

Deitel® Ser
How To Program Series

C How to Program, 6/E

C++ How to Program, 7/E

Java How to Program, 8/E, Early Objects Version

Java How to Program, 8/E, Late Objects Version

Internet & World Wide Web How to Program, 4/E

Visual Basic® 2008 How to Program

Visual C#® 2008 How to Program, 3/E

Visual C++® 2008 How to Program, 2/E

Small Java™ How to Program, 6/E

Small C++ How to Program, 5/E

Simply Series
Simply C++: An Application-Driven

Tutorial Approach

Simply Java™ Programming: An
Application-Driven Tutorial
Approach

Simply C#: An Application-Driven
Tutorial Approach

Simply Visual Basic® 2008, 3/E: An
Application-Driven Tutorial
Approach

CourseSmart Web Books
www.deitel.com/books/CourseSmart.html

C++ How to Program, 5/E, 6/E & 7/E

Java How to Program, 6/E, 7/E & 8/E

Simply C++: An Application-Driven
Tutorial Approach

Simply Visual Basic 2008: An
Application-Driven Tutorial
Approach, 3/E

Small C++ How to Program, 5/E

Small Java How to Program, 6/E

Visual Basic® 2008 How to Program

Visual C#® 2008 How to Program, 3/E

ies Page

www.deitel.com/books/CourseSmart.html

Deitel® Developer Series
AJAX, Rich Internet Applications and

Web Development for Programmers

C++ for Programmers

C# 2008 for Programmers, 3/E

iPhone for Programmers:
An App-Driven Approach

Java for Programmers

Javascript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Java Fundamentals Parts 1 and 2

C# Fundamentals Parts 1 and 2

C++ Fundamentals Parts 1 and 2

JavaScript Fundamentals Parts 1 and 2

To receive updates on Deitel publications, Resource Centers, training courses, partner
offers and more, please register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

follow us on Twitter®

 @deitel

and Facebook®

 www.deitel.com/deitelfan/

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on government and corporate Dive-Into® Series on-site seminars
offered by Deitel & Associates, Inc. worldwide, visit:
 www.deitel.com/training/

or write to
 deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:
 www.deitel.com
 www.pearsonhighered.com/deitel

Check out our Resource Centers for valuable web resources that will help you master
Java, other important programming languages, software and Internet- and web-related
topics:
 www.deitel.com/ResourceCenters.html

www.deitel.com/books/LiveLessons
www.deitel.com/newsletter/subscribe.html
www.deitel.com/deitelfan
www.deitel.com/training
www.deitel.com
www.pearsonhighered.com/deitel
www.deitel.com/ResourceCenters.html

Library of Congress Cataloging-in-Publication Data
On file

Vice President and Editorial Director, ECS: Marcia J. Horton
Editor-in-Chief, Computer Science: Michael Hirsch
Associate Editor: Carole Snyder
Supervisor/Editorial Assistant: Dolores Mars
Director of Team-Based Project Management: Vince O’Brien
Senior Managing Editor: Scott Disanno
Managing Editor: Robert Engelhardt
A/V Production Editor: Greg Dulles
Art Director: Kristine Carney
Cover Design: Abbey S. Deitel, Harvey M. Deitel, Francesco Santalucia, Kristine Carney
Interior Design: Harvey M. Deitel, Kristine Carney
Manufacturing Manager: Alexis Heydt-Long
Manufacturing Buyer: Lisa McDowell
Director of Marketing: Margaret Waples
Marketing Manager: Erin Davis

© 2010 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks
and registered trademarks. Where those designations appear in this book, and Prentice Hall and the authors were aware
of a trademark claim, the designations have been printed in initial caps or all caps. All product names mentioned
remain trademarks or registered trademarks of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in
writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-612356-2

ISBN-13: 978-0-13-612356-9

Pearson Education Ltd., London
Pearson Education Australia Pty. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education–Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

Upper Saddle River, New Jersey 07458

P. J. Deitel
Deitel & Associates, Inc.

H. M. Deitel
Deitel & Associates, Inc.

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Microsoft, Visual C++, Internet Explorer and the Windows logo are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

In Memory of Clifford Stephens:

 Your friendship, bright smile and
 infectious laugh will be truly missed.

Paul and Harvey Deitel

Deitel Resource Centers
Our Resource Centers focus on the vast amounts of free content available online. Find resources,
downloads, tutorials, documentation, books, e-books, journals, articles, blogs, RSS feeds and more
on many of today’s hottest programming and technology topics. For the most up-to-date list of our
Resource Centers, visit:

www.deitel.com/ResourceCenters.html

Let us know what other Resource Centers you’d like to see! Also, please register for the free Deitel®

Buzz Online e-mail newsletter at:

 www.deitel.com/newsletter/subscribe.html

Computer Science
Functional Programming
Regular Expressions

Programming
ASP.NET 3.5
Adobe Flex
Ajax
Apex
ASP.NET Ajax
ASP.NET
C
C++
C++ Boost Libraries
C++ Game Programming
C#
Code Search Engines and

Code Sites
Computer Game

Programming
CSS 2.1
Dojo
Facebook Developer Plat-

form
Flash 9
Functional Programming
Java
Java Certification and

Assessment Testing
Java Design Patterns
Java EE 5
Java SE 6
Java SE 7 (Dolphin)

Resource Center
JavaFX
JavaScript
JSON
Microsoft LINQ
Microsoft Popfly
.NET
.NET 3.0
.NET 3.5
OpenGL
Perl
PHP
Programming Projects
Python
Regular Expressions
Ruby
Ruby on Rails
Silverlight

UML
Visual Basic
Visual C++
Visual Studio Team Sys-

tem
Web 3D Technologies
Web Services
Windows Presentation

Foundation
XHTML
XML

Apple
iPhone
Objective-C
Cocoa

Games and Game
Programming

Computer Game Pro-
gramming

Computer Games
Mobile Gaming
Sudoku

Internet Business
Affiliate Programs
Competitive Analysis
Facebook Social Ads
Google AdSense
Google Analytics
Google Services
Internet Advertising
Internet Business

Initiative
Internet Public Relations
Link Building
Location-Based Services
Online Lead Generation
Podcasting
Search Engine Optimiza-

tion
Selling Digital Content
Sitemaps
Web Analytics
Website Monetization
YouTube and AdSense

Java
Java
Java Certification and

Assessment Testing

Java Design Patterns
Java EE 5
Java SE 6
Java SE 7 (Dolphin)

Resource Center
JavaFX

Microsoft
ASP.NET
ASP.NET 3.5
ASP.NET Ajax
C#
DotNetNuke (DNN)
Internet Explorer 7 (IE7)
Microsoft LINQ
.NET
.NET 3.0
.NET 3.5
SharePoint
Silverlight
Visual Basic
Visual C++
Visual Studio Team

System
Windows Presentation

Foundation
Windows Vista
Microsoft Popfly

Open Source &
LAMP Stack

Apache
DotNetNuke (DNN)
Eclipse
Firefox
Linux
MySQL
Open Source
Perl
PHP
Python
Ruby

Software
Apache
DotNetNuke (DNN)
Eclipse
Firefox
Internet Explorer 7 (IE7)
Linux
MySQL

Open Source
Search Engines
SharePoint
Skype
Web Servers
Wikis
Windows Vista

Web 2.0
Alert Services
Attention Economy
Blogging
Building Web

Communities
Community Generated

Content
Facebook Developer

Platform
Facebook Social Ads
Google Base
Google Video
Google Web Toolkit

(GWT)
Internet Video
Joost
Location-Based Services
Mashups
Microformats
Recommender Systems
RSS
Social Graph
Social Media
Social Networking
Software as a Service

(SaaS)
Virtual Worlds
Web 2.0
Web 3.0
Widgets

Dive Into® Web 2.0
eBook

Web 2 eBook

Other Topics
Computer Games
Computing Jobs
Gadgets and Gizmos
Ring Tones
Sudoku

www.deitel.com/ResourceCenters.html
www.deitel.com/newsletter/subscribe.html

Appendices E through I are PDF documents posted online at the book’s Companion
Website (located at www.pearsonhighered.com/deitel).

Preface xxi

1 Introduction to Computers, the Internet
and the Web 1

1.1 Introduction 2
1.2 Computers: Hardware and Software 3
1.3 Computer Organization 4
1.4 Personal, Distributed and Client/Server Computing 5
1.5 The Internet and the World Wide Web 5
1.6 Machine Languages, Assembly Languages and High-Level Languages 6
1.7 History of C 7
1.8 C Standard Library 8
1.9 C++ 9
1.10 Java 9
1.11 Fortran, COBOL, Pascal and Ada 10
1.12 BASIC, Visual Basic, Visual C++, C# and .NET 10
1.13 Key Software Trend: Object Technology 11
1.14 Typical C Program Development Environment 12
1.15 Hardware Trends 14
1.16 Notes About C and This Book 15
1.17 Web Resources 16

2 Introduction to C Programming 23
2.1 Introduction 24
2.2 A Simple C Program: Printing a Line of Text 24
2.3 Another Simple C Program: Adding Two Integers 28
2.4 Memory Concepts 33
2.5 Arithmetic in C 34
2.6 Decision Making: Equality and Relational Operators 38

3 Structured Program Development in C 54
3.1 Introduction 55
3.2 Algorithms 55

Contents

www.pearsonhighered.com/deitel

x Contents

3.3 Pseudocode 55
3.4 Control Structures 56
3.5 The if Selection Statement 58
3.6 The if…else Selection Statement 59
3.7 The while Repetition Statement 63
3.8 Formulating Algorithms Case Study 1: Counter-Controlled Repetition 64
3.9 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 2: Sentinel-Controlled Repetition 66
3.10 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 3: Nested Control Structures 73
3.11 Assignment Operators 77
3.12 Increment and Decrement Operators 78

4 C Program Control 97
4.1 Introduction 98
4.2 Repetition Essentials 98
4.3 Counter-Controlled Repetition 99
4.4 for Repetition Statement 100
4.5 for Statement: Notes and Observations 103
4.6 Examples Using the for Statement 103
4.7 switch Multiple-Selection Statement 107
4.8 do…while Repetition Statement 113
4.9 break and continue Statements 114
4.10 Logical Operators 116
4.11 Confusing Equality (==) and Assignment (=) Operators 119
4.12 Structured Programming Summary 121

5 C Functions 140
5.1 Introduction 141
5.2 Program Modules in C 141
5.3 Math Library Functions 142
5.4 Functions 144
5.5 Function Definitions 144
5.6 Function Prototypes 148
5.7 Function Call Stack and Activation Records 151
5.8 Headers 151
5.9 Calling Functions By Value and By Reference 152
5.10 Random Number Generation 153
5.11 Example: A Game of Chance 158
5.12 Storage Classes 161
5.13 Scope Rules 164
5.14 Recursion 167
5.15 Example Using Recursion: Fibonacci Series 170
5.16 Recursion vs. Iteration 174

Contents xi

6 C Arrays 195
6.1 Introduction 196
6.2 Arrays 196
6.3 Defining Arrays 198
6.4 Array Examples 198
6.5 Passing Arrays to Functions 212
6.6 Sorting Arrays 216
6.7 Case Study: Computing Mean, Median and Mode Using Arrays 218
6.8 Searching Arrays 223
6.9 Multiple-Subscripted Arrays 229

7 C Pointers 253
7.1 Introduction 254
7.2 Pointer Variable Definitions and Initialization 254
7.3 Pointer Operators 255
7.4 Passing Arguments to Functions by Reference 257
7.5 Using the const Qualifier with Pointers 261
7.6 Bubble Sort Using Call-by-Reference 267
7.7 sizeof Operator 270
7.8 Pointer Expressions and Pointer Arithmetic 273
7.9 Relationship between Pointers and Arrays 275
7.10 Arrays of Pointers 280
7.11 Case Study: Card Shuffling and Dealing Simulation 280
7.12 Pointers to Functions 285

8 C Characters and Strings 309
8.1 Introduction 310
8.2 Fundamentals of Strings and Characters 310
8.3 Character-Handling Library 312
8.4 String-Conversion Functions 317
8.5 Standard Input/Output Library Functions 322
8.6 String-Manipulation Functions of the String-Handling Library 326
8.7 Comparison Functions of the String-Handling Library 329
8.8 Search Functions of the String-Handling Library 331
8.9 Memory Functions of the String-Handling Library 337
8.10 Other Functions of the String-Handling Library 341

9 C Formatted Input/Output 356
9.1 Introduction 357
9.2 Streams 357
9.3 Formatting Output with printf 357
9.4 Printing Integers 358
9.5 Printing Floating-Point Numbers 359

xii Contents

9.6 Printing Strings and Characters 361
9.7 Other Conversion Specifiers 362
9.8 Printing with Field Widths and Precision 363
9.9 Using Flags in the printf Format Control String 366
9.10 Printing Literals and Escape Sequences 368
9.11 Reading Formatted Input with scanf 369

10 C Structures, Unions, Bit Manipulations and
Enumerations 382

10.1 Introduction 383
10.2 Structure Definitions 383
10.3 Initializing Structures 386
10.4 Accessing Structure Members 386
10.5 Using Structures with Functions 388
10.6 typedef 388
10.7 Example: High-Performance Card Shuffling and Dealing Simulation 389
10.8 Unions 391
10.9 Bitwise Operators 394
10.10 Bit Fields 403
10.11 Enumeration Constants 406

11 C File Processing 417
11.1 Introduction 418
11.2 Data Hierarchy 418
11.3 Files and Streams 420
11.4 Creating a Sequential-Access File 421
11.5 Reading Data from a Sequential-Access File 426
11.6 Random-Access Files 430
11.7 Creating a Random-Access File 431
11.8 Writing Data Randomly to a Random-Access File 433
11.9 Reading Data from a Random-Access File 436
11.10 Case Study: Transaction-Processing Program 437

12 C Data Structures 454
12.1 Introduction 455
12.2 Self-Referential Structures 456
12.3 Dynamic Memory Allocation 456
12.4 Linked Lists 458
12.5 Stacks 466
12.6 Queues 472
12.7 Trees 478

13 C Preprocessor 495
13.1 Introduction 496

Contents xiii

13.2 #include Preprocessor Directive 496
13.3 #define Preprocessor Directive: Symbolic Constants 496
13.4 #define Preprocessor Directive: Macros 497
13.5 Conditional Compilation 499
13.6 #error and #pragma Preprocessor Directives 500
13.7 # and ## Operators 500
13.8 Line Numbers 501
13.9 Predefined Symbolic Constants 501
13.10 Assertions 502

14 Other C Topics 507
14.1 Introduction 508
14.2 Redirecting I/O 508
14.3 Variable-Length Argument Lists 509
14.4 Using Command-Line Arguments 511
14.5 Notes on Compiling Multiple-Source-File Programs 512
14.6 Program Termination with exit and atexit 514
14.7 volatile Type Qualifier 515
14.8 Suffixes for Integer and Floating-Point Constants 516
14.9 More on Files 516
14.10 Signal Handling 518
14.11 Dynamic Memory Allocation: Functions calloc and realloc 520
14.12 Unconditional Branching with goto 521

15 C++ as a Better C; Introducing
Object Technology 528

15.1 Introduction 529
15.2 C++ 529
15.3 A Simple Program: Adding Two Integers 530
15.4 C++ Standard Library 532
15.5 Header Files 533
15.6 Inline Functions 535
15.7 References and Reference Parameters 537
15.8 Empty Parameter Lists 542
15.9 Default Arguments 542
15.10 Unary Scope Resolution Operator 544
15.11 Function Overloading 545
15.12 Function Templates 548
15.13 Introduction to Object Technology and the UML 551
15.14 Wrap-Up 554

16 Introduction to Classes and Objects 560
16.1 Introduction 561
16.2 Classes, Objects, Member Functions and Data Members 561

xiv Contents

16.3 Defining a Class with a Member Function 562
16.4 Defining a Member Function with a Parameter 566
16.5 Data Members, set Functions and get Functions 569
16.6 Initializing Objects with Constructors 576
16.7 Placing a Class in a Separate File for Reusability 579
16.8 Separating Interface from Implementation 583
16.9 Validating Data with set Functions 589
16.10 Wrap-Up 594

17 Classes: A Deeper Look, Part 1 601
17.1 Introduction 602
17.2 Time Class Case Study 603
17.3 Class Scope and Accessing Class Members 609
17.4 Separating Interface from Implementation 611
17.5 Access Functions and Utility Functions 612
17.6 Time Class Case Study: Constructors with Default Arguments 615
17.7 Destructors 620
17.8 When Constructors and Destructors are Called 621
17.9 Time Class Case Study: A Subtle Trap—Returning a Reference to a

private Data Member 624
17.10 Default Memberwise Assignment 627
17.11 Wrap-Up 629

18 Classes: A Deeper Look, Part 2 635
18.1 Introduction 636
18.2 const (Constant) Objects and const Member Functions 636
18.3 Composition: Objects as Members of Classes 645
18.4 friend Functions and friend Classes 651
18.5 Using the this Pointer 654
18.6 static Class Members 659
18.7 Data Abstraction and Information Hiding 664
18.8 Wrap-Up 666

19 Operator Overloading 672
19.1 Introduction 673
19.2 Fundamentals of Operator Overloading 674
19.3 Restrictions on Operator Overloading 675
19.4 Operator Functions as Class Members vs. Global Function 676
19.5 Overloading Stream Insertion and Stream Extraction Operators 678
19.6 Overloading Unary Operators 681
19.7 Overloading Binary Operators 682
19.8 Dynamic Memory Management 682
19.9 Case Study: Array Class 684
19.10 Converting between Types 696

Contents xv

19.11 Building a String Class 697
19.12 Overloading ++ and -- 698
19.13 Case Study: A Date Class 700
19.14 Standard Library Class string 704
19.15 explicit Constructors 708
19.16 Proxy Classes 711
19.17 Wrap-Up 715

20 Object-Oriented Programming: Inheritance 727
20.1 Introduction 728
20.2 Base Classes and Derived Classes 729
20.3 protected Members 732
20.4 Relationship between Base Classes and Derived Classes 732

20.4.1 Creating and Using a CommissionEmployee Class 733
20.4.2 Creating a BasePlusCommissionEmployee Class Without

Using Inheritance 738
20.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 743
20.4.4 CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy Using protected Data 748
20.4.5 CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy Using private Data 755
20.5 Constructors and Destructors in Derived Classes 762
20.6 public, protected and private Inheritance 770
20.7 Software Engineering with Inheritance 771
20.8 Wrap-Up 772

21 Object-Oriented Programming: Polymorphism 778
21.1 Introduction 779
21.2 Polymorphism Examples 780
21.3 Relationships Among Objects in an Inheritance Hierarchy 781

21.3.1 Invoking Base-Class Functions from Derived-Class Objects 782
21.3.2 Aiming Derived-Class Pointers at Base-Class Objects 789
21.3.3 Derived-Class Member-Function Calls via Base-Class Pointers 790
21.3.4 Virtual Functions 792
21.3.5 Summary of the Allowed Assignments Between Base-Class

and Derived-Class Objects and Pointers 798
21.4 Type Fields and switch Statements 799
21.5 Abstract Classes and Pure virtual Functions 799
21.6 Case Study: Payroll System Using Polymorphism 801

21.6.1 Creating Abstract Base Class Employee 803
21.6.2 Creating Concrete Derived Class SalariedEmployee 806
21.6.3 Creating Concrete Derived Class HourlyEmployee 808
21.6.4 Creating Concrete Derived Class CommissionEmployee 811

xvi Contents

21.6.5 Creating Indirect Concrete Derived Class
BasePlusCommissionEmployee 813

21.6.6 Demonstrating Polymorphic Processing 814
21.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding

“Under the Hood” 818
21.8 Case Study: Payroll System Using Polymorphism and Runtime Type

Information with Downcasting, dynamic_cast, typeid and type_info 822
21.9 Virtual Destructors 826
21.10 Wrap-Up 826

22 Templates 832
22.1 Introduction 833
22.2 Function Templates 833
22.3 Overloading Function Templates 837
22.4 Class Templates 837
22.5 Nontype Parameters and Default Types for Class Templates 844
22.6 Notes on Templates and Inheritance 845
22.7 Notes on Templates and Friends 845
22.8 Notes on Templates and static Members 846
22.9 Wrap-Up 846

23 Stream Input/Output 851
23.1 Introduction 852
23.2 Streams 853

23.2.1 Classic Streams vs. Standard Streams 853
23.2.2 iostream Library Header Files 854
23.2.3 Stream Input/Output Classes and Objects 854

23.3 Stream Output 857
23.3.1 Output of char * Variables 857
23.3.2 Character Output Using Member Function put 857

23.4 Stream Input 858
23.4.1 get and getline Member Functions 858
23.4.2 istream Member Functions peek, putback and ignore 861
23.4.3 Type-Safe I/O 861

23.5 Unformatted I/O Using read, write and gcount 861
23.6 Introduction to Stream Manipulators 862

23.6.1 Integral Stream Base: dec, oct, hex and setbase 863
23.6.2 Floating-Point Precision (precision, setprecision) 864
23.6.3 Field Width (width, setw) 865
23.6.4 User-Defined Output Stream Manipulators 866

23.7 Stream Format States and Stream Manipulators 868
23.7.1 Trailing Zeros and Decimal Points (showpoint) 868
23.7.2 Justification (left, right and internal) 869
23.7.3 Padding (fill, setfill) 871
23.7.4 Integral Stream Base (dec, oct, hex, showbase) 872

Contents xvii

23.7.5 Floating-Point Numbers; Scientific and Fixed Notation
(scientific, fixed) 873

23.7.6 Uppercase/Lowercase Control (uppercase) 874
23.7.7 Specifying Boolean Format (boolalpha) 874
23.7.8 Setting and Resetting the Format State via Member

Function flags 875
23.8 Stream Error States 877
23.9 Tying an Output Stream to an Input Stream 879
23.10 Wrap-Up 879

24 Exception Handling 889
24.1 Introduction 890
24.2 Exception-Handling Overview 891
24.3 Example: Handling an Attempt to Divide by Zero 891
24.4 When to Use Exception Handling 897
24.5 Rethrowing an Exception 898
24.6 Exception Specifications 900
24.7 Processing Unexpected Exceptions 901
24.8 Stack Unwinding 901
24.9 Constructors, Destructors and Exception Handling 903
24.10 Exceptions and Inheritance 904
24.11 Processing new Failures 904
24.12 Class auto_ptr and Dynamic Memory Allocation 907
24.13 Standard Library Exception Hierarchy 909
24.14 Other Error-Handling Techniques 911
24.15 Wrap-Up 912

A Operator Precedence Charts 919

B ASCII Character Set 923

C Number Systems 924
C.1 Introduction 925
C.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 928
C.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 929
C.4 Converting from Binary, Octal or Hexadecimal to Decimal 929
C.5 Converting from Decimal to Binary, Octal or Hexadecimal 930
C.6 Negative Binary Numbers: Two’s Complement Notation 932

D Game Programming: Solving Sudoku 937
D.1 Introduction 937
D.2 Deitel Sudoku Resource Center 938
D.3 Solution Strategies 938

xviii Contents

D.4 Programming Sudoku Puzzle Solvers 942
D.5 Generating New Sudoku Puzzles 943
D.6 Conclusion 945

Appendices on the Web 946
Appendices E through I are PDF documents posted online at the book’s Companion
Website (located at www.pearsonhighered.com/deitel).

E Game Programming with the Allegro C Library I
E.1 Introduction II
E.2 Installing Allegro II
E.3 A Simple Allegro Program III
E.4 Simple Graphics: Importing Bitmaps and Blitting IV
E.5 Animation with Double Buffering IX
E.6 Importing and Playing Sounds XVI
E.7 Keyboard Input XX
E.8 Fonts and Displaying Text XXV
E.9 Implementing the Game of Pong XXXI
E.10 Timers in Allegro XXXVII
E.11 The Grabber and Allegro Datafiles XLII
E.12 Other Allegro Capabilities LI
E.13 Allegro Resource Center LII

F Sorting: A Deeper Look LVIII
F.1 Introduction LIX
F.2 Big O Notation LIX
F.3 Selection Sort LX
F.4 Insertion Sort LXIV
F.5 Merge Sort LXVII

G Introduction to C99 LXXVIII
G.1 Introduction LXXIX
G.2 Support for C99 LXXIX
G.3 New C99 Headers LXXX
G.4 // Comments LXXX
G.5 Mixing Declarations and Executable Code LXXXI
G.6 Declaring a Variable in a for Statement Header LXXXII
G.7 Designated Initializers and Compound Literals LXXXIV
G.8 Type bool LXXXVII
G.9 Implicit int in Function Declarations LXXXVIII
G.10 Complex Numbers LXXXIX
G.11 Variable-Length Arrays XC

www.pearsonhighered.com/deitel

Contents xix

G.12 The snprintf Function: Helping Avoid Hacker Attacks XCIII
G.13 Additions to the Preprocessor XCV
G.14 Other C99 Features XCVI
G.15 Web Resources XCIX

H Using the Visual Studio Debugger CIV
H.1 Introduction CV
H.2 Breakpoints and the Continue Command CV
H.3 Locals and Watch Windows CIX
H.4 Controlling Execution Using the Step Into, Step Over, Step Out

and Continue Commands CXII
H.5 Autos Window CXIV
H.6 Wrap-Up CXVI

I Using the GNU Debugger CXVIII
I.1 Introduction CXIX
I.2 Breakpoints and the run, stop, continue and print Commands CXIX
I.3 print and set Commands CXXIV
I.4 Controlling Execution Using the step, finish and next Commands CXXVI
I.5 watch Command CXXVIII
I.6 Wrap-Up CXXX

Index 947

This page intentionally left blank

Welcome to the C programming language—and to C++, too! This book presents leading-
edge computing technologies for students, instructors and software development profes-
sionals.

At the heart of the book is the Deitel signature “live-code approach.” Concepts are
presented in the context of complete working programs, rather than in code snippets. Each
code example is immediately followed by one or more sample executions. All the source
code is available at www.deitel.com/books/chtp6/.

We believe that this book and its support materials will give you an informative, inter-
esting, challenging and entertaining introduction to C.

As you read the book, if you have questions, send an e-mail to deitel@deitel.com;
we’ll respond promptly. For updates on this book and its supporting C and C++ software,
and for the latest news on all Deitel publications and services, visit www.deitel.com.

New and Updated Features
Here are the updates we’ve made for C How to Program, 6/e:

• “Making a Difference” Exercises Set. We encourage you to use computers and the
Internet to research and solve problems that really matter. These new exercises are
meant to increase awareness of important issues the world is facing. We hope
you’ll approach them with your own values, politics and beliefs.

• Tested All Code on Windows and Linux. We’ve tested every program (the exam-
ples and the exercises) using both Visual C++ 2008 and GNU GCC 4.3. The
code examples and exercise code solutions were also tested using Visual Studio
2010 Beta.

• New Design. The book has a new interior design that graphically serves to orga-
nize, clarify and highlight the information, and enhances the book’s pedagogy.

• Improved Terminology Sections. We’ve added page numbers for the defining oc-
currences of all terms in the terminology lists for easy reference.

• Updated Coverage of C++ and Object-Oriented Programming. We updated
Chapters 15–24 on object-oriented programming in C++ with material from our
just published C++ How to Program, 7/e.

• Titled Programming Exercises. We’ve titled all the programming exercises. This
helps instructors tune assignments for their classes.

• New Web Appendices. Chapters 15–17 from the previous edition are now search-
able PDF Appendices E–G, available on the Companion Website (see the access
card at the front of the book).

Preface

www.deitel.com/books/chtp6
www.deitel.com

xxii Preface

• New Debugger Appendices. We also added new debugging appendices for Visual
C++® 2008 and GNU gdb.

• Order of Evaluation. We added cautions about order of evaluation issues.

• We replaced all uses of gets (from <stdio.h>) with fgets, because gets is now
deprecated.

• Additional Exercises. We added more function pointer exercises. We also added
the Fibonacci exercise project that improves the Fibonacci recursion example (tail
recursion).

• Secure C Programming Resource Center. We’ve posted a new Secure C Program-
ming Resource Center at www.deitel.com/SecureC/. We’ve also added notes
about secure C programming to the introductions in Chapter 7, Pointers, and
Chapter 8, Strings.

• Game Programming with Allegro. We updated the chapter on game program-
ming with the Allegro C library. In particular, we added instructions on installing
the Allegro libraries for use with Visual C++® 2008 and GNU GCC 4.3.

• Coverage of the C99 Standard. We updated and enhanced the detailed appendix
on C99, which was reviewed by John Benito, Convener of ISO WG14—the
Working Group responsible for the C Programming Language Standard. Each
C99 concept is now keyed to the section where it can be taught earlier in the
book. C99 is not incorporated throughout the book because Microsoft does not
yet support it and a large percentage of C courses use Microsoft's Visual C++®

compiler. For additional information, check out the C99 Standard section in our
C Resource center at www.deitel.com/C/. You'll find features of C99, articles
from experts, the differences between Standard C and C99, FAQs, downloads
and more.

• C++-Style // Comments. We discuss C++-style // comments early for instructors
and students who’d prefer to use them. Although Microsoft C does not yet sup-
port C99, it does support C99’s comments, which are borrowed from C++.

• C Standard Library. Section 1.8 now references P.J. Plauger’s Dinkumware web-
site (www.dinkumware.com/manuals/default.aspx) where students can find
thorough searchable documentation for the C Standard Library functions.

Other Features
Other features of C How to Program, 6/e, include:

Game Programming with the Allegro C Game Programming Library
Appendix E introduces the Allegro game programming C library. This library—originally
developed by Climax game programmer Shawn Hargreaves—was created to be a powerful
tool for programming games in C while still remaining relatively simple compared to oth-
er, more complicated graphics libraries such as DirectX and OpenGL. In Appendix E, we
use Allegro’s capabilities to create the simple game of Pong. Along the way, we demon-
strate how to display graphics, play sounds, receive input from the keyboard and create
timed events—features you can use to create games of your own. Students and instructors

www.deitel.com/SecureC
www.deitel.com/C
www.dinkumware.com/manuals/default.aspx

 Web-Based Materials xxiii

alike will find Allegro challenging and entertaining. We include extensive web resources
in our Allegro Resource Center (www.deitel.com/allegro), one of which offers more
than 1000 open-source Allegro games.

Sorting: A Deeper Look
Sorting places data in order, based on one or more sort keys. We begin our presentation
of sorting with a simple algorithm in Chapter 6. In Appendix F, we present a deeper look
at sorting. We consider several algorithms and compare them with regard to their memory
consumption and processor demands. For this purpose, we introduce Big O notation,
which indicates how hard an algorithm may have to work to solve a problem. Through
examples and exercises, Appendix F discusses the selection sort, insertion sort, recursive
merge sort, recursive selection sort, bucket sort and recursive Quicksort.

Web-Based Materials
This book is supported by substantial online materials. The book’s Companion Website
(www.pearsonhighered.com/deitel; see the access card at the front of the book) contains
the following appendices in searchable PDF format:

• Appendix E, Game Programming with the Allegro C Library

• Appendix F, Sorting: A Deeper Look

• Appendix G, Introduction to C99

• Appendix H, Using the Visual Studio Debugger

• Appendix I, Using the GNU Debugger

Dependency Charts
The dependency charts in Figs. 1–2 show the dependencies among the chapters to help
instructors plan their syllabi. C How to Program, 6/e is appropriate for CS1 and CS2 cours-
es, and intermediate-level C and C++ programming courses. The C++ part of the book
assumes that you have studied the C part.

Teaching Approach
C How to Program, 6/e, contains a rich collection of examples. We concentrate on demon-
strating the principles of good software engineering and stressing program clarity.

Live-Code Approach. C How to Program, 6/e, is loaded with “live-code” examples. Most
new concepts are presented in the context of complete working C applications, followed
by one or more executions showing program inputs and outputs.

Syntax Shading
For readability, we syntax shade the code, similar to the way most integrated-development
environments and code editors syntax color code. Our syntax-shading conventions are:

comments appear like this
keywords appear like this

constants and literal values appear like this

all other code appears in black

www.deitel.com/allegro
www.pearsonhighered.com/deitel

xxiv Preface

Code Highlighting
We place gray rectangles around the key code.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold blue text for easy reference. We emphasize on-screen compo-
nents in the bold Helvetica font (e.g., the File menu) and C program text in the Lucida
font (for example, int x = 5;).

Web Access. All of the source-code examples are available for download from:

Fig. 1 | C chapter dependency chart.

www.deitel.com/books/chtp6/

Introduction
1 Introduction to Computers,

the Internet and the Web

Intro to Programming
2 Intro to C Programming

Control Statements,
Functions and Arrays

3 Structured Program
Development in C

4 C Program Control

5 C Functions

6 C Arrays

Pointers and Strings

8 C Characters and Strings

7 C Pointers

5.14–5.16 Recursion

12 C Data Structures

F Sorting: A Deeper Look

Data Structures

Other Topics, Game Programming and C99

C Chapter
Dependency
Chart
[Note: Arrows pointing into a
chapter indicate that chapter’s
dependencies.]

G Introduction to C99

E Game Programming with
the Allegro C Library

10 C Structures, Unions, Bit
Manipulations and Enumerations

Aggregate Types

Streams and Files

11 C File Processing

9 C Formatted Input/Output

13 C Preprocessor

14 Other C Topics

www.deitel.com/books/chtp6

 Teaching Approach xxv

Quotations. Each chapter begins with quotations. We hope that you enjoy relating these
to the chapter material.

Objectives. The quotes are followed by a list of chapter objectives.

Illustrations/Figures. Abundant charts, tables, line drawings, UML diagrams, programs
and program output are included.

Programming Tips
We include programming tips to help you focus on important aspects of program devel-
opment. These tips and practices represent the best we’ve gleaned from a combined seven
decades of programming and teaching experience.

Fig. 2 | C++ chapter dependency chart.

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tip
These tips contain suggestions for exposing and removing bugs from your programs; many
describe aspects of C that prevent bugs from getting into programs in the first place.

Object-Based
Programming

C++ Chapter
Dependency
Chart

18 Classes: A Deeper
Look, Part 2

17 Classes: A Deeper
Look, Part 1

19 Operator Overloading

Object-Oriented
Programming

23 Stream
Input/Output

20 OOP: Inheritance

22 Templates21 OOP:
Polymorphism

24 Exception
Handling

15 C++ as a Better C;
Intro to Object Technology

16 Intro to Classes and Objects

[Note: Arrows pointing into a
chapter indicate that chapter’s
dependencies.]

xxvi Preface

Summary Bullets. We present a section-by-section, bullet-list summary of the chapter.

Terminology. We include an alphabetized list of the important terms defined in each chap-
ter with the page number of each term’s defining occurrence for easy reference.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self-study.

Exercises. Each chapter concludes with a substantial set of exercises including:

• simple recall of important terminology and concepts,

• identifying the errors in code samples,

• writing individual C statements,

• writing small portions of functions and classes,

• writing complete C functions, classes and programs, and

• major projects.

Instructors can use these exercises to form homework assignments, short quizzes, major ex-
aminations and term projects. [NOTE: Please do not write to us requesting access to the
Pearson Instructor’s Resource Center which contains the book’s instructor supple-
ments, including the exercise solutions. Access is limited strictly to college instructors
teaching from the book. Instructors may obtain access only through their Pearson rep-
resentatives. Solutions are not provided for “project” exercises.] Check out our Program-
ming Projects Resource Center (www.deitel.com/ProgrammingProjects/) for lots of
additional exercise and project possibilities.

Index. We’ve included an extensive index, which is especially useful when you use the
book as a reference. Defining occurrences of key terms are highlighted with a bold blue
page number.

Student Resources
Many C and C++ development tools are available. We wrote C How to Program, 6/e primar-
ily using Microsoft’s free Visual C++® Express Edition (which is available free for download
at www.microsoft.com/express/vc/) and the free GNU C++ (gcc.gnu.org/install/
binaries.html), which is already installed on most Linux systems and can be installed on

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

www.deitel.com/ProgrammingProjects
www.microsoft.com/express/vc

 CourseSmart Web Books xxvii

Mac OS X and Windows systems as well. You can learn more about Visual C++® Express
at msdn.microsoft.com/vstudio/express/visualc. You can learn more about GNU
C++ at gcc.gnu.org. Apple includes GNU C++ in their Xcode development tools, which
Max OS X users can download from developer.apple.com/tools/xcode.

You can download the book’s examples and additional resources from:

For additional resources and software downloads see our C Resource Center:

For other C and C++ compilers that are available free for download:

CourseSmart Web Books
Today’s students and instructors have increasing demands on their time and money. Pear-
son has responded to that need by offering digital texts and course materials online
through CourseSmart. CourseSmart allows faculty to review course materials online sav-
ing time and costs. It is also environmentally sound and offers students a high-quality dig-
ital version of the text for as much as 50% off the cost of a print copy of the text. Students
receive the same content offered in the print textbook enhanced by search, note-taking,
and printing tools. For more information, visit www.coursesmart.com.

Software for the Book
This book includes the Microsoft® Visual Studio® 2008 Express Editions All-in-One
DVD, which contains the Visual C++® 2008 Express Edition (and other Microsoft devel-
opment tools). You can also download the latest version of Visual C++ Express Edition
from:

Per Microsoft’s website, Express Editions are “lightweight, easy-to-use and easy-to-learn
tools for the hobbyist, novice and student developer.” They are appropriate for academic
courses and for professionals who do not have access to a complete version of Visual Studio
2008.

With the exception of one example in Chapter 9, C Formatted Input/Output, and
the examples in Appendix G, Introduction to C99, all of the examples in this book com-
pile and run in Visual C++® 2008 and the beta version of Visual C++® 2010. All of the
examples compile and run in GNU GCC 4.3. GCC is available for most platforms,
including Linux, Mac OS X (via Xcode) and Windows—via tools like Cygwin
(www.cygwin.com) and MinGW (www.mingw.org).

Instructor Supplements
The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/irc):

• Solutions Manual with solutions to most of the end-of-chapter exercises.

www.deitel.com/books/chtp6/

www.deitel.com/c/

www.thefreecountry.com/developercity/ccompilers.shtml
www.compilers.net/Dir/Compilers/CCpp.htm

www.microsoft.com/express/vc

www.deitel.com/books/chtp6
www.deitel.com/c
www.thefreecountry.com/developercity/ccompilers.shtml
www.compilers.net/Dir/Compilers/CCpp.htm
www.coursesmart.com
www.microsoft.com/express/vc
www.cygwin.com
www.mingw.org
www.pearsonhighered.com/irc
www.deitel.com/books/chtp6/
www.deitel.com/c/
www.thefreecountry.com/developercity/ccompilers.shtml
www.compilers.net/Dir/Compilers/CCpp.htm

xxviii Preface

• Test Item File of multiple-choice questions (approximately two per book section)

• Customizable PowerPoint® slides containing all the code and figures in the text,
plus bulleted items that summarize key points in the text

If you are not already a registered faculty member, contact your Pearson representative or
visit www.pearsonhighered.com/educator/replocator/.

Deitel® Buzz Online Free E-mail Newsletter
The Deitel® Buzz Online e-mail newsletter will keep you posted about issues related to C
How to Program, 6/e. It also includes commentary on industry trends and developments,
links to free articles and resources from our published books and upcoming publications,
product-release schedules, errata, challenges, anecdotes, information on our corporate in-
structor-led training courses and more. To subscribe, visit

The Deitel Online Resource Centers
Our website www.deitel.com provides more than 100 Resource Centers on various topics
including programming languages, software development, Web 2.0, Internet business and
open-source projects—see the list of Resource Centers in the first few pages of this book
and visit www.deitel.com/ResourceCenters.html. We’ve found many exceptional re-
sources online, including tutorials, documentation, software downloads, articles, blogs,
podcasts, videos, code samples, books, e-books and more—most of them are free. Each
week we announce our latest Resource Centers in our newsletter, the Deitel® Buzz Online.
Some of the Resource Centers you might find helpful while studying this book are C, C++,
C++ Boost Libraries, C++ Game Programming, Visual C++, UML, Code Search Engines
and Code Sites, Game Programming and Programming Projects.

Follow Deitel on Twitter and Facebook
To receive updates on Deitel publications, Resource Centers, training courses, partner
offers and more, follow us on Twitter®

and join the Deitel & Associates group on Facebook®

Acknowledgments
It’s a pleasure to acknowledge the efforts of people whose names do not appear on the cov-
er, but whose hard work, cooperation, friendship and understanding were crucial to the
book’s production. Many people at Deitel & Associates, Inc., devoted long hours to this
project—thanks especially to Abbey Deitel and Barbara Deitel.

We would also like to thank the participants of our Honors Internship program who
contributed to this publication—Christine Chen, an Operations Research and Informa-
tion Engineering major at Cornell University; and Matthew Pearson, a Computer Science
graduate of Cornell University.

www.deitel.com/newsletter/subscribe.html

@deitel

www.deitel.com/deitelfan/

www.pearsonhighered.com/educator/replocator/
www.deitel.com/newsletter/subscribe.html
www.deitel.com
www.deitel.com/ResourceCenters.html
www.deitel.com/deitelfan/

 Acknowledgments xxix

We are fortunate to have worked on this project with the dedicated team of publishing
professionals at Pearson. We appreciate the efforts of Marcia Horton, Editorial Director
of Pearson’s Engineering and Computer Science Division, and Michael Hirsch, Editor-in-
Chief of Computer Science. Carole Snyder recruited the book’s review team and managed
the review process. Francesco Santalucia (an independent artist) and Kristine Carney of
Pearson designed the book’s cover—we provided the concept, and they made it happen.
Scott Disanno and Bob Engelhardt managed the book’s production. Erin Davis and Mar-
garet Waples marketed the book through academic and professional channels.

C How to Program, 6/e Reviewers
We wish to acknowledge the efforts of our reviewers. Adhering to a tight time schedule,
they scrutinized the text and the programs and provided countless suggestions for improv-
ing the accuracy and completeness of the presentation:

• John Benito, Blue Pilot Consulting, Inc. and Convener of ISO WG14—the
Working Group responsible for the C Programming Language Standard.

• Xiaolong Li, Indiana State University

• Tom Rethard, The University of Texas at Arlington

C How to Program, 5/e Reviewers
• Alireza Fazelpour (Palm Beach Community College)

• Don Kostuch (Independent Consultant)

• Ed James Beckham (Altera)

• Gary Sibbitts (St. Louis Community College at Meramec)

• Ian Barland (Radford University)

• Kevin Mark Jones (Hewlett Packard)

• Mahesh Hariharan (Microsoft)

• William Mike Miller (Edison Design Group, Inc.)

• Benjamin Seyfarth (Univeristy of Southern Mississippi)

• William Albrecht (University of South Florida)

• William Smith (Tulsa Community College)

Allegro Reviewers for C How to Program, 5/e
• Shawn Hargreaves (Software Design Engineer, Microsoft Xbox)

• Matthew Leverton (Founder and Webmaster of Allegro.cc)

• Ryan Patterson (Independent Consultant)

• Douglas Walls (Senior Staff Engineer, C compiler, Sun Microsystems)

C99 Reviewers for C How to Program, 5/e
• Lawrence Jones, (UGS Corp.)

• Douglas Walls (Senior Staff Engineer, C compiler, Sun Microsystems)

xxx Preface

Well, there you have it! C is a powerful programming language that will help you
write programs quickly and effectively. C scales nicely into the realm of enterprise systems
development to help organizations build their business-critical and mission-critical infor-
mation systems. As you read the book, we would sincerely appreciate your comments, crit-
icisms, corrections and suggestions for improving the text. Please address all
correspondence to:

We’ll respond promptly, and post corrections and clarifications on:

We hope you enjoy working with C How to Program, Sixth Edition as much as we enjoyed
writing it!

Paul Deitel
Harvey Deitel
Maynard, Massachusetts
August 2009

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT’s Sloan School of Management, where he studied Information Technology.
Through Deitel & Associates, Inc., he has delivered C, C++, Java, C#, Visual Basic and
Internet programming courses to industry clients, including Cisco, IBM, Sun Microsys-
tems, Dell, Lucent Technologies, Fidelity, NASA at the Kennedy Space Center, the Na-
tional Severe Storm Laboratory, White Sands Missile Range, Rogue Wave Software,
Boeing, SunGard Higher Education, Stratus, Cambridge Technology Partners, Open En-
vironment Corporation, One Wave, Hyperion Software, Adra Systems, Entergy, Cable-
Data Systems, Nortel Networks, Puma, iRobot, Invensys and many more. He holds the
Java Certified Programmer and Java Certified Developer certifications and has been des-
ignated by Sun Microsystems as a Java Champion. He has also lectured on Java and C++
for the Boston Chapter of the Association for Computing Machinery. He and his co-
author, Dr. Harvey M. Deitel, are the world’s best-selling programming-language text-
book authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 48 years of academic and industry experience in the computer field. Dr. Deitel
earned B.S. and M.S. degrees from MIT and a Ph.D. from Boston University. He has
extensive college teaching experience, including earning tenure and serving as the
Chairman of the Computer Science Department at Boston College before founding
Deitel & Associates, Inc., with his son, Paul J. Deitel. He and Paul are the co-authors of
dozens of books and multimedia packages and they are writing many more. With transla-
tions published in Japanese, German, Russian, Traditional Chinese, Simplified Chinese,
Spanish, Korean, French, Polish, Italian, Portuguese, Greek, Urdu and Turkish, the Dei-
tels’ texts have earned international recognition. Dr. Deitel has delivered hundreds of pro-
fessional seminars to major corporations, academic institutions, government organizations
and the military.

deitel@deitel.com

www.deitel.com/books/chtp6/

www.deitel.com/books/chtp6/

 About Deitel & Associates, Inc. xxxi

About Deitel & Associates, Inc.
Deitel & Associates, Inc., is an internationally recognized authoring and corporate train-
ing organization specializing in computer programming languages, Internet and web soft-
ware technology, object-technology education and iPhone applications development. The
company provides instructor-led courses delivered at client sites worldwide on major
programming languages and platforms, such as C, C++, Visual C++®, Java™, Visual C#®,
Visual Basic®, XML®, Python®, object technology, Internet and web programming, iP-
hone programming and a growing list of additional programming and software-develop-
ment-related courses. The founders of Deitel & Associates, Inc., are Paul J. Deitel and Dr.
Harvey M. Deitel. The company’s clients include many of the world’s largest companies,
government agencies, branches of the military, and academic institutions. Through its 33-
year publishing partnership with Prentice Hall/Pearson, Deitel & Associates, Inc., pub-
lishes leading-edge programming textbooks, professional books, interactive multimedia
Cyber Classrooms, LiveLessons video courses (online at www.safaribooksonline.com and
on DVD at www.deitel.com/books/livelessons/), and e-content for popular course-
management systems.

Deitel & Associates, Inc., and the authors can be reached via e-mail at:

To learn more about Deitel & Associates, Inc., its publications and its Dive Into®

Series Corporate Training curriculum delivered at client locations worldwide, visit:

and subscribe to the free Deitel® Buzz Online e-mail newsletter at:

Individuals wishing to purchase Deitel books, and LiveLessons DVD and web-based
training courses can do so through www.deitel.com. Bulk orders by corporations, the gov-
ernment, the military and academic institutions should be placed directly with Pearson.
For more information, visit www.prenhall.com/mischtm/support.html#order.

deitel@deitel.com

www.deitel.com/training/

www.deitel.com/newsletter/subscribe.html

www.safaribooksonline.com
www.deitel.com/books/livelessons/
www.deitel.com/training/
www.deitel.com/newsletter/subscribe.html
www.deitel.com
www.prenhall.com/mischtm/support.html#order

This page intentionally left blank

1Introduction to Computers,
the Internet and the Web

The chief merit of language is
clearness.
—Galen

Our life is frittered away by
detail. … Simplify, simplify.
—Henry David Thoreau

He had a wonderful talent for
packing thought close, and
rendering it portable.
—Thomas B. Macaulay

Man is still the most
extraordinary computer of all.
—John F. Kennedy

O b j e c t i v e s
In this chapter, you’ll learn:

■ Basic computer concepts.

■ The different types of
programming languages.

■ The history of the C
programming language.

■ The purpose of the C
Standard Library.

■ The elements of a typical C
program development
environment.

■ How C provides a foundation
for further study of
programming languages in
general and of C++, Java and
C# in particular.

■ The history of the Internet
and the World Wide Web.

2 Chapter 1 Introduction to Computers, the Internet and the Web

1.1 Introduction
Welcome to C and C++! We’ve worked hard to create what we hope you’ll find to be an
informative, entertaining and challenging learning experience. C is a powerful computer
programming language that is appropriate for technically oriented people with little or no
programming experience and for experienced programmers to use in building substantial
information systems. C How to Program, Sixth Edition, is an effective learning tool for each
of these audiences.

The core of the book emphasizes achieving program clarity through the proven tech-
niques of structured programming. You’ll learn programming the right way from the
beginning. We’ve attempted to write in a clear and straightforward manner. The book is
abundantly illustrated. Perhaps most important, the book presents hundreds of complete
working programs and shows the outputs produced when those programs are run on a
computer. We call this the “live-code approach.” All of these example programs may be
downloaded from our website www.deitel.com/books/chtp6/.

Most people are familiar with the exciting tasks computers perform. Using this text-
book, you’ll learn how to command computers to perform those tasks. It’s software (i.e.,
the instructions you write to command computers to perform actions and make decisions)
that controls computers (often referred to as hardware). This text introduces program-
ming in C, which was standardized in 1989 as ANSI X3.159-1989 in the United States
through the American National Standards Institute (ANSI), then worldwide through the
efforts of the International Standards Organization (ISO). We call this Standard C. We
also introduce C99 (ISO/IEC 9899:1999)—the latest version of the C standard. C99 has
not yet been universally adopted, so we chose to discuss it in (optional) Appendix G. A
new C standard, which has been informally named C1X, is under development and likely
to be published around 2012.

Optional Appendix E presents the Allegro game programming C library. The
appendix shows how to use Allegro to create a simple game. We show how to display
graphics and smoothly animate objects, and we explain additional features such as sound,

1.1 Introduction
1.2 Computers: Hardware and Software
1.3 Computer Organization
1.4 Personal, Distributed and Client/

Server Computing
1.5 The Internet and the World Wide

Web
1.6 Machine Languages, Assembly

Languages and High-Level Languages
1.7 History of C
1.8 C Standard Library
1.9 C++

1.10 Java
1.11 Fortran, COBOL, Pascal and Ada
1.12 BASIC, Visual Basic, Visual C++, C#

and .NET
1.13 Key Software Trend: Object

Technology
1.14 Typical C Program Development

Environment
1.15 Hardware Trends
1.16 Notes About C and This Book
1.17 Web Resources

Summary |Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

www.deitel.com/books/chtp6/

1.2 Computers: Hardware and Software 3

keyboard input and text output. The appendix includes web links and resources that point
you to over 1000 Allegro games and to tutorials on advanced Allegro techniques.

Computer use is increasing in most fields of endeavor. Computing costs have decreased
dramatically due to rapid developments in both hardware and software technologies. Com-
puters that might have filled large rooms and cost millions of dollars a few decades ago can
now be inscribed on silicon chips smaller than a fingernail, costing a few dollars each. Those
large computers were called mainframes and current versions are widely used today in busi-
ness, government and industry. Fortunately, silicon is one of the most abundant materials
on earth—it’s an ingredient in common sand. Silicon chip technology has made computing
so economical that more than a billion general-purpose computers are in use worldwide,
helping people in business, industry and government, and in their personal lives. Billions
more special purpose computers are used in intelligent electronic devices like car navigation
systems, energy-saving appliances and game controllers.

C++, an object-oriented programming language based on C, is of such interest today
that we’ve included a detailed introduction to C++ and object-oriented programming in
Chapters 15–24. In the programming languages marketplace, many key vendors market a
combined C/C++ product rather than offering separate products. This enables users to con-
tinue programming in C if they wish, then gradually migrate to C++ when it’s appropriate.

To keep up to date with C and C++ developments at Deitel & Associates, register for
our free e-mail newsletter, the Deitel® Buzz Online, at

Check out our growing list of C and related Resource Centers at

Some Resource Centers that will be valuable to you as you read the C portion of this book
are C, Code Search Engines and Code Sites, Computer Game Programming and Pro-
gramming Projects. Each week we announce our latest Resource Centers in the newsletter.
Errata and updates for this book are posted at

You’re embarking on a challenging and rewarding path. As you proceed, if you have
any questions, send e-mail to

We’ll respond promptly. We hope that you’ll enjoy C How to Program, Sixth Edition.

1.2 Computers: Hardware and Software
A computer is a device that can perform computations and make logical decisions billions
of times faster than human beings can. For example, many of today’s personal computers
can perform several billion additions per second. A person operating a desk calculator
could spend an entire lifetime performing calculations and still not complete as many cal-
culations as a powerful personal computer can perform in one second! (Points to ponder:
How would you know whether the person added the numbers correctly? How would you
know whether the computer added the numbers correctly?) Today’s fastest supercomput-
ers can perform thousands of trillions (quadrillions) of instructions per second! To put that

www.deitel.com/newsletter/subscribe.html

www.deitel.com/ResourceCenters.html

www.deitel.com/books/chtp6/

deitel@deitel.com

www.deitel.com/newsletter/subscribe.html
www.deitel.com/ResourceCenters.html
www.deitel.com/books/chtp6/

4 Chapter 1 Introduction to Computers, the Internet and the Web

in perspective, a quadrillion-instruction-per-second computer can perform more than
100,000 calculations per second for every person on the planet!

Computers process data under the control of sets of instructions called computer pro-
grams. These programs guide the computer through orderly sets of actions specified by
people called computer programmers.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disk, memory, DVDs and processing units). The programs that run on
a computer are referred to as software. Hardware costs have been declining dramatically in
recent years, to the point that personal computers have become a commodity. In this book,
you’ll learn proven methods that are reducing software development costs—structured pro-
gramming (in the C chapters) and object-oriented programming (in the C++ chapters).

1.3 Computer Organization
Regardless of differences in physical appearance, virtually every computer may be envi-
sioned as divided into six logical units or sections:

1. Input unit. This “receiving” section obtains information (data and computer
programs) from input devices and places it at the disposal of the other units so
that it can be processed. Humans typically enter information into computers
through keyboards and mouse devices. Information also can be entered in many
other ways, including by speaking to your computer, scanning images and bar-
codes, reading from secondary storage devices (like hard drives, CD drives, DVD
drives and USB drives—also called “thumb drives”) and having your computer
receive information from the Internet (such as when you download videos from
YouTube™, e-books from Amazon and the like).

2. Output unit. This “shipping” section takes information that the computer has
processed and places it on various output devices to make it available for use out-
side the computer. Most information that is output from computers today is dis-
played on screens, printed on paper, played on audio players (such as Apple’s
popular iPods), or used to control other devices. Computers also can output their
information to networks, such as the Internet.

3. Memory unit. This rapid-access, relatively low-capacity “warehouse” section re-
tains information that has been entered through the input unit, making it imme-
diately available for processing when needed. The memory unit also retains
processed information until it can be placed on output devices by the output unit.
Information in the memory unit is volatile—it’s typically lost when the comput-
er’s power is turned off. The memory unit is often called either memory or pri-
mary memory.

4. Arithmetic and logic unit (ALU). This “manufacturing” section performs calcu-
lations, such as addition, subtraction, multiplication and division. It also contains
the decision mechanisms that allow the computer, for example, to compare two
items from the memory unit to determine whether they’re equal. In today’s sys-
tems, the ALU is usually implemented as part of the next logical unit, the CPU.

5. Central processing unit (CPU). This “administrative” section coordinates and su-
pervises the operation of the other sections. The CPU tells the input unit when to

1.4 Personal, Distributed and Client/Server Computing 5

read information into the memory unit, tells the ALU when information from the
memory unit should be used in calculations and tells the output unit when to send
information from the memory unit to certain output devices. Many of today’s
computers have multiple CPUs and, hence, can perform many operations simul-
taneously—such computers are called multiprocessors. A multi-core processor
implements multiprocessing on a single integrated circuit chip—for example a
dual-core processor has two CPUs and a quad-core processor has four CPUs.

6. Secondary storage unit. This is the long-term, high-capacity “warehousing” sec-
tion. Programs or data not actively being used by the other units normally are
placed on secondary storage devices (e.g., your hard drive) until they’re again
needed, possibly hours, days, months or even years later. Therefore, information
on secondary storage devices is said to be persistent—it is preserved even when
the computer’s power is turned off. Secondary storage information takes much
longer to access than information in primary memory, but the cost per unit of
secondary storage is much less than that of primary memory. Examples of second-
ary storage devices include CDs, DVDs and flash drives (sometimes called mem-
ory sticks), which can hold hundreds of millions to billions of characters.

1.4 Personal, Distributed and Client/Server Computing
In 1977, Apple Computer popularized personal computing. Computers became so eco-
nomical that people could buy them for their own personal or business use. In 1981, IBM,
the world’s largest computer vendor, introduced the IBM Personal Computer (PC). This
quickly legitimized personal computing in business, industry and government organiza-
tions, where IBM mainframes were heavily used.

These computers were “stand-alone” units—people transported disks back and forth
between them to share information (this was often called “sneakernet”). These machines
could be linked together in computer networks, sometimes over telephone lines and some-
times in local area networks (LANs) within an organization. This led to the phenomenon
of distributed computing, in which an organization’s computing, instead of being per-
formed only at some central computer installation, is distributed over networks to the sites
where the organization’s work is performed. Personal computers were powerful enough to
handle the computing requirements of individual users as well as the basic communica-
tions tasks of passing information between computers electronically.

Today’s personal computers are as powerful as the million-dollar machines of just a
few decades ago. Information is shared easily across computer networks, where computers
called servers (file servers, database servers, web servers, etc.) offer capabilities that may be
used by client computers distributed throughout the network, hence the term client/
server computing. C is widely used for writing software for operating systems, for com-
puter networking and for distributed client/server applications. Today’s popular operating
systems such as UNIX, Linux, Mac OS X and Microsoft’s Windows-based systems pro-
vide the kinds of capabilities discussed in this section.

1.5 The Internet and the World Wide Web
The Internet—a global network of computers—was initiated in the late 1960s with fund-
ing supplied by the U.S. Department of Defense. Originally designed to connect the main

6 Chapter 1 Introduction to Computers, the Internet and the Web

computer systems of about a dozen universities and research organizations, the Internet
today is accessible by computers worldwide.

With the introduction of the World Wide Web—which allows computer users to
locate and view multimedia-based documents on almost any subject over the Internet—
the Internet has exploded into the world’s premier communication mechanism.

The Internet and the World Wide Web are surely among humankind’s most impor-
tant and profound creations. In the past, most computer applications ran on computers
that were not connected to one another. Today’s applications can be written to commu-
nicate among the world’s computers. The Internet mixes computing and communications
technologies. It makes our work easier. It makes information instantly and conveniently
accessible worldwide. It enables individuals and local small businesses to get worldwide
exposure. It’s changing the way business is done. People can search for the best prices on
virtually any product or service. Special-interest communities can stay in touch with one
another. Researchers can be made instantly aware of the latest breakthroughs.

1.6 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps. Hundreds of
computer languages are in use today. These may be divided into three general types:

1. Machine languages

2. Assembly languages

3. High-level languages

Any computer can directly understand only its own machine language. Machine lan-
guage is the “natural language” of a computer and as such is defined by its hardware design.
[Note: Machine language is often referred to as object code. This term predates “object-
oriented programming.” These two uses of “object” are unrelated.] Machine languages
generally consist of strings of numbers (ultimately reduced to 1s and 0s) that instruct com-
puters to perform their most elementary operations one at a time. Machine languages are
machine dependent (i.e., a particular machine language can be used on only one type of
computer). Such languages are cumbersome for humans, as illustrated by the following
section of an early machine-language program that adds overtime pay to base pay and
stores the result in gross pay:

Machine-language programming was simply too slow, tedious and error prone for
most programmers. Instead of using the strings of numbers that computers could directly
understand, programmers began using English-like abbreviations to represent elementary
operations. These abbreviations formed the basis of assembly languages. Translator pro-
grams called assemblers were developed to convert early assembly-language programs to
machine language at computer speeds. The following section of an assembly-language pro-
gram also adds overtime pay to base pay and stores the result in gross pay:

+1300042774
+1400593419
+1200274027

1.7 History of C 7

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

Computer usage increased rapidly with the advent of assembly languages, but pro-
grammers still had to use many instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. Translator programs called
compilers convert high-level language programs into machine language. High-level lan-
guages allow programmers to write instructions that look almost like everyday English and
contain commonly used mathematical notations. A payroll program written in a high-level
language might contain a statement such as

From your standpoint, obviously, high-level languages are preferable to machine and
assembly language. C, C++, Microsoft’s .NET languages (e.g., Visual Basic, Visual C++
and Visual C#) and Java are among the most widely used high-level programming lan-
guages.

The process of compiling a high-level language program into machine language can
take a considerable amount of computer time. Interpreter programs were developed to
execute high-level language programs directly (without the delay of compilation),
although slower than compiled programs run.

1.7 History of C
C evolved from two previous languages, BCPL and B. BCPL was developed in 1967 by
Martin Richards as a language for writing operating-systems software and compilers. Ken
Thompson modeled many features in his B language after their counterparts in BCPL, and
in 1970 he used B to create early versions of the UNIX operating system at Bell Labora-
tories. Both BCPL and B were “typeless” languages—every data item occupied one “word”
in memory, and the burden of typing variables fell on the shoulders of the programmer.

The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was
originally implemented on a DEC PDP-11 computer in 1972. C uses many of the impor-
tant concepts of BCPL and B while adding data typing and other powerful features. C ini-
tially became widely known as the development language of the UNIX operating system.
Today, virtually all new major operating systems are written in C and/or C++. C is avail-
able for most computers. C is mostly hardware independent. With careful design, it’s pos-
sible to write C programs that are portable to most computers.

By the late 1970s, C had evolved into what is now referred to as “traditional C.” The
publication in 1978 of Kernighan and Ritchie’s book, The C Programming Language, drew
wide attention to the language. This became one of the most successful computer science
books of all time.

The rapid expansion of C over various types of computers (sometimes called hard-
ware platforms) led to many variations that were similar but often incompatible. This was
a serious problem for programmers who needed to develop code that would run on several
platforms. It became clear that a standard version of C was needed. In 1983, the X3J11

load basepay
add overpay
store grosspay

grossPay = basePay + overTimePay;

8 Chapter 1 Introduction to Computers, the Internet and the Web

technical committee was created under the American National Standards Committee on
Computers and Information Processing (X3) to “provide an unambiguous and machine-
independent definition of the language.” In 1989, the standard was approved; this stan-
dard was updated in 1999. The standards document is referred to as INCITS/ISO/IEC
9899-1999. Copies may be ordered from the American National Standards Institute
(www.ansi.org) at webstore.ansi.org/ansidocstore.

C99 is a revised standard for the C programming language that refines and expands
the capabilities of C. Not all popular C compilers support C99. Of those that do, most
implement only a subset of the new features. Chapters 1–14 of this book are based on the
widely adopted international Standard (ANSI/ISO) C. Appendix G introduces C99 and
provides links to popular C99 compilers and IDEs.

1.8 C Standard Library
As you’ll learn in Chapter 5, C programs consist of modules or pieces called functions.
You can program all the functions you need to form a C program, but most C program-
mers take advantage of a rich collection of existing functions called the C Standard Li-
brary. Thus, there are really two pieces to learning how to program in C. The first is
learning the C language itself, and the second is learning how to use the functions in the
C Standard Library. Throughout the book, we discuss many of these functions. P.J.
Plauger’s book The Standard C Library is must reading for programmers who need a deep
understanding of the library functions, how to implement them and how to use them to
write portable code. We use and explain many C library functions throughout this text.
Visit the following website for the complete C Standard Library documentation, including
the C99 features:

This textbook encourages a building-block approach to creating programs. Avoid
reinventing the wheel. Instead, use existing pieces—this is called software reusability, and
it’s a key to the field of object-oriented programming, as you’ll see in our treatment of C++
beginning in Chapter 15. When programming in C you’ll typically use the following
building blocks:

• C Standard Library functions

• Functions you create yourself

• Functions other people have created and made available to you

The advantage of creating your own yfunctions is that you’ll know exactly how they
work. You’ll be able to examine the C code. The disadvantage is the time-consuming effort
that goes into designing, developing and debugging new functions.

If you use existing functions, you can avoid reinventing the wheel. In the case of the
Standard C functions, you know that they’re carefully written, and you know that because
you’re using functions that are available on virtually all Standard C implementations, your
programs will have a greater chance of being portable and error-free.

Portability Tip 1.1
Because C is a hardware-independent, widely available language, applications written in
C can run with little or no modifications on a wide range of different computer systems.

www.dinkumware.com/manuals/default.aspx#Standard%20C%20Library

www.ansi.org
www.dinkumware.com/manuals/default.aspx#Standard%20C%20Library

1.9 C++ 9

1.9 C++
C++ was developed by Bjarne Stroustrup at Bell Laboratories. It has its roots in C, provid-
ing a number of features that “spruce up” the C language. More important, it provides ca-
pabilities for object-oriented programming. C++ has become a dominant language in
both industry and the colleges.

Objects are essentially reusable software components that model items in the real
world. Using a modular, object-oriented design and implementation approach can make
software development groups much more productive than is possible with previous pro-
gramming techniques.

Many people feel that the best educational strategy today is to master C, then study
C++. Therefore, in Chapters 15–24 of C How to Program, 6/e, we present a condensed
treatment of C++ selected from our book C++ How to Program, 7/e. As you study C++,
check out our online C++ Resource Center at www.deitel.com/cplusplus/.

1.10 Java
Microprocessors are having a profound impact in intelligent consumer electronic devices.
Recognizing this, Sun Microsystems in 1991 funded an internal corporate research project
code-named Green. The project resulted in the development of a C++-based language that
its creator, James Gosling, called Oak after an oak tree outside his window at Sun. It was
later discovered that there already was a computer language called Oak. When a group of
Sun people visited a local coffee shop, the name Java was suggested and it stuck.

The Green project ran into some difficulties. The marketplace for intelligent con-
sumer electronic devices did not develop in the early 1990s as quickly as Sun had antici-
pated. The project was in danger of being canceled. By sheer good fortune, the World
Wide Web exploded in popularity in 1993, and Sun saw the immediate potential of using
Java to add dynamic content (e.g., interactivity, animations and the like) to web pages.
This breathed new life into the project.

Sun formally announced Java at an industry conference in May 1995. Java garnered
the attention of the business community because of the phenomenal interest in the World
Wide Web. Java is now used to develop large-scale enterprise applications, to enhance the
functionality of web servers (the computers that provide the content we see in our web
browsers), to provide applications for consumer devices (e.g., cell phones, pagers and per-
sonal digital assistants) and for many other purposes.

Performance Tip 1.1
Using Standard C library functions instead of writing your own comparable versions can
improve program performance, because these functions are carefully written to perform ef-
ficiently.

Performance Tip 1.2
Using Standard C library functions instead of writing your own comparable versions can
improve program portability, because these functions are used in virtually all Standard C
implementations.

www.deitel.com/cplusplus/

10 Chapter 1 Introduction to Computers, the Internet and the Web

1.11 Fortran, COBOL, Pascal and Ada
Hundreds of high-level languages have been developed, but few have achieved broad ac-
ceptance. FORTRAN (FORmula TRANslator) was developed by IBM Corporation in
the mid-1950s to be used for scientific and engineering applications that require complex
mathematical computations. Fortran is still widely used in engineering applications.

COBOL (COmmon Business Oriented Language) was developed in the late 1950s
by computer manufacturers, the U.S. government and industrial computer users.
COBOL is used for commercial applications that require precise and efficient manipula-
tion of large amounts of data. Much business software is still programmed in COBOL.

During the 1960s, many large software development efforts encountered severe diffi-
culties. Software deliveries were often late, costs greatly exceeded budgets and the finished
products were unreliable. People realized that software development was a more complex
activity than they had imagined. Research in the 1960s resulted in the evolution of struc-
tured programming—a disciplined approach to writing programs that are clearer and
easier to test, debug and modify than large programs produced with previous techniques.

One of the more tangible results of this research was the development of the Pascal
programming language by Professor Niklaus Wirth in 1971. Named after the seventeenth-
century mathematician and philosopher Blaise Pascal, it was designed for teaching struc-
tured programming and rapidly became the preferred programming language in most col-
leges. Pascal lacked many features needed in commercial, industrial and government
applications, so it was not widely accepted outside academia.

The Ada language was developed under the sponsorship of the U.S. Department of
Defense (DoD) during the 1970s and early 1980s. Hundreds of separate languages were
being used to produce the DoD’s massive command-and-control software systems. The
DoD wanted one language that would fill most of its needs. The Ada language was named
after Lady Ada Lovelace, daughter of the poet Lord Byron. Lady Lovelace is credited with
writing the world’s first computer program in the early 1800s (for the Analytical Engine
mechanical computing device designed by Charles Babbage). One important capability of
Ada, called multitasking, allows programmers to specify that many activities are to occur
in parallel. Although multithreading is not part of standard C, it’s available through var-
ious add-on libraries.

1.12 BASIC, Visual Basic, Visual C++, C# and .NET
The BASIC (Beginner’s All-purpose Symbolic Instruction Code) programming language
was developed in the mid-1960s at Dartmouth College as a means of writing simple pro-
grams. BASIC’s primary purpose was to familiarize novices with programming techniques.
Microsoft’s Visual Basic language, introduced in the early 1990s to simplify the develop-
ment of Microsoft Windows applications, has become one of the most popular program-
ming languages in the world.

Microsoft’s latest development tools are part of its corporate-wide strategy for inte-
grating the Internet and the web into computer applications. This strategy is implemented
in Microsoft’s .NET platform, which provides the capabilities developers need to create
and run computer applications that can execute on computers distributed across the
Internet. Microsoft’s three primary programming languages are Visual Basic (based on the
original BASIC), Visual C++ (based on C++) and Visual C# (a new language based on

1.13 Key Software Trend: Object Technology 11

C++ and Java that was developed expressly for the .NET platform). Visual C++ can also
be used to compile and run C programs.

1.13 Key Software Trend: Object Technology
One of the authors, Harvey Deitel, remembers the great frustration felt in the 1960s by
software development organizations, especially those working on large-scale projects. Dur-
ing his undergraduate years at MIT, he worked summers at a leading computer vendor on
the teams developing timesharing, virtual memory operating systems. This was a great ex-
perience for a college student. But, in the summer of 1967, reality set in when the compa-
ny “decommitted” from producing as a commercial product the particular system on
which hundreds of people had been working for many years. It was difficult to get this soft-
ware right—software is “complex stuff.”

Improvements to software technology did emerge, with the benefits of structured pro-
gramming (and the related disciplines of structured systems analysis and design) being
realized in the 1970s. Not until the technology of object-oriented programming became
widely used in the 1990s, though, did software developers feel they had the necessary tools
for making major strides in the software development process.

Actually, object technology dates back to the mid 1960s. The C++ programming lan-
guage, developed at AT&T by Bjarne Stroustrup in the early 1980s, is based on two lan-
guages—C and Simula 67, a simulation programming language developed at the
Norwegian Computing Center and released in 1967. C++ absorbed the features of C and
added Simula’s capabilities for creating and manipulating objects. Neither C nor C++ was
originally intended for wide use beyond the AT&T research laboratories. But grass roots
support rapidly developed for each.

Object technology is a packaging scheme that helps us create meaningful software
units. There are date objects, time objects, paycheck objects, invoice objects, audio objects,
video objects, file objects, record objects and so on. In fact, almost any noun can be rea-
sonably represented as an object.

We live in a world of objects. There are cars, planes, people, animals, buildings, traffic
lights, elevators and the like. Before object-oriented languages appeared, procedural pro-
gramming languages (such as Fortran, COBOL, Pascal, BASIC and C) were focused on
actions (verbs) rather than on things or objects (nouns). Programmers living in a world of
objects programmed primarily using verbs. This made it awkward to write programs.
Now, with the availability of popular object-oriented languages such as C++, Java and C#,
programmers continue to live in an object-oriented world and can program in an object-
oriented manner. This is a more natural process than procedural programming and has
resulted in significant productivity gains.

A key problem with procedural programming is that the program units do not effec-
tively mirror real-world entities, so these units are not particularly reusable. It isn’t unusual
for programmers to “start fresh” on each new project and have to write similar software
“from scratch.” This wastes time and money, as people repeatedly “reinvent the wheel.”
With object technology, the software entities created (called classes), if properly designed,
tend to be reusable on future projects. Using libraries of reusable componentry can greatly
reduce effort required to implement certain kinds of systems (compared to the effort that
would be required to reinvent these capabilities on new projects).

12 Chapter 1 Introduction to Computers, the Internet and the Web

Some organizations report that the key benefit of object-oriented programming is not
software reuse but, rather, that the software they produce is more understandable, better
organized and easier to maintain, modify and debug. This can be significant, because per-
haps as much as 80 percent of software costs are associated not with the original efforts to
develop the software, but with the continued evolution and maintenance of that software
throughout its lifetime. Whatever the perceived benefits, it’s clear that object-oriented
programming will be the key programming methodology for the next several decades.

1.14 Typical C Program Development Environment
C systems generally consist of several parts: a program development environment, the lan-
guage and the C Standard Library. The following discussion explains the typical C devel-
opment environment shown in Fig. 1.1.

C programs typically go through six phases to be executed (Fig. 1.1). These are: edit,
preprocess, compile, link, load and execute. Although C How to Program, 6/e is a generic
C textbook (written independently of the details of any particular operating system), we
concentrate in this section on a typical Linux-based C system. [Note: The programs in this
book will run with little or no modification on most current C systems, including Micro-
soft Windows-based systems.] If you’re not using a Linux system, refer to the manuals for
your system or ask your instructor how to accomplish these tasks in your environment.
Check out our C Resource Center at www.deitel.com/C to locate “getting started” tuto-
rials for popular C compilers and development environments.

Phase 1: Creating a Program
Phase 1 consists of editing a file. This is accomplished with an editor program. Two edi-
tors widely used on Linux systems are vi and emacs. Software packages for the C/C++ in-
tegrated program development environments such as Eclipse and Microsoft Visual Studio
have editors that are integrated into the programming environment. You type a C program
with the editor, make corrections if necessary, then store the program on a secondary stor-
age device such as a hard disk. C program file names should end with the .c extension.

Phases 2 and 3: Preprocessing and Compiling a C Program
In Phase 2, the you give the command to compile the program. The compiler translates
the C program into machine language-code (also referred to as object code). In a C system,
a preprocessor program executes automatically before the compiler’s translation phase be-
gins. The C preprocessor obeys special commands called preprocessor directives, which
indicate that certain manipulations are to be performed on the program before compila-
tion. These manipulations usually consist of including other files in the file to be compiled
and performing various text replacements. The most common preprocessor directives are
discussed in the early chapters; a detailed discussion of preprocessor features appears in
Chapter 13. In Phase 3, the compiler translates the C program into machine-language
code.

Software Engineering Observation 1.1
Extensive class libraries of reusable software components are available on the Internet.
Many of these libraries are free.

www.deitel.com/C

1.14 Typical C Program Development Environment 13

Phase 4: Linking
The next phase is called linking. C programs typically contain references to functions de-
fined elsewhere, such as in the standard libraries or in the private libraries of groups of pro-
grammers working on a particular project. The object code produced by the C compiler
typically contains “holes” due to these missing parts. A linker links the object code with

Fig. 1.1 | Typical C development environment.

Compiler

Phase 3:
Compiler creates
object code and stores
it on disk.

Linker

Phase 4:
Linker links the object
code with the libraries,
creates an executable file and
stores it on disk.

Disk

Disk

Disk

Disk

Disk

Editor

Phase 1:
Programmer creates program
in the editor and stores it on
disk.

Preprocessor
Phase 2:
Preprocessor program
processes the code.

Loader

Phase 5:
Loader puts program
in memory.

.
.
.

CPU
Phase 6:
CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes..

.
.

Primary
Memory

Primary
Memory

14 Chapter 1 Introduction to Computers, the Internet and the Web

the code for the missing functions to produce an executable image (with no missing piec-
es). On a typical Linux system, the command to compile and link a program is called cc
(or gcc). To compile and link a program named welcome.c type

at the Linux prompt and press the Enter key (or Return key). [Note: Linux commands are
case sensitive; make sure that you type lowercase c’s and that the letters in the filename are
in the appropriate case.] If the program compiles and links correctly, a file called a.out is
produced. This is the executable image of our welcome.c program.

Phase 5: Loading
The next phase is called loading. Before a program can be executed, the program must first
be placed in memory. This is done by the loader, which takes the executable image from
disk and transfers it to memory. Additional components from shared libraries that support
the program are also loaded.

Phase 6: Execution
Finally, the computer, under the control of its CPU, executes the program one instruction
at a time. To load and execute the program on a Linux system, type ./a.out at the Linux
prompt and press Enter.

Problems That May Occur at Execution Time
Programs do not always work on the first try. Each of the preceding phases can fail because
of various errors that we’ll discuss. For example, an executing program might attempt to
divide by zero (an illegal operation on computers just as in arithmetic). This would cause
the computer to display an error message. You would then return to the edit phase, make
the necessary corrections and proceed through the remaining phases again to determine
that the corrections work properly.

Most C programs input and/or output data. Certain C functions take their input
from stdin (the standard input stream), which is normally the keyboard, but stdin can
be connected to another stream. Data is often output to stdout (the standard output
stream), which is normally the computer screen, but stdout can be connected to another
stream. When we say that a program prints a result, we normally mean that the result is
displayed on a screen. Data may be output to devices such as disks and printers. There is
also a standard error stream referred to as stderr. The stderr stream (normally con-
nected to the screen) is used for displaying error messages. It’s common to route regular
output data, i.e., stdout, to a device other than the screen while keeping stderr assigned
to the screen so that the user can be immediately informed of errors.

1.15 Hardware Trends
Every year, people generally expect to pay at least a little more for most products and ser-
vices. The opposite has been the case in the computer and communications fields, espe-

cc welcome.c

Common Programming Error 1.1
Errors like division-by-zero occur as a program runs, so these errors are called runtime er-
rors or execution-time errors. Divide-by-zero is generally a fatal error, i.e., an error that
causes the program to terminate immediately without successfully performing its job. Non-
fatal errors allow programs to run to completion, often producing incorrect results.

1.16 Notes About C and This Book 15

cially with regard to the costs of hardware supporting these technologies. For many
decades, hardware costs have fallen rapidly, if not precipitously. Every year or two, the ca-
pacities of computers have approximately doubled without any increase in price. This of-
ten is called Moore’s Law, named after the person who first identified and explained the
trend, Gordon Moore, cofounder of Intel—the company that manufactures the vast ma-
jority of the processors in today’s personal computers. Moore’s Law and similar trends are
especially true in relation to the amount of memory that computers have for programs, the
amount of secondary storage (such as disk storage) they have to hold programs and data
over longer periods of time, and their processor speeds—the speeds at which computers
execute programs (i.e., do their work). Similar growth has occurred in the communica-
tions field, in which costs have plummeted as soaring demand for communications band-
width has attracted intense competition. We know of no other fields in which technology
improves so quickly and costs fall so rapidly. Such improvement in the computing and
communications fields is truly fostering the so-called Information Revolution.

1.16 Notes About C and This Book
Experienced C programmers sometimes take pride in creating weird, contorted, convolut-
ed usages of the language. This is a poor programming practice. It makes programs more
difficult to read, more likely to behave strangely, more difficult to test and debug and more
difficult to adapt to changing requirements. This book is geared for novice programmers,
so we stress program clarity. The following is our first “good programming practice.”

You may have heard that C is a portable language and that programs written in C can
run on many different computers. Portability is an elusive goal. The Standard C document
contains a lengthy list of portability issues, and complete books have been written that dis-
cuss portability.

We’ve done a careful walkthrough of the C Standard and audited our presentation
against it for completeness and accuracy. However, C is a rich language, and there are some
subtleties in the language and some advanced subjects we have not covered. If you need
additional technical details on C, we suggest that you read the C Standard document itself
or the book by Kernighan and Ritchie (The C Programming Language, Second Edition).

Good Programming Practice 1.1
Write your C programs in a simple and straightforward manner. This is sometimes re-
ferred to as KIS (“keep it simple”). Do not “stretch” the language by trying bizarre usages.

Portability Tip 1.2
Although it’s possible to write portable C programs, there are many problems between dif-
ferent C compilers and different computers that make portability difficult to achieve. Sim-
ply writing programs in C does not guarantee portability. You’ll often need to deal directly
with computer variations.

Software Engineering Observation 1.2
Read the manuals for the version of C you’re using. Reference these manuals frequently to
be sure you’re aware of the rich collection of C features and that you’re using these features
correctly.

16 Chapter 1 Introduction to Computers, the Internet and the Web

1.17 Web Resources
This section provides links to our C and related Resource Centers that will be useful to
you as you learn C. These Resource Centers include various C resources, including, blogs,
articles, whitepapers, compilers, development tools, downloads, FAQs, tutorials, webcasts,
wikis and links to resources for C game programming with the Allegro libraries.

Deitel & Associates Websites
www.deitel.com/books/chtp6/

The Deitel & Associates C How to Program, 6/e site. Here you’ll find links to the book’s examples
and other resources.
www.deitel.com/C/
www.deitel.com/visualcplusplus/
www.deitel.com/codesearchengines/
www.deitel.com/programmingprojects/

Check these Resource Centers for compilers, code downloads, tutorials, documentation, books, e-
books, articles, blogs, RSS feeds and more that will help you develop C applications.
www.deitel.com

Check this site for updates, corrections and additional resources for all Deitel publications.
www.deitel.com/newsletter/subscribe.html

Subscribe here for the Deitel® Buzz Online e-mail newsletter to follow the Deitel & Associates pub-
lishing program, including updates and errata to C How to Program, 6/e.

Software Engineering Observation 1.3
Your computer and compiler are good teachers. If you’re not sure how a C feature works,
write a program with that feature, compile and run the program and see what happens.

Summary
Section 1.1 Introduction
• Software (i.e., the instructions you write to command computers to perform actions and make

decisions) controls computers (often referred to as hardware).

• C was standardized in 1989 in the United States through the American National Standards In-
stitute (ANSI) then worldwide through the International Standards Organization (ISO).

• Silicon-chip technology has made computing so economical that more than a billion general-
purpose computers are in use worldwide.

Section 1.2 Computers: Hardware and Software
• A computer is capable of performing computations and making logical decisions at speeds bil-

lions of times faster than human beings can.

• Computers process data under the control of sets of instructions called computer programs,
which guide the computer through orderly sets of actions specified by computer programmers.

• The various devices that comprise a computer system are referred to as hardware.

• The computer programs that run on a computer are referred to as software.

Section 1.3 Computer Organization
• The input unit is the “receiving” section of the computer. It obtains information from input de-

vices and places it at the disposal of the other units for processing.

www.deitel.com/books/chtp6/
www.deitel.com/C/
www.deitel.com/visualcplusplus/
www.deitel.com/codesearchengines/
www.deitel.com/programmingprojects/
www.deitel.com
www.deitel.com/newsletter/subscribe.html

 Summary 17

• The output unit is the “shipping” section of the computer. It takes information processed by the
computer and places it on output devices to make it available for use outside the computer.

• The memory unit is the rapid-access, relatively low-capacity “warehouse” section of the comput-
er. It retains information that has been entered through the input unit, making it immediately
available for processing when needed, and retains information that has already been processed
until it can be placed on output devices by the output unit.

• The arithmetic and logic unit (ALU) is the “manufacturing” section of the computer. It’s respon-
sible for performing calculations and making decisions.

• The central processing unit (CPU) is the “administrative” section of the computer. It coordinates
and supervises the operation of the other sections.

• The secondary storage unit is the long-term, high-capacity “warehousing” section of the comput-
er. Programs or data not being used by the other units are normally placed on secondary storage
devices (e.g., disks) until they’re needed, possibly hours, days, months or even years later.

Section 1.4 Personal, Distributed and Client/Server Computing
• Apple Computer popularized personal computing.

• IBM’s Personal Computer quickly legitimized personal computing in business, industry and
government organizations, where IBM mainframes are heavily used.

• Early personal computers could be linked together in computer networks. This led to the phe-
nomenon of distributed computing.

• Information is shared easily across networks, where computers called servers (file servers, database
servers, web servers, etc.) offer capabilities that may be used by client computers distributed
throughout the network, hence the term client/server computing.

• C has become widely used for writing software for operating systems, for computer networking
and for distributed client/server applications.

Section 1.5 The Internet and the World Wide Web
• The Internet—a global network of computers—was initiated almost four decades ago with fund-

ing supplied by the U.S. Department of Defense.

• With the introduction of the World Wide Web—which allows computer users to locate and
view multimedia-based documents on almost any subject over the Internet—the Internet has ex-
ploded into the world’s premier communication mechanism.

Section 1.6 Machine Languages, Assembly Languages and High-Level Languages
• Any computer can directly understand only its own machine language, which generally consists

of strings of numbers that instruct computers to perform their most elementary operations.

• English-like abbreviations form the basis of assembly languages. Translator programs called as-
semblers convert assembly-language programs to machine language.

• Compilers translate high-level language programs into machine-language programs. High-level
languages (like C) contain English words and conventional mathematical notations.

• Interpreter programs directly execute high-level language programs, eliminating the need to
compile them into machine language.

Section 1.7 History of C
• C evolved from two previous languages, BCPL and B. BCPL was developed in 1967 by Martin

Richards as a language for writing operating systems software and compilers. Ken Thompson
modeled many features in his B language after their counterparts in BCPL and used B to create
early versions of the UNIX operating system.

18 Chapter 1 Introduction to Computers, the Internet and the Web

• The C language was evolved from B by Dennis Ritchie at Bell Laboratories. C uses many of the
important concepts of BCPL and B while adding data typing and other powerful features.

• C initially became widely known as the development language of the UNIX operating system.

• C is available for most computers. C is mostly hardware independent.

• The publication in 1978 of Kernighan and Ritchie’s book, The C Programming Language, drew
wide attention to the language.

• In 1989, the C standard was approved; this standard was updated in 1999. The standards docu-
ment is referred to as INCITS/ISO/IEC 9899-1999.

• C99 is a revised standard for the C programming language that refines and expands the capabil-
ities of C, but it has not be universally adopted.

Section 1.8 C Standard Library
• When programming in C you’ll typically use C Standard Library functions, functions you create

yourself and functions other people have created and made available to you.

Section 1.9 C++
• C++ was developed by Bjarne Stroustrup at Bell Laboratories. It has its roots in C and provides

capabilities for object-oriented programming.

• Objects are essentially reusable software components that model items in the real world.

• Using a modular, object-oriented design and implementation approach makea software develop-
ment groups much more productive than is possible with conventional programming techniques.

Section 1.10 Java
• Java is used to create dynamic and interactive content for web pages, develop enterprise applica-

tions, enhance web server functionality, provide applications for consumer devices and more.

Section 1.11 Fortran, COBOL, Pascal and Ada
• FORTRAN was developed by IBM Corporation in the 1950s for scientific and engineering ap-

plications that require complex mathematical computations.

• COBOL was developed in the 1950s for commercial applications that require precise and effi-
cient data manipulation.

• Pascal was designed for teaching structured programming.

• Ada was developed under the sponsorship of the United States Department of Defense (DoD)
during the 1970s and early 1980s. Ada provides multitasking, which allows programmers to
specify that many activities are to occur in parallel.

Section 1.12 BASIC, Visual Basic, Visual C++, C# and .NET
• BASIC was developed in the 1960s at Dartmouth College for programming novices.

• Visual Basic was introduced in the 1990s to simplify developing Windows applications.

• Microsoft has a corporate-wide strategy for integrating the Internet and the web into computer
applications. This strategy is implemented in Microsoft’s .NET platform.

• The .NET platform’s three primary programming languages are Visual Basic (based on the orig-
inal BASIC), Visual C++ (based on C++) and Visual C# (a new language based on C++ and Java
that was developed expressly for the .NET platform).

Section 1.13 Key Software Trend: Object Technology
• Not until object-oriented programming became widely used in the 1990s did software develop-

ers feel they had the tools to make major strides in the software development process.

• C++ absorbed the features of C and added Simula’s object capabilities.

 Terminology 19

• Object technology is a packaging scheme that helps us create meaningful software units.

• With object technology, the software entities created (called classes), if properly designed, tend
to be reusable on future projects.

• Some organizations report the key benefit of object-oriented programming is the production of
software which is more understandable, better organized and easier to maintain and debug.

Section 1.14 Typical C Program Development Environment
• You create a program by editing a file with an editor program. Software packages for the C/C++

integrated program development environments such as Eclipse and Microsoft Visual Studio have
editors that are integrated into the programming environment.

• C program file names should end with the .c extension.

• Compilers translate programs into machine-language code (also referred to as object code).

• A preprocessor program executes automatically before the compiler’s translation phase begins.
The C preprocessor obeys special commands called preprocessor directives that usually consist of
including other files in the file to be compiled and performing various text replacements.

• A linker links object code with the code for library functions to produce an executable image.

• Before a program can execute, it must first be placed in memory. This is done by the loader. Ad-
ditional components from shared libraries that support the program are also loaded.

• The computer, under the control of its CPU, executes a program one instruction at a time.

Section 1.15 Hardware Trends
• Every year, people generally expect to pay at least a little more for most products and services.

The opposite has been the case in the computer and communications fields, especially with re-
gard to the costs of hardware supporting these technologies. For many decades, hardware costs
have fallen rapidly, if not precipitously.

• Every year or two, the capacities of computers have approximately doubled without any increase
in price. This often is called Moore’s Law, named after the person who first identified and ex-
plained the trend, Gordon Moore, cofounder of Intel—the company that manufactures the vast
majority of the processors in today’s personal computers.

• Moore’s Law is especially true in relation to the amount of memory that computers have for pro-
grams, the amount of secondary storage they have to hold programs and data over longer periods
of time, and their processor speeds—the speeds at which computers execute their programs.

Terminology
actions (computers perform) 2
Ada programming language 10
Allegro 2
American National Standards Institute (ANSI) 2
arithmetic and logic unit (ALU) 4
assembler 6
assembly language 6
BASIC (Beginner’s All-Purpose Symbolic In-

struction Code) 10
building-block approach 8
C preprocessor 12
C Standard Library 8
cc compilation command 14
central processing unit (CPU) 4

class 11
client computer 5
client/server computing 5
COBOL (COmmon Business Oriented

Language) 10
compile 12
compile phase 12
compiler 7
components (software) 9
computer 3
computer program 4
computer programmer 4
data 4
decisions (made by computers) 2

20 Chapter 1 Introduction to Computers, the Internet and the Web

distributed computing 5
dynamic content 9
edit phase 12
editor program 12
executable image 14
execute 14
execute phase 12
FORTRAN (FORmula TRANslator) 10
function 8
gcc compilation command 14
hardware 2
hardware platform 7
high-level language 7
input device 4
input unit 4
International Standards Organization (ISO) 2
Internet 5
interpreter 7
Java 9
link phase 12
linker 13
linking 13
load phase 12
loader 14
loading 14
local area network (LAN) 5
logical unit 4
machine dependent 6
machine language 6
mainframe 3
memory 4
memory unit 4
Moore’s Law 15
multi-core processor 5

multiprocessor 5
multitasking 10
.NET platform 10
object 9
object code 12
object-oriented programming (OOP) 9
output device 4
output unit 4
Pascal 10
persistent information 5
personal computing 5
portable program 7
preprocess phase 12
preprocessor 12
preprocessor directive 12
primary memory 4
program clarity 15
secondary storage unit 5
server 5
software 2
software reusability 8
standard error stream (stderr) 14
standard input stream (stdin) 14
standard output stream (stdout) 14
structured programming 10
supercomputer 3
translation 6
translator programs 6
Visual Basic 10
Visual C++ 10
Visual C# 10
volatile information 4
World Wide Web 6

Self-Review Exercises
1.1 Fill in the blanks in each of the following:

a) The company that popularized personal computing was .
b) The computer that made personal computing legitimate in business and industry was

the .
c) Computers process data under the control of sets of instructions called computer

.
d) The six key logical units of the computer are the , , ,

, and the .
e) The three types of languages we discussed are , , and .
f) The programs that translate high-level language programs into machine language are

called .
g) C is widely known as the development language of the operating system.
h) The Department of Defense developed the Ada language with a capability called

, which allows programmers to specify activities that can proceed in parallel.

 Answers to Self-Review Exercises 21

1.2 Fill in the blanks in each of the following sentences about the C environment.
a) C programs are normally typed into a computer using a(n) program.
b) In a C system, a(n) program automatically executes before the translation

phase begins.
c) The two most common kinds of preprocessor directives are and .
d) The program combines the output of the compiler with various library func-

tions to produce an executable image.
e) The program transfers the executable image from disk to memory.
f) To load and execute the most recently compiled program on a Linux system, type

.

Answers to Self-Review Exercises
1.1 a) Apple. b) IBM Personal Computer. c) programs. d) input unit, output unit, memory
unit, arithmetic and logic unit, central processing unit, secondary storage unit. e) machine languag-
es, assembly languages and high-level languages. f) compilers. g) UNIX. h) multitasking.

1.2 a) editor. b) preprocessor. c) including other files in the file to be compiled, replacing special
symbols with program text. d) linker. e) loader. f) ./a.out.

Exercises
1.3 Categorize each of the following items as either hardware or software:

a) CPU
b) C++ compiler
c) ALU
d) C++ preprocessor
e) input unit
f) an editor program

1.4 Why might you want to write a program in a machine-independent language instead of a
machine-dependent language? Why might a machine-dependent language be more appropriate for
writing certain types of programs?

1.5 Fill in the blanks in each of the following statements:
a) Which logical unit of the computer receives information from outside the computer for

use by the computer? .
b) The process of instructing the computer to solve specific problems is called .
c) What type of computer language uses English-like abbreviations for machine-language

instructions? .
d) Which logical unit of the computer sends information that has already been processed

by the computer to various devices so that the information may be used outside the
computer? .

e) Which logical units of the computer retain information? .
f) Which logical unit of the computer performs calculations? .
g) Which logical unit of the computer makes logical decisions? .
h) The level of computer language most convenient for you to write programs quickly and

easily is .
i) The only language that a computer directly understands is called that computer's

.
j) Which logical unit of the computer coordinates the activities of all the other logical

units? .

22 Chapter 1 Introduction to Computers, the Internet and the Web

1.6 State whether each of the following is true or false. If false, explain your answer.
a) Machine languages are generally machine dependent.
b) Like other high-level languages, C is generally considered to be machine independent.

1.7 Discuss the meaning of each of the following names:
a) stdin

b) stdout
c) stderr

1.8 Why is so much attention today focused on object-oriented programming?

1.9 Which programming language is best described by each of the following?
a) Developed by IBM for scientific and engineering applications.
b) Developed specifically for business applications.
c) Developed for teaching structured programming.
d) Named after the world’s first computer programmer.
e) Developed to familiarize novices with programming techniques.
f) Specifically developed to help programmers migrate to .NET.
g) Known as the development language of UNIX.
h) Formed primarily by adding object-oriented programming to C.
i) Succeeded initially because of its ability to create web pages with dynamic content.

Making a Difference
1.10 (Test-Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Organizations and
individuals are increasingly concerned about their “carbon footprints.” Websites such as TerraPass

www.terrapass.com/carbon-footprint-calculator/

and Carbon Footprint

www.carbonfootprint.com/calculator.aspx

provide carbon footprint calculators. Test-drive these calculators to estimate your carbon footprint.
Exercises in later chapters will ask you to program your own carbon footprint calculator. To pre-
pare for this, use the web to research the formulas for calculating carbon footprints.

1.11 (Test-Drive: Body Mass Index Calculator) By recent estimates, two-thirds of the people in
the United States are overweight and about half of those are obese. This causes significant increases
in illnesses such as diabetes and heart disease. To determine whether a person is overweight or obese,
you can use a measure called the body mass index (BMI). The United States Department of Health
and Human Services provides a BMI calculator at www.nhlbisupport.com/bmi/. Use it to calculate
your own BMI. An exercise in Chapter 2 will ask you to program your own BMI calculator. To pre-
pare for this, use the web to research the formulas for calculating BMI.

1.12 (Gender Neutrality) Many people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you’ve been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace “wife” with “spouse,” “man” with “per-
son,” “daughter” with “child” and so on), explain the procedure you’d use to read through a para-
graph of text and manually perform these replacements. How might your procedure generate a
strange term like “woperchild,” which is actually listed in the Urban Dictionary (www.urbandic-
tionary.com)? In Chapter 4, you’ll learn that a more formal term for “procedure” is “algorithm,”
and that an algorithm specifies the steps to be performed and the order in which to perform them.

www.terrapass.com/carbon-footprint-calculator/
www.carbonfootprint.com/calculator.aspx
www.nhlbisupport.com/bmi/
www.urbandictionary.com
www.urbandictionary.com

2Introduction to C
Programming

What’s in a name? That which
we call a rose
By any other name would smell
as sweet.
—William Shakespeare

When faced with a decision, I
always ask, “What would be the
most fun?”
—Peggy Walker

“Take some more tea,” the
March Hare said to Alice, very
earnestly. “I’ve had nothing yet,”
Alice replied in an offended
tone: “so I can’t take more.” “You
mean you can’t take less,” said
the Hatter: “it’s very easy to take
more than nothing.”
—Lewis Carroll

High thoughts must have high
language.
—Aristophanes

O b j e c t i v e s
In this chapter, you’ll learn

■ To write simple computer
programs in C.

■ To use simple input and
output statements.

■ To use the fundamental data
types.

■ Computer memory concepts.

■ To use arithmetic operators.

■ The precedence of arithmetic
operators.

■ To write simple decision-
making statements.

24 Chapter 2 Introduction to C Programming

2.1 Introduction
The C language facilitates a structured and disciplined approach to computer program de-
sign. In this chapter we introduce C programming and present several examples that illus-
trate many important features of C. Each example is analyzed one statement at a time. In
Chapters 3 and 4 we present an introduction to structured programming in C. We then
use the structured approach throughout the remainder of the C portion of the text.

2.2 A Simple C Program: Printing a Line of Text
C uses some notations that may appear strange to people who have not programmed com-
puters. We begin by considering a simple C program. Our first example prints a line of
text. The program and its screen output are shown in Fig. 2.1.

Even though this program is simple, it illustrates several important features of the C
language. Lines 1 and 2

begin with /* and end with */ indicating that these two lines are a comment. You insert
comments to document programs and improve program readability. Comments do not
cause the computer to perform any action when the program is run. Comments are
ignored by the C compiler and do not cause any machine-language object code to be

2.1 Introduction
2.2 A Simple C Program: Printing a Line

of Text
2.3 Another Simple C Program: Adding

Two Integers

2.4 Memory Concepts
2.5 Arithmetic in C
2.6 Decision Making: Equality and

Relational Operators

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

1 /* Fig. 2.1: fig02_01.c
2 A first program in C */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 printf("Welcome to C!\n");
9

10 return 0; /* indicate that program ended successfully */
11 } /* end function main */

Welcome to C!

Fig. 2.1 | A first program in C.

/* Fig. 2.1: fig02_01.c
 A first program in C */

2.2 A Simple C Program: Printing a Line of Text 25

generated. The preceding comment simply describes the figure number, file name and
purpose of the program. Comments also help other people read and understand your pro-
gram, but too many comments can make a program difficult to read.

C99 also includes the C++ language’s // single-line comments in which everything
from // to the end of the line is a comment. These can be used as standalone comments
on lines by themselves or as end-of-line comments to the right of a partial line of code.
Some programmers prefer // comments because they’re shorter and they eliminate the
common programming errors that occur with /* */ comments.

Line 3

is a directive to the C preprocessor. Lines beginning with # are processed by the prepro-
cessor before the program is compiled. Line 3 tells the preprocessor to include the contents
of the standard input/output header (<stdio.h>) in the program. This header contains
information used by the compiler when compiling calls to standard input/output library
functions such as printf. We explain the contents of headers in more detail in Chapter 5.

Line 6

is a part of every C program. The parentheses after main indicate that main is a program
building block called a function. C programs contain one or more functions, one of which
must be main. Every program in C begins executing at the function main. Functions can
return information. The keyword int to the left of main indicates that main “returns” an
integer (whole number) value. We’ll explain what it means for a function to “return a val-
ue” when we demonstrate how to create your own functions in Chapter 5. For now, sim-
ply include the keyword int to the left of main in each of your programs. Functions also
can receive information when they’re called upon to execute. The void in parentheses here
means that main does not receive any information. In Chapter 14, Other C Topics, we’ll
show an example of main receiving information.

A left brace, {, begins the body of every function (line 7). A corresponding right brace
ends each function (line 11). This pair of braces and the portion of the program between
the braces is called a block. The block is an important program unit in C.

Line 8

Common Programming Error 2.1
Forgetting to terminate a comment with */.

Common Programming Error 2.2
Starting a comment with the characters */ or ending a comment with the characters /*.

#include <stdio.h>

int main(void)

Good Programming Practice 2.1
Every function should be preceded by a comment describing the purpose of the function.

printf("Welcome to C!\n");

26 Chapter 2 Introduction to C Programming

instructs the computer to perform an action, namely to print on the screen the string of
characters marked by the quotation marks. A string is sometimes called a character string,
a message or a literal. The entire line, including printf, its argument within the paren-
theses and the semicolon (;), is called a statement. Every statement must end with a semi-
colon (also known as the statement terminator). When the preceding printf statement
is executed, it prints the message Welcome to C! on the screen. The characters normally
print exactly as they appear between the double quotes in the printf statement. Notice
that the characters \n were not printed on the screen. The backslash (\) is called an escape
character. It indicates that printf is supposed to do something out of the ordinary. When
encountering a backslash in a string, the compiler looks ahead at the next character and
combines it with the backslash to form an escape sequence. The escape sequence \n means
newline. When a newline appears in the string output by a printf, the newline causes the
cursor to position to the beginning of the next line on the screen. Some common escape
sequences are listed in Fig. 2.2.

The last two escape sequences in Fig. 2.2 may seem strange. Because the backslash has
special meaning in a string, i.e., the compiler recognizes it as an escape character, we use a
double backslash (\\) to place a single backslash in a string. Printing a double quote also
presents a problem because double quotes mark the boundary of a string—such quotes are
not printed. By using the escape sequence \" in a string to be output by printf, we indi-
cate that printf should display a double quote.

Line 10

is included at the end of every main function. The keyword return is one of several means
we’ll use to exit a function. When the return statement is used at the end of main as shown
here, the value 0 indicates that the program has terminated successfully. In Chapter 5 we
discuss functions in detail, and the reasons for including this statement will become clear.
For now, simply include this statement in each program, or the compiler might produce
a warning on some systems. The right brace, }, (line 12) indicates that the end of main has
been reached.

Escape sequence Description

\n Newline. Position the cursor at the beginning of the next line.

\t Horizontal tab. Move the cursor to the next tab stop.

\a Alert. Sound the system bell.

\\ Backslash. Insert a backslash character in a string.

\" Double quote. Insert a double-quote character in a string.

Fig. 2.2 | Some common escape sequences .

return 0; /* indicate that program ended successfully */

Good Programming Practice 2.2
Add a comment to the line containing the right brace, }, that closes every function, in-
cluding main.

2.2 A Simple C Program: Printing a Line of Text 27

We said that printf causes the computer to perform an action. As any program
executes, it performs a variety of actions and makes decisions. At the end of this chapter,
we discuss decision making. In Chapter 3, we discuss this action/decision model of pro-
gramming in depth.

Standard library functions like printf and scanf are not part of the C programming
language. For example, the compiler cannot find a spelling error in printf or scanf.
When the compiler compiles a printf statement, it merely provides space in the object
program for a “call” to the library function. But the compiler does not know where the
library functions are—the linker does. When the linker runs, it locates the library func-
tions and inserts the proper calls to these library functions in the object program. Now the
object program is complete and ready to be executed. For this reason, the linked program
is called an executable. If the function name is misspelled, it is the linker which will spot
the error, because it will not be able to match the name in the C program with the name
of any known function in the libraries.

The printf function can print Welcome to C! several different ways. For example, the
program of Fig. 2.3 produces the same output as the program of Fig. 2.1. This works
because each printf resumes printing where the previous printf stopped printing. The
first printf (line 8) prints Welcome followed by a space and the second printf (line 9)
begins printing on the same line immediately following the space.

Common Programming Error 2.3
Typing the name of the output function printf as print in a program.

Good Programming Practice 2.3
Indent the entire body of each function one level of indentation (we recommend three
spaces) within the braces that define the body of the function. This indentation emphasizes
the functional structure of programs and helps make programs easier to read.

Good Programming Practice 2.4
Set a convention for the size of indent you prefer and then uniformly apply that conven-
tion. The tab key may be used to create indents, but tab stops may vary. We recommend
using three spaces per level of indent.

1 /* Fig. 2.3: fig02_03.c
2 Printing on one line with two printf statements */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8
9

10
11 return 0; /* indicate that program ended successfully */
12 } /* end function main */

Fig. 2.3 | Printing on one line with two printf statements. (Part 1 of 2.)

printf("Welcome ");
printf("to C!\n");

28 Chapter 2 Introduction to C Programming

One printf can print several lines by using additional newline characters as in
Fig. 2.4. Each time the \n (newline) escape sequence is encountered, output continues at
the beginning of the next line.

2.3 Another Simple C Program: Adding Two Integers
Our next program uses the Standard Library function scanf to obtain two integers typed
by a user at the keyboard, computes the sum of these values and prints the result using
printf. The program and sample output are shown in Fig. 2.8. [In the input/output dia-
log of Fig. 2.8, we emphasize the numbers input by the user in bold.]

Welcome to C!

1 /* Fig. 2.4: fig02_04.c
2 Printing multiple lines with a single printf */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 printf("Welcome to C!\n");
9

10 return 0; /* indicate that program ended successfully */
11 } /* end function main */

Welcome
to
C!

Fig. 2.4 | Printing multiple lines with a single printf.

1 /* Fig. 2.5: fig02_05.c
2 Addition program */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8
9

10
11
12 printf("Enter first integer\n"); /* prompt */
13
14
15 printf("Enter second integer\n"); /* prompt */
16

Fig. 2.5 | Addition program. (Part 1 of 2.)

Fig. 2.3 | Printing on one line with two printf statements. (Part 2 of 2.)

\n \n

int integer1; /* first number to be input by user */
int integer2; /* second number to be input by user */
int sum; /* variable in which sum will be stored */

scanf("%d", &integer1); /* read an integer */

scanf("%d", &integer2); /* read an integer */

2.3 Another Simple C Program: Adding Two Integers 29

The comment in lines 1–2 states the purpose of the program. As we stated earlier,
every program begins execution with main. The left brace { (line 7) marks the beginning
of the body of main and the corresponding right brace } (line 24) marks the end of main.

Lines 8–10

are definitions. The names integer1, integer2 and sum are the names of variables. A
variable is a location in memory where a value can be stored for use by a program. These
definitions specify that the variables integer1, integer2 and sum are of type int, which
means that these variables will hold integer values, i.e., whole numbers such as 7, –11, 0,
31914 and the like. All variables must be defined with a name and a data type immediately
after the left brace that begins the body of main before they can be used in a program.
There are other data types besides int in C. The preceding definitions could have been
combined into a single definition statement as follows:

but that would have made it difficult to describe the variables in corresponding comments
as we did in lines 8–10.

A variable name in C is any valid identifier. An identifier is a series of characters con-
sisting of letters, digits and underscores (_) that does not begin with a digit. An identifier
can be of any length, but only the first 31 characters are required to be recognized by C
compilers according to the C standard. C is case sensitive—uppercase and lowercase let-
ters are different in C, so a1 and A1 are different identifiers.

17
18
19
20
21
22 return 0; /* indicate that program ended successfully */
23 } /* end function main */

Enter first integer
45
Enter second integer
72
Sum is 117

int integer1; /* first number to be input by user */
int integer2; /* second number to be input by user */
int sum; /* variable in which sum will be stored */

int integer1, integer2, sum;

Common Programming Error 2.4
Using a capital letter where a lowercase letter should be used (for example, typing Main
instead of main).

Error-Prevention Tip 2.1
Avoid starting identifiers with the underscore character (_) to prevent conflicts with com-
piler-generated identifiers and standard library identifiers.

Fig. 2.5 | Addition program. (Part 2 of 2.)

sum = integer1 + integer2; /* assign total to sum */

printf("Sum is %d\n", sum); /* print sum */

30 Chapter 2 Introduction to C Programming

Definitions must be placed after the left brace of a function and before any executable
statements. For example, in the program illustrated in Fig. 2.5, inserting the definitions
after the first printf would cause a syntax error. A syntax error is caused when the com-
piler cannot recognize a statement. The compiler normally issues an error message to help
you locate and fix the incorrect statement. Syntax errors are violations of the language.
Syntax errors are also called compile errors, or compile-time errors.

Line 12

prints the literal Enter first integer on the screen and positions the cursor to the begin-
ning of the next line. This message is called a prompt because it tells the user to take a
specific action.

The next statement

uses scanf to obtain a value from the user. The scanf function reads from the standard
input, which is usually the keyboard. This scanf has two arguments, "%d" and &integer1.
The first argument, the format control string, indicates the type of data that should be
input by the user. The %d conversion specifier indicates that the data should be an integer

Portability Tip 2.1
Use identifiers of 31 or fewer characters. This helps ensure portability and can avoid some
subtle programming errors.

Good Programming Practice 2.5
Choosing meaningful variable names helps make a program self-documenting, i.e., fewer
comments are needed.

Good Programming Practice 2.6
The first letter of an identifier used as a simple variable name should be a lowercase letter.
Later in the text we’ll assign special significance to identifiers that begin with a capital
letter and to identifiers that use all capital letters.

Good Programming Practice 2.7
Multiple-word variable names can help make a program more readable. Avoid running
the separate words together as in totalcommissions. Rather, separate the words with un-
derscores as in total_commissions, or, if you do wish to run the words together, begin
each word after the first with a capital letter as in totalCommissions. The latter style is
preferred.

Common Programming Error 2.5
Placing variable definitions among executable statements causes syntax errors.

Good Programming Practice 2.8
Separate the definitions and executable statements in a function with one blank line to
emphasize where the definitions end and the executable statements begin.

printf("Enter first integer\n"); /* prompt */

scanf("%d", &integer1); /* read an integer */

2.3 Another Simple C Program: Adding Two Integers 31

(the letter d stands for “decimal integer”). The % in this context is treated by scanf (and
printf as we’ll see) as a special character that begins a conversion specifier. The second
argument of scanf begins with an ampersand (&)—called the address operator in C—
followed by the variable name. The ampersand, when combined with the variable name,
tells scanf the location (or address) in memory at which the variable integer1 is stored.
The computer then stores the value for integer1 at that location. The use of ampersand
(&) is often confusing to novice programmers or to people who have programmed in other
languages that do not require this notation. For now, just remember to precede each vari-
able in every call to scanf with an ampersand. Some exceptions to this rule are discussed
in Chapters 6 and 7. The use of the ampersand will become clear after we study pointers
in Chapter 7.

When the computer executes the preceding scanf, it waits for the user to enter a value
for variable integer1. The user responds by typing an integer, then pressing the Enter key
to send the number to the computer. The computer then assigns this number, or value, to
the variable integer1. Any subsequent references to integer1 in this program will use this
same value. Functions printf and scanf facilitate interaction between the user and the
computer. Because this interaction resembles a dialogue, it is often called conversational
computing or interactive computing.

Line 15

displays the message Enter second integer on the screen, then positions the cursor to the
beginning of the next line. This printf also prompts the user to take action.

The statement

obtains a value for variable integer2 from the user. The assignment statement in line 18

calculates the sum of variables integer1 and integer2 and assigns the result to variable
sum using the assignment operator =. The statement is read as, “sum gets the value of
integer1 + integer2.” Most calculations are performed in assignments. The = operator
and the + operator are called binary operators because each has two operands. The + op-
erator’s two operands are integer1 and integer2. The = operator’s two operands are sum
and the value of the expression integer1 + integer2.

Good Programming Practice 2.9
Place a space after each comma (,) to make programs more readable.

printf("Enter second integer\n"); /* prompt */

scanf("%d", &integer2); /* read an integer */

sum = integer1 + integer2; /* assign total to sum */

Good Programming Practice 2.10
Place spaces on either side of a binary operator. This makes the operator stand out and
makes the program more readable.

Common Programming Error 2.6
A calculation in an assignment statement must be on the right side of the = operator. It is
a compilation error to place a calculation on the left side of an assignment operator.

32 Chapter 2 Introduction to C Programming

Line 20

calls function printf to print the literal Sum is followed by the numerical value of variable
sum on the screen. This printf has two arguments, "Sum is %d\n" and sum. The first ar-
gument is the format control string. It contains some literal characters to be displayed, and
it contains the conversion specifier %d indicating that an integer will be printed. The sec-
ond argument specifies the value to be printed. Notice that the conversion specifier for an
integer is the same in both printf and scanf. This is the case for most C data types.

Calculations can also be performed inside printf statements. We could have com-
bined the previous two statements into the statement

Line 22

passes the value 0 back to the operating-system environment in which the program is being
executed. This value indicates to the operating system that the program executed success-
fully. For information on how to report a program failure, see the manuals for your par-
ticular operating-system environment. The right brace, }, at line 24 indicates that the end
of function main has been reached.

printf("Sum is %d\n", sum); /* print sum */

printf("Sum is %d\n", integer1 + integer2);

return 0; /* indicate that program ended successfully */

Common Programming Error 2.7
Forgetting one or both of the double quotes surrounding the format control string in a
printf or scanf.

Common Programming Error 2.8
Forgetting the % in a conversion specification in the format control string of a printf or
scanf.

Common Programming Error 2.9
Placing an escape sequence such as \n outside the format control string of a printf or
scanf.

Common Programming Error 2.10
Forgetting to include the expressions whose values are to be printed in a printf containing
conversion specifiers.

Common Programming Error 2.11
Not providing a conversion specifier when one is needed in a printf format control string
to print the value of an expression.

Common Programming Error 2.12
Placing inside the format control string the comma that is supposed to separate the format
control string from the expressions to be printed.

2.4 Memory Concepts 33

On many systems, the preceding execution-time error causes a “segmentation fault”
or “access violation.” Such an error occurs when a user’s program attempts to access a part
of the computer’s memory to which it does not have access privileges. The precise cause
of this error will be explained in Chapter 7.

2.4 Memory Concepts
Variable names such as integer1, integer2 and sum actually correspond to locations in
the computer’s memory. Every variable has a name, a type and a value.

In the addition program of Fig. 2.5, when the statement (line 13)

is executed, the value typed by the user is placed into a memory location to which the name
integer1 has been assigned. Suppose the user enters the number 45 as the value for
integer1. The computer will place 45 into location integer1 as shown in Fig. 2.6.

Whenever a value is placed in a memory location, the value replaces the previous value
in that location; thus, placing a new value into a memory location is said to be destructive.

Returning to our addition program again, when the statement (line 16)

executes, suppose the user enters the value 72. This value is placed into location integer2,
and memory appears as in Fig. 2.7. These locations are not necessarily adjacent in memory.

Once the program has obtained values for integer1 and integer2, it adds these
values and places the sum into variable sum. The statement (line 18)

that performs the addition also replaces whatever value was stored in sum. This occurs when
the calculated sum of integer1 and integer2 is placed into location sum (destroying the
value already in sum). After sum is calculated, memory appears as in Fig. 2.8. The values of

Common Programming Error 2.13
Using the incorrect format conversion specifier when reading data with scanf.

Common Programming Error 2.14
Forgetting to precede a variable in a scanf statement with an ampersand when that vari-
able should, in fact, be preceded by an ampersand.

Common Programming Error 2.15
Preceding a variable included in a printf statement with an ampersand when, in fact,
that variable should not be preceded by an ampersand.

scanf("%d", &integer1); /* read an integer */

Fig. 2.6 | Memory location showing the name and value of a variable.

scanf("%d", &integer2); /* read an integer */

sum = integer1 + integer2; /* assign total to sum */

45integer1

34 Chapter 2 Introduction to C Programming

integer1 and integer2 appear exactly as they did before they were used in the calculation.
They were used, but not destroyed, as the computer performed the calculation. Thus, when
a value is read from a memory location, the process is said to be nondestructive.

2.5 Arithmetic in C
Most C programs perform arithmetic calculations. The C arithmetic operators are sum-
marized in Fig. 2.9. Note the use of various special symbols not used in algebra. The as-
terisk (*) indicates multiplication and the percent sign (%) denotes the remainder
operator, which is introduced below. In algebra, if we want to multiply a times b, we can
simply place these single-letter variable names side by side as in ab. In C, however, if we
were to do this, ab would be interpreted as a single, two-letter name (or identifier). There-
fore, C (and other programming languages, in general) require that multiplication be ex-
plicitly denoted by using the * operator as in a * b.

The arithmetic operators are all binary operators. For example, the expression 3 + 7
contains the binary operator + and the operands 3 and 7.

Integer division yields an integer result. For example, the expression 7 / 4 evaluates
to 1 and the expression 17 / 5 evaluates to 3. C provides the remainder operator, %, which

Fig. 2.7 | Memory locations after both variables are input.

Fig. 2.8 | Memory locations after a calculation.

C operation Arithmetic operator Algebraic expression C expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 2.9 | Arithmetic operators.

45

72

integer1

integer2

45

72

117

integer1

integer2

sum

x
y
--

2.5 Arithmetic in C 35

yields the remainder after integer division. The remainder operator is an integer operator
that can be used only with integer operands. The expression x % y yields the remainder
after x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. We’ll discuss many inter-
esting applications of the remainder operator.

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in C must be written in straight-line form to facilitate entering
programs into the computer. Thus, expressions such as “a divided by b” must be written
as a/b so that all operators and operands appear in a straight line. The algebraic notation

is generally not acceptable to compilers, although some special-purpose software packages
do support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C expressions in the same manner as in algebraic expressions. For
example, to multiply a times the quantity b + c we write a * (b + c).

Rules of Operator Precedence
C applies the operators in arithmetic expressions in a precise sequence determined by the
following rules of operator precedence, which are generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Thus, parentheses may be used to force the order of evaluation to occur in any sequence
you desire. Parentheses are said to be at the “highest level of precedence.” In cases
of nested, or embedded, parentheses, such as

the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and remainder operations are applied first. If an ex-
pression contains several multiplication, division and remainder operations, eval-
uation proceeds from left to right. Multiplication, division and remainder are said
to be on the same level of precedence.

3. Addition and subtraction operations are evaluated next. If an expression contains
several addition and subtraction operations, evaluation proceeds from left to right.
Addition and subtraction also have the same level of precedence, which is lower
than the precedence of the multiplication, division and remainder operations.

The rules of operator precedence specify the order C uses to evaluate expressions.1

When we say evaluation proceeds from left to right, we’re referring to the associativity of
the operators. We’ll see that some operators associate from right to left. Figure 2.10 sum-
marizes these rules of operator precedence.

Common Programming Error 2.16
An attempt to divide by zero is normally undefined on computer systems and generally re-
sults in a fatal error, i.e., an error that causes the program to terminate immediately with-
out having successfully performed its job. Nonfatal errors allow programs to run to
completion, often producing incorrect results.

 ((a + b) + c)

a
b
--

36 Chapter 2 Introduction to C Programming

Sample Algebraic and C Expressions
Now let’s consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its C equivalent. The following example calcu-
lates the arithmetic mean (average) of five terms.

The parentheses are required to group the additions because division has higher prece-
dence than addition. The entire quantity (a + b + c + d + e) should be divided by 5. If
the parentheses are erroneously omitted, we obtain a + b + c + d + e / 5 which evaluates
incorrectly as

The following example is the equation of a straight line:

No parentheses are required. The multiplication is evaluated first because multiplication
has a higher precedence than addition.

The following example contains remainder (%), multiplication, division, addition,
subtraction and assignment operations:

1. We use simple examples to explain the order of evaluation of expressions. Subtle issues occur in more
complex expressions that you’ll encounter later in the book. We’ll discuss these issues as they arise.

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested,
the expression in the innermost pair is evalu-
ated first. If there are several pairs of parenthe-
ses “on the same level” (i.e., not nested),
they’re evaluated left to right.

*
/
%

Multiplication
Division
Remainder

Evaluated second. If there are several, they’re
evaluated left to right.

+
-

Addition
Subtraction

Evaluated last. If there are several, they’re eval-
uated left to right.

Fig. 2.10 | Precedence of arithmetic operators.

Algebra:

Java: m = (a + b + c + d + e) / 5;

Algebra: y = mx + b

C: y = m * x + b;

m a b c d e+ + + +
5

-------------------------------------=

a b c d e
5
---+ + + +

z

6 1 2 4 3 5

= p * r % q + w / x - y;

z = pr%q + w/x – yAlgebra:
C:

2.5 Arithmetic in C 37

The circled numbers indicate the order in which C evaluates the operators. The multipli-
cation, remainder and division are evaluated first in left-to-right order (i.e., they associate
from left to right) since they have higher precedence than addition and subtraction. The
addition and subtraction are evaluated next. They’re also evaluated left to right.

Not all expressions with several pairs of parentheses contain nested parentheses. For
example, the following expression does not contain nested parentheses—instead, the
parentheses are said to be “on the same level.”

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, let’s see how C eval-
uates a second-degree polynomial.

The circled numbers under the statement indicate the order in which C performs the oper-
ations. There is no arithmetic operator for exponentiation in C, so we have represented x2

as x * x. The C Standard Library includes the pow (“power”) function to perform expo-
nentiation. Because of some subtle issues related to the data types required by pow, we defer
a detailed explanation of pow until Chapter 4.

Suppose variables a, b, c and x in the preceding second-degree polynomial are initial-
ized as follows: a = 2, b = 3, c = 7 and x = 5. Figure 2.11 illustrates the order in which the
operators are applied.

a * (b + c) + c * (d + e)

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

6 1 2 4 3 5

y = a * x * x + b * x + c;

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

 3 * 5 is 15

Step 4. y = 50 + 15 + 7;

 50 + 15 is 65

Step 5. y = 65 + 7;

 65 + 7 is 72

Step 6. y = 72

38 Chapter 2 Introduction to C Programming

As in algebra, it is acceptable to place unnecessary parentheses in an expression to
make the expression clearer. These are called redundant parentheses. For example, the
preceding statement could be parenthesized as follows:

2.6 Decision Making: Equality and Relational Operators
Executable C statements either perform actions (such as calculations or input or output of
data) or make decisions (we’ll soon see several examples of these). We might make a deci-
sion in a program, for example, to determine if a person’s grade on an exam is greater than
or equal to 60 and if it is to print the message “Congratulations! You passed.” This section
introduces a simple version of C’s if statement that allows a program to make a decision
based on the truth or falsity of a statement of fact called a condition. If the condition is
met (i.e., the condition is true) the statement in the body of the if statement is executed.
If the condition is not met (i.e., the condition is false) the body statement is not executed.
Whether the body statement is executed or not, after the if statement completes, execu-
tion proceeds with the next statement after the if statement.

Conditions in if statements are formed by using the equality operators and relational
operators summarized in Fig. 2.12. The relational operators all have the same level of
precedence and they associate left to right. The equality operators have a lower level of
precedence than the relational operators and they also associate left to right. [Note: In C,
a condition may actually be any expression that generates a zero (false) or nonzero (true)
value. We’ll see many applications of this throughout the book.]

 y = (a * x * x) + (b * x) + c;

Good Programming Practice 2.11
Using redundant parentheses in complex arithmetic expressions can make the expressions
clearer.

Algebraic equality or
relational operator

C equality or
relational operator

Example of
C condition Meaning of C condition

Equality operators
= == x == y x is equal to y
≠ != x != y x is not equal to y

Relational operators
> > x > y x is greater than y
< < x < y x is less than y
≥ >= x >= y x is greater than or equal to y
≤ <= x <= y x is less than or equal to y

Fig. 2.12 | Equality and relational operators.

Common Programming Error 2.17
A syntax error occurs if the two symbols in any of the operators ==, !=, >= and <= are sep-
arated by spaces.

2.6 Decision Making: Equality and Relational Operators 39

To avoid this confusion, the equality operator should be read “double equals” and the
assignment operator should be read “gets” or “is assigned the value of.” As we’ll soon see,
confusing these operators may not necessarily cause an easy-to-recognize compilation
error, but may cause extremely subtle logic errors.

Figure 2.13 uses six if statements to compare two numbers input by the user. If the
condition in any of these if statements is true, the printf statement associated with that
if executes. The program and three sample execution outputs are shown in the figure.

Common Programming Error 2.18
A syntax error occurs if the two symbols in any of the operators !=, >= and <= are reversed
as in =!, => and =<, respectively.

Common Programming Error 2.19
Confusing the equality operator == with the assignment operator.

Common Programming Error 2.20
Placing a semicolon immediately to the right of the right parenthesis after the condition
in an if statement.

1 /* Fig. 2.13: fig02_13.c
2 Using if statements, relational
3 operators, and equality operators */
4 #include <stdio.h>
5
6 /* function main begins program execution */
7 int main(void)
8 {
9 int num1; /* first number to be read from user */

10 int num2; /* second number to be read from user */
11
12 printf("Enter two integers, and I will tell you\n");
13 printf("the relationships they satisfy: ");
14
15 scanf("%d%d", &num1, &num2); /* read two integers */
16
17
18
19
20
21 if () {
22 printf("%d is not equal to %d\n", num1, num2);
23 } /* end if */
24
25 if () {
26 printf("%d is less than %d\n", num1, num2);
27 } /* end if */
28

Fig. 2.13 | Using if statements, relational operators, and equality operators. (Part 1 of 2.)

if (num1 == num2) {
 printf("%d is equal to %d\n", num1, num2);
} /* end if */

num1 != num2

num1 < num2

40 Chapter 2 Introduction to C Programming

The program uses scanf (line 15) to input two numbers. Each conversion specifier
has a corresponding argument in which a value will be stored. The first %d converts a value
to be stored in variable num1, and the second %d converts a value to be stored in variable
num2. Indenting the body of each if statement and placing blank lines above and below
each if statement enhances program readability.

29 if () {
30 printf("%d is greater than %d\n", num1, num2);
31 } /* end if */
32
33 if () {
34 printf("%d is less than or equal to %d\n", num1, num2);
35 } /* end if */
36
37 if () {
38 printf("%d is greater than or equal to %d\n", num1, num2);
39 } /* end if */
40
41 return 0; /* indicate that program ended successfully */
42 } /* end function main */

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

Enter two integers, and I will tell you
the relationships they satisfy: 12 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Enter two integers, and I will tell you
 the relationships they satisfy: 7 7

7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

Good Programming Practice 2.12
Indent the statement(s) in the body of an if statement.

Good Programming Practice 2.13
Place a blank line before and after every if statement in a program for readability.

Fig. 2.13 | Using if statements, relational operators, and equality operators. (Part 2 of 2.)

num1 > num2

num1 <= num2

num1 >= num2

2.6 Decision Making: Equality and Relational Operators 41

A left brace, {, begins the body of each if statement (e.g., line 17). A corresponding
right brace, }, ends each if statement’s body (e.g., line 19). Any number of statements can
be placed in the body of an if statement.2

The comment (lines 1–3) in Fig. 2.13 is split over three lines. In C programs, white
space characters such as tabs, newlines and spaces are normally ignored. So, statements and
comments may be split over several lines. It is not correct, however, to split identifiers.

Figure 2.14 lists the precedence of the operators introduced in this chapter. Operators
are shown top to bottom in decreasing order of precedence. The equals sign is also an oper-
ator. All these operators, with the exception of the assignment operator =, associate from
left to right. The assignment operator (=) associates from right to left.

Good Programming Practice 2.14
Although it is allowed, there should be no more than one statement per line in a program.

Common Programming Error 2.21
Placing commas (when none are needed) between conversion specifiers in the format con-
trol string of a scanf statement.

2. Using braces to delimit the body of an if statement is optional when the body contains only one
statement. Many programmers consider it good practice to always use these braces. In Chapter 3,
we’ll explain the issues.

Good Programming Practice 2.15
A lengthy statement may be spread over several lines. If a statement must be split across
lines, choose breaking points that make sense (such as after a comma in a comma-separated
list). If a statement is split across two or more lines, indent all subsequent lines.

Good Programming Practice 2.16
Refer to the operator precedence chart when writing expressions containing many opera-
tors. Confirm that the operators in the expression are applied in the proper order. If you’re
uncertain about the order of evaluation in a complex expression, use parentheses to group
expressions or break the statement into several simpler statements. Be sure to observe that
some of C’s operators such as the assignment operator (=) associate from right to left rather
than from left to right.

Operators Associativity

() left to right

* / % left to right

+ - left to right

< <= > >= left to right

== != left to right

= right to left

Fig. 2.14 | Precedence and associativity of the operators discussed so far.

42 Chapter 2 Introduction to C Programming

Some of the words we have used in the C programs in this chapter—in particular int,
return and if—are keywords or reserved words of the language. Figure 2.15 contains the
C keywords. These words have special meaning to the C compiler, so you must be careful
not to use these as identifiers such as variable names. In this book, we discuss all these key-
words.

In this chapter, we have introduced many important features of the C programming
language, including printing data on the screen, inputting data from the user, performing
calculations and making decisions. In the next chapter, we build upon these techniques as
we introduce structured programming. You’ll become more familiar with indentation
techniques. We’ll study how to specify the order in which statements are executed—this
is called flow of control.

Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Keywords added in C99

_Bool _Complex _Imaginary inline restrict

Fig. 2.15 | C’s keywords.

Summary
Section 2.1 Introduction
• The C language facilitates a structured and disciplined approach to computer program design.

Section 2.2 A Simple C Program: Printing a Line of Text
• Comments begin with /* and end with */. Comments document programs and improve pro-

gram readability. C99 also supports C++’s single-line comments that begin with //.

• Comments do not cause the computer to perform any action when the program is run. They’re
ignored by the C compiler and do not cause any machine-language object code to be generated.

• Lines beginning with # are processed by the preprocessor before the program is compiled. The
#include directive tells the preprocessor to include the contents of another file (typically a header
file such as <stdio.h>).

• The <stdio.h> header contains information used by the compiler when compiling calls to stan-
dard input/output library functions such as printf.

 Summary 43

• The function main is a part of every C program. The parentheses after main indicate that main is
a program building block called a function. C programs contain one or more functions, one of
which must be main. Every program in C begins executing at the function main.

• Functions can return information. The keyword int to the left of main indicates that main “re-
turns” an integer (whole number) value.

• Functions can receive information when they’re called upon to execute. The void in parentheses
after main indicates that main does not receive any information.

• A left brace, {, begins the body of every function. A corresponding right brace, }, ends each func-
tion. This pair of braces and the portion of the program between the braces is called a block.

• The printf function instructs the computer to display information on the screen.

• A string is sometimes called a character string, a message or a literal.

• Every statement must end with a semicolon (also known as the statement terminator).

• The characters \n do not display characters on the screen. The backslash (\) is called an escape
character. When encountering a backslash in a string, the compiler looks ahead at the next char-
acter and combines it with the backslash to form an escape sequence. The escape sequence \n
means newline.

• When a newline appears in the string output by a printf, the newline causes the cursor to posi-
tion to the beginning of the next line on the screen.

• The double backslash (\\) escape sequence can be used to place a single backslash in a string.

• The escape sequence \" represents a literal double-quote character.

• The keyword return is one of several means to exit a function. When the return statement is
used at the end of main, the value 0 indicates that the program has terminated successfully.

Section 2.3 Another Simple C Program: Adding Two Integers
• A variable is a location in memory where a value can be stored for use by a program.

• Variables of type int hold integer values, i.e., whole numbers such as 7, –11, 0, 31914.

• All variables must be defined with a name and a data type immediately after the left brace that
begins the body of main before they can be used in a program.

• A variable name in C is any valid identifier. An identifier is a series of characters consisting of
letters, digits and underscores (_) that does not begin with a digit. An identifier can be any
length, but only the first 31 characters are required to be recognized by C compilers according
to the C standard.

• C is case sensitive—uppercase and lowercase letters are different in C.

• Definitions must be placed after the left brace of a function and before any executable statements.

• A syntax error is caused when the compiler cannot recognize a statement. The compiler normally
issues an error message to help you locate and fix the incorrect statement. Syntax errors are vio-
lations of the language. Syntax errors are also called compile errors, or compile-time errors.

• Standard Library function scanf can be used to obtain input from the standard input, which is
usually the keyboard.

• The scanf format control string indicates the type(s) of data that should be input.

• The %d conversion specifier indicates that the data should be an integer (the letter d stands for
“decimal integer”). The % in this context is treated by scanf (and printf) as a special character
that begins a conversion specifier.

• The other arguments of scanf begin with an ampersand (&)—called the address operator in C—
followed by a variable name. The ampersand, when combined with a variable name, tells scanf

44 Chapter 2 Introduction to C Programming

the location in memory at which the variable is located. The computer then stores the value for
the variable at that location.

• Most calculations are performed in assignment statements.

• The = operator and the + operator are binary operators—each has two operands.

• Function printf also can use a format control string as its first argument. This string contains
some literal characters to be displayed and the conversion specifiers that indicate place holders
for data to output.

Section 2.4 Memory Concepts
• Variable names correspond to locations in the computer’s memory. Every variable has a name, a

type and a value.

• Whenever a value is placed in a memory location, the value replaces the previous value in that
location; thus, placing a new value into a memory location is said to be destructive.

• When a value is read out of a memory location, the process is said to be nondestructive.

Section 2.5 Arithmetic in C
• In algebra, if we want to multiply a times b, we can simply place these single-letter variable names

side by side as in ab. In C, however, if we were to do this, ab would be interpreted as a single,
two-letter name (or identifier). Therefore, C (like other programming languages, in general) re-
quires that multiplication be explicitly denoted by using the * operator, as in a * b.

• The arithmetic operators are all binary operators.

• Integer division yields an integer result. For example, the expression 7 / 4 evaluates to 1 and the
expression 17 / 5 evaluates to 3.

• C provides the remainder operator, %, which yields the remainder after integer division. The re-
mainder operator is an integer operator that can be used only with integer operands. The expres-
sion x % y yields the remainder after x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2.

• An attempt to divide by zero is normally undefined on computer systems and generally results in
a fatal error that causes the program to terminate immediately. Nonfatal errors allow programs
to run to completion, often producing incorrect results.

• Arithmetic expressions in C must be written in straight-line form to facilitate entering programs
into the computer. Thus, expressions such as “a divided by b” must be written as a/b so that all
operators and operands appear in a straight line.

• Parentheses are used to group terms in C expressions in much the same manner as in algebraic
expressions.

• C evaluates arithmetic expressions in a precise sequence determined by the following rules of op-
erator precedence, which are generally the same as those followed in algebra.

• Multiplication, division and remainder operations are applied first. If an expression contains sev-
eral multiplication, division and remainder operations, evaluation proceeds from left to right.
Multiplication, division and remainder are said to be on the same level of precedence.

• Addition and subtraction operations are evaluated next. If an expression contains several addition
and subtraction operations, evaluation proceeds from left to right. Addition and subtraction also
have the same level of precedence, which is lower than the precedence of the multiplication, di-
vision and remainder operators.

• The rules of operator precedence specify the order C uses to evaluate expressions. When we say
evaluation proceeds from left to right, we’re referring to the associativity of the operators. Some
operators associate from right to left.

 Terminology 45

Section 2.6 Decision Making: Equality and Relational Operators
• Executable C statements either perform actions or make decisions.

• C’s if statement allows a program to make a decision based on the truth or falsity of a statement
of fact called a condition. If the condition is met (i.e., the condition is true) the statement in the
body of the if statement executes. If the condition is not met (i.e., the condition is false) the
body statement does not execute. Whether the body statement is executed or not, after the if
statement completes, execution proceeds with the next statement after the if statement.

• Conditions in if statements are formed by using the equality operators and relational operators.

• The relational operators all have the same level of precedence and associate left to right. The
equality operators have a lower level of precedence than the relational operators and they also as-
sociate left to right.

• To avoid confusing assignment (=) and equality (==), the assignment operator should be read
“gets” and the equality operator should be read “double equals.”

• In C programs, white-space characters such as tabs, newlines and spaces are normally ignored.
So, statements and comments may be split over several lines. It is not correct to split identifiers.

• Some of the words in C programs—such as int, return and if—are keywords or reserved words
of the language. These words have special meaning to the C compiler, so you cannot use them
as identifiers such as variable names.

Terminology
* multiplication operator 34
% remainder operator 34
%d conversion specifier 30
action 26
action/decision model 27
address operator (&) 31
argument 26
arithmetic operators 34
assignment statement 31
associativity 35
body 25
C preprocessor 25
case sensitive 29
character string 26
comment (/* */) 24
compile error 30
compile-time error 30
condition 38
conversational computing 31
decision 38
definition 29
destructive 33
document a program 24
embedded parentheses 35
Enter key 31
equality operator 38
escape character 26
escape sequence 26

executable 27
exit a function 26
false 38
flow of control 42
format control string 30
function 25
identifier 29
if statement 38
integer 29
integer division 34
interactive computing 31
keyword 42
literal 26
message 26
nested parentheses 35
newline (\n) 26
nondestructive 34
operand 31
percent sign (%) 34
prompt 30
redundant parentheses 38
relational operator 38
right brace (}) 25
rules of operator precedence 35
scanf function 30
single-line comment (//) 25
standard input/output header 25
statement 26

46 Chapter 2 Introduction to C Programming

statement terminator (;) 26
<stdio.h> header 25
straight-line form 35
string 26
structured programming 24
syntax error 30

true 38
type 33
value 33
variable 29
white space 41

Self-Review Exercises
2.1 Fill in the blanks in each of the following.

a) Every C program begins execution at the function .
b) The begins the body of every function and the ends the body

of every function.
c) Every statement ends with a(n) .
d) The standard library function displays information on the screen.
e) The escape sequence \n represents the character, which causes the cursor

to position to the beginning of the next line on the screen.
f) The Standard Library function is used to obtain data from the keyboard.
g) The conversion specifier is used in a scanf format control string to indicate

that an integer will be input and in a printf format control string to indicate that an
integer will be output.

h) Whenever a new value is placed in a memory location, that value overrides the previous
value in that location. This process is said to be .

i) When a value is read out of a memory location, the value in that location is preserved;
this process is said to be .

j) The statement is used to make decisions.

2.2 State whether each of the following is true or false. If false, explain why.
a) Function printf always begins printing at the beginning of a new line.
b) Comments cause the computer to print the text enclosed between /* and */ on the

screen when the program is executed.
c) The escape sequence \n when used in a printf format control string causes the cursor

to position to the beginning of the next line on the screen.
d) All variables must be defined before they’re used.
e) All variables must be given a type when they’re defined.
f) C considers the variables number and NuMbEr to be identical.
g) Definitions can appear anywhere in the body of a function.
h) All arguments following the format control string in a printf function must be preced-

ed by an ampersand (&).
i) The remainder operator (%) can be used only with integer operands.
j) The arithmetic operators *, /, %, + and - all have the same level of precedence.
k) The following variable names are identical on all Standard C systems.

thisisasuperduperlongname1234567
thisisasuperduperlongname1234568

l) A program that prints three lines of output must contain three printf statements.

2.3 Write a single C statement to accomplish each of the following:
a) Define the variables c, thisVariable, q76354 and number to be of type int.
b) Prompt the user to enter an integer. End your prompting message with a colon (:) fol-

lowed by a space and leave the cursor positioned after the space.
c) Read an integer from the keyboard and store the value entered in integer variable a.
d) If number is not equal to 7, print "The variable number is not equal to 7."

 Answers to Self-Review Exercises 47

e) Print the message "This is a C program." on one line.
f) Print the message "This is a C program." on two lines so that the first line ends with C.
g) Print the message "This is a C program." with each word on a separate line.
h) Print the message "This is a C program." with the words separated by tabs.

2.4 Write a statement (or comment) to accomplish each of the following:
a) State that a program will calculate the product of three integers.
b) Define the variables x, y, z and result to be of type int.
c) Prompt the user to enter three integers.
d) Read three integers from the keyboard and store them in the variables x, y and z.
e) Compute the product of the three integers contained in variables x, y and z, and assign

the result to the variable result.
f) Print "The product is" followed by the value of the integer variable result.

2.5 Using the statements you wrote in Exercise 2.4, write a complete program that calculates
the product of three integers.

2.6 Identify and correct the errors in each of the following statements:
a) printf("The value is %d\n", &number);
b) scanf("%d%d", &number1, number2);
c) if (c < 7);{

 printf("C is less than 7\n");

}
d) if (c => 7) {

 printf("C is equal to or less than 7\n");

}

Answers to Self-Review Exercises
2.1 a) main. b) left brace ({), right brace (}). c) semicolon. d) printf. e) newline. f) scanf.
g) %d. h) destructive. i) nondestructive. j) if.

2.2 a) False. Function printf always begins printing where the cursor is positioned,
and this may be anywhere on a line of the screen.

b) False. Comments do not cause any action to be performed when the program is exe-
cuted. They’re used to document programs and improve their readability.

c) True.
d) True.
e) True.
f) False. C is case sensitive, so these variables are unique.
g) False. The definitions must appear after the left brace of the body of a function and be-

fore any executable statements.
h) False. Arguments in a printf function ordinarily should not be preceded by an am-

persand. Arguments following the format control string in a scanf function ordinarily
should be preceded by an ampersand. We’ll discuss exceptions to these rules in
Chapter 6 and Chapter 7.

i) True.
j) False. The operators *, / and % are on the same level of precedence, and the operators +

and - are on a lower level of precedence.
k) False. Some systems may distinguish between identifiers longer than 31 characters.
l) False. A printf statement with multiple \n escape sequences can print several lines.

2.3 a) int c, thisVariable, q76354, number;
b) printf("Enter an integer: ");

48 Chapter 2 Introduction to C Programming

c) scanf("%d", &a);
d) if (number != 7)

{

 printf("The variable number is not equal to 7.\n");
}

e) printf("This is a C program.\n");
f) printf("This is a C\nprogram.\n");
g) printf("This\nis\na\nC\nprogram.\n");
h) printf("This\tis\ta\tC\tprogram.\n");

2.4 a) /* Calculate the product of three integers */
b) int x, y, z, result;
c) printf("Enter three integers: ");
d) scanf("%d%d%d", &x, &y, &z);
e) result = x * y * z;
f) printf("The product is %d\n", result);

2.5 See below.

2.6 a) Error: &number. Correction: Eliminate the &. We discuss exceptions to this later.
b) Error: number2 does not have an ampersand. Correction: number2 should be &number2.

Later in the text we discuss exceptions to this.
c) Error: Semicolon after the right parenthesis of the condition in the if statement. Cor-

rection: Remove the semicolon after the right parenthesis. [Note: The result of this error
is that the printf statement will be executed whether or not the condition in the if
statement is true. The semicolon after the right parenthesis is considered an empty state-
ment—a statement that does nothing.]

d) Error: The relational operator => should be changed to >= (greater than or equal to).

Exercises
2.7 Identify and correct the errors in each of the following statements. (Note: There may be
more than one error per statement.)

a) scanf("d", value);
b) printf("The product of %d and %d is %d"\n, x, y);
c) firstNumber + secondNumber = sumOfNumbers
d) if (number => largest)

 largest == number;
e) */ Program to determine the largest of three integers /*
f) Scanf("%d", anInteger);

1 /* Calculate the product of three integers */
2 #include <stdio.h>
3
4 int main(void)
5 {
6 int x, y, z, result; /* declare variables */
7
8 printf("Enter three integers: "); /* prompt */
9 scanf("%d%d%d", &x, &y, &z); /* read three integers */

10 result = x * y * z; /* multiply values */
11 printf("The product is %d\n", result); /* display result */
12 return 0;
13 } /* end function main */

 Exercises 49

g) printf("Remainder of %d divided by %d is\n", x, y, x % y);
h) if (x = y);

 printf(%d is equal to %d\n", x, y);
i) print("The sum is %d\n," x + y);
j) Printf("The value you entered is: %d\n, &value);

2.8 Fill in the blanks in each of the following:
a) are used to document a program and improve its readability.
b) The function used to display information on the screen is .
c) A C statement that makes a decision is .
d) Calculations are normally performed by statements.
e) The function inputs values from the keyboard.

2.9 Write a single C statement or line that accomplishes each of the following:
a) Print the message “Enter two numbers.”
b) Assign the product of variables b and c to variable a.
c) State that a program performs a sample payroll calculation (i.e., use text that helps to

document a program).
d) Input three integer values from the keyboard and place these values in integer variables

a, b and c.

2.10 State which of the following are true and which are false. If false, explain your answer.
a) C operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales,

his_account_total, a, b, c, z, z2.
c) The statement printf("a = 5;"); is a typical example of an assignment statement.
d) A valid arithmetic expression containing no parentheses is evaluated from left to right.
e) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

2.11 Fill in the blanks in each of the following:
a) What arithmetic operations are on the same level of precedence as multiplication?

.
b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic

expression? .
c) A location in the computer's memory that may contain different values at various times

throughout the execution of a program is called a .

2.12 What, if anything, prints when each of the following statements is performed? If nothing
prints, then answer “Nothing.” Assume x = 2 and y = 3.

a) printf("%d", x);
b) printf("%d", x + x);
c) printf("x=");
d) printf("x=%d", x);
e) printf("%d = %d", x + y, y + x);
f) z = x + y;
g) scanf("%d%d", &x, &y);
h) /* printf("x + y = %d", x + y); */
i) printf("\n");

2.13 Which, if any, of the following C statements contain variables whose values are replaced?
a) scanf("%d%d%d%d%d", &b, &c, &d, &e, &f);
b) p = i + j + k + 7;
c) printf("Values are replaced");
d) printf("a = 5");

50 Chapter 2 Introduction to C Programming

2.14 Given the equation y = ax3 + 7, which of the following, if any, are correct C statements for
this equation?

a) y = a * x * x * x + 7;
b) y = a * x * x * (x + 7);
c) y = (a * x) * x * (x + 7);
d) y = (a * x) * x * x + 7;
e) y = a * (x * x * x) + 7;
f) y = a * x * (x * x + 7);

2.15 State the order of evaluation of the operators in each of the following C statements and
show the value of x after each statement is performed.

a) x = 7 + 3 * 6 / 2 - 1;
b) x = 2 % 2 + 2 * 2 - 2 / 2;
c) x = (3 * 9 * (3 + (9 * 3 / (3))));

2.16 (Arithmetic) Write a program that asks the user to enter two numbers, obtains them from
the user and prints their sum, product, difference, quotient and remainder.

2.17 (Printing Values with printf) Write a program that prints the numbers 1 to 4 on the same
line. Write the program using the following methods.

a) Using one printf statement with no conversion specifiers.
b) Using one printf statement with four conversion specifiers.
c) Using four printf statements.

2.18 (Comparing Integers) Write a program that asks the user to enter two integers, obtains the
numbers from the user, then prints the larger number followed by the words “is larger.” If the
numbers are equal, print the message “These numbers are equal.” Use only the single-selection
form of the if statement you learned in this chapter.

2.19 (Arithmetic, Largest Value and Smallest Value) Write a program that inputs three different
integers from the keyboard, then prints the sum, the average, the product, the smallest and the larg-
est of these numbers. Use only the single-selection form of the if statement you learned in this chap-
ter. The screen dialogue should appear as follows:

2.20 (Diameter, Circumference and Area of a Circle) Write a program that reads in the radius
of a circle and prints the circle’s diameter, circumference and area. Use the constant value 3.14159
for π. Perform each of these calculations inside the printf statement(s) and use the conversion spec-
ifier %f. [Note: In this chapter, we have discussed only integer constants and variables. In Chapter 3
we’ll discuss floating-point numbers, i.e., values that can have decimal points.]

2.21 (Shapes with Asterisks) Write a program that prints the following shapes with asterisks.

Input three different integers: 13 27 14
Sum is 54
Average is 18
Product is 4914
Smallest is 13
Largest is 27

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

 Exercises 51

2.22 What does the following code print?

printf("*\n**\n***\n****\n*****\n");

2.23 (Largest and Smallest Integers) Write a program that reads in five integers and then deter-
mines and prints the largest and the smallest integers in the group. Use only the programming tech-
niques you have learned in this chapter.

2.24 (Odd or Even) Write a program that reads an integer and determines and prints whether it
is odd or even. [Hint: Use the remainder operator. An even number is a multiple of two. Any mul-
tiple of two leaves a remainder of zero when divided by 2.]

2.25 Print your initials in block letters down the page. Construct each block letter out of the let-
ter it represents as shown below.

2.26 (Multiples) Write a program that reads in two integers and determines and prints if the first
is a multiple of the second. [Hint: Use the remainder operator.]

2.27 (Checkerboard Pattern of Asterisks) Display the following checkerboard pattern with eight
printf statements and then display the same pattern with as few printf statements as possible.

2.28 Distinguish between the terms fatal error and nonfatal error. Why might you prefer to ex-
perience a fatal error rather than a nonfatal error?

2.29 (Integer Value of a Character) Here’s a peek ahead. In this chapter you learned about inte-
gers and the type int. C can also represent uppercase letters, lowercase letters and a considerable
variety of special symbols. C uses small integers internally to represent each different character. The
set of characters a computer uses together with the corresponding integer representations for those
characters is called that computer’s character set. You can print the integer equivalent of uppercase
A, for example, by executing the statement

printf("%d", 'A');

Write a C program that prints the integer equivalents of some uppercase letters, lowercase letters,
digits and special symbols. As a minimum, determine the integer equivalents of the following:
A B C a b c 0 1 2 $ * + / and the blank character.

PPPPPPPPP
 P P
 P P
 P P
 P P

 JJ
 J
J
 J
 JJJJJJJ

DDDDDDDDD
D D
D D
 D D
 DDDDD

* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *

52 Chapter 2 Introduction to C Programming

2.30 (Separating Digits in an Integer) Write a program that inputs one five-digit number, sep-
arates the number into its individual digits and prints the digits separated from one another by three
spaces each. [Hint: Use combinations of integer division and the remainder operation.] For exam-
ple, if the user types in 42139, the program should print

2.31 (Table of Squares and Cubes) Using only the techniques you learned in this chapter, write
a program that calculates the squares and cubes of the numbers from 0 to 10 and uses tabs to print
the following table of values:

Making a Difference
2.32 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.11. The formulas for calculating BMI are

or

Create a BMI calculator application that reads the user’s weight in pounds and height in inches
(or, if you prefer, the user’s weight in kilograms and height in meters), then calculates and displays
the user’s body mass index. Also, the application should display the following information from
the Department of Health and Human Services/National Institutes of Health so the user can eval-
uate his/her BMI:

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI calcu-
lations when done with int values will both produce whole-number results. In Chapter 4 you’ll
learn to use the double type to represent numbers with decimal points. When the BMI calculations
are performed with doubles, they’ll both produce numbers with decimal points—these are called
“floating-point” numbers.]

4 2 1 3 9

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

BMI VALUES
Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

BMI weightInPounds 703×
heightInInches heightInInches×
--=

BMI weightInKi ramslog
heightInMeters heightInMeters×
---=

 Making a Difference 53

2.33 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an application
that calculates your daily driving cost, so that you can estimate how much money could be saved by
car pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The application should input the following information and display the user’s cost per
day of driving to work:

a) Total miles driven per day.
b) Cost per gallon of gasoline.
c) Average miles per gallon.
d) Parking fees per day.
e) Tolls per day.

3 Structured Program
Development in C

Let’s all move one place on.
—Lewis Carroll

The wheel is come full circle.
—William Shakespeare

How many apples fell on
Newton’s head before he took the
hint!
—Robert Frost

All the evolution we know of
proceeds from the vague to the
definite.
—Charles Sanders Peirce

O b j e c t i v e s
In this chapter, you’ll learn:

■ Basic problem-solving
techniques.

■ To develop algorithms
through the process of top-
down, stepwise refinement.

■ To use the if selection
statement and the if…else
selection statement to select
actions.

■ To use the while repetition
statement to execute
statements in a program
repeatedly.

■ Counter-controlled repetition
and sentinel-controlled
repetition.

■ Structured programming.

■ The increment, decrement
and assignment operators.

3.1 Introduction 55

3.1 Introduction
Before writing a program to solve a particular problem, it’s essential to have a thorough
understanding of the problem and a carefully planned approach to solving the problem.
The next two chapters discuss techniques that facilitate the development of structured
computer programs. In Section 4.12, we present a summary of structured programming
that ties together the techniques developed here and in Chapter 4.

3.2 Algorithms
The solution to any computing problem involves executing a series of actions in a specific
order. A procedure for solving a problem in terms of

1. the actions to be executed, and

2. the order in which these actions are to be executed

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions are to be executed is important.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: Consider the “rise-and-shine algorithm” followed by one
junior executive for getting out of bed and going to work: (1) Get out of bed, (2) take off
pajamas, (3) take a shower, (4) get dressed, (5) eat breakfast, (6) carpool to work. This rou-
tine gets the executive to work well prepared to make critical decisions. Suppose that the
same steps are performed in a slightly different order: (1) Get out of bed, (2) take off
pajamas, (3) get dressed, (4) take a shower, (5) eat breakfast, (6) carpool to work. In this
case, our junior executive shows up for work soaking wet. Specifying the order in which
statements are to be executed in a computer program is called program control. In this
and the next chapter, we investigate the program control capabilities of C.

3.3 Pseudocode
Pseudocode is an artificial and informal language that helps you develop algorithms. The
pseudocode we present here is particularly useful for developing algorithms that will be
converted to structured C programs. Pseudocode is similar to everyday English; it’s con-
venient and user friendly although it’s not an actual computer programming language.

3.1 Introduction
3.2 Algorithms
3.3 Pseudocode
3.4 Control Structures
3.5 The if Selection Statement
3.6 The if…else Selection Statement
3.7 The while Repetition Statement

 3.8 Formulating Algorithms Case Study
1: Counter-Controlled Repetition

3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement Case
Study 2: Sentinel-Controlled
Repetition

3.10 Formulating Algorithms with Top-
Down, Stepwise Refinement Case
Study 3: Nested Control Structures

3.11 Assignment Operators
3.12 Increment and Decrement Operators

Summary |Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

56 Chapter 3 Structured Program Development in C

Pseudocode programs are not executed on computers. Rather, they merely help you
“think out” a program before attempting to write it in a programming language such as
C. In this chapter, we give several examples of how pseudocode may be used effectively in
developing structured C programs.

Pseudocode consists purely of characters, so you may conveniently type pseudocode
programs into a computer using an editor program. The computer can display or print a
fresh copy of a pseudocode program on demand. A carefully prepared pseudocode pro-
gram may be converted easily to a corresponding C program. This is done in many cases
simply by replacing pseudocode statements with their C equivalents.

Pseudocode consists only of action statements—those that are executed when the pro-
gram has been converted from pseudocode to C and is run in C. Definitions are not exe-
cutable statements. They’re messages to the compiler. For example, the definition

simply tells the compiler the type of variable i and instructs the compiler to reserve space
in memory for the variable. But this definition does not cause any action—such as input,
output, or a calculation—to occur when the program is executed. Some programmers
choose to list each variable and briefly mention the purpose of each at the beginning of a
pseudocode program.

3.4 Control Structures
Normally, statements in a program are executed one after the other in the order in which
they’re written. This is called sequential execution. Various C statements we’ll soon dis-
cuss enable you to specify that the next statement to be executed may be other than the
next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of a great deal of difficulty experienced by software development groups. The
finger of blame was pointed at the goto statement that allows programmers to specify a
transfer of control to one of many possible destinations in a program. The notion of so-
called structured programming became almost synonymous with “goto elimination.”

The research of Bohm and Jacopini1 had demonstrated that programs could be
written without any goto statements. The challenge of the era was for programmers to
shift their styles to “goto-less programming.” It was not until well into the 1970s that the
programming profession started taking structured programming seriously. The results
were impressive, as software development groups reported reduced development times,
more frequent on-time delivery of systems and more frequent within-budget completion
of software projects. Programs produced with structured techniques were clearer, easier to
debug and modify and more likely to be bug free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures, namely the sequence structure, the selection structure
and the repetition structure. The sequence structure is built into C. Unless directed oth-
erwise, the computer executes C statements one after the other in the order in which
they’re written. The flowchart segment of Fig. 3.1 illustrates C’s sequence structure.

int i;

1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

3.4 Control Structures 57

A flowchart is a graphical representation of an algorithm or of a portion of an algo-
rithm. Flowcharts are drawn using certain special-purpose symbols such as rectangles,
diamonds, ovals, and small circles; these symbols are connected by arrows called flowlines.

Like pseudocode, flowcharts are useful for developing and representing algorithms,
although pseudocode is preferred by most programmers. Flowcharts clearly show how
control structures operate; that is all we use them for in this text.

Consider the flowchart for the sequence structure in Fig. 3.1. We use the rectangle
symbol, also called the action symbol, to indicate any type of action including a calcula-
tion or an input/output operation. The flowlines in the figure indicate the order in which
the actions are performed—first, grade is added to total, then 1 is added to counter. C
allows us to have as many actions as we want in a sequence structure. As we’ll soon see,
anywhere a single action may be placed, we may place several actions in sequence.

When drawing a flowchart that represents a complete algorithm, an oval symbol con-
taining the word “Begin” is the first symbol used in the flowchart; an oval symbol
containing the word “End” is the last symbol used. When drawing only a portion of an
algorithm as in Fig. 3.1, the oval symbols are omitted in favor of using small circle sym-
bols, also called connector symbols.

Perhaps the most important flowcharting symbol is the diamond symbol, also called
the decision symbol, which indicates that a decision is to be made. We’ll discuss the
diamond symbol in the next section.

C provides three types of selection structures in the form of statements. The if selec-
tion statement (Section 3.5) either performs (selects) an action if a condition is true or
skips the action if the condition is false. The if…else selection statement (Section 3.6)
performs an action if a condition is true and performs a different action if the condition is
false. The switch selection statement (discussed in Chapter 4) performs one of many dif-
ferent actions depending on the value of an expression. The if statement is called a single-
selection statement because it selects or ignores a single action. The if…else statement
is called a double-selection statement because it selects between two different actions. The
switch statement is called a multiple-selection statement because it selects among many
different actions.

C provides three types of repetition structures in the form of statements, namely
while (Section 3.7), do…while, and for (both discussed in Chapter 4).

Fig. 3.1 | Flowcharting C’s sequence structure.

add 1 to counter

add grade to total total = total + grade;

counter = counter + 1;

58 Chapter 3 Structured Program Development in C

That is all there is. C has only seven control statements: sequence, three types of
selection and three types of repetition. Each C program is formed by combining as many
of each type of control statement as is appropriate for the algorithm the program imple-
ments. As with the sequence structure of Fig. 3.1, we’ll see that the flowchart representa-
tion of each control statement has two small circle symbols, one at the entry point to the
control statement and one at the exit point. These single-entry/single-exit control state-
ments make it easy to build programs. The control-statement flowchart segments can be
attached to one another by connecting the exit point of one control statement to the entry
point of the next. This is much like the way in which a child stacks building blocks, so we
call this control-statement stacking. We’ll learn that there is only one other way control
statements may be connected—a method called control-statement nesting. Thus, any C
program we’ll ever need to build can be constructed from only seven different types of con-
trol statements combined in only two ways. This is the essence of simplicity.

3.5 The if Selection Statement
Selection structures are used to choose among alternative courses of action. For example,
suppose the passing grade on an exam is 60. The pseudocode statement

determines if the condition “student’s grade is greater than or equal to 60” is true or false.
If the condition is true, then “Passed” is printed, and the next pseudocode statement in
order is “performed” (remember that pseudocode is not a real programming language). If
the condition is false, the printing is ignored, and the next pseudocode statement in order
is performed. The second line of this selection structure is indented. Such indentation is
optional, but it’s highly recommended as it helps emphasize the inherent structure of
structured programs. We’ll apply indentation conventions carefully throughout this text.
The C compiler ignores white-space characters like blanks, tabs and newlines used for in-
dentation and vertical spacing.

The preceding pseudocode If statement may be written in C as

Notice that the C code corresponds closely to the pseudocode. This is one of the prop-
erties of pseudocode that makes it such a useful program development tool.

If student’s grade is greater than or equal to 60
Print “Passed”

Good Programming Practice 3.1
Consistently applying responsible indentation conventions greatly improves program read-
ability. We suggest a fixed-size tab of about 1/4 inch or three blanks per indent. In this
book, we use three blanks per indent.

if (grade >= 60) {
 printf("Passed\n");
} /* end if */

Good Programming Practice 3.2
Pseudocode is often used to “think out” a program during the program design process.
Then the pseudocode program is converted to C.

3.6 The if…else Selection Statement 59

The flowchart of Fig. 3.2 illustrates the single-selection if statement. This flowchart
contains what is perhaps the most important flowcharting symbol—the diamond symbol,
also called the decision symbol, which indicates that a decision is to be made. The decision
symbol contains an expression, such as a condition, that can be either true or false. The
decision symbol has two flowlines emerging from it. One indicates the direction to take
when the expression in the symbol is true; the other indicates the direction to take when
the expression is false. Decisions can be based on conditions containing relational or
equality operators. In fact, a decision can be based on any expression—if the expression
evaluates to zero, it’s treated as false, and if it evaluates to nonzero, it’s treated as true.

The if statement, too, is a single-entry/single-exit structure. We’ll soon learn that the
flowcharts for the remaining control structures can also contain (besides small circle sym-
bols and flowlines) only rectangle symbols to indicate the actions to be performed, and
diamond symbols to indicate decisions to be made. This is the action/decision model of
programming we’ve been emphasizing.

We can envision seven bins, each containing only control-statement flowcharts of one
of the seven types. These flowchart segments are empty—nothing is written in the rectan-
gles and nothing is written in the diamonds. Your task, then, is assembling a program from
as many of each type of control statement as the algorithm demands, combining those
control statements in only two possible ways (stacking or nesting), and then filling in the
actions and decisions in a manner appropriate for the algorithm. We’ll discuss the variety
of ways in which actions and decisions may be written.

3.6 The if…else Selection Statement
The if selection statement performs an indicated action only when the condition is true;
otherwise the action is skipped. The if…else selection statement allows you to specify
that different actions are to be performed when the condition is true than when the con-
dition is false. For example, the pseudocode statement

prints Passed if the student’s grade is greater than or equal to 60 and prints Failed if the
student’s grade is less than 60. In either case, after printing occurs, the next pseudocode

Fig. 3.2 | Flowcharting the single-selection if statement.

If student’s grade is greater than or equal to 60
Print “Passed”

else
Print “Failed”

grade >= 60
true

false

print “Passed”

60 Chapter 3 Structured Program Development in C

statement in sequence is “performed.” The body of the else is also indented. Whatever in-
dentation convention you choose should be carefully applied throughout your programs.
It’s difficult to read a program that does not obey uniform spacing conventions.

The preceding pseudocode If…else statement may be written in C as

The flowchart of Fig. 3.3 nicely illustrates the flow of control in the if…else state-
ment. Once again, note that (besides small circles and arrows) the only symbols in the
flowchart are rectangles (for actions) and a diamond (for a decision). We continue to
emphasize this action/decision model of computing. Imagine again a deep bin containing
as many empty double-selection statements (represented as flowchart segments) as might
be needed to build any C program. Your job, again, is to assemble these selection state-
ments (by stacking and nesting) with any other control statements required by the algo-
rithm, and to fill in the empty rectangles and empty diamonds with actions and decisions
appropriate to the algorithm being implemented.

C provides the conditional operator (?:) which is closely related to the if…else

statement. The conditional operator is C’s only ternary operator—it takes three operands.
The operands together with the conditional operator form a conditional expression. The
first operand is a condition. The second operand is the value for the entire conditional
expression if the condition is true and the third operand is the value for the entire condi-
tional expression if the condition is false. For example, the printf statement

Good Programming Practice 3.3
Indent both body statements of an if…else statement.

Good Programming Practice 3.4
If there are several levels of indentation, each level should be indented the same additional
amount of space.

if (grade >= 60) {
 printf("Passed\n");
} /* end if */
else {
 printf("Failed\n");
} /* end else */

Fig. 3.3 | Flowcharting the double-selection if…else statement.

truefalse
print “Failed” grade >= 60 print “Passed”

3.6 The if…else Selection Statement 61

contains a conditional expression that evaluates to the string literal "Passed" if the con-
dition grade >= 60 is true and evaluates to the string literal "Failed" if the condition is
false. The format control string of the printf contains the conversion specification %s for
printing a character string. So the preceding printf statement performs in essentially the
same way as the preceding if…else statement.

The second and third operands in a conditional expression can also be actions to be
executed. For example, the conditional expression

is read, “If grade is greater than or equal to 60 then printf("Passed\n"), otherwise
printf("Failed\n").” This, too, is comparable to the preceding if…else statement.
We’ll see that conditional operators can be used in some situations where if…else state-
ments cannot.

Nested if…else statements test for multiple cases by placing if…else statements
inside if…else statements. For example, the following pseudocode statement will print
A for exam grades greater than or equal to 90, B for grades greater than or equal to 80, C for
grades greater than or equal to 70, D for grades greater than or equal to 60, and F for all
other grades.

This pseudocode may be written in C as

printf("%s\n", grade >= 60 ? "Passed" : "Failed");

grade >= 60 ? printf("Passed\n") : printf("Failed\n");

If student’s grade is greater than or equal to 90
Print “A”

else
If student’s grade is greater than or equal to 80

Print “B”
else

If student’s grade is greater than or equal to 70
Print “C”

else
If student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

if (grade >= 90)
 printf("A\n");
else
 if (grade >= 80)
 printf("B\n");
 else
 if (grade >= 70)
 printf("C\n");
 else
 if (grade >= 60)
 printf("D\n");
 else
 printf("F\n");

62 Chapter 3 Structured Program Development in C

If the variable grade is greater than or equal to 90, the first four conditions will be true,
but only the printf statement after the first test will be executed. After that printf is ex-
ecuted, the else part of the “outer” if…else statement is skipped. Many C programmers
prefer to write the preceding if statement as

As far as the C compiler is concerned, both forms are equivalent. The latter form is popular
because it avoids the deep indentation of the code to the right. Such indentation often
leaves little room on a line, forcing lines to be split and decreasing program readability.

The if selection statement expects only one statement in its body. To include several
statements in the body of an if, enclose the set of statements in braces ({ and }). A set of
statements contained within a pair of braces is called a compound statement or a block.

The following example includes a compound statement in the else part of an
if…else statement.

In this case, if grade is less than 60, the program executes both printf statements in the
body of the else and prints

Notice the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

would be outside the body of the else part of the if, and would execute regardless of
whether the grade was less than 60.

if (grade >= 90)
 printf("A\n");
else if (grade >= 80)
 printf("B\n");
else if (grade >= 70)
 printf("C\n");
else if (grade >= 60)
 printf("D\n");
else

 printf("F\n");

Software Engineering Observation 3.1
A compound statement can be placed anywhere in a program that a single statement can
be placed.

if (grade >= 60) {
 printf("Passed.\n");
} /* end if */
else {
 printf("Failed.\n");
 printf("You must take this course again.\n");
} /* end else */

Failed.
You must take this course again.

printf("You must take this course again.\n");

Common Programming Error 3.1
Forgetting one or both of the braces that delimit a compound statement.

3.7 The while Repetition Statement 63

A syntax error is caught by the compiler. A logic error has its effect at execution time.
A fatal logic error causes a program to fail and terminate prematurely. A nonfatal logic
error allows a program to continue executing but to produce incorrect results.

3.7 The while Repetition Statement
A repetition statement allows you to specify that an action is to be repeated while some
condition remains true. The pseudocode statement

describes the repetition that occurs during a shopping trip. The condition, “there are more
items on my shopping list” may be true or false. If it’s true, then the action, “Purchase next
item and cross it off my list” is performed. This action will be performed repeatedly while
the condition remains true. The statement(s) contained in the while repetition statement
constitute the body of the while. The while statement body may be a single statement or a
compound statement.

Eventually, the condition will become false (when the last item on the shopping list
has been purchased and crossed off the list). At this point, the repetition terminates, and
the first pseudocode statement after the repetition structure is executed.

As an example of an actual while, consider a program segment designed to find the
first power of 3 larger than 100. Suppose the integer variable product has been initialized

Software Engineering Observation 3.2
Just as a compound statement can be placed anywhere a single statement can be placed,
it’s also possible to have no statement at all, i.e., the empty statement. The empty statement
is represented by placing a semicolon (;) where a statement would normally be.

Common Programming Error 3.2
Placing a semicolon after the condition in an if statement as in if (grade >= 60); leads
to a logic error in single-selection if statements and a syntax error in double-selection if
statements.

Error-Prevention Tip 3.1
Typing the beginning and ending braces of compound statements before typing the indi-
vidual statements within the braces helps avoid omitting one or both of the braces, pre-
venting syntax errors and logic errors (where both braces are indeed required).

While there are more items on my shopping list
Purchase next item and cross it off my list

Common Programming Error 3.3
Not providing the body of a while statement with an action that eventually causes the
condition in the while to become false. Normally, such a repetition structure will never
terminate—an error called an “infinite loop.”

Common Programming Error 3.4
Spelling the keyword while with an uppercase W as in While (remember that C is a case-
sensitive language). All of C’s reserved keywords such as while, if and else contain only
lowercase letters.

64 Chapter 3 Structured Program Development in C

to 3. When the following while repetition statement finishes executing, product will con-
tain the desired answer:

The flowchart of Fig. 3.4 nicely illustrates the flow of control in the while repetition
statement. Once again, note that (besides small circles and arrows) the flowchart contains
only a rectangle symbol and a diamond symbol. The flowchart clearly shows the repeti-
tion. The flowline emerging from the rectangle wraps back to the decision, which is tested
each time through the loop until the decision eventually becomes false. At this point, the
while statement is exited and control passes to the next statement in the program.

When the while statement is entered, the value of product is 3. The variable product
is repeatedly multiplied by 3, taking on the values 9, 27 and 81 successively. When
product becomes 243, the condition in the while statement, product <= 100, becomes
false. This terminates the repetition, and the final value of product is 243. Program exe-
cution continues with the next statement after the while.

3.8 Formulating Algorithms Case Study 1: Counter-
Controlled Repetition
To illustrate how algorithms are developed, we solve several variations of a class averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each of the grades, perform
the averaging calculation, and print the result.

Let’s use pseudocode to list the actions to execute and specify the order in which these
actions should execute. We use counter-controlled repetition to input the grades one at a
time. This technique uses a variable called a counter to specify the number of times a set
of statements should execute. In this example, repetition terminates when the counter
exceeds 10. In this section we simply present the pseudocode algorithm (Fig. 3.5) and the
corresponding C program (Fig. 3.6). In the next section we show how pseudocode algo-

product = 3;

while (product <= 100) {
 product = 3 * product;
} /* end while */

Fig. 3.4 | Flowcharting the while repetition statement.

product <= 1000
true

false

product = 2 * product

3.8 Counter-Controlled Repetition 65

rithms are developed. Counter-controlled repetition is often called definite repetition
because the number of repetitions is known before the loop begins executing.

1 Set total to zero
2 Set grade counter to one
3
4 While grade counter is less than or equal to ten
5 Input the next grade
6 Add the grade into the total
7 Add one to the grade counter
8
9 Set the class average to the total divided by ten

10 Print the class average

Fig. 3.5 | Pseudocode algorithm that uses counter-controlled repetition to solve the class average
problem.

1 /* Fig. 3.6: fig03_06.c
2 Class average program with */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8
9 int grade; /* grade value */

10 int total; /* sum of grades input by user */
11 int average; /* average of grades */
12
13 /* initialization phase */
14 total = 0; /* initialize total */
15
16
17 /* processing phase */
18 while () { /* loop 10 times */
19 printf("Enter grade: "); /* prompt for input */
20 scanf("%d", &grade); /* read grade from user */
21 total = total + grade; /* add grade to total */
22
23 } /* end while */
24
25 /* termination phase */
26 average = total / 10; /* integer division */
27
28 printf("Class average is %d\n", average); /* display result */
29 return 0; /* indicate program ended successfully */
30 } /* end function main */

Fig. 3.6 | C program and sample execution for the class average problem with counter-
controlled repetition. (Part 1 of 2.)

counter-controlled repetition

int counter; /* number of grade to be entered next */

counter = 1; /* initialize loop counter */

counter <= 10

counter = counter + 1; /* increment counter */

66 Chapter 3 Structured Program Development in C

Note the references in the algorithm to a total and a counter. A total is a variable used
to accumulate the sum of a series of values. A counter is a variable used to count—in this
case, to count the number of grades entered. Variables used to store totals should normally
be initialized to zero before being used in a program; otherwise the sum would include the
previous value stored in the total’s memory location. Counter variables are normally ini-
tialized to zero or one, depending on their use (we’ll present examples showing each of
these uses). An uninitialized variable contains a “garbage” value—the value last stored in
the memory location reserved for that variable.

The averaging calculation in the program produced an integer result of 81. Actually,
the sum of the grades in this example is 817, which when divided by 10 should yield 81.7,
i.e., a number with a decimal point. We’ll see how to deal with such numbers (called
floating-point numbers) in the next section.

3.9 Formulating Algorithms with Top-Down, Stepwise
Refinement Case Study 2: Sentinel-Controlled
Repetition
Let’s generalize the class average problem. Consider the following problem:

Develop a class averaging program that will process an arbitrary number of grades
each time the program is run.

In the first class average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades are to be entered. The program must
process an arbitrary number of grades. How can the program determine when to stop the
input of grades? How will it know when to calculate and print the class average?

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

Common Programming Error 3.5
If a counter or total is not initialized, the results of your program will probably be incor-
rect. This is an example of a logic error.

Error-Prevention Tip 3.2
Initialize all counters and totals.

Fig. 3.6 | C program and sample execution for the class average problem with counter-
controlled repetition. (Part 2 of 2.)

3.9 Sentinel-Controlled Repetition 67

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value, or a flag value) to indicate “end of data entry.” The
user types in grades until all legitimate grades have been entered. The user then types the
sentinel value to indicate that the last grade has been entered. Sentinel-controlled repeti-
tion is often called indefinite repetition because the number of repetitions is not known
before the loop begins executing.

Clearly, the sentinel value must be chosen so that it cannot be confused with an
acceptable input value. Since grades on a quiz are normally nonnegative integers, –1 is an
acceptable sentinel value for this problem. Thus, a run of the class average program might
process a stream of inputs such as 95, 96, 75, 74, 89 and –1. The program would then
compute and print the class average for the grades 95, 96, 75, 74, and 89 (–1 is the sentinel
value, so it should not enter into the averaging calculation).

We approach the class average program with a technique called top-down, stepwise
refinement, a technique that is essential to the development of well-structured programs.
We begin with a pseudocode representation of the top:

The top is a single statement that conveys the program’s overall function. As such, the top
is, in effect, a complete representation of a program. Unfortunately, the top rarely conveys
a sufficient amount of detail for writing the C program. So we now begin the refinement
process. We divide the top into a series of smaller tasks and list these in the order in which
they need to be performed. This results in the following first refinement.

Here, only the sequence structure has been used—the steps listed are to be executed in or-
der, one after the other.

To proceed to the next level of refinement, i.e., the second refinement, we commit to
specific variables. We need a running total of the numbers, a count of how many numbers
have been processed, a variable to receive the value of each grade as it’s input and a variable
to hold the calculated average. The pseudocode statement

may be refined as follows:

Common Programming Error 3.6
Choosing a sentinel value that is also a legitimate data value.

Determine the class average for the quiz

Initialize variables
Input, sum, and count the quiz grades
Calculate and print the class average

Software Engineering Observation 3.3
Each refinement, as well as the top itself, is a complete specification of the algorithm; only
the level of detail varies.

Initialize variables

Initialize total to zero
Initialize counter to zero

68 Chapter 3 Structured Program Development in C

Notice that only total and counter need to be initialized; the variables average and
grade (for the calculated average and the user input, respectively) need not be initialized
because their values will be written over by the process of destructive read-in discussed in
Chapter 2. The pseudocode statement

requires a repetition structure (i.e., a loop) that successively inputs each grade. Since we do
not know in advance how many grades are to be processed, we’ll use sentinel-controlled
repetition. The user will type legitimate grades in one at a time. After the last legitimate
grade is typed, the user will type the sentinel value. The program will test for this value
after each grade is input and will terminate the loop when the sentinel is entered. The re-
finement of the preceding pseudocode statement is then

Notice that in pseudocode, we do not use braces around the set of statements that
form the body of the while statement. We simply indent all these statements under the
while to show that they all belong to the while. Again, pseudocode is only an informal pro-
gram development aid.

The pseudocode statement

may be refined as follows:

Notice that we’re being careful here to test for the possibility of division by zero—a fatal
error that if undetected would cause the program to fail (often called “bombing” or
“crashing”). The complete second refinement is shown in Fig. 3.7.

In Fig. 3.5 and Fig. 3.7, we include some completely blank lines in the pseudocode
for readability. Actually, the blank lines separate these programs into their various phases.

Input, sum, and count the quiz grades

Input the first grade
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

Calculate and print the class average

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

Common Programming Error 3.7
An attempt to divide by zero causes a fatal error.

Good Programming Practice 3.5
When performing division by an expression whose value could be zero, explicitly test for
this case and handle it appropriately in your program (such as printing an error message)
rather than allowing the fatal error to occur.

3.9 Sentinel-Controlled Repetition 69

The pseudocode algorithm in Fig. 3.7 solves the more general class averaging
problem. This algorithm was developed after only two levels of refinement. Sometimes
more levels are necessary.

The C program and a sample execution are shown in Fig. 3.8. Although only integer
grades are entered, the averaging calculation is likely to produce a decimal number with a
decimal point. The type int cannot represent such a number. The program introduces the
data type float to handle numbers with decimal points (called floating-point numbers)
and introduces a special operator called a cast operator to handle the averaging calculation.
These features are explained in detail after the program is presented.

1 Initialize total to zero
2 Initialize counter to zero
3
4 Input the first grade
5 While the user has not as yet entered the sentinel
6 Add this grade into the running total
7 Add one to the grade counter
8 Input the next grade (possibly the sentinel)
9

10 If the counter is not equal to zero
11 Set the average to the total divided by the counter
12 Print the average
13 else
14 Print “No grades were entered”

Fig. 3.7 | Pseudocode algorithm that uses sentinel-controlled repetition to solve the class
average problem.

Software Engineering Observation 3.4
Many programs can be divided logically into three phases: an initialization phase that
initializes the program variables; a processing phase that inputs data values and adjusts
program variables accordingly; and a termination phase that calculates and prints the
final results.

Software Engineering Observation 3.5
You terminate the top-down, stepwise refinement process when the pseudocode algorithm
is specified in sufficient detail for you to be able to convert the pseudocode to C.
Implementing the C program is then normally straightforward.

1 /* Fig. 3.8: fig03_08.c
2 Class average program with sentinel-controlled repetition */
3 #include <stdio.h>
4

Fig. 3.8 | C program and sample execution for the class average problem with sentinel-
controlled repetition. (Part 1 of 3.)

70 Chapter 3 Structured Program Development in C

5 /* function main begins program execution */
6 int main(void)
7 {
8 int counter; /* number of grades entered */
9 int grade; /* grade value */

10 int total; /* sum of grades */
11
12 ; /* number with decimal point for average */
13
14 /* initialization phase */
15 total = 0; /* initialize total */
16 ; /* initialize loop counter */
17
18 /* processing phase */
19 /* get first grade from user */
20 printf("Enter grade, -1 to end: "); /* prompt for input */
21 scanf("%d", &grade); /* read grade from user */
22
23 /* loop while sentinel value not yet read from user */
24 while () {
25 total = total + grade; /* add grade to total */
26 counter = counter + 1; /* increment counter */
27
28 /* get next grade from user */
29
30
31 } /* end while */
32
33 /* termination phase */
34 /* if user entered at least one grade */
35 if () {
36
37 /* calculate average of all grades entered */
38 average = / counter; /* avoid truncation */
39
40 /* display average with two digits of precision */
41 printf("Class average is \n", average);
42 } /* end if */
43 else { /* if no grades were entered, output message */
44 printf("No grades were entered\n");
45 } /* end else */
46
47 return 0; /* indicate program ended successfully */
48 } /* end function main */

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64

Fig. 3.8 | C program and sample execution for the class average problem with sentinel-
controlled repetition. (Part 2 of 3.)

float average

counter = 0

grade != -1

printf("Enter grade, -1 to end: "); /* prompt for input */
scanf("%d", &grade); /* read next grade */

counter != 0

(float) total

%.2f

3.9 Sentinel-Controlled Repetition 71

Notice the compound statement in the while loop (line 24) in Fig. 3.8 Once again,
the braces are necessary for all four statements to be executed within the loop. Without the
braces, the last three statements in the body of the loop would fall outside the loop, causing
the computer to interpret this code incorrectly as follows.

This would cause an infinite loop if the user did not input -1 for the first grade.

Averages do not always evaluate to integer values. Often, an average is a value such as
7.2 or –93.5 that contains a fractional part. These values are referred to as floating-point
numbers and are represented by the data type float. The variable average is defined to
be of type float (line 12) to capture the fractional result of our calculation. However, the
result of the calculation total / counter is an integer because total and counter are both
integer variables. Dividing two integers results in integer division in which any fractional
part of the calculation is lost (i.e., truncated). Since the calculation is performed first, the
fractional part is lost before the result is assigned to average. To produce a floating-point
calculation with integer values, we must create temporary values that are floating-point
numbers. C provides the unary cast operator to accomplish this task. Line 38

includes the cast operator (float), which creates a temporary floating-point copy of its
operand, total. The value stored in total is still an integer. Using a cast operator in this
manner is called explicit conversion. The calculation now consists of a floating-point val-
ue (the temporary float version of total) divided by the integer value stored in counter.
Most computers can evaluate arithmetic expressions only in which the data types of the
operands are identical. To ensure that the operands are of the same type, the compiler per-
forms an operation called promotion (also called implicit conversion) on selected oper-

Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

Enter grade, -1 to end: -1
No grades were entered

while (grade != -1)
 total = total + grade; /* add grade to total */
counter = counter + 1; /* increment counter */
printf("Enter grade, -1 to end: "); /* prompt for input */
scanf("%d", &grade); /* read next grade */

Good Programming Practice 3.6
In a sentinel-controlled loop, the prompts requesting data entry should explicitly remind
the user what the sentinel value is.

average = (float) total / counter;

Fig. 3.8 | C program and sample execution for the class average problem with sentinel-
controlled repetition. (Part 3 of 3.)

72 Chapter 3 Structured Program Development in C

ands. For example, in an expression containing the data types int and float, copies of int
operands are made and promoted to float. In our example, after a copy of counter is
made and promoted to float, the calculation is performed and the result of the floating-
point division is assigned to average. C provides a set of rules for promotion of operands
of different types. Chapter 5 presents a discussion of all the standard data types and their
order of promotion.

Cast operators are available for most data types. The cast operator is formed by placing
parentheses around a data type name. The cast operator is a unary operator, i.e., an
operator that takes only one operand. In Chapter 2, we studied the binary arithmetic oper-
ators. C also supports unary versions of the plus (+) and minus (-) operators, so you can
write expressions like -7 or +5. Cast operators associate from right to left and have the same
precedence as other unary operators such as unary + and unary -. This precedence is one
level higher than that of the multiplicative operators *, / and %.

Figure 3.8 uses the printf conversion specifier %.2f (line 41) to print the value of
average. The f specifies that a floating-point value will be printed. The .2 is the precision
with which the value will be displayed—with 2 digits to the right of the decimal point. If
the %f conversion specifier is used (without specifying the precision), the default precision
of 6 is used—exactly as if the conversion specifier %.6f had been used. When floating-
point values are printed with precision, the printed value is rounded to the indicated
number of decimal positions. The value in memory is unaltered. When the following
statements are executed, the values 3.45 and 3.4 are printed.

Despite the fact that floating-point numbers are not always “100% precise,” they have
numerous applications. For example, when we speak of a “normal” body temperature of
98.6, we do not need to be precise to a large number of digits. When we view the temper-
ature on a thermometer and read it as 98.6, it may actually be 98.5999473210643. The
point here is that calling this number simply 98.6 is fine for most applications. We’ll say
more about this issue later.

Another way floating-point numbers develop is through division. When we divide 10
by 3, the result is 3.3333333… with the sequence of 3s repeating infinitely. The computer
allocates only a fixed amount of space to hold such a value, so clearly the stored floating-
point value can be only an approximation.

printf("%.2f\n", 3.446); /* prints 3.45 */
printf("%.1f\n", 3.446); /* prints 3.4 */

Common Programming Error 3.8
Using precision in a conversion specification in the format control string of a scanf state-
ment is wrong. Precisions are used only in printf conversion specifications.

Common Programming Error 3.9
Using floating-point numbers in a manner that assumes they’re represented precisely can
lead to incorrect results. Floating-point numbers are represented only approximately by
most computers.

Error-Prevention Tip 3.3
Do not compare floating-point values for equality.

3.10 Nested Control Structures 73

3.10 Formulating Algorithms with Top-Down, Stepwise
Refinement Case Study 3: Nested Control Structures
Let’s work another complete problem. We’ll once again formulate the algorithm using
pseudocode and top-down, stepwise refinement, and write a corresponding C program.
We’ve seen that control statements may be stacked on top of one another (in sequence)
just as a child stacks building blocks. In this case study we’ll see the only other structured
way control statements may be connected in C, namely through nesting of one control
statement within another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real
estate brokers. Last year, 10 of the students who completed this course took the licens-
ing examination. Naturally, the college wants to know how well its students did on the
exam. You have been asked to write a program to summarize the results. You have
been given a list of these 10 students. Next to each name a 1 is written if the student
passed the exam and a 2 if the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the prompting message “Enter result” each
time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed and
the number who failed.

4. If more than eight students passed the exam, print the message “Bonus to instructor!”

After reading the problem statement carefully, we make the following observations:

1. The program must process 10 test results. A counter-controlled loop will be used.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine if the number is a 1 or a 2. We test for a 1 in
our algorithm. If the number is not a 1, we assume that it’s a 2. (An exercise at
the end of the chapter considers the consequences of this assumption.)

3. Two counters are used—one to count the number of students who passed the
exam and one to count the number of students who failed the exam.

4. After the program has processed all the results, it must decide if more than 8 stu-
dents passed the exam.

Let’s proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Once again, it’s important to emphasize that the top is a complete representation of the
program, but several refinements are likely to be needed before the pseudocode can be nat-
urally evolved into a C program. Our first refinement is

Analyze exam results and decide if instructor should receive a bonus

Initialize variables
Input the ten quiz grades and count passes and failures
Print a summary of the exam results and decide if instructor should receive a bonus

74 Chapter 3 Structured Program Development in C

Here, too, even though we have a complete representation of the entire program, further
refinement is necessary. We now commit to specific variables. Counters are needed to re-
cord the passes and failures, a counter will be used to control the looping process, and a
variable is needed to store the user input. The pseudocode statement

may be refined as follows:

Notice that only the counters and totals are initialized. The pseudocode statement

requires a loop that successively inputs the result of each exam. Here it’s known in advance
that there are precisely ten exam results, so counter-controlled looping is appropriate. In-
side the loop (i.e., nested within the loop) a double-selection statement will determine
whether each exam result is a pass or a failure, and will increment the appropriate counters
accordingly. The refinement of the preceding pseudocode statement is then

Notice the use of blank lines to set off the If…else to improve program readability.
The pseudocode statement

may be refined as follows:

The complete second refinement appears in Fig. 3.9. Notice that blank lines are also used
to set off the while statement for program readability.

This pseudocode is now sufficiently refined for conversion to C. The C program and
two sample executions are shown in Fig. 3.10. We’ve taken advantage of a feature of C
that allows initialization to be incorporated into definitions. Such initialization occurs at
compile time.

Initialize variables

Initialize passes to zero
Initialize failures to zero
Initialize student to one

Input the ten quiz grades and count passes and failures

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else
Add one to failures

Add one to student counter

Print a summary of the exam results and decide if instructor should receive a bonus

Print the number of passes
Print the number of failures
If more than eight students passed

Print “Bonus to instructor!”

3.10 Nested Control Structures 75

1 Initialize passes to zero
2 Initialize failures to zero
3 Initialize student to one
4
5 While student counter is less than or equal to ten
6 Input the next exam result
7
8 If the student passed
9 Add one to passes

10 else
11 Add one to failures
12
13 Add one to student counter
14
15 Print the number of passes
16 Print the number of failures
17 If more than eight students passed
18 Print “Bonus to instructor!”

Fig. 3.9 | Pseudocode for examination results problem.

Performance Tip 3.1
Initializing variables when they’re defined can help reduce a program’s execution time.

Performance Tip 3.2
Many of the performance tips we mention in this text result in nominal improvements, so
the reader may be tempted to ignore them. The cumulative effect of all these performance
enhancements can make a program perform significantly faster. Also, significant improve-
ment is realized when a supposedly nominal improvement is placed in a loop that may
repeat a large number of times.

1 /* Fig. 3.10: fig03_10.c
2 Analysis of examination results */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 /* initialize variables in definitions */
9 int passes = 0; /* number of passes */

10 int failures = 0; /* number of failures */
11 int student = 1; /* student counter */
12 int result; /* one exam result */
13

Fig. 3.10 | C program and sample executions for examination results problem. (Part 1 of 3.)

76 Chapter 3 Structured Program Development in C

14 /* process 10 students using counter-controlled loop */
15 while (student <= 10) {
16
17 /* prompt user for input and obtain value from user */
18 printf("Enter result (1=pass,2=fail): ");
19 scanf("%d", &result);
20
21 /* if result 1, increment passes */
22
23 passes = passes + 1;
24 } /* end if */
25 /* otherwise, increment failures */
26 failures = failures + 1;
27 } /* end else */
28
29 student = student + 1; /* increment student counter */
30 } /* end while */
31
32 /* termination phase; display number of passes and failures */
33 printf("Passed %d\n", passes);
34 printf("Failed %d\n", failures);
35
36 /* if more than eight students passed, print "Bonus to instructor!" */
37 if (passes > 8) {
38 printf("Bonus to instructor!\n");
39 } /* end if */
40
41 return 0; /* indicate program ended successfully */
42 } /* end function main */

Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Passed 6
Failed 4

Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1

Fig. 3.10 | C program and sample executions for examination results problem. (Part 2 of 3.)

if (result == 1) {

else {

3.11 Assignment Operators 77

3.11 Assignment Operators
C provides several assignment operators for abbreviating assignment expressions. For ex-
ample, the statement

can be abbreviated with the addition assignment operator += as

The += operator adds the value of the expression on the right of the operator to the value
of the variable on the left of the operator and stores the result in the variable on the left of
the operator. Any statement of the form

where operator is one of the binary operators +, -, *, / or % (or others we’ll discuss in
Chapter 10), can be written in the form

Thus the assignment c += 3 adds 3 to c. Figure 3.11 shows the arithmetic assignment
operators, sample expressions using these operators and explanations.

Passed 9
Failed 1
Bonus to instructor!

Software Engineering Observation 3.6
Experience has shown that the most difficult part of solving a problem on a computer is
developing the algorithm for the solution. Once a correct algorithm has been specified, the
process of producing a working C program is normally straightforward.

Software Engineering Observation 3.7
Many programmers write programs without ever using program development tools such
as pseudocode. They feel that their ultimate goal is to solve the problem on a computer and
that writing pseudocode merely delays the production of final outputs.

c = c + 3;

c += 3;

variable = variable operator expression;

variable operator= expression;

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;
+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d
*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Fig. 3.11 | Arithmetic assignment operators.

Fig. 3.10 | C program and sample executions for examination results problem. (Part 3 of 3.)

78 Chapter 3 Structured Program Development in C

3.12 Increment and Decrement Operators
C also provides the unary increment operator, ++, and the unary decrement operator, --,
which are summarized in Fig. 3.12. If a variable c is incremented by 1, the increment
operator ++ can be used rather than the expressions c = c + 1 or c += 1. If increment or dec-
rement operators are placed before a variable (i.e., prefixed), they’re referred to as the pre-
increment or predecrement operators, respectively. If increment or decrement operators
are placed after a variable (i.e., postfixed), they’re referred to as the postincrement or post-
decrement operators, respectively. Preincrementing (predecrementing) a variable causes
the variable to be incremented (decremented) by 1, then the new value of the variable is
used in the expression in which it appears. Postincrementing (postdecrementing) the vari-
able causes the current value of the variable to be used in the expression in which it appears,
then the variable value is incremented (decremented) by 1.

Figure 3.13 demonstrates the difference between the preincrementing and the postin-
crementing versions of the ++ operator. Postincrementing the variable c causes it to be
incremented after it’s used in the printf statement. Preincrementing the variable c causes
it to be incremented before it’s used in the printf statement.

Operator Sample expression Explanation

++ ++a Increment a by 1, then use the new value of a in
the expression in which a resides.

++ a++ Use the current value of a in the expression in
which a resides, then increment a by 1.

-- --b Decrement b by 1, then use the new value of b
in the expression in which b resides.

-- b-- Use the current value of b in the expression in
which b resides, then decrement b by 1.

Fig. 3.12 | Increment and decrement operators

1 /* Fig. 3.13: fig03_13.c
2 Preincrementing and postincrementing */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 int c; /* define variable */
9

10 /* demonstrate postincrement */
11 c = 5; /* assign 5 to c */
12 printf("%d\n", c); /* print 5 */
13
14

Fig. 3.13 | Preincrementing vs. postincrementing. (Part 1 of 2.)

printf("%d\n", c++); /* print 5 then postincrement */
printf("%d\n\n", c); /* print 6 */

3.12 Increment and Decrement Operators 79

The program displays the value of c before and after the ++ operator is used. The dec-
rement operator (--) works similarly.

The three assignment statements in Fig. 3.10

can be written more concisely with assignment operators as

with preincrement operators as

or with postincrement operators as

It’s important to note here that when incrementing or decrementing a variable in a
statement by itself, the preincrement and postincrement forms have the same effect. It’s
only when a variable appears in the context of a larger expression that preincrementing and
postincrementing have different effects (and similarly for predecrementing and post-
decrementing). Of the expressions we’ve studied thus far, only a simple variable name may
be used as the operand of an increment or decrement operator.

15
16 /* demonstrate preincrement */
17 c = 5; /* assign 5 to c */
18 printf("%d\n", c); /* print 5 */
19
20
21 return 0; /* indicate program ended successfully */
22 } /* end function main */

5
5
6
 s
5
6
6

Good Programming Practice 3.7
Unary operators should be placed directly next to their operands with no intervening spaces.

passes = passes + 1;
failures = failures + 1;
student = student + 1;

passes += 1;
failures += 1;
student += 1;

++passes;
++failures;
++student;

passes++;
failures++;
student++;

Fig. 3.13 | Preincrementing vs. postincrementing. (Part 2 of 2.)

printf("%d\n", ++c); /* preincrement then print 6 */
printf("%d\n", c); /* print 6 */

80 Chapter 3 Structured Program Development in C

Figure 3.14 lists the precedence and associativity of the operators introduced to this
point. The operators are shown top to bottom in decreasing order of precedence. The
second column describes the associativity of the operators at each level of precedence.
Notice that the conditional operator (?:), the unary operators increment (++), decrement
(--), plus (+), minus (-) and casts, and the assignment operators =, +=, -=, *=, /= and %=
associate from right to left. The third column names the various groups of operators. All
other operators in Fig. 3.14 associate from left to right.

Common Programming Error 3.10
Attempting to use the increment or decrement operator on an expression other than a sim-
ple variable name is a syntax error, e.g., writing ++(x + 1).

Error-Prevention Tip 3.4
C generally does not specify the order in which an operator’s operands will be evaluated
(although we’ll see exceptions to this for a few operators in Chapter 4). Therefore you
should avoid using statements with increment or decrement operators in which a partic-
ular variable being incremented or decremented appears more than once.

Operators Associativity Type

++ (postfix) -- (postfix) right to left postfix

+ - (type) ++ (prefix) -- (prefix) right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 3.14 | Precedence and associativity of the operators encountered so far in the text.

Summary
Section 3.1 Introduction
• Before writing a program to solve a particular problem, it’s essential to have a thorough under-

standing of the problem and a carefully planned approach to solving the problem.

Section 3.2 Algorithms
• The solution to any computing problem involves executing a series of actions in a specific order.

• A procedure for solving a problem in terms of the actions to be executed, and the order in which
these actions are to be executed, is called an algorithm.

• The order in which actions are to be executed is important.

Section 3.3 Pseudocode
• Pseudocode is an artificial and informal language that helps you develop algorithms.

 Summary 81

• Pseudocode is similar to everyday English; it’s not an actual computer programming language.

• Pseudocode programs help you “think out” a program before attempting to write it in a program-
ming language such as C.

• Pseudocode consists purely of characters; you may type pseudocode using an editor.

• Carefully prepared pseudocode programs may be converted easily to corresponding C programs.

• Pseudocode consists only of action statements.

Section 3.4 Control Structures
• Normally, statements in a program execute one after the other in the order in which they’re writ-

ten. This is called sequential execution.

• Various C statements enable you to specify that the next statement to execute may be other than
the next one in sequence. This is called transfer of control.

• Structured programming has become almost synonymous with “goto elimination.”

• Structured programs are clearer, easier to debug and modify and more likely to be bug free.

• All programs can be written in terms of only three control structures—sequence, selection and
repetition.

• Unless directed otherwise, the computer automatically executes C statements in sequence.

• A flowchart is a graphical representation of an algorithm. They’re drawn using rectangles, di-
amonds, ovals and small circles, connected by arrows called flowlines.

• The rectangle (action) symbol indicates any type of action including a calculation or an input/
output operation.

• Flowlines indicate the order in which the actions are performed.

• When drawing a flowchart that represents a complete algorithm, an oval symbol containing the
word “Begin” is the first symbol used in the flowchart; an oval symbol containing the word
“End” is the last symbol used. When drawing only a portion of an algorithm, the oval symbols
are omitted in favor of using small circle symbols also called connector symbols.

• The diamond (decision) symbol indicates that a decision is to be made.

• C provides three types of selection structures in the form of statements. The if selection state-
ment either performs (selects) an action if a condition is true or skips the action if the condition
is false. The if…else selection statement performs an action if a condition is true and performs
a different action if the condition is false. The switch selection statement performs one of many
different actions depending on the value of an expression.

• The if statement is called a single-selection statement because it selects or ignores a single action.

• The if…else statement is called a double-selection statement because it selects between two dif-
ferent actions.

• The switch statement is called a multiple-selection statement because it selects among many dif-
ferent actions.

• C provides three types of repetition structures in the form of statements, namely while,
do…while and for.

• Control statement flowchart segments can be attached to one another with control-statement
stacking—connecting the exit point of one control statement to the entry point of the next.

• There is only one other way control statements may be connected—control-statement nesting.

Section 3.5 The if Selection Statement
• Selection structures are used to choose among alternative courses of action.

82 Chapter 3 Structured Program Development in C

• The decision symbol contains an expression, such as a condition, that can be either true or false.
The decision symbol has two flowlines emerging from it. One indicates the direction to be taken
when the expression is true; the other indicates the direction when the expression is false.

• A decision can be based on any expression—if the expression evaluates to zero, it’s treated as false,
and if the expression evaluates to nonzero, it’s treated as true.

• The if statement is a single-entry/single-exit structure.

Section 3.6 The if…else Selection Statement
• C provides the conditional operator (?:) which is closely related to the if…else statement.

• The conditional operator is C’s only ternary operator—it takes three operands. The operands to-
gether with the conditional operator form a conditional expression. The first operand is a condi-
tion. The second operand is the value for the conditional expression if the condition is true, and
the third operand is the value for the conditional expression if the condition is false.

• The values in a conditional expression can also be actions to execute.

• Nested if…else statements test for multiple cases by placing if…else statements inside
if…else statements.

• The if selection statement expects only one statement in its body. To include several statements
in the body of an if, enclose the set of statements in braces ({ and }).

• A set of statements contained within a pair of braces is called a compound statement or a block.

• A syntax error is caught by the compiler. A logic error has its effect at execution time. A fatal logic
error causes a program to fail and terminate prematurely. A nonfatal logic error allows a program
to continue executing but to produce incorrect results.

Section 3.7 The while Repetition Statement
• The while repetition statement specifies that an action is to be repeated while a condition is true.

Eventually, the condition will become false. At this point, the repetition terminates, and the first
statement after the repetition statement executes.

Section 3.8 Formulating Algorithms Case Study 1: Counter-Controlled Repetition
• Counter-controlled repetition uses a variable called a counter to specify the number of times a

set of statements should execute.

• Counter-controlled repetition is often called definite repetition because the number of repeti-
tions is known before the loop begins executing.

• A total is a variable used to accumulate the sum of a series of values. Variables used to store totals
should normally be initialized to zero before being used in a program; otherwise the sum would
include the previous value stored in the total’s memory location.

• A counter is a variable used to count. Counter variables are normally initialized to zero or one,
depending on their use.

• An uninitialized variable contains a “garbage” value—the value last stored in the memory loca-
tion reserved for that variable.

Section 3.9 Formulating Algorithms with Top-Down, Stepwise Refinement Case
Study 2: Sentinel-Controlled Repetition
• A sentinel value (also called a signal value, a dummy value, or a flag value) is used in a sentinel-

controlled loop to indicate the “end of data entry.”

• Sentinel-controlled repetition is often called indefinite repetition because the number of repeti-
tions is not known before the loop begins executing.

• The sentinel value must be chosen so that it cannot be confused with an acceptable input value.

 Summary 83

• Top-down, stepwise refinement is essential to the development of well-structured programs.

• The top is a statement that conveys the program’s overall function. It’s a complete representation
of a program. The top rarely conveys a sufficient amount of detail for writing a C program. In
the refinement process, we divide the top into smaller tasks and list these in execution order.

• The type float represents numbers with decimal points (called floating-point numbers).

• When dividing two integers any fractional part of the result is truncated.

• To produce a floating-point calculation with integer values, you must cast the integers to float-
ing-point numbers. C provides the unary cast operator (float) to accomplish this task.

• Cast operators perform explicit conversions.

• Most computers can evaluate arithmetic expressions only in which the operands’ data types are
identical. To ensure this, the compiler performs an operation called promotion (also called im-
plicit conversion) on selected operands. For example, in an expression containing the data types
int and float, copies of int operands are made and promoted to float.

• Cast operators are available for most data types. A cast operator is formed by placing parentheses
around a data type name. The cast operator is a unary operator, i.e., it takes only one operand.

• Cast operators associate from right to left and have the same precedence as other unary operators
such as unary + and unary -. This precedence is one level higher than that of *, / and %.

• The printf conversion specifier %.2f specifies that a floating-point value will be displayed with
two digits to the right of the decimal point. If the %f conversion specifier is used (without spec-
ifying the precision), the default precision of 6 is used.

• When floating-point values are printed with precision, the printed value is rounded to the indi-
cated number of decimal positions for display purposes.

Section 3.11 Assignment Operators
• C provides several assignment operators for abbreviating assignment expressions.

• The += operator adds the value of the expression on the right of the operator to the value of the
variable on the left of the operator and stores the result in the variable on the left of the operator.

• Any statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % (or others we’ll discuss in Chapter 10),
can be written in the form

variable operator= expression;

Section 3.12 Increment and Decrement Operators
• C provides the unary increment operator, ++, and the unary decrement operator, --.

• If increment or decrement operators are placed before a variable, they’re referred to as the prein-
crement or predecrement operators, respectively. If increment or decrement operators are placed
after a variable, they’re referred to as the postincrement or postdecrement operators, respectively.

• Preincrementing (predecrementing) a variable causes the variable to be incremented (decrement-
ed) by 1, then the new value of the variable is used in the expression in which it appears.

• Postincrementing (postdecrementing) a variable uses the current value of the variable in the ex-
pression in which it appears, then the variable value is incremented (decremented) by 1.

• When incrementing or decrementing a variable in a statement by itself, the preincrement and
postincrement forms have the same effect. When a variable appears in the context of a larger ex-
pression, preincrementing and postincrementing have different effects (and similarly for predec-
rementing and postdecrementing).

84 Chapter 3 Structured Program Development in C

Terminology
?: conditional operator 60
* multiplication operator 72
*= multiplication assignment operator 77
/ division operator 72
/= division assignment operator 77
% remainder operator 72
%= remainder assignment operator 77
-- decrement operator 78
++ increment operator 78
+= addition assignment operator 77
-= subtraction assignment operator 77
action 55
action symbol 57
addition assignment operator (+=) 77
algorithm 55
block 62
“bombing” 68
cast operator 71
compound statement 62
conditional expression 60
conditional operator (?:) 60
connector symbol 57
control statement stacking 58
control structure 56
counter 64
counter-controlled repetition 64
“crashing” 68
decision symbol 57
default precision 72
definite repetition 65
diamond symbol 57, 59
double-selection statement 57
dummy value 67
explicit conversion 71
fatal error 68
first refinement 67
flag value 67
float 69
floating-point number 69
flowchart 56
flowline 57
“garbage value” 66

goto elimination 56
goto statement 56
implicit conversion 71
indefinite repetition 67
integer division 71
multiple-selection statement 57
multiplicative operator 72
nested statements 74
nested if...else statement 61
nesting statements 73
order 55
oval symbol 57
postdecrement operator (--) 78
postincrement operator (++) 78
precision 72
predecrement operator (--) 78
preincrement operator(++) 78
procedure 55
program control 55
promotion 71
pseudocode 55
rectangle symbol 57
repetition statement 63
repetition structure 56
rounded 72
second refinement 67
selection structure 56
sentinel value 67
sequence structure 56
sequential execution 56
signal value 67
single-selection statement 57
single-entry/single-exit control statement 58
small circle symbols 57
top 67
top-down, stepwise refinement 67
total 66
transfer of control 56
truncated 71
unary operator 72
while repetition statement 63
white-space character 58

Self-Review Exercises
3.1 Fill in the blanks in each of the following questions.

a) A procedure for solving a problem in terms of the actions to be executed and the order
in which the actions should be executed is called a(n) .

b) Specifying the execution order of statements by the computer is called .

 Self-Review Exercises 85

c) All programs can be written in terms of three types of control statements: ,
 and .

d) The selection statement is used to execute one action when a condition is true
and another action when that condition is false.

e) Several statements grouped together in braces ({ and }) are called a(n) .
f) The repetition statement specifies that a statement or group of statements is

to be executed repeatedly while some condition remains true.
g) Repetition of a set of instructions a specific number of times is called repeti-

tion.
h) When it’s not known in advance how many times a set of statements will be repeated,

a(n) value can be used to terminate the repetition.

3.2 Write four different C statements that each add 1 to integer variable x.

3.3 Write a single C statement to accomplish each of the following:
a) Assign the sum of x and y to z and increment the value of x by 1 after the calculation.
b) Multiply the variable product by 2 using the *= operator.
c) Multiply the variable product by 2 using the = and * operators.
d) Test if the value of the variable count is greater than 10. If it is, print “Count is greater

than 10.”
e) Decrement the variable x by 1, then subtract it from the variable total.
f) Add the variable x to the variable total, then decrement x by 1.
g) Calculate the remainder after q is divided by divisor and assign the result to q. Write

this statement two different ways.
h) Print the value 123.4567 with 2 digits of precision. What value is printed?
i) Print the floating-point value 3.14159 with three digits to the right of the decimal point.

What value is printed?

3.4 Write a C statement to accomplish each of the following tasks.
a) Define variables sum and x to be of type int.
b) Initialize variable x to 1.
c) Initialize variable sum to 0.
d) Add variable x to variable sum and assign the result to variable sum.
e) Print "The sum is: " followed by the value of variable sum.

3.5 Combine the statements that you wrote in Exercise 3.4 into a program that calculates the
sum of the integers from 1 to 10. Use the while statement to loop through the calculation and in-
crement statements. The loop should terminate when the value of x becomes 11.

3.6 Determine the values of variables product and x after the following calculation is per-
formed. Assume that product and x each have the value 5 when the statement begins executing.

product *= x++;

3.7 Write single C statements that
a) Input integer variable x with scanf.
b) Input integer variable y with scanf.
c) Initialize integer variable i to 1.
d) Initialize integer variable power to 1.
e) Multiply variable power by x and assign the result to power.
f) Increment variable i by 1.
g) Test i to see if it’s less than or equal to y in the condition of a while statement.
h) Output integer variable power with printf.

3.8 Write a C program that uses the statements in Exercise 3.7 to calculate x raised to the y pow-
er. The program should have a while repetition control statement.

86 Chapter 3 Structured Program Development in C

3.9 Identify and correct the errors in each of the following:
a) while (c <= 5) {

 product *= c;

 ++c;
b) scanf("%.4f", &value);
c) if (gender == 1)

 printf("Woman\n");

else;

 printf("Man\n");

3.10 What is wrong with the following while repetition statement (assume z has value 100),
which is supposed to calculate the sum of the integers from 100 down to 1:

while (z >= 0)
 sum += z;

Answers to Self-Review Exercises
3.1 a) Algorithm. b) Program control. c) Sequence, selection, repetition. d) if…else. e) Com-
pound statement. f) while. g) Counter-controlled. h) Sentinel.

3.2 x = x + 1;
x += 1;
++x;
x++;

3.3 a) z = x++ + y;
b) product *= 2;
c) product = product * 2;
d) if (count > 10)

 printf("Count is greater than 10.\n");
e) total -= --x;
f) total += x--;
g) q %= divisor;

q = q % divisor;
h) printf("%.2f", 123.4567);

123.46 is displayed.
i) printf("%.3f\n", 3.14159);

3.142 is displayed.

3.4 a) int sum, x;
b) x = 1;
c) sum = 0;
d) sum += x; or sum = sum + x;
e) printf("The sum is: %d\n", sum);

3.5 See top of next page.

1 /* Calculate the sum of the integers from 1 to 10 */
2 #include <stdio.h>
3
4 int main(void)
5 {
6 int sum, x; /* define variables sum and x */
7

 Answers to Self-Review Exercises 87

3.6 product = 25, x = 6;

3.7 a) scanf("%d", &x);
b) scanf("%d", &y);
c) i = 1;
d) power = 1;
e) power *= x;
f) i++;
g) if (i <= y)
h) printf("%d", power);

3.8 See below.

3.9 a) Error: Missing the closing right brace of the while body.
Correction: Add closing right brace after the statement ++c;.

b) Error: Precision used in a scanf conversion specification.
Correction: Remove .4 from the conversion specification.

c) Error: Semicolon after the else part of the if…else statement results in a logic error.
The second printf will always be executed.
Correction: Remove the semicolon after else.

3.10 The value of the variable z is never changed in the while statement. Therefore, an infinite
loop is created. To prevent the infinite loop, z must be decremented so that it eventually becomes 0.

8 x = 1; /* initialize x */
9 sum = 0; /* initialize sum */

10
11 while (x <= 10) { /* loop while x is less than or equal to 10 */
12 sum += x; /* add x to sum */
13 ++x; /* increment x */
14 } /* end while */
15
16 printf("The sum is: %d\n", sum); /* display sum */
17 return 0;
18 } /* end main function */

1 /* raise x to the y power */
2 #include <stdio.h>
3
4 int main(void)
5 {
6 int x, y, i, power; /* define variables */
7
8 i = 1; /* initialize i */
9 power = 1; /* initialize power */

10 scanf("%d", &x); /* read value for x from user */
11 scanf("%d", &y); /* read value for y from user */
12
13 while (i <= y) { /* loop while i is less than or equal to y */
14 power *= x; /* multiply power by x */
15 ++i; /* increment i */
16 } /* end while */
17
18 printf("%d", power); /* display power */
19 return 0;
20 } /* end main function */

88 Chapter 3 Structured Program Development in C

Exercises
3.11 Identify and correct the errors in each of the following. [Note: There may be more than one
error in each piece of code.]

a) if (age >= 65);

 printf("Age is greater than or equal to 65\n");

else

 printf("Age is less than 65\n");
b) int x = 1, total;

while (x <= 10) {

 total += x;

 ++x;

}
c) While (x <= 100)

 total += x;

 ++x;
d) while (y > 0) {

 printf("%d\n", y);

 ++y;

}

3.12 Fill in the blanks in each of the following:
a) The solution to any problem involves performing a series of actions in a specific

.
b) A synonym for procedure is .
c) A variable that accumulates the sum of several numbers is a(n) .
d) Setting certain variables to specific values at the beginning of a program is called .
e) A special value used to indicate “end of data entry” is called a(n) , a(n)

, a(n) or a(n) value.
f) A(n) is a graphical representation of an algorithm.
g) In a flowchart, the order in which the steps should be performed is indicated by

 symbols.
h) The termination symbol indicates the and of every algorithm.
i) Rectangle symbols correspond to calculations that are normally performed by

statements and input/output operations that are normally performed by calls to the
 and Standard Library functions.

j) The item written inside a decision symbol is called a(n) .

3.13 What does the following program print?

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int x = 1, total = 0, y;
6
7 while (x <= 10) {
8 y = x * x;
9 printf("%d\n", y);

10 total += y;
11 ++x;
12 } /* end while */
13

 Exercises 89

3.14 Write a single pseudocode statement that indicates each of the following:
a) Display the message "Enter two numbers".
b) Assign the sum of variables x, y, and z to variable p.
c) The following condition is to be tested in an if…else selection statement: The current

value of variable m is greater than twice the current value of variable v.
d) Obtain values for variables s, r, and t from the keyboard.

3.15 Formulate a pseudocode algorithm for each of the following:
a) Obtain two numbers from the keyboard, compute their sum and display the result.
b) Obtain two numbers from the keyboard, and determine and display which (if either) is

the larger of the two numbers.
c) Obtain a series of positive numbers from the keyboard, and determine and display their

sum. Assume that the user types the sentinel value -1 to indicate “end of data entry.”

3.16 State which of the following are true and which are false. If a statement is false, explain why.
a) Experience has shown that the most difficult part of solving a problem on a computer

is producing a working C program.
b) A sentinel value must be a value that cannot be confused with a legitimate data value.
c) Flowlines indicate the actions to be performed.
d) Conditions written inside decision symbols always contain arithmetic operators (i.e., +,

-, *, /, and %).
e) In top-down, stepwise refinement, each refinement is a complete representation of the

algorithm.

For Exercises 3.17 to 3.21, perform each of these steps:
1. Read the problem statement.

2. Formulate the algorithm using pseudocode and top-down, stepwise refinement.

3. Write a C program.

4. Test, debug and execute the C program.

3.17 (Gas Mileage) Drivers are concerned with the mileage obtained by their automobiles. One
driver has kept track of several tankfuls of gasoline by recording miles driven and gallons used for
each tankful. Develop a program that will input the miles driven and gallons used for each tankful.
The program should calculate and display the miles per gallon obtained for each tankful. After pro-
cessing all input information, the program should calculate and print the combined miles per gallon
obtained for all tankfuls. Here is a sample input/output dialog:

14 printf("Total is %d\n", total);
15 return 0;
16 } /* end main */

Enter the gallons used (-1 to end): 12.8
Enter the miles driven: 287
The miles / gallon for this tank was 22.421875

Enter the gallons used (-1 to end): 10.3
Enter the miles driven: 200
The miles / gallon for this tank was 19.417475

Enter the gallons used (-1 to end): 5
Enter the miles driven: 120
The miles / gallon for this tank was 24.000000

Enter the gallons used (-1 to end): -1

The overall average miles/gallon was 21.601423

90 Chapter 3 Structured Program Development in C

3.18 (Credit Limit Calculator) Develop a C program that will determine if a department store
customer has exceeded the credit limit on a charge account. For each customer, the following facts
are available:

a) Account number
b) Balance at the beginning of the month
c) Total of all items charged by this customer this month
d) Total of all credits applied to this customer's account this month
e) Allowed credit limit

The program should input each of these facts, calculate the new balance (= beginning balance
+ charges – credits), and determine if the new balance exceeds the customer's credit limit. For those
customers whose credit limit is exceeded, the program should display the customer's account num-
ber, credit limit, new balance and the message “Credit limit exceeded.” Here is a sample input/out-
put dialog:

3.19 (Sales Commission Calculator) One large chemical company pays its salespeople on a com-
mission basis. The salespeople receive $200 per week plus 9% of their gross sales for that week. For
example, a salesperson who sells $5000 worth of chemicals in a week receives $200 plus 9% of
$5000, or a total of $650. Develop a program that will input each salesperson’s gross sales for last
week and will calculate and display that salesperson's earnings. Process one salesperson's figures at a
time. Here is a sample input/output dialog:

3.20 (Interest Calculator) The simple interest on a loan is calculated by the formula

interest = principal * rate * days / 365;

Enter account number (-1 to end): 100
Enter beginning balance: 5394.78
Enter total charges: 1000.00
Enter total credits: 500.00
Enter credit limit: 5500.00
Account: 100
Credit limit: 5500.00
Balance: 5894.78
Credit Limit Exceeded.

Enter account number (-1 to end): 200
Enter beginning balance: 1000.00
Enter total charges: 123.45
Enter total credits: 321.00
Enter credit limit: 1500.00

Enter account number (-1 to end): 300
Enter beginning balance: 500.00
Enter total charges: 274.73
Enter total credits: 100.00
Enter credit limit: 800.00

Enter account number (-1 to end): -1

Enter sales in dollars (-1 to end): 5000.00
Salary is: $650.00

Enter sales in dollars (-1 to end): 1234.56
Salary is: $311.11

Enter sales in dollars (-1 to end): 1088.89
Salary is: $298.00

Enter sales in dollars (-1 to end): -1

 Exercises 91

The preceding formula assumes that rate is the annual interest rate, and therefore includes the
division by 365 (days). Develop a program that will input principal, rate and days for several
loans, and will calculate and display the simple interest for each loan, using the preceding formula.
Here is a sample input/output dialog:

3.21 (Salary Calculator) Develop a program that will determine the gross pay for each of several
employees. The company pays “straight time” for the first 40 hours worked by each employee and
pays “time-and-a-half” for all hours worked in excess of 40 hours. You’re given a list of the employ-
ees of the company, the number of hours each employee worked last week and the hourly rate of
each employee. Your program should input this information for each employee, and should deter-
mine and display the employee's gross pay. Here is a sample input/output dialog:

3.22 (Predecrementing vs. Postdecrementing) Write a program that demonstrates the difference
between predecrementing and postdecrementing using the decrement operator --.

3.23 (Printing Numbers from a Loop) Write a program that utilizes looping to print the num-
bers from 1 to 10 side by side on the same line with three spaces between numbers.

3.24 (Find the Largest Number) The process of finding the largest number (i.e., the maximum
of a group of numbers) is used frequently in computer applications. For example, a program that
determines the winner of a sales contest would input the number of units sold by each salesperson.
The salesperson who sold the most units wins the contest. Write a pseudocode program and then a
program that inputs a series of 10 numbers and determines and prints the largest of the numbers.
[Hint: Your program should use three variables as follows]:

counter: A counter to count to 10 (i.e., to keep track of how many numbers have
been input and to determine when all 10 numbers have been processed)

number: The current number input to the program
largest: The largest number found so far

Enter loan principal (-1 to end): 1000.00
Enter interest rate: .1
Enter term of the loan in days: 365
The interest charge is $100.00

Enter loan principal (-1 to end): 1000.00
Enter interest rate: .08375
Enter term of the loan in days: 224
The interest charge is $51.40

Enter loan principal (-1 to end): 10000.00
Enter interest rate: .09
Enter term of the loan in days: 1460
The interest charge is $3600.00

Enter loan principal (-1 to end): -1

Enter # of hours worked (-1 to end): 39
Enter hourly rate of the worker ($00.00): 10.00
Salary is $390.00

Enter # of hours worked (-1 to end): 40
Enter hourly rate of the worker ($00.00): 10.00
Salary is $400.00

Enter # of hours worked (-1 to end): 41
Enter hourly rate of the worker ($00.00): 10.00
Salary is $415.00

Enter # of hours worked (-1 to end): -1

92 Chapter 3 Structured Program Development in C

3.25 (Tabular Output) Write a program that uses looping to print the following table of values.
Use the tab escape sequence, \t, in the printf statement to separate the columns with tabs.

3.26 (Tabular Output) Write a program that utilizes looping to produce the following table of
values:

3.27 (Find the Two Largest Numbers) Using an approach similar to Exercise 3.24, find the two
largest values of the 10 numbers. [Note: You may input each number only once.]

3.28 (Validating User Input) Modify the program in Figure 3.10 to validate its inputs. On any
input, if the value entered is other than 1 or 2, keep looping until the user enters a correct value.

3.29 What does the following program print?

3.30 What does the following program print?

N 10*N 100*N 1000*N

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000
6 60 600 6000
7 70 700 7000
8 80 800 8000
9 90 900 9000
10 100 1000 10000

A A+2 A+4 A+6

3 5 7 9
6 8 10 12
9 11 13 15
12 14 16 18
15 17 19 21

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int count = 1; /* initialize count */
6
7 while (count <= 10) { /* loop 10 times */
8
9 /* output line of text */

10 printf("%s\n", count % 2 ? "****" : "++++++++");
11 count++; /* increment count */
12 } /* end while */
13
14 return 0; /* indicate program ended successfully */
15 } /* end function main */

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int row = 10; /* initialize row */
6 int column; /* define column */

 Exercises 93

3.31 (Dangling Else Problem) Determine the output for each of the following when x is 9 and y
is 11, and when x is 11 and y is 9. The compiler ignores the indentation in a C program. Also, the
compiler always associates an else with the previous if unless told to do otherwise by the placement
of braces {}. Because, on first glance, you may not be sure which if an else matches, this is referred
to as the “dangling else” problem. We eliminated the indentation from the following code to make
the problem more challenging. [Hint: Apply indentation conventions you have learned.]

a) if (x < 10)

if (y > 10)

printf("*****\n");

else

printf("#####\n");

printf("$$$$$\n");
b) if (x < 10) {

if (y > 10)

printf("*****\n");

}

else {

printf("#####\n");

printf("$$$$$\n");

}

3.32 (Another Dangling Else Problem) Modify the following code to produce the output shown.
Use proper indentation techniques. You may not make any changes other than inserting braces. The
compiler ignores the indentation in a program. We eliminated the indentation from the following
code to make the problem more challenging. [Note: It’s possible that no modification is necessary.]

if (y == 8)
if (x == 5)
printf("@@@@@\n");
else

printf("#####\n");
printf("$$$$$\n");
printf("&&&&&\n");

a) Assuming x = 5 and y = 8, the following output is produced.

7
8 while (row >= 1) { /* loop until row < 1 */
9 column = 1; /* set column to 1 as iteration begins */

10
11 while (column <= 10) { /* loop 10 times */
12 printf("%s", row % 2 ? "<": ">"); /* output */
13 column++; /* increment column */
14 } /* end inner while */
15
16 row--; /* decrement row */
17 printf("\n"); /* begin new output line */
18 } /* end outer while */
19
20 return 0; /* indicate program ended successfully */
21 } /* end function main */

@@@@@
$$$$$
&&&&&

94 Chapter 3 Structured Program Development in C

b) Assuming x = 5 and y = 8, the following output is produced.

c) Assuming x = 5 and y = 8, the following output is produced.

d) Assuming x = 5 and y = 7, the following output is produced. [Note: The last three printf
statements are all part of a compound statement.]

3.33 (Square of Asterisks) Write a program that reads in the side of a square and then prints that
square out of asterisks. Your program should work for squares of all side sizes between 1 and 20. For
example, if your program reads a size of 4, it should print

3.34 (Hollow Square of Asterisks) Modify the program you wrote in Exercise 3.33 so that it
prints a hollow square. For example, if your program reads a size of 5, it should print

3.35 (Palindrome Tester) A palindrome is a number or a text phrase that reads the same back-
ward as forward. For example, each of the following five-digit integers is a palindrome: 12321,
55555, 45554 and 11611. Write a program that reads in a five-digit integer and determines whether
or not it’s a palindrome. [Hint: Use the division and remainder operators to separate the number
into its individual digits.]

3.36 (Printing the Decimal Equivalent of a Binary Number) Input an integer containing only
0s and 1s (i.e., a “binary” integer) and print its decimal equivalent. [Hint: Use the remainder and
division operators to pick off the “binary” number’s digits one at a time from right to left. Just as in
the decimal number system, in which the rightmost digit has a positional value of 1, and the next
digit left has a positional value of 10, then 100, then 1000, and so on, in the binary number system
the rightmost digit has a positional value of 1, the next digit left has a positional value of 2, then 4,
then 8, and so on. Thus the decimal number 234 can be interpreted as 4 * 1 + 3 * 10 + 2 * 100.
The decimal equivalent of binary 1101 is 1 * 1 + 0 * 2 + 1 * 4 + 1 * 8 or 1 + 0 + 4 + 8 or 13.]

3.37 (How Fast is Your Computer?) How can you determine how fast your own computer really
operates? Write a program with a while loop that counts from 1 to 300,000,000 by 1s. Every time
the count reaches a multiple of 100,000,000, print that number on the screen. Use your watch to
time how long each 100 million repetitions of the loop takes.

@@@@@

@@@@@
&&&&&

#####
$$$$$
&&&&&

* *
* *
* *

 Exercises 95

3.38 Write a program that prints 100 asterisks, one at a time. After every tenth asterisk, your pro-
gram should print a newline character. [Hint: Count from 1 to 100. Use the remainder operator to
recognize each time the counter reaches a multiple of 10.]

3.39 (Counting 7s) Write a program that reads an integer and determines and prints how many
digits in the integer are 7s.

3.40 (Checkerboard Pattern of Asterisks) Write a program that displays the following checker-
board pattern:

Your program must use only three output statements, one of each of the following forms:

printf("* ");
printf(" ");
printf("\n");

3.41 (Multiples of 2 with an Infinite Loop) Write a program that keeps printing the multiples of
the integer 2, namely 2, 4, 8, 16, 32, 64, and so on. Your loop should not terminate (i.e., you should
create an infinite loop). What happens when you run this program?

3.42 (Diameter, Circumference and Area of a Cirle) Write a program that reads the radius of a
circle (as a float value) and computes and prints the diameter, the circumference and the area. Use
the value 3.14159 for π.

3.43 What is wrong with the following statement? Rewrite the statement to accomplish what the
programmer was probably trying to do.

printf("%d", ++(x + y));

3.44 (Sides of a Triangle) Write a program that reads three nonzero float values and determines
and prints if they could represent the sides of a triangle.

3.45 (Sides of a Right Triangle) Write a program that reads three nonzero integers and deter-
mines and prints if they could be the sides of a right triangle.

3.46 (Factorial) The factorial of a nonnegative integer n is written n! (pronounced “n factorial”)
and is defined as follows:

n! = n · (n - 1) · (n - 2) · … · 1 (for values of n greater than or equal to 1)
and

n! = 1 (for n = 0).
For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120.

a) Write a program that reads a nonnegative integer and computes and prints its factorial.
b) Write a program that estimates the value of the mathematical constant e by using the

formula:

c) Write a program that computes the value of ex by using the formula

* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *

e 1 1
1!
----- 1

2!
----- 1

3!
----- …+ + + +=

ex 1 x
1!
----- x2

2!
----- x3

3!
----- …+ + + +=

96 Chapter 3 Structured Program Development in C

Making a Difference
3.47 (World Population Growth Calculator) Use the web to determine the current world pop-
ulation and the annual world population growth rate. Write an application that inputs these values,
then displays the estimated world population after one, two, three, four and five years.

3.48 (Target-Heart-Rate Calculator) While exercising, you can use a heart-rate monitor to see
that your heart rate stays within a safe range suggested by your trainers and doctors. According to the
American Heart Association (AHA) (www.americanheart.org/presenter.jhtml?identifier=4736),
the formula for calculating your maximum heart rate in beats per minute is 220 minus your age in
years. Your target heart rate is a range that is 50–85% of your maximum heart rate. [Note: These for-
mulas are estimates provided by the AHA. Maximum and target heart rates may vary based on the
health, fitness and gender of the individual. Always consult a physician or qualified health care pro-
fessional before beginning or modifying an exercise program.] Create a program that reads the user’s
birthday and the current day (each consisting of the month, day and year). Your program should cal-
culate and display the person’s age (in years), the person’s maximum heart rate and the person’s target
heart rate range.

3.49 (Enforcing Privacy with Cryptography) The explosive growth of Internet communications
and data storage on Internet-connected computers has greatly increased privacy concerns. The field
of cryptography is concerned with coding data to make it difficult (and hopefully—with the most
advanced schemes—impossible) for unauthorized users to read. In this exercise you’ll investigate a
simple scheme for encrypting and decrypting data. A company that wants to send data over the In-
ternet has asked you to write a program that will encrypt it so that it may be transmitted more se-
curely. All the data is transmitted as four-digit integers. Your application should read a four-digit
integer entered by the user and encrypt it as follows: Replace each digit with the result of adding 7
to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit
with the third, and swap the second digit with the fourth. Then print the encrypted integer. Write
a separate application that inputs an encrypted four-digit integer and decrypts it (by reversing the
encryption scheme) to form the original number. [Optional reading project: Research “public key
cryptography” in general and the PGP (Pretty Good Privacy) specific public key scheme. You may
also want to investigate the RSA scheme, which is widely used in industrial-strength applications.]

www.americanheart.org/presenter.jhtml?identifier=4736

4C Program Control

Not everything that can be
counted counts, and not every
thing that counts can be
counted.
—Albert Einstein

Who can control his fate?
—William Shakespeare

The used key is always bright.
—Benjamin Franklin

Every advantage in the past is
judged in the light of the final
issue.
—Demosthenes

O b j e c t i v e s
In this chapter, you’ll learn:

■ The essentials of counter-
controlled repetition.

■ To use the for and
do…while repetition
statements to execute
statements repeatedly.

■ To understand multiple
selection using the switch
selection statement.

■ To use the break and
continue statements to
alter the flow of control.

■ To use the logical operators
to form complex conditional
expressions in control
statements.

■ To avoid the consequences of
confusing the equality and
assignment operators.

98 Chapter 4 C Program Control

4.1 Introduction
You should now be comfortable with writing simple but complete C programs. In this
chapter, repetition is considered in greater detail, and additional repetition control state-
ments, namely the for and the do…while, are presented. The switch multiple-selection
statement is introduced. We discuss the break statement for exiting immediately from cer-
tain control statements, and the continue statement for skipping the remainder of the
body of a repetition statement and proceeding with the next iteration of the loop. The
chapter discusses logical operators used for combining conditions, and summarizes the
principles of structured programming as presented in Chapter 3 and 4.

4.2 Repetition Essentials
Most programs involve repetition, or looping. A loop is a group of instructions the com-
puter executes repeatedly while some loop-continuation condition remains true. We have
discussed two means of repetition:

1. Counter-controlled repetition

2. Sentinel-controlled repetition

Counter-controlled repetition is sometimes called definite repetition because we know in
advance exactly how many times the loop will be executed. Sentinel-controlled repetition
is sometimes called indefinite repetition because it’s not known in advance how many
times the loop will be executed.

In counter-controlled repetition, a control variable is used to count the number of
repetitions. The control variable is incremented (usually by 1) each time the group of
instructions is performed. When the value of the control variable indicates that the correct
number of repetitions has been performed, the loop terminates and the computer
continues executing with the statement after the repetition statement.

Sentinel values are used to control repetition when:

1. The precise number of repetitions is not known in advance, and

2. The loop includes statements that obtain data each time the loop is performed.

The sentinel value indicates “end of data.” The sentinel is entered after all regular data
items have been supplied to the program. Sentinels must be distinct from regular data
items.

4.1 Introduction
4.2 Repetition Essentials
4.3 Counter-Controlled Repetition
4.4 for Repetition Statement
4.5 for Statement: Notes and

Observations
4.6 Examples Using the for Statement

4.7 switch Multiple-Selection Statement
4.8 do…while Repetition Statement
4.9 break and continue Statements

4.10 Logical Operators
4.11 Confusing Equality (==) and

Assignment (=) Operators
4.12 Structured Programming Summary

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

4.3 Counter-Controlled Repetition 99

4.3 Counter-Controlled Repetition
Counter-controlled repetition requires:

1. The name of a control variable (or loop counter).

2. The initial value of the control variable.

3. The increment (or decrement) by which the control variable is modified each
time through the loop.

4. The condition that tests for the final value of the control variable (i.e., whether
looping should continue).

Consider the simple program shown in Fig. 4.1, which prints the numbers from 1 to
10. The definition

names the control variable (counter), defines it to be an integer, reserves memory space
for it, and sets it to an initial value of 1. This definition is not an executable statement.

The definition and initialization of counter could also have been written as

int counter = 1; /* initialization */

1 /* Fig. 4.1: fig04_01.c
2 Counter-controlled repetition */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8
9

10 while () { /* repetition condition */
11 printf ("%d\n", counter); /* display counter */
12
13 } /* end while */
14
15 return 0; /* indicate program ended successfully */
16 } /* end function main */

1
2
3
4
5
6
7
8
9
10

Fig. 4.1 | Counter-controlled repetition.

int counter;
counter = 1;

int counter = 1; /* initialization */

counter <= 10

++counter; /* increment */

100 Chapter 4 C Program Control

The definition is not executable, but the assignment is. We use both methods of initializ-
ing variables.

The statement

increments the loop counter by 1 each time the loop is performed. The loop-continuation
condition in the while statement tests if the value of the control variable is less than or
equal to 10 (the last value for which the condition is true). The body of this while is per-
formed even when the control variable is 10. The loop terminates when the control vari-
able exceeds 10 (i.e., counter becomes 11).

You could make the program in Fig. 4.1 more concise by initializing counter to 0 and
by replacing the while statement with

This code saves a statement because the incrementing is done directly in the while condi-
tion before the condition is tested. Also, this code eliminates the need for the braces
around the body of the while because the while now contains only one statement. Coding
in such a condensed fashion takes some practice. Some programmers feel that this makes
the code too cryptic and error prone,

4.4 for Repetition Statement
The for repetition statement handles all the details of counter-controlled repetition. To
illustrate its power, let’s rewrite the program of Fig. 4.1. The result is shown in Fig. 4.2.

++counter; /* increment */

while (++counter <= 10)
 printf("%d\n", counter);

Common Programming Error 4.1
Floating-point values may be approximate, so controlling counting loops with floating-
point variables may result in imprecise counter values and inaccurate termination tests.

Error-Prevention Tip 4.1
Control counting loops with integer values.

Good Programming Practice 4.1
Too many levels of nesting can make a program difficult to understand. As a rule, try to
avoid using more than three levels of nesting.

Good Programming Practice 4.2
The combination of vertical spacing before and after control statements and indentation
of the bodies of control statements within the control-statement headers gives programs a
two-dimensional appearance that greatly improves program readability.

1 /* Fig. 4.2: fig04_02.c
2 Counter-controlled repetition with the for statement */
3 #include <stdio.h>

Fig. 4.2 | Counter-controlled repetition with the for statement. (Part 1 of 2.)

4.4 for Repetition Statement 101

The program operates as follows. When the for statement begins executing, the con-
trol variable counter is initialized to 1. Then, the loop-continuation condition counter
<= 10 is checked. Because the initial value of counter is 1, the condition is satisfied, so the
printf statement (line 13) prints the value of counter, namely 1. The control variable
counter is then incremented by the expression counter++, and the loop begins again with
the loop-continuation test. Since the control variable is now equal to 2, the final value is
not exceeded, so the program performs the printf statement again. This process continues
until the control variable counter is incremented to its final value of 11—this causes the
loop-continuation test to fail, and repetition terminates. The program continues by per-
forming the first statement after the for statement (in this case, the return statement at
the end of the program).

Figure 4.3 takes a closer look at the for statement of Fig. 4.2. Notice that the for
statement “does it all”—it specifies each of the items needed for counter-controlled repeti-
tion with a control variable. If there is more than one statement in the body of the for,
braces are required to define the body of the loop.

Notice that Fig. 4.2 uses the loop-continuation condition counter <= 10. If you
incorrectly wrote counter < 10, then the loop would be executed only 9 times. This is a
common logic error called an off-by-one error.

4
5 /* function main begins program execution */
6 int main(void)
7 {
8 int counter; /* define counter */
9

10 /* initialization, repetition condition, and increment
11 are all included in the for statement header. */
12 {
13 printf("%d\n", counter);
14 } /* end for */
15
16 return 0; /* indicate program ended successfully */
17 } /* end function main */

Fig. 4.3 | for statement header components.

Fig. 4.2 | Counter-controlled repetition with the for statement. (Part 2 of 2.)

for (counter = 1; counter <= 10; counter++)

Initial value of
control variable Loop-continuation

condition

Increment of
control variable

for
keyword

Control
variable
name

Required
semicolon
separator

Required
semicolon
separator

Final value of control
variable for which
the condition is true

for (counter = 1; counter <= 10; counter++)

102 Chapter 4 C Program Control

The general format of the for statement is

where expression1 initializes the loop-control variable, expression2 is the loop-continuation
condition, and expression3 increments the control variable. In most cases, the for state-
ment can be represented with an equivalent while statement as follows:

There is an exception to this rule, which we discuss in Section 4.9.
Often, expression1 and expression3 are comma-separated lists of expressions. The

commas as used here are actually comma operators that guarantee that lists of expressions
evaluate from left to right. The value and type of a comma-separated list of expressions are
the value and type of the right-most expression in the list. The comma operator is most
often used in the for statement. Its primary use is to enable you to use multiple initializa-
tion and/or multiple increment expressions. For example, there may be two control vari-
ables in a single for statement that must be initialized and incremented.

The three expressions in the for statement are optional. If expression2 is omitted, C
assumes that the condition is true, thus creating an infinite loop. One may omit expression1
if the control variable is initialized elsewhere in the program. expression3 may be omitted
if the increment is calculated by statements in the body of the for statement or if no incre-
ment is needed. The increment expression in the for statement acts like a stand-alone C
statement at the end of the body of the for. Therefore, the expressions

Common Programming Error 4.2
Using an incorrect relational operator or using an incorrect initial or final value of a loop
counter in the condition of a while or for statement can cause off-by-one errors.

Error-Prevention Tip 4.2
Using the final value in the condition of a while or for statement and using the <= re-
lational operator will help avoid off-by-one errors. For a loop used to print the values 1
to 10, for example, the loop-continuation condition should be counter <= 10 rather than
counter < 11 or counter < 10.

for (expression1; expression2; expression3)
 statement

expression1;

while (expression2) {
 statement
 expression3;
}

Software Engineering Observation 4.1
Place only expressions involving the control variables in the initialization and increment
sections of a for statement. Manipulations of other variables should appear either before
the loop (if they execute only once, like initialization statements) or in the loop body (if
they execute once per repetition, like incrementing or decrementing statements).

counter = counter + 1
counter += 1
++counter
counter++

4.5 for Statement: Notes and Observations 103

are all equivalent in the increment part of the for statement. Many C programmers prefer
the form counter++ because the incrementing occurs after the loop body is executed, and
the postincrementing form seems more natural. Because the variable being preincrement-
ed or postincremented here does not appear in a larger expression, both forms of incre-
menting have the same effect. The two semicolons in the for statement are required.

4.5 for Statement: Notes and Observations
1. The initialization, loop-continuation condition and increment can contain arith-

metic expressions. For example, if x = 2 and y = 10, the statement

is equivalent to the statement

2. The “increment” may be negative (in which case it’s really a decrement and the
loop actually counts downward).

3. If the loop-continuation condition is initially false, the loop body does not exe-
cute. Instead, execution proceeds with the statement following the for statement.

4. The control variable is frequently printed or used in calculations in the body of a
loop, but it need not be. It’s common to use the control variable for controlling
repetition while never mentioning it in the body of the loop.

5. The for statement is flowcharted much like the while statement. For example,
Fig. 4.4 shows the flowchart of the for statement

This flowchart makes it clear that the initialization occurs only once and that in-
crementing occurs after the body statement is performed.

4.6 Examples Using the for Statement
The following examples show methods of varying the control variable in a for statement.

1. Vary the control variable from 1 to 100 in increments of 1.

Common Programming Error 4.3
Using commas instead of semicolons in a for header is a syntax error.

Common Programming Error 4.4
Placing a semicolon immediately to the right of a for header makes the body of that for
statement an empty statement. This is normally a logic error.

for (j = x; j <= 4 * x * y; j += y / x)

for (j = 2; j <= 80; j += 5)

for (counter = 1; counter <= 10; counter++)
 printf("%d", counter);

Error-Prevention Tip 4.3
Although the value of the control variable can be changed in the body of a for loop, this
can lead to subtle errors. It’s best not to change it.

for (i = 1; i <= 100; i++)

104 Chapter 4 C Program Control

2. Vary the control variable from 100 to 1 in increments of -1 (decrements of 1).

3. Vary the control variable from 7 to 77 in steps of 7.

4. Vary the control variable from 20 to 2 in steps of -2.

5. Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17.

6. Vary the control variable over the following sequence of values: 44, 33, 22, 11, 0.

The next two examples provide simple applications of the for statement. Figure 4.5
uses the for statement to sum all the even integers from 2 to 100.

Fig. 4.4 | Flowcharting a typical for repetition statement.

for (i = 100; i >= 1; i--)

for (i = 7; i <= 77; i += 7)

for (i = 20; i >= 2; i -= 2)

for (j = 2; j <= 17; j += 3)

for (j = 44; j >= 0; j -= 11)

1 /* Fig. 4.5: fig04_05.c
2 Summation with for */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8
9 int number; /* number to be added to sum */

10
11
12
13 } /* end for */

Fig. 4.5 | Using for to sum numbers. (Part 1 of 2.)

Determine if final
value of control
variable has been
reached

Increment
the control
variable

counter <= 10
true

false

printf("%d", counter); counter++

counter = 1

Body of loop
(this may be many
statements)

Establish initial
value of control
variable

int sum = 0; /* initialize sum */

for (number = 2; number <= 100; number += 2) {
 sum += number; /* add number to sum */

4.6 Examples Using the for Statement 105

The body of the for statement in Fig. 4.5 could actually be merged into the rightmost
portion of the for header by using the comma operator as follows:

The initialization sum = 0 could also be merged into the initialization section of the for.

The next example computes compound interest using the for statement. Consider
the following problem statement:

A person invests $1000.00 in a savings account yielding 5% interest. Assuming that
all interest is left on deposit in the account, calculate and print the amount of money
in the account at the end of each year for 10 years. Use the following formula for
determining these amounts:

a = p(1 + r)n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate
n is the number of years
a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the
10 years the money remains on deposit. The solution is shown in Fig. 4.6.

14
15 printf("Sum is %d\n", sum); /* output sum */
16 return 0; /* indicate program ended successfully */
17 } /* end function main */

Sum is 2550

for (number = 2; number <= 100; sum += number, number += 2)
 ; /* empty statement */

Good Programming Practice 4.3
Although statements preceding a for and statements in the body of a for can often be
merged into the for header, avoid doing so because it makes the program more difficult
to read.

Good Programming Practice 4.4
Limit the size of control-statement headers to a single line if possible.

Fig. 4.5 | Using for to sum numbers. (Part 2 of 2.)

1 /* Fig. 4.6: fig04_06.c
2 Calculating compound interest */
3 #include <stdio.h>
4

Fig. 4.6 | Calculating compound interest with for. (Part 1 of 2.)

#include <math.h>

106 Chapter 4 C Program Control

The for statement executes the body of the loop 10 times, varying a control variable
from 1 to 10 in increments of 1. Although C does not include an exponentiation operator,
we can use the Standard Library function pow for this purpose. The function pow(x, y)
calculates the value of x raised to the yth power. It takes two arguments of type double and
returns a double value. Type double is a floating-point type much like float, but typically
a variable of type double can store a value of much greater magnitude with greater preci-
sion than float. The header <math.h> (line 4) should be included whenever a math func-
tion such as pow is used. Actually, this program would malfunction without the inclusion
of math.h, as the linker would be unable to find the pow function.1 Function pow requires

5
6 /* function main begins program execution */
7 int main(void)
8 {
9 double amount; /* amount on deposit */

10 double principal = 1000.0; /* starting principal */
11 double rate = .05; /* annual interest rate */
12 int year; /* year counter */
13
14 /* output table column head */
15 printf("%4s%21s\n", "Year", "Amount on deposit");
16
17 /* calculate amount on deposit for each of ten years */
18 for (year = 1; year <= 10; year++) {
19
20 /* calculate new amount for specified year */
21
22
23 /* output one table row */
24 printf("%4d%21.2f\n", year, amount);
25 } /* end for */
26
27 return 0; /* indicate program ended successfully */
28 } /* end function main */

Year Amount on deposit
 1 1050.00
 2 1102.50
 3 1157.63
 4 1215.51
 5 1276.28
 6 1340.10
 7 1407.10
 8 1477.46
 9 1551.33
 10 1628.89

1. On many Linux/UNIX C compilers, you must include the -lm option (e.g., cc -lm fig04_06.c)
when compiling Fig. 4.6. This links the math library to the program.

Fig. 4.6 | Calculating compound interest with for. (Part 2 of 2.)

amount = principal * pow(1.0 + rate, year);

4.7 switch Multiple-Selection Statement 107

two double arguments, but variable year is an integer. The math.h file includes informa-
tion that tells the compiler to convert the value of year to a temporary double represen-
tation before calling the function. This information is contained in something called pow’s
function prototype. Function prototypes are explained in Chapter 5. We also provide a
summary of the pow function and other math library functions in Chapter 5.

Notice that we defined the variables amount, principal and rate to be of type
double. We did this for simplicity because we’re dealing with fractional parts of dollars.

Here is a simple explanation of what can go wrong when using float or double to
represent dollar amounts. Two float dollar amounts stored in the machine could be
14.234 (which with %.2f prints as 14.23) and 18.673 (which with %.2f prints as 18.67).
When these amounts are added, they produce the sum 32.907, which with %.2f prints as
32.91. Thus your printout could appear as

Clearly the sum of the individual numbers as printed should be 32.90! You’ve been warned!
The conversion specifier %21.2f is used to print the value of the variable amount in

the program. The 21 in the conversion specifier denotes the field width in which the value
will be printed. A field width of 21 specifies that the value printed will appear in 21 print
positions. The 2 specifies the precision (i.e., the number of decimal positions). If the
number of characters displayed is less than the field width, then the value will auto-
matically be right justified in the field. This is particularly useful for aligning floating-
point values with the same precision (so that their decimal points align vertically). To left
justify a value in a field, place a - (minus sign) between the % and the field width. The
minus sign may also be used to left justify integers (such as in %-6d) and character strings
(such as in %-8s). We’ll discuss the powerful formatting capabilities of printf and scanf
in detail in Chapter 9.

4.7 switch Multiple-Selection Statement
In Chapter 3, we discussed the if single-selection statement and the if…else double-se-
lection statement. Occasionally, an algorithm will contain a series of decisions in which a
variable or expression is tested separately for each of the constant integral values it may as-
sume, and different actions are taken. This is called multiple selection. C provides the
switch multiple-selection statement to handle such decision making.

The switch statement consists of a series of case labels, an optional default case and
statements to execute for each case. Figure 4.7 uses switch to count the number of each
different letter grade students earned on an exam.

Error-Prevention Tip 4.4
Do not use variables of type float or double to perform monetary calculations. The im-
preciseness of floating-point numbers can cause errors that will result in incorrect mone-
tary values. [In this chapter’s exercises, we explore the use of integers to perform monetary
calculations.]

 14.23
+ 18.67

 32.91

108 Chapter 4 C Program Control

1 /* Fig. 4.7: fig04_07.c
2 Counting letter grades */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 int grade; /* one grade */
9 int aCount = 0; /* number of As */

10 int bCount = 0; /* number of Bs */
11 int cCount = 0; /* number of Cs */
12 int dCount = 0; /* number of Ds */
13 int fCount = 0; /* number of Fs */
14
15 printf("Enter the letter grades.\n");
16 printf("Enter the EOF character to end input.\n");
17
18 /* loop until user types end-of-file key sequence */
19 while (() !=) {
20
21 /* determine which grade was input */
22
23
24 /* grade was uppercase A */
25 /* or lowercase a */
26 ++aCount; /* increment aCount */
27 /* necessary to exit switch */
28
29 /* grade was uppercase B */
30 /* or lowercase b */
31 ++bCount; /* increment bCount */
32 /* exit switch */
33
34 /* grade was uppercase C */
35 /* or lowercase c */
36 ++cCount; /* increment cCount */
37 /* exit switch */
38
39 /* grade was uppercase D */
40 /* or lowercase d */
41 ++dCount; /* increment dCount */
42 /* exit switch */
43
44 /* grade was uppercase F */
45 /* or lowercase f */
46 ++fCount; /* increment fCount */
47 /* exit switch */
48
49 /* ignore newlines, */
50 /* tabs, */
51 /* and spaces in input */
52 /* exit switch */
53

Fig. 4.7 | switch example. (Part 1 of 2.)

grade = getchar() EOF

switch (grade) { /* switch nested in while */

case 'A':
case 'a':

break;

case 'B':
case 'b':

break;

case 'C':
case 'c':

break;

case 'D':
case 'd':

break;

case 'F':
case 'f':

break;

case '\n':
case '\t':
case ' ':

break;

4.7 switch Multiple-Selection Statement 109

In the program, the user enters letter grades for a class. In the while header (line 19),

the parenthesized assignment (grade = getchar()) executes first. The getchar function
(from <stdio.h>) reads one character from the keyboard and stores that character in the
integer variable grade. Characters are normally stored in variables of type char. However,
an important feature of C is that characters can be stored in any integer data type because
they’re usually represented as one-byte integers in the computer. Thus, we can treat a char-
acter as either an integer or a character, depending on its use. For example, the statement

54 /* catch all other characters */
55 printf("Incorrect letter grade entered.");
56 printf(" Enter a new grade.\n");
57 /* optional; will exit switch anyway */
58 } /* end switch */
59 } /* end while */
60
61 /* output summary of results */
62 printf("\nTotals for each letter grade are:\n");
63 printf("A: %d\n", aCount); /* display number of A grades */
64 printf("B: %d\n", bCount); /* display number of B grades */
65 printf("C: %d\n", cCount); /* display number of C grades */
66 printf("D: %d\n", dCount); /* display number of D grades */
67 printf("F: %d\n", fCount); /* display number of F grades */c
68 return 0; /* indicate program ended successfully */
69 } /* end function main */

Enter the letter grades.
Enter the EOF character to end input.
a
b
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b
^Z

Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

while ((grade = getchar()) != EOF)

printf("The character (%c) has the value %d.\n", 'a', 'a');

Fig. 4.7 | switch example. (Part 2 of 2.)

default:

break;

Not all systems display a representation of the EOF character

110 Chapter 4 C Program Control

uses the conversion specifiers %c and %d to print the character a and its integer value, re-
spectively. The result is

The integer 97 is the character’s numerical representation in the computer. Many
computers today use the ASCII (American Standard Code for Information Interchange)
character set in which 97 represents the lowercase letter 'a'. A list of the ASCII characters
and their decimal values is presented in Appendix B. Characters can be read with scanf
by using the conversion specifier %c.

