by ER bit of Command instruction.
F E does not inhibit operation of 8251.

The OE flag is set when the CPU does
not 1ead a character before the next
one becomes available. It is reset by
the ER bit of the Command instruction.
OE does not inhibit operation of the
B251; however, the previously overrun
character is lost

(el

PARITY ERROR
PE flag 1s set when a parity error is
detected It 1s reset by ER bit of
Commanc - 'struction. PE does not
inhibit operation of 8251,

FIGURE 14-4 Formats of 8251A mode, command, and status words. (a) Mode

word. (b) Command word. (c) Status word.

and RxC. The character length specified by bits D2 and
D3 in the mode word includes only the actual data bits.
not the start bit. parity bit, or stop bit(s). If parity is
disabled. no parity bit is inserted in the transmitted bit
string. If the 8251A is programmed for 5. 6. or 7 data
bits. the extra bits in the data character byte read from
the device will be O's.

After you send a mode word to an 8251A. you must
then send it a command word. A 1 in the least significant

- 64

(Intel Corporation)

bit of the command word enables the transmitter section
of the 8251A and the TxRDY output. When enabled, the
8251A TxRDY output will be asserted high if the CTS
input has been asserted low. and the transmitter holding
buffer is ready for another character from the CPU. The
TxRDY signal can be connected to an interrupt Input
on the CPU or an 8259A. so that characters to be
transmitted can be sent to the 8251A on an interrupt
basis. When a character is written to the 8251A data
DATA COMMUNICAT!ON AND NETWORKS 491

address, the TxRDY signal will go low and remain low
until the holding buffer is again ready for another
character. Putting a 1 in bit D1 of the command word
will cause the DTR output of the 8251A to be asserted
low. As we explained before, this signal is used to tell a
modem that a terminal or computer is operational. A 1
in bit D2 of the command word enables the RxRDY
output pin of the 8251A. If enabled, the RXRDY pin will
go high when the 8251A has a character in its receiver
buffer-ready to be read. This signal can be connected to
an interrupt input so that characters can be read in on
an interrupt basis. The RXRDY output is reset when a
character is read from the 8251A.

Putting a 1 in bit D3 of the command word causes
the 8251A to output a character of all 0's, which is called
a break character. A break character is sometimes used
to indicate the end of a block of transmitted data.
Sending a command word with a 1 in bit D4 causes the
8251A to reset the parity. overrun. and framing error
flags in the 8251A status register. The meanings of
these flags are explained in Figure 14-4c. A 1 in bit D5
of the command word will cause the 8251A to assert its
request-to-send (RTS) output low. This signal, remem-
ber, is sent to a modem to ask whether the modem and
the receiving system are ready for a data character to be
sent.

Putting a 1 in bit D6 of the command word causes
the 8251A to be internally reset when the command
word is sent..After a software reset command is sent in
this way, a new mode word must be sent. Later we will
show you how this is used. 2

The D7 bit in the command word 15 o' used when
the device is operating in synchronous mode. A com-
mand word with a 1 in this bit position tells the 8251A
to look for specified sync character(s) in a stream of bits
being shifted in. If the 8251A finds the specified sync
character(s), it wiil assert its SYNDET/BD pin high.
We will discuss this more in the synchronous data
communication section of this chapter.

Figure 14-5 shows an example of the instruction
sequence you can use to initialize an 8251A. This
sequence Is somewhat lengthy for two reasons. First,
the 8251A does not always respond correctly to a hard-
ware reset on power-up. Therefore, a series of software
commands must be sent to the device to make sure it
Is reset properly before the desired mode and command
words are sent. The device is put into a known state by
writing 3 bytes of all O's to the 8251A control register
address, and then it is reset by sending a control word
with a 1 in bit D6. After this reset sequence the desired

mode and control words can be sent to 8251A. The

8251A distinguishes a command word from a mode
word by the order in which they are sent to the device.
After reset, a mode word must be sent to the command
address. Any words sent to the command address after
the mode word will be treated as command words until
the device is reset.

The second factor which lengthens this initialization
is the write-recovery time Ty, of the 8251A. According
to the data sheet, the 8251A requires a worst-case
recovery time of 16 cycles of the clock signal connected
to the CLK input. On the SDK-86 board the PCLK signal.

492 CHAPTER FOURTEEN

; 8086 instructions to initialize the 8251A on an
: SDK-86 board

MOV DX, OFFFZH ; point at command register address
WOV AL, OOH ; send 0's to guarantee device is

QUT DX, AL ; in the command instruction format
MOV CXx, 2 ; before the RESET command is
DO:LOOP DO ; issued and delay after sending
OUT DX, AL ; each command instruction
MOV X, 2
D1:L00P D1
ouT DX, AL
MOV CX, 2
D2:L00P D2
MOV AL, 4OH ; Sent internal reset command to
oUT DX, AL ; return device to idle state
MOV CXx, 2 ; Load delay constant
D3:LoOP D3 ; and delay
MOV AL,11001110B; Load mode control word & send it
OUT DX, AL

;11001110 Mode Word

¢ VAV AN AN A____ baud rate factor of 16x
PN NN e character length of 8 bits
H A TATAY parity disabled

H L\ 2 stop bits

MOV CX, 2 ; and delay
D4:LNOP D&
MOV AL,00110111B ; Load commend word and send it
OoUT DX, AL .
F001107 17 Command word
i VNN NN NN\ Transmit enable
e ANN VNN Data terminal ready, DTR will
A T VA WA U WA Y output 0
; NAYNMA Receive enable
H Y ANNN Normal operation
i YA Reset all error flags
- ANR TR RST output 0, request to send
H AU Do not return to mode
H \ instruction form
H \ Disable hunt mode

FIGURE14-5 Instruction sequence for 8251A initialization.

which is the cume as the processor clock frequency. is
connected to the CLK input of the 8251A. Therefore, for
the SDK-86 board. the required write-recovery time
corresponds to 16 processor clock cycles. What all this
means is that you have to delay this many clock cycles
between successive® initialization byte writes to the
8251A. A simple way to produce the required delay and
a margin of safety is to load CX with 0002 and count it
down with the LOOP instruction. The MOV CX.0002
instruction takes 4 clock cycles, the first exccution of
the LOOP instruction takes 17 clock cycles, and the last
execution of the LOOP instruction takes 5 cycles. The 8
cycles required for the OUT instruction. which writes
the control words, also count as part of the time between
writes, so the sum of all these is more than enough.
When writing data characters to an 8251A., you don’t
have to worry about this rggovery time. because a new
character will not be written to the 8251A until the

previous character has been shifted out. This shifting.
of course, requires much more time than Trv

The comments in Figure 14-5 explain the meanings
of the bits in the mode and control words used in this
example. Once the 8251A is initialized as shown, new
control words can be sent at any time to, for example,
reset the error flags. Now let's look at how characters
are sent to and read from an 8251A.

SENDING AND RECEIVING
CHARACTERS WITH AN 8251A

Data characters can be sent to and read from the 8251A
on an interrupt basis or on a polled basis. To send
characters on an interrupt basis, the TxRDY pin of
the 8251A is connected to an interrupt input on the
processor of an 8259A priority-interrupt controller. The
transmitter and the TxRDY output are enabled by put-
ting a 1 in bit D1 of the control word sent to the 8251A
during initialization. When the CTS input of the 8251A
is asserted low and the 8251A buffer is ready for a
character, the TxRDY pin will go high. If the processor
and 8259A interrupt path is enabled, the processor will
go to an interrupt-service procedure, which writes a
data character to the 8251A data address. Writing the
data character causes the 8251A to reset its TxRDY
output until the buffer is again ready to receive a
character. A counter can be used to keep track of how
many characters have been sent.

In a similar manner characters can be read from an
8251A on an interrupt basis. In this case the RxRDY
output of the 8251A is connected to an interrupt input
of the processor or an 82594, and this output is enabled
by putting a 1 in bit D2 of the command word sent
during initialization. When a character has been shifted
into the 8251A and the character is in the receiver buffer
ready to be read, the RxRDY pin will go high. If the
interrupt chain through the 8259A and the processor is
enabled, the processor will go to an interrupt procedure
which reads in the data character. Reading a data
character from the 8251A causes it to reset the RxRDY
output signal. This signal will stay low until another
character is ready to be read.

To send characters to an 8251A on a polled basis, the
8251A status register Is read and checked over and over
until the TxRDY bit (DO) is found to be a 1. In most
systems you also want to check bit D7 of the status
register to make sure the DSR input of the 8251A has
been asserted by a signal from, for example, a modem.
When the required bit(s) of the status register are all
high, a data character is ther: written to the 8251A data
address. Figure 14-6a shows the instruction sequence
needed to do this. Note that the status register has the

" same internal address as the control register. Also note
that both an AND and a CMP operation must be done
to determine when the two desired bits are both high.
Writing a data character to the 8251A resets the TxRDY
bit in the status register.

Reading a character from the 8251A on a polled basis
is a similar process. except that the RXRDY bit (D1) of the
status register is polled to determine when a character is
ready to be read. When bit D1 is found high. a character

. is read in from the 8251A data address. Figure 14-6b

; Instructions for transmitting data using en
; SDK-86 8251A using polling method

MOV DX, OFFF2H Point at control register

.
TEST1: ; address
IN AL, DX ; Read status
AND AL, 100000018 ; and check status of
i \ ___data set ready & transmit ready
CMP AL, 100000018 ; Is it ready?
JNE TEST1 ; Continue to poll if not ready

MOV DX, OFFFOH otherwise point at data address

MOV AL, DATA_TO_SEND ; Load data to send
OUT DX, AL ; and send it
(a)

Instructicns for receiving data with an
SDK-86 B251A using polling method

MOV DX, OFFF2H ; Point at control register
TEST2: ; address

IN AL, DX ; Read status

AND AL, 000000108 ; and check status of RxRdy

JZ TEST2 ; Continue to poll if not ready

MOV DX, OFFFOH . ; otherwise point at data

IA AL, DX ; address and get data

(b)

FIGURE 14-6 Instruction sequences for tragnsmitting and

receiving with an 8251A on a polled basis. (a) Transmit.
(b) Polled.

shows the instruction sequence for this. Status register
bits D3, D4, and D5 can be checked to see if a parity
error, overrun error, or framing error has occurred. If
.an error has occurred, a message to retransmit the data
can be sent to the transmitting system.

The next step in our journey into serial-data communi-
cations is to discuss the signal standards used to
connect the serial inputs and outputs of UARTS to
modems and other serial devices.

SERIAL-DATA TRANSMISSION
METHODS AND STANDARDS

In the last section we showed you how a UART or USART
is used to Interface microcomputer buses with serial-
data communication lines. The TTL signals output by
a USART, however, are not suitable for transmission
over long distances. so these signals are converted to
some other form to be transmitted. In this section of
the chapter we discuss devices and signal types com-
monly used to send serial-data signals over long dis-
tarices.

Aside from drum beats in the jungle. one of the earliest
forms of serial-data communication was the telegraph.
In a telegraph. pressing a key at one end of a signal line
causes a current to flow through the line. When this
current reaches the receiving end of the line. it activates

493

DATA COMMUNICATION AND NETWORKS

a solenoid (sounder). which produces a sound. Letters
and numbers are sent using the familiar Morse code or
some other convenient code. After a hundred years or
so. the telegraph key and sounder evolved into the tele-
typewriter. A teletypewriter terminal has a typewriter-
style keyboard so that the user can simply press a key to
send a desired letter or number code. A teletype terminal
also has a print mechanism which prints out characters
as they are received. Most teletypes use a current to
represent a 1 and no current to represent a 0. We start
this section by briefly describing the old current-loop
standards: then we go on to newer methods.

20- AND 60-mA CURRENT LOOPS

In teletypewriters or other current-signal systems, some
manufacturers use a nominal current of 20 mA to
represent a 1, or mark, and no current to represent a
space, or 0. Other manufacturers use a nominal current
of 60 mA to represent a 1 and no current to represent
a 0. The actual current in a specific system may be
considerably different from the nominal value.

Sheet 9 of Figure 7-8 shows circuitry which can be
used to interface current type signals with the TTL input
and output of an 8251A USART on the SDK-86 board.
With the jumpers in place as shown, a high on the TxD
output of the 8251A will produce a low on the PNP
transistor. This will turn the transistor on and cause a
positive current to flow out the TTY TX line. Inside a
teletypewriter this current flows through an electromag-
net and back to the TTY TX RET. To send a data bit,
the teletypewriter opens or closes a switch in a current
path. The current for this path in the SDK-86 circuitry
is supplied from +5 V through R10 to the TTY RX RET
line. Think of the key mechanism of the teletypewriter
as a simple switch connected between pins 24 and 12
of J7 on the circuit. When the switch is closed the
current flows back on the TTY RX line and through R3
to — 12 V. The current flowing through R3 will produce
a legal TTL high logic'level on the input of the 74LS14
inverter. This high signal passes through two inverters
and produces a high on the RxD input of the 8251A.

RS-232C Serial Data Standard

OVERVIEW

In the 1960s as the use of timeshare computer terminals
became more. widespread, modems were developed so
that terminals could use phone lines to communicate
with distant computers. As we stated earlier, modems
and other devices used to send serial data are often
referred to as data communication equipment or DCE.
The terminals or computers that are sending or receiving
the data are referred to as data terminal equipment or
DTE. In response to the need for signal and handshake
standards between DTE and DCE, the Electronic Indus-
tries Association (EIA) developed EIA standard RS-232C.
This standard describes the function of 25 signal and

handshake pins for serial-data transfer. It also describes -

the voltage levels, impedance levels, rise and fall times.
maximum bit rate, and maximum capacitance for these

494 CHAPTER FOURTEEN

signal lines. Before we work our way through the 25 pin
functions, we will take a brief look at some of the other
hardware aspects of RS-232C.

RS-232C specifies 25 signal pins, and it specifies that
the DTE connector should be a male and the DCE
connector should be a female. A specific connector is
not given, but the most commonly used connectors are
the DB-25P male shown in Figure 14-7a. For systems
where many of the 25 pins are not needed. a 9-pin DIN
connector such as the DE-9P male connector shown in
Figure 14-7b is used. When you are wiring up these
connectors, it is important to note the order in which
the pins are numbered.

The voltage levels for all RS-232C signals are as follows.
A logic high, or mark, is a voltage between —3 V and
=15 V under load (-25 V no load). A logic low or
space is a voltage between +3 V and + 15 V under
load (+25 V no load). Voltages such as *12 V are
commonly used.

RS-232C TO TTL INTERFACING

Obviously a USART such as the 8251A is not directly
compatible with RS-232C signal levels. Sheet 9 of the
SDK-86 schematics in Figure 7-8 shows one way to
interface TTL signals of the 8251A to RS-232C signal
levels. If the jumpers shown are removed and the jumpers
shown in the jumper table under CRT are inserted, the
circuit will produce and accept RS-232C signals.

NOTE: This is the jumpering needed to prepare
the SDK-86 board for downloading programs from
an IBM PC or other computer. Here's how it works.

With a jumper between the points numbered 7 and 8,
a high on the TxD output of the 825 1A produces a high
on the base of the transistor, which turns it off. With
points numbered 9 and 10 jumpered. the CR TX line
will then be pulled to —12 V, which is a legal high or
marking condition for RS-232C. A low on the TxD output
of the 8251A will turn on the transistor and pull the CR
TX line to +5 V. which is a legal low or space condition
for RS-232C.

N

(0] 1 23 45 6 7 8 910111213
0O 000 O0O0O0O0O0O0O0O0Oo
O 00 00 O0O0O0O0 0 0 C

14 15 16 17 18 19 20 21 22 23 24 25

(b)

FIGURE 14-7 Connectors often used for RS-232C
connections. (a) DB-25P 25-pin male. (b) DE-9P 9-pin
male DIN connector.

TTL RS- RS-232C 5 TTL
_mcuas e _mcisss_
I_ 2 _] r_l 3
3 TO
’ 330 pF
| I T | |
| _a | = I |
RTS g - 55
| | =< 330pF | s
P
| i { '

voltage on the actual RS-232C signal line when you
check it during troubleshooting. Now let's look at the
RS-232C pin descriptions.

RS-232C SIGNAL DEFINITIONS

Figure 14-9 shows the signal names, signal direction,
and a brief description for each of the 25 pins defined
for RS-232C. For most applications only a few of these
pins are used, so don't get overwhelmed. Here are a few
additional notes about these signals.

F

i : :_E e | | First note that the signal direction is specified with
| 2 nl : I mD 8 | 5 To respect to the DCE. This convention is part of the
= . co standard. We have found it very helpful to put arrow-
L———— - L heads on all signal lines, as shown in Figure 14-2,
PN :4;:1 ;2VV PN ;4:5;1;\/ when we are drawing circuits for connecting RS-232C

RINZ=CND equipment.
(a) (8) Next observe that there is both a chassis ground (pin

FIGURE 14-8 TTL to RS-232C to TTL signal conversion.
(a) MC1488 used to-convert TTL to RS-232C. (b) MC1489
used to convert RS-232C to TTL.)

Another, more standard way to interface between RS-
232C and TTL levels is with MC1488 quad TTL-to-
RS-232C drivers and MC1489 quad RS-232C-to-TTL
receivers shown in Figure 14-8. The MC1488s require
+ and — supplies, but the MC1489s require only+5 V.
Note the capacitor to ground on the outputs of the
MC1488 drivers. To reduce cross talk between adjacent
wires, the rise and fall times for RS-232C signals are
limited to 30 V/us. Also note that the RS-232C hand-
shake signals such as RTS are active low. Therefore, if
one of these signals is asserted, you will find a positive

1) and a -signal ground (pin 7). To prevent large ac-
induced ground currents in the signal ground, these
two should be connected together only at the power
supply in the terminal or the computer.

The TxD, RxD. and handshake signals shown with
common names in Figure 14-9 are the ones most often
used for simple systems. We gave an overview of their
use in the introduction to this section of the chapter
and will discuss them further in a larger section of the
chapter on modems.-These signals control what is called
the primary or forward communications channel of the
modem. Some modems allow communication over a
secondary or backward channel, which operates in the
reverse direction from the forward channel and at a
much lower baud rate. Pins 12, 13, 14, 16, and 19 are
the data and handshake lines for this backward channel.

Pins 15, 17, 21, and 24 are used for synchronous data

PIN PIN SIGNAL
NUMBERS | NUMBERS Cz’mg“ “’3"\2’}50 DESCRIPTION DIRECTION
FOR 9 PINS |FOR 25 PINS ' ON DCE

1 AA PROTECTIVE GROUND -
3 2 TXD BA TRANSMITTED DATA IN
2 3 RXD BB RECEIVED DATA - ouT
7 4 RTS CA REQUEST TO SEND . IN
8 5 CTS c8 CLEAR TO SEND * ouT
6 6 DSR cc DATA SET READY out
5 7 GND AB SIGNAL GROUND (COMMON RETURN) -
1 8 co = ICF RECEIVED LINE SIGNAL DETECTOR out
9 - (RESERVED FOR DATA SET TESTING) -
10 - (RESERVED FOR DATA SET TESTING) -]
1 UNASSIGNED -
12 SCF SECONDARY RECEIVED LINE SIGNAL DETECTOR out
13 ScB SECONDARY CLEAR TO SEND ouTt
14 SBA SECONDARY TRANSMITTED DATA IN
15 o8 TRANSMISSION SIGNAL ELEMENT TIMING (DCE SOURCE) ouTt
16 s88 SECONDARY RECEIVED DATA out
17 DD RECEIVER SIGNAL ELEMENT TIMING (DCE SOURCE) ouTt
18 UNASSIGNED =
19 J— SCA SECONDARY REQUEST TO SEND IN
4 20 DTR co DATA TERMINAL READY IN
2 CG SIGNAL-QUALITY DETECTOR ouT
9 22 CE RING INDICATOR ouTt
23 CH/CI DATA SIGNAL RATE SELECTOR (DTE/DCE SOURCE) IN/OUT
24 DA TRANSMIT SIGNAL ELEMENT TIMING (DTE SOURCE) IN
25 UNASSIGNED =

FIGURE 14-9 RS-232C pin names and signal directions.

DATA COMMUNICATION AND NETWORKS

495

connmnunication. We wili teii you a littie more about these
in the section of the chapter on modems. Next we want
to show you some of the tricks in conncéting RS-232C-
“compatible” equipment.

CONNECTING RS-232C-COMPATIBLE EQUIPMENT

A major point we need to make right now is that
you can seldom just connect together two %ieces of
equipment, described by their manufacturers as RS-
232C compatible, and expect them to work the first
time. There are several reasons for this. To give you an
Idea of one of the reasons, suppose that you want to
connect the terminal in Figure 14-2 directly to the
computer rather than through the modem-modem link.
The terminal and the computer probably both have DB-
25-type connectors so that, other than a possible male-
female mismatch, you might think you could just plug
the terminal cable directly into the computer. To see
why this doesn't work. hold your fingers over the modems
in Figure 14-2 and refer to the pin numbers for the RS-
232C signals in Figure 14-9. As you shpuld see, both
the terminal and the computer are trying to output data
(TxD) from their number 2 pins to the same line.
Likewise, they are both trying to input data (RxD) from
the same line on their number 3 pins. The same problem
exists with the handshake signals. RS-232C drivers are
designed so that connecting the lines together in this
way will not destroy anything, but connecting outputs
together is not a productive relationship. A solution to
this problem is to make an adapter with two connectors
so that the signals cross over, as shown in Figure
14-10a. This crossover connection is often called a null
modem. We have again put arrowheads on the signals
in Figure 14-10a to help you keep track of the direction
for each. As you can see in the figure, the TxD from the
terminal now sends data to the RxD input of the
computer. Likewise, the TxD from the computer now
sends data to the RxD input of the terminal as desired.
The handshake signals also are crossed over so that
each handshake output signal is connected to the corres-
ponding input signal.

A second reason that you can't just plug RS-232C-
compatible equipment together and expect it to work is
that a partial implementation of RS-232C is often used
to communicate with printers, plotters, and other com-
puter peripherals besides modems. These other periph-
erals may be configured as DCE or as DTE. Also, they
may use all, some, or none of the handshake signals. As
an example of this, suppose that you want to connect
the RS-232C port on the IBM PC asynchronous commu-
nication board to the serial port on the SDK-86 so that
you can download object-code programs.

The IBM PC asynchronous board is configured as
DTE. so TxD is on pin 2, RxD is on pin 3, RTS is on pin
4, CTS is on pin 5, DTR is on pin 20, DSR Is on pin 6,
and carrier detect (CD) is on pin 8. In order for the IBM
board to be able to transmit and receive, its CTS, DSR,
and CD inputs must be asserted. The BIOS software
asserts the DTR and RTS outputs.

Now take another look at sheet 9 of the SDK-86
schematics in Figure 7-6 to see how the data and
handshake signals are connected there. For communi-

496

CHAPTER FOURTEEN

=

TxD2j<——2—‘TxD
RxD 3 3 RxD
| 4 g
aTs2 RTS
crsl-2 5. Jers
oTApS >< 2 _I5TR
osRl-2 b, 155r
anof-Z LI PN
DTE DTE
(a)
1BM SDK-86
PC RS-232C
PIN # PIN #
ono !
] s 2 1¢cRT RX
AxDJ-3 3 1cRT TX
]
TS |2
b W
OSA
o |2
|20
DTR
7 7
)

FIGURE 14-10 Nonmodem RS-232C connections. (a)
Null modem for connecting two RS-232C data terminal-
type devices. (b) IBM PC or PS/2 serial port to SDK-86
serial port connection.

cating with RS-232C-type equipment, the SDK-86 board
is jumpered as shown in the jumper table column labeled
“stand-alone CRT.” The output data on CRT TX then
connects to pin 3 of connector J7, a DB-255-type connec-
tor. This corresponds to the RxD on the IBM connector,
so no crossover is needed. Likewise, the CRT RX of the
SDK corresponds to the TxD of the IBM board, so this
is also a straight-through connection. The handshake
signals here are another story. .

The RTS of the SDK-86 is simply lcoped into the CTS,
so CTS will automatically be asserted when RTS is
asserted by the 8251A. Therefore, neither of these
signals is available for external handshaking. The DTR
output of the 8251A on the SDK board is used for a
teletypewriter function and does not connect to the
normal RS-232C DTR pin number. so it is not available
either. The DSR input of the 8251A is connected to the

"RxD input so that it will be asserted when a start bit

comes in on the serial-data line, but this line is also
not available for handshaking with external devices.
Therefore, the problem here is that the SDK-86 is not
set up to supply the handshake signals needed by
the IBM PC serial board. Figure 14-10b shows the
connections you make to solve this problem so the PC
can talk to the SDK-86. The PC RTS line on pin 4 is
jumpered on the connector to its CTS line on pin 5, so

that CTS will automatically be asserted when RTS Is
asserted. Pins 6, 8, and 20 are also jumpered together
on the connector so that when the PC asserts Its DTR
output on pin 20, the DSR Input and the CD input will
automatically be asserted. These connections do not
provide for any hardware handshaking. They are neces-
sary just to get the PC and the SDK-86 to talk to each
other.

The point here is that whenever you have to connect
RS-232C-compatible devices such as terminals, serlal
printers, etc., get the schematic for each and work your
way through the connections one pin at a time. Make
sure that an output on one device goes to the appropriate
input on the other device. Sometimes you have to look
at the actual drivers and receivers on the schematic to
determine which pins on the connector are outputs
and which are inputs. This is necessary because some
manufacturers label an output pin connected to pin 3
as RxD, indicating that this signal goes to the RxD input
of the receiving system.

If you do not have schematics for the RS-232C equip-
ment you are trying to connect, you can often use a
breakout box to determine the correct connections. You
insert the breakout box in series with the connecting
cable and LEDs on the box indicate which lines are
outputs and which lines are inputs. By throwing
switches on the box, you can try different connection
combinations until data transfers correctly.

RS-423A and RS-422A

RS-423

A major problem with RS-232C is that it can only
transmit data reliably for about 50 ft (16.4 m) at its
maximum rate of 20,000 Bd. If longer lines are used,
the transmission rate has to be drastically reduced. This
limitation is caused by the open signal lines with a
single common. ground that are used to RS-232C.
Another EIA standard which is an improfement over
RS-232C is RS-423A. This standard specifies a low-
impedance single-ended signal which can be sent over
50-0 coaxial cable and partially terminated at the receiv-

Ing end to prevent reflections. Figure 14-11 shows
how an MC3487 driver and MC3486 receiver can be
connected to produce the required signals. A logic high
in this standard is represented by the signal line being
between 4 and 6 V negative with respect to ground, and
a logic low is represented by the signal line being 4 to 6
V positive with respect to ground.

The RS-423 standard allows a maximum data rate of
100.000 Bd over a 40-foot line or a maximum baud rate
of 1000 Bd on a 4000-foot line.

RS-422A

A still-newer standard for serial data transfer, RS-422A
specifies that each signal will be sent differentially over
two adjacent wires in a ribbon cable or a twisted pair of
wires, as shown in Figure 14-12a, page 498,

The term differential in this standard means that the
signal voltage is developed between the two signal lines
rather than between a signal line and ground as in RS-
232Cand RS-423. In RS-422A alogic high is transmitted
by making the "b" line more positive than the “a" line.
A logic low is transmitted by making the a line more
positive than the b line. The voltage difference between
the two lines must be greater than 0.4 V but less than
12 V. Typical drivers such as the MC3487 shown in
Figure 14-12a produce a differential voltage of about 2
V. The center or common-mode voltage on the lines
must be between —7 V and +7 V. RS-422A specifies
signal rise and fall times of 20 ns or 0.1 multiplied by
the time for 1 bit, whichever is greater.

Figure 14-12b shows the relationship between maxi-
mum cable length and baud rate for RS-422A line. As
we hope you can see in this graph, the maximum data
rate for RS-422A lines ranges from 10 million Bd on a
line 40 ft long to 100,000 Bd on a 4000-foot line. The
reason that the data rates are so much higher than for
RS-423 lines is that the differential line functions as a
fully terminated transmission line. Common 24-gage
twisted-pair wire has a Z, of about 100 €, so the line
can be terminated with a matching 100-() resistor
connected between the signal lines. A more ‘common
termination method, however, is to use a 50-() resistor
from each signal line to ground as shown in Figure

+12v +5V
—[__ WAVE I
- SHAPE MC3488A
CONTROL DRIVER
L
D >
TTL LOGIC 450 Q2 (
L
RS-423 J_-
INTERFACE 450 Q - -
l = % MC3486
-2y - 3-STATE
RECEIVER

FICURE 14-11
transmission.

MC3488A driver and MC3486 receiver used for RS-423 signal
-

DATA COMMUNICATION AND NETWORKS 497

10K
10K
- 4K
= 1K = P
x . [
= X ©
) z
z w
e N 1K =
i N w
=)
- N 2
2 b g
o 100 = (8]
%
100

(

™

10 \

10K 100 K 1™ 10M
DATA MODULATION RATE (BD)
(b)
FIGURE 14-12 (a) MC3487 driver and MC3486 receiver

used for RS-422A differential signal. (b) Maximum line
length versus baud rate for RS-422A signal lines.

14-12a. This method helps keep the two signal lines
balanced.

A further advantage of differential signal trans-
mission is that any electrical noise induced in one
signal line will be induced equally In the other signal
line. A differential line recelver such as the MC3486
shown In Figure 14-12a responds only to the voltage
difference between its two inputs, so any noise vol-
tage that is induced equally on the two inputs will
not have any effect on the output of the differential
receiver.

The RS-422A and RS-423A standards do not specify
connector pin numbers or handshake signals the way
the RS-232C does. An additional EIA standard called
RS-449 does this for the two. RS-449 specifies 37 signal
pins on a main connector and 9 additional pins on an
optional connector. The signals on these connectors are
a superset of the RS-232C signals so adapters can be
used to Interface RS-232C equipment with RS-449
equipment.

Now that we have discussed the signals commonly
used to interface a computer to a modem, let's take a
closer look at how modems transmit signals over stand-
ard phone lines.

498 CHAPTER FOURTEEN

Modems
INTRODUCTION

As we described in a previous section. a modulator-
demodulator, or modem, sends digital 1's and O's over
standard phone lines as modulated tones. The frequency
of the tones is within the bandpass of the lines. Two
organizations are responsible for most of the current
standards for modem modulation methods and trans-
missions rates..Older modems in the United States
were based on de facto standards from Bell Telephone
Company. Examples of these standards are the Bell
types 103, 202, 308, and 212A. In the United States
modem standards are now handled by the Telecommuni-
cations Industry Association, which works very closely
with the Comité Consultatif Internationale Téle-
phonique et Télégraphique (CCITT), which is part of
-the International Telecommunications Union. CCITT
standards which relate to modems start with a V. -
Examples are the V.22 bis, which is a 2400-bit/s
modem standard, and the V.29, which is a 9600-bit/s
modem standard. As we discuss modem modulation
techniques in the following section, we will describe
these and other standards in greater detail.

INTRODUCTION TO MODEM MODULATION

To represent digital 1's and O's a modulator changes
some characteristic of an audio signal which has a
frequency within the bandwidth of the phone lines. An
important-point to keep in mind as you read through
the following section is that the maximum rate at
which the audio tone can be modulated is one-half the
bandwidth of the transmission line. If, for example, we
assume that the worst-case bandwidth of a two-wire
phone line is 2400 Hz, then the maximum modulation
rate for a half-duplex signal cn the line is 1200 Bd. For
full-duplex communication, half the bandwidth is used
for transmission in each direction, so the maximum
modulation rate for each direction on a two-wire phone
line is 600 baud. In a 4-wire phone line which has
separate wires for each directton, the maximum modula-
tion rate for each direction is 1200 Bd. One of the goals
of this section is to show you the modulation techniques
that are used to overcome these basic ltmnitations.

The major forms of modulation used are amplitude,
Jrequency-shift keying (FSK), phase-shift keying (PSK),
and multiple carrier.

As the name implies. amplitude modulation changes
the amplitude of the transmitted tone. One common
way of doing this is to turn a 387-Hz tone on to represent
a 1 and turn the tone off to represent a turn the tone
off to represent a 0, as shown in Figure 14-13. In other
systems that we discuss later, the tone is always present,
but its amplitude is changed between two or more
values. Amplitude modulation is used only for very low
speed reverse-channel transmission or in conjunction
with some other type modulation such as phase modu-
lation.

FREQUENCY-SHIFT KEYING MODULATION

Frequency-shift keying or FSK modulation uses one tone
to represent a O and another tone to represent a 1. as

FIGURE 14-13 Representation of digital 1's and 0's with
amplitude-modulated sine waves.

shown in Figure 14-14. In order to allow full-duplex
communication, four different frequencies are often
used. An old standard, the Bell 103A, 300-Bd FSK
.modem, for example, uses 2025 Hz for a 0 and 2225 Hz
for a 1 in one direction, and 1070 Hz for a 0 and 1270
Hz for a 1 in the other direction. Another standard, the
Bell 202 modem, permits half-duplex communication at
1200 baud. The 202 uses 1200 Hz to represent a 0 and
1700 Hz to represent a 1 for the main channel. Different
versions of the 202 may also have either a 5-bit/s
amplitude-modulated back channel or a 150-bit/s FSK
back channel which uses 387 Hz for a 0 and 487 Hz for
al.

As we discussed hefore, simple modulation such as
FSK is limited to half-duplex operation at 1200 Bd on
two-wire phone lines or 1200 Bd full-duplex on four-

“wire phone lines. For higher bit rates some type of
phase-shift modulation is used.

PHASE-SHIFT MODULATION VARIATIONS

In the simplest form of phase-shift modulation called
differential phase-shift modulation or DPSK, the phase
of a constant-frequency sine-wave carrier of perhaps
1700 Hz is shifted by 180° to represent a change in the
data from a 1 to a O or a change in the data from a O to
a 1. Figure 14-15a shows an example of this. As the
digital data changes from a O to a 1, near the left edge
of the figure, the phase of the signal is shifted by 180°.

When data changes from a 1 to a 0, the phase of the
carrier is again shifted by 180°. For the next sectfon of
the digital data where the data stays O for 3 bit times,
the phase of the carrier is not changed. Likewise, in a
later section of the waveform where the data remains at
a one level for 2 bit times, the phase of the carrier is not
changed. The phase of the carrier then is shifted by 180°
only when the data line changes from a 1 to a 0 or from
alOtoal.

FIGURE 14-14 Representation of digital 1's and 0's with
two different frequencies (FSK).

- 65

The simple phase-shift modulation shown in Figure
14-15a has no real advantage over FSK as far as maxi-
mum bit rate s concerned. However, by using additional
phase angles besides 180°, 2 or more data bits can be
sent with one phase change. Figure 14-15b shows how
the value of 2 bits can be represented by four different
phase shifts. If, for example, the value of a dtbit, or 2
bits taken together, is 00, the phase of the carrier will
be shifted 90° to represent that dibit. The trick here is
that the phase of the carrier only has to shift once for
each group of 2 transmitted bits.

Remember from a previous discussion that the baud
rate limitation we are trying to overcome is the rate at
which the carrier is changing. In this case the number
of data bits per second is twice the baud rate. Bell
212A- and CCITT V.22-type modems use this scheme to
transmit 1200 bits/s at an effective baud rate of only
600 Bd. Twa carrier frequencies, 1200 Hz and 2400 Hz,
are used to permit full-duplex operation at this rate.

A more complex phase-shift modulation scheme called
quaternary amplitude modulation or QAM enables
V.22-bis-type modems to transmit full-duplex data at
2400 bit/s over two-wire phone lines. V.29-type modems
also use this type modulation to transmit half-duplex
9600-bit/s data from facsimile (FAX) machines. QAM
uses 12 different phase angles and three different ampli-
tudes to encode 4 data bits in each modulation change.
Each group of 4 data bits is referred to as a quadbit. A
phase-amplitude graph such as that shown in Figure
14-16, page 500, is often used to represent the phase and
amplitude values for each of the 16 possible quadbits.
Incidentally, the pattern of phase-amplitude points in

0 o | v o1 loli1lo o o | 1 | o o
(a)
GRAY CODE | DEGREES OF
TRIBIT VALUE | PHASE SHIFT
GRAY | DEGREES
CODE OF 001 ns
DIBIT | PHASE 000 675
VALUE | SHIFT 010 125
09 9 011 157.5
bl % 111 2025
14 150 110 2475
L0 2 100 2025
101 3375
) ()

FIGURE 14-15 Phase-shift modulation. (a) Waveforms
for simple phase-shift modulation. (b) Set of phase shifts
used to represent four possible dibit combinations. (c)
Set of phase shifts used to represent eight possible tribit
combinations.

DATA COMMUNICAT'ON AND NETWORKS 499

V.,
%
\

PHASH

X

\
T

-
FIGURE 14-16 Phase-amplitude graph showing
constellation for quaternary amplitude modulation
(QAM).

A \
a graph’ such as this {s commonly referred to as a
constellation. i ,

Dibit and QAM phase-shift modulation permit higher
data rates on phone lines, but correctly demodulating
this type of phase-encoded data presents some unique
problems. To illustrate the first problem, r=member from
our previous discussion that in a dibit system the value
of a dibit is represented by shifting the phase of a carrier
signal some specified number of degrees from a reference
phase. In order to detect the amount of phase shift, the
receiver and the transmitter must be ‘using the same
reference phase. This would be easy if we could just run
another wire to carry a synchronizing clock signal.
However, since this is not easily done, the synchronizing
signal must in some way be included with the data. The
carrier signal itself cannot be used directly, because that
18 the signal whose phase must be detected.

The solution to this problem is to use transitions in
the transmitted signal to synchronize a phase-locked
loop oscillator in the receiver. In order for this to work,
two factors must be included In the transmitted data.
First of all, the system must be operated synchronously
rather than asynchronously, so that data, sync, or null
characters are always being received by the recelver.
Secondly, the transmitted data must have enough tran-
sitions at regular intervals to keep the phase-locked loop
locked in the desired phase. The serial data stream from
the USART may not have enough transitions In it to
satisfy this second condition, so a special circuit called
a scrambler Is included in the transmitter part of the
modem. The scrambler, which usually consists of a shift
register with feedback, puts in extra signal transitions
as needed. The output from the sgrambler is then used
to modulate the phase of the carrier. When the carrier
signal reaches the receiver, the signal 1s demodulated

to produce a signal of 1's and 0's. This signal is then,

.

CHAPTER FOURTEEN

500

passed through adescrambler, which reverses the
scrambling process and outputs the original data.

A second problem encountered in High-speed data
transmission with modems is error detection/correction.
One method used to decrease the error rate is called
trellts coding. Trellis coding uses a constellation with
more points than the minimum required to represent
the number of data bit combinations in the group. The
information needed to decode each data bit 1s spread over
several transmitted values rather than being encoded in
Just one as in straight QAM. This scheme makes it
possible for the receiver to detect illegal values caused
by errors. V.32-type modems use trellis coding to allow
full-duplex 9600-bit/s transmisston on a two-wire phone
line with 2400-Bd modulation.

Note that this modulation rate 1s higher than we told
you was possible for a phone line bandwidth of 2400
Hz. The actual bandwidth of the phone lines is usually
3000 or somewhat more, so it Is common practice
to “push” the bandwidth limits to get higher data
transmission rates. Most modems are designed to work
with several different transmission rates and modula-
tion so that they can communicate with a variety of
modems. The software controlling the modem usually
attempts communication at the highest available data
rate, and If the particular phone connection will not
support that rate, it “falls back” to a lower data rate
where it can successfully transmit and receive. V.32-
type modems also contain echo cancellation circuitry to
reduce errors caused by Interference between the signal
being sent out and the signal coming in.

Uther techniques being used to increase the rate at
which modems can transfer data on standard phone
lines are error correcting and data compression. CCITT
standard V.42 specifies an error detection/correction
algorithm that is independent of the data transmission
speed and modulation method. CCITT standard V.42
bis specifles data compression algorithms that can be
Implemented in modems independently of the data
transmission rate and the modulation method. The
algorithm In this standard allows up to a 4:1 data
compression, depending on the amount of redundancy
In the data being transmitted. An average increase of
about €0% in the actual data transmission rate is
common with *%is algorithm.

Still another technique used to increase the data rate
on phone lines is Telebit Corporation’s Dynamically
Adaptive Multicarrier Quadrature Amplitude Modula-
tion (DAMQAM). This scheme uses up to 512 different
carrier frequencies within the bandwidth of the phone
lines. Data transmissicn is spread out over a large
number of these channels, so the transmission on any
one channel can be a very low rate, :ven with an overall *
transmission rate of 19,200 bitsss.

Now that you know more than you may want to about
the modulation schemes used in modems, let's take a
look at how a high-speed modem can be interfaced with.
microcomputer buses.

MODEM HARDWARE OVERVIEW

Figure 14-17 shows a block diagram for a combination
FAX and data modem which interfaces directly to the

J\}__I

RAM
BUFFER <—-_—:>
FACSIMILE
ANALOG/
DIGITAL
FRONT

AOM .| EMe
EPROM

PHONE
LINE

DATA

o] : b
= <: MODEM

l ANALOG/

HOST SYSTEM BUS

DIGITAL
FRONT

- END

r_ DSP<____

-

FIGURE 14-17 Block diagram of comuination FAX and
data modem.

main buses in a microcomputer. As you can see, the
modem contains a dedicated microprocessot to control

the operations of the modem. This processor manages '

handshaking, data formatting, dialing, etc. The ROM or
EPROM stores the program for the microprocessor and
the RAM stores blocks of data received by the modcm
and blocks of data waiting to be sent.

As we described before, high-speed data transmission
on phone lines requires precisely detecting the ampli-
tude of signals, precisely detecting the phase of signals,
noise filtering, and echo cancellation. In current modems
these tasks are accomplished with the digitat signal
processing techniques we described in Chapter 10. As
you can see, the modem in Figure 14-17 contains a
dedicated digital signal processor to do all this.

The modem in Figure 14-17 contains a FAX front end
and a data front end. The reason for this is that a FAX
typically uses V.29 type half-duplex 9600-bit/s transmis-
sion, and the corresponding data communication uses
V.22 bis full-duplex 2400-bit/s transmission.

The box labeled DAA in Figure 14-17 is the data
access arrangement circuitry which actually interfaces
the signals with the phone lines. This circuitry must
conform to the provisions of FCC rules, Section 68.

LSI has made it possible to build a modem with very
few parts. A device such as the Advanced Micro Devices
AM7910, for example, can be used to produce a 1200-
Bd FSK modem. The EXAR Corp. XR-2901 and 2902
chip set contains a major part of the circuitry needed to
implement a modem which can send or receive facsimile
(FAX) data at 9600 bits/s or send and receive full-duplex
modem data at 2400 bits/s.

MODEM HANDSHAKING

Earlier in this chapter we gave an overview of the
handshake process between a terminal and a remote
computer through modems and the phone lines. Now
that you know more about modems. we can take a closer
look at the handshake sequence.

Most of the currently avallable modems contain a

T || o |22

dedicated microprocessor. The built-in intelligence
allows these units to automatically dial a specified
number with either tones or pulses, and redial the
number if it is busy or doesn’t answer. When a smart |
modem makes contact with another modem, it will
automatically try to set its transmit circuitry to match
the baud rate of the other modem. Many modems can
be set to automatically answer a call after a programmed
number of rings so that you can access your computer
from a remote location. Some units allow the user to
establish a voice contact and then switch over to modem
operation.

After a modem dials up another modern, a series of
handshake signals takes place. The handshake signals
may be generated by hardware in the modem or by
software in the system connected to the modem. Figure
14-18, page 502, shows an example of the data and
handshake waveforms for a modem built with the
AM7910 single-chip FSK modem. Other modems may
use a slightly different sequence, but the principles are
the same.

