
-	
V.

!, •	 0
MKROPIOCESSORS
AND IN;.KFACING.
?R0GRA N HAR
SECOND EDITION	 a

"¼
(

C, _	 .i:. '/	 :.	 ./:	 .,	 '

,:.

I,	 I

'a	 I. •d

'S	 'a

1.11
a

CsiRpuWr

8O . 8O2 80386 •	 ? c?

MICROPROCESSORS

INTERFACING

MICROPROCESSORS
AND

INTERFACING
PROGRAMMING
AND HARDWARE

EDITION	 DOUGLAS V. HALL

Tata McGraw-Hill Publishing Company Limited
NEW DELHI

McGraw-Hill Offices
New Delhi New York St Louis San Francisco Auckland Bogota
Caracas Lisbon London Madrid Mexico City Milan Montreal

San JUan Singapore Sydney Tokyo Toronto

Tata McGraw-Hill
A Division of The McGraw-Rm Companies

MICROPROCESSORS AND INTERFACING: Programming & Hsrdwre. ZIE

Copynght C 199 by the Glencoe Division of Macmlllan/McGraw.HllI School Publishing
Company. Copyright C 1986 by McGraw-Hill, Inc. All rlgMs reserved.
No part of this publication may be reproduced or distributed In any form
or by any means, or stored in a database or retrieval system, wIthout the
prior written permission of the publisher.

IBM PC, IBM PClXT IBM "PCIAT, IBM PS2. and MicroChannel Architecture are registered
trademarks of IBM Corporation. The following are registered trademarks of Intel Corporation:
1486TM , j98TU ICE, iRMX. Borland. Sidekick. 'Turbo Assembler, TASM, Turbo Debugger, end
Turbo C ++ are registered trademarks of Borland International, Inc. Microsoft, MS. MS DOS.
Windows 3.0, Codeview, and MASM are registered trademarks of Mlcrooft Corporation. Other
product names are registered trademarks of the companies associated with the product name
reference in the text or figure.

TATA McGraw-Hill Edition 1999
Sixth reprint 2000
Reprint, 2003

RYLOCRACRQROL

Reprinted in India by arrangement with The McGraw-Hill Companies, Inc.,
New York

For Sal. in India Only

Library of Congress CatalogIng-in-PublIcatIon Data

Hall. Douglas V.
Microprocessors and Interfacing : Programming and hardware /

Douglas V. HaIL-2nd ed.
p.	 cm.

Includes bibliographical references and index.
ISBN 0-07-025742-6 (texl).—ISBN 0-07-025743-4 (experIments

manual).—ISBN 0-07-025744-2 (instruCtor's manual)
1. Micropocassors—Programming. 2. MIcroprocessors. 3. Computer

interfaces. I. Title

	

0A76.6.H2994	 1991

	

005.26—dc2O	 9114526
CIP

When ordering this title use ISBN 0-07-463639-1

Published by ThIs McGraw-Hill Publishing Company Limited,
7 West Patel Nagar, New DelhI 110 006. and printed at
Rajkamal Electric Press. GTK Road, DelhI 110 033

TO MY STUDENTS

Let us go forward together Into the future.

CONTENTS

Preface	 xl•

CHAPTER 1
Computer Number Systems, Codes, and Digital Devices	 1

Computer Number Systems and Codes 	 1
Arithmetic Operations on Binary, Hex, and BCD Numbers	 6
Basic Digital Devices 	 10

CHAPTER 2
Computers, Microcomputers, and Microprocessors__An Introduction 	 19

Types of Computers	 19
How Computers and Microcomputers Are Used—An Example 	 20
Overview of Microcomputer Structure and Operation 	 23
Execution of a Three-Instruction Program 	 24
Microprocessor Evolution and Types 	 26
The 8086 Microprocessor Family—Overview 	 27
8086 Internal Architecture	 28
Introduction to Programming the 8086 	 32

CHAPTER 3
8086 Family Assembly Language Programming__Introduction 	 37

Program Development Steps	 37
Constructing the Machine Codes for 8086 Instructions 	 47
Writing Programs for Use with an Assembler 	 53
Assembly Language Program Development Tools 	 59

CHAPTER 4
Implementing Standard Program Structures in 8086 Assembly Language 	 65

Simple Sequence Programs	 65
Jumps. Flags, and Conditional Jumps	 71
If-Then, If-Then-Else, and Multiple If-Then-Else Programs 	 77
While-Do Programs	 82
Repeat-Until Programs	 84
Instruction Timing and Delay Loops 	 91

CHAPTER 5

	

Strings, Procedures, and Macros 	 95
The 8086 String Instructions 	 95
Writing and Using Procedures	 99
Writing and Using Assembler Macros	 127

CHAPTER 6
8086 Instruction Descriptions and Assembler Directives 	 131

Instruction Descriptions 	 131
Assembler Directives 	 158

vii

CHAPTER 7
8086 System Connections, Timing, and Troubleshooting 	 163

A Basic 8086 Microcomputer System	 163
Using a Logic Analyzer to Observe Microprocessor Bus Signals 	 168

An Example Minimum-Mode System. the SDK-86 	 173
Troubleshooting a Simple 8086-Based Microcomputer 	 201

CHAPTER 8

	

8086 Interrupts and Interrupt Applications	 207
8086 Interrupts and Interrupt Responses	 207
Hardware Interrupt Applications 	 216
8254 Software-Programmable Timer/Counter 	 221
8259A Priority Interrupt Controller 	 232
Software Interrupt Applications 	 240

CHAPTER 9
Digital Interfacing	 245

Programmable Parallel Ports and Handshake Input/Output	 245
Interfacing a Microprocessor to Keyboards 	 260
Interfacing to Alphanumeric Displays	 267
Interfacing Microcomputer Ports to High-Power Devices 	 277

Optical Motor Shaft Encoders	 283

CHAPTER 10

	

Analog Interfacing and Industrial Control	 290
Review of Operational-Amplifier Characteristics and Circuits 	 290

Sensors and TransducerS	 295
D/A Converter Operation. Interfacing, and Applications 	 301
A'D Converter Specifications. Types, and Interfacing	 304

A Microcomputer-Based Scale 	 307
A Microcomputer-Based Industrial Process-Control System 	 317
An 8086-Based Process-Control System	 320
Developing the Prototype of a Microcomputer-Based Instrument 	 331

Robotics and Embedded Control 	 332
Digital Signal Processing and Digital Filters 	 336

CHAPTER 11

	

DMA, DRAMs, Cache Memories, Coprocessors, and EDA Tools 	 345
Introduction	 346
The 8086 Maximum Mode 	 346
Direct Memory Access (DMA) Data Transfer 	 348
Interfacing and Refreshing Dynamic RAMs	 353
A Coprocessor—The 8087 Math Coprocessor	 365
Computer-Based Design and Development Tools 	 379

CHAPTER 12

	

C, a High-Level Language for System Programming 	 389
Introduction—A Simple C Program Example 	 389
Program Development Tools for C 	 391
Programming in C	 395

CONTENTS

CHAPTER 13

	

Microcomputer System Peripherals	 435
System-Level Keyboard Interfacing 	 435
Microcomputer Displays 	 439
Computer Mjce and Trackballs 	 462
Computer Vision	 463
Magnetic-Disk Data-Storage Systems 	 465
Optical Disk Data Storage 	 478
Printer Mechanisms and I.iterfacing 	 479
Speech Synthesis and Recognition with a Computer	 481
Digital Video Interactive	 483

CHAPTER 14
Data Communications and Networks	 487

Introduction to Asynchronous Serial Data Communication 	 487
Serial-Data Transmission Methods and Standards 	 493
Asynchronous Communication Software on the IBM PC	 506
Synchronous Serial-Data Communication and Protocols 	 518
Local Area Networks	 522
The GPIB, HPIB. 1EEE488 Bus	 529

CHAPTER 15

	

The 80286, 80386, and 80486 Microprocessors 	 534
Multiuser/Multitasking Operating System Concepts 	 535
The Intel 80286 Microprocessor 	 543
The Intel 80386 32-Bit Microprocessor 	 547
The Intel 80486 Microprocessor 	 568
New Directions 	 570

BIBLIOGRAPHY 577

APPENDIX A iAPX 86/10 16-BIT HMOS MICROPROCESSOR 579
APPENDIX B INSTRUCTIONS: 8086/8088, 186, 8087 592
INDEX 607

-	 CONTENTS	 I\

PREFA CE

This book is written for a wide variety of introductoiy microprocessor courses.
The only prerequisite for this book is some knowledge of diodes, transistors,
and simple digital devices.

My experience as an engineer and as a, teacher indicates that it is much more
productive to first learn one microprocessor family veiy thoroughly and from
that strong base learn others as needed. For this book I chose the Intel 8086/
80186/80286/80386/80486 family of microprocessors. Devices in this family are
used In millions and millions of personal computers. including the IBM PC/AT.
the IBM PS/2 models, and many "clones." The 8086 was the first member of this
family, and although it has been superseded by newer processors, the 8086 is
still an excellent entry point for learning about microprocessors. You don't need
to know about the advanced features of the newer processors until you learn
about multiuser/multitasking systems. Therefore, the 8086 is used for most of
the hardware and programming examples until Chapter 15. which discusses the
features of the newer processors and how these features are used In multiuser/
multitasking systems.

CONTENT AND ORGANIZATION
All chapters begin with fundamental objectives and conclude with a review of
Important terms and concepts. Each chapter also concludes with a generous
supply of questions and problems that reinforce both the theory and applications
presented in the chapters.

To help refresh your memory. Chapter 1 contains a brief review of the digital
concepts needed for the rest of the book, It also includes an overview of basic
computer mathematics and arithmetic operations on binary, HEX, and BCD
numbers.

Chapters 2-10
Chapters 2-10 provide you with a comprehensive Introduction to microproces-
sors, including interrupt applications, digital and analog interfacing, and
Industrial controls, These chapters include an overview of the 8086 microproces-
sor family and its architecture, programming language, and systems connections
and troubleshooting.

Because I came into the world of electronics through the route of vacuum
tubes, my first tendency in teaching microprocessors was to approach them from
a hardware direction. However, the more I designed with microprocessors and
taught microprocessor classes, the more I became aware that the real essence of
a microprocessor is what you can program it to do. Therefore, Chapters 2-5
introduce you to writing structured assembly language programs for the 8086
microprocessor. The approach taken in this programming Section is to solve the
problem, write an algorithm for the solution, and then simply translate the
algorithm to assembly language. Experience has shown that thIs approach is
much more likely to produce a working program thanjust writing down assembly
language instructions. The 8086 instruction set is introduced in Chapters 2-5
as needed to solve simple programming problems, but for reference Chapter 6
contains a dictionary of all 8086 instructions with examples for each.

Chapter 7 dIscusses the signals. timing. and system Connections for a simple
8086-based microcomputer. Also discussed In Chapter 7 is a systematic method
for troubleshooting a malfunctioning 8086-based microcomputer system and
the use of a logic analyzer to observe microcomputer bus signals. Chapter 8
discusses how the 8086 responds to interrupts, how interrupt-service procedures

xi

are written, and the operation of a peripheral device called a priority-interrupt
Con roller

Chapters 9 and 10 show how a microprocessor Is Interlaced with a wide variety
of low-level Input and output devices. Chapter 9 shows how a microprocessor is
Interfaced with digital devices such as keyboards, displays, and relays. Chapter
10 shows how a microprocessor Is Interfaced with analog Input/output devices
such as AIDs. D/As, and a variety of sensors. Chapter 10 also shows how all the
"pleces are put together to produce a microprocessor-based scale and a simple
microprocessor-based process control system. Chapter 10 concludes with a
discussion of how microprocessors can be used to Implement digital filters.

Chapters 11-15
Chapters 11-15 are devoted to the hardware, software, and peripheral Interfacing
for a microcomputer such as those In the IBM PC and the IBM PS/2 families.
Chapter 11 discusses motherboard circuiuy. Including DRAM systems, caches.
math coprocessors. and peripheral Interface buses. Chapter 11 also shows how
to use a schematic capture program to draw the schematic, a simulator program
to verify the logic and timing of the design. and a layout program to design a
printed-circuit board for the system. Knowledge of these electronic design
automation tools is essential for anyone developing high-speed microprocessor
systems

At the request of many advisors from industry. Chapter 12 Introduces you to
the C programming language. which Is used to write a large number of system-
level programs. This chapter takes advantage of the fact that It is very easy to
learn C If you are already familiar with 8086-type assembly language. A section
in this chapter also shows you how to write simple programs which contain both
C and assembly language modules.

Chapter 13 describes the operation and interfacing of common peripherals
such as CRT displays, magnetic disks, and printers. Chapter 14 shows how a
microcomputer is interfaced with communication systems such as modems and
networks.

Finally, Chapter 15 starts with a discussion of the needs that must be met by
a multiuser/multitasking operating system and then describes how the protected-
mode features of the 80286, 80386. and 80486 processors meet these needs.
This section of the book also includes discussions of how to develop programs
for the 386 in a variety of environments. The chapter and the book conclude
with Introductions to parallel processors, neural networks, and fuzzy logic. I
think you will find these newly developing areas as fascinating as I have.

SUGGESTIONS FOR ASSIGNMEN'rS

Flexible Organization
The text is comprehensive, yet flexible in il. organization. Chapter 1 could be
easily omitted if students have a solid background in basic binary mathematics
and digital fundamentals.

Chapters 2-10
I suggest following Chapters 2-10 as an Instructional block as each chapter
builds on the preceding chapter. These nine chapters represent ideal coverage
for a short course in microprocessors. The remaining chapters represent an
opportunity for the instructor to tailor assignments for the students needs or
perhaps to give an individual student added study in recent developments In the
architecture of microprocessors.

Xii	 PR[IAC[

Chapter 11
Individual topics from Chapter 11 could be selected for study as students gain
knowledge of the 'tooIs available for designing computer-based systems. The
DRAM section is very important.

Chapter 12
You may wish to assign or leave for outside reading Chapter 12 on programming
in C, a new chapter. At the very least you should take a careful look at the simple
programming examples and the development of tools for C. If class time does
not permit assigning this chapter. you may wish to use selected examples and
programs in your lecture presentations. This chapter should be included in any
course sequence which does not have a separate class in C programming.

Chapter 13
Portions of the peripherals chapter may be assigned as required. depending
upon the course syllabus. The CRT. disk, and printer sections are highly
recommended.

Chapter 14
This is an important chapter, given the ever-expanding use of data communica-
tions. It should be assigned. if at all possible. unless the curriculum includes a
separate course in data communications. Of primary importance are the sections
on modems and LANs.

Chapter 15
The final chapter is on the cutting edge of the development of new microproces-
sors. It is my hope that all students will have the opportunity to read this chapter.
At the very least students should read the section on the 386. This is a final
chapter. yet it is only the beginning of their study of microprocessors.

NEW FEATURES IN THIS EDITION.
In response to feedback from industry and from a variety of electronics instruc-
tors. the second edition of Microprocessors and Interfacing: Programming and
Hardware contains the following new or enhanced features.

I. The order of the topics in Chapters 4 and 5 has been improved, based on
instructor feedback.

2. A greatly expanded section on digital signal processing hardware and software
has been added to Chapter 10.

3. A section in Chapter II describes and shows an example of how electronic
design automation tools such as schematic capture programs. simulator
programs. and PC board layout programs are used to develop the hardware
for a microcomputer system.

4. At the request of industry advisors. Chapter 12 is a completely new chapter
which contains a solid introduction to the C programming language. in-
chiding examples of programs with C and assembly language modules.

5. Chapters 13 and 14. the systems peripherals chapters, have been updated to
reflect advances in technology such as VGA graphics. optical-disk storage.
laser printers, and digital video interactive. The chapters now include both
assembl y language and C interface program examples.

6. The network section of Chapter 14 has been expanded to reflect the current
importance of networks

PR[IA(I

7. Chapter 15 now contains an extensive description of the features of the 386
and 486 processors and a discussion of how these features are used in
multitasking environments such as Microsoft's OS/2 and Windows 30.

8. Introductions to neutral network coniputers and to fuzzy logic have been
added to Chapter 15.

SPECIAL FEATURES AND SUPPLEMENTS
This book and the Experiments Manual written to accompany it contain many
hardware and software exercises students can do to soIidty their knowledge of
microprocessors. An IBM PC or IBM PC-compatible computer can be used to
edit, assemble, link/locate, run, and debug many of the 8086 assembly language
programs.

The Experiments Manual contains 40 laboratory exercises that are directly
coordinated to the text. Each experiment includes chapter references, required
equipment, objectives, and experimental procedures.

The instructor's Manual contains answers to the review questions. It also
includes experimental notes and answers to selected questions for the Experi-
ments Manual.

The Instructor's Manual includes disk directories. There are two disks available.
This set of disks contains the source code for all the programs in the tcxt and
Experiments Manual.

ADDITIONAL GOALS
One of the main goals of this book is to teach you how to decipher manufacturers'
data sheets for microprocessor and peripheral devices, so the book contains
relevant parts of many data sheets. Because of the large number of devices
discussed, however, it was not possible to include complete data sheets. II you
are doing an in-depth study, it is suggested that you acquire or gain access to
the latest editions of Intel Microprocessors and Peripherals handbooks. These
are available free of charge to colleges and universities from the Academic
Relations Department of Intel. The bibliography at the end of the book contains
a list of other books and periodicals you can refer to for further details on the
topics discussed in the book.

ACKNOWLEDGMENTS
I wish to express my profound thanks to the people around me who helped make
this book a reality. Thanks to Pat Hunter, whose cheerful encouragement helped
me through seemingly endless details. She proofread and coded the manuscript.
worked out the answers to the end-of-chapter problems to verily that they are
solvable, and made suggestions ann contributions too numerous to mention.
Thanks to Richard Cihkey of New England Technical Institute in New Britain,
Connecticut, who meticulously worked his way through the manuscript and
made many valuable suggestions. Thanks to Mike Olisewski of Instant Inforria-
tion, Inc.. who helped me "C the light in Chapter 12 and contributed his
industry perspective on the topics that should be included in the book. Thanks
to Dr. Michael A. Driscoll of Portland State University. who helped me tine-tune
Chapter 15. Thanks to Intel Corporation for letting me use many drawings from
their data books so that this book could lead readers into the real world of data
books. Finally, thanks to my wife. Rosemary. my children Linda. Brad. Mark.
Lee. and Kathryn. and to the rest of m y family br their patience and support
during the long effort of rewriting this book.

If you have suggestions for improving the book or ideas that might clarilv a
point for someone else. please' communicate with me through the publisher.

Do'1g10s '. tfnli

XV	 PREFACE

ter Number
ita1 Devices

Systems,

Before starting our discussion of microprocessors and
microcomputers, we need to make sure that some key
concepts of the number systems, codes, and dtgital
devices used in microcomputers arc fresh In your mind.
If the short summaries of these concepts in this chapter
are not enough to refresh your memory, then you may
want to consult some of the chapters in Digital Circuits
and Systems. McGraw-Hill, 1989, before going on In
this book.

OBJECTIVES

At the conclusion of this chapter you should be able to:

I. Convert numbers between the following codes: bi-
nary, hexadecimal, and BCD.

2. Define the terms bit, nibble, byte, word, most sig-
niji cant btt. and least signtficant btt.

3. Use a table to find the ASCII or EBCDIC code for a
given alphanumeric character.

4. Perform addition and subtraction of binary, hexa-
decimal. and BCD numbers.

5. Describe the operation of gates. flip-flops. latches
registers, ROMs. PAI.s, dynamic RAMs, static RAMs
and buses.

6. Describe how an arithmetic logic unit can be in-
structed to perform arithmetic or logical operations
on binary words.

COMPUTER NUMBER SYSTEMS
AND CODES

Review of Decimal System

To understand the structure ul the binary number
system. the first step : '. t he familiar dcci mal
or base- 10 number sv.te:li I cue ,, a decimal number
with the value of each place holder or digit expressed as
a power of 10.

5	 3	 4	 6.	 7	 2
10	 I0	 10	 100	101 102

The digits in the decimal number 534672 thus tell you
that you have 5 thousands, 3 hundreds, 4 tens. 6 ones.
7 tenths, and 2 hundredths. The number of symbols
needed in any number system is equal to the base
number, in the decimal number system, then, there are
10 symbols. 0 through 9. When the Count in any digit
position passes that of the highest-value symbol the
digit rolls back to 0 and the next higher digit is mere-
.irented by 1. A car odometer is a good example of this.

A number system can be built using powers of any
number as place holders or digits, but some bases are
more useful than others. It is difficult to build electronic
circuits which can store and manipulate 10 different
voltage levels but relatively easy to build circuits which
can handle two levels. Therefore, a binary, or base-2.
number system is used to represent numbers in digital
systems.

The Binary Number System

Figure 1-la. p. 2. shows the value of each digit 1n a
binary number. Each binary digit represents a power of
2. A binary digit is often called a bit. Note that digits to
the right of the binary point represent fractions used
for numbers less than I - The binary system uses only
two symbols, zero (0) and one (I), so in binary you count
as follows: 0. 1, 10, 11. 100, 101, 110. Ill. 1000. etc.
For reference. Figure 1-lb shows the powers of 2 from
2 1 to

Binary numbers are often called binary words or just
words. Binary words with certain numbers of bits have
also acquired special names. A 4-bit binary word is
called a nibble, and an 8-bit binary word is caUed a byte.
A 16-bit binary word is often referred to just as a word.
and a 32-bit binary word Is referred to as a doubleword.
The rightmost or least stgoficant bit of a binary word
is usually referred to as the LSB. The leftmost or most
significant bit of a binary word is usually called the
MSII.

To convert a binary number to its equivalent decimal
number, multiply each digit times the decimal value of
the digit and just add these up. The binary number 101.
for example. represents: (I X 2) + (0 x 2) + (I X 21).

2' -	 512
2 10 • 1,024
2" - 2.048
2°	 4,096
2° - 8.192
2' - 18,384
2" - 32.768
216 - 65,536

2" •	 131.072
2" -	 262,144
2 0 -	 524,288
2" - 1,048.576
2 2 • 2,097.152

4,194,304
- 8.388.608
- 16,777,216

(b)

225 -	 •.554.432
2" •	 67.109,8e.a
2"	 134.217,728
2" - 268,436.458
2" • 536,870,912
2" • 1,073,741,824
2" - 2.147,483.648
2" • 4294 967 296

4

2' •	 2
2 2 •	 4
2	 8

16
10110.1	 1	 2'- 32

2'	 642' 2' 2' 2' 2'2'2'2° 2'2'
2'	 128

128 6432 16842 1	 2'- 256
(a)

FIGURE 1•1 (a) Digit values in binary. (b) Powers of 2.

or 4 + 0 + 1	 decimal 5. For the binary number
10110.11. you have:

(Ix 2) + (0 x 2') + (lx 22) + (lx 21) + (0 x 20)
+ (1 x 2 - ') + (1 x 2 -2') =

16 + 0 + 4 + 2 + 0 + 0.5 + 0.25 = decimal 22.75

To convert a decimal number to binary, there are two
common methods. The first (Figure 1-2a) is simply a
reverse of the binary-to-decimal method. For example.
to convert the decimal number 21 (sometimes written
as 21 ,) to binary, first subtract the largest power of 2
that will fit in the number. For 21, 0 the largest power of
2 that will fit Is 16 or 2. Subtracting 16 from 21 gives
a remainder of 5. Put a 1 in the 2 digit position and
see if the next lower power of 2 will fit in the remainder.
Since 2' is8 and 8 wIll not fit in the remainder of 5. put
a 0 in the 2' digit position. Then try the next lower
power of 2. In this case the next is 22 or 4. which will
fit in the remainder of 5. A I is therefore put in the 22
digit position. When 22 or 4 is subtracted from the old
remainder of 5, a new remainder of I is left. Since 2' or
2 will not fit into this remainder, a 0 is put In that
position. A 1 is put in the 2° position because 2° is equal
to I and this fits exactly into the remainder of 1. The
result shows that 21, 0 is equal to 10101 in binary. This
conversion process is somewhat messy to describe but
easy to do. Iry converting 46, to binary. You should get
101110.