Assignments as a whole actually have a value. This value is assigned to the variable on
the left side of the =. The value of the assignment expression grade = getchar() is the char-
acter that is returned by getchar and assigned to the variable grade.

The fact that assignments have values can be useful for setting several variables to the
same value. For example,

first evaluates the assignment c = 0 (because the = operator associates from right to left).
The variable b is then assigned the value of the assignment c = 0 (which is 0). Then, the
variable a is assigned the value of the assignment b = (c = 0) (which is also 0). In the pro-
gram, the value of the assignment grade = getchar() is compared with the value of EOF
(a symbol whose acronym stands for “end of file”). We use EOF (which normally has the
value -1) as the sentinel value. The user types a system-dependent keystroke combination
to mean “end of file”—i.e., “I have no more data to enter.” EOF is a symbolic integer con-
stant defined in the <stdio.h> header (we’ll see how symbolic constants are defined in
Chapter 6). If the value assigned to grade is equal to EOF, the program terminates. We
have chosen to represent characters in this program as ints because EOF has an integer val-
ue (again, normally -1).

On Linux/UNIX/Mac OS X systems, the EOF indicator is entered by typing

on a line by itself. This notation <Ctrl> d means to press the Enter key and then simulta-
neously press both the Ctrl key and the d key. On other systems, such as Microsoft Win-
dows, the EOF indicator can be entered by typing

You may also need to press Enter on Windows.
The user enters grades at the keyboard. When the Enter key is pressed, the characters

are read by function getchar one character at a time. If the character entered is not equal

The character (a) has the value 97.

a = b = c = 0;

Portability Tip 4.1
The keystroke combinations for entering EOF (end of file) are system dependent.

Portability Tip 4.2
Testing for the symbolic constant EOF rather than –1 makes programs more portable. The
C standard states that EOF is a negative integral value (but not necessarily –1). Thus, EOF
could have different values on different systems.

<Ctrl> d

<Ctrl> z

4.7 switch Multiple-Selection Statement 111

to EOF, the switch statement (line 22) is entered. Keyword switch is followed by the vari-
able name grade in parentheses. This is called the controlling expression. The value of
this expression is compared with each of the case labels. Assume the user has entered the
letter C as a grade. C is automatically compared to each case in the switch. If a match
occurs (case 'C':), the statements for that case are executed. In the case of the letter C,
cCount is incremented by 1 (line 36), and the switch statement is exited immediately with
the break statement.

The break statement causes program control to continue with the first statement after
the switch statement. The break statement is used because the cases in a switch state-
ment would otherwise run together. If break is not used anywhere in a switch statement,
then each time a match occurs in the statement, the statements for all the remaining cases
will be executed. (This feature is rarely useful, although it’s perfect for programming the
iterative song The Twelve Days of Christmas!) If no match occurs, the default case is exe-
cuted, and an error message is printed.

Each case can have one or more actions. The switch statement is different from all
other control statements in that braces are not required around multiple actions in a case
of a switch. The general switch multiple-selection statement (using a break in each case)
is flowcharted in Fig. 4.8. The flowchart makes it clear that each break statement at the
end of a case causes control to immediately exit the switch statement.

Fig. 4.8 | switch multiple-selection statement with breaks.

.
.
.

case a
true

false

case a actions(s) break

case b
true

false

case b actions(s) break

case z
true

false

case z actions(s) break

default actions(s)

112 Chapter 4 C Program Control

In the switch statement of Fig. 4.7, the lines

cause the program to skip newline, tab and blank characters. Reading characters one at a
time can cause some problems. To have the program read the characters, they must be sent
to the computer by pressing the Enter key. This causes the newline character to be placed
in the input after the character we wish to process. Often, this newline character must be
specially processed to make the program work correctly. By including the preceding cases
in our switch statement, we prevent the error message in the default case from being
printed each time a newline, tab or space is encountered in the input.

Listing several case labels together (such as case 'D': case 'd': in Fig. 4.7) simply
means that the same set of actions is to occur for either of these cases.

When using the switch statement, remember that each individual case can test only
a constant integral expression—i.e., any combination of character constants and integer
constants that evaluates to a constant integer value. A character constant is represented as
the specific character in single quotes, such as 'A'. Characters must be enclosed within
single quotes to be recognized as character constants—characters in double quotes are rec-
ognized as strings. Integer constants are simply integer values. In our example, we have
used character constants. Remember that characters are represented as small integer values.

Common Programming Error 4.5
Forgetting a break statement when one is needed in a switch statement is a logic error.

Good Programming Practice 4.5
Provide a default case in switch statements. Cases not explicitly tested in a switch are
ignored. The default case helps prevent this by focusing the programmer on the need to
process exceptional conditions. Sometimes no default processing is needed.

Good Programming Practice 4.6
Although the case clauses and the default case clause in a switch statement can occur
in any order, it’s considered good programming practice to place the default clause last.

Good Programming Practice 4.7
In a switch statement when the default clause is last, the break statement is not re-
quired. Some programmers include this break for clarity and symmetry with other cases.

case '\n': /* ignore newlines, */
case '\t': /* tabs, */
case ' ': /* and spaces in input */
 break; /* exit switch */

Common Programming Error 4.6
Not processing newline characters in the input when reading characters one at a time can
cause logic errors.

Error-Prevention Tip 4.5
Remember to provide processing capabilities for newline (and possibly other white-space)
characters in the input when processing characters one at a time.

4.8 do…while Repetition Statement 113

Notes on Integral Types
Portable languages like C must have flexible data type sizes. Different applications may
need integers of different sizes. C provides several data types to represent integers. The
range of values for each type depends on the particular computer’s hardware. In addition
to int and char, C provides types short (an abbreviation of short int) and long (an ab-
breviation of long int). C specifies that the minimum range of values for short integers
is –32768 to +32767. For the vast majority of integer calculations, long integers are suffi-
cient. The standard specifies that the minimum range of values for long integers is –
2147483648 to +2147483647. The standard states that the range of values for an int is
at least the same as the range for short integers and no larger than the range for long in-
tegers. The data type signed char can be used to represent integers in the range –128 to
+127 or any of the characters in the computer’s character set.

4.8 do…while Repetition Statement
The do…while repetition statement is similar to the while statement. In the while state-
ment, the loop-continuation condition is tested at the beginning of the loop before the
body of the loop is performed. The do…while statement tests the loop-continuation con-
dition after the loop body is performed. Therefore, the loop body will be executed at least
once. When a do…while terminates, execution continues with the statement after the
while clause. It’s not necessary to use braces in the do…while statement if there is only
one statement in the body. However, the braces are usually included to avoid confusion
between the while and do…while statements. For example,

is normally regarded as the header to a while statement. A do…while with no braces
around the single-statement body appears as

which can be confusing. The last line—while(condition);—may be misinterpreted by
as a while statement containing an empty statement. Thus, to avoid confusion, the
do…while with one statement is often written as follows:

while (condition)

do
 statement
while (condition);

do {
 statement
} while (condition);

Good Programming Practice 4.8
To eliminate the potential for ambiguity, some programmers always include braces in a
do…while statement, even if the braces are not necessary.

Common Programming Error 4.7
Infinite loops are caused when the loop-continuation condition in a while, for or
do…while statement never becomes false. To prevent this, make sure there is not a semi-
colon immediately after the header of a while or for statement. In a counter-controlled
loop, make sure the control variable is incremented (or decremented) in the loop. In a sen-
tinel-controlled loop, make sure the sentinel value is eventually input.

114 Chapter 4 C Program Control

Figure 4.9 uses a do…while statement to print the numbers from 1 to 10. The con-
trol variable counter is preincremented in the loop-continuation test. Note also the use of
the braces to enclose the single-statement body of the do…while.

Figure 4.10 shows the do…while statement flowchart, which makes it clear that the
loop-continuation condition does not execute until after the action is performed at least
once.

4.9 break and continue Statements
The break and continue statements are used to alter the flow of control. The break state-
ment, when executed in a while, for, do…while or switch statement, causes an imme-
diate exit from that statement. Program execution continues with the next statement.
Common uses of the break statement are to escape early from a loop or to skip the remain-
der of a switch statement (as in Fig. 4.7). Figure 4.11 demonstrates the break statement

1 /* Fig. 4.9: fig04_09.c
2 Using the do/while repetition statement */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 int counter = 1; /* initialize counter */
9

10
11
12
13
14 return 0; /* indicate program ended successfully */
15 } /* end function main */

1 2 3 4 5 6 7 8 9 10

Fig. 4.9 | do…while statement example.

Fig. 4.10 | Flowcharting the do…while repetition statement.

do {
 printf("%d ", counter); /* display counter */
} while (++counter <= 10); /* end do...while */

condition
true

false

action(s)

4.9 break and continue Statements 115

in a for repetition statement. When the if statement detects that x has become 5, break
is executed. This terminates the for statement, and the program continues with the
printf after the for. The loop fully executes only four times.

The continue statement, when executed in a while, for or do…while statement,
skips the remaining statements in the body of that control statement and performs the next
iteration of the loop. In while and do…while statements, the loop-continuation test is
evaluated immediately after the continue statement is executed. In the for statement, the
increment expression is executed, then the loop-continuation test is evaluated. Earlier, we
said that the while statement could be used in most cases to represent the for statement.
The one exception occurs when the increment expression in the while statement follows
the continue statement. In this case, the increment is not executed before the repetition-
continuation condition is tested, and the while does not execute in the same manner as
the for. Figure 4.12 uses the continue statement in a for statement to skip the printf
statement and begin the next iteration of the loop.

1 /* Fig. 4.11: fig04_11.c
2 Using the break statement in a for statement */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 int x; /* counter */
9

10 /* loop 10 times */
11 for (x = 1; x <= 10; x++) {
12
13 /* if x is 5, terminate loop */
14 if (x == 5) {
15 /* break loop only if x is 5 */
16 } /* end if */
17
18 printf("%d ", x); /* display value of x */
19 } /* end for */
20
21 printf("\nBroke out of loop at x == %d\n", x);
22 return 0; /* indicate program ended successfully */
23 } /* end function main */

1 2 3 4
Broke out of loop at x == 5

Fig. 4.11 | Using the break statement in a for statement.

1 /* Fig. 4.12: fig04_12.c
2 Using the continue statement in a for statement */
3 #include <stdio.h>
4

Fig. 4.12 | Using the continue statement in a for statement. (Part 1 of 2.)

break;

116 Chapter 4 C Program Control

4.10 Logical Operators
So far we have studied only simple conditions, such as counter <= 10, total > 1000, and
number != sentinelValue. We’ve expressed these conditions in terms of the relational op-
erators, >, <, >= and <=, and the equality operators, == and !=. Each decision tested pre-
cisely one condition. To test multiple conditions in the process of making a decision, we
had to perform these tests in separate statements or in nested if or if…else statements.

C provides logical operators that may be used to form more complex conditions by
combining simple conditions. The logical operators are && (logical AND), || (logical

5 /* function main begins program execution */
6 int main(void)
7 {
8 int x; /* counter */
9

10 /* loop 10 times */
11 for (x = 1; x <= 10; x++) {
12
13 /* if x is 5, continue with next iteration of loop */
14 if (x == 5) {
15 /* skip remaining code in loop body */
16 } /* end if */
17
18 printf("%d ", x); /* display value of x */
19 } /* end for */
20
21 printf("\nUsed continue to skip printing the value 5\n");
22 return 0; /* indicate program ended successfully */
23 } /* end function main */

1 2 3 4 6 7 8 9 10
Used continue to skip printing the value 5

Software Engineering Observation 4.2
Some programmers feel that break and continue violate the norms of structured
programming. The effects of these statements can be achieved by structured programming
techniques we’ll soon learn, so these programmers do not use break and continue.

Performance Tip 4.1
The break and continue statements, when used properly, perform faster than the cor-
responding structured techniques that we’ll soon learn.

Software Engineering Observation 4.3
There is a tension between achieving quality software engineering and achieving the best-
performing software. Often one of these goals is achieved at the expense of the other.

Fig. 4.12 | Using the continue statement in a for statement. (Part 2 of 2.)

continue;

4.10 Logical Operators 117

OR) and ! (logical NOT also called logical negation). We’ll consider examples of each of
these operators.

Suppose we wish to ensure that two conditions are both true before we choose a cer-
tain path of execution. In this case, we can use the logical operator && as follows:

This if statement contains two simple conditions. The condition gender == 1 might be
evaluated, for example, to determine if a person is a female. The condition age >= 65 is
evaluated to determine if a person is a senior citizen. The two simple conditions are eval-
uated first because the precedences of == and >= are both higher than the precedence of &&.
The if statement then considers the combined condition

This condition is true if and only if both of the simple conditions are true. Finally, if this
combined condition is indeed true, then the count of seniorFemales is incremented by
1. If either or both of the simple conditions are false, then the program skips the in-
crementing and proceeds to the statement following the if.

Figure 4.13 summarizes the && operator. The table shows all four possible combi-
nations of zero (false) and nonzero (true) values for expression1 and expression2. Such
tables are often called truth tables. C evaluates all expressions that include relational oper-
ators, equality operators, and/or logical operators to 0 or 1. Although C sets a true value
to 1, it accepts any nonzero value as true.

Now let’s consider the || (logical OR) operator. Suppose we wish to ensure at some
point in a program that either or both of two conditions are true before we choose a certain
path of execution. In this case, we use the || operator as in the following program segment:

This statement also contains two simple conditions. The condition semesterAverage >=
90 is evaluated to determine if the student deserves an “A” in the course because of a solid
performance throughout the semester. The condition finalExam >= 90 is evaluated to de-
termine if the student deserves an “A” in the course because of an outstanding performance
on the final exam. The if statement then considers the combined condition

if (gender == 1 && age >= 65)
++seniorFemales;

gender == 1 && age >= 65

expression1 expression2 expression1 && expression2

0 0 0

0 nonzero 0

nonzero 0 0

nonzero nonzero 1

Fig. 4.13 | Truth table for the logical AND (&&) operator.

if (semesterAverage >= 90 || finalExam >= 90)
printf("Student grade is A\n");

semesterAverage >= 90 || finalExam >= 90

118 Chapter 4 C Program Control

and awards the student an “A” if either or both of the simple conditions are true. The mes-
sage “Student grade is A” is not printed only when both of the simple conditions are false
(zero). Figure 4.14 is a truth table for the logical OR operator (||).

The && operator has a higher precedence than ||. Both operators associate from left
to right. An expression containing && or || operators is evaluated only until truth or false-
hood is known. Thus, evaluation of the condition

will stop if gender is not equal to 1 (i.e., the entire expression is false), and continue if gen-
der is equal to 1 (i.e., the entire expression could still be true if age >= 65). This perfor-
mance feature for the evaluation of logical AND and logical OR expressions is called
short-circuit evaluation.

C provides ! (logical negation) to enable a programmer to “reverse” the meaning of a
condition. Unlike operators && and ||, which combine two conditions (and are therefore
binary operators), the logical negation operator has only a single condition as an operand
(and is therefore a unary operator). The logical negation operator is placed before a con-
dition when we’re interested in choosing a path of execution if the original condition
(without the logical negation operator) is false, such as in the following program segment:

The parentheses around the condition grade == sentinelValue are needed because the
logical negation operator has a higher precedence than the equality operator. Figure 4.15
is a truth table for the logical negation operator.

expression1 expression2 expression1 || expression2

0 0 0
0 nonzero 1
nonzero 0 1
nonzero nonzero 1

Fig. 4.14 | Truth table for the logical OR (||) operator.

gender == 1 && age >= 65

Performance Tip 4.2
In expressions using operator &&, make the condition that is most likely to be false the left-
most condition. In expressions using operator ||, make the condition that is most likely to
be true the leftmost condition. This can reduce a program’s execution time.

if (!(grade == sentinelValue))
printf("The next grade is %f\n", grade);

expression !expression

0 1
nonzero 0

Fig. 4.15 | Truth table for operator ! (logical negation).

4.11 Confusing Equality (==) and Assignment (=) Operators 119

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational operator. For example, the preceding statement
may also be written as follows:

Figure 4.16 shows the precedence and associativity of the operators introduced to this
point. The operators are shown from top to bottom in decreasing order of precedence.

4.11 Confusing Equality (==) and Assignment (=)
Operators
There is one type of error that C programmers, no matter how experienced, tend to make
so frequently that we felt it was worth a separate section. That error is accidentally swap-
ping the operators == (equality) and = (assignment). What makes these swaps so damaging
is the fact that they do not ordinarily cause compilation errors. Rather, statements with
these errors ordinarily compile correctly, allowing programs to run to completion while
likely generating incorrect results through runtime logic errors.

Two aspects of C cause these problems. One is that any expression in C that produces
a value can be used in the decision portion of any control statement. If the value is 0, it’s
treated as false, and if the value is nonzero, it’s treated as true. The second is that assign-
ments in C produce a value, namely the value that is assigned to the variable on the left
side of the assignment operator. For example, suppose we intend to write

but we accidentally write

if (grade != sentinelValue)
printf("The next grade is %f\n", grade);

Operators Associativity Type

++ (postfix) -- (postfix) right to left postfix

+ - ! ++ (prefix) -- (prefix) (type) right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

Fig. 4.16 | Operator precedence and associativity,

if (payCode == 4)
 printf("You get a bonus!");

if (payCode = 4)
 printf("You get a bonus!");

120 Chapter 4 C Program Control

The first if statement properly awards a bonus to the person whose paycode is equal to 4.
The second if statement—the one with the error—evaluates the assignment expression in
the if condition. This expression is a simple assignment whose value is the constant 4. Be-
cause any nonzero value is interpreted as “true,” the condition in this if statement is al-
ways true, and not only is the value of payCode inadvertantly set to 4, but the person always
receives a bonus regardless of what the actual paycode is!

Programmers normally write conditions such as x == 7 with the variable name on the
left and the constant on the right. By reversing these terms so that the constant is on the
left and the variable name is on the right, as in 7 == x, the programmer who accidentally
replaces the == operator with = is protected by the compiler. The compiler will treat this
as a syntax error, because only a variable name can be placed on the left-hand side of an
assignment expression. At least this will prevent the potential devastation of a runtime
logic error.

Variable names are said to be lvalues (for “left values”) because they can be used on
the left side of an assignment operator. Constants are said to be rvalues (for “right values”)
because they can be used on only the right side of an assignment operator. Lvalues can also
be used as rvalues, but not vice versa.

The other side of the coin can be equally unpleasant. Suppose you want to assign a
value to a variable with a simple statement like

but instead write

Here, too, this is not a syntax error. Rather the compiler simply evaluates the conditional
expression. If x is equal to 1, the condition is true and the expression returns the value 1.
If x is not equal to 1, the condition is false and the expression returns the value 0. Regard-
less of what value is returned, there is no assignment operator, so the value is simply lost,
and the value of x remains unaltered, probably causing an execution-time logic error. Un-
fortunately, we do not have a handy trick available to help you with this problem! Many
compilers, however, will issue a warning on such a statement.

Common Programming Error 4.8
Using operator == for assignment or using operator = for equality is a logic error.

Good Programming Practice 4.9
When an equality expression has a variable and a constant, as in x == 1, some pro-
grammers prefer to write the expression with the constant on the left and the variable
name on the right (e.g. 1 == x as protection against the logic error that occurs when you
accidentally replace operator == with =).

x = 1;

x == 1;

Error-Prevention Tip 4.6
After you write a program, text search it for every = and check that it’s used properly.

4.12 Structured Programming Summary 121

4.12 Structured Programming Summary
Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is considerably sparser. We have learned a great deal in a mere six de-
cades. Perhaps most important, we have learned that structured programming produces
programs that are easier (than unstructured programs) to understand and hence are easier
to test, debug, modify, and even prove correct in a mathematical sense.

Chapters 3 and 4 have concentrated on C’s control statements. Each statement has
been presented, flowcharted and discussed separately with examples. Now, we summarize
the results of Chapters 3 and 4 and introduce a simple set of rules for the formation and
properties of structured programs.

Figure 4.17 summarizes the control statements discussed in Chapters 3 and 4. Small
circles are used in the figure to indicate the single entry point and the single exit point of
each statement. Connecting individual flowchart symbols arbitrarily can lead to unstruc-
tured programs. Therefore, the programming profession has chosen to combine flowchart
symbols to form a limited set of control statements, and to build only structured programs
by properly combining control statements in two simple ways. For simplicity, only
single-entry/single-exit control statements are used—there is only one way to enter and
only one way to exit each control statement. Connecting control statements in sequence
to form structured programs is simple—the exit point of one control statement is con-
nected directly to the entry point of the next, i.e., the control statements are simply placed
one after another in a program—we have called this “control-statement stacking.” The
rules for forming structured programs also allow for control statements to be nested.

Figure 4.18 shows the rules for forming structured programs. The rules assume that
the rectangle flowchart symbol may be used to indicate any action including input/output.
Figure 4.19 shows the simplest flowchart.

Applying the rules of Fig. 4.18 always results in a structured flowchart with a neat,
building-block appearance. Repeatedly applying Rule 2 to the simplest flowchart
(Fig. 4.19) results in a structured flowchart containing many rectangles in sequence
(Fig. 4.20). Notice that Rule 2 generates a stack of control statements; so we call Rule 2
the stacking rule.

Rule 3 is called the nesting rule. Repeatedly applying Rule 3 to the simplest flowchart
results in a flowchart with neatly nested control statements. For example, in Fig. 4.21, the
rectangle in the simplest flowchart is first replaced with a double-selection (if…else)
statement. Then Rule 3 is applied again to both of the rectangles in the double-selection
statement, replacing each of these rectangles with double-selection statements. The dashed
box around each of the double-selection statements represents the rectangle that was
replaced in the original flowchart.

Rule 4 generates larger, more involved, and more deeply nested structures. The flow-
charts that emerge from applying the rules in Fig. 4.18 constitute the set of all possible
structured flowcharts and hence the set of all possible structured programs.

It’s because of the elimination of the goto statement that these building blocks never
overlap one another. The beauty of the structured approach is that we use only a small
number of simple single-entry/single-exit pieces, and we assemble them in only two simple
ways. Figure 4.22 shows the kinds of stacked building blocks that emerge from applying
Rule 2 and the kinds of nested building blocks that emerge from applying Rule 3. The

122 Chapter 4 C Program Control

Fig. 4.17 | C’s single-entry/single-exit sequence, selection and repetition statements.

.
.
.

.
.
.

break

break

break

while statement

if statement
(single selection)

if...else statement
(double selection)

switch statement
(multiple selection)

do...while statement for statement

Repetition

Sequence Selection

T TF

F

T

F

T

F

T

F

T

F
T

F

T

F

4.12 Structured Programming Summary 123

figure also shows the kind of overlapped building blocks that cannot appear in structured
flowcharts (because of the elimination of the goto statement).

Rules for Forming Structured Programs

1) Begin with the “simplest flowchart” (Fig. 4.19).

2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence.

3) Any rectangle (action) can be rep’laced by any control statement (sequence, if, if…else,
switch, while, do…while or for).

4) Rules 2 and 3 may be applied as often as you like and in any order.

Fig. 4.18 | Rules for forming structured programs.

Fig. 4.19 | Simplest flowchart.

Fig. 4.20 | Repeatedly applying Rule 2 of Fig. 4.18 to the simplest flowchart.

.
.
.

Rule 2 Rule 2 Rule 2

124 Chapter 4 C Program Control

If the rules in Fig. 4.18 are followed, an unstructured flowchart (such as that in
Fig. 4.23) cannot be created. If you’re uncertain whether a particular flowchart is struc-
tured, apply the rules of Fig. 4.18 in reverse to try to reduce the flowchart to the simplest
flowchart. If you succeed, the original flowchart is structured; otherwise, it’s not.

Structured programming promotes simplicity. Bohm and Jacopini showed that only
three forms of control are needed:

• Sequence

• Selection

• Repetition

Fig. 4.21 | Applying Rule 3 of Fig. 4.18 to the simplest flowchart.

Rule 3

Rule 3

Rule 3

4.12 Structured Programming Summary 125

Sequence is straighforward. Selection is implemented in one of three ways:

• if statement (single selection)

• if…else statement (double selection)

• switch statement (multiple selection)

In fact, it’s straightforward to prove that the simple if statement is sufficient to provide
any form of selection—everything that can be done with the if…else statement and the
switch statement can be implemented with one or more if statements.

Repetition is implemented in one of three ways:

• while statement

Fig. 4.22 | Stacked, nested and overlapped building blocks.

Fig. 4.23 | An unstructured flowchart.

Stacked building blocks Nested building blocks

Overlapping building blocks
(Illegal in structured programs)

126 Chapter 4 C Program Control

• do…while statement

• for statement

It’s straightforward to prove that the while statement is sufficient to provide any form
of repetition. Everything that can be done with the do…while statement and the for
statement can be done with the while statement.

Combining these results illustrates that any form of control ever needed in a C pro-
gram can be expressed in terms of only three forms of control:

• sequence

• if statement (selection)

• while statement (repetition)

And these control statements can be combined in only two ways—stacking and
nesting. Indeed, structured programming promotes simplicity.

In Chapters 3 and 4, we discussed how to compose programs from control statements
containing actions and decisions. In Chapter 5, we introduce another program structuring
unit called the function. We’ll learn to compose large programs by combining functions,
which, in turn, are composed of control statements. We’ll also discuss how using functions
promotes software reusability.

Summary
Section 4.2 Repetition Essentials
• Most programs involve repetition, or looping. A loop is a group of instructions the computer ex-

ecutes repeatedly while some loop-continuation condition remains true.

• Counter-controlled repetition is sometimes called definite repetition because we know in ad-
vance exactly how many times the loop will execute.

• Sentinel-controlled repetition is sometimes called indefinite repetition because it’s not known in
advance how many times the loop will execute.

• In counter-controlled repetition, a control variable is used to count the number of repetitions.
The control variable is incremented (usually by 1) each time the group of instructions is per-
formed. When the correct number of repetitions has been performed, the loop terminates, and
the program resumes execution with the statement after the repetition statement.

• Sentinel values are used to control repetition when the number of repetitions is not known in
advance, and the loop includes statements that obtain data each time the loop is performed.

• The sentinel value indicates “end of data.” The sentinel is entered after all regular data items have
been supplied to the program. Sentinels must be distinct from regular data items.

Section 4.3 Counter-Controlled Repetition
• Counter-controlled repetition requires the name of a control variable (or loop counter), the ini-

tial value of the control variable, the increment (or decrement) by which the control variable is
modified each time through the loop, and the condition that tests for the final value of the con-
trol variable (i.e., whether looping should continue).

Section 4.4 for Repetition Statement
• The for repetition statement handles all the details of counter-controlled repetition.

 Summary 127

• When the for statement begins executing, its control variable is initialized. Then, the loop-con-
tinuation condition is checked. If the condition is true, the loop’s body executes. The control
variable is then incremented, and the loop begins again with the loop-continuation condition.
This process continues until the loop-continuation condition fails.

• The general format of the for statement is

for (expression1; expression2; expression3)
 statement

where expression1 initializes the loop-control variable, expression2 is the loop-continuation con-
dition, and expression3 increments the control variable.

• In most cases, the for statement can be represented with an equivalent while statement as in:

expression1;
while (expression2) {
 statement
 expression3;
}

• The comma operator guarantees that lists of expressions evaluate from left to right. The value of
the entire expression is that of the rightmost expression.

• The three expressions in the for statement are optional. If expression2 is omitted, C assumes that
the condition is true, thus creating an infinite loop. One might omit expression1 if the control
variable is initialized elsewhere in the program. expression3 might be omitted if the increment is
calculated by statements in the body of the for statement or if no increment is needed.

• The increment expression in the for statement acts like a stand-alone C statement at the end of
the body of the for.

• The two semicolons in the for statement are required.

Section 4.5 for Statement: Notes and Observations
• The initialization, loop-continuation condition and increment can contain arithmetic expressions.

• The “increment” may be negative (in which case it’s really a decrement and the loop actually
counts downward).

• If the loop-continuation condition is initially false, the body portion of the loop is not per-
formed. Instead, execution proceeds with the statement following the for statement.

Section 4.6 Examples Using the for Statement
• Function pow performs exponentiation. The function pow(x, y) calculates the value of x raised

to the yth power. It takes two arguments of type double and returns a double value.

• Type double is a floating-point type much like float, but typically a variable of type double can
store a value of much greater magnitude with greater precision than float.

• The header <math.h> should be included whenever a math function such as pow is used.

• The conversion specifier %21.2f denotes that a floating-point value will be displayed right justi-
fied in a field of 21 characters with two digits to the right of the decimal point.

• To left justify a value in a field, place a - (minus sign) between the % and the field width.

Section 4.7 switch Multiple-Selection Statement
• Occasionally, an algorithm will contain a series of decisions in which a variable or expression is

tested separately for each of the constant integral values it may assume, and different actions are
taken. This is called multiple selection. C provides the switch statement to handle this.

• The switch statement consists of a series of case labels, an optional default case and statements
to execute for each case.

128 Chapter 4 C Program Control

• The getchar function (from the standard input/output library) reads and returns one character
from the keyboard.

• Characters are normally stored in variables of type char. Characters can be stored in any integer
data type because they’re usually represented as one-byte integers in the computer. Thus, we can
treat a character as either an integer or a character, depending on its use.

• Many computers today use the ASCII (American Standard Code for Information Interchange)
character set in which 97 represents the lowercase letter 'a'.

• Characters can be read with scanf by using the conversion specifier %c.

• Assignment expressions as a whole actually have a value. This value is assigned to the variable on
the left side of the =.

• The fact that assignment statements have values can be useful for setting several variables to the
same value, as in a = b = c = 0;.

• EOF is often used as a sentinel value. EOF is a symbolic integer constant defined in <stdio.h>.

• On Linux/UNIX systems and many others, the EOF indicator is entered by typing <Ctrl> d . On
other systems, such as Microsoft Windows, the EOF indicator can be entered by typing <Ctrl> z.

• Keyword switch is followed by the controlling expression in parentheses. The value of this ex-
pression is compared with each of the case labels. If a match occurs, the statements for that case
execute. If no match occurs, the default case executes.

• The break statement causes program control to continue with the statement after the switch.
The break statement prevents the cases in a switch statement from running together.

• Each case can have one or more actions. The switch statement is different from all other control
statements in that braces are not required around multiple actions in a case of a switch.

• Listing several case labels together simply means that the same set of actions is to occur for any
of these cases.

• Remember that the switch statement can be used only for testing a constant integral expres-
sion—i.e., any combination of character constants and integer constants that evaluates to a con-
stant integer value. A character constant is represented as the specific character in single quotes,
such as 'A'. Characters must be enclosed within single quotes to be recognized as character con-
stants. Integer constants are simply integer values.

• C provides several data types to represent integers. The range of integer values for each type de-
pends on the particular computer’s hardware. In addition to the types int and char, C provides
types short (an abbreviation of short int) and long (an abbreviation of long int). The mini-
mum range of values for short integers is –32768 to +32767. For the vast majority of integer
calculations, long integers are sufficient. The standard specifies that the minimum range of val-
ues for long integers is –2147483648 to +2147483647. The standard states that the range of val-
ues for an int is at least the same as the range for short integers and no larger than the range for
long integers. The data type signed char can be used to represent integers in the range –128 to
+127 or any of the characters in the computer’s character set.

Section 4.8 do…while Repetition Statement
• The do…while statement tests the loop-continuation condition after the loop body is performed.

Therefore, the loop body will be executed at least once. When a do…while terminates, execution
continues with the statement after the while clause.

Section 4.9 break and continue Statements
• The break statement, when executed in a while, for, do…while or switch statement, causes im-

mediate exit from that statement. Program execution continues with the next statement.

 Terminology 129

• The continue statement, when executed in a while, for or do…while statement, skips the re-
maining statements in the body of that control statement and performs the next iteration of the
loop. In while and do…while statements, the loop-continuation test is evaluated immediately
after the continue statement is executed. In the for statement, the increment expression is exe-
cuted, then the loop-continuation test is evaluated.

Section 4.10 Logical Operators
• Logical operators may be used to form complex conditions by combining simple conditions. The

logical operators are && (logical AND), || (logical OR) and ! (logical NOT, or logical negation).

• A condition containing the && (logical AND) operator is true if and only if both of the simple
conditions are true.

• C evaluates all expressions that include relational operators, equality operators, and/or logical op-
erators to 0 or 1. Although C sets a true value to 1, it accepts any nonzero value as true.

• A condition containing the || (logical OR) operator is true if either or both of the simple con-
ditions are true.

• The && operator has a higher precedence than ||. Both operators associate from left to right.

• An expression containing && or || operators is evaluated only until truth or falsehood is known.

• C provides ! (logical negation) to enable a programmer to “reverse” the meaning of a condition.
Unlike the binary operators && and ||, which combine two conditions, the unary logical negation
operator has only a single condition as an operand.

• The logical negation operator is placed before a condition when we’re interested in choosing a
path of execution if the original condition (without the logical negation operator) is false.

• In most cases, you can avoid using logical negation by expressing the condition differently with
an appropriate relational operator.

Section 4.11 Confusing Equality (==) and Assignment (=) Operators
• Programmers often accidentally swap the operators == (equality) and = (assignment). What

makes these swaps so damaging is that they do not ordinarily cause syntax errors. Rather, state-
ments with these errors ordinarily compile correctly, allowing programs to run to completion
while likely generating incorrect results through runtime logic errors.

• Programmers normally write conditions such as x == 7 with the variable name on the left and the
constant on the right. By reversing these terms so that the constant is on the left and the variable
name is on the right, as in 7 == x, the programmer who accidentally replaces the == operator with
= will be protected by the compiler. The compiler will treat this as a syntax error, because only a
variable name can be placed on the left-hand side of an assignment statement.

• Variable names are said to be lvalues (for “left values”) because they can be used on the left side
of an assignment operator.

• Constants are said to be rvalues (for “right values”) because they can be used only on the right
side of an assignment operator. Lvalues can also be used as rvalues, but not vice versa.

Terminology
ASCII (American Standard Code for Informa-

tion Interchange) character set 110
case label 111
char primitive type 109
comma operator 102
constant integral expression 112

control variable 98
controlling expression in a switch 111
decrement a control variable 99
definite repetition 98
final value of a control variable 99
function prototype 107

130 Chapter 4 C Program Control

increment a control variable 99
indefinite repetition 98
initial value of a control variable 99
logical AND operator (&&) 116
logical negation operator (!) 117
logical OR operator (||) 117
logical NOT operator (!) 117
loop-continuation condition 98
lvalue (“left value”) 120

name of a control variable 99
nesting rule 121
off-by-one error 101
pow (power) function 107
rvalue (“right value”) 120
short-circuit evaluation 118
stacking rule 121
truth table 117

Self-Review Exercises
4.1 Fill in the blanks in each of the following statements.

a) Counter-controlled repetition is also known as repetition because it’s known
in advance how many times the loop will be executed.

b) Sentinel-controlled repetition is also known as repetition because it’s not
known in advance how many times the loop will be executed.

c) In counter-controlled repetition, a(n) is used to count the number of times a
group of instructions should be repeated.

d) The statement, when executed in a repetition statement, causes the next it-
eration of the loop to be performed immediately.

e) The statement, when executed in a repetition statement or a switch, causes
an immediate exit from the statement.

f) The is used to test a particular variable or expression for each of the constant
integral values it may assume.

4.2 State whether the following are true or false. If the answer is false, explain why.
a) The default case is required in the switch selection statement.
b) The break statement is required in the default case of a switch selection statement.
c) The expression (x > y && a < b) is true if either x > y is true or a < b is true.
d) An expression containing the || operator is true if either or both of its operands is true.

4.3 Write a statement or a set of statements to accomplish each of the following tasks:
a) Sum the odd integers between 1 and 99 using a for statement. Assume the integer vari-

ables sum and count have been defined.
b) Print the value 333.546372 in a field width of 15 characters with precisions of 1, 2, 3, 4

and 5. Left justify the output. What are the five values that print?
c) Calculate the value of 2.5 raised to the power of 3 using the pow function. Print the re-

sult with a precision of 2 in a field width of 10 positions. What is the value that prints?
d) Print the integers from 1 to 20 using a while loop and the counter variable x. Assume

that the variable x has been defined, but not initialized. Print only five integers per line.
[Hint: Use the calculation x % 5. When the value of this is 0, print a newline character,
otherwise print a tab character.]

e) Repeat Exercise 4.3 (d) using a for statement.

4.4 Find the error in each of the following code segments and explain how to correct it.
a) x = 1;

while (x <= 10);

 x++;

}
b) for (y = .1; y != 1.0; y += .1)

 printf("%f\n", y);

 Answers to Self-Review Exercises 131

c) switch (n) {

 case 1:

 printf("The number is 1\n");

 case 2:

 printf("The number is 2\n");

 break;

 default:

 printf("The number is not 1 or 2\n");

 break;

 }
d) The following code should print the values 1 to 10.

n = 1;

while (n < 10)
 printf("%d ", n++);

Answers to Self-Review Exercises
4.1 a) definite. b) indefinite. c) control variable or counter. d) continue. e) break. f) switch
selection statement.

4.2 a) False. The default case is optional. If no default action is needed, then there is no need
for a default case.

b) False. The break statement is used to exit the switch statement. The break statement is
not required when the default case is the last case.

c) False. Both of the relational expressions must be true in order for the entire expression
to be true when using the && operator.

d) True.

4.3 a) sum = 0;

for (count = 1; count <= 99; count += 2) {

 sum += count;
}

b) printf("%-15.1f\n", 333.546372); /* prints 333.5 */

printf("%-15.2f\n", 333.546372); /* prints 333.55 */

printf("%-15.3f\n", 333.546372); /* prints 333.546 */

printf("%-15.4f\n", 333.546372); /* prints 333.5464 */

printf("%-15.5f\n", 333.546372); /* prints 333.54637 */
c) printf("%10.2f\n", pow(2.5, 3)); /* prints 15.63 */
d) x = 1;

while (x <= 20) {

 printf("%d", x);

 if (x % 5 == 0) {

 printf("\n");

 }

 else {

 printf("\t");

 }

 x++;

}

or

132 Chapter 4 C Program Control

x = 1;

while (x <= 20) {

 if (x % 5 == 0) {

 printf("%d\n", x++);

 }

 else {

 printf("%d\t", x++);

 }

}

or

x = 0;

while (++x <= 20) {

 if (x % 5 == 0) {

 printf("%d\n", x);

 }

 else {

 printf("%d\t", x);

 }

}

e) for (x = 1; x <= 20; x++) {

 printf("%d", x);

 if (x % 5 == 0) {

 printf("\n");

 }

 else {

 printf("\t");

 }

}

or

for (x = 1; x <= 20; x++) {

 if (x % 5 == 0) {

 printf("%d\n", x);

 }

 else {

 printf("%d\t", x);

 }

}

4.4 a) Error: The semicolon after the while header causes an infinite loop.
Correction: Replace the semicolon with a { or remove both the ; and the }.

b) Error: Using a floating-point number to control a for repetition statement.
Correction: Use an integer, and perform the proper calculation to get the values you de-
sire.

for (y = 1; y != 10; y++)
 printf("%f\n", (float) y / 10);

c) Error: Missing break statement in the statements for the first case.

 Exercises 133

Correction: Add a break statement at the end of the statements for the first case. This
is not necessarily an error if you want the statement of case 2: to execute every time the
case 1: statement executes.

d) Error: Improper relational operator used in the while repetition-continuation condi-
tion.
Correction: Use <= rather than <.

Exercises
4.5 Find the error in each of the following. (Note: There may be more than one error.)

a) For (x = 100, x >= 1, x++)

 printf("%d\n", x);
b) The following code should print whether a given integer is odd or even:

switch (value % 2) {
 case 0:
 printf("Even integer\n");
 case 1:
 printf("Odd integer\n");

}

c) The following code should input an integer and a character and print them. Assume the
user types as input 100 A.

scanf("%d", &intVal);
charVal = getchar();
printf("Integer: %d\nCharacter: %c\n", intVal, charVal);

d) for (x = .000001; x == .0001; x += .000001) {

 printf("%.7f\n", x);

}
e) The following code should output the odd integers from 999 to 1:

for (x = 999; x >= 1; x += 2) {
 printf("%d\n", x);
}

f) The following code should output the even integers from 2 to 100:

counter = 2;

Do {
 if (counter % 2 == 0) {
 printf("%d\n", counter);
 }

 counter += 2;
} While (counter < 100);

g) The following code should sum the integers from 100 to 150 (assume total is initial-
ized to 0):

for (x = 100; x <= 150; x++); {
 total += x;
}

4.6 State which values of the control variable x are printed by each of the following for state-
ments:

a) for (x = 2; x <= 13; x += 2) {

 printf("%d\n", x);
}

134 Chapter 4 C Program Control

b) for (x = 5; x <= 22; x += 7) {

 printf("%d\n", x);

}
c) for (x = 3; x <= 15; x += 3) {

 printf("%d\n", x);

}
d) for (x = 1; x <= 5; x += 7) {

 printf("%d\n", x);

}
e) for (x = 12; x >= 2; x -= 3) {

 printf("%d\n", x);

}

4.7 Write for statements that print the following sequences of values:
a) 1, 2, 3, 4, 5, 6, 7
b) 3, 8, 13, 18, 23
c) 20, 14, 8, 2, –4, –10
d) 19, 27, 35, 43, 51

4.8 What does the following program do?

4.9 (Sum a Sequence of Integers) Write a program that sums a sequence of integers. Assume that
the first integer read with scanf specifies the number of values remaining to be entered. Your pro-
gram should read only one value each time scanf is executed. A typical input sequence might be

5 100 200 300 400 500

where the 5 indicates that the subsequent five values are to be summed.

4.10 (Average a Sequence of Integers) Write a program that calculates and prints the average of
several integers. Assume the last value read with scanf is the sentinel 9999. A typical input sequence
might be

1 #include <stdio.h>
2
3 /* function main begins program execution */
4 int main(void)
5 {
6 int x;
7 int y;
8 int i;
9 int j;

10
11 /* prompt user for input */
12 printf("Enter two integers in the range 1-20: ");
13 scanf("%d%d", &x, &y); /* read values for x and y */
14
15 for (i = 1; i <= y; i++) { /* count from 1 to y */
16
17 for (j = 1; j <= x; j++) { /* count from 1 to x */
18 printf("@"); /* output @ */
19 } /* end inner for */
20
21 printf("\n"); /* begin new line */
22 } /* end outer for */
23
24 return 0; /* indicate program ended successfully */
25 } /* end function main */

 Exercises 135

10 8 11 7 9 9999

indicating that the average of all the values preceding 9999 is to be calculated.

4.11 (Find the Smallest) Write a program that finds the smallest of several integers. Assume that
the first value read specifies the number of values remaining.

4.12 (Calculating the Sum of Even Integers) Write a program that calculates and prints the sum
of the even integers from 2 to 30.

4.13 (Calculating the Product of Odd Integers) Write a program that calculates and prints the
product of the odd integers from 1 to 15.

4.14 (Factorials) The factorial function is used frequently in probability problems. The factorial
of a positive integer n (written n! and pronounced “n factorial”) is equal to the product of the posi-
tive integers from 1 to n. Write a program that evaluates the factorials of the integers from 1 to 5.
Print the results in tabular format. What difficulty might prevent you from calculating the factorial
of 20?

4.15 (Modified Compound Interest Program) Modify the compound-interest program of
Section 4.6 to repeat its steps for interest rates of 5%, 6%, 7%, 8%, 9%, and 10%. Use a for loop
to vary the interest rate.

4.16 (Triangle Printing Program) Write a program that prints the following patterns separately,
one below the other. Use for loops to generate the patterns. All asterisks (*) should be printed by a
single printf statement of the form printf("*"); (this causes the asterisks to print side by side).
[Hint: The last two patterns require that each line begin with an appropriate number of blanks.]

4.17 (Calculating Credit Limits) Collecting money becomes increasingly difficult during peri-
ods of recession, so companies may tighten their credit limits to prevent their accounts receivable
(money owed to them) from becoming too large. In response to a prolonged recession, one company
has cut its customers’ credit limits in half. Thus, if a particular customer had a credit limit of $2000,
it’s now $1000. If a customer had a credit limit of $5000, it’s now $2500. Write a program that
analyzes the credit status of three customers of this company. For each customer you’re given:

a) The customer’s account number
b) The customer’s credit limit before the recession
c) The customer’s current balance (i.e., the amount the customer owes the company).

Your program should calculate and print the new credit limit for each customer and should
determine (and print) which customers have current balances that exceed their new credit limits.

4.18 (Bar Chart Printing Program) One interesting application of computers is drawing graphs
and bar charts (sometimes called “histograms”). Write a program that reads five numbers (each be-
tween 1 and 30). For each number read, your program should print a line containing that number
of adjacent asterisks. For example, if your program reads the number seven, it should print *******.

4.19 (Calculating Sales) An online retailer sells five different products whose retail prices are
shown in the following table:

(A) (B) (C) (D)
* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

136 Chapter 4 C Program Control

Write a program that reads a series of pairs of numbers as follows:
a) Product number
b) Quantity sold for one day

Your program should use a switch statement to help determine the retail price for each product.
Your program should calculate and display the total retail value of all products sold last week.

4.20 (Truth Tables) Complete the following truth tables by filling in each blank with 0 or 1.

4.21 Rewrite the program of Fig. 4.2 so that the initialization of the variable counter is done in
the definition rather than in the for statement.

4.22 (Average Grade) Modify the program of Fig. 4.7 so that it calculates the average grade for
the class.

4.23 (Calculating the Compound Interest with Integers) Modify the program of Fig. 4.6 so that
it uses only integers to calculate the compound interest. [Hint: Treat all monetary amounts as inte-

Product number Retail price

1 $ 2.98

2 $ 4.50

3 $ 9.98

4 $ 4.49

5 $ 6.87

Condition1 Condition2 Condition1 && Condition2

0 0 0

0 nonzero 0

nonzero 0 _____

nonzero nonzero _____

Condition1 Condition2 Condition1 || Condition2

0 0 0

0 nonzero 1

nonzero 0 _____

nonzero nonzero _____

Condition1 !Condition1

0 1

nonzero _____

 Exercises 137

gral numbers of pennies. Then “break” the result into its dollar portion and cents portion by using
the division and remainder operations, respectively. Insert a period.]

4.24 Assume i = 1, j = 2, k = 3 and m = 2. What does each of the following statements print?
a) printf("%d", i == 1);
b) printf("%d", j == 3);
c) printf("%d", i >= 1 && j < 4);
d) printf("%d", m < = 99 && k < m);
e) printf("%d", j >= i || k == m);
f) printf("%d", k + m < j || 3 - j >= k);
g) printf("%d", !m);
h) printf("%d", !(j - m));
i) printf("%d", !(k > m));
j) printf("%d", !(j > k));

4.25 (Table of Decimal, Binary, Octal and Hexadecimal Equivalents) Write a program that
prints a table of the binary, octal and hexadecimal equivalents of the decimal numbers in the range
1 through 256. If you’re not familiar with these number systems, read Appendix C before you at-
tempt this exercise.

4.26 (Calculating the Value of π) Calculate the value of π from the infinite series

Print a table that shows the value of π approximated by one term of this series, by two terms, by
three terms, and so on. How many terms of this series do you have to use before you first get 3.14?
3.141? 3.1415? 3.14159?

4.27 (Pythagorean Triples) A right triangle can have sides that are all integers. The set of three
integer values for the sides of a right triangle is called a Pythagorean triple. These three sides must
satisfy the relationship that the sum of the squares of two of the sides is equal to the square of the
hypotenuse. Find all Pythagorean triples for side1, side2, and the hypotenuse all no larger than 500.
Use a triple-nested for loop that simply tries all possibilities. This is an example of “brute-force”
computing. It’s not aesthetically pleasing to many people. But there are many reasons why these
techniques are important. First, with computing power increasing at such a phenomenal pace, so-
lutions that would have taken years or even centuries of computer time to produce with the tech-
nology of just a few years ago can now be produced in hours, minutes or even seconds. Recent
microprocessor chips can process a billion instructions per second! Second, as you’ll learn in more
advanced computer science courses, there are large numbers of interesting problems for which there
is no known algorithmic approach other than sheer brute force. We investigate many kinds of prob-
lem-solving methodologies in this book. We’ll consider many brute-force approaches to various in-
teresting problems.

4.28 (Calculating Weekly Pay) A company pays its employees as managers (who receive a fixed
weekly salary), hourly workers (who receive a fixed hourly wage for up to the first 40 hours they
work and “time-and-a-half”—i.e., 1.5 times their hourly wage—for overtime hours worked), com-
mission workers (who receive $250 plus 5.7% of their gross weekly sales), or pieceworkers (who re-
ceive a fixed amount of money for each of the items they produce—each pieceworker in this
company works on only one type of item). Write a program to compute the weekly pay for each
employee. You do not know the number of employees in advance. Each type of employee has its
own pay code: Managers have paycode 1, hourly workers have code 2, commission workers have
code 3 and pieceworkers have code 4. Use a switch to compute each employee’s pay based on that
employee’s paycode. Within the switch, prompt the user (i.e., the payroll clerk) to enter the appro-
priate facts your program needs to calculate each employee’s pay based on that employee’s paycode.

π 4 4
3
---– 4

5
--- 4

7
---– 4

9
--- 4

11
------– …+ + +=

138 Chapter 4 C Program Control

4.29 (De Morgan’s Laws) In this chapter, we discussed the logical operators &&, ||, and !. De
Morgan’s Laws can sometimes make it more convenient for us to express a logical expression. These
laws state that the expression !(condition1 && condition2) is logically equivalent to the expression
(!condition1 || !condition2). Also, the expression !(condition1 || condition2) is logically equivalent
to the expression (!condition1 && !condition2). Use De Morgan’s Laws to write equivalent expres-
sions for each of the following, and then write a program to show that both the original expression
and the new expression in each case are equivalent.

a) !(x < 5) && !(y >= 7)
b) !(a == b) || !(g != 5)
c) !((x <= 8) && (y > 4))
d) !((i > 4) || (j <= 6))

4.30 (Replacing switch with if…else) Rewrite the program of Fig. 4.7 by replacing the switch
statement with a nested if…else statement; be careful to deal with the default case properly. Then
rewrite this new version by replacing the nested if…else statement with a series of if statements;
here, too, be careful to deal with the default case properly (this is more difficult than in the nested
if…else version). This exercise demonstrates that switch is a convenience and that any switch
statement can be written with only single-selection statements.

4.31 (Diamond Printing Program) Write a program that prints the following diamond shape.
You may use printf statements that print either a single asterisk (*) or a single blank. Maximize
your use of repetition (with nested for statements) and minimize the number of printf statements.

4.32 (Modified Diamond Printing Program) Modify the program you wrote in Exercise 4.31 to
read an odd number in the range 1 to 19 to specify the number of rows in the diamond. Your pro-
gram should then display a diamond of the appropriate size.

4.33 (Roman Numeral Equivalent of Decimal Values) Write a program that prints a table of all
the Roman numeral equivalents of the decimal numbers in the range 1 to 100.

4.34 Describe the process you would use to replace a do…while loop with an equivalent while
loop. What problem occurs when you try to replace a while loop with an equivalent do…while

loop? Suppose you have been told that you must remove a while loop and replace it with a
do…while. What additional control statement would you need to use and how would you use it to
ensure that the resulting program behaves exactly as the original?

4.35 A criticism of the break statement and the continue statement is that each is unstructured.
Actually, break statements and continue statements can always be replaced by structured state-
ments, although doing so can be awkward. Describe in general how you would remove any break
statement from a loop in a program and replace that statement with some structured equivalent.
[Hint: The break statement leaves a loop from within the body of the loop. The other way to leave
is by failing the loop-continuation test. Consider using in the loop-continuation test a second test
that indicates “early exit because of a ‘break’ condition.”] Use the technique you developed here to
remove the break statement from the program of Fig. 4.11.

 *

 *

 Making a Difference 139

4.36 What does the following program segment do?

4.37 Describe in general how you would remove any continue statement from a loop in a pro-
gram and replace that statement with some structured equivalent. Use the technique you developed
here to remove the continue statement from the program of Fig. 4.12.

Making a Difference
4.38 (World Population Growth) World population has grown considerably over the centuries.
Continued growth could eventually challenge the limits of breathable air, drinkable water, arable
cropland and other limited resources. There is evidence that growth has been slowing in recent years
and that world population could peak some time this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to investigate various
viewpoints. Get estimates for the current world population and its growth rate (the percentage by
which it’s likely to increase this year). Write a program that calculates world population growth
each year for the next 75 years, using the simplifying assumption that the current growth rate will stay
constant. Print the results in a table. The first column should display the year from year 1 to year
75. The second column should display the anticipated world population at the end of that year.
The third column should display the numerical increase in the world population that would occur
that year. Using your results, determine the year in which the population would be double what it
is today, if this year’s growth rate were to persist.

4.39 (Tax Plan Alternatives; The “FairTax”) There are many proposals to make taxation fairer.
Check out the FairTax initiative in the United States at

www.fairtax.org/site/PageServer?pagename=calculator

Research how the proposed FairTax works. One suggestion is to eliminate income taxes and most
other taxes in favor of a 23% consumption tax on all products and services that you buy. Some
FairTax opponents question the 23% figure and say that because of the way the tax is calculated, it
would be more accurate to say the rate is 30%—check this carefully. Write a program that prompts
the user to enter expenses in various expense categories they have (e.g., housing, food, clothing,
transportation, education, health care, vacations), then prints the estimated FairTax that person
would pay.

1 for (i = 1; i <= 5; i++) {
2 for (j = 1; j <= 3; j++) {
3 for (k = 1; k <= 4; k++)
4 printf("*");
5 printf("\n");
6 }
7 printf("\n");
8 }

www.fairtax.org/site/PageServer?pagename=calculator

5 C Functions

Form ever follows function.
—Louis Henri Sullivan

E pluribus unum.
(One composed of many.)
—Virgil

O! call back yesterday, bid time
return.
—William Shakespeare

Answer me in one word.
—William Shakespeare

There is a point at which
methods devour themselves.
—Frantz Fanon

O b j e c t i v e s
In this chapter, you’ll learn:

■ To construct programs
modularly from small pieces
called functions.

■ Common math functions in
the C Standard Library.

■ To create new functions.

■ The mechanisms used to
pass information between
functions.

■ How the function call/return
mechanism is supported by
the function call stack and
activation records.

■ Simulation techniques using
random number generation.

■ How to write and use
functions that call
themselves.

5.1 Introduction 141

5.1 Introduction
Most computer programs that solve real-world problems are much larger than the pro-
grams presented in the first few chapters. Experience has shown that the best way to de-
velop and maintain a large program is to construct it from smaller pieces or modules, each
of which is more manageable than the original program. This technique is called divide
and conquer. This chapter describes the features of the C language that facilitate the de-
sign, implementation, operation and maintenance of large programs.

5.2 Program Modules in C
Modules in C are called functions. C programs are typically written by combining new
functions you write with “prepackaged” functions available in the C Standard Library.
We discuss both kinds of functions in this chapter. The C Standard Library provides a rich
collection of functions for performing common mathematical calculations, string manip-
ulations, character manipulations, input/output, and many other useful operations. This
makes your job easier, because these functions provide many of the capabilities you need.

Although the Standard Library functions are technically not a part of the C language,
they’re provided with standard C systems. The functions printf, scanf and pow that
we’ve used in previous chapters are Standard Library functions.

5.1 Introduction

5.2 Program Modules in C

5.3 Math Library Functions

5.4 Functions

5.5 Function Definitions

5.6 Function Prototypes

5.7 Function Call Stack and Activation
Records

5.8 Headers

5.9 Calling Functions By Value and By
Reference

5.10 Random Number Generation
5.11 Example: A Game of Chance
5.12 Storage Classes
5.13 Scope Rules
5.14 Recursion
5.15 Example Using Recursion: Fibonacci

Series
5.16 Recursion vs. Iteration

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

Good Programming Practice 5.1
Familiarize yourself with the rich collection of functions in the C Standard Library.

Software Engineering Observation 5.1
Avoid reinventing the wheel. When possible, use C Standard Library functions instead of
writing new functions. This can reduce program development time.

Portability Tip 5.1
Using the functions in the C Standard Library helps make programs more portable.

142 Chapter 5 C Functions

You can write functions to define specific tasks that may be used at many points in a
program. These are sometimes referred to as programmer-defined functions. The actual
statements defining the function are written only once, and the statements are hidden
from other functions.

Functions are invoked by a function call, which specifies the function name and pro-
vides information (as arguments) that the called function needs to perform its designated
task. A common analogy for this is the hierarchical form of management. A boss (the
calling function or caller) asks a worker (the called function) to perform a task and report
back when the task is done (Fig. 5.1). For example, a function needing to display infor-
mation on the screen calls the worker function printf to perform that task, then printf
displays the information and reports back—or returns—to the calling function when its
task is completed. The boss function does not know how the worker function performs its
designated tasks. The worker may call other worker functions, and the boss will be
unaware of this. We’ll soon see how this “hiding” of implementation details promotes
good software engineering. Figure 5.1 shows the main function communicating with sev-
eral worker functions in a hierarchical manner. Note that worker1 acts as a boss function
to worker4 and worker5. Relationships among functions may differ from the hierarchical
structure shown in this figure.

5.3 Math Library Functions
Math library functions allow you to perform certain common mathematical calculations.
We use various math library functions here to introduce the concept of functions. Later in
the book, we’ll discuss many of the other functions in the C Standard Library.

Functions are normally used in a program by writing the name of the function
followed by a left parenthesis followed by the argument (or a comma-separated list of
arguments) of the function followed by a right parenthesis. For example, a programmer
desiring to calculate and print the square root of 900.0 might write

When this statement executes, the math library function sqrt is called to calculate the
square root of the number contained in the parentheses (900.0). The number 900.0 is the

Fig. 5.1 | Hierarchical boss function/worker function relationship.

printf("%.2f", sqrt(900.0));

Boss

Worker2 Worker3Worker1

Worker5Worker4

5.3 Math Library Functions 143

argument of the sqrt function. The preceding statement would print 30.00. The sqrt
function takes an argument of type double and returns a result of type double. All func-
tions in the math library that return floating point values return the data type double.
Note that double values, like float values, can be output using the %f conversion specifi-
cation.

Function arguments may be constants, variables, or expressions. If c1 = 13.0, d = 3.0
and f = 4.0, then the statement

calculates and prints the square root of 13.0 + 3.0 * 4.0 = 25.0, namely 5.00.
Some C math library functions are summarized in Fig. 5.2. In the figure, the variables

x and y are of type double.

Error-Prevention Tip 5.1
Include the math header by using the preprocessor directive #include <math.h> when
using functions in the math library.

printf("%.2f", sqrt(c1 + d * f));

Function Description Example

sqrt(x) square root of x sqrt(900.0) is 30.0
sqrt(9.0) is 3.0

exp(x) exponential function ex exp(1.0) is 2.718282

exp(2.0) is 7.389056

log(x) natural logarithm of x (base e) log(2.718282) is 1.0
log(7.389056) is 2.0

log10(x) logarithm of x (base 10) log10(1.0) is 0.0
log10(10.0) is 1.0
log10(100.0) is 2.0

fabs(x) absolute value of x fabs(13.5) is 13.5
fabs(0.0) is 0.0
fabs(-13.5) is 13.5

ceil(x) rounds x to the smallest integer not less
than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

floor(x) rounds x to the largest integer not
greater than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

pow(x, y) x raised to power y (x y) pow(2, 7) is 128.0
pow(9, .5) is 3.0

fmod(x, y) remainder of x/y as a floating-point
number

fmod(13.657, 2.333) is 1.992

sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0.0

cos(x) trigonometric cosine of x (x in radians) cos(0.0) is 1.0

tan(x) trigonometric tangent of x (x in radians) tan(0.0) is 0.0

Fig. 5.2 | Commonly used math library functions.

144 Chapter 5 C Functions

5.4 Functions
Functions allow you to modularize a program. All variables defined in function definitions
are local variables—they’re known only in the function in which they’re defined. Most
functions have a list of parameters that provide the means for communicating information
between functions. A function’s parameters are also local variables of that function.

There are several motivations for “functionalizing” a program. The divide-and-con-
quer approach makes program development more manageable. Another motivation is
software reusability—using existing functions as building-blocks to create new programs.
Software reusability is a major factor in the object-oriented programming movement that
you’ll learn more about when you study languages derived from C, such as C++, Java and
C# (pronounced “C sharp”). With good function naming and definition, programs can
be created from standardized functions that accomplish specific tasks, rather than being
built by using customized code. This is known as abstraction. We use abstraction each
time we use standard library functions like printf, scanf and pow. A third motivation is
to avoid repeating code in a program. Packaging code as a function allows the code to be
executed from several locations in a program simply by calling the function.

5.5 Function Definitions
Each program we’ve presented has consisted of a function called main that called standard
library functions to accomplish its tasks. We now consider how to write custom functions.
Consider a program that uses a function square to calculate and print the squares of the
integers from 1 to 10 (Fig. 5.3).

Software Engineering Observation 5.2
In programs containing many functions, main is often implemented as a group of calls to
functions that perform the bulk of the program’s work.

Software Engineering Observation 5.3
Each function should be limited to performing a single, well-defined task, and the function
name should express that task. This facilitates abstraction and promotes software reusability.

Software Engineering Observation 5.4
If you cannot choose a concise name that expresses what the function does, it’s possible that
your function is attempting to perform too many diverse tasks. It’s usually best to break
such a function into several smaller functions—sometimes called decomposition.

Good Programming Practice 5.2
Place a blank line between function definitions to separate the functions and enhance pro-
gram readability.

1 /* Fig. 5.3: fig05_03.c
2 Creating and using a programmer-defined function */
3 #include <stdio.h>

Fig. 5.3 | Using a programmer-defined function. (Part 1 of 2.)

5.5 Function Definitions 145

Function square is invoked or called in main within the printf statement (line 14)

Function square receives a copy of the value of x in the parameter y (line 22). Then
square calculates y * y (line 24). The result is passed back to function printf in main
where square was invoked (line 14), and printf displays the result. This process is repeat-
ed 10 times using the for repetition statement.

The definition of function square shows that square expects an integer parameter y.
The keyword int preceding the function name (line 22) indicates that square returns an
integer result. The return statement in square passes the result of the calculation back to
the calling function.

Line 5

is a function prototype. The int in parentheses informs the compiler that square expects
to receive an integer value from the caller. The int to the left of the function name square
informs the compiler that square returns an integer result to the caller. The compiler re-
fers to the function prototype to check that calls to square (line 14) contain the correct
return type, the correct number of arguments, the correct argument types, and that the
arguments are in the correct order. Function prototypes are discussed in detail in
Section 5.6.

4
5
6
7 /* function main begins program execution */
8 int main(void)
9 {

10 int x; /* counter */
11
12 /* loop 10 times and calculate and output square of x each time */
13 for (x = 1; x <= 10; x++) {
14 printf("%d ",); /* function call */
15 } /* end for */
16
17 printf("\n");
18 return 0; /* indicates successful termination */
19 } /* end main */
20
21
22
23
24
25

1 4 9 16 25 36 49 64 81 100

printf("%d ", square(x)); /* function call */

int square(int y); /* function prototype */

Fig. 5.3 | Using a programmer-defined function. (Part 2 of 2.)

int square(int y); /* function prototype */

square(x)

/* square function definition returns square of parameter */
int square(int y) /* y is a copy of argument to function */
{
 return y * y; /* returns square of y as an int */
} /* end function square */

146 Chapter 5 C Functions

The format of a function definition is

The function-name is any valid identifier. The return-value-type is the data type of the re-
sult returned to the caller. The return-value-type void indicates that a function does not
return a value. Together, the return-value-type, function-name and parameter-list are some-
times referred to as the function header.

The parameter-list is a comma-separated list that specifies the parameters received by
the function when it’s called. If a function does not receive any values, parameter-list is
void. A type must be listed explicitly for each parameter.

The definitions and statements within braces form the function body. The function
body is also referred to as a block. Variables can be declared in any block, and blocks can
be nested. A function cannot be defined inside another function.

return-value-type function-name(parameter-list)
{

definitions
statements

}

Common Programming Error 5.1
Forgetting to return a value from a function that is supposed to return a value can lead to
unexpected errors. The C standard states that the result of this omission is undefined.

Common Programming Error 5.2
Returning a value from a function with a void return type is a compilation error.

Common Programming Error 5.3
Specifying function parameters of the same type as double x, y instead of double x, dou-
ble y results in a compilation error.

Common Programming Error 5.4
Placing a semicolon after the right parenthesis enclosing the parameter list of a function
definition is a syntax error.

Common Programming Error 5.5
Defining a parameter again as a local variable in a function is a compilation error.

Good Programming Practice 5.3
Although it’s not incorrect to do so, do not use the same names for a function’s arguments
and the corresponding parameters in the function definition. This helps avoid ambiguity.

Common Programming Error 5.6
Defining a function inside another function is a syntax error.

Good Programming Practice 5.4
Choosing meaningful function names and meaningful parameter names makes programs
more readable and helps avoid excessive use of comments.

5.5 Function Definitions 147

There are three ways to return control from a called function to the point at which a
function was invoked. If the function does not return a result, control is returned simply
when the function-ending right brace is reached, or by executing the statement

If the function does return a result, the statement

returns the value of expression to the caller.

Function maximum
Our second example uses a programmer-defined function maximum to determine and re-
turn the largest of three integers (Fig. 5.4). The three integers are input with scanf1 (line
15). Next, the integers are passed to maximum (line 19), which determines the largest inte-
ger. This value is returned to main by the return statement in maximum (line 37). The val-
ue returned is then printed in the printf statement (line 19).

Software Engineering Observation 5.5
A function should generally be no longer than one page. Better yet, functions should
generally be no longer than half a page. Small functions promote software reusability.

Software Engineering Observation 5.6
Programs should be written as collections of small functions. This makes programs easier
to write, debug, maintain and modify.

Software Engineering Observation 5.7
A function requiring a large number of parameters may be performing too many tasks.
Consider dividing the function into smaller functions that perform the separate tasks. The
function header should fit on one line if possible.

Software Engineering Observation 5.8
The function prototype, function header and function calls should all agree in the number,
type, and order of arguments and parameters, and in the type of return value.

return;

return expression;

1. Many C library functions, like scanf, return values indicating whether they performed their task suc-
cessfuly. In production code, you should test these return values to ensure that your program is op-
erating properly. Read the documentation for each library function you use to learn about its return
values. The site wpollock.com/CPlus/PrintfRef.htm#scanfRetCode discusses how to process re-
turn values from function scanf.

1 /* Fig. 5.4: fig05_04.c
2 Finding the maximum of three integers */
3 #include <stdio.h>
4
5
6

Fig. 5.4 | Finding the maximum of three integers. (Part 1 of 2.)

int maximum(int x, int y, int z); /* function prototype */

148 Chapter 5 C Functions

5.6 Function Prototypes
One of the most important features of C is the function prototype. This feature was bor-
rowed by the C standard committee from the developers of C++. A function prototype
tells the compiler the type of data returned by the function, the number of parameters the
function expects to receive, the types of the parameters, and the order in which these pa-
rameters are expected. The compiler uses function prototypes to validate function calls.

7 /* function main begins program execution */
8 int main(void)
9 {

10 int number1; /* first integer */
11 int number2; /* second integer */
12 int number3; /* third integer */
13
14 printf("Enter three integers: ");
15 scanf("%d%d%d", &number1, &number2, &number3);
16
17 /* number1, number2 and number3 are arguments
18 to the maximum function call */
19 printf("Maximum is: %d\n",);
20 return 0; /* indicates successful termination */
21 } /* end main */
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Enter three integers: 22 85 17
Maximum is: 85

Enter three integers: 85 22 17
Maximum is: 85

Enter three integers: 22 17 85
Maximum is: 85

Fig. 5.4 | Finding the maximum of three integers. (Part 2 of 2.)

maximum(number1, number2, number3)

/* Function maximum definition */
/* x, y and z are parameters */
int maximum(int x, int y, int z)
{
 int max = x; /* assume x is largest */

 if (y > max) { /* if y is larger than max, assign y to max */
 max = y;
 } /* end if */

 if (z > max) { /* if z is larger than max, assign z to max */
 max = z;
 } /* end if */

 return max; /* max is largest value */
} /* end function maximum */

5.6 Function Prototypes 149

Previous versions of C did not perform this kind of checking, so it was possible to call
functions improperly without the compiler detecting the errors. Such calls could result in
fatal execution-time errors or nonfatal errors that caused subtle, difficult-to-detect logic er-
rors. Function prototypes correct this deficiency.

The function prototype for maximum in Fig. 5.4 (line 5) is

This function prototype states that maximum takes three arguments of type int and returns
a result of type int. Notice that the function prototype is the same as the first line of the
function definition of maximum.

A function call that does not match the function prototype is a compilation error. An
error is also generated if the function prototype and the function definition disagree. For
example, in Fig. 5.4, if the function prototype had been written

the compiler would generate an error because the void return type in the function proto-
type would differ from the int return type in the function header.

Another important feature of function prototypes is the coercion of arguments, i.e.,
the forcing of arguments to the appropriate type. For example, the math library function
sqrt can be called with an integer argument even though the function prototype in
<math.h> specifies a double argument, and the function will still work correctly. The
statement

correctly evaluates sqrt(4), and prints the value 2.000. The function prototype causes
the compiler to convert the integer value 4 to the double value 4.0 before the value is
passed to sqrt. In general, argument values that do not correspond precisely to the param-
eter types in the function prototype are converted to the proper type before the function
is called. These conversions can lead to incorrect results if C’s promotion rules are not fol-
lowed. The promotion rules specify how types can be converted to other types without los-
ing data. In our sqrt example above, an int is automatically converted to a double

Good Programming Practice 5.5
Include function prototypes for all functions to take advantage of C’s type-checking ca-
pabilities. Use #include preprocessor directives to obtain function prototypes for the stan-
dard library functions from the headers for the appropriate libraries, or to obtain headers
containing function prototypes for functions developed by you and/or your group members.

int maximum(int x, int y, int z); /* function prototype */

Good Programming Practice 5.6
Parameter names are sometimes included in function prototypes (our preference) for doc-
umentation purposes. The compiler ignores these names.

Common Programming Error 5.7
Forgetting the semicolon at the end of a function prototype is a syntax error.

void maximum(int x, int y, int z);

printf("%.3f\n", sqrt(4));

150 Chapter 5 C Functions

without changing its value. However, a double converted to an int truncates the fraction-
al part of the double value. Converting large integer types to small integer types (e.g., long
to short) may also result in changed values.

The promotion rules automatically apply to expressions containing values of two or
more data types (also referred to as mixed-type expressions). The type of each value in a
mixed-type expression is automatically promoted to the “highest” type in the expression
(actually a temporary version of each value is created and used for the expression—the
original values remain unchanged). Figure 5.5 lists the data types in order from highest
type to lowest type with each type’s printf and scanf conversion specifications.

Converting values to lower types normally results in an incorrect value. Therefore, a
value can be converted to a lower type only by explicitly assigning the value to a variable of
lower type, or by using a cast operator. Function argument values are converted to the
parameter types in a function prototype as if they were being assigned directly to variables
of those types. If our square function that uses an integer parameter (Fig. 5.3) is called with
a floating-point argument, the argument is converted to int (a lower type), and square
usually returns an incorrect value. For example, square(4.5) returns 16, not 20.25.

If there is no function prototype for a function, the compiler forms its own function
prototype using the first occurrence of the function—either the function definition or a
call to the function. This typically leads to warnings or errors, depending on the compiler.

Data type
printf conversion
specification

scanf conversion
specification

long double %Lf %Lf

double %f %lf

float %f %f

unsigned long int %lu %lu

long int %ld %ld

unsigned int %u %u

int %d %d

unsigned short %hu %hu

short %hd %hd

char %c %c

Fig. 5.5 | Promotion hierarchy for data types.

Common Programming Error 5.8
Converting from a higher data type in the promotion hierarchy to a lower type can change
the data value. Many compilers issue warnings in such cases.

Error-Prevention Tip 5.2
Always include function prototypes for the functions you define or use in your program to
help prevent compilation errors and warnings.

5.7 Function Call Stack and Activation Records 151

5.7 Function Call Stack and Activation Records
To understand how C performs function calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. Students can think of a stack as
analogous to a pile of dishes. When a dish is placed on the pile, it’s normally placed at the
top (referred to as pushing the dish onto the stack). Similarly, when a dish is removed from
the pile, it’s always removed from the top (referred to as popping the dish off the stack).
Stacks are known as last-in, first-out (LIFO) data structures—the last item pushed (insert-
ed) on the stack is the first item popped (removed) from the stack.

When a program calls a function, the called function must know how to return to its
caller, so the return address of the calling function is pushed onto the program execution
stack (sometimes referred to as the function call stack). If a series of function calls occurs,
the successive return addresses are pushed onto the stack in last-in, first-out order so that
each function can return to its caller.

The program execution stack also contains the memory for the local variables used in
each invocation of a function during a program’s execution. This data, stored as a portion
of the program execution stack, is known as the activation record or stack frame of the
function call. When a function call is made, the activation record for that function call is
pushed onto the program execution stack. When the function returns to its caller, the acti-
vation record for this function call is popped off the stack and those local variables are no
longer known to the program.

Of course, the amount of memory in a computer is finite, so only a certain amount
of memory can be used to store activation records on the program execution stack. If more
function calls occur than can have their activation records stored on the program execution
stack, an error known as a stack overflow occurs.

5.8 Headers
Each standard library has a corresponding header containing the function prototypes for
all the functions in that library and definitions of various data types and constants needed
by those functions. Figure 5.6 lists alphabetically some of the standard library headers that
may be included in programs. The term “macros” that is used several times in Fig. 5.6 is
discussed in detail in Chapter 13, C Preprocessor.

You can create custom headers. Programmer-defined headers should also use the .h
filename extension. A programmer-defined header can be included by using the #include
preprocessor directive. For example, if the prototype for our square function was located
in the header square.h, we’d include that header in our program by using the following
directive at the top of the program:

Section 13.2 presents additional information on including headers.

Software Engineering Observation 5.9
A function prototype placed outside any function definition applies to all calls to the
function appearing after the function prototype in the file. A function prototype placed in
a function applies only to calls made in that function.

#include "square.h"

152 Chapter 5 C Functions

5.9 Calling Functions By Value and By Reference
There are two ways to invoke functions in many programming languages—call-by-value
and call-by-reference. When arguments are passed by value, a copy of the argument’s value
is made and passed to the called function. Changes to the copy do not affect an original
variable’s value in the caller. When an argument is passed by reference, the caller allows
the called function to modify the original variable’s value.

Call-by-value should be used whenever the called function does not need to modify
the value of the caller’s original variable. This prevents the accidental side effects (variable
modifications) that so greatly hinder the development of correct and reliable software sys-
tems. Call-by-reference should be used only with trusted called functions that need to
modify the original variable.

In C, all calls are by value. As we’ll see in Chapter 7, it’s possible to simulate call-by-
reference by using address operators and indirection operators. In Chapter 6, we’ll see that

Header Explanation

<assert.h> Contains macros and information for adding diagnostics that aid program
debugging.

<ctype.h> Contains function prototypes for functions that test characters for certain
properties, and function prototypes for functions that can be used to convert
lowercase letters to uppercase letters and vice versa.

<errno.h> Defines macros that are useful for reporting error conditions.

<float.h> Contains the floating-point size limits of the system.

<limits.h> Contains the integral size limits of the system.

<locale.h> Contains function prototypes and other information that enables a program to
be modified for the current locale on which it’s running. The notion of locale
enables the computer system to handle different conventions for expressing
data like dates, times, dollar amounts and large numbers throughout the world.

<math.h> Contains function prototypes for math library functions.

<setjmp.h> Contains function prototypes for functions that allow bypassing of the usual
function call and return sequence.

<signal.h> Contains function prototypes and macros to handle various conditions that
may arise during program execution.

<stdarg.h> Defines macros for dealing with a list of arguments to a function whose num-
ber and types are unknown.

<stddef.h> Contains common type definitions used by C for performing calculations.

<stdio.h> Contains function prototypes for the standard input/output library functions,
and information used by them.

<stdlib.h> Contains function prototypes for conversions of numbers to text and text to
numbers, memory allocation, random numbers, and other utility functions.

<string.h> Contains function prototypes for string-processing functions.

<time.h> Contains function prototypes and types for manipulating the time and date.

Fig. 5.6 | Some of the standard library headers.

5.10 Random Number Generation 153

arrays are automatically passed by reference. We’ll have to wait until Chapter 7 for a full
understanding of this complex issue. For now, we concentrate on call-by-value.

5.10 Random Number Generation
We now take a brief and, hopefully, entertaining diversion into a popular programming
application, namely simulation and game playing. In this and the next section, we’ll de-
velop a nicely structured game-playing program that includes multiple functions. The pro-
gram uses most of the control structures we’ve studied. The element of chance can be
introduced into computer applications by using the C Standard Library function rand
from the <stdlib.h> header.

Consider the following statement:

The rand function generates an integer between 0 and RAND_MAX (a symbolic constant de-
fined in the <stdlib.h> header). Standard C states that the value of RAND_MAX must be at
least 32767, which is the maximum value for a two-byte (i.e., 16-bit) integer. The pro-
grams in this section were tested on a C system with a maximum value of 32767 for
RAND_MAX. If rand truly produces integers at random, every number between 0 and
RAND_MAX has an equal chance (or probability) of being chosen each time rand is called.

The range of values produced directly by rand is often different from what is needed
in a specific application. For example, a program that simulates coin tossing might require
only 0 for “heads” and 1 for “tails.” A dice-rolling program that simulates a six-sided die
would require random integers from 1 to 6.

Rolling a Six-Sided Die
To demonstrate rand, let’s develop a program to simulate 20 rolls of a six-sided die and
print the value of each roll. The function prototype for function rand is in <stdlib.h>.
We use the remainder operator (%) in conjunction with rand as follows

to produce integers in the range 0 to 5. This is called scaling. The number 6 is called the
scaling factor. We then shift the range of numbers produced by adding 1 to our previous
result. The output of Fig. 5.7 confirms that the results are in the range 1 to 6—the output
might vary by compiler.

i = rand();

rand() % 6

1 /* Fig. 5.7: fig05_07.c
2 Shifted, scaled integers produced by 1 + rand() % 6 */
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 /* function main begins program execution */
7 int main(void)
8 {
9 int i; /* counter */

10

Fig. 5.7 | Shifted, scaled random integers produced by 1 + rand() % 6. (Part 1 of 2.)

154 Chapter 5 C Functions

Rolling a Six-Sided Die 6000 Times
To show that these numbers occur approximately with equal likelihood, let’s simulate
6000 rolls of a die with the program of Fig. 5.8. Each integer from 1 to 6 should appear
approximately 1000 times.

As the program output shows, by scaling and shifting we’ve used the rand function to
realistically simulate the rolling of a six-sided die. No default case is provided in the
switch statement. Also note the use of the %s conversion specifier to print the character
strings "Face" and "Frequency" as column headers (line 53). After we study arrays in
Chapter 6, we’ll show how to replace this entire switch statement elegantly with a single-
line statement.

11 /* loop 20 times */
12 for (i = 1; i <= 20; i++) {
13
14 /* pick random number from 1 to 6 and output it */
15 printf("%10d",);
16
17 /* if counter is divisible by 5, begin new line of output */
18 if (i % 5 == 0) {
19 printf("\n");
20 } /* end if */
21 } /* end for */
22
23 return 0; /* indicates successful termination */
24 } /* end main */

 6 6 5 5 6
 5 1 1 5 3
 6 6 2 4 2
 6 2 3 4 1

1 /* Fig. 5.8: fig05_08.c
2 Roll a six-sided die 6000 times */
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 /* function main begins program execution */
7 int main(void)
8 {
9 int frequency1 = 0; /* rolled 1 counter */

10 int frequency2 = 0; /* rolled 2 counter */
11 int frequency3 = 0; /* rolled 3 counter */
12 int frequency4 = 0; /* rolled 4 counter */
13 int frequency5 = 0; /* rolled 5 counter */
14 int frequency6 = 0; /* rolled 6 counter */
15
16 int roll; /* roll counter, value 1 to 6000 */

Fig. 5.8 | Rolling a six-sided die 6000 times. (Part 1 of 2.)

Fig. 5.7 | Shifted, scaled random integers produced by 1 + rand() % 6. (Part 2 of 2.)

1 + (rand() % 6)

5.10 Random Number Generation 155

17 int face; /* represents one roll of the die, value 1 to 6 */
18
19 /* loop 6000 times and summarize results */
20 for (roll = 1; roll <= 6000; roll++) {
21 face = 1 + rand() % 6; /* random number from 1 to 6 */
22
23 /* determine face value and increment appropriate counter */
24 switch (face) {
25
26 case 1: /* rolled 1 */
27 ++frequency1;
28 break;
29
30 case 2: /* rolled 2 */
31 ++frequency2;
32 break;
33
34 case 3: /* rolled 3 */
35 ++frequency3;
36 break;
37
38 case 4: /* rolled 4 */
39 ++frequency4;
40 break;
41
42 case 5: /* rolled 5 */
43 ++frequency5;
44 break;
45
46 case 6: /* rolled 6 */
47 ++frequency6;
48 break; /* optional */
49 } /* end switch */
50 } /* end for */
51
52 /* display results in tabular format */
53 printf(" \n", "Face", "Frequency");
54 printf(" 1%13d\n", frequency1);
55 printf(" 2%13d\n", frequency2);
56 printf(" 3%13d\n", frequency3);
57 printf(" 4%13d\n", frequency4);
58 printf(" 5%13d\n", frequency5);
59 printf(" 6%13d\n", frequency6);
60 return 0; /* indicates successful termination */
61 } /* end main */

Face Frequency
 1 1003
 2 1017
 3 983
 4 994
 5 1004
 6 999

Fig. 5.8 | Rolling a six-sided die 6000 times. (Part 2 of 2.)

%s%13s

156 Chapter 5 C Functions

Randomizing the Random Number Generator
Executing the program of Fig. 5.7 again produces

Notice that exactly the same sequence of values was printed. How can these be random
numbers? Ironically, this repeatability is an important characteristic of function rand.
When debugging a program, this repeatability is essential for proving that corrections to a
program work properly.

Function rand actually generates pseudorandom numbers. Calling rand repeatedly
produces a sequence of numbers that appears to be random. However, the sequence
repeats itself each time the program is executed. Once a program has been thoroughly
debugged, it can be conditioned to produce a different sequence of random numbers for
each execution. This is called randomizing and is accomplished with the standard library
function srand. Function srand takes an unsigned integer argument and seeds function
rand to produce a different sequence of random numbers for each execution of the
program.

We demonstrate srand in Fig. 5.9. In the program, we use the data type unsigned,
which is short for unsigned int. An int is stored in at least two bytes of memory and can
have positive and negative values. A variable of type unsigned is also stored in at least two
bytes of memory. A two-byte unsigned int can have only positive values in the range 0 to
65535. A four-byte unsigned int can have only positive values in the range 0 to
4294967295. Function srand takes an unsigned value as an argument. The conversion
specifier %u is used to read an unsigned value with scanf. The function prototype for
srand is found in <stdlib.h>.

 6 6 5 5 6
 5 1 1 5 3
 6 6 2 4 2
 6 2 3 4 1

1 /* Fig. 5.9: fig05_09.c
2 Randomizing die-rolling program */
3 #include <stdlib.h>
4 #include <stdio.h>
5
6 /* function main begins program execution */
7 int main(void)
8 {
9 int i; /* counter */

10
11
12 printf("Enter seed: ");
13 scanf("%u", &seed); /* note %u for unsigned */
14
15 /* seed random number generator */
16

Fig. 5.9 | Randomizing the die-rolling program. (Part 1 of 2.)

unsigned seed; /* number used to seed random number generator */

srand(seed);

5.10 Random Number Generation 157

Let’s run the program several times and observe the results. Notice that a different
sequence of random numbers is obtained each time the program is run, provided that a
different seed is supplied.

To randomize without entering a seed each time, use a statement like

This causes the computer to read its clock to obtain the value for the seed automatically.
Function time returns the number of seconds that have passed since midnight on January
1, 1970. This value is converted to an unsigned integer and used as the seed to the random
number generator. Function time takes NULL as an argument (time is capable of providing
you with a string representing the value it returns; NULL disables this capability for a spe-
cific call to time). The function prototype for time is in <time.h>.

Generalized Scaling and Shifting of Random Numbers
The values produced directly by rand are always in the range:

17 /* loop 10 times */
18 for (i = 1; i <= 10; i++) {
19
20 /* pick a random number from 1 to 6 and output it */
21 printf("%10d", 1 + (rand() % 6));
22
23 /* if counter is divisible by 5, begin a new line of output */
24 if (i % 5 == 0) {
25 printf("\n");
26 } /* end if */
27 } /* end for */
28
29 return 0; /* indicates successful termination */
30 } /* end main */

Enter seed: 67
 6 1 4 6 2
 1 6 1 6 4

Enter seed: 867
 2 4 6 1 6
 1 1 3 6 2

Enter seed: 67
 6 1 4 6 2
 1 6 1 6 4

srand(time(NULL));

0 ≤ rand() ≤ RAND_MAX

Fig. 5.9 | Randomizing the die-rolling program. (Part 2 of 2.)

158 Chapter 5 C Functions

As you know, the following statement simulates rolling a six-sided die:

This statement always assigns an integer value (at random) to the variable face in the range
1 ≤face ≤6. The width of this range (i.e., the number of consecutive integers in the
range) is 6 and the starting number in the range is 1. Referring to the preceding statement,
we see that the width of the range is determined by the number used to scale rand with
the remainder operator (i.e., 6), and the starting number of the range is equal to the num-
ber (i.e., 1) that is added to rand % 6. We can generalize this result as follows

where a is the shifting value (which is equal to the first number in the desired range of
consecutive integers) and b is the scaling factor (which is equal to the width of the desired
range of consecutive integers). In the exercises, we’ll see that it’s possible to choose integers
at random from sets of values other than ranges of consecutive integers.

5.11 Example: A Game of Chance
One of the most popular games of chance is a dice game known as “craps,” which is played
in casinos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5, and 6
spots. After the dice have come to rest, the sum of the spots on the two upward faces is
calculated. If the sum is 7 or 11 on the first throw, the player wins. If the sum is 2, 3,
or 12 on the first throw (called “craps”), the player loses (i.e., the “house” wins). If the
sum is 4, 5, 6, 8, 9, or 10 on the first throw, then that sum becomes the player’s
“point.” To win, you must continue rolling the dice until you “make your point.” The
player loses by rolling a 7 before making the point.

Figure 5.10 simulates the game of craps and Fig. 5.11 shows several sample executions.

face = 1 + rand() % 6;

n = a + rand() % b;

Common Programming Error 5.9
Using srand in place of rand to generate random numbers.

1 /* Fig. 5.10: fig05_10.c
2 Craps */
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h> /* contains prototype for function time */
6
7 /* enumeration constants represent game status */
8
9

10
11
12 /* function main begins program execution */
13 int main(void)
14 {

Fig. 5.10 | Program to simulate the game of craps. (Part 1 of 3.)

enum Status { CONTINUE, WON, LOST };

int rollDice(void); /* function prototype */

5.11 Example: A Game of Chance 159

15 int sum; /* sum of rolled dice */
16 int myPoint; /* point earned */
17
18 /* can contain CONTINUE, WON, or LOST */
19
20 /* randomize random number generator using current time */
21
22
23
24
25 /* determine game status based on sum of dice */
26 switch(sum) {
27
28 /* win on first roll */
29 case 7:
30 case 11:
31 gameStatus = WON;
32 break;
33
34 /* lose on first roll */
35 case 2:
36 case 3:
37 case 12:
38 gameStatus = LOST;
39 break;
40
41 /* remember point */
42 default:
43 gameStatus = CONTINUE;
44 myPoint = sum;
45 printf("Point is %d\n", myPoint);
46 break; /* optional */
47 } /* end switch */
48
49 /* while game not complete */
50 while (gameStatus == CONTINUE) {
51
52
53 /* determine game status */
54 if (sum == myPoint) { /* win by making point */
55 gameStatus = WON; /* game over, player won */
56 } /* end if */
57 else {
58 if (sum == 7) { /* lose by rolling 7 */
59 gameStatus = LOST; /* game over, player lost */
60 } /* end if */
61 } /* end else */
62 } /* end while */
63
64 /* display won or lost message */
65 if (gameStatus == WON) { /* did player win? */
66 printf("Player wins\n");
67 } /* end if */

Fig. 5.10 | Program to simulate the game of craps. (Part 2 of 3.)

enum Status gameStatus;

srand(time(NULL));

sum = rollDice(); /* first roll of the dice */

sum = rollDice(); /* roll dice again */

160 Chapter 5 C Functions

In the rules of the game, notice that the player must roll two dice on the first roll, and
must do so later on all subsequent rolls. We define a function rollDice to roll the dice
and compute and print their sum. Function rollDice is defined once, but it’s called from

68 else { /* player lost */
69 printf("Player loses\n");
70 } /* end else */
71
72 return 0; /* indicates successful termination */
73 } /* end main */
74
75 /* roll dice, calculate sum and display results */
76
77 {
78 int die1; /* first die */
79 int die2; /* second die */
80 int workSum; /* sum of dice */
81
82 die1 = 1 + (rand() % 6); /* pick random die1 value */
83 die2 = 1 + (rand() % 6); /* pick random die2 value */
84 workSum = die1 + die2; /* sum die1 and die2 */
85
86 /* display results of this roll */
87 printf("Player rolled %d + %d = %d\n", die1, die2, workSum);
88 return workSum; /* return sum of dice */
89 } /* end function rollRice */

Player rolled 5 + 6 = 11
Player wins

Player rolled 4 + 1 = 5
Point is 5
Player rolled 6 + 2 = 8
Player rolled 2 + 1 = 3
Player rolled 3 + 2 = 5
Player wins

Player rolled 1 + 1 = 2
Player loses

Player rolled 6 + 4 = 10
Point is 10
Player rolled 3 + 4 = 7
Player loses

Fig. 5.11 | Sample runs for the game of craps.

Fig. 5.10 | Program to simulate the game of craps. (Part 3 of 3.)

int rollDice(void)

5.12 Storage Classes 161

two places in the program (lines 23 and 51). Interestingly, rollDice takes no arguments,
so we’ve indicated void in the parameter list (line 76). Function rollDice does return the
sum of the two dice, so a return type of int is indicated in the function header.

The game is reasonably involved. The player may win or lose on the first roll, or may
win or lose on any subsequent roll. Variable gameStatus, defined to be of a new type—
enum Status—stores the current status. Line 8 creates a programmer-defined type called
an enumeration. An enumeration, introduced by the keyword enum, is a set of integer con-
stants represented by identifiers. Enumeration constants are sometimes called symbolic
constants. Values in an enum start with 0 and are incremented by 1. In line 8, the constant
CONTINUE has the value 0, WON has the value 1 and LOST has the value 2. It’s also possible to
assign an integer value to each identifier in an enum (see Chapter 10). The identifiers in an
enumeration must be unique, but the values may be duplicated.

When the game is won, either on the first roll or on a subsequent roll, gameStatus is
set to WON. When the game is lost, either on the first roll or on a subsequent roll, game-
Status is set to LOST. Otherwise gameStatus is set to CONTINUE and the game continues.

After the first roll, if the game is over, the while statement (line 50) is skipped because
gameStatus is not CONTINUE. The program proceeds to the if…else statement at line 65,
which prints "Player wins" if gameStatus is WON and "Player loses" otherwise.

After the first roll, if the game is not over, then sum is saved in myPoint. Execution
proceeds with the while statement (line 50) because gameStatus is CONTINUE. Each time
through the while, rollDice is called to produce a new sum. If sum matches myPoint,
gameStatus is set to WON to indicate that the player won, the while-test fails, the if…else

statement (line 65) prints "Player wins" and execution terminates. If sum is equal to 7
(line 58), gameStatus is set to LOST to indicate that the player lost, the while-test fails, the
if…else statement (line 65) prints "Player loses" and execution terminates.

Note the program’s interesting control architecture. We’ve used two functions—main

and rollDice—and the switch, while, nested if…else and nested if statements. In the
exercises, we’ll investigate various interesting characteristics of the game of craps.

5.12 Storage Classes
In Chapters 2–4, we used identifiers for variable names. The attributes of variables include
name, type, size and value. In this chapter, we also use identifiers as names for user-defined
functions. Actually, each identifier in a program has other attributes, including storage
class, storage duration, scope and linkage.

C provides four storage classes, indicated by the storage class specifiers: auto, reg-
ister, extern and static. An identifier’s storage class determines its storage duration,
scope and linkage. An identifier’s storage duration is the period during which the identi-
fier exists in memory. Some exist briefly, some are repeatedly created and destroyed, and

Common Programming Error 5.10
Assigning a value to an enumeration constant after it has been defined is a syntax error.

Common Programming Error 5.11
Use only uppercase letters in the names of enumeration constants to make these constants
stand out in a program and to indicate that enumeration constants are not variables.

162 Chapter 5 C Functions

others exist for the entire execution of a program. An identifier’s scope is where the iden-
tifier can be referenced in a program. Some can be referenced throughout a program,
others from only portions of a program. An identifier’s linkage determines for a multiple-
source-file program (a topic we’ll investigate in Chapter 14) whether the identifier is
known only in the current source file or in any source file with proper declarations. This
section discusses storage classes and storage duration. Section 5.13 discusses scope.
Chapter 14 discusses identifier linkage and programming with multiple source files.

The four storage-class specifiers can be split into two storage durations: automatic
storage duration and static storage duration. Keywords auto and register are used to
declare variables of automatic storage duration. Variables with automatic storage duration
are created when the block in which they’re defined is entered; they exist while the block
is active, and they’re destroyed when the block is exited.

Local Variables
Only variables can have automatic storage duration. A function’s local variables (those de-
clared in the parameter list or function body) normally have automatic storage duration.
Keyword auto explicitly declares variables of automatic storage duration. For example, the
following declaration indicates that double variables x and y are automatic local variables
and they exist only in the body of the function in which the declaration appears:

Local variables have automatic storage duration by default, so keyword auto is rarely
used. For the remainder of the text, we’ll refer to variables with automatic storage duration
simply as automatic variables.

Register Variables
Data in the machine-language version of a program is normally loaded into registers for
calculations and other processing.

The compiler may ignore register declarations. For example, there may not be a suf-
ficient number of registers available for the compiler to use. The following declaration sug-

auto double x, y;

Performance Tip 5.1
Automatic storage is a means of conserving memory, because automatic variables exist only
when they’re needed. They’re created when a function is entered and destroyed when the
function is exited.

Software Engineering Observation 5.10
Automatic storage is an example of the principle of least privilege—allowing access to
data only when it’s absolutely needed. Why have variables stored in memory and accessible
when in fact they’re not needed?

Performance Tip 5.2
The storage-class specifier register can be placed before an automatic variable dec-
laration to suggest that the compiler maintain the variable in one of the computer’s high-
speed hardware registers. If intensely used variables such as counters or totals can be main-
tained in hardware registers, the overhead of repeatedly loading the variables from mem-
ory into the registers and storing the results back into memory can be eliminated.

5.12 Storage Classes 163

gests that the integer variable counter be placed in one of the computer’s registers and
initialized to 1:

Keyword register can be used only with variables of automatic storage duration.

Static Storage Class
Keywords extern and static are used in the declarations of identifiers for variables and
functions of static storage duration. Identifiers of static storage duration exist from the
time at which the program begins execution. For static variables, storage is allocated and
initialized once, when the program begins execution. For functions, the name of the func-
tion exists when the program begins execution. However, even though the variables and
the function names exist from the start of program execution, this does not mean that
these identifiers can be accessed throughout the program. Storage duration and scope
(where a name can be used) are separate issues, as we’ll see in Section 5.13.

There are two types of identifiers with static storage duration: external identifiers
(such as global variables and function names) and local variables declared with the storage-
class specifier static. Global variables and function names are of storage class extern by
default. Global variables are created by placing variable declarations outside any function
definition, and they retain their values throughout the execution of the program. Global
variables and functions can be referenced by any function that follows their declarations
or definitions in the file. This is one reason for using function prototypes—when we
include stdio.h in a program that calls printf, the function prototype is placed at the
start of our file to make the name printf known to the rest of the file.

Local variables declared with the keyword static are still known only in the function
in which they’re defined, but unlike automatic variables, static local variables retain their
value when the function is exited. The next time the function is called, the static local
variable contains the value it had when the function last exited. The following statement
declares local variable count to be static and to be initialized to 1.

register int counter = 1;

Performance Tip 5.3
Often, register declarations are unnecessary. Today’s optimizing compilers are capable
of recognizing frequently used variables and can decide to place them in registers without
the need for a register declaration.

Software Engineering Observation 5.11
Defining a variable as global rather than local allows unintended side effects to occur
when a function that does not need access to the variable accidentally or maliciously
modifies it. In general, use of global variables should be avoided except in certain
situations with unique performance requirements (as discussed in Chapter 14).

Software Engineering Observation 5.12
Variables used only in a particular function should be defined as local variables in that
function rather than as external variables.

static int count = 1;

164 Chapter 5 C Functions

All numeric variables of static storage duration are initialized to zero if you do not ex-
plicitly initialize them.

Keywords extern and static have special meaning when explicitly applied to
external identifiers. In Chapter 14 we discuss the explicit use of extern and static with
external identifiers and multiple-source-file programs.

5.13 Scope Rules
The scope of an identifier is the portion of the program in which the identifier can be ref-
erenced. For example, when we define a local variable in a block, it can be referenced only
following its definition in that block or in blocks nested within that block. The four iden-
tifier scopes are function scope, file scope, block scope, and function-prototype scope.

Labels (an identifier followed by a colon such as start:) are the only identifiers with
function scope. Labels can be used anywhere in the function in which they appear, but
cannot be referenced outside the function body. Labels are used in switch statements (as
case labels) and in goto statements (see Chapter 14). Labels are implementation details
that functions hide from one another. This hiding—more formally called information
hiding—is a means of implementing the principle of least privilege, one of the most fun-
damental principles of good software engineering.

An identifier declared outside any function has file scope. Such an identifier is
“known” (i.e., accessible) in all functions from the point at which the identifier is declared
until the end of the file. Global variables, function definitions, and function prototypes
placed outside a function all have file scope.

Identifiers defined inside a block have block scope. Block scope ends at the termi-
nating right brace (}) of the block. Local variables defined at the beginning of a function
have block scope as do function parameters, which are considered local variables by the
function. Any block may contain variable definitions. When blocks are nested, and an
identifier in an outer block has the same name as an identifier in an inner block, the iden-
tifier in the outer block is “hidden” until the inner block terminates. This means that while
executing in the inner block, the inner block sees the value of its own local identifier and
not the value of the identically named identifier in the enclosing block. Local variables
declared static still have block scope, even though they exist from the time the program
begins execution. Thus, storage duration does not affect the scope of an identifier.

The only identifiers with function-prototype scope are those used in the parameter
list of a function prototype. As mentioned previously, function prototypes do not require
names in the parameter list—only types are required. If a name is used in the parameter
list of a function prototype, the compiler ignores the name. Identifiers used in a function
prototype can be reused elsewhere in the program without ambiguity.

Common Programming Error 5.12
Accidentally using the same name for an identifier in an inner block as is used for an iden-
tifier in an outer block, when in fact you want the identifier in the outer block to be active
for the duration of the inner block.

Error-Prevention Tip 5.3
Avoid variable names that hide names in outer scopes. This can be accomplished simply
by avoiding the use of duplicate identifiers in a program.

5.13 Scope Rules 165

Figure 5.12 demonstrates scoping issues with global variables, automatic local vari-
ables, and static local variables. A global variable x is defined and initialized to 1 (line 9).
This global variable is hidden in any block (or function) in which a variable named x is
defined. In main, a local variable x is defined and initialized to 5 (line 14). This variable is
then printed to show that the global x is hidden in main. Next, a new block is defined in
main with another local variable x initialized to 7 (line 19). This variable is printed to show
that it hides x in the outer block of main. The variable x with value 7 is automatically
destroyed when the block is exited, and the local variable x in the outer block of main is
printed again to show that it’s no longer hidden. The program defines three functions that
each take no arguments and return nothing. Function useLocal defines an automatic vari-
able x and initializes it to 25 (line 40). When useLocal is called, the variable is printed,
incremented, and printed again before exiting the function. Each time this function is
called, automatic variable x is reinitialized to 25. Function useStaticLocal defines a
static variable x and initializes it to 50 (line 53). Local variables declared as static retain
their values even when they’re out of scope. When useStaticLocal is called, x is printed,
incremented, and printed again before exiting the function. In the next call to this func-
tion, static local variable x will contain the value 51. Function useGlobal does not define
any variables. Therefore, when it refers to variable x, the global x (line 9) is used. When
useGlobal is called, the global variable is printed, multiplied by 10, and printed again
before exiting the function. The next time function useGlobal is called, the global variable
still has its modified value, 10. Finally, the program prints the local variable x in main again
(line 33) to show that none of the function calls modified the value of x because the func-
tions all referred to variables in other scopes.

1 /* Fig. 5.12: fig05_12.c
2 A scoping example */
3 #include <stdio.h>
4
5 void useLocal(void); /* function prototype */
6 void useStaticLocal(void); /* function prototype */
7 void useGlobal(void); /* function prototype */
8
9

10
11 /* function main begins program execution */
12 int main(void)
13 {
14 int x = 5; /* local variable to main */
15
16 printf("local x in outer scope of main is %d\n", x);
17
18
19
20
21
22
23
24 printf("local x in outer scope of main is %d\n", x);

Fig. 5.12 | Scoping example. (Part 1 of 3.)

int x = 1; /* global variable */

{ /* start new scope */
 int x = 7; /* local variable to new scope */

 printf("local x in inner scope of main is %d\n", x);
} /* end new scope */

166 Chapter 5 C Functions

25
26 useLocal(); /* useLocal has automatic local x */
27 useStaticLocal(); /* useStaticLocal has static local x */
28 useGlobal(); /* useGlobal uses global x */
29 useLocal(); /* useLocal reinitializes automatic local x */
30 useStaticLocal(); /* static local x retains its prior value */
31 useGlobal(); /* global x also retains its value */
32
33 printf("\nlocal x in main is %d\n", x);
34 return 0; /* indicates successful termination */
35 } /* end main */
36
37 /* useLocal reinitializes local variable x during each call */
38 void useLocal(void)
39 {
40
41
42 printf("\nlocal x in useLocal is %d after entering useLocal\n", x);
43 x++;
44 printf("local x in useLocal is %d before exiting useLocal\n", x);
45 } /* end function useLocal */
46
47 /* useStaticLocal initializes static local variable x only the first time
48 the function is called; value of x is saved between calls to this
49 function */
50 void useStaticLocal(void)
51 {
52
53
54
55 printf("\nlocal static x is %d on entering useStaticLocal\n", x);
56 x++;
57 printf("local static x is %d on exiting useStaticLocal\n", x);
58 } /* end function useStaticLocal */
59
60 /* function useGlobal modifies global variable x during each call */
61 void useGlobal(void)
62 {
63 printf("\nglobal x is %d on entering useGlobal\n", x);
64 x *= 10;
65 printf("global x is %d on exiting useGlobal\n", x);
66 } /* end function useGlobal */

local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

Fig. 5.12 | Scoping example. (Part 2 of 3.)

int x = 25; /* initialized each time useLocal is called */

/* initialized only first time useStaticLocal is called */
static int x = 50;

5.14 Recursion 167

5.14 Recursion
The programs we’ve discussed are generally structured as functions that call one another
in a disciplined, hierarchical manner. For some types of problems, it’s useful to have func-
tions call themselves. A recursive function is a function that calls itself either directly or
indirectly through another function. Recursion is a complex topic discussed at length in
upper-level computer science courses. In this section and the next, simple examples of re-
cursion are presented. This book contains an extensive treatment of recursion, which is
spread throughout Chapters 5–8, 12 and Appendix F. Figure 5.17, in Section 5.16, sum-
marizes the 31 recursion examples and exercises in the book.

We consider recursion conceptually first, and then examine several programs con-
taining recursive functions. Recursive problem-solving approaches have a number of ele-
ments in common. A recursive function is called to solve a problem. The function actually
knows how to solve only the simplest case(s), or so-called base case(s). If the function is
called with a base case, the function simply returns a result. If the function is called with
a more complex problem, the function divides the problem into two conceptual pieces: a
piece that the function knows how to do and a piece that it does not know how to do. To
make recursion feasible, the latter piece must resemble the original problem, but be a
slightly simpler or slightly smaller version. Because this new problem looks like the original
problem, the function launches (calls) a fresh copy of itself to go to work on the smaller
problem—this is referred to as a recursive call and is also called the recursion step. The
recursion step also includes the keyword return, because its result will be combined with
the portion of the problem the function knew how to solve to form a result that will be
passed back to the original caller, possibly main.

The recursion step executes while the original call to the function is still open, i.e., it
has not yet finished executing. The recursion step can result in many more such recursive
calls, as the function keeps dividing each problem it’s called with into two conceptual
pieces. In order for the recursion to terminate, each time the function calls itself with a
slightly simpler version of the original problem, this sequence of smaller problems must
eventually converge on the base case. At that point, the function recognizes the base case,
returns a result to the previous copy of the function, and a sequence of returns ensues all
the way up the line until the original call of the function eventually returns the final result

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 51 on entering useStaticLocal
local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5

Fig. 5.12 | Scoping example. (Part 3 of 3.)

168 Chapter 5 C Functions

to main. All of this sounds quite exotic compared to the kind of problem solving we’ve
been using with conventional function calls to this point. Indeed, it takes a great deal of
practice writing recursive programs before the process will appear natural. As an example
of these concepts at work, let’s write a recursive program to perform a popular mathemat-
ical calculation.

Recursively Calculating Factorials
The factorial of a nonnegative integer n, written n! (and pronounced “n factorial”), is the
product

with 1! equal to 1, and 0! defined to be 1. For example, 5! is the product 5 * 4 * 3 * 2 * 1,
which is equal to 120.

The factorial of an integer, number, greater than or equal to 0 can be calculated
iteratively (nonrecursively) using a for statement as follows:

A recursive definition of the factorial function is arrived at by observing the following
relationship:

For example, 5! is clearly equal to 5 * 4! as is shown by the following:

The evaluation of 5! would proceed as shown in Fig. 5.13. Figure 5.13(a) shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1, which terminates the
recursion. Figure 5.13(b) shows the values returned from each recursive call to its caller
until the final value is calculated and returned.

Figure 5.14 uses recursion to calculate and print the factorials of the integers 0–10
(the choice of the type long will be explained momentarily). The recursive factorial
function first tests whether a terminating condition is true, i.e., whether number is less than
or equal to 1. If number is indeed less than or equal to 1, factorial returns 1, no further
recursion is necessary, and the program terminates. If number is greater than 1, the state-
ment

expresses the problem as the product of number and a recursive call to factorial evaluat-
ing the factorial of number - 1. The call factorial(number - 1) is a slightly simpler prob-
lem than the original calculation factorial(number).

Function factorial (line 22) has been declared to receive a parameter of type long
and return a result of type long. This is shorthand notation for long int. The C standard
specifies that a variable of type long int is stored in at least 4 bytes, and thus may hold a
value as large as +2147483647. As can be seen in Fig. 5.14, factorial values become large
quickly. We’ve chosen the data type long so the program can calculate factorials greater

n · (n –1) · (n – 2) · … · 1

factorial = 1;

for (counter = number; counter >= 1; counter--)
factorial *= counter;

n! = n · (n – 1)!

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

return number * factorial(number - 1);

5.14 Recursion 169

Fig. 5.13 | Recursive evaluation of 5!.

1 /* Fig. 5.14: fig05_14.c
2 Recursive factorial function */
3 #include <stdio.h>
4
5
6
7 /* function main begins program execution */
8 int main(void)
9 {

10 int i; /* counter */
11
12 /* loop 11 times; during each iteration, calculate
13 factorial(i) and display result */
14 for (i = 0; i <= 10; i++) {
15 printf("%2d! = %ld\n", i,);
16 } /* end for */
17
18 return 0; /* indicates successful termination */
19 } /* end main */
20
21
22
23
24
25
26
27

Fig. 5.14 | Calculating factorials with a recursive function. (Part 1 of 2.)

(a) Sequence of recursive calls.

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

(b) Values returned from each recursive call.

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

long factorial(long number); /* function prototype */

factorial(i)

/* recursive definition of function factorial */
long factorial(long number)
{
 /* base case */
 if (number <= 1) {
 return 1;
 } /* end if */

170 Chapter 5 C Functions

than 7! on computers with small (such as 2-byte) integers. The conversion specifier %ld is
used to print long values. Unfortunately, the factorial function produces large values so
quickly that even long int does not help us print many factorial values before the size of
a long int variable is exceeded.

As we’ll explore in the exercises, double may ultimately be needed by the user desiring
to calculate factorials of larger numbers. This points to a weakness in C (and most other
procedural programming languages), namely that the language is not easily extended to
handle the unique requirements of various applications. As we’ll see later in the book, C++
is an extensible language that, through “classes,” allows us to create arbitrarily large inte-
gers if we wish.

5.15 Example Using Recursion: Fibonacci Series
The Fibonacci series

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the
sum of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of
successive Fibonacci numbers converges to a constant value of 1.618…. This number, too,

28
29
30
31

 0! = 1
 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
10! = 3628800

Common Programming Error 5.13
Forgetting to return a value from a recursive function when one is needed.

Common Programming Error 5.14
Either omitting the base case, or writing the recursion step incorrectly so that it does not
converge on the base case, will cause infinite recursion, eventually exhausting memory.
This is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.
Infinite recursion can also be caused by providing an unexpected input.

0, 1, 1, 2, 3, 5, 8, 13, 21, …

Fig. 5.14 | Calculating factorials with a recursive function. (Part 2 of 2.)

 else { /* recursive step */
 return (number * factorial(number - 1));
 } /* end else */
} /* end function factorial */

5.15 Example Using Recursion: Fibonacci Series 171

repeatedly occurs in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms, and buildings whose length and width are in the ratio of the golden mean.
Postcards are often designed with a golden mean length/width ratio.

The Fibonacci series may be defined recursively as follows:

Figure 5.15 calculates the nth Fibonacci number recursively using function fibonacci.
Notice that Fibonacci numbers tend to become large quickly. Therefore, we’ve chosen the
data type long for the parameter type and the return type in function fibonacci. In
Fig. 5.15, each pair of output lines shows a separate run of the program.

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

1 /* Fig. 5.15: fig05_15.c
2 Recursive fibonacci function */
3 #include <stdio.h>
4
5
6
7 /* function main begins program execution */
8 int main(void)
9 {

10 long result; /* fibonacci value */
11 long number; /* number input by user */
12
13 /* obtain integer from user */
14 printf("Enter an integer: ");
15 scanf("%ld", &number);
16
17 /* calculate fibonacci value for number input by user */
18
19
20 /* display result */
21 printf("Fibonacci(%ld) = %ld\n", number, result);
22 return 0; /* indicates successful termination */
23 } /* end main */
24
25
26
27
28
29
30
31
32
33
34
35

Fig. 5.15 | Recursively generating Fibonacci numbers. (Part 1 of 2.)

long fibonacci(long n); /* function prototype */

result = fibonacci(number);

/* Recursive definition of function fibonacci */
long fibonacci(long n)
{
 /* base case */
 if (n == 0 || n == 1) {
 return n;
 } /* end if */
 else { /* recursive step */
 return fibonacci(n - 1) + fibonacci(n - 2);
 } /* end else */
} /* end function fibonacci */

172 Chapter 5 C Functions

The call to fibonacci from main is not a recursive call (line 18), but all subsequent
calls to fibonacci are recursive (line 33). Each time fibonacci is invoked, it immediately
tests for the base case—n is equal to 0 or 1. If this is true, n is returned. Interestingly, if n
is greater than 1, the recursion step generates two recursive calls, each of which is for a
slightly simpler problem than the original call to fibonacci. Figure 5.16 shows how func-
tion fibonacci would evaluate fibonacci(3).

Enter an integer: 0
Fibonacci(0) = 0

Enter an integer: 1
Fibonacci(1) = 1

Enter an integer: 2
Fibonacci(2) = 1

Enter an integer: 3
Fibonacci(3) = 2

Enter an integer: 4
Fibonacci(4) = 3

Enter an integer: 5
Fibonacci(5) = 5

Enter an integer: 6
Fibonacci(6) = 8

Enter an integer: 10
Fibonacci(10) = 55

Enter an integer: 20
Fibonacci(20) = 6765

Enter an integer: 30
Fibonacci(30) = 832040

Enter an integer: 35
Fibonacci(35) = 9227465

Fig. 5.15 | Recursively generating Fibonacci numbers. (Part 2 of 2.)

5.15 Example Using Recursion: Fibonacci Series 173

Order of Evaluation of Operands
This figure raises some interesting issues about the order in which C compilers will evalu-
ate the operands of operators. This is a different issue from the order in which operators
are applied to their operands, namely the order dictated by the rules of operator prece-
dence. From Fig. 5.16 it appears that while evaluating fibonacci(3), two recursive calls
will be made, namely fibonacci(2) and fibonacci(1). But in what order will these calls
be made? Most programmers simply assume the operands will be evaluated left to right.
Strangely, Standard C does not specify the order in which the operands of most operators
(including +) are to be evaluated. Therefore, you may make no assumption about the order
in which these calls will execute. The calls could in fact execute fibonacci(2) first and
then fibonacci(1), or the calls could execute in the reverse order, fibonacci(1) then fi-
bonacci(2). In this program and in most other programs, it turns out the final result
would be the same. But in some programs the evaluation of an operand may have side ef-
fects that could affect the final result of the expression. Of C’s many operators, Standard
C specifies the order of evaluation of the operands of only four operators—namely &&, ||,
the comma (,) operator and ?:. The first three of these are binary operators whose two
operands are guaranteed to be evaluated left to right. [Note: The commas used to separate
the arguments in a function call are not comma operators.] The last operator is C’s only
ternary operator. Its leftmost operand is always evaluated first; if the leftmost operand eval-
uates to nonzero, the middle operand is evaluated next and the last operand is ignored; if
the leftmost operand evaluates to zero, the third operand is evaluated next and the middle
operand is ignored.

Common Programming Error 5.15
Writing programs that depend on the order of evaluation of the operands of operators oth-
er than &&, ||, ?:, and the comma (,) operator can lead to errors because compilers may
not necessarily evaluate the operands in the order you expect.

Fig. 5.16 | Set of recursive calls for fibonacci(3).

+

fibonacci(3)

fibonacci(2) fibonacci(1)return +

fibonacci(1) fibonacci(0) return 1

return 0return 1

return

174 Chapter 5 C Functions

Exponential Complexity
A word of caution is in order about recursive programs like the one we use here to generate
Fibonacci numbers. Each level of recursion in the fibonacci function has a doubling ef-
fect on the number of calls; i.e., the number of recursive calls that will be executed to cal-
culate the nth Fibonacci number is on the order of 2n. This rapidly gets out of hand.
Calculating only the 20th Fibonacci number would require on the order of 220 or about a
million calls, calculating the 30th Fibonacci number would require on the order of 230 or
about a billion calls, and so on. Computer scientists refer to this as exponential complexity.
Problems of this nature humble even the world’s most powerful computers! Complexity
issues in general, and exponential complexity in particular, are discussed in detail in the
upper-level computer science curriculum course generally called “Algorithms.”

The example we showed in this section used an intuitively appealing solution to cal-
culate Fibonacci numbers, but there are better approaches. Exercise 5.48 asks you to inves-
tigate recursion in more depth and propose alternate approaches to implementing the
recursive Fibonacci algorithm.

5.16 Recursion vs. Iteration
In the previous sections, we studied two functions that can easily be implemented either
recursively or iteratively. In this section, we compare the two approaches and discuss why
you might choose one approach over the other in a particular situation.

Both iteration and recursion are based on a control structure: Iteration uses a repeti-
tion structure; recursion uses a selection structure. Both iteration and recursion involve
repetition: Iteration explicitly uses a repetition structure; recursion achieves repetition
through repeated function calls. Iteration and recursion each involve a termination test:
Iteration terminates when the loop-continuation condition fails; recursion terminates
when a base case is recognized. Iteration with counter-controlled repetition and recursion
each gradually approach termination: Iteration keeps modifying a counter until the
counter assumes a value that makes the loop-continuation condition fail; recursion keeps
producing simpler versions of the original problem until the base case is reached. Both
iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the
loop-continuation test never becomes false; infinite recursion occurs if the recursion step
does not reduce the problem each time in a manner that converges on the base case.

Recursion has many negatives. It repeatedly invokes the mechanism, and conse-
quently the overhead, of function calls. This can be expensive in both processor time and
memory space. Each recursive call causes another copy of the function (actually only the
function’s variables) to be created; this can consume considerable memory. Iteration nor-

Portability Tip 5.2
Programs that depend on the order of evaluation of the operands of operators other than
&&, ||, ?:, and the comma (,) operator can function differently on systems with different
compilers.

Performance Tip 5.4
Avoid Fibonacci-style recursive programs which result in an exponential “explosion” of
calls.

5.16 Recursion vs. Iteration 175

mally occurs within a function, so the overhead of repeated function calls and extra
memory assignment is omitted. So why choose recursion?

Most programming textbooks introduce recursion much later than we’ve done here.
We feel that recursion is a sufficiently rich and complex topic that it’s better to introduce
it earlier and spread the examples over the remainder of the text. Figure 5.17 summarizes
by chapter the 31 recursion examples and exercises in the text.

Software Engineering Observation 5.13
Any problem that can be solved recursively can also be solved iteratively (nonrecursively).
A recursive approach is normally chosen in preference to an iterative approach when the
recursive approach more naturally mirrors the problem and results in a program that is
easier to understand and debug. Another reason to choose a recursive solution is that an
iterative solution may not be apparent.

Performance Tip 5.5
Avoid using recursion in performance situations. Recursive calls take time and consume
additional memory.

Common Programming Error 5.16
Accidentally having a nonrecursive function call itself either directly, or indirectly through
another function.

Chapter Recursion examples and exercises

Chapter 5 Factorial function
Fibonacci function
Greatest common divisor
Sum of two integers
Multiply two integers
Raising an integer to an integer power
Towers of Hanoi
Recursive main
Printing keyboard inputs in reverse
Visualizing recursion

Chapter 6 Sum the elements of an array
Print an array
Print an array backward
Print a string backward
Check if a string is a palindrome
Minimum value in an array
Linear search
Binary search

Chapter 7 Eight Queens
Maze traversal

Chapter 8 Printing a string input at the keyboard backward

Fig. 5.17 | Recursion examples and exercises in the text. (Part 1 of 2.)

176 Chapter 5 C Functions

Let’s close this chapter with some observations that we make repeatedly throughout
the book. Good software engineering is important. High performance is important. Unfor-
tunately, these goals are often at odds with one another. Good software engineering is key
to making more manageable the task of developing the larger and more complex software
systems we need. High performance is key to realizing the systems of the future that will
place ever greater computing demands on hardware. Where do functions fit in here?

Chapter 12 Linked list insert
Linked list delete
Search a linked list
Print a linked list backward
Binary tree insert
Preorder traversal of a binary tree
Inorder traversal of a binary tree
Postorder traversal of a binary tree

Appendix F Selection sort
Quicksort

Performance Tip 5.6
Functionalizing programs in a neat, hierarchical manner promotes good software engi-
neering. But it has a price. A heavily functionalized program—as compared to a mono-
lithic (i.e., one-piece) program without functions—makes potentially large numbers of
function calls, and these consume execution time on a computer’s processor(s). So, although
monolithic programs may perform better, they’re more difficult to program, test, debug,
maintain, and evolve.

Chapter Recursion examples and exercises

Fig. 5.17 | Recursion examples and exercises in the text. (Part 2 of 2.)

Summary
Section 5.1 Introduction
• The best way to develop and maintain a large program is to divide it into several smaller program

modules, each of which is more manageable than the original program. Modules are written as
functions in C.

Section 5.2 Program Modules in C
• A function is invoked by a function call. The function call mentions the function by name and

provides information (as arguments) that the called function needs to perform its task.

• The purpose of information hiding is for functions to have access only to the information they
need to complete their tasks. This is a means of implementing the principle of least privilege, one
of the most important principles of good software engineering.

Section 5.3 Math Library Functions
• Functions are normally invoked in a program by writing the name of the function followed by a

left parenthesis followed by the argument (or a comma-separated list of arguments) of the func-
tion followed by a right parenthesis.

 Summary 177

• Data type double is a floating-point type like float. A variable of type double can store a value
of much greater magnitude and precision than float can store.

• Each argument of a function may be a constant, a variable, or an expression.

Section 5.4 Functions
• A local variable is known only in a function definition. Other functions are not allowed to know

the names of a function’s local variables, nor is any function allowed to know the implementation
details of any other function.

Section 5.5 Function Definitions
• The general format for a function definition is

return-value-type function-name(parameter-list)
{

definitions
statements

}

The return-value-type states the type of the value returned to the calling function. If a function
does not return a value, the return-value-type is declared as void. The function-name is any valid
identifier. The parameter-list is a comma-separated list containing the definitions of the variables
that will be passed to the function. If a function does not receive any values, parameter-list is de-
clared as void. The function-body is the set of definitions and statements that constitute the func-
tion.

• The arguments passed to a function should match in number, type and order with the parameters
in the function definition.

• When a program encounters a function call, control is transferred from the point of invocation
to the called function, the statements of the called function are executed and control returns to
the caller.

• A called function can return control to the caller in one of three ways. If the function does not
return a value, control is returned when the function-ending right brace is reached, or by execut-
ing the statement

return;

If the function does return a value, the statement

return expression;

returns the value of expression.

Section 5.6 Function Prototypes
• A function prototype declares the return type of the function and declares the number, the types,

and order of the parameters the function expects to receive.

• Function prototypes enable the compiler to verify that functions are called correctly.

• The compiler ignores variable names mentioned in the function prototype.

Section 5.7 Function Call Stack and Activation Records
• Stacks are known as last-in, first-out (LIFO) data structures—the last item pushed (inserted) on

the stack is the first item popped (removed) from the stack.

• A called function must know how to return to its caller, so the return address of the calling func-
tion is pushed onto the program execution stack when the function is called. If a series of func-
tion calls occurs, the successive return addresses are pushed onto the stack in last-in, first-out
order so that the last function to execute will be the first to return to its caller.

178 Chapter 5 C Functions

• The program execution stack contains the memory for the local variables used in each invocation
of a function during a program’s execution. This data is known as the activation record or stack
frame of the function call. When a function call is made, the activation record for that function
call is pushed onto the program execution stack. When the function returns to its caller, the ac-
tivation record for this function call is popped off the stack and those local variables are no longer
known to the program.

• The amount of memory in a computer is finite, so only a certain amount of memory can be used
to store activation records on the program execution stack. If there are more function calls than
can have their activation records stored on the program execution stack, an error known as a stack
overflow occurs. The application will compile correctly, but its execution causes a stack overflow.

Section 5.8 Headers
• Each standard library has a corresponding header containing the function prototypes for all the

functions in that library, as well as definitions of various symbolic constants needed by those
functions.

• You can create and include your own headers.

Section 5.9 Calling Functions By Value and By Reference
• When an argument is passed by value, a copy of the variable’s value is made and the copy is

passed to the called function. Changes to the copy in the called function do not affect the original
variable’s value.

• All calls in C are call-by-value.

• It’s possible to simulate call-by-reference by using address operators and indirection operators.

Section 5.10 Random Number Generation
• Function rand generates an integer between 0 and RAND_MAX which is defined by the C standard

to be at least 32767.

• The function prototypes for rand and srand are contained in <stdlib.h>.

• Values produced by rand can be scaled and shifted to produce values in a specific range.

• To randomize a program, use the C Standard Library function srand.

• The srand function call is ordinarily inserted in a program only after it has been thoroughly de-
bugged. While debugging, it’s better to omit srand. This ensures repeatability, which is essential
to proving that corrections to a random number generation program work properly.

• To randomize without the need for entering a seed each time, we use srand(time(NULL)).

• The general equation for scaling and shifting a random number is

n = a + rand() % b;

where a is the shifting value (i.e., the first number in the desired range of consecutive integers)
and b is the scaling factor (i.e,. the width of the desired range of consecutive integers).

Section 5.11 Example: A Game of Chance
• An enumeration, introduced by the keyword enum, is a set of integer constants represented by

identifiers. Values in an enum start with 0 and are incremented by 1. It’s also possible to assign an
integer value to each identifier in an enum. The identifiers in an enumeration must be unique,
but the values may be duplicated.

Section 5.12 Storage Classes
• Each identifier in a program has the attributes storage class, storage duration, scope and linkage.

 Summary 179

• C provides four storage classes indicated by the storage class specifiers: auto, register, extern
and static; only one storage class specifier can be used for a given declaration.

• An identifier’s storage duration is when that identifier exists in memory.

Section 5.13 Scope Rules
• An identifier’s scope is where the identifier can be referenced in a program.

• An identifier’s linkage determines for a multiple-source-file program whether an identifier is
known only in the current source file or in any source file with proper declarations.

• Variables with automatic storage duration are created when the block in which they’re defined is
entered, exist while the block is active and are destroyed when the block is exited. A function’s
local variables normally have automatic storage duration.

• The storage class specifier register can be placed before an automatic variable declaration to
suggest that the compiler maintain the variable in one of the computer’s high-speed hardware
registers. The compiler may ignore register declarations. Keyword register can be used only
with variables of automatic storage duration.

• Keywords extern and static are used to declare identifiers for variables and functions of static
storage duration.

• Variables with static storage duration are allocated and initialized once, when the program begins
execution.

• There are two types of identifiers with static storage duration: external identifiers (such as global
variables and function names) and local variables declared with the storage-class specifier static.

• Global variables are created by placing variable definitions outside any function definition. Glob-
al variables retain their values throughout the execution of the program.

• Local variables declared static retain their value between calls to the function in which they’re
defined.

• All numeric variables of static storage duration are initialized to zero if you do not explicitly ini-
tialize them.

• The four scopes for an identifier are function scope, file scope, block scope and function-proto-
type scope.

• Labels are the only identifiers with function scope. Labels can be used anywhere in the function
in which they appear but cannot be referenced outside the function body.

• An identifier declared outside any function has file scope. Such an identifier is “known” in all
functions from the point at which the identifier is declared until the end of the file.

• Identifiers defined inside a block have block scope. Block scope ends at the terminating right
brace (}) of the block.

• Local variables defined at the beginning of a function have block scope, as do function parame-
ters, which are considered local variables by the function.

• Any block may contain variable definitions. When blocks are nested, and an identifier in an outer
block has the same name as an identifier in an inner block, the identifier in the outer block is
“hidden” until the inner block terminates.

• The only identifiers with function-prototype scope are those used in the parameter list of a func-
tion prototype. Identifiers used in a function prototype can be reused elsewhere in the program
without ambiguity.

Section 5.14 Recursion
• A recursive function is a function that calls itself either directly or indirectly.

180 Chapter 5 C Functions

• If a recursive function is called with a base case, the function simply returns a result. If the func-
tion is called with a more complex problem, the function divides the problem into two concep-
tual pieces: a piece that the function knows how to do and a slightly smaller version of the original
problem. Because this new problem looks like the original problem, the function launches a re-
cursive call to work on the smaller problem.

• For recursion to terminate, each time the recursive function calls itself with a slightly simpler ver-
sion of the original problem, the sequence of smaller and smaller problems must converge on the
base case. When the function recognizes the base case, the result is returned to the previous func-
tion call, and a sequence of returns ensues all the way up the line until the original call of the
function eventually returns the final result.

• Standard C does not specify the order in which the operands of most operators (including +) are
to be evaluated. Of C’s many operators, the standard specifies the order of evaluation of the op-
erands of only the operators &&, ||, the comma (,) operator and ?:. The first three of these are
binary operators whose two operands are evaluated left to right. The last operator is C’s only ter-
nary operator. Its leftmost operand is evaluated first; if the leftmost operand evaluates to nonzero,
the middle operand is evaluated next and the last operand is ignored; if the leftmost operand eval-
uates to zero, the third operand is evaluated next and the middle operand is ignored.

Section 5.16 Recursion vs. Iteration
• Both iteration and recursion are based on a control structure: Iteration uses a repetition structure;

recursion uses a selection structure.

• Both iteration and recursion involve repetition: Iteration explicitly uses a repetition structure; re-
cursion achieves repetition through repeated function calls.

• Iteration and recursion each involve a termination test: Iteration terminates when the loop-con-
tinuation condition fails; recursion terminates when a base case is recognized.

• Iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the loop-
continuation test never becomes false; infinite recursion occurs if the recursion step does not re-
duce the problem in a manner that converges on the base case.

• Recursion repeatedly invokes the mechanism, and consequently the overhead, of function calls.
This can be expensive in both processor time and memory space.

Terminology
abstraction 144
activation record 151
argument (of a function) 142
auto 161
automatic storage duration 162
automatic variable 162
base case 167
block 146
block scope 164
C Standard Library 141
call a function 142
call-by-reference 152
call-by-value 152
called 145
called function 142
caller 142
calling function 142

coercion of arguments 149
divide and conquer 141
enum 161
enumeration 161
enumeration constant 161
file scope 164
function 141
function body 146
function call 142
function call stack 151
function prototype 145
function-prototype scope 164
function scope 164
header 146
information hiding 164
invoke a function 142
invoked 142

 Self-Review Exercises 181

last-in-first-out (LIFO) 151
linkage 161
linkage of an identifier 162
local variable 144
mixed-type expression 150
module 141
parameter 144
parameter-list 146
pop off a stack 151
principle of least privilege 164
program execution stack 151
programmer-defined function 142
promotion rule 149
pseudorandom numbers 156
push onto a stack 151
randomizing 156
recursion step 167
recursive call 167
recursive function 167
return from a function 142
return value type 146

scaling 153
scaling factor 153
scope 162
scope of an identifier 164
seed the rand function 156
shift 153
shifting value 158
side effect 152
simulate 152
software reusability 144
stack 151
stack frame 151
stack overflow 151
standard library header 151
static 161
static storage duration 162
storage class 161
storage class of an identifier 161
storage class specifier 161
storage duration 161

Self-Review Exercises
5.1 Answer each of the following:

a) A program module in C is called a(n) .
b) A function is invoked with a(n) .
c) A variable that is known only within the function in which it’s defined is called a(n)

.
d) The statement in a called function is used to pass the value of an expression

back to the calling function.
e) Keyword is used in a function header to indicate that a function does not re-

turn a value or to indicate that a function contains no parameters.
f) The of an identifier is the portion of the program in which the identifier can

be used.
g) The three ways to return control from a called function to a caller are ,

 and .
h) A(n) allows the compiler to check the number, types, and order of the argu-

ments passed to a function.
i) The function is used to produce random numbers.
j) The function is used to set the random number seed to randomize a program.
k) The storage-class specifiers are , , and .
l) Variables declared in a block or in the parameter list of a function are assumed to be of

storage class unless specified otherwise.
m) The storage-class specifier is a recommendation to the compiler to store a vari-

able in one of the computer’s registers.
n) A non-static variable defined outside any block or function is a(n) variable.
o) For a local variable in a function to retain its value between calls to the function, it must

be declared with the storage-class specifier.
p) The four possible scopes of an identifier are , , and

.

182 Chapter 5 C Functions

q) A function that calls itself either directly or indirectly is a(n) function.
r) A recursive function typically has two components: one that provides a means for the

recursion to terminate by testing for a(n) case, and one that expresses the
problem as a recursive call for a slightly simpler problem than the original call.

5.2 For the following program, state the scope (either function scope, file scope, block scope or
function prototype scope) of each of the following elements.

a) The variable x in main.
b) The variable y in cube.
c) The function cube.
d) The function main.
e) The function prototype for cube.
f) The identifier y in the function prototype for cube.

5.3 Write a program that tests whether the examples of the math library function calls shown
in Fig. 5.2 actually produce the indicated results.

5.4 Give the function header for each of the following functions.
a) Function hypotenuse that takes two double-precision floating-point arguments, side1

and side2, and returns a double-precision floating-point result.
b) Function smallest that takes three integers, x, y, z, and returns an integer.
c) Function instructions that does not receive any arguments and does not return a val-

ue. [Note: Such functions are commonly used to display instructions to a user.]
d) Function intToFloat that takes an integer argument, number, and returns a floating-

point result.

5.5 Give the function prototype for each of the following:
a) The function described in Exercise 5.4(a).
b) The function described in Exercise 5.4(b).
c) The function described in Exercise 5.4(c).
d) The function described in Exercise 5.4(d).

5.6 Write a declaration for each of the following:
a) Integer count that should be maintained in a register. Initialize count to 0.
b) Floating-point variable lastVal that is to retain its value between calls to the function

in which it’s defined.
c) External integer number whose scope should be restricted to the remainder of the file in

which it’s defined.

1 #include <stdio.h>
2 int cube(int y);
3
4 int main(void)
5 {
6 int x;
7
8 for (x = 1; x <= 10; x++)
9 printf("%d\n", cube(x));

10 return 0;
11 }
12
13 int cube(int y)
14 {
15 return y * y * y;
16 }

 Answers to Self-Review Exercises 183

5.7 Find the error in each of the following program segments and explain how the error can be
corrected (see also Exercise 5.46):

a) int g(void)

{

 printf("Inside function g\n");

 int h(void)

 {

 printf("Inside function h\n");

 }

}
b) int sum(int x, int y)

{

 int result;

 result = x + y;

}
c) int sum(int n)

{

 if (n == 0) {

 return 0;

 }

 else {

 n + sum(n - 1);

 }

}
d) void f(float a);

{

 float a;

 printf("%f", a);

}
e) void product(void)

{

 int a, b, c, result;

 printf("Enter three integers: ")

 scanf("%d%d%d", &a, &b, &c);

 result = a * b * c;

 printf("Result is %d", result);

 return result;

}

Answers to Self-Review Exercises
5.1 a) Function. b) Function call. c) Local variable. d) return. e) void. f) Scope. g) return;
or return expression; or encountering the closing right brace of a function. h) Function proto-
type. i) rand. j) srand. k) auto, register, extern, static. l) auto. m) register. n) External,
global. o) static. p) Function scope, file scope, block scope, function prototype scope.
q) Recursive. r) Base.

5.2 a) Block scope. b) Block Scope. c) File scope. d) File scope. e) File scope. f) Function-pro-
totype scope.

184 Chapter 5 C Functions

5.3 See below. [Note: On most Linux systems, you must use the -lm option when compiling
this program.]

1 /* ex05_03.c */
2 /* Testing the math library functions */
3 #include <stdio.h>
4 #include <math.h>
5
6 /* function main begins program execution */
7 int main(void)
8 {
9 /* calculates and outputs the square root */

10 printf("sqrt(%.1f) = %.1f\n", 900.0, sqrt(900.0));
11 printf("sqrt(%.1f) = %.1f\n", 9.0, sqrt(9.0));
12
13 /* calculates and outputs the exponential function e to the x */
14 printf("exp(%.1f) = %f\n", 1.0, exp(1.0));
15 printf("exp(%.1f) = %f\n", 2.0, exp(2.0));
16
17 /* calculates and outputs the logarithm (base e) */
18 printf("log(%f) = %.1f\n", 2.718282, log(2.718282));
19 printf("log(%f) = %.1f\n", 7.389056, log(7.389056));
20
21 /* calculates and outputs the logarithm (base 10) */
22 printf("log10(%.1f) = %.1f\n", 1.0, log10(1.0));
23 printf("log10(%.1f) = %.1f\n", 10.0, log10(10.0));
24 printf("log10(%.1f) = %.1f\n", 100.0, log10(100.0));
25
26 /* calculates and outputs the absolute value */
27 printf("fabs(%.1f) = %.1f\n", 13.5, fabs(13.5));
28 printf("fabs(%.1f) = %.1f\n", 0.0, fabs(0.0));
29 printf("fabs(%.1f) = %.1f\n", -13.5, fabs(-13.5));
30
31 /* calculates and outputs ceil(x) */
32 printf("ceil(%.1f) = %.1f\n", 9.2, ceil(9.2));
33 printf("ceil(%.1f) = %.1f\n", -9.8, ceil(-9.8));
34
35 /* calculates and outputs floor(x) */
36 printf("floor(%.1f) = %.1f\n", 9.2, floor(9.2));
37 printf("floor(%.1f) = %.1f\n", -9.8, floor(-9.8));
38
39 /* calculates and outputs pow(x, y) */
40 printf("pow(%.1f, %.1f) = %.1f\n", 2.0, 7.0, pow(2.0, 7.0));
41 printf("pow(%.1f, %.1f) = %.1f\n", 9.0, 0.5, pow(9.0, 0.5));
42
43 /* calculates and outputs fmod(x, y) */
44 printf("fmod(%.3f/%.3f) = %.3f\n", 13.675, 2.333,
45 fmod(13.675, 2.333));
46
47 /* calculates and outputs sin(x) */
48 printf("sin(%.1f) = %.1f\n", 0.0, sin(0.0));
49
50 /* calculates and outputs cos(x) */
51 printf("cos(%.1f) = %.1f\n", 0.0, cos(0.0));
52
53 /* calculates and outputs tan(x) */
54 printf("tan(%.1f) = %.1f\n", 0.0, tan(0.0));
55 return 0; /* indicates successful termination */
56 } /* end main */

 Answers to Self-Review Exercises 185

5.4 a) double hypotenuse(double side1, double side2)
b) int smallest(int x, int y, int z)
c) void instructions(void)
d) float intToFloat(int number)

5.5 a) double hypotenuse(double side1, double side2);
b) int smallest(int x, int y, int z);
c) void instructions(void);
d) float intToFloat(int number);

5.6 a) register int count = 0;
b) static float lastVal;
c) static int number;

[Note: This would appear outside any function definition.]

5.7 a) Error: Function h is defined in function g.
Correction: Move the definition of h out of the definition of g.

b) Error: The body of the function is supposed to return an integer, but does not.
Correction: Delete variable result and place the following statement in the function:

return x + y;

c) Error: The result of n + sum(n - 1) is not returned; sum returns an improper result.
Correction: Rewrite the statement in the else clause as

return n + sum(n - 1);

d) Error: Semicolon after the right parenthesis that encloses the parameter list, and re-
defining the parameter a in the function definition.
Correction: Delete the semicolon after the right parenthesis of the parameter list, and
delete the declaration float a; in the function body.

e) Error: The function returns a value when it’s not supposed to.
Correction: Eliminate the return statement.

sqrt(900.0) = 30.0
sqrt(9.0) = 3.0
exp(1.0) = 2.718282
exp(2.0) = 7.389056
log(2.718282) = 1.0
log(7.389056) = 2.0
log10(1.0) = 0.0
log10(10.0) = 1.0
log10(100.0) = 2.0
fabs(13.5) = 13.5
fabs(0.0) = 0.0
fabs(-13.5) = 13.5
ceil(9.2) = 10.0
ceil(-9.8) = -9.0
floor(9.2) = 9.0
floor(-9.8) = -10.0
pow(2.0, 7.0) = 128.0
pow(9.0, 0.5) = 3.0
fmod(13.675/2.333) = 2.010
sin(0.0) = 0.0
cos(0.0) = 1.0
tan(0.0) = 0.0

186 Chapter 5 C Functions

Exercises
5.8 Show the value of x after each of the following statements is performed:

a) x = fabs(7.5);
b) x = floor(7.5);
c) x = fabs(0.0);
d) x = ceil(0.0);
e) x = fabs(-6.4);
f) x = ceil(-6.4);
g) x = ceil(-fabs(-8 + floor(-5.5)));

5.9 (Parking Charges) A parking garage charges a $2.00 minimum fee to park for up to three
hours and an additional $0.50 per hour for each hour or part thereof over three hours. The maximum
charge for any given 24-hour period is $10.00. Assume that no car parks for longer than 24 hours
at a time. Write a program that will calculate and print the parking charges for each of three cus-
tomers who parked their cars in this garage yesterday. You should enter the hours parked for each
customer. Your program should print the results in a neat tabular format, and should calculate and
print the total of yesterday's receipts. The program should use the function calculateCharges to
determine the charge for each customer. Your outputs should appear in the following format:

5.10 (Rounding Numbers) An application of function floor is rounding a value to the nearest
integer. The statement

y = floor(x + .5);

will round the number x to the nearest integer and assign the result to y. Write a program that reads
several numbers and uses the preceding statement to round each of these numbers to the nearest
integer. For each number processed, print both the original number and the rounded number.

5.11 (Rounding Numbers) Function floor may be used to round a number to a specific decimal
place. The statement

y = floor(x * 10 + .5) / 10;

rounds x to the tenths position (the first position to the right of the decimal point). The statement

y = floor(x * 100 + .5) / 100;

rounds x to the hundredths position (the second position to the right of the decimal point). Write
a program that defines four functions to round a number x in various ways

a) roundToInteger(number)
b) roundToTenths(number)
c) roundToHundreths(number)
d) roundToThousandths(number)

For each value read, your program should print the original value, the number rounded to the
nearest integer, the number rounded to the nearest tenth, the number rounded to the nearest hun-
dredth, and the number rounded to the nearest thousandth.

5.12 Answer each of the following questions.
a) What does it mean to choose numbers “at random”?
b) Why is the rand function useful for simulating games of chance?
c) Why would you randomize a program by using srand? Under what circumstances is it

desirable not to randomize?

Car Hours Charge
1 1.5 2.00
2 4.0 2.50
3 24.0 10.00
TOTAL 29.5 14.50

 Exercises 187

d) Why is it often necessary to scale and/or shift the values produced by rand?
e) Why is computerized simulation of real-world situations a useful technique?

5.13 Write statements that assign random integers to the variable n in the following ranges:
a) 1 ≤ n ≤ 2
b) 1 ≤ n ≤ 100
c) 0 ≤ n ≤ 9
d) 1000 ≤ n ≤ 1112
e) –1 ≤ n ≤ 1
f) –3 ≤ n ≤ 11

5.14 For each of the following sets of integers, write a single statement that will print a number
at random from the set.

a) 2, 4, 6, 8, 10.
b) 3, 5, 7, 9, 11.
c) 6, 10, 14, 18, 22.

5.15 (Hypotenuse Calculations) Define a function called hypotenuse that calculates the length
of the hypotenuse of a right triangle when the other two sides are given. Use this function in a pro-
gram to determine the length of the hypotenuse for each of the following triangles. The function
should take two arguments of type double and return the hypotenuse as a double. Test your pro-
gram with the side values specified in Fig. 5.18.

5.16 (Exponentiation) Write a function integerPower(base, exponent) that returns the value of

baseexponent

For example, integerPower(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is a positive, nonzero
integer, and base is an integer. Function integerPower should use for to control the calculation.
Do not use any math library functions.

5.17 (Multiples) Write a function multiple that determines for a pair of integers whether the sec-
ond integer is a multiple of the first. The function should take two integer arguments and return 1
(true) if the second is a multiple of the first, and 0 (false) otherwise. Use this function in a program
that inputs a series of pairs of integers.

5.18 (Even or Odd) Write a program that inputs a series of integers and passes them one at a time
to function even, which uses the remainder operator to determine if an integer is even. The function
should take an integer argument and return 1 if the integer is even and 0 otherwise.

5.19 (Parking Charges) Write a function that displays a solid square of asterisks whose side is
specified in integer parameter side. For example, if side is 4, the function displays:

5.20 (Displaying a Square of Any Character) Modify the function created in Exercise 5.19 to
form the square out of whatever character is contained in character parameter fillCharacter. Thus
if side is 5 and fillCharacter is “#” then this function should print:

#####
#####
#####
#####
#####

188 Chapter 5 C Functions

5.21 (Project: Drawing Shapes with Characters) Use techniques similar to those developed in
Exercises 5.19–5.20 to produce a program that graphs a wide range of shapes.

5.22 (Separating Digits) Write program segments that accomplish each of the following:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.
c) Use the program pieces developed in a) and b) to write a function that inputs an integer

between 1 and 32767 and prints it as a series of digits,with two spaces between each digit.
For example, the integer 4562 should be printed as:

5.23 (Time in Seconds) Write a function that takes the time as three integer arguments (for
hours, minutes, and seconds) and returns the number of seconds since the last time the clock “struck
12.” Use this function to calculate the amount of time in seconds between two times, both of which
are within one 12-hour cycle of the clock.

5.24 (Temperature Conversions) Implement the following integer functions:
a) Function celsius returns the Celsius equivalent of a Fahrenheit temperature.
b) Function fahrenheit returns the Fahrenheit equivalent of a Celsius temperature.
c) Use these functions to write a program that prints charts showing the Fahrenheit equiv-

alents of all Celsius temperatures from 0 to 100 degrees, and the Celsius equivalents of
all Fahrenheit temperatures from 32 to 212 degrees. Print the outputs in a neat tabular
format that minimizes the number of lines of output while remaining readable.

5.25 (Find the Minimum) Write a function that returns the smallest of three floating-point
numbers.

5.26 (Perfect Numbers) An integer number is said to be a perfect number if its factors, including
1 (but not the number itself), sum to the number. For example, 6 is a perfect number because 6 =
1 + 2 + 3. Write a function perfect that determines if parameter number is a perfect number. Use
this function in a program that determines and prints all the perfect numbers between 1 and 1000.
Print the factors of each perfect number to confirm that the number is indeed perfect. Challenge
the power of your computer by testing numbers much larger than 1000.

5.27 (Prime Numbers) An integer is said to be prime if it’s divisible by only 1 and itself. For ex-
ample, 2, 3, 5 and 7 are prime, but 4, 6, 8 and 9 are not.

a) Write a function that determines if a number is prime.
b) Use this function in a program that determines and prints all the prime numbers be-

tween 1 and 10,000. How many of these 10,000 numbers do you really have to test be-
fore being sure that you have found all the primes?

c) Initially you might think that n/2 is the upper limit for which you must test to see if a
number is prime, but you need go only as high as the square root of n. Why? Rewrite
the program, and run it both ways. Estimate the performance improvement.

Triangle Side 1 Side 2

1 3.0 4.0

2 5.0 12.0

3 8.0 15.0

Fig. 5.18 | Sample triangle side values for Exercise 5.15.

4 5 6 2

 Exercises 189

5.28 (Reversing Digits) Write a function that takes an integer value and returns the number with
its digits reversed. For example, given the number 7631, the function should return 1367.

5.29 (Greatest Common Divisor) The greatest common divisor (GCD) of two integers is the largest
integer that evenly divides each of the two numbers. Write function gcd that returns the greatest
common divisor of two integers.

5.30 Write a function qualityPoints that inputs a student’s average and returns 4 if a student's
average is 90–100, 3 if the average is 80–89, 2 if the average is 70–79, 1 if the average is 60–69, and
0 if the average is lower than 60.

5.31 (Coin Tossing) Write a program that simulates coin tossing. For each toss of the coin the
program should print Heads or Tails. Let the program toss the coin 100 times, and count the num-
ber of times each side of the coin appears. Print the results. The program should call a separate func-
tion flip that takes no arguments and returns 0 for tails and 1 for heads. [Note: If the program
realistically simulates the coin tossing, then each side of the coin should appear approximately half
the time for a total of approximately 50 heads and 50 tails.]

5.32 (Guess the Number) Write a C program that plays the game of “guess the number” as fol-
lows: Your program chooses the number to be guessed by selecting an integer at random in the range
1 to 1000. The program then types:

The player then types a first guess. The program responds with one of the following:

If the player’s guess is incorrect, your program should loop until the player finally gets the number
right. Your program should keep telling the player Too high or Too low to help the player “zero in”
on the correct answer. [Note: The searching technique employed in this problem is called binary
search. We’ll say more about this in the next problem.]

5.33 (Guess the Number Modification) Modify the program of Exercise 5.32 to count the num-
ber of guesses the player makes. If the number is 10 or fewer, print Either you know the secret or
you got lucky! If the player guesses the number in 10 tries, then print Ahah! You know the secret!
If the player makes more than 10 guesses, then print You should be able to do better! Why should
it take no more than 10 guesses? Well, with each “good guess” the player should be able to eliminate
half of the numbers. Now show why any number 1 to 1000 can be guessed in 10 or fewer tries.

5.34 (Recursive Exponentiation) Write a recursive function power(base, exponent) that when
invoked returns

baseexponent

For example, power(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is an integer greater than or equal
to 1. Hint: The recursion step would use the relationship

baseexponent = base * baseexponent–1

and the terminating condition occurs when exponent is equal to 1 because

base1 = base

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

1. Excellent! You guessed the number!
 Would you like to play again (y or n)?
2. Too low. Try again.
3. Too high. Try again.

190 Chapter 5 C Functions

5.35 (Fibonacci) The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with the terms 0 and 1 and has the property that each succeeding term is the sum of the two
preceding terms. a) Write a nonrecursive function fibonacci(n) that calculates the nth Fibonacci
number. b) Determine the largest Fibonacci number that can be printed on your system. Modify
the program of part a) to use double instead of int to calculate and return Fibonacci numbers. Let
the program loop until it fails because of an excessively high value.

5.36 (Towers of Hanoi) Every budding computer scientist must grapple with certain classic prob-
lems, and the Towers of Hanoi (see Fig. 5.19) is one of the most famous of these. Legend has it that
in a temple in the Far East, priests are attempting to move a stack of disks from one peg to another.
The initial stack had 64 disks threaded onto one peg and arranged from bottom to top by decreasing
size. The priests are attempting to move the stack from this peg to a second peg under the constraints
that exactly one disk is moved at a time, and at no time may a larger disk be placed above a smaller
disk. A third peg is available for temporarily holding the disks. Supposedly the world will end when
the priests complete their task, so there is little incentive for us to facilitate their efforts.

Let’s assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that will print the precise sequence of disk-to-disk peg transfers.

If we were to approach this problem with conventional methods, we’d rapidly find ourselves
hopelessly knotted up in managing the disks. Instead, if we attack the problem with recursion in
mind, it immediately becomes tractable. Moving n disks can be viewed in terms of moving only
n – 1 disks (and hence the recursion) as follows:

a) Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
c) Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk, i.e., the base case. This is
accomplished by trivially moving the disk without the need for a temporary holding area.

Write a program to solve the Towers of Hanoi problem. Use a recursive function with four
parameters:

a) The number of disks to be moved
b) The peg on which these disks are initially threaded
c) The peg to which this stack of disks is to be moved
d) The peg to be used as a temporary holding area

Fig. 5.19 | Towers of Hanoi for the case with four disks.

 Exercises 191

Your program should print the precise instructions it will take to move the disks from the
starting peg to the destination peg. For example, to move a stack of three disks from peg 1 to peg 3,
your program should print the following series of moves:

1 → 3 (This means move one disk from peg 1 to peg 3.)
1 → 2
3 → 2
1 → 3
2 → 1
2 → 3
1 → 3

5.37 (Towers of Hanoi: Iterative Solution) Any program that can be implemented recursively
can be implemented iteratively, although sometimes with considerably more difficulty and consid-
erably less clarity. Try writing an iterative version of the Towers of Hanoi. If you succeed, compare
your iterative version with the recursive version you developed in Exercise 5.36. Investigate issues
of performance, clarity, and your ability to demonstrate the correctness of the programs.

5.38 (Visualizing Recursion) It’s interesting to watch recursion “in action.” Modify the factorial
function of Fig. 5.14 to print its local variable and recursive call parameter. For each recursive call,
display the outputs on a separate line and add a level of indentation. Do your utmost to make the
outputs clear, interesting and meaningful. Your goal here is to design and implement an output for-
mat that helps a person understand recursion better. You may want to add such display capabilities
to the many other recursion examples and exercises throughout the text.

5.39 (Recursive Greatest Common Divisor) The greatest common divisor of integers x and y is
the largest integer that evenly divides both x and y. Write a recursive function gcd that returns the
greatest common divisor of x and y. The gcd of x and y is defined recursively as follows: If y is equal
to 0, then gcd(x, y) is x; otherwise gcd(x, y) is gcd(y, x % y) where % is the remainder operator.

5.40 (Recursive main) Can main be called recursively? Write a program containing a function
main. Include static local variable count initialized to 1. Postincrement and print the value of count
each time main is called. Run your program. What happens?

5.41 (Distance Between Points) Write function distance that calculates the distance between
two points (x1, y1) and (x2, y2). All numbers and return values should be of type double.

5.42 What does the following program do?

5.43 What does the following program do?

1 #include <stdio.h>
2
3 /* function main begins program execution */
4 int main(void)
5 {
6 int c; /* variable to hold character input by user */
7
8 if ((c = getchar()) != EOF) {
9 main();

10 printf("%c", c);
11 } /* end if */
12
13 return 0; /* indicates successful termination */
14 } /* end main */

1 #include <stdio.h>
2
3 int mystery(int a, int b); /* function prototype */

192 Chapter 5 C Functions

5.44 After you determine what the program of Exercise 5.43 does, modify the program to func-
tion properly after removing the restriction of the second argument being nonnegative.

5.45 (Testing Math Library Functions) Write a program that tests as many of the math library
functions in Fig. 5.2 as you can. Exercise each of these functions by having your program print out
tables of return values for a diversity of argument values.

5.46 Find the error in each of the following program segments and explain how to correct it:
a) double cube(float); /* function prototype */

cube(float number) /* function definition */
{

 return number * number * number;
}

b) register auto int x = 7;
c) int randomNumber = srand();
d) double y = 123.45678;

int x;
x = y;

printf("%f\n", (double) x);
e) double square(double number)

{

 double number;
 return number * number;
}

f) int sum(int n)
{

 if (n == 0) {
 return 0;
 }

4
5 /* function main begins program execution */
6 int main(void)
7 {
8 int x; /* first integer */
9 int y; /* second integer */

10
11 printf("Enter two integers: ");
12 scanf("%d%d", &x, &y);
13
14 printf("The result is %d\n", mystery(x, y));
15 return 0; /* indicates successful termination */
16 } /* end main */
17
18 /* Parameter b must be a positive integer
19 to prevent infinite recursion */
20 int mystery(int a, int b)
21 {
22 /* base case */
23 if (b == 1) {
24 return a;
25 } /* end if */
26 else { /* recursive step */
27 return a + mystery(a, b - 1);
28 } /* end else */
29 } /* end function mystery */

 Making a Difference 193

 else {
 return n + sum(n);
 }

}

5.47 (Craps Game Modification) Modify the craps program of Fig. 5.10 to allow wagering.
Package as a function the portion of the program that runs one game of craps. Initialize variable
bankBalance to 1000 dollars. Prompt the player to enter a wager. Use a while loop to check that
wager is less than or equal to bankBalance, and if not, prompt the user to reenter wager until a valid
wager is entered. After a correct wager is entered, run one game of craps. If the player wins, increase
bankBalance by wager and print the new bankBalance. If the player loses, decrease bankBalance by
wager, print the new bankBalance, check if bankBalance has become zero, and if so print the mes-
sage, "Sorry. You busted!" As the game progresses, print various messages to create some “chatter”
such as, "Oh, you're going for broke, huh?" or "Aw cmon, take a chance!" or "You're up big. Now's
the time to cash in your chips!"

5.48 (Research Project: Improving the Recursive Fibonacci Implementation) In Section 5.15, the
recursive algorithm we used to calculate Fibonacci numbers was intuitively appealing. However, re-
call that the algorithm resulted in the exponential explosion of recursive function calls. Research the
recursive Fibonacci implementation online. Study the various approaches, including the iterative
version in Exercise 5.35 and versions that use only so-called “tail recursion.” Discuss the relative
merits of each.

Making a Difference
5.49 (Global Warming Facts Quiz) The controversial issue of global warming has been widely
publicized by the film An Inconvenient Truth, featuring former Vice President Al Gore. Mr. Gore
and a U.N. network of scientists, the Intergovernmental Panel on Climate Change, shared the 2007
Nobel Peace Prize in recognition of “their efforts to build up and disseminate greater knowledge
about man-made climate change.” Research both sides of the global warming issue online (you
might want to search for phrases like “global warming skeptics”). Create a five-question multiple-
choice quiz on global warming, each question having four possible answers (numbered 1–4). Be ob-
jective and try to fairly represent both sides of the issue. Next, write an application that administers
the quiz, calculates the number of correct answers (zero through five) and returns a message to the
user. If the user correctly answers five questions, print “Excellent”; if four, print “Very good”; if
three or fewer, print “Time to brush up on your knowledge of global warming,” and include a list
of some of the websites where you found your facts.

Computer Assisted Instruction
As computer costs decline, it becomes feasible for every student, regardless of economic circum-
stance, to have a computer and use it in school. This creates exciting possibilities for improving the
educational experience of all students worldwide as suggested by the next five exercises. [Note:
Check out initiatives such as the One Laptop Per Child Project (www.laptop.org). Also, research
“green” laptops—what are some key “going green” characteristics of these devices? Look into the
Electronic Product Environmental Assessment Tool (www.epeat.net) which can help you assess the
“greenness” of desktops, notebooks and monitors to help you decide which products to purchase.]

5.50 (Computer-Assisted Instruction) The use of computers in education is referred to as com-
puter-assisted instruction (CAI). Write a program that will help an elementary school student learn
multiplication. Use the rand function to produce two positive one-digit integers. The program
should then prompt the user with a question, such as

How much is 6 times 7?

www.laptop.org
www.epeat.net

194 Chapter 5 C Functions

The student then inputs the answer. Next, the program checks the student’s answer. If it’s correct,
display the message "Very good!" and ask another multiplication question. If the answer is wrong,
display the message "No. Please try again." and let the student try the same question repeatedly
until the student finally gets it right. A separate function should be used to generate each new ques-
tion. This function should be called once when the application begins execution and each time the
user answers the question correctly.

5.51 (Computer-Assisted Instruction: Reducing Student Fatigue) One problem in CAI environ-
ments is student fatigue. This can be reduced by varying the computer’s responses to hold the stu-
dent’s attention. Modify the program of Exercise 5.50 so that various comments are displayed for
each answer as follows:

Possible responses to a correct answer:

Very good!
Excellent!
Nice work!
Keep up the good work!

Possible responses to an incorrect answer:

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.

Use random-number generation to choose a number from 1 to 4 that will be used to select
one of the four appropriate responses to each correct or incorrect answer. Use a switch statement to
issue the responses.

5.52 (Computer-Assisted Instruction: Monitoring Student Performance) More sophisticated
computer-assisted instruction systems monitor the student’s performance over a period of time. The
decision to begin a new topic is often based on the student’s success with previous topics. Modify
the program of Exercise 5.51 to count the number of correct and incorrect responses typed by the
student. After the student types 10 answers, your program should calculate the percentage that are
correct. If the percentage is lower than 75%, display "Please ask your teacher for extra help.",
then reset the program so another student can try it. If the percentage is 75% or higher, display
"Congratulations, you are ready to go to the next level!", then reset the program so another
student can try it.

5.53 (Computer-Assisted Instruction: Difficulty Levels) Exercise 5.50 through Exercise 5.52 de-
veloped a computer-assisted instruction program to help teach an elementary school student multi-
plication. Modify the program to allow the user to enter a difficulty level. At a difficulty level of 1,
the program should use only single-digit numbers in the problems; at a difficulty level of 2, numbers
as large as two digits, and so on.

5.54 (Computer-Assisted Instruction: Varying the Types of Problems) Modify the program of
Exercise 5.53 to allow the user to pick a type of arithmetic problem to study. An option of 1 means
addition problems only, 2 means subtraction problems only, 3 means multiplication problems only
and 4 means a random mixture of all these types.

6C Arrays

Now go, write it
before them in a table,
and note it in a book.
—Isaiah 30:8

To go beyond is as
wrong as to fall short.
—Confucius

Begin at the beginning, … and
go on till you come to the end:
then stop.
—Lewis Carroll

O b j e c t i v e s
In this chapter, you’ll learn:

■ To use the array data
structure to represent lists
and tables of values.

■ To define an array, initialize
an array and refer to
individual elements of an
array.

■ To define symbolic
constants.

■ To pass arrays to functions.

■ To use arrays to store, sort
and search lists and tables of
values.

■ To define and manipulate
multiple-subscripted arrays.

196 Chapter 6 C Arrays

6.1 Introduction
This chapter serves as an introduction to the important topic of data structures. Arrays are
data structures consisting of related data items of the same type. In Chapter 10, we discuss
C’s notion of struct (structure)—a data structure consisting of related data items of pos-
sibly different types. Arrays and structures are “static” entities in that they remain the same
size throughout program execution (they may, of course, be of automatic storage class and
hence created and destroyed each time the blocks in which they are defined are entered
and exited). In Chapter 12, we introduce dynamic data structures such as lists, queues,
stacks and trees that may grow and shrink as programs execute.

6.2 Arrays
An array is a group of memory locations related by the fact that they all have the same
name and the same type. To refer to a particular location or element in the array, we spec-
ify the name of the array and the position number of the particular element in the array.

Figure 6.1 shows an integer array called c. This array contains 12 elements. Any one
of these elements may be referred to by giving the name of the array followed by the posi-
tion number of the particular element in square brackets ([]). The first element in every
array is the zeroth element. Thus, the first element of array c is referred to as c[0], the
second element of array c is referred to as c[1], the seventh element of array c is referred
to as c[6], and, in general, the ith element of array c is referred to as c[i - 1]. Array names,
like other variable names, can contain only letters, digits and underscores. Array names
cannot begin with a digit.

The position number contained within square brackets is more formally called a sub-
script (or index). A subscript must be an integer or an integer expression. If a program uses
an expression as a subscript, then the expression is evaluated to determine the subscript.
For example, if a = 5 and b = 6, then the statement

adds 2 to array element c[11]. A subscripted array name is an lvalue—it can be used on
the left side of an assignment.

Let’s examine array c (Fig. 6.1) more closely. The array’s name is c. Its 12 elements
are referred to as c[0], c[1], c[2], …, c[11]. The value stored in c[0] is –45, the value
of c[1] is 6, the value of c[2] is 0, the value of c[7] is 62 and the value of c[11] is 78. To
print the sum of the values contained in the first three elements of array c, we’d write

6.1 Introduction
6.2 Arrays
6.3 Defining Arrays
6.4 Array Examples
6.5 Passing Arrays to Functions

6.6 Sorting Arrays
6.7 Case Study: Computing Mean,

Median and Mode Using Arrays
6.8 Searching Arrays
6.9 Multiple-Subscripted Arrays

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Recursion Exercises | Special Section: Sudoku

c[a + b] += 2;

printf("%d", c[0] + c[1] + c[2]);

6.2 Arrays 197

To divide the value of the seventh element of array c by 2 and assign the result to the vari-
able x, we’d write

The brackets used to enclose the subscript of an array are actually considered to be an
operator in C. They have the same level of precedence as the function call operator (i.e.,
the parentheses that are placed following a function name to call that function). Figure 6.2
shows the precedence and associativity of the operators introduced to this point in the text.

Fig. 6.1 | 12-element array.

x = c[6] / 2;

Common Programming Error 6.1
It’s important to note the difference between the “seventh element of the array” and “array
element seven.” Because array subscripts begin at 0, the “seventh element of the array” has
a subscript of 6, while “array element seven” has a subscript of 7 and is actually the eighth
element of the array. This is a source of “off-by-one” errors.

Operators Associativity Type

[] () left to right highest
++ -- ! (type) right to left unary
* / % left to right multiplicative

Fig. 6.2 | Operator precedence and associativity. (Part 1 of 2.)

62

-3

1

6453

78

0

-89

1543

72

0

6

c[7]

c[8]

c[9]

c[10]

c[11]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

-45c[0]

Position number of the element within array c

Name of array (note that all elements
of this array have the same name, c)

198 Chapter 6 C Arrays

6.3 Defining Arrays
Arrays occupy space in memory. You specify the type of each element and the number of
elements required by each array so that the computer may reserve the appropriate amount
of memory. To tell the computer to reserve 12 elements for integer array c, the definition

is used. The following definition

reserves 100 elements for integer array b and 27 elements for integer array x.
Arrays may contain other data types. For example, an array of type char can be used

to store a character string. Character strings and their similarity to arrays are discussed in
Chapter 8. The relationship between pointers and arrays is discussed in Chapter 7.

6.4 Array Examples
This section presents several examples that demonstrate how to define arrays, how to ini-
tialize arrays and how to perform many common array manipulations.

Defining an Array and Using a Loop to Initialize the Array’s Elements
Figure 6.3 uses for statements to initialize the elements of a 10-element integer array n to
zeros and print the array in tabular format. The first printf statement (line 16) displays
the column heads for the two columns printed in the subsequent for statement.

+ - left to right additive
< <= > >= left to right relational
== != left to right equality
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= %= right to left assignment
, left to right comma

int c[12];

int b[100], x[27];

1 /* Fig. 6.3: fig06_03.c
2 initializing an array */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {

Fig. 6.3 | Initializing the elements of an array to zeros. (Part 1 of 2.)

Operators Associativity Type

Fig. 6.2 | Operator precedence and associativity. (Part 2 of 2.)

6.4 Array Examples 199

Initializing an Array in a Definition with an Initializer List
The elements of an array can also be initialized when the array is defined by following the
definition with an equals sign and braces, {}, containing a comma-separated list of initial-
izers. Figure 6.4 initializes an integer array with 10 values (line 9) and prints the array in
tabular format.

8
9 int i; /* counter */

10
11
12
13
14
15
16 printf("%s%13s\n", "Element", "Value");
17
18
19
20
21
22
23 return 0; /* indicates successful termination */
24 } /* end main */

Element Value
 0 0
 1 0
 2 0
 3 0
 4 0
 5 0
 6 0
 7 0
 8 0
 9 0

1 /* Fig. 6.4: fig06_04.c
2 Initializing an array with an initializer list */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8
9

10 int i; /* counter */
11
12 printf("%s%13s\n", "Element", "Value");
13

Fig. 6.4 | Initializing the elements of an array with an initializer list. (Part 1 of 2.)

Fig. 6.3 | Initializing the elements of an array to zeros. (Part 2 of 2.)

int n[10]; /* n is an array of 10 integers */

/* initialize elements of array n to 0 */
for (i = 0; i < 10; i++) {
 n[i] = 0; /* set element at location i to 0 */
} /* end for */

/* output contents of array n in tabular format */
for (i = 0; i < 10; i++) {
 printf("%7d%13d\n", i, n[i]);
} /* end for */

/* use initializer list to initialize array n */
int n[10] = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

200 Chapter 6 C Arrays

If there are fewer initializers than elements in the array, the remaining elements are
initialized to zero. For example, the elements of the array n in Fig. 6.3 could have been
initialized to zero as follows:

int n[10] = { 0 };

This explicitly initializes the first element to zero and initializes the remaining nine ele-
ments to zero because there are fewer initializers than there are elements in the array. It’s
important to remember that arrays are not automatically initialized to zero. You must at
least initialize the first element to zero for the remaining elements to be automatically ze-
roed. This method of initializing the array elements to 0 is performed at compile time for
static arrays and at runtime for automatic arrays.

The array definition

causes a syntax error because there are six initializers and only five array elements.

If the array size is omitted from a definition with an initializer list, the number of ele-
ments in the array will be the number of elements in the initializer list. For example,

would create a five-element array.

14 /* output contents of array in tabular format */
15 for (i = 0; i < 10; i++) {
16 printf("%7d%13d\n", i, n[i]);
17 } /* end for */
18
19 return 0; /* indicates successful termination */
20 } /* end main */

Element Value
 0 32
 1 27
 2 64
 3 18
 4 95
 5 14
 6 90
 7 70
 8 60
 9 37

Fig. 6.4 | Initializing the elements of an array with an initializer list. (Part 2 of 2.)

Common Programming Error 6.2
Forgetting to initialize the elements of an array whose elements should be initialized.

int n[5] = { 32, 27, 64, 18, 95, 14 };

Common Programming Error 6.3
Providing more initializers in an array initializer list than there are elements in the array
is a syntax error.

int n[] = { 1, 2, 3, 4, 5 };

6.4 Array Examples 201

Specifying an Array’s Size with a Symbolic Constant and Initializing Array Elements
with Calculations
Figure 6.5 initializes the elements of a 10-element array s to the values 2, 4, 6, …, 20 and
prints the array in tabular format. The values are generated by multiplying the loop coun-
ter by 2 and adding 2.

The #define preprocessor directive is introduced in this program. Line 4

defines a symbolic constant SIZE whose value is 10. A symbolic constant is an identifier
that is replaced with replacement text by the C preprocessor before the program is com-
piled. When the program is preprocessed, all occurrences of the symbolic constant SIZE

1 /* Fig. 6.5: fig06_05.c
2 Initialize the elements of array s to the even integers from 2 to 20 */
3 #include <stdio.h>
4 /* maximum size of array */
5
6 /* function main begins program execution */
7 int main(void)
8 {
9 /* symbolic constant SIZE can be used to specify array size */

10
11 int j; /* counter */
12
13
14
15
16
17 printf("%s%13s\n", "Element", "Value");
18
19 /* output contents of array s in tabular format */
20 for (j = 0; j < SIZE; j++) {
21 printf("%7d%13d\n", j, s[j]);
22 } /* end for */
23
24 return 0; /* indicates successful termination */
25 } /* end main */

Element Value
 0 2
 1 4
 2 6
 3 8
 4 10
 5 12
 6 14
 7 16
 8 18
 9 20

Fig. 6.5 | Initialize the elements of array s to the even integers from 2 to 20.

#define SIZE 10

#define SIZE 10

int s[SIZE]; /* array s has SIZE elements */

for (j = 0; j < SIZE; j++) { /* set the values */
 s[j] = 2 + 2 * j;
} /* end for */

202 Chapter 6 C Arrays

are replaced with the replacement text 10. Using symbolic constants to specify array sizes
makes programs more scalable. In Fig. 6.5, we could have the first for loop (line 13) fill
a 1000-element array by simply changing the value of SIZE in the #define directive from
10 to 1000. If the symbolic constant SIZE had not been used, we’d have to change the pro-
gram in three separate places to scale the program to handle 1000 array elements. As pro-
grams get larger, this technique becomes more useful for writing clear programs.

If the #define preprocessor directive in line 4 is terminated with a semicolon, all
occurrences of the symbolic constant SIZE in the program are replaced with the text 10;
by the preprocessor. This may lead to syntax errors at compile time, or logic errors at
execution time. Remember that the preprocessor is not C—it’s only a text manipulator.

Summing the Elements of an Array
Figure 6.6 sums the values contained in the 12-element integer array a. The for state-
ment’s body (line 16) does the totaling.

Common Programming Error 6.4
Ending a #define or #include preprocessor directive with a semicolon. Remember that
preprocessor directives are not C statements.

Common Programming Error 6.5
Assigning a value to a symbolic constant in an executable statement is a syntax error. A
symbolic constant is not a variable. No space is reserved for it by the compiler as with vari-
ables that hold values at execution time.

Software Engineering Observation 6.1
Defining the size of each array as a symbolic constant makes programs more scalable.

Good Programming Practice 6.1
Use only uppercase letters for symbolic constant names. This makes these constants stand
out in a program and reminds you that symbolic constants are not variables.

Good Programming Practice 6.2
In multiword symbolic constant names, use underscores to separate the words for readabil-
ity.

1 /* Fig. 6.6: fig06_06.c
2 Compute the sum of the elements of the array */
3 #include <stdio.h>
4 #define SIZE 12
5
6 /* function main begins program execution */
7 int main(void)
8 {
9 /* use initializer list to initialize array */

10 int a[SIZE] = { 1, 3, 5, 4, 7, 2, 99, 16, 45, 67, 89, 45 };

Fig. 6.6 | Computing the sum of the elements of an array. (Part 1 of 2.)

6.4 Array Examples 203

Using Arrays to Summarize Survey Results
Our next example uses arrays to summarize the results of data collected in a survey. Con-
sider the problem statement.

Forty students were asked to rate the quality of the food in the student cafeteria on a
scale of 1 to 10 (1 means awful and 10 means excellent). Place the 40 responses in an
integer array and summarize the results of the poll.

This is a typical array application (see Fig. 6.7). We wish to summarize the number
of responses of each type (i.e., 1 through 10). The array responses (line 17) is a 40-ele-
ment array of the students’ responses. We use an 11-element array frequency (line 14) to
count the number of occurrences of each response. We ignore frequency[0] because it’s
logical to have response 1 increment frequency[1] rather than frequency[0]. This allows
us to use each response directly as the subscript in the frequency array.

11 int i; /* counter */
12 int total = 0; /* sum of array */
13
14
15
16
17
18
19 printf("Total of array element values is %d\n", total);
20 return 0; /* indicates successful termination */
21 } /* end main */

Total of array element values is 383

Fig. 6.6 | Computing the sum of the elements of an array. (Part 2 of 2.)

/* sum contents of array a */
for (i = 0; i < SIZE; i++) {
 total += a[i];
} /* end for */

1 /* Fig. 6.7: fig06_07.c
2 Student poll program */
3 #include <stdio.h>
4 #define RESPONSE_SIZE 40 /* define array sizes */
5 #define FREQUENCY_SIZE 11
6
7 /* function main begins program execution */
8 int main(void)
9 {

10 int answer; /* counter to loop through 40 responses */
11 int rating; /* counter to loop through frequencies 1-10 */
12
13 /* initialize frequency counters to 0 */
14
15
16 /* place the survey responses in the responses array */
17 int responses[RESPONSE_SIZE] = { 1, 2, 6, 4, 8, 5, 9, 7, 8, 10,
18 1, 6, 3, 8, 6, 10, 3, 8, 2, 7, 6, 5, 7, 6, 8, 6, 7, 5, 6, 6,
19 5, 6, 7, 5, 6, 4, 8, 6, 8, 10 };

Fig. 6.7 | Student poll analysis program. (Part 1 of 2.)

int frequency[FREQUENCY_SIZE] = { 0 };

204 Chapter 6 C Arrays

The for loop (line 24) takes the responses one at a time from the array responses and
increments one of the 10 counters (frequency[1] to frequency[10]) in the frequency
array. The key statement in the loop is line 25

which increments the appropriate frequency counter depending on the value of respons-
es[answer]. When the counter variable answer is 0, responses[answer] is 1, so
++frequeoncy[responses[answer]]; is interpreted as

20
21 /* for each answer, select value of an element of array responses
22 and use that value as subscript in array frequency to
23 determine element to increment */
24 for (answer = 0; answer < RESPONSE_SIZE; answer++) {
25
26 } /* end for */
27
28 /* display results */
29 printf("%s%17s\n", "Rating", "Frequency");
30
31 /* output the frequencies in a tabular format */
32 for (rating = 1; rating < FREQUENCY_SIZE; rating++) {
33 printf("%6d%17d\n", rating, frequency[rating]);
34 } /* end for */
35
36 return 0; /* indicates successful termination */
37 } /* end main */

Rating Frequency
 1 2
 2 2
 3 2
 4 2
 5 5
 6 11
 7 5
 8 7
 9 1
 10 3

Good Programming Practice 6.3
Strive for program clarity. Sometimes it may be worthwhile to trade off the most efficient
use of memory or processor time in favor of writing clearer programs.

Performance Tip 6.1
Sometimes performance considerations far outweigh clarity considerations.

++frequency[responses[answer]];

++frequency[1];

Fig. 6.7 | Student poll analysis program. (Part 2 of 2.)

++frequency[responses [answer]];

6.4 Array Examples 205

which increments array element one. When answer is 1, responses[answer] is 2, so
++frequency[responses[answer]]; is interpreted as

which increments array element two. When answer is 2, responses[answer] is 6, so
++frequency[responses[answer]]; is actually interpreted as

which increments array element six, and so on. Regardless of the number of responses pro-
cessed in the survey, only an 11-element array is required (ignoring element zero) to sum-
marize the results. If the data contained invalid values such as 13, the program would
attempt to add 1 to frequency[13]. This would be outside the bounds of the array. C has
no array bounds checking to prevent the program from referring to an element that does not ex-
ist. Thus, an executing program can “walk off” the end of an array without warning. You
should ensure that all array references remain within the bounds of the array.

Graphing Array Element Values with Histograms
Our next example (Fig. 6.8) reads numbers from an array and graphs the information in
the form of a bar chart or histogram—each number is printed, then a bar consisting of that
many asterisks is printed beside the number. The nested for statement (line 20) draws the
bars. Note the use of printf("\n") to end a histogram bar (line 24).

++frequency[2];

++frequency[6];

Common Programming Error 6.6
Referring to an element outside the array bounds.

Error-Prevention Tip 6.1
When looping through an array, the array subscript should never go below 0 and should
always be less than the total number of elements in the array (size – 1). Make sure the
loop-terminating condition prevents accessing elements outside this range.

Error-Prevention Tip 6.2
Programs should validate the correctness of all input values to prevent erroneous infor-
mation from affecting a program’s calculations.

1 /* Fig. 6.8: fig06_08.c
2 Histogram printing program */
3 #include <stdio.h>
4 #define SIZE 10
5
6 /* function main begins program execution */
7 int main(void)
8 {
9 /* use initializer list to initialize array n */

10 int n[SIZE] = { 19, 3, 15, 7, 11, 9, 13, 5, 17, 1 };
11 int i; /* outer for counter for array elements */
12 int j; /* inner for counter counts *s in each histogram bar */

Fig. 6.8 | Histogram printing. (Part 1 of 2.)

206 Chapter 6 C Arrays

Rolling a Die 6000 Times and Summarizing the Results in an Array
In Chapter 5, we stated that we’d show a more elegant method of writing the dice-rolling
program of Fig. 5.8. The problem was to roll a single six-sided die 6000 times to test
whether the random number generator actually produces random numbers. An array ver-
sion of this program is shown in Fig. 6.9.

13
14 printf("%s%13s%17s\n", "Element", "Value", "Histogram");
15
16 /* for each element of array n, output a bar of the histogram */
17 for (i = 0; i < SIZE; i++) {
18
19
20
21
22
23
24 printf("\n"); /* end a histogram bar */
25 } /* end outer for */
26
27 return 0; /* indicates successful termination */
28 } /* end main */

Element Value Histogram
 0 19 *******************
 1 3 ***
 2 15 ***************
 3 7 *******
 4 11 ***********
 5 9 *********
 6 13 *************
 7 5 *****
 8 17 *****************
 9 1 *

1 /* Fig. 6.9: fig06_09.c
2 Roll a six-sided die 6000 times */
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6 #define SIZE 7
7
8 /* function main begins program execution */
9 int main(void)

10 {
11 int face; /* random die value 1 - 6 */
12 int roll; /* roll counter 1-6000 */
13 int frequency[SIZE] = { 0 }; /* clear counts */
14

Fig. 6.9 | Dice-rolling program using an array instead of switch. (Part 1 of 2.)

Fig. 6.8 | Histogram printing. (Part 2 of 2.)

printf("%7d%13d ", i, n[i]) ;

for (j = 1; j <= n[i]; j++) { /* print one bar */
 printf("%c", '*');
} /* end inner for */

6.4 Array Examples 207

Using Character Arrays to Store and Manipulate Strings
We have discussed only integer arrays. However, arrays are capable of holding data of any
type. We now discuss storing strings in character arrays. So far, the only string-processing
capability we have is outputting a string with printf. A string such as "hello" is really a
static array of individual characters in C.

Character arrays have several unique features. A character array can be initialized using
a string literal. For example,

initializes the elements of array string1 to the individual characters in the string literal
"first". In this case, the size of array string1 is determined by the compiler based on the
length of the string. The string "first" contains five characters plus a special string-termi-
nation character called the null character. Thus, array string1 actually contains six ele-
ments. The character constant representing the null character is '\0'. All strings in C end
with this character. A character array representing a string should always be defined large
enough to hold the number of characters in the string and the terminating null character.

Character arrays also can be initialized with individual character constants in an ini-
tializer list. The preceding definition is equivalent to

Because a string is really an array of characters, we can access individual characters in
a string directly using array subscript notation. For example, string1[0] is the character
'f' and string1[3] is the character 's'.

15 srand(time(NULL)); /* seed random-number generator */
16
17 /* roll die 6000 times */
18 for (roll = 1; roll <= 6000; roll++) {
19 face = 1 + rand() % 6;
20 /
21 } /* end for */
22
23 printf("%s%17s\n", "Face", "Frequency");
24
25 /* output frequency elements 1-6 in tabular format */
26 for (face = 1; face < SIZE; face++) {
27 printf("%4d%17d\n", face, frequency[face]);
28 } /* end for */
29
30 return 0; /* indicates successful termination */
31 } /* end main */

Face Frequency
 1 1029
 2 951
 3 987
 4 1033
 5 1010
 6 990

char string1[] = "first";

char string1[] = { 'f', 'i', 'r', 's', 't', '\0' };

Fig. 6.9 | Dice-rolling program using an array instead of switch. (Part 2 of 2.)

++frequency[face]; /* replaces 26-line switch of Fig. 5.8 *

208 Chapter 6 C Arrays

We also can input a string directly into a character array from the keyboard using
scanf and the conversion specifier %s. For example,

creates a character array capable of storing a string of at most 19 characters and a termi-
nating null character. The statement

reads a string from the keyboard into string2. The name of the array is passed to scanf
without the preceding & used with nonstring variables. The & is normally used to provide
scanf with a variable’s location in memory so that a value can be stored there. In
Section 6.5, when we discuss passing arrays to functions, we’ll see that the value of an array
name is the address of the start of the array; therefore, the & is not necessary. Function
scanf will read characters until a space, tab, newline or end-of-file indicator is encoun-
tered. The string should be no longer than 19 characters to leave room for the terminating
null character. If the user types 20 or more characters, your program may crash! For this
reason, use the conversion specifier %19s so that scanf does not write characters into mem-
ory beyond the end of the array s.

It’s your responsibility to ensure that the array into which the string is read is capable
of holding any string that the user types at the keyboard. Function scanf reads characters
from the keyboard until the first white-space character is encountered—it does not check
how large the array is. Thus, scanf can write beyond the end of the array.

A character array representing a string can be output with printf and the %s con-
version specifier. The array string2 is printed with the statement

printf("%s\n", string2);

Function printf, like scanf, does not check how large the character array is. The char-
acters of the string are printed until a terminating null character is encountered.

Figure 6.10 demonstrates initializing a character array with a string literal, reading a
string into a character array, printing a character array as a string and accessing individual
characters of a string.

char string2[20];

scanf("%s", string2);

Common Programming Error 6.7
Not providing scanf with a character array large enough to store a string typed at the key-
board can result in destruction of data in a program and other runtime errors. This can
also make a system susceptible to worm and virus attacks.

1 /* Fig. 6.10: fig06_10.c
2 Treating character arrays as strings */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 char string1[20]; /* reserves 20 characters */
9

Fig. 6.10 | Treating character arrays as strings. (Part 1 of 2.)

char string2[] = "string literal"; /* reserves 15 characters */

6.4 Array Examples 209

Figure 6.10 uses a for statement (line 22) to loop through the string1 array and
print the individual characters separated by spaces, using the %c conversion specifier. The
condition in the for statement, string1[i] != '\0', is true while the terminating null
character has not been encountered in the string.

Static Local Arrays and Automatic Local Arrays
Chapter 5 discussed the storage-class specifier static. A static local variable exists for the
duration of the program, but is visible only in the function body. We can apply static to
a local array definition so the array is not created and initialized each time the function is
called and the array is not destroyed each time the function is exited in the program. This
reduces program execution time, particularly for programs with frequently called func-
tions that contain large arrays.

Arrays that are static are initialized once at compile time. If you do not explicitly
initialize a static array, that array’s elements are initialized to zero by the compiler.

Figure 6.11 demonstrates function staticArrayInit (line 22) with a local static
array (line 25) and function automaticArrayInit (line 44) with a local automatic array

10 int i; /* counter */
11
12 /* read string from user into array string1 */
13 printf("Enter a string: ");
14
15
16 /* output strings */
17

18
19
20
21 /* output characters until null character is reached */
22
23
24
25
26 printf("\n");
27 return 0; /* indicates successful termination */
28 } /* end main */

Enter a string: Hello there
string1 is: Hello
string2 is: string literal
string1 with spaces between characters is:
H e l l o

Performance Tip 6.2
In functions that contain automatic arrays where the function is in and out of scope fre-
quently, make the array static so it’s not created each time the function is called.

Fig. 6.10 | Treating character arrays as strings. (Part 2 of 2.)

scanf("%s", string1); /* input ended by whitespace character */

printf("string1 is: %s\nstring2 is: %s\n"
 "string1 with spaces between characters is:\n",
 string1, string2);

for (i = 0; string1[i] != '\0'; i++) {
 printf("%c ", string1[i]);
} /* end for */

210 Chapter 6 C Arrays

(line 47). Function staticArrayInit is called twice (lines 12 and 16). The local static
array in the function is initialized to zero by the compiler (line 25). The function prints
the array, adds 5 to each element and prints the array again. The second time the function
is called, the static array contains the values stored during the first function call. Func-
tion automaticArrayInit is also called twice (lines 13 and 17). The elements of the auto-
matic local array in the function are initialized with the values 1, 2 and 3 (line 47). The
function prints the array, adds 5 to each element and prints the array again. The second
time the function is called, the array elements are initialized to 1, 2 and 3 again because
the array has automatic storage duration.

Common Programming Error 6.8
Assuming that elements of a local static array are initialized to zero every time the func-
tion in which the array is defined is called.

1 /* Fig. 6.11: fig06_11.c
2 Static arrays are initialized to zero */
3 #include <stdio.h>
4
5 void staticArrayInit(void); /* function prototype */
6 void automaticArrayInit(void); /* function prototype */
7
8 /* function main begins program execution */
9 int main(void)

10 {
11 printf("First call to each function:\n");
12
13
14
15 printf("\n\nSecond call to each function:\n");
16
17
18 return 0; /* indicates successful termination */
19 } /* end main */
20
21 /* function to demonstrate a static local array */
22 void staticArrayInit(void)
23 {
24 /* initializes elements to 0 first time function is called */
25
26 int i; /* counter */
27
28 printf("\nValues on entering staticArrayInit:\n");
29
30 /* output contents of array1 */
31 for (i = 0; i <= 2; i++) {
32 printf("array1[%d] = %d ", i, array1[i]);
33 } /* end for */
34
35 printf("\nValues on exiting staticArrayInit:\n");

Fig. 6.11 | Static arrays are initialized to zero if not explicitly initialized. (Part 1 of 2.)

staticArrayInit();
automaticArrayInit();

staticArrayInit();
automaticArrayInit();

static int array1[3];

6.4 Array Examples 211

36
37 /* modify and output contents of array1 */
38 for (i = 0; i <= 2; i++) {
39 printf("array1[%d] = %d ", i, array1[i] += 5);
40 } /* end for */
41 } /* end function staticArrayInit */
42
43 /* function to demonstrate an automatic local array */
44 void automaticArrayInit(void)
45 {
46 /* initializes elements each time function is called */
47
48 int i; /* counter */
49
50 printf("\n\nValues on entering automaticArrayInit:\n");
51
52 /* output contents of array2 */
53 for (i = 0; i <= 2; i++) {
54 printf("array2[%d] = %d ", i, array2[i]);
55 } /* end for */
56
57 printf("\nValues on exiting automaticArrayInit:\n");
58
59 /* modify and output contents of array2 */
60 for (i = 0; i <= 2; i++) {
61 printf("array2[%d] = %d ", i, array2[i] += 5);
62 } /* end for */
63 } /* end function automaticArrayInit */

First call to each function:

Values on entering staticArrayInit:
array1[0] = 0 array1[1] = 0 array1[2] = 0
Values on exiting staticArrayInit:
array1[0] = 5 array1[1] = 5 array1[2] = 5

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1] = 7 array2[2] = 8

Second call to each function:

Values on entering staticArrayInit:
array1[0] = 5 array1[1] = 5 array1[2] = 5
Values on exiting staticArrayInit:
array1[0] = 10 array1[1] = 10 array1[2] = 10

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1] = 7 array2[2] = 8

Fig. 6.11 | Static arrays are initialized to zero if not explicitly initialized. (Part 2 of 2.)

int array2[3] = { 1, 2, 3 };

212 Chapter 6 C Arrays

6.5 Passing Arrays to Functions
To pass an array argument to a function, specify the name of the array without any brack-
ets. For example, if array hourlyTemperatures has been defined as

the function call

passes array hourlyTemperatures and its size to function modifyArray. Unlike char arrays
that contain strings, other array types do not have a special terminator. For this reason, the
size of an array is passed to the function, so that the function can process the proper num-
ber of elements.

C automatically passes arrays to functions by reference—the called functions can
modify the element values in the callers’ original arrays. The name of the array evaluates
to the address of the first element of the array. Because the starting address of the array is
passed, the called function knows precisely where the array is stored. Therefore, when the
called function modifies array elements in its function body, it’s modifying the actual ele-
ments of the array in their original memory locations.

Figure 6.12 demonstrates that an array name is really the address of the first element
of an array by printing array, &array[0] and &array using the %p conversion specifier—
a special conversion specifier for printing addresses. The %p conversion specifier normally
outputs addresses as hexadecimal numbers. Hexadecimal (base 16) numbers consist of the
digits 0 through 9 and the letters A through F (these letters are the hexadecimal equivalents
of the numbers 10–15). They are often used as shorthand notation for large integer values.
Appendix C, Number Systems, provides an in-depth discussion of the relationships
among binary (base 2), octal (base 8), decimal (base 10; standard integers) and hexadec-
imal integers. The output shows that both array and &array[0] have the same value,
namely 0012FF78. The output of this program is system dependent, but the addresses are
always identical for a particular execution of this program on a particular computer.

Although entire arrays are passed by reference, individual array elements are passed by
value exactly as simple variables are. Such simple single pieces of data (such as individual
ints, floats and chars) are called scalars. To pass an element of an array to a function,
use the subscripted name of the array element as an argument in the function call. In
Chapter 7, we show how to pass scalars (i.e., individual variables and array elements) to
functions by reference.

int hourlyTemperatures[24];

modifyArray(hourlyTemperatures, 24)

Performance Tip 6.3
Passing arrays by reference makes sense for performance reasons. If arrays were passed by
value, a copy of each element would be passed. For large, frequently passed arrays, this
would be time consuming and would consume storage for the copies of the arrays.

Software Engineering Observation 6.2
It’s possible to pass an array by value (by using a simple trick we explain in Chapter 10).

6.5 Passing Arrays to Functions 213

For a function to receive an array through a function call, the function’s parameter list
must specify that an array will be received. For example, the function header for function
modifyArray (that we called earlier in this section) might be written as

indicating that modifyArray expects to receive an array of integers in parameter b and the
number of array elements in parameter size. The size of the array is not required between
the array brackets. If it’s included, the compiler checks that it’s greater than zero, then ignores
it. Specifying a negative size is a compilation error. Because arrays are automatically passed
by reference, when the called function uses the array name b, it will be referring to the array
in the caller (array hourlyTemperatures in the preceding call). In Chapter 7, we introduce
other notations for indicating that an array is being received by a function. As we’ll see, these
notations are based on the intimate relationship between arrays and pointers in C.

Figure 6.13 demonstrates the difference between passing an entire array and passing
an array element. The program first prints the five elements of integer array a (lines 20–
22). Next, a and its size are passed to function modifyArray (line 27), where each of a’s
elements is multiplied by 2 (lines 54–55). Then a is reprinted in main (lines 32–34). As
the output shows, the elements of a are indeed modified by modifyArray. Now the pro-
gram prints the value of a[3] (line 38) and passes it to function modifyElement (line 40).
Function modifyElement multiplies its argument by 2 (line 64) and prints the new value.
When a[3] is reprinted in main (line 43), it has not been modified, because individual
array elements are passed by value.

1 /* Fig. 6.12: fig06_12.c
2 The name of an array is the same as &array[0] */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 char array[5]; /* define an array of size 5 */
9

10
11
12 return 0; /* indicates successful termination */
13 } /* end main */

 array = 0012FF78
&array[0] = 0012FF78
 &array = 0012FF78

Fig. 6.12 | Array name is the same as the address of the array’s first element.

void modifyArray(int b[], int size)

1 /* Fig. 6.13: fig06_13.c
2 Passing arrays and individual array elements to functions */
3 #include <stdio.h>
4 #define SIZE 5

Fig. 6.13 | Passing arrays and individual array elements to functions. (Part 1 of 3.)

printf(" array = %p\n&array[0] = %p\n &array = %p\n",
 array, &array[0], &array);

214 Chapter 6 C Arrays

5
6 /* function prototypes */
7
8
9

10 /* function main begins program execution */
11 int main(void)
12 {
13 int a[SIZE] = { 0, 1, 2, 3, 4 }; /* initialize a */
14 int i; /* counter */
15
16 printf("Effects of passing entire array by reference:\n\nThe "
17 "values of the original array are:\n");
18
19 /* output original array */
20 for (i = 0; i < SIZE; i++) {
21 printf("%3d", a[i]);
22 } /* end for */
23
24 printf("\n");
25
26
27
28
29 printf("The values of the modified array are:\n");
30
31 /* output modified array */
32 for (i = 0; i < SIZE; i++) {
33 printf("%3d", a[i]);
34 } /* end for */
35
36 /* output value of a[3] */
37 printf("\n\n\nEffects of passing array element "
38 "by value:\n\nThe value of a[3] is %d\n", a[3]);
39
40
41
42 /* output value of a[3] */
43 printf("The value of a[3] is %d\n", a[3]);
44 return 0; /* indicates successful termination */
45 } /* end main */
46
47
48
49
50
51
52
53
54
55
56
57

Fig. 6.13 | Passing arrays and individual array elements to functions. (Part 2 of 3.)

void modifyArray(int b[], int size);
void modifyElement(int e);

/* pass array a to modifyArray by reference */
modifyArray(a, SIZE);

modifyElement(a[3]); /* pass array element a[3] by value */

/* in function modifyArray, "b" points to the original array "a"
 in memory */
void modifyArray(int b[], int size)
{
 int j; /* counter */

 /* multiply each array element by 2 */
 for (j = 0; j < size; j++) {
 b[j] *= 2;
 } /* end for */
} /* end function modifyArray */

6.5 Passing Arrays to Functions 215

There may be situations in your programs in which a function should not be allowed
to modify array elements. Because arrays are always passed by reference, modification of
values in an array is difficult to control. C provides the type qualifier const to prevent
modification of array values in a function. When an array parameter is preceded by the
const qualifier, the array elements become constant in the function body, and any attempt
to modify an element of the array in the function body results in a compile-time error.
This enables you to correct a program so it does not attempt to modify array elements.

Figure 6.14 demonstrates the const qualifier. Function tryToModifyArray (line 20)
is defined with parameter const int b[], which specifies that array b is constant and
cannot be modified. The output shows the error messages produced by the compiler—the
errors may be different on your system. Each of the three attempts by the function to
modify array elements results in the compiler error “l-value specifies a const object.”
The const qualifier is discussed again in Chapter 7.

58
59
60
61
62
63
64
65

Effects of passing entire array by reference:

The values of the original array are:
 0 1 2 3 4
The values of the modified array are:
 0 2 4 6 8

Effects of passing array element by value:

The value of a[3] is 6
Value in modifyElement is 12
The value of a[3] is 6

1 /* Fig. 6.14: fig06_14.c
2 Demonstrating the const type qualifier with arrays */
3 #include <stdio.h>
4
5 /* function prototype */
6
7 /* function main begins program execution */
8 int main(void)
9 {

10 int a[] = { 10, 20, 30 }; /* initialize a */

Fig. 6.14 | const type qualifier. (Part 1 of 2.)

Fig. 6.13 | Passing arrays and individual array elements to functions. (Part 3 of 3.)

/* in function modifyElement, "e" is a local copy of array element
 a[3] passed from main */
void modifyElement(int e)
{
 /* multiply parameter by 2 */
 printf("Value in modifyElement is %d\n", e *= 2);
} /* end function modifyElement */

void tryToModifyArray(const int b[]);

216 Chapter 6 C Arrays

6.6 Sorting Arrays
Sorting data (i.e., placing the data into a particular order such as ascending or descending)
is one of the most important computing applications. A bank sorts all checks by account
number so that it can prepare individual bank statements at the end of each month. Tele-
phone companies sort their lists of accounts by last name and, within that, by first name
to make it easy to find phone numbers. Virtually every organization must sort some data
and in many cases massive amounts of data. Sorting data is an intriguing problem which
has attracted some of the most intense research efforts in the field of computer science. In
this chapter we discuss what is perhaps the simplest known sorting scheme. In Chapter 12
and Appendix F, we investigate more complex schemes that yield superior performance.

Figure 6.15 sorts the values in the elements of the 10-element array a (line 10) into
ascending order. The technique we use is called the bubble sort or the sinking sort because
the smaller values gradually “bubble” their way upward to the top of the array like air bub-
bles rising in water, while the larger values sink to the bottom of the array. The technique

11
12
13
14 printf("%d %d %d\n", a[0], a[1], a[2]);
15 return 0; /* indicates successful termination */
16 } /* end main */
17
18
19
20
21
22
23
24
25

Compiling...
FIG06_14.C
fig06_14.c(22) : error C2166: l-value specifies const object
fig06_14.c(23) : error C2166: l-value specifies const object
fig06_14.c(24) : error C2166: l-value specifies const object

Software Engineering Observation 6.3
The const type qualifier can be applied to an array parameter in a function definition to
prevent the original array from being modified in the function body. This is another
example of the principle of least privilege. Functions should not be given the capability to
modify an array unless it’s absolutely necessary.

Performance Tip 6.4
Often, the simplest algorithms perform poorly. Their virtue is that they are easy to write, test
and debug. More complex algorithms are often needed to realize maximum performance.

Fig. 6.14 | const type qualifier. (Part 2 of 2.)

tryToModifyArray(a);

/* in function tryToModifyArray, array b is const, so it cannot be
 used to modify the original array a in main. */
void tryToModifyArray(const int b[])
{
 b[0] /= 2; /* error */
 b[1] /= 2; /* error */
 b[2] /= 2; /* error */
} /* end function tryToModifyArray */

6.6 Sorting Arrays 217

is to make several passes through the array. On each pass, successive pairs of elements are
compared. If a pair is in increasing order (or if the values are identical), we leave the values
as they are. If a pair is in decreasing order, their values are swapped in the array.

1 /* Fig. 6.15: fig06_15.c
2 This program sorts an array's values into ascending order */
3 #include <stdio.h>
4 #define SIZE 10
5
6 /* function main begins program execution */
7 int main(void)
8 {
9 /* initialize a */

10 int a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
11 int pass; /* passes counter */
12 int i; /* comparisons counter */
13 int hold; /* temporary location used to swap array elements */
14
15 printf("Data items in original order\n");
16
17 /* output original array */
18 for (i = 0; i < SIZE; i++) {
19 printf("%4d", a[i]);
20 } /* end for */
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 printf("\nData items in ascending order\n");
40
41 /* output sorted array */
42 for (i = 0; i < SIZE; i++) {
43 printf("%4d", a[i]);
44 } /* end for */
45
46 printf("\n");
47 return 0; /* indicates successful termination */
48 } /* end main */

Fig. 6.15 | Sorting an array with bubble sort. (Part 1 of 2.)

/* bubble sort */
/* loop to control number of passes */
for (pass = 1; pass < SIZE; pass++) {

 /* loop to control number of comparisons per pass */
 for (i = 0; i < SIZE - 1; i++) {

 /* compare adjacent elements and swap them if first
 element is greater than second element */
 if (a[i] > a[i + 1]) {
 hold = a[i];
 a[i] = a[i + 1];
 a[i + 1] = hold;
 } /* end if */
 } /* end inner for */
} /* end outer for */

218 Chapter 6 C Arrays

First the program compares a[0] to a[1], then a[1] to a[2], then a[2] to a[3], and
so on until it completes the pass by comparing a[8] to a[9]. Although there are 10 ele-
ments, only nine comparisons are performed. Because of the way the successive compari-
sons are made, a large value may move down the array many positions on a single pass, but
a small value may move up only one position. On the first pass, the largest value is guar-
anteed to sink to the bottom element of the array, a[9]. On the second pass, the second-
largest value is guaranteed to sink to a[8]. On the ninth pass, the ninth-largest value sinks
to a[1]. This leaves the smallest value in a[0], so only nine passes of the array are needed
to sort the array, even though there are ten elements.

The sorting is performed by the nested for loop (lines 24–37). If a swap is necessary,
it’s performed by the three assignments

where the extra variable hold temporarily stores one of the two values being swapped. The
swap cannot be performed with only the two assignments

If, for example, a[i] is 7 and a[i + 1] is 5, after the first assignment both values will be 5
and the value 7 will be lost. Hence the need for the extra variable hold.

The chief virtue of the bubble sort is that it’s easy to program. However, the bubble
sort runs slowly because every exchange moves an element only one position closer to its
final destination. This becomes apparent when sorting large arrays. In the exercises, we’ll
develop more efficient versions of the bubble sort. Far more efficient sorts than the bubble
sort have been developed. We’ll investigate a few of these in the exercises. More advanced
courses investigate sorting and searching in greater depth.

6.7 Case Study: Computing Mean, Median and Mode
Using Arrays
We now consider a larger example. Computers are commonly used for survey data analysis
to compile and analyze the results of surveys and opinion polls. Figure 6.16 uses array re-
sponse initialized with 99 responses to a survey. Each response is a number from 1 to 9. The
program computes the mean, median and mode of the 99 values.

The mean is the arithmetic average of the 99 values. Function mean (line 40) com-
putes the mean by totaling the 99 elements and dividing the result by 99.

The median is the “middle value.” Function median (line 61) determines the median
by calling function bubbleSort (defined in line 133) to sort the array of responses into

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

hold = a[i];
a[i] = a[i + 1];
a[i + 1] = hold;

a[i] = a[i + 1];
a[i + 1] = a[i];

Fig. 6.15 | Sorting an array with bubble sort. (Part 2 of 2.)

6.7 Case Study: Computing Mean, Median and Mode Using Arrays 219

ascending order, then picking the middle element, answer[SIZE / 2], of the sorted array.
When there is an even number of elements, the median should be calculated as the mean
of the two middle elements. Function median does not currently provide this capability.
Function printArray (line 156) is called to output the response array.

The mode is the value that occurs most frequently among the 99 responses. Function
mode (line 82) determines the mode by counting the number of responses of each type,
then selecting the value with the greatest count. This version of function mode does not
handle a tie (see Exercise 6.14). Function mode also produces a histogram to aid in deter-
mining the mode graphically. Figure 6.17 contains a sample run of this program. This
example includes most of the common manipulations usually required in array problems,
including passing arrays to functions.

1 /* Fig. 6.16: fig06_16.c
2 This program introduces the topic of survey data analysis.
3 It computes the mean, median and mode of the data */
4 #include <stdio.h>
5 #define SIZE 99
6
7 /* function prototypes */
8 void mean(const int answer[]);
9 void median(int answer[]);

10 void mode(int freq[], const int answer[]) ;
11 void bubbleSort(int a[]);
12 void printArray(const int a[]);
13
14 /* function main begins program execution */
15 int main(void)
16 {
17 int frequency[10] = { 0 }; /* initialize array frequency */
18
19 /* initialize array response */
20 int response[SIZE] =
21 { 6, 7, 8, 9, 8, 7, 8, 9, 8, 9,
22 7, 8, 9, 5, 9, 8, 7, 8, 7, 8,
23 6, 7, 8, 9, 3, 9, 8, 7, 8, 7,
24 7, 8, 9, 8, 9, 8, 9, 7, 8, 9,
25 6, 7, 8, 7, 8, 7, 9, 8, 9, 2,
26 7, 8, 9, 8, 9, 8, 9, 7, 5, 3,
27 5, 6, 7, 2, 5, 3, 9, 4, 6, 4,
28 7, 8, 9, 6, 8, 7, 8, 9, 7, 8,
29 7, 4, 4, 2, 5, 3, 8, 7, 5, 6,
30 4, 5, 6, 1, 6, 5, 7, 8, 7 };
31
32 /* process responses */
33 mean(response);
34 median(response);
35 mode(frequency, response);
36 return 0; /* indicates successful termination */
37 } /* end main */
38

Fig. 6.16 | Survey data analysis program. (Part 1 of 4.)

220 Chapter 6 C Arrays

39 /* calculate average of all response values */
40 void mean(const int answer[])
41 {
42 int j; /* counter for totaling array elements */
43 int total = 0; /* variable to hold sum of array elements */
44
45 printf("%s\n%s\n%s\n", "********", " Mean", "********");
46
47 /* total response values */
48 for (j = 0; j < SIZE; j++) {
49 total += answer[j];
50 } /* end for */
51
52 printf("The mean is the average value of the data\n"
53 "items. The mean is equal to the total of\n"
54 "all the data items divided by the number\n"
55 "of data items (%d). The mean value for\n"
56 "this run is: %d / %d = %.4f\n\n",
57 SIZE, total, SIZE, (double) total / SIZE);
58 } /* end function mean */
59
60 /* sort array and determine median element's value */
61 void median(int answer[])
62 {
63 printf("\n%s\n%s\n%s\n%s",
64 "********", " Median", "********",
65 "The unsorted array of responses is");
66
67 printArray(answer); /* output unsorted array */
68
69
70
71 printf("\n\nThe sorted array is");
72 printArray(answer); /* output sorted array */
73
74 /* display median element */
75 printf("\n\nThe median is element %d of\n"
76 "the sorted %d element array.\n"
77 "For this run the median is %d\n\n",
78 SIZE / 2, SIZE,);
79 } /* end function median */
80
81 /* determine most frequent response */
82 void mode(int freq[], const int answer[])
83 {
84 int rating; /* counter for accessing elements 1-9 of array freq */
85 int j; /* counter for summarizing elements 0-98 of array answer */
86 int h; /* counter for diplaying histograms of elements in array freq */
87 int largest = 0; /* represents largest frequency */
88 int modeValue = 0; /* represents most frequent response */
89
90 printf("\n%s\n%s\n%s\n",
91 "********", " Mode", "********");

Fig. 6.16 | Survey data analysis program. (Part 2 of 4.)

bubbleSort(answer); /* sort array */

answer[SIZE / 2]

6.7 Case Study: Computing Mean, Median and Mode Using Arrays 221

92
93 /* initialize frequencies to 0 */
94 for (rating = 1; rating <= 9; rating++) {
95 freq[rating] = 0;
96 } /* end for */
97
98 /* summarize frequencies */
99 for (j = 0; j < SIZE; j++) {
100 ++freq[answer[j]];
101 } /* end for */
102
103 /* output headers for result columns */
104 printf("%s%11s%19s\n\n%54s\n%54s\n\n",
105 "Response", "Frequency", "Histogram",
106 "1 1 2 2", "5 0 5 0 5");
107
108 /* output results */
109 for (rating = 1; rating <= 9; rating++) {
110 printf("%8d%11d ", rating, freq[rating]);
111
112
113
114
115
116
117
118 /* output histogram bar representing frequency value */
119 for (h = 1; h <= freq[rating]; h++) {
120 printf("*");
121 } /* end inner for */
122
123 printf("\n"); /* being new line of output */
124 } /* end outer for */
125
126 /* display the mode value */
127 printf("The mode is the most frequent value.\n"
128 "For this run the mode is %d which occurred"
129 " %d times.\n", modeValue, largest);
130 } /* end function mode */
131
132 /* function that sorts an array with bubble sort algorithm */
133 void bubbleSort(int a[])
134 {
135 int pass; /* pass counter */
136 int j; /* comparison counter */
137 int hold; /* temporary location used to swap elements */
138
139 /* loop to control number of passes */
140 for (pass = 1; pass < SIZE; pass++) {
141
142 /* loop to control number of comparisons per pass */
143 for (j = 0; j < SIZE - 1; j++) {
144

Fig. 6.16 | Survey data analysis program. (Part 3 of 4.)

/* keep track of mode value and largest frequency value */
if (freq[rating] > largest) {
 largest = freq[rating];
 modeValue = rating;
} /* end if */

222 Chapter 6 C Arrays

145 /* swap elements if out of order */
146 if (a[j] > a[j + 1]) {
147 hold = a[j];
148 a[j] = a[j + 1];
149 a[j + 1] = hold;
150 } /* end if */
151 } /* end inner for */
152 } /* end outer for */
153 } /* end function bubbleSort */
154
155 /* output array contents (20 values per row) */
156 void printArray(const int a[])
157 {
158 int j; /* counter */
159
160 /* output array contents */
161 for (j = 0; j < SIZE; j++) {
162
163 if (j % 20 == 0) { /* begin new line every 20 values */
164 printf("\n");
165 } /* end if */
166
167 printf("%2d", a[j]);
168 } /* end for */
169 } /* end function printArray */

 Mean

The mean is the average value of the data
items. The mean is equal to the total of
all the data items divided by the number
of data items (99). The mean value for
this run is: 681 / 99 = 6.8788

 Median

The unsorted array of responses is
 6 7 8 9 8 7 8 9 8 9 7 8 9 5 9 8 7 8 7 8
 6 7 8 9 3 9 8 7 8 7 7 8 9 8 9 8 9 7 8 9
 6 7 8 7 8 7 9 8 9 2 7 8 9 8 9 8 9 7 5 3
 5 6 7 2 5 3 9 4 6 4 7 8 9 6 8 7 8 9 7 8
 7 4 4 2 5 3 8 7 5 6 4 5 6 1 6 5 7 8 7

The sorted array is
 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5
 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7
 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

Fig. 6.17 | Sample run for the survey data analysis program. (Part 1 of 2.)

Fig. 6.16 | Survey data analysis program. (Part 4 of 4.)

6.8 Searching Arrays 223

6.8 Searching Arrays
You’ll often work with large amounts of data stored in arrays. It may be necessary to de-
termine whether an array contains a value that matches a certain key value. The process of
finding a particular element of an array is called searching. In this section we discuss two
searching techniques—the simple linear search technique and the more efficient (but
more complex) binary search technique. Exercise 6.32 and Exercise 6.33 at the end of this
chapter ask you to implement recursive versions of the linear search and the binary search.

Searching an Array with Linear Search
The linear search (Fig. 6.18) compares each element of the array with the search key. Since
the array is not in any particular order, it’s just as likely that the value will be found in the
first element as in the last. On average, therefore, the program will have to compare the
search key with half the elements of the array.

 8
 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

The median is element 49 of
the sorted 99 element array.
For this run the median is 7

 Mode

Response Frequency Histogram

 1 1 2 2
 5 0 5 0 5

 1 1 *
 2 3 ***
 3 4 ****
 4 5 *****
 5 8 ********
 6 9 *********
 7 23 ***********************
 8 27 ***************************
 9 19 *******************
The mode is the most frequent value.
For this run the mode is 8 which occurred 27 times.

1 /* Fig. 6.18: fig06_18.c
2 Linear search of an array */
3 #include <stdio.h>
4 #define SIZE 100

Fig. 6.18 | Linear search of an array. (Part 1 of 3.)

Fig. 6.17 | Sample run for the survey data analysis program. (Part 2 of 2.)

224 Chapter 6 C Arrays

5
6 /* function prototype */
7
8
9 /* function main begins program execution */

10 int main(void)
11 {
12 int a[SIZE]; /* create array a */
13 int x; /* counter for initializing elements 0-99 of array a */
14 int searchKey; /* value to locate in array a */
15 int element; /* variable to hold location of searchKey or -1 */
16
17 /* create data */
18 for (x = 0; x < SIZE; x++) {
19 a[x] = 2 * x;
20 } /* end for */
21
22 printf("Enter integer search key:\n");
23 scanf("%d", &searchKey);
24
25
26
27
28 /* display results */
29 if (element != -1) {
30 printf("Found value in element %d\n", element);
31 } /* end if */
32 else {
33 printf("Value not found\n");
34 } /* end else */
35
36 return 0; /* indicates successful termination */
37 } /* end main */
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Fig. 6.18 | Linear search of an array. (Part 2 of 3.)

int linearSearch(const int array[], int key, int size);

/* attempt to locate searchKey in array a */
element = linearSearch(a, searchKey, SIZE);

/* compare key to every element of array until the location is found
 or until the end of array is reached; return subscript of element
 if key or -1 if key is not found */
int linearSearch(const int array[], int key, int size)
{
 int n; /* counter */

 /* loop through array */
 for (n = 0; n < size; ++n) {

 if (array[n] == key) {
 return n; /* return location of key */
 } /* end if */
 } /* end for */

 return -1; /* key not found */
} /* end function linearSearch */

6.8 Searching Arrays 225

Searching an Array with Binary Search
The linear searching method works well for small or unsorted arrays. However, for large
arrays linear searching is inefficient. If the array is sorted, the high-speed binary search
technique can be used.

The binary search algorithm eliminates from consideration one-half of the elements
in a sorted array after each comparison. The algorithm locates the middle element of the
array and compares it to the search key. If they are equal, the search key is found and the
array subscript of that element is returned. If they are not equal, the problem is reduced
to searching one-half of the array. If the search key is less than the middle element of the
array, the first half of the array is searched, otherwise the second half of the array is
searched. If the search key is not found in the specified subarray (piece of the original
array), the algorithm is repeated on one-quarter of the original array. The search continues
until the search key is equal to the middle element of a subarray, or until the subarray con-
sists of one element that is not equal to the search key (i.e., the search key is not found).

In a worst case-scenario, searching an array of 1023 elements takes only 10 compari-
sons using a binary search. Repeatedly dividing 1024 by 2 yields the values 512, 256, 128,
64, 32, 16, 8, 4, 2 and 1. The number 1024 (210) is divided by 2 only 10 times to get the
value 1. Dividing by 2 is equivalent to one comparison in the binary search algorithm. An
array of 1048576 (220) elements takes a maximum of 20 comparisons to find the search
key. An array of one billion elements takes a maximum of 30 comparisons to find the
search key. This is a tremendous increase in performance over the linear search that
required comparing the search key to an average of half of the array elements. For a one-
billion-element array, this is a difference between an average of 500 million comparisons
and a maximum of 30 comparisons! The maximum comparisons for any array can be
determined by finding the first power of 2 greater than the number of array elements.

Figure 6.19 presents the iterative version of function binarySearch (lines 44–74).
The function receives four arguments—an integer array b to be searched, an integer
searchKey, the low array subscript and the high array subscript (these define the portion
of the array to be searched). If the search key does not match the middle element of a sub-
array, the low subscript or high subscript is modified so that a smaller subarray can be
searched. If the search key is less than the middle element, the high subscript is set to
middle - 1 and the search is continued on the elements from low to middle - 1. If the
search key is greater than the middle element, the low subscript is set to middle + 1 and
the search is continued on the elements from middle + 1 to high. The program uses an
array of 15 elements. The first power of 2 greater than the number of elements in this array

Enter integer search key:
36
Found value in element 18

Enter integer search key:
37
Value not found

Fig. 6.18 | Linear search of an array. (Part 3 of 3.)

226 Chapter 6 C Arrays

is 16 (24), so a maximum of 4 comparisons are required to find the search key. The pro-
gram uses function printHeader (lines 77–96) to output the array subscripts and function
printRow (lines 100–120) to output each subarray during the binary search process. The
middle element in each subarray is marked with an asterisk (*) to indicate the element to
which the search key is compared.

1 /* Fig. 6.19: fig06_19.c
2 Binary search of a sorted array */
3 #include <stdio.h>
4 #define SIZE 15
5
6 /* function prototypes */
7 int binarySearch(const int b[], int searchKey, int low, int high);
8 void printHeader(void);
9 void printRow(const int b[], int low, int mid, int high);

10
11 /* function main begins program execution */
12 int main(void)
13 {
14 int a[SIZE]; /* create array a */
15 int i; /* counter for initializing elements 0-14 of array a */
16 int key; /* value to locate in array a */
17 int result; /* variable to hold location of key or -1 */
18
19 /* create data */
20 for (i = 0; i < SIZE; i++) {
21 a[i] = 2 * i;
22 } /* end for */
23
24 printf("Enter a number between 0 and 28: ");
25 scanf("%d", &key);
26
27 printHeader();
28
29 /* search for key in array a */
30 result = binarySearch(a, key, 0, SIZE - 1);
31
32 /* display results */
33 if (result != -1) {
34 printf("\n%d found in array element %d\n", key, result);
35 } /* end if */
36 else {
37 printf("\n%d not found\n", key);
38 } /* end else */
39
40 return 0; /* indicates successful termination */
41 } /* end main */
42
43 /* function to perform binary search of an array */
44
45 {

Fig. 6.19 | Binary search of a sorted array. (Part 1 of 4.)

int binarySearch(const int b[], int searchKey, int low, int high)

6.8 Searching Arrays 227

46 int middle; /* variable to hold middle element of array */
47
48 /* loop until low subscript is greater than high subscript */
49
50
51 /* determine middle element of subarray being searched */
52
53
54 /* display subarray used in this loop iteration */
55 printRow(b, low, middle, high);
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73 return -1; /* searchKey not found */
74 } /* end function binarySearch */
75
76 /* Print a header for the output */
77 void printHeader(void)
78 {
79 int i; /* counter */
80
81 printf("\nSubscripts:\n");
82
83 /* output column head */
84 for (i = 0; i < SIZE; i++) {
85 printf("%3d ", i);
86 } /* end for */
87
88 printf("\n"); /* start new line of output */
89
90 /* output line of - characters */
91 for (i = 1; i <= 4 * SIZE; i++) {
92 printf("-");
93 } /* end for */
94
95 printf("\n"); /* start new line of output */
96 } /* end function printHeader */
97

Fig. 6.19 | Binary search of a sorted array. (Part 2 of 4.)

while (low <= high) {

middle = (low + high) / 2;

/* if searchKey matched middle element, return middle */
if (searchKey == b[middle]) {
 return middle;
} /* end if */

/* if searchKey less than middle element, set new high */
else if (searchKey < b[middle]) {
 high = middle - 1; /* search low end of array */
} /* end else if */

/* if searchKey greater than middle element, set new low */
else {
 low = middle + 1; /* search high end of array */
} /* end else */

} /* end while */

228 Chapter 6 C Arrays

98 /* Print one row of output showing the current
99 part of the array being processed. */
100 void printRow(const int b[], int low, int mid, int high)
101 {
102 int i; /* counter for iterating through array b */
103
104 /* loop through entire array */
105 for (i = 0; i < SIZE; i++) {
106
107 /* display spaces if outside current subarray range */
108 if (i < low || i > high) {
109 printf(" ");
110 } /* end if */
111 else if (i == mid) { /* display middle element */
112 printf("%3d*", b[i]); /* mark middle value */
113 } /* end else if */
114 else { /* display other elements in subarray */
115 printf("%3d ", b[i]);
116 } /* end else */
117 } /* end for */
118
119 printf("\n"); /* start new line of output */
120 } /* end function printRow */

Enter a number between 0 and 28: 25

Subscripts:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--
 0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28
 16 18 20 22* 24 26 28
 24 26* 28
 24*

25 not found

Enter a number between 0 and 28: 8

Subscripts:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--
 0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28
 0 2 4 6* 8 10 12
 8 10* 12
 8*

8 found in array element 4

Fig. 6.19 | Binary search of a sorted array. (Part 3 of 4.)

6.9 Multiple-Subscripted Arrays 229

6.9 Multiple-Subscripted Arrays
Arrays in C can have multiple subscripts. A common use of multiple-subscripted arrays
(also called multidimensional arrays) is to represent tables of values consisting of infor-
mation arranged in rows and columns. To identify a particular table element, we must
specify two subscripts: The first (by convention) identifies the element’s row and the sec-
ond (by convention) identifies the element’s column. Tables or arrays that require two
subscripts to identify a particular element are called double-subscripted arrays. Multiple-
subscripted arrays can have more than two subscripts.

Figure 6.20 illustrates a double-subscripted array, a. The array contains three rows
and four columns, so it’s said to be a 3-by-4 array. In general, an array with m rows and n
columns is called an m-by-n array.

Every element in array a is identified in Fig. 6.20 by an element name of the form
a[i][j]; a is the name of the array, and i and j are the subscripts that uniquely identify
each element in a. The names of the elements in the first row all have a first subscript of
0; the names of the elements in the fourth column all have a second subscript of 3.

Enter a number between 0 and 28: 6

Subscripts:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--
 0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28
 0 2 4 6* 8 10 12

6 found in array element 3

Fig. 6.20 | Double-subscripted array with three rows and four columns.

Common Programming Error 6.9
Referencing a double-subscripted array element as a[x, y] instead of a[x][y]. C
interprets a[x, y] as a[y], and as such it does not cause a compilation error.

Fig. 6.19 | Binary search of a sorted array. (Part 4 of 4.)

Row 0

Row 1

Row 2

Column index
Row index
Array name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

230 Chapter 6 C Arrays

A multiple-subscripted array can be initialized when it’s defined, much like a single-
subscripted array. For example, a double-subscripted array int b[2][2] could be defined
and initialized with

The values are grouped by row in braces. The values in the first set of braces initialize row
0 and the values in the second set of braces initialize row 1. So, the values 1 and 2 initialize
elements b[0][0] and b[0][1], respectively, and the values 3 and 4 initialize elements
b[1][0] and b[1][1], respectively. If there are not enough initializers for a given row, the
remaining elements of that row are initialized to 0. Thus,

would initialize b[0][0] to 1, b[0][1] to 0, b[1][0] to 3 and b[1][1] to 4. Figure 6.21
demonstrates defining and initializing double-subscripted arrays.

The program defines three arrays of two rows and three columns (six elements
each). The definition of array1 (line 11) provides six initializers in two sublists. The first
sublist initializes the first row (i.e., row 0) of the array to the values 1, 2 and 3; and the
second sublist initializes the second row (i.e., row 1) of the array to the values 4, 5 and 6.

int b[2][2] = { { 1, 2 }, { 3, 4 } };

int b[2][2] = { { 1 }, { 3, 4 } };

1 /* Fig. 6.21: fig06_21.c
2 Initializing multidimensional arrays */
3 #include <stdio.h>
4
5 void printArray(const int a[][3]); /* function prototype */
6
7 /* function main begins program execution */
8 int main(void)
9 {

10 /* initialize array1, array2, array3 */
11
12
13
14
15 printf("Values in array1 by row are:\n");
16 printArray(array1);
17
18 printf("Values in array2 by row are:\n");
19 printArray(array2);
20
21 printf("Values in array3 by row are:\n");
22 printArray(array3);
23 return 0; /* indicates successful termination */
24 } /* end main */
25
26
27
28
29
30
31

Fig. 6.21 | Initializing multidimensional arrays. (Part 1 of 2.)

int array1[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
int array2[2][3] = { 1, 2, 3, 4, 5 };
int array3[2][3] = { { 1, 2 }, { 4 } };

/* function to output array with two rows and three columns */
void printArray(const int a[][3])
{
 int i; /* row counter */
 int j; /* column counter */

6.9 Multiple-Subscripted Arrays 231

If the braces around each sublist are removed from the array1 initializer list, the com-
piler initializes the elements of the first row followed by the elements of the second row.
The definition of array2 (line 12) provides five initializers. The initializers are assigned to
the first row, then the second row. Any elements that do not have an explicit initializer are
initialized to zero automatically, so array2[1][2] is initialized to 0.

The definition of array3 (line 13) provides three initializers in two sublists. The sub-
list for the first row explicitly initializes the first two elements of the first row to 1 and 2.
The third element is initialized to zero. The sublist for the second row explicitly initializes
the first element to 4. The last two elements are initialized to zero.

The program calls printArray (lines 27–43) to output each array’s elements. The
function definition specifies the array parameter as const int a[][3]. When we receive a
single-subscripted array as a parameter, the array brackets are empty in the function’s
parameter list. The first subscript of a multiple-subscripted array is not required either, but
all subsequent subscripts are required. The compiler uses these subscripts to determine the
locations in memory of elements in multiple-subscripted arrays. All array elements are
stored consecutively in memory regardless of the number of subscripts. In a double-sub-
scripted array, the first row is stored in memory followed by the second row.

Providing the subscript values in a parameter declaration enables the compiler to tell
the function how to locate an element in the array. In a double-subscripted array, each row
is basically a single-subscripted array. To locate an element in a particular row, the com-
piler must know how many elements are in each row so that it can skip the proper number
of memory locations when accessing the array. Thus, when accessing a[1][2] in our
example, the compiler knows to skip the three elements of the first row to get to the second
row (row 1). Then, the compiler accesses the third element of that row (element 2).

Many common array manipulations use for repetition statements. For example, the
following statement sets all the elements in the third row of array a in Fig. 6.20 to zero:

32
33
34
35
36
37
38
39
40
41
42

Values in array1 by row are:
1 2 3
4 5 6
Values in array2 by row are:
1 2 3
4 5 0
Values in array3 by row are:
1 2 0
4 0 0

Fig. 6.21 | Initializing multidimensional arrays. (Part 2 of 2.)

 /* loop through rows */
 for (i = 0; i <= 1; i++) {

 /* output column values */
 for (j = 0; j <= 2; j++) {
 printf("%d ", a[i][j]);
 } /* end inner for */

 printf("\n"); /* start new line of output */
 } /* end outer for */
} /* end function printArray */

232 Chapter 6 C Arrays

We specified the third row, therefore we know that the first subscript is always 2 (again, 0
is the first row and 1 is the second). The loop varies only the second subscript (i.e., the
column). The preceding for statement is equivalent to the assignment statements:

The following nested for statement determines the total of all the elements in array a.

The for statement totals the elements of the array one row at a time. The outer for state-
ment begins by setting row (i.e., the row subscript) to 0 so that the elements of the first
row may be totaled by the inner for statement. The outer for statement then increments
row to 1, so the elements of the second row can be totaled. Then, the outer for statement
increments row to 2, so the elements of the third row can be totaled. The result is printed
when the nested for statement terminates.

Two-Dimensonal Array Manipulations
Figure 6.22 performs several other common array manipulations on 3-by-4 array stu-
dentGrades using for statements. Each row of the array represents a student and each col-
umn represents a grade on one of the four exams the students took during the semester.
The array manipulations are performed by four functions. Function minimum (lines 43–
62) determines the lowest grade of any student for the semester. Function maximum (lines
65–84) determines the highest grade of any student for the semester. Function average
(lines 87–98) determines a particular student’s semester average. Function printArray
(lines 101–120) outputs the double-subscripted array in a neat, tabular format.

for (column = 0; column <= 3; column++) {
 a[2][column] = 0;
}

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

total = 0;

for (row = 0; row <= 2; row++) {
 for (column = 0; column <= 3; column++) {
 total += a[row][column];
 }
}

1 /* Fig. 6.22: fig06_22.c
2 Double-subscripted array example */
3 #include <stdio.h>
4 #define STUDENTS 3
5 #define EXAMS 4
6
7 /* function prototypes */
8 int minimum(const int grades[][EXAMS], int pupils, int tests);
9 int maximum(const int grades[][EXAMS], int pupils, int tests);

10 double average(const int setOfGrades[], int tests);
11 void printArray(const int grades[][EXAMS], int pupils, int tests);

Fig. 6.22 | Double-subscripted arrays example. (Part 1 of 4.)

6.9 Multiple-Subscripted Arrays 233

12
13 /* function main begins program execution */
14 int main(void)
15 {
16 int student; /* student counter */
17
18 /* initialize student grades for three students (rows) */
19 const int studentGrades[STUDENTS][EXAMS] =
20 { { 77, 68, 86, 73 },
21 { 96, 87, 89, 78 },
22 { 70, 90, 86, 81 } };
23
24 /* output array studentGrades */
25 printf("The array is:\n");
26 printArray(studentGrades, STUDENTS, EXAMS);
27
28 /* determine smallest and largest grade values */
29 printf("\n\nLowest grade: %d\nHighest grade: %d\n",
30 minimum(studentGrades, STUDENTS, EXAMS),
31 maximum(studentGrades, STUDENTS, EXAMS));
32
33 /* calculate average grade for each student */
34 for (student = 0; student < STUDENTS; student++) {
35 printf("The average grade for student %d is %.2f\n",
36
37 } /* end for */
38
39 return 0; /* indicates successful termination */
40 } /* end main */
41
42 /* Find the minimum grade */
43 int minimum(const int grades[][EXAMS], int pupils, int tests)
44 {
45 int i; /* student counter */
46 int j; /* exam counter */
47 int lowGrade = 100; /* initialize to highest possible grade */
48
49 /* loop through rows of grades */
50 for (i = 0; i < pupils; i++) {
51
52 /* loop through columns of grades */
53 for (j = 0; j < tests; j++) {
54
55 if (grades[i][j] < lowGrade) {
56 lowGrade = grades[i][j];
57 } /* end if */
58 } /* end inner for */
59 } /* end outer for */
60
61 return lowGrade; /* return minimum grade */
62 } /* end function minimum */
63

Fig. 6.22 | Double-subscripted arrays example. (Part 2 of 4.)

student, average(studentGrades[student], EXAMS));

234 Chapter 6 C Arrays

64 /* Find the maximum grade */
65 int maximum(const int grades[][EXAMS], int pupils, int tests)
66 {
67 int i; /* student counter */
68 int j; /* exam counter */
69 int highGrade = 0; /* initialize to lowest possible grade */
70
71 /* loop through rows of grades */
72 for (i = 0; i < pupils; i++) {
73
74 /* loop through columns of grades */
75 for (j = 0; j < tests; j++) {
76
77 if (grades[i][j] > highGrade) {
78 highGrade = grades[i][j];
79 } /* end if */
80 } /* end inner for */
81 } /* end outer for */
82
83 return highGrade; /* return maximum grade */
84 } /* end function maximum */
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100 /* Print the array */
101 void printArray(const int grades[][EXAMS], int pupils, int tests)
102 {
103 int i; /* student counter */
104 int j; /* exam counter */
105
106 /* output column heads */
107 printf(" [0] [1] [2] [3]");
108
109 /* output grades in tabular format */
110 for (i = 0; i < pupils; i++) {
111
112 /* output label for row */
113 printf("\nstudentGrades[%d] ", i);
114

Fig. 6.22 | Double-subscripted arrays example. (Part 3 of 4.)

/* Determine the average grade for a particular student */
double average(const int setOfGrades[], int tests)
{
 int i; /* exam counter */
 int total = 0; /* sum of test grades */

 /* total all grades for one student */
 for (i = 0; i < tests; i++) {
 total += setOfGrades[i];
 } /* end for */

 return (double) total / tests; /* average */
} /* end function average */

6.9 Multiple-Subscripted Arrays 235

Functions minimum, maximum and printArray each receive three arguments—the
studentGrades array (called grades in each function), the number of students (rows of
the array) and the number of exams (columns of the array). Each function loops through
array grades using nested for statements. The following nested for statement is from the
function minimum definition:

The outer for statement begins by setting i (i.e., the row subscript) to 0 so that the ele-
ments of the first row (i.e., the grades of the first student) can be compared to variable
lowGrade in the body of the inner for statement. The inner for statement loops through
the four grades of a particular row and compares each grade to lowGrade. If a grade is less
than lowGrade, lowGrade is set to that grade. The outer for statement then increments
the row subscript to 1. The elements of the second row are compared to variable lowGrade.
The outer for statement then increments the row subscript to 2. The elements of the third
row are compared to variable lowGrade. When execution of the nested structure is com-
plete, lowGrade contains the smallest grade in the double-subscripted array. Function max-
imum works similarly to function minimum.

Function average (line 87) takes two arguments—a single-subscripted array of test
results for a particular student called setOfGrades and the number of test results in the
array. When average is called, the first argument studentGrades[student] is passed.
This causes the address of one row of the double-subscripted array to be passed to average.

115 /* output grades for one student */
116 for (j = 0; j < tests; j++) {
117 printf("%-5d", grades[i][j]);
118 } /* end inner for */
119 } /* end outer for */
120 } /* end function printArray */

The array is:
 [0] [1] [2] [3]
studentGrades[0] 77 68 86 73
studentGrades[1] 96 87 89 78
studentGrades[2] 70 90 86 81

Lowest grade: 68
Highest grade: 96
The average grade for student 0 is 76.00
The average grade for student 1 is 87.50
The average grade for student 2 is 81.75

/* loop through rows of grades */
for (i = 0; i < pupils; i++) {
 /* loop through columns of grades */
 for (j = 0; j < tests; j++) {
 if (grades[i][j] < lowGrade) {
 lowGrade = grades[i][j];
 } /* end if */
 } /* end inner for */
} /* end outer for */

Fig. 6.22 | Double-subscripted arrays example. (Part 4 of 4.)

236 Chapter 6 C Arrays

The argument studentGrades[1] is the starting address of the second row of the array.
Remember that a double-subscripted array is basically an array of single-subscripted arrays
and that the name of a single-subscripted array is the address of the array in memory.
Function average calculates the sum of the array elements, divides the total by the number
of test results and returns the floating-point result.

Summary
Section 6.1 Introduction
• Arrays are data structures consisting of related data items of the same type.

• Arrays are “static” entities in that they remain the same size throughout program execution.

Section 6.2 Arrays
• An array is a group of memory locations related by the fact that they all have the same name and

the same type.

• To refer to a particular location or element in the array, specify the name of the array and the
position number of the particular element in the array.

• The first element in every array is the zeroth element. Thus, the first element of array c is referred
to as c[0], the second element of array c is referred to as c[1], the seventh element of array c is
referred to as c[6], and, in general, the ith element of array c is referred to as c[i - 1].

• Array names, like other variable names, can contain only letters, digits and underscores. Array
names cannot begin with a digit.

• The position number contained within square brackets is more formally called a subscript. A sub-
script must be an integer or an integer expression.

• The brackets used to enclose the subscript of an array are actually considered to be an operator
in C. They have the same level of precedence as the function call operator.

Section 6.3 Defining Arrays
• Arrays occupy space in memory. You specify the type of each element and the number of ele-

ments in the array so that the computer may reserve the appropriate amount of memory.

• An array of type char can be used to store a character string.

Section 6.4 Array Examples
• The elements of an array can be initialized when the array is defined by following the definition

with an equals sign and braces, {}, containing a comma-separated list of initializers. If there are
fewer initializers than elements in the array, the remaining elements are initialized to zero.

• The statement int n[10] = {0}; explicitly initializes the first element to zero and initializes the
remaining nine elements to zero because there are fewer initializers than there are elements in the
array. It’s important to remember that automatic arrays are not automatically initialized to zero.
You must at least initialize the first element to zero for the remaining elements to be automati-
cally zeroed. This method of initializing the array elements to 0 is performed at compile time for
static arrays and at runtime for automatic arrays.

• If the array size is omitted from a definition with an initializer list, the number of elements in the
array will be the number of elements in the initializer list.

• The #define preprocessor directive can be used to define a symbolic constant—an identifier that
is replaced with replacement text by the C preprocessor before the program is compiled. When
the program is preprocessed, all occurrences of the symbolic constant are replaced with the re-
placement text. Using symbolic constants to specify array sizes makes programs more scalable.

 Summary 237

• C has no array bounds checking to prevent a program from referring to an element that does not
exist. Thus, an executing program can “walk off” the end of an array without warning. You
should ensure that all array references remain within the bounds of the array.

• A string such as "hello" is really a static array of individual characters in C.

• A character array can be initialized using a string literal. In this case, the size of the array is deter-
mined by the compiler based on the length of the string.

• Every string contains a special string-termination character called the null character. The charac-
ter constant representing the null character is '\0'.

• A character array representing a string should always be defined large enough to hold the number
of characters in the string and the terminating null character.

• Character arrays also can be initialized with individual character constants in an initializer list.

• Because a string is really an array of characters, we can access individual characters in a string di-
rectly using array subscript notation.

• You can input a string directly into a character array from the keyboard using scanf and the con-
version specifier %s. The name of the character array is passed to scanf without the preceding &
used with nonstring variables. The & is normally used to provide scanf with a variable’s location
in memory so that a value can be stored there. An array name is the address of the start of the
array; therefore, the & is not necessary.

• Function scanf reads characters from the keyboard until the first white-space character is en-
countered—it does not check the array size. Thus, scanf can write beyond the end of the array.

• A character array representing a string can be output with printf and the %s conversion specifier.
The characters of the string are printed until a terminating null character is encountered.

• A static local variable exists for the duration of the program but is only visible in the function
body. We can apply static to a local array definition so that the array is not created and initial-
ized each time the function is called and the array is not destroyed each time the function is exited
in the program. This reduces program execution time, particularly for programs with frequently
called functions that contain large arrays.

• Arrays that are static are automatically initialized once at compile time. If you do not explicitly
initialize a static array, that array’s elements are initialized to zero by the compiler.

Section 6.5 Passing Arrays to Functions
• To pass an array argument to a function, specify the name of the array without any brackets.

• Unlike char arrays that contain strings, other array types do not have a special terminator. For
this reason, the size of an array is passed to a function, so that the function can process the proper
number of elements.

• C automatically passes arrays to functions by reference—the called functions can modify the el-
ement values in the callers’ original arrays. The name of the array evaluates to the address of the
first element of the array. Because the starting address of the array is passed, the called function
knows precisely where the array is stored. Therefore, when the called function modifies array el-
ements in its function body, it’s modifying the actual elements of the array in their original mem-
ory locations.

• Although entire arrays are passed by reference, individual array elements are passed by value ex-
actly as simple variables are.

• Such simple single pieces of data (such as individual ints, floats and chars) are called scalars.

• To pass an element of an array to a function, use the subscripted name of the array element as an
argument in the function call.

238 Chapter 6 C Arrays

• For a function to receive an array through a function call, the function’s parameter list must spec-
ify that an array will be received. The size of the array is not required between the array brackets.
If it’s included, the compiler checks that it’s greater than zero, then ignores it.

• When an array parameter is preceded by the const qualifier, the elements of the array become
constant in the function body, and any attempt to modify an element of the array in the function
body results in a compile-time error.

Section 6.6 Sorting Arrays
• Sorting data (i.e., placing the data into a particular order such as ascending or descending) is one

of the most important computing applications.

• One sorting technique is called the bubble sort or the sinking sort, because the smaller values
gradually “bubble” their way upward to the top of the array like air bubbles rising in water, while
the larger values sink to the bottom of the array. The technique is to make several passes through
the array. On each pass, successive pairs of elements are compared. If a pair is in increasing order
(or if the values are identical), we leave the values as they are. If a pair is in decreasing order, their
values are swapped in the array.

• Because of the way the successive comparisons are made, a large value may move down the array
many positions on a single pass, but a small value may move up only one position.

• The chief virtue of the bubble sort is that it’s easy to program. However, the bubble sort runs
slowly. This becomes apparent when sorting large arrays.

Section 6.7 Case Study: Computing Mean, Median and Mode Using Arrays
• The mean is the arithmetic average of a set of values.

• The median is the “middle value” in a sorted set of values.

• The mode is the value that occurs most frequently in a set of values.

Section 6.8 Searching Arrays
• The process of finding a particular element of an array is called searching.

• The linear search compares each element of the array with the search key. Since the array is not
in any particular order, it’s just as likely that the value will be found in the first element as in the
last. On average, therefore, the search key will be compared with half the elements of the array.

• The linear searching method works well for small or unsorted arrays. For sorted arrays, the high-
speed binary search technique can be used.

• The binary search algorithm eliminates from consideration one-half of the elements in a sorted
array after each comparison. The algorithm locates the middle element of the array and compares
it to the search key. If they are equal, the search key is found and the array subscript of that el-
ement is returned. If they are not equal, the problem is reduced to searching one-half of
the array. If the search key is less than the middle element of the array, the first half of the array
is searched, otherwise the second half of the array is searched. If the search key is not found in
the specified subarray (piece of the original array), the algorithm is repeated on one-quarter of
the original array. The search continues until the search key is equal to the middle element of a
subarray, or until the subarray consists of one element that is not equal to the search key (i.e., the
search key is not found).

• When using a binary search, the maximum number of comparisons required for any array can
be determined by finding the first power of 2 greater than the number of array elements.

Section 6.9 Multiple-Subscripted Arrays
• A common use of multiple-subscripted arrays (also called multidimensional arrays) is to repre-

sent tables of values consisting of information arranged in rows and columns. To identify a par-

 Terminology 239

ticular table element, we must specify two subscripts: The first (by convention) identifies the
element’s row and the second (by convention) identifies the element’s column.

• Tables or arrays that require two subscripts to identify a particular element are called double-sub-
scripted arrays.

• Multiple-subscripted arrays can have more than two subscripts.

• A multiple-subscripted array can be initialized when it’s defined, much like a single-subscripted
array. The values are grouped by row in braces. If there are not enough initializers for a given
row, the remaining elements of that row are initialized to 0.

• The first subscript of a multiple-subscripted array parameter declaration is not required, but all
subsequent subscripts are required. The compiler uses these subscripts to determine the locations
in memory of elements in multiple-subscripted arrays. All array elements are stored consecutively
in memory regardless of the number of subscripts. In a double-subscripted array, the first row is
stored in memory followed by the second row.

• Providing the subscript values in a parameter declaration enables the compiler to tell the function
how to locate an element in the array. In a double-subscripted array, each row is basically a single-
subscripted array. To locate an element in a particular row, the compiler must know how many
elements are in each row so that it can skip the proper number of memory locations when access-
ing the array.

Terminology
array 196
binary search 223
bubble sort 216
const keyword 215
double-subscripted array 229
element 196
index (or subscript) 196
initializer 199
key value 223
linear search 223
m-by-n array 229
multidimensional array 229
multiple-subscripted array 229
name 196

null character 207
position number 196
replacement text 201
scalable 202
scalar 212
search key 223
searching 223
sinking sort 216
subscript 196
survey data analysis 218
symbolic constant 201
table 229
value 196
zeroth element 196

Self-Review Exercises
6.1 Answer each of the following:

a) Lists and tables of values are stored in .
b) An array’s elements are related by the fact that they have the same and .
c) The number used to refer to a particular element of an array is called its .
d) A(n) should be used to specify the size of an array because it makes the pro-

gram more scalable.
e) The process of placing the elements of an array in order is called the array.
f) Determining whethet an array contains a certain key value is called the array.
g) An array that uses two subscripts is referred to as a(n) array.

6.2 State whether the following are true or false. If the answer is false, explain why.
a) An array can store many different types of values.
b) An array subscript can be of data type double.

240 Chapter 6 C Arrays

c) If there are fewer initializers in an initializer list than the number of elements in the ar-
ray, C automatically initializes the remaining elements to the last value in the list of ini-
tializers.

d) It’s an error if an initializer list contains more initializers than there are elements in the
array.

e) An individual array element that is passed to a function as an argument of the form a[i]
and modified in the called function will contain the modified value in the calling function.

6.3 Answer the following questions regarding an array called fractions.
a) Define a symbolic constant SIZE to be replaced with the replacement text 10.
b) Define an array with SIZE elements of type double and initialize the elements to 0.
c) Name the fourth element from the beginning of the array.
d) Refer to array element 4.
e) Assign the value 1.667 to array element nine.
f) Assign the value 3.333 to the seventh element of the array.
g) Print array elements 6 and 9 with two digits of precision to the right of the decimal

point, and show the output that is displayed on the screen.
h) Print all the elements of the array, using a for repetition statement. Assume the integer

variable x has been defined as a control variable for the loop. Show the output.

6.4 Write statements to accomplish the following:
a) Define table to be an integer array and to have 3 rows and 3 columns. Assume the sym-

bolic constant SIZE has been defined to be 3.
b) How many elements does the array table contain? Print the total number of elements.
c) Use a for repetition statement to initialize each element of table to the sum of its sub-

scripts. Assume the integer variables x and y are defined as control variables.
d) Print the values of each element of array table. Assume the array was initialized with

the definition:

int table[SIZE][SIZE] =
 { { 1, 8 }, { 2, 4, 6 }, { 5 } };

6.5 Find the error in each of the following program segments and correct the error.
a) #define SIZE 100;
b) SIZE = 10;
c) Assume int b[10] = { 0 }, i;

 for (i = 0; i <= 10; i++) {

 b[i] = 1;
 }

d) #include <stdio.h>;
e) Assume int a[2][2] = { { 1, 2 }, { 3, 4 } };

 a[1, 1] = 5;
f) #define VALUE = 120

Answers to Self-Review Exercises
6.1 a) Arrays. b) Name, type. c) Subscript. d) Symbolic constant. e) Sorting. f) Searching.
g) Double-subscripted.

6.2 a) False. An array can store only values of the same type.
b) False. An array subscript must be an integer or an integer expression.
c) False. C automatically initializes the remaining elements to zero.
d) True.
e) False. Individual elements of an array are passed by value. If the entire array is passed to

a function, then any modifications will be reflected in the original.

 Answers to Self-Review Exercises 241

6.3 a) #define SIZE 10
b) double fractions[SIZE] = { 0.0 };
c) fractions[3]
d) fractions[4]
e) fractions[9] = 1.667;
f) fractions[6] = 3.333;
g) printf("%.2f %.2f\n", fractions[6], fractions[9]);

Output: 3.33 1.67.
h) for (x = 0; x < SIZE; x++) {

 printf("fractions[%d] = %f\n", x, fractions[x]);
}

Output:
fractions[0] = 0.000000

fractions[1] = 0.000000

fractions[2] = 0.000000

fractions[3] = 0.000000

fractions[4] = 0.000000

fractions[5] = 0.000000

fractions[6] = 3.333000

fractions[7] = 0.000000

fractions[8] = 0.000000

fractions[9] = 1.667000

6.4 a) int table[SIZE][SIZE];
b) Nine elements. printf("%d\n", SIZE * SIZE);
c) for (x = 0; x < SIZE; x++) {

 for (y = 0; y < SIZE; y++) {

 table[x][y] = x + y;

 }

}
d) for (x = 0; x < SIZE; x++) {

 for (y = 0; y < SIZE; y++) {

 printf("table[%d][%d] = %d\n", x, y, table[x][y]);

 }

}
Output:

table[0][0] = 1
table[0][1] = 8
table[0][2] = 0
table[1][0] = 2
table[1][1] = 4
table[1][2] = 6
table[2][0] = 5
table[2][1] = 0
table[2][2] = 0

6.5 a) Error: Semicolon at end of #define preprocessor directive.
Correction: Eliminate semicolon.

b) Error: Assigning a value to a symbolic constant using an assignment statement.
Correction: Assign a value to the symbolic constant in a #define preprocessor directive
without using the assignment operator as in #define SIZE 10.

c) Error: Referencing an array element outside the bounds of the array (b[10]).
Correction: Change the final value of the control variable to 9.

242 Chapter 6 C Arrays

d) Error: Semicolon at end of #include preprocessor directive.
Correction: Eliminate semicolon.

e) Error: Array subscripting done incorrectly.
Correction: Change the statement to a[1][1] = 5;

f) Error: Assigning a value to a symbolic constant using an assignment statement.
Correction: Assign a value to the symbolic constant in a #define preprocessor
directive without using the assignment operator as in #define VALUE 120.

Exercises
6.6 Fill in the blanks in each of the following:

a) C stores lists of values in .
b) The elements of an array are related by the fact that they .
c) When referring to an array element, the position number contained within parentheses

is called a(n) .
d) The names of the five elements of array p are , , ,

and .
e) The contents of a particular element of an array is called the of that element.
f) Naming an array, stating its type and specifying the number of elements in the array is

called the array.
g) The process of placing the elements of an array into either ascending or descending or-

der is called .
h) In a double-subscripted array, the first subscript (by convention) identifies the

of an element and the second subscript (by convention) identifies the
 of an element.

i) An m-by-n array contains rows, columns and elements.
j) The name of the element in row 3 and column 5 of array d is .

6.7 State which of the following are true and which are false. If false, explain why.
a) To refer to a particular location or element within an array, we specify the name of the

array and the value of the particular element.
b) An array definition reserves space for the array.
c) To indicate that 100 locations should be reserved for integer array p, write

p[100];

d) A C program that initializes the elements of a 15-element array to zero must contain
one for statement.

e) A C program that totals the elements of a double-subscripted array must contain nested
for statements.

f) The mean, median and mode of the following set of values are 5, 6 and 7, respectively:
1, 2, 5, 6, 7, 7, 7.

6.8 Write statements to accomplish each of the following:
a) Display the value of the seventh element of character array f.
b) Input a value into element 4 of single-subscripted floating-point array b.
c) Initialize each of the five elements of single-subscripted integer array g to 8.
d) Total the elements of floating-point array c of 100 elements.
e) Copy array a into the first portion of array b. Assume double a[11], b[34];
f) Determine and print the smallest and largest values contained in 99-element floating-

point array w.