The modem which makes a call is usually referred to
as the originate modem, and the modem which receives
the call is usually referred to as the answer modem. In
the following discussion we will use the terms calling
modem and called modem, respectively, to agree with
the labels on the waveforms in Figure 14-18.

At the left side of the waveforms, a call is being made
from one modem to another. Assuming that the DTR of
the called modem is asserted, the ringing signal on the
line will cause the DAA circuitry to assert the ringing
tnput RI of the 7910. In response to this the 7910 will
send out a silent period of about 2s to accommodate
billing signals, and then it will send out an answer tone
of 2025 Hz to the calling modem for 2 s. If the DTR and
the RTS of the calling modem are asserted, indicating
that data is ready to be sent, the calling modem then
puts a tone of 2225 Hz (mark) on the line for 8 ms to
let the called modem know that contact is complete. In
response to this mark, the called modem asserts its
carrier-detect output CD to enable the recet UART.
The calling modem then sends data until its input
is released by the computer or terminal sending the
data. While it is recelving data on the main channel, the
called modem can send data to the calling modem
on the 5-bits back channel. Releasing RTS causes the
modem to release CTS to the sending computer and
remove the carrier from the line. The called modem
senses the loss of the carrier and unasserts its carrier
detect (CD) signal.

Now. if the called system is to send some data back to
the calling system on the main channel, it asserts the
RTS input to its modem. The called modem sends a
marking tone to the calling modem for 8 ms. The calling
modem asserts its CD output to its UART. The called
modem then sends data to the calling modem on the
main channel until its RTS input is unasserted by the
called system, indicating no more data to send. While
the called modem Is transmitting on the main channel,
the calling modem can transmit over the back channel
if necessary. The handshake is similar for a full-duplex
system, but the data rates are equal in both directions.

501

DATA COMMUNICATION AND NETWORKS

o i AR

. Te-

wE Lt b F .7

il A

TRANSMITTED
/ MARG SPACE DATA CALLED TO CALLING

np MARK HOLD

| I‘I-M:ll DATA CALLING TO CALLED [G

MARK HOLD

}
DATA CALLED TO CALLING |

EET Y
/ t MARK ract
OFF HOOX

BACK
CHANNEL

i o == ; 1 1
CrANNEL 284C asEC 75EC. --}-—l.- MARK/SPACE | DATA CALLING TO CALLED MARK SPACE T
I [[AR I

OFF TONE

SOFT TURN
oss Tome | [e
A RK { MARK .

—] = SOUELCM #ERIOD HOLOS OF F CARDET DELA)

- to0m B Teoons

n[17 T 7 7w

DATA CALLING TO CALLED / /

°

7 7 =% 17 7 7 7

L] MARK HOLD

ES

DATA CALLED TO CALLING MARK HOLD

FIGURE 14-18° Handshake sequence for Bell-type 202 FSK modem using
AM7910 modem chip. (Copyright Advanced Micro Devices, Inc. (1982)
Reprinted with permission of copyright owner. All rights reserved.)

CODECs, PCM, TDM, and ISDN

In the previous sections we described how modems
produce signals which are suitable for transmissian over
- standard phone lines. Now we want to briefly discuss
how telephone companies actually transmit the signals
output by modems and some new developments which
hopefully will eliminate the need for modems as we know
them.

o Digital signals have much better notse immunity than
analog signals, so as soon as a phone company receives -
a volce or modem signal in its local branch office, the
signal is converted to digital form. A D/A converter
at the destination uses the received binary codes to
reconstruct a replica of the original analog signal. Send-
ing analog signals such as phone signals as a series of
binary codes is called pulse-code modulation or PCM.
The A/D converter that produces the binary codes in
this application is usually calied a coder and the D/A
converter that reconstructs the analog signal from the
pulse codes is referred to as a decoder. Since both a
coder and a decoder are needed for two-way communica-
tion, they are often packaged in the same IC. This
combined coder and decoder is called a codec. A common
example of a codec is the Intel 2910A. This device
contains a sample-and-hold circuit on the analog input,

502 CHAPTER FOURTEEN

an 8-bit A/D converter, an 8-bit'D/A converter, and
appropriate control circuitry.

Normal A/D converters are linear, which means that
the steps are the same size over the full range of the
converters. The A/D converters used in codecs are
nonlinear. They have small steps for small signals and
large steps for large signals. In other words, for signals
near the zero point of the A/D converter, it takes only a
small change in the signal to change the code on the
output of the A/D. For a signal near the full scale of the
converter, a large change in the input signal Is required
to produce a change in the output binary code. This
nonlinearity of the A/D converter is said to compress the
signal, because it reduces the dynamic range of the
signal. Compression in this way greatly improves the
accuracy for small signals where it is needed, without
going to a converter with more bits of resolution. The
D/A in the codec is nonlinear in the reverse manner, so
that when the binary pulse codes are converted to
analog, the result is expanded to duplicate the original

“waveform. A codec which has this Intentional nonlinear-

ity is often referred to as a'‘compander or a companding
codec. Consult the Intel 2910A data sheet for more
information about this.

In most systems the output of the codec A/D is not
simply sent on a wire by itself, it is multiplexed with the

outputs of many other codecs in a manner known as
time-division multiplexing or TDM. There are several
different formats used. A simple one will give you the
idea of how it's done.

One of the first TDM systems was the T1 or DS—l
system, which multiplexes 24 PCM voice channels onto
a single wire. For this system an 8-bit codec on each
channel samples and digitizes the input signal at an 8-
kHz rate. The 8-bit codes from the codecs are sent to a
multiplexer which sends them out serially, one after the
other. One set of bits from each of the 24 codecs plus a
framing bit is referred to as.a frame. Figure 14-19 shows
the format of a frame for this system. The framing bit

at the start of each frame toggles after each frame is |

sent. It is used to keep the receiver and the transmitter
synchronized and for keeping track of how many frames
have been sent. After it sends the framing bit, the
multiplexer sends out the 8-bit code from the first codec,
then sends out the 8-bit code from the next codec, and
so on until the codes for all 24 have been sent out. At
specified intervals the multiplexer sends out a frame
which contains synchronization information and signal-
ing information. This does not seriously affect the
quality of the transmitted data.

Since the multiplexer is sending out 193-bit frames
at a rate of 8000 per second, the data rate on the wire
is 193 x 8000, or 1.544 Mbits/s. A newer system, known
as T4M or DS-4, multiplexes 4032 channels onto a single
coaxial cable or optic fiber. The bit rate for this system
is 274.176 Mbits/s.

The question that should come to your mind about
now is, If the phone company transmits data in high-
speed digital form, why do I have to send data as
modulated audio tones? The answer to this question is
that the circuitry between your phone and the local
branch office is a relic from a bygone analog era. This
circuitry creates a “bottleneck” in the communications
link.

One attempt-to eliminate this bottleneck is a wideband
digital connection system known as the integrated
services digital network or ISDN. As shown in Figure
14-20a, page 504, ISDN replaces the analog connections
between your home and the telephone company branch
office with relatively high speed digital connections. An

ISDN basic-rate service connection gives two 64:kbit/s .-

voice/data channels and a 16-Kbit/s data/control chanrtel
in each direction. The voice/data channels are referred
to as Bl and B2. The data/control channel is referred to
as the D channel.

Figure 14-20b shows how the B1, B2, D, framing, and
other bits are packed in a 48-bit frame for transmission.

193 BITS/FRAME —— |

f+——————192 BITS ENCODED VOICE—(24 CHANNELS)——|

~—1 BIT ADDED FOR FRAMING

CH1

gaits | M2

CH3 CH4 CHS |- cecee o

CH24

FIGURE 14-19 Frame format for telephone company T1
digital data transmission.

Note that a B channel has four times as many bits per
frame as the D channel so the bit rate for the B channel
is four times the'bit rate for the D channel. A 48-bit
frame is transmitted every 250 ps, so the basic bit rate
on the single line is 192 Kbits/s. Only 16 of the 48 data
bits represent one of the B channels, so the transmission
rate for a B channel is 64 Kbits/s.

For voice communication a codec in the telephone
converts voice signals to a sequence of 8-bit codes which _
are then put in, for example, the B1 channel slots in the
48-bit frames. The codec also converts the codes for
received voice signals back to analog form to drive a
speaker. Some advantages of ISDN for standard tele-
phone communications are that it gives better sound
quality and allows identification of the number that a.
call is coming from.

For data communications an adapter in the computcr
formats the data to be transmitted in the required
frames and adds the framing bits, etc. Since both B
channels can be used, the effective data rate is the sum
of that for the two channels, or 128K bits/s. In some
cases the D channel can also be used for data, an the
effective rate becomes the 144K bits/s.

In a large building with many telephones and com-
puters, each phone and computer will communicate
with the PBX in the building using a basic ISDN 2B +D
service line such as we just described. The PBX will then
use a higher-frequency multiplexed line such as the T1
system we described earlier to communicate with the
telephone company’s central office.

As you can see by the transmission rates for ISDN, it
is a big improvement over the old analog connections.
As of this writing ISDN is still available only in some
major cities and a few other areas. It is slowly spreading
to other areas, but if you want to communicate with
many different locations, you will probably be stuck with
an analog modem for some time. This is unfortunate,
because high-speed data communication is required for
interactive graphic user interfaces. In other words,
if you want to rapidly transmit high-resolution color
images, you need a high-speed communications link. In
the next section we discuss fiber-optic systems, which
allow the very high speed data transfer needed for this.

Fiber-Optic Data Communication -

INTRODUCTION

All of the data communication methods we have dis-
cussed so far use metallic conductors. Fiber-optic sys-
tems use very thin glass or plastic fibers to transfer data
as pulses of light. Some of the advantages of fiber-optic
links are that they are immune to electrical noise, they
can transfer data at very high rates, and they can
transfer data over long distances without amplification.

Figure 14-21, page 505, shows the connections for a
basic fiber-optic data link you can build and experiment
with. This type of link might be used to transmit data
from a sensor in an electrically noisy environment such
as a factory. The light source here is a simple infrared
LED. Higher-performance systems use an infrared injec-
tion laser diode (ILD) or some other laser driven by a
high-speed. high-current driver. Digital data is sent over

DATA COMMUNICATION AND NETWORKS 503

COMPUTER , TELEMENTARY NETWORK

DIGITAL TERMINAL DEVICE TE1 TERMINATOR ;
TELEPHONE TE1 NT2 NETWORK
TE2 TERMINATOR
?‘EGLIETPAHLONE % N LINE TERMINATOR
TE1 (LINE CARO)
L
TERMINAL EXCHANGE
e TERMINATOR
TA LS
PRINTER \ N \\
e | Qo
—Z (7
/.
R T V) \'s
INTERFACE | S INTERFACE INTERFACE INTERFACE | | INTERFACE
: . SUBSCRIBER'S | CENTRAL
l SUBSCRIBER'S HOME OR OFFICE st e]

(a)

i

} 48 BITS IN 250 pSEC
| NTTOTE ,
oLlFL EDAFN EDS, EDS, EDLIFL

leH—I—I—lﬁ-H—I—Hl—I—HHHW!—HHHHHH—FH—PL

~—e+— 2-BIT OFFSET
l TETONT

B1 AND. B2 = TRAFFIC CHANNELS F = FRAMING BITS

= D = SIGNALLING CHANNEL B F, AMD N = AUXILIARY FRAMING
/ E = ECHO OF D CHANNEL 3 A = ACTIVATION BIT
(NOTE ARROWS FROM D TO E) L = DC BALANCING BITS
(b)

FIGURE 14-20 Integrated services digital network (ISDN). (a) Line connections
and interfaces. Reprinted from EDN, April 27, 1989, © 1989 CAHNERS
PUBLISHING COMPANY, a Division of Reed Publishing USA. (b) Example S
interface frame format showing how B1, B2, and D channel bits are packaged
for transmission. NOTE: Frames sent from network termination fo terminal
equipment are offset 2 bits from frames sent from terminal equipment to
network termination.

the fiber by turning the light beam on for a 1 and off for are more sensitive and operate at higher frequencies.

ao0. but the circuitry for them is more complex. A Schmitt
trigger Is usually used on the output of the detector to

NOTE: If you are working on a fiber-optic system “square up” the output pulses.
you should never look directly into the end of the "~ The fiber used in a cable is made of special plastic or
fiber to see if the light source is working, because glass. Fiber dlameters used range from 2 to 1000 um.
the light beam from gome laser diodes is powerful Larger-diameter plastic fibers are used fer-short-dis-
enough to cause permanent eye damage. Use a tance, low-speed transmission, and small-diameter glass
light meter, or point the cable at a nonreflective fibers are used for high-speed applications such as long-
surface to see if the light source is working. distance telephone transmission lines. As shown in

Figure 14-22e, page 506. the fiber-optic cable consists

To convert the light signal back Into an electrical of three parts. The optical-fiber core is surrounded by a

signal at the receiving end, Darlington photodetectors cladding material which is also transparent to light. An

such as the MFOD73 shown in Figure 14-21, PIN FET outer sheath protects the cladding and prevents external
devices. or avalanche photodiodes (APDs) are used. APDs light from entering.

504 CHAPTER FOURTEEN !

Vil

S
Y
Z :

N

CORE_

2\
HHnd

LE

i
i

EMITTER

+5V

MFOE71
(EMITTER)

b

. MFOD72
TTLIN

FIGURE 14-21 Components of a simple fiber-optic data link.

Now that you have an overview of an optical-fiber link,
let's take a look at how the light actually propagates
through the fiber and the trade-offs with different fibers.

THE OPTICS OF FIBERS

The path of a beam of light going from a material with
one optical density to a material of different optical
density depends on the angle at which the beam hits
the boundary between the two materials. Figure 14-22
shows the path that will be taken by beams of light at
various angles going from an opticaly dense material
such as glass to a less dense material such as a vacuum#
or air. If the beam hits the boundary at the right angle,
it will go straight through, as shown in Figure 14-22a.
When a beam hits the boundary at a small angle away
from the perpendicular or normal, it will be bent away
from the normal when it goes from the more dense to"
the less dense, as shown in Figure 14-22b. A light beam
going In the other direction would follow the same path.
A quantity called the index of refraction is used to
describe the amount that the light beam will be bent.
Using the angle identifications shown in Figure 14-22b,
the index of refraction, n, s defined as the (sine of angle
B)/(sine of angle A). A typical value for the index of
refraction of glass is 1.5. The larger the index of refrac-
tion, the more the beam will be bent when It goes from
one material to another.

Figure 14-22¢ shows a unique situation that occurs
when a beam going from a dense material to a less dense
material hits the boundary at a special angle called the

(RECEIVER)

CLADDING
(JACKET)

e \
\ N
D
+5V
]
RECEIVER
+5V
L SN74LS132
o TTL
QUTPUT

critical angle. The beam will be' bent so that it travels
parallel to the boundary after it enters the less dense
material.

A still more interesting situation is shown in Figure

14-22d. If the beam hits the boundary at an angle

greater than the critical angle, it will be totally reflected
from the boundary at the same angle on the other side
of .the normal. This is somewhat like skipping stones
across water. In this case the light beam will not leave
the more dense material.

To see how all this relates to optical fibers, take'a look
at the cross-sectional drawing of an optical fiber In
Figure 14-22. If a beam of light enters the fiber parallel
to the axis of the fiber, it will simply travel through the
fiber. If the beam enters the fiber so that it hits the
glass-cladding layer boundary at the critical angle, it will
travel through the fiber-optic cable in the cladding layer

fas shown for beam Y in Figure 14-22e. However, if the

beam enters the cable so that it hits the glass-cladding
layer boundary at an angle greater than the critical
angle, it will bounce back and forth between the walls
of the fiber as shown for beam X In Figure 14-22e. The
glass or plastic used for fiber-optic cables has very low
absorption, so the beam can bounce back and forth
along the fiber for several feet or miles without excessive
attenuation. Most systems use light with wavelengths
of 0.85um, 1.3 pm, or 1.500 pm. because absorption
of light by the optical fibers is minimum at these
wavelengths.

If an optical fiber has a diameter many times larger
than the wavelength of the light being used. then beams
505

DATA COMMUNICATION AND NETWORKS

f B
|
| AIR AIR
t A |
| GLASS | GLASS
|
| uigut/ A
LIGHT BEAM
BEAM NORMAL
(a) (&)
| |
| |
| |
AIR | AIR
!
| GLASS /<Da\
| i LIGHT A
| LZAM
1IGHT 1 | GLASS
BEAM | I
NORMAL NORMAL-
(c) ' (d)
SHEATH
CLADDING
y.

LIGHT OPTIGAL
BEV FIBER
X CLADDING =

Y
SHEATH
LIGHT

BEAM

(e)

FIGURE 14-22 Light-beam paths for different angles of
incidence with the boundary between higher optical
density and lower optical density materials. (a) Right
angle. (b) Angle less than critical angle. (c) At critical
angle. (d) At angle greater than critical angle. (e) At
angle greater than critical angle in optical fiber.

which enter the fiber at different angles will arrive at
the other end of the fiber at slightly different times. The
different angles of entry for the beams are referred to as
modes. A fiber with a diameter large enough to allow
beams with several different entry angles-to propagate
through it is called a multimode fiber. Sinc& multimode

fibers are larger, they are easier to manufacture, are

easier to manually work with, and can use inexpensive
LED drivers. However, the phase difference between the
output beams in multimode fibers causes problems at
high data rates. One partial solution to this problem is
to dope the glass of the fiber so that the index of
refraction decreases toward the outside of the fiber.
Light beams travel faster in the region where the index
of refraction Is lower, so beams which take a longer path
back and forth through the faster outer. regions tend to
arrive 2t the end of the fiber at the same time as those
that take a shorter path through the slower center
region.

506 CHAPTER FOURTEEN

A better solution to the phase problems of the

ultimode fiber is to use a fiber that has a diameter
only a few times the wavelength of the light being
transmitted. Only beams very nearly parallel to the axis
of the fiber can then be transmitted. This is referred to as
single-mode operation. Single-mode systcms currently
available can transmit data a distance of over 60 km at
a rate greater than 1 Gbit/s. An experimental system
developed by AT&T multiplexes 10 slightly different
wavelength laser beams onto one single-mode fiber. The
system can transmit data at an effective rate of 20
Gbit/s over a distance 6f 68 km without amplification.

.One of the main problems with single-mode fibers is

. the difficulty in making low-loss connections with the

tiny fibers. Another difficulty is that in order to get
enough light energy into the tiny fiber, relatively expen-
sive laser diodes or other lasers rather than inexpensive
LEDs must be used. .

FIBER-OPTIC CABLE USES

Fiber-optic transmission has the advantages that the
signal lines are much smaller than the equivalent electri-
cal signal lines, signals can be sent much longer dis-
tances without repeater amplifiers, and very high data
rates are possible. One of the first major uses of fiber-
optic transmission sys.ems has been for carrying large
numbers of phone conversations across oceans and
between citles. A single 12-fiber, }-in. diameter optical-
fiber cable can transmit 1,000,000 simultaneous tele-
phone conversations. These specifications are impres-
sive, but relatively primitive as compared to the possibili- ~
ties shown by laboratory research. In the future it is
possible that the high data rate of fiber-optic transmis-
silon may make picture phones a household reality,
replace TV cables, replace satellite communication for
many applications, replace modems, and provide exten-
sive computer networking.

ASYNCHRONOUS COMMUNICATION
SOFTWARE ON THE IBM PC

In a previous section of this chapter we discussed how
asynchronous serial data can be sent or received with
an 8251A on a polled or an interrupt basis. Any serial
communication at some point has to get down to that
level of hardware interaction. However, as we tried to
show you in Chapter 13, you should write programs at
the highest language level you have available without
excessively sacrificing execution speed, the amount of
memory used, or ease of use. In this section we show
examples of serial data communication using direct
UART interaction, BIOS function calls. DOS function
calls, and C function calls, so that you can write pro-
grams at any level.

As a first example we will show you how we developed
a simple terminal emulator program; then as a second
example we will show you how we developed a program
which downloads object code files from the IBM PC to
an SDK-86 board.

A Terminal Emulator Using DOS
Function Calls and BIOS Calls

As a first step in developing the SDK download program,
we decided to write a simple terminal emulator program.
A terminal emulator program, when run, makes the PC
act like a dumb CRT terminal. Characters typed on the
keyboard are sent out on an RS-232C line to a modem
or some other RS-232C-compatible equipment, and
characters coming into the PC on an RS-232C line are
displayed on the CRT.

Whenever you want to write a system program such
as this, you should first write the algorithm in a standard
form as we taught you in Chapter 3. Figure 14-23 shows
an algorithm for our simple terminal emulator.

The next step is to decide what language you want to
work in and translate the algorithm to that language.

For this example we decided to use DOS function calls

and BIOS function calls. If you are programming at this
level you should first see what DOS function calls are
available to do each part of the algorithm for you.

There are sgveral reasons for this approach. First, DOS -

function calis are usually very easy to use because they
do not require you to have extensive knowledge of the
hardware details. Second, programs written at the DOS
level are much more likely to run correctly on another
“compatible” system. If you are going to be writing
system programs for the IBM PC or PS/2, you should get
a copy of the DOS Technical Reference Manual.

If you need some operation that is not provided by a
DOS function call,” then the next step is to check
the available BIOS procedures in the IBM PC or PS/2

' Technical Reference Manual. Finally, if neither DOS or
BIOS has the functions you need, you invoke the 5-
minute rule, and then dig into the Technical Reference
Manual to find the pieces you need to write the functions
yourself.

The relevant DOS function calls are as follows.

Function Call 2—The character in DL is sent to the CRT
and the cursor is advanced one position.

Function Call 3—Waits for a character to be received in
the serial port and then returns with character in AL.

Function Call 4—The character in DL is output to the
serial port.

Function Call 8—Waits for a key to be pressed on the
keyboard and then returns the ASCII code for the key
in AL.

INIT COM1
REPEAT
IF CHARACTER READY IN UART THEN
READ CHARACTER
SEND. TO CRT)
IF KEYPRESSED ON IBM KEYBOARD THEN
READ KEY
SEND TO SERIAL PORT
UNTIL FOREVER

FIGURE14-23 Algorithm for simple terminal emulator
program.

- 66

.

"AH

Function call 2 looks useful for sending a character to
the CRT, and.function call 4 looks useful for sending a
character to the serial port. However, the keyboard cali
and the serial-read call will not work because they both
sit ird loops waiting for input. In other words, if you call
function 8, execution will not return from that function
until a key is pressed on the keyboard. K execution is
in the function 8 loop, characters coming into the serial
port will not be read. What is needed here are procedures
which allow polling to go back and forth between the
keyboard and the serial port receiver. Also needed is the
least painful way to initialize the serial port. Let's see
what BIOS has to offer.

Figure 14-24 shows the subfunctions and parameter
passing registers for the IBM PC BIOS INT 14H proce-
dure. This procedure will do one of four functions,

' BIOS INT 14H SUBPROCEDURES AND PARAMETERS

FUNCTION

0 Initialize communications port

DX = port number - 0 = coml, 1 = com2
Al = comm port mede word as followse
baud rate parity stop data bits
6 4 3 2 10
X0-none 0-1 10-7
0l1-odd 1-2 11-8

110
150
300
600
1200
2400
4800
9809

—_———0 000N
—_—_ O -0 O
—~OoO~OoO-O~OWM

1 Send the character in AL out comm port
DX = port nuaber - 0 = coml, 1 = com2
Returns lipe status in AH as shown

. below for AH = 3 call: '

2 Read character from com port
DX = port number - 0 = coml, 1 = com2
Returns .character in AL, status in AH.
If AH bit 7 = 1, unable to read char.
If AH bit 7 = 0, bits 3,2,1 flag errors.
If AH = 0, char read with no errors.

a Read line and modem status. '
DX = port number - 0 = coml, 1 = com2
Returns: AH = line status
bit time out
bit transmit shift register empty
bit transmit hold register elpty
bit break detect
bit framing error
bit purity error
bit overrun error
bit received churacter ready
AL = modem signal status
receive line signal detect
ring indicator
data set ready asserted
clear to send asserted
delta receive line detect
trailing edge ring detect
delta data set ready
delta clear to send

O=NwWwbHON

bit
bit
bit
bit
bit
bit
bit
bit

OoO=NWALO
[T T TR T TR TR TR 1}

FIGURE 14-24 Subprocedures and parameter passing*
registers for IBM PC BIOS INT 14H procedure.

DATA TCOMMUNICATION AND NETWORKS 507

depending on the value passed to it in the AH register.
If AH = 0 when the procedure is called, the byte in AL
is used to initialize the serial port device as shown. If
AH = 1, then the character in AL will be sent out from
the serial port. Likewise, if AH = 2, then a character
will be read in from the serial port and left in AL. Finally,
if AH = 3 when the procedure is called, the status of
the serial port will be returned in AH and AL. The first
of these four options solves the initialization problem.
The last (AH = 3) supplies most of the solution for the
problem of determining when the UART has a character
ready to be read. Bit O of the status byte returned in AH
will be set if the UART contains a character ready to be
read. If a character is ready. it cen be read in and sent
to the CRT. If no character is present, the program cgn
go check to see if a key on the keyboard has been pressed.

Figure 13-1 shows the subprocedures and parameter-

passing registers for the IBM PC BIOS INT 16H procedure
which accesses the keyboard. Remember {rom the dis-
cussion at the start of the last chapter that this proce-
dure performs one of three different functions, de-
pending ofy the value passed to it in AH. If AH = 0, the
procedure will wait for a keypress and return the code
for the pressed key in AL or AH. If AH = 1, the function
will return with the zero flag = 0 if a key has been
pressed and the code is available to be read. If AH = 2,
the shift status'will be returned in AL.
. Calling the INT 16 procedure with AH = 1 solves the
problem of polling the keyboard without sitting in a loop
the way the DOS function call’ does. The zero flag
can simply be checked upon return from the INT 16
procedure, and if no key is ready, executiosn 222 go check
the UART again. If a key code is ready, it can be read in
with a DOS call or another INT 16 ca!l and sent to the
UART.

Figure 14-25 shows a simple terminal emulator pro-
gram which uses the procedures we have described.
The program follows the algorithm almost line by line.
Remember from previous chapter examples that BIOS
procedures are called directly by an INT (humber) in-
struction, and DOS calls are done by putting the function
number in AH and doing an INT 21H instruction.

You can connect the serial port on an IBM PC- or PS/
2-compatible to the serial port of an SDK-86 board
as shown in Figure 14-10b and use this program in
communicate with the board at 300 or 600 Bd. However,
if you try to use the program at 1200 or 2400 Bd, the
first character of each line of characters received from
the SDK-86 or other source will be lost. It took some
work to figure out why this is the case, because even
with a 4.77-MHz 8088, the computer should be more

than fast enough to handle 4800-Bd communciation

with no trouble. The problem is in the INT 10H procedure
which we used to send characters to the CRT. After a
carriage return is sent to the CRT, the display on the
screen Is scrolled up one line. To avoid flicker, however,
the screen Is not scrolled until the next frame update.
Since the frame rate for the monochrome display is 50
Hz, the return from the display procedure may take as
long as 20 ms. Any characters that come into the UART
during this time will be lost. The next section shows

I

508 CHAPTER FOURTEEN

]

how we solved this probiem to produce a download
program which works correctly at 4800 baud.

IBM PC to SDK-86 Download Program

The main purpose of the program described in this
section Is to allow the binary codgs for programs devel-
oped on an IBM PC- or PS/2-compatible computer to be
downloaded through an RS-232C link to an SDK-86
board. The program also functions as a dumb terminal
so that downloaded programs can be’ run, memory
contents displayed. and registers examined by using the
SDK-86 serial monitor commands. These commands
are implemented by simply typing the appropriate keys
on the computer keyboard.

Figure 14-26, page 510. shows the overall algorithm
for the program. The main difference between this
algorithm and the one for the dumb terminal in Figure
14-24 is the addition of the actions when the letter Q or
the letter L is typed. However, we implemented the
algorithm in a different way tn order to solve the speed
problem described in the previous section, to give you
some more exposure to the C programming language,
and to show you some very important programming
techniques. Incidentally, the 1986 version of this pro-
gram, written entirely in assembly language, required
six pages. This version, written mostly in C, requires
only four pages. It would be shorter still except that we
left two procedures in assembly language so you can
more easily work your way through them if you want.

Figure 14-27, page 511, shows the complete program.
The main part of the program is only a little over a
page long. Main calls six functions: INIT, SERIAL_IN,
CHK_N_DISPLAY, xmit, convert_and_send, and shut-
down to do most of the work. After we give an overview,
we will explain in detail how each of these functions work.

OVERVIEW

As you can see from the algorithm in Figure 14-26, this
program spends most of the time running around a loop
which waits for the user to press a key or a character to
be received in a buffer from the SDK-86. In our program
the two stateme..ts while (bioskey(1)) and CHK_N_DIS-
PLAY () implement this loop. ' '
The bioskey (1) part of this calls the BIOS INT 16H °
procedure to determine if a key has been pressed. If a
key has been pressed, we call bioskey again to read in
the code for the pressed key and use a switch structure

" to determine the action to take for that key code. If no

key has been pressed, the biloskey (1) function call
returns a 0 and the while loop repeats.

‘When the CHK_N_DISPLAY function is called. it deter-
mines if a buffer contains any characters read in from
the UART connected to the SDK-86. If the buffer contains
no characters, execution simply returns to the while loop.
If the buffer contains a character, the character is sent
to the CRT. Here's how this program solves the timing
problem suffered by the program in Figure 14-25.

Remember from the discussion in the previous section

;8086 PROGRAM F14-25.ASM

;TERMINAL EMULATOR PROGRAM FOR SDK-86
; This program sends characters entered on the IBM PC to the COM1

; COM1 serial port on the CRT.

serial port at 600 baud, and displays characters received from the

PAGE, 132
STACK_HERE SEGMENT STACK
DW 100 DUP(0)
= STACK_TOP LABEL WORD
STACK_HERE ENDS
CODE_HERE SEGMENT

ASSUME CS:CODE_HERE, SS:STACK_HERE

START: MOV
MCV
MOV
MOV
MoV
MOV
INT
STI

CHKAGN : MOV
MOV
INT
TEST
JNZ
JHP

RDCHAR : MOV
INT

AX, STACK_NERE
ss, AX

SP, OFFSET STACK_TOP
AH, 00

0X, 0000

AL, 011091118

144

0X, 0000
AH, 03
14h

AH, O1H
RDCHAR
KYBD

AH, 02
14H

DL, AL
AH, O2H
21

AH, 1
16H

RDKY
CHKAGN
AH, O
164

DX, OOCOH
AH, 01
14H
CHKAGN

INT
KYBD:
INT
JINZ
JMP
MoV
INT
MOV
MoV
INT
JMP

ROKY:

CODE_HERE ENDS
END START

e ms ws ws wa

®p me ®s S§ ®p % s ws ws wa

s ws we

Initialize stack segment

Initialize stack pointer
Initialize COMY

Point at COM1

600 Bd, no parity, 2 stop,8-bit
via BIOS INT 14H

Enable interrupts

Point at COM1

Check for character from SDK

See if char waiting in UART
1f char, read it

else, go look for keypress
Read character

from UART to AL

Character to DL for DOS call
DOS call number for CRT display
Do DOS call

Check if key has been pressed
using BIOS call

If keypress, read key code
else look for more from SOK
Read key code

using BIOS call

Point at COM1 serial port

Send character to UART with BIOS
Go look for another char from UART
or from keyboard

FIGURE 14-25 Simple terminal emulator program using DOS and BIOS

function calls.

that If the program in Figure 14-25 is operated at over
600 Bd, characters which come into the UART while the
INT 10H procedure is scrolling the CRT display are
missed. In this program we read characters from the
UART on an interrupt basis and put them in a buffer.
Even if the PC 1s in the middle of the INT 10H procedure
or some other procedure when the UART has a character
ready, the interrupt procedure will read the character
from the UART and put it in the buffer. When execution
loops back around to the CHK_N_DISPLAY procedure
again, the character will be read from the buffer and

sent to the display. SERIAL_IN is the interrupt proce-
dure which reads characters from the UART and puts
them in the buffer. Now let's take a closer look at the
switch structure which executes when the user presses
a key on the PC keyboard.

If the user presses a Q key, we call the shutdown
function to put the system back in its initial state and
exit to DOS. If the user presses an L key, we first prompt
the user for the path and name cf a .BIN or .COM file to
be downloaded to the SDK-86. After reading in the name
of the file, we open the file if possible and send the

DATA COMMUNICATION AND NETWORKS 509

INITIALIZE EVERYTHING

REPEAT

IF KEY PRESSED THEN
READ KEY

IF KEY = Q THEN

QUIT
ELSE IFf KEY = L THEN

DOWNLOAD BINARY FILE FROM DISK 10 SDK-86
ELSE SEND CHARACTER FOR PRESSED KEY TO SDK-86
IF UART BUFFER HAS CHARACTER THEN

SEND CHARACTER TO CRT
UNTIL .QUIT
(a)

START

INITIALIZE

CHAR
IN BUFFER

SEND TO CRT

YES
NO
YES
NO
SEND CHAR
TO SDK —86
1
S

LOAD PROGRAM

QuiTt

o

(b)

510 CHAPTER FOURTEEN

FIGURE 14-26 Algorithm for SDKCOM1 download
program. (a, top) Pseudocode. (b, left) Flowchart.

Substitute command to the SDK-86. The while loop
starting with while (!feof(fp)) reads a data byte from
the file stream and then calls the convert_and_send
function to convert the data byte to the format required
by the SDK-86 and gend it to the UART for transmission
to the SDK-86. We then load numchar with the number

. of characters and call the CHK_N_DISPLAY procedure

to send the SDK-86 response to the CRT.

Note that we have to use the feof () function to detect
the end of this file rather than using the EOF character
method we showed you for text files in the last chapter.
The reason for this is that in a binary file such as a .BIN
or .COM file, the EOF character, FFH. is a valid data
byte and cannot be used as an end-of-file marker.

After all the data bytes are sent, we use the xmit
function to send a carriage return to the SDK-86. This
executes the SDK-86 Substitute command. Finally, we
close the file before breaking from the switch structure.

If the key pressed by the user is not a Q or an L. the
default part of the switch structure calls the xmit
function to simply send the code for the pressed key on
to thC'SDK-Sﬁ _'.

The goto again: statement after the switch statement
sends execution back to the while loop, which waits for
a keypress or a character received in the buffer. Now
let's dig a little deeper into the major parts of the
program.

INITIALIZATION

The UART used on the IBM asynchronous commuiica-
tions adapter board is an INS8250. If the board is
configured as systern serial port COM1, the interrupt
output from this device is connected to the IR4 inpuit of
an 8259A priority-interrupt controller on the main PC
board of the IBM computer. The major part of the
initialization here involves getting the 8250 initialized
and setting up the interrupt mechanism. Remember
from previous discussions that when an 8259A receives
an interrupt on an IR input that is unmasked. it sends
a specified interrupt type to the processor. The 8259A
is initialized by the BIOS so that type 8 will be sent for

“an IRO input. Therefore. for an IR4 signal from the

UART, the 8259A will send type OCH to the processor.

/

/* C PROGRAM F14-27A.C */
#include<stdio.h>
#include<dos .h>_
#include<bios.h>

#include<stdlib.h> .
extern void init(void); /* assembly language */
extern int chk_n_display(void); /* assembly language */

extern void’ interrupt serial_in(void); /* assembly language */

void convert_and_send(char binval);
void xmit(char ascval);

void shutdown(void);

void interrupt (*oldcomrxint)();
int numchar = 0;

main()

{

FILE *fp;

char filename(40], ch;

char sdksub[] = "S 0000:0100,";
char *ptr, val, mask;
inLcom‘:;

/* pointer to interrupt function */

/* counter for chk_and_display function */

/* SDK substitute command */

* /* ACTION STARTS HERE */

puts("SDK-86 Interface Program by Douglas V. Hall, 1990. \nm\n");
puts("Press Caps Lock key on computer.\n");

puts(“Enter - GO FE00:0 PERIOD on SDK-86 keypad to activate SOK-86.\n");
puts("In addition to monitor commands the following are available:\n");
puts(“L~ Load binary file and send to SDK-86\n");

puts("@- Quit and return ’to DOS. \n");

oldcomrxint = getvect(12);
setvect (12, serial_in);
init();

again:
while(! bioskey(1))
chk_n_display();

ch = bioskey(0); -
switeln (ch) (
case 'Q':
shutdown();
break;
casie 'L':
puts("Please enter drive, path, and.

¢jets(filename);

/* save old interrupt vector for RxRDY */
/* load vector for custom RxRDY data read */
/* initialize 8250 UART and 8259A PIE */

/* loop until key pressed */
/* display characters read by UART if any */
/* Read keycode and decide action */

/* 1f Q, the quit and return to DOS */

/* Download .bin or .com file to SOK-86 */

name of .bin or .com file.\n");

if((fp=fopen(filename,"rb"))==0)

{
perror(filename); /* print err message */
puts("\n Enter new command letter.Xn");
goto again; /*“get new user command */
)
ptr = sdksub; /* point at Substitute command string */
while(*ptr !'= NULL) /* send Substitute command to SDK-86 */
{
xmit(*ptr);
ptres+;
)

numchar = 17;
while(nunchar >0)

chk_n_display();

FIGL JRE 14-27 C and assembly language source

/* number of characters sent by sdk */
|
/* echo sck response to screen */

program for SDKCOM?1

pro gram. (a) C mainline. (b) Assembly language modules. (Continued on

pp- 512-14.)

DATA COMMUNICATION AND NETWORKS

511

while(l feof(fp)) /* process bytes until end of file */

<
val=getc{fp); /* read charscter from file stream */
if(1feof(fp))
C ;
convert_and send(val);/* ASCII values to SOK-86 */
numchar = 14; /* characters returned by SDK-86 */
while(numchar >0) "
chk_n_display(); /* send sdk echo in */
/* ring buffer to CRT ¥/ .
) .
)
val = 0x0d; /* send terminator character to SDK-86 */
xmit(val); -
fclose(fp); /* close file */
- break; . /* 90 get next user command */
default: /* not @ or L, just send to SOK-86 %/
xmit(ch);
break;
)
goto again; . _
b) /* end of main */
void convert_and_send(char binval)
[
char hold;
hold = binval; /* Save copy of binary value %/
binval = binval >4; /* upper four bits to lower */
4 binval = binval & 0x0f; /*mask upper four bits */
if(binval >= 0x0A) /* convert nibble to ASCII */
i binval = binval + 0x37; /* odd_37H if letter */
else .
binval = binval + 0x30; /* add 30H if number */
xmit(binval); /* send to SDK-86 */
binval = hold; /* get original value of binval */
binval = binval & 0x000f; /* mask upper nibble %/
if(binval >= 0x0A) /* convert lower nibble to ASCII */
binval = binval + 0x37; /* add 37H if hex letter */
else
binval = binval + 0x30; /* add 30H if hex number */
xmit(binval);
binval = Ox2c; : /* load code for comma */
xmit(binval);
) _ /* send to SDK-86 */

void xmit(char ascval)

L4 .
while((bioscom(3,0,0)& 0x2000)==0)
3 /* wait for UART xmit buffer ready */
outportb(0x3f8, ascval); : /* send ASCII character to UART */

} .

void shutdown(void)
£
/* shut averything down and return to DOS !
unsigned char mask;

mask = inportb(0x21); /* mask 8259 IR4 interrupt input */

mask = mask | Ox1C; : -~ '

outportb(0x21,mask);

setvect(12, oldcomrxint); /* restore BIOS interrupt vector */ -
exit(0); /* automatically closes any open files */

b}
FIGURE 14-27 (Continued)

512 CHAPTER FOURTEEN

;8086 PROGRAM F14-27B.ASM
_TEXT SEGMENT BYTE PUBLIC 'CODE'

DGROUP GROUP _DATA
ASSUME CS:_TEXT,DS:DGROUP, SS:DGROUP
_TEXT ENDS 2

_DATA SEGMENT WORD PUBLIC 'DATA'
QUEUE DB 1000 DUP(0)
HEAD_POINTER DW 0 Pointer to read location in buffer
TAIL_POINTER DV O Pointer to write location in buffer
TIME_OUT_MESS DB 'TRANSMIT TIMEOUT - CHECK HARDWARE',00H, OAH
EXTRB _NUMCHAR : WORD

_DATA ENDS

Declare ring buffer

. we w0

_TEXT SEGMENT '/ BYTE PUBLIC 'CODE’
PUBLIC _INIT
PUBLIC _SERIAL_IN
PUBLIC _CHK_N_DISPLAY

_INIT PROC NEAR 2 -
Urmask 8259A 1R4

’
IN AL, 21H ; Read B8259A IMR
AND AL, OECH_ ; Unmask IRé
oUT 21H, AL .)
;Initialize 8250 UART baud rate,etc. -
MOV AH, 00 ; 'Initialize COM1
‘MOV DX, 0000 ; Point at COMi
MOV AL, 110001118 ; 4800 Bd,No parity,2 stop,8-bit
INT 14H ; via BIOS INT 14H

;Enable 8250 RxXRDY interrupt

MOV DX, O3FBH ; Point at 8250 line control port
IN AL, DX ; Read in line control word
AND AL, 7FH ; Set DLA8 = 0
ouT DX, AL ; Send line control word back out
MOV AL, O1H ; Value to enable RxRDY interrupt
MOV DX, O3FOH : Point at interrupt enable register
OUT DX, AL ; Enable RxRDY interrupt
MOV AL, OBH ; Assert 8250 OUT2, RTS, DTR byte
DX, O3FCH i Point at mcdem control reg in 8250

OUT DX, AL ; Send to 8250 .
RET o

_INIT ENDP

_SERIAL_IN PROC FAR
ST1 » Interrupts back on for cloeck, etc.
PUSH AX
PUSH BX
PUSH DX
PUSH O

! PUSH DS r
MOV AX, DGROUP ; Load current DS register value
MOV DS, AX
MOV DX, O3F8H ; Receiver buffer address for 8250
IN AL, DX ; Read character
MOV DI, TAIL_POINTER ; Get current tail pointer value
INC DI ; Point to next storage location
cMp DI, 1000 : Compare with max to see if time
; to wrap around

JNE FULCHK ; No, go check if queue full
MOV DI, 00 : Yes, set DI for wraparound to Start

FIGURE 14-27 (Continued)

DATA COMMUNICATION AND NETWORKS 513

FULCHK:

CHWP DI, HEAD_POINTER ; Chetk for full queue
JE NO_MORE ; Full, do not write char
MOV BX, TAIL_POINTER ; Not full, point at write loc
MOV QUEUE [BX], AL ; Character to circular buffer
MOV TAIL_POINTER, DI ; Save new tail pointer value
NO_MORE :
MOV AL, 20H ; Non-specific EOl command
OUT 20H, AL ; to 8259A
POP DS
‘\PCP DI
POP DX
POP BX
POP AX
- IRET :
_SERIAL_IN ENDP
i _CHK_N_DISPLAY PROC NEAR
PUSH DI
IN AL, 21H
OR AL, 10H ; Disable 8259A IR4 in critical region
OUT 21H, AL ; by masking bit 4 of IMR
MOV DI, HEAD_POINTER
CMP DI, TAIL_POINTER ; Is queue empty ?
JE NOCHAR ; Yes, just return
MOV AL, QUEUE([DI] ; No, get char from queue to AL
INC DI ; Point DI at next byte in queue
CMP DI, 1000 ; See if time to wrap pointer around
JNE OK \ ; No, go on
MOV DI, O ; Yes, wrap pointer around to start
oK:
MOV HEAD_POINTER! DI ; Store new pointer value
PUSH AX ; Save character in AL on stack
IN A, 21K
AND AL, OECH ; Enable IR4 interrupt so new char in 8250
ouT 21H, AL ; can interrupt INT 10H
POP AX ; Get character back from stack
MOV AH, 14 ; Use BIOS INT 10H to send to CRT
MOV BH, O '
INT 10H
DEC _NUMCNAR ; Dec number char sent to CRT
JMP DONE
NOCHAR: .
IN AL, 21H
AND AL, OECH ; End of critical region. Enable 1R4 by
; unmasking bit 4 in IMR of B259A so
OUT 21H, "At : new char in UART can interrupt
DONE :
POP DI
RET -
_CHK_N_DISPLAY ENDP
_TEXT ENDS
END
FIGURE 14-27 (Continued)
The processor multiplies the type number by 4 and goes The setvect(12, serial_in); statement near the start of
to that address in the interrupt-vector table to get our program calls a predefined function to initialize the
the starting address of the service procedure for that int 12 location in the vector table with the starting

Interrupt. In your program you must in some way put address of our SERIAL_IN procedure. In a simple appli-
the starting address of your interrupt-service procedure cation such as this, the setvect statement is all that is
in the correct address in the interrupt-vector table.