Another method of converting a decimal number to
binary is shown In Figure 1-2b. Divide the decimal
number by 2 and write the quotient and remainder as
shown. Divide this quotient and following quotients by
2 until the quotient reaches 0. The column of remainders
will be the binary equivalent of the given decimal num-
ber. Note that the MSD is on the bottom of the column
and the LSD Is on the lop of the column ii you perform
the divisions in order from the top to the bottom of the
page. You can demonstrate that the binary number is
correct by reconverting from binary to decimal, as shown
in the right-hand side of Figure I -2b.

You can convert decimal numbers less than I to binarj
by successive multiplication by 2. recording carries until
the quantity to the right of the decimal point becomes
zero, as shown in Figure 1-2c. The carries represent the
binary equivalent of the decimal number, with the most
sign(ficant bit at the top of the column. Decimal 0.625
equals 0.101 in binary. For decimal values that do not
convert exactly the way this one did (the quantity to the

2	 CHAPTER ONE

right of the decimal never becomes zero), you can
continue the conversion process untii you get the num-
ber of binary digits desired.

At this point it Is interesting to compare the number
of digits required to express numbers in decimal with
the number required to express them in binary. In

2 2 2 22 2 1 2
32168 4 2 1

2110 = 0 1	 0 1	 0	 12

(a)

227, =	 •,.,•,,

Least Significant
Binary Digit

1.

2)7 ",,113
	

Ri	 >(1	 1

2i56
	

Al	 x 2	 2

21i28
	

HO x 4	 0

2)"< ,_ 14	 x 8	 0

2fli	 7
	

HO x 16 = 0

2[Y	 3
	

Al	 x 32	 32

2[-i
	

Al	 x 64 = 64

2f	 0
	

Al	 x128

1	 227 Check
Most Significant
Binary Digit

Check

1 x 5

0 x .25

1	 x	 .125

.625
LSB

(Cl

FIGURE 1-2 Converting decimal to binary. (a) Digit
value method. (b) Divide by 2 method. (c) Decimal
fraction Conversion.

:. 227,, = 111000)1,

MSB

2 x 625 = 125

2 x 25 = 050

2 x 50 = 100

decimal, one digit can represent 101 numbers, 0 through
9; two digits can represent 102 or 100 numbers. 0
through 99;and three digits can represent l0 or 1000
numbers. 0 through 999. In blnazy. a similar pattern
exists. One binary digit can represent 2.numbers. 0 and
1; two binary digits can represent 22 or 4 numbers. 0
through 11; and three binary digits can represent 2 or
8 numbers. 0 through 111. The pattern, then, Is that N
decimal digits can represent 10' numbers and N binary
digits can represent 2 numbers. Eight binary digits
can represent 28 or 256 numbers. 0 through 255 in
decimal.

Hexadecimal

Binary is not a very compact code. This means that it
requires mny more digits to express a number than
does, for example. decimal. Twelve binary digits can only
describe a number up to 4O95,. Computers require
binary data, but people working with computers have
trouble remembering long binary words. One solution
to the problem is to use the hexadeclm& or base-16
number system.

Figure 1-3a shows the digit values for hexadecimal.
which Is often Just called hex. Since hex is base 16, you
have to have 16 possible symbols, one for each digit.
The table of Figure 1-3b shows the symbols for hex code.

16' 162 16' 160. 16' 16_2 16'

4096256 16 1 Ti	 258	 5i1

(a)

D.c His D.c His

After the decIma symbols 0 through 9 are used up. you
use the letters A through F for values 10 through 15.

As mentioned above, each hex digit Is equal to four
binary dIgits. To convert the binary number 11010110
to hex, mark off the binary bits in groups of 4. movIng
to the left from the binary point. Then write the hex
symbol for the value of each group of 4.

Binary 1101 0110
Hex	 D	 6

The 0110 gioup is equal to 6 and the 1101 group Is
equal to 13. SInce 13 is I) in hex. 11010110 binary Is
equal to 1)6 in hex. "H' Is usually used after a number
to Indicate that it isa hexadecimal number. For example,
1)6 hex is usually written D6H. As you can see. 8 bIts
can be represented with only 2 hex digits.

If you want to convert a number from decimal to
hexadecimal, Figure 1 -3c shows a familiar trick for doing
this. The result shows that 227 is equal to E3H. As
you can see, hex Is an even more compact code than
decimal. Two hexadecimal digits can represent a decimal
number up to 255. Four hex digIts can represent a
decimal number up to 65.535.

To illustrate how hexadecimal numbers are used in
digital logic, a service manual tells you that the 8-bit-
wide data bus of an 8088A microprocessor should
contain 3FH during a certain operation. Converting 3FF!
to binary gives the pattern of l's and 0's (0011 1111)
you would expect to find with your oscilloscope or logic
analyzer on the parallel lines. The 3FH is simply a
shorthand which is easier to remember and less prone
to errors than the binary equivalent.

BCD Codes
8=8

9=9

10 = A

11 = B

12 = C

13	 D

14 = E

15 = F

LSD

R3 x 1 = 3

RE x16 =224
MSD	 227

STANDARD BCD

In applications such as frequency counters. digital volt-
meters. or calculators, where the output Is a decimal
display, a binary-coded decimal or BCD code is often
used. BCD uses a 4-bit binary code to Individually
represent each decimal digit in a number. As you can
see in Table 1-1, p. 4. the shIplest BCD code uses the
fIrst 10 numbers of standard binary code for the BCD
numbers 0 through 9. The hex codes A through F are
invalid BCD codes. To Convert a decimal number to Its
BCD equivalent. Just represent each decimal digit by its
4blt binary equivalent, as shown here.

DecImal	 5	 2	 9
BCD	 O101 0010 1001

To convert a BCD number to its decimal equivalent.
reverse the process.

0=0

1=1

2=2

3 = 3

4=4
5=5

6=6

7=1

(b)

227 =

14

16r

227, = E3,1

IC)

FIGURE 1-3 Hexadecimal numbers. (a) Value of place
holders. (b) Symbols. (C) Decimal-to-hexadecimal
conversion

GRAY CODE

Gray code is another important binary code: it is often
used for encoding shaft positIon data from machines
such as computer-controlled lathes. This code has the
same possible combinations as standard binary, but as
you can see in the 4-bit example In Table 1-I. they are

- 3	 COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES	 3

TABLE 1-1
COMMON NUMBER CODES

Binary.Coded Decimal	 Reflected I
Decimal	 Binary	 Octal	 Hex I 8421 BCD

7-Segment Display (1 = on)

0	 0000	 0	 0	 0000
1	 000i	 1	 i	 0001
2	 0010	 2	 2	 0010
3	 0011	 3	 3	 0011

4	 0100	 4	 4	 0100
5	 0101	 5	 5	 0101
6	 0110	 6	 6	 0110
7	 0111	 7	 7	 0111

8	 1000	 10	 8	 1000
9	 1001	 11	 9	 1001

10	 1010	 12	 A	 0101 0000
11	 1011	 13	 8	 0001 0001

12	 1100	 14	 C	 0001 0010
13	 1101	 15	 D	 0001 0011
14	 1110	 16	 E	 0001 0100
15	 1111	 17	 F	 0001 0101

00110011	 0000	 1111110	 0
0011 0100	 0001	 011 0000	 1
00110101	 0011	 1101101	 2
00110110	 0010	 1111001 -	 3

0011 0111	 0110	 011 0011	 4
0011 1000	 0111	 1 0 11 011	 5
0011 1001	 0101	 1 0 11111	 6
0011 1010	 0100	 111 0 000	 7

0011 1011	 1100	 1111111	 8
0011 1100	 1101	 111 00 1 1	 9
01000011	 1111	 1111101	 A
01000100	 1110	 0011111	 B

01000101	 1010	 0001101	 C
0100 0110	 1011	 01111 01	 D
01000111	 1001	 1101111	 E
01001000	 1000	 1000111	 F

arranged in a different order. Notice that only one binary
digit changes at a time as you Count U in this code.

if you need to construct a Gray-code table larger than
that in Table 1-1. a handy way to do so is to observe the
pattern of l's and 0's and Just extend it. The least
significant digit column starts with one 0 and then has
alternating groups of two 1 'sand two 0's as you go down
the column. The second most significant digit column
starts with two 0's and then has alternating groups of
four l's and four 0's. The third column starts with four
0's. then has alternating groups of eight l's and eight
0s. By now you should see the pattern. Try to figure out
the Gray code for the decimal number 16. You should
get 11000.

7-Segment Display Code

Figure 1-4a shows the segment Identifiers for a 7-
segment display such as those commonly used in digital
Instruments. Table 1-1 shows the logic levels required
to display 0 to 9 and A to F on a common-cathode LED
display such as that shown in Figure 1 -4b. For a
common-anode LED display such as that in Figure 1 -4c,
simply Invert the segment codes shown in Table I-i.

Alphanumeric Codes

When communicating with or between computers. you
need a binary-based code which can represent letters of
the alphabet as well as numbers. Common codes used
for this have 7 or S bits per word and are referred to as
alphanumeric codes. To detect possible errors in these
codes, art additional bit, called a parity bit. is often
added as the most significant bit.

Parity is a term used to identify whether a data word
has an odd or even number oft's. II a data word contains

an odd number of l's, the word is said to have odd
parity. The binary word 0110111 with five l's has odd
parity. The binary word 0110000 has an even number
of l's (two), so it has euea parity.

In practice the parity bit is used as foUows. The system
that is sending a data word checks the parity of the
word, If the parity of the data word is odd, the system
will set the parity bit to a 1. This makes the parity of
the data word plus parity bit even. if the parity of the
data word is even, the sending system will reset the
parity bit to a 0. This again maks the parity of the data
word plus parity even, The receiving system checks the

o	 b	 C	 d	 e	 I	 g	 DP

IdI•
Op

(a)	 (1,)

FIGURE 1-4 7-segment LED display. (a) Segment labels.
)b) Schematic of common-cathode type. (c) Schematic of
common-anode type.

4	 CHAPTER ONE

parity of the data word plus parity bit that It receives.
If the receiving system detects odd parity in the received
data word plus parity. It assumes an error has occurred
and tells the sending system to send the data again. The
system Is then said to be using even parity. The system
could have been set up to use (maintain) odd parity in
a similar manner.

ASCII

Table 1-2 shows several alphanumeric codes. The first
of these Is ASCII. or American Standard Code for Infor-
mation Interchange. This Is shown In the table as a 7-
bit code, with 7 bIts you can code up to 128 characters.
which is enough for the full upper- and lowercase

TABLE 1-2
COMMON ALPHANUMERIC CODES

ASCII HEX Code EBCDIC HEX Code ASCII HEX Code EBCDIC HEX Code ASCII HEX Code EBCDIC HEX Code
Symbol for 7'BLt Symbol	 for	 Symbol for 7-Bit Symbol 	 for	 Symbol for 7•Btt Symbol	 for

ASC1I	 EBCDIC	 ASCII	 EBCDIC	 -__ASCII	 EBCDIC

NUL
SOB
STX
ETX
EOT
ENQ
ACK
BEL

BS
Err
LF
yr
F?
CR
So
SI

OLE
DCI
DC2
DC3
DC4
NAK
SYN
ETS
CAN

EM
SUB
ESC

F'S
OS
RS

US
sP

S

&

00
0%
02
03
04
05
06
07
08
09
OA
OB
OC
00
OE
OF
10
ii
l2
13
14
15
16
17
18
19
IA
lB
IC
10
IE
IF'
20
21
22
23
24
25
26
27
28
29

NUL
SOH
.STx
rrx
EOT
ENQ
ACK
BEt

BS

yr
F?
CR
So
Si

DLE
DCI
DC2
DC3
DC4
NAK
Sm
EOB
CAN

EM
SUB
BY?
FLS
OS

RDS
US

4'
S

&

00
01
02
03
37
2D
2E
2F
16
05
25
08
OC
00
OE
OF
10
ii
12
13
35
30
32
26
18
19
3F
24
IC
ID
IE
IF
40
5A
7F
7B
58
6C
50
7D
40
50

+

I

0

2
3
4
5
6
7
8
9

A
B
C
0
E
F
0
H

K
L
M
N
0
P
Q
R
S

2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
38
3C
3D
SE
SF
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
SI
52
53

+

0
I
2
3
4
5
6
7
8
9

A
B
C
1)
E
F
G
H

J
K
L
M
N
0
P
Q
R
S

Sc
4E
68
60
48
61
FO
Fl
F2
F3
F4
F'S
F6
F7
F8
F9
7A
SE
4C
7E
6E
6F
7C
CI
C2
C3
C4
C5
C6
C7
C8
C9
Dl
02
03
04
D5
06
07
08
D9
E2

T
U
V
w
x
Y
z

a
b
C

ci
e
I
g
h

k

m
n
0

p
q
r
S

U

V

w

x

V

z

DEL

54
55
56
57
58
59
5A
5B
SC
5')
SE
5?
60
61
62
63
64
65
66
67
68
69
6A
613
6C
60
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
70
7E
7F

T
U
V
w
x
Y
z

Nt

RES
a
b
C

d
C

f
g
h

k

m
n
0

p
q
r
S

U

V

w
x
y
z

DEL

E3
E4
E5
E6
El
E8
E9
AD
15

DU
5?
6D
14
81
82
83
84
85
86
87
88
89
91
92
93
94
95
96
97
98
99
A2
A3
A4
AS
A6
A7
A8
A9
88
4F
98
4A
07

COMPUTER NUMBER SYSTEMS, CODES. AND DIGITAL DEVICES	 5

TABLE 1-3
DEFINITIONS OF CONTROL CHARACTERS

NULL Null	 DCI Direct control I
SOIl start of heading DC2 Direct control 2
STX	 Start text	 DC3 Direct control 3
ETX End text	 DC4 Direct control 4
EOT End of	 NAK Negative

transmission	 acknowledge
ENQ Enquiry	 SYN Synchronous idle
ACK Acknowledge	 ETB End transmission
BEL BS	 block
BS	 Backspace	 CAN Cancel
lIT	 HorizontaJ tab	 EM End of medium
LF	 Line feed	 SUB Substitute
VT	 Vertical tab	 ESC Escape
FF	 Form feed	 FS	 Form separator
CR	 Carriage return GS	 Group separator
SO	 Shift Out	 RS .Record separator
SI	 Shift in	 US	 Unit separator
DLE Data link escape

alphabet, numbers, punctuation marks, and control
characters. The code is arranged so that if only uppercase
letters, numbers, and a few control characters are
needed, the lower 6 bIts are all that are required. If a
parity check Is wanted, a parity bit is added to the basic
7-bit code in the MSB position. The binary word 1100
0100. for example, is the ASCII code for uppercase D
with odd parity. Table 1-3 gives the meanings of the
control character symbols used in the ASCII code table.

EBCDIC

Another alphanumeric code commonly encountered in
IBM equipment is the Extended Binary-Coded Decimal
Interchange Code or EBCDIC. This is an 8-bit code
without parity. A ninth bit can be added for parity. To
save space In Table 1-2, the eight binary digits of
EBCDIC are represented by their 2-digit hex equivalent.

ARITHMETIC OPERATIONS ON BINARY,
HEX, AND BCD NUMBERS.

Binary Arithmetic

ADDITION

Figure l-5a shows the truth table for addition of two
binary digits and a carry in (C IN) from addition of
previous digits. Figure 1 -5b shows the result of adding
two 8-bit binary numbers together using these rules.
Assuming that C!N - l I + 0 + C15 = a sum ofO and
a carry into the next digit, and 1 + 1 + CIN a sum of
I and a carry into the next digit because the result in
any digit position can only be a I or a 0.

2'S-COMPLEMENT SIGNS-AND-MAGNITUDE
BINARY

When you handwrite a number that represents some
physical quantity such as temperature, you can simply
put a + sign in front of the number to indicate that the

INPUTS - ou1
A	 B c, s c0,
o	 o	 0	 0	 0
o	 0	 I	 1	 0
o	 t	 0	 1	 0
o	 1	 0	 1
I	 0	 0	 I	 0

	 S - AJB®C
CO3, - A B • C,, A®B)

1	 0	 1	 0	 1
1	 1	 0	 0	 1

'i'

10011010
+ 11011100
U oilioiio

Carry

b)

FIGURE 1-5 Binary addition. (a) Truth table for 2 bits
plus carry. (b) Addition of two 8-bit words.

number is positive, or you can write a - sign to indicate
that the number is negative. However, if you want to
store values such as temperatures, which can be positive
or negative, in a computer memory, there is a problem
Since the computer memory can store only l's and 0's,
some way must be established to represent the sign of
the number with a I or a 0.

A common way to represent signed numbers is to
reserve the most significant bit of the data word as a
sign bit and to use the rest of the bits of the data word
to represent the size (magnitude) of the quantity. A
computer that works with 8-bit words will use the MSB
(bit 7) as the sign bit and the lower 7 bits to represent
the magnitude of the numbers. The usual convention
is to represent a positive number with a 0 sign bit and
a negative number with a 1 sign bit.

To make computations with signed numbers easier.
the magnitude of negative numbers is represented in a
special form called 2's complement, The 2's complement
of a binary number is formed by inverting each bit of
the data word and adding Ito the result. Some examples
should help clarify all of this.

The number + 7, is represented in 8-bit sign-and.
magnitude form as 00000111. The sign bit isO, which
indicates a positive number. The magnitude of positive
numbers is represented in straight binary, so 00000111
in the least significant bits represents

To represent in 8-bit 2's-complement sign-
and-magnitude form, start with the 8-bit code for
+ 7. 0000 0111. Invert each bit, including the MSB, to
get 1111 1000. Then add I toget 11111001. This result
is the correct representation of - 7. Figure 1-6 shows
some more e'-.amples of positive and negative numbers
expressed in 8-bit sign-and-magnitude form. For prac-
tice. try generating each of these yourself to see if you
get the same result.

To reverse this procedure and find the magnitude
of a number expressed in sign-and-magnitude form.
proceed as follows. If the number is positive, as indicated

CHAPTER ONE

Sign bit

+7
	

0 0000111

+ 46
	

00101110

+105	 0 1101001

- 12	 1 11l0100)

- 54	 1:1001010	 Sign and
twp's complement

-117	 1 1.0001011	 of magnitude
-46	 11010010 J

FIGURE 1-6 Positive and negative numbers represented
with a sign bit and 2's complement.

by the sign bit being a 0. then the least significant 7
bits represent the magnitude directly in binary. If the
number is negative, as indicated by the sign bit being
a 1, then the magnitude is expressed in 2's complement.
To get the magnitude of this negative number expressed
in standard binary, invert each , bit of the data word.
including the sign bit, and add I to the result. For
example, given the word 11101011. invert each bit to
get000101OO.Thenadd 1 toget00010101.Thlsequals
21 . so you know that the original numbers represent
-21 . Again, try reconverting a few of the numbers in
Figure 1-6 for practice.

Figure 1-7 shows some examples of addition of signed
binary numbers of this type. Sign bits are added together
Just aS the other bits are. Figure 1-7a shows the results
of adding two positive numbers. The sign bit of the
result is zero. sothe result is positive. The second
example, in Figure i-7b, adds a -9 to a + 13 or.. in
effect, subtracts 9 from 13. As indicated by the zero sign
bit, the result of 4 is positive and in true binary form.

Figure 1-7c shows the result of adding a - 13 to a
smaller positive number, + 9. The sign bit of the result
is a 1. This indicates that the result is negative and the
magnitude is in 2's-complement form. To reconvert a
2's complement result to a signed number in true binary
form:

I. Invert each bit to produce the l's complement.

2. Add 1.

3. Put a minus sign in front to indicate that the result
is negative.

The final example, in Figure l-7d, shows the result of
adding two negative numbers. The sign bit of the result
is a 1. so the result is negative and in 2's-complement
form. Again, inverting each bit, adding 1. and prefixing
a minus sign will put the result in a more recognizable
form.

Now lets consider the range of numbers that can be
represented with 8 bits in sign-and-magnitude form.
Eight bits can represent a maximum of 28 or 256
numbers. Since we are representing both positive and
negative numbers, half of this range will be positive and

half negative. Therefore, the range is - 128 to + 127.
Here are the sign-and-magnitude binary representations
for these values:

0 111 jill	 +127

00Of0001	 +1
00000000 zero
1111111.1	 •-I

10000001	 -127
10000000	 -128

If you like number patterns, you might notice that this
scheme shifts the normal codes for 128 to 255 downward
to represent -128 to -.1.

If a computer is storing signed numbers as 16-bit
words, then a much larger range of numbers can be
represented, Since 16 bits gtves 216 or 65,536 possible
values, the range for 16-bit sign-and-magnitude num-
bers is -32,768 to + 3,767. Operations with 16.bit
sign-and-magnitude numbers are done the same way as
operations with 8-bit sign-and-magititude 'numbers.

+13	 00001101
,00001001

+22	 00010110
t—Slgnb4tIsO

so result Is positive
(a)

+13	 00001101
-9	 11110111 2's complement tor--9 with sign bit

+ 4 ..jj00000ioo

I tSignbitisQ
so result is positive

Ignore carry
(b)

+ 9 -. 00001001
-13	 11110011 2's complement for -13 with sign bit

-4	 11111100 Sign bit isi

1	 00000011 So invert each bit
+	 lAddi

equals
Prefix with minus sign-1

- 9	 1111011112's complement,
-13	 11110011 J sign-and-magnitude form

-22	 ll10101OSignbitisl
00010101 So invert each bit

+	 lAddi

equals -00010110 Prefix with minus sign
(d)

FiGURE 1-7 Addition of signed binary numbers, (a) +.9
and +13. (b) -9 and +13, (C) +9 and -13. (-9 and
-13.