6.9 Consider a 2-by-5 integer array t.
a) Write a definition for t.

 Exercises 243

b) How many rows does t have?
c) How many columns does t have?
d) How many elements does t have?
e) Write the names of all the elements in the second row of t.
f) Write the names of all the elements in the third column of t.
g) Write a single statement that sets the element of t in row 1 and column 2 to zero.
h) Write a series of statements that initialize each element of t to zero. Do not use a repe-

tition structure.
i) Write a nested for statement that initializes each element of t to zero.
j) Write a statement that inputs the values for the elements of t from the terminal.
k) Write a series of statements that determine and print the smallest value in array t.
l) Write a statement that displays the elements of the first row of t.
m) Write a statement that totals the elements of the fourth column of t.
n) Write a series of statements that print the array t in tabular format. List the column sub-

scripts as headings across the top and list the row subscripts at the left of each row.

6.10 (Sales Commissions) Use a single-subscripted array to solve the following problem. A com-
pany pays its salespeople on a commission basis. The salespeople receive $200 per week plus 9% of
their gross sales for that week. For example, a salesperson who grosses $3000 in sales in a week re-
ceives $200 plus 9% of $3000, or a total of $470. Write a C program (using an array of counters)
that determines how many of the salespeople earned salaries in each of the following ranges (assume
that each salesperson’s salary is truncated to an integer amount):

a) $200–299
b) $300–399
c) $400–499
d) $500–599
e) $600–699
f) $700–799
g) $800–899
h) $900–999
i) $1000 and over

6.11 (Bubble Sort) The bubble sort presented in Fig. 6.15 is inefficient for large arrays. Make the
following simple modifications to improve the performance of the bubble sort.

a) After the first pass, the largest number is guaranteed to be in the highest-numbered el-
ement of the array; after the second pass, the two highest numbers are “in place,” and
so on. Instead of making nine comparisons on every pass, modify the bubble sort to
make eight comparisons on the second pass, seven on the third pass and so on.

b) The data in the array may already be in the proper order or near-proper order, so why
make nine passes if fewer will suffice? Modify the sort to check at the end of each pass
whether any swaps have been made. If none has been made, then the data must already
be in the proper order, so the program should terminate. If swaps have been made, then
at least one more pass is needed.

6.12 Write single statements that perform each of the following single-subscripted array opera-
tions:

a) Initialize the 10 elements of integer array counts to zeros.
b) Add 1 to each of the 15 elements of integer array bonus.
c) Read the 12 values of floating-point array monthlyTemperatures from the keyboard.
d) Print the five values of integer array bestScores in column format.

6.13 Find the error(s) in each of the following statements:
a) Assume: char str[5];

 scanf("%s", str); /* User types hello */

244 Chapter 6 C Arrays

b) Assume: int a[3];
 printf("$d %d %d\n", a[1], a[2], a[3]);

c) double f[3] = { 1.1, 10.01, 100.001, 1000.0001 };
d) Assume: double d[2][10];

 d[1, 9] = 2.345;

6.14 (Mean, Median and Mode Program Modifications) Modify the program of Fig. 6.16 so
function mode is capable of handling a tie for the mode value. Also modify function median so the
two middle elements are averaged in an array with an even number of elements.

6.15 (Duplicate Elimination) Use a single-subscripted array to solve the following problem.
Read in 20 numbers, each of which is between 10 and 100, inclusive. As each number is read, print
it only if it’s not a duplicate of a number already read. Provide for the “worst case” in which all 20
numbers are different. Use the smallest possible array to solve this problem.

6.16 Label the elements of 3-by-5 double-subscripted array sales to indicate the order in which
they are set to zero by the following program segment:

for (row = 0; row <= 2; row++) {
 for (column = 0; column <= 4; column++) {
 sales[row][column] = 0;
 }
}

6.17 What does the following program do?

1 /* ex06_17.c */
2 /* What does this program do? */
3 #include <stdio.h>
4 #define SIZE 10
5
6 int whatIsThis(const int b[], int p); /* function prototype */
7
8 /* function main begins program execution */
9 int main(void)

10 {
11 int x; /* holds return value of function whatIsThis */
12
13 /* initialize array a */
14 int a[SIZE] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
15
16 x = whatIsThis(a, SIZE);
17
18 printf("Result is %d\n", x);
19 return 0; /* indicates successful termination */
20 } /* end main */
21
22 /* what does this function do? */
23 int whatIsThis(const int b[], int p)
24 {
25 /* base case */
26 if (p == 1) {
27 return b[0];
28 } /* end if */
29 else { /* recursion step */
30
31 return b[p - 1] + whatIsThis(b, p - 1);
32 } /* end else */
33 } /* end function whatIsThis */

 Exercises 245

6.18 What does the following program do?

6.19 (Dice Rolling) Write a program that simulates the rolling of two dice. The program should
use rand to roll the first die, and should use rand again to roll the second die. The sum of the two
values should then be calculated. [Note: Since each die can show an integer value from 1 to 6, then
the sum of the two values will vary from 2 to 12, with 7 being the most frequent sum and 2 and 12
the least frequent sums.] Figure 6.23 shows the 36 possible combinations of the two dice. Your pro-
gram should roll the two dice 36,000 times. Use a single-subscripted array to tally the numbers of
times each possible sum appears. Print the results in a tabular format. Also, determine if the totals
are reasonable; i.e., there are six ways to roll a 7, so approximately one-sixth of all the rolls should
be 7.

1 /* ex06_18.c */
2 /* What does this program do? */
3 #include <stdio.h>
4 #define SIZE 10
5
6 /* function prototype */
7 void someFunction(const int b[], int startIndex, int size);
8
9 /* function main begins program execution */

10 int main(void)
11 {
12 int a[SIZE] = { 8, 3, 1, 2, 6, 0, 9, 7, 4, 5 }; /* initialize a */
13
14 printf("Answer is:\n");
15 someFunction(a, 0, SIZE);
16 printf("\n");
17 return 0; /* indicates successful termination */
18 } /* end main */
19
20 /* What does this function do? */
21 void someFunction(const int b[], int startIndex, int size)
22 {
23 if (startIndex < size) {
24 someFunction(b, startIndex + 1, size);
25 printf("%d ", b[startIndex]);
26 } /* end if */
27 } /* end function someFunction */

Fig. 6.23 | Dice rolling outcomes.

1 2 3 4 5 6

6 7 8 9 10 11

7 8 9 10 11 12

5

5 6 7 8 9 104

4 5 6 7 8 93

3 4 5 6 7 82

2 3 4 5 6 71

6

246 Chapter 6 C Arrays

6.20 (Game of Craps) Write a program that runs 1000 games of craps (without human interven-
tion) and answers each of the following questions:

a) How many games are won on the first roll, second roll, …, twentieth roll and after the
twentieth roll?

b) How many games are lost on the first roll, second roll, …, twentieth roll and after the
twentieth roll?

c) What are the chances of winning at craps? [Note: You should discover that craps is one
of the fairest casino games. What do you suppose this means?]

d) What is the average length of a game of craps?
e) Do the chances of winning improve with the length of the game?

6.21 (Airline Reservations System) A small airline has just purchased a computer for its new au-
tomated reservations system. The president has asked you to program the new system. You’ll write
a program to assign seats on each flight of the airline’s only plane (capacity: 10 seats).

Your program should display the following menu of alternatives:

Please type 1 for "first class"
Please type 2 for "economy"

If the person types 1, then your program should assign a seat in the first class section (seats 1–
5). If the person types 2, then your program should assign a seat in the economy section (seats 6–
10). Your program should then print a boarding pass indicating the person's seat number and
whether it’s in the first class or economy section of the plane.

Use a single-subscripted array to represent the seating chart of the plane. Initialize all the ele-
ments of the array to 0 to indicate that all seats are empty. As each seat is assigned, set the corre-
sponding element of the array to 1 to indicate that the seat is no longer available.

Your program should, of course, never assign a seat that has already been assigned. When the
first class section is full, your program should ask the person if it’s acceptable to be placed in the
economy section (and vice versa). If yes, then make the appropriate seat assignment. If no, then
print the message "Next flight leaves in 3 hours."

6.22 (Total Sales) Use a double-subscripted array to solve the following problem. A company has
four salespeople (1 to 4) who sell five different products (1 to 5). Once a day, each salesperson passes
in a slip for each different type of product sold. Each slip contains:

a) The salesperson number
b) The product number
c) The total dollar value of that product sold that day

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the information
from all of the slips for last month is available. Write a program that will read all this information
for last month’s sales and summarize the total sales by salesperson by product. All totals should be
stored in the double-subscripted array sales. After processing all the information for last month,
print the results in tabular format with each of the columns representing a particular salesperson
and each of the rows representing a particular product. Cross total each row to get the total sales of
each product for last month; cross total each column to get the total sales by salesperson for last
month. Your tabular printout should include these cross totals to the right of the totaled rows and
to the bottom of the totaled columns.

6.23 (Turtle Graphics) The Logo language, which is particularly popular among personal com-
puter users, made the concept of turtle graphics famous. Imagine a mechanical turtle that walks
around the room under the control of a C program. The turtle holds a pen in one of two positions,
up or down. While the pen is down, the turtle traces out shapes as it moves; while the pen is up, the
turtle moves about freely without writing anything. In this problem you’ll simulate the operation of
the turtle and create a computerized sketchpad as well.

 Exercises 247

Use a 50-by-50 array floor which is initialized to zeros. Read commands from an array that
contains them. Keep track of the current position of the turtle at all times and whether the pen is
currently up or down. Assume that the turtle always starts at position 0, 0 of the floor with its pen
up. The set of turtle commands your program must process are shown in Fig. 6.24. Suppose that
the turtle is somewhere near the center of the floor. The following “program” would draw and print
a 12-by-12 square:

2
5,12
3
5,12
3
5,12
3
5,12
1
6
9

As the turtle moves with the pen down, set the appropriate elements of array floor to 1s. When the
6 command (print) is given, wherever there is a 1 in the array, display an asterisk, or some other
character you choose. Wherever there is a zero, display a blank. Write a program to implement the
turtle graphics capabilities discussed here. Write several turtle graphics programs to draw interest-
ing shapes. Add other commands to increase the power of your turtle graphics language.

6.24 (Knight’s Tour) One of the more interesting puzzlers for chess buffs is the Knight’s Tour
problem, originally proposed by the mathematician Euler. The question is this: Can the chess piece
called the knight move around an empty chessboard and touch each of the 64 squares once and only
once? We study this intriguing problem in depth here.

The knight makes L-shaped moves (over two in one direction and then over one in a per-
pendicular direction). Thus, from a square in the middle of an empty chessboard, the knight can
make eight different moves (numbered 0 through 7) as shown in Fig. 6.25.

a) Draw an 8-by-8 chessboard on a sheet of paper and attempt a Knight’s Tour by hand.
Put a 1 in the first square you move to, a 2 in the second square, a 3 in the third, and so
on. Before starting the tour, estimate how far you think you’ll get, remembering that a
full tour consists of 64 moves. How far did you get? Were you close to the estimate?

b) Now let’s develop a program that will move the knight around a chessboard. The board
itself is represented by an 8-by-8 double-subscripted array board. Each of the squares is
initialized to zero. We describe each of the eight possible moves in terms of both their

Command Meaning

1 Pen up
2 Pen down
3 Turn right
4 Turn left

5, 10 Move forward 10 spaces (or a number other than 10)
6 Print the 50-by-50 array
9 End of data (sentinel)

Fig. 6.24 | Turtle commands.

248 Chapter 6 C Arrays

horizontal and vertical components. For example, a move of type 0 as shown in
Fig. 6.25 consists of moving two squares horizontally to the right and one square verti-
cally upward. Move 2 consists of moving one square horizontally to the left and two
squares vertically upward. Horizontal moves to the left and vertical moves upward are
indicated with negative numbers. The eight moves may be described by two single-sub-
scripted arrays, horizontal and vertical, as follows:

horizontal[0] = 2
horizontal[1] = 1
horizontal[2] = -1
horizontal[3] = -2
horizontal[4] = -2
horizontal[5] = -1
horizontal[6] = 1
horizontal[7] = 2

vertical[0] = -1
vertical[1] = -2
vertical[2] = -2
vertical[3] = -1
vertical[4] = 1
vertical[5] = 2
vertical[6] = 2
vertical[7] = 1

Let the variables currentRow and currentColumn indicate the row and column of the
knight’s current position on the board. To make a move of type moveNumber, where
moveNumber is between 0 and 7, your program uses the statements

currentRow += vertical[moveNumber];
currentColumn += horizontal[moveNumber];

Keep a counter that varies from 1 to 64. Record the latest count in each square the
knight moves to. Remember to test each potential move to see if the knight has already
visited that square. And, of course, test every potential move to make sure that the
knight does not land off the chessboard. Now write a program to move the knight
around the chessboard. Run the program. How many moves did the knight make?

c) After attempting to write and run a Knight’s Tour program, you have probably devel-
oped some valuable insights. We’ll use these to develop a heuristic (or strategy) for mov-

Fig. 6.25 | The eight possible moves of the knight.

0 1 2 3 4 5 6 7

4 4 7

3 K

2 3 0

1 2 1

0

5 5 6

6

7

 Exercises 249

ing the knight. Heuristics do not guarantee success, but a carefully developed heuristic
greatly improves the chance of success. You may have observed that the outer squares
are in some sense more troublesome than the squares nearer the center of the board. In
fact, the most troublesome, or inaccessible, squares are the four corners.

Intuition may suggest that you should attempt to move the knight to the most trou-
blesome squares first and leave open those that are easiest to get to, so that when the
board gets congested near the end of the tour, there will be a greater chance of success.

We may develop an “accessibility heuristic” by classifying each of the squares
according to how accessible it is and always moving the knight to the square (within
the knight’s L-shaped moves, of course) that is most inaccessible. We label a double-
subscripted array accessibility with numbers indicating from how many squares
each particular square is accessible. On a blank chessboard, the center squares are
therefore rated as 8s, the corner squares are rated as 2s, and the other squares have
accessibility numbers of 3, 4, or 6 as follows:

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

Now write a version of the Knight’s Tour program using the accessibility heuristic.
At any time, the knight should move to the square with the lowest accessibility num-
ber. In case of a tie, the knight may move to any of the tied squares. Therefore, the tour
may begin in any of the four corners. [Note: As the knight moves around the chess-
board, your program should reduce the accessibility numbers as more and more
squares become occupied. In this way, at any given time during the tour, each available
square’s accessibility number will remain equal to precisely the number of squares from
which that square may be reached.] Run this version of your program. Did you get a
full tour? Now modify the program to run 64 tours, one from each square of the chess-
board. How many full tours did you get?

d) Write a version of the Knight’s Tour program which, when encountering a tie between
two or more squares, decides what square to choose by looking ahead to those squares
reachable from the “tied” squares. Your program should move to the square for which
the next move would arrive at a square with the lowest accessibility number.

6.25 (Knight’s Tour: Brute-Force Approaches) In Exercise 6.24 we developed a solution to the
Knight’s Tour problem. The approach used, called the “accessibility heuristic,” generates many so-
lutions and executes efficiently.

As computers continue increasing in power, we’ll be able to solve many problems with sheer
computer power and relatively unsophisticated algorithms. Let’s call this approach “brute-force”
problem solving.

a) Use random number generation to enable the knight to walk around the chess board
(in its legitimate L-shaped moves, of course) at random. Your program should run one
tour and print the final chessboard. How far did the knight get?

b) Most likely, the preceding program produced a relatively short tour. Now modify your
program to attempt 1000 tours. Use a single-subscripted array to keep track of the num-
ber of tours of each length. When your program finishes attempting the 1000 tours, it
should print this information in neat tabular format. What was the best result?

c) Most likely, the preceding program gave you some “respectable” tours but no full tours.
Now “pull all the stops out” and simply let your program run until it produces a full

250 Chapter 6 C Arrays

tour. [Caution: This version of the program could run for hours on a powerful comput-
er.] Once again, keep a table of the number of tours of each length and print this table
when the first full tour is found. How many tours did your program attempt before pro-
ducing a full tour? How much time did it take?

d) Compare the brute-force version of the Knight’s Tour with the accessibility heuristic
version. Which required a more careful study of the problem? Which algorithm was
more difficult to develop? Which required more computer power? Could we be certain
(in advance) of obtaining a full tour with the accessibility heuristic approach? Could we
be certain (in advance) of obtaining a full tour with the brute-force approach? Argue the
pros and cons of brute-force problem solving in general.

6.26 (Eight Queens) Another puzzler for chess buffs is the Eight Queens problem. Simply stated:
Is it possible to place eight queens on an empty chessboard so that no queen is “attacking” any oth-
er—that is, so that no two queens are in the same row, the same column, or along the same diagonal?
Use the kind of thinking developed in Exercise 6.24 to formulate a heuristic for solving the Eight
Queens problem. Run your program. [Hint: It’s possible to assign a numeric value to each square
of the chessboard indicating how many squares of an empty chessboard are “eliminated” once a
queen is placed in that square. For example, each of the four corners would be assigned the value
22, as in Fig. 6.26.]

Once these “elimination numbers” are placed in all 64 squares, an appropriate heuristic might
be: Place the next queen in the square with the smallest elimination number. Why is this strategy
intuitively appealing?

6.27 (Eight Queens: Brute-Force Approaches) In this problem you’ll develop several brute-orce
approaches to solving the Eight Queens problem introduced in Exercise 6.26.

a) Solve the Eight Queens problem, using the random brute-force technique developed in
Exercise 6.25.

b) Use an exhaustive technique (i.e., try all possible combinations of eight queens on the
chessboard).

c) Why do you suppose the exhaustive brute-force approach may not be appropriate for
solving the Eight Queens problem?

d) Compare and contrast the random brute-force and exhaustive brute-force approaches
in general.

6.28 (Duplicate Elimination) In Chapter 12, we explore the high-speed binary search tree data
structure. One feature of a binary search tree is that duplicate values are discarded when insertions
are made into the tree. This is referred to as duplicate elimination. Write a program that produces

Fig. 6.26 | The 22 squares eliminated by placing a queen in the upper-left corner.

* *****

* *

* *

* *

* *

* *

*

*

*

*

*

*

 Recursion Exercises 251

20 random numbers between 1 and 20. The program should store all nonduplicate values in an ar-
ray. Use the smallest possible array to accomplish this task.

6.29 (Knight’s Tour: Closed Tour Test) In the Knight’s Tour, a full tour is when the knight
makes 64 moves touching each square of the chessboard once and only once. A closed tour occurs
when the 64th move is one move away from the location in which the knight started the tour. Mod-
ify the Knight’s Tour program you wrote in Exercise 6.24 to test for a closed tour if a full tour has
occurred.

6.30 (The Sieve of Eratosthenes) A prime integer is any integer greater than 1 that can be divided
evenly only by itself and 1. The Sieve of Eratosthenes is a method of finding prime numbers. It
works as follows:

a) Create an array with all elements initialized to 1 (true). Array elements with prime sub-
scripts will remain 1. All other array elements will eventually be set to zero.

b) Starting with array subscript 2 (subscript 1 is not prime), every time an array element is
found whose value is 1, loop through the remainder of the array and set to zero every
element whose subscript is a multiple of the subscript for the element with value 1. For
array subscript 2, all elements beyond 2 in the array that are multiples of 2 will be set to
zero (subscripts 4, 6, 8, 10, and so on.). For array subscript 3, all elements beyond 3 in
the array that are multiples of 3 will be set to zero (subscripts 6, 9, 12, 15, and so on.).

When this process is complete, the array elements that are still set to 1 indicate that the subscript is
a prime number. Write a program that uses an array of 1000 elements to determine and print the
prime numbers between 1 and 999. Ignore element 0 of the array.

Recursion Exercises
6.31 (Palindromes) A palindrome is a string that is spelled the same way forward and backward.
Some examples of palindromes are: “radar,” “able was i ere i saw elba,” and, if you ignore blanks, “a
man a plan a canal panama.” Write a recursive function testPalindrome that returns 1 if the string
stored in the array is a palindrome and 0 otherwise. The function should ignore spaces and punctu-
ation in the string.

6.32 (Linear Search) Modify the program of Fig. 6.18 to use a recursive linearSearch function
to perform the linear search of the array. The function should receive an integer array and the size
of the array as arguments. If the search key is found, return the array subscript; otherwise, return –1.

6.33 (Binary Search) Modify the program of Fig. 6.19 to use a recursive binarySearch function
to perform the binary search of the array. The function should receive an integer array and the start-
ing subscript and ending subscript as arguments. If the search key is found, return the array sub-
script; otherwise, return –1.

6.34 (Eight Queens) Modify the Eight Queens program you created in Exercise 6.26 to solve the
problem recursively.

6.35 (Print an array) Write a recursive function printArray that takes an array and the size of
the array as arguments, prints the array, and returns nothing. The function should stop processing
and return when it receives an array of size zero.

6.36 (Print a string backward) Write a recursive function stringReverse that takes a character
array as an argument, prints it back to front and returns nothing. The function should stop process-
ing and return when the terminating null character of the string is encountered.

6.37 (Find the minimum value in an array) Write a recursive function recursiveMinimum that
takes an integer array and the array size as arguments and returns the smallest element of the array.
The function should stop processing and return when it receives an array of one element.

252 Chapter 6 C Arrays

Special Section: Sudoku
The game of Sudoku exploded in popularity worldwide in 2005. Almost every major newspaper
now publishes a Sudoku puzzle daily. Handheld game players let you play anytime, anywhere and
create puzzles on demand at various levels of difficulty. Be sure to check out our Sudoku Resource
Center at www.deitel.com/sudoku for downloads, tutorials, books, e-books and more that will
help you master the game. And not for the faint of heart—try fiendishly difficult Sudokus with
tricky twists, a circular Sudoku and a variant of the puzzle with five interlocking grids. Subscribe to
our free newsletter, the Deitel® Buzz Online, for notifications of updates to our Sudoku Resource
Center and to other Deitel Resource Centers at www.deitel.com that provide games, puzzles and
other interesting programming projects.

A completed Sudoku puzzle is a 9× 9 grid (i.e., a two-dimensional array) in which the digits 1
through 9 appear once and only once in each row, each column and each of nine 3× 3 grids. In the
partially completed 9× 9 grid of Fig. 6.27, row 1, column 1, and the 3× 3 grid in the upper-left cor-
ner of the board each contain the digits 1 through 9 once and only once. We use C’s two-dimen-
sional array row and column-numbering conventions, but we’re ignoring row 0 and column 0 in
conformance with Sudoku community conventions.

The typical Sudoku puzzle provides many filled-in cells and many blanks, often arranged in a
symmetrical pattern as is typical with crossword puzzles. The player’s task is to fill in the blanks to
complete the puzzle. Some puzzles are easy to solve; some are quite difficult, requiring sophisti-
cated solution strategies.

In Appendix D, Game Programming: Solving Sudoku, we’ll discuss various simple solution
strategies, and suggest what to do when these fail. We’ll also present various approaches for pro-
gramming Sudoku puzzle creators and solvers in C. Unfortunately, Standard C does not include
graphics and GUI (graphical user interface) capabilities, so our representation of the board won’t be
as elegant as we could make it in Java and other programming languages that support these capabil-
ities. You may want to revisit your Sudoku programs after you read Appendix E, Game Program-
ming with the Allegro C Library. Allegro, which is not part of Standard C, offers capabilities that
will help you add graphics and even sounds to your Sudoku programs.

Fig. 6.27 | Partially completed 9× 9 Sudoku grid. Note the nine 3× 3 grids.

1 5 6 7 8 9432

1

5

6

7

8

9

4

3

2

5 9 7 6 2 8431

4 86

7 29

2

9

3

8

1

6

www.deitel.com/sudoku
www.deitel.com

7C Pointers

Addresses are given to us to
conceal our whereabouts.
—Saki (H. H. Munro)

By indirection find direction
out.
—William Shakespeare

Many things,
having full reference
To one consent,
may work contrariously.
—William Shakespeare

You will find it a very good
practice always to verify your
references, sir!
—Dr. Routh

O b j e c t i v e s
In this chapter, you’ll learn:

■ Pointers and pointer
operators.

■ To use pointers to pass
arguments to functions by
reference.

■ The close relationships
among pointers, arrays and
strings.

■ To use pointers to functions.

■ To define and use arrays of
strings.

254 Chapter 7 C Pointers

7.1 Introduction
In this chapter, we discuss one of the most powerful features of the C programming lan-
guage, the pointer.1 Pointers are among C’s most difficult capabilities to master. Pointers
enable programs to simulate call-by-reference and to create and manipulate dynamic data
structures, i.e., data structures that can grow and shrink at execution time, such as linked
lists, queues, stacks and trees. This chapter explains basic pointer concepts. Chapter 10 ex-
amines the use of pointers with structures. Chapter 12 introduces dynamic memory man-
agement techniques and presents examples of creating and using dynamic data structures.

7.2 Pointer Variable Definitions and Initialization
Pointers are variables whose values are memory addresses. Normally, a variable directly
contains a specific value. A pointer, on the other hand, contains an address of a variable
that contains a specific value. In this sense, a variable name directly references a value, and
a pointer indirectly references a value (Fig. 7.1). Referencing a value through a pointer is
called indirection.

7.1 Introduction
7.2 Pointer Variable Definitions and

Initialization
7.3 Pointer Operators
7.4 Passing Arguments to Functions by

Reference
7.5 Using the const Qualifier with

Pointers
7.6 Bubble Sort Using Call-by-Reference

7.7 sizeof Operator
7.8 Pointer Expressions and Pointer

Arithmetic
7.9 Relationship between Pointers and

Arrays
7.10 Arrays of Pointers
7.11 Case Study: Card Shuffling and

Dealing Simulation
7.12 Pointers to Functions

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Special Section: Building Your Own Computer | Array of Function Pointer Exercises |

Making a Difference

1. Pointers and pointer-based entities such as arrays and strings, when misused intentionally or acciden-
tally, can lead to errors and security breaches. See our Secure C Programming Resource Center
(www.deitel.com/SecureC/) for articles, books, white papers and forums on this important topic.

Fig. 7.1 | Directly and indirectly referencing a variable.

7
Pointer countPtr indirectly
references a variable that
contains the value 7

countcountPtr

7
count directly references a
variable that contains the value 7

count

www.deitel.com/SecureC/

7.3 Pointer Operators 255

Pointers, like all variables, must be defined before they can be used. The definition

specifies that variable countPtr is of type int * (i.e., a pointer to an integer) and is read,
“countPtr is a pointer to int” or “countPtr points to an object of type int.” Also, the vari-
able count is defined to be an int, not a pointer to an int. The * only applies to countPtr
in the definition. When * is used in this manner in a definition, it indicates that the variable
being defined is a pointer. Pointers can be defined to point to objects of any type.

Pointers should be initialized either when they’re defined or in an assignment state-
ment. A pointer may be initialized to NULL, 0 or an address. A pointer with the value NULL
points to nothing. NULL is a symbolic constant defined in the <stddef.h> header (and sev-
eral other headers, such as <stdio.h>). Initializing a pointer to 0 is equivalent to initializing
a pointer to NULL, but NULL is preferred. When 0 is assigned, it’s first converted to a pointer
of the appropriate type. The value 0 is the only integer value that can be assigned directly
to a pointer variable. Assigning a variable’s address to a pointer is discussed in Section 7.3.

7.3 Pointer Operators
The &, or address operator, is a unary operator that returns the address of its operand. For
example, assuming the definitions

the statement

assigns the address of the variable y to pointer variable yPtr. Variable yPtr is then said to
“point to” y. Figure 7.2 shows a schematic representation of memory after the preceding
assignment is executed.

int *countPtr, count;

Common Programming Error 7.1
The asterisk (*) notation used to declare pointer variables does not distribute to all vari-
able names in a declaration. Each pointer must be declared with the * prefixed to the
name; e.g., if you wish to declare xPtr and yPtr as int pointers, use int *xPtr, *yPtr;.

Common Programming Error 7.2
Include the letters ptr in pointer variable names to make it clear that these variables are
pointers and thus need to be handled appropriately.

Error-Prevention Tip 7.1
Initialize pointers to prevent unexpected results.

int y = 5;
int *yPtr;

yPtr = &y;

Fig. 7.2 | Graphical representation of a pointer pointing to an integer variable in memory.

5

yyPtr

256 Chapter 7 C Pointers

Figure 7.3 shows the representation of the pointer in memory, assuming that integer
variable y is stored at location 600000, and pointer variable yPtr is stored at location
500000. The operand of the address operator must be a variable; the address operator
cannot be applied to constants, to expressions or to variables declared with the storage-
class register.

The unary * operator, commonly referred to as the indirection operator or derefer-
encing operator, returns the value of the object to which its operand (i.e., a pointer)
points. For example, the statement

prints the value of variable y, namely 5. Using * in this manner is called dereferencing a
pointer.

Figure 7.4 demonstrates the pointer operators & and *. The printf conversion speci-
fier %p outputs the memory location as a hexadecimal integer on most platforms. (See
Appendix C, Number Systems, for more information on hexadecimal integers.) Notice
that the address of a and the value of aPtr are identical in the output, thus confirming that
the address of a is indeed assigned to the pointer variable aPtr (line 11). The & and * oper-
ators are complements of one another—when they’re both applied consecutively to aPtr
in either order (line 21), the same result is printed. Figure 7.5 lists the precedence and asso-
ciativity of the operators introduced to this point.

Fig. 7.3 | Representation of y and yPtr in memory.

printf("%d", *yPtr);

Common Programming Error 7.3
Dereferencing a pointer that has not been properly initialized or that has not been assigned
to point to a specific location in memory is an error. This could cause a fatal execution-
time error, or it could accidentally modify important data and allow the program to run
to completion with incorrect results.

1 /* Fig. 7.4: fig07_04.c
2 Using the & and * operators */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 int a; /* a is an integer */
8
9

10 a = 7;
11

Fig. 7.4 | Using the & and * pointer operators. (Part 1 of 2.)

5

y

600000
location
500000

yPtr

location
600000

int *aPtr; /* aPtr is a pointer to an integer */

aPtr = &a; /* aPtr set to address of a */

7.4 Passing Arguments to Functions by Reference 257

7.4 Passing Arguments to Functions by Reference
There are two ways to pass arguments to a function—call-by-value and call-by-reference.
All arguments in C are passed by value. As we saw in Chapter 5, return may be used to
return one value from a called function to a caller (or to return control from a called func-
tion without passing back a value). Many functions require the capability to modify one
or more variables in the caller or to pass a pointer to a large data object to avoid the over-

12
13 printf("The address of a is %p"
14 "\nThe value of aPtr is %p", ,);
15
16 printf("\n\nThe value of a is %d"
17 "\nThe value of *aPtr is %d", a,);
18
19 printf("\n\nShowing that * and & are complements of "
20 "each other\n&*aPtr = %p"
21 "\n*&aPtr = %p\n", ,);
22 return 0; /* indicates successful termination */
23 } /* end main */

The address of a is 0012FF7C
The value of aPtr is 0012FF7C

The value of a is 7
The value of *aPtr is 7

Showing that * and & are complements of each other.
&*aPtr = 0012FF7C
*&aPtr = 0012FF7C

Operators Associativity Type

() [] left to right highest

+ - ++ -- ! * & (type) right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > s>= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

Fig. 7.5 | Operator precedence and associativity.

Fig. 7.4 | Using the & and * pointer operators. (Part 2 of 2.)

&a aPtr

*aPtr

&*aPtr *&aPtr

258 Chapter 7 C Pointers

head of passing the object by value (which incurs the overhead of making a copy of the
object). For these purposes, C provides the capabilities for simulating call-by-reference.

In C, you use pointers and the indirection operator to simulate call-by-reference.
When calling a function with arguments that should be modified, the addresses of the
arguments are passed. This is normally accomplished by applying the address operator (&)
to the variable (in the caller) whose value will be modified. As we saw in Chapter 6, arrays
are not passed using operator & because C automatically passes the starting location in
memory of the array (the name of an array is equivalent to &arrayName[0]). When the
address of a variable is passed to a function, the indirection operator (*) may be used in
the function to modify the value at that location in the caller’s memory.

The programs in Fig. 7.6 and Fig. 7.7 present two versions of a function that cubes
an integer—cubeByValue and cubeByReference. Figure 7.6 passes the variable number to
function cubeByValue using call-by-value (line 14). The cubeByValue function cubes its
argument and passes the new value back to main using a return statement. The new value
is assigned to number in main (line 14).

Figure 7.7 passes the variable number using call-by-reference (line 15)—the address of
number is passed—to function cubeByReference. Function cubeByReference takes as a
parameter a pointer to an int called nPtr (line 22). The function dereferences the pointer
and cubes the value to which nPtr points (line 24), then assigns the result to *nPtr (which

1 /* Fig. 7.6: fig07_06.c
2 Cube a variable using call-by-value */
3 #include <stdio.h>
4
5
6
7 int main(void)
8 {
9 int number = 5; /* initialize number */

10
11 printf("The original value of number is %d", number);
12
13 /* pass number by value to cubeByValue */
14
15
16 printf("\nThe new value of number is %d\n", number);
17 return 0; /* indicates successful termination */
18 } /* end main */
19
20
21
22
23
24

The original value of number is 5
The new value of number is 125

Fig. 7.6 | Cube a variable using call-by-value.

int cubeByValue(int n); /* prototype */

number = cubeByValue(number);

/* calculate and return cube of integer argument */
int cubeByValue(int n)
{
 return n * n * n; /* cube local variable n and return result */
} /* end function cubeByValue */

7.4 Passing Arguments to Functions by Reference 259

is really number in main), thus changing the value of number in main. Figure 7.8 and
Fig. 7.9 analyze graphically the programs in Fig. 7.6 and Fig. 7.7, respectively.

A function receiving an address as an argument must define a pointer parameter to
receive the address. For example, in Fig. 7.7 the header for function cubeByReference
(line 22) is:

The header specifies that cubeByReference receives the address of an integer variable as an
argument, stores the address locally in nPtr and does not return a value.

The function prototype for cubeByReference contains int * in parentheses. As with
other variable types, it’s not necessary to include names of pointers in function prototypes.
Names included for documentation purposes are ignored by the C compiler.

In the function header and in the prototype for a function that expects a single-sub-
scripted array as an argument, the pointer notation in the parameter list of function
cubeByReference may be used. The compiler does not differentiate between a function
that receives a pointer and a function that receives a single-subscripted array. This, of
course, means that the function must “know” when it’s receiving an array or simply a
single variable for which it is to perform call by reference. When the compiler encounters

1 /* Fig. 7.7: fig07_07.c
2 Cube a variable using call-by-reference with a pointer argument */
3
4 #include <stdio.h>
5
6
7
8 int main(void)
9 {

10 int number = 5; /* initialize number */
11
12 printf("The original value of number is %d", number);
13
14 /* pass address of number to cubeByReference */
15
16
17 printf("\nThe new value of number is %d\n", number);
18 return 0; /* indicates successful termination */
19 } /* end main */
20
21
22
23
24
25

The original value of number is 5
The new value of number is 125

Fig. 7.7 | Cube a variable using call-by-reference with a pointer argument.

void cubeByReference(int *nPtr)

void cubeByReference(int *nPtr); /* prototype */

cubeByReference(&number);

/* calculate cube of *nPtr; modifies variable number in main */
void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr; /* cube *nPtr */
} /* end function cubeByReference */

260 Chapter 7 C Pointers

a function parameter for a single-subscripted array of the form int b[], the compiler con-
verts the parameter to the pointer notation int *b. The two forms are interchangeable.

Fig. 7.8 | Analysis of a typical call-by-value.

Step 1: Before main calls cubeByValue:

int main(void)
{
 int number = 5;

 number = cubeByValue(number);
}

125

125

125125

5

number

5

number

5

number

125

number

5

number

int cubeByValue(int n)
{
 return n * n * n;
}

undefined

n

undefined

n

undefined

n

Step 2: After cubeByValue receives the call:

int main(void)
{
 int number = 5;

 number = cubeByValue(number);
}

int cubeByValue(int n)
{
 return n * n * n;
}

5

n

5

n

Step 3: After cubeByValue cubes parameter n and before cubeByValue returns to main:

int main(void)
{
 int number = 5;

 number = cubeByValue(number);
}

int cubeByValue(int n)
{

 return n * n * n;
}

Step 4: After cubeByValue returns to main and before assigning the result to number:

int main(void)
{
 int number = 5;

 number = cubeByValue(number);
}

int cubeByValue(int n)
{
 return n * n * n;
}

Step 5: After main completes the assignment to number:

int main(void)
{
 int number = 5;

 number = cubeByValue(number);
}

int cubeByValue(int n)
{
 return n * n * n;
}

7.5 Using the const Qualifier with Pointers 261

7.5 Using the const Qualifier with Pointers
The const qualifier enables you to inform the compiler that the value of a particular vari-
able should not be modified. The const qualifier did not exist in early versions of C; it was
added to the language by the ANSI C committee.

Fig. 7.9 | Analysis of a typical call-by-reference with a pointer argument.

Error-Prevention Tip 7.2
Use call-by-value to pass arguments to a function unless the caller explicitly requires the
called function to modify the value of the argument variable in the caller’s environment.
This prevents accidental modification of the caller’s arguments and is another example of
the principle of least privilege.

Software Engineering Observation 7.1
The const qualifier can be used to enforce the principle of least privilege. Using the
principle of least privilege to properly design software reduces debugging time and
improper side effects, making a program easier to modify and maintain.

Portability Tip 7.1
Although const is well defined in Standard C, some compilers do not enforce it.

Step 1: Before main calls cubeByReference:

int main(void)
{

int number = 5;

 cubeByReference(&number);
}

125

5

number

125

number

5

number

void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr;
}

undefined

nPtr

nPtr

nPtr

Step 2: After cubeByReference receives the call and before *nPtr is cubed:

int main(void)
{

int number = 5;

 cubeByReference(&number);
}

void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr;
}

Step 3: After *nPtr is cubed and before program control returns to main:

int main(void)
{

int number = 5;

 cubeByReference(&number);
}

void cubeByReference(int *nPtr)
{

 *nPtr = *nPtr * *nPtr * *nPtr;
}

called function modifies caller’s
variable

call establishes this pointer

262 Chapter 7 C Pointers

Over the years, a large base of legacy code was written in early versions of C that did
not use const because it was not available. For this reason, there are significant oppor-
tunities for improvement in the reengineering of old C code.

Six possibilities exist for using (or not using) const with function parameters—two
with call-by-value parameter passing and four with call-by-reference parameter passing.
How do you choose one of the six possibilities? Let the principle of least privilege be your
guide. Always award a function enough access to the data in its parameters to accomplish
its specified task, but no more.

In Chapter 5, we explained that all calls in C are call-by-value—a copy of the argu-
ment in the function call is made and passed to the function. If the copy is modified in the
function, the original value in the caller does not change. In many cases, a value passed to
a function is modified so the function can accomplish its task. However, in some instances,
the value should not be altered in the called function, even though it manipulates only a
copy of the original value.

Consider a function that takes a single-subscripted array and its size as arguments and
prints the array. Such a function should loop through the array and output each array ele-
ment individually. The size of the array is used in the function body to determine the high
subscript of the array, so the loop can terminate when the printing is completed. Neither
the size of the array nor its contents should change in the function body.

If an attempt is made to modify a value that is declared const, the compiler catches
it and issues either a warning or an error, depending on the particular compiler.

There are four ways to pass a pointer to a function: a non-constant pointer to non-
constant data, a constant pointer to nonconstant data, a non-constant pointer to con-
stant data, and a constant pointer to constant data. Each of the four combinations pro-
vides different access privileges. These are discussed in the next several examples.

Error-Prevention Tip 7.3
If a variable does not (or should not) change in the body of a function to which it’s passed,
the variable should be declared const to ensure that it’s not accidentally modified.

Software Engineering Observation 7.2
Only one value in a calling function can be altered when using call-by-value. That value
must be assigned from the return value of the function to a variable in the caller. To modify
multiple variables from a calling function in a called function, use call-by-reference.

Error-Prevention Tip 7.4
Before using a function, check its function prototype to determine if the function is able
to modify the values passed to it.

Common Programming Error 7.4
Being unaware that a function is expecting pointers as arguments for call-by-reference and
passing arguments call-by-value. Some compilers take the values assuming they’re pointers
and dereference the values as pointers. At runtime, memory-access violations or segmenta-
tion faults are often generated. Other compilers catch the mismatch in types between ar-
guments and parameters and generate error messages.

7.5 Using the const Qualifier with Pointers 263

Converting a String to Uppercase Using a Non-Constant Pointer to Non-Constant
Data
The highest level of data access is granted by a non-constant pointer to non-constant data.
In this case, the data can be modified through the dereferenced pointer, and the pointer
can be modified to point to other data items. A declaration for a non-constant pointer to
non-constant data does not include const. Such a pointer might be used to receive a string
as an argument to a function that uses pointer arithmetic to process (and possibly modify)
each character in the string. Function convertToUppercase of Fig. 7.10 declares its pa-
rameter, a non-constant pointer to non-constant data called sPtr (char *sPtr), in line 21.
The function processes the array string (pointed to by sPtr) one character at a time using
pointer arithmetic. C standard library function islower (called in line 25) tests the char-
acter contents of the address pointed to by sPtr. If a character is in the range a to z, is-
lower returns true and C standard library function toupper (line 26) is called to convert
the character to its corresponding uppercase letter; otherwise, islower returns false and
the next character in the string is processed. Line 29 moves the pointer to the next charac-
ter in the string. Pointer arithmetic will be discussed in more detail in Section 7.8.

1 /* Fig. 7.10: fig07_10.c
2 Converting a string to uppercase using a
3 non-constant pointer to non-constant data */
4
5 #include <stdio.h>
6 #include <ctype.h>
7
8 void convertToUppercase(); /* prototype */
9

10 int main(void)
11 {
12 char string[] = "characters and $32.98"; /* initialize char array */
13
14 printf("The string before conversion is: %s", string);
15 convertToUppercase(string);
16 printf("\nThe string after conversion is: %s\n", string);
17 return 0; /* indicates successful termination */
18 } /* end main */
19
20 /* convert string to uppercase letters */
21 void convertToUppercase()
22 {
23 while () { /* current character is not '\0' */
24
25 if () { /* if character is lowercase, */
26 /* convert to uppercase */
27 } /* end if */
28
29 /* move sPtr to the next character */
30 } /* end while */
31 } /* end function convertToUppercase */

Fig. 7.10 | Converting a string to uppercase using a non-constant pointer to non-constant data.
(Part 1 of 2.)

char *sPtr

char *sPtr

*sPtr != '\0'

islower(*sPtr)
*sPtr = toupper(*sPtr);

++sPtr;

264 Chapter 7 C Pointers

Printing a String One Character at a Time Using a Non-Constant Pointer to
Constant Data
A non-constant pointer to constant data can be modified to point to any data item of the
appropriate type, but the data to which it points cannot be modified. Such a pointer might
be used to receive an array argument to a function that will process each element without
modifying the data. For example, function printCharacters (Fig. 7.11) declares param-
eter sPtr to be of type const char * (line 22). The declaration is read from right to left as
“sPtr is a pointer to a character constant.” The function uses a for statement to output
each character in the string until the null character is encountered. After each character is
printed, pointer sPtr is incremented to point to the next character in the string.

The string before conversion is: characters and $32.98
The string after conversion is: CHARACTERS AND $32.98

1 /* Fig. 7.11: fig07_11.c
2 Printing a string one character at a time using
3 a non-constant pointer to constant data */
4
5 #include <stdio.h>
6
7 void printCharacters();
8
9 int main(void)

10 {
11 /* initialize char array */
12 char string[] = "print characters of a string";
13
14 printf("The string is:\n");
15 printCharacters(string);
16 printf("\n");
17 return 0; /* indicates successful termination */
18 } /* end main */
19
20 /* sPtr cannot modify the character to which it points,
21 i.e., sPtr is a "read-only" pointer */
22 void printCharacters(const char *sPtr)
23 {
24
25
26
27
28 } /* end function printCharacters */

The string is:
print characters of a string

Fig. 7.11 | Printing a string one character at a time using a non-constant pointer to constant
data.

Fig. 7.10 | Converting a string to uppercase using a non-constant pointer to non-constant data.
(Part 2 of 2.)

const char *sPtr

/* loop through entire string */
for (; *sPtr != '\0'; sPtr++) { /* no initialization */
 printf("%c", *sPtr);
} /* end for */

7.5 Using the const Qualifier with Pointers 265

Figure 7.12 illustrates the attempt to compile a function that receives a non-constant
pointer (xPtr) to constant data. This function attempts to modify the data pointed to by
xPtr in line 20—which results in a compilation error. [Note: The actual error message you
see will be compiler specific.]

As we know, arrays are aggregate data types that store related data items of the same
type under one name. In Chapter 10, we’ll discuss another form of aggregate data type
called a structure (sometimes called a record in other languages). A structure is capable of
storing related data items of different data types under one name (e.g., storing information
about each employee of a company). When a function is called with an array as an argu-
ment, the array is automatically passed to the function by reference. However, structures
are always passed by value—a copy of the entire structure is passed. This requires the exe-
cution-time overhead of making a copy of each data item in the structure and storing it on
the computer’s function call stack. When structure data must be passed to a function, we
can use pointers to constant data to get the performance of call-by-reference and the pro-
tection of call-by-value. When a pointer to a structure is passed, only a copy of the
address at which the structure is stored must be made. On a machine with 4-byte
addresses, a copy of 4 bytes of memory is made rather than a copy of possibly hundreds or
thousands of bytes of the structure.

1 /* Fig. 7.12: fig07_12.c
2 Attempting to modify data through a
3 non-constant pointer to constant data. */
4 #include <stdio.h>
5 void f(const int *xPtr); /* prototype */
6
7
8 int main(void)
9 {

10 int y; /* define y */
11
12
13 return 0; /* indicates successful termination */
14 } /* end main */
15
16 /* xPtr cannot be used to modify the
17 value of the variable to which it points */
18 void f()
19 {
20
21 } /* end function f */

Compiling...
FIG07_12.c
c:\examples\ch07\fig07_12.c(22) : error C2166: l-value specifies const object
Error executing cl.exe.

FIG07_12.exe - 1 error(s), 0 warning(s)

Fig. 7.12 | Attempting to modify data through a non-constant pointer to constant data.

f(&y); /* f attempts illegal modification */

const int *xPtr

xPtr = 100; / error: cannot modify a const object */

266 Chapter 7 C Pointers

Using pointers to constant data in this manner is an example of a time/space trade-
off. If memory is low and execution efficiency is a concern, use pointers. If memory is in
abundance and efficiency is not a major concern, pass data by value to enforce the prin-
ciple of least privilege. Remember that some systems do not enforce const well, so call-by-
value is still the best way to prevent data from being modified.

Attempting to Modify a Constant Pointer to Non-Constant Data
A constant pointer to non-constant data always points to the same memory location, and
the data at that location can be modified through the pointer. This is the default for an
array name. An array name is a constant pointer to the beginning of the array. All data in
the array can be accessed and changed by using the array name and array subscripting. A
constant pointer to non-constant data can be used to receive an array as an argument to a
function that accesses array elements using only array subscript notation. Pointers that are
declared const must be initialized when they’re defined (if the pointer is a function pa-
rameter, it’s initialized with a pointer that is passed to the function). Figure 7.13 attempts
to modify a constant pointer. Pointer ptr is defined in line 12 to be of type int * const.
The definition is read from right to left as “ptr is a constant pointer to an integer.” The
pointer is initialized (line 12) with the address of integer variable x. The program attempts
to assign the address of y to ptr (line 15), but the compiler generates an error message.

Performance Tip 7.1
Pass large objects such as structures using pointers to constant data to obtain the perfor-
mance benefits of call-by-reference and the security of call-by-value.

1 /* Fig. 7.13: fig07_13.c
2 Attempting to modify a constant pointer to non-constant data */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 int x; /* define x */
8 int y; /* define y */
9

10
11
12
13
14 *ptr = 7; /* allowed: *ptr is not const */
15
16 return 0; /* indicates successful termination */
17 } /* end main */

Compiling...
FIG07_13.c
c:\examples\ch07\FIG07_13.c(15) : error C2166: l-value specifies const object
Error executing cl.exe.

FIG07_13.exe - 1 error(s), 0 warning(s)

Fig. 7.13 | Attempting to modify a constant pointer to non-constant data.

/* ptr is a constant pointer to an integer that can be modified
 through ptr, but ptr always points to the same memory location */
int * const ptr = &x;

ptr = &y; /* error: ptr is const; cannot assign new address */

7.6 Bubble Sort Using Call-by-Reference 267

Attempting to Modify a Constant Pointer to Constant Data
The least access privilege is granted by a constant pointer to constant data. Such a pointer
always points to the same memory location, and the data at that memory location cannot
be modified. This is how an array should be passed to a function that only looks at the
array using array subscript notation and does not modify the array. Figure 7.14 defines
pointer variable ptr (line 13) to be of type const int *const, which is read from right to
left as “ptr is a constant pointer to an integer constant.” The figure shows the error mes-
sages generated when an attempt is made to modify the data to which ptr points (line 16)
and when an attempt is made to modify the address stored in the pointer variable (line 17).

7.6 Bubble Sort Using Call-by-Reference
Let’s improve the bubble sort program of Fig. 6.15 to use two functions—bubbleSort and
swap. Function bubbleSort sorts the array. It calls function swap (line 51) to exchange the
array elements array[j] and array[j + 1] (see Fig.). Remember that C enforces infor-
mation hiding between functions, so swap does not have access to individual array ele-
ments in bubbleSort. Because bubbleSort wants swap to have access to the array elements
to be swapped, bubbleSort passes each of these elements call-by-reference to swap—the
address of each array element is passed explicitly. Although entire arrays are automatically
passed by reference, individual array elements are scalars and are ordinarily passed by val-

1 /* Fig. 7.14: fig07_14.c
2 Attempting to modify a constant pointer to constant data. */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 int x = 5; /* initialize x */
8 int y; /* define y */
9

10 /* ptr is a constant pointer to a constant integer. ptr always
11 points to the same location; the integer at that location
12 cannot be modified */
13
14
15 printf("%d\n", *ptr);
16
17
18 return 0; /* indicates successful termination */
19 } /* end main */

Compiling...
FIG07_14.c
c:\examples\ch07\FIG07_14.c(17) : error C2166: l-value specifies const object
c:\examples\ch07\FIG07_14.c(18) : error C2166: l-value specifies const object
Error executing cl.exe.

FIG07_12.exe - 2 error(s), 0 warning(s)

Fig. 7.14 | Attempting to modify a constant pointer to constant data.

const int *const ptr = &x;

ptr = 7; / error: *ptr is const; cannot assign new value */
ptr = &y; /* error: ptr is const; cannot assign new address */

268 Chapter 7 C Pointers

ue. Therefore, bubbleSort uses the address operator (&) on each of the array elements in
the swap call (line 51) to effect call-by-reference as follows

Function swap receives &array[j] in pointer variable element1Ptr (line 59). Even though
swap—because of information hiding—is not allowed to know the name array[j], swap
may use *element1Ptr as a synonym for array[j]—when swap references *element1Ptr,
it’s actually referencing array[j] in bubbleSort. Similarly, when swap references
*element2Ptr, it’s actually referencing array[j + 1] in bubbleSort. Even though swap
is not allowed to say

precisely the same effect is achieved by lines 61 through 63

swap(&array[j], &array[j + 1]);

hold = array[j];
array[j] = array[j + 1];
array[j + 1] = hold;

int hold = *element1Ptr;
*element1Ptr = *element2Ptr;
*element2Ptr = hold;

1 /* Fig. 7.15: fig07_15.c
2 This program puts values into an array, sorts the values into
3 ascending order, and prints the resulting array. */
4 #include <stdio.h>
5 #define SIZE 10
6
7 void bubbleSort(int * const array, const int size); /* prototype */
8
9 int main(void)

10 {
11 /* initialize array a */
12 int a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
13
14 int i; /* counter */
15
16 printf("Data items in original order\n");
17
18 /* loop through array a */
19 for (i = 0; i < SIZE; i++) {
20 printf("%4d", a[i]);
21 } /* end for */
22
23 bubbleSort(a, SIZE); /* sort the array */
24
25 printf("\nData items in ascending order\n");
26
27 /* loop through array a */
28 for (i = 0; i < SIZE; i++) {
29 printf("%4d", a[i]);
30 } /* end for */
31

Fig. 7.15 | Bubble sort with call-by-reference. (Part 1 of 2.)

7.6 Bubble Sort Using Call-by-Reference 269

Several features of function bubbleSort should be noted. The function header (line
37) declares array as int * const array rather than int array[] to indicate that bubble-
Sort receives a single-subscripted array as an argument (again, these notations are inter-
changeable). Parameter size is declared const to enforce the principle of least privilege.
Although parameter size receives a copy of a value in main, and modifying the copy
cannot change the value in main, bubbleSort does not need to alter size to accomplish
its task. The size of the array remains fixed during the execution of function bubbleSort.
Therefore, size is declared const to ensure that it’s not modified. If the size of the array
is modified during the sorting process, the sorting algorithm might not run correctly.

The prototype for function swap (line 39) is included in the body of function bub-
bleSort because bubbleSort is the only function that calls swap. Placing the prototype in

32 printf("\n");
33 return 0; /* indicates successful termination */
34 } /* end main */
35
36 /* sort an array of integers using bubble sort algorithm */
37 void bubbleSort(int * const array, const int size)
38 {
39
40 int pass; /* pass counter */
41 int j; /* comparison counter */
42
43 /* loop to control passes */
44 for (pass = 0; pass < size - 1; pass++) {
45
46 /* loop to control comparisons during each pass */
47 for (j = 0; j < size - 1; j++) {
48
49 /* swap adjacent elements if they are out of order */
50 if (array[j] > array[j + 1]) {
51
52 } /* end if */
53 } /* end inner for */
54 } /* end outer for */
55 } /* end function bubbleSort */
56
57
58
59
60
61
62
63
64

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Fig. 7.15 | Bubble sort with call-by-reference. (Part 2 of 2.)

void swap(int *element1Ptr, int *element2Ptr); /* prototype */

swap(&array[j], &array[j + 1]);

/* swap values at memory locations to which element1Ptr and
 element2Ptr point */
void swap(int *element1Ptr, int *element2Ptr)
{
 int hold = *element1Ptr;
 *element1Ptr = *element2Ptr;
 *element2Ptr = hold;
} /* end function swap */

270 Chapter 7 C Pointers

bubbleSort restricts proper calls of swap to those made from bubbleSort. Other functions
that attempt to call swap do not have access to a proper function prototype, so the com-
piler generates one automatically. This normally results in a prototype that does not match
the function header (and generates a compilation warning or error) because the compiler
assumes int for the return type and the parameter types.

Function bubbleSort receives the size of the array as a parameter (line 37). The func-
tion must know the size of the array to sort the array. When an array is passed to a func-
tion, the memory address of the first element of the array is received by the function. The
address, of course, does not convey the number of elements in the array. Therefore, you
must pass to the function the array size. [Note: Another common practice is to pass a
pointer to the beginning of the array and a pointer to the location just beyond the end of
the array. The difference of the two pointers is the length of the array and the resulting
code is simpler.]

In the program, the size of the array is explicitly passed to function bubbleSort. There
are two main benefits to this approach—software reusability and proper software engi-
neering. By defining the function to receive the array size as an argument, we enable the
function to be used by any program that sorts single-subscripted integer arrays of any size.

We could have stored the array’s size in a global variable that is accessible to the entire
program. This would be more efficient, because a copy of the size is not made to pass to
the function. However, other programs that require an integer array-sorting capability
may not have the same global variable, so the function cannot be used in those programs.

The size of the array could have been programmed directly into the function. This
restricts the use of the function to an array of a specific size and significantly reduces its
reusability. Only programs processing single-subscripted integer arrays of the specific size
coded into the function can use the function.

7.7 sizeof Operator
C provides the special unary operator sizeof to determine the size in bytes of an array (or
any other data type) during program compilation. When applied to the name of an array
as in Fig. 7.16 (line 14), the sizeof operator returns the total number of bytes in the array

Software Engineering Observation 7.3
Placing function prototypes in the definitions of other functions enforces the principle of
least privilege by restricting proper function calls to the functions in which the prototypes
appear.

Software Engineering Observation 7.4
When passing an array to a function, also pass the size of the array. This helps make the
function reusable in many programs.

Software Engineering Observation 7.5
Global variables usually violate the principle of least privilege and can lead to poor
software engineering. Global variables should be used only to represent truly shared
resources, such as the time of day.

7.7 sizeof Operator 271

as an integer. Variables of type float are normally stored in 4 bytes of memory, and array
is defined to have 20 elements. Therefore, there are a total of 80 bytes in array.

The number of elements in an array also can be determined with sizeof. For
example, consider the following array definition:

Variables of type double normally are stored in 8 bytes of memory. Thus, array real con-
tains a total of 176 bytes. To determine the number of elements in the array, the following
expression can be used:

The expression determines the number of bytes in array real and divides that value by the
number of bytes used in memory to store the first element of array real (a double value).

Function getSize returns type size_t. Type size_t is a type defined by the C stan-
dard as the integral type (unsigned or unsigned long) of the value returned by operator
sizeof. Type size_t is defined in header <stddef.h> (which is included by several
headers, such as <stdio.h>). [Note: If you attempt to compile Fig. 7.16 and receive errors,

Performance Tip 7.2
 sizeof is a compile-time operator, so it does not incur any execution-time overhead.

1 /* Fig. 7.16: fig07_16.c
2 Applying sizeof to an array name returns
3 the number of bytes in the array. */
4 #include <stdio.h>
5
6 size_t getSize(); /* prototype */
7
8 int main(void)
9 {

10 float array[20]; /* create array */
11
12
13
14
15 return 0; /* indicates successful termination */
16 } /* end main */
17
18
19 size_t getSize()
20 {
21
22 } /* end function getSize */

The number of bytes in the array is 80
The number of bytes returned by getSize is 4

Fig. 7.16 | Applying sizeof to an array name returns the number of bytes in the array.

double real[22];

sizeof(real) / sizeof(real[0])

float *ptr

printf("The number of bytes in the array is %d"
 "\nThe number of bytes returned by getSize is %d\n",
 sizeof(array), getSize(array));

/* return size of ptr */
float *ptr

return sizeof(ptr);

272 Chapter 7 C Pointers

simply include <stddef.h> in your program.] Figure 7.17 calculates the number of bytes
used to store each of the standard data types. The results could be different between com-
puters.

Portability Tip 7.2
The number of bytes used to store a particular data type may vary between systems. When
writing programs that depend on data type sizes and that will run on several computer
systems, use sizeof to determine the number of bytes used to store the data types.

1 /* Fig. 7.17: fig07_17.c
2 Demonstrating the sizeof operator */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 char c;
8 short s;
9 int i;

10 long l;
11 float f;
12 double d;
13 long double ld;
14 int array[20]; /* create array of 20 int elements */
15 int *ptr = array; /* create pointer to array */
16
17 printf(" sizeof c = %d\tsizeof(char) = %d"
18 "\n sizeof s = %d\tsizeof(short) = %d"
19 "\n sizeof i = %d\tsizeof(int) = %d"
20 "\n sizeof l = %d\tsizeof(long) = %d"
21 "\n sizeof f = %d\tsizeof(float) = %d"
22 "\n sizeof d = %d\tsizeof(double) = %d"
23 "\n sizeof ld = %d\tsizeof(long double) = %d"
24 "\n sizeof array = %d"
25 "\n sizeof ptr = %d\n",
26
27
28
29
30 return 0; /* indicates successful termination */
31 } /* end main */

 sizeof c = 1 sizeof(char) = 1
 sizeof s = 2 sizeof(short) = 2
 sizeof i = 4 sizeof(int) = 4
 sizeof l = 4 sizeof(long) = 4
 sizeof f = 4 sizeof(float) = 4
 sizeof d = 8 sizeof(double) = 8
 sizeof ld = 8 sizeof(long double) = 8
 sizeof array = 80
 sizeof ptr = 4

Fig. 7.17 | Using operator sizeof to determine standard data type sizes.

sizeof c, sizeof(char), sizeof s, sizeof(short), sizeof i,
sizeof(int), sizeof l, sizeof(long), sizeof f,
sizeof(float), sizeof d, sizeof(double), sizeof ld,
sizeof(long double), sizeof array, sizeof ptr);

7.8 Pointer Expressions and Pointer Arithmetic 273

Operator sizeof can be applied to any variable name, type or value (including the
value of an expression). When applied to a variable name (that is not an array name) or a
constant, the number of bytes used to store the specific type of variable or constant is
returned. The parentheses used with sizeof are required if a type name with two words is
supplied as its operand (such as long double or unsigned short). Omitting the paren-
theses in this case results in a syntax error. The parentheses are not required if a variable
name or a one-word type name is supplied as its operand, but they can still be included
without causing an error.

7.8 Pointer Expressions and Pointer Arithmetic
Pointers are valid operands in arithmetic expressions, assignment expressions and com-
parison expressions. However, not all the operators normally used in these expressions are
valid in conjunction with pointer variables. This section describes the operators that can
have pointers as operands, and how these operators are used.

A limited set of arithmetic operations may be performed on pointers. A pointer may
be incremented (++) or decremented (--), an integer may be added to a pointer (+ or +=),
an integer may be subtracted from a pointer (- or -=) and one pointer may be subtracted
from another.

Assume that array int v[5] has been defined and its first element is at location 3000
in memory. Assume pointer vPtr has been initialized to point to v[0]—i.e., the value of
vPtr is 3000. Figure 7.18 illustrates this situation for a machine with 4-byte integers. Vari-
able vPtr can be initialized to point to array v with either of the statements

In conventional arithmetic, 3000 + 2 yields the value 3002. This is normally not the
case with pointer arithmetic. When an integer is added to or subtracted from a pointer,
the pointer is not incremented or decremented simply by that integer, but by that integer

vPtr = v;
vPtr = &v[0];

Portability Tip 7.3
Most computers today have 2-byte or 4-byte integers. Some of the newer machines use 8-
byte integers. Because the results of pointer arithmetic depend on the size of the objects a
pointer points to, pointer arithmetic is machine dependent.

Fig. 7.18 | Array v and a pointer variable vPtr that points to v.

pointer variable vPtr

v[0] v[1] v[2] v[3] v[4]

3000
location

3004 3008 3012 3016

274 Chapter 7 C Pointers

times the size of the object to which the pointer refers. The number of bytes depends on
the object’s data type. For example, the statement

would produce 3008 (3000 + 2 * 4), assuming an integer is stored in 4 bytes of memory.
In the array v, vPtr would now point to v[2] (Fig. 7.19). If an integer is stored in 2 bytes
of memory, then the preceding calculation would result in memory location 3004 (3000 +

2 * 2). If the array were of a different data type, the preceding statement would increment
the pointer by twice the number of bytes that it takes to store an object of that data type.
When performing pointer arithmetic on a character array, the results will be consistent
with regular arithmetic, because each character is 1 byte long.

If vPtr had been incremented to 3016, which points to v[4], the statement

would set vPtr back to 3000—the beginning of the array. If a pointer is being incremented
or decremented by one, the increment (++) and decrement (--) operators can be used. Ei-
ther of the statements

increments the pointer to point to the next location in the array. Either of the statements

decrements the pointer to point to the previous element of the array.
Pointer variables may be subtracted from one another. For example, if vPtr contains

the location 3000, and v2Ptr contains the address 3008, the statement

would assign to x the number of array elements from vPtr to v2Ptr, in this case 2 (not 8).
Pointer arithmetic is meaningless unless performed on an array. We cannot assume that
two variables of the same type are stored contiguously in memory unless they’re adjacent
elements of an array.

vPtr += 2;

Fig. 7.19 | The pointer vPtr after pointer arithmetic.

vPtr -= 4;

++vPtr;
vPtr++;

--vPtr;
vPtr--;

x = v2Ptr - vPtr;

pointer variable vPtr

v[0] v[1] v[2] v[3] v[4]

3000
location

3004 3008 3012 3016

7.9 Relationship between Pointers and Arrays 275

A pointer can be assigned to another pointer if both have the same type. The exception
to this rule is the pointer to void (i.e., void *), which is a generic pointer that can represent
any pointer type. All pointer types can be assigned a pointer to void, and a pointer to void
can be assigned a pointer of any type. In both cases, a cast operation is not required.

A pointer to void cannot be dereferenced. Consider this: The compiler knows that a
pointer to int refers to 4 bytes of memory on a machine with 4-byte integers, but a pointer
to void simply contains a memory location for an unknown data type—the precise
number of bytes to which the pointer refers is not known by the compiler. The compiler
must know the data type to determine the number of bytes to be dereferenced for a par-
ticular pointer.

Pointers can be compared using equality and relational operators, but such compar-
isons are meaningless unless the pointers point to elements of the same array. Pointer com-
parisons compare the addresses stored in the pointers. A comparison of two pointers
pointing to elements in the same array could show, for example, that one pointer points
to a higher-numbered element of the array than the other pointer does. A common use of
pointer comparison is determining whether a pointer is NULL.

7.9 Relationship between Pointers and Arrays
Arrays and pointers are intimately related in C and often may be used interchangeably. An
array name can be thought of as a constant pointer. Pointers can be used to do any oper-
ation involving array subscripting.

Assume that integer array b[5] and integer pointer variable bPtr have been defined.
Since the array name (without a subscript) is a pointer to the first element of the array, we
can set bPtr equal to the address of the first element in array b with the statement

Common Programming Error 7.5
Using pointer arithmetic on a pointer that does not refer to an element in an array.

Common Programming Error 7.6
Subtracting or comparing two pointers that do not refer to elements in the same array.

Common Programming Error 7.7
Running off either end of an array when using pointer arithmetic.

Common Programming Error 7.8
Assigning a pointer of one type to a pointer of another type if neither is of type void * is
a syntax error.

Common Programming Error 7.9
Dereferencing a void * pointer is a syntax error.

bPtr = b;

276 Chapter 7 C Pointers

This statement is equivalent to taking the address of the array’s first element as follows:

Array element b[3] can alternatively be referenced with the pointer expression

The 3 in the above expression is the offset to the pointer. When the pointer points to the
beginning of an array, the offset indicates which element of the array should be referenced,
and the offset value is identical to the array subscript. The preceding notation is referred
to as pointer/offset notation. The parentheses are necessary because the precedence of * is
higher than the precedence of +. Without the parentheses, the above expression would add
3 to the value of the expression *bPtr (i.e., 3 would be added to b[0], assuming bPtr
points to the beginning of the array). Just as the array element can be referenced with a
pointer expression, the address

can be written with the pointer expression

The array itself can be treated as a pointer and used in pointer arithmetic. For
example, the expression

also refers to the array element b[3]. In general, all subscripted array expressions can be
written with a pointer and an offset. In this case, pointer/offset notation was used with the
name of the array as a pointer. The preceding statement does not modify the array name
in any way; b still points to the first element in the array.

Pointers can be subscripted exactly as arrays can. For example, if bPtr has the value b,
the expression

refers to the array element b[1]. This is referred to as pointer/subscript notation.
Remember that an array name is essentially a constant pointer; it always points to the

beginning of the array. Thus, the expression

is invalid because it attempts to modify the value of the array name with pointer arith-
metic.

Figure 7.20 uses the four methods we have discussed for referring to array elements—
array subscripting, pointer/offset with the array name as a pointer, pointer subscripting,
and pointer/offset with a pointer—to print the four elements of the integer array b.

bPtr = &b[0];

*(bPtr + 3)

&b[3]

bPtr + 3

*(b + 3)

bPtr[1]

b += 3

Common Programming Error 7.10
Attempting to modify an array name with pointer arithmetic is a syntax error.

7.9 Relationship between Pointers and Arrays 277

1 /* Fig. 7.20: fig07_20.cpp
2 Using subscripting and pointer notations with arrays */
3
4 #include <stdio.h>
5
6 int main(void)
7 {
8 int b[] = { 10, 20, 30, 40 }; /* initialize array b */
9 int *bPtr = b; /* set bPtr to point to array b */

10 int i; /* counter */
11 int offset; /* counter */
12
13 /* output array b using array subscript notation */
14 printf("Array b printed with:\nArray subscript notation\n");
15
16 /* loop through array b */
17 for (i = 0; i < 4; i++) {
18 printf("b[%d] = %d\n", i,);
19 } /* end for */
20
21 /* output array b using array name and pointer/offset notation */
22 printf("\nPointer/offset notation where\n"
23 "the pointer is the array name\n");
24
25 /* loop through array b */
26 for (offset = 0; offset < 4; offset++) {
27 printf("*(b + %d) = %d\n", offset, *());
28 } /* end for */
29
30 /* output array b using bPtr and array subscript notation */
31 printf("\nPointer subscript notation\n");
32
33 /* loop through array b */
34 for (i = 0; i < 4; i++) {
35 printf("bPtr[%d] = %d\n", i,);
36 } /* end for */
37
38 /* output array b using bPtr and pointer/offset notation */
39 printf("\nPointer/offset notation\n");
40
41 /* loop through array b */
42 for (offset = 0; offset < 4; offset++) {
43 printf("*(bPtr + %d) = %d\n", offset, *());
44 } /* end for */
45
46 return 0; /* indicates successful termination */
47 } /* end main */

Array b printed with:
Array subscript notation
b[0] = 10
b[1] = 20

Fig. 7.20 | Using four methods of referencing array elements. (Part 1 of 2.)

b[i]

b + offset

bPtr[i]

bPtr + offset

278 Chapter 7 C Pointers

To further illustrate the interchangeability of arrays and pointers, let’s look at the two
string-copying functions—copy1 and copy2—in the program of Fig. 7.21. Both functions
copy a string (possibly a character array) into a character array. After a comparison of the
function prototypes for copy1 and copy2, the functions appear identical. They accomplish
the same task; however, they’re implemented differently.

b[2] = 30
b[3] = 40

Pointer/offset notation where
the pointer is the array name
*(b + 0) = 10
*(b + 1) = 20
*(b + 2) = 30
*(b + 3) = 40

Pointer subscript notation
bPtr[0] = 10
bPtr[1] = 20
bPtr[2] = 30
bPtr[3] = 40

Pointer/offset notation
*(bPtr + 0) = 10
*(bPtr + 1) = 20
*(bPtr + 2) = 30
*(bPtr + 3) = 40

1 /* Fig. 7.21: fig07_21.c
2 Copying a string using array notation and pointer notation. */
3 #include <stdio.h>
4
5 void copy1(char * const s1, const char * const s2); /* prototype */
6 void copy2(char *s1, const char *s2); /* prototype */
7
8 int main(void)
9 {

10 char string1[10]; /* create array string1 */
11 char *string2 = "Hello"; /* create a pointer to a string */
12 char string3[10]; /* create array string3 */
13 char string4[] = "Good Bye"; /* create a pointer to a string */
14
15 copy1(string1, string2);
16 printf("string1 = %s\n", string1);
17
18 copy2(string3, string4);
19 printf("string3 = %s\n", string3);
20 return 0; /* indicates successful termination */
21 } /* end main */

Fig. 7.21 | Copying a string using array notation and pointer notation. (Part 1 of 2.)

Fig. 7.20 | Using four methods of referencing array elements. (Part 2 of 2.)

7.9 Relationship between Pointers and Arrays 279

Function copy1 uses array subscript notation to copy the string in s2 to the character
array s1. The function defines counter variable i as the array subscript. The for statement
header (line 29) performs the entire copy operation—its body is the empty statement. The
header specifies that i is initialized to zero and incremented by one on each iteration of
the loop. The expression s1[i] = s2[i] copies one character from s2 to s1. When the null
character is encountered in s2, it’s assigned to s1, and the value of the assignment becomes
the value assigned to the left operand (s1). The loop terminates because the integer value
of the null character is zero (false).

Function copy2 uses pointers and pointer arithmetic to copy the string in s2 to the
character array s1. Again, the for statement header (line 38) performs the entire copy
operation. The header does not include any variable initialization. As in function copy1,
the expression (*s1 = *s2) performs the copy operation. Pointer s2 is dereferenced, and
the resulting character is assigned to the dereferenced pointer *s1. After the assignment in
the condition, the pointers are incremented to point to the next element of array s1 and
the next character of string s2, respectively. When the null character is encountered in s2,
it’s assigned to the dereferenced pointer s1 and the loop terminates.

The first argument to both copy1 and copy2 must be an array large enough to hold
the string in the second argument. Otherwise, an error may occur when an attempt is
made to write into a memory location that is not part of the array. Also, the second param-
eter of each function is declared as const char * (a constant string). In both functions,
the second argument is copied into the first argument—characters are read from it one at
a time, but the characters are never modified. Therefore, the second parameter is declared
to point to a constant value so that the principle of least privilege is enforced—neither

22
23
24 void copy1(char * const s1, const char * const s2)
25 {
26 int i; /* counter */
27
28 /* loop through strings */
29
30
31
32 } /* end function copy1 */
33
34
35 void copy2(char *s1, const char *s2)
36 {
37 /* loop through strings */
38
39
40
41 } /* end function copy2 */

string1 = Hello
string3 = Good Bye

Fig. 7.21 | Copying a string using array notation and pointer notation. (Part 2 of 2.)

/* copy s2 to s1 using array notation */

for (i = 0; (s1[i] = s2[i]) != '\0'; i++) {
 ; /* do nothing in body */
} /* end for */

/* copy s2 to s1 using pointer notation */

for (; (*s1 = *s2) != '\0'; s1++, s2++) {
 ; /* do nothing in body */
} /* end for */

280 Chapter 7 C Pointers

function requires the capability of modifying the second argument, so neither function is
provided with that capability.

7.10 Arrays of Pointers
Arrays may contain pointers. A common use of an array of pointers is to form an array of
strings, referred to simply as a string array. Each entry in the array is a string, but in C a
string is essentially a pointer to its first character. So each entry in an array of strings is ac-
tually a pointer to the first character of a string. Consider the definition of string array
suit, which might be useful in representing a deck of cards.

The suit[4] portion of the definition indicates an array of 4 elements. The char * por-
tion of the declaration indicates that each element of array suit is of type “pointer to
char.” Qualifier const indicates that the strings pointed to by each element pointer will
not be modified. The four values to be placed in the array are "Hearts", "Diamonds",
"Clubs" and "Spades". Each is stored in memory as a null-terminated character string that
is one character longer than the number of characters between quotes. The four strings are
7, 9, 6 and 7 characters long, respectively. Although it appears as though these strings are
being placed in the suit array, only pointers are actually stored in the array (Fig. 7.22).
Each pointer points to the first character of its corresponding string. Thus, even though
the suit array is fixed in size, it provides access to character strings of any length. This flex-
ibility is one example of C’s powerful data-structuring capabilities.

The suits could have been placed in a two-dimensional array, in which each row
would represent a suit and each column would represent a letter from a suit name. Such a
data structure would have to have a fixed number of columns per row, and that number
would have to be as large as the largest string. Therefore, considerable memory could be
wasted when a large number of strings were being stored with most strings shorter than
the longest string. We use string arrays to represent a deck of cards in the next section.

7.11 Case Study: Card Shuffling and Dealing Simulation
In this section, we use random number generation to develop a card shuffling and dealing
simulation program. This program can then be used to implement programs that play
specific card games. To reveal some subtle performance problems, we have intentionally
used suboptimal shuffling and dealing algorithms. In this chapter’s exercises and in
Chapter 10, we develop more efficient algorithms.

const char *suit[4] = { "Hearts", "Diamonds", "Clubs", "Spades" };

Fig. 7.22 | Graphical representation of the suit array.

'S'suit[3]

suit[2]

suit[1]

suit[0]

'p' 'a' 'd' 'e' 's' '\0'

'C' 'l' 'u' 'b' 's' '\0'

'D' 'i' 'a' 'm' 'o' 'n' 'd' 's' '\0'

'H' 'e' 'a' 'r' 't' 's' '\0'

7.11 Case Study: Card Shuffling and Dealing Simulation 281

Using the top-down, stepwise refinement approach, we develop a program that will
shuffle a deck of 52 playing cards and then deal each of the 52 cards. The top-down
approach is particularly useful in attacking larger, more complex problems than we have
seen in the early chapters.

We use 4-by-13 double-subscripted array deck to represent the deck of playing cards
(Fig. 7.23). The rows correspond to the suits—row 0 corresponds to hearts, row 1 to dia-
monds, row 2 to clubs and row 3 to spades. The columns correspond to the face values of
the cards—columns 0 through 9 correspond to ace through ten respectively, and columns
10 through 12 correspond to jack, queen and king. We shall load string array suit with
character strings representing the four suits, and string array face with character strings
representing the thirteen face values.

This simulated deck of cards may be shuffled as follows. First the array deck is cleared
to zeros. Then, a row (0–3) and a column (0–12) are each chosen at random. The number
1 is inserted in array element deck[row][column] to indicate that this card is going to be
the first one dealt from the shuffled deck. This process continues with the numbers 2, 3,
…, 52 being randomly inserted in the deck array to indicate which cards are to be placed
second, third, …, and fifty-second in the shuffled deck. As the deck array begins to fill
with card numbers, it’s possible that a card will be selected twice—i.e., deck[row]
[column] will be nonzero when it’s selected. This selection is simply ignored and other
rows and columns are repeatedly chosen at random until an unselected card is found.
Eventually, the numbers 1 through 52 will occupy the 52 slots of the deck array. At this
point, the deck of cards is fully shuffled.

This shuffling algorithm could execute indefinitely if cards that have already been
shuffled are repeatedly selected at random. This phenomenon is known as indefinite post-
ponement. In the exercises, we discuss a better shuffling algorithm that eliminates the pos-
sibility of indefinite postponement.

Fig. 7.23 | Double-subscripted array representation of a deck of cards.

Performance Tip 7.3
Sometimes an algorithm that emerges in a “natural” way can contain subtle performance
problems, such as indefinite postponement. Seek algorithms that avoid indefinite post-
ponement.

0 543

deck[2][12] represents the King of Clubs

Clubs King

21

1

2

0

3

Diamonds

Clubs

Hearts

Spades

6 7 98 10 11 12

A
ce

Si
x

Fi
ve

Fo
ur

Th
re

e

Tw
o

Se
ve

n

Ei
gh

t

Te
n

N
in

e

Ja
ck

Q
ue

en

Ki
ng

282 Chapter 7 C Pointers

To deal the first card, we search the array for deck[row][column] equal to 1. This is
accomplished with a nested for statement that varies row from 0 to 3 and column from 0
to 12. What card does that element of the array correspond to? The suit array has been
preloaded with the four suits, so to get the suit, we print the character string suit[row].
Similarly, to get the face value of the card, we print the character string face[column]. We
also print the character string " of ". Printing this information in the proper order enables
us to print each card in the form "King of Clubs", "Ace of Diamonds" and so on.

Let’s proceed with the top-down, stepwise refinement process. The top is simply

Our first refinement yields:

“Shuffle the deck” may be expanded as follows:

“Deal 52 cards” may be expanded as follows:

Incorporating these expansions yields our complete second refinement:

“Place card number in randomly selected unoccupied slot of deck” may be expanded as:

“Find card number in deck array and print face and suit of card” may be expanded as:

Shuffle and deal 52 cards

Initialize the suit array
Initialize the face array
Initialize the deck array
Shuffle the deck
Deal 52 cards

For each of the 52 cards
Place card number in randomly selected unoccupied slot of deck

For each of the 52 cards
Find card number in deck array and print face and suit of card

Initialize the suit array
Initialize the face array
Initialize the deck array

For each of the 52 cards
Place card number in randomly selected unoccupied slot of deck

For each of the 52 cards
Find card number in deck array and print face and suit of card

Choose slot of deck randomly

While chosen slot of deck has been previously chosen
Choose slot of deck randomly

Place card number in chosen slot of deck

For each slot of the deck array
If slot contains card number

 Print the face and suit of the card

7.11 Case Study: Card Shuffling and Dealing Simulation 283

Incorporating these expansions yields our third refinement:

This completes the refinement process. This program is more efficient if the shuffle
and deal portions of the algorithm are combined so that each card is dealt as it’s placed in
the deck. We have chosen to program these operations separately because normally cards
are dealt after they’re shuffled (not while they’re shuffled).

The card shuffling and dealing program is shown in Fig. 7.24, and a sample execution
is shown in Fig. 7.25. Conversion specifier %s is used to print strings of characters in the
calls to printf. The corresponding argument in the printf call must be a pointer to char
(or a char array). The format specification "%5s of %-8s" (line 73) prints a character string
right justified in a field of five characters followed by " of " and a character string left jus-
tified in a field of eight characters. The minus sign in %-8s signifies left justification.

Initialize the suit array
Initialize the face array
Initialize the deck array

For each of the 52 cards
Choose slot of deck randomly

While slot of deck has been previously chosen
Choose slot of deck randomly

Place card number in chosen slot of deck

For each of the 52 cards
For each slot of deck array

 If slot contains desired card number
 Print the face and suit of the card

1 /* Fig. 7.24: fig07_24.c
2 Card shuffling dealing program */
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6
7 /* prototypes */
8 void shuffle(int wDeck[][13]);
9 void deal(const int wDeck[][13], const char *wFace[],

10 const char *wSuit[]);
11
12 int main(void)
13 {
14
15
16
17
18
19
20
21

Fig. 7.24 | Card dealing program. (Part 1 of 3.)

/* initialize suit array */
const char *suit[4] = { "Hearts", "Diamonds", "Clubs", "Spades" };

/* initialize face array */
const char *face[13] =
 { "Ace", "Deuce", "Three", "Four",
 "Five", "Six", "Seven", "Eight",
 "Nine", "Ten", "Jack", "Queen", "King" };

284 Chapter 7 C Pointers

22
23 /* initialize deck array */
24 int deck[4][13] = { 0 };
25
26 srand(time(0)); /* seed random-number generator */
27
28 shuffle(deck); /* shuffle the deck */
29 deal(deck, face, suit); /* deal the deck */
30 return 0; /* indicates successful termination */
31 } /* end main */
32
33 /* shuffle cards in deck */
34 void shuffle(int wDeck[][13])
35 {
36 int row; /* row number */
37 int column; /* column number */
38 int card; /* counter */
39
40 /* for each of the 52 cards, choose slot of deck randomly */
41 for (card = 1; card <= 52; card++) {
42
43
44
45
46
47
48
49 /* place card number in chosen slot of deck */
50 wDeck[row][column] = card;
51 } /* end for */
52 } /* end function shuffle */
53
54 /* deal cards in deck */
55 void deal(const int wDeck[][13], const char *wFace[],
56 const char *wSuit[])
57 {
58 int card; /* card counter */
59 int row; /* row counter */
60 int column; /* column counter */
61
62 /* deal each of the 52 cards */
63 for (card = 1; card <= 52; card++) {
64 /* loop through rows of wDeck */
65
66 for (row = 0; row <= 3; row++) {
67
68 /* loop through columns of wDeck for current row */
69 for (column = 0; column <= 12; column++) {
70
71 /* if slot contains current card, display card */
72 if (wDeck[row][column] == card) {
73
74

Fig. 7.24 | Card dealing program. (Part 2 of 3.)

/* choose new random location until unoccupied slot found */
do {
 row = rand() % 4;
 column = rand() % 13;
} while(wDeck[row][column] != 0); /* end do...while */

printf("%5s of %-8s%c", wFace[column], wSuit[row],
 card % 2 == 0 ? '\n' : '\t');

7.12 Pointers to Functions 285

There’s a weakness in the dealing algorithm. Once a match is found, the two inner
for statements continue searching the remaining elements of deck for a match. We correct
this deficiency in this chapter’s exercises and in a Chapter 10 case study.

7.12 Pointers to Functions
A pointer to a function contains the address of the function in memory. In Chapter 6, we
saw that an array name is really the address in memory of the first element of the array.
Similarly, a function name is really the starting address in memory of the code that per-
forms the function’s task. Pointers to functions can be passed to functions, returned from
functions, stored in arrays and assigned to other function pointers.

To illustrate the use of pointers to functions, Fig. 7.26 presents a modified version of
the bubble sort program in Fig. 7.15. The new version consists of main and functions
bubble, swap, ascending and descending. Function bubbleSort receives a pointer to a
function—either function ascending or function descending—as an argument, in addi-

75 } /* end if */
76 } /* end for */
77 } /* end for */
78 } /* end for */
79 } /* end function deal */

 Nine of Hearts Five of Clubs
Queen of Spades Three of Spades
Queen of Hearts Ace of Clubs
 King of Hearts Six of Spades
 Jack of Diamonds Five of Spades
Seven of Hearts King of Clubs
Three of Clubs Eight of Hearts
Three of Diamonds Four of Diamonds
Queen of Diamonds Five of Diamonds
 Six of Diamonds Five of Hearts
 Ace of Spades Six of Hearts
 Nine of Diamonds Queen of Clubs
Eight of Spades Nine of Clubs
Deuce of Clubs Six of Clubs
Deuce of Spades Jack of Clubs
 Four of Clubs Eight of Clubs
 Four of Spades Seven of Spades
Seven of Diamonds Seven of Clubs
 King of Spades Ten of Diamonds
 Jack of Hearts Ace of Hearts
 Jack of Spades Ten of Clubs
Eight of Diamonds Deuce of Diamonds
 Ace of Diamonds Nine of Spades
 Four of Hearts Deuce of Hearts
 King of Diamonds Ten of Spades
Three of Hearts Ten of Hearts

Fig. 7.25 | Sample run of card dealing program.

Fig. 7.24 | Card dealing program. (Part 3 of 3.)

286 Chapter 7 C Pointers

tion to an integer array and the size of the array. The program prompts the user to choose
whether the array should be sorted in ascending or in descending order. If the user enters
1, a pointer to function ascending is passed to function bubble, causing the array to be
sorted into increasing order. If the user enters 2, a pointer to function descending is passed
to function bubble, causing the array to be sorted into decreasing order. The output of the
program is shown in Fig. 7.27.

1 /* Fig. 7.26: fig07_26.c
2 Multipurpose sorting program using function pointers */
3 #include <stdio.h>
4 #define SIZE 10
5
6 /* prototypes */
7 void bubble(int work[], const int size,);
8 int ascending(int a, int b);
9 int descending(int a, int b);

10
11 int main(void)
12 {
13 int order; /* 1 for ascending order or 2 for descending order */
14 int counter; /* counter */
15
16 /* initialize array a */
17 int a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
18
19 printf("Enter 1 to sort in ascending order,\n"
20 "Enter 2 to sort in descending order: ");
21 scanf("%d", &order);
22
23 printf("\nData items in original order\n");
24
25 /* output original array */
26 for (counter = 0; counter < SIZE; counter++) {
27 printf("%5d", a[counter]);
28 } /* end for */
29
30 /* sort array in ascending order; pass function ascending as an
31 argument to specify ascending sorting order */
32 if (order == 1) {
33
34 printf("\nData items in ascending order\n");
35 } /* end if */
36 else { /* pass function descending */
37
38 printf("\nData items in descending order\n");
39 } /* end else */
40
41 /* output sorted array */
42 for (counter = 0; counter < SIZE; counter++) {
43 printf("%5d", a[counter]);
44 } /* end for */

Fig. 7.26 | Multipurpose sorting program using function pointers. (Part 1 of 2.)

int (*compare)(int a, int b)

bubble(a, SIZE, ascending);

bubble(a, SIZE, descending);

7.12 Pointers to Functions 287

45
46 printf("\n");
47 return 0; /* indicates successful termination */
48 } /* end main */
49
50 /* multipurpose bubble sort; parameter compare is a pointer to
51 the comparison function that determines sorting order */
52 void bubble(int work[], const int size,)
53 {
54 int pass; /* pass counter */
55 int count; /* comparison counter */
56
57 void swap(int *element1Ptr, int *element2ptr); /* prototype */
58
59 /* loop to control passes */
60 for (pass = 1; pass < size; pass++) {
61
62 /* loop to control number of comparisons per pass */
63 for (count = 0; count < size - 1; count++) {
64
65 /* if adjacent elements are out of order, swap them */
66 if () {
67 swap(&work[count], &work[count + 1]);
68 } /* end if */
69 } /* end for */
70 } /* end for */
71 } /* end function bubble */
72
73 /* swap values at memory locations to which element1Ptr and
74 element2Ptr point */
75 void swap(int *element1Ptr, int *element2Ptr)
76 {
77 int hold; /* temporary holding variable */
78
79 hold = *element1Ptr;
80 *element1Ptr = *element2Ptr;
81 *element2Ptr = hold;
82 } /* end function swap */
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Fig. 7.26 | Multipurpose sorting program using function pointers. (Part 2 of 2.)

int (*compare)(int a, int b)

(*compare)(work[count], work[count + 1])

/* determine whether elements are out of order for an ascending
 order sort */
int ascending(int a, int b)
{
 return b < a; /* swap if b is less than a */
} /* end function ascending */

/* determine whether elements are out of order for a descending
 order sort */
int descending(int a, int b)
{
 return b > a; /* swap if b is greater than a */
} /* end function descending */

288 Chapter 7 C Pointers

The following parameter appears in the function header for bubble (line 52)

This tells bubble to expect a parameter (compare) that is a pointer to a function that re-
ceives two integer parameters and returns an integer result. Parentheses are needed around
*compare to group * with compare to indicate that compare is a pointer. If we had not in-
cluded the parentheses, the declaration would have been

which declares a function that receives two integers as parameters and returns a pointer to
an integer.

The function prototype for bubble is shown in line 7. The prototype could have been
written as

without the function-pointer name and parameter names.
The function passed to bubble is called in an if statement (line 66) as follows:

Just as a pointer to a variable is dereferenced to access the value of the variable, a pointer
to a function is dereferenced to use the function.

The call to the function could have been made without dereferencing the pointer as in

which uses the pointer directly as the function name. We prefer the first method of calling
a function through a pointer because it explicitly illustrates that compare is a pointer to a
function that is dereferenced to call the function. The second method of calling a function
through a pointer makes it appear as though compare is an actual function. This may be
confusing to a user of the program who would like to see the definition of function com-
pare and finds that it’s never defined in the file.

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 1

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 2

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in descending order
 89 68 45 37 12 10 8 6 4 2

Fig. 7.27 | The outputs of the bubble sort program in Fig. 7.26.

int (*compare)(int a, int b)

int *compare(int a, int b)

int (*)(int, int);

if ((*compare)(work[count], work[count + 1]))

if (compare(work[count], work[count + 1]))

7.12 Pointers to Functions 289

Using Function Pointers to Create a Menu-Driven System
A common use of function pointers is in text-based menu-driven systems. A user is
prompted to select an option from a menu (possibly from 1 to 5) by typing the menu
item’s number. Each option is serviced by a different function. Pointers to each function
are stored in an array of pointers to functions. The user’s choice is used as a subscript in
the array, and the pointer in the array is used to call the function.

Figure 7.28 provides a generic example of the mechanics of defining and using an
array of pointers to functions. We define three functions—function1, function2 and
function3—that each take an integer argument and return nothing. We store pointers to
these three functions in array f, which is defined in line 14.

1 /* Fig. 7.28: fig07_28.c
2 Demonstrating an array of pointers to functions */
3 #include <stdio.h>
4
5 /* prototypes */
6
7
8
9

10 int main(void)
11 {
12
13
14
15
16 int choice; /* variable to hold user's choice */
17
18 printf("Enter a number between 0 and 2, 3 to end: ");
19 scanf("%d", &choice);
20
21 /* process user's choice */
22 while (choice >= 0 && choice < 3) {
23
24
25
26
27
28 printf("Enter a number between 0 and 2, 3 to end: ");
29 scanf("%d", &choice);
30 } /* end while */
31
32 printf("Program execution completed.\n");
33 return 0; /* indicates successful termination */
34 } /* end main */
35
36
37 {
38 printf("You entered %d so function1 was called\n\n", a);
39 } /* end function1 */
40

Fig. 7.28 | Demonstrating an array of pointers to functions. (Part 1 of 2.)

void function1(int a);
void function2(int b);
void function3(int c);

/* initialize array of 3 pointers to functions that each take an
 int argument and return void */
void (*f[3])(int) = { function1, function2, function3 };

/* invoke function at location choice in array f and pass
 choice as an argument */
(*f[choice])(choice);

void function1(int a)

290 Chapter 7 C Pointers

The definition is read beginning in the leftmost set of parentheses, “f is an array of 3
pointers to functions that each take an int as an argument and return void.” The array is
initialized with the names of the three functions. When the user enters a value between 0
and 2, the value is used as the subscript into the array of pointers to functions. In the func-
tion call (line 26), f[choice] selects the pointer at location choice in the array. The
pointer is dereferenced to call the function, and choice is passed as the argument to the
function. Each function prints its argument’s value and its function name to demonstrate
that the function is called correctly. In this chapter’s exercises, you’ll develop several text-
based, menu-driven systems.

41
42 {
43 printf("You entered %d so function2 was called\n\n", b);
44 } /* end function2 */
45
46
47 {
48 printf("You entered %d so function3 was called\n\n", c);
49 } /* end function3 */

Enter a number between 0 and 2, 3 to end: 0
You entered 0 so function1 was called

Enter a number between 0 and 2, 3 to end: 1
You entered 1 so function2 was called

Enter a number between 0 and 2, 3 to end: 2
You entered 2 so function3 was called

Enter a number between 0 and 2, 3 to end: 3
Program execution completed.

Fig. 7.28 | Demonstrating an array of pointers to functions. (Part 2 of 2.)

void function2(int b)

void function3(int c)

Summary
Section 7.2 Pointer Variable Definitions and Initialization
• A pointer contains an address of another variable that contains a value. In this sense, a variable

name directly references a value, and a pointer indirectly references a value.

• Referencing a value through a pointer is called indirection.

• Pointers can be defined to point to objects of any type.

• Pointers should be initialized either when they’re defined or in an assignment statement. A point-
er may be initialized to NULL, 0 or an address. A pointer with the value NULL points to nothing.
Initializing a pointer to 0 is equivalent to initializing a pointer to NULL, but NULL is preferred. The
value 0 is the only integer value that can be assigned directly to a pointer variable.

• NULL is a symbolic constant defined in the <stddef.h> header (and several other headers).

Section 7.3 Pointer Operators
• The &, or address operator, is a unary operator that returns the address of its operand.

 Summary 291

• The operand of the address operator must be a variable.

• The indirection operator * returns the value of the object to which its operand points.

• The printf conversion specifier %p outputs a memory location as a hexadecimal integer on most
platforms.

Section 7.4 Passing Arguments to Functions by Reference
• All arguments in C are passed by value.

• C provides the capabilities for simulating call-by-reference using pointers and the indirection op-
erator. To pass a variable by reference, apply the address operator (&) to the variable’s name.

• When the address of a variable is passed to a function, the indirection operator (*) may be used
in the function to modify the value at that location in the caller’s memory.

• A function receiving an address as an argument must define a pointer parameter to receive the
address.

• The compiler does not differentiate between a function that receives a pointer and a function that
receives a single-subscripted array. A function must “know” when it’s receiving an array vs. a sin-
gle variable passed by reference.

• When the compiler encounters a function parameter for a single-subscripted array of the form
int b[], the compiler converts the parameter to the pointer notation int *b.

Section 7.5 Using the const Qualifier with Pointers
• The const qualifier indicates that the value of a particular variable should not be modified.

• If an attempt is made to modify a value that is declared const, the compiler catches it and issues
either a warning or an error, depending on the particular compiler.

• There are four ways to pass a pointer to a function: a non-constant pointer to non-constant data,
a constant pointer to non-constant data, a non-constant pointer to constant data, and a constant
pointer to constant data.

• With a non-constant pointer to non-constant data, the data can be modified through the deref-
erenced pointer, and the pointer can be modified to point to other data items.

• A non-constant pointer to constant data can be modified to point to any data item of the appro-
priate type, but the data to which it points cannot be modified.

• A constant pointer to non-constant data always points to the same memory location, and the data
at that location can be modified through the pointer. This is the default for an array name.

• A constant pointer to constant data always points to the same memory location, and the data at
that memory location cannot be modified.

Section 7.7 sizeof Operator
• Unary operator sizeof determine the size in bytes of a variable or type at compilation time.

• When applied to the name of an array, sizeof returns the total number of bytes in the array.

• Type size_t is an integral type (unsigned or unsigned long) returned by operator sizeof. Type
size_t is defined in header <stddef.h>.

• Operator sizeof can be applied to any variable name, type or value.

• The parentheses used with sizeof are required if a type name is supplied as its operand.

Section 7.8 Pointer Expressions and Pointer Arithmetic
• A limited set of arithmetic operations may be performed on pointers. A pointer may be incre-

mented (++) or decremented (--), an integer may be added to a pointer (+ or +=), an integer may
be subtracted from a pointer (- or -=) and one pointer may be subtracted from another.

292 Chapter 7 C Pointers

• When an integer is added to or subtracted from a pointer, the pointer is incremented or decre-
mented by that integer times the size of the object to which the pointer refers.

• Two pointers to elements of the same array may be subtracted from one another to determine
the number of elements between them.

• A pointer can be assigned to another pointer if both have the same type. An exception to this is
the pointer of type void * which can represent any pointer type. All pointer types can be assigned
a void * pointer, and a void * pointer can be assigned a pointer of any type.

• A void * pointer cannot be dereferenced.

• Pointers can be compared using equality and relational operators, but such comparisons are
meaningless unless the pointers point to elements of the same array. Pointer comparisons com-
pare the addresses stored in the pointers.

• A common use of pointer comparison is determining whether a pointer is NULL.

Section 7.9 Relationship between Pointers and Arrays
• Arrays and pointers are intimately related in C and often may be used interchangeably.

• An array name can be thought of as a constant pointer.

• Pointers can be used to do any operation involving array subscripting.

• When a pointer points to the beginning of an array, adding an offset to the pointer indicates
which element of the array should be referenced, and the offset value is identical to the array sub-
script. This is referred to as pointer/offset notation.

• An array name can be treated as a pointer and used in pointer arithmetic expressions that do not
attempt to modify the address of the pointer.

• Pointers can be subscripted exactly as arrays can. This is referred to as pointer/subscript notation.

• A parameter of type const char * typically represents a constant string.

Section 7.10 Arrays of Pointers
• Arrays may contain pointers. A common use of an array of pointers is to form an array of strings.

Each entry in the array is a string, but in C a string is essentially a pointer to its first character.
So each entry in an array of strings is actually a pointer to the first character of a string.

Section 7.12 Pointers to Functions
• A pointer to a function contains the address of the function in memory. A function name is really

the starting address in memory of the code that performs the function’s task.

• Pointers to functions can be passed to functions, returned from functions, stored in arrays and
assigned to other function pointers.

• A pointer to a function is dereferenced to call the function. A function pointer can be used di-
rectly as the function name when calling the function.

• A common use of function pointers is in text-based, menu-driven systems.

Terminology
address operator (&) 255
array of pointers 280
array of strings 280
call-by-reference 257
call-by-value 257
const qualifier 261
constant pointer to constant data 262

constant pointer to non-constant data 262
dereferencing a pointer 256
dereferencing operator (*) 256
function pointer 289
indefinite postponement 281
indirection 254
indirection operator (*) 256

 Self-Review Exercises 293

non-constant pointer to constant data 262
non-constant pointer to non-constant data 262
offset to a pointer 276
pointer 254
pointer arithmetic 263
pointer/offset notation 276
pointer/subscript notation 276
pointer subscripting 276
pointer to a function 285
pointer to void (void *) 275

principle of least privilege 262
record 265
simulating call-by-reference 258
sizeof operator 270
size_t type 271
string array 280
structure 265
time/space tradeoff 266
void * (pointer to void) 275

Self-Review Exercises
7.1 Answer each of the following:

a) A pointer variable contains as its value the of another variable.
b) The three values that can be used to initialize a pointer are , and

.
c) The only integer that can be assigned to a pointer is .

7.2 State whether the following are true or false. If the answer is false, explain why.
a) The address operator (&) can be applied only to constants, to expressions and to vari-

ables declared with the storage-class register.
b) A pointer that is declared to be void can be dereferenced.
c) Pointers of different types may not be assigned to one another without a cast operation.

7.3 Answer each of the following. Assume that single-precision floating-point numbers are
stored in 4 bytes, and that the starting address of the array is at location 1002500 in memory. Each
part of the exercise should use the results of previous parts where appropriate.

a) Define an array of type float called numbers with 10 elements, and initialize the ele-
ments to the values 0.0, 1.1, 2.2, …, 9.9. Assume the symbolic constant SIZE has been
defined as 10.

b) Define a pointer, nPtr, that points to an object of type float.
c) Print the elements of array numbers using array subscript notation. Use a for statement

and assume the integer control variable i has been defined. Print each number with 1
position of precision to the right of the decimal point.

d) Give two separate statements that assign the starting address of array numbers to the
pointer variable nPtr.

e) Print the elements of array numbers using pointer/offset notation with the pointer nPtr.
f) Print the elements of array numbers using pointer/offset notation with the array name

as the pointer.
g) Print the elements of array numbers by subscripting pointer nPtr.
h) Refer to element 4 of array numbers using array subscript notation, pointer/offset no-

tation with the array name as the pointer, pointer subscript notation with nPtr and
pointer/offset notation with nPtr.

i) Assuming that nPtr points to the beginning of array numbers, what address is referenced
by nPtr + 8? What value is stored at that location?

j) Assuming that nPtr points to numbers[5], what address is referenced by
nPtr –= 4. What is the value stored at that location?

7.4 For each of the following, write a statement that performs the indicated task. Assume that
floating-point variables number1 and number2 are defined and that number1 is initialized to 7.3.

a) Define the variable fPtr to be a pointer to an object of type float.
b) Assign the address of variable number1 to pointer variable fPtr.

294 Chapter 7 C Pointers

c) Print the value of the object pointed to by fPtr.
d) Assign the value of the object pointed to by fPtr to variable number2.
e) Print the value of number2.
f) Print the address of number1. Use the %p conversion specifier.
g) Print the address stored in fPtr. Use the %p conversion specifier. Is the value printed the

same as the address of number1?

7.5 Do each of the following:
a) Write the function header for a function called exchange that takes two pointers to

floating-point numbers x and y as parameters and does not return a value.
b) Write the function prototype for the function in part (a).
c) Write the function header for a function called evaluate that returns an integer and

that takes as parameters integer x and a pointer to function poly. Function poly takes
an integer parameter and returns an integer.

d) Write the function prototype for the function in part (c).

7.6 Find the error in each of the following program segments. Assume

int *zPtr; /* zPtr will reference array z */
int *aPtr = NULL;
void *sPtr = NULL;
int number, i;
int z[5] = { 1, 2, 3, 4, 5 };
sPtr = z;

a) ++zptr;
b) /* use pointer to get first value of array; assume zPtr is initialized */

number = zPtr;
c) /* assign array element 2 (the value 3) to number;

 assume zPtr is initialized */

number = *zPtr[2];
d) /* print entire array z; assume zPtr is initialized */

for (i = 0; i <= 5; i++) {

 printf("%d ", zPtr[i]);

}
e) /* assign the value pointed to by sPtr to number */

number = *sPtr;
f) ++z;

Answers to Self-Review Exercises
7.1 a) address. b) 0, NULL, an address. c) 0.

7.2 a) False. The address operator can be applied only to variables. The address operator can-
not be applied to variables declared with storage class register.

b) False. A pointer to void cannot be dereferenced, because there is no way to know exactly
how many bytes of memory to dereference.

c) False. Pointers of type void can be assigned pointers of other types, and pointers of type
void can be assigned to pointers of other types.

7.3 a) float numbers[SIZE] =

 { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9 };
b) float *nPtr;
c) for (i = 0; i < SIZE; i++) {

 printf("%.1f ", numbers[i]);
}

 Exercises 295

d) nPtr = numbers;

nPtr = &numbers[0];
e) for (i = 0; i < SIZE; i++) {

 printf("%.1f ", *(nPtr + i));

}
f) for (i = 0; i < SIZE; i++) {

 printf("%.1f ", *(numbers + i));

}
g) for (i = 0; i < SIZE; i++) {

 printf("%.1f ", nPtr[i]);

}
h) numbers[4]

*(numbers + 4)

nPtr[4]

*(nPtr + 4)
i) The address is 1002500 + 8 * 4 = 1002532. The value is 8.8.
j) The address of numbers[5] is 1002500 + 5 * 4 = 1002520.

The address of nPtr -= 4 is 1002520 - 4 * 4 = 1002504.
The value at that location is 1.1.

7.4 a) float *fPtr;
b) fPtr = &number1;
c) printf("The value of *fPtr is %f\n", *fPtr);
d) number2 = *fPtr;
e) printf("The value of number2 is %f\n", number2);
f) printf("The address of number1 is %p\n", &number1);
g) printf("The address stored in fptr is %p\n", fPtr);

Yes, the value is the same.

7.5 a) void exchange(float *x, float *y)
b) void exchange(float *x, float *y);
c) int evaluate(int x, int (*poly)(int))
d) int evaluate(int x, int (*poly)(int));

7.6 a) Error: zPtr has not been initialized.
Correction: Initialize zPtr with zPtr = z; before performing the pointer arithmetic.

b) Error: The pointer is not dereferenced.
Correction: Change the statement to number = *zPtr;

c) Error: zPtr[2] is not a pointer and should not be dereferenced.
Correction: Change *zPtr[2] to zPtr[2].

d) Error: Referring to an array element outside the array bounds with pointer subscripting.
Correction: Change the operator <= in the for condition to <.

e) Error: Dereferencing a void pointer.
Correction: To dereference the pointer, it must first be cast to an integer pointer.
Change the statement to number = *((int *) sPtr);

f) Error: Trying to modify an array name with pointer arithmetic.
Correction: Use a pointer variable instead of the array name to accomplish pointer
arithmetic, or subscript the array name to refer to a specific element.

Exercises
7.7 Answer each of the following:

a) The operator returns the location in memory where its operand is stored.

296 Chapter 7 C Pointers

b) The operator returns the value of the object to which its operand points.
c) To simulate call-by-reference when passing a nonarray variable to a function, it’s nec-

essary to pass the of the variable to the function.

7.8 State whether the following are true or false. If false, explain why.
a) Two pointers that point to different arrays cannot be compared meaningfully.
b) Because the name of an array is a pointer to the first element of the array, array names

may be manipulated in precisely the same manner as pointers.

7.9 Answer each of the following. Assume that unsigned integers are stored in 2 bytes and that
the starting address of the array is at location 1002500 in memory.

a) Define an array of type unsigned int called values with five elements, and initialize the
elements to the even integers from 2 to 10. Assume the symbolic constant SIZE has been
defined as 5.

b) Define a pointer vPtr that points to an object of type unsigned int.
c) Print the elements of array values using array subscript notation. Use a for statement

and assume integer control variable i has been defined.
d) Give two separate statements that assign the starting address of array values to pointer

variable vPtr.
e) Print the elements of array values using pointer/offset notation.
f) Print the elements of array values using pointer/offset notation with the array name as

the pointer.
g) Print the elements of array values by subscripting the pointer to the array.
h) Refer to element 5 of array values using array subscript notation, pointer/offset nota-

tion with the array name as the pointer, pointer subscript notation, and pointer/offset
notation.

i) What address is referenced by vPtr + 3? What value is stored at that location?
j) Assuming vPtr points to values[4], what address is referenced by vPtr -= 4. What val-

ue is stored at that location?

7.10 For each of the following, write a single statement that performs the indicated task. Assume
that long integer variables value1 and value2 have been defined and that value1 has been initialized
to 200000.

a) Define the variable lPtr to be a pointer to an object of type long.
b) Assign the address of variable value1 to pointer variable lPtr.
c) Print the value of the object pointed to by lPtr.
d) Assign the value of the object pointed to by lPtr to variable value2.
e) Print the value of value2.
f) Print the address of value1.
g) Print the address stored in lPtr. Is the value printed the same as the address of value1?

7.11 Do each of the following:
a) Write the function header for function zero, which takes a long integer array parameter

bigIntegers and does not return a value.
b) Write the function prototype for the function in part a.
c) Write the function header for function add1AndSum, which takes an integer array pa-

rameter oneTooSmall and returns an integer.
d) Write the function prototype for the function described in part c.

Note: Exercise 7.12 through Exercise 7.15 are reasonably challenging. Once you have done
these problems, you ought to be able to implement most popular card games easily.
7.12 (Card Shuffling and Dealing) Modify the program in Fig. 7.24 so that the card-dealing
function deals a five-card poker hand. Then write the following additional functions:

 Exercises 297

a) Determine if the hand contains a pair.
b) Determine if the hand contains two pairs.
c) Determine if the hand contains three of a kind (e.g., three jacks).
d) Determine if the hand contains four of a kind (e.g., four aces).
e) Determine if the hand contains a flush (i.e., all five cards of the same suit).
f) Determine if the hand contains a straight (i.e., five cards of consecutive face values).

7.13 (Project: Card Shuffling and Dealing) Use the functions developed in Exercise 7.12 to
write a program that deals two five-card poker hands, evaluates each hand, and determines which is
the better hand.

7.14 (Project: Card Shuffling and Dealing) Modify the program developed in Exercise 7.13 so
that it can simulate the dealer. The dealer's five-card hand is dealt “face down” so the player cannot
see it. The program should then evaluate the dealer’s hand, and based on the quality of the hand,
the dealer should draw one, two or three more cards to replace the corresponding number of un-
needed cards in the original hand. The program should then re-evaluate the dealer's hand. [Caution:
This is a difficult problem!]

7.15 (Project: Card Shuffling and Dealing) Modify the program developed in Exercise 7.14 so
that it can handle the dealer’s hand automatically, but the player is allowed to decide which cards
of the player's hand to replace. The program should then evaluate both hands and determine who
wins. Now use this new program to play 20 games against the computer. Who wins more games,
you or the computer? Have one of your friends play 20 games against the computer. Who wins more
games? Based on the results of these games, make appropriate modifications to refine your poker
playing program (this, too, is a difficult problem). Play 20 more games. Does your modified pro-
gram play a better game?

7.16 (Card Shuffling and Dealing Modification) In the card shuffling and dealing program of
Fig. 7.24, we intentionally used an inefficient shuffling algorithm that introduced the possibility of
indefinite postponement. In this problem, you’ll create a high-performance shuffling algorithm that
avoids indefinite postponement.

Modify the program of Fig. 7.24 as follows. Begin by initializing the deck array as shown in
Fig. 7.29. Modify the shuffle function to loop row-by-row and column-by-column through the
array, touching every element once. Each element should be swapped with a randomly selected ele-
ment of the array. Print the resulting array to determine if the deck is satisfactorily shuffled (as in
Fig. 7.30, for example). You may want your program to call the shuffle function several times to
ensure a satisfactory shuffle.

 Although the approach in this problem improves the shuffling algorithm, the dealing algo-
rithm still requires searching the deck array for card 1, then card 2, then card 3, and so on. Worse
yet, even after the dealing algorithm locates and deals the card, the algorithm continues searching
through the remainder of the deck. Modify the program of Fig. 7.24 so that once a card is dealt, no

Unshuffled deck array

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 14 15 16 17 18 19 20 21 22 23 24 25 26

2 27 28 29 30 31 32 33 34 35 36 37 38 39

3 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 7.29 | Unshuffled deck array.

298 Chapter 7 C Pointers

further attempts are made to match that card number, and the program immediately proceeds with
dealing the next card. In Chapter 10, we develop a dealing algorithm that requires only one opera-
tion per card.

7.17 (Simulation: The Tortoise and the Hare) In this problem, you’ll recreate one of the truly
great moments in history, namely the classic race of the tortoise and the hare. You’ll use random
number generation to develop a simulation of this memorable event.

Our contenders begin the race at “square 1” of 70 squares. Each square represents a possible
position along the race course. The finish line is at square 70. The first contender to reach or pass
square 70 is rewarded with a pail of fresh carrots and lettuce. The course weaves its way up the side
of a slippery mountain, so occasionally the contenders lose ground.

There is a clock that ticks once per second. With each tick of the clock, your program should
adjust the position of the animals according to the rules of Fig. 7.31.

Use variables to keep track of the positions of the animals (i.e., position numbers are 1–70).
Start each animal at position 1 (i.e., the “starting gate”). If an animal slips left before square 1,
move the animal back to square 1.

Generate the percentages in the preceding table by producing a random integer, i, in the range
1 ≤ i ≤10. For the tortoise, perform a “fast plod” when 1 ≤ i ≤5, a “slip” when 6 ≤ i ≤7, or a
“slow plod” when 8 ≤ i ≤10. Use a similar technique to move the hare.

Begin the race by printing

BANG !!!!!
AND THEY'RE OFF !!!!!

Then, for each tick of the clock (i.e., each repetition of a loop), print a 70-position line showing
the letter T in the position of the tortoise and the letter H in the position of the hare. Occasionally,

Sample shuffled deck array

0 1 2 3 4 5 6 7 8 9 10 11 12
0 19 40 27 25 36 46 10 34 35 41 18 2 44

1 13 28 14 16 21 30 8 11 31 17 24 7 1

2 12 33 15 42 43 23 45 3 29 32 4 47 26

3 50 38 52 39 48 51 9 5 37 49 22 6 20

Fig. 7.30 | Sample shuffled deck array.

Animal Move type Percentage of the time Actual move

Tortoise Fast plod
Slip
Slow plod

50%
20%
30%

3 squares to the right
6 squares to the left
1 square to the right

Hare Sleep
Big hop
Big slip
Small hop
Small slip

20%
20%
10%
30%
20%

No move at all
9 squares to the right
12 squares to the left
1 square to the right
2 squares to the left

Fig. 7.31 | Tortoise and hare rules for adjusting positions.

 Exercises 299

the contenders will land on the same square. In this case, the tortoise bites the hare and your pro-
gram should print OUCH!!! beginning at that position. All print positions other than the T, the H, or
the OUCH!!! (in case of a tie) should be blank.

After each line is printed, test if either animal has reached or passed square 70. If so, then print
the winner and terminate the simulation. If the tortoise wins, print TORTOISE WINS!!! YAY!!! If the
hare wins, print Hare wins. Yuch. If both animals win on the same tick of the clock, you may want to
favor the turtle (the “underdog”), or you may want to print It's a tie. If neither animal wins, per-
form the loop again to simulate the next tick of the clock. When you’re ready to run your program,
assemble a group of fans to watch the race. You’ll be amazed at how involved your audience gets!

7.18 (Card Shuffling and Dealing Modification) Modify the card shuffling and dealing program
of Fig. 7.24 so the shuffling and dealing operations are performed by the same function (shuffle-
AndDeal). The function should contain one nested looping structure that is similar to function
shuffle in Fig. 7.24.

7.19 What does this program do?

7.20 What does this program do?

1 /* ex07_19.c */
2 /* What does this program do? */
3 #include <stdio.h>
4
5 void mystery1(char *s1, const char *s2); /* prototype */
6
7 int main(void)
8 {
9 char string1[80]; /* create char array */

10 char string2[80]; /* create char array */
11
12 printf("Enter two strings: ");
13 scanf("%s%s" , string1, string2);
14 mystery1(string1, string2);
15 printf("%s", string1);
16 return 0; /* indicates successful termination */
17 } /* end main */
18
19 /* What does this function do? */
20 void mystery1(char *s1, const char *s2)
21 {
22 while (*s1 != '\0') {
23 s1++;
24 } /* end while */
25
26 for (; *s1 = *s2; s1++, s2++) {
27 ; /* empty statement */
28 } /* end for */
29 } /* end function mystery1 */

1 /* ex07_20.c */
2 /* what does this program do? */
3 #include <stdio.h>
4
5 int mystery2(const char *s); /* prototype */
6
7 int main(void)
8 {
9 char string[80]; /* create char array */

300 Chapter 7 C Pointers

7.21 Find the error in each of the following program segments. If the error can be corrected, ex-
plain how.

a) int *number;

printf("%d\n", *number);
b) float *realPtr;

long *integerPtr;

integerPtr = realPtr;
c) int * x, y;

x = y;
d) char s[] = "this is a character array";

int count;

for (; *s != '\0'; s++)

 printf("%c ", *s);
e) short *numPtr, result;

void *genericPtr = numPtr;

result = *genericPtr + 7;
f) float x = 19.34;

float xPtr = &x;

printf("%f\n", xPtr);
g) char *s;

printf("%s\n", s);

7.22 (Maze Traversal) The following grid is a double-subscripted array representation of a maze.

10
11 printf("Enter a string: ");
12 scanf("%s", string);
13 printf("%d\n", mystery2(string));
14 return 0; /* indicates successful termination */
15 } /* end main */
16
17 /* What does this function do? */
18 int mystery2(const char *s)
19 {
20 int x; /* counter */
21
22 /* loop through string */
23 for (x = 0; *s != '\0'; s++) {
24 x++;
25 } /* end for */
26
27 return x;
28 } /* end function mystery2 */

#
. . . #
. . # . # . # # # # . #
. # # .
. . . . # # # . # . .
. # . # . # .
. . # . # . # . # .
. # . # . # . # .
. # .
. # # # .
. # . . .
#

 Exercises 301

The # symbols represent the walls of the maze, and the periods (.) represent squares in the possible
paths through the maze.

There is a simple algorithm for walking through a maze that guarantees finding the exit
(assuming there is an exit). If there is not an exit, you’ll arrive at the starting location again. Place
your right hand on the wall to your right and begin walking forward. Never remove your hand
from the wall. If the maze turns to the right, you follow the wall to the right. As long as you do not
remove your hand from the wall, eventually you’ll arrive at the exit of the maze. There may be a
shorter path than the one you have taken, but you’re guaranteed to get out of the maze.

Write recursive function mazeTraverse to walk through the maze. The function should receive
as arguments a 12-by-12 character array representing the maze and the starting location of the
maze. As mazeTraverse attempts to locate the exit from the maze, it should place the character X in
each square in the path. The function should display the maze after each move so the user can
watch as the maze is solved.

7.23 (Generating Mazes Randomly) Write a function mazeGenerator that takes as an argument
a double-subscripted 12-by-12 character array and randomly produces a maze. The function should
also provide the starting and ending locations of the maze. Try your function mazeTraverse from
Exercise 7.22 using several randomly generated mazes.

7.24 (Mazes of Any Size) Generalize functions mazeTraverse and mazeGenerator of
Exercise 7.22 and Exercise 7.23 to process mazes of any width and height.

7.25 (Arrays of Pointers to Functions) Rewrite the program of Fig. 6.22 to use a menu-driven
interface. The program should offer the user four options as follows:

One restriction on using arrays of pointers to functions is that all the pointers must have the same
type. The pointers must be to functions of the same return type that receive arguments of the same
type. For this reason, the functions in Fig. 6.22 must be modified so that they each return the same
type and take the same parameters. Modify functions minimum and maximum to print the minimum
or maximum value and return nothing. For option 3, modify function average of Fig. 6.22 to out-
put the average for each student (not a specific student). Function average should return nothing
and take the same parameters as printArray, minimum and maximum. Store the pointers to the four
functions in array processGrades and use the choice made by the user as the subscript into the
array for calling each function.

7.26 What does this program do?

Enter a choice:
 0 Print the array of grades
 1 Find the minimum grade
 2 Find the maximum grade
 3 Print the average on all tests for each student
 4 End program

1 /* ex07_26.c */
2 /* What does this program do? */
3 #include <stdio.h>
4
5 int mystery3(const char *s1, const char *s2); /* prototype */
6
7 int main(void)
8 {
9 char string1[80]; /* create char array */

10 char string2[80]; /* create char array */
11
12 printf("Enter two strings: ");

302 Chapter 7 C Pointers

Special Section: Building Your Own Computer
In the next several problems, we take a temporary diversion away from the world of high-level lan-
guage programming. We “peel open” a computer and look at its internal structure. We introduce
machine-language programming and write several machine-language programs. To make this an
especially valuable experience, we then build a computer (through the technique of software-based
simulation) on which you can execute your machine-language programs!

7.27 (Machine-Language Programming) Let’s create a computer we’ll call the Simpletron. As its
name implies, it’s a simple machine, but as we’ll soon see, a powerful one as well. The Simpletron
runs programs written in the only language it directly understands—that is, Simpletron Machine
Language, or SML for short.

The Simpletron contains an accumulator—a “special register” in which information is put
before the Simpletron uses that information in calculations or examines it in various ways. All
information in the Simpletron is handled in terms of words. A word is a signed four-digit decimal
number such as +3364, -1293, +0007, -0001 and so on. The Simpletron is equipped with a 100-
word memory, and these words are referenced by their location numbers 00, 01, …, 99.

Before running an SML program, we must load or place the program into memory. The first
instruction (or statement) of every SML program is always placed in location 00.

Each instruction written in SML occupies one word of the Simpletron's memory (and hence
instructions are signed four-digit decimal numbers). We assume that the sign of an SML
instruction is always plus, but the sign of a data word may be either plus or minus. Each location in
the Simpletron’s memory may contain either an instruction, a data value used by a program or an
unused (and hence undefined) area of memory. The first two digits of each SML instruction are
the operation code, which specifies the operation to be performed. SML operation codes are
summarized in Fig. 7.32.

13 scanf("%s%s", string1 , string2);
14 printf("The result is %d\n", mystery3(string1, string2));
15 return 0; /* indicates successful termination */
16 } /* end main */
17
18 int mystery3(const char *s1, const char *s2)
19 {
20 for (; *s1 != '\0' && *s2 != '\0'; s1++, s2++) {
21
22 if (*s1 != *s2) {
23 return 0;
24 } /* end if */
25 } /* end for */
26
27 return 1;
28 } /* end function mystery3 */

Operation code Meaning

Input/output operations:

 #define READ 10 Read a word from the terminal into a specific location in
memory.

 #define WRITE 11 Write a word from a specific location in memory to the terminal.

Fig. 7.32 | Simpletron Machine Language (SML) operation codes. (Part 1 of 2.)

 Special Section: Building Your Own Computer 303

The last two digits of an SML instruction are the operand, which is the address of the memory
location containing the word to which the operation applies. Now let’s consider several simple
SML programs. The following SML program reads two numbers from the keyboard, and com-
putes and prints their sum.

Load/store operations:

 #define LOAD 20 Load a word from a specific location in memory into the
accumulator.

 #define STORE 21 Store a word from the accumulator into a specific location in
memory.

Arithmetic operations:

 #define ADD 30 Add a word from a specific location in memory to the word in
the accumulator (leave result in accumulator).

 #define SUBTRACT 31 Subtract a word from a specific location in memory from the
word in the accumulator (leave result in accumulator).

 #define DIVIDE 32 Divide a word from a specific location in memory into the word
in the accumulator (leave result in accumulator).

 #define MULTIPLY 33 Multiply a word from a specific location in memory by the word
in the accumulator (leave result in accumulator).

Transfer of control operations:

 #define BRANCH 40 Branch to a specific location in memory.

 #define BRANCHNEG 41 Branch to a specific location in memory if the accumulator is
negative.

 #define BRANCHZERO 42 Branch to a specific location in memory if the accumulator is
zero.

 #define HALT 43 Halt—i.e., the program has completed its task.

Example 1
Location Number Instruction

00 +1007 (Read A)
01 +1008 (Read B)
02 +2007 (Load A)
03 +3008 (Add B)
04 +2109 (Store C)
05 +1109 (Write C)
06 +4300 (Halt)
07 +0000 (Variable A)
08 +0000 (Variable B)
09 +0000 (Result C)

Operation code Meaning

Fig. 7.32 | Simpletron Machine Language (SML) operation codes. (Part 2 of 2.)

304 Chapter 7 C Pointers

The instruction +1007 reads the first number from the keyboard and places it into location 07
(which has been initialized to zero). Then +1008 reads the next number into location 08. The load
instruction, +2007, puts the first number into the accumulator, and the add instruction, +3008,
adds the second number to the number in the accumulator. All SML arithmetic instructions leave
their results in the accumulator. The store instruction, +2109, places the result back into memory
location 09, from which the write instruction, +1109, takes the number and prints it (as a signed
four-digit decimal number). The halt instruction, +4300, terminates execution.

The following SML program reads two numbers from the keyboard, and determines and
prints the larger value. Note the use of the instruction +4107 as a conditional transfer of control,
much the same as C’s if statement.

Now write SML programs to accomplish each of the following tasks.
a) Use a sentinel-controlled loop to read 10 positive integers and compute and print their

sum.
b) Use a counter-controlled loop to read seven numbers, some positive and some negative,

and compute and print their average.
c) Read a series of numbers and determine and print the largest number. The first number

read indicates how many numbers should be processed.

7.28 (A Computer Simulator) It may at first seem outrageous, but in this problem you’re going
to build your own computer. No, you won’t be soldering components together. Rather, you’ll use
the powerful technique of software-based simulation to create a software model of the Simpletron.
You’ll not be disappointed. Your Simpletron simulator will turn the computer you’re using into a
Simpletron, and you’ll actually be able to run, test and debug the SML programs you wrote in
Exercise 7.27.

When you run your Simpletron simulator, it should begin by printing:

*** Welcome to Simpletron! ***
*** Please enter your program one instruction ***
*** (or data word) at a time. I will type the ***
*** location number and a question mark (?). ***
*** You then type the word for that location. ***
*** Type the sentinel -99999 to stop entering ***
*** your program. ***

Example 2
Location Number Instruction

00 +1009 (Read A)

01 +1010 (Read B)

02 +2009 (Load A)

03 +3110 (Subtract B)

04 +4107 (Branch negative to 07)

05 +1109 (Write A)

06 +4300 (Halt)

07 +1110 (Write B)

08 +4300 (Halt)

09 +0000 (Variable A)

10 +0000 (Variable B)

 Special Section: Building Your Own Computer 305

Simulate the memory of the Simpletron with a single-subscripted array memory that has 100
elements. Now assume that the simulator is running, and let’s examine the dialog as we enter the
program of Example 2 of Exercise 7.27:

 00 ? +1009
 01 ? +1010
 02 ? +2009
 03 ? +3110
 04 ? +4107
 05 ? +1109
 06 ? +4300
 07 ? +1110
 08 ? +4300
 09 ? +0000
 10 ? +0000
 11 ? -99999
 *** Program loading completed ***
 *** Program execution begins ***

The SML program has now been placed (or loaded) into the array memory. Now the Sim-
pletron executes the SML program. It begins with the instruction in location 00 and, continues
sequentially, unless directed to some other part of the program by a transfer of control.

Use the variable accumulator to represent the accumulator register. Use the variable instruc-
tionCounter to keep track of the location in memory that contains the instruction being per-
formed. Use the variable operationCode to indicate the operation currently being performed—i.e.,
the left two digits of the instruction word. Use the variable operand to indicate the memory loca-
tion on which the current instruction operates. Thus, operand is the rightmost two digits of the
instruction currently being performed. Do not execute instructions directly from memory. Rather,
transfer the next instruction to be performed from memory to a variable called instruction-
Register. Then “pick off ” the left two digits and place them in the variable operationCode, and
“pick off” the right two digits and place them in operand.

When Simpletron begins execution, the special registers are initialized as follows:

accumulator +0000
instructionCounter 00
instructionRegister +0000
operationCode 00
operand 00

Now let’s “walk through” the execution of the first SML instruction, +1009 in memory loca-
tion 00. This is called an instruction execution cycle.

The instructionCounter tells us the location of the next instruction to be performed. We
fetch the contents of that location from memory by using the C statement

instructionRegister = memory[instructionCounter];

The operation code and the operand are extracted from the instruction register by the state-
ments

operationCode = instructionRegister / 100;
operand = instructionRegister % 100;

Now the Simpletron must determine that the operation code is actually a read (versus a write,
a load, and so on). A switch differentiates among the twelve operations of SML.

In the switch statement, the behavior of various SML instructions is simulated as follows (we
leave the others to the reader):

read: scanf("%d", &memory[operand]);
load: accumulator = memory[operand];
add: accumulator += memory[operand];

306 Chapter 7 C Pointers

Various branch instructions: We'll discuss these shortly.
halt: This instruction prints the message

 *** Simpletron execution terminated ***

then prints the name and contents of each register as well as the complete contents of memory.
Such a printout is often called a computer dump. To help you program your dump function, a sam-
ple dump format is shown in Fig. 7.33. A dump after executing a Simpletron program would show
the actual values of instructions and data values at the moment execution terminated.

Let’s proceed with the execution of our program’s first instruction, namely the +1009 in loca-
tion 00. As we have indicated, the switch statement simulates this by performing the C statement

scanf("%d", &memory[operand]);

A question mark (?) should be displayed on the screen before the scanf is executed to prompt
the user for input. The Simpletron waits for the user to type a value and then press the Return key.
The value is then read into location 09.

At this point, simulation of the first instruction is completed. All that remains is to prepare
the Simpletron to execute the next instruction. Since the instruction just performed was not a
transfer of control, we need merely increment the instruction counter register as follows:

++instructionCounter;

This completes the simulated execution of the first instruction. The entire process (i.e., the
instruction execution cycle) begins anew with the fetch of the next instruction to be executed.

Now let’s consider how the branching instructions—the transfers of control—are simulated.
All we need to do is adjust the value in the instruction counter appropriately. Therefore, the
unconditional branch instruction (40) is simulated within the switch as

instructionCounter = operand;

The conditional “branch if accumulator is zero” instruction is simulated as

if (accumulator == 0) {
instructionCounter = operand;

}

At this point, you should implement your Simpletron simulator and run the SML programs
you wrote in Exercise 7.27. You may embellish SML with additional features and provide for these
in your simulator.

REGISTERS:
accumulator +0000
instructionCounter 00
instructionRegister +0000
operationCode 00
operand 00

MEMORY:
 0 1 2 3 4 5 6 7 8 9
 0 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
10 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
20 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
30 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
40 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
50 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
60 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
70 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
80 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
90 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000

Fig. 7.33 | Sample Simpletron dump format.

 Array of Function Pointer Exercises 307

Your simulator should check for various types of errors. During the program loading phase,
for example, each number the user types into the Simpletron’s memory must be in the range -9999
to +9999. Your simulator should use a while loop to test that each number entered is in this range,
and, if not, keep prompting the user to reenter the number until the user enters a correct number.

During the execution phase, your simulator should check for various serious errors, such as
attempts to divide by zero, attempts to execute invalid operation codes and accumulator overflows
(i.e., arithmetic operations resulting in values larger than +9999 or smaller than -9999). Such seri-
ous errors are called fatal errors. When a fatal error is detected, your simulator should print an error
message such as:

*** Attempt to divide by zero ***
*** Simpletron execution abnormally terminated ***

and should print a full computer dump in the format we have discussed previously. This will help
the user locate the error in the program.

7.29 (Modifications to the Simpletron Simulator) In Exercise 7.28, you wrote a software simu-
lation of a computer that executes programs written in Simpletron Machine Language (SML). In
this exercise, we propose several modifications and enhancements to the Simpletron Simulator. In
Exercises 12.26 and 12.27, we propose building a compiler that converts programs written in a
high-level programming language (a variation of BASIC) to Simpletron Machine Language. Some
of the following modifications and enhancements may be required to execute the programs pro-
duced by the compiler.

a) Extend the Simpletron Simulator’s memory to contain 1000 memory locations to en-
able the Simpletron to handle larger programs.

b) Allow the simulator to perform remainder calculations. This requires an additional
Simpletron Machine Language instruction.

c) Allow the simulator to perform exponentiation calculations. This requires an additional
Simpletron Machine Language instruction.

d) Modify the simulator to use hexadecimal values rather than integer values to represent
Simpletron Machine Language instructions.

e) Modify the simulator to allow output of a newline. This requires an additional Sim-
pletron Machine Language instruction.

f) Modify the simulator to process floating-point values in addition to integer values.
g) Modify the simulator to handle string input. [Hint: Each Simpletron word can be di-

vided into two groups, each holding a two-digit integer. Each two-digit integer repre-
sents the ASCII decimal equivalent of a character. Add a machine-language instruction
that will input a string and store the string beginning at a specific Simpletron memory
location. The first half of the word at that location will be a count of the number of
characters in the string (i.e., the length of the string). Each succeeding half word con-
tains one ASCII character expressed as two decimal digits. The machine-language in-
struction converts each character into its ASCII equivalent and assigns it to a half word.]

h) Modify the simulator to handle output of strings stored in the format of part (g). [Hint:
Add a machine-language instruction that prints a string beginning at a specified Sim-
pletron memory location. The first half of the word at that location is the length of the
string in characters. Each succeeding half word contains one ASCII character expressed
as two decimal digits. The machine-language instruction checks the length and prints
the string by translating each two-digit number into its equivalent character.]

Array of Function Pointer Exercises
7.30 (Calculating Circle Circumference, Circle Area or Sphere Volume Using Function Pointers)
Using the techniques you learned in Fig. 7.28, create a text-based, menu-driven program that allows

308 Chapter 7 C Pointers

the user to choose whether to calculate the circumference of a circle, the area of a circle or the vol-
ume of a sphere. The program should then input a radius from the user, perform the appropriate
calculation and display the result. Use an array of function pointers in which each pointer represents
a function that returns void and receives a double parameter. The corresponding functions should
each display messages indicating which calculation was performed, the value of the radius and the
result of the calculation.

7.31 (Calculator Using Function Pointers) Using the techniques you learned in Fig. 7.28, create
a text-based, menu-driven program that allows the user to choose whether to add, subtract, multiply
or divide two numbers. The program should then input two double values from the user, perform
the appropriate calculation and display the result. Use an array of function pointers in which each
pointer represents a function that returns void and receives two double parameters. The corre-
sponding functions should each display messages indicating which calculation was performed, the
values of the parameters and the result of the calculation.

Making a Difference
7.32 (Polling) The Internet and the web are enabling more people to network, join a cause, voice
opinions, and so on. The U.S. presidential candidates in 2008 used the Internet intensively to get
out their messages and raise money for their campaigns. In this exercise, you’ll write a simple polling
program that allows users to rate five social-consciousness issues from 1 (least important) to 10
(most important). Pick five causes that are important to you (e.g., political issues, global environ-
mental issues). Use a one-dimensional array topics (of type char *) to store the five causes. To sum-
marize the survey responses, use a 5-row, 10-column two-dimensional array responses (of type
int), each row corresponding to an element in the topics array. When the program runs, it should
ask the user to rate each issue. Have your friends and family respond to the survey. Then have the
program display a summary of the results, including:

a) A tabular report with the five topics down the left side and the 10 ratings across the top,
listing in each column the number of ratings received for each topic.

b) To the right of each row, show the average of the ratings for that issue.
c) Which issue received the highest point total? Display both the issue and the point total.
d) Which issue received the lowest point total? Display both the issue and the point total.

7.33 (CarbonFootprint Calculator: Arrays of Function Pointers) Using arrays of function point-
ers, as you learned in this chapter, you can specify a set of functions that are called with the same
types of arguments and return the same type of data. Governments and companies worldwide are
becoming increasingly concerned with carbon footprints (annual releases of carbon dioxide into the
atmosphere) from buildings burning various types of fuels for heat, vehicles burning fuels for power,
and the like. Many scientists blame these greenhouse gases for the phenomenon called global warm-
ing. Create three functions that help calculate the carbon footprint of a building, a car and a bicycle,
respectively. Each function should input appropriate data from the user then calculate and display
the carbon footprint. (Check out a few websites that explain how to calculate carbon footprints.)
Each function should receive no parameters and return void. Write a program that prompts the user
to enter the type of carbon footprint to calculate, then calls the corresponding function in the array
of function pointers. For each type of carbon footprint, display some identifying information and
the object’s carbon footprint.

8C Characters and Strings

Vigorous writing is concise. A
sentence should contain no
unnecessary words, a paragraph
no unnecessary sentences.
—William Strunk, Jr.

I have made this letter longer
than usual, because I lack the
time to make it short.
—Blaise Pascal

The difference between the
almost-right word and the right
word is really a large matter—
it’s the difference between the
lightning bug and the lightning.
—Mark Twains

O b j e c t i v e s
In this chapter, you’ll learn:

■ To use the functions of the
character-handling library
(<ctype.h>).

■ To use the string-conversion
functions of the general
utilities library
(<stdlib.h>).

■ To use the string and
character input/output
functions of the standard
input/output library
(<stdio.h>).

■ To use the string-processing
functions of the string
handling library
(<string.h>).

■ The power of function
libraries for achieving
software reusability.

310 Chapter 8 C Characters and Strings

8.1 Introduction
In this chapter, we introduce the C Standard Library functions that facilitate string and
character processing.1 The functions enable programs to process characters, strings, lines
of text and blocks of memory.

The chapter discusses the techniques used to develop editors, word processors, page
layout software, computerized typesetting systems and other kinds of text-processing soft-
ware. The text manipulations performed by formatted input/output functions like printf
and scanf can be implemented using the functions discussed in this chapter.

8.2 Fundamentals of Strings and Characters
Characters are the fundamental building blocks of source programs. Every program is
composed of a sequence of characters that—when grouped together meaningfully—is in-
terpreted by the computer as a series of instructions used to accomplish a task. A program
may contain character constants. A character constant is an int value represented as a
character in single quotes. The value of a character constant is the integer value of the char-
acter in the machine’s character set. For example, 'z' represents the integer value of z, and
'\n' the integer value of newline (122 and 10 in ASCII, respectively).

A string is a series of characters treated as a single unit. A string may include letters,
digits and various special characters such as +, -, *, / and $. String literals, or string con-
stants, in C are written in double quotation marks as follows:

A string in C is an array of characters ending in the null character ('\0'). A string is
accessed via a pointer to the first character in the string. The value of a string is the address

8.1 Introduction
8.2 Fundamentals of Strings and

Characters
8.3 Character-Handling Library
8.4 String-Conversion Functions
8.5 Standard Input/Output Library

Functions
8.6 String-Manipulation Functions of the

String-Handling Library

8.7 Comparison Functions of the String-
Handling Library

8.8 Search Functions of the String-
Handling Library

8.9 Memory Functions of the String-
Handling Library

8.10 Other Functions of the String-
Handling Library

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Advanced String-Manipulation Exercises |

A Challenging String-Manipulation Project | Making a Difference

1. Pointers and pointer-based entities such as arrays and strings, when misused intentionally or acciden-
tally, can lead to errors and security breaches. See our Secure C Programming Resource Center
(www.deitel.com/SecureC/) for articles, books, white papers and forums on this important topic.

“John Q. Doe” (a name)
“99999 Main Street” (a street address)
“Waltham, Massachusetts” (a city and state)
“(201) 555-1212” (a telephone number)

www.deitel.com/SecureC/

8.2 Fundamentals of Strings and Characters 311

of its first character. Thus, in C, it is appropriate to say that a string is a pointer—in fact,
a pointer to the string’s first character. In this sense, strings are like arrays, because an array
is also a pointer to its first element.

A character array or a variable of type char * can be initialized with a string in a def-
inition. The definitions

each initialize a variable to the string "blue". The first definition creates a 5-element array
color containing the characters 'b', 'l', 'u', 'e' and '\0'. The second definition creates
pointer variable colorPtr that points to the string "blue" somewhere in memory.

The preceding array definition could also have been written

When defining a character array to contain a string, the array must be large enough to store
the string and its terminating null character. The preceding definition automatically de-
termines the size of the array based on the number of initializers in the initializer list.

A string can be stored in an array using scanf. For example, the following statement
stores a string in character array word[20]:

The string entered by the user is stored in word. Variable word is an array, which is, of
course, a pointer, so the & is not needed with argument word. Recall from Section 6.4 that
function scanf will read characters until a space, tab, newline or end-of-file indicator is
encountered. So, it is possible that the user input could exceed 19 characters and that your
program might crash! For this reason, use the conversion specifier %19s so that scanf reads

char color[] = "blue";
const char *colorPtr = "blue";

Portability Tip 8.1
When a variable of type char * is initialized with a string literal, some compilers may
place the string in a location in memory where the string cannot be modified. If you might
need to modify a string literal, it should be stored in a character array to ensure modifia-
bility on all systems.

char color[] = { 'b', 'l', 'u', 'e', '\0' };

Common Programming Error 8.1
Not allocating sufficient space in a character array to store the null character that termi-
nates a string is an error.

Common Programming Error 8.2
Printing a “string” that does not contain a terminating null character is an error.

Error-Prevention Tip 8.1
When storing a string of characters in a character array, be sure that the array is large
enough to hold the largest string that will be stored. C allows strings of any length to be
stored. If a string is longer than the character array in which it is to be stored, characters
beyond the end of the array will overwrite data in memory following the array.

scanf("%s", word);

312 Chapter 8 C Characters and Strings

up to 19 characters and saves the last character for the terminating null character. This pre-
vents scanf from writing characters into memory beyond the end of s. (For reading input
lines of arbitrary length, there is a nonstandard—yet widely supported—function read-
line, usually included in stdio.h.) For a character array to be printed as a string, the array
must contain a terminating null character.

8.3 Character-Handling Library
The character-handling library (<ctype.h>) includes several functions that perform use-
ful tests and manipulations of character data. Each function receives a character—repre-
sented as an int—or EOF as an argument. As we discussed in Chapter 4, characters are
often manipulated as integers, because a character in C is usually a 1-byte integer. EOF nor-
mally has the value –1, and some hardware architectures do not allow negative values to
be stored in char variables, so the character-handling functions manipulate characters as
integers. Figure 8.1 summarizes the functions of the character-handling library.

Common Programming Error 8.3
Processing a single character as a string. A string is a pointer—probably a respectably large
integer. However, a character is a small integer (ASCII values range 0–255). On many
systems this causes an error, because low memory addresses are reserved for special purposes
such as operating-system interrupt handlers—so “access violations” occur.

Common Programming Error 8.4
Passing a character as an argument to a function when a string is expected (and vice versa)
is a compilation error.

Prototype Function description

int isdigit(int c); Returns a true value if c is a digit and 0 (false) otherwise.

int isalpha(int c); Returns a true value if c is a letter and 0 otherwise.

int isalnum(int c); Returns a true value if c is a digit or a letter and 0 otherwise.

int isxdigit(int c); Returns a true value if c is a hexadecimal digit character and 0
otherwise. (See Appendix C, Number Systems, for a detailed
explanation of binary numbers, octal numbers, decimal num-
bers and hexadecimal numbers.)

int islower(int c); Returns a true value if c is a lowercase letter and 0 otherwise.

int isupper(int c); Returns a true value if c is an uppercase letter and 0 otherwise.

int tolower(int c); If c is an uppercase letter, tolower returns c as a lowercase let-
ter. Otherwise, tolower returns the argument unchanged.

int toupper(int c); If c is a lowercase letter, toupper returns c as an uppercase let-
ter. Otherwise, toupper returns the argument unchanged.

int isspace(int c); Returns a true value if c is a white-space character—newline
('\n'), space (' '), form feed ('\f'), carriage return ('\r'),
horizontal tab ('\t') or vertical tab ('\v')—and 0 otherwise.

Fig. 8.1 | Character-handling library (<ctype.h>) functions. (Part 1 of 2.)

8.3 Character-Handling Library 313

Functions isdigit, isalpha, isalnum and isxdigit
Figure 8.2 demonstrates functions isdigit, isalpha, isalnum and isxdigit. Function
isdigit determines whether its argument is a digit (0–9). Function isalpha determines
whether its argument is an uppercase (A–Z) or lowercase letter (a–z). Function isalnum
determines whether its argument is an uppercase letter, a lowercase letter or a digit. Func-
tion isxdigit determines whether its argument is a hexadecimal digit (A–F, a–f, 0–9).

int iscntrl(int c); Returns a true value if c is a control character and 0 otherwise.

int ispunct(int c); Returns a true value if c is a printing character other than a
space, a digit, or a letter and returns 0 otherwise.

int isprint(int c); Returns a true value if c is a printing character including a
space (' ') and returns 0 otherwise.

int isgraph(int c); Returns a true value if c is a printing character other than a
space (' ') and returns 0 otherwise.

1 /* Fig. 8.2: fig08_02.c
2 Using functions isdigit, isalpha, isalnum, and isxdigit */
3 #include <stdio.h>
4 #include <ctype.h>
5
6 int main(void)
7 {
8 printf("%s\n%s%s\n%s%s\n\n", "According to isdigit: ",
9 ? "8 is a " : "8 is not a ", "digit",

10 ? "# is a " : "# is not a ", "digit");
11
12 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",
13 "According to isalpha:",
14 ? "A is a " : "A is not a ", "letter",
15 ? "b is a " : "b is not a ", "letter",
16 ? "& is a " : "& is not a ", "letter",
17 ? "4 is a " : "4 is not a ", "letter");
18
19 printf("%s\n%s%s\n%s%s\n%s%s\n\n",
20 "According to isalnum:",
21 ? "A is a " : "A is not a ",
22 "digit or a letter",
23 ? "8 is a " : "8 is not a ",
24 "digit or a letter",
25 ? "# is a " : "# is not a ",
26 "digit or a letter");
27
28 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s\n",
29 "According to isxdigit:",

Fig. 8.2 | Using isdigit, isalpha, isalnum and isxdigit. (Part 1 of 2.)

Prototype Function description

Fig. 8.1 | Character-handling library (<ctype.h>) functions. (Part 2 of 2.)

isdigit('8')
isdigit('#')

isalpha('A')
isalpha('b')
isalpha('&')
isalpha('4')

isalnum('A')

isalnum('8')

isalnum('#')

314 Chapter 8 C Characters and Strings

Figure 8.2 uses the conditional operator (?:) to determine whether the string " is a "

or the string " is not a " should be printed in the output for each character tested. For
example, the expression

indicates that if '8' is a digit, the string "8 is a " is printed, and if '8' is not a digit (i.e.,
isdigit returns 0), the string "8 is not a " is printed.

Functions islower, isupper, tolower and toupper
Figure 8.3 demonstrates functions islower, isupper, tolower and toupper. Function
islower determines whether its argument is a lowercase letter (a–z). Function isupper
determines whether its argument is an uppercase letter (A–Z). Function tolower converts
an uppercase letter to a lowercase letter and returns the lowercase letter. If the argument is
not an uppercase letter, tolower returns the argument unchanged. Function toupper con-
verts a lowercase letter to an uppercase letter and returns the uppercase letter. If the argu-
ment is not a lowercase letter, toupper returns the argument unchanged.

30 ? "F is a " : "F is not a ",
31 "hexadecimal digit",
32 ? "J is a " : "J is not a ",
33 "hexadecimal digit",
34 ? "7 is a " : "7 is not a ",
35 "hexadecimal digit",
36 ? "$ is a " : "$ is not a ",
37 "hexadecimal digit",
38 ? "f is a " : "f is not a ",
39 "hexadecimal digit");
40 return 0; /* indicates successful termination */
41 } /* end main */

According to isdigit:
8 is a digit
is not a digit

According to isalpha:
A is a letter
b is a letter
& is not a letter
4 is not a letter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

isdigit('8') ? "8 is a " : "8 is not a "

Fig. 8.2 | Using isdigit, isalpha, isalnum and isxdigit. (Part 2 of 2.)

isxdigit('F')

isxdigit('J')

isxdigit('7')

isxdigit('$')

isxdigit('f')

8.3 Character-Handling Library 315

1 /* Fig. 8.3: fig08_03.c
2 Using functions islower, isupper, tolower, toupper */
3 #include <stdio.h>
4 #include <ctype.h>
5
6 int main(void)
7 {
8 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",
9 "According to islower:",

10 ? "p is a " : "p is not a ",
11 "lowercase letter",
12 ? "P is a " : "P is not a ",
13 "lowercase letter",
14 ? "5 is a " : "5 is not a ",
15 "lowercase letter",
16 ? "! is a " : "! is not a ",
17 "lowercase letter");
18
19 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",
20 "According to isupper:",
21 ? "D is an " : "D is not an ",
22 "uppercase letter",
23 ? "d is an " : "d is not an ",
24 "uppercase letter",
25 ? "8 is an " : "8 is not an ",
26 "uppercase letter",
27 ? "$ is an " : "$ is not an ",
28 "uppercase letter");
29
30 printf("%s%c\n%s%c\n%s%c\n%s%c\n",
31 "u converted to uppercase is ", ,
32 "7 converted to uppercase is ", ,
33 "$ converted to uppercase is ", ,
34 "L converted to lowercase is ",);
35 return 0; /* indicates successful termination */
36 } /* end main */

According to islower:
p is a lowercase letter
P is not a lowercase letter
5 is not a lowercase letter
! is not a lowercase letter

According to isupper:
D is an uppercase letter
d is not an uppercase letter
8 is not an uppercase letter
$ is not an uppercase letter

u converted to uppercase is U
7 converted to uppercase is 7
$ converted to uppercase is $
L converted to lowercase is l

Fig. 8.3 | Using functions islower, isupper, tolower and toupper.

islower('p')

islower('P')

islower('5')

islower('!')

isupper('D')

isupper('d')

isupper('8')

isupper('$')

toupper('u')
toupper('7')
toupper('$')
tolower('L')

316 Chapter 8 C Characters and Strings

Functions isspace, iscntrl, ispunct, isprint and isgraph
Figure 8.4 demonstrates functions isspace, iscntrl, ispunct, isprint and isgraph.
Function isspace determines if a character is one of the following white-space characters:
space (' '), form feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal tab ('\t')
or vertical tab ('\v'). Function iscntrl determines if a character is one of the following
control characters: horizontal tab ('\t'), vertical tab ('\v'), form feed ('\f'), alert
('\a'), backspace ('\b'), carriage return ('\r') or newline ('\n'). Function ispunct de-
termines if a character is a printing character other than a space, a digit or a letter, such as
$, #, (,), [,], {, }, ;, : or %. Function isprint determines if a character can be displayed
on the screen (including the space character). Function isgraph is the same as isprint,
except that the space character is not included.

1 /* Fig. 8.4: fig08_04.c
2 Using functions isspace, iscntrl, ispunct, isprint, isgraph */
3 #include <stdio.h>
4 #include <ctype.h>
5
6 int main(void)
7 {
8 printf("%s\n%s%s%s\n%s%s%s\n%s%s\n\n",
9 "According to isspace:",

10 "Newline", ? " is a " : " is not a ",
11 "whitespace character", "Horizontal tab",
12 ? " is a " : " is not a ",
13 "whitespace character",
14 ? "% is a " : "% is not a ",
15 "whitespace character");
16
17 printf("%s\n%s%s%s\n%s%s\n\n", "According to iscntrl:",
18 "Newline", ? " is a " : " is not a ",
19 "control character", ? "$ is a " :
20 "$ is not a ", "control character");
21
22 printf("%s\n%s%s\n%s%s\n%s%s\n\n",
23 "According to ispunct:",
24 ? "; is a " : "; is not a ",
25 "punctuation character",
26 ? "Y is a " : "Y is not a ",
27 "punctuation character",
28 ? "# is a " : "# is not a ",
29 "punctuation character");
30
31 printf("%s\n%s%s\n%s%s%s\n\n", "According to isprint:",
32 ? "$ is a " : "$ is not a ",
33 "printing character",
34 "Alert", ? " is a " : " is not a ",
35 "printing character");
36
37 printf("%s\n%s%s\n%s%s%s\n", "According to isgraph:",
38 ? "Q is a " : "Q is not a ",
39 "printing character other than a space",

Fig. 8.4 | Using isspace, iscntrl, ispunct, isprint and isgraph. (Part 1 of 2.)

isspace('\n')

isspace('\t')

isspace('%')

iscntrl('\n')
iscntrl('$')

ispunct(';')

ispunct('Y')

ispunct('#')

isprint('$')

isprint('\a')

isgraph('Q')

8.4 String-Conversion Functions 317

8.4 String-Conversion Functions
This section presents the string-conversion functions from the general utilities library
(<stdlib.h>). These functions convert strings of digits to integer and floating-point val-
ues. Figure 8.5 summarizes the string-conversion functions. Note the use of const to de-
clare variable nPtr in the function headers (read from right to left as “nPtr is a pointer to
a character constant”); const specifies that the argument value will not be modified.

40 "Space", ? " is a " : " is not a ",
41 "printing character other than a space");
42 return 0; /* indicates successful termination */
43 } /* end main */

According to isspace:
Newline is a whitespace character
Horizontal tab is a whitespace character
% is not a whitespace character

According to iscntrl:
Newline is a control character
$ is not a control character

According to ispunct:
; is a punctuation character
Y is not a punctuation character
is a punctuation character

According to isprint:
$ is a printing character
Alert is not a printing character

According to isgraph:
Q is a printing character other than a space
Space is not a printing character other than a space

Function prototype Function description

double atof(const char *nPtr); Converts the string nPtr to double.

int atoi(const char *nPtr); Converts the string nPtr to int.

long atol(const char *nPtr); Converts the string nPtr to long int.

double strtod(const char *nPtr, char **endPtr);

Converts the string nPtr to double.

long strtol(const char *nPtr, char **endPtr, int base);

Converts the string nPtr to long.

unsigned long strtoul(const char *nPtr, char **endPtr, int base);

Converts the string nPtr to unsigned long.

Fig. 8.5 | String-conversion functions of the general utilities library.

Fig. 8.4 | Using isspace, iscntrl, ispunct, isprint and isgraph. (Part 2 of 2.)

isgraph(' ')

318 Chapter 8 C Characters and Strings

Function atof
Function atof (Fig. 8.6) converts its argument—a string that represents a floating-point
number—to a double value. The function returns the double value. If the converted value
cannot be represented—for example, if the first character of the string is a letter—the be-
havior of function atof is undefined.

Function atoi
Function atoi (Fig. 8.7) converts its argument—a string of digits that represents an inte-
ger—to an int value. The function returns the int value. If the converted value cannot be
represented, the behavior of function atoi is undefined.

1 /* Fig. 8.6: fig08_06.c
2 Using atof */
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void)
7 {
8 double d; /* variable to hold converted string */
9

10
11
12 printf("%s%.3f\n%s%.3f\n",
13 "The string \"99.0\" converted to double is ", d,
14 "The converted value divided by 2 is ", d / 2.0);
15 return 0; /* indicates successful termination */
16 } /* end main */

The string "99.0" converted to double is 99.000
The converted value divided by 2 is 49.500

Fig. 8.6 | Using atof.

1 /* Fig. 8.7: fig08_07.c
2 Using atoi */
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void)
7 {
8 int i; /* variable to hold converted string */
9

10
11
12 printf("%s%d\n%s%d\n",
13 "The string \"2593\" converted to int is ", i,
14 "The converted value minus 593 is ", i - 593);
15 return 0; /* indicates successful termination */
16 } /* end main */

Fig. 8.7 | Using atoi. (Part 1 of 2.)

d = atof("99.0");

i = atoi("2593");

8.4 String-Conversion Functions 319

Function atol
Function atol (Fig. 8.8) converts its argument—a string of digits representing a long in-
teger—to a long value. The function returns the long value. If the converted value cannot
be represented, the behavior of function atol is undefined. If int and long are both stored
in 4 bytes, function atoi and function atol work identically.

Function strtod
Function strtod (Fig. 8.9) converts a sequence of characters representing a floating-point
value to double. The function receives two arguments—a string (char *) and a pointer to
a string (char **). The string contains the character sequence to be converted to double.
The pointer is assigned the location of the first character after the converted portion of the
string. Line 14

indicates that d is assigned the double value converted from string, and stringPtr is as-
signed the location of the first character after the converted value (51.2) in string.

The string "2593" converted to int is 2593
The converted value minus 593 is 2000

1 /* Fig. 8.8: fig08_08.c
2 Using atol */
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void)
7 {
8 long l; /* variable to hold converted string */
9

10
11
12 printf("%s%ld\n%s%ld\n",
13 "The string \"1000000\" converted to long int is ", l,
14 "The converted value divided by 2 is ", l / 2);
15 return 0; /* indicates successful termination */
16 } /* end main */

The string "1000000" converted to long int is 1000000
The converted value divided by 2 is 500000

Fig. 8.8 | Using atol.

d = strtod(string, &stringPtr);

1 /* Fig. 8.9: fig08_09.c
2 Using strtod */
3 #include <stdio.h>

Fig. 8.9 | Using strtod. (Part 1 of 2.)

Fig. 8.7 | Using atoi. (Part 2 of 2.)

l = atol("1000000");

320 Chapter 8 C Characters and Strings

Function strtol
Function strtol (Fig. 8.10) converts to long a sequence of characters representing an in-
teger. The function receives three arguments—a string (char *), a pointer to a string and
an integer. The string contains the character sequence to be converted. The pointer is as-
signed the location of the first character after the converted portion of the string. The in-
teger specifies the base of the value being converted. Line 13

indicates that x is assigned the long value converted from string. The second argument,
remainderPtr, is assigned the remainder of string after the conversion. Using NULL for
the second argument causes the remainder of the string to be ignored. The third argument,
0, indicates that the value to be converted can be in octal (base 8), decimal (base 10) or
hexadecimal (base 16) format. The base can be specified as 0 or any value between 2 and
36. See Appendix C, Number Systems, for a detailed explanation of the octal, decimal and
hexadecimal number systems. Numeric representations of integers from base 11 to base
36 use the characters A–Z to represent the values 10 to 35. For example, hexadecimal val-
ues can consist of the digits 0–9 and the characters A–F. A base-11 integer can consist of
the digits 0–9 and the character A. A base-24 integer can consist of the digits 0–9 and the
characters A–N. A base-36 integer can consist of the digits 0–9 and the characters A–Z.

4 #include <stdlib.h>
5
6 int main(void)
7 {
8 /* initialize string pointer */
9

10
11 double d; /* variable to hold converted sequence */
12 char *stringPtr; /* create char pointer */
13
14
15
16 printf("The string \"%s\" is converted to the\n", string);
17 printf("double value %.2f and the string \"%s\"\n", d, stringPtr);
18 return 0; /* indicates successful termination */
19 } /* end main */

The string "51.2% are admitted" is converted to the
double value 51.20 and the string "% are admitted"

x = strtol(string, &remainderPtr, 0);

1 /* Fig. 8.10: fig08_10.c
2 Using strtol */
3 #include <stdio.h>
4 #include <stdlib.h>
5

Fig. 8.10 | Using strtol. (Part 1 of 2.)

Fig. 8.9 | Using strtod. (Part 2 of 2.)

const char *string = "51.2% are admitted"; /* initialize string */

d = strtod(string, &stringPtr);

8.4 String-Conversion Functions 321

Function strtoul
Function strtoul (Fig. 8.11) converts to unsigned long a sequence of characters repre-
senting an unsigned long integer. The function works identically to function strtol. The
statement

in Fig. 8.11 indicates that x is assigned the unsigned long value converted from string.
The second argument, &remainderPtr, is assigned the remainder of string after the con-
version. The third argument, 0, indicates that the value to be converted can be in octal,
decimal or hexadecimal format.

6 int main(void)
7 {
8
9

10 char *remainderPtr; /* create char pointer */
11 long x; /* variable to hold converted sequence */
12
13
14
15 printf("%s\"%s\"\n%s%ld\n%s\"%s\"\n%s%ld\n",
16 "The original string is ", string,
17 "The converted value is ", x,
18 "The remainder of the original string is ",
19 remainderPtr,
20 "The converted value plus 567 is ", x + 567);
21 return 0; /* indicates successful termination */
22 } /* end main */

The original string is "-1234567abc"
The converted value is -1234567
The remainder of the original string is "abc"
The converted value plus 567 is -1234000

x = strtoul(string, &remainderPtr, 0);

1 /* Fig. 8.11: fig08_11.c
2 Using strtoul */
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void)
7 {
8
9 unsigned long x; /* variable to hold converted sequence */

10 char *remainderPtr; /* create char pointer */
11
12
13

Fig. 8.11 | Using strtoul. (Part 1 of 2.)

Fig. 8.10 | Using strtol. (Part 2 of 2.)

const char *string = "-1234567abc"; /* initialize string pointer */

x = strtol(string, &remainderPtr, 0);

const char *string = "1234567abc"; /* initialize string pointer */

x = strtoul(string, &remainderPtr, 0);

322 Chapter 8 C Characters and Strings

8.5 Standard Input/Output Library Functions
This section presents several functions from the standard input/output library (<stdio.h>)
specifically for manipulating character and string data. Figure 8.12 summarizes the char-
acter and string input/output functions of the standard input/output library.

14 printf("%s\"%s\"\n%s%lu\n%s\"%s\"\n%s%lu\n",
15 "The original string is ", string,
16 "The converted value is ", x,
17 "The remainder of the original string is ",
18 remainderPtr,
19 "The converted value minus 567 is ", x - 567);
20 return 0; /* indicates successful termination */
21 } /* end main */

The original string is "1234567abc"
The converted value is 1234567
The remainder of the original string is "abc"
The converted value minus 567 is 1234000

Function prototype Function description

int getchar(void); Inputs the next character from the standard input and
returns it as an integer.

char *fgets(char *s, int n, FILE *stream);

Inputs characters from the specified stream into the array s
until a newline or end-of-file character is encountered, or
until n - 1 bytes are read. In this chapter, we specify the
stream as stdin—the standard input stream, which is typi-
cally used to read characters from the keyboard. A termi-
nating null character is appended to the array. Returns the
string that was read into s.

int putchar(int c); Prints the character stored in c and returns it as an integer.

int puts(const char *s); Prints the string s followed by a newline character. Returns
a non-zero integer if successful, or EOF if an error occurs.

int sprintf(char *s, const char *format, ...);

Equivalent to printf, except the output is stored in the
array s instead of printed on the screen. Returns the num-
ber of characters written to s, or EOF if an error occurs.

int sscanf(char *s, const char *format, ...);

Equivalent to scanf, except the input is read from the array
s rather than from the keyboard. Returns the number of
items successfully read by the function, or EOF if an error
occurs.

Fig. 8.12 | Standard input/output library character and string functions.

Fig. 8.11 | Using strtoul. (Part 2 of 2.)

8.5 Standard Input/Output Library Functions 323

Functions fgets and putchar
Figure 8.13 uses functions fgets and putchar to read a line of text from the standard input
(keyboard) and recursively output the characters of the line in reverse order. Function
fgets reads characters from the standard input into its first argument—an array of chars—
until a newline or the end-of-file indicator is encountered, or until the maximum number
of characters is read. The maximum number of characters is one fewer than the value spec-
ified in fgets’s second argument. The third argument specifies the stream from which to
read characters—in this case, we use the standard input stream (stdin). A null character
('\0') is appended to the array when reading terminates. Function putchar prints its char-
acter argument. The program calls recursive function reverse to print the line of text back-
ward. If the first character of the array received by reverse is the null character '\0',
reverse returns. Otherwise, reverse is called again with the address of the subarray be-
ginning at element s[1], and character s[0] is output with putchar when the recursive call
is completed. The order of the two statements in the else portion of the if statement
causes reverse to walk to the terminating null character of the string before a character is
printed. As the recursive calls are completed, the characters are output in reverse order.

1 /* Fig. 8.13: fig08_13.c
2 Using gets and putchar */
3 #include <stdio.h>
4
5
6
7 int main(void)
8 {
9 char sentence[80]; /* create char array */

10
11 printf("Enter a line of text:\n");
12
13
14
15
16 printf("\nThe line printed backward is:\n");
17
18 return 0; /* indicates successful termination */
19 } /* end main */
20
21 /* recursively outputs characters in string in reverse order */
22 void reverse(const char * const sPtr)
23 {
24 /* if end of the string */
25 if (sPtr[0] == '\0') { /* base case */
26 return;
27 } /* end if */
28 else { /* if not end of the string */
29
30
31 } /* end else */
32 } /* end function reverse */

Fig. 8.13 | Using fgets and putchar. (Part 1 of 2.)

void reverse(const char * const sPtr); /* prototype */

/* use fgets to read line of text */
fgets(sentence, 80, stdin);

reverse(sentence);

reverse(&sPtr[1]); /* recursion step */
putchar(sPtr[0]); /* use putchar to display character */

324 Chapter 8 C Characters and Strings

Functions getchar and puts
Figure 8.14 uses functions getchar and puts to read characters from the standard input
into character array sentence and print the array of characters as a string. Function
getchar reads a character from the standard input and returns the character as an integer.
Function puts takes a string (char *) as an argument and prints the string followed by a
newline character. The program stops inputting characters when getchar reads the new-
line character entered by the user to end the line of text. A null character is appended to
array sentence (line 19) so that the array may be treated as a string. Then, function puts
prints the string contained in sentence.

Enter a line of text:
Characters and Strings

The line printed backward is:
sgnirtS dna sretcarahC

Enter a line of text:
able was I ere I saw elba

The line printed backward is:
able was I ere I saw elba

1 /* Fig. 8.14: fig08_14.c
2 Using getchar and puts */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 char c; /* variable to hold character input by user */
8 char sentence[80]; /* create char array */
9 int i = 0; /* initialize counter i */

10
11 /* prompt user to enter line of text */
12
13
14
15
16
17
18
19
20
21 /* use puts to display sentence */
22
23
24 return 0; /* indicates successful termination */
25 } /* end main */

Fig. 8.14 | Using getchar and puts. (Part 1 of 2.)

Fig. 8.13 | Using fgets and putchar. (Part 2 of 2.)

puts("Enter a line of text:");

/* use getchar to read each character */
while ((c = getchar()) != '\n') {
 sentence[i++] = c;
} /* end while */

sentence[i] = '\0'; /* terminate string */

puts("\nThe line entered was:");
puts(sentence);

8.5 Standard Input/Output Library Functions 325

Function sprintf
Figure 8.15 uses function sprintf to print formatted data into array s—an array of char-
acters. The function uses the same conversion specifiers as printf (see Chapter 9 for a de-
tailed discussion of formatting). The program inputs an int value and a double value to
be formatted and printed to array s. Array s is the first argument of sprintf.

Function sprintf
Figure 8.16 uses function sscanf to read formatted data from character array s. The func-
tion uses the same conversion specifiers as scanf. The program reads an int and a double
from array s and stores the values in x and y, respectively. The values of x and y are printed.
Array s is the first argument of sscanf.

Enter a line of text:
This is a test.

The line entered was:
This is a test.

1 /* Fig. 8.15: fig08_15.c
2 Using sprintf */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 char s[80]; /* create char array */
8 int x; /* x value to be input */
9 double y; /* y value to be input */

10
11 printf("Enter an integer and a double:\n");
12 scanf("%d%lf", &x, &y);
13
14
15
16
17
18 return 0; /* indicates successful termination */
19 } /* end main */

Enter an integer and a double:
298 87.375
The formatted output stored in array s is:
integer: 298
double: 87.38

Fig. 8.15 | Using sprintf.

Fig. 8.14 | Using getchar and puts. (Part 2 of 2.)

sprintf(s, "integer:%6d\ndouble:%8.2f", x, y);

printf("%s\n%s\n",
 "The formatted output stored in array s is:", s);

326 Chapter 8 C Characters and Strings

8.6 String-Manipulation Functions of the String-
Handling Library
The string-handling library (<string.h>) provides many useful functions for manipulat-
ing string data (copying strings and concatenating strings), comparing strings, searching
strings for characters and other strings, tokenizing strings (separating strings into logical
pieces) and determining the length of strings. This section presents the string-manipula-
tion functions of the string-handling library. The functions are summarized in Fig. 8.17.
Every function—except for strncpy—appends the null character to its result.

1 /* Fig. 8.16: fig08_16.c
2 Using sscanf */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 char s[] = "31298 87.375"; /* initialize array s */
8 int x; /* x value to be input */
9 double y; /* y value to be input */

10
11
12
13
14
15 return 0; /* indicates successful termination */
16 } /* end main */

The values stored in character array s are:
integer: 31298
double: 87.375

Fig. 8.16 | Using sscanf.

Function prototype Function description

char *strcpy(char *s1, const char *s2)

Copies string s2 into array s1. The value of s1 is returned.

char *strncpy(char *s1, const char *s2, size_t n)

Copies at most n characters of string s2 into array s1. The value of
s1 is returned.

char *strcat(char *s1, const char *s2)

Appends string s2 to array s1. The first character of s2 overwrites
the terminating null character of s1. The value of s1 is returned.

char *strncat(char *s1, const char *s2, size_t n)

Appends at most n characters of string s2 to array s1. The first
character of s2 overwrites the terminating null character of s1. The
value of s1 is returned.

Fig. 8.17 | String-manipulation functions of the string-handling library.

sscanf(s, "%d%lf", &x, &y);
printf("%s\n%s%6d\n%s%8.3f\n",
 "The values stored in character array s are:",
 "integer:", x, "double:", y);

8.6 String-Manipulation Functions of the String-Handling Library 327

Functions strncpy and strncat specify a parameter of type size_t, which is a type
defined by the C standard as the integral type of the value returned by operator sizeof.

Function strcpy copies its second argument (a string) into its first argument (a char-
acter array that must be large enough to store the string and its terminating null character,
which is also copied). Function strncpy is equivalent to strcpy, except that strncpy spec-
ifies the number of characters to be copied from the string into the array. Function
strncpy does not necessarily copy the terminating null character of its second argument.
A terminating null character is written only if the number of characters to be copied is at
least one more than the length of the string. For example, if "test" is the second argu-
ment, a terminating null character is written only if the third argument to strncpy is at
least 5 (four characters in "test" plus a terminating null character). If the third argument
is larger than 5, null characters are appended to the array until the total number of char-
acters specified by the third argument are written.

Functions strcpy and strncpy
Figure 8.18 uses strcpy to copy the entire string in array x into array y and uses strncpy
to copy the first 14 characters of array x into array z. A null character ('\0') is appended
to array z, because the call to strncpy in the program does not write a terminating null
character (the third argument is less than the string length of the second argument).

Portability Tip 8.2
Type size_t is a system-dependent synonym for either type unsigned long or type un-
signed int.

Error-Prevention Tip 8.2
When using functions from the string-handling library, include the <string.h> header.

Common Programming Error 8.5
Not appending a terminating null character to the first argument of a strncpy when the
third argument is less than or equal to the length of the string in the second argument.

1 /* Fig. 8.18: fig08_18.c
2 Using strcpy and strncpy */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 char x[] = "Happy Birthday to You"; /* initialize char array x */
9 char y[25]; /* create char array y */

10 char z[15]; /* create char array z */
11
12 /* copy contents of x into y */
13 printf("%s%s\n%s%s\n",
14 "The string in array x is: ", x,
15 "The string in array y is: ",

Fig. 8.18 | Using strcpy and strncpy. (Part 1 of 2.)

strcpy(y, x));

328 Chapter 8 C Characters and Strings

Functions strcat and strncat
Function strcat appends its second argument (a string) to its first argument (a character
array containing a string). The first character of the second argument replaces the null
('\0') that terminates the string in the first argument. You must ensure that the array used
to store the first string is large enough to store the first string, the second string and the
terminating null character copied from the second string. Function strncat appends a
specified number of characters from the second string to the first string. A terminating null
character is automatically appended to the result. Figure 8.19 demonstrates function
strcat and function strncat.

16
17
18
19
20
21
22 printf("The string in array z is: %s\n", z);
23 return 0; /* indicates successful termination */
24 } /* end main */

The string in array x is: Happy Birthday to You
The string in array y is: Happy Birthday to You
The string in array z is: Happy Birthday

1 /* Fig. 8.19: fig08_19.c
2 Using strcat and strncat */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 char s1[20] = "Happy "; /* initialize char array s1 */
9 char s2[] = "New Year "; /* initialize char array s2 */

10 char s3[40] = ""; /* initialize char array s3 to empty */
11
12 printf("s1 = %s\ns2 = %s\n", s1, s2);
13
14 /* concatenate s2 to s1 */
15 printf("strcat(s1, s2) = %s\n",);
16
17
18
19
20
21 /* concatenate s1 to s3 */
22 printf("strcat(s3, s1) = %s\n",);
23 return 0; /* indicates successful termination */
24 } /* end main */

Fig. 8.19 | Using strcat and strncat. (Part 1 of 2.)

Fig. 8.18 | Using strcpy and strncpy. (Part 2 of 2.)

/* copy first 14 characters of x into z. Does not copy null
 character */
strncpy(z, x, 14);

z[14] = '\0'; /* terminate string in z */

strcat(s1, s2)

/* concatenate first 6 characters of s1 to s3. Place '\0'
 after last character */
printf("strncat(s3, s1, 6) = %s\n", strncat(s3, s1, 6));

strcat(s3, s1)

8.7 Comparison Functions of the String-Handling Library 329

8.7 Comparison Functions of the String-Handling Library
This section presents the string-handling library’s string-comparison functions, strcmp
and strncmp. Fig. 8.20 contains their prototypes and a brief description of each function.

Figure 8.21 compares three strings using strcmp and strncmp. Function strcmp com-
pares its first string argument with its second string argument, character by character. The
function returns 0 if the strings are equal, a negative value if the first string is less than the
second string and a positive value if the first string is greater than the second string. Func-
tion strncmp is equivalent to strcmp, except that strncmp compares up to a specified
number of characters. Function strncmp does not compare characters following a null
character in a string. The program prints the integer value returned by each function call.

s1 = Happy
s2 = New Year
strcat(s1, s2) = Happy New Year
strncat(s3, s1, 6) = Happy
strcat(s3, s1) = Happy Happy New Year

Function prototype Function description

int strcmp(const char *s1, const char *s2);

Compares the string s1 with the string s2. The function returns 0,
less than 0 or greater than 0 if s1 is equal to, less than or greater
than s2, respectively.

int strncmp(const char *s1, const char *s2, size_t n);

Compares up to n characters of the string s1 with the string s2.
The function returns 0, less than 0 or greater than 0 if s1 is equal
to, less than or greater than s2, respectively.

Fig. 8.20 | String-comparison functions of the string-handling library.

1 /* Fig. 8.21: fig08_21.c
2 Using strcmp and strncmp */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 const char *s1 = "Happy New Year"; /* initialize char pointer */
9 const char *s2 = "Happy New Year"; /* initialize char pointer */

10 const char *s3 = "Happy Holidays"; /* initialize char pointer */
11

Fig. 8.21 | Using strcmp and strncmp. (Part 1 of 2.)

Fig. 8.19 | Using strcat and strncat. (Part 2 of 2.)

330 Chapter 8 C Characters and Strings

To understand just what it means for one string to be “greater than” or “less than”
another string, consider the process of alphabetizing a series of last names. The reader
would, no doubt, place “Jones” before “Smith,” because the first letter of “Jones” comes
before the first letter of “Smith” in the alphabet. But the alphabet is more than just a list
of 26 letters—it is an ordered list of characters. Each letter occurs in a specific position
within the list. “Z” is more than merely a letter of the alphabet; “Z” is specifically the 26th

letter of the alphabet.
How does the computer know that one particular letter comes before another? All

characters are represented inside the computer as numeric codes; when the computer com-
pares two strings, it actually compares the numeric codes of the characters in the strings.

In an effort to standardize character representations, most computer manufacturers
have designed their machines to utilize one of two popular coding schemes—ASCII or
EBCDIC. ASCII stands for “American Standard Code for Information Interchange,” and

12 printf("%s%s\n%s%s\n%s%s\n\n%s%2d\n%s%2d\n%s%2d\n\n",
13 "s1 = ", s1, "s2 = ", s2, "s3 = ", s3,
14 "strcmp(s1, s2) = ", ,
15 "strcmp(s1, s3) = ", ,
16 "strcmp(s3, s1) = ",);
17
18 printf("%s%2d\n%s%2d\n%s%2d\n",
19 "strncmp(s1, s3, 6) = ", ,
20 "strncmp(s1, s3, 7) = ", ,
21 "strncmp(s3, s1, 7) = ",);
22 return 0; /* indicates successful termination */
23 } /* end main */

s1 = Happy New Year
s2 = Happy New Year
s3 = Happy Holidays

strcmp(s1, s2) = 0
strcmp(s1, s3) = 1
strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0
strncmp(s1, s3, 7) = 6
strncmp(s3, s1, 7) = -6

Common Programming Error 8.6
Assuming that strcmp and strncmp return 1 when their arguments are equal is a logic
error. Both functions return 0 (strangely, the equivalent of C's false value) for equality.
Therefore, when testing two strings for equality, the result of function strcmp or strncmp
should be compared with 0 to determine if the strings are equal.

Portability Tip 8.3
The internal numeric codes used to represent characters may be different on different com-
puters.

Fig. 8.21 | Using strcmp and strncmp. (Part 2 of 2.)

strcmp(s1, s2)
strcmp(s1, s3)
strcmp(s3, s1)

strncmp(s1, s3, 6)
strncmp(s1, s3, 7)
strncmp(s3, s1, 7)

8.8 Search Functions of the String-Handling Library 331

EBCDIC stands for “Extended Binary Coded Decimal Interchange Code.” There are
other coding schemes, but these two are the most popular. The Unicode® Standard out-
lines a specification to produce consistent encoding of the vast majority of the world’s
characters and symbols. To learn more about Unicode, visit www.unicode.org.

ASCII, EBCDIC and Unicode are called character sets. String and character manip-
ulations actually involve the manipulation of the appropriate numeric codes and not the
characters themselves. This explains the interchangeability of characters and small integers
in C. Since it is meaningful to say that one numeric code is greater than, less than or equal
to another numeric code, it becomes possible to relate various characters or strings to one
another by referring to the character codes. Appendix B lists the ASCII character codes.

8.8 Search Functions of the String-Handling Library
This section presents the functions of the string-handling library used to search strings for
characters and other strings. The functions are summarized in Fig. 8.22. The functions
strcspn and strspn return size_t.

Function prototype and description

char *strchr(const char *s, int c);

Locates the first occurrence of character c in string s. If c is found, a pointer to c in s is
returned. Otherwise, a NULL pointer is returned.

size_t strcspn(const char *s1, const char *s2);

Determines and returns the length of the initial segment of string s1 consisting of charac-
ters not contained in string s2.

size_t strspn(const char *s1, const char *s2);

Determines and returns the length of the initial segment of string s1 consisting only of
characters contained in string s2.

char *strpbrk(const char *s1, const char *s2);

Locates the first occurrence in string s1 of any character in string s2. If a character from
string s2 is found, a pointer to the character in string s1 is returned. Otherwise, a NULL
pointer is returned.

char *strrchr(const char *s, int c);

Locates the last occurrence of c in string s. If c is found, a pointer to c in string s is
returned. Otherwise, a NULL pointer is returned.

char *strstr(const char *s1, const char *s2);

Locates the first occurrence in string s1 of string s2. If the string is found, a pointer to the
string in s1 is returned. Otherwise, a NULL pointer is returned.

char *strtok(char *s1, const char *s2);

A sequence of calls to strtok breaks string s1 into “tokens”—logical pieces such as words
in a line of text—separated by characters contained in string s2. The first call contains s1
as the first argument, and subsequent calls to continue tokenizing the same string contain
NULL as the first argument. A pointer to the current token is returned by each call. If there
are no more tokens when the function is called, NULL is returned.

Fig. 8.22 | String-manipulation functions of the string-handling library.

www.unicode.org

332 Chapter 8 C Characters and Strings

Function strchr
Function strchr searches for the first occurrence of a character in a string. If the character
is found, strchr returns a pointer to the character in the string; otherwise, strchr returns
NULL. Figure 8.23 uses strchr to search for the first occurrences of 'a' and 'z' in the
string "This is a test".

Function strcspn
Function strcspn (Fig. 8.24) determines the length of the initial part of the string in its
first argument that does not contain any characters from the string in its second argument.
The function returns the length of the segment.

1 /* Fig. 8.23: fig08_23.c
2 Using strchr */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 const char *string = "This is a test"; /* initialize char pointer */
9 char character1 = 'a'; /* initialize character1 */

10 char character2 = 'z'; /* initialize character2 */
11
12 /* if character1 was found in string */
13
14 printf("\'%c\' was found in \"%s\".\n",
15 character1, string);
16 } /* end if */
17 else { /* if character1 was not found */
18 printf("\'%c\' was not found in \"%s\".\n",
19 character1, string);
20 } /* end else */
21
22 /* if character2 was found in string */
23
24 printf("\'%c\' was found in \"%s\".\n",
25 character2, string);
26 } /* end if */
27 else { /* if character2 was not found */
28 printf("\'%c\' was not found in \"%s\".\n",
29 character2, string);
30 } /* end else */
31
32 return 0; /* indicates successful termination */
33 } /* end main */

'a' was found in "This is a test".
'z' was not found in "This is a test".

Fig. 8.23 | Using strchr.

if (strchr(string, character1) != NULL) {

if (strchr(string, character2) != NULL) {

8.8 Search Functions of the String-Handling Library 333

Function strpbrk
Function strpbrk searches its first string argument for the first occurrence of any character
in its second string argument. If a character from the second argument is found, strpbrk
returns a pointer to the character in the first argument; otherwise, strpbrk returns NULL.
Figure 8.25 shows a program that locates the first occurrence in string1 of any character
from string2.

1 /* Fig. 8.24: fig08_24.c
2 Using strcspn */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 /* initialize two char pointers */
9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "1234567890";
11
12 printf("%s%s\n%s%s\n\n%s\n%s%u\n",
13 "string1 = ", string1, "string2 = ", string2,
14 "The length of the initial segment of string1",
15 "containing no characters from string2 = ",
16);
17 return 0; /* indicates successful termination */
18 } /* end main */

string1 = The value is 3.14159
string2 = 1234567890

The length of the initial segment of string1
containing no characters from string2 = 13

Fig. 8.24 | Using strcspn.

1 /* Fig. 8.25: fig08_25.c
2 Using strpbrk */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 const char *string1 = "This is a test"; /* initialize char pointer */
9 const char *string2 = "beware"; /* initialize char pointer */

10
11 printf("%s\"%s\"\n'%c'%s\n\"%s\"\n",
12 "Of the characters in ", string2,
13 ,
14 " appears earliest in ", string1);
15 return 0; /* indicates successful termination */
16 } /* end main */

Fig. 8.25 | Using strpbrk. (Part 1 of 2.)

strcspn(string1, string2)

*strpbrk(string1, string2)

334 Chapter 8 C Characters and Strings

Function strrchr
Function strrchr searches for the last occurrence of the specified character in a string. If
the character is found, strrchr returns a pointer to the character in the string; otherwise,
strrchr returns NULL. Figure 8.26 shows a program that searches for the last occurrence
of the character 'z' in the string "A zoo has many animals including zebras."

Function strspn
Function strspn (Fig. 8.27) determines the length of the initial part of the string in its
first argument that contains only characters from the string in its second argument. The
function returns the length of the segment.

Of the characters in "beware"
'a' appears earliest in
"This is a test"

1 /* Fig. 8.26: fig08_26.c
2 Using strrchr */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 /* initialize char pointer */
9 const char *string1 = "A zoo has many animals including zebras";

10
11 int c = 'z'; /* character to search for */
12
13 printf("%s\n%s'%c'%s\"%s\"\n",
14 "The remainder of string1 beginning with the",
15 "last occurrence of character ", c,
16 " is: ",);
17 return 0; /* indicates successful termination */
18 } /* end main */

The remainder of string1 beginning with the
last occurrence of character 'z' is: "zebras"

Fig. 8.26 | Using strrchr.

1 /* Fig. 8.27: fig08_27.c
2 Using strspn */
3 #include <stdio.h>
4 #include <string.h>
5

Fig. 8.27 | Using strspn. (Part 1 of 2.)

Fig. 8.25 | Using strpbrk. (Part 2 of 2.)

strrchr(string1, c)

8.8 Search Functions of the String-Handling Library 335

Function strstr
Function strstr searches for the first occurrence of its second string argument in its first
string argument. If the second string is found in the first string, a pointer to the location
of the string in the first argument is returned. Figure 8.28 uses strstr to find the string
"def" in the string "abcdefabcdef".

6 int main(void)
7 {
8 /* initialize two char pointers */
9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "aehi lsTuv";
11
12 printf("%s%s\n%s%s\n\n%s\n%s%u\n",
13 "string1 = ", string1, "string2 = ", string2,
14 "The length of the initial segment of string1",
15 "containing only characters from string2 = ",
16);
17 return 0; /* indicates successful termination */
18 } /* end main */

string1 = The value is 3.14159
string2 = aehi lsTuv

The length of the initial segment of string1
containing only characters from string2 = 13

1 /* Fig. 8.28: fig08_28.c
2 Using strstr */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 const char *string1 = "abcdefabcdef"; /* string to search */
9 const char *string2 = "def"; /* string to search for */

10
11 printf("%s%s\n%s%s\n\n%s\n%s%s\n",
12 "string1 = ", string1, "string2 = ", string2,
13 "The remainder of string1 beginning with the",
14 "first occurrence of string2 is: ",
15);
16 return 0; /* indicates successful termination */
17 } /* end main */

string1 = abcdefabcdef
string2 = def

The remainder of string1 beginning with the
first occurrence of string2 is: defabcdef

Fig. 8.28 | Using strstr.

Fig. 8.27 | Using strspn. (Part 2 of 2.)

strspn(string1, string2)

strstr(string1, string2)

336 Chapter 8 C Characters and Strings

Function strtok
Function strtok (Fig. 8.29) is used to break a string into a series of tokens. A token is a
sequence of characters separated by delimiters (usually spaces or punctuation marks, but
a delimiter can be any character). For example, in a line of text, each word can be consid-
ered a token, and the spaces and punctuation separating the words can be considered de-
limiters.

Multiple calls to strtok are required to tokenize a string—i.e., break it into tokens
(assuming that the string contains more than one token). The first call to strtok contains
two arguments: a string to be tokenized, and a string containing characters that separate
the tokens. In Fig. 8.29, the statement

1 /* Fig. 8.29: fig08_29.c
2 Using strtok */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 /* initialize array string */
9 char string[] = "This is a sentence with 7 tokens";

10 char *tokenPtr; /* create char pointer */
11
12 printf("%s\n%s\n\n%s\n",
13 "The string to be tokenized is:", string,
14 "The tokens are:");
15
16
17
18 /* continue tokenizing sentence until tokenPtr becomes NULL */
19 while (tokenPtr != NULL) {
20 printf("%s\n", tokenPtr);
21
22 } /* end while */
23
24 return 0; /* indicates successful termination */
25 } /* end main */

The string to be tokenized is:
This is a sentence with 7 tokens

The tokens are:
This
is
a
sentence
with
7
tokens

Fig. 8.29 | Using strtok.

tokenPtr = strtok(string, " "); /* begin tokenizing sentence */

tokenPtr = strtok(string, " "); /* begin tokenizing sentence */

tokenPtr = strtok(NULL, " "); /* get next token */

8.9 Memory Functions of the String-Handling Library 337

assigns tokenPtr a pointer to the first token in string. The second argument, " ", indi-
cates that tokens are separated by spaces. Function strtok searches for the first character
in string that is not a delimiting character (space). This begins the first token. The func-
tion then finds the next delimiting character in the string and replaces it with a null ('\0')
character to terminate the current token. Function strtok saves a pointer to the next char-
acter following the token in string and returns a pointer to the current token.

Subsequent strtok calls in line 21 continue tokenizing string. These calls contain
NULL as their first argument. The NULL argument indicates that the call to strtok should
continue tokenizing from the location in string saved by the last call to strtok. If no
tokens remain when strtok is called, strtok returns NULL. You can change the delimiter
string in each new call to strtok. Figure 8.29 uses strtok to tokenize the string "This is
a sentence with 7 tokens". Each token is printed separately. Function strtok modifies
the input string by placing \0 at the end of each token; therefore, a copy of the string
should be made if the string will be used again in the program after the calls to strtok.

8.9 Memory Functions of the String-Handling Library
The string-handling library functions presented in this section manipulate, compare and
search blocks of memory. The functions treat blocks of memory as character arrays and
can manipulate any block of data. Figure 8.30 summarizes the memory functions of the
string-handling library. In the function discussions, “object” refers to a block of data.

Function prototype Function description

void *memcpy(void *s1, const void *s2, size_t n);

Copies n characters from the object pointed to by s2 into the object
pointed to by s1. A pointer to the resulting object is returned.

void *memmove(void *s1, const void *s2, size_t n);

Copies n characters from the object pointed to by s2 into the object
pointed to by s1. The copy is performed as if the characters were
first copied from the object pointed to by s2 into a temporary array
and then from the temporary array into the object pointed to by s1.
A pointer to the resulting object is returned.

int memcmp(const void *s1, const void *s2, size_t n);

Compares the first n characters of the objects pointed to by s1 and
s2. The function returns 0, less than 0 or greater than 0 if s1 is equal
to, less than or greater than s2.

void *memchr(const void *s, int c, size_t n);

Locates the first occurrence of c (converted to unsigned char) in the
first n characters of the object pointed to by s. If c is found, a pointer
to c in the object is returned. Otherwise, NULL is returned.

void *memset(void *s, int c, size_t n);

Copies c (converted to unsigned char) into the first n characters of
the object pointed to by s. A pointer to the result is returned.

Fig. 8.30 | Memory functions of the string-handling library.

338 Chapter 8 C Characters and Strings

The pointer parameters to these functions are declared void * so they can be used to
manipulate memory for any data type. In Chapter 7, we saw that a pointer to any data type
can be assigned directly to a pointer of type void *, and a pointer of type void * can be
assigned directly to a pointer to any data type. For this reason, these functions can receive
pointers to any data type. Because a void * pointer cannot be dereferenced, each function
receives a size argument that specifies the number of characters (bytes) the function will
process. For simplicity, the examples in this section manipulate character arrays (blocks of
characters).

Function memcpy
Function memcpy copies a specified number of characters from the object pointed to by its
second argument into the object pointed to by its first argument. The function can receive
a pointer to any type of object. The result of this function is undefined if the two objects
overlap in memory (i.e., if they are parts of the same object)—in such cases, use memmove.
Figure 8.31 uses memcpy to copy the string in array s2 to array s1.

Function memmove
Function memmove, like memcpy, copies a specified number of bytes from the object pointed
to by its second argument into the object pointed to by its first argument. Copying is per-
formed as if the bytes were copied from the second argument into a temporary character
array, then copied from the temporary array into the first argument. This allows characters
from one part of a string to be copied into another part of the same string. Figure 8.32 uses
memmove to copy the last 10 bytes of array x into the first 10 bytes of array x.

1 /* Fig. 8.31: fig08_31.c
2 Using memcpy */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 char s1[17]; /* create char array s1 */
9 char s2[] = "Copy this string"; /* initialize char array s2 */

10
11
12 printf("%s\n%s\"%s\"\n",
13 "After s2 is copied into s1 with memcpy,",
14 "s1 contains ", s1);
15 return 0; /* indicates successful termination */
16 } /* end main */

After s2 is copied into s1 with memcpy,
s1 contains "Copy this string"

Fig. 8.31 | Using memcpy.

Common Programming Error 8.7
String-manipulation functions other than memmove that copy characters have undefined
results when copying takes place between parts of the same string.

 memcpy(s1, s2, 17);

8.9 Memory Functions of the String-Handling Library 339

Function memcmp
Function memcmp (Fig. 8.33) compares the specified number of characters of its first argu-
ment with the corresponding characters of its second argument. The function returns a
value greater than 0 if the first argument is greater than the second, returns 0 if the argu-
ments are equal and returns a value less than 0 if the first argument is less than the second.

1 /* Fig. 8.32: fig08_32.c
2 Using memmove */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 char x[] = "Home Sweet Home"; /* initialize char array x */
9

10 printf("%s%s\n", "The string in array x before memmove is: ", x);
11 printf("%s%s\n", "The string in array x after memmove is: ",
12);
13 return 0; /* indicates successful termination */
14 } /* end main */

The string in array x before memmove is: Home Sweet Home
The string in array x after memmove is: Sweet Home Home

Fig. 8.32 | Using memmove.

1 /* Fig. 8.33: fig08_33.c
2 Using memcmp */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 char s1[] = "ABCDEFG"; /* initialize char array s1 */
9 char s2[] = "ABCDXYZ"; /* initialize char array s2 */

10
11 printf("%s%s\n%s%s\n\n%s%2d\n%s%2d\n%s%2d\n",
12 "s1 = ", s1, "s2 = ", s2,
13 "memcmp(s1, s2, 4) = ", ,
14 "memcmp(s1, s2, 7) = ", ,
15 "memcmp(s2, s1, 7) = ",);
16 return 0; /* indicate successful termination */
17 } /* end main */

s1 = ABCDEFG
s2 = ABCDXYZ

memcmp(s1, s2, 4) = 0
memcmp(s1, s2, 7) = -1
memcmp(s2, s1, 7) = 1

Fig. 8.33 | Using memcmp.

memmove(x, &x[5], 10)

memcmp(s1, s2, 4)
memcmp(s1, s2, 7)
memcmp(s2, s1, 7)

340 Chapter 8 C Characters and Strings

Function memchr
Function memchr searches for the first occurrence of a byte, represented as unsigned char,
in the specified number of bytes of an object. If the byte is found, a pointer to the byte in
the object is returned; otherwise, a NULL pointer is returned. Figure 8.34 searches for the
character (byte) 'r' in the string "This is a string".

Function memset
Function memset copies the value of the byte in its second argument into the first n bytes
of the object pointed to by its first argument, where n is specified by the third argument.
Figure 8.35 uses memset to copy 'b' into the first 7 bytes of string1.

1 /* Fig. 8.34: fig08_34.c
2 Using memchr */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 const char *s = "This is a string"; /* initialize char pointer */
9

10 printf("%s\'%c\'%s\"%s\"\n",
11 "The remainder of s after character ", 'r',
12 " is found is ",);
13 return 0; /* indicates successful termination */
14 } /* end main */

The remainder of s after character 'r' is found is "ring"

Fig. 8.34 | Using memchr.

1 /* Fig. 8.35: fig08_35.c
2 Using memset */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 char string1[15] = "BBBBBBBBBBBBBB"; /* initialize string1 */
9

10 printf("string1 = %s\n", string1);
11 printf("string1 after memset = %s\n",);
12 return 0; /* indicates successful termination */
13 } /* end main */

string1 = BBBBBBBBBBBBBB
string1 after memset = bbbbbbbBBBBBBB

Fig. 8.35 | Using memset.

memchr(s, 'r', 16)

memset(string1, 'b', 7)

8.10 Other Functions of the String-Handling Library 341

8.10 Other Functions of the String-Handling Library
The two remaining functions of the string-handling library are strerror and strlen.
Figure 8.36 summarizes the strerror and strlen functions.

Function strerror
Function strerror takes an error number and creates an error message string. A pointer
to the string is returned. Figure 8.37 demonstrates strerror.

Function strlen
Function strlen takes a string as an argument and returns the number of characters in the
string—the terminating null character is not included in the length. Figure 8.38 demon-
strates function strlen.

Function prototype Function description

char *strerror(int errornum);

Maps errornum into a full text string in a compiler- and locale-spe-
cific manner (e.g. the message may appear in different languages
based on its location). A pointer to the string is returned.

size_t strlen(const char *s);

Determines the length of string s. The number of characters pre-
ceding the terminating null character is returned.

Fig. 8.36 | Other functions of the string-handling library.

1 /* Fig. 8.37: fig08_37.c
2 Using strerror */
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 printf("%s\n",);
9 return 0; /* indicates successful termination */

10 } /* end main */

No such file or directory

Fig. 8.37 | Using strerror.

1 /* Fig. 8.38: fig08_38.c
2 Using strlen */
3 #include <stdio.h>
4 #include <string.h>

Fig. 8.38 | Using strlen. (Part 1 of 2.)

strerror(2)

342 Chapter 8 C Characters and Strings

5
6 int main(void)
7 {
8 /* initialize 3 char pointers */
9 const char *string1 = "abcdefghijklmnopqrstuvwxyz";

10 const char *string2 = "four";
11 const char *string3 = "Boston";
12
13 printf("%s\"%s\"%s%lu\n%s\"%s\"%s%lu\n%s\"%s\"%s%lu\n",
14 "The length of ", string1, " is ",
15 (unsigned long) ,
16 "The length of ", string2, " is ",
17 (unsigned long) ,
18 "The length of ", string3, " is ",
19 (unsigned long));
20 return 0; /* indicates successful termination */
21 } /* end main */

The length of "abcdefghijklmnopqrstuvwxyz" is 26
The length of "four" is 4
The length of "Boston" is 6

Fig. 8.38 | Using strlen. (Part 2 of 2.)

strlen(string1)

strlen(string2)

strlen(string3)

Summary
Section 8.2 Fundamentals of Strings and Characters
• Characters are the fundamental building blocks of source programs. Every program is composed

of a sequence of characters that—when grouped together meaningfully—is interpreted by the
computer as a series of instructions used to accomplish a task.

• A character constant is an int value represented as a character in single quotes. The value of a
character constant is the character’s integer value in the machine’s character set.

• A string is a series of characters treated as a single unit. A string may include letters, digits and
various special characters such as +, -, *, / and $. String literals, or string constants, in C are writ-
ten in double quotation marks.

• A string in C is an array of characters ending in the null character ('\0').

• A string is accessed via a pointer to its first character. The value of a string is the address of its
first character.

• A character array or a variable of type char * can be initialized with a string in a definition.

• When defining a character array to contain a string, the array must be large enough to store the
string and its terminating null character.

• A string can be stored in an array using scanf. Function scanf will read characters until a space,
tab, newline or end-of-file indicator is encountered.

• For a character array to be printed as a string, the array must contain a terminating null character.

Section 8.3 Character-Handling Library
• Function islower determines whether its argument is a lowercase letter (a–z).

• Function isupper determines whether its argument is an uppercase letter (A–Z).

 Summary 343

• Function isdigit determines whether its argument is a digit (0–9).

• Function isalpha determines whether its argument is an uppercase letter (A–Z) or a lowercase let-
ter (a–z).

• Function isalnum determines whether its argument is an uppercase letter (A–Z), a lowercase letter
(a–z) or a digit (0–9).

• Function isxdigit determines whether its argument is a hexadecimal digit (A–F, a–f, 0–9).

• Function toupper converts a lowercase letter to uppercase and returns the uppercase letter.

• Function tolower converts an uppercase letter to lowercase and returns the lowercase letter.

• Function isspace determines whether its argument is one of the following white-space charac-
ters: ' ' (space), '\f', '\n', '\r', '\t' or '\v'.

• Function iscntrl determines whether its argument is one of the following control characters:
'\t', '\v', '\f', '\a', '\b', '\r' or '\n'.

• Function ispunct determines whether its argument is a printing character other than a space, a
digit or a letter.

• Function isprint determines whether its argument is any printing character including the space
character.

• Function isgraph determines whether its argument is a printing character other than the space
character.

Section 8.4 String-Conversion Functions
• Function atof converts its argument—a string beginning with a series of digits that represents a

floating-point number—to a double value.

• Function atoi converts its argument—a string beginning with a series of digits that represents
an integer—to an int value.

• Function atol converts its argument—a string beginning with a series of digits that represents a
long integer—to a long value.

• Function strtod converts a sequence of characters representing a floating-point value to double.
The function receives two arguments—a string (char *) and a pointer to char *. The string con-
tains the character sequence to be converted, and the location specified by the pointer to char *
is assigned the address of the remainder of the string after the conversion.

• Function strtol converts a sequence of characters representing an integer to long. The function
receives three arguments—a string (char *), a pointer to char * and an integer. The string con-
tains the character sequence to be converted, the location specified by the pointer to char * is
assigned the address of the remainder of the string after the conversion and the integer specifies
the base of the value being converted.

• Function strtoul converts a sequence of characters representing an integer to unsigned long.
The function receives three arguments—a string (char *), a pointer to char * and an integer. The
string contains the character sequence to be converted, the location specified by the pointer to
char * is assigned the address of the remainder of the string after the conversion and the integer
specifies the base of the value being converted.

Section 8.5 Standard Input/Output Library Functions
• Function fgets reads characters until a newline character or the end-of-file indicator is encoun-

tered. The arguments to fgets are an array of type char, the maximum number of characters that
can be read and the stream from which to read. A null character ('\0') is appended to the array
after reading terminates.

• Function putchar prints its character argument.

344 Chapter 8 C Characters and Strings

• Function getchar reads a single character from the standard input and returns the character as
an integer. If the end-of-file indicator is encountered, getchar returns EOF.

• Function puts takes a string (char *) as an argument and prints the string followed by a newline
character.

• Function sprintf uses the same conversion specifications as function printf to print formatted
data into an array of type char.

• Function sscanf uses the same conversion specifications as function scanf to read formatted data
from a string.

Section 8.6 String-Manipulation Functions of the String-Handling Library
• Function strcpy copies its second argument (a string) into its first argument (a character array).

You must ensure that the array is large enough to store the string and its terminating null character.

• Function strncpy is equivalent to strcpy, except that a call to strncpy specifies the number of
characters to be copied from the string into the array. The terminating null character will be cop-
ied only if the number of characters to be copied is one more than the length of the string.

• Function strcat appends its second string argument—including the terminating null charac-
ter—to its first string argument. The first character of the second string replaces the null ('\0')
character of the first string. You must ensure that the array used to store the first string is large
enough to store both the first string and the second string.

• Function strncat appends a specified number of characters from the second string to the first
string. A terminating null character is appended to the result.

Section 8.7 Comparison Functions of the String-Handling Library
• Function strcmp compares its first string argument to its second string argument, character by

character. It returns 0 if the strings are equal, returns a negative value if the first string is less than
the second and returns a positive value if the first string is greater than the second.

• Function strncmp is equivalent to strcmp, except that strncmp compares a specified number of
characters. If one of the strings is shorter than the number of characters specified, strncmp com-
pares characters until the null character in the shorter string is encountered.

Section 8.8 Search Functions of the String-Handling Library
• Function strchr searches for the first occurrence of a character in a string. If the character is

found, strchr returns a pointer to the character in the string; otherwise, strchr returns NULL.

• Function strcspn determines the length of the initial part of the string in its first argument that
does not contain any characters from the string in its second argument. The function returns the
length of the segment.

• Function strpbrk searches for the first occurrence in its first argument of any character in its sec-
ond argument. If a character from the second argument is found, strpbrk returns a pointer to
the character; otherwise, strpbrk returns NULL.

• Function strrchr searches for the last occurrence of a character in a string. If the character is
found, strrchr returns a pointer to the character in the string; otherwise, strrchr returns NULL.

• Function strspn determines the length of the initial part of the string in its first argument that
contains only characters from the string in its second argument. The function returns the length
of the segment.

• Function strstr searches for the first occurrence of its second string argument in its first string
argument. If the second string is found in the first string, a pointer to the location of the string
in the first argument is returned.

 Terminology 345

• A sequence of calls to strtok breaks the first string s1 into tokens that are separated by characters
contained in the second string s2. The first call contains s1 as the first argument, and subsequent
calls to continue tokenizing the same string contain NULL as the first argument. A pointer to the
current token is returned by each call. If there are no more tokens when the function is called, a
NULL pointer is returned.

Section 8.9 Memory Functions of the String-Handling Library
• Function memcpy copies a specified number of characters from the object to which its second ar-

gument points into the object to which its first argument points. The function can receive a
pointer to any type of object. Function memcpy manipulates the bytes of the object as characters.

• Function memmove copies a specified number of bytes from the object pointed to by its second
argument to the object pointed to by its first argument. Copying is accomplished as if the bytes
were copied from the second argument to a temporary character array and then copied from the
temporary array to the first argument.

• Function memcmp compares the specified number of characters of its first and second arguments.

• Function memchr searches for the first occurrence of a byte, represented as unsigned char, in the
specified number of bytes of an object. If the byte is found, a pointer to the byte is returned; oth-
erwise, a NULL pointer is returned.

• Function memset copies its second argument, treated as an unsigned char, to a specified number
of bytes of the object pointed to by the first argument.

Section 8.10 Other Functions of the String-Handling Library
• Function strerror maps an integer error number into a full text string in a locale specific man-

ner. A pointer to the string is returned.

• Function strlen takes a string as an argument and returns the number of characters in the
string—the terminating null character is not included in the length of the string.

Terminology
ASCII (American Standard Code for

Information Interchange) 330
atof function 318
atoi function 318
atol function 319
character constant 310
character-handling library 312
character set 310
comparing string 326
concatenating strings 326
control characters 316
copying string 326
delimiter 336
determining the length of string 326
EBCDIC (Extended Binary Coded Decimal

Interchange Code) 330
fgets function 323
general utilities library (<stdlib.h>) 317
getchar function 324
hexadecimal 313
isalnum function 313

isalpha function 313
iscntrl function 316
isdigit function 313
isgraph function 316
islower function 314
isprint function 316
ispunct function 316
isspace function 316
isupper function 314
isxdigit function 313
memchr function 340
memcmp function 339
memcpy function 338
memmove function 338
memset function 340
null character (’\0’) 310
numeric code 330
printing character 316
putchar function 323
puts function 324
special character 310

346 Chapter 8 C Characters and Strings

sprintf function 325
sscanf function 325
<stdio.h> header 322
<stdlib.h> header 317
strcat function 328
strchr function 332
strcmp function 329
strcspn function 332
strerror function 341
string 310
string comparison function 329
string constant 310
string-conversion function 317
string is a pointer 311
string literal 310

strlen function 341
strncat function 327
strncmp function 329
strncpy function 327
strpbrk function 333
strrchr function 334
strstr function 335
strtod function 319
strtok function 336
strtol function 320
strtoul function 321
token 336
tokenizing strings 326
tolower function 314
toupper function 314

Self-Review Exercises
8.1 Write a single statement to accomplish each of the following. Assume that variables c
(which stores a character), x, y and z are of type int, variables d, e and f are of type double, variable
ptr is of type char * and arrays s1[100] and s2[100] are of type char.

a) Convert the character stored in variable c to an uppercase letter. Assign the result to
variable c.

b) Determine if the value of variable c is a digit. Use the conditional operator as shown in
Figs. 8.2–8.4 to print " is a " or " is not a " when the result is displayed.

c) Convert the string "1234567" to long and print the value.
d) Determine if the value of variable c is a control character. Use the conditional operator

to print " is a " or " is not a " when the result is displayed.
e) Read a line of text into array s1 from the keyboard. Do not use scanf.
f) Print the line of text stored in array s1. Do not use printf.
g) Assign ptr the location of the last occurrence of c in s1.
h) Print the value of variable c. Do not use printf.
i) Convert the string "8.63582" to double and print the value.
j) Determine if the value of c is a letter. Use the conditional operator to print " is a " or

" is not a " when the result is displayed.
k) Read a character from the keyboard and store the character in variable c.
l) Assign ptr the location of the first occurrence of s2 in s1.
m) Determine if the value of variable c is a printing character. Use the conditional operator

to print " is a " or " is not a " when the result is displayed.
n) Read three double values into variables d, e and f from the string "1.27 10.3 9.432".
o) Copy the string stored in array s2 into array s1.
p) Assign ptr the location of the first occurrence in s1 of any character from s2.
q) Compare the string in s1 with the string in s2. Print the result.
r) Assign ptr the location of the first occurrence of c in s1.
s) Use sprintf to print the values of integer variables x, y and z into array s1. Each value

should be printed with a field width of 7.
t) Append 10 characters from the string in s2 to the string in s1.
u) Determine the length of the string in s1. Print the result.
v) Convert the string "-21" to int and print the value.
w) Assign ptr to the location of the first token in s2. Tokens in the string s2 are separated

by commas (,).

 Answers to Self-Review Exercises 347

8.2 Show two different methods of initializing character array vowel with the string of vowels
"AEIOU".

8.3 What, if anything, prints when each of the following C statements is performed? If the
statement contains an error, describe the error and indicate how to correct it. Assume the following
variable definitions:

char s1[50] = "jack", s2[50] = " jill", s3[50], *sptr;

a) printf("%c%s", toupper(s1[0]), &s1[1]);
b) printf("%s", strcpy(s3, s2));
c) printf("%s", strcat(strcat(strcpy(s3, s1), " and "), s2));
d) printf("%u", strlen(s1) + strlen(s2));
e) printf("%u", strlen(s3));

8.4 Find the error in each of the following program segments and explain how to correct it:
a) char s[10];

strncpy(s, "hello", 5);

printf("%s\n", s);
b) printf("%s", 'a');
c) char s[12];

strcpy(s, "Welcome Home");
d) if (strcmp(string1, string2)) {

 printf("The strings are equal\n");

}

Answers to Self-Review Exercises
8.1 a) c = toupper(c);

b) printf("'%c'%sdigit\n", c, isdigit(c) ? " is a " : " is not a ");
c) printf("%ld\n", atol("1234567"));
d) printf("'%c'%scontrol character\n",

 c, iscntrl(c) ? " is a " : " is not a ");
e) fgets(s1, 100, stdin);
f) puts(s1);
g) ptr = strrchr(s1, c);
h) putchar(c);
i) printf("%f\n", atof("8.63582"));
j) printf("'%c'%sletter\n", c, isalpha(c) ? " is a " : " is not a ");
k) c = getchar();
l) ptr = strstr(s1, s2);
m) printf("'%c'%sprinting character\n",

 c, isprint(c) ? " is a " : " is not a ");
n) sscanf("1.27 10.3 9.432", "%f%f%f", &d, &e, &f);
o) strcpy(s1, s2);
p) ptr = strpbrk(s1, s2);
q) printf("strcmp(s1, s2) = %d\n", strcmp(s1, s2));
r) ptr = strchr(s1, c);
s) sprintf(s1, "%7d%7d%7d", x, y, z);
t) strncat(s1, s2, 10);
u) printf("strlen(s1) = %u\n", strlen(s1));
v) printf("%d\n", atoi("-21")); *
w) ptr = strtok(s2, ",");

348 Chapter 8 C Characters and Strings

8.2 char vowel[] = "AEIOU";
char vowel[] = { 'A', 'E', 'I', 'O', 'U', '\0' };

8.3 a) Jack
b) jill
c) jack and jill
d) 8
e) 13

8.4 a) Error: Function strncpy does not write a terminating null character to array s, because
its third argument is equal to the length of the string "hello".
Correction: Make the third argument of strncpy 6, or assign '\0' to s[5].

b) Error: Attempting to print a character constant as a string.
Correction: Use %c to output the character, or replace 'a' with "a".

c) Error: Character array s is not large enough to store the terminating null character.
Correction: Declare the array with more elements.

d) Error: Function strcmp returns 0 if the strings are equal; therefore, the condition in the
if statement is false, and the printf will not be executed.
Correction: Compare the result of strcmp with 0 in the condition.

Exercises
8.5 (Character Testing) Write a program that inputs a character from the keyboard and tests
the character with each of the functions in the character-handling library. The program should print
the value returned by each function.

8.6 (Displaying Strings in Uppercase and Lowercase) Write a program that inputs a line of text
into char array s[100]. Output the line in uppercase letters and in lowercase letters.

8.7 (Converting Strings to Integers for Calculations) Write a program that inputs four strings
that represent integers, converts the strings to integers, sums the values and prints the total of the
four values.

8.8 (Converting Strings to Floating Point for Calculations) Write a program that inputs four
strings that represent floating-point values, converts the strings to double values, sums the values
and prints the total of the four values.

8.9 (Comparing Strings) Write a program that uses function strcmp to compare two strings in-
put by the user. The program should state whether the first string is less than, equal to or greater
than the second string.

8.10 (Comparing Portions of Strings) Write a program that uses function strncmp to compare
two strings input by the user. The program should input the number of characters to be compared,
then display whether the first string is less than, equal to or greater than the second string.

8.11 (Random Sentences) Write a program that uses random number generation to create sen-
tences. The program should use four arrays of pointers to char called article, noun, verb and prep-
osition. The program should create a sentence by selecting a word at random from each array in
the following order: article, noun, verb, preposition, article and noun. As each word is picked,
it should be concatenated to the previous words in an array large enough to hold the entire sentence.
The words should be separated by spaces. When the final sentence is output, it should start with a
capital letter and end with a period. The program should generate 20 such sentences. The arrays
should be filled as follows: The article array should contain the articles "the", "a", "one", "some"
and "any"; the noun array should contain the nouns "boy", "girl", "dog", "town" and "car"; the
verb array should contain the verbs "drove", "jumped", "ran", "walked" and "skipped"; the prep-
osition array should contain the prepositions "to", "from", "over", "under" and "on".

 Exercises 349

After the preceding program is written and working, modify it to produce a short story con-
sisting of several of these sentences. (How about the possibility of a random term paper writer?)

8.12 (Limericks) A limerick is a humorous five-line verse in which the first and second lines
rhyme with the fifth, and the third line rhymes with the fourth. Using techniques similar to those
developed in Exercise 8.11, write a program that produces random limericks. Polishing this pro-
gram to produce good limericks is a challenging problem, but the result will be worth the effort!

8.13 (Pig Latin) Write a program that encodes English-language phrases into pig Latin. Pig Lat-
in is a form of coded language often used for amusement. Many variations exist in the methods used
to form pig-Latin phrases. For simplicity, use the following algorithm:

To form a pig-Latin phrase from an English-language phrase, tokenize the phrase into words
with function strtok. To translate each English word into a pig-Latin word, place the first letter of
the English word at the end of the English word and add the letters “ay.” Thus the word “jump”
becomes “umpjay,” the word “the” becomes “hetay” and the word “computer” becomes “omputer-
cay.” Blanks between words remain as blanks. Assume the following: The English phrase consists
of words separated by blanks, there are no punctuation marks, and all words have two or more let-
ters. Function printLatinWord should display each word. [Hint: Each time a token is found in a
call to strtok, pass the token pointer to function printLatinWord, and print the pig-Latin word.
Note: We’ve provided simplified rules for converting words to Pig Latin here. For more detailed
rules and variations, visit en.wikipedia.org/wiki/Pig_latin.]

8.14 (Tokenizing Telephone Numbers) Write a program that inputs a telephone number as a
string in the form (555) 555-5555. The program should use function strtok to extract the area code
as a token, the first three digits of the phone number as a token and the last four digits of the phone
number as a token. The seven digits of the phone number should be concatenated into one string.
The program should convert the area-code string to int and convert the phone-number string to
long. Both the area code and the phone number should be printed.

8.15 (Displaying a Sentence with Its Words Reversed) Write a program that inputs a line of text,
tokenizes the line with function strtok and outputs the tokens in reverse order.

8.16 (Searching for Substrings) Write a program that inputs a line of text and a search string
from the keyboard. Using function strstr, locate the first occurrence of the search string in the line
of text, and assign the location to variable searchPtr of type char *. If the search string is found,
print the remainder of the line of text beginning with the search string. Then, use strstr again to
locate the next occurrence of the search string in the line of text. If a second occurrence is found,
print the remainder of the line of text beginning with the second occurrence. [Hint: The second call
to strstr should contain searchPtr + 1 as its first argument.]

8.17 (Counting the Occurrences of a Substring) Write a program based on the program of
Exercise 8.16 that inputs several lines of text and a search string and uses function strstr to deter-
mine the total occurrences of the string in the lines of text. Print the result.

8.18 (Counting the Occurrences of a Character) Write a program that inputs several lines of text
and a search character and uses function strchr to determine the total occurrences of the character
in the lines of text.

8.19 (Counting the Letters of the Alphabet in a String) Write a program based on the program
of Exercise 8.18 that inputs several lines of text and uses function strchr to determine the total oc-
currences of each letter of the alphabet in the lines of text. Uppercase and lowercase letters should
be counted together. Store the totals for each letter in an array and print the values in tabular format
after the totals have been determined.

8.20 (Counting the Number of Words in a String) Write a program that inputs several lines of
text and uses strtok to count the total number of words. Assume that the words are separated by
either spaces or newline characters.

350 Chapter 8 C Characters and Strings

8.21 (Alphabetizing a List of Strings) Use the string-comparison functions discussed in
Section 8.6 and the techniques for sorting arrays developed in Chapter 6 to write a program that
alphabetizes a list of strings. Use the names of 10 or 15 towns in your area as data for your program.

8.22 The chart in Appendix B shows the numeric code representations for the characters in the
ASCII character set. Study this chart and then state whether each of the following is true or false.

a) The letter “A” comes before the letter “B.”
b) The digit “9” comes before the digit “0.”
c) The commonly used symbols for addition, subtraction, multiplication and division all

come before any of the digits.
d) The digits come before the letters.
e) If a sort program sorts strings into ascending sequence, then the program will place the

symbol for a right parenthesis before the symbol for a left parenthesis.

8.23 (Strings Starting with "b") Write a program that reads a series of strings and prints only
those strings beginning with the letter “b.”

8.24 (Strings Ending with "ed") Write a program that reads a series of strings and prints only
those strings that end with the letters “ed.”

8.25 (Printing Letters for Various ASCII Codes) Write a program that inputs an ASCII code and
prints the corresponding character. Modify this program so that it generates all possible three-digit
codes in the range 000 to 255 and attempts to print the corresponding characters. What happens
when this program is run?

8.26 (Write Your Own Character-Handling Functions) Using the ASCII character chart in
Appendix B as a guide, write your own versions of the character-handling functions in Fig. 8.1.

8.27 (Write Your String Conversion Functions) Write your own versions of the functions in
Fig. 8.5 for converting strings to numbers.

8.28 (Write Your Own String Copy and Concatenation Functions) Write two versions of each
of the string-copy and string-concatenation functions in Fig. 8.17. The first version should use array
subscripting, and the second version should use pointers and pointer arithmetic.

8.29 (Write Your Own Character and String I/O Functions) Write your own versions of the
functions getchar, putchar and puts described in Fig. 8.12.

8.30 (Write Your Own String Comparison Functions) Write two versions of each string-com-
parison function in Fig. 8.20. The first version should use array subscripting, and the second version
should use pointers and pointer arithmetic.

8.31 (Write Your Own String Searching Functions) Write your own versions of the functions in
Fig. 8.22 for searching strings.

8.32 (Write Your Own Memory-Handling Functions) Write your own versions of the functions
in Fig. 8.30 for manipulating blocks of memory.

8.33 (Write Your Own String Length Function) Write two versions of function strlen in
Fig. 8.36. The first version should use array subscripting, and the second version should use pointers
and pointer arithmetic.

Special Section: Advanced String-Manipulation Exercises
The preceding exercises are keyed to the text and designed to test the reader’s understanding of fun-
damental string-manipulation concepts. This section includes a collection of intermediate and
advanced problems. The reader should find these problems challenging yet enjoyable. The prob-
lems vary considerably in difficulty. Some require an hour or two of program writing and

 Special Section: Advanced String-Manipulation Exercises 351

implementation. Others are useful for lab assignments that might require two or three weeks of
study and implementation. Some are challenging term projects.

8.34 (Text Analysis) The availability of computers with string-manipulation capabilities has re-
sulted in some rather interesting approaches to analyzing the writings of great authors. Much atten-
tion has been focused on whether William Shakespeare ever lived. Some scholars find substantial
evidence that Christopher Marlowe actually penned the masterpieces attributed to Shakespeare. Re-
searchers have used computers to find similarities in the writings of these two authors. This exercise
examines three methods for analyzing texts with a computer.

a) Write a program that reads several lines of text and prints a table indicating the number
of occurrences of each letter of the alphabet in the text. For example, the phrase

To be, or not to be: that is the question:

contains one “a,” two “b’s,” no “c’s,” and so on.
b) Write a program that reads several lines of text and prints a table indicating the number

of one-letter words, two-letter words, three-letter words, and so on, appearing in the
text. For example, the phrase

Whether 'tis nobler in the mind to suffer

contains

c) Write a program that reads several lines of text and prints a table indicating the number
of occurrences of each different word in the text. The first version of your program
should include the words in the table in the same order in which they appear in the text.
A more interesting (and useful) printout should then be attempted in which the words
are sorted alphabetically. For example, the lines

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer

contain the words “to” three times, the word “be” two times, the word “or” once, and
so on.

8.35 (Word Processing) The detailed treatment of string manipulation in this text is largely at-
tributable to the exciting growth in word processing in recent years. One important function in
word-processing systems is type justification—the alignment of words to both the left and right mar-
gins of a page. This generates a professional-looking document that gives the appearance of being
set in type, rather than prepared on a typewriter. Type justification can be accomplished on com-
puter systems by inserting one or more blank characters between each of the words in a line so that
the rightmost word aligns with the right margin.

Write a program that reads several lines of text and prints this text in type-justified format.
Assume that the text is to be printed on 8 1/2-inch-wide paper and that one-inch margins are to be

Word length Occurrences

1 0
2 2
3 1
4 2 (including ’tis)
5 0
6 2
7 1

352 Chapter 8 C Characters and Strings

allowed on both the left and right sides of the printed page. Assume that the computer prints 10
characters to the horizontal inch. Therefore, your program should print 6 1/2 inches of text or 65
characters per line.

8.36 (Printing Dates in Various Formats) Dates are commonly printed in several different for-
mats in business correspondence. Two of the more common formats are

07/21/2003 and July 21, 2003

Write a program that reads a date in the first format and prints it in the second format.

8.37 (Check Protection) Computers are frequently used in check-writing systems, such as payroll
and accounts payable applications. Many stories circulate regarding weekly paychecks being printed
(by mistake) for amounts in excess of $1 million. Weird amounts are printed by computerized
check-writing systems because of human error and/or machine failure. Systems designers, of course,
make every effort to build controls into their systems to prevent erroneous checks from being issued.

Another serious problem is the intentional alteration of a check amount by someone who
intends to cash it fraudulently. To prevent a dollar amount from being altered, most computerized
check-writing systems employ a technique called check protection.

Checks designed for imprinting by computer contain a fixed number of spaces in which the
computer may print an amount. Suppose a paycheck contains nine blank spaces in which the com-
puter is supposed to print the amount of a weekly paycheck. If the amount is large, then all nine of
those spaces will be filled—for example:

11,230.60 (check amount)

123456789 (position numbers)

On the other hand, if the amount is less than $1000, then several of the spaces will ordinarily
be left blank—for example,

 99.87

123456789

contains four blank spaces. If a check is printed with blank spaces, it is easier for someone to alter
the amount of the check. To prevent a check from being altered, many check-writing systems insert
leading asterisks to protect the amount as follows:

****99.87

123456789

Write a program that inputs a dollar amount to be printed on a check and then prints the
amount in check-protected format with leading asterisks if necessary. Assume that nine spaces are
available for printing an amount.

8.38 (Writing the Word Equivalent of a Check Amount) Continuing the discussion of the previ-
ous example, we reiterate the importance of designing check-writing systems to prevent alteration
of check amounts. One common security method requires that the check amount be both written
in numbers and “spelled out” in words. Even if someone is able to alter the numerical amount of
the check, it is extremely difficult to change the amount in words.

Many computerized check-writing systems do not print the amount of the check in words.
Perhaps the main reason for this omission is the fact that most high-level languages used in com-
mercial applications do not contain adequate string-manipulation features. Another reason is that
the logic for writing word equivalents of check amounts is somewhat involved.

Write a program that inputs a numeric check amount and writes the word equivalent of the
amount. For example, the amount 112.43 should be written as

ONE HUNDRED TWELVE and 43/100

 Special Section: Advanced String-Manipulation Exercises 353

8.39 (Morse Code) Perhaps the most famous of all coding schemes is Morse code, developed by
Samuel Morse in 1832 for use with the telegraph system. Morse code assigns a series of dots and
dashes to each letter of the alphabet, each digit, and a few special characters (such as period, comma,
colon and semicolon). In sound-oriented systems, the dot represents a short sound and the dash rep-
resents a long sound. Other representations of dots and dashes are used with light-oriented systems
and signal-flag systems.

Separation between words is indicated by a space—quite simply, the absence of a dot or dash.
In a sound-oriented system, a space is indicated by a short period of time during which no sound is
transmitted. The international version of Morse code appears in Fig. 8.39.

Write a program that reads an English-language phrase and encodes the phrase into Morse
code. Also write a program that reads a phrase in Morse code and converts the phrase into the
English-language equivalent. Use one blank between each Morse-coded letter and three blanks
between each Morse-coded word.

8.40 (A Metric Conversion Program) Write a program that will assist the user with metric con-
versions. Your program should allow the user to specify the names of the units as strings (i.e., cen-
timeters, liters, grams, and so on for the metric system and inches, quarts, pounds, and so on for the
English system) and should respond to simple questions such as

"How many inches are in 2 meters?"
"How many liters are in 10 quarts?"

Your program should recognize invalid conversions. For example, the question

"How many feet in 5 kilograms?"

is not meaningful, because "feet" are units of length while "kilograms" are units of mass.

8.41 (Dunning Letters) Many businesses spend a great deal of time and money collecting over-
due debts. Dunning is the process of making repeated and insistent demands upon a debtor in an
attempt to collect a debt.

Character Code Character Code Character Code

A .- N -. Digits

B -... O --- 1 .----

C -.-. P .--. 2 ..---

D -.. Q --.- 3 ...--

E . R .-. 4-

F ..-. S ... 5

G --. T - 6 -....

H U ..- 7 --...

I .. V ...- 8 ---..

J .--- W .-- 9 ----.

K -.- X -..- 0 -----

L .-.. Y -.--

M -- Z --..

Fig. 8.39 | The letters of the alphabet as expressed in international Morse code.

354 Chapter 8 C Characters and Strings

Computers are often used to generate dunning letters automatically and in increasing degrees
of severity as a debt ages. The theory is that as a debt becomes older, it becomes more difficult to
collect, and therefore the dunning letters must become more threatening.

Write a program that contains the texts of five dunning letters of increasing severity. Your pro-
gram should accept as input the following:

a) Debtor’s name
b) Debtor’s address
c) Debtor’s account
d) Amount owed
e) Age of the amount owed (i.e., one month overdue, two months overdue, and so on).

Use the age of the amount owed to select one of the five message texts, and then print the
dunning letter, inserting the other user-supplied information where appropriate.

A Challenging String-Manipulation Project
8.42 (A Crossword-Puzzle Generator) Most people have worked a crossword puzzle at one time
or another, but few have ever attempted to generate one. Generating a crossword puzzle is a difficult
problem. It is suggested here as a string-manipulation project requiring substantial sophistication
and effort. There are many issues you must resolve to get even the simplest crossword-puzzle gener-
ator program working. For example, how does one represent the grid of a crossword puzzle inside
the computer? Should one use a series of strings, or should double-subscripted arrays be used? You
need a source of words (i.e., a computerized dictionary) that can be directly referenced by the pro-
gram. In what form should these words be stored to facilitate the complex manipulations required
by the program? The really ambitious reader will want to generate the “clues” portion of the puzzle
in which the brief hints for each “across” word and each “down” word are printed for the puzzle
worker. Merely printing a version of the blank puzzle itself is not a simple problem.

Making a Difference
8.43 (Cooking with Healthier Ingredients) Obesity in America is increasing at an alarming rate.
Check the map from the Centers for Disease Control and Prevention (CDC) at www.cdc.gov/
nccdphp/dnpa/Obesity/trend/maps/index.htm, which shows obesity trends in the United States
over the last 20 years. As obesity increases, so do occurrences of related problems (e.g., heart disease,
high blood pressure, high cholesterol, type 2 diabetes). Write a program that helps users choose
healthier ingredients when cooking, and helps those allergic to certain foods (e.g., nuts, gluten) find
substitutes. The program should read a recipe from the user and suggest healthier replacements for
some of the ingredients. For simplicity, your program should assume the recipe has no abbreviations
for measures such as teaspoons, cups, and tablespoons, and uses numerical digits for quantities (e.g.,
1 egg, 2 cups) rather than spelling them out (one egg, two cups). Some common substitutions are
shown in Fig. 8.40. Your program should display a warning such as, “Always consult your physician
before making significant changes to your diet.”

Your program should take into consideration that replacements are not always one-for-one.
For example, if a cake recipe calls for three eggs, it might reasonably use six egg whites instead.
Conversion data for measurements and substitutes can be obtained at websites such as:

chinesefood.about.com/od/recipeconversionfaqs/f/usmetricrecipes.htm
www.pioneerthinking.com/eggsub.html
www.gourmetsleuth.com/conversions.htm

Your program should consider the user’s health concerns, such as high cholesterol, high blood pres-
sure, weight loss, gluten allergy, and so on. For high cholesterol, the program should suggest substi-
tutes for eggs and dairy products; if the user wishes to lose weight, low-calorie substitutes for
ingredients such as sugar should be suggested.

www.cdc.gov/nccdphp/dnpa/Obesity/trend/maps/index.htm
www.cdc.gov/nccdphp/dnpa/Obesity/trend/maps/index.htm
www.pioneerthinking.com/eggsub.html
www.gourmetsleuth.com/conversions.htm

 Making a Difference 355

8.44 (Spam Scanner) Spam (or junk e-mail) costs U.S. organizations billions of dollars a year in
spam-prevention software, equipment, network resources, bandwidth, and lost productivity.
Research online some of the most common spam e-mail messages and words, and check your own
junk e-mail folder. Create a list of 30 words and phrases commonly found in spam messages. Write
a program in which the user enters an e-mail message. Read the message into a large character array
and ensure that the program does not attempt to insert characters past the end of the array. Then,
scan the message for each of the 30 keywords or phrases. For each occurrence of one of these within
the message, add a point to the message’s “spam score.” Next, rate the likelihood that the message
is spam, based on the number of points it received.

8.45 (SMS Language) Short Message Service (SMS) is a communications service that allows
sending text messages of 160 or fewer characters between mobile phones. With the proliferation of
mobile phone use worldwide, SMS is being used in many developing nations for political purposes
(e.g., voicing opinions and opposition), reporting news about natural disasters, and so on. For ex-
ample, check out comunica.org/radio2.0/archives/87. Since the length of SMS messages is limit-
ed, SMS Language—abbreviations of common words and phrases in mobile text messages, e-mails,
instant messages, etc.—is often used. For example, “in my opinion” is “IMO” in SMS Language.
Research SMS Language online. Write a program in which the user can enter a message using SMS
Language, then the program translates it into English (or your own language). Also provide a mech-
anism to translate text written in English (or your own language) into SMS Language. One potential
problem is that one SMS abbreviation could expand into a variety of phrases. For example, IMO (as
used above) could also stand for “International Maritime Organization,” “in memory of,” etc.

8.46 (Gender-Neutrality) In Exercise 1.12, you researched eliminating sexism in all forms of
communication. You then described the algorithm you’d use to read through a paragraph of text
and replace gender-specific words with gender-neutral equivalents. Create a program that reads a
paragraph of text, then replaces gender-specific words with gender-neutral ones. Display the result-
ing gender-neutral text.

Ingredient Substitution

1 cup sour cream 1 cup yogurt

1 cup milk 1/2 cup evaporated milk and 1/2 cup water

1 teaspoon lemon juice 1/2 teaspoon vinegar

1 cup sugar 1/2 cup honey, 1 cup molasses
or 1/4 cup agave nectar

1 cup butter 1 cup margarine or yogurt

1 cup flour 1 cup rye or rice flour

1 cup mayonnaise 1 cup cottage cheese
or 1/8 cup mayonnaise and 7/8 cup yogurt

1 egg 2 tablespoons cornstarch, arrowroot flour
or potato starch or 2 egg whites
or 1/2 of a large banana (mashed)

1 cup milk 1 cup soy milk

1/4 cup oil 1/4 cup applesauce

white bread whole-grain bread

Fig. 8.40 | Typical ingredient substitutes.

9 C Formatted Input/Output

All the news that’s fit to print.
—Adolph S. Ochs

What mad pursuit? What
struggle to escape?
—John Keats

Remove not the landmark on
the boundary of the fields.
—Amenemope

O b j e c t i v e s
In this chapter, you’ll learn:

■ To use input and output
streams.

■ To use all print formatting
capabilities.

■ To use all input formatting
capabilities.

■ To print with field widths and
precisions.

■ To use formatting flags in the
printf format control
string.

■ To output literals and escape
sequences.

■ To format input using scanf.

9.1 Introduction 357

9.1 Introduction
An important part of the solution to any problem is the presentation of the results. In this
chapter, we discuss in depth the formatting features of scanf and printf. These functions
input data from the standard input stream and output data to the standard output stream.
Four other functions that use the standard input and standard output—gets, puts,
getchar and putchar—were discussed in Chapter 8. Include the header <stdio.h> in
programs that call these functions.

Many features of printf and scanf were discussed earlier in the text. This chapter
summarizes those features and introduces others. Chapter 11 discusses several additional
functions included in the standard input/output (<stdio.h>) library.

9.2 Streams
All input and output is performed with streams, which are sequences of bytes. In input
operations, the bytes flow from a device (e.g., a keyboard, a disk drive, a network connec-
tion) to main memory. In output operations, bytes flow from main memory to a device
(e.g., a display screen, a printer, a disk drive, a network connection, and so on).

When program execution begins, three streams are connected to the program auto-
matically. Normally, the standard input stream is connected to the keyboard and the stan-
dard output stream is connected to the screen. Operating systems often allow these streams
to be redirected to other devices. A third stream, the standard error stream, is connected
to the screen. Error messages are output to the standard error stream. Streams are discussed
in detail in Chapter 11, C File Processing.

9.3 Formatting Output with printf
Precise output formatting is accomplished with printf. Every printf call contains a for-
mat control string that describes the output format. The format control string consists of
conversion specifiers, flags, field widths, precisions and literal characters. Together with
the percent sign (%), these form conversion specifications. Function printf can perform
the following formatting capabilities, each of which is discussed in this chapter:

1. Rounding floating-point values to an indicated number of decimal places.

2. Aligning a column of numbers with decimal points appearing one above the other.

3. Right justification and left justification of outputs.

9.1 Introduction
9.2 Streams
9.3 Formatting Output with printf
9.4 Printing Integers
9.5 Printing Floating-Point Numbers
9.6 Printing Strings and Characters
9.7 Other Conversion Specifiers

9.8 Printing with Field Widths and
Precision

9.9 Using Flags in the printf Format
Control String

9.10 Printing Literals and Escape
Sequences

9.11 Reading Formatted Input with scanf

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

358 Chapter 9 C Formatted Input/Output

4. Inserting literal characters at precise locations in a line of output.

5. Representing floating-point numbers in exponential format.

6. Representing unsigned integers in octal and hexadecimal format. See Appendix C
for more information on octal and hexadecimal values.

7. Displaying all types of data with fixed-size field widths and precisions.

The printf function has the form

format-control-string describes the output format, and other-arguments (which are optional)
correspond to each conversion specification in format-control-string. Each conversion spec-
ification begins with a percent sign and ends with a conversion specifier. There can be
many conversion specifications in one format control string.

9.4 Printing Integers
An integer is a whole number, such as 776, 0 or –52, that contains no decimal point. In-
teger values are displayed in one of several formats. Figure 9.1 describes the integer con-
version specifiers.

Figure 9.2 prints an integer using each of the integer conversion specifiers. Only the
minus sign prints; plus signs are suppressed. Later in this chapter we’ll see how to force

printf(format-control-string, other-arguments);

Common Programming Error 9.1
Forgetting to enclose a format-control-string in quotation marks is a syntax error.

Good Programming Practice 9.1
Format outputs neatly for presentation to make program outputs more readable and re-
duce user errors.

Conversion specifier Description

d Display as a signed decimal integer.

i Display as a signed decimal integer. [Note: The i and d specifiers are
different when used with scanf.]

o Display as an unsigned octal integer.

u Display as an unsigned decimal integer.

x or X Display as an unsigned hexadecimal integer. X causes the digits 0-9
and the letters A-F to be displayed and x causes the digits 0-9 and a-
f to be displayed.

h or l (letter l) Place before any integer conversion specifier to indicate that a short
or long integer is displayed, respectively. Letters h and l are more
precisely called length modifiers.

Fig. 9.1 | Integer conversion specifiers.

9.5 Printing Floating-Point Numbers 359

plus signs to print. Also, the value -455, when read by %u (line 15), is converted to the
unsigned value 4294966841.

9.5 Printing Floating-Point Numbers
A floating-point value contains a decimal point as in 33.5, 0.0 or -657.983. Floating-
point values are displayed in one of several formats. Figure 9.3 describes the floating-point
conversion specifiers. The conversion specifiers e and E display floating-point values in
exponential notation—the computer equivalent of scientific notation used in math-
ematics. For example, the value 150.4582 is represented in scientific notation as

and is represented in exponential notation as

1 /* Fig 9.2: fig09_02.c */
2 /* Using the integer conversion specifiers */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 printf("%d\n", 455);
8 printf("%i\n", 455); /* i same as d in printf */
9 printf("%d\n", +455);

10 printf("%d\n", -455);
11 printf("%hd\n", 32000);
12 printf("%ld\n", 2000000000L); /* L suffix makes literal a long */
13 printf("%o\n", 455);
14 printf("%u\n", 455);
15 printf("%u\n", -455);
16 printf("%x\n", 455);
17 printf("%X\n", 455);
18 return 0; /* indicates successful termination */
19 } /* end main */

455
455
455
-455
32000
2000000000
707
455
4294966841
1c7
1C7

Fig. 9.2 | Using integer conversion specifiers.

Common Programming Error 9.2
Printing a negative value with a conversion specifier that expects an unsigned value.

1.504582 × 102

1.504582E+02

360 Chapter 9 C Formatted Input/Output

by the computer. This notation indicates that 1.504582 is multiplied by 10 raised to the
second power (E+02). The E stands for “exponent.”

Values displayed with the conversion specifiers e, E and f show six digits of precision
to the right of the decimal point by default (e.g., 1.04592); other precisions can be speci-
fied explicitly. Conversion specifier f always prints at least one digit to the left of the dec-
imal point. Conversion specifiers e and E print lowercase e and uppercase E, respectively,
preceding the exponent, and print exactly one digit to the left of the decimal point.

Conversion specifier g (or G) prints in either e (E) or f format with no trailing zeros
(1.234000 is printed as 1.234). Values are printed with e (E) if, after conversion to expo-
nential notation, the value’s exponent is less than -4, or the exponent is greater than or
equal to the specified precision (six significant digits by default for g and G). Otherwise,
conversion specifier f is used to print the value. Trailing zeros are not printed in the frac-
tional part of a value output with g or G. At least one decimal digit is required for the dec-
imal point to be output. The values 0.0000875, 8750000.0, 8.75, 87.50 and 875 are
printed as 8.75e-05, 8.75e+06, 8.75, 87.5 and 875 with the conversion specifier g. The
value 0.0000875 uses e notation because, when it’s converted to exponential notation, its
exponent (-5) is less than -4. The value 8750000.0 uses e notation because its exponent
(6) is equal to the default precision.

The precision for conversion specifiers g and G indicates the maximum number of sig-
nificant digits printed, including the digit to the left of the decimal point. The value
1234567.0 is printed as 1.23457e+06, using conversion specifier %g (remember that all
floating-point conversion specifiers have a default precision of 6). There are 6 significant
digits in the result. The difference between g and G is identical to the difference between
e and E when the value is printed in exponential notation—lowercase g causes a lowercase
e to be output, and uppercase G causes an uppercase E to be output.

Figure 9.4 demonstrates each of the floating-point conversion specifiers. The %E, %e
and %g conversion specifiers cause the value to be rounded in the output and the conver-
sion specifier %f does not. [Note: With some compilers, the exponent in the outputs will
be shown with two digits to the right of the + sign.]

Conversion specifier Description

e or E Display a floating-point value in exponential notation.

f Display floating-point values in fixed-point notation. [Note: In
C99, you can also use F.]

g or G Display a floating-point value in either the floating-point form f or
the exponential form e (or E), based on the magnitude of the value.

L Place before any floating-point conversion specifier to indicate that
a long double floating-point value is displayed.

Fig. 9.3 | Floating-point conversion specifiers.

Error-Prevention Tip 9.1
When outputting data, be sure that the user is aware of situations in which data may be
imprecise due to formatting (e.g., rounding errors from specifying precisions).

9.6 Printing Strings and Characters 361

9.6 Printing Strings and Characters
The c and s conversion specifiers are used to print individual characters and strings, re-
spectively. Conversion specifier c requires a char argument. Conversion specifier s re-
quires a pointer to char as an argument. Conversion specifier s causes characters to be
printed until a terminating null ('\0') character is encountered. The program shown in
Fig. 9.5 displays characters and strings with conversion specifiers c and s.

1 /* Fig 9.4: fig09_04.c */
2 /* Printing floating-point numbers with
3 floating-point conversion specifiers */
4
5 #include <stdio.h>
6
7 int main(void)
8 {
9 printf("%e\n", 1234567.89);

10 printf("%e\n", +1234567.89);
11 printf("%e\n", -1234567.89);
12 printf("%E\n", 1234567.89);
13 printf("%f\n", 1234567.89);
14 printf("%g\n", 1234567.89);
15 printf("%G\n", 1234567.89);
16 return 0; /* indicates successful termination */
17 } /* end main */

1.234568e+006
1.234568e+006
-1.234568e+006
1.234568E+006
1234567.890000
1.23457e+006
1.23457E+006

Fig. 9.4 | Using floating-point conversion specifiers.

Common Programming Error 9.3
Using %c to print a string is an error. The conversion specifier %c expects a char argument.
A string is a pointer to char (i.e., a char *).

Common Programming Error 9.4
Using %s to print a char argument often causes a fatal execution-time error called an ac-
cess violation. The conversion specifier %s expects an argument of type pointer to char.

Common Programming Error 9.5
Using single quotes around character strings is a syntax error. Character strings must be
enclosed in double quotes.

Common Programming Error 9.6
Using double quotes around a character constant creates a pointer to a string consisting of
two characters, the second of which is the terminating null.

362 Chapter 9 C Formatted Input/Output

9.7 Other Conversion Specifiers
The three remaining conversion specifiers are p, n and % (Fig. 9.6). The conversion spec-
ifier %n stores the number of characters output so far in the current printf—the corre-
sponding argument is a pointer to an integer variable in which the value is stored—
nothing is printed by a %n. The conversion specifier % causes a percent sign to be output.

Figure 9.7’s %p prints the value of ptr and the address of x; these values are identical
because ptr is assigned the address of x. Next, %n stores the number of characters output
by the third printf statement (line 15) in integer variable y, and the value of y is printed.
The last printf statement (line 21) uses %% to print the % character in a character string.
Every printf call returns a value—either the number of characters output, or a negative
value if an output error occurs. [Note: This example will not execute in Microsoft Visual
C++ because %n has been disabled by Microsoft “for security reasons.” To execute the rest
of the program, remove lines 15–16.]

1 /* Fig 9.5: fig09_05c */
2 /* Printing strings and characters */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 char character = 'A'; /* initialize char */
8 char string[] = "This is a string"; /* initialize char array */
9 const char *stringPtr = "This is also a string"; /* char pointer */

10
11 printf();
12 printf();
13 printf();
14 printf();
15 return 0; /* indicates successful termination */
16 } /* end main */

A
This is a string
This is a string
This is also a string

Fig. 9.5 | Using the character and string conversion specifiers.

Conversion specifier Description

p Display a pointer value in an implementation-defined manner.
n Store the number of characters already output in the current

printf statement. A pointer to an integer is supplied as the
corresponding argument. Nothing is displayed.

% Display the percent character.

Fig. 9.6 | Other conversion specifiers.

"%c\n", character
"%s\n", "This is a string"
"%s\n", string
"%s\n", stringPtr

9.8 Printing with Field Widths and Precision 363

9.8 Printing with Field Widths and Precision
The exact size of a field in which data is printed is specified by a field width. If the field
width is larger than the data being printed, the data will normally be right justified within
that field. An integer representing the field width is inserted between the percent sign (%)
and the conversion specifier (e.g., %4d). Figure 9.8 prints two groups of five numbers each,
right justifying those numbers that contain fewer digits than the field width. The field

Portability Tip 9.1
The conversion specifier p displays an address in an implementation-defined manner (on
many systems, hexadecimal notation is used rather than decimal notation).

Common Programming Error 9.7
Trying to print a literal percent character using % rather than %% in the format control string.
When % appears in a format control string, it must be followed by a conversion specifier.

1 /* Fig 9.7: fig09_07.c */
2 /* Using the p, n, and % conversion specifiers */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 int *ptr; /* define pointer to int */
8 int x = 12345; /* initialize int x */
9 int y; /* define int y */

10
11 ptr = &x; /* assign address of x to ptr */
12
13
14
15
16 printf(" %d\n\n", y);
17
18 y = printf("This line has 28 characters\n");
19 printf("%d characters were printed\n\n", y);
20
21
22 return 0; /* indicates successful termination */
23 } /* end main */

The value of ptr is 0012FF78
The address of x is 0012FF78

Total characters printed on this line: 38

This line has 28 characters
28 characters were printed

Printing a % in a format control string

Fig. 9.7 | Using the p, n and % conversion specifiers.

printf("The value of ptr is %p\n", ptr);
printf("The address of x is %p\n\n", &x);

printf("Total characters printed on this line:%n", &y);

printf("Printing a %% in a format control string\n");

364 Chapter 9 C Formatted Input/Output

width is increased to print values wider than the field and that the minus sign for a neg-
ative value uses one character position in the field width. Field widths can be used with all
conversion specifiers.

Function printf also enables you to specify the precision with which data is printed.
Precision has different meanings for different data types. When used with integer conver-
sion specifiers, precision indicates the minimum number of digits to be printed. If the
printed value contains fewer digits than the specified precision and the precision value has
a leading zero or decimal point, zeros are prefixed to the printed value until the total
number of digits is equivalent to the precision. If neither a zero nor a decimal point is
present in the precision value, spaces are inserted instead. The default precision for integers
is 1. When used with floating-point conversion specifiers e, E and f, the precision is the
number of digits to appear after the decimal point. When used with conversion specifiers
g and G, the precision is the maximum number of significant digits to be printed. When

Common Programming Error 9.8
Not providing a sufficiently large field width to handle a value to be printed can offset
other data being printed and can produce confusing outputs. Know your data!

1 /* Fig 9.8: fig09_08.c */
2 /* Printing integers right-justified */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 printf("%4d\n", 1);
8 printf("%4d\n", 12);
9 printf("%4d\n", 123);

10 printf("%4d\n", 1234);
11 printf("%4d\n\n", 12345);
12
13 printf("%4d\n", -1);
14 printf("%4d\n", -12);
15 printf("%4d\n", -123);
16 printf("%4d\n", -1234);
17 printf("%4d\n", -12345);
18 return 0; /* indicates successful termination */
19 } /* end main */

 1
 12
 123
1234
12345

 -1
 -12
-123
-1234
-12345

Fig. 9.8 | Right justifying integers in a field.

9.8 Printing with Field Widths and Precision 365

used with conversion specifier s, the precision is the maximum number of characters to be
written from the string. To use precision, place a decimal point (.), followed by an integer
representing the precision between the percent sign and the conversion specifier.
Figure 9.9 demonstrates the use of precision in format control strings. When a floating-
point value is printed with a precision smaller than the original number of decimal places
in the value, the value is rounded.

The field width and the precision can be combined by placing the field width, fol-
lowed by a decimal point, followed by a precision between the percent sign and the con-
version specifier, as in the statement

which displays 123.457 with three digits to the right of the decimal point right justified in
a nine-digit field.

It’s possible to specify the field width and the precision using integer expressions in
the argument list following the format control string. To use this feature, insert an asterisk

1 /* Fig 9.9: fig09_09.c */
2 /* Using precision while printing integers,
3 floating-point numbers, and strings */
4 #include <stdio.h>
5
6 int main(void)
7 {
8 int i = 873; /* initialize int i */
9 double f = 123.94536; /* initialize double f */

10 char s[] = "Happy Birthday"; /* initialize char array s */
11
12 printf("Using precision for integers\n");
13
14
15 printf("Using precision for floating-point numbers\n");
16
17
18 printf("Using precision for strings\n");
19
20 return 0; /* indicates successful termination */
21 } /* end main */

Using precision for integers
 0873
 000000873

Using precision for floating-point numbers
 123.945
 1.239e+002
 124

Using precision for strings
 Happy Birth

Fig. 9.9 | Using precisions to display information of several types.

printf("%9.3f", 123.456789);

printf("\t%.4d\n\t%.9d\n\n", i, i);

printf("\t%.3f\n\t%.3e\n\t%.3g\n\n", f, f, f);

printf("\t%.11s\n", s);

366 Chapter 9 C Formatted Input/Output

(*) in place of the field width or precision (or both). The matching int argument in the
argument list is evaluated and used in place of the asterisk. A field width’s value may be
either positive or negative (which causes the output to be left justified in the field as
described in the next section). The statement

uses 7 for the field width, 2 for the precision and outputs the value 98.74 right justified.

9.9 Using Flags in the printf Format Control String
Function printf also provides flags to supplement its output formatting capabilities. Five
flags are available for use in format control strings (Fig. 9.10). To use a flag in a format
control string, place the flag immediately to the right of the percent sign. Several flags may
be combined in one conversion specifier.

Figure 9.11 demonstrates right justification and left justification of a string, an
integer, a character and a floating-point number.

printf("%*.*f", 7, 2, 98.736);

Flag Description

- (minus sign) Left justify the output within the specified field.

+ (plus sign) Display a plus sign preceding positive values and a minus sign preceding
negative values.

space Print a space before a positive value not printed with the + flag.
Prefix 0 to the output value when used with the octal conversion specifier o.

Prefix 0x or 0X to the output value when used with the hexadecimal conver-
sion specifiers x or X.

Force a decimal point for a floating-point number printed with e, E, f, g or
G that does not contain a fractional part. (Normally the decimal point is
printed only if a digit follows it.) For g and G specifiers, trailing zeros are not
eliminated.

0 (zero) Pad a field with leading zeros.

Fig. 9.10 | Format control string flags.

1 /* Fig 9.11: fig09_11.c */
2 /* Right justifying and left justifying values */
3 #include <stdio.h>
4
5 int main(void)
6 {
7
8
9 return 0; /* indicates successful termination */

10 } /* end main */

Fig. 9.11 | Left justifying strings in a field. (Part 1 of 2.)

printf("%10s%10d%10c%10f\n\n", "hello", 7, 'a', 1.23);
printf("%-10s%-10d%-10c%-10f\n", "hello", 7, 'a', 1.23);

9.9 Using Flags in the printf Format Control String 367

Figure 9.12 prints a positive number and a negative number, each with and without
the + flag. The minus sign is displayed in both cases, but the plus sign is displayed only
when the + flag is used.

Figure 9.13 prefixes a space to the positive number with the space flag. This is useful
for aligning positive and negative numbers with the same number of digits. The value -547
is not preceded by a space in the output because of its minus sign.