514 CHAPTER FOURTEEN

needed. but we used the opportunity to show you an

important technique that is used in “terminate and stay
resident” programs, which we discuss more in the next
chapter.

The point here is that whenever you write a program
which changes some basic system parameéter such as
the contents of the interrupt-vector table, you should
savc the initial values of the parameters so you can
restore them when your program finishes executing.
There are three steps in saving and restoring an inter-
rupt vector. The first step Is to declare a pointer to
an interrupt function with a statement such as void
interrupt (oldcomrxint) () ;. In this statement interrupt
is' a special pointer type and oldcomrxint is the name
we gave to the pointer. The second step in the process
is to save the initial contents of the interrupt vector
table with the oldcomrxint-getvect(12); statement. In
this statement the predefined function getvect () coples
the interrupt vector to the location pointed to by
oldcomrxint. The final step Is to restore the initial vector
when our program terminates. We do this with the
setvect (12,oldcomrxint); statement in our shutdown
function. As we will show you later, the point of all this
is that you can “intercept” a system interrupt such as
the keyboard Interrupt, use it for your own program,
and then restore the system interrupt vector when your
program finishes.

To do the rest of theinitialization for this program we
call the assembly language program INIT, so take a look
at it now. The 8259A itself is mostly initialized by the
BIOS when the system is turned on. However, since the
UART is connected to IR4 of the 82594, that input has
to be unmasked. To do this the current contents of the
8259A interrupt mask register are read in from address
21H. The bit corresponding to IR4 is then ANDed with
a 0 to unmask the interrupt, and the result is sent back
to the interrupt mask register. Using this approach
saves the system environment. It Is important to do this
rather than just sending out a control word directly, so
that you don't disable other system functions. In this
system, for example, the system clock tick is connected
to IRO and the keyboard is connected to IR1, so these
would be disabled if you accidentally put 1's in these
bits of the control word.

Initializing the 8250 UART is next. Figure 14-28, page
516. shows the internal addresses and the bit formats
for the control words we need here. The first part of the
initialization involves the baud rate, parity, and stop
bits. Since this step requires several words to be sent,
we simply used the BIOS INT 14H procedure to do it.

NOTE: We initialize the 8250 here for 4800 Bd,
so the baud rate jumper on the SDK-86 must be
set for this baud rate.

The next task we do here is enable the desired interrupt
circuitry in the 8250. In order to do this. the DLAB bit
of the line control word must first be made a 0. Note
that this is done by reading in the line control word,
resetting the desired bit, and sending the word out
again. This preserves the previous state of the rest of
the bits in the line control register. As shown in Figure
14-28b. with DLAB = 0, a control word which enables

- 67

the enable-receive line status interrupt can be sent to
the interrupt enable register at address 03F9H. As
shown in Figure 14-28b, the 8250 has four different
conditions which can be enabled to assert the interrupt
output when true. In cases where multiple interrupts
are used, the interrupt identification register can be
read to determine the source of an interrupt. For this
application we are using only the enable receive line
status interrupt, so a 1 is put in that bit. The final step
in the 8250 initialization is to assert the RTS, DTR,
and OUT2 output signals As shown by the circuit
connections in Figure 14-10b, asserting RTS Is neces-
sary to assert the CTS input so the UART can transmit.
Likewise, asserting DTR is necessary to assert the DSR
and CD inputs of the UART. The OUT2 signal from the
8250 must be asserted in order to enable a three-state
buffer which is in series with the interrupt signal from
the 8250 to the 8259A.

When you are working out an Initialization sequence
such as this, read the data sheet carefully and check
out the actual hardware circultry for the system you are
working on. We missed the OUT2 connection the first
time through, but a second look at the schematic for
the communications board showed that it was necessary
to assert this signal. Now let's see how the procedure
which reads characters from the UART works.

THE SERIAL_IN PROCEDURE

The purpose of the SERIAL_IN interrupt procedure is
to read characters in from the UART and put them in a
buffer. Note that since this is an interrupt procedure
which can occur at any time, it is important to save the
DS register of the interrupted program and load the
DS register with DGROUP, the value needed for this
procedure.

The buffer used here is a special type of queue called
« " cuwa wuffer or ring buffer. Figure 14-29, page 517,
attempts to show how this works. Qne pointer, called
the TAIL_POINTER, is used to keep track of where the
next byte is to be written to the buffer. Another pointer
called the HEAD_POINTER is used to keep track of
where the next character to be read from the buffer is
located. The buffer is circular because when the tail
pointer reaches the highest location in the memory
space set aside for the buffer, it is “wrapped around” to
the beginning of the buffer again. The head pointer
follows the tail pointer around the circle as characters
are read from the buffer. Two checks are made on the
tail pointer before a character is written to the buffer.

First the tail pointer {s brought into a register and
incremented. This incremented value is then compared
with the maximum number of bytes the buffer can hold.
If the values are equal, the pointer is at the highest
address in the buffer, so the register is reset to zero.
After the current character is put in the buffer, this
value will be loaded into TAIL_POINTER to wrap around
to the lowest address in the buffer again.

Second, a check is made to see if the incremented
value of the tail pointer is equal to the head pointer. If
the two are equal. it means that the current byte can be
written, but that the next byte would be written over
the byte at the head of the queue. In this case we simply

515

DATA COMMUNICATION AND NETWORKS

1/0 DECODE (iN HEX)

PRIMARY | ALTERNATE REGISTER SELECTED DLAB STATE
ADAPTER | ADAPTER

3F8 2F8 TX BUFFER DLAB=0 (WRITE)

3F8 2F8 RX BUFFER DLAB=0 (READ)

3F8 2F8 DIVISOR LATCH LSB OLAB=1

3F9 2F9 DIVISOR LATCH MSB DLAB=1

3F9 2F9 INTERRUPT ENABLE REGISTER DLAB=X

3FA 2FA INTERRUPT IDENTIFICATION REGISTERS | DLAB=X

3FB 2FB LINE CONTROL REGISTER DLAB=X

3FC 2FC MODEM CONTROL REGISTER DLAB=X

3FD 2FD LINE STATUS REGISTER DLAB=X

3FE 2FE MODEM STATUS REGISTER DLAB=X

INTERRUPT ENABLE REGISTER (IER)

HEX ADDRESS 3F9 DLAB =0
BIT 7 6 5 4 3 2 10

L. 1 = ENABLE DATA
AVAILABLE INTERRUPT
EMPTY INTERRUPT

1 = ENABLE RECEIVE LINE
STATUS INTERRUPT

1 = ENABLE MODEM STATUS
INTERRUPT
L = wo

L =

L e =0

=0

(b)

LINE STATUS REGISTER (LSR)

HEX ADDRESS 3FD
BIT 76 5 43 2 10

I_L: DATA READY (DR)
OVERRUN (OR)
PARITY ERROR (PE)
FRAMING ERROR (FE)

BREAK INTERRUPT (BI)

——— TRANSMITTER HOLDING REGISTER
EMPTY (THRE)

————— TXSHIFT REGISTER EMPTY (TSH®)
=0 :

(d)

1 = ENABLE TX HOLDING REGISTER

(a)

MODEM CONTROL REGISTER (MCR)

HEX ADDRESS 3FC
BIT 7 6 54 3 2 10

I__L: DATA TERMINAL READY (DTR)
REQUEST TO SEND (RTS)
ouT1 a
ouT 2

Loor

=0

-~ =0

+ =0

{e)

MODEM STATUS REGISTER (MSR)

HEX ADDRESS 3FE

BIT 7 6 54 3 2 10

& DELTA CLEAR TO SEND (DCTS)
DELTA DATA SET READY (DDSR)

TRA!LING EDGE RING
INDICATOR (TERI)

L . DELTA RX LINE SIGNAL
DETECT (DRLSD)

CLEAR TO SEND (CTS)
DATA SET READY (DSR)
—————— RING INDICATOR (Ri)
RECEIVE LINE SIGNAL
DETECT (RLSD)

(e)

FIGURE 14-28 8250 addresses in IBM PC, registers, and control words.
(a) System addresses. (b) Interrupt enable register. (c) Modem control register.

(d) Line status register. (e) Modem status register.

return to the interrupted program without writing the
current character into the buffer. Actually this wastes a
byte of buffer space, but it is necessary to do this so
that the polnters have different values for this buffer-
full condition than they do for the buffer-empty condi-
tion. The buffer-empty condition ts indicated when the
head pointer is equal to the tail pointer. If the buffer is
not full, the character read in from the UART Is written

516 CHAPTER FOURTEEN

to the buffer, and the pointer to the next available
location in the buffer is transferred from the register to
the memory location called TAIL_POINTER. Finally.
before returning. an end-of-interrupt command must
be sent to the 8259A to reset bit 4 of the interrupt
service reglster.

To summarize the operation of a circular buffer, then.
bytes are put in at the tail pointer location and read out

03FF
TAIL —=
HEAD —=
0000
| I

FIGURE 14-29 Diagram showing how ring buffer
pointers wrap around at the top of the allocated buffer
space.

from the head pointer location. The bulffer is considered
full when the tail pointer reaches one less than the head
pointer. The butfer is empty when the head pointer is
equal to tail pointer.

THE CHK_N_DISPLAY PROCEDURE

The main purpose of the CHK_N_DISPLAY procedure
is to read a character from the circular buffer and send
it to the CRT with the BIOS INT 10H procedure. In order
to make sure the proecedure operates correctly under all
conditions. however, we mask the IR4 interrupt in the
8259A right at the start so that an interrupt from
the UART cannot call the SERIAL_IN procedure while
CHK_N_DISPLAY is using the head and tail pointers.
This is necessary to prevent the SERIAL_IN procedure
from altering the values of the pointers in the middle
of CHK_N_DISPLAY's use of them and causing the
CHK_N_DISPLAY procedure to make the wrong deci-
sions about whether the buffer is empty, for example.
The group of instructions which you need to protect from
interruption is called a critical region. It is important to
keep critical regions as short as possible so that inter-
rupts need not be masked for unnecessarily long times.
Note that we masked the IR4 interrupt input of the
8259A rather than disable the processor interrupt. This
was done so that the keyboard and the timer interrupts,
which have nothing to do with the critical region in this
procedure, can keep running. '
Once the critical reglon is safe, a check is made to see
if there are any characters in the buffer. If not, the
8259A IR4 input is unmasked, and execution returned
to the calling program. If a character is available in
the buffer, the character is read out and the head
pointer updated to point to the next available character.
If the pointer is at the top of space allotted for the
buffer, the pointer will be wrapped around to the start
of the buffer again. As soon as the character is read out
from the buffer and the pointers updated, an interrupt
from the UART cannot do any damage. so we unmask

IR4. The BIOS INT 10H procedure is then used to send,

the character to the CRT. If a UART interrupt occurs
during the INT 10H procedure, the SERIAL_IN proce-
dure will read the character from the UART and return
execution to the INT 10H procedure. This short interrup-

tion produces no noticeable effect on the operation of
the INT 10H procedure, and it makes sure no characters
from the UART are missed. After the INT 10H procedure
finishes, a character-sent counter called NUMCHAR is

-decremented and execution is returned to the calling

program. This counter counts the number of characters
actually sent to the CRT rather than just the number of
times the CHK_N_DISPLAY procedure is called. This
allows the procedure to be called over and over again
unttl a given number of characters are received from the

- SDK-86 and sent to the CRT.

THE XMIT FUNCTION

After first checking to see if the UART transmitter buffer
is ready, the XMIT procedure sends a character to the
8250 UART. To determine if the UART transmitter buffer
is empty. we use the predefined bioscom () function,
which is just a simple way to call the BIOS INT 14H

- procedure. The first argument in the bloscom parenthe-

ses is the BIOS INT 14H subfunction number. The
second argument is the value you want to pass to the
BIOS INT 14H procedure in AL. The third argument in
the parentheses is the COM port number, O for COM1
and 1 for COM2. As you can see in Figure 14-24, if you
call the BIOS INT 14H procedure with AH = 3, the status
of the UART will be returned in AX. Our while loop
repeats until the transmitter holding register bit, bit
13, becomes a 1. Normally, you should also check that
CTS in bit 4 and DSR in bit 5 are also asserted. For this
program, however, these signals are asserted by jumpers
on the connector, so we didn’t bother to check them.

To send the character to the UART we did a direct
write to the UART transmitter holding register with the
outportb(0x3fc, ascval) statement. Normally we avoid
direct writes such as this and use BIOS procedures,
DOS function calls, or C function calls so the program
is more likely to run on a variety of systems. However,
when we tried to use the statement bioscom(1,ascval,0)
to send a character to the UART, the program would no
longer read characters sent to the UART by the SDK-86.
A careful reading of the BIOS INT 14H procedure in
the IBM Technical Reference Manual showed that the
Transmit subprocedure of the BIOS INT 14H procedure
turns off the OUT2 signal. As we described in the
initialization section, this signal must be asserted so
that receiver-ready interrupt signals can get from the
UART to the 8259A and call the SERIAL-IN procedure.
The only real cure we found for the problem was to do .
the direct write to the UART as shown. Incidentally, the
bioscom() function works fine if you are both sending
and receiving characters on a polled basis.

THE CONVERT_AND_SEND FUNCTION

The SDK-86 requires that each nibble of a program code
byte be sent in as the corresponding ASCII character.
The code byte 3AH. for example, must be sent as 33H
(ASCIL.3). followed by 41H (ASCII A). We converted this
procedure to C to show you how you can do bit operations
in C. You can work your way through this section with
an example data byte to see how it works. After the
ASCII characters for each code byte are sent, the ASCII

DATA COMMUNICATION AND NETWORKS 517

code for a comma is sent, as required by the SDK-86.
and execution is returned to the L section of the switch
structure. There the SDK-86 response is sent to the
CRT.

THE SHUTDOWN FUNCTION

As we said earlier, you should always put everything
back in its Initial state when your program finishes
executing. The shutdown function here remasks the IR4
input of the 8259A by reading the current value, ORing
that value with 10H to set bit 4, and sending the result
back to the 8259A. The setvect(12,0ldcomrxint) function
call restores the initial interrupt vector to the INT 12
location in the vector table. Finally, the exit (0) function
call closes any open files and returns execution to DOS.

CONCLUSION

This program was written to do a specific job and to

demonstrate such important programming concepts as
installing an interrupt vector in a C program, interacting
with a UART, working with a ring buffer, reading binary
files, and preserving the system environment. Space
limitations prevented us from making the program as
“friendly” as we would have liked it to be. Perhaps you
can see how the program could easily be modified to, for
example, let the user enter the desired communications
port number and the desired baud rate.

SYNCHRONOUS SERIAL-DATA
COMMUNICATION AND PROTOCOLS

Introduction

Most of the discussion of serial-data transfer up to this
point in the chapter has been about asynchronous
transmission. For asynchronous serial transmission, a
start bit is used to identify the beginning of each data
character, and at least one stop bit is used to identify
the end of each data character. The transmitter and the
receiver are effectively synchronized on a character-by-
character basis. With a start bit, 1 stop bit, and 1 parity
bit, a total of 10 bits must be sent for each 7-bit
ASCII character. This means that 30 percent of the
transmission time is wasted. A more efficient method of
transferring serial data is to synchronize the transmitter
and the receiver and then send a large block of data
characters one after the other with no time between
characters. No start or stop bits are then needed with
individual data characters, because the receiver auto-
matically knows that every 8 bits received after synchro-
nization represents a data character. When a block of
data is not being sent through a synchronous data link,
the line is held in a marking condition. To indicate the
start of a transmission, the transmitter sends out one
or more unique characters called sync characters or a
unique bit pattern called a flag. depending on the system
being used. The receiver uses the sync characters or the
flag to synchronize its internal clock with that of the
receiver. The receiver then shifts In the data following
the sync characters and converts them to parallel form

518 CHAPTER FOURTEEN

so they can be read in by a computer. As we said In the
discussions of modems and ISDN, high-speed modems
and digital communication channels use synchronous
transmission.

Now, remember from a previous section that a hard-
ware level set of handshake signals is required to trans-
mit asynchronous or synchronous digital data over
phone lines with modems. In addition to this handshak-
ing, a higher level of coordination, or protocol. is required
between transmitter and receiver to assure the orderly
transfer of data. A protocol in this case is an agreed set
of rules concerning the form in which the data is to be
sent. There are many different serial data protocols. The
two most common that we discuss here are the IBM
binary synchronous communications protocol, or Bl-
SYNC, and the high-level data link control protocol. or
HDLC.

Binary Synchronous Communication
Protocol—BISYNC

BISYNC is referred to as a byte-controlled protocol (BCP),
because specified ASCII or EBCDIC characters (bytes)
are used to indicate the start of a message and to
handshake between the transmitter and the- receiver.
Incidentally, even in a full-duplex system, BISYNC proto-
col only allows data transfer in one direction at a time.

Figure 14-30 shows the general message format for
BISYNC. For our first cycle through this we will assume
that the transmitter has received a message from the
receiver that it is ready to receive a transmission. If no
message is being sent, the line is an “idle” condition
with a continuous high on the line. To indicate the start
of a message, the transmitting system sends two or more
previously agreed upon sync characters. For example, a
sync character might be the ASCIl 16H. As we said
before, the receiver uses these sync characters to syn-
chronize its clock with that of the transmitter. A header
may then be sent if desired. The header contents are
usually defined for a specific system and may include
information about the type, priority. and destination of
the message that follows. The start of the header is
indicated with a special character called start-of-header
(SOH), which in ASCII is represented by O1H.

After the header, if present, the beginning of the text
portion of the message is indicated by another special
character called start-of-text (STX), which in ASCII is
represented by 02H. To indicate the end of the text
portion of the message, an end-of-text (ETX) character
or an end-of-block (ETB) character is sent. The text
portion may contain 128 or 256 characters (different
systems use different-size blocks of text). Immediately
following the ETX. character 1 or 2 block check charac-

ETX
SOH | HEADER | | STX TEXT OR | BCC
& ETB

T DIRECTION OF SERIAL DATA FLOW

FIGURE 14-30 General message format for binary
synchronous, communication (BISYNC).

ters (BCC) are sent. For systems using ASCIL. the BCC
is a single byte which represents complex parity informa-
tion computed for the text of the message. For systems
using EBCDIC, a 16-bit cyclic redundancy check is
performed on the text part of the message and the 16-
bit result sent as 2 BCCs. The point of these BCGs is
that the receiving system can recompute the value for
them from the received data and compare the results
with the BCCs sent from the transmitter. If the BCCs
are not equal, the receiver can send a message to the
transmitter, telling it to send the message again. Now
let's look at how messages are used for data transfer
handshaking between the transmitter and the receiver.
To start let’'s assume that we have a remote “smart”
terminal connected to a computer with a half-duplex
connection. Further, let's assume that the computer is
in the receive mode. Now, when the program in the
terminal determines that it has a block of data to send
to the computer, it first sends a message with the text
containing only the single character ENQ (ASCII O5H),
which stands for enquiry. The terminal then switches
to receive mode to await the reply from the computer.
The computer reads the ENQ message. and, if it is not
ready to receive data, it sends back a text message
containing the single character for negative acknowl-
edge, NAK (ASCII 15H). If the receiver is ready, it sends
a message containing the affirmative acknowledge,
ACK, character (ASCI1 06H). In either case, the computer
then switches to receive mode to await the next message
from the terminal. If the terminal received a NAK, it may
give up, or it may wait a while and try again. If the
terminal received an ACK, it will send a message con-
taining a block of text and ending with a BCC charac-
ter(s). After sending the message, the términal switches
to receive mode and awaits a reply from the computer
as to whether the message was received correctly. The
computer meanwhile computes the BCC for the received
block of data and compares it with the BCC sent with
the message. If the two BCCs are not equal, the computer
sends a NAK message to the terminal. This tells the
terminal to send the message again, because it was not
received correctly. If the two BCCs are equal, then the
computer sends an ACK message to the terminal, which
tells it to send the next message or block of text. In a
system where multiple blocks of data are being trans-
ferred, an ACK 0 message is usually sent for one block.
an ACK 1 message sent for the next, and an ACK 0 again
sent for the next. The alternating ACK messages are a
further help in error checking. In either case, after the
message Is sent the computer switches to receive mode
to await a response from the terminal. -]
A variation of BISYNC commonly used to transfer
binary files in the PC environment and between Unix
systems and PCs is called XMODEM. An XMODEM block
consists of a SOH character, a block number, 128 bytes
of data (padded if necessary to fill the block), and an 8-
bit checksum. A transmission starts with the receiver
sending a NAK character to the sender. The sender then
sends a block of data. If the data is received correctly,
the receiver sends back an ACK and the sender sends
the next block of data. If the data is not received correctly,
the recetver sends a NAK and the sender sends the block

again. The transmission is completed when the sender
sends an end-of-transmission (EOT) character and the
receiver replies with an ACK.

One major problem with a BISYNC type protocol is
that the transmitter must stop after each block of data
is transferred and wait for an ACK or NAK signal from
the receiver. Due to the wait and line turnaround times,
the actual data transfer rate may be only half of the
theoretical rate predicted by the physical bit rate of the
data link. The HDLC protocol discussed in a later section
greatly reduces this problem. Next we want to return to
the Intel 8251A USART which is used on the IBM PC
Synchronous Communication Adapter and give you a
brief look at how it is used for BISYNC communication.

USING THE INTEL 8251A USART FOR
BISYNC COMMUNICATION

As shown in Figure 14-5, we initialize an 8251A by first
getting its attention, sending it a mode word, and then
sending it a command word. To initialize the 8251A for
synchronous communication, 0's are put in the least
significant 2 bits of the mode word. The rest of the bits
in the mode word then have the meanings shown in
Figure 14-31a, page 520. Most of the bit functions
should be reasonably clear from the descriptions in the
figure, but a couple need a little more explanation.

Bit 6 of the mode word specifies the SYNDET pin on
the 8251A to be an input or an output. The pin is
programmed to function as an input if external circuitry
is used to detect the sync character in the data bit
stream. When programmed as an output, the pin will
go high when the 8251A has found one or more sync
characters in the data bit stream.

Bit 7 of the mode word is used to specify whether 1 sync
character or a sequence of 2 different sync characters is
to be looked for at the start of a message.

To initialize an 8251A for synchronous operation:

1. Send a series of nulls and a software reset command
to the control address as shown at the start of Figure
14-5. .

2. Send a mode word based on the format in Figure
14-31a to the control address.

3. Send the desired sync character for that particular
system to the control address of the 8251A.

4. If a second sync character is needed. send it to the
control address. 5

5. Finally, send acommand word to the control address
to enable the transmitter, enable the recetver, and
enable the device to look for sync characters in the.
data bit stream coming {11 the RxD input.

The format for the command word is shown in Figure

_ 14-31b. Now, let's examine how the 8251A participates

in a synchronous data transfer. As you work your way
through this section. try to keep separate in your mind
the parts of the process that are done by the 8251A and
the parts that are done by software at one end of the
link or the other.

519

DATA COMMUNICATION AND NETWORKS

D7 D6 D5 D4 D3 D2 D1

0o
Lbcb]tsl)l) IPEN[L IL. I 0 l o—l
CHARACTER LENGTH

! !ﬁ’ 0 1 0 1

0 0 1 1

5 6 7 8
BITS | BITS | BITS [BITS

PARITY ENABLE
(1 =ENABLE)
(0 = DISABLE)

T " EVENPARITY GENERATION/CHECK
1=EVEN
0=00D

T EXTERNAL SYNC DETECT
1 =SYNDET IS AN INPUT
0 =SYNDET IS AN QUTPUT

SINGLE CHARACTER SYNC
1 =SINGLE SYNC CHARACTER
0 = DOUBLE SYNC CHARACTER

~NOTE: IN EXTERNAL SYNC MODE, PROGRAMMING DOUBLE
CHARACTER SYNC WILL AFFECT ONLY THE Tx.

(a)

D7 D6 D5 D4 D3 D2 DI DO
{en]m [rrs|en [senx]nxe[om[nm

L TRANSMIT ENABLE
1 =ENABLE
0 = DISABLE

DATA TERMINAL READY
“HIGH" WILL FORCE DTR
OUTPUT TO ZERO

RECEIVE ENABLE
1 = ENABLE
0 = DISABLE

SEND BREAK CHARACTER
| 1 = FORCES TXD "LOW"
0 = NORMAL OPERATION

ERROR RESET
o T |'1= RESET ERROR FLAGS
PE, OE, FE

e REQUEST TO SEND
“HIGHWILL FORCE ATS
QUTPUT TO ZERO

INTERNAL RESET
“"HIGH RETURNS 8251A TO
MODE INSTRUCTION FORMAT

ENTER HUNT MODE*
1= ENABLE SEARCH FOR
SYNC CHARACTERS

*(HAS NO EFFECT
IN ASYNC MODE)

NOTE ERRO;! RESETMUST BE PERFORMED WHENE VER AxENABLE
AND ENTER HUNT ARE PROGRAMMED.

(b)

FIGURE 14-31 8251A synchronous mode and command
word formats. (a) Mode word. (b) Command word.
(Intel) .

Tostart, let's assume the 8251A is in a terminal which
has blocks of data to send to a computer, as we described
earlier in this section. Further assume that the computer
Is in receive mode waiting for a transmission from the
terminal and that the 8251A in the terminal has been

520 CHAPTER FOURTEEN

initialized and is sending out a continuous high on the
TxD line.

An /O driver routine in the terminal will start the
transfer process by sending a sync character{s), SOH
character, header characters, STX character, ENQ char-
acter, ETX character, and BCC byte to the 8251A, one
after the other. The 8251A sends the characters out in
synchronous serial format (no start and stop bits). If,
for some reason such as a high-priority interrupt, the
CPU stops sending characters while a message is being
sent, the 8251A will automatically insert sync characters
untll the flow of data characters from the CPU resumes.

After the ENQ message has been sent, the CPU in the
terminal awalts a reply from the computer through
the RxD Input of the 8251A. If the 8251A has been
programmed to enter hunt mode by sending it a control
word with a 1 in bit 7, it will continuously shift in bits
from the RxD line and check after each shift if the
character in the recelve buffer is a sync character. When
it finds a sync character, the 8251A asserts the SYNDET
pin high, exits the hunt mode, and starts the normal
data read operation. When the 8251A has a valid data
character in its receiver buffer, the RxRDY pin will be
asserted, and the RxRDY bit in the status register will
be set. Characters can then be read in by the CPU on a
polled or an interrupt basis.

When the CPU has read in the entire message, it can
determine whether the message was a NAK or an ACK.
If the message was an ACK, the CPU can then send the
actual data message sequence of characters to the
8251A. Handshake and data messages will be sent back
and forth until all the desired block of data has been
sent to the computer. In the next section we discuss
anothe: protocol used for synchronous serial-data
transfer.

High-'avel Data Link Control (HDLC) and -
Synchronous Data Link Control (SDLC) Protocols

The BISYNC-type protocols which we discussed in the
previous section work only in half-duplex mode; except
for XMODEM, they have difficulty transmitting pure
8-bit binary data such as object code for programs; and
they are not easily adapted to seiving multiple units
sharing a common data link. In an attempt to solve these
problems, the Interrational Standards Organization
(ISO) proposed the high-level data link control protocol
(HDLC) and IBM developed the synchronous daia link
control protocol (SDLC). The standards are so nearly
identical that, for the discussion here, we will treat
them together under the name HDLC and indicate any
significant differences as needed.

As we said previously, BISYNC is referred to as a byte-
controlled protocol because character codes or bytes
such as SOH, STX, and ETX are used to mark off parts
of a transmitted message or act as control messages.
HDLC s referred to as a bit-orlented protoco! (BOP)
because messages are treated simply as a string of bits
rather than a string of characters. The group of bits
which make up a message Is referred to as a frame. The
three types of frames used are Information or I frames,
supervisory control sequences or S frames. and com-

mand/response or U frames. The three types of frames
all have the same basic format.

Figure 14-32a shows the format of an HDLC frame.
Each part of the frame is referred to as field. A frame
starts and ends with a specific bit pattern, 01111110,
called a flag or flag field. When no data is being sent,
the line idles with all 1's, or continuous flags. Immedi-
ately after the flag field is an 8-bit address field which
contains the address of the destination unit for a control
or Information frame and the source of the response for
a response frame.

Figure 14-32b shows the meaning of the bits in the
8-bit control field for each of the three types of frames.
We don't have the space or the desire to explain here the
meaning of all of these. A little later we will, however,
explain the use of the Ns and Nr bits in the control byte
for an information frame.

The information field. which Is present only in infor-
mation frames, can have any number of bits in HDLC
protocol, but in SDLC the number of bits has to be a
multiple of 8. In some systems as many as 10,000 or
20,000 information bits may be sent per frame. Now,
the question may occur te you, What happens if the
data contains the flag bit pattern, 011111107 The
answer to this question is that a special hardware circuit
modifies the bit stream between flags so that there are
never more than five 1's in sequence. To do this the
circuit monitors the data strearn and automatically
stuffs in a O after any series of five 1's. A complementary
circuit in the receiver removes the extra zeros. This

- FRAME —
BEGINNING ENDING
FLAC ADDRESS | coNTROL |INFORMATION| FRAME | | “¢
ANY NUMBER | CHECK
01111110 8 BITS 8BITS OF BITS 16 8ITS 01111110
8BITS 8BITS
(a)
BITS IN CONTROL FIELD
HDLC FRAME FORMAT 7 6 5 4 3 2 1 (]
|-FRAME (INFORMATION
TRANSFER
COMMANDS/RESPONSES) Nr Nr Nr P/F Ns Ns Ns @
S-FRAME (SUPERVISORY
COMMANDS/RESPONSES) Nr Nr Nr P/F S S Q 1
\J-FRAME (UNNUMBERED
COMMANDS/RESPONSES) M M M PFM M 1 1

SENDING ORDER - 8IT QFIRST 81T 7 LAST
NS THE TRANSMITTING STATION SEND SEQUENCE NUMBER, BIT 2 IS THE
LOW-ORDER BIT

P/F THE POLL BIT FOR PRIMARY STATION TRANSMISSIONS, AND THE
FINAL BIT FOH SECONDARY STATION TRANSMISSIONS

Nt THE TRANSMITTING STATION RECEIVE SEQUENCE NUMBER BIT 615
THE LOW-ORDER BIT

S THE SUPERVISORY FUNCTION BITS

M THE MODIFIER FUNCT.ON BITS

(b)

FIGURE 14-32 (a) Format of HDLC frame. (b) Meaning
of bits in 8-bit control field of frame.

scheme allows character coaés or binary data to be sent
without the problems BISYNC has in this area.

The next field in a frame is the 16-bit frame check
sequence(FCS). This is a cyclic redundancy word derived
from all the bits between the beginning and end flags.
but not including O’s inserted to prevent false flag bytes.
This CRC value is recomputed by the receiving system
to check for errors.

Finally, a frame is terminated by another flag byte.
The ending flag for one frame may be the starting flag
for another frame.

In order to describe the HDLC data transfer process,
we first need to define a couple of terms. HDLC is used
for communication between two or more systems on a
data link. One of the systems or stattons on the link will
always be set up as a controller for the link. This station
is called the primary statlon. Other stations on the link
are referred to as secondary statlons.

Now, suppose that a primary station—a computer, for
example—wants to send several frames of information
to a secondary station such as another computer or
terminal, Here's how a transfer might take place.

The primary station starts by sending an S frame
containing the address of the desired secondary station
and a control word which tnquires if the receiver is
ready. The secondary station then sends an S frame
which contains the address of the primary station and
a control word which indicates its ready status. If the
secondary station receiver was ready, the primary station
then sends a sequence of information frames. The
information frames contain the address df the secondary
statlon, a control word, a block of information, and the
FCS words. For all but the last frame of a sequence of
information frames, the P/F bit in the control byte will
be a 0. The 3 Ns bits in the control byte will contain the
number of the frame in the sequence.

Now, as the secondary station receives each informa-
tion frame, it reads the data into memory and computes
the frame-check sequence for the frame. For each frame
in a sequence that the secondary station receives cor-
rectly, it increments an internal counter. When the
primary station sends the last frame In a sequence of
up to seven frames, it makes the P/F bit in the control
byte a 1. This is a signal to the secondary station that
the primary station wants a response as to how many
frames were received correctly. The secondary station
responds with an S frame. The Nr bits in the control
word of this S frame contain the sequence number of
the last frame that was recetved correctly plus 1. In other
words, Ns represents the number of the next expected
frame. The primary station compares Ns = 1 with the
rumber of frames sent In the sequence. If the two
numbers do not agree, the primary station knnws that
it must retransmit some frames. becaus~ they were not
all recelved correctly. The Nr number tells the primary
station which frame number to start the retransmission
l‘rom.’For example, if Nr is 3, the primary station will
retransmit the sequence of frames starting with frame
3. If the sequence of {rames was recetved correctly,
another series of frames can be sent If desired. Actually,
since HDLC operates in full-duplex. the recetving station
can be queried after each frame is sent to see if the

DATA COMMUNICATION AND NETWORKS 521

previous frame was recelved correctly. A similar series
of actions takes place when a secondary station trans-
mits to a primary station or to another secondary

- Sstation.

One advantage of this HDLC scheme is that a large
number of bits can be sent in a frame so the framing
bit percentage is low. Another advantage is that the
transmitter does not have to stop after every short
message for an acknowledge as it does in BISYNC
protocol. True, several frames may have to sent again in
case of an error, but in low-error-rate systems, this is
the exception. HDLC is often used with high-speed
modems, and as we will show in the next section,
HDLC is used along with some higher-level protocols
for network communication between a wide variety of
Systems.

A final point to discuss here {s how HDLC protacol
Is implemented with a microcomputer. At the basic
hardware level, a standard USART cannot be used
because of the need to stuff and strip 0 bits. Instead,
specially designed parts such 4 the Intel 8273 HDLC/
SDLC protocol controller are used. Devices such as
this automatically stuff and strip the required O bits,
generate and check frame-check sequence words, and
produce the interface signals for RS-232C. The devices
interface directly to microcomputer buses.

The actual control of which station uses the data link
at a particular time and the formatting of frames is done
by the system software. The next section discusses
how several systems can be connected together, or
“networked, " so they can communicate with each other.

LOCAL AREA NETWORKS
Inlroduction

The objective of this section is to show you how several
computers can be connected together to communicate
with each other and to share common peripherals such
as printers, large disk drives, FAX machines, etc. We
will start with simple cases and progress to the type
of network that might be used in the computerized
electronics factory we described in an earlier chapter.
To communicate between a single terminal and a
nearby computer, a simple RS-232C connection is suffi-
cient. If the computer s distant, then a modem and
phone line or a leased phone line is used, depending on
the required data rate. Now, for a more difficult case,
suppose that we have in a university building 100
terminals that need to communicate with a distant
computer. We could use 100 phone lines with modems,
but this seems quite inefficlent. One solution to this
problem is to run wires from all of the terminals to a
central point in the building and then use a multiplexer
or data concentrator of some type to send all the
communications over one wideband line. Either time-
domain multiplexing or frequency-division multiplexing

can be used. A demultiplexer at the other end of the line '

reconstructs the original signals. 5
As another example of computer communication,

522 CHAPTER FOURTEEN

suppose that we have several computers in one building
or In a complex of buildings and that the computers
need to communicate with each other. Our computerized
electronics factory is an example of this situation. What
Is needed in this case is a high-speed network, commonly
called a local area network or LAN, connecting the
computers together, We start our discussion of LANs by
showing you some of the basic ways that the systems
on a network are connected together.

LAN Topologies

" The different ways of physically connecting devices on

a network with each other are commonly referred to as
topologies. Figure 14-33 shows the five most common
topologies and some other pertinent data about each,
such as examples of commercially available systems
which use each type. .
In a star topology network, a central controller coordi-
nates all communication between devices on the net-
work. The most familiar example of how this works is
probably a private automatic branch exchange, or PABX,
phone system. In a PABX all calls from one phone on
the system to another or to an outside phone are routed
through a central switchboard. The new digital PABX
systems allow direct communication between computers
within a building at rates up to perhaps 100K bits/s.
In the loop topology. one device acts as a controller.
If a device wants to communicate with ane or more other
devices on the loop, it sends a request to the controller.

TYPICAL TYPICAL TYPICAL
B
TOPALOGY PROTOCOLS NO. OF NODES SYSTEMS
© PABX.
) RS$-232C OR _— COMPUTER
COMPUTER uC CLUSTERS
STARLAN
STAR
@ cPiB
o sDLC TENS IBM 3600:3700,
wC CLUSTERS
Loop
ETHERNET
CSMA/CD OR TENS TO COM
CSMA WITH HUNDREDS PER OMNINET,
ACKNOWLEDGMENT SEGMENT Z-NET
COMMON BUS wC CLUSTERS
soLe TENS TO e
HDLC HUNDREDS PER OMNILINK
(TOKEN PASSING) CHANNEL 4C CLUSTERS
RING
oW e ™0 T0 - WANGNET
\J OTHERS PER HUNDREDS PER LOCALNET
OTHER SERAVICES CHANNE L CHANNE L M/A-COM
BROADBAND BUS

. TERMINAL
8 DISTRIBUTED CONTROL

(© vocaLconTroLLER

MULTINETWORK CONTROLLER
FREQUENCY DIVISION MULTIBLEX

FIGURE 14-33 Summary of common computer network
topologies.

If the loop is not in use, the controller enables the one -

device to output and the other device(s) to receive. The
GPIB or IEEE 488 bus described in the last section of
this chapter is an example of this topology.

In the common-bus topology. control of the bus is
spread among all the devices on the bus. The connection
in this type of system is simply a wire (usually but not
always a coaxial cable), which any number of devices
can be tapped into. Any device can take over the bus to
transmit data. Data is transmitted in fixed-length blocks
called packets. One common scheme to prevent two
devices from transmitting at the same time is called
carrier sense, multiple access with collision detection,
or CSMA/CD. We discuss the details of CSMA/CD in a
later section on Ethernet.

In a ring network, the control is also distributed
among all the devices on the network. Each device on
the ring functions as a repeater, which means that it
simply takes in the data stream and passes the data
stream on to the next device on the ring if it is not the
intended receiver for the data. Data always circulates
around the ring in one direction. Any device can transmit
on the ring. A token Is one common way used to prevent
two or more devices from transmitting at the same time.
A token is a specific lone byte such as 01111111 which
is circulated around the ring when no device is transmit-
ting. A device must possess the token in order to
traiismit. When a device needs to transmit, it removes
the token from the bus, thus preventing any other
devices from transmitting. After transmitting one or
more packets of data, the transmitting device puts the
token back on the ring so another device can grab it
and transmit. We discuss this more in a later section.

The final topology we want to discuss here is the
tree structured network, which often uses broadband

transmission. Before we can really explain this one, we .

need to introduce you to a couple of terms commonly
used with networks. In some networks such as Ethernet,
data is transmitted directly as digital signals at rates of
up to 10 Mbits/s. With this type of signal, only one device
can transmit at a time. This form of data transmission
is often referred to as baseband transmission, because
only one basic frequency is used. The other common
form of data transmission on a network is referred to
as broadband transmission. Broadband transmission
is based on a frequency-division multiplexing scheme
such as that used for community antenna television
(CATV) systems. The radio-frequency spectrum is di-
vided up into 6-MHz-bandwidth channels.

A single device or group of devices can be assigned
one channel for transmitting and ancther for receiving.
Each channel or pair of channels is considered a branch
on the tree. Speclal modems are used to convert digital
signals to and from the modulated radio-frequency
signals required. The multiple channels and the 6-M iz
bandwidth of the channels in a broadband netwcrk
allow voice, data, and video signals to be transmitted at
the same time throughout the network. This is an
advantage over baseband systems, which can transmit
only one digital data signal at a time. but the broadband
system is much more expensive.

- 68

Network Protocols

In order for different systems on a network to commuini-
cate ‘effectively with each other, a series of rules or
protocols must be agreed upon and followed by all of the
devices on the network. The International Standards
Organization, in an attempt to bring some order to the
chaos of network communication, has developed a set
of standards called the open systems interconnection
(OSI) model. This model is more of a recommendation
than a.rigid standard, but to increase compatibility
more and more manufacturers are attempting to follow
it. The OSI model is a seven-layer hierarchy of protocols
as shown in Figure 14-34. This layered approach struc-
tures the design tasks and makes it possible to change,
for example, the actual hardware used to transmit the
data without changing the other layers. We will use a
common nétwork operation, electronic mail, to explain
to you the function of the upper-layers model.
Electronic mail allows a user on one system on a
network to send a message to another user on the same
system or on another system. The message is actually
sent to a “mailbox” in a hard-disk file. Each user on the

_ network periodically checks a personal mailbox to see if

it contains any messages. If any messages are present,
they can be read out and then deleted from the mailbox.

The application layer of the OSI model specifies the
general operation of network services such as electronic
mail, file management, program-to-program communi-
cation, and peripheral sharing. For our electronic mail
example, this layer of the protocol would specify the
format for invoking the electronic mail function.

The presentation layer of the OSI protocol governs
the programs which convert messages to the code and
format that will be understood by the receiver. For
our electronic mail message, this layer might involve
translating the 'message from ASCII codes to EBCDIC
 “-rmatting the message into packets or frames
such as those we described for HDLC in a previous

corac

.

LAYER
NUMBER

FUNCTION

SELLECTS APPROPRIATE SERVICE
FOR APPLICATIONS

PROVIDES CODE CONVERSION
DATA REFORMATTING

COORDINATES INTERACTION BETWEEN
END-APPLICATION PROCESSES

PROVIDES END-TO-END DATA INTEGRITY
AND QUALITY OF SERVICE

APPLICATION 7

PRESENTATION 6

SESSION 5

TRANSPORT 4

NETWORK 3 SWITCHES AND ROUTES INFORMATION
4

TRANSFERS UNITS OF INFORMATION TO

DATA-LINK 2 OTHER END OF PHYSICAL LINK

PHYSICAL 1 TRANSMITS BIT STREAM TO MEDIUM

FIGURE 14-34 International Standards Organization

open systems interconnect (OSI) model for network
communications.

DATA COMMUNICAT'ON AND NETWORKS 323

section a standard file format. Data compression and
encryption also fall in this layer of the protocol.

The sesston layer of the OSI protocol establishes and
terminates logical connections on the network. This
layer is responsible for opening and closing named files,
for translating a user name into a physical network
address, and checking passwords. Electronic mail allows
you to specify the intended receiver of a message by
name. It is the responsibility of this layer of the protocol
to make the connection between the name and the
network address of the named recetver.