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 	 7

INPUTS	 OUIPUTS
A	 B B, 0 O
o	 o	 0	 0	 0
o	 a	 1	 1	 1
o	 i	 0	 I	 I
o	 i	 1	 0	 I
1	 0	 0	 1	 0
I	 0	 1	 0	 0
1	 1	 0	 0	 0

• 1	 1	 1	 1	 1

DIFFERENCE A€1BQBh
BORSOW • A B +

(a)

91,0

,0

10101010
—01100100

0)000110

(0)

01011011	 01011011

00101110' \ Invert	 +11010010

Ones comp ¼* 11010001 	 t_frJcate$

each bit	 j"]ooioiio1	 =45.

Add 1	 +	 1	 result positive
and in true

Two's comp	 11010010
Carry	

binary form

(C)

11, 0 01001101

_____ ________ Complement ,'

—11,0

—88,	 01011000	

s

Two's comp	 10101000

Carry

01001101

+ 10101000
ComPlement,

11110101

Add one
•	 Indicates

result negative
and in two's
complement form

00001010

1011	 = —11,0

(d)

FIGURE 1-8 Binary subtraction. (a) Truth table for 2 bits and borrow. (b) Pencil

method. (C) 2's-complement positive result. (2's-complement negative result.

SUBTRACTION

There are two common methods for doing binary sub-
traction. These are the pencil method and the 2's-
complement add method. Figure 1-8a shows the truth
table for binary subtraction of two binary digits A and
B. Also included in the truth table is the effect of a
borrow-in, B, from subtracting previous digits. Figure
1-Sb shows an example of the "pencii' method of sub-
tracting two. 8-bit numbers. Using the truth table, this
method is done the same way that you do decimal
subtraction.

•A second method of performing binary subtraction is
by adding the 2's-complement representation of the
bottom number (subtrahend) to the top number (minu-
end). Figure 1-8c shows how'this is done. FirstTepresent
the top number in sign-and-magnitude form. Then form
the 2s-complement sign-and-magnitude representation
for the negative of the bottom number. Finally, add the
two parts formed. For the example in Figure 1 -Sc. the
sign of the result is a 0. which indicates that the result
is positive and in true form. The final carry produced by
the addition can be ignored. Figure 1 -Sd shows another
example of this method of subtraction. in this case the
bottom number is larger than the top number. Again.
represent the top number in sign-and-magnitude form,
produce the 2's . complement sign-and-magnitude form
for the negative o. the bottom number, and add the two
together. The sign bit of the result Is a I for this
example. This indicates that the result is negative and its
magnitude is represented in 2's-complement form. To

CHAPTER ONt

get the result into a form that is more recognizable to
you, invert each bit of the result, add l'to it, and put a
minus sign, in front of it as shown in Figure 1-Sd.

Problems that may occur when doing signed addition
or subtraction are oueflow and urtde(flow. If the rnagni-
tude of the number produced by adding two signed
numbers is larger than the number of bits available to
represent the magnitude, the result will"overflow" Into
the sign bit position and give an incorrect result. For
example, if the signed positive number 01001001 is
added to the signed positive number 01101101. the
result is 10110110. The I in the MSB of this result
indicates that it is negative which is obviously incorrect
for the sum of two positive numbers. In a similar
manner, doing an 8-bit signed subtraction that produces
a magnitude greater than - 128 will cause an "under-
flow" into the sign bit and produce an incorrect result.

For simplicity the examples shown use 8 bits, but the
method works for any tumber of bits. This method may
seem awkward, but it l easy to do in a computer or
microprocessor because It requires only the simple
operations of inverting and adding.

MULTIPLICATION

There are several methods of doing binary multiplica-
tion. FIgure 1-9 shows what is called the pencil method
because it is the same way you learned to multiply
decimal numbers. The top number, or multiplicand. is
multiplied by the least significant digit of the bottom
number, or multiplier. The partial product is written

	

11	 1011	 MULTIPLICANO

	

X.9	 X 1001	 MULTIPLIER

10111
0000 L, PARTIAL PRODUCTS

0000
loll

	

1100011	 PRODUCT

FIGURE 1-9 Binary multiplication.

down. The top number is then multiplied by the next
digit of the multiplier. The resultant partial product is
written down under the last, but shifted one place to
the left. Adding all the partial products gives the total
product. This method works well when doing multiplica-
tion by hand, but it is. not practical for a computer
because the type of shifts required makes it awkward to
implement.

One of the multiplication methods used by computers
is repeated addition. To multiply 7 x 55, for example,
the computer can just add up seven 55's. For large
numbers, however, this method is slow. To multiply
786 x 253. for example, requires 252 add operations.

Most computers use an add-and-shift-right method.
This method takes advantage of the fact that for binary-
multiplication, the partial product can only be either
the top number exactly if the multiplier digit is a 1 or a
o ir the multiplier digit is a 0. The method does the
same thing as the pencil method, except that the partial
products are added as they are produced and the sum
of the partial products is shifted right rather than each
partial product being shifted left.

A point to note about multiplying numbers is the
number of bits the product requires. For example.
multiplying two 4-bit numbers can give a product with
as many asS bits, and two 8-bit numbers can give a 16-
bit product.

DIVISION
Binary division can also be performed in several ways.
Figure 1-10 shows two examples of the pencil method.
This is the same process as decimal long division.
However, it is much simpler than decimal long division

01100 QUOTIENT

DIVISOR 110) 1001000 DIVIDEND 	 12
-110

110
-110

0

	

110.01	 6,25

	

ioo)iooi.00	 41
-100

100
-100

0100

because the digits of the result (quotient) can only be 0
or 1. A division is attempted on part of the dividend. If
this is not possible because the divisor Is larger than
that part of the dividend, a 0 is entered In the quotient.
Aiother attempt is then made to divide using one more
digit of the dividend. When a division is possible, a 1 is
entered in the quotient. The divisor is then subtracted
from the portion of the dividend used. As with standard
long division, the process Is continued until all the
dividend is used. As shown in Figure 1-lOb, 0's can be
added to the right of the binary point and division
continued to convert a remainder to a binary equivalent.

Another method of division that is easier for com-
puters and microprocessors to perform uses successive
subtractions. The divisor is subtracted from the divi-
dend and from each successive remainder until a borrow
is produced. The desired quotient is 1 less than the
number of subttactions needed to produce a borrow.
This method is simple, but for large numbers it is slow.

For faster division of large numbers, computers use a
subtract-and-shift-left method that is essentially the
same process you go through with a pencil long division,

Hexadecimal Addition and Subtraction

People working with computers or microprocessors often
use hexadecimal as a shorthand way of representing
long binary numbers such as memory addresses. It
is therefore useful to be able to add and subtract
hexadecimal numbers.

ADDITION
As shown in Figure 1-1 la. one way to add two hexadeci-
mal numbers is to-convert each hexadectmai number to
its binary equivalent, add the two binary numbers, and
convert the binary result back to fts hex equivalent. For
converting to binary, remember that each hex digit

	

represents 4 binary digits.	 .
A second method, shown in Figure 1-lib. works

directly with the hex numbers. When adding hex digits,
a carry is produc ed whenever the sum is 16 decimal or
greater. Another way of saying this is that . the value of
a carry in hex is 16 decimal. For the least significant
digits in Figure l-llb, anA in hex is 10 in decimal and
an F is 15 in decimal. These add to give 25 decimal.
This is greater than' 16, so mentally subtract 16 from
the 25 to give a carry and a remainder of 9. The 9 is
written down and the carry is 'added to the next digit
column. In this column 7 pius 3 plus a carry gives a
decimal 11. orB in hex. 	 -

Carry
1

7A	 0111 1010	 I A,,
+3F	 ^0011 1111	 + 3	 F,,

89	 1011	 1001	 11,0	 25,

	

8,,	 9,,
lb I
	 IbI

FIGURE 1-10 Binary division;
	 FIGURE 1-11 Hexadecimal addition.

COMPUTER NUMBER SYSTEMS, CODES. AND DIGITAL DEVICES

17, 1	 =	 119,

- 3B, 1	- 59,

3C, 1	60,

FIGURE 1-12 Hexadecimal subtraction.

You may use whichever method seems easier to you
and gives you consistently right answers. If you are
doing a great deal of hexadecimal arithmetic. you might
buy an electronic' calculator specifIcally designed to do
decimal, binary, and hexadecimal arithmetic.

SUBTRACTION

Hexadecimal subtraction is similar tç decimal subti-ac-
tion except that when a boo-row s needed, 16 is borrowed
from the next most significant digit, Figure 1-12 shows
an example of this. It may help you to follow the example
if you do partial conversions to decimal in your head.
For example, 7 plus a borrowed 16 is 23. Subtracting B
or 11 leaves 12 or C in hexadecimal, Then 3 from the 6
left after a borrow leaves 3, so the result is 3CH.

BCD Addition and Subtraction

In systems where the final result of a calculation is to
be displayed, such as a , calculator, it may be easier to
work with numbers in a BCD format. These codes, as
shown In Table 1-1, represent each decimal digit. 0
through 9. by its 4-bit binary equivalent.

ADDITION

BCD can have no digit-word with a value greater than
1 herèfore. a carry must be generated if the result of

a CD addition is greater than 1001 or 9. FIgure 1-13

8CD
35-	 00110101

*0010 0011

58	 0101 1000

i.I

sco
7	 0111

*5	 *0101

12	 1100	 INCORRECTBCD
*0110 ADD6

0001 0010 CORAECTBCD12

O)

aco
9	 1o0l

+8	 *1000

17	 0001 0001	 INCORRECT8CQ
0000 OflO ADD6

0001 0111 CORRECTBCD17

(C)

FIGURE 1-13 BCD addition. (a) No correction needed,
(b) Correction needed because of illegal BCD result. (C)

Correction needed because of carry-out of BCO digit.

07	 0001 0111
- 9 ,	 0000 1001

8	 0000 1110 ILLEGALBCD
-0110 SUBTRACT6

0000 1000 CORRECT BCO

FIGURE 1-14 BCD subtraction.

shows three examples of BCD addition, The flist. In
Figure l-13a. is very straightforward because the sum
for each BCD digit is less than 9. The result Is the same
as it would be for adding standard binary.

For the second example, in Figure 1-I 3b. adding BCD
7 to BCD 5 produces 1100. This is a correct binary
result of 12, but it Is an illegal BCD code. To convert the
result to BCD format, a correction factor of 6 is added,
The result of adding 6 is 0001 0010, which is the legal
BCD code for 12.

Figure l-13c shows another case where a correction
factor must be added. The initial addition of 9 and 8
produces 0001 0001. Even though the lower four digits
are less than 9, this is an incorrect BCD result because
a carry out of bit 3. of the BCD digit-word was produced.
This carry Out of bit 3 is often called an auxiliary carry.
Adding the correction factor of 6 gives the correct BCD
result oI000l 0111 or 17.

To summarize, a correction factor of 6 must be added
if the result in the lower 4 bits is greater than 9 or if
the initial addition produces a carry out of bit 3 of any
UCD digit-word. This correction is sometimes called a
decimal adjust operation.

The reason for the correction factor of 6 is that in
BCD we want a carry into the next digit after 1001 Or
9, but in binary a carry Out of the lower 4 bits does not
occur until after Ill I or 15. The difference between the
two early points is ô. so you have to add 6 to pi-oduc.
the desired carry if the re' ult of an addition n any BCJ1
digit Is more than 1001.

SUBTRACTION

Figure 1-14 shows a subtraction. BCD 17(0001 0111)
minus BCD 9(0000 100!), The initial result, 0000 1110,
is not a legal BCD number. Whenever this occurs in
BCD subtraction. 6 must be subtracted from the initial
result to produce the correct BCD result. For the example
shown In Figure 1-14. subtracting 6 gives a correct BCD
result of 0000 1000 or 8.

The correction factor of 6 must be subtracted from
any BCU digit .word if that digit-word is greater than
100!, or if a borrow from the next higher digit was
required to do the subtraction.

BASIC DICITA DEVICES

Microcomputers such as those we discuss throughout
this book often contain basic logic gates as "glue"
between LSI (large-scale integrationl devices. For trou-
bleshooting these systems, it is important to be able to
predict logic levels at any point directly from the sche'
matic rather than having to work your way through a

10	 Cl-f frPTER ONE

X"A'B

TDx :Dox

-

(b)

X.A*B

Y.AB

IDov -

A B X V

0001

0101

1001

1	 1	 1	 0

A B XV

0001

0110

1	 01	 0

1	 1	 1	 0

truth table for each gate. This section should help
refresh your memory of basic logic functions and help
you remember how to quIckly analyze logic gate circuits.

Inverting and Noninverting Buffers

Figure 1-15 shows the schematic symbols and truth
tables for simple buffers and logic gates. The first thing
to remember about these symbols is that the shape of
the symbol Indicates the logic function performed by
the device. The second thing to remember about these
symbols is that a bubble or no bubble Indicates the
assertion level for an input or output signal. Let's review
how modern logic designers use these symbols.

The first symbol for a buffer in Figure 1-ISa has no
bubbles on the input or output. Therefore, the input is
active high and the output Is active high. We read this
symbol as follows: If the input A is asserted high, then
the output Y will be asserted high. The rest of the truth
table is covered by the assumption that if the A Input is
not asserted high. then theYoutput will not be asserted
high.

The next two symbols for a buffer each contain a
bubble. The bubble on the output of the first of these

A ___f)r_. X	
A '—>°'---

v	 A XV

001

1	 1	 0

A—V

()

A B X V

XA'+A'8	 y.A-*A•8	 0	 0 0	 1

:ID__x
Ao_y	 0 1 1 0

Cd)

FIGURE 1-15 Buffers and logic gates. (a) Buffers. (b)
AND-NAND. (C) OR-NOR, (d) Exclusive OR.

indicates that the output is active low. The input has
no bubble, so it is active high. You can read the function
of the device directly from the schematic symbol as
follows. If the A input is asserted high, then the Y output
will be asserted low. This device simply changes the
assertion level of a signal. The output Y will always have
a logic state which is the complement or inverse of that
on the input, so the device is usually referred to as an
tnverter.

The second schematic symbol for an Inverter in Figure
II 5a has the bubble on the Input. We draw the symbol
this way when we want to indicate that we are using
the device to change an asserted-low signal to an assert.
ed-high signal. For example, if we pass the signal CS
through this device, it becomes CS. The symbol tells you
directly that if the input is asserted low, then the output
will be asserted high. Now let's review how you express
the functions of logic gates using this approach.

Logic Gates
Figure 1-1 5b shows the symbols and truth tables for
simple logic gates. A symbol with a flat back and a round
front indicates that the device performs the logical AND
function, This means that the output will be asserted if
the A input is asserted and the B Input is asserted.
Again, bubbles or no bubbles are used to indicate the
assertion level of each input and output. The first AND
symbol in Figure 1-l5b has no bubbles. so the inputs
and the output are active high. The output then will be
asserted high if the A input is asserted high arid the B
Input is asserted high. The bubble on the output of the
second AND symbol in Figure 1-15b indicates that this
device, commonly called a NAND gate. has an active low
output. If the A input is asserted high and the B input
is asserted high, then theY output will be asserted low.
Look at the truth table in Figure 1-15b to see if you
agree with this.

Figure l-15c shows the other two possible cases for
the AND symbol. The first of these has bubbles on the
inputs and on the output. If you see this symbol in a
schematic, you should immediately see that the output
will be asserted low if the A input is asserted low and
the B input is asserted low. The second AND symbol in
Figure 1-1 5c has no bubble on the output, so the output
will be asserted high if the A and B inputs are both
asserted low.

A logic symbol with a curved back indicates that the
output of the device will be asserted if the A input is
asserted or the B input of the device is asserted. Again,
bubbles or no bubbles are used to Indicate the assertion
level for inputs and outputs. Note in Figure l-15b and
c that each of the AND symbol forms has an equivalent
OR symbol form. An AND symbol with active high Inputs
and an active high output, for example, represents the
same device (a 74LSC)8 perhaps) as an OR symbol with
active low inputs and an active low output. Use the truth
table in Figure l-15b to convince yourself of this. The
bubbled-OR representation tells you that If one input is
asserted low, the output will be low, regardless of the
state of the other input. As we will show later in this
chapter, this Is often a useful way to think of the
operation of an AND gate.

4	 COMPUTER NUMBER SYSTEMS. CODES. AND DIGITAL DEVICES	 11

A	 8 PtA

§ FUSIBLE OR	

A
__________ _______________ A

______	 I
AR

FUSIBLE AND

P2 A +

F3 AS

F4 A

A	 B	 PROM

	

''	 PROGRAMMABLE OR

ItI
4! i+ D
fJJ D

HAROWIRED	

AS

Fl AB * AS A®B

	

AND	

F2-+A+ABA,

'F3.A8

F4 A AR A

Ib)

A	 B
	

PAL

HAROWIRED
OR

A

AB

"O'•

A
B

AB
AS

PROGRAMMABLE
AND

Fl A8 + AS A®B

F2=A+B

F3 AR
F4 A

191

FIGURE 1-16 FPLA, PROM, and PAL programmed to
Implement some simple logic functions. (a) FPLA. (b)
PROM. Ic) PAL.

Figure l-15d shows the symbol and truth table for an
exclusive OR gate and for an exclusive NOR gate. The
output of an exclusive OR gate will be high lithe logic
levels on the two inputs are different. The output of an
exclusive NOR gate will be high lithe logic levels on the
two inputs are the same.

You need to be familiar with all these symbols, because
most logfr designers wUl use the symbol that best
describes the function they want a device to perform in
a particular circuit.

Programmable Logic Devices

Instead of using discrete gates, modem microcomputer
systems usually use programmable logic devices such
as PLAs. PROMs, or PALs to Implement the "glue" logic
between LSI devices. To refresh your memory, Figure I-
16 shows the Internal structure of each of these devices.
As you cart see, they all consist of a programmable AND-
OR matrix, so they can easily implement any sum-of-
products logic expression. Each AND gate in these
figures has up to four inputs, but to simplify the drawing
only a single input line is shown. Likewise, the OR gates
have several inputs, but are shown with a single input
line to simptt' the drawing. These devices are pro-
grammed by blowing out fuses, which are represented
in the figure by Xs. An X in the figure indicates that the
fuse Is intact and makes a connection between, for
example, the output of an AND gate and one of the
inputs of an OR gate. A dot at the intersection of two
wires indicates a hard-wired connection implemented
during manufacture,

In aprograrnmable logic array (PM) orfield program-
mable logic array (FPLA), both the AND matrix and the
OR matrix are programmable by leaving In fuses or
blowing them Out, The two programmable matrixes
make FPLAs very flexible, but dlfficut to program.

In a programmable read-only memory or PROM.
the AND matrix is fixed and just the OR matrix Is
programmable by leaving in fuses or blowing them out.
PROMs implement all the possible product terms for the
input variables, so they are useful as code converters.

In a programmable array logic device or PAL, the
connections in the OR matrix are fixed and the AND
matrix connections are programmable. PALs are often
used to implement combinational logic and address
decoders in microcomputer systems.

A computer program is usually used to develop the
fuse map for an FPLA. PROM, or PAL. Once developed.
the fuse-map file is downloaded to a programmer which
blows fuses or Stores charges to actually program the
device.

Latches, Flip-Flops, Registers, and Counters

THE D LATCH
A latch is a digital device that stores a I or a 0 on its
output. Figure l-)7a shows the schematic symbol and
truth table for aD latch. The device functions as follows.
If the enable input CK is low, the logic level present on
the D input will have no effect on the Q and Q outputs.

12	 CHAPTER ONE

'fl
Fo cK o

CK	
IX 0 0
1	 1 0 H

Ô	 1	 1	 ol

(a)

b	 Ii	 LA	 LI'.	 U	 U
1	 1	 I	 t	 1	 0

1	 1	 0	 t	 0

I	 1	 X	 0	 QI °I'
1	 1	 X	 1	 0	 Q

0	 X X	 1 0

	

i Ox x	 0 1

00 XX

(b)

FIGURE 1-17 Latches and flip-flops. (a> D latch. (b) ID
flip-flop.

This is indicated in the truth table by an X in the D
column. if the enable input is high. a high or a low on
the D input will be passed to the Q output. In other
words, the 9 output will follow the D input as long as
the enable input is high. The 9 output will contain the
complement of the logic state on 9. When the enable
input is made low again, the state on 9 at that tIme will
be latched there. Any changes on D will have no effect
on 9 until the enable input is maae high again. When
the enable input goes low, then, the state present on D
just before the enable goes low will be stored on the 9
output. Keep this operation In mind as you read about
the D flip-flop in the next section.

THE D FLIP-FLOP

Figure l-17b shows the schematic symbol and the truth
table for a typical D flip-flop. The small triangle next to
the CK input of this device tells you that the 9 and 9
outputs are updated when a rising signal edge is applied
to the CK input. The up arrows In the clock column of
the truth table also Indicate that a 1 or 0 on the ID input
will be copied to the 9 output when the clock input goes
from low to high. In other words, the D flip-flop takes a
snapshot of whatever state is on the D input when the
clock goes high, and displays the 'photo' on the 9
output. If the clock input (slow, a change on ID will have
no eflect on the output. Likewise, if the clock input is
high. a change on D will have no effect on the 9 output.
Contrast this operation with that of the D latch to make
sure you understand the difference between the two
dcv Ices.

The U flip-flop in Figure l-17b also has direct set (S)
and reset (RI inputs. A flip-flop is considered set (fits 9
output is a I It is reset if its 9 output is a 0. The
bubbles on the set and reset inputs tell you that these
inputs are active low. The truth table [or the ID flip-flop
in Figure 1-1 7b indicates that the set and reset inputs
are asynchronous. This means that if the set input is
asserted low, the output will be set, regardless of the

states on the ID and the clock inputs. Likewise, if the
reset input is asserted low, the 9 output will be reset.
regardless of the state of the D and clock inputs. The Xs
in the ID and CK columns of the truth table remind you
that these inputs are "don't cares" if set or reset is
asserted. The condition indicated by the asterisks () is
a nonstable conditton that is. it will not persist when
reset or clear inputs return to their inactive (high) level,

REGISTERS

Flip-flops can be used individually or in groups to store
binary data. A register is a group of 1) flip-flops connected
in parallel, as shown in Figure l-18a. A binary word
applied to the data inputs of this register will be trans-
ferred to the 9 outputs when the clock input is made
high. The binary word will remain stored on the 9
outputs until a new binary word is applied to the ID
inputs and a low-to-high signal is applied to the clock
input. Other circuitry can read the stored binary word
from the 9 outputs at any time without changing its
value.

If the 9 output of each flip-flop in the register is
connected to the ID input of the next as shown in Figure
I-18b. then the register will function as a sh(ft register.
A 1 applied to the first ID input will be shifted to the first

9 output by a clock pulse. The next clock pulse will
shift this I to the output of the second flip-flop. Each
additional clock pulse will shift the 1 to the next flip-
flop in the register. Some shift. registers allow you to
load a binary word into the register and shift the loaded
word left or right when the register is clocked. As we
will show later, the ability to shift binary numbers is
very useful.

COUNTERS

Flip-flops can also be connected to make devices whose
outputs step through a binary or other Count sequence

ri'
CK	 CK	 CI<

CK> I
Ia)

DATA
OUT

CLEA

C LOC
(b)

FIGURE 1-18 Registers. (a) Simple data storage. (b) Shift
register.