Figure 9.14 uses the # flag to prefix 0 to the octal value and 0x and 0X to the hexadec-
imal values, and to force the decimal point on a value printed with g.

 hello 7 a 1.230000

hello 7 a 1.230000

1 /* Fig 9.12: fig09_12.c */
2 /* Printing numbers with and without the + flag */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 printf("%d\n%d\n", 786, -786);
8
9 return 0; /* indicates successful termination */

10 } /* end main */

786
-786
+786
-786

Fig. 9.12 | Printing positive and negative numbers with and without the + flag.

1 /* Fig 9.13: fig09_13.c */
2 /* Printing a space before signed values
3 not preceded by + or - */
4 #include <stdio.h>
5
6 int main(void)
7 {
8
9 return 0; /* indicates successful termination */

10 } /* end main */

 547
-547

Fig. 9.13 | Using the space flag.

Fig. 9.11 | Left justifying strings in a field. (Part 2 of 2.)

printf("%+d\n%+d\n", 786, -786);

printf("% d\n% d\n", 547, -547);

368 Chapter 9 C Formatted Input/Output

Figure 9.15 combines the + flag and the 0 (zero) flag to print 452 in a 9-space field with
a + sign and leading zeros, then prints 452 again using only the 0 flag and a 9-space field.

9.10 Printing Literals and Escape Sequences
Most literal characters to be printed in a printf statement can simply be included in the
format control string. However, there are several “problem” characters, such as the quota-
tion mark (") that delimits the format control string itself. Various control characters, such

1 /* Fig 9.14: fig09_14.c */
2 /* Using the # flag with conversion specifiers
3 o, x, X and any floating-point specifier */
4 #include <stdio.h>
5
6 int main(void)
7 {
8 int c = 1427; /* initialize c */
9 double p = 1427.0; /* initialize p */

10
11 printf("%#o\n", c);
12 printf("%#x\n", c);
13 printf("%#X\n", c);
14 printf("\n%g\n", p);
15 printf("%#g\n", p);
16 return 0; /* indicates successful termination */
17 } /* end main */

02623
0x593
0X593

1427
1427.00

Fig. 9.14 | Using the # flag.

1 /* Fig 9.15: fig09_15.c */
2 /* Printing with the 0(zero) flag fills in leading zeros */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 printf("%+09d\n", 452);
8 printf("%09d\n", 452);
9 return 0; /* indicates successful termination */

10 } /* end main */

+00000452
000000452

Fig. 9.15 | Using the 0 (zero) flag.

9.11 Reading Formatted Input with scanf 369

as newline and tab, must be represented by escape sequences. An escape sequence is repre-
sented by a backslash (\), followed by a particular escape character. Figure 9.16 lists the
escape sequences and the actions they cause.

9.11 Reading Formatted Input with scanf
Precise input formatting can be accomplished with scanf. Every scanf statement contains
a format control string that describes the format of the data to be input. The format con-
trol string consists of conversion specifiers and literal characters. Function scanf has the
following input formatting capabilities:

1. Inputting all types of data.

2. Inputting specific characters from an input stream.

3. Skipping specific characters in the input stream.

Function scanf is written in the following form:

format-control-string describes the formats of the input, and other-arguments are pointers
to variables in which the input will be stored.

Common Programming Error 9.9
Attempting to print as literal data in a printf statement a single quote, double quote or
backslash character without preceding that character with a backslash to form a proper
escape sequence is an error.

Escape sequence Description

\' (single quote) Output the single quote (') character.

\" (double quote) Output the double quote (") character.

\? (question mark) Output the question mark (?) character.

\\ (backslash) Output the backslash (\) character.

\a (alert or bell) Cause an audible (bell) or visual alert.

\b (backspace) Move the cursor back one position on the current line.

\f (new page or form feed) Move the cursor to the start of the next logical page.

\n (newline) Move the cursor to the beginning of the next line.

\r (carriage return) Move the cursor to the beginning of the current line.

\t (horizontal tab) Move the cursor to the next horizontal tab position.

\v (vertical tab) Move the cursor to the next vertical tab position.

Fig. 9.16 | Escape sequences.

scanf(format-control-string, other-arguments);

Good Programming Practice 9.2
When inputting data, prompt the user for one data item or a few data items at a time.
Avoid asking the user to enter many data items in response to a single prompt.

370 Chapter 9 C Formatted Input/Output

Figure 9.17 summarizes the conversion specifiers used to input all types of data. The
remainder of this section provides programs that demonstrate reading data with the
various scanf conversion specifiers.

Good Programming Practice 9.3
Always consider what the user and your program will do when (not if) incorrect data is
entered—for example, a value for an integer that is nonsensical in a program’s context, or
a string with missing punctuation or spaces.

Conversion specifier Description

Integers
d Read an optionally signed decimal integer. The corresponding argu-

ment is a pointer to an int.
i Read an optionally signed decimal, octal or hexadecimal integer.

The corresponding argument is a pointer to an int.
o Read an octal integer. The corresponding argument is a pointer to

an unsigned int.
u Read an unsigned decimal integer. The corresponding argument is a

pointer to an unsigned int.
x or X Read a hexadecimal integer. The corresponding argument is a

pointer to an unsigned int.
h or l Place before any of the integer conversion specifiers to indicate that

a short or long integer is to be input.

Floating-point numbers
e, E, f, g or G Read a floating-point value. The corresponding argument is a

pointer to a floating-point variable.
l or L Place before any of the floating-point conversion specifiers to indi-

cate that a double or long double value is to be input. The corre-
sponding argument is a pointer to a double or long double variable.

Characters and strings
c Read a character. The corresponding argument is a pointer to a

char; no null ('\0') is added.
s Read a string. The corresponding argument is a pointer to an array

of type char that is large enough to hold the string and a terminat-
ing null ('\0') character—which is automatically added.

Scan set
[scan characters] Scan a string for a set of characters that are stored in an array.

Miscellaneous
p Read an address of the same form produced when an address is out-

put with %p in a printf statement.
n Store the number of characters input so far in this call to scanf. The

corresponding argument is a pointer to an int.
% Skip a percent sign (%) in the input.

Fig. 9.17 | Conversion specifiers for scanf.

9.11 Reading Formatted Input with scanf 371

Figure 9.18 reads integers with the various integer conversion specifiers and displays
the integers as decimal numbers. Conversion specifier %i is capable of inputting decimal,
octal and hexadecimal integers.

When inputting floating-point numbers, any of the floating-point conversion speci-
fiers e, E, f, g or G can be used. Figure 9.19 reads three floating-point numbers, one with
each of the three types of floating conversion specifiers, and displays all three numbers with
conversion specifier f. The program output confirms the fact that floating-point values are
imprecise—this is highlighted by the third value printed.

1 /* Fig 9.18: fig09_18.c */
2 /* Reading integers */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 int a;
8 int b;
9 int c;

10 int d;
11 int e;
12 int f;
13 int g;
14
15 printf("Enter seven integers: ");
16
17
18 printf("The input displayed as decimal integers is:\n");
19
20 return 0; /* indicates successful termination */
21 } /* end main */

Enter seven integers: -70 -70 070 0x70 70 70 70
The input displayed as decimal integers is:
-70 -70 56 112 56 70 112

Fig. 9.18 | Reading input with integer conversion specifiers.

1 /* Fig 9.19: fig09_19.c */
2 /* Reading floating-point numbers */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 double a;
9 double b;

10 double c;
11

Fig. 9.19 | Reading input with floating-point conversion specifiers. (Part 1 of 2.)

scanf("%d%i%i%i%o%u%x", &a, &b, &c, &d, &e, &f, &g);

printf("%d %d %d %d %d %d %d\n", a, b, c, d, e, f, g);

372 Chapter 9 C Formatted Input/Output

Characters and strings are input using the conversion specifiers c and s, respectively.
Figure 9.20 prompts the user to enter a string. The program inputs the first character of
the string with %c and stores it in the character variable x, then inputs the remainder of the
string with %s and stores it in character array y.

A sequence of characters can be input using a scan set. A scan set is a set of characters
enclosed in square brackets, [], and preceded by a percent sign in the format control
string. A scan set scans the characters in the input stream, looking only for those characters
that match characters contained in the scan set. Each time a character is matched, it’s

12 printf("Enter three floating-point numbers: \n");
13
14
15 printf("Here are the numbers entered in plain\n");
16 printf("floating-point notation:\n");
17
18 return 0; /* indicates successful termination */
19 } /* end main */

Enter three floating-point numbers:
1.27987 1.27987e+03 3.38476e-06
Here are the numbers entered in plain
floating-point notation:
1.279870
1279.870000
0.000003

1 /* Fig 9.20: fig09_20.c */
2 /* Reading characters and strings */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 char x;
8 char y[9];
9

10 printf("Enter a string: ");
11
12
13 printf("The input was:\n");
14 printf("the character \"%c\" ", x);
15 printf("and the string \"%s\"\n", y);
16 return 0; /* indicates successful termination */
17 } /* end main */

Enter a string: Sunday
The input was:
the character "S" and the string "unday"

Fig. 9.20 | Inputting characters and strings.

Fig. 9.19 | Reading input with floating-point conversion specifiers. (Part 2 of 2.)

scanf("%le%lf%lg", &a, &b, &c);

printf("%f\n%f\n%f\n", a, b, c);

scanf("%c%s", &x, y);

9.11 Reading Formatted Input with scanf 373

stored in the scan set’s corresponding argument—a pointer to a character array. The scan
set stops inputting characters when a character that is not contained in the scan set is
encountered. If the first character in the input stream does not match a character in the
scan set, only the null character is stored in the array. Figure 9.21 uses the scan set [aeiou]
to scan the input stream for vowels. Notice that the first seven letters of the input are read.
The eighth letter (h) is not in the scan set and therefore the scanning is terminated.

The scan set can also be used to scan for characters not contained in the scan set by
using an inverted scan set. To create an inverted scan set, place a caret (^) in the square
brackets before the scan characters. This causes characters not appearing in the scan set to
be stored. When a character contained in the inverted scan set is encountered, input ter-
minates. Figure 9.22 uses the inverted scan set [^aeiou] to search for consonants—more
properly to search for “nonvowels.”

1 /* Fig 9.21: fig09_21.c */
2 /* Using a scan set */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 char z[9]; /* define array z */
9

10 printf("Enter string: ");
11
12
13 printf("The input was \"%s\"\n", z);
14 return 0; /* indicates successful termination */
15 } /* end main */

Enter string: ooeeooahah
The input was "ooeeooa"

Fig. 9.21 | Using a scan set.

1 /* Fig 9.22: fig09_22.c */
2 /* Using an inverted scan set */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 char z[9];
8
9 printf("Enter a string: ");

10
11
12 printf("The input was \"%s\"\n", z);
13 return 0; /* indicates successful termination */
14 } /* end main */

Fig. 9.22 | Using an inverted scan set. (Part 1 of 2.)

scanf("%[aeiou]", z); /* search for set of characters */

scanf("%[^aeiou]", z); /* inverted scan set */

374 Chapter 9 C Formatted Input/Output

A field width can be used in a scanf conversion specifier to read a specific number of
characters from the input stream. Figure 9.23 inputs a series of consecutive digits as a two-
digit integer and an integer consisting of the remaining digits in the input stream.

Often it’s necessary to skip certain characters in the input stream. For example, a date
could be entered as

Each number in the date needs to be stored, but the dashes that separate the numbers
can be discarded. To eliminate unnecessary characters, include them in the format control
string of scanf (white-space characters—such as space, newline and tab—skip all leading
white-space). For example, to skip the dashes in the input, use the statement

Although, this scanf does eliminate the dashes in the preceding input, it’s possible
that the date could be entered as

In this case, the preceding scanf would not eliminate the unnecessary characters. For this
reason, scanf provides the assignment suppression character *. The assignment suppres-
sion character enables scanf to read any type of data from the input and discard it without
assigning it to a variable. Figure 9.24 uses the assignment suppression character in the %c
conversion specifier to indicate that a character appearing in the input stream should be

Enter a string: String
The input was "Str"

1 /* Fig 9.23: fig09_23.c */
2 /* inputting data with a field width */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 int x;
8 int y;
9

10 printf("Enter a six digit integer: ");
11
12
13 printf("The integers input were %d and %d\n", x, y);
14 return 0; /* indicates successful termination */
15 } /* end main */

Enter a six digit integer: 123456
The integers input were 12 and 3456

Fig. 9.23 | Inputting data with a field width.

11-10-1999

scanf("%d-%d-%d", &month, &day, &year);

10/11/1999

Fig. 9.22 | Using an inverted scan set. (Part 2 of 2.)

scanf("%2d%d", &x, &y);

 Summary 375

read and discarded. Only the month, day and year are stored. The values of the variables
are printed to demonstrate that they are in fact input correctly. The argument lists for each
scanf call do not contain variables for the conversion specifiers that use the assignment
suppression character. The corresponding characters are simply discarded.

1 /* Fig 9.24: fig09_24.c */
2 /* Reading and discarding characters from the input stream */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 int month1;
8 int day1;
9 int year1;

10 int month2;
11 int day2;
12 int year2;
13
14 printf("Enter a date in the form mm-dd-yyyy: ");
15
16
17 printf("month = %d day = %d year = %d\n\n", month1, day1, year1);
18
19 printf("Enter a date in the form mm/dd/yyyy: ");
20
21
22 printf("month = %d day = %d year = %d\n", month2, day2, year2);
23 return 0; /* indicates successful termination */
24 } /* end main */

Enter a date in the form mm-dd-yyyy: 11-18-2003
month = 11 day = 18 year = 2003

Enter a date in the form mm/dd/yyyy: 11/18/2003
month = 11 day = 18 year = 2003

Fig. 9.24 | Reading and discarding characters from the input stream.

scanf("%d%*c%d%*c%d", &month1, &day1, &year1);

scanf("%d%*c%d%*c%d", &month2, &day2, &year2);

Summary
Section 9.2 Streams
• All input and output is dealt with in streams—sequences of characters organized into lines. Each

line consists of zero or more characters and ends with a newline character.

• Normally, the standard input stream is connected to the keyboard, and the standard output
stream is connected to the computer screen.

• Operating systems often allow the standard input and standard output streams to be redirected
to other devices.

Section 9.3 Formatting Output with printf
• A format control string describes the formats in which the output values appear. The format con-

trol string consists of conversion specifiers, flags, field widths, precisions and literal characters.

376 Chapter 9 C Formatted Input/Output

Section 9.4 Printing Integers
• Integers are printed with the following conversion specifiers: d or i for optionally signed integers,

o for unsigned integers in octal form, u for unsigned integers in decimal form and x or X for un-
signed integers in hexadecimal form. The modifier h or l is prefixed to the preceding conversion
specifiers to indicate a short or long integer, respectively.

Section 9.5 Printing Floating-Point Numbers
• Floating-point values are printed with the following conversion specifiers: e or E for exponential

notation, f for regular floating-point notation, and g or G for either e (or E) notation or f nota-
tion. When the g (or G) conversion specifier is indicated, the e (or E) conversion specifier is used
if the value’s exponent is less than -4 or greater than or equal to the precision with which the
value is printed.

• The precision for the g and G conversion specifiers indicates the maximum number of significant
digits printed.

Section 9.6 Printing Strings and Characters
• The conversion specifier c prints a character.

• The conversion specifier s prints a string of characters ending in the null character.

Section 9.7 Other Conversion Specifiers
• The conversion specifier p displays an address in an implementation-defined manner (on many

systems, hexadecimal notation is used).

• The conversion specifier n stores the number of characters already output in the current printf
statement. The corresponding argument is a pointer to an int.

• The conversion specifier %% causes a literal % to be output.

Section 9.8 Printing with Field Widths and Precision
• If the field width is larger than the object being printed, the object is right justified by default.

• Field widths can be used with all conversion specifiers.

• Precision used with integer conversion specifiers indicates the minimum number of digits printed.
Zeros are prefixed to the printed value until the number of digits is equivalent to the precision.

• Precision used with floating-point conversion specifiers e, E and f indicates the number of digits
that appear after the decimal point. Precision used with floating-point conversion specifiers g and
G indicates the number of significant digits to appear.

• Precision used with conversion specifier s indicates the number of characters to be printed.

• The field width and the precision can be combined by placing the field width, followed by a dec-
imal point, followed by the precision between the percent sign and the conversion specifier.

• It’s possible to specify the field width and the precision through integer expressions in the argu-
ment list following the format control string. To do so, use an asterisk (*) for the field width or
precision. The matching argument in the argument list is used in place of the asterisk. The value
of the argument can be negative for the field width but must be positive for the precision.

Section 9.9 Using Flags in the printf Format Control String
• The - flag left justifies its argument in a field.

• The + flag prints a plus sign for positive values and a minus sign for negative values. The space
flag prints a space preceding a positive value not displayed with the + flag.

• The # flag prefixes 0 to octal values and 0x or 0X to hexadecimal values, and forces the decimal
point to be printed for floating-point values printed with e, E, f, g or G.

• The 0 flag prints leading zeros for a value that does not occupy its entire field width.

 Terminology 377

Section 9.10 Printing Literals and Escape Sequences
• Most literal characters to be printed in a printf statement can simply be included in the format

control string. However, there are several “problem” characters, such as the quotation mark (")
that delimits the format control string itself. Various control characters, such as newline and tab,
must be represented by escape sequences. An escape sequence is represented by a backslash (\),
followed by a particular escape character.

Section 9.11 Formatting Input with scanf
• Precise input formatting is accomplished with the scanf library function.

• Integers are input with scanf with the conversion specifiers d and i for optionally signed integers
and o, u, x or X for unsigned integers. The modifiers h and l are placed before an integer conver-
sion specifier to input a short or long integer, respectively.

• Floating-point values are input with scanf with the conversion specifiers e, E, f, g or G. The mod-
ifiers l and L are placed before any of the floating-point conversion specifiers to indicate that the
input value is a double or long double value, respectively.

• Characters are input with scanf with the conversion specifier c.

• Strings are input with scanf with the conversion specifier s.

• A scan set scans the characters in the input, looking only for those characters that match charac-
ters contained in the scan set. When a character is matched, it’s stored in a character array. The
scan set stops inputting characters when a character not contained in the scan set is encountered.

• To create an inverted scan set, place a caret (^) in the square brackets before the scan characters.
This causes characters input with scanf and not appearing in the scan set to be stored until a
character contained in the inverted scan set is encountered.

• Address values are input with scanf with the conversion specifier p.

• Conversion specifier n stores the number of characters input previously in the current scanf. The
corresponding argument is a pointer to int.

• The conversion specifier %% with scanf matches a single % character in the input.

• The assignment suppression character reads data from the input stream and discards the data.

• A field width is used in scanf to read a specific number of characters from the input stream.

Terminology
" (quotation mark) 368
* assignment suppression character 374
flag 367
% character in a conversion specifier 357
%% conversion specifier 362
%c conversion specifier 361
%E conversion specifier 359
%e conversion specifier 359
%f conversion specifier 360
%g (or %G) conversion specifier 360
%i conversion specifier 371
%p conversion specifier 362
%s conversion specifier 361, 372
%u conversion specifier 359
+ flag 367
0 (zero) flag 368
caret (^) 373

conversion specification 357
conversion specifier 357
exponential notation 359
field width 357
flag 357
format control string 357
integer conversion specifier 358
inverted scan set 373
left justification 357
length modifier 358
literal character 357
precision 357
printf function 357
right justification 357
rounding 357
scan set 372
scanf function 357

378 Chapter 9 C Formatted Input/Output

scientific notation 359
space flag 367
standard error stream (cerr) 357
standard input stream (cin) 357

<stdio.h> header file 357
stream 357
white space 374

Self-Review Exercises
9.1 Fill in the blanks in each of the following:

a) All input and output is dealt with in the form of .
b) The stream is normally connected to the keyboard.
c) The stream is normally connected to the computer screen.
d) Precise output formatting is accomplished with the function.
e) The format control string may contain , , , and

.
f) The conversion specifier or may be used to output a signed decimal

integer.
g) The conversion specifiers , and are used to display un-

signed integers in octal, decimal and hexadecimal form, respectively.
h) The modifiers and are placed before the integer conversion specifi-

ers to indicate that short or long integer values are to be displayed.
i) The conversion specifier is used to display a floating-point value in expo-

nential notation.
j) The modifier is placed before any floating-point conversion specifier to indi-

cate that a long double value is to be displayed.
k) The conversion specifiers e, E and f are displayed with digits of precision to

the right of the decimal point if no precision is specified.
l) The conversion specifiers and are used to print strings and charac-

ters, respectively.
m) All strings end in the character.
n) The field width and precision in a printf conversion specifier can be controlled with

integer expressions by substituting a(n) for the field width or for the precision
and placing an integer expression in the corresponding argument of the argument list.

o) The flag causes output to be left justified in a field.
p) The flag causes values to be displayed with either a plus sign or a minus sign.
q) Precise input formatting is accomplished with the function.
r) A(n) is used to scan a string for specific characters and store the characters in

an array.
s) The conversion specifier can be used to input optionally signed octal, decimal

and hexadecimal integers.
t) The conversion specifiers can be used to input a double value.
u) The is used to read data from the input stream and discard it without as-

signing it to a variable.
v) A(n) can be used in a scanf conversion specifier to indicate that a specific

number of characters or digits should be read from the input stream.

9.2 Find the error in each of the following and explain how the error can be corrected.
a) The following statement should print the character 'c'.

 printf("%s\n", 'c');
b) The following statement should print 9.375%.

 printf("%.3f%", 9.375);
c) The following statement should print the first character of the string "Monday".

 printf("%c\n", "Monday");

 Answers to Self-Review Exercises 379

d) printf(""A string in quotes"");
e) printf(%d%d, 12, 20);
f) printf("%c", "x");
g) printf("%s\n", 'Richard');

9.3 Write a statement for each of the following:
a) Print 1234 right justified in a 10-digit field.
b) Print 123.456789 in exponential notation with a sign (+ or -) and 3 digits of precision.
c) Read a double value into variable number.
d) Print 100 in octal form preceded by 0.
e) Read a string into character array string.
f) Read characters into array n until a nondigit character is encountered.
g) Use integer variables x and y to specify the field width and precision used to display the

double value 87.4573.
h) Read a value of the form 3.5%. Store the percentage in float variable percent and elim-

inate the % from the input stream. Do not use the assignment suppression character.
i) Print 3.333333 as a long double value with a sign (+ or -)in a field of 20 characters with

a precision of 3.

Answers to Self-Review Exercises
9.1 a) Streams. b) Standard input. c) Standard output. d) printf. e) Conversion specifiers,
flags, field widths, precisions, literal characters. f) d, i. g) o, u, x (or X). h) h, l. i) e (or E). j) L.
k) 6. l) s, c. m) NULL ('\0'). n) asterisk (*). o) - (minus). p) + (plus). q) scanf. r) Scan set. s) i.
t) le, lE, lf, lg or lG. u) Assignment suppression character (*). v) Field width.

9.2 a) Error: Conversion specifier s expects an argument of type pointer to char.
Correction: To print the character 'c', use the conversion specifier %c or change
'c' to "c".

b) Error: Trying to print the literal character % without using the conversion specifier %%.
Correction: Use %% to print a literal % character.

c) Error: Conversion specifier c expects an argument of type char.
Correction: To print the first character of "Monday" use the conversion specifier %1s.

d) Error: Trying to print the literal character " without using the \" escape sequence.
Correction: Replace each quote in the inner set of quotes with \".

e) Error: The format control string is not enclosed in double quotes.
Correction: Enclose %d%d in double quotes.

f) Error: The character x is enclosed in double quotes.
Correction: Character constants to be printed with %c must be enclosed in single
quotes.

g) Error: The string to be printed is enclosed in single quotes.
Correction: Use double quotes instead of single quotes to represent a string.

9.3 a) printf("%10d\n", 1234);
b) printf("%+.3e\n", 123.456789);
c) scanf("%lf", &number);
d) printf("%#o\n", 100);
e) scanf("%s", string);
f) scanf("%[0123456789]", n);
g) printf("%*.*f\n", x, y, 87.4573);
h) scanf("%f%%", &percent);
i) printf("%+20.3Lf\n", 3.333333);

380 Chapter 9 C Formatted Input/Output

Exercises
9.4 Write a printf or scanf statement for each of the following:

a) Print unsigned integer 40000 left justified in a 15-digit field with 8 digits.
b) Read a hexadecimal value into variable hex.
c) Print 200 with and without a sign.
d) Print 100 in hexadecimal form preceded by 0x.
e) Read characters into array s until the letter p is encountered.
f) Print 1.234 in a 9-digit field with preceding zeros.
g) Read a time of the form hh:mm:ss, storing the parts of the time in the integer variables

hour, minute and second. Skip the colons (:) in the input stream. Use the assignment
suppression character.

h) Read a string of the form "characters" from the standard input. Store the string in
character array s. Eliminate the quotation marks from the input stream.

i) Read a time of the form hh:mm:ss, storing the parts of the time in the integer variables
hour, minute and second. Skip the colons (:) in the input stream. Do not use the as-
signment suppression character.

9.5 Show what each of the following statements prints. If a statement is incorrect, indicate why.
a) printf("%-10d\n", 10000);
b) printf("%c\n", "This is a string");
c) printf("%*.*lf\n", 8, 3, 1024.987654);
d) printf("%#o\n%#X\n%#e\n", 17, 17, 1008.83689);
e) printf("% ld\n%+ld\n", 1000000, 1000000);
f) printf("%10.2E\n", 444.93738);
g) printf("%10.2g\n", 444.93738);
h) printf("%d\n", 10.987);

9.6 Find the error(s) in each of the following program segments. Explain how each error can be
corrected.

a) printf("%s\n", 'Happy Birthday');
b) printf("%c\n", 'Hello');
c) printf("%c\n", "This is a string");
d) The following statement should print "Bon Voyage":

printf(""%s"", "Bon Voyage");
e) char day[] = "Sunday";

printf("%s\n", day[3]);
f) printf('Enter your name: ');
g) printf(%f, 123.456);
h) The following statement should print the characters 'O' and 'K':

printf("%s%s\n", 'O', 'K');
i) char s[10];

scanf("%c", s[7]);

9.7 (Differences Between %d and %i) Write a program to test the difference between the %d and
%i conversion specifiers when used in scanf statements. Use the statements

scanf("%i%d", &x, &y);
printf("%d %d\n", x, y);

to input and print the values. Test the program with the following sets of input data:

 10 10
 -10 -10
 010 010
0x10 0x10

 Exercises 381

9.8 (Displaying Values and Their Number of Characters) Write a program that loads 10-ele-
ment array number with random integers from 1 to 1000. For each value, print the value and a run-
ning total of the number of characters printed. Use the %n conversion specifier to determine the
number of characters output for each value. Print the total number of characters output for all values
up to and including the current value each time the current value is printed.

9.9 (Printing Pointer Values as Integers) Write a program that prints pointer values using all
the integer conversion specifiers and the %p conversion specifier. Which ones print strange values?
Which ones cause errors? In which format does the %p conversion specifier display the address on
your system?

9.10 (Printing Numbers in Various Field Widths) Write a program to test the results of printing
the integer value 12345 and the floating-point value 1.2345 in various size fields. What happens
when the values are printed in fields containing fewer digits than the values?

9.11 (Rounding Floating-Point Numbers) Write a program that prints the value 100.453627
rounded to the nearest digit, tenth, hundredth, thousandth and ten-thousandth.

9.12 (Displaying a String in a Field) Write a program that inputs a string from the keyboard and
determines the length of the string. Print the string using twice the length as the field width.

9.13 (Temperature Conversions) Write a program that converts integer Fahrenheit temperatures
from 0 to 212 degrees to floating-point Celsius temperatures with 3 digits of precision. Perform the
calculation using the formula

celsius = 5.0 / 9.0 * (fahrenheit - 32);

The output should be printed in two right-justified columns of 10 characters each, and the Celsius
temperatures should be preceded by a sign for both positive and negative values.

9.14 (Escape Sequences) Write a program to test all the escape sequences in Figure 9.16. For the
escape sequences that move the cursor, print a character before and after printing the escape se-
quence so it’s clear where the cursor has moved.

9.15 (Printing a Question Mark) Write a program that determines whether ? can be printed as
part of a printf format control string as a literal character rather than using the \? escape sequence.

9.16 (Reading an Integer with Each scanf Conversion Specifier) Write a program that inputs the
value 437 using each of the scanf integer conversion specifiers. Print each input value using all the
integer conversion specifiers.

9.17 (Outputting a Number with the Floating-Point Conversion Specifiers) Write a program
that uses each of the conversion specifiers e, f and g to input the value 1.2345. Print the values of
each variable to prove that each conversion specifier can be used to input this same value.

9.18 (Reading Strings in Quotes) In some programming languages, strings are entered surround-
ed by either single or double quotation marks. Write a program that reads the three strings suzy,
"suzy" and 'suzy'. Are the single and double quotes ignored by C or read as part of the string?

9.19 (Printing a Question Mark as a Character Constant) Write a program that determines
whether ? can be printed as the character constant '?' rather than the character constant escape se-
quence '\?' using conversion specifier %c in the format control string of a printf statement.

9.20 (Using %g with Various Precisions) Write a program that uses the conversion specifier g to
output the value 9876.12345. Print the value with precisions ranging from 1 to 9.

10 C Structures, Unions, Bit
Manipulations and
Enumerations

But yet an union in partition.
—William Shakespeare

The same old charitable lie
Repeated as the years scoot by
Perpetually makes a hit—
“You really haven’t changed a
bit!”
—Margaret Fishback

I could never make out what
those damned dots meant.
—Winston Churchill

O b j e c t i v e s
In this chapter, you’ll learn:

■ To create and use structures,
unions and enumerations.

■ To pass structures to
functions by value and by
reference.

■ To manipulate data with the
bitwise operators.

■ To create bit fields for storing
data compactly.

10.1 Introduction 383

10.1 Introduction
Structures—sometimes referred to as aggregates—are collections of related variables un-
der one name. Structures may contain variables of many different data types—in contrast
to arrays that contain only elements of the same data type. Structures are commonly used
to define records to be stored in files (see Chapter 11, C File Processing). Pointers and
structures facilitate the formation of more complex data structures such as linked lists,
queues, stacks and trees (see Chapter 12, C Data Structures).

10.2 Structure Definitions
Structures are derived data types—they are constructed using objects of other types. Con-
sider the following structure definition:

Keyword struct introduces the structure definition. The identifier card is the structure
tag, which names the structure definition and is used with the keyword struct to declare
variables of the structure type. In this example, the structure type is struct card. Vari-
ables declared within the braces of the structure definition are the structure’s members.
Members of the same structure type must have unique names, but two different structure
types may contain members of the same name without conflict (we’ll soon see why). Each
structure definition must end with a semicolon.

The definition of struct card contains members face and suit of type char *. Structure
members can be variables of the primitive data types (e.g., int, float, etc.), or aggregates,
such as arrays and other structures. As we saw in Chapter 6, each element of an array must
be of the same type. Structure members, however, can be of many types. For example, the
following struct contains character array members for an employee’s first and last names,
an int member for the employee’s age, a char member that would contain 'M' or 'F' for
the employee’s gender and a double member for the employee’s hourly salary:,

10.1 Introduction
10.2 Structure Definitions
10.3 Initializing Structures
10.4 Accessing Structure Members
10.5 Using Structures with Functions
10.6 typedef

10.7 Example: High-Performance Card
Shuffling and Dealing Simulation

10.8 Unions
10.9 Bitwise Operators

10.10 Bit Fields
10.11 Enumeration Constants

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

struct card {
char *face;
char *suit;

};

Common Programming Error 10.1
Forgetting the semicolon that terminates a structure definition is a syntax error.

384 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

Self-Referential Structures
A structure cannot contain an instance of itself. For example, a variable of type struct em-
ployee cannot be declared in the definition for struct employee. A pointer to struct em-
ployee, however, may be included. For example,

struct employee2 contains an instance of itself (person), which is an error. Because ePtr
is a pointer (to type struct employee2), it is permitted in the definition. A structure con-
taining a member that is a pointer to the same structure type is referred to as a self-refer-
ential structure. Self-referential structures are used in Chapter 12 to build linked data
structures.

Defining Variables of Structure Types
Structure definitions do not reserve any space in memory; rather, each definition creates a
new data type that is used to define variables. Structure variables are defined like variables
of other types. The definition

declares aCard to be a variable of type struct card, declares deck to be an array with 52
elements of type struct card and declares cardPtr to be a pointer to struct card. Vari-
ables of a given structure type may also be declared by placing a comma-separated list of
the variable names between the closing brace of the structure definition and the semicolon
that ends the structure definition. For example, the preceding definition could have been
incorporated into the struct card structure definition as follows:

Structure Tag Names
The structure tag name is optional. If a structure definition does not contain a structure
tag name, variables of the structure type may be declared only in the structure definition—
not in a separate declaration.

struct employee {
char firstName[20];
char lastName[20];
int age;
char gender;
double hourlySalary;

};

struct employee2 {
char firstName[20];
char lastName[20];
int age;
char gender;
double hourlySalary;
struct employee2 person; /* ERROR */
struct employee2 *ePtr; /* pointer */

};

struct card aCard, deck[52], *cardPtr;

struct card {
char *face;
char *suit;

} aCard, deck[52], *cardPtr;

10.2 Structure Definitions 385

Operations That Can Be Performed on Structures
The only valid operations that may be performed on structures are the following: assigning
structure variables to structure variables of the same type, taking the address (&) of a struc-
ture variable, accessing the members of a structure variable (see Section 10.4) and using
the sizeof operator to determine the size of a structure variable.

Structures may not be compared using operators == and !=, because structure mem-
bers are not necessarily stored in consecutive bytes of memory. Sometimes there are
“holes” in a structure, because computers may store specific data types only on certain
memory boundaries such as half word, word or double word boundaries. A word is a stan-
dard memory unit used to store data in a computer—usually 2 bytes or 4 bytes. Consider
the following structure definition, in which sample1 and sample2 of type struct example
are declared:

A computer with 2-byte words may require that each member of struct example be
aligned on a word boundary, i.e., at the beginning of a word (this is machine dependent).
Figure 10.1 shows a sample storage alignment for a variable of type struct example that
has been assigned the character 'a' and the integer 97 (the bit representations of the values
are shown). If the members are stored beginning at word boundaries, there is a 1-byte hole
(byte 1 in the figure) in the storage for variables of type struct example. The value in the
1-byte hole is undefined. Even if the member values of sample1 and sample2 are in fact
equal, the structures are not necessarily equal, because the undefined 1-byte holes are not
likely to contain identical values.

Good Programming Practice 10.1
Always provide a structure tag name when creating a structure type. The structure tag
name is convenient for declaring new variables of the structure type later in the program.

Good Programming Practice 10.2
Choosing a meaningful structure tag name helps make a program self-documenting.

Common Programming Error 10.2
Assigning a structure of one type to a structure of a different type is a compilation error.

struct example {
char c;
int i;

} sample1, sample2;

Fig. 10.1 | Possible storage alignment for a variable of type struct example showing an
undefined area in memory.

01100001 00000000 01100001

0 1 2 3Byte

386 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

10.3 Initializing Structures
Structures can be initialized using initializer lists as with arrays. To initialize a structure,
follow the variable name in the definition with an equals sign and a brace-enclosed, com-
ma-separated list of initializers. For example, the declaration

creates variable aCard to be of type struct card (as defined in Section 10.2) and initializes
member face to "Three" and member suit to "Hearts". If there are fewer initializers in
the list than members in the structure, the remaining members are automatically initial-
ized to 0 (or NULL if the member is a pointer). Structure variables defined outside a func-
tion definition (i.e., externally) are initialized to 0 or NULL if they are not explicitly
initialized in the external definition. Structure variables may also be initialized in as-
signment statements by assigning a structure variable of the same type, or by assigning val-
ues to the individual members of the structure.

10.4 Accessing Structure Members
Two operators are used to access members of structures: the structure member operator
(.)—also called the dot operator—and the structure pointer operator (->)—also called
the arrow operator. The structure member operator accesses a structure member via the
structure variable name. For example, to print member suit of structure variable aCard
defined in Section 10.3, use the statement

The structure pointer operator—consisting of a minus (-) sign and a greater than (>) sign
with no intervening spaces—accesses a structure member via a pointer to the structure.
Assume that the pointer cardPtr has been declared to point to struct card and that the
address of structure aCard has been assigned to cardPtr. To print member suit of struc-
ture aCard with pointer cardPtr, use the statement

The expression cardPtr->suit is equivalent to (*cardPtr).suit, which dereferences the
pointer and accesses the member suit using the structure member operator. The paren-
theses are needed here because the structure member operator (.) has a higher precedence
than the pointer dereferencing operator (*). The structure pointer operator and structure
member operator, along with parentheses (for calling functions) and brackets ([]) used for
array subscripting, have the highest operator precedence and associate from left to right.

Portability Tip 10.1
Because the size of data items of a particular type is machine dependent and because stor-
age alignment considerations are machine dependent, so too is the representation of a
structure.

struct card aCard = { "Three", "Hearts" };

printf("%s", aCard.suit); /* displays Hearts */

printf("%s", cardPtr->suit); /* displays Hearts */

Good Programming Practice 10.3
Do not put spaces around the -> and . operators. Omitting spaces helps emphasize that
the expressions the operators are contained in are essentially single variable names.

10.4 Accessing Structure Members 387

The program of Fig. 10.2 demonstrates the use of the structure member and structure
pointer operators. Using the structure member operator, the members of structure aCard
are assigned the values "Ace" and "Spades", respectively (lines 18 and 19). Pointer
cardPtr is assigned the address of structure aCard (line 21). Function printf prints the
members of structure variable aCard using the structure member operator with variable
name aCard, the structure pointer operator with pointer cardPtr and the structure
member operator with dereferenced pointer cardPtr (lines 23 through 25).

Common Programming Error 10.3
Inserting space between the - and > components of the structure pointer operator (or be-
tween the components of any other multiple keystroke operator except ?:) is a syntax error.

Common Programming Error 10.4
Attempting to refer to a member of a structure by using only the member’s name is a syntax
error.

Common Programming Error 10.5
Not using parentheses when referring to a structure member that uses a pointer and the
structure member operator (e.g., *cardPtr.suit) is a syntax error.

1 /* Fig. 10.2: fig10_02.c
2 Using the structure member and
3 structure pointer operators */
4 #include <stdio.h>
5
6
7
8
9

10
11
12 int main(void)
13 {
14 struct card aCard; /* define one struct card variable */
15 struct card *cardPtr; /* define a pointer to a struct card */
16
17 /* place strings into aCard */
18
19
20
21 cardPtr = &aCard; /* assign address of aCard to cardPtr */
22
23
24
25
26 return 0; /* indicates successful termination */
27 } /* end main */

Fig. 10.2 | Structure member operator and structure pointer operator. (Part 1 of 2.)

/* card structure definition */
struct card {

char *face; /* define pointer face */
char *suit; /* define pointer suit */

}; /* end structure card */

aCard.face = "Ace";
aCard.suit = "Spades";

printf("%s%s%s\n%s%s%s\n%s%s%s\n", aCard.face, " of ", aCard.suit,
 cardPtr->face, " of ", cardPtr->suit,
 (*cardPtr).face, " of ", (*cardPtr).suit);

388 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

10.5 Using Structures with Functions
Structures may be passed to functions by passing individual structure members, by passing
an entire structure or by passing a pointer to a structure. When structures or individual
structure members are passed to a function, they are passed by value. Therefore, the mem-
bers of a caller’s structure cannot be modified by the called function. To pass a structure
by reference, pass the address of the structure variable. Arrays of structures—like all other
arrays—are automatically passed by reference.

In Chapter 6, we stated that an array could be passed by value by using a structure.
To pass an array by value, create a structure with the array as a member. Structures are
passed by value, so the array is passed by value.

10.6 typedef
The keyword typedef provides a mechanism for creating synonyms (or aliases) for previ-
ously defined data types. Names for structure types are often defined with typedef to cre-
ate shorter type names. For example, the statement

defines the new type name Card as a synonym for type struct card. C programmers often
use typedef to define a structure type, so a structure tag is not required. For example, the
following definition

creates the structure type Card without the need for a separate typedef statement.

Ace of Spades
Ace of Spades
Ace of Spades

Common Programming Error 10.6
Assuming that structures, like arrays, are automatically passed by reference and trying to
modify the caller’s structure values in the called function is a logic error.

Performance Tip 10.1
Passing structures by reference is more efficient than passing structures by value (which re-
quires the entire structure to be copied).

typedef struct card Card;

typedef struct {
char *face;
char *suit;

} Card;

Good Programming Practice 10.4
Capitalize the first letter of typedef names to emphasize that they are synonyms for other
type names.

Fig. 10.2 | Structure member operator and structure pointer operator. (Part 2 of 2.)

10.7 Example: High-Performance Card Shuffling and Dealing Simulation 389

Card can now be used to declare variables of type struct card. The declaration

declares an array of 52 Card structures (i.e., variables of type struct card). Creating a new
name with typedef does not create a new type; typedef simply creates a new type name,
which may be used as an alias for an existing type name. A meaningful name helps make
the program self-documenting. For example, when we read the previous declaration, we
know “deck is an array of 52 Cards.”

Often, typedef is used to create synonyms for the basic data types. For example, a
program requiring 4-byte integers may use type int on one system and type long on
another. Programs designed for portability often use typedef to create an alias for 4-byte
integers, such as Integer. The alias Integer can be changed once in the program to make
the program work on both systems.

10.7 Example: High-Performance Card Shuffling and
Dealing Simulation
The program in Fig. 10.3 is based on the card shuffling and dealing simulation discussed
in Chapter 7. The program represents the deck of cards as an array of structures. The pro-
gram uses high-performance shuffling and dealing algorithms. The output for the high-
performance card shuffling and dealing program is shown in Fig. 10.4.

Card deck[52];

Portability Tip 10.2
Use typedef to help make a program more portable.

1 /* Fig. 10.3: fig10_03.c
2 The card shuffling and dealing program using structures */
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6
7
8
9

10
11
12
13
14
15 /* prototypes */
16 void fillDeck(Card * const wDeck, const char * wFace[],
17 const char * wSuit[]);
18 void shuffle(Card * const wDeck);
19 void deal(const Card * const wDeck);
20
21 int main(void)
22 {

Fig. 10.3 | High-performance card shuffling and dealing simulation. (Part 1 of 3.)

/* card structure definition */
struct card {

const char *face; /* define pointer face */
const char *suit; /* define pointer suit */

}; /* end structure card */

typedef struct card Card; /* new type name for struct card */

390 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

23
24
25 /* initialize array of pointers */
26 const char *face[] = { "Ace", "Deuce", "Three", "Four", "Five",
27 "Six", "Seven", "Eight", "Nine", "Ten",
28 "Jack", "Queen", "King"};
29
30 /* initialize array of pointers */
31 const char *suit[] = { "Hearts", "Diamonds", "Clubs", "Spades"};
32
33 srand(time(NULL)); /* randomize */
34
35 fillDeck(deck, face, suit); /* load the deck with Cards */
36 shuffle(deck); /* put Cards in random order */
37 deal(deck); /* deal all 52 Cards */
38 return 0; /* indicates successful termination */
39 } /* end main */
40
41 /* place strings into Card structures */
42 void fillDeck(, const char * wFace[],
43 const char * wSuit[])
44 {
45 int i; /* counter */
46
47 /* loop through wDeck */
48 for (i = 0; i <= 51; i++) {
49
50
51 } /* end for */
52 } /* end function fillDeck */
53
54 /* shuffle cards */
55 void shuffle(Card * const wDeck)
56 {
57 int i; /* counter */
58 int j; /* variable to hold random value between 0 - 51 */
59 Card temp; /* define temporary structure for swapping Cards */
60
61 /* loop through wDeck randomly swapping Cards */
62 for (i = 0; i <= 51; i++) {
63 j = rand() % 52;
64
65
66
67 } /* end for */
68 } /* end function shuffle */
69
70 /* deal cards */
71 void deal()
72 {
73 int i; /* counter */
74

Fig. 10.3 | High-performance card shuffling and dealing simulation. (Part 2 of 3.)

Card deck[52]; /* define array of Cards */

Card * const wDeck

wDeck[i].face = wFace[i % 13];
wDeck[i].suit = wSuit[i / 13];

temp = wDeck[i];
wDeck[i] = wDeck[j];
wDeck[j] = temp;

const Card * const wDeck

10.8 Unions 391

In the program, function fillDeck (lines 42–52) initializes the Card array in order
with Ace through King of each suit. The Card array is passed (in line 36) to function
shuffle (lines 55–68), where the high-performance shuffling algorithm is implemented.
Function shuffle takes an array of 52 Card structures as an argument. The function loops
through the 52 cards (array subscripts 0 to 51) using a for statement in lines 62–67. For
each card, a number between 0 and 51 is picked randomly. Next, the current Card struc-
ture and the randomly selected Card structure are swapped in the array (lines 64 through
66). A total of 52 swaps are made in a single pass of the entire array, and the array of Card
structures is shuffled! This algorithm cannot suffer from indefinite postponement like the
shuffling algorithm presented in Chapter 7. Since the Card structures were swapped in
place in the array, the high-performance dealing algorithm implemented in function deal
(lines 71–80) requires only one pass of the array to deal the shuffled cards.

10.8 Unions
A union is a derived data type—like a structure—with members that share the same stor-
age space. For different situations in a program, some variables may not be relevant, but
other variables are—so a union shares the space instead of wasting storage on variables that
are not being used. The members of a union can be of any data type. The number of bytes
used to store a union must be at least enough to hold the largest member. In most cases,

75 /* loop through wDeck */
76 for (i = 0; i <= 51; i++) {
77 printf("%5s of %-8s%s", , ,
78 (i + 1) % 4 ? " " : "\n");
79 } /* end for */
80 } /* end function deal */

Three of Hearts Jack of Clubs Three of Spades Six of Diamonds
 Five of Hearts Eight of Spades Three of Clubs Deuce of Spades
 Jack of Spades Four of Hearts Deuce of Hearts Six of Clubs
Queen of Clubs Three of Diamonds Eight of Diamonds King of Clubs
 King of Hearts Eight of Hearts Queen of Hearts Seven of Clubs
Seven of Diamonds Nine of Spades Five of Clubs Eight of Clubs
 Six of Hearts Deuce of Diamonds Five of Spades Four of Clubs
Deuce of Clubs Nine of Hearts Seven of Hearts Four of Spades
 Ten of Spades King of Diamonds Ten of Hearts Jack of Diamonds
 Four of Diamonds Six of Spades Five of Diamonds Ace of Diamonds
 Ace of Clubs Jack of Hearts Ten of Clubs Queen of Diamonds
 Ace of Hearts Ten of Diamonds Nine of Clubs King of Spades
 Ace of Spades Nine of Diamonds Seven of Spades Queen of Spades

Fig. 10.4 | Output for the high-performance card shuffling and dealing simulation.

Common Programming Error 10.7
Forgetting to include the array subscript when referring to individual structures in an ar-
ray of structures is a syntax error.

Fig. 10.3 | High-performance card shuffling and dealing simulation. (Part 3 of 3.)

wDeck[i].face wDeck[i].suit

392 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

unions contain two or more data types. Only one member, and thus one data type, can be
referenced at a time. It is your responsibility to ensure that the data in a union is referenced
with the proper data type.

Union Declarations
A union is declared with keyword union in the same format as a structure. The union def-
inition

indicates that number is a union type with members int x and double y. The union defi-
nition is normally placed in a header and included in all source files that use the union
type.

Operations That Can Be Performed on Unions
The operations that can be performed on a union are the following: assigning a union to
another union of the same type, taking the address (&) of a union variable, and accessing
union members using the structure member operator and the structure pointer operator.
Unions may not be compared using operators == and != for the same reasons that struc-
tures cannot be compared.

Initializing Unions in Declarations
In a declaration, a union may be initialized with a value of the same type as the first union
member. For example, with the preceding union, the declaration

is a valid initialization of union variable value because the union is initialized with an int,
but the following declaration would truncate the floating-point part of the initializer value
and normally would produce a warning from the compiler:

Common Programming Error 10.8
Referencing data in a union with a variable of the wrong type is a logic error.

Portability Tip 10.3
If data is stored in a union as one type and referenced as another type, the results are im-
plementation dependent.

union number {
int x;
double y;

};

Software Engineering Observation 10.1
As with a struct definition, a union definition simply creates a new type. Placing a
union or struct definition outside any function does not create a global variable.

union number value = { 10 };

union number value = { 1.43 };

Common Programming Error 10.9
Comparing unions is a syntax error.

10.8 Unions 393

Demonstrating Unions
The program in Fig. 10.5 uses the variable value (line 13) of type union number to display
the value stored in the union as both an int and a double. The program output is imple-
mentation dependent. The program output shows that the internal representation of a
double value can be quite different from the representation of int.

Portability Tip 10.4
The amount of storage required to store a union is implementation dependent but will
always be at least as large as the largest member of the union.

Portability Tip 10.5
Some unions may not port easily to other computer systems. Whether a union is portable
or not often depends on the storage alignment requirements for the union member data
types on a given system.

Performance Tip 10.2
Unions conserve storage.

1 /* Fig. 10.5: fig10_05.c
2 An example of a union */
3 #include <stdio.h>
4
5
6
7
8
9

10
11 int main(void)
12 {
13
14
15
16 printf("%s\n%s\n%s\n %d\n\n%s\n %f\n\n\n",
17 "Put a value in the integer member",
18 "and print both members.",
19 "int:", value.x,
20 "double:", value.y);
21
22
23 printf("%s\n%s\n%s\n %d\n\n%s\n %f\n",
24 "Put a value in the floating member",
25 "and print both members.",
26 "int:", value.x,
27 "double:", value.y);
28 return 0; /* indicates successful termination */
29 } /* end main */

Fig. 10.5 | Displaying the value of a union in both member data types. (Part 1 of 2.)

/* number union definition */
union number {

int x;
double y;

}; /* end union number */

union number value; /* define union variable */

value.x = 100; /* put an integer into the union */

value.y = 100.0; /* put a double into the same union */

394 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

10.9 Bitwise Operators
Computers represent all data internally as sequences of bits. Each bit can assume the value
0 or the value 1. On most systems, a sequence of 8 bits forms a byte—the standard storage
unit for a variable of type char. Other data types are stored in larger numbers of bytes.
The bitwise operators are used to manipulate the bits of integral operands (char, short,
int and long; both signed and unsigned). Unsigned integers are normally used with the
bitwise operators.

The bitwise operator discussions in this section show the binary representations of the
integer operands. For a detailed explanation of the binary (also called base-2) number
system see Appendix C. Also, the programs in Sections 10.9–10.10 were tested using
Microsoft Visual C++. Because of the machine-dependent nature of bitwise manipula-
tions, these programs may not work on your system.

The bitwise operators are bitwise AND (&), bitwise inclusive OR (|), bitwise exclu-
sive OR (^), left shift (<<), right shift (>>) and complement (~). The bitwise AND, bit-
wise inclusive OR and bitwise exclusive OR operators compare their two operands bit by
bit. The bitwise AND operator sets each bit in the result to 1 if the corresponding bit in
both operands is 1. The bitwise inclusive OR operator sets each bit in the result to 1 if the
corresponding bit in either (or both) operand(s) is 1. The bitwise exclusive OR operator
sets each bit in the result to 1 if the corresponding bit in exactly one operand is 1. The left-
shift operator shifts the bits of its left operand to the left by the number of bits specified
in its right operand. The right-shift operator shifts the bits in its left operand to the right
by the number of bits specified in its right operand. The bitwise complement operator sets
all 0 bits in its operand to 1 in the result and sets all 1 bits to 0 in the result. Detailed discus-
sions of each bitwise operator appear in the following examples. The bitwise operators are
summarized in Fig. 10.6.

Put a value in the integer member
and print both members.
int:
 100

double:
 -92559592117433136000.000000

Put a value in the floating member
and print both members.
int:
 0

double:
 100.000000

Portability Tip 10.6
Bitwise data manipulations are machine dependent.

Fig. 10.5 | Displaying the value of a union in both member data types. (Part 2 of 2.)

10.9 Bitwise Operators 395

Displaying an Unsigned Integer in Bits
When using the bitwise operators, it is useful to print values in their binary representation
to illustrate the precise effects of these operators. The program of Fig. 10.7 prints an un-
signed integer in its binary representation in groups of eight bits each. For the examples
in this section, we assume that unsigned integers are stored in 4 bytes (32 bits) of memory.

Operator Description

& bitwise AND The bits in the result are set to 1 if the corresponding bits
in the two operands are both 1.

| bitwise inclusive
OR

The bits in the result are set to 1 if at least one of the corresponding
bits in the two operands is 1.

^ bitwise exclusive
OR

The bits in the result are set to 1 if exactly one of the corresponding
bits in the two operands is 1.

<< left shift Shifts the bits of the first operand left by the number of bits speci-
fied by the second operand; fill from the right with 0 bits.

>> right shift Shifts the bits of the first operand right by the number of bits spec-
ified by the second operand; the method of filling from the left is
machine dependent.

~ one’s complement All 0 bits are set to 1 and all 1 bits are set to 0.

Fig. 10.6 | Bitwise operators.

1 /* Fig. 10.7: fig10_07.c
2 Printing an unsigned integer in bits */
3 #include <stdio.h>
4
5 void displayBits(unsigned value); /* prototype */
6
7 int main(void)
8 {
9 unsigned x; /* variable to hold user input */

10
11 printf("Enter an unsigned integer: ");
12 scanf("%u", &x);
13
14 displayBits(x);
15 return 0; /* indicates successful termination */
16 } /* end main */
17
18 /* display bits of an unsigned integer value */
19 void displayBits(unsigned value)
20 {
21 unsigned c; /* counter */
22
23 /* define displayMask and left shift 31 bits */
24
25

Fig. 10.7 | Displaying an unsigned integer in bits. (Part 1 of 2.)

unsigned displayMask = 1 << 31;

396 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

Function displayBits (lines 19–39) uses the bitwise AND operator to combine vari-
able value with variable displayMask (line 32). Often, the bitwise AND operator is used
with an operand called a mask—an integer value with specific bits set to 1. Masks are used
to hide some bits in a value while selecting other bits. In function displayBits, mask vari-
able displayMask is assigned the value

The left-shift operator shifts the value 1 from the low order (rightmost) bit to the high or-
der (leftmost) bit in displayMask and fills in 0 bits from the right. Line 32

determines whether a 1 or a 0 should be printed for the current leftmost bit of variable
value. When value and displayMask are combined using &, all the bits except the high-
order bit in variable value are “masked off” (hidden), because any bit “ANDed” with 0
yields 0. If the leftmost bit is 1, value & displayMask evaluates to a nonzero (true) value
and 1 is printed—otherwise, 0 is printed. Variable value is then left shifted one bit by the
expression value <<= 1 (this is equivalent to value = value << 1). These steps are repeated
for each bit in unsigned variable value. Figure 10.8 summarizes the results of combining
two bits with the bitwise AND operator.

26 printf("%10u = ", value);
27
28 /* loop through bits */
29 for (c = 1; c <= 32; c++) {
30
31
32
33 if (c % 8 == 0) { /* output space after 8 bits */
34 putchar(' ');
35 } /* end if */
36 } /* end for */
37
38 putchar('\n');
39 } /* end function displayBits */

Enter an unsigned integer: 65000
 65000 = 00000000 00000000 11111101 11101000

1 << 31 (10000000 00000000 00000000 00000000)

putchar(value & displayMask ? '1' : '0');

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

1 0 0

0 1 0

1 1 1

Fig. 10.8 | Results of combining two bits
with the bitwise AND operator &.

Fig. 10.7 | Displaying an unsigned integer in bits. (Part 2 of 2.)

putchar(value & displayMask ? '1' : '0');
value <<= 1; /* shift value left by 1 */

10.9 Bitwise Operators 397

Making Function displayBits More Scalable and Portable
In line 24 of Fig. 10.7, we hard coded the integer 31 to indicate that the value 1 should be
shifted to the leftmost bit in the variable displayMask. Similarly, in line 29, we hard coded
the integer 32 to indicate that the loop should iterate 32 times—once for each bit in vari-
able value. We assumed that unsigned integers are always stored in 32 bits (4 bytes) of
memory. Many of today’s popular computers use 32-bit word hardware architectures. C
programmers tend to work across many hardware architectures, and sometimes unsigned
integers will be stored in smaller or larger numbers of bits.

The program in Fig. 10.7 can be made more scalable and more portable by replacing
the integer 31 in line 24 with the expression

and by replacing the integer 32 in line 29 with the the expression

The symbolic constant CHAR_BIT (defined in <limits.h>) represents the number of bits
in a byte (normally 8). As you learned in Section 7.7, operator sizeof determines the
number of bytes used to store an object or type. On a computer that uses 32-bit words,
the expression sizeof(unsigned) evaluates to 4, so the two preceding expressions eval-
uate to 31 and 32, respectively. On a computer that uses 16-bit words, the sizeof expres-
sion evaluates to 2 and the two preceding expressions evaluate to 15 and 16, respectively.

Using the Bitwise AND, Inclusive OR, Exclusive OR and Complement Operators
Figure 10.9 demonstrates the use of the bitwise AND operator, the bitwise inclusive OR
operator, the bitwise exclusive OR operator and the bitwise complement operator. The
program uses function displayBits (lines 53–74) to print the unsigned integer values.
The output is shown in Fig. 10.10.

Common Programming Error 10.10
Using the logical AND operator (&&) for the bitwise AND operator (&) and vice versa is
an error.

CHAR_BIT * sizeof(unsigned) - 1

CHAR_BIT * sizeof(unsigned)

1 /* Fig. 10.9: fig10_09.c
2 Using the bitwise AND, bitwise inclusive OR, bitwise
3 exclusive OR and bitwise complement operators */
4 #include <stdio.h>
5
6 void displayBits(unsigned value); /* prototype */
7
8 int main(void)
9 {

10 unsigned number1;
11 unsigned number2;
12 unsigned mask;
13 unsigned setBits;

Fig. 10.9 | Bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise complement
operators. (Part 1 of 3.)

398 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

14
15 /* demonstrate bitwise AND (&) */
16 number1 = 65535;
17 mask = 1;
18 printf("The result of combining the following\n");
19 displayBits(number1);
20 displayBits(mask);
21 printf("using the bitwise AND operator & is\n");
22 displayBits();
23
24 /* demonstrate bitwise inclusive OR (|) */
25 number1 = 15;
26 setBits = 241;
27 printf("\nThe result of combining the following\n");
28 displayBits(number1);
29 displayBits(setBits);
30 printf("using the bitwise inclusive OR operator | is\n");
31 displayBits();
32
33 /* demonstrate bitwise exclusive OR (^) */
34 number1 = 139;
35 number2 = 199;
36 printf("\nThe result of combining the following\n");
37 displayBits(number1);
38 displayBits(number2);
39 printf("using the bitwise exclusive OR operator ^ is\n");
40 displayBits();
41
42 /* demonstrate bitwise complement (~)*/
43 number1 = 21845;
44 printf("\nThe one's complement of\n");
45 displayBits(number1);
46 printf("is\n");
47 displayBits();
48 return 0; /* indicates successful termination */
49 } /* end main */
50
51 /* display bits of an unsigned integer value */
52 void displayBits(unsigned value)
53 {
54 unsigned c; /* counter */
55
56 /* declare displayMask and left shift 31 bits */
57 unsigned displayMask = 1 << 31;
58
59 printf("%10u = ", value);
60
61 /* loop through bits */
62 for (c = 1; c <= 32; c++) {
63 putchar(value & displayMask ? '1' : '0');
64 value <<= 1; /* shift value left by 1 */

Fig. 10.9 | Bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise complement
operators. (Part 2 of 3.)

number1 & mask

number1 | setBits

number1 ^ number2

~number1

10.9 Bitwise Operators 399

In Fig. 10.9, integer variable number1 is assigned value 65535 (00000000 00000000

11111111 11111111) in line 16 and variable mask is assigned the value 1 (00000000
00000000 00000000 00000001) in line 17. When number1 and mask are combined using
the bitwise AND operator (&) in the expression number1 & mask (line 22), the result is
00000000 00000000 00000000 00000001. All the bits except the low-order bit in variable
number1 are “masked off” (hidden) by “ANDing” with variable mask.

The bitwise inclusive OR operator is used to set specific bits to 1 in an operand. In
Fig. 10.9, variable number1 is assigned 15 (00000000 00000000 00000000 00001111) in line
25, and variable setBits is assigned 241 (00000000 00000000 00000000 11110001) in line
26. When number1 and setBits are combined using the bitwise OR operator in the
expression number1 | setBits (line 31), the result is 255 (00000000 00000000 00000000

11111111). Figure 10.11 summarizes the results of combining two bits with the bitwise
inclusive OR operator.

65
66 if (c % 8 == 0) { /* output a space after 8 bits */
67 putchar(' ');
68 } /* end if */
69 } /* end for */
70
71 putchar('\n');
72 } /* end function displayBits */

The result of combining the following
 65535 = 00000000 00000000 11111111 11111111
 1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is
 1 = 00000000 00000000 00000000 00000001

The result of combining the following
 15 = 00000000 00000000 00000000 00001111
 241 = 00000000 00000000 00000000 11110001
using the bitwise inclusive OR operator | is
 255 = 00000000 00000000 00000000 11111111

The result of combining the following
 139 = 00000000 00000000 00000000 10001011
 199 = 00000000 00000000 00000000 11000111
using the bitwise exclusive OR operator ^ is
 76 = 00000000 00000000 00000000 01001100

The one's complement of
 21845 = 00000000 00000000 01010101 01010101
is
4294945450 = 11111111 11111111 10101010 10101010

Fig. 10.10 | Output for the program of Fig. 10.9.

Common Programming Error 10.11
Using the logical OR operator (||) for the bitwise OR operator (|) and vice versa is an error.

Fig. 10.9 | Bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise complement
operators. (Part 3 of 3.)

400 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

The bitwise exclusive OR operator (^) sets each bit in the result to 1 if exactly one of
the corresponding bits in its two operands is 1. In Fig. 10.9, variables number1 and
number2 are assigned the values 139 (00000000 00000000 00000000 10001011) and 199

(00000000 00000000 00000000 11000111) in lines 34–35. When these variables are com-
bined with the exclusive OR operator in the expression number1 ^ number2 (line 40), the
result is 00000000 00000000 00000000 01001100. Figure 10.12 summarizes the results of
combining two bits with the bitwise exclusive OR operator.

The bitwise complement operator (~) sets all 1 bits in its operand to 0 in the result
and sets all 0 bits to 1 in the result—otherwise referred to as “taking the one’s complement
of the value.” In Fig. 10.9, variable number1 is assigned the value 21845 (00000000
00000000 01010101 01010101) in line 43. When the expression ~number1 (line 47) is eval-
uated, the result is 00000000 00000000 10101010 10101010.

Using the Bitwise Left- and Right-Shift Operators
The program of Fig. 10.13 demonstrates the left-shift operator (<<) and the right-shift op-
erator (>>). Function displayBits is used to print the unsigned integer values.

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

1 0 1

0 1 1

1 1 1

Fig. 10.11 | Results of combining two
bits with the bitwise inclusive OR operator |.

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

1 0 1

0 1 1

1 1 0

Fig. 10.12 | Results of combining two
bits with the bitwise exclusive OR operator ^.

1 /* Fig. 10.13: fig10_13.c
2 Using the bitwise shift operators */
3 #include <stdio.h>
4
5 void displayBits(unsigned value); /* prototype */
6

Fig. 10.13 | Bitwise shift operators. (Part 1 of 2.)

10.9 Bitwise Operators 401

7 int main(void)
8 {
9 unsigned number1 = 960; /* initialize number1 */

10
11 /* demonstrate bitwise left shift */
12 printf("\nThe result of left shifting\n");
13 displayBits(number1);
14 printf("8 bit positions using the ");
15 printf("left shift operator << is\n");
16 displayBits();
17
18 /* demonstrate bitwise right shift */
19 printf("\nThe result of right shifting\n");
20 displayBits(number1);
21 printf("8 bit positions using the ");
22 printf("right shift operator >> is\n");
23 displayBits();
24 return 0; /* indicates successful termination */
25 } /* end main */
26
27 /* display bits of an unsigned integer value */
28 void displayBits(unsigned value)
29 {
30 unsigned c; /* counter */
31
32 /* declare displayMask and left shift 31 bits */
33 unsigned displayMask = 1 << 31;
34
35 printf("%7u = ", value);
36
37 /* loop through bits */
38 for (c = 1; c <= 32; c++) {
39 putchar(value & displayMask ? '1' : '0');
40 value <<= 1; /* shift value left by 1 */
41
42 if (c % 8 == 0) { /* output a space after 8 bits */
43 putchar(' ');
44 } /* end if */
45 } /* end for */
46
47 putchar('\n');
48 } /* end function displayBits */

The result of left shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the left shift operator << is
 245760 = 00000000 00000011 11000000 00000000

The result of right shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the right shift operator >> is
 3 = 00000000 00000000 00000000 00000011

Fig. 10.13 | Bitwise shift operators. (Part 2 of 2.)

number1 << 8

number1 >> 8

402 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

The left-shift operator (<<) shifts the bits of its left operand to the left by the number
of bits specified in its right operand. Bits vacated to the right are replaced with 0s; 1s
shifted off the left are lost. In Fig. 10.13, variable number1 is assigned the value 960
(00000000 00000000 00000011 11000000) in line 9. The result of left shifting variable
number1 8 bits in the expression number1 << 8 (line 16) is 49152 (00000000 00000000

11000000 00000000).
The right-shift operator (>>) shifts the bits of its left operand to the right by the

number of bits specified in its right operand. Performing a right shift on an unsigned
integer causes the vacated bits at the left to be replaced by 0s; 1s shifted off the right are
lost. In Fig. 10.13, the result of right shifting number1 in the expression number1 >> 8 (line
23) is 3 (00000000 00000000 00000000 00000011).

Bitwise Assignment Operators
Each binary bitwise operator has a corresponding assignment operator. These bitwise as-
signment operators are shown in Fig. 10.14 and are used in a manner similar to the arith-
metic assignment operators introduced in Chapter 3.

Figure 10.15 shows the precedence and associativity of the various operators intro-
duced to this point in the text. They are shown top to bottom in decreasing order of pre-
cedence.

Common Programming Error 10.12
The result of shifting a value is undefined if the right operand is negative or if the right
operand is larger than the number of bits in which the left operand is stored.

Portability Tip 10.7
Right shifting is machine dependent. Right shifting a signed integer fills the vacated bits
with 0s on some machines and with 1s on others.

Bitwise assignment operators

&= Bitwise AND assignment operator.

|= Bitwise inclusive OR assignment operator.
^= Bitwise exclusive OR assignment operator.

<<= Left-shift assignment operator.

>>= Right-shift assignment operator.

Fig. 10.14 | The bitwise assignment operators.

Operator Associativity Type

() [] . -> left to right highest

+ - ++ -- ! & * ~ sizeof (type) right to left unary

Fig. 10.15 | Operator precedence and associativity. (Part 1 of 2.)

10.10 Bit Fields 403

10.10 Bit Fields
C enables you to specify the number of bits in which an unsigned or int member of a
structure or union is stored. This is referred to as a bit field. Bit fields enable better mem-
ory utilization by storing data in the minimum number of bits required. Bit field members
must be declared as int or unsigned

Consider the following structure definition:

which contains three unsigned bit fields—face, suit and color—used to represent a card
from a deck of 52 cards. A bit field is declared by following an unsigned or int member
name with a colon (:) and an integer constant representing the width of the field (i.e., the
number of bits in which the member is stored). The constant representing the width must
be an integer between 0 and the total number of bits used to store an int on your system,
inclusive. Our examples were tested on a computer with 4-byte (32-bit) integers.

The preceding structure definition indicates that member face is stored in 4 bits,
member suit is stored in 2 bits and member color is stored in 1 bit. The number of bits
is based on the desired range of values for each structure member. Member face stores
values from 0 (Ace) through 12 (King)—4 bits can store values in the range 0–15. Member

* / % left to right multiplicative
+ - left to right additive
<< >> left to right shifting
< <= > >= left to right relational
== != left to right equality
& left to right bitwise AND
^ left to right bitwise OR
| left to right bitwise OR
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= &= |= ^= <<= >>= %= right to left assignment
, left to right comma

Performance Tip 10.3
Bit fields help conserve storage.

struct bitCard {
unsigned face : 4;
unsigned suit : 2;
unsigned color : 1;

};

Operator Associativity Type

Fig. 10.15 | Operator precedence and associativity. (Part 2 of 2.)

404 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

suit stores values from 0 through 3 (0 = Diamonds, 1 = Hearts, 2 = Clubs, 3 = Spades)—
2 bits can store values in the range 0–3. Finally, member color stores either 0 (Red) or 1
(Black)—1 bit can store either 0 or 1.

Figure 10.16 (output shown in Fig. 10.17) creates array deck containing 52 struct
bitCard structures in line 20. Function fillDeck (lines 28–38) inserts the 52 cards in the
deck array and function deal (lines 42–54) prints the 52 cards. Notice that bit field mem-
bers of structures are accessed exactly as any other structure member. Member color is
included as a means of indicating the card color on a system that allows color displays.It
is possible to specify an unnamed bit field to be used as padding in the structure. For
example, the structure definition

uses an unnamed 19-bit field as padding—nothing can be stored in those 19 bits. Member
b (on our 4-byte-word computer) is stored in another storage unit.

struct example {
unsigned a : 13;
unsigned : 19;
unsigned b : 4;

};

1 /* Fig. 10.16: fig10_16.c
2 Representing cards with bit fields in a struct */
3
4 #include <stdio.h>
5
6
7
8
9

10
11
12
13
14
15 void fillDeck(Card * const wDeck); /* prototype */
16 void deal(const Card * const wDeck); /* prototype */
17
18 int main(void)
19 {
20
21
22 fillDeck(deck);
23 deal(deck);
24 return 0; /* indicates successful termination */
25 } /* end main */
26
27 /* initialize Cards */
28 void fillDeck()
29 {
30 int i; /* counter */
31

Fig. 10.16 | Bit fields to store a deck of cards. (Part 1 of 2.)

/* bitCard structure definition with bit fields */
struct bitCard {

unsigned face : 4; /* 4 bits; 0-15 */
unsigned suit : 2; /* 2 bits; 0-3 */
unsigned color : 1; /* 1 bit; 0-1 */

}; /* end struct bitCard */

typedef struct bitCard Card; /* new type name for struct bitCard */

Card deck[52]; /* create array of Cards */

Card * const wDeck

10.10 Bit Fields 405

32 /* loop through wDeck */
33 for (i = 0; i <= 51; i++) {
34
35
36
37 } /* end for */
38 } /* end function fillDeck */
39
40 /* output cards in two column format; cards 0-25 subscripted with
41 k1 (column 1); cards 26-51 subscripted k2 (column 2) */
42 void deal(const Card * const wDeck)
43 {
44 int k1; /* subscripts 0-25 */
45 int k2; /* subscripts 26-51 */
46
47 /* loop through wDeck */
48 for (k1 = 0, k2 = k1 + 26; k1 <= 25; k1++, k2++) {
49 printf("Card:%3d Suit:%2d Color:%2d ",
50
51 printf("Card:%3d Suit:%2d Color:%2d\n",
52
53 } /* end for */
54 } /* end function deal */

Card: 0 Suit: 0 Color: 0 Card: 0 Suit: 2 Color: 1
Card: 1 Suit: 0 Color: 0 Card: 1 Suit: 2 Color: 1
Card: 2 Suit: 0 Color: 0 Card: 2 Suit: 2 Color: 1
Card: 3 Suit: 0 Color: 0 Card: 3 Suit: 2 Color: 1
Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1
Card: 5 Suit: 0 Color: 0 Card: 5 Suit: 2 Color: 1
Card: 6 Suit: 0 Color: 0 Card: 6 Suit: 2 Color: 1
Card: 7 Suit: 0 Color: 0 Card: 7 Suit: 2 Color: 1
Card: 8 Suit: 0 Color: 0 Card: 8 Suit: 2 Color: 1
Card: 9 Suit: 0 Color: 0 Card: 9 Suit: 2 Color: 1
Card: 10 Suit: 0 Color: 0 Card: 10 Suit: 2 Color: 1
Card: 11 Suit: 0 Color: 0 Card: 11 Suit: 2 Color: 1
Card: 12 Suit: 0 Color: 0 Card: 12 Suit: 2 Color: 1
Card: 0 Suit: 1 Color: 0 Card: 0 Suit: 3 Color: 1
Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1
Card: 2 Suit: 1 Color: 0 Card: 2 Suit: 3 Color: 1
Card: 3 Suit: 1 Color: 0 Card: 3 Suit: 3 Color: 1
Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1
Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1
Card: 6 Suit: 1 Color: 0 Card: 6 Suit: 3 Color: 1
Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1
Card: 8 Suit: 1 Color: 0 Card: 8 Suit: 3 Color: 1
Card: 9 Suit: 1 Color: 0 Card: 9 Suit: 3 Color: 1
Card: 10 Suit: 1 Color: 0 Card: 10 Suit: 3 Color: 1
Card: 11 Suit: 1 Color: 0 Card: 11 Suit: 3 Color: 1
Card: 12 Suit: 1 Color: 0 Card: 12 Suit: 3 Color: 1

Fig. 10.17 | Output of the program in Fig. 10.16.

Fig. 10.16 | Bit fields to store a deck of cards. (Part 2 of 2.)

wDeck[i].face = i % 13;
wDeck[i].suit = i / 13;
wDeck[i].color = i / 26;

wDeck[k1].face, wDeck[k1].suit, wDeck[k1].color);

wDeck[k2].face, wDeck[k2].suit, wDeck[k2].color);

406 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

An unnamed bit field with a zero width is used to align the next bit field on a new
storage-unit boundary. For example, the structure definition

uses an unnamed 0-bit field to skip the remaining bits (as many as there are) of the storage
unit in which a is stored and to align b on the next storage-unit boundary.

10.11 Enumeration Constants
C provides one final user-defined type called an enumeration. An enumeration, intro-
duced by the keyword enum, is a set of integer enumeration constants represented by iden-
tifiers. Values in an enum start with 0, unless specified otherwise, and are incremented by
1. For example, the enumeration

creates a new type, enum months, in which the identifiers are set to the integers 0 to 11,
respectively. To number the months 1 to 12, use the following enumeration:

Since the first value in the preceding enumeration is explicitly set to 1, the remaining
values are incremented from 1, resulting in the values 1 through 12. The identifiers in an
enumeration must be unique. The value of each enumeration constant of an enumeration
can be set explicitly in the definition by assigning a value to the identifier. Multiple mem-
bers of an enumeration can have the same constant value. In the program of Fig. 10.18,

struct example {
unsigned a : 13;
unsigned : 0;
unsigned b : 4;

};

Portability Tip 10.8
Bit-field manipulations are machine dependent. For example, some computers allow bit
fields to cross word boundaries, whereas others do not.

Common Programming Error 10.13
Attempting to access individual bits of a bit field as if they were elements of an array is a
syntax error. Bit fields are not “arrays of bits.”

Common Programming Error 10.14
Attempting to take the address of a bit field (the & operator may not be used with bit fields
because they do not have addresses).

Performance Tip 10.4
Although bit fields save space, using them can cause the compiler to generate slower-exe-
cuting machine-language code. This occurs because it takes extra machine language op-
erations to access only portions of an addressable storage unit. This is one of many examples
of the kinds of space–time trade-offs that occur in computer science.

enum months {
 JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };

enum months {
 JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC

};

10.11 Enumeration Constants 407

the enumeration variable month is used in a for statement to print the months of the year
from the array monthName. We’ve made monthName[0] the empty string "". Some pro-
grammers might prefer to set monthName[0] to a value such as ***ERROR*** to indicate
that a logic error occurred.

Common Programming Error 10.15
Assigning a value to an enumeration constant after it has been defined is a syntax error.

Good Programming Practice 10.5
Use only uppercase letters enumeration constant names. This makes these constants stand
out in a program and reminds you that enumeration constants are not variables.

1 /* Fig. 10.18: fig10_18.c
2 Using an enumeration type */
3 #include <stdio.h>
4
5
6
7
8
9 int main(void)

10 {
11
12
13 /* initialize array of pointers */
14 const char *monthName[] = { "", "January", "February", "March",
15 "April", "May", "June", "July", "August", "September", "October",
16 "November", "December" };
17
18 /* loop through months */
19 for (month++) {
20 printf("%2d%11s\n", month, monthName[month]);
21 } /* end for */
22
23 return 0; /* indicates successful termination */
24 } /* end main */

 1 January
 2 February
 3 March
 4 April
 5 May
 6 June
 7 July
 8 August
 9 September
10 October
11 November
12 December

Fig. 10.18 | Using an enumeration.

/* enumeration constants represent months of the year */
enum months {

JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };

enum months month; /* can contain any of the 12 months */

month = JAN; month <= DEC;

408 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

Summary
Section 10.1 Introduction
• Structures are collections of related variables under one name. They may contain variables of

many different data types.

• Structures are commonly used to define records to be stored in files.

• Pointers and structures facilitate the formation of more complex data structures such as linked
lists, queues, stacks and trees.

Section 10.2 Structure Definitions
• Keyword struct introduces a structure definition.

• The identifier following keyword struct is the structure tag, which names the structure defini-
tion. The structure tag is used with the keyword struct to declare variables of the structure type.

• Variables declared within the braces of the structure definition are the structure’s members.

• Members of the same structure type must have unique names.

• Each structure definition must end with a semicolon.

• Structure members can be variables of the primitive data types or aggregates, such as arrays and
other structures.

• A structure cannot contain an instance of itself but may include a pointer to another object of
the same type.

• A structure containing a member that is a pointer to the same structure type is referred to as a
self-referential structure. Self-referential structures are used to build linked data structures.

• Structure definitions do not reserve any space in memory; they create new data types that are used
to define variables.

• Variables of a given structure type can be declared by placing a comma-separated list of variable
names between the closing brace of the structure definition and its ending semicolon.

• The structure tag name is optional. If a structure definition does not contain a structure tag
name, variables of the structure type may be declared only in the structure definition.

• The only valid operations that may be performed on structures are assigning structure variables
to variables of the same type, taking the address (&) of a structure variable, accessing the members
of a structure variable and using the sizeof operator to determine the size of a structure variable.

Section 10.3 Initializing Structures
• Structures can be initialized using initializer lists.

• If there are fewer initializers in the list than members in the structure, the remaining members
are automatically initialized to 0 (or NULL if the member is a pointer).

• Members of structure variables defined outside a function definition are initialized to 0 or NULL
if they are not explicitly initialized in the external definition.

• Structure variables may be initialized in assignment statements by assigning a structure variable
of the same type, or by assigning values to the individual members of the structure.

Section 10.4 Accessing Structure Members
• The structure member operator (.) and the structure pointer operator (->) are used to access

structure members.

• The structure member operator accesses a structure member via the structure variable name.

• The structure pointer operator accesses a structure member via a pointer to the structure.

 Summary 409

Section 10.5 Using Structures with Functions
• Structures may be passed to functions by passing individual structure members, by passing an

entire structure or by passing a pointer to a structure.

• Stucture variables are passed by value by default.

• To pass a structure by reference, pass its address. Arrays of structures—like all other arrays—are
automatically passed by reference.

• To pass an array by value, create a structure with the array as a member. Structures are passed by
value, so the array is passed by value.

Section 10.6 typedef

• The keyword typedef provides a mechanism for creating synonyms for previously defined types.

• Names for structure types are often defined with typedef to create shorter type names.

• Often, typedef is used to create synonyms for the basic data types. For example, a program re-
quiring 4-byte integers may use type int on one system and type long on another. Programs de-
signed for portability often use typedef to create an alias for 4-byte integers such as Integer. The
alias Integer can be changed once in the program to make the program work on both systems.

Section 10.8 Unions
• A union is declared with keyword union in the same format as a structure. Its members share the

same storage space.

• The members of a union can be of any data type. The number of bytes used to store a union must
be at least enough to hold the largest member.

• Only one member of a union can be referenced at a time. It is your responsibility to ensure that
the data in a union is referenced with the proper data type.

• The operations that can be performed on a union are assigning a union to another of the same
type, taking the address (&) of a union variable, and accessing union members using the structure
member operator and the structure pointer operator.

• A union may be initialized in a declaration with a value of the same type as the first union member.

Section 10.9 Bitwise Operators
• Computers represent all data internally as sequences of bits with the values 0 or 1.

• On most systems, a sequence of 8 bits form a byte—the standard storage unit for a variable of
type char. Other data types are stored in larger numbers of bytes.

• The bitwise operators are used to manipulate the bits of integral operands (char, short, int and
long; both signed and unsigned). Unsigned integers are normally used.

• The bitwise operators are bitwise AND (&), bitwise inclusive OR (|), bitwise exclusive OR (^),
left shift (<<), right shift (>>) and complement (~).

• The bitwise AND, bitwise inclusive OR and bitwise exclusive OR operators compare their two
operands bit by bit. The bitwise AND operator sets each bit in the result to 1 if the corresponding
bit in both operands is 1. The bitwise inclusive OR operator sets each bit in the result to 1 if the
corresponding bit in either (or both) operand(s) is 1. The bitwise exclusive OR operator sets each
bit in the result to 1 if the corresponding bit in exactly one operand is 1.

• The left-shift operator shifts the bits of its left operand to the left by the number of bits specified
in its right operand. Bits vacated to the right are replaced with 0s; 1s shifted off the left are lost.

• The right-shift operator shifts the bits in its left operand to the right by the number of bits spec-
ified in its right operand. Performing a right shift on an unsigned integer causes the vacated bits
at the left to be replaced by 0s; bits shifted off the right are lost.

410 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

• The bitwise complement operator sets all 0 bits in its operand to 1 in the result and sets all 1 bits
to 0 in the result.

• Often, the bitwise AND operator is used with an operand called a mask—an integer value with
specific bits set to 1. Masks are used to hide some bits in a value while selecting other bits.

• The symbolic constant CHAR_BIT (defined in <limits.h>) represents the number of bits in a byte
(normally 8). It can be used to make a bit-manipulation program more scalable and portable.

• Each binary bitwise operator has a corresponding assignment operator.

Section 10.10 Bit Fields
• C enables you to specify the number of bits in which an unsigned or int member of a structure

or union is stored. This is referred to as a bit field. Bit fields enable better memory utilization by
storing data in the minimum number of bits required.

• A bit field is declared by following an unsigned or int member name with a colon (:) and an
integer constant representing the width of the field. The constant must be an integer between 0
and the total number of bits used to store an int on your system, inclusive.

• Bit-field members of structures are accessed exactly as any other structure member.

• It is possible to specify an unnamed bit field to be used as padding in the structure.

• An unnamed bit field with a zero width aligns the next bit field on a new storage unit boundary.

Section 10.11 Enumeration Constants
• An enum defines a set of integer constants represented by identifiers. Values in an enum start with

0, unless specified otherwise, and are incremented by 1.

• The identifiers in an enum must be unique.

• The value of an enum constant can be set explicitly via assignment in the enum definition.

• Multiple members of an enumeration can have the same constant value.

Terminology
. structure member operator 386
~ bitwise complement operator 400
aggregate 383
arrow operator (->) 386
bit field 403
bit field member name 403
bitwise AND (&) operator 394
bitwise assignment operator 402
bitwise complement operator (~) 400
bitwise exclusive OR (^) operator 394
bitwise inclusive OR (|) operator 394
CHAR_BIT symbolic constant 397
complement operator (~) 394
derived data type 383
enumeration 406
enumeration constants 406
left-shift operator (<<) 394
mask 396

member 383
member name (bit field) 403
one’s complement 400
padding 404
pointer to the structure 386
right-shift operator (>>) 394
self-referential structure 384
struct 383
structure 383
structure member (.) operator 386
structure pointer (->) operator 386
structure tag 383
structure type 383
typedef 388
union 391
unnamed bit field 404
unnamed bit field with a zero width 406
width of a bit field 403

 Self-Review Exercises 411

Self-Review Exercises
10.1 Fill in the blanks in each of the following:

a) A(n) is a collection of related variables under one name.
b) A(n) is a collection of variables under one name in which the variables share

the same storage.
c) The bits in the result of an expression using the operator are set to 1 if the

corresponding bits in each operand are set to 1. Otherwise, the bits are set to zero.
d) The variables declared in a structure definition are called its .
e) In an expression using the operator, bits are set to 1 if at least one of the cor-

responding bits in either operand is set to 1. Otherwise, the bits are set to zero.
f) Keyword introduces a structure declaration.
g) Keyword is used to create a synonym for a previously defined data type.
h) In an expression using the operator, bits are set to 1 if exactly one of the cor-

responding bits in either operand is set to 1. Otherwise, the bits are set to zero.
i) The bitwise AND operator (&) is often used to bits, that is to select certain bits

while zeroing others.
j) Keyword is used to introduce a union definition.
k) The name of the structure is referred to as the structure .
l) A structure member is accessed with either the or the operator.
m) The and operators are used to shift the bits of a value to the left or

to the right, respectively.
n) A(n) is a set of integers represented by identifiers.

10.2 State whether each of the following is true or false. If false, explain why.
a) Structures may contain variables of only one data type.
b) Two unions can be compared (using ==) to determine if they are equal.
c) The tag name of a structure is optional.
d) Members of different structures must have unique names.
e) Keyword typedef is used to define new data types.
f) Structures are always passed to functions by reference.
g) Structures may not be compared by using operators == and !=.

10.3 Write code to accomplish each of the following:
a) Define a structure called part containing int variable partNumber and char array part-

Name with values that may be as long as 25 characters (including the terminating null
character).

b) Define Part to be a synonym for the type struct part.
c) Use Part to declare variable a to be of type struct part, array b[10] to be of type

struct part and variable ptr to be of type pointer to struct part.
d) Read a part number and a part name from the keyboard into the individual members

of variable a.
e) Assign the member values of variable a to element 3 of array b.
f) Assign the address of array b to the pointer variable ptr.
g) Print the member values of element 3 of array b using the variable ptr and the structure

pointer operator to refer to the members.

10.4 Find the error in each of the following:
a) Assume that struct card has been defined containing two pointers to type char, name-

ly face and suit. Also, the variable c has been defined to be of type struct card and
the variable cPtr has been defined to be of type pointer to struct card. Variable cPtr
has been assigned the address of c.

printf("%s\n", *cPtr->face);

412 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

b) Assume that struct card has been defined containing two pointers to type char, name-
ly face and suit. Also, the array hearts[13] has been defined to be of type struct
card. The following statement should print the member face of array element 10.

printf("%s\n", hearts.face);

c) union values {

 char w;
 float x;
 double y;
};

union values v = { 1.27 };

d) struct person {

 char lastName[15];
 char firstName[15];
 int age;
}

e) Assume struct person has been defined as in part (d) but with the appropriate cor-
rection.

person d;

f) Assume variable p has been declared as type struct person and variable c has been de-
clared as type struct card.

p = c;

Answers to Self-Review Exercises
10.1 a) structure. b) union. c) bitwise AND (&). d) members. e) bitwise inclusive OR (|).
f) struct. g) typedef. h) bitwise exclusive OR (^). i) mask. j) union. k) tag name. l) structure
member, structure pointer. m) left-shift operator (<<), right-shift operator (>>). n) enumeration.

10.2 a) False. A structure can contain variables of many data types.
b) False. Unions cannot be compared because there might be bytes of undefined data with

different values in union variables that are otherwise identical.
c) True.
d) False. The members of separate structures can have the same names, but the members

of the same structure must have unique names.
e) False. Keyword typedef is used to define new names (synonyms) for previously defined

data types.
f) False. Structures are always passed to functions call-by-value.
g) True, because of alignment problems.

10.3 a) struct part {

 int partNumber;
char partName[26];

};

b) typedef struct part Part;

c) Part a, b[10], *ptr;

d) scanf("%d%25s", &a.partNumber, &a.partName };

e) b[3] = a;

f) ptr = b;

g) printf("%d %s\n", (ptr + 3)->partNumber, (ptr + 3)->partName);

 Exercises 413

10.4 a) The parentheses that should enclose *cPtr have been omitted, causing the order of eval-
uation of the expression to be incorrect. The expression should be
 (*cPtr)->face

b) The array subscript has been omitted. The expression should be
 hearts[10].face.

c) A union can be initialized only with a value that has the same type as the union’s first
member.

d) A semicolon is required to end a structure definition.
e) Keyword struct was omitted from the variable declaration. The declaration should be

 struct person d;
f) Variables of different structure types cannot be assigned to one another.

Exercises
10.5 Provide the definition for each of the following structures and unions:

a) Structure inventory containing character array partName[30], integer partNumber,
floating point price, integer stock and integer reorder.

b) Union data containing char c, short s, long b, float f and double d.
c) A structure called address that contains character arrays

streetAddress[25], city[20], state[3] and zipCode[6].
d) Structure student that contains arrays firstName[15] and

lastName[15] and variable homeAddress of type struct address from part (c).
e) Structure test containing 16 bit fields with widths of 1 bit. The names of the bit fields

are the letters a to p.

10.6 Given the following structure and variable definitions,

struct customer {
char lastName[15];
char firstName[15];
int customerNumber;

struct {
char phoneNumber[11];
char address[50];
char city[15];
char state[3];
char zipCode[6];

 } personal;

} customerRecord, *customerPtr;

customerPtr = &customerRecord;

write an expression that can be used to access the structure members in each of the following parts:
a) Member lastName of structure customerRecord.
b) Member lastName of the structure pointed to by customerPtr.
c) Member firstName of structure customerRecord.
d) Member firstName of the structure pointed to by customerPtr.
e) Member customerNumber of structure customerRecord.
f) Member customerNumber of the structure pointed to by customerPtr.
g) Member phoneNumber of member personal of structure customerRecord.
h) Member phoneNumber of member personal of the structure pointed to by customerPtr.
i) Member address of member personal of structure customerRecord.
j) Member address of member personal of the structure pointed to by customerPtr.
k) Member city of member personal of structure customerRecord.
l) Member city of member personal of the structure pointed to by customerPtr.

414 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

m) Member state of member personal of structure customerRecord.
n) Member state of member personal of the structure pointed to by customerPtr.
o) Member zipCode of member personal of structure customerRecord.
p) Member zipCode of member personal of the structure pointed to by customerPtr.

10.7 (Card Shuffling and Dealing Modification) Modify the program of Fig. 10.16 to shuffle
the cards using a high-performance shuffle (as shown in Fig. 10.3). Print the resulting deck in two-
column format as in Fig. 10.4. Precede each card with its color.

10.8 (Using Unions) Create union integer with members char c, short s, int i and long b.
Write a program that inputs value of type char, short, int and long and stores the values in union
variables of type union integer. Each union variable should be printed as a char, a short, an int
and a long. Do the values always print correctly?

10.9 (Using Unions) Create union floatingPoint with members float f, double d and long
double x. Write a program that inputs value of type float, double and long double and stores the
values in union variables of type union floatingPoint. Each union variable should be printed as a
float, a double and a long double. Do the values always print correctly?

10.10 (Right-Shifting Integers) Write a program that right shifts an integer variable 4 bits. The
program should print the integer in bits before and after the shift operation. Does your system place
0s or 1s in the vacated bits?

10.11 (Right-Shifting Integers) If your computer uses 2-byte integers, modify the program of
Fig. 10.7 so that it works with 2-byte integers.

10.12 (Left-Shifting Integers) Left shifting an unsigned integer by 1 bit is equivalent to multiply-
ing the value by 2. Write function power2 that takes two integer arguments number and pow and cal-
culates

number * 2pow

Use the shift operator to calculate the result. Print the values as integers and as bits.

10.13 (Packing Characters into an Integer) The left-shift operator can be used to pack two char-
acter values into an unsigned integer variable. Write a program that inputs two characters from the
keyboard and passes them to function packCharacters. To pack two characters into an unsigned
integer variable, assign the first character to the unsigned variable, shift the unsigned variable left by
8 bit positions and combine the unsigned variable with the second character using the bitwise in-
clusive OR operator. The program should output the characters in their bit format before and after
they are packed into the unsigned integer to prove that the characters are in fact packed correctly in
the unsigned variable.

10.14 (Unpacking Characters from an Integer) Using the right-shift operator, the bitwise AND
operator and a mask, write function unpackCharacters that takes the unsigned integer from
Exercise 10.13 and unpacks it into two characters. To unpack two characters from an unsigned in-
teger, combine the unsigned integer with the mask 65280 (00000000 00000000 11111111 00000000)
and right shift the result 8 bits. Assign the resulting value to a char variable. Then combine the un-
signed integer with the mask 255 (00000000 00000000 00000000 11111111). Assign the result to an-
other char variable. The program should print the unsigned integer in bits before it is unpacked,
then print the characters in bits to confirm that they were unpacked correctly.

10.15 (Packing Characters into an Integer) If your system uses 4-byte integers, rewrite the pro-
gram of Exercise 10.13 to pack 4 characters.

10.16 (Unpacking Characters from an Integer) If your system uses 4-byte integers, rewrite the
function unpackCharacters of Exercise 10.14 to unpack 4 characters. Create the masks you need to

 Exercises 415

unpack the 4 characters by left shifting the value 255 in the mask variable by 8 bits 0, 1, 2 or 3 times
(depending on the byte you’re unpacking).

10.17 (Reversing the Order of an Integer’s Bits) Write a program that reverses the order of the bits
in an unsigned integer value. The program should input the value from the user and call function
reverseBits to print the bits in reverse order. Print the value in bits both before and after the bits
are reversed to confirm that the bits are reversed properly.

10.18 (Portable displayBits Function) Modify function displayBits of Fig. 10.7 so it is porta-
ble between systems using 2-byte integers and systems using 4-byte integers. [Hint: Use the sizeof
operator to determine the size of an integer on a particular machine.]

10.19 (What is the Value of X?) The following program uses function multiple to determine if the
integer entered from the keyboard is a multiple of some integer X. Examine the function multiple,
then determine X’s value.

1 /* ex10_19.c */
2 /* This program determines if a value is a multiple of X. */
3 #include <stdio.h>
4
5 int multiple(int num); /* prototype */
6
7 int main(void)
8 {
9 int y; /* y will hold an integer entered by the user */

10
11 printf("Enter an integer between 1 and 32000: ");
12 scanf("%d", &y);
13
14 /* if y is a multiple of X */
15 if (multiple(y)) {
16 printf("%d is a multiple of X\n", y);
17 } /* end if */
18 else {
19 printf("%d is not a multiple of X\n", y);
20 } /* end else */
21
22 return 0; /* indicates successful termination */
23 } /* end main */
24
25 /* determine if num is a multiple of X */
26 int multiple(int num)
27 {
28 int i; /* counter */
29 int mask = 1; /* initialize mask */
30 int mult = 1; /* initialize mult */
31
32 for (i = 1; i <= 10; i++, mask <<= 1) {
33
34 if ((num & mask) != 0) {
35 mult = 0;
36 break;
37 } /* end if */
38 } /* end for */
39
40 return mult;
41 } /* end function multiple */

416 Chapter 10 C Structures, Unions, Bit Manipulations and Enumerations

10.20 What does the following program do?

Making a Difference
10.21 (Computerization of Health Records) A health care issue that has been in the news lately is
the computerization of health records. This possibility is being approached cautiously because of
sensitive privacy and security concerns, among others. Computerizing health records could make it
easier for patients to share their health profiles and histories among their various health care profes-
sionals. This could improve the quality of health care, help avoid drug conflicts and erroneous drug
prescriptions, reduce costs and in emergencies could save lives. In this exercise, you’ll design a “start-
er” HealthProfile structure for a person. The structure’s members should include the person’s first
name, last name, gender, date of birth (consisting of separate attributes for the month, day and year
of birth), height (in inches) and weight (in pounds). Your program should have a function that re-
ceives this data and uses it to set the members of a HealthProfile variable. The program also should
include functions that calculate and return the user’s age in years, maximum heart rate and target-
heart-rate range (see Exercise 3.48), and body mass index (BMI; see Exercise 2.32). The program
should prompt for the person’s information, create a HealthProfile variable for that person and
display the information from that variable—including the person’s first name, last name, gender,
date of birth, height and weight—then it should calculate and display the person’s age in years,
BMI, maximum heart rate and target-heart-rate range. It should also display the “BMI values” chart
from Exercise 2.32.

1 /* ex10_20.c */
2 #include <stdio.h>
3
4 int mystery(unsigned bits); /* prototype */
5
6 int main(void)
7 {
8 unsigned x; /* x will hold an integer entered by the user */
9

10 printf("Enter an integer: ");
11 scanf("%u", &x);
12
13 printf("The result is %d\n", mystery(x));
14 return 0; /* indicates successful termination */
15 } /* end main */
16
17 /* What does this function do? */
18 int mystery(unsigned bits)
19 {
20 unsigned i; /* counter */
21 unsigned mask = 1 << 31; /* initialize mask */
22 unsigned total = 0; /* initialize total */
23
24 for (i = 1; i <= 32; i++, bits <<= 1) {
25
26 if ((bits & mask) == mask) {
27 total++;
28 } /* end if */
29 } /* end for */
30
31 return !(total % 2) ? 1 : 0;
32 } /* end function mystery */

11C File Processing

I read part of it all the way
through.
—Samuel Goldwyn

Hats off!
The flag is passing by.
—Henry Holcomb Bennett

Consciousness … does not
appear to itself chopped up in
bits. … A “river” or a “stream”
are the metaphors by which it is
most naturally described.
—William James

I can only assume that a “Do
Not File” document is filed in a
“Do Not File” file.
—Senator Frank Church

O b j e c t i v e s
In this chapter, you’ll learn:

■ To create, read, write and
update files.

■ Sequential access file
processing.

■ Random-access file
processing.

418 Chapter 11 C File Processing

11.1 Introduction
Storage of data in variables and arrays is temporary—such data is lost when a program ter-
minates. Files are used for permanent retention of data. Computers store files on second-
ary storage devices, especially disk storage devices. In this chapter, we explain how data
files are created, updated and processed by C programs. We consider sequential-access files
and random-access files.

11.2 Data Hierarchy
Ultimately, all data items processed by a computer are reduced to combinations of zeros
and ones. This occurs because it’s simple and economical to build electronic devices that
can assume two stable states—one of the states represents 0 and the other represents 1. It’s
remarkable that the impressive functions performed by computers involve only the most
fundamental manipulations of 0s and 1s.

The smallest data item in a computer can assume the value 0 or the value 1. Such a
data item is called a bit (short for “binary digit”—a digit that can assume one of two
values). Computer circuitry performs various simple bit manipulations such as deter-
mining a bit’s value, setting a bit’s value and reversing a bit (from 1 to 0 or from 0 to 1).

It’s cumbersome to work with data in the low-level form of bits. Instead, program-
mers prefer to work with data in the form of decimal digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9), letters (i.e., A–Z, and a–z), and special symbols (i.e., $, @, %, &, *, (,), -, +, ", :,
?, /, and others). Digits, letters, and special symbols are referred to as characters. The set
of all characters that may be used to write programs and represent data items on a partic-
ular computer is called that computer’s character set. Since computers can process only 1s
and 0s, every character in a computer’s character set is represented as a pattern of 1s and
0s (called a byte). Today, bytes are most commonly composed of eight bits. You create
programs and data items as characters; computers then manipulate and process these char-
acters as patterns of bits.

Just as characters are composed of bits, fields are composed of characters. A field is a
group of characters that conveys meaning. For example, a field consisting solely of
uppercase and lowercase letters can be used to represent a person’s name.

Data items processed by computers form a data hierarchy in which data items become
larger and more complex in structure as we progress from bits, to characters (bytes), to
fields, and so on.

11.1 Introduction
11.2 Data Hierarchy
11.3 Files and Streams
11.4 Creating a Sequential-Access File
11.5 Reading Data from a Sequential-

Access File
11.6 Random-Access Files

11.7 Creating a Random-Access File
11.8 Writing Data Randomly to a

Random-Access File
11.9 Reading Data from a Random-Access

File
11.10 Case Study: Transaction-Processing

Program

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

11.2 Data Hierarchy 419

A record (i.e., a struct in C) is composed of several fields. In a payroll system, for
example, a record for a particular employee might consist of the following fields:

1. Social Security number (alphanumeric field)

2. Name (alphabetic field)

3. Address (alphanumeric field)

4. Hourly salary rate (numeric field)

5. Number of exemptions claimed (numeric field)

6. Year-to-date earnings (numeric field)

7. Amount of federal taxes withheld (numeric field)

Thus, a record is a group of related fields. In the preceding example, each of the fields be-
longs to the same employee. Of course, a particular company may have many employees
and will have a payroll record for each employee. A file is a group of related records. A
company’s payroll file normally contains one record for each employee. Thus, a payroll file
for a small company might contain only 22 records, whereas a payroll file for a large com-
pany might contain 100,000 records. It’s not unusual for an organization to have hun-
dreds or even thousands of files, with some containing billions or even trillions of
characters of information. Figure 11.1 illustrates the data hierarchy.

To facilitate the retrieval of specific records from a file, at least one field in each record
is chosen as a record key. A record key identifies a record as belonging to a particular
person or entity. For example, in the payroll record described in this section, the Social
Security number would normally be chosen as the record key.

Fig. 11.1 | Data hierarchy.

Sally Black

Tom Blue

Judy Green

Iris Orange

Randy Red

Judy

J u d y

01001010

1

Green

File

Record

Field

Byte (ASCII character J)

Bit

420 Chapter 11 C File Processing

There are many ways of organizing records in a file. The most popular type of orga-
nization is called a sequential file, in which records are typically stored in order by the
record key field. In a payroll file, records are usually placed in order by Social Security
Number. The first employee record in the file contains the lowest Social Security number,
and subsequent records contain increasingly higher Social Security numbers.

Most businesses store data in many different files. For example, companies may have
payroll files, accounts receivable files (listing money due from clients), accounts payable
files (listing money due to suppliers), inventory files (listing facts about all the items han-
dled by the business) and many other types of files. A group of related files is sometimes
called a database. A collection of programs designed to create and manage databases is
called a database management system (DBMS).

11.3 Files and Streams
C views each file simply as a sequential stream of bytes (Fig. 11.2). Each file ends either
with an end-of-file marker or at a specific byte number recorded in a system-maintained,
administrative data structure. When a file is opened, a stream is associated with the file.
Three files and their associated streams are automatically opened when program execution
begins—the standard input, the standard output and the standard error. Streams provide
communication channels between files and programs. For example, the standard input
stream enables a program to read data from the keyboard, and the standard output stream
enables a program to print data on the screen. Opening a file returns a pointer to a FILE
structure (defined in <stdio.h>) that contains information used to process the file. This
structure includes a file descriptor, i.e., an index into an operating system array called the
open file table. Each array element contains a file control block (FCB) that the operating
system uses to administer a particular file. The standard input, standard output and stan-
dard error are manipulated using file pointers stdin, stdout and stderr.

The standard library provides many functions for reading data from files and for
writing data to files. Function fgetc, like getchar, reads one character from a file. Func-
tion fgetc receives as an argument a FILE pointer for the file from which a character will
be read. The call fgetc(stdin) reads one character from stdin—the standard input.
This call is equivalent to the call getchar(). Function fputc, like putchar, writes one
character to a file. Function fputc receives as arguments a character to be written and a
pointer for the file to which the character will be written. The function call fputc('a',
stdout) writes the character 'a' to stdout—the standard output. This call is equivalent
to putchar('a').

Several other functions used to read data from standard input and write data to stan-
dard output have similarly named file processing functions. The fgets and fputs func-
tions, for example, can be used to read a line from a file and write a line to a file,
respectively. In the next several sections, we introduce the file processing equivalents of

Fig. 11.2 | C’s view of a file of n bytes.

0 1 2 3 4 5 6 7 8 9 ... n–1

end-of-file marker...

11.4 Creating a Sequential-Access File 421

functions scanf and printf—fscanf and fprintf. Later in the chapter we discuss func-
tions fread and fwrite.

11.4 Creating a Sequential-Access File
C imposes no structure on a file. Thus, notions such as a record of a file do not exist as
part of the C language. Therefore, you must provide a file structure to meet the require-
ments of a particular application. The following example shows how to impose a record
structure on a file.

Figure 11.3 creates a simple sequential-access file that might be used in an accounts
receivable system to help keep track of the amounts owed by a company’s credit clients.
For each client, the program obtains an account number, the client’s name and the client’s
balance (i.e., the amount the client owes the company for goods and services received in
the past). The data obtained for each client constitutes a “record” for that client. The
account number is used as the record key in this application—the file will be created and
maintained in account number order. This program assumes the user enters the records in
account number order. In a comprehensive accounts receivable system, a sorting capability
would be provided so the user could enter the records in any order. The records would
then be sorted and written to the file. [Note: Figures 11.7–11.8 use the data file created in
Fig. 11.3, so you must run Fig. 11.3 before Figs. 11.7–11.8.]

1 /* Fig. 11.3: fig11_03.c
2 Create a sequential file */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 int account; /* account number */
8 char name[30]; /* account name */
9 double balance; /* account balance */

10
11
12
13 /* fopen opens file. Exit program if unable to create file */
14 if (() == NULL) {
15 printf("File could not be opened\n");
16 } /* end if */
17 else {
18 printf("Enter the account, name, and balance.\n");
19 printf("Enter EOF to end input.\n");
20 printf("? ");
21 scanf("%d%s%lf", &account, name, &balance);
22
23 /* write account, name and balance into file with fprintf */
24 while () {
25
26 printf("? ");
27 scanf("%d%s%lf", &account, name, &balance);
28 } /* end while */

Fig. 11.3 | Creating a sequential file. (Part 1 of 2.)

FILE *cfPtr; /* cfPtr = clients.dat file pointer */

cfPtr = fopen("clients.dat", "w")

!feof(stdin)
fprintf(cfPtr, "%d %s %.2f\n", account, name, balance);

422 Chapter 11 C File Processing

Now let’s examine this program. Line 11 states that cfptr is a pointer to a FILE struc-
ture. A C program administers each file with a separate FILE structure. You need not know
the specifics of the FILE structure to use files, though the interested reader can study the
declaration in stdio.h. We’ll soon see precisely how the FILE structure leads indirectly to
the operating system’s file control block (FCB) for a file.

Each open file must have a separately declared pointer of type FILE that is used to refer
to the file. Line 14 names the file—"clients.dat"—to be used by the program and estab-
lishes a “line of communication” with the file. The file pointer cfPtr is assigned a pointer
to the FILE structure for the file opened with fopen. Function fopen takes two arguments:
a file name and a file open mode. The file open mode "w" indicates that the file is to be
opened for writing. If a file does not exist and it’s opened for writing, fopen creates the
file. If an existing file is opened for writing, the contents of the file are discarded without
warning. In the program, the if statement is used to determine whether the file pointer
cfPtr is NULL (i.e., the file is not opened). If it’s NULL, the program prints an error message
and terminates. Otherwise, the program processes the input and writes it to the file.

The program prompts the user to enter the various fields for each record or to enter
end-of-file when data entry is complete. Figure 11.4 lists the key combinations for
entering end-of-file for various computer systems.

Line 24 uses function feof to determine whether the end-of-file indicator is set for
the file to which stdin refers. The end-of-file indicator informs the program that there is
no more data to be processed. In Fig. 11.3, the end-of-file indicator is set for the standard
input when the user enters the end-of-file key combination. The argument to function

29
30
31 } /* end else */
32
33 return 0; /* indicates successful termination */
34 } /* end main */

Enter the account, name, and balance.
Enter EOF to end input.
? 100 Jones 24.98
? 200 Doe 345.67
? 300 White 0.00
? 400 Stone -42.16
? 500 Rich 224.62
? ^Z

Common Programming Error 11.1
Opening an existing file for writing ("w") when, in fact, the user wants to preserve the file,
discards the contents of the file without warning.

Common Programming Error 11.2
Forgetting to open a file before attempting to reference it in a program is a logic error.

Fig. 11.3 | Creating a sequential file. (Part 2 of 2.)

fclose(cfPtr); /* fclose closes file */

11.4 Creating a Sequential-Access File 423

feof is a pointer to the file being tested for the end-of-file indicator (stdin in this case).
The function returns a nonzero (true) value when the end-of-file indicator has been set;
otherwise, the function returns zero. The while statement that includes the feof call in
this program continues executing while the end-of-file indicator is not set.

Line 25 writes data to the file clients.dat. The data may be retrieved later by a pro-
gram designed to read the file (see Section 11.5). Function fprintf is equivalent to
printf except that fprintf also receives as an argument a file pointer for the file to which
the data will be written. Function fprintf can output data to the standard output by
using stdout as the file pointer, as in:

After the user enters end-of-file, the program closes the clients.dat file with fclose
and terminates. Function fclose also receives the file pointer (rather than the file name)
as an argument. If function fclose is not called explicitly, the operating system normally
will close the file when program execution terminates. This is an example of operating
system “housekeeping.”

In the sample execution for the program of Fig. 11.3, the user enters information for
five accounts, then enters end-of-file to signal that data entry is complete. The sample exe-
cution does not show how the data records actually appear in the file. To verify that the
file has been created successfully, in the next section we present a program that reads the
file and prints its contents.

Figure 11.5 illustrates the relationship between FILE pointers, FILE structures and
FCBs in memory. When the file "clients.dat" is opened, an FCB for the file is copied

Operating system Key combination

Linux/Mac OS X/UNIX <Ctrl> d

Windows <Ctrl> z

Fig. 11.4 | End-of-file key combinations for various popular operating systems.

 fprintf(stdout, "%d %s %.2f\n", account, name, balance);

Common Programming Error 11.3
Using the wrong file pointer to refer to a file is a logic error.

Error-Prevention Tip 11.1
Be sure that calls to file processing functions in a program contain the correct file pointers.

Good Programming Practice 11.1
Explicitly close each file as soon as it’s no longer needed.

Performance Tip 11.1
Closing a file can free resources for which other users or programs may be waiting.

424 Chapter 11 C File Processing

into memory. The figure shows the connection between the file pointer returned by fopen
and the FCB used by the operating system to administer the file.

Programs may process no files, one file or several files. Each file used in a program
must have a unique name and will have a different file pointer returned by fopen. All sub-
sequent file processing functions after the file is opened must refer to the file with the

Fig. 11.5 | Relationship between FILE pointers, FILE structures and FCBs.

User has access to this
1

2

cfPtr = fopen("clients.dat", "w");
fopen returns a pointer to a FILE structure
(defined in <stdio.h>).

When the program issues an I/O call such as

 fprintf(cfPtr, "%d %s %.2f",
 account, name, balance);

the program locates the descriptor (7) in the
FILE structure and uses the descriptor to find
the FCB in the Open File Table.

FILE structure for
"clients.dat"
contains a descriptor,
i.e., a small integer
that is an index into
the Open File Table.

4

Open File Table

Only the operating system
has access to this

This entry is
copied from FCB
on disk when the
file is opened.

The program calls an operating
system service that uses data in
the FCB to conotrol all input and
output to the actual file on the
disk. Note: The user cannot
directly access the FCB.

3

FCB for "clients.dat"

.

.

.

.

.

.

7

cfPtr

7

5

6

4

3

2

1

0

11.4 Creating a Sequential-Access File 425

appropriate file pointer. Files may be opened in one of several modes (Fig. 11.6). To create
a file, or to discard the contents of a file before writing data, open the file for writing ("w").
To read an existing file, open it for reading ("r"). To add records to the end of an existing
file, open the file for appending ("a"). To open a file so that it may be written to and read
from, open the file for updating in one of the three update modes—"r+", "w+" or "a+".
Mode "r+" opens a file for reading and writing. Mode "w+" creates a file for reading and
writing. If the file already exists, the file is opened and the current contents of the file are
discarded. Mode "a+" opens a file for reading and writing—all writing is done at the end
of the file. If the file does not exist, it’s created. Each file open mode has a corresponding
binary mode (containing the letter b) for manipulating binary files. The binary modes are
used in Sections 11.6–11.10 when we introduce random-access files. If an error occurs
while opening a file in any mode, fopen returns NULL.

Mode Description

r Open an existing file for reading.

w Create a file for writing. If the file already exists, discard the current contents.

a Append; open or create a file for writing at the end of the file.

r+ Open an existing file for update (reading and writing).

w+ Create a file for update. If the file already exists, discard the current contents.

a+ Append: open or create a file for update; writing is done at the end of the file.

rb Open an existing file for reading in binary mode.

wb Create a file for writing in binary mode. If the file already exists, discard the
current contents.

ab Append; open or create a file for writing at the end of the file in binary mode.

rb+ Open an existing file for update (reading and writing) in binary mode.

wb+ Create a file for update in binary mode. If the file already exists, discard the
current contents.

ab+ Append: open or create a file for update in binary mode; writing is done at the
end of the file.

Fig. 11.6 | File opening modes.

Common Programming Error 11.4
Opening a nonexistent file for reading is an error.

Common Programming Error 11.5
Opening a file for reading or writing without having been granted the appropriate access
rights to the file (this is operating-system dependent) is an error.

Common Programming Error 11.6
Opening a file for writing when no disk space is available is an error.

426 Chapter 11 C File Processing

11.5 Reading Data from a Sequential-Access File
Data is stored in files so that the data can be retrieved for processing when needed. The
previous section demonstrated how to create a file for sequential access. This section shows
how to read data sequentially from a file.

Figure 11.7 reads records from the file "clients.dat" created by the program of
Fig. 11.3 and prints the contents of the records. Line 11 indicates that cfPtr is a pointer
to a FILE. Line 14 attempts to open the file "clients.dat" for reading ("r") and deter-
mines whether the file is opened successfully (i.e., fopen does not return NULL). Line 19
reads a “record” from the file. Function fscanf is equivalent to function scanf, except
fscanf receives as an argument a file pointer for the file from which the data is read. After
this statement executes the first time, account will have the value 100, name will have the
value "Jones" and balance will have the value 24.98. Each time the second fscanf state-
ment (line 24) executes, the program reads another record from the file and account, name
and balance take on new values. When the program reaches the end of the file, the file is
closed (line 27) and the program terminates. Function feof returns true only after the pro-
gram attempts to read the nonexistent data following the last line.

Common Programming Error 11.7
Opening a file with the incorrect file mode is a logic error. For example, opening a file in
write mode ("w") when it should be opened in update mode ("r+") causes the contents of
the file to be discarded.

Error-Prevention Tip 11.2
Open a file only for reading (and not update) if the contents of the file should not be mod-
ified. This prevents unintentional modification of the file’s contents. This is another ex-
ample of the principle of least privilege.

1 /* Fig. 11.7: fig11_07.c
2 Reading and printing a sequential file */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 int account; /* account number */
8 char name[30]; /* account name */
9 double balance; /* account balance */

10
11
12
13 /* fopen opens file; exits program if file cannot be opened */
14 if (() == NULL) {
15 printf("File could not be opened\n");
16 } /* end if */
17 else { /* read account, name and balance from file */
18 printf("%-10s%-13s%s\n", "Account", "Name", "Balance");
19 fscanf(cfPtr, "%d%s%lf", &account, name, &balance);

Fig. 11.7 | Reading and printing a sequential file. (Part 1 of 2.)

FILE *cfPtr; /* cfPtr = clients.dat file pointer */

cfPtr = fopen("clients.dat", "r")

11.5 Reading Data from a Sequential-Access File 427

Resetting the File Position Pointer
To retrieve data sequentially from a file, a program normally starts reading from the be-
ginning of the file and reads all data consecutively until the desired data is found. It may
be desirable to process the data sequentially in a file several times (from the beginning of
the file) during the execution of a program. A statement such as

causes a program’s file position pointer—which indicates the number of the next byte in
the file to be read or written—to be repositioned to the beginning of the file (i.e., byte 0)
pointed to by cfPtr. The file position pointer is not really a pointer. Rather it’s an integer
value that specifies the byte location in the file at which the next read or write is to occur.
This is sometimes referred to as the file offset. The file position pointer is a member of the
FILE structure associated with each file.

Credit Inquiry Program
The program of Fig. 11.8 allows a credit manager to obtain lists of customers with zero
balances (i.e., customers who do not owe any money), customers with credit balances (i.e.,
customers to whom the company owes money) and customers with debit balances (i.e.,
customers who owe the company money for goods and services received). A credit balance
is a negative amount; a debit balance is a positive amount.

The program displays a menu and allows the credit manager to enter one of three
options to obtain credit information. Option 1 produces a list of accounts with zero bal-
ances. Option 2 produces a list of accounts with credit balances. Option 3 produces a list
of accounts with debit balances. Option 4 terminates program execution. A sample output
is shown in Fig. 11.9.

20
21 /* while not end of file */
22 while () {
23 printf("%-10d%-13s%7.2f\n", account, name, balance);
24
25 } /* end while */
26
27
28 } /* end else */
29
30 return 0; /* indicates successful termination */
31 } /* end main */

Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

rewind(cfPtr);

Fig. 11.7 | Reading and printing a sequential file. (Part 2 of 2.)

!feof(cfPtr)

fscanf(cfPtr, "%d%s%lf", &account, name, &balance);

fclose(cfPtr); /* fclose closes the file */

428 Chapter 11 C File Processing

1 /* Fig. 11.8: fig11_08.c
2 Credit inquiry program */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main(void)
7 {
8 int request; /* request number */
9 int account; /* account number */

10 double balance; /* account balance */
11 char name[30]; /* account name */
12
13
14 /* fopen opens the file; exits program if file cannot be opened */
15 if (()) == NULL) {
16 printf("File could not be opened\n");
17 } /* end if */
18 else {
19
20 /* display request options */
21 printf("Enter request\n"
22 " 1 - List accounts with zero balances\n"
23 " 2 - List accounts with credit balances\n"
24 " 3 - List accounts with debit balances\n"
25 " 4 - End of run\n? ");
26 scanf("%d", &request);
27
28 /* process user's request */
29 while (request != 4) {
30
31
32
33
34 switch (request) {
35 case 1:
36 printf("\nAccounts with zero balances:\n");
37
38 /* read file contents (until eof) */
39 while (!feof(cfPtr)) {
40
41 if (balance == 0) {
42 printf("%-10d%-13s%7.2f\n",
43 account, name, balance);
44 } /* end if */
45
46
47
48
49 } /* end while */
50
51 break;
52 case 2:
53 printf("\nAccounts with credit balances:\n");

Fig. 11.8 | Credit inquiry program. (Part 1 of 2.)

FILE *cfPtr; /* clients.dat file pointer */

cfPtr = fopen("clients.dat", "r"

/* read account, name and balance from file */
fscanf(cfPtr, "%d%s%lf", &account, name, &balance);

/* read account, name and balance from file */
fscanf(cfPtr, "%d%s%lf",
 &account, name, &balance);

11.5 Reading Data from a Sequential-Access File 429

Data in this type of sequential file cannot be modified without the risk of destroying
other data. For example, if the name “White” needed to be changed to “Worthington,” the
old name cannot simply be overwritten. The record for White was written to the file as

54
55 /* read file contents (until eof) */
56 while (!feof(cfPtr)) {
57
58 if (balance < 0) {
59 printf("%-10d%-13s%7.2f\n",
60 account, name, balance);
61 } /* end if */
62
63
64
65
66 } /* end while */
67
68 break;
69 case 3:
70 printf("\nAccounts with debit balances:\n");
71
72 /* read file contents (until eof) */
73 while (!feof(cfPtr)) {
74
75 if (balance > 0) {
76 printf("%-10d%-13s%7.2f\n",
77 account, name, balance);
78 } /* end if */
79
80
81
82
83 } /* end while */
84
85 break;
86 } /* end switch */
87
88
89
90 printf("\n? ");
91 scanf("%d", &request);
92 } /* end while */
93
94 printf("End of run.\n");
95
96 } /* end else */
97
98 return 0; /* indicates successful termination */
99 } /* end main */

300 White 0.00

Fig. 11.8 | Credit inquiry program. (Part 2 of 2.)

/* read account, name and balance from file */
fscanf(cfPtr, "%d%s%lf",
 &account, name, &balance);

/* read account, name and balance from file */
fscanf(cfPtr, "%d%s%lf",
 &account, name, &balance);

rewind(cfPtr); /* return cfPtr to beginning of file */

fclose(cfPtr); /* fclose closes the file */

430 Chapter 11 C File Processing

If the record is rewritten beginning at the same location in the file using the new name,
the record would be

The new record is larger (has more characters) than the original record. The characters be-
yond the second “o” in “Worthington” would overwrite the beginning of the next sequen-
tial record in the file. The problem here is that in the formatted input/output model using
fprintf and fscanf, fields—and hence records—can vary in size. For example, the values
7, 14, –117, 2074 and 27383 are all ints stored in the same number of bytes internally,
but they are different-sized fields when displayed on the screen or written to a file as text.

Therefore, sequential access with fprintf and fscanf is not usually used to update
records in place. Instead, the entire file is usually rewritten. To make the preceding name
change, the records before 300 White 0.00 in such a sequential-access file would be copied
to a new file, the new record would be written and the records after 300 White 0.00 would
be copied to the new file. This requires processing every record in the file to update one
record.

11.6 Random-Access Files
As we stated previously, records in a file created with the formatted output function
fprintf are not necessarily the same length. However, individual records of a random-
access file are normally fixed in length and may be accessed directly (and thus quickly)
without searching through other records. This makes random-access files appropriate for
airline reservation systems, banking systems, point-of-sale systems, and other kinds of

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - End of run
? 1

Accounts with zero balances:
300 White 0.00

? 2

Accounts with credit balances:
400 Stone -42.16

? 3

Accounts with debit balances:
100 Jones 24.98
200 Doe 345.67
500 Rich 224.62

? 4
End of run.

Fig. 11.9 | Sample output of the credit inquiry program of Fig. 11.8.

300 Worthington 0.00

11.7 Creating a Random-Access File 431

transaction processing systems that require rapid access to specific data. There are other
ways of implementing random-access files, but we’ll limit our discussion to this straight-
forward approach using fixed-length records.

Because every record in a random-access file normally has the same length, the exact
location of a record relative to the beginning of the file can be calculated as a function of
the record key. We’ll soon see how this facilitates immediate access to specific records, even
in large files.

Figure 11.10 illustrates one way to implement a random-access file. Such a file is like
a freight train with many cars—some empty and some with cargo. Each car in the train is
the same length.

Fixed-length records enable data to be inserted in a random-access file without
destroying other data in the file. Data stored previously can also be updated or deleted
without rewriting the entire file. In the following sections we explain how to create a
random-access file, enter data, read the data both sequentially and randomly, update the
data, and delete data no longer needed.

11.7 Creating a Random-Access File
Function fwrite transfers a specified number of bytes beginning at a specified location in
memory to a file. The data is written beginning at the location in the file indicated by the
file position pointer. Function fread transfers a specified number of bytes from the loca-
tion in the file specified by the file position pointer to an area in memory beginning with
a specified address. Now, when writing an integer, instead of using

which could print a single digit or as many as 11 digits (10 digits plus a sign, each of which
requires 1 byte of storage) for a 4-byte integer, we can use

which always writes 4 bytes (or 2 bytes on a system with 2-byte integers) from a variable
number to the file represented by fPtr (we’ll explain the 1 argument shortly). Later, fread
can be used to read 4 of those bytes into an integer variable number. Although fread and
fwrite read and write data, such as integers, in fixed-size rather than variable-size format,

Fig. 11.10 | C’s view of a random-access file.

fprintf(fPtr, "%d", number);

fwrite(&number, sizeof(int), 1, fPtr);

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

byte
offsets

0 100 200 300 400 500

432 Chapter 11 C File Processing

the data they handle are processed in computer “raw data” format (i.e., bytes of data) rath-
er than in printf’s and scanf’s human-readable text format. Since the “raw” representa-
tion of data is system-dependent, “raw data” may not be readable on other systems, or by
programs produced by other compilers or with other compiler options.

Functions fwrite and fread are capable of reading and writing arrays of data to and
from disk. The third argument of both fread and fwrite is the number of elements in the
array that should be read from disk or written to disk. The preceding fwrite function call
writes a single integer to disk, so the third argument is 1 (as if one element of an array is
being written).

File processing programs rarely write a single field to a file. Normally, they write one
struct at a time, as we show in the following examples.

Consider the following problem statement:

Create a credit processing system capable of storing up to 100 fixed-length records.
Each record should consist of an account number that will be used as the record key, a
last name, a first name and a balance. The resulting program should be able to update
an account, insert a new account record, delete an account and list all the account
records in a formatted text file for printing. Use a random-access file.

The next several sections introduce the techniques necessary to create the credit processing
program. Figure 11.11 shows how to open a random-access file, define a record format us-
ing a struct, write data to the disk and close the file. This program initializes all 100 re-
cords of the file "credit.dat" with empty structs using the function fwrite. Each
empty struct contains 0 for the account number, "" (the empty string) for the last name,
"" for the first name and 0.0 for the balance. The file is initialized in this manner to create
space on the disk in which the file will be stored and to make it possible to determine if a
record contains data.

1 /* Fig. 11.11: fig11_11.c
2 Creating a random-access file sequentially */
3 #include <stdio.h>
4
5
6
7
8
9

10
11
12
13 int main(void)
14 {
15 int i; /* counter used to count from 1-100 */
16
17
18
19
20 FILE *cfPtr; /* credit.dat file pointer */
21

Fig. 11.11 | Creating a random access file sequentially. (Part 1 of 2.)

/* clientData structure definition */
struct clientData {
 int acctNum; /* account number */
 char lastName[15]; /* account last name */
 char firstName[10]; /* account first name */
 double balance; /* account balance */
}; /* end structure clientData */

/* create clientData with default information */
struct clientData blankClient = { 0, "", "", 0.0 };

11.8 Writing Data Randomly to a Random-Access File 433

Function fwrite writes a block (specific number of bytes) of data to a file. In our pro-
gram, line 29 causes the structure blankClient of size sizeof(struct clientData) to
be written to the file pointed to by cfPtr. The operator sizeof returns the size in bytes of
its operand in parentheses (in this case struct clientData). The sizeof operator returns
an unsigned integer and can be used to determine the size in bytes of any data type or
expression. For example, sizeof(int) can be used to determine whether an integer is
stored in 2 or 4 bytes on a particular computer.

Function fwrite can actually be used to write several elements of an array of objects.
To write several array elements, supply in the call to fwrite a pointer to an array as the
first argument and the number of elements to be written as the third argument. In the pre-
ceding statement, fwrite was used to write a single object that was not an array element.
Writing a single object is equivalent to writing one element of an array, hence the 1 in the
fwrite call. [Note: Figures 11.12, 11.15 and 11.16 use the data file created in Fig. 11.11,
so you must run Fig. 11.11 before Figs. 11.12, 11.15 and 11.16]

11.8 Writing Data Randomly to a Random-Access File
Figure 11.12 writes data to the file "credit.dat". It uses the combination of fseek and
fwrite to store data at specific locations in the file. Function fseek sets the file position
pointer to a specific position in the file, then fwrite writes the data. A sample execution
is shown in Fig. 11.13.

22 /* fopen opens the file; exits if file cannot be opened */
23 if (()) == NULL) {
24 printf("File could not be opened.\n");
25 } /* end if */
26 else {
27
28
29
30
31
32 fclose (cfPtr); /* fclose closes the file */
33 } /* end else */
34
35 return 0; /* indicates successful termination */
36 } /* end main */

1 /* Fig. 11.12: fig11_12.c
2 Writing to a random access file */
3 #include <stdio.h>
4
5
6
7
8

Fig. 11.12 | Writing data randomly to a random-access file. (Part 1 of 2.)

Fig. 11.11 | Creating a random access file sequentially. (Part 2 of 2.)

cfPtr = fopen("credit.dat", "wb"

/* output 100 blank records to file */
for (i = 1; i <= 100; i++) {
 fwrite(&blankClient, sizeof(struct clientData), 1, cfPtr);
} /* end for */

/* clientData structure definition */
struct clientData {
 int acctNum; /* account number */
 char lastName[15]; /* account last name */

434 Chapter 11 C File Processing

Lines 40–41 position the file position pointer for the file referenced by cfPtr to the
byte location calculated by (client.accountNum - 1) * sizeof(struct clientData).
The value of this expression is called the offset or the displacement. Because the account
number is between 1 and 100 but the byte positions in the file start with 0, 1 is subtracted

9
10
11
12
13 int main(void)
14 {
15 FILE *cfPtr; /* credit.dat file pointer */
16
17 /* create clientData with default information */
18 struct clientData client = { 0, "", "", 0.0 };
19
20 /* fopen opens the file; exits if file cannot be opened */
21 if (() == NULL) {
22 printf("File could not be opened.\n");
23 } /* end if */
24 else {
25 /* require user to specify account number */
26 printf("Enter account number"
27 " (1 to 100, 0 to end input)\n? ");
28 scanf("%d", &client.acctNum);
29
30 /* user enters information, which is copied into file */
31 while (client.acctNum != 0) {
32 /* user enters last name, first name and balance */
33 printf("Enter lastname, firstname, balance\n? ");
34
35 /* set record lastName, firstName and balance value */
36 fscanf(stdin, "%s%s%lf", client.lastName,
37 client.firstName, &client.balance);
38
39
40
41
42
43
44
45
46 /* enable user to input another account number */
47 printf("Enter account number\n? ");
48 scanf("%d", &client.acctNum);
49 } /* end while */
50
51 fclose(cfPtr); /* fclose closes the file */
52 } /* end else */
53
54 return 0; /* indicates successful termination */
55 } /* end main */

Fig. 11.12 | Writing data randomly to a random-access file. (Part 2 of 2.)

 char firstName[10]; /* account first name */
 double balance; /* account balance */
}; /* end structure clientData */

cfPtr = fopen("credit.dat", "rb+")

/* seek position in file to user-specified record */
fseek(cfPtr, (client.acctNum - 1) *
 sizeof(struct clientData), SEEK_SET);

/* write user-specified information in file */
fwrite(&client, sizeof(struct clientData), 1, cfPtr);

11.8 Writing Data Randomly to a Random-Access File 435

from the account number when calculating the byte location of the record. Thus, for
record 1, the file position pointer is set to byte 0 of the file. The symbolic constant
SEEK_SET indicates that the file position pointer is positioned relative to the beginning of
the file by the amount of the offset. As the above statement indicates, a seek for account
number 1 in the file sets the file position pointer to the beginning of the file because the
byte location calculated is 0. Figure 11.14 illustrates the file pointer referring to a FILE
structure in memory. The file position pointer in this diagram indicates that the next byte
to be read or written is 5 bytes from the beginning of the file.

Enter account number (1 to 100, 0 to end input)
? 37
Enter lastname, firstname, balance
? Barker Doug 0.00
Enter account number
? 29
Enter lastname, firstname, balance
? Brown Nancy -24.54
Enter account number
? 96
Enter lastname, firstname, balance
? Stone Sam 34.98
Enter account number
? 88
Enter lastname, firstname, balance
? Smith Dave 258.34
Enter account number
? 33
Enter lastname, firstname, balance
? Dunn Stacey 314.33
Enter account number
? 0

Fig. 11.13 | Sample execution of the program in Fig. 11.12.

Fig. 11.14 | File position pointer indicating an offset of 5 bytes from the beginning of the file.

5

0 1 2 3 4 5 6 7 8 9 ...

cfPtr

Byte
number

(File position
pointer)

436 Chapter 11 C File Processing

The function prototype for fseek is

where offset is the number of bytes to seek from location whence in the file pointed to
by stream. The argument whence can have one of three values—SEEK_SET, SEEK_CUR or
SEEK_END (all defined in <stdio.h>)—indicating the location in the file from which the
seek begins. SEEK_SET indicates that the seek starts at the beginning of the file; SEEK_CUR
indicates that the seek starts at the current location in the file; and SEEK_END indicates that
the seek starts at the end of the file.

For simplicity, the programs in this chapter do not perform error checking. If you
wish to determine whether functions like fscanf (lines 36–37), fseek (lines 40–41) and
fwrite (line 44) operate correctly, you can check their return values. Function fscanf
returns the number of data items successfully read or the value EOF if a problem occurs
while reading data. Function fseek returns a nonzero value if the seek operation cannot
be performed. Function fwrite returns the number of items it successfully output. If this
number is less than the third argument in the function call, then a write error occurred.

11.9 Reading Data from a Random-Access File
Function fread reads a specified number of bytes from a file into memory. For example,

reads the number of bytes determined by sizeof(struct clientData) from the file ref-
erenced by cfPtr and stores the data in the structure client. The bytes are read from the
location in the file specified by the file position pointer. Function fread can be used to
read several fixed-size array elements by providing a pointer to the array in which the ele-
ments will be stored and by indicating the number of elements to be read. The preceding
statement specifies that one element should be read. To read more than one element, spec-
ify the number of elements in the third argument of the fread statement. Function fread
returns the number of items it successfully input. If this number is less than the third ar-
gument in the function call, then a read error occurred.

Figure 11.15 reads sequentially every record in the "credit.dat" file, determines
whether each record contains data and displays the formatted data for records containing
data. Function feof determines when the end of the file is reached, and the fread function
transfers data from the disk to the clientData structure client.

int fseek(FILE *stream, long int offset, int whence);

fread(&client, sizeof(struct clientData), 1, cfPtr);

1 /* Fig. 11.15: fig11_15.c
2 Reading a random access file sequentially */
3 #include <stdio.h>
4
5
6
7
8
9

10
11

Fig. 11.15 | Reading a random-access file sequentially. (Part 1 of 2.)

/* clientData structure definition */
struct clientData {
 int acctNum; /* account number */
 char lastName[15]; /* account last name */
 char firstName[10]; /* account first name */
 double balance; /* account balance */
}; /* end structure clientData */

11.10 Case Study: Transaction-Processing Program 437

11.10 Case Study: Transaction-Processing Program
We now present a substantial transaction-processing program using random-access files.
The program maintains a bank’s account information. The program updates existing ac-
counts, adds new accounts, deletes accounts and stores a listing of all the current accounts
in a text file for printing. We assume that the program of Fig. 11.11 has been executed to
create the file credit.dat.

The program has five options. Option 1 calls function textFile (lines 65–95) to store
a formatted list of all the accounts in a text file called accounts.txt that may be printed

12
13 int main(void)
14 {
15 FILE *cfPtr; /* credit.dat file pointer */
16
17 /* create clientData with default information */
18 struct clientData client = { 0, "", "", 0.0 };
19
20 /* fopen opens the file; exits if file cannot be opened */
21 if (()) == NULL) {
22 printf("File could not be opened.\n");
23 } /* end if */
24 else {
25 printf("%-6s%-16s%-11s%10s\n", "Acct", "Last Name",
26 "First Name", "Balance");
27
28 /* read all records from file (until eof) */
29 while (!feof(cfPtr)) {
30
31
32 /* display record */
33 if (client.acctNum != 0) {
34 printf("%-6d%-16s%-11s%10.2f\n",
35 client.acctNum, client.lastName,
36 client.firstName, client.balance);
37 } /* end if */
38 } /* end while */
39
40 fclose(cfPtr); /* fclose closes the file */
41 } /* end else */
42
43 return 0; /* indicates successful termination */
44 } /* end main */

Acct Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

Fig. 11.15 | Reading a random-access file sequentially. (Part 2 of 2.)

cfPtr = fopen("credit.dat", "rb"

fread(&client, sizeof(struct clientData), 1, cfPtr);

438 Chapter 11 C File Processing

later. The function uses fread and the sequential file access techniques used in the pro-
gram of Fig. 11.15. After choosing option 1 the file accounts.txt contains:

Option 2 calls the function updateRecord (lines 98–142) to update an account. The
function will only update a record that already exists, so the function first checks to see if
the record specified by the user is empty. The record is read into structure client with
fread, then member acctNum is compared to 0. If it’s 0, the record contains no informa-
tion, and a message is printed stating that the record is empty. Then, the menu choices are
displayed. If the record contains information, function updateRecord inputs the transac-
tion amount, calculates the new balance and rewrites the record to the file. A typical
output for option 2 is

Option 3 calls the function newRecord (lines 179–218) to add a new account to the
file. If the user enters an account number for an existing account, newRecord displays an
error message that the record already contains information, and the menu choices are
printed again. This function uses the same process to add a new account as does the pro-
gram in Fig. 11.12. A typical output for option 3 is

Option 4 calls function deleteRecord (lines 145–176) to delete a record from the
file. Deletion is accomplished by asking the user for the account number and reinitializing
the record. If the account contains no information, deleteRecord displays an error mes-
sage that the account does not exist. Option 5 terminates program execution. The pro-
gram is shown in Fig. 11.16. The file "credit.dat" is opened for update (reading and
writing) using "rb+" mode.

Acct Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

Enter account to update (1 - 100): 37
37 Barker Doug 0.00

Enter charge (+) or payment (-): +87.99
37 Barker Doug 87.99

Enter new account number (1 - 100): 22
Enter lastname, firstname, balance
? Johnston Sarah 247.45

1 /* Fig. 11.16: fig11_16.c
2 This program reads a random access file sequentially, updates data
3 already written to the file, creates new data to be placed in the
4 file, and deletes data previously in the file. */

Fig. 11.16 | Bank account program. (Part 1 of 6.)

11.10 Case Study: Transaction-Processing Program 439

5 #include <stdio.h>
6
7
8
9

10
11
12
13
14
15 /* prototypes */
16 int enterChoice(void);
17 void textFile(FILE *readPtr);
18 void updateRecord(FILE *fPtr);
19 void newRecord(FILE *fPtr);
20 void deleteRecord(FILE *fPtr);
21
22 int main(void)
23 {
24 FILE *cfPtr; /* credit.dat file pointer */
25 int choice; /* user's choice */
26
27 /* fopen opens the file; exits if file cannot be opened */
28 if (()) == NULL) {
29 printf("File could not be opened.\n");
30 } /* end if */
31 else {
32 /* enable user to specify action */
33 while ((choice = enterChoice()) != 5) {
34 switch (choice) {
35 /* create text file from record file */
36 case 1:
37 textFile(cfPtr);
38 break;
39 /* update record */
40 case 2:
41 updateRecord(cfPtr);
42 break;
43 /* create record */
44 case 3:
45 newRecord(cfPtr);
46 break;
47 /* delete existing record */
48 case 4:
49 deleteRecord(cfPtr);
50 break;
51 /* display message if user does not select valid choice */
52 default:
53 printf("Incorrect choice\n");
54 break;
55 } /* end switch */
56 } /* end while */
57

Fig. 11.16 | Bank account program. (Part 2 of 6.)

/* clientData structure definition */
struct clientData {
 int acctNum; /* account number */
 char lastName[15]; /* account last name */
 char firstName[10]; /* account first name */
 double balance; /* account balance */
}; /* end structure clientData */

cfPtr = fopen("credit.dat", "rb+"

440 Chapter 11 C File Processing

58 fclose(cfPtr); /* fclose closes the file */
59 } /* end else */
60
61 return 0; /* indicates successful termination */
62 } /* end main */
63
64 /* create formatted text file for printing */
65 void textFile(FILE *readPtr)
66 {
67 FILE *writePtr; /* accounts.txt file pointer */
68
69 /* create clientData with default information */
70 struct clientData client = { 0, "", "", 0.0 };
71
72 /* fopen opens the file; exits if file cannot be opened */
73 if (() == NULL) {
74 printf("File could not be opened.\n");
75 } /* end if */
76 else {
77 rewind(readPtr); /* sets pointer to beginning of file */
78 fprintf(writePtr, "%-6s%-16s%-11s%10s\n",
79 "Acct", "Last Name", "First Name","Balance");
80
81 /* copy all records from random-access file into text file */
82 while (!feof(readPtr)) {
83
84
85 /* write single record to text file */
86 if (client.acctNum != 0) {
87
88
89
90 } /* end if */
91 } /* end while */
92
93 fclose(writePtr); /* fclose closes the file */
94 } /* end else */
95 } /* end function textFile */
96
97 /* update balance in record */
98 void updateRecord(FILE *fPtr)
99 {
100 int account; /* account number */
101 double transaction; /* transaction amount */
102
103 /* create clientData with no information */
104 struct clientData client = { 0, "", "", 0.0 };
105
106 /* obtain number of account to update */
107 printf("Enter account to update (1 - 100): ");
108 scanf("%d", &account);
109

Fig. 11.16 | Bank account program. (Part 3 of 6.)

writePtr = fopen("accounts.txt", "w")

fread(&client, sizeof(struct clientData), 1, readPtr);

fprintf(writePtr, "%-6d%-16s%-11s%10.2f\n",
 client.acctNum, client.lastName,
 client.firstName, client.balance);

11.10 Case Study: Transaction-Processing Program 441

110
111
112
113
114 /* read record from file */
115
116
117 /* display error if account does not exist */
118 if (client.acctNum == 0) {
119 printf("Acount #%d has no information.\n", account);
120 } /* end if */
121 else { /* update record */
122 printf("%-6d%-16s%-11s%10.2f\n\n",
123 client.acctNum, client.lastName,
124 client.firstName, client.balance);
125
126 /* request transaction amount from user */
127 printf("Enter charge (+) or payment (-): ");
128 scanf("%lf", &transaction);
129 client.balance += transaction; /* update record balance */
130
131 printf("%-6d%-16s%-11s%10.2f\n",
132 client.acctNum, client.lastName,
133 client.firstName, client.balance);
134
135
136
137
138
139
140
141 } /* end else */
142 } /* end function updateRecord */
143
144 /* delete an existing record */
145 void deleteRecord(FILE *fPtr)
146 {
147 struct clientData client; /* stores record read from file */
148 struct clientData blankClient = { 0, "", "", 0 }; /* blank client */
149
150 int accountNum; /* account number */
151
152 /* obtain number of account to delete */
153 printf("Enter account number to delete (1 - 100): ");
154 scanf("%d", &accountNum);
155
156
157
158
159
160
161

Fig. 11.16 | Bank account program. (Part 4 of 6.)

/* move file pointer to correct record in file */
fseek(fPtr, (account - 1) * sizeof(struct clientData),
 SEEK_SET);

fread(&client, sizeof(struct clientData), 1, fPtr);

/* move file pointer to correct record in file */
fseek(fPtr, (account - 1) * sizeof(struct clientData),
 SEEK_SET);

/* write updated record over old record in file */
fwrite(&client, sizeof(struct clientData), 1, fPtr);

/* move file pointer to correct record in file */
fseek(fPtr, (accountNum - 1) * sizeof(struct clientData),
 SEEK_SET);

/* read record from file */
fread(&client, sizeof(struct clientData), 1, fPtr);

442 Chapter 11 C File Processing

162
163 /* display error if record does not exist */
164 if (client.acctNum == 0) {
165 printf("Account %d does not exist.\n", accountNum);
166 } /* end if */
167 else { /* delete record */
168
169
170
171
172
173
174
175 } /* end else */
176 } /* end function deleteRecord */
177
178 /* create and insert record */
179 void newRecord(FILE *fPtr)
180 {
181 /* create clientData with default information */
182 struct clientData client = { 0, "", "", 0.0 };
183
184 int accountNum; /* account number */
185
186 /* obtain number of account to create */
187 printf("Enter new account number (1 - 100): ");
188 scanf("%d", &accountNum);
189
190
191
192
193
194
195
196
197 /* display error if account already exists */
198 if (client.acctNum != 0) {
199 printf("Account #%d already contains information.\n",
200 client.acctNum);
201 } /* end if */
202 else { /* create record */
203 /* user enters last name, first name and balance */
204 printf("Enter lastname, firstname, balance\n? ");
205 scanf("%s%s%lf", &client.lastName, &client.firstName,
206 &client.balance);
207
208 client.acctNum = accountNum;
209
210
211
212
213

Fig. 11.16 | Bank account program. (Part 5 of 6.)

/* move file pointer to correct record in file */
fseek(fPtr, (accountNum - 1) * sizeof(struct clientData),
 SEEK_SET);

/* replace existing record with blank record */
fwrite(&blankClient,
 sizeof(struct clientData), 1, fPtr);

/* move file pointer to correct record in file */
fseek(fPtr, (accountNum - 1) * sizeof(struct clientData),
 SEEK_SET);

/* read record from file */
fread(&client, sizeof(struct clientData), 1, fPtr);

/* move file pointer to correct record in file */
fseek(fPtr, (client.acctNum - 1) *
 sizeof(struct clientData), SEEK_SET);

 Summary 443

214
215
216
217 } /* end else */
218 } /* end function newRecord */
219
220 /* enable user to input menu choice */
221 int enterChoice(void)
222 {
223 int menuChoice; /* variable to store user's choice */
224
225 /* display available options */
226 printf("\nEnter your choice\n"
227 "1 - store a formatted text file of acounts called\n"
228 " \"accounts.txt\" for printing\n"
229 "2 - update an account\n"
230 "3 - add a new account\n"
231 "4 - delete an account\n"
232 "5 - end program\n? ");
233
234 scanf("%d", &menuChoice); /* receive choice from user */
235 return menuChoice;
236 } /* end function enterChoice */

Fig. 11.16 | Bank account program. (Part 6 of 6.)

/* insert record in file */
fwrite(&client,
 sizeof(struct clientData), 1, fPtr);

Summary
Section 11.1 Introduction
• Files are used for permanent retention of large amounts of data.

• Computers store files on secondary storage devices, especially disk storage devices.

Section 11.2 Data Hierarchy
• The smallest data item in a computer can assume the value 0 or the value 1. Such a data item is

called a bit (short for “binary digit”—a digit that can assume one of two values).

• Computer circuitry performs various simple bit manipulations such as determining a bit’s value,
setting a bit’s value and reversing a bit (from 1 to 0 or from 0 to 1).

• Programmers prefer to work with data in the form of decimal digits, letters and special symbols.,
which are referred to as characters.

• The set of all characters that may be used to write programs and represent data items on a par-
ticular computer is called that computer’s character set.

• Every character in a computer’s character set is represented as a pattern of 1s and 0s (called a byte).

• Bytes are most commonly composed of eight bits.

• Fields are composed of characters. A field is a group of characters that conveys meaning.

• A record (i.e., a struct) is a group of related fields.

• A file is a group of related records.

• To facilitate the retrieval of specific records from a file, at least one field in each record is chosen
as a record key. A record key identifies a record as belonging to a particular person or entity.

444 Chapter 11 C File Processing

• The most popular type of file organization is called a sequential file, in which records are typically
stored in order by the record key field.

Section 11.3 Files and Streams
• C views each file as a sequential stream of bytes. When a file is opened, a stream is associated with

the file.

• Three files and their associated streams are automatically opened when program execution be-
gins—the standard input, the standard output and the standard error.

• Streams provide communication channels between files and programs.

• The standard input stream enables a program to read data from the keyboard, and the standard
output stream enables a program to print data on the screen.

• Opening a file returns a pointer to a FILE structure (defined in <stdio.h>) that contains infor-
mation used to process the file. This structure includes a file descriptor, i.e., an index into an op-
erating system array called the open file table. Each array element contains a file control block
(FCB) that the operating system uses to administer a particular file.

• The standard input, standard output and standard error are manipulated using file pointers st-
din, stdout and stderr.

• Function fgetc reads one character from a file. It receives as an argument a FILE pointer for the
file from which a character will be read.

• Function fputc writes one character to a file. It receives as arguments a character to be written
and a pointer for the file to which the character will be written.

• The fgets and fputs functions read a line from a file or write a line to a file, respectively.

Section 11.4 Creating a Sequential-Access File
• C imposes no structure on a file. You must provide a file structure to meet the requirements of

a particular application.

• A C program administers each file with a separate FILE structure.

• Each open file must have a separately declared pointer of type FILE that is used to refer to the file.

• Function fopen takes as arguments a file name and a file open mode and returns a pointer to the
FILE structure for the file opened.

• The file open mode "w" indicates that the file is to be opened for writing. If the file does not exist,
fopen creates the file. If the exists, the contents are discarded without warning.

• Function fopen returns NULL if it’s unable to open a file.

• Function feof receives a pointer to a FILE and returns a nonzero (true) value when the end-of-
file indicator has been set; otherwise, the function returns zero.

• Function fprintf is equivalent to printf except that fprintf also receives as an argument a file
pointer for the file to which the data will be written.

• Function fclose receives a file pointer as an argument and closes the specified file.

• When a file is opened, the file control block (FCB) for the file is copied into memory. The FCB
is used by the operating system to administer the file.

• To create a file, or to discard the file’s contents before writing data, open the file for writing ("w").

• To read an existing file, open it for reading ("r").

• To add records to the end of an existing file, open the file for appending ("a").

• To open a file so that it may be written to and read from, open the file for updating in one of the
three update modes—"r+", "w+" or "a+". Mode "r+" opens a file for reading and writing. Mode

 Summary 445

"w+" creates a file for reading and writing. If the file already exists, it’s opened and it’s contents
are discarded. Mode "a+" opens a file for reading and writing—all writing is done at the end of
the file. If the file does not exist, it’s created.

• Each file open mode has a corresponding binary mode (containing the letter b) for manipulating
binary files.

Section 11.5 Reading Data from a Sequential-Access File
• Function fscanf is equivalent to function scanf except fscanf receives as an argument a file

pointer for the file from which the data is read.

• To retrieve data sequentially from a file, a program normally starts reading from the beginning
of the file and reads all data consecutively until the desired data is found.

• Function rewind causes a program’s file position pointer to be repositioned to the beginning of
the file (i.e., byte 0) pointed to its argument.

• The file position pointer is an integer value that specifies the byte location in the file at which the
next read or write is to occur. This is sometimes referred to as the file offset. The file position
pointer is a member of the FILE structure associated with each file.

• The data in a sequential file typically cannot be modified without the risk of destroying other
data in the file.

Section 11.6 Random-Access Files
• Individual records of a random-access file are normally fixed in length and may be accessed di-

rectly (and thus quickly) without searching through other records.

• Because every record in a random-access file normally has the same length, the exact location of
a record relative to the beginning of the file can be calculated as a function of the record key.

• Fixed-length records enable data to be inserted in a random-access file without destroying other
data. Data stored previously can also be updated or deleted without rewriting the entire file.

Section 11.7 Creating a Random-Access File
• Function fwrite transfers a specified number of bytes beginning at a specified location in mem-

ory to a file. The data is written beginning at the file position pointer’s location.

• Function fread transfers a specified number of bytes from the location in the file specified by the
file position pointer to an area in memory beginning with a specified address.

• Functions fwrite and fread are capable of reading and writing arrays of data from and to disk.
The third argument of both fread and fwrite is the number of elements to process in the array.

• File processing programs normally write one struct at a time.

• Function fwrite writes a block (specific number of bytes) of data to a file.

• To write several array elements, supply in the call to fwrite a pointer to an array as the first ar-
gument and the number of elements to be written as the third argument.

Section 11.8 Writing Data Randomly to a Random-Access File
• Function fseek sets the file position pointer for a given file to a specific position in the file. Its

second argument indicates the number of bytes to seek and its third argument indicates the lo-
cation from which to seek. The third argument can have one of three values—SEEK_SET,
SEEK_CUR or SEEK_END (all defined in <stdio.h>). SEEK_SET indicates that the seek starts at the
beginning of the file; SEEK_CUR indicates that the seek starts at the current location in the file; and
SEEK_END indicates that the seek starts at the end of the file.

• If you wish to determine whether functions like fscanf, fseek and fwrite operate correctly, you
can check their return values.

446 Chapter 11 C File Processing

• Function fscanf returns the number of fields successfully read or the value EOF if a problem oc-
curs while reading data.

• Function fseek returns a nonzero value if the seek operation cannot be performed.

• Function fwrite returns the number of items it successfully output. If this number is less than
the third argument in the function call, then a write error occurred.

Section 11.9 Reading Data from a Random-Access File
• Function fread reads a specified number of bytes from a file into memory.

• Function fread can be used to read several fixed-size array elements by providing a pointer to the
array in which the elements will be stored and by indicating the number of elements to be read.

• Function fread returns the number of items it successfully input. If this number is less than the
third argument in the function call, then a read error occurred.

Terminology
binary digit 418
bit 418
byte 418
character 418
character set 418
data hierarchy 418
database 420
database management system (DBMS) 420
displacement 434
end-of-file marker 420
fclose function 423
feof function 422
fgetc function 420
fgets function 420
field 418
FILE type 420
file 419
file control block (FCB) 420
file descriptor 420
file offset 427
file open mode 422
file position pointer 427
fopen function 425
formatted input/output model 430
fprintf function 421
fputs function 420
fread function 421

fscanf function 421
fseek function 433
fwrite function 421
getchar function 420
letter 418
NULL 422
offset 434
open file table 420
printf function 421
putchar function 420
random-access file 430
record 419
record key 419
SEEK_CUR 436
SEEK_END 436
SEEK_SET 435
sequential file 420
special symbol 418
standard error 420
standard input file 420
standard output file 420
stderr (the standard error device) 420
stdin (the standard input device) 420
stdout (the standard output device) 420
stream 420
transaction-processing system 431
zeros and ones 418

Self-Review Exercises
11.1 Fill in the blanks in each of the following:

a) Ultimately, all data items processed by a computer are reduced to combinations of
 and .

b) The smallest data item a computer can process is called a(n) .
c) A(n) is a group of related records.
d) Digits, letters and special symbols are referred to as .

 Self-Review Exercises 447

e) A group of related files is called a .
f) Function closes a file.
g) The function reads data from a file in a manner similar to how scanf reads

from stdin.
h) Function reads a character from a specified file.
i) Function reads a line from a specified file.
j) Function opens a file.
k) Function is normally used when reading data from a file in random-access ap-

plications.
l) Function repositions the file position pointer to a specific location in the file.

11.2 State which of the following are true and which are false. If false, explain why.
a) Function fscanf cannot be used to read data from the standard input.
b) You must explicitly use fopen to open the standard input, standard output and standard

error streams.
c) A program must explicitly call function fclose to close a file.
d) If the file position pointer points to a location in a sequential file other than the beginning

of the file, the file must be closed and reopened to read from the beginning of the file.
e) Function fprintf can write to the standard output.
f) Data in sequential-access files are always updated without overwriting other data.
g) It’s not necessary to search through all the records in a random-access file to find a spe-

cific record.
h) Records in random-access files are not of uniform length.
i) Function fseek may only seek relative to the beginning of a file.

11.3 Write a single statement to accomplish each of the following. Assume that each of these
statements applies to the same program.

a) Write a statement that opens the file "oldmast.dat" for reading and assigns the re-
turned file pointer to ofPtr.

b) Write a statement that opens the file "trans.dat" for reading and assigns the returned
file pointer to tfPtr.

c) Write a statement that opens the file "newmast.dat" for writing (and creation) and as-
signs the returned file pointer to nfPtr.

d) Write a statement that reads a record from the file "oldmast.dat". The record consists
of integer accountNum, string name and floating-point currentBalance.

e) Write a statement that reads a record from the file "trans.dat". The record consists of
the integer accountNum and floating-point dollarAmount.

f) Write a statement that writes a record to the file "newmast.dat". The record consists of
the integer accountNum, string name and floating-point currentBalance.

11.4 Find the error in each of the following program segments and explain how to correct it.
a) The file referred to by fPtr ("payables.dat") has not been opened.

 printf(fPtr, "%d%s%d\n", account, company, amount);
b) open("receive.dat", "r+");
c) The following statement should read a record from the file "payables.dat". File point-

er payPtr refers to this file, and file pointer recPtr refers to the file "receive.dat":
 scanf(recPtr, "%d%s%d\n", &account, company, &amount);

d) The file "tools.dat" should be opened to add data to the file without discarding the
current data.
 if ((tfPtr = fopen("tools.dat", "w")) != NULL)

e) The file "courses.dat" should be opened for appending without modifying the current
contents of the file.
 if ((cfPtr = fopen("courses.dat", "w+")) != NULL)

448 Chapter 11 C File Processing

Answers to Self-Review Exercises
11.1 a) 1s, 0s. b) Bit. c) File. d) Characters. e) Database. f) fclose. g) fscanf. h) fgetc.
i) fgets. j) fopen. k) fread. l) fseek.

11.2 a) False. Function fscanf can be used to read from the standard input by including the
pointer to the standard input stream, stdin, in the call to fscanf.

b) False. These three streams are opened automatically by C when program execution be-
gins.

c) False. The files will be closed when program execution terminates, but all files should
be explicitly closed with fclose.

d) False. Function rewind can be used to reposition the file position pointer to the be-
ginning of the file.

e) True.
f) False. In most cases, sequential file records are not of uniform length. Therefore, it’s

possible that updating a record will cause other data to be overwritten.
g) True.
h) False. Records in a random-access file are normally of uniform length.
i) False. It’s possible to seek from the beginning of the file, from the end of the file and

from the current location in the file.

11.3 a) ofPtr = fopen("oldmast.dat", "r");

b) tfPtr = fopen("trans.dat", "r");
c) nfPtr = fopen("newmast.dat", "w");
d) fscanf(ofPtr, "%d%s%f", &accountNum, name, ¤tBalance);
e) fscanf(tfPtr, "%d%f", &accountNum, &dollarAmount);
f) fprintf(nfPtr, "%d %s %.2f", accountNum, name, currentBalance);

11.4 a) Error: The file "payables.dat" has not been opened before the reference to its file
pointer.
Correction: Use fopen to open "payables.dat" for writing, appending or updating.

b) Error: Function open is not a Standard C function.
Correction: Use function fopen.

c) Error: Function fscanf uses the incorrect file pointer to refer to file "payables.dat".
Correction: Use file pointer payPtr to refer to "payables.dat".

d) Error: The contents of the file are discarded because the file is opened for writing ("w").
Correction: To add data to the file, either open the file for updating ("r+") or open the
file for appending ("a").

e) Error: File "courses.dat" is opened for updating in "w+" mode which discards the cur-
rent contents of the file.
Correction: Open the file "a" mode.

Exercises
11.5 Fill in the blanks in each of the following:

a) Computers store large amounts of data on secondary storage devices as .
b) A(n) is composed of several fields.
c) A field that may contain digits, letters and blanks is called a(n) field.
d) To facilitate the retrieval of specific records from a file, one field in each record is chosen

as a(n) .
e) Most information stored in computer systems is stored in files.
f) A group of related characters that conveys meaning is called a(n) .

 Exercises 449

g) The file pointers for the three files that are opened automatically when program execu-
tion begins are named , and .

h) Function writes a character to a specified file.
i) Function writes a line to a specified file.
j) Function is generally used to write data to a random-access file.
k) Function repositions the file position pointer to the beginning of the file.

11.6 State which of the following are true and which are false. If false, explain why.
a) The impressive functions performed by computers essentially involve the manipulation

of zeros and ones.
b) People prefer to manipulate bits instead of characters and fields because bits are more

compact.
c) People specify programs and data items as characters; computers then manipulate and

process these characters as groups of zeros and ones.
d) A person’s zip code is an example of a numeric field.
e) A person’s street address is generally considered to be an alphabetic field in computer

applications.
f) Data items processed by a computer form a data hierarchy in which data items become

larger and more complex as we progress from fields to characters to bits etc.
g) A record key identifies a record as belonging to a particular field.
h) Most companies store their information in a single file to facilitate computer processing.
i) Files are always referred to by name in C programs.
j) When a program creates a file, the file is automatically retained by the computer for fu-

ture reference.

11.7 (File Matching) Exercise 11.3 asked the reader to write a series of single statements. Actu-
ally, these statements form the core of an important type of file-processing program, namely, a file-
matching program. In commercial data processing, it’s common to have several files in each system.
In an accounts receivable system, for example, there is generally a master file containing detailed
information about each customer such as the customer’s name, address, telephone number, out-
standing balance, credit limit, discount terms, contract arrangements and possibly a condensed his-
tory of recent purchases and cash payments.

As transactions occur (i.e., sales are made and cash payments arrive in the mail), they are
entered into a file. At the end of each business period (i.e., a month for some companies, a week for
others and a day in some cases) the file of transactions (called "trans.dat" in Exercise 11.3) is
applied to the master file (called "oldmast.dat" in Exercise 11.3), thus updating each account's
record of purchases and payments. After each of these updatings run, the master file is rewritten as
a new file ("newmast.dat"), which is then used at the end of the next business period to begin the
updating process again.

File-matching programs must deal with certain problems that do not exist in single-file pro-
grams. For example, a match does not always occur. A customer on the master file might not have
made any purchases or cash payments in the current business period, and therefore no record for
this customer will appear on the transaction file. Similarly, a customer who did make some pur-
chases or cash payments might have just moved to this community, and the company may not have
had a chance to create a master record for this customer.

Use the statements written in Exercise 11.3 as the basis for a complete file-matching accounts
receivable program. Use the account number on each file as the record key for matching purposes.
Assume that each file is a sequential file with records stored in increasing account number order.

When a match occurs (i.e., records with the same account number appear on both the master
file and the transaction file), add the dollar amount on the transaction file to the current balance
on the master file and write the "newmast.dat" record. (Assume that purchases are indicated by
positive amounts on the transaction file, and that payments are indicated by negative amounts.)

450 Chapter 11 C File Processing

When there is a master record for a particular account but no corresponding transaction record,
merely write the master record to "newmast.dat". When there is a transaction record but no cor-
responding master record, print the message "Unmatched transaction record for account number
…" (fill in the account number from the transaction record).

11.8 (Creating Data for the File Matching Program) After writing the program of Exercise 11.7,
write a simple program to create some test data for checking out the program of Exercise 11.7. Use
the following sample account data:

11.9 Run the program of Exercise 11.7 using the files of test data created in Exercise 11.8. Use
the listing program of Exercise 11.7 to print the new master file. Check the results carefully.

11.10 (File Matching with Multiple Transactions) It’s possible (actually common) to have several
transaction records with the same record key. This occurs because a particular customer might make
several purchases and cash payments during a business period. Rewrite your accounts receivable file-
matching program of Exercise 11.7 to provide for the possibility of handling several transaction re-
cords with the same record key. Modify the test data of Exercise 11.8 to include the following ad-
ditional transaction records:

11.11 Write statements that accomplish each of the following. Assume that the structure

struct person {
 char lastName[15];
 char firstName[15];
 char age[4];
};

has been defined and that the file is already open for writing.

Master File:
Account number Name Balance

100 Alan Jones 348.17

300 Mary Smith 27.19

500 Sam Sharp 0.00

700 Suzy Green -14.22

Transaction File:
Account number Dollar amount

100 27.14

300 62.11

400 100.56

900 82.17

Account number Dollar amount

300 83.89

700 80.78

700 1.53

 Exercises 451

a) Initialize the file "nameage.dat" so that there are 100 records with lastName = "unas-
signed", firstname = "" and age = "0".

b) Input 10 last names, first names and ages, and write them to the file.
c) Update a record; if there is no information in the record, tell the user "No info".
d) Delete a record that has information by reinitializing that particular record.

11.12 (Hardware Inventory) You’re the owner of a hardware store and need to keep an inventory
that can tell you what tools you have, how many you have and the cost of each one. Write a program
that initializes the file "hardware.dat" to 100 empty records, lets you input the data concerning
each tool, enables you to list all your tools, lets you delete a record for a tool that you no longer have
and lets you update any information in the file. The tool identification number should be the record
number. Use the following information to start your file:

11.13 (Telephone Number Word Generator) Standard telephone keypads contain the digits 0
through 9. The numbers 2 through 9 each have three letters associated with them, as is indicated by
the following table:

Many people find it difficult to memorize phone numbers, so they use the correspondence
between digits and letters to develop seven-letter words that correspond to their phone numbers.
For example, a person whose telephone number is 686-2377 might use the correspondence indi-
cated in the above table to develop the seven-letter word “NUMBERS.”

Businesses frequently attempt to get telephone numbers that are easy for their clients to
remember. If a business can advertise a simple word for its customers to dial, then, no doubt, the
business will receive a few more calls.

Each seven-letter word corresponds to exactly one seven-digit telephone number. The restau-
rant wishing to increase its take-home business could surely do so with the number 825-3688 (i.e.,
“TAKEOUT”).

Each seven-digit phone number corresponds to many separate seven-letter words. Unfortu-
nately, most of these represent unrecognizable juxtapositions of letters. It’s possible, however, that
the owner of a barber shop would be pleased to know that the shop’s telephone number, 424-7288,
corresponds to “HAIRCUT.” The owner of a liquor store would, no doubt, be delighted to find

Record # Tool name Quantity Cost

3 Electric sander 7 57.98

17 Hammer 76 11.99

24 Jig saw 21 11.00

39 Lawn mower 3 79.50

56 Power saw 18 99.99

68 Screwdriver 106 6.99

77 Sledge hammer 11 21.50

83 Wrench 34 7.50

Digit Letter Digit Letter

2 A B C 6 M N O

3 D E F 7 P R S

4 G H I 8 T U V

5 J K L 9 W X Y

452 Chapter 11 C File Processing

that the store’s telephone number, 233-7226, corresponds to “BEERCAN.” A veterinarian with the
phone number 738-2273 would be pleased to know that the number corresponds to the letters
“PETCARE.”

Write a C program that, given a seven-digit number, writes to a file every possible seven-letter
word corresponding to that number. There are 2187 (3 to the seventh power) such words. Avoid
phone numbers with the digits 0 and 1.

11.14 (Telephone Number Word Generator Modification) If you have a computerized dictionary
available, modify the program you wrote in Exercise 11.13 to look up the words in the dictionary.
Some seven-letter combinations created by this program consist of two or more words (the phone
number 843-2677 produces “THEBOSS”).

11.15 Modify the example of Fig. 8.14 to use functions fgetc and fputs rather than getchar and
puts. The program should give the user the option to read from the standard input and write to the
standard output or to read from a specified file and write to a specified file. If the user chooses the
second option, have the user enter the file names for the input and output files.

11.16 (Outputting Type Sizes to a File) Write a program that uses the sizeof operator to deter-
mine the sizes in bytes of the various data types on your computer system. Write the results to the
file "datasize.dat" so you may print the results later. The format for the results in the file should
be as follows:

[Note: The type sizes on your computer might be different from those listed above.]

11.17 (Simpletron with File Processing) In Exercise 7.19, you wrote a software simulation of a
computer that used a special machine language called Simpletron Machine Language (SML). In the
simulation, each time you wanted to run an SML program, you entered the program into the sim-
ulator from the keyboard. If you made a mistake while typing the SML program, the simulator was
restarted and the SML code was reentered. It would be nice to be able to read the SML program
from a file rather than type it each time. This would reduce time and mistakes in preparing to run
SML programs.

a) Modify the simulator you wrote in Exercise 7.19 to read SML programs from a file spec-
ified by the user at the keyboard.

b) After the Simpletron executes, it outputs the contents of its registers and memory on
the screen. It would be nice to capture the output in a file, so modify the simulator to
write its output to a file in addition to displaying the output on the screen.

Making a Difference
11.1 (Phishing Scanner) Phishing is a form of identity theft in which, in an e-mail, a sender pos-
ing as a trustworthy source attempts to acquire private information, such as your user names, pass-
words, credit-card numbers and social security number. Phishing e-mails claiming to be from

Data type Size
char 1
unsigned char 1
short int 2
unsigned short int 2
int 4
unsigned int 4
long int 4
unsigned long int 4
float 4
double 8
long double 16

 Making a Difference 453

popular banks, credit-card companies, auction sites, social networks and online payment services
may look quite legitimate. These fraudulent messages often provide links to spoofed (fake) websites
where you’re asked to enter sensitive information.

Visit McAfee® (www.mcafee.com/us/threat_center/anti_phishing/phishing_top10.html),
Security Extra (www.securityextra.com/), www.snopes.com and other websites to find lists of the
top phishing scams. Also check out the Anti-Phishing Working Group (www.antiphishing.org/),
and the FBI’s Cyber Investigations website (www.fbi.gov/cyberinvest/cyberhome.htm), where
you’ll find information about the latest scams and how to protect yourself.

Create a list of 30 words, phrases and company names commonly found in phishing messages.
Assign a point value to each based on your estimate of its likeliness to be in a phishing message
(e.g., one point if it’s somewhat likely, two points if moderately likely, or three points if highly
likely). Write a program that scans a file of text for these terms and phrases. For each occurrence of
a keyword or phrase within the text file, add the assigned point value to the total points for that
word or phrase. For each keyword or phrase found, output one line with the word or phrase, the
number of occurrences and the point total. Then show the point total for the entire message. Does
your program assign a high point total to some actual phishing e-mails you’ve received? Does it
assign a high point total to some legitimate e-mails you’ve received?

www.mcafee.com/us/threat_center/anti_phishing/phishing_top10.html
www.securityextra.com/
www.snopes.com
www.antiphishing.org/
www.fbi.gov/cyberinvest/cyberhome.htm

12 C Data Structures

Much that I bound,
I could not free;
Much that I freed
returned to me.
—Lee Wilson Dodd

‘Will you walk a little faster?’
said a whiting to a snail,‘There’s
a porpoise close behind us, and
he’s treading on my tail.’
—Lewis Carroll

There is always room at the top.
—Daniel Webster

Push on — keep moving.
—Thomas Morton

I think that I shall never see
A poem lovely as a tree.
—Joyce Kilmer

O b j e c t i v e s
In this chapter, you’ll learn:

■ To allocate and free memory
dynamically for data objects.

■ To form linked data structures
using pointers, self-referential
structures and recursion.

■ To create and manipulate
linked lists, queues, stacks
and binary trees.

■ Various important
applications of linked data
structures.

12.1 Introduction 455

12.1 Introduction
We’ve studied fixed-size data structures such as single-subscripted arrays, double-sub-
scripted arrays and structs. This chapter introduces dynamic data structures with sizes
that grow and shrink at execution time. Linked lists are collections of data items “lined up
in a row”—insertions and deletions are made anywhere in a linked list. Stacks are impor-
tant in compilers and operating systems—insertions and deletions are made only at one
end of a stack—its top. Queues represent waiting lines; insertions are made at the back
(also referred to as the tail) of a queue and deletions are made from the front (also referred
to as the head) of a queue. Binary trees facilitate high-speed searching and sorting of data,
efficient elimination of duplicate data items, representing file system directories and com-
piling expressions into machine language. Each of these data structures has many other in-
teresting applications.

We’ll discuss each of the major types of data structures and implement programs that
create and manipulate these data structures. In the next part of the book—the intro-
duction to C++ and object-oriented programming—we’ll study data abstraction. This
technique will enable us to build these data structures in a dramatically different manner
designed for producing software that is much easier to maintain and reuse.

This is a challenging chapter. The programs are substantial and they incorporate most
of what you have learned in the earlier chapters. The programs are especially heavy on
pointer manipulation, a subject many people consider to be among the most difficult
topics in C. The chapter is loaded with highly practical programs that you’ll be able to use
in more advanced courses; the chapter includes a rich collection of exercises that emphasize
practical applications of the data structures.

We sincerely hope that you’ll attempt the major project described in the special sec-
tion entitled Building Your Own Compiler. You have been using a compiler to translate
your C programs to machine language so that you could execute your programs on your
computer. In this project, you’ll actually build your own compiler. It will read a file of
statements written in a simple, yet powerful, high-level language similar to early versions
of the popular language BASIC. Your compiler will translate these statements into a file of
Simpletron Machine Language (SML) instructions. SML is the language you learned in
the Chapter 7 special section, Building Your Own Computer. Your Simpletron Simulator
program will then execute the SML program produced by your compiler! This project will
give you a wonderful opportunity to exercise most of what you have learned in this course.
The special section carefully walks you through the specifications of the high-level lan-
guage, and describes the algorithms you’ll need to convert each type of high-level language
statement into machine language instructions. If you enjoy being challenged, you might

12.1 Introduction
12.2 Self-Referential Structures
12.3 Dynamic Memory Allocation
12.4 Linked Lists

12.5 Stacks
12.6 Queues
12.7 Trees

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Special Section: Building Your Own Compiler

456 Chapter 12 C Data Structures

attempt the many enhancements to both the compiler and the Simpletron Simulator sug-
gested in the exercises.

12.2 Self-Referential Structures
A self-referential structure contains a pointer member that points to a structure of the
same structure type. For example, the definition

defines a type, struct node. A structure of type struct node has two members—integer
member data and pointer member nextPtr. Member nextPtr points to a structure of
type struct node—a structure of the same type as the one being declared here, hence the
term “self-referential structure.” Member nextPtr is referred to as a link—i.e., nextPtr
can be used to “tie” a structure of type struct node to another structure of the same type.
Self-referential structures can be linked together to form useful data structures such as lists,
queues, stacks and trees. Figure 12.1 illustrates two self-referential structure objects linked
together to form a list. A slash—representing a NULL pointer—is placed in the link mem-
ber of the second self-referential structure to indicate that the link does not point to an-
other structure. [Note: The slash is only for illustration purposes; it does not correspond
to the backslash character in C.] A NULL pointer normally indicates the end of a data struc-
ture just as the null character indicates the end of a string.

12.3 Dynamic Memory Allocation
Creating and maintaining dynamic data structures requires dynamic memory alloca-
tion—the ability for a program to obtain more memory space at execution time to hold
new nodes, and to release space no longer needed. The limit for dynamic memory alloca-
tion can be as large as the amount of available physical memory in the computer or the
amount of available virtual memory in a virtual memory system. Often, the limits are
much smaller because available memory must be shared among many applications.

Functions malloc and free, and operator sizeof, are essential to dynamic memory
allocation. Function malloc takes as an argument the number of bytes to be allocated and
returns a pointer of type void * (pointer to void) to the allocated memory. A void *
pointer may be assigned to a variable of any pointer type. Function malloc is normally
used with the sizeof operator. For example, the statement

struct node {
 int data;
 struct node *nextPtr;
};

Common Programming Error 12.1
Not setting the link in the last node of a list to NULL can lead to runtime errors.

Fig. 12.1 | Self-referential structures linked together.

1015

12.3 Dynamic Memory Allocation 457

evaluates sizeof(struct node) to determine the size in bytes of a structure of type
struct node, allocates a new area in memory of that number of bytes and stores a pointer
to the allocated memory in variable newPtr. The allocated memory is not initialized. If no
memory is available, malloc returns NULL.

Function free deallocates memory—i.e., the memory is returned to the system so
that the memory can be reallocated in the future. To free memory dynamically allocated
by the preceding malloc call, use the statement

C also provides functions calloc and realloc for creating and modifying dynamic
arrays. These functions are discussed in Section 14.11. The following sections discuss lists,
stacks, queues and trees, each of which is created and maintained with dynamic memory
allocation and self-referential structures.

newPtr = malloc(sizeof(struct node));

free(newPtr);

Portability Tip 12.1
A structure’s size is not necessarily the sum of the sizes of its members. This is so because of
various machine-dependent boundary alignment requirements (see Chapter 10).

Common Programming Error 12.2
Assuming that the size of a structure is simply the sum of the sizes of its members is a logic
error.

Good Programming Practice 12.1
Use the sizeof operator to determine the size of a structure.

Error-Prevention Tip 12.1
When using malloc, test for a NULL pointer return value, which indicates that the mem-
ory was not allocated.

Common Programming Error 12.3
Not returning dynamically allocated memory when it’s no longer needed can cause the sys-
tem to run out of memory prematurely. This is sometimes called a “memory leak.”

Good Programming Practice 12.2
When memory that was dynamically allocated is no longer needed, use free to return the
memory to the system immediately.

Common Programming Error 12.4
Freeing memory not allocated dynamically with malloc is an error.

Common Programming Error 12.5
Referring to memory that has been freed is an error that typically results in the program
crashing.

458 Chapter 12 C Data Structures

12.4 Linked Lists
A linked list is a linear collection of self-referential structures, called nodes, connected by
pointer links—hence, the term “linked” list. A linked list is accessed via a pointer to the
first node of the list. Subsequent nodes are accessed via the link pointer member stored in
each node. By convention, the link pointer in the last node of a list is set to NULL to mark
the end of the list. Data is stored in a linked list dynamically—each node is created as nec-
essary. A node can contain data of any type including other struct objects. Stacks and
queues are also linear data structures, and, as we’ll see, are constrained versions of linked
lists. Trees are nonlinear data structures.

Lists of data can be stored in arrays, but linked lists provide several advantages. A
linked list is appropriate when the number of data elements to be represented in the data
structure is unpredictable. Linked lists are dynamic, so the length of a list can increase or
decrease as necessary. The size of an array, however cannot be altered once memory is allo-
cated. Arrays can become full. Linked lists become full only when the system has insuffi-
cient memory to satisfy dynamic storage allocation requests.

Linked lists can be maintained in sorted order by inserting each new element at the
proper point in the list.

Linked list nodes are normally not stored contiguously in memory. Logically, how-
ever, the nodes of a linked list appear to be contiguous. Figure 12.2 illustrates a linked list
with several nodes.

Performance Tip 12.1
An array can be declared to contain more elements than the number of data items ex-
pected, but this can waste memory. Linked lists can provide better memory utilization in
these situations.

Performance Tip 12.2
Insertion and deletion in a sorted array can be time consuming—all the elements follow-
ing the inserted or deleted element must be shifted appropriately.

Performance Tip 12.3
The elements of an array are stored contiguously in memory. This allows immediate access
to any array element because the address of any element can be calculated directly based
on its position relative to the beginning of the array. Linked lists do not afford such imme-
diate access to their elements.

Fig. 12.2 | Linked list graphical representation.

2917 ... 93

startPtr

12.4 Linked Lists 459

Figure 12.3 (output shown in Fig. 12.4) manipulates a list of characters. The program
enables you to insert a character in the list in alphabetical order (function insert) or to
delete a character from the list (function delete). This is a large and complex program. A
detailed discussion of the program follows. Exercise 12.20 asks the reader to implement a
recursive function that prints a list backwards. Exercise 12.21 asks the reader to implement
a recursive function that searches a linked list for a particular data item.

Performance Tip 12.4
Using dynamic memory allocation (instead of arrays) for data structures that grow and
shrink at execution time can save memory. Keep in mind, however, that the pointers take
up space, and that dynamic memory allocation incurs the overhead of function calls.

1 /* Fig. 12.3: fig12_03.c
2 Operating and maintaining a list */
3 #include <stdio.h>
4 #include <stdlib.h>
5
6
7
8
9

10
11
12 typedef struct listNode ListNode; /* synonym for struct listNode */
13 typedef ListNode *ListNodePtr; /* synonym for ListNode* */
14
15 /* prototypes */
16 void insert(ListNodePtr *sPtr, char value);
17 char delete(ListNodePtr *sPtr, char value);
18 int isEmpty(ListNodePtr sPtr);
19 void printList(ListNodePtr currentPtr);
20 void instructions(void);
21
22 int main(void)
23 {
24 ListNodePtr startPtr = NULL; /* initially there are no nodes */
25 int choice; /* user's choice */
26 char item; /* char entered by user */
27
28 instructions(); /* display the menu */
29 printf("? ");
30 scanf("%d", &choice);
31
32 /* loop while user does not choose 3 */
33 while (choice != 3) {
34
35 switch (choice) {
36 case 1:
37 printf("Enter a character: ");
38 scanf("\n%c", &item);

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 1 of 4.)

/* self-referential structure */
struct listNode {
 char data; /* each listNode contains a character */
 struct listNode *nextPtr; /* pointer to next node */
}; /* end structure listNode */

460 Chapter 12 C Data Structures

39
40 printList(startPtr);
41 break;
42 case 2: /* delete an element */
43 /* if list is not empty */
44 if (!isEmpty(startPtr)) {
45 printf("Enter character to be deleted: ");
46 scanf("\n%c", &item);
47
48 /* if character is found, remove it*/
49
50 printf("%c deleted.\n", item);
51 printList(startPtr);
52 } /* end if */
53 else {
54 printf("%c not found.\n\n", item);
55 } /* end else */
56 } /* end if */
57 else {
58 printf("List is empty.\n\n");
59 } /* end else */
60
61 break;
62 default:
63 printf("Invalid choice.\n\n");
64 instructions();
65 break;
66 } /* end switch */
67
68 printf("? ");
69 scanf("%d", &choice);
70 } /* end while */
71
72 printf("End of run.\n");
73 return 0; /* indicates successful termination */
74 } /* end main */
75
76 /* display program instructions to user */
77 void instructions(void)
78 {
79 printf("Enter your choice:\n"
80 " 1 to insert an element into the list.\n"
81 " 2 to delete an element from the list.\n"
82 " 3 to end.\n");
83 } /* end function instructions */
84
85 /* Insert a new value into the list in sorted order */
86 void insert(ListNodePtr *sPtr, char value)
87 {
88 ListNodePtr newPtr; /* pointer to new node */
89 ListNodePtr previousPtr; /* pointer to previous node in list */
90 ListNodePtr currentPtr; /* pointer to current node in list */
91

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 2 of 4.)

insert(&startPtr, item); /* insert item in list */

if (delete(&startPtr, item)) { /* remove item */

12.4 Linked Lists 461

92
93
94 if (newPtr != NULL) { /* is space available */
95 newPtr->data = value; /* place value in node */
96 newPtr->nextPtr = NULL; /* node does not link to another node */
97
98 previousPtr = NULL;
99 currentPtr = *sPtr;
100
101
102
103
104
105
106
107 /* insert new node at beginning of list */
108 if (previousPtr == NULL) {
109 newPtr->nextPtr = *sPtr;
110 *sPtr = newPtr;
111 } /* end if */
112 else { /* insert new node between previousPtr and currentPtr */
113 previousPtr->nextPtr = newPtr;
114 newPtr->nextPtr = currentPtr;
115 } /* end else */
116 } /* end if */
117 else {
118 printf("%c not inserted. No memory available.\n", value);
119 } /* end else */
120 } /* end function insert */
121
122 /* Delete a list element */
123 char delete(ListNodePtr *sPtr, char value)
124 {
125 ListNodePtr previousPtr; /* pointer to previous node in list */
126 ListNodePtr currentPtr; /* pointer to current node in list */
127 ListNodePtr tempPtr; /* temporary node pointer */
128
129 /* delete first node */
130 if (value == (*sPtr)->data) {
131 tempPtr = *sPtr; /* hold onto node being removed */
132 *sPtr = (*sPtr)->nextPtr; /* de-thread the node */
133 free(tempPtr); /* free the de-threaded node */
134 return value;
135 } /* end if */
136 else {
137 previousPtr = *sPtr;
138 currentPtr = (*sPtr)->nextPtr;
139
140 /* loop to find the correct location in the list */
141 while (currentPtr != NULL && currentPtr->data != value) {
142 previousPtr = currentPtr; /* walk to ... */
143 currentPtr = currentPtr->nextPtr; /* ... next node */
144 } /* end while */

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 3 of 4.)

newPtr = malloc(sizeof(ListNode)); /* create node */

/* loop to find the correct location in the list */
while (currentPtr != NULL && value > currentPtr->data) {
 previousPtr = currentPtr; /* walk to ... */
 currentPtr = currentPtr->nextPtr; /* ... next node */
} /* end while */

462 Chapter 12 C Data Structures

145
146 /* delete node at currentPtr */
147 if (currentPtr != NULL) {
148 tempPtr = currentPtr;
149 previousPtr->nextPtr = currentPtr->nextPtr;
150
151 return value;
152 } /* end if */
153 } /* end else */
154
155 return '\0';
156 } /* end function delete */
157
158 /* Return 1 if the list is empty, 0 otherwise */
159 int isEmpty(ListNodePtr sPtr)
160 {
161 return sPtr == NULL;
162 } /* end function isEmpty */
163
164 /* Print the list */
165 void printList(ListNodePtr currentPtr)
166 {
167 /* if list is empty */
168 if (currentPtr == NULL) {
169 printf("List is empty.\n\n");
170 } /* end if */
171 else {
172 printf("The list is:\n");
173
174 /* while not the end of the list */
175 while (currentPtr != NULL) {
176 printf("%c --> ", currentPtr->data);
177 currentPtr = currentPtr->nextPtr;
178 } /* end while */
179
180 printf("NULL\n\n");
181 } /* end else */
182 } /* end function printList */

Enter your choice:
 1 to insert an element into the list.
 2 to delete an element from the list.
 3 to end.
? 1
Enter a character: B
The list is:
B --> NULL

? 1
Enter a character: A

Fig. 12.4 | Sample output for the program of Fig. 12.3. (Part 1 of 2.)

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 4 of 4.)

free(tempPtr);

12.4 Linked Lists 463

The primary functions of linked lists are insert (lines 86–120) and delete (lines
123–156). Function isEmpty (lines 159–162) is called a predicate function—it does not
alter the list in any way; rather it determines if the list is empty (i.e., the pointer to the first
node of the list is NULL). If the list is empty, 1 is returned; otherwise, 0 is returned. Func-
tion printList (lines 165–182) prints the list.

Function insert
Characters are inserted in the list in alphabetical order. Function insert (lines 86–120)
receives the address of the list and a character to be inserted. The address of the list is nec-
essary when a value is to be inserted at the start of the list. Providing the address of the list
enables the list (i.e., the pointer to the first node of the list) to be modified via a call by
reference. Since the list itself is a pointer (to its first element), passing the address of the
list creates a pointer to a pointer (i.e., double indirection). This is a complex notion and

The list is:
A --> B --> NULL

? 1
Enter a character: C
The list is:
A --> B --> C --> NULL

? 2
Enter character to be deleted: D
D not found.

? 2
Enter character to be deleted: B
B deleted.
The list is:
A --> C --> NULL

? 2
Enter character to be deleted: C
C deleted.
The list is:
A --> NULL

? 2
Enter character to be deleted: A
A deleted.
List is empty.

? 4
Invalid choice.

Enter your choice:
 1 to insert an element into the list.
 2 to delete an element from the list.
 3 to end.
? 3
End of run.

Fig. 12.4 | Sample output for the program of Fig. 12.3. (Part 2 of 2.)

464 Chapter 12 C Data Structures

requires careful programming. The steps for inserting a character in the list are as follows
(see Fig. 12.5):

1. Create a node by calling malloc, assigning to newPtr the address of the allocated
memory (line 92), assigning the character to be inserted to newPtr->data (line
95), and assigning NULL to newPtr->nextPtr (line 96).

2. Initialize previousPtr to NULL (line 198) and currentPtr to *sPtr (line 99)—
the pointer to the start of the list. Pointers previousPtr and currentPtr store
the locations of the node preceding the insertion point and the node after the in-
sertion point.

3. While currentPtr is not NULL and the value to be inserted is greater than cur-
rentPtr->data (line 102), assign currentPtr to previousPtr (line 103) and ad-
vance currentPtr to the next node in the list (line 104). This locates the insertion
point for the value.

4. If previousPtr is NULL (line 108), insert the new node as the first node in the list
(lines 109–110). Assign *sPtr to newPtr->nextPtr (the new node link points to
the former first node) and assign newPtr to *sPtr (*sPtr points to the new node).
Otherwise, if previousPtr is not NULL, the new node is inserted in place (lines
113–114). Assign newPtr to previousPtr->nextPtr (the previous node points
to the new node) and assign currentPtr to newPtr->nextPtr (the new node link
points to the current node).

Fig. 12.5 | Inserting a node in order in a list.

BA ED

*sPtr previousPtr currentPtr

C

(b)

newPtr

BA ED

*sPtr previousPtr currentPtr

C

(a)

newPtr

12.4 Linked Lists 465

Figure 12.5 illustrates the insertion of a node containing the character 'C' into an
ordered list. Part a) of the figure shows the list and the new node before the insertion. Part
b) of the figure shows the result of inserting the new node. The reassigned pointers are
dotted arrows. For simplicity, we implemented function insert (and other similar func-
tions in this chapter) with a void return type. It’s possible that function malloc will fail to
allocate the requested memory. In this case, it would be better for our insert function to
return a status that indicates whether the operation was successful.

Function delete
Function delete (lines 123–156) receives the address of the pointer to the start of the list
and a character to be deleted. The steps for deleting a character from the list are as follows:

1. If the character to be deleted matches the character in the first node of the list
(line 130), assign *sPtr to tempPtr (tempPtr will be used to free the unneeded
memory), assign (*sPtr)->nextPtr to *sPtr (*sPtr now points to the second
node in the list), free the memory pointed to by tempPtr, and return the char-
acter that was deleted.

2. Otherwise, initialize previousPtr with *sPtr and initialize currentPtr with
(*sPtr)->nextPtr (lines 137–138).

3. While currentPtr is not NULL and the value to be deleted is not equal to cur-
rentPtr->data (Line 141), assign currentPtr to previousPtr (line 142), and
assign currentPtr->nextPtr to currentPtr (line 143). This locates the charac-
ter to be deleted if it’s contained in the list.

4. If currentPtr is not NULL (line 147), assign currentPtr to tempPtr (line 148),
assign currentPtr->nextPtr to previousPtr->nextPtr (line 149), free the node
pointed to by tempPtr (line 150), and return the character that was deleted from
the list (line 151). If currentPtr is NULL, return the null character ('\0') to sig-
nify that the character to be deleted was not found in the list (line 155).

Figure 12.6 illustrates the deletion of a node from a linked list. Part a) of the figure
shows the linked list after the preceding insert operation. Part b) shows the reassignment
of the link element of previousPtr and the assignment of currentPtr to tempPtr. Pointer
tempPtr is used to free the memory allocated to store 'C'.

Function printList
Function printList (lines 165–182) receives a pointer to the start of the list as an argu-
ment and refers to the pointer as currentPtr. The function first determines if the list is
empty (lines 168–170) and, if so, prints "The list is empty." and terminates. Otherwise,
it prints the data in the list (lines 171–181). While currentPtr is not NULL, the value of
currentPtr->data is printed by the function, and currentPtr->nextPtr is assigned to
currentPtr. If the link in the last node of the list is not NULL, the printing algorithm will
try to print past the end of the list, and an error will occur. The printing algorithm is iden-
tical for linked lists, stacks and queues.

Error-Prevention Tip 12.2
Assign NULL to the link member of a new node. Pointers should be initialized before they
are used.

466 Chapter 12 C Data Structures

12.5 Stacks
A stack is a constrained version of a linked list. New nodes can be added to a stack and
removed from a stack only at the top. For this reason, a stack is referred to as a last-in,
first-out (LIFO) data structure. A stack is referenced via a pointer to the top element of
the stack. The link member in the last node of the stack is set to NULL to indicate the bot-
tom of the stack.

Figure 12.7 illustrates a stack with several nodes. Stacks and linked lists are repre-
sented identically. The difference between stacks and linked lists is that insertions and
deletions may occur anywhere in a linked list, but only at the top of a stack.

The primary functions used to manipulate a stack are push and pop. Function push
creates a new node and places it on top of the stack. Function pop removes a node from
the top of the stack, frees the memory that was allocated to the popped node and returns
the popped value.

Fig. 12.6 | Deleting a node from a list.

Common Programming Error 12.6
Not setting the link in the bottom node of a stack to NULL can lead to runtime errors.

Fig. 12.7 | Stack graphical representation.

BA C

*sPtr previousPtr currentPtr

ED

(a)

BA C

*sPtr previousPtr currentPtr

ED

(b)

tempPtr

28 ... 3

stackPtr

12.5 Stacks 467

Figure 12.8 (output shown in Fig. 12.9) implements a simple stack of integers. The
program provides three options: 1) push a value onto the stack (function push), 2) pop a
value off the stack (function pop) and 3) terminate the program.

1 /* Fig. 12.8: fig12_08.c
2 dynamic stack program */
3 #include <stdio.h>
4 #include <stdlib.h>
5
6
7
8
9

10
11
12 typedef struct stackNode StackNode; /* synonym for struct stackNode */
13 typedef StackNode *StackNodePtr; /* synonym for StackNode* */
14
15 /* prototypes */
16 void push(StackNodePtr *topPtr, int info);
17 int pop(StackNodePtr *topPtr);
18 int isEmpty(StackNodePtr topPtr);
19 void printStack(StackNodePtr currentPtr);
20 void instructions(void);
21
22 /* function main begins program execution */
23 int main(void)
24 {
25 StackNodePtr stackPtr = NULL; /* points to stack top */
26 int choice; /* user's menu choice */
27 int value; /* int input by user */
28
29 instructions(); /* display the menu */
30 printf("? ");
31 scanf("%d", &choice);
32
33 /* while user does not enter 3 */
34 while (choice != 3) {
35
36 switch (choice) {
37 /* push value onto stack */
38 case 1:
39 printf("Enter an integer: ");
40 scanf("%d", &value);
41
42 printStack(stackPtr);
43 break;
44 /* pop value off stack */
45 case 2:
46 /* if stack is not empty */
47 if (!isEmpty(stackPtr)) {

Fig. 12.8 | A simple stack program. (Part 1 of 3.)

/* self-referential structure */
struct stackNode {
 int data; /* define data as an int */
 struct stackNode *nextPtr; /* stackNode pointer */
}; /* end structure stackNode */

push(&stackPtr, value);

468 Chapter 12 C Data Structures

48 printf("The popped value is %d.\n",);
49 } /* end if */
50
51 printStack(stackPtr);
52 break;
53 default:
54 printf("Invalid choice.\n\n");
55 instructions();
56 break;
57 } /* end switch */
58
59 printf("? ");
60 scanf("%d", &choice);
61 } /* end while */
62
63 printf("End of run.\n");
64 return 0; /* indicates successful termination */
65 } /* end main */
66
67 /* display program instructions to user */
68 void instructions(void)
69 {
70 printf("Enter choice:\n"
71 "1 to push a value on the stack\n"
72 "2 to pop a value off the stack\n"
73 "3 to end program\n");
74 } /* end function instructions */
75
76 /* Insert a node at the stack top */
77 void push(StackNodePtr *topPtr, int info)
78 {
79 StackNodePtr newPtr; /* pointer to new node */
80
81
82
83
84
85
86
87
88
89 else { /* no space available */
90 printf("%d not inserted. No memory available.\n", info);
91 } /* end else */
92 } /* end function push */
93
94 /* Remove a node from the stack top */
95 int pop(StackNodePtr *topPtr)
96 {
97 StackNodePtr tempPtr; /* temporary node pointer */
98 int popValue; /* node value */
99

Fig. 12.8 | A simple stack program. (Part 2 of 3.)

pop(&stackPtr)

newPtr = malloc(sizeof(StackNode));

/* insert the node at stack top */
if (newPtr != NULL) {
 newPtr->data = info;
 newPtr->nextPtr = *topPtr;
 *topPtr = newPtr;
} /* end if */

12.5 Stacks 469

100
101
102
103
104 return popValue;
105 } /* end function pop */
106
107 /* Print the stack */
108 void printStack(StackNodePtr currentPtr)
109 {
110 /* if stack is empty */
111 if (currentPtr == NULL) {
112 printf("The stack is empty.\n\n");
113 } /* end if */
114 else {
115 printf("The stack is:\n");
116
117 /* while not the end of the stack */
118 while (currentPtr != NULL) {
119 printf("%d --> ", currentPtr->data);
120 currentPtr = currentPtr->nextPtr;
121 } /* end while */
122
123 printf("NULL\n\n");
124 } /* end else */
125 } /* end function printList */
126
127 /* Return 1 if the stack is empty, 0 otherwise */
128 int isEmpty(StackNodePtr topPtr)
129 {
130 return topPtr == NULL;
131 } /* end function isEmpty */

Enter choice:
1 to push a value on the stack
2 to pop a value off the stack
3 to end program
? 1
Enter an integer: 5
The stack is:
5 --> NULL

? 1
Enter an integer: 6
The stack is:
6 --> 5 --> NULL

? 1
Enter an integer: 4
The stack is:
4 --> 6 --> 5 --> NULL

Fig. 12.9 | Sample output from the program of Fig. 12.8. (Part 1 of 2.)

Fig. 12.8 | A simple stack program. (Part 3 of 3.)

tempPtr = *topPtr;
popValue = (*topPtr)->data;
*topPtr = (*topPtr)->nextPtr;
free(tempPtr);

470 Chapter 12 C Data Structures

Function push
Function push (lines 77–92) places a new node at the top of the stack. The function con-
sists of three steps:

1. Create a new node by calling malloc and assign the location of the allocated
memory to newPtr (line 81).

2. Assign to newPtr->data the value to be placed on the stack (line 85) and assign
*topPtr (the stack top pointer) to newPtr->nextPtr (line 86)—the link member
of newPtr now points to the previous top node.

3. Assign newPtr to *topPtr (line 87)—*topPtr now points to the new stack top.

Manipulations involving *topPtr change the value of stackPtr in main. Figure 12.10
illustrates function push. Part a) of the figure shows the stack and the new node before the
push operation. The dotted arrows in part b) illustrate Steps 2 and 3 of the push operation
that enable the node containing 12 to become the new stack top.

Function pop
Function pop (lines 95–105) removes a node from the top of the stack. Function main de-
termines if the stack is empty before calling pop. The pop operation consists of five steps:

1. Assign *topPtr to tempPtr (line 100); tempPtr will be used to free the unneeded
memory.

2. Assign (*topPtr)->data to popValue (line 101) to save the value in the top node.

? 2
The popped value is 4.
The stack is:
6 --> 5 --> NULL

? 2
The popped value is 6.
The stack is:
5 --> NULL

? 2
The popped value is 5.
The stack is empty.

? 2
The stack is empty.

? 4
Invalid choice.

Enter choice:
1 to push a value on the stack
2 to pop a value off the stack
3 to end program
? 3
End of run.

Fig. 12.9 | Sample output from the program of Fig. 12.8. (Part 2 of 2.)

12.5 Stacks 471

3. Assign (*topPtr)->nextPtr to *topPtr (line 102) so *topPtr contains address
of the new top node.

4. Free the memory pointed to by tempPtr (line 103).

5. Return popValue to the caller (line 104).

Figure 12.11 illustrates function pop. Part (a) shows the stack after the previous push
operation. Part (b) shows tempPtr pointing to the first node of the stack and topPtr
pointing to the second node of the stack. Function free is used to free the memory
pointed to by tempPtr.

Applications of Stacks
Stacks have many interesting applications. For example, whenever a function call is made,
the called function must know how to return to its caller, so the return address is pushed

Fig. 12.10 | push operation.

Fig. 12.11 | pop operation.

*topPtr

117

newPtr

12

(a)

*topPtr

117

newPtr

12

(b)

*topPtr

712 11

(a)

*topPtr

712

tempPtr

(b)

11

472 Chapter 12 C Data Structures

onto a stack. If a series of function calls occurs, the successive return values are pushed onto
the stack in last-in, first-out order so that each function can return to its caller. Stacks sup-
port recursive function calls in the same manner as conventional nonrecursive calls.

Stacks contain the space created for automatic variables on each invocation of a func-
tion. When the function returns to its caller, the space for that function's automatic vari-
ables is popped off the stack, and these variables no longer are known to the program.
Stacks are used by compilers in the process of evaluating expressions and generating
machine language code. The exercises explore several applications of stacks.

12.6 Queues
Another common data structure is the queue. A queue is similar to a checkout line in a
grocery store—the first person in line is serviced first, and other customers enter the line
only at the end and wait to be serviced. Queue nodes are removed only from the head of
the queue and are inserted only at the tail of the queue. For this reason, a queue is referred
to as a first-in, first-out (FIFO) data structure. The insert and remove operations are
known as enqueue and dequeue.

Queues have many applications in computer systems. Many computers have only a
single processor, so only one user at a time may be serviced. Entries for the other users are
placed in a queue. Each entry gradually advances to the front of the queue as users receive
service. The entry at the front of the queue is the next to receive service.

Queues are also used to support print spooling. A multiuser environment may have
only a single printer. Many users may be generating outputs to be printed. If the printer
is busy, other outputs may still be generated. These are spooled to disk where they wait in
a queue until the printer becomes available.

Information packets also wait in queues in computer networks. Each time a packet
arrives at a network node, it must be routed to the next node on the network along the
path to the packet’s final destination. The routing node routes one packet at a time, so
additional packets are enqueued until the router can route them. Figure 12.12 illustrates
a queue with several nodes. Note the pointers to the head of the queue and the tail of the
queue.

Common Programming Error 12.7
Not setting the link in the last node of a queue to NULL can lead to runtime errors.

Fig. 12.12 | Queue graphical representation.

DH ... Q

headPtr tailPtr

12.6 Queues 473

Figure 12.13 (output in Fig. 12.14) performs queue manipulations. The program
provides several options: insert a node in the queue (function enqueue), remove a node
from the queue (function dequeue) and terminate the program.

1 /* Fig. 12.13: fig12_13.c
2 Operating and maintaining a queue */
3 #include <stdio.h>
4 #include <stdlib.h>
5
6
7
8
9

10
11
12 typedef struct queueNode QueueNode;
13 typedef QueueNode *QueueNodePtr;
14
15 /* function prototypes */
16 void printQueue(QueueNodePtr currentPtr);
17 int isEmpty(QueueNodePtr headPtr);
18 char dequeue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr);
19 void enqueue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr,
20 char value);
21 void instructions(void);
22
23 /* function main begins program execution */
24 int main(void)
25 {
26 QueueNodePtr headPtr = NULL; /* initialize headPtr */
27 QueueNodePtr tailPtr = NULL; /* initialize tailPtr */
28 int choice; /* user's menu choice */
29 char item; /* char input by user */
30
31 instructions(); /* display the menu */
32 printf("? ");
33 scanf("%d", &choice);
34
35 /* while user does not enter 3 */
36 while (choice != 3) {
37
38 switch(choice) {
39 /* enqueue value */
40 case 1:
41 printf("Enter a character: ");
42 scanf("\n%c", &item);
43
44 printQueue(headPtr);
45 break;
46 /* dequeue value */

Fig. 12.13 | Processing a queue. (Part 1 of 3.)

/* self-referential structure */
struct queueNode {
 char data; /* define data as a char */
 struct queueNode *nextPtr; /* queueNode pointer */
}; /* end structure queueNode */

enqueue(&headPtr, &tailPtr, item);

474 Chapter 12 C Data Structures

47 case 2:
48 /* if queue is not empty */
49 if (!isEmpty(headPtr)) {
50 item =
51 printf("%c has been dequeued.\n", item);
52 } /* end if */
53
54 printQueue(headPtr);
55 break;
56 default:
57 printf("Invalid choice.\n\n");
58 instructions();
59 break;
60 } /* end switch */
61
62 printf("? ");
63 scanf("%d", &choice);
64 } /* end while */
65
66 printf("End of run.\n");
67 return 0; /* indicates successful termination */
68 } /* end main */
69
70 /* display program instructions to user */
71 void instructions(void)
72 {
73 printf ("Enter your choice:\n"
74 " 1 to add an item to the queue\n"
75 " 2 to remove an item from the queue\n"
76 " 3 to end\n");
77 } /* end function instructions */
78
79 /* insert a node a queue tail */
80 void enqueue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr,
81 char value)
82 {
83 QueueNodePtr newPtr; /* pointer to new node */
84
85
86
87 if (newPtr != NULL) { /* is space available */
88 newPtr->data = value;
89 newPtr->nextPtr = NULL;
90
91 /* if empty, insert node at head */
92 if (isEmpty(*headPtr)) {
93
94 } /* end if */
95 else {
96
97 } /* end else */
98

Fig. 12.13 | Processing a queue. (Part 2 of 3.)

dequeue(&headPtr, &tailPtr);

newPtr = malloc(sizeof(QueueNode));

*headPtr = newPtr;

(*tailPtr)->nextPtr = newPtr;

12.6 Queues 475

99 *tailPtr = newPtr;
100 } /* end if */
101 else {
102 printf("%c not inserted. No memory available.\n", value);
103 } /* end else */
104 } /* end function enqueue */
105
106 /* remove node from queue head */
107 char dequeue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr)
108 {
109 char value; /* node value */
110 QueueNodePtr tempPtr; /* temporary node pointer */
111
112
113
114
115
116 /* if queue is empty */
117 if (*headPtr == NULL) {
118 *tailPtr = NULL;
119 } /* end if */
120
121
122 return value;
123 } /* end function dequeue */
124
125 /* Return 1 if the list is empty, 0 otherwise */
126 int isEmpty(QueueNodePtr headPtr)
127 {
128 return headPtr == NULL;
129 } /* end function isEmpty */
130
131 /* Print the queue */
132 void printQueue(QueueNodePtr currentPtr)
133 {
134 /* if queue is empty */
135 if (currentPtr == NULL) {
136 printf("Queue is empty.\n\n");
137 } /* end if */
138 else {
139 printf("The queue is:\n");
140
141 /* while not end of queue */
142 while (currentPtr != NULL) {
143 printf("%c --> ", currentPtr->data);
144 currentPtr = currentPtr->nextPtr;
145 } /* end while */
146
147 printf("NULL\n\n");
148 } /* end else */
149 } /* end function printQueue */

Fig. 12.13 | Processing a queue. (Part 3 of 3.)

value = (*headPtr)->data;
tempPtr = *headPtr;
*headPtr = (*headPtr)->nextPtr;

free(tempPtr);

476 Chapter 12 C Data Structures

Function enqueue
Function enqueue (lines 80–104) receives three arguments from main: the address of the
pointer to the head of the queue, the address of the pointer to the tail of the queue and the
value to be inserted in the queue. The function consists of three steps:

1. To create a new node: Call malloc, assign the allocated memory location to
newPtr (line 85), assign the value to be inserted in the queue to newPtr->data
(line 88) and assign NULL to newPtr->nextPtr (line 89).

Enter your choice:
 1 to add an item to the queue
 2 to remove an item from the queue
 3 to end
? 1
Enter a character: A
The queue is:
A --> NULL

? 1
Enter a character: B
The queue is:
A --> B --> NULL

? 1
Enter a character: C
The queue is:
A --> B --> C --> NULL

? 2
A has been dequeued.
The queue is:
B --> C --> NULL

? 2
B has been dequeued.
The queue is:
C --> NULL

? 2
C has been dequeued.
Queue is empty.

? 2
Queue is empty.

? 4
Invalid choice.

Enter your choice:
 1 to add an item to the queue
 2 to remove an item from the queue
 3 to end
? 3
End of run.

Fig. 12.14 | Sample output from the program in Fig. 12.13.

12.6 Queues 477

2. If the queue is empty (line 92), assign newPtr to *headPtr (line 93); otherwise,
assign pointer newPtr to (*tailPtr)->nextPtr (line 96).

3. Assign newPtr to *tailPtr (line 99).

Figure 12.15 illustrates an enqueue operation. Part a) shows the queue and the new
node before the operation. The dotted arrows in part b) illustrate Steps 2 and 3 of function
enqueue that enable a new node to be added to the end of a queue that is not empty.

Function dequeue
Function dequeue (lines 107–123) receives the address of the pointer to the head of the
queue and the address of the pointer to the tail of the queue as arguments and removes the
first node from the queue. The dequeue operation consists of six steps:

1. Assign (*headPtr)->data to value to save the data (line 112).

2. Assign *headPtr to tempPtr (line 113), which will be used to free the unneeded
memory.

3. Assign (*headPtr)->nextPtr to *headPtr (line 114) so that *headPtr now
points to the new first node in the queue.

4. If *headPtr is NULL (line 117), assign NULL to *tailPtr (line 118).

5. Free the memory pointed to by tempPtr (line 121).

6. Return value to the caller (line 122).

Figure 12.16 illustrates function dequeue. Part a) shows the queue after the preceding
enqueue operation. Part b) shows tempPtr pointing to the dequeued node, and headPtr
pointing to the new first node of the queue. Function free is used to reclaim the memory
pointed to by tempPtr.

Fig. 12.15 | enqueue operation.

AR ND

*headPtr *tailPtr newPtr(a)

AR ND

*headPtr *tailPtr newPtr(b)

478 Chapter 12 C Data Structures

12.7 Trees
Linked lists, stacks and queues are linear data structures. A tree is a nonlinear, two-di-
mensional data structure with special properties. Tree nodes contain two or more links.
This section discusses binary trees (Fig. 12.17)—trees whose nodes all contain two links
(none, one, or both of which may be NULL). The root node is the first node in a tree. Each
link in the root node refers to a child. The left child is the first node in the left subtree,
and the right child is the first node in the right subtree. The children of a node are called
siblings. A node with no children is called a leaf node. Computer scientists normally draw
trees from the root node down—exactly the opposite of trees in nature.

Fig. 12.16 | dequeue operation.

Fig. 12.17 | Binary tree graphical representation.

AR ND

*headPtr *tailPtr(a)

AR ND

*headPtr

*tempPtr

*tailPtr(b)

root node pointer

left subtree
of node

containing B

right subtree
of node
containing B

B

A D

C

12.7 Trees 479

In this section, a special binary tree called a binary search tree is created. A binary
search tree (with no duplicate node values) has the characteristic that the values in any left
subtree are less than the value in its parent node, and the values in any right subtree are
greater than the value in its parent node. Figure 12.18 illustrates a binary search tree with
12 values. The shape of the binary search tree that corresponds to a set of data can vary,
depending on the order in which the values are inserted into the tree.

Figure 12.19 (output shown in Fig. 12.20) creates a binary search tree and traverses
it three ways—inorder, preorder and postorder. The program generates 10 random num-
bers and inserts each in the tree, except that duplicate values are discarded.

Common Programming Error 12.8
Not setting to NULL the links in leaf nodes of a tree can lead to runtime errors.

Fig. 12.18 | Binary search tree.

1 /* Fig. 12.19: fig12_19.c
2 Create a binary tree and traverse it
3 preorder, inorder, and postorder */
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8
9

10
11
12
13
14
15 typedef struct treeNode TreeNode; /* synonym for struct treeNode */
16 typedef TreeNode *TreeNodePtr; /* synonym for TreeNode* */
17
18 /* prototypes */
19 void insertNode(TreeNodePtr *treePtr, int value);
20 void inOrder(TreeNodePtr treePtr);
21 void preOrder(TreeNodePtr treePtr);
22 void postOrder(TreeNodePtr treePtr);
23

Fig. 12.19 | Creating and traversing a binary tree. (Part 1 of 3.)

47

25

11 43 65

77

31 44 68

/* self-referential structure */
struct treeNode {
 struct treeNode *leftPtr; /* pointer to left subtree */
 int data; /* node value */
 struct treeNode *rightPtr; /* pointer to right subtree */
}; /* end structure treeNode */

480 Chapter 12 C Data Structures

24 /* function main begins program execution */
25 int main(void)
26 {
27 int i; /* counter to loop from 1-10 */
28 int item; /* variable to hold random values */
29 TreeNodePtr rootPtr = NULL; /* tree initially empty */
30
31 srand(time(NULL));
32 printf("The numbers being placed in the tree are:\n");
33
34 /* insert random values between 0 and 14 in the tree */
35 for (i = 1; i <= 10; i++) {
36 item = rand() % 15;
37 printf("%3d", item);
38
39 } /* end for */
40
41 /* traverse the tree preOrder */
42 printf("\n\nThe preOrder traversal is:\n");
43
44
45 /* traverse the tree inOrder */
46 printf("\n\nThe inOrder traversal is:\n");
47
48
49 /* traverse the tree postOrder */
50 printf("\n\nThe postOrder traversal is:\n");
51
52 return 0; /* indicates successful termination */
53 } /* end main */
54
55 /* insert node into tree */
56 void insertNode(TreeNodePtr *treePtr, int value)
57 {
58 /* if tree is empty */
59 if (*treePtr == NULL) {
60 *treePtr = malloc(sizeof(TreeNode));
61
62 /* if memory was allocated then assign data */
63 if (*treePtr != NULL) {
64 (*treePtr)->data = value;
65 (*treePtr)->leftPtr = NULL;
66 (*treePtr)->rightPtr = NULL;
67 } /* end if */
68 else {
69 printf("%d not inserted. No memory available.\n", value);
70 } /* end else */
71 } /* end if */
72 else { /* tree is not empty */
73
74
75
76

Fig. 12.19 | Creating and traversing a binary tree. (Part 2 of 3.)

insertNode(&rootPtr, item);

preOrder(rootPtr);

inOrder(rootPtr);

postOrder(rootPtr);

/* data to insert is less than data in current node */
if (value < (*treePtr)->data) {
 insertNode(&((*treePtr)->leftPtr), value);
} /* end if */

12.7 Trees 481

77
78
79
80
81
82 else { /* duplicate data value ignored */
83 printf("dup");
84 } /* end else */
85 } /* end else */
86 } /* end function insertNode */
87
88 /* begin inorder traversal of tree */
89 void inOrder(TreeNodePtr treePtr)
90 {
91
92
93
94
95
96
97 } /* end function inOrder */
98
99 /* begin preorder traversal of tree */
100 void preOrder(TreeNodePtr treePtr)
101 {
102
103
104
105
106
107
108 } /* end function preOrder */
109
110 /* begin postorder traversal of tree */
111 void postOrder(TreeNodePtr treePtr)
112 {
113
114
115
116
117
118
119 } /* end function postOrder */

The numbers being placed in the tree are:
 6 7 4 12 7dup 2 2dup 5 7dup 11

The preOrder traversal is:
 6 4 2 5 7 12 11

Fig. 12.20 | Sample output from the program of Fig. 12.19. (Part 1 of 2.)

Fig. 12.19 | Creating and traversing a binary tree. (Part 3 of 3.)

/* data to insert is greater than data in current node */
else if (value > (*treePtr)->data) {
 insertNode(&((*treePtr)->rightPtr), value);
} /* end else if */

/* if tree is not empty then traverse */
if (treePtr != NULL) {
 inOrder(treePtr->leftPtr);
 printf("%3d", treePtr->data);
 inOrder(treePtr->rightPtr);
} /* end if */

/* if tree is not empty then traverse */
if (treePtr != NULL) {
 printf("%3d", treePtr->data);
 preOrder(treePtr->leftPtr);
 preOrder(treePtr->rightPtr);
} /* end if */

/* if tree is not empty then traverse */
if (treePtr != NULL) {
 postOrder(treePtr->leftPtr);
 postOrder(treePtr->rightPtr);
 printf("%3d", treePtr->data);
} /* end if */

482 Chapter 12 C Data Structures

The functions used in Fig. 12.19 to create a binary search tree and traverse the tree
are recursive. Function insertNode (lines 56–86) receives the address of the tree and an
integer to be stored in the tree as arguments. A node can only be inserted as a leaf node in a
binary search tree. The steps for inserting a node in a binary search tree are as follows:

1. If *treePtr is NULL (line 59), create a new node (line 60). Call malloc, assign the
allocated memory to *treePtr, assign to (*treePtr)->data the integer to be
stored (line 64), assign to (*treePtr)->leftPtr and (*treePtr)->rightPtr the
value NULL (lines 65–66, and return control to the caller (either main or a previous
call to insertNode).

2. If the value of *treePtr is not NULL and the value to be inserted is less than
(*treePtr)->data, function insertNode is called with the address of
(*treePtr)->leftPtr (line 75). If the value to be inserted is greater than
(*treePtr)->data, function insertNode is called with the address of (*tree-
Ptr)->rightPtr (line 80). Otherwise, the recursive steps continue until a NULL
pointer is found, then Step 1) is executed to insert the new node.

Functions inOrder (lines 89–97), preOrder (lines 100–108) and postOrder (lines 111–
119) each receive a tree (i.e., the pointer to the root node of the tree) and traverse the tree.

The steps for an inOrder traversal are:

1. Traverse the left subtree inOrder.

2. Process the value in the node.

3. Traverse the right subtree inOrder.

The value in a node is not processed until the values in its left subtree are processed. The
inOrder traversal of the tree in Fig. 12.21 is:

The inOrder traversal of a binary search tree prints the node values in ascending
order. The process of creating a binary search tree actually sorts the data—and thus this
process is called the binary tree sort.

The inOrder traversal is:
 2 4 5 6 7 11 12

The postOrder traversal is:
 2 5 4 11 12 7 6

6 13 17 27 33 42 48

Fig. 12.21 | Binary search tree with seven nodes.

Fig. 12.20 | Sample output from the program of Fig. 12.19. (Part 2 of 2.)

27

13

6 17 33

42

48

 Summary 483

The steps for a preOrder traversal are:

1. Process the value in the node.

2. Traverse the left subtree preOrder.

3. Traverse the right subtree preOrder.

The value in each node is processed as the node is visited. After the value in a given node
is processed, the values in the left subtree are processed, then the values in the right subtree
are processed. The preOrder traversal of the tree in Fig. 12.21 is:

The steps for a postOrder traversal are:

1. Traverse the left subtree postOrder.

2. Traverse the right subtree postOrder.

3. Process the value in the node.

The value in each node is not printed until the values of its children are printed. The post-
Order traversal of the tree in Fig. 12.21 is:

The binary search tree facilitates duplicate elimination. As the tree is being created,
an attempt to insert a duplicate value will be recognized because a duplicate will follow the
same “go left” or “go right” decisions on each comparison as the original value did. Thus,
the duplicate will eventually be compared with a node in the tree containing the same
value. The duplicate value may simply be discarded at this point.

Searching a binary tree for a value that matches a key value is also fast. If the tree is
tightly packed, each level contains about twice as many elements as the previous level. So
a binary search tree with n elements would have a maximum of log2n levels, and thus a
maximum of log2n comparisons would have to be made either to find a match or to deter-
mine that no match exists. This means, for example, that when searching a (tightly packed)
1000-element binary search tree, no more than 10 comparisons need to be made because
210 > 1000. When searching a (tightly packed) 1,000,000 element binary search tree, no
more than 20 comparisons need to be made because 220 > 1,000,000.

In the exercises, algorithms are presented for several other binary tree operations such
as deleting an item from a binary tree, printing a binary tree in a two-dimensional tree
format and performing a level order traversal of a binary tree. The level order traversal of
a binary tree visits the nodes of the tree row-by-row starting at the root node level. On each
level of the tree, the nodes are visited from left to right. Other binary tree exercises include
allowing a binary search tree to contain duplicate values, inserting string values in a binary
tree and determining how many levels are contained in a binary tree.

27 13 6 17 42 33 48

6 17 13 33 48 42 27

Summary
Section 12.1 Introduction
• Dynamic data structures grow and shrink at execution time.

• Linked lists are collections of data items “lined up in a row”—insertions and deletions are made
anywhere in a linked list.

484 Chapter 12 C Data Structures

• With stacks, insertions and deletions are made only at the top.

• Queues represent waiting lines; insertions are made at the back (also referred to as the tail) of a
queue and deletions are made from the front (also referred to as the head) of a queue.

• Binary trees facilitate high-speed searching and sorting of data, efficient elimination of duplicate
data items, representing file system directories and compiling expressions into machine language.

Section 12.2 Self-Referential Structures
• A self-referential structure contains a pointer member that points to a structure of the same type.

• Self-referential structures can be linked together to form lists, queues, stacks and trees.

• A NULL pointer normally indicates the end of a data structure.

Section 12.3 Dynamic Memory Allocation
• Creating and maintaining dynamic data structures require dynamic memory allocation.

• Functions malloc and free, and operator sizeof, are essential to dynamic memory allocation.

• Function malloc receives the number of bytes to be allocated and returns a void * pointer to the
allocated memory. A void * pointer may be assigned to a variable of any pointer type.

• Function malloc is normally used with the sizeof operator.

• The memory allocated by malloc is not initialized.

• If no memory is available, malloc returns NULL.

• Function free deallocates memory so that the memory can be reallocated in the future.

• C also provides functions calloc and realloc for creating and modifying dynamic arrays.

Section 12.4 Linked Lists
• A linked list is a linear collection of self-referential structures, called nodes, connected by pointer

links.

• A linked list is accessed via a pointer to the first node. Subsequent nodes are accessed via the link
pointer member stored in each node.

• By convention, the link pointer in the last node of a list is set to NULL to mark the end of the list.

• Data is stored in a linked list dynamically—each node is created as necessary.

• A node can contain data of any type including other struct objects.

• Linked lists are dynamic, so the length of a list can increase or decrease as necessary.

• Linked list nodes are normally not stored contiguously in memory. Logically, however, the nodes
of a linked list appear to be contiguous.

Section 12.5 Stacks
• A stack is a constrained version of a linked list. New nodes can be added to a stack and removed

from a stack only at the top—referred to as a last-in, first-out (LIFO) data structure.

• The primary functions used to manipulate a stack are push and pop. Function push creates a new
node and places it on top of the stack. Function pop removes a node from the top of the stack,
frees the memory that was allocated to the popped node and returns the popped value.

• Whenever a function call is made, the called function must know how to return to its caller, so the
return address is pushed onto a stack. If a series of function calls occurs, the successive return values
are pushed onto the stack in last-in, first-out order so that each function can return to its caller.
Stacks support recursive function calls in the same manner as conventional nonrecursive calls.

• Stacks are used by compilers in the process of evaluating expressions and generating machine lan-
guage code.

 Terminology 485

Section 12.6 Queues
• Queue nodes are removed only from the head of the queue and are inserted only at the tail of the

queue—referred to as a first-in, first-out (FIFO) data structure.

• The insert and remove operations for a queue are known as enqueue and dequeue.

Section 12.7 Trees
• A tree is a nonlinear, two-dimensional data structure. Tree nodes contain two or more links.

• Binary trees are trees whose nodes all contain two links.

• The root node is the first node in a tree. Each link in the root node of a binary tree refers to a
child. The left child is the first node in the left subtree, and the right child is the first node in the
right subtree. The children of a node are called siblings.

• A node with no children is called a leaf node.

• A binary search tree (with no duplicate node values) has the characteristic that the values in any
left subtree are less than the value in its parent node, and the values in any right subtree are greater
than the value in its parent node.

• A node can only be inserted as a leaf node in a binary search tree.

• The steps for an in-order traversal are: Traverse the left subtree in-order, process the value in the
node, then traverse the right subtree in-order. The value in a node is not processed until the val-
ues in its left subtree are processed.

• The in-order traversal of a binary search tree processes the node values in ascending order. The
process of creating a binary search tree actually sorts the data—and thus this process is called the
binary tree sort.

• The steps for a pre-order traversal are: Process the value in the node, traverse the left subtree pre-
order, then traverse the right subtree pre-order. The value in each node is processed as the node
is visited. After the value in a given node is processed, the values in the left subtree are processed,
then the values in the right subtree are processed.

• The steps for a post-order traversal are: Traverse the left subtree post-order, traverse the right sub-
tree post-order, then process the value in the node. The value in each node is not processed until
the values of its children are processed.

• A binary search tree facilitates duplicate elimination. As the tree is being created, an attempt to
insert a duplicate value will be recognized because a duplicate will follow the same “go left” or
“go right” decisions on each comparison as the original value did. Thus, the duplicate will even-
tually be compared with a node in the tree containing the same value. The duplicate value may
simply be discarded at this point.

• Searching a binary tree for a value that matches a key value is fast. If the tree is tightly packed,
each level contains about twice as many elements as the previous level. So a binary search tree with
n elements would have a maximum of log2n levels, and thus a maximum of log2n comparisons
would have to be made either to find a match or to determine that no match exists. This means
that when searching a (tightly packed) 1000-element binary search tree, no more than 10 com-
parisons need to be made because 210 > 1000. When searching a (tightly packed) 1,000,000-ele-
ment binary search tree, no more than 20 comparisons need to be made because 220 > 1,000,000.

Terminology
binary search tree 479
binary tree 455, 478
binary tree sort 482
child 478

dequeue function of a queue 473
double indirection (pointer to a pointer) 463
duplicate elimination 483
dynamic data structure 455

486 Chapter 12 C Data Structures

dynamic memory allocation 456
enqueue function of a queue 473
first-in first-out (FIFO) 472
free function 456
head of a queue 455
infix notation 489
inorder 479
last-in-first-out (LIFO) 466
leaf node 478
left child 478
left subtree 478
level order binary tree traversal 493
linear data structures 478
link 458
link (pointer in a self-referential structure) 456
linked list 455, 458
malloc function 456
node 458
NULL pointer 456

parent node 479
pointer to pointer (double indirection) 463
pointer to void (void *) 456
postfix notation 489
postorder 479
predicate function 463
preorder 479
queue 455, 472
replacement node 493
right child 478
right subtree 478
root node of a binary tree 478
self-referential structure 456
sibling 478
sizeof operator 456
stack 455, 466
tail of a queue 455
top of a stack 455
tree 478

Self-Review Exercises
12.1 Fill in the blanks in each of the following:

a) A self- structure is used to form dynamic data structures.
b) Function is used to dynamically allocate memory.
c) A(n) is a specialized version of a linked list in which nodes can be inserted and

deleted only from the start of the list.
d) Functions that look at a linked list but do not modify it are referred to as .
e) A queue is referred to as a(n) data structure.
f) The pointer to the next node in a linked list is referred to as a(n) .
g) Function is used to reclaim dynamically allocated memory.
h) A(n) is a specialized version of a linked list in which nodes can be inserted only

at the start of the list and deleted only from the end of the list.
i) A(n) is a nonlinear, two-dimensional data structure that contains nodes with

two or more links.
j) A stack is referred to as a(n) data structure because the last node inserted is the

first node removed.
k) The nodes of a(n) tree contain two link members.
l) The first node of a tree is the node.
m) Each link in a tree node points to a(n) or of that node.
n) A tree node that has no children is called a(n) node.
o) The three traversal algorithms (covered in this chapter) for a binary tree are ,

 and .

12.2 What are the differences between a linked list and a stack?

12.3 What are the differences between a stack and a queue?

12.4 Write a statement or set of statements to accomplish each of the following. Assume that all
the manipulations occur in main (therefore, no addresses of pointer variables are needed), and as-
sume the following definitions:

struct gradeNode {
 char lastName[20];

 Answers to Self-Review Exercises 487

 double grade;
 struct gradeNode *nextPtr;
};

typedef struct gradeNode GradeNode;
typedef GradeNode *GradeNodePtr;

a) Create a pointer to the start of the list called startPtr. The list is empty.
b) Create a new node of type GradeNode that is pointed to by pointer newPtr of type Grade-

NodePtr. Assign the string "Jones" to member lastName and the value 91.5 to member
grade (use strcpy). Provide any necessary declarations and statements.

c) Assume that the list pointed to by startPtr currently consists of 2 nodes—one con-
taining "Jones" and one containing "Smith". The nodes are in alphabetical order. Pro-
vide the statements necessary to insert in order nodes containing the following data for
lastName and grade:

"Adams" 85.0
"Thompson" 73.5
"Pritchard" 66.5

Use pointers previousPtr, currentPtr and newPtr to perform the insertions. State what
previousPtr and currentPtr point to before each insertion. Assume that newPtr always
points to the new node, and that the new node has already been assigned the data.

d) Write a while loop that prints the data in each node of the list. Use pointer currentPtr
to move along the list.

e) Write a while loop that deletes all the nodes in the list and frees the memory associated
with each node. Use pointer currentPtr and pointer tempPtr to walk along the list and
free memory, respectively.

12.5 Provide the inorder, preorder and postorder traversals of the binary search tree of Fig. 12.22.

Answers to Self-Review Exercises
12.1 a) referential. b) malloc. c) stack. d) predicates. e) FIFO. f) link. g) free. h) queue.
i) tree. j) LIFO. k) binary. l) root. m) child, subtree. n) leaf. o) inorder, preorder postorder.

12.2 It’s possible to insert a node anywhere in a linked list, and remove a node from anywhere
in a linked list. However, nodes in a stack may only be inserted at the top of the stack and removed
from the top of a stack.

12.3 A queue has pointers to both its head and its tail so that nodes may be inserted at the tail
and deleted from the head. A stack has a single pointer to the top of the stack where both insertion
and deletion of nodes is performed.

12.4 a) GradeNodePtr startPtr = NULL;

b) GradeNodePtr newPtr;

newPtr = malloc(sizeof(GradeNode));

Fig. 12.22 | A 15-node binary search tree.

49

28 83

97

92 9969 72

7140

32 4411 19

18

488 Chapter 12 C Data Structures

strcpy(newPtr->lastName, "Jones");

newPtr->grade = 91.5;

newPtr->nextPtr = NULL;
c) To insert "Adams":

previousPtr is NULL, currentPtr points to the first element in the list.
newPtr->nextPtr = currentPtr;

startPtr = newPtr;

To insert "Thompson":
previousPtr points to the last element in the list (containing "Smith")
currentPtr is NULL.
newPtr->nextPtr = currentPtr;

previousPtr->nextPtr = newPtr;

To insert "Pritchard":
previousPtr points to the node containing "Jones"
currentPtr points to the node containing "Smith"
newPtr->nextPtr = currentPtr;

previousPtr->nextPtr = newPtr;

d) currentPtr = startPtr;

while (currentPtr != NULL) {

 printf("Lastname = %s\nGrade = %6.2f\n",

 currentPtr->lastName, currentPtr->grade);

 currentPtr = currentPtr->nextPtr;

}
e) currentPtr = startPtr;

while (currentPtr != NULL) {

 tempPtr = currentPtr;

 currentPtr = currentPtr->nextPtr;

 free(tempPtr);

}

startPtr = NULL;

12.5 The inorder traversal is:

11 18 19 28 32 40 44 49 69 71 72 83 92 97 99

The preorder traversal is:

49 28 18 11 19 40 32 44 83 71 69 72 97 92 99

The postorder traversal is:

11 19 18 32 44 40 28 69 72 71 92 99 97 83 49

Exercises
12.6 (Concatenating Lists) Write a program that concatenates two linked lists of characters. The
program should include function concatenate that takes pointers to both lists as arguments and
concatenates the second list to the first list.

12.7 (Merging Ordered Lists) Write a program that merges two ordered lists of integers into a
single ordered list of integers. Function merge should receive pointers to the first node of each of the
lists to be merged and should return a pointer to the first node of the merged list.

12.8 (Inserting into an Ordered List) Write a program that inserts 25 random integers from 0 to
100 in order in a linked list. The program should calculate the sum of the elements and the floating-
point average of the elements.

 Exercises 489

12.9 (Creating a Linked List, then Reversing Its Elements) Write a program that creates a linked
list of 10 characters, then creates a copy of the list in reverse order.

12.10 (Reversing the Words of a Sentence) Write a program that inputs a line of text and uses a
stack to print the line reversed.

12.11 (Palindrome Tester) Write a program that uses a stack to determine if a string is a palin-
drome (i.e., the string is spelled identically backward and forward). The program should ignore
spaces and punctuation.

12.12 (Infix-to-Postfix Converter) Stacks are used by compilers to help in the process of evaluating
expressions and generating machine language code. In this and the next exercise, we investigate how
compilers evaluate arithmetic expressions consisting only of constants, operators and parentheses.

Humans generally write expressions like 3 + 4 and 7 / 9 in which the operator (+ or / here) is
written between its operands—this is called infix notation. Computers “prefer” postfix notation in
which the operator is written to the right of its two operands. The preceding infix expressions
would appear in postfix notation as 3 4 + and 7 9 /, respectively.

To evaluate a complex infix expression, a compiler would first convert the expression to post-
fix notation, and then evaluate the postfix version of the expression. Each of these algorithms
requires only a single left-to-right pass of the expression. Each algorithm uses a stack in support of
its operation, and in each the stack is used for a different purpose.

In this exercise, you’ll write a version of the infix-to-postfix conversion algorithm. In the next
exercise, you’ll write a version of the postfix expression evaluation algorithm.

Write a program that converts an ordinary infix arithmetic expression (assume a valid
expression is entered) with single digit integers such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding infix expression is

6 2 + 5 * 8 4 / -

The program should read the expression into character array infix, and use modified versions of
the stack functions implemented in this chapter to help create the postfix expression in character
array postfix. The algorithm for creating a postfix expression is as follows:

1) Push a left parenthesis '(' onto the stack.
2) Append a right parenthesis ')' to the end of infix.
3) While the stack is not empty, read infix from left to right and do the following:

If the current character in infix is a digit, copy it to the next element of postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator,

Pop operators (if there are any) at the top of the stack while they have equal or
higher precedence than the current operator, and insert the popped
operators in postfix.

Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis

Pop operators from the top of the stack and insert them in postfix until a left
parenthesis is at the top of the stack.

Pop (and discard) the left parenthesis from the stack.

The following arithmetic operations are allowed in an expression:
+ addition
- subtraction
* multiplication
/ division

490 Chapter 12 C Data Structures

^ exponentiation
% remainder

The stack should be maintained with the following declarations:

struct stackNode {
 char data;
 struct stackNode *nextPtr;
};

typedef struct stackNode StackNode;
typedef StackNode *StackNodePtr;

The program should consist of main and eight other functions with the following function headers:

void convertToPostfix(char infix[], char postfix[])

Convert the infix expression to postfix notation.

int isOperator(char c)

Determine if c is an operator.

int precedence(char operator1, char operator2)

Determine if the precedence of operator1 is less than, equal to, or greater than the pre-
cedence of operator2. The function returns -1, 0 and 1, respectively.

void push(StackNodePtr *topPtr, char value)

Push a value on the stack.

char pop(StackNodePtr *topPtr)

Pop a value off the stack.

char stackTop(StackNodePtr topPtr)

Return the top value of the stack without popping the stack.

int isEmpty(StackNodePtr topPtr)

Determine if the stack is empty.

void printStack(StackNodePtr topPtr)

Print the stack.

12.13 (Postfix Evaluator) Write a program that evaluates a postfix expression (assume it’s valid)
such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of single digits and operators into a char-
acter array. Using modified versions of the stack functions implemented earlier in this chapter, the
program should scan the expression and evaluate it. The algorithm is as follows:

1) Append the null character ('\0') to the end of the postfix expression. When the null
character is encountered, no further processing is necessary.

2) While '\0' has not been encountered, read the expression from left to right.
If the current character is a digit,

Push its integer value onto the stack (the integer value of a digit character is its
value in the computer’s character set minus the value of '0' in the
computer’s character set).

Otherwise, if the current character is an operator,
Pop the two top elements of the stack into variables x and y.
Calculate y operator x.
Push the result of the calculation onto the stack.

 Exercises 491

3) When the null character is encountered in the expression, pop the top value of the stack.
This is the result of the postfix expression.

[Note: In 2) above, if the operator is '/', the top of the stack is 2, and the next element in the stack
is 8, then pop 2 into x, pop 8 into y, evaluate 8 / 2, and push the result, 4, back on the stack. This
note also applies to operator '-'.]

The arithmetic operations allowed in an expression are:
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% remainder

The stack should be maintained with the following declarations:

struct stackNode {
 int data;
 struct stackNode *nextPtr;
};

typedef struct stackNode StackNode;
typedef StackNode *StackNodePtr;

The program should consist of main and six other functions with the following function headers:

int evaluatePostfixExpression(char *expr)

Evaluate the postfix expression.

int calculate(int op1, int op2, char operator)

Evaluate the expression op1 operator op2.

void push(StackNodePtr *topPtr, int value)

Push a value on the stack.

int pop(StackNodePtr *topPtr)

Pop a value off the stack.

int isEmpty(StackNodePtr topPtr)

Determine if the stack is empty.

void printStack(StackNodePtr topPtr)

Print the stack.

12.14 (Postfix Evaluator Modification) Modify the postfix evaluator program of Exercise 12.13
so that it can process integer operands larger than 9.

12.15 (Supermarket Simulation) Write a program that simulates a check-out line at a supermar-
ket. The line is a queue. Customers arrive in random integer intervals of 1 to 4 minutes. Also, each
customer is serviced in random integer intervals of 1 to 4 minutes. Obviously, the rates need to be
balanced. If the average arrival rate is larger than the average service rate, the queue will grow in-
finitely. Even with balanced rates, randomness can still cause long lines. Run the supermarket simu-
lation for a 12-hour day (720 minutes) using the following algorithm:

1) Choose a random integer between 1 and 4 to determine the minute at which the first
customer arrives.

2) At the first customer’s arrival time:
Determine customer’s service time (random integer from 1 to 4);
Begin servicing the customer;
Schedule arrival time of next customer (random integer 1 to 4 added to the current time).

492 Chapter 12 C Data Structures

3) For each minute of the day:
If the next customer arrives,

Say so;
Enqueue the customer;
Schedule the arrival time of the next customer;

If service was completed for the last customer;
Say so;
Dequeue next customer to be serviced;
Determine customer’s service completion time

(random integer from 1 to 4 added to the current time).

Now run your simulation for 720 minutes and answer each of the following:
a) What is the maximum number of customers in the queue at any time?
b) What is the longest wait any one customer experienced?
c) What happens if the arrival interval is changed from 1 to 4 minutes to 1 to 3 minutes?

12.16 (Allowing Duplicates in a Binary Tree) Modify the program of Fig. 12.19 to allow the bi-
nary tree to contain duplicate values.

12.17 (Binary Search Tree of Strings) Write a program based on the program of Fig. 12.19 that
inputs a line of text, tokenizes the sentence into separate words, inserts the words in a binary search
tree, and prints the inorder, preorder, and postorder traversals of the tree.

[Hint: Read the line of text into an array. Use strtok to tokenize the text. When a token is
found, create a new node for the tree, assign the pointer returned by strtok to member string of
the new node, and insert the node in the tree.]

12.18 (Duplicate Elimination) In this chapter, we saw that duplicate elimination is straightfor-
ward when creating a binary search tree. Describe how you would perform duplicate elimination
using only a single subscripted array. Compare the performance of array-based duplicate elimina-
tion with the performance of binary-search-tree-based duplicate elimination.

12.19 (Depth of a Binary Tree) Write a function depth that receives a binary tree and determines
how many levels it has.

12.20 (Recursively Print a List Backwards) Write a function printListBackwards that recursively
outputs the items in a list in reverse order. Use your function in a test program that creates a sorted
list of integers and prints the list in reverse order.

12.21 (Recursively Search a List) Write a function searchList that recursively searches a linked
list for a specified value. The function should return a pointer to the value if it’s found; otherwise,
NULL should be returned. Use your function in a test program that creates a list of integers. The pro-
gram should prompt the user for a value to locate in the list.

12.22 (Binary Tree Delete) In this exercise, we discuss deleting items from binary search trees. The
deletion algorithm is not as straightforward as the insertion algorithm. There are three cases that are
encountered when deleting an item—the item is contained in a leaf node (i.e., it has no children),
the item is contained in a node that has one child, or the item is contained in a node that has two
children.

If the item to be deleted is contained in a leaf node, the node is deleted and the pointer in the
parent node is set to NULL.

If the item to be deleted is contained in a node with one child, the pointer in the parent node
is set to point to the child node and the node containing the data item is deleted. This causes the
child node to take the place of the deleted node in the tree.

The last case is the most difficult. When a node with two children is deleted, another node
must take its place. However, the pointer in the parent node cannot simply be assigned to point to
one of the children of the node to be deleted. In most cases, the resulting binary search tree would

 Exercises 493

not adhere to the following characteristic of binary search trees: The values in any left subtree are less
than the value in the parent node, and the values in any right subtree are greater than the value in the
parent node.

Which node is used as a replacement node to maintain this characteristic? Either the node
containing the largest value in the tree less than the value in the node being deleted, or the node
containing the smallest value in the tree greater than the value in the node being deleted. Let’s con-
sider the node with the smaller value. In a binary search tree, the largest value less than a parent’s
value is located in the left subtree of the parent node and is guaranteed to be contained in the right-
most node of the subtree. This node is located by walking down the left subtree to the right until
the pointer to the right child of the current node is NULL. We’re now pointing to the replacement
node which is either a leaf node or a node with one child to its left. If the replacement node is a leaf
node, the steps to perform the deletion are as follows:

1) Store the pointer to the node to be deleted in a temporary pointer variable (this pointer
is used to delete the dynamically allocated memory).

2) Set the pointer in the parent of the node being deleted to point to the replacement node.
3) Set the pointer in the parent of the replacement node to null.
4) Set the pointer to the right subtree in the replacement node to point to the right subtree

of the node to be deleted.
5) Delete the node to which the temporary pointer variable points.

The deletion steps for a replacement node with a left child are similar to those for a replace-
ment node with no children, but the algorithm also must move the child to the replacement node’s
position. If the replacement node is a node with a left child, the steps to perform the deletion are as
follows:

1) Store the pointer to the node to be deleted in a temporary pointer variable.
2) Set the pointer in the parent of the node being deleted to point to the replacement node.
3) Set the pointer in the parent of the replacement node to point to the left child of the

replacement node.
4) Set the pointer to the right subtree in the replacement node to point to the right subtree

of the node to be deleted.
5) Delete the node to which the temporary pointer variable points.

Write function deleteNode which takes as its arguments a pointer to the root node of the tree
and the value to be deleted. The function should locate in the tree the node containing the value to
be deleted and use the algorithms discussed here to delete the node. If the value is not found in the
tree, the function should print a message that indicates whether or not the value is deleted. Modify
the program of Fig. 12.19 to use this function. After deleting an item, call the inOrder, preOrder
and postOrder traversal functions to confirm that the delete operation was performed correctly.

12.23 (Binary Tree Search) Write function binaryTreeSearch that attempts to locate a specified
value in a binary search tree. The function should take as arguments a pointer to the root node of
the binary tree and a search key to be located. If the node containing the search key is found, the
function should return a pointer to that node; otherwise, the function should return a NULL pointer.

12.24 (Level Order Binary Tree Traversal) The program of Fig. 12.19 illustrated three recursive
methods of traversing a binary tree—inorder traversal, preorder traversal, and postorder traversal.
This exercise presents the level order traversal of a binary tree in which the node values are printed
level-by-level starting at the root node level. The nodes on each level are printed from left to right.
The level order traversal is not a recursive algorithm. It uses the queue data structure to control the
output of the nodes. The algorithm is as follows:

1) Insert the root node in the queue
2) While there are nodes left in the queue,

Get the next node in the queue
Print the node’s value

494 Chapter 12 C Data Structures

If the pointer to the left child of the node is not null
Insert the left child node in the queue

If the pointer to the right child of the node is not null
Insert the right child node in the queue.

Write function levelOrder to perform a level order traversal of a binary tree. The function
should take as an argument a pointer to the root node of the binary tree. Modify the program of
Fig. 12.19 to use this function. Compare the output from this function to the outputs of the other
traversal algorithms to see that it worked correctly. [Note: You’ll also need to modify and incor-
porate the queue processing functions of Fig. 12.13 in this program.]

12.25 (Printing Trees) Write a recursive function outputTree to display a binary tree on the
screen. The function should output the tree row-by-row with the top of the tree at the left of the
screen and the bottom of the tree toward the right of the screen. Each row is output vertically. For
example, the binary tree illustrated in Fig. 12.22 is output as follows:

Note the rightmost leaf node appears at the top of the output in the rightmost column, and the
root node appears at the left of the output. Each column of output starts five spaces to the right of
the previous column. Function outputTree should receive as arguments a pointer to the root node
of the tree and an integer totalSpaces representing the number of spaces preceding the value to be
output (this variable should start at zero so the root node is output at the left of the screen). The
function uses a modified inorder traversal to output the tree—it starts at the rightmost node in the
tree and works back to the left. The algorithm is as follows:

While the pointer to the current node is not null
Recursively call outputTree with the current node’s right subtree and totalSpaces + 5
Use a for statement to count from 1 to totalSpaces and output spaces
Output the value in the current node
Set the pointer to the current node to point to the left subtree of the current node
Increment totalSpaces by 5.

Special Section: Building Your Own Compiler
In Exercises 7.27–7.29, we introduced Simpletron Machine Language (SML), and you imple-
mented a Simpletron computer simulator to execute SML programs. In Exercises 12.26–12.30, we
build a compiler that converts programs written in a high-level programming language to SML.
This section “ties” together the entire programming process. You’ll write programs in this new
high-level language, compile them on the compiler you build and run them on the simulator you
built in Exercise 7.28. You should make every effort to implement your compiler in an object-ori-
ented manner. [Note: Due to the size of the descriptions for Exercises 12.26–12.30, we’ve posted
them in a PDF document located at www.deitel.com/books/chtp6/.]

 99
 97
 92
 83
 72
 71
 69
49
 44
 40
 32
 28
 19
 18
 11

www.deitel.com/books/chtp6/

13C Preprocessor

Hold thou the good; define it
well.
—Alfred, Lord Tennyson

I have found you an argument;
but I am not obliged to find you
an understanding.
—Samuel Johnson

A good symbol is the best
argument, and is a missionary
to persuade thousands.
—Ralph Waldo Emerson

The partisan, when he is engaged
in a dispute, cares nothing about
the rights of the question, but is
anxious only to convince his
hearers of his own assertions.
—Plato

O b j e c t i v e s
In this chapter, you’ll learn:

■ To use #include to develop
large programs.

■ To use #define to create
macros and macros with
arguments.

■ To use conditional
compilation to specify
portions of a program that
should not always be
compiled (such as code that
assists you in debugging).

■ To display error messages
during conditional
compilation.

■ To use assertions to test if the
values of expressions are
correct.

496 Chapter 13 C Preprocessor

13.1 Introduction
The C preprocessor executes before a program is compiled. Some actions it performs are
the inclusion of other files in the file being compiled, definition of symbolic constants and
macros, conditional compilation of program code and conditional execution of prepro-
cessor directives. Preprocessor directives begin with # and only white-space characters and
comments may appear before a preprocessor directive on a line.

13.2 #include Preprocessor Directive
The #include preprocessor directive has been used throughout this text. The #include
directive causes a copy of a specified file to be included in place of the directive. The two
forms of the #include directive are:

The difference between these is the location the preprocessor begins searches for the file to
be included. If the file name is enclosed in quotes, the preprocessor starts searches in the
same directory as the file being compiled for the file to be included (and may search other
locations as well). This method is normally used to include programmer-defined headers.
If the file name is enclosed in angle brackets (< and >)—used for standard library head-
ers—the search is performed in an implementation-dependent manner, normally through
predesignated compiler and system directories.

The #include directive is used to include standard library headers such as stdio.h
and stdlib.h (see Fig. 5.6) and with programs consisting of several source files that are to
be compiled together. A header containing declarations common to the separate program
files is often created and included in the file. Examples of such declarations are structure
and union declarations, enumerations and function prototypes.

13.3 #define Preprocessor Directive: Symbolic
Constants
The #define directive creates symbolic constants—constants represented as symbols—
and macros—operations defined as symbols. The #define directive format is

13.1 Introduction
13.2 #include Preprocessor Directive
13.3 #define Preprocessor Directive:

Symbolic Constants
13.4 #define Preprocessor Directive:

Macros
13.5 Conditional Compilation

13.6 #error and #pragma Preprocessor
Directives

13.7 # and ## Operators
13.8 Line Numbers
13.9 Predefined Symbolic Constants

13.10 Assertions

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

#include <filename>
#include "filename"

#define identifier replacement-text

13.4 #define Preprocessor Directive: Macros 497

When this line appears in a file, all subsequent occurrences of identifier that do not appear
in string literals will be replaced by replacement-text automatically before the program is
compiled. For example,

replaces all subsequent occurrences of the symbolic constant PI with the numeric constant
3.14159. Symbolic constants enable you to create a name for a constant and use the name
throughout the program. If the constant needs to be modified throughout the program, it
can be modified once in the #define directive. When the program is recompiled, all oc-
currences of the constant in the program will be modified accordingly. [Note: Everything
to the right of the symbolic constant name replaces the symbolic constant.] For example,
#define PI = 3.14159 causes the preprocessor to replace every occurrence of the identifier
PI with = 3.14159. This is the cause of many subtle logic and syntax errors. Redefining a
symbolic constant with a new value is also an error.

13.4 #define Preprocessor Directive: Macros
A macro is an identifier defined in a #define preprocessor directive. As with symbolic con-
stants, the macro-identifier is replaced in the program with the replacement-text before
the program is compiled. Macros may be defined with or without arguments. A macro
without arguments is processed like a symbolic constant. In a macro with arguments, the
arguments are substituted in the replacement text, then the macro is expanded—i.e., the
replacement-text replaces the identifier and argument list in the program. [Note: A sym-
bolic constant is a type of macro.]

Consider the following macro definition with one argument for the area of a circle:

Wherever CIRCLE_AREA(y) appears in the file, the value of y is substituted for x in the re-
placement-text, the symbolic constant PI is replaced by its value (defined previously) and
the macro is expanded in the program. For example, the statement

is expanded to

and the value of the expression is evaluated and assigned to variable area. The parentheses
around each x in the replacement text force the proper order of evaluation when the macro
argument is an expression. For example, the statement

#define PI 3.14159

Good Programming Practice 13.1
Using meaningful names for symbolic constants helps make programs more self-docu-
menting.

Good Programming Practice 13.2
By convention, symbolic constants are defined using only uppercase letters and underscores.

#define CIRCLE_AREA(x) ((PI) * (x) * (x))

area = CIRCLE_AREA(4);

area = ((3.14159) * (4) * (4));

area = CIRCLE_AREA(c + 2);

498 Chapter 13 C Preprocessor

is expanded to

which evaluates correctly because the parentheses force the proper order of evaluation. If
the parentheses are omitted, the macro expansion is

which evaluates incorrectly as

because of the rules of operator precedence.

Macro CIRCLE_AREA could be defined as a function. Function circleArea

performs the same calculation as macro CIRCLE_AREA, but the overhead of a function call
is associated with function circleArea. The advantages of macro CIRCLE_AREA are that
macros insert code directly in the program—avoiding function call overhead—and the
program remains readable because the CIRCLE_AREA calculation is defined separately and
named meaningfully. A disadvantage is that its argument is evaluated twice.

The following is a macro definition with two arguments for the area of a rectangle:

Wherever RECTANGLE_AREA(x, y) appears in the program, the values of x and y are substi-
tuted in the macro replacement text and the macro is expanded in place of the macro
name. For example, the statement

is expanded to

The value of the expression is evaluated and assigned to variable rectArea.
The replacement text for a macro or symbolic constant is normally any text on the

line after the identifier in the #define directive. If the replacement text for a macro or sym-
bolic constant is longer than the remainder of the line, a backslash (\) must be placed at
the end of the line, indicating that the replacement text continues on the next line.

area = ((3.14159) * (c + 2) * (c + 2));

area = 3.14159 * c + 2 * c + 2;

area = (3.14159 * c) + (2 * c) + 2;

Common Programming Error 13.1
Forgetting to enclose macro arguments in parentheses in the replacement text can lead to
logic errors.

double circleArea(double x)
{

return 3.14159 * x * x;
}

Performance Tip 13.1
Macros can sometimes be used to replace a function call with inline code to eliminate the
overhead of a function call. Today’s optimizing compilers often inline functions for you,
so many programmers no longer use macros for this purpose. C99 also provides the inline
keyword (see Appendix G).