The transport layer of the protocol is responsible for
making sure a message is transmitted and received
correctly. An example of the operation of this protocol
layer is the ACK or NAK handshake used in BISYNC

transmission after the receiver has checked to see if the

data was received correctly. For electronic mail, the
message can be written to the addressed mailbox and
then read back to make sure it was sent correctly.

The network layer of the protocol 1s used only in
multichaninel networks. It is responsible for finding a
path throtigh the network to the desired receiver by
switching between channels. The function of this layer
is similar to the function of postal mail routing, which
finds a route to get a letter from your house to the
addressed destination. Another example of the function
performed by this layer is the telephone switching
system, which finds a route to connect a phone call.

The data link layer of the OSI model is responsible
for the transmission of packets or blocks from sender
to receiver. At this level the BCC characters or CRC
characters are generated and checked, zorns are stuffed
in the data, and flags and addresses are added to data
frames. The HDLC data transmission protocol described
earlier in this chapter is an example of the type of factors
involved in this layer. a

The physical layer of the OSI model s the lowest
level. This layer is used to specify the connectors, cables,
voltage levels, bit rates, modulation methods, etc. RS-
232C is an example of a standard which falls in this
layer of the model.

We don't have space here to discuss all the different
networks listed as examples in Figure 14-33, but we will
discuss a few of the most common ones. To start we will
take a more detailed look at the operation of a verv
widespread “common-bus” network, Ethernet. Ethernet
Is a trademark of Xerox Corporation.

Ethernet

The Ethernet network standard was originally deyeloped

by Xerox Corporation. Later Xerox, DEC, and Intel

| BITCcELL |
| e I e

ACTUAL DATA J’

(MANCHESTER-ENCODED DATA)

worked on’ defining the standard sufficiently so that
commercial products for implementing the standard
were possible. It has now been adopted, with slight
changes, as the IEEE 802.3 standard.

Physically, Ethernet is implemented in a common-bus
topology with a single 50-) coaxial cable. Data is sent
over the cable using baseband transmission at 10 Mbits/
s. Data bits are encoded using Manchester coding, as
shown in Figure 14-35. The advantage of this coding is
that each bit cell contains a signal transition. A system
that wants to transmit data on the network first checks
for these transitions to see if the network is currently
busy. If the system detects no transitions, then it can
go ahead and transmit on the network.

Figure 14-36 shows how a very simple Ethernet is set
up. The backbone of the system is the coaxial cable.
Terminations are put on each end of the cable to prevent
signal reflections and each unit is connected into the
cable with a simple tee-type tap. A transmitter-recetver,
or transcetver, sends out data on the coax, receives data
from the coax, and detects any attempt to transmit while
the coax is already in use. The transceiver is connected
to an interface board with a 15-pin connector and four
twisted-wire pairs. The transceiver cable can be as long
as 15 m. The interface board, as the name implies,
performs most of the work of getting data on and off
the network in the correct form. The interface board
assembles and disassembles data frames, sends out
sonrce and destination addresses, detects transmission
errors, and prevents transmission while some other unit
on the network is transmitting.

Tiic method used by a unit to gain access to the
network is CSMA/CD. Before a unit attempts to transmit
on the network, it looks at the coax to see If a carrier
(Manchester code transitions) is present. If a carrier is
present, the unit waits some random length of time and
then tries again. When the unit finds no carrier on the
line, it starts transmitting. While it Is transmitting, it
also monitors the line to make sure no other unit is
transmitting at the same time. The question may occur
to you at this point, If a unit cannot start transmitting
until it finds no carrier on the coax, how can another
unit be transmitting at the same time? The answer to
this question Involves propagation delay. Since trans-
celvers can be as much as 2500 m apart, it may take as
iong as 23 us for data transmitted from one unit to
reach another unit. In other words, one unit may start
transmitting before the signal from a transmitter that
started earlier reaches it. A situation where two units
transmit at the same time is referred to as a collision.
When a unit detects a collision, it will keep transmitting

until all transmitting stations detect that a collision

FIGURE 14-35 Manchester coding used for Ethernet data communication. Note

that encoded data has a transition at center of each bit time.

524 CHAPTER FOURTEEN

COMPUTER FILE SERVER
B PRINT SERVER STATION
=== Naul—— : g : : s
OO {NTERFACE
gggg gg INTERFACE 5 4
0% 0059 592
Oa Oa INTERFACE
Trangceiven i
D rh—-l[Jr-—_-i COAXIAL CABLE I| l)u__l
TERMINATOR TW‘ TRANSCEIVER TRANSCINEA TERMINATOR

FIGURE 14-36 Block diagram of very simple Ethernet system. (Intel Corporation)

has occurred and then stop transmitting. Any other

transmitting units will also stop transmitting and try
again after a random period of time. The term “multiple
access” in the CSMA/CD name means that any unit on
the network can attempt to transmit. The network has
no central controller to control which unit has use of
the network at a particular time. Access is gained by
any unit using the mechanism we have just described.
The maximum number of units that can be connected
on a single Ethernet is 1024. For further information
about how an interface board is bullt, consult the data
sheets for the Intel 82586 LAN coprocessor and the data
sheets for the Intel 82501 Ethernet serial interface.
One problem with standard Ethernet is the coax cable
used to connect units on the network. This cable is
expensive and somewhat difficult to get through wiring
condulits in existing buildings. To solve these problems,
anew Ethernet standard called thin Ethernetor 10BaseT
was developed. The 10 in this name indicates 10-M bits/s
transmission and the T in the name stands for twisted-
palr telephone wire. By limiting the maximum distance
between units to 100m rather than the 2500-m maxi-
mum for standard Ethernet, a 10BaseT network can
use standard telephone-type wiring. which 1s often
already installed or can easily be installed. The basic
operation of the 10BaseT network is basically the same
as that of the standard Ethernet we described previously.
Another problem with Ethernet is that as the amount
of traffic on the network increases, the time that a unit
on the end of the network has to wait before it can
transmit may become very long. As the number of units
Increases, the number of collisions and the amount of
time spent waiting for a “clear shot” increases. This
degrades the performance of the network. In the next
section we discuss token-passing ring networks, which

solve the access problem’ in a way which degrades less
under heavy traffic load.

Token-Passing Rings

IEEE standard 802.5 defines the physical layer and the
data link layer for a token-passing ring network. As the:
name implies, systems on a token-passing ring are
connected in serles around a ring. To simplify wiring,
however, token rings are often connected as shown in
Figure 14-37, page 526. The multistation access unit or
MAU is put in a wiring closet or some readily accessible
place. Unitke the passive taps used in an Ethernet
system, each active station or node on a token ring
receives data, examines it to see if the data is addressed
to it, and retransmits the data to the next station on
the ring. A bypass relay in the MAU will automatically
shunt data around defective or inactive nodes. Data
always travels in one direction around the ring. Data is
transmitted as HDLC or SDLC frames. Early token-ring
network adapter cards transmitted data at 4 Mbits/s, .
but 16-Mbits/s network adapter cards are now becoming
widely available.

Token-passing ring networks solve the multiple-access
problem in an entirely different way from the CSMA/CD
approach described for Ethernet. A token Is a byte of
data with an agreed-upon, unique bit pattern such as
O1111111. If no station Is transmitting, this token is
circulated continuously around the ring. When a station
needs to transmit. it withdraws the not-busy token,
changes it to a busy token of perhaps 01111110, and
sends the busy token on around the ring. The
transmitting unit then sends a frame of data around the
ring to the intended receiver(s). When the transmitting

DATA COMMUNICATION AND NETWORKS 525

NODE 4
BYPASS RELAY [SHORTING CONNECTOR
\ MAU
N |, % J e I
NODE 1 g\ NODE 3
— b \ . -
TOKEN r
FLOW
L]
/
NODE 2

NOTE: MAU = MULTISTATION ACCESS UNIT

FIGURE 14-37 Block diagram of a token ring network
system showing multistation access unit (MAU).

station receives the busy token and the data frame back
again, it reads them in and removes them from the ring.
It then sends out the not-busy token again. As soon as
a transmitting station sends out the not-busy token
again, the next station on the loop can grab the token
and transmit on the network. The first station that
transmitted cannot transmit.again until the not-busy
token works its way around the ring. This gives all units
on the network a chance to transmit in a “round-robin”
manner.

NOTE: Some token-ring networks use tokens
with priority bits so that a high-priority station
can transmit again if necessary before a lower-
priority station gets a turn.

Two questions occurred to us the first time we read
about token-passing rings; perhaps these same two
questions may have occurred to you. The first question
is, How daes a station on the network tell the bit pattern
for a token from the same bit pattern in the data frame?
The answer to this question is bit-stuffing, the same
technique that is used to prevent the flag bit pattern
from being present in the data section of an HDLC
frame. A hardware circuit in the transmitter alters the
data stream so that certain bit patterns are not present.
Another hardware circuit in the receiver reconstructs
the original data.

The second question is, What happens if the not-busy
token somehow gets lost going around the ring? A
couple of different approaches are used to solve this
problem. One approach uses a timer in each station.
When a station has a frame to transmit, it starts a timer.
If the station does not detect a token in the data stream
before the timer counts down, it assumes that the token
was lost and sends out a new token. Another approach

526 CHAPTER FOURTEEN

used by IBM sets up one station as a network monitor.
If this station does not detect a token within a prescribed
time, it clears any leftover data from the ring and sends
out a new not-busy token.

The Texas Instruments TMS380 chip set can be used
to implement a node on a 4-Mbits/s token-ring network.
Consult the data sheets for these devices to get more
information about the operation of a token-ring network.

Token-passing ring networks have the disadvantage
that more complex hardware is required where each
station connects to the network, but as we said earlier,
under heavy traffic loads they are more efficient than
Ethernets. Also, the receive and transmit circuitry at
the connection acts as a repeater, which helps maintain
signal quality throughout the network. Since signals
travel in only one direction around the ring, this topology
is ideally suited for fiber-optic transmission.

A new standard called the Fiber Distributed Data
Interface (FDDI) or ANSI X3T9.5 describes a fiber-optic
token ring network which transmits data at 100
Mbits/s. The FDDI ring actually consists of a fiber which
transmits data in one direction around the ring and
another fiber which transmits data in the other direction
around the ring. This dual-fiber approach allows data
transmission to continue if one fiber path is broken or
interrupted in some way. Nodes on FDDI can be as far
as 2 km from each other, up to 500 nodes can be
connected on the ring, and the maximum circumference
of the ring can be much as 100 km. The Advanced Micro
Devices' Supernet chip set or the National Semiconduc-
tor FDDI chipset can be used along with a microcontrol-
ler, buffer memory, and an electro-optical interface to
build an FDDI node. Consult the data sheets for these
devices to get more information about FDDI operation.

Figure 14-38 shows how an FDDI network can serve
as a backbone which allows high speed communication
between other networks. Circuits called bridges or gate-
ways interface Ethernets, multiplexed Ethernets, or
even T1 type signals with the FDDI. The Pentagon uses
a network such as this.

A transmission rate of 100 Mbits/s may at first seem
like “overkill,” but as we move more and more toward
high-resolution interactive video, computer simulations,
and massive data storage. this rate Is not nearly fast
enough. Work is currently underway on fiber-optic net-
works that transmit data at 250 Mbits/s and 500 Mbits/s
and allow nodes to be as much as 50 km apart.

@

A Network Application Example
and LAN Software Overview

As an example of how you put all the pieces of a network
together. suppose that you have the job of designing
and setting up a general purpose computer room at a
college. The lab Is to be used for computer-aided drafting
(CAD) with AutoCAD: programming in Pascal, C and
assembly language; mechanical engineering simula-
tions: word processing: and other unspecified applica-
tions. All programs that will be run require an IBM PC-
or PS/2-type computer. The computer room is to have
24 workstatlons, a large plotter, a laser printer, and two
letter-quality dot-matrix printers.

45 Mbps
(DS3) MAN

Ethernet Accelerator
«» Connects up to eight Ethernet-compatible
devices directly to the backbone

« Allows high-performance
work stations and file
servers to operate ™~
at full potential with
no degradation of
network performance

802.3 LAN

T1/CEPT Interface
« Transportation and distribution
of T1 signals

FiberWay® 100 Mbps
TDMA Backborie

Fiber Optic Bridges
World's fastest fiber optic full-learning bridges

MANBbridge™; Transparently connects Ethernet
segments in Regional/Metropalitan Area Networks
using ring topology and standard 45-Mbps (DS3)
facilities, without reducing system performance

802.3 Bridge: Links Ethernet networks to backbone

IBM PC/AT'

802.3
Devices

NetServer network management
software

§02.3 LAN * Runs network from any node

N\

= Allows network configuration,
diagnostics, control, monitoring
and reconfiguration

IEEE 802.6

FIGURE 14-38 Fiber distributed data interface (FDDI) network used as

“backbone” for different types of metworks.

The drafting and mechanical engineering instructors
indicate that they need the speed of an 80386-based
machine and display resolution of 1024 x 768 pixels.
These specifications require that each of 24 workstations
be an 80386-based machine with an 8514/A-type video
adapter. Some of the programs that they plan to run are
very memory hungry, so the basic workstations need 2
Mbytes or more of RAM.

The systems need to run a very wide variety of pro-
grams, so a large amount of hard-disk storage is needed.
One alternative is to install a large hard disk In each
workstation and install a set of the required programs
on each disk. One prdblem with this approach is the
cost of the 24 large hard disks. A second problem with
this approach is that it is difficult to maintain the
software on all these separate machines. Updating is
tedious and time-consuming. Still another problem is

(ARTEL Communications.)

that on these Individual machines it is difficult to
protect the application programs from accidental or
mischievous corruption by users.

All these problems can be solved by connecting the
workstations on a network which includes a fast file
server. A single copy of the application programs can be
installed on the file server and accessed from each
workstation as needed. If the hard disk on the server is
large enough, user files can also be stored on it. The
plotter and printers' can also be connected on the file
server so that they are accessible from any workstation.

The file server and its hard disk need to be fast so that
they do not create a bottleneck in the system. You might
choose an 80486-based microcomputer for the file server
and equip it with a 250-Mbyte, 16-ms hard disk. If your
budget permits, you might also include an optical disk
drive in the server so that programming classes could

DATA COMMUNICATION AND NETWORKS ~ 527

access the Microsoft Programmer's Library which is
avallable on CD ROM. The server will also need a 1.2-
Mbyte floppy drive and a 1.44-Mbyte floppy drive to
transfer software from flopples to the harg disk.

The next step is to decide on the software you want

to use to manage the network and to provide the file
server and print server functions. The best approach for
this is to choose the network software which will do the
best job and then choose network hardware which
Is compatible with that software. As we write this
discussion, the best choice seems to be Novell's Netware
386, so we will use it as an example.
- Netware 386 works with Ethernet, ARCnet, and IBM’s
Token Ring boards. Since the workstations in this lab
are physically all in the same room. you might consider
using the 10BaseT or thin ethernet network we de-
scribed earlier, because it is the cheapest of these
alternatives. Remember that this type network transmits
data at 10 Mbits/s over standard twisted-pair phone wire
for distances up to 100 m. Synoptics, 3Com, and several
other companies make adapter boards which Interface
PC or PS/2 buses to a 10BaseT network.

Netware requires a minimum 2 Mbytes of memory in
the server, and it works better with 8M or 10M, so you
should include this in the bid specifications for the
server. i

While you are walting for hardware bids to come in,
purchase orders to go out, and the hardware to arrive,
we will give you an overview of how network software
works so you will have some idea how to install and use
it.

Part of the network software resides in each worksta-
tion and part of it resides In the server. Let’s start with
the workstation part. To refresh your memory, Figure
14-39a shows the software hierarchy for a DOS-based
workstation operating in stand-alone mode. In this mode
an application program such as a word processor uses
DOS function calls to access system peripherals. The
DOS function calis use BIOS procedures to interact with
the actual hardware.

Figure 14-39b shows the software hierarchy when the
workstation is operating in network mode. When the
-application program attempts to access a disk file, for
example, the “interceptor” part of the resident network
software determines . whether the file is located on the
workstation hard disk or on the server hard disk. If the
file is on the workstation hard disk, the interceptor
simply passes the request on to DOS and the access
proceeds through DOS and BIOS as it would in stand-
alone operation. If the file is on the server, the request
goes to the request translator to get assembled in the
proper packet format for transmisston cver Ethernet.
The output from the request translator then goes to the
network communications driver, which sends it to the
server over the network. A sftandard set of network
communication drivers written by Microsoft 1s called
NETBIOS. Other companies which write network control
programs either license NETBIOS from Microsoft or
write thelr own compatible network drivers.

The server reads the requested file. converts it to
packets, and sends It to the workstation. The appro-
priate driver reads the packets into the workstation.

528 CHAPTER FOURTEEN |

APPLICATION APPLICATION
PROGRAM PROGRAM
DOS INTERCEPTOR
I
BIOS DOS l‘ NETBIOS
|
x . T T
WORKSTATION —_— "'l eTHerneT
HARDWARE : ADAPTER
|
b
= |
WORKSTATION| | | NETWORK
HARDWARE | | BUS
1
(@))

FIGURE 14-39 Software hierarchy on a workstation.
(a) Nonnetworked. (b) Networked.

The reply translator part of the software converts the
packets to DOS file format and loads the file in memory
so the application can work with it.

The network software that resides in the server is a
complete operating system in itself. To install Netware
386 on the server, you first format a small partition on
the server hard disk in DOS format. You then load DOS
in this partition so the system is bootable from it and
load some of the basic Netware files here so you can
install the rest of Netware. After you boot the system,
the Installation consists of working your way through
a relatively simple sequence of steps outlined in the
installation procedure.

Once installed, the network operating system is set
up so that only the system administrator can access and
change its operation. The system administrator sets up
user accounts, assigns passwords, and sets the access
rights for files. Application program files are usually
specified as read-only so thar users cannot accidentally
or maliciously modify them. For tiles thal are intended
to be accessed and written to by any one of several users,
Netware 386 has a default feature called file locking,
which prevents one user from accessing the file until a
previous user has finished with tt. In this case the
critical reglon is the file, and file locking provides a way
to protect It. '

Netware 386 uses several techniques to speed up disk
access. First, it formats its partition of the hard disk
differently from the way DOS formats it to make for
more efficient access to the parts of a file. Second. it
uses disk caches such as those we described in the last
chapter to hold large blocks of data read from files. This
reduces the number of read operations required to
access a large file. Finally, Netware uses “elevator seek-
ing” to reduce the amount the heads move to read a
requested set of files for users. Just as an elevator moves

sequentially from floor to floor instead of moving from
floor to floor as requested, the head is moved to access
files in the sequence they are located on disk tracks
rather than strictly in the sequence they wzre requested.

In addition to allowing users to store and access files,
the network operating system has many other useful
features. It sets up a queue of files waliing to be printed
or plotted so that users can just enter a print command
and go on with their work. Most networks have electronic
mail, which allows the system administrator to commu-
nicate with all users and users to communicate with
each other. Most electronic mail systems are set up so
you can define a group of users and direct mail messages
to just that group.

For the reasons that we have discugsed. it is likely
that in the near future almost all computers will in
some way be networked with other computers through
telephone lines or direct connections. In the last section
of the chapter we discuss a different type of computer
network which Is often used in a factory environment
to build a “smeri” test system.

THE GPIB, HPIB, IEEE488 BUS

The preceding sections of the chapter discussed net-
works which allow microcomputers to communicate
with each other and to share peripherals such as print-
ers. The general-purpose interface bus (GPIB), also
known as the Hewlett-Packard interface bus and the
IEEE488 bus that we discuss here is not intended for
use as a computer network in the same way that the
Ethernet and token rings are used. It was developed by
Hewlett-Packard to interface smart test instruments
with a computer.

The standard describes three types of devices that can
be connected on the GPIB. First is a listener, which
can receive data from other instruments or from the
controlier. Exampies of listeners are printers. display
devices, programmable power supplies, and programma-
ble signal generators. The second type of device defined
1is a talker, which can send data to other instruments.
Examples of talkers are tape readers, digital voltmeters,
frequency counters, and other measuring equipment. A
device can be both a talker and a listener. The third type
of device on the bus is a controlier, which determines
who talks and who listens on the bus.

Physically the bus consists of a 24-wire cable with a
connector such as that shown in Figure 14-40a. ﬂage
530, on each end. Actually, each end of the cable has
both a male connector and a female connector, so that
cables can daisy-chain from one unit to the next on the
bus. Instruments intended for use on a GPIB usually
have some switches which allow you to select the 5-bit
address that the instrument will have on the bus.
Standard TTL signal voltage levels are used.

As shown In Figure 14-40b, the GPIB has eight
bidirectional data lines. These lines are used to transfer
data, addresses, commands, and status bytes among as
many as 8 or 10 instruments.

The GPIB also has five bus management lines which
function basically as follows. The interface clear line

(IFC), when asserted by the controller, resets all devices
on the bus to a starting state. It is essentially a system
reset. The attention (ATN) line, when asserted (low),
indicates that the controller is putting a universal
command or an address-command such as “listen” on
th:e data bus. When the ATN line is high, the data lines
contain data or a status byte. Service request (SRQ) is
similar to an interrupt. Any device that needs to transfer
data on the bus asserts the SRQ line low. The controller
then polls all the devices to determine which oné needs
service. When asserted by the system controller, the
remote enable (REN) signal allows an instrument to be
controlled directly by the controller rather than by its
front-panel switches. The end or identify (EOI) signal
is usually asserted by a talker to indicate that the
transfer of a block of data is complete.

Finally, the bus has three handshake lines that coordi-
nate the transfer of data bytes on the data bus. These
are data valid (DAV), not ready for data (NRFD), and
not data accepted (NDAC). These handshake signals
allow devices with very different data rates to be con-
nected together in a system. A little later we will show
you how this handshake works. First we will give you
an overview of general bus operation.

Upon power-up the controller takes control of the bus
and sends out an IFC signal to set all instruments on
the bus to a known state. The controller then proceeds
to use the bus to perform the desired series of measure-
ments or tests. To do this the controller sends out a
series of commands with the ATN line asserted low.
Figure 14-40c shows the formats for the combination
command-address codes that a controller can send to
talkers and listeners. Bit 8 of these words is a don't care,
bits 7 and 6 specify which command is being sent, and
bits 5 through 1 give the address of the talker or listener
to which the command is being sent. For example, to
enable (address) a device at address 04 as a talker, the
controller simply asserts the ATN line low and sends out
a ccmmand-address byte of X1000100 on the data bus.
A listener is enabled by sending out a command-address
byte of X01A,A AAA,, where the lower 5 bits contain
the address that the listener has been given in the
system. When a data transfer Is complete, all listeners
are turned off by the controller sending an unlisten
command, X0111111. The controller turns off the tatker
by sending an untalk command, X1011111. Universal
commands sent by the controller with bits 7, 6, and 5-
all 0's will go to all listeners and talkers. The lower 4 bits
of these words specify one of 16 universal commands.

.Periodically while it is using the bus, the controller
checks the SRQ line for a service request. If the SRQ
line is low, the controller polls each device on the bus
one after another (serial) or all at once (parallel) until it
finds the device requesting service. A talker sucl: as a
DVM. for example, might be Indicating that it has
completed a series of conversions and has some data to
send to a listener such as a chart recorder. When the
controller determines the source of the SRQ. it asserts
the ATN line low and sends listener address commands
to each listener that is to receive the data and a talk
address command to the talker that requested service.
The controller then raises the ATN line high. and data

529

DATA COMMUNICATION AND NETWORKS

ATN
SRQ
IFC

DAV
EO1

D104
D103
D102
D101

SHIELD

NDAC
NRFD

CODE
D8 D? D8 D5 D4 D3I D2 DI MEANING
X 0 <] 0 B4 B3 B2 B UNIVERSAL COMMANDS
X 0 1 AS A4 A3 A2 A1 LISTEN ADDRESSES
X 0 1 1 1 1 1 1 UNLISTEN COMMAND
X 1 0 A5 A4 A3 A2 Al TALK ADDRESSES
-X 1 o] 1 1 1 1 1 UNTALK COMMAND
x 1 1 A5 A4 A3 A2 Al SECONDARY COMMANDS
X 1 1 1 1 1 1 1 IGNORED
——
CODE FOR TYPE OF COMMAND
NOTES: THESE CODES ARE ONLY VALID WHEN ATN IS LOW. ADDRESS 11111

CANNOT BE USED FOR A LISTENER OR A TALKE X

0101-8
(COMPOSITE)

DAV

NRFD

NDAC |

FIAST CATABYTE

DEVICE A

ABLE TO TALK, LISTEN
AND CONTROL

£

Bl

(E. G., CALCULATQR}

DEVICEB

ABLE TO TALK AND
LISTEN

(E. G, DIGITAL VOLTMETE

DEVICEC

ONLY ABLE TO LISTEN

) DATA BUS
(BSIGNAL LINES)

DATABYTE TRANSFER
CONTROL

(E. G., SIGNAL GENERATOR] (’ Ay

(3 SIGNAL LINES)

GENERAL INTERFACE
MANAGEMENT

DEVICED

ONLY ABLE TO TALK

(E. G., TAPE READER)

(b)

SECOND DATA BYTE

(5 SIGNAL LINES)

}oior...8

DAV

‘*———————— NRFD

NDAC

IFC
ATN

L sRa
L REN . N\
EOI

NONE ACCEPTED

SOME ACCEPTED

(a)

FIGURE 14-40 GPIB pins, signals, and ‘handshake waveforms. (a) Connector.
(b) Bus structure. (c) Command formats. (d) Data transfer handshake
waveforms.

is transferred directly from the talker to the listeners
using a double-handshake-signal sequence.

- Figure 14-40d shows the sequence of signals on the
handshake lines for a transfer of data from a talker to
several listeners. The DAV, NRFD, and NDAC lines are

530

CHAPTER FOURTEEN

%)

all open-collector. Therefore, any listener can hold NRFD
low to Indicate that it {s not ready for data or hold NDAC
low to indicate that it has not yet accepted a data byte.
The sequence proceeds as follows. When all listeners
have released the NRFD line (5 in Figure 14-40d),

indicating that they are ready (not not-ready), the talker
asserts the DAV line low to Indicate that a valid data
byte is on the bus. The atldressed listeners then all pull
NRFD low and start accepting the data. When the slowest
listener has accepted the data, the NDAC line will be
released high (9 in Figure 14-40d). The talker senses
NDAC hecoming high and unasserts its DAV signal. The
lisicners pull NDAC low again, and the sequence is re-
peated until the talker has sent all the data bytes it has
to send. The rate of dlata transfer is determined by the
rate at which the slowest listener can accept the data.

When the data transfer is complete, the talker pulls
the EOI line in the management group low to tell the
controller that the transfer s complete. The controller
then takes control again and sends an untalk command
to the talker. it also sends an unlisten command to turn
off the listeners and continues to use the bus according
to its internal program. ;

A standard microprocessor bus can be interfaced to

the GPIB with dedicated devices such as the Intel 8291 —

GPIB talker-listener and 8292 GPIB controller. The
finportance of the GPIB is that it allows a microcomputer
to be connected with several test instruments to form
an integrated test system.)

CHECKLIST OF IMPORTANT TERMS AND
_ CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms in the following
list, use the index to help you find them in the chapter
for review. !

Serial-data communication
Simplex, half-duplex, full-duplex
Synchronous, asynchronous
Marking state, spacing state
Start bit, stop bit
Baud rate

UART. USART, DTE, DCE
20- and 60-mA current loops

RS-232C, RS-422A, RS-423A, RS-449 serial-data
standards -

CODECs. TDM, and PCM

ISDN
‘Modems

Amplitude Modulation, FSK, PSK
Quaternary amplitude modulation (QAM)
Scrambler, descrambler

Fiber-optic data communication
Critical angle
Multimode and single-mode fibers

Terminal emulator

Circular buffer, ring buffer
Head pointer, tail pointer

Critical region

Binary synchronous communications protocol (BISYNC)
Byte-controlled protocol (BCP)
Cyclic redundancy check
XMODEM protocol

HDLC, SDLC protocols
Bit-oriented protocol (BOP)
Frame, field, flag
Frame check sequence (FCS)

Local area network (LAN)

Topologies—star, ioop, ring, common-bus, broadband-
bus (tree)

Electronic mail

Open system interconnection model (OSI)
Presentation, session, transport, network, data link
Physical layers

Ethernet
Transceiver
Collision
gerserp
10 BaseT

Token-passing rings
Fiber distributed data interface (FDDI}
File server, print server

GPIB, HPIB, IEEE 488 bus standard
Listener, talker, controller

REVIEW QUESTIONS AND PROBLEMS

1. Draw a diagram showing the bit format used for
asynchronous serial data. Label the start, stop, and
parity bits. Number the data bits to show the order
of transmission. :

2. A terminal is transmitting simple asynchronous
serial data at 1200 Bd.
a. How much time is required to transmit 1 bit?
b. Assuming 7 data bits, a parity bit. and 1 stop
bit. how long does it take to transmit one
character?

- 69

3. What is the main difference between a UART and
a USART?

4. Define the term modem and explain why a modem
is required to send digital data over standard
switched phone lines.

5. Describe the functions of the DSR, DTR. RTS.
CTS. TxD. and RxD signals exchanged between a
terminal and a modem.

DATA COMMUNICATION AND NETWORKS 531

10.

11.

12.

13.

532

What frequency transmit clock (TxC) is required by
an 8251A in order for it to transmit data at 4800
Bd wtth a baud rate factor of 16?

a. Show the bit pattern for the mode word and
the command word that must be sent to an

8251A to initialize the device as follows: baud .

rate factor of 64, 7 bits/character, even parity,
1 stop bit, transmit interrupt enabled, recetve
interrupt enabled, DTR and RTS asserted, error
flags reset, no hunt mode, no break character.

b. -Show the sequence of instructions required to
initialize an 8251A at addresses 80H and 81H
with the mode and command words you worked
out in part a.

c. Show the sequence of instructions that can be
used to poll this 8251A to determine when the
receiver buffer has a character ready to be read.

d. How can you determine whether a character
received by an 8251A contains a parity error?

e. What frequency transmit and receive clock will
this 8251A require in order to send data at
2400 Bd?

J. What other way besides polling does the 8251A
provide for determining when a character can
be sent to the device for transmission? Describe
the additional hardware connections required
for this method.

Give the signal voltage ranges for a logic high and
for a logic low in the RS-232C standard.

a. Describe the problem that ~ccurs when you
attempt to connect together two RS-232C de-
vices that are both configured as DTE.

b. Draw a diagram which shows how this problem
can be solved.

a. Why are the two ground pins on an RS-232C
connector not just jumpered together?

b. What symptom will you observe if the wire
connected to pin 5 of an RS-232C terminal is
broken?

Explain why systems which use the RS-422A or
RS-423A sigrial standards can transmit data over
longer distances and at higher baud rates than RS-
232C systems.

a. How does an FSK modem represent digital 1's
and O's in the signal it sends out on a phone
line?

b. How does an FSK modem perform full-duplex
communication over standard phone lines?

c. Approximately what is the maximum bit rate for
FSK data transmission on standard switched
telephone lines?

a. Draw a waveform to show the signal that a
simple ‘phase-shift keying (PSK) modem will
send out to represent the binary data
011010100. .

b. Describe how phase shift modulation can’ be
used to transmit 2 data bits with only one
carrier change.

CHAPTER FOURTEEN
¥ %

14.

15.

16.

17.

18.

19.

20.

21.

¢. Describe how quatenary amplitude modulation
transmMis 4 data bits with only one carrier

change.

a. Why do telephone companies transmit signals
over long distances in digital form rather than
in analog form?

b. Describe the operation of a codec.

¢. Why are codecs designed with nonlinear re-
sponse?

d. Explain how telephone companies commonly
transmit many phone signals on a single wire
or channel.

a. Briefly describe the operation of the lntcgrated
services digital network.

b. Explain the significance ISDN has for data
communication between computers.

a. Draw a diagram which shows the construction
of a fiber-optic cable, and label each part.

b. Identify two types of devices which are used to
produce the light beam for a fiber-optic cable
and two devices which are commonly used to
detect the light at the receiving end of the fiber.

c. Why should you never look into the end of
a fiber optic cable to see if light is getting
through?

d. Describe the difference between a multimode
fiber and a single-mode fiber. Give a major
advantage and a major disadvantage of each
type.

¢. What are the major advantages of fiber-optic
cables over metallic conductors?

Using IBM PC BIOS and DOS calls, write an assem-
bly language program which reads characters from
the keyboard and puts them in a buffer until a
carriage return is entered. The characters should
be displayed on the CRT as entered. When a carriage
return is entered, the contents of the buffer should
be sent out the COM1 serial port.

The SDK-86 will accept only uppercase letters as
commands. The SDK-86 emulator program in Fig-
ure 14-25 would be friendiier if you did not have to
remember ‘0 press the caps lock key on the IBM.
Write an assembly language routine that will con-
vert a letter entered in lowercase to uppercase
without affecting entered uppercase letters or num-
bers and describe where you would insert this
section of code In the program in Figure 14-25.

Describe the operation of a circular or ring buffer.
Include in your answer the function of the tail
pointer. the head pointer. and how the buffer-full

“and buffer-empty conditions are detected.

o
Why is it necessary to disable the UART interrupt
input of the 8259A during part of ‘the CHK_N_
DISPLAY procedure in Figure 14-27b?

a. When changing a bit in a control word or
interrupt mask word, why should you not alter
the other bits in the word?

Show the assembly language instructions you
would use to unmask IR5 of an 8259A at base
address 80H without chfu,nglng the interrupt
status of any other blts:y;'f

22. Why is synchronous serial 'data communication
much more efficient than asynchronous communi-
cation?

23. a.

25. a.

b.

If an 8251A is-being used in synchronous
mode for a BISYNC data link. what additional
initialization word(s) must be sent to the
device?

_How does the 8251A detect the start of a

message?

How does the 8251A indicate that it has found
the start of a message?

How does the receiving station in a BISYNC

_link indicate that it found an error in the -

received data?

How is the start of a message frame indicated

" in a bit-oriented protocol such as HDLC?

How does an HDLC system prevent the flag bit
pattern from appearing in the data part of the
message?

How does the receiver in an HDLC system tell
the transmitter that an error was found in a
transmitted frame?

Draw simple dlagrams which show the five
common network topologies.

For each topology identify one commercially
available system which uses it.

26. What is the difference between a baseband network
and a broadband network?

27. a.

b.

C.

List the seven layers of the ISO open systems

,modcl.
“Which of these layers is responsible for assem-
. bling messages into frames or packets?

Which layer is responsible for making sure the
message was transmitted and received cor-
rectly?

31.

Describe the topology. physical connections,
and signal type used in Ethernet. *
Describe the method used by a unit on an
Ethernet to gain access to the network for
transmitting a message.

What response will a transmitting station make
If 1t finds that another station starts transmit-
ting after it starts?

. What is the term used to refer to this condition?

Describe the method used by a unit on a token-
passing ring to take control of the network for
transmitting a message frame.

What is the advantage of this scheme over the
method used in Ethernet?

How can a token ring network recover if the
token 1s lost while being passed around the
ring?

Describe how the software on a network node
responds when the user enters a command
which accesses the hard disk in the work-
station. ' ’

. Describe how the software on a network node
responds when the user enters a command
which accesses the hard disk on the file server.
Describe how the file server software protects
application program files from being modified
by users.

Describe how the file server software protects
user files from access by other users.

For what purpose was the GPIB designed?
Give the names for the three types of devices
which the GPIB defines.

List and briefly describe the function of the
three signal groups of the GPIB.

Describe the sequence of handshake signals
that take place when a talker on a GPIB trans-
fers data to several listeners. How does this
handshake scheme make it possible for talkers
and listeners with very different data rates to
operate correctly on the bus? =

DATA COMMUNICATION AND NETWORKS 533

The 80286, 80386, and
80486 Microprocessors

1]

For most of the examples up to this point in the book,
we have used the 8086/8088 microprocessor, because it
is the simplest member of this family of Intel processors
and is therefore a good starting point. Now it is time to
look at the evolutionary offspring of the 8086. To give
you an overview, here are a few brief notes about the
members of this family.

The 80186 processor is basically an 8086 with an on-
chip priority-interrupt controller, programmable timer,
DMA controller, and address decoding circuitry. This
processor has been used mostly in industrial control
applications.

The 80286, another 16-bit enhancement of the 8086,
was introduced at the same time as the 80186. Instead
of the integrated peripherals of the 801886, it has virtual
memory-management circuitry, protection circuitry,
and a 16-Mbyte addressing capability. The 80286 was

_ the first family member designed specifically for use as
the CPU in a multiuser microcomputer.

The 80386, the next evolutionary step in the family,
is a 32-bit processor with a 32-bit address bus. The 32-
bit ALU allows the 80386 to process data faster, and the
32-bit address bus allows the 80386 to address up to 4
Gbytes of memory. Another enhancement of the 80386
is that segments can be as large as 4 Gbytes instead of

" only 64 Kbytes. The memory-management circuitry and
protection circuitry in the 80386 are improved over that
in the 80286, so the 80386 is much more versatile as
the CPU in a multiuser system.

The latest current member of this family, the 80486,
has the same CPU as the 80386, so it has the same
addressing capability, memory-management, and pro-
tection features as the 80386. The main new features
included in the 80486 are a built-in 8-Kbyte code/data
cache and a 32-bit floating-point-unit, similar to the
8087 we discussed in Chapter 11.

As perhaps you can see from the preceding brief

discussions, the 80286, 80386, and 80486 were de-)

signed for use as the CPU In a multitasking microcom-
puter system. To help you better understand the opera-
tion and design rationale of these processors, we start
the chapter with a discussion of the problems that must
be solved in writing a multitasking/multtuser operating
system. We then discuss the 80286, 80386, and 80486
microprocessors in detail and explain how the features
designed in these processors help solve the problems
involved in implementing a multitasking operating sys-

534

tem. After that we discuss how you develop real mode
and protected mode programs for systems using these
devices. .

Finally in the chapter we discuss some of the directions
in which microcomputer evolution seems to be heading,
Included in this section are discussions of RISC proces-
sors, parallel processors, artificial inteiligence, “fuzzy”
logic, and neural networks.

OBJECTIVES

At the conclusion of this chapter, you should be able to:

1. Describe the difference between time-slice schedul-
ing and preemptive priority-based scheduling.

2. Define the terms blocked, task queue, deadlock,
deadly embrace, critical region, semaphore, kernel,
memory-management unit, and virtual memory.

3. Describe how “expanded” memory is used to In-
crease the amount of memory available in a micro-
computer.

4. Describe how virtual memory gives a computer
much more “logical” address space than the physi-
cal memory actually present in the system.

5. Describe the types of protection that should be
Implemented in a multitasking operating system.

6. Describe two methods that can be used to protect
a critical region of code

7. List the major hardware and software features that
the 80286 microprocessor has beyond those in.the
8088.

8. Show how the 80286 constructs physical addresses
In its real address mode and in its protected virtual
address mode.

9. List the-evolutionary advances that the 80386 has
over the 80286.

10. Describe how the 80386 produces a physical ad-
dress when It is opérating in paged mode

11. Describe how segment-based protection is imple-
mented in an 80386 system operating in protected
mode.

12. Describe how an 80386 call gate is used to allow
application programs to access operating systems
procedures.

13. Describe how an 80386 performs a task switch.
14. Explain the term virtual 8086 mode for an 80386.

IS. List the major advances that the 80486 has over
the 80386.

16. Describe how system programs are developed for
an 80386 or 80486 protected-mode system.

17. Describe how application programs are developed
for 80386 or 80486 systems.

18. Describe the opeération of the Microsoft Windows
multitasking environment.

19. Define the terms RISC, CISC, artificial intelligence,
expert system, neural network, and fuzzy logic.

MULTIUSER/MULTITASKING
OPERATING SYSTEM CONCEPTS |

Introduction

The basic principle of a timeshare system is that the
CPU runs one user’s program for a few milliseconds,
then runs the next user’s program for a few milliseconds,
and so on until all of the users have had a turn. It cycles
through the users over and over, fast enough that each
user seems to have the complete attention of the CPU.
An operating system which coordinates the actions of a
timeshare System such as this is referred to as a
multiuser operating system. The program or section of
a program for each user is referred to as a task or
process, so a multiuser operating system is also com-
monly referred to as multitasking. Multitasking operat-
ing systems are also used to control the operation of
machines in industrial manufacturing environments.
The factory controller program in Figure 10-35 is an
example of a very simple multitasking operating system.

In this section we discuss some of the major problems
encountered in building a m®Ititasking operating sys-
tem; then in later sections of the chapter we show you
how the features of the 80286, 80386, and 80486 help
solve these problems.

Scheduling

TSR PROGRAMS AND DOS

MS DOS is designed as a single-user, single-task operat-
ing system. This means that DOS can usually execute
only one program at a time. The only exception to this
in the basic DOS is the print program. print.com. You
may have noticed that when you execute the print
command, DOS returns a prompt and aliows you to enter
another command before the printing is completed. The
print program starts printing the specified file and then
returns execution to DOS. However, the print program
continues to monitor DOS execution. When DOS is

sitting in a loop waiting for a user command or some
other event, the print program borrows the CPU for a
short time and sends more data to the printer. It then
returns execution to the interrupted DOS loop.

The DOS print command then is a limited form of
multitasking. Products such as Borland's Sidekick use
this same technique in DOS systems to provide pop-up
menus of useful functions such as a calculator, an
appointment book, and a notepad. The first time you
runa program such as Sidekick, it is loaded into memory
as other programs are, However, unlike other programs,
Sidekick is designed]so that when you terminate the
program, it stays “resident” in memory. You can execute
the program and pop up the menu again by simply
pressing some hot key combination such as Ctrl-Alt.
Programs which aork in this way are called terminate-
and-stay-resident or TSR programs. Because TSRs are
so common in the PC world, we thought you might find
it interesting to see how they work before we get into
discussions of the scheduling techniques used in full-
fledged multitasking operating systems.

When you boot up DOS, the basic 640 Kbytes of RAM
are set up as shown in Figure 15-1a. Starting from
absolute address 00000, the first section of RAM is
reserved for interrupt vectors. The main part of the DOS
program is loaded into the next-higher section of RAM.
After this come device drivers such as ANSLSYS,
MOUSE.SYS, etc. The DOS command processor pro-
gram, command.com, gets loaded into RAM at boot time.
This program. which processes user commands and
executes: programs, has two parts. The resident part of
the command processor is loaded in memory just above
the device drivers and the-transient part is loaded in at
the very top of RAM. When you tell DOS to execute a

COMMAND PROCESSOR
(TRANSIENT PORTION)

COMMAND PROCESSOR
(TRANSIENT PORTION)

TRANSIENT PROGRAM AREA - TRANSIENT PROGRAM AREA
(TPA) A ? (TPA)

7’

TSR PROGRAM #2

TSR PROGRAM #1

COMMAND PROCESSOR
(RESIDENT PORTION)

COMMAND PROCESSOR
(RESIDENT PORTION)

|
DEVICE DRIVERS DEVICE DRIVERS

DOS DOS

INTERRUPT VECTORS INTERRUPT VECTORS

(a) (b)
FIGURE 15-1 (a) DOS memory map without TSRs.
(b) DOS memory map with TSRs.

535

THE 80286, 80386, AND 80486 MICROPROCESSORS

.exe program, the program will be loaded into the
transient program area of RAM and, if necessary, into
the RAM where the transient part of the command
processor was loaded. (The transient part of the com-
mand processor wiill be reloaded when the program
tzrminates.)

Normally, when a program terminates all the transient
program area is deallocated, so that another program
can be loaded in tt to be run. TSR programs, however,
are terminated in a special way so that they are left
resident in memory, as shown in Figure 15-1b. The
transient program area is simply reduced by the size of
the TSR program(s). When another program is loaded
to be run, it is put in RAM above the TSRs.