DAT,
IN

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 	 13

This carry pulse can be used as the clock input for
another counter. Counters can be cascaded to produce
as large a count sequence as is needed for a particular
application. The maximum count for a binary counter
is 2 - 1, where N is the number of flip-flops.

Now. suppose that we want the counter to start
counting from some numbe other than 0000. We can
do this by applying the desired number to the four data
inputs and asserting the load input. For example, if we
apply a binary 6, 0110, to the data inputs and assert
the load input, this value will be transferred to the Q
outputs. After the load signal is unasserted. the next
clock signal will increment the Q outputs to 0111 or 7.

ROMs, RAMs, and Buses

The next topics we need to review are the devices that
Store large numbers of binary words and how several of
these devices can be connected on common data lines.

03 02 01 00

0000

000	 I

00	 ¶	 0
CLOCK

00	 1	 I
00
	

00	 o i 00
Dl
	

01
	

01	 01

02
	

Q2
	 0	 1	 1	 0

0	 l	 l•	 1
03
	

03
1	 000

LOAD	 1 00 1

RESET
	

1	 01	 0

	

CARRY
	 1	 0	 1	 1

1	 1	 00

1	 I	 0	 1

1	 1	 1	 0

1	 1	 1	 1

(bi

FIGURE 1-19 Four-bit, presettable binary counter. (a)
Schematic symbol. (b) Count sequence.

when they are clocked. Figure l-19a shows a schematic
symbol and count sequence for a presettable 4-bit binary
Counter. The main point we want to review here is how
a presettable counter functions, so there is no need to
go into the Internal circuitry of the device. If the reset
input is asserted, the Q outputs will all be made 0's.
After the reset signal is unasserted, each clock pulse will
cause the binary count on the outputs to be Incremented
by 1. As shown In Figure l-19b, the Count sequence will
go from 0000 to 1111. If the outputs are at 1111, then
the next clock pulse will cause the outputs to "roll over"
to 0000 and a carry pulse to be sent out the carry output.

ROMS

The term ROM stands for read-only memory. There are
several types of ROM that can be written to. read, erased.
and written to with new data, but the main feature of
ROMs is that they are nonvolatile. This means that the
information stored in them is not lost when the power
is removed from them.

Figure 1-20a shows the schematic symbol of a com-
mon ROM. As indicated by the eight data outputs. DO
to D7, this ROM stores 8-bit data words. The data
outputs are three-state outputs. This means that each
output can be at a logic low state, a logic high state, or
a high-impedance floating state. In the high-Impedance
state an output is essentialiLdisconnected from any-
thing connected to It. If the CE input of the ROM is not
asserted, then all the outputs will be in the high.

ADDRESS	 DATA
INPUTS	 OUTPUTS

AD	 DO

Al	 Dl
AD DRA2	 02	 BUS

A3	 03

A4	 04

AS	 05

A6	 D6

A7	 07

AS	 -
ROM	 CE,

A9

AiD

All

Al2	 cT

A13

A14	 DATA
BUS

IbI

FIGURE 1-20 ROMs. (a) Schematic symbol. (b) Connection in parallel.

14	 CHAPTER ONE

At the beginning of this section we mentioned that
me ROMs can be erased and rewritten or repro-

grammed with new data. Here's a summary of the
different types of ROMs.

Mask-programmed ROM—.Programmed during manufac-
ture; cannot be altered.

PROM—User programs by blowing fuses; cannot be
altered except to blow additional fuses.

EPROM—Electrically programmable by user; erased by
shining ultraviolet light on quartz window in package.

EEPROM—Electrically programmable by user; erased
with electrical signals. so it can be reprogrammed in
circuit.

Flash EPROM—Electrically programmable by user; erased
electrically, so it can be reprogrammed In circuit.

so

Impedance state. Most ROMs also switch to a lower-
power-consumption standby mode lICE is not asserted.
If the CE Input Is asserted, the device will be powered
up. and the output buffers will be enabled. Therefore.
the outputs will be at a normal logic low or logic high
state. If you don't happen to remember, you will soon
see why this is important.

You can think of the binary words stored in the ROM
as being In a long, numbered list. The number that
identifies the location of each stored word in the list is
called its address. You can tell the number of binary
words stored in the ROM by the number of address
inputs. The number of words is equal to 2. where N is
the number of address lines. The device in Figure 1-20a
has 15 address lines, A0 to A14. so the number of words
Is 2' or 32.768. In a data sheet this device would be
referred to hs a 32K x 8 ROM. This means it has 32K
addresses with 8 bIts per address.

In order to get a particular word onto the outputs of
the ROM, you have to do two things. You have to apply
the address of that word to the address Inputs. A0 to
Al4, and you have to assert the CE input to power up
the device and to enable the three-state outputs.

Now, let's see why we want three-state outputs on this
ROM. Suppose that we want to Store more than 32K
data words. We can do this by connecting two or more
ROMs in parallel, as shown in Figure 1-20b. The address
lines connect to each device in parallel, so we can address
one of the 32,768 words in each. A set of parallel lines
used to send addresses or data to several devices in this
way is called a bus. The data outputs of the ROMs are
likewise connected in parallel so that any one of the
ROMs can output data on the common data bus. If
these ROMs had standard two-state outputs, a serious
problem would occur when both ROMs tried to output
data words on the bus, The resulting argument between
data outputs would probably destroy some of the outputs
and give meaningless information on the data bus. Since
the ROMs have three-state outputs. however, we can
use external circuitry to make sure that only one ROM
at a time has its outputs enabled. The very important
principle here is that whenever several outputs are
connected on a bus, the outputs should all be three-
state, and only one set of outputs should be enabled at
a time.

STATIC AND DYNAMIC RAMS

The name RAM stands for random-access memortj.but
since ROMs are also random access, the name probably
should be read-wrtte memory. RAMs are also used to
Store binary words. A static RAM is essentially a matrix
of flip-flops. Therefore, we can write a new data word in
a RAM location at any time by applying the word to the
flip-flop data inputs and clocking the flip-flops. The
stored data word will remain on the flip-flop outputs as
long as the power is left on. This type of memory is
volatile because data is lost when the power is turned
off.

Figure 1-21 shows the schematic symbol for a common
RAM. This RAM has 12 address lines, A0 to All. so it
stores 2° (4096) binary words. The eight data tines tell
you that the RAM stores 8-bit words. When we are
reading a word from the RAM. these lines function as
outputs. When we are writing a word to the RAM. these
lines function as inputs. The chip enable input. CE, is
used to enable the device for a read or for a write. The
R/W input will be asserted high if we want to read from
the RAM or asserte' low if we want to write a word to
the RAM. Here's how all these lines work for reading
from and writing to the device.

To write to the RAM. we applhe desired address to
the address inputs, assert the CE input low to turn on
the device, and assert the R/W input low to tell the RAM
we want to write to it. We then apply the data word we
want to store to the data lines of the RAM for a specified
time. To read a word from the RAM. we address the
desired word, assert CE low to turn on the device, and
assert R/W high to tell the RAM we want to read from it.
For a read operation the output buffers on the data lines
will be enabled and the addressed data word will be
present on the outputs.

The static RAMs we have Just reviewed store binary
words in a matrix of flip-flops. In dynamic RAMS
(DRAMs). binary Is and 0's are stored as an electric
charge or no charge on a tiny capacitor. Since these tiny
capacitors take up less space on a chip than a flip-flop

AD	 00
At	 Dl

A2	 02
A3	 03	 DATA
A4	 D4	 OUTPUTS

ADDRESS	 AS	 05
INPUTS	 A6	 D6

A?	 07
AS

A9
AlO
Alt

RIW	 CE

RE A D(WR ITt

CHIP ENABLE

FIGURE 1-21 RAM schematic symbol.

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEVICES 	 15

74LS181

would, a dynamic RAM chip can ' store many more bits
than the same size static RAJFI chip. The disadvantage
of dynamic RAMs is that the charge leaks off the tiny
capacitors. The logic state stored in each capacitor must
be refreshed evely 2 milliseconds linsl or so. A device
called a dynamic RAM refresh controller can be used to
refresh a large number of dynamic RAMs in a system.
Some newer dynamic RAM devices contain built-in
refresh circuitry, so they appear static to external cir-
cuit!)!.

Arithmetic Logic Units
An arithmetic logic unit, or ALU. is a device that can
AND. OR. add, subtract, and perform a variety of other
operations on binary words. Figure I -22a shows a block
diagram for the 74LS181, which is a 4-bit ALU. This
device can perform any one of 16 logic functions or any
one of 16 arithmetic functions on two 4-bit binary
words. The function performed on the two words ts
determined by the logic level applied to the mode input
M and by the 4-bit binary code applied to the select
inputs SO to S3.

Figure 1-22b shows the truth table for the 74LS181.
In this truth table, A represents the 4-bit binary word
applied to the AO to A3 inputs, and B represents the 4-
bit binary word applied to the BO to B3 inputs. F
represents the 4-bit binary word that will be produced
on the FO to F3 outputs. If the mode input M is high.

the device will perform one of 16 logic functions on the
two words applied to the A and B inputs. For example.
if M is high and we make S3 high, S2 low, SI high, and
SO high, the 4-bit word on the A inputs will be ANDed
with the 4-bit word on the B inputs. The result of this
ANDing will appear on the F outputs. Each bit of the A
word is ANDed with the corresponding bit of the B word
to produce th result on F. Figure 1 -22c shows an
example of ANDing two words with this device. As you
can see in this example, an output bit is high only if the
corresponding bit is high in both the A word and the B
word.

For another example of the operation of the 74LS 181,
suppose that the M input is high, S3 is high, S2 is high,
SI is high, and SO is low. According to the truth table.
the device will now OR each bit in the A word with the
corresponding bit in the B word and give the result on
the corresponding F output, Figure I-22c shows the
result that will be produced by ORing two 4-bit words.
Figure I-22c also shows for your reference the result
that would be produced by exclusive ORing these two 4-
bit words together.

If the M input of the 74LS181 is low, then the device
will perform one of 16 arithmetic functions on the A and
B words, Again, the result of the operation will be put
on the F outputs. Several 74LSl8Is can be cascaded to
operate on words longer than 4 bits. The ripple-carry
input. CN, allows a early from an operation on previous
words to be included in the current operation. If the C5

I	 ACTIVE-HIGH DATA
SELECTION

M H	 M L; ARITHMETIC OPERATIONS
LOGIC_____________________

S3 S2 SI SO	 FUNCTIONS	 C, - H (NO CARRY)	 C, L (WITH CARRY)
L L L L	 F-A	 F-A	 F-APLUS1
L L L H	 F-AT5	 F-A+B	 F=(A.B)PLUS1
L L H L	 F-AS	 F=A+l	 F-)A+hPLUS1
I L H H	 F 0	 F = MINUS 1 (2 COMPL(F = 0
L H L L	 FA8	 F=APLU5A	 E-APLUSAPLUS1
L	 H	 I H	 F-S	 F(A+8(PLUSAB	 F(+B)PLU5A8PLLJS1
L H H L	 F - AGS	 F - A MINUS B MINUS I	 F A MINUS B
L H H H	 FAB	 FABMINUS1	 FAB
H L I I	 F = A+B	 F A PLUS AS	 F - A PLUS AS PLUS 1
H L L H	 F-AeB	 F=APLUSB	 F=APLUSBPLUS1
H	 I,	 H	 L	 F-B	 F=)A+)PLUSAB	 F=IAS)PLUSA8PLUS1
H I H H	 F-AS	 F-ABMINUS1	 F-AS
H H I.	 I	 F1	 F-APLIJSA	 F=APLUSAPLUS1
H H	 L	 H	 FA+B	 F-IA.BIPLIJSA	 F=IA8)PLUSAPLUS1
H H H I.	 FAB	 F=)A+A)PLUSA	 F=IA)PLUSAPLUSI
H H H H	 F-A	 F-AM)NUSI	 F-A

EACH SIT IS SHIFTED TO THE NEXT MORE SIGNIFICANT SIT POSITION

WI

AA3A2AIAO	 A-lOb	 A1010B-8382 8180	 8=0110	
B-Ui 10

F-Fl F2.F1 FO	 F-A5=i 110	 F-A'B=OO 10

(I

FIGURE 1-22 Arithmetic logic unit (ALU). (a) Schematic symbol. (b Truth
table. (c) Sample AND, OR, and XOR operations.

A- I 0 1 0
8 = 0 1 I 0

F = AGB 1 1 00

16	 CHAPTER ONE

input is asserted low, then a carry will be added to the
results of the operation on A and B. For example, if the
M Input Is low. S3 is high, S2 Is low. SI is low. SO is
high. and C N is low, the F outputs will have the sum of
A plus B plus a carly.

The real importance of an ALJJ such as the 74LS181
is that it can be programmed with a binary instruction
applied to its mode and select inputs to perform many
different functions on two binary words applied to its
data inputs. In other words. Instead of having to build
a different circuit to perform each of these functions.
we have one programmable device. We carl perform any
of the operations that we want In a computer with a
sequence of simple operations such as those of the
74LS181. Therefore, an ALU is a very important part
of the microprocessors and microcomputers that we
discuss in te neT' chapter.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
this list, use the Index to find them in the chapter.

Binary, bit, nibble. byte. word, doubleword

LSB. MSB. LSD. MSD

Hexadecimal, standard BCD. Gray code

7-segment display code

Alphanumeric codes: ASCII, EBCDIC

Parity bit, odd parity, even parity

Converting between binary, decimal, hexadecimal. BCD

Arithmetic with binary, hexadecimal. BCD

BCD decimal adjust operation

Signed numbers, sign bit

2's complement sign-and-magnitude form

Signal assertion level

Inverting and noninverting buffers

Symbols and truth tables for AND. NAND. OR, NOR.
XOR logic gates

FPLA. PROM, PAL

D latch, 0 flIp-flop

Register, shift register, binary counter

ROM: address lines, data lines, bus lines, three-state
outputs and enable input

PROM. EPROM. EEPROM. flash EPROM

RAM: static, dynamic

ALU

REVIEW QUESTIONS AND PROBLEMS

1. WrIte the decimal equivalent for each integral power
of 2 from 2° to 220,

2. Convert the following decimal numbers to binary:
a. 22
b. 76
C. 500

3. Convert the following binary numbers to decimal:
a. 1011
b. 11010001
c. ll101iiOO1011OOl

4. Convert to hexadecimal:
a. 53 decimal
b. 756 decimal
C. 01101t000lobinary
ci. 11000010111 binary

5. Convert to decimal:
a. D3H
b. 3FEH
c. 44H

6. Convert the following decimal numbers to BCD:
a. 86
b. 62
c. 33

to find on the seven parallel data lines coming
from the keyboard? What pattern would a carriage
return. CR. give?

8. Define parity and describe how it Is used to detect
an error in transmitted data.

Show addition of:
a. 1001 l and 101 1 in binary
b. 37 and 25 in BCD
C. 4AH and 77H

Express the following decinial numbers in 8-bit
sign-and-magnitude form:
a. +26
b. -7
C. -26
d. -125

II. Show the subtraction, in binary, of the following
decimal numbers using both the pencil method
and the 2's-complement addition method:
a. 7 - 4
b. 37 - 26
C. 125-93

12. Show the multiplication of 1001 and 011 by the
pencil method. Do the same for 11010 and 101.

	

7. The L key is depressed on an ASCII-encoded key- 	 13, Show the division of 1100100 by 1010 using the

	

board, What pattern of l's and Os would you expect 	 pencil method.

COMPUTER NUMBER SYSTEMS, CODES, AND DIGITAL DEViCES 	 17

y

14. Perform the indicated operations on the following
numbers:
a. 3AH + 94H
b. I7AH - 4C1-i
c. 0101 1001 BCD

+ 0100 0010 BCD

d. 0111 1001 BCD
+ 0100 1001 BCD

e. 0101 1001 BCD
- 0010 01 10 BCD

J.	 OLIOOIIIBCD
- 0011 1001 BCD

15. For the Circuit in Figure 1-23:
a. is the Y output active high or active low?
b. Is the C signal active high or active low?
c. What input conditions on A. B. and C will cause

the Y output to be asserted?

i6. Describe how a D latch responds to a positive pulse
on its CK input and how a D flip-flop responds to
a pc.sitive pulse on its CK input.

17. The National Semiconductor 1NS8298 is a 65,536-
bit ROM organized as 8192 words or bytes of 8 bits.
How many address lines are required to address
one of the 8192 bytes?

is. Why do most ROMs and RAMs have three-state
outputs?

A

a

C

FIGURE 1-23 Circuit or problem 15.

19. Using Figure 1 22b, show the programming of the
select and mode Inputs the 74181 requires to
perform the following arithmetic functions:
a. A -t- B
I,. A - B - I
C. AB+A

20. Show the output word produced when the following
binary words are ANDed with each other and when
they are ORed with each other:
a. 101Oand011i
b. 1011 and 1100
C. I101011landlll000
d. ANDing an 8-bit binary number with 1111

0000 is sometimes referred to as "masking' the
lower 4 bits. Why?

18	 Ci-IAPTtR ONE

£

We live in a computer-oriented society, and we are
constantly bombarded with a multitude of terms relating
to computers. Before getting started with the main flow
of the book, we will try to clarify some of these terms
and to give an overview of computers and computer
systems.

OBJECTIVES
At the conclusion of this chapter, you should be able to:

I. Define the terms microcomputer. microproces-
sor, hardware, software, firmware, timesharing.
multitasking, distributed processing, and multi-
processing.

2. Describe how a microcomputer fetches and executes
an instruction.

3. List the registers and other parts in the 8086/8088
execution unit and bus interface unit.

4. Describe the function of the 8086/8088 queue.

5. Demonstrate how the 8086/8088 calculates memory
addresses.

TYPES OF COMPUTERS

Mainframes

Computers come in a wide variety of sizes and capabili-
ties. The largest and most powerful are often called
mainframes. Mainframe computers may fill an entire
room. They are designed to work at very high speeds
with large data words, typically 64 bits or greater. and
they have massive amounts of memory. Computers of
this type are used for military defense control, for
business data processing (in an insurance company, for
example), and for creating computer graphics displays
for science fiction movies. Examples of this type of
computer are the IBM 4381, the Hone ywell DPS8, and
the Cray Y-MP1832. The fastest and most powerful
mainframes are called supercomputers. Figure 2-la,
p. 20, shows a photograph ola Cray Y-MP/832 supercom.

puter. which contains eight central processors and 32
million 64-bit words of memory.

Minicomputers

Scaled-down versions of mainframe computers are often
called minicomputers. The main unit of a minicomputer
usually fits in a single rack or box. A minicomputer runs
more slowly, works directly with smaller data words
loften 32-bit words), and does not have as much memory
as a mainframe. Computers of this type are used for
business data processing, industrial control (for an oil
refinery, for example), and scientific researc1. Examples
of this type of computer are th Digital Equipment
Corporation VAX 6360 and the Data General MV/8000l1.
Figure 2-lb shows a photograph of a Digital Equipment
Corporation's VAX 6360 minicomputer.

Microcomputers

As the name implies, microcomputers are small com-
puters. They range from small controllers that work
directly with 4-bit words and can address a few thousand
bytes of memory to larger units that work directly with
32-bit words and can address billions of bytes of memory.
Some of the more powerful microcomputers have all or
most of the features of earlier minicomputers. Therefore.
it has become very hard to draw a sharp line between
these two types. One distinguishing feature of a micro-
computer is that the CPU is usually a single integrated
circuit called a microprocessor. Older books often used
the terms microprocessor dnd microcomputer Inter-
changeabl y . but actually he microprocessor is the CPU
to which you add IOM. RAM. and ports to make a
microcomputer . later section in this chapter discusses
the evolution ii different types of microprocessors. Mi-
crocomputers are used In evetything from smart sewing
machines to colr2uter-aided design systems. Examples
ofmlcroccmputersarethelntei8o5l slngle-chipcontrol'
(cr: the SDK-86. a single-board computer design kit: the
IBM Personal Computer (PC(: and the Apple Macintosh
computer. The lntei 8051 microcontroller is contained
In a single 40-pin chip. Figure 2-2a. p. 21, shows the
SDK86 board, and Figure 2-2b shows the Compaq 386/
25 system.

—5	 19

I b)

FIGURE 2-1 (a) Photograph of Cray 'r-MP/632 computer
(Courtesy Cray Research, Inc., and photographer, Paul
Shambroom.) (b) Photograph of VAX 6360
m)nlcomputer. (Courtesy Digital Equipment Corp.)

HOW COMPUTERS AND
MICROCOMPUTERS ARE
USED—AN EXAMPLE

The following sections are intended to give you an
overview of how computers are Interfaced with users
to do useful work. These sections should help you
understand many of the features designed Into current
microprocessors and where this book is heading.

Computerizing an Electronics Factory—Problem

Now, suppose Lliat we want to"computcrlze"an electron-
ics company. By this we mean that we want to make
computer use available to as many people In the company
as possible as cheaply as possible. We want the engineers
to have access to a computer which can help them design
circuits. People In the drafting department should have
access to a computer which can be used for computer-
aided drafting. The accounting department should have
access to a computer [or doing all the financial bookkeep-
ing. The warehouse should have access to a computer
to help with inventory control. The manufacturing de-
partment should have access to a computer for control-
Ing machines and testing finished products. The presi.

'lent, vice presidents, and supervisors should have
iccess to a computer to help them with long-range
planning. Secretaries should have access to a computer
for word processing. Salespeople should have access to
a computer to help them keep track of current pricing.
product availability, and commissions. There are several
ways to provide all the needed computer power. One
"olution Is to simply give everyone an individual personal
computer. The problem with this approach is that it
makes It difficult for different people to access commonly
needed data. In the next sections we show you two ways
to provide computer power and common data to many
users.

TIMESHARING AND MULTITASKING SYSTEMS

One common method of providing computer access Is a
timesharing system such as shown in Figure 2-3. p. 22.
Several video terminals are connected to the computer
through direct wires or through telephone lines. The
terminal can be on the user's desk or even in the user's
home. The rate at which a user usually enters data is
very slow compared with the rate at which a computer
can process the data. Therefore, the computer can serve
many users by dividing its time among them in small
increments. In other words, the computer works on user
Is program for perhaps 20 milliseconds (ms). then
works on user 2s program for 20 ms. then works on
user 3's program for 20 ms. and soon, until all the users
have had a turn, In a few milliseconds the computer will
get back to user I again and repeat the cycle. To each
user it will appear as if he or she has exclusive use of
the computer because the computer processes data as
fast as the user enters it. A timesharing system such as
tills allows several users to interact with the computer
at the same time. Each user can get information from
or store Information in the large memory attached to
the computer. Each user can havean inexpensive printer
attached to the terminal or can direct program or data
output to a high-speed printer attached directly to the
computer.