#define RECTANGLE_AREA(x, y) ((x) * (y))

rectArea = RECTANGLE_AREA(a + 4, b + 7);

rectArea = ((a + 4) * (b + 7));

13.5 Conditional Compilation 499

Symbolic constants and macros can be discarded by using the #undef preprocessor
directive. Directive #undef “undefines” a symbolic constant or macro name. The scope of
a symbolic constant or macro is from its definition until it is undefined with #undef, or
until the end of the file. Once undefined, a name can be redefined with #define.

Functions in the standard library sometimes are defined as macros based on other
library functions. A macro commonly defined in the stdio.h header is

The macro definition of getchar uses function getc to get one character from the stan-
dard input stream. Function putchar of the stdio.h header and the character handling
functions of the ctype.h header often are implemented as macros as well. Expressions with
side effects (i.e., variable values are modified) should not be passed to a macro because
macro arguments may be evaluated more than once.

13.5 Conditional Compilation
Conditional compilation enables you to control the execution of preprocessor directives
and the compilation of program code. Each of the conditional preprocessor directives eval-
uates a constant integer expression. Cast expressions, sizeof expressions and enumeration
constants cannot be evaluated in preprocessor directives.

The conditional preprocessor construct is much like the if selection statement. Con-
sider the following preprocessor code:

These directives determine if MY_CONSTANT is defined. The expression defined(

MY_CONSTANT) evaluates to 1 if MY_CONSTANT is defined; 0 otherwise. If the result is 0, !de-
fined(MY_CONSTANT) evaluates to 1 and MY_CONSTANT is defined. Otherwise, the #define
directive is skipped. Every #if construct ends with #endif. Directives #ifdef and #ifndef
are shorthand for #if defined(name) and #if !defined(name). A multiple-part condi-
tional preprocessor construct may be tested by using the #elif (the equivalent of else if

in an if statement) and the #else (the equivalent of else in an if statement) directives.
These directives are frequently used to prevent header files from being included multiple
times in the same source file. We use this technique extensively in the C++ part of this
book.

During program development, it is often helpful to “comment out” portions of code
to prevent it from being compiled. If the code contains comments, /* and */ cannot be
used to accomplish this task. Instead, you can use the following preprocessor construct:

To enable the code to be compiled, replace the 0 in the preceding construct with 1.
Conditional compilation is commonly used as a debugging aid. Many C implementa-

tions provide debuggers, which provide much more powerful features than conditional
compilation. If a debugger is not available, printf statements are often used to print vari-
able values and to confirm the flow of control. These printf statements can be enclosed

#define getchar() getc(stdin)

#if !defined(MY_CONSTANT)
#define MY_CONSTANT 0

#endif

#if 0

code prevented from compiling
#endif

500 Chapter 13 C Preprocessor

in conditional preprocessor directives so the statements are only compiled while the
debugging process is not completed. For example,

causes a printf statement to be compiled in the program if the symbolic constant DEBUG
has been defined (#define DEBUG) before directive #ifdef DEBUG. When debugging is
completed, the #define directive is removed from the source file (or commented out) and
the printf statements inserted for debugging purposes are ignored during compilation. In
larger programs, it may be desirable to define several different symbolic constants that con-
trol the conditional compilation in separate sections of the source file.

13.6 #error and #pragma Preprocessor Directives
The #error directive

prints an implementation-dependent message including the tokens specified in the di-
rective. The tokens are sequences of characters separated by spaces. For example,

contains 6 tokens. When a #error directive is processed on some systems, the tokens in
the directive are displayed as an error message, preprocessing stops and the program does
not compile.

The #pragma directive

causes an implementation-defined action. A pragma not recognized by the implementa-
tion is ignored. For more information on #error and #pragma, see the documentation for
your C implementation.

13.7 # and ## Operators
The # and ## preprocessor operators are available in Standard C. The # operator causes a
replacement text token to be converted to a string surrounded by quotes. Consider the fol-
lowing macro definition:

When HELLO(John) appears in a program file, it is expanded to

#ifdef DEBUG

 printf("Variable x = %d\n", x);
#endif

Common Programming Error 13.2
Inserting conditionally compiled printf statements for debugging purposes in locations
where C currently expects a single statement. In this case, the conditionally compiled state-
ment should be enclosed in a compound statement. Thus, when the program is compiled
with debugging statements, the flow of control of the program is not altered.

#error tokens

#error 1 - Out of range error

#pragma tokens

#define HELLO(x) printf("Hello, " #x "\n");

printf("Hello, " "John" "\n");

13.8 Line Numbers 501

The string "John" replaces #x in the replacement text. Strings separated by white space are
concatenated during preprocessing, so the preceding statement is equivalent to

The # operator must be used in a macro with arguments because the operand of # refers
to an argument of the macro.

The ## operator concatenates two tokens. Consider the following macro definition:

When TOKENCONCAT appears in the program, its arguments are concatenated and used to
replace the macro. For example, TOKENCONCAT(O, K) is replaced by OK in the program. The
operator must have two operands.

13.8 Line Numbers
The #line preprocessor directive causes the subsequent source code lines to be renum-
bered starting with the specified constant integer value. The directive

starts line numbering from 100 beginning with the next source code line. A file name can
be included in the #line directive. The directive

indicates that lines are numbered from 100 beginning with the next source code line and
that the name of the file for the purpose of any compiler messages is "file1.c". The di-
rective normally is used to help make the messages produced by syntax errors and compiler
warnings more meaningful. The line numbers do not appear in the source file.

13.9 Predefined Symbolic Constants
Standard C provides predefined symbolic constants, several of which are shown in
Fig. 13.1. The identifiers for each of the predefined symbolic constants begin and end
with two underscores. These identifiers and the defined identifier (used in Section 13.5)
cannot be used in #define or #undef directives.

printf("Hello, John\n");

#define TOKENCONCAT(x, y) x ## y

#line 100

#line 100 "file1.c"

Symbolic constant Explanation

__LINE__ The line number of the current source code line (an integer constant).

__FILE__ The presumed name of the source file (a string).

__DATE__ The date the source file was compiled (a string of the form
"Mmm dd yyyy" such as "Jan 19 2002").

__TIME__ The time the source file was compiled (a string literal of the form
"hh:mm:ss").

__STDC__ The value 1 if the compiler supports Standard C.

Fig. 13.1 | Some predefined symbolic constants.

502 Chapter 13 C Preprocessor

13.10 Assertions
The assert macro—defined in the <assert.h> header—tests the value of an expression.
If the value of the expression is false (0), assert prints an error message and calls function
abort (of the general utilities library—<stdlib.h>) to terminate program execution. This
is a useful debugging tool for testing if a variable has a correct value. For example, suppose
variable x should never be larger than 10 in a program. An assertion may be used to test the
value of x and print an error message if the value of x is incorrect. The statement would be

If x is greater than 10 when the preceding statement is encountered in a program, an error
message containing the line number and file name is printed and the program terminates.
You may then concentrate on this area of the code to find the error. If the symbolic con-
stant NDEBUG is defined, subsequent assertions will be ignored. Thus, when assertions are
no longer needed, the line

is inserted in the program file rather than deleting each assertion manually.

assert(x <= 10);

#define NDEBUG

Software Engineering Observation 13.1
Assertions are not meant as a substitute for error handling during normal runtime
conditions. Their use should be limited to finding logic errors.

Summary
Section 13.1 Introduction
• The preprocessor executes before a program is compiled.

• All preprocessor directives begin with #.

Section 13.2 #include Preprocessor Directive
• Only white-space characters and comments may appear before a preprocessor directive on a line.

• The #include directive includes a copy of the specified file. If the file name is enclosed in quotes,
the preprocessor begins searching in the same directory as the file being compiled for the file to
be included. If the file name is enclosed in angle brackets (< and >), the search is performed in an
implementation-defined manner.

Section 13.3 #define Preprocessor Directive: Symbolic Constants
• The #define preprocessor directive is used to create symbolic constants and macros.

• A symbolic constant is a name for a constant.

• A macro is an operation defined in a #define preprocessor directive. Macros may be defined with
or without arguments.

Section 13.4 #define Preprocessor Directive: Macros
• The replacement text for a macro or symbolic constant is any text remaining on the line after the

identifier in the #define directive. If the replacement text for a macro or symbolic constant is
longer than the remainder of the line, a backslash (\) is placed at the end of the line indicating
that the replacement text continues on the next line.

 Terminology 503

• Symbolic constants and macros can be discarded by using the #undef preprocessor directive. Di-
rective #undef “undefines” the symbolic constant or macro name.

• The scope of a symbolic constant or macro is from its definition until it is undefined with #undef
or until the end of the file.

Section 13.5 Conditional Compilation
• Conditional compilation enables you to control the execution of preprocessor directives and the

compilation of program code.

• The conditional preprocessor directives evaluate constant integer expressions. Cast expressions,
sizeof expressions and enumeration constants cannot be evaluated in preprocessor directives.

• Every #if construct ends with #endif.

• Directives #ifdef and #ifndef are provided as shorthand for #if defined(name) and #if
!defined(name).

• Multiple-part conditional preprocessor constructs may be tested with directives #elif and #else.

Section 13.6 #error and #pragma Preprocessor Directives
• The #error directive prints an implementation-dependent message that includes the tokens

specified in the directive.

• The #pragma directive causes an implementation-defined action. If the pragma is not recognized
by the implementation, the pragma is ignored.

Section 13.7 # and ## Operators
• The # operator causes a replacement text token to be converted to a string surrounded by quotes.

The # operator must be used in a macro with arguments, because the operand of # must be an
argument of the macro.

• The ## operator concatenates two tokens. The ## operator must have two operands.

Section 13.8 Line Numbers
• The #line preprocessor directive causes the subsequent source code lines to be renumbered start-

ing with the specified constant integer value.

Section 13.9 Predefined Symbolic Constants
• Constant __LINE__ is the line number (an integer) of the current source code line. Constant

__FILE__ is the presumed name of the file (a string). Constant __DATE__ is the date the source
file is compiled (a string). Constant __TIME__ is the time the source file is compiled (a string).
Constant __STDC__ indicates whether the compiler supports Standard C. Each of the predefined
symbolic constants begins and ends with two underscores.

Section 13.10 Assertions
• Macro assert—defined in the <assert.h> header—tests the value of an expression. If the value

of the expression is 0 (false), assert prints an error message and calls function abort to terminate
program execution.

Terminology
abort function 502
arguments 497
assert macro 502
<assert.h> 502
backslash (\) 498
C preprocessor 496

conditional compilation 496
conditional execution of preprocessor

directive 496
debugger 499
#define preprocessor directive 496
#elif preprocessor directive 499

504 Chapter 13 C Preprocessor

#endif preprocessor directive 499
#error preprocessor directive 500
expand a macro 497
#if preprocessor directive 499
#ifdef preprocessor directive 499
#ifndef preprocessor directive 499
#include preprocessor directive 496
#line preprocessor directive 501
macro 496

macro identifier 497
macro with an argument 497
#pragma preprocessor directive 500
predefined symbolic constant 501
preprocessor directive 496
replacement text 497
scope 499
symbolic constant 496
#undef preprocessor directive 499

Self-Review Exercises
13.1 Fill in the blanks in each of the following:

a) Every preprocessor directive must begin with .
b) The conditional compilation construct may be extended to test for multiple cases by us-

ing the and the directives.
c) The directive creates macros and symbolic constants.
d) Only characters may appear before a preprocessor directive on a line.
e) The directive discards symbolic constant and macro names.
f) The and directives are provided as shorthand notation for #if de-

fined(name) and #if !defined(name).
g) enables you to control the execution of preprocessor directives and the com-

pilation of program code.
h) The macro prints a message and terminates program execution if the value of

the expression the macro evaluates is 0.
i) The directive inserts a file in another file.
j) The operator concatenates its two arguments.
k) The operator converts its operand to a string.
l) The character indicates that the replacement text for a symbolic constant or

macro continues on the next line.
m) The directive causes the source code lines to be numbered from the indicated

value beginning with the next source code line.

13.2 Write a program to print the values of the predefined symbolic constants listed in Fig. 13.1.

13.3 Write a preprocessor directive to accomplish each of the following:
a) Define symbolic constant YES to have the value 1.
b) Define symbolic constant NO to have the value 0.
c) Include the header common.h. The header is found in the same directory as the file being

compiled.
d) Renumber the remaining lines in the file beginning with line number 3000.
e) If symbolic constant TRUE is defined, undefine it and redefine it as 1. Do not use #ifdef.
f) If symbolic constant TRUE is defined, undefine it and redefine it as 1. Use the #ifdef

preprocessor directive.
g) If symbolic constant TRUE is not equal to 0, define symbolic constant FALSE as 0. Oth-

erwise define FALSE as 1.
h) Define macro CUBE_VOLUME that computes the volume of a cube. The macro takes one

argument.

Answers to Self-Review Exercises
13.1 a) #. b) #elif, #else. c) #define. d) white-space. e) #undef. f) #ifdef, #ifndef.
g) Conditional compilation. h) assert. i) #include. j) ##. k) #. l) \. m) #line.

 Exercises 505

13.2 See below.

13.3 a) #define YES 1

b) #define NO 0

c) #include "common.h"

d) #line 3000

e) #if defined(TRUE)

#undef TRUE

#define TRUE 1

#endif

f) #ifdef TRUE

#undef TRUE

#define TRUE 1

#endif

g) #if TRUE

#define FALSE 0

#else

#define FALSE 1

#endif

h) #define CUBE_VOLUME(x) ((x) * (x) * (x))

Exercises
13.4 (Volume of a Sphere) Write a program that defines a macro with one argument to compute
the volume of a sphere. The program should compute the volume for spheres of radius 1 to 10 and
print the results in tabular format. The formula for the volume of a sphere is

(4.0 / 3) * π * r3

where π is 3.14159.

13.5 (Adding Two Numbers) Write a program that produces the following output:

The program should define macro SUM with two arguments, x and y, and use SUM to produce the
output.

1 /* Print the values of the predefined macros */
2 #include <stdio.h>
3 int main(void)
4 {
5 printf("__LINE__ = %d\n", __LINE__);
6 printf("__FILE__ = %s\n", __FILE__);
7 printf("__DATE__ = %s\n", __DATE__);
8 printf("__TIME__ = %s\n", __TIME__);
9 printf("__STDC__ = %s\n", __STDC__);

10 return 0;
11 }

__LINE__ = 5
__FILE__ = macros.c
__DATE__ = Jun 5 2003
__TIME__ = 09:38:58
__STDC__ = 1

The sum of x and y is 13

506 Chapter 13 C Preprocessor

13.6 (Smallest of Two Numbers) Write a program that defines and uses macro MINIMUM2 to de-
termine the smallest of two numeric values. Input the values from the keyboard.

13.7 (Smallest of Three Numbers) Write a program that defines and uses macro MINIMUM3 to de-
termine the smallest of three numeric values. Macro MINIMUM3 should use macro MINIMUM2 defined
in Exercise 13.6 to determine the smallest number. Input the values from the keyboard.

13.8 (Printing a String) Write a program that defines and uses macro PRINT to print a string val-
ue.

13.9 (Printing an Array) Write a program that defines and uses macro PRINTARRAY to print an
array of integers. The macro should receive the array and the number of elements in the array as
arguments.

13.10 (Totaling an Array’s Contents) Write a program that defines and uses macro SUMARRAY to
sum the values in a numeric array. The macro should receive the array and the number of elements
in the array as arguments.

14Other C Topics

We’ll use a signal I have tried
and found far-reaching and
easy to yell. Waa-hoo!
—Zane Grey

It is quite a three-pipe problem.
—Sir Arthur Conan Doyle

O b j e c t i v e s
In this chapter, you’ll learn:

■ To redirect keyboard input to
come from a file.

■ To redirect screen output to
be placed in a file.

■ To write functions that use
variable-length argument
lists.

■ To process command-line
arguments.

■ To assign specific types to
numeric constants.

■ To use temporary files.

■ To process external
asynchronous events in a
program.

■ To allocate memory
dynamically for arrays.

■ To change the size of
memory that was
dynamically allocated
previously.

508 Chapter 14 Other C Topics

14.1 Introduction
This chapter presents several additional topics not ordinarily covered in introductory
courses. Many of the capabilities discussed here are specific to particular operating systems,
especially Linux/UNIX and Windows.

14.2 Redirecting I/O
Normally the input to a program is from the keyboard (standard input), and the output
from a program is displayed on the screen (standard output). On most computer sys-
tems—Linux/UNIX and Windows systems in particular—it’s possible to redirect inputs
to come from a file rather than the keyboard and redirect outputs to be placed in a file
rather than on the screen. Both forms of redirection can be accomplished without using
the file-processing capabilities of the standard library.

There are several ways to redirect input and output from the command line. Consider
the executable file sum (on Linux/UNIX systems) that inputs integers one at a time and
keeps a running total of the values until the end-of-file indicator is set, then prints the result.
Normally the user inputs integers from the keyboard and enters the end-of-file key combi-
nation to indicate that no further values will be input. With input redirection, the input
can be stored in a file. For example, if the data is stored in file input, the command line

executes the program sum; the redirect input symbol (<) indicates that the data in file in-
put is to be used as input by the program. Redirecting input on a Windows system is per-
formed identically.

The character $ is a typical Linux/UNIX command line prompt (some systems use a
% prompt or other symbol). Students often find it difficult to understand that redirection
is an operating system function, not another C feature.

The second method of redirecting input is piping. A pipe (|) causes the output of one
program to be redirected as the input to another program. Suppose program random out-
puts a series of random integers; the output of random can be “piped” directly to program
sum using the command line

14.1 Introduction
14.2 Redirecting I/O
14.3 Variable-Length Argument Lists
14.4 Using Command-Line Arguments
14.5 Notes on Compiling Multiple-Source-

File Programs
14.6 Program Termination with exit and

atexit

14.7 volatile Type Qualifier
14.8 Suffixes for Integer and Floating-Point

Constants
14.9 More on Files

14.10 Signal Handling
14.11 Dynamic Memory Allocation:

Functions calloc and realloc
14.12 Unconditional Branching with goto

Summary | Terminology | Self-Review Exercise | Answers to Self-Review Exercise | Exercises

$ sum < input

$ random | sum

14.3 Variable-Length Argument Lists 509

This causes the sum of the integers produced by random to be calculated. Piping is per-
formed identically in Linux/UNIX and Windows.

Program output can be redirected to a file by using the redirect output symbol (>).
For example, to redirect the output of program random to file out, use

Finally, program output can be appended to the end of an existing file by using the
append output symbol (>>). For example, to append the output from program random to
file out created in the preceding command line, use the command line

14.3 Variable-Length Argument Lists
It’s possible to create functions that receive an unspecified number of arguments. Most
programs in the text have used the standard library function printf which, as you know,
takes a variable number of arguments. As a minimum, printf must receive a string as its
first argument, but printf can receive any number of additional arguments. The function
prototype for printf is

The ellipsis (…) in the function prototype indicates that the function receives a variable
number of arguments of any type. The ellipsis must always be placed at the end of the pa-
rameter list.

The macros and definitions of the variable arguments headers <stdarg.h>

(Fig. 14.1) provide the capabilities necessary to build functions with variable-length argu-
ment lists. Figure 14.2 demonstrates function average (lines 26–41) that receives a vari-
able number of arguments. The first argument of average is always the number of values
to be averaged.

$ random > out

$ random >> out

int printf(const char *format, ...);

Identifier Explanation

va_list A type suitable for holding information needed by macros va_start,
va_arg and va_end. To access the arguments in a variable-length argu-
ment list, an object of type va_list must be defined.

va_start A macro that is invoked before the arguments of a variable-length argu-
ment list can be accessed. The macro initializes the object declared with
va_list for use by the va_arg and va_end macros.

va_arg A macro that expands to an expression of the value and type of the next
argument in the variable-length argument list. Each invocation of
va_arg modifies the object declared with va_list so that the object
points to the next argument in the list.

va_end A macro that facilitates a normal return from a function whose variable-
length argument list was referred to by the va_start macro.

Fig. 14.1 | stdarg.h variable-length argument list type and macros.

510 Chapter 14 Other C Topics

1 /* Fig. 14.2: fig14_02.c
2 Using variable-length argument lists */
3 #include <stdio.h>
4
5
6
7
8 int main(void)
9 {

10 double w = 37.5;
11 double x = 22.5;
12 double y = 1.7;
13 double z = 10.2;
14
15 printf("%s%.1f\n%s%.1f\n%s%.1f\n%s%.1f\n\n",
16 "w = ", w, "x = ", x, "y = ", y, "z = ", z);
17 printf("%s%.3f\n%s%.3f\n%s%.3f\n",
18 "The average of w and x is ", ,
19 "The average of w, x, and y is ", ,
20 "The average of w, x, y, and z is ",
21);
22 return 0; /* indicates successful termination */
23 } /* end main */
24
25 /* calculate average */
26
27 {
28 double total = 0; /* initialize total */
29 int j; /* counter for selecting arguments */
30
31
32 va_start(ap, i);
33
34 /* process variable length argument list */
35 for (j = 1; j <= i; j++) {
36
37 } /* end for */
38
39
40 return total / i; /* calculate average */
41 } /* end function average */

w = 37.5
x = 22.5
y = 1.7
z = 10.2

The average of w and x is 30.000
The average of w, x, and y is 20.567
The average of w, x, y, and z is 17.975

Fig. 14.2 | Using variable-length argument lists.

#include <stdarg.h>

double average(int i, ...); /* prototype */

average(2, w, x)
average(3, w, x, y)

average(4, w, x, y, z)

double average(int i, ...)

va_list ap; /* stores information needed by va_start and va_end */

/* initializes the va_list object */

total += va_arg(ap, double);

va_end(ap); /* clean up variable-length argument list */

14.4 Using Command-Line Arguments 511

Function average (lines 26–41) uses all the definitions and macros of header
<stdarg.h>. Object ap, of type va_list (line 30), is used by macros va_start, va_arg
and va_end to process the variable-length argument list of function average. The function
begins by invoking macro va_start (line 32) to initialize object ap for use in va_arg and
va_end. The macro receives two arguments—object ap and the identifier of the rightmost
argument in the argument list before the ellipsis—i in this case (va_start uses i here to
determine where the variable-length argument list begins). Next function average repeat-
edly adds the arguments in the variable-length argument list to variable total (lines 37–
39). The value to be added to total is retrieved from the argument list by invoking macro
va_arg. Macro va_arg receives two arguments—object ap and the type of the value
expected in the argument list—double in this case. The macro returns the value of the
argument. Function average invokes macro va_end (line 39) with object ap as an argu-
ment to facilitate a normal return to main from average. Finally, the average is calculated
and returned to main.

The reader may question how function printf and function scanf know what type
to use in each va_arg macro. The answer is that printf and scanf scan the format con-
version specifiers in the format control string to determine the type of the next argument
to be processed.

14.4 Using Command-Line Arguments
On many systems, it’s possible to pass arguments to main from a command line by includ-
ing parameters int argc and char *argv[] in the parameter list of main. Parameter argc
receives the number of command-line arguments. Parameter argv is an array of strings in
which the actual command-line arguments are stored. Common uses of command-line ar-
guments include passing options to a program and passing filenames to a program.

Figure 14.3 copies a file into another file one character at a time. We assume that the
executable file for the program is called mycopy. A typical command line for the mycopy
program on a Linux/UNIX system is

This command line indicates that file input is to be copied to file output. When the pro-
gram is executed, if argc is not 3 (mycopy counts as one of the arguments), the program
prints an error message and terminates. Otherwise, array argv contains the strings
"mycopy", "input" and "output". The second and third arguments on the command line
are used as file names by the program. The files are opened using function fopen. If both
files are opened successfully, characters are read from file input and written to file output
until the end-of-file indicator for file input is set. Then the program terminates. The result
is an exact copy of file input. See the manuals for your system for more information on
command-line arguments. [Note: In Visual C++, you can specify the command-line argu-
ments by going to Project Properties > Configuration Properties > Debugging and entering
the arguments in the textbox to the right of Command Arguments.]

Common Programming Error 14.1
Placing an ellipsis in the middle of a function parameter list is a syntax error. An ellipsis
may only be placed at the end of the parameter list.

$ mycopy input output

512 Chapter 14 Other C Topics

14.5 Notes on Compiling Multiple-Source-File Programs
It’s possible to build programs that consist of multiple source files. There are several con-
siderations when creating programs in multiple files. For example, the definition of a func-
tion must be entirely contained in one file—it cannot span two or more files.

In Chapter 5, we introduced the concepts of storage class and scope. We learned that
variables declared outside any function definition are of storage class static by default and
are referred to as global variables. Global variables are accessible to any function defined
in the same file after the variable is declared. Global variables also are accessible to func-
tions in other files. However, the global variables must be declared in each file in which
they are used. For example, if we define global integer variable flag in one file and refer
to it in a second file, the second file must contain the declaration

1 /* Fig. 14.3: fig14_03.c
2 Using command-line arguments */
3 #include <stdio.h>
4
5 int main()
6 {
7 FILE *inFilePtr; /* input file pointer */
8 FILE *outFilePtr; /* output file pointer */
9 int c; /* define c to hold characters input by user */

10
11 /* check number of command-line arguments */
12 if () {
13 printf("Usage: mycopy infile outfile\n");
14 } /* end if */
15 else {
16 /* if input file can be opened */
17 if ((inFilePtr = fopen(, "r")) != NULL) {
18 /* if output file can be opened */
19 if ((outFilePtr = fopen(, "w")) != NULL) {
20 /* read and output characters */
21 while ((c = fgetc(inFilePtr)) != EOF) {
22 fputc(c, outFilePtr);
23 } /* end while */
24 } /* end if */
25 else { /* output file could not be opened */
26 printf("File \"%s\" could not be opened\n", argv[2]);
27 } /* end else */
28 } /* end if */
29 else { /* input file could not be opened */
30 printf("File \"%s\" could not be opened\n", argv[1]);
31 } /* end else */
32 } /* end else */
33
34 return 0; /* indicates successful termination */
35 } /* end main */

Fig. 14.3 | Using command-line arguments.

extern int flag;

int argc, char *argv[]

argc != 3

argv[1]

argv[2]

14.5 Notes on Compiling Multiple-Source-File Programs 513

prior to the variable’s use in that file. This declaration uses the storage class specifier
extern to indicate that variable flag is defined either later in the same file or in a different
file. The compiler informs the linker that unresolved references to variable flag appear in
the file (the compiler does not know where flag is defined, so it lets the linker attempt to
find flag). If the linker cannot locate a definition of flag, the linker issues an error mes-
sage and does not produce an executable file. If the linker finds a proper global definition,
the linker resolves the references by indicating where flag is located.

Just as extern declarations can be used to declare global variables to other program
files, function prototypes can extend the scope of a function beyond the file in which it’s
defined (the extern specifier is not required in a function prototype). Simply include the
function prototype in each file in which the function is invoked and compile the files
together (see Section 13.2). Function prototypes indicate to the compiler that the speci-
fied function is defined either later in the same file or in a different file. Again, the compiler
does not attempt to resolve references to such a function—that task is left to the linker. If
the linker cannot locate a proper function definition, the linker issues an error message.

As an example of using function prototypes to extend the scope of a function, consider
any program containing the preprocessor directive #include <stdio.h>, which includes in
a file the function prototypes for functions such as printf and scanf. Other functions in
the file can use printf and scanf to accomplish their tasks. The printf and scanf func-
tions are defined in other files. We do not need to know where they are defined. We’re
simply reusing the code in our programs. The linker resolves our references to these func-
tions automatically. This process enables us to use the functions in the standard library.

It’s possible to restrict the scope of a global variable or function to the file in which
it’s defined. The storage class specifier static, when applied to a global variable or a func-
tion, prevents it from being used by any function that is not defined in the same file. This
is referred to as internal linkage. Global variables and functions that are not preceded by
static in their definitions have external linkage—they can be accessed in other files if
those files contain proper declarations and/or function prototypes.

The global variable declaration

creates constant variable PI of type double, initializes it to 3.14159 and indicates that PI
is known only to functions in the file in which it’s defined.

Software Engineering Observation 14.1
Global variables should be avoided unless application performance is critical because they
violate the principle of least privilege.

Software Engineering Observation 14.2
Creating programs in multiple source files facilitates software reusability and good
software engineering. Functions may be common to many applications. In such instances,
those functions should be stored in their own source files, and each source file should have
a corresponding header file containing function prototypes. This enables programmers of
different applications to reuse the same code by including the proper header file and
compiling their applications with the corresponding source file.

static const double PI = 3.14159;

514 Chapter 14 Other C Topics

The static specifier is commonly used with utility functions that are called only by
functions in a particular file. If a function is not required outside a particular file, the prin-
ciple of least privilege should be enforced by using static. If a function is defined before
it’s used in a file, static should be applied to the function definition. Otherwise, static
should be applied to the function prototype.

When building large programs in multiple source files, compiling the program
becomes tedious if small changes are made to one file and the entire program must be
recompiled. Many systems provide special utilities that recompile only the modified pro-
gram file. On Linux/UNIX systems the utility is called make. Utility make reads a file called
makefile that contains instructions for compiling and linking the program. Products such
as Eclipse™ and Microsoft® Visual C++® provide similar utilities as well. For more infor-
mation on make utilities, see the manual for your development tool.

14.6 Program Termination with exit and atexit
The general utilities library (<stdlib.h>) provides methods of terminating program exe-
cution by means other than a conventional return from function main. Function exit
forces a program to terminate as if it executed normally. The function often is used to ter-
minate a program when an input error is detected, or if a file to be processed by the pro-
gram cannot be opened. Function atexit registers a function that should be called upon
successful termination of the program—i.e., either when the program terminates by reach-
ing the end of main, or when exit is invoked.

Function atexit takes as an argument a pointer to a function (i.e., the function
name). Functions called at program termination cannot have arguments and cannot
return a value. Up to 32 functions may be registered for execution at program termination.

Function exit takes one argument. The argument is normally the symbolic constant
EXIT_SUCCESS or the symbolic constant EXIT_FAILURE. If exit is called with
EXIT_SUCCESS, the implementation-defined value for successful termination is returned to
the calling environment. If exit is called with EXIT_FAILURE, the implementation-defined
value for unsuccessful termination is returned. When function exit is invoked, any func-
tions previously registered with atexit are invoked in the reverse order of their registra-
tion, all streams associated with the program are flushed and closed, and control returns
to the host environment.

Figure 14.4 tests functions exit and atexit. The program prompts the user to deter-
mine whether the program should be terminated with exit or by reaching the end of main.
Function print is executed at program termination in each case.

1 /* Fig. 14.4: fig14_04.c
2 Using the exit and atexit functions */
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 void print(void); /* prototype */
7

Fig. 14.4 | exit and atexit functions. (Part 1 of 2.)

14.7 volatile Type Qualifier 515

14.7 volatile Type Qualifier
In Chapters 6–7, we introduced the const type qualifier. C also provides the volatile
type qualifier to suppress various kinds of optimizations. The C standard indicates that
when volatile is used to qualify a type, the nature of the access to an object of that type
is implementation dependent. This usually implies that the variable may be changed by
another program or by the computer’s hardware.

8 int main(void)
9 {

10 int answer; /* user's menu choice */
11
12
13 printf("Enter 1 to terminate program with function exit"
14 "\nEnter 2 to terminate program normally\n");
15 scanf("%d", &answer);
16
17 /* call exit if answer is 1 */
18 if (answer == 1) {
19 printf("\nTerminating program with function exit\n");
20
21 } /* end if */
22
23 printf("\nTerminating program by reaching the end of main\n");
24 return 0; /* indicates successful termination */
25 } /* end main */
26
27
28
29
30

31
32

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
1

Terminating program with function exit
Executing function print at program termination
Program terminated

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
2

Terminating program by reaching the end of main
Executing function print at program termination
Program terminated

Fig. 14.4 | exit and atexit functions. (Part 2 of 2.)

atexit(print); /* register function print */

exit(EXIT_SUCCESS);

/* display message before termination */
void print(void)
{
 printf("Executing function print at program "
 "termination\nProgram terminated\n");
} /* end function print */

516 Chapter 14 Other C Topics

14.8 Suffixes for Integer and Floating-Point Constants
C provides integer and floating-point suffixes for specifying the types of integer and float-
ing-point constants. The integer suffixes are: u or U for an unsigned integer, l or L for a
long integer, and ul, lu, UL or LU for an unsigned long integer. The following constants
are of type unsigned, long and unsigned long, respectively:

If an integer constant is not suffixed, its type is determined by the first type capable of stor-
ing a value of that size (first int, then long int, then unsigned long int).

The floating-point suffixes are: f or F for a float, and l or L for a long double. The
following constants are of type float and long double, respectively:

A floating-point constant that is not suffixed is automatically of type double.

14.9 More on Files
Chapter 11 introduced capabilities for processing text files with sequential access and ran-
dom access. C also provides capabilities for processing binary files, but some computer sys-
tems do not support binary files. If binary files are not supported and a file is opened in a
binary file mode (Fig. 14.5), the file will be processed as a text file. Binary files should be used
instead of text files only in situations where rigid speed, storage and/or compatibility condi-
tions demand binary files. Otherwise, text files are always preferred for their inherent porta-
bility and for the ability to use other standard tools to examine and manipulate the file data.

174u

8358L

28373ul

1.28f

3.14159L

Mode Description

rb Open an existing binary file for reading.
wb Create a binary file for writing. If the file already exists, discard the current contents.
ab Append; open or create a binary file for writing at end-of-file.
rb+ Open an existing binary file for update (reading and writing).
wb+ Create a binary file for update. If the file already exists, discard the current contents.
ab+ Append; open or create a binary file for update; all writing is done at the end of the file.

Fig. 14.5 | Binary file open modes.

Performance Tip 14.1
Use binary files instead of text files in applications that demand high performance.

Portability Tip 14.1
Use text files when writing portable programs.

14.9 More on Files 517

The standard library also provides function tmpfile that opens a temporary file in
mode "wb+". Although this is a binary file mode, some systems process temporary files as
text files. A temporary file exists until it’s closed with fclose, or until the program termi-
nates. Microsoft has deprecated this function “for security reasons.”

Figure 14.6 changes the tabs in a file to spaces. The program prompts the user to enter
the name of a file to be modified. If the file entered by the user and the temporary file are
opened successfully, the program reads characters from the file to be modified and writes
them to the temporary file. If the character read is a tab ('\t'), it’s replaced by a space and
written to the temporary file. When the end of the file being modified is reached, the file
pointers for each file are repositioned to the start of each file with rewind. Next, the tempo-
rary file is copied into the original file one character at a time. The program prints the orig-
inal file as it copies characters into the temporary file and prints the new file as it copies
characters from the temporary file to the original file to confirm the characters being written.

1 /* Fig. 14.6: fig14_06.c
2 Using temporary files */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 FILE *filePtr; /* pointer to file being modified */
8 FILE *tempFilePtr; /* temporary file pointer */
9 int c; /* define c to hold characters read from a file */

10 char fileName[30]; /* create char array */
11
12 printf("This program changes tabs to spaces.\n"
13 "Enter a file to be modified: ");
14 scanf("%29s", fileName);
15
16 /* fopen opens the file */
17 if ((filePtr = fopen(fileName,)) != NULL) {
18 /* create temporary file */
19 if (() != NULL) {
20 printf("\nThe file before modification is:\n");
21
22 /* read characters from file and place in temporary file */
23 while (!= EOF) {
24 putchar(c);
25
26 } /* end while */
27
28
29
30 printf("\n\nThe file after modification is:\n");
31
32 /* read from temporary file and write into original file */
33 while (!= EOF) {
34 putchar(c);
35
36 } /* end while */
37 } /* end if */

Fig. 14.6 | Temporary files. (Part 1 of 2.)

"r+"

tempFilePtr = tmpfile()

(c = getc(filePtr))

putc(c == '\t' ? ' ': c, tempFilePtr);

rewind(tempFilePtr);
rewind(filePtr);

(c = getc(tempFilePtr))

putc(c, filePtr);

518 Chapter 14 Other C Topics

14.10 Signal Handling
An external asynchronous event, or signal, can cause a program to terminate prematurely.
Some events include interrupts (typing <Ctrl> c on a Linux/UNIX or Windows system),
illegal instructions, segmentation violations, termination orders from the operating sys-
tem and floating-point exceptions (division by zero or multiplying large floating-point
values). The signal handling library (<signal.h>) provides the capability to trap unex-
pected events with function signal. Function signal receives two arguments—an integer
signal number and a pointer to the signal handling function. Signals can be generated by
function raise which takes an integer signal number as an argument. Figure 14.7 sum-
marizes the standard signals defined in header file <signal.h>.

38 else { /* if temporary file could not be opened */
39 printf("Unable to open temporary file\n");
40 } /* end else */
41 } /* end if */
42 else { /* if file could not be opened */
43 printf("Unable to open %s\n", fileName);
44 } /* end else */
45
46 return 0; /* indicates successful termination */
47 } /* end main */

This program changes tabs to spaces.
Enter a file to be modified: data.txt

The file before modification is:
0 1 2 3 4
 5 6 7 8 9

The file after modification is:
0 1 2 3 4
 5 6 7 8 9

Signal Explanation

SIGABRT Abnormal termination of the program (such as a call to function abort).

SIGFPE An erroneous arithmetic operation, such as a divide by zero or an opera-
tion resulting in overflow.

SIGILL Detection of an illegal instruction.

SIGINT Receipt of an interactive attention signal.

SIGSEGV An invalid access to storage.

SIGTERM A termination request set to the program.

Fig. 14.7 | signal.h standard signals.

Fig. 14.6 | Temporary files. (Part 2 of 2.)

14.10 Signal Handling 519

Figure 14.8 uses function signal to trap an interactive signal (SIGINT). Line 15 calls
signal with SIGINT and a pointer to function signalHandler (remember that the name
of a function is a pointer to the beginning of the function). When a signal of type SIGINT
occurs, control passes to function signalHandler, which prints a message and gives the
user the option to continue normal execution of the program. If the user wishes to con-
tinue execution, the signal handler is reinitialized by calling signal again and control
returns to the point in the program at which the signal was detected. In this program,
function raise (line 24) is used to simulate an interactive signal. A random number
between 1 and 50 is chosen. If the number is 25, raise is called to generate the signal. Nor-
mally, interactive signals are initiated outside the program. For example, typing <Ctrl> c
during program execution on a Linux/UNIX or Windows system generates an interactive
signal that terminates program execution. Signal handling can be used to trap the interac-
tive signal and prevent the program from being terminated.

1 /* Fig. 14.8: fig14_08.c
2 Using signal handling */
3 #include <stdio.h>
4 #include <signal.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8
9

10 int main(void)
11 {
12 int i; /* counter used to loop 100 times */
13 int x; /* variable to hold random values between 1-50 */
14
15
16 srand(time(NULL));
17
18 /* output numbers 1 to 100 */
19 for (i = 1; i <= 100; i++) {
20 x = 1 + rand() % 50; /* generate random number to raise SIGINT */
21
22 /* raise SIGINT when x is 25 */
23 if (x == 25) {
24
25 } /* end if */
26
27 printf("%4d", i);
28
29 /* output \n when i is a multiple of 10 */
30 if (i % 10 == 0) {
31 printf("\n");
32 } /* end if */
33 } /* end for */
34
35 return 0; /* indicates successful termination */
36 } /* end main */

Fig. 14.8 | Signal handling. (Part 1 of 2.)

void signalHandler(int signalValue); /* prototype */

signal(SIGINT, signalHandler); /* register signal handler */

raise(SIGINT);

520 Chapter 14 Other C Topics

14.11 Dynamic Memory Allocation: Functions
calloc and realloc
Chapter 12 introduced the notion of dynamically allocating memory using function mal-
loc. As we stated in Chapter 12, arrays are better than linked lists for rapid sorting, search-
ing and data access. However, arrays are normally static data structures. The general

37
38 /* handles signal */
39
40 {
41 int response; /* user's response to signal (1 or 2) */
42
43 printf("%s%d%s\n%s",
44 "\nInterrupt signal (", signalValue, ") received.",
45 "Do you wish to continue (1 = yes or 2 = no)? ");
46
47 scanf("%d", &response);
48
49 /* check for invalid responses */
50 while (response != 1 && response != 2) {
51 printf("(1 = yes or 2 = no)? ");
52 scanf("%d", &response);
53 } /* end while */
54
55 /* determine if it is time to exit */
56 if (response == 1) {
57
58
59 } /* end if */
60 else {
61 exit(EXIT_SUCCESS);
62 } /* end else */
63 } /* end function signalHandler */

 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 1
 94 95 96
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 2

Fig. 14.8 | Signal handling. (Part 2 of 2.)

void signalHandler(int signalValue)

/* reregister signal handler for next SIGINT */
signal(SIGINT, signalHandler);

14.12 Unconditional Branching with goto 521

utilities library (stdlib.h) provides two other functions for dynamic memory alloca-
tion—calloc and realloc. These functions can be used to create and modify dynamic
arrays. As shown in Chapter 7, a pointer to an array can be subscripted like an array. Thus,
a pointer to a contiguous portion of memory created by calloc can be manipulated as an
array. Function calloc dynamically allocates memory for an array. The prototype for
calloc is

Its two arguments represent the number of elements (nmemb) and the size of each element
(size). Function calloc also initializes the elements of the array to zero. The function re-
turns a pointer to the allocated memory, or a NULL pointer if the memory is not allocated.
The primary difference between malloc and calloc is that calloc clears the memory it
allocates and malloc does not.

Function realloc changes the size of an object allocated by a previous call to malloc,
calloc or realloc. The original object’s contents are not modified provided that the
amount of memory allocated is larger than the amount allocated previously. Otherwise,
the contents are unchanged up to the size of the new object. The prototype for realloc is

The two arguments are a pointer to the original object (ptr) and the new size of the object
(size). If ptr is NULL, realloc works identically to malloc. If size is 0 and ptr is not
NULL, the memory for the object is freed. Otherwise, if ptr is not NULL and size is greater
than zero, realloc tries to allocate a new block of memory for the object. If the new space
cannot be allocated, the object pointed to by ptr is unchanged. Function realloc returns
either a pointer to the reallocated memory, or a NULL pointer to indicate that the memory
was not reallocated.

14.12 Unconditional Branching with goto
Throughout the text we have stressed the importance of using structured programming
techniques to build reliable software that is easy to debug, maintain and modify. In some
cases, performance is more important than strict adherence to structured programming
techniques. In these cases, some unstructured programming techniques may be used. For
example, we can use break to terminate execution of a repetition structure before the loop
continuation condition becomes false. This saves unnecessary repetitions of the loop if the
task is completed before loop termination.

Another instance of unstructured programming is the goto statement—an uncondi-
tional branch. The result of the goto statement is a change in the flow of control of the
program to the first statement after the label specified in the goto statement. A label is an
identifier followed by a colon. A label must appear in the same function as the goto state-
ment that refers to it. Figure 14.9 uses goto statements to loop ten times and print the
counter value each time. After initializing count to 1, line 11 tests count to determine
whether it’s greater than 10 (the label start is skipped because labels do not perform any
action). If so, control is transferred from the goto to the first statement after the label end
(which appears at line 20). Otherwise, lines 15–16 print and increment count, and control
transfers from the goto (line 18) to the first statement after the label start (which appears
at line 9).

void *calloc(size_t nmemb, size_t size);

void *realloc(void *ptr, size_t size);

522 Chapter 14 Other C Topics

In Chapter 3, we stated that only three control structures are required to write any
program—sequence, selection and repetition. When the rules of structured programming
are followed, it’s possible to create deeply nested control structures from which it’s difficult
to efficiently escape. Some programmers use goto statements in such situations as a quick
exit from a deeply nested structure. This eliminates the need to test multiple conditions to
escape from a control structure.

1 /* Fig. 14.9: fig14_09.c
2 Using goto */
3 #include <stdio.h>
4
5 int main(void)
6 {
7 int count = 1; /* initialize count */
8
9

10
11 if (count > 10) {
12
13 } /* end if */
14
15 printf("%d ", count);
16 count++;
17
18
19
20
21 putchar('\n');
22
23 return 0; /* indicates successful termination */
24 } /* end main */

1 2 3 4 5 6 7 8 9 10

Fig. 14.9 | goto statement.

Performance Tip 14.2
The goto statement can be used to exit deeply nested control structures efficiently.

Software Engineering Observation 14.3
The goto statement should be used only in performance-oriented applications. The goto
statement is unstructured and can lead to programs that are more difficult to debug,
maintain and modify.

start: /* label */

goto end;

goto start; /* goto start on line 9 */

end: /* label */

Summary
Section 14.2 Redirecting I/O
• On many computer systems it’s possible to redirect input to a program and output from a program.

• Input is redirected from the command line using the redirect input symbol (<) or using a pipe (|).

 Summary 523

• Output is redirected from the command line using the redirect output symbol (>) or the append
output symbol (>>). The redirect output symbol simply stores the program output in a file, and
the append output symbol appends the output to the end of a file.

Section 14.3 Variable-Length Argument Lists
• The macros and definitions of the variable arguments header <stdarg.h> provide the capabilities

necessary to build functions with variable-length argument lists.

• An ellipsis (...) in a function prototype indicates a variable number of arguments.

• Type va_list is suitable for holding information needed by macros va_start, va_arg and
va_end. To access the arguments in a variable-length argument list, an object of type va_list
must be declared.

• Invoke macro va_start before accessing the arguments of a variable-length argument list. The
macro initializes the object declared with va_list for use by the va_arg and va_end macros.

• Macro va_arg expands to an expression of the value and type of the next argument in the variable
length argument list. Each invocation of va_arg modifies the object declared with va_list so
that the object points to the next argument in the list.

• Macro va_end facilitates a normal return from a function whose variable argument list was re-
ferred to by the va_start macro.

Section 14.4 Using Command-Line Arguments
• On many systems it’s possible to pass arguments to main from the command line by including

the parameters int argc and char *argv[] in the parameter list of main. Parameter argc receives
the number of command-line arguments. Parameter argv is an array of strings in which the ac-
tual command-line arguments are stored.

Section 14.5 Notes on Compiling Multiple-Source-File Programs
• A function definition must be entirely contained in one file—it cannot span two or more files.

• Global variables must be declared in each file in which they are used.

• Function prototypes can extend the scope of a function beyond the file in which it’s defined. This
is accomplished by including the function prototype in each file in which the function is invoked
and compiling the files together.

• The storage class specifier static, when applied to a global variable or a function, prevents it
from being used by any function that is not defined in the same file. This is referred to as internal
linkage. Global variables and functions that are not preceded by static in their definitions have
external linkage—they can be accessed in other files if those files contain proper declarations or
function prototypes.

• The static specifier is commonly used with utility functions that are called only by functions in
a particular file. If a function is not required outside a particular file, the principle of least privi-
lege should be enforced by using static.

• When building large programs in multiple source files, compiling the program becomes tedious
if small changes are made to one file and the entire program must be recompiled. Many systems
provide special utilities that recompile only the modified program file. On Linux/UNIX systems
the utility is called make. Utility make reads a file called makefile that contains instructions for
compiling and linking the program.

Section 14.6 Program Termination with exit and atexit
• Function exit forces a program to terminate as if it executed normally.

• Function atexit registers a function to be called upon normal termination of the program—i.e.,
either when the program terminates by reaching the end of main or when exit is invoked.

524 Chapter 14 Other C Topics

• Function atexit takes a pointer to a function as an argument. Functions called at program ter-
mination cannot have arguments and cannot return a value. Up to 32 functions may be regis-
tered for execution at program termination.

• Function exit takes one argument. The argument is normally the symbolic constant
EXIT_SUCCESS or the symbolic constant EXIT_FAILURE. If exit is called with EXIT_SUCCESS, the
implementation-defined value for successful termination is returned to the calling environment.
If exit is called with EXIT_FAILURE, the implementation-defined value for unsuccessful termina-
tion is returned.

• When function exit is invoked, any functions registered with atexit are invoked in the reverse
order of their registration, all streams associated with the program are flushed and closed, and
control returns to the host environment.

Section 14.7 volatile Type Qualifier
• The C standard indicates that when volatile is used to qualify a type, the nature of the access

to an object of that type is implementation dependent.

Section 14.8 Suffixes for Integer and Floating-Point Constants
• C provides integer and floating-point suffixes for specifying the types of integer and floating-

point constants. The integer suffixes are: u or U for an unsigned integer, l or L for a long integer,
and ul or UL for an unsigned long integer. If an integer constant is not suffixed, its type is deter-
mined by the first type capable of storing a value of that size (first int, then long int, then un-
signed long int). The floating-point suffixes are: f or F for a float, and l or L for a long double.
A floating-point constant that is not suffixed is of type double.

Section 14.9 More on Files
• C provides capabilities for processing binary files, but some computer systems do not support

binary files. If binary files are not supported and a file is opened in a binary file mode, the file
will be processed as a text file.

• Function tmpfile opens a temporary file in mode "wb+". Although this is a binary file mode,
some systems process temporary files as text files. A temporary file exists until it’s closed with
fclose or until the program terminates.

Section 14.10 Signal Handling
• The signal handling library enables trapping of unexpected events with function signal. Func-

tion signal receives two arguments—an integer signal number and a pointer to the signal-han-
dling function.

• Signals can also be generated with function raise and an integer argument.

Section 14.11 Dynamic Memory Allocation: Functions calloc and realloc
• The general utilities library (<stdlib.h>) provides two functions for dynamic memory alloca-

tion—calloc and realloc. These functions can be used to create dynamic arrays.

• Function calloc receives two arguments—the number of elements (nmemb) and the size of each
element (size)—and initializes the elements of the array to zero. The function returns either a
pointer to the allocated memory, or a NULL pointer if the memory is not allocated.

• Function realloc changes the size of an object allocated by a previous call to malloc, calloc or
realloc. The original object’s contents are not modified provided that the amount of memory
allocated is larger than the amount allocated previously.

• Function realloc takes two arguments—a pointer to the original object (ptr) and the new size
of the object (size). If ptr is NULL, realloc works identically to malloc. If size is 0 and the point-
er received is not NULL, the memory for the object is freed. Otherwise, if ptr is not NULL and size

 Terminology 525

is greater than zero, realloc tries to allocate a new block of memory for the object. If the new
space cannot be allocated, the object pointed to by ptr is unchanged. Function realloc returns
either a pointer to the reallocated memory, or a NULL pointer.

Section 14.12 Unconditional Branching with goto
• The result of the goto statement is a change in the flow of control of the program. Program ex-

ecution continues at the first statement after the label specified in the goto statement.

• A label is an identifier followed by a colon. A label must appear in the same function as the goto
statement that refers to it.

Terminology
append output symbol >> 509
argc 511
argv 511
atexit 514
calloc 521
const type qualifier 515
dynamic array 521
ellipsis (...) in a function prototype 509
event 518
exit function 514
EXIT_FAILURE 514
EXIT_SUCCESS 514
extern 513
external linkage 513
f or F for a float 516
float 516
floating-point exception 518
goto statement 521
illegal instruction 518
internal linkage 513
interrupt 518
l or L for a long double 516
label 521
long double 516
long int 516
long integer 516
make 514

makefile 514
pipe symbol (|) 508
piping 508
raise 518
redirect input from a file 508
redirect input symbol < 508
redirect output symbol > 509
segmentation violation 518
signal 518
signal handling library 518
<signal.h> 518
static keyword 512
static data structure 520
<stdlib.h> header file 521
temporary file 517
tmpfile 517
trap 518
unsigned integer 516
unsigned long int 516
va_arg 511
va_end 511
va_list 511
va_start 511
variable arguments header stdarg.h 509
variable-length argument list 509
volatile type qualifier 515

Self-Review Exercise
14.1 Fill in the blanks in each of the following:

a) The symbol redirects input data from a file rather than the keyboard.
b) The symbol is used to redirect the screen output so that it’s placed in a file.
c) The symbol is used to append the output of a program to the end of a file.
d) A(n) directs the output of one program to be the input of another program.
e) A(n) in the parameter list of a function indicates that the function can receive

a variable number of arguments.
f) Macro must be invoked before the arguments in a variable-length argument

list can be accessed.
g) Macro accesses the individual arguments of a variable-length argument list.

526 Chapter 14 Other C Topics

h) Macro facilitates a normal return from a function whose variable argument
list was referred to by macro va_start.

i) Argument of main receives the number of arguments in a command line.
j) Argument of main stores command-line arguments as character strings.
k) Linux/UNIX utility reads a file called that contains instructions for

compiling and linking a program consisting of multiple source files.
l) Function forces a program to terminate execution.
m) Function registers a function to be called upon normal program termination.
n) An integer or floating-point can be appended to an integer or floating-point

constant to specify the exact type of the constant.
o) Function opens a temporary file that exists until it’s closed or program ex-

ecution terminates.
p) Function can be used to trap unexpected events.
q) Function generates a signal from within a program.
r) Function dynamically allocates memory for an array and initializes the el-

ements to zero.
s) Function changes the size of a block of previously allocated dynamic memory.

Answers to Self-Review Exercise
14.1 a) redirect input (<). b) redirect output (>). c) append output (>>). d) pipe (|). e) ellipsis
(...). f) va_start. g) va_arg. h) va_end. i) argc. j) argv. k) make, makefile. l) exit. m) atexit.
n) suffix. o) tmpfile. p) signal. q) raise. r) calloc. s) realloc.

Exercises
14.2 (Variable-Length Argument List: Calculating Products) Write a program that calculates the
product of a series of integers that are passed to function product using a variable-length argument
list. Test your function with several calls, each with a different number of arguments.

14.3 (Printing Command-Line Arguments) Write a program that prints the command-line ar-
guments of the program.

14.4 (Sorting Integers) Write a program that sorts an array of integers into ascending order or
descending order. Use command-line arguments to pass either argument -a for ascending order or
-d for descending order. [Note: This is the standard format for passing options to a program in
UNIX.]

14.5 (Temporary Files) Write a program that places a space between each character in a file. The
program should first write the contents of the file being modified into a temporary file with spaces
between each character, then copy the file back to the original file. This operation should overwrite
the original contents of the file.

14.6 (Signal Handling) Read the manuals for your compiler to determine what signals are sup-
ported by the signal handling library (<signal.h>). Write a program that contains signal handlers
for the standard signals SIGABRT and SIGINT. The program should test the trapping of these signals
by calling function abort to generate a signal of type SIGABRT and by typing <Ctrl> c to generate a
signal of type SIGINT.

14.7 (Dynamic Array Allocation) Write a program that dynamically allocates an array of inte-
gers. The size of the array should be input from the keyboard. The elements of the array should be
assigned values input from the keyboard. Print the values of the array. Next, reallocate the memory
for the array to 1/2 of the current number of elements. Print the values remaining in the array to
confirm that they match the first half of the values in the original array.

 Exercises 527

14.8 (Command-Line Arguments) Write a program that takes two command-line arguments
that are file names, reads the characters from the first file one at a time and writes the characters in
reverse order to the second file.

14.9 (goto Statement) Write a program that uses goto statements to simulate a nested looping
structure that prints a square of asterisks as follows:

The program should use only the following three printf statements:

printf("*");
printf(" ");
printf("\n");

* *
* *
* *

15 C++ as a Better C;
Introducing Object
Technology

A wise skepticism is the first
attribute of a good critic.
—James Russell Lowell

… no science of behavior can
change the essential nature of
man …
—Burrhus Frederic Skinner

Nothing can have value without
being an object of utility.
—Karl Marx

Knowledge is the conformity of
the object and the intellect.
—Averroës

Many things,
having full reference
To one consent,
may work contrariously …
—William Shakespeare

O b j e c t i v e s
In this chapter you’ll learn:

■ C++ enhancements to C.
■ The header files of the C++

Standard Library.
■ To use inline functions.
■ To use references.
■ To use default arguments.
■ To use the unary scope

resolution operator to access
a global variable.

■ To overload functions.
■ To create and use function

templates that perform
identical operations different
types.

15.1 Introduction 529

15.1 Introduction
We now begin the second section of this unique text. The first 14 chapters presented a
thorough treatment of procedural programming and top-down program design with C.
The C++ section (Chapters 15–24) introduces two additional programming paradigms—
object-oriented programming (with classes, encapsulation, objects, operator overloading,
inheritance and polymorphism) and generic programming (with function templates and
class templates). These chapters emphasize “crafting valuable classes” to create reusable
software componentry.

15.2 C++
C++ improves on many of C’s features and provides object-oriented-programming (OOP)
capabilities that increase software productivity, quality and reusability. This chapter dis-
cusses many of C++’s enhancements to C.

C’s designers and early implementers never anticipated that the language would
become such a phenomenon. When a programming language becomes as entrenched as
C, new requirements demand that the language evolve rather than simply be displaced by
a new language. C++ was developed by Bjarne Stroustrup at Bell Laboratories and was
originally called “C with classes.” The name C++ includes C’s increment operator (++) to
indicate that C++ is an enhanced version of C.

Chapters 15–24 provide an introduction to the version of C++ standardized in the
United States through the American National Standards Institute (ANSI) and worldwide
through the International Standards Organization (ISO). We have done a careful walk-
through of the ANSI/ISO C++ standard document and audited our presentation against
it for completeness and accuracy. However, C++ is a rich language, and there are some sub-
tleties in the language and some advanced subjects that we have not covered. If you need
additional technical details on C++, we suggest that you read the C++ standard document,
which you can purchase from the ANSI website

The title of the document is “Programming languages—C++” and its document number
is INCITS/ISO/IEC 14882-2003.

15.1 Introduction
15.2 C++
15.3 A Simple Program: Adding Two

Integers
15.4 C++ Standard Library
15.5 Header Files
15.6 Inline Functions
15.7 References and Reference Parameters

15.8 Empty Parameter Lists
15.9 Default Arguments

15.10 Unary Scope Resolution Operator
15.11 Function Overloading
15.12 Function Templates
15.13 Introduction to Object Technology

and the UML
15.14 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

webstore.ansi.org/ansidocstore/product.asp?
 sku=INCITS%2FISO%2FIEC+14882%2D2003

530 Chapter 15 C++ as a Better C; Introducing Object Technology

15.3 A Simple Program: Adding Two Integers
This section revisits the addition program of Fig. 2.8 and illustrates several important fea-
tures of the C++ language as well as some differences between C and C++. C file names
have the .c (lowercase) extension. C++ file names can have one of several extensions, such
as .cpp, .cxx or .C (uppercase). We use the extension .cpp.

Figure 15.1 uses C++-style input and output to obtain two integers typed by a user at
the keyboard, computes the sum of these values and outputs the result. Lines 1 and 2 each
begin with //, indicating that the remainder of each line is a comment. C++ allows you to
begin a comment with // and use the remainder of the line as comment text. A // com-
ment is a maximum of one line long. C++ programmers may also use /*…*/ C-style com-
ments, which can be more than one line long.

The C++ preprocessor directive in line 3 exhibits the standard C++ style for including
header files from the standard library. This line tells the C++ preprocessor to include the
contents of the input/output stream header file <iostream>. This file must be included
for any program that outputs data to the screen or inputs data from the keyboard using
C++-style stream input/output. We discuss iostream’s many features in detail in
Chapter 23, Stream Input/Output.

As in C, every C++ program begins execution with function main (line 5). Keyword
int to the left of main indicates that main returns an integer value. C++ requires you to
specify the return type, possibly void, for all functions. In C++, specifying a parameter list
with empty parentheses is equivalent to specifying a void parameter list in C. In C, using
empty parentheses in a function definition or prototype is dangerous. It disables compile-

1 // Fig. 15.1: fig15_01.cpp
2 // Addition program that displays the sum of two numbers.
3
4
5 int main()
6 {
7 int number1; // first integer to add
8
9 std::cout << "Enter first integer: "; // prompt user for data

10 std::cin >> number1; // read first integer from user into number1
11
12
13
14
15 std::cout << "Enter second integer: "; // prompt user for data
16 std::cin >> number2; // read second integer from user into number2
17 sum = number1 + number2; // add the numbers; store result in sum
18 std::cout << "Sum is " << sum << std::endl; // display sum; end line
19 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 15.1 | Addition program that displays the sum of two numbers.

#include <iostream> // allows program to perform input and output

int number2; // second integer to add
int sum; // sum of number1 and number2

15.3 A Simple Program: Adding Two Integers 531

time argument checking in function calls, which allows the caller to pass any arguments
to the function. This could lead to runtime errors.

Line 7 is a familiar variable declaration. Declarations can be placed almost anywhere in
a C++ program, but they must appear before their corresponding variables are used in the
program. For example, in Fig. 15.1, the declaration in line 7 could have been placed imme-
diately before line 10, the declaration in line 12 could have been placed immediately before
line 16 and the declaration in line 13 could have been placed immediately before line 17.

Line 9 uses the standard output stream object—std::cout—and the stream inser-
tion operator, <<, to display the string "Enter first integer: ". Output and input in
C++ are accomplished with streams of characters. Thus, when line 9 executes, it sends the
stream of characters "Enter first integer: " to std::cout, which is normally “con-
nected” to the screen. We like to pronounce the preceding statement as “std::cout gets
the character string "Enter first integer: ".”

Line 10 uses the standard input stream object—std::cin—and the stream extrac-
tion operator, >>, to obtain a value from the keyboard. Using the stream extraction oper-
ator with std::cin takes character input from the standard input stream, which is usually
the keyboard. We like to pronounce the preceding statement as, “std::cin gives a value
to number1” or simply “std::cin gives number1.”

When the computer executes the statement in line 10, it waits for the user to enter a
value for variable number1. The user responds by typing an integer (as characters), then
pressing the Enter key. The computer converts the character representation of the number
to an integer and assigns this value to the variable number1.

Line 15 displays "Enter second integer: " on the screen, prompting the user to take
action. Line 16 obtains a value for variable number2 from the user.

The assignment statement in line 17 calculates the sum of the variables number1 and
number2 and assigns the result to variable sum. Line 18 displays the character string Sum is
followed by the numerical value of variable sum followed by std::endl—a so-called
stream manipulator. The name endl is an abbreviation for “end line.” The std::endl
stream manipulator outputs a newline, then “flushes the output buffer.” This simply
means that, on some systems where outputs accumulate in the machine until there are
enough to “make it worthwhile” to display on the screen, std::endl forces any accumu-
lated outputs to be displayed at that moment. This can be important when the outputs are
prompting the user for an action, such as entering data.

We place std:: before cout, cin and endl. This is required when we use standard
C++ header files. The notation std::cout specifies that we’re using a name, in this case
cout, that belongs to “namespace” std. Namespaces are an advanced C++ feature that we
do not discuss in these introductory C++ chapters. For now, you should simply remember
to include std:: before each mention of cout, cin and endl in a program. This can be

Common Programming Error 15.1
Omitting the return type in a C++ function definition is a syntax error.

Good Programming Practice 15.1
Always place a blank line between a declaration and adjacent executable statements. This
makes the declarations stand out in the program, enhancing program clarity.

532 Chapter 15 C++ as a Better C; Introducing Object Technology

cumbersome—in Fig. 15.3, we introduce the using statement, which will enable us to
avoid placing std:: before each use of a namespace std name.

The statement in line 18 outputs values of different types. The stream insertion oper-
ator “knows” how to output each type of data. Using multiple stream insertion operators
(<<) in a single statement is referred to as concatenating, chaining or cascading stream
insertion operations.

Calculations can also be performed in output statements. We could have combined
the statements in lines 17 and 18 into the statement

thus eliminating the need for the variable sum.
You’ll notice that we did not have a return 0; statement at the end of main in this

example. According to the C++ standard, if program execution reaches the end of main
without encountering a return statement, it’s assumed that the program terminated suc-
cessfully—exactly as when the last statement in main is a return statement with the value
0. For that reason, we omit the return statement at the end of main in our C++ programs.

A powerful C++ feature is that users can create their own types called classes (we intro-
duce this capability in Chapter 16 and explore it in depth in Chapters 17–18). Users can
then “teach” C++ how to input and output values of these new data types using the >> and
<< operators (this is called operator overloading—a topic we explore in Chapter 19).

15.4 C++ Standard Library
C++ programs consist of pieces called classes and functions. You can program each piece
that you may need to form a C++ program. Instead, most C++ programmers take advan-
tage of the rich collections of existing classes and functions in the C++ Standard Library.
Thus, there are really two parts to learning the C++ “world.” The first is learning the C++
language itself; the second is learning how to use the classes and functions in the C++ Stan-
dard Library. Throughout the book, we discuss many of these classes and functions. P J.
Plauger’s book, The Standard C Library (Englewood Cliffs, NJ: Prentice Hall PTR, 1992),
is a must read for programmers who need a deep understanding of the Standard C library
functions that are included in C++, how to implement them and how to use them to write
portable code. The standard class libraries generally are provided by compiler vendors.
Many special-purpose class libraries are supplied by independent software vendors.

The advantage of creating your own functions and classes is that you’ll know exactly
how they work. You’ll be able to examine the C++ code. The disadvantage is the time-con-

std::cout << "Sum is " << number1 + number2 << std::endl;

Software Engineering Observation 15.1
Use a “building-block” approach to create programs. Avoid reinventing the wheel. Use
existing pieces wherever possible. Called software reuse, this practice is central to object-
oriented programming.

Software Engineering Observation 15.2
When programming in C++, you typically will use the following building blocks: classes
and functions from the C++ Standard Library, classes and functions you and your
colleagues create and classes and functions from various popular third-party libraries.

15.5 Header Files 533

suming and complex effort that goes into designing, developing and maintaining new
functions and classes that are correct and that operate efficiently.

15.5 Header Files
The C++ Standard Library is divided into many portions, each with its own header file.
The header files contain the function prototypes for the related functions that form each
portion of the library. The header files also contain definitions of various class types and
functions, as well as constants needed by those functions. A header file “instructs” the
compiler on how to interface with library and user-written components.

Figure 15.2 lists some common C++ Standard Library header files. Header file names
ending in .h are “old-style” header files that have been superceded by the C++ Standard
Library header files.

Performance Tip 15.1
Using C++ Standard Library functions and classes instead of writing your own versions
can improve program performance, because they are written to perform efficiently. This
technique also shortens program development time.

Portability Tip 15.1
Using C++ Standard Library functions and classes instead of writing your own improves
program portability, because they are included in every C++ implementation.

C++ Standard
Library header
file Explanation

<iostream> Contains function prototypes for the C++ standard input and standard
output functions. This header file replaces header file <iostream.h>. This
header is discussed in detail in Chapter 23, Stream Input/Output.

<iomanip> Contains function prototypes for stream manipulators that format
streams of data. This header file replaces header file <iomanip.h>. This
header is used in Chapter 23, Stream Input/Output.

<cmath> Contains function prototypes for math library functions. This header file
replaces header file <math.h>.

<cstdlib> Contains function prototypes for conversions of numbers to text, text to
numbers, memory allocation, random numbers and various other utility
functions. This header file replaces header file <stdlib>.

<ctime> Contains function prototypes and types for manipulating the time and
date. This header file replaces header file <time.h>.

<vector>, <list>,
<deque>, <queue>,
<stack>, <map>,
<set>, <bitset>

These header files contain classes that implement the C++ Standard
Library containers. Containers store data during a program’s execution.

Fig. 15.2 | C++ Standard Library header files. (Part 1 of 2.)

534 Chapter 15 C++ as a Better C; Introducing Object Technology

<cctype> Contains function prototypes for functions that test characters for certain
properties (such as whether the character is a digit or a punctuation), and
function prototypes for functions that can be used to convert lowercase
letters to uppercase letters and vice versa. This header file replaces header
file <ctype.h>.

<cstring> Contains function prototypes for C-style string-processing functions.
This header file replaces header file <string.h>.

<typeinfo> Contains classes for runtime type identification (determining data types
at execution time).

<exception>,

<stdexcept>

These header files contain classes that are used for exception handling
(discussed in Chapter 24, Exception Handling).

<memory> Contains classes and functions used by the C++ Standard Library to allo-
cate memory to the C++ Standard Library containers. This header is used
in Chapter 24, Exception Handling.

<fstream> Contains function prototypes for functions that perform input from files
on disk and output to files on disk. This header file replaces header file
<fstream.h>.

<string> Contains the definition of class string from the C++ Standard Library.

<sstream> Contains function prototypes for functions that perform input from
strings in memory and output to strings in memory.

<functional> Contains classes and functions used by C++ Standard Library algorithms.

<iterator> Contains classes for accessing C++ Standard Library container data.

<algorithm> Contains functions for manipulating container data.

<cassert> Contains macros for adding diagnostics that aid program debugging.
This replaces header file <assert.h> from pre-standard C++.

<cfloat> Contains the floating-point size limits of the system. This header file
replaces header file <float.h>.

<climits> Contains the integral size limits of the system. This header file replaces
header file <limits.h>.

<cstdio> Contains function prototypes for the C-style standard input/output
library functions and information used by them. This header file replaces
header file <stdio.h>.

<locale> Contains classes and functions normally used by stream processing to
process data in the natural form for different languages (e.g., monetary
formats, sorting strings, character presentation, and so on).

<limits> Contains classes for defining the numerical data type limits on each com-
puter platform.

<utility> Contains classes and functions that are used by many C++ Standard
Library header files.

C++ Standard
Library header
file Explanation

Fig. 15.2 | C++ Standard Library header files. (Part 2 of 2.)

15.6 Inline Functions 535

You can create custom header files. Programmer-defined header files should end in
.h. A programmer-defined header file can be included by using the #include preprocessor
directive. For example, the header file square.h can be included in a program by placing
the directive #include "square.h" at the beginning of the program.

15.6 Inline Functions
Implementing a program as a set of functions is good from a software engineering stand-
point, but function calls involve execution-time overhead. C++ provides inline functions
to help reduce function call overhead—especially for small functions. Placing the qualifier
inline before a function’s return type in the function definition “advises” the compiler to
generate a copy of the function’s code in place (when appropriate) to avoid a function call.
The trade-off is that multiple copies of the function code are inserted in the program (of-
ten making the program larger) rather than there being a single copy of the function to
which control is passed each time the function is called. The compiler can ignore the
inline qualifier and typically does so for all but the smallest functions.

Figure 15.3 uses inline function cube (lines 11–14) to calculate the volume of a cube
of side length side. Keyword const in the parameter list of function cube tells the com-
piler that the function does not modify variable side. This ensures that the value of side
is not changed by the function when the calculation is performed. Notice that the com-
plete definition of function cube appears before it’s used in the program. This is required
so that the compiler knows how to expand a cube function call into its inlined code. For
this reason, reusable inline functions are typically placed in header files, so that their defi-
nitions can be included in each source file that uses them.

Software Engineering Observation 15.3
Changea to an inline function could require clients of the function to be recompiled. This
can be significant in program development and maintenance situations.

Performance Tip 15.2
Using inline functions can reduce execution time but may increase program size.

Software Engineering Observation 15.4
The inline qualifier should be used only with small, frequently used functions.

Software Engineering Observation 15.5
The const qualifier should be used to enforce the principle of least privilege. Using the
principle of least privilege to properly design software can greatly reduce debugging time
and improper side effects, and can make a program easier to modify and maintain.

1 // Fig. 15.3: fig15_03.cpp
2 // Using an inline function to calculate the volume of a cube.
3 #include <iostream>

Fig. 15.3 | inline function that calculates the volume of a cube. (Part 1 of 2.)

536 Chapter 15 C++ as a Better C; Introducing Object Technology

Lines 4–6 are using statements that help us eliminate the need to repeat the std::
prefix. Once we include these using statements, we can write cout instead of std::cout,
cin instead of std::cin and endl instead of std::endl, in the remainder of the program.
From this point forward, each C++ example contains one or more using statements.

In place of lines 4–6, many programmers prefer to use the declaration

which enables a program to use all the names in any standard C++ header file (such as
<iostream>) that a program might include. From this point forward in our C++ pro-
grams, we’ll use the preceding declaration in our programs.

The for statement’s condition (line 20) evaluates to either 0 (false) or nonzero (true).
This is consistent with C. C++ also provides type bool for representing boolean (true/false)
values. The two possible values of a bool are the keywords true and false. When true

4 using std::cout;
5 using std::cin;
6 using std::endl;
7
8 // Definition of inline function cube. Definition of function appears
9 // before function is called, so a function prototype is not required.

10 // First line of function definition acts as the prototype.
11
12
13
14
15
16 int main()
17 {
18 double sideValue; // stores value entered by user
19
20 for (int i = 1; i <= 3; i++)
21 {
22 cout << "\nEnter the side length of your cube: ";
23 cin >> sideValue; // read value from user
24
25 // calculate cube of sideValue and display result
26 cout << "Volume of cube with side "
27 << sideValue << " is " << << endl;
28 }
29 } // end main

Enter the side length of your cube: 1.0
Volume of cube with side 1 is 1

Enter the side length of your cube: 2.3
Volume of cube with side 2.3 is 12.167

Enter the side length of your cube: 5.4
Volume of cube with side 5.4 is 157.464

using namespace std;

Fig. 15.3 | inline function that calculates the volume of a cube. (Part 2 of 2.)

inline double cube(const double side)
{

return side * side * side; // calculate the cube of side
} // end function cube

cube(sideValue)

15.7 References and Reference Parameters 537

and false are converted to integers, they become the values 1 and 0, respectively. When
non-boolean values are converted to type bool, non-zero values become true, and zero or
null pointer values become false. Figure 15.4 lists the keywords common to C and C++
and the keywords unique to C++.

15.7 References and Reference Parameters
Two ways to pass arguments to functions in many programming languages are pass-by-
value and pass-by-reference. When an argument is passed by value, a copy of the argu-
ment’s value is made and passed (on the function call stack) to the called function.
Changes to the copy do not affect the original variable’s value in the caller. This prevents
the accidental side effects that so greatly hinder the development of correct and reliable
software systems. Each argument that has been passed in the programs in this chapter so
far has been passed by value.

Reference Parameters
This section introduces reference parameters—the first of two means that C++ provides
for performing pass-by-reference. With pass-by-reference, the caller gives the called func-
tion the ability to access the caller’s data directly, and to modify that data if the called func-
tion chooses to do so.

C++ keywords

Keywords common to the C and C++ programming languages
auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile while

C++-only keywords
and and_eq asm bitand bitor

bool catch class compl const_cast

delete dynamic_cast explicit export false

friend inline mutable namespace new

not not_eq operator or or_eq

private protected public reinterpret_cast static_cast

template this throw true try

typeid typename using virtual wchar_t

xor xor_eq

Fig. 15.4 | C++ keywords.

Performance Tip 15.3
One disadvantage of pass-by-value is that, if a large data item is being passed, copying that
data can take a considerable amount of execution time and memory space.

538 Chapter 15 C++ as a Better C; Introducing Object Technology

Later, we’ll show how to achieve the performance advantage of pass-by-reference
while simultaneously achieving the software engineering advantage of protecting the
caller’s data from corruption.

A reference parameter is an alias for its corresponding argument in a function call. To
indicate that a function parameter is passed by reference, simply follow the parameter’s
type in the function prototype by an ampersand (&); use the same notation when listing
the parameter’s type in the function header. For example, the following declaration in a
function header

when read from right to left is pronounced “count is a reference to an int.” In the function
call, simply mention the variable by name to pass it by reference. Then, mentioning the
variable by its parameter name in the body of the called function actually refers to the orig-
inal variable in the calling function, and the original variable can be modified directly by
the called function. As always, the function prototype and header must agree.

Passing Arguments by Value and by Reference
Figure 15.5 compares pass-by-value and pass-by-reference with reference parameters. The
“styles” of the arguments in the calls to function squareByValue (line 17) and function
squareByReference (line 22) are identical—both variables are simply mentioned by name
in the function calls. Without checking the function prototypes or function definitions,
it’s not possible to tell from the calls alone whether either function can modify its argu-
ments. Because function prototypes are mandatory, however, the compiler has no trouble
resolving the ambiguity. Recall that a function prototype tells the compiler the type of data
returned by the function, the number of parameters the function expects to receive, the
types of the parameters, and the order in which they are expected. The compiler uses this
information to validate function calls. In C, function prototypes are not required. Making
them mandatory in C++ enables type-safe linkage, which ensures that the types of the ar-
guments conform to the types of the parameters. Otherwise, the compiler reports an error.
Locating such type errors at compile time helps prevent the runtime errors that can occur
in C when arguments of incorrect data types are passed to functions.

Performance Tip 15.4
Pass-by-reference is good for performance reasons, because it can eliminate the pass-by-val-
ue overhead of copying large amounts of data.

Software Engineering Observation 15.6
Pass-by-reference can weaken security; the called function can corrupt the caller’s data.

int &count

1 // Fig. 15.5: fig15_05.cpp
2 // Comparing pass-by-value and pass-by-reference with references.
3 #include <iostream>
4 using namespace std;
5
6

Fig. 15.5 | Passing arguments by value and by reference. (Part 1 of 2.)

int squareByValue(int); // function prototype (value pass)

15.7 References and Reference Parameters 539

7
8
9 int main()

10 {
11 int x = 2; // value to square using squareByValue
12 int z = 4; // value to square using squareByReference
13
14 // demonstrate squareByValue
15 cout << "x = " << x << " before squareByValue\n";
16 cout << "Value returned by squareByValue: "
17 << << endl;
18 cout << "x = " << x << " after squareByValue\n" << endl;
19
20 // demonstrate squareByReference
21 cout << "z = " << z << " before squareByReference" << endl;
22 ;
23 cout << "z = " << z << " after squareByReference" << endl;
24 } // end main
25
26
27
28
29
30
31
32
33
34
35
36
37
38

x = 2 before squareByValue
Value returned by squareByValue: 4
x = 2 after squareByValue

z = 4 before squareByReference
z = 16 after squareByReference

Common Programming Error 15.2
Because reference parameters are mentioned only by name in the body of the called func-
tion, you might inadvertently treat reference parameters as pass-by-value parameters. This
can cause unexpected side effects if the original copies of the variables are changed by the
function.

\

Performance Tip 15.5
For passing large objects efficiently, use a constant reference parameter to simulate the ap-
pearance and security of pass-by-value and avoid the overhead of passing a copy of the
large object. The called function will not be able to modify the object in the caller.

Fig. 15.5 | Passing arguments by value and by reference. (Part 2 of 2.)

void squareByReference(int &); // function prototype (reference pass)

squareByValue(x)

squareByReference(z)

// squareByValue multiplies number by itself, stores the
// result in number and returns the new value of number
int squareByValue(int number)
{

return number *= number; // caller's argument not modified
} // end function squareByValue

// squareByReference multiplies numberRef by itself and stores the result
// in the variable to which numberRef refers in the caller
void squareByReference(int &numberRef)
{
 numberRef *= numberRef; // caller's argument modified
} // end function squareByReference

540 Chapter 15 C++ as a Better C; Introducing Object Technology

To specify a reference to a constant, place the const qualifier before the type specifier
in the parameter declaration. Note in line 35 of Fig. 15.5 the placement of & in the param-
eter list of function squareByReference. Some C++ programmers prefer to write int&
numberRef with the ampersand abutting int—both forms are equivalent to the compiler.

References as Aliases within a Function
References can also be used as aliases for other variables within a function (although they
typically are used with functions as shown in Fig. 15.5). For example, the code

increments variable count by using its alias cRef. Reference variables must be initialized
in their declarations, as we show in line 9 of both Fig. 15.6 and Fig. 15.7, and cannot be
reassigned as aliases to other variables. Once a reference is declared as an alias for a variable,
all operations “performed” on the alias (i.e., the reference) are actually performed on the
original variable. The alias is simply another name for the original variable. Taking the ad-
dress of a reference and comparing references do not cause syntax errors; rather, each op-
eration occurs on the variable for which the reference is an alias. Unless it’s a reference to
a constant, a reference argument must be an lvalue (e.g., a variable name), not a constant
or expression that returns an rvalue (e.g., the result of a calculation).

Software Engineering Observation 15.7
Many programmers do not declare parameters passed by value as const, even when the
called function should not modify the passed argument. Keyword const in this context
would protect only a copy of the original argument, not the original argument itself, which
when passed by value is safe from modification by the called function.

Software Engineering Observation 15.8
For the combined reasons of clarity and performance, many C++ programmers prefer that
modifiable arguments be passed to functions by using pointers, small nonmodifiable
arguments be passed by value and large nonmodifiable arguments be passed by using
references to constants.

int count = 1; // declare integer variable count
int &cRef = count; // create cRef as an alias for count
cRef++; // increment count (using its alias cRef)

1 // Fig. 15.6: fig15_06.cpp
2 // References must be initialized.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 3;
9

10
11 cout << "x = " << x << endl << "y = " << y << endl;
12 y = 7; // actually modifies x
13 cout << "x = " << x << endl << "y = " << y << endl;
14 } // end main

Fig. 15.6 | Initializing and using a reference. (Part 1 of 2.)

int &y = x; // y refers to (is an alias for) x

15.7 References and Reference Parameters 541

Returning a Reference from a Function
Returning references from functions can be dangerous. When returning a reference to a
variable declared in the called function, the variable should be declared static within that
function. Otherwise, the reference refers to an automatic variable that is discarded when
the function terminates; such a variable is “undefined,” and the program’s behavior is un-
predictable. References to undefined variables are called dangling references.

x = 3
y = 3
x = 7
y = 7

1 // Fig. 15.7: fig15_07.cpp
2 // References must be initialized.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 3;
9

10
11 cout << "x = " << x << endl << "y = " << y << endl;
12 y = 7;
13 cout << "x = " << x << endl << "y = " << y << endl;
14 } // end main

Microsoft Visual C++ compiler error message:

C:\examples\ch15\fig15_07\fig15_07.cpp(10) : error C2530: 'y' :
 references must be initialized

GNU C++ compiler error message:

fig15_07.cpp:10: error: 'y' declared as a reference but not initialized

Fig. 15.7 | Uninitialized reference causes a syntax error.

Common Programming Error 15.3
Not initializing a reference variable when it’s declared is a compilation error, unless the
declaration is part of a function’s parameter list. Reference parameters are initialized
when the function in which they’re declared is called.

Common Programming Error 15.4
Attempting to reassign a previously declared reference to be an alias to another variable is
a logic error. The value of the other variable is simply assigned to the variable for which
the reference is already an alias.

Fig. 15.6 | Initializing and using a reference. (Part 2 of 2.)

int &y; // Error: y must be initialized

542 Chapter 15 C++ as a Better C; Introducing Object Technology

Error Messages for Uninitialized References
The C++ standard does not specify the error messages that compilers use to indicate par-
ticular errors. For this reason, we show in Fig. 15.7 the error messages produced by several
compilers when a reference is not initialized.

15.8 Empty Parameter Lists
C++, like C, allows you to define functions with no parameters. In C++, an empty param-
eter list is specified by writing either void or nothing at all in parentheses. The prototypes

each specify that function print does not take arguments and does not return a value.
These prototypes are equivalent.

15.9 Default Arguments
It’s not uncommon for a program to invoke a function repeatedly with the same argument
value for a particular parameter. In such cases, the programmer can specify that such a pa-
rameter has a default argument, i.e., a default value to be passed to that parameter. When
a program omits an argument for a parameter with a default argument in a function call,
the compiler rewrites the function call and inserts the default value of that argument to be
passed as an argument in the function call.

Default arguments must be the rightmost (trailing) arguments in a function’s
parameter list. When calling a function with two or more default arguments, if an omitted
argument is not the rightmost argument in the argument list, then all arguments to the
right of that argument also must be omitted. Default arguments should be specified with
the first occurrence of the function name—typically, in the function prototype. If the
function prototype is omitted because the function definition also serves as the prototype,
then the default arguments should be specified in the function header. Default values can
be any expression, including constants, global variables or function calls. Default argu-
ments also can be used with inline functions.

Figure 15.8 demonstrates using default arguments in calculating the volume of a box.
The function prototype for boxVolume (line 7) specifies that all three parameters have been
given default values of 1. We provided variable names in the function prototype for read-
ability, but these are not required.

Common Programming Error 15.5
Returning a reference to an automatic variable in a called function is a logic error. Some
compilers issue a warning when this occurs.

void print();
void print(void);

Portability Tip 15.2
The meaning of an empty function parameter list in C++ is dramatically different than
in C. In C, it means all argument checking is disabled (i.e., the function call can pass any
arguments it wants). In C++, it means that the function takes no arguments. Thus, C
programs using this feature might cause compilation errors when compiled in C++.

15.9 Default Arguments 543

The first call to boxVolume (line 12) specifies no arguments, thus using all three
default values of 1. The second call (line 16) passes a length argument, thus using default
values of 1 for the width and height arguments. The third call (line 20) passes arguments

1 // Fig. 15.8: fig15_08.cpp
2 // Using default arguments.
3 #include <iostream>
4 using namespace std;
5
6 // function prototype that specifies default arguments
7
8
9 int main()

10 {
11 // no arguments--use default values for all dimensions
12 cout << "The default box volume is: " << ;
13
14 // specify length; default width and height
15 cout << "\n\nThe volume of a box with length 10,\n"
16 << "width 1 and height 1 is: " << ;
17
18 // specify length and width; default height
19 cout << "\n\nThe volume of a box with length 10,\n"
20 << "width 5 and height 1 is: " << ;
21
22 // specify all arguments
23 cout << "\n\nThe volume of a box with length 10,\n"
24 << "width 5 and height 2 is: " <<
25 << endl;
26 } // end main
27
28
29
30
31
32

The default box volume is: 1

The volume of a box with length 10,
width 1 and height 1 is: 10

The volume of a box with length 10,
width 5 and height 1 is: 50

The volume of a box with length 10,
width 5 and height 2 is: 100

Fig. 15.8 | Default arguments to a function.

Common Programming Error 15.6
It’s a compilation error to specify default arguments in both a function’s prototype and
header.

int boxVolume(int length = 1, int width = 1, int height = 1);

boxVolume()

boxVolume(10)

boxVolume(10, 5)

boxVolume(10, 5, 2)

// function boxVolume calculates the volume of a box
int boxVolume(int length, int width, int height)
{

return length * width * height;
} // end function boxVolume

544 Chapter 15 C++ as a Better C; Introducing Object Technology

for length and width, thus using a default value of 1 for the height argument. The last
call (line 24) passes arguments for length, width and height, thus using no default values.
Any arguments passed to the function explicitly are assigned to the function’s parameters
from left to right. Therefore, when boxVolume receives one argument, the function assigns
the value of that argument to its length parameter (i.e., the leftmost parameter in the
parameter list). When boxVolume receives two arguments, the function assigns the values
of those arguments to its length and width parameters in that order. Finally, when box-
Volume receives all three arguments, the function assigns the values of those arguments to
its length, width and height parameters, respectively.

15.10 Unary Scope Resolution Operator
It’s possible to declare local and global variables of the same name. This causes the global
variable to be “hidden” by the local variable in the local scope. C++ provides the unary
scope resolution operator (::) to access a global variable when a local variable of the same
name is in scope. The unary scope resolution operator cannot be used to access a local vari-
able of the same name in an outer block. A global variable can be accessed directly without
the unary scope resolution operator if the name of the global variable is not the same as
that of a local variable in scope.

Figure 15.9 demonstrates the unary scope resolution operator with global and local
variables of the same name (lines 6 and 10, respectively). To emphasize that the local and
global versions of variable number are distinct, the program declares one variable of type
int and the other double.

Good Programming Practice 15.2
Using default arguments can simplify writing function calls. However, some programmers
feel that explicitly specifying all arguments is clearer.

Software Engineering Observation 15.9
If the default values for a function change, all client code must be recompiled.

Common Programming Error 15.7
In a function definition, specifying and attempting to use a default argument that is not
a rightmost (trailing) argument (while not simultaneously defaulting all the rightmost ar-
guments) is a syntax error.

1 // Fig. 15.9: fig15_09.cpp
2 // Using the unary scope resolution operator.
3 #include <iostream>
4 using namespace std;
5
6
7
8 int main()
9 {

10

Fig. 15.9 | Using the unary scope resolution operator. (Part 1 of 2.)

int number = 7; // global variable named number

double number = 10.5; // local variable named number

15.11 Function Overloading 545

Using the unary scope resolution operator (::) with a given variable name is optional
when the only variable with that name is a global variable.

15.11 Function Overloading
C++ enables several functions of the same name to be defined, as long as these functions
have different sets of parameters (at least as far as the parameter types or the number of
parameters or the order of the parameter types are concerned). This capability is called
function overloading.1 When an overloaded function is called, the C++ compiler selects
the proper function by examining the number, types and order of the arguments in the

11
12 // display values of local and global variables
13 cout << "Local double value of number = " <<
14 << "\nGlobal int value of number = " << << endl;
15 } // end main

Local double value of number = 10.5
Global int value of number = 7

Common Programming Error 15.8
It’s an error to attempt to use the unary scope resolution operator (::) to access a nonglobal
variable in an outer block. If no global variable with that name exists, a compilation error
occurs. If a global variable with that name exists, this is a logic error, because the program
will refer to the global variable when you intended to access the nonglobal variable in the
outer block.

Good Programming Practice 15.3
Always using the unary scope resolution operator (::) to refer to global variables makes
programs easier to read and understand, because it makes it clear that you intend to access
a global variable rather than a nonglobal variable.

Software Engineering Observation 15.10
Always using the unary scope resolution operator (::) to refer to global variables makes
programs easier to modify by reducing the risk of name collisions with nonglobal variables.

Error-Prevention Tip 15.1
Always using the unary scope resolution operator (::) to refer to a global variable elimi-
nates logic errors that might occur if a nonglobal variable hides the global variable.

Error-Prevention Tip 15.2
Avoid using variables of the same name for different purposes in a program. Although this
is allowed in various circumstances, it can lead to errors.

1. The C++ standard requires float, double and long double overloaded versions of the math library
functions discussed in Section 5.3.

Fig. 15.9 | Using the unary scope resolution operator. (Part 2 of 2.)

number
::number

546 Chapter 15 C++ as a Better C; Introducing Object Technology

call. Function overloading is commonly used to create several functions of the same name
that perform similar tasks, but on data of different types. For example, many functions in
the math library are overloaded for different numeric data types.

Overloaded square Functions
Figure 15.10 uses overloaded square functions to calculate the square of an int (lines 7–
11) and the square of a double (lines 14–18). Line 22 invokes the int version of function
square by passing the literal value 7. C++ treats whole-number literal values as type int
by default. Similarly, line 24 invokes the double version of function square by passing the
literal value 7.5, which C++ treats as a double value by default. In each case the compiler
chooses the proper function to call, based on the type of the argument. The outputs con-
firm that the proper function was called in each case.

How the Compiler Differentiates Overloaded Functions
Overloaded functions are distinguished by their signatures—a combination of a func-
tion’s name and its parameter types (in order). The compiler encodes each function iden-

Good Programming Practice 15.4
Overloading functions that perform closely related tasks can make programs more read-
able and understandable.

1 // Fig. 15.10: fig15_10.cpp
2 // Overloaded functions.
3 #include <iostream>
4 using namespace std;
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 int main()
21 {
22 cout << ; // calls int version
23 cout << endl;
24 cout << ; // calls double version
25 cout << endl;
26 } // end main

square of integer 7 is 49
square of double 7.5 is 56.25

Fig. 15.10 | Overloaded square functions.

// function square for int values
int square(int x)
{
 cout << "square of integer " << x << " is ";

return x * x;
} // end function square with int argument

// function square for double values
double square(double y)
{
 cout << "square of double " << y << " is ";

return y * y;
} // end function square with double argument

square(7)

square(7.5)

15.11 Function Overloading 547

tifier with the number and types of its parameters (sometimes referred to as name
mangling or name decoration) to enable type-safe linkage. This ensures that the proper
overloaded function is called and that the argument types conform to the parameter types.

Figure 15.11 was compiled with GNU C++. Rather than showing the execution
output of the program (as we normally would), we show the mangled function names pro-
duced in assembly language by GNU C++. Each mangled name (other than main) begins
with two underscores (__) followed by the letter Z, a number and the function name. The
number that follows Z specifies how many characters are in the function’s name. For
example, function square has 6 characters in its name, so its mangled name is prefixed with
__Z6. The function name is then followed by an encoding of its parameter list. In the
parameter list for function nothing2 (line 25; see the fourth output line), c represents a
char, i represents an int, Rf represents a float & (i.e., a reference to a float) and Rd rep-
resents a double & (i.e., a reference to a double). In the parameter list for function noth-

ing1, i represents an int, f represents a float, c represents a char and Ri represents an
int &. The two square functions are distinguished by their parameter lists; one specifies d
for double and the other specifies i for int. The return types of the functions are not spec-
ified in the mangled names. Overloaded functions can have different return types, but if
they do, they must also have different parameter lists. Again, you cannot have two func-
tions with the same signature and different return types. Function-name mangling is com-
piler specific. Also, function main is not mangled, because it cannot be overloaded.

1 // Fig. 15.11: fig15_11.cpp
2 // Name mangling.
3
4 // function square for int values
5
6 {
7 return x * x;
8 } // end function square
9

10 // function square for double values
11
12 {
13 return y * y;
14 } // end function square
15
16 // function that receives arguments of types
17 // int, float, char and int &
18
19 {
20 // empty function body
21 } // end function nothing1
22
23 // function that receives arguments of types
24 // char, int, float & and double &
25
26 {
27 return 0;
28 } // end function nothing2

Fig. 15.11 | Name mangling to enable type-safe linkage. (Part 1 of 2.)

int square(int x)

double square(double y)

void nothing1(int a, float b, char c, int &d)

int nothing2(char a, int b, float &c, double &d)

548 Chapter 15 C++ as a Better C; Introducing Object Technology

The compiler uses only the parameter lists to distinguish between functions of the
same name. Overloaded functions need not have the same number of parameters. Pro-
grammers should use caution when overloading functions with default parameters,
because this may cause ambiguity.

Overloaded Operators
In Chapter 19, we discuss how to overload operators to define how they should operate
on objects of user-defined data types. (In fact, we’ve been using overloaded operators, in-
cluding the stream insertion operator << and the stream extraction operator >>, each of
which is overloaded to be able to display data of all the fundamental types. We say more
about overloading << and >> to be able to handle objects of user-defined types in
Chapter 19.) Section 15.12 introduces function templates for automatically generating
overloaded functions that perform identical tasks on data of different types.

15.12 Function Templates
Overloaded functions are used to perform similar operations that may involve different
program logic on different data types. If the program logic and operations are identical for
each data type, overloading may be performed more compactly and conveniently by using
function templates. The programmer writes a single function template definition. Given
the argument types provided in calls to this function, C++ automatically generates separate
function template specializations to handle each type of call appropriately. Thus, defining
a single function template essentially defines a whole family of overloaded functions.

29
30 int main()
31 {
32 return 0; // indicates successful termination
33 } // end main

__Z6squarei
__Z6squared
__Z8nothing1ifcRi
__Z8nothing2ciRfRd
_main

Common Programming Error 15.9
Creating overloaded functions with identical parameter lists and different return types is
a compilation error.

Common Programming Error 15.10
A function with default arguments omitted might be called identically to another over-
loaded function; this is a compilation error. For example, having in a program both a
function that explicitly takes no arguments and a function of the same name that contains
all default arguments results in a compilation error when an attempt is made to use that
function name in a call passing no arguments. The compiler does not know which version
of the function to choose.

Fig. 15.11 | Name mangling to enable type-safe linkage. (Part 2 of 2.)

15.12 Function Templates 549

Figure 15.12 contains the definition of a function template (lines 4–18) for a maximum
function that determines the largest of three values. All function template definitions
begin with the template keyword (line 4) followed by a template parameter list to the
function template enclosed in angle brackets (< and >). Every parameter in the template
parameter list (each is referred to as a formal type parameter) is preceded by keyword
typename or keyword class (which are synonyms). The formal type parameters are place-
holders for fundamental types or user-defined types. These placeholders are used to specify
the types of the function’s parameters (line 5), to specify the function’s return type (line
5) and to declare variables within the body of the function definition (line 7). A function
template is defined like any other function, but uses the formal type parameters as place-
holders for actual data types.

The function template in Fig. 15.12 declares a single formal type parameter T (line 4)
as a placeholder for the type of the data to be tested by function maximum. The name of a
type parameter must be unique in the template parameter list for a particular template
definition. When the compiler detects a maximum invocation in the program source code,
the type of the data passed to maximum is substituted for T throughout the template defini-
tion, and C++ creates a complete source-code function for determining the maximum of
three values of the specified data type. Then the newly created function is compiled. Thus,
templates are a means of code generation.

Figure 15.13 uses the maximum function template (lines 18, 28 and 38) to determine
the largest of three int values, three double values and three char values.

1 // Fig. 15.12: maximum.h
2 // Definition of function template maximum.
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Fig. 15.12 | Function template maximum header file.

Common Programming Error 15.11
Not placing keyword class or keyword typename before every formal type parameter of
a function template (e.g., writing < class S, T > instead of < class S, class T >) is a
syntax error.

template < class T > // or template< typename T >
T maximum(T value1, T value2, T value3)
{
 T maximumValue = value1; // assume value1 is maximum

 // determine whether value2 is greater than maximumValue

if (value2 > maximumValue)
 maximumValue = value2;

 // determine whether value3 is greater than maximumValue

if (value3 > maximumValue)
 maximumValue = value3;

return maximumValue;
} // end function template maximum

550 Chapter 15 C++ as a Better C; Introducing Object Technology

In Fig. 15.13, three functions are created as a result of the calls in lines 18, 28 and
38—expecting three int values, three double values and three char values, respectively.
For example, the function template specialization created for type int replaces each occur-
rence of T with int as follows:

1 // Fig. 15.13: fig15_13.cpp
2 // Function template maximum test program.
3 #include <iostream>
4 using namespace std;
5
6
7
8 int main()
9 {

10 // demonstrate maximum with int values
11 int int1, int2, int3;
12
13 cout << "Input three integer values: ";
14 cin >> int1 >> int2 >> int3;
15
16 // invoke int version of maximum
17 cout << "The maximum integer value is: "
18 << ;
19
20 // demonstrate maximum with double values
21 double double1, double2, double3;
22
23 cout << "\n\nInput three double values: ";
24 cin >> double1 >> double2 >> double3;
25
26 // invoke double version of maximum
27 cout << "The maximum double value is: "
28 << ;
29
30 // demonstrate maximum with char values
31 char char1, char2, char3;
32
33 cout << "\n\nInput three characters: ";
34 cin >> char1 >> char2 >> char3;
35
36 // invoke char version of maximum
37 cout << "The maximum character value is: "
38 << << endl;
39 } // end main

Input three integer values: 1 2 3
The maximum integer value is: 3

Input three double values: 3.3 2.2 1.1
The maximum double value is: 3.3

Input three characters: A C B
The maximum character value is: C

Fig. 15.13 | Demonstrating function template maximum.

#include "maximum.h" // include definition of function template maximum

maximum(int1, int2, int3)

maximum(double1, double2, double3)

maximum(char1, char2, char3)

15.13 Introduction to Object Technology and the UML 551

15.13 Introduction to Object Technology and the UML
Now we introduce object orientation, a natural way of thinking about the world and writ-
ing computer programs. Our goal here is to help you develop an object-oriented way of
thinking and to introduce you to the Unified Modeling Language™ (UML™)—a
graphical language that allows people who design object-oriented software systems to use
an industry-standard notation to represent them. In this section, we introduce basic ob-
ject-oriented concepts and terminology.

Basic Object Technology Concepts
We begin our introduction to object orientation with some key terminology. Everywhere
you look in the real world you see objects—people, animals, plants, cars, planes, buildings,
computers and so on. Humans think in terms of objects. Telephones, houses, traffic lights,
microwave ovens and water coolers are just a few more objects we see around us every day.

Objects have some things in common. They all have attributes (e.g., size, shape, color
and weight), and they all exhibit behaviors (e.g., a ball rolls, bounces, inflates and deflates;
a baby cries, sleeps, crawls, walks and blinks; a car accelerates, brakes and turns; a towel
absorbs water). We’ll study the kinds of attributes and behaviors that software objects
have.

Humans learn about existing objects by studying their attributes and observing their
behaviors. Different objects can have similar attributes and can exhibit similar behaviors.
Comparisons can be made, for example, between babies and adults and between humans
and chimpanzees.

Object-oriented design (OOD) models software in terms similar to those that people
use to describe real-world objects. It takes advantage of class relationships, where objects
of a certain class, such as a class of vehicles, have the same characteristics—cars, trucks,
little red wagons and roller skates have much in common. OOD takes advantage of inher-
itance relationships, where new classes of objects are derived by absorbing characteristics
of existing classes and adding unique characteristics of their own. An object of class “con-
vertible” certainly has the characteristics of the more general class “automobile,” but more
specifically, the roof goes up and down.

Object-oriented design provides a natural and intuitive way to view the software
design process—namely, modeling objects by their attributes, behaviors and interrelation-
ships just as we describe real-world objects. OOD also models communication between
objects. Just as people send messages to one another (e.g., a sergeant commands a soldier
to stand at attention), objects also communicate via messages. A bank account object may

int maximum(int value1, int value2, int value3)
{

int maximumValue = value1; // assume value1 is maximum

// determine whether value2 is greater than maximumValue
if (value2 > maximumValue)

 maximumValue = value2;

// determine whether value3 is greater than maximumValue
if (value3 > maximumValue)

 maximumValue = value3;

return maximumValue;
} // end function template maximum

552 Chapter 15 C++ as a Better C; Introducing Object Technology

receive a message to decrease its balance by a certain amount because the customer has
withdrawn that amount of money.

OOD encapsulates (i.e., wraps) attributes and operations (behaviors) into objects—
an object’s attributes and operations are intimately tied together. Objects have the prop-
erty of information hiding. This means that objects may know how to communicate with
one another across well-defined interfaces, but normally they’re not allowed to know how
other objects are implemented—implementation details are hidden within the objects
themselves. We can drive a car effectively, for instance, without knowing the details of how
engines, transmissions, brakes and exhaust systems work internally—as long as we know
how to use the accelerator pedal, the brake pedal, the steering wheel and so on. Informa-
tion hiding, as we’ll see, is crucial to good software engineering.

Languages like C++ are object oriented. Programming in such a language is called
object-oriented programming (OOP), and it allows you to implement an object-oriented
design as a working software system. Languages like C, on the other hand, are procedural,
so programming tends to be action oriented. In C, the unit of programming is the func-
tion. In C++, the unit of programming is the “class” from which objects are eventually
instantiated (an OOP term for “created”). C++ classes contain functions that implement
operations and data that implements attributes.

C programmers concentrate on writing functions. Programmers group actions that
perform some common task into functions, and group functions to form programs. Data
is certainly important in C, but the view is that data exists primarily in support of the
actions that functions perform. The verbs in a system specification help the C programmer
determine the set of functions that will work together to implement the system.

Classes, Data Members and Member Functions
C++ programmers concentrate on creating their own user-defined types called classes.
Each class contains data as well as the set of functions that manipulate that data and pro-
vide services to clients (i.e., other classes or functions that use the class). The data compo-
nents of a class are called data members. For example, a bank account class might include
an account number and a balance. The function components of a class are called member
functions (typically called methods in other object-oriented programming languages such
as Java). For example, a bank account class might include member functions to make a
deposit (increasing the balance), make a withdrawal (decreasing the balance) and inquire
what the current balance is. The programmer uses built-in types (and other user-defined
types) as the “building blocks” for constructing new user-defined types (classes). The
nouns in a system specification help the C++ programmer determine the set of classes from
which objects are created that work together to implement the system.

Classes are to objects as blueprints are to houses—a class is a “plan” for building an
object of the class. Just as we can build many houses from one blueprint, we can instantiate
(create) many objects from one class. You cannot cook meals in the kitchen of a blueprint;
you can cook meals in the kitchen of a house. You cannot sleep in the bedroom of a blue-
print; you can sleep in the bedroom of a house.

Classes can have relationships with other classes. In an object-oriented design of a
bank, the “bank teller” class relates to other classes, such as the “customer” class, the “cash
drawer” class, the “safe” class, and so on. These relationships are called associations. Pack-
aging software as classes makes it possible for future software systems to reuse the classes.

15.13 Introduction to Object Technology and the UML 553

Indeed, with object technology, you can build much of the new software you’ll need
by combining existing classes, just as automobile manufacturers combine interchangeable
parts. Each new class you create can become a valuable software asset that you and others
can reuse to speed and enhance the quality of future software development efforts.

Introduction to Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in C++. How will you create the code for your programs?
Perhaps, like many beginning programmers, you’ll simply turn on your computer and
start typing. This approach may work for small programs, but what if you were asked to
create a software system to control thousands of automated teller machines for a major
bank? Or what if you were asked to work on a team of 1000 software developers building
the next generation of the U.S. air traffic control system? For projects so large and com-
plex, you could not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed process for analyzing your
project’s requirements (i.e., determining what the system is supposed to do) and devel-
oping a design that satisfies them (i.e., deciding how the system should do it). Ideally, you
would go through this process and carefully review the design (or have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called
object-oriented analysis and design (OOAD). Experienced programmers know that anal-
ysis and design can save many hours by helping avoid an ill-planned system development
approach that has to be abandoned partway through its implementation, possibly wasting
considerable time, money and effort.

OOAD is the generic term for the process of analyzing a problem and developing an
approach for solving it. Small problems like the ones discussed in these first few chapters
do not require an exhaustive OOAD process.

As problems and the groups of people solving them increase in size, the methods of
OOAD quickly become more appropriate than pseudocode. Ideally, a group should agree
on a strictly defined process for solving its problem and a uniform way of communicating
the results of that process to one another. Although many different OOAD processes exist,
a single graphical language for communicating the results of any OOAD process has come
into wide use. This language, known as the Unified Modeling Language (UML), was
developed in the mid-1990s under the initial direction of three software methodologists:
Grady Booch, James Rumbaugh and Ivar Jacobson.

History of the UML
In the 1980s, increasing numbers of organizations began using OOP to build their appli-
cations, and a need developed for a standard OOAD process. Many methodologists—in-
cluding Booch, Rumbaugh and Jacobson—individually produced and promoted separate
processes to satisfy this need. Each process had its own notation, or “language” (in the
form of graphical diagrams), to convey the results of analysis and design.

Software Engineering Observation 15.11
Reuse of existing classes when building new classes and programs saves time, money and
effort. Reuse also helps you build more reliable and effective systems, because existing classes
often have gone through extensive testing, debugging and performance tuning.

554 Chapter 15 C++ as a Better C; Introducing Object Technology

In 1994, James Rumbaugh joined Grady Booch at Rational Software Corporation
(now a division of IBM), and the two began working to unify their popular processes.
They soon were joined by Ivar Jacobson. In 1996, the group released early versions of the
UML to the software engineering community and requested feedback. Around the same
time, an organization known as the Object Management Group™ (OMG™) invited
submissions for a common modeling language. The OMG (www.omg.org) is a nonprofit
organization that promotes the standardization of object-oriented technologies by issuing
guidelines and specifications, such as the UML. Several corporations—among them HP,
IBM, Microsoft, Oracle and Rational Software—had already recognized the need for a
common modeling language. In response to the OMG’s request for proposals, these com-
panies formed UML Partners—the consortium that developed the UML version 1.1 and
submitted it to the OMG. The OMG accepted the proposal and, in 1997, assumed
responsibility for the continuing maintenance and revision of the UML. We present the
terminology and notation of the current version of the UML—UML version 2—
throughout the C++ section of this book.

What Is the UML?
The Unified Modeling Language is now the most widely used graphical representation
scheme for modeling object-oriented systems. Those who design systems use the language
(in the form of diagrams) to model their systems, as we do throughout the C++ section of
this book. An attractive feature of the UML is its flexibility. The UML is extensible (i.e.,
capable of being enhanced with new features) and is independent of any particular OOAD
process. UML modelers are free to use various processes in designing systems, but all de-
velopers can now express their designs with one standard set of graphical notations. For
more information, visit our UML Resource Center at www.deitel.com/UML/.

15.14 Wrap-Up
In this chapter, you learned several of C++’s enhancements to C. We presented basic C++-
style input and output with cin and cout and overviewed the C++ Standard Library head-
er files. We discussed inline functions for improving performance by eliminating the
overhead of function calls. You learned how to use pass-by-reference with C++’s reference
parameters, which enable you to create aliases for existing variables. You learned that mul-
tiple functions can be overloaded by providing functions with the same name and different
signatures; such functions can be used to perform the same or similar tasks, using different
types or different numbers of parameters. We then demonstrated a simpler way of over-
loading functions using function templates, where a function is defined once but can be
used for several different types. You learned the basic terminology of object technology
and were introduced to the UML—the most widely used graphical representation scheme
for modeling OO systems. In Chapter 16, you’ll learn how to implement your own classes
and use objects of those classes in applications.

Summary
Section 15.2 C++
• C++ improves on many of C’s features and provides object-oriented-programming (OOP) capa-

bilities that increase software productivity, quality and reusability.

www.omg.org
www.deitel.com/UML/

 Summary 555

• C++ was developed by Bjarne Stroustrup at Bell Labs and was originally called “C with classes.”

Section 15.3 A Simple Program: Adding Two Integers
• C++ filenames can have one of several extensions, such as .cpp, .cxx or .C (uppercase).

• C++ allows you to begin a comment with // and use the remainder of the line as comment text.
C++ programmers may also use C-style comments.

• The input/output stream header file <iostream> must be included for any program that outputs
data to the screen or inputs data from the keyboard using C++-style stream input/output.

• As in C, every C++ program begins execution with function main. Keyword int to the left of
main indicates that main “returns” an integer value.

• In C, you need not specify a return type for functions. However, C++ requires you to specify the
return type, possibly void, for all functions; otherwise, a syntax error occurs.

• Declarations can be placed almost anywhere in a C++ program, but they must appear before their
corresponding variables are used in the program.

• The standard output stream object (std::cout) and the stream insertion operator (<<) are used
to display text on the screen.

• The standard input stream object (std::cin) and the stream extraction operator (>>) are used to
obtain values from the keyboard.

• The stream manipulator std::endl outputs a newline, then “flushes the output buffer.”

• The notation std::cout specifies that we’re using a name, in this case cout, that belongs to
“namespace” std.

• Using multiple stream insertion operators (<<) in a single statement is referred to as concatenat-
ing, chaining or cascading stream insertion operations.

Section 15.4 C++ Standard Library
• C++ programs consist of pieces called classes and functions. You can program each piece you may

need to form a C++ program. However, most C++ programmers take advantage of the rich col-
lections of existing classes and functions in the C++ Standard Library.

Section 15.5 Header Files
• The C++ Standard Library is divided into many portions, each with its own header file. The

header files contain the function prototypes for the related functions that form each portion of
the library. The header files also contain definitions of various class types and functions, as well
as constants needed by those functions.

• Header file names ending in .h are “old-style” header files that have been superceded by the C++
Standard Library header files.

Section 15.6 Inline Functions
• C++ provides inline functions to help reduce function call overhead—especially for small func-

tions. Placing the qualifier inline before a function’s return type in the function definition “ad-
vises” the compiler to generate a copy of the function’s code in place to avoid a function call.

Section 15.7 References and Reference Parameters
• Two ways to pass arguments to functions in many programming languages are pass-by-value and

pass-by-reference.

• When an argument is passed by value, a copy of its value is made and passed (on the function
call stack) to the called function. Changes to the copy do not affect the original in the caller.

• With pass-by-reference, the caller gives the called function the ability to access the caller’s data
directly and to modify it if the called function chooses to do so.

556 Chapter 15 C++ as a Better C; Introducing Object Technology

• A reference parameter is an alias for its corresponding argument in a function call.

• To indicate that a function parameter is passed by reference, simply follow the parameter’s type
in the function prototype by an ampersand (&); use the same notation when listing the pa-
rameter’s type in the function header.

• Once a reference is declared as an alias for another variable, all operations supposedly performed
on the alias (i.e., the reference) are actually performed on the original variable. The alias is simply
another name for the original variable.

Section 15.8 Empty Parameter Lists
• In C++, an empty parameter list is specified by writing either void or nothing in parentheses.

Section 15.9 Default Arguments
• It’s not uncommon for a program to invoke a function repeatedly with the same argument value

for a particular parameter. In such cases, the programmer can specify that such a parameter has
a default argument, i.e., a default value to be passed to that parameter.

• When a program omits an argument for a parameter with a default argument, the compiler in-
serts the default value of that argument to be passed as an argument in the function call.

• Default arguments must be the rightmost (trailing) arguments in a function’s parameter list.

• Default arguments should be specified with the first occurrence of the function name—typically,
in the function prototype.

Section 15.10 Unary Scope Resolution Operator
• C++ provides the unary scope resolution operator (::) to access a global variable when a local

variable of the same name is in scope.

Section 15.11 Function Overloading
• C++ enables several functions of the same name to be defined, as long as they have different sets

of parameters (by number, type and/or order). This capability is called function overloading.

• When an overloaded function is called, the C++ compiler selects the proper function by exam-
ining the number, types and order of the arguments in the call.

• Overloaded functions are distinguished by their signatures.

• The compiler encodes each function identifier with the number and types of its parameters to
enable type-safe linkage. Type-safe linkage ensures that the proper overloaded function is called
and that the types of the arguments conform to the types of the parameters.

Section 15.12 Function Templates
• Overloaded functions are used to perform similar operations that may involve different program

logic on data of different types. If the program logic and operations are identical for each data
type, overloading may be performed more compactly and conveniently using function templates.

• The programmer writes a single function template definition. Given the argument types provid-
ed in calls to this function, C++ automatically generates separate function template specializa-
tions to handle each type of call appropriately. Thus, defining a single function template
essentially defines a family of overloaded functions.

• All function template definitions begin with the template keyword followed by a template pa-
rameter list to the function template enclosed in angle brackets (< and >).

• The formal type parameters are placeholders for fundamental types or user-defined types. These
placeholders are used to specify the types of the function’s parameters, to specify the function’s
return type and to declare variables within the body of the function definition.

 Terminology 557

Section 15.13 Introduction to Object Technology and the UML
• The Unified Modeling Language (UML) is a graphical language that allows people who build

systems to represent their object-oriented designs in a common notation.

• Object-oriented design (OOD) models software components in terms of real-world objects. It
takes advantage of class relationships, where objects of a certain class have the same characteris-
tics. It also takes advantage of inheritance relationships, where newly created classes of objects are
derived by absorbing characteristics of existing classes and adding unique characteristics of their
own. OOD encapsulates data (attributes) and functions (behavior) into objects—the data and
functions of an object are intimately tied together.

• Objects have the property of information hiding—objects normally are not allowed to know how
other objects are implemented.

• Object-oriented programming (OOP) allows programmers to implement object-oriented de-
signs as working systems.

• C++ programmers create their own user-defined types called classes. Each class contains data
(known as data members) and the set of functions (known as member functions) that manipulate
that data and provide services to clients.

• Classes can have relationships with other classes. These relationships are called associations.

• Packaging software as classes makes it possible for future software systems to reuse the classes.
Groups of related classes are often packaged as reusable components.

• An instance of a class is called an object.

• With object technology, programmers can build much of the software they will need by combin-
ing standardized, interchangeable parts called classes.

• The process of analyzing and designing a system from an object-oriented point of view is called
object-oriented analysis and design (OOAD).

Terminology
::, unary scope resolution operator 544
action oriented 552
analyze a requirements document 553
association (in the UML) 552
attribute of an object 551
behavior of an object 551
bool keyword 536
C++ Standard Library 532
cascading stream insertion operations 532
chaining stream insertion operations 532
class 532
client of a class 552
concatenating stream insertion operations 532
dangling reference 541
data member of a class 552
default argument 542
design a system 553
encapsulation 552
endl stream manipulator 531
extensible language 554
false keyword 536
formal type parameter 549

function overloading 545
function template 548
function template specialization 548
generic programming 529
information hiding 552
inheritance 551
inline function 535
inline keyword 535
input/output stream header (<iostream>) 530
instantiate an object of a class 554
interface 552
mangled function name 547
member function 552
method of a class 552
name decoration 547
name mangling 547
object 551
Object Management Group (OMG) 554
object-oriented analysis and design

(OOAD) 553
object-oriented design (OOD) 551
object-oriented language 552

558 Chapter 15 C++ as a Better C; Introducing Object Technology

object-oriented programming (OOP) 529
operation of a class 552
operator overloading 532
procedural programming language 552
reference parameter 537
requirement of a project 553
reuse classes 552
signature of a function 546
standard input stream object (cin) 531

standard output stream object (cout) 531
stream extraction operator (>>) 531
stream insertion operator (<<) 531
stream manipulator 531
template parameter list 549
true keyword 536
type-safe linkage 538
UML Partners 554
Unified Modeling Language (UML) 551

Self-Review Exercises
15.1 Answer each of the following:

a) In C++, it’s possible to have various functions with the same name that operate on dif-
ferent types or numbers of arguments. This is called function .

b) The enables access to a global variable with the same name as a variable in the
current scope.

c) A function enables a single function to be defined to perform the same task
on data of many different types.

d) is the most widely used graphical representation scheme for OO modeling.
e) models software components in terms of real-world objects.
f) C++ programmers create their own user-defined types called .

15.2 Why would a function prototype contain a parameter type declaration such as double &?

15.3 (True/False) All arguments to function calls in C++ are passed by value.

15.4 Write a complete program that prompts the user for the radius of a sphere, and calculates
and prints the volume of that sphere. Use an inline function sphereVolume that returns the result
of the following expression: (4.0 / 3.0) * 3.14159 * pow(radius, 3).

Answers to Self-Review Exercises
15.1 a) overloading. b) unary scope resolution operator (::). c) template. d) The UML.
e) Object-oriented design (OOD). f) classes.

15.2 This creates a reference parameter of type “reference to double” that enables the function
to modify the original variable in the calling function.

15.3 False. C++ enables pass-by-reference using reference parameters.

15.4 See the following program:

1 // Exercise 15.4 Solution: Ex15_04.cpp
2 // Inline function that calculates the volume of a sphere.
3 #include <iostream>
4 #include <cmath>
5
6 const double PI = 3.14159; // define global constant PI
7
8 // calculates volume of a sphere
9 inline double sphereVolume(const double radius)

10 {
11 return 4.0 / 3.0 * PI * pow(radius, 3);
12 } // end inline function sphereVolume
13
14 int main()
15 {

 Exercises 559

Exercises
15.5 Write a C++ program that prompts the user for the radius of a circle, then calls inline func-
tion circleArea to calculate the area of that circle.

15.6 Write a complete C++ program with the two alternate functions specified below, each of
which simply triples the variable count defined in main. Then compare and contrast the two ap-
proaches. These two functions are

a) function tripleByValue that passes a copy of count by value, triples the copy and re-
turns the new value and

a) function tripleByReference that passes count by reference via a reference parameter
and triples the original value of count through its alias (i.e., the reference parameter).

15.7 What is the purpose of the unary scope resolution operator?

15.8 Write a program that uses a function template called min to determine the smaller of two
arguments. Test the program using integer, character and floating-point number arguments.

15.9 Write a program that uses a function template called max to determine the larger of two ar-
guments. Test the program using integer, character and floating-point number arguments.

15.10 Determine whether the following program segments contain errors. For each error, explain
how it can be corrected. [Note: For a particular program segment, it’s possible that no errors are pres-
ent in the segment.]

a) template < class A >

int sum(int num1, int num2, int num3)

{

return num1 + num2 + num3;

}

b) void printResults(int x, int y)

{

 cout << "The sum is " << x + y << '\n';

return x + y;

}

c) template < A >

A product(A num1, A num2, A num3)

{

return num1 * num2 * num3;

}

d) double cube(int);

int cube(int);

16 double radiusValue;
17
18 // prompt user for radius
19 cout << "Enter the length of the radius of your sphere: ";
20 cin >> radiusValue; // input radius
21
22 // use radiusValue to calculate volume of sphere and display result
23 cout << "Volume of sphere with radius " << radiusValue
24 << " is " << sphereVolume(radiusValue) << endl;
25 } // end main

Enter the length of the radius of your sphere: 2
Volume of sphere with radius 2 is 33.5103

16 Introduction to Classes and
Objects

Nothing can have value without
being an object of utility.
—Karl Marx

Your public servants serve you
right.
—Adlai E. Stevenson

Knowing how to answer
one who speaks,
To reply to one who
sends a message.
—Amenemopel

O b j e c t i v e s
In this chapter you’ll learn:

■ How to define a class and use
it to create an object.

■ How to define member
functions in a class to
implement the class’s
behaviors.

■ How to declare data members
in a class to implement the
class’s attributes.

■ How to call a member
function of an object to
perform a task.

■ The differences between data
members of a class and local
variables of a function.

■ How to use a constructor to
initialize an object’s data
when the object is created.

■ How to engineer a class to
separate its interface from its
implementation and
encourage reuse.

16.1 Introduction 561

16.1 Introduction
In this chapter, you’ll begin writing programs that employ the basic concepts of object-
oriented programming that we introduced in Section 15.13. Typically, the programs you
develop in C++ will consist of function main and one or more classes, each containing data
members and member functions. If you become part of a development team in industry,
you might work on software systems that contain hundreds, or even thousands, of classes.
In this chapter, we develop a simple, well-engineered framework for organizing object-ori-
ented programs in C++.

First, we motivate the notion of classes with a real-world example. Then we present a
carefully paced sequence of seven complete working programs to demonstrate creating and
using your own classes.

16.2 Classes, Objects, Member Functions and Data
Members
Let’s begin with a simple analogy to help you reinforce your understanding from
Section 15.13 of classes and their contents. Suppose you want to drive a car and make it go
faster by pressing down on its accelerator pedal. What must happen before you can do this?
Well, before you can drive a car, someone has to design it and build it. A car typically begins
as engineering drawings, similar to the blueprints used to design a house. These drawings
include the design for an accelerator pedal that the driver will use to make the car go faster.
In a sense, the pedal “hides” the complex mechanisms that actually make the car go faster,
just as the brake pedal “hides” the mechanisms that slow the car, the steering wheel “hides”
the mechanisms that turn the car and so on. This enables people with little or no knowledge
of how cars are engineered to drive a car easily, simply by using the accelerator pedal, the
brake pedal, the steering wheel, the transmission shifting mechanism and other such simple
and user-friendly “interfaces” to the car’s complex internal mechanisms.

Unfortunately, you cannot drive the engineering drawings of a car—before you can
drive a car, it must be built from the engineering drawings that describe it. A completed
car will have an actual accelerator pedal to make the car go faster. But even that’s not
enough—the car will not accelerate on its own, so the driver must press the accelerator
pedal to tell the car to go faster.

16.1 Introduction
16.2 Classes, Objects, Member Functions

and Data Members
16.3 Defining a Class with a Member

Function
16.4 Defining a Member Function with a

Parameter
16.5 Data Members, set Functions and get

Functions

16.6 Initializing Objects with
Constructors

16.7 Placing a Class in a Separate File for
Reusability

16.8 Separating Interface from
Implementation

16.9 Validating Data with set Functions
16.10 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

562 Chapter 16 Introduction to Classes and Objects

Now let’s use our car example to introduce the key object-oriented programming con-
cepts of this section. Performing a task in a program requires a function (such as main).
The function describes the mechanisms that actually perform its tasks. The function hides
from its user the complex tasks that it performs, just as the accelerator pedal of a car hides
from the driver the complex mechanisms of making the car go faster. In C++, we begin by
creating a program unit called a class to house a function, just as a car’s engineering draw-
ings house the design of an accelerator pedal. Recall from Section 15.13 that a function
belonging to a class is called a member function. In a class, you provide one or more
member functions that are designed to perform the class’s tasks. For example, a class that
represents a bank account might contain one member function to deposit money into the
account, another to withdraw money from the account and a third to inquire what the cur-
rent account balance is.

Just as you cannot drive an engineering drawing of a car, you cannot “drive” a class.
Just as someone has to build a car from its engineering drawings before you can actually
drive the car, you must create an object of a class before you can get a program to perform the
tasks the class describes. That is one reason C++ is known as an object-oriented program-
ming language. Note also that just as many cars can be built from the same engineering
drawing, many objects can be built from the same class.

When you drive a car, pressing its gas pedal sends a message to the car to perform a
task—that is, make the car go faster. Similarly, you send messages to an object—each mes-
sage is known as a member-function call and tells a member function of the object to per-
form its task. This is often called requesting a service from an object.

Thus far, we’ve used the car analogy to introduce classes, objects and member func-
tions. In addition to the capabilities a car provides, it also has many attributes, such as its
color, the number of doors, the amount of gas in its tank, its current speed and its total
miles driven (i.e., its odometer reading). Like the car’s capabilities, these attributes are rep-
resented as part of a car’s design in its engineering diagrams. As you drive a car, these attri-
butes are always associated with the car. Every car maintains its own attributes. For
example, each car knows how much gas is in its own gas tank, but not how much is in the
tanks of other cars. Similarly, an object has attributes that are carried with the object as it’s
used in a program. These attributes are specified as part of the object’s class. For example,
a bank account object has a balance attribute that represents the amount of money in the
account. Each bank account object knows the balance in the account it represents, but not
the balances of the other accounts in the bank. Attributes are specified by the class’s data
members.

The remainder of this chapter presents seven simple examples that demonstrate the
concepts we introduced in the context of the car analogy.

16.3 Defining a Class with a Member Function
We begin with an example (Fig. 16.1) that consists of class GradeBook (lines 8–16), which
will represent a grade book that an instructor can use to maintain student test scores, and
a main function (lines 19–23) that creates a GradeBook object. Function main uses this ob-
ject and its member function to display a message on the screen welcoming the instructor
to the grade-book program.

First we describe how to define a class and a member function, then how an object is
created and how to call an object’s member function. The first few examples contain in

16.3 Defining a Class with a Member Function 563

the same file function main and the GradeBook class it uses. Later in the chapter, we intro-
duce more sophisticated ways to structure programs for better software engineering.

Class GradeBook
Before function main (lines 19–23) can create a GradeBook object, we must tell the compiler
what member functions and data members belong to the class—known as defining a class.
The GradeBook class definition (lines 8–16) begins with keyword class and contains a
member function called displayMessage (lines 12–15) that displays a message on the
screen (line 14). Recall that a class is like a blueprint—so we need to make an object of class
GradeBook (line 21) and call its displayMessage member function (line 22) to get line 14
to execute and display the welcome message. We’ll soon explain lines 21–22 in detail.

The class definition begins in line 8 with the keyword class followed by the class
name GradeBook. By convention, the name of a user-defined class begins with a capital
letter, and for readability, each subsequent word in the class name begins with a capital
letter. This capitalization style is often referred to as camel case, because the pattern of
uppercase and lowercase letters resembles the silhouette of a camel.

Every class’s body is enclosed in a pair of left and right braces ({ and }), as in lines 9
and 16. The class definition terminates with a semicolon (line 16).

1 // Fig. 16.1: fig16_01.cpp
2 // Define class GradeBook with a member function displayMessage,
3 // create a GradeBook object, and call its displayMessage function.
4 #include <iostream>
5 using namespace std;
6
7
8
9

10
11
12
13
14
15
16
17
18 // function main begins program execution
19 int main()
20 {
21
22
23 } // end main

Welcome to the Grade Book!

Fig. 16.1 | Define class GradeBook with a member function displayMessage, create a
GradeBook object and call its displayMessage function.

Common Programming Error 16.1
Forgetting the semicolon at the end of a class definition is a syntax error.

// GradeBook class definition
class GradeBook
{
public:

// function that displays a welcome message to the GradeBook user
void displayMessage()

 {
 cout << "Welcome to the Grade Book!" << endl;
 } // end function displayMessage
}; // end class GradeBook

GradeBook myGradeBook; // create a GradeBook object named myGradeBook
myGradeBook.displayMessage(); // call object's displayMessage function

564 Chapter 16 Introduction to Classes and Objects

Recall that the function main is always called automatically when you execute a pro-
gram. Most functions do not get called automatically. As you’ll soon see, you must call
member function displayMessage explicitly to tell it to perform its task.

Line 10 contains the access-specifier label public:. The keyword public is an access
specifier. Lines 12–15 define member function displayMessage. This member function
appears after access specifier public: to indicate that the function is “available to the
public”—that is, it can be called by other functions in the program (such as main), and by
member functions of other classes (if there are any). Access specifiers are always followed
by a colon (:). For the remainder of the text, when we refer to the access specifier public,
we’ll omit the colon as we did in this sentence. Section 16.5 introduces a second access
specifier, private. Later in the book we’ll study the access specifier protected.

Each function in a program performs a task and may return a value when it completes
its task—for example, a function might perform a calculation, then return the result of
that calculation. When you define a function, you must specify a return type to indicate
the type of the value returned by the function when it completes its task. In line 12, key-
word void to the left of the function name displayMessage is the function’s return type.
Return type void indicates that displayMessage will not return (i.e., give back) any data
to its calling function (in this example, main, as we’ll see in a moment) when it completes
its task. In Fig. 16.5, you’ll see an example of a function that returns a value.

The name of the member function, displayMessage, follows the return type. By con-
vention, function names begin with a lowercase first letter and all subsequent words in the
name begin with a capital letter. The parentheses after the member function name indicate
that this is a function. An empty set of parentheses, as shown in line 12, indicates that this
member function does not require additional data to perform its task. You’ll see an
example of a member function that does require additional data in Section 16.4. Line 12
is commonly referred to as the function header. Every function’s body is delimited by left
and right braces ({ and }), as in lines 13 and 15.

The body of a function contains statements that perform the function’s task. In this
case, member function displayMessage contains one statement (line 14) that displays the
message "Welcome to the Grade Book!". After this statement executes, the function has
completed its task.

Testing Class GradeBook
Next, we’d like to use class GradeBook in a program. As you know, function main (lines
19–23) begins the execution of every program.

In this program, we’d like to call class GradeBook’s displayMessage member function
to display the welcome message. Typically, you cannot call a member function of a class
until you create an object of that class. (As you’ll learn in Section 18.6, static member

Common Programming Error 16.2
Returning a value from a function whose return type has been declared void is a compi-
lation error.

Common Programming Error 16.3
Defining a function inside another function (i.e., “nesting” functions) is a syntax error.

16.3 Defining a Class with a Member Function 565

functions are an exception.) Line 21 creates an object of class GradeBook called myGrade-
Book. The variable’s type is GradeBook—the class we defined in lines 8–16. When we
declare variables of type int, the compiler knows what int is—it’s a fundamental type. In
line 21, however, the compiler does not automatically know what type GradeBook is—it’s
a user-defined type. We tell the compiler what GradeBook is by including the class defini-
tion (lines 8–16). If we omitted these lines, the compiler would issue an error message
(such as “'GradeBook': undeclared identifier” in Microsoft Visual C++ or
“'GradeBook': undeclared” in GNU C++). Each class you create becomes a new type
that can be used to create objects. You can define new class types as needed; this is one
reason why C++ is known as an extensible language.

Line 22 calls the member function displayMessage (defined in lines 12–15) using
variable myGradeBook followed by the dot operator (.), the function name display-
Message and an empty set of parentheses. This call causes the displayMessage function to
perform its task. At the beginning of line 22, “myGradeBook.” indicates that main should
use the GradeBook object that was created in line 21. The empty parentheses in line 12 indi-
cate that member function displayMessage does not require additional data to perform its
task, which is why we called this function with empty parentheses in line 22. (In
Section 16.4, you’ll see how to pass data to a function.) When displayMessage completes
its task, the program reaches the end of main and terminates.

UML Class Diagram for Class GradeBook
Recall from Section 15.13 that the UML is a standardized graphical language used by soft-
ware developers to represent their object-oriented systems. In the UML, each class is mod-
eled in a UML class diagram as a rectangle with three compartments. Figure 16.2 presents
a class diagram for class GradeBook (Fig. 16.1). The top compartment contains the class’s
name centered horizontally and in boldface type. The middle compartment contains the
class’s attributes, which correspond to data members in C++. This compartment is cur-
rently empty, because class GradeBook does not have any attributes. (Section 16.5 presents
a version of class GradeBook with an attribute.) The bottom compartment contains the
class’s operations, which correspond to member functions in C++. The UML models op-
erations by listing the operation name followed by a set of parentheses. Class GradeBook
has only one member function, displayMessage, so the bottom compartment of Fig. 16.2
lists one operation with this name. Member function displayMessage does not require
additional information to perform its tasks, so the parentheses following displayMessage
in the class diagram are empty, just as they are in the member function’s header in line 12
of Fig. 16.1. The plus sign (+) in front of the operation name indicates that display-
Message is a public operation in the UML (i.e., a public member function in C++).

Fig. 16.2 | UML class diagram indicating that class GradeBook has a public
displayMessage operation.

GradeBook

+ displayMessage()

566 Chapter 16 Introduction to Classes and Objects

16.4 Defining a Member Function with a Parameter
In our car analogy from Section 16.2, we mentioned that pressing a car’s gas pedal sends
a message to the car to perform a task—make the car go faster. But how fast should the car
accelerate? As you know, the farther down you press the pedal, the faster the car acceler-
ates. So the message to the car includes both the task to perform and additional informa-
tion that helps the car perform the task. This additional information is known as a
parameter—the value of the parameter helps the car determine how fast to accelerate.
Similarly, a member function can require one or more parameters that represent additional
data it needs to perform its task. A function call supplies values—called arguments—for
each of the function’s parameters. For example, to make a deposit into a bank account,
suppose a deposit member function of an Account class specifies a parameter that repre-
sents the deposit amount. When the deposit member function is called, an argument val-
ue representing the deposit amount is copied to the member function’s parameter. The
member function then adds that amount to the account balance.

Defining and Testing Class GradeBook
Our next example (Fig. 16.3) redefines class GradeBook (lines 9–18) with a display-
Message member function (lines 13–17) that displays the course name as part of the wel-
come message. The new version of displayMessage requires a parameter (courseName in
line 13) that represents the course name to output.

1 // Fig. 16.3: fig16_03.cpp
2 // Define class GradeBook with a member function that takes a parameter;
3 // Create a GradeBook object and call its displayMessage function.
4 #include <iostream>
5
6 using namespace std;
7
8 // GradeBook class definition
9 class GradeBook

10 {
11 public:
12 // function that displays a welcome message to the GradeBook user
13 void displayMessage()
14 {
15 cout << "Welcome to the grade book for\n" << << "!"
16 << endl;
17 } // end function displayMessage
18 }; // end class GradeBook
19
20 // function main begins program execution
21 int main()
22 {
23 // string of characters to store the course name
24 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
25

Fig. 16.3 | Define class GradeBook with a member function that takes a parameter, create a
GradeBook object and call its displayMessage function. (Part 1 of 2.)

#include <string> // program uses C++ standard string class

string courseName

courseName

string nameOfCourse;

16.4 Defining a Member Function with a Parameter 567

Before discussing the new features of class GradeBook, let’s see how the new class is
used in main (lines 21–34). Line 23 creates a variable of type string called nameOfCourse
that will be used to store the course name entered by the user. A variable of type string
represents a string of characters such as “CS101 Introduction to C++ Programming". A
string is actually an object of the C++ Standard Library class string. This class is defined
in header file <string>, and the name string, like cout, belongs to namespace std. To
enable line 23 to compile, line 5 includes the <string> header file. The using declaration
in line 6 allows us to simply write string in line 23 rather than std::string. For now,
you can think of string variables like variables of other types such as int. You’ll learn
additional string capabilities in Section 16.9.

Line 24 creates an object of class GradeBook named myGradeBook. Line 27 prompts
the user to enter a course name. Line 28 reads the name from the user and assigns it to the
nameOfCourse variable, using the library function getline to perform the input. Before
we explain this line of code, let’s explain why we cannot simply write

to obtain the course name. In our sample program execution, we use the course name
“CS101 Introduction to C++ Programming,” which contains multiple words. (Recall that
we highlight user-supplied input in bold.) When cin is used with the stream extraction
operator, it reads characters until the first white-space character is reached. Thus, only
“CS101” would be read by the preceding statement. The rest of the course name would
have to be read by subsequent input operations.

In this example, we’d like the user to type the complete course name and press Enter to
submit it to the program, and we’d like to store the entire course name in the string vari-
able nameOfCourse. The function call getline(cin, nameOfCourse) in line 28 reads
characters (including the space characters that separate the words in the input) from the
standard input stream object cin (i.e., the keyboard) until the newline character is encoun-
tered, places the characters in the string variable nameOfCourse and discards the newline
character. When you press Enter while typing program input, a newline is inserted in the

26 // prompt for and input course name
27 cout << "Please enter the course name:" << endl;
28
29 cout << endl; // output a blank line
30
31 // call myGradeBook's displayMessage function
32 // and pass nameOfCourse as an argument
33
34 } // end main

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

cin >> nameOfCourse;

Fig. 16.3 | Define class GradeBook with a member function that takes a parameter, create a
GradeBook object and call its displayMessage function. (Part 2 of 2.)

getline(cin, nameOfCourse); // read a course name with blanks

myGradeBook.displayMessage(nameOfCourse);

568 Chapter 16 Introduction to Classes and Objects

input stream. Also, the <string> header file must be included in the program to use func-
tion getline and that the name getline belongs to namespace std.

Line 33 calls myGradeBook’s displayMessage member function. The nameOfCourse
variable in parentheses is the argument that is passed to member function displayMessage
so that it can perform its task. The value of variable nameOfCourse in main becomes the
value of member function displayMessage’s parameter courseName in line 13. When you
execute this program, member function displayMessage outputs as part of the welcome
message the course name you type (in our sample execution, CS101 Introduction to C++

Programming).

More on Arguments and Parameters
To specify that a function requires data to perform its task, you place additional informa-
tion in the function’s parameter list, which is located in the parentheses following the
function name. The parameter list may contain any number of parameters, including none
at all (represented by empty parentheses as in Fig. 16.1, line 12) to indicate that a function
does not require any parameters. Member function displayMessage’s parameter list
(Fig. 16.3, line 13) declares that the function requires one parameter. Each parameter
must specify a type and an identifier. In this case, the type string and the identifier
courseName indicate that member function displayMessage requires a string to perform
its task. The member function body uses the parameter courseName to access the value that
is passed to the function in the function call (line 33 in main). Lines 15–16 display param-
eter courseName’s value as part of the welcome message. The parameter variable’s name
(line 13) can be the same as or different from the argument variable’s name (line 33).

A function can specify multiple parameters by separating each parameter from the
next with a comma. The number and order of arguments in a function call must match
the number and order of parameters in the parameter list of the called member function’s
header. Also, the argument types in the function call must be consistent with the types of
the corresponding parameters in the function header. (As you’ll learn in subsequent chap-
ters, an argument’s type and its corresponding parameter’s type need not always be iden-
tical, but they must be “consistent.”) In our example, the one string argument in the
function call (i.e., nameOfCourse) exactly matches the one string parameter in the
member-function definition (i.e., courseName).

Common Programming Error 16.4
Placing a semicolon after the right parenthesis enclosing the parameter list of a function
definition is a syntax error.

Common Programming Error 16.5
Defining a function parameter again as a variable in the function’s body is a compilation
error.

Good Programming Practice 16.1
To avoid ambiguity, do not use the same names for the arguments passed to a function
and the corresponding parameters in the function definition.

16.5 Data Members, set Functions and get Functions 569

Updated UML Class Diagram for Class GradeBook
The UML class diagram of Fig. 16.4 models class GradeBook of Fig. 16.3. Like the class
GradeBook defined in Fig. 16.1, this GradeBook class contains public member function
displayMessage. However, this version of displayMessage has a parameter. The UML
models a parameter by listing the parameter name, followed by a colon and the parameter
type in the parentheses following the operation name. The UML has its own data types
similar to those of C++. The UML is language independent—it’s used with many different
programming languages—so its terminology does not exactly match that of C++. For ex-
ample, the UML type String corresponds to the C++ type string. Member function dis-
playMessage of class GradeBook (Fig. 16.3, lines 13–17) has a string parameter named
courseName, so Fig. 16.4 lists courseName : String between the parentheses following the
operation name displayMessage. This version of the GradeBook class still does not have
any data members.

16.5 Data Members, set Functions and get Functions
Variables declared in a function definition’s body are known as local variables and can be
used only from the line of their declaration in the function to closing right brace (}) of the
block in which they’re declared. A local variable must be declared before it can be used in
a function. A local variable cannot be accessed outside the function in which it’s declared.
When a function terminates, the values of its local variables are lost. Recall from
Section 16.2 that an object has attributes that are carried with it as it’s used in a program.
Such attributes exist throughout the life of the object.

A class normally consists of one or more member functions that manipulate the attri-
butes that belong to a particular object of the class. Attributes are represented as variables
in a class definition. Such variables are called data members and are declared inside a class
definition but outside the bodies of the class’s member-function definitions. Each object
of a class maintains its own copy of its attributes in memory. The example in this section
demonstrates a GradeBook class that contains a courseName data member to represent a
particular GradeBook object’s course name.

Good Programming Practice 16.2
Choosing meaningful function names and meaningful parameter names makes programs
more readable and helps avoid excessive use of comments.

Fig. 16.4 | UML class diagram indicating that class GradeBook has a public
displayMessage operation with a courseName parameter of UML type String.

GradeBook

+ displayMessage(courseName : String)

570 Chapter 16 Introduction to Classes and Objects

GradeBook Class with a Data Member, a set Function and a get Function
In our next example, class GradeBook (Fig. 16.5) maintains the course name as a data
member so that it can be used or modified at any time during a program’s execution. The
class contains member functions setCourseName, getCourseName and displayMessage.
Member function setCourseName stores a course name in a GradeBook data member.
Member function getCourseName obtains the course name from that data member. Mem-
ber function displayMessage—which now specifies no parameters—still displays a wel-
come message that includes the course name. However, as you’ll see, the function now
obtains the course name by calling another function in the same class—getCourseName.

A typical instructor teaches multiple courses, each with its own course name. Line 34
declares that courseName is a variable of type string. Because the variable is declared in
the class definition (lines 10–35) but outside the bodies of the class’s member-function
definitions (lines 14–17, 20–23 and 26–32), the variable is a data member. Every instance
(i.e., object) of class GradeBook contains one copy of each of the class’s data members—if
there are two GradeBook objects, each has its own copy of courseName (one per object), as
you’ll see in the example of Fig. 16.7. A benefit of making courseName a data member is
that all the member functions of the class (in this case, class GradeBook) can manipulate
any data members that appear in the class definition (in this case, courseName).

Good Programming Practice 16.3
Place a blank line between member-function definitions to enhance program readability.

1 // Fig. 16.5: fig16_05.cpp
2 // Define class GradeBook that contains a courseName data member
3 // and member functions to set and get its value;
4 // Create and manipulate a GradeBook object with these functions.
5 #include <iostream>
6 #include <string> // program uses C++ standard string class
7 using namespace std;
8
9 // GradeBook class definition

10 class GradeBook
11 {
12 public:
13
14
15
16
17
18
19
20
21
22
23

Fig. 16.5 | Defining and testing class GradeBook with a data member and set and get functions.
(Part 1 of 2.)

// function that sets the course name
void setCourseName(string name)
{
 courseName = name; // store the course name in the object
} // end function setCourseName

// function that gets the course name
string getCourseName()
{

return courseName; // return the object's courseName
} // end function getCourseName

16.5 Data Members, set Functions and get Functions 571

Access Specifiers public and private
Most data-member declarations appear after the access-specifier label private: (line 33).
Like public, keyword private is an access specifier. Variables or functions declared after
access specifier private (and before the next access specifier) are accessible only to member
functions of the class for which they’re declared. Thus, data member courseName can be
used only in member functions setCourseName, getCourseName and displayMessage of
(every object of) class GradeBook. Data member courseName, because it’s private, cannot
be accessed by functions outside the class (such as main) or by member functions of other
classes in the program. Attempting to access data member courseName in one of these pro-

24
25 // function that displays a welcome message
26 void displayMessage()
27 {
28 // this statement calls getCourseName to get the
29 // name of the course this GradeBook represents
30 cout << "Welcome to the grade book for\n" << << "!"
31 << endl;
32 } // end function displayMessage
33
34
35 }; // end class GradeBook
36
37 // function main begins program execution
38 int main()
39 {
40 string nameOfCourse; // string of characters to store the course name
41 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
42
43 // display initial value of courseName
44 cout << "Initial course name is: " <<
45 << endl;
46
47 // prompt for, input and set course name
48 cout << "\nPlease enter the course name:" << endl;
49 getline(cin, nameOfCourse); // read a course name with blanks
50
51
52 cout << endl; // outputs a blank line
53 myGradeBook.displayMessage(); // display message with new course name
54 } // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 16.5 | Defining and testing class GradeBook with a data member and set and get functions.
(Part 2 of 2.)

getCourseName()

private:
 string courseName; // course name for this GradeBook

myGradeBook.getCourseName()

myGradeBook.setCourseName(nameOfCourse); // set the course name

572 Chapter 16 Introduction to Classes and Objects

gram locations with an expression such as myGradeBook.courseName would result in a
compilation error containing a message similar to

The default access for class members is private so all members after the class header
and before the first access specifier are private. The access specifiers public and private
may be repeated, but this is unnecessary and can be confusing.

Declaring data members with access specifier private is known as data hiding. When
a program creates (instantiates) a GradeBook object, data member courseName is encapsu-
lated (hidden) in the object and can be accessed only by member functions of the object’s
class. In class GradeBook, member functions setCourseName and getCourseName manipu-
late the data member courseName directly (and displayMessage could do so if necessary).

Member Functions setCourseName and getCourseName
Member function setCourseName (defined in lines 14–17) does not return any data when
it completes its task, so its return type is void. The member function receives one param-

cannot access private member declared in class 'GradeBook'

Software Engineering Observation 16.1
Generally, data members should be declared private and member functions should be
declared public. (We’ll see that it’s appropriate to declare certain member functions
private, if they’re to be accessed only by other member functions of the class.)

Common Programming Error 16.6
An attempt by a function, which is not a member of a particular class (or a friend of that
class, as we’ll see in Chapter 18, Classes: A Deeper Look, Part 2), to access a private
member of that class is a compilation error.

Good Programming Practice 16.4
Despite the fact that the public and private access specifiers may be repeated and inter-
mixed, list all the public members of a class first in one group then list all the private
members in another group. This focuses the programmer’s attention on the class’s public
interface, rather than on the class’s implementation.

Good Programming Practice 16.5
If you choose to list the private members first in a class definition, explicitly use the pri-
vate access specifier despite the fact that private is assumed by default. This improves
program clarity.

Software Engineering Observation 16.2
You’ll learn in Chapter 18 that functions and classes declared by a class to be “friends”
can access the private members of the class.

Error-Prevention Tip 16.1
Making the data members of a class private and the member functions of the class pub-
lic facilitates debugging because problems with data manipulations are localized to ei-
ther the class’s member functions or the friends of the class.

16.5 Data Members, set Functions and get Functions 573

eter—name—which represents the course name that will be passed to it as an argument (as
we’ll see in line 50 of main). Line 16 assigns name to data member courseName. In this ex-
ample, setCourseName does not attempt to validate the course name—i.e., the function
does not check that the course name adheres to any particular format or follows any other
rules regarding what a “valid” course name looks like. Suppose, for instance, that a univer-
sity can print student transcripts containing course names of only 25 characters or fewer. In
this case, we might want class GradeBook to ensure that its data member courseName never
contains more than 25 characters. We discuss basic validation techniques in Section 16.9.

Member function getCourseName (defined in lines 20–23) returns a particular
GradeBook object’s courseName. The member function has an empty parameter list, so it
does not require additional data to perform its task. The function specifies that it returns
a string. When a function that specifies a return type other than void is called and com-
pletes its task, the function uses a return statement (as in line 22) to return a result to its
calling function. For example, when you go to an automated teller machine (ATM) and
request your account balance, you expect the ATM to give you back a value that represents
your balance. Similarly, when a statement calls member function getCourseName on a
GradeBook object, the statement expects to receive the GradeBook’s course name (in this
case, a string, as specified by the function’s return type). If you have a function square
that returns the square of its argument, the statement

returns 4 from function square and assigns to variable result the value 4. If you have a
function maximum that returns the largest of three integer arguments, the statement

returns 114 from function maximum and assigns to variable biggest the value 114.

The statements in lines 16 and 22 each use variable courseName (line 34) even though
it was not declared in any of the member functions. We can use courseName in the
member functions of class GradeBook because courseName is a data member of the class.
So member function getCourseName could be defined before member function set-
CourseName.

Member Function displayMessage
Member function displayMessage (lines 26–32) does not return any data when it com-
pletes its task, so its return type is void. The function does not receive parameters, so its
parameter list is empty. Lines 30–31 output a welcome message that includes the value of
data member courseName. Line 30 calls member function getCourseName to obtain the
value of courseName. Member function displayMessage could also access data member
courseName directly, just as member functions setCourseName and getCourseName do.
We explain shortly why we choose to call member function getCourseName to obtain the
value of courseName.

result = square(2);

biggest = maximum(27, 114, 51);

Common Programming Error 16.7
Forgetting to return a value from a function that is supposed to return a value is a com-
pilation error.

574 Chapter 16 Introduction to Classes and Objects

Testing Class GradeBook
The main function (lines 38–54) creates one object of class GradeBook and uses each of its
member functions. Line 41 creates a GradeBook object named myGradeBook. Lines 44–45
display the initial course name by calling the object’s getCourseName member function. The
first line of the output does not show a course name, because the object’s courseName data
member (i.e., a string) is initially empty—by default, the initial value of a string is the
so-called empty string, i.e., a string that does not contain any characters. Nothing appears
on the screen when an empty string is displayed.

Line 48 prompts the user to enter a course name. Local string variable nameOfCourse
(declared in line 40) is set to the course name entered by the user, which is obtained by the
call to the getline function (line 49). Line 50 calls object myGradeBook’s setCourseName
member function and supplies nameOfCourse as the function’s argument. When the func-
tion is called, the argument’s value is copied to parameter name (line 14) of member func-
tion setCourseName. Then the parameter’s value is assigned to data member courseName
(line 16). Line 52 skips a line; then line 53 calls object myGradeBook’s displayMessage

member function to display the welcome message containing the course name.

Software Engineering with Set and Get Functions
A class’s private data members can be manipulated only by member functions of that
class (and by “friends” of the class, as we’ll see in Chapter 18). So a client of an object—
that is, any class or function that calls the object’s member functions from outside the ob-
ject—calls the class’s public member functions to request the class’s services for particular
objects of the class. This is why the statements in function main call member functions
setCourseName, getCourseName and displayMessage on a GradeBook object. Classes of-
ten provide public member functions to allow clients of the class to set (i.e., assign values
to) or get (i.e., obtain the values of) private data members. These member function names
need not begin with set or get, but this naming convention is common. In this example,
the member function that sets the courseName data member is called setCourseName, and
the member function that gets the value of the courseName data member is called get-
CourseName. Set functions are also sometimes called mutators (because they mutate, or
change, values), and get functions are also sometimes called accessors (because they access
values).

Recall that declaring data members with access specifier private enforces data hiding.
Providing public set and get functions allows clients of a class to access the hidden data,
but only indirectly. The client knows that it’s attempting to modify or obtain an object’s
data, but the client does not know how the object performs these operations. In some
cases, a class may internally represent a piece of data one way, but expose that data to cli-
ents in a different way. For example, suppose a Clock class represents the time of day as a
private int data member time that stores the number of seconds since midnight. How-
ever, when a client calls a Clock object’s getTime member function, the object could
return the time with hours, minutes and seconds in a string in the format "HH:MM:SS".
Similarly, suppose the Clock class provides a set function named setTime that takes a
string parameter in the "HH:MM:SS" format. Using string class capabilities, the setTime
function could convert this string to a number of seconds, which the function stores in
its private data member. The set function could also check that the value it receives rep-
resents a valid time (e.g., "12:30:45" is valid but "42:85:70" is not). The set and get func-

16.5 Data Members, set Functions and get Functions 575

tions allow a client to interact with an object, but the object’s private data remains safely
encapsulated (i.e., hidden) in the object itself.

The set and get functions of a class also should be used by other member functions
within the class to manipulate the class’s private data, although these member functions
can access the private data directly. In Fig. 16.5, member functions setCourseName and
getCourseName are public member functions, so they’re accessible to clients of the class,
as well as to the class itself. Member function displayMessage calls member function get-
CourseName to obtain the value of data member courseName for display purposes, even
though displayMessage can access courseName directly—accessing a data member via its
get function creates a better, more robust class (i.e., a class that is easier to maintain and
less likely to stop working). If we decide to change the data member courseName in some
way, the displayMessage definition will not require modification—only the bodies of the
get and set functions that directly manipulate the data member will need to change. For
example, suppose we want to represent the course name as two separate data members—
courseNumber (e.g., "CS101") and courseTitle (e.g., "Introduction to C++ Program-
ming"). Member function displayMessage can still issue a single call to member function
getCourseName to obtain the full course name to display as part of the welcome message.
In this case, getCourseName would need to build and return a string containing the
courseNumber followed by the courseTitle. Member function displayMessage would
continue to display the complete course title “CS101 Introduction to C++ Programming,”
because it’s unaffected by the change to the class’s data members. The benefits of calling a
set function from another member function of a class will become clear when we discuss
validation in Section 16.9.

GradeBook’s UML Class Diagram with a Data Member and set and get Functions
Figure 16.6 contains an updated UML class diagram for the version of class GradeBook in
Fig. 16.5. This diagram models GradeBook’s data member courseName as an attribute in
the middle compartment. The UML represents data members as attributes by listing the
attribute name, followed by a colon and the attribute type. The UML type of attribute
courseName is String, which corresponds to string in C++. Data member courseName is
private in C++, so the class diagram lists a minus sign (–) in front of the corresponding

Good Programming Practice 16.6
Always try to localize the effects of changes to a class’s data members by accessing and ma-
nipulating the data members through their get and set functions. Changes to the name of
a data member or the data type used to store a data member then affect only the corre-
sponding get and set functions, but not the callers of those functions.

Software Engineering Observation 16.3
Write programs that are understandable and easy to maintain. Change is the rule rather
than the exception. You should anticipate that your code will be modified.

Software Engineering Observation 16.4
Provide set or get functions for each private data item only when appropriate. Services
useful to the client should typically be provided in the class’s public interface.

576 Chapter 16 Introduction to Classes and Objects

attribute’s name. The minus sign in the UML is equivalent to the private access specifier
in C++. Class GradeBook contains three public member functions, so the class diagram
lists three operations in the third compartment. Operation setCourseName has a String
parameter called name. The UML indicates the return type of an operation by placing a
colon and the return type after the parentheses following the operation name. Member
function getCourseName of class GradeBook has a string return type in C++, so the class
diagram shows a String return type in the UML. Operations setCourseName and dis-
playMessage do not return values (i.e., they return void), so the UML class diagram does
not specify a return type after the parentheses of these operations.

16.6 Initializing Objects with Constructors
As mentioned in Section 16.5, when an object of class GradeBook (Fig. 16.5) is created, its
data member courseName is initialized to the empty string by default. What if you want
to provide a course name when you create a GradeBook object? Each class you declare can
provide a constructor that can be used to initialize an object of the class when the object
is created. A constructor is a special member function that must be defined with the same
name as the class, so that the compiler can distinguish it from the class’s other member
functions. An important difference between constructors and other functions is that con-
structors cannot return values, so they cannot specify a return type (not even void). Nor-
mally, constructors are declared public.

C++ requires a constructor call for each object that is created, which helps ensure that
each object is initialized before it’s used in a program. The constructor call occurs implic-
itly when the object is created. If a class does not explicitly include a constructor, the com-
piler provides a default constructor—that is, a constructor with no parameters. For
example, when line 41 of Fig. 16.5 creates a GradeBook object, the default constructor is
called. The default constructor provided by the compiler creates a GradeBook object
without giving any initial values to the object’s fundamental type data members. [Note:
For data members that are objects of other classes, the default constructor implicitly calls
each data member’s default constructor to ensure that the data member is initialized prop-
erly. This is why the string data member courseName (in Fig. 16.5) was initialized to the
empty string—the default constructor for class string sets the string’s value to the empty
string. You’ll learn more about initializing data members that are objects of other classes
in Section 18.3.]

In the example of Fig. 16.7, we specify a course name for a GradeBook object when
the object is created (e.g., line 46). In this case, the argument "CS101 Introduction to C++

Fig. 16.6 | UML class diagram for class GradeBook with a private courseName attribute and
public operations setCourseName, getCourseName and displayMessage.

GradeBook

– courseName : String

+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

16.6 Initializing Objects with Constructors 577

Programming" is passed to the GradeBook object’s constructor (lines 14–17) and used to
initialize the courseName. Figure 16.7 defines a modified GradeBook class containing a
constructor with a string parameter that receives the initial course name.

1 // Fig. 16.7: fig16_07.cpp
2 // Instantiating multiple objects of the GradeBook class and using
3 // the GradeBook constructor to specify the course name
4 // when each GradeBook object is created.
5 #include <iostream>
6 #include <string> // program uses C++ standard string class
7 using namespace std;
8
9 // GradeBook class definition

10 class GradeBook
11 {
12 public:
13
14
15
16
17
18
19 // function to set the course name
20 void setCourseName(string name)
21 {
22 courseName = name; // store the course name in the object
23 } // end function setCourseName
24
25 // function to get the course name
26 string getCourseName()
27 {
28 return courseName; // return object's courseName
29 } // end function getCourseName
30
31 // display a welcome message to the GradeBook user
32 void displayMessage()
33 {
34 // call getCourseName to get the courseName
35 cout << "Welcome to the grade book for\n" << getCourseName()
36 << "!" << endl;
37 } // end function displayMessage
38 private:
39 string courseName; // course name for this GradeBook
40 }; // end class GradeBook
41
42 // function main begins program execution
43 int main()
44 {
45 // create two GradeBook objects
46
47

Fig. 16.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part 1 of 2.)

// constructor initializes courseName with string supplied as argument
GradeBook(string name)
{
 setCourseName(name); // call set function to initialize courseName
} // end GradeBook constructor

GradeBook gradeBook1("CS101 Introduction to C++ Programming");
GradeBook gradeBook2("CS102 Data Structures in C++");

578 Chapter 16 Introduction to Classes and Objects

Defining a Constructor
Lines 14–17 of Fig. 16.7 define a constructor for class GradeBook. Notice that the con-
structor has the same name as its class, GradeBook. A constructor specifies in its parameter
list the data it requires to perform its task. When you create a new object, you place this
data in the parentheses that follow the object name (as we did in lines 46–47). Line 14
indicates that class GradeBook’s constructor has a string parameter called name. Line 14
does not specify a return type, because constructors cannot return values (or even void).

Line 16 in the constructor’s body passes the constructor’s parameter name to member
function setCourseName (lines 20–23), which simply assigns the value of its parameter to
data member courseName. You might be wondering why we bother making the call to
setCourseName in line 16—the constructor certainly could perform the assignment
courseName = name. In Section 16.9, we modify setCourseName to perform validation
(ensuring that, in this case, the courseName is 25 or fewer characters in length). At that
point the benefits of calling setCourseName from the constructor will become clear. Both
the constructor (line 14) and the setCourseName function (line 20) use a parameter called
name. You can use the same parameter names in different functions because the parameters
are local to each function; they do not interfere with one another.

Testing Class GradeBook
Lines 43–53 of Fig. 16.7 define the main function that tests class GradeBook and demon-
strates initializing GradeBook objects using a constructor. Line 46 creates and initializes a
GradeBook object called gradeBook1. When this line executes, the GradeBook constructor
(lines 14–17) is called (implicitly by C++) with the argument "CS101 Introduction to

C++ Programming" to initialize gradeBook1’s course name. Line 47 repeats this process for
the GradeBook object called gradeBook2, this time passing the argument "CS102 Data

Structures in C++" to initialize gradeBook2’s course name. Lines 50–51 use each object’s
getCourseName member function to obtain the course names and show that they were in-
deed initialized when the objects were created. The output confirms that each GradeBook
object maintains its own copy of data member courseName.

Two Ways to Provide a Default Constructor for a Class
Any constructor that takes no arguments is called a default constructor. A class gets a de-
fault constructor in one of two ways:

48
49 // display initial value of courseName for each GradeBook
50 cout << "gradeBook1 created for course: " <<
51 << "\ngradeBook2 created for course: " <<
52 << endl;
53 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 16.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part 2 of 2.)

gradeBook1.getCourseName()
gradeBook2.getCourseName()

16.7 Placing a Class in a Separate File for Reusability 579

1. The compiler implicitly creates a default constructor in a class that does not de-
fine a constructor. Such a constructor does not initialize the class’s data members,
but does call the default constructor for each data member that is an object of an-
other class. An uninitialized variable typically contains a “garbage” value.

2. You explicitly define a constructor that takes no arguments. Such a default con-
structor will call the default constructor for each data member that is an object of
another class and will perform additional initialization specified by you.

If you define a constructor with arguments, C++ will not implicitly create a default con-
structor for that class. For each version of class GradeBook in Fig. 16.1, Fig. 16.3 and
Fig. 16.5 the compiler implicitly defined a default constructor.

Adding the Constructor to Class GradeBook’s UML Class Diagram
The UML class diagram of Fig. 16.8 models class GradeBook of Fig. 16.7, which has a
constructor with a name parameter of type string (represented by type String in the
UML). Like operations, the UML models constructors in the third compartment of a class
in a class diagram. To distinguish a constructor from a class’s operations, the UML places
the word “constructor” between guillemets (« and ») before the constructor’s name. It’s
customary to list the class’s constructor before other operations in the third compartment.

16.7 Placing a Class in a Separate File for Reusability
One of the benefits of creating class definitions is that, when packaged properly, our classes
can be reused by programmers—potentially worldwide. For example, we can reuse C++

Error-Prevention Tip 16.2
Unless no initialization of your class’s data members is necessary (almost never), provide
a constructor to ensure that your class’s data members are initialized with meaningful val-
ues when each new object of your class is created.

Software Engineering Observation 16.5
Data members can be initialized in a constructor, or their values may be set later after
the object is created. However, it’s a good software engineering practice to ensure that an
object is fully initialized before the client code invokes the object’s member functions. You
should not rely on the client code to ensure that an object gets initialized properly.

Fig. 16.8 | UML class diagram indicating that class GradeBook has a constructor with a
name parameter of UML type String.

GradeBook

– courseName : String

«constructor» + GradeBook(name : String)
+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

580 Chapter 16 Introduction to Classes and Objects

Standard Library type string in any C++ program by including the header file <string>
(and, as we’ll see, by being able to link to the library’s object code).

Programmers who wish to use our GradeBook class cannot simply include the file from
Fig. 16.7 in another program. As you know, function main begins the execution of every
program, and every program must have exactly one main function. If other programmers
include the code from Fig. 16.7, they get extra baggage—our main function—and their
programs will then have two main functions. Attempting to compile a program with two
main functions in Microsoft Visual C++ produces an error such as

when the compiler tries to compile the second main function it encounters. Similarly, the
GNU C++ compiler produces the error

These errors indicate that a program already has a main function. So, placing main in the
same file with a class definition prevents that class from being reused by other programs.
In this section, we demonstrate how to make class GradeBook reusable by separating it into
another file from the main function.

Header Files
Each of the previous examples in the chapter consists of a single .cpp file, also known as a
source-code file, that contains a GradeBook class definition and a main function. When
building an object-oriented C++ program, it’s customary to define reusable source code
(such as a class) in a file that by convention has a .h filename extension—known as a head-
er file. Programs use #include preprocessor directives to include header files and take ad-
vantage of reusable software components, such as type string provided in the C++
Standard Library and user-defined types like class GradeBook.

Our next example separates the code from Fig. 16.7 into two files—GradeBook.h

(Fig. 16.9) and fig16_10.cpp (Fig. 16.10). As you look at the header file in Fig. 16.9,
notice that it contains only the GradeBook class definition (lines 8–38), the appropriate
header files and a using declaration. The main function that uses class GradeBook is
defined in the source-code file fig16_10.cpp (Fig. 16.10) in lines 8–18. To help you pre-
pare for the larger programs you’ll encounter later in this book and in industry, we often
use a separate source-code file containing function main to test our classes (this is called a
driver program). You’ll soon learn how a source-code file with main can use the class def-
inition found in a header file to create objects of a class.

error C2084: function 'int main(void)' already has a body

redefinition of 'int main()'

1 // Fig. 16.9:
2 // GradeBook class definition in a separate file from main.
3 #include <iostream>
4 #include <string> // class GradeBook uses C++ standard string class
5 using namespace std;
6
7 // GradeBook class definition
8 class GradeBook
9 {

Fig. 16.9 | GradeBook class definition in a separate file from main. (Part 1 of 2.)

GradeBook.h

16.7 Placing a Class in a Separate File for Reusability 581

10 public:
11 // constructor initializes courseName with string supplied as argument
12 GradeBook(string name)
13 {
14 setCourseName(name); // call set function to initialize courseName
15 } // end GradeBook constructor
16
17 // function to set the course name
18 void setCourseName(string name)
19 {
20 courseName = name; // store the course name in the object
21 } // end function setCourseName
22
23 // function to get the course name
24 string getCourseName()
25 {
26 return courseName; // return object's courseName
27 } // end function getCourseName
28
29 // display a welcome message to the GradeBook user
30 void displayMessage()
31 {
32 // call getCourseName to get the courseName
33 cout << "Welcome to the grade book for\n" << getCourseName()
34 << "!" << endl;
35 } // end function displayMessage
36 private:
37 string courseName; // course name for this GradeBook
38 }; // end class GradeBook

1 // Fig. 16.10: fig16_10.cpp
2 // Including class GradeBook from file GradeBook.h for use in main.
3 #include <iostream>
4
5 using namespace std;
6
7 // function main begins program execution
8 int main()
9 {

10 // create two GradeBook objects
11 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
12 GradeBook gradeBook2("CS102 Data Structures in C++");
13
14 // display initial value of courseName for each GradeBook
15 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
16 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
17 << endl;
18 } // end main

Fig. 16.10 | Including class GradeBook from file GradeBook.h for use in main. (Part 1 of 2.)

Fig. 16.9 | GradeBook class definition in a separate file from main. (Part 2 of 2.)

#include "GradeBook.h" // include definition of class GradeBook

582 Chapter 16 Introduction to Classes and Objects

Including a Header File That Contains a User-Defined Class
A header file such as GradeBook.h (Fig. 16.9) cannot be used to begin program execution,
because it does not contain a main function. If you try to compile and link GradeBook.h
by itself to create an executable application, Microsoft Visual C++ 2008 produces the link-
er error message:

To compile and link with GNU C++ on Linux, you must first include the header file in a
.cpp source-code file, then GNU C++ produces a linker error message containing:

This error indicates that the linker could not locate the program’s main function. To test
class GradeBook (defined in Fig. 16.9), you must write a separate source-code file contain-
ing a main function (such as Fig. 16.10) that instantiates and uses objects of the class.

The compiler does not know what a GradeBook is because it’s a user-defined type. In
fact, the compiler doesn’t even know the classes in the C++ Standard Library. To help it
understand how to use a class, we must explicitly provide the compiler with the class’s def-
inition—that’s why, for example, to use type string, a program must include the
<string> header file. This enables the compiler to determine the amount of memory that
it must reserve for each object of the class and ensure that a program calls the class’s
member functions correctly.

To create GradeBook objects gradeBook1 and gradeBook2 in lines 11–12 of
Fig. 16.10, the compiler must know the size of a GradeBook object. While objects concep-
tually contain data members and member functions, C++ objects contain only data. The
compiler creates only one copy of the class’s member functions and shares that copy among
all the class’s objects. Each object, of course, needs its own copy of the class’s data mem-
bers, because their contents can vary among objects (such as two different BankAccount
objects having two different balance data members). The member-function code, how-
ever, is not modifiable, so it can be shared among all objects of the class. Therefore, the
size of an object depends on the amount of memory required to store the class’s data mem-
bers. By including GradeBook.h in line 4, we give the compiler access to the information
it needs (Fig. 16.9, line 37) to determine the size of a GradeBook object and to determine
whether objects of the class are used correctly (in lines 11–12 and 15–16 of Fig. 16.10).

Line 4 instructs the C++ preprocessor to replace the directive with a copy of the con-
tents of GradeBook.h (i.e., the GradeBook class definition) before the program is compiled.
When the source-code file fig16_10.cpp is compiled, it now contains the GradeBook class
definition (because of the #include), and the compiler is able to determine how to create
GradeBook objects and see that their member functions are called correctly. Now that the
class definition is in a header file (without a main function), we can include that header in
any program that needs to reuse our GradeBook class.

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

error LNK2001: unresolved external symbol _mainCRTStartup

undefined reference to 'main'

Fig. 16.10 | Including class GradeBook from file GradeBook.h for use in main. (Part 2 of 2.)

16.8 Separating Interface from Implementation 583

How Header Files Are Located
Notice that the name of the GradeBook.h header file in line 4 of Fig. 16.10 is enclosed in
quotes (" ") rather than angle brackets (< >). Normally, a program’s source-code files and
user-defined header files are placed in the same directory. When the preprocessor encoun-
ters a header file name in quotes, it attempts to locate the header file in the same directory
as the file in which the #include directive appears. If the preprocessor cannot find the
header file in that directory, it searches for it in the same location(s) as the C++ Standard
Library header files. When the preprocessor encounters a header file name in angle brack-
ets (e.g., <iostream>), it assumes that the header is part of the C++ Standard Library and
does not look in the directory of the program that is being preprocessed.

Additional Software Engineering Issues
Now that class GradeBook is defined in a header file, the class is reusable. Unfortunately,
placing a class definition in a header file as in Fig. 16.9 still reveals the entire implemen-
tation of the class to the class’s clients—GradeBook.h is simply a text file that anyone can
open and read. Conventional software engineering wisdom says that to use an object of a
class, the client code needs to know only what member functions to call, what arguments
to provide to each member function and what return type to expect from each member
function. The client code does not need to know how those functions are implemented.

If client code does know how a class is implemented, the client-code programmer
might write client code based on the class’s implementation details. Ideally, if that imple-
mentation changes, the class’s clients should not have to change. Hiding the class’s imple-
mentation details makes it easier to change the class’s implementation while minimizing,
and hopefully eliminating, changes to client code.

In Section 16.8, we show how to break up the GradeBook class into two files so that

1. the class is reusable,

2. the clients of the class know what member functions the class provides, how to
call them and what return types to expect, and

3. the clients do not know how the class’s member functions are implemented.

16.8 Separating Interface from Implementation
In the preceding section, we showed how to promote software reusability by separating a
class definition from the client code (e.g., function main) that uses the class. We now in-
troduce another fundamental principle of good software engineering—separating inter-
face from implementation.

Interface of a Class
Interfaces define and standardize the ways in which things such as people and systems in-
teract with one another. For example, a radio’s controls serve as an interface between the

Error-Prevention Tip 16.3
To ensure that the preprocessor can locate header files correctly, #include preprocessor di-
rectives should place the names of user-defined header files in quotes (e.g., "Grade-
Book.h") and place the names of C++ Standard Library header files in angle brackets
(e.g., <iostream>).

584 Chapter 16 Introduction to Classes and Objects

radio’s users and its internal components. The controls allow users to perform a limited
set of operations (such as changing the station, adjusting the volume, and choosing be-
tween AM and FM stations). Various radios may implement these operations different-
ly—some provide push buttons, some provide dials and some support voice commands.
The interface specifies what operations a radio permits users to perform but does not spec-
ify how the operations are implemented inside the radio.

Similarly, the interface of a class describes what services a class’s clients can use and
how to request those services, but not how the class carries out the services. A class’s public
interface consists of the class’s public member functions (also known as the class’s public
services). For example, class GradeBook’s interface (Fig. 16.9) contains a constructor and
member functions setCourseName, getCourseName and displayMessage. GradeBook’s
clients (e.g., main in Fig. 16.10) use these functions to request the class’s services. As you’ll
soon see, you can specify a class’s interface by writing a class definition that lists only the
member-function names, return types and parameter types.

Separating the Interface from the Implementation
In our prior examples, each class definition contained the complete definitions of the
class’s public member functions and the declarations of its private data members. How-
ever, it’s better software engineering to define member functions outside the class defini-
tion, so that their implementation details can be hidden from the client code. This practice
ensures that you do not write client code that depends on the class’s implementation de-
tails. If you were to do so, the client code would be more likely to “break” if the class’s
implementation changed.

The program of Figs. 16.11–16.13 separates class GradeBook’s interface from its
implementation by splitting the class definition of Fig. 16.9 into two files—the header file
GradeBook.h (Fig. 16.11) in which class GradeBook is defined, and the source-code file
GradeBook.cpp (Fig. 16.12) in which GradeBook’s member functions are defined. By con-
vention, member-function definitions are placed in a source-code file of the same base
name (e.g., GradeBook) as the class’s header file but with a .cpp filename extension. The
source-code file fig16_13.cpp (Fig. 16.13) defines function main (the client code). The
code and output of Fig. 16.13 are identical to that of Fig. 16.10. Figure 16.14 shows how
this three-file program is compiled from the perspectives of the GradeBook class pro-
grammer and the client-code programmer—we’ll explain this figure in detail.

GradeBook.h: Defining a Class’s Interface with Function Prototypes
Header file GradeBook.h (Fig. 16.11) contains another version of GradeBook’s class defi-
nition (lines 9–18). This version is similar to the one in Fig. 16.9, but the function defi-
nitions in Fig. 16.9 are replaced here with function prototypes (lines 12–15) that describe
the class’s public interface without revealing the class’s member-function implementa-
tions. A function prototype is a declaration of a function that tells the compiler the func-
tion’s name, its return type and the types of its parameters. Also, the header file still
specifies the class’s private data member (line 17) as well. Again, the compiler must know
the data members of the class to determine how much memory to reserve for each object
of the class. Including the header file GradeBook.h in the client code (line 5 of Fig. 16.13)
provides the compiler with the information it needs to ensure that the client code calls the
member functions of class GradeBook correctly.

16.8 Separating Interface from Implementation 585

The function prototype in line 12 (Fig. 16.11) indicates that the constructor requires
one string parameter. Recall that constructors do not have return types, so no return type
appears in the function prototype. Member function setCourseName’s function prototype
indicates that setCourseName requires a string parameter and does not return a value
(i.e., its return type is void). Member function getCourseName’s function prototype indi-
cates that the function does not require parameters and returns a string. Finally, member
function displayMessage’s function prototype (line 15) specifies that displayMessage
does not require parameters and does not return a value. These function prototypes are the
same as the corresponding function headers in Fig. 16.9, except that the parameter names
(which are optional in prototypes) are not included and each function prototype must end
with a semicolon.

1 // Fig. 16.11: GradeBook.h
2 // GradeBook class definition. This file presents GradeBook's public
3 // interface without revealing the implementations of GradeBook's member
4 // functions, which are defined in GradeBook.cpp.
5 #include <string> // class GradeBook uses C++ standard string class
6 using namespace std;
7
8 // GradeBook class definition
9 class GradeBook

10 {
11 public:
12
13
14
15
16 private:
17 string courseName; // course name for this GradeBook
18 }; // end class GradeBook

Fig. 16.11 | GradeBook class definition containing function prototypes that specify the
interface of the class.

Common Programming Error 16.8
Forgetting the semicolon at the end of a function prototype is a syntax error.

Good Programming Practice 16.7
Although parameter names in function prototypes are optional (they’re ignored by the
compiler), many programmers use these names for documentation purposes.

Error-Prevention Tip 16.4
Parameter names in a function prototype (which, again, are ignored by the compiler) can
be misleading if the names used do not match those used in the function definition. For
this reason, many programmers create function prototypes by copying the first line of the
corresponding function definitions (when the source code for the functions is available),
then appending a semicolon to the end of each prototype.

GradeBook(string); // constructor that initializes courseName
void setCourseName(string); // function that sets the course name
string getCourseName(); // function that gets the course name
void displayMessage(); // function that displays a welcome message

586 Chapter 16 Introduction to Classes and Objects

GradeBook.cpp: Defining Member Functions in a Separate Source-Code File
Source-code file GradeBook.cpp (Fig. 16.12) defines class GradeBook’s member functions,
which were declared in lines 12–15 of Fig. 16.11. The definitions appear in lines 9–32 and
are nearly identical to the member-function definitions in lines 12–35 of Fig. 16.9.

Notice that each member-function name in the function headers (lines 9, 15, 21 and
27) is preceded by the class name and ::, which is known as the binary scope resolution
operator. This “ties” each member function to the (now separate) GradeBook class definition
(Fig. 16.11), which declares the class’s member functions and data members. Without
“GradeBook::” preceding each function name, these functions would not be recognized by
the compiler as member functions of class GradeBook—the compiler would consider them
“free” or “loose” functions, like main. These are also called global functions. Such functions
cannot access GradeBook’s private data or call the class’s member functions, without spec-
ifying an object. So, the compiler would not be able to compile these functions. For
example, lines 17 and 23 that access variable courseName would cause compilation errors

1 // Fig. 16.12: GradeBook.cpp
2 // GradeBook member-function definitions. This file contains
3 // implementations of the member functions prototyped in GradeBook.h.
4 #include <iostream>
5
6 using namespace std;
7
8 // constructor initializes courseName with string supplied as argument
9

10 {
11 setCourseName(name); // call set function to initialize courseName
12 } // end GradeBook constructor
13
14 // function to set the course name
15
16 {
17 courseName = name; // store the course name in the object
18 } // end function setCourseName
19
20 // function to get the course name
21
22 {
23 return courseName; // return object's courseName
24 } // end function getCourseName
25
26 // display a welcome message to the GradeBook user
27
28 {
29 // call getCourseName to get the courseName
30 cout << "Welcome to the grade book for\n" << getCourseName()
31 << "!" << endl;
32 } // end function displayMessage

Fig. 16.12 | GradeBook member-function definitions represent the implementation of class
GradeBook.

#include "GradeBook.h" // include definition of class GradeBook

GradeBook::GradeBook(string name)

void GradeBook::setCourseName(string name)

string GradeBook::getCourseName()

void GradeBook::displayMessage()

16.8 Separating Interface from Implementation 587

because courseName is not declared as a local variable in each function—the compiler would
not know that courseName is already declared as a data member of class GradeBook.

To indicate that the member functions in GradeBook.cpp are part of class GradeBook,
we must first include the GradeBook.h header file (line 5 of Fig. 16.12). This allows us to
access the class name GradeBook in the GradeBook.cpp file. When compiling Grade-
Book.cpp, the compiler uses the information in GradeBook.h to ensure that

1. the first line of each member function (lines 9, 15, 21 and 27) matches its proto-
type in the GradeBook.h file—for example, the compiler ensures that getCourse-
Name accepts no parameters and returns a string, and that

2. each member function knows about the class’s data members and other member
functions—for example, lines 17 and 23 can access variable courseName because
it’s declared in GradeBook.h as a data member of class GradeBook, and lines 11
and 30 can call functions setCourseName and getCourseName, respectively, be-
cause each is declared as a member function of the class in GradeBook.h (and be-
cause these calls conform with the corresponding prototypes).

Testing Class GradeBook
Figure 16.13 performs the same GradeBook object manipulations as Fig. 16.10. Separat-
ing GradeBook’s interface from the implementation of its member functions does not af-
fect the way that this client code uses the class. It affects only how the program is compiled
and linked, which we discuss in detail shortly.

Common Programming Error 16.9
When defining a class’s member functions outside that class, omitting the class name and bi-
nary scope resolution operator (::) preceding the function names causes compilation errors.

1 // Fig. 16.13: fig16_13.cpp
2 // GradeBook class demonstration after separating
3 // its interface from its implementation.
4 #include <iostream>
5
6 using namespace std;
7
8 // function main begins program execution
9 int main()

10 {
11 // create two GradeBook objects
12 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
13 GradeBook gradeBook2("CS102 Data Structures in C++");
14
15 // display initial value of courseName for each GradeBook
16 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
17 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
18 << endl;
19 } // end main

Fig. 16.13 | GradeBook class demonstration after separating its interface from its
implementation. (Part 1 of 2.)

#include "GradeBook.h" // include definition of class GradeBook

588 Chapter 16 Introduction to Classes and Objects

As in Fig. 16.10, line 5 of Fig. 16.13 includes the GradeBook.h header file so that the
compiler can ensure that GradeBook objects are created and manipulated correctly in the
client code. Before executing this program, the source-code files in Fig. 16.12 and
Fig. 16.13 must both be compiled, then linked together—that is, the member-function
calls in the client code need to be tied to the implementations of the class’s member func-
tions—a job performed by the linker.

The Compilation and Linking Process
The diagram in Fig. 16.14 shows the compilation and linking process that results in an
executable GradeBook application that can be used by instructors. Often a class’s interface
and implementation will be created and compiled by one programmer and used by a sep-
arate programmer who implements the client code that uses the class. So, the diagram
shows what’s required by both the class-implementation programmer and the client-code
programmer. The dashed lines in the diagram show the pieces required by the class-imple-
mentation programmer, the client-code programmer and the GradeBook application user,
respectively. [Note: Figure 16.14 is not a UML diagram.]

A class-implementation programmer responsible for creating a reusable GradeBook
class creates the header file GradeBook.h and the source-code file GradeBook.cpp that
#includes the header file, then compiles the source-code file to create GradeBook’s object
code. To hide the class’s member-function implementation details, the class-implementa-
tion programmer would provide the client-code programmer with the header file Grade-
Book.h (which specifies the class’s interface and data members) and the GradeBook object
code (i.e., the machine-language instructions that represent GradeBook’s member func-
tions). The client-code programmer is not given GradeBook.cpp, so the client remains
unaware of how GradeBook’s member functions are implemented.

The client code needs to know only GradeBook’s interface to use the class and must
be able to link its object code. Since the interface of the class is part of the class definition
in the GradeBook.h header file, the client-code programmer must have access to this file
and must #include it in the client’s source-code file. When the client code is compiled,
the compiler uses the class definition in GradeBook.h to ensure that the main function cre-
ates and manipulates objects of class GradeBook correctly.

To create the executable GradeBook application, the last step is to link

1. the object code for the main function (i.e., the client code),

2. the object code for class GradeBook’s member-function implementations and

3. the C++ Standard Library object code for the C++ classes (e.g., string) used by
the class-implementation programmer and the client-code programmer.

The linker’s output is the executable GradeBook application that instructors can use to
manage their students’ grades. Compilers and IDEs typically invoke the linker for you af-
ter compiling your code.

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 16.13 | GradeBook class demonstration after separating its interface from its
implementation. (Part 2 of 2.)

16.9 Validating Data with set Functions 589

For further information on compiling multiple-source-file programs, see your com-
piler’s documentation. We provide links to various C++ compilers in our C++ Resource
Center at www.deitel.com/cplusplus/.

16.9 Validating Data with set Functions
In Section 16.5, we introduced set functions for allowing clients of a class to modify the
value of a private data member. In Fig. 16.5, class GradeBook defines member function

Fig. 16.14 | Compilation and linking process that produces an executable application.

GradeBook
Application User

Class Implementation
Programmer

Client Code
Programmer

GradeBook
executable application

GradeBook.h
class definition/interface

main function
(client source code)

GradeBook class's
object code

main function's
object code

compilercompiler

linker

GradeBook.cpp
implementation file

C++ Standard Library
object code

www.deitel.com/cplusplus/

590 Chapter 16 Introduction to Classes and Objects

setCourseName to simply assign a value received in its parameter name to data member
courseName. This member function does not ensure that the course name adheres to any
particular format or follows any other rules regarding what a “valid” course name looks
like. As we stated earlier, suppose that a university can print student transcripts containing
course names of only 25 characters or less. If the university uses a system containing
GradeBook objects to generate the transcripts, we might want class GradeBook to ensure
that its data member courseName never contains more than 25 characters. The program
of Figs. 16.15–16.17 enhances class GradeBook’s member function setCourseName to per-
form this validation (also known as validity checking).

GradeBook Class Definition
Notice that GradeBook’s class definition (Fig. 16.15)—and hence, its interface—is identi-
cal to that of Fig. 16.11. Since the interface remains unchanged, clients of this class need
not be changed when the definition of member function setCourseName is modified. This
enables clients to take advantage of the improved GradeBook class simply by linking the
client code to the updated GradeBook’s object code.

Validating the Course Name with GradeBook Member Function setCourseName
The enhancement to class GradeBook is in the definition of setCourseName (Fig. 16.16,
lines 16–29). The if statement in lines 18–19 determines whether parameter name con-
tains a valid course name (i.e., a string of 25 or fewer characters). If the course name is
valid, line 19 stores it in data member courseName. Note the expression name.length()
in line 18. This is a member-function call just like myGradeBook.displayMessage(). The
C++ Standard Library’s string class defines a member function length that returns the
number of characters in a string object. Parameter name is a string object, so the call
name.length() returns the number of characters in name. If this value is less than or equal
to 25, name is valid and line 19 executes.

The if statement in lines 21–28 handles the case in which setCourseName receives an
invalid course name (i.e., a name that is more than 25 characters long). Even if parameter

1 // Fig. 16.15: GradeBook.h
2 // GradeBook class definition presents the public interface of
3 // the class. Member-function definitions appear in GradeBook.cpp.
4 #include <string> // program uses C++ standard string class
5 using namespace std;
6
7 // GradeBook class definition
8 class GradeBook
9 {

10 public:
11 GradeBook(string); // constructor that initializes a GradeBook object
12 void setCourseName(string); // function that sets the course name
13 string getCourseName(); // function that gets the course name
14 void displayMessage(); // function that displays a welcome message
15 private:
16 string courseName; // course name for this GradeBook
17 }; // end class GradeBook

Fig. 16.15 | GradeBook class definition.

16.9 Validating Data with set Functions 591

name is too long, we still want to leave the GradeBook object in a consistent state—that is,
a state in which the object’s data member courseName contains a valid value (i.e., a string
of 25 characters or less). Thus, we truncate the specified course name and assign the first
25 characters of name to the courseName data member (unfortunately, this could truncate
the course name awkwardly). Standard class string provides member function substr
(short for “substring”) that returns a new string object created by copying part of an

1 // Fig. 16.16: GradeBook.cpp
2 // Implementations of the GradeBook member-function definitions.
3 // The setCourseName function performs validation.
4 #include <iostream>
5 #include "GradeBook.h" // include definition of class GradeBook
6 using namespace std;
7
8 // constructor initializes courseName with string supplied as argument
9 GradeBook::GradeBook(string name)

10 {
11
12 } // end GradeBook constructor
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 // function to get the course name
32 string GradeBook::getCourseName()
33 {
34 return courseName; // return object's courseName
35 } // end function getCourseName
36
37 // display a welcome message to the GradeBook user
38 void GradeBook::displayMessage()
39 {
40 // call getCourseName to get the courseName
41 cout << "Welcome to the grade book for\n" << getCourseName()
42 << "!" << endl;
43 } // end function displayMessage

Fig. 16.16 | Member-function definitions for class GradeBook with a set function that validates
the length of data member courseName.

setCourseName(name); // validate and store courseName

// function that sets the course name;
// ensures that the course name has at most 25 characters
void GradeBook::setCourseName(string name)
{

if (name.length() <= 25) // if name has 25 or fewer characters
 courseName = name; // store the course name in the object

if (name.length() > 25) // if name has more than 25 characters
 {
 // set courseName to first 25 characters of parameter name
 courseName = name.substr(0, 25); // start at 0, length of 25

 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
 << "Limiting courseName to first 25 characters.\n" << endl;
 } // end if
} // end function setCourseName

592 Chapter 16 Introduction to Classes and Objects

existing string object. The call in line 24 (i.e., name.substr(0, 25)) passes two integers
(0 and 25) to name’s member function substr. These arguments indicate the portion of
the string name that substr should return. The first argument specifies the starting posi-
tion in the original string from which characters are copied—the first character in every
string is considered to be at position 0. The second argument specifies the number of char-
acters to copy. Therefore, the call in line 24 returns a 25-character substring of name
starting at position 0 (i.e., the first 25 characters in name). For example, if name holds the
value "CS101 Introduction to Programming in C++", substr returns "CS101 Introduc-

tion to Pro". After the call to substr, line 24 assigns the substring returned by substr to
data member courseName. In this way, setCourseName ensures that courseName is always
assigned a string containing 25 or fewer characters. If the member function has to truncate
the course name to make it valid, lines 26–27 display a warning message.

The if statement in lines 21–28 contains two body statements—one to set the
courseName to the first 25 characters of parameter name and one to print an accompanying
message to the user. The statement in lines 26–27 could also appear without a stream
insertion operator at the start of the second line of the statement, as in:

The C++ compiler combines adjacent string literals, even if they appear on separate lines
of a program. Thus, in the statement above, the C++ compiler would combine the string
literals "\" exceeds maximum length (25).\n" and "Limiting courseName to first 25

characters.\n" into a single string literal that produces output identical to that of lines
26–27 in Fig. 16.16. This behavior allows you to print lengthy strings by breaking them
across lines in your program without including additional stream insertion operations.

Testing Class GradeBook
Figure 16.17 demonstrates the modified version of class GradeBook (Figs. 16.15–16.16)
featuring validation. Line 12 creates a GradeBook object named gradeBook1. Recall that
the GradeBook constructor calls setCourseName to initialize data member courseName. In
previous versions of the class, the benefit of calling setCourseName in the constructor was
not evident. Now, however, the constructor takes advantage of the validation provided by
setCourseName. The constructor simply calls setCourseName, rather than duplicating its
validation code. When line 12 of Fig. 16.17 passes an initial course name of "CS101 In-

troduction to Programming in C++" to the GradeBook constructor, the constructor passes
this value to setCourseName, where the actual initialization occurs. Because this course
name contains more than 25 characters, the body of the second if statement executes,
causing courseName to be initialized to the truncated 25-character course name "CS101
Introduction to Pro" (the truncated part is highlighted in darker blue in line 12). The
output in Fig. 16.17 contains the warning message output by lines 26–27 of Fig. 16.16 in
member function setCourseName. Line 13 creates another GradeBook object called
gradeBook2—the valid course name passed to the constructor is exactly 25 characters.

Lines 16–19 of Fig. 16.17 display the truncated course name for gradeBook1 (we high-
light this in blue) and the course name for gradeBook2. Line 22 calls gradeBook1’s set-
CourseName member function directly, to change the course name in the GradeBook object

cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
 "Limiting courseName to first 25 characters.\n" << endl;

16.9 Validating Data with set Functions 593

to a shorter name that does not need to be truncated. Then, lines 25–28 output the course
names for the GradeBook objects again.

Additional Notes on Set Functions
A public set function such as setCourseName should carefully scrutinize any attempt to
modify the value of a data member (e.g., courseName) to ensure that the new value is ap-
propriate for that data item. For example, an attempt to set the day of the month to 37
should be rejected, an attempt to set a person’s weight to zero or a negative value should
be rejected, an attempt to set a grade on an exam to 185 (when the proper range is zero to
100) should be rejected, and so on.

1 // Fig. 16.17: fig16_17.cpp
2 // Create and manipulate a GradeBook object; illustrate validation.
3 #include <iostream>
4 #include "GradeBook.h" // include definition of class GradeBook
5 using namespace std;
6
7 // function main begins program execution
8 int main()
9 {

10 // create two GradeBook objects;
11 // initial course name of gradeBook1 is too long
12
13 GradeBook gradeBook2("CS102 C++ Data Structures");
14
15 // display each GradeBook's courseName
16 cout << "gradeBook1's initial course name is: "
17 << gradeBook1.getCourseName()
18 << "\ngradeBook2's initial course name is: "
19 << gradeBook2.getCourseName() << endl;
20
21 // modify myGradeBook's courseName (with a valid-length string)
22
23
24 // display each GradeBook's courseName
25 cout << "\ngradeBook1's course name is: "
26 << gradeBook1.getCourseName()
27 << "\ngradeBook2's course name is: "
28 << gradeBook2.getCourseName() << endl;
29 } // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length (25).
Limiting courseName to first 25 characters.

gradeBook1's initial course name is: CS101 Introduction to Pro
gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBook1's course name is: CS101 C++ Programming
gradeBook2's course name is: CS102 C++ Data Structures

Fig. 16.17 | Creating and manipulating a GradeBook object in which the course name is limited
to 25 characters in length.

GradeBook gradeBook1("CS101 Introduction to Programming in C++");

gradeBook1.setCourseName("CS101 C++ Programming");

594 Chapter 16 Introduction to Classes and Objects

A class’s set functions can return values to the class’s clients indicating that attempts
were made to assign invalid data to objects of the class. A client can test the return value of
a set function to determine whether the attempt to modify the object was successful and to
take appropriate action. In Chapter 24, we demonstrate how clients of a class can be noti-
fied via the exception-handling mechanism when an attempt is made to modify an object
with an inappropriate value. To keep the program of Figs. 16.15–16.17 simple at this point
in our C++ discussion, setCourseName in Fig. 16.16 just prints an appropriate message.

16.10 Wrap-Up
In this chapter, you created user-defined classes, and created and used objects of those
classes. We declared data members of a class to maintain data for each object of the class.
We also defined member functions that operate on that data. You learned how to call an
object’s member functions to request the services the object provides and how to pass data
to those member functions as arguments. We discussed the difference between a local vari-
able of a member function and a data member of a class. We also showed how to use a
constructor to specify initial values for an object’s data members. You learned how to sep-
arate the interface of a class from its implementation to promote good software engineer-
ing. We presented a diagram that shows the files that class-implementation programmers
and client-code programmers need to compile the code they write. We demonstrated how
set functions can be used to validate an object’s data and ensure that objects are maintained
in a consistent state. UML class diagrams were used to model classes and their construc-
tors, member functions and data members.

Software Engineering Observation 16.6
Making data members private and controlling access, especially write access, to those
data members through public member functions helps ensure data integrity.

Error-Prevention Tip 16.5
The benefits of data integrity are not automatic simply because data members are made
private—you must provide appropriate validity checking and report the errors.

Summary
Section 16.2 Classes, Objects, Member Functions and Data Members
• Performing a task in a program requires a function. The function hides from its user the complex

tasks that it performs.

• A function in a class is known as a member function and performs one of the class’s tasks.

• You must create an object of a class before a program can perform the tasks the class describes.

• Each message sent to an object is a member-function call that tells the object to perform a task.

• An object has attributes that are carried with the object as it’s used in a program. These attributes
are specified as data members in the object’s class.

Section 16.3 Defining a Class with a Member Function
• A class definition contains the data members and member functions that define the class’s attri-

butes and behaviors, respectively.

 Summary 595

• A class definition begins with the keyword class followed immediately by the class name.

• By convention, the name of a user-defined class begins with a capital letter and, for readability,
each subsequent word in the class name begins with a capital letter.

• Every class’s body is enclosed in a pair of braces ({ and }) and ends with a semicolon.

• Member functions that appear after access specifier public can be called by other functions in a
program and by member functions of other classes.

• Access specifiers are always followed by a colon (:).

• Keyword void is a special return type which indicates that a function will perform a task but will
not return any data to its calling function when it completes its task.

• By convention, function names begin with a lowercase first letter and all subsequent words in the
name begin with a capital letter.

• An empty set of parentheses after a function name indicates that the function does not require
additional data to perform its task.

• Every function’s body is delimited by left and right braces ({ and }).

• Typically, you cannot call a member function until you create an object of its class.

• Each new class you create becomes a new type in C++.

• In the UML, each class is modeled in a class diagram as a rectangle with three compartments.
The top compartment contains the class name. The middle compartment contains the class’s at-
tributes. The bottom compartment contains the class’s operations.

• The UML models operations as the operation name followed by parentheses. A plus sign (+) pre-
ceding the name indicates a public operation (i.e., a public member function in C++).

Section 16.4 Defining a Member Function with a Parameter
• A member function can require one or more parameters that represent additional data it needs

to perform its task. A function call supplies arguments for each of the function’s parameters.

• A member function is called by following the object name with a dot operator (.), the function
name and a set of parentheses containing the function’s arguments.

• A variable of C++ Standard Library class string represents a string of characters. This class is de-
fined in header file <string>, and the name string belongs to namespace std.

• Function getline (from header <string>) reads characters from its first argument until a newline
character is encountered, then places the characters (not including the newline) in the string
variable specified as its second argument. The newline character is discarded.

• A parameter list may contain any number of parameters, including none at all (represented by
empty parentheses) to indicate that a function does not require any parameters.

• The number of arguments in a function call must match the number of parameters in the pa-
rameter list of the called member function’s header. Also, the argument types in the function call
must be consistent with the types of the corresponding parameters in the function header.

• The UML models a parameter of an operation by listing the parameter name, followed by a colon
and the parameter type between the parentheses following the operation name.

• The UML has its own data types. Not all the UML data types have the same names as the cor-
responding C++ types. The UML type String corresponds to the C++ type string.

Section 16.5 Data Members, set Functions and get Functions
• Variables declared in a function’s body are local variables and can be used only from the point of

their declaration in the function to the immediately following closing right brace (}). When a
function terminates, the values of its local variables are lost.

596 Chapter 16 Introduction to Classes and Objects

• A local variable must be declared before it can be used in a function. A local variable cannot be
accessed outside the function in which it’s declared.

• Data members normally are private. Variables or functions declared private are accessible only
to member functions of the class in which they’re declared, or to friends of the class.

• When a program creates (instantiates) an object of a class, its private data members are encap-
sulated (hidden) in the object and can be accessed only by member functions of the object’s class.

• When a function that specifies a return type other than void is called and completes its task, the
function returns a result to its calling function.

• By default, the initial value of a string is the empty string—i.e., a string that does not contain
any characters. Nothing appears on the screen when an empty string is displayed.

• Classes often provide public member functions to allow clients of the class to set or get private
data members. The names of these member functions normally begin with set or get.

• Set and get functions allow clients of a class to indirectly access the hidden data. The client does
not know how the object performs these operations.

• A class’s set and get functions should be used by other member functions of the class to manipu-
late the class’s private data. If the class’s data representation is changed, member functions that
access the data only via the set and get functions will not require modification.

• A public set function should carefully scrutinize any attempt to modify the value of a data mem-
ber to ensure that the new value is appropriate for that data item.

• The UML represents data members as attributes by listing the attribute name, followed by a co-
lon and the attribute type. Private attributes are preceded by a minus sign (–) in the UML.

• The UML indicates the return type of an operation by placing a colon and the return type after
the parentheses following the operation name.

• UML class diagrams do not specify return types for operations that do not return values.

Section 16.6 Initializing Objects with Constructors
• Each class should provide a constructor to initialize an object of the class when the object is cre-

ated. A constructor must be defined with the same name as the class.

• A difference between constructors and functions is that constructors cannot return values, so they
cannot specify a return type (not even void). Normally, constructors are declared public.

• C++ requires a constructor call at the time each object is created, which helps ensure that every
object is initialized before it’s used in a program.

• A constructor with no parameters is a default constructor. If you do not provide a constructor,
the compiler provides a default constructor. You can also define a default constructor explicitly.
If you define a constructor for a class, C++ will not create a default constructor.

• The UML models constructors as operations in a class diagram’s third compartment with the
word “constructor” between guillemets (« and ») before the constructor’s name.

Section 16.7 Placing a Class in a Separate File for Reusability
• Class definitions, when packaged properly, can be reused by programmers worldwide.

• It’s customary to define a class in a header file that has a .h filename extension.

• If the class’s implementation changes, the class’s clients should not be required to change.

• Interfaces define and standardize the ways in which things such as people and systems interact.

• A class’s public interface describes the public member functions that are made available to the
class’s clients. The interface describes what services clients can use and how to request those ser-
vices, but does not specify how the class carries out the services.

 Terminology 597

Section 16.8 Separating Interface from Implementation
• Separating interface from implementation makes programs easier to modify. Changes in the

class’s implementation do not affect the client as long as the class’s interface remains unchanged.

• A function prototype contains a function’s name, its return type and the number, types and order
of the parameters the function expects to receive.

• Once a class is defined and its member functions are declared (via function prototypes), the
member functions should be defined in a separate source-code file

• For each member function defined outside of its corresponding class definition, the function
name must be preceded by the class name and the binary scope resolution operator (::).

Section 16.9 Validating Data with set Functions
• Class string’s length member function returns the number of characters in a string object.

• Class string’s member function substr returns a new string object containing a copy of part
of an existing string object. The first argument specifies the starting position in the original
string. The second argument specifies the number of characters to copy.

Terminology
access specifier 564
access-specifier label public: 564
accessor 574
argument 566
binary scope resolution operator (::) 586
body of a class definition 563
calling function 564
camel case 563
class definition 563
class keyword 563
client of an object 574
consistent state 591
constructor 576
data hiding 572
data member 569
default constructor 576
defining a class 563
dot operator (.) 565
driver program 580
empty string 574
extensible language 565
function header 564
function prototype 584
get function 574
getline function of <string> library 567
header file 580

interface of a class 584
interface 583
length member function of class string 590
local variable 569
member-function call 562
message (send to an object) 562
mutator 574
parameter 566
parameter list 568
private: access specifier 571
public access specifier 564
public services of a class 584
request a service from an object 562
return statement 573
return type 564
separate interface from implementation 583
set function 574
source-code file 580
string class 567
<string> header file 567
substr member function of class string 591
UML class diagram 565
user-defined type 565
validation 590
validity checking 590
void return type 564

Self-Review Exercises
16.1 Fill in the blanks in each of the following:

a) A house is to a blueprint as a(n) is to a class.
b) Every class definition contains the keyword followed immediately by the

class’s name.

598 Chapter 16 Introduction to Classes and Objects

c) A class definition is typically stored in a file with the filename extension.
d) Each parameter in a function header must specify both a(n) and a(n)

.
e) When each object of a class maintains its own copy of an attribute, the variable that rep-

resents the attribute is also known as a(n) .
f) Keyword public is a(n) .
g) Return type indicates that a function will perform a task but will not return

any information when it completes its task.
h) Function from the <string> library reads characters until a newline character

is encountered, then copies those characters into the specified string.
i) When a member function is defined outside the class definition, the function header

must include the class name and the , followed by the function name to “tie”
the member function to the class definition.

j) The source-code file and any other files that use a class can include the class’s header file
via a(n) preprocessor directive.

16.2 State whether each of the following is true or false. If false, explain why.
a) By convention, function names begin with a capital letter and all subsequent words in

the name begin with a capital letter.
b) Empty parentheses following a function name in a function prototype indicate that the

function does not require any parameters to perform its task.
c) Data members or member functions declared with access specifier private are accessi-

ble to member functions of the class in which they’re declared.
d) Variables declared in the body of a particular member function are known as data mem-

bers and can be used in all member functions of the class.
e) Every function’s body is delimited by left and right braces ({ and }).
f) Any source-code file that contains int main() can be used to execute a program.
g) The types of arguments in a function call must be consistent with the types of the cor-

responding parameters in the function prototype’s parameter list.

16.3 What is the difference between a local variable and a data member?

16.4 Explain the purpose of a function parameter. What’s the difference between a parameter
and an argument?

Answers to Self-Review Exercises
16.1 a) object. b) class. c) .h. d) type, name. e) data member. f) access specifier. g) void.
h) getline. i) binary scope resolution operator (::). j) #include.

16.2 a) False. Function names begin with a lowercase letter and all subsequent words in the
name begin with a capital letter. b) True. c) True. d) False. Such variables are local variables and can
be used only in the member function in which they’re declared. e) True. f) True. g) True.

16.3 A local variable is declared in the body of a function and can be used only from the point
at which it’s declared to the closing brace of the block in which it’s declared. A data member is de-
clared in a class, but not in the body of any of the class’s member functions. Every object of a class
has a separate copy of the class’s data members. Data members are accessible to all member functions
of the class.

16.4 A parameter represents additional information that a function requires to perform its task.
Each parameter required by a function is specified in the function header. An argument is the value
supplied in the function call. When the function is called, the argument value is passed into the
function parameter so that the function can perform its task.

 Exercises 599

Exercises
16.5 Explain the difference between a function prototype and a function definition.

16.6 What’s a default constructor? How are an object’s data members initialized if a class has
only an implicitly defined default constructor?

16.7 Explain the purpose of a data member.

16.8 What’s a header file? What’s a source-code file? Discuss the purpose of each.

16.9 Explain how a program could use class string without inserting a using declaration.

16.10 Explain why a class might provide a set function and a get function for a data member.

16.11 (Modifying Class GradeBook) Modify class GradeBook (Figs. 16.11–16.12) as follows:
a) Include a second string data member that represents the course instructor’s name.
b) Provide a set function to change the instructor’s name and a get function to retrieve it.
c) Modify the constructor to specify course name and instructor name parameters.
d) Modify function displayMessage to output the welcome message and course name,

then the string "This course is presented by: " followed by the instructor’s name.

Use your modified class in a test program that demonstrates the class’s new capabilities.

16.12 (Account Class) Create an Account class that a bank might use to represent customers’ bank
accounts. Include a data member of type int to represent the account balance. Provide a constructor
that receives an initial balance and uses it to initialize the data member. The constructor should val-
idate the initial balance to ensure that it’s greater than or equal to 0. If not, set the balance to 0 and
display an error message indicating that the initial balance was invalid. Provide three member func-
tions. Member function credit should add an amount to the current balance. Member function
debit should withdraw money from the Account and ensure that the debit amount does not exceed
the Account’s balance. If it does, the balance should be left unchanged and the function should print
a message indicating "Debit amount exceeded account balance." Member function getBalance
should return the current balance. Create a program that creates two Account objects and tests the
member functions of class Account.

16.13 (Invoice Class) Create a class called Invoice that a hardware store might use to represent
an invoice for an item sold at the store. An Invoice should include four data members—a part num-
ber (type string), a part description (type string), a quantity of the item being purchased (type
int) and a price per item (type int). Your class should have a constructor that initializes the four
data members. Provide a set and a get function for each data member. In addition, provide a member
function named getInvoiceAmount that calculates the invoice amount (i.e., multiplies the quantity
by the price per item), then returns the amount as an int value. If the quantity is not positive, it
should be set to 0. If the price per item is not positive, it should be set to 0. Write a test program
that demonstrates class Invoice’s capabilities.

16.14 (Employee Class) Create a class called Employee that includes three pieces of information as
data members—a first name (type string), a last name (type string) and a monthly salary (type
int). Your class should have a constructor that initializes the three data members. Provide a set and
a get function for each data member. If the monthly salary is not positive, set it to 0. Write a test
program that demonstrates class Employee’s capabilities. Create two Employee objects and display
each object’s yearly salary. Then give each Employee a 10 percent raise and display each Employee’s
yearly salary again.

16.15 (Date Class) Create a class called Date that includes three pieces of information as data
members—a month (type int), a day (type int) and a year (type int). Your class should have a con-
structor with three parameters that uses the parameters to initialize the three data members. For the

600 Chapter 16 Introduction to Classes and Objects

purpose of this exercise, assume that the values provided for the year and day are correct, but ensure
that the month value is in the range 1–12; if it isn’t, set the month to 1. Provide a set and a get func-
tion for each data member. Provide a member function displayDate that displays the month, day
and year separated by forward slashes (/). Write a test program that demonstrates class Date’s capa-
bilities.

Making a Difference
16.16 (Target-Heart-Rate Calculator) While exercising, you can use a heart-rate monitor to see
that your heart rate stays within a safe range suggested by your trainers and doctors. According to the
American Heart Association (AHA) (www.americanheart.org/presenter.jhtml?identifier=4736),
the formula for calculating your maximum heart rate in beats per minute is 220 minus your age in
years. Your target heart rate is a range that is 50–85% of your maximum heart rate. [Note: These for-
mulas are estimates provided by the AHA. Maximum and target heart rates may vary based on the health,
fitness and gender of the individual. Always consult a physician or qualified health care professional before
beginning or modifying an exercise program.] Create a class called HeartRates. The class attributes
should include the person’s first name, last name and date of birth (consisting of separate attributes
for the month, day and year of birth). Your class should have a constructor that receives this data as
parameters. For each attribute provide set and get functions. The class also should include a function
getAge that calculates and returns the person’s age (in years), a function getMaxiumumHeartRate that
calculates and returns the person’s maximum heart rate and a function getTargetHeartRate that cal-
culates and returns the person’s target heart rate. Since you do not yet know how to obtain the current
date from the computer, function getAge should prompt the user to enter the current month, day
and year before calculating the person’s age. Write an application that prompts for the person’s in-
formation, instantiates an object of class HeartRates and prints the information from that object—
including the person’s first name, last name and date of birth—then calculates and prints the person’s
age in (years), maximum heart rate and target-heart-rate range.

16.17 (Computerization of Health Records) A health care issue that has been in the news lately is
the computerization of health records. This possibility is being approached cautiously because of
sensitive privacy and security concerns, among others. [We address such concerns in later exercises.]
Computerizing health records could make it easier for patients to share their health profiles and his-
tories among their various health care professionals. This could improve the quality of health care,
help avoid drug conflicts and erroneous drug prescriptions, reduce costs and in emergencies, could
save lives. In this exercise, you’ll design a “starter” HealthProfile class for a person. The class attri-
butes should include the person’s first name, last name, gender, date of birth (consisting of separate
attributes for the month, day and year of birth), height (in inches) and weight (in pounds). Your class
should have a constructor that receives this data. For each attribute, provide set and get functions.
The class also should include functions that calculate and return the user’s age in years, maximum
heart rate and target-heart-rate range (see Exercise 16.16), and body mass index (BMI; see
Exercise 2.32). Write an application that prompts for the person’s information, instantiates an ob-
ject of class HealthProfile for that person and prints the information from that object—including
the person’s first name, last name, gender, date of birth, height and weight—then calculates and
prints the person’s age in years, BMI, maximum heart rate and target-heart-rate range. It should also
display the “BMI values” chart from Exercise 2.32. Use the same technique as Exercise 16.16 to cal-
culate the person’s age.

www.americanheart.org/presenter.jhtml?identifier=4736

17Classes: A Deeper Look,
Part 1

My object all sublime
I shall achieve in time.
—W. S. Gilbert

Is it a world to hide virtues in?
—William Shakespeare

Don’t be “consistent,” but be
simply true.
—Oliver Wendell Holmes, Jr.

O b j e c t i v e s
In this chapter you’ll learn:

■ How to use a preprocessor
wrapper to prevent multiple
definition errors.

■ To understand class scope
and accessing class members
via the name of an object, a
reference to an object or a
pointer to an object.

■ To define constructors with
default arguments.

■ How destructors are used to
perform “termination
housekeeping” on an object
before it’s destroyed.

■ When constructors and
destructors are called and the
order in which they’re called.

■ The logic errors that may
occur when a public
member function returns a
reference to private data.

■ To assign the data members
of one object to those of
another object by default
memberwise assignment.

602 Chapter 17 Classes: A Deeper Look, Part 1

17.1 Introduction
In Chapters 15–16, we introduced many basic terms and concepts of C++ object-oriented
programming. We also discussed our program development methodology: We selected
appropriate attributes and behaviors for each class and specified the manner in which ob-
jects of our classes collaborated with objects of C++ Standard Library classes to accomplish
each program’s overall goals.

In this chapter, we take a deeper look at classes. We use an integrated Time class case
study in both this chapter and Chapter 18, Classes: A Deeper Look, Part 2 to demonstrate
several class construction capabilities. We begin with a Time class that reviews several of
the features presented in the preceding chapters. The example also demonstrates an impor-
tant C++ software engineering concept—using a “preprocessor wrapper” in header files to
prevent the code in the header from being included into the same source code file more
than once. Since a class can be defined only once, using such preprocessor directives pre-
vents multiple definition errors.

Next, we discuss class scope and the relationships among class members. We demon-
strate how client code can access a class’s public members via three types of “handles”—
the name of an object, a reference to an object or a pointer to an object. As you’ll see, object
names and references can be used with the dot (.) member selection operator to access a
public member, and pointers can be used with the arrow (->) member selection operator.

We discuss access functions that can read or display data in an object. A common use
of access functions is to test the truth or falsity of conditions—such functions are known
as predicate functions. We also demonstrate the notion of a utility function (also called a
helper function)—a private member function that supports the operation of the class’s
public member functions, but is not intended for use by clients of the class.

In the second Time class case study example, we demonstrate how to pass arguments
to constructors and show how default arguments can be used in a constructor to enable
client code to initialize objects using a variety of arguments. Next, we discuss a special
member function called a destructor that is part of every class and is used to perform “ter-
mination housekeeping” on an object before the object is destroyed. We then demonstrate
the order in which constructors and destructors are called, because your programs’ correct-
ness depends on using properly initialized objects that have not yet been destroyed.

17.1 Introduction
17.2 Time Class Case Study
17.3 Class Scope and Accessing Class

Members
17.4 Separating Interface from

Implementation
17.5 Access Functions and Utility

Functions
17.6 Time Class Case Study: Constructors

with Default Arguments

17.7 Destructors
17.8 When Constructors and Destructors

are Called
17.9 Time Class Case Study: A Subtle

Trap—Returning a Reference to a
private Data Member

17.10 Default Memberwise Assignment
17.11 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

17.2 Time Class Case Study 603

Our last example of the Time class case study in this chapter shows a dangerous pro-
gramming practice in which a member function returns a reference to private data. We
discuss how this breaks the encapsulation of a class and allows client code to directly access
an object’s data. This last example shows that objects of the same class can be assigned to
one another using default memberwise assignment, which copies the data members in the
object on the right side of the assignment into the corresponding data members of the
object on the left side of the assignment. The chapter concludes with a discussion of soft-
ware reusability.

17.2 Time Class Case Study
Our first example (Figs. 17.1–17.3) creates class Time and a driver program that tests the
class. In this section, we review many of the concepts covered in Chapter 16 and demon-
strate an important C++ software engineering concept—using a “preprocessor wrapper” in
header files to prevent the code in the header from being included into the same source code
file more than once. Since a class can be defined only once, using such preprocessor direc-
tives prevents multiple-definition errors.

Time Class Definition
The class definition (Fig. 17.1) contains prototypes (lines 13–16) for member functions
Time, setTime, printUniversal and printStandard, and includes private integer mem-
bers hour, minute and second (lines 18–20). Class Time’s private data members can be
accessed only by its four member functions. Chapter 20 introduces a third access specifier,
protected, as we study inheritance and the part it plays in object-oriented programming.

1 // Fig. 17.1:
2
3
4
5 // prevent multiple inclusions of header file
6
7
8
9 // Time class definition

10 class Time
11 {
12 public:
13 Time(); // constructor
14 void setTime(int, int, int); // set hour, minute and second
15 void printUniversal(); // print time in universal-time format
16 void printStandard(); // print time in standard-time format
17 private:
18 int hour; // 0 - 23 (24-hour clock format)
19 int minute; // 0 - 59
20 int second; // 0 - 59
21 }; // end class Time
22
23

Fig. 17.1 | Time class definition.

Time.h
// Declaration of class Time.
// Member functions are defined in Time.cpp

#ifndef TIME_H

#define TIME_H

#endif

604 Chapter 17 Classes: A Deeper Look, Part 1

In Fig. 17.1, the class definition is enclosed in the following preprocessor wrapper
(lines 6, 7 and 23):

When we build larger programs, other definitions and declarations will also be placed in
header files. The preceding preprocessor wrapper prevents the code between #ifndef
(which means “if not defined”) and #endif from being included if the name TIME_H has
been defined. If the header has not been included previously in a file, the name TIME_H is
defined by the #define directive and the header file statements are included. If the header
has been included previously, TIME_H is defined already and the header file is not included
again. Attempts to include a header file multiple times (inadvertently) typically occur in
large programs with many header files that may themselves include other header files.
[Note: The commonly used convention for the symbolic constant name in the preproces-
sor directives is simply the header file name in uppercase with the underscore character re-
placing the period.]

Time Class Member Functions
In Fig. 17.2, the Time constructor (lines 10–13) initializes the data members to 0—the uni-
versal-time equivalent of 12 AM. This ensures that the object begins in a consistent state.
Invalid values cannot be stored in the data members of a Time object, because the con-
structor is called when the Time object is created, and all subsequent attempts by a client to
modify the data members are scrutinized by function setTime (discussed shortly). You can
define several overloaded constructors for a class.

The data members of a class cannot be initialized where they’re declared in the class
body. It’s strongly recommended that these data members be initialized by the class’s con-
structor (as there is no default initialization for fundamental-type data members). Data
members can also be assigned values by Time’s set functions. [Note: Chapter 18 demon-

Good Programming Practice 17.1
For clarity and readability, use each access specifier only once in a class definition. Place
public members first, where they’re easy to locate.

Software Engineering Observation 17.1
Each element of a class should have private visibility unless it can be proven that the
element needs public visibility. This is another example of the principle of least privilege.

// prevent multiple inclusions of header file
#ifndef TIME_H

#define TIME_H

 ...
#endif

Error-Prevention Tip 17.1
Use #ifndef, #define and #endif preprocessor directives to form a preprocessor wrapper
that prevents header files from being included more than once in a program.

Good Programming Practice 17.2
Use the name of the header file in upper case with the period replaced by an underscore
in the #ifndef and #define preprocessor directives of a header file.

17.2 Time Class Case Study 605

strates that only a class’s static const data members of integral or enum types can be ini-
tialized in the class’s body.]

Function setTime (lines 17–22) is a public function that declares three int parame-
ters and uses them to set the time. A conditional expression tests each argument to deter-
mine whether the value is in a specified range. For example, the hour value (line 19) must
be greater than or equal to 0 and less than 24, because the universal-time format represents
hours as integers from 0 to 23 (e.g., 1 PM is hour 13 and 11 PM is hour 23; midnight is
hour 0 and noon is hour 12). Similarly, both minute and second values (lines 20 and 21)

1 // Fig. 17.2:
2
3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8 // Time constructor initializes each data member to zero.
9 // Ensures all Time objects start in a consistent state.

10 Time::Time()
11 {
12 hour = minute = second = 0;
13 } // end Time constructor
14
15 // set new Time value using universal time; ensure that
16 // the data remains consistent by setting invalid values to zero
17 void Time::setTime(int h, int m, int s)
18 {
19 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
20 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
21 second = (s >= 0 && s < 60) ? s : 0; // validate second
22 } // end function setTime
23
24 // print Time in universal-time format (HH:MM:SS)
25 void Time::printUniversal()
26 {
27 cout << << setw(2) << << ":"
28 << setw(2) << << ":" << setw(2) << ;
29 } // end function printUniversal
30
31 // print Time in standard-time format (HH:MM:SS AM or PM)
32 void Time::printStandard()
33 {
34 cout << ((== 0 || == 12) ? 12 : % 12) << ":"
35 << << setw(2) << << ":" << setw(2)
36 << << (< 12 ? " AM" : " PM");
37 } // end function printStandard

Fig. 17.2 | Time class member-function definitions.

Common Programming Error 17.1
Attempting to initialize a non-static data member of a class explicitly in the class defi-
nition is a syntax error.

Time.cpp
// Member-function definitions for class Time.

#include "Time.h" // include definition of class Time from Time.h

setfill('0') hour
minute second

hour hour hour
setfill('0') minute
second hour

606 Chapter 17 Classes: A Deeper Look, Part 1

must be greater than or equal to 0 and less than 60. Any values outside these ranges are set
to zero to ensure that a Time object always contains consistent data—that is, the object’s data
values are always kept in range, even if the values provided as arguments to function setTime
were incorrect. In this example, zero is a consistent value for hour, minute and second.

A value passed to setTime is a correct value if it’s in the allowed range for the member
it’s initializing. So, any number in the range 0–23 would be a correct value for the hour.
A correct value is always a consistent value. However, a consistent value is not necessarily
a correct value. If setTime sets hour to 0 because the argument received was out of range,
then hour is correct only if the current time is coincidentally midnight.

Function printUniversal (lines 25–29 of Fig. 17.2) takes no arguments and outputs
the time in universal-time format, consisting of three colon-separated pairs of digits for the
hour, minute and second. For example, if the time were 1:30:07 PM, function printUni-
versal would return 13:30:07. Line 27 uses parameterized stream manipulator setfill
to specify the fill character that is displayed when an integer is output in a field wider than
the number of digits in the value. By default, the fill characters appear to the left of the
digits in the number. In this example, if the minute value is 2, it will be displayed as 02,
because the fill character is set to zero ('0'). If the number being output fills the specified
field, the fill character will not be displayed. Once the fill character is specified with set-
fill, it applies for all subsequent values that are displayed in fields wider than the value
being displayed (i.e., setfill is a “sticky” setting). This is in contrast to setw, which
applies only to the next value displayed (setw is a “nonsticky” setting).

Function printStandard (lines 32–37) takes no arguments and outputs the date in
standard-time format, consisting of the hour, minute and second values separated by
colons and followed by an AM or PM indicator (e.g., 1:27:06 PM). Like function print-
Universal, function printStandard uses setfill('0') to format the minute and second
as two digit values with leading zeros if necessary. Line 34 uses the conditional operator
(?:) to determine the value of hour to be displayed—if the hour is 0 or 12 (AM or PM),
it appears as 12; otherwise, the hour appears as a value from 1 to 11. The conditional oper-
ator in line 36 determines whether AM or PM will be displayed.

Defining Member Functions Outside the Class Definition; Class Scope
Even though a member function declared in a class definition may be defined outside that
class definition (and “tied” to the class via the binary scope resolution operator), that mem-
ber function is still within that class’s scope; i.e., its name is known only to other members
of the class unless referred to via an object of the class, a reference to an object of the class,
a pointer to an object of the class or the binary scope resolution operator. We’ll say more
about class scope shortly.

If a member function is defined in the body of a class definition, the compiler
attempts to inline calls to the member function. Remember that the compiler reserves the
right not to inline any function.

Error-Prevention Tip 17.2
Each sticky setting (such as a fill character or floating-point precision) should be restored
to its previous setting when it’s no longer needed. Failure to do so may result in incorrectly
formatted output later in a program. Chapter 23, Stream Input/Output, discusses how to
reset the fill character and precision.

17.2 Time Class Case Study 607

Member Functions vs. Global Functions
The printUniversal and printStandard member functions take no arguments, because
these member functions implicitly know that they’re to print the data members of the par-
ticular Time object for which they’re invoked. This can make member function calls more
concise than conventional function calls in procedural programming.

Using Class Time
Once class Time has been defined, it can be used as a type in object, array, pointer and ref-
erence declarations as follows:

Performance Tip 17.1
Defining a member function inside the class definition inlines the member function (if the
compiler chooses to do so). This can improve performance.

Software Engineering Observation 17.2
Defining a small member function inside the class definition does not promote the best
software engineering, because clients of the class will be able to see the implementation of
the function, and the client code must be recompiled if the function definition changes.

Software Engineering Observation 17.3
Only the simplest and most stable member functions (i.e., whose implementations are
unlikely to change) should be defined in the class header.

Software Engineering Observation 17.4
Using an object-oriented programming approach often simplifies function calls by
reducing the number of parameters. This benefit of object-oriented programming derives
from the fact that encapsulating data members and member functions within an object
gives the member functions the right to access the data members.

Software Engineering Observation 17.5
Member functions are usually shorter than functions in non-object-oriented programs,
because the data stored in data members have ideally been validated by a constructor or
by member functions that store new data. Because the data is already in the object, the
member-function calls often have no arguments or fewer arguments than typical function
calls in non-object-oriented languages. Thus, the calls are shorter, the function definitions
are shorter and the function prototypes are shorter. This improves many aspects of program
development.

Error-Prevention Tip 17.3
The fact that member function calls generally take either no arguments or substantially
fewer arguments than conventional function calls in non-object-oriented languages re-
duces the likelihood of passing the wrong arguments, the wrong types of arguments or the
wrong number of arguments.

Time sunset; // object of type Time
Time arrayOfTimes[5]; // array of 5 Time objects
Time &dinnerTime = sunset; // reference to a Time object
Time *timePtr = &dinnerTime; // pointer to a Time object

608 Chapter 17 Classes: A Deeper Look, Part 1

Figure 17.3 uses class Time. Line 10 instantiates a single object of class Time called t.
When the object is instantiated, the Time constructor is called to initialize each private
data member to 0. Then, lines 14 and 16 print the time in universal and standard formats,
respectively, to confirm that the members were initialized properly. Line 18 sets a new
time by calling member function setTime, and lines 22 and 24 print the time again in

1 // Fig. 17.3: fig17_03.cpp
2
3
4 #include <iostream>
5
6 using namespace std;
7
8 int main()
9 {

10 Time t; // instantiate object t of class Time
11
12 // output Time object t's initial values
13 cout << "The initial universal time is ";
14 t.printUniversal(); // 00:00:00
15 cout << "\nThe initial standard time is ";
16 t.printStandard(); // 12:00:00 AM
17
18 t.setTime(13, 27, 6); // change time
19
20 // output Time object t's new values
21 cout << "\n\nUniversal time after setTime is ";
22 t.printUniversal(); // 13:27:06
23 cout << "\nStandard time after setTime is ";
24 t.printStandard(); // 1:27:06 PM
25
26 t.setTime(99, 99, 99); // attempt invalid settings
27
28 // output t's values after specifying invalid values
29 cout << "\n\nAfter attempting invalid settings:"
30 << "\nUniversal time: ";
31 t.printUniversal(); // 00:00:00
32 cout << "\nStandard time: ";
33 t.printStandard(); // 12:00:00 AM
34 cout << endl;
35 } // end main

The initial universal time is 00:00:00
The initial standard time is 12:00:00 AM

Universal time after setTime is 13:27:06
Standard time after setTime is 1:27:06 PM

After attempting invalid settings:
Universal time: 00:00:00
Standard time: 12:00:00 AM

Fig. 17.3 | Program to test class Time.

// Program to test class Time.
// NOTE: This file must be compiled with Time.cpp.

#include "Time.h" // include definition of class Time from Time.h

17.3 Class Scope and Accessing Class Members 609

both formats. Line 26 attempts to use setTime to set the data members to invalid values—
function setTime recognizes this and sets the invalid values to 0 to maintain the object in
a consistent state. Finally, lines 31 and 33 print the time again in both formats.

Looking Ahead to Composition and Inheritance
Often, classes do not have to be created “from scratch.” Rather, they can include objects
of other classes as members or they may be derived from other classes that provide attri-
butes and behaviors the new classes can use. Such software reuse can greatly enhance pro-
ductivity and simplify code maintenance. Including class objects as members of other
classes is called composition (or aggregation) and is discussed in Chapter 18. Deriving
new classes from existing classes is called inheritance and is discussed in Chapter 20.

Object Size
People new to object-oriented programming often suppose that objects must be quite large
because they contain data members and member functions. Logically, this is true—you
may think of objects as containing data and functions (and our discussion has certainly
encouraged this view); physically, however, this is not true.

17.3 Class Scope and Accessing Class Members
A class’s data members (variables declared in the class definition) and member functions
(functions declared in the class definition) belong to that class’s scope. Nonmember func-
tions are defined at global namespace scope.

Within a class’s scope, class members are immediately accessible by all of that class’s
member functions and can be referenced by name. Outside a class’s scope, public class
members are referenced through one of the handles on an object—an object name, a ref-
erence to an object or a pointer to an object. The type of the object, reference or pointer
specifies the interface (i.e., the member functions) accessible to the client. [We’ll see in
Chapter 18 that an implicit handle is inserted by the compiler on every reference to a data
member or member function from within an object.]

Member functions of a class can be overloaded, but only by other member functions
of that class. To overload a member function, simply provide in the class definition a pro-
totype for each version of the overloaded function, and provide a separate function defi-
nition for each version of the function.

Variables declared in a member function have local scope and are known only to that
function. If a member function defines a variable with the same name as a variable with
class scope, the class-scope variable is hidden by the block-scope variable in the local scope.
Such a hidden variable can be accessed by preceding the variable name with the class name

Performance Tip 17.2
Objects contain only data, so objects are much smaller than if they also contained member
functions. Applying operator sizeof to a class name or to an object of that class will report
only the size of the class’s data members. The compiler creates one copy (only) of the mem-
ber functions separate from all objects of the class. All objects of the class share this one copy.
Each object, of course, needs its own copy of the class’s data, because the data can vary
among the objects. The function code is nonmodifiable and, hence, can be shared among
all objects of one class.

610 Chapter 17 Classes: A Deeper Look, Part 1

followed by the scope resolution operator (::). Hidden global variables can be accessed
with the unary scope resolution operator (see Chapter 15).

The dot member selection operator (.) is preceded by an object’s name or with a ref-
erence to an object to access the object’s members. The arrow member selection operator
(->) is preceded by a pointer to an object to access the object’s members.

Figure 17.4 uses a simple class called Count (lines 7–24) with private data member
x of type int (line 23), public member function setX (lines 11–14) and public member
function print (lines 17–20) to illustrate accessing class members with the member-selec-
tion operators. For simplicity, we’ve included this small class in the same file as main. Lines
28–30 create three variables related to type Count—counter (a Count object), counterPtr
(a pointer to a Count object) and counterRef (a reference to a Count object). Variable
counterRef refers to counter, and variable counterPtr points to counter. In lines 33–34
and 37–38, the program can invoke member functions setX and print by using the dot
(.) member selection operator preceded by either the name of the object (counter) or a
reference to the object (counterRef, which is an alias for counter). Similarly, lines 41–42
demonstrate that the program can invoke member functions setX and print by using a
pointer (countPtr) and the arrow (->) member-selection operator.

1 // Fig. 17.4: fig17_04.cpp
2 // Demonstrating the class member access operators . and ->
3 #include <iostream>
4 using namespace std;
5
6 // class Count definition
7 class Count
8 {
9 public: // public data is dangerous

10 // sets the value of private data member x
11 void setX(int value)
12 {
13 x = value;
14 } // end function setX
15
16 // prints the value of private data member x
17 void print()
18 {
19 cout << x << endl;
20 } // end function print
21
22 private:
23 int x;
24 }; // end class Count
25
26 int main()
27 {
28
29
30

Fig. 17.4 | Accessing an object’s member functions through each type of object handle—the
object’s name, a reference to the object and a pointer to the object. (Part 1 of 2.)

Count counter; // create counter object
Count *counterPtr = &counter; // create pointer to counter
Count &counterRef = counter; // create reference to counter

17.4 Separating Interface from Implementation 611

17.4 Separating Interface from Implementation
In Chapter 16, we began by including a class’s definition and member-function defini-
tions in one file. We then demonstrated separating this code into two files—a header file
for the class definition (i.e., the class’s interface) and a source code file for the class’s mem-
ber-function definitions (i.e., the class’s implementation). Recall that this makes it easier
to modify programs—as far as clients of a class are concerned, changes in the class’s im-
plementation do not affect the client as long as the class’s interface originally provided to
the client remains unchanged.

Actually, things are not quite this rosy. Header files do contain some portions of the
implementation and hints about others. Inline member functions, for example, should be
in a header file, so that when the compiler compiles a client, the client can include the
inline function definition in place. A class’s private members are listed in the class def-
inition in the header file, so these members are visible to clients even though the clients
may not access the private members. In Chapter 18, we show how to use a “proxy class”
to hide even the private data of a class from clients of the class.

31
32 cout << "Set x to 1 and print using the object's name: ";
33
34
35
36 cout << "Set x to 2 and print using a reference to an object: ";
37
38
39
40 cout << "Set x to 3 and print using a pointer to an object: ";
41
42
43 } // end main

Set x to 1 and print using the object's name: 1
Set x to 2 and print using a reference to an object: 2
Set x to 3 and print using a pointer to an object: 3

Software Engineering Observation 17.6
Clients of a class do not need access to the class’s source code to use the class. The clients do,
however, need to be able to link to the class’s object code (i.e., the compiled version of the
class). This encourages independent software vendors (ISVs) to provide class libraries for
sale or license. The ISVs provide in their products only the header files and the object
modules. No proprietary information is revealed—as would be the case if source code were
provided. The C++ user community benefits by having more ISV-produced class libraries
available.

Fig. 17.4 | Accessing an object’s member functions through each type of object handle—the
object’s name, a reference to the object and a pointer to the object. (Part 2 of 2.)

counter.setX(1); // set data member x to 1
counter.print(); // call member function print

counterRef.setX(2); // set data member x to 2
counterRef.print(); // call member function print

counterPtr->setX(3); // set data member x to 3
counterPtr->print(); // call member function print

612 Chapter 17 Classes: A Deeper Look, Part 1

17.5 Access Functions and Utility Functions
Access functions can read or display data. Another common use for access functions is to
test the truth or falsity of conditions—such functions are often called predicate functions.
An example of a predicate function would be an isEmpty function for any container
class—a class capable of holding many objects, like a vector. A program might test isEmp-
ty before attempting to read another item from the container object. An isFull predicate
function might test a container-class object to determine whether it has no additional
room. Useful predicate functions for our Time class might be isAM and isPM.

The program of Figs. 17.5–17.7 demonstrates the notion of a utility function (also
called a helper function). A utility function is not part of a class’s public interface; rather,
it’s a private member function that supports the operation of the class’s public member
functions. Utility functions are not intended to be used by clients of a class (but can be
used by friends of a class, as we’ll see in Chapter 18).

Class SalesPerson (Fig. 17.5) declares an array of 12 monthly sales figures (line 17)
and the prototypes for the class’s constructor and member functions that manipulate the
array.

In Fig. 17.6, the SalesPerson constructor (lines 9–13) initializes array sales to zero.
The public member function setSales (lines 30–37) sets the sales figure for one month

Software Engineering Observation 17.7
Information important to the interface of a class should be included in the header file.
Information that will be used only internally in the class and will not be needed by clients
of the class should be included in the unpublished source file. This is yet another example
of the principle of least privilege.

1 // Fig. 17.5: SalesPerson.h
2 // SalesPerson class definition.
3 // Member functions defined in SalesPerson.cpp.
4 #ifndef SALESP_H

5 #define SALESP_H

6
7 class SalesPerson
8 {
9 public:

10 static const int monthsPerYear = 12; // months in one year
11 SalesPerson(); // constructor
12 void getSalesFromUser(); // input sales from keyboard
13 void setSales(int, double); // set sales for a specific month
14 void printAnnualSales(); // summarize and print sales
15
16
17 double sales[monthsPerYear]; // 12 monthly sales figures
18 }; // end class SalesPerson
19
20 #endif

Fig. 17.5 | SalesPerson class definition.

private:
double totalAnnualSales(); // prototype for utility function

17.5 Access Functions and Utility Functions 613

in array sales. The public member function printAnnualSales (lines 40–45) prints the
total sales for the last 12 months. The private utility function totalAnnualSales (lines
48–56) totals the 12 monthly sales figures for the benefit of printAnnualSales. Member
function printAnnualSales edits the sales figures into monetary format.

1 // Fig. 17.6: SalesPerson.cpp
2 // SalesPerson class member-function definitions.
3 #include <iostream>
4 #include <iomanip>
5 #include "SalesPerson.h" // include SalesPerson class definition
6 using namespace std;
7
8 // initialize elements of array sales to 0.0
9 SalesPerson::SalesPerson()

10 {
11 for (int i = 0; i < monthsPerYear; i++)
12 sales[i] = 0.0;
13 } // end SalesPerson constructor
14
15 // get 12 sales figures from the user at the keyboard
16 void SalesPerson::getSalesFromUser()
17 {
18 double salesFigure;
19
20 for (int i = 1; i <= monthsPerYear; i++)
21 {
22 cout << "Enter sales amount for month " << i << ": ";
23 cin >> salesFigure;
24 setSales(i, salesFigure);
25 } // end for
26 } // end function getSalesFromUser
27
28 // set one of the 12 monthly sales figures; function subtracts
29 // one from month value for proper subscript in sales array
30 void SalesPerson::setSales(int month, double amount)
31 {
32 // test for valid month and amount values
33 if (month >= 1 && month <= monthsPerYear && amount > 0)
34 sales[month - 1] = amount; // adjust for subscripts 0-11
35 else // invalid month or amount value
36 cout << "Invalid month or sales figure" << endl;
37 } // end function setSales
38
39 // print total annual sales (with the help of utility function)
40 void SalesPerson::printAnnualSales()
41 {
42 cout << setprecision(2) << fixed
43 << "\nThe total annual sales are: $"
44 << << endl; // call utility function
45 } // end function printAnnualSales
46

Fig. 17.6 | SalesPerson class member-function definitions. (Part 1 of 2.)

totalAnnualSales()

614 Chapter 17 Classes: A Deeper Look, Part 1

In Fig. 17.7, notice that the application’s main function includes only a simple
sequence of member-function calls—there are no control statements. The logic of manip-
ulating the sales array is completely encapsulated in class SalesPerson’s member func-
tions.

47
48
49
50
51
52
53
54
55
56

Software Engineering Observation 17.8
A phenomenon of object-oriented programming is that once a class is defined, creating and
manipulating objects of that class often involve issuing only a simple sequence of member-
function calls—few, if any, control statements are needed. By contrast, it’s common to
have control statements in the implementation of a class’s member functions.

1 // Fig. 17.7: fig17_07.cpp
2 // Utility function demonstration.
3 // Compile this program with SalesPerson.cpp
4
5 // include SalesPerson class definition from SalesPerson.h
6 #include "SalesPerson.h"

7
8 int main()
9 {

10 SalesPerson s; // create SalesPerson object s
11
12 s.getSalesFromUser(); // note simple sequential code; there are
13 s.printAnnualSales(); // no control statements in main
14 } // end main

Enter sales amount for month 1: 5314.76
Enter sales amount for month 2: 4292.38
Enter sales amount for month 3: 4589.83
Enter sales amount for month 4: 5534.03
Enter sales amount for month 5: 4376.34
Enter sales amount for month 6: 5698.45
Enter sales amount for month 7: 4439.22
Enter sales amount for month 8: 5893.57
Enter sales amount for month 9: 4909.67
Enter sales amount for month 10: 5123.45

Fig. 17.7 | Utility function demonstration. (Part 1 of 2.)

Fig. 17.6 | SalesPerson class member-function definitions. (Part 2 of 2.)

// private utility function to total annual sales
double SalesPerson::totalAnnualSales()
{

double total = 0.0; // initialize total

for (int i = 0; i < monthsPerYear; i++) // summarize sales results
 total += sales[i]; // add month i sales to total

return total;
} // end function totalAnnualSales

17.6 Time Class Case Study: Constructors with Default Arguments 615

17.6 Time Class Case Study: Constructors with Default
Arguments
The program of Figs. 17.8–17.10 enhances class Time to demonstrate how arguments are
implicitly passed to a constructor. The constructor defined in Fig. 17.2 initialized hour,
minute and second to 0 (i.e., midnight in universal time). Like other functions, construc-
tors can specify default arguments. Line 13 of Fig. 17.8 declares the Time constructor to
include default arguments, specifying a default value of zero for each argument passed to
the constructor. In Fig. 17.9, lines 10–13 define the new version of the Time constructor
that receives values for parameters hr, min and sec that will be used to initialize private
data members hour, minute and second, respectively. Class Time provides set and get func-
tions for each data member. The Time constructor now calls setTime, which calls the set-
Hour, setMinute and setSecond functions to validate and assign values to the data
members. The default arguments to the constructor ensure that, even if no values are pro-
vided in a constructor call, the constructor still initializes the data members to maintain
the Time object in a consistent state. A constructor that defaults all its arguments is also a
default constructor—i.e., a constructor that can be invoked with no arguments. There can
be at most one default constructor per class.

Enter sales amount for month 11: 4024.97
Enter sales amount for month 12: 5923.92

The total annual sales are: $60120.59

1 // Fig. 17.8: Time.h
2 // Time class containing a constructor with default arguments.
3 // Member functions defined in Time.cpp.
4
5 // prevent multiple inclusions of header file
6 #ifndef TIME_H

7 #define TIME_H

8
9 // Time abstract data type definition

10 class Time
11 {
12 public:
13
14
15 // set functions
16 void setTime(int, int, int); // set hour, minute, second
17 void setHour(int); // set hour (after validation)
18 void setMinute(int); // set minute (after validation)
19 void setSecond(int); // set second (after validation)
20
21 // get functions
22 int getHour(); // return hour

Fig. 17.8 | Time class containing a constructor with default arguments. (Part 1 of 2.)

Fig. 17.7 | Utility function demonstration. (Part 2 of 2.)

Time(int = 0, int = 0, int = 0); // default constructor

616 Chapter 17 Classes: A Deeper Look, Part 1

In Fig. 17.9, line 12 of the constructor calls member function setTime with the values
passed to the constructor (or the default values). Function setTime calls setHour to ensure
that the value supplied for hour is in the range 0–23, then calls setMinute and setSecond
to ensure that the values for minute and second are each in the range 0–59. If a value is
out of range, that value is set to zero (to ensure that each data member remains in a con-
sistent state). In Chapter 24, Exception Handling, we use exceptions to indicate when a
value is out of range, rather than simply assigning a default consistent value.

23 int getMinute(); // return minute
24 int getSecond(); // return second
25
26 void printUniversal(); // output time in universal-time format
27 void printStandard(); // output time in standard-time format
28 private:
29 int hour; // 0 - 23 (24-hour clock format)
30 int minute; // 0 - 59
31 int second; // 0 - 59
32 }; // end class Time
33
34 #endif

1 // Fig. 17.9: Time.cpp
2 // Member-function definitions for class Time.
3 #include <iostream>
4 #include <iomanip>
5 #include "Time.h" // include definition of class Time from Time.h
6 using namespace std;
7
8
9

10
11
12
13
14
15 // set new Time value using universal time; ensure that
16 // the data remains consistent by setting invalid values to zero
17 void Time::setTime(int h, int m, int s)
18 {
19 setHour(h); // set private field hour
20 setMinute(m); // set private field minute
21 setSecond(s); // set private field second
22 } // end function setTime
23
24 // set hour value
25 void Time::setHour(int h)
26 {

Fig. 17.9 | Time class member-function definitions including a constructor that takes arguments.
(Part 1 of 2.)

Fig. 17.8 | Time class containing a constructor with default arguments. (Part 2 of 2.)

// Time constructor initializes each data member to zero;
// ensures that Time objects start in a consistent state
Time::Time(int hr, int min, int sec)
{
 setTime(hr, min, sec); // validate and set time
} // end Time constructor

17.6 Time Class Case Study: Constructors with Default Arguments 617

The Time constructor could be written to include the same statements as member
function setTime, or even the individual statements in the setHour, setMinute and set-
Second functions. Calling setHour, setMinute and setSecond from the constructor may

27 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
28 } // end function setHour
29
30 // set minute value
31 void Time::setMinute(int m)
32 {
33 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
34 } // end function setMinute
35
36 // set second value
37 void Time::setSecond(int s)
38 {
39 second = (s >= 0 && s < 60) ? s : 0; // validate second
40 } // end function setSecond
41
42 // return hour value
43 int Time::getHour()
44 {
45 return hour;
46 } // end function getHour
47
48 // return minute value
49 int Time::getMinute()
50 {
51 return minute;
52 } // end function getMinute
53
54 // return second value
55 int Time::getSecond()
56 {
57 return second;
58 } // end function getSecond
59
60 // print Time in universal-time format (HH:MM:SS)
61 void Time::printUniversal()
62 {
63 cout << setfill('0') << setw(2) << getHour() << ":"
64 << setw(2) << getMinute() << ":" << setw(2) << getSecond();
65 } // end function printUniversal
66
67 // print Time in standard-time format (HH:MM:SS AM or PM)
68 void Time::printStandard()
69 {
70 cout << ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12)
71 << ":" << setfill('0') << setw(2) << getMinute()
72 << ":" << setw(2) << getSecond() << (hour < 12 ? " AM" : " PM");
73 } // end function printStandard

Fig. 17.9 | Time class member-function definitions including a constructor that takes arguments.
(Part 2 of 2.)

618 Chapter 17 Classes: A Deeper Look, Part 1

be slightly more efficient because the extra call to setTime would be eliminated. Similarly,
copying the code from lines 27, 33 and 39 into constructor would eliminate the overhead
of calling setTime, setHour, setMinute and setSecond. Coding the Time constructor or
member function setTime as a copy of the code in lines 27, 33 and 39 would make
maintenance of this class more difficult. If the implementations of setHour, setMinute
and setSecond were to change, the implementation of any member function that dupli-
cates lines 27, 33 and 39 would have to change accordingly. Having the Time constructor
call setTime and having setTime call setHour, setMinute and setSecond enables us to
limit the changes to code that validates the hour, minute or second to the corresponding
set function. This reduces the likelihood of errors when altering the class’s implementa-
tion. Also, the performance of the Time constructor and setTime can be enhanced by
explicitly declaring them inline or by defining them in the class definition (which implic-
itly inlines the function definition).

Function main in Fig. 17.10 initializes five Time objects—one with all three argu-
ments defaulted in the implicit constructor call (line 9), one with one argument specified
(line 10), one with two arguments specified (line 11), one with three arguments specified
(line 12) and one with three invalid arguments specified (line 13). Then the program dis-
plays each object in universal-time and standard-time formats.

Software Engineering Observation 17.9
If a member function of a class already provides all or part of the functionality required
by a constructor (or other member function) of the class, call that member function from
the constructor (or other member function). This simplifies the maintenance of the code
and reduces the likelihood of an error if the implementation of the code is modified. As a
general rule: Avoid repeating code.

Software Engineering Observation 17.10
Any change to the default argument values of a function requires the client code to be
recompiled (to ensure that the program still functions correctly).

1 // Fig. 17.10: fig17_10.cpp
2 // Demonstrating a default constructor for class Time.
3 #include <iostream>
4 #include "Time.h" // include definition of class Time from Time.h
5 using namespace std;
6
7 int main()
8 {
9

10
11
12
13
14
15 cout << "Constructed with:\n\nt1: all arguments defaulted\n ";
16 t1.printUniversal(); // 00:00:00
17 cout << "\n ";

Fig. 17.10 | Constructor with default arguments. (Part 1 of 2.)

Time t1; // all arguments defaulted
Time t2(2); // hour specified; minute and second defaulted
Time t3(21, 34); // hour and minute specified; second defaulted
Time t4(12, 25, 42); // hour, minute and second specified
Time t5(27, 74, 99); // all bad values specified

17.6 Time Class Case Study: Constructors with Default Arguments 619

Notes Regarding Class Time’s Set and Get Functions and Constructor
Time’s set and get functions are called throughout the class’s body. In particular, function
setTime (lines 17–22 of Fig. 17.9) calls functions setHour, setMinute and setSecond,
and functions printUniversal and printStandard call functions getHour, getMinute
and getSecond in line 63–64 and lines 70–72, respectively. In each case, these functions
could have accessed the class’s private data directly. However, consider changing the rep-

18 t1.printStandard(); // 12:00:00 AM
19
20 cout << "\n\nt2: hour specified; minute and second defaulted\n ";
21 t2.printUniversal(); // 02:00:00
22 cout << "\n ";
23 t2.printStandard(); // 2:00:00 AM
24
25 cout << "\n\nt3: hour and minute specified; second defaulted\n ";
26 t3.printUniversal(); // 21:34:00
27 cout << "\n ";
28 t3.printStandard(); // 9:34:00 PM
29
30 cout << "\n\nt4: hour, minute and second specified\n ";
31 t4.printUniversal(); // 12:25:42
32 cout << "\n ";
33 t4.printStandard(); // 12:25:42 PM
34
35
36
37
38
39 cout << endl;
40 } // end main

Constructed with:

t1: all arguments defaulted
 00:00:00
 12:00:00 AM

t2: hour specified; minute and second defaulted
 02:00:00
 2:00:00 AM

t3: hour and minute specified; second defaulted
 21:34:00
 9:34:00 PM

t4: hour, minute and second specified
 12:25:42
 12:25:42 PM

t5: all invalid values specified
 00:00:00
 12:00:00 AM

Fig. 17.10 | Constructor with default arguments. (Part 2 of 2.)

cout << "\n\nt5: all invalid values specified\n ";
t5.printUniversal(); // 00:00:00
cout << "\n ";
t5.printStandard(); // 12:00:00 AM

620 Chapter 17 Classes: A Deeper Look, Part 1

resentation of the time from three int values (requiring 12 bytes of memory) to a single
int value representing the total number of seconds that have elapsed since midnight (re-
quiring only four bytes of memory). If we made such a change, only the bodies of the func-
tions that access the private data directly would need to change—in particular, the
individual set and get functions for the hour, minute and second. There would be no need
to modify the bodies of functions setTime, printUniversal or printStandard, because
they do not access the data directly. Designing the class in this manner reduces the likeli-
hood of programming errors when altering the class’s implementation.

Similarly, the Time constructor could be written to include a copy of the appropriate
statements from function setTime. Doing so may be slightly more efficient, because the
extra constructor call and call to setTime are eliminated. However, duplicating statements
in multiple functions or constructors makes changing the class’s internal data representa-
tion more difficult. Having the Time constructor call function setTime directly requires
any changes to the implementation of setTime to be made only once.

17.7 Destructors
A destructor is another type of special member function. The name of the destructor for
a class is the tilde character (~) followed by the class name. This naming convention has
intuitive appeal, because as we’ll see in a later chapter, the tilde operator is the bitwise com-
plement operator, and, in a sense, the destructor is the complement of the constructor. A
destructor is often referred to with the abbreviation “dtor” in the literature. We prefer not
to use this abbreviation.

A class’s destructor is called implicitly when an object is destroyed. This occurs, for
example, as an automatic object is destroyed when program execution leaves the scope in
which that object was instantiated. The destructor itself does not actually release the object’s
memory—it performs termination housekeeping before the object’s memory is reclaimed,
so the memory may be reused to hold new objects.

A destructor receives no parameters and returns no value. A destructor may not
specify a return type—not even void. A class may have only one destructor—destructor
overloading is not allowed. A destructor must be public.

Even though destructors have not been provided for the classes presented so far, every
class has a destructor. If you do not explicitly provide a destructor, the compiler creates an
“empty” destructor. [Note: We’ll see that such an implicitly created destructor does, in
fact, perform important operations on objects that are created through composition

Common Programming Error 17.2
A constructor can call other member functions of the class, such as set or get functions, but
because the constructor is initializing the object, the data members may not yet be in a
consistent state. Using data members before they have been properly initialized can cause
logic errors.

Common Programming Error 17.3
It’s a syntax error to attempt to pass arguments to a destructor, to specify a return type for
a destructor (even void cannot be specified), to return values from a destructor or to over-
load a destructor.