One question that might occur to you at this point is,

How do I make a program resident? To make the program -

stay resident when it terminates, you use the 31H
subfunction of the DOS INT 21H function call. Specifi-
cally, you load AH with 31H, load AL with O0H, load DX
with the length of the TSR program, and execute the
INT 21H instruction. When the program is run from the
command liné or the AUTOEXEC.BAT file, it will be
loaded into RAM, terminated, and left resident.

The next question that might occur to you then is,
How does the TSR program get executed after it is
resident? The answer to this question is that TSRs are
executed as part of interrupt procedures. The exact
mechanism depends on whether the TSR is active or
passive. 5 <

An example of a passive TSR is the switch.com pro-
gram which I use on my computer. The purpose of this
program is to switch the functions of the Caps Lock key
and the Ctrl key so that I don't have to retrain my finger
to the key positions on my new keyboard. When DOS
finds the statement “switch” in my AUTOEXEC.BAT file,
it executes the switch.com program. The switch.com
program terminates and remains resident. To accom-
plish the desired switch action, the program “intercepts”
the BIOS keyboard interrupt, 09H, as shown in Figure
15-2a. You may remember that we showed you how
to intercept interrupts at the start of the SDKCOMI1
program in Figure 14-27. The result of this Interception
is that whenever a key is pressed, execution goes first
to the switch TSR program. The switch program then
calls the BIOS INT 09H procedure to read in codes from
the keyboard. If the key code read from the keyboard
represents a Caps Lock, it is replaced with the code for
a Ctrl, and if the key code represents a Ctrl, it is replaced
with the code for a Caps Lock. Other key codes are
simply passed on as received. To DOS, then, the switch
TSR is simply an interrupt procedure which is executed
automatically when a key on the keyboard is pressed.

An example of an active TSR is Borland's Sidekick
program, which pops up a menu of command options
when you press the Ctrl key and the Alt key. As we
mentioned before, Stdekick allows you to temporarily
pause during some other program and write a note in
a notebook file, perform a calculation on a screen-based
calculator, check your appointment schedule, or any
one of several other functions. To terminate Sidekick
and return to the previously executing program, you
press the Esc key. As with the passive switch.com TSR,

536

CHAPTER FIFTEEN

MAIN
PROGRAM SWITCH
TSR INT 09H
PROCEDURE
READS
KEYCODES
PROCESS IRET
(a)
MAIN
TSR
PROGRAM FLAG
PROC INT 09H
PROCEDURE
INT 09H
IRET
NO
YES
’ SET
FLAG
’\ lRET
(b)
MAIN
PROGRAM
TSR INT 08H
PROCEDURE
TIMER TICK
INT 08H
MAIN PART
/’i OF TSR

RET

FIGURE 15-2° (a) Program flow for switch.com passive
TSR. (b) Program flow for flag set part of active TSR.
(c) Program flow for main part of TSR.

you make Sidekick resident by running it from the
com d line or as part of the AUTOEXEC.BAT file.
Figure 15-2b and ¢ show how an active TSR such
as Sidekick is commonly executed when a hot key
combination is pressed.

As shown In Figure 15-2b, the first part of the TSR
intercepts the keyboard interrupt and immediately calls
the BIOS keyboard procedure to read in the scan code
from the keyboard. When execution returns from the
BIOS INT 09H procedure, the TSR checks the returned
key code to determine if a hot key was pressed. If a’hot
key was not pressed, execution simply retums (o the
interrupted program. If a hot key was pressed, the TSR
procedure sets a global flag in memory before returning
to the Interrupted program. Another section of the TSR
will check this flag at periodic intervals to determine If
the main part of the TSR should be executed.

The part of the TSR which checks the hot key flag is
often connected with the‘glock tick interrupt procedure,
as shown in Figure 15-2¢. The normal clock tick inter-
rupt vector is replaced with the starting address of this
section of the TSR. When a clock tick interrupt occurs
(about every 18 ms for a PC- or PS/2-type computer),
execution will then go to this section of the TSR. The
TSR resets the hot key flag and immediately calls the
normal BIOS clock procedure. This call is necessary
because the clock procedure updates the system clock
and controls the timing of many other system opera-
tions. When execution réturns to the TSR from the BIOS
clock procedure, a check is made to see if a hot key was
pressed. If not, execution is simply returned to the
program that was interrupted by the clock tick.

If a hot key was pressed, this section of the TSR
usually has to determine if DOS or BIOS is executing
any procedures before transferring execution to the
main part of the TSR. The problem here is that for the
most part, DOS and BIOS procedures are not reentrant.
This means that the system would probably “lock up™ if
the TSR happened to call a DOS or BIOS procedure that
was executing when the clock tick Interrupt occurred.
We don't have space to show you the details here, but
the DOS INT 28H function can be used to determine if
it is safe to run a TSR which uses DOS function calls to
access disk files, etc.)

If a DOS or BIOS function was in process when the
clock tick occurred, execution is simply returned to the
interrupted program. When the next clock tick occurs,
this middle section of the TSR will again check if DOS
Is available. If no DOS or BIOS functions were executing
when the interrupt occurred, execution will go to the
main part of the TSR. When the main part of the TSR
finishes, execution is returned to the interrupted main
program. Note that the hot key flag was Prcvlously reset,
so that if another clock tick interrupt occurs while the
main part of the TSR is executing., the BIOS clock
procedure will be executed, but the main part of the
TSR will not be called again.

If you want to experiment with TSRs, the Bibliography
lists a couple of references which have detatled examples
of how to write TSRs.

As you can perhaps see from the preceding discussion,
the TSR scheme allows a microcomputer to do limited

multitasking, but it i{s not useful for controlling a
multiuser system. In the next section we discuss the
scheduling method commonly used In multiuser operat-
ing systems.

TIME-SLICE SCHEDULING

In a full-fledged multitasking or multiuser operating
system, the part of the operating system which deter-
mines when it is time to switch from one task to another
is called the scheduler., dispatcher, or supervisor. The
most common method of scheduiing task switches is
tne ttme-slice method which we discussed previously.
In a simple round-robin lmplen\entauon of this ap-
proach, the CPU executes one task for perhaps 20 ms
and then switches to the next task. After all tasks have
had their turn, execution returns to the first. In the
program in Figure 10-35 we showed you how a program-
mable timer, priority-interrupt controller, and interrupt-
service procedure can be used to implement this type of
scheduling. The UNIX operating system and the 0S/2
operating system use a more complex time-slice schedul-

ing approach to implement multitasking. The advantage. _

of the time-slice approach in a multiuser system is
that all users are serviced at approximately equal time
intervals. As more users are added, however, each user
gets serviced less often, so each user's program takes
longer to execute. This is referred to as system degrada-
tion. For Industrial control operating systems, this

" variable scheduling is often not appropriate, so a differ-
* ent scheduling method is used. :

PREEMPTIVE PRIORITY-BASED SCHEDULING

In a system which uses preemptive priority-based
scheduling, an executing low-priority task can be inter-
rupted by a higher-priority task. When the high-priority
task finishes executing, execution returns to the low-
priority task. This approach is well suited to some
control applications because it allows the most im-
portant tasks to be done first. Priority-interrupt control-
lers such as the 8259A are often used to set up and
manage the task service requests. The Intel RMX 86
opgratmg system uses priority-based scheduling.

Preserving the Environment

The registers, data, pointers, etc., used by an executing
task are referred to as its environment, state, or context.
When a task switch occurs, the environment of the
interrupted task must be saved so that the task can be
restarted properly when it receives another time slice.
The usual way of preserving the environment is to keep
it In a speclal memory segment or on a stack. Some
operating systems keep a separate stac" {or each task.
In either case, when a task switch occurs the operating
system saves the environment of the interrupted task
and a pointer to the saved environment. When it is time
to switch back to that task. the operating system uses
the pointer to access the environment it saved. This
process is commonly called “context switching.”

A less ocvious point in a multitasking system is that
any global procedures have to be reentrant. This is

THE 80286, 80386, AND 80486 MICROPROCESSORS 537

necessary so that if one task Is executing a procedure
and its time slice ends, other tasks can use the proce-
dure, and the procedure will still complete correctly
when execution returns to the first task. Refer to Figure
5-20 if you need a refresher on-reentrancy.

Accessing Resources

_Another problem encountered in a multitasking system

is assuring that tasks have orderly access to resources’

such as printers, disk drives, etc. As one example of
this, suppose that a user at a terminal needs to read a
file from a hard disk and print it on the system printer.
Obviously the file cannot be read in from the disk and
printed in one of the 20-ms time slices allotted to that
user, so several provisions must be made to gain access
to the resources and hang on to them long enough to
get the job done properly. A flag or semaphore in memory
is used to indicate whether the disk drive Is in use by
another task or not. Likewise, another semaphore is
used to Indicate whether the p. nter is in use. If a task
cannot access a 1esource because it is busy, the task is
sald to be blocked. Now, rather than making the user
type in a print command over and over until the disk
drive or the printer is available, most operating systems
of this type set up queues of tasks waiting for each
resource. When one task finishes with a resource, it
resets the semaphore for that resource. The next task
in the queue can set the semaphore to indicate the
resource is busy and then use the resource.

The Need for Protection

An interesting problem can occur in a multitasking
operating system when two 'or more users attempt to
read and change the contents of a memory location at
the same time. As an example, suppose that an airline
ticket-reservation system is operating on a time-slice
basis. Now, further suppose that just before the end of
his or her time slice, one user examines the memory
location which represents a seat on a plane and finds

the seat empty. Another user on the system can then,
in his or her time slice, examine the same memory
location, find it empty. mark it full, and print out a
reservation confirmation on the CRT. When execution
returns to the first user, his or her program has already
checked the seat during its previous time slice, so
it marks the seat full, and prints out a reservation
confirmation on the CRT. The two people assigned to
the same seat may make nasty remarks about computers
unless this problem is solved.

The section of a program where the value of a variable
is being examined and changed must be protected from
access by other tasks until the operation is complete.
The section of code which must be protected is called a
critical regton or critical section. A technique called
mutual exclusion is used to prevent two tasks from
accessing a critical region at the same time. In the
CHK_N_DISPLAY procedure in Figure 14-27 we showed
how a critical region can be protected from an interrupt
procedure by simply masking the interrupt. In a time-
slice system, however, a semaphore is used to provide
mutual exclusion.

Figure 15-3 shows how this can be done with 8086
assembly language instructions. The instruction se-
quence is the same for each task. If task 1 needs to enter
a critical section of code, it first loads the semaphore
value for critical-region-busy into AL. The single instruc-
tion XCHG AL, SEMAPHORE then swaps the byte in AL
with the byte in. the memory location named SEMA-
PHORE. it is important to do this in one {nstruction so
that the time-slice mechanism cannot switch to another
task halfway through the exchange and cause our airline
problen.

After the semaphore is read in. Figdve 15-3, it is
compared with the busy value. If the critical region is
busy, execution will remain in a wait loop for as many
time slices as are required for the critical region to
become free. If the semaphore value is a O, indicating
not busy. then execution enters the critical region. The
XCHG instruction has already set the semaphore to
indicate the critical region is busy. After execution of

:Instructions for accessing critical region of code protected by semaphone - USER -1

MOV AL, 01

; Load semaphore value for region busy

HOLD: XCHG AL, SEMAPHORE ; Swap and set semaphore

CMP AL, 01 ; Check if region is busy
JE HOLD ; Yes, loop until not busy. No enter critical region of code.
; Instructions which access critical region are inserted here

MOV SEMAPHORE, 00 ; Reset semaphore to make critial region availasble to others.

‘

-

;Instructions for accessing critical region of code.protected by semaphone - USER 2

MOV AL, 01 , Load semaphore value for region busy
HOLD: XCHG AL, SEMAPHORE ; Swap and set semaphore
CMP AL, O1 ; Check if region is busy
JE HOLD : Yes, loop until not busy. No enter critical region of code.

: Instructions which access critical region are inserted here
MOV SEMAPHORE, 00 ; Reset semaphore to make critial region available to others.

FIGURE 15-3 8086 assembly language sequences showing how a flag or
semaphore can be used to provide mutual exclusion for a critical region of

code.

538 CHAPTER FIFTEEN

the critical region finishes, the MOV SEMAPHORE, 00
instruction resets the semaphore to indicate that the
critical region 1s no longer busy. Task 2 can then swap
the semaphore and access the critical region when
nieeded. The semaphore functions in the same way as
the “occupied” sign on a restroom of a plane or train. If
you mentally try interrupting each sequence of instruc-
tions at different points, you should see that there {s no
condition where both tasks can get into the critical
region at the same time.

Another region that requires protection s the operat-
ing system code. Most single-user operating systems
such as DOS do little to prevent user programs from
corrupting the operating system code and data areas.
The usual results of this and Murphy's law are that an
incorrect address in a user program may cause it to
write over critical sections of the operating system. The
system then “locks up” and the only way to.get control
again is to reboot the system. In a multitasking system
this is Intolerable, so several methods are used to protect
the operating system. k

The major method is to construct the operating system

_ In two or more layers. Figure 15-4 shows an “onlonskin"
“diagram for a two-layer operating system. The basic
principle here is that the inner circle represents the
code and data areas used by the operating system. The
outer layer represents the code and data areas of user
programs or tasks that are being run under control of
‘the operating system. The inner layer is protected be-
cause user programs can only access operating system
resources through very specific mechanisms rather than
asimple, accldental call or jump. Devices in the Motorola

GLOBAL SPACE

GLOBAL
DATA

TASK
B

FIGURE 15-4 “Onionskin” diagram showing two-level-
protection scheme for multitasking operating system.
(Intel Corporation)

~70

MC68000 family of microprocessors, for example, are
designed to accommodate a two-level structure such as
this. The MC68000 family devices have two modes
of operation, user and supervisoiy. Certain priviieged
instructions which affect the operating system can only
be executed when the processor {s in supervisory mode.
As we discuss in great detall later, the Intel 80286,
80386, and 80486 microprocessors have hardware fea-
tures which allow up to four levels of protection: to be
butlt into a system. The 80286, 80386, and 80486
microprocessors also provide a hardware mechanism
which can be used to protect tasks from each other.

- Memory Management

INTRODUCTION

There are two major reasons why memory must be
specifically managed in a multitasking operating system.
The first reason is that the physical memory is usually
not large enough to hold the operating system and all
of the application programs that are being executed by
the different users. The second reason is to make sure
that executing tasks do not access protected areas of
memory. Some memory management can be done by
the operating system software, but complete memory
management and protection require the aid of hardware
called a memory-management unit or MMU. Before we
get into the operation of an MMU, we want to give you
a little background on other methods used to solve the
limited memory problem.

OVERLAYS

A common problem, even in older, single-user systems,
is that the physical memory is not large enough to
hold, for example, an assembler and the program being
ases —~led, The traditional solution to this problem is
to write the assembler in modules and use an overlay
scheme. When the assembler Is invoked, the executive
module of the assembler is loaded into memory, and an
additional block of memory space called the overlay
area s reserved for the assembler. The first module of
the assembler is loaded into this overlay area. When the
assembler reaches a point where it needs the next
module, it reads that module, referred to as an overlay,
from disk into the overlay area reserved in memory.
When the assembler reaches a point where it needs
another overlay, it reads that overlay from disk and loads
it into the same overlay area in memory. The overlay
approach is commonly used with assemblers, complflers,
word processors, and spreadsheet programs. Inciden-
tally. the Borland Turbo C+ + tools we Introduced you
to in Chapter 12 can be used to develop an overlay type
program.

BANK SWITCHING, EXPANDED MEMORY,
AND EXTENDED MEMORY

Another approach traditionally used to expand the avat!-
able memory in a microcomputer is bank switching.
Early microprocessors such as the Intel 8085 have only
16 address lines, so they can directly address only 64
Kbytes of memory. Figure 15-5 shows how the amount

539

THE 80286, 80386, AND 804380 ICROPROCESSORS

Ay Yyt

PORT

BANK 7

RER

[e]
=
w

FIGURE 15-5 Block diagram showing how
microcomputer memory can be expanded with bank
switching.

of memory accessible In a system such as this can be
expanded beyond the address limit. The hardware is
configured so that when the power is first turned on,
the 16-Kbyte bank iabeled bank O is enabled. Let's
assume that this bank occuples system address space
4000H--7FFFH and that system address lines A0-A13
are used to address the bytes in this bank.

To switch to bank 1, a byte which turns off bank 0
and turns on bank 1 is output to the selection port. The.
bank 1 devices now occupy the address space 4000H-
7FFFH and system address lines AO-A13 are used to
address the bytes in this bank. Any of the other banks
can be switched into the 4000H-7FFFH memory window
by simply sending the appropriate word to the control
port. As you can see; this bank-switching schen.e allows
the processor to access 8 banks of 1b n.,.:- each ora
total of 128 Kbytes through a 16-Kbyte window in the
processor address space. Let's see how this scheme is
used in IBM PC- and PS/2-type microcomputers.

The 8086 or %%BS processor used in PC-type micro-
computers can address up to 1 Mbyte of memory. At the
time the IBM PC was developed, it seemed inconceivable
that anyone would ever need more than 640 Kbytes of
memory. for application programs, so all the address
space above 640 Kbytes was reserved for the system
BIOS. the video frame buffer, and system uses, as shown
in Figure 15-6. Also, since the processor could address
only 1 Mbyte of memory, DOS was designed to directly
address only 1 Mbyte.

As the memory needs of application programs suct
as spreadsheets and databases banged into the 640-
Kbyte limit, designers again looked to bank switching
as a means to overcome this limit. The result was the
Lotus-Intel-Microsoft Expanded Memory Standard. LIM/
EMS 3.2. This combination hardware-software standard
has been widely implemented. .

The hardware for this expanded memory is often
implemented as a plug-in board which contains up to 8
Mbytes of 16-Kbyte pages (banks) and bank-switch
registers. The bank-switch registers are used to control
which pages from the expanded memory are selected.
As shown along the'left side of Figure 156, in a LIM/
EMS 3.2 system the four 16-Kbyte pages selected from
the expanded memory at a particular time are mapped
into the system address space between C800H and
D7FFH. This addl‘ess space was chosen for the expanded

540 CHAPTER FIFTEEN

EMS SEGMENT MEMORY SIZE EEMS AND
VERSION32 ADDRESS (K81 EMS VESSION
10000H 1,024 40
. SYSyTtM . @
FOOOH £ 960
E000H_ 896 ADDITIONAL
UNUSED SPBGES
DEOOH p—— ———A .
PRIMARY PRIMARY
WINDOW, DOOOH - 1832 WINDOW,
3 4 PAGES
4 BAGES CBOOH _
EGA ROM
CO00H 768
| vicEo | ;04
Boo0H - VIOEC 170
A000H 640 l
BACKFILLED, R 7|18 BACKFILLED,
NO PAGE s 24 PAGE
FRAI
FRAMES —— j =5 MES
384KB
. | BACKFILLED
4000H 256
%
1000H |- 256KB ON | 64
SYSTEM
BOARD
000H 0

FIGURE 15-6 Memory maps for LIM/EMS 3.2 and
LIM/EMS 4.0 expanded memory standards.

memory window because it is not usually used for system
functions. The newer LIM/EMS 4.0 standard allows 16-
Kbyte pages to be mapped into any system address space
that is not populated with ROM or RAM, and it allows
the expanded memeory tn contain up to 32 Mbytes. As
shown aldhg the right side of Figure 15-6, LIM/EMS
4.0 allows pages above the 640-Kbyte boundary and
additional pages in thie 384-Kbyte region below the
boundary.

The software part of either EMS standard includes a
driver program called EMM.SYS. This driver program is
installed in m~..u0ry by including the statement device =
emm.sj s 1n the CONFIG.SYS program which runs when
you -boot your system. The EMM.SYS driver contalns
the functions which allow application programs to allo-
cate and access expanded memory. The expanded mem-
ory functions are called with a software INT 67H. The
value in AH determines the specific function that is *
called. The complete list of expandec: memory functions
is extensive. put to give you an idea of some of what is
available, Figure 15-7 shows a few of the functions.
Basically. an application program must use these func-
tions to allocate enough expanded memory for its code
and data, switch In pages as needed, and deallocate
the expanded memory when it terminates so that the
memory is available for the next program. Incidentally,
MS DOS versions 4.0 and later support LIMVEMS 4.0.

As we discuss in detail later, the 80286, 80386, and
80486 microprocessors have more address lines than

EXPANDED MEMORY

FUNCTION CALL WITH RETURNS

GET STATUS AH = 80H AH = STATUS

GET PAGE FRAME AH = 41H AH = STATUS
ADDRESS BX = PAGE FRAME SEGMENT
GET NUMBER CF AH = 42H AH = STATUS
EXPANDED MEMORY BX = AVAILABLE PAGES
PAGES DX « TOTAL PAGES
ALLOCATE EXPANDED AH = 43H AH = STATUS

MEMURY PAGES BX « NO. OF PAGES DX = EMM HANDLE
MAP EXPANDED AH = 44H AH = STATUS

AL = PHYSICAL PAGE
BX = LOGICAL PAGE
DX = EMM HANDLE

MEMORY PAGE

RELEASE EXPANDED AH = 45H AH = STATUS

MEMORY PAGES DX = EMM HANDLE

GET EMM VERSION AH = 486H AH = STATUS
AL = VERSION

FIGURE 15-7 Examples of EMM functions called
through INT 67H.

an 8086 and can directly address ccnsiderably more
memory. Memory located In the address space above 1
Mbyte is commonly referred to as exfended memory or
XMS memory. If a system using one of these processors
is running under a version of DOS before 5.0, however,
it still has the 1-Mbyte memory limit imposed by DOS.
In other words, the extended memory in a system is
invisible to DOS and will not be used for programs.
There are three common cures for this problem.

One solution fs to use a memory-management-device
driver program which allows the extended memory to
function as expanded memory. Another solution is to
use a “DOS extender” program such as Phar Lap Soft-
ware's 386/DOS extender or A.l. Architect's OS/x86.
These programs operate under DOS, so they use the
familar DOS commands, but they allow programs (o
take advantage of the advanced features of the 802886,
80386, and 80486 processors. The third solution to the
DOS memory limit is to switch to an operating system
such as Microsoft's 0S/2, which is designed to take
advantage of the addressing range and other features of
the newer processors. ’

The expanded memory scheme we described (n the
preceding section makes more memory available to a
program, but it has several disadvantages. One disad-
vantage is that the system must contain enough ex-
panded memory for the largest program to be run. With
today's large programs this could be a major expense.
A second disadvantage of expanded memory is that
application programs must manage the switching of
pages in and out of the expanded memcry window. This
adds overhead to the execution time, and if a program
Is modified, the switching points may have to be
changed. Still another disadvantage is that operating
system and user-task protectlon are not easily imple-

.mented. The virtual memory scheme we discuss next
helps solve these problems.

VIRTUAL MEMORY AND MMLUIs

Virtual memory is basically an extension of the memory
caching scheme we discussed in Chapter 11. To refresh
your memory of a cache system, take another look at

Figure 11-11. The virtual memory scheme simply adds
" a hard-disk drive to the memory hierarchy. The hard-

disk drive becomes the mafn program and data memory,
the DRAM functions as an intermediate cache, and the
SRAM cache functions as a high-speed cache for the
DRAM. In a virtual memory system the code and data
segments currently being used for program execution
are loaded from the disk into DRAM and accessed by the
cache controller as needed. .If an executing program
needs a segment ‘that i{s not currently in DRAM, the
required segment s read in from the disk to the DRAM
main memory. If the DRAM is full, one of the segments
in the DRAM is swapped out to the disk to make room,
and the required segment is swapped into DRAM.

There are three different ways of setting up the code
and data blocks to be swapped in and out of DRAM. One
scheme is to swap segments. The advantage of segment
swapping s that segments correspond to the code and
data structures in the program. The disadvantage of the
segment scheme is that with processors such as the
80386 and 80486, segments can be very large. The time
required to swap in a large segment would appreciably
slow down the execution of a program. Also, it is often
hard to fit variable-sized segments in memory. A second
swapping scheme uses fixed-length pages of typically 4
Kbytes each. These small pages can be quickly swapped
in and out of memory, but they don’t correspond to the
logical structure of the program. A third approach,
implemented in the 80386 and 80486 microprocessors,
allows a programmer to write a program using logical
segments and divide the segments into 4-Kbyte pages
for swapping in and out of physical memory.

The term virtual here refers to memory space that
appears to be present from a programmer's viewpoint
but is not physically present in the DRAM main memory.
In other words, if you are writing a program for a system
with virtual memory, you can create segments as if you
had, for example, a gigabyte of memory space, even
though the system has only perhaps 4 Mbytes of physical
memory. The virtual memory space can be much larger
than the physical memory, because all of the logical
segments are not present in physical memory at any one

" time. As with the SRAM cache scheme, a virtual memory

system works because most programs only need small
sections of code and data at a particular time.

Virtual memory can be managed totally by the operat-
ing system, but most microcomputer systems use a
hardware device called a memory-management untt or
MMU to assist In the process. The Intel 80286, 80386,
and 80486 and the Motorola MC68030 and MC68040
have a complete MMU integrated on the chip with the
CPU. Separate MMUs are available for use with other
processors. In either case the MMU is functionally posi-
tioned between the processor and the actual memory.
Figure 15-8, page 542, shows an overview of how the
MMUs in the 286, 386, and 486 processors manage
segment-based virtual memory. The first step In ex-
plaining this is to clarify the terms logical address and
physical address.

When you write an assembly language program. you
usually refer to addresses by name. The addresses you
work with in a program are called logical addresses,
because they indicate the logical positions of code and
data. An example of this Is the 8086 instruction JNZ

THE 80286, 80386, AND 80486 MICROPROCESSORS 541

LOGICAL
et BETTCST N oTs[ET]
SEGMENT .CONTROL AND
BASE PROTECTION
ADDRESSES BITS
DESCRIPTOR TABLE F s *F : b
/
[PHYSICAL ADDRESS]

FIGURE 15-8 Block diagram showing how s‘egment-
based virtual memory is implemented in 80286, 80386,
and 80486 processors.

NEXT. The label NEXT represents a logical address that
execution will go to if the zero flag is not set. When an
8086 program is assembled, each logical address is
represented with a 16-bit offset and a 16-bit segment
base. The 8086 BIU then produces the actual physical
memory address by simply adding these two parts
together, as explained many times pre\vlously. ’

When a program is assembled or compiled to run on
a system with an MMU, each logical or virtual address
is also represented by two components, but the compo-
nents function differently. In a segment-oriented system
such as an 80286, the upper 16-bit component is
referred to as a segment selector, and the lower compo-
nent is referred to as the offset. As shown in Figure
15-8, the MMU uses the segment selector to access a
descriptor for the desired segment n a table of descrip-
tors in memory. A descriptor is a series of memory
locations that contain the physical base address for a
segment, the privilege level of the segment, and some
control bits. =

The selectors for the 80286. 80386. and 80486 have
14 address bits and 2 privilege-level bits. The 14 address
bits in the selector can select any one of 16,384 descrip-
tors in the descriptor table. Since each descriptor repre-
sents a segment, this means that a program can access
up to 16,384 segments. For an 80286 the offset part of
the virtual address is 16 bits, so each segment can
contain up to 64 Kbytes. The logical or virtual address

space accessible by an 80286 then is 16,384 seg-

ments X 65.536 bytes/segment, or about 1 Gbyte. What
this means Is that the operating system and other
programs can function as if a gigabyte of memory were
available.

542 CHAPTER FIFTEEN

The physical memory Is the amount of RAM and ROM
actually present in the system. For this example let's
assume that the MMU has 24 address lines so it can
address 16 Mbytes of physical memory. Remember from
our previous discussion that the physical memory,
whatever its actual size, is simply a holding place for
the segments currently being used by the operating
system and user programs.

When the MMU recelves a logical address from the
CPU, it checks to see if that segment is currently in the
physical memory. If the segment is present in physical
memory, the MMU adds the offset component of the
address to the segment base component of the address
from the segment descriptor to form the physical ad-
dress. It then outputs the physical address to memory
on the memory address bus. The addressed code or data
word is returned to the CPU on the data bus.

If the MMU finds that the segment specified by the
selector part of the logical address is not in memory, it
sends an interrupt signal to the CPU. In response to the
interrupt, the operating system executes an interrupt
procedure which reads the desired code or data segment
from disk and loads it into the physical memory. The
MMU then computes and outputs the physical address
as described before. The operation Is semiautomatic, so
other than a slight delay, the user is not aware that the
segment had to be loaded. In a well-structured system
with a reasonably large amount of physical memory, the
hit rate may be 90 to 95 percent.

When the CPU or smart MMU wants to load a segment
from disk into physical memory, it must first make
space for it in the physical memory. Depending on the
system, it may do this by compacting the segments
already present and changing the descriptors to point
to the new physical locations or by swapping the segment
being brought in with one currently in physical memory.
To help in deciding which segment to swap back to
memory, many systems use an accessed bit in the
descriptor to keep track of how many times the segment
has been used. A low-use segment Is the most likely
candidate to swap back to disk. Some virtual memory
systems also have a dirty bit in each descriptor. This
bit will be set if the contents of a segment have been
chariged. If the dirty bit is set, a segment must be written
back to disk when its space is needed. If the dirty bit is
not set, then the segment has not been altered, and the
copy of the segment on disk is current. In this case the
segment can just be overwritten by the new segment.
This check saves the time that would be required to
write the segment to disk.

The use of a descriptor table to translate logical
addresses to physical addresses has another major ad-
vantage besides making virtual memory possible. The
selector component of each logical address contains 2
bits which represent the privilege level of the program
section requesting access to a segment. The descriptor
for each segment contains 2 bits which represent the
privilege level of that segment. When an executing
program attempts to access a segment, the MMU com-
pares the privilege level in the selector with the privilege
level in the descriptor. If the segment selector has the
same or a greater privilege level, then the MMU allows

the segment to be accessed. If the selector privilege level
is lower than the privilege level in the descriptor, the
MMU refuses the access and sends an interrupt signal
to the CPU indicating a privilege-level violation. As you
can see, privilege bits and this indirect method of
producing physical addresses provides a mechanism
for protecting segments such as those containing the
operating system kernel from application programs.

To summarize then, an MMU is used to manage virtual
memory. The MMU uses a descriptor table to translate
logical or virtual program addresses to physical ad-
dresses. This indirect approach makes possible a virtual
address space much larger than the physical address
space. The indirect approach also inakes it possible to
protect a memory segment from access by a program
section with a lower privilege level. You will meet all
these concepts again in the following sections, where we
discuss the 80286, 80386, and 80486 microprocessors
which have integrated MMUs.

THE INTEL 80286 MICROPROCESSOR
Introduction

The needs of a multitasking/multiuser ope[ratlng system
include environment preservation during task switches,
operating system and user protection, and virtual mem-
ory management. The Intel 80286 was the first 8086
family processor designed to make implementation of
these features relatively easy. The 80286 was used as
the CPU in the IBM PC/AT and its clones, in the IBM
PS/2 Model 50, and in the IBM PS/1. Although the 80286
has to a large extent been superseded by the 80386, the
80386SX, and the 80486, there are still many 80286-
based systems In use and more 80286 systems being

sold. Therefore, we will use a little space to tell you about *

the basic operation of an 80286.

80286 Architecture, Signals,
and System Connections

As you can see in the block dlagram in Figure 15-9, an
80286 contains four separate proccsslng units.

The bus unit (BU) in the device performs all memory
and VO reads and writes, prefetches instruction bytes,
and controls transfer of data to and from processor
extension devices such as the 80287 math coprocessor.

The instruction unit (IU) fully decodes up to three
prefetched instructions and holds them in a queue,
where the execution unit can access them. This is a
further example of how modern processors keep several
instructions “in the pipeline"” instead of waiting to finish
bne instruction before fetching the next. .

The execution untt (EU) uses its 16-hit ALU to execute
instructions it rccealrcs from the instruction unit. When
operating In its real address mode, the 80286 register
set is the same as that of an 8086 except for the addition
of a 16-bit machine status word (MSW) register, which
we will discuss lates.

The address unit (AU) computes the physical ad-
dresses that will be sent out to memory or O by the
BU. The 80286 can operate in one of two memory
address modes, real address mode or protected virtual
address mode. If the 80286 is operating in the real
address mode, the address unit computes addresses
using a segment base and an offset just as the 8086
does. The familiar CS, DS, SS, and ES registers are used
to hold the base addresses for the segments currently in
use. The maximum physical address space in this mode
is 1 Mbyte, just as it is for the 8086.

If an 80286 s operating in its protected virtual -
address mode (protected mode), the address unit func-
tions as a complete MMU. In this address mode the
80286 uses all 24 address lines to access up to 16 Mbytes
of physical memory. In protected mode it also provides
up to a gigabyte of virtual memory using the descriptor
table scheme shown in Figure 15-8.

PHYSITAL
ADDRESS
ADDER

SEGMENT |
BASES |
1
1

SEGMENT
LiMIT
CHECKER

ADOER SEGMENT

SIZES |

o RS sav T) (e AR e = S b
|
ADDRESS I Az - Ag,
LATCHES AND DRIVERS BHE. M.10

|
PROCESSOR | |
J
I

PEACK
PEREQ

READY. HOLD
§1 50, COD INTA
LOCTR. HLDA

|

|

| PREFETCHER EXTENSION
| INTERFACE
|

|

I

|

7 BUS CONTROL

DATA TRANSCEIVERS Dig - Dg

REGISTERS | CONTROL

! s BYTE

| PREFETCH
i QUEUE
.

__::U::f::’

I 3 DECODED

o Ve

RESET
CcLx

A g INSTRUCTION INSTRUCTIO|
< ‘"s;:;ﬁ:’o" DECOOER UNIT (10) !‘; Vss
EXECUTION UNIT (EU) - g T Vee
_________________ 5 Y____--.« N o o o o s e e e e (5 5 CAP
LTI Tgusy
INTR' 'ERROR

FIGURE 15-9 80286 internal block diagram.

(Intel Corporation)

THE 80286, 80386, AND 80486 MICROPROCESSORS 543

Figure 15-10 shows the 68-pin package that is usually
uscd for an 80286, and Figure 15-11 shows how an
8086 1s connected with some other components to form
a simple system. Keep thse figures handy as we work
our way around the major pins bf the 80286. Many of

" the signals of the 80286 should be familiar to you from
our discussion of the 8086 signals In Chapter 7.

The 80286 has a.16-bit data bus and a 24-bit nonmul-
tiplexed address bus. The 24-bit address bus allows the
processor to access 16 Mbytes of physical memory when
operating in protected mode. Memory hardware for the
80286 1s set up as an odd bank and an even bank, Just
as It is for the 8086. The even bank will be enabled when
AO is low. and the odd bank will be enabled when BHE
Is low. To access an aligned word, both A0 and BHE will
be low. External buffers are used on both the address
and the data bus. o

From a control standpoint, the 80286 functions simi-
larly to an 8086 operating in maximum mode. Status
signals S0, S1, and M/IO are decoded by an external
82288 bus controller to produce the control bus, read,
write, and Interrupt-acknowledge signals.

The HOLD, HLDA, INTR, INTA, (NMI}, READY, and
LOCK and RESET pins function basically the same as
they do on an 8086. An external 82284 clock generator
l% used to produce a clock signal for the 80286 and to
synchronize RESET and READY signals. *

The final four signal pins we need to discuss here are
used to interface with processor extensions (coproces-
sors) such as the 80287 math coprocessor. The processor
extenslon request (PEREQ) input pin will be asserted
by a coprocessor to tell the 80286 to perform a data
transfer to or from memory for it. When the 80286 gets
around to do the transfer, it asserts the processor
extension acknowledge (PEACK) signal to the coproces-
sor to let it know the data transfer has started. Data
transfers are done through the 80286 In this way so
that the coprocessor uses the protection and virtual

NG] Ve

RESET
A,

COD/INTA
M/10
LOCK

A

E
:
:
E

NOOOOOOOO 000000
EZ";GW‘Z’ff’“; -

w < <
la

PIN NO. 1 MARK

FIGURE 15-10 Pin diagram for 80286 microprocessor.
(Intel Corporation)

544

N

CHAPTER FIFTEEN

memory capability of the MMU in the 80286. T:)e BUSY
signal input on the 80286 functions the saime as the
TEST1 input does on the 8086. When the 80286 executes
a WAIT instruction, it will remain in a WAIT loop unti
it finds the BUSY signal from the coprocessor high. If a
coprocessor finds some error during processing, it will
assert the ERROR input of the 80286. This will cause
the 80286 to automatically do a type 16H interrupt call.
An Interrupt-service procedure can be written to make
the desired response to the error condition.

The machine cycle waveforms for the 80286 are very
slmllar to those of the 8086 that we showed and dis-
cussed in earlier chapters.” You should be able to work
your way through them in the Intel 80286 data sheets
if you need that type of information.

As we mentioned before, the 80286 is used as the CPU
in the IBM PC/AT and its clones. These AT-type machines
use the AT/ISA bus shown In Figure 11-7b to interface
with 'a CRT controller card, disk controller cards, and
other peripheral cards.

80286 Real Address Mode Operation

After the B0286 is reset, it starts executing in its real
address mode. This mode is referred to as real because
physical memory addresses are produced by directly
adding an offset to a segment base, just as they are in
an 8086. In this mode the 80286 can address up to 1
Mbyte of physical memory and functions essentlally as
a"souped-up” 8086. Due to the extensive pipelining and
other hardware improvements, the 80286 will execute
most programs several times faster than an 8086 with
the same-frequency clock signal.

When operating in real address mode, the interrupt-
vector table of the 80286 is located in the first 1 Kbyte
of memory, just as it is for an 8086, and the response
to an interrupt is the same as that of an 8086. As shown
in Figure 15-12 the 80286 has several additional built-
in interrupt types. Some of these types will not make
much sense until we dig a little deeper into the opera-
tions of the 80286 snd the 80386, but while we are here
we will introduce you to a {ew new terms used in Figure
15-12. &

The BO186 and later processors separate interrupts
into two categories. intermipts and cuceptions. Asyn-
chronous external events which aftect the processor
through the INTR or NMI input arc refeired to as
interrupts. An exception-type Interrupt is generated by
some error condition that occurred during the execution
of an instruction. Dividing by zero is an example of
an operation that will cause an exception. Software
interrupts produced by the INT n instruction are classi-
fied as exceptions. because they are synchronous with
the processor. '

Exceptions are further divided into faults and traps.
Faults are exceptions that are detected and signaled
before the faulting instruction is executed. The segment
not-present exception s an example of a fault, Traps are
exceptions which are reported after the instruction
which caused the exception executes. The divide-by-zero
exception and the INT n interrupts are examples of
traps.

J——(AER HRDT — READ
o = ol up HWTC WEMORY WRITE
r1 F—‘ [RORT VO READ
cMOLY
- 2 owe VO WRITE
2 | v.-r_ps ANTA p— INTERRUPT ACKNOWLEDGE
s 0) ALE |— !
ESE L1} L] MCE |~ ro————
a—{pcLx o s \'--.
. cLx + CLK oTR — — -+| DECODE' '}~ -»» AND VO CHW SELECTS
— - 22288 BUS = = o ~adid | (OPTIONAL) |)
_E-- e ! comrmoLLER: | . L LD !
I
= | L. wio .| 1 | SpSpSC—]
SYNC READY ———o={ SROV RESET [—¢ 1 -4 1
ENABLE ———— SROVER | |
ASYNC READY — ———e~ KROY \ l RESET w0 i
ENABLE e KHOYER n. i [OCR -2 ADDRE:
/ ‘efCLk cooMTE}L — — SRS
cLOCK : : Lo rEXDY
QGENERATOR
| 51 A - Ay
P 80 .
= S} —d A BHE :
" . —e HOLD
i ;' <—{ HLDA
[] Ennee le— CHIP SELECT
1 r-—-== -+ BBV INTR
) Il f=—==- 4 PEATK
e I i [CAP |-
I—: Vg 80286 "‘L,
FY s ‘ cpPu .
,.-L..‘.'-'—— _— D3y - Do = K Ry - Ry
] : 1
| PROCESSOR S .
| EXTENSION)
i (OPTIONAL) > e
LR e |
: DATA
[-

FIGURE 15-11 Circuit connections for simple 80286 system.
Corporation)

FUNCTION 'NNnggéJ:T

DIVIDE ERROR EXCEPTION 0
SINGLE STEF INTERRUPT 1
NMI INTERRUPT 2
BREAKPOINT INTERRUPT 3
INTO DETECTED OVERFLOW EXCEPTION 4
BOUND RANGE EXCEEDED EXCEPTION 5,
INVALID OPCODE EXCEPTION 6
PROCESSOR EXTENSION NOT AVAILABLE /. ,
EXCEPTION

INTERRUPT TABLE LIMIT TOO SMALL 8
PROCESSOR EXTENSION SEGMENT OVERRUN 5
INTERRUPT

INVALID TASK STATE SEGMENT 10
SEGMENT NOT PRESENT M
STACK SEGMENT OVERAUN OR NOT PRESENT 12
SEGMENT OVERRUN EXCEPTION 3
RESERVED 1415
PROCESSOR EXTENSION ERROR INTERRUPT 16
RESERVED 17 31
USER DEFINED 32255

FIGURE 15-12 80286 interrupt types. (Intel Corporation)

(Inte!

80286 Protected-Mode Operation

As we sald before, after a reset the 80286 operates in
real address mode. On an 80286-based system running
under MS DOS or a similar operating system, the 80286
is left in real address mode because current versions of
DOS are not designed to take advantage of the protected-
mode features of the 80286. If an 80286-based system
is running an operating system such as Microsoft's
0S/2, which uses the protected mode, the real mode will
be used to initialize perhipheral devices, load the main
part of the operating system from disk into memory,
load some registers, enable interrupts, set up descriptor
tables, and switch the processor to protected mode. The
first step in switching an 80286 to protected mode is to
set the protection enable bit in the machine stat::s word
(MSW) register in the 80286. Figure 15-13a. page 546,
shows the format for the MSW. Bits 1. 2. and 3 of the
MSW are for the most part used to indicate whether a
processor extension (coprocessor) is present in the sys-
tem or not. Bit 0 of the MSW is used to switch the 80286
into protected mode. To change bits in the MSW you
load the desired word 1n a register or memory location
and execuie the load machine status word (LMSW)
instruction. The final step to get the 80286 operating

THE 80286, 80386, AND 80486 MICROPROCESSORS 545

MACHINE
STATUS
WORD

(I [[FeR

TASK SWITCH —J
EMULATE PROCESSOR EXTENSION

MONITOR PROCESSOR EXTENSION
PROTECTION ENABLE

(a)

STATUS FLAGS
CARRY

PARITY
AUXILIARY CARRY

ZERO ;
SIGN l I

OVERFLOW—l

151413121110 9 8 7 6 5 4 3 2 1

LlNT]m[PL]ot;[DF]lF [7¢] s¢[z¢] [ar]] [pe| [CFI

|
CONTROL CONTROL FLAGS
TRAP FLAG
— INTERRUPT ENABLE
DIRECTION FLAG

SPECIAL FIELDS

1/O PRIVILEGE LEVEL
NESTED TASK FLAG

FLAGS

‘(b)

FIGURE 15-13 (a) 80286 machine status word bits.
(b) 80286 flag register bits. (Intel Corporation)

in protected mode is to-execute an intersegment jump
to the start of the main system program. This jump is
necessary to flush the instruction byte queue because
in protected mode the queue functions differently from
the way it does in real mode.