An airline ticket reservation computer might use a
timesharing system such as this to allow users from all
over the country to access flight informafion and make
reservations. A time-multiplexed or time-sliced system
such as this can also allow a computer to control many
machines or processes in a factory. A computer is much
faster than the machines or processes. Therefore, it can

20	 CHAPTER TWfl

AlDRESS	 <EYBOARD
DtCJpEiS	 ADDt.S	 DISPLAY

PORTS
a)

)b)

FIGL'RE 2-2 Ia) Photograph ot Intel SDK-b6 board, lintel
Corp.) (bI Photograph of Compaq 3)1625. (Compaq
(.'orp.)

Now lets take another look at our problem of computer-
izing the electronics company. We could put a powerful
computer in some central location and run wires from
it to video display terminals on users desks. Each user
could then run the, program needed to do a particular
task. The accountant could run a ledger program, the
secretary could run a word processing program, etc.
Each uset' could access the computer's large data mem-
ory'. Incidentally, a large collection of data stored in a
computer's memory is often referred to as a data base.
For a small company a system such as this might be
adequate. However, there arc at least two potential
problems.

The first potential problem is. 'What happens if the
computer is not working'?' The answer to this question
is that everything grinds to a halt. In a situation where
people have become dependent on the computer, not
much gets done until the computer is up and running
again. The old saying about putting all your eggs in one
basket comes to mind here.

The second potential problem of the simple timeshar-
ing system is saturation, As the number of users In-
creases. the time it takes the computer to do each users
task increases also. Eventually the computer's response
time to each user becomes unreasonably long. People
get very upset about the time they have to wait.

clici.k and adjust many pressurts. tcntpc'rati's. nine
DISTRIBUTED PROCESSING ORspeeds. etc . before Ii needs to get back and recheck
MU U I PROCESS INCthe first One. A system such as this is often called a

flu ul(tiask TI)) sqsti'm because it appears to be doing	 A partial solution for the two potent at problems ol
many tasks at the saint time,	 a simple timesharing system is to nsc a distributed

COMPUTERS. M)CROCOMF'UTERS. AN)) Mt(ROPROC tSSORS--AN tNJRTDI UTION	 21

MASS	 I	 -	 COMPUTER
DATA	 IMAINrRAME

STORAGE I________	 OR MINI)

H -SPE ED
PRINTER

DIRECT WIRE OR TELEPHONE LINE CONNECTION

VIDEO	 PRINTER	 VIDEO
TERMINAL	 TERMINAL

VIDEO	 LOW-COST	 VIDEO
TERMINAL	 PRINTER	 TERMINAL

FIGURE 2-3 Block diagram of a computer timesharing system.

processing system. Figure 2-4 shows a block diagram
for such a system. The system has a powerful central
computer with a large memory and a high-speed printer.
as does the Simple timesharing system described previ-
ously. However, in this system each user has a microcom-
puter instead of simply a video dispy terminal. In other
words, each user station is an independently functioning
microcomputer with a CPU. ROM. RAM. and probably
magnetic nr optical disk memory. This means that a
person ran do many tasks locally on the microcomputer

without having to use the large computer at all. Since
the microcomputers are connected to the large computer
through a network, however, a user can access the
computing power, memory, or other resources of the
large computer when needed.

Distributing the processing to multiple computers or
processors in a system has several advantages. First, if
the large computer goes down, the local microcomputers
can continue working until they need to access the large
computer for something. Second, the burden on the

MASS DATA
	

MAINFRAME	 HIGH-SPEED
STORAGE
	

COMPUTER
	

PRINTER

CONNECTION TO
PHONE LINE

MICROCOMPUTER
	

MICROCOMPUTER

MINICOMPUTER	 LOCAL
AREA

NETWORK

FLOPPY DISK
DRIVEHARO

DISK DRIVE	 /

MICROCOMPUTER
PRINTER

VIDEO TERMINAL VIDEO TERMINAL VIDEO TERMINAL

FIGURE 2-4 Block diagram of a distributed processing computer system.

22	 CHAPTER TWO

large computer is reduced greatly. because much of the
computing is done by the local microcomputers. Finally.
the distributed processing approach allows the system
designer to use a local microcomputer that is best suited
to the task it has to do.

COMPUTERIZED ELECTRONICS
COMPANY OVERVIEW
Distributed processing seems to be the best way to go
about computerizing our electronics factory. Engineers
can have personal computers or engineering work-
stations on their desks. With these they can use available
programs to design and test circuitS. They can access
the large computer if they need data from its memory.
Through the telephone lines, the engineer with a per-
sonal computer can access data in the memory of other
computers all over the world. The drafting people can
have personal computers for simple work, or large
computer .aided design systems for more complex work.
Completed work can be stored In the memory of the
large computer. The production department can have
networked computers to keep track of product flow
and to control the machines which actually mount
components on circuit boards, etc. The accounting
department can use personal computers with spread.
sheet programs to work with financial data kept in
the memory of the large computer. The warehouse
supervisor can likewise use a personal computer with
an inventory program to keep personal records and
those in the large computer's memory updated. Corpo-
rate officers can have personal computers tied into the
network. They then can interact with any of the other
systems on the network. Salespeople can have portable
personal computers that they can carry with them in
the field. They can communicate with the main computer
over the telephone lines using a modem. Secretaries
doing word processing can use individual word pro-
cessing units or personal computers. Users can also
send messages to one another over the network. The
specifics of a computer system such as this will obviously
depend on the needs of the individual company for
which the system is designed.

SUMMARY AND DIRECTION FROM HERE

The main concepts that you should take with you
from this section are timesharing or multitasking and
distributed processing or multiprocessing. As you work
your way through the rest of this book, keep an overview

of the computerized electronics company in the back of
your mind. The goal of this book is to teach you how
the microcomputers and other parts of a system such
as this work, how the parts are connected together. and
how the system is programmed at different levels.

OVERVIEW OF MICROCOMPUTER
STRUCTURE AND OPERATION

Figure 2-5 shows a block diagram for a simple microcom-
puter. The major parts are the central processIng unit

or CPU. memory. and the input and output circuitry or
110. Connecting these parts are three sets of parallel
lines called buses. The three buses are the address bus,
the data bus, and the control bus. Let's take a brief look
at each of these parts.

Memory
The memory section usually consists of a mixture of
RAM and ROM. It may also have magnetic floppy disks,
magnetic hard disks, or optical disks. Memory has two
purposes. The first purpose is to store the binary codes
for the sequences of instructions you want the computer
to carry out. When you write a computer program. what
you are really doing is writing a sequential list of
Instructions for the computer. The second purpose of
the memory is to store the binary-coded data with which
the computer is going to be working. This data might
be the inventory records of a supermarket. for example.

Input/Output
The inputioutput or 110 section allows the computer to
take in data from the outside world or send data to the
outside world. Peripherals s'ich as keyboards. video
display terminals, printers, and modems are connected
to the 110 section. These allow the user and the computer
to communicate with each other. The actual physical
devices used to interface the computer buses to external
systems are often called ports. Ports in a computer
function just as shipping ports do for a country. An
input port allows data from a keyboard. an A/D converter.
or some other source to be read into the computer under
control of the CPU. An output port Is used to send data
from the computer to some peripheral, such as a video
display terminal, a printer, or a D.'A converter. Physically.

DATA BUS

I CONTROL	 CENTRAL	 II/O	 I	 Bus	
I PROCESSING I	

BUS	
I	

MEMORY
PORTS	 UNIT	

.	
RAM AND

CPUI	 ROMI

ADDRESS BUS

FIGURE 2-5 Block diagram of a simple microcomputer.

INPUT
DEVICE

OUTPUT
DEVICE

COMPUTERS, MICROCOMPUTERS. AND MICROPROCESSORS—AN INTRODUCTION 	 23

the simplest type of input or output port is Just a set of
parallel D flip-flops. II they are being used as an input
port, the D inputs are connected to the external device.
and the Q outputs are connected to the data bus which
runs to the CPU. Data will then be transferred through
the latches when they are enabled by a control signal
from the CPU. In a system where they are being used as
an output port, the D inputs of the latches are connected
to the data bus, and the Q outputs are connected to
some external device. Data sent out on the data bus by
the CPU will be transferred to the external device when
the latches are enabled by a control signal from the CPU.

Central Processing Unit

The central processing unit or CPU Controls the opera-
tion of the computer. In a microcomputer the CPU is a
microprocessor as we discussed in an earlier section of
the chapter. The CPU fetches binary-coded instructions
from memory, decodes the instructions into a series of
simple actions, and carries out these actions in a
sequdce of steps.

The CPU also contains an address counter or instruc-
tion pointer register, which holds the address of the
next instruction or data item to be fetched from memory;
general-purpose registers, which are used for temporary
storage of binary data; and circuitry, which generates
the control bus signals.

Address Bus

The address bus consists of. 16. 20, 24, or 32 parallel
signal lines. On these lines the CPU sends out the
address of the memory location that is to be written to
or read from. The number of memory locations that the
CPU can address is determined by the number of address
lines, If the CPU has N address lines, then it can directly
address 2 memory locations. For example, a CPU with
16 address lines can address 2 16 or 65.536 memory
locations, a CPU with 20 address lines can address 2°
or 1,048,576 locations, and a CPU with 24 address lines
can address 22 or 16,777,216 locations. When the CPU
reads data from or writes data to a port, it sends the
port address out on the address bus.

Data Bus

The data bus consists of 8. 16, or 32 parallel signal
lines. As indicated by the double-ended arrows on the
data bus line in Figure 2-5, the data bus lines are
bidirectionaL This means, that the CPU can read data
in from memory or from a port on these lines, or it can
send data out to memory or to a port on these lines. Many
devices in a system will have their outputs connected to
the data bus, but only one device at a time will have Its
outputs enabled. Any device connected on the data bus
must have three-state outputs so that its outputs can
be disabled when it is not being used to put data on the
bus.	 -

Control Bus

The control bus consists of 4 to 10 parallel signal lines,
The CPU sends Out signals on the control bus to enable
the outputs of addressed memory devices or port devices.
Typical control bus signals are Memory Read. Memory
Write, I/O Read, and I/O Write. To read a byte of data
from a memory location, for example, the CPU sends out
the memory address of the desired byte on the address
bus and then sends out a Memory Read signal on
the control bus. The Memory Read signal enables the
addressed memory device to output a data word onto
the data bus. The data word from memory travels along
the data bus to the CPU.

Hardware, Software, and Firmware

When working around computers, you hear the terms
hardware, software, and firmware almost constantly.
Hardware is the name given to the physical devices
and circuitry of the computer. Software refers to the
programs written for the computer. Firmware is the
term given to programs stored in ROMs or in other
devices which permanently keep their stored infor-
mation.

Summary of Important Points So Far

• A computer or microcomputer consists of memory.
a CPU, and some input/output circuitry.

• These three parts are connected by the address bus,
the data bus, and the control bus.

• The sequence of instructions or program for a com-
puter is stored as binary numbers in successive
memory locations.

• The CPU fetches an Instruction from memory, de-
codes the instruction to determine what actions
must be done for the instruction, and carries out
these actions.

EXECUTION OF A
THREE-INSTRUCTION PROGRAM

To give you a better idea of how the parts ola microcom-
puter function together, we will now describe the actions
a simple microcomputer might go through to carry out
(execute) a simple program. The three instructions of
the program are

1. Input a value from a keyboard connected to the port
at address 05Ff.

2. Add 7 to the value read in.

3. Output the result to a display connected to the port
at address 02Ff.

Figure 2-6 shows in diagram form and sequential list
form the actions that the computer will perform to
execute these three Instructions.

24	 CHAPTER iWO

MEMORY

68

CONTROL BUS
Cd,

CPU

CONTROL BUS

60
	

2E6F

PORT 05 I	 I PORT 02

1U1111 131

l4I5I67I	 188I8J9II-1	 ________
KEYBOARD	 DISPLAY

PROGRAM

1. INPUTAVALUE FROM PORTO5.
2. ADD 7 TO THIS VALUE.
3. OUTPUTTHE RESULT TO PORT 02.

SEQUENCE

1A CPU SENDS OUT ADDRESS OF FIRST INSTRUCTION TO MEMORY.
18 CPU SENDS OUT MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
ic INSTRUCTION BYTE SENT FROM MEMORY TO CPU ON DATA BUS.
2A ADDRESS NEXT MEMORY LOCATION TO GET REST OF INSTRUCTION.
28 SEND MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
2C PORT ADDRESS BYTE SENT FROM MEMORY TO CPU ON DATA BUS.
20 CPU SENDS OUT PORT ADDRESS ON ADDRESS BUS.
2E CPU SENDS OUT INPUT READ CONTROL SIGNAL TO ENABLE PORT.
2F DATA F ROM PORT SENT TO CPU ON DATA BUS.
3A CPU SENDS ADDRESS OF NEXT INSTRUCTION TO MEMORY.

CPU SENDS MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
3C INSTRUCTION BYTE FROM MEMORY SENT TO CPU ON DATA BUS.
4A CPU SENDS NEXT ADDRESS TO MEMORY TO GET REST OF INSTRUCTION.
48 CPU SENDS MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
4C NUMBER 0711 SENT FRDM MEMORY TO CPU ON DATA BUS.
5A CPU SENDS ADDRESS OF NEXT INSTRUCTION TO MEMORY.
5B CPU SENDS MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
5C INSTRUCTION BYTE FROM MEMORY SENT TO CPU ON DATA BUS.
6A CPU SENDS OUT NEXT ADDRESS TO GET REST OF INSTRUCTION.
6B CPU SENDS OUT MEMORY READ CONTROL SIGNAL TO ENABLE MEMORY.
6C PORT ADDRESS BYTE SENT FROM MEMORY TO CPU ON DATA BUS.
6D CPU SENDS OUT PORT ADDRESS ON ADDRESS BUS.
6E CPU SENDS OUT DATA TO PORT ON DATA BUS.
6F CPU SENDS OUT OUTPUT WRITE SIGNAL TO ENABLE PORT.

MEMORY CONTENTS CONTENTS OPERATION
ADORESS	 (BINARY)	 (HEX)

OO100H	 11100100
0010111	 00000101
00102H	 00000100
00103H	 00000111
0010411	 11100110
0010511	 00000010

E4	 INPUT FROM
05	 PORTO5H
04	 ADD
07	 0711
E6	 OUTPUT TO
02	 PORT 02

(hI

FIGURE 2-6 (a) Execution of a three-step computer program. (b) Memory
addresses and memory contents for a three-step program.

For Ehis example, assume that the CPU fetches instruc-
tions and data from memory I byte at a time, as Is done
in the original IBM PC and Its clones. Also assume that
the binary codes for the instructions are in sequential
memory locations starting at address OOlOOH. Figure
2-6b shows the actual binary codes that would be
required in successive memory locations to execute this
program on an IBM PC-type microcorilputer.

The CPU needs an instruction before it can do any-
thing. so its first action is to fetch an instruction byte
from memory . To do this, the CPU sends Out the address
of the first instruction byte, in this case OOIOOH, to
memory on the address bus. This action Is represented
by line IA in Figure 2-6a. The CPU then sends out a
Memory Read signal on the control bus (line lB in the
figure). The Memory Read signal enables the memory to
output the addressed byte on the data bus, This action
is represenled by line IC in the figure. The CPU reads
in this first instruction byte (E4H(from the data bus
and decodes it. By decode we mean that the CPU
determines from the binary code read in what actions
it Is supposed to take. If the CPU is a microprocessor.
it selects the sequence of microinstructions needed to

carry out the instiuction read from memory. For the
example instruction here, the CPU determines that the
code read in represents an Input instruction. From
decoding this Instruction byte, the CPU also determines
that it needs more Information before it can carry out
the instruction. The additional Information the CPU
needs is the address of the port that the data is to be
input from. This port address part of the instruction is
stored In the next memory location after the code for
the Input instruction.

To fetch this second byte of the instruction, the CPU
sends out the next sequential address (OOIOIH) to
memory, as shown by line 2A in the figure. To enable
the addressed memory device, the CPU also sends out
another Memory Read signal on the control bus (line
2B). The memory then outputs the addressed byte on
the data bus (line 2C). When the CPU has read in this
second byte. 05H in this case, it has all the information
it needs to execute the instruction.

To execute the Input instruction, the CPU sends out
the port address (05)1) on the address bus (line 2D) and
sends out an I/O Read signal on the control bus (line
2E). The 1/0 Read signal enables the addressed port

CO\IPUTERS. \UCROCOMPUTFRS, AND MICROPROCESSORS—AN INTRODUCTION	 25

device to put a byte of data on the data bus (line 2F).
The CPU reads in the byte of data arid stores it Ln
art Internal register. This completes the fetching and
execution of the first instruction.

Having completed the first instruction, the CPU must
now fetch its next instruction from memoty. To do this.
it sends out the next sequential address (00102H) on
the address bus (line 3A) and sends out a Memory Read
signal on the control bus (line 3B). The Memory Read
signal enables the memory device to put the addressed
byte (04H1 on the data bus (line 3C). The CPU reads in
this instruction byte from the data bus and decodes it.
From this instruction byte the CPU determines that it
is supposed to add some number to the number stored
in the internal register. The CPU also determines from
decoding this instruction byte that it must go o memory
again to get the next byte of the instruction, which
Contains the number that It is supposed to add. To get
the required byte, the CPU will send out the next
sequential address (0010313) on the address bus (line
4A) and another Memory Read signal on the control bus
(line 48). The memory will then output the contents of
the addressed byte (the number 07H) on the data bus
(line 4C). When the CPU receives this number, it will
add it to the contents of the internal register. The result
of the addition will be left in the internal register. This
compietes the fetching and executing of the second
instruction,

The CPU must now fetch the third instruction. To do
this, it sends out the next sequential address (00104H1
on the address bus (line 5A) and sends out a Memory
Read signal on the control bus (line 513). The memory
then outputs the addressed byte (E6H) on the data bus
(line 5C). From decoding this byte, the CPU determines
that It is now supposed to do an Output operation to a
port. The CPU also determines from decoding this byte
that it must go to memory again to get the address of
the output port. To do this, it sends out the next
sequential address (0010513) on the address bus (line
6A). sends out a Memory Read signal on the control bus
(line 613). and reads tn the byte (0213) put on the data
bus by the memory (line 6C). The CPU now has all
the information that it needs to execute the Output
instruction.

To output a data byte to a port, the CPU first sends
out the address of the desired port on the address bus
(line 6D(. Next it outputs the data byte from the internal
register on the data bus (line 6E). The CPU then sends
out an I'O Write signal on the control bus (line 6F). This
signal enables the addressed output port device so that
the data from the data bus lines can pass through it to
the LED displays. When (he CPU removes the 110 Write
signal to proceed with the next instruction, the data will
remain latched on the output pins of the port device.
The data will remain latched on the port until the power
is turned off or until a new data word is output to the
port. This is important because it means that the
computer does not have to keep outputting a value over
and over in order for it to remain on the output.

All the steps described above ma y seem like a great
deal of work just to input a value from a keyboard. add
7 to it, and output the result to a displa y . Even a simple

microcomputer, however, can run through all these
steps in a few microseconds.

Summary of Simple Microcomputer
Bus Operation

I. A microcomputer fetches each program instruction
in sequence, decodes (he instruction, and executes
it.

2. The CPU in a microcomputer fetches instructions
or reads data from memory by sending out an
address on the address bus ar,d a Memory Read
signal on the control bus. The memory outputs the
addressed instruction or data word to the CPU on
the data bus.

3. The CPU writes a data word to memory by sending
out an address on the address bus, sending out the
data word on the data bus, and sending a Memory
Write signal to memory on the control bus.

4. To read data from a port, the CPU sends out the port
address on the address bus and sends an t/O Read
signal to the port device on the control bus. Data
from the port comes into the CPU on the data bus.

5. To write data to a port, the CPU sends out the port
address on the address bus, sends out the data to
be written to the port on the data bus. and sends
an 110 Write signal to the port device on the control
bus.

MICROPROCESSOR EVOLUTION
AND TYPES

As we told you in the prer'Uirif section. a microprocessor
is used as the CPU in a microcomputer. There are now
man y different microprocessors available. so before we
dig nb the details of a specific device, we will give you
a short microprocessor history lesson and an overview
of the different types.

Microprocessor Evolution

A common way of categorizing microprocessors is by
the number of bits that their ALU can work with at a
time, In other words, a microprocessor with a 4-bit ALU
will be referred to as a 4'bit microprocessor, regardless
01' the number of address lines or the number of data
bus lines that it has. The first commercially available
microprocessor was the Intel 4004, produced in 1971.
It contained 2300 PMOS transistors. The 4004 was a 4-
bit device intended to be used with some other devices
in making a calculator. Some logic designers, however.
saw that this device could be used to replace PC boards
full of combinational and sequential logic devices. Also.
the ability to change the function of a system by just
changing the programming. rather than redesigning
the hardware, Is very appealing. It was these factors that
pushed the evolution of microprocessors.

In 1972 I rite) came out wi h the H008, which was
capable of working with 8-hd words. The 8008, however.

26	 CHAPTER TWO

required 20 or more additional devices to form a func-
tional CPU. In 1974 Intel announced the 8080. which
had a much larger instruction set than the 8008 and
required Only two additional devices to form a functional
CPU. Also, the 8080 used NMOS transistors, so it
operated much faster than the 8008. The 8080 is
referred to as a second-generation microprocessor.

Soon after Intel produced the 8080. Motorola came
out with the MC6800, another 8-bit general-purpose
CPU. The 6800 had the advantage that it required only
a + 5-V supply rather than the - 5-V. + 5-V. and + 12-
V supplies required by the 8080. For several years the
8080 and the 6800 were the top-selling 8-bit micropro-
cessors. Some of their competitors were the MOS Tech-
nology 6502. used as the CPU in the Apple II microcom-
puter, and the Zilog Z80. used as the CPU in the Radio
Shack TRS'80 microcomputer.

As designers found more and more applications for
microprocessors, they pressured microprocessor manu-
facturers to develop devices with architectures and
features optimized for doing certain types of tasks. In
response to the expressed needs, microprocessors have
evolved in three major directions during the last 15
years.

Dedicated or Embedded Controllers

One direction has been dedicated or em bedded control-
lers. These devices are used to control "smart" machines,
such as microwave ovens. clothes washers, sewing ma-
chines. auto ignition systems, and metal lathes. Texas
Instruments has produced millions of their TMS-1000
family of 4-bit microprocessors for this type of applica-
tion. In 1976 Intel introduced the 8048. which contains
an 8-bit CPU, RAM. ROM. and some I/O ports all in one
40-pin package. Other manufacturers have followed with
similar prod'Jcts. These devices are often referred to as
mtcrocontrol(ers. Some currently available devices in
this category—the Intel 8051 and the Motorola MC6801.
for example—contain programmable counters and a
serial port (UART) as well as a CPU. ROM. RAM. and
parallel I/O ports. A more recently Introduced single-
chip microcontroller, the Intel 8096. contains a 16-bit
CPU. ROM. RAM. a UART. ports, timers, and a 10-bit
analog-to-digital converter.