17.8 When Constructors and Destructors are Called 621

(Chapter 18) and inheritance (Chapter 20).] In Chapter 19, we’ll build destructors appro-
priate for classes whose objects contain dynamically allocated memory (e.g., for arrays and
strings) or use other system resources (e.g., files on disk). We discuss how to dynamically
allocate and deallocate memory in Chapter 18.

17.8 When Constructors and Destructors are Called
Constructors and destructors are called implicitly by the compiler. The order in which
these function calls occur depends on the order in which execution enters and leaves the
scopes where the objects are instantiated. Generally, destructor calls are made in the re-
verse order of the corresponding constructor calls, but as we’ll see in Figs. 17.11–17.13,
the storage classes of objects can alter the order in which destructors are called.

Constructors are called for objects defined in global scope before any other function
(including main) in that file begins execution (although the order of execution of global
object constructors between files is not guaranteed). The corresponding destructors are
called when main terminates. Function exit forces a program to terminate immediately
and does not execute the destructors of automatic objects. The function often is used to
terminate a program when an error is detected in the input or if a file to be processed by
the program cannot be opened. Function abort performs similarly to function exit but
forces the program to terminate immediately, without allowing the destructors of any
objects to be called. Function abort is usually used to indicate an abnormal termination
of the program. (See Chapter 14, for more information on functions exit and abort.)

The constructor for an automatic local object is called when execution reaches the
point where that object is defined—the corresponding destructor is called when execution
leaves the object’s scope (i.e., the block in which that object is defined has finished exe-
cuting). Constructors and destructors for automatic objects are called each time execution
enters and leaves the scope of the object. Destructors are not called for automatic objects
if the program terminates with a call to function exit or function abort.

The constructor for a static local object is called only once, when execution first
reaches the point where the object is defined—the corresponding destructor is called when
main terminates or the program calls function exit. Global and static objects are
destroyed in the reverse order of their creation. Destructors are not called for static
objects if the program terminates with a call to function abort.

The program of Figs. 17.11–17.13 demonstrates the order in which constructors and
destructors are called for objects of class CreateAndDestroy (Fig. 17.11 and Fig. 17.12) of
various storage classes in several scopes. Each object of class CreateAndDestroy contains
an integer (objectID) and a string (message) that are used in the program’s output to
identify the object (Fig. 17.11 lines 16–17). This mechanical example is purely for peda-
gogic purposes. For this reason, line 21 of the destructor in Fig. 17.12 determines whether
the object being destroyed has an objectID value 1 or 6 and, if so, outputs a newline char-
acter. This line makes the program’s output easier to follow.

Software Engineering Observation 17.11
Constructors and destructors have much greater prominence in C++ and object-oriented
programming than is possible to convey after only our brief introduction here.

622 Chapter 17 Classes: A Deeper Look, Part 1

Figure 17.13 defines object first (line 10) in global scope. Its constructor is actually
called before any statements in main execute and its destructor is called at program termi-
nation after the destructors for all other objects have run.

1 // Fig. 17.11: CreateAndDestroy.h
2 // CreateAndDestroy class definition.
3 // Member functions defined in CreateAndDestroy.cpp.
4 #include <string>
5 using namespace std;
6
7 #ifndef CREATE_H

8 #define CREATE_H

9
10 class CreateAndDestroy
11 {
12 public:
13
14
15 private:
16 int objectID; // ID number for object
17 string message; // message describing object
18 }; // end class CreateAndDestroy
19
20 #endif

Fig. 17.11 | CreateAndDestroy class definition.

1 // Fig. 17.12: CreateAndDestroy.cpp
2 // CreateAndDestroy class member-function definitions.
3 #include <iostream>
4 #include "CreateAndDestroy.h"// include CreateAndDestroy class definition
5 using namespace std;
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Fig. 17.12 | CreateAndDestroy class member-function definitions.

CreateAndDestroy(int, string); // constructor
~CreateAndDestroy(); // destructor

// constructor
CreateAndDestroy::CreateAndDestroy(int ID, string messageString)
{
 objectID = ID; // set object's ID number
 message = messageString; // set object's descriptive message

 cout << "Object " << objectID << " constructor runs "
 << message << endl;
} // end CreateAndDestroy constructor

// destructor
CreateAndDestroy::~CreateAndDestroy()
{
 // output newline for certain objects; helps readability
 cout << (objectID == 1 || objectID == 6 ? "\n" : "");

 cout << "Object " << objectID << " destructor runs "
 << message << endl;
} // end ~CreateAndDestroy destructor

17.8 When Constructors and Destructors are Called 623

Function main (lines 12–23) declares three objects. Objects second (line 15) and
fourth (line 21) are local automatic objects, and object third (line 16) is a static local
object. The constructor for each of these objects is called when execution reaches the point
where that object is declared. The destructors for objects fourth then second are called
(i.e., the reverse of the order in which their constructors were called) when execution
reaches the end of main. Because object third is static, it exists until program termina-
tion. The destructor for object third is called before the destructor for global object
first, but after all other objects are destroyed.

Function create (lines 26–33) declares three objects—fifth (line 29) and seventh
(line 31) as local automatic objects, and sixth (line 30) as a static local object. The
destructors for objects seventh thenfifth are called (i.e., the reverse of the order in which
their constructors were called) when create terminates. Because sixth is static, it exists
until program termination. The destructor for sixth is called before the destructors for
third and first, but after all other objects are destroyed.

1 // Fig. 17.13: fig17_13.cpp
2 // Demonstrating the order in which constructors and
3 // destructors are called.
4 #include <iostream>
5 #include "CreateAndDestroy.h" // include CreateAndDestroy class definition
6 using namespace std;
7
8 void create(void); // prototype
9

10
11
12 int main()
13 {
14 cout << "\nMAIN FUNCTION: EXECUTION BEGINS" << endl;
15
16
17
18
19
20 cout << "\nMAIN FUNCTION: EXECUTION RESUMES" << endl;
21
22 cout << "\nMAIN FUNCTION: EXECUTION ENDS" << endl;
23 } // end main
24
25 // function to create objects
26 void create(void)
27 {
28 cout << "\nCREATE FUNCTION: EXECUTION BEGINS" << endl;
29
30
31
32 cout << "\nCREATE FUNCTION: EXECUTION ENDS" << endl;
33 } // end function create

Fig. 17.13 | Order in which constructors and destructors are called. (Part 1 of 2.)

CreateAndDestroy first(1, "(global before main)"); // global object

CreateAndDestroy second(2, "(local automatic in main)");
static CreateAndDestroy third(3, "(local static in main)");

create(); // call function to create objects

CreateAndDestroy fourth(4, "(local automatic in main)");

CreateAndDestroy fifth(5, "(local automatic in create)");
static CreateAndDestroy sixth(6, "(local static in create)");
CreateAndDestroy seventh(7, "(local automatic in create)");

624 Chapter 17 Classes: A Deeper Look, Part 1

17.9 Time Class Case Study: A Subtle Trap—Returning
a Reference to a private Data Member
A reference to an object is an alias for the name of the object and, hence, may be used on
the left side of an assignment statement. In this context, the reference makes a perfectly
acceptable lvalue that can receive a value. One way to use this capability (unfortunately!)
is to have a public member function of a class return a reference to a private data mem-
ber of that class. If a function returns a const reference, that reference cannot be used as a
modifiable lvalue.

The program of Figs. 17.14–17.16 uses a simplified Time class (Fig. 17.14 and
Fig. 17.15) to demonstrate returning a reference to a private data member with member
function badSetHour (declared in Fig. 17.14 in line 15 and defined in Fig. 17.15 in lines
27–31). Such a reference return actually makes a call to member function badSetHour an
alias for private data member hour! The function call can be used in any way that the
private data member can be used, including as an lvalue in an assignment statement, thus
enabling clients of the class to clobber the class’s private data at will! The same problem
would occur if a pointer to the private data were to be returned by the function.

Object 1 constructor runs (global before main)

MAIN FUNCTION: EXECUTION BEGINS
Object 2 constructor runs (local automatic in main)
Object 3 constructor runs (local static in main)

CREATE FUNCTION: EXECUTION BEGINS
Object 5 constructor runs (local automatic in create)
Object 6 constructor runs (local static in create)
Object 7 constructor runs (local automatic in create)

CREATE FUNCTION: EXECUTION ENDS
Object 7 destructor runs (local automatic in create)
Object 5 destructor runs (local automatic in create)

MAIN FUNCTION: EXECUTION RESUMES
Object 4 constructor runs (local automatic in main)

MAIN FUNCTION: EXECUTION ENDS
Object 4 destructor runs (local automatic in main)
Object 2 destructor runs (local automatic in main)

Object 6 destructor runs (local static in create)
Object 3 destructor runs (local static in main)

Object 1 destructor runs (global before main)

1 // Fig. 17.14: Time.h
2 // Time class declaration.
3 // Member functions defined in Time.cpp
4

Fig. 17.14 | Time class declaration. (Part 1 of 2.)

Fig. 17.13 | Order in which constructors and destructors are called. (Part 2 of 2.)

17.9 A Subtle Trap—Returning a Reference to a private Data Member 625

5 // prevent multiple inclusions of header file
6 #ifndef TIME_H

7 #define TIME_H

8
9 class Time

10 {
11 public:
12 Time(int = 0, int = 0, int = 0);
13 void setTime(int, int, int);
14 int getHour();
15
16 private:
17 int hour;
18 int minute;
19 int second;
20 }; // end class Time
21
22 #endif

1 // Fig. 17.15: Time.cpp
2 // Time class member-function definitions.
3 #include "Time.h" // include definition of class Time
4
5 // constructor function to initialize private data; calls member function
6 // setTime to set variables; default values are 0 (see class definition)
7 Time::Time(int hr, int min, int sec)
8 {
9 setTime(hr, min, sec);

10 } // end Time constructor
11
12 // set values of hour, minute and second
13 void Time::setTime(int h, int m, int s)
14 {
15 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
16 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
17 second = (s >= 0 && s < 60) ? s : 0; // validate second
18 } // end function setTime
19
20 // return hour value
21 int Time::getHour()
22 {
23 return hour;
24 } // end function getHour
25
26
27 int &Time::badSetHour(int hh)
28 {
29 hour = (hh >= 0 && hh < 24) ? hh : 0;
30 return hour; // DANGEROUS reference return
31 } // end function badSetHour

Fig. 17.15 | Time class member-function definitions.

Fig. 17.14 | Time class declaration. (Part 2 of 2.)

int &badSetHour(int); // DANGEROUS reference return

// POOR PRACTICE: Returning a reference to a private data member.

626 Chapter 17 Classes: A Deeper Look, Part 1

Figure 17.16 declares Time object t (line 10) and reference hourRef (line 13), which
is initialized with the reference returned by the call t.badSetHour(20). Line 15 displays
the value of the alias hourRef. This shows how hourRef breaks the encapsulation of the
class—statements in main should not have access to the private data of the class. Next,
line 16 uses the alias to set the value of hour to 30 (an invalid value) and line 17 displays
the value returned by function getHour to show that assigning a value to hourRef actually
modifies the private data in the Time object t. Finally, line 21 uses the badSetHour func-
tion call itself as an lvalue and assigns 74 (another invalid value) to the reference returned
by the function. Line 26 again displays the value returned by function getHour to show
that assigning a value to the result of the function call in line 21 modifies the private data
in the Time object t.

1 // Fig. 17.16: fig17_16.cpp
2 // Demonstrating a public member function that
3 // returns a reference to a private data member.
4 #include <iostream>
5 #include "Time.h" // include definition of class Time
6 using namespace std;
7
8 int main()
9 {

10 Time t; // create Time object
11
12
13
14
15
16
17 cout << "\nInvalid hour after modification: " << t.getHour();
18
19
20
21
22
23 cout << "\n\n***\n"
24 << "POOR PROGRAMMING PRACTICE!!!!!!!!\n"
25 << "t.badSetHour(12) as an lvalue, invalid hour: "
26 << t.getHour()
27 << "\n***" << endl;
28 } // end main

Valid hour before modification: 20
Invalid hour after modification: 30

POOR PROGRAMMING PRACTICE!!!!!!!!
t.badSetHour(12) as an lvalue, invalid hour: 74

Fig. 17.16 | Returning a reference to a private data member.

// initialize hourRef with the reference returned by badSetHour
int &hourRef = t.badSetHour(20); // 20 is a valid hour

cout << "Valid hour before modification: " << hourRef;
hourRef = 30; // use hourRef to set invalid value in Time object t

// Dangerous: Function call that returns
// a reference can be used as an lvalue!
t.badSetHour(12) = 74; // assign another invalid value to hour

17.10 Default Memberwise Assignment 627

17.10 Default Memberwise Assignment
The assignment operator (=) can be used to assign an object to another object of the
same type. By default, such assignment is performed by memberwise assignment—each
data member of the object on the right of the assignment operator is assigned individu-
ally to the same data member in the object on the left of the assignment operator.
Figures 17.17–17.18 define class Date for use in this example. Line 18 of Fig. 17.19 uses
default memberwise assignment to assign the data members of Date object date1 to the
corresponding data members of Date object date2. In this case, the month member of
date1 is assigned to the month member of date2, the day member of date1 is assigned
to the day member of date2 and the year member of date1 is assigned to the year mem-
ber of date2. [Caution: Memberwise assignment can cause serious problems when used
with a class whose data members contain pointers to dynamically allocated memory; we
discuss these problems in Chapter 19 and show how to deal with them.] The Date con-
structor does not contain any error checking; we leave this to the exercises.

Error-Prevention Tip 17.4
Returning a reference or a pointer to a private data member breaks the encapsulation of
the class and makes the client code dependent on the representation of the class’s data; this
is a dangerous practice that should be avoided.

1 // Fig. 17.17: Date.h
2 // Date class declaration. Member functions are defined in Date.cpp.
3
4 // prevent multiple inclusions of header file
5 #ifndef DATE_H

6 #define DATE_H

7
8 // class Date definition
9 class Date

10 {
11 public:
12 Date(int = 1, int = 1, int = 2000); // default constructor
13 void print();
14 private:
15 int month;
16 int day;
17 int year;
18 }; // end class Date
19
20 #endif

Fig. 17.17 | Date class declaration.

1 // Fig. 17.18: Date.cpp
2 // Date class member-function definitions.
3 #include <iostream>
4 #include "Date.h" // include definition of class Date from Date.h

Fig. 17.18 | Date class member-function definitions. (Part 1 of 2.)

628 Chapter 17 Classes: A Deeper Look, Part 1

Objects may be passed as function arguments and may be returned from functions.
Such passing and returning is performed using pass-by-value by default—a copy of the
object is passed or returned. In such cases, C++ creates a new object and uses a copy con-
structor to copy the original object’s values into the new object. For each class, the compiler

5 using namespace std;
6
7 // Date constructor (should do range checking)
8 Date::Date(int m, int d, int y)
9 {

10 month = m;
11 day = d;
12 year = y;
13 } // end constructor Date
14
15 // print Date in the format mm/dd/yyyy
16 void Date::print()
17 {
18 cout << month << '/' << day << '/' << year;
19 } // end function print

1 // Fig. 17.19: fig17_19.cpp
2 // Demonstrating that class objects can be assigned
3 // to each other using default memberwise assignment.
4 #include <iostream>
5 #include "Date.h" // include definition of class Date from Date.h
6 using namespace std;
7
8 int main()
9 {

10 Date date1(7, 4, 2004);
11 Date date2; // date2 defaults to 1/1/2000
12
13 cout << "date1 = ";
14 date1.print();
15 cout << "\ndate2 = ";
16 date2.print();
17
18
19
20 cout << "\n\nAfter default memberwise assignment, date2 = ";
21 date2.print();
22 cout << endl;
23 } // end main

date1 = 7/4/2004
date2 = 1/1/2000

After default memberwise assignment, date2 = 7/4/2004

Fig. 17.19 | Default memberwise assignment.

Fig. 17.18 | Date class member-function definitions. (Part 2 of 2.)

date2 = date1; // default memberwise assignment

17.11 Wrap-Up 629

provides a default copy constructor that copies each member of the original object into the
corresponding member of the new object. Like memberwise assignment, copy constructors
can cause serious problems when used with a class whose data members contain pointers to
dynamically allocated memory. Chapter 19 discusses how to define customized copy con-
structors that properly copy objects containing pointers to dynamically allocated memory.

17.11 Wrap-Up
This chapter deepened our coverage of classes, using a rich Time class case study to intro-
duce several new features. You saw that member functions are usually shorter than global
functions because member functions can directly access an object’s data members, so the
member functions can receive fewer arguments than functions in procedural program-
ming languages. You learned how to use the arrow operator to access an object’s members
via a pointer of the object’s class type.

You learned that member functions have class scope—the member function’s name is
known only to the class’s other members unless referred to via an object of the class, a ref-
erence to an object of the class, a pointer to an object of the class or the binary scope reso-
lution operator. We also discussed access functions (commonly used to retrieve the values
of data members or to test the truth or falsity of conditions) and utility functions (private
member functions that support the operation of the class’s public member functions).

You learned that a constructor can specify default arguments that enable it to be called
in a variety of ways. You also learned that any constructor that can be called with no argu-
ments is a default constructor and that there can be at most one default constructor per
class. We discussed destructors and their purpose of performing termination housekeeping
on an object of a class before that object is destroyed. We also demonstrated the order in
which an object’s constructors and destructors are called.

We demonstrated the problems that can occur when a member function returns a ref-
erence to a private data member, which breaks the encapsulation of the class. We also
showed that objects of the same type can be assigned to one another using default mem-
berwise assignment. We also discussed the benefits of using class libraries to enhance the
speed with which code can be created and to increase the quality of software.

Chapter 18 presents additional class features. We’ll demonstrate how const can be
used to indicate that a member function does not modify an object of a class. You’ll build
classes with composition, which allows a class to contain objects of other classes as mem-
bers. We’ll show how a class can allow so-called “friend” functions to access the class’s non-
public members. We’ll also show how a class’s non-static member functions can use a
special pointer named this to access an object’s members.

Performance Tip 17.3
Passing an object by value is good from a security standpoint, because the called function
has no access to the original object in the caller, but pass-by-value can degrade performance
when making a copy of a large object. An object can be passed by reference by passing either
a pointer or a reference to the object. Pass-by-reference offers good performance but is
weaker from a security standpoint, because the called function is given access to the origi-
nal object. Pass-by-const-reference is a safe, good-performing alternative (this can be im-
plemented with a const reference parameter or with a pointer-to-const-data parameter).

630 Chapter 17 Classes: A Deeper Look, Part 1

Summary
Section 17.2 Time Class Case Study
• Preprocessor directives #ifndef (which means “if not defined”) and #endif are used to prevent

multiple inclusions of a header file. If the code between these directives has not previously been
included in an application, #define defines a name that can be used to prevent future inclusions,
and the code is included in the source code file.

• Data members cannot be initialized where they’re declared in the class body (except for a class’s
static const data members of integral or enum types). Initialize these data members in the class’s
constructor (as there is no default initialization for data members of fundamental types).

• Stream manipulator setfill specifies the fill character that is displayed when an integer is output
in a field that is wider than the number of digits in the value.

• By default, the fill characters appear before the digits in the number.

• Stream manipulator setfill is a “sticky” setting, meaning that once the fill character is set, it
applies for all subsequent fields being printed.

• Even though a member function declared in a class definition may be defined outside that class
definition (and “tied” to the class via the binary scope resolution operator), that member func-
tion is still within that class’s scope.

• If a member function is defined in the body of a class definition, the C++ compiler attempts to
inline calls to the member function.

• Classes can include objects of other classes as members or they may be derived from other classes
that provide attributes and behaviors the new classes can use.

Section 17.3 Class Scope and Accessing Class Members
• A class’s data members and member functions belong to that class’s scope.

• Nonmember functions are defined at global namespace scope.

• Within a class’s scope, class members are immediately accessible by all of that class’s member
functions and can be referenced by name.

• Outside a class’s scope, class members are referenced through one of the handles on an object—
an object name, a reference to an object or a pointer to an object.

• Member functions of a class can be overloaded, but only by other member functions of that class.

• To overload a member function, provide in the class definition a prototype for each version of
the overloaded function, and provide a separate definition for each version of the function.

• Variables declared in a member function have local scope and are known only to that function.

• If a member function defines a variable with the same name as a variable with class scope, the
class-scope variable is hidden by the block-scope variable in the local scope.

• The dot member selection operator (.) is preceded by an object’s name or by a reference to an
object to access the object’s public members.

• The arrow member selection operator (->) is preceded by a pointer to an object to access that
object’s public members.

Section 17.4 Separating Interface from Implementation
• Header files contain some portions of a class’s implementation and hints about others. Inline

member functions, for example, should be in a header file, so that when the compiler compiles
a client, the client can include the inline function definition in place.

• A class’s private members that are listed in the class definition in the header file are visible to
clients, even though the clients may not access the private members.

 Terminology 631

Section 17.5 Access Functions and Utility Functions
• A utility function is a private member function that supports the operation of the class’s public

member functions. Utility functions are not intended to be used by clients of a class.

Section 17.6 Time Class Case Study: Constructors with Default Arguments
• Like other functions, constructors can specify default arguments.

Section 17.7 Destructors
• A class’s destructor is called implicitly when an object of the class is destroyed.

• The name of the destructor for a class is the tilde (~) character followed by the class name.

• A destructor does not release an object’s storage—it performs termination housekeeping before
the system reclaims an object’s memory, so the memory may be reused to hold new objects.

• A destructor receives no parameters and returns no value. A class may have only one destructor.

• If you do not explicitly provide a destructor, the compiler creates an “empty” destructor, so every
class has exactly one destructor.

Section 17.8 When Constructors and Destructors are Called
• The order in which constructors and destructors are called depends on the order in which exe-

cution enters and leaves the scopes where the objects are instantiated.

• Generally, destructor calls are made in the reverse order of the corresponding constructor calls,
but the storage classes of objects can alter the order in which destructors are called.

Section 17.9 Time Class Case Study: A Subtle Trap—Returning a Reference to a
private Data Member
• A reference to an object is an alias for the name of the object and, hence, may be used on the left

side of an assignment statement. In this context, the reference makes a perfectly acceptable lvalue
that can receive a value.

• If the function returns a const reference, then the reference cannot be used as a modifiable lvalue.

Section 17.10 Default Memberwise Assignment
• The assignment operator (=) can be used to assign an object to another object of the same type.

By default, such assignment is performed by memberwise assignment.

• Objects may be passed by value to or returned by value from functions. C++ creates a new object
and uses a copy constructor to copy the original object’s values into the new object.

• For each class, the compiler provides a default copy constructor that copies each member of the
original object into the corresponding member of the new object.

Terminology
abort function 621
access function 612
aggregation 609
arrow member selection operator (->) 610
class scope 606
composition 609
copy constructor 628
default memberwise assignment 627
#define preprocessor directive 604
derive one class from another 609
derived 609

destructor 620
#endif preprocessor directive 604
exit function 621
fill character 606
handle on an object 609
helper function 612
#ifndef preprocessor directive 604
inheritance 609
memberwise assignment 627
predicate function 612
preprocessor wrapper 604

632 Chapter 17 Classes: A Deeper Look, Part 1

setfill parameterized stream manipulator 606
termination housekeeping 620

tilde character (~) in a destructor name 620

Self-Review Exercises
17.1 Fill in the blanks in each of the following:

a) Class members are accessed via the operator in conjunction with the name of
an object (or reference to an object) of the class or via the operator in conjunc-
tion with a pointer to an object of the class.

b) Class members specified as are accessible only to member functions of the
class and friends of the class.

c) Class members specified as are accessible anywhere an object of the class is in
scope.

d) can be used to assign an object of a class to another object of the same class.

17.2 Find the error(s) in each of the following and explain how to correct it (them):
a) Assume the following prototype is declared in class Time:

void ~Time(int);

b) The following is a partial definition of class Time:

class Time
{
public:

// function prototypes

private:
int hour = 0;
int minute = 0;
int second = 0;

}; // end class Time

c) Assume the following prototype is declared in class Employee:

int Employee(string, string);

Answers to Self-Review Exercises
17.1 a) dot (.), arrow (->). b) private. c) public. d) Default memberwise assignment (per-
formed by the assignment operator).

17.2 a) Error: Destructors are not allowed to return values (or even specify a return type) or take
arguments.
Correction: Remove the return type void and the parameter int from the declaration.

b) Error: Members cannot be explicitly initialized in the class definition.
Correction: Remove the explicit initialization from the class definition and initialize the
data members in a constructor.

c) Error: Constructors are not allowed to return values.
Correction: Remove the return type int from the declaration.

Exercises
17.3 What’s the purpose of the scope resolution operator?

17.4 (Enhancing Class Time) Provide a constructor that is capable of using the current time from
the time and localtime functions—declared in the C++ Standard Library header <ctime>—to ini-
tialize an object of the Time class.

 Exercises 633

17.5 (Complex Class) Create a class called Complex for performing arithmetic with complex num-
bers. Write a program to test your class. Complex numbers have the form

realPart + imaginaryPart * i

where i is

Use double variables to represent the private data of the class. Provide a constructor that enables
an object of this class to be initialized when it’s declared. The constructor should contain default
values in case no initializers are provided. Provide public member functions that perform the fol-
lowing tasks:

a) Adding two Complex numbers: The real parts are added together and the imaginary
parts are added together.

b) Subtracting two Complex numbers: The real part of the right operand is subtracted from
the real part of the left operand, and the imaginary part of the right operand is sub-
tracted from the imaginary part of the left operand.

c) Printing Complex numbers in the form (a, b), where a is the real part and b is the imag-
inary part.

17.6 (Rational Class) Create a class called Rational for performing arithmetic with fractions.
Write a program to test your class.

Use integer variables to represent the private data of the class—the numerator and the denom-
inator. Provide a constructor that enables an object of this class to be initialized when it’s declared.
The constructor should contain default values in case no initializers are provided and should store
the fraction in reduced form. For example, the fraction

would be stored in the object as 1 in the numerator and 2 in the denominator. Provide public
member functions that perform each of the following tasks:

a) Adding two Rational numbers. The result should be stored in reduced form.
b) Subtracting two Rational numbers. The result should be stored in reduced form.
c) Multiplying two Rational numbers. The result should be stored in reduced form.
d) Dividing two Rational numbers. The result should be stored in reduced form.
e) Printing Rational numbers in the form a/b, where a is the numerator and b is the de-

nominator.
f) Printing Rational numbers in floating-point format.

17.7 (Enhancing Class Time) Modify the Time class of Figs. 17.8–17.9 to include a tick member
function that increments the time stored in a Time object by one second. The Time object should
always remain in a consistent state. Write a program that tests the tick member function in a loop
that prints the time in standard format during each iteration of the loop to illustrate that the tick
member function works correctly. Be sure to test the following cases:

a) Incrementing into the next minute.
b) Incrementing into the next hour.
c) Incrementing into the next day (i.e., 11:59:59 PM to 12:00:00 AM).

17.8 (Enhancing Class Date) Modify the Date class of Figs. 17.17–17.18 to perform error check-
ing on the initializer values for data members month, day and year. Also, provide a member function
nextDay to increment the day by one. The Date object should always remain in a consistent state.
Write a program that tests function nextDay in a loop that prints the date during each iteration to
illustrate that nextDay works correctly. Be sure to test the following cases:

a) Incrementing into the next month.
b) Incrementing into the next year.

–1

2
4

634 Chapter 17 Classes: A Deeper Look, Part 1

17.9 (Combining Class Time and Class Date) Combine the modified Time class of Exercise 17.7
and the modified Date class of Exercise 17.8 into one class called DateAndTime. (In Chapter 20, we’ll
discuss inheritance, which will enable us to accomplish this task quickly without modifying the ex-
isting class definitions.) Modify the tick function to call the nextDay function if the time incre-
ments into the next day. Modify functions printStandard and printUniversal to output the date
and time. Write a program to test the new class DateAndTime. Specifically, test incrementing the
time into the next day.

17.10 (Returning Error Indicators from Class Time’s set Functions) Modify the set functions in the
Time class of Figs. 17.8–17.9 to return appropriate error values if an attempt is made to set a data
member of an object of class Time to an invalid value. Write a program that tests your new version
of class Time. Display error messages when set functions return error values.

17.11 (Rectangle Class) Create a class Rectangle with attributes length and width, each of which
defaults to 1. Provide member functions that calculate the perimeter and the area of the rectangle.
Also, provide set and get functions for the length and width attributes. The set functions should ver-
ify that length and width are each floating-point numbers larger than 0.0 and less than 20.0.

17.12 (Enhancing Class Rectangle) Create a more sophisticated Rectangle class than the one you
created in Exercise 17.11. This class stores only the Cartesian coordinates of the four corners of the
rectangle. The constructor calls a set function that accepts four sets of coordinates and verifies that
each of these is in the first quadrant with no single x- or y-coordinate larger than 20.0. The set func-
tion also verifies that the supplied coordinates do, in fact, specify a rectangle. Provide member func-
tions that calculate the length, width, perimeter and area. The length is the larger of the two
dimensions. Include a predicate function square that determines whether the rectangle is a square.

17.13 (Enhancing Class Rectangle) Modify class Rectangle from Exercise 17.12 to include a draw
function that displays the rectangle inside a 25-by-25 box enclosing the portion of the first quadrant
in which the rectangle resides. Include a setFillCharacter function to specify the character out of
which the body of the rectangle will be drawn. Include a setPerimeterCharacter function to specify
the character that will be used to draw the border of the rectangle. If you feel ambitious, you might
include functions to scale the size of the rectangle, rotate it, and move it around within the desig-
nated portion of the first quadrant.

17.14 (HugeInteger Class) Create a class HugeInteger that uses a 40-element array of digits to
store integers as large as 40 digits each. Provide member functions input, output, add and subtract.
For comparing HugeInteger objects, provide functions isEqualTo, isNotEqualTo, isGreaterThan,
isLessThan, isGreaterThanOrEqualTo and isLessThanOrEqualTo—each of these is a “predicate”
function that simply returns true if the relationship holds between the two HugeIntegers and re-
turns false if the relationship does not hold. Also, provide a predicate function isZero. If you feel
ambitious, provide member functions multiply, divide and modulus.

17.15 (TicTacToe Class) Create a class TicTacToe that will enable you to write a complete program
to play the game of tic-tac-toe. The class contains as private data a 3-by-3 two-dimensional array
of integers. The constructor should initialize the empty board to all zeros. Allow two human players.
Wherever the first player moves, place a 1 in the specified square. Place a 2 wherever the second play-
er moves. Each move must be to an empty square. After each move, determine whether the game
has been won or is a draw. If you feel ambitious, modify your program so that the computer makes
the moves for one of the players. Also, allow the player to specify whether he or she wants to go first
or second. If you feel exceptionally ambitious, develop a program that will play three-dimensional
tic-tac-toe on a 4-by-4-by-4 board. [Caution: This is an extremely challenging project that could
take many weeks of effort!]

18Classes: A Deeper Look,
Part 2

But what, to serve our private
ends,
Forbids the cheating of our
friends?
—Charles Churchill

Instead of this absurd division
into sexes they ought to class
people as static and dynamic.
—Evelyn Waugh

Have no friends not equal to
yourself.
—Confucius

O b j e c t i v e s
In this chapter you’ll learn:

■ To specify const (constant)
objects and const member
functions.

■ To create objects composed
of other objects.

■ To use friend functions
and friend classes.

■ To use the this pointer.

■ To use static data
members and member
functions.

■ The concept of a container
class.

■ The notion of iterator classes
that walk through the
elements of container
classes.

■ To use proxy classes to hide
implementation details from
a class’s clients.

636 Chapter 18 Classes: A Deeper Look, Part 2

18.1 Introduction
In this chapter, we continue our study of classes and data abstraction with several more
advanced topics. We use const objects and const member functions to prevent modifica-
tions of objects and enforce the principle of least privilege. We discuss composition—a
form of reuse in which a class can have objects of other classes as members. Next, we in-
troduce friendship, which enables a class designer to specify nonmember functions that
can access a class’s non-public members—a technique that is often used in operator over-
loading (Chapter 19) for performance reasons. We discuss a special pointer (called this),
which is an implicit argument to each of a class’s non-static member functions. It allows
those member functions to access the correct object’s data members and other non-static
member functions. Finally, we motivate the need for static class members and show how
to use static data members and member functions in your own classes.

18.2 const (Constant) Objects and const Member
Functions
Let’s see how the principle of least privilege applies to objects. Some objects need to be
modifiable and some do not. You may use keyword const to specify that an object is not
modifiable and that any attempt to modify the object should result in a compilation error.
The statement

declares a const object noon of class Time and initializes it to 12 noon.

18.1 Introduction
18.2 const (Constant) Objects and

const Member Functions
18.3 Composition: Objects as Members of

Classes
18.4 friend Functions and friend

Classes

18.5 Using the this Pointer
18.6 static Class Members
18.7 Data Abstraction and Information

Hiding
18.8 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

const Time noon(12, 0, 0);

Software Engineering Observation 18.1
Attempts to modify a const object are caught at compile time rather than causing
execution-time errors.

Performance Tip 18.1
Declaring variables and objects const when appropriate can improve performance—com-
pilers can perform certain optimizations on constants that cannot be performed on vari-
ables.

18.2 const (Constant) Objects and const Member Functions 637

C++ disallows member function calls for const objects unless the member functions
themselves are also declared const. This is true even for get member functions that do not
modify the object.

A member function is specified as const both in its prototype (Fig. 18.1; lines 19–24)
and in its definition (Fig. 18.2; lines 43, 49, 55 and 61) by inserting the keyword const
after the function’s parameter list and, in the case of the function definition, before the left
brace that begins the function body.

An interesting problem arises for constructors and destructors, each of which typically
modifies objects. A constructor must be allowed to modify an object so that the object can
be initialized properly. A destructor must be able to perform its termination housekeeping
chores before an object’s memory is reclaimed by the system.

Defining and Using const Member Functions
The program of Figs. 18.1–18.3 modifies class Time of Figs. 17.8–17.9 by making its get
functions and printUniversal function const. In the header file Time.h (Fig. 18.1), lines
19–21 and 24 now include keyword const after each function’s parameter list. The cor-
responding definition of each function in Fig. 18.2 (lines 43, 49, 55 and 61, respectively)
also specifies keyword const after each function’s parameter list.

Common Programming Error 18.1
Defining as const a member function that modifies a data member of the object is a com-
pilation error.

Common Programming Error 18.2
Defining as const a member function that calls a non-const member function of the class
on the same object is a compilation error.

Common Programming Error 18.3
Invoking a non-const member function on a const object is a compilation error.

Software Engineering Observation 18.2
A const member function can be overloaded with a non-const version. The compiler
chooses which overloaded member function to use based on the object on which the
function is invoked. If the object is const, the compiler uses the const version. If the object
is not const, the compiler uses the non-const version.

Common Programming Error 18.4
Attempting to declare a constructor or destructor const is a compilation error.

1 // Fig. 18.1: Time.h
2 // Time class definition with const member functions.
3 // Member functions defined in Time.cpp.
4 #ifndef TIME_H

5 #define TIME_H

Fig. 18.1 | Time class definition with const member functions. (Part 1 of 2.)

638 Chapter 18 Classes: A Deeper Look, Part 2

6
7 class Time
8 {
9 public:

10 Time(int = 0, int = 0, int = 0); // default constructor
11
12 // set functions
13 void setTime(int, int, int); // set time
14 void setHour(int); // set hour
15 void setMinute(int); // set minute
16 void setSecond(int); // set second
17
18
19
20
21
22
23
24
25 void printStandard(); // print standard time (should be const)
26 private:
27 int hour; // 0 - 23 (24-hour clock format)
28 int minute; // 0 - 59
29 int second; // 0 - 59
30 }; // end class Time
31
32 #endif

1 // Fig. 18.2: Time.cpp
2 // Time class member-function definitions.
3 #include <iostream>
4 #include <iomanip>
5 #include "Time.h" // include definition of class Time
6 using namespace std;
7
8 // constructor function to initialize private data;
9 // calls member function setTime to set variables;

10 // default values are 0 (see class definition)
11 Time::Time(int hour, int minute, int second)
12 {
13 setTime(hour, minute, second);
14 } // end Time constructor
15
16 // set hour, minute and second values
17 void Time::setTime(int hour, int minute, int second)
18 {
19 setHour(hour);
20 setMinute(minute);
21 setSecond(second);
22 } // end function setTime

Fig. 18.2 | Time class member-function definitions. (Part 1 of 2.)

Fig. 18.1 | Time class definition with const member functions. (Part 2 of 2.)

// get functions (normally declared const)
int getHour() const; // return hour
int getMinute() const; // return minute
int getSecond() const; // return second

// print functions (normally declared const)
void printUniversal() const; // print universal time

18.2 const (Constant) Objects and const Member Functions 639

23
24 // set hour value
25 void Time::setHour(int h)
26 {
27 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
28 } // end function setHour
29
30 // set minute value
31 void Time::setMinute(int m)
32 {
33 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
34 } // end function setMinute
35
36 // set second value
37 void Time::setSecond(int s)
38 {
39 second = (s >= 0 && s < 60) ? s : 0; // validate second
40 } // end function setSecond
41
42 // return hour value
43
44 {
45 return hour;
46 } // end function getHour
47
48 // return minute value
49
50 {
51 return minute;
52 } // end function getMinute
53
54 // return second value
55
56 {
57 return second;
58 } // end function getSecond
59
60 // print Time in universal-time format (HH:MM:SS)
61
62 {
63 cout << setfill('0') << setw(2) << hour << ":"
64 << setw(2) << minute << ":" << setw(2) << second;
65 } // end function printUniversal
66
67 // print Time in standard-time format (HH:MM:SS AM or PM)
68 void Time::printStandard() // note lack of const declaration
69 {
70 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
71 << ":" << setfill('0') << setw(2) << minute
72 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");
73 } // end function printStandard

Fig. 18.2 | Time class member-function definitions. (Part 2 of 2.)

int Time::getHour() const // get functions should be const

int Time::getMinute() const

int Time::getSecond() const

void Time::printUniversal() const

640 Chapter 18 Classes: A Deeper Look, Part 2

Figure 18.3 instantiates two Time objects—non-const object wakeUp (line 7) and
const object noon (line 8). The program attempts to invoke non-const member functions
setHour (line 13) and printStandard (line 20) on the const object noon. In each case, the
compiler generates an error message. The program also illustrates the three other member-
function-call combinations on objects—a non-const member function on a non-const
object (line 11), a const member function on a non-const object (line 15) and a const
member function on a const object (lines 17–18). The error messages generated for non-
const member functions called on a const object are shown in the output window.

1 // Fig. 18.3: fig18_03.cpp
2 // Attempting to access a const object with non-const member functions.
3 #include "Time.h" // include Time class definition
4
5 int main()
6 {
7 Time wakeUp(6, 45, 0); // non-constant object
8 const Time noon(12, 0, 0); // constant object
9

10 // OBJECT MEMBER FUNCTION
11 wakeUp.setHour(18); // non-const non-const
12
13
14
15 wakeUp.getHour(); // non-const const
16
17 noon.getMinute(); // const const
18 noon.printUniversal(); // const const
19
20
21 } // end main

Microsoft Visual C++ compiler error messages:

C:\examples\ch18\Fig18_01_03\fig18_03.cpp(13) : error C2662:
 'Time::setHour' : cannot convert 'this' pointer from 'const Time' to
 'Time &'
 Conversion loses qualifiers
C:\examples\ch18\Fig18_01_03\fig18_03.cpp(20) : error C2662:
 'Time::printStandard' : cannot convert 'this' pointer from 'const Time' to
 'Time &'
 Conversion loses qualifiers

GNU C++ compiler error messages:

fig18_03.cpp:13: error: passing 'const Time' as 'this' argument of
 'void Time::setHour(int)' discards qualifiers
fig18_03.cpp:20: error: passing 'const Time' as 'this' argument of
 'void Time::printStandard()' discards qualifiers

Fig. 18.3 | const objects and const member functions.

noon.setHour(12); // const non-const

noon.printStandard(); // const non-const

18.2 const (Constant) Objects and const Member Functions 641

A constructor must be a non-const member function (Fig. 18.2, lines 11–14), but it
can still be used to initialize a const object (Fig. 18.3, line 8). The Time constructor’s def-
inition (Fig. 18.2, lines 11–14) shows that it calls another non-const member function—
setTime (lines 17–22)—to perform the initialization of a Time object. Invoking a non-
const member function from the constructor call as part of the initialization of a const
object is allowed. The “constness” of a const object is enforced from the time the con-
structor completes initialization of the object until that object’s destructor is called.

Also, line 20 in Fig. 18.3 generates a compilation error even though member function
printStandard of class Time does not modify the object on which it’s invoked. The fact
that a member function does not modify an object is not sufficient to indicate that the
function is constant function—the function must explicitly be declared const.

Initializing a const Data Member with a Member Initializer
The program of Figs. 18.4–18.6 introduces using member initializer syntax. All data
members can be initialized using member initializer syntax, but const data members and
data members that are references must be initialized using member initializers. Later in this
chapter, we’ll see that member objects must be initialized this way as well.

1 // Fig. 18.4: Increment.h
2 // Definition of class Increment.
3 #ifndef INCREMENT_H

4 #define INCREMENT_H

5
6 class Increment
7 {
8 public:
9 Increment(int c = 0, int i = 1); // default constructor

10
11 // function addIncrement definition
12 void addIncrement()
13 {
14 count += increment;
15 } // end function addIncrement
16
17 void print() const; // prints count and increment
18 private:
19 int count;
20
21 }; // end class Increment
22
23 #endif

Fig. 18.4 | Increment class definition containing non-const data member count and const
data member increment.

1 // Fig. 18.5: Increment.cpp
2 // Member-function definitions for class Increment demonstrate using a
3 // member initializer to initialize a constant of a built-in data type.

Fig. 18.5 | Member initializer used to initialize a constant of a built-in data type. (Part 1 of 2.)

const int increment; // const data member

642 Chapter 18 Classes: A Deeper Look, Part 2

The constructor definition (Fig. 18.5, lines 9–14) uses a member initializer list to ini-
tialize class Increment’s data members—non-const integer count and const integer
increment (declared in lines 19–20 of Fig. 18.4). Member initializers appear between a
constructor’s parameter list and the left brace that begins the constructor’s body. The

4 #include <iostream>
5 #include "Increment.h" // include definition of class Increment
6 using namespace std;
7
8 // constructor
9 Increment::Increment(int c, int i)

10
11
12 {
13 // empty body
14 } // end constructor Increment
15
16 // print count and increment values
17 void Increment::print() const
18 {
19 cout << "count = " << count << ", increment = " << increment << endl;
20 } // end function print

1 // Fig. 18.6: fig18_06.cpp
2 // Program to test class Increment.
3 #include <iostream>
4 #include "Increment.h" // include definition of class Increment
5 using namespace std;
6
7 int main()
8 {
9 Increment value(10, 5);

10
11 cout << "Before incrementing: ";
12 value.print();
13
14 for (int j = 1; j <= 3; j++)
15 {
16 value.addIncrement();
17 cout << "After increment " << j << ": ";
18 value.print();
19 } // end for
20 } // end main

Before incrementing: count = 10, increment = 5
After increment 1: count = 15, increment = 5
After increment 2: count = 20, increment = 5
After increment 3: count = 25, increment = 5

Fig. 18.6 | Invoking an Increment object’s print and addIncrement member functions.

Fig. 18.5 | Member initializer used to initialize a constant of a built-in data type. (Part 2 of 2.)

: count(c), // initializer for non-const member
 increment(i) // required initializer for const member

18.2 const (Constant) Objects and const Member Functions 643

member initializer list (Fig. 18.5, lines 10–11) is separated from the parameter list with a
colon (:). Each member initializer consists of the data member name followed by paren-
theses containing the member’s initial value. In this example, count is initialized with the
value of constructor parameter c and increment is initialized with the value of constructor
parameter i. Multiple member initializers are separated by commas. Also, the member ini-
tializer list executes before the body of the constructor executes.

Erroneously Attempting to Initialize a const Data Member with an Assignment
The program of Figs. 18.7–18.9 illustrates the compilation errors caused by attempting to
initialize const data member increment with an assignment statement (Fig. 18.8, line 12)
in the Increment constructor’s body rather than with a member initializer. Line 11 of
Fig. 18.8 does not generate a compilation error, because count is not declared const.

Software Engineering Observation 18.3
A const object cannot be modified by assignment, so it must be initialized. When a data
member of a class is declared const, a member initializer must be used to provide the
constructor with the initial value of the data member for an object of the class. The same
is true for references.

Common Programming Error 18.5
Not providing a member initializer for a const data member is a compilation error.

Software Engineering Observation 18.4
Constant data members (const objects and const variables) and data members declared
as references must be initialized with member initializer syntax; assignments for these
types of data in the constructor body are not allowed.

1 // Fig. 18.7: Increment.h
2 // Definition of class Increment.
3 #ifndef INCREMENT_H

4 #define INCREMENT_H

5
6 class Increment
7 {
8 public:
9 Increment(int c = 0, int i = 1); // default constructor

10
11 // function addIncrement definition
12 void addIncrement()
13 {
14 count += increment;
15 } // end function addIncrement
16
17 void print() const; // prints count and increment
18 private:
19 int count;

Fig. 18.7 | Increment class definition containing non-const data member count and const
data member increment. (Part 1 of 2.)

644 Chapter 18 Classes: A Deeper Look, Part 2

20 const int increment; // const data member
21 }; // end class Increment
22
23 #endif

1 // Fig. 18.8: Increment.cpp
2 // Erroneous attempt to initialize a constant of a built-in data
3 // type by assignment.
4 #include <iostream>
5 #include "Increment.h" // include definition of class Increment
6 using namespace std;
7
8
9

10
11
12
13
14
15 // print count and increment values
16 void Increment::print() const
17 {
18 cout << "count = " << count << ", increment = " << increment << endl;
19 } // end function print

Fig. 18.8 | Erroneous attempt to initialize a constant of a built-in data type by assignment.

1 // Fig. 18.9: fig18_09.cpp
2 // Program to test class Increment.
3 #include <iostream>
4 #include "Increment.h" // include definition of class Increment
5 using namespace std;
6
7 int main()
8 {
9 Increment value(10, 5);

10
11 cout << "Before incrementing: ";
12 value.print();
13
14 for (int j = 1; j <= 3; j++)
15 {
16 value.addIncrement();
17 cout << "After increment " << j << ": ";
18 value.print();
19 } // end for
20 } // end main

Fig. 18.9 | Program to test class Increment generates compilation errors. (Part 1 of 2.)

Fig. 18.7 | Increment class definition containing non-const data member count and const
data member increment. (Part 2 of 2.)

// constructor; constant member 'increment' is not initialized
Increment::Increment(int c, int i)
{
 count = c; // allowed because count is not constant

increment = i; // ERROR: Cannot modify a const object
} // end constructor Increment

18.3 Composition: Objects as Members of Classes 645

Function print (Fig. 18.8, lines 16–19) is declared const. It might seem strange to
label this function const, because a program probably will never have a const Increment

object. However, it’s possible that a program will have a const reference to an Increment
object or a pointer to const that points to an Increment object. Typically, this occurs
when objects of class Increment are passed to functions or returned from functions. In
these cases, only class Increment’s const member functions can be called through the ref-
erence or pointer. Thus, it’s reasonable to declare function print as const—doing so pre-
vents errors in these situations where an Increment object is treated as a const object.

18.3 Composition: Objects as Members of Classes
An AlarmClock object needs to know when it’s supposed to sound its alarm, so why not
include a Time object as a member of the AlarmClock class? Such a capability is called com-
position and is sometimes referred to as a has-a relationship—a class can have objects of
other classes as members.

When an object is created, its constructor is called automatically. Previously, we saw
how to pass arguments to the constructor of an object we created in main. This section
shows how an object’s constructor can pass arguments to member-object constructors via
member initializers.

Microsoft Visual C++ compiler error messages:

C:\examples\ch18\Fig18_07_09\Increment.cpp(10) : error C2758:
 'Increment::increment' : must be initialized in constructor base/member
 initializer list
 C:\cpphtp7_examples\ch18\Fig18_07_09\increment.h(20) : see
 declaration of 'Increment::increment'
C:\examples\ch18\Fig18_07_09\Increment.cpp(12) : error C2166:
 l-value specifies const object

GNU C++ compiler error messages:

Increment.cpp:9: error: uninitialized member 'Increment::increment' with
 'const' type 'const int'
Increment.cpp:12: error: assignment of read-only data-member
 'Increment::increment'

Error-Prevention Tip 18.1
Declare as const all of a class’s member functions that do not modify the object in which
they operate. Occasionally this may seem inappropriate, because you’ll have no intention
of creating const objects of that class or accessing objects of that class through const ref-
erences or pointers to const. Declaring such member functions const does offer a benefit,
though. If the member function is inadvertently written to modify the object, the compiler
will issue an error message.

Software Engineering Observation 18.5
A common form of software reusability is composition, in which a class has objects of other
classes as members.

Fig. 18.9 | Program to test class Increment generates compilation errors. (Part 2 of 2.)

646 Chapter 18 Classes: A Deeper Look, Part 2

The next program uses classes Date (Figs. 18.10–18.11) and Employee (Figs. 18.12–
18.13) to demonstrate composition. Class Employee’s definition (Fig. 18.12) contains
private data members firstName, lastName, birthDate and hireDate. Members birth-
Date and hireDate are const objects of class Date, which contains private data members
month, day and year. The Employee constructor’s header (Fig. 18.13, lines 10–11) speci-
fies that the constructor has four parameters (first, last, dateOfBirth and dateOfHire).
The first two parameters are passed via member initializers to the string class constructor.
The last two are passed via member initializers to the Date class constructor.

Software Engineering Observation 18.6
Member objects are constructed in the order in which they’re declared in the class
definition (not in the order they’re listed in the constructor’s member initializer list) and
before their enclosing class objects (sometimes called host objects) are constructed.

1 // Fig. 18.10: Date.h
2 // Date class definition; Member functions defined in Date.cpp
3 #ifndef DATE_H

4 #define DATE_H

5
6 class Date
7 {
8 public:
9 static const int monthsPerYear = 12; // number of months in a year

10
11 void print() const; // print date in month/day/year format
12
13 private:
14 int month; // 1-12 (January-December)
15 int day; // 1-31 based on month
16 int year; // any year
17
18 // utility function to check if day is proper for month and year
19 int checkDay(int) const;
20 }; // end class Date
21
22 #endif

Fig. 18.10 | Date class definition.

1 // Fig. 18.11: Date.cpp
2 // Date class member-function definitions.
3 #include <iostream>
4 #include "Date.h" // include Date class definition
5 using namespace std;
6
7 // constructor confirms proper value for month; calls
8 // utility function checkDay to confirm proper value for day

Fig. 18.11 | Date class member-function definitions. (Part 1 of 2.)

Date(int = 1, int = 1, int = 1900); // default constructor

~Date(); // provided to confirm destruction order

18.3 Composition: Objects as Members of Classes 647

9 Date::Date(int mn, int dy, int yr)
10 {
11 if (mn > 0 && mn <= monthsPerYear) // validate the month
12 month = mn;
13 else

14 {
15 month = 1; // invalid month set to 1
16 cout << "Invalid month (" << mn << ") set to 1.\n";
17 } // end else
18
19 year = yr; // could validate yr
20 day = checkDay(dy); // validate the day
21
22 // output Date object to show when its constructor is called
23 cout << "Date object constructor for date ";
24 print();
25 cout << endl;
26 } // end Date constructor
27
28 // print Date object in form month/day/year
29 void Date::print() const
30 {
31 cout << month << '/' << day << '/' << year;
32 } // end function print
33
34 // output Date object to show when its destructor is called
35 Date::~Date()
36 {
37 cout << "Date object destructor for date ";
38 print();
39 cout << endl;
40 } // end ~Date destructor
41
42 // utility function to confirm proper day value based on
43 // month and year; handles leap years, too
44 int Date::checkDay(int testDay) const
45 {
46 static const int daysPerMonth[monthsPerYear + 1] =
47 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
48
49 // determine whether testDay is valid for specified month
50 if (testDay > 0 && testDay <= daysPerMonth[month])
51 return testDay;
52
53 // February 29 check for leap year
54 if (month == 2 && testDay == 29 && (year % 400 == 0 ||
55 (year % 4 == 0 && year % 100 != 0)))
56 return testDay;
57
58 cout << "Invalid day (" << testDay << ") set to 1.\n";
59 return 1; // leave object in consistent state if bad value
60 } // end function checkDay

Fig. 18.11 | Date class member-function definitions. (Part 2 of 2.)

648 Chapter 18 Classes: A Deeper Look, Part 2

1 // Fig. 18.12: Employee.h
2 // Employee class definition showing composition.
3 // Member functions defined in Employee.cpp.
4 #ifndef EMPLOYEE_H

5 #define EMPLOYEE_H

6
7 #include <string>
8 #include "Date.h" // include Date class definition
9 using namespace std;

10
11 class Employee
12 {
13 public:
14 Employee(const string &, const string &,
15 const Date &, const Date &);
16 void print() const;
17 ~Employee(); // provided to confirm destruction order
18 private:
19 string firstName; // composition: member object
20 string lastName; // composition: member object
21 const Date birthDate; // composition: member object
22 const Date hireDate; // composition: member object
23 }; // end class Employee
24
25 #endif

Fig. 18.12 | Employee class definition showing composition.

1 // Fig. 18.13: Employee.cpp
2 // Employee class member-function definitions.
3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 #include "Date.h" // Date class definition
6 using namespace std;
7
8 // constructor uses member initializer list to pass initializer
9 // values to constructors of member objects

10 Employee::Employee(const string &first, const string &last,
11 const Date &dateOfBirth, const Date &dateOfHire)
12
13
14
15
16 {
17 // output Employee object to show when constructor is called
18 cout << "Employee object constructor: "
19 << firstName << ' ' << lastName << endl;
20 } // end Employee constructor
21

Fig. 18.13 | Employee class member-function definitions, including constructor with a member
initializer list. (Part 1 of 2.)

: firstName(first), // initialize firstName
 lastName(last), // initialize lastName
 birthDate(dateOfBirth), // initialize birthDate
 hireDate(dateOfHire) // initialize hireDate

18.3 Composition: Objects as Members of Classes 649

Employee Constructor’s Member Initializer List
The colon (:) following the constructor’s header (Fig. 18.13, line 12) begins the member
initializer list. The member initializers specify the Employee constructor parameters being
passed to the constructors of the string and Date data members. Parameters first, last,
dateOfBirth and dateOfHire are passed to the constructors for objects firstName’s
(Fig. 18.13, line 12), lastName (Fig. 18.13, line 13), birthDate (Fig. 18.13, line 14) and
hireDate (Fig. 18.13, line 15), respectively. Again, member initializers are separated by
commas.

Date Class’s Default Copy Constructor
As you study class Date (Fig. 18.10), notice that the class does not provide a constructor
that receives a parameter of type Date. So, why can the Employee constructor’s member
initializer list initialize the birthDate and hireDate objects by passing Date object’s to
their Date constructors? As we mentioned in Chapter 17, the compiler provides each class
with a default copy constructor that copies each data member of the constructor’s argu-
ment object into the corresponding member of the object being initialized. Chapter 19
discusses how you can define customized copy constructors.

Testing Classes Date and Employee
Figure 18.14 creates two Date objects (lines 9–10) and passes them as arguments to the
constructor of the Employee object created in line 11. Line 14 outputs the Employee ob-
ject’s data. When each Date object is created in lines 9–10, the Date constructor defined
in lines 9–26 of Fig. 18.11 displays a line of output to show that the constructor was
called (see the first two lines of the sample output). [Note: Line 11 of Fig. 18.14 causes
two additional Date constructor calls that do not appear in the program’s output. When
each of the Employee’s Date member object’s is initialized in the Employee constructor’s
member initializer list (Fig. 18.13, lines 14–15), the default copy constructor for class
Date is called. Since this constructor is defined implicitly by the compiler, it does not
contain any output statements to demonstrate when it’s called.]

22 // print Employee object
23 void Employee::print() const
24 {
25 cout << lastName << ", " << firstName << " Hired: ";
26 hireDate.print();
27 cout << " Birthday: ";
28 birthDate.print();
29 cout << endl;
30 } // end function print
31
32 // output Employee object to show when its destructor is called
33 Employee::~Employee()
34 {
35 cout << "Employee object destructor: "
36 << lastName << ", " << firstName << endl;
37 } // end ~Employee destructor

Fig. 18.13 | Employee class member-function definitions, including constructor with a member
initializer list. (Part 2 of 2.)

650 Chapter 18 Classes: A Deeper Look, Part 2

Class Date and class Employee each include a destructor (lines 35–40 of Fig. 18.11
and lines 33–37 of Fig. 18.13, respectively) that prints a message when an object of its class
is destructed. This enables us to confirm in the program output that objects are con-
structed from the inside out and destroyed in the reverse order, from the outside in (i.e., the
Date member objects are destroyed after the Employee object that contains them). Notice
the last four lines in the output of Fig. 18.14. The last two lines are the outputs of the Date
destructor running on Date objects hire (line 10) and birth (line 9), respectively. These
outputs confirm that the three objects created in main are destructed in the reverse of the
order in which they were constructed. The Employee destructor output is five lines from
the bottom. The fourth and third lines from the bottom of the output window show the
destructors running for the Employee’s member objects hireDate (Fig. 18.12, line 22) and
birthDate (Fig. 18.12, line 21). These outputs confirm that the Employee object is
destructed from the outside in—i.e., the Employee destructor runs first (output shown five

1 // Fig. 18.14: fig18_14.cpp
2 // Demonstrating composition--an object with member objects.
3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 using namespace std;
6
7 int main()
8 {
9 Date birth(7, 24, 1949);

10 Date hire(3, 12, 1988);
11 Employee manager("Bob", "Blue", birth, hire);
12
13 cout << endl;
14 manager.print();
15
16
17
18 cout << endl;
19 } // end main

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Employee object constructor: Bob Blue

Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Test Date constructor with invalid values:
Invalid month (14) set to 1.
Invalid day (35) set to 1.
Date object constructor for date 1/1/1994

Date object destructor for date 1/1/1994
Employee object destructor: Blue, Bob
Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949
Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949

Fig. 18.14 | Demonstrating composition—an object with member objects.

cout << "\nTest Date constructor with invalid values:\n";
Date lastDayOff(14, 35, 1994); // invalid month and day

There are actually five constructor
calls when an Employee is
constructed—two calls to the
string class’s constructor (lines
12–13 of Fig. 18.13), two calls to the
Date class’s default copy
constructor (lines 14–15 of
Fig. 18.13) and the call to the
Employee class’s constructor.

18.4 friend Functions and friend Classes 651

lines from the bottom of the output window), then the member objects are destructed in
the reverse order from which they were constructed. Class string’s destructor does not
contain output statements, so we do not see the firstName and lastName objects being
destructed. Again, Fig. 18.14’s output did not show the constructors running for member
objects birthDate and hireDate, because these objects were initialized with the default
Date class copy constructors provided by the compiler.

What Happens When I Do Not Use the Member Initializer List?
If a member object is not initialized through a member initializer, the member object’s de-
fault constructor will be called implicitly. Values, if any, established by the default con-
structor can be overridden by set functions. However, for complex initialization, this
approach may require significant additional work and time.

18.4 friend Functions and friend Classes
A friend function of a class is defined outside that class’s scope, yet has the right to access
the non-public (and public) members of the class. Standalone functions, entire classes or
member functions of other classes may be declared to be friends of another class.

Using friend functions can enhance performance. This section presents a mechanical
example of how a friend function works. Later in the book, friend functions are used to
overload operators for use with class objects (Chapter 19) and to create iterator classes.
Objects of an iterator class can successively select items or perform an operation on items
in a container class object. Objects of container classes can store items. Using friends is
often appropriate when a member function cannot be used for certain operations, as we’ll
see in Chapter 19.

To declare a function as a friend of a class, precede the function prototype in the class
definition with keyword friend. To declare all member functions of class ClassTwo as
friends of class ClassOne, place a declaration of the form

in the definition of class ClassOne.

Common Programming Error 18.6
A compilation error occurs if a member object is not initialized with a member initializer
and the member object’s class does not provide a default constructor (i.e., the member ob-
ject’s class defines one or more constructors, but none is a default constructor).

Performance Tip 18.2
Initialize member objects explicitly through member initializers. This eliminates the over-
head of “doubly initializing” member objects—once when the member object’s default
constructor is called and again when set functions are called in the constructor body (or
later) to initialize the member object.

Software Engineering Observation 18.7
If a class member is an object of another class, making that member object public does
not violate the encapsulation and hiding of that member object’s private members. But,
it does violate the encapsulation and hiding of the containing class’s implementation, so
member objects of class types should still be private, like all other data members.

friend class ClassTwo;

652 Chapter 18 Classes: A Deeper Look, Part 2

Friendship is granted, not taken—i.e., for class B to be a friend of class A, class A
must explicitly declare that class B is its friend. Also, the friendship relation is neither
symmetric nor transitive; i.e., if class A is a friend of class B, and class B is a friend of
class C, you cannot infer that class B is a friend of class A (again, friendship is not sym-
metric), that class C is a friend of class B (also because friendship is not symmetric), or
that class A is a friend of class C (friendship is not transitive).

Modifying a Class’s private Data with a Friend Function
Figure 18.15 is a mechanical example in which we define friend function setX to set the
private data member x of class Count. The friend declaration (line 9) appears first (by
convention) in the class definition, even before public member functions are declared.
Again, this friend declaration can appear anywhere in the class.

Software Engineering Observation 18.8
Even though the prototypes for friend functions appear in the class definition, friends are
not member functions.

Software Engineering Observation 18.9
Member access notions of private, protected and public are not relevant to friend
declarations, so friend declarations can be placed anywhere in a class definition.

Good Programming Practice 18.1
Place all friendship declarations first inside the class definition’s body and do not precede
them with any access specifier.

Software Engineering Observation 18.10
Some people in the OOP community feel that “friendship” corrupts information hiding
and weakens the value of the object-oriented design approach.

1 // Fig. 18.15: fig18_15.cpp
2 // Friends can access private members of a class.
3 #include <iostream>
4 using namespace std;
5
6 // Count class definition
7 class Count
8 {
9

10 public:
11 // constructor
12 Count()
13 : x(0) // initialize x to 0
14 {
15 // empty body
16 } // end constructor Count
17

Fig. 18.15 | Friends can access private members of a class. (Part 1 of 2.)

friend void setX(Count &, int); // friend declaration

18.4 friend Functions and friend Classes 653

Function setX (lines 29–32) is a C-style, stand-alone function—it isn’t a member
function of class Count. For this reason, when setX is invoked for object counter, line 41
passes counter as an argument to setX rather than using a handle (such as the name of the
object) to call the function, as in

If you remove the friend declaration in line 9, you’ll receive error messages indicating that
function setX cannot modify class Count’s private data member x.

As we mentioned, Fig. 18.15 is a mechanical example of using the friend construct.
It would normally be appropriate to define function setX as a member function of class
Count. It would also normally be appropriate to separate the program of Fig. 18.15 into
three files:

1. A header file (e.g., Count.h) containing the Count class definition, which in turn
contains the prototype of friend function setX

2. An implementation file (e.g., Count.cpp) containing the definitions of class
Count’s member functions and the definition of friend function setX

3. A test program (e.g., fig18_15.cpp) with main.

18 // output x
19 void print() const
20 {
21 cout << x << endl;
22 } // end function print
23 private:
24 int x; // data member
25 }; // end class Count
26
27
28
29
30
31
32
33
34 int main()
35 {
36 Count counter; // create Count object
37
38 cout << "counter.x after instantiation: ";
39 counter.print();
40
41
42 cout << "counter.x after call to setX friend function: ";
43 counter.print();
44 } // end main

counter.x after instantiation: 0
counter.x after call to setX friend function: 8

counter.setX(8);

Fig. 18.15 | Friends can access private members of a class. (Part 2 of 2.)

// function setX can modify private data of Count
// because setX is declared as a friend of Count (line 9)
void setX(Count &c, int val)
{
 c.x = val; // allowed because setX is a friend of Count
} // end function setX

setX(counter, 8); // set x using a friend function

654 Chapter 18 Classes: A Deeper Look, Part 2

Overloaded friend Functions
It’s possible to specify overloaded functions as friends of a class. Each function intended
to be a friend must be explicitly declared in the class definition as a friend of the class.

18.5 Using the this Pointer
We’ve seen that an object’s member functions can manipulate the object’s data. How do
member functions know which object’s data members to manipulate? Every object has ac-
cess to its own address through a pointer called this (a C++ keyword). The this pointer
is not part of the object itself—i.e., the memory occupied by the this pointer is not re-
flected in the result of a sizeof operation on the object. Rather, the this pointer is passed
(by the compiler) as an implicit argument to each of the object’s non-static member
functions. Section 18.6 introduces static class members and explains why the this
pointer is not implicitly passed to static member functions.

Objects use the this pointer implicitly (as we’ve done to this point) or explicitly to
reference their data members and member functions. The type of the this pointer
depends on the type of the object and whether the member function in which this is used
is declared const. For example, in a nonconstant member function of class Employee, the
this pointer has type Employee * const (a constant pointer to a nonconstant Employee
object). In a constant member function of the class Employee, the this pointer has the
data type const Employee * const (a constant pointer to a constant Employee object).

The next example shows implicit and explicit use of the this pointer; later in this
chapter and in Chapter 19, we show some substantial and subtle examples of using this.

Implicitly and Explicitly Using the this Pointer to Access an Object’s Data Members
Figure 18.16 demonstrates the implicit and explicit use of the this pointer to enable a
member function of class Test to print the private data x of a Test object.

1 // Fig. 18.16: fig18_16.cpp
2 // Using the this pointer to refer to object members.
3 #include <iostream>
4 using namespace std;
5
6 class Test
7 {
8 public:
9 Test(int = 0); // default constructor

10 void print() const;
11 private:
12 int x;
13 }; // end class Test
14
15 // constructor
16 Test::Test(int value)
17 : x(value) // initialize x to value
18 {
19 // empty body
20 } // end constructor Test

Fig. 18.16 | this pointer implicitly and explicitly accessing an object’s members. (Part 1 of 2.)

18.5 Using the this Pointer 655

For illustration purposes, member function print (lines 24–36) first prints x by using
the this pointer implicitly (line 27)—only the name of the data member is specified.
Then print uses two different notations to access x through the this pointer—the arrow
operator (->) off the this pointer (line 31) and the dot operator (.) off the dereferenced
this pointer (line 35). Note the parentheses around *this (line 35) when used with the
dot member selection operator (.). The parentheses are required because the dot operator
has higher precedence than the * operator. Without the parentheses, the expression
*this.x would be evaluated as if it were parenthesized as *(this.x), which is a compi-
lation error, because the dot operator cannot be used with a pointer.

One interesting use of the this pointer is to prevent an object from being assigned to
itself. As we’ll see in Chapter 19, self-assignment can cause serious errors when the object
contains pointers to dynamically allocated storage.

Using the this Pointer to Enable Cascaded Function Calls
Another use of the this pointer is to enable cascaded member-function calls—that is, in-
voking multiple functions in the same statement (as in line 12 of Fig. 18.19). The program

21
22 // print x using implicit and explicit this pointers;
23 // the parentheses around *this are required
24 void Test::print() const
25 {
26
27
28
29
30
31
32
33
34
35
36 } // end function print
37
38 int main()
39 {
40 Test testObject(12); // instantiate and initialize testObject
41
42 testObject.print();
43 } // end main

 x = 12
 this->x = 12
(*this).x = 12

Common Programming Error 18.7
Attempting to use the member selection operator (.) with a pointer to an object is a com-
pilation error—the dot member selection operator may be used only with an lvalue such
as an object’s name, a reference to an object or a dereferenced pointer to an object.

Fig. 18.16 | this pointer implicitly and explicitly accessing an object’s members. (Part 2 of 2.)

// implicitly use the this pointer to access the member x
cout << " x = " << x;

// explicitly use the this pointer and the arrow operator
// to access the member x
cout << "\n this->x = " << this->x;

// explicitly use the dereferenced this pointer and
// the dot operator to access the member x
cout << "\n(*this).x = " << (*this).x << endl;

656 Chapter 18 Classes: A Deeper Look, Part 2

of Figs. 18.17–18.19 modifies class Time’s set functions setTime, setHour, setMinute and
setSecond such that each returns a reference to a Time object to enable cascaded member-
function calls. Notice in Fig. 18.18 that the last statement in the body of each of these
member functions returns *this (lines 22, 29, 36 and 43) into a return type of Time &.

1 // Fig. 18.17: Time.h
2 // Cascading member function calls.
3
4 // Time class definition.
5 // Member functions defined in Time.cpp.
6 #ifndef TIME_H

7 #define TIME_H

8
9 class Time

10 {
11 public:
12 Time(int = 0, int = 0, int = 0); // default constructor
13
14
15
16
17
18
19
20 // get functions (normally declared const)
21 int getHour() const; // return hour
22 int getMinute() const; // return minute
23 int getSecond() const; // return second
24
25 // print functions (normally declared const)
26 void printUniversal() const; // print universal time
27 void printStandard() const; // print standard time
28 private:
29 int hour; // 0 - 23 (24-hour clock format)
30 int minute; // 0 - 59
31 int second; // 0 - 59
32 }; // end class Time
33
34 #endif

Fig. 18.17 | Time class definition modified to enable cascaded member-function calls.

1 // Fig. 18.18: Time.cpp
2 // Time class member-function definitions.
3 #include <iostream>
4 #include <iomanip>
5 #include "Time.h" // Time class definition
6 using namespace std;
7

Fig. 18.18 | Time class member-function definitions modified to enable cascaded member-
function calls. (Part 1 of 3.)

// set functions (the Time & return types enable cascading)
Time &setTime(int, int, int); // set hour, minute, second
Time &setHour(int); // set hour
Time &setMinute(int); // set minute
Time &setSecond(int); // set second

18.5 Using the this Pointer 657

8 // constructor function to initialize private data;
9 // calls member function setTime to set variables;

10 // default values are 0 (see class definition)
11 Time::Time(int hr, int min, int sec)
12 {
13 setTime(hr, min, sec);
14 } // end Time constructor
15
16 // set values of hour, minute, and second
17
18 {
19 setHour(h);
20 setMinute(m);
21 setSecond(s);
22
23 } // end function setTime
24
25 // set hour value
26
27 {
28 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
29
30 } // end function setHour
31
32 // set minute value
33
34 {
35 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
36
37 } // end function setMinute
38
39 // set second value
40
41 {
42 second = (s >= 0 && s < 60) ? s : 0; // validate second
43
44 } // end function setSecond
45
46 // get hour value
47 int Time::getHour() const
48 {
49 return hour;
50 } // end function getHour
51
52 // get minute value
53 int Time::getMinute() const
54 {
55 return minute;
56 } // end function getMinute
57

Fig. 18.18 | Time class member-function definitions modified to enable cascaded member-
function calls. (Part 2 of 3.)

Time &Time::setTime(int h, int m, int s) // note Time & return

return *this; // enables cascading

Time &Time::setHour(int h) // note Time & return

return *this; // enables cascading

Time &Time::setMinute(int m) // note Time & return

return *this; // enables cascading

Time &Time::setSecond(int s) // note Time & return

return *this; // enables cascading

658 Chapter 18 Classes: A Deeper Look, Part 2

58 // get second value
59 int Time::getSecond() const
60 {
61 return second;
62 } // end function getSecond
63
64 // print Time in universal-time format (HH:MM:SS)
65 void Time::printUniversal() const
66 {
67 cout << setfill('0') << setw(2) << hour << ":"
68 << setw(2) << minute << ":" << setw(2) << second;
69 } // end function printUniversal
70
71 // print Time in standard-time format (HH:MM:SS AM or PM)
72 void Time::printStandard() const
73 {
74 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
75 << ":" << setfill('0') << setw(2) << minute
76 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");
77 } // end function printStandard

1 // Fig. 18.19: fig18_19.cpp
2 // Cascading member-function calls with the this pointer.
3 #include <iostream>
4 #include "Time.h" // Time class definition
5 using namespace std;
6
7 int main()
8 {
9 Time t; // create Time object

10
11
12
13
14 // output time in universal and standard formats
15 cout << "Universal time: ";
16 t.printUniversal();
17
18 cout << "\nStandard time: ";
19 t.printStandard();
20
21 cout << "\n\nNew standard time: ";
22
23
24
25 cout << endl;
26 } // end main

Fig. 18.19 | Cascading member-function calls with the this pointer. (Part 1 of 2.)

Fig. 18.18 | Time class member-function definitions modified to enable cascaded member-
function calls. (Part 3 of 3.)

// cascaded function calls
t.setHour(18).setMinute(30).setSecond(22);

// cascaded function calls
t.setTime(20, 20, 20).printStandard();

18.6 static Class Members 659

The program of Fig. 18.19 creates Time object t (line 9), then uses it in cascaded
member-function calls (lines 12 and 24). Why does the technique of returning *this as a
reference work? The dot operator (.) associates from left to right, so line 12 first evaluates
t.setHour(18), then returns a reference to object t as the value of this function call. The
remaining expression is then interpreted as

The t.setMinute(30) call executes and returns a reference to the object t. The remain-
ing expression is interpreted as

Line 24 also uses cascading. The calls must appear in the order shown in line 24, because
printStandard as defined in the class does not return a reference to t. Placing the call to
printStandard before the call to setTime in line 24 results in a compilation error.
Chapter 19 presents several practical examples of using cascaded function calls. One such
example uses multiple << operators with cout to output multiple values in a single statement.

18.6 static Class Members
There is an important exception to the rule that each object of a class has its own copy of
all the data members of the class. In certain cases, only one copy of a variable should be
shared by all objects of a class. A static data member is used for these and other reasons.
Such a variable represents “class-wide” information (i.e., a property that is shared by all
instances and is not specific to any one object of the class).

Motivating Class-Wide Data
Let’s further motivate the need for static class-wide data with an example. Suppose that
we have a video game with Martians and other space creatures. Each Martian tends to be
brave and willing to attack other space creatures when the Martian is aware that there are
at least five Martians present. If fewer than five are present, each Martian becomes cow-
ardly. So each Martian needs to know the martianCount. We could endow each instance
of class Martian with martianCount as a data member. If we do, every Martian will have
a separate copy of the data member. Every time we create a new Martian, we’ll have to
update the data member martianCount in all Martian objects. Doing this would require
every Martian object to have, or have access to, handles to all other Martian objects in
memory. This wastes space with the redundant copies and wastes time in updating the sep-
arate copies. Instead, we declare martianCount to be static. This makes martianCount
class-wide data. Every Martian can access martianCount as if it were a data member of the
Martian, but only one copy of the static variable martianCount is maintained by C++.

Universal time: 18:30:22
Standard time: 6:30:22 PM

New standard time: 8:20:20 PM

t.setMinute(30).setSecond(22);

t.setSecond(22);

Fig. 18.19 | Cascading member-function calls with the this pointer. (Part 2 of 2.)

660 Chapter 18 Classes: A Deeper Look, Part 2

This saves space. We save time by having the Martian constructor increment static vari-
able martianCount and having the Martian destructor decrement martianCount. Because
there is only one copy, we do not have to increment or decrement separate copies of mar-
tianCount for each Martian object.

Scope and Initialization of static Data Members
Although they may seem like global variables, a class’s static data members have class
scope. Also, static members can be declared public, private or protected. A funda-
mental-type static data member is initialized by default to 0. If you want a different ini-
tial value, a static data member can be initialized once. A static const data member of
int or enum type can be initialized in its declaration in the class definition. However, all
other static data members must be defined at global namespace scope (i.e., outside the
body of the class definition) and can be initialized only in those definitions. If a static
data member is an object of a class that provides a default constructor, the static data
member need not be initialized because its default constructor will be called.

Accessing static Data Members
A class’s private and protected static members are normally accessed through the
class’s public member functions or friends. A class’s static members exist even when
no objects of that class exist. To access a public static class member when no objects of
the class exist, simply prefix the class name and the binary scope resolution operator (::)
to the name of the data member. For example, if our preceding variable martianCount is
public, it can be accessed with the expression Martian::martianCount when there are no
Martian objects. (Of course, using public data is discouraged.)

To access a private or protected static class member when no objects of the class
exist, provide a public static member function and call the function by prefixing its
name with the class name and binary scope resolution operator. A static member func-
tion is a service of the class, not of a specific object of the class.

Demonstrating static Data Members
The program of Figs. 18.20–18.22 demonstrates a private static data member called
count (Fig. 18.20, line 25) and a public static member function called getCount
(Fig. 18.20, line 19). In Fig. 18.21, line 8 defines and initializes the data member count
to zero at global namespace scope and lines 12–15 define static member function get-
Count. Notice that neither line 8 nor line 12 includes keyword static, yet both lines refer
to static class members. When static is applied to an item at global namespace scope,
that item becomes known only in that file. The static class members need to be available
to any client code that uses the class, so we declare them static only in the .h file. Data

Performance Tip 18.3
Use static data members to save storage when a single copy of the data for all objects of
a class will suffice.

Software Engineering Observation 18.11
A class’s static data members and static member functions exist and can be used even
if no objects of that class have been instantiated.

18.6 static Class Members 661

member count maintains a count of the number of objects of class Employee that have
been instantiated. When objects of class Employee exist, member count can be referenced
through any member function of an Employee object—in Fig. 18.21, count is referenced
by both line 22 in the constructor and line 32 in the destructor.

Common Programming Error 18.8
It’s a compilation error to include keyword static in the definition of a static data
member at global namespace scope.

1 // Fig. 18.20: Employee.h
2 // Employee class definition with a static data member to
3 // track the number of Employee objects in memory
4 #ifndef EMPLOYEE_H

5 #define EMPLOYEE_H

6
7 #include <string>
8 using namespace std;
9

10 class Employee
11 {
12 public:
13 Employee(const string &, const string &); // constructor
14 ~Employee(); // destructor
15 string getFirstName() const; // return first name
16 string getLastName() const; // return last name
17
18
19
20 private:
21 string firstName;
22 string lastName;
23
24
25
26 }; // end class Employee
27
28 #endif

Fig. 18.20 | Employee class definition with a static data member to track the number of
Employee objects in memory.

1 // Fig. 18.21: Employee.cpp
2 // Employee class member-function definitions.
3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 using namespace std;
6

Fig. 18.21 | Employee class member-function definitions. (Part 1 of 2.)

// static member function
static int getCount(); // return number of objects instantiated

// static data
static int count; // number of objects instantiated

662 Chapter 18 Classes: A Deeper Look, Part 2

Figure 18.22 uses static member function getCount to determine the number of
Employee objects in memory at various points in the program. The program calls
Employee::getCount() before any Employee objects have been created (line 12), after two
Employee objects have been created (line 23) and after those Employee objects have been
destroyed (line 34). Lines 16–29 in main define a nested scope. Recall that local variables
exist until the scope in which they are defined terminates. In this example, we create two
Employee objects in lines 17–18 inside the nested scope. As each constructor executes, it
increments class Employee’s static data member count. These Employee objects are
destroyed when the program reaches line 29. At that point, each object’s destructor exe-
cutes and decrements class Employee’s static data member count.

7
8
9

10
11
12
13
14
15
16
17 // constructor initializes non-static data members and
18 // increments static data member count
19 Employee::Employee(const string &first, const string &last)
20 : firstName(first), lastName(last)
21 {
22
23 cout << "Employee constructor for " << firstName
24 << ' ' << lastName << " called." << endl;
25 } // end Employee constructor
26
27 // destructor deallocates dynamically allocated memory
28 Employee::~Employee()
29 {
30 cout << "~Employee() called for " << firstName
31 << ' ' << lastName << endl;
32
33 } // end ~Employee destructor
34
35 // return first name of employee
36 string Employee::getFirstName() const
37 {
38 return firstName; // return copy of first name
39 } // end function getFirstName
40
41 // return last name of employee
42 string Employee::getLastName() const
43 {
44 return lastName; // return copy of last name
45 } // end function getLastName

Fig. 18.21 | Employee class member-function definitions. (Part 2 of 2.)

// define and initialize static data member at global namespace scope
int Employee::count = 0; // cannot include keyword static

// define static member function that returns number of
// Employee objects instantiated (declared static in Employee.h)
int Employee::getCount()
{

return count;
} // end static function getCount

++count; // increment static count of employees

--count; // decrement static count of employees

18.6 static Class Members 663

A member function should be declared static if it does not access non-static data
members or non-static member functions of the class. Unlike non-static member func-
tions, a static member function does not have a this pointer, because static data mem-

1 // Fig. 18.22: fig18_22.cpp
2 // static data member tracking the number of objects of a class.
3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 using namespace std;
6
7 int main()
8 {
9 // no objects exist; use class name and binary scope resolution

10 // operator to access static member function getCount
11 cout << "Number of employees before instantiation of any objects is "
12 << << endl; // use class name
13
14 // the following scope creates and destroys
15 // Employee objects before main terminates
16 {
17 Employee e1("Susan", "Baker");
18 Employee e2("Robert", "Jones");
19
20 // two objects exist; call static member function getCount again
21 // using the class name and the binary scope resolution operator
22 cout << "Number of employees after objects are instantiated is "
23 << ;
24
25 cout << "\n\nEmployee 1: "
26 << e1.getFirstName() << " " << e1.getLastName()
27 << "\nEmployee 2: "
28 << e2.getFirstName() << " " << e2.getLastName() << "\n\n";
29 } // end nested scope in main
30
31 // no objects exist, so call static member function getCount again
32 // using the class name and the binary scope resolution operator
33 cout << "\nNumber of employees after objects are deleted is "
34 << << endl;
35 } // end main

Number of employees before instantiation of any objects is 0
Employee constructor for Susan Baker called.
Employee constructor for Robert Jones called.
Number of employees after objects are instantiated is 2

Employee 1: Susan Baker
Employee 2: Robert Jones

~Employee() called for Robert Jones
~Employee() called for Susan Baker

Number of employees after objects are deleted is 0

Fig. 18.22 | static data member tracking the number of objects of a class.

Employee::getCount()

Employee::getCount()

Employee::getCount()

664 Chapter 18 Classes: A Deeper Look, Part 2

bers and static member functions exist independently of any objects of a class. The this
pointer must refer to a specific object of the class, and when a static member function is
called, there might not be any objects of its class in memory.

18.7 Data Abstraction and Information Hiding
Classes normally hide the details of their implementation from their clients. This is called
information hiding. As an example, let’s consider the stack data structure. Recall that the
stack is a last-in-first-out (LIFO) data structure—the last item pushed (inserted) on the
stack is the first item popped (removed) off the stack.

Stacks can be implemented with arrays and with other data structures, such as linked
lists. (We discuss stacks in Chapter 22.) A client of a stack class need not be concerned
with the stack’s implementation. The client knows only that when data items are placed
in the stack, they will be recalled in last-in, first-out order. The client cares about what
functionality a stack offers, not about how that functionality is implemented. This concept
is referred to as data abstraction. Although you might know the details of a class’s imple-
mentation, you should not write code that depends on these details as the details may later
change. This enables a particular class (such as one that implements a stack and its opera-
tions, push and pop) to be replaced with another version without affecting the rest of the
system. As long as the public services of the class do not change (i.e., every original public
member function still has the same prototype in the new class definition), the rest of the
system is not affected.

Abstract Data Types
Many programming languages emphasize actions. In these languages, data exists to sup-
port the actions that programs must take. Data is “less interesting” than actions. Data is
“crude.” Only a few built-in data types exist, and it’s difficult to create new types. C++ and
the object-oriented style of programming elevate the importance of data. The primary ac-
tivities of object-oriented programming in C++ are the creation of types (i.e., classes) and
the expression of the interactions among objects of those types. To create languages that
emphasize data, the programming-languages community needed to formalize some no-
tions about data. The formalization we consider here is the notion of abstract data types
(ADTs), which improve the application-development process.

What’s an abstract data type? Consider the type int, which most people would asso-
ciate with an integer in mathematics. Rather, an int is an abstract representation of an
integer. Unlike mathematical integers, computer ints have a maximum size—on 32-bit
machines is typically limited to the range –2,147,483,648 to +2,147,483,647. If the result
of a calculation falls outside this range, an “overflow” error occurs and the computer

Common Programming Error 18.9
Using the this pointer in a static member function is a compilation error.

Common Programming Error 18.10
Declaring a static member function const is a compilation error. The const qualifier
indicates that a function cannot modify the contents of the object in which it operates, but
static member functions exist and operate independently of any objects of the class.

18.7 Data Abstraction and Information Hiding 665

responds in some machine-dependent manner. It might, for example, “quietly” produce
an incorrect result, such as a value too large to fit in an int variable (commonly called
arithmetic overflow). Mathematical integers do not have this problem. Therefore, the
notion of a computer int is only an approximation of the notion of a real-world integer.

Types like int, double, char and others are all examples of abstract data types.
They’re essentially ways of representing real-world notions to some satisfactory level of
precision within a computer system.

An abstract data type actually captures two notions—A data representation and the
operations that can be performed on that data. For example, in C++, an int contains an
integer value (data) and provides addition, subtraction, multiplication, division and mod-
ulus operations (among others)—division by zero is undefined. These allowed operations
perform in a manner sensitive to machine parameters, such as the fixed word size of the
underlying computer system. Another example is the notion of negative integers, whose
operations and data representation are clear, but the operation of taking the square root of
a negative integer is undefined. In C++, you can use classes to implement abstract data
types and their services. For example, to implement a stack ADT, we create our own stack
class in Chapter 22.

Queue Abstract Data Type
Each of us stands in line from time to time. A waiting line is also called a queue. Computer
systems use waiting lines internally, so we need to write programs that implement queues.
A queue is another example of an abstract data type.

Queues offer well-understood behavior to their clients. Clients put things in a queue
one at a time—by invoking the queue’s enqueue operation—and the clients get those
things back one at a time on demand—by invoking the queue’s dequeue operation. Con-
ceptually, a queue can become infinitely long; a real queue, of course, is finite. Items are
returned from a queue in first-in, first-out (FIFO) order—the first item inserted in the
queue is the first item removed from the queue.

The queue hides an internal data representation that keeps track of the items currently
waiting in line, and offers a set of operations to clients, namely, enqueue and dequeue. The
clients are not concerned about the implementation of the queue. Clients merely want the
queue to operate “as advertised.” When a client enqueues a new item, the queue should
accept that item and place it internally in some kind of first-in, first-out data structure.
When the client wants the next item from the front of the queue, the queue should remove
the item from its internal representation and deliver it to the client in FIFO order (i.e., the
item that has been in the queue the longest should be the next one returned by the next
dequeue operation).

The queue ADT guarantees the integrity of its internal data structure. Clients may not
manipulate this data structure directly. Only the queue member functions have access to
its internal data. Clients may cause only allowable operations to be performed on the data
representation; operations not provided in the ADT’s public interface are rejected in some

Software Engineering Observation 18.12
You can create new types through the class mechanism. These new types can be designed
to be used as conveniently as the fundamental types. Thus, C++ is an extensible language.
Although the language is easy to extend with these new types, the base language itself
cannot be changed.

666 Chapter 18 Classes: A Deeper Look, Part 2

appropriate manner. This could mean issuing an error message, throwing an exception
(see Chapter 24), terminating execution or simply ignoring the operation request.

18.8 Wrap-Up
This chapter introduced several advanced topics related to classes and data abstraction. You
learned how to specify const objects and const member functions to prevent modifications
to objects, thus enforcing the principle of least privilege. You also learned that, through
composition, a class can have objects of other classes as members. We introduced the topic
of friendship and presented examples that demonstrate how to use friend functions.

You learned that the this pointer is passed as an implicit argument to each of a class’s
non-static member functions, allowing the functions to access the correct object’s data
members and other non-static member functions. You also saw explicit use of the this
pointer to access the class’s members and to enable cascaded member-function calls. We
motivated the need for static data members and demonstrated how to declare and use
static data members and static member functions in your own classes.

You learned about data abstraction and information hiding—two of the fundamental
concepts of object-oriented programming. Finally, we discussed abstract data types—ways
of representing real-world or conceptual notions to some satisfactory level of precision
within a computer system.

In Chapter 19, we continue our study of classes and objects by showing how to enable
C++’s operators to work with objects—a process called operator overloading. For example,
you’ll see how to “overload” the << operator so it can be used to output a complete array
without explicitly using a repetition statement.

Summary
Section 18.2 const (Constant) Objects and const Member Functions
• The keyword const can be used to specify that an object is not modifiable and that any attempt

to modify the object should result in a compilation error.

• C++ compilers disallow non-const member function calls on const objects.

• An attempt by a const member function to modify an object of its class is a compilation error.

• A member function is specified as const both in its prototype and in its definition.

• A const object must be initialized.

• Constructors and destructors cannot be declared const.

• const data member and reference data members must be initialized using member initializers.

Section 18.3 Composition: Objects as Members of Classes
• A class can have objects of other classes as members—this concept is called composition.

• Member objects are constructed in the order in which they’re declared in the class definition and
before their enclosing class objects are constructed.

• If a member initializer is not provided for a member object, the member object’s default con-
structor will be called implicitly.

 Terminology 667

Section 18.4 friend Functions and friend Classes
• A friend function of a class is defined outside that class’s scope, yet has the right to access all of

the class’s members. Stand-alone functions or entire classes may be declared to be friends.

• A friend declaration can appear anywhere in the class.

• The friendship relation is neither symmetric nor transitive.

Section 18.5 Using the this Pointer
• Every object has access to its own address through the this pointer.

• An object’s this pointer is not part of the object itself—i.e., the size of the memory occupied by
the this pointer is not reflected in the result of a sizeof operation on the object.

• The this pointer is passed as an implicit argument to each non-static member function.

• Objects use the this pointer implicitly (as we’ve done to this point) or explicitly to reference their
data members and member functions.

• The this pointer enables cascaded member-function calls in which multiple functions are in-
voked in the same statement.

Section 18.6 static Class Members
• A static data member represents “class-wide” information (i.e., a property of the class shared by

all instances, not a property of a specific object of the class).

• static data members have class scope and can be declared public, private or protected.

• A class’s static members exist even when no objects of that class exist.

• To access a public static class member when no objects of the class exist, simply prefix the class
name and the binary scope resolution operator (::) to the name of the data member.

• A member function should be declared static if it does not access non-static data members or
non-static member functions of the class. Unlike non-static member functions, a static
member function does not have a this pointer, because static data members and static mem-
ber functions exist independently of any objects of a class.

Section 18.7 Data Abstraction and Information Hiding
• Abstract data types are ways of representing real-world and conceptual notions to some satisfac-

tory level of precision within a computer system.

• An abstract data type captures two notions: a data representation and the operations that can be
performed on that data.

Terminology
abstract data type (ADT) 664
arithmetic overflow 665
cascaded member-function calls 655
composition 645
data abstraction 664
data representation 665
dequeue (queue operation) 665
enqueue (queue operation) 665
first-in, first-out (FIFO) 665
friend function 651
has-a relationship 645
host object 646

information hiding 664
member initializer 641
member initializer list 642
member initializer syntax 641
member object 645
member object constructor 645
operations in an ADT 665
queue 665
queue abstract data type 665
static data member 659
static member function 660
this pointer 654

668 Chapter 18 Classes: A Deeper Look, Part 2

Self-Review Exercises
18.1 Fill in the blanks in each of the following:

a) must be used to initialize constant members of a class.
b) A nonmember function must be declared as a(n) of a class to have access to

that class’s private data members.
c) A constant object must be ; it cannot be modified after it’s created.
d) A(n) data member represents class-wide information.
e) An object’s non-static member functions have access to a “self pointer” to the object

called the pointer.
f) Keyword specifies that an object or variable is not modifiable.
g) If a member initializer is not provided for a member object of a class, the object's

 is called.
h) A member function should be static if it does not access class members.
i) Member objects are constructed their enclosing class object.

18.2 Find the errors in the following class and explain how to correct them:

class Example
{
public:
 Example(int y = 10)
 : data(y)
 {

// empty body
 } // end Example constructor

int getIncrementedData() const

 {
return data++;

 } // end function getIncrementedData

static int getCount()
 {
 cout << "Data is " << data << endl;

return count;
 } // end function getCount
private:

int data;
static int count;

}; // end class Example

Answers to Self-Review Exercises
18.1 a) member initializers. b) friend. c) initialized. d) static. e) this. f) const. g) default
constructor. h) non-static. i) before.

18.2 Error: The class definition for Example has two errors. The first occurs in function get
IncrementedData. The function is declared const, but it modifies the object.
Correction: To correct the first error, remove the const keyword from the definition of get

IncrementedData.
Error: The second error occurs in function getCount. This function is declared static, so
it isn’t allowed to access any non-static member (i.e., data) of the class.
Correction: To correct the second error, remove the output line from the getCount definition.

Exercises
18.3 Explain the notion of friendship. Explain the negative aspects of friendship as described in
the text.

 Exercises 669

18.4 Can a correct Time class definition include both of the following constructors? If not, ex-
plain why not.

Time(int h = 0, int m = 0, int s = 0);
Time();

18.5 What happens when a return type, even void, is specified for a constructor or destructor?

18.6 (Date Class Modification) Modify class Date in Fig. 18.10 to have the following capabilities:
a) Output the date in multiple formats such as

DDD YYYY
MM/DD/YY
June 14, 1992

b) Use overloaded constructors to create Date objects initialized with dates of the formats
in part (a).

c) Create a Date constructor that reads the system date using the standard library functions
of the <ctime> header and sets the Date members. (See your compiler’s reference docu-
mentation or www.cplusplus.com/ref/ctime/index.html for information on the func-
tions in header <ctime>.)

In Chapter 19, we’ll be able to create operators for testing the equality of two dates and for com-
paring dates to determine whether one date is prior to, or after, another.

18.7 (SavingsAccount Class) Create a SavingsAccount class. Use a static data member annual-
InterestRate to store the annual interest rate for each of the savers. Each member of the class con-
tains a private data member savingsBalance indicating the amount the saver currently has on
deposit. Provide member function calculateMonthlyInterest that calculates the monthly interest
by multiplying the balance by annualInterestRate divided by 12; this interest should be added to
savingsBalance. Provide a static member function modifyInterestRate that sets the static an-

nualInterestRate to a new value. Write a driver program to test class SavingsAccount. Instantiate
two different objects of class SavingsAccount, saver1 and saver2, with balances of $2000.00 and
$3000.00, respectively. Set the annualInterestRate to 3 percent. Then calculate the monthly in-
terest and print the new balances for each of the savers. Then set the annualInterestRate to 4 per-
cent, calculate the next month’s interest and print the new balances for each of the savers.

18.8 (IntegerSet Class) Create class IntegerSet for which each object can hold integers in the
range 0 through 100. Represent the set internally as a vector of bool values. Element a[i] is true
if integer i is in the set. Element a[j] is false if integer j is not in the set. The default constructor
initializes a set to the so-called “empty set,” i.e., a set for which all elements contain false.

Provide member functions for the common set operations. For example, provide a unionOf-
Sets member function that creates a third set that is the set-theoretic union of two existing sets
(i.e., an element of the result is set to true if that element is true in either or both of the existing
sets, and an element of the result is set to false if that element is false in each of the existing sets).

Provide an intersectionOfSets member function which creates a third set which is the set-
theoretic intersection of two existing sets (i.e., an element of the result is set to false if that ele-
ment is false in either or both of the existing sets, and an element of the result is set to true if that
element is true in each of the existing sets).

Provide an insertElement member function that places a new integer k into a set by setting a[k]
to true. Provide a deleteElement member function that deletes integer m by setting a[m] to false.

Provide a printSet member function that prints a set as a list of numbers separated by spaces.
Print only those elements that are present in the set (i.e., their position in the vector has a value of
true). Print --- for an empty set.

Provide an isEqualTo member function that determines whether two sets are equal.
Provide an additional constructor that receives an array of integers and the size of that array

and uses the array to initialize a set object.

www.cplusplus.com/ref/ctime/index.html

670 Chapter 18 Classes: A Deeper Look, Part 2

Now write a driver program to test your IntegerSet class. Instantiate several IntegerSet
objects. Test that all your member functions work properly.

18.9 (Time Class Modification) It would be perfectly reasonable for the Time class of Figs. 18.17–
18.18 to represent the time internally as the number of seconds since midnight rather than the three
integer values hour, minute and second. Clients could use the same public methods and get the
same results. Modify the Time class of Fig. 18.17 to implement the time as the number of seconds
since midnight and show that there is no visible change in functionality to the clients of the class.
[Note: This exercise nicely demonstrates the virtues of implementation hiding.]

18.10 (Card Shuffling and Dealing) Create a program to shuffle and deal a deck of cards. The pro-
gram should consist of class Card, class DeckOfCards and a driver program. Class Card should provide:

a) Data members face and suit of type int.
b) A constructor that receives two ints representing the face and suit and uses them to ini-

tialize the data members.
c) Two static arrays of strings representing the faces and suits.
d) A toString function that returns the Card as a string in the form “face of suit.” You

can use the + operator to concatenate strings.
Class DeckOfCards should contain:

a) A vector of Cards named deck to store the Cards.
b) An integer currentCard representing the next card to deal.
c) A default constructor that initializes the Cards in the deck. The constructor should use

vector function push_back to add each Card to the end of the vector after the Card is
created and initialized. This should be done for each of the 52 Cards in the deck.

d) A shuffle function that shuffles the Cards in the deck. The shuffle algorithm should
iterate through the vector of Cards. For each Card, randomly select another Card in the
deck and swap the two Cards.

e) A dealCard function that returns the next Card object from the deck.
f) A moreCards function that returns a bool value indicating whether there are more Cards

to deal.
The driver program should create a DeckOfCards object, shuffle the cards, then deal the 52 cards.

18.11 (Card Shuffling and Dealing) Modify the program you developed in Exercise 18.10 so that
it deals a five-card poker hand. Then write functions to accomplish each of the following:

a) Determine whether the hand contains a pair.
b) Determine whether the hand contains two pairs.
c) Determine whether the hand contains three of a kind (e.g., three jacks).
d) Determine whether the hand contains four of a kind (e.g., four aces).
e) Determine whether the hand contains a flush (i.e., all five cards of the same suit).
f) Determine whether the hand contains a straight (i.e., five cards of consecutive face values).

Card Shuffling and Dealing Projects
18.12 (Card Shuffling and Dealing) Use the functions from Exercise 18.11 to write a program
that deals two five-card poker hands, evaluates each hand and determines which is the better hand.

18.13 (Card Shuffling and Dealing) Modify the program you developed in Exercise 18.12 so that
it can simulate the dealer. The dealer’s five-card hand is dealt “face down” so the player cannot see
it. The program should then evaluate the dealer’s hand, and, based on the quality of the hand, the
dealer should draw one, two or three more cards to replace the corresponding number of unneeded
cards in the original hand. The program should then reevaluate the dealer’s hand.

18.14 (Card Shuffling and Dealing) Modify the program you developed in Exercise 18.13 so that
it handles the dealer’s hand, but the player is allowed to decide which cards of the player’s hand to

 Making a Difference 671

replace. The program should then evaluate both hands and determine who wins. Now use this new
program to play 20 games against the computer. Who wins more games, you or the computer? Have
one of your friends play 20 games against the computer. Who wins more games? Based on the results
of these games, make appropriate modifications to refine your poker-playing program. Play 20 more
games. Does your modified program play a better game?

Making a Difference
18.15 (Air Traffic Control Project) Every day, according to the National Air Traffic Controllers
Association (www.natca.org/mediacenter/bythenumbers.msp), there are more than 87,000 flights
in the United States, including commercial flights, cargo flights, and so on, and the long-term trend
is that air traffic activity will increase along with the population. As air traffic grows, so do the chal-
lenges to air traffic controllers, who monitor the flights and provide instructions to the pilots to en-
sure safety in the skies.

In this exercise, you’ll create a Flight class that could be used in a simple air-traffic-control
simulator. The application’s main function will act as air traffic control. Visit sites such as

www.howstuffworks.com/air-traffic-control.htm

to research how the air-traffic-control system works. Then identify some key attributes of a Flight
in an air-traffic-control system. Think about the different states a plane could be in from the time
it’s parked at an airport gate until it arrives at its destination—parked, taxiing, waiting to take off,
taking off, climbing, and so on. Use a FlightStatus enumeration to represent these states. The
attributes might include the plane’s make and model, current air speed, current altitude, direction,
carrier, departure time, estimated arrival time, origin and destination. The origin and destination
should be specified using standard three-letter airport codes, such as BOS for Boston and LAX for Los
Angeles (these codes are available at world-airport-codes.com). Provide set and get functions to
manipulate these and any other attributes you identify. Next, identify the class’s behaviors and
implement them as functions of the class. Include behaviors such as changeAltitude, reduceSpeed
and beginLandingApproach. The Flight constructor should initialize a Flight’s attributes. You
should also provide a toString function that returns a string representation of a Flight’s current
status (e.g., parked at the gate, taxiing, taking off, changing altitude). This string should include
all of the object’s instance-variable values.

When the application executes, main will display the message, "Air Traffic Control Simula-

tor", then will create and interact with three Flight objects representing planes that are currently
flying or preparing to fly. For simplicity, the Flight’s confirmation of each action will be a message
displayed on the screen when the appropriate function is called on the object. For example, if you
call a flight’s changeAltitude function, the method should:

a) Display a message containing the airline, flight number, "changing altitude", the cur-
rent altitude and the new altitude.

b) Change the state of the status data member to CHANGING_ALTITUDE.
c) Change the value of the newAltitude data member.

In main, create and initialize three Flight objects that are in different states—for example, one
could be at the gate, one could be preparing for takeoff and one could be preparing for landing.
The main function should send messages to (invoke functions on) the Flight objects. As a Flight
object receives each message, it should display a confirmation message from the function being
called—such as “[Airline name] [Flight number] changing altitude from 20000 to 25000 feet.”
The function should also update the appropriate state information in the Flight object. For exam-
ple, if Air Traffic Control sends a message like “[Airline] [flight number] descend to 12000 feet,”
the program should execute a function call like flight1.changeAltitude(12000), which would
display a confirmation message and would set data member newAltitude to 12000. [Note: Assume
the Flight’s currentAltitude data member is being set automatically by the plane’s altimeter.]

www.natca.org/mediacenter/bythenumbers.msp
www.howstuffworks.com/air-traffic-control.htm

19 Operator Overloading

The whole difference between
construction and creation is
exactly this: that a thing
constructed can only be loved
after it is constructed; but a
thing created is loved before it
exists.
—Gilbert Keith Chesterton

Our doctor would never really
operate unless it was necessary.
He was just that way. If he
didn’t need the money, he
wouldn’t lay a hand on you.
—Herb Shriner

O b j e c t i v e s
In this chapter you’ll learn:

■ What operator overloading is
and how it simplifies
programming.

■ To overload operators for
user-defined classes.

■ To overload unary and binary
operators.

■ To convert objects from one
class to another class.

■ To create PhoneNumber,
Array and Date classes that
demonstrate operator
overloading.

■ To use overloaded operators
and other features of C++’s
string class.

■ To use keyword explicit
to prevent the compiler from
using single-argument
constructors to perform
implicit conversions.

19.1 Introduction 673

19.1 Introduction
Chapters 17–18 introduced the basics of C++ classes. Services were obtained from objects
by sending messages (in the form of member-function calls) to the objects. This function
call notation is cumbersome for certain kinds of classes (such as mathematical classes). Al-
so, many common manipulations are performed with operators (e.g., input and output).
We can use C++’s rich set of built-in operators to specify common object manipulations.
This chapter shows how to enable C++’s operators to work with objects—a process called
operator overloading.

One example of an overloaded operator built into C++ is <<, which is used both as the
stream insertion operator and as the bitwise left-shift operator (which is discussed in
Chapter 10). Similarly, >> is also overloaded; it’s used both as the stream extraction oper-
ator and as the bitwise right-shift operator. Both of these operators are overloaded in the
C++ Standard Library.

Although operator overloading sounds like an exotic capability, most programmers
implicitly use overloaded operators. For example, the C++ language overloads the addition
operator (+) and the subtraction operator (-). These operators perform differently,
depending on their context in integer, floating-point and pointer arithmetic.

C++ enables you to overload most operators to be sensitive to the context in which
they’re used—the compiler generates the appropriate code based on the context (in par-
ticular, the types of the operands). Some operators are overloaded frequently, especially the
assignment, relational and various arithmetic operators such as + and -. The jobs per-
formed by overloaded operators can also be performed by explicit function calls, but oper-
ator notation is often clearer and more familiar to programmers.

We discuss when to, and when not to, use operator overloading. We create classes
PhoneNumber, Array and Date to demonstrate how to overload operators, including the
stream insertion, stream extraction, assignment, equality, relational, subscript, logical
negation and increment operators. We demonstrate C++’s Standard Library class string,
which provides many overloaded operators. In the exercises, we ask you to implement sev-
eral classes with overloaded operators. The exercises also use classes Complex (for complex
numbers) and HugeInt (for integers larger than a computer can represent with type long)
to demonstrate overloaded arithmetic operators + and –, and ask you to enhance those

19.1 Introduction
19.2 Fundamentals of Operator

Overloading
19.3 Restrictions on Operator Overloading
19.4 Operator Functions as Class

Members vs. Global Function
19.5 Overloading Stream Insertion and

Stream Extraction Operators
19.6 Overloading Unary Operators
19.7 Overloading Binary Operators

19.8 Dynamic Memory Management
19.9 Case Study: Array Class

19.10 Converting between Types
19.11 Building a String Class
19.12 Overloading ++ and --
19.13 Case Study: A Date Class
19.14 Standard Library Class string
19.15 explicit Constructors
19.16 Proxy Classes
19.17 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

674 Chapter 19 Operator Overloading

classes by overloading other arithmetic operators. Finally, we show how to create a proxy
class to hide a class’s implementation details (including its private data) from its clients.

19.2 Fundamentals of Operator Overloading
C++ programming is a type-sensitive and type-focused process. You can use fundamental
types and can define new types. The fundamental types can be used with C++’s rich col-
lection of operators. Operators provide you with a concise notation for expressing manip-
ulations of data of fundamental types.

You can use operators with user-defined types as well. Although C++ does not allow
new operators to be created, it does allow most existing operators to be overloaded so that,
when they’re used with objects, they have meaning appropriate to those objects.

An operator is overloaded by writing a non-static member function definition or
global function definition as you normally would, except that the function name now
becomes the keyword operator followed by the symbol for the operator being overloaded.
For example, the function name operator+ would be used to overload the addition oper-
ator (+). When operators are overloaded as member functions, they must be non-static,
because they must be called on an object of the class and operate on that object.

To use an operator on class objects, that operator must be overloaded—with three
exceptions. The assignment operator (=) may be used with every class to perform member-
wise assignment of the class’s data members—each data member is assigned from the
assignment’s “source” object to the “target” object. Memberwise assignment is dangerous
for classes with pointer members; we’ll explicitly overload the assignment operator for such
classes. The address (&) and comma (,) operators may also be used with objects of any class
without overloading. The address operator returns a pointer to the object. The comma
operator evaluates the expression to its left then the expression to its right, and returns the
value of the latter expression. Both of these operators can also be overloaded.

Overloading is especially appropriate for mathematical classes. These often require
that a substantial set of operators be overloaded to ensure consistency with the way these
mathematical classes are handled in the real world. For example, it would be unusual to
overload only addition for a complex number class, because other arithmetic operators are
also commonly used with complex numbers.

Software Engineering Observation 19.1
Operator overloading contributes to C++’s extensibility—one of the language’s most
appealing attributes.

Good Programming Practice 19.1
Use operator overloading when it makes a program clearer than accomplishing the same
operations with function calls.

Good Programming Practice 19.2
Overloaded operators should mimic the functionality of their built-in counterparts—for
example, the + operator should be overloaded to perform addition, not subtraction. Avoid
excessive or inconsistent use of operator overloading, as this can make a program cryptic
and difficult to read.

19.3 Restrictions on Operator Overloading 675

Operator overloading provides the same concise and familiar expressions for user-
defined types that C++ provides with its rich collection of operators for fundamental types.
Operator overloading is not automatic—you must write operator-overloading functions
to perform the desired operations. Sometimes these functions are best made member func-
tions; sometimes they’re best as friend functions; occasionally they can be made global,
non-friend functions. We present examples of each of these possibilities.

19.3 Restrictions on Operator Overloading
Most of C++’s operators can be overloaded. These are shown in Fig. 19.1. Figure 19.2
shows the operators that cannot be overloaded.

Precedence, Associativity and Number of Operands
The precedence of an operator cannot be changed by overloading. This can lead to awk-
ward situations in which an operator is overloaded in a manner for which its fixed prece-
dence is inappropriate. However, parentheses can be used to force the order of evaluation
of overloaded operators in an expression.

The associativity of an operator (i.e., whether the operator is applied right-to-left or
left-to-right) cannot be changed by overloading.

It isn’t possible to change the “arity” of an operator (i.e., the number of operands an
operator takes): Overloaded unary operators remain unary operators; overloaded binary
operators remain binary operators. C++’s only ternary operator (?:) cannot be overloaded.
Operators &, *, + and - all have both unary and binary versions; these unary and binary
versions can each be overloaded.

Operators that can be overloaded

+ - * / % ^ & |

~ ! = < > += -= *=

/= %= ^= &= |= << >> >>=

<<= == != <= >= && || ++

-- ->* , -> [] () new delete

new[] delete[]

Fig. 19.1 | Operators that can be overloaded.

Operators that cannot be overloaded

. .* :: ?:

Fig. 19.2 | Operators that cannot be overloaded.

Common Programming Error 19.1
Attempting to change the “arity” of an operator via operator overloading is a compilation
error.

676 Chapter 19 Operator Overloading

Creating New Operators
It isn’t possible to create new operators; only existing operators can be overloaded. Unfor-
tunately, this prevents you from using popular notations like the ** operator used in some
other programming languages for exponentiation. [Note: You could overload an existing
operator to perform exponentiation.]

Operators for Fundamental Types
The meaning of how an operator works on objects of fundamental types cannot be
changed by operator overloading. You cannot, for example, change the meaning of how +
adds two integers. Operator overloading works only with objects of user-defined types or
with a mixture of an object of a user-defined type and an object of a fundamental type.

Related Operators
Overloading an assignment operator and an addition operator to allow statements like

does not imply that the += operator is also overloaded to allow statements such as

Such behavior can be achieved only by explicitly overloading operator += for that class.

19.4 Operator Functions as Class Members vs. Global
Function
Operator functions can be member functions or global functions; global functions are of-
ten made friends for performance reasons. Member functions use the this pointer im-
plicitly to obtain one of their class object arguments (the left operand for binary operators).
Arguments for both operands of a binary operator must be explicitly listed in a global func-
tion call.

Common Programming Error 19.2
Attempting to create new operators via operator overloading is a syntax error.

Software Engineering Observation 19.2
At least one argument of an operator function must be an object or reference of a user-
defined type. This prevents you from changing how operators work on fundamental types.

Common Programming Error 19.3
Attempting to modify how an operator works with objects of fundamental types is a com-
pilation error.

object2 = object2 + object1;

object2 += object1;

Common Programming Error 19.4
Assuming that overloading an operator such as + overloads related operators such as += or
that overloading == overloads a related operator like != can lead to errors. Operators can
be overloaded only explicitly; there is no implicit overloading.

19.4 Operator Functions as Class Members vs. Global Function 677

Operators That Must Be Overloaded as Member Functions
When overloading (), [], -> or any of the assignment operators, the operator overloading
function must be declared as a class member. For the other operators, the operator over-
loading functions can be class members or standalone functions.

Operators as Member Functions and Global Functions
Whether an operator function is implemented as a member function or as a global func-
tion, the operator is still used the same way in expressions. So which is best?

When an operator function is implemented as a member function, the leftmost (or
only) operand must be an object (or a reference to an object) of the operator’s class. If the
left operand must be an object of a different class or a fundamental type, this operator
function must be implemented as a global function (as we’ll do in Section 19.5 when over-
loading << and >> as the stream insertion and stream extraction operators, respectively). A
global operator function can be made a friend of a class if that function must access pri-
vate or protected members of that class directly.

Operator member functions of a specific class are called (implicitly by the compiler)
only when the left operand of a binary operator is specifically an object of that class, or
when the single operand of a unary operator is an object of that class.

Why Overloaded Stream Insertion and Stream Extraction Operators Are Overloaded
as Global Functions
The overloaded stream insertion operator (<<) is used in an expression in which the left
operand has type ostream &, as in cout << classObject. To use the operator in this man-
ner where the right operand is an object of a user-defined class, it must be overloaded as a
global function. To be a member function, operator << would have to be a member of the
ostream class. This is not possible for user-defined classes, since we’re not allowed to mod-
ify C++ Standard Library classes. Similarly, the overloaded stream extraction operator (>>)
is used in an expression in which the left operand has type istream &, as in cin >> clas-

sObject, and the right operand is an object of a user-defined class, so it, too, must be a
global function. Also, each of these overloaded operator functions may require access to
the private data members of the class object being output or input, so these overloaded
operator functions can be made friend functions of the class for performance reasons.

Commutative Operators
Another reason why one might choose a global function to overload an operator is to en-
able the operator to be commutative. For example, suppose we have an object, number, of
type long int, and an object bigInteger1, of class HugeInteger (a class in which integers
may be arbitrarily large rather than being limited by the machine word size of the under-
lying hardware; class HugeInteger is developed in the chapter exercises). The addition op-
erator (+) produces a temporary HugeInteger object as the sum of a HugeInteger and a
long int (as in the expression bigInteger1 + number), or as the sum of a long int and a
HugeInteger (as in the expression number + bigInteger1). Thus, we require the addition

Performance Tip 19.1
It’s possible to overload an operator as a global, non-friend function, but such a function
requiring access to a class’s private or protected data would need to use set or get func-
tions provided in that class’s public interface. The overhead of calling these functions
could cause poor performance, so these functions can be inlined to improve performance.

678 Chapter 19 Operator Overloading

operator to be commutative (exactly as it is with two fundamental-type operands). The
problem is that the class object must appear on the left of the addition operator if that op-
erator is to be overloaded as a member function. So, we overload the operator as a global
function to allow the HugeInteger to appear on the right of the addition. The operator+
function, which deals with the HugeInteger on the left, can still be a member function.
The global function simply swaps its arguments and calls the member function.

19.5 Overloading Stream Insertion and Stream
Extraction Operators
You can input and output fundamental-type data using the stream extraction operator >>
and the stream insertion operator <<. The C++ class libraries overload these operators to
process each fundamental type, including pointers and C-style char * strings. You can also
overload these operators to perform input and output for your own types. The program of
Figs. 19.3–19.5 overloads these operators to input and output PhoneNumber objects in the
format “(000) 000-0000.” The program assumes telephone numbers are input correctly.

1 // Fig. 19.3: PhoneNumber.h
2 // PhoneNumber class definition
3 #ifndef PHONENUMBER_H

4 #define PHONENUMBER_H

5
6 #include <iostream>
7 #include <string>
8 using namespace std;
9

10 class PhoneNumber
11 {
12
13
14 private:
15 string areaCode; // 3-digit area code
16 string exchange; // 3-digit exchange
17 string line; // 4-digit line
18 }; // end class PhoneNumber
19
20 #endif

Fig. 19.3 | PhoneNumber class with overloaded stream insertion and stream extraction
operators as friend functions.

1 // Fig. 19.4: PhoneNumber.cpp
2 // Overloaded stream insertion and stream extraction operators
3 // for class PhoneNumber.
4 #include <iomanip>
5 #include "PhoneNumber.h"

6 using namespace std;

Fig. 19.4 | Overloaded stream insertion and stream extraction operators for class PhoneNumber.
(Part 1 of 2.)

friend ostream &operator<<(ostream &, const PhoneNumber &);
friend istream &operator>>(istream &, PhoneNumber &);

19.5 Overloading Stream Insertion and Stream Extraction Operators 679

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1 // Fig. 19.5: fig19_05.cpp
2 // Demonstrating class PhoneNumber's overloaded stream insertion
3 // and stream extraction operators.
4 #include <iostream>
5 #include "PhoneNumber.h"

6 using namespace std;
7
8 int main()
9 {

10 PhoneNumber phone; // create object phone
11
12 cout << "Enter phone number in the form (123) 456-7890:" << endl;
13
14
15
16
17
18 cout << "The phone number entered was: ";
19
20
21
22
23 } // end main

Fig. 19.5 | Overloaded stream insertion and stream extraction operators. (Part 1 of 2.)

Fig. 19.4 | Overloaded stream insertion and stream extraction operators for class PhoneNumber.
(Part 2 of 2.)

// overloaded stream insertion operator; cannot be
// a member function if we would like to invoke it with
// cout << somePhoneNumber;
ostream &operator<<(ostream &output, const PhoneNumber &number)
{
 output << "(" << number.areaCode << ") "
 << number.exchange << "-" << number.line;

return output; // enables cout << a << b << c;
} // end function operator<<

// overloaded stream extraction operator; cannot be
// a member function if we would like to invoke it with
// cin >> somePhoneNumber;
istream &operator>>(istream &input, PhoneNumber &number)
{
 input.ignore(); // skip (
 input >> setw(3) >> number.areaCode; // input area code
 input.ignore(2); // skip) and space
 input >> setw(3) >> number.exchange; // input exchange
 input.ignore(); // skip dash (-)
 input >> setw(4) >> number.line; // input line

return input; // enables cin >> a >> b >> c;
} // end function operator>>

// cin >> phone invokes operator>> by implicitly issuing
// the global function call operator>>(cin, phone)
cin >> phone;

// cout << phone invokes operator<< by implicitly issuing
// the global function call operator<<(cout, phone)
cout << phone << endl;

680 Chapter 19 Operator Overloading

The stream extraction operator function operator>> (Fig. 19.4, lines 21–30) takes
istream reference input and PhoneNumber reference number as arguments and returns an
istream reference. Operator function operator>> inputs phone numbers of the form

into objects of class PhoneNumber. When the compiler sees the expression

in line 16 of Fig. 19.5, the compiler generates the global function call

When this call executes, reference parameter input (Fig. 19.4, line 21) becomes an alias
for cin and reference parameter number becomes an alias for phone. The operator function
reads as strings the three parts of the telephone number into the areaCode (line 24), ex-
change (line 26) and line (line 28) members of the PhoneNumber object referenced by pa-
rameter number. Stream manipulator setw limits the number of characters read into each
string. When used with cin and strings, setw restricts the number of characters read to
the number of characters specified by its argument (i.e., setw(3) allows three characters
to be read). The parentheses, space and dash characters are skipped by calling istream
member function ignore (Fig. 19.4, lines 23, 25 and 27), which discards the specified
number of characters in the input stream (one character by default). Function operator>>
returns istream reference input (i.e., cin). This enables input operations on PhoneNumber
objects to be cascaded with input operations on other PhoneNumber objects or on objects
of other data types. For example, a program can input two PhoneNumber objects in one
statement as follows:

First, the expression cin >> phone1 executes by making the global function call

This call then returns a reference to cin as the value of cin >> phone1, so the remaining
portion of the expression is interpreted simply as cin >> phone2. This executes by making
the global function call

The stream insertion operator function (Fig. 19.4, lines 11–16) takes an ostream ref-
erence (output) and a const PhoneNumber reference (number) as arguments and returns an
ostream reference. Function operator<< displays objects of type PhoneNumber. When the
compiler sees the expression

Enter phone number in the form (123) 456-7890:
(800) 555-1212
The phone number entered was: (800) 555-1212

(800) 555-1212

cin >> phone

operator>>(cin, phone);

cin >> phone1 >> phone2;

operator>>(cin, phone1);

operator>>(cin, phone2);

cout << phone

Fig. 19.5 | Overloaded stream insertion and stream extraction operators. (Part 2 of 2.)

19.6 Overloading Unary Operators 681

in line 22 of Fig. 19.5, the compiler generates the global function call

Function operator<< displays the parts of the telephone number as strings, because
they’re stored as string objects.

The functions operator>> and operator<< are declared in PhoneNumber as global,
friend functions (Fig. 19.3, lines 12–13). They’re global functions because the object of
class PhoneNumber is the operator’s right operand. Remember, overloaded operator func-
tions for binary operators can be member functions only when the left operand is an object
of the class in which the function is a member. Overloaded input and output operators are
declared as friends if they need to access non-public class members directly for perfor-
mance reasons or because the class may not offer appropriate get functions. Also, the
PhoneNumber reference in function operator<<’s parameter list (Fig. 19.4, line 11) is
const, because the PhoneNumber will simply be output, and the PhoneNumber reference in
function operator>>’s parameter list (line 21) is non-const, because the PhoneNumber
object must be modified to store the input telephone number in the object.

19.6 Overloading Unary Operators
A unary operator for a class can be overloaded as a non-static member function with no
arguments or as a global function with one argument that must be an object (or a reference
to an object) of the class. Member functions that implement overloaded operators must be
non-static so that they can access the non-static data in each object of the class. Re-
member that static member functions can access only static members of the class.

Later in this chapter, we’ll overload unary operator ! to test whether an object of the
String class we create (Section 19.11) is empty and return a bool result. Consider the
expression !s, in which s is an object of class String. When a unary operator such as ! is
overloaded as a member function with no arguments and the compiler sees the expression
!s, the compiler generates the function call s.operator!(). The operand s is the class
object for which the String class member function operator! is being invoked. The func-
tion is declared in the class definition as follows:

operator<<(cout, phone);

Error-Prevention Tip 19.1
Returning a reference from an overloaded << or >> operator function is typically successful
because cout, cin and most stream objects are global, or at least long-lived. Returning a
reference to an automatic variable or other temporary object is dangerous—this can create
“dangling references” to nonexisting objects.

Software Engineering Observation 19.3
New input/output capabilities for user-defined types are added to C++ without modifying
standard input/output library classes. This is another example of C++’s extensibility.

class String
{
public:

bool operator!() const;
 ...
}; // end class String

682 Chapter 19 Operator Overloading

A unary operator such as ! may be overloaded as a global function with one parameter
in two different ways—either with a parameter that is an object (this requires a copy of the
object, so the side effects of the function are not applied to the original object), or with a
parameter that is a reference to an object (no copy of the original object is made, so all side
effects of this function are applied to the original object). If s is a String class object (or
a reference to a String class object), then !s is treated as if the call operator!(s) had been
written, invoking the global operator! function that is declared as follows:

19.7 Overloading Binary Operators
A binary operator can be overloaded as a non-static member function with one param-
eter or as a global function with two parameters (one of those parameters must be either a
class object or a reference to a class object).

Later in this chapter, we’ll overload < to compare two String objects. When over-
loading binary operator < as a non-static member function of a String class with one
argument, if y and z are String-class objects, then y < z is treated as if y.operator<(z)
had been written, invoking the operator< member function declared below:

As a global function, binary operator < must take two arguments—one of which must
be an object (or a reference to an object) of the class. If y and z are String-class objects or
references to String-class objects, then y < z is treated as if the call operator<(y, z) had
been written in the program, invoking global-function operator< declared as follows:

19.8 Dynamic Memory Management
A standard C++ array data structure is fixed in size once it’s created. The size is specified
with a constant at compile time. Sometimes it’s useful to determine the size of an array
dynamically at execution time and then create the array. C++ enables you to control the
allocation and deallocation of memory in a program for objects and for arrays of any built-
in or user-defined type. This is known as dynamic memory management and is performed
with the operators new and delete.

You can use the new operator to dynamically allocate (i.e., reserve) the exact amount
of memory required to hold an object or array at execution time. The object or array is
created in the free store (also called the heap)—a region of memory assigned to each pro-
gram for storing dynamically allocated objects. Once memory is allocated in the free store,
you can access it via the pointer that operator new returns. When you no longer need the
memory, you can return it to the free store by using the delete operator to deallocate (i.e.,
release) the memory, which can then be reused by future new operations.

bool operator!(const String &);

class String

public:
bool operator<(const String &) const;

 ...
}; // end class String

bool operator<(const String &, const String &);

19.8 Dynamic Memory Management 683

Obtaining Dynamic Memory with new
Let’s discuss the details of using the new and delete operators to dynamically allocate
memory to store objects, fundamental types and arrays. Consider the following statement:

The new operator allocates storage of the proper size for an object of type Time, calls the
default constructor to initialize the object and returns a pointer to the type specified to the
right of the new operator (i.e., a Time *). If new is unable to find sufficient space in memory
for the object, it indicates that an error occurred by “throwing an exception.” Chapter 24,
Exception Handling, discusses how to deal with new failures. In particular, we’ll show how
to “catch” the exception thrown by new and deal with it. When a program does not “catch”
an exception, the program terminates immediately.

Releasing Dynamic Memory with delete
To destroy a dynamically allocated object and free the space for the object, use the delete
operator as follows:

This statement first calls the destructor for the object to which timePtr points, then deal-
locates the memory associated with the object, returning the memory to the free store.

Initializing Dynamic Memory
You can provide an initializer for a newly created fundamental-type variable, as in

which initializes a newly created double to 3.14159 and assigns the resulting pointer to
ptr. The same syntax can be used to specify a comma-separated list of arguments to the
constructor of an object. For example,

initializes a new Time object to 12:45 PM and assigns the resulting pointer to timePtr.

Dynamically Allocating Arrays with new []

You can also use the new operator to allocate arrays dynamically. For example, a 10-ele-
ment integer array can be allocated and assigned to gradesArray as follows:

which declares int pointer gradesArray and assigns to it a pointer to the first element of
a dynamically allocated 10-element array of ints. The size of an array created at compile
time must be specified using a constant integral expression; however, a dynamically allo-
cated array’s size can be specified using any non-negative integral expression that can be
evaluated at execution time. Also, when allocating an array of objects dynamically, you can-
not pass arguments to each object’s constructor—each object is initialized by its default
constructor. For fundamental types, the elements are initialized to 0 or the equivalent of 0

Time *timePtr = new Time;

delete timePtr;

Common Programming Error 19.5
Not releasing dynamically allocated memory when it’s no longer needed can cause the sys-
tem to run out of memory prematurely. This is sometimes called a “memory leak.”

double *ptr = new double(3.14159);

Time *timePtr = new Time(12, 45, 0);

int *gradesArray = new int[10];

684 Chapter 19 Operator Overloading

(e.g., chars are initialized to the null character, '\0'). Although an array name is a pointer
to the array’s first element, the following is not allowed for dynamically allocated memory:

Releasing Dynamically Allocated Arrays with delete []

To deallocate the memory to which gradesArray points, use the statement

If the pointer points to an array of objects, the statement first calls the destructor for every
object in the array, then deallocates the memory. If the preceding statement did not in-
clude the square brackets ([]) and gradesArray pointed to an array of objects, the result
is undefined. Some compilers call the destructor only for the first object in the array. Using
delete on a null pointer (i.e., a pointer with the value 0) has no effect.

19.9 Case Study: Array Class
We discussed arrays in Chapter 6. An array is not much more than a pointer to some space
in memory. Pointer-based arrays have many problems, including:

• A program can easily “walk off” either end of an array, because C++ does not
check whether subscripts fall outside the range of an array (though you can still
do this explicitly).

• Arrays of size n must number their elements 0, …, n – 1; alternate subscript
ranges are not allowed.

• An entire array cannot be input or output at once; each array element must be
read or written individually (unless the array is a null-terminated C string).

• Two arrays cannot be meaningfully compared with equality or relational opera-
tors (because the array names are simply pointers to where the arrays begin in
memory and two arrays will always be at different memory locations).

• When an array is passed to a general-purpose function designed to handle arrays
of any size, the array’s size must be passed as an additional argument.

• One array cannot be assigned to another with the assignment operator(s) (be-
cause array names are const pointers and a constant pointer cannot be used on
the left side of an assignment operator).

C++ provides the means to implement more robust array capabilities via classes and
operator overloading. You can develop an array class that is preferable to “raw” arrays. In
this example, we create a powerful Array class that performs range checking to ensure that

int gradesArray[] = new int[10];

delete [] gradesArray;

Common Programming Error 19.6
Using delete instead of delete [] for arrays of objects can lead to runtime logic errors.
To ensure that every object in the array receives a destructor call, always delete memory
allocated as an array with operator delete []. Similarly, always delete memory allocated
as an individual element with operator delete—the result of deleting a single object with
operator delete [] is undefined.

19.9 Case Study: Array Class 685

subscripts remain within the bounds of the Array. The class allows one array object to be
assigned to another with the assignment operator. Array objects know their size, so the size
does not need to be passed separately to functions that receive Array parameters. Entire
Arrays can be input or output with the stream extraction and stream insertion operators,
respectively. You can compare Arrays with the equality operators == and !=. C++ Standard
Library class template vector provides many of these capabilities as well.

This example will sharpen your appreciation of data abstraction. Class development
is an interesting, creative and intellectually challenging activity—always with the goal of
“crafting valuable classes.” The program of Figs. 19.6–19.8 demonstrates class Array and
its overloaded operators. First we walk through main (Fig. 19.8), then we consider the class
definition (Fig. 19.6) and each of its member-function definitions (Fig. 19.7).

1 // Fig. 19.6: Array.h
2 // Array class definition with overloaded operators.
3 #ifndef ARRAY_H

4 #define ARRAY_H

5
6 #include <iostream>
7 using namespace std;
8
9 class Array

10 {
11
12
13 public:
14 Array(int = 10); // default constructor
15
16
17 int getSize() const; // return size
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 private:
34 int size; // pointer-based array size
35 int *ptr; // pointer to first element of pointer-based array
36 }; // end class Array
37
38 #endif

Fig. 19.6 | Array class definition with overloaded operators.

friend ostream &operator<<(ostream &, const Array &);
friend istream &operator>>(istream &, Array &);

Array(const Array &); // copy constructor
~Array(); // destructor

const Array &operator=(const Array &); // assignment operator
bool operator==(const Array &) const; // equality operator

// inequality operator; returns opposite of == operator
bool operator!=(const Array &right) const
{

return ! (*this == right); // invokes Array::operator==
} // end function operator!=

// subscript operator for non-const objects returns modifiable lvalue
int &operator[](int);

// subscript operator for const objects returns rvalue
int operator[](int) const;

686 Chapter 19 Operator Overloading

1 // Fig 19.7: Array.cpp
2 // Array class member- and friend-function definitions.
3 #include <iostream>
4 #include <iomanip>
5 #include <cstdlib> // exit function prototype
6 #include "Array.h" // Array class definition
7 using namespace std;
8
9 // default constructor for class Array (default size 10)

10 Array::Array(int arraySize)
11 {
12 size = (arraySize > 0 ? arraySize : 10); // validate arraySize
13 ptr = new int[size]; // create space for pointer-based array
14
15 for (int i = 0; i < size; i++)
16 ptr[i] = 0; // set pointer-based array element
17 } // end Array default constructor
18
19 // copy constructor for class Array;
20
21 Array::Array(const Array &arrayToCopy)
22 : size(arrayToCopy.size)
23 {
24 ptr = new int[size]; // create space for pointer-based array
25
26 for (int i = 0; i < size; i++)
27 ptr[i] = arrayToCopy.ptr[i]; // copy into object
28 } // end Array copy constructor
29
30 // destructor for class Array
31 Array::~Array()
32 {
33 delete [] ptr; // release pointer-based array space
34 } // end destructor
35
36 // return number of elements of Array
37 int Array::getSize() const
38 {
39 return size; // number of elements in Array
40 } // end function getSize
41
42 // overloaded assignment operator;
43
44 const Array &Array::operator=(const Array &right)
45 {
46 if (&right != this)
47 {
48 // for Arrays of different sizes, deallocate original
49 // left-side array, then allocate new left-side array
50 if (size != right.size)
51 {
52 delete [] ptr; // release space
53 size = right.size; // resize this object

Fig. 19.7 | Array class member- and friend-function definitions. (Part 1 of 3.)

// must receive a reference to prevent infinite recursion

// const return avoids: (a1 = a2) = a3

// avoid self-assignment

19.9 Case Study: Array Class 687

54 ptr = new int[size]; // create space for array copy
55 } // end inner if
56
57 for (int i = 0; i < size; i++)
58 ptr[i] = right.ptr[i]; // copy array into object
59 } // end outer if
60
61 return *this; // enables x = y = z, for example
62 } // end function operator=
63
64 // determine if two Arrays are equal and
65 // return true, otherwise return false
66 bool Array::operator==(const Array &right) const
67 {
68 if (size != right.size)
69 return false; // arrays of different number of elements
70
71 for (int i = 0; i < size; i++)
72 if (ptr[i] != right.ptr[i])
73 return false; // Array contents are not equal
74
75 return true; // Arrays are equal
76 } // end function operator==
77
78 // overloaded subscript operator for non-const Arrays;
79 // reference return creates a modifiable lvalue
80 int &Array::operator[](int subscript)
81 {
82 // check for subscript out-of-range error
83 if (subscript < 0 || subscript >= size)
84 {
85 cerr << "\nError: Subscript " << subscript
86 << " out of range" << endl;
87 exit(1); // terminate program; subscript out of range
88 } // end if
89
90 return ptr[subscript]; // reference return
91 } // end function operator[]
92
93 // overloaded subscript operator for const Arrays
94 // const reference return creates an rvalue
95 int Array::operator[](int subscript) const
96 {
97 // check for subscript out-of-range error
98 if (subscript < 0 || subscript >= size)
99 {
100 cerr << "\nError: Subscript " << subscript
101 << " out of range" << endl;
102 exit(1); // terminate program; subscript out of range
103 } // end if
104
105 return ptr[subscript]; // returns copy of this element
106 } // end function operator[]

Fig. 19.7 | Array class member- and friend-function definitions. (Part 2 of 3.)

688 Chapter 19 Operator Overloading

107
108 // overloaded input operator for class Array;
109 // inputs values for entire Array
110 istream &operator>>(istream &input, Array &a)
111 {
112 for (int i = 0; i < a.size; i++)
113 input >> a.ptr[i];
114
115 return input; // enables cin >> x >> y;
116 } // end function
117
118 // overloaded output operator for class Array
119 ostream &operator<<(ostream &output, const Array &a)
120 {
121 int i;
122
123 // output private ptr-based array
124 for (i = 0; i < a.size; i++)
125 {
126 output << setw(12) << a.ptr[i];
127
128 if ((i + 1) % 4 == 0) // 4 numbers per row of output
129 output << endl;
130 } // end for
131
132 if (i % 4 != 0) // end last line of output
133 output << endl;
134
135 return output; // enables cout << x << y;
136 } // end function operator<<

1 // Fig. 19.8: fig19_08.cpp
2 // Array class test program.
3 #include <iostream>
4 #include "Array.h"
5 using namespace std;
6
7 int main()
8 {
9

10
11
12 // print integers1 size and contents
13 cout << "Size of Array integers1 is "
14 <<
15 << "\nArray after initialization:\n" << integers1;
16

Fig. 19.8 | Array class test program. (Part 1 of 3.)

Fig. 19.7 | Array class member- and friend-function definitions. (Part 3 of 3.)

Array integers1(7); // seven-element Array
Array integers2; // 10-element Array by default

integers1.getSize()

19.9 Case Study: Array Class 689

17 // print integers2 size and contents
18 cout << "\nSize of Array integers2 is "
19 <<
20 << "\nArray after initialization:\n" << integers2;
21
22 // input and print integers1 and integers2
23 cout << "\nEnter 17 integers:" << endl;
24
25
26 cout << "\nAfter input, the Arrays contain:\n"
27 << "integers1:\n"
28 << "integers2:\n" ;
29
30 // use overloaded inequality (!=) operator
31 cout << "\nEvaluating: integers1 != integers2" << endl;
32
33 if ()
34 cout << "integers1 and integers2 are not equal" << endl;
35
36
37
38
39
40 cout << "\nSize of Array integers3 is "
41 <<
42 << "\nArray after initialization:\n" << integers3;
43
44 // use overloaded assignment (=) operator
45 cout << "\nAssigning integers2 to integers1:" << endl;
46
47
48 cout << "integers1:\n"
49 << "integers2:\n" ;
50
51 // use overloaded equality (==) operator
52 cout << "\nEvaluating: integers1 == integers2" << endl;
53
54 if ()
55 cout << "integers1 and integers2 are equal" << endl;
56
57 // use overloaded subscript operator to create rvalue
58 cout << "\nintegers1[5] is " << ;
59
60 // use overloaded subscript operator to create lvalue
61 cout << "\n\nAssigning 1000 to integers1[5]" << endl;
62
63 cout << "integers1:\n" ;
64
65 // attempt to use out-of-range subscript
66 cout << "\nAttempt to assign 1000 to integers1[15]" << endl;
67
68 } // end main

Fig. 19.8 | Array class test program. (Part 2 of 3.)

integers2.getSize()

cin >> integers1 >> integers2;

<< integers1
<< integers2

integers1 != integers2

// create Array integers3 using integers1 as an
// initializer; print size and contents
Array integers3(integers1); // invokes copy constructor

integers3.getSize()

integers1 = integers2; // note target Array is smaller

<< integers1
<< integers2

integers1 == integers2

integers1[5]

integers1[5] = 1000;
<< integers1

integers1[15] = 1000; // ERROR: out of range

690 Chapter 19 Operator Overloading

Size of Array integers1 is 7
Array after initialization:
 0 0 0 0
 0 0 0

Size of Array integers2 is 10
Array after initialization:
 0 0 0 0
 0 0 0 0
 0 0

Enter 17 integers:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

After input, the Arrays contain:
integers1:
 1 2 3 4
 5 6 7
integers2:
 8 9 10 11
 12 13 14 15
 16 17

Evaluating: integers1 != integers2
integers1 and integers2 are not equal

Size of Array integers3 is 7
Array after initialization:
 1 2 3 4
 5 6 7

Assigning integers2 to integers1:
integers1:
 8 9 10 11
 12 13 14 15
 16 17
integers2:
 8 9 10 11
 12 13 14 15
 16 17

Evaluating: integers1 == integers2
integers1 and integers2 are equal

integers1[5] is 13

Assigning 1000 to integers1[5]
integers1:
 8 9 10 11
 12 1000 14 15
 16 17

Attempt to assign 1000 to integers1[15]

Error: Subscript 15 out of range

Fig. 19.8 | Array class test program. (Part 3 of 3.)

19.9 Case Study: Array Class 691

Creating Arrays, Outputting Their Size and Displaying Their Contents
The program begins by instantiating two objects of class Array—integers1 (Fig. 19.8,
line 9) with seven elements, and integers2 (Fig. 19.8, line 10) with the default Array
size—10 elements (specified by the Array default constructor’s prototype in Fig. 19.6, line
14). Lines 13–15 use member function getSize to determine the size of integers1 and
output integers1, using the Array overloaded stream insertion operator. The sample out-
put confirms that the Array elements were set correctly to zeros by the constructor. Next,
lines 18–20 output the size of Array integers2 and output integers2, using the Array
overloaded stream insertion operator.

Using the Overloaded Stream Insertion Operator to Fill an Array
Line 23 prompts the user to input 17 integers. Line 24 uses the Array overloaded stream
extraction operator to read these values into both arrays. The first seven values are stored
in integers1 and the remaining 10 values are stored in integers2. Lines 26–28 output
the two arrays with the overloaded Array stream insertion operator to confirm that the in-
put was performed correctly.

Using the Overloaded Inequality Operator
Line 33 tests the overloaded inequality operator by evaluating the condition

The program output shows that the Arrays are not equal.

Initializing a New Array with a Copy of an Existing Array’s Contents
Line 38 instantiates a third Array called integers3 and initializes it with a copy of Array
integers1. This invokes the Array copy constructor to copy the elements of integers1
into integers3. We discuss the details of the copy constructor shortly. The copy construc-
tor can also be invoked by writing line 38 as follows:

The equal sign in the preceding statement is not the assignment operator. When an equal
sign appears in the declaration of an object, it invokes a constructor for that object. This
form can be used to pass only a single argument to a constructor.

Lines 40–42 output the size of integers3 and output integers3, using the Array
overloaded stream insertion operator to confirm that the Array elements were set correctly
by the copy constructor.

Using the Overloaded Assignment Operator
Next, line 46 tests the overloaded assignment operator (=) by assigning integers2 to
integers1. Lines 48–49 print both Array objects to confirm that the assignment was suc-
cessful. Note that integers1 originally held 7 integers and was resized to hold a copy of
the 10 elements in integers2. As we’ll see, the overloaded assignment operator performs
this resizing operation in a manner that is transparent to the client code.

Using the Overloaded Equality Operator
Next, line 54 uses the overloaded equality operator (==) to confirm that objects integers1
and integers2 are indeed identical after the assignment.

integers1 != integers2

Array integers3 = integers1;

692 Chapter 19 Operator Overloading

Using the Overloaded Subscript Operator
Line 58 uses the overloaded subscript operator to refer to integers1[5]—an in-range el-
ement of integers1. This subscripted name is used as an rvalue to print the value stored
in integers1[5]. Line 62 uses integers1[5] as a modifiable lvalue on the left side of an
assignment statement to assign a new value, 1000, to element 5 of integers1. We’ll see
that operator[] returns a reference to use as the modifiable lvalue after the operator con-
firms that 5 is a valid subscript for integers1.

Line 67 attempts to assign the value 1000 to integers1[15]—an out-of-range ele-
ment. In this example, operator[] determines that the subscript is out of range, prints a
message and terminates the program. We highlighted line 67 of the program in darker
blue to emphasize that it’s an error to access an element that is out of range. This is a run-
time logic error.

Interestingly, the array subscript operator [] is not restricted for use only with arrays;
it also can be used, for example, to select elements from other kinds of container classes,
such as linked lists, strings and dictionaries. Also, when operator[] functions are defined,
subscripts no longer have to be integers—characters, strings, floats or even objects of user-
defined classes also could be used.

Array Class Definition
Now that we’ve seen how this program operates, let’s walk through the class header
(Fig. 19.6). As we refer to each member function in the header, we discuss that function’s
implementation in Fig. 19.7. In Fig. 19.6, lines 34–35 represent the private data mem-
bers of class Array. Each Array object consists of a size member indicating the number
of elements in the Array and an int pointer—ptr—that points to the dynamically allo-
cated pointer-based array of integers managed by the Array object.

Overloading the Stream Insertion and Stream Extraction Operators as friends
Lines 11–12 of Fig. 19.6 declare the overloaded stream insertion operator and the over-
loaded stream extraction operator to be friends of class Array. When the compiler sees an
expression like cout << arrayObject, it invokes global function operator<< with the call

When the compiler sees an expression like cin >> arrayObject, it invokes global function
operator>> with the call

We note again that these stream insertion and stream extraction operator functions cannot
be members of class Array, because the Array object is always mentioned on the right side
of the stream insertion operator and the stream extraction operator. If these operator func-
tions were to be members of class Array, the following awkward statements would have to
be used to output and input an Array:

Such statements would be confusing to most C++ programmers, who are familiar with
cout and cin appearing as the left operands of << and >>, respectively.

operator<<(cout, arrayObject)

operator>>(cin, arrayObject)

arrayObject << cout;
arrayObject >> cin;

19.9 Case Study: Array Class 693

Function operator<< (defined in Fig. 19.7, lines 119–136) prints the number of ele-
ments indicated by size from the integer array to which ptr points. Function operator>>
(defined in Fig. 19.7, lines 110–116) inputs directly into the array to which ptr points.
Each of these operator functions returns an appropriate reference to enable cascaded
output or input statements, respectively. Each of these functions has access to an Array’s
private data because these functions are declared as friends of class Array. Also, class
Array’s getSize and operator[] functions could be used by operator<< and
operator>>, in which case these operator functions would not need to be friends of class
Array. However, the additional function calls might increase execution-time overhead.

Array Default Constructor
Line 14 of Fig. 19.6 declares the default constructor for the class and specifies a default size
of 10 elements. When the compiler sees a declaration like line 10 in Fig. 19.8, it invokes
class Array’s default constructor (remember that the default constructor in this example
actually receives a single int argument that has a default value of 10). The default con-
structor (defined in Fig. 19.7, lines 10–17) validates and assigns the argument to data
member size, uses new to obtain the memory for the internal pointer-based representation
of this array and assigns the pointer returned by new to data member ptr. Then the con-
structor uses a for statement to set all the elements of the array to zero. It’s possible to have
an Array class that does not initialize its members if, for example, these members are to be
read at some later time; but this is considered to be a poor programming practice. Arrays,
and objects in general, should be properly initialized and maintained in a consistent state.

Array Copy Constructor
Line 15 of Fig. 19.6 declares a copy constructor (defined in Fig. 19.7, lines 21–28) that
initializes an Array by making a copy of an existing Array object. Such copying must be
done carefully to avoid the pitfall of leaving both Array objects pointing to the same dy-
namically allocated memory. This is exactly the problem that would occur with default
memberwise copying, if the compiler is allowed to define a default copy constructor for
this class. Copy constructors are invoked whenever a copy of an object is needed, such as
in passing an object by value to a function, returning an object by value from a function
or initializing an object with a copy of another object of the same class. The copy construc-
tor is called in a declaration when an object of class Array is instantiated and initialized
with another object of class Array, as in the declaration in line 38 of Fig. 19.8.

Software Engineering Observation 19.4
The argument to a copy constructor should be a const reference to allow a const object
to be copied.

Common Programming Error 19.7
A copy constructor must receive its argument by reference, not by value. Otherwise, the
copy constructor call results in infinite recursion (a fatal logic error) because receiving an
object by value requires the copy constructor to make a copy of the argument object. Recall
that any time a copy of an object is required, the class’s copy constructor is called. If the
copy constructor received its argument by value, the copy constructor would call itself re-
cursively to make a copy of its argument!

694 Chapter 19 Operator Overloading

The copy constructor for Array uses a member initializer (Fig. 19.7, line 22) to copy
the size of the initializer Array into data member size, uses new (line 24) to obtain the
memory for the internal pointer-based representation of this Array and assigns the pointer
returned by new to data member ptr.1 Then the copy constructor uses a for statement to
copy all the elements of the initializer Array into the new Array object. An object of a class
can look at the private data of any other object of that class (using a handle that indicates
which object to access).

Array Destructor
Line 16 of Fig. 19.6 declares the class’s destructor (defined in Fig. 19.7, lines 31–34). The
destructor is invoked when an object of class Array goes out of scope. The destructor uses
delete [] to release the memory allocated dynamically by new in the constructor.

getSize Member Function
Line 17 of Fig. 19.6 declares function getSize (defined in Fig. 19.7, lines 37–40) that re-
turns the number of elements in the Array.

Overloaded Assignment Operator
Line 19 of Fig. 19.6 declares the overloaded assignment operator function for the class.
When the compiler sees the expression integers1 = integers2 in line 46 of Fig. 19.8, the
compiler invokes member function operator= with the call

Member function operator=’s implementation (Fig. 19.7, lines 44–62) tests for self-as-
signment (line 46) in which an Array object is being assigned to itself. When this is equal
to the right operand’s address, a self-assignment is being attempted, so the assignment is
skipped (i.e., the object already is itself; in a moment we’ll see why self-assignment is dan-
gerous). If it isn’t a self-assignment, then the function determines whether the sizes of the

1. Operator new could fail to obtain the needed memory. We deal with new failures in Chapter 24.

Common Programming Error 19.8
If the copy constructor simply copied the pointer in the source object to the target object’s
pointer, then both objects would point to the same dynamically allocated memory. The
first destructor to execute would then delete the dynamically allocated memory, and the
other object’s ptr would be undefined, a situation called a dangling pointer—this would
likely result in a serious run-time error (such as early program termination) when the
pointer was used.

Error-Prevention Tip 19.2
If after deleting dynamically allocated memory, the pointer will continue to exist in mem-
ory, set the pointer’s value to 0 to indicate that the pointer no longer points to memory in
the free store. By setting the pointer to 0, the program loses access to that free-store space,
which could be reallocated for a different purpose. If you do not set the pointer to 0, your
code could inadvertently access the reallocated memory, causing subtle, nonrepeatable log-
ic errors.

integers1.operator=(integers2)

19.9 Case Study: Array Class 695

two arrays are identical (line 50); in that case, the original array of integers in the left-side
Array object is not reallocated. Otherwise, operator= uses delete (line 52) to release the
memory originally allocated to the target array, copies the size of the source array to the
size of the target array (line 53), uses new to allocate memory for the target array and plac-
es the pointer returned by new into the array’s ptr member. Then the for statement in
lines 57–58 copies the array elements from the source array to the target array. Regardless
of whether this is a self-assignment, the member function returns the current object (i.e.,
*this in line 61) as a constant reference; this enables cascaded Array assignments such as
x = y = z, but prevents ones like (x = y) = z because z cannot be assigned to the const
Array reference that is returned by (x = y). If self-assignment occurs, and function oper-
ator= did not test for this case, operator= would unnecessarily copy the elements of the
Array into itself.

Overloaded Equality and Inequality Operators
Line 20 of Fig. 19.6 declares the overloaded equality operator (==) for the class. When the
compiler sees the expression integers1 == integers2 in line 54 of Fig. 19.8, the compiler
invokes member function operator== with the call

Member function operator== (defined in Fig. 19.7, lines 66–76) immediately returns
false if the size members of the arrays are not equal. Otherwise, operator== compares
each pair of elements. If they’re all equal, the function returns true. The first pair of ele-
ments to differ causes the function to return false immediately.

Lines 23–26 of the header file define the overloaded inequality operator (!=) for the
class. Member function operator!= uses the overloaded operator== function to deter-
mine whether one Array is equal to another, then returns the opposite of that result.
Writing operator!= in this manner enables you to reuse operator==, which reduces the
amount of code that must be written in the class. Also, the full function definition for
operator!= is in the Array header file. This allows the compiler to inline the definition of
operator!= to eliminate the overhead of the extra function call.

Software Engineering Observation 19.5
A copy constructor, a destructor and an overloaded assignment operator are usually
provided as a group for any class that uses dynamically allocated memory.

Common Programming Error 19.9
Not providing an overloaded assignment operator and a copy constructor for a class when
objects of that class contain pointers to dynamically allocated memory is a logic error.

Software Engineering Observation 19.6
It’s possible to prevent one object of a class from being assigned to another. This is done by
declaring the assignment operator as a private member of the class.

Software Engineering Observation 19.7
It’s possible to prevent class objects from being copied; to do this, simply make both the
overloaded assignment operator and the copy constructor of that class private.

integers1.operator==(integers2)

696 Chapter 19 Operator Overloading

Overloaded Subscript Operators
Lines 29 and 32 of Fig. 19.6 declare two overloaded subscript operators (defined in
Fig. 19.7 in lines 80–91 and 95–106, respectively). When the compiler sees the expression
integers1[5] (Fig. 19.8, line 58), it invokes the appropriate overloaded operator[]
member function by generating the call

The compiler creates a call to the const version of operator[] (Fig. 19.7, lines 95–106)
when the subscript operator is used on a const Array object. For example, if const object
z is instantiated with the statement

then the const version of operator[] is required to execute a statement such as

Remember, a program can invoke only the const member functions of a const object.
Each definition of operator[] determines whether the subscript it receives as an argu-

ment is in range. If it isn’t, each function prints an error message and terminates the pro-
gram with a call to function exit (header <cstdlib>).2 If the subscript is in range, the
non-const version of operator[] returns the appropriate array element as a reference so
that it may be used as a modifiable lvalue (e.g., on the left side of an assignment statement).
If the subscript is in range, the const version of operator[] returns a copy of the appro-
priate element of the array. The returned character is an rvalue.

19.10 Converting between Types
Most programs process information of many types. Sometimes all the operations “stay
within a type.” For example, adding an int to an int produces an int. It’s often necessary,
however, to convert data of one type to data of another type. This can happen in assign-
ments, in calculations, in passing values to functions and in returning values from func-
tions. The compiler knows how to perform certain conversions among fundamental types.
You can use cast operators to force conversions among fundamental types.

But what about user-defined types? The compiler cannot know in advance how to
convert among user-defined types, and between user-defined types and fundamental
types, so you must specify how to do this. Such conversions can be performed with con-
version constructors—single-argument constructors that turn objects of other types
(including fundamental types) into objects of a particular class.

A conversion operator (also called a cast operator) can be used to convert an object of
one class into an object of another class or into an object of a fundamental type. Such a
conversion operator must be a non-static member function. The function prototype

integers1.operator[](5)

const Array z(5);

cout << z[3] << endl;

2. It’s more appropriate when a subscript is out of range to “throw an exception” indicating the out-of-
range subscript. Then the program can “catch” that exception, process it and possibly continue exe-
cution. See Chapter 24 for more information on exceptions.

A::operator char *() const;

19.11 Building a String Class 697

declares an overloaded cast operator function for converting an object of user-defined type
A into a temporary char * object. The operator function is declared const because it does
not modify the original object. An overloaded cast operator function does not specify a
return type—the return type is the type to which the object is being converted. If s is a
class object, when the compiler sees the expression static_cast< char * >(s), the com-
piler generates the call

The operand s is the class object s for which the member function operator char * is be-
ing invoked.

Overloaded cast operator functions can be defined to convert objects of user-defined
types into fundamental types or into objects of other user-defined types. The prototypes

declare overloaded cast operator functions that can convert an object of user-defined type
A into an integer or into an object of user-defined type OtherClass, respectively.

One of the nice features of cast operators and conversion constructors is that, when
necessary, the compiler can call these functions implicitly to create temporary objects. For
example, if an object s of a user-defined String class appears in a program at a location
where an ordinary char * is expected, such as

the compiler can call the overloaded cast-operator function operator char * to convert
the object into a char * and use the resulting char * in the expression. With this cast op-
erator provided for a String class, the stream insertion operator does not have to be over-
loaded to output a String using cout.

19.11 Building a String Class
In Chapter 8, we introduced C-style, pointer-based string processing with character ar-
rays. As part of our coverage of crafting valuable classes, we implement our own String
class that encapsulates a dynamically allocated C string and provides many capabilities that
are similar to those we introduced in the Array class. To implement this class, we use sev-
eral of the capabilities introduced in Chapter 8. Because classes Array and String are so
similar, we placed the String class code and discussion online at www.deitel.com/books/
cpphtp7/ under Downloads and Resources for Registered Users.

In this section, we discuss some of the features that are defined in the String class.
The C++ standard library includes the similar, more robust string class.

String Conversion Constructor
Our String class provides a conversion constructor that takes a const char * argument
and initializes a String object containing that same character string. Recall that any single-
argument constructor can be thought of as a conversion constructor. Such constructors are
helpful when we’re doing any String operation using char * arguments. The conversion
constructor can convert a char * string into a String object, which can then be assigned
to the target String object. The availability of this conversion constructor means that it

s.operator char *()

A::operator int() const;
A::operator OtherClass() const;

cout << s;

www.deitel.com/books/cpphtp7/
www.deitel.com/books/cpphtp7/

698 Chapter 19 Operator Overloading

isn’t necessary to supply an overloaded assignment operator for assigning character strings
to String objects. When the compiler encounters the statement

where myString is a String object, the compiler invokes the conversion constructor to
create a temporary String object containing the character string "hello"; then class
String’s overloaded assignment operator is invoked to assign the temporary String object
to String object myString.

The String conversion constructor could be invoked in a declaration such as

It can also be invoked when you pass a C string to a function that expects a String argu-
ment or when you return a C string from a function with a String return type.

Overloaded Unary Negation Operator
The overloaded negation operator determines whether a String object is empty. For ex-
ample, when the compiler sees the expression !string1, it generates the function call

This function returns true if the String’s length is equal to zero, and false otherwise.

Overloaded Function Call Operator
Overloading the function call operator () is powerful, because functions can take an ar-
bitrary number of parameters. In class String, we overload this operator to select a sub-
string from a String. The operator’s two integer parameters specify the start location and
the length of the substring to be selected. If the start location is out of range or the sub-
string length is negative, the operator simply returns an empty String. If the substring
length is 0, then the substring is selected to the end of the String object. Suppose string1
is a String object containing the string "AEIOU". When the compiler encounters the ex-
pression string1(2, 2), it generates the member-function call

which returns a String containing "IO".

19.12 Overloading ++ and --
The prefix and postfix versions of the increment and decrement operators can all be over-
loaded. We’ll see how the compiler distinguishes between the prefix version and the post-
fix version of an increment or decrement operator.

To overload the increment operator to allow both prefix and postfix increment usage,
each overloaded operator function must have a distinct signature, so that the compiler will

myString = "hello";

Software Engineering Observation 19.8
When a conversion constructor is used to perform an implicit conversion, C++ can apply
only one implicit constructor call (i.e., a single user-defined conversion) to try to match the
needs of another overloaded operator. The compiler will not satisfy an overloaded
operator’s needs by performing a series of implicit, user-defined conversions.

String s1("happy");

string1.operator!()

string1.operator()(2, 2)

19.12 Overloading ++ and -- 699

be able to determine which version of ++ is intended. The prefix versions are overloaded
exactly as any other prefix unary operator would be.

Overloading the Prefix Increment Operator
Suppose, for example, that we want to add 1 to the day in Date object d1. When the com-
piler sees the preincrementing expression ++d1, the compiler generates the member-func-
tion call

The prototype for this operator function would be

If the prefix increment operator is implemented as a global function, then, when the
compiler sees the expression ++d1, the compiler generates the function call

The prototype for this operator function would be declared in the Date class as

Overloading the Postfix Increment Operator
Overloading the postfix increment operator presents a challenge, because the compiler
must be able to distinguish between the signatures of the overloaded prefix and postfix in-
crement operator functions. The convention that has been adopted in C++ is that, when the
compiler sees the postincrementing expression d1++, it generates the member-function call

The prototype for this function is

The argument 0 is strictly a “dummy value” that enables the compiler to distinguish be-
tween the prefix and postfix increment operator functions. The same syntax is used to dif-
ferentiate between the prefix and postfix decrement operator functions.

If the postfix increment is implemented as a global function, then, when the compiler
sees the expression d1++, the compiler generates the function call

The prototype for this function would be

Once again, the 0 argument is used by the compiler to distinguish between the prefix and
postfix increment operators implemented as global functions. Note that the postfix incre-
ment operator returns Date objects by value, whereas the prefix increment operator returns
Date objects by reference, because the postfix increment operator typically returns a tem-
porary object that contains the original value of the object before the increment occurred.
C++ treats such objects as rvalues, which cannot be used on the left side of an assignment.
The prefix increment operator returns the actual incremented object with its new value.
Such an object can be used as an lvalue in a continuing expression.

d1.operator++()

Date &operator++();

operator++(d1)

Date &operator++(Date &);

d1.operator++(0)

Date operator++(int)

operator++(d1, 0)

Date operator++(Date &, int);

700 Chapter 19 Operator Overloading

Everything stated in this section for overloading prefix and postfix increment opera-
tors applies to overloading predecrement and postdecrement operators. Next, we examine
a Date class with overloaded prefix and postfix increment operators.

19.13 Case Study: A Date Class
The program of Figs. 19.9–19.11 demonstrates a Date class, which uses overloaded prefix
and postfix increment operators to add 1 to the day in a Date object, while causing appro-
priate increments to the month and year if necessary. The Date header file (Fig. 19.9) spec-
ifies that Date’s public interface includes an overloaded stream insertion operator (line
11), a default constructor (line 13), a setDate function (line 14), an overloaded prefix in-
crement operator (line 15), an overloaded postfix increment operator (line 16), an over-
loaded += addition assignment operator (line 17), a function to test for leap years (line 18)
and a function to determine whether a day is the last day of the month (line 19).

Performance Tip 19.2
The extra object that is created by the postfix increment (or decrement) operator can result
in a significant performance problem—especially when the operator is used in a loop. For
this reason, you should use the postfix increment (or decrement) operator only when the
logic of the program requires postincrementing (or postdecrementing).

1 // Fig. 19.9: Date.h
2 // Date class definition with overloaded increment operators.
3 #ifndef DATE_H

4 #define DATE_H

5
6 #include <iostream>
7 using namespace std;
8
9 class Date

10 {
11 friend ostream &operator<<(ostream &, const Date &);
12 public:
13 Date(int m = 1, int d = 1, int y = 1900); // default constructor
14 void setDate(int, int, int); // set month, day, year
15
16
17 const Date &operator+=(int); // add days, modify object
18 static bool leapYear(int); // is date in a leap year?
19 bool endOfMonth(int) const; // is date at the end of month?
20 private:
21 int month;
22 int day;
23 int year;
24
25 static const int days[]; // array of days per month
26 void helpIncrement(); // utility function for incrementing date
27 }; // end class Date
28
29 #endif

Fig. 19.9 | Date class definition with overloaded increment operators.

Date &operator++(); // prefix increment operator
Date operator++(int); // postfix increment operator

19.13 Case Study: A Date Class 701

1 // Fig. 19.10: Date.cpp
2 // Date class member- and friend-function definitions.
3 #include <iostream>
4 #include <string>
5 #include "Date.h"

6 using namespace std;
7
8 // initialize static member; one classwide copy
9 const int Date::days[] =

10 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
11
12 // Date constructor
13 Date::Date(int m, int d, int y)
14 {
15 setDate(m, d, y);
16 } // end Date constructor
17
18 // set month, day and year
19 void Date::setDate(int mm, int dd, int yy)
20 {
21 month = (mm >= 1 && mm <= 12) ? mm : 1;
22 year = (yy >= 1900 && yy <= 2100) ? yy : 1900;
23
24 // test for a leap year
25 if (month == 2 && leapYear(year))
26 day = (dd >= 1 && dd <= 29) ? dd : 1;
27 else

28 day = (dd >= 1 && dd <= days[month]) ? dd : 1;
29 } // end function setDate
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 // add specified number of days to date
50 const Date &Date::operator+=(int additionalDays)
51 {
52 for (int i = 0; i < additionalDays; i++)
53 helpIncrement();

Fig. 19.10 | Date class member- and friend-function definitions. (Part 1 of 2.)

// overloaded prefix increment operator
Date &Date::operator++()
{
 helpIncrement(); // increment date

return *this; // reference return to create an lvalue
} // end function operator++

// overloaded postfix increment operator; note that the
// dummy integer parameter does not have a parameter name
Date Date::operator++(int)
{
 Date temp = *this; // hold current state of object
 helpIncrement();

// return unincremented, saved, temporary object
return temp; // value return; not a reference return

} // end function operator++

702 Chapter 19 Operator Overloading

54
55 return *this; // enables cascading
56 } // end function operator+=
57
58 // if the year is a leap year, return true; otherwise, return false
59 bool Date::leapYear(int testYear)
60 {
61 if (testYear % 400 == 0 ||
62 (testYear % 100 != 0 && testYear % 4 == 0))
63 return true; // a leap year
64 else

65 return false; // not a leap year
66 } // end function leapYear
67
68 // determine whether the day is the last day of the month
69 bool Date::endOfMonth(int testDay) const
70 {
71 if (month == 2 && leapYear(year))
72 return testDay == 29; // last day of Feb. in leap year
73 else

74 return testDay == days[month];
75 } // end function endOfMonth
76
77 // function to help increment the date
78 void Date::helpIncrement()
79 {
80 // day is not end of month
81 if (!endOfMonth(day))
82 day++; // increment day
83 else

84 if (month < 12) // day is end of month and month < 12
85 {
86 month++; // increment month
87 day = 1; // first day of new month
88 } // end if
89 else // last day of year
90 {
91 year++; // increment year
92 month = 1; // first month of new year
93 day = 1; // first day of new month
94 } // end else
95 } // end function helpIncrement
96
97 // overloaded output operator
98 ostream &operator<<(ostream &output, const Date &d)
99 {
100 static string monthName[13] = { "", "January", "February",
101 "March", "April", "May", "June", "July", "August",
102 "September", "October", "November", "December" };
103 output << monthName[d.month] << ' ' << d.day << ", " << d.year;
104 return output; // enables cascading
105 } // end function operator<<

Fig. 19.10 | Date class member- and friend-function definitions. (Part 2 of 2.)

19.13 Case Study: A Date Class 703

1 // Fig. 19.11: fig19_11.cpp
2 // Date class test program.
3 #include <iostream>
4 #include "Date.h" // Date class definition
5 using namespace std;
6
7 int main()
8 {
9 Date d1; // defaults to January 1, 1900

10 Date d2(12, 27, 1992); // December 27, 1992
11 Date d3(0, 99, 8045); // invalid date
12
13 cout << "d1 is " << d1 << "\nd2 is " << d2 << "\nd3 is " << d3;
14 cout << "\n\nd2 += 7 is " << (d2 += 7);
15
16 d3.setDate(2, 28, 1992);
17 cout << "\n\n d3 is " << d3;
18
19
20 Date d4(7, 13, 2002);
21
22
23
24
25
26
27
28
29
30
31 } // end main

d1 is January 1, 1900
d2 is December 27, 1992
d3 is January 1, 1900

d2 += 7 is January 3, 1993

 d3 is February 28, 1992
++d3 is February 29, 1992 (leap year allows 29th)

Testing the prefix increment operator:
 d4 is July 13, 2002
++d4 is July 14, 2002
 d4 is July 14, 2002

Testing the postfix increment operator:
 d4 is July 14, 2002
d4++ is July 14, 2002
 d4 is July 15, 2002

Fig. 19.11 | Date class test program.

cout << "\n++d3 is " << ++d3 << " (leap year allows 29th)";

cout << "\n\nTesting the prefix increment operator:\n"
 << " d4 is " << d4 << endl;
cout << "++d4 is " << ++d4 << endl;
cout << " d4 is " << d4;

cout << "\n\nTesting the postfix increment operator:\n"
 << " d4 is " << d4 << endl;
cout << "d4++ is " << d4++ << endl;
cout << " d4 is " << d4 << endl;

704 Chapter 19 Operator Overloading

Function main (Fig. 19.11) creates three Date objects (lines 9–11)—d1 is initialized
by default to January 1, 1900; d2 is initialized to December 27, 1992; and d3 is initialized
to an invalid date. The Date constructor (defined in Fig. 19.10, lines 13–16) calls setDate
to validate the month, day and year specified. An invalid month is set to 1, an invalid year
is set to 1900 and an invalid day is set to 1.

Line 13 of main output each of the constructed Date objects, using the overloaded
stream insertion operator (defined in Fig. 19.10, lines 98–105). Line 14 of main uses the
overloaded operator += to add seven days to d2. Line 16 uses function setDate to set d3
to February 28, 1992, which is a leap year. Then, line 18 preincrements d3 to show that
the date increments properly to February 29. Next, line 20 creates a Date object, d4, which
is initialized with the date July 13, 2002. Then line 24 increments d4 by 1 with the over-
loaded prefix increment operator. Lines 22–25 output d4 before and after the preincre-
ment operation to confirm that it worked correctly. Finally, line 29 increments d4 with
the overloaded postfix increment operator. Lines 27–30 output d4 before and after the
postincrement operation to confirm that it worked correctly.

Overloading the prefix increment operator is straightforward. The prefix increment
operator (defined in Fig. 19.10, lines 32–36) calls utility function helpIncrement
(defined in Fig. 19.10, lines 78–95) to increment the date. This function deals with
“wraparounds” or “carries” that occur when we increment the last day of the month. These
carries require incrementing the month. If the month is already 12, then the year must also
be incremented and the month must be set to 1. Function helpIncrement uses function
endOfMonth to increment the day correctly.

The overloaded prefix increment operator returns a reference to the current Date
object (i.e., the one that was just incremented). This occurs because the current object,
*this, is returned as a Date &. This enables a preincremented Date object to be used as an
lvalue, which is how the built-in prefix increment operator works for fundamental types.

Overloading the postfix increment operator (defined in Fig. 19.10, lines 40–47) is
trickier. To emulate the effect of the postincrement, we must return an unincremented
copy of the Date object. For example, if int variable x has the value 7, the statement

outputs the original value of variable x. So we’d like our postfix increment operator to op-
erate the same way on a Date object. On entry to operator++, we save the current object
(*this) in temp (line 42). Next, we call helpIncrement to increment the current Date ob-
ject. Then, line 46 returns the unincremented copy of the object previously stored in temp.
This function cannot return a reference to the local Date object temp, because a local vari-
able is destroyed when the function in which it’s declared exits. Thus, declaring the return
type to this function as Date & would return a reference to an object that no longer exists.
Returning a reference (or a pointer) to a local variable is a common error for which most
compilers will issue a warning.

19.14 Standard Library Class string
Building useful, reusable classes such as Array (Figs. 19.6–19.8) takes work. However,
once such classes are tested and debugged, they can be reused by you, your colleagues, your
company, many companies, an entire industry or even many industries (if they’re placed

cout << x++ << endl;

19.14 Standard Library Class string 705

in public or for-sale libraries). The designers of C++ did exactly that, building class string
and class template vector into standard C++. These classes are available to anyone build-
ing applications with C++.

Figure 19.12 demonstrates many of class string’s overloaded operators, it’s conver-
sion constructor for C strings and several other useful member functions, including empty,
substr and at. Function empty determines whether a string is empty, function substr
returns a string that represents a portion of an existing string and function at returns
the character at a specific index in a string (after checking that the index is in range).

1 // Fig. 19.12: fig19_12.cpp
2 // Standard Library string class test program.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9

10
11
12
13 // test overloaded equality and relational operators
14 cout << "s1 is \"" << "\"; s2 is \""
15 << "\"; s3 is \"" << '\"'
16 << "\n\nThe results of comparing s2 and s1:"
17 << "\ns2 == s1 yields " << (? "true" : "false")
18 << "\ns2 != s1 yields " << (? "true" : "false")
19 << "\ns2 > s1 yields " << (? "true" : "false")
20 << "\ns2 < s1 yields " << (? "true" : "false")
21 << "\ns2 >= s1 yields " << (? "true" : "false")
22 << "\ns2 <= s1 yields " << (? "true" : "false");
23
24 // test string member-function empty
25 cout << "\n\nTesting s3.empty():" << endl;
26
27 if ()
28 {
29 cout << "s3 is empty; assigning s1 to s3;" << endl;
30 ; // assign s1 to s3
31 cout << "s3 is \"" << "\"";
32 } // end if
33
34 // test overloaded string concatenation operator
35 cout << "\n\ns1 += s2 yields s1 = ";
36
37 cout << s1;
38
39 // test overloaded string concatenation operator with C-style string
40 cout << "\n\ns1 += \" to you\" yields" << endl;
41
42 cout << "s1 = " << s1 << "\n\n";

Fig. 19.12 | Standard Library class string. (Part 1 of 3.)

string s1("happy");
string s2(" birthday");
string s3;

<< s1 << s2
<< s3

s2 == s1
s2 != s1
s2 > s1
s2 < s1
s2 >= s1
s2 <= s1

s3.empty()

s3 = s1
<< s3

s1 += s2; // test overloaded concatenation

s1 += " to you";

706 Chapter 19 Operator Overloading

43
44 // test string member function substr
45 cout << "The substring of s1 starting at location 0 for\n"
46 << "14 characters, s1.substr(0, 14), is:\n"
47 << << "\n\n";
48
49 // test substr "to-end-of-string" option
50 cout << "The substring of s1 starting at\n"
51 << "location 15, s1.substr(15), is:\n"
52 << << endl;
53
54 // test copy constructor
55
56 cout << "\ns4 = " << s4 << "\n\n";
57
58 // test overloaded assignment (=) operator with self-assignment
59 cout << "assigning s4 to s4" << endl;
60
61 cout << "s4 = " << s4 << endl;
62
63 // test using overloaded subscript operator to create lvalue
64
65
66 cout << "\ns1 after s1[0] = 'H' and s1[6] = 'B' is: "
67 << s1 << "\n\n";
68
69 // test subscript out of range with string member function "at"
70 cout << "Attempt to assign 'd' to s1.at(30) yields:" << endl;
71
72 } // end main

s1 is "happy"; s2 is " birthday"; s3 is ""

The results of comparing s2 and s1:
s2 == s1 yields false
s2 != s1 yields true
s2 > s1 yields false
s2 < s1 yields true
s2 >= s1 yields false
s2 <= s1 yields true

Testing s3.empty():
s3 is empty; assigning s1 to s3;
s3 is "happy"

s1 += s2 yields s1 = happy birthday

s1 += " to you" yields
s1 = happy birthday to you

The substring of s1 starting at location 0 for
14 characters, s1.substr(0, 14), is:
happy birthday

Fig. 19.12 | Standard Library class string. (Part 2 of 3.)

s1.substr(0, 14)

s1.substr(15)

string s4(s1);

s4 = s4;

s1[0] = 'H';
s1[6] = 'B';

s1.at(30) = 'd'; // ERROR: subscript out of range

19.14 Standard Library Class string 707

Lines 9–11 create three string objects—s1 is initialized with the literal "happy", s2
is initialized with the literal " birthday" and s3 uses the default string constructor to
create an empty string. Lines 14–15 output these three objects, using cout and operator
<<, which the string class designers overloaded to handle string objects. Then lines 16–
22 show the results of comparing s2 to s1 by using class string’s overloaded equality and
relational operators, which perform lexicographical comparisons using the numerical
values of the characters (see Appendix B, ASCII Character Set) in each string.

Class string provides member function empty to determine whether a string is
empty, which we demonstrate in line 27. Member function empty returns true if the
string is empty; otherwise, it returns false.

Line 30 demonstrates class string’s overloaded assignment operator by assigning s1
to s3. Line 31 outputs s3 to demonstrate that the assignment worked correctly.

Line 36 demonstrates class string’s overloaded += operator for string concatenation.
In this case, the contents of s2 are appended to s1. Then line 37 outputs the resulting
string that is stored in s1. Line 41 demonstrates that a C-style string literal can be
appended to a string object by using operator +=. Line 42 displays the result.

Class string provides member function substr (lines 47 and 52) to return a portion
of a string as a string object. The call to substr in line 47 obtains a 14-character substring
(specified by the second argument) of s1 starting at position 0 (specified by the first argu-
ment).The call to substr in line 52 obtains a substring starting from position 15 of s1.
When the second argument is not specified, substr returns the remainder of the string
on which it’s called.

Line 55 creates string object s4 and initializes it with a copy of s1. This results in a
call to class string’s copy constructor. Line 60 uses class string’s overloaded = operator
to demonstrate that it handles self-assignment properly.

Lines 64–65 use class string’s overloaded [] operator to create lvalues that enable
new characters to replace existing characters in s1. Line 67 outputs the new value of s1.
Class string’s overloaded [] operator does not perform any bounds checking. Therefore, you
must ensure that operations using standard class string’s overloaded [] operator do not
accidentally manipulate elements outside the bounds of the string. Class string does
provide bounds checking in its member function at, which “throws an exception” if its
argument is an invalid subscript. By default, this causes a C++ program to terminate and
display a system-specific error message.3 If the subscript is valid, function at returns the

The substring of s1 starting at
location 15, s1.substr(15), is:
to you

s4 = happy birthday to you

assigning s4 to s4
s4 = happy birthday to you

s1 after s1[0] = 'H' and s1[6] = 'B' is: Happy Birthday to you

Attempt to assign 'd' to s1.at(30) yields:

This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

Fig. 19.12 | Standard Library class string. (Part 3 of 3.)

708 Chapter 19 Operator Overloading

character at the specified location as a modifiable lvalue or an unmodifiable lvalue (i.e., a
const reference), depending on the context in which the call appears. Line 71 demon-
strates a call to function at with an invalid subscript. The error message shown at the end
of this program’s output was produced when running the program on Windows Vista.

19.15 explicit Constructors
In Sections 19.9–19.10, we discussed that any single-argument constructor can be used by
the compiler to perform an implicit conversion—the type received by the constructor is
converted to an object of the class in which the constructor is defined. The conversion is
automatic and you need not use a cast operator. In some situations, implicit conversions
are undesirable or error-prone. For example, our Array class in Fig. 19.6 defines a con-
structor that takes a single int argument. The intent of this constructor is to create an Ar-
ray object containing the number of elements specified by the int argument. However,
this constructor can be misused by the compiler to perform an implicit conversion.

Accidentally Using a Single-Argument Constructor as a Conversion Constructor
The program (Fig. 19.13) uses the Array class of Figs. 19.6–19.7 to demonstrate an im-
proper implicit conversion.

3. Again, Chapter 24 demonstrates how to “catch” and handle such exceptions.

Common Programming Error 19.10
Unfortunately, the compiler might use implicit conversions in cases that you do not expect,
resulting in ambiguous expressions that generate compilation errors or result in execution-
time logic errors.

1 // Fig. 19.13: Fig19_13.cpp
2 // Driver for simple class Array.
3 #include <iostream>
4 #include "Array.h"

5 using namespace std;
6
7 void outputArray(const Array &); // prototype
8
9 int main()

10 {
11 Array integers1(7); // 7-element array
12 outputArray(integers1); // output Array integers1
13
14 } // end main
15
16 // print Array contents
17 void outputArray(const Array &arrayToOutput)
18 {
19 cout << "The Array received has " << arrayToOutput.getSize()
20 << " elements. The contents are:\n" << arrayToOutput << endl;
21 } // end outputArray

Fig. 19.13 | Single-argument constructors and implicit conversions. (Part 1 of 2.)

outputArray(3); // convert 3 to an Array and output Array’s contents

19.15 explicit Constructors 709

Line 11 in main instantiates Array object integers1 and calls the single argument
constructor with the int value 7 to specify the number of elements in the Array. Recall
from Fig. 19.7 that the Array constructor that receives an int argument initializes all the
array elements to 0. Line 12 calls function outputArray (defined in lines 17–21), which
receives as its argument a const Array & to an Array. The function outputs the number
of elements in its Array argument and the contents of the Array. In this case, the size of
the Array is 7, so seven 0s are output.

Line 13 calls function outputArray with the int value 3 as an argument. However,
this program does not contain a function called outputArray that takes an int argument.
So, the compiler determines whether class Array provides a conversion constructor that
can convert an int into an Array. Since any constructor that receives a single argument is
considered to be a conversion constructor, the compiler assumes the Array constructor
that receives a single int is a conversion constructor and uses it to convert the argument 3
into a temporary Array object that contains three elements. Then, the compiler passes the
temporary Array object to function outputArray to output the Array’s contents. Thus,
even though we do not explicitly provide an outputArray function that receives an int
argument, the compiler is able to compile line 13. The output shows the contents of the
three-element Array containing 0s.

Preventing Implicit Conversions with Single-Argument Constructors
C++ provides the keyword explicit to suppress implicit conversions via conversion con-
structors when such conversions should not be allowed. A constructor that is declared ex-
plicit cannot be used in an implicit conversion. Figure 19.14 declares an explicit
constructor in class Array. The only modification to Array.h was the addition of the key-
word explicit to the declaration of the single-argument constructor in line 14. No mod-
ifications are required to the source-code file containing class Array’s member-function
definitions.

The Array received has 7 elements. The contents are:
 0 0 0 0
 0 0 0

The Array received has 3 elements. The contents are:
 0 0 0

1 // Fig. 19.14: Array.h
2 // Array class for storing arrays of integers.
3 #ifndef ARRAY_H

4 #define ARRAY_H

5
6 #include <iostream>
7 using namespace std;
8

Fig. 19.14 | Array class definition with explicit constructor. (Part 1 of 2.)

Fig. 19.13 | Single-argument constructors and implicit conversions. (Part 2 of 2.)

710 Chapter 19 Operator Overloading

Figure 19.15 presents a slightly modified version of the program in Fig. 19.13. When
this program is compiled, the compiler produces an error message indicating that the
integer value passed to outputArray in line 13 cannot be converted to a const Array &.
The compiler error message (from Visual C++) is shown in the output window. Line 14
demonstrates how the explicit constructor can be used to create a temporary Array of 3
elements and pass it to function outputArray.

9 class Array
10 {
11 friend ostream &operator<<(ostream &, const Array &);
12 friend istream &operator>>(istream &, Array &);
13 public:
14
15 Array(const Array &); // copy constructor
16 ~Array(); // destructor
17 int getSize() const; // return size
18
19 const Array &operator=(const Array &); // assignment operator
20 bool operator==(const Array &) const; // equality operator
21
22 // inequality operator; returns opposite of == operator
23 bool operator!=(const Array &right) const
24 {
25 return ! (*this == right); // invokes Array::operator==
26 } // end function operator!=
27
28 // subscript operator for non-const objects returns lvalue
29 int &operator[](int);
30
31 // subscript operator for const objects returns rvalue
32 const int &operator[](int) const;
33 private:
34 int size; // pointer-based array size
35 int *ptr; // pointer to first element of pointer-based array
36 }; // end class Array
37
38 #endif

1 // Fig. 19.15: Fig19_15.cpp
2 // Driver for simple class Array.
3 #include <iostream>
4 #include "Array.h"

5 using namespace std;
6
7 void outputArray(const Array &); // prototype
8

Fig. 19.15 | Demonstrating an explicit constructor. (Part 1 of 2.)

Fig. 19.14 | Array class definition with explicit constructor. (Part 2 of 2.)

explicit Array(int = 10); // default constructor

19.16 Proxy Classes 711

19.16 Proxy Classes
Recall that two of the fundamental principles of good software engineering are separating
interface from implementation and hiding implementation details. We strive to achieve
these goals by defining a class in a header file and implementing its member functions in
a separate implementation file. As we pointed out in Chapter 17, however, header files do
contain a portion of a class’s implementation and hints about others. For example, a class’s
private members are listed in the class definition in a header file, so these members are
visible to clients, even though the clients may not access the private members. Revealing
a class’s private data in this manner potentially exposes proprietary information to clients
of the class. We now introduce the notion of a proxy class that allows you to hide even the
private data of a class from clients of the class. Providing clients of your class with a proxy
class that knows only the public interface to your class enables the clients to use your
class’s services without giving the clients access to your class’s implementation details.

Implementing a proxy class requires several steps, which we demonstrate in
Figs. 19.16–19.19. First, we create the class definition for the class that contains the pro-
prietary implementation we’d like to hide. Our example class, called Implementation, is

9 int main()
10 {
11 Array integers1(7); // 7-element array
12 outputArray(integers1); // output Array integers1
13
14 outputArray(Array(3)); // explicit single-argument constructor call
15 } // end main
16
17 // print array contents
18 void outputArray(const Array &arrayToOutput)
19 {
20 cout << "The Array received has " << arrayToOutput.getSize()
21 << " elements. The contents are:\n" << arrayToOutput << endl;
22 } // end outputArray

c:\examples\ch19\fig19_14_15\fig19_15.cpp(13) : error C2664:
'outputArray' : cannot convert parameter 1 from 'int' to 'const Array &'
 Reason: cannot convert from 'int' to 'const Array'
 Constructor for class 'Array' is declared 'explicit'

Common Programming Error 19.11
Attempting to invoke an explicit constructor for an implicit conversion is a compilation
error.

Error-Prevention Tip 19.3
Use the explicit keyword on single-argument constructors that should not be used by the
compiler to perform implicit conversions.

Fig. 19.15 | Demonstrating an explicit constructor. (Part 2 of 2.)

outputArray(3); // convert 3 to an Array and output Array’s contents

712 Chapter 19 Operator Overloading

shown in Fig. 19.16. The proxy class Interface is shown in Figs. 19.17–19.18. The test
program and sample output are shown in Fig. 19.19.

Class Implementation (Fig. 19.16) provides a single private data member called
value (the data we’d like to hide from the client), a constructor to initialize value and
functions setValue and getValue.

We define a proxy class called Interface (Fig. 19.17) with an identical public inter-
face (except for the constructor and destructor names) to that of class Implementation.
The proxy class’s only private member is a pointer to an Implementation object. Using
a pointer in this manner allows us to hide class Implementation’s implementation details
from the client. Notice that the only mentions in class Interface of the proprietary
Implementation class are in the pointer declaration (line 17) and in line 6, a forward class
declaration. When a class definition uses only a pointer or reference to an object of
another class (as in this case), the class header file for that other class (which would ordi-
narily reveal the private data of that class) is not required to be included with #include.
This is because the compiler doesn’t need to reserve space for an object of the class. The
compiler does need to reserve space for the pointer or reference. The sizes of pointers and
references are characteristics of the hardware platform on which the compiler runs, so the
compiler already knows those sizes. You can simply declare that other class as a data type
with a forward class declaration (line 6) before the type is used in the file.

1 // Fig. 19.16: Implementation.h
2 // Implementation class definition.
3
4 class Implementation
5 {
6 public:
7 // constructor
8 Implementation(int v)
9 : value(v) // initialize value with v

10 {
11 // empty body
12 } // end constructor Implementation
13
14 // set value to v
15
16 {
17 value = v; // should validate v
18 } // end function setValue
19
20 // return value
21
22 {
23 return value;
24 } // end function getValue
25 private:
26
27 }; // end class Implementation

Fig. 19.16 | Implementation class definition.

void setValue(int v)

int getValue() const

int value; // data that we would like to hide from the client

19.16 Proxy Classes 713

The member-function implementation file for proxy class Interface (Fig. 19.18) is
the only file that includes the header file Implementation.h (line 5) containing class
Implementation. The file Interface.cpp (Fig. 19.18) is provided to the client as a pre-
compiled object code file along with the header file Interface.h that includes the func-
tion prototypes of the services provided by the proxy class. Because file Interface.cpp is
made available to the client only as object code, the client is not able to see the interactions
between the proxy class and the proprietary class (lines 9, 17, 23 and 29). The proxy class
imposes an extra “layer” of function calls as the “price to pay” for hiding the private data
of class Implementation. Given the speed of today’s computers and the fact that many
compilers can inline simple function calls automatically, the effect of these extra function
calls on performance is often negligible.

1 // Fig. 19.17: Interface.h
2 // Proxy class Interface definition.
3 // Client sees this source code, but the source code does not reveal
4 // the data layout of class Implementation.
5
6
7
8 class Interface
9 {

10 public:
11 Interface(int); // constructor
12
13
14 ~Interface(); // destructor
15 private:
16
17
18 }; // end class Interface

Fig. 19.17 | Proxy class Interface definition.

1 // Fig. 19.18: Interface.cpp
2 // Implementation of class Interface--client receives this file only
3 // as precompiled object code, keeping the implementation hidden.
4 #include "Interface.h" // Interface class definition
5
6
7 // constructor
8 Interface::Interface(int v)
9 : ptr () // initialize ptr to point to

10 { // a new Implementation object
11 // empty body
12 } // end Interface constructor
13
14 // call Implementation's setValue function
15 void Interface::setValue(int v)
16 {

Fig. 19.18 | Interface class member-function definitions. (Part 1 of 2.)

class Implementation; // forward class declaration required by line 17

void setValue(int); // same public interface as
int getValue() const; // class Implementation has

// requires previous forward declaration (line 6)
Implementation *ptr;

#include "Implementation.h" // Implementation class definition

new Implementation(v)

714 Chapter 19 Operator Overloading

Figure 19.19 tests class Interface. Notice that only the header file for Interface is
included in the client code (line 4)—there is no mention of the existence of a separate class
called Implementation. Thus, the client never sees the private data of class Implementa-
tion, nor can the client code become dependent on the Implementation code.

17
18 } // end function setValue
19
20 // call Implementation's getValue function
21 int Interface::getValue() const
22 {
23
24 } // end function getValue
25
26 // destructor
27 Interface::~Interface()
28 {
29
30 } // end ~Interface destructor

Software Engineering Observation 19.9
A proxy class insulates client code from implementation changes.

1 // Fig. 19.19: fig19_19.cpp
2 // Hiding a class’s private data with a proxy class.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9

10
11 cout << "Interface contains: " <<
12 << " before setValue" << endl;
13
14
15
16 cout << "Interface contains: " <<
17 << " after setValue" << endl;
18 } // end main

Interface contains: 5 before setValue
Interface contains: 10 after setValue

Fig. 19.19 | Implementing a proxy class.

Fig. 19.18 | Interface class member-function definitions. (Part 2 of 2.)

ptr->setValue(v);

return ptr->getValue();

delete ptr;

#include "Interface.h" // Interface class definition

Interface i(5); // create Interface object

i.getValue()

i.setValue(10);

i.getValue()

19.17 Wrap-Up 715

19.17 Wrap-Up
In this chapter, you learned how to build more robust classes by defining overloaded op-
erators that enable you to use operators with objects of your classes. We presented basic
operator overloading concepts, as well as several restrictions that the C++ standard places
on overloaded operators. You learned reasons for implementing overloaded operators as
member functions or as global functions. We discussed the differences between overload-
ing unary and binary operators as member functions and global functions. With global
functions, we showed how to input and output objects of our classes using the overloaded
stream extraction and stream insertion operators, respectively. We introduced the concept
of dynamic memory management. You learned that you can create and destroy objects dy-
namically with the new and delete operators, respectively. We showed a special syntax
that is required to differentiate between the prefix and postfix versions of the increment
(++) operator. We also demonstrated standard C++ class string, which makes extensive
use of overloaded operators to create a robust, reusable class that can replace C-style, point-
er-based strings. You learned how to use keyword explicit to prevent the compiler from
using a single-argument constructor to perform implicit conversions. Finally, we showed
how to create a proxy class to hide the implementation details of a class from the class’s
clients. In the next chapter, we continue our discussion of classes by introducing a form of
software reuse called inheritance. We’ll see that when classes share common attributes and
behaviors, it’s possible to define those attributes and behaviors in a common “base” class
and “inherit” those capabilities into new class definitions, enabling you to create the new
classes with a minimal amount of code.

Summary
Section 19.1 Introduction
• C++ enables you to overload most operators to be sensitive to the context in which they’re used—

the compiler generates the appropriate code based on the context (in particular, the types of the
operands).

• Many of C++’s operators can be overloaded to work with user-defined types.

• One example of an overloaded operator built into C++ is operator <<, which is used both as the
stream insertion operator and as the bitwise left-shift operator. Similarly, >> is also overloaded;
it’s used both as the stream extraction operator and as the bitwise right-shift operator. Both of
these operators are overloaded in the C++ Standard Library.

• The C++ language itself overloads + and -. These operators perform differently, depending on
their context in integer arithmetic, floating-point arithmetic and pointer arithmetic.

• The jobs performed by overloaded operators can also be performed by function calls, but opera-
tor notation is often clearer and more familiar to programmers.

Section 19.2 Fundamentals of Operator Overloading
• An operator is overloaded by writing a non-static member-function definition or global func-

tion definition in which the function name is the keyword operator followed by the symbol for
the operator being overloaded.

• When operators are overloaded as member functions, they must be non-static, because they
must be called on an object of the class and operate on that object.

716 Chapter 19 Operator Overloading

• To use an operator on class objects, that operator must be overloaded, with three exceptions—
the assignment operator (=), the address operator (&) and the comma operator (,).

Section 19.3 Restrictions on Operator Overloading
• You cannot change the precedence and associativity of an operator by overloading.

• You cannot change the “arity” of an operator (i.e., the number of operands an operator takes).

• You cannot create new operators—only existing operators can be overloaded.

• You cannot change the meaning of how an operator works on objects of fundamental types.

• Overloading an assignment operator and an addition operator for a class does not imply that the
+= operator is also overloaded. Such behavior can be achieved only by explicitly overloading op-
erator += for that class.

Section 19.4 Operator Functions as Class Members vs. Global Function
• Operator functions can be member functions or global functions—global functions are often

made friends for performance reasons. Member functions use the this pointer implicitly to ob-
tain one of their class object arguments (the left operand for binary operators). Arguments for
both operands of a binary operator must be explicitly listed in a global function call.

• Overloaded (), [], -> and assignment operators must be declared as class members. For the other
operators, the operator overloading functions can be class members or global functions.

• When an operator function is implemented as a member function, the leftmost (or only) operand
must be an object (or a reference to an object) of the operator’s class.

• If the left operand must be an object of a different class or a fundamental type, this operator func-
tion must be implemented as a global function.

• A global operator function can be made a friend of a class if that function must access private
or protected members of that class directly.

Section 19.5 Overloading Stream Insertion and Stream Extraction Operators
• The overloaded stream insertion operator (<<) is used in an expression in which the left operand

has type ostream &. For this reason, it must be overloaded as a global function. To be a member
function, operator << would have to be a member of the ostream class, but this is not possible,
since we’re not allowed to modify C++ Standard Library classes. Similarly, the overloaded stream
extraction operator (>>) must be a global function.

• Another reason to choose a global function to overload an operator is to enable the operator to
be commutative.

• When used with cin, setw restricts the number of characters read to the number of characters
specified by its argument.

• istream member function ignore discards the specified number of characters in the input stream
(one character by default).

• Overloaded input and output operators are declared as friends if they need to access non-public
class members directly for performance reasons.

Section 19.6 Overloading Unary Operators
• A unary operator for a class can be overloaded as a non-static member function with no argu-

ments or as a global function with one argument; that argument must be either an object of the
class or a reference to an object of the class.

• Member functions that implement overloaded operators must be non-static so that they can
access the non-static data in each object of the class.

 Summary 717

Section 19.7 Overloading Binary Operators
• A binary operator can be overloaded as a non-static member function with one argument or as

a global function with two arguments (one of those arguments must be either a class object or a
reference to a class object).

Section 19.8 Dynamic Memory Management
• Dynamic memory management enables you to control the allocation and deallocation of mem-

ory in a program for any built-in or user-defined type.

• The free store (sometimes called the heap) is a region of memory assigned to each program for
storing objects dynamically allocated at execution time.

• The new operator allocates storage of the proper size for an object, runs the object’s constructor
and returns a pointer of the correct type. The new operator can be used to dynamically allocate
any fundamental type (such as int or double) or class type. If new is unable to find space in mem-
ory for the object, it indicates that an error occurred by “throwing” an “exception.” This usually
causes the program to terminate immediately, unless the exception is handled.

• To destroy a dynamically allocated object and free its space, use the delete operator.

• An array of objects can be allocated dynamically with new as in

int *ptr = new int[100];

which allocates an array of 100 integers and assigns the starting location of the array to ptr. The
preceding array of integers is deleted with the statement

delete [] ptr;

Section 19.9 Case Study: Array Class
• A copy constructor initializes a new object of a class by copying the members of an existing one.

Classes that contain dynamically allocated memory, typically provide a copy constructor, a de-
structor and an overloaded assignment operator.

• The implementation of member function operator= should test for self-assignment, in which an
object is being assigned to itself.

• The compiler calls the const version of operator[] when the subscript operator is used on a const
object and calls the non-const version of the operator when it’s used on a non-const object.

• The array subscript operator ([]) can be used to select elements from other types of containers.
Also, with overloading, the index values no longer need to be integers.

Section 19.10 Converting between Types
• The compiler cannot know in advance how to convert among user-defined types, and between

user-defined types and fundamental types, so you must specify how to do this. Such conversions
can be performed with conversion constructors—single-argument constructors that turn objects
of other types (including fundamental types) into objects of a particular class.

• Any single-argument constructor can be thought of as a conversion constructor.

• A conversion operator can be used to convert an object of one class into an object of another class
or into an object of a fundamental type. Such a conversion operator must be a non-static mem-
ber function. Overloaded cast-operator functions can be defined for converting objects of user-
defined types into fundamental types or into objects of other user-defined types.

• An overloaded cast operator function does not specify a return type—the return type is the type
to which the object is being converted.

• When necessary, the compiler can call cast operators and conversion constructors implicitly to
create temporary objects.

718 Chapter 19 Operator Overloading

Section 19.11 Building a String Class
• Overloading the function call operator () is powerful, because functions can take an arbitrary

number of parameters.

Section 19.12 Overloading ++ and --
• The prefix and postfix increment and decrement operator can all be overloaded.

• To overload the pre- and post-increment operators, each overloaded operator function must have
a distinct signature. The prefix versions are overloaded like any other unary operator. The postfix
increment operator’s unique signature is accomplished by providing a second argument, which
must be of type int. This argument is not supplied in the client code. It’s used implicitly by the
compiler to distinguish between the prefix and postfix versions of the increment operator. The
same syntax is used to differentiate between the prefix and postfix decrement operator functions.

Section 19.14 Standard Library Class string
• Standard class string is defined in header <string> and belongs to namespace std.

• Class string provides many overloaded operators, including equality, relational, assignment, ad-
dition assignment (for concatenation) and subscript operators.

• Class string provides member function empty, which returns true if the string is empty; oth-
erwise, it returns false.

• Standard class string member function substr obtains a substring of a length specified by the
second argument, starting at the position specified by the first argument. When the second ar-
gument is not specified, substr returns the remainder of the string on which it’s called.

• Class string’s overloaded [] operator does not perform any bounds checking. Therefore, you
must ensure that operations using standard class string’s overloaded [] operator do not acciden-
tally manipulate elements outside the bounds of the string.

• Standard class string provides bounds checking with member function at, which “throws an
exception” if its argument is an invalid subscript. By default, this causes the program to termi-
nate. If the subscript is valid, function at returns a reference or a const reference to the character
at the specified location depending on the context.

Section 19.15 explicit Constructors
• C++ provides the keyword explicit to suppress implicit conversions via conversion constructors

when such conversions should not be allowed. A constructor that is declared explicit cannot be
used in an implicit conversion.

Section 19.16 Proxy Classes
• Providing clients of your class with a proxy class that knows only the public interface to your

class enables the clients to use your class’s services without giving the clients access to your class’s
implementation details, such as its private data.

• When a class definition uses only a pointer or reference to an object of another class, the class
header file for that other class (which would ordinarily reveal the private data of that class) is
not required to be included with #include. You can simply declare that other class as a data type
with a forward class declaration before the type is used in the file.

• The implementation file containing the member functions for a proxy class is the only file that
includes the header file for the class whose private data we’d like to hide.

• The implementation file containing the member functions for the proxy class is provided to the
client as a precompiled object code file along with the header file that includes the function pro-
totypes of the services provided by the proxy class.

 Terminology 719

Terminology
at member function of class string 707
allocate memory 682
cast operator function 697
conversion constructor 696
conversion operator 696
copy constructor 691
dangling pointer 694
deallocate memory 682
delete operator 682
delete[] operator 682
dynamic memory management 682
empty member function of string 707
explicit constructor 709

forward class declaration 712
free store 682
function call operator () 698
heap 682
initializer 683
memory leak 683
new operator 682
new[] operator 683
operator overloading 673
proxy class 711
self-assignment 694
single-argument constructor 696
substr member function of class string 707

Self-Review Exercises
19.1 Fill in the blanks in each of the following:

a) Suppose a and b are integer variables and we form the sum a + b. Now suppose c and
d are floating-point variables and we form the sum c + d. The two + operators here are
clearly being used for different purposes. This is an example of .

b) Keyword introduces an overloaded-operator function definition.
c) To use operators on class objects, they must be overloaded, with the exception of oper-

ators , and .
d) The , and of an operator cannot be changed by overload-

ing the operator.
e) The operators that cannot be overloaded are , , and

.
f) The operator reclaims memory previously allocated by new.
g) The operator dynamically allocates memory for an object of a specified type

and returns a(n) to that type.

19.2 Explain the multiple meanings of the operators << and >>.

19.3 In what context might the name operator/ be used?

19.4 (True/False) Only existing operators can be overloaded.

19.5 How does the precedence of an overloaded operator compare with the precedence of the
original operator?

Answers to Self-Review Exercises
19.1 a) operator overloading. b) operator. c) assignment (=), address (&), comma (,).
d) precedence, associativity, “arity.” e) ., ?:, .*, and ::. f) delete. g) new, pointer.

19.2 Operator >> is both the right-shift operator and the stream extraction operator, depending
on its context. Operator << is both the left-shift operator and the stream insertion operator, depend-
ing on its context.

19.3 For operator overloading: It would be the name of a function that would provide an over-
loaded version of the / operator for a specific class.

19.4 True.

19.5 The precedence is identical.

720 Chapter 19 Operator Overloading

Exercises
19.6 Compare and contrast dynamic memory allocation and deallocation operators new, new [],
delete and delete [].

19.7 (Overloading the Parentheses Operator) One nice example of overloading the function call
operator () is to allow another form of double-array subscripting popular in some programming
languages. Instead of saying

chessBoard[row][column]

for an array of objects, overload the function call operator to allow the alternate form

chessBoard(row, column)

Create a class DoubleSubscriptedArray that has similar features to class Array in Figs. 19.6–
19.7. At construction time, the class should be able to create an array of any number of rows and
any number of columns. The class should supply operator() to perform double-subscripting oper-
ations. For example, in a 3-by-5 DoubleSubscriptedArray called a, the user could write a(1, 3) to
access the element at row 1 and column 3. Remember that operator() can receive any number of
arguments. The underlying representation of the double-subscripted array should be a single-sub-
scripted array of integers with rows * columns number of elements. Function operator() should
perform the proper pointer arithmetic to access each element of the array. There should be two ver-
sions of operator()—one that returns int & (so that an element of a DoubleSubscriptedArray can
be used as an lvalue) and one that returns const int & . The class should also provide the following
operators: ==, !=, =, << (for outputting the array in row and column format) and >> (for inputting
the entire array contents).

19.8 (Complex Class) Consider class Complex shown in Figs. 19.20–19.22. The class enables op-
erations on so-called complex numbers. These are numbers of the form realPart + imaginaryPart
* i, where i has the value

a) Modify the class to enable input and output of complex numbers via overloaded >> and
<< operators, respectively (you should remove the print function from the class).

b) Overload the multiplication operator to enable multiplication of two complex numbers
as in algebra.

c) Overload the == and != operators to allow comparisons of complex numbers.

1 // Fig. 19.20: Complex.h
2 // Complex class definition.
3 #ifndef COMPLEX_H

4 #define COMPLEX_H

5
6 class Complex
7 {
8 public:
9 Complex(double = 0.0, double = 0.0); // constructor

10 Complex operator+(const Complex &) const; // addition
11 Complex operator-(const Complex &) const; // subtraction
12 void print() const; // output
13 private:
14 double real; // real part
15 double imaginary; // imaginary part
16 }; // end class Complex

Fig. 19.20 | Complex class definition. (Part 1 of 2.)

1—

 Exercises 721

17
18 #endif

1 // Fig. 19.21: Complex.cpp
2 // Complex class member-function definitions.
3 #include <iostream>
4 #include "Complex.h" // Complex class definition
5 using namespace std;
6
7 // Constructor
8 Complex::Complex(double realPart, double imaginaryPart)
9 : real(realPart),

10 imaginary(imaginaryPart)
11 {
12 // empty body
13 } // end Complex constructor
14
15 // addition operator
16 Complex Complex::operator+(const Complex &operand2) const
17 {
18 return Complex(real + operand2.real,
19 imaginary + operand2.imaginary);
20 } // end function operator+
21
22 // subtraction operator
23 Complex Complex::operator-(const Complex &operand2) const
24 {
25 return Complex(real - operand2.real,
26 imaginary - operand2.imaginary);
27 } // end function operator-
28
29 // display a Complex object in the form: (a, b)
30 void Complex::print() const
31 {
32 cout << '(' << real << ", " << imaginary << ')';
33 } // end function print

Fig. 19.21 | Complex class member-function definitions.

1 // Fig. 19.22: fig19_22.cpp
2 // Complex class test program.
3 #include <iostream>
4 #include "Complex.h"

5 using namespace std;
6
7 int main()
8 {
9 Complex x;

10 Complex y(4.3, 8.2);
11 Complex z(3.3, 1.1);
12
13 cout << "x: ";
14 x.print();
15 cout << "\ny: ";

Fig. 19.22 | Complex numbers. (Part 1 of 2.)

Fig. 19.20 | Complex class definition. (Part 2 of 2.)

722 Chapter 19 Operator Overloading

19.9 (HugeInt Class) A machine with 32-bit integers can represent integers in the range of ap-
proximately –2 billion to +2 billion. This fixed-size restriction is rarely troublesome, but there are
applications in which we’d like to be able to use a much wider range of integers. This is what C++
was built to do, namely, create powerful new data types. Consider class HugeInt of Figs. 19.23–
19.25. Study the class carefully, then answer the following:

a) Describe precisely how it operates.
b) What restrictions does the class have?
c) Overload the * multiplication operator.
d) Overload the / division operator.
e) Overload all the relational and equality operators.

[Note: We do not show an assignment operator or copy constructor for class HugeInteger, because
the assignment operator and copy constructor provided by the compiler are capable of copying the
entire array data member properly.]

16 y.print();
17 cout << "\nz: ";
18 z.print();
19
20 x = y + z;
21 cout << "\n\nx = y + z:" << endl;
22 x.print();
23 cout << " = ";
24 y.print();
25 cout << " + ";
26 z.print();
27
28 x = y - z;
29 cout << "\n\nx = y - z:" << endl;
30 x.print();
31 cout << " = ";
32 y.print();
33 cout << " - ";
34 z.print();
35 cout << endl;
36 } // end main

x: (0, 0)
y: (4.3, 8.2)
z: (3.3, 1.1)

x = y + z:
(7.6, 9.3) = (4.3, 8.2) + (3.3, 1.1)

x = y - z:
(1, 7.1) = (4.3, 8.2) - (3.3, 1.1)

1 // Fig. 19.23: Hugeint.h
2 // HugeInt class definition.
3 #ifndef HUGEINT_H

4 #define HUGEINT_H

5
6 #include <iostream>
7 #include <string>

Fig. 19.23 | HugeInt class definition. (Part 1 of 2.)

Fig. 19.22 | Complex numbers. (Part 2 of 2.)

 Exercises 723

8 using namespace std;
9

10 class HugeInt
11 {
12 friend ostream &operator<<(ostream &, const HugeInt &);
13 public:
14 static const int digits = 30; // maximum digits in a HugeInt
15
16 HugeInt(long = 0); // conversion/default constructor
17 HugeInt(const string &); // conversion constructor
18
19 // addition operator; HugeInt + HugeInt
20 HugeInt operator+(const HugeInt &) const;
21
22 // addition operator; HugeInt + int
23 HugeInt operator+(int) const;
24
25 // addition operator;
26 // HugeInt + string that represents large integer value
27 HugeInt operator+(const string &) const;
28 private:
29 short integer[digits];
30 }; // end class HugetInt
31
32 #endif

1 // Fig. 19.24: Hugeint.cpp
2 // HugeInt member-function and friend-function definitions.
3 #include <cctype> // isdigit function prototype
4 #include "Hugeint.h" // HugeInt class definition
5 using namespace std;
6
7 // default constructor; conversion constructor that converts
8 // a long integer into a HugeInt object
9 HugeInt::HugeInt(long value)

10 {
11 // initialize array to zero
12 for (int i = 0; i < digits; i++)
13 integer[i] = 0;
14
15 // place digits of argument into array
16 for (int j = digits - 1; value != 0 && j >= 0; j--)
17 {
18 integer[j] = value % 10;
19 value /= 10;
20 } // end for
21 } // end HugeInt default/conversion constructor
22
23 // conversion constructor that converts a character string
24 // representing a large integer into a HugeInt object
25 HugeInt::HugeInt(const string &number)
26 {
27 // initialize array to zero
28 for (int i = 0; i < digits; i++)
29 integer[i] = 0;

Fig. 19.24 | HugeInt class member-function and friend-function definitions. (Part 1 of 3.)

Fig. 19.23 | HugeInt class definition. (Part 2 of 2.)

724 Chapter 19 Operator Overloading

30
31 // place digits of argument into array
32 int length = number.size();
33
34 for (int j = digits - length, k = 0; j < digits; j++, k++)
35 if (isdigit(number[k])) // ensure that character is a digit
36 integer[j] = number[k] - '0';
37 } // end HugeInt conversion constructor
38
39 // addition operator; HugeInt + HugeInt
40 HugeInt HugeInt::operator+(const HugeInt &op2) const
41 {
42 HugeInt temp; // temporary result
43 int carry = 0;
44
45 for (int i = digits - 1; i >= 0; i--)
46 {
47 temp.integer[i] = integer[i] + op2.integer[i] + carry;
48
49 // determine whether to carry a 1
50 if (temp.integer[i] > 9)
51 {
52 temp.integer[i] %= 10; // reduce to 0-9
53 carry = 1;
54 } // end if
55 else // no carry
56 carry = 0;
57 } // end for
58
59 return temp; // return copy of temporary object
60 } // end function operator+
61
62 // addition operator; HugeInt + int
63 HugeInt HugeInt::operator+(int op2) const
64 {
65 // convert op2 to a HugeInt, then invoke
66 // operator+ for two HugeInt objects
67 return *this + HugeInt(op2);
68 } // end function operator+
69
70 // addition operator;
71 // HugeInt + string that represents large integer value
72 HugeInt HugeInt::operator+(const string &op2) const
73 {
74 // convert op2 to a HugeInt, then invoke
75 // operator+ for two HugeInt objects
76 return *this + HugeInt(op2);
77 } // end operator+
78
79 // overloaded output operator
80 ostream& operator<<(ostream &output, const HugeInt &num)
81 {
82 int i;
83
84 for (i = 0; (num.integer[i] == 0) && (i <= HugeInt::digits); i++)
85 ; // skip leading zeros
86
87 if (i == HugeInt::digits)
88 output << 0;

Fig. 19.24 | HugeInt class member-function and friend-function definitions. (Part 2 of 3.)

 Exercises 725

19.10 (RationalNumber Class) Create a class RationalNumber (fractions) with the following capa-
bilities:

a) Create a constructor that prevents a 0 denominator in a fraction, reduces or simplifies
fractions that are not in reduced form and avoids negative denominators.

89 else

90 for (; i < HugeInt::digits; i++)
91 output << num.integer[i];
92
93 return output;
94 } // end function operator<<

1 // Fig. 19.25: fig19_25.cpp
2 // HugeInt test program.
3 #include <iostream>
4 #include "Hugeint.h"

5 using namespace std;
6
7 int main()
8 {
9 HugeInt n1(7654321);

10 HugeInt n2(7891234);
11 HugeInt n3("99999999999999999999999999999");
12 HugeInt n4("1");
13 HugeInt n5;
14
15 cout << "n1 is " << n1 << "\nn2 is " << n2
16 << "\nn3 is " << n3 << "\nn4 is " << n4
17 << "\nn5 is " << n5 << "\n\n";
18
19 n5 = n1 + n2;
20 cout << n1 << " + " << n2 << " = " << n5 << "\n\n";
21
22 cout << n3 << " + " << n4 << "\n= " << (n3 + n4) << "\n\n";
23
24 n5 = n1 + 9;
25 cout << n1 << " + " << 9 << " = " << n5 << "\n\n";
26
27 n5 = n2 + "10000";
28 cout << n2 << " + " << "10000" << " = " << n5 << endl;
29 } // end main

n1 is 7654321
n2 is 7891234
n3 is 99999999999999999999999999999
n4 is 1
n5 is 0

7654321 + 7891234 = 15545555

99999999999999999999999999999 + 1
= 100000000000000000000000000000

7654321 + 9 = 7654330

7891234 + 10000 = 7901234

Fig. 19.25 | Huge integers.

Fig. 19.24 | HugeInt class member-function and friend-function definitions. (Part 3 of 3.)

726 Chapter 19 Operator Overloading

b) Overload the addition, subtraction, multiplication and division operators for this class.
c) Overload the relational and equality operators for this class.

19.11 (Polynomial Class) Develop class Polynomial. The internal representation of a Polynomial
is an array of terms. Each term contains a coefficient and an exponent, e.g., the term

2x4

has the coefficient 2 and the exponent 4. Develop a complete class containing proper constructor
and destructor functions as well as set and get functions. The class should also provide the following
overloaded operator capabilities:

a) Overload the addition operator (+) to add two Polynomials.
b) Overload the subtraction operator (-) to subtract two Polynomials.
c) Overload the assignment operator to assign one Polynomial to another.
d) Overload the multiplication operator (*) to multiply two Polynomials.
e) Overload the addition assignment operator (+=), subtraction assignment operator (-=),

and multiplication assignment operator (*=).

20Object-Oriented
Programming: Inheritance

Say not you know another
entirely, till you have divided an
inheritance with him.
—Johann Kasper Lavater

This method is to define as the
number of a class the class of all
classes similar to the given class.
—Bertrand Russell

Good as it is to inherit a library,
it is better to collect one.
—Augustine Birrell

Save base authority from others’
books.
—William Shakespeare

O b j e c t i v e s
In this chapter you’ll learn:

■ To create classes by inheriting
from existing classes.

■ The notions of base classes
and derived classes and the
relationships between them.

■ The protected member
access specifier.

■ The use of constructors and
destructors in inheritance
hierarchies.

■ The order in which
constructors and destructors
are called in inheritance
hierarchies.

■ The differences between
public, protected and
private inheritance.

■ To use inheritance to
customize existing software.

728 Chapter 20 Object-Oriented Programming: Inheritance

20.1 Introduction
This chapter continues our discussion of object-oriented programming (OOP) by intro-
ducing another of its key features—inheritance. Inheritance is a form of software reuse in
which you create a class that absorbs an existing class’s data and behaviors and enhances
them with new capabilities. Software reusability saves time during program development.
It also encourages the reuse of proven, debugged, high-quality software, which increases
the likelihood that a system will be implemented effectively.

When creating a class, instead of writing completely new data members and member
functions, you can designate that the new class should inherit the members of an existing
class. This existing class is called the base class, and the new class is referred to as the
derived class. (Other programming languages, such as Java, refer to the base class as the
superclass and the derived class as the subclass.) A derived class represents a more special-
ized group of objects. Typically, a derived class contains behaviors inherited from its base
class plus additional behaviors. As we’ll see, a derived class can also customize behaviors
inherited from the base class. A direct base class is the base class from which a derived class
explicitly inherits. An indirect base class is inherited from two or more levels up in the
class hierarchy. In the case of single inheritance, a class is derived from one base class. C++
also supports multiple inheritance, in which a derived class inherits from multiple (pos-
sibly unrelated) base classes. Single inheritance is straightforward—we show several exam-
ples that should enable you to become proficient quickly. Multiple inheritance can be
complex and error prone.

C++ offers public, protected and private inheritance. In this chapter, we concen-
trate on public inheritance and briefly explain the other two. We do not discuss private
inheritance in detail. The third form, protected inheritance, is rarely used. With public
inheritance, every object of a derived class is also an object of that derived class’s base class.
However, base-class objects are not objects of their derived classes. For example, if we have
vehicle as a base class and car as a derived class, then all cars are vehicles, but not all vehicles
are cars. As we continue our study of object-oriented programming in this chapter and

20.1 Introduction
20.2 Base Classes and Derived Classes
20.3 protected Members
20.4 Relationship between Base Classes

and Derived Classes
20.4.1 Creating and Using a

CommissionEmployee Class
20.4.2 Creating a

BasePlusCommissionEmployee
Class Without Using Inheritance

20.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy

20.4.4 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using
protected Data

20.4.5 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using private
Data

20.5 Constructors and Destructors in
Derived Classes

20.6 public, protected and private
Inheritance

20.7 Software Engineering with Inheritance
20.8 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

20.2 Base Classes and Derived Classes 729

Chapter 21, we take advantage of this relationship to perform some interesting manipula-
tions.

Experience in building software systems indicates that significant amounts of code
deal with closely related special cases. When you’re preoccupied with special cases, the
details can obscure the big picture. With object-oriented programming, you focus on the
commonalities among objects in the system rather than on the special cases.

We distinguish between the is-a relationship and the has-a relationship. The is-a rela-
tionship represents inheritance. In an is-a relationship, an object of a derived class also can
be treated as an object of its base class—for example, a car is a vehicle, so any attributes
and behaviors of a vehicle are also attributes and behaviors of a car. By contrast, the has-a
relationship represents composition. (Composition was discussed in Chapter 18.) In a has-
a relationship, an object contains one or more objects of other classes as members. For
example, a car includes many components—it has a steering wheel, has a brake pedal, has
a transmission and has many other components.

Derived-class member functions might require access to base-class data members and
member functions. A derived class can access the non-private members of its base class.
Base-class members that should not be accessible to the member functions of derived
classes should be declared private in the base class. A derived class can change the values
of private base-class members, but only through non-private member functions pro-
vided in the base class and inherited into the derived class.

One problem with inheritance is that a derived class can inherit data members and
member functions it does not need or should not have. It’s the class designer’s responsi-
bility to ensure that the capabilities provided by a class are appropriate for future derived
classes. Even when a base-class member function is appropriate for a derived class, the
derived class often requires that the member function behave in a manner specific to the
derived class. In such cases, the base-class member function can be redefined in the derived
class with an appropriate implementation.

20.2 Base Classes and Derived Classes
Often, an object of one class is an object of another class, as well. For example, in geome-
try, a rectangle is a quadrilateral (as are squares, parallelograms and trapezoids). Thus, in
C++, class Rectangle can be said to inherit from class Quadrilateral. In this context, class
Quadrilateral is a base class, and class Rectangle is a derived class. A rectangle is a spe-
cific type of quadrilateral, but it’s incorrect to claim that a quadrilateral is a rectangle—the
quadrilateral could be a parallelogram or some other shape. Figure 20.1 lists several simple
examples of base classes and derived classes.

Software Engineering Observation 20.1
Member functions of a derived class cannot directly access private members of the base
class.

Software Engineering Observation 20.2
If a derived class could access its base class’s private members, classes that inherit from
that derived class could access that data as well. This would propagate access to what
should be private data, and the benefits of information hiding would be lost.

730 Chapter 20 Object-Oriented Programming: Inheritance

Because every derived-class object is an object of its base class, and one base class can
have many derived classes, the set of objects represented by a base class typically is larger
than the set of objects represented by any of its derived classes. For example, the base class
Vehicle represents all vehicles, including cars, trucks, boats, airplanes, bicycles and so on.
By contrast, derived class Car represents a smaller, more specific subset of all vehicles.

Inheritance relationships form treelike hierarchical structures. A base class exists in a
hierarchical relationship with its derived classes. Although classes can exist independently,
once they’re employed in inheritance relationships, they become affiliated with other
classes. A class becomes either a base class—supplying members to other classes, a derived
class—inheriting its members from other classes, or both.

Let’s develop a simple inheritance hierarchy with five levels (represented by the UML
class diagram in Fig. 20.2). A university community has thousands of members.

 These members consist of employees, students and alumni. Employees are either fac-
ulty members or staff members. Faculty members are either administrators (such as deans
and department chairpersons) or teachers. Some administrators, however, also teach

Base class Derived classes

Student GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere, Cube

Loan CarLoan, HomeImprovementLoan, MortgageLoan

Employee Faculty, Staff

Account CheckingAccount, SavingsAccount

Fig. 20.1 | Inheritance examples.

Fig. 20.2 | Inheritance hierarchy for university CommunityMembers.

Student

CommunityMember

Administrator

AdministratorTeacher

AlumnusEmployee

StaffFaculty

Teacher

Single
inheritance

Single
inheritance

Single
inheritance

Multiple
inheritance

20.2 Base Classes and Derived Classes 731

classes. Note that we’ve used multiple inheritance to form class AdministratorTeacher.
Also, this inheritance hierarchy could contain many other classes. For example, students
can be graduate or undergraduate students. Undergraduate students can be freshmen,
sophomores, juniors and seniors.

Each arrow in the hierarchy (Fig. 20.2) represents an is-a relationship. For example,
as we follow the arrows in this class hierarchy, we can state “an Employee is a Community-

Member” and “a Teacher is a Faculty member.” CommunityMember is the direct base class
of Employee, Student and Alumnus. In addition, CommunityMember is an indirect base class
of all the other classes in the diagram. Starting from the bottom of the diagram, you can
follow the arrows and apply the is-a relationship to the topmost base class. For example,
an AdministratorTeacher is an Administrator, is a Faculty member, is an Employee and
is a CommunityMember.

Now consider the Shape inheritance hierarchy in Fig. 20.3. This hierarchy begins
with base class Shape. Classes TwoDimensionalShape and ThreeDimensionalShape derive
from base class Shape—Shapes are either TwoDimensionalShapes or ThreeDimensional-
Shapes. The third level of this hierarchy contains some more specific types of TwoDimen-
sionalShapes and ThreeDimensionalShapes. As in Fig. 20.2, we can follow the arrows
from the bottom of the diagram to the topmost base class in this class hierarchy to identify
several is-a relationships. For instance, a Triangle is a TwoDimensionalShape and is a
Shape, while a Sphere is a ThreeDimensionalShape and is a Shape. This hierarchy could
contain many other classes, such as Rectangles, Ellipses and Trapezoids, which are all
TwoDimensionalShapes.

To specify that class TwoDimensionalShape (Fig. 20.3) is derived from (or inherits
from) class Shape, class TwoDimensionalShape’s definition could begin as follows:

This is an example of public inheritance, the most commonly used form. We also will
discuss private inheritance and protected inheritance (Section 20.6). With all forms of
inheritance, private members of a base class are not accessible directly from that class’s
derived classes, but these private base-class members are still inherited (i.e., they’re still
considered parts of the derived classes). With public inheritance, all other base-class mem-
bers retain their original member access when they become members of the derived class
(e.g., public members of the base class become public members of the derived class, and,
as we’ll soon see, protected members of the base class become protected members of the

class TwoDimensionalShape : public Shape

Fig. 20.3 | Inheritance hierarchy for Shapes.

ThreeDimensionalShape

TetrahedronCubeSphereSquare TriangleCircle

Shape

TwoDimensionalShape

732 Chapter 20 Object-Oriented Programming: Inheritance

derived class). Through these inherited base-class members, the derived class can manipu-
late private members of the base class (if these inherited members provide such function-
ality in the base class). Note that friend functions are not inherited.

Inheritance is not appropriate for every class relationship. In Chapter 18, we discussed
the has-a relationship, in which classes have members that are objects of other classes. Such
relationships create classes by composition of existing classes. For example, given the
classes Employee, BirthDate and TelephoneNumber, it’s improper to say that an Employee
is a BirthDate or that an Employee is a TelephoneNumber. However, it’s appropriate to say
that an Employee has a BirthDate and that an Employee has a TelephoneNumber.

It’s possible to treat base-class objects and derived-class objects similarly; their com-
monalities are expressed in the members of the base class. Objects of all classes derived
from a common base class can be treated as objects of that base class (i.e., such objects have
an is-a relationship with the base class). In Chapter 21, we consider many examples that
take advantage of this relationship.

20.3 protected Members
Chapter 16 introduced access specifiers public and private. A base class’s public mem-
bers are accessible within its body and anywhere that the program has a handle (i.e., a
name, reference or pointer) to an object of that class or one of its derived classes. A base
class’s private members are accessible only within its body and to the friends of that base
class. In this section, we introduce the access specifier protected.

Using protected access offers an intermediate level of protection between public and
private access. A base class’s protected members can be accessed within the body of that
base class, by members and friends of that base class, and by members and friends of any
classes derived from that base class.

Derived-class member functions can refer to public and protected members of the
base class simply by using the member names. When a derived-class member function
redefines a base-class member function, the base-class member can be accessed from the
derived class by preceding the base-class member name with the base-class name and the
binary scope resolution operator (::). We discuss accessing redefined members of the base
class in Section 20.4.5 and using protected data in Section 20.4.4.

20.4 Relationship between Base Classes and Derived
Classes
In this section, we use an inheritance hierarchy containing types of employees in a com-
pany’s payroll application to discuss the relationship between a base class and a derived
class. Commission employees (who will be represented as objects of a base class) are paid
a percentage of their sales, while base-salaried commission employees (who will be repre-
sented as objects of a derived class) receive a base salary plus a percentage of their sales. We
divide our discussion of the relationship between commission employees and base-salaried
commission employees into a carefully paced series of five examples:

1. In the first example, we create class CommissionEmployee, which contains as pri-
vate data members a first name, last name, social security number, commission
rate (percentage) and gross (i.e., total) sales amount.

20.4 Relationship between Base Classes and Derived Classes 733

2. The second example defines class BasePlusCommissionEmployee, which contains
as private data members a first name, last name, social security number, com-
mission rate, gross sales amount and base salary. We create the latter class by writ-
ing every line of code the class requires—we’ll soon see that it’s much more
efficient to create this class simply by inheriting from class CommissionEmployee.

3. The third example defines a new version of class BasePlusCommissionEmployee
class that inherits directly from class CommissionEmployee (i.e., a BasePlus-
CommissionEmployee is a CommissionEmployee who also has a base salary) and
attempts to access class CommissionEmployee’s private members—this results in
compilation errors, because the derived class does not have access to the base
class’s private data.

4. The fourth example shows that if CommissionEmployee’s data is declared as pro-
tected, a new version of class BasePlusCommissionEmployee that inherits from
class CommissionEmployee can access that data directly. For this purpose, we de-
fine a new version of class CommissionEmployee with protected data. Both the
inherited and noninherited BasePlusCommissionEmployee classes contain iden-
tical functionality, but we show how the version of BasePlusCommissionEmploy-
ee that inherits from class CommissionEmployee is easier to create and manage.

5. After we discuss the convenience of using protected data, we create the fifth ex-
ample, which sets the CommissionEmployee data members back to private to en-
force good software engineering. This example demonstrates that derived class
BasePlusCommissionEmployee can use base class CommissionEmployee’s public
member functions to manipulate CommissionEmployee’s private data.

20.4.1 Creating and Using a CommissionEmployee Class
Let’s examine CommissionEmployee’s class definition (Figs. 20.4–20.5). The Commission-
Employee header file (Fig. 20.4) specifies class CommissionEmployee’s public services,
which include a constructor (lines 12–13) and member functions earnings (line 30) and
print (line 31). Lines 15–28 declare public get and set functions that manipulate the
class’s data members (declared in lines 33–37) firstName, lastName, socialSecurity-
Number, grossSales and commissionRate. The CommissionEmployee header file specifies
that these data members are private, so objects of other classes cannot directly access this
data. Declaring data members as private and providing non-private get and set functions
to manipulate and validate the data members helps enforce good software engineering.
Member functions setGrossSales (defined in lines 56–59 of Fig. 20.5) and setCommis-
sionRate (defined in lines 68–71 of Fig. 20.5), for example, validate their arguments be-
fore assigning the values to data members grossSales and commissionRate, respectively.

1 // Fig. 20.4: CommissionEmployee.h
2 // CommissionEmployee class definition represents a commission employee.
3 #ifndef COMMISSION_H

4 #define COMMISSION_H

5

Fig. 20.4 | CommissionEmployee class header file. (Part 1 of 2.)

734 Chapter 20 Object-Oriented Programming: Inheritance

6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class CommissionEmployee

10 {
11 public:
12
13
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount
26
27 void setCommissionRate(double); // set commission rate (percentage)
28 double getCommissionRate() const; // return commission rate
29
30 double earnings() const; // calculate earnings
31 void print() const; // print CommissionEmployee object
32 private:
33
34
35
36
37
38 }; // end class CommissionEmployee
39
40 #endif

1 // Fig. 20.5: CommissionEmployee.cpp
2 // Class CommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "CommissionEmployee.h" // CommissionEmployee class definition
5 using namespace std;
6
7
8
9

10
11
12

Fig. 20.5 | Implementation file for CommissionEmployee class that represents an employee who
is paid a percentage of gross sales. (Part 1 of 3.)

Fig. 20.4 | CommissionEmployee class header file. (Part 2 of 2.)

CommissionEmployee(const string &, const string &, const string &,
double = 0.0, double = 0.0);

string firstName;
string lastName;
string socialSecurityNumber;
double grossSales; // gross weekly sales
double commissionRate; // commission percentage

// constructor
CommissionEmployee::CommissionEmployee(

const string &first, const string &last, const string &ssn,
double sales, double rate)

{
 firstName = first; // should validate

20.4 Relationship between Base Classes and Derived Classes 735

13
14
15
16
17
18
19 // set first name
20 void CommissionEmployee::setFirstName(const string &first)
21 {
22 firstName = first; // should validate
23 } // end function setFirstName
24
25 // return first name
26 string CommissionEmployee::getFirstName() const
27 {
28 return firstName;
29 } // end function getFirstName
30
31 // set last name
32 void CommissionEmployee::setLastName(const string &last)
33 {
34 lastName = last; // should validate
35 } // end function setLastName
36
37 // return last name
38 string CommissionEmployee::getLastName() const
39 {
40 return lastName;
41 } // end function getLastName
42
43 // set social security number
44 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
45 {
46 socialSecurityNumber = ssn; // should validate
47 } // end function setSocialSecurityNumber
48
49 // return social security number
50 string CommissionEmployee::getSocialSecurityNumber() const
51 {
52 return socialSecurityNumber;
53 } // end function getSocialSecurityNumber
54
55 // set gross sales amount
56 void CommissionEmployee::setGrossSales(double sales)
57 {
58 grossSales = (sales < 0.0) ? 0.0 : sales;
59 } // end function setGrossSales
60
61 // return gross sales amount
62 double CommissionEmployee::getGrossSales() const
63 {

Fig. 20.5 | Implementation file for CommissionEmployee class that represents an employee who
is paid a percentage of gross sales. (Part 2 of 3.)

 lastName = last; // should validate
 socialSecurityNumber = ssn; // should validate
 setGrossSales(sales); // validate and store gross sales
 setCommissionRate(rate); // validate and store commission rate
} // end CommissionEmployee constructor

736 Chapter 20 Object-Oriented Programming: Inheritance

The CommissionEmployee constructor definition purposely does not use member-ini-
tializer syntax in the first several examples of this section, so that we can demonstrate how
private and protected specifiers affect member access in derived classes. As shown in
Fig. 20.5, lines 12–14, we assign values to data members firstName, lastName and
socialSecurityNumber in the constructor body. Later in this section, we’ll return to using
member-initializer lists in the constructors.

We do not validate the values of the constructor’s arguments first, last and ssn
before assigning them to the corresponding data members. We certainly could validate the
first and last names—perhaps by ensuring that they’re of a reasonable length. Similarly, a
social security number could be validated to ensure that it contains nine digits, with or
without dashes (e.g., 123-45-6789 or 123456789).

Member function earnings (lines 80–83) calculates a CommissionEmployee’s earn-
ings. Line 82 multiplies the commissionRate by the grossSales and returns the result.
Member function print (lines 86–92) displays the values of a CommissionEmployee
object’s data members.

Figure 20.6 tests class CommissionEmployee. Lines 11–12 instantiate object employee
of class CommissionEmployee and invoke CommissionEmployee’s constructor to initialize
the object with "Sue" as the first name, "Jones" as the last name, "222-22-2222" as the

64 return grossSales;
65 } // end function getGrossSales
66
67 // set commission rate
68 void CommissionEmployee::setCommissionRate(double rate)
69 {
70 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
71 } // end function setCommissionRate
72
73 // return commission rate
74 double CommissionEmployee::getCommissionRate() const
75 {
76 return commissionRate;
77 } // end function getCommissionRate
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Fig. 20.5 | Implementation file for CommissionEmployee class that represents an employee who
is paid a percentage of gross sales. (Part 3 of 3.)

// calculate earnings
double CommissionEmployee::earnings() const
{

return commissionRate * grossSales;
} // end function earnings

// print CommissionEmployee object
void CommissionEmployee::print() const
{
 cout << "commission employee: " << firstName << ' ' << lastName
 << "\nsocial security number: " << socialSecurityNumber
 << "\ngross sales: " << grossSales
 << "\ncommission rate: " << commissionRate;
} // end function print

20.4 Relationship between Base Classes and Derived Classes 737

1 // Fig. 20.6: fig20_06.cpp
2 // Testing class CommissionEmployee.
3 #include <iostream>
4 #include <iomanip>
5 #include "CommissionEmployee.h" // CommissionEmployee class definition
6 using namespace std;
7
8 int main()
9 {

10
11
12
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " <<
20 << "\nLast name is " <<
21 << "\nSocial security number is "
22 <<
23 << "\nGross sales is " <<
24 << "\nCommission rate is " << << endl;
25
26
27
28
29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;
31
32
33 // display the employee's earnings
34 cout << "\n\nEmployee's earnings: $" << << endl;
35 } // end main

Employee information obtained by get functions:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales is 10000.00
Commission rate is 0.06

Updated employee information output by print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 8000.00
commission rate: 0.10

Employee's earnings: $800.00

Fig. 20.6 | CommissionEmployee class test program.

// instantiate a CommissionEmployee object
CommissionEmployee employee(

"Sue", "Jones", "222-22-2222", 10000, .06);

employee.getFirstName()
employee.getLastName()

employee.getSocialSecurityNumber()
employee.getGrossSales()

employee.getCommissionRate()

employee.setGrossSales(8000); // set gross sales
employee.setCommissionRate(.1); // set commission rate

employee.print(); // display the new employee information

employee.earnings()

738 Chapter 20 Object-Oriented Programming: Inheritance

social security number, 10000 as the gross sales amount and .06 as the commission rate.
Lines 19–24 use employee’s get functions to display the values of its data members. Lines
26–27 invoke the object’s member functions setGrossSales and setCommissionRate to
change the values of data members grossSales and commissionRate, respectively. Line 31
then calls employee’s print member function to output the updated CommissionEmployee
information. Finally, line 34 displays the CommissionEmployee’s earnings, calculated by
the object’s earnings member function using the updated values of data members gross-
Sales and commissionRate.

20.4.2 Creating a BasePlusCommissionEmployee Class Without
Using Inheritance
We now discuss the second part of our introduction to inheritance by creating and testing
(a completely new and independent) class BasePlusCommissionEmployee (Figs. 20.7–
20.8), which contains a first name, last name, social security number, gross sales amount,
commission rate and base salary.

1 // Fig. 20.7: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class definition represents an employee
3 // that receives a base salary in addition to commission.
4 #ifndef BASEPLUS_H

5 #define BASEPLUS_H

6
7 #include <string> // C++ standard string class
8 using namespace std;
9

10 class BasePlusCommissionEmployee
11 {
12 public:
13 BasePlusCommissionEmployee(const string &, const string &,
14 const string &, double = 0.0, double = 0.0,);
15
16 void setFirstName(const string &); // set first name
17 string getFirstName() const; // return first name
18
19 void setLastName(const string &); // set last name
20 string getLastName() const; // return last name
21
22 void setSocialSecurityNumber(const string &); // set SSN
23 string getSocialSecurityNumber() const; // return SSN
24
25 void setGrossSales(double); // set gross sales amount
26 double getGrossSales() const; // return gross sales amount
27
28 void setCommissionRate(double); // set commission rate
29 double getCommissionRate() const; // return commission rate
30
31
32
33

Fig. 20.7 | BasePlusCommissionEmployee class header file. (Part 1 of 2.)

double = 0.0

void setBaseSalary(double); // set base salary
double getBaseSalary() const; // return base salary

20.4 Relationship between Base Classes and Derived Classes 739

34 double earnings() const; // calculate earnings
35 void print() const; // print BasePlusCommissionEmployee object
36 private:
37 string firstName;
38 string lastName;
39 string socialSecurityNumber;
40 double grossSales; // gross weekly sales
41 double commissionRate; // commission percentage
42
43 }; // end class BasePlusCommissionEmployee
44
45 #endif

1 // Fig. 20.8: BasePlusCommissionEmployee.cpp
2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate,)
11 {
12 firstName = first; // should validate
13 lastName = last; // should validate
14 socialSecurityNumber = ssn; // should validate
15 setGrossSales(sales); // validate and store gross sales
16 setCommissionRate(rate); // validate and store commission rate
17
18 } // end BasePlusCommissionEmployee constructor
19
20 // set first name
21 void BasePlusCommissionEmployee::setFirstName(const string &first)
22 {
23 firstName = first; // should validate
24 } // end function setFirstName
25
26 // return first name
27 string BasePlusCommissionEmployee::getFirstName() const
28 {
29 return firstName;
30 } // end function getFirstName
31
32 // set last name
33 void BasePlusCommissionEmployee::setLastName(const string &last)
34 {
35 lastName = last; // should validate
36 } // end function setLastName

Fig. 20.8 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 1 of 3.)

Fig. 20.7 | BasePlusCommissionEmployee class header file. (Part 2 of 2.)

double baseSalary; // base salary

double salary

setBaseSalary(salary); // validate and store base salary

740 Chapter 20 Object-Oriented Programming: Inheritance

37
38 // return last name
39 string BasePlusCommissionEmployee::getLastName() const
40 {
41 return lastName;
42 } // end function getLastName
43
44 // set social security number
45 void BasePlusCommissionEmployee::setSocialSecurityNumber(
46 const string &ssn)
47 {
48 socialSecurityNumber = ssn; // should validate
49 } // end function setSocialSecurityNumber
50
51 // return social security number
52 string BasePlusCommissionEmployee::getSocialSecurityNumber() const
53 {
54 return socialSecurityNumber;
55 } // end function getSocialSecurityNumber
56
57 // set gross sales amount
58 void BasePlusCommissionEmployee::setGrossSales(double sales)
59 {
60 grossSales = (sales < 0.0) ? 0.0 : sales;
61 } // end function setGrossSales
62
63 // return gross sales amount
64 double BasePlusCommissionEmployee::getGrossSales() const
65 {
66 return grossSales;
67 } // end function getGrossSales
68
69 // set commission rate
70 void BasePlusCommissionEmployee::setCommissionRate(double rate)
71 {
72 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
73 } // end function setCommissionRate
74
75 // return commission rate
76 double BasePlusCommissionEmployee::getCommissionRate() const
77 {
78 return commissionRate;
79 } // end function getCommissionRate
80
81
82
83
84
85
86

Fig. 20.8 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 2 of 3.)

// set base salary
void BasePlusCommissionEmployee::setBaseSalary(double salary)
{
 baseSalary = (salary < 0.0) ? 0.0 : salary;
} // end function setBaseSalary

20.4 Relationship between Base Classes and Derived Classes 741

Defining Class BasePlusCommissionEmployee
The BasePlusCommissionEmployee header file (Fig. 20.7) specifies class BasePlusCom-
missionEmployee’s public services, which include the BasePlusCommissionEmployee
constructor (lines 13–14) and member functions earnings (line 34) and print (line 35).
Lines 16–32 declare public get and set functions for the class’s private data members (de-
clared in lines 37–42) firstName, lastName, socialSecurityNumber, grossSales, com-
missionRate and baseSalary. These variables and member functions encapsulate all the
necessary features of a base-salaried commission employee. Note the similarity between
this class and class CommissionEmployee (Figs. 20.4–20.5)—in this example, we won’t yet
exploit that similarity.

Class BasePlusCommissionEmployee’s earnings member function (defined in lines
94–97 of Fig. 20.8) computes the earnings of a base-salaried commission employee. Line
96 returns the result of adding the employee’s base salary to the product of the commission
rate and the employee’s gross sales.

Testing Class BasePlusCommissionEmployee
Figure 20.9 tests class BasePlusCommissionEmployee. Lines 11–12 instantiate object em-
ployee of class BasePlusCommissionEmployee, passing "Bob", "Lewis", "333-33-3333",
5000, .04 and 300 to the constructor as the first name, last name, social security number,
gross sales, commission rate and base salary, respectively. Lines 19–25 use BasePlus-
CommissionEmployee’s get functions to retrieve the values of the object’s data members for
output. Line 27 invokes the object’s setBaseSalary member function to change the base
salary. Member function setBaseSalary (Fig. 20.8, lines 82–85) ensures that data mem-
ber baseSalary is not assigned a negative value, because an employee’s base salary cannot

87
88
89
90
91
92
93
94
95
96
97
98
99 // print BasePlusCommissionEmployee object
100 void BasePlusCommissionEmployee::print() const
101 {
102 cout << "base-salaried commission employee: " << firstName << ' '
103 << lastName << "\nsocial security number: " << socialSecurityNumber
104 << "\ngross sales: " << grossSales
105 << "\ncommission rate: " << commissionRate
106
107 } // end function print

Fig. 20.8 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 3 of 3.)

// return base salary
double BasePlusCommissionEmployee::getBaseSalary() const
{

return baseSalary;
} // end function getBaseSalary

// calculate earnings
double BasePlusCommissionEmployee::earnings() const
{

return baseSalary + (commissionRate * grossSales);
} // end function earnings

<< "\nbase salary: " << baseSalary;

742 Chapter 20 Object-Oriented Programming: Inheritance

1 // Fig. 20.9: fig20_09.cpp
2 // Testing class BasePlusCommissionEmployee.
3 #include <iostream>
4 #include <iomanip>
5 #include "BasePlusCommissionEmployee.h"

6 using namespace std;
7
8 int main()
9 {

10
11
12 employee("Bob", "Lewis", "333-33-3333", 5000, .04,);
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()
23 << "\nGross sales is " << employee.getGrossSales()
24 << "\nCommission rate is " << employee.getCommissionRate()
25
26
27
28
29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;
31
32
33 // display the employee's earnings
34 cout << "\n\nEmployee's earnings: $" << << endl;
35 } // end main

Employee information obtained by get functions:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Employee's earnings: $1200.00

Fig. 20.9 | BasePlusCommissionEmployee class test program.

// instantiate BasePlusCommissionEmployee object
BasePlusCommissionEmployee

300

<< "\nBase salary is " << employee.getBaseSalary() << endl;

employee.setBaseSalary(1000); // set base salary

employee.print(); // display the new employee information

employee.earnings()

20.4 Relationship between Base Classes and Derived Classes 743

be negative. Line 31 of Fig. 20.9 invokes the object’s print member function to output
the updated BasePlusCommissionEmployee’s information, and line 34 calls member func-
tion earnings to display the BasePlusCommissionEmployee’s earnings.

Exploring the Similarities Between Class BasePlusCommissionEmployee and Class
CommissionEmployee

Most of the code for class BasePlusCommissionEmployee (Figs. 20.7–20.8) is similar, if
not identical, to the code for class CommissionEmployee (Figs. 20.4–20.5). For example,
in class BasePlusCommissionEmployee, private data members firstName and lastName
and member functions setFirstName, getFirstName, setLastName and getLastName are
identical to those of class CommissionEmployee. Classes CommissionEmployee and Base-
PlusCommissionEmployee also both contain private data members socialSecurity-
Number, commissionRate and grossSales, as well as get and set functions to manipulate
these members. In addition, the BasePlusCommissionEmployee constructor is almost
identical to that of class CommissionEmployee, except that BasePlusCommissionEmploy-
ee’s constructor also sets the baseSalary. The other additions to class BasePlusCommis-
sionEmployee are private data member baseSalary and member functions
setBaseSalary and getBaseSalary. Class BasePlusCommissionEmployee’s print mem-
ber function is nearly identical to that of class CommissionEmployee, except that Base-
PlusCommissionEmployee’s print also outputs the value of data member baseSalary.

We literally copied code from class CommissionEmployee and pasted it into class
BasePlusCommissionEmployee, then modified class BasePlusCommissionEmployee to
include a base salary and member functions that manipulate the base salary. This “copy-
and-paste” approach is error prone and time consuming. Worse yet, it can spread many
physical copies of the same code throughout a system, creating a code-maintenance night-
mare. Is there a way to “absorb” the data members and member functions of a class in a
way that makes them part of another class without duplicating code? In the next several
examples, we do exactly this, using inheritance.

20.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee Inheritance Hierarchy
Now we create and test a new BasePlusCommissionEmployee class (Figs. 20.10–20.11)
that derives from class CommissionEmployee (Figs. 20.4–20.5). In this example, a
BasePlusCommissionEmployee object is a CommissionEmployee (because inheritance

Software Engineering Observation 20.3
Copying and pasting code from one class to another can spread errors across multiple source
code files. To avoid duplicating code (and possibly errors), use inheritance, rather than the
“copy-and-paste” approach, in situations where you want one class to “absorb” the data
members and member functions of another class.

Software Engineering Observation 20.4
With inheritance, the common data members and member functions of all the classes in
the hierarchy are declared in a base class. When changes are required for these common
features, you need to make the changes only in the base class—derived classes then inherit
the changes. Without inheritance, changes would need to be made to all the source code
files that contain a copy of the code in question.

744 Chapter 20 Object-Oriented Programming: Inheritance

passes on the capabilities of class CommissionEmployee), but class BasePlusCommission-
Employee also has data member baseSalary (Fig. 20.10, line 23). The colon (:) in line 11
of the class definition indicates inheritance. Keyword public indicates the type of inheri-
tance. As a derived class (formed with public inheritance), BasePlusCommissionEmployee
inherits all the members of class CommissionEmployee, except for the constructor—each
class provides its own constructors that are specific to the class. (Destructors, too, are not
inherited.) Thus, the public services of BasePlusCommissionEmployee include its con-
structor (lines 14–15) and the public member functions inherited from class Commis-
sionEmployee—although we cannot see these inherited member functions in
BasePlusCommissionEmployee’s source code, they’re nevertheless a part of derived class
BasePlusCommissionEmployee. The derived class’s public services also include member
functions setBaseSalary, getBaseSalary, earnings and print (lines 17–21).

1 // Fig. 20.10: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from class
3 // CommissionEmployee.
4 #ifndef BASEPLUS_H

5 #define BASEPLUS_H

6
7 #include <string> // C++ standard string class
8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10
11
12 {
13 public:
14 BasePlusCommissionEmployee(const string &, const string &,
15 const string &, double = 0.0, double = 0.0, double = 0.0);
16
17 void setBaseSalary(double); // set base salary
18 double getBaseSalary() const; // return base salary
19
20 double earnings() const; // calculate earnings
21 void print() const; // print BasePlusCommissionEmployee object
22 private:
23 double baseSalary; // base salary
24 }; // end class BasePlusCommissionEmployee
25
26 #endif

Fig. 20.10 | BasePlusCommissionEmployee class definition indicating inheritance
relationship with class CommissionEmployee.

1 // Fig. 20.11: BasePlusCommissionEmployee.cpp
2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;

Fig. 20.11 | BasePlusCommissionEmployee implementation file: private base-class data
cannot be accessed from derived class. (Part 1 of 3.)

class BasePlusCommissionEmployee : public CommissionEmployee

20.4 Relationship between Base Classes and Derived Classes 745

6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate, double salary)
11
12
13 {
14 setBaseSalary(salary); // validate and store base salary
15 } // end BasePlusCommissionEmployee constructor
16
17 // set base salary
18 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {
20 baseSalary = (salary < 0.0) ? 0.0 : salary;
21 } // end function setBaseSalary
22
23 // return base salary
24 double BasePlusCommissionEmployee::getBaseSalary() const
25 {
26 return baseSalary;
27 } // end function getBaseSalary
28
29 // calculate earnings
30 double BasePlusCommissionEmployee::earnings() const
31 {
32
33
34 } // end function earnings
35
36 // print BasePlusCommissionEmployee object
37 void BasePlusCommissionEmployee::print() const
38 {
39
40
41
42
43
44
45 } // end function print

C:\examples\ch20\Fig20_10_11\BasePlusCommissionEmployee.cpp(33) :
 error C2248: 'CommissionEmployee::commissionRate' :
 cannot access private member declared in class 'CommissionEmployee'

C:\examples\ch20\Fig20_10_11\BasePlusCommissionEmployee.cpp(33) :
 error C2248: 'CommissionEmployee::grossSales' :
 cannot access private member declared in class 'CommissionEmployee'

C:\examples\ch20\Fig20_10_11\BasePlusCommissionEmployee.cpp(40) :
 error C2248: 'CommissionEmployee::firstName' :
 cannot access private member declared in class 'CommissionEmployee'

Fig. 20.11 | BasePlusCommissionEmployee implementation file: private base-class data
cannot be accessed from derived class. (Part 2 of 3.)

// explicitly call base-class constructor
: CommissionEmployee(first, last, ssn, sales, rate)

// derived class cannot access the base class’s private data
return baseSalary + (commissionRate * grossSales);

// derived class cannot access the base class’s private data
cout << "base-salaried commission employee: " << firstName << ' '
 << lastName << "\nsocial security number: " << socialSecurityNumber
 << "\ngross sales: " << grossSales
 << "\ncommission rate: " << commissionRate
 << "\nbase salary: " << baseSalary;

746 Chapter 20 Object-Oriented Programming: Inheritance

Figure 20.11 shows BasePlusCommissionEmployee’s member-function implementa-
tions. The constructor (lines 8–15) introduces base-class initializer syntax (line 12),
which uses a member initializer to pass arguments to the base-class (CommissionEmployee)
constructor. C++ requires that a derived-class constructor call its base-class constructor to
initialize the base-class data members that are inherited into the derived class. Line 12
accomplishes this task by invoking the CommissionEmployee constructor by name, passing
the constructor’s parameters first, last, ssn, sales and rate as arguments to initialize
base-class data members firstName, lastName, socialSecurityNumber, grossSales and
commissionRate. If BasePlusCommissionEmployee’s constructor did not invoke class
CommissionEmployee’s constructor explicitly, C++ would attempt to invoke class
CommissionEmployee’s default constructor—but the class does not have such a con-
structor, so the compiler would issue an error. Recall from Chapter 16 that the compiler
provides a default constructor with no parameters in any class that does not explicitly
include a constructor. However, CommissionEmployee does explicitly include a con-
structor, so a default constructor is not provided, and any attempts to implicitly call Com-
missionEmployee’s default constructor would result in compilation errors.

The compiler generates errors for line 33 of Fig. 20.11 because base class Commission-
Employee’s data members commissionRate and grossSales are private—derived class
BasePlusCommissionEmployee’s member functions are not allowed to access base class

C:\examples\ch20\Fig20_10_11\BasePlusCommissionEmployee.cpp(41) :
 error C2248: 'CommissionEmployee::lastName' :
 cannot access private member declared in class 'CommissionEmployee'

C:\examples\ch20\Fig20_10_11\BasePlusCommissionEmployee.cpp(41) :
 error C2248: 'CommissionEmployee::socialSecurityNumber' :
 cannot access private member declared in class 'CommissionEmployee'

C:\examples\ch20\Fig20_10_11\BasePlusCommissionEmployee.cpp(42) :
 error C2248: 'CommissionEmployee::grossSales' :
 cannot access private member declared in class 'CommissionEmployee'

C:\examples\ch20\Fig20_10_11\BasePlusCommissionEmployee.cpp(43) :
 error C2248: 'CommissionEmployee::commissionRate' :
 cannot access private member declared in class 'CommissionEmployee'

Common Programming Error 20.1
When a derived-class constructor calls a base-class constructor, the arguments passed to the
base-class constructor must be consistent with the number and types of parameters specified
in one of the base-class constructors; otherwise, a compilation error occurs.

Performance Tip 20.1
In a derived-class constructor, initializing member objects and invoking base-class con-
structors explicitly in the member initializer list prevents duplicate initialization in which
a default constructor is called, then data members are modified again in the derived-class
constructor’s body.