Switching an 80286 to protected mode enables the
integrated MMU to nrovide virtual memory and protec-
tion. As we described In an earlier section on virtual
memory, a 286 virtual address consists of a 16-bit
selector and a 16-bit offset. The MMU uses 14 bits of
the selector toaccess a descriptor for the desired segment
in a table of descriptors. The descriptor contains the 24-
bit physical base address, the privilege level, and some
control bits for the segment. If the privilege level con-
tained In the selector:{s as high as or higher than the
privilege level contained in the descriptor, then access
to the segment will be allowed. If not, an exception will
be generated. The MMU also checks the “P" bit in the
descriptor to determine if the scgment is present in
physical memory. If not, the MMU will generate a seg-
ment-not-present exception. The service procedure for
this exception will load the segment in memory and
return to the irterrupted program. If the memory access
meets the privilege level test and the segment is present
in physical memory, the MMU will add the 16-bit offset
from the logical address to the 24-bit base address from
the descriptor to produce the 24-bit physical address for
the desired byte or word in the segment. Remember that
in protected mode an 80286 uses all 24 address lines,
so it can address 16 Mbytes of memory instead of just
the 1 Mbyte addressable in real mode.

546

CHAPTER FIFTEEN

Once an 80286 is switched into protected mode by
executing the LMSW instruction. the only way to get an
80286 back to 1ts real address mode 1s by resetting the
system. The 80286 was designed this way so that a
“clever” programmer could not switch the system back
into real address mode to defeat the protection schemes
In protected mode. Unfortunately, this design also pre-
vents an operating system running in protected mode
on an 80286 from easily switching back to real mode to
run a section of an 8086 real-mode program during a

* time slice. In other words, an 80286 operating in pro-

tected mode cannot easily multitask a mixture of pro-
grams with 8086 segment-offset-type addressing and
80286 selector-offset-type addressing. For thisand other
reasons, relatively little software has been written to take
advantage of the memory-management and protection
features available in the 80286 protected mode. The
designs of the 80386 and 80486 processors solved the
80286 problems and added other features which make
multitasking easfer to implement. Much of the new
software written during the lifetime of this book will
utilize the advanced features of the 386 and 486. There-
fore, we decided that the limited space we have avaflable
18 better used to discuss the detatls of how the 386 and
486 manage virtual memory and provide protection. The
protected mode operation of the 586 1s very similar to
that of the 80286, so if you have to work on a protected-
mode 80286 system, you should have little difficulty
"going back." y

80286 New and Enhanced Instructions

From a software standpoint the 80286 was designed to
be upward-compatible from the 8086 so that the huge
amount of software developed for the 8086/8088 could
be easlly transported to the 80286. The instruction set
of the 80286 and later processors are “supersets” of the
8086 Instructions. Here's a brief description of the new
and enhanced instructions available on the 80286,

Real- or protected-mode instructions

INS—Input string.

OUTS—Output string.

PUSHA—Push eight general-purpose registers on stack.
POPA—Pop eight general-purpose registers from stack.
PUSH immediate—Push Immediate number on stack.

SHIFT/ROTATE destination, immediate—Shift or rotate des-
tination register or memory location speclfied number
of bit positions.

IMUL destination, immediate—Signed multtply destination
by immediate number.

IMUL destination, multiplicand, immediate multiplier—
Signed multiply. result in specified destination.

ENTER—Set up stack frame In procedure. Saves BP,
points BP to TOS, and allocates stack space for |ocal

- variables.

LEAVE—Undo ENTER actions before RET in procedure.

BOUND—Causes a type 5 execution if value in specified
register is not within the specified range for an array.

LMSW—Load machine status word (LMSW) is used to
switch the 80286 from real mode to protected mode.

Protected-mode (nstructions

NOTE: We postponed much of the discussion of
protected mode to a later section on the 386
processor, so many of these instructions will be
much more understandable to you after you read
that section.

CTS—Clear task-switched flag in machine status word.

LGDT—Load global descriptor table register from
memory. ‘

SGDT—Store global descriptor table register contents in
memory.

LIPT—Load interrupt descriptor table register from
memory.

LLDT—Load selector and associated descriptor into
LDTR.

SLDT—Store selector from LDTR in specified register or
memory.

LTR—Load task register with selector and descriptor for

TSS.

STR—Store selector from task register in register or
memory.

LMSW-—Load machine status register from register or
memory.

SMSW—Store machine status word in register or
memory. .

LAR—Load access rights byte of descriptor into register
or memory.

LSL—Load segment limit from descriptor into register or
memory.

ARPL—Adjust requested privilege level of selector (down
only).

VERR—Determine if segment pointed to by selector is
readable.

VERW—Determine if segment pointed to by selector is
writeable.

THE INTEL 80386 32-BIT
MICROPROCESSOR N

Introduction

Some of the limitations of the 80286 microprocessor are
that it has only a 16-bit ALU, its maximum segment size
is 64 Kbytes, and it cannot easily be switched back and
forth between real and protected modes. The Intel 80386

-71'

microprocessor was designed to overcome these limits,
while maintaining software compatibility with the
80286 and earlier processors. The 80386 has a 32 bit
ALU, so it can operate directly on 32-bit data words.
80386 segments can be as large as 4 Gbytes and a
program can have as many as 16,384 segments. The
virtual address space then is 16,384 segments x 4
Gbytes, or about 64 Tbytes (terabytes). A 32-bit address
bus allows an 80386 to address up to 4 Gbytes of physical
memory. The 80386 has a “virtual 8086 mode, which
allows it to easily switch back and forth between 80386
protected-mode tasks and 8086 real-mode tasks. Later
we will discuss 80386 memory addressing, protection,
and operating modes, but for now we want to discuss
the hardware operation and system connect'ons.

80386 Architecture, Pins, and Signals

The 80386 processor is available In two different ver-
sions, the 386DX and the 386SX. The 386DX has a 32-
bit address bus and a 32-bit data bus. It is packaged in
the 132-pin ceramic pin grid array package shown in
Figure 15-14a, page 548. The 386SX, which is packaged
in the 100-pin flatpack shown in Figure 15-14b, has the
same internal architecture as the 386DX, but it has only
a 24-bit address bus and a 16-bit data bus. The lower
cost package and the ease of interfacing to 8-bit and 16-
bit memory and peripherals make the 386SX suitable
for use in lower cost systems. The trade-off here, of
course, is that the 3865X address range and memory
transfer rate are lower than those of the 386DX. Any
reference to the 386 in the rest of this chapter will mean
the 386DX unless specifically indicated otherwise.

Figure 15-15, page 548, shows the major signal groups
for a 386DX. Most of these signals should be familiar to
you from the discussions of earlier processors. Let's
werk orr way around the device to pick up the new ones.

‘tne clock signal applied to the 386 CLK2 input is
internally divided by 2 to produce the clock signal
which actually drives processor operations. For 33-MHz
operation then, a 66-MHz signal is applied to the CLK2
input by an external clock generator such as the 82384.

The 386 address bus consists of the A2-A31 address
lines and the byte enable lines BEC#-BE3#. The BEO#—
BE3# lines are decoded from Internal address signals
A0 and A1 and function very similarly to the way A0 and
BHE function in an 8086 or 80286 system. The 386 has
a 32-bit data bus, so memory can be set up as four
byte-wide banks. The BEO#-BE3# signals function as
enables for the four banks. These individual enables
allow the 386 to transfer bytes, words. or double words
to and from memory. Incidentally, the # symbol after
the BE signal names indicates that these signals are
active low. '

The bus cycle definition signals identify the type of
operation that is occurring during a bus cycle. The
WR/R# signal indicates whether a read or write operation
is taking place and the D/C# Indicates whether the bus
operation is a data read/write or a control-word transfer
such as an op-code fetch. M/IO# indicates whether
the operation is a memory or a direct input/output
operation. Incidentally. the 386 direct VO port structure

THE 80286, 80386, AND 80486 'AICROPROCESSORS 547

A 8 C O E F G H J K L M r
'40000000000000\'
VCC VSS A8 All Als AMS AIS AIT A0 A2Y A2) AN A2 AN
i1l 0 0O 0O.OOOOO0OO0OO0OO0O0O0 2
veS AS A7 A0 A3 VSS VCC A8 VSS A2 A« AR A VCC
il 0O 000 O O0CO ©C OO0 O 0 O]
A3 A A8 A3 A12 VSS VCC AM VSS A AM VCC VSS 0%
+s] 0 OO 0O 0 O ‘
NC NC A2 vss vcC Om
s] O O O Q 0 O |¥
veC VvSS vCC 031 027 D2e
s] O O O Q O O]
VSS NC NC o 01 vss
11 0 O O 00 O |
VCC INTR NC YycC veC D24
5] O O O O O O |¢
ERRORS NMI PEREC vss 013 vCC
s] O O O Q0 0O 0 9
VSS BUSYS RESET D20 021 Di2
w| O O O - O 0 O 10
VCC WRe LOCKS L vss D17 D
nl O O O < @ 0 10 1
DCs VSS VSS D' D D
2l O OO0 O OOOO0OOOO0OO0 O |n
MAO# NC VCC VCC BEOS CLK2 VCC Co vsS 07 vCC Dio D12 D
] O 0O OOOOOO0OO0OO0OO0OO0O OO0 |n
BEM BE2e BE'® NAS NC NC READY# DV VSS DS o8 vcc D11 D13
wf 0 © 00 00 00 00 © 0 Q0 1
\VCC VSS BS18s HOLD ADS# VES VCC 02 D3 D4 D8 MDA D9 vu/
A B c D E F G H 4 K L M N P
(a)

533822825 JaR358 2055555887
BRRGREIRNGRBESEEIRUIBARRE

s O o ==
oA 4 3 3 g
HOWD) ¢ n = an
[—— 1 "= Ve
N 6 | — AT
acaovs —od 1 =™
Yoo C——1 8 8 D ves
VR —] 6 0 Ves
vee €1 10 L —— X[
vss — n % = an
=i ! TOP VIEW =a
D a— N @ /> a1z
o O 18 \ o > Al
ADSE & 18 L o > a0
ME C—J 7 % I A
RE—— RI} \ 8 > a8
nEe C—] 19 7 Voo
N CTT3 0 w =D A7
Ve 00— s e a
Vgg C—q 11 s-f—> as
M08 — 1 Y —
s — T
wRs 1 8 A, b R =2}

ARRERASARARRSARISTIIIIISINR

gunx 858 7 aé,;y';yxuwﬂw

535

»

(b)

FIGURE 15-14 (a) Pin diagram for 386DX processor view
from pin side. (b) Top view pin diagram for 3865X
processor. (Intel Corporation) ‘

is simply 3n extension of the 8086 and 80286 port
structure to include 32-bit ports. Simple 32-bit /O ports
can be constructed by connecting 8-bit VO port devices
such as the 8255A in parallel. A 386 can use an IN or
OUT Instruction followed by an 8-bit port address to
address up to 256 8-bit ports, 128 16-bit ports or 64
32-bit ports. Using the DX register to hold a 16-bit port

548 CHAPTER FIFTEEN

address, a 386 can access up to 64K 8-bit ports, 32K
16-bit ports, or 8K 32-bit ports.

The PEREQ signal is output by a coprocessor such as
an 80387 floating point processor to tell the 386 to fetch
the first part of a data word for the coprocessor. The
coprocessor will then take over the buses and read the
rest of the data word, as we described for the 8087 in
Chapter 11. As we also described in Chapter 11, the
BUSY# signal is used by the coprocessor to prevent the
386 from going on with its next instruction before
the coprocessor is finished with the current instruction.
If the ERROR# signal is asserted by a coprocessor, the
386 will perform a type 16 exceptions

Regarding the V. and ground connections, note in
Figure 15-15 that the 386 has a large number of V.
pins. It also has a large number of ground connections
labeled V,,. These pins are all connected to the appro-
priate power plane in the PC board. |

The RESET, NMI, INTR, HOLD, and HLDA inputs
function similarly to the way they do in earlier proces-
sors. In a later section we will describe how the 386
handles interrupts while operating in protected mode.

The final group of 386 signals to discuss is the bus
control group. The READY# signal is used {0 insert wait
states in bus cycles as needed to interface with slow
memory and 10 devices.

The BS16# input allows the 386 to work with a 16-
bit and/or a 32-bit data bus. If BS16# is asserted, the
386 will transfer data only on the lower half of the 32- .
bit data bus. If BS16# is asserted and a 32-bit operand
is being read from a 16-bit-wide memory, the 386 will
automatically generate a second bus cycle to read the
second word. For misaligned transfers the 386 will also
generate the required number of bus cycles if BS16# is
asserted.

The ADS# signal will be asserted when valid addresses,
BE signals, and bus cycle definition signals are present

- on the buses. The 386 address bus is not multiplexed,

so an B086-type ALE signai 's not needed. However, in
some 386 systems the ADS# signal is used to transfer
the address to the outputs of external latches for a

2x CLOCK { —
ADDRESS BUS » A2-A31
BEN
s S 2.8m
) Lo | ez ADORESS
2 {ooon (oammm) ErTEE—. 1
seow
ADSs wRE
NAS oce
BUS 80388 —— = | Buscvoue
CONTROL 8Si6e PROCESSOR MoK [DEFINTION
READY# Locks N
HOLD ~TEREQL
8US
ARBTRATION | =04 | LBusve . { coemocessoR
P SIGNALLING
INTR
NMI Ve
INTERRUPTS —- — POWER
MESET GNO CONNECTIONS

FIGURE 15-15 Signal groups of 386DX.
Corporation)

(Intel

scheme called address pipelining. The principle of ad-
dress pipelining is that if an address is held on the
outputs of external latches, the 386 can remove the old
address from its address pins and output the address
for the next operation earlier In the bus cycle. External
control circuitry asserts the next address signal, NA#,
to tell the 386 when to output the address for the next
operation. Pipelined addressing fs not usually necessary

in a system with an SRAM cache, because the SRAM

cache is fast enough that no wait states are needed.

To help you understand the relationship of some 386
signals, Figure 15-16 shows some 386 nonpipelined
read cycles. As you can see, each read operation requires
two states, T1 and T2. Note that READY# is made low
during T2 so that no wait states are inserted. If the
device being read is not fast enough to output data
during T2 as required, READY# would be held high
longer by external circuitry and a wait state would be
inserted in the read cycle after T2.

Incidentally, the 386 contains a large amount of bullt-
in self-test (BIST) circuitry. If the 386 BUSY# Input is
held low while RESET is held low, the processor will
automatically test abaut 60 percent of its internal cir-
cuitry. The self-test requires about 22° CLK2 cycles. If
the 386 passes all tests, a “signature” of all 0's will be
left in the FAX register. i

Now that you have had a short trip around the 386
pins, the next step is to discuss how a 386 can be
connected in a system.

CYCLE 1 CYCLE 2
NON-PIPELINED | NON-PIPELINED
(READ) " (READ)
T T2
o1 | 22 | 91 | 82
(NPUT) L]

BEO#-BE3#, A2-A31, -
M/10#, D/C¥, W/R#

>(VALID 1
(OUTPUTS) & —

—

ADS¥ [[
(QUTPUT)

VALID 2

A

NA# [
(INRUT)

READY#

(INPUT) __,_/

LOCK# [=

(OUTPUT) _X NALIDH

VALID 2

D0-031 [
(INPUT DURING READ) [_"D',""'" IN1

@

FICURE 15-16 386 nonpipelined read cycles without

wait states.

(Intel Corporation)

386 System Connections and Interface Buses

THE URDA SDK-386 BOARD

A relatively low cost 386 system useful for prototyping
386-based instruments is the SDK-386 shown in Figure
15-17. This board is similar to the SDK-86 board we
discussed in Chapter 7. Both boards are available from

. University Research and Development, Inc. in Pitts-

burgh, PA. The SDK-386 board contains a 12-MHz
386, 16 Kbytes of EPROM; 32 Kbytes of static RAM, a
keyboard, and a 40-character LCD display. The board
also hasaserial port and software which allows programs
to be developed on a PC-type computer and downloaded
to the board for testing and debugging.

This board is useful as-+a simple, protected-mode
learning tool, because the monitor program in ROM on
the board runs the 386 in protected mode. The monitor
runs as one task and user programs run as another
task. A simple keypress allows the user to switch from
the user task to the monitor. This feature is very useful
for debugging programs and hardware. The documenta-
tion for the board shows how the descriptor tables, etc.
are set up, and how user programs can call monitor
procedures to interface with the keyboard and the
display.

386 FULL SYSTEMS

Examples of more complex 386 systems are the IBM
PS/2 Model 80, the Compaq SYSTEMPRO 386/33, and

4 oot
AL

Sﬂif.a
|~’|.-lEl
-cd

ok

FIGURE 15-17 The SDK-386 prototyping board from
University Research and Development Associates.

THE 80286, 80386, AND 80486 MICROPROCESSORS 549

E)

many similar machines. These sysiems typicaily have a
megabyte or more of RAM, a 100-Mbyte hard-disk drive,
a couple of floppy-disk drives, a VGA CRT controller,
parallel ports, and serial ports. In most systems such as
this, a 32-bit local data bus 18 used to interface with the
SRAM cache and the DRAM main memory. The 32-bit
data bus allows maximum transfer rate between memory
and the 386. To interface with the on-board peripheral
devices such as timers, priority-interrupt controllers,
CRT controllers, serial ports, and parallel ports, the
system uses a 16-bit local data bus. A separate /O
expansion bus is used to Interface with peripheral
boards such as disk controller cards, a network interface
card, and a high-resolution graphics card.

Initially we wanted to show you some circuit diagrams
for one of these 386 systems, but for several reasons we
decided this was not practical. First of all, each of the
40 or 50 different 386 machines currently available uses
a different circuit configuration. Second, the moth-
erboards of the newest machines contain mostly large
ASICs, which combine many functions in single devices.
The Intel 82830, for example, contains an 8-channel
DMA controller, a 20-input priority interrupt controller,
four programmable timers, wait-state-generating cir-
cuitry, a complete DRAM refresh controller, and more.
VLSI disk controllers and video controllers are now often
included directly on the motherboard of 386 systems.
The circuit diagram for a system built with these large
ASICs look more like a block diagram than a circuft
diagram and shows you little more than you already
know about microcomputer structure. Also, most of the
manufacturers consider their circuitry proprietary and
are.unwilling to release diagrams. What we decided
would be useful here is to discuss the three bus stand-
ards commonly used to interface peripheral boards with
the motherboards in these systems.

THE ISA BUS REVIEWED

In Figure 11-7 we showed you the bus used.in the
original IBM PC and the bus used tn the IBM PC/AT.
The PC/AT bus is one of the buses used in 386'systems
and is now commonly called the tndustry standard
architecture or ISA (pronounced e-sah) bus. The other
bus schemes commonly used in 386 systems are the
extended industry standard architecture or EISA (pro-
nounced eye-sah) bus and IBM's Micro Channel Archi-
tecture or MCA bus.

The ISA bus standard has the advantage that many
peripheral boards have been developed for it, and compe-
tition has kept the price of these boards low. The ISA

bus, however, has only 16 data lines and 24 address '_

lines, so it cannot take full advantage of the 32-bit data
bus and the 32-bit address bus of the 386. This reduces
the speed at which data can be transferred on the bus.
Most of the ISA-based 386 machines have partially solved
this problem by incorporating up to 16 Mbytes of 32-
bit-wide memory and perhaps a cache directly on the
motherboard. Since this memory can be accessed di-
rectly without going through the peripheral bus, it can
operate at the full speed of the 386. In these systems
the ISA bus is used only to communicate with peripher-
ais such as disk controller boards, CRT controller boards,

550 CHAPTER FIFTEEN

network Interface boards, etc. Since most of these boards
transfer data only 8 bits or 16 bits at a time, the ISA
bus limitations do not have an appreciable effect on the
performance of a single-user system.

THE EISA BUS STANDARD

For high-performance applications such as network flle
servers, communication servers, and other multitask-
Ing/multiuser systems, the ISA bus does not allow fast-
enough data transfer. Also, the ISA bus has no mecha-
nism to arbitrate requests for bus use by “smart”
peripheral boards. Systems designed for these applica-
tions usually use an EISA or an MCA bus.

As the name indicates, the EISA bus Is an extension
of the ISA bus to accommodate the needs of the 386
and 486 processors and multimaster systems. It was
developed by nine companies as an alternative to IBM's
MCA bus standard. The EISA bus uses edge connectors
of the same physical size as the ISA bus so that either
ISA or EISA boards can be inserted in a slot. However,
the EISA connectors have two levels of contacts, as
shown in Figure 15-18a. If an ISA-based board is
inserted, 1t will go in the connectors ¢nly far enough to
reach the top level of contacts which contain the ISA
bus signals. A notch cut in EISA boards allows them to
go into the connectors far enough to also contact the
lower level of contacts. These lower contacts contain the
additional EISA signals. Figure 15-18b shows how these
added signal lines are interspersed between the ISA
signals. Note the additional address (labeled LA), data,
BE#, power, ground, and control pins. The pin positions
labeled KEY represent thin slots cut in the PC board so
that It aligns properly when inserted. The pins labeled
MFG SPEC are used to output a code which identifies
the type of board to ald In system configuration during
bootup.

In amultiprocessor microcomputer system a processor
that can take over the bus to transfer data is called a
bus master. A board which can take over the bus for a

BI-LEVEL
CONNECTOR

(a)

FIGURE 15-18 (a) Two layers of contacts in EISA bus
connectors. (See also next page.)

EISA PC BUS EISA
GND| O |IOCHCHK- -
GND =
RESETDRV | O | D7
+5V = CMD-
+sv| O |06
+5V o E — START-
MF = EXRDY
MFg ::E 2V Lo EX32
(KEY Lyl Q o J GND
MFG spec) A RER L (KEY)
MFG SPEC 2t = EX16-
12v SN L Lo SLBURST
5 6N | O |iocHroy)
M-I0 = MSBURST-
il SMEMW- Q AEN g
nEssnver; s LA B) GND
: iow-| O jAs
GND = RESERVED
10R-| O | A7
RESERVED = RESERVED
DACK3-| O | A6
BE3 = RESERVED
(KEY) i Q ol (KEY)
pAacki-| O fa1s .
BE2- = BE1-
prRa1| O | A3
BEO- = LA31
GND REFRESH- g A12 "
ck| O [An
+5V = LA30
e IRQ7 Q A10 AZH
GND e Q i LA27
LA26 e Q = LA25
o IRQ4 Q A7 i
(KEY) L Rl Lo {KEY)
DACK2-| OO |As
LA16 = LA1S
LA14] 1A LA13
BalE | O A3 \
+5V = LA12
5V i WO LA11
+
GND gsc 1B GND
GND | O A0
LA10 = LA9
EXTENSION FOR AT BUS
LAB = LA7
LS MEM CS16- Q SBHE- 'y
ke 1/0 CS16- Q LA23 i
i IRQ10 Q LA22 s
+
P IRQ11 E LA21 e
IrRQ12 | O |LAz0
(KEY) = (KEY)
5td IRQ15 Q LA19 0
- IRQ14 Q LA1B i
v pAcko- | O |Lary
GND = D20
DRa0 | O | MEMR-
D21 D22 -
g DACKS- Q MEMW- B
g oras | [J |os
D24 = D25
DACKs-| O | D9
GND = D26
prRae | O | D10
D27 = D28
DACK?-| O |on
(KEY) =] (KEY)
ora7 | O | D12
D29 = GND
s +5V Q D13 o5
MASTER- | O - D14
s ano| O |ots Pa
MACKn- = MREQn-

(b]

FIGURE 15-18 (Continued) (b) Pin assignments, EISA bus.

| DMA operation 1s called a DMA slave. The EISA bus

supports up to six bus masters and 8 DMA slaves. The
MACKn and MREQn lines on the EISA bus are used to
arbitrate bus requests by multiple masters. These sig-
nals are not bused. An individual trace runs from each
of these pins to the arbitration logic on the motherboard. |
The n in these signal names represents the slot number
in the system. When a master wants to use the buses,
it asserts its MREQ line. If the buses are free and that
master is the highest-priority master requesting use of
the buses, the arbitration circuitry will assert the MACK
signal connected to that master. The master will use the
bus for its data transfer. DMA slaves issue requests
through the DREQ lines on the bus and receive control
from the arbitration circuitry through the DACK lines.

Another feature of the EISA bus is that its interrupts
can be individually programmed as edge-triggered for
compatibility with ISA boards or level-triggered so that
they are less susceptible to noise spikes and they can
be shared by several sources. EISA boards use level-
triggered interrupts, which can be pulled low by any one
of several sources. When the CPU detects an interrupt,
it polls each board or device to determine the source of
the interrupt. N

To help implement an EISA bus in a system, Intel
makes the 82358 Bus Controller, the 82357 Integrated
System Peripheral, and the 82355 Bus Master Interface
Controller. Consult the data sheets for these devices to
get more detailed information about the operation of an
EISA bus. -

THE MICROCHANNEL ARCHITECTURE BUS

IBM's MicroChannel Architecture Bus contains the same
types of signals and accomplishes the same functions
as EISA, but the two are completely incompatible. MCA
boards are smaller and use different edge connectors.
Figure 15-19, page 522, shows the MCA bus connector
types used in the IBM PS/2 Model 80.

The MCA bus is designed to work with peripheral

~"boards that transfer data in 8-bit, 16-bit, or 32-bit

words. For 8-bit peripheral boards, just a 46-pin edge
connector is used. For 16-bit peripheral boards, an
additional I2-pin connector is used. One of the 16-bit
slots also has a 20-pin video extension connector. This
slot can be used for an 8514/A high-resolution graphics
card. For 32-bit boards an additional 44-pin connector
is used in place of the 12-pin connector used on 16-bit
slots. Each of the 32-bit slots also has an 8-pin “matched-
memory” extension connector.

The Model 80 has five 16-bit MCA slots and three 32-
bit slots. One of the 16-bit slots 1s"used for an ESDI
hard-disk controller. The 32-bit slots can be used for
32-bit memory boards or other 32-bit peripherals. The
signals on the matched-memory extension of the 32-bit
slots aliow the processor to interrogate memory boards
to see Hf they are designed to transfer data faster than
the basic bus rate. If they are, other signals on the
connector manage transfers. :

The MCA bus uses a distributed scheme to arbitrate
bus requests by up to 16 bus masters and DMA request
sources. To request the bus, one or more masters assert

THE 80286, 80386, AND 80486 MICROPRCCESSORS 551

REAR OF SYSTEM BOARD

] A B A

e V 10} — M4
VIDED MATCHED
MEMORY

I
ExEneitn SECTION
— V1 -—J
M1

B A ()
g 01 ey 01 r
8-BIT
EXTENSION
SECTION
b— 45 —J 45 '—J L]
S e e e |
48 —— 48 p— 48
16-BIT
EXTENSION
s
58 e 58
— —— — e b e — ——
18-BIT 16-BIT "
CONNECTOR CONNECTOR
32-BIT
EXTENSION
Ly

32-BIT .
CONNECTOR
FIGURE 15-19 IB~’s MicroChannel Architecture bus
connector types. S~

the PREEMPT line to the central control circuitry low.

“At the appropriate time the control circuitry drives the
ARB/GNT line high. The arbiter on each master then
asserts Itssarbitration code on the ARBO-ARBS3 lines. If
an arbiter sees a code that is lower than its code, it
removes its arbitration signals. This means that the
master with the lower arbitration code assumes control
of the bus. To signal the arbitration is complete, the
central control point asserts the ARB/GNT signal low.
Incidentally, the interrupt lines on the MCA bus are
level-triggered.

Now that you have had a brief introduction to the
system connections and buses used in 386 systems,
let’s take a look at the internal architecture of the device
and talk about the different 386 operating modes.

Real Operating Mode

A 386 can operate In real mode, protected mode, or a
variation of protected mode called virtual 8086 mode.

' 552 CHAPTER FIFTEEN

After a reset the 386 operates in real address mode. In
this mode it functions basically as a fast 8086 or real-
mode 80286. The register set for the 386 in real mode
in a superset of the 8086 and 80286 real-mode register
sets. As shown in Figure 15-20, the 32-bit general-
purpose registers are referred to as extended AX or EAX,
EBX, ECX. EDX, etc. Instructions can, for example,
refer to AL, AH, AX, or EAX. The assembler automatically
codes the instruction for the register size referred to in
an {nstructfon.

The 386 in real mode computes memory addresses
using the same segment base and offset mechanism
used by the 8086. For this mode only the selectors or
visible parts of the segment registers are used. Note that
the 386 has two additional data segment registers, FS
and GS, so programs can have up to four data segments.
The length of segments in 386 real mode is fixed at 64
Kbytes, and any attempt to access a location outside a

_-segment will cause a type 13 exception.

The address range of 386 real mode is limited to 1
Mbyte, so address lines A20-A31 are normally all low.
The only exception to this is that during a reset these
address lines are all made high to access the boot ROM
at the highest locations in the 32-bit address space of
the 386. As soon as the boot-ROM code does a far Jjump
or call, the A20-A31 lines will go low and stay low as
long as the 386 1s In real mode. A 386 in real mode uses
the address space 00000—003FFH for the interrupt-
vector table and services Interrupts in the same way as
an 8086 does.

One new feature of the 386 is ‘the debug registers
shown In Figure 15-20. A software debugger can load
breakpoint addresses in these registers to aid in debug-
ging. A 386 can be instructed to “break” when the
address unit in the processor computes a linear address
which matches one of the addresses In the debug
registers. The older method of setting a breakpotnt
Involved replacing an Instruction with a breakpolnt
Instruction such as INT 3. This method, of ceurse, can-
not be used to debug code in ROM, but the breakpoint
register method can because it does not depend on
modifying code bytes.

The 32-bit EFLAGS register in the 386 is an extension
of the 16-bit registers in the 8086 and 80286. For future
reference the upper right corner of Figure 15-20 shows
the names of the bits In the EFLACS register, but in
real mode only the lower 16 bits have meaning.

The final real-mode registers to note in Figure 15-20
are the control registers CRO~CR3. The lower 16 bits of
CRO correspond to the machine status word (MSW) of
the 80286. As with an 80286, a 386 is switched to
protected-mode operation by setting the LSB of this
register to a 1. Register CR1 Is reserved by Intel, and
registers CR2 and CR3 are used for paged mode func-
tions, which we discuss later.

386 Protected-Mode Operation

INTRODUCTION

The real power of a 386 lies In its protected-mode and
virtual 8086-mode features. These features are designed
In a very versatile way. so that almost any conceivable

3N %15 87 0 FLAGS
[s
AH AIX AL | EAX 3322222222221 111 117111,
BH BIX BL |EBX 10987654321098765432109876543210
CH C|x ‘cL [Ecx : : v|r| |nJioPlojp|i|T|s|z| |A] |P| |C
EFLAGS RESERVED FOR INTEL mlclolTl L IFlelelelr IR lolFlole s F
DH D|x DL |EDX
VIRTUAL MODE — 4]‘
sl ES) RESUME FLAG .
ol €D NESTED TASK FLAG ' CARRY FLAG
I/0 PRIVILEGE LEVEL PARITY FLAG
8P EBP L— AUXILIARY CARRY
OVERFLOW JERO FLAG
sP ESP
DIRECTION FLAG L SIGNFLAG
i INTERRUPT ENABLE TRAP FLAG
3 18 15 0
[EIP
—_———
P
SEGMENT
REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
’ K PHYSICAL BASE SEGMENT * OTHER SEGMENT
15 0 ADDRESS LIMIT ATTRIBUTES FROM DESCRIPTOR
SELECTOR cs- i =
SELECTOR ss- - -
SELECTOR DS- i [V [
SELECTOR ES- ===
SELECTOR FS- o e
| SELECTOR GS- & o
. '
SYSTEM ADDRESS REGISTERS ‘
47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0
GODTR GDTR
LDTR LDTR
SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)
15 0 32-BIT LINEAR BASE ADDRESS 32.BIT SEGMENT LIMIT ATTRIBUTES
TR| SELECTOR ! .
LDTR| SELECTOR =
DEBUG REGISTERS CONTROL REGISTERS
3 0 3 24123 16|15 8|7 0
LINEAR BREAKPOINT ADDRESS 0’ DRO ip e|T|e|m|P
- #c|ololofojo]ofo|o]ojolofofafojo|o|ojofolo|ojoo|olofofT|g|m|p|e|CRO
LINEAR BREAKPOINT ADDRESS 1 DR1
LINEAR BREAKPOINT ADDRESS 2 DR2 .
LINEAR BREAKPOINT ADDRESS 3 DR3 M
INTEL RESERVED. DO NOT DEFINE. | DR4 NOTE: [l—_] INDICATES INTEL RESERVED: DO NOT DEFINE,
INTEL RESERVED. DO NOT DEFINE. | DRS
BREAKPOINT STATUS DR6
BREAKPOINT CONTROL DR7
\
TEST REGISTERS (FOR PAGE CACHE) %
3 0 31 24)23 1615 8|7 0
TEST CONTROL " TR6 PAGE FAULT LINEAR ADDRESS REGISTER CR2
TEST STATUS TR? PAGE DIRECTORY BASE REGISTER oJoJoToJo ofo o]0 ofofc]cR3
NOTE: [0| INDICATES INTEL RESERVED: DO NOT DEFINE.
FIGURE 15-20 Intel 386 microprocessor register set. (/ntel Corporation)
’ Ve
THE 80286, 80386, AND 80486 MICROPROCESSORS 553

operating system or program can be implemented on a
386. The problem with this versatility is that It leads to
an almost unbelievable amount of detall In a complete
description of how the 386 operates in these modes. In
reality. unless you are writing a 386-based operating
system, you can probably live a very happy life without
knowing all these detalls. In the following sections we
have tried to give just enough details so that you can
understand the basic protected-mode operation of a
386. how fits features fit the needs of a multiuser/
multitasking operating system, and how programs are
written for a 386. If you need to know all the minute
details, consult the Intel 80386 Programmer’s Reference
Manual and the Intel 80386 System Software Writer's
Guide. *

As you read through the following sections. the key
concepts you should try to fix in your mind are: how a
386 computes physical addresses in segments-only mode
and in paged mode, how a 386 provides protection for
operating system code and protection for user tasks, the
basic operation of a gate, the protected-mode interrupt
response, the task switch process, and the operation of
the “flat” system model.

SEGMENTATION AND VIRTUAL MEMORY

As we said in the preceding section, a 386 s switched
from real mode to protected mode by setting the LSB of

VIRTUAL ADDRESS IN PROGRAM

~

the CRO register. The virtual memory addressing scheme
of a 386 in protected mode is very similar to that of the
80286 we described earlier, except that 386 segments
can be much larger and an optional paging mechanism
allows segments to be divided into 4-Kbyte pages for
faster swapping in and out of physical memory.

In protected mode each 386 address consists of a 16-
bit segment selector and a 32-bit offset. As we described
earlier in a section on virtual memory, the selector points
to a descriptor for the segment in a table of descriptors
and the offset specifies the location of the desired code
or data in the segment. Using a 32-bit offset value means
that segments can be anywhere from 1 byte in length to
2% or about 4 Gbytes in length.

Figure 15-21 shows the format for 386 segment selec-
tors and how these selectors are used to access a
descriptor in a descriptor table. The 13-bit index part
of this selector is multiplied by 8 and used as a pointer
to the desired descriptor in a descriptor table. The index
value {s multiplied by 8 because each descriptor requires
8 bytes in the descriptor table. Among other things the
descriptor contains the physical base address for the
segment. The MMU adds the base address from the de-
scriptor to the effective address or offset part of the
logical address from the instruction to produce the
physical memory address.

There are two major categories of descriptor table in

31 0
[seLecTor | oFFseT |
\ﬂ—'_/ I
i - 0 ADDRESSED
DATA
VISIBLE HIDDEN
SEGMENT REGISTER
15 0 47 —— 0
ACCESS
0s [woexl l {uman 32 BIT BASE - LIMLT*I
b] o e ’
t e GOT . —— -
T OR LDT
I
SEGMENT
BASE
.
DESCRIPTOR
(LOADED INTO HIDDEN PART
~ PHYSICAL
X OFSEGMENT REGISTER) Kudilin
oR p—_ b DESCRIPTOR TABLE BASE
o
PHYSICAL
MEMORY

FIGURE 15-21

Diagram showing how the 386 uses a selector to access a

descriptor in a descriptor table and how it computes the physical (I|near)

address. (Intel Corporation)

-

554 CHAPTER FIFTEEN

a 386 system, global and local. A system has only one
global descriptor table or GDT. The GDT contains,
among other things, the segment descriptors for the
operating system segments and the descriptors for seg-
ments which need to be accessed by all user tasks. A
local descriptor table or LDT is set up in the system for
each task or closely related group of tasks. Figure 15-22
shows, in diagram form, how this works. Tasks share
a global descriptor table and the memory area defined
by the descriptors in it. Each task can have its own
local descriptor table and memory area defined by the
descriptors in it. Setting up individual LDTs protects
tasks from each other because one task cannot access
the LDT of another task.

If the table indicator bit (bit 2) of a segment selector
is a 0. then the upper 13 bits will index a segment
descriptor in the global descriptor table. If the TI bit of
the selector is a 1, then the upper 13 bits of the selector
will index a segment descriptor in a local descriptor
table.

The least significant 2 bits of a segment.selector. the
requested privilege level or RPL bits, are part of the
386's built-in protection features, which we discuss
later. For now, let's take a closer look at segment
descriptors.

Figure 15-23a and Figure 15-23b show the formats
for the 386 segment descriptors and the access rights
byte of the descriptors. First notice in the descriptor
that 32 bits are set aside for the segment’s physical base
address and 20 bits are set aside for the size or limit of
the segment. If you remember that we said 386 segments
can be up to 232 bytes long, you may wonder why only
20 bits are set aside here for the size of the segment.
The answer to this is that if the granularity or G bit in
the descriptor is a 0, the 20-bit limit value represents

the length of the segment in bytes. With a O value in the

TASK 1
LOCAL
ADDRESS
SPACE
LoT

TASK 1

/ VIRTUAL ADDRESS SPACE

GLOBAL TASK 2

ADDRESS VIRTUAL ADDRESS SPACE
SPACE b
GDT

TASK 3
LOCAL
ADDRESS
SPACE
LoT

TASK 3
VIRTUAL ADDRESS SPACE

FIGURE 15-22 Diagram showing how tasks can be
isolated from each other by havihg separate local
descriptor tables but can share a common global
descriptor table. (Intel Corporation)

- 72

» ; o

SEGMENT BASE 1S 0 SEGMENTUMIT'S 0 °
unarr ACCESS BASE
msgyr 2 [G|ofofo L ot o
w o e n e

OB 1-DEFAULT INSTRUCTIONS ATTRIBUTES ARE 12 BITS
G-DEFAULT INSTRUCTION ATTRIBUTES ARE 16.8TS
G GRANULARITY BIT 1-SEGMENT LENGTH IS PAGE GRANULAR
Q=SEGMENT LENGTH 1S BYTE

GRANULAR
0 BIT MUST BE ZEAQ 10) FOR COMPATABILITY WiTH EUTURE PROCE SSORS

(a)

NAME FUNCTION

1 PRESENT (P) Pal SEGMENT 15 MAPPED INTO PHYSICAL MEMORY
Pe0 NO MAPPING TO PHYSICAL MEMORY EXITS BASE AND
LUMIT ARE NOT USED

8-5 | DESCAPTOR PRIVILEGE SEGMENT PRIVILEGE ATTRIBUTE USED N PRIVILEGE TESTS

LEVEL (DPLI
. SEGMENT -1 CODE OR DATA INCLUDES STACKS: SEGMENT DESCAPTOR
DESCRIPTOR (5! S-0 SYSTEM SEGMENT DESCAIPTOR OR GATE DESCAIPTOR
3 EXECUTABLE (€} €-0 DATA SEGMENT DESCRIPFTOR TvPE S
TPt i EXPANSION DIRECTION | ED=0 EXPAND UP SEGMENT. OFFSETS MUST IF DATA
FELD €01 BE 5 LMIT ol
DEFINITION D1 EXPAND DOWN SEGMENT, OFFSETS e
MUST BE » LINIT € _'q'
1 WRITEABLE (W W-0 DATA SEGMENT MAY NOT BE WRITTEN INTO.
We1 DATA SEGMENT MAY BE WRITTEN INTO
3 EXECUTABLE (€} Ex) CODE SEGMENT DESCRIPTOR TYPE IS
2 CONFORMING 1C) Ca1 CODE SEGMENT MAY ONLY BE EXECUTED 1 COOE
WHEN CPL 2 DPL AND CPL REMAINS SEGMENT
UNCHANGED Se1
' READABLE (R) R.0 CODE SEGMENT MAY NOT BE READ =N
Rel CODE SEGMENT MAY BE AEAD
[} ACCESSED (Al A0 SEGMENT MAS NOT BEEN ACCESSED
A+l SEGMENT SELECTOR HAS BEEN LOADED INTO SEGMENT
REGISTER OR USED B SELECTOR TEST INSTRUCTIONS
(b)
FIGURE 15-23 () 386 descriptor format. (b) Access

rights byte format for code and data segment
descriptors. (Intel Corporation)

G bit, then, a segment can be up to 1 Mbyte in length.
If the G bit in the descriptor is a 1, the 20-bit limit value
represents the length of the segment in 4-Kbyte blocks.
The maximum limit value of 1,048,576 blocks x 4
Kbytes/block then gives a maximum segment length of
4 ubytes. If an attempt is made to access a location
outside the specified limit for a segment, a type 5
exception will be produced. This mechanism prevents a
program from accessing memory outside its defined
segments.

Byte 5 of a descriptor, thc access byte, contains
information about the privilege level, access, and type
of the segment. To give you an Idea of the kind of
information contained in the access byte of a descriptor.
Figure 15-23b summarizes the meanings of the bits in
the access bytes of code segment and data segment
descriptors. Skim through the descriptions to get an
overview. Note the P bit, which is used to indicate
whether the segment is present in physical memory, the
privilege-level bits, which specify the privilege level that
a program must have to access the segment, and the A
bit. which is set If the segment has been accessed. The
operating system can periodically read and reset the A bit
to determine how often the segment has been accessed. A
segment which has not been recently used can be
swapped out to disk when space for a new segment is
needed.

When a program attempts to access a segment, the
selector for the segment is loaded into the visible part
of the segment register. To access a data segment, for

555

THE 80286, 80386, AND 80486 MICROPROCESSOPS

example, the selector might be loaded into the visible
part of the DS. ES. FS, or GS register. When the selector
is loaded Into the visible part of the segment register,
the descriptor for the segment is automatically loaded
into the hidden part of the segment register or segment
descriptor cache, as it Is commonly called. If the privilege
level of the selector and the privilege level of the current
code segment is not as high (or is higher than) the
privilege level of the descriptor. an exception will be
produced and the access will not be allowed. If the
privilege level is high enough, the P bit in thé descriptor
will be checked to see if the segment s present in
physical memory. If ‘the segment is not present, a
segment-not-present (type 11) exception will be gener-
ated and the exception handler will read the segment in
from disk to physical memory. Once the segment is

in physical memory. the address unit computes the

physical addresses as needed to access the data words
in the segment. As shown in Figure 15-21, the offset
from the original address is added to the segment base
address from a descriptor to form a linear address. For
a 386 operating in segments-only mode, this linear
address is the physical address that will be output on
. the address and BE lines to memory.

To complete the general picture of how a 386 manages
virtual segments. we simply need to show you how it
keeps track of where the descriptor tables are in memory.

The 386 keeps the base addresses and limits for GDT and - .