Bit-Slice Processors

A second direction of microprocessor evolution has been
bit-slice processors. For some applications, general-
purpose CPUs such as (he 8080 and 6800 are not fast
enough or do not have suitable instruction sets. For
these applications, several manufacturers produce de-
vices which can be used to build a custom CPU. An
example is the Advanced Micro Devices 2900 family of
devices. This family includes 4-bit ALUs. multiplexers.
sequencers. and other parts needed for custom-building
a CPU. The term slice comes from the fact that these
parts can be connected In parallel to work with 8-bit
words. 16-bit words, or 32-bit words. In other words, a
designer can add as many slices as needed for a particu-

lar application. The designer not only custom-designs
the hardware of the CPU, but also custom-makes the
instruction set for it using "microcode."

General-Purpose CPUs

The third major direction of microprocessor evolution
has been toward gtnera1-purpose CPUs which give a
microcomputer mosk or all of the computing power of
earlier minicomputers. After Motorola came Out with
the MC6800. Intel produced the 8085. an upgrade of
the 8080 that required Only a + 5-V supply. Motorola
then produced the MC6809. which has a few 16-bit
instructions, but is still basically an 8-bit processor. In
1978 Intel came Out with the 8086. which isa full 16-
bit processor. Some 16-bit microprocessors, such as the
National PACE and the Texas Instruments 9900 family
of devices. had been available previously, but the market
apparently wasn't ready. Soon after Intel came out with
the 8086. Motoi'ola came out with the 16-bit MC68000.
and the 16-bit race was off and running. The 8086 and
the 68000 work directly with 16-bit words instead of
with 8-bit words, they can address a million or more
bytes of memory instead of the 64 Kbytes addressable
by the 8-bit processors, and they execute instructions
much faster than the 8-bit processors. Also, these 16-
bit processors have single instructions for functions
such as multiply and divide, which required a lengthy
sequence of instructions on the 8-bit processors.

The evolution along this last path has continued on
to 32-bit processors that work with gigabytes (10 bytes)
or terabytes (l02 bytes) of memory. Examples of these
devices are the Intel 80386. the Motorola MC68020. and
the National 32032.

Since we could not possibly describe in this book the
operation and programming of even a few of the available
processors. we confine our discussions primarily to one
group ol related microprocessors. The family we have
chosen is the Intel 8086. 8088, 80186. 80188, 80286.
80386. 80486 family. Members of this family are very
widely used in personal computers, business computer
systems, and industrial control systems. Our experience
has shown that learning the programmingand operation
of one family of microcomputers very thoroughly is
much more useful than looking at many processors
superficially. If you learn one processor family well, you
will most likely find It quite easy to learn another when
you have to.

THE 8086 MICROPROCESSOR
FAMILY—OVERVIEW

The Intel 8086 is a 16-bit microprocessor that is in-
tended to be used as the CPU in a microcomputer. The
term 16-bit means that its arithmetic logic unit. Its
internal registers. and most of its instructions are
designed to work with 16-bit binary words. The 8086
has a 16-bit data bus, so it can read data from or write
data to memory and ports either 16 bits or 8 bits at a
time. The 8086 has a 20-bit address bus. so it can

address any one of 220. or 1.048.576. memory locations.

COMPUTERS, MICROCOMPUT[RS, AND MICROPROCESSORS—AN INTRODUCTION 	 27
–6

Each of the 1,048.576 memory addresses of the 8086
represents a byte-wide location. Sixteen-bit words will
be stored in two consecutive memory locations. II the
first byte of a word is at an even address, the 8086 can
read the entire word in one operation. If the first byte
of the word is at an odd address, the 8086 will read the
first byte with one bus operation and the second byte
with another bus operation. Later we will discuss this
in detail. The main point here Is that if the first byte of
a 16-bit word is at an even address, the 8086 can read
the entire word in one operation.

The intel 8088 has the same arithmetic logic unit, the
same registers, and the same instruction set as the
8086 he 8088 also has a 20-bit address bus, so it can
address any one of 1.048.576 bytes in memory. The
8088. however, has an 8-bit data bus, so it can only
read data from or write data to memory and ports 8 bits
at a time. The 8086, remember, can read or write either
8 or 16 bits at a time. To read a 16-bit word from two
successive memory locations, the 8088 will always have
to do two read operations. Since the 8086 and the 8088
are almost identical, any reference we make to the 8086

- in the rest of the book will also pertain to the 8088
unless we specifically indicate otherwise. This is done
to make reading easier. The Intel 8088, Incidentally, is
used as the CPU in the original IBM Personal Computer,
the IBM PC/XT, and several compatIble personal com-
puters.

The Intel 80186 is an Improved version of the 8086.
and the 80188 is an Improved version of the 8088. In
addition to a 16-bit CPU. the 80186 and 80188 each
have programmable peripheral devices integrated in the
same package. In a later Chapter we will discuss these
integrated peripherals. The instruction Set of the 80186
and 80188 Is a superset of the instruction set of the
8086. The term superset means that all the 8086 and
8088 lnstructtons will execute properly on an 80186 or
an 80188, but the 80186 and the 80188 have a few
additional instructions. In other words, a program writ-
ten for an 8086 or an 8088 is upward-compatible to an
80186 or an 80188, but a program wrItten for an 80186
or an 80188 may not execute correctly on an 8086 or an
8088. In the instruction set descriptions In Chapter 6.
we specifically indicate which instructions work only
with the 80186 or 80188.

The Intel 80286 is a 16-bit, advanced version of the
8086 which was specifically designed for use as the CPU
in a multiuser or multitasking microcomputer. When
operating in its real address mode, the 80286 functions
mostly as a fast 8086. Most programs written for an
8086 can be run on an 80286 operating in its real
address mode. When operating in its virtual address
mode, an 80286 has features which make it easy to
keep users' programs separate from one another and t.o
protect the system program from destruction by users'
programs. In Chapter 15 we discuss the operation and
use of the 80286. The 80286 is the CPU used in the IBM
PC/AT personal computer.

The Intel 80386 is a 32-bit microprocessor which can
directly address upto 4 gigabytes of memory. The 80386
contains more sophisticated features than the 80286
for use in multiuser and multitasking microcomputer

systems. In Chapter 15 we discuss the features of the
80386 and the 80486, which is an evolutionary step up
from thc 80386.	 -

8086 INTERNAL ARCHITECTURE
Belore we can talk about how to write programs for the
8086, we need to discuss its specific internal features.
such as its ALU. flags, registers, instruction byte queue.
and segment registers.

As shown by the block diagram in Figure 2-7. the
8086 CPU Is divided into two independent functional
parts, the bus intetface unit or BIU, and the execution
unit or EU. Dividing the work between these two units
speeds up processing.

The BIU sends out addresses, fetches instructions
from memory, reads data from ports and memory, and
writes data to ports and memory. In other words, the
BIU handles all transfers of data and addresses on the
buses for the execution unit.

The execution unit of the 8086 tells the BIU where to
fetch instructions or data from, decodes instructions,
and executes instructions. Let's take a look at some of
the parts of the execution unit.

The Execution Unit

CONTROL CIRCUITRY, INSTRUCTION
DECODER, AND ALU

As shown in Figure 2-7. the EU contains control circuitry
which directs internal operations. A decoder in the EU
translates instructions fetched from memory into a
series of actions which the EU carries out. The EU has
a 16-bit arithmetic logic untt which can add, subtract,
AND. OR, XOR, increment, thcrement, complement, or
shift binary numbers.

FLAG REGISTER

A flag is a flip-flop which indicates some condition
produced by the execution of an instruction or controls
certain operations of the EU. A 16-bit flag register in
the EU contains nine active flags. Figure 2-8 shows the
location of the nine flags in the flag register. Six of the
nine flags are used to indicate some condition produced
by an Instruction. For example, a flip-flop called the
carry flag will be set to a I if the addition of two 16-
bit binary numbers produces a carry out of the most
significant bit position. If no carry out of the MSB is
produced by the addition, then the carry flag will be a
0. The EU thus effectively-runs up a "flag" to tell you
that a carry was produced.

The six conditional flags in this group are the carry
flag (CF). the parity flag IPF). the auxiliary carry flag
(AF), the zero flag (ZF). the sign flag (SF), and the
ove rJlowflag (OFf. The names of these flags should give
you hints as to what conditions affect them. Certain
8086 instructions check these flags to determine which
of two alternative actions should be done in executing
the instruction.

28	 CHAPTER TWO

AUCTION
IAM

UE

--I

---.---J

I-----

EU

IGURE 2-7 8086 internal block diagram. (Intel Corp.)

The three remaining flags In the flag register are used
to control certain operations of the processor. These
flags are different from the six conditional flags described
above in the way they are set or reset. The six conditional
flags are set or reset by the EU on the basis of the results
of some arithmetic or logic operation. The controlflags
are deliberately set or reset with specific instructions
you put in your program. The three control flags are the
trap flag (TF). which is used for single stepping through
a program: the tnterruptflag (IF), which is used to allow
or prohibit the interruption of a program; and the
dtrectionflag IDE). which is used with string instruc-
tions.

Later we will discuss in detail the operation and use
of the nine flags.

GENERAL-PURPOSE REGISTERS

Observe in Figure 2-7 that the EU has eight general-
purpose registers, labeled AH. AL. BFI. BL. CH , CL. DH.
and DL. These registers can be used individually for
temporary storage of 8-bit data. The AL register is also
called the accumulator. It has some features that the
other general-purpose registers do not have.

Certain pairs of these general .purpose registers can be
used together to store 16-bit data words. The acceptable

8085 COMPATIBLE LAGS

BIT IS 14 13 12 11 10 9 8	 7	 6	 5 4	 3	 2	 1	 0

Iu Jul u U 10F10F1 IF lTFlsFlI U AFJ U	 u Icri

UDEFINEOWJILL

FIGURE 2-8 8086 flag register format. (Intel Corp.)

CARRY FLAG - SET BY CARRY OUT OF MSB
PARITY FLAG - SET IF RESULT HAS EVEN PARITY
AUXILIARY CARRY FLAG FOR BCD
ZERO FLAG - SET IF RESULT 0
SIGN FLAG - MSB OF RESULT
SINGLE STEP TRAP FLAG
INTERRUPT ENABLE FLAG
STRING DIRECTION FLAG
OVERFLOW FLAG

COMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS—AN INTRODUCTION 	 29

5FFFFH

50000H

II
4489FH

-i--

3AON I
2FFFFI-4

2OOH I

register pairs are AH and AL. BH and BL. CH and CL,
and DH and DL. The AH—AL pair is referred to as the
AX register, the Bl-1—BL pair is referred to as the BX
register, the CH—CL pair s relerred to as the CX register,
and the Dl-I—DL pair is referred to as the DX register.

The 8086 general-purpose register set is very similar
to those of the earlier-generation 8080 and 8085 micro-
processors. It was designed this way so that the many
programs written for the 8080 and 8085 could easily be
translated to run on the 8086 or the 8088. The advantage
of using internal registers for the temporary storage of
data Is that, since the data is already In the EU. it can
be accessed much more quickly than it could be accessed
in external memory. Now let's look at the features of the
flU.

The BIIJ

THE QUEUE

While the EU is decoding an instruction or executing
an Instruction which does not require use of the buses.
the BIU fetches up to six instruction bytes for the
fouowlng instructions. The flU stores these prefetched
bytes in a first-In—first-out register set called a queue.
When the EU is ready for its next Instruction, it simply
reads the instruction byte(s) for the instruction from
the queue in the BIU. This is much faster than sending
out an address to the system memory and waiting for
memory to send back the next instruction byte or bytes.
The process Is analogous to the way a bricklayer's
assistant fetches bricks ahead of time and keeps a queue
of bricks lined up so that the bricklayer can just reach
out and grab a brick when necessary. Except in the
cases of JMP and CALL instructions, where the queue
must be dumped and then reloaded starting from a new
address, this prefetch-and-queue scheme greatly speeds
up processing. Fetching the next instruction while the
current instruction executes is called ptpellnlng.

SEGMENT REGISTERS

The 8086 BIU sends out 20-bit addresses, so it can
address any of 220 or 1.048.576 bytes in memory.
However, at anygiven time the 8086 works with only four
65.536-byte (64-Kbyte) segments within this L048.576-
byte (1-Mbyte) range. Four segment registers in the BIU
are used to hold the upper 16 bits of the starting
addresses of four memory segments that the 8086 is
working with at a particular time. The four segment
registers are the code segment (CS) register. the stack
segment (SS) register. the extra segment (ES) register.
and the data segment (DS) register.

Figure 2-9 shows how these four segments might be
positioned in memory at a given time. The four segments
can be separated as shown, or, for small programs which
do not need all 64 Kbytes in each segment. they can
overlap.

To repeat, then, a segment register is used to hold the
upper 16 bits of the starting address for each of the
segments. The code segment register. for example, holds
the upper 16 bits of the starting address for the segment
from which the BLU Is currently fetching instruction
code bytes. The BIU always inserts zeros for the lowest

PNYSCA L
ADDRESS

FFFFFH -
	 HGNEST ADDRESS

7FFFFH
	

- TOP OF EXTRA SEGMENT

7H I	 - EXTRA SEGMENT BASE
ES 1000H

-TOP OF STACK SEGMENT

- STACK SEGMENT BASE
SS 5cX5R

- TOP OF CODE SEGMENT

CODE SEGMENT BASE
CS - 348AH

TOP OF DATA SEGMENT

- BOTTOM OF DATA SEGMENT

FIGURE 2-9 One way four 64-Kbyte segments might be
positioned within the 1-Mbyte address space of an 8086.

4 bits (nibble) of the 20-bit starting address for a
segment. If the code segment register contains 348AH.
for example, then the code segment will start at address
348A0H. In other words, a 64-Kbyte segment can be
located anywhere within the 1-Mbyte address space, but
the segment will always start at an address with zeros
in the lowest 4 bits. This constraint was put on the
location of segments so that it is only necessary to store
and manipulate 16-bit numbers when working with the
starting address of a segment. The part of a segment
starting address stored in a segment register is often
called the segment base.

A stack is a section of memory set aside to store
addresses and data while a subprogram executes. The
stack segment register is used to hold the upper 16 bits
of the starting address for the program stack. We will
discuss the use and operation of a stack In detail later.

The extra segment register and the data segment
register are used to hold the upper 16 bits of the starting
addresses of two memory segments that are used for
data.

INSTRUCTION POINTER

The next feature to look at in the BIU is the Inst ruction
pointer li p) register. As discussed previously, the code

30	 (HA PIER TWO

PHYSICAL
ADDRESS	 MEMORY

4489FH— _____	 TOPOF CODE SEGMENT

38A84Hj .	—CODE BYTE

IF 4214H

348AOH —'	 START OF CODE SEGMENT
CS - 348AH

()

	

CS	 []4 8 A O-'---HARDWIAEOZERO

	

IF	 4 2 1 4

	

PHYSICAL ADDRESS 	 3 8 A B

FIGURE 2-10 Addition of IF to CS to produce the
physical address of the code byte. (a) Diagram.
(b) Computation.

segment register holds the upper 16 bits of the starting
address of the segment from which the BIU is currently
fetching instruction code bytes. The Instruction pointer
register holds the 16-bit address, or offset, of the next
code byte within this code segment. The value contained
in the IP is referred to as an offset because this value
must be offset from (added to) the segment base address
in CS to produce the required 20-bit physical address
sent out by the BIU. Figure 2-lOa shows in diagram
form how this works. The CS register points to the base
or start of the current code segment. The IP contains
the distance or offset from this base address to the next
instruction byte to be fetched. Figure 2-lOb shows how
the 16-bit offset in IF is added to the 16-bit segment
base address irs CS to produce the 20-bit physical
address. Notice that the two 16-bit numbers are not
added directly In line, because the CS register contains
only the upper 16 bits of the base address for the code
segment. As we said beforç. the BIU automatically inserts
zeros for the lowest 4 bits of the segment base address.

If the CS register. for example, contains 348A1-l. you
know that the starting address for the code segment is
348A0H. When the BIU adds the offset of 4214H in the
IP to this segment base address, the result is a 20-bit
physical address of 38A134H.

An alternative way of representing a 20-bit physical
address is the segment base:offsetform. For the address
of a code byte. the formal for this alternative form will
be CSlP. As an example of this. the address constructed
in the preceding paragraph. 38AB4H, can also be repre-
sented as 348A42l4.

To summarize, then, the CS register contains the
upper 16 bIts of the starling address of the code segment
in the l . Mbyte address range of the 8086. The inst rue-
lion pointer register contains a 16'bit oliset which

tells where in that 64-Kbyte code segmeni the next
Instruction byte Is to be fetched from. The actual physical
address sent to memory Is produced by adding the
offset contained in the IP register to the segment base
represented by the upper 16 bits in the CS register.

Any time the 8086 accesses memory, the BIU produces
the required 20-bit physical address by adding an offset
to a segment base value represented by the contents of
one of the segment registers. As another example of this.
let's look at how the 8086 uses the contents of the stack
segment register and the contents of the stack pointer
register to produce a physical address,

STACK SEGMENT REGISTER AND
STACK POINTER REGISTER

A stack, remember, is a section of memory set aside
to store addresses and data while a subprogram is
executing. The 8086 allows you to set aside an entire
64-Kbyte segment as a stack. The upper 16 bits of the
starting address for this segment are kept in the stack
segment register. The stack pot nter (SP) register in the
execution unit holds the 16-bit offset from the start of
the segment to the memory location where a word was
mot recently stored on the stack. The memory location
wbere a word was most recently stored is called the top
of stack. Figure 2-1 Ia shows this in diagram form.

The physical address for a stack read or a stack write
is produced by adding the contents of the stack pointer
register to the segment base address represented by the
upper 16 bits of the base address in SS. Figure 2-1 lb
shows an example. The 50001-I In SS represents a
segment base address of 50000H. When the FFEOI-i in
the SF is added to this. the resultant physical address
for the top of the stack will be 5FFEOI-I. The physical
address can be represented either as a single number.
5FFEOH. or in SS:SP form as 5000:FFEOH.

PHYSICAL	 MEMORY
ADDRESSES

5FFFFH - _______ - END OF STACK SEGMENT
5FFEOH_[.	-TOPOFSTACK

SF FFEOH

5ORi _______ - START OF STACK SEGMENT
SS - 50001-I

HAROWIRED
/ ZERO

	

SS	 5 0 0 0 0

	

SP	 F F E 0

	

PHYSICAL ADDRESS	 Is F F E 0
ITO P OF STACKI

lb I

FIGURE 2-11 Addition of 55 and SF to produce the
physical address of the top of the stack. (a) Diagram.
(b) Computation.

(O,\IPI;T[RS. MI(ROCOMPUTERS AND MICROPROCES,ORS— AN INTRODUC1 ION 	 31

The operauon and use of the stack will be discussed
in detail later as need arises.

POINTER AND INDEX REGISTERS IN THE
fXECUTION UNIT
in addition to the stack pointer register ISP), the EU
contains a 16-bit bo..se pointer (BP) register. It also
contains a 16-bit source Index (SI) register and a 16-bit
destination index (DI) register. These three registers
can be used for temporary storage ol data just as
the general-purpose registers described above. However.
their main use is to hold the 16-bit offset of a data word
in one of the segments. SI, for example, can be used to
hold the offset of a data word In the data segment. The
physical address of the data in memory will be generated
in this case by adding the contents of SI to the segment
base address represented by the 16-bit number in the
DS register. After we give you an overview of the different
levels of languages used to program a microcomputer,
we will show you some examples of how we tell the 8086
to read data from or write data to a desired memory
location.

INTRODUCTION TO PROGRAMMING
THE 8086

Programming Languages

Now that you have an overview of the 8086 CPU. it Is
time to start thinking about how it is programmed. To
run a program, a microcomputer must have the program
stored in binary form in successive memory locations,
as shown in Figure 2-12. There are three language levels
that can be used to write a program for a microcomputer.

MACHINE LANGUAGE
You can wiite programs as simply a sequence of the
binary codes for the instructions you want the micro-
computer to execute. The three-instruction program in
Figure 2-6b is an example. This binary form of the
program is referred to as machine language because it
is the form required by the machine. However, it is
difficult, if not impossible, for a programmer to memo-
rize the thousands of binary instruction codes for a CPU
such as the 8086. Also. it is very easy for an error to
occur When working with long series of is and 0's.
Using hexadecimal representation for the binary codes
might help some, but there are still thousands of Instruc-
tion codes to cope with.

ASSEMBLY LANGUAGE
To make programming easier, many programmers write
programs in assembly language. They then translate

LABEL OP CODE OPERAND 	 COMMENT
[FIELD	 FIELD	 FIELD	 FIELD

L T :	 ADD	 AL. 07H	 ADD CORRECTION FACTOR

FIGURE 2-12 Assembly language program statement
format.

the assembly language program to machine language so
that it can be loaded into memory and run. Assembly
language uses two-, three-, or four-letter mnemonics to
represent each instruction type. A mnemonic is Just a
device to help you remember something. The letters in
an assembly language mnemonic are usually initials or
a shortened form of the English word(s) for the operation
performed by the instruction. For example, the mne-
monic for subtract is SUB, the mnemonic for Exclusive
OR is XOR. and the mnemonic for the instruction to
copy data from one location to another is MOV.

Assembly language statements are usually written in
a standard form that has fourfields. as shown in Figure
2-12. The first field in an assembly language statement
Is the labeljietd. A label isa symbol or group of symbols
used to represent an address which is not specifically
known at the time the statement is written. Labels are
usually followed by a colon. Labels are not required in a
statement. theyarejust Inserted where they are needed.
We will show later many uses of labels.

The opcode field of the instruction contains the
mnemonic for the Instruction to be performed. Instruc-
tion mnemonics are sometimes called operation codes,
or opcodes. The ADD mnemonic in the example State-
ment in Figure 2-12 Indicates that we want the instruc-
tion to do an addition.

The operand field of the statement contains the data.
the memory address, the port address, or the name of
the register on which the instruction is to be performed.
Operand is Just another name for the data item(s) acted
on by an instruction. In the example instruction in
Figure 2-12, there are two operands. AL and 07H,
specified in the operand field, AL represents the AL
register, and 07H represents the number 07H. This
assembly language statement thus says, 'Add the num-
ber 07H to the contents of the AL register.' By Intel
convention, the result of the addition will be put In the
register or the memory location specified before the
comma in the operand field. For the example statement
in Figure 2-12. then. the result will be left in the AL
register. As another example, the assembly language
statement ADD BH. AL, when converted to machine
language and run, will add the contents of the AL register
to the contents of the BH register. The results will be
left in the BH register.

The final field In an assembly language statement such
as that in Figure 2-12 is the corn rnentfleld, which starts
with a semicolon. Comments do not become part of the
machine language program; but they are very important.
You write comments in a program to remind you of the
function that an instruction or group of instructions
performs in the program.

To summarize why assembly language is easier to use
than machine language, let's look a little mor€ closely at
the assembly language ADD statement. The general
format of the 8086 ADD instruction is

ADD destination, source

The source can be a number written in the Instruction.
the contents of a specified register, or the contents of a
memory location. The destination can be a specified
register or a specified memory location. However, the

32	 CHAPTER iWO

source and the destination in an instruction cannot
both be memory locations.