Fig. 20.11 | BasePlusCommissionEmployee implementation file: private base-class data
cannot be accessed from derived class. (Part 3 of 3.)

20.4 Relationship between Base Classes and Derived Classes 747

CommissionEmployee’s private data. We used darker blue text in Fig. 20.11 to indicate
erroneous code. The compiler issues additional errors in lines 40–43 of BasePlus-
CommissionEmployee’s print member function for the same reason. As you can see, C++
rigidly enforces restrictions on accessing private data members, so that even a derived
class (which is intimately related to its base class) cannot access the base class’s private
data. [Note: To save space, we show only the error messages from Visual C++ in this
example and we removed some of the error messages. The error messages produced by
your compiler may differ from those shown here.]

We purposely included the erroneous code in Fig. 20.11 to emphasize that a derived
class’s member functions cannot access its base class’s private data. The errors in Base-
PlusCommissionEmployee could have been prevented by using the get member functions
inherited from class CommissionEmployee. For example, line 33 could have invoked get-
CommissionRate and getGrossSales to access CommissionEmployee’s private data mem-
bers commissionRate and grossSales, respectively. Similarly, lines 40–43 could have
used appropriate get member functions to retrieve the values of the base class’s data mem-
bers. In the next example, we show how using protected data also allows us to avoid the
errors encountered in this example.

Including the Base-Class Header File in the Derived-Class Header File with #include
Notice that we #include the base class’s header file in the derived class’s header file (line
8 of Fig. 20.10). This is necessary for three reasons. First, for the derived class to use the
base class’s name in line 10, we must tell the compiler that the base class exists—the class
definition in CommissionEmployee.h does exactly that.

The second reason is that the compiler uses a class definition to determine the size of
an object of that class. A client program that creates an object of a class must #include the
class definition to enable the compiler to reserve the proper amount of memory for the
object. When using inheritance, a derived-class object’s size depends on the data members
declared explicitly in its class definition and the data members inherited from its direct and
indirect base classes. Including the base class’s definition in line 8 allows the compiler to
determine the memory requirements for the base class’s data members that become part
of a derived-class object and thus contribute to the total size of the derived-class object.

The last reason for line 8 is to allow the compiler to determine whether the derived
class uses the base class’s inherited members properly. For example, in the program of
Figs. 20.10–20.11, the compiler uses the base-class header file to determine that the data
members being accessed by the derived class are private in the base class. Since these are
inaccessible to the derived class, the compiler generates errors. The compiler also uses the
base class’s function prototypes to validate function calls made by the derived class to the
inherited base-class functions—you’ll see an example of such a function call in Fig. 20.15.

Linking Process in an Inheritance Hierarchy
In Section 16.8, we discussed the linking process for creating an executable GradeBook ap-
plication. In that example, you saw that the client’s object code was linked with the object
code for class GradeBook, as well as the object code for any C++ Standard Library classes
used in either the client code or in class GradeBook.

The linking process is similar for a program that uses classes in an inheritance hier-
archy. The process requires the object code for all classes used in the program and the
object code for the direct and indirect base classes of any derived classes used by the pro-

748 Chapter 20 Object-Oriented Programming: Inheritance

gram. Suppose a client wants to create an application that uses class BasePlusCommission-
Employee, which is a derived class of CommissionEmployee (we’ll see an example of this in
Section 20.4.4). When compiling the client application, the client’s object code must be
linked with the object code for classes BasePlusCommissionEmployee and Commission-
Employee, because BasePlusCommissionEmployee inherits member functions from its
base class CommissionEmployee. The code is also linked with the object code for any C++
Standard Library classes used in class CommissionEmployee, class BasePlusCommission-
Employee or the client code. This provides the program with access to the implementa-
tions of all of the functionality that the program may use.

20.4.4 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using protected Data
To enable class BasePlusCommissionEmployee to directly access CommissionEmployee
data members firstName, lastName, socialSecurityNumber, grossSales and commis-
sionRate, we can declare those members as protected in the base class. As we discussed
in Section 20.3, a base class’s protected members can be accessed by members and
friends of the base class and by members and friends of any classes derived from that
base class.

Defining Base Class CommissionEmployee with protected Data
Class CommissionEmployee (Figs. 20.12–20.13) now declares data members firstName,
lastName, socialSecurityNumber, grossSales and commissionRate as protected
(Fig. 20.12, lines 32–37) rather than private. The member-function implementations in
Fig. 20.13 are identical to those in Fig. 20.5.

Good Programming Practice 20.1
Declare public members first, protected members second and private members last.

1 // Fig. 20.12: CommissionEmployee.h
2 // CommissionEmployee class definition with protected data.
3 #ifndef COMMISSION_H

4 #define COMMISSION_H

5
6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name

Fig. 20.12 | CommissionEmployee class definition that declares protected data to allow
access by derived classes. (Part 1 of 2.)

20.4 Relationship between Base Classes and Derived Classes 749

17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount
26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30 double earnings() const; // calculate earnings
31 void print() const; // print CommissionEmployee object
32
33
34
35
36
37
38 }; // end class CommissionEmployee
39
40 #endif

1 // Fig. 20.13: CommissionEmployee.cpp
2 // Class CommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "CommissionEmployee.h" // CommissionEmployee class definition
5 using namespace std;
6
7 // constructor
8 CommissionEmployee::CommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate)
11 {
12 firstName = first; // should validate
13 lastName = last; // should validate
14 socialSecurityNumber = ssn; // should validate
15 setGrossSales(sales); // validate and store gross sales
16 setCommissionRate(rate); // validate and store commission rate
17 } // end CommissionEmployee constructor
18
19 // set first name
20 void CommissionEmployee::setFirstName(const string &first)
21 {
22 firstName = first; // should validate
23 } // end function setFirstName

Fig. 20.13 | CommissionEmployee class with protected data. (Part 1 of 3.)

Fig. 20.12 | CommissionEmployee class definition that declares protected data to allow
access by derived classes. (Part 2 of 2.)

protected:
string firstName;
string lastName;
string socialSecurityNumber;
double grossSales; // gross weekly sales
double commissionRate; // commission percentage

750 Chapter 20 Object-Oriented Programming: Inheritance

24
25 // return first name
26 string CommissionEmployee::getFirstName() const
27 {
28 return firstName;
29 } // end function getFirstName
30
31 // set last name
32 void CommissionEmployee::setLastName(const string &last)
33 {
34 lastName = last; // should validate
35 } // end function setLastName
36
37 // return last name
38 string CommissionEmployee::getLastName() const
39 {
40 return lastName;
41 } // end function getLastName
42
43 // set social security number
44 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
45 {
46 socialSecurityNumber = ssn; // should validate
47 } // end function setSocialSecurityNumber
48
49 // return social security number
50 string CommissionEmployee::getSocialSecurityNumber() const
51 {
52 return socialSecurityNumber;
53 } // end function getSocialSecurityNumber
54
55 // set gross sales amount
56 void CommissionEmployee::setGrossSales(double sales)
57 {
58 grossSales = (sales < 0.0) ? 0.0 : sales;
59 } // end function setGrossSales
60
61 // return gross sales amount
62 double CommissionEmployee::getGrossSales() const
63 {
64 return grossSales;
65 } // end function getGrossSales
66
67 // set commission rate
68 void CommissionEmployee::setCommissionRate(double rate)
69 {
70 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
71 } // end function setCommissionRate
72
73 // return commission rate
74 double CommissionEmployee::getCommissionRate() const
75 {

Fig. 20.13 | CommissionEmployee class with protected data. (Part 2 of 3.)

20.4 Relationship between Base Classes and Derived Classes 751

Modifying Derived Class BasePlusCommissionEmployee
The version of class BasePlusCommissionEmployee in Figs. 20.14–20.15 inherits from
class CommissionEmployee in Figs. 20.12–20.13. Objects of class BasePlusCommission-
Employee can access inherited data members that are declared protected in class Commis-
sionEmployee (i.e., data members firstName, lastName, socialSecurityNumber,
grossSales and commissionRate). As a result, the compiler does not generate errors when
compiling the BasePlusCommissionEmployee earnings and print member-function def-
initions in Fig. 20.15 (lines 30–34 and 37–45, respectively). This shows the special privi-
leges that a derived class is granted to access protected base-class data members. Objects
of a derived class also can access protected members in any of that derived class’s indirect
base classes.

76 return commissionRate;
77 } // end function getCommissionRate
78
79 // calculate earnings
80 double CommissionEmployee::earnings() const
81 {
82 return commissionRate * grossSales;
83 } // end function earnings
84
85 // print CommissionEmployee object
86 void CommissionEmployee::print() const
87 {
88 cout << "commission employee: " << firstName << ' ' << lastName
89 << "\nsocial security number: " << socialSecurityNumber
90 << "\ngross sales: " << grossSales
91 << "\ncommission rate: " << commissionRate;
92 } // end function print

1 // Fig. 20.14: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from class
3 // CommissionEmployee.
4 #ifndef BASEPLUS_H

5 #define BASEPLUS_H

6
7 #include <string> // C++ standard string class
8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10
11
12 {
13 public:
14 BasePlusCommissionEmployee(const string &, const string &,
15 const string &, double = 0.0, double = 0.0, double = 0.0);
16

Fig. 20.14 | BasePlusCommissionEmployee class header file. (Part 1 of 2.)

Fig. 20.13 | CommissionEmployee class with protected data. (Part 3 of 3.)

class BasePlusCommissionEmployee : public CommissionEmployee

752 Chapter 20 Object-Oriented Programming: Inheritance

17 void setBaseSalary(double); // set base salary
18 double getBaseSalary() const; // return base salary
19
20 double earnings() const; // calculate earnings
21 void print() const; // print BasePlusCommissionEmployee object
22 private:
23 double baseSalary; // base salary
24 }; // end class BasePlusCommissionEmployee
25
26 #endif

1 // Fig. 20.15: BasePlusCommissionEmployee.cpp
2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate, double salary)
11
12
13 {
14 setBaseSalary(salary); // validate and store base salary
15 } // end BasePlusCommissionEmployee constructor
16
17 // set base salary
18 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {
20 baseSalary = (salary < 0.0) ? 0.0 : salary;
21 } // end function setBaseSalary
22
23 // return base salary
24 double BasePlusCommissionEmployee::getBaseSalary() const
25 {
26 return baseSalary;
27 } // end function getBaseSalary
28
29 // calculate earnings
30 double BasePlusCommissionEmployee::earnings() const
31 {
32
33
34 } // end function earnings
35

Fig. 20.15 | BasePlusCommissionEmployee implementation file for
BasePlusCommissionEmployee class that inherits protected data from CommissionEmployee.
(Part 1 of 2.)

Fig. 20.14 | BasePlusCommissionEmployee class header file. (Part 2 of 2.)

// explicitly call base-class constructor
: CommissionEmployee(first, last, ssn, sales, rate)

// can access protected data of base class
return baseSalary + (commissionRate * grossSales);

20.4 Relationship between Base Classes and Derived Classes 753

Class BasePlusCommissionEmployee does not inherit class CommissionEmployee’s
constructor. However, class BasePlusCommissionEmployee’s constructor (Fig. 20.15,
lines 8–15) calls class CommissionEmployee’s constructor explicitly with member initial-
izer syntax (line 12). Recall that BasePlusCommissionEmployee’s constructor must explic-
itly call the constructor of class CommissionEmployee, because CommissionEmployee does
not contain a default constructor that could be invoked implicitly.

Testing the Modified BasePlusCommissionEmployee Class
Figure 20.16 uses a BasePlusCommissionEmployee object to perform the same tasks that
Fig. 20.9 performed on an object of the first version of class BasePlusCommissionEmploy-
ee (Figs. 20.7–20.8). The code and outputs of the two programs are identical. We created
the first class BasePlusCommissionEmployee without using inheritance and created this
version of BasePlusCommissionEmployee using inheritance; however, both classes provide
the same functionality. The code for class BasePlusCommissionEmployee (i.e., the header
and implementation files), which is 71 lines, is considerably shorter than the code for the
noninherited version of the class, which is 152 lines, because the inherited version absorbs
part of its functionality from CommissionEmployee, whereas the noninherited version does
not absorb any functionality. Also, there is now only one copy of the CommissionEmployee
functionality declared and defined in class CommissionEmployee. This makes the source
code easier to maintain, modify and debug, because the source code related to a Commis-
sionEmployee exists only in the files of Figs. 20.12–20.13.

36 // print BasePlusCommissionEmployee object
37 void BasePlusCommissionEmployee::print() const
38 {
39
40
41
42
43
44
45 } // end function print

1 // Fig. 20.16: fig20_16.cpp
2 // Testing class BasePlusCommissionEmployee.
3 #include <iostream>
4 #include <iomanip>
5 #include "BasePlusCommissionEmployee.h"

6 using namespace std;
7
8 int main()
9 {

Fig. 20.16 | protected base-class data can be accessed from derived class. (Part 1 of 2.)

Fig. 20.15 | BasePlusCommissionEmployee implementation file for
BasePlusCommissionEmployee class that inherits protected data from CommissionEmployee.
(Part 2 of 2.)

// can access protected data of base class
cout << "base-salaried commission employee: " << firstName << ' '
 << lastName << "\nsocial security number: " << socialSecurityNumber
 << "\ngross sales: " << grossSales
 << "\ncommission rate: " << commissionRate
 << "\nbase salary: " << baseSalary;

754 Chapter 20 Object-Oriented Programming: Inheritance

Notes on Using protected Data
In this example, we declared base-class data members as protected, so derived classes can
modify the data directly. Inheriting protected data members slightly increases perfor-
mance, because we can directly access the members without incurring the overhead of calls
to set or get member functions. In most cases, however, it’s better to use private data
members to encourage proper software engineering, and leave code optimization issues to
the compiler. Your code will be easier to maintain, modify and debug.

10
11
12 employee("Bob", "Lewis", "333-33-3333", 5000, .04,);
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()
23 << "\nGross sales is " << employee.getGrossSales()
24 << "\nCommission rate is " << employee.getCommissionRate()
25
26
27
28
29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;
31
32
33 // display the employee's earnings
34 cout << "\n\nEmployee's earnings: $" << << endl;
35 } // end main

Employee information obtained by get functions:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Employee's earnings: $1200.00

Fig. 20.16 | protected base-class data can be accessed from derived class. (Part 2 of 2.)

// instantiate BasePlusCommissionEmployee object
BasePlusCommissionEmployee

300

<< "\nBase salary is " << employee.getBaseSalary() << endl;

employee.setBaseSalary(1000); // set base salary

employee.print(); // display the new employee information

employee.earnings()

20.4 Relationship between Base Classes and Derived Classes 755

Using protected data members creates two serious problems. First, the derived-class
object does not have to use a member function to set the value of the base class’s protected
data member. An invalid value can easily be assigned to the protected data member, thus
leaving the object in an inconsistent state—e.g., with CommissionEmployee’s data member
grossSales declared as protected, a derived-class object can assign a negative value to
grossSales. The second problem with using protected data members is that derived-
class member functions are more likely to be written so that they depend on the base-class
implementation. Derived classes should depend only on the base-class services (i.e., non-
private member functions) and not on the base-class implementation. With protected
data members in the base class, if the base-class implementation changes, we may need to
modify all derived classes of that base class. For example, if for some reason we were to
change the names of data members firstName and lastName to first and last, then we’d
have to do so for all occurrences in which a derived class references these base-class data
members directly. Such software is said to be fragile or brittle, because a small change in
the base class can “break” derived-class implementation. You should be able to change the
base-class implementation while still providing the same services to derived classes. (Of
course, if the base-class services change, we must reimplement our derived classes—good
object-oriented design attempts to prevent this.)

20.4.5 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using private Data
We now reexamine our hierarchy once more, this time using the best software engineering
practices. Class CommissionEmployee (Figs. 20.17–20.18) now declares data members
firstName, lastName, socialSecurityNumber, grossSales and commissionRate as pri-
vate (Fig. 20.17, lines 32–37) and provides public member functions setFirstName,
getFirstName, setLastName, getLastName, setSocialSecurityNumber, getSocial-

SecurityNumber, setGrossSales, getGrossSales, setCommissionRate, getCommis-

sionRate, earnings and print for manipulating these values. If we decide to change the
data member names, the earnings and print definitions will not require modification—
only the definitions of the get and set member functions that directly manipulate the data
members will need to change. These changes occur solely within the base class—no
changes to the derived class are needed. Localizing the effects of changes like this is a good

Software Engineering Observation 20.5
It’s appropriate to use the protected access specifier when a base class should provide a
service (i.e., a member function) only to its derived classes and friends.

Software Engineering Observation 20.6
Declaring base-class data members private (as opposed to declaring them protected)
enables you to change the base-class implementation without having to change derived-
class implementations.

Error-Prevention Tip 20.1
When possible, avoid including protected data members in a base class. Rather, include
non-private member functions that access private data members, ensuring that the ob-
ject maintains a consistent state.

756 Chapter 20 Object-Oriented Programming: Inheritance

software engineering practice. Derived class BasePlusCommissionEmployee (Figs. 20.19–
20.20) inherits CommissionEmployee’s member functions and can access the private
base-class members via the inherited non-private member functions.

In the CommissionEmployee constructor implementation (Fig. 20.18, lines 8–15), we
use member initializers (line 11) to set the values of members firstName, lastName and
socialSecurityNumber. We show how derived-class BasePlusCommissionEmployee
(Figs. 20.19–20.20) can invoke non-private base-class member functions (setFirst-
Name, getFirstName, setLastName, getLastName, setSocialSecurityNumber and getSo-
cialSecurityNumber) to manipulate these data members.

1 // Fig. 20.17: CommissionEmployee.h
2 // CommissionEmployee class definition with good software engineering.
3 #ifndef COMMISSION_H

4 #define COMMISSION_H

5
6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount
26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30 double earnings() const; // calculate earnings
31 void print() const; // print CommissionEmployee object
32
33
34
35
36
37
38 }; // end class CommissionEmployee
39
40 #endif

Fig. 20.17 | CommissionEmployee class defined using good software engineering practices.

private:
string firstName;
string lastName;
string socialSecurityNumber;
double grossSales; // gross weekly sales
double commissionRate; // commission percentage

20.4 Relationship between Base Classes and Derived Classes 757

Performance Tip 20.2
Using a member function to access a data member’s value can be slightly slower than ac-
cessing the data directly. However, today’s optimizing compilers are carefully designed to
perform many optimizations implicitly (such as inlining set and get member-function
calls). You should write code that adheres to proper software engineering principles, and
leave optimization to the compiler. A good rule is, “Do not second-guess the compiler.”

1 // Fig. 20.18: CommissionEmployee.cpp
2 // Class CommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "CommissionEmployee.h" // CommissionEmployee class definition
5 using namespace std;
6
7 // constructor
8 CommissionEmployee::CommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate)
11 :
12 {
13 setGrossSales(sales); // validate and store gross sales
14 setCommissionRate(rate); // validate and store commission rate
15 } // end CommissionEmployee constructor
16
17 // set first name
18 void CommissionEmployee::setFirstName(const string &first)
19 {
20 firstName = first; // should validate
21 } // end function setFirstName
22
23 // return first name
24 string CommissionEmployee::getFirstName() const
25 {
26 return firstName;
27 } // end function getFirstName
28
29 // set last name
30 void CommissionEmployee::setLastName(const string &last)
31 {
32 lastName = last; // should validate
33 } // end function setLastName
34
35 // return last name
36 string CommissionEmployee::getLastName() const
37 {
38 return lastName;
39 } // end function getLastName
40
41 // set social security number
42 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
43 {

Fig. 20.18 | CommissionEmployee class implementation file: CommissionEmployee class uses
member functions to manipulate its private data. (Part 1 of 2.)

firstName(first), lastName(last), socialSecurityNumber(ssn)

758 Chapter 20 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee (Figs. 20.19–20.20) has several changes to its
member-function implementations (Fig. 20.20) that distinguish it from the previous version

44 socialSecurityNumber = ssn; // should validate
45 } // end function setSocialSecurityNumber
46
47 // return social security number
48 string CommissionEmployee::getSocialSecurityNumber() const
49 {
50 return socialSecurityNumber;
51 } // end function getSocialSecurityNumber
52
53 // set gross sales amount
54 void CommissionEmployee::setGrossSales(double sales)
55 {
56 grossSales = (sales < 0.0) ? 0.0 : sales;
57 } // end function setGrossSales
58
59 // return gross sales amount
60 double CommissionEmployee::getGrossSales() const
61 {
62 return grossSales;
63 } // end function getGrossSales
64
65 // set commission rate
66 void CommissionEmployee::setCommissionRate(double rate)
67 {
68 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
69 } // end function setCommissionRate
70
71 // return commission rate
72 double CommissionEmployee::getCommissionRate() const
73 {
74 return commissionRate;
75 } // end function getCommissionRate
76
77 // calculate earnings
78 double CommissionEmployee::earnings() const
79 {
80 return * ;
81 } // end function earnings
82
83 // print CommissionEmployee object
84 void CommissionEmployee::print() const
85 {
86 cout << "commission employee: "
87 << << ' ' <<
88 << "\nsocial security number: " <<
89 << "\ngross sales: " <<
90 << "\ncommission rate: " << ;
91 } // end function print

Fig. 20.18 | CommissionEmployee class implementation file: CommissionEmployee class uses
member functions to manipulate its private data. (Part 2 of 2.)

getCommissionRate() getGrossSales()

getFirstName() getLastName()
getSocialSecurityNumber()

getGrossSales()
getCommissionRate()

20.4 Relationship between Base Classes and Derived Classes 759

of the class (Figs. 20.14–20.15). Member functions earnings (Fig. 20.20, lines 30–33) and
print (lines 36–44) each invoke member function getBaseSalary to obtain the base salary
value, rather than accessing baseSalary directly. This insulates earnings and print from
potential changes to the implementation of data member baseSalary. For example, if we
decide to rename data member baseSalary or change its type, only member functions set-
BaseSalary and getBaseSalary will need to change.

1 // Fig. 20.19: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from class
3 // CommissionEmployee.
4 #ifndef BASEPLUS_H

5 #define BASEPLUS_H

6
7 #include <string> // C++ standard string class
8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10
11
12 {
13 public:
14 BasePlusCommissionEmployee(const string &, const string &,
15 const string &, double = 0.0, double = 0.0, double = 0.0);
16
17 void setBaseSalary(double); // set base salary
18 double getBaseSalary() const; // return base salary
19
20 double earnings() const; // calculate earnings
21 void print() const; // print BasePlusCommissionEmployee object
22 private:
23 double baseSalary; // base salary
24 }; // end class BasePlusCommissionEmployee
25
26 #endif

Fig. 20.19 | BasePlusCommissionEmployee class header file.

1 // Fig. 20.20: BasePlusCommissionEmployee.cpp
2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate, double salary)
11 // explicitly call base-class constructor
12 : CommissionEmployee(first, last, ssn, sales, rate)
13 {

Fig. 20.20 | BasePlusCommissionEmployee class that inherits from class
CommissionEmployee but cannot directly access the class’s private data. (Part 1 of 2.)

class BasePlusCommissionEmployee : public CommissionEmployee

760 Chapter 20 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee’s earnings function (Fig. 20.20, lines 30–33)
redefines class CommissionEmployee’s earnings member function (Fig. 20.18, lines 78–
81) to calculate the earnings of a base-salaried commission employee. Class BasePlusCom-
missionEmployee’s version of earnings obtains the portion of the employee’s earnings
based on commission alone by calling base-class CommissionEmployee’s earnings func-
tion with the expression CommissionEmployee::earnings() (Fig. 20.20, line 32).
BasePlusCommissionEmployee’s earnings function then adds the base salary to this value
to calculate the total earnings of the employee. Note the syntax used to invoke a redefined
base-class member function from a derived class—place the base-class name and the binary
scope resolution operator (::) before the base-class member-function name. This member-
function invocation is a good software engineering practice: If an object’s member function
performs the actions needed by another object, call that member function rather than
duplicating its code body. By having BasePlusCommissionEmployee’s earnings function
invoke CommissionEmployee’s earnings function to calculate part of a BasePlusCommis-
sionEmployee object’s earnings, we avoid duplicating the code and reduce code-mainte-
nance problems.

14 setBaseSalary(salary); // validate and store base salary
15 } // end BasePlusCommissionEmployee constructor
16
17 // set base salary
18 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {
20 baseSalary = (salary < 0.0) ? 0.0 : salary;
21 } // end function setBaseSalary
22
23 // return base salary
24 double BasePlusCommissionEmployee::getBaseSalary() const
25 {
26 return baseSalary;
27 } // end function getBaseSalary
28
29 // calculate earnings
30 double BasePlusCommissionEmployee::earnings() const
31 {
32 return getBaseSalary() + ;
33 } // end function earnings
34
35 // print BasePlusCommissionEmployee object
36 void BasePlusCommissionEmployee::print() const
37 {
38
39
40
41
42
43 cout << "\nbase salary: " << getBaseSalary();
44 } // end function print

Fig. 20.20 | BasePlusCommissionEmployee class that inherits from class
CommissionEmployee but cannot directly access the class’s private data. (Part 2 of 2.)

CommissionEmployee::earnings()

cout << "base-salaried ";

// invoke CommissionEmployee's print function
CommissionEmployee::print();

20.4 Relationship between Base Classes and Derived Classes 761

Similarly, BasePlusCommissionEmployee’s print function (Fig. 20.20, lines 36–44)
redefines class CommissionEmployee’s print function (Fig. 20.18, lines 84–91) to output
the appropriate base-salaried commission employee information. The new version displays
part of a BasePlusCommissionEmployee object’s information (i.e., the string "commission
employee" and the values of class CommissionEmployee’s private data members) by
calling CommissionEmployee’s print member function with the qualified name Commis-
sionEmployee::print() (Fig. 20.20, line 41). BasePlusCommissionEmployee’s print

function then outputs the remainder of a BasePlusCommissionEmployee object’s informa-
tion (i.e., the value of class BasePlusCommissionEmployee’s base salary).

Figure 20.21 performs the same manipulations on a BasePlusCommissionEmployee
object as did Fig. 20.9 and Fig. 20.16 on objects of classes CommissionEmployee and
BasePlusCommissionEmployee, respectively. Although each “base-salaried commission
employee” class behaves identically, class BasePlusCommissionEmployee is the best engi-
neered. By using inheritance and by calling member functions that hide the data and
ensure consistency, we’ve efficiently and effectively constructed a well-engineered class.

Common Programming Error 20.2
When a base-class member function is redefined in a derived class, the derived-class ver-
sion often calls the base-class version to do additional work. Failure to use the :: operator
prefixed with the name of the base class when referencing the base class’s member function
causes infinite recursion, because the derived-class member function would then call itself.

1 // Fig. 20.21: fig20_21.cpp
2 // Testing class BasePlusCommissionEmployee.
3 #include <iostream>
4 #include <iomanip>
5 #include "BasePlusCommissionEmployee.h"

6 using namespace std;
7
8 int main()
9 {

10
11
12 employee("Bob", "Lewis", "333-33-3333", 5000, .04,);
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()
23 << "\nGross sales is " << employee.getGrossSales()
24 << "\nCommission rate is " << employee.getCommissionRate()
25

Fig. 20.21 | Base-class private data is accessible to a derived class via public or protected
member function inherited by the derived class. (Part 1 of 2.)

// instantiate BasePlusCommissionEmployee object
BasePlusCommissionEmployee

300

<< "\nBase salary is " << employee.getBaseSalary() << endl;

762 Chapter 20 Object-Oriented Programming: Inheritance

In this section, you saw an evolutionary set of examples that was carefully designed to
teach key capabilities for good software engineering with inheritance. You learned how to
create a derived class using inheritance, how to use protected base-class members to
enable a derived class to access inherited base-class data members and how to redefine base-
class functions to provide versions that are more appropriate for derived-class objects. In
addition, you learned how to apply software engineering techniques from Chapters 17–18
and this chapter to create classes that are easy to maintain, modify and debug.

20.5 Constructors and Destructors in Derived Classes
As we explained in the preceding section, instantiating a derived-class object begins a chain
of constructor calls in which the derived-class constructor, before performing its own
tasks, invokes its direct base class’s constructor either explicitly (via a base-class member
initializer) or implicitly (calling the base class’s default constructor). Similarly, if the base
class is derived from another class, the base-class constructor is required to invoke the con-
structor of the next class up in the hierarchy, and so on. The last constructor called in this
chain is the constructor of the class at the base of the hierarchy, whose body actually fin-
ishes executing first. The original derived-class constructor’s body finishes executing last.
Each base-class constructor initializes the base-class data members that the derived-class

26
27
28
29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;
31
32
33 // display the employee's earnings
34 cout << "\n\nEmployee's earnings: $" << << endl;
35 } // end main

Employee information obtained by get functions:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Employee's earnings: $1200.00

Fig. 20.21 | Base-class private data is accessible to a derived class via public or protected
member function inherited by the derived class. (Part 2 of 2.)

employee.setBaseSalary(1000); // set base salary

employee.print(); // display the new employee information

employee.earnings()

20.5 Constructors and Destructors in Derived Classes 763

object inherits. For example, consider the CommissionEmployee/BasePlusCommissionEm-
ployee hierarchy from Figs. 20.17–20.20. When a program creates an object of class
BasePlusCommissionEmployee, the CommissionEmployee constructor is called. Since class
CommissionEmployee is at the base of the hierarchy, its constructor executes, initializing
the private data members of CommissionEmployee that are part of the BasePlusCommis-
sionEmployee object. When CommissionEmployee’s constructor completes execution, it
returns control to BasePlusCommissionEmployee’s constructor, which initializes the
BasePlusCommissionEmployee object’s baseSalary.

When a derived-class object is destroyed, the program calls that object’s destructor.
This begins a chain (or cascade) of destructor calls in which the derived-class destructor
and the destructors of the direct and indirect base classes and the classes’ members execute
in reverse of the order in which the constructors executed. When a derived-class object’s
destructor is called, the destructor performs its task, then invokes the destructor of the next
base class up the hierarchy. This process repeats until the destructor of the final base class
at the top of the hierarchy is called. Then the object is removed from memory.

Base-class constructors, destructors and overloaded assignment operators (see
Chapter 19) are not inherited by derived classes. Derived-class constructors, destructors
and overloaded assignment operators, however, can call base-class constructors, destruc-
tors and overloaded assignment operators.

Our next example defines class CommissionEmployee (Figs. 20.22–20.23) and class
BasePlusCommissionEmployee (Figs. 20.24–20.25) with constructors and destructors
that each print a message when invoked. As you’ll see in the output in Fig. 20.26, these
messages demonstrate the order in which the constructors and destructors are called for
objects in an inheritance hierarchy.

Software Engineering Observation 20.7
When a program creates a derived-class object, the derived-class constructor immediately
calls the base-class constructor, the base-class constructor’s body executes, then the derived
class’s member initializers execute and finally the derived-class constructor’s body executes.
This process cascades up the hierarchy if it contains more than two levels.

Software Engineering Observation 20.8
Suppose that we create an object of a derived class where both the base class and the derived
class contain (via composition) objects of other classes. When an object of that derived class
is created, first the constructors for the base class’s member objects execute, then the base-
class constructor executes, then the constructors for the derived class’s member objects
execute, then the derived class’s constructor executes. Destructors for derived-class objects
are called in the reverse of the order in which their corresponding constructors are called.

1 // Fig. 20.22: CommissionEmployee.h
2 // CommissionEmployee class definition represents a commission employee.
3 #ifndef COMMISSION_H

4 #define COMMISSION_H

5

Fig. 20.22 | CommissionEmployee class header file. (Part 1 of 2.)

764 Chapter 20 Object-Oriented Programming: Inheritance

6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15
16 void setFirstName(const string &); // set first name
17 string getFirstName() const; // return first name
18
19 void setLastName(const string &); // set last name
20 string getLastName() const; // return last name
21
22 void setSocialSecurityNumber(const string &); // set SSN
23 string getSocialSecurityNumber() const; // return SSN
24
25 void setGrossSales(double); // set gross sales amount
26 double getGrossSales() const; // return gross sales amount
27
28 void setCommissionRate(double); // set commission rate
29 double getCommissionRate() const; // return commission rate
30
31 double earnings() const; // calculate earnings
32 void print() const; // print CommissionEmployee object
33 private:
34 string firstName;
35 string lastName;
36 string socialSecurityNumber;
37 double grossSales; // gross weekly sales
38 double commissionRate; // commission percentage
39 }; // end class CommissionEmployee
40
41 #endif

1 // Fig. 20.23: CommissionEmployee.cpp
2 // Class CommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "CommissionEmployee.h" // CommissionEmployee class definition
5 using namespace std;
6
7 // constructor
8 CommissionEmployee::CommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate)
11 : firstName(first), lastName(last), socialSecurityNumber(ssn)
12 {

Fig. 20.23 | CommissionEmployee’s constructor and destructor output text. (Part 1 of 3.)

Fig. 20.22 | CommissionEmployee class header file. (Part 2 of 2.)

~CommissionEmployee(); // destructor

20.5 Constructors and Destructors in Derived Classes 765

13 setGrossSales(sales); // validate and store gross sales
14 setCommissionRate(rate); // validate and store commission rate
15
16
17 print();
18 cout << "\n\n";
19 } // end CommissionEmployee constructor
20
21
22
23
24
25
26
27
28
29 // set first name
30 void CommissionEmployee::setFirstName(const string &first)
31 {
32 firstName = first; // should validate
33 } // end function setFirstName
34
35 // return first name
36 string CommissionEmployee::getFirstName() const
37 {
38 return firstName;
39 } // end function getFirstName
40
41 // set last name
42 void CommissionEmployee::setLastName(const string &last)
43 {
44 lastName = last; // should validate
45 } // end function setLastName
46
47 // return last name
48 string CommissionEmployee::getLastName() const
49 {
50 return lastName;
51 } // end function getLastName
52
53 // set social security number
54 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
55 {
56 socialSecurityNumber = ssn; // should validate
57 } // end function setSocialSecurityNumber
58
59 // return social security number
60 string CommissionEmployee::getSocialSecurityNumber() const
61 {
62 return socialSecurityNumber;
63 } // end function getSocialSecurityNumber
64

Fig. 20.23 | CommissionEmployee’s constructor and destructor output text. (Part 2 of 3.)

cout << "CommissionEmployee constructor: " << endl;

// destructor
CommissionEmployee::~CommissionEmployee()
{
 cout << "CommissionEmployee destructor: " << endl;
 print();
 cout << "\n\n";
} // end CommissionEmployee destructor

766 Chapter 20 Object-Oriented Programming: Inheritance

65 // set gross sales amount
66 void CommissionEmployee::setGrossSales(double sales)
67 {
68 grossSales = (sales < 0.0) ? 0.0 : sales;
69 } // end function setGrossSales
70
71 // return gross sales amount
72 double CommissionEmployee::getGrossSales() const
73 {
74 return grossSales;
75 } // end function getGrossSales
76
77 // set commission rate
78 void CommissionEmployee::setCommissionRate(double rate)
79 {
80 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
81 } // end function setCommissionRate
82
83 // return commission rate
84 double CommissionEmployee::getCommissionRate() const
85 {
86 return commissionRate;
87 } // end function getCommissionRate
88
89 // calculate earnings
90 double CommissionEmployee::earnings() const
91 {
92 return getCommissionRate() * getGrossSales();
93 } // end function earnings
94
95 // print CommissionEmployee object
96 void CommissionEmployee::print() const
97 {
98 cout << "commission employee: "
99 << getFirstName() << ' ' << getLastName()
100 << "\nsocial security number: " << getSocialSecurityNumber()
101 << "\ngross sales: " << getGrossSales()
102 << "\ncommission rate: " << getCommissionRate();
103 } // end function print

1 // Fig. 20.24: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from class
3 // CommissionEmployee.
4 #ifndef BASEPLUS_H

5 #define BASEPLUS_H

6
7 #include <string> // C++ standard string class
8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10

Fig. 20.24 | BasePlusCommissionEmployee class header file. (Part 1 of 2.)

Fig. 20.23 | CommissionEmployee’s constructor and destructor output text. (Part 3 of 3.)

20.5 Constructors and Destructors in Derived Classes 767

11 class BasePlusCommissionEmployee : public CommissionEmployee
12 {
13 public:
14 BasePlusCommissionEmployee(const string &, const string &,
15 const string &, double = 0.0, double = 0.0, double = 0.0);
16
17
18 void setBaseSalary(double); // set base salary
19 double getBaseSalary() const; // return base salary
20
21 double earnings() const; // calculate earnings
22 void print() const; // print BasePlusCommissionEmployee object
23 private:
24 double baseSalary; // base salary
25 }; // end class BasePlusCommissionEmployee
26
27 #endif

1 // Fig. 20.25: BasePlusCommissionEmployee.cpp
2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate, double salary)
11 // explicitly call base-class constructor
12 : CommissionEmployee(first, last, ssn, sales, rate)
13 {
14 setBaseSalary(salary); // validate and store base salary
15
16
17 print();
18 cout << "\n\n";
19 } // end BasePlusCommissionEmployee constructor
20
21
22
23
24
25
26
27
28
29 // set base salary
30 void BasePlusCommissionEmployee::setBaseSalary(double salary)
31 {

Fig. 20.25 | BasePlusCommissionEmployee’s constructor and destructor output text. (Part 1
of 2.)

Fig. 20.24 | BasePlusCommissionEmployee class header file. (Part 2 of 2.)

~BasePlusCommissionEmployee(); // destructor

cout << "BasePlusCommissionEmployee constructor: " << endl;

// destructor
BasePlusCommissionEmployee::~BasePlusCommissionEmployee()
{
 cout << "BasePlusCommissionEmployee destructor: " << endl;
 print();
 cout << "\n\n";
} // end BasePlusCommissionEmployee destructor

768 Chapter 20 Object-Oriented Programming: Inheritance

In this example, we modified the CommissionEmployee constructor (lines 8–19 of
Fig. 20.23) and included a CommissionEmployee destructor (lines 22–27), each of which
outputs a line of text upon its invocation. We also modified the BasePlusCommissionEm-
ployee constructor (lines 8–19 of Fig. 20.25) and included a BasePlusCommissionEm-
ployee destructor (lines 22–27), each of which outputs a line of text upon its invocation.

Figure 20.26 demonstrates the order in which constructors and destructors are called
for objects of classes that are part of an inheritance hierarchy. Function main instantiates
CommissionEmployee object employee1 (lines 15–16) in a separate block inside main (lines
14–17). The object goes in and out of scope—the end of the block is reached immediately
after the object is created—so both the CommissionEmployee constructor and destructor
are called. Next, lines 20–21 instantiate BasePlusCommissionEmployee object employee2.
This invokes the CommissionEmployee constructor to display outputs with values passed
from the BasePlusCommissionEmployee constructor, then the output specified in the
BasePlusCommissionEmployee constructor is performed. Lines 24–25 then instantiate
BasePlusCommissionEmployee object employee3. Again, the CommissionEmployee and
BasePlusCommissionEmployee constructors are both called. In each case, the body of the
CommissionEmployee constructor executes before the body of the BasePlusCommission-
Employee constructor executes. When the end of main is reached, the destructors are called
for objects employee2 and employee3. But, because destructors are called in the reverse
order of their corresponding constructors, the BasePlusCommissionEmployee destructor
and CommissionEmployee destructor are called (in that order) for object employee3, then

32 baseSalary = (salary < 0.0) ? 0.0 : salary;
33 } // end function setBaseSalary
34
35 // return base salary
36 double BasePlusCommissionEmployee::getBaseSalary() const
37 {
38 return baseSalary;
39 } // end function getBaseSalary
40
41 // calculate earnings
42 double BasePlusCommissionEmployee::earnings() const
43 {
44 return getBaseSalary() + CommissionEmployee::earnings();
45 } // end function earnings
46
47 // print BasePlusCommissionEmployee object
48 void BasePlusCommissionEmployee::print() const
49 {
50 cout << "base-salaried ";
51
52 // invoke CommissionEmployee's print function
53 CommissionEmployee::print();
54
55 cout << "\nbase salary: " << getBaseSalary();
56 } // end function print

Fig. 20.25 | BasePlusCommissionEmployee’s constructor and destructor output text. (Part 2
of 2.)

20.5 Constructors and Destructors in Derived Classes 769

the BasePlusCommissionEmployee and CommissionEmployee destructors are called (in
that order) for object employee2.

1 // Fig. 20.26: fig20_26.cpp
2 // Display order in which base-class and derived-class constructors
3 // and destructors are called.
4 #include <iostream>
5 #include <iomanip>
6 #include "BasePlusCommissionEmployee.h"

7 using namespace std;
8
9 int main()

10 {
11 // set floating-point output formatting
12 cout << fixed << setprecision(2);
13
14
15
16
17
18
19 cout << endl;
20
21
22
23 cout << endl;
24
25
26 cout << endl;
27 } // end main

CommissionEmployee constructor:
commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04

CommissionEmployee destructor:
commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04

CommissionEmployee constructor:
commission employee: Lisa Jones
social security number: 555-55-5555
gross sales: 2000.00
commission rate: 0.06

BasePlusCommissionEmployee constructor:
base-salaried commission employee: Lisa Jones
social security number: 555-55-5555

Fig. 20.26 | Constructor and destructor call order. (Part 1 of 2.)

{ // begin new scope
 CommissionEmployee employee1(
 "Bob", "Lewis", "333-33-3333", 5000, .04);
} // end scope

BasePlusCommissionEmployee
 employee2("Lisa", "Jones", "555-55-5555", 2000, .06, 800);

BasePlusCommissionEmployee
 employee3("Mark", "Sands", "888-88-8888", 8000, .15, 2000);

770 Chapter 20 Object-Oriented Programming: Inheritance

20.6 public, protected and private Inheritance
When deriving a class from a base class, the base class may be inherited through public,
protected or private inheritance. Use of protected and private inheritance is rare, and
each should be used only with great care; we normally use public inheritance in this book.
Figure 20.27 summarizes for each type of inheritance the accessibility of base-class mem-
bers in a derived class. The first column contains the base-class access specifiers.

gross sales: 2000.00
commission rate: 0.06
base salary: 800.00

CommissionEmployee constructor:
commission employee: Mark Sands
social security number: 888-88-8888
gross sales: 8000.00
commission rate: 0.15

BasePlusCommissionEmployee constructor:
base-salaried commission employee: Mark Sands
social security number: 888-88-8888
gross sales: 8000.00
commission rate: 0.15
base salary: 2000.00

BasePlusCommissionEmployee destructor:
base-salaried commission employee: Mark Sands
social security number: 888-88-8888
gross sales: 8000.00
commission rate: 0.15
base salary: 2000.00

CommissionEmployee destructor:
commission employee: Mark Sands
social security number: 888-88-8888
gross sales: 8000.00
commission rate: 0.15

BasePlusCommissionEmployee destructor:
base-salaried commission employee: Lisa Jones
social security number: 555-55-5555
gross sales: 2000.00
commission rate: 0.06
base salary: 800.00

CommissionEmployee destructor:
commission employee: Lisa Jones
social security number: 555-55-5555
gross sales: 2000.00
commission rate: 0.06

Fig. 20.26 | Constructor and destructor call order. (Part 2 of 2.)

20.7 Software Engineering with Inheritance 771

When deriving a class from a public base class, public members of the base class
become public members of the derived class, and protected members of the base class
become protected members of the derived class. A base class’s private members are never
accessible directly from a derived class, but can be accessed through calls to the public and
protected members of the base class.

When deriving from a protected base class, public and protected members of the
base class become protected members of the derived class. When deriving from a private
base class, public and protected members of the base class become private members
(e.g., the functions become utility functions) of the derived class. Private and protected
inheritance are not is-a relationships.

20.7 Software Engineering with Inheritance
In this section, we discuss the use of inheritance to customize existing software. When we
use inheritance to create a new class from an existing one, the new class inherits the data
members and member functions of the existing class, as described in Fig. 20.27. We can
customize the new class to meet our needs by including additional members and by rede-
fining base-class members. The derived-class programmer does this in C++ without access-
ing the base class’s source code. The derived class must be able to link to the base class’s
object code. This powerful capability is attractive to independent software vendors (ISVs).

Fig. 20.27 | Summary of base-class member accessibility in a derived class.

Type of inheritance

public
inheritance

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

public in derived class.

Can be accessed directly
by member functions,
friend functions and
nonmember functions.

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

private in derived class.

Can be accessed directly
by member functions and
friend functions.

private in derived class.

Can be accessed directly
by member functions and
friend functions.

protected
inheritance

private
inheritance

p
r
i
v
a
t
e

p
r
o
t
e
c
t
e
d

p
u
b
l
i
c

Base-class
member-
access
specifier

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

772 Chapter 20 Object-Oriented Programming: Inheritance

ISVs can develop proprietary classes for sale or license and make these classes available to
users in object-code format. Users then can derive new classes from these library classes
rapidly and without accessing the ISVs’ proprietary source code. All the ISVs need to sup-
ply with the object code are the header files.

Sometimes it’s difficult for students to appreciate the scope of problems faced by
designers who work on large-scale software projects in industry. People experienced with
such projects say that effective software reuse improves the software development process.
Object-oriented programming facilitates software reuse, thus shortening development
times and enhancing software quality.

The availability of substantial and useful class libraries delivers the maximum benefits
of software reuse through inheritance. Just as shrink-wrapped software produced by inde-
pendent software vendors became an explosive-growth industry with the arrival of the per-
sonal computer, interest in the creation and sale of class libraries is growing exponentially.
Application designers build their applications with these libraries, and library designers are
rewarded by having their libraries included with the applications. The standard C++
libraries that are shipped with C++ compilers tend to be rather general purpose and limited
in scope. However, there is massive worldwide commitment to the development of class
libraries for a huge variety of applications arenas.

Reading derived-class definitions can be confusing, because inherited members are
not shown physically in the derived classes, but nevertheless are present. A similar problem
exists when documenting derived-class members.

20.8 Wrap-Up
This chapter introduced inheritance—the ability to create a class by absorbing an existing
class’s data members and member functions and embellishing them with new capabilities.
Through a series of examples using an employee inheritance hierarchy, you learned the no-
tions of base classes and derived classes and used public inheritance to create a derived
class that inherits members from a base class. The chapter introduced the access specifier
protected—derived-class member functions can access protected base-class members.
You learned how to access redefined base-class members by qualifying their names with
the base-class name and binary scope resolution operator (::). You also saw the order in

Software Engineering Observation 20.9
At the design stage in an object-oriented system, the designer often determines that certain
classes are closely related. The designer should “factor out” common attributes and
behaviors and place these in a base class, then use inheritance to form derived classes,
endowing them with capabilities beyond those inherited from the base class.

Software Engineering Observation 20.10
The creation of a derived class does not affect its base class’s source code. Inheritance
preserves the integrity of a base class.

Performance Tip 20.3
If classes produced through inheritance are larger than they need to be (i.e., contain too
much functionality), memory and processing resources might be wasted. Inherit from the
class whose functionality is “closest” to what’s needed.

20.8 Wrap-Up 773

which constructors and destructors are called for objects of classes that are part of an in-
heritance hierarchy. Finally, we explained the three types of inheritance—public, pro-
tected and private—and the accessibility of base-class members in a derived class when
using each type.

In Chapter 21, we build on our discussion of inheritance by introducing polymor-
phism—an object-oriented concept that enables us to write programs that handle, in a
more general manner, objects of a wide variety of classes related by inheritance. After
studying Chapter 21, you’ll be familiar with classes, objects, encapsulation, inheritance
and polymorphism—the essential concepts of object-oriented programming.

Summary
Section 20.1 Introduction
• Software reuse reduces program development time and cost.

Section 20.2 Base Classes and Derived Classes
• Inheritance is a form of software reuse in which you create a class that absorbs an existing class’s

data and behaviors and enhances them with new capabilities. The existing class is called the base
class, and the new class is referred to as the derived class.

• A direct base class is the one from which a derived class explicitly inherits. An indirect base class
is inherited from two or more levels up the class hierarchy.

• With single inheritance, a class is derived from one base class. With multiple inheritance, a class
inherits from multiple (possibly unrelated) base classes.

• A derived class represents a more specialized group of objects. Typically, a derived class contains
behaviors inherited from its base class plus additional behaviors. A derived class can also custom-
ize behaviors inherited from the base class.

• Every object of a derived class is also an object of that class’s base class. However, a base-class
object is not an object of that class’s derived classes.

• The is-a relationship represents inheritance. In an is-a relationship, an object of a derived class
also can be treated as an object of its base class.

• The has-a relationship represents composition—an object contains one or more objects of other
classes as members, but does not disclose their behavior directly in its interface.

• A derived class cannot access the private members of its base class directly. A derived class can
access the public and protected members of its base class directly.

• A derived class can effect state changes in private base-class members, but only through non-
private member functions provided in the base class and inherited into the derived class.

• A base-class member function can be redefined in a derived class.

• Single-inheritance relationships form treelike hierarchical structures.

• It’s possible to treat base-class objects and derived-class objects similarly; the commonality shared
between the object types is expressed in the base class’s data members and member functions.

Section 20.3 protected Members
• A base class’s public members are accessible anywhere that the program has a handle to an object

of that base class or to an object of one of that base class’s derived classes—or, when using the
binary scope resolution operator, whenever the class’s name is in scope.

774 Chapter 20 Object-Oriented Programming: Inheritance

• A base class’s private members are accessible only within the base class or from its friends.

• A base class’s protected members can be accessed by members and friends of that base class and
by members and friends of any classes derived from that base class.

• When a derived-class member function redefines a base-class member function, the base-class
member function can be accessed from the derived class by qualifying the base-class member
function name with the base-class name and the binary scope resolution operator (::).

Section 20.5 Constructors and Destructors in Derived Classes
• When an object of a derived class is instantiated, the base class’s constructor is called immediately

to initialize the base-class data members in the derived-class object, then the derived-class con-
structor initializes the additional derived-class data members.

• When a derived-class object is destroyed, the destructors are called in the reverse order of the con-
structors—first the derived-class destructor is called, then the base-class destructor is called.

Section 20.6 public, protected and private Inheritance
• Declaring data members private, while providing non-private member functions to manipu-

late and perform validity checking on this data, enforces good software engineering.

• When deriving a class, the base class may be declared as either public, protected or private.

• When deriving a class from a public base class, public members of the base class become public
members of the derived class, and protected members of the base class become protected mem-
bers of the derived class.

• When deriving a class from a protected base class, public and protected members of the base
class become protected members of the derived class.

• When deriving a class from a private base class, public and protected members of the base class
become private members of the derived class.

Terminology
base class 728
base-class initializer syntax 746
brittle software 755
class hierarchy 728
derived class 728
direct base class 728
fragile software 755
has-a relationship 729
indirect base class 728
inheritance 728

is-a relationship 729
multiple inheritance 728
private inheritance 731
protected inheritance 731
protected keyword 732
public inheritance 731
single inheritance 728
subclass 728
superclass 728

Self-Review Exercises
20.1 Fill in the blanks in each of the following statements:

a) is a form of software reuse in which new classes absorb the data and behaviors
of existing classes and embellish these classes with new capabilities.

b) A base class’s members can be accessed in the base-class definition, in derived-
class definitions and in friends of the base class its derived classes.

c) In a(n) relationship, an object of a derived class also can be treated as an object
of its base class.

 Answers to Self-Review Exercises 775

d) In a(n) relationship, a class object has one or more objects of other classes as
members.

e) In single inheritance, a class exists in a(n) relationship with its derived classes.
f) A base class’s members are accessible within that base class and anywhere that

the program has a handle to an object of that class or one of its derived classes.
g) A base class’s protected access members have a level of protection between those of pub-

lic and access.
h) C++ provides for , which allows a derived class to inherit from many base class-

es, even if the base classes are unrelated.
i) When an object of a derived class is instantiated, the base class’s is called im-

plicitly or explicitly to do any necessary initialization of the base-class data members in
the derived-class object.

j) When deriving a class from a base class with public inheritance, public members of the
base class become members of the derived class, and protected members of
the base class become members of the derived class.

k) When deriving a class from a base class with protected inheritance, public members of
the base class become members of the derived class, and protected members
of the base class become members of the derived class.

20.2 State whether each of the following is true or false. If false, explain why.
a) Base-class constructors are not inherited by derived classes.
b) A has-a relationship is implemented via inheritance.
c) A Car class has an is-a relationship with the SteeringWheel and Brakes classes.
d) Inheritance encourages the reuse of proven high-quality software.
e) When a derived-class object is destroyed, the destructors are called in the reverse order

of the constructors.

Answers to Self-Review Exercises
20.1 a) Inheritance. b) protected. c) is-a or inheritance. d) has-a or composition or aggrega-
tion. e) hierarchical. f) public. g) private. h) multiple inheritance. i) constructor. j) public,
protected. k) protected, protected.

20.2 a) True. b) False. A has-a relationship is implemented via composition. An is-a relationship
is implemented via inheritance. c) False. This is an example of a has-a relationship. Class Car has
an is-a relationship with class Vehicle. d) True. e) True.

Exercises
20.3 (Composition as an Alternative to Inheritance) Many programs written with inheritance
could be written with composition instead, and vice versa. Rewrite class BasePlusCommissionEm-
ployee of the CommissionEmployee–BasePlusCommissionEmployee hierarchy to use composition
rather than inheritance. After you do this, assess the relative merits of the two approaches for de-
signing classes CommissionEmployee and BasePlusCommissionEmployee, as well as for object-orient-
ed programs in general. Which approach is more natural? Why?

20.4 (Inheritance Advantage) Discuss the ways in which inheritance promotes software reuse,
saves time during program development and helps prevent errors.

20.5 (Protected vs. Private Base Classes) Some programmers prefer not to use protected access
because they believe it breaks the encapsulation of the base class. Discuss the relative merits of using
protected access vs. using private access in base classes.

20.6 (Student Inheritance Hierarchy) Draw an inheritance hierarchy for students at a university
similar to the hierarchy shown in Fig. 20.2. Use Student as the base class of the hierarchy, then in-

776 Chapter 20 Object-Oriented Programming: Inheritance

clude classes UndergraduateStudent and GraduateStudent that derive from Student. Continue to
extend the hierarchy as deep (i.e., as many levels) as possible. For example, Freshman, Sophomore,
Junior and Senior might derive from UndergraduateStudent, and DoctoralStudent and Mas-
tersStudent might derive from GraduateStudent. After drawing the hierarchy, discuss the relation-
ships that exist between the classes. [Note: You do not need to write any code for this exercise.]

20.7 (Richer Shape Hierarchy) The world of shapes is much richer than the shapes included in
the inheritance hierarchy of Fig. 20.3. Write down all the shapes you can think of—both two-di-
mensional and three-dimensional—and form them into a more complete Shape hierarchy with as
many levels as possible. Your hierarchy should have the base class Shape from which class TwoDimen-
sionalShape and class ThreeDimensionalShape are derived. [Note: You do not need to write any code
for this exercise.] We’ll use this hierarchy in the exercises of Chapter 21 to process a set of distinct
shapes as objects of base-class Shape. (This technique, called polymorphism, is the subject of
Chapter 21.)

20.8 (Quadrilateral Inheritance Hierarchy) Draw an inheritance hierarchy for classes Quadri-
lateral, Trapezoid, Parallelogram, Rectangle and Square. Use Quadrilateral as the base class of
the hierarchy. Make the hierarchy as deep as possible.

20.9 (Package Inheritance Hierarchy) Package-delivery services, such as FedEx®, DHL® and
UPS®, offer a number of different shipping options, each with specific costs associated. Create an
inheritance hierarchy to represent various types of packages. Use Package as the base class of the hi-
erarchy, then include classes TwoDayPackage and OvernightPackage that derive from Package. Base
class Package should include data members representing the name, address, city, state and ZIP code
for both the sender and the recipient of the package, in addition to data members that store the
weight (in ounces) and cost per ounce to ship the package. Package’s constructor should initialize
these data members. Ensure that the weight and cost per ounce contain positive values. Package
should provide a public member function calculateCost that returns a double indicating the cost
associated with shipping the package. Package’s calculateCost function should determine the cost
by multiplying the weight by the cost per ounce. Derived class TwoDayPackage should inherit the
functionality of base class Package, but also include a data member that represents a flat fee that the
shipping company charges for two-day-delivery service. TwoDayPackage’s constructor should receive
a value to initialize this data member. TwoDayPackage should redefine member function calculate-
Cost so that it computes the shipping cost by adding the flat fee to the weight-based cost calculated
by base class Package’s calculateCost function. Class OvernightPackage should inherit directly
from class Package and contain an additional data member representing an additional fee per ounce
charged for overnight-delivery service. OvernightPackage should redefine member function calcu-
lateCost so that it adds the additional fee per ounce to the standard cost per ounce before calculat-
ing the shipping cost. Write a test program that creates objects of each type of Package and tests
member function calculateCost.

20.10 (Account Inheritance Hierarchy) Create an inheritance hierarchy that a bank might use to
represent customers’ bank accounts. All customers at this bank can deposit (i.e., credit) money into
their accounts and withdraw (i.e., debit) money from their accounts. More specific types of accounts
also exist. Savings accounts, for instance, earn interest on the money they hold. Checking accounts,
on the other hand, charge a fee per transaction (i.e., credit or debit).

Create an inheritance hierarchy containing base class Account and derived classes Savings-
Account and CheckingAccount that inherit from class Account. Base class Account should include
one data member of type double to represent the account balance. The class should provide a con-
structor that receives an initial balance and uses it to initialize the data member. The constructor
should validate the initial balance to ensure that it’s greater than or equal to 0.0. If not, the balance
should be set to 0.0 and the constructor should display an error message, indicating that the initial
balance was invalid. The class should provide three member functions. Member function credit

 Exercises 777

should add an amount to the current balance. Member function debit should withdraw money
from the Account and ensure that the debit amount does not exceed the Account’s balance. If it
does, the balance should be left unchanged and the function should print the message "Debit
amount exceeded account balance." Member function getBalance should return the current
balance.

Derived class SavingsAccount should inherit the functionality of an Account, but also include
a data member of type double indicating the interest rate (percentage) assigned to the Account.
SavingsAccount’s constructor should receive the initial balance, as well as an initial value for the
SavingsAccount’s interest rate. SavingsAccount should provide a public member function
calculateInterest that returns a double indicating the amount of interest earned by an account.
Member function calculateInterest should determine this amount by multiplying the interest
rate by the account balance. [Note: SavingsAccount should inherit member functions credit and
debit as is without redefining them.]

Derived class CheckingAccount should inherit from base class Account and include an addi-
tional data member of type double that represents the fee charged per transaction. Checking-
Account’s constructor should receive the initial balance, as well as a parameter indicating a fee
amount. Class CheckingAccount should redefine member functions credit and debit so that they
subtract the fee from the account balance whenever either transaction is performed successfully.
CheckingAccount’s versions of these functions should invoke the base-class Account version to per-
form the updates to an account balance. CheckingAccount’s debit function should charge a fee
only if money is actually withdrawn (i.e., the debit amount does not exceed the account balance).
[Hint: Define Account’s debit function so that it returns a bool indicating whether money was
withdrawn. Then use the return value to determine whether a fee should be charged.]

After defining the classes in this hierarchy, write a program that creates objects of each class
and tests their member functions. Add interest to the SavingsAccount object by first invoking its
calculateInterest function, then passing the returned interest amount to the object’s credit
function.

21 Object-Oriented
Programming:
Polymorphism

One Ring to rule them all,
One Ring to find them,
One Ring to bring them all
and in the darkness bind them.
—John Ronald Reuel Tolkien

The silence often of pure
innocence
Persuades when speaking fails.
—William Shakespeare

General propositions do not
decide concrete cases.
—Oliver Wendell Holmes

A philosopher of imposing
stature doesn’t think in a
vacuum. Even his most abstract
ideas are, to some extent,
conditioned by what is or is not
known in the time when he lives.
—Alfred North Whitehead

O b j e c t i v e s
In this chapter you’ll learn:
■ How polymorphism makes

programming more conve-
nient and systems more
extensible.

■ The distinction between
abstract and concrete classes
and how to create abstract
classes.

■ To use runtime type
information (RTTI).

■ How C++ implements
virtual functions and
dynamic binding.

■ How virtual destructors
ensure that all appropriate
destructors run on an object.

21.1 Introduction 779

21.1 Introduction
In Chapters 15–20, we discussed key object-oriented programming technologies includ-
ing classes, objects, encapsulation, operator overloading and inheritance. We now contin-
ue our study of OOP by explaining and demonstrating polymorphism with inheritance
hierarchies. Polymorphism enables us to “program in the general” rather than “program
in the specific.” In particular, polymorphism enables us to write programs that process ob-
jects of classes that are part of the same class hierarchy as if they were all objects of the hi-
erarchy’s base class. As we’ll soon see, polymorphism works off base-class pointer handles
and base-class reference handles, but not off name handles.

Suppose we create a polymorphic program that simulates the movement of several
types of animals for a biological study. Classes Fish, Frog and Bird represent the three
types of animals under investigation. Imagine that each of these classes inherits from base
class Animal, which contains a function move and maintains an animal’s current location.
Each derived class implements move. Our program maintains a vector of Animal pointers
to objects of the derived classes. To simulate the animals’ movements, the program sends
each object the same message once per second—namely, move. However, each specific type
of Animal responds to a move message in its own way—a Fish might swim two feet, a Frog
might jump three feet and a Bird might fly ten feet. The program issues the same message
(i.e., move) to each animal object, but each object knows how to modify its location for its
specific type of movement. Relying on each object to know how to “do the right thing” in
response to the same function call is the key concept of polymorphism. The same message
sent to a variety of objects has “many forms” of results—hence the term polymorphism.

21.1 Introduction
21.2 Polymorphism Examples
21.3 Relationships Among Objects in an

Inheritance Hierarchy
21.3.1 Invoking Base-Class Functions from

Derived-Class Objects
21.3.2 Aiming Derived-Class Pointers at

Base-Class Objects
21.3.3 Derived-Class Member-Function Calls

via Base-Class Pointers
21.3.4 Virtual Functions
21.3.5 Summary of the Allowed

Assignments Between Base-Class and
Derived-Class Objects and Pointers

21.4 Type Fields and switch Statements
21.5 Abstract Classes and Pure virtual

Functions
21.6 Case Study: Payroll System Using

Polymorphism
21.6.1 Creating Abstract Base Class

Employee

21.6.2 Creating Concrete Derived Class
SalariedEmployee

21.6.3 Creating Concrete Derived Class
HourlyEmployee

21.6.4 Creating Concrete Derived Class
CommissionEmployee

21.6.5 Creating Indirect Concrete Derived
Class
BasePlusCommissionEmployee

21.6.6 Demonstrating Polymorphic
Processing

21.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding
“Under the Hood”

21.8 Case Study: Payroll System Using
Polymorphism and Runtime Type
Information with Downcasting,
dynamic_cast, typeid and
type_info

21.9 Virtual Destructors
21.10 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

780 Chapter 21 Object-Oriented Programming: Polymorphism

With polymorphism, we can design and implement systems that are easily exten-
sible—new classes can be added with little or no modification to the general portions of
the program, as long as the new classes are part of the inheritance hierarchy that the pro-
gram processes generically. The only parts of a program that must be altered to accommo-
date new classes are those that require direct knowledge of the new classes that you add to
the hierarchy. For example, if we create class Tortoise that inherits from class Animal
(which might respond to a move message by crawling one inch), we need to write only the
Tortoise class and the part of the simulation that instantiates a Tortoise object. The por-
tions of the simulation that process each Animal generically can remain the same.

We begin with a sequence of small, focused examples that lead up to an understanding
of virtual functions and dynamic binding—polymorphism’s two underlying technolo-
gies. We then present a case study that revisits Chapter 20’s Employee hierarchy. In the
case study, we define a common “interface” (i.e., set of functionality) for all the classes in
the hierarchy. This common functionality among employees is defined in a so-called
abstract base class, Employee, from which classes SalariedEmployee, HourlyEmployee and
CommissionEmployee inherit directly and class BaseCommissionEmployee inherits indi-
rectly. We’ll soon see what makes a class “abstract” or its opposite—“concrete.”

In this hierarchy, every employee has an earnings function to calculate the employee’s
weekly pay. These earnings functions vary by employee type—for instance, Salaried-
Employees are paid a fixed weekly salary regardless of the number of hours worked, while
HourlyEmployees are paid by the hour and receive overtime pay. We show how to process
each employee “in the general”—that is, using base-class pointers to call the earnings func-
tion of several derived-class objects. This way, you need to be concerned with only one type
of function call, which can be used to execute several different functions based on the
objects referred to by the base-class pointers.

A key feature of this chapter is its (optional) detailed discussion of polymorphism,
virtual functions and dynamic binding “under the hood,” which uses a detailed diagram
to explain how polymorphism can be implemented in C++.

Occasionally, when performing polymorphic processing, we need to program “in the
specific,” meaning that operations need to be performed on a specific type of object in a
hierarchy—the operation cannot be generally applied to several types of objects. We reuse
our Employee hierarchy to demonstrate the powerful capabilities of runtime type infor-
mation (RTTI) and dynamic casting, which enable a program to determine the type of
an object at execution time and act on that object accordingly. We use these capabilities
to determine whether a particular employee object is a BasePlusCommissionEmployee,
then give that employee a 10 percent bonus on his or her base salary.

21.2 Polymorphism Examples
In this section, we discuss several polymorphism examples. With polymorphism, one
function can cause different actions to occur, depending on the type of the object on
which the function is invoked. This gives you tremendous expressive capability. If class
Rectangle is derived from class Quadrilateral, then a Rectangle object is a more specific
version of a Quadrilateral object. Therefore, any operation (such as calculating the per-
imeter or the area) that can be performed on an object of class Quadrilateral also can be
performed on an object of class Rectangle. Such operations also can be performed on oth-
er kinds of Quadrilaterals, such as Squares, Parallelograms and Trapezoids. The poly-

21.3 Relationships Among Objects in an Inheritance Hierarchy 781

morphism occurs when a program invokes a virtual function through a base-class (i.e.,
Quadrilateral) pointer or reference—C++ dynamically (i.e., at execution time) chooses
the correct function for the class from which the object was instantiated. You’ll see a code
example that illustrates this process in Section 21.3.

As another example, suppose that we design a video game that manipulates objects of
many different types, including objects of classes Martian, Venutian, Plutonian, Space-
Ship and LaserBeam. Imagine that each of these classes inherits from the common base
class SpaceObject, which contains member function draw. Each derived class implements
this function in a manner appropriate for that class. A screen-manager program maintains
a container (e.g., a vector) that holds SpaceObject pointers to objects of the various
classes. To refresh the screen, the screen manager periodically sends each object the same
message—namely, draw. Each type of object responds in a unique way. For example, a
Martian object might draw itself in red with the appropriate number of antennae. A
SpaceShip object might draw itself as a silver flying saucer. A LaserBeam object might
draw itself as a bright red beam across the screen. Again, the same message (in this case,
draw) sent to a variety of objects has “many forms” of results.

A polymorphic screen manager facilitates adding new classes to a system with minimal
modifications to its code. Suppose that we want to add objects of class Mercurian to our
video game. To do so, we must build a class Mercurian that inherits from SpaceObject,
but provides its own definition of member function draw. Then, when pointers to objects
of class Mercurian appear in the container, you do not need to modify the code for the
screen manager. The screen manager invokes member function draw on every object in the
container, regardless of the object’s type, so the new Mercurian objects simply “plug right
in.” Thus, without modifying the system (other than to build and include the classes
themselves), you can use polymorphism to accommodate additional classes, including
ones that were not even envisioned when the system was created.

21.3 Relationships Among Objects in an Inheritance
Hierarchy
Section 20.4 created an employee class hierarchy, in which class BasePlusCommission-
Employee inherited from class CommissionEmployee. The Chapter 20 examples manipu-
lated CommissionEmployee and BasePlusCommissionEmployee objects by using the

Software Engineering Observation 21.1
With virtual functions and polymorphism, you can deal in generalities and let the
execution-time environment concern itself with the specifics. You can direct a variety of
objects to behave in manners appropriate to those objects without even knowing their
types—as long as those objects belong to the same inheritance hierarchy and are being
accessed off a common base-class pointer or a common base-class reference.

Software Engineering Observation 21.2
Polymorphism promotes extensibility: Software written to invoke polymorphic behavior is
written independently of the types of the objects to which messages are sent. Thus, new
types of objects that can respond to existing messages can be incorporated into such a system
without modifying the base system. Only client code that instantiates new objects must be
modified to accommodate new types.

782 Chapter 21 Object-Oriented Programming: Polymorphism

objects’ names to invoke their member functions. We now examine the relationships
among classes in a hierarchy more closely. The next several sections present a series of ex-
amples that demonstrate how base-class and derived-class pointers can be aimed at base-
class and derived-class objects, and how those pointers can be used to invoke member
functions that manipulate those objects. In Section 21.3.4, we demonstrate how to get
polymorphic behavior from base-class pointers aimed at derived-class objects.

In Section 21.3.1, we assign the address of a derived-class object to a base-class
pointer, then show that invoking a function via the base-class pointer invokes the base-
class functionality—i.e., the type of the handle determines which function is called. In
Section 21.3.2, we assign the address of a base-class object to a derived-class pointer, which
results in a compilation error. We discuss the error message and investigate why the com-
piler does not allow such an assignment. In Section 21.3.3, we assign the address of a
derived-class object to a base-class pointer, then examine how the base-class pointer can be
used to invoke only the base-class functionality—when we attempt to invoke derived-class
member functions through the base-class pointer, compilation errors occur. Finally, in
Section 21.3.4, we introduce virtual functions and polymorphism by declaring a base-
class function as virtual. We then assign the address of a derived-class object to the base-
class pointer and use that pointer to invoke derived-class functionality—precisely the
capability we need to achieve polymorphic behavior.

A key concept in these examples is to demonstrate that an object of a derived class can
be treated as an object of its base class. This enables various interesting manipulations. For
example, a program can create an array of base-class pointers that point to objects of many
derived-class types. Despite the fact that the derived-class objects are of different types, the
compiler allows this because each derived-class object is an object of its base class. How-
ever, we cannot treat a base-class object as an object of any of its derived classes. For
example, a CommissionEmployee is not a BasePlusCommissionEmployee in the hierarchy
defined in Chapter 20—a CommissionEmployee does not have a baseSalary data member
and does not have member functions setBaseSalary and getBaseSalary. The is-a rela-
tionship applies only from a derived class to its direct and indirect base classes.

21.3.1 Invoking Base-Class Functions from Derived-Class Objects
The example in Figs. 21.1–21.5 demonstrates three ways to aim base and derived-class
pointers at base and derived-class objects. The first two are straightforward—we aim a
base-class pointer at a base-class object (and invoke base-class functionality), and we aim
a derived-class pointer at a derived-class object (and invoke derived-class functionality).
Then, we demonstrate the relationship between derived classes and base classes (i.e., the
is-a relationship of inheritance) by aiming a base-class pointer at a derived-class object (and
showing that the base-class functionality is indeed available in the derived-class object).

Class CommissionEmployee (Figs. 21.1–21.2), which we discussed in Chapter 20, is
used to represent employees who are paid a percentage of their sales. Class BasePlusCom-
missionEmployee (Figs. 21.3–21.4), which we also discussed in Chapter 20, is used to
represent employees who receive a base salary plus a percentage of their sales. Each Base-
PlusCommissionEmployee object is a CommissionEmployee that also has a base salary.
Class BasePlusCommissionEmployee’s earnings member function (lines 30–33 of
Fig. 21.4) redefines class CommissionEmployee’s earnings member function (lines 78–81
of Fig. 21.2) to include the object’s base salary. Class BasePlusCommissionEmployee’s

21.3 Relationships Among Objects in an Inheritance Hierarchy 783

print member function (lines 36–44 of Fig. 21.4) redefines class CommissionEmployee’s
version (lines 84–91 of Fig. 21.2) to display the same information plus the employee’s
base salary.

1 // Fig. 21.1: CommissionEmployee.h
2 // CommissionEmployee class definition represents a commission employee.
3 #ifndef COMMISSION_H

4 #define COMMISSION_H

5
6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount
26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30 double earnings() const; // calculate earnings
31
32 private:
33 string firstName;
34 string lastName;
35 string socialSecurityNumber;
36 double grossSales; // gross weekly sales
37 double commissionRate; // commission percentage
38 }; // end class CommissionEmployee
39
40 #endif

Fig. 21.1 | CommissionEmployee class header file.

1 // Fig. 21.2: CommissionEmployee.cpp
2 // Class CommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "CommissionEmployee.h" // CommissionEmployee class definition

Fig. 21.2 | CommissionEmployee class implementation file. (Part 1 of 3.)

void print() const; // print CommissionEmployee object

784 Chapter 21 Object-Oriented Programming: Polymorphism

5 using namespace std;
6
7 // constructor
8 CommissionEmployee::CommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate)
11 : firstName(first), lastName(last), socialSecurityNumber(ssn)
12 {
13 setGrossSales(sales); // validate and store gross sales
14 setCommissionRate(rate); // validate and store commission rate
15 } // end CommissionEmployee constructor
16
17 // set first name
18 void CommissionEmployee::setFirstName(const string &first)
19 {
20 firstName = first; // should validate
21 } // end function setFirstName
22
23 // return first name
24 string CommissionEmployee::getFirstName() const
25 {
26 return firstName;
27 } // end function getFirstName
28
29 // set last name
30 void CommissionEmployee::setLastName(const string &last)
31 {
32 lastName = last; // should validate
33 } // end function setLastName
34
35 // return last name
36 string CommissionEmployee::getLastName() const
37 {
38 return lastName;
39 } // end function getLastName
40
41 // set social security number
42 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
43 {
44 socialSecurityNumber = ssn; // should validate
45 } // end function setSocialSecurityNumber
46
47 // return social security number
48 string CommissionEmployee::getSocialSecurityNumber() const
49 {
50 return socialSecurityNumber;
51 } // end function getSocialSecurityNumber
52
53 // set gross sales amount
54 void CommissionEmployee::setGrossSales(double sales)
55 {
56 grossSales = (sales < 0.0) ? 0.0 : sales;
57 } // end function setGrossSales

Fig. 21.2 | CommissionEmployee class implementation file. (Part 2 of 3.)

21.3 Relationships Among Objects in an Inheritance Hierarchy 785

58
59 // return gross sales amount
60 double CommissionEmployee::getGrossSales() const
61 {
62 return grossSales;
63 } // end function getGrossSales
64
65 // set commission rate
66 void CommissionEmployee::setCommissionRate(double rate)
67 {
68 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
69 } // end function setCommissionRate
70
71 // return commission rate
72 double CommissionEmployee::getCommissionRate() const
73 {
74 return commissionRate;
75 } // end function getCommissionRate
76
77 // calculate earnings
78 double CommissionEmployee::earnings() const
79 {
80 return getCommissionRate() * getGrossSales();
81 } // end function earnings
82
83
84
85
86
87
88
89
90
91

1 // Fig. 21.3: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from class
3 // CommissionEmployee.
4 #ifndef BASEPLUS_H

5 #define BASEPLUS_H

6
7 #include <string> // C++ standard string class
8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10
11 class BasePlusCommissionEmployee : public CommissionEmployee
12 {
13 public:
14 BasePlusCommissionEmployee(const string &, const string &,
15 const string &, double = 0.0, double = 0.0, double = 0.0);

Fig. 21.3 | BasePlusCommissionEmployee class header file. (Part 1 of 2.)

Fig. 21.2 | CommissionEmployee class implementation file. (Part 3 of 3.)

// print CommissionEmployee object
void CommissionEmployee::print() const
{
 cout << "commission employee: "
 << getFirstName() << ' ' << getLastName()
 << "\nsocial security number: " << getSocialSecurityNumber()
 << "\ngross sales: " << getGrossSales()
 << "\ncommission rate: " << getCommissionRate();
} // end function print

786 Chapter 21 Object-Oriented Programming: Polymorphism

16
17 void setBaseSalary(double); // set base salary
18 double getBaseSalary() const; // return base salary
19
20 double earnings() const; // calculate earnings
21
22 private:
23 double baseSalary; // base salary
24 }; // end class BasePlusCommissionEmployee
25
26 #endif

1 // Fig. 21.4: BasePlusCommissionEmployee.cpp
2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate, double salary)
11 // explicitly call base-class constructor
12 : CommissionEmployee(first, last, ssn, sales, rate)
13 {
14 setBaseSalary(salary); // validate and store base salary
15 } // end BasePlusCommissionEmployee constructor
16
17 // set base salary
18 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {
20 baseSalary = (salary < 0.0) ? 0.0 : salary;
21 } // end function setBaseSalary
22
23 // return base salary
24 double BasePlusCommissionEmployee::getBaseSalary() const
25 {
26 return baseSalary;
27 } // end function getBaseSalary
28
29 // calculate earnings
30 double BasePlusCommissionEmployee::earnings() const
31 {
32 return getBaseSalary() + CommissionEmployee::earnings();
33 } // end function earnings
34
35
36
37
38

Fig. 21.4 | BasePlusCommissionEmployee class implementation file. (Part 1 of 2.)

Fig. 21.3 | BasePlusCommissionEmployee class header file. (Part 2 of 2.)

void print() const; // print BasePlusCommissionEmployee object

// print BasePlusCommissionEmployee object
void BasePlusCommissionEmployee::print() const
{
 cout << "base-salaried ";

21.3 Relationships Among Objects in an Inheritance Hierarchy 787

In Fig. 21.5, lines 13–14 create a CommissionEmployee object and line 17 creates a
pointer to a CommissionEmployee object; lines 20–21 create a BasePlusCommission-
Employee object and line 24 creates a pointer to a BasePlusCommissionEmployee object.
Lines 31 and 33 use each object’s name to invoke its print member function. Line 36
assigns the address of base-class object commissionEmployee to base-class pointer commis-
sionEmployeePtr, which line 39 uses to invoke member function print on that Commis-
sionEmployee object. This invokes the version of print defined in base class
CommissionEmployee. Similarly, line 42 assigns the address of derived-class object base-
PlusCommissionEmployee to derived-class pointer basePlusCommissionEmployeePtr,
which line 46 uses to invoke member function print on that BasePlusCommissionEm-
ployee object. This invokes the version of print defined in derived class BasePlusCom-
missionEmployee. Line 49 then assigns the address of derived-class object
basePlusCommissionEmployee to base-class pointer commissionEmployeePtr, which line
53 uses to invoke member function print. This “crossover” is allowed because an object
of a derived class is an object of its base class. Note that despite the fact that the base class
CommissionEmployee pointer points to a derived class BasePlusCommissionEmployee
object, the base class CommissionEmployee’s print member function is invoked (rather
than BasePlusCommissionEmployee’s print function). The output of each print
member-function invocation in this program reveals that the invoked functionality depends
on the type of the handle (i.e., the pointer or reference type) used to invoke the function, not the
type of the object to which the handle points. In Section 21.3.4, when we introduce virtual
functions, we demonstrate that it’s possible to invoke the object type’s functionality, rather
than invoke the handle type’s functionality. We’ll see that this is crucial to implementing
polymorphic behavior—the key topic of this chapter.

39
40
41
42
43
44

1 // Fig. 21.5: fig21_05.cpp
2 // Aiming base-class and derived-class pointers at base-class
3 // and derived-class objects, respectively.
4 #include <iostream>
5 #include <iomanip>
6 #include "CommissionEmployee.h"

7 #include "BasePlusCommissionEmployee.h"

8 using namespace std;
9

10 int main()
11 {

Fig. 21.5 | Assigning addresses of base-class and derived-class objects to base-class and
derived-class pointers. (Part 1 of 3.)

Fig. 21.4 | BasePlusCommissionEmployee class implementation file. (Part 2 of 2.)

// invoke CommissionEmployee's print function

 CommissionEmployee::print();

 cout << "\nbase salary: " << getBaseSalary();
} // end function print

788 Chapter 21 Object-Oriented Programming: Polymorphism

12 // create base-class object
13 CommissionEmployee commissionEmployee(
14 "Sue", "Jones", "222-22-2222", 10000, .06);
15
16 // create base-class pointer
17 CommissionEmployee *commissionEmployeePtr = 0;
18
19 // create derived-class object
20 BasePlusCommissionEmployee basePlusCommissionEmployee(
21 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
22
23 // create derived-class pointer
24 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
25
26 // set floating-point output formatting
27 cout << fixed << setprecision(2);
28
29 // output objects commissionEmployee and basePlusCommissionEmployee
30 cout << "Print base-class and derived-class objects:\n\n";
31 commissionEmployee.print(); // invokes base-class print
32 cout << "\n\n";
33 basePlusCommissionEmployee.print(); // invokes derived-class print
34
35
36
37 cout << "\n\n\nCalling print with base-class pointer to "
38 << "\nbase-class object invokes base-class print function:\n\n";
39
40
41
42
43 cout << "\n\n\nCalling print with derived-class pointer to "
44 << "\nderived-class object invokes derived-class "
45 << "print function:\n\n";
46
47
48
49
50 cout << "\n\n\nCalling print with base-class pointer to "
51 << "derived-class object\ninvokes base-class print "
52 << "function on that derived-class object:\n\n";
53
54 cout << endl;
55 } // end main

Print base-class and derived-class objects:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Fig. 21.5 | Assigning addresses of base-class and derived-class objects to base-class and
derived-class pointers. (Part 2 of 3.)

// aim base-class pointer at base-class object and print
commissionEmployeePtr = &commissionEmployee; // perfectly natural

commissionEmployeePtr->print(); // invokes base-class print

// aim derived-class pointer at derived-class object and print
basePlusCommissionEmployeePtr = &basePlusCommissionEmployee; // natural

basePlusCommissionEmployeePtr->print(); // invokes derived-class print

// aim base-class pointer at derived-class object and print
commissionEmployeePtr = &basePlusCommissionEmployee;

commissionEmployeePtr->print(); // invokes base-class print

21.3 Relationships Among Objects in an Inheritance Hierarchy 789

21.3.2 Aiming Derived-Class Pointers at Base-Class Objects
In Section 21.3.1, we assigned the address of a derived-class object to a base-class pointer
and explained that the C++ compiler allows this assignment, because a derived-class object
is a base-class object. We take the opposite approach in Fig. 21.6, as we aim a derived-class
pointer at a base-class object. [Note: This program uses classes CommissionEmployee and
BasePlusCommissionEmployee of Figs. 21.1–21.4.] Lines 8–9 of Fig. 21.6 create a Com-
missionEmployee object, and line 10 creates a BasePlusCommissionEmployee pointer.
Line 14 attempts to assign the address of base-class object commissionEmployee to de-
rived-class pointer basePlusCommissionEmployeePtr, but the C++ compiler generates an
error. The compiler prevents this assignment, because a CommissionEmployee is not a
BasePlusCommissionEmployee. Consider the consequences if the compiler were to allow
this assignment. Through a BasePlusCommissionEmployee pointer, we can invoke every
BasePlusCommissionEmployee member function, including setBaseSalary, for the ob-
ject to which the pointer points (i.e., the base-class object commissionEmployee). Howev-
er, the CommissionEmployee object does not provide a setBaseSalary member function,

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling print with base-class pointer to
base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Calling print with derived-class pointer to
derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling print with base-class pointer to derived-class object
invokes base-class print function on that derived-class object:

commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04

Fig. 21.5 | Assigning addresses of base-class and derived-class objects to base-class and
derived-class pointers. (Part 3 of 3.)

790 Chapter 21 Object-Oriented Programming: Polymorphism

nor does it provide a baseSalary data member to set. This could lead to problems, because
member function setBaseSalary would assume that there is a baseSalary data member
to set at its “usual location” in a BasePlusCommissionEmployee object. This memory does
not belong to the CommissionEmployee object, so member function setBaseSalary might
overwrite other important data in memory, possibly data that belongs to a different object.

21.3.3 Derived-Class Member-Function Calls via Base-Class Pointers
Off a base-class pointer, the compiler allows us to invoke only base-class member func-
tions. Thus, if a base-class pointer is aimed at a derived-class object, and an attempt is
made to access a derived-class-only member function, a compilation error will occur.

Figure 21.7 shows the consequences of attempting to invoke a derived-class member
function off a base-class pointer. [Note: We’re again using classes CommissionEmployee
and BasePlusCommissionEmployee of Figs. 21.1–21.4.] Line 9 creates commissionEm-
ployeePtr—a pointer to a CommissionEmployee object—and lines 10–11 create a Base-
PlusCommissionEmployee object. Line 14 aims commissionEmployeePtr at derived-class
object basePlusCommissionEmployee. Recall from Section 21.3.1 that this is allowed,
because a BasePlusCommissionEmployee is a CommissionEmployee (in the sense that a
BasePlusCommissionEmployee object contains all the functionality of a CommissionEm-
ployee object). Lines 18–22 invoke base-class member functions getFirstName, get-
LastName, getSocialSecurityNumber, getGrossSales and getCommissionRate off the

1 // Fig. 21.6: fig21_06.cpp
2 // Aiming a derived-class pointer at a base-class object.
3 #include "CommissionEmployee.h"

4 #include "BasePlusCommissionEmployee.h"

5
6 int main()
7 {
8 CommissionEmployee commissionEmployee(
9 "Sue", "Jones", "222-22-2222", 10000, .06);

10 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
11
12
13
14
15 } // end main

Microsoft Visual C++ compiler error messages:

C:\examples\ch21\Fig21_06\fig21_06.cpp(14) : error C2440: '=' :
cannot convert from 'CommissionEmployee *' to 'BasePlusCommissionEmployee *'
 Cast from base to derived requires dynamic_cast or static_cast

GNU C++ compiler error messages:

fig21_06.cpp:14: error: invalid conversion from `CommissionEmployee*' to
 `BasePlusCommissionEmployee*'

Fig. 21.6 | Aiming a derived-class pointer at a base-class object.

// aim derived-class pointer at base-class object
// Error: a CommissionEmployee is not a BasePlusCommissionEmployee
basePlusCommissionEmployeePtr = &commissionEmployee;

21.3 Relationships Among Objects in an Inheritance Hierarchy 791

base-class pointer. All of these calls are legitimate, because BasePlusCommissionEmployee
inherits these member functions from CommissionEmployee. We know that commission-
EmployeePtr is aimed at a BasePlusCommissionEmployee object, so in lines 26–27 we
attempt to invoke BasePlusCommissionEmployee member functions getBaseSalary and
setBaseSalary. The compiler generates errors on both of these calls, because they’re not
made to member functions of base-class CommissionEmployee. The handle can be used to
invoke only those functions that are members of that handle’s associated class type. (In this
case, off a CommissionEmployee *, we can invoke only CommissionEmployee member
functions setFirstName, getFirstName, setLastName, getLastName, setSocialSecuri-
tyNumber, getSocialSecurityNumber, setGrossSales, getGrossSales, setCommis-

sionRate, getCommissionRate, earnings and print.)

1 // Fig. 21.7: fig21_07.cpp
2 // Attempting to invoke derived-class-only member functions
3 // through a base-class pointer.
4 #include "CommissionEmployee.h"

5 #include "BasePlusCommissionEmployee.h"

6
7 int main()
8 {
9 CommissionEmployee *commissionEmployeePtr = 0; // base class

10 BasePlusCommissionEmployee basePlusCommissionEmployee(
11 "Bob", "Lewis", "333-33-3333", 5000, .04, 300); // derived class
12
13 // aim base-class pointer at derived-class object
14 commissionEmployeePtr = &basePlusCommissionEmployee;
15
16 // invoke base-class member functions on derived-class
17 // object through base-class pointer (allowed)
18 string firstName = commissionEmployeePtr->getFirstName();
19 string lastName = commissionEmployeePtr->getLastName();
20 string ssn = commissionEmployeePtr->getSocialSecurityNumber();
21 double grossSales = commissionEmployeePtr->getGrossSales();
22 double commissionRate = commissionEmployeePtr->getCommissionRate();
23
24
25
26
27
28 } // end main

Microsoft Visual C++ compiler error messages:

C:\examples\ch21\Fig21_07\fig21_07.cpp(26) : error C2039:
 'getBaseSalary' : is not a member of 'CommissionEmployee'
 C:\cpphtp7_examples\ch21\Fig21_07\CommissionEmployee.h(10) :
 see declaration of 'CommissionEmployee'
C:\examples\ch21\Fig21_07\fig21_07.cpp(27) : error C2039:
 'setBaseSalary' : is not a member of 'CommissionEmployee'
 C:\cpphtp7_examples\ch21\Fig21_07\CommissionEmployee.h(10) :
 see declaration of 'CommissionEmployee'

Fig. 21.7 | Attempting to invoke derived-class-only functions via a base-class pointer. (Part 1 of 2.)

// attempt to invoke derived-class-only member functions
// on derived-class object through base-class pointer (disallowed)
double baseSalary = commissionEmployeePtr->getBaseSalary();
commissionEmployeePtr->setBaseSalary(500);

792 Chapter 21 Object-Oriented Programming: Polymorphism

The compiler allows access to derived-class-only members from a base-class pointer
that is aimed at a derived-class object if we explicitly cast the base-class pointer to a
derived-class pointer—known as downcasting. As you know, it’s possible to aim a base-
class pointer at a derived-class object. However, as we demonstrated in Fig. 21.7, a base-
class pointer can be used to invoke only the functions declared in the base class. Down-
casting allows a derived-class-specific operation on a derived-class object pointed to by a
base-class pointer. After a downcast, the program can invoke derived-class functions that
are not in the base class. Section 21.8 shows a concrete example of downcasting.

21.3.4 Virtual Functions
In Section 21.3.1, we aimed a base-class CommissionEmployee pointer at a derived-class
BasePlusCommissionEmployee object, then invoked member function print through that
pointer. Recall that the type of the handle determines which class’s functionality to invoke.
In that case, the CommissionEmployee pointer invoked the CommissionEmployee member
function print on the BasePlusCommissionEmployee object, even though the pointer was
aimed at a BasePlusCommissionEmployee object that has its own customized print func-
tion. With virtual functions, the type of the object being pointed to, not the type of the handle,
determines which version of a virtual function to invoke.

First, we consider why virtual functions are useful. Suppose that shape classes such
as Circle, Triangle, Rectangle and Square are all derived from base class Shape. Each of
these classes might be endowed with the ability to draw itself via a member function draw.
Although each class has its own draw function, the function for each shape is quite dif-
ferent. In a program that draws a set of shapes, it would be useful to be able to treat all the
shapes generically as objects of the base class Shape. Then, to draw any shape, we could
simply use a base-class Shape pointer to invoke function draw and let the program deter-
mine dynamically (i.e., at runtime) which derived-class draw function to use, based on the
type of the object to which the base-class Shape pointer points at any given time.

To enable this behavior, we declare draw in the base class as a virtual function, and
we override draw in each of the derived classes to draw the appropriate shape. From an
implementation perspective, overriding a function is no different than redefining one
(which is the approach we’ve been using until now). An overridden function in a derived
class has the same signature and return type (i.e., prototype) as the function it overrides in

GNU C++ compiler error messages:

fig21_07.cpp:26: error: `getBaseSalary' undeclared (first use this function)
fig21_07.cpp:26: error: (Each undeclared identifier is reported only once for
 each function it appears in.)
fig21_07.cpp:27: error: `setBaseSalary' undeclared (first use this function)

Software Engineering Observation 21.3
If the address of a derived-class object has been assigned to a pointer of one of its direct or
indirect base classes, it’s acceptable to cast that base-class pointer back to a pointer of the
derived-class type. In fact, this must be done to send that derived-class object messages that
do not appear in the base class.

Fig. 21.7 | Attempting to invoke derived-class-only functions via a base-class pointer. (Part 2 of 2.)

21.3 Relationships Among Objects in an Inheritance Hierarchy 793

its base class. If we do not declare the base-class function as virtual, we can redefine that
function. By contrast, if we declare the base-class function as virtual, we can override that
function to enable polymorphic behavior. We declare a virtual function by preceding the
function’s prototype with the keyword virtual in the base class. For example,

would appear in base class Shape. The preceding prototype declares that function draw is
a virtual function that takes no arguments and returns nothing. This function is declared
const because a draw function typically would not make changes to the Shape object on
which it’s invoked—virtual functions do not have to be const functions.

If a program invokes a virtual function through a base-class pointer to a derived-
class object (e.g., shapePtr->draw()) or a base-class reference to a derived-class object
(e.g., shapeRef.draw()), the program will choose the correct derived-class draw function
dynamically (i.e., at execution time) based on the object type—not the pointer or reference
type. Choosing the appropriate function to call at execution time (rather than at compile
time) is known as dynamic binding or late binding.

When a virtual function is called by referencing a specific object by name and using
the dot member-selection operator (e.g., squareObject.draw()), the function invocation
is resolved at compile time (this is called static binding) and the virtual function that is
called is the one defined for (or inherited by) the class of that particular object—this is not
polymorphic behavior. Thus, dynamic binding with virtual functions occurs only off
pointer (and, as we’ll soon see, reference) handles.

Now let’s see how virtual functions can enable polymorphic behavior in our
employee hierarchy. Figures 21.8–21.9 are the header files for classes CommissionEm-
ployee and BasePlusCommissionEmployee, respectively. The only difference between
these files and those of Fig. 21.1 and Fig. 21.3 is that we specify each class’s earnings and

virtual void draw() const;

Software Engineering Observation 21.4
Once a function is declared virtual, it remains virtual all the way down the
inheritance hierarchy from that point, even if that function is not explicitly declared
virtual when a derived class overrides it.

Good Programming Practice 21.1
Even though certain functions are implicitly virtual because of a declaration made high-
er in the class hierarchy, explicitly declare these functions virtual at every level of the hi-
erarchy to promote program clarity.

Error-Prevention Tip 21.1
When you browse a class hierarchy to locate a class to reuse, it’s possible that a function in
that class will exhibit virtual function behavior even though it isn’t explicitly declared
virtual. This happens when the class inherits a virtual function from its base class, and
it can lead to subtle logic errors. Such errors can be avoided by explicitly declaring all vir-
tual functions virtual throughout the inheritance hierarchy.

Software Engineering Observation 21.5
When a derived class chooses not to override a virtual function from its base class, the
derived class simply inherits its base class’s virtual function implementation.

794 Chapter 21 Object-Oriented Programming: Polymorphism

print member functions as virtual (lines 30–31 of Fig. 21.8 and lines 20–21 of
Fig. 21.9). Because functions earnings and print are virtual in class CommissionEm-
ployee, class BasePlusCommissionEmployee’s earnings and print functions override
class CommissionEmployee’s. Now, if we aim a base-class CommissionEmployee pointer at
a derived-class BasePlusCommissionEmployee object, and the program uses that pointer
to call either function earnings or print, the BasePlusCommissionEmployee object’s cor-
responding function will be invoked. There were no changes to the member-function
implementations of classes CommissionEmployee and BasePlusCommissionEmployee, so
we reuse the versions of Fig. 21.2 and Fig. 21.4.

1 // Fig. 21.8: CommissionEmployee.h
2 // CommissionEmployee class definition represents a commission employee.
3 #ifndef COMMISSION_H

4 #define COMMISSION_H

5
6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount
26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30
31
32 private:
33 string firstName;
34 string lastName;
35 string socialSecurityNumber;
36 double grossSales; // gross weekly sales
37 double commissionRate; // commission percentage
38 }; // end class CommissionEmployee
39
40 #endif

Fig. 21.8 | CommissionEmployee class header file declares earnings and print functions as
virtual.

virtual double earnings() const; // calculate earnings
virtual void print() const; // print CommissionEmployee object

21.3 Relationships Among Objects in an Inheritance Hierarchy 795

We modified Fig. 21.5 to create the program of Fig. 21.10. Lines 40–51 demonstrate
again that a CommissionEmployee pointer aimed at a CommissionEmployee object can be
used to invoke CommissionEmployee functionality, and a BasePlusCommissionEmployee
pointer aimed at a BasePlusCommissionEmployee object can be used to invoke Base-
PlusCommissionEmployee functionality. Line 54 aims base-class pointer commissionEm-
ployeePtr at derived-class object basePlusCommissionEmployee. Note that when line 61
invokes member function print off the base-class pointer, the derived-class BasePlusCom-
missionEmployee’s print member function is invoked, so line 61 outputs different text
than line 53 does in Fig. 21.5 (when member function print was not declared virtual).
We see that declaring a member function virtual causes the program to dynamically
determine which function to invoke based on the type of object to which the handle
points, rather than on the type of the handle. Note again that when commissionEmploy-
eePtr points to a CommissionEmployee object (line 40), class CommissionEmployee’s
print function is invoked, and when CommissionEmployeePtr points to a BasePlusCom-
missionEmployee object, class BasePlusCommissionEmployee’s print function is
invoked. Thus, the same message—print, in this case—sent (off a base-class pointer) to a
variety of objects related by inheritance to that base class, takes on many forms—this is
polymorphic behavior.

1 // Fig. 21.9: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from class
3 // CommissionEmployee.
4 #ifndef BASEPLUS_H

5 #define BASEPLUS_H

6
7 #include <string> // C++ standard string class
8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10
11 class BasePlusCommissionEmployee : public CommissionEmployee
12 {
13 public:
14 BasePlusCommissionEmployee(const string &, const string &,
15 const string &, double = 0.0, double = 0.0, double = 0.0);
16
17 void setBaseSalary(double); // set base salary
18 double getBaseSalary() const; // return base salary
19
20
21
22 private:
23 double baseSalary; // base salary
24 }; // end class BasePlusCommissionEmployee
25
26 #endif

Fig. 21.9 | BasePlusCommissionEmployee class header file declares earnings and print
functions as virtual.

virtual double earnings() const; // calculate earnings
virtual void print() const; // print BasePlusCommissionEmployee object

796 Chapter 21 Object-Oriented Programming: Polymorphism

1 // Fig. 21.10: fig21_10.cpp
2 // Introducing polymorphism, virtual functions and dynamic binding.
3 #include <iostream>
4 #include <iomanip>
5 #include "CommissionEmployee.h"

6 #include "BasePlusCommissionEmployee.h"

7 using namespace std;
8
9 int main()

10 {
11 // create base-class object
12 CommissionEmployee commissionEmployee(
13 "Sue", "Jones", "222-22-2222", 10000, .06);
14
15 // create base-class pointer
16 CommissionEmployee *commissionEmployeePtr = 0;
17
18 // create derived-class object
19 BasePlusCommissionEmployee basePlusCommissionEmployee(
20 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
21
22 // create derived-class pointer
23 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
24
25 // set floating-point output formatting
26 cout << fixed << setprecision(2);
27
28 // output objects using static binding
29 cout << "Invoking print function on base-class and derived-class "
30 << "\nobjects with static binding\n\n";
31 commissionEmployee.print(); // static binding
32 cout << "\n\n";
33 basePlusCommissionEmployee.print(); // static binding
34
35 // output objects using dynamic binding
36 cout << "\n\n\nInvoking print function on base-class and "
37 << "derived-class \nobjects with dynamic binding";
38
39
40
41 cout << "\n\nCalling virtual function print with base-class pointer"
42 << "\nto base-class object invokes base-class "
43 << "print function:\n\n";
44
45
46
47
48 cout << "\n\nCalling virtual function print with derived-class "
49 << "pointer\nto derived-class object invokes derived-class "
50 << "print function:\n\n";
51

Fig. 21.10 | Demonstrating polymorphism by invoking a derived-class virtual function via a
base-class pointer to a derived-class object. (Part 1 of 2.)

// aim base-class pointer at base-class object and print
commissionEmployeePtr = &commissionEmployee;

commissionEmployeePtr->print(); // invokes base-class print

// aim derived-class pointer at derived-class object and print
basePlusCommissionEmployeePtr = &basePlusCommissionEmployee;

basePlusCommissionEmployeePtr->print(); // invokes derived-class print

21.3 Relationships Among Objects in an Inheritance Hierarchy 797

52
53
54
55 cout << "\n\nCalling virtual function print with base-class pointer"
56 << "\nto derived-class object invokes derived-class "
57 << "print function:\n\n";
58
59
60
61
62 cout << endl;
63 } // end main

Invoking print function on base-class and derived-class
objects with static binding

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Invoking print function on base-class and derived-class
objects with dynamic binding

Calling virtual function print with base-class pointer
to base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Calling virtual function print with derived-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling virtual function print with base-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. 21.10 | Demonstrating polymorphism by invoking a derived-class virtual function via a
base-class pointer to a derived-class object. (Part 2 of 2.)

// aim base-class pointer at derived-class object and print
commissionEmployeePtr = &basePlusCommissionEmployee;

// polymorphism; invokes BasePlusCommissionEmployee's print;
// base-class pointer to derived-class object
commissionEmployeePtr->print();

798 Chapter 21 Object-Oriented Programming: Polymorphism

21.3.5 Summary of the Allowed Assignments Between Base-Class and
Derived-Class Objects and Pointers
Now that you’ve seen a complete application that processes diverse objects polymorphic-
ally, we summarize what you can and cannot do with base-class and derived-class objects
and pointers. Although a derived-class object also is a base-class object, the two objects are
nevertheless different. As discussed previously, derived-class objects can be treated as if
they were base-class objects. This is a logical relationship, because the derived class con-
tains all the members of the base class. However, base-class objects cannot be treated as if
they were derived-class objects—the derived class can have additional derived-class-only
members. For this reason, aiming a derived-class pointer at a base-class object is not al-
lowed without an explicit cast—such an assignment would leave the derived-class-only
members undefined on the base-class object. The cast relieves the compiler of the respon-
sibility of issuing an error message. In a sense, by using the cast you’re saying, “I know that
what I’m doing is dangerous and I take full responsibility for my actions.”

We’ve discussed four ways to aim base-class pointers and derived-class pointers at
base-class objects and derived-class objects:

1. Aiming a base-class pointer at a base-class object is straightforward—calls made
off the base-class pointer simply invoke base-class functionality.

2. Aiming a derived-class pointer at a derived-class object is straightforward—calls
made off the derived-class pointer simply invoke derived-class functionality.

3. Aiming a base-class pointer at a derived-class object is safe, because the derived-
class object is an object of its base class. However, this pointer can be used to in-
voke only base-class member functions. If you attempt to refer to a derived-class-
only member through the base-class pointer, the compiler reports an error. To
avoid this error, you must cast the base-class pointer to a derived-class pointer.
The derived-class pointer can then be used to invoke the derived-class object’s
complete functionality. This technique, called downcasting, is a potentially dan-
gerous operation—Section 21.8 demonstrates how to safely use downcasting. If
a virtual function is defined in the base and derived classes (either by inheri-
tance or overriding), and if that function is invoked on a derived-class object via
a base-class pointer, then the derived-class version of that function is called. This
is an example of the polymorphic behavior that occurs only with virtual func-
tions.

4. Aiming a derived-class pointer at a base-class object generates a compilation error.
The is-a relationship applies only from a derived class to its direct and indirect
base classes, and not vice versa. A base-class object does not contain the derived-
class-only members that can be invoked off a derived-class pointer.

Common Programming Error 21.1
After aiming a base-class pointer at a derived-class object, attempting to reference derived-
class-only members with the base-class pointer is a compilation error.

Common Programming Error 21.2
Treating a base-class object as a derived-class object can cause errors.

21.4 Type Fields and switch Statements 799

21.4 Type Fields and switch Statements
One way to determine the type of an object is to use a switch statement to check the value
of a field in the object. This allows us to distinguish among object types, then invoke an
appropriate action for a particular object. For example, in a hierarchy of shapes in which
each shape object has a shapeType attribute, a switch statement could check the object’s
shapeType to determine which print function to call.

Using switch logic exposes programs to a variety of potential problems. For example,
you might forget to include a type test when one is warranted, or might forget to test all
possible cases in a switch statement. When modifying a switch-based system by adding
new types, you might forget to insert the new cases in all relevant switch statements. Every
addition or deletion of a class requires the modification of every switch statement in the
system; tracking these statements down can be time consuming and error prone.

21.5 Abstract Classes and Pure virtual Functions
When we think of a class as a type, we assume that programs will create objects of that
type. However, there are cases in which it’s useful to define classes from which you never
intend to instantiate any objects. Such classes are called abstract classes. Because these
classes normally are used as base classes in inheritance hierarchies, we refer to them as ab-
stract base classes. These classes cannot be used to instantiate objects, because, as we’ll
soon see, abstract classes are incomplete—derived classes must define the “missing pieces.”
We build programs with abstract classes in Section 21.6.

An abstract class provides a base class from which other classes can inherit. Classes that
can be used to instantiate objects are called concrete classes. Such classes define every
member function they declare. We could have an abstract base class TwoDimension-
alShape and derive such concrete classes as Square, Circle and Triangle. We could also
have an abstract base class ThreeDimensionalShape and derive such concrete classes as
Cube, Sphere and Cylinder. Abstract base classes are too generic to define real objects; we
need to be more specific before we can think of instantiating objects. For example, if
someone tells you to “draw the two-dimensional shape,” what shape would you draw?
Concrete classes provide the specifics that make it reasonable to instantiate objects.

An inheritance hierarchy does not need to contain any abstract classes, but many
object-oriented systems have class hierarchies headed by abstract base classes. In some
cases, abstract classes constitute the top few levels of the hierarchy. A good example of this
is the shape hierarchy in Fig. 20.3, which begins with abstract base class Shape. On the
next level of the hierarchy we have two more abstract base classes, namely, TwoDimension-

Software Engineering Observation 21.6
Polymorphic programming can eliminate the need for switch logic. By using the
polymorphism mechanism to perform the equivalent logic, you can avoid the kinds of
errors typically associated with switch logic.

Software Engineering Observation 21.7
An interesting consequence of using polymorphism is that programs take on a simplified
appearance. They contain less branching logic and simpler sequential code. This
simplification facilitates testing, debugging and program maintenance.

800 Chapter 21 Object-Oriented Programming: Polymorphism

alShape and ThreeDimensionalShape. The next level of the hierarchy defines concrete
classes for two-dimensional shapes (namely, Circle, Square and Triangle) and for three-
dimensional shapes (namely, Sphere, Cube and Tetrahedron).

A class is made abstract by declaring one or more of its virtual functions to be
“pure.” A pure virtual function is specified by placing “= 0” in its declaration, as in

The “= 0” is a pure specifier. Pure virtual functions do not provide implementations. Ev-
ery concrete derived class must override all base-class pure virtual functions with concrete
implementations of those functions. The difference between a virtual function and a
pure virtual function is that a virtual function has an implementation and gives the de-
rived class the option of overriding the function; by contrast, a pure virtual function does
not provide an implementation and requires the derived class to override the function for
that derived class to be concrete; otherwise the derived class remains abstract.

Pure virtual functions are used when it does not make sense for the base class to have
an implementation of a function, but you want all concrete derived classes to implement
the function. Returning to our earlier example of space objects, it does not make sense for
the base class SpaceObject to have an implementation for function draw (as there is no
way to draw a generic space object without having more information about what type of
space object is being drawn). An example of a function that would be defined as virtual
(and not pure virtual) would be one that returns a name for the object. We can name a
generic SpaceObject (for instance, as "space object"), so a default implementation for
this function can be provided, and the function does not need to be pure virtual. The
function is still declared virtual, however, because it’s expected that derived classes will
override this function to provide more specific names for the derived-class objects.

Although we cannot instantiate objects of an abstract base class, we can use the
abstract base class to declare pointers and references that can refer to objects of any con-
crete classes derived from the abstract class. Programs typically use such pointers and ref-
erences to manipulate derived-class objects polymorphically.

virtual void draw() const = 0; // pure virtual function

Software Engineering Observation 21.8
An abstract class defines a common public interface for the various classes in a class
hierarchy. An abstract class contains one or more pure virtual functions that concrete
derived classes must override.

Common Programming Error 21.3
Attempting to instantiate an object of an abstract class causes a compilation error.

Common Programming Error 21.4
Failure to override a pure virtual function in a derived class, then attempting to instan-
tiate objects of that class, is a compilation error.

Software Engineering Observation 21.9
An abstract class has at least one pure virtual function. An abstract class also can have
data members and concrete functions (including constructors and destructors), which are
subject to the normal rules of inheritance by derived classes.

21.6 Case Study: Payroll System Using Polymorphism 801

Consider another application of polymorphism. A screen manager needs to display a
variety of objects, including new types of objects that you’ll add to the system after writing
the screen manager. The system might need to display various shapes, such as Circles,
Triangles or Rectangles, which are derived from abstract base class Shape. The screen
manager uses Shape pointers to manage the objects that are displayed. To draw any object
(regardless of the level at which that object’s class appears in the inheritance hierarchy), the
screen manager uses a base-class pointer to the object to invoke the object’s draw function,
which is a pure virtual function in base class Shape; therefore, each concrete derived class
must implement function draw. Each Shape object in the inheritance hierarchy knows
how to draw itself. The screen manager does not have to worry about the type of each
object or whether the screen manager has ever encountered objects of that type.

Polymorphism is particularly effective for implementing layered software systems. In
operating systems, for example, each type of physical device could operate quite differently
from the others. Even so, commands to read or write data from and to devices may have a
certain uniformity. The write message sent to a device-driver object needs to be interpreted
specifically in the context of that device driver and how that device driver manipulates
devices of a specific type. However, the write call itself really is no different from the write
to any other device in the system—place some number of bytes from memory onto that
device. An object-oriented operating system might use an abstract base class to provide an
interface appropriate for all device drivers. Then, through inheritance from that abstract
base class, derived classes are formed that all operate similarly. The capabilities (i.e., the
public functions) offered by the device drivers are provided as pure virtual functions in
the abstract base class. The implementations of these pure virtual functions are provided
in the derived classes that correspond to the specific types of device drivers. This architec-
ture also allows new devices to be added to a system easily, even after the operating system
has been defined. The user can just plug in the device and install its new device driver. The
operating system “talks” to this new device through its device driver, which has the same
public member functions as all other device drivers—those defined in the device driver
abstract base class.

It’s common in object-oriented programming to define an iterator class that can tra-
verse all the objects in a container (such as an array). For example, a program can print a
list of objects in a vector by creating an iterator object, then using the iterator to obtain
the next element of the list each time the iterator is called. Iterators often are used in poly-
morphic programming to traverse an array or a linked list of pointers to objects from var-
ious levels of a hierarchy. The pointers in such a list are all base-class pointers. A list of
pointers to objects of base class TwoDimensionalShape could contain pointers to objects
of classes Square, Circle, Triangle and so on. Using polymorphism to send a draw mes-
sage, off a TwoDimensionalShape * pointer, to each object in the list would draw each
object correctly on the screen.

21.6 Case Study: Payroll System Using Polymorphism
This section reexamines the CommissionEmployee-BasePlusCommissionEmployee hierar-
chy that we explored throughout Section 20.4. In this example, we use an abstract class
and polymorphism to perform payroll calculations based on the type of employee. We cre-
ate an enhanced employee hierarchy to solve the following problem:

802 Chapter 21 Object-Oriented Programming: Polymorphism

A company pays its employees weekly. The employees are of four types: Salaried employ-
ees are paid a fixed weekly salary regardless of the number of hours worked, hourly
employees are paid by the hour and receive overtime pay for all hours worked in excess
of 40 hours, commission employees are paid a percentage of their sales and base-salary-
plus-commission employees receive a base salary plus a percentage of their sales. For the
current pay period, the company has decided to reward base-salary-plus-commission
employees by adding 10 percent to their base salaries. The company wants to imple-
ment a C++ program that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an employee. The
classes that derive directly from Employee are SalariedEmployee, CommissionEmployee
and HourlyEmployee. Class BasePlusCommissionEmployee—derived from Commission-
Employee—represents the last employee type. The UML class diagram in Fig. 21.11
shows the inheritance hierarchy for our polymorphic employee payroll application. The
abstract class name Employee is italicized, as per the convention of the UML.

Abstract base class Employee declares the “interface” to the hierarchy—that is, the set
of member functions that a program can invoke on all Employee objects. Each employee,
regardless of the way his or her earnings are calculated, has a first name, a last name and a
social security number, so private data members firstName, lastName and socialSecu-
rityNumber appear in abstract base class Employee.

The following sections implement the Employee class hierarchy. The first five each
implement one of the abstract or concrete classes. The last section implements a test pro-
gram that builds objects of all these classes and processes the objects polymorphically.

Fig. 21.11 | Employee hierarchy UML class diagram.

Software Engineering Observation 21.10
A derived class can inherit interface or implementation from a base class. Hierarchies
designed for implementation inheritance tend to have their functionality high in the
hierarchy—each new derived class inherits one or more member functions that were
defined in a base class, and the derived class uses the base-class definitions. Hierarchies
designed for interface inheritance tend to have their functionality lower in the
hierarchy—a base class specifies one or more functions that should be defined for each class
in the hierarchy (i.e., they have the same prototype), but the individual derived classes
provide their own implementations of the function(s).

Employee

CommissionEmployee HourlyEmployeeSalariedEmployee

BasePlusCommissionEmployee

Employee class is abstract;
displayed in italics

21.6 Case Study: Payroll System Using Polymorphism 803

21.6.1 Creating Abstract Base Class Employee
Class Employee (Figs. 21.13–21.14, discussed in further detail shortly) provides functions
earnings and print, in addition to various get and set functions that manipulate Employ-
ee’s data members. An earnings function certainly applies generically to all employees,
but each earnings calculation depends on the employee’s class. So we declare earnings as
pure virtual in base class Employee because a default implementation does not make
sense for that function—there is not enough information to determine what amount
earnings should return. Each derived class overrides earnings with an appropriate imple-
mentation. To calculate an employee’s earnings, the program assigns the address of an em-
ployee’s object to a base class Employee pointer, then invokes the earnings function on
that object. We maintain a vector of Employee pointers, each of which points to an Em-
ployee object (of course, there cannot be Employee objects, because Employee is an ab-
stract class—because of inheritance, however, all objects of all derived classes of Employee
may nevertheless be thought of as Employee objects). The program iterates through the
vector and calls function earnings for each Employee object. C++ processes these func-
tion calls polymorphically. Including earnings as a pure virtual function in Employee
forces every direct derived class of Employee that wishes to be a concrete class to override
earnings. This enables the designer of the class hierarchy to demand that each derived
class provide an appropriate pay calculation, if indeed that derived class is to be concrete.

Function print in class Employee displays the first name, last name and social security
number of the employee. As we’ll see, each derived class of Employee overrides function
print to output the employee’s type (e.g., "salaried employee:") followed by the rest of
the employee’s information. Function print could also call earnings, even though print
is a pure-virtual function in class Employee.

The diagram in Fig. 21.12 shows each of the five classes in the hierarchy down the left
side and functions earnings and print across the top. For each class, the diagram shows
the desired results of each function. Class Employee specifies “= 0” for function earnings
to indicate that this is a pure virtual function. Each derived class overrides this function
to provide an appropriate implementation. We do not list base class Employee’s get and set
functions because they’re not overridden in any of the derived classes—each of these func-
tions is inherited and used “as is” by each of the derived classes.

Let’s consider class Employee’s header file (Fig. 21.13). The public member func-
tions include a constructor that takes the first name, last name and social security number
as arguments (line 12); set functions that set the first name, last name and social security
number (lines 14, 17 and 20, respectively); get functions that return the first name, last
name and social security number (lines 15, 18 and 21, respectively); pure virtual func-
tion earnings (line 24) and virtual function print (line 25).

Recall that we declared earnings as a pure virtual function because first we must
know the specific Employee type to determine the appropriate earnings calculations.
Declaring this function as pure virtual indicates that each concrete derived class must
provide an earnings implementation and that a program can use base-class Employee
pointers to invoke function earnings polymorphically for any type of Employee.

Figure 21.14 contains the member-function implementations for class Employee. No
implementation is provided for virtual function earnings. The Employee constructor
(lines 9–14) does not validate the social security number. Normally, such validation
should be provided.

804 Chapter 21 Object-Oriented Programming: Polymorphism

Fig. 21.12 | Polymorphic interface for the Employee hierarchy classes.

1 // Fig. 21.13: Employee.h
2 // Employee abstract base class.
3 #ifndef EMPLOYEE_H

4 #define EMPLOYEE_H

5
6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class Employee

10 {
11 public:
12 Employee(const string &, const string &, const string &);
13
14 void setFirstName(const string &); // set first name
15 string getFirstName() const; // return first name
16
17 void setLastName(const string &); // set last name
18 string getLastName() const; // return last name
19
20 void setSocialSecurityNumber(const string &); // set SSN
21 string getSocialSecurityNumber() const; // return SSN

Fig. 21.13 | Employee class header file. (Part 1 of 2.)

weeklySalary

= 0

Commission-
Employee

BasePlus-
Commission-
Employee

Hourly-
Employee

Salaried-
Employee

Employee

printearnings

If hours <= 40
 wage * hours
If hours > 40
 (40 * wage) +
 ((hours - 40)
 * wage * 1.5)

commissionRate *
grossSales

baseSalary +
(commissionRate *
grossSales)

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklysalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage; hours worked: hours

commission employee: firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate

base salaried commission employee:
 firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate;
base salary: baseSalary

firstName lastName
social security number: SSN

21.6 Case Study: Payroll System Using Polymorphism 805

22
23
24
25
26 private:
27 string firstName;
28 string lastName;
29 string socialSecurityNumber;
30 }; // end class Employee
31
32 #endif // EMPLOYEE_H

1 // Fig. 21.14: Employee.cpp
2 // Abstract-base-class Employee member-function definitions.
3 // Note: No definitions are given for pure virtual functions.
4 #include <iostream>
5 #include "Employee.h" // Employee class definition
6 using namespace std;
7
8 // constructor
9 Employee::Employee(const string &first, const string &last,

10 const string &ssn)
11 : firstName(first), lastName(last), socialSecurityNumber(ssn)
12 {
13 // empty body
14 } // end Employee constructor
15
16 // set first name
17 void Employee::setFirstName(const string &first)
18 {
19 firstName = first;
20 } // end function setFirstName
21
22 // return first name
23 string Employee::getFirstName() const
24 {
25 return firstName;
26 } // end function getFirstName
27
28 // set last name
29 void Employee::setLastName(const string &last)
30 {
31 lastName = last;
32 } // end function setLastName
33
34 // return last name
35 string Employee::getLastName() const
36 {
37 return lastName;
38 } // end function getLastName

Fig. 21.14 | Employee class implementation file. (Part 1 of 2.)

Fig. 21.13 | Employee class header file. (Part 2 of 2.)

// pure virtual function makes Employee abstract base class
virtual double earnings() const = 0; // pure virtual
virtual void print() const; // virtual

806 Chapter 21 Object-Oriented Programming: Polymorphism

Note that virtual function print (Fig. 21.14, lines 53–57) provides an implemen-
tation that will be overridden in each of the derived classes. Each of these functions will,
however, use the abstract class’s version of print to print information common to all
classes in the Employee hierarchy.

21.6.2 Creating Concrete Derived Class SalariedEmployee
Class SalariedEmployee (Figs. 21.15–21.16) derives from class Employee (line 8 of
Fig. 21.15). The public member functions include a constructor that takes a first name,
a last name, a social security number and a weekly salary as arguments (lines 11–12); a set
function to assign a new nonnegative value to data member weeklySalary (line 14); a get
function to return weeklySalary’s value (line 15); a virtual function earnings that cal-
culates a SalariedEmployee’s earnings (line 18) and a virtual function print (line 19)
that outputs the employee’s type, namely, "salaried employee: " followed by employee-
specific information produced by base class Employee’s print function and SalariedEm-
ployee’s getWeeklySalary function.

39
40 // set social security number
41 void Employee::setSocialSecurityNumber(const string &ssn)
42 {
43 socialSecurityNumber = ssn; // should validate
44 } // end function setSocialSecurityNumber
45
46 // return social security number
47 string Employee::getSocialSecurityNumber() const
48 {
49 return socialSecurityNumber;
50 } // end function getSocialSecurityNumber
51
52 // print Employee's information (virtual, but not pure virtual)
53 void Employee::print() const
54 {
55 cout << getFirstName() << ' ' << getLastName()
56 << "\nsocial security number: " << getSocialSecurityNumber();
57 } // end function print

1 // Fig. 21.15: SalariedEmployee.h
2 // SalariedEmployee class derived from Employee.
3 #ifndef SALARIED_H

4 #define SALARIED_H

5
6 #include "Employee.h" // Employee class definition
7
8
9 {

Fig. 21.15 | SalariedEmployee class header file. (Part 1 of 2.)

Fig. 21.14 | Employee class implementation file. (Part 2 of 2.)

class SalariedEmployee : public Employee

21.6 Case Study: Payroll System Using Polymorphism 807

Figure 21.16 contains the member-function implementations for SalariedEmployee.
The class’s constructor passes the first name, last name and social security number to the
Employee constructor (line 10) to initialize the private data members that are inherited
from the base class, but not accessible in the derived class. Function earnings (line 29–
32) overrides pure virtual function earnings in Employee to provide a concrete imple-
mentation that returns the SalariedEmployee’s weekly salary. If we did not implement
earnings, class SalariedEmployee would be an abstract class, and any attempt to instan-
tiate an object of the class would result in a compilation error (and, of course, we want
SalariedEmployee here to be a concrete class). In class SalariedEmployee’s header file,
we declared member functions earnings and print as virtual (lines 18–19 of
Fig. 21.15)—actually, placing the virtual keyword before these member functions is
redundant. We defined them as virtual in base class Employee, so they remain virtual
functions throughout the class hierarchy. Recall from Good Programming Practice 21.1
that explicitly declaring such functions virtual at every level of the hierarchy can promote
program clarity.

10 public:
11 SalariedEmployee(const string &, const string &,
12 const string &, double = 0.0);
13
14 void setWeeklySalary(double); // set weekly salary
15 double getWeeklySalary() const; // return weekly salary
16
17
18
19
20 private:
21 double weeklySalary; // salary per week
22 }; // end class SalariedEmployee
23
24 #endif // SALARIED_H

1 // Fig. 21.16: SalariedEmployee.cpp
2 // SalariedEmployee class member-function definitions.
3 #include <iostream>
4 #include "SalariedEmployee.h" // SalariedEmployee class definition
5 using namespace std;
6
7 // constructor
8 SalariedEmployee::SalariedEmployee(const string &first,
9 const string &last, const string &ssn, double salary)

10 : Employee(first, last, ssn)
11 {
12 setWeeklySalary(salary);
13 } // end SalariedEmployee constructor

Fig. 21.16 | SalariedEmployee class implementation file. (Part 1 of 2.)

Fig. 21.15 | SalariedEmployee class header file. (Part 2 of 2.)

// keyword virtual signals intent to override
virtual double earnings() const; // calculate earnings
virtual void print() const; // print SalariedEmployee object

808 Chapter 21 Object-Oriented Programming: Polymorphism

Function print of class SalariedEmployee (lines 35–40 of Fig. 21.16) overrides
Employee function print. If class SalariedEmployee did not override print, Salaried-
Employee would inherit the Employee version of print. In that case, SalariedEmployee’s
print function would simply return the employee’s full name and social security number,
which does not adequately represent a SalariedEmployee. To print a SalariedEmployee’s
complete information, the derived class’s print function outputs "salaried employee: "

followed by the base-class Employee-specific information (i.e., first name, last name and
social security number) printed by invoking the base class’s print function using the scope
resolution operator (line 38)—this is a nice example of code reuse. The output produced
by SalariedEmployee’s print function contains the employee’s weekly salary obtained by
invoking the class’s getWeeklySalary function.

21.6.3 Creating Concrete Derived Class HourlyEmployee
Class HourlyEmployee (Figs. 21.17–21.18) also derives from class Employee (line 8 of
Fig. 21.17). The public member functions include a constructor (lines 13–14) that takes
as arguments a first name, a last name, a social security number, an hourly wage and the
number of hours worked; set functions that assign new values to data members wage and
hours, respectively (lines 16 and 19); get functions to return the values of wage and hours,

14
15 // set salary
16 void SalariedEmployee::setWeeklySalary(double salary)
17 {
18 weeklySalary = (salary < 0.0) ? 0.0 : salary;
19 } // end function setWeeklySalary
20
21 // return salary
22 double SalariedEmployee::getWeeklySalary() const
23 {
24 return weeklySalary;
25 } // end function getWeeklySalary
26
27 // calculate earnings;
28 // override pure virtual function earnings in Employee
29 double SalariedEmployee::earnings() const
30 {
31 return getWeeklySalary();
32 } // end function earnings
33
34 // print SalariedEmployee's information
35 void SalariedEmployee::print() const
36 {
37 cout << "salaried employee: ";
38 Employee::print(); // reuse abstract base-class print function
39 cout << "\nweekly salary: " << getWeeklySalary();
40 } // end function print

Fig. 21.16 | SalariedEmployee class implementation file. (Part 2 of 2.)

21.6 Case Study: Payroll System Using Polymorphism 809

respectively (lines 17 and 20); a virtual function earnings that calculates an HourlyEm-
ployee’s earnings (line 23) and a virtual function print that outputs the employee’s
type, namely, "hourly employee: " and employee-specific information (line 24).

Figure 21.18 contains the member-function implementations for class HourlyEm-
ployee. Lines 17–20 and 29–33 define set functions that assign new values to data mem-
bers wage and hours, respectively. Function setWage (lines 17–20) ensures that wage is
non-negative, and function setHours (lines 29–33) ensures that data member hours is
between 0 and hoursPerWeek (i.e., 168). Class HourlyEmployee’s get functions are imple-
mented in lines 23–26 and 36–39. We do not declare these functions virtual, so classes
derived from class HourlyEmployee cannot override them (although derived classes cer-
tainly can redefine them). The HourlyEmployee constructor, like the SalariedEmployee
constructor, passes the first name, last name and social security number to the base class
Employee constructor (line 10) to initialize the inherited private data members declared
in the base class. In addition, HourlyEmployee’s print function calls base-class function
print (line 55) to output the Employee-specific information (i.e., first name, last name
and social security number)—this is another nice example of code reuse.

1 // Fig. 21.17: HourlyEmployee.h
2 // HourlyEmployee class definition.
3 #ifndef HOURLY_H

4 #define HOURLY_H

5
6 #include "Employee.h" // Employee class definition
7
8
9 {

10 public:
11 static const int hoursPerWeek = 168; // hours in one week
12
13 HourlyEmployee(const string &, const string &,
14 const string &, double = 0.0, double = 0.0);
15
16 void setWage(double); // set hourly wage
17 double getWage() const; // return hourly wage
18
19 void setHours(double); // set hours worked
20 double getHours() const; // return hours worked
21
22
23
24
25 private:
26 double wage; // wage per hour
27 double hours; // hours worked for week
28 }; // end class HourlyEmployee
29
30 #endif // HOURLY_H

Fig. 21.17 | HourlyEmployee class header file.

class HourlyEmployee : public Employee

// keyword virtual signals intent to override
virtual double earnings() const; // calculate earnings
virtual void print() const; // print HourlyEmployee object

810 Chapter 21 Object-Oriented Programming: Polymorphism

1 // Fig. 21.18: HourlyEmployee.cpp
2 // HourlyEmployee class member-function definitions.
3 #include <iostream>
4 #include "HourlyEmployee.h" // HourlyEmployee class definition
5 using namespace std;
6
7 // constructor
8 HourlyEmployee::HourlyEmployee(const string &first, const string &last,
9 const string &ssn, double hourlyWage, double hoursWorked)

10 : Employee(first, last, ssn)
11 {
12 setWage(hourlyWage); // validate hourly wage
13 setHours(hoursWorked); // validate hours worked
14 } // end HourlyEmployee constructor
15
16 // set wage
17 void HourlyEmployee::setWage(double hourlyWage)
18 {
19 wage = (hourlyWage < 0.0 ? 0.0 : hourlyWage);
20 } // end function setWage
21
22 // return wage
23 double HourlyEmployee::getWage() const
24 {
25 return wage;
26 } // end function getWage
27
28 // set hours worked
29 void HourlyEmployee::setHours(double hoursWorked)
30 {
31 hours = (((hoursWorked >= 0.0) &&
32 (hoursWorked <= hoursPerWeek)) ? hoursWorked : 0.0);
33 } // end function setHours
34
35 // return hours worked
36 double HourlyEmployee::getHours() const
37 {
38 return hours;
39 } // end function getHours
40
41 // calculate earnings;
42 // override pure virtual function earnings in Employee
43 double HourlyEmployee::earnings() const
44 {
45 if (getHours() <= 40) // no overtime
46 return getWage() * getHours();
47 else
48 return 40 * getWage() + ((getHours() - 40) * getWage() * 1.5);
49 } // end function earnings
50
51 // print HourlyEmployee's information
52 void HourlyEmployee::print() const
53 {

Fig. 21.18 | HourlyEmployee class implementation file. (Part 1 of 2.)

21.6 Case Study: Payroll System Using Polymorphism 811

21.6.4 Creating Concrete Derived Class CommissionEmployee
Class CommissionEmployee (Figs. 21.19–21.20) derives from Employee (Fig. 21.19, line
8). The member-function implementations (Fig. 21.20) include a constructor (lines 8–
14) that takes a first name, last name, social security number, sales amount and commis-
sion rate; set functions (lines 17–20 and 29–32) to assign new values to data members com-
missionRate and grossSales, respectively; get functions (lines 23–26 and 35–38) that
retrieve their values; function earnings (lines 41–44) to calculate a CommissionEmployee’s
earnings; and function print (lines 47–53) to output the employee’s type, namely,
"commission employee: " and employee-specific information. The constructor passes the
first name, last name and social security number to the Employee constructor (line 10) to
initialize Employee’s private data members. Function print calls base-class function
print (line 50) to display the Employee-specific information.

54 cout << "hourly employee: ";
55
56 cout << "\nhourly wage: " << getWage() <<
57 "; hours worked: " << getHours();
58 } // end function print

1 // Fig. 21.19: CommissionEmployee.h
2 // CommissionEmployee class derived from Employee.
3 #ifndef COMMISSION_H

4 #define COMMISSION_H

5
6 #include "Employee.h" // Employee class definition
7
8
9 {

10 public:
11 CommissionEmployee(const string &, const string &,
12 const string &, double = 0.0, double = 0.0);
13
14 void setCommissionRate(double); // set commission rate
15 double getCommissionRate() const; // return commission rate
16
17 void setGrossSales(double); // set gross sales amount
18 double getGrossSales() const; // return gross sales amount
19
20
21
22
23 private:
24 double grossSales; // gross weekly sales
25 double commissionRate; // commission percentage
26 }; // end class CommissionEmployee
27
28 #endif // COMMISSION_H

Fig. 21.19 | CommissionEmployee class header file.

Fig. 21.18 | HourlyEmployee class implementation file. (Part 2 of 2.)

Employee::print(); // code reuse

class CommissionEmployee : public Employee

// keyword virtual signals intent to override
virtual double earnings() const; // calculate earnings
virtual void print() const; // print CommissionEmployee object

812 Chapter 21 Object-Oriented Programming: Polymorphism

1 // Fig. 21.20: CommissionEmployee.cpp
2 // CommissionEmployee class member-function definitions.
3 #include <iostream>
4 #include "CommissionEmployee.h" // CommissionEmployee class definition
5 using namespace std;
6
7 // constructor
8 CommissionEmployee::CommissionEmployee(const string &first,
9 const string &last, const string &ssn, double sales, double rate)

10 : Employee(first, last, ssn)
11 {
12 setGrossSales(sales);
13 setCommissionRate(rate);
14 } // end CommissionEmployee constructor
15
16 // set commission rate
17 void CommissionEmployee::setCommissionRate(double rate)
18 {
19 commissionRate = ((rate > 0.0 && rate < 1.0) ? rate : 0.0);
20 } // end function setCommissionRate
21
22 // return commission rate
23 double CommissionEmployee::getCommissionRate() const
24 {
25 return commissionRate;
26 } // end function getCommissionRate
27
28 // set gross sales amount
29 void CommissionEmployee::setGrossSales(double sales)
30 {
31 grossSales = ((sales < 0.0) ? 0.0 : sales);
32 } // end function setGrossSales
33
34 // return gross sales amount
35 double CommissionEmployee::getGrossSales() const
36 {
37 return grossSales;
38 } // end function getGrossSales
39
40 // calculate earnings; override pure virtual function earnings in Employee
41 double CommissionEmployee::earnings() const
42 {
43 return getCommissionRate() * getGrossSales();
44 } // end function earnings
45
46 // print CommissionEmployee's information
47 void CommissionEmployee::print() const
48 {
49 cout << "commission employee: ";
50
51 cout << "\ngross sales: " << getGrossSales()
52 << "; commission rate: " << getCommissionRate();
53 } // end function print

Fig. 21.20 | CommissionEmployee class implementation file.

Employee::print(); // code reuse

21.6 Case Study: Payroll System Using Polymorphism 813

21.6.5 Creating Indirect Concrete Derived Class
BasePlusCommissionEmployee

Class BasePlusCommissionEmployee (Figs. 21.21–21.22) directly inherits from class
CommissionEmployee (line 8 of Fig. 21.21) and therefore is an indirect derived class of class
Employee. Class BasePlusCommissionEmployee’s member-function implementations in-
clude a constructor (lines 8–14 of Fig. 21.22) that takes as arguments a first name, a last
name, a social security number, a sales amount, a commission rate and a base salary. It then
passes the first name, last name, social security number, sales amount and commission rate
to the CommissionEmployee constructor (line 11) to initialize the inherited members.
BasePlusCommissionEmployee also contains a set function (lines 17–20) to assign a new
value to data member baseSalary and a get function (lines 23–26) to return baseSalary’s
value. Function earnings (lines 30–33) calculates a BasePlusCommissionEmployee’s earn-
ings. Line 32 in function earnings calls base-class CommissionEmployee’s earnings func-
tion to calculate the commission-based portion of the employee’s earnings. This is a nice
example of code reuse. BasePlusCommissionEmployee’s print function (lines 36–41) out-
puts "base-salaried", followed by the output of base-class CommissionEmployee’s print
function (another example of code reuse), then the base salary. The resulting output begins
with "base-salaried commission employee: " followed by the rest of the BasePlusCom-
missionEmployee’s information. Recall that CommissionEmployee’s print displays the
employee’s first name, last name and social security number by invoking the print func-
tion of its base class (i.e., Employee)—yet another example of code reuse. BasePlusCom-
missionEmployee’s print initiates a chain of functions calls that spans all three levels of
the Employee hierarchy.

1 // Fig. 21.21: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from CommissionEmployee.
3 #ifndef BASEPLUS_H

4 #define BASEPLUS_H

5
6 #include "CommissionEmployee.h" // CommissionEmployee class definition
7
8
9 {

10 public:
11 BasePlusCommissionEmployee(const string &, const string &,
12 const string &, double = 0.0, double = 0.0, double = 0.0);
13
14 void setBaseSalary(double); // set base salary
15 double getBaseSalary() const; // return base salary
16
17
18
19
20 private:
21 double baseSalary; // base salary per week
22 }; // end class BasePlusCommissionEmployee
23
24 #endif // BASEPLUS_H

Fig. 21.21 | BasePlusCommissionEmployee class header file.

class BasePlusCommissionEmployee : public CommissionEmployee

// keyword virtual signals intent to override
virtual double earnings() const; // calculate earnings
virtual void print() const; // print BasePlusCommissionEmployee object

814 Chapter 21 Object-Oriented Programming: Polymorphism

21.6.6 Demonstrating Polymorphic Processing
To test our Employee hierarchy, the program in Fig. 21.23 creates an object of each of the
four concrete classes SalariedEmployee, HourlyEmployee, CommissionEmployee and
BasePlusCommissionEmployee. The program manipulates these objects, first with static
binding, then polymorphically, using a vector of Employee pointers. Lines 23–30 create
objects of each of the four concrete Employee derived classes. Lines 35–43 output each Em-
ployee’s information and earnings. Each member-function invocation in lines 35–43 is
an example of static binding—at compile time, because we’re using name handles (not

1 // Fig. 21.22: BasePlusCommissionEmployee.cpp
2 // BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate, double salary)
11 : CommissionEmployee(first, last, ssn, sales, rate)
12 {
13 setBaseSalary(salary); // validate and store base salary
14 } // end BasePlusCommissionEmployee constructor
15
16 // set base salary
17 void BasePlusCommissionEmployee::setBaseSalary(double salary)
18 {
19 baseSalary = ((salary < 0.0) ? 0.0 : salary);
20 } // end function setBaseSalary
21
22 // return base salary
23 double BasePlusCommissionEmployee::getBaseSalary() const
24 {
25 return baseSalary;
26 } // end function getBaseSalary
27
28 // calculate earnings;
29 // override virtual function earnings in CommissionEmployee
30 double BasePlusCommissionEmployee::earnings() const
31 {
32 return getBaseSalary() + ;
33 } // end function earnings
34
35 // print BasePlusCommissionEmployee's information
36 void BasePlusCommissionEmployee::print() const
37 {
38 cout << "base-salaried ";
39
40 cout << "; base salary: " << getBaseSalary();
41 } // end function print

Fig. 21.22 | BasePlusCommissionEmployee class implementation file.

CommissionEmployee::earnings()

CommissionEmployee::print(); // code reuse

21.6 Case Study: Payroll System Using Polymorphism 815

pointers or references that could be set at execution time), the compiler can identify each
object’s type to determine which print and earnings functions are called.

1 // Fig. 21.23: fig21_23.cpp
2 // Processing Employee derived-class objects individually
3 // and polymorphically using dynamic binding.
4 #include <iostream>
5 #include <iomanip>
6 #include <vector>
7 #include "Employee.h"

8 #include "SalariedEmployee.h"

9 #include "HourlyEmployee.h"

10 #include "CommissionEmployee.h"

11 #include "BasePlusCommissionEmployee.h"

12 using namespace std;
13
14 void virtualViaPointer(const Employee * const); // prototype
15 void virtualViaReference(const Employee &); // prototype
16
17 int main()
18 {
19 // set floating-point output formatting
20 cout << fixed << setprecision(2);
21
22 // create derived-class objects
23 SalariedEmployee salariedEmployee(
24 "John", "Smith", "111-11-1111", 800);
25 HourlyEmployee hourlyEmployee(
26 "Karen", "Price", "222-22-2222", 16.75, 40);
27 CommissionEmployee commissionEmployee(
28 "Sue", "Jones", "333-33-3333", 10000, .06);
29 BasePlusCommissionEmployee basePlusCommissionEmployee(
30 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);
31
32 cout << "Employees processed individually using static binding:\n\n";
33
34 // output each Employee’s information and earnings using static binding
35
36 cout << "\nearned $" << << "\n\n";
37
38 cout << "\nearned $" << << "\n\n";
39
40 cout << "\nearned $" << << "\n\n";
41
42 cout << "\nearned $" <<
43 << "\n\n";
44
45
46
47
48
49

Fig. 21.23 | Employee class hierarchy driver program. (Part 1 of 3.)

salariedEmployee.print();
salariedEmployee.earnings()

hourlyEmployee.print();
hourlyEmployee.earnings()

commissionEmployee.print();
commissionEmployee.earnings()

basePlusCommissionEmployee.print();
basePlusCommissionEmployee.earnings()

// create vector of four base-class pointers
vector < Employee * > employees(4);

// initialize vector with Employees
employees[0] = &salariedEmployee;

816 Chapter 21 Object-Oriented Programming: Polymorphism

50
51
52
53
54 cout << "Employees processed polymorphically via dynamic binding:\n\n";
55
56 // call virtualViaPointer to print each Employee's information
57 // and earnings using dynamic binding
58 cout << "Virtual function calls made off base-class pointers:\n\n";
59
60
61
62
63 // call virtualViaReference to print each Employee's information
64 // and earnings using dynamic binding
65 cout << "Virtual function calls made off base-class references:\n\n";
66
67
68
69 } // end main
70
71
72
73
74
75
76
77
78
79
80
81
82
83 ‘
84
85

Employees processed individually using static binding:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

Fig. 21.23 | Employee class hierarchy driver program. (Part 2 of 3.)

employees[1] = &hourlyEmployee;
employees[2] = &commissionEmployee;
employees[3] = &basePlusCommissionEmployee;

for (size_t i = 0; i < employees.size(); i++)
 virtualViaPointer(employees[i]);

for (size_t i = 0; i < employees.size(); i++)
 virtualViaReference(*employees[i]); // note dereferencing

// call Employee virtual functions print and earnings off a
// base-class pointer using dynamic binding
void virtualViaPointer(const Employee * const baseClassPtr)
{
 baseClassPtr->print();
 cout << "\nearned $" << baseClassPtr->earnings() << "\n\n";
} // end function virtualViaPointer

// call Employee virtual functions print and earnings off a
// base-class reference using dynamic binding
void virtualViaReference(const Employee &baseClassRef)
{
 baseClassRef.print();
 cout << "\nearned $" << baseClassRef.earnings() << "\n\n";
} // end function virtualViaReference

21.6 Case Study: Payroll System Using Polymorphism 817

Line 46 allocates vector employees, which contains four Employee pointers. Line 49
aims employees[0] at object salariedEmployee. Line 50 aims employees[1] at object
hourlyEmployee. Line 51 aims employees[2] at object commissionEmployee. Line 52
aims employee[3] at object basePlusCommissionEmployee. The compiler allows these

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Employees processed polymorphically using dynamic binding:

Virtual function calls made off base-class pointers:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Virtual function calls made off base-class references:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 21.23 | Employee class hierarchy driver program. (Part 3 of 3.)

818 Chapter 21 Object-Oriented Programming: Polymorphism

assignments, because a SalariedEmployee is an Employee, an HourlyEmployee is an
Employee, a CommissionEmployee is an Employee and a BasePlusCommissionEmployee is
an Employee. Therefore, we can assign the addresses of SalariedEmployee, HourlyEm-
ployee, CommissionEmployee and BasePlusCommissionEmployee objects to base-class
Employee pointers (even though Employee is an abstract class).

The loop in lines 60–61 traverses vector employees and invokes function virtual-
ViaPointer (lines 73–77) for each element in employees. Function virtualViaPointer
receives in parameter baseClassPtr (of type const Employee * const) the address stored
in an employees element. Each call to virtualViaPointer uses baseClassPtr to invoke
virtual functions print (line 75) and earnings (line 76). Note that function virtual-
ViaPointer does not contain any SalariedEmployee, HourlyEmployee, CommissionEm-
ployee or BasePlusCommissionEmployee type information. The function knows only
about base-class type Employee. Therefore, the compiler cannot know which concrete
class’s functions to call through baseClassPtr. Yet at execution time, each virtual-func-
tion invocation calls the function on the object to which baseClassPtr points at that
moment. The output illustrates that the appropriate functions for each class are indeed
invoked and that each object’s proper information is displayed. For instance, the weekly
salary is displayed for the SalariedEmployee, and the gross sales are displayed for the Com-
missionEmployee and BasePlusCommissionEmployee. Also, obtaining the earnings of
each Employee polymorphically in line 76 produces the same results as obtaining these
employees’ earnings via static binding in lines 36, 38, 40 and 42. All virtual function
calls to print and earnings are resolved at runtime with dynamic binding.

Finally, another for statement (lines 67–68) traverses employees and invokes func-
tion virtualViaReference (lines 81–85) for each element in the vector. Function
virtualViaReference receives in its parameter baseClassRef (of type const Employee &)
a reference to the object obtained by dereferencing the pointer stored in each employees
element (line 68). Each call to virtualViaReference invokes virtual functions print
(line 83) and earnings (line 84) via reference baseClassRef to demonstrate that polymor-
phic processing occurs with base-class references as well. Each virtual-function invoca-
tion calls the function on the object to which baseClassRef refers at runtime. This is
another example of dynamic binding. The output produced using base-class references is
identical to the output produced using base-class pointers.

21.7 (Optional) Polymorphism, Virtual Functions and
Dynamic Binding “Under the Hood”
C++ makes polymorphism easy to program. It’s certainly possible to program for polymor-
phism in non-object-oriented languages such as C, but doing so requires complex and po-
tentially dangerous pointer manipulations. This section discusses how C++ can implement
polymorphism, virtual functions and dynamic binding internally. This will give you a
solid understanding of how these capabilities really work. More importantly, it will help
you appreciate the overhead of polymorphism—in terms of additional memory consump-
tion and processor time. This will help you determine when to use polymorphism and
when to avoid it. The STL components were implemented without polymorphism and
virtual functions—this was done to avoid the associated execution-time overhead and
achieve optimal performance to meet the unique requirements of the STL.

21.7 Dynamic Binding “Under the Hood” 819

First, we’ll explain the data structures that the C++ compiler builds at compile time
to support polymorphism at execution time. You’ll see that polymorphism is accom-
plished through three levels of pointers (i.e., “triple indirection”). Then we’ll show how an
executing program uses these data structures to execute virtual functions and achieve the
dynamic binding associated with polymorphism. Our discussion explains one possible
implementation; this is not a language requirement.

When C++ compiles a class that has one or more virtual functions, it builds a virtual
function table (vtable) for that class. An executing program uses the vtable to select the
proper function implementation each time a virtual function of that class is called. The
leftmost column of Fig. 21.24 illustrates the vtables for classes Employee, SalariedEm-
ployee, HourlyEmployee, CommissionEmployee and BasePlusCommissionEmployee.

In the vtable for class Employee, the first function pointer is set to 0 (i.e., the null
pointer). This is done because function earnings is a pure virtual function and therefore
lacks an implementation. The second function pointer points to function print, which
displays the employee’s full name and social security number. [Note: We’ve abbreviated
the output of each print function in this figure to conserve space.] Any class that has one
or more null pointers in its vtable is an abstract class. Classes without any null vtable
pointers (such as SalariedEmployee, HourlyEmployee, CommissionEmployee and Base-
PlusCommissionEmployee) are concrete classes.

Class SalariedEmployee overrides function earnings to return the employee’s
weekly salary, so the function pointer points to the earnings function of class Salaried-
Employee. SalariedEmployee also overrides print, so the corresponding function pointer
points to the SalariedEmployee member function that prints "salaried employee: " fol-
lowed by the employee’s name, social security number and weekly salary.

The earnings function pointer in the vtable for class HourlyEmployee points to
HourlyEmployee’s earnings function that returns the employee’s wage multiplied by the
number of hours worked. To conserve space, we’ve omitted the fact that hourly employees
receive time-and-a-half pay for overtime hours worked. The print function pointer points
to the HourlyEmployee version of the function, which prints "hourly employee: ", the
employee’s name, social security number, hourly wage and hours worked. Both functions
override the functions in class Employee.

The earnings function pointer in the vtable for class CommissionEmployee points to
CommissionEmployee’s earnings function that returns the employee’s gross sales multi-
plied by the commission rate. The print function pointer points to the CommissionEm-
ployee version of the function, which prints the employee’s type, name, social security
number, commission rate and gross sales. As in class HourlyEmployee, both functions
override the functions in class Employee.

The earnings function pointer in the vtable for class BasePlusCommissionEmployee
points to the BasePlusCommissionEmployee’s earnings function, which returns the
employee’s base salary plus gross sales multiplied by commission rate. The print function
pointer points to the BasePlusCommissionEmployee version of the function, which prints
the employee’s base salary plus the type, name, social security number, commission rate
and gross sales. Both functions override the functions in class CommissionEmployee.

Notice that in our Employee case study, each concrete class provides its own imple-
mentation for virtual functions earnings and print. You’ve learned that each class
which inherits directly from abstract base class Employee must implement earnings to be

820 Chapter 21 Object-Oriented Programming: Polymorphism

Fig. 21.24 | How virtual function calls work.

&basePlus-
Commission-
Employee

&commission-
Employee

&hourly-
Employee

&salaried-
Employee

vector < Employee * >

employees(4);

[0]

[3]

[2]

[1]

Employee vtable

earnings

print

BasePlusCommissionEmployee
vtable

earnings

print

HourlyEmployee
vtable

earnings

print

SalariedEmployee
vtable

earnings

print

CommissionEmployee
vtable

earnings

print

basePlusCommissionEmployee

Bob Lewis
444-44-4444
$5,000.00

.04
$300.00

commissionEmployee

Sue Jones
333-33-3333
$10,000.00

.06

hourlyEmployee

Karen Price
222-22-2222

$16.75
40

salariedEmployee

John Smith
111-11-1111

$800.00

baseClassPtr

1

2

3

4

5

0

(abstract class)

weeklySalary

wage *
hours ...

grossSales
* commissionRate

baseSalary +
(grossSales
* commissionRate)

base-
salaried
commission
employee: ...

commission
employee: ...

hourly
employee: ...

salaried
employee: ...

first last
ssn: ...

4

Flow of Virtual Function Call baseClassPtr->print()
When baseClassPtr Points to Object hourlyEmployee

pass &hourlyEmployee
 to baseClassPtr

get to hourlyEmployee
object

get to HourlyEmployee
vtable

get to print pointer
 in vtable

execute print for
HourlyEmployee

1

2

3 5

(0 indicates pure virtual function)

21.7 Dynamic Binding “Under the Hood” 821

a concrete class, because earnings is a pure virtual function. These classes do not need
to implement function print, however, to be considered concrete—print is not a pure
virtual function and derived classes can inherit class Employee’s implementation of
print. Furthermore, class BasePlusCommissionEmployee does not have to implement
either function print or earnings—both function implementations can be inherited
from class CommissionEmployee. If a class in our hierarchy were to inherit function imple-
mentations in this manner, the vtable pointers for these functions would simply point to
the function implementation that was being inherited. For example, if BasePlusCommis-
sionEmployee did not override earnings, the earnings function pointer in the vtable for
class BasePlusCommissionEmployee would point to the same earnings function as the
vtable for class CommissionEmployee points to.

Polymorphism is accomplished through an elegant data structure involving three
levels of pointers. We’ve discussed one level—the function pointers in the vtable. These
point to the actual functions that execute when a virtual function is invoked.

Now we consider the second level of pointers. Whenever an object of a class with one
or more virtual functions is instantiated, the compiler attaches to the object a pointer to
the vtable for that class. This pointer is normally at the front of the object, but it isn’t
required to be implemented that way. In Fig. 21.24, these pointers are associated with the
objects created in Fig. 21.23 (one object for each of the types SalariedEmployee, Hourly-
Employee, CommissionEmployee and BasePlusCommissionEmployee). Notice that the dia-
gram displays each of the object’s data member values. For example, the
salariedEmployee object contains a pointer to the SalariedEmployee vtable; the object
also contains the values John Smith, 111-11-1111 and $800.00.

The third level of pointers simply contains the handles to the objects that receive the
virtual function calls. The handles in this level may also be references. Fig. 21.24 depicts
the vector employees that contains Employee pointers.

Now let’s see how a typical virtual function call executes. Consider the call
baseClassPtr->print() in function virtualViaPointer (line 75 of Fig. 21.23). Assume
that baseClassPtr contains employees[1] (i.e., the address of object hourlyEmployee
in employees). When the compiler compiles this statement, it determines that the call is
indeed being made via a base-class pointer and that print is a virtual function.

The compiler determines that print is the second entry in each of the vtables. To locate
this entry, the compiler notes that it will need to skip the first entry. Thus, the compiler
compiles an offset or displacement of four bytes (four bytes for each pointer on today’s
popular 32-bit machines, and only one pointer needs to be skipped) into the table of
machine-language object-code pointers to find the code that will execute the virtual
function call.

The compiler generates code that performs the following operations [Note: The num-
bers in the list correspond to the circled numbers in Fig. 21.24]:

1. Select the ith entry of employees (in this case, the address of object hourlyEm-
ployee), and pass it as an argument to function virtualViaPointer. This sets
parameter baseClassPtr to point to hourlyEmployee.

2. Dereference that pointer to get to the hourlyEmployee object—which, as you re-
call, begins with a pointer to the HourlyEmployee vtable.

3. Dereference hourlyEmployee’s vtable pointer to get to the HourlyEmployee vtable.

822 Chapter 21 Object-Oriented Programming: Polymorphism

4. Skip the offset of four bytes to select the print function pointer.

5. Dereference the print function pointer to form the “name” of the actual func-
tion to execute, and use the function call operator () to execute the appropriate
print function, which in this case prints the employee’s type, name, social secu-
rity number, hourly wage and hours worked.

Fig. 21.24’s data structures may appear to be complex, but this complexity is managed
by the compiler and hidden from you, making polymorphic programming straightfor-
ward. The pointer dereferencing operations and memory accesses that occur on every vir-
tual function call require some additional execution time. The vtables and the vtable
pointers added to the objects require some additional memory. You now have enough
information to determine whether virtual functions are appropriate for your programs.

21.8 Case Study: Payroll System Using Polymorphism
and Runtime Type Information with Downcasting,
dynamic_cast, typeid and type_info
Recall from the problem statement at the beginning of Section 21.6 that, for the current
pay period, our fictitious company has decided to reward BasePlusCommissionEmployees
by adding 10 percent to their base salaries. When processing Employee objects polymor-
phically in Section 21.6.6, we did not need to worry about the “specifics.” Now, however,
to adjust the base salaries of BasePlusCommissionEmployees, we have to determine the
specific type of each Employee object at execution time, then act appropriately. This sec-
tion demonstrates the powerful capabilities of runtime type information (RTTI) and dy-
namic casting, which enable a program to determine the type of an object at execution
time and act on that object accordingly.

[Note: Some compilers require that RTTI be enabled before it can be used in a pro-
gram. In Visual C++ 2008, this option is enabled by default.]

Performance Tip 21.1
Polymorphism, as typically implemented with virtual functions and dynamic binding in
C++, is efficient. You can use these capabilities with nominal impact on performance.

Performance Tip 21.2
Virtual functions and dynamic binding enable polymorphic programming as an alterna-
tive to switch logic programming. Optimizing compilers normally generate polymorphic
code that runs as efficiently as hand-coded switch-based logic. Polymorphism’s overhead
is acceptable for most applications. But in some situations—such as real-time applications
with stringent performance requirements—polymorphism’s overhead may be too high.

Software Engineering Observation 21.11
Dynamic binding enables independent software vendors (ISVs) to distribute software
without revealing proprietary secrets. Software distributions can consist of only header files
and object files—no source code needs to be revealed. Software developers can then use
inheritance to derive new classes from those provided by the ISVs. Other software that
worked with the classes the ISVs provided will still work with the derived classes and will
use the overridden virtual functions provided in these classes (via dynamic binding).

21.8 Downcasting, dynamic_cast, typeid and type_info 823

Figure 21.25 uses the Employee hierarchy developed in Section 21.6 and increases by
10 percent the base salary of each BasePlusCommissionEmployee. Line 22 declares four-
element vector employees that stores pointers to Employee objects. Lines 25–32 populate
the vector with the addresses of dynamically allocated objects of classes SalariedEm-
ployee (Figs. 21.15–21.16), HourlyEmployee (Figs. 21.17–21.18), CommissionEmployee
(Figs. 21.19–21.20) and BasePlusCommissionEmployee (Figs. 21.21–21.22).

1 // Fig. 21.25: fig21_25.cpp
2 // Demonstrating downcasting and runtime type information.
3 // NOTE: You may need to enable RTTI on your compiler
4 // before you can execute this application.
5 #include <iostream>
6 #include <iomanip>
7 #include <vector>
8
9 #include "Employee.h"

10 #include "SalariedEmployee.h"

11 #include "HourlyEmployee.h"

12 #include "CommissionEmployee.h"

13 #include "BasePlusCommissionEmployee.h"

14 using namespace std;
15
16 int main()
17 {
18 // set floating-point output formatting
19 cout << fixed << setprecision(2);
20
21 // create vector of four base-class pointers
22 vector < Employee * > employees(4);
23
24
25
26
27
28
29
30
31
32
33
34 // polymorphically process each element in vector employees
35 for (size_t i = 0; i < employees.size(); i++)
36 {
37 employees[i]->print(); // output employee information
38 cout << endl;
39
40
41
42
43
44

Fig. 21.25 | Demonstrating downcasting and runtime type information. (Part 1 of 2.)

#include <typeinfo>

// initialize vector with various kinds of Employees
employees[0] = new SalariedEmployee(

"John", "Smith", "111-11-1111", 800);
employees[1] = new HourlyEmployee(

"Karen", "Price", "222-22-2222", 16.75, 40);
employees[2] = new CommissionEmployee(

"Sue", "Jones", "333-33-3333", 10000, .06);
employees[3] = new BasePlusCommissionEmployee(

"Bob", "Lewis", "444-44-4444", 5000, .04, 300);

// downcast pointer
BasePlusCommissionEmployee *derivedPtr =

dynamic_cast < BasePlusCommissionEmployee * >
 (employees[i]);

824 Chapter 21 Object-Oriented Programming: Polymorphism

The for statement in lines 35–57 iterates through the employees vector and displays
each Employee’s information by invoking member function print (line 37). Recall that

45 // determine whether element points to base-salaried
46 // commission employee
47 if () // 0 if not a BasePlusCommissionEmployee
48 {
49 double oldBaseSalary = ;
50 cout << "old base salary: $" << oldBaseSalary << endl;
51
52 cout << "new base salary with 10% increase is: $"
53 << << endl;
54 } // end if
55
56 cout << "earned $" << employees[i]->earnings() << "\n\n";
57 } // end for
58
59 // release objects pointed to by vector’s elements
60 for (size_t j = 0; j < employees.size(); j++)
61 {
62
63
64
65
66 delete employees[j];
67 } // end for
68 } // end main

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
old base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

deleting object of class SalariedEmployee
deleting object of class HourlyEmployee
deleting object of class CommissionEmployee
deleting object of class BasePlusCommissionEmployee

Fig. 21.25 | Demonstrating downcasting and runtime type information. (Part 2 of 2.)

derivedPtr != 0

derivedPtr->getBaseSalary()

derivedPtr->setBaseSalary(1.10 * oldBaseSalary);

derivedPtr->getBaseSalary()

// output class name
cout << "deleting object of "
 << typeid(*employees[j]).name() << endl;

21.8 Downcasting, dynamic_cast, typeid and type_info 825

because print is declared virtual in base class Employee, the system invokes the appro-
priate derived-class object’s print function.

In this example, as we encounter BasePlusCommissionEmployee objects, we wish to
increase their base salary by 10 percent. Since we process the employees generically (i.e., poly-
morphically), we cannot (with the techniques we’ve learned) be certain as to which type of
Employee is being manipulated at any given time. This creates a problem, because Base-
PlusCommissionEmployee employees must be identified when we encounter them so they
can receive the 10 percent salary increase. To accomplish this, we use operator dynamic_cast
(line 42) to determine whether the type of each object is BasePlusCommissionEmployee.
This is the downcast operation we referred to in Section 21.3.3. Lines 41–43 dynamically
downcast employees[i] from type Employee * to type BasePlusCommissionEmployee *. If
the vector element points to an object that is a BasePlusCommissionEmployee object, then
that object’s address is assigned to commissionPtr; otherwise, 0 is assigned to derived-class
pointer derivedPtr.

If the value returned by the dynamic_cast operator in lines 41–43 is not 0, the object
is the correct type, and the if statement (lines 47–54) performs the special processing
required for the BasePlusCommissionEmployee object. Lines 49, 51 and 53 invoke Base-
PlusCommissionEmployee functions getBaseSalary and setBaseSalary to retrieve and
update the employee’s salary.

Line 56 invokes member function earnings on the object to which employees[i]

points. Recall that earnings is declared virtual in the base class, so the program invokes
the derived-class object’s earnings function—another example of dynamic binding.

Lines 60–67 display each employee’s object type and uses the delete operator to deal-
locate the dynamic memory to which each vector element points. Operator typeid (line
64) returns a reference to an object of class type_info that contains the information about
the type of its operand, including the name of that type. When invoked, type_info
member function name (line 64) returns a pointer-based string that contains the type name
(e.g., "class BasePlusCommissionEmployee") of the argument passed to typeid. To use
typeid, the program must include header file <typeinfo> (line 8).

We avoid several compilation errors in this example by downcasting an Employee
pointer to a BasePlusCommissionEmployee pointer (lines 41–43). If we remove the
dynamic_cast from line 42 and attempt to assign the current Employee pointer directly to
BasePlusCommissionEmployee pointer derivedPtr, we’ll receive a compilation error.
C++ does not allow a program to assign a base-class pointer to a derived-class pointer
because the is-a relationship does not apply—a CommissionEmployee is not a
BasePlusCommissionEmployee. The is-a relationship applies only between the derived
class and its base classes, not vice versa.

Similarly, if lines 49, 51 and 53 used the current base-class pointer from employees,
rather than derived-class pointer derivedPtr, to invoke derived-class-only functions get-
BaseSalary and setBaseSalary, we’d receive a compilation error at each of these lines.
As you learned in Section 21.3.3, attempting to invoke derived-class-only functions
through a base-class pointer is not allowed. Although lines 49, 51 and 53 execute only if

Portability Tip 21.1
The string returned by type_info member function name may vary by compiler.

826 Chapter 21 Object-Oriented Programming: Polymorphism

commissionPtr is not 0 (i.e., if the cast can be performed), we cannot attempt to invoke
derived-class BasePlusCommissionEmployee functions getBaseSalary and setBase-
Salary on the base-class Employee pointer. Recall that, using a base class Employee
pointer, we can invoke only functions found in base class Employee—earnings, print
and Employee’s get and set functions.

21.9 Virtual Destructors
A problem can occur when using polymorphism to process dynamically allocated objects
of a class hierarchy. So far you’ve seen nonvirtual destructors—destructors that are not
declared with keyword virtual. If a derived-class object with a nonvirtual destructor is
destroyed explicitly by applying the delete operator to a base-class pointer to the object,
the C++ standard specifies that the behavior is undefined.

The simple solution to this problem is to create a virtual destructor (i.e., a
destructor that is declared with keyword virtual) in the base class. This makes all derived-
class destructors virtual even though they do not have the same name as the base-class
destructor. Now, if an object in the hierarchy is destroyed explicitly by applying the delete
operator to a base-class pointer, the destructor for the appropriate class is called based on
the object to which the base-class pointer points. Remember, when a derived-class object
is destroyed, the base-class part of the derived-class object is also destroyed, so it’s impor-
tant for the destructors of both the derived class and base class to execute. The base-class
destructor automatically executes after the derived-class destructor.

21.10 Wrap-Up
In this chapter we discussed polymorphism, which enables us to “program in the general”
rather than “program in the specific,” and we showed how this makes programs more ex-
tensible. We began with an example of how polymorphism would allow a screen manager
to display several “space” objects. We then demonstrated how base-class and derived-class
pointers can be aimed at base-class and derived-class objects. We said that aiming base-class
pointers at base-class objects is natural, as is aiming derived-class pointers at derived-class
objects. Aiming base-class pointers at derived-class objects is also natural because a derived-
class object is an object of its base class. You learned why aiming derived-class pointers at
base-class objects is dangerous and why the compiler disallows such assignments. We intro-
duced virtual functions, which enable the proper functions to be called when objects at
various levels of an inheritance hierarchy are referenced (at execution time) via base-class
pointers. This is known as dynamic or late binding. We then discussed pure virtual func-
tions (virtual functions that do not provide an implementation) and abstract classes

Error-Prevention Tip 21.2
If a class has virtual functions, provide a virtual destructor, even if one is not required
for the class. This ensures that a custom derived-class destructor (if there is one) will be
invoked when a derived-class object is deleted via a base class pointer.

Common Programming Error 21.5
Constructors cannot be virtual. Declaring a constructor virtual is a compilation error.

 Summary 827

(classes with one or more pure virtual functions). You learned that abstract classes cannot
be used to instantiate objects, while concrete classes can. We then demonstrated using ab-
stract classes in an inheritance hierarchy. You learned how polymorphism works “under the
hood” with vtables that are created by the compiler. We used runtime type information
(RTTI) and dynamic casting to determine the type of an object at execution time and act
on that object accordingly. The chapter concluded with a discussion of virtual destruc-
tors, and how they ensure that all appropriate destructors in an inheritance hierarchy run
on a derived-class object when that object is deleted via a base-class pointer.

In the next chapter, we discuss templates, a sophisticated feature of C++ that enables
you to define a family of related classes or functions with a single code segment.

Summary
Section 21.1 Introduction
• Polymorphism enables us to “program in the general” rather than “program in the specific.”

• Polymorphism enables us to write programs that process objects of classes that are part of the
same class hierarchy as if they were all objects of the hierarchy’s base class.

• With polymorphism, we can design and implement systems that are easily extensible—new class-
es can be added with little or no modification to the general portions of the program. The only
parts of a program that must be altered to accommodate new classes are those that require direct
knowledge of the new classes that you add to the hierarchy.

• Runtime type information (RTTI) and dynamic casting enable a program to determine the type
of an object at execution time and act on that object accordingly.

Section 21.2 Polymorphism Examples
• With polymorphism, one function can cause different actions to occur, depending on the type

of the object on which the function is invoked.

• This makes it possible to design and implement more extensible systems. Programs can be writ-
ten to process objects of types that may not exist when the program is under development.

Section 21.3 Relationships Among Objects in an Inheritance Hierarchy
• C++ enables polymorphism—the ability for objects of different classes related by inheritance to

respond differently to the same member-function call.

• Polymorphism is implemented via virtual functions and dynamic binding.

• When a base-class pointer or reference is used to call a virtual function, C++ chooses the correct
overridden function in the appropriate derived class associated with the object.

• If a virtual function is called by referencing a specific object by name and using the dot mem-
ber-selection operator, the reference is resolved at compile time (this is called static binding); the
virtual function that is called is the one defined for the class of that particular object.

• Derived classes can provide their own implementations of a base-class virtual function if nec-
essary, but if they do not, the base class’s implementation is used.

Section 21.4 Type Fields and switch Statements
• Polymorphic programming with virtual functions can eliminate the need for switch logic. You

can use the virtual function mechanism to perform the equivalent logic automatically, thus
avoiding the kinds of errors typically associated with switch logic.

828 Chapter 21 Object-Oriented Programming: Polymorphism

Section 21.5 Abstract Classes and Pure virtual Functions
• Abstract classes are typically used as base classes, so we refer to them as abstract base classes. No

objects of an abstract class may be instantiated.

• Classes from which objects can be instantiated are concrete classes.

• You create an abstract class by declaring one or more pure virtual functions with pure specifiers
(= 0) in their declarations.

• If a class is derived from a class with a pure virtual function and that derived class does not sup-
ply a definition for that pure virtual function, then that virtual function remains pure in the
derived class. Consequently, the derived class is also an abstract class.

• Although we cannot instantiate objects of abstract base classes, we can declare pointers and ref-
erences to objects of abstract base classes. Such pointers and references can be used to enable poly-
morphic manipulations of derived-class objects instantiated from concrete derived classes.

Section 21.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood”
• Dynamic binding requires that at runtime, the call to a virtual member function be routed to the

virtual function version appropriate for the class. A virtual function table called the vtable is
implemented as an array containing function pointers. Each class with virtual functions has a
vtable. For each virtual function in the class, the vtable has an entry containing a function point-
er to the version of the virtual function to use for an object of that class. The virtual function
to use for a particular class could be the function defined in that class, or it could be a function
inherited either directly or indirectly from a base class higher in the hierarchy.

• When a base class provides a virtual member function, derived classes can override the virtual
function, but they do not have to override it.

• Each object of a class with virtual functions contains a pointer to the vtable for that class. When
a function call is made from a base-class pointer to a derived-class object, the appropriate func-
tion pointer in the vtable is obtained and dereferenced to complete the call at execution time.

• Any class that has one or more 0 pointers in its vtable is an abstract class. Classes without any 0
vtable pointers are concrete classes.

• New kinds of classes are regularly added to systems and accommodated by dynamic binding.

Section 21.8 Case Study: Payroll System Using Polymorphism and Runtime Type In-
formation with Downcasting, dynamic_cast, typeid and type_info
• Operator dynamic_cast checks the type of the object to which a pointer points, then determines

whether the type has an is-a relationship with the type to which the pointer is being converted.
If so, dynamic_cast returns the object’s address. If not, dynamic_cast returns 0.

• Operator typeid returns a reference to a type_info object that contains information about the
operand’s type, including the type name. To use typeid, the program must include header file
<typeinfo>.

• When invoked, type_info member function name returns a pointer-based string that contains
the name of the type that the type_info object represents.

• Operators dynamic_cast and typeid are part of C++’s runtime type information (RTTI) feature,
which allows a program to determine an object’s type at runtime.

Section 21.9 Virtual Destructors
• Declare the base-class destructor virtual if the class contains virtual functions. This makes all

derived-class destructors virtual, even though they do not have the same name as the base-class
destructor. If an object in the hierarchy is destroyed explicitly by applying the delete operator

 Terminology 829

to a base-class pointer to a derived-class object, the destructor for the appropriate class is called.
After a derived-class destructor runs, the destructors for all of that class’s base classes run all the
way up the hierarchy.

Terminology
abstract base classes 799
abstract classes 799
concrete classes 799
displacement into a vtable 821
downcasting 792
dynamic binding 793
dynamic casting 780
dynamic_cast 825
implementation inheritance 802
interface inheritance 802
iterator class 801
late binding 793
name function of class type_info 825
nonvirtual destructor 826

offset into a vtable 821
override 792
polymorphism 779
pure specifier (with virtual functions) 800
pure virtual function 800
runtime type information (RTTI) 780
static binding 793
typeid operator 825
type_info class 825
<typeinfo> header file 825
virtual destructor 826
virtual function 792
virtual function table (vtable) 819

Self-Review Exercises
21.1 Fill in the blanks in each of the following statements:

a) Treating a base-class object as a(n) can cause errors.
b) Polymorphism helps eliminate logic.
c) If a class contains at least one pure virtual function, it’s a(n) class.
d) Classes from which objects can be instantiated are called classes.
e) Operator can be used to downcast base-class pointers safely.
f) Operator typeid returns a reference to a(n) object.
g) involves using a base-class pointer or reference to invoke virtual functions

on base-class and derived-class objects.
h) Overridable functions are declared using keyword .
i) Casting a base-class pointer to a derived-class pointer is called .

21.2 State whether each of the following is true or false. If false, explain why.
a) All virtual functions in an abstract base class must be declared as pure virtual func-

tions.
b) Referring to a derived-class object with a base-class handle is dangerous.
c) A class is made abstract by declaring that class virtual.
d) If a base class declares a pure virtual function, a derived class must implement that

function to become a concrete class.
e) Polymorphic programming can eliminate the need for switch logic.

Answers to Self-Review Exercises
21.1 a) derived-class object. b) switch. c) abstract. d) concrete. e) dynamic_cast. f) type_info.
g) Polymorphism. h) virtual. i) downcasting.

21.2 a) False. An abstract base class can include virtual functions with implementations. b) False.
Referring to a base-class object with a derived-class handle is dangerous. c) False. Classes are never
declared virtual. Rather, a class is made abstract by including at least one pure virtual function in
the class. d) True. e) True.

830 Chapter 21 Object-Oriented Programming: Polymorphism

Exercises
21.3 How is it that polymorphism enables you to program “in the general” rather than “in the
specific”? Discuss the key advantages of programming “in the general.”

21.4 Discuss the problems of programming with switch logic. Explain why polymorphism can
be an effective alternative to using switch logic.

21.5 Distinguish between inheriting interface and inheriting implementation. How do inheri-
tance hierarchies designed for inheriting interface differ from those designed for inheriting imple-
mentation?

21.6 What are virtual functions? Describe a circumstance in which virtual functions would
be appropriate.

21.7 Distinguish between static binding and dynamic binding. Explain the use of virtual func-
tions and the vtable in dynamic binding.

21.8 Distinguish between virtual functions and pure virtual functions.

21.9 (Abstract Base Classes) Suggest one or more levels of abstract base classes for the Shape hi-
erarchy discussed in this chapter and shown in Fig. 20.3. (The first level is Shape, and the second
level consists of the classes TwoDimensionalShape and ThreeDimensionalShape.)

21.10 How does polymorphism promote extensibility?

21.11 You’ve been asked to develop a flight simulator that will have elaborate graphical outputs.
Explain why polymorphic programming could be especially effective for a problem of this nature.

21.12 (Payroll System Modification) Modify the payroll system of Figs. 21.13–21.23 to include
private data member birthDate in class Employee. Use class Date from Figs. 19.9–19.10 to repre-
sent an employee’s birthday. Assume that payroll is processed once per month. Create a vector of
Employee references to store the various employee objects. In a loop, calculate the payroll for each
Employee (polymorphically), and add a $100.00 bonus to the person’s payroll amount if the current
month is the month in which the Employee’s birthday occurs.

21.13 (Shape Hierarchy) Implement the Shape hierarchy designed in Exercise 20.7 (which is
based on the hierarchy in Fig. 20.3). Each TwoDimensionalShape should contain function getArea
to calculate the area of the two-dimensional shape. Each ThreeDimensionalShape should have mem-
ber functions getArea and getVolume to calculate the surface area and volume, respectively, of the
three-dimensional shape. Create a program that uses a vector of Shape pointers to objects of each
concrete class in the hierarchy. The program should print the object to which each vector element
points. Also, in the loop that processes all the shapes in the vector, determine whether each shape
is a TwoDimensionalShape or a ThreeDimensionalShape. If a shape is a TwoDimensionalShape, dis-
play its area. If a shape is a ThreeDimensionalShape, display its area and volume.

21.14 (Project: Polymorphic Screen Manager Using Shape Hierarchy) Develop a basic graphics
package. Use the Shape hierarchy implemented in Exercise 21.13. Limit yourself to two-dimension-
al shapes such as squares, rectangles, triangles and circles. Interact with the user. Let the user specify
the position, size, shape and fill characters to be used in drawing each shape. The user can specify
more than one of the same shape. As you create each shape, place a Shape * pointer to each new
Shape object into an array. Each Shape class should now have its own draw member function. Write
a polymorphic screen manager that walks through the array, sending draw messages to each object
in the array to form a screen image. Redraw the screen image each time the user specifies an addi-
tional shape.

21.15 (Package Inheritance Hierarchy) Use the Package inheritance hierarchy created in
Exercise 20.9 to create a program that displays the address information and calculates the shipping
costs for several Packages. The program should contain a vector of Package pointers to objects of

 Making a Difference 831

classes TwoDayPackage and OvernightPackage. Loop through the vector to process the Packages
polymorphically. For each Package, invoke get functions to obtain the address information of the
sender and the recipient, then print the two addresses as they would appear on mailing labels. Also,
call each Package’s calculateCost member function and print the result. Keep track of the total
shipping cost for all Packages in the vector, and display this total when the loop terminates.

21.16 (Polymorphic Banking Program Using Account Hierarchy) Develop a polymorphic bank-
ing program using the Account hierarchy created in Exercise 20.10. Create a vector of Account
pointers to SavingsAccount and CheckingAccount objects. For each Account in the vector, allow
the user to specify an amount of money to withdraw from the Account using member function deb-
it and an amount of money to deposit into the Account using member function credit. As you
process each Account, determine its type. If an Account is a SavingsAccount, calculate the amount
of interest owed to the Account using member function calculateInterest, then add the interest
to the account balance using member function credit. After processing an Account, print the up-
dated account balance obtained by invoking base-class member function getBalance.

Making a Difference
21.17 (CarbonFootprint Abstract Class: Polymorphism) Using an abstract class with only pure vir-
tual functions, you can specify similar behaviors for possibly disparate classes. Governments and
companies worldwide are becoming increasingly concerned with carbon footprints (annual releases
of carbon dioxide into the atmosphere) from buildings burning various types of fuels for heat, vehi-
cles burning fuels for power, and the like. Many scientists blame these greenhouse gases for the phe-
nomenon called global warming. Create three small classes unrelated by inheritance—classes
Building, Car and Bicycle. Give each class some unique appropriate attributes and behaviors that
it does not have in common with other classes. Write an abstract class CarbonFootprint with only
a pure virtual getCarbonFootprint method. Have each of your classes inherit from that abstract class
and implement the getCarbonFootprint method to calculate an appropriate carbon footprint for
that class (check out a few websites that explain how to calculate carbon footprints). Write an ap-
plication that creates objects of each of the three classes, places pointers to those objects in a vector
of CarbonFootprint pointers, then iterates through the vector, polymorphically invoking each ob-
ject’s getCarbonFootprint method. For each object, print some identifying information and the ob-
ject’s carbon footprint.

22 Templates

Behind that outside pattern
the dim shapes get clearer every
day.
It is always the same shape, only
very numerous.
—Charlotte Perkins Gilman

Every man of genius sees the
world at a different angle from
his fellows.
—Havelock Ellis

…our special individuality, as
distinguished from our generic
humanity.
—Oliver Wendell Holmes, Sr.

O b j e c t i v e s
In this chapter you’ll learn:

■ To use function templates to
conveniently create a group
of related (overloaded)
functions.

■ To distinguish between
function templates and
function-template
specializations.

■ To use class templates to
create groups of related types.

■ To distinguish between class
templates and class-template
specializations.

■ To overload function
templates.

■ To understand the
relationships among
templates, friends,
inheritance and static
members.

22.1 Introduction 833

22.1 Introduction
In this chapter, we discuss one of C++’s more powerful software reuse features, namely
templates. Function templates and class templates enable you to specify, with a single
code segment, an entire range of related (overloaded) functions—called function-tem-
plate specializations—or an entire range of related classes—called class-template special-
izations. This technique is called generic programming.

We might write a single function template for an array-sort function, then have C++
generate separate function-template specializations that will sort int arrays, float arrays,
string arrays and so on. We introduced function templates in Chapter 15. We present an
additional discussion and example in this chapter.

We might write a single class template for a stack class, then have C++ generate sepa-
rate class-template specializations, such as a stack-of-int class, a stack-of-float class, a
stack-of-string class and so on.

Note the distinction between templates and template specializations: Function tem-
plates and class templates are like stencils out of which we trace shapes; function-template
specializations and class-template specializations are like the separate tracings that all have
the same shape, but could, for example, be drawn in different colors.

In this chapter, we present a function template and a class template. We also consider
the relationships between templates and other C++ features, such as overloading, inheri-
tance, friends and static members. The design and details of the template mechanisms
discussed here are based on the work of Bjarne Stroustrup as presented in his paper,
“Parameterized Types for C++”—published in the Proceedings of the USENIX C++ Con-
ference held in Denver, Colorado, in October 1988.

22.2 Function Templates
Overloaded functions normally perform similar or identical operations on different types
of data. If the operations are identical for each type, they can be expressed more compactly

22.1 Introduction
22.2 Function Templates
22.3 Overloading Function Templates
22.4 Class Templates
22.5 Nontype Parameters and Default

Types for Class Templates

22.6 Notes on Templates and Inheritance
22.7 Notes on Templates and Friends
22.8 Notes on Templates and static

Members
22.9 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 22.1
Most C++ compilers require the complete definition of a template to appear in the client
source-code file that uses the template. For this reason and for reusability, templates are
often defined in header files, which are then #included into the appropriate client source-
code files. For class templates, this means that the member functions are also defined in
the header file.

834 Chapter 22 Templates

and conveniently using function templates. Initially, you write a single function-template
definition. Based on the argument types provided explicitly or inferred from calls to this
function, the compiler generates separate source-code functions (i.e., function-template
specializations) to handle each function call appropriately. In C, this task can be per-
formed using macros created with the preprocessor directive #define (see Chapter 13).
However, macros can have serious side effects and do not enable the compiler to perform
type checking. Function templates provide a compact solution, like macros, but enable full
type checking.

All function-template definitions begin with keyword template followed by a list of
template parameters to the function template enclosed in angle brackets (< and >); each
template parameter that represents a type must be preceded by either of the interchange-
able keywords class or typename, as in

or

or

The type template parameters of a function-template definition are used to specify the
types of the arguments to the function, to specify the return type of the function and to
declare variables within the function. The function definition follows and appears like any
other function definition. Keywords typename and class used to specify function-tem-
plate parameters actually mean “any fundamental type or user-defined type.”

Example: Function Template printArray
Let’s examine function template printArray in Fig. 22.1, lines 7–14. Function template
printArray declares (line 7) a single template parameter T (T can be any valid identifier)
for the type of the array to be printed by function printArray; T is referred to as a type
template parameter, or type parameter. You’ll see nontype template parameters in
Section 22.5.

Error-Prevention Tip 22.1
Function templates, like macros, enable software reuse. Unlike macros, function templates
help eliminate many types of errors through the scrutiny of full C++ type checking.

template< typename T >

template< class ElementType >

template< typename BorderType, typename FillType >

Common Programming Error 22.1
Not placing keyword class or keyword typename before each type template parameter of
a function template is a syntax error.

1 // Fig. 22.1: fig22_01.cpp
2 // Using template functions.
3 #include <iostream>

Fig. 22.1 | Function-template specializations of function template printArray. (Part 1 of 2.)

22.2 Function Templates 835

When the compiler detects a printArray function invocation in the client program
(e.g., lines 29, 34 and 39), the compiler uses its overload resolution capabilities to find a
definition of function printArray that best matches the function call. In this case, the
only printArray function with the appropriate number of parameters is the printArray
function template (lines 7–14). Consider the function call at line 29. The compiler com-

4 using namespace std;
5
6 // function template printArray definition
7 template< typename T >
8 void printArray(const T * const array, int count)
9 {

10 for (int i = 0; i < count; i++)
11 << " ";
12
13 cout << endl;
14 } // end function template printArray
15
16 int main()
17 {
18 const int aCount = 5; // size of array a
19 const int bCount = 7; // size of array b
20 const int cCount = 6; // size of array c
21
22 int a[aCount] = { 1, 2, 3, 4, 5 };
23 double b[bCount] = { 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7 };
24 char c[cCount] = "HELLO"; // 6th position for null
25
26 cout << "Array a contains:" << endl;
27
28
29
30
31 cout << "Array b contains:" << endl;
32
33
34
35
36 cout << "Array c contains:" << endl;
37
38
39
40 } // end main

Array a contains:
1 2 3 4 5
Array b contains:
1.1 2.2 3.3 4.4 5.5 6.6 7.7
Array c contains:
H E L L O

Fig. 22.1 | Function-template specializations of function template printArray. (Part 2 of 2.)

cout << array[i]

// call integer function-template specialization
printArray(a, aCount);

// call double function-template specialization
printArray(b, bCount);

// call character function-template specialization
printArray(c, cCount);

836 Chapter 22 Templates

pares the type of printArray’s first argument (int * at line 29) to the printArray func-
tion template’s first parameter (const T * const at line 8) and deduces that replacing the
type parameter T with int would make the argument consistent with the parameter. Then,
the compiler substitutes int for T throughout the template definition and compiles a
printArray specialization that can display an array of int values. In Fig. 22.1, the com-
piler creates three printArray specializations—one that expects an int array, one that
expects a double array and one that expects a char array. For example, the function-tem-
plate specialization for type int is

As with function parameters, the names of template parameters must be unique inside
a template definition. Template parameter names need not be unique across different
function templates.

Figure 22.1 demonstrates function template printArray (lines 7–14). The program
begins by declaring five-element int array a, seven-element double array b and six-element
char array c (lines 22–24, respectively). Then, the program outputs each array by calling
printArray—once with a first argument a of type int * (line 29), once with a first argu-
ment b of type double * (line 34) and once with a first argument c of type char * (line
39). The call in line 29, for example, causes the compiler to infer that T is int and to
instantiate a printArray function-template specialization, for which type parameter T is
int. The call in line 34 causes the compiler to infer that T is double and to instantiate a
second printArray function-template specialization, for which type parameter T is
double. The call in line 39 causes the compiler to infer that T is char and to instantiate a
third printArray function-template specialization, for which type parameter T is char. It’s
important to note that if T (line 7) represents a user-defined type (which it does not in
Fig. 22.1), there must be an overloaded stream insertion operator for that type; otherwise,
the first stream insertion operator in line 11 will not compile.

In this example, the template mechanism saves you from having to write three sepa-
rate overloaded functions with prototypes

that all use the same code, except for type T (as used in line 8).

void printArray(const int * const array, int count)
{

for (int i = 0; i < count; i++)
 cout << array[i] << " ";

 cout << endl;
} // end function printArray

Common Programming Error 22.2
If a template is invoked with a user-defined type, and if that template uses functions or
operators (e.g., ==, +, <=) with objects of that class type, then those functions and operators
must be overloaded for the user-defined type. Forgetting to overload such operators causes
compilation errors.

void printArray(const int * const, int);
void printArray(const double * const, int);
void printArray(const char * const, int);

22.3 Overloading Function Templates 837

22.3 Overloading Function Templates
Function templates and overloading are intimately related. The function-template special-
izations generated from a function template all have the same name, so the compiler uses
overloading resolution to invoke the proper function.

A function template may be overloaded in several ways. We can provide other func-
tion templates that specify the same function name but different function parameters. For
example, function template printArray of Fig. 22.1 could be overloaded with another
printArray function template with additional parameters lowSubscript and highSub-
script to specify the portion of the array to output (see Exercise 22.4).

A function template also can be overloaded by providing nontemplate functions with
the same function name but different function arguments. For example, function template
printArray of Fig. 22.1 could be overloaded with a nontemplate version that specifically
prints an array of character strings in neat, tabular format (see Exercise 22.5).

The compiler performs a matching process to determine what function to call when
a function is invoked. First, the compiler tries to find and use a precise match in which the
function names and argument types are consistent with those of the function call. If this
fails, the compiler determines whether a function template is available that can be used to
generate a function-template specialization with a precise match of function name and
argument types. If such a function template is found, the compiler generates and uses the
appropriate function-template specialization. If not, the compiler generates an error mes-
sage. Also, if there are multiple matches for the function call, the compiler considers the
call to be ambiguous and the compiler generates an error message.

22.4 Class Templates
It’s possible to understand the concept of a “stack” (a data structure into which we insert
items at the top and retrieve those items in last-in, first-out order) independent of the type
of the items being placed in the stack. However, to instantiate a stack, a data type must be
specified. This creates a wonderful opportunity for software reusability. We need the
means for describing the notion of a stack generically and instantiating classes that are
type-specific versions of this generic stack class. C++ provides this capability through class
templates.

Performance Tip 22.1
Although templates offer software-reusability benefits, remember that multiple function-
template specializations and class-template specializations are instantiated in a program
(at compile time), despite the fact that the templates are written only once. These copies
can consume considerable memory. This is not normally an issue, though, because the code
generated by the template is the same size as the code you’d have written to produce the
separate overloaded functions.

Common Programming Error 22.3
A compilation error occurs if no matching function definition can be found for a partic-
ular function call or if there are multiple matches that the compiler considers ambiguous.

838 Chapter 22 Templates

Class templates are called parameterized types, because they require one or more type
parameters to specify how to customize a “generic class” template to form a class-template
specialization.

To produce a variety of class-template specializations you write only one class-tem-
plate definition. Each time an additional class-template specialization is needed, you use a
concise, simple notation, and the compiler writes the source code for the specialization you
require. One Stack class template, for example, could thus become the basis for creating
many Stack classes (such as “Stack of double,” “Stack of int,” “Stack of char,” “Stack
of Employee,” etc.) used in a program.

Creating Class Template Stack< T >

Note the Stack class-template definition in Fig. 22.2. It looks like a conventional class def-
inition, except that it’s preceded by the header (line 6)

to specify a class-template definition with type parameter T which acts as a placeholder for
the type of the Stack class to be created. You need not specifically use identifier T—any
valid identifier can be used. The type of element to be stored on this Stack is mentioned
generically as T throughout the Stack class header and member-function definitions. In a
moment, we show how T becomes associated with a specific type, such as double or int.
Due to the way this class template is designed, there are two constraints for nonfundamen-
tal data types used with this Stack—they must have a default constructor (for use in line
44 to create the array that stores the stack elements), and their assignment operators must
properly copy objects into the Stack (lines 56 and 70).

Software Engineering Observation 22.2
Class templates encourage software reusability by enabling type-specific versions of generic
classes to be instantiated.

template< typename T >

1 // Fig. 22.2: Stack.h
2 // Stack class template.
3 #ifndef STACK_H

4 #define STACK_H

5
6
7
8 {
9 public:

10 Stack(int = 10); // default constructor (Stack size 10)
11
12 // destructor
13 ~Stack()
14 {
15 delete [] stackPtr; // deallocate internal space for Stack
16 } // end ~Stack destructor
17
18 bool push(); // push an element onto the Stack
19 bool pop(); // pop an element off the Stack

Fig. 22.2 | Class template Stack. (Part 1 of 3.)

template< typename T >
class Stack

const T &
T &

22.4 Class Templates 839

20
21 // determine whether Stack is empty
22 bool isEmpty() const
23 {
24 return top == -1;
25 } // end function isEmpty
26
27 // determine whether Stack is full
28 bool isFull() const
29 {
30 return top == size - 1;
31 } // end function isFull
32
33 private:
34 int size; // # of elements in the Stack
35 int top; // location of the top element (-1 means empty)
36
37 }; // end class template Stack
38
39 // constructor template
40
41
42 : size(s > 0 ? s : 10), // validate size
43 top(-1), // Stack initially empty
44
45 {
46 // empty body
47 } // end Stack constructor template
48
49 // push element onto Stack;
50 // if successful, return true; otherwise, return false
51
52
53 {
54 if (!isFull())
55 {
56 stackPtr[++top] = pushValue; // place item on Stack
57 return true; // push successful
58 } // end if
59
60 return false; // push unsuccessful
61 } // end function template push
62
63 // pop element off Stack;
64 // if successful, return true; otherwise, return false
65
66
67 {
68 if (!isEmpty())
69 {
70 popValue = stackPtr[top--]; // remove item from Stack
71 return true; // pop successful
72 } // end if

Fig. 22.2 | Class template Stack. (Part 2 of 3.)

T *stackPtr; // pointer to internal representation of the Stack

template< typename T >
Stack< T >::Stack(int s)

stackPtr(new T[size]) // allocate memory for elements

template< typename T >
bool Stack< T >::push(const T &pushValue)

template< typename T >
bool Stack< T >::pop(T &popValue)

840 Chapter 22 Templates

The member-function definitions of a class template are function templates. The
member-function definitions that appear outside the class template definition each begin
with the header

(lines 40, 51 and 65). Thus, each definition resembles a conventional function definition,
except that the Stack element type always is listed generically as type parameter T. The bi-
nary scope resolution operator is used with the class-template name Stack< T > (lines 41,
52 and 66) to tie each member-function definition to the class template’s scope. In this
case, the generic class name is Stack< T >. When doubleStack is instantiated as type
Stack<double>, the Stack constructor function-template specialization uses new to create
an array of elements of type double to represent the stack (line 44). The statement

in the Stack class-template definition is generated by the compiler in the class-template
specialization Stack<double> as

Creating a Driver to Test Class Template Stack< T >

Now, let’s consider the driver (Fig. 22.3) that exercises the Stack class template. The driv-
er begins by instantiating object doubleStack of size 5 (line 9). This object is declared to
be of class Stack< double > (pronounced “Stack of double”). The compiler associates type
double with type parameter T in the class template to produce the source code for a Stack
class of type double. Although templates offer software-reusability benefits, remember
that multiple class-template specializations are instantiated in a program (at compile time),
even though the template is written only once.

73
74 return false; // pop unsuccessful
75 } // end function template pop
76
77 #endif

template< typename T >

stackPtr(new T[size]);

stackPtr(new double[size]);

1 // Fig. 22.3: fig22_03.cpp
2 // Stack class template test program.
3 #include <iostream>
4 #include "Stack.h" // Stack class template definition
5 using namespace std;
6
7 int main()
8 {
9

10 double doubleValue = 1.1;
11

Fig. 22.3 | Class template Stack test program. (Part 1 of 2.)

Fig. 22.2 | Class template Stack. (Part 3 of 3.)

Stack< double > doubleStack(5); // size 5

22.4 Class Templates 841

12 cout << "Pushing elements onto doubleStack\n";
13
14 // push 5 doubles onto doubleStack
15 while ()
16 {
17 cout << doubleValue << ' ';
18 doubleValue += 1.1;
19 } // end while
20
21 cout << "\nStack is full. Cannot push " << doubleValue
22 << "\n\nPopping elements from doubleStack\n";
23
24 // pop elements from doubleStack
25 while ()
26 cout << doubleValue << ' ';
27
28 cout << "\nStack is empty. Cannot pop\n";
29
30
31 int intValue = 1;
32 cout << "\nPushing elements onto intStack\n";
33
34 // push 10 integers onto intStack
35 while ()
36 {
37 cout << intValue++ << ' ';
38 } // end while
39
40 cout << "\nStack is full. Cannot push " << intValue
41 << "\n\nPopping elements from intStack\n";
42
43 // pop elements from intStack
44 while ()
45 cout << intValue << ' ';
46
47 cout << "\nStack is empty. Cannot pop" << endl;
48 } // end main

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5
Stack is full. Cannot push 6.6

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Stack is empty. Cannot pop

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10
Stack is full. Cannot push 11

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Stack is empty. Cannot pop

Fig. 22.3 | Class template Stack test program. (Part 2 of 2.)

doubleStack.push(doubleValue)

doubleStack.pop(doubleValue)

Stack< int > intStack; // default size 10

intStack.push(intValue)

intStack.pop(intValue)

842 Chapter 22 Templates

Lines 15–19 invoke push to place the double values 1.1, 2.2, 3.3, 4.4 and 5.5 onto
doubleStack. The while loop terminates when the driver attempts to push a sixth value
onto doubleStack (which is full, because it holds a maximum of five elements). Function
push returns false when it’s unable to push a value onto the stack.1

Lines 25–26 invoke pop in a while loop to remove the five values from the stack (note,
in the output of Fig. 22.3, that the values do pop off in last-in, first-out order). When the
driver attempts to pop a sixth value, the doubleStack is empty, so the pop loop terminates.

Line 30 instantiates integer stack intStack with the declaration

(pronounced “intStack is a Stack of int”). Because no size is specified, the size defaults
to 10 as specified in the default constructor (Fig. 22.2, line 10). Lines 35–38 loop and in-
voke push to place values onto intStack until it’s full, then lines 44–45 loop and invoke
pop to remove values from intStack until it’s empty. Once again, notice in the output
that the values pop off in last-in, first-out order.

Creating Function Templates to Test Class Template Stack< T >

Notice that the code in function main of Fig. 22.3 is almost identical for both the double-
Stack manipulations in lines 9–28 and the intStack manipulations in lines 30–47. This
presents another opportunity to use a function template. Figure 22.4 defines function
template testStack (lines 10–34) to perform the same tasks as main in Fig. 22.3—push a
series of values onto a Stack< T > and pop the values off a Stack< T >. Function template
testStack uses template parameter T (specified at line 10) to represent the data type stored
in the Stack< T >. The function template takes four arguments (lines 12–15)—a reference
to an object of type Stack< T >, a value of type T that will be the first value pushed onto
the Stack< T >, a value of type T used to increment the values pushed onto the Stack< T >

and a string that represents the name of the Stack< T > object for output purposes. Func-
tion main (lines 36–43) instantiates an object of type Stack< double > called doubleStack
(line 38) and an object of type Stack< int > called intStack (line 39) and uses these ob-
jects in lines 41 and 42. The compiler infers the type of T for testStack from the type
used to instantiate the function’s first argument (i.e., the type used to instantiate double-
Stack or intStack). The output of Fig. 22.4 precisely matches the output of Fig. 22.3.

1. Class Stack (Fig. 22.2) provides the function isFull, which you can use to determine whether the
stack is full before attempting a push operation. This would avoid the potential error of pushing onto
a full stack. As we discuss in Chapter 24, Exception Handling, if the operation cannot be completed,
function push would “throw an exception.” You can write code to “catch” that exception, then decide
how to handle it appropriately for the application. The same technique can be used with function
pop when an attempt is made to pop an element from an empty stack.

Stack< int > intStack;

1 // Fig. 22.4: fig22_04.cpp
2 // Stack class template test program. Function main uses a
3 // function template to manipulate objects of type Stack< T >.
4 #include <iostream>
5 #include <string>
6 #include "Stack.h" // Stack class template definition

Fig. 22.4 | Passing a Stack template object to a function template. (Part 1 of 2.)

22.4 Class Templates 843

7 using namespace std;
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 int main()
37 {
38 Stack< double > doubleStack(5); // size 5
39 Stack< int > intStack; // default size 10
40
41
42
43 } // end main

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5
Stack is full. Cannot push 6.6

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Stack is empty. Cannot pop

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10
Stack is full. Cannot push 11

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Stack is empty. Cannot pop

Fig. 22.4 | Passing a Stack template object to a function template. (Part 2 of 2.)

// function template to manipulate Stack< T >
template< typename T >
void testStack(
 Stack< T > &theStack, // reference to Stack< T >
 T value, // initial value to push
 T increment, // increment for subsequent values

const string stackName) // name of the Stack< T > object
{
 cout << "\nPushing elements onto " << stackName << '\n';

 // push element onto Stack

while (theStack.push(value))
 {
 cout << value << ' ';
 value += increment;
 } // end while

 cout << "\nStack is full. Cannot push " << value
 << "\n\nPopping elements from " << stackName << '\n';

 // pop elements from Stack

while (theStack.pop(value))
 cout << value << ' ';

 cout << "\nStack is empty. Cannot pop" << endl;
} // end function template testStack

testStack(doubleStack, 1.1, 1.1, "doubleStack");
testStack(intStack, 1, 1, "intStack");

844 Chapter 22 Templates

22.5 Nontype Parameters and Default Types for Class
Templates
Class template Stack of Section 22.4 used only a type parameter in the template header
(Fig. 22.2, line 6). It’s also possible to use nontype template parameters, which can have
default arguments and are treated as consts. For example, the template header could be
modified to take an int elements parameter as follows:

Then, a declaration such as

could be used to instantiate (at compile time) a 100-element Stack class-template special-
ization of double values named mostRecentSalesFigures; this class-template specializa-
tion would be of type Stack< double, 100 >. The class definition then might contain a
private data member with an array declaration such as

In addition, a type parameter can specify a default type. For example,

might specify that a Stack contains string objects by default. Then, a declaration such as

could be used to instantiate a Stack class-template specialization of strings named job-
Descriptions; this class-template specialization would be of type Stack< string >. De-
fault type parameters must be the rightmost (trailing) parameters in a template’s type-
parameter list. When one is instantiating a class with two or more default types, if an omit-
ted type is not the rightmost type parameter in the type-parameter list, then all type pa-
rameters to the right of that type also must be omitted.

In the exercises, you’ll be asked to use a nontype parameter to create a template for
our class Array from Chapter 19. This template will enable Array objects to be instanti-
ated with a specified number of elements of a specified type at compile time, rather than
creating space for the Array objects at execution time.

In some cases, it may not be possible to use a particular type with a class template. For
example, the Stack template of Fig. 22.2 requires that user-defined types that will be
stored in a Stack must provide a default constructor and an assignment operator that

template< typename T, int elements > // nontype parameter elements

Stack< double, 100 > mostRecentSalesFigures;

T stackHolder[elements]; // array to hold Stack contents

template< typename T = string > // defaults to type string

Stack<> jobDescriptions;

Performance Tip 22.2
When appropriate, specify the size of a container class (such as an array class or a stack
class) at compile time (possibly through a nontype template parameter). This eliminates
the execution-time overhead of using new to create the space dynamically.

Software Engineering Observation 22.3
Specifying the size of a container at compile time avoids the potentially fatal execution-
time error if new is unable to obtain the needed memory.

22.6 Notes on Templates and Inheritance 845

properly copies objects. If a particular user-defined type will not work with our Stack tem-
plate or requires customized processing, you can define an explicit specialization of the
class template for a particular type. Let’s assume we want to create an explicit specialization
Stack for Employee objects. To do this, form a new class with the name Stack<Employee>
as follows:

The Stack<Employee> explicit specialization is a complete replacement for the Stack class
template that is specific to type Employee—it does not use anything from the original class
template and can even have different members.

22.6 Notes on Templates and Inheritance
Templates and inheritance relate in several ways:

• A class template can be derived from a class-template specialization.

• A class template can be derived from a nontemplate class.

• A class-template specialization can be derived from a class-template specialization.

• A nontemplate class can be derived from a class-template specialization.

22.7 Notes on Templates and Friends
We’ve seen that functions and entire classes can be declared as friends of nontemplate
classes. With class templates, friendship can be established between a class template and a
global function, a member function of another class (possibly a class-template specializa-
tion), or even an entire class (possibly a class-template specialization).

Throughout this section, we assume that we’ve defined a class template for a class
named X with a single type parameter T, as in:

Under this assumption, it’s possible to make a function f1 a friend of every class-template
specialization instantiated from the class template for class X. To do so, use a friendship
declaration of the form

For example, function f1 is a friend of X< double >, X< string > and X< Employee >, etc.
It’s also possible to make a function f2 a friend of only a class-template specialization

with the same type argument. To do so, use a friendship declaration of the form

For example, if T is a float, function f2(X< float > &) is a friend of class-template spe-
cialization X< float > but not a friend of class-template specification X< string >.

You can declare that a member function of another class is a friend of any class-tem-
plate specialization generated from the class template. To do so, the friend declaration

template<>
class Stack< Employee >
{

// body of class definition
};

template< typename T > class X

friend void f1();

friend void f2(X< T > &);

846 Chapter 22 Templates

must qualify the name of the other class’s member function using the class name and the
binary scope resolution operator, as in:

The declaration makes member function f3 of class A a friend of every class-template spe-
cialization instantiated from the preceding class template. For example, function f3 of
class A is a friend of X< double >, X< string > and X< Employee >, etc.

As with a global function, another class’s member function can be a friend of only a
class-template specialization with the same type argument. A friendship declaration of the
form

for a particular type T such as float makes class C’s member function

a friend function of only class-template specialization X< float >.
In some cases, it’s desirable to make an entire class’s set of member functions friends

of a class template. In this case, a friend declaration of the form

makes every member function of class Y a friend of every class-template specialization pro-
duced from the class template X.

Finally, it’s possible to make all member functions of one class-template specialization
friends of another class-template specialization with the same type argument. For example,
a friend declaration of the form:

indicates that when a class-template specialization is instantiated with a particular type for
T (such as float), all members of class Z< float > become friends of class-template spe-
cialization X< float >.

22.8 Notes on Templates and static Members
What about static data members? Recall that, with a nontemplate class, one copy of each
static data member is shared among all objects of the class, and the static data member
must be initialized at global namespace scope.

Each class-template specialization instantiated from a class template has its own copy
of each static data member of the class template; all objects of that specialization share
that one static data member. In addition, as with static data members of nontemplate
classes, static data members of class-template specializations must be defined and, if nec-
essary, initialized at global namespace scope. Each class-template specialization gets its
own copy of the class template’s static member functions.

22.9 Wrap-Up
This chapter introduced one of C++’s most powerful features—templates. You learned
how to use function templates to enable the compiler to produce a set of function-template
specializations that represent a group of related overloaded functions. We also discussed

friend void A::f3();

friend void C< T >::f4(X< T > &);

C< float >::f4(X< float > &)

friend class Y;

friend class Z< T >;

 Summary 847

how to overload a function template to create a specialized version of a function that han-
dles a particular data type’s processing in a manner that differs from the other function-
template specializations. Next, you learned about class templates and class-template spe-
cializations. You saw examples of how to use a class template to create a group of related
types that each perform identical processing on different data types. Finally, you learned
about some of the relationships among templates, friends, inheritance and static mem-
bers. In the next chapter, we discuss many of C++’s I/O capabilities and demonstrate sev-
eral stream manipulators that perform various formatting tasks.

Summary
Section 22.1 Introduction
• Templates enable us to specify a range of related (overloaded) functions—called function-tem-

plate specializations—or a range of related classes—called class-template specializations.

Section 22.2 Function Templates
• To use function-template specializations, you write a single function-template definition. Based

on the argument types provided in calls to this function, C++ generates separate specializations
to handle each type of call appropriately.

• All function-template definitions begin with the keyword template followed by template param-
eters enclosed in angle brackets (< and >); each template parameter that represents a type must
be preceded by keyword class or typename. Keywords typename and class used to specify func-
tion-template parameters mean “any fundamental type or user-defined type.”

• Template-definition template parameters are used to specify the kinds of arguments to the func-
tion, the return type of the function and to declare variables in the function.

• As with function parameters, the names of template parameters must be unique inside a template
definition. Template parameter names need not be unique across different function templates.

Section 22.3 Overloading Function Templates
• A function template may be overloaded in several ways. We can provide other function templates

that specify the same function name but different function parameters. A function template can
also be overloaded by providing other nontemplate functions with the same function name, but
different function parameters. If both the template and non-template versions match a call, the
non-template version will be used.

Section 22.4 Class Templates
• Class templates provide the means for describing a class generically and for instantiating classes

that are type-specific versions of this generic class.

• Class templates are called parameterized types; they require type parameters to specify how to
customize a generic class template to form a specific class-template specialization.

• To use class-template specializations you write one class template. When you need a new type-
specific class, the compiler writes the source code for the class-template specialization.

• A class-template definition looks like a conventional class definition, except that it’s preceded by
template< typename T > (or template< class T >) to indicate this is a class-template defini-
tion. Type parameter T acts as a placeholder for the type of the class to create. The type T is men-
tioned throughout the class definition and member-function definitions as a generic type name.

848 Chapter 22 Templates

• Member-function definitions outside a class template each begin with template<typename T> (or
template<class T>). Then, each function definition resembles a conventional function defini-
tion, except that the generic data in the class always is listed generically as type parameter T. The
binary scope-resolution operator is used with the class-template name to tie each member-func-
tion definition to the class template’s scope.

Section 22.5 Nontype Parameters and Default Types for Class Templates
• It’s possible to use nontype parameters in the header of a class or function template.

• You can specify a default type for a type parameter in the type-parameter list.

• An explicit specialization of a class template overrides a class template for a specific type.

Section 22.6 Notes on Templates and Inheritance
• A class template can be derived from a class-template specialization. A class template can be de-

rived from a nontemplate class. A class-template specialization can be derived from a class-tem-
plate specialization. A nontemplate class can be derived from a class-template specialization.

Section 22.7 Notes on Templates and Friends
• Functions and entire classes can be declared as friends of nontemplate classes. With class tem-

plates, friendship arrangements can be declared. Friendship can be established between a class
template and a global function, a member function of another class (possibly a class-template spe-
cialization) or even an entire class (possibly a class-template specialization).

Section 22.8 Notes on Templates and static Members
• Each class-template specialization has its own copy of each static data member; all objects of

that specialization share that static data member. Such data members must be defined and, if
necessary, initialized at global namespace scope.

• Each class-template specialization gets a copy of the class template’s static member functions.

Terminology
angle brackets (< and >) 834
class keyword in a template type parameter 834
class template 833
class-template definition 838
class-template specialization 833
default type for a type parameter 844
explicit specialization 845
friend of a template 845
function template 833
function-template definition 834
function-template specialization 833
generic programming 833

macro 834
member function of a class-template

specialization 845
nontype template parameter 844
overloading a function template 837
parameterized type 838
template 833
template keyword 834
template parameter 834
type parameter 834
type template parameter 834
typename keyword 834

Self-Review Exercises
22.1 State which of the following are true and which are false. If false, explain why.

a) The template parameters of a function-template definition are used to specify the types
of the arguments to the function, to specify the return type of the function and to de-
clare variables within the function.

b) Keywords typename and class as used with a template type parameter specifically mean
“any user-defined class type.”

 Answers to Self-Review Exercises 849

c) A function template can be overloaded by another function template with the same
function name.

d) Template parameter names among template definitions must be unique.
e) Each member-function definition outside a class template must begin with a template

header.
f) A friend function of a class template must be a function-template specialization.
g) If several class-template specializations are generated from a single class template with a

single static data member, each of the class-template specializations shares a single
copy of the class template’s static data member.

22.2 Fill in the blanks in each of the following:
a) Templates enable us to specify, with a single code segment, an entire range of related

functions called , or an entire range of related classes called .
b) All function-template definitions begin with the keyword , followed by a list

of template parameters to the function template enclosed in .
c) The related functions generated from a function template all have the same name, so

the compiler uses resolution to invoke the proper function.
d) Class templates also are called types.
e) The operator is used with a class-template name to tie each member-function

definition to the class template’s scope.
f) As with static data members of nontemplate classes, static data members of class-tem-

plate specializations must also be defined and, if necessary, initialized at scope.

Answers to Self-Review Exercises
22.1 a) True. b) False. Keywords typename and class in this context also allow for a type pa-
rameter of a fundamental type. c) True. d) False. Template parameter names among function tem-
plates need not be unique. e) True. f) False. It could be a nontemplate function. g) False. Each class-
template specialization will have its own copy of the static data member.

22.2 a) function-template specializations, class-template specializations. b) template, angle
brackets (< and >). c) overloading. d) parameterized. e) binary scope resolution. f) global namespace.

Exercises
22.3 (Selection Sort Function Template) Write a function template selectionSort (see
Appendix F for information on this sorting technique). Write a driver program that inputs, sorts
and outputs an int array and a float array.

22.4 (Print Array Range) Overload function template printArray of Fig. 22.1 so that it takes
two additional integer arguments, namely int lowSubscript and int highSubscript. A call to this
function will print only the designated portion of the array. Validate lowSubscript and highSub-
script; if either is out of range or if highSubscript is less than or equal to lowSubscript, the over-
loaded printArray function should return 0; otherwise, printArray should return the number of
elements printed. Then modify main to exercise both versions of printArray on arrays a, b and c
(lines 22–24 of Fig. 22.1). Be sure to test all capabilities of both versions of printArray.

22.5 (Function Template Overloading) Overload function template printArray of Fig. 22.1
with a nontemplate version that prints an array of character strings in neat, tabular, column format.

22.6 (Operator Overloading in Templates) Write a simple function template for predicate func-
tion isEqualTo that compares its two arguments of the same type with the equality operator (==) and
returns true if they are equal and false otherwise. Use this function template in a program that calls
isEqualTo only with a variety of fundamental types. Now write a separate version of the program
that calls isEqualTo with a user-defined class type, but does not overload the equality operator. What

850 Chapter 22 Templates

happens when you attempt to run this program? Now overload the equality operator (with the op-
erator function) operator==. Now what happens when you attempt to run this program?

22.7 (Array Class Template) Use an int template nontype parameter numberOfElements and a
type parameter elementType to help create a template for the Array class (Figs. 19.6–19.7) we de-
veloped in Chapter 19. This template will enable Array objects to be instantiated with a specified
number of elements of a specified element type at compile time.

Write a program with class template Array. The template can instantiate an Array of any ele-
ment type. Override the template with a specific definition for an Array of float elements (class
Array<float>). The driver should demonstrate the instantiation of an Array of int through the
template and should show that an attempt to instantiate an Array of float uses the definition pro-
vided in class Array<float>.

22.8 Distinguish between the terms “function template” and “function-template specialization.”

22.9 Explain which is more like a stencil—a class template or a class-template specialization?

22.10 What’s the relationship between function templates and overloading?

22.11 Why might you choose to use a function template instead of a macro?

22.12 What performance problem can result from using function templates and class templates?

22.13 The compiler performs a matching process to determine which function-template special-
ization to call when a function is invoked. Under what circumstances does an attempt to make a
match result in a compile error?

22.14 Why is it appropriate to refer to a class template as a parameterized type?

22.15 Explain why a C++ program would use the statement

Array< Employee > workerList(100);

22.16 Review your answer to Exercise 22.15. Explain why a C++ program might use the statement

Array< Employee > workerList;

22.17 Explain the use of the following notation in a C++ program:

template< typename T > Array< T >::Array(int s)

22.18 Why might you use a nontype parameter with a class template for a container such as an
array or stack?

22.19 Suppose that a class template has the header

template< typename T > class Ct1

Describe the friendship relationships established by placing each of the following friend declara-
tions inside this class template. Identifiers beginning with “f” are functions, identifiers beginning
with “C” are classes, identifiers beginning with “Ct” are class templates and T is a template type
parameter (i.e., T can represent any fundamental or class type).

a) friend void f1();

b) friend void f2(Ct1< T > &);

c) friend void C2::f3();

d) friend void Ct3< T >::f4(Ct1< T > &);

e) friend class C4;

f) friend class Ct5< T >;

22.20 Suppose that class template Employee has a static data member count. Suppose that three
class-template specializations are instantiated from the class template. How many copies of the
static data member will exist? How will the use of each be constrained (if at all)?

23Stream Input/Output

Consciousness … does not
appear to itself chopped up in
bits … A “river” or a “stream”
are the metaphors by which it is
most naturally described.
—William James

O b j e c t i v e s
In this chapter you’ll learn:

■ To use C++ object-oriented
stream input/output.

■ To format input and output.

■ The stream-I/O class
hierarchy.

■ To use stream manipulators.

■ To control justification and
padding.

■ To determine the success or
failure of input/output
operations.

■ To tie output streams to input
streams.

852 Chapter 23 Stream Input/Output

23.1 Introduction
The C++ standard libraries provide an extensive set of input/output capabilities. This
chapter discusses a range of capabilities sufficient for performing most common I/O op-
erations and overviews the remaining capabilities. We discussed some of these features ear-
lier in the text; now we provide a more complete treatment. Many of the I/O features that
we’ll discuss are object oriented. This style of I/O makes use of other C++ features, such
as references, function overloading and operator overloading.

C++ uses type-safe I/O. Each I/O operation is executed in a manner sensitive to the
data type. If an I/O member function has been defined to handle a particular data type,
then that member function is called to handle that data type. If there is no match between
the type of the actual data and a function for handling that data type, the compiler gener-
ates an error. Thus, improper data cannot “sneak” through the system (as can occur in C,
allowing for some subtle and bizarre errors).

Users can specify how to perform I/O for objects of user-defined types by overloading
the stream insertion operator (<<) and the stream extraction operator (>>). This extensi-
bility is one of C++’s most valuable features.

23.1 Introduction
23.2 Streams

23.2.1 Classic Streams vs. Standard Streams
23.2.2 iostream Library Header Files
23.2.3 Stream Input/Output Classes and

Objects
23.3 Stream Output

23.3.1 Output of char * Variables
23.3.2 Character Output Using Member

Function put

23.4 Stream Input
23.4.1 get and getline Member Functions
23.4.2 istream Member Functions peek,

putback and ignore
23.4.3 Type-Safe I/O

23.5 Unformatted I/O Using read, write
and gcount

23.6 Introduction to Stream Manipulators
23.6.1 Integral Stream Base: dec, oct, hex

and setbase
23.6.2 Floating-Point Precision (precision,

setprecision)
23.6.3 Field Width (width, setw)

23.6.4 User-Defined Output Stream
Manipulators

23.7 Stream Format States and Stream
Manipulators

23.7.1 Trailing Zeros and Decimal Points
(showpoint)

23.7.2 Justification (left, right and
internal)

23.7.3 Padding (fill, setfill)
23.7.4 Integral Stream Base (dec, oct, hex,

showbase)
23.7.5 Floating-Point Numbers; Scientific

and Fixed Notation (scientific,
fixed)

23.7.6 Uppercase/Lowercase Control
(uppercase)

23.7.7 Specifying Boolean Format
(boolalpha)

23.7.8 Setting and Resetting the Format State
via Member-Function flags

23.8 Stream Error States
23.9 Tying an Output Stream to an Input

Stream
23.10 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 23.1
Use the C++-style I/O exclusively in C++ programs, even though C-style I/O is available
to C++ programmers.

23.2 Streams 853

23.2 Streams
C++ I/O occurs in streams, which are sequences of bytes. In input operations, the bytes
flow from a device (e.g., a keyboard, a disk drive, a network connection, etc.) to main
memory. In output operations, bytes flow from main memory to a device (e.g., a display
screen, a printer, a disk drive, a network connection, etc.).

An application associates meaning with bytes. The bytes could represent characters,
raw data, graphics images, digital speech, digital video or any other information an appli-
cation may require.

The system I/O mechanisms should transfer bytes from devices to memory (and vice
versa) consistently and reliably. Such transfers often involve some mechanical motion,
such as the rotation of a disk or a tape, or the typing of keystrokes at a keyboard. The time
these transfers take is typically much greater than the time the processor requires to manip-
ulate data internally. Thus, I/O operations require careful planning and tuning to ensure
optimal performance.

C++ provides both “low-level” and “high-level” I/O capabilities. Low-level I/O
capabilities (i.e., unformatted I/O) specify that some number of bytes should be trans-
ferred device-to-memory or memory-to-device. In such transfers, the individual byte is the
item of interest. Such low-level capabilities provide high-speed, high-volume transfers but
are not particularly convenient.

Programmers generally prefer a higher-level view of I/O (i.e., formatted I/O), in
which bytes are grouped into meaningful units, such as integers, floating-point numbers,
characters, strings and user-defined types. These type-oriented capabilities are satisfactory
for most I/O other than high-volume file processing.

23.2.1 Classic Streams vs. Standard Streams
In the past, the C++ classic stream libraries enabled input and output of chars. Because a
char normally occupies one byte, it can represent only a limited set of characters (such as
those in the ASCII character set). However, many languages use alphabets that contain
more characters than a single-byte char can represent. The ASCII character set does not
provide these characters; the Unicode® character set does. Unicode is an extensive inter-

Error-Prevention Tip 23.1
C++ I/O is type safe.

Software Engineering Observation 23.2
C++ enables a common treatment of I/O for predefined types and user-defined types. This
commonality facilitates software development and reuse.

Performance Tip 23.1
Use unformatted I/O for the best performance in high-volume file processing.

Portability Tip 23.1
Using unformatted I/O can lead to portability problems, because unformatted data is not
portable across all platforms.

854 Chapter 23 Stream Input/Output

national character set that represents the majority of the world’s “commercially viable” lan-
guages, mathematical symbols and much more. For more information on Unicode, visit
www.unicode.org.

C++ includes the standard stream libraries, which enable developers to build systems
capable of performing I/O operations with Unicode characters. For this purpose, C++
includes an additional character type called wchar_t, which can store 2-byte Unicode
characters. The C++ standard also redesigned the classic C++ stream classes, which pro-
cessed only chars, as class templates with separate specializations for processing characters
of types char and wchar_t, respectively. We use the char type of class templates
throughout this book.

23.2.2 iostream Library Header Files
The C++ iostream library provides hundreds of I/O capabilities. Several header files con-
tain portions of the library interface.

Most C++ programs include the <iostream> header file, which declares basic services
required for all stream-I/O operations. The <iostream> header file defines the cin, cout,
cerr and clog objects, which correspond to the standard input stream, the standard
output stream, the unbuffered standard error stream and the buffered standard error
stream, respectively. (cerr and clog are discussed in Section 23.2.3.) Both unformatted-
and formatted-I/O services are provided.

The <iomanip> header declares services useful for performing formatted I/O with so-
called parameterized stream manipulators, such as setw and setprecision. The
<fstream> header declares services for user-controlled file processing.

C++ implementations generally contain other I/O-related libraries that provide
system-specific capabilities, such as the controlling of special-purpose devices for audio
and video I/O.

23.2.3 Stream Input/Output Classes and Objects
The iostream library provides many templates for handling common I/O operations. For
example, class template basic_istream supports stream-input operations, class template
basic_ostream supports stream-output operations, and class template basic_iostream
supports both stream-input and stream-output operations. Each template has a predefined
template specialization that enables char I/O. In addition, the iostream library provides
a set of typedefs that provide aliases for these template specializations. The typedef spec-
ifier declares synonyms (aliases) for previously defined data types. Programmers sometimes
use typedef to create shorter or more readable type names. For example, the statement

defines an additional type name, CardPtr, as a synonym for type Card *. Creating a name
using typedef does not create a data type; typedef creates only a type name that may be
used in the program. Section 10.6 discusses typedef in detail. The typedef istream rep-
resents a specialization of basic_istream that enables char input. Similarly, the typedef
ostream represents a specialization of basic_ostream that enables char output. Also, the
typedef iostream represents a specialization of basic_iostream that enables both char
input and output. We use these typedefs throughout this chapter.

typedef Card *CardPtr;

www.unicode.org

23.2 Streams 855

Stream-I/O Template Hierarchy and Operator Overloading
Templates basic_istream and basic_ostream both derive through single inheritance
from base template basic_ios.1 Template basic_iostream derives through multiple in-
heritance from templates basic_istream and basic_ostream. The UML class diagram of
Fig. 23.1 summarizes these inheritance relationships.

Operator overloading provides a convenient notation for performing input/output.
The left-shift operator (<<) is overloaded to designate stream output and is referred to as
the stream insertion operator. The right-shift operator (>>) is overloaded to designate
stream input and is referred to as the stream extraction operator. These operators are used
with the standard stream objects cin, cout, cerr and clog and, commonly, with user-
defined stream objects.

Standard Stream Objects cin, cout, cerr and clog
Predefined object cin is an istream instance and is said to be “connected to” (or attached
to) the standard input device, which usually is the keyboard. The stream extraction oper-
ator (>>) as used in the following statement causes a value for integer variable grade (as-
suming that grade has been declared as an int variable) to be input from cin to memory:

The compiler determines the data type of grade and selects the appropriate overloaded
stream extraction operator. Assuming that grade has been declared properly, the stream
extraction operator does not require additional type information (as is the case, for exam-
ple, in C-style I/O). The >> operator is overloaded to input data items of fundamental
types, strings and pointer values.

The predefined object cout is an ostream instance and is said to be “connected to”
the standard output device, which usually is the display screen. The stream insertion oper-
ator (<<), as used in the following statement, causes the value of variable grade to be
output from memory to the standard output device:

1. This chapter discusses templates only in the context of the template specializations for char I/O.

Fig. 23.1 | Stream-I/O template hierarchy portion.

cin >> grade; // data "flows" in the direction of the arrows

cout << grade; // data "flows" in the direction of the arrows

basic_ios

basic_ostreambasic_istream

basic_iostream

856 Chapter 23 Stream Input/Output

The compiler determines the data type of grade (assuming grade has been declared prop-
erly) and selects the appropriate stream insertion operator. The << operator is overloaded
to output data items of fundamental types, strings and pointer values.

The predefined object cerr is an ostream instance and is said to be “connected to”
the standard error device, normally the screen. Outputs to object cerr are unbuffered,
implying that each stream insertion to cerr causes its output to appear immediately—this
is appropriate for notifying a user promptly about errors.

The predefined object clog is an instance of the ostream class and is said to be “con-
nected to” the standard error device. Outputs to clog are buffered. This means that each
insertion to clog could cause its output to be held in a buffer until the buffer is filled or
until the buffer is flushed. Buffering is an I/O performance-enhancement technique dis-
cussed in operating-systems courses.

File-Processing Templates
C++ file processing uses class templates basic_ifstream (for file input), basic_ofstream
(for file output) and basic_fstream (for file input and output). Each class template has a
predefined template specialization that enables char I/O. C++ provides a set of typedefs
that provide aliases for these template specializations. For example, the typedef ifstream
represents a specialization of basic_ifstream that enables char input from a file. Similar-
ly, typedef ofstream represents a specialization of basic_ofstream that enables char out-
put to a file. Also, typedef fstream represents a specialization of basic_fstream that
enables char input from, and output to, a file. Template basic_ifstream inherits from
basic_istream, basic_ofstream inherits from basic_ostream and basic_fstream in-
herits from basic_iostream. The UML class diagram of Fig. 23.2 summarizes the various
inheritance relationships of the I/O-related classes. The full stream-I/O class hierarchy
provides most of the capabilities that you need. Consult the class-library reference for your
C++ system for additional file-processing information.

Fig. 23.2 | Stream-I/O template hierarchy portion showing the main file-processing
templates.

basic_ios

basic_ostreambasic_istream

basic_iostream basic_ofstreambasic_ifstream

basic_fstream

23.3 Stream Output 857

23.3 Stream Output
Formatted and unformatted output capabilities are provided by ostream. Capabilities in-
clude output of standard data types with the stream insertion operator (<<); output of
characters via the put member function; unformatted output via the write member func-
tion (Section 23.5); output of integers in decimal, octal and hexadecimal formats
(Section 23.6.1); output of floating-point values with various precision (Section 23.6.2),
with forced decimal points (Section 23.7.1), in scientific notation and in fixed notation
(Section 23.7.5); output of data justified in fields of designated widths (Section 23.7.2);
output of data in fields padded with specified characters (Section 23.7.3); and output of
uppercase letters in scientific notation and hexadecimal notation (Section 23.7.6).

23.3.1 Output of char * Variables
C++ determines data types automatically—an improvement over C. This feature some-
times “gets in the way.” For example, suppose we want to print the address stored in a
char * pointer. The << operator has been overloaded to output a char * as a null-termi-
nated string. To output the address, you can cast the char * to a void * (this can be done
to any pointer variable). Figure 23.3 demonstrates printing a char * variable in both string
and address formats. The address prints as a hexadecimal (base-16) number, which might
differ among computers. To learn more about hexadecimal numbers, read Appendix C.
We say more about controlling the bases of numbers in Section 23.6.1 and Section 23.7.4.

23.3.2 Character Output Using Member Function put
We can use the put member function to output characters. For example, the statement

1 // Fig. 23.3: Fig23_03.cpp
2 // Printing the address stored in a char * variable.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8
9

10 // display value of char *, then display value of char *
11 // static_cast to void *
12 cout << "Value of word is: " << << endl
13 << "Value of static_cast< void * >(word) is: "
14 << << endl;
15 } // end main

Value of word is: again
Value of static_cast< void * >(word) is: 00428300

Fig. 23.3 | Printing the address stored in a char * variable.

cout.put('A');

const char *const word = "again";

word

static_cast< void * >(word)

858 Chapter 23 Stream Input/Output

displays a single character A. Calls to put may be cascaded, as in the statement

which outputs the letter A followed by a newline character. As with <<, the preceding state-
ment executes in this manner, because the dot operator (.) associates from left to right,
and the put member function returns a reference to the ostream object (cout) that re-
ceived the put call. The put function also may be called with a numeric expression that
represents an ASCII value, as in the following statement

which also outputs A.

23.4 Stream Input
Now let’s consider stream input. Formatted and unformatted input capabilities are pro-
vided by istream. The stream extraction operator (>>) normally skips white-space char-
acters (such as blanks, tabs and newlines) in the input stream; later we’ll see how to change
this behavior. After each input, the stream extraction operator returns a reference to the
stream object that received the extraction message (e.g., cin in the expression
cin >> grade). If that reference is used as a condition (e.g., in a while statement’s loop-
continuation condition), the stream’s overloaded void * cast operator function is implic-
itly invoked to convert the reference into a non-null pointer value or the null pointer based
on the success or failure of the last input operation. A non-null pointer converts to the
bool value true to indicate success and the null pointer converts to the bool value false
to indicate failure. When an attempt is made to read past the end of a stream, the stream’s
overloaded void * cast operator returns the null pointer to indicate end-of-file.

Each stream object contains a set of state bits used to control the stream’s state (i.e.,
formatting, setting error states, etc.). These bits are used by the stream’s overloaded void *

cast operator to determine whether to return a non-null pointer or the null pointer. Stream
extraction causes the stream’s failbit to be set if data of the wrong type is input and
causes the stream’s badbit to be set if the operation fails. Section 23.7 and Section 23.8
discuss stream state bits in detail, then show how to test these bits after an I/O operation.

23.4.1 get and getline Member Functions
The get member function with no arguments inputs one character from the designated
stream (including white-space characters and other nongraphic characters, such as the key
sequence that represents end-of-file) and returns it as the value of the function call. This
version of get returns EOF when end-of-file is encountered on the stream.

Using Member Functions eof, get and put
Figure 23.4 demonstrates the use of member functions eof and get on input stream cin
and member function put on output stream cout. The program first prints the value of
cin.eof()—i.e., false (0 on the output)—to show that end-of-file has not occurred on
cin. The user enters a line of text and presses Enter followed by end-of-file (<Ctrl>-z on
Microsoft Windows systems, <Ctrl>-d on UNIX and Macintosh systems). Line 15 reads
each character, which line 16 outputs to cout using member function put. When end-of-
file is encountered, the while statement ends, and line 20 displays the value of cin.eof(),

cout.put('A').put('\n');

cout.put(65);

23.4 Stream Input 859

which is now true (1 on the output), to show that end-of-file has been set on cin. This
program uses the version of istream member function get that takes no arguments and
returns the character being input (line 15). Function eof returns true only after the pro-
gram attempts to read past the last character in the stream.

The get member function with a character-reference argument inputs the next char-
acter from the input stream (even if this is a white-space character) and stores it in the char-
acter argument. This version of get returns a reference to the istream object for which
the get member function is being invoked.

A third version of get takes three arguments—a character array, a size limit and a
delimiter (with default value '\n'). This version reads characters from the input stream.
It either reads one fewer than the specified maximum number of characters and terminates
or terminates as soon as the delimiter is read. A null character is inserted to terminate the
input string in the character array used as a buffer by the program. The delimiter is not
placed in the character array but does remain in the input stream (the delimiter will be the
next character read). Thus, the result of a second consecutive get is an empty line, unless
the delimiter character is removed from the input stream (possibly with cin.ignore()).

1 // Fig. 23.4: Fig23_04.cpp
2 // Using member functions get, put and eof.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int character; // use int, because char cannot represent EOF
9

10 // prompt user to enter line of text
11 cout << "Before input, cin.eof() is " << << endl
12 << "Enter a sentence followed by end-of-file:" << endl;
13
14 // use get to read each character; use put to display it
15 while ()
16
17
18 // display end-of-file character
19 cout << "\nEOF in this system is: " << character << endl;
20 cout << "After input of EOF, cin.eof() is " << << endl;
21 } // end main

Before input, cin.eof() is 0
Enter a sentence followed by end-of-file:
Testing the get and put member functions
Testing the get and put member functions
^Z

EOF in this system is: -1
After input of EOF, cin.eof() is 1

Fig. 23.4 | get, put and eof member functions.

cin.eof()

(character = cin.get()) != EOF
cout.put(character);

cin.eof()

860 Chapter 23 Stream Input/Output

Comparing cin and cin.get
Figure 23.5 compares input using stream extraction with cin (which reads characters until
a white-space character is encountered) and input using cin.get. The call to cin.get (line
22) does not specify a delimiter, so the default '\n' character is used.

Using Member Function getline
Member function getline operates similarly to the third version of the get member func-
tion and inserts a null character after the line in the character array. The getline function
removes the delimiter from the stream (i.e., reads the character and discards it), but does
not store it in the character array. The program of Fig. 23.6 demonstrates the use of the
getline member function to input a line of text (line 13).

1 // Fig. 23.5: Fig23_05.cpp
2 // Contrasting input of a string via cin and cin.get.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // create two char arrays, each with 80 elements
9 const int SIZE = 80;

10 char buffer1[SIZE];
11 char buffer2[SIZE];
12
13 // use cin to input characters into buffer1
14 cout << "Enter a sentence:" << endl;
15
16
17 // display buffer1 contents
18 cout << "\nThe string read with cin was:" << endl
19 << buffer1 << endl << endl;
20
21
22
23
24 // display buffer2 contents
25 cout << "The string read with cin.get was:" << endl
26 << buffer2 << endl;
27 } // end main

Enter a sentence:
Contrasting string input with cin and cin.get

The string read with cin was:
Contrasting

The string read with cin.get was:
 string input with cin and cin.get

Fig. 23.5 | Input of a string using cin with stream extraction contrasted with input using
cin.get.

cin >> buffer1;

// use cin.get to input characters into buffer2
cin.get(buffer2, SIZE);

23.5 Unformatted I/O Using read, write and gcount 861

23.4.2 istream Member Functions peek, putback and ignore
The ignore member function of istream reads and discards a designated number of char-
acters (the default is one) or terminates upon encountering a designated delimiter (the de-
fault is EOF, which causes ignore to skip to the end of the file when reading from a file).

The putback member function places the previous character obtained by a get from
an input stream back into that stream. This function is useful for applications that scan an
input stream looking for a field beginning with a specific character. When that character
is input, the application returns the character to the stream, so the character can be
included in the input data.

The peek member function returns the next character from an input stream but does
not remove the character from the stream.

23.4.3 Type-Safe I/O
C++ offers type-safe I/O. The << and >> operators are overloaded to accept data items of
specific types. If unexpected data is processed, various error bits are set, which the user may
test to determine whether an I/O operation succeeded or failed. If operator << has not
been overloaded for a user-defined type and you attempt to input into or output the con-
tents of an object of that user-defined type, the compiler reports an error. This enables the
program to “stay in control.” We discuss these error states in Section 23.8.

23.5 Unformatted I/O Using read, write and gcount
Unformatted input/output is performed using the read and write member functions of
istream and ostream, respectively. Member function read inputs bytes to a character ar-

1 // Fig. 23.6: Fig23_06.cpp
2 // Inputting characters using cin member function getline.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 80;
9

10
11 // input characters in buffer via cin function getline
12 cout << "Enter a sentence:" << endl;
13
14
15 // display buffer contents
16 cout << "\nThe sentence entered is:" << endl << buffer << endl;
17 } // end main

Enter a sentence:
Using the getline member function

The sentence entered is:
Using the getline member function

Fig. 23.6 | Inputting character data with cin member function getline.

char buffer[SIZE]; // create array of 80 characters

cin.getline(buffer, SIZE);

862 Chapter 23 Stream Input/Output

ray in memory; member function write outputs bytes from a character array. These bytes
are not formatted in any way. They’re input or output as raw bytes. For example, the call

outputs the first 10 bytes of buffer (including null characters, if any, that would cause
output with cout and << to terminate). The call

displays the first 10 characters of the alphabet.
The read member function inputs a designated number of characters into a character

array. If fewer than the designated number of characters are read, failbit is set.
Section 23.8 shows how to determine whether failbit has been set. Member function
gcount reports the number of characters read by the last input operation.

Figure 23.7 demonstrates istream member functions read and gcount, and ostream
member function write. The program inputs 20 characters (from a longer input
sequence) into the array buffer with read (line 13), determines the number of characters
input with gcount (line 17) and outputs the characters in buffer with write (line 17).

23.6 Introduction to Stream Manipulators
C++ provides various stream manipulators that perform formatting tasks. The stream ma-
nipulators provide capabilities such as setting field widths, setting precision, setting and

char buffer[] = "HAPPY BIRTHDAY";
cout.write(buffer, 10);

cout.write("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 10);

1 // Fig. 23.7: Fig23_07.cpp
2 // Unformatted I/O using read, gcount and write.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 80;
9

10
11 // use function read to input characters into buffer
12 cout << "Enter a sentence:" << endl;
13
14
15 // use functions write and gcount to display buffer characters
16 cout << endl << "The sentence entered was:" << endl;
17
18 cout << endl;
19 } // end main

Enter a sentence:
Using the read, write, and gcount member functions
The sentence entered was:
Using the read, writ

Fig. 23.7 | Unformatted I/O using the read, gcount and write member functions.

char buffer[SIZE]; // create array of 80 characters

cin.read(buffer, 20);

cout.write(buffer, cin.gcount());

23.6 Introduction to Stream Manipulators 863

unsetting format state, setting the fill character in fields, flushing streams, inserting a new-
line into the output stream (and flushing the stream), inserting a null character into the
output stream and skipping white space in the input stream. These features are described
in the following sections.

23.6.1 Integral Stream Base: dec, oct, hex and setbase

Integers are interpreted normally as decimal (base-10) values. To change the base in which
integers are interpreted on a stream, insert the hex manipulator to set the base to hexadec-
imal (base 16) or insert the oct manipulator to set the base to octal (base 8). Insert the dec
manipulator to reset the stream base to decimal. These are all sticky manipulators.

The base of a stream also may be changed by the setbase stream manipulator, which
takes one integer argument of 10, 8, or 16 to set the base to decimal, octal or hexadecimal,
respectively. Because setbase takes an argument, it’s called a parameterized stream manip-
ulator. Using setbase (or any other parameterized manipulator) requires the inclusion of
the <iomanip> header file. The stream base value remains the same until changed explic-
itly; setbase settings are “sticky.” Figure 23.8 demonstrates stream manipulators hex,
oct, dec and setbase.

1 // Fig. 23.8: Fig23_08.cpp
2 // Using stream manipulators hex, oct, dec and setbase.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 int number;

10
11 cout << "Enter a decimal number: ";
12 cin >> number; // input number
13
14 // use hex stream manipulator to show hexadecimal number
15 cout << number << " in hexadecimal is: " <<
16 << number << endl;
17
18 // use oct stream manipulator to show octal number
19 cout << << number << " in octal is: "
20 << << number << endl;
21
22 // use setbase stream manipulator to show decimal number
23 cout << << number << " in decimal is: "
24 << number << endl;
25 } // end main

Enter a decimal number: 20
20 in hexadecimal is: 14
20 in octal is: 24
20 in decimal is: 20

Fig. 23.8 | Stream manipulators hex, oct, dec and setbase.

#include <iomanip>

hex

dec
oct

setbase(10)

864 Chapter 23 Stream Input/Output

23.6.2 Floating-Point Precision (precision, setprecision)
We can control the precision of floating-point numbers (i.e., the number of digits to the
right of the decimal point) by using either the setprecision stream manipulator or the
precision member function of ios_base. A call to either of these sets the precision for all
subsequent output operations until the next precision-setting call. A call to member func-
tion precision with no argument returns the current precision setting (this is what you
need to use so that you can restore the original precision eventually after a “sticky” setting
is no longer needed). The program of Fig. 23.9 uses both member function precision
(line 22) and the setprecision manipulator (line 31) to print a table that shows the
square root of 2, with precision varying from 0 to 9.

1 // Fig. 23.9: Fig23_09.cpp
2 // Controlling precision of floating-point values.
3 #include <iostream>
4
5 #include <cmath>
6 using namespace std;
7
8 int main()
9 {

10 double root2 = sqrt(2.0); // calculate square root of 2
11 int places; // precision, vary from 0-9
12
13 cout << "Square root of 2 with precisions 0-9." << endl
14 << "Precision set by ios_base member function "
15 << "precision:" << endl;
16
17
18
19 // display square root using ios_base function precision
20 for (places = 0; places <= 9; places++)
21 {
22
23 cout << root2 << endl;
24 } // end for
25
26 cout << "\nPrecision set by stream manipulator "
27 << "setprecision:" << endl;
28
29 // set precision for each digit, then display square root
30 for (places = 0; places <= 9; places++)
31 cout << << root2 << endl;
32 } // end main

Square root of 2 with precisions 0-9.
Precision set by ios_base member function precision:
1
1.4
1.41
1.414

Fig. 23.9 | Precision of floating-point values. (Part 1 of 2.)

#include <iomanip>

cout << fixed; // use fixed-point notation

cout.precision(places);

setprecision(places)

23.6 Introduction to Stream Manipulators 865

23.6.3 Field Width (width, setw)
The width member function (of base class ios_base) sets the field width (i.e., the number
of character positions in which a value should be output or the maximum number of char-
acters that should be input) and returns the previous width. If values output are narrower
than the field width, fill characters are inserted as padding. A value wider than the desig-
nated width will not be truncated—the full number will be printed. The width function
with no argument returns the current setting.

Figure 23.10 demonstrates the use of the width member function on both input and
output. On input into a char array, a maximum of one fewer characters than the width
will be read, because provision is made for the null character to be placed in the input
string. Remember that stream extraction terminates when nonleading white space is
encountered. The setw stream manipulator also may be used to set the field width.

1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562

Precision set by stream manipulator setprecision:
1
1.4
1.41
1.414
1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562

Common Programming Error 23.1
The width setting applies only for the next insertion or extraction (i.e., the width setting
is not “sticky”); afterward, the width is set implicitly to 0 (i.e., input and output will be
performed with default settings). Assuming that the width setting applies to all subsequent
outputs is a logic error.

Common Programming Error 23.2
When a field is not sufficiently wide to handle outputs, the outputs print as wide as nec-
essary, which can yield confusing outputs.

1 // Fig. 23.10: Fig23_10.cpp
2 // Demonstrating member function width.
3 #include <iostream>
4 using namespace std;

Fig. 23.10 | width member function of class ios_base. (Part 1 of 2.)

Fig. 23.9 | Precision of floating-point values. (Part 2 of 2.)

866 Chapter 23 Stream Input/Output

[Note: When prompted for input in Fig. 23.10, the user should enter a line of text and
press Enter followed by end-of-file (<Ctrl>-z on Microsoft Windows systems, <Ctrl>-d on
UNIX and Macintosh systems).]

23.6.4 User-Defined Output Stream Manipulators
You can create your own stream manipulators.2 Figure 23.11 shows the creation and use
of new nonparameterized stream manipulators bell (lines 8–11), carriageReturn (lines
14–17), tab (lines 20–23) and endLine (lines 27–30). For output stream manipulators,
the return type and parameter must be of type ostream &. When line 35 inserts the end-
Line manipulator in the output stream, function endLine is called and line 29 outputs the
escape sequence \n and the flush manipulator to the standard output stream cout. Sim-
ilarly, when lines 35–44 insert the manipulators tab, bell and carriageReturn in the
output stream, their corresponding functions—tab (line 20), bell (line 8) and car-
riageReturn (line 14) are called, which in turn output various escape sequences.

5
6 int main()
7 {
8 int widthValue = 4;
9 char sentence[10];

10
11 cout << "Enter a sentence:" << endl;
12
13
14 // set field width, then display characters based on that width
15 while (cin >> sentence)
16 {
17
18 cout << sentence << endl;
19
20 } // end while
21 } // end main

Enter a sentence:
This is a test of the width member function
This
 is
 a
 test
 of
 the
 widt
 h
 memb
 er
 func
 tion

2. You also may create your own parameterized stream manipulators. This concept is beyond the scope
of this book.

Fig. 23.10 | width member function of class ios_base. (Part 2 of 2.)

cin.width(5); // input only 5 characters from sentence

cout.width(widthValue++);

cin.width(5); // input 5 more characters from sentence

23.6 Introduction to Stream Manipulators 867

1 // Fig. 23.11: Fig23_11.cpp
2 // Creating and testing user-defined, nonparameterized
3 // stream manipulators.
4 #include <iostream>
5 using namespace std;
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 int main()
33 {
34 // use tab and endLine manipulators
35 cout << "Testing the tab manipulator:" <<
36 << 'a' << << 'b' << << 'c' << ;
37
38 cout << "Testing the carriageReturn and bell manipulators:"
39 << << "..........";
40
41 cout << ; // use bell manipulator
42
43 // use carriageReturn and endLine manipulators
44 cout << << "-----" << ;
45 } // end main

Testing the tab manipulator:
a b c
Testing the carriageReturn and bell manipulators:
-----.....

Fig. 23.11 | User-defined, nonparameterized stream manipulators.

// bell manipulator (using escape sequence \a)
ostream& bell(ostream& output)
{

return output << '\a'; // issue system beep
} // end bell manipulator

// carriageReturn manipulator (using escape sequence \r)
ostream& carriageReturn(ostream& output)
{

return output << '\r'; // issue carriage return
} // end carriageReturn manipulator

// tab manipulator (using escape sequence \t)
ostream& tab(ostream& output)
{

return output << '\t'; // issue tab
} // end tab manipulator

// endLine manipulator (using escape sequence \n and member
// function flush)
ostream& endLine(ostream& output)
{

return output << '\n' << flush; // issue endl-like end of line
} // end endLine manipulator

endLine
tab tab endLine

endLine

bell

carriageReturn endLine

868 Chapter 23 Stream Input/Output

23.7 Stream Format States and Stream Manipulators
Various stream manipulators can be used to specify the kinds of formatting to be per-
formed during stream-I/O operations. Stream manipulators control the output’s format
settings. Figure 23.12 lists each stream manipulator that controls a given stream’s format
state. All these manipulators belong to class ios_base. We show examples of most of these
stream manipulators in the next several sections.

23.7.1 Trailing Zeros and Decimal Points (showpoint)
Stream manipulator showpoint forces a floating-point number to be output with its dec-
imal point and trailing zeros. For example, the floating-point value 79.0 prints as 79 with-

Stream manipulator Description

skipws Skip white-space characters on an input stream. This setting is reset
with stream manipulator noskipws.

left Left justify output in a field. Padding characters appear to the right if
necessary.

right Right justify output in a field. Padding characters appear to the left if
necessary.

internal Indicate that a number’s sign should be left justified in a field and a
number’s magnitude should be right justified in that same field (i.e.,
padding characters appear between the sign and the number).

dec Specify that integers should be treated as decimal (base 10) values.
oct Specify that integers should be treated as octal (base 8) values.
hex Specify that integers should be treated as hexadecimal (base 16) values.
showbase Specify that the base of a number is to be output ahead of the number

(a leading 0 for octals; a leading 0x or 0X for hexadecimals). This set-
ting is reset with stream manipulator noshowbase.

showpoint Specify that floating-point numbers should be output with a decimal
point. This is used normally with fixed to guarantee a certain number
of digits to the right of the decimal point, even if they’re zeros. This
setting is reset with stream manipulator noshowpoint.

uppercase Specify that uppercase letters (i.e., X and A through F) should be used
in a hexadecimal integer and that uppercase E should be used when
representing a floating-point value in scientific notation. This setting is
reset with stream manipulator nouppercase.

showpos Specify that positive numbers should be preceded by a plus sign (+).
This setting is reset with stream manipulator noshowpos.

scientific Specify output of a floating-point value in scientific notation.
fixed Specify output of a floating-point value in fixed-point notation with a

specific number of digits to the right of the decimal point.

Fig. 23.12 | Format state stream manipulators from <iostream>.

23.7 Stream Format States and Stream Manipulators 869

out using showpoint and prints as 79.000000 (or as many trailing zeros as are specified
by the current precision) using showpoint. To reset the showpoint setting, output the
stream manipulator noshowpoint. The program in Fig. 23.13 shows how to use stream
manipulator showpoint to control the printing of trailing zeros and decimal points for
floating-point values. Recall that the default precision of a floating-point number is 6.
When neither the fixed nor the scientific stream manipulator is used, the precision
represents the number of significant digits to display (i.e., the total number of digits to dis-
play), not the number of digits to display after decimal point.

23.7.2 Justification (left, right and internal)
Stream manipulators left and right enable fields to be left justified with padding char-
acters to the right or right justified with padding characters to the left, respectively. The
padding character is specified by the fill member function or the setfill parameterized
stream manipulator (which we discuss in Section 23.7.3). Figure 23.14 uses the setw,
left and right manipulators to left justify and right justify integer data in a field.

1 // Fig. 23.13: Fig23_13.cpp
2 // Controlling the printing of trailing zeros and
3 // decimal points in floating-point values.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 // display double values with default stream format

10 cout << "Before using showpoint" << endl
11 << "9.9900 prints as: " << 9.9900 << endl
12 << "9.9000 prints as: " << 9.9000 << endl
13 << "9.0000 prints as: " << 9.0000 << endl << endl;
14
15 // display double value after showpoint
16 cout <<
17 << "After using showpoint" << endl
18 << "9.9900 prints as: " << 9.9900 << endl
19 << "9.9000 prints as: " << 9.9000 << endl
20 << "9.0000 prints as: " << 9.0000 << endl;
21 } // end main

Before using showpoint
9.9900 prints as: 9.99
9.9000 prints as: 9.9
9.0000 prints as: 9

After using showpoint
9.9900 prints as: 9.99000
9.9000 prints as: 9.90000
9.0000 prints as: 9.00000

Fig. 23.13 | Controlling the printing of trailing zeros and decimal points in floating-point values.

showpoint

870 Chapter 23 Stream Input/Output

Stream manipulator internal indicates that a number’s sign (or base when using
stream manipulator showbase) should be left justified within a field, that the number’s
magnitude should be right justified and that intervening spaces should be padded with the
fill character. Figure 23.15 shows the internal stream manipulator specifying internal
spacing (line 10). Note that showpos forces the plus sign to print (line 10). To reset the
showpos setting, output the stream manipulator noshowpos.

1 // Fig. 23.14: Fig23_14.cpp
2 // Left and right justification with stream manipulators left and right.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 int x = 12345;

10
11 // display x right justified (default)
12 cout << "Default is right justified:" << endl
13 << << x;
14
15 // use left manipulator to display x left justified
16 cout << "\n\nUse std::left to left justify x:\n"
17 << << << x;
18
19 // use right manipulator to display x right justified
20 cout << "\n\nUse std::right to right justify x:\n"
21 << << << x << endl;
22 } // end main

Default is right justified:
 12345

Use std::left to left justify x:
12345

Use std::right to right justify x:
 12345

Fig. 23.14 | Left justification and right justification with stream manipulators left and right.

1 // Fig. 23.15: Fig23_15.cpp
2 // Printing an integer with internal spacing and plus sign.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {

Fig. 23.15 | Printing an integer with internal spacing and plus sign. (Part 1 of 2.)

setw(10)

left setw(10)

right setw(10)

23.7 Stream Format States and Stream Manipulators 871

23.7.3 Padding (fill, setfill)
The fill member function specifies the fill character to be used with justified fields; if no
value is specified, spaces are used for padding. The fill function returns the prior padding
character. The setfill manipulator also sets the padding character. Figure 23.16 dem-
onstrates using member function fill (line 30) and stream manipulator setfill (lines 34
and 37) to set the fill character.

9 // display value with internal spacing and plus sign
10 cout << << << setw(10) << 123 << endl;
11 } // end main

+ 123

1 // Fig. 23.16: Fig23_16.cpp
2 // Using member function fill and stream manipulator setfill to change
3 // the padding character for fields larger than the printed value.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {

10 int x = 10000;
11
12 // display x
13 cout << x << " printed as int right and left justified\n"
14 << "and as hex with internal justification.\n"
15 << "Using the default pad character (space):" << endl;
16
17 // display x with base
18 cout << showbase << setw(10) << x << endl;
19
20 // display x with left justification
21 cout << left << setw(10) << x << endl;
22
23 // display x as hex with internal justification
24 cout << << setw(10) << hex << x << endl << endl;
25
26 cout << "Using various padding characters:" << endl;
27
28 // display x using padded characters (right justification)
29 cout << right;
30
31 cout << setw(10) << dec << x << endl;
32
33 // display x using padded characters (left justification)
34 cout << left << setw(10) << << x << endl;

Fig. 23.16 | Using member function fill and stream manipulator setfill to change the
padding character for fields larger than the values being printed. (Part 1 of 2.)