LDT descriptor tables currently being used in internal
registers. The global descriptor table register (GDTR)
shown in the middle of Figure 15-20 is used to hold the
32-bit base address and limit for the global descriptcr
table. This register is initialized wuir a load global
descriptor table register (LGDT) instruction when the
system is booted. The local descriptor table register
(LDTR) shown in Figure 15-20 is used to hold the base
address and limit of the local descriptor table for the
task currently being executed. The LLDT instruction is
used to load thjs register. The LLDT instruction can be
executed only by programs executing at the highest
privilege level. Therefore. unless a task is operating at
the highest privilege level, it cannot intentionally or
maliciously acgess the local descriptor table of another
task. Task switching is usually handled by the operating
system kernel, which operates at the highest*-priority
level.

386 SECMENT PRIVILEGE LEVELS
AND PROTECTION

When an attempt is made to access a segment by loading
a segment selector into the visible part of a segment
register, the 386 automatically makes several checks.
First of all. it checks to see if the descriptor table indexed
by the selector contains a valid descriptor for that
selector. If the selector attempts to access a location
outside the limit of the descriptor table or the location
indexed by the selector in the descriptor table does
not contain a valid descriptor, then an’ exception is
produced.

The 386 also checks to sec if the segment descriptor
is of the right type to be loaded into the specified segment
register cache. The descriptor for a read-only data seg-

.

556 CHAPTER FIFTEEN

I

ment, for example, cannot be loaded into the SS register,
becausc a stack must be able (o be written to. A selector
for a code segment which has been designated “execute
only” cannot be loaded into the DS register to allow _
reading the contents of the segment.

If all these protection conditions are met, the limit,
base, and access rights byte of the segment descriptor
are copied into the hidden part of the segment register.
The 386 then checks the P bit of the access byte to see
if the segment for that descriptor is present in physical
memory. If~t is not present, a type 11 exception is
produced. The exception-handler procedure for this
exception will swap the segment into physical memory,
set the Pbit in the descriptor, and restart the interrupted
instruction.

After a segment selector and descriptor are loaded into
a segment register, further checks are made each time
alocation in the actual segment is accessed. An attempt
to write to a code segment or a read-only data segment,
for example, will cause an exception. Also, the limit
value contained in the segment descriptor is used to
check that an address produced by program instructions
does not fall outside the limit defined for the segment.

User tasks can be protected from each other in a 386
system by giving each task its own local descriptor
table. The LDT register, which points to a user’s local
descriptor table, can only be changed with the LDTR
instruction or by a task switch. The LDTR instruction
can be executed only at the highest privilege level, which
is usually reserved for the operating system. Likewise,
a switch from one user task to another is done by the
operating system at the highest privilege level, so user
tasks operating at lower privilege levels cannot cause
switches to other user tasks. Also, because of limit
checking, a task cannot accidentally or intentionally
access descriptors in another task's local descriptor
table.

System software, such as the operating system kernel,
is protected from cerruption in several ways. One way
we have already mentioned is that code segments can
be made “execute only” so that they cannot be written to.
The second and most important way that the operating
system can be protected is with privilege levels. Figure
15-24 tllustrates how a 386 protected-mode system can
be set up with four privilege levels. As we mentioned
before, the operating system kernel is assigned the
highest privilege level, which is privilege level 0. System
services such as BIOS procedures might be run at
privilege level 1, and custom device drivers. etc. might
operate at privilege level 2. Application programs and
user tasks are usually operated at the privilege level 3.
the lowest level.

The privilege level for a segment is represented by bits
5 and 6 of the access byte in the segment descriptor.
(See Figure 15-23b for access byte format.) These 2 bits
are referred to as the descriptor privilege level or DPL.
This privilege level is established when the program is
built.

The privilege level of an executing task is represented
by the DPL bits in the access byte of the descriptor
currently in the CS descriptor cache. This privilege level
is referred to as the current privilege level or CPL.

APPLICATION

UNRESTRICTED

LOCAL ACCESS
GATED CALL

AND RETURN

FIGURE 15-24 Diagram showing how a 386 system can
be set up with four privilege levels. (Inte/ Corporation)

When a program needs to access a data segment, it
does so by loading a segment selector Into, for example,
the visible part of the DS register. The privilege level
encoded in the least significant bits of this selector is
referred to as the requesting privilege level or RPL.

To successfully access a segment, both the RPL and
the CPL must be a number less than or equal to the DPL
of the segment. In other words, the privilege level of the
currently executing task and the privilege level of the
requesting selector must: both be greater' than or the
same as the privilege lével of the desired segment in
order for access to be granted If these conditions are
not met, then an exception will-be gérierated. The point
here is that normally a task cannot directly access a
segment which has a higher DPL.

CALL GATES

The question that might come to mind at this point is,
If a task cannot access a segment with a more privileged
DPL, how can user programs access the operating
system kernel, BIOS, or utility procedures in segments
which have more privileged DPLs? The answer to this
Is that a procedure located in a segment which has a
higher privilege level can be called indirectly through a
special structure called a gate. There are four types of
gates: call, trap, Interrupt, and task. For now, we will
Jjust describe how a call gate operates.

A gate is simply a special type of descriptor. Gate
descriptors are put in the GDT or in an LDT, just as
segment and other descriptors are. When a program
does a call to a procedure in another segment, the
selector for that segment’s call gate Is loaded into the
CS register. and the call gate descriptor is loaded into the
hidden part of the CS register. The call gate descriptor
contains a selector which points to the descriptor for
the segment where the procedure is actually located.
The call gate descriptor also contains the offset of the
called procedure in its segment.

If the call is determined to be valid. then the selector
from the call gate and the corresponding segment de-
scriptor will be loaded into the CS register. The processor
then uses the base address from the segment descriptor

and the offset value from the call gate descriptor to
ccmpute the physical address of the called procedure.
Therefore, the call is done lndlrectly through the call
gate descriptor, rather than directly through a segment
descriptor.

This indirect access has two major advantages. First,.
this approach permits another level of privilege checking
before access to the procedure in the hlgher-prlvﬂegcd
segment is auowed "The privilege level of the calling
program |is compared with the privilege level specified
in the call gate. If the privilege level of the calling program
1s lower than the privilege level specified In the call gate,
the access will not be allowed. If, for example, the DPL
in the call gate descriptor is 2, a level 2 program can use
the call gate to call a privilege level 1 procedure, but a
level 3 program cannot.

Another adva.magc of the indirect call gate approach
Is that user programs cannot accidentally enter higher-
privileged segments at just any old point. If they are
going to enter at all, they must enter at the specific .
offsets contained in the call gate descriptors. This is
similar to the type ef protection provided by using
software lnterrupts to call BIOS and DOS functions
instead of calling them directly.

I/O PRIVILEGE LEVELS

When a 386 is operating in protected mode thc 386 has
two mechanisms’ fer protecting VO 'ports. The first
mechanism 1nvolves thc 10 prlvilcge -level bits in the
386 EFU\GS register shown in Figure 15-20. Only the
operating system or a procedure operating at a privilege
level O can set these-IOPL bits. In order to execute the
IN, INS, OUT,"OUTS, CLI, and STl instructions, the CPL
of a procedure or task must be the same or a lower
number than IOPL represented by these bits. If a proce-
dure does not meet the IOPL test, a privilege-level
exception will be generated.

The second mechanism for protecting ports from
unauthorized access is an optional VO permission bit
map which allows.ports to be associated only with
specific tasks. If this feature is used, a map is set up for
each task. Each bit in the map represents a byte-wide
port address, so 16-bit ports use 2 bits each and 32-bit
ports use 4 bits each. A O in a map bit means the port
is avallable to the task.

When a task attempts to access a port, the 386 first
compares the CPL of the task with the IOPL. If the
access passes the 'JOPL test and an /O bit map is in
force, the 386 will then chcck the map bits corresponding
to the addressed port. If.the map has’ a 0 in the bit(s)
for that port. access will be granted. If not, an exccpt!on
will be generatcd Incldcntally when a 386 is operating
in real address mode, none of the port protection mecha-
nisms are in effect.

INTERRUPT AND EXCEPTION HANDLING

For operation in protected mode, gate descriptors for
the interrupt and exception procedures are kept in a
special descriptor table called the interrupt descriptor
table or IDT. This table can be located anywhere in
memory. During initialization the base address and

THE 80286, 80386, AND 80486 MICROPROCESSORS 557

limit for the interrupt descriptor table are loaded into
the (nterrupt descriptor table register (IDT) shown in
Figure 15-20 with an LIDT instruction.

When an interrupt or exception occurs, its type is
multiplied by 8 and added to the IDT base address in
the IDT register. The result is a pointer to a gate
descriptor in the interrupt descriptor table. The gate
here can be an interrupt gate, a trap gate, or a task gate.

An interrupt gate, for example, contains a selector for
the segment where the interrupt procedure is located,
not the base address of the segment. The reason for this
is so that the privilege level can be checked before access
to the interrupt procedure is granted. If the CPL is high
enough, then the selector from the gate will be loaded
into the CS register and used to access the descriptor
for the segment containing the interrupt procedure. The
segment descriptor can be in the LDT or GDT. The 32-
bit offset from the gate will be added to the base address
from the descriptor te produce the linear address for the
actual interrupt procedure. This is basically the same
mechanism we described previously for the operation of
a call gate, except that at the end of the procedure an
IRET instruction is used instead of an RET. Incidentally,
an interrupt procedure that needs to be accessible from
any privilege level is put in a code segment that is made
“conforming” by setting bit 2 in the access byte of its
descriptor.

TASK SWITCHING

In a multiuser operating system each user’s program
can be set up as a separate task. When a user’s time
slice Is up. the operating system switches execution
from the current user's task to the next user’s task. A
similar process takes place in a single-user system which
is operating in a multitasking mode. As we pointed out
earlier, one of the main concerns in a multitasking
system is saving the state or context of a task so that it
will continue 'execution properly when it gets another
time slice.

Each task in a 386 protected-mode system is assigned
a task state segment or TSS. Figure 15-25 shows the
format for a 386 TSS. As you can see, the TSS holds
coples of all registers and flags, the selector for the task’s
LDT, and a link to the task state segment of the
previously executing task. Descriptors for the task state
" segments are kept in the global descriptor table, where
they can be accessed by the operating system during a
task switch. The task register (TR) in the 386 holds the
selector and the descriptor for the task state segment of

the currently executing task. The load task register

(LTR) instruction can be used to load the task register
with the selector and segment descriptor for a specific
task, but during a task switch the task register is
automatically loaded with the selector and descriptor for
the new task.

A task switch may be done in any one of four ways:

1. A long jump or call instruction contains a selector - -

which points at a task state segment descriptor. The
call instruction Is used if a return to the previously
executing task is desired. A jump instruction is used
if a return to the previously executing task is not

558 CHAPTER FIFTEEN

N 15 0

0000000000000000 unk |°
ESPO 4
0000000000000000 Sso ?: STACKS
e 10 {ChL
0000000000000000 SS1 v |01z
ESP2
0000000000000000 §s2 1B
CR3 1c
EIP 20
EFLAGS 24
EAX 28
ECX 2C
EDX 30
EBX 3
ESP 3
EBP 3¢ cunnent
ESI 40 3 TAsK
ED1 44 | STATE
0000000000000000 Es |
0000000000000000 cs |4
0000000000000000 ss |50
0000000000000000 - bps %
0000000000000000 Fs |58
0000000000000000 Gs |5
0000000000000000 LoT |80
AVAILABLE [T]84
AVAILABLE TO USER 68
TSS LIMIT

FIGURE 15-25 386 task state segm.ent format.
(Courtesy Intel Corporation)

desired. This is the simplest method and can be
easily implemented by the operating system kernel
at the end of a time slice.

2. The selector in a long jump or call instruction points
to a task gate. In this case the selector for the
destination TSS is in the task gate. The indirect
mechanism here is similar to that we described
above for call gates and has the same advantages
regarding privilege levels and protection.

3. An interrupt occurs, and the interrupt selector
points to a task gate in the interrupt descriptor
table. The task gate contains the selector for the new
task state segment. If the access passes all the
privilege level tests, the selector and descriptor for
the interrupt task will be loaded into the task
register. The nested task (NT) bit In the EFLAGS
register will be set.

4. An IRET instruction is executed with the NT bit in
the EFLAGS register set. Complex interrupt proce-
dures are often written and managed as separate
tasks. The IRET instruction uses the back link
selector in the task state segment to return execution
to the interrupted task. This is similar to the way
the IRET instruction works in real-mode operation.

We don't have space or inclination to explain the
details of all the possible task switch scenarios, but we
will make a few comments about the CALL/JMP method.

When a far CALL or JMP is executed to switch tasks,
the privilege levels are first checked. As with any far call
or far jump instruction, the RPL of the CALL selector
and the CPL of the executing program must both be less
than or equal to the DPL of the desired segment, or an
exception will be produced.

Assuming proper privilege levels, the 386 will check if
the task state segment for the new task is present in
physical memory and generate a not-present exception
If it 18 not. If necessary, the exception handler will load
the TSS for the new task.

The 386 then coples all the register values for the
current task to its task state segment. The value copted
for the EIP is the offset of the next instruction after the
one that caused the task switch.

At this point the old TSS 1s no longer needed, so the
386 loads the task register with the selector and the
descriptor for the TSS of the new task. The 386 then
automatically copies all the values for the new task from
its TSS to the 386 registers. Execution then continues
using the segment and offset values copied from the
TSS.

In a multiuser/multitasking system, the operating
system might use a JMP Instruction to switch from the
operating system task to a user task. A clock tick will
interrupt the processor at the end of the time slice. If
the interrupt descriptor table contains a task gate which
points to the operating system task, then the state of
the current task will be saved in its TSS, and execution
will switch to the operating system task. The operating
system can use another JMP Instruction to switch to
the next user's task.

PAGING MODE

The protected-mode segmentation and virtual memery
scheme we described for the 386 in the preceding section
is essentially the same as that for the 80286. The main
difference is that 386 segments can be as large as 4
Gbytes, instead of only 64 Kbytes. The designers of the
386 realized that the time required to swap very large
segments in and out of physical memory would be too
long, so they added an optional paging mechanism to
the design of the 386. The paging mechanism allows
segments to be divided into 4-Kbyte pages for faster
swapping.

The 386 is switched into paging mode by setting the
MSB of the CRO register with a simple MOV CRO, EAX-
type instruction. In this mode the paging unit in the
386 uses the linear address, computed by the segmenta-
tion unit as described above, to procuce the physical
address. Figure 15-26 shows how this paging scheme
works. To help fix it in your mind, we will first explain
the paging scheme from the bottom up and then from
the top down.

The Intel data sheets refer to each 4-Kbyte page in
physical memory as a page frame. The least significant
12 bits of the linear address from the segmentation unit
represent the offset of the desired data word within a
4-Kbyte page frame. The 32-bit base addresses and some
other information for up to 1024 page frames are kept
in a page table in memory. For future reference Figure
15-27a shows the details of the 4-byte entry placed in a

TWO LEVEL PAGING SCHEME ~

31 2 1 0 -
DIRECTORY| TABLE [OFFSET]
UNEAR 12 MEMORY
ADDRESS 10} 10 <
FROM n 0
SEGMENT @ ADDRESS
UNIT 406
3 (]
k)l 0 ®O—
CRO |
CR1 @
CR2 PAGE TABLE
CR3 ROOT
IRECT:
CONTROL REGISTERS DIECTORY

FIGURE 15-26 Diagram showing how a 386 computes
physical addresses when paging mode is enabled.

page table for each page frame. The 10 address bits,
A12-A21, from the linear address are used to select the
desired entry in one of the page tables.

A system can contain up to 1024 page tables. The 32-
bit base addresses and some other information for the
page tables are kept in another table caled the page
dtrectory. The format for the 4-byte entries in the page
directory Is the same as the format shown for a page
table entry in Figure 15-27a. The 10 address bits, A22-
A31, are used to select the desired entry in the page
directory. The 32-bit base address for the page directory
is kept in control register 3 (CR3) in the 386.

Looking at this from the top down then, CR3 points
to the base of the page directory and linear address bits
A22-A31 point to one of 1024 possible entries in the
page directory. The selected entry in the page directory
points to the base address of one of up to 1024 page
tables, and linear address bits A12—-A21 point to one of
the entries in the selected page table. The selected entry
in the page table contains the 32-bit base address of the
desired 4-Kbyte page frame. Linear address bits AO—-Al1
are used to access the desired code or data word in the
selected page frame. These bits are added to the base
address from the page table entry to produce the physical

31 1211109 8 7 6 5 4 3

os
PAGE TABLE ADDRESS 31 ‘/-1? RESERVED

o

0|DjA]O|O

£| o=
o

(a)

uss RIW PERMITTED | PERMITTED ACCESS
LEVEL 3 LEVELS0,1,0R 2
0 0 NONE READ/WRITE
0 1 NONE READ/WRITE
1 0 READ-ONLY READ/WRITE
1 1 READ/WRITE READMRITE
(b)

FIGURE 15-27 (a) Format for 386-page directory and
page table entries. (b) Access rights produced by
combinations of R-W and U/S bits in 386-page table
entries.

THE 80286. 80386, AND 80486 MICROPROCESSORS 559

.

address that will be output to memory. The maximum
amount of memory represented by this structure is 1024
page tables x 1024 pages/page table x 4096 bytes/
page, or about 4 Gbytes, the full 32-bit address space of *
the 386. A system can be set up with just one page
directory, but a more common practice is to give each
task {ts own page directory and, thereby, its own set of
page tables. Later we show you how the 386 task switch
mechanism makes provisions for easily switching page
directories.

As we sald before, the page directory Is located in
memory and the page tables are located in memory. To
avold having to read page directory entries and page
table entries from memory tables during each memory
access, the 386 maintains a special cache called a
translation lookaside buffer or TLB. The TLB is a four-
way set-assoclative cache which holds the page table
entries for the 32 most recently used pages. (Refer to
the discussion of caches in Chapter 11 if the term set-
assoclative is a little rusty in your mind.) When the 386
generates a linear address, the upper 20 bits of that
address are compared with the tags for the 32 entries
in the TLB. If there is a match, the page table entry for
the desired page is in the TLB. The base address from
this entry is used to compute the physical address. If
there is no match, the 386 reads the page table entry
from memory and puts it in the TLB. If the P bit in the
page table entry is a 1, Indicating that the page is
present in physical memory, then the physical address
will be computed and the desired word in the page
accessed. If the P bit in the page table entry is a O,
indicating that the page is not_present in physical
memory, the processor will generate a page fault excep-
tion (type 14). After the page fault exception handler
swaps the page into physical memory. the paging unit
will compute and output the physical address for the
desired word.

When the 386 paging mode is enabled. the U/S and R/
W bits in the page directory entries and the page table
entries can be used in place of or in addition to the
segmentation protection mechanisms. The U/S bit in a
directory or page table entry is used to specify one of
two privilege levels, user or supervisor. A O in the U/S
bit specifies the user privilege level, which corresponds
to segment privilege level 3, the lowest level. A 1 in
the U/S bit specifies supervisor privilege level, which
corresponds to segment privilege levels O, 1, and 2.

The R/W bit in a page directory or page table entry can
be used to establish read-write access rights for pages
or page tables. Figure 15-27b shows the access rights
produced by various combinations of U/S and R/W. Note
that for these bits 11 represents the most privilege and
00 the least privilege. If the access rights specified in a
page directory entry are different from the access.tights
specified in a page table entry, the least privileged of
these determines the access rights.

SUMMARY OF MEMORY MODELS

The memory In a 386 or 486 system can be set up using
the segments-only model, the segmented-paged model,
the simple flat model, or the paged flat model.

560 CHAPTER FIFTEEN

We thoroughly described the segments-only model in
a previous section. This is the only protected-mode
memory model available on an 80286. Versions 1.1 and
1.2 of Microsoft's 05/2 protected-mode operating system
were designed to run on an 80286 system. so they use
this model.

As we explained before, 386 segments can be too large
to be conveniently swapped in and out of memory, so
the 386 allows a paging mechanism to be switched in
after the segmentation unit. The paging unit divides
segments into 4-Kbyte pages for swapping in and out of
physical memory. This segmented-paged model allows a
programmer to think in terms of logical segments and
the virtual memory hardware to think in terms of easily
moved pages. However, one problem with this combined
approach is that the amount of time required to manage
all the descriptor tables, segments, page tables, and
pages In a complex system becomes too large. A second
problem s that developing the software to manage all
this is a complex task. Also, the amount of memory used
by all the tables can become excessively large. For these
and other reasons, Microsoft's 0S/2 for the 386, Novell's
Netware 386, and many other programs for 386 and 486
systems use the flat memory model, which effectively
removes segmentation.

The 386 does not have a way to turn off segmentation,
but you can effectively eliminate segmentation by initial-
izing all the segment registers with the same base
address and initializing the segment limits for 4 Gbytes.
Each segment then corresponds to the 4-Gbyte physical
address space of the 386. The 32-bit offset or effective
address part of each memory address is large enough to
access any location in this 4-Gbyte space. The different
parts of programs are simply located at different offsets
in the address space. '

This memory mode is referred to as the simple flat
system model and is useful for dedicated control applica-
tions that need the fastest possible task switching and
don't need all the segment-based protection features.
The SDK-386 board we discussed earlier uses the simple
flat model, and as we show later, this makes program
development for it quite easy. Also, the flat system
model makes it easy to transport software written for
nonsegmented devices such as those in the Motorola
68000 family devices to a 386.

Paged flat model systems enable the 386 paging mech-
anism to provide virtual memory-management and pro-
tection features. The present (P) bit in a page directory
entry indicates whether ‘the requested page table is

- present in memory and the P bit in the page table entry

indicates whether the requested page is present In
memory. The accessed (A) bit In a page table entry
indicates whether the page has been accessed. The
operating system can periodically check and reset this
bit to determine how often the page is being used. If the
page has not been used lately, it can be replaced when
the operating system needs space for a new page. The
dirty (D) bit in a page table entry will be set if data has
been written to the page. In this case the operating
system must write the modified page out to disk before
swapping a new page into its space. As we discussed
earlier, the user/supervisor (U/S) bit in the page directory -

entries and the page table entries provide two privilege
levels. The read/write (R/W) bit in a page table entry
allows a page to be marked as read only or read/write.
The /O permission bit map which we mentioned earlier
can provide protection for /O ports.

The point of all this is that the paged flat memory
model provides fast virtual memory capability and a
degree of protection adequate for most applications.

386 Virtual 8086-Mode Operation

As we pointed out in an earlier discussion, it is difficult
to switch a 286 processor back and forth between real
and protected mode. This limitation makes a 286 hard
“to use for a multitasking system, which must run a
mixture of tasks that use segment-offset addressing and
protected-mode tasks that use descriptors. The 386
virtual 8086 mode solves this problem. A 386 operating

in protected mode can easily switch to virtual 8086 mode

to execute a time slice of an 8086-type program and
then easily switch back to protected mode to execute a
time slice of a protected-mode task. This means that
some users in a multiuser system can be running
programs under protected mode UNIX V and other users
can be running real-mode DOS programs.

When a 386 operating in protected mode does a task
switch, it examines the VM bit in the EFLAGS register.
If this bit is set, the 386 will enter virtual 8086 mode
to execute the new task. If the VM bit is not set, the 386
will execute the new task as a normal protected mode
task. '

In virtual 8086 mode the 386 computes physical
addresses using the segment-offset mechanism used by
an B0B6. Therefore, the address range of a virtual 8086
mode task is 1| Mbyte. For a single virtual 8086 task this
address range is in the lowest 1 Mbyte in the processor
address space. If a system needs to run several different
8086 type tasks, then the 386 is operated In paging
mode so that each 8086 task can be given a different
page table and a different set of pages In physical
memory. A side benefit of using the paging mode is that
the U/S and R/W bits in the page directory entries and
the page table entries provide protection that is normally
not available in real mode.

In order to run virtual 8086 mode tasks, the operating
system must have a section of privilege level O code called
a virtual machine monitor. The main purpose of this
monitor is to intercept interrupts, exceptjons, and INT
n instructions which occur during the execution of the
8086 task. Figure 15-28 shows how this works for an
INT n instruction.

As you well know from previous chapters, most 8086
system programs use INT n software interrupts to access
BIOS and DOS IO procedures. In virtual 8086 mode the
INT n instruction can be executed only at privilege level
0. the highest privilege level. Since an 8086 task always
operates at level 3, the lowest privilege level. the 386
will generate an exception whenever the 8086 program
executes an INT n instruction. The handler for this
exception is in the virtual machine monitor, so the
monitor effectively takes over execution at this point.

8086 APPLICATION
PROGRAM

386 APPLICATION

GP FAULT

VIRTUAL 8086
MODE MONITOR

i Lz}
OPERATING Fz)
A\
SYSTEM oS

FILE OPEN
ROUTINES

8086 APPLICATION
PROGRAM

8086 APPLICATION MAKES "OPEN FILE CALL" — CAUSES GENERAL
PROTECTION FAULT (ARROW #1) ¢

VIRTUAL 8086 MONITOR INTERCEPTS CALL. CALLS 386 OS (ARROW #2)
386 OS OPENS FILE RETURNS CONTROL TO 8086 OS (ARROW #3)

8086 OS RETURNS CONTROL TO APPLICATION. (ARROW #4)
TRANSPARENT TO APPLICATION

FIGURE 15-28 Operation of virtual machine monitor
when 8086 virtual mode application program makes DOS
call to open a file. (Courtesy Intel Corporation)

During the task switch to the monitor, the state of the
8086 task is saved in its TSS. Also the VM bit in the
EFLAGS register is reset, so the monitor can operate in
normal protected mode.

If the call was to a function such as the DOS “open
file" command, the monitor will call the equivalent
procedure in the 386 protected-mode operating system
to open the file. This mechanism maintains all the
protection bulilt into the main 386 operating system.
When the file has been opened, execution is returned to
the DOS operating system. The IRET Instruction used
to return to the virtual 8086 DOS program restores the
8086 task state. As part of this, the VM bit in the
EFLAGS register Is restored to a 1 so that the 8086
program restarts in the virtual 8086 mode. For other
DOS function calls which do not involve VO, the monitor
may return execution to DOS to perform the function.
After the function is completed, DOS returns execution
to the 8086 program.

In virtual 8086 mode Interrupts are also intercepted
by the monitor. In most cases the zionitor will transfer
execution to the 386 protected mode operating system
to service the interrupt. To service Interrupts the 386
operating system uses the interrupt descriptor table and
gate scheme we described previously, so protection is
maintained. If protection is not an issue, the monitor
may return execution to DOS or to the 8086 program
to service the interrupt.

THE 80286, 80386, AND 80486 MICROPROCESSORS 561

When a clock tick interrupt occurs to signal the end
of a time slice, execution will switch from the 8086 task
to the monitor task. The monitor task through an IDT
gate will switch to the 386 operating system scheduler.
The scheduler will then switch to the next user task.
The VM bit in the EFLAGS register image of the TSS for
the new task will determine whether the task is executed
in virtual 8086 mode or 386 protected mode. The point
here is that the 386 provides a relatively simple mecha-
nism to alternate between 8086-type programs and 386
protected-mode programs.

Now. before we dig into 386 instruction set enhance-
ments and programming, let's summarize what we have
found out about the 386‘ so far.

Summary of 386 Hardware
and Operating Modes

The 386 s a 32-bit processor which is upward compati-
ble from the 8086, 80186, and 80286. In real address
mode the 386 functions s a fast 8086 and uses the
segment-offset address mechanism to address 1 Mbyte
of memory.

In its protected mode a 386 can address 4 Gbytes of
physical memory and 64 Terabytes of virtual memory.
Each protected-mode address consists of a 16-bit selec-
tor and a 32-bit offset or effective address. The 32-bit
offset component means that segments can be as large
as 4 Gbytes. An optional paging mechanism allows
segments to be broken into 4 Kbytes pages for faster
swapping in and out of memory. The 386 uses the 16-
bit selector to access the descriptor for the segment in
the global descriptor table or in a local descriptor table.
The segment base address from the descriptor is added
to the 32-bit offset to produce the linear address. In
segments-only mode, the linear address is the physical
address. If paging is enabled, the paging unit uses the
linear address, a page directory, and a page table to
produce the physical address.

The 386 contains several mechanisms to protect OS
code from user tasks and user tasks from each other. One
of these mechanisms is privilege levels. The operating
system code is given a privilege level of 0, the highest
privilege level, and user code is given a lower privilege
level. Any direct attempt by a program to access a code
or a data segment with a higher privilege level will
generate an exception. Programs can, however, access
procedures at a higher privilege level through an indirect
method called a gate. The gate allows a second check on
the privilege level of the access and makes sure the
access Is to the correct logation in the procedure. A
second protection mechanism is bounds checking. Any
attempt to access a location outside the limit specified
for a segment in its descriptor will generate an exception.

For a 386 operating in protected mode, interrupts are
vectored through gates In the interrupt descriptor table.
This indirect approach allows interrupt procedures to
be protected.

In a 386 system using the flat memory model, the
entire physical memory is treated as a single large
segment. All segments are glven the same base address
and limit, so they share this segment. The 32-bit offset

562 CHAPTER FIFTEEN

contatned in every memory address Is large enough to
access any location in the 4-Gbyte physical address
space of the 386. In a larger system using the flat
memory model, paging is enabled so that virtual memory
and protection can be implemented.

When the 386 does a protected-mode task switch, it
automatically copies the state of the current task to a
task state segment created for that task and loads the
state of the new task from its TSS. If the 386 finds the
VM bit of the EFLAGS register set when it does a task
switch, the 386 goes to virtual 8086 mode. In this mode
the 386 can directly execute 8086 type programs which
use segment-offset addressing. The interrupt at the end
of a time slice will cause the 386 to switch back to full
protected mode so the operating system can switch to
the next task using protected-mode features.

386 Instruction Set Additions
and Enhancements

A SECOND LOOK AT THE 386 REGISTER SET

In Figure 15-20 we showed you that the 386 register set
is a superset of the 8086 and 80286 register sets. The
386 register-type instructions allow you to specify 8-
bit registers and 16-bit registers as you do in 8086
instructions or to specify 32-bit registers. In 386 instruc-
tions you can specify, for example, AH, AL, AX or EAX
as an operand. The instruction MOV EAXEBX, for
example, will copy the 32-bit number in the extended

'BX register to the extended AX register. You cannot copy

an 8-bit part of a register to a 32-bit register with an
instruction such as MOV EBX,AL. Also, you cannot
directly access just the'u pper 16 bits of a 32-bit register.
If you need to copy just the upper 16 bits of, for example,
the EAX register into the BX register, you can first rotate
the upper 16 bits of EAX into the lower 16 bits with the
ROR EAX.16 instruction and then use MOV BX,AX. If
you need to put EAX back in Its initial condition, you
just do another ROR EAX,16 instruction. The 386
contains a "barrelshifter,” which can shift an operand
any number of bits in one clock pulse, so these rotates do
not appreciably slow the overall operation. Incidentally,
even a 386 real-mode program which uses 16-bit seg-
ments can use the 32-bit extended registers for data
operations.

For real-mode programs only the lower 16 bits of the
extended instruction pointer (EIP) are used, because
only 16 bits are needed to access any location in a 64-
Kbyte real-mode segment. In a protected-mode program
a code segment can be specified as 16-bit or 32-bit. To
specify a code segment as 16-bit, you simply write the
term USE 16 after SEGMENT in the segment declaration
line. The line CODE SEGMENT USE16, for example,
declares a 16-bit segment named CODE. A segment is
specified as 32-bit by putting the term USE32 after
SEGMENT in the segment declaration. If the segment
Is specified as a USE16 segment, then the maximum
segment limit is 64 Kbytes, and only the lower 16 bits
of EIP will be used to access instruction bytes. If the
segment Is specified” as USE32, then the maximum -
segment limit is 4 Gbytes, and all 32 bits of EIP are used
to hold the offset of an instruction byte,

The 386 contains two new segment registers, FS and
GS, which can be used as additional data segments.
None of the 386 instructions use these segments as
their default segment, so you usually have to use a
segment override prefix on an instruction which ac-
cesscs a data item in one of these segments. We will
show you how to do this in a later program example.

NEW ADDRESSING MODES AND SCALING

When an 8086 executes' the instruction MOV AX,PA-
TIENT_RECORD (BX] [DI], it computes the effective
address of the memory operand by adding a displace-
ment represented by the name PATIENT_RECORD, an
offset contained in the BX register, and an index value
contained in the DI register. For an 8086 only BX and
BP can be used as base registers in this way, and only
Sland DI can be used as index registers. A 386 can use
any of the eight 32-bit, general-purpose registers as a
base register, and it can use any of the 32-bit, general-
purpose registers except ESP as an index register. When
a 386 executes the instruction MDV BX, [EAX + EDX),
for example, it will compute the effective address of the
memory operand by adding the 32-bit number in EAX
to the 32-bit number in EDX. Note that these new
addressing modes work only with the 32-bit extended
registers. You can't, for example, use just AX as a base
pointer.

The 386 also has another powerful addressing feature
called index scaling, which is useful for accessing
successive elements in an array of words, double words,
or quad words. Index scaling allows the value contained
In an index register to be automatically multiplied by a
specified scale factor of 2, 4, or 8 when an instruction
executes. If a 386 executes the instruction MOV EAX,
[EBX +EDI*4], for example, it will multiply the index
value in EDI by a scale factor of 4 and add the result to
the value from the EBX register to produce the effective
address. The double word pointed to in DS by this
effective address will be copied into the EAX register. If
this instruction s part of a loop which processes an
array of doubl¢ words, then all that you have to do to
get ready for the next trip around the loop Is to increment
the index value in EDI. When the MOV instruction is
executed again, the new index value will automatically
be multiplied by the scale factor in computing the
effective address. .

Even though real-mode data segments can be only 64
Kbytes long, you can still use index scaling and these
new 32-bit addressing as long as the effective address
produced does not exceed 16 bits. In a later section we
show you an example program which demonstrates how
to do this.

NEW INSTRUCTIONS

The 386 instruction set includes all the 8086/80186/
80286 instructions and extends these instructions to
work with 32-bit data words and 32-bit offsets. The 386
also includes several new instructions. In this section
we briefly explain the functions of these new instructions
and give you an example of each. Then we make a few
comments about 8086 instructions that have been
enhanced in the 386.

- 73

Bit Scan and Test Instructions

BSF—Bit scan to the left until nonzero bit is found.

EXAMPLE:

BSF CX, DX : Scan DX to left until nonzero bit,

; leave bit number in CX
: Zero flag set if all DX=0

BSR—Bit scan to the right until nonzero bit 1slfound.

EXAMPLE:

BSR CX, DX ; Scan DX to right until nonzero bit,

: leave bit number in CX
: Zero flag set if all DX =0

BT—BIt test and put specified bit in carry flag.

EXAMPLE:

BT EBX, 4 i Copy bit 4 of EBX to carry flag

BTC—BIit test and complement.

EXAMPLE:

BT EBX, 7 : Copy complement of bit 7 to CF

BTR—Bit test and reset.

EXAMPLE:

bi1R WORD PTR [BX], 3 ; Bit 3 of [BX] to CF
: Reset bit 3 of [BX]

BTS—Bit test and set.

EXAMPLE:

MOV CL, 4
BTS EAX, CL ; Copy bit 4 of EAX to CF

; Set bit 4 of EAX

\

Data-type conversions

CDQ—Convert signed double word in EAX to quadword
in EDX:EAX.

CWDE—Converts signed word in AX to double word in
extended EAX.

Segment load instructions
These instructions are similar to LDS and LES instruc-
tions described in Chapter 6.

LF5—Load FS segment register and specified base regis-
ter with values from specified memory locations.

563

THE 80286, 80386, AND 80486 MICROPROCESSORS

A}

EXAMPLE®

LFS BX. DWORD PTR (DI]
: Load FS and BX with
: DWORD from memory at [BX]

EXAMPLE:

LFS EBX, FWORD PTR (DI}
; Load FS with 16 bit
. selector and EBX with 32-bit
; offset for memory at [DI]

LGS—Load GS segment register and specified register *

from specified memory locations.

LSS—Load SS segment register and specified register

from specified memory locations.

Move and expand lnstructions

MOVSX—Move and sign extend to fill destination reg-

ister.

EXAMPLE:

MOVSX CX, BL
; BL through all of CH

MOVZX—Move and zero extend to i destination reg-

ister,

EXAMPLE:

MOVZX CX, BL : Copy BL to CL, fill CH with zer‘gs

Set memory flag word instruction

SETxx—Set all bits in specified byte if condition xx iIs
met. xx here can be any condition from conditional jump

mnemonics. -

EXAMPLE:

SETC TooBig ; Set all bits in flag TooBig if

; Carry flag set

Shifts between words

SHLD—Shift specified number of bits left from one

operand into another.

EXAMPLE:

SHLD EAX. EBX. 8 ; Shift upper 8 bits from EBX
. into lower 8 bits of EAX

; EBX unchanged

' SHRD—Shift specified number of bits right {rom one

operand into another.

564 CHAPTER FIFTEEN

; Copy BL to CL, extend sign bit of

EXAMPLE:

SHRD EAX, EBX, 8

: Shift lower 8 bits from EBX
; into upper 8 bits of EAX.
; EBX unchanged

INSTRUCTION ENHANCEMENTS

Several of the 386 instructions have significant improve-
ments over the 8086/80186/80286 versions. Here are a
few notes about these improvements.

1.

bl

The 386 string instructions work with double-word
operands as well as with word and byte operands. A
“B" at the end of an Instruction mnemonic specifies
byte operands, a W specifies word operands, and a
D specifies double-word operands. Examples are
CMPSB, CMPSW, and CMPSD.

The destination for a 386 conditional jump can

_be anywhere In the segment containing the jump

instruction. Conditional far jumps must stili be
done by changing the jump condition and using an
unconditional far jump as we showed you for the
8086 in Chapter 4.

The LOOP instructions can use the CX register or
the ECX register as a counter. If you want CX to be
used, write the instructions as LOOPW, LOOPWE,
and LOOPWNE. If you want the ECX register to
be used as the counter, write the instructions as
LOOPD, LOOPDE, and LOOPDNE.

PUSHFD pushes the 32-bit EFLAGS register and
POPFD restores it. ’

PUSHAD pushes the 8 general-purpose 32-bit regis-
ters on the stack, and POPAD restores these registers
except for the value of ESP which is ignored.

IRETD pops the double word EIP, a double word for
CS, and the EFLAGS register off the stack. The high
word of the value popped for CS is discarded.

The IMUL instruction can now perform signed muiti-
plication on any general-purpose register and a
memory location or another general-purpose reg-
ister.

In addition to the protected-mode instructions in--
herited from the 80286, the 386 instructions used
to move data to/from the control registers (CRO-
CR3). the debug registers (DRO-DR7), and the test
registers (TRO-TR7) can be executed only in pro-
tected mode at privilege level 0. These instructions
are sl‘mplc’MOV register, registr instructions.

386 Programming

INTRODUCTION

The tools and techniques used to write a program for a
386 or a 486 depend very much on whether it is a system
program or an application program and whether it
utilizes protected mode or not. The tools and techniques
are also determined by whether the program is going to

execute in a graphical user-interface environment such
as Microsoft's Windows 3.0 or OS/2. In this section we
give you an introduction to writing 386 programs for
five different programming environments.

386 PROGRAMS FOR MS DOS-BASED SYSTEMS

Current versions of DOS are designed to run on 8086/
8088, real-mode 80286, or real-mode 386/486 systems.
If you want a program to be able to run under DOS on
any one of these systems, then you have to write it for
the “weakest link”.in.the group, the 8086. The 8086
and C programming examples throughout this book
were In fact compiled and run on a 386-based system.
If you are writing a program that you are sure will only
be run under DOS on a 386- or 486-based machine, you
can write the program to take advantage of the 32-bit

. processing capabllity, addressing modes, and enhanced
instructions of the 386. Assuming that you are using
the MASM or TASM assembler, you tell the assembler to
accept 386 instructions by putting the .386 directive at
the top of your source program, as shown in Figure 15-
29a.

If you are using the simplified segment directives,
make sure to put the .386 directive after the .MODEL
directive, as shown in Figure 15-29b. This order tells
the assembler to create 16-bit segments which are
compatible with real-mode operation. If you put the .386
directive before the .MODEL directive, the assembler
will create 32-bit code and data segments which can be
used only in protected mode.

Even though 386 real-mode programs are limited
to 64-Kbyte segments and unless bank switching is
implemented, to a 640-Kbyte address space, you can
still use the 32-bit extended registers, addressing modes,
and new instructions of the 386. The simple example
program In Figure 15-29a shows some of the possibilit-
les. The main points we included in this example are:
how to declare segments; how to access data in the new
segments, FS and GS: and how to use the 32-bit
addressing modes and scaling.

First note that the code and data segments are spec-
ified as 16-bit with USE 16 directives. The USE16 on the
data segment directive specifies a maximum segment
length of 64 Kbytes as required for real-mode operation.
The USE16 on the CODE SEGMENT line tells the
assembler to compute all memory addresses using the
segment base and 16-bit offset method.

Next in the examplé note that we assume and Initialize
the FS register, just as we did the DS, ES, and SS
registers In earlier program examples. The first action
of the program then shows you how to read a double
word from this segment to the 32-bit EAX register. A
segment override prefix must always be used for refer-
ences to the FS or GS segment, because there is no
default as there is with DS. The ROR EAX. 16 instruction
rotates the 32-bit EAX register around 16 bits to the
right. As we said earlier, iIf execution is limited to a
386 system, the 32-bit registers can be used for data
operations, even in real mode.

The next section of the example in Figure 15-29a
shows how the 32-bit addressing modes can be used to
help process an array of words. The instruction MOV

Some 386 addressing modes and instructions

\

186 \

DATA SEGMENT USE16

BIGVAL DD 12345678H

TABLE DW 4235H, T590H, 496BH, 3817H
DATA ENDS

CODE - SEGMENT USE16
ASSUME CS:CODE; FS:DATA

START: MOV AX, DATA ; Initialize FS
MOV FS, AX ; register
;Read 32-bit operand from memory
MOV EAX,FS:BIGVAL
ROR EAX, 16
MOV FS: BIGVAL, EAX
;Process table
MOV CX, 04
MOV EDI, O
NEXT: MOV DX,FS: [TABLE+EDI*2)

Get double word
Swap word order
Put back result

ss we we

Word from array to DX
Scen from left for
first zero bit

Skip if all zeros
Store number of

first zero bit
Increment index

BSF AX, DX
INZ MORE
MOV FS: (TABLE+EDI*2] ,AX

MORE: INC EDI
LOOP NEXT
MOV AX, 4COOH
INT 21H
CODE ENDS
END START

e me e me we w0 =

Return to DOS

(a)

;si-pl{fied segment directives exsample
; for 16-bit segments

DOSSEG
.MODEL large
.386
DATA

TABLE DW 4235H, 7S90H, 4968H, 3817H

.CODE
START: MOV AX, DATA ; Initialize FS register

MOV FS, AX

(b)

FIGURE 15-29 (a) 386 real-mode program using
traditional segment directives. (b) Simplified segment
directives for generating 16-bit 386 segments.

DX.FS: [TABLE + EDI*2] copies a word from the array to
DX. The effective address for this instruction is com-
puted by multiplying the contents of EDI by 2 and
adding the result to the displacement represented by
the name TABLE. The first time through the loop EDI
contains 0, so the effective address is just TABLE, the
offset of the first word in the array. Before the loop
executes again EDI is incremented to 1. During the

THE 80286, 80386, AND 80486 MICROPROCESSORS 565

next execution of the MOV DX,FS: (TABLE +EDI*2)
instruction the ellective address will be TABLE + 2, the
offset of the second word in the array. An important
point here is that in real-mode operation an exception
will be generated If the effective address produced by an
instruction is greater than 64 Kbytes.