A later Section on 8086 addressing modes will show
all the ways in which the source of an operand and the
destination of the result can be specified. The point here
is that the single mnemonic ADD, together with a
specified source and a specified destination, can repre-
sent a great many 8086 instructions in an easily under-
standable form.

The question that may occur to you at this point is.
"If! write a program in assembly language. how do I get
it translated into machine language which can be loaded
into the microcomputer and executed?' There are two
answers to this question. The first method of doing the
translation is to work out the binary code for each
instruction a bit at a time using the templates given in
the manufturer's data books. We will show you how
to do this in the next chapter, but it is a tedious
and error.prone task. The second method of doing the
translation is with an assembler. An assembler is a
program which can be run on a personal computer or
micrccomputer development system. It reads the file of
assembly language instructions you write and generates
the correct binary code for each. For developing all but
the simplest assembly language programs. an assembler
and other program development tools are essential. We
will introduce you to these program development tools
in the next chapter and describe their use throughout
the rest of this book.

HlGH-LEVE IANGUAGES

Another way of writing a program for a microcomputer
is with a high-level language, such as BASIC. Pascal,
or C. These languages use program statements which
are even more English-like than those of assembly
language. Each high . level statement may represent
many machine code instructions. An interpreter pro-
gram or a compiler program is used to translate higher-
level language statements to machine codes which can
be loaded Into memory and executed. Programs can
usually be written faster In high-level languages than
in assembly language because the high-level language
works with bigger building blocks. However, programs
written in a high-level language and interpreted or
compiled almost always execute more slowly and require
more memory than the same programs written in assem-
bly language. Programs that Involve a lot of hardware
control, such as robots and factory control systems, or
programs that must run as quickly as possible are
usually best written in assembly language. Complex data
processing programs that manipulate massive amounts
of data. such as insurance company records, are usually
best written in a high-level language. The decision
concerning which language to use has recently been
made more difficult by the fact that current assemblers
allow the use of many high-level language features, and
the fact that some current high . level languages provide
assembly language features.

OUR CHOICE

For most of this book we work very closely with hardware.
so assembly language is the best choice. In later chap-

ters, however, we do show you how to write programs
which contain modules written In assembly language
and modules written in the high-level language C. In the
next chapter we introduce you to assembly language
programming techniques. Before we go on to that,
however, we will use a few simple 8086 instructions to
show you more about accessing data in registers and
memory locations.

I-low the 8086 Accesses Immediate
and Registe r Data

In a previous discussion of the 8086 13W. we described
how the 8086 accesses code bytes using the contents of
the CS and lP registers. We also described how the 8086
accesses the stack using the contents of the SS and SP
registers. Before we can teach you assembly language
programming techniques, we need to discuss some of
the different ways in which an 8086 can access the data
that it operates on. The different ways in which a
processor can access data are referred to as its ad-
dressing modes. In assembly language statements, the
addressing mode is indicated in the instruction. We will
use the 8086 MOV Instruction to illustrate some of the
8086 addressIng modes.

The MOV instruction has the format

MOV destination, source

When executed, this instruction copies a word or a
byte from the specified source location to the specified
destination location. The source can be number writ-
ten directly in the instruction, a specifid register, or a
memory location specified In 1 of 24 different ways. The
destination can be a specified register or a memory
location specified In any 1 of 24 different ways. The
source and the destination cannot both be memory
locations in an instruction.

IMMEDIATE ADDRESSING MODE

Suppose that in a program you need to put the number
437BH in the CX register. The MOV CX. 437131-I Instruc-
tion can be used to do this. When it executes, this
instruction will put the immediate hexadecimal number
437BH in the 16-bit CX register. This is referred to as
immediate addressing mode because the number to be
loaded into the CX register will be put in the two memory
locations immediately following the code for the MOV
instruction. This is similar to the way the port address
was put in memory immediately after the code for the
input instruction in the three-instruction program In
Figure 2-fib.

A similar instruction. MOV CL, 48H, could be used to
load the 8-bit immediate number 48H into the 8-bit CL
register. You can also write instructions to load art 8-
bit immediate number into an 8-bit memory location or
to load a 16-bit number into two consecutive memory
locations, but we are not yet ready to show you how to
specify these.

REGISTER ADDRESSING MODE

Register addressing mode means that a register is the
source of an operand for an instruction. The Instruction

COMPUTERS, MICROCOMPUTERS, AND MICROPROCESSORS—AN INTRODUCTION 	 33

MOV CX. AX. for example, copies the contents of the 16-
bit AX register into the lb-bit CX register. Reineriibe
that the destination location is specified in the instruc. -
tion before the comma, and the source is specified after
the comma. Also note that the Contents of AX are Just
copied to CX. not actually moved. In other words.
the previous contents of CX are written over, but the
contents of AX are not changed. For example, if CX
contains 2A84H and AX contains 4971 H before the MOV
CX, AX instruction executes, then after the instruction
executes, CX will contain 4971 H and AX will still contain
4971Ff. You can May any 16-bit register to any 16-bit
register. or you can MOV any 8-bit register to any 8-bit
register. However, you cannot use an instruction such
as MOV CX. AL because this is an attempt to copy a
byte-type operand (AL) Into a word-type destination
(CX). The byte In AL would fit In CX. but the 8086 would
not know which half of CX to put it in. If you try to write
an instruction like this and you are using a good
assembler, the assembler will tell you that the instruc-
tion contains a type error. To copy the byte from AL to
the high byte of CX. you can use the instruction MOV
CH. AL. To copy the byte from AL to the low byte of CX.
you can use the Instruction MOV CL. AL.

Accessing Data in Memory

OVERVIEW OF MEMORY ADDRESSING MODES

The addressing modes described In the following sec-
tions are used to specify the location of an operand in
memory. To access data in memory, the 8086 must also
produce a 20-bit physical address. It does this by adding
a 16-bit value called the effective address to a segment
base address represented by the 16-bit number in one
of the four segment registers. The effective address (EA)
represents the displacement or offset of the desired
operand from the segment base. In most cases, any of
the segment bases can be specified, but the data segment
is the one most often used. Figure 2-13a shows in
graphic form how the EA is added to the data segment
base to point to an operand In memory. Figure 2-13b
shows how the 20-bit physical address is generated by
the BIU. The starting address for the data segment in
Figure 2-13b Is 2000011. so the data segment register
will contain 2000Ff. The BIU adds the effective address.
437AH. to the da('a segment base address of 2000011 to
produce the physical address sent Out to memory. The
20-bit physical address Sent out to memory by the BIU
will then be 2437AH. The physical address can be
represented either as a single number 2437AH or in the
segment baseoffset form as 2000:437AH.

The execution unit calculates the effective address
for an operand using information you specify in the
instruction. You can tell the EU to use a number in the
instruction as the effective address, to use the Contents
of a specified register as the effective address, or to
compute the effective address by adding a number in
the instruction to the contents of one or two specitied
registers. The following section descnbcs one way you
cart tell the execution unit to calculate an effective
address. In later chapters we show other wa ys of speci-
fying the effective address. Later we also show how the

PHYSICAL
ADDRESSES

MEMORY

F DATA SEGMENT2FFFFH-

EX REGISTER

ELBH	

MOV BX, (437AH1
24378H
2437AH

EA 437AH

2OOOOH-1-..	 —START OF DATA SEGMENT
OS 2000H

	

it	
HAROWIRED
ZERO

	

OS	 12 0 0 0 0

	

EA	 4 3 7 A

	

PHYSICAL ADDRESS	 2 4 3 7 A

(hi

FIGURE 2-13 Addition of data segment register and
effective address to produce the physical address of the
data byte. (a) Diagram. (b) Computation.

addressing modes this provides are used to solve some
common programming problems.

DIRECT ADDRESSING MODE

For the simplest memory addressing mode, the effective
address is Just a 16-bit number written directly in the
instruction. The instruction MOV BL, 1437AH1 is an
example. The square brackets around the 137.'J4 are
shorthanc. for LE,C cc atents of the memory !ocatk.n(s)
at a displacement from the segment base of." When
executed, this Instruction will copy "the contents of
the memory location at a displacement from the data
segment base of "437AH into the 13L register, as shown
by the rightmost arrow in Figure 2-13a. The BIU calcu-
lates the 20-bit physical memory address by adding the
effective address 437AH to the data segment base, as
shown in Figure 2-13b. This addressing mode is called
direct because the displacement of the operand from the,
segment base is specified directly in the instruction.
The displacement iii the instruction will be added to the
data segment base in DS unless you tell the BIU to add
it to some other segment base. Later we will show you
how to do this.

Another example of the direct addressing mode is the
instruction MOV BX. 1437AH1. When executed, this
instruction copies a 16-bit word from memory into the
BX register. Since each memory address of the 8086
represents a byte ol storage. the word must come from
two memory locations. The byte at a displacement of
437AH from the data segment base will be copied into
13L. as shown by the right arrow in Figure 2-l3a.
The contents of the next higher address, displacement
43713H. will be copied into the RH register. as shown by
the left arrow tn Figure 2-13a. Front the Instruction

34	 CHAPTER IWO

coding, the 8086 will automatically determine the num-
ber of bytes that it must access In memory.

An important point here is that an 8086 always stores
the low byte of a word in the lower of the two addresses
and stores the high byte of a word in the higher address.
To stick this In your mind, remember:

Low byte—low address, high byte—high address

The previous two examples showed how the direct
addressing mode can be used to specify the source of
an operand. Direct addressing can also be used to
specify the destination of an operand in memory. The
instruction MOVE437AHI. BX. for example. will copy the
contents of the BX register to two memory locations in
the data segment. The contents of BL will be copied to
the memory location at a displacement of 437AH. The
Contents of Bi I will be copied to the memory location at
a displacement of 437BH. This operation is represented
by simply reversing the direction of the arrows in Figure
2-13a.

NOTE: When you are hand -coding programs us-
ing direct addressing of the form shown above.
make sure to put in the square brackets to remind
you how to code the instruction. If you leave the
brackets out of an instruction such as MOV BX,
1437AF11. you will code it as ifit were the Instruction
MOV BX, 437AH. This second instruction will load
the immediate number437AH into RX. rather than
loading a word from memory at a displacement of
437AH into FIX. Also note that if you are writing
an instructiQn usingdirect addressing such as this
for an assembler, you must write the instruction In
the form MOV BL, DS:BYTE PTh l437A1-II to give
the assembler all the information It needs. As we
will show you in the next chapter. when you are
using art assembler, you usually use a name to
represent the direct address rather than the actual
numerical value.

A FEW WORDS ABOUT SEGMENTATION

At this point you may be wondering why Intel designed
the 8086 family devices to access memory using the
segmentofiset approach rather ihan accessing memory
directly with 20-bit addresses. The segment:oufset
scheme requires only a IS-bit number to represent the
base address for a segment, and only a 16-bit offset to
access any location In a segment. This means that the
8086 has to manipulate and store onl y 16-bit quantities
instead of 20-bit (luafli it ics. l'hts rn,rkes for an easier
interlace with 8- and 16-hit-wide merliorv boards and
with the 16-hit registers iii the 8086.

The second reason fur sign ten tat Ion has to do with
the t ype of miirocolnputer in which an 8086-faniilv (PU
is likel y to be used. A previous sel-ii&in of this chapter
described briullv the uper,u 00 ul .1 timesharing titero-
corliputer svsteIlI o a I irtiesharirig s ystem, several users
share ,i The ('I'U works ott c,ne users program for
pr-rh,ij,s 20 ins. ilati works on the next user's program
t'or 20 tts. Alter working 20 nis for catch of the other
users the (lb conies ho-k to liii' lirsi users prni4rant

again. Each time the CPU switches from one user's
program to the next. it must access a new section of
code and new sections of data. Segmentation makes
this switching quite easy. Each user's program can be
assigned a separate set of logical segments for its code
and data. The user's program will contain offsets or
displacements from these segment bases. To change
from one user's program to a second user's program. all
that the CPU has to do is to reload the four segment
registers with the segment base addresses assigned to
the second user's program. In other words, segmentation
makes it easy to keep users' programs and data separate
from one another, and segmentation makes it easy
to switch from one user's program to another user's
program. In Chapter 15 we tell you much more about
the use of segmentation in multiuser systems.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

II you do not remember any of the terms or concepts in
the following list, use the index to find them in the
chapter.

Microcomputer, microprocessor

Hardware, software, firmware

Timesharing computer system

Multitasking computer system

Distributed processing system

Multiprocessing

CPU

Memory, RAM. ROM

t/O ports

Address, data, and control buses

Con trol bus signals

A1.0

Segmentation

Bus interface unit (EliUl
Instruciton byte queue, pipciiiting,
ES. CS. SS, OS registers. IP register

Execution unit (EUI
AX. HX, CX. DX registers. flag register.
Ai.U. SI'. BP. SI. Di registers

Machine language, asscaiablv language. high . level Ian'
guagi'

.Itietuuiiie. oI)esli- upertiid. label. comment

Assembler. coot pi kr

Iinanediatc address ioode, register ,iddress mode direct
ad (tress I node

[flee II t address

ii k'	 \iIt ki)(I)\ii tIks. A\i) lI(R(iPkM(s5OR5	 N \tNOt)U(tlO	 35
'-7

REVIEW QUESTIONS AND PROBLEMS

I. Describe the main advantages of a distributed
processing computer system over a simple time-
sharing system.

2. Describe the sequence of signals that occurs on the
address bus, the control bus, and the data bus when
a simple microcomputer fetches an instruction.

3. What determines whether a mIcroprocessor is con-
sidered an 8-bit, a 16-bit, or a 32-bit device?

4. a. How many address lines does an 8086 have?
b. How many memory addresses does this number

of address lines allow the 8086 to access di-
rectly?

C. At any given time, the 8086 works with four
segments in this address space. How many
bytes are contained in each segment?

5. What is the main difference between the 8086 and
the 8088?

6. a. Describe the function of the 8086 queue.
b. How does the queue speed up processing?

7. a If the code segment for an 8086 program starts
at address 7040011, what number will be in the
CS register?

b. Assuming this same code segment base, what
physical address will a code byte be fetched from
if the instruction pointer contains 539CH?

N. What physical address is represented by:
a. 4370:56IEH
b. 7A32:0028H

9. What is the advantage of using a CPU register
for temporary data storage over using a memory
location?

10. If the stack segment register contains 3000H and

the stack puinter reglstcr contains 843411. what is
the physical address of the top of the stack?

ii. a. What is the advantage of using assembly lan-
guage instead of writing a program directly in
machine language?

b. Describe the operation an 8086 wIll perform
when it executes ADD AX. BX.

12. What types of programs are usually written in
assembiy language?

13. Describe the operation that an 8086 will perform
when it executes each of the following instructions:
a. MOV BX, O3FFH
b. MOVAL,ODBI-1
C. MOVDH.CL
d. MOVBX.AX

14. Write the 8086 assembly language statement which
will perform the following operations:
a. Load the number 798611 into the BP register.
b. Copy the lIP register contents to the SP register.
c. Copy the contents of the AX register to the DS

register.
ci. Load the number F3H into the AL register.

IS. If the 8086 execution unit calculates an effective
address of I4A3H and DS contains 7000H, whal
physical address will the BIU produce?

16. If the data segment register (DS) contains 4000H,
what physical address will the instruction MOVAL,
1234B111 read?

i7. If the 8086 data segment register contains 70001-i,
write the instruction that will copy the contents of
DL to address 74B2CF{.

18. Describe the difference between the instructions
MOV AX, 2437H and MOV AX, [2437111.

36	 CHAPTF

8086 Family Assembly Language
Programming - Introduction

The last chapter showed you the format for assembly
language Instructions and Introduced you to a few 8086
instructions. Developing a program. however, requires
more than Just writing down a series of Instructions.
When you want to build a house, It isa good Idea to first
develop a complete set of plans for the house. From the
plans you can see whether the house has the rooms you
need, whether the rooms are efficiently placed, and
whether the house is structured so that you can easily
add on to it If you have more kids. You have probably
seen examples of what happens when someone attempts
to build a house by just putting pieces together without
a plan.

Likewise, when you write a computer program. It Is a
good idea to start by developing a detailed plan or outline
for the entire program. A good outline helps you to break
down a large and seemingly overwhelming programming
job Into small . modules which can easily be written.
tested, and debugged. The more time you spend organlz'
Ing your programs. the less time It will take you to write
and debug them. You should never start writing an
assembly language program by Just writing down in-
structions! in this chapter we show you how to develop
assembly language programs In a systematic way.

OBJECTIVES
At the conclusion of this chapter. you should be able to:

I. Write a task list, flowchart, or pseudocode for a
simple programming problem.

2. Write. code or assemble, and run a very simple
assembly language program.

3. Describe the use of program development tools such
as editors, assemblers, linkers, locators, debuggers.
and emulators.

4. Properly document assembly language programs.

PROGRAM DEVELOPMENT STEPS

Defining the Problem

The first step In writing a program is to think very
carefully about the problem that you want the program

to solve. In other words, ask yourself many times. What
do I really want this program to do? If you don't do this,
you may write a program that works great but does not
do what you need it to do. As you think about the
problem. It is a good Idea to write down exactly what
you want the program to do and the order in which you
want the program to do it. At this point you do not write
down program statements, you just write the operations
you want in general terms. An example for a simple
programming problem might be

1. Read temperature from sensor.

2. Add correction factor of + 7.

3. Save result in a memory location.

For a program as simple as this, the three actions
desired are very close to the eventual assembly language
statements. l'or more complex problems. however, we
develop a more extensive outline before writing the
assembly language statements. The next section shows
you some of the common ways of representing program
operations in a program outline.

Representing Program Operations

The formula or sequence of operations used to solve a
programming problem is often called the algorithm of
the program. The following sections show you two
common wa ys of representing the algorithm for a pro-
gram or program segment.

FLOWCHARTS

If you have done any previous programming In BASIC or
in FORTRAN. you are probably familiar withflowcharts.
Flowcharts use graphic shapes to represent different
types of program operations. The specific operation
desired Iswritten in thegraphicsymbol. Figure 3-1. p.38.
shows some of the common flowchart symbols. Plastic
templates are available to help you draw these symbols
if you decide to use them for your programs.

Figure 3-2. p. 38. shows a flowchart for a program to
read in 24 data samples from a temperature sensor at
1-hour Intervals, add 7 to each, and store each result
in a memory location. A racetrack- or circular.shaped
symbol labeled START Is used to indicate the beginning

37

'T 7H & S
OF •AGICCNPi(CtOq

co,o

FIGURE 3-1 Flowchart symbols.

of the program. A parallelogram is used to represent an
input or an output operation. In the example, we use it
to indicate reading data from the temperature sensor.
A rectangular box symbol is used to represent simple
operations other than input and output operations. The
box containing 'add 7 in Figure 3-2 is an example.

A rectangular box with double lines at each end Is
often used to represent a subroutine or procedure that
will be written separately from the main program. When
a Set of operations must be done several times during a
program, it is usually more efficient to write the series
of operations once as a separate subprogram, then Just
cail" this subprogram each time it is needed. For

example, suppose that there are several places in a
program where you need to compute the square root of
a number. Instead of writing the series of instructions
for computing a square root each rime you need it In

ART

(READ VALUE
FROM SENSOR

ADD 7

STORE RESULT
IN MEMORY

WAIT 1 HOUR

24
SAMPL,,)

sfl
FIGURE 3-2 Flowchart (or program to read in 24 data
samples Irom a port, Correct each value, and store each
in a. memory location.

the program, you can write the instruction sequence
once as a separate procedure and put it in memoly after
the main program. A special instruction allows you to
call this procedure each time you need to compute a
square root. Another special instruction at the end of
the procedure program returns execution to the main
program. In the flowchart in Figure 3-2, we use the
double-ended box to indicate that the wait 1 hour"
operation will be programmed as a procedure. Inciden-
tally. the terms subprogram, subroutine, and procedure
all have the same meaning. Chapter 5 shows how
procedures are written and used.

A diamond-shaped box is used In flowcharts to repre-
sent a decision point or crossroad. Usuaily it indicates
that some condition is to be checked at this point in the
program. lithe condition is found to be true, one set of
actions is to be done: if the Condition is found to be
false, another set of actions is to be done. in the example
flowchart in Figure 3-2. the condition to be checked is
whether 24 samples have been read in and processed.
1124 Samples have not been read in and processed, the
arrow labeled NO in the flowchart indicates that we want
the computer to jump back and execute the read, add.
store, and wait steps again. If 24 samples have been
read in. the arrow labeled YES in the flowchart of Figure
3-2 indicates that all the desired operations have been
done. The racetrack-shaped symbol at the bottom of the
flowchart Indicates the end of the program.

The two additional flowchart symbols in Figure 3-I
are connectors. If a flowchart column gets to the bottom
of the paper, but not all the program has been repre-
sented. you can put a small circle with a letter in it at
the bottom of the column, You then start the next
Column at the top of the same paper with a small circle
containing the same letter, If you need to continue a
flowchart to another page. you can end the flowchart on
the first page with the five-sided off .page connector
symbol containing a letter or number. You then start
the flowchart on the next page with an off-page connector
symbol containing the same letter or number.

Forsimple programs and program sections, flowcharts
are a graphic way of showing the operational flow of the
program. We will show flowcharts for many of the
program examples throughout ihis book. Flowcharts,
however, have several disadvantages. First, you can't
write much information in the little boxes. Second,
flowcharts do not present information in a very compact
form. For more complex problems, flowcharts tend to
spread out over many pages. l'hev are very hard to
follow back and forth between pages. Third, and most
important, with flowcharts the overall structure of the
program tends to get lost in the details l'hc following
Section describes a more clearly structur,'iI .111(1 coqipaci
incthod of representing the algorithm : , prigram or
program segment.

STRUCTURED PROGRAMMI,\c, '\ND
PSEUDOCOEJE OVERVIEW

In the early days of computers, a single brilliant person
might write even a large program single-handedly. The
main concerns in this case were. "Does th program
work?" and "What do we do if this person leaves the

38	 CHAPTER THREE

company? As the number of computers increased and
the complexity of the programs being written increased.
large programming jobs were usually turned over to a
team of programmers. In this case the compatibility
of parts written by different programmers became an
important concern. During the 1970s it became obvious
to many professional programmers that in order for
team programming to work, a systematic approach and
standardiLed tools were absolutely necessary.

One sug,gested systematic approach is called lop-down
design. In this approach. a large programming problem
is first divided into major modules. The top level of the
outline shows the relationship and function of these
modules. This top ievel then presents a one-page over-
view of the entire program. Each of the major modules
is broken down into still smaller modules on following
pages. The division is continued until the steps in each
module are Clearly understandable. Each programmer
can then be assigned a module or set of modules to write
for the program. Another advantage of this approach is
that people who later want to learn about the program
can start with the overview and work their way down to
the level of detail they need. This approach is the same
as drawing the complete plans for a house before starting
to build it,

The opposite of top-down design is bottom . up design.
In this approach, each programmer starts writing low-
level modules and hopes that all the pieces will eventually
fit together. When completed, the result should be
similar to that produced by the top-down design. Most
modern programming teams use a combination of the
two techniques. They do the top-down design first, then
build, test, and link modules starting from the smallest
and working upward.