Fig. 23.15 | Printing an integer with internal spacing and plus sign. (Part 2 of 2.)

internal showpos

internal

cout.fill('*');

setfill('%')

872 Chapter 23 Stream Input/Output

23.7.4 Integral Stream Base (dec, oct, hex, showbase)
C++ provides stream manipulators dec, hex and oct to specify that integers are to be dis-
played as decimal, hexadecimal and octal values, respectively. Stream insertions default to
decimal if none of these manipulators is used. With stream extraction, integers prefixed
with 0 (zero) are treated as octal values, integers prefixed with 0x or 0X are treated as hexa-
decimal values, and all other integers are treated as decimal values. Once a particular base
is specified for a stream, all integers on that stream are processed using that base until a
different base is specified or until the program terminates.

Stream manipulator showbase forces the base of an integral value to be output. Dec-
imal numbers are output by default, octal numbers are output with a leading 0, and hexa-
decimal numbers are output with either a leading 0x or a leading 0X (as we discuss in
Section 23.7.6, stream manipulator uppercase determines which option is chosen).
Figure 23.17 demonstrates the use of stream manipulator showbase to force an integer to
print in decimal, octal and hexadecimal formats. To reset the showbase setting, output the
stream manipulator noshowbase.

35
36 // display x using padded characters (internal justification)
37 cout << << setw(10) << << hex
38 << x << endl;
39 } // end main

10000 printed as int right and left justified
and as hex with internal justification.
Using the default pad character (space):
 10000
10000
0x 2710

Using various padding characters:
*****10000
10000%%%%%
0x^^^^2710

1 // Fig. 23.17: Fig23_17.cpp
2 // Using stream manipulator showbase.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 100;
9

10 // use showbase to show number base
11 cout << "Printing integers preceded by their base:" << endl
12 << ;

Fig. 23.17 | Stream manipulator showbase. (Part 1 of 2.)

Fig. 23.16 | Using member function fill and stream manipulator setfill to change the
padding character for fields larger than the values being printed. (Part 2 of 2.)

internal setfill('^')

showbase

23.7 Stream Format States and Stream Manipulators 873

23.7.5 Floating-Point Numbers; Scientific and Fixed Notation
(scientific, fixed)
Stream manipulators scientific and fixed control the output format of floating-point
numbers. Stream manipulator scientific forces the output of a floating-point number
to display in scientific format. Stream manipulator fixed forces a floating-point number
to display a specific number of digits (as specified by member function precision or
stream manipulator setprecision) to the right of the decimal point. Without using an-
other manipulator, the floating-point-number value determines the output format.

Figure 23.18 demonstrates displaying floating-point numbers in fixed and scientific for-
mats using stream manipulators scientific (line 18) and fixed (line 22). The exponent
format in scientific notation might differ across different compilers.

13
14 cout << x << endl; // print decimal value
15 cout << oct << x << endl; // print octal value
16 cout << hex << x << endl; // print hexadecimal value
17 } // end main

Printing integers preceded by their base:
100
0144
0x64

1 // Fig. 23.18: Fig23_18.cpp
2 // Displaying floating-point values in system default,
3 // scientific and fixed formats.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 double x = 0.001234567;

10 double y = 1.946e9;
11
12 // display x and y in default format
13 cout << "Displayed in default format:" << endl
14 << x << '\t' << y << endl;
15
16 // display x and y in scientific format
17 cout << "\nDisplayed in scientific format:" << endl
18 << << x << '\t' << y << endl;
19
20 // display x and y in fixed format
21 cout << "\nDisplayed in fixed format:" << endl
22 << << x << '\t' << y << endl;
23 } // end main

Fig. 23.18 | Floating-point values displayed in default, scientific and fixed formats. (Part 1 of 2.)

Fig. 23.17 | Stream manipulator showbase. (Part 2 of 2.)

scientific

fixed

874 Chapter 23 Stream Input/Output

23.7.6 Uppercase/Lowercase Control (uppercase)
Stream manipulator uppercase outputs an uppercase X or E with hexadecimal-integer val-
ues or with scientific notation floating-point values, respectively (Fig. 23.19). Using
stream manipulator uppercase also causes all letters in a hexadecimal value to be upper-
case. By default, the letters for hexadecimal values and the exponents in scientific notation
floating-point values appear in lowercase. To reset the uppercase setting, output the
stream manipulator nouppercase.

23.7.7 Specifying Boolean Format (boolalpha)
C++ provides data type bool, whose values may be false or true, as a preferred alternative
to the old style of using 0 to indicate false and nonzero to indicate true. A bool variable
outputs as 0 or 1 by default. However, we can use stream manipulator boolalpha to set
the output stream to display bool values as the strings "true" and "false". Use stream
manipulator noboolalpha to set the output stream to display bool values as integers (i.e.,
the default setting). The program of Fig. 23.20 demonstrates these stream manipulators.

Displayed in default format:
0.00123457 1.946e+009

Displayed in scientific format:
1.234567e-003 1.946000e+009

Displayed in fixed format:
0.001235 1946000000.000000

1 // Fig. 23.19: Fig23_19.cpp
2 // Stream manipulator uppercase.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 cout << "Printing uppercase letters in scientific" << endl
9 << "notation exponents and hexadecimal values:" << endl;

10
11 // use std:uppercase to display uppercase letters; use std::hex and
12 // std::showbase to display hexadecimal value and its base
13 cout << uppercase << 4.345e10 << endl
14 << hex << showbase << 123456789 << endl;
15 } // end main

Printing uppercase letters in scientific
notation exponents and hexadecimal values:
4.345E+010
0X75BCD15

Fig. 23.19 | Stream manipulator uppercase.

Fig. 23.18 | Floating-point values displayed in default, scientific and fixed formats. (Part 2 of 2.)

23.7 Stream Format States and Stream Manipulators 875

Line 11 displays the bool value, which line 8 sets to true, as an integer. Line 15 uses ma-
nipulator boolalpha to display the bool value as a string. Lines 18–19 then change the
bool’s value and use manipulator noboolalpha, so line 22 can display the bool value as an
integer. Line 26 uses manipulator boolalpha to display the bool value as a string. Both
boolalpha and noboolalpha are “sticky” settings.

23.7.8 Setting and Resetting the Format State via Member Function
flags

Throughout Section 23.7, we’ve been using stream manipulators to change output format
characteristics. We now discuss how to return an output stream’s format to its default state

Good Programming Practice 23.1
Displaying bool values as true or false, rather than nonzero or 0, respectively, makes
program outputs clearer.

1 // Fig. 23.20: Fig23_20.cpp
2 // Demonstrating stream manipulators boolalpha and noboolalpha.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 bool booleanValue = true;
9

10 // display default true booleanValue
11 cout << "booleanValue is " << booleanValue << endl;
12
13 // display booleanValue after using boolalpha
14 cout << "booleanValue (after using boolalpha) is "
15 << << booleanValue << endl << endl;
16
17 cout << "switch booleanValue and use noboolalpha" << endl;
18 booleanValue = false; // change booleanValue
19 cout << << endl; // use noboolalpha
20
21 // display default false booleanValue after using noboolalpha
22 cout << "booleanValue is " << booleanValue << endl;
23
24 // display booleanValue after using boolalpha again
25 cout << "booleanValue (after using boolalpha) is "
26 << << booleanValue << endl;
27 } // end main

booleanValue is 1
booleanValue (after using boolalpha) is true

switch booleanValue and use noboolalpha

booleanValue is 0
booleanValue (after using boolalpha) is false

Fig. 23.20 | Stream manipulators boolalpha and noboolalpha.

boolalpha

noboolalpha

boolalpha

876 Chapter 23 Stream Input/Output

after having applied several manipulations. Member function flags without an argument
returns the current format settings as a fmtflags data type (of class ios_base), which rep-
resents the format state. Member function flags with a fmtflags argument sets the for-
mat state as specified by the argument and returns the prior state settings. The initial
settings of the value that flags returns might differ across several systems. The program
of Fig. 23.21 uses member function flags to save the stream’s original format state (line
17), then restore the original format settings (line 25).

1 // Fig. 23.21: Fig23_21.cpp
2 // Demonstrating the flags member function.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int integerValue = 1000;
9 double doubleValue = 0.0947628;

10
11 // display flags value, int and double values (original format)
12 cout << "The value of the flags variable is: " << cout.flags()
13 << "\nPrint int and double in original format:\n"
14 << integerValue << '\t' << doubleValue << endl << endl;
15
16
17
18
19
20 // display flags value, int and double values (new format)
21 cout << "The value of the flags variable is: " <<
22 << "\nPrint int and double in a new format:\n"
23 << integerValue << '\t' << doubleValue << endl << endl;
24
25
26
27 // display flags value, int and double values (original format)
28 cout << "The restored value of the flags variable is: "
29 <<
30 << "\nPrint values in original format again:\n"
31 << integerValue << '\t' << doubleValue << endl;
32 } // end main

The value of the flags variable is: 513
Print int and double in original format:
1000 0.0947628

The value of the flags variable is: 012011
Print int and double in a new format:
01750 9.476280e-002

The restored value of the flags variable is: 513
Print values in original format again:
1000 0.0947628

Fig. 23.21 | flags member function.

// use cout flags function to save original format
ios_base::fmtflags originalFormat = cout.flags();
cout << showbase << oct << scientific; // change format

cout.flags()

cout.flags(originalFormat); // restore format

cout.flags()

23.8 Stream Error States 877

23.8 Stream Error States
The state of a stream may be tested through bits in class ios_base. In a moment, we show
how to test these bits, in the example of Fig. 23.22.

The eofbit is set for an input stream after end-of-file is encountered. A program can
use member function eof to determine whether end-of-file has been encountered on a
stream after an attempt to extract data beyond the end of the stream. The call

returns true if end-of-file has been encountered on cin and false otherwise.
The failbit is set for a stream when a format error occurs on the stream and no char-

acters are input (e.g., when you attempt to read a number and the user enters a string).
When such an error occurs, the characters are not lost. The fail member function reports
whether a stream operation has failed. Usually, recovering from such errors is possible.

cin.eof()

1 // Fig. 23.22: Fig23_22.cpp
2 // Testing error states.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int integerValue;
9

10 // display results of cin functions
11 cout << "Before a bad input operation:"
12 << "\ncin.rdstate(): " <<
13 << "\n cin.eof(): " <<
14 << "\n cin.fail(): " <<
15 << "\n cin.bad(): " <<
16 << "\n cin.good(): " <<
17 << "\n\nExpects an integer, but enter a character: ";
18
19
20 cout << endl;
21
22 // display results of cin functions after bad input
23 cout << "After a bad input operation:"
24 << "\ncin.rdstate(): " <<
25 << "\n cin.eof(): " <<
26 << "\n cin.fail(): " <<
27 << "\n cin.bad(): " <<
28 << "\n cin.good(): " << << endl << endl;
29
30
31
32 // display results of cin functions after clearing cin
33 cout << "After cin.clear()" << "\ncin.fail(): " <<
34 << "\ncin.good(): " << << endl;
35 } // end main

Fig. 23.22 | Testing error states. (Part 1 of 2.)

cin.rdstate()
cin.eof()
cin.fail()
cin.bad()
cin.good()

cin >> integerValue; // enter character value

cin.rdstate()
cin.eof()
cin.fail()
cin.bad()
cin.good()

cin.clear(); // clear stream

cin.fail()
cin.good()

878 Chapter 23 Stream Input/Output

The badbit is set for a stream when an error occurs that results in the loss of data. The
bad member function reports whether a stream operation failed. Generally, such serious
failures are nonrecoverable.

The goodbit is set for a stream if none of the bits eofbit, failbit or badbit is set
for the stream.

The good member function returns true if the bad, fail and eof functions would all
return false. I/O operations should be performed only on “good” streams.

The rdstate member function returns the stream’s error state. Calling cout.rdstate,
for example, would return the stream’s state, which then could be tested by a switch state-
ment that examines eofbit, badbit, failbit and goodbit. The preferred means of testing
the state of a stream is to use member functions eof, bad, fail and good—using these
functions does not require you to be familiar with particular status bits.

The clear member function is used to restore a stream’s state to “good,” so that I/O
may proceed on that stream. The default argument for clear is goodbit, so the statement

clears cin and sets goodbit for the stream. The statement

sets the failbit. You might want to do this when performing input on cin with a user-
defined type and encountering a problem. The name clear might seem inappropriate in
this context, but it’s correct.

The program of Fig. 23.22 demonstrates member functions rdstate, eof, fail, bad,
good and clear. [Note: The actual values output may differ across different compilers.]

The operator! member function of basic_ios returns true if the badbit is set, the
failbit is set or both are set. The operator void * member function returns false (0) if
the badbit is set, the failbit is set or both are set. These functions are useful in file pro-
cessing when a true/false condition is being tested under the control of a selection state-
ment or repetition statement.

Before a bad input operation:
cin.rdstate(): 0
 cin.eof(): 0
 cin.fail(): 0
 cin.bad(): 0
 cin.good(): 1

Expects an integer, but enter a character: A

After a bad input operation:
cin.rdstate(): 2
 cin.eof(): 0
 cin.fail(): 1
 cin.bad(): 0
 cin.good(): 0

After cin.clear()
cin.fail(): 0
cin.good(): 1

cin.clear();

cin.clear(ios::failbit)

Fig. 23.22 | Testing error states. (Part 2 of 2.)

23.9 Tying an Output Stream to an Input Stream 879

23.9 Tying an Output Stream to an Input Stream
Interactive applications generally involve an istream for input and an ostream for output.
When a prompting message appears on the screen, the user responds by entering the ap-
propriate data. Obviously, the prompt needs to appear before the input operation pro-
ceeds. With output buffering, outputs appear only when the buffer fills, when outputs are
flushed explicitly by the program or automatically at the end of the program. C++ provides
member function tie to synchronize (i.e., “tie together”) the operation of an istream and
an ostream to ensure that outputs appear before their subsequent inputs. The call

ties cout (an ostream) to cin (an istream). Actually, this particular call is redundant, be-
cause C++ performs this operation automatically to create a user's standard input/output
environment. However, the user would tie other istream/ostream pairs explicitly. To un-
tie an input stream, inputStream, from an output stream, use the call

23.10 Wrap-Up
This chapter summarized how C++ performs input/output using streams. You learned
about the stream-I/O classes and objects, as well as the stream I/O template class hierarchy.
We discussed ostream’s formatted and unformatted output capabilities performed by the
put and write functions. You saw examples using istream’s formatted and unformatted
input capabilities performed by the eof, get, getline, peek, putback, ignore and read
functions. Next, we discussed stream manipulators and member functions that perform
formatting tasks—dec, oct, hex and setbase for displaying integers; precision and set-
precision for controlling floating-point precision; and width and setw for setting field
width. You also learned additional formatting iostream manipulators and member func-
tions—showpoint for displaying decimal point and trailing zeros; left, right and inter-
nal for justification; fill and setfill for padding; scientific and fixed for displaying
floating-point numbers in scientific and fixed notation; uppercase for uppercase/lower-
case control; boolalpha for specifying boolean format; and flags and fmtflags for reset-
ting the format state.

In the next chapter, we introduce exception handling, which allows you to deal with
certain problems that may occur during a program’s execution. We demonstrate basic
exception-handling techniques that often permit a program to continue executing as if no
problem had been encountered. We also present several classes that the C++ Standard
Library provides for handling exceptions.

cin.tie(&cout);

inputStream.tie(0);

Summary
Section 23.1 Introduction
• I/O operations are performed in a manner sensitive to the type of the data.

Section 23.2 Streams
• C++ I/O occurs in streams. A stream is a sequence of bytes.

880 Chapter 23 Stream Input/Output

• I/O mechanisms move bytes from devices to memory and vice versa efficiently and reliably.

• C++ provides “low-level” and “high-level” I/O capabilities. Low-level I/O-capabilities specify
that bytes should be transferred device-to-memory or memory-to-device. High-level I/O is per-
formed with bytes grouped into meaningful units such as integers, strings and user-defined types.

• C++ provides both unformatted-I/O and formatted-I/O operations. Unformatted-I/O transfers
are fast, but process raw data that is difficult for people to use. Formatted I/O processes data in
meaningful units, but requires extra processing time that can degrade the performance.

• The <iostream> header file declares all stream-I/O operations.

• The <iomanip> header declares the parameterized stream manipulators.

• The <fstream> header declares file-processing operations.

• The basic_istream template supports stream-input operations.

• The basic_ostream template supports stream-output operations.

• The basic_iostream template supports both stream-input and stream-output operations.

• Templates basic_istream and the basic_ostream each derive from the basic_ios template.

• Template basic_iostream derives from both the basic_istream and basic_ostream templates.

• The istream object cin is tied to the standard input device, normally the keyboard.

• The ostream object cout is tied to the standard output device, normally the screen.

• The ostream object cerr is tied to the standard error device, normally the screen. Outputs to
cerr are unbuffered; each insertion to cerr appears immediately.

• The ostream object clog is tied to the standard error device, normally the screen. Outputs to
clog are buffered.

• The C++ compiler determines data types automatically for input and output.

Section 23.3 Stream Output
• Addresses are displayed in hexadecimal format by default.

• To print the address in a pointer variable, cast the pointer to void *.

• Member function put outputs one character. Calls to put may be cascaded.

Section 23.4 Stream Input
• Stream input is performed with the stream extraction operator >>, which automatically skips

white-space characters in the input stream and returns false after end-of-file is encountered.

• Stream extraction causes failbit to be set for improper input and badbit to be set if the opera-
tion fails.

• A series of values can be input using the stream extraction operation in a while loop header. The
extraction returns 0 when end-of-file is encountered or an error occurs.

• The get member function with no arguments inputs one character and returns the character; EOF
is returned if end-of-file is encountered on the stream.

• Member function get with a character-reference argument inputs the next character from the in-
put stream and stores it in the character argument. This version of get returns a reference to the
istream object for which the get member function is being invoked.

• Member function get with three arguments—a character array, a size limit and a delimiter (with
default value newline)—reads characters from the input stream up to a maximum of limit – 1
characters, or until the delimiter is read. The input string is terminated with a null character. The
delimiter is not placed in the character array but remains in the input stream.

• The getline member function operates like the three-argument get member function. The get-
line function removes the delimiter from the input stream but does not store it in the string.

 Summary 881

• Member function ignore skips the specified number of characters (the default is 1) in the input
stream; it terminates if the specified delimiter is encountered (the default delimiter is EOF).

• The putback member function places the previous character obtained by a get on a stream back
into that stream.

• The peek member function returns the next character from an input stream but does not extract
(remove) the character from the stream.

• C++ offers type-safe I/O. If unexpected data is processed by the << and >> operators, various error
bits are set, which can be tested to determine whether an I/O operation succeeded or failed. If
operator << has not been overloaded for a user-defined type, a compiler error is reported.

Section 23.5 Unformatted I/O Using read, write and gcount
• Unformatted I/O is performed with member functions read and write. These input or output

bytes to or from memory, beginning at a designated memory address.

• The gcount member function returns the number of characters input by the previous read op-
eration on that stream.

• Member function read inputs a specified number of characters into a character array. failbit is
set if fewer than the specified number of characters are read.

Section 23.6 Introduction to Stream Manipulators
• To change the base in which integers output, use the manipulator hex to set the base to hexadec-

imal (base 16) or oct to set the base to octal (base 8). Use manipulator dec to reset the base to
decimal. The base remains the same until changed explicitly.

• The parameterized stream manipulator setbase also sets the base for integer output. setbase
takes one integer argument of 10, 8 or 16 to set the base.

• Floating-point precision can be controlled with the setprecision stream manipulator or the
precision member function. Both set the precision for all subsequent output operations until
the next precision-setting call. The precision member function with no argument returns the
current precision value.

• Parameterized manipulators require the inclusion of the <iomanip> header file.

• Member function width sets the field width and returns the previous width. Values narrower
than the field are padded with fill characters. The field-width setting applies only for the next
insertion or extraction; the field width is set to 0 implicitly (subsequent values will be output as
large as necessary). Values wider than a field are printed in their entirety. Function width with
no argument returns the current width setting. Manipulator setw also sets the width.

• For input, the setw stream manipulator establishes a maximum string size; if a larger string is en-
tered, the larger line is broken into pieces no larger than the designated size.

• You can create your own stream manipulators.

Section 23.7 Stream Format States and Stream Manipulators
• Stream manipulator showpoint forces a floating-point number to be output with a decimal point

and with the number of significant digits specified by the precision.

• Stream manipulators left and right cause fields to be left justified with padding characters to
the right or right justified with padding characters to the left.

• Stream manipulator internal indicates that a number’s sign (or base when using stream manip-
ulator showbase) should be left justified within a field, its magnitude should be right justified and
intervening spaces should be padded with the fill character.

882 Chapter 23 Stream Input/Output

• Member function fill specifies the fill character to be used with stream manipulators left,
right and internal (space is the default); the prior padding character is returned. Stream ma-
nipulator setfill also sets the fill character.

• Stream manipulators oct, hex and dec specify that integers are to be treated as octal, hexadecimal
or decimal values, respectively. Integer output defaults to decimal if none of these bits is set;
stream extractions process the data in the form the data is supplied.

• Stream manipulator showbase forces the base of an integral value to be output.

• Stream manipulator scientific is used to output a floating-point number in scientific format.
Stream manipulator fixed is used to output a floating-point number with the precision specified
by the precision member function.

• Stream manipulator uppercase outputs an uppercase X or E for hexadecimal integers and scien-
tific notation floating-point values, respectively. Hexadecimal values appear in all uppercase.

• Member function flags with no argument returns the long value of the current format state set-
tings. Function flags with a long argument sets the format state specified by the argument.

Section 23.8 Stream Error States
• The state of a stream may be tested through bits in class ios_base.

• The eofbit is set for an input stream after end-of-file is encountered during an input operation.
The eof member function reports whether the eofbit has been set.

• A stream’s failbit is set when a format error occurs. The fail member function reports whether
a stream operation has failed; it’s normally possible to recover from such errors.

• A stream’s badbit is set when an error occurs that results in data loss. Member function bad re-
ports whether such a stream operation failed. Such serious failures are normally nonrecoverable.

• The good member function returns true if the bad, fail and eof functions would all return
false. I/O operations should be performed only on “good” streams.

• The rdstate member function returns the error state of the stream.

• Member function clear restores a stream’s state to “good,” so that I/O may proceed.

Section 23.9 Tying an Output Stream to an Input Stream
• C++ provides the tie member function to synchronize istream and ostream operations to ensure

that outputs appear before subsequent inputs.

Terminology
bad member function of basic_ios 878
badbit 858
basic_fstream class template 856
basic_ifstream class template 856
basic_ios class template 855
basic_iostream class template 854
basic_istream class template 854
basic_ofstream class template 856
basic_ostream class template 854
boolalpha stream manipulator 874
buffered 856
classic stream libraries 853

clear member function of basic_ios 878
dec stream manipulator 863
eof member function of basic_ios 878
eofbit 877
fail member function of basic_ios 878
failbit 858
fill character 865
fill member function of basic_ios 871
fixed stream manipulator 873
flags member function of ios_base 876
fmtflags 876
format state 876

 Self-Review Exercises 883

fstream 856
gcount member function of basic_istream 862
get member function of basic_istream 858
getline member function of basic_istream 860
good member function of basic_ios 878
goodbit 878
hex stream manipulator 863
ifstream 856
ignore member function of basic_istream 861
internal stream manipulator 870
iostream 854
istream 854
left stream manipulator 869
noboolalpha stream manipulator 874
noshowbase stream manipulator 872
noshowpoint stream manipulator 869
noshowpos stream manipulator 870
nouppercase stream manipulator 874
oct stream manipulator 863
ofstream 856
ostream 854
padding 865
parameterized stream manipulators 854
peek member function of basic_istream 861
precision 864
precision member function of ios_base 864

putback member function of
basic_istream 861

rdstate member function of basic_ios 878
read member function of basic_istream 861
right stream manipulator 869
scientific stream manipulator 873
setbase stream manipulator 863
setfill stream manipulator 871
showbase stream manipulator 872
showpoint stream manipulator 868
showpos stream manipulator 870
standard stream libraries 854
state bit 858
stream 853
stream manipulator 862
tie member function of basic_ios 879
typedef 854
type-safe I/O 852
unbuffered 856
unformatted I/O 853
Unicode® character set 853
uppercase stream manipulator 868
wchar_t 854
white-space character 858
width stream manipulator 865
write member function of basic_ostream 861

Self-Review Exercises
23.1 Answer each of the following:

a) Input/output in C++ occurs as of bytes.
b) The stream manipulators that format justification are , and

.
c) Member function can be used to set and reset format state.
d) Most C++ programs that do I/O should include the header file that contains

the declarations required for all stream-I/O operations.
e) When using parameterized manipulators, the header file must be included.
f) Header file contains the declarations required for file processing.
g) The ostream member function is used to perform unformatted output.
h) Input operations are supported by class .
i) Standard error stream outputs are directed to the stream objects or .
j) Output operations are supported by class .
k) The symbol for the stream insertion operator is .
l) The four objects that correspond to the standard devices on the system include

, , and .
m) The symbol for the stream extraction operator is .
n) The stream manipulators , and specify that integers should

be displayed in octal, hexadecimal and decimal formats, respectively.
o) The stream manipulator causes positive numbers to display with a plus sign.

884 Chapter 23 Stream Input/Output

23.2 State whether the following are true or false. If the answer is false, explain why.
a) The stream member function flags with a long argument sets the flags state variable

to its argument and returns its previous value.
b) The stream insertion operator << and the stream extraction operator >> are overloaded

to handle all standard data types—including strings and memory addresses (stream in-
sertion only)—and all user-defined data types.

c) The stream member function flags with no arguments resets the stream’s format state.
d) The stream extraction operator >> can be overloaded with an operator function that

takes an istream reference and a reference to a user-defined type as arguments and re-
turns an istream reference.

e) The stream insertion operator << can be overloaded with an operator function that takes
an istream reference and a reference to a user-defined type as arguments and returns an
istream reference.

f) Input with the stream extraction operator >> always skips leading white-space characters
in the input stream, by default.

g) The stream member function rdstate returns the current state of the stream.
h) The cout stream normally is connected to the display screen.
i) The stream member function good returns true if the bad, fail and eof member func-

tions all return false.
j) The cin stream normally is connected to the display screen.
k) If a nonrecoverable error occurs during a stream operation, the bad member function

will return true.
l) Output to cerr is unbuffered and output to clog is buffered.
m) Stream manipulator showpoint forces floating-point values to print with the default six

digits of precision unless the precision value has been changed, in which case floating-
point values print with the specified precision.

n) The ostream member function put outputs the specified number of characters.
o) The stream manipulators dec, oct and hex affect only the next integer output operation.
p) By default, memory addresses are displayed as long integers.

23.3 For each of the following, write a single statement that performs the indicated task.
a) Output the string "Enter your name: ".
b) Use a stream manipulator that causes the exponent in scientific notation and the letters

in hexadecimal values to print in capital letters.
c) Output the address of the variable myString of type char *.
d) Use a stream manipulator to ensure that floating-point values print in scientific notation.
e) Output the address in variable integerPtr of type int *.
f) Use a stream manipulator such that, when integer values are output, the integer base for

octal and hexadecimal values is displayed.
g) Output the value pointed to by floatPtr of type float *.
h) Use a stream member function to set the fill character to '*' for printing in field widths

larger than the values being output. Repeat this statement with a stream manipulator.
i) Output the characters 'O' and 'K' in one statement with ostream function put.
j) Get the value of the next character to input without extracting it from the stream.
k) Input a single character into variable charValue of type char, using the istream member

function get in two different ways.
l) Input and discard the next six characters in the input stream.
m) Use istream member function read to input 50 characters into char array line.
n) Read 10 characters into character array name. Stop reading characters if the '.' delimiter

is encountered. Do not remove the delimiter from the input stream. Write another
statement that performs this task and removes the delimiter from the input.

 Answers to Self-Review Exercises 885

o) Use the istream member function gcount to determine the number of characters input
into character array line by the last call to istream member function read, and output
that number of characters, using ostream member function write.

p) Output 124, 18.376, 'Z', 1000000 and "String", separated by spaces.
q) Print the current precision setting, using a member function of object cout.
r) Input an integer value into int variable months and a floating-point value into float

variable percentageRate.
s) Print 1.92, 1.925 and 1.9258 separated by tabs and with 3 digits of precision, using a

stream manipulator.
t) Print integer 100 in octal, hexadecimal and decimal, using stream manipulators and sep-

arated by tabs.
u) Print integer 100 in decimal, octal and hexadecimal separated by tabs, using a stream

manipulator to change the base.
v) Print 1234 right justified in a 10-digit field.
w) Read characters into character array line until the character 'z' is encountered, up to

a limit of 20 characters (including a terminating null character). Do not extract the de-
limiter character from the stream.

x) Use integer variables x and y to specify the field width and precision used to display the
double value 87.4573, and display the value.

23.4 Identify the error in each of the following statements and explain how to correct it.
a) cout << "Value of x <= y is: " << x <= y;

b) The following statement should print the integer value of 'c'.
cout << 'c';

c) cout << ""A string in quotes"";

23.5 For each of the following, show the output.
a) cout << "12345" << endl;

cout.width(5);

cout.fill('*');

cout << 123 << endl << 123;

b) cout << setw(10) << setfill('$') << 10000;

c) cout << setw(8) << setprecision(3) << 1024.987654;

d) cout << showbase << oct << 99 << endl << hex << 99;

e) cout << 100000 << endl << showpos << 100000;

f) cout << setw(10) << setprecision(2) << scientific << 444.93738;

Answers to Self-Review Exercises
23.1 a) streams. b) left, right and internal. c) flags. d) <iostream>. e) <iomanip>.
f) <fstream>. g) write. h) istream. i) cerr or clog. j) ostream. k) <<. l) cin, cout, cerr and clog.
m) >>. n) oct, hex and dec. o) showpos.

23.2 a) False. The stream member function flags with a fmtflags argument sets the flags state
variable to its argument and returns the prior state settings. b) False. The stream insertion and
stream extraction operators are not overloaded for all user-defined types. You must specifically pro-
vide the overloaded operator functions to overload the stream operators for use with each user-de-
fined type you create. c) False. The stream member function flags with no arguments returns the
current format settings as a fmtflags data type, which represents the format state. d) True. e) False.
To overload the stream insertion operator <<, the overloaded operator function must take an
ostream reference and a reference to a user-defined type as arguments and return an ostream refer-
ence. f) True. g) True. h) True. i) True. j) False. The cin stream is connected to the standard input

886 Chapter 23 Stream Input/Output

of the computer, which normally is the keyboard. k) True. l) True. m) True. n) False. The ostream
member function put outputs its single-character argument. o) False. The stream manipulators dec,
oct and hex set the output format state for integers to the specified base until the base is changed
again or the program terminates. p) False. Memory addresses are displayed in hexadecimal format
by default. To display addresses as long integers, the address must be cast to a long value.

23.3 a) cout << "Enter your name: ";

b) cout << uppercase;

c) cout << static_cast< void * >(myString);

d) cout << scientific;

e) cout << integerPtr;

f) cout << showbase;

g) cout << *floatPtr;

h) cout.fill('*');

cout << setfill('*');

i) cout.put('O').put('K');

j) cin.peek();

k) charValue = cin.get();

cin.get(charValue);

l) cin.ignore(6);

m) cin.read(line, 50);

n) cin.get(name, 10, '.');

cin.getline(name, 10, '.');

o) cout.write(line, cin.gcount());

p) cout << 124 << ' ' << 18.376 << ' ' << "Z " << 1000000 << " String";

q) cout << cout.precision();

r) cin >> months >> percentageRate;

s) cout << setprecision(3) << 1.92 << '\t' << 1.925 << '\t' << 1.9258;
t) cout << oct << 100 << '\t' << hex << 100 << '\t' << dec << 100;
u) cout << 100 << '\t' << setbase(8) << 100 << '\t' << setbase(16) << 100;

v) cout << setw(10) << 1234;

w) cin.get(line, 20, 'z');

x) cout << setw(x) << setprecision(y) << 87.4573;

23.4 a) Error: The precedence of the << operator is higher than that of <=, which causes the
statement to be evaluated improperly and also causes a compiler error.
Correction: Place parentheses around the expression x <= y.

b) Error: In C++, characters are not treated as small integers, as they are in C.
Correction: To print the numerical value for a character in the computer’s character set,
the character must be cast to an integer value, as in the following:
 cout << static_cast< int >('c');

c) Error: Quote characters cannot be printed in a string unless an escape sequence is used.
Correction: Print the string in one of the following ways:

 cout << "\"A string in quotes\"";

23.5 a) 12345

**123

123

b) $$$$$10000

c) 1024.988

d) 0143

0x63

 Exercises 887

e) 100000

+100000

f) 4.45e+002

Exercises
23.6 Write a statement for each of the following:

a) Print integer 40000 left justified in a 15-digit field.
b) Read a string into character array variable state.
c) Print 200 with and without a sign.
d) Print the decimal value 100 in hexadecimal form preceded by 0x.
e) Read characters into array charArray until the character 'p' is encountered, up to a lim-

it of 10 characters (including the terminating null character). Extract the delimiter from
the input stream, and discard it.

f) Print 1.234 in a 9-digit field with preceding zeros.

23.7 (Inputting Decimal, Octal and Hexadecimal Values) Write a program to test the inputting
of integer values in decimal, octal and hexadecimal formats. Output each integer read by the pro-
gram in all three formats. Test the program with the following input data: 10, 010, 0x10.

23.8 (Printing Pointer Values as Integers) Write a program that prints pointer values, using casts
to all the integer data types. Which ones print strange values? Which ones cause errors?

23.9 (Printing with Field Widths) Write a program to test the results of printing the integer val-
ue 12345 and the floating-point value 1.2345 in various-sized fields. What happens when the values
are printed in fields containing fewer digits than the values?

23.10 (Rounding) Write a program that prints the value 100.453627 rounded to the nearest digit,
tenth, hundredth, thousandth and ten-thousandth.

23.11 Write a program that inputs a string from the keyboard and determines the length of the
string. Print the string in a field width that is twice the length of the string.

23.12 (Converting Fahrenheit to Celsius) Write a program that converts integer Fahrenheit tem-
peratures from 0 to 212 degrees to floating-point Celsius temperatures with 3 digits of precision. Use
the formula

celsius = 5.0 / 9.0 * (fahrenheit - 32);

to perform the calculation. The output should be printed in two right-justified columns and the
Celsius temperatures should be preceded by a sign for both positive and negative values.

23.13 In some programming languages, strings are entered surrounded by either single or double
quotation marks. Write a program that reads the three strings suzy, "suzy" and 'suzy'. Are the sin-
gle and double quotes ignored or read as part of the string?

23.14 (Reading Phone Numbers with and Overloaded Stream Extraction Operator) In Fig. 19.5,
the stream extraction and stream insertion operators were overloaded for input and output of objects
of the PhoneNumber class. Rewrite the stream extraction operator to perform the following error
checking on input. The operator>> function will need to be reimplemented.

a) Input the entire phone number into an array. Test that the proper number of characters
has been entered. There should be a total of 14 characters read for a phone number of
the form (800) 555-1212. Use ios_base-member-function clear to set failbit for im-
proper input.

b) The area code and exchange do not begin with 0 or 1. Test the first digit of the area-
code and exchange portions of the phone number to be sure that neither begins with 0
or 1. Use ios_base-member-function clear to set failbit for improper input.

888 Chapter 23 Stream Input/Output

c) The middle digit of an area code used to be limited to 0 or 1 (although this has changed
recently). Test the middle digit for a value of 0 or 1. Use the ios_base-member-function
clear to set failbit for improper input. If none of the above operations results in fail-
bit being set for improper input, copy the three parts of the telephone number into the
areaCode, exchange and line members of the PhoneNumber object. If failbit has been
set on the input, have the program print an error message and end, rather than print the
phone number.

23.15 (Point Class) Write a program that accomplishes each of the following:
a) Create a user-defined class Point that contains the private integer data members

xCoordinate and yCoordinate and declares stream insertion and stream extraction over-
loaded operator functions as friends of the class.

b) Define the stream insertion and stream extraction operator functions. The stream ex-
traction operator function should determine whether the data entered is valid, and, if
not, it should set the failbit to indicate improper input. The stream insertion operator
should not be able to display the point after an input error occurred.

c) Write a main function that tests input and output of user-defined class Point, using the
overloaded stream extraction and stream insertion operators.

23.16 (Complex Class) Write a program that accomplishes each of the following:
a) Create a user-defined class Complex that contains the private integer data members real

and imaginary and declares stream insertion and stream extraction overloaded operator
functions as friends of the class.

b) Define the stream insertion and stream extraction operator functions. The stream ex-
traction operator function should determine whether the data entered is valid, and, if
not, it should set failbit to indicate improper input. The input should be of the form

3 + 8i

c) The values can be negative or positive, and it’s possible that one of the two values is not
provided, in which case the appropriate data member should be set to 0. The stream
insertion operator should not be able to display the point if an input error occurred. For
negative imaginary values, a minus sign should be printed rather than a plus sign.

d) Write a main function that tests input and output of user-defined class Complex, using
the overloaded stream extraction and stream insertion operators.

23.17 (Printing a Table of ASCII Values) Write a program that uses a for statement to print a
table of ASCII values for the characters in the ASCII character set from 33 to 126. The program
should print the decimal value, octal value, hexadecimal value and character value for each character.
Use the stream manipulators dec, oct and hex to print the integer values.

23.18 Write a program to show that the getline and three-argument get istream member func-
tions both end the input string with a string-terminating null character. Also, show that get leaves
the delimiter character on the input stream, whereas getline extracts the delimiter character and
discards it. What happens to the unread characters in the stream?

24Exception Handling

It is common sense to take a
method and try it. If it fails,
admit it frankly and try
another. But above all, try
something.
—Franklin Delano Roosevelt

If they’re running and they don’t
look where they’re going
I have to come out from
somewhere and catch them.
—Jerome David Salinger

I never forget a face, but in your
case I’ll make an exception.
—Groucho Marx

O b j e c t i v e s
In this chapter you’ll learn:

■ What exceptions are and
when to use them.

■ To use try, catch and
throw to detect, handle and
indicate exceptions,
respectively.

■ To process uncaught and
unexpected exceptions.

■ To declare new exception
classes.

■ How stack unwinding
enables exceptions not
caught in one scope to be
caught in another scope.

■ To handle new failures.

■ To use auto_ptr to prevent
memory leaks.

■ To understand the standard
exception hierarchy.

890 Chapter 24 Exception Handling

24.1 Introduction
In this chapter, we introduce exception handling. An exception is an indication of a prob-
lem that occurs during a program’s execution. The name “exception” implies that the
problem occurs infrequently—if the “rule” is that a statement normally executes correctly,
then the “exception to the rule” is that a problem occurs. Exception handling enables you
to create applications that can resolve (or handle) exceptions. In many cases, handling an
exception allows a program to continue executing as if no problem had been encountered.
A more severe problem could prevent a program from continuing normal execution, in-
stead requiring the program to notify the user of the problem before terminating in a con-
trolled manner. The features presented in this chapter enable you to write robust and
fault-tolerant programs that can deal with problems that may arise and continue executing
or terminate gracefully. The style and details of C++ exception handling are based in part
on the work of Andrew Koenig and Bjarne Stroustrup, as presented in their paper, “Ex-
ception Handling for C++ (revised).”1

We begin with an overview of exception-handling concepts, then demonstrates basic
exception-handling techniques. We show these techniques via an example that demon-
strates handling an exception that occurs when a function attempts to divide by zero. We
then discuss additional exception-handling issues, such as how to handle exceptions that
occur in a constructor or destructor and how to handle exceptions that occur if operator
new fails to allocate memory for an object. We conclude the chapter by introducing several
classes that the C++ Standard Library provides for handling exceptions.

24.1 Introduction
24.2 Exception-Handling Overview
24.3 Example: Handling an Attempt to

Divide by Zero
24.4 When to Use Exception Handling
24.5 Rethrowing an Exception
24.6 Exception Specifications
24.7 Processing Unexpected Exceptions
24.8 Stack Unwinding

24.9 Constructors, Destructors and
Exception Handling

24.10 Exceptions and Inheritance
24.11 Processing new Failures
24.12 Class auto_ptr and Dynamic

Memory Allocation
24.13 Standard Library Exception Hierarchy
24.14 Other Error-Handling Techniques
24.15 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Error-Prevention Tip 24.1
Exception handling helps improve a program’s fault tolerance.

Software Engineering Observation 24.1
Exception handling provides a standard mechanism for processing errors. This is especially
important when working on a project with a large team of programmers.

1. Koenig, A., and B. Stroustrup, “Exception Handling for C++ (revised),” Proceedings of the Usenix
C++ Conference, pp. 149–176, San Francisco, April 1990.

24.2 Exception-Handling Overview 891

24.2 Exception-Handling Overview
Program logic frequently tests conditions that determine how program execution pro-
ceeds. Consider the following pseudocode:

In this pseudocode, we begin by performing a task. We then test whether that task execut-
ed correctly. If not, we perform error processing. Otherwise, we continue with the next
task. Although this form of error handling works, intermixing program logic with error-
handling logic can make the program difficult to read, modify, maintain and debug—es-
pecially in large applications.

Exception handling enables you to remove error-handling code from the “main line”
of the program’s execution, which improves program clarity and enhances modifiability.
You can decide to handle any exceptions you choose—all exceptions, all exceptions of a
certain type or all exceptions of a group of related types (e.g., exception types that belong
to an inheritance hierarchy). Such flexibility reduces the likelihood that errors will be over-
looked and thereby makes a program more robust.

With programming languages that do not support exception handling, programmers
often delay writing error-processing code or sometimes forget to include it. This results in
less robust software products. C++ enables you to deal with exception handling easily from
the inception of a project.

24.3 Example: Handling an Attempt to Divide by Zero
Let’s consider a simple example of exception handling (Figs. 24.1–24.2). The purpose of
this example is to show how to prevent a common arithmetic problem—division by zero.
In C++, division by zero using integer arithmetic typically causes a program to terminate
prematurely. In floating-point arithmetic, some C++ implementations allow division by
zero, in which case positive or negative infinity is displayed as INF or -INF, respectively.

In this example, we define a function named quotient that receives two integers input
by the user and divides its first int parameter by its second int parameter. Before per-
forming the division, the function casts the first int parameter’s value to type double.

Perform a task

If the preceding task did not execute correctly
Perform error processing

Perform next task

If the preceding task did not execute correctly
Perform error processing

…

Performance Tip 24.1
If the potential problems occur infrequently, intermixing program logic and error-han-
dling logic can degrade a program’s performance, because the program must (potentially
frequently) perform tests to determine whether the task executed correctly and the next task
can be performed.

892 Chapter 24 Exception Handling

Then, the second int parameter’s value is promoted to type double for the calculation. So
function quotient actually performs the division using two double values and returns a
double result.

Although division by zero is allowed in floating-point arithmetic, for the purpose of
this example we treat any attempt to divide by zero as an error. Thus, function quotient
tests its second parameter to ensure that it isn’t zero before allowing the division to pro-
ceed. If the second parameter is zero, the function uses an exception to indicate to the
caller that a problem occurred. The caller (main in this example) can then process the
exception and allow the user to type two new values before calling function quotient
again. In this way, the program can continue to execute even after an improper value is
entered, thus making the program more robust.

The example consists of two files. DivideByZeroException.h (Fig. 24.1) defines an
exception class that represents the type of the problem that might occur in the example,
and fig24_02.cpp (Fig. 24.2) defines the quotient function and the main function that
calls it. Function main contains the code that demonstrates exception handling.

Defining an Exception Class to Represent the Type of Problem That Might Occur
Figure 24.1 defines class DivideByZeroException as a derived class of Standard Library
class runtime_error (defined in header file <stdexcept>). Class runtime_error—a de-
rived class of Standard Library class exception (defined in header file <exception>)—is the
C++ standard base class for representing runtime errors. Class exception is the standard
C++ base class for all exceptions. (Section 24.13 discusses class exception and its derived
classes in detail.) A typical exception class that derives from the runtime_error class de-
fines only a constructor (e.g., lines 12–13) that passes an error-message string to the base-
class runtime_error constructor. Every exception class that derives directly or indirectly
from exception contains the virtual function what, which returns an exception object’s
error message. You’re not required to derive a custom exception class, such as
DivideByZeroException, from the standard exception classes provided by C++. However,
doing so allows you to use the virtual function what to obtain an appropriate error mes-
sage. We use an object of this DivideByZeroException class in Fig. 24.2 to indicate when
an attempt is made to divide by zero.

1 // Fig. 24.1: DivideByZeroException.h
2 // Class DivideByZeroException definition.
3
4 using namespace std;
5
6 // DivideByZeroException objects should be thrown by functions
7 // upon detecting division-by-zero exceptions
8 class DivideByZeroException :
9 {

10 public:
11 // constructor specifies default error message
12 DivideByZeroException()
13 : {}
14 }; // end class DivideByZeroException

Fig. 24.1 | Class DivideByZeroException definition.

#include <stdexcept> // stdexcept header file contains runtime_error

public runtime_error

runtime_error("attempted to divide by zero")

24.3 Example: Handling an Attempt to Divide by Zero 893

Demonstrating Exception Handling
The program in Fig. 24.2 uses exception handling to wrap code that might throw a “di-
vide-by-zero” exception and to handle that exception, should one occur. The application
enables the user to enter two integers, which are passed as arguments to function quotient
(lines 10–18). This function divides its first parameter (numerator) by its second param-
eter (denominator). Assuming that the user does not specify 0 as the denominator for the
division, function quotient returns the division result. However, if the user inputs 0 for
the denominator, function quotient throws an exception. In the sample output, the first
two lines show a successful calculation, and the next two lines show a failed calculation due
to an attempt to divide by zero. When the exception occurs, the program informs the user
of the mistake and prompts the user to input two new integers. After we discuss the code,
we’ll consider the user inputs and flow of program control that yield these outputs.

1 // Fig. 24.2: Fig24_02.cpp
2 // A simple exception-handling example that checks for
3 // divide-by-zero exceptions.
4 #include <iostream>
5
6 using namespace std;
7
8 // perform division and throw DivideByZeroException object if
9 // divide-by-zero exception occurs

10 double quotient(int numerator, int denominator)
11 {
12 // throw DivideByZeroException if trying to divide by zero
13 if (denominator == 0)
14
15
16 // return division result
17 return static_cast< double >(numerator) / denominator;
18 } // end function quotient
19
20 int main()
21 {
22 int number1; // user-specified numerator
23 int number2; // user-specified denominator
24 double result; // result of division
25
26 cout << "Enter two integers (end-of-file to end): ";
27
28 // enable user to enter two integers to divide
29 while (cin >> number1 >> number2)
30 {
31
32
33
34
35

Fig. 24.2 | Exception-handling example that throws exceptions on attempts to divide by zero.
(Part 1 of 2.)

#include "DivideByZeroException.h" // DivideByZeroException class

throw DivideByZeroException(); // terminate function

// try block contains code that might throw exception
// and code that should not execute if an exception occurs
try
{
 result = quotient(number1, number2);

894 Chapter 24 Exception Handling

Enclosing Code in a try Block
The program begins by prompting the user to enter two integers. The integers are input in
the condition of the while loop (line 29). Line 35 passes the values to function quotient
(lines 10–18), which either divides the integers and returns a result, or throws an exception
(i.e., indicates that an error occurred) on an attempt to divide by zero. Exception handling
is geared to situations in which the function that detects an error is unable to handle it.

C++ provides try blocks to enable exception handling. A try block consists of key-
word try followed by braces ({}) that define a block of code in which exceptions might
occur. The try block encloses statements that might cause exceptions and statements that
should be skipped if an exception occurs.

A try block (lines 33–37) encloses the invocation of function quotient and the state-
ment that displays the division result. In this example, because the invocation of function
quotient (line 35) can throw an exception, we enclose this function invocation in a try
block. Enclosing the output statement (line 36) in the try block ensures that the output
will occur only if function quotient returns a result.

Defining a catch Handler to Process a DivideByZeroException
Exceptions are processed by catch handlers (also called exception handlers), which catch
and handle exceptions. At least one catch handler (lines 38–42) must immediately follow

36
37
38
39
40
41
42
43
44 cout << "\nEnter two integers (end-of-file to end): ";
45 } // end while
46
47 cout << endl;
48 } // end main

Enter two integers (end-of-file to end): 100 7
The quotient is: 14.2857

Enter two integers (end-of-file to end): 100 0
Exception occurred: attempted to divide by zero

Enter two integers (end-of-file to end): ^Z

Software Engineering Observation 24.2
Exceptions may surface through explicitly mentioned code in a try block, through calls to
other functions and through deeply nested function calls initiated by code in a try block.

Fig. 24.2 | Exception-handling example that throws exceptions on attempts to divide by zero.
(Part 2 of 2.)

 cout << "The quotient is: " << result << endl;
} // end try
catch (DivideByZeroException ÷ByZeroException)
{
 cout << "Exception occurred: "
 << divideByZeroException.what() << endl;
} // end catch

24.3 Example: Handling an Attempt to Divide by Zero 895

each try block. Each catch handler begins with the keyword catch and specifies in pa-
rentheses an exception parameter that represents the type of exception the catch handler
can process (DivideByZeroException in this case). When an exception occurs in a try
block, the catch handler that executes is the one whose type matches the type of the ex-
ception that occurred (i.e., the type in the catch block matches the thrown exception type
exactly or is a base class of it). If an exception parameter includes an optional parameter
name, the catch handler can use that parameter name to interact with the caught excep-
tion in the body of the catch handler, which is delimited by braces ({ and }). A catch
handler typically reports the error to the user, logs it to a file, terminates the program
gracefully or tries an alternate strategy to accomplish the failed task. In this example, the
catch handler simply reports that the user attempted to divide by zero. Then the program
prompts the user to enter two new integer values.

Termination Model of Exception Handling
If an exception occurs as the result of a statement in a try block, the try block expires (i.e.,
terminates immediately). Next, the program searches for the first catch handler that can
process the type of exception that occurred. The program locates the matching catch by
comparing the thrown exception’s type to each catch’s exception-parameter type until the
program finds a match. A match occurs if the types are identical or if the thrown excep-
tion’s type is a derived class of the exception-parameter type. When a match occurs, the
code contained in the matching catch handler executes. When a catch handler finishes
processing by reaching its closing right brace (}), the exception is considered handled and
the local variables defined within the catch handler (including the catch parameter) go
out of scope. Program control does not return to the point at which the exception occurred
(known as the throw point), because the try block has expired. Rather, control resumes
with the first statement (line 44) after the last catch handler following the try block. This
is known as the termination model of exception handling. [Note: Some languages use the
resumption model of exception handling, in which, after an exception is handled, control
resumes just after the throw point.] As with any other block of code, when a try block
terminates, local variables defined in the block go out of scope.

Common Programming Error 24.1
It’s a syntax error to place code between a try block and its corresponding catch handlers
or between its catch handlers.

Common Programming Error 24.2
Each catch handler can have only a single parameter—specifying a comma-separated list
of exception parameters is a syntax error.

Common Programming Error 24.3
It’s a logic error to catch the same type in two different catch handlers following a single
try block.

Common Programming Error 24.4
Logic errors can occur if you assume that after an exception is handled, control will return
to the first statement after the throw point.

896 Chapter 24 Exception Handling

If the try block completes its execution successfully (i.e., no exceptions occur in the
try block), then the program ignores the catch handlers and program control continues
with the first statement after the last catch following that try block.

If an exception that occurs in a try block has no matching catch handler, or if an
exception occurs in a statement that is not in a try block, the function that contains the
statement terminates immediately, and the program attempts to locate an enclosing try
block in the calling function. This process is called stack unwinding and is discussed in
Section 24.8.

Flow of Program Control When the User Enters a Nonzero Denominator
Consider the flow of control when the user inputs the numerator 100 and the denominator
7 (i.e., the first two lines of output in Fig. 24.2). In line 13, function quotient determines
that the denominator does not equal zero, so line 17 performs the division and returns the
result (14.2857) to line 35 as a double. Program control then continues sequentially from
line 35, so line 36 displays the division result—line 37 ends the try block. Because the try
block completed successfully and did not throw an exception, the program does not exe-
cute the statements contained in the catch handler (lines 38–42), and control continues
to line 44 (the first line of code after the catch handler), which prompts the user to enter
two more integers.

Flow of Program Control When the User Enters a Denominator of Zero
Now let’s consider a more interesting case in which the user inputs the numerator 100 and
the denominator 0 (i.e., the third and fourth lines of output in Fig. 24.2). In line 13, quo-
tient determines that the denominator equals zero, which indicates an attempt to divide
by zero. Line 14 throws an exception, which we represent as an object of class DivideBy-
ZeroException (Fig. 24.1).

To throw an exception, line 14 uses keyword throw followed by an operand that rep-
resents the type of exception to throw. Normally, a throw statement specifies one operand.
(In Section 24.5, we discuss how to use a throw statement with no operand.) The operand
of a throw can be of any type. If the operand is an object, we call it an exception object—
in this example, the exception object is an object of type DivideByZeroException. How-
ever, a throw operand also can assume other values, such as the value of an expression that
does not result in an object (e.g., throw x > 5) or the value of an int (e.g., throw 5). The
examples in this chapter focus exclusively on throwing exception objects.

Error-Prevention Tip 24.2
With exception handling, a program can continue executing (rather than terminating)
after dealing with a problem. This helps ensure the kind of robust applications that con-
tribute to what’s called mission-critical computing or business-critical computing.

Common Programming Error 24.5
Use caution when throwing the result of a conditional expression (?:)—promotion rules
could cause the value to be of a type different from the one expected. For example, when
throwing an int or a double from the same conditional expression, the int is promoted
to a double. So, a catch handler that catches an int would never execute based on such
a conditional expression.

24.4 When to Use Exception Handling 897

As part of throwing an exception, the throw operand is created and used to initialize
the parameter in the catch handler, which we discuss momentarily. In this example, the
throw statement in line 14 creates an object of class DivideByZeroException. When line
14 throws the exception, function quotient exits immediately. Therefore, line 14 throws
the exception before function quotient can perform the division in line 17. This is a cen-
tral characteristic of exception handling: A function should throw an exception before the
error has an opportunity to occur.

Because we enclosed the call to quotient (line 35) in a try block, program control
enters the catch handler (lines 38–42) that immediately follows the try block. This catch
handler serves as the exception handler for the divide-by-zero exception. In general, when
an exception is thrown within a try block, the exception is caught by a catch handler that
specifies the type matching the thrown exception. In this program, the catch handler spec-
ifies that it catches DivideByZeroException objects—this type matches the object type
thrown in function quotient. Actually, the catch handler catches a reference to the
DivideByZeroException object created by function quotient’s throw statement (line 14).
The exception object is maintained by the exception-handling mechanism.

The catch handler’s body (lines 40–41) prints the associated error message returned
by calling function what of base-class runtime_error. This function returns the string that
the DivideByZeroException constructor (lines 12–13 in Fig. 24.1) passed to the
runtime_error base-class constructor.

24.4 When to Use Exception Handling
Exception handling is designed to process synchronous errors, which occur when a state-
ment executes. Common examples of these errors are out-of-range array subscripts, arith-
metic overflow (i.e., a value outside the representable range of values), division by zero,
invalid function parameters and unsuccessful memory allocation (due to lack of memory).
Exception handling is not designed to process errors associated with asynchronous events
(e.g., disk I/O completions, network message arrivals, mouse clicks and keystrokes), which
occur in parallel with, and independent of, the program’s flow of control.

Performance Tip 24.2
Catching an exception object by reference eliminates the overhead of copying the object
that represents the thrown exception.

Good Programming Practice 24.1
Associating each type of runtime error with an appropriately named exception object im-
proves program clarity.

Software Engineering Observation 24.3
Incorporate your exception-handling strategy into your system from inception. Including
effective exception handling after a system has been implemented can be difficult.

Software Engineering Observation 24.4
Exception handling provides a single, uniform technique for processing problems. This
helps programmers on large projects understand each other’s error-processing code.

898 Chapter 24 Exception Handling

The exception-handling mechanism also is useful for processing problems that occur
when a program interacts with software elements, such as member functions, constructors,
destructors and classes. Rather than handling problems internally, such software elements
often use exceptions to notify programs when problems occur. This enables you to imple-
ment customized error handling for each application.

Complex applications normally consist of predefined software components and appli-
cation-specific components that use the predefined components. When a predefined com-
ponent encounters a problem, that component needs a mechanism to communicate the
problem to the application-specific component—the predefined component cannot know
in advance how each application processes a problem that occurs.

24.5 Rethrowing an Exception
It’s possible that an exception handler, upon receiving an exception, might decide either
that it cannot process that exception or that it can process the exception only partially. In
such cases, the exception handler can defer the exception handling (or perhaps a portion
of it) to another exception handler. In either case, you achieve this by rethrowing the ex-
ception via the statement

Regardless of whether a handler can process (even partially) an exception, the handler
can rethrow the exception for further processing outside the handler. The next enclosing
try block detects the rethrown exception, which a catch handler listed after that enclosing
try block attempts to handle.

Software Engineering Observation 24.5
Avoid using exception handling as an alternate form of flow of control. These “additional”
exceptions can “get in the way” of genuine error-type exceptions.

Software Engineering Observation 24.6
Exception handling enables predefined software components to communicate problems to
application-specific components, which can then process the problems in an application-
specific manner.

Performance Tip 24.3
When no exceptions occur, exception-handling code incurs little or no performance penal-
ty. Thus, programs that implement exception handling operate more efficiently than do
programs that intermix error-handling code with program logic.

Software Engineering Observation 24.7
Functions with common error conditions should return 0 or NULL (or other appropriate
values) rather than throw exceptions. A program calling such a function can check the
return value to determine success or failure of the function call.

throw;

Common Programming Error 24.6
Executing an empty throw statement outside a catch handler calls function terminate,
which abandons exception processing and terminates the program immediately.

24.5 Rethrowing an Exception 899

The program of Fig. 24.3 demonstrates rethrowing an exception. In main’s try block
(lines 29–34), line 32 calls function throwException (lines 8–24). The throwException
function also contains a try block (lines 11–15), from which the throw statement in line
14 throws an instance of standard-library-class exception. Function throwException’s
catch handler (lines 16–21) catches this exception, prints an error message (lines 18–19)
and rethrows the exception (line 20). This terminates function throwException and
returns control to line 32 in the try…catch block in main. The try block terminates (so
line 33 does not execute), and the catch handler in main (lines 35–38) catches this excep-
tion and prints an error message (line 37). [Note: Since we do not use the exception param-
eters in the catch handlers of this example, we omit the exception parameter names and
specify only the type of exception to catch (lines 16 and 35).]

1 // Fig. 24.3: Fig24_03.cpp
2 // Demonstrating exception rethrowing.
3 #include <iostream>
4 #include <exception>
5 using namespace std;
6
7 // throw, catch and rethrow exception
8 void throwException()
9 {

10 // throw exception and catch it immediately
11 try

12 {
13 cout << " Function throwException throws an exception\n";
14
15 } // end try
16
17 {
18 cout << " Exception handled in function throwException"
19 << "\n Function throwException rethrows exception";
20
21 } // end catch
22
23 cout << "This also should not print\n";
24 } // end function throwException
25
26 int main()
27 {
28 // throw exception
29 try

30 {
31 cout << "\nmain invokes function throwException\n";
32 throwException();
33 cout << "This should not print\n";
34 } // end try
35 catch (exception &) // handle exception
36 {
37 cout << "\n\nException handled in main\n";
38 } // end catch

Fig. 24.3 | Rethrowing an exception. (Part 1 of 2.)

throw exception(); // generate exception

catch (exception &) // handle exception

throw; // rethrow exception for further processing

900 Chapter 24 Exception Handling

24.6 Exception Specifications
An optional exception specification (also called a throw list) enumerates a list of excep-
tions that a function can throw. For example, consider the function declaration

In this definition, the exception specification, which begins with keyword throw immedi-
ately following the closing parenthesis of the function’s parameter list, indicates that func-
tion someFunction can throw exceptions of types ExceptionA, ExceptionB and
ExceptionC. A function can throw only exceptions of the types indicated by the specifica-
tion or exceptions of any type derived from these types. If the function throws an excep-
tion that does not belong to a specified type, the exception-handling mechanism calls
function unexpected, which terminates the program.

A function that does not provide an exception specification can throw any exception.
Placing throw()—an empty exception specification—after a function’s parameter list
states that the function does not throw exceptions. If the function attempts to throw an
exception, function unexpected is invoked. Section 24.7 shows how function unexpected
can be customized by calling function set_unexpected. [Note: Some compilers ignore
exception specifications.]

39
40 cout << "Program control continues after catch in main\n";
41 } // end main

main invokes function throwException
 Function throwException throws an exception
 Exception handled in function throwException
 Function throwException rethrows exception

Exception handled in main
Program control continues after catch in main

int someFunction(double value)
 throw (ExceptionA, ExceptionB, ExceptionC)
{
 // function body

}

Common Programming Error 24.7
Throwing an exception that has not been declared in a function’s exception specification
causes a call to function unexpected.

Error-Prevention Tip 24.3
The compiler will not generate a compilation error if a function contains a throw expres-
sion for an exception not listed in the function’s exception specification. An error occurs
only when that function attempts to throw that exception at execution time. To avoid sur-
prises at execution time, carefully check your code to ensure that functions do not throw
exceptions not listed in their exception specifications.

Fig. 24.3 | Rethrowing an exception. (Part 2 of 2.)

24.7 Processing Unexpected Exceptions 901

24.7 Processing Unexpected Exceptions
Function unexpected calls the function registered with function set_unexpected (de-
fined in header file <exception>). If no function has been registered in this manner, func-
tion terminate is called by default. Cases in which function terminate is called include:

1. The exception mechanism cannot find a matching catch for a thrown exception.

2. A destructor attempts to throw an exception during stack unwinding.

3. An attempt is made to rethrow an exception when there is no exception currently
being handled.

4. A call to function unexpected defaults to calling function terminate.

(Section 15.5.1 of the C++ Standard Document discusses several additional cases.) Func-
tion set_terminate can specify the function to invoke when terminate is called. Other-
wise, terminate calls abort, which terminates the program without calling the destructors
of any remaining objects of automatic or static storage class. This could lead to resource
leaks when a program terminates prematurely.

Function set_terminate and function set_unexpected each return a pointer to the
last function called by terminate and unexpected, respectively (0, the first time each is
called). This enables you to save the function pointer so it can be restored later. Functions
set_terminate and set_unexpected take as arguments pointers to functions with void
return types and no arguments.

If the last action of a programmer-defined termination function is not to exit a pro-
gram, function abort will be called to end program execution after the other statements
of the programmer-defined termination function are executed.

24.8 Stack Unwinding
When an exception is thrown but not caught in a particular scope, the function call stack
is “unwound,” and an attempt is made to catch the exception in the next outer
try…catch block. Unwinding the function call stack means that the function in which
the exception was not caught terminates, all local variables in that function are destroyed
and control returns to the statement that originally invoked that function. If a try block
encloses that statement, an attempt is made to catch the exception. If a try block does not
enclose that statement, stack unwinding occurs again. If no catch handler ever catches this
exception, function terminate is called to terminate the program. The program of
Fig. 24.4 demonstrates stack unwinding.

Software Engineering Observation 24.8
It’s generally recommended that you do not use exception specifications unless you’re
overriding a base-class member function that already has an exception specification. In
this case, the exception specification is required for the derived-class member function.

Common Programming Error 24.8
Aborting a program component due to an uncaught exception could leave a resource—
such as a file stream or an I/O device—in a state in which other programs are unable to
acquire the resource. This is known as a resource leak.

902 Chapter 24 Exception Handling

1 // Fig. 24.4: Fig24_04.cpp
2 // Demonstrating stack unwinding.
3 #include <iostream>
4 #include <stdexcept>
5 using namespace std;
6
7 // function3 throws runtime error
8 void function3()
9 {

10 cout << "In function 3" << endl;
11
12 // no try block, stack unwinding occurs, return control to function2
13 throw runtime_error("runtime_error in function3"); // no print
14 } // end function3
15
16 // function2 invokes function3
17 void function2()
18 {
19 cout << "function3 is called inside function2" << endl;
20 function3(); // stack unwinding occurs, return control to function1
21 } // end function2
22
23 // function1 invokes function2
24 void function1()
25 {
26 cout << "function2 is called inside function1" << endl;
27 function2(); // stack unwinding occurs, return control to main
28 } // end function1
29
30 // demonstrate stack unwinding
31 int main()
32 {
33 // invoke function1
34 try

35 {
36 cout << "function1 is called inside main" << endl;
37 function1(); // call function1 which throws runtime_error
38 } // end try
39 catch (runtime_error &error) // handle runtime error
40 {
41 cout << "Exception occurred: " << << endl;
42 cout << "Exception handled in main" << endl;
43 } // end catch
44 } // end main

function1 is called inside main
function2 is called inside function1
function3 is called inside function2
In function 3
Exception occurred: runtime_error in function3
Exception handled in main

Fig. 24.4 | Stack unwinding.

throw (runtime_error)

throw (runtime_error)

throw (runtime_error)

error.what()

24.9 Constructors, Destructors and Exception Handling 903

In main, the try block (lines 34–38) calls function1 (lines 24–28). Next, function1
calls function2 (lines 17–21), which in turn calls function3 (lines 8–14). Line 13 of
function3 throws a runtime_error object. However, because no try block encloses the
throw statement in line 13, stack unwinding occurs—function3 terminates at line 13,
then returns control to the statement in function2 that invoked function3 (i.e., line 20).
Because no try block encloses line 20, stack unwinding occurs again—function2 termi-
nates at line 20 and returns control to the statement in function1 that invoked function2
(i.e., line 27). Because no try block encloses line 27, stack unwinding occurs one more
time—function1 terminates at line 27 and returns control to the statement in main that
invoked function1 (i.e., line 37). The try block of lines 34–38 encloses this statement,
so the first matching catch handler located after this try block (line 39–43) catches and
processes the exception. Line 41 uses function what to display the exception message.
Recall that function what is a virtual function of class exception that can be overridden
by a derived class to return an appropriate error message.

24.9 Constructors, Destructors and Exception Handling
First, let’s discuss an issue that we’ve mentioned but not yet resolved satisfactorily: What
happens when an error is detected in a constructor? For example, how should an object’s
constructor respond when new fails because it was unable to allocate required memory for
storing that object’s internal representation? Because the constructor cannot return a value
to indicate an error, we must choose an alternative means of indicating that the object has
not been constructed properly. One scheme is to return the improperly constructed object
and hope that anyone using it would make appropriate tests to determine that it’s in an
inconsistent state. Another scheme is to set some variable outside the constructor. The pre-
ferred alternative is to require the constructor to throw an exception that contains the error
information, thus offering an opportunity for the program to handle the failure.

Before an exception is thrown by a constructor, destructors are called for any member
objects built as part of the object being constructed. Destructors are called for every auto-
matic object constructed in a try block before an exception is thrown. Stack unwinding
is guaranteed to have been completed at the point that an exception handler begins exe-
cuting. If a destructor invoked as a result of stack unwinding throws an exception, termi-
nate is called.

If an object has member objects, and if an exception is thrown before the outer object
is fully constructed, then destructors will be executed for the member objects that have
been constructed prior to the occurrence of the exception. If an array of objects has been
partially constructed when an exception occurs, only the destructors for the constructed
objects in the array will be called.

An exception could preclude the operation of code that would normally release a
resource (such as memory or a file), thus causing a resource leak. One technique to resolve
this problem is to initialize a local object to acquire the resource. When an exception
occurs, the destructor for that object will be invoked and can free the resource.

Error-Prevention Tip 24.4
When an exception is thrown from the constructor for an object that is created in a new
expression, the dynamically allocated memory for that object is released.

904 Chapter 24 Exception Handling

24.10 Exceptions and Inheritance
Various exception classes can be derived from a common base class, as we discussed in
Section 24.3, when we created class DivideByZeroException as a derived class of class
exception. If a catch handler catches a pointer or reference to an exception object of a
base-class type, it also can catch a pointer or reference to all objects of classes publicly de-
rived from that base class—this allows for polymorphic processing of related errors.

24.11 Processing new Failures
The C++ standard specifies that, when operator new fails, it throws a bad_alloc exception
(defined in header file <new>).In this section, we present two examples of new failing. The
first uses the version of new that throws a bad_alloc exception when new fails. The second
uses function set_new_handler to handle new failures. [Note: The examples in Figs. 24.5–
24.6 allocate large amounts of dynamic memory, which could cause your computer to be-
come sluggish.]

new Throwing bad_alloc on Failure
Figure 24.5 demonstrates new throwing bad_alloc on failure to allocate the requested
memory. The for statement (lines 16–20) inside the try block should loop 50 times and,
on each pass, allocate an array of 50,000,000 double values. If new fails and throws a
bad_alloc exception, the loop terminates, and the program continues in line 22, where
the catch handler catches and processes the exception. Lines 24–25 print the message
"Exception occurred:" followed by the message returned from the base-class-exception
version of function what (i.e., an implementation-defined exception-specific message,
such as "Allocation Failure" in Microsoft Visual C++). The output shows that the pro-
gram performed only four iterations of the loop before new failed and threw the bad_alloc
exception. Your output might differ based on the physical memory, disk space available
for virtual memory on your system and the compiler you’re using.

Error-Prevention Tip 24.5
Using inheritance with exceptions enables an exception handler to catch related errors
with concise notation. One approach is to catch each type of pointer or reference to a de-
rived-class exception object individually, but a more concise approach is to catch pointers
or references to base-class exception objects instead. Also, catching pointers or references to
derived-class exception objects individually is error prone, especially if you forget to test
explicitly for one or more of the derived-class pointer or reference types.

1 // Fig. 24.5: Fig24_05.cpp
2 // Demonstrating standard new throwing bad_alloc when memory
3 // cannot be allocated.
4 #include <iostream>
5
6 using namespace std;
7

Fig. 24.5 | new throwing bad_alloc on failure. (Part 1 of 2.)

#include <new> // bad_alloc class is defined here

24.11 Processing new Failures 905

new Returning 0 on Failure
In old versions of C++, operator new returned 0 when it failed to allocate memory. The
C++ standard specifies that standard-compliant compilers can continue to use a version of
new that returns 0 upon failure. For this purpose, header file <new> defines object nothrow
(of type nothrow_t), which is used as follows:

The preceding statement uses the version of new that does not throw bad_alloc exceptions
(i.e., nothrow) to allocate an array of 50,000,000 doubles.

Handling new Failures Using Function set_new_handler
An additional feature for handling new failures is function set_new_handler (prototyped
in standard header file <new>). This function takes as its argument a pointer to a function
that takes no arguments and returns void. This pointer points to the function that will be
called if new fails. This provides you with a uniform approach to handling all new failures,
regardless of where a failure occurs in the program. Once set_new_handler registers a new
handler in the program, operator new does not throw bad_alloc on failure; rather, it de-
fers the error handling to the new-handler function.

8 int main()
9 {

10 double *ptr[50];
11
12 // aim each ptr[i] at a big block of memory
13 try

14 {
15 // allocate memory for ptr[i]; new throws bad_alloc on failure
16 for (int i = 0; i < 50; i++)
17 {
18
19 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
20 } // end for
21 } // end try
22 catch ()
23 {
24 cerr << "Exception occurred: "
25 << << endl;
26 } // end catch
27 } // end main

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
Exception occurred: bad allocation

double *ptr = new(nothrow) double[50000000];

Software Engineering Observation 24.9
To make programs more robust, use the version of new that throws bad_alloc exceptions
on failure.

Fig. 24.5 | new throwing bad_alloc on failure. (Part 2 of 2.)

ptr[i] = new double[50000000]; // may throw exception

bad_alloc &memoryAllocationException

memoryAllocationException.what()

906 Chapter 24 Exception Handling

If new allocates memory successfully, it returns a pointer to that memory. If new fails
to allocate memory and set_new_handler did not register a new-handler function, new
throws a bad_alloc exception. If new fails to allocate memory and a new-handler function
has been registered, the new-handler function is called. The C++ standard specifies that the
new-handler function should perform one of the following tasks:

1. Make more memory available by deleting other dynamically allocated memory
(or telling the user to close other applications) and return to operator new to at-
tempt to allocate memory again.

2. Throw an exception of type bad_alloc.

3. Call function abort or exit (both found in header file <cstdlib>) to terminate
the program.

Figure 24.6 demonstrates set_new_handler. Function customNewHandler (lines 9–
13) prints an error message (line 11), then calls abort (line 12) to terminate the program.
The output shows that the loop iterated four times before new failed and invoked function
customNewHandler. Your output might differ based on the physical memory, disk space
available for virtual memory on your system and your compiler.

1 // Fig. 24.6: Fig24_06.cpp
2 // Demonstrating set_new_handler.
3 #include <iostream>
4
5 #include <cstdlib> // abort function prototype
6 using namespace std;
7
8
9

10
11
12
13
14
15 // using set_new_handler to handle failed memory allocation
16 int main()
17 {
18 double *ptr[50];
19
20
21
22
23
24 // aim each ptr[i] at a big block of memory; customNewHandler will be
25 // called on failed memory allocation
26 for (int i = 0; i < 50; i++)
27 {
28 ptr[i] = new double[50000000]; // may throw exception
29 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
30 } // end for
31 } // end main

Fig. 24.6 | set_new_handler specifying the function to call when new fails. (Part 1 of 2.)

#include <new> // set_new_handler function prototype

// handle memory allocation failure
void customNewHandler()
{
 cerr << "customNewHandler was called";
 abort();
} // end function customNewHandler

// specify that customNewHandler should be called on
// memory allocation failure
set_new_handler(customNewHandler);

24.12 Class auto_ptr and Dynamic Memory Allocation 907

24.12 Class auto_ptr and Dynamic Memory Allocation
A common programming practice is to allocate dynamic memory, assign the address of
that memory to a pointer, use the pointer to manipulate the memory and deallocate the
memory with delete when the memory is no longer needed. If an exception occurs after
successful memory allocation but before the delete statement executes, a memory leak
could occur. The C++ standard provides class template auto_ptr in header file <memory>
to deal with this situation.

An object of class auto_ptr maintains a pointer to dynamically allocated memory.
When an auto_ptr object destructor is called (for example, when an auto_ptr object goes
out of scope), it performs a delete operation on its pointer data member. Class template
auto_ptr provides overloaded operators * and -> so that an auto_ptr object can be used
just as a regular pointer variable is. Figure 24.9 demonstrates an auto_ptr object that
points to a dynamically allocated object of class Integer (Figs. 24.7–24.8).

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
customNewHandler was called
This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

1 // Fig. 24.7: Integer.h
2 // Integer class definition.
3
4 class Integer
5 {
6 public:
7 Integer(int i = 0); // Integer default constructor
8 ~Integer(); // Integer destructor
9 void setInteger(int i); // functions to set Integer

10 int getInteger() const; // function to return Integer
11 private:
12 int value;
13 }; // end class Integer

Fig. 24.7 | Integer class definition.

1 // Fig. 24.8: Integer.cpp
2 // Integer member function definitions.
3 #include <iostream>
4 #include "Integer.h"

5 using namespace std;
6

Fig. 24.8 | Member function definitions of class Integer. (Part 1 of 2.)

Fig. 24.6 | set_new_handler specifying the function to call when new fails. (Part 2 of 2.)

908 Chapter 24 Exception Handling

Line 15 of Fig. 24.9 creates auto_ptr object ptrToInteger and initializes it with a
pointer to a dynamically allocated Integer object that contains the value 7. Line 18 uses
the auto_ptr overloaded -> operator to invoke function setInteger on the Integer
object that ptrToInteger manages. Line 21 uses the auto_ptr overloaded * operator to
dereference ptrToInteger, then uses the dot (.) operator to invoke function getInteger
on the Integer object. Like a regular pointer, an auto_ptr’s -> and * overloaded operators
can be used to access the object to which the auto_ptr points.

7 // Integer default constructor
8 Integer::Integer(int i)
9 : value(i)

10 {
11 cout << "Constructor for Integer " << value << endl;
12 } // end Integer constructor
13
14 // Integer destructor
15 Integer::~Integer()
16 {
17 cout << "Destructor for Integer " << value << endl;
18 } // end Integer destructor
19
20 // set Integer value
21 void Integer::setInteger(int i)
22 {
23 value = i;
24 } // end function setInteger
25
26 // return Integer value
27 int Integer::getInteger() const
28 {
29 return value;
30 } // end function getInteger

1 // Fig. 24.9: Fig24_09.cpp
2 // Demonstrating auto_ptr.
3 #include <iostream>
4
5 using namespace std;
6
7 #include "Integer.h"

8
9 // use auto_ptr to manipulate Integer object

10 int main()
11 {
12 cout << "Creating an auto_ptr object that points to an Integer\n";
13
14
15

Fig. 24.9 | auto_ptr object manages dynamically allocated memory. (Part 1 of 2.)

Fig. 24.8 | Member function definitions of class Integer. (Part 2 of 2.)

#include <memory>

// "aim" auto_ptr at Integer object
auto_ptr< Integer > ptrToInteger(new Integer(7));

24.13 Standard Library Exception Hierarchy 909

Because ptrToInteger is a local automatic variable in main, ptrToInteger is
destroyed when main terminates. The auto_ptr destructor forces a delete of the Integer
object pointed to by ptrToInteger, which in turn calls the Integer class destructor. The
memory that Integer occupies is released, regardless of how control leaves the block (e.g.,
by a return statement or by an exception). Most importantly, using this technique can
prevent memory leaks. For example, suppose a function returns a pointer aimed at some
object. Unfortunately, the function caller that receives this pointer might not delete the
object, thus resulting in a memory leak. However, if the function returns an auto_ptr to
the object, the object will be deleted automatically when the auto_ptr object’s destructor
gets called.

Only one auto_ptr at a time can own a dynamically allocated object and the object
cannot be an array. By using its overloaded assignment operator or copy constructor, an
auto_ptr can transfer ownership of the dynamic memory it manages. The last auto_ptr
object that maintains the pointer to the dynamic memory will delete the memory. This
makes auto_ptr an ideal mechanism for returning dynamically allocated memory to client
code. When the auto_ptr goes out of scope in the client code, the auto_ptr’s destructor
deletes the dynamic memory.

24.13 Standard Library Exception Hierarchy
Experience has shown that exceptions fall nicely into a number of categories. The C++
Standard Library includes a hierarchy of exception classes, some of which are shown in
Fig. 24.10. As we first discussed in Section 24.3, this hierarchy is headed by base-class ex-

16
17 cout << "\nUsing the auto_ptr to manipulate the Integer\n";
18
19
20 // use auto_ptr to get Integer value
21 cout << "Integer after setInteger: " <<
22 } // end main

Creating an auto_ptr object that points to an Integer
Constructor for Integer 7

Using the auto_ptr to manipulate the Integer
Integer after setInteger: 99

Destructor for Integer 99

Common Programming Error 24.9
Because auto_ptr objects transfer ownership of memory when they are copied, they cannot
be used with Standard Library container classes like vector. Container classes often make
copies of objects. This causes ownership of a container element to be transferred to another
object, which might then be accidentally deleted when the copy goes out of scope. The
Boost.Smart_ptr library provides memory management features similar auto_ptr that
can be used with containers.

Fig. 24.9 | auto_ptr object manages dynamically allocated memory. (Part 2 of 2.)

ptrToInteger->setInteger(99); // use auto_ptr to set Integer value

(*ptrToInteger).getInteger()

910 Chapter 24 Exception Handling

ception (defined in header file <exception>), which contains virtual function what,
which derived classes can override to issue appropriate error messages.

Immediate derived classes of base-class exception include runtime_error and
logic_error (both defined in header <stdexcept>), each of which has several derived
classes. Also derived from exception are the exceptions thrown by C++ operators—for
example, bad_alloc is thrown by new (Section 24.11), bad_cast is thrown by
dynamic_cast (Chapter 21) and bad_typeid is thrown by typeid (Chapter 21).
Including bad_exception in the throw list of a function means that, if an unexpected
exception occurs, function unexpected can throw bad_exception rather than terminating
the program’s execution (by default) or calling another function specified by
set_unexpected.

Class logic_error is the base class of several standard exception classes that indicate
errors in program logic. For example, class invalid_argument indicates that an invalid
argument was passed to a function. (Proper coding can, of course, prevent invalid argu-
ments from reaching a function.) Class length_error indicates that a length larger than
the maximum size allowed for the object being manipulated was used for that object. Class
out_of_range indicates that a value, such as a subscript into an array, exceeded its allowed
range of values.

Class runtime_error, which we used briefly in Section 24.8, is the base class of several
other standard exception classes that indicate execution-time errors. For example, class
overflow_error describes an arithmetic overflow error (i.e., the result of an arithmetic
operation is larger than the largest number that can be stored in the computer) and class

Fig. 24.10 | Some of the Standard Library exception classes.

Common Programming Error 24.10
Placing a catch handler that catches a base-class object before a catch that catches an
object of a class derived from that base class is a logic error. The base-class catch catches
all objects of classes derived from that base class, so the derived-class catch will never ex-
ecute.

exception

logic_errorruntime_error

bad_type_idbad_alloc bad_cast bad_exception

underflow_erroroverflow_error invalid_argument length_error out_of_range

24.14 Other Error-Handling Techniques 911

underflow_error describes an arithmetic underflow error (i.e., the result of an arithmetic
operation is smaller than the smallest number that can be stored in the computer).

24.14 Other Error-Handling Techniques
We’ve discussed several ways to deal with exceptional situations prior to this chapter. The
following summarizes these and other error-handling techniques:

• Ignore the exception. If an exception occurs, the program might fail as a result of
the uncaught exception. This is devastating for commercial software products
and special-purpose mission-critical software, but, for software developed for
your own purposes, ignoring many kinds of errors is common.

• Abort the program. This, of course, prevents a program from running to comple-
tion and producing incorrect results. For many types of errors, this is appropriate,
especially for nonfatal errors that enable a program to run to completion (poten-
tially misleading you to think that the program functioned correctly). This strat-
egy is inappropriate for mission-critical applications. Resource issues also are
important here—if a program obtains a resource, the program should release that
resource before program termination.

• Set error indicators. The problem with this approach is that programs might not
check these error indicators at all points at which the errors could be troublesome.
Another problem is that the program, after processing the problem, might not
clear the error indicators.

• Test for the error condition, issue an error message and call exit (in <cstdlib>)
to pass an appropriate error code to the program’s environment.

Common Programming Error 24.11
Exception classes need not be derived from class exception, so catching type exception is
not guaranteed to catch all exceptions a program could encounter.

Error-Prevention Tip 24.6
To catch all exceptions potentially thrown in a try block, use catch(...). One weakness
with catching exceptions in this way is that the type of the caught exception is unknown
at compile time. Another weakness is that, without a named parameter, there is no way
to refer to the exception object inside the exception handler.

Software Engineering Observation 24.10
The standard exception hierarchy is a good starting point for creating exceptions. You
can build programs that can throw standard exceptions, throw exceptions derived from
the standard exceptions or throw your own exceptions not derived from the standard
exceptions.

Software Engineering Observation 24.11
Use catch(...) to perform recovery that does not depend on the exception type (e.g.,
releasing common resources). The exception can be rethrown to alert more specific
enclosing catch handlers.

912 Chapter 24 Exception Handling

• Certain kinds of errors have dedicated capabilities for handling them. For exam-
ple, when operator new fails to allocate memory, a new_handler function can be
called to handle the error. This function can be customized by supplying a func-
tion name as the argument to set_new_handler, as we discussed in Section 24.11.

24.15 Wrap-Up
In this chapter, you learned how to use exception handling to deal with errors in a pro-
gram. You learned that exception handling enables you to remove error-handling code
from the “main line” of the program’s execution. We demonstrated exception handling in
the context of a divide-by-zero example. We also showed how to use try blocks to enclose
code that may throw an exception, and how to use catch handlers to deal with exceptions
that may arise. You learned how to throw and rethrow exceptions, and how to handle the
exceptions that occur in constructors. The chapter continued with discussions of process-
ing new failures, dynamic memory allocation with class auto_ptr and the standard library
exception hierarchy.

Summary
Section 24.1 Introduction
• An exception is an indication of a problem that occurs during a program’s execution.

• Exception handling enables you to create programs that can resolve problems that occur at exe-
cution time—often allowing programs to continue executing as if no problems had been encoun-
tered. More severe problems may require a program to notify the user of the problem before
terminating in a controlled manner.

Section 24.2 Exception-Handling Overview
• Exception handling enables you to remove error-handling code from the “main line” of the pro-

gram’s execution, which improves program clarity and enhances modifiability.

Section 24.3 Example: Handling an Attempt to Divide by Zero
• Class exception is the standard C++ base class for exceptions. Class exception provides virtual

function what that returns an appropriate error message and can be overridden in derived classes.

• Class runtime_error (defined in header <stdexcept>) is the C++ standard base class for repre-
senting runtime errors.

• C++ uses the termination model of exception handling.

• A try block consists of keyword try followed by braces ({}) that define a block of code in which
exceptions might occur. The try block encloses statements that might cause exceptions and state-
ments that should not execute if exceptions occur.

• At least one catch handler must immediately follow a try block. Each catch handler specifies an
exception parameter that represents the type of exception the catch handler can process.

• If an exception parameter includes an optional parameter name, the catch handler can use that
parameter name to interact with a caught exception object.

• The point in the program at which an exception occurs is called the throw point.

 Summary 913

• If an exception occurs in a try block, the try block expires and program control transfers to the
first catch in which the exception parameter’s type matches that of the thrown exception.

• When a try block terminates, local variables defined in the block go out of scope.

• When a try block terminates due to an exception, the program searches for the first catch han-
dler that matches the type of exception that occurred. A match occurs if the types are identical
or if the thrown exception’s type is a derived class of the exception-parameter type. When a
match occurs, the code contained within the matching catch handler executes.

• When a catch handler finishes processing, the catch parameter and local variables defined within
the catch handler go out of scope. Any remaining catch handlers that correspond to the try
block are ignored, and execution resumes at the first line of code after the try…catch sequence.

• If no exceptions occur in a try block, the program ignores the catch handler(s) for that block.
Program execution resumes with the next statement after the try…catch sequence.

• If an exception that occurs in a try block has no matching catch handler, or if an exception oc-
curs in a statement that is not in a try block, the function that contains the statement terminates
immediately, and the program attempts to locate an enclosing try block in the calling function.
This process is called stack unwinding.

• To throw an exception, use keyword throw followed by an operand that represents the type of
exception to throw. The operand of a throw can be of any type.

Section 24.4 When to Use Exception Handling
• Exception handling is for synchronous errors, which occur when a statement executes.

• Exception handling is not designed to process errors associated with asynchronous events, which
occur in parallel with, and independent of, the program’s flow of control.

Section 24.5 Rethrowing an Exception
• The exception handler can defer the exception handling (or perhaps a portion of it) to another

exception handler. In either case, the handler achieves this by rethrowing the exception.

• Common examples of exceptions are out-of-range array subscripts, arithmetic overflow, division
by zero, invalid function parameters and unsuccessful memory allocations.

Section 24.6 Exception Specifications
• An optional exception specification enumerates a list of exceptions that a function can throw. A

function can throw only exceptions of the types indicated by the exception specification or ex-
ceptions of any type derived from these types. If the function throws an exception that does not
belong to a specified type, function unexpected is called and the program terminates.

• A function with no exception specification can throw any exception. The empty exception spec-
ification throw() indicates that a function does not throw exceptions. If a function with an empty
exception specification attempts to throw an exception, function unexpected is invoked.

Section 24.7 Processing Unexpected Exceptions
• Function unexpected calls the function registered with function set_unexpected. If no function

has been registered in this manner, function terminate is called by default.

• Function set_terminate can specify the function to invoke when terminate is called. Otherwise,
terminate calls abort, which terminates the program without calling the destructors of objects
that are declared static and auto.

• Functions set_terminate and set_unexpected each return a pointer to the last function called
by terminate and unexpected, respectively (0, the first time each is called). This enables you to
save the function pointer so it can be restored later.

914 Chapter 24 Exception Handling

• Functions set_terminate and set_unexpected take as arguments pointers to functions with void
return types and no arguments.

• If a programmer-defined termination function does not exit a program, function abort will be
called after the programmer-defined termination function completes execution.

Section 24.8 Stack Unwinding
• Unwinding the function call stack means that the function in which the exception was not

caught terminates, all local variables in that function are destroyed and control returns to the
statement that originally invoked that function.

Section 24.9 Constructors, Destructors and Exception Handling
• Exceptions thrown by a constructor cause destructors to be called for any objects built as part of

the object being constructed before the exception is thrown.

• Each automatic object constructed in a try block is destructed before an exception is thrown.

• Stack unwinding completes before an exception handler begins executing.

• If a destructor invoked as a result of stack unwinding throws an exception, terminate is called.

• If an object has member objects, and if an exception is thrown before the outer object is fully
constructed, then destructors will be executed for the member objects that have been constructed
before the exception occurs.

• If an array of objects has been partially constructed when an exception occurs, only the destruc-
tors for the constructed array element objects will be called.

• When an exception is thrown from the constructor for an object that is created in a new expres-
sion, the dynamically allocated memory for that object is released.

Section 24.10 Exceptions and Inheritance
• If a catch handler catches a pointer or reference to an exception object of a base-class type, it also

can catch a pointer or reference to all objects of classes derived publicly from that base class—
this allows for polymorphic processing of related errors.

Section 24.11 Processing new Failures
• The C++ standard document specifies that, when operator new fails, it throws a bad_alloc excep-

tion (defined in header file <new>).

• Function set_new_handler takes as its argument a pointer to a function that takes no arguments
and returns void. This pointer points to the function that will be called if new fails.

• Once set_new_handler registers a new handler in the program, operator new does not throw
bad_alloc on failure; rather, it defers the error handling to the new-handler function.

• If new allocates memory successfully, it returns a pointer to that memory.

• If an exception occurs after successful memory allocation but before the delete statement exe-
cutes, a memory leak could occur.

Section 24.12 Class auto_ptr and Dynamic Memory Allocation
• The C++ Standard Library provides class template auto_ptr to deal with memory leaks.

• An object of class auto_ptr maintains a pointer to dynamically allocated memory. An auto_ptr
object’s destructor performs a delete operation on the auto_ptr’s pointer data member.

• Class template auto_ptr provides overloaded operators * and -> so that an auto_ptr object can
be used just as a regular pointer variable is. An auto_ptr also transfers ownership of the dynamic
memory it manages via its copy constructor and overloaded assignment operator.

 Terminology 915

Section 24.13 Standard Library Exception Hierarchy
• The C++ Standard Library includes a hierarchy of exception classes. This hierarchy is headed by

base-class exception.

• Immediate derived classes of base class exception include runtime_error and logic_error (both
defined in header <stdexcept>), each of which has several derived classes.

• Several operators throw standard exceptions—operator new throws bad_alloc, operator
dynamic_cast throws bad_cast and operator typeid throws bad_typeid.

• Including bad_exception in the throw list of a function means that, if an unexpected exception
occurs, function unexpected can throw bad_exception rather than terminating the program’s ex-
ecution or calling another function specified by set_unexpected.

Terminology
abort function 901
arithmetic overflow error 910
arithmetic underflow error 911
asynchronous event 897
auto_ptr class template 907
bad_alloc exception 904
bad_cast exception 910
bad_exception exception 910
bad_typeid exception 910
catch handler 894
catch keyword 895
empty exception specification 900
exception 890
exception class 892
exception handler 894
exception handling 890
<exception> header file 892
exception object 896
exception parameter 895
exception specification 900
fault-tolerant program 890
invalid_argument exception 910
length_error exception 910
logic_error exception 910
<memory> header file 907
new handler 905

nothrow object 905
out_of_range exception 910
overflow_error exception 910
resource leak 901
resumption model of exception handling 895
rethrowing the exception 898
robust program 890
runtime_error exception 892
set_new_handler function 904
set_terminate function 901
set_unexpected function 900
stack unwinding 896
<stdexcept> header file 892
synchronous error 897
terminate function 898
termination model of exception handling 895
throw 896
throws an exception 894
throw keyword 896
throw list 900
throw point 895
try block 894
try keyword 894
underflow_error exception 911
unexpected function 900
what virtual function of class exception 892

Self-Review Exercises
24.1 List five common examples of exceptions.

24.2 Give several reasons why exception-handling techniques should not be used for conven-
tional program control.

24.3 Why are exceptions appropriate for dealing with errors produced by library functions?

24.4 What’s a “resource leak”?

24.5 If no exceptions are thrown in a try block, where does control proceed to after the try block
completes execution?

916 Chapter 24 Exception Handling

24.6 What happens if an exception is thrown outside a try block?

24.7 Give a key advantage and a key disadvantage of using catch(...).

24.8 What happens if no catch handler matches the type of a thrown object?

24.9 What happens if several handlers match the type of the thrown object?

24.10 Why would you specify a base-class type as the type of a catch handler, then throw objects
of derived-class types?

24.11 Suppose a catch handler with a precise match to an exception object type is available. Un-
der what circumstances might a different handler be executed for exception objects of that type?

24.12 Must throwing an exception cause program termination?

24.13 What happens when a catch handler throws an exception?

24.14 What does the statement throw; do?

24.15 How do you restrict the exception types that a function can throw?

24.16 What happens if a function throws an exception of a type not allowed by the exception
specification for the function?

24.17 What happens to the automatic objects that have been constructed in a try block when that
block throws an exception?

Answers to Self-Review Exercises
24.1 Insufficient memory to satisfy a new request, array subscript out of bounds, arithmetic over-
flow, division by zero, invalid function parameters.

24.2 (a) Exception handling is designed to handle infrequently occurring situations that often
result in program termination, so compiler writers are not required to implement exception han-
dling to perform optimally. (b) Flow of control with conventional control structures generally is
clearer and more efficient than with exceptions. (c) Problems can occur because the stack is un-
wound when an exception occurs and resources allocated prior to the exception might not be freed.
(d) The “additional” exceptions make it more difficult for you to handle the larger number of ex-
ception cases.

24.3 It’s unlikely that a library function will perform error processing that will meet the unique
needs of all users.

24.4 A program that terminates abruptly could leave a resource in a state in which other pro-
grams would not be able to acquire the resource, or the program itself might not be able to reacquire
a “leaked” resource.

24.5 The exception handlers (in the catch handlers) for that try block are skipped, and the pro-
gram resumes execution after the last catch handler.

24.6 An exception thrown outside a try block causes a call to terminate.

24.7 The form catch(...) catches any type of exception thrown in a try block. An advantage
is that all possible exceptions will be caught. A disadvantage is that the catch has no parameter, so
it cannot reference information in the thrown object and cannot know the cause of the exception.

24.8 This causes the search for a match to continue in the next enclosing try block if there is
one. As this process continues, it might eventually be determined that there is no handler in the pro-
gram that matches the type of the thrown object; in this case, terminate is called, which by default
calls abort. An alternative terminate function can be provided as an argument to set_terminate.

24.9 The first matching exception handler after the try block is executed.

 Exercises 917

24.10 This is a nice way to catch related types of exceptions.

24.11 A base-class handler would catch objects of all derived-class types.

24.12 No, but it does terminate the block in which the exception is thrown.

24.13 The exception will be processed by a catch handler (if one exists) associated with the try
block (if one exists) enclosing the catch handler that caused the exception.

24.14 It rethrows the exception if it appears in a catch handler; otherwise, function unexpected
is called.

24.15 Provide an exception specification listing the exception types that the function can throw.

24.16 Function unexpected is called.

24.17 The try block expires, causing destructors to be called for each of these objects.

Exercises
24.18 List various exceptional conditions that have occurred throughout this text. List as many
additional exceptional conditions as you can. For each of these exceptions, describe briefly how a
program typically would handle the exception, using the exception-handling techniques discussed
in this chapter. Some typical exceptions are division by zero, arithmetic overflow, array subscript
out of bounds, exhaustion of the free store, etc.

24.19 Under what circumstances would you not provide a parameter name when defining the
type of the object that will be caught by a handler?

24.20 A program contains the statement

throw;

Where would you normally expect to find such a statement? What if that statement appeared in a
different part of the program?

24.21 Compare and contrast exception handling with the various other error-processing schemes
discussed in the text.

24.22 Why should exceptions not be used as an alternate form of program control?

24.23 Describe a technique for handling related exceptions.

24.24 (Throwing Exceptions from a catch) Suppose a program throws an exception and the ap-
propriate exception handler begins executing. Now suppose that the exception handler itself throws
the same exception. Does this create infinite recursion? Write a program to check your observation.

24.25 (Catching Derived-Class Exceptions) Use inheritance to create various derived classes of
runtime_error. Then show that a catch handler specifying the base class can catch derived-class
exceptions.

24.26 (Throwing the Result of a Conditional Expression) Throw the result of a conditional ex-
pression that returns either a double or an int. Provide an int catch handler and a double catch

handler. Show that only the double catch handler executes, regardless of whether the int or the
double is returned.

24.27 (Local Variable Destructors) Write a program illustrating that all destructors for objects
constructed in a block are called before an exception is thrown from that block.

24.28 (Member Object Destructors) Write a program illustrating that member object destructors
are called for only those member objects that were constructed before an exception occurred.

24.29 (Cathing All Exceptions) Write a program that demonstrates several exception types being
caught with the catch(...) exception handler.

918 Chapter 24 Exception Handling

24.30 (Order of Exception Handlers) Write a program illustrating that the order of exception han-
dlers is important. The first matching handler is the one that executes. Attempt to compile and run
your program two different ways to show that two different handlers execute with two different ef-
fects.

24.31 (Constructors Throwing Exceptions) Write a program that shows a constructor passing in-
formation about constructor failure to an exception handler after a try block.

24.32 (Rethrowing Exceptions) Write a program that illustrates rethrowing an exception.

24.33 (Uncaught Exceptions) Write a program that illustrates that a function with its own try
block does not have to catch every possible error generated within the try. Some exceptions can slip
through to, and be handled in, outer scopes.

24.34 (Stack Unwinding) Write a program that throws an exception from a deeply nested func-
tion and still has the catch handler following the try block enclosing the call chain catch the excep-
tion.

A
Operator Precedence Charts

Operators are shown in decreasing order of precedence from top to bottom (Figs. A.1–A.2).

C Operator Type Associativity

()

[]

.

->

++

--

parentheses (function call operator)
array subscript
member selection via object
member selection via pointer
unary postincrement
unary postdecrement

left to right

++

--

+

-

!

~

(type)
*

&

sizeof

unary preincrement
unary predecrement
unary plus
unary minus
unary logical negation
unary bitwise complement
C-style unary cast
dereference
address
determine size in bytes

right to left

*

/

%

multiplication
division
modulus

left to right

+

-

addition
subtraction

left to right

<<

>>

bitwise left shift
bitwise right shift

left to right

<

<=

>

>=

relational less than
relational less than or equal to
relational greater than
relational greater than or equal to

left to right

Fig. A.1 | C operator precedence chart. (Part 1 of 2.)

920 Appendix A Operator Precedence Charts

==

!=

relational is equal to
relational is not equal to

left to right

& bitwise AND left to right

^ bitwise exclusive OR left to right

| bitwise inclusive OR left to right

&& logical AND left to right

|| logical OR left to right

?: ternary conditional right to left

=

+=

-=

*=

/=

%=

&=

^=

|=

<<=

>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left shift assignment
bitwise right shift with sign

right to left

, comma left to right

C++ Operator Type Associativity

::

::

binary scope resolution
unary scope resolution

left to right

()

[]

.

->

++

--

typeid

dynamic_cast<type>
static_cast<type>
reinterpret_cast<type>
const_cast<type>

parentheses (function call operator)
array subscript
member selection via object
member selection via pointer
unary postincrement
unary postdecrement
runtime type information
runtime type-checked cast
compile-time type-checked cast
cast for nonstandard conversions
cast away const-ness

left to right

Fig. A.2 | C++ operator precedence chart. (Part 1 of 3.)

C Operator Type Associativity

Fig. A.1 | C operator precedence chart. (Part 2 of 2.)

Appendix A Operator Precedence Charts 921

++

--

+

-

!

~

(type)
sizeof

&

*

new

new[]

delete

delete[]

unary preincrement
unary predecrement
unary plus
unary minus
unary logical negation
unary bitwise complement
C-style unary cast
determine size in bytes
address
dereference
dynamic memory allocation
dynamic array allocation
dynamic memory deallocation
dynamic array deallocation

right to left

.*

->*

pointer to member via object
pointer to member via pointer

left to right

*

/

%

multiplication
division
modulus

left to right

+

-

addition
subtraction

left to right

<<

>>

bitwise left shift
bitwise right shift

left to right

<

<=

>

>=

relational less than
relational less than or equal to
relational greater than
relational greater than or equal to

left to right

==

!=

relational is equal to
relational is not equal to

left to right

& bitwise AND left to right

^ bitwise exclusive OR left to right

| bitwise inclusive OR left to right

&& logical AND left to right

|| logical OR left to right

?: ternary conditional right to left

C++ Operator Type Associativity

Fig. A.2 | C++ operator precedence chart. (Part 2 of 3.)

922 Appendix A Operator Precedence Charts

=

+=

-=

*=

/=

%=

&=

^=

|=

<<=

>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left shift assignment
bitwise right shift with sign

right to left

, comma left to right

C++ Operator Type Associativity

Fig. A.2 | C++ operator precedence chart. (Part 3 of 3.)

B
ASCII Character Set

The digits at the left of the table are the left digits of the decimal equivalent (0–127) of the
character code, and the digits at the top of the table are the right digits of the character
code. For example, the character code for “F” is 70, and the character code for “&” is 38.

ASCII character set

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 lf vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! " # $ % & ‘

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

Fig. B.1 | ASCII Character Set.

C Number Systems

Here are only numbers ratified.
—William Shakespeare

O b j e c t i v e s
In this appendix, you’ll learn:

■ To understand basic number
systems concepts such as
base, positional value and
symbol value.

■ To understand how to work
with numbers represented in
the binary, octal and
hexadecimal number systems

■ To be able to abbreviate
binary numbers as octal
numbers or hexadecimal
numbers.

■ To be able to convert octal
numbers and hexadecimal
numbers to binary numbers.

■ To be able to convert back
and forth between decimal
numbers and their binary,
octal and hexadecimal
equivalents.

■ To understand binary
arithmetic and how negative
binary numbers are
represented using two’s
complement notation.

C.1 Introduction 925

C.1 Introduction
In this appendix, we introduce the key number systems that programmers use, especially
when they are working on software projects that require close interaction with machine-
level hardware. Projects like this include operating systems, computer networking soft-
ware, compilers, database systems and applications requiring high performance.

When we write an integer such as 227 or –63 in a program, the number is assumed
to be in the decimal (base 10) number system. The digits in the decimal number system
are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The lowest digit is 0 and the highest digit is 9—one less
than the base of 10. Internally, computers use the binary (base 2) number system. The
binary number system has only two digits, namely 0 and 1. Its lowest digit is 0 and its
highest digit is 1—one less than the base of 2.

As we’ll see, binary numbers tend to be much longer than their decimal equivalents.
Programmers who work in assembly languages and in high-level languages like C that
enable programmers to reach down to the machine level, find it cumbersome to work with
binary numbers. So two other number systems—the octal number system (base 8) and
the hexadecimal number system (base 16)—are popular primarily because they make it
convenient to abbreviate binary numbers.

In the octal number system, the digits range from 0 to 7. Because both the binary
number system and the octal number system have fewer digits than the decimal number
system, their digits are the same as the corresponding digits in decimal.

The hexadecimal number system poses a problem because it requires 16 digits—a
lowest digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than
the base of 16). By convention, we use the letters A through F to represent the hexadecimal
digits corresponding to decimal values 10 through 15. Thus in hexadecimal we can have
numbers like 876 consisting solely of decimal-like digits, numbers like 8A55F consisting
of digits and letters and numbers like FFE consisting solely of letters. Occasionally, a hexa-
decimal number spells a common word such as FACE or FEED—this can appear strange
to programmers accustomed to working with numbers. The digits of the binary, octal,
decimal and hexadecimal number systems are summarized in Figs. C.1–C.2.

Each of these number systems uses positional notation—each position in which a
digit is written has a different positional value. For example, in the decimal number 937
(the 9, the 3 and the 7 are referred to as symbol values), we say that the 7 is written in the
ones position, the 3 is written in the tens position and the 9 is written in the hundreds
position. Each of these positions is a power of the base (base 10) and these powers begin
at 0 and increase by 1 as we move left in the number (Fig. C.3).

C.1 Introduction
C.2 Abbreviating Binary Numbers as

Octal and Hexadecimal Numbers
C.3 Converting Octal and Hexadecimal

Numbers to Binary Numbers
C.4 Converting from Binary, Octal or

Hexadecimal to Decimal

C.5 Converting from Decimal to Binary,
Octal or Hexadecimal

C.6 Negative Binary Numbers: Two’s
Complement Notation

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

926 Appendix C Number Systems

For longer decimal numbers, the next positions to the left would be the thousands
position (10 to the 3rd power), the ten-thousands position (10 to the 4th power), the hun-
dred-thousands position (10 to the 5th power), the millions position (10 to the 6th
power), the ten-millions position (10 to the 7th power) and so on.

Binary digit Octal digit Decimal digit Hexadecimal digit

0 0 0 0

1 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8

9 9

A (decimal value of 10)
B (decimal value of 11)
C (decimal value of 12)
D (decimal value of 13)
E (decimal value of 14)
F (decimal value of 15)

Fig. C.1 | Digits of the binary, octal, decimal and hexadecimal number systems.

Attribute Binary Octal Decimal Hexadecimal

Base 2 8 10 16

Lowest digit 0 0 0 0

Highest digit 1 7 9 F

Fig. C.2 | Comparing the binary, octal, decimal and hexadecimal number systems.

Positional values in the decimal number system

Decimal digit 9 3 7

Position name Hundreds Tens Ones

Positional value 100 10 1

Positional value as a
power of the base (10)

102 101 100

Fig. C.3 | Positional values in the decimal number system.

C.1 Introduction 927

In the binary number 101, the rightmost 1 is written in the ones position, the 0 is
written in the twos position and the leftmost 1 is written in the fours position. Each posi-
tion is a power of the base (base 2) and these powers begin at 0 and increase by 1 as we
move left in the number (Fig. C.4). So, 101 = 1 * 22 + 0 * 21 + 1 * 20 = 4 + 0 + 1 = 5.

For longer binary numbers, the next positions to the left would be the eights position
(2 to the 3rd power), the sixteens position (2 to the 4th power), the thirty-twos position
(2 to the 5th power), the sixty-fours position (2 to the 6th power) and so on.

In the octal number 425, we say that the 5 is written in the ones position, the 2 is
written in the eights position and the 4 is written in the sixty-fours position. Each of these
positions is a power of the base (base 8) and that these powers begin at 0 and increase by
1 as we move left in the number (Fig. C.5).

For longer octal numbers, the next positions to the left would be the five-hundred-
and-twelves position (8 to the 3rd power), the four-thousand-and-ninety-sixes position (8
to the 4th power), the thirty-two-thousand-seven-hundred-and-sixty-eights position (8 to
the 5th power) and so on.

In the hexadecimal number 3DA, we say that the A is written in the ones position,
the D is written in the sixteens position and the 3 is written in the two-hundred-and-fifty-
sixes position. Each of these positions is a power of the base (base 16) and these powers
begin at 0 and increase by 1 as we move left in the number (Fig. C.6).

For longer hexadecimal numbers, the next positions to the left would be the four-
thousand-and-ninety-sixes position (16 to the 3rd power), the sixty-five-thousand-five-
hundred-and-thirty-sixes position (16 to the 4th power) and so on.

Positional values in the binary number system

Binary digit 1 0 1

Position name Fours Twos Ones

Positional value 4 2 1

Positional value as a
power of the base (2)

22 21 20

Fig. C.4 | Positional values in the binary number system.

Positional values in the octal number system

Decimal digit 4 2 5

Position name Sixty-fours Eights Ones

Positional value 64 8 1

Positional value as a
power of the base (8)

82 81 80

Fig. C.5 | Positional values in the octal number system.

928 Appendix C Number Systems

C.2 Abbreviating Binary Numbers as Octal and
Hexadecimal Numbers
The main use for octal and hexadecimal numbers in computing is for abbreviating lengthy
binary representations. Figure C.7 highlights the fact that lengthy binary numbers can be
expressed concisely in number systems with higher bases than the binary number system.

A particularly important relationship that both the octal number system and the hexa-
decimal number system have to the binary system is that the bases of octal and hexadec-

Positional values in the hexadecimal number system

Decimal digit 3 D A

Position name Two-hundred-
and-fifty-sixes

Sixteens Ones

Positional value 256 16 1

Positional value as a
power of the base
(16)

162 161 160

Fig. C.6 | Positional values in the hexadecimal number system.

Decimal
number

Binary
representation

Octal
representation

Hexadecimal
representation

 0 0 0 0

 1 1 1 1

 2 10 2 2

 3 11 3 3

 4 100 4 4

 5 101 5 5

 6 110 6 6

 7 111 7 7

 8 1000 10 8

 9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

Fig. C.7 | Decimal, binary, octal and hexadecimal equivalents.

C.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 929

imal (8 and 16 respectively) are powers of the base of the binary number system (base 2).
Consider the following 12-digit binary number and its octal and hexadecimal equivalents.
See if you can determine how this relationship makes it convenient to abbreviate binary
numbers in octal or hexadecimal. The answer follows the numbers.

To see how the binary number converts easily to octal, simply break the 12-digit
binary number into groups of three consecutive bits each and write those groups over the
corresponding digits of the octal number as follows:

The octal digit you have written under each group of three bits corresponds precisely
to the octal equivalent of that 3-digit binary number, as shown in Fig. C.7.

The same kind of relationship can be observed in converting from binary to hexadec-
imal. Break the 12-digit binary number into groups of four consecutive bits each and write
those groups over the corresponding digits of the hexadecimal number as follows:

The hexadecimal digit you wrote under each group of four bits corresponds precisely
to the hexadecimal equivalent of that 4-digit binary number as shown in Fig. C.7.

C.3 Converting Octal and Hexadecimal Numbers to
Binary Numbers
In the previous section, we saw how to convert binary numbers to their octal and hexadec-
imal equivalents by forming groups of binary digits and simply rewriting them as their
equivalent octal digit values or hexadecimal digit values. This process may be used in re-
verse to produce the binary equivalent of a given octal or hexadecimal number.

For example, the octal number 653 is converted to binary simply by writing the 6 as
its 3-digit binary equivalent 110, the 5 as its 3-digit binary equivalent 101 and the 3 as its
3-digit binary equivalent 011 to form the 9-digit binary number 110101011.

The hexadecimal number FAD5 is converted to binary simply by writing the F as its
4-digit binary equivalent 1111, the A as its 4-digit binary equivalent 1010, the D as its 4-
digit binary equivalent 1101 and the 5 as its 4-digit binary equivalent 0101 to form the
16-digit 1111101011010101.

C.4 Converting from Binary, Octal or Hexadecimal to
Decimal
We’re accustomed to working in decimal, and therefore it is often convenient to convert
a binary, octal, or hexadecimal number to decimal to get a sense of what the number is
“really” worth. Our tables in Section C.1 express the positional values in decimal. To con-
vert a number to decimal from another base, multiply the decimal equivalent of each digit
by its positional value and sum these products. For example, the binary number 110101
is converted to decimal 53, as shown in Fig. C.8.

Binary number Octal equivalent Hexadecimal equivalent
100011010001 4321 8D1

100 011 010 001
4 3 2 1

1000 1101 0001
8 D 1

930 Appendix C Number Systems

To convert octal 7614 to decimal 3980, we use the same technique, this time using
appropriate octal positional values, as shown in Fig. C.9.

To convert hexadecimal AD3B to decimal 44347, we use the same technique, this
time using appropriate hexadecimal positional values, as shown in Fig. C.10.

C.5 Converting from Decimal to Binary, Octal or
Hexadecimal
The conversions in Section C.4 follow naturally from the positional notation conventions.
Converting from decimal to binary, octal, or hexadecimal also follows these conventions.

Suppose we wish to convert decimal 57 to binary. We begin by writing the positional
values of the columns right to left until we reach a column whose positional value is greater
than the decimal number. We do not need that column, so we discard it. Thus, we first
write:

Converting a binary number to decimal

Postional values: 32 16 8 4 2 1

Symbol values: 1 1 0 1 0 1

Products: 1*32=32 1*16=16 0*8=0 1*4=4 0*2=0 1*1=1

Sum: = 32 + 16 + 0 + 4 + 0 + 1 = 53

Fig. C.8 | Converting a binary number to decimal.

Converting an octal number to decimal

Positional values: 512 64 8 1

Symbol values: 7 6 1 4

Products 7*512=3584 6*64=384 1*8=8 4*1=4

Sum: = 3584 + 384 + 8 + 4 = 3980

Fig. C.9 | Converting an octal number to decimal.

Converting a hexadecimal number to decimal

Postional values: 4096 256 16 1

Symbol values: A D 3 B

Products A*4096=40960 D*256=3328 3*16=48 B*1=11

Sum: = 40960 + 3328 + 48 + 11 = 44347

Fig. C.10 | Converting a hexadecimal number to decimal.

Positional values: 64 32 16 8 4 2 1

C.5 Converting from Decimal to Binary, Octal or Hexadecimal 931

Then we discard the column with positional value 64, leaving:

Next we work from the leftmost column to the right. We divide 32 into 57 and
observe that there is one 32 in 57 with a remainder of 25, so we write 1 in the 32 column.
We divide 16 into 25 and observe that there is one 16 in 25 with a remainder of 9 and
write 1 in the 16 column. We divide 8 into 9 and observe that there is one 8 in 9 with a
remainder of 1. The next two columns each produce quotients of 0 when their positional
values are divided into 1, so we write 0s in the 4 and 2 columns. Finally, 1 into 1 is 1, so
we write 1 in the 1 column. This yields:

and thus decimal 57 is equivalent to binary 111001.
To convert decimal 103 to octal, we begin by writing the positional values of the col-

umns until we reach a column whose positional value is greater than the decimal number.
We do not need that column, so we discard it. Thus, we first write:

Then we discard the column with positional value 512, yielding:

Next we work from the leftmost column to the right. We divide 64 into 103 and
observe that there is one 64 in 103 with a remainder of 39, so we write 1 in the 64 column.
We divide 8 into 39 and observe that there are four 8s in 39 with a remainder of 7 and
write 4 in the 8 column. Finally, we divide 1 into 7 and observe that there are seven 1s in
7 with no remainder, so we write 7 in the 1 column. This yields:

and thus decimal 103 is equivalent to octal 147.
To convert decimal 375 to hexadecimal, we begin by writing the positional values of

the columns until we reach a column whose positional value is greater than the decimal
number. We do not need that column, so we discard it. Thus, we first write:

Then we discard the column with positional value 4096, yielding:

Next we work from the leftmost column to the right. We divide 256 into 375 and
observe that there is one 256 in 375 with a remainder of 119, so we write 1 in the 256
column. We divide 16 into 119 and observe that there are seven 16s in 119 with a
remainder of 7 and write 7 in the 16 column. Finally, we divide 1 into 7 and observe that
there are seven 1s in 7 with no remainder, so we write 7 in the 1 column. This yields:

and thus decimal 375 is equivalent to hexadecimal 177.

Positional values: 32 16 8 4 2 1

Positional values: 32 16 8 4 2 1
Symbol values: 1 1 1 0 0 1

Positional values: 512 64 8 1

Positional values: 64 8 1

Positional values: 64 8 1
Symbol values: 1 4 7

Positional values: 4096 256 16 1

Positional values: 256 16 1

Positional values: 256 16 1
Symbol values: 1 7 7

932 Appendix C Number Systems

C.6 Negative Binary Numbers: Two’s Complement
Notation
The discussion so far in this appendix has focused on positive numbers. In this section, we
explain how computers represent negative numbers using two’s complement notation.
First we explain how the two’s complement of a binary number is formed, then we show
why it represents the negative value of the given binary number.

Consider a machine with 32-bit integers. Suppose

The 32-bit representation of value is

To form the negative of value we first form its one’s complement by applying C’s bitwise
complement operator (~):

Internally, ~value is now value with each of its bits reversed—ones become zeros and ze-
ros become ones, as follows:

To form the two’s complement of value, we simply add 1 to value’s one’s complement.
Thus

Now if this is in fact equal to –13, we should be able to add it to binary 13 and obtain a
result of 0. Let’s try this:

The carry bit coming out of the leftmost column is discarded and we indeed get 0 as a re-
sult. If we add the one’s complement of a number to the number, the result would be all
1s. The key to getting a result of all zeros is that the twos complement is one more than
the one’s complement. The addition of 1 causes each column to add to 0 with a carry of
1. The carry keeps moving leftward until it is discarded from the leftmost bit, and thus the
resulting number is all zeros.

Computers actually perform a subtraction, such as

by adding the two’s complement of value to a, as follows:

int value = 13;

00000000 00000000 00000000 00001101

onesComplementOfValue = ~value;

value:
00000000 00000000 00000000 00001101

~value (i.e., value’s ones complement):
11111111 11111111 11111111 11110010

Two’s complement of value:
11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001101
+11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00000000

x = a - value;

x = a + (~value + 1);

 Summary 933

Suppose a is 27 and value is 13 as before. If the two’s complement of value is actually the
negative of value, then adding the two’s complement of value to a should produce the
result 14. Let’s try this:

which is indeed equal to 14.

a (i.e., 27) 00000000 00000000 00000000 00011011
+(~value + 1) +11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001110

Summary
• An integer such as 19 or 227 or –63 in a program is assumed to be in the decimal (base 10) num-

ber system. The digits in the decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The lowest
digit is 0 and the highest digit is 9—one less than the base of 10.

• Internally, computers use the binary (base 2) number system. The binary number system has
only two digits, namely 0 and 1. Its lowest digit is 0 and its highest digit is 1—one less than the
base of 2.

• The octal number system (base 8) and the hexadecimal number system (base 16) are popular pri-
marily because they make it convenient to abbreviate binary numbers.

• The digits of the octal number system range from 0 to 7.

• The hexadecimal number system poses a problem because it requires 16 digits—a lowest digit of
0 and a highest digit with a value equivalent to decimal 15 (one less than the base of 16). By con-
vention, we use the letters A through F to represent the hexadecimal digits corresponding to dec-
imal values 10 through 15.

• Each number system uses positional notation—each position in which a digit is written has a dif-
ferent positional value.

• A particularly important relationship of both the octal number system and the hexadecimal num-
ber system to the binary system is that the bases of octal and hexadecimal (8 and 16 respectively)
are powers of the base of the binary number system (base 2).

• To convert an octal to a binary number, replace each octal digit with its three-digit binary equiv-
alent.

• To convert a hexadecimal number to a binary number, simply replace each hexadecimal digit
with its four-digit binary equivalent.

• Because we’re accustomed to working in decimal, it is convenient to convert a binary, octal or
hexadecimal number to decimal to get a sense of the number’s “real” worth.

• To convert a number to decimal from another base, multiply the decimal equivalent of each digit
by its positional value and sum the products.

• Computers represent negative numbers using two’s complement notation.

• To form the negative of a value in binary, first form its one’s complement by applying C’s bitwise
complement operator (~). This reverses the bits of the value. To form the two’s complement of
a value, simply add one to the value’s one’s complement.

Terminology
base 925
base 2 number system 925

base 8 number system 925
base 10 number system 925

934 Appendix C Number Systems

base 16 number system 925
binary number system 925
bitwise complement operator (~) 932
conversion 930
decimal number system 925
digit 925
hexadecimal number system 925

negative value 932
octal number system 925
one’s complement notation 932
positional notation 925
positional value 925
symbol value 925
two’s complement notation 932

Self-Review Exercises
C.1 Fill in the blanks in each of the following statements:

a) The bases of the decimal, binary, octal and hexadecimal number systems are ,
, and respectively.

b) The positional value of the rightmost digit of any number in either binary, octal, deci-
mal or hexadecimal is always .

c) The positional value of the digit to the left of the rightmost digit of any number in bi-
nary, octal, decimal or hexadecimal is always equal to .

C.2 State whether each of the following is true or false. If false, explain why.
a) A popular reason for using the decimal number system is that it forms a convenient no-

tation for abbreviating binary numbers simply by substituting one decimal digit per
group of four binary bits.

b) The highest digit in any base is one more than the base.
c) The lowest digit in any base is one less than the base.

C.3 In general, the decimal, octal and hexadecimal representations of a given binary number
contain (more/fewer) digits than the binary number contains.

C.4 The (octal / hexadecimal / decimal) representation of a large binary value is the most concise
(of the given alternatives).

C.5 Fill in the missing values in this chart of positional values for the rightmost four positions
in each of the indicated number systems:

decimal 1000 100 10 1
hexadecimal ... 256
binary
octal 512 ... 8 ...

C.6 Convert binary 110101011000 to octal and to hexadecimal.

C.7 Convert hexadecimal FACE to binary.

C.8 Convert octal 7316 to binary.

C.9 Convert hexadecimal 4FEC to octal. [Hint: First convert 4FEC to binary, then convert that
binary number to octal.]

C.10 Convert binary 1101110 to decimal.

C.11 Convert octal 317 to decimal.

C.12 Convert hexadecimal EFD4 to decimal.

C.13 Convert decimal 177 to binary, to octal and to hexadecimal.

C.14 Show the binary representation of decimal 417. Then show the one’s complement of 417
and the two’s complement of 417.

C.15 What is the result when a number and its two’s complement are added to each other?

 Answers to Self-Review Exercises 935

Answers to Self-Review Exercises
C.1 a) 10, 2, 8, 16. b) 1 (the base raised to the zero power). c) The base of the number system.

C.2 a) False. Hexadecimal does this. b) False. The highest digit in any base is one less than the
base. c) False. The lowest digit in any base is zero.

C.3 Fewer.

C.4 Hexadecimal.

C.5 decimal 1000 100 10 1

hexadecimal 4096 256 16 1

binary 8 4 2 1

octal 512 64 8 1

C.6 Octal 6530; Hexadecimal D58.

C.7 Binary 1111 1010 1100 1110.

C.8 Binary 111 011 001 110.

C.9 Binary 0 100 111 111 101 100; Octal 47754.

C.10 Decimal 2+4+8+32+64=110.

C.11 Decimal 7+1*8+3*64=7+8+192=207.

C.12 Decimal 4+13*16+15*256+14*4096=61396.

C.13 Decimal 177
to binary:

 256 128 64 32 16 8 4 2 1
 128 64 32 16 8 4 2 1
 (1*128)+(0*64)+(1*32)+(1*16)+(0*8)+(0*4)+(0*2)+(1*1)
 10110001

to octal:

 512 64 8 1
 64 8 1
 (2*64)+(6*8)+(1*1)
 261

to hexadecimal:

 256 16 1
 16 1
 (11*16)+(1*1)
 (B*16)+(1*1)
 B1

C.14 Binary:

512 256 128 64 32 16 8 4 2 1
256 128 64 32 16 8 4 2 1
(1*256)+(1*128)+(0*64)+(1*32)+(0*16)+(0*8)+(0*4)+(0*2)+(1*1)
110100001

One’s complement: 001011110
Two’s complement: 001011111
Check: Original binary number + its two’s complement

936 Appendix C Number Systems

110100001
001011111

000000000

C.15 Zero.

Exercises
C.16 Some people argue that many of our calculations would be easier in the base 12 number
system because 12 is divisible by so many more numbers than 10 (for base 10). What is the lowest
digit in base 12? What would be the highest symbol for the digit in base 12? What are the positional
values of the rightmost four positions of any number in the base 12 number system?

C.17 Complete the following chart of positional values for the rightmost four positions in each
of the indicated number systems:

decimal 1000 100 10 1
base 6 6 ...
base 13 ... 169
base 3 27

C.18 Convert binary 100101111010 to octal and to hexadecimal.

C.19 Convert hexadecimal 3A7D to binary.

C.20 Convert hexadecimal 765F to octal. (Hint: First convert 765F to binary, then convert that
binary number to octal.)

C.21 Convert binary 1011110 to decimal.

C.22 Convert octal 426 to decimal.

C.23 Convert hexadecimal FFFF to decimal.

C.24 Convert decimal 299 to binary, to octal and to hexadecimal.

C.25 Show the binary representation of decimal 779. Then show the one’s complement of 779
and the two’s complement of 779.

C.26 Show the two’s complement of integer value –1 on a machine with 32-bit integers.

D
Game Programming: Solving Sudoku

D.1 Introduction
The game of Sudoku exploded in popularity worldwide in 2005. Almost every major newspaper
now publishes a Sudoku puzzle daily. Handheld game players let you play anytime, anywhere and
create puzzles on demand at various levels of difficulty.

A completed Sudoku puzzle is a 9×9 grid (i.e., a two-dimensional array) in which the digits 1
through 9 appear once and only once in each row, each column and each of nine 3×3 grids. In the
partially completed 9×9 grid of Fig. D.1, row 1, column 1, and the 3×3 grid in the upper-left cor-
ner of the board each contain the digits 1 through 9 once and only once. We use C’s two-dimen-
sional array row and column-numbering conventions, but we’re ignoring row 0 and column 0 in
conformance with Sudoku community conventions.

The typical Sudoku puzzle provides many filled-in cells and many blanks, often arranged in a
symmetrical pattern as is typical with crossword puzzles. The player’s task is to fill in the blanks to
complete the puzzle. Some puzzles are easy to solve; some are quite difficult, requiring sophisti-
cated solution strategies.

We’ll discuss various simple solution strategies, and suggest what to do when these fail. We’ll
also present approaches for programming Sudoku puzzle creators and solvers in C. Unfortunately,
Standard C does not include graphics and GUI (graphical user interface) capabilities, so our repre-

Fig. D.1 | Partially completed 9×9 Sudoku grid. Note the nine 3×3 grids.

1 5 6 7 8 9432

1

5

6

7

8

9

4

3

2

5 9 7 6 2 8431

4 86

7 29

2

9

3

8

1

6

938 Appendix D Game Programming: Solving Sudoku

sentation of the board won’t be as elegant as we could make it in Java and other programming lan-
guages that support these capabilities. You may want to revisit your Sudoku programs after you read
Appendix E, Game Programming with the Allegro C Library. Allegro, which is not part of Standard
C, offers capabilities that will help you add graphics and even sounds to your Sudoku programs.

D.2 Deitel Sudoku Resource Center
Check out our Sudoku Resource Center at www.deitel.com/sudoku. It contains downloads, tuto-
rials, books, e-books and more that will help you master the game. Trace the history of Sudoku
from its origin in the eighth century through modern times. Download free Sudoku puzzles at var-
ious levels of difficulty, enter daily game contests to win Sudoku books, and get a daily Sudoku
puzzle to post on your web site. Get great beginner’s resources—learn the rules of Sudoku, receive
hints on solving sample puzzles, learn the best solution strategies and get free Sudoku solvers—just
type in the puzzle from your newspaper or favorite Sudoku site and get an immediate solution;
some Sudoku solvers even provide detailed step-by-step explanations. Get mobile device Sudoku
games that can be installed on cell phones, Palm® devices, Game Boy® players and Java-enabled
devices. Some Sudoku sites have timers, signal when an incorrect number is placed and provide
hints. Purchase T-shirts and coffee mugs with Sudoku puzzles on them, participate in Sudoku
player forums, get blank Sudoku worksheets that can be printed and check out hand-held Sudoku
game players—one offers a million puzzles at five levels of difficulty. Download free Sudoku puzzle
maker software. And not for the faint of heart—try fiendishly difficult Sudokus with tricky twists,
a circular Sudoku and a variant of the puzzle with five interlocking grids. Subscribe to our free
newsletter, the Deitel® Buzz Online, for notifications of updates to our Sudoku Resource Center
and to other Deitel Resource Centers at www.deitel.com that provide games, puzzles and other
interesting programming projects.

D.3 Solution Strategies
When we refer to a Sudoku 9×9 grid, we’ll call it array s. By looking at all the filled-in cells in the
row, column and 3×3 grid that includes a particular empty cell, the value for that cell might
become obvious. Trivially, cell s[1][7] in Fig. D.2 must be 6.

Fig. D.2 | Determining the value of a cell by checking all filled-in cells in the same row.

1 5 6 7 8 9432

1

5

6

7

8

9

4

3

2

2 8 7 _ 5 4139

www.deitel.com/sudoku
www.deitel.com
www.deitel.com/sudoku
www.deitel.com

D.3 Solution Strategies 939

Less trivially, to determine the value of s[1][7] in Fig. D.3, you have to pick up hints from
row 1 (i.e., the digits 3, 6 and 9 are taken), column 7 (i.e., the digits 4, 7 and 1 are taken) and the
upper-right 3×3 grid (i.e., the digits 9, 8, 4 and 2 are taken). Here the empty cell s[1][7] must be
5—the only number not already mentioned in row 1, column 7 or the upper-right 3×3 grid.

Singletons
The strategies we’ve discussed so far can easily determine the final digits for some open cells, but
you’ll often have to dig deeper. Column 6 of Fig. D.4 shows cells with already determined values
(e.g., s[1][6] is a 9, s[3][6] is a 6, etc.), and cells indicating the set of values (which we call “pos-
sibles”) that at this point are still possible for that cell.

Cell s[6][6] contains 257, indicating that only the values 2, 5 or 7 can eventually be assigned
to this cell. The other two open cells in column 6—s[2][6] and s[5][6]—are both 27, indicating
that only the values 2 or 7 can eventually be assigned to these cells. Thus s[6][6], the only cell in
column 6 that lists 5 as a remaining possible value, must be 5. We call that value 5 a singleton. So
we can commit cell s[6][6] to a 5 (Fig. D.5), somewhat simplifying the puzzle.

Doubles
Consider the upper-right 3×3 grid in Fig. D.6. The dashed cells could already be committed or
could have lists of possible values. Notice the doubles—the two cells s[1][9] and s[2][7] contain-
ing only the two possibilities 15. If s[1][9] ultimately becomes 1, then s[2][7] must be 5; if
s[1][9] ultimately becomes 5, then s[2][7] must be 1. So between them, those two cells will defi-
nitely “use up” the 1 and the 5. Thus 1 and 5 can be eliminated from cell s[3][9] that contains the
possible values 1357, so we can rewrite its contents as 37, simplifying the puzzle a bit. If cell
s[3][9] had originally contained only 135, then eliminating the 1 and the 5 would enable us to
force the cell to the value 3.

Doubles can be more subtle. For example, suppose two cells of a row, column or 3×3 grid
have possibles lists of 2467 and 257 and that no other cell in that row, column or 3×3 grid men-
tions 2 or 7 as a possible value. Then, 27 is a hidden double—one of those two cells must be 2 and
the other must be 7, so all digits other than 2 and 7 can be removed from the possibles lists of those

Fig. D.3 | Determining the value of a cell by checking all filled-in cells in the same row,
column and 3×3 grid.

1 5 6 7 8 9432

1

5

6

7

8

9

4

3

2

5 9 7 6 2 8431

4 86

7 29

2

9

3

8

1

6

1 5 6 7 8 9432

1

5

6

7

8

9

4

3

2

 6 _ 93

 8

 4 2

 7

 1

940 Appendix D Game Programming: Solving Sudoku

two cells (i.e., 2467 becomes 27 and 257 becomes 27—creating a pair of doubles—thus somewhat
simplifying the puzzle).

Fig. D.4 | Notation showing the complete sets of possible values for open cells.

Fig. D.5 | Committing cell s[6][6] to the singleton value 5.

1 5 6 7 8 9432

1

5

6

7

8

9

4

3

2
2

7

2

7

2
5

7

9

6

8

3

1

4

1 5 6 7 8 9432

1

5

6

7

8

9

4

3

2
2

7

2

7

9

6

8

3

1

4

5

D.3 Solution Strategies 941

Triples
Consider column 5 of Fig. D.7. The dashed cells could already be committed or could have lists of
possible values. Notice the triples—the three cells containing the exact same three possibilities 467,
namely cells s[1][5], s[6][5] and s[9][5]. If one of those three cells ultimately becomes 4, then

Fig. D.6 | Using doubles to simplify a puzzle.

Fig. D.7 | Using triples to simplify a puzzle.

1 5 6 7 8 9432

1

5

6

7

8

9

4

3

2
1
5

1
5

1 3
5

7

_ _

_ _

_ _

1 5 6 7 8 9432

1

5

6

7

8

9

4

3

2

4 6
7

1
4 5 6
7

4 6
7

4 6
7

_

_

_

_

_

942 Appendix D Game Programming: Solving Sudoku

the others reduce to doubles of 67; if one of those three cells ultimately becomes 6, then the others
reduce to doubles of 47; and if one of those three cells ultimately becomes 7, then the others reduce
to doubles of 46. Among the three cells containing 467, one must ultimately be 4, one must be 6,
and one must be 7. Thus the 4, 6 and 7 can be eliminated from cell s[4][5] that contains the pos-
sibles 14567, so we can rewrite its contents as 15, simplifying the puzzle a bit. If cell s[4][5] had
originally contained 1467, then eliminating the 4, 6 and 7 would enable us to force the value 1 in
that cell.

Triples can be more subtle. Suppose a row, column or 3×3 grid contains cells with possibles
lists of 467, 46, and 67. Clearly one of those cells must be 4, one must be 6 and one must be 7.
Thus 4, 6 and 7 can be removed from all the other possibles lists in that row, column or 3×3 grid.

Triples can also be hidden. Suppose that a row, column or 3×3 grid contains the possibles lists
5789, 259 and 13789, and that no other cell in that row, column or 3×3 grid mentions 5, 7 or 9.
Then one of those cells must be 5, one must be 7 and one must be 9. We call 579 a hidden triple
and all possibles other than 5, 7 and 9 can be deleted from those three cells (i.e., 5789 becomes
579, 259 becomes 59 and 13789 becomes 79), thus somewhat simplifying the puzzle.

Other Sudoku Solution Strategies
There are a number of other Sudoku solution strategies. Here are two of the many sites we recom-
mend in our Sudoku Resource Center (www.deitel.com/sudoku) that will help you dig deeper:

D.4 Programming Sudoku Puzzle Solvers
In this section we suggest how to program Sudoku solvers. We use a variety of approaches. Some
may seem unintelligent, but if they can solve Sudokus faster than any human on the planet, then
perhaps they are in some sense intelligent.

If you’ve done our Knight’s Tour exercises (Exercises 6.24, 6.25 and 6.29) and Eight Queens
exercises (Exercises 6.26 and 6.27), you’ve implemented various brute force and heuristic problem-
solving approaches. In the next several sections, we suggest brute force and heuristic Sudoku-solv-
ing strategies. You should try programming them, as well as creating and programming your own.
Our goal is simply to acquaint you with Sudoku, and some of its challenges and problem-solving
strategies. Along the way, you’ll become more facile with manipulating two-dimensional arrays and
with nested iteration structures. We have made no attempt to produce optimal strategies, so once
you analyze our strategies, you’ll want to consider how you can improve upon them.

Programming a Solution for “Easy” Sudokus
The strategies we’ve shown—eliminating possibilities based on values already committed in a cell’s
row, column and 3×3 grid; and simplifying a puzzle using singletons, doubles (and hidden dou-
bles) and triples (and hidden triples)—are sometimes sufficient to solve a puzzle. You can program
the strategies then iterate on them until all 81 squares are filled. To confirm that the filled puzzle is
a valid Sudoku, you can write a function to check that each row, column and 3×3 grid contains the
digits 1 through 9 once and only once. Your program should apply the strategies in order. Each of
them either forces a digit in a cell or simplifies the puzzle a bit. When any one of the strategies
works, return to the beginning of your loop and reapply the strategies in order. When a strategy
doesn’t work, try the next. For “easy” Sudokus, these techniques should generate a solution.

Programming a Solution for Harder Sudokus
For harder Sudokus, your program will eventually reach a point where it still has uncommitted
cells with possibles lists, and none of the simple strategies we’ve discussed will work. If this hap-

www.sudokuoftheday.com/pages/techniques-overview.php
www.angusj.com/sudoku/hints.php

www.deitel.com/sudoku
hapwww.sudokuoftheday.com/pages/techniques-overview.php
www.angusj.com/sudoku/hints.php

D.5 Generating New Sudoku Puzzles 943

pens, first save the state of the board, then generate the next move by randomly choosing one of the
possible values in any of the remaining cells. Then reevaluate the board, enumerating the remain-
ing possibilities for each cell. Then try the basic strategies again, looping through them repeatedly,
until either the Sudoku is solved, or the strategies once again no longer improve the board, at
which point you can again try another move at random. If you reach a point where there are still
empty cells, but no possible digits for at least one of those cells, the program should abandon that
attempt, restore the board state that you saved, and begin the random approach again. Keep loop-
ing until a solution is found.

D.5 Generating New Sudoku Puzzles
First, let’s consider approaches for generating valid finished 9×9 Sudokus with all 81 squares filled
in. Then, we’ll suggest how to empty some cells to create puzzles that people can attempt.

Brute Force Approaches
When personal computers appeared in the late 1970s, they processed tens of thousands of instruc-
tions per second. Today’s desktop computers commonly process billions of instructions per second
and the world’s fastest supercomputers can process trillions of instructions per second! Brute force
approaches that might have required months of computing in the 1970s can now produce solu-
tions in seconds! This encourages people who need results quickly to program simple brute force
approaches and get solutions sooner than by taking the time to develop more sophisticated “intelli-
gent” problem solving strategies. Although our brute force approaches may seem ponderous, they
will mechanically grind out solutions.

For these approaches you’ll need some utility functions. Create the function

which receives a Sudoku board as a two-dimensional array of integers (recall that we’re ignoring
row 0 and column 0). This function should return 1 if a completed board is valid, 2 if a partially
completed board is valid and 0 otherwise.

An Exhaustive Brute Force Approach
One brute force approach is simply to select all possible placements of the digits 1 through 9 in
every cell. This could be done with 81 nested for statements that each loop from 1 through 9. The
number of possibilities (981) is so vast that you might say it’s not worth trying. But this approach
does have the advantage that it will eventually stumble onto every possible solution, some of which
could show up fortuitously early on.

A slightly more intelligent version of this exhaustive brute-force approach would be to check
each digit you’re about to place to see if it leaves the board in a valid state. If it does, then move on
to placing a digit in the next cell. If the digit you’re attempting to place leaves the board in an
invalid state, then try all other eight digits on that cell in order. If one of them works, then move on
to the next cell. If none of them works, then move back up to the previous cell and try its next
value. Nested for statements can handle this automatically.

Brute Force Approach with Randomly Selected Row Permutations
Every row, column, and 3×3 grid on a valid Sudoku contains a permutation of the digits 1 through
9. There are 9! (i.e., 9·8·7·6·5·4·3·2·1 = 362,880) such permutations. Write a function

that receives a 10×10 two-dimensional array and in the 9×9 portion of it that corresponds to a
Sudoku grid fills each of the nine rows with a randomly selected permutation of the digits 1
through 9.

int validSudoku(int sudokuBoard[10][10]);

void permutations(int sudokuBoard[10][10]);

944 Appendix D Game Programming: Solving Sudoku

Here’s one way to generate a random permutation of the digits 1 through 9—for the first
digit, simply choose a random digit from 1 through 9; for the second digit, use a loop to repeatedly
generate a random digit from 1 through 9 until a digit different from the first digit is selected; for
the third digit, use a loop to repeatedly generate a random digit from 1 through 9 until a digit dif-
ferent from the first two digits is selected; and so on.

After placing nine randomly selected permutations into the nine rows of your Sudoku array,
run function validSudoku on the array. If it returns 1, you’re done. If it returns 0, simply loop
again, generating another nine randomly selected permutations of the digits 1 through 9 into the
nine successive rows of the array Sudoku. The simple process will generate valid Sudokus. By the
way, this approach guarantees that all the rows are valid permutations of the digits 1 through 9, so
you should add an option to your function validSudoku that will have it check only columns and
3×3 grids.

Heuristic Solution Strategies
When we studied the Knight’s Tour in Exercises 6.24, 6.25 and 6.29, we developed a “keep your
options open” heuristic. To review, a heuristic is a guideline. It “sounds good” and seems like a rea-
sonable rule to follow. It’s programmable, so it gives us a way to direct a computer to attempt to
solve a problem. But heuristic approaches don’t necessarily guarantee success. For complex prob-
lems like solving a Sudoku puzzle, the number of possible placements of the digits 1–9 is enor-
mous, so the hope in using a reasonable heuristic is that it will avoid wasting time on fruitless
possibilities and instead focus on solution attempts much more likely to yield success.

A “Keep Your Options Open” Sudoku-Solving Heuristic
Let’s develop a “keep your options open” heuristic for solving Sudokus. At any point in solving a
Sudoku, we can categorize the board by listing in each empty cell the digits from 1 to 9 which are
still open possibilities for that cell. For example, if a cell contains 3578, then the cell must eventu-
ally become 3, 5, 7 or 8. When attempting to solve a Sudoku, we reach a dead end when the num-
ber of possible digits that can be placed in an empty cell becomes zero. So, consider the following
strategy:

1. Associate with every empty square a possibles list of the digits that can still be placed in
that square.

2. Characterize the state of the board by simply counting the number of possible placements
for the entire board.

3. For each possible placement for each empty cell, associate with that placement the count
that would characterize the state of the board after that placement.

4. Then, place the particular digit in the particular empty square (of all those that remain)
that leaves the board count the highest (in case of a tie, pick one at random). This is a key
to "keeping your options open."

Lookahead Heuristic
This is simply an embellishment of our “keep your options open” heuristic. In case of a tie, look
ahead one more placement. Place the particular digit in the particular square whose subsequent
placement leaves the board count the highest after two moves out.

Forming Sudoku Puzzles with Empty Cells
Once you get your Sudoku generator program running, you should be able to generate lots of valid
Sudokus quickly. To form a puzzle, save the solved grid, then empty some cells. One way to do this
is to empty randomly chosen cells. A general observation is that Sudokus tend to become more dif-
ficult as the empty cells increase (there are exceptions to this).

D.6 Conclusion 945

Another approach is to empty the cells in a manner that leaves the resulting board symmetric.
This can be done programmatically by randomly picking a cell to empty, then emptying its
“reflecting cell.” For example, if you empty the top-left cell s[1][1], you might empty the bottom-
left cell s[9][1] as well. Such reflections are calculated by presenting the column, but determining
the row by subtracting the initial row from 10. You could also do the reflections by subtracting
both the row and column of the cell you’re emptying from 10. Hence, the reflecting cell to s[1][1]
would be s[10-1][10-1] or s[9][9].

A Programming Challenge
Published Sudoku puzzles typically have exactly one solution, but it’s still satisfying to solve any
Sudoku, even ones that have multiple solutions. Develop a means of demonstrating that a particu-
lar Sudoku puzzle has exactly one solution.

D.6 Conclusion
This appendix on solving and programming Sudoku puzzles has presented you with many chal-
lenges. Be sure to check out our Sudoku Resource Center (www.deitel.com/sudoku/) for numerous
web resources that will help you master Sudoku and develop various approaches for writing pro-
grams to create and solve existing Sudoku puzzles.

www.deitel.com/sudoku/

Appendices on the Web

The following appendices are available as PDF documents from this book’s Companion
Website (www.pearsonhighered.com/deitel/):

• Appendix E, Game Programming with the Allegro C Library

• Appendix F, Sorting: A Deeper Look

• Appendix G, Introduction to C99

• Appendix H, Using the Visual Studio Debugger

• Appendix I, Using the GNU Debugger

These files can be viewed in Adobe® Reader® (get.adobe.com/reader). The index entries
for these appendices have uppercase Roman numeral page numbers.

New copies of this book come with a Companion Website access code that is located
on the card inside the book’s front cover. If the access code is already visible or there is no
card, you purchased a used book or an edition that does not come with an access code. In
this case, you can purchase access directly from the Companion Website.

www.pearsonhighered.com/deitel/

Symbols
\t horizontal-tab escape sequence 26
^ bitwise exclusive OR operator 373, 395
^= bitwise exclusive OR assignment

operator 402
__func__ predefined identifier XCVIII
__VA_ARGS__ XCV
_Pragma operator XCV
:: (binary scope resolution operator)

586, 660
::, unary scope resolution operator 544
!= inequality operator 38, 39, 676
? 60
?: conditional operator 60, 80, 173
. dot operator 386
. structure member operator 386
.h filename extension 580
" 368
"w" file open mode 422
* assignment suppression character 374
* multiplication operator 34, 72
*= multiplication assignment operator 80
/ division operator 72
// single-line comment 25, 530, LXXX
/= division assignment operator 80
\\ backslash-character escape sequence

26
\? escape sequence 369
\' single-quote-character escape sequence

369
\" double-quote-character escape

sequence 369
\\ backslash-character escape sequence

369
\0 null character escape sequence 207
\a alert escape sequence 26, 369
\b escape sequence 369
\f escape sequence 312
\f form-feed escape sequence 369
\n escape sequence 312
\n newline escape sequence 26, 369
\r carriage-return escape sequence 369
\r escape sequence 312
\t escape sequence 312
\t horizontal-tab escape sequence 369
\v escape sequence 312, 369
& address operator 31
& and * pointer operators 256
& bitwise AND operator 395
& to declare reference 538

in a parameter list 540
&& operator 116, 119, 173
&=bitwise AND assignment operator 402
flag 367
preprocessor operator 25, 500
preprocessor operator 500

#define 496
#elif 499
#endif 499
#error 500
#error 500
#if 499
#pragma 500
#undef 501
% character in a conversion specifier 72,

357, 362
% remainder operator 34, 34, 153
%% conversion specifier 363
%= remainder assignment operator 80
%c conversion specifier 150, 361, 372
%d conversion specifier 150
%E conversion specifier 360, 371
%e conversion specifier 360, 371
%f conversion specifier 72, 150
%g conversion specifier 371
%hd conversion specifier 150
%hu conversion specifier 150
%i conversion specifier 371
%ld conversion specifier 150
%Lf conversion specifier 150
%lf conversion specifier 150
%lu conversion specifier 150
%n conversion specifier 362
%p conversion specifier 256, 362
%s conversion specifier 283, 361, 372
%u conversion specifier 150, 359
%X conversion specifier 370
+ flag 367
+ flag 366
- minus operator 80
+ unary plus operator 80
-- operator 78, 80, 274
++ operator 78, 79, 80, 274
+= addition assignment operator 77, 80,

676
< less than operator 38
< redirect input symbol 508
<< left-shift operator 395
<< stream insertion operator 532
<<= left-shift assignment operator 402
<= less-than-or-equal-to operator 38
= assignment operator 80
-= subtraction assignment operator 80
== equality operator 38, 120, 676
> greater than operator 38
> redirect output symbol 509
-> structure pointer operator 386
>= greater-than-or-equal-to operator 38
>> append output symbol 509
>> right-shift operator 395
>>= right shift assignment operator 402
| bitwise inclusive OR operator 395
| pipe 508

|= bitwise inclusive OR assignment
operator 402

|| 174
~ bitwise one’s complement 395
~, bitwise complement operator 400

Numerics
0 Conversion specifier 30, 31, 370, 371
0X 868
0x 367, 868

A
a file open mode 425
a.out 14
a+ file open mode 425
ab binary file open mode 516
ab file open mode 425
ab+ binary file open mode 516
ab+ file open mode 425
abnormal program termination 518
abort a program 911
abort function 502, 502, 621, 901, 906
absolute-value 143
abstract base class 780, 799, 800
Abstract Base Classes 830
abstract class 799, 800, 801, 819
abstract data type (ADT) 664
abstraction 144
access function 612
access global variable 544
access non-static class data members

and member functions 663
access private member of a class 572
access privileges 33, 262
access specifier 564, 571, 652

private 571
protected 603
public 564, 571

access-specifier label
private: 571
public: 564

access the caller’s data 537
access violation 33, 312, 361
accessibility heuristic 249
accessor 574
accounts receivable 135
accumulated outputs 531
accumulator 302, 304, 306
action 26, 27, 38, 56, 63, 664
action oriented 552
action statement 56
action symbol 57
action/decision model 27, 59
actions 38, 55
actions (computers perform) 2

Index

948 Index

activation record 151
active window CVIII
Ada Lovelace 10
Ada programming language 10
add an integer to a pointer 273
add instruction 304
addition 4
addition assignment operator (+=) 77
addition program that displays the sum of

two numbers 530
address 463
address of a bit field 406
address operator (&) 31, 152, 208, 255,

258, 268, 674
adjust_sample XVII
“administrative” section of the computer

4
ADT (abstract data type) 664
Advanced string manipulation exercises

350, 351, 352, 354
aggregate data types 265
aggregates 383
aggregation 609
aiming a derived-class pointer at a base-

class object 790
Air Traffic Control Project 671
airline reservation system 246
alert (\a) 26
algebra 34
algorithm 55, 66

insertion sort LXIV
merge sort LXVII
selection sort LX

<algorithm> header file 534
alias 540

for a variable (reference) 540
for the name of an object 624

aligning 357
Allegro 2, II, V, VI
allegro_init III, IV
allegro_message IV
allegro.h III, IV
allegro-config program III
allocate 682
allocate dynamic memory 534, 907
allocate memory 682
ALU 4
American National Standards Committee

on Computers and Information
Processing 8

American National Standards Institute
(ANSI) 2, 8

ampersand (&) 31, 33
Analytical Engine 10
analyze a requirements document 553
AND 394
angle brackets (< and >)

in templates 549
angle brackets (< and >) in templates 834
animating bitmaps IX
Animation in Allegro IX
Another dangling else problem 93
ANSI 2
ANSI C 261
ANSI C standard document 15
append output symbol >> 509
Apple Computer, Inc. 5
area of a circle 95
argc 511

argument 26, 498
argument (of a function) 142, 157
argument to a function 566
arguments 497
arguments passed to member-object

constructors 645
argv 511
arithmetic 14
arithmetic and logic unit (ALU) 4
arithmetic assignment operators 77

+=, -=, *=, /=, and %= 77
arithmetic expressions 273
arithmetic mean 36
arithmetic operations 303
arithmetic operators 34
arithmetic overflow 665, 897
arithmetic overflow error 910
arithmetic underflow error 911
“arity” of an operator 675
array 196, 684
array bounds checking 205
Array class 685
Array class definition with overloaded

operators 685, 709
Array class member-function and

friend function definitions 686
Array class test program 688
array initializer list 200
Array name is the same as the address of

the array’s first element 213
array notation 278
array of pointers 280, 289

to functions 301
array of pointers to functions 289
array of strings 280
array subscript notation 207, 267, 279
array subscript operator ([]) 692
Arrays 196
array-sort function 833
arrow member selection operator (->)

610
arrow operator (->) 386, 655
ASCII 330
ASCII (American Standard Code for

Information Interchange) 110, 330,
858

ASCII character set 110
assembler 6
assembly language 6
assert macro 502, 502
<assert.h> 152, 502
assigning addresses of base-class and

derived-class objects to base-class and
derived-class pointers 787

assigning character strings to String
objects 698

assigning class objects 627
Assigning elements of an array in C89

LXXXIV
assignment expressions 273
assignment operator

= 627
assignment operator (=) 39, 673, 674
assignment operator functions 694
assignment operators

=, +=, -=, *=, /=, and %= 77
assignment statement 31
assignment suppression character * 374
associate from right-to-left 41, 72

association (in the UML) 552
associativity 35, 41, 80, 197, 256, 402
associativity not changed by overloading

675
asterisk (*) 34
asynchronous event 897
at member function of string 707
AT&T 11
atexit function 514, 514
atof function 318
atoi function 318
atol function 319
attribute 552, 569

in the UML 551, 565
audible (bell) 369
auto 161
auto_ptr class 907, 907, 908
auto_ptr object goes out of scope 907
auto_ptr object manages dynamically

allocated memory 908
auto_ptr overloaded * operator 908
auto_ptr overloaded -> operator 908
automatic array 200
automatic local object 621
automatic local variable 541
automatic object 903
automatic storage 162, 196
automatic storage duration 162, 210
automatic variable 162, 162, 163
Autos window CXIV

displaying state of objects CXV
Autos window displaying the state of

localTime CXV
Autos window displaying the state of

localTime CXV
average 36
avoid repeating code 618

B
B 7
Babbage, Charles 10
backslash (\) 26, 369
backslash (\) 498
bad member function 878
bad_alloc exception 904, 905, 910
bad_cast exception 910
bad_exception exception 910
bad_typeid exception 910
badbit of stream 858, 878
bank account program 438
bar chart 135, 205
base 925
base 10 number system 320, 868
base 16 number system 320, 868
base 8 number system 320, 868
base case(s) 167
base class 728, 729, 731
base-class catch 910
base-class constructor 763
base-class exception 909
base-class initializer syntax 746
base-class member accessibility in derived

class 771
base-class pointer to a derived-class object

826
base-class private member 732
base specified for a stream 872

Index 949

base-class member function redefined in a
derived class 761

BASIC (Beginner’s All-Purpose Symbolic
Instruction Code) 10

basic_fstream template 856
basic_ifstream template 856
basic_ios template 855
basic_iostream class 856
basic_iostream template 855
basic_istream template 854
basic_ofstream template 856
basic_ostream class 856
BCPL 7
Beginner’s All-Purpose Symbolic

Instruction Code (BASIC) 10
behavior of an object 552
behaviors in the UML 551
bell 26
Bell Laboratories 7, 9
Big O notation LIX, LXIII
binary 312
binary (base 2) number system 925
binary arithmetic operators 72
binary digits 418
binary file 516
binary file modes 516
binary number 137
binary operator 31, 34
binary scope resolution operator (::)

586, 660
binary search 175, 189, 223, 225, 226,

251
binary search tree 479, 482, 483, 492
binary-to-decimal conversion problem 94
binary tree 455, 478
binary tree delete 492
binary tree insert 176
binary tree sort 482
bit 418
bit field 403, 404
bit field member name 403
bit manipulation 406
bitmap IV, V, VI
BITMAP type IV, VIII
<bitset> header file 533
bitwise AND (&) operator 394, 399, 414
bitwise AND, bitwise inclusive OR,

bitwise exclusive OR and bitwise
complement operators 397

bitwise assignment operators 402
bitwise complement operator (~) 397,

400, 932
bitwise data manipulations 394
bitwise exclusive OR (^) operator 394,

400
bitwise inclusive OR (|) operator 394,

399
bitwise left-shift operator (<<) 673
bitwise operators 394
bitwise right-shift operator (<CDT>> 673
bitwise shift operators 400
blank 58
blank insertion 51
blank line 531
blit VII
Blitting IV
block 25, 62, 146, 569
block of data 337

block scope 164
variable 609

body 25, 41
body mass index (BMI) 22

calculator 22
Body Mass Index Calculator (Test Drive)

22
body of a class definition 563
body of a function 25
body of a while 63
Bohm, C. 56
“bombing” 68
Booch, Grady 553, 554
_Bool LXXXVII
bool primitive type (C++) 536
boolalpha stream manipulator 874
boolean type LXXXVII
bounds checking 205
braces ({}) 62
branching instructions 306
break 112, 114, 116, 138
break debugger command CXXI
break mode CVII, CXXI
breakpoint CV, CXIX

inserting CXXI, CXXIV
yellow arrow in break mode CVIII

breakpoints
inserting CVII, CX
red circle CVII

brittle software 755
brute force problem solving approach

942, 943
bubble sort 216, 243, 267, 269, 270, 285,

LXXVI
bubble sort 218
bubble sort with call by reference 267,

268
Bucket Sort LXXV
bucket sort LXXV, LXXVI
buffer XIII
buffer is filled 856
buffer is flushed 856
buffered output 856
buffered standard error stream 854
buffering 879
bug CV
building block approach 8
building-block approach 532
“building blocks” 552
business-critical computing 896
business software 10
byte 394, 418

C
C 7, 15
C compiler 24
C development environment 13
C Environment 12
C language 7
C preprocessor 12, 25, 496
C program and sample execution for the

class average problem with counter-
controlled repetition 65

C program and sample execution for the
class average problem with sentinel-
controlled repetition 69

C program and sample executions for
examination results problem 75

C programming language 7
C Resource Center 12
C standard document (INCITS/ISO/IEC

9899-1999) 8
C Standard Library 8, 12, 141, 153
C standard library 263
C Standard Library documentation 8
C# programming language 10
C++ xxviii, 7
C++ 148
C++ Boost Libraries xxviii
C++ Game Programming xxviii
C++ keywords 537
C++ programming language 11
C++ Resource Center 9
C++ Standard Library 532

<string> header file 567
header file location 583
header files 533
string class 567

C1X 2
C95 LXXX
C95 headers LXXX
C99 2, LXXIX
C99 headers LXXX
calculations 5, 31, 42
call a function 142, 566
call-by-reference 152, 254, 257, 259,

262, 265, 267, 388
call-by-value 152, 257, 260, 262, 265,

388
called 145
called function 141, 142
caller 142
calling function 142
calling function (caller) 564, 573
calloc 521
camel case 563
capital letter 29
carbon footprint calculator 22
Carbon Footprint Calculator (Test Drive)

22
CarbonFootprint Abstract Class:

Polymorphism 831
Card dealing program 283
card games 296
Card Shuffling and Dealing 670
card shuffling and dealing simulation

280, 283, 389
caret (^) 373
carriage return (’\r’) 312
carry bit 932
cascading member function calls 655,

656, 658
cascading stream insertion operations 532
case label 111, 112, 164
case sensitive 29, 66
case study: Date class 700
casino 158
<cassert> header file 534
cast 499

downcast 792, 798
cast operator 69, 71, 150, 696, 708

(float) 71
cast operator function 697
catch a base class object 910
catch all exceptions 911
catch clause (or handler) 897, 903
catch handler 894

950 Index

catch keyword 895
catch related errors 904
catch(...) 911
Catching All Exceptions 917
Catching Derived-Class Exceptions 917
cc compilation command 14
<cctype> header file 534
ceil function 143
Celsius 381
central processing unit (CPU) 4
cerr (standard error unbuffered) 854,

855
<cfloat> header file 534
chaining stream insertion operations 532
char 109
char 150, 311
char * 361
char ** 319
char primitive type 109
CHAR_BIT symbolic constant 397
character 418
character array 207, 208
character constant 264, 310, 361
character handling library 312
character handling library functions 312
character presentation 534
character set 51, 110, 310, 331, 418
character string 26, 198
check if a string is a palindrome 175
check protection 352
checkerboard 51, 95
chess 247
child 478
cin (standard input stream) 531, 531,

854, 855
cin.clear 878
cin.eof 858, 877
cin.get function 860
cin.tie function 879
Circle class that inherits from class

Point 786
circumference of a circle 95
clarity 2, 531
class 11, 532, 551, 552

attribute 569
client-code programmer 588
constructor 576
data member 562, 569
default constructor 576, 578
define a constructor 578
define a member function 562
definition 563
implementation programmer 588
instance of 570
interface 583, 584
interface described by function

prototypes 584
member function 562
member-function implementations

in a separate source-code file 586
naming convention 563
object of 570
public services 584
services 574

class Array 685
class averaging problem 64, 69
class Complex 720
class definition 563
class development 685

class diagram (UML) 565
class hierarchy 728, 800, 826
class HugeInt 722
class-implementation programmer 588
class keyword 549, 563, 834
class libraries 12
class library 611, 772
class Polynomial 726
class RationalNumber 725
class scope 606, 609
class-scope variable is hidden 609
class template 833, 837

auto_ptr 907
definition 838
explicit specialization 845
scope 840
specialization 833, 838
Stack 838, 840

Classes
auto_ptr 907
exception 892
invalid_argument 910
runtime_error 892, 903
string 567
vector 705

classic stream libraries 853
clear function of ios_base 878
clear_bitmap IV
clear_to_color IV
client 712, 713
client code 781
client-code programmer 588
client computer 5
client of a class 552
client of an object 574
client/server computing 5
<climits> header file 534
clock 157
clog (standard error buffered) 854, 855
<cmath> header file 533
COBOL (COmmon Business Oriented

Language) 10
Code Search Engines and Code Sites

xxviii
coefficient 726
coercion of arguments 149
coin tossing 189
colon (:) 649
color depth VI
column 229
combining Class Time and Class Date

exercise 634
comma operator (,) 102, 105, 173, 674
comma-separated list 102
command-and-control software system

10
command-line arguments 511, 512
comment 25, 530, 531
commission 243
commission problem 90
CommissionEmployee class header file

811
CommissionEmployee class

implementation file 812
CommissionEmployee class represents

an employee paid a percentage of gross
sales 734

CommissionEmployee class test
program 737

CommissionEmployee class uses
member functions to manipulate its
private data 757

CommissionEmployee class with
protected data 749

Common Programming Errors overview
xxv

Communications of the ACM 56
commutative 677
commutative operation 678
comparing strings 326
comparing unions 392
comparison expressions 273
compilation 12
compilation error 119
compile 12
compile error 30
compile phase 12
compile-time error 30
compiler 7, 12, 16, 24, 25, 27
compiling multiple-source-file program

589
complement operator (~) 394
complete algorithm 57
_Complex XC
complex XC
Complex class 633, 720, 888

exercise 633
member-function definitions 721

complex number LXXXIX
complex numbers 633, 720
complex.h XC
components (software) 9
composition 609, 645, 729, 732
Composition as an Alternative to

Inheritance 775
compound interest 105, 135
compound literal LXXXV
compound statement 62
computation 3
computer 3
computer-assisted instruction (CAI) 193,

194
computer-assisted instruction (CAI):

Monitoring Student Performance 194
computer-assisted instruction (CAI):

Varying the Types of Problems 194
computer-assisted instruction

(CAI):Difficulty Levels 194
computer-assisted instruction

(CAI):Reducing Student Fatigue 194
computer dump 306
computer network 5
computer networking 5
computer program 4
computer programmer 4
computer simulator 304
Computerization of Health Records 416,

600
computers in education 193
computing the sum of the elements of an

array 202
concatenate stream insertion operations

532
concatenating strings 326
concrete class 799
concrete derived class 803
condition 38, 116
conditional compilation 496, 499

Index 951

conditional execution of preprocessor
directives 496

conditional expression 60, 61, 605, 896
conditional operator (?:) 60, 80
connector symbols 57
conserve storage 403
consistent state 591, 604, 616
const 515
const 261, 262, 266, 269, 279, 280,

637, 681
const keyword 215, 535
const member function 636
const member function on a const

object 640
const member function on a non-const

object 640
const object 636, 640
const objects and const member

functions 640
const pointer 684
const qualifier 261
const qualifier before type specifier in

parameter declaration 540
const type qualifier 215
const version of operator[] 696
constant 489
constant integral expression 112
constant pointer 266, 267, 275, 654
constant pointer to constant data 262,

267
constant pointer to non-constant data

262, 266
constant reference 695
constant reference parameter 539
constant run time LIX
constant string 279
constructed inside out 650
constructor 576

conversion 696, 697, 709
copy 693
default 578
default arguments 618
defining 578
explicit 709
function prototype 585
in a UML class diagram 579
naming 578
parameter list 578
single argument 696, 697, 708, 709,

710
constructor called recursively 693
constructors and destructors called

automatically 621
constructors cannot be virtual 826
constructors cannot specify a return type

576
Constructors Throwing Exceptions 918
container 533
container class 612, 651, 692, 844
continue 114, 116, 138
Continue command (debugger) CVIII
continue debugger command CXXII
control characters 316
control statement 59
control-statement nesting 58
control-statement stacking 58
control-structure stacking 59
control structures 56

control variable 98, 104
increment 99
initial value 99
name 99

controlling expression in a switch 111
controlling the printing of trailing zeros

and decimal points for doubles 869
conversational computing 31
conversion 930
conversion among fundamental types 696

by cast 697
conversion constructor 696, 697, 709
conversion operator 696
conversion specifications 357
conversion specifier 30, 32, 357

e and E 359
for scanf 370

conversion specifier c 361
conversion specifier f 360
conversion specifier g (or G) 360
conversion specifier n 362
conversion specifier s 361
convert 696

a binary number to decimal 930
a hexadecimal number to decimal

930
among user-defined types and built-

in types 696
an octal number to decimal 930
lowercase letters 534
lowercase letters to uppercase letters

152
Converting a string to uppercase using a

non-constant pointer to non-constant
data 263

Converting Fahrenheit to Celsius 887
Cooking with Healthier Ingredients 354
copy 152
“copy-and-paste” approach 743
copy constructor 628, 649, 691, 693, 695
Copying a string using array notation and

pointer notation 278
copying strings 326
correction 14
cos function 143
cosine 143
counter 64, 91
counter-controlled loop 73
counter-controlled looping 74
counter-controlled repetition 64, 99, 100
Counter-controlled repetition with the

for statement 100
counting letter grades 110
counting loop 100
cout (<<) (the standard output stream)

854, 855
cout (standard output stream object)

531
cout.put 857
cout.write 862
CPU 4, 14
craps (casino game) 158, 193
“crashing” 68
create new data types 532, 664, 665
create sentences 348
create_bitmap IV
CreateAndDestroy class

definition 622
member-function definitions 622

Creating and traversing a binary tree 479
credit limit problem 90
credit limits 135
crossword puzzle 252, 937
crossword puzzle generator 354
<csdtlib> header file 533, 906
<cstdio> header file 534
<cstring> header file 534
<ctime> header file 533
<Ctrl> c 518
<Ctrl>-z 866
<ctype.h> header file 312, 152, 499
Cube a variable using call by reference

259
Cube a variable using call by value 258
custom header 151
Cygwin xxvii, LXXX

D
dangerous pointer manipulation 818
dangling else problem 93
dangling pointer 694
dangling reference 541
data 4
data abstraction 636, 664, 685
data hiding 572, 574
data hierarchy 418
data member 562, 569, 570, 605

private 572
data member of a class 552
data representation 665
data structure 455
data type 664
data types in the UML 569
data typing 7
database 420
database management system (DBMS)

420
datafile XLII, XLIII, XLIV, XLVI, LI
DATAFILE type XLVII
date 152
Date class 633, 646, 699
Date class (exercise) 599
Date class definition 646
Date class definition with overloaded

increment operators 700
Date class member function definitions

646
Date class member-function and

friend-function definitions 701
Date Class Modification 669
Date class test program 703
__DATE__, predefined symbolic constant

501
DBMS 420
deallocate 682
deallocate memory 457, 682, 907
debug 15, 56
debugger 499, CV, CXXI

Autos window displaying state of
objects CXV

break command CXXI
break mode CVII, CVIII, CXXI
breakpoint CV, CXIX
Continue command CVIII, CVIII
continue command CXXII
convenience variable (GNU

debugger) CXXII

952 Index

debugger (cont.)
defined CV, CXIX
delete command CXXIII
finish command CXXVII
-g compiler option CXX
gdb command CXX
help command CXXI
info break command CXXIII
inserting a breakpoint CVII
inserting breakpoints CXXI
Locals window CIX
Locals window (Visual C++ 2005

debugger) CX
logic error CV, CXIX
margin indicator bar CVII
next command CXXVIII
print command CXXII
quit command CXXIII
run command CXX
set command CXXIV, CXXV
Solution Configurations

combobox CVII
step command CXXVI
Step Into command CXII
Step Out command CXIII
Step Over command CXII
suspending program execution CX,

CXXIV
watch command CXXVIII
Watch window (Visual C++ 2005)

CX, CXI
DEC PDP-11 7
dec stream manipulator 863, 868, 872
decimal 138, 312, 320
decimal (base 10) number system 925
decimal (base-10) number system 868
decimal digits 418
decimal numbers 872
decimal point 857, 869
decision 27, 38, 42, 64
decision symbol 57, 59
decisions 27, 38
decisions (made by computers) 2
deck of cards 280, 281
declaration of a function 584
Declaring a loop counter before a for

statement in C89 LXXXII
declaring a static member function

const 664
Declaring a variable in a for statement

header in C99 LXXXIII
decomposition 144
decrement 99, 103, 274
decrement a pointer 273
decrement operator (--) 78
decrement operators 698
decrypt 96
default access mode for class is private

572
default argument 542, 544, 615
default arguments with constructors 615
default case 111, 112, 113
default constructor 576, 578, 615, 651,

691, 693, 700, 842
provided by the compiler 578
provided by the programmer 578

default copy constructor 649
default delimiter 861
default memberwise assignment 627

default memberwise copy 693
default precision 72, 360
default to decimal 872
default type for a type parameter 844
define a class 563
define a constructor 578
define a member function of a class 562
#define preprocessor directive 201, 496,

604, 834
definite repetition 65, 98
definition 29, 30
Deitel Buzz Online newsletter 16
delete 694, 695, 907, 909
delete [] (dynamic array deallocation)

684
delete debugger command CXXIII
delete operator 682, 826
deleting a node from a list 466
deleting dynamically allocated memory

694
delimiter (with default value '\n') 859
delimiting characters 336
demonstrating class template Stack 838,

840
DeMorgan’s Laws 138
Department of Defense (DOD) 10
depth of a binary tree 492
<deque> header file 533
dequeue 473
dequeue 472
dequeue operation 665
dereferencing a pointer 256
dereferencing a void * pointer 275
dereferencing operator (*) 256, 386
derive one class from another 609
derived class 728, 729, 731, 771

indirect 813
derived-class destructor 826
derived-class catch 910
derived data type 383
design a system 553
designated initializer LXXXIV, LXXXVI
destroy_bitmap IV, IX
destroy_font XXVI
destroy_midi LI
destroy_sample XVII
destructive 33
destructor 620, 744

called in reverse order of constructors
621

member object 917
overloading 620
receives no parameters and returns no

value 620
destructor in a derived class 763
destructors called in reverse order 763
determining the length of strings 326
devices 12, 14
diagnostics 152
diagnostics that aid program debugging

534
diameter of a circle 95
diamond symbol 57, 59, 64
dice game 158
dice rolling 158
dice-rolling program 206
Dice-rolling program using arrays instead

of switch 206
dictionary 452

digit 52, 925
Digital Clock application

Autos window displaying the state
of localTime CXV

digital sample XVI
direct base class 728
directly reference a value 254
disk 14, 15
disk drive 853
disk I/O completion 897
disk space 904, 906
displacement 434, 821
display 14
display a binary tree 494
display screen 853, 855
Displaying an unsigned integer in bits

395
Displaying Text in Allegro XXV
Displaying the value of a union in both

member data types 393
distance between two points 191
distributed client/server applications 5
distributed computing 5
divide and conquer 141, 144
divide by zero 14
DivideByZeroException 897
division 4, 34
division by zero 68, 518
division by zero is undefined 665
do...while repetition statement 57
do…while statement example 114
do/while repetition statement 113
document program 24
document programs 24
dot (.) operator 565
dot operator (.) 386, 610, 655, 793, 908
double 149, 170
double-array subscripting 720
double backslash (\\) 26
double buffering IX, XIII
double complex XC
double equals 39
double for Sudoku 939, 942
double indirection (pointer to a pointer)

463
double primitive type 106
double quote character (") 26
double quotes 32, 361
double-selection statement 57, 74
double-subscripted array 229, 232
double-subscripted array problem 246
double-subscripted array representation

of a deck of cards 281
double-subscripted array 281
“doubly initializing” member objects 651
downcasting 792, 798
drawing graphs 135
drawing primitives in Allegro LI
driver program 580
dual-core processor 5
dummy value 67
dump 306
dunning letters 353
duplicate elimination 244, 250, 483, 492
duration 162, 164
dynamic array 521
dynamic binding 780, 793, 818, 822
dynamic casting 780
dynamic content 9

Index 953

dynamic data structure 196, 254, 455
dynamic memory 907
dynamic memory allocation 456, 520
dynamic memory management 254, 682
dynamic_cast 825, 910
dynamically allocate array of integers 692
dynamically allocated memory 627, 629,

694, 826, 907
allocate and deallocate storage 621

dynamically allocated storage 693
dynamically determine function to

execute 792

E
EBCDIC (Extended Binary Coded

Decimal Interchange Code) 330
Eclipse 12
edit phase 12, 14
editor 12, 310
editor program 12
efficiency of

insertion sort LXVII
merge sort LXXII
selection sort LXIII

Eight Queens 175, 250, 251, 942
Eight Queens: Brute Force approach 250
element of an array 196
elements 196
ellipsis (...) in a function prototype 509
emacs 12
embedded parentheses 35
Employee class 646
Employee class (Exercise) 599
Employee class definition showing

composition 648
Employee class definition with a static

data member to track the number of
Employee objects in memory 661

Employee class header file 804
Employee class hierarchy driver program

815
Employee class implementation file 805
Employee class member function

definitions, including constructor
with a member-initializer list 648

Employee class member-function
definitions 661

empty exception specification 900
empty member function of string 707
empty parameter list 542
empty parentheses 564, 565, 568
empty statement 63
empty string 574
encapsulation 552, 575, 607, 627, 651
encrypt 96
end line 531
“end of data entry” 67
end-of-file 110, 877
end-of-file marker 420, 423
END_OF_MAIN IV
#endif preprocessor directive 604
endl stream manipulator 531
end-of-file indicator 312, 323
end-of-file key combination 508
Enforcing Privacy with Cryptography 96
English-like abbreviations 6
Enhancing Class Date exercise 633
Enhancing Class Rectangle exercise 634

Enhancing Class Time exercise 632, 633
enqueue 665
enqueue 472, 473
enqueue operation 665
Enter key 112, 531
enter key 14, 31
enum 161, 406
enumeration 161, 406, 407
enumeration constant 499
enumeration constants 161, 406
Enumeration example 407
environment 12
EOF 110, 312, 858, 861
eof member function 858, 877, 878
eofbit of stream 877
equality and relational operators 275
equality operator (==) 685
equality operators 38, 39
<errno.h> 152
Erroneous attempt to initialize a constant

of a built-in data type by assignment
644

error bits 861
error checking (in file processing) 436
error conditions 152
error detected in a constructor 903
error message 14
#error preprocessor directive 500
error-processing code 891
error state of a stream 858, 877
errors 14
escape character 26, 369
escape sequence 26, 32, 369, 381
Euler 247
event 518
ex 143
examination results problem 75
exception 890
exception class 892, 909

what virtual function 892
exception classes derived from common

base class 904
exception handler 894
exception handling 534, 890
<exception> header file 534, 892, 901,

910
exception not listed in exception

specification 900
exception object 896
exception parameter 895
exception specification 900
Exception-handling example that throws

exceptions on attempts to divide by
zero 893

Exceptions
bad_alloc 904
bad_cast 910
bad_exception 910
bad_typeid 910
length_error 910
logic_error 910
out_of_range 910
overflow_error 910
underflow_error 911

executable 27
executable image 14
executable program 27
executable statement 531
execute 14

execute phase 12
executes 14
execution-time error 14
execution-time overhead 818
exhaustive brute force approach 943
exit a function 26
exit and atexit functions 514
exit function 514, 621, 906, 911
EXIT_FAILURE 514
EXIT_SUCCESS 514
exp function 143
expand a macro 497
explicit constructor 709
explicit conversion 71
explicit keyword 709
explicit specialization of a class template

845
explicit use of the this pointer 654
exponent 726
exponential complexity 174
exponential format 358
exponential function 143
exponential notation 359, 360
exponentiation 37
exponentiation operator 106
expression 107, 147
Extended Binary Coded Decimal

Interchange Code (EBCDIC) 331
extensibility 781
extensibility of C++ 681
extensible language 554, 565, 665
extern 161, 513
external linkage 513
external variable 163

F
f or F for a float 516
fabs function 143
factorial 95, 135
factorial function 168, 175
Fahrenheit temperatures 381
fail member function 877
failbit of stream 858, 862, 877
false 38
false 874
false boolean value (C++) 536
fatal error 14, 51, 68, 307
fatal logic error 63
fault-tolerant programs 890
FCB 420, 422
fclose function 423
fenv.h LXXX
feof function 422, 436
fetch 305
fgetc function 420, 452
fgets function 323, 420
Fibonacci function 175
Fibonacci functions 174
Fibonacci series 171, 190
field 418
field width 107, 357, 363, 365, 374, 862,

865
fields larger than values being printed 871
FIFO (first-in first-out) 472, 665
FILE 420
file 418, 419
file control block (FCB) 420, 422
file descriptor 420

954 Index

file-matching program 449
file name 12
file offset 427
file open mode 422, 425
FILE pointer 426
file position pointer 427, 435
__FILE__, predefined symbolic constant

501
file processing 853, 856

error checking 436
file scope 164, 609
FILE structure 420
filename extension

.h 580
file-processing classes 856
fill character 606, 863, 865, 870, 871
fill member function 869, 871
fill member function of basic_ios 878
final value 99
final value of a control variable 102, 104
find the minimum value in an array 251
finish debugger command CXXVII
first-in first-out (FIFO) 472, 665
first refinement 67, 73
five-card poker 297
fixed notation 857, 868, 873
fixed stream manipulator 869
fixed stream manipulator 868, 873
fixed word size 665
flag value 67
flags 357, 366, 367
flags member function of ios_base

876
flexible array member XCVII
flight simulator 830
(float) 71
float 516
float 69, 71, 72, 150
<float.h> 152
floating point 360, 864, 868, 873
floating-point arithmetic 673
floating-point conversion specifiers 360,

364, 370
floating-point exception 518
floating-point number 66, 69, 72
floating-point number in scientific format

873
floating-point size limits 152, 534
floating-point values displayed in default,

scientific and fixed format 873
floor function 143
flow of control 42
flow of control of a virtual function call

820
flowchart 56, 59
flowcharting C’s sequence structure 57
flowcharting double-selection if/else

statement 60
flowcharting the do...while repetition

statement 114
flowcharting the while repetition

statement 64
flowline 59
flowlines 57
flush buffer 879
flush output buffer 531
flushing stream 863
fmod function 143
fmtflags data type 876

font XXVII
FONT type XXVI
fopen function 425
for header components 101
for repetition statement 57, 103, 943
force a decimal point 857
forcing a plus sign 870
formal type parameter 549, 549
format control string 30, 32, 357, 358,

365, 369
format error 877
format of floating-point numbers in

scientific format 873
format state 863, 876
format-state stream manipulators 868
formatted I/O 853
formatted input/output model 430
formatting 862
form-feed character (\f) 312
forming Sudoku puzzles 944
FORTRAN (FORmula TRANslator) 10
forward class declaration 712
fprintf function 421
fputc function 420
fputs function 420, 452
fractional parts 71
fractions 725
fragile software 755
fread function 421, 431
free function 456, 471
free store 682
friend 676, 833, 845
friend function 651, 675, 732
friend functions to enhance

performance 651
friend of class template 845
friends are not member functions 652
Friends can access private members of

class 652
friendship granted, not taken 652
friendship not symmetric 652
friendship not transitive 652
front of a queue 455, 665
fscanf function 421
fseek function 433
<fstream> header file 534
function 8, 13, 25, 126, 141, 532, 552

argument 142, 157, 566
body 146, 175
call 142, 147
call and return 152
call stack 151
caller 142
empty parameter list 542
empty parentheses 564, 565, 568
header 146, 147, 564
invoke 142, 145
local variable 569
multiple parameters 568
name 145, 163, 176
overloading 545
parameter 145, 566, 568
parameter list 568
prototype 145, 147, 148, 163, 538,

584
prototype scope 163, 164
return a result 573
return from 142, 143
scope 164

function body 564
function call 566

overhead 535
function call operator () 698, 822
function call stack 265
function definition 568
function header 259, 269, 288
function in Sudoku 943
function name 285
function overloading 852
function parameter 260, 262, 266
function parameter as a local variable 568
function pointer 285, 286, 289, 819, 822
function prototype 107, 259, 262, 270,

584, 651
parameter names optional 585
semicolon at end 585

function prototype for printf 509
function template 548, 833, 837

max 559
min 559
specialization 548

Function Template Overloading 849
function validSudoku 944
<functional> header file 534
functions for manipulating data in the

standard library containers 534
function-template definition 834
function-template specialization 833
fwrite 421, 431, 433

G
-g command-line compiler option CXX
game of craps 158, 246
game players 252, 937
game playing 153
Game programming xxviii
game programming 2, II
“garbage value” 66
gcc compilation command 14
gcount function of istream 862
gdb command CXX
Gender Neutrality 22, 355
general utilities library (stdlib) 317
generalities 781
generating a Sudoku puzzle 943
generating mazes randomly 301
Generating the values to be placed into

elements of an array 201
generic class 838
generic pointer 275
generic programming 529, 833
get a value 574
get and set functions 574
get member function 858, 859
get, put and eof member functions 859
getc 499
getchar 324, 324, 420, 452, 499
getchar() 420
getline function of cin 860
getline function of the string header

file 567, 574
gets 39
GFX_AUTODETECT VI
GFX_AUTODETECT_FULLSCREEN VI
GFX_AUTODETECT_WINDOWED VI
GFX_SAFE VI
GFX_TEXT VI

Index 955

global 586
global function 845
global function to overload an operator

677
global namespace scope 660, 846
global object constructors 621
global scope 622
global variable 162, 163, 164, 270, 392,

512, 544
Global Warming Facts Quiz 193
global, friend function 681
global, non-friend function 675
GNU GCC 4.3 xxvii
golden mean 171
golden ratio 171
good function of ios_base 878
Good Programming Practices overview

xxv
goodbit of stream 878
goto 521
goto elimination 56
goto-less programming 56
goto statement 56, 164, 521, 522
grabber XLII, XLIII, XLVI
graphics 252, 937
graphics in Allegro 252, 938
graphics package 830
Greatest common divisor 175
guess the number exercise 189
guillemets (« and ») in the UML 579

H
.h header files 535
halt 306
halt instruction 304
handle on an object 609
hard disk 4, 12
hardcopy printer 14
hardware 2, 4, 6
hardware independent 7
hardware platform 7
hardware registers 162
has-a relationship 729, 645
head of a queue 455, 472
header 25, 151, 152, 496, 535
header file 152, 533, 580, 588, 604, 772,

822
<ctype.h> 312
<exception> 534, 892
<fstream> 534
<functional> 534
<iomanip> 533
<iostream> 533
<iterator> 534
<limits> 534
<list> 533
<locale> 534
<memory> 534, 907
<queue> 533
<set> 533
<sstream> 534
<stack> 533
<stdexcept> 534, 892, 910
<string> 534, 567
<typeinfo> 534, 825
Allegro datafile XLVI, XLVII
complex.h XC
fenv.h LXXX

header files (cont.)
inttypes.h LXXX
iso646.h LXXX
location 583
name enclosed in angle brackets (<

>) 583
name enclosed in quotes (" ") 583
stdbool.h LXXXVII
stdint.h LXXX
tgmath.h LXXX
wchar.h LXXX
wctype.h LXXX

heap 682
help debugger command CXXI
helper function 612
heuristic 248
heuristic problem solving approach 942,

944
hex stream manipulator 863, 868, 872
hexadecimal 137, 313, 320, 358, 363
hexadecimal (base 16) number system

925
hexadecimal (base-16) number 857, 863,

868, 872
hexadecimal integer 256
hexadecimal notation 857
hide an internal data representation 665
hide implementation details 651, 712
hide private data from clients 611
hierarchical boss function/worker

function relationship 142
hierarchy of exception classes 909
hierarchy of shapes 799
high-level language 7
highest level of precedence 35
high-level I/O 853
High-performance card shuffling and

dealing simulation 389
histogram 135, 205
Histogram printing 205
history of Sudoku 938
horizontal tab (\t) 26, 312
host object 646
HourlyEmployee class header file 809
HourlyEmployee class implementation

file 810
Huge integers 725
HugeInt class 722
HugeInteger Class exercise 634
hypotenuse of a right triangle 187

I
IBM Corporation 5, 10
IBM Personal Computer 5
identifier(s) 29, 497
if selection statement 38, 59, 62
if statement 38
if...else selection statement 57, 59, 74
#ifdef preprocessor directive 499
#ifndef preprocessor directive 604
ifeelse selection statement 60
#ifndef preprocessor directive 499
ignore 680
ignore function of istream 861
illegal instruction 518
image 14
Implementation class definition 712
implementation file 713

implementation inheritance 802
implementation of a member function

changes 618
Implementing a proxy class 714
implicit conversion 71, 698, 708, 709,

711
via conversion constructors 709

implicit first argument 654
implicit handle 609
implicit int LXXXIX
implicit, user-defined conversions 698
implicitly virtual 793
Importing and Playing Sounds in Allegro

XVI
Importing Bitmaps in Allegro IV
importing fonts in Allegro XXVI
improper implicit conversion 708
INCITS/ISO/IEC 9899-1999 (C

standard document) 8
#include preprocessor directive 202,

496, 535
including a header file multiple times 604
including headers 151
increment 103
increment a control variable 99
increment a pointer 273
increment of a control variable 102, 104
increment operator 698
increment operator (++) 78
incremented 274
indefinite postponement 281, 297
indefinite repetition 67, 98
indent 27
indentation 58, 60, 62
independent software vendor (ISV) 532,

611, 771, 822
index (or subscript) 196
indirect base class 728, 731
indirect derived class 813
indirection 254, 258
indirection operator (*) 152, 256, 258
indirectly reference a value 254
ineqality operator (!=) 685
infinite loop 63, 71, 102
infinite recursion 170, 693
infix notation 489
infix-to-postfix conversion 489
info break debugger command CXXIII
information hiding 164, 267, 552, 664
inherit implementation 830
inherit interface 799, 830
inherit members of an existing class 728
inheritance 551, 603, 609, 728, 731,

771, 822, 833
implementation vs. interface

inheritance 802
Inheritance Advantage 775
inheritance examples 730
inheritance hierarchy 793, 801
Inheritance hierarchy for university

CommunityMembers 730
inheritance relationships of I/O-related

classes 856
inheriting interface versus inheriting

implementation 830
initial value of a control variable 99, 104
initialization phase 69
initialize a constant of a built-in data type

641

956 Index

initialize to a consistent state 615
initialize with an assignment statement

643
initializer 199
initializer list 207
initializing a reference 540
initializing an array 200
Initializing multidimensional arrays 230
initializing structures 386
Initializing the elements of an array to

zeros 198
Initializing the elements of an array with

an initializer list 199
inline function 535, 535, 611, 677,

695, XCVIII
calculate the volume of a cube 535

inline keyword 535
inner block 164
innermost pair of parentheses 35
inorder 479
inOrder traversal 482
inorder traversal of a binary tree 176
input a line of text 860
input device 4
input from string in memory 534
input of a string using cin with stream

extraction contrasted with input using
cin.get 860

input/output (I/O) 852
input/output library functions 534
input stream 858, 859
input unit 4
input/output operators 302
input/output stream header

(<iostream>) 530
inputting character data using cin

member function getline 861
Inputting characters and strings 372
Inputting data with a field width 374
Inputting Decimal, Octal and

Hexadecimal Values 887
inserting a breakpoint CVII
Inserting and deleting nodes in a list 459
inserting literal characters 358
insertion sort algorithm LXIV, LXV,

LXVII
install_int XXXVII, XXXVIII
install_keyboard VI, XX
install_sound XVI
install_timer XXXVII, XXXVIII
Installing Allegro II
instance of a class 570
instantiate an object of a class 552
instruction 14
instruction execution cycle 305
instructor resources for Java How to

Program, 8/e xxvii
int 25, 150
integer 25, 29
integer arithmetic 673
integer array 196
Integer class definition 907
integer constant 267
integer conversion specifiers 358
integer division 34, 71
integers prefixed with 0 (octal) 872
integers prefixed with 0x or 0X

(hexadecimal) 872
IntegerSet class 669

integral size limits 152, 534
integrity of an internal data structure 665
interactive attention signal 518
interactive computing 31
interface 552, 583, 780
Interface class definition 713
Interface class member-function

definitions 713
interface inheritance 802
interface of a class 584
internal linkage 513
internal spacing 870
internal stream manipulator 868, 870
international Morse code 353
International Standards Organization

(ISO) 2
Internet 5
interpreter 7
interrupt 518
inttypes.h LXXX
invalid access to storage 518
invalid_argument class 910
inventory 451
inverted scan set 373
Invoice class (exercise) 599
invoke a function 142, 145
invoking a non-const member function

on a const object 637
<iomanip> header file 533, 854, 863
ios_base base class 877
ios_base class

precision function 864
width member function 865

<iostream> header file 854, 855
<iostream> input/output stream header

530
<iostream> header file 533
is-a relationship (inheritance) 729, 771,

780
isalnum function 312, 313
isalpha function 312, 313
iscntrl function 313, 316
isdigit function 312, 313
isgraph function 313, 316
islower 314
islower function 263, 312, 315
ISO 2
iso646.h header file LXXX
isprint function 313, 316
ispunct function 313, 316
isspace function 312, 316
istream 856
istream class

peek function 861
istream member function ignore 680
isupper function 312, 314, 315
ISV (independent software vendor) 532,

822
isxdigit function 312, 313
iteration 174
iterative function 225
iterator 801
iterator class 651, 801
<iterator> header file 534
ity of the operators 35

J
Jacobson, Ivar 553, 554

Jacopini, G. 56
Java 9, 11, 252, 938
justified field 871

K
keep your options open heuristic 944
Kernighan, B. W. 7, 15
key XII, XX
key value 223
keyboard 4, 28, 30, 323, 531, 853, 855
Keyboard Input XX
Keyboard Input in Allegro XX
keyboard symbolic constants, Allegro XX
keyword 42
Keywords

_Bool LXXXVII
_Complex XC
added in C99 42
C++ keywords 537
catch 895
class 549, 563, 834
const in parameter list of function

535
explicit 709
inline 535, XCVIII
private 571
public 564, 571
restrict XCVI
table of keywords 537
template 834, 834
throw 896
try 894
typedef 854
typename 549, 834
void 564

KIS (“keep it simple”) 15
Knight’s Tour 247, 942
Knight’s Tour: Brute Force approaches

249
Knight’s Tour: Closed tour test 251
Koenig, Andrew 890

L
label 164, 521
Lady Ada Lovelace 10
large object 539
larger of two numbers 89
largest number problem 50
last-in-first-out (LIFO) 466
last-in, first-out (LIFO)

order 837, 842
last-in-first-out (LIFO) 151
late binding 793
leading 0 872
leading 0x and leading 0X 872
leading 0x or 0X (hexadecimal) 868
leading asterisks 352
leaf node 478
least access privilege 267
left brace ({) 29
left child 478
left justification 357, 870
left justification and right justification

with stream manipulators left and
right 870

left justified 110
left justifying strings in a field 366

Index 957

left side of an assignment 624, 692
left stream manipulator 869
left stream manipulator 868, 869
left subtree 478
left-shift operator (<<) 394, 414, 673,

855
legacy code 262
length member function of class

string 590
length modifier 358
length of a substring 698
length_error exception 910
letters 418
level order binary tree traversal 483, 493,

493
library function 8
LIFO (last-in, first-out) 151

order 837, 842
LIFO (last-in-first-out) 466
limerick exercise 349
<limits.h> header file 152
<limits> header file 534
<limits.h> header file 397
line XXXI, LI
line of text 860
__LINE__, predefined symbolic constant

501
#line preprocessor directive 501
linear data structure 458
linear data structures 478
linear run time LIX
linear search 175, 223, 223, 251
link (pointer in a self-referential structure)

456
link phase 12
link to a class’s object code 611
linkage 161
linkage of an identifier 162
linked list 254, 383, 455, 458
linked list delete 176
linked list insert 176
linker 13, 27, 513
linker error 513
linking 13
links 458
Linux 5, 12, 14, 508
list debugger command CXXI
<list> header file 533
literal 26, 32
literal characters 357
live-code approach xxiii, 2
ll length modifier for integer conversion

specifiers XCVII
-lm command line option for using the

math library 106
Load 305
load a program into memory 302
load instruction 304
load phase 12
load_bitmap IV, VII
load_datafile XLVII
load_font XXVI
load_midi LI
load_sample XVII
load/store operations 303
loader 14
loading 14
local area network (LAN) 5
local automatic object 623

local scope 609
local variable 144, 162, 163, 209, 569
Local Variable Destructors 917
locale 152
<locale> header file 534
<locale.h> 152
Locals window CIX
Locals window (Visual C++ 2005

debugger) CX
location 33
log function 143
log10 function 143
log2n comparisons 483
logic error 39, 63, 66, 101, 120, 149, 202,

392, CV, CXIX
logic_error exception 910
logical AND operator (&&) 116, 116, 397
logical decision 3
logical negation (NOT) operator (!) 117,

118
logical OR operator (||) 116, 399
logical page 369
logical unit 4
Logo language 246
long 113, 168
long double 150, 516
long int 150, 168, 516
long integer 516
long long int XCVII
lookahead heuristic for solving Sudoku

944
loop 67, 101
loop continuation condition 101, 102,

103, 113
loop counter 102
loop-continuation condition 98
looping 101
Lord Byron 10
loss of data 878
Lovelace, Ada 10
lowercase letter 51, 152, 534
low-level I/O capabilities 853
lvalue (“left value”) 120, 196, 540, 624,

692, 696

M
Mac OS X 5
machine dependent 6, 394, 665
machine independent 7
machine language 6, 12
machine language code 12
machine language programming 302
Macintosh 866
macro 152, 496, 497, 834
macro definition 497
macro expansion 498
macro identifier 497
macro with argu ments 497
Macros

complex XC
macros 834
macros defined in stdarg.h 509
magic drivers VI, XVI
magnitude 870
magnitude right justified 868
main 530
main () 25
mainframe 3

maintenance of software 12
make 514
make program III
makecol XXVII
Makefile III
makefile 514
malloc 456, 520
mangled function name 547
“manufacturing” section of the computer

4
<map> header file 533
margin indicator bar CVII
mask 396, 396
master file 449
matching catch block 895
math library functions 152, 192, 533
<math.h> header file 106, 143, 152
mathematical classes 673
mathematical computations 10
maximum 91
maximum 147
maze traversal 175, 300
mazes of any size 301
m-by-n array 229
mean 218
meaningful names 569
median 218
member 383
member function 552, 562

call 562, 673
calls for const objects 637
calls often concise 607
defined in a class definition 606
implementation in a separate source-

code file 586
that takes no arguments 607

member function automatically inlined
606

member initializer 641, 643, 694
member initializer for a const data

member 643
member-initializer list 642, 646, 648, 649
member-initializer syntax 641
member name (bit field) 403
member object destructors 917
member-object initializer 650
member object’s default constructor 651
member selection operator (.) 610, 655,

793, 908
member-function

parameter 566
member-function argument 566
members 383
memberwise assignment 627, 674
memberwise copy 693
memchr 340
memchr function 337, 340
memcmp function 337, 339
memcpy function 337, 338
memmove function 338, 339
memory 4, 14, 15, 33
memory access violation 262
memory addresses 254
memory allocation 152
memory consumption 818
memory functions of the string handling

library 337
<memory> header file 534, 907

958 Index

memory leak 683, 907, 909
prevent 909

memory unit 4
memory utilization 403
memset function 337, 340
menu-driven system 289
merge sort algorithm LXVII, LXVIII,

LXXII
merge two arrays LXVII
message 26, 551, 673
message (send to an object) 562
method 552
metric conversion program 353
Microsoft Visual C++ 2008 Express

Edition LXXIX
Microsoft Visual Studio 12
Microsoft’s Windows-based systems 5
MIDI type LI
mileage problem 89
MinGW xxvii
MinGW (Minimalist GNU for

Windows) LXXX
minimum value in an array 175
minus sign, – (UML) 575
mission-critical computing 896
mission-critical situation 911
mixed-type expressions 150
mixing declarations and executable code

LXXXI
mobile device Sudoku games 938
mode 218, 244
modifiable lvalue 692, 696, 708
modifications to the simpletron simulator

307
Modifying Class GradeBook (Exercise)

599
module 141
monetary calculations 107
monetary formats 534
Moore’s Law 15
Morse code 353
mouse 4
multi-core processor 5
multidimensional array 229, 230
multiple inheritance 728, 731, 855
multiple parameters to a function 568
multiple selection statement 57, 111
multiple-source-file program

compilation and linking process 588
multiple-source-file programs 162, 164
multiple source files 512, 513
multiple-subscripted array 229, 231
multiple-word variable name 30
multiples of an integer 94
multiplication 34
multiplicative operators 72
multiply two integers 175
multiprocessor 5
Multipurpose sorting program using

function pointers 286
multitasking 10
mutator 574

N
n 362
n factorial (n!) 168
n! 168
name 99, 196

name a control variable 99
name decoration 547
name function of class type_info 825
name handle 609

on an object 609
name mangling 547

to enable type-safe linkage 547
name of a user-defined class 563
name of a variable 33
name of an array 196
natural language of a computer 6
natural logarithm 143
negative value 932
negative binary numbers 924
nested 74
nested building block 121
nested control statement 73
nested for structure 282
nested if...else statement 61, 62
nested iteration structure 942
nested parentheses 35, 37
nesting 73
nesting (of statements) 100
nesting rule 121
.NET platform 10
network connection 853
network message arrival 897
new 694
new calls the constructor 683
new fails 903, 912
new failure handler 905
<new> header file 904
new operator 682
new returning 0 on failure 905
new stream manipulators 866
new throwing bad_alloc on failure 904
new_handler function 912
newline (\n) 26, 41, 58, 208, 310, 311,

312, 374, 531, 858
noboolalpha stream manipulator 874
nodes 456, 458
non-static member function 696
non-const member function 641
non-const member function called on a

const object 640
non-const member function on a non-

const object 640
non-constant pointer to constant data

262, 264, 265
non-constant pointer to non-constant

data 262
nondestructive 34
nonfatal error 14, 51, 149, 911
nonfatal logic error 63
nonmodifiable function code 609
nonrecoverable failures 878
nonrecursive function 190
non-static member function 654, 663
nontype template parameter 844
nonvirtual destructor 826
noshowbase stream manipulator 868,

872
noshowpoint stream manipulator 869
noshowpos stream manipulator 868, 870
noskipws stream manipulator 868
nothrow object 905
nothrow_t type 905
noun 11
nouns in a system specification 552

nouppercase stream manipulator 868,
874

NULL 157, 255, 275, 279, 422, 456, 464
null character (’\0’) 207, 208, 264, 279,

310, 311, 490, 863
NULL pointer 521
null pointer (0) 493
null-terminated string 280, 857
Number Systems Appendix 924
numeric codes 330
numerical data type limits 534

O
O(1) LIX
O(n log n) time LXXIII
O(n) time LIX
O(n2) time LX, LXIII, LXVII
object 9, 11, 562
object (or instance) 551
object code 6, 12, 588, 611
object code of a class 611
object file 822
object handle 610
object leaves scope 620
Object Management Group (OMG) 554
object module 611
object of a derived class 782, 787
object of a derived class is instantiated 762
object orientation 551
object-oriented analysis and design

(OOAD) 553
object-oriented design 9
object-oriented design (OOD) 551, 652
object-oriented language 11, 552
object-oriented programming 4
object-oriented programming (OOP)

529, 552, 553, 603, 728, 3, 9, 144
object program 27
object’s vtable pointer 821
objects contain only data 609
oct stream manipulator 863, 868, 872
octal 137, 312, 320, 358
octal (base-8) number system 863, 868
octal number 857, 872
octal number system (base 8) 925
off-by-one error 101
offset 276, 434, 821
“old-style” header files 533
OMG (Object Management Group) 554
one’s complement 400
one’s complement notation 932
ones position 925
OOAD (object-oriented analysis and

design) 553
OOD (object-oriented design) 551, 552
OOP (object-oriented programming)

552, 553, 728
open a file 422
open file table 420
operand 31, 303
operating system 5, 7, 32
operation (UML) 565
operation in the UML 552, 565
operation parameter in the UML 569
operations that can be performed on data

665
operator functions 676
operator keywords 674

Index 959

operator overloading 532, 548, 673, 852
decrement operators 698
increment operators 698

Operator Overloads in Templates 849
operator precedence 41
operator precedence chart 919
Operator sizeof when applied to an

array name returns the number of
bytes in the array 271

operator void* member function 878
operator! member function 681, 878
operator!= 695
operator() 720
operator[]

const version 696
non-const version 696

operator+ 674
operator++ 699, 704
operator++(int) 699
operator<< 680, 692
operator= 694
operator== 695
operator>> 680, 692
operators 77

<< (stream insertion operator) 532
arrow member selection (->) 610
binary scope resolution (::) 586
delete 682
dot (.) 565
member selection (.) 610
new 682
sizeof 609
typeid 825
unary scope resolution (::) 544

operators that can be overloaded 675
optimizations on constants 636
optimizing compiler 163
order 55, 56
order in which constructors and

destructors are called 623
order in which destructors are called 621
order of evaluation

of operators 35
order of evaluation of operands 173
order of exception handlers 918
order of operands of operators 173
original format settings 876
ostream class 854
out-of-range array subscript 897
out-of-range element 692
out_of_range exception 910
outer block 164
output a floating-point value 868
output buffering 879
output data items of built-in type 856
output device 4
output format of floating-point numbers

873
output of char * variables 857
output of characters 857
output of floating-point values 857
output of integers 857
output of standard data types 857
output of uppercase letters 857
output to string in memory 534
output unit 4
oval symbol 57
overflow 518, 897
overflow error 664

overflow_error exception 910
overhead of an extra function call 695
overload an operator as a nonmember,

non-friend function 677
overload the addition operator (+) 674
overload unary operator ! 681
overloaded [] operator 692
overloaded << operator 677
overloaded addition assignment operator

(+=) 700
overloaded assignment (=) operator 691,

694, 698
overloaded binary operators 675
overloaded cast operator function 697
overloaded equality operator (==) 691,

695
overloaded function 833, 836
overloaded function call operator () 698
overloaded increment operator 700
overloaded inequality operator 691, 695
overloaded negation operator 698
overloaded operator += 704
overloaded operator[] member

function 696
overloaded postfix increment operator

700, 704
overloaded prefix increment operator

700, 704
overloaded stream insertion and stream

extraction operators 679
overloaded subscript operator 692, 696
overloaded unary operators 675
overloading 532, 545

<< and >> 548
a member function 609
function definitions 546
operators 548

overloading + 676
overloading += 676
overloading an assignment operator 676
overloading binary operator < 682
overloading binary operators 682
overloading function call operator ()

698, 720
overloading postfix increment operator

699, 704
overloading prefix and postfix decrement

operators 700
overloading prefix and postfix increment

operators 700
overloading resolution 837
overloading stream insertion and stream

extraction operators 678, 691, 692,
700, 704

overloading template functions 837
override a function 792
overtime pay problem 91

P
π 50, 137
%p conversion specifier 362
Package Inheritance Hierarchy 830
Package inheritance hierarchy 776
Package inheritance hierarchy exercise

776
packets in a computer network 472
pad with specified characters 857
padding 404

padding characters 865, 868, 869, 871
page layout software 310
palettes in Allegro VI
palindrome 251
palindrome problem 94
parallelogram 729
parameter 144, 566, 568
parameter in the UML 569
parameter list 146, 177, 568, 578
parameter of a function 145
parameter passing 262
parameter types 270
parameterized stream manipulator 854,

863, 866
parameterized type 838, 850
parent node 479
parentheses () 35, 41
parentheses operator (()) 35
partitioning step of Quicksort LXXVI
Pascal programming language 10
Pascal, Blaise 10
pass-by-reference 212, 537, 538

with reference parameters 538
pass-by-value 537
passing an array 213
passing an array element 213
passing an object by value 629
passing arguments by value and by

reference 538
Passing arrays and individual array

elements to functions 213
passing large objects 539
Payroll System Modification 830
Payroll System Modification exercise 830
PDP-11 7
peek function of istream 861
percent sign (%) 34
perfect number 188
perform a task 564
performance 9, 533
performance requirements 163
persistent 5
personal computer 3, 5
Phishing Scanner 452
Pig Latin exercise 349
pipe symbol (|) 508
piping 508
Plauger, P.J. 532
play_fli LII
play_midi LI
play_sample XVII, XX
playing .fli format animations in

Allegro LII
playing MIDI files in Allegro LI
plus sign 870
plus sign, + (UML) 565
Point Class 888
Point class represents an x-y coordinate

pair 783
pointer 254, 255, 258
pointer arithmetic 263, 273, 276, 350
pointer arrow (->) operator 386
Pointer comparisons 275
pointer expression 276
pointer handle 609
pointer manipulation 818
pointer notation 260, 276, 278
pointer parameter 259
pointer subscripting 276

960 Index

pointer to a function 285
pointer to an object 606
pointer to pointer (double indirection)

463
pointer to the structure 386
pointer to void (void *) 275
pointer to void (void *) 456
pointer variable 267, 268, 907
pointer/offset notation 276
pointer/subscript notation 276
pointers to dynamically allocated storage

655, 695
pointers to functions 289
poker 296
poker playing program 671
poll 203
Polymorphic Banking Program Exercise

Using Account hierarchy 831
Polymorphic Banking Program Using

Account hierarchy 831
polymorphic exception processing 904
polymorphic programming 799, 801, 822
polymorphic screen manager 781
Polymorphic Screen Manager Using

Shape Hierarchy (Project) 830
polymorphism 773, 779, 780
polymorphism and references 819
polymorphism as an alternative to

switch logic 830
polynomial 37
Polynomial class 726
Pong II, IX
pop 466, 467, 842
pop off a stack 151
portability 9, 15, 30
Portability Tips overview xxvi
portable 8, 15
portable code 8, 532
portable language 15
portable programs 7
position number 196
positional notation 925
positional value 925, 926
positional values in the decimal number

system 926
postincrementing 79
postdecrement operator 78
postfix increment and decrement

operators 78
postfix no tation 489
postincrement 704
postincrement operator 78
postorder 479
postOrder traversal 482, 483
postorder traversal of a binary tree 176
pow (power) function 37, 106, 107, 143
power 143
#pragma processor directive 500
precedence 35, 41, 197, 256
precedence not changed by overloading

675
precedence of arithmetic operators 36
precision 72, 357, 358, 360, 857, 862
precision function of ios_base 864
precision of floating-point numbers 864
precision setting 864
precompiled object file 713
predecrement operator 78
predefined symbolic constants 501

predicate function 463, 612
prefix increment and decrement operators

78
preincrement 704
preincrement operator 78
preincrementing 78
preincrementing vs. postincrementing 78
preorder 479
preOrder traversal 483
preorder traversal of a binary tree 176
preprocess phase 12
preprocessor 12, 151
preprocessor directive 12, 496, 496, 499,

530
#ifndef 604
#define 604
#endif 604

preprocessor wrapper 604
prevent class objects from being copied

695
prevent memory leak 909
prevent one class object from being

assigned to another 695
preventing header files from being

included more than once 604
primary memory 4
prime number 188
primitive types

bool (C++) 536
principle of least privilege 162, 164, 216,

261, 262, 266, 269, 270, 612, 636
print a hollow square 94
print a linked list backwards 176
print a square 94
print a string backwards 175, 251
print an array 175, 251
print an array backwards 175
Print Array Range 849
print characters 314
print debugger command CXXII
print patterns 135
printArray function template 834
printer 853
printf 357
printf 421
printing a string input at the keyboard

backwards 175
Printing a string one character at a time

using a non-constant pointer to
constant data 264

Printing a Table of ASCII Values 888
printing an integer with internal spacing

and plus sign 870
printing character 316
printing dates in various formats 352
printing keyboard inputs in reverse 175
Printing Pointer Values as Integers 887
Printing positive and negative numbers

with and without the + flag 367
printing the address stored in a char *

variable 857
printing trees 494
Printing with Field Widths 887
private access specifier 571
private base class 771
private base-class data cannot be

accessed from derived class 744
private inheritance 728, 731, 770
private members of a base class 731

private static data member 660
probability 153
procedural programming language 552
procedure 55
Processing a queue 473
processing phase 67, 69
processing unit 4
product 48
program 4
program clarity 15
program control 55
program execution stack 151
program in the general 779, 830
program in the specific 779
program termination 623
Program to simulate the game of craps

158
programmer 4
programmer-defined function 142
programmer-defined header file 535
Programmer-defined maximum function

147
programmer-defined termination

function 901
Programming Projects xxviii
programming Sudoku puzzle creators

252, 937
programming Sudoku puzzle solvers 252,

937, 942
promotion 71, 72
promotion hierarchy 150
promotion of primitive types 72
promotion rules 149
prompt 30
prompting message 879
proprietary classes 772
protected 732
protected access specifier 603
protected base class 771
protected base-class data can be

accessed from derived class 753
protected inheritance 728, 731, 771
Protected vs. Private Base Classes 775
proxy class 611, 711, 714
pseudo-random numbers 156
pseudocode 55, 57, 77
public access specifier 564, 571
public base class 771
public inheritance 728, 731
public interface 572
public keyword 564, 571
public member of a derived class 731
public services of a class 584
public static class member 660
public static member function 660
pure specifier 800
pure virtual function 800, 818
push 466, 470, 842
push onto a stack 151
put member function 857, 858
putback function of istream 861
putchar 323, 420
puts 324, 452
Pythagorean Triples 137

Q
quad-core processor 5
quadratic run time LX

Index 961

Quadrilateral Inheritance Hierarchy 776
qualified name 761
queue 254, 383, 455, 472, 473, 665
<queue> header file 533
Quick Info box CVIII
Quicksort LXXVI
quicksort 176, LXXVI
quit debugger command CXXIII

R
r file open mode 425
r+ file open mode 425, 426
radians 143
radius 95
raise 518
raising an integer to an integer power 175
rand 153
RAND_MAX 153, 157
random number 152
random number generation 280, 348
random-access file 430, 433
randomizing 156
range checking 684
Rational Class exercise 633
Rational Software Corporation 554
RationalNumber class 725
raw array 684
rb binary file open mode 516
rb file open mode 425
rb+ binary open file mode 516
rb+ file open mode 425
rdstate function of ios_base 878
read a line of text 567
read characters with getline 567
read function of istream 861
read member function 862
readability 40, 74, 100, 144
readkey IX
real number 7
reassign a reference 541
“receiving” section of the computer 4
record 265, 419, 421
record key 419
recover from errors 877
rectangle 59
Rectangle Class exercise 634
rectangle symbol 57, 64
recursion 167, 174

recursion step 167
recursive call 167, 168
recursive calls to method fibonacci

173
recursive definition 168
recursive evaluation 169
recursive function 167
recursive function gcd 191
recursive function power 189
vs. iteration 174

recursion examples
binary search 175
binary tree insert 176
check if a string is a palindrome 175
Eight Queens 175
Factorial function 175
Fibonacci function 175
Greatest common divisor 175
inorder traversal of a binary tree 176
linear search 175

recursion examples (cont.)
linked list delete 176
linked list insert 176
maze traversal 175
minimum value in an array 175
multiply two integers 175
postorder traversal of a binary tree

176
preorder traversal of a binary tree 176
print a linked list backwards 176
print a string backwards 175
print an array 175
print an array backwards 175
printing a string input at the

keyboard backwards 175
printing keyboard inputs in reverse

175
quicksort 176
raising an integer to an integer power

175
recursive main 175
search a linked list 176
selection sort 176
sum of the elements of an array 175
sum of two integers 175
Towers of Hanoi 175
visualizing recursion 175

recursive main 175
Recursive Selection Sort LXXV
recursive selection sort LXXV
recursive step of Quicksort LXXVI
recursively search a list 492
red breakpoint circle, solid CVII
redirect input from a file 508
redirect input or output 357
redirect input symbol < 508
redirect output symbol > 509
redundant parentheses 38
reference 852
reference parameter 537, 539
reference to a constant 540
reference to a private data member 624
reference to an automatic variable 541
reference to an int 538
reference to an object 606
references must be initialized 541
register 161, 162, 256
reinventing the wheel 8, 141, 532
relational operators 38
release dynamically allocated memory 694
reliable integer division XCVI
remainder 143
remainder operator (%) 34, 51, 153
remove_timer XXXVIII
repetition statement 56, 63
replacement node 493
replacement text 201, 497
requesting a service from an object 562
requirements 163, 553
reserved word 42
Resource Centers

www.deitel.com/
ResourceCenters.html 3

resource leak 901, 903
restore a stream’s state to “good” 878
restrict XCVI
restricted pointer XCVI
resumption model of exception handling

895

rethrow an exception 898
Rethrowing Exceptions 918
return 257
return 0 32
return a result 25
return from a function 142, 143
return key 14, 306
return statement 147, 573
return type 270, 564

void 564, 573
return value type 146, 177
return without expression XCVIII
returning a reference from a function 541
returning a reference to a private data

member 624
Returning Error Indicators from Class

Time’s set Functions exercise 634
reusability 837, 840
reusable componentry 11
reusable software 9
reuse 553, 579, 609
reuse classes 552
reusing components 12
rewind 517
Richards, Martin 7
Richer Shape Hierarchy 776
right brace (}) 25, 26
right child 478
right justification 357, 868, 869, 870
right justified 107, 363
right shift operator (>>) 673
right stream manipulator 868, 869
right subtree 478
right-justifying integers 364
Right-justifying integers in a field 364
rightmost (trailing) arguments 542
right-shift (>>) operator 394, 414
right-shift operator (>>) 855
rise-and-shine algorithm 55
Ritchie, D. 7, 15
robust application 890, 896
roll two dice 245
Rolling a six-sided die 6000 times 154
root node of a binary tree 478, 494
rounded 72
Rounding 887
rounding 48, 167, 357
rounding toward negative infinity XCVII
rounding toward zero XCVII
rows 229
RTTI (runtime type information) 780,

822, 827
rules of operator 35
Rumbaugh, James 553, 554
run debugger command CXX
runtime error 14, 208
runtime type information (RTTI) 534,

780, 822, 827
runtime_error class 892, 903, 910

what function 897
rvalue (“right value”) 120, 540, 692, 696

S
SalariedEmployee class header file 806
SalariedEmployee class

implementation file 807
SalesPerson class definition 612

www.deitel.com/ResourceCenters.html
www.deitel.com/ResourceCenters.html

962 Index

SalesPerson class member-function
definitions 613

SAMPLE type XVI
savings account example 105
SavingsAccount Class 669
SavingsAccount class 669
scalable 202
scalar 212
scalars 267
scaling 153
scaling factor 153, 158
scan characters 370
scan set 372, 373
scanf 357
scanf function 30
scanning images 4
scientific notation 359, 857, 873
scientific notation floating-point value

874
scientific stream manipulator 868,

873
scope 499
scope of an identifier 161, 162, 163, 164
scope resolution operator (::) 660, 840,

846
Scoping example 165
screen 4, 14
screen-manager program 781
SCREEN_H XII
SCREEN_W XII
scrutinize data 604
search a linked list 176
search functions of the string handling

library 331
search key 223
searching 223, 225
searching a binary tree 483
searching strings 326
second-degree polynomial 37
second refinement 67, 68, 74
secondary storage 15
secondary storage device 12
secondary storage unit 5
security 629
seed 157
seed the rand function 156
SEEK_CUR 436
SEEK_END 436
SEEK_SET 435
SEEK_SET 436
segmentation fault 33, 262
segmentation violations 518
select a substring 698
selection sort 176, LXXV, LXXVI

recursive LXXV
selection sort algorithm LX, LX, LXI,

LXIII
Selection Sort Function Template 849
selection statement 58, 59
selection structure 56
self assignment 694
self-assignment 655
self documenting 30
self-referential structure 456
self-documenting 385
self-referential structure 384
semicolon (;) 26, 39, 568
sentinel-controlled repetition 68, 69, 98
sentinel value 67, 68, 71, 89

separate interface from implementation
583

sequence structure 56, 58
sequential access file 421
sequential execution 56
sequential file 420, 421
server 5
services of a class 574
set a value 574
set and get functions 574
set debugger command CXXIV
set function 651
<set> header file 533
set_new_handler function 904, 905
set_terminate function 901
set the value of a private data member

575
set_unexpected function 900, 910
set_color_depth VI
set_gfx_mode VI, VII, XII
set_new_handler specifying the

function to call when new fails 906
setbase stream manipulator 863
setfill stream manipulator 606, 869,

871
<setjmp.h> 152
setprecision stream manipulator 864
setw 680
setw stream manipulator 865, 869
Shape class hierarchy 731, 776
Shape hierarchy 830
Shape hierarchy exercise 830
shift 153
Shifted, scaled integers produced by 1 +

rand() % 6 153
shifting value 158
“shipping” section of the computer 4
short 113, 150
short-circuit evaluation 118
showbase stream manipulator 868, 872
showpoint stream manipulator 868
showpos stream manipulator 868, 870
shrink-wrapped software 772
sibling 478
side effect 173, 537
side effects 152, 163, 834
Sieve of Eratosthenes 251
SIGABRT 518
SIGFPE 518
SIGILL 518
SIGINT 518
sign left justified 868
signal 518
Signal handling 519
signal handling library 518
signal value 67
<signal.h> 152, 518
signal.h 518
signature 546, 698
signatures of overloaded prefix and postfix

increment operators 699
signed decimal integer 358
significant digits 869
SIGSEGV 518
SIGTERM 518
simple condition 117
simple interest problem 90
simple solution strategies for Sudoku 252,

937

simplest flowchart 121
Simpletron 452
Simpletron Machine Language (SML)

302, 307
Simpletron simulator 302, 304, 306
Simula 11
simulating call-by-reference 258
simulation 152, 153, 280
sin function 143
sine 143
single-argument constructor 696, 697,

708, 709, 710
single entry/single exit control statement

121
single entry/single exit control structure

59
single inheritance 728
single quote (') character 361
single-selection statement 57
single-entry/single-exit control statements

58
single-subscripted array 262, 269
singleton for Sudoku 939, 942
sinking sort 216
size_t 271, 327, 331
sizeof operator 270, 271, 385, 433,

452, 456, 499, 609, 654
skipping whitespace 863
skipping white-space characters 868
skipws stream manipulator 868
small circle symbol 57, 59
smallest number problem 50
SML 302, 304, 306, 307
SMS Language 355
“sneakernet” 5
software 2, 4
software asset 553
software-based simulation 302, 304
software engineering 116, 164, 270, 563,

583
data hiding 572, 574
encapsulation 575
reuse 579, 583
separate interface from

implementation 583
set and get functions 574

Software Engineering Observations
overview xxvi

software model 304
software reusability 8, 144, 270, 513
software reuse 532, 728, 834, 837, 838,

840
Solution Configurations combobox

CVII
sort algorithms

bucket sort LXXV
insertion sort LXIV
merge sort LXVII
Quicksort LXXVI
recursive selection sort LXXV
selection sort LX

sort function 833
sort key LIX
sorting 216
sorting algorithm 269
Sorting an array with bubble sort 217
sorting data LIX
sorting strings 534
sounds in Allegro 252, 938

Index 963

source code 611, 771
source-code file 580
source code of a class 611
space 41, 374
space flag 367
spaces for padding 871
Spam Scanner 355
speaking to a computer 4
special characters 310
Special Section: Advanced string

manipulation exercises 350, 351, 352,
354

Special Section: Building your own
compiler 494

special symbols 418
split the array in merge sort LXVII
sprintf 322, 325
sqrt function 143
square brackets ([]) 196
square root 143, 864
srand 156
sscanf 322, 325
<sstream> header file 534
Stack 838
stack 151, 254, 383, 455, 466, 837, 840
stack class 833
Stack class template 838, 844
stack frame 151
<stack> header file 533
stack overflow 151
Stack program 467
stack unwinding 896, 902, 903, 918
Stack< double > 840, 842
stack<int> 842
Stack<T> 840, 842
stacked building blocks 121
stacking rule 121
stack-of-float class 833
stack-of-int class 833
stack-of-string class 833
stacks implemented with arrays 664
“stand-alone” units 5
Standard C 2, 252, 937, 938
standard C functions 8
standard data types 272
standard error 420
standard error (cerr) 357
standard error stream (stderr) 14
standard exception classes 910
standard input 30, 322, 508
standard input file 420
standard input stream (cin) 357, 854
standard input stream (stdin) 14
standard input stream object (cin) 531
standard input/output header (stdio.h)

25
standard input/output library (stdio)

322
standard libraries 13
Standard Library

header files 534
Standard Library class string 705
Standard Library documentation 8
Standard Library exception classes 910
standard library exception hierarchy 909
standard library header 151
standard library headers 151, 496
standard output 508
standard output file 420

standard output object (cout) 854
standard output stream (cout) 357
standard output stream (stdout) 14
standard output stream object

(std::cout) 531
standard stream libraries 854
standard template library (STL) 665, 818
standard version of C 7
“standardized, interchangeable parts” 553
“warehouse” section of the computer 5
state bits 858
statement 26, 56, 564
statement terminator (;) 26
static 161, 512
static 163, 164, 209
static array 200
Static arrays are automatically initialized

to zero if not explicitly initialized by
the programmer 210

static binding 793
static data member 659, 660, 846
static data member tracking the

number of objects of a class 663
static data members save storage 660
static data structures 520
static local object 621, 623
static member 660
static member function 660
static storage duration 162
status bits 878
std::cin (standard input stream object)

531
std::cout (standard output stream

object) 531
std::endl stream manipulator 531
<stdarg.h> 152, 509
stdbool.h LXXXVII
<stddef.h> 152
<stddef.h> header 255
stderr (the standard error device) 14,

420
<stdexcept> header file 534, 892, 910
stdin (standard input stream) 14, 322,

420
stdint.h LXXX
<stdio.h> header file 25, 110, 152,

163, 322, 357, 420, 499
<stdlib.h> header file 152, 153, 317,

496, 514, 521, 533
stdout (standard output stream) 14,

420, 423
step debugger command CXXVI
Step Into command (debugger) CXII
Step Out command (debugger) CXIII
Step Over command (debugger) CXII
stepwise refinement 281
stepwise refinement, 67
“sticky” setting 606
stop_midi LI
stop_sample XVII
storage class 161
storage class of an identifier 161
storage class specifiers 161
storage duration 161, 210
storage duration of an identifier 161
storage unit boundary 406
Store 303
stored array 458
straight-line form 35

strcat function 326, 328, 328
strchr function 332
strcmp function 329, 330, 438
strcpy function 327
strcspn function 331, 332, 333
stream 357, 420
stream base 863
stream extraction operator >> (“get

from”) 531, 548, 673, 678, 692, 855,
858

stream input 855, 858
stream insertion operator << (“put to”)

531, 532, 548, 673, 678, 692, 855,
857

stream manipulator 862, 866, 870
stream manipulator showbase 872
stream manipulators 531

boolalpha 874
boolalpha and noboolalpha 875
dec 863
endl (end line) 531
fixed 873
hex 863
internal 870
left 869
noboolalpha 874
noshowbase 872
noshowpoint 869
noshowpos 868, 870
nouppercase 868, 874
oct 863
right 869
scientific 873
setbase 863
setfill 606, 871
setprecision 864
setw 865
showbase 872
showpoint 868
showpos 870

stream of bytes 853
stream operation failed 877
stream output 855
strerror 341
<string> header file 582
string 26, 310
string 705
string array 280
string class 567, 673, 705, 707

at member function 707
from the Standard Library 534
length member function 590
substr member function 591, 707

string comparison functions 329, 329,
350

string concatenation 350
string constant 310
string conversion functions 317, 317
string copy 350
<string> header file 534, 567
string is a pointer 311
string literal 208, 310, 311
string manipulation functions of the

string handling library 326, 330, 331
string object

empty string 574
initial value 574

string processing 207
string processing function 152

964 Index

<string.h> header 327
<string.h> header file 152
strlen function 341, 341, 341
strncat function 327, 328
strncmp function 329, 330
strncpy function 327
Stroustrup, B. 11, 833, 890
Stroustrup, Bjarne 9
strpbrk 333
strpbrk function 331, 333
strrchr function 331, 334
strspn function 331, 334
strstr function 331, 335
strtod function 317, 319, 319
strtok function 331, 336, 336
strtol function 317, 320, 320
strtoul function 317, 321
struct 196, 383
structure 265, 383
structure definition 384
structure member (.) operator 386, 387,

392
Structure member operator and structure

pointer operator 387
structure pointer (->) operator 386, 387,

392
structure tag name 383, 384
structure type 383
structure variable 385
structured programming 2, 4, 10, 11, 24,

42, 55, 56, 521
structured programming summary 121
structured systems analysis and design 11
Structures 383
Student Inheritance Hierarchy 775
Student poll analysis program 203
student poll program 203
student resources xxvi
sub script 196
subclass 728
subscript 205
subscript notation 266
subscripted name used as an rvalue 692
substr member function of class

string 591
substr member function of string 707
substring 698
substring length 698
subtract an integer from a pointer 273
subtracting one pointer from another 273
subtracting two pointers 275
subtraction 4
Sudoku 252, 937, 942, 943

3 by 3 grid 252, 937, 938, 939, 942,
943

9 by 9 grid 252, 937, 938
array 944
beginner’s resources 938
brute force problem solving approach

942, 943
cell 252, 937
column 943
column numbering 252, 937
double 939, 942
exhaustive brute force approach 943
forming puzzles 944
function 943
game players 938
generating a puzzle 943

Sudoku (cont.)
heuristic problem-solving approach

942, 944
hidden double 939
hidden triple 942
history 938
keep your options open heuristic 944
lookahead heuristic for solving

Sudoku 944
mobile device games 938
nested iteration structure 942
player forums 938
programming puzzle creators 252,

937
programming puzzle solvers 252, 937
programming Sudoku puzzle solvers

942
programs 252, 938
puzzle 252, 937
puzzle maker software 938
Resource Center 252, 938, 938, 942
row 943
row numbering 252, 937
simple solution strategies 252, 937
singleton 939, 942
solution strategies 938
solver 938
strategies 939
timer 938
triple 941, 942
tutorials 938
two-dimensional array 252, 937,

942, 943
utility fuction 943
worksheets 938

Sudoku Resource Center 252, 938, 942
sum 49
sum of numbers 88
sum of the elements of an array 175, 202
sum of two integers 175
superclass 728
supercomputer 3
supermarket simulation 491
survey data analysis 218, 222
Survey data analysis program 219
swapping values LX, LXIV
switch multiple-selection statement 57,

108, 111
logic 799
with break 111

symbol 51, 57
symbol value 925
symbolic constant 110, 201, 496, 497,

501
synchronize operation of an istream and

an ostream 879
synchronous error 897
syntax error 30, 30, 63, 80, 120

T
tab 26, 27, 41, 52, 58, 369, 374
table 229
tabular format 198
tail of a queue 455, 472
tan 143
tangent 143
Target-Heart-Rate Calculator 96, 600
Tax Plan Alternatives 139

telephone number program 349
telephone-number word problem 451
template 833
template definition 549
template function 549, 834
template keyword 549, 834
template parameter 834, 842
template parameter list 549
templates and friends 845
templates and inheritance 845
temporary <double> representation 107
temporary copy 71
temporary file 517
temporary object 697
terminate 14
terminate a program 906
terminate function 898, 901
terminating execution 666
terminating NULL character 207, 208,

361
terminating null character 311, 312, 323
termination housekeeping 620
termination model of exception handling

895
termination phase 69
termination request 518
ternary conditional operator (?:) 675
ternary operator 60, 173
test state bits after an I/O operation 858
Test-Drive: Body Mass Index Calculator

22
Test-Drive: Carbon Footprint Calculator

22
Testing error states 877
text analysis 351
text file 516
text manipulation 202
text processing 310
text_height XXVI
text_length XXVI
textprintf_ex XXVI, XXVII
tgmath.h LXXX
The “FairTax” 139
The Twelve Days of Christmas 111
this pointer 654, 655, 663, 676, 695
this pointer used explicitly 654
this pointer used implicitly and

explicitly to access members of an
object 654

Thompson, Ken 7
throw a conditional expression 896
throw an exception 894
throw an int 896
throw exceptions derived from standard

exceptions 911
throw exceptions not derived from

standard exceptions 911
throw keyword 896
throw list 900
throw point 895
throw standard exceptions 911
throw() exception specification 900
Throwing Exceptions from a catch 917
Throwing the Result of a Conditional

Expression 917
TicTacToe Class exercise 634
tie an input stream to an output stream

879
tilde character (~) 620

Index 965

time 152
Time class 633
Time class containing a constructor with

default arguments 615
Time class definition 603
Time class definition modified to enable

cascaded member-function calls 656
Time class member function definitions,

including const member functions
638

Time class member-function definitions
605

Time class member-function definitions,
including a constructor that takes
arguments 616

Time Class Modification 670
Time class with const member functions

637
__STDC__, predefined symbolic constant

501
__TIME__, predefined symbolic constant

501
<time.h> 152
time/space tradeoff 266
timer in Sudoku 938
timers in Allegro XXXVII
timesharing 11
tmpfile 517
token 331, 501
tokenizing strings 326
tokens 336
tokens in reverse 349
tolower 314
tolower 312, 315
top 67
top-down, stepwise refinement 67, 69,

73, 74
top of a stack 455
top-down stepwise refinement 281, 282
tortoise and the hare 298
total 66
toupper 314
toupper 263, 312
Towers of Hanoi 175, 190
trailing zeros 360, 868, 869
transaction file 449
transaction-processing program 437
transaction-processing systems 431
transfer of control 56
transfer of control operations 303
transfers of control 306
translation 6
translator program 6, 7
trap 518
trap an interactive signal 519
trapezoid 729
traversing a binary tree 479
Treating character arrays as strings 208
tree 36, 254, 383, 478
trigonometric cosine 143
trigonometric sine 143
trigonometric tangent 143
triple for Sudoku 941, 942
tripleByReference 559
tripleCallByValue 559
true 38
true boolean value (C++) 536
truncated 71
truth 117

truth table 117
try block 894, 898, 903
try block expires 895
try keyword 894
Turing Machine 56
turtle graphics 246
two’s complement 932
two’s complement notation 932
two-dimensional array 252, 280, 937,

942
twos position 927
tying an output stream to an input stream

879
type 33
type checking 149, 834
type justification 351
type mismatch 262
type of the this pointer 654
type parameter 549, 834, 838, 844
type-safe linkage 538, 547
type template parameter 834
type_info class 825
typedef 388
typedef fstream 856
typedef ifstream 856
typedef iostream 854
typedef istream 854
typedef keyword 854
typedef ofstream 856
typedef ostream 854
type-generic macro XCVIII
typeid 910
typeid operator 825
<typeinfo> header file 534, 825
typeless language 7
typename 834
typename keyword 549, 834
type-safe I/O 852
typesetting systems 310

U
UML (Unified Modeling Language)

xxviii, 551, 553, 565
attribute 565
class diagram 565
constructor in a class diagram 579
data types 569
guillemets (« and ») 579
minus sign (–) 575
plus sign (+) 565
public operation 565
String type 569

UML Partners 554
unary operator 72, 80, 255
unary operator overload 675, 681
unary operator sizeof 270
unary scope resolution operator (::) 544
unbuffered output 856
unbuffered standard error stream 854
Uncaught Exceptions 918
unconditional branch 521
#undef preprocessor directive 499
underflow_error exception 911
underscore (_) 29
unexpected function 900, 910
unformatted I/O 853, 854, 861
unformatted I/O using the read, gcount

and write member functions 862

unformatted output 857, 858
Unicode 331
Unicode character set 853
Unified Modeling Language (UML) 551,

553
unincremented copy of an object 704
uninitialized local reference causes a

syntax error 541
union 391, 392, 393, 414
universal-time format 605
UNIX 5, 7, 110, 508, 866
unload_datafile XLVII
unmodifiable lvalue 708
unnamed bit field 404
unnamed bit field with a zero width 406
unresolved references 513
unsigned 156
unsigned decimal integer 358
unsigned hexadecimal integer 358
unsigned int 150, 156, 327
unsigned integer 394
unsigned integer 516
unsigned long int 516
unsigned long integer 321, 516
unsigned octal integer 358
unsigned short 150
unstructured flowchart 125
untie an input stream from an output

stream 879
unwinding the function call stack 901
uppercase letter 534
uppercase letters 51, 152
uppercase stream manipulator 868,

872, 874
USENIX C++ Conference 833
user-defined class name 563
user-defined type 565, 696
user-defined types 552
user-defined, nonparameterized stream

manipulators 867
using a function template 549
<utility> header file 534
utility function 152

demonstration 614
for Sudoku 943

V
va_arg 511
va_copy macro XCIX
va_end 511
va_list 511
va_start 511
validation 590
validity checking 590
value 30, 33, 196
value of a variable 33
variable 29
variable arguments header stdarg.h 509
variable initialization 279
variable name

argument 568
parameter 568

variable-length argument list 509, 510
variable-length array (VLA) XC
variables 29
<vector> header file 533
vector class 705
verbs in a system specification 552

966 Index

vertical spacing 60, 100
vertical tab (’\v’) 312
vi 12
video I/O 854
virtual destructor 826
virtual function 780, 792, 819, 821
virtual function call 821
virtual function call illustrated 820
virtual function table (vtable) 819
virtual memory 904, 906
virtual memory operating systems 11
virtual screen VII
Visual Basic 10
Visual C# programming language 10
Visual C++ xxviii, 10
Visual C++ 2008 xxvii
Visual C++ 2010 xxvii
Visual C++ Express Edition LXXIX
Visual Studio 12
Visual Studio 2005

Quick Info box CVIII
visualizing recursion 175, 191
void * (pointer to void) 275, 338, 456
void keyword 564, 573
volatile information 4
volatile type qualifier 515
volume of a cube 535
vtable 819, 822

vtable pointer 822

W
w file open mode 425
w+ file open mode 425
w+ file update mode 425
waiting line 665
“walk off” either end of an array 684
watch debugger command CXXVIII
Watch window (Visual C++ 2005

debugger) CX, CXI
wb binary file open mode 516
wb file open mode 425
wb+ binary file open mode 516
wb+ file open mode 425
wchar_t character type 854
wchar.h LXXX
wctype.h LXXX
what virtual function of class exception

892, 897, 904
while repetition statement 63, 63, 68, 74
white space 41, 374, 863
white-space character 58, 60, 858, 859,

860
width implicitly set to 0 865
width member function of class

ios_base 865

width of a bit field 403, 406
width setting 865
Windows 508, 518
World Population Growth 139
World Wide Web (WWW) 6
worst-case runtime for an algorithm LIX
wraparound 704
Write 304
write function of ostream 857, 861
writing the word equivalent of a check

amount 352
writing to a file 423

X
x 362

Y
yellow arrow in break mode CVIII

Z
0 (zero) flag 368
zeros and ones 418
zeroth element 196

Thank you for purchasing a new copy of C™ How to Program, Sixth Edition by P. J. Deitel, H. M. Deitel. The
information below provides instruction on how to access the Companion site.

To access the Companion Website:

1. Go to http://wps.prenhall.com/ecs_deitel_chtp_6

2. From here you can register as a First-Time User or Returning User.

3. Your student access code will be sent to you by CourseSmart. On the registration page, enter your student
access code. Do not type the dashes. You can use lower or uppercase letters.

4. Follow the on-screen instructions. If you need help during the online registration process, simply click on
Need Help?

5. Once your personal Login Name and Password are confirmed, you can begin viewing the Companion Web-
site.

To login to the website for the first time after you’ve registered:

Follow step 1 to return to the Companion Website. Then, follow the prompts for "Returning Users" to enter
your Login Name and Password.

Note to Instructors: For access to the Instructor Resource Center, contact your Pearson Representative.

IMPORTANT: The access code on this page can only be used once to establish a subscription to the Com-
panion Website for C™ How to Program, Sixth Edition. If this access code has already been redeemed, it will
no longer be valid. If this is the case, you can purchase a subscription by going to the http://wps.prenhall.com/
ecs_deitel_chtp_6 website and selecting "Get Access."

http://wps.prenhall.com/ecs_deitel_chtp_6
http://wps.prenhall.com/ecs_deitel_chtp_6
http://wps.prenhall.com/ecs_deitel_chtp_6

	Cover������������
	Copyright
	Title Page
	Contents
	Preface
	1 Introduction to Computers, the Internet and the Web
	1.1 Introduction
	1.2 Computers: Hardware and Software
	1.3 Computer Organization
	1.4 Personal, Distributed and Client/Server Computing
	1.5 The Internet and the World Wide Web
	1.6 Machine Languages, Assembly Languages and High-Level Languages
	1.7 History of C
	1.8 C Standard Library
	1.9 C++
	1.10 Java
	1.11 Fortran, COBOL, Pascal and Ada
	1.12 BASIC, Visual Basic, Visual C++, C# and .NET
	1.13 Key Software Trend: Object Technology
	1.14 Typical C Program Development Environment
	1.15 Hardware Trends
	1.16 Notes About C and This Book
	1.17 Web Resources

	2 Introduction to C Programming
	2.1 Introduction
	2.2 A Simple C Program: Printing a Line of Text
	2.3 Another Simple C Program: Adding Two Integers
	2.4 Memory Concepts
	2.5 Arithmetic in C
	2.6 Decision Making: Equality and Relational Operators

	3 Structured Program Development in C
	3.1 Introduction
	3.2 Algorithms
	3.3 Pseudocode
	3.4 Control Structures
	3.5 The if Selection Statement
	3.6 The if…else Selection Statement
	3.7 The while Repetition Statement
	3.8 Formulating Algorithms Case Study 1: Counter-Controlled Repetition
	3.9 Formulating Algorithms with Top-Down, Stepwise Refinement Case Study 2: Sentinel-Controlled Repetition
	3.10 Formulating Algorithms with Top-Down, Stepwise Refinement Case Study 3: Nested Control Structures
	3.11 Assignment Operators
	3.12 Increment and Decrement Operators

	4 C Program Control
	4.1 Introduction
	4.2 Repetition Essentials
	4.3 Counter-Controlled Repetition
	4.4 for Repetition Statement
	4.5 for Statement: Notes and Observations
	4.6 Examples Using the for Statement
	4.7 switch Multiple-Selection Statement
	4.8 do…while Repetition Statement
	4.9 break and continue Statements
	4.10 Logical Operators
	4.11 Confusing Equality (==) and Assignment (=) Operators
	4.12 Structured Programming Summary

	5 C Functions
	5.1 Introduction
	5.2 Program Modules in C
	5.3 Math Library Functions
	5.4 Functions
	5.5 Function Definitions
	5.6 Function Prototypes
	5.7 Function Call Stack and Activation Records
	5.8 Headers
	5.9 Calling Functions By Value and By Reference
	5.10 Random Number Generation
	5.11 Example: A Game of Chance
	5.12 Storage Classes
	5.13 Scope Rules
	5.14 Recursion
	5.15 Example Using Recursion: Fibonacci Series
	5.16 Recursion vs. Iteration

	6 C Arrays
	6.1 Introduction
	6.2 Arrays
	6.3 Defining Arrays
	6.4 Array Examples
	6.5 Passing Arrays to Functions
	6.6 Sorting Arrays
	6.7 Case Study: Computing Mean, Median and Mode Using Arrays
	6.8 Searching Arrays
	6.9 Multiple-Subscripted Arrays

	7 C Pointers
	7.1 Introduction
	7.2 Pointer Variable Definitions and Initialization
	7.3 Pointer Operators
	7.4 Passing Arguments to Functions by Reference
	7.5 Using the const Qualifier with Pointers
	7.6 Bubble Sort Using Call-by-Reference
	7.7 sizeof Operator
	7.8 Pointer Expressions and Pointer Arithmetic
	7.9 Relationship between Pointers and Arrays
	7.10 Arrays of Pointers
	7.11 Case Study: Card Shuffling and Dealing Simulation
	7.12 Pointers to Functions

	8 C Characters and Strings
	8.1 Introduction
	8.2 Fundamentals of Strings and Characters
	8.3 Character-Handling Library
	8.4 String-Conversion Functions
	8.5 Standard Input/Output Library Functions
	8.6 String-Manipulation Functions of the String-Handling Library
	8.7 Comparison Functions of the String-Handling Library
	8.8 Search Functions of the String-Handling Library
	8.9 Memory Functions of the String-Handling Library
	8.10 Other Functions of the String-Handling Library

	9 C Formatted Input/Output
	9.1 Introduction
	9.2 Streams
	9.3 Formatting Output with printf
	9.4 Printing Integers
	9.5 Printing Floating-Point Numbers
	9.6 Printing Strings and Characters
	9.7 Other Conversion Specifiers
	9.8 Printing with Field Widths and Precision
	9.9 Using Flags in the printf Format Control String
	9.10 Printing Literals and Escape Sequences
	9.11 Reading Formatted Input with scanf

	10 C Structures, Unions, Bit Manipulations and Enumerations
	10.1 Introduction
	10.2 Structure Definitions
	10.3 Initializing Structures
	10.4 Accessing Structure Members
	10.5 Using Structures with Functions
	10.6 typedef
	10.7 Example: High-Performance Card Shuffling and Dealing Simulation
	10.8 Unions
	10.9 Bitwise Operators
	10.10 Bit Fields
	10.11 Enumeration Constants

	11 C File Processing
	11.1 Introduction
	11.2 Data Hierarchy
	11.3 Files and Streams
	11.4 Creating a Sequential-Access File
	11.5 Reading Data from a Sequential-Access File
	11.6 Random-Access Files
	11.7 Creating a Random-Access File
	11.8 Writing Data Randomly to a Random-Access File
	11.9 Reading Data from a Random-Access File
	11.10 Case Study: Transaction-Processing Program

	12 C Data Structures
	12.1 Introduction
	12.2 Self-Referential Structures
	12.3 Dynamic Memory Allocation
	12.4 Linked Lists
	12.5 Stacks
	12.6 Queues
	12.7 Trees

	13 C Preprocessor
	13.1 Introduction
	13.2 #include Preprocessor Directive
	13.3 #define Preprocessor Directive: Symbolic Constants
	13.4 #define Preprocessor Directive: Macros
	13.5 Conditional Compilation
	13.6 #error and #pragma Preprocessor Directives
	13.7 # and ## Operators
	13.8 Line Numbers
	13.9 Predefined Symbolic Constants
	13.10 Assertions

	14 Other C Topics
	14.1 Introduction
	14.2 Redirecting I/O
	14.3 Variable-Length Argument Lists
	14.4 Using Command-Line Arguments
	14.5 Notes on Compiling Multiple-Source-File Programs
	14.6 Program Termination with exit and atexit
	14.7 volatile Type Qualifier
	14.8 Suffixes for Integer and Floating-Point Constants
	14.9 More on Files
	14.10 Signal Handling
	14.11 Dynamic Memory Allocation: Functions calloc and realloc
	14.12 Unconditional Branching with goto

	15 C++ as a Better C; Introducing Object Technology
	15.1 Introduction
	15.2 C++
	15.3 A Simple Program: Adding Two Integers
	15.4 C++ Standard Library
	15.5 Header Files
	15.6 Inline Functions
	15.7 References and Reference Parameters
	15.8 Empty Parameter Lists
	15.9 Default Arguments
	15.10 Unary Scope Resolution Operator
	15.11 Function Overloading
	15.12 Function Templates
	15.13 Introduction to Object Technology and the UML
	15.14 Wrap-Up

	16 Introduction to Classes and Objects
	16.1 Introduction
	16.2 Classes, Objects, Member Functions and Data Members
	16.3 Defining a Class with a Member Function
	16.4 Defining a Member Function with a Parameter
	16.5 Data Members, set Functions and get Functions
	16.6 Initializing Objects with Constructors
	16.7 Placing a Class in a Separate File for Reusability
	16.8 Separating Interface from Implementation
	16.9 Validating Data with set Functions
	16.10 Wrap-Up

	17 Classes: A Deeper Look, Part 1
	17.1 Introduction
	17.2 Time Class Case Study
	17.3 Class Scope and Accessing Class Members
	17.4 Separating Interface from Implementation
	17.5 Access Functions and Utility Functions
	17.6 Time Class Case Study: Constructors with Default Arguments
	17.7 Destructors
	17.8 When Constructors and Destructors are Called
	17.9 Time Class Case Study: A Subtle Trap—Returning a Reference to a private Data Member
	17.10 Default Memberwise Assignment
	17.11 Wrap-Up

	18 Classes: A Deeper Look, Part 2
	18.1 Introduction
	18.2 const (Constant) Objects and const Member Functions
	18.3 Composition: Objects as Members of Classes
	18.4 friend Functions and friend Classes
	18.5 Using the this Pointer
	18.6 static Class Members
	18.7 Data Abstraction and Information Hiding
	18.8 Wrap-Up

	19 Operator Overloading
	19.1 Introduction
	19.2 Fundamentals of Operator Overloading
	19.3 Restrictions on Operator Overloading
	19.4 Operator Functions as Class Members vs. Global Function
	19.5 Overloading Stream Insertion and Stream Extraction Operators
	19.6 Overloading Unary Operators
	19.7 Overloading Binary Operators
	19.8 Dynamic Memory Management
	19.9 Case Study: Array Class
	19.10 Converting between Types
	19.11 Building a String Class
	19.12 Overloading ++ and --
	19.13 Case Study: A Date Class
	19.14 Standard Library Class string
	19.15 explicit Constructors
	19.16 Proxy Classes
	19.17 Wrap-Up

	20 Object-Oriented Programming: Inheritance
	20.1 Introduction
	20.2 Base Classes and Derived Classes
	20.3 protected Members
	20.4 Relationship between Base Classes and Derived Classes
	20.4.1 Creating and Using a CommissionEmployee Class
	20.4.2 Creating a BasePlusCommissionEmployee Class Without Using Inheritance
	20.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	20.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Data
	20.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Data

	20.5 Constructors and Destructors in Derived Classes
	20.6 public, protected and private Inheritance
	20.7 Software Engineering with Inheritance
	20.8 Wrap-Up

	21 Object-Oriented Programming: Polymorphism
	21.1 Introduction
	21.2 Polymorphism Examples
	21.3 Relationships Among Objects in an Inheritance Hierarchy
	21.3.1 Invoking Base-Class Functions from Derived-Class Objects
	21.3.2 Aiming Derived-Class Pointers at Base-Class Objects
	21.3.3 Derived-Class Member-Function Calls via Base-Class Pointers
	21.3.4 Virtual Functions
	21.3.5 Summary of the Allowed Assignments Between Base-Class and Derived-Class Objects and Pointers

	21.4 Type Fields and switch Statements
	21.5 Abstract Classes and Pure virtual Functions
	21.6 Case Study: Payroll System Using Polymorphism
	21.6.1 Creating Abstract Base Class Employee
	21.6.2 Creating Concrete Derived Class SalariedEmployee
	21.6.3 Creating Concrete Derived Class HourlyEmployee
	21.6.4 Creating Concrete Derived Class CommissionEmployee
	21.6.5 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee
	21.6.6 Demonstrating Polymorphic Processing

	21.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood”
	21.8 Case Study: Payroll System Using Polymorphism and Runtime Type Information with Downcasting, dynamic_cast, typeid and type_info
	21.9 Virtual Destructors
	21.10 Wrap-Up

	22 Templates
	22.1 Introduction
	22.2 Function Templates
	22.3 Overloading Function Templates
	22.4 Class Templates
	22.5 Nontype Parameters and Default Types for Class Templates
	22.6 Notes on Templates and Inheritance
	22.7 Notes on Templates and Friends
	22.8 Notes on Templates and static Members
	22.9 Wrap-Up

	23 Stream Input/Output
	23.1 Introduction
	23.2 Streams
	23.2.1 Classic Streams vs. Standard Streams
	23.2.2 iostream Library Header Files
	23.2.3 Stream Input/Output Classes and Objects

	23.3 Stream Output
	23.3.1 Output of char * Variables
	23.3.2 Character Output Using Member Function put

	23.4 Stream Input
	23.4.1 get and getline Member Functions
	23.4.2 istream Member Functions peek, putback and ignore
	23.4.3 Type-Safe I/O

	23.5 Unformatted I/O Using read, write and gcount
	23.6 Introduction to Stream Manipulators
	23.6.1 Integral Stream Base: dec, oct, hex and setbase
	23.6.2 Floating-Point Precision (precision, setprecision)
	23.6.3 Field Width (width, setw)
	23.6.4 User-Defined Output Stream Manipulators

	23.7 Stream Format States and Stream Manipulators
	23.7.1 Trailing Zeros and Decimal Points (showpoint)
	23.7.2 Justification (left, right and internal)
	23.7.3 Padding (fill, setfill)
	23.7.4 Integral Stream Base (dec, oct, hex, showbase)
	23.7.5 Floating-Point Numbers; Scientific and Fixed Notation (scientific, fixed)
	23.7.6 Uppercase/Lowercase Control (uppercase)
	23.7.7 Specifying Boolean Format (boolalpha)
	23.7.8 Setting and Resetting the Format State via Member Function flags

	23.8 Stream Error States
	23.9 Tying an Output Stream to an Input Stream
	23.10 Wrap-Up

	24 Exception Handling
	24.1 Introduction
	24.2 Exception-Handling Overview
	24.3 Example: Handling an Attempt to Divide by Zero
	24.4 When to Use Exception Handling
	24.5 Rethrowing an Exception
	24.6 Exception Specifications
	24.7 Processing Unexpected Exceptions
	24.8 Stack Unwinding
	24.9 Constructors, Destructors and Exception Handling
	24.10 Exceptions and Inheritance
	24.11 Processing new Failures
	24.12 Class auto_ptr and Dynamic Memory Allocation
	24.13 Standard Library Exception Hierarchy
	24.14 Other Error-Handling Techniques
	24.15 Wrap-Up

	A: Operator Precedence Charts
	B: ASCII Character Set
	C: Number Systems
	C.1 Introduction
	C.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers
	C.3 Converting Octal and Hexadecimal Numbers to Binary Numbers
	C.4 Converting from Binary, Octal or Hexadecimal to Decimal
	C.5 Converting from Decimal to Binary, Octal or Hexadecimal
	C.6 Negative Binary Numbers: Two’s Complement Notation

	D: Game Programming: Solving Sudoku
	D.1 Introduction
	D.2 Deitel Sudoku Resource Center
	D.3 Solution Strategies
	D.4 Programming Sudoku Puzzle Solvers
	D.5 Generating New Sudoku Puzzles
	D.6 Conclusion

	Appendices on the Web
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