Within the loop we use one of the new 386-bit instruc-
tlons to process the word read in from memory. The
BSF AX. DX instruction will scan the DX register starting
from the left until it finds a nonzero bit. The number of
the first nonzero bit will be loaded into AX. If all bits In
DX are zeros, the zero flag will be cleared. In this case
we just leave the word of all zeros in the array and
process the next word. If the word is not all zeros, we
write the number of the first nonzero bit in the memory
word and then process the next word.

Finally, in the example program we use a familiar DOS
function call to return execution to DOS. This 1s not a
particularly significant program, but it does show you
a little of what you can do with the added features of
the 386 if you are willing to sacrifice 8086 downward
capability.

386 PROGRAMS FOR THE SDK-386

As we told you earlier, you can download the binary
programs from a PC- or PS/2-type computer to an URDA

SDK-386 board through an RS-232C link. The SDK-386.

board operates in protected mode using the simple flat
memory model, so you can use it to experiment with a
simple, dedicated 386 system such as those in Chapter
10.

During initfalization the monitor program sets up a-

global descriptor table, a local descriptor table, and an
interrupt descriptor table. The GDT, LDT, and IDT
registers in the 386 are loaded with the base addresses
and limits for these tables. The monitor also sets up a
system task state segment and a user task state segment.
As part of the initialization the selector for the user task
state segment is loaded into the backlink field of the
system TSS. When a user presses the RUN or the STEP
key, an IRET instruction causes a task switch to the
user task. This executes the user program. If the user
presses the BREAK key, an NMI interrupt will be gener-
ated. This causes a task switch to the system task so
that registers, memory locations, etc.’can be examined.
The BRPT key can be used to load up to four breakpoint
addresses in the 386 debug registers. As we explained
carlier, the 386 checks each memory address and will
break if it finds any of the specified breakpoint addresses.
You have considerable flexibility in how you write a
. program for the SDK-386 board. The simplest approach
Is to use a format slightly modified from that in Figure
15-29a. The flat model memory mode used by this board
means that all segments start from absolute address
OO000000H. and all the segment registers contain the
same base address. System and user programs use 32-
bit offsets to access code and data words in this shared
segment. The contents of the segment registers then do
not have to be changed during a switch from the system
task to the user task. This has important implicatons
for how you write a program to run on the board.
The D bit in the code segment descriptor determines

566 CHAPTER FIFTEEN /

\

whether the 386 uges 16 bit effective addresses or 32-
bit effective addresses. If the D bit is a 0, then 16-bit
effective addresses are produced and if D = 1, 32-bit
addresses are produced. The monitor program in the
board sets the D bit of the code segment descriptor to a
1. so this means that 32-bit addressing 1s assumed. To
make your program compatible, you make the code
segment a USE32 type so that the assembler will produce
32-bit offsets. Your data segments should also be made
USE32 type to be compatible with the segments set up
by the monitor. Incidentally, you don't have to initialize
data segments as part of your program, because the
monitor loads the selectors and descriptors for these,
and they are not changed when execution switches to
the user task.

The user area of RAM on the board begins at 300H,
so you should include an ORG 300H directive before the
code segment in your program. The program will then
be assembled to run in this address space in RAM.
After the program is assembled and linked, it can be
downloaded to the board and run.

For a more complex program the board allows you to
use the segment-based protection features of the 386,
The global descriptor table contains four user-definable
descriptors and the local descriptor table contains six
user-definable descriptors. The Interrupt descriptor ta-
ble also- contains a user-definable descriptor for the
USER INTERRUPT key on the board and another user-
definable descriptor. We don't have a space here to show
you how, but you can use these descriptors to define
custom segments for your programs.

WRITING A 386 PROTECTED-MODE
OPERATING SYSTEM

In the unlikely case that you should have to write a 386
protected-mode operating system or monitor program,
you should be aware of Intel's 386 Relocation, Linkage.
and Library (RLL) tools which run on IBM PC/AT or
newer microcomputers. This tool set contains a binder,
which is a high-powered linker that can combine object
modules compiled from different languages Into tasks,
combine segments, resolve PUBLIC/EXTERNAL refer-
ences, assign virtual addresses, and generate a file which
can be loaded into RAM for debugging. The tool set also
contains utilities for working with library functions.
Another important part of the tool set is the builder,
which allows a programmer to assign physical addresses
to segments; set segment access rights and limits;
create gates; create global, local, and interrupt descriptor
tables; create task state segments; and set up the boot
process.

Incidentally, the Intel 80386 System Software Writer's
Guide shows a simple example of a flat system.and a
simple example of a segmented system.

MICROSOFT’S OS/2 2.0 OPERATING SYSTEM

As we told you earlier, MS DOS s for the most part a
single-user, single-task operating system and does not
take advantage of the virtual memory and multitasking
capabilities of the 286/386/486 processors. The probable
successor to DOS s Microsoft's 0S/2. which Is a single-

' user, multitasking operating system. Microsoft's 0S/2

version 1.0 was an early attempt at a multitasking
operating system for the 80286 processor. 0S/2 1.0 and:

" the later versions of 0S/2 for the 80286 can multitask
several protected mode taskis and one real mode task.
The real-mode task is run in a “DOS compatibility box.™
The reason that only one real mode task can run is the
difficulty in switching an 80286 from protected mode to
real mode and back. The user interface for 0S/2 1.0 was
a typed command line similar to DOS.

The next version of 0S/2, 05/2 1.1 introduced a new
graphical user interface (GUI) called the Presentation
Manager or PM. PM is similar to the screen-based
interface you may have seen on Applé Macintosh com-
puters. In PM you execute commands by using a mouse
to move a cursor to a desired command in a menu of
commands or to an icon which represents the command.
You then execute the command by clicking a key on the
mouse. PM also allows you to have multiple “windows™
open on the screen. You can “cut” something from one
window and “paste” it into another window. The file
manager in PM allows you to display a directory tree on
the screen, select a file from the tree, and perform some
action on the file by just moving cursor around on the
screen and clicking the mouse key at the appropriate
points.

0S/2 1.2 kept Presentation Manager and added the
High Performance File System (HPFS). Instead of the
FAT used by the DOS file system, the HPFS uses a
different system which allows much faster file access.
Another obvious improvement in HPFS is that filenames
can be longer than 8 characters. HPFS also sets up an

~“extended attribute” block for each file. The operating
system or an application program can use this block to
describe and control use of the file.

0S/2 version 2.0, designgd to run only on 386 and
486 systems, uses the virtual 8086 mode of these
processors to implement Multiple Virtual DOS Machines
(MVDM) capability. In addition to the features of earlier
versions, 0S/2 2.0 can multitask any mixture of DOS
programs, applications written for earlier versions of
0S/2, and applications written specifically for version
2.0. 0S/2 2.0 uses the flat paged memory model that we
described earlier for the 386.

In the preceding chapters we showed you how to use
DOS function calls to open files, read files, -etc. in
your programs. In OS/2 2.0 there are three different
application program interfaces (APIs) or sets of func-
tions which can be called to perform these functions.
One is the real-mode DOS compatible APl which is used
by the programs operating in a DOS compatibility box.
The functions in this APl are called with software
interrupts such as INT 21H. The second API contains
the 16-bit functions that are compatible with 0S/2 1.x
application programs. To use one of these functions the
required parameters are first pushed on the stack. and
then the procedure is called by name. The third API
contains the 32-bit functions used for OS/2 2.0 applica-
tions. The functions in this API are also called by name
after pushing the required parameters on the stack.
Unlike the 16-bit API calls, the parameters for these calls

are pushed on the stack in the same order as parameters

for C function calls are pushed. In fact. the 32-bit API

is in some ways like an extension of the C Run Time

- Library you met in Chapter 12. One major difference

between the 32-bit APl and the C RTL is in the way the
functions are connected to the .exe program.

When a C program is linked, the object code files for
library functions are linked with the object code for the
compiled C program modules to make the .exe program.
The OS/2 APIs are dynamic link libraries (DLLs). When
a program containing an API call is linked, a reference
to the function is put in the .exe file instead of the object
code for the called function. When the program is loaded
into memory to be run, the library containing the
function is loaded into memory where the program can
access it. This approach may seem strange at first, but
it has several advantages. First, the .exe programs are
much smaller, because they do not contain the large
library functions. This means that the .exe files take
less space on a hard disk. Also, the API functions are
reentrant, so a library can be shared by multiple tasks
on a multitasking system. This saves memory, because
each task does not have to have a copy of the library in
memory. Still another advantage of the DLL approach
is that by updating the library you can update all
programs that use the library, without having to relink
each program.

You can write DOS type programs for-an OS/2-based
system using the programming tools we described in
earlier chapters. For simple protected-mode programs
you can use Microsoft's C 5.2 32-bit C compliler and the
latest version of Microsoft's Macroassembler (MASM). To
develop a 32-bit 0S/2 application which ufilizes PM, you
use Microsoft's 0S/2 2.0 Software Developer's Kit which
contains all the needed tools.

MICROSOFT WINDOWS 3.0

Microsoft’s Windows 3.0 is a relatively inexpensive bridge
between the DOS world and the high-powered 0S/2 2.0
operating system we discussed briefly in the preceding
section. As the name implies, this program uses a
graphical user interface (GUI) very similar to Presenta-
tion Manager. Windows 3.0 is essentially a very flexible
DOS extender which can take advantage of the protected-
mode features of the 80286, 386, and 486 processors.
It can be operated in any one of three different modes,
depending on the processor and memory available in
the system. On an 8086/8088-based system, Windows
3.0 must be operated in its real mode. On an 80286-
based system with at least 1 Mbyte of extended memory,
Windows 3.0 can be run in standard mode. which takes
advantage of the protected mode features of the 80286.

" In real mode and standard mode, only one DOS type

task can be run at a time. .

On a 386- or 486-based system with at least 2 Mbytes
of extended memory, Windows 3.0-can be run in its 386
enhanced mode. In this mode, which is the one we are
interested in here, it uses the 386's virtual 8086 mode
to run multiple 8086 tasks, and it implements paged
virtual memory so it can run programs that require
more memory than is physically present in the system.

When you run Windows 3.0 the program manager
window shown in Figure 15-30, page 568. appears on
the screen. The icons along the bottom of this window

THE 80286, 80386, AND 80486 MICROPROCESSORS 567

Options Window Help

Program Manager

_ Control Panel Print Manager

2

Windows Setup

l@é%

[S[ss]
00D

[B88]
Accassores

% [ool
ool

Windows Applications

]
pboard DCS Prompt
Y
888
Non-Windows Applications H

T

FIGURE 15-30 Microsoft Windows 3.0 Program Manager window display.

represent groups of programs you can execute. If you
move the cursor to one of these icons and double-click
the left mouse key, another window containing a menu
of the programs in that group will appear. You can
execute a program in the group by just double-clicking
on the name of the program in the menu. If you want
to start another program running at the same time, you
can “minimize” the window for the running program to
put that program in the background and then start
another program running. The background program
- continues running after you start the new program in
the foreground. Windows even allows you to specify the

percentages of time you want the processor to spend -
“—on the background task and on the foreground task.

Windows 3.0 keeps a task list of the currently running
tasks. You can switch a task from background to fore-
ground by-bringing up the task list and clicking on the
desired task.

One of the program icons in the program manager
window is the file manager. When you double-click on
this icon, it opens a file window and shows you a tree
of the files and subdirectories in your current directory.
In this window you can use the mouse to perform the
usual file operations such as copy, delete, rename,
etc. The point of all this is that instead of typing in
commands, you can perform almost any operation by
Just moving the cursor to the appropriate location on
the screen and clicking the mouse key. Windows 3.0
also has a very versatile on-screen help system which
you can pop up as needed.

Windows 3.0 separates programs into two categories,
windows applications and nonwindows applications.
During setup Windows 3.0 scans your disk drive(s) and
puts the programs it finds Into the correct category.

568 CHAPTER FIFTEEN

Programs not specifically written folI 3.0 will be classified
as nonwindows applications. In the real and standard
mode, nonwindows applications are run in full-screen
mode similar to the way they would run in a pure DOS
environment. Windows applications take advantage of
the GUI. Among the windows application-type programs
that come with Windows 3.0 are a word processor,
notepad, paintbrush, calendar, clock, print spooler, and
a card file.

To write a simple Windows 3.0 application program
you can use the Asymetrix Corp Toolbook which comes
with Windows 3.0. Toolbook includes some impressive
demonstrations. To develop more complex Windows 3.0
applications, you need tools such as version 2.0 of
Borland’s C+ + or the Microsoft Windows 3.0 Software
Development Kit. The programming guide that comes
with this tool set contains a sequence of templates that
you can use to develop a custoni application. We had
hoped to rewrite the SDKCOM1 program from Chapter
14 as an example windows application program, but we
ran out of space and time. Maybe we can Include this
in the next book.

THE INTEL 80486 MICROPROCESSOR

The 32-bit 486 is the next evolutionary step up from the
386. The basic processor unit used In the 486 {s the
same as that used in the 386, so all of the preceding
discussion of the 386 applies to the 486. All we have to
discuss here are the additions and enhancements that
designers were able to add by increasing the number of
transistors on the die from 300,000 to about 1,200,000.

As you can see In Figure 15-31, one of the most
obvious features Included in a 486 Is a built-tn math

64-BIT INTERUNIT TRANSFER BUS

/1l

PATH

FIGURE.15-31 Intel 486 internal block diagram. (Courtesy Intel Corporation) 4
' ‘ !

coprocessor. This coprocessor s essentially the same as
the 387 processor used with a 386, but being integrated
on the chip allows it to execute math instructions about
three times as fast as a 386/387 combination.

Another fairly obvious feature included in a 486 is
an 8-Kbyte code and data cache. This four-way set-
assoclative cache works in basically the same manner
as the external caches we described in Chapter 11. One
difference is that a “line” for this cache is 16 bytes
instead of 4 bytes.

A less obvious 486 improvement is the five-stage
instruction pipeline scheme that allows it to execute
{nstructions much faster than a 386. This scheme,
commonly used in RISC processors, allows several in-
structions to be “in the pipeline” at a time. The 486 will
fetch several Instructions ahead of time, and while it Is
executing one instruction, it will decode and as soon as
possible, start the execution of the next Instruction.
The 486 may actually be executing parts of several
instructions at the same time. For example, suppose the
486 1s given the meaningless sequence of instructions:

MOV AX, MEMORY_LOCATION
ADD CX, BX

SHR AX. 1

~ MoV MEMORY_LOCATION, CX

A few clock cycles before it gets to the first of these
instructions, the 486 will have prefetched all these
simple instructions and started decoding them. As the
MOV AX, MEMORY_LOCATION Iinstruction executes,
decoding of the ADD instruction will be completed. Since
the ADD instruction does not uses the buses or the data

" | a2-8impataBus /
| [/ =
 32BT DATABUS /
" "32
LINEAR ADDRESS BUS |
4
GASES U :3:0 ot BUS INTERFACE A2-A31,
BARREL |\n SEGMENTATION [==E BEOY-BEM
SHIFTER BZESX ONIT PR ~—-+2—— ., CACHE UNIT . ADDRESS DRIVERS
REGISTER t> DESCRIPTOR UNIT Z:> Y WRITE BUFFERS
FILE S | PEGISTERS — R s - i .
LIMIT AND TRANSLATION CACHE a2 DATA BUS D0-D31
ATTRIBUTE LOOKASIDE | PHYSICAL TRANSCEIVERS
ALU PLA BUFFER | ADDRESS ADS# W/RS D/C# MAOS
) 32 PCD,PWT RDY# LOCKS
BUSCONTROL | PLOCKE BOFF# AZOM#
128 REQUEST BREQ HOLD HLDA RESET
SEQUENCER INTR NMi FERR# IGNNE#
) o MIERRCORRTE
MICRO- DISPLACEMENTBUS | PREFETCHER ng:;r%)ts BRDY# BLAST#
INSTRUCTION w1 | }--Eis-- o
32 BYTE CODE BUS SIZE BS16# BSBY
CODE QUEUE CONTROL
sTREAMII |} 2 EpEEEEs=EEeETY KEN# FLUSH#
T 7 2x 16 BYTES CACHE CONTROL | AHOLD, EADS#
POINT PROTECTION| X nstruction] 24 [PARITY GENERATION| -
A UNIT TEST UNIT <,___ DECODE g ANDCONTROL o7 “ 720
F.P. CONTROL
REGISTER ROM DECODED
FILE INSTRUCTION
,

!

read in from memory by the MOV instruction, it can be
executed before the MOV AX instruction is complete.
Likewise, decoding of the SHR instruction will be.com-
pleted while the ADD CX, BX instruction is executing,
and on the next clock cycle the SHR instruction will be
executed. During the clock cycle that the SHR instruc-
tion executes, the décoding of the MOV MEMORY_LOCA-
TION, CX instruction will be completed, and the address
of the memory location will be output on the address
bus. On the next ¢lock cycle the word in AX will be
output on the data bus. This extensive overlapping of
operations makes it possible for thie 486 to execute many
of its commonly used instructions in, effectively. a single
clock cycle. The fetching, decoding, and executing of
each of these instructions actually takes several clock
cycles, but since these operations are overlapped with
the decoding and execution of other instructions, the
net time for each of the instructions is only one clock
cycle. As an example of this, a 16-bit memory-write
operation that takes 22 clock cycles to execute on an
8088 and 4 clock cyles to execute on a 386 takes only 1
clock cycle to execute on a 486. The conditional jump
instructions have also benefited greatly from the oipelin-
ing in the 486. When the 486 decod=s a conditional
jump instruction, it automatically prefetches one or

_more instructions from the jump destination address

just In case the jump is taken. If the branch is taken.
then the 486 does not have to wait through a bus
cycle for the first Instruction. at the branch address. A
conditional jump instruction which takes 16/4 clock
cycles on an 8088 and 8/3 clock cycles on a 386 takes
only 3/1 clock cycles on a 486. Vi

Most of the other improvements included in the 486

THE 80286, 80386, AND 80486 MICROPROCESSORS 569

ax
K) A2-ATY
BEW
n.er
DATA BUS BE28 ADORESS
EoQ T em— S - L
| €00
o ADSS |
BUS
CONTROL —] MAOe
']
— wm] wiRe BUS CYCLE
| _wihe
NTERRUPT RESET ' LOCKe DERNITION
S .. B PLOCKS
—AHOW | HOLD
INVALIDATION { — FEADS) o HLDA e
MICROPROCESSOR| BoFFs ARBITRATION
KENS E BREQ
CONTROL { Rushe
BROV#
PAGE La.i5 |_BLASTY [cONTROL
CACHING D
1 CONTROL]
—— | wsszE
m‘m] ES18e CONTROL
; IGNNES
REPORTING —
20 IS
ADORESS BIT A20M8 0Pz
20 MASK O i S e
P« S| R S
.
PCHKS

FIGURE 15-32 486 functional signal groups. (Courtesy
Intel Corporation)

involve hardware signals and interfacing. To make room
for the additional signals, the 486 is packaged in a 168-
pin pin grid array package instead of the 132-pin PGA
used for the 386. Figure 15-32 shows the 486 signals
in functional groups. We will briefly work our way
through some of these to give you an overview of the
major new features. ’

The 486 data bus, address bus, byte enable, ADS#,
RDY#, INTR, RESET, NMI, M/IO#, DIC#, W/R#, LOCK#,
HOLD, HLDA, and BS16# signals function as we de-
scribed for the 386, so these hold no surprises. The 486
requires a 1 x clock instead of 2 x clock required by the
386.

A new signal group on the 486 is the parity group,
DPO-DP3, and PCHK#. These signals allow the 486 to
implement parity detection/generation for memory reads
and writes. During a memory write operation, the 486
generates an even parity bit for each byte and outputs
these bits on the DPO-DP3 lines. As we described for
the IBM PC in Chapter 11, these bits will be stored in a
separate parity memory bank. During a read operation
the stored parity bits will be read from the parity memory
and applied to the DPO-DP3 pins. The 486 checks the
parities of the data bytes read and compares them with
the DPO-DP3 signals. If a parity error is found, the 486
asserts the PCHK# signal.

Another new signal group consists of the burst ready
signal, BRDY#, and the burst last signal, BLAST#.
These signals are used to control burst-mode memory
reads and writes. Here's how this works. A normal 486

570

CHAPTER FIFTEEN

memory-read operation to, for example, read a line into
the cache requires 2 clock cycles. However, if a serfes of
reads is being done from successive memory locations,
the reads can be done in burst mode with only 1 clock
cycle per read. To start the process the 486 sends out
the first address and asserts the BLAST# signal high.
When the external DRAM controller has the first data
word ready on the data bus, it asserts the BRDY # signal.
The 486 reads the data word and outputs the next
address. Since the data words are at successive ad-
dresses, only the lower address bits need to be changed.
If the DRAM controller is operating in the page or the
static column modes we described in Chapter 11, then
it will only have to output a new column address to the
DRAM. In this mode the DRAM will be able to output
the new data word within 1 clock cycle. (If the DRAM is
not fast enough for a high-speed 486, then two DRAM
banks can be interleaved to gain the required speed.)
When the processor has read the required number of
data words, it asserts the BLAST# signal low to termi-
nate the burst mode.

The final signals we want to discuss here are the bus
request output signal, BREQ; the back-off input signal,
BOFF#; the HOLD signal: and the hold-acknowledge
signal, HLDA. These signals are used to control sharing
the local 486 bus by multiple processors (bus masters).
When a master on the bus needs to use the bus, it
asserts its BREQ signal. An external priority circuit will
evaluate requests to use the bus and grant bus use to
the highest-priority master. To ask the 486 to release
the bus, the bus controller asserts the 486 HOLD input
or BOFF# input. If the HOLD input is asserted, the 486
will finish the current bus cycle, float its buses, and
assert the HLDA signal. To prevent another master from
taking over the bus during a critical operation, the 486
can assert its LOCK# or PLOCK# signal.

Because of all the possible variations, we don't have
space here to discuss the operation of the 486 cache
control signals. Consult the 486 data sheet if you need
to know about these and the few other signals we didn't
get around to. '

The 486 has six additiqnal Instructions beyond those
of the 386. INVD and WBINVD invalidate the cache, and
INVLPG.invalidates a TLB entry. The BSWAP instruction
swaps the order of the bytes in a 32-bit register. This is
useful in interfacing with, for example, an IBM main-
frame which stores the least significant byte in the
upper bits of a data word. The XADD and CMPXCHG
Instructions are used to work with semaphores such as
those we showed you in Figure 15-3.

NEW DIRECTIONS

Microprocessor and microcomputer evolution has been
proceeding very rapidly in the last few years, and the
rate of evolution seems to be Increasing. As we have
shown In the preceding chapters, the overall direction
of.this evolution is toward microcomputers with greater
screen resolution, ‘giore memory capability, larger data

* words, higher processing speeds, and network commu-

nication. David House of Intel recently revealed Intel's
current plans for evolution beyond the 486. The 586,

expected in 1992, will contain about 2 million transis-
tors, and the 686, expected in 1996, will contain about
5 miliion transistors. The added transistors, of course,
will allow larger caches and many new functions to be
implemented on the chips. The 786, to be avallable some
time In the late 1990s, is projected tc contain a 2-
Mbvte cache, six separate integer and floating-point
processors, and a complete digital video interactive or
similar user interface. The 786 will maintain compatibil-
ity with the 386/486 instruction set and operate with a
250-MHz clock.

Throughout this book we have discussed the operation
and evolution of primarily one processor family, the Intel
8086 family. We did this so that we could develop some
depth rather than just an overview of all the different
processors. To finish the book, however, we want to
briefly discuss some other types of microcomputer sys-
tems that you should be aware of.

RISC Machines

High-performance engineering workstations often use a
reduced (nstruction set computer or RISC-type proces-
sor. The terin RISC Is not precisely defined, but some of
the main characteristics often associated with a RISC
processor are the following:

1. The instruction set is limited to simple arithmetic-,
logic-, load-, and store-type instructions. Fewer in-
structions and limited addressing modes mean a
simpler and faster instruction decoder.

2. Extensive pipelining is used to achieve one-clock-
cycle instruction execution. The 486 is a CISC
processor, but as we described in a previous section,
it uses a four-stage pipeline to achieve one-clock-
cycle execution for many instructions. The assem-
bler/compilers used for developing RISC programs
are designed to put instructfons in an order which
will keep the pipeline full as much of the time as
possible. To further overiap operations, some RISC
machines use a Harvard architecture, which has
separate data buses for code fetches and for data
read/write operations.

3. Execution of conditional jump instructions is de-
layed to allow time tc load the pipeline with instruc-
tions from the jump destination, or instructions

. from the jump destination are fetched ahead of time,
as we described for the 486 in a previous section.

4. TheCPU contains alarge number of on-chip registers
to give Improved access to data operangs.

One example of a current RISC tmplementation stand-
ard is the Scalable Processor Architecture RISC com-
puter (SPARC) developed by Sun Microsystems, and
implemented in their SPARC stations. Fujitsu ad Cy-
press Semiconductor have produced chip sets for this
standard. Other common RISC chip sets are the Motorola
88000, the MIPS R3000, and the AMD 22000. A single-
chip RISC processor now avallable Is the Intel 860™.

The 1.2 million—transistor {860 contains a t4-bit
RISC-based core with Harvard architecture, a floating-

- 74

point coprocessor, and a graphics coprocessor with 3-D
graphics capability. The processors in the I860™ cperate
relatively Independently of each other, so they <zii all be
working in parallel. With a 40-MHz clock an :880™,
can perform at peak rate of 80 million floatinig-point
operations per second (MFLOPS), or 85,000 drystones.
(The drystone rating represents the relative performance
of a computer executing a standard “benchmark™ pro-
gram.) Incldentally, the 1660 does not use segmentation,
but {t does allow 386-type virtual memory paging. The
data sheets for this device are a good source of tnforma-
tion about RISC implementation. ‘

Parallel Processing

Some computer applications such as analyzing weather
data, simulating aircraft designs, or creating the graph-
ics for high-tech science fiction movies require massive
amounts of computing. The microcomputers we have
discussed in this book so far do not operate nearly fast
enough to be practical for many of these applications,
so supercomputers are used. The peak execution speeds
of the fastest current supercomputers are in the range
of a few gigaFLOPS.

Most supercomputers are built by connecting several
processing elements in parallel. One connection scheme,
commonly called a farm, allows multiple processors to
access a single large memory with a common bus. The
difficulty with a simple bus structure such as this is
that processors compete for shared resources. If one
processor s using the bus, others must wait. This slows
down the overall processing speed.

One of the more efficient multiprocessor architectures

- is the hypercube topology developed by Seitz and Fox at

Caltech. A diagram of this topology is shown in Figure
15-33. Each node in the system consists of a complete
pracessing unit which has the ability to communicate
~ith otner units. Each processor unit is typically ccn-
nected to communicate with its nearest neighbors as

- 0t

FIGURE 15-33 Hypercube connections for 1 to 32
processor nodes.

THE 80285, 80386, AND #0486 MICROPROCESSORS 571

shown. The number of nodes can be expanded to give
the power and speed needed to handle the problem the
computer is being used to solve.

Intel Supercomputing Systems Diviston (ISSD) has
produced the 1PSC family of commercial products based
on the hypercube topology. One of these, the iIPSC/i860™
can be configured with up to 128 nodes, each containing
acomplete 1860 ™ -based microcomputer with high-speed
network-type communication capability. The advantage
of this structure is that each prccessor has enough
memory to operate relatively independently, and commu-
nication between processors can take any one of several
routes, instead of being limited to a single bus. Peak
execution rates for the {PSC/1860™ range from 480
MFLOPS to 7.5 gigaFLOPS, depending on the number
of processing units. These rates compare favorably with
Cray Research Y-MP supercomputer’s maximum execu-
tion rate of about 8 gigaFLOPS. However, because the
IPSC/i860™ uses a larger number of common LSI compo-
nents instead of a single or small number of very high
speed processors made with gallium arsenide technol-
ogy. the cost is less.

To program parallel computers such as these, new
programming languages have had to be developed. A
couple of these that you may be hearing more about are
Scientific Computing Assoclates’ C-Linda language and
AlIL Ltd.’'s STRAND 88 language.

Expert Systems, Neural Networks,
and Fuzzy Logic

INTRODUCTION

Artificial Intelligence or Al is the general term used to
describe computers or computer programs which solve
problems with “intuitive” or “best-guess™ methods often
used by humans instead of the strictly quantitative
methods usually used by computers. Expert systems,
neural networks, and fuzzy logic are the most common
types ‘of Al currently in use. These three are in relatively
early stages of development and implementation, but
they all have extensive implications for our lives.

EXPERT SYSTEMS

Probably the most developed area of Al at precent Is
the area of expert systems. An expert-system prograin
consists of a large data base and a set of rules for
searching the data base to find the best solution for a
particular type of problem. The data base and rules are
developed by questioning * ‘experts” in that particular

problem area. The data base for a medical diagnosis

expert system, for example, is built up by extensive
questioning of experts in each medical specialty.

Unlike most computer programs, which require com-
plete information to make a decision, expert system
programs are designed to miake a best guess, based on
the avatilable data, just as a human expert would do.
A medical diagnosis expert system, for example, will
indicate the iliness that most likely corresponds to a
given set of symptoms and test data. To enable it to
make a better guess, the system may suggest additional
tests to perform.

572 CHAPTER FIFTEEN

One advantage of a system stich as this is that It can
make the knowledge of many experts readily available
to a physician anywhere in the world via 3 modem
connection. Another advantage is that the data base
and set of rules can be casily updated as new research
results and drugs become available. Other examples of
expert system programs are those used to lay out PC
boards and those used to lay out ICs.

NEURAL NETWORKS -

" Programs for some problems such as image recognition,

speech recognition, weather forecasting, and three-di-
mensional modeling are not easily or accurately imple-
mented on fixed-instruction-set computers such as 386/
1486-based systems. For’ applications such as these, a
new computer architécture, modeled after the human
brain, shows considerable promise.

As you may remember from a general sclence class,
the Qrain is composed of billions of neurons. The output
of each neuron is connected to the inputs of several
thousand other neurons by synapses. If the sum of the
signals on the inputs of a neuron Is greater than a
certain threshold value, the neuron “fires” and sends a
signal to other neurons. The simple op-amp circuit in
Figure 15-34a may help you see how a neuron works.
Let's assume the output of_the comparator is initially
low. If the sum of the Input signals to the adder produces
an output voltage more negative than the comparator
threshold voltage, the output of the comparatar will go
high. This is analogous to the neuron firing. The weight
or relative Influence of an input is determined by the
value of the resistor on that input. Figure 15-34b shows
asymbol commonly used to represent a neuron in neural
network literature and Figure 15-34c shows a simple
mathematical model of a neuron.

As with the neurons in the human brain, the neurons
in a neural network are connected to many other neu-
rons. Figure 15-34d shows a simple three-layer neural
network. This network configuration is referred to as
“feedforward,” because none of the output signals are
connected back to the inputs. In a “feedback” or “reso-
nance” configured network, some intermediate or final
output signals are connected back to network inputs.
Researchers are currently experimenting with many
different ncowork configurations to determine the one
that works best for each type of application.
~ Neural network based computing can be implemented
in several ways. One way is to use a dedicated processor

R Re

TO OTHER
NEURONS

(a)

FIGURE 15-34 (a) Op-amp model of a neuron. (See also
next page.)

CONNECTIONS
INPUT 1 /

INPUT 2

OUTPUT
INPUT 3

INPUT n

PROCESSING ELEMENT

1-}

)(o {+1 = BIAS)

PROCESSING ELEMENT (i)

NEURODYNAMICS:
SUMMATION FUNCTION:
1= Wo 1+ WX, + WX + . WX,
TRANSFER FUNCTION:
Flk) = (1+ 8%
OUTPUT:
X, = F(l)

()

¢ NETWORK OUTPUT

OUTPUT
LAYER

DATA INPUT

(ch
FIGURE 15-34 (Continued) (b) Neural network
processing element. (c) Mathematical representation of
processing element. (d) Simple three-layer neural
network. (Courtesy NeuralWare, Inc.)

for each neuron. The large number of neurons usually
makes this impractical, and most applications don't
need the speed capability. An alternative approach is to
use a single processor and simulate neurons with lookup
tables. The lookup table for each neuron contains the
connections, input weight values, and output equation
constants. Hecht-Nielsen Neurocomputers markets a
PC/AT-compatible coprocessor board which uses this
approach. -

A neural network can also be implemented totally in
software. NeuralWare, Inc. markets neural net simula-

' tion programs for both PC and Macintosh type com-

puters. These packages can be used to learn about
neural nets or develop actual applications which do not
have to operate in real time. Another interesting neural
network program is BrainMaker from California Scien-
tific Software.

Neural network computers are not programmed in the
way that digital computers are, they are trained. Instead
of being programmed with a set of rules the way a classic
expert system is, a neural network computer learns
the desired behavior. The learning process may be
supervised, unsupervised, or self-supervised.

In the supervised method a set of input conditions
and the expected output conditigns are applied to the
network. The network learns by adjusting or “adapting”
the weights of the interconnections until the output is
correct. Another input-output set is then applied, and
the network is allowed to learn this set. After a few sets
the network will have learned or generalized its response
so that It can glve the correct response to most applied
input data.

The scheme used to adapt the network is called the
learning rule. As an example, one of the simplest learning
rules that can be used is the Hebbean Learning Law.
This law decrees that each time the input of a neuron
contributes to the firing, its weight should be increased,
and each time an input does not contribute, its weight
should be decreased. This is somewhat analogous to a
positive-negative reinforcement scheme often used in
human behavior modification. In the case of the network
the result is that these successive “nudges” adapt the
network output to the desired result.

The major advantages of neural networks are these:

1. Theydo not need to be programmed; they can simply
be taught the desired response. This eliminates most
of the cost of programming.

2. They can improve thelr response by learning. A
neural network designed to evaluate loan applica-
tions, for example, can automatically adapt its crite-
ria based on loan-fallure feedback data.

3. Input Bta does not have to be precise, because the
network works with the sum of the inputs. A neural
network image-recognition system, for example, can
recognize a person even though he or she has a
somewhat different hairstyle than when the “learn-
ing” image was taken. Likewise, a neural network-
based speech-recognition system can recognize
words spoken by different people. Traditional digital
techniques have a very hard time with these tasks.

THE 80286, 80386, AND 80486 MICROPROCESSORS 573

4. Information Is not stored in a specific memory
location the way it is in a normal digital computer;
it s stored associatively as a network of interconnec-
tions and welghtings. The result of this is that the
“death” of a few neurons will usually not serfously
degrade the operation of the system. This character-
istic is also fortunate for us humans!

Software-based neural networks can be used for non-
realtime applications such as forecasting the weather or
the stock market. For realtime applications such as
image recognition and speech recognition, the software
methods are obviously not fast enough. University re-
searchers and companles such as TRW and Texas Instru-
ments are working on ICs, which implement neural
networks In hardware. In fhe not-too-distant future
these ICs should allowiyou talk to your computer
tnstead of using a mousk, allow your.computer to read

typed messages to you, Ilow your car to drive itself
down the freeway. i
FUZZY LOGIC

Consumer products such as video camcorders, cameras,
refrigerators, washing machines, and automobiles ares
increasingly using fuzzy logic control circuits. Linking
the term fuzzy, which here means “not precisely de-
fined,” with the term logic may seem to create an

oxymoron like “work party,” but the concept Is very real.

The original work on fuzzy logic was done by Professor
Lofti A. Zadeh at U.C. Berkeley in the mid-1960s, but
Japanese companies have been the main ones to patent
the technology and implement it in products.

A fuzzy logic controller is programmed with rules as
is an expert system, but the rules are very flexible. Figure
15-35 shows the graphic method Professor Bart Kosko
of the University of Southern California uses to illustrate
the difference between traditional fixed value logic and
fuzzy logic. Each corner of the cube represents one of
the eight possibilities for a three-variable digital logic

{0. 0, 1}

0.1, 0

FIGURE 1535 Comparison of binary logic values and
fuzzy logic values for a 3-input function.

574 CHAPTER FIFTEEN

(1.0, 0} —

.

function. For this example, let's assume that the func-
tion is true for the 010, 001, and 100 combinations
shown, In a traditional digital logic system the variables
can only have values of 0 or 1, so the only values that
will produce a true output are these three. In a fuzzy
logic system the variables can have values other than]
or 0, so the set of all the possible values that will produce
a true output is represented by the triangular plane
formed by the three points. One way to look at this is
that traditional digital logic is just a special case of fuzzy
logtc.

One advantage of fuzzy logic systems is that they can
work with imprecise terms such as cold, warm, hot, or
near boiling that humans commonly use. In hardware
terms this means that a fuzzy logic system often doesn’t
need precise A/D converters. The Sanyo Fisher Corp.
Model FVC-880 camcorder, for example, uses fuzzy logic
to directly process the outputs from six sensors arid set
the camera lens for best possible focusing and exposure.

Fuzzy logic can provide very smooth control of mechan-
ical systems. The fuzzy logic-controlled subway in Sen-
dai, Japan, is reportedly so smooth in operation that
standing riders do not use the hand straps during starts
and stops.

In the United States, Togai InfraLogic, Inc. in Irvine,
California, has developed a Digitai Fuzzy Processor chip.
They have also developed a Fuzzy-C compiler which can
be used to write a program containing thé rules and
knowledge base for the processor.

SUMMARY

The three Al approaches we have discussed in this
section will obviously not replace standard digital com-
puters for most applications, especially those that in-
volve numerical processing, but they do give some new
choices for difficult applications. The most likely sce-
nario for the future is that a combination of these
techniques will be used to design a system which best
fits the particular application. The results should be
very exciting.

EPILOGUE

This book has been able to show you only a small view
of current microcomputers and the directions in which
they seem to be evolving. Hopefully we have given you
enough of a stari that you can continue learning on
your own and play a part in the evolution. Whenever you
feel overwhelmed by the amount of new material there
is to learn, remember the 5-minute rule and the old
saying “Grapevines and people bear the best fruit on
new growth.”

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms in the following
list, use the index to help you find them in the chapter
for review.

Multiuser, multitasking

TSR program

Time-slice ar;d preemptive priority-based scheduling

Semaphore

Deadlock

Critical region

Overlay

Bank switching
Expanded memory
Extended memory
Descriptor table

Virtual memory
Memory-Management Unit

80286
Real address mode
Protected virtual address mode
Interrupt, exception, fault, trap

80386 :
Architecture, pins, and signals
System connections and interface buses—
ISA bus standard
EISA bus standard
MicroChannel Architecture Bus
Real-mode operation

Protected-mode operation
Segmentation and virtual memory
Segment privilege levels and protection
Call gaté
VO privilege levels
Interrupt and exception handling
Task switching and task state segment
Paging mode
Flat system memory model

Virtual 8086 mode operation

Virtual machine monitor

Index scaling

08/2

Microsoft windows

80486

Pipelining

Cache

Floating-point processor

Parallel processing

Hypercube topology
RISC machine
Artifical intelligence
Expert system
Neural network
Fuzzy logic
5-minute rule-

Grapevlnes’ and new growth

i

REVIEW QUESTIONS AND PROBLEMS

a. Describe the basic operation of a TSR program
and draw a memory map to.show how a TSR
program is loaded In a DOS based system.

b. Use a diagram to help explain how a passive
TSR gets executed after it Is installed.

Briefly describe the two types cf scheduling com-
monly used in multiuser/multitasking operating
systems.

Suppose that two users In a time-share computer
systemi each want to print out a file. How can the
system be prevented from printing lines from one
file between lines of the other file?

Define the term deadlock and describe one way it
can be prevented.

Define the term critical region and show with 8086
assembly language instructions how a semaphore
can be used to protect a critical region:

Describe how an overlay scheme is used to run
programs such as compilers which are too large to
be loaded into physical memory all at once.

a. Describe how bank switching is implemented
in a microcomputer system.

b. Describe how LIM 4.0-type expanded memory
works in a DOS-based system.

c. How is extended memory different from ex-
panded memory?

a. Define the term virtual memory and use Figure
15-8 to help you briefly describe how a logical
address is converted to a physical address by a
memory management unit.

b. What action will the MMU take if it finds that
a requested segment is not present in physical
memory?

c¢. What is another major advantage of the indirect
addressing provided by descriptor tables, be-
sides the ability to address a large amount of
virtual memory?

List the four major processing units in an 80286
microprocessor ard briefly describe the function of
each

Describe how the real-mode operation of an 80286
is different from protected-mode operation

Define the terms interrupt. exception. fault, and
trap.

THE 80286, 80386, AND 80486 AMICROPROCESSORS 575

12.

13.

4.7

15.

16.

17.

19.

576

Explain how an 80286 is switched from real
address mode to protected virtual address mode
and how It Is switched back to real address mode
operation.

a.

b.

Show the computations which tell how much
virtual memory an 80286 can address.

What factors determine how much physical
memory an 80286 can address?

List three major advances that the 80386 mi-
croprocessor has over the 80286.

What is the main difference between the 386DX
processor and the 386SX processor?

What is the purpose of the 386DX BEO-BE3
signals?

How is the EISA bus different from the ISA
bus? - t

If you l"ound an interface board lying on the
bench, what s one way you could tell whether
it came from an EISA-based system or from a
MicroChannel Architecture system?

Briefly compare the EISA and MCA methods of
arbitrating bus requests from multiple masters
or DMA slaves.

. Show the computations which tell how much

virtual memory a 386 can address.
How much physical memory can a 386 address
In real mode and in protected mode?

Give the names of the two parts of a 386
protected-mode address.

Using Figure 15-21 to help, describe how a 32-

bit virtual address for a data segment location
in a task’s local memory is translated to the
actual 32-bit physical address for a 386 operat-
ing in segments only protected mode.

How would the discussion In part b differ if the
desired memory location were in the global

-memory area?

How does a 386 keep track of where the global
descriptor table and the currently used local
descriptor table are located in memory?

Why is the length of the segment Included in
the descriptor for a segment?

How are tasks in a 386 system protected from each
other? e

How can operating system kernel procedures and
data be protected from access by application pro-
grams in a 386 system?

CHAPTER FIFTEEN

20. Ina 386 system a task operating at a levei 2 privilege
can in a special way call a procedure at a higher
privilege level. Describe briefly the mechanism that
is used to make this access.

21.

22

27.

2.

a.

A 386 maintains a task state segment for each
active task In a system. How are these task
state segments accessed?

Briefly describe how a 386 does a task switch
using a FAR JMP or a FAR CALL instruction.

Use Figure 15-26 to help you explain how a 386

compules a physical address when its paging

mode is enabled.

What is the advantage oﬁéggj-based virtual”
memory o6ver segments gnl%;based virtual

memory?
Define the term simple flat memory model and
the term paged flat memory model for a 386.

How is a 386 switched into virtual 8086 mode
during a task switch?

Briefly describe the response of the virtual
machine monitor when a real-mode 8086 pro-
gram executes an INT 21H instruction.

Using the program in Figure 15-29a as a model,
write a program which uses some of the new 386
instruction features to treat the four words In table
as a 64-bit word, and rotate it 8 bits to the left.

Describe three major additions or improvements
that the 486 processor has over the 386 processor.

List three major features characteristic of a RISC-
based computer and describe how each of these
features helps produce faster execution.

What are the major advantagé$ of using parallel
processors with, for example, a hypercube connec-
tion architecture over using a single fast processor?

a.

b.

Describe the basic operation of a neuron in a
neural computer.

How is the “programming” of a neural network
computer different from the programming of a
standard, fixed-instruction-set computer?
List some advantages of s nieural network—type
computer.

For what types of applications are neural net-
work—type computers best suited?

How Is a fuzzy logic control system different
from a traditional digital logic control system?
What are some advantages of fuzzy logic?