The development of standard programming methods
was helped by the discovery that any desired program
operation could be represented by three basic types of
operation, The first type of operation is sequence, which
means simply doing a series of actions. The second basic
type of operation is decision, or selection, which means
choosing between two alternative actions. The third
basic type of operation is repetition, or iteration, which
means repeating a series of actions until some condition
is or is not present.

On the basis of this observation, the suggestion was
made that programmers use a set of three to seven
standard structures to represent all the operations in
their programs. Actually, only three structures. SE-
QUENCE. IF-THEN-ELSE, and WHILE-DO, are required
to represent any desired program action, but three or
four more structures derived from these often make
programs clearer. If you have previously written pro-
grams in a structured language such as Pascal. then
these structures are probably already familiar to you.
FIgure 3-3. p. 40, uses flowchart symbols to represent
the commonly used structures so that you can more
easily visualize their operation. In actual program docu-
mentation. however, English-like statements called
pseudocode are used rather than the space-consuming
flowchart symbols. Figure 3-3 also shows the pseudocode
format and an example for each structure.

Each structure has Only one entry point and one exU
point. Asyou will see later, this feature make', debugging

the final program much easier. The output of one
Structure is connected to the input of the next structure.
Program execution then pr,oceeds through a series of
these structures.

Any structure can be used within another. An IF-
THEN-ELSE structure, for example, can contain a se-
quence of statements. Any place that the term state-
ment(s) appears in Figure 3-3. one of the other struc-
tures could be substituted for it. The term statement(s)
can also represent a subprogram or procedure that is
called to do a series of actions. Now, let's look more
closely at these structures.

STANDARD PROGRAMMING STRUCTURES

The structure shown in Figure 3-3a is an example of a
simple sequence. In this structure, the actions are
simply written down in the desired order, An example
is

Read temperature from sensor.

Add correction factor of + 7.

Store corrected value in memory.

Figure 3-3b shows an IF-THEN-ELSE example of the
decision operation. This structure is used to direct
operation to one of two different actions based on some
condition. An example is

IF temperature less than 70 degrees THEN
Turn on heater

ELSE
Turn off heater

The example says that if the temperature is below the
thermostat setting. we want to turn the heater on. lithe
temperature is equal to or above the thermostat setting.
we want to turn the heater off.

The IF-THEN Structure shown in Figure 3-3c is the
same as the IF-THEN-ELSE except that one of the paths
contains no action. An example of this is

IF hungry THEN
Get food

The assumption for this example Is that if you are not
hungry. you will just continue on with your next task.

To represent a situation in which you want to select
one of several actions based on some condition, you can
use a nested IF-THEN-ELSE structure such as that
shown in Figure 3-3d. This everyday example describes
the thinking a soup cook might go through. Note that
in this example the last IF-THEN has no ELSE after it
because all the possible days have been checked. You
can. if you want, add the final ELSE to the IF-THEN-
ELSE chain to send an error message if the data does
not match any of the choices.

The CASE structure shown in Figure 3-3e is really
just a compact way to represent a complex IF-THEN-
ELSE structure. The choice of action is determined by
testing some quantity. The cook or the computer checks
the value of the variable called day and selects the

O8 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTROOUCTION 	 39

SIMPLE SEQUENCE FLOWCHART	 IF-THEN-ELSE FLOWCHART
	 IF-THEN FIUW(HART

ST AT EME NT) SI I
	 YOiTIONN2

	
CONDITION NO

YES	 -

STATEMENT(S12
	

STATEHENT(S)I I 	 I STATEMENTISI2
	 STATEMENT(S)

PS U OC CD
	

PSEUDOCODE
STATEMENTIS)1	 IF cOFDI1IO THEN
STATEMENT(S)2
	

STATEMENT(S) I
ELSE

STATE ME NT (S(2
EXAMPLE
	

EXAMPLE
GET DATA SAMPLE
	 IF ROOM TEMPERATURE LESS THAN SET POINT THEN

ADD 7
	

TURN ON FURNACE
STORE IN MEMORY LOCATION

	
ELSE

TURN OFF FURNACE

(b)

CASE EXPRESSEO AS MULTIPLE IF-THEN-ELSE FLOWCHART

PSEUDOCODE
IF CONOITION THEN

STATEMENT(S)

EXAMPLE
IF HUNGRY THEN

GET FOOD

Id
CASE FLOWCHART

SELECTING EXPRESSION

PSEUDOCODE
IF MONDAY THEN

MAKE CELERY SOUP
ELSE IF TUESDAY THEN

MAKE MINESTRONE SOUP
ELSE IF WEDNESDAY THEN

MAKE ONION SOUP

ELSE IF SUNDAY THEN
MAKE MUSHROOM SOUP

Id)

WHILE-DO LOOP FLOWCHART

CONOITIO2

STATEMENT(S)

PSEUDOCODE	 EPLE
WHILE CONDITION DO	 WHILE MONEY LASTS DO

STATEMENT(S)	 EAT SUPPER OUT
GO TO MOVIE
TAKE TAXI (IOME

STATEMENT(S)) I I STATEMENT(S12 I • I STATEMENTISIN

PSEUDOCODE
CASE EXPRESSION OF

1: STATEMENTISI1
2: STATEMENT(S12

N; STATEMENTISIN
EXAMPLE

CASE DAY OF
MONDAY:

MAKE CELERY SOUP
TUESDAY;

MAKE MINESTRONE SOUP
WEDNESDAY:

MAKE ONION SOUP

SUNDAY
MAKE MUSHROOM SOUP

REPEAT-UNTIL FLOWCHART

MENT

CONDITION
EXAMPLE

REPEAT
GET DATA SAMPLE
ADD 7
STORE RESULT IN MEMORY

	

PSEUDOCODE	 WAIT I HR

	

REPEAT	 UNTIL 24 SAMPLES TAKEN
STAT EM E NT (SI

UNTIL CONDITION

If)	 (9)

FIGURE 3-3 Standard program structUres. (a) Sequence. (b) IF-THEN-ELSE.
(c) IF-THEN. (d) CASE expressed as nested IF-THEN-ELSE. (e) CASE. (1) WHILE-DO.
(g) REPEAT-UNTIL

40	 CHAPTER THREF

appropriate actions for that day. Each of the indicated
actions, such as "Make celery soup." Is itself a sequence
of actions which could be represented by the structures
we have described. Note that the CASE structure does
not contain the final ELSE for an error.

The CASE form is more compact for documentation
purposes, and some high-level languages such as Pascal
allow you to implement it directly. However, the nested
IF-THEN-ELSE structure gives you a much better idea
of how you write an assembly language program section
to choose between several alternative actions.

The WHILE-DO structure in Figure 3-3J Is one form
of repetition. It is used to indicate that you want to do
some action or sequence of actions as long as some
condition is present. This structure represents a pro-
gram loop. The example in Figure 3-3f is

WHILE money lasts DO
Eat supper out.
Go to movie.
Take a taxi home.

This example shows a sequence of actions you might do
each evening until you ran out of money. Note that in
this structure, the condition is checked before theactlon
is done the first time. You certainly want to check how
much money you have before eating out.

Another useful repetition structure is the REPEAT-
UNTIL structure shown In FIgure 3-3g. You use this
structure to indicate that you want the program to
repeat some action or series of actions until some
condition is present. A good example of the use of this
structure Is the programming problem we used in the
discussion of flowcharts. The example Is

REPEAT
Get data sample from sensor.
Add correction of + 7.
Store result in a memory location.
Wait 1 hour.

UNTIL 24 samples taken.

Note that in a REPEAT-UNTIL structure, the action(s)
is done once before the condition is checked. If you want
the condition to be checked before any action is done.
then you can write the algorithm with a WHILE-DO
structure as follows:

WHILE NOT 24 samples DO
Read data sample from temperature sensor
Add correction factor of -i- 7.
Store result in memory location.
Wait I hour,

Remember, a REPEAT-UNTIL structure indicates that
the condition is fIrst checked alter the statement(s) is
performed, so the action or scries of actions will always
be done at least once. If you dont want this to happen,
then use the WlllI,E . 1)O, which indicates that the condi-
ion is checked before an y act ion is taken - As will

show later, the structure you use makes a difference in
the actual assembl y language program You Write to
implctnertt it.

The WHILE-DO and REPEAT-UNTIL Structures con-
tain a simple IF-THEN-ELSE decision operation. How-
ever, since this decision is an Implied part of these two
structures, we don't Indicate the decision separately in
them,

Another form of the repetition operation that you
might see in high-level language programs Is the FOR-
DO loop. This structure has the form

FOR Count = 1 TO n DO
statement
statement

This FOR-DO loop, as it is often called, simply repeats
the sequence of actions n times, so for assembly language
algorithms we usually implement this type of operation
with a REPEAT-UNTIL structure.

Incidentally, if you compare the space required by the
pseudocode representation for a program structure with
the space required by the flowchart representation for
the same structure, the space advantage of pseudocode
should be obvious,

Throughout the rest of this book, we show you how
to use these structures to represent program actions
and how to implement these structures in assembly
language.

SUMMARY OF PROGRAM STRUCTURE
REPRESENTATION FORMS

Writing a successful program does not Consist of just
writing down a series of Instructions. You must first
think carefully about what you want the program to do
and how you want the program to do it. Then you must
represent the structure of the program in some way that
Is very clear both to you and to anyone else who might
have to work on the program,

One way of representing program operations Is with
flowcharts. Flowcharts are a very graphic representation.
and they are useful for short program segments, espe-
cially those that deal directly with hardware. However,
flowcharts use a great deal of space. Consequently, the
flowchart for even a moderately complex program may
take up several pages. It often becomes difficult to follow
program flow back and forth between pages. Also, since
there are no agreed-upon structures, a poor programmer
can write a flowchart which jumps all over the place
and is even more difficult to follow. The term logical
spaghetti" comes to mind here.

A second way of representing the operations you want
in a program is with a top-down design approach
and standard program structures. The overall program
problem is first broken down into major functional
modules. Each of these modules is broken down Into
smaller and sttialler modules until the steps In each
module are obvious. The algorithms for the whole pro-
gram and for each module are expressed with a standard
structure. Onl y three basic structures, SEgUENCE. IF-
THEN-ELSE, and WHILE-DO, are needed to represent
any needed program action or series of actions. However.
other useful structures such as IF- -rIIEN, REPEAT-
UN1'IL, FOR-DO, and CASE can be derived from these
basic three. A structure can contain another structure

8O85 FA.\titY ASS[MBLS LA-.(t)A(.E PR O(RAM si i \CiN1RODLCTi(c-	 41

of the same type or one of the other types. Each structure
has only one entry point and one exit point. These
programming structures mayseem restrictive, but using
them usually results in algorithms which are easy to
follow. Also, as we will show you soon, if you write the
algorithm for a program carefully with these standard
structures, It Is relatively easy to translate the algorithm
to the equivalent assembly language Instructions.

Finding the Right Instruction

After you get the structure of a program worked out
and written down, the next step Is to determine the
Instruction statements required to do each part of the
program. Since the examples in this book are based on
the 8086 family of microprocessors, now is a good time
to give you an overview of the InstructIons the 8086 has
for you to use. First, however, is a hint about how to
approach these instructions.

You do not usually learn a new language by memoriz-
ing an entire dictionary of the language. A better way is
to learn a few useful words and practice putting these
words together in simple sentences. You can then learn
more words as you need them to express more complex
thoughts. Likewise, you should not try to memorize all
the Instructions for a microprocessor at once.

For future reference. Chapter 6 contains a dictionary
of all the 8086 instructions with detailed descriptions
and examples of each. As an introduction, however, the
few pages here Contain a list of all the 8086 InstructIons
with a short explanation of each. Skim through the list
and pick out a dozen or so Instructions that seem useful
and understandable. As a start, look for move, input.
output, logical, and arithmetic instructions. Then look
through the list again to see If you can find the instruc-
tions that you might use to do the read temperature
sensor value from a port, add + 7, and store result In
memory" example program.

You can use Chapter 6 as a reference as you write
programs. Here we simply list the 8086 instructions in
functional groups with single-sentence descriptions so
that you can see the types of instructions that are
available to you. As you read through this section. do
not expect to understand all the instructions. When you
start writing programs, you will probably use this section
to determine the type of instruction and Chapter 6 to
get the Instruction details as you need them. After you
have written a few programs. you will remember most
of the basic instruction types and will be able to simply
look up an instruction In Chapter 6 to get any additional
details you need. Chapter 4 shows you In detail how to
use the move, arithmetic, logical. jump, and string
Instructions. Chapter 5 shows how to use the call
InstructIons and the stack.

DATA TRANSFER INSTRUCTIONS

Gerteral .purpose byte or word transfer instructions:

MNEMONIC	 DESCRIPTION

MOV	 Copy byte or word from specified source
to speciied destination.

PUSH
	

Copy specified word to lop of slack.

POP	 Copy word from top of stack to specified
location.

PUSHA
	

(80186/80188 only) Copy all registers to
slack.

POPA
	

(80186/80188 only) Copy words from
stack to all registers.

XCHC
	

Exchange bytes or exchange words.

XLAT
	

Translate a byte in AL using a table in
memory.

Simple input and output port transfer instructions:
IN	 Copy a byte or word from specified port

to accumulator.

OUT	 Copy hvte or word from accumulator to
spec1ed port.

Special address transfer instructions:
LEA
	

Load effective address of operand into
specified register.

LDS
	

Load OS register and other specified regis-
ter from memory.

LES
	

Load ES register and other seci1ied register
from memory.

Flag transfer Instructions:
LAFIF	 Load (copy to) AH with the low byte of

the flag register.

SAHF
	

Store (copy) AH register to low byte of flag
register.

PUSH F
	

Copy f)., p reg ister to top of stack.

POPF
	

Copy word a lop of stack to flag register.

ARITHMETIC INSTRUCTIONS

Addition instructions:

ADD	 Add specified byte to byte or specified
word to word.

ADC
	

Add byte + byte + carry flag nr word +
word + carry flag.

INC
	

tncrement specified byte or specified word
by 1,

AAA
	

ASCII adjust after addition.

DAA
	

Decimal IBCDI adjust alter addition.

Subtraction instructions:

SUB	 Subtract byte from byte or word from
word.

SBB
	

Subtract byte and carry flag from byte or
word and carry flag from word.

DEC
	

Decrement specified byte or specified
word by I.

42	 CHAPTER THREE

NEC Negate - invert each bit of a specified
byte or word and add 1 (Form 2's com-
plement).

CMP	 Compare two specified bytes or two spec-
ified words.

AAS	 ASCII adjust after subtraction.

DAS	 Decimal (BCD) adjust after subtraction.

Multipilcatton instructions:

UL	 Multiply unsigned byte by byteor unsigned
word by word.

IMUL	 Multiply signed byte by byte or signed
word by word.

AAM	 ASCII adjust after multiplication.

Division instructions:

DIV	 Divide unsigned word by byte or unsigned
double word by word.

IDly 	Divide signed word by byte or signed
double word by word.

AAD	 ASCII adjust before division.

CBW	 Fill upper byte of word with copies of sign
bit of lower byte.

CWD	 Fill upper word of double word with sign
bit of lower word.

BIT MANIPULATION INSTRUCTIONS

Logical instructions:
NOT	 Invert each bit of a byte or word.

AND AND each bit in a byte or word with the
corresponding bit in another byte or
word.

OR OR each bit in a byte or word with the
corresponding bit in another byte or
word.

XOR Exclusive OR each bit in a byte or word
with the corresponding bit in another
byte or word.

TEST	 AND operands to update flags, but don't
change operands.

Shfft Instructions:
SHUSAL	 Shift bits of word or byte left, put zerolsi

in LSB(s).

SHR	 Shift bits of word or byte right, put zeros)
in MSB(s).

SAR	 Shift bits of word or byte right, copy old
MSB into new MSB.

Rotate instructIons:

ROL	 Rotate bits of byte or word left, MSB to
LSB and to CF.

ROR	 Rotate bits of byte or word right, LSB to
MSB and to CF.

RCI.	 Rotate bits of byte or word left, MSB to CF
and CF to LSB.

RCR	 Rotate bits of byte or word right, LSB to
CF and CF to MSB.

STRING INSTRUCTIONS

A string is a series of bytes or a series of words in
sequentia' memory locations. A string often consists of
ASCII character codes. In the list, a / is used to
separate different mnemonics for the same instruction.
Use the mnemonic which most clearly describes the
function of the instruction in a specific application. A
• B in a mnemonic is used to specifically indicate that
a string of bytes is to be acted upon. A W In the
mnemonic Is used to indicate that a string of words is
to be acted upon.

REP	 An instruction prefix. Repeat
following instruction until
CX 0.

REPE/REPZ	 An instruction prefix. Repeat
instruction until CX - 0 or
zero flag ZF	 1.

REPNjE/REPNZ	 An instruction prefix. Repeat
until CX	 OorZF = 1.

MOVS/MOVSB/MOVSW	 Move byte or word from one
string to another.

COMPS/COMPSB/COMPSW Compare two string bytes or
two string words.

INS/INSB/INSW	 (80186/80188) Input string byte
or word from port.

OUTS/OUTSB/OUTSW	 (80186/80188) Output string
byte or word to port.

SCASISCASB/SCASW Scan a string. Compare a string
byte with a byte in AL or a
string word with a word in
AX.

LODS/LODSB/LODSW	 Load string byte into AL or
string word into AX.

STOS/STOSB/STOSW	 Store byte from AL or word
from AX into string.

PROGRAM EXECUTION TRANSFER INSTRUCTIONS

These Instructions are used to tell the 8086 to start
fetchIng instructions from some new address, rather
than continuing in sequence.

Unconditional transfer instructions:

CALL	 Call a procedure (subprogram),
save return address on stack.

RET	 Return from procedure to call-
ing program.

IMP	 Go to spectfied address to get
next instruction.

- 8	
8086 FAMtLY ASSEMBLY LANGUAGE pROGRAMMiNG—INTRODUCTION 	 43

Condittonal transfer Lnst,ucttoas:

A / - Is used to separate two mnemonics which represent
the same instruction. Use the mnemonic which most
clearly describes the decision condition in a specific
program. These Instructions are often used after a
compare Instruction. The terms below and above refer
to unsigned binaxy numbers. Above means larger in
magnitude. The terms greater than or less than refer
to signed binary numbers. Greater than means more
positive.

IAIJNBE	 Jump if above/Jump ilnot below
or equal.

JAE/INB	 Jump it above or equal/jump if
not below.

JB/JNAE	 Jump if below/Jump if not above
or equal.

JBEJJNA	 jump if below or equal/Jump if
not above.

IC	 Jump if carry flag CF = 1.

11hZ	 jump if equal/jump if zero flag
ZF = 1.

JGIjNLE	 Jump it greater/Jump if not less
than or equal.

JGEIJNL	 Jump if greater than or equal/
Jump if not less than.

1L/JNGE	 jump if less than/Jump if not
greater than or equal.

JIE/ING	 jump if less than or equal/jump
if not greater than.

INC	 jump if no carry (CF = 0).

INE/JNZ	 Jump if not equal/jump if not
zero (ZF = 0).

jNO	 Jump if no overflow (overflow
flag OF = 0).

JNP/JPO	 Jump if not parity/jump ii parity
odd (PF = 0).

JNS	 Jump if not sign (sign flag SF =
0).

JO	 Jump if overflow flag OF = 1.

JP/JPE	 lump if parity/Jump if parity
even (PF = 1).

IS	 lump if sign (SF	 1).

Iteration contrbt instructions:

These instructions can be used to execute a series of
instructionS some number of times. Here mnemonics
separated by a 1 represent the same Instruction. Use
the one that best fits the specific application.

LOOP	 LOOp through a sequence of
instructions until CX = 0.

LOOPE/LOOPZ	 Loop through a sequence of
instructions while iF	 1
and CX ^ 0.

I.00PNE/LOOPNZ ioop through a sequence of
instructions while ZF = 0
and CX 0.

JCXZ	 jump to specified address if
Cx = 0.

If you aren't tired of instructions, continue skimming
through the rest of the list. Don't worry If the explanation
Is not clear to you because we will explain these instruc-
tions in detail in later chapters.

Interrupt instructions:

tNT	 Interrupt program execution,
call service procedure.

INTO	 Interrupt program execution if
OF	 1.

IRET	 Return from interrupt service
procedure to main program.

High-level language lntefface instructions:

ENTER	 (80186/80188 only) Enter pro-.
cedure.

LEAVE	 (80186/80188 only) Leave pro-
cedure.

BOUND (80186/80188 only) Check if
effective address within spec-
ified array bounds.

PROCESSOR CONTROL INSTRUCTIONS

Flag seticlear Instructions:
SIC	 Set carry flag CF to 1.

CLC	 Clear carry flag CF to 0.

CMC	 Complement the state of the
carry flag CF.

STO	 Set direction flag OF to 1 (decre-
ment string pointers).

CLD	 Clear direction flag OF to 0.

511	 Set interrupt enable flag to I
(enable INTR input).

CLI	 Clear interrupt enable flag toO
(disable INTR input).

External hardware synchronization Instructions:
HLT	 Halt (do nothing) until interrupt

or reset.

WAIT	 Wait (do nothing) until signal
on the TEST pin is low.

[SC	 Escape to external coprocessor
such as 8087 or 8089.

44	 CHAPTER THREE

LOCK An instruction prefix. Prevents
another processor from tak-
ing the bus while the adja-
cent instruction executes.

No operation instruction:

NOP	 No action except fetch and
decode.

Now that you have skimmed through an overview of the
8086 instruction set, let's see whether you found the
instructions needed to implement tue read sensor, add
+ 7. and store result in memoiy example program. The
IN instruction can be used to read the temperature value
from an A/D converter connected to a port. The ADD
Instruction can be used to add the correction factor of
+ 7 to the value read in. Finally, the MOV instruction
can be used to copy the result of the addtion to a memory
location. A major point here is that breaking down the
programming problem into a sequence of steps makes it
easy to find the instruction or small group of instructions
that will perform each step. The next section shows
you how to write the actual program using the 8086
instructions.

Writing a Program

INITIALIZATION INSTRUCTIONS
After finding the instructions you need to do the main
part of your program. there are a few additional instruc-
tic'&s that you need to determine before you actually
write your program. The purpose of these additional
instructions is to initialize various parts of the system,
such as segment registers, flags, and programmable
port devices. Segment registers, for example, must be
loaded with the upper 16 bits of the address in memory
where you want the segment to begin. For our read
temperature sensor, add + 7, and st re result in mem-
oIy example program, the only part we need to initialize
is the data segment register. The data segment register
must be initialized so that we can copy the result of the
addition to a location in memory. If, for example, we
want to store data in memory starting at address
OO100H. then we want the data segment register to
contain the upper 16 bits of this address. OO1OH. The
8086 does not have an instructior to move a number
directly into a segment register. Therefore, we move the
desired number iRto one of the 16-bit general-purpose
registers, then copy it to the desired segment register.
Two MOV instructions will do this.

If you are using the stack in your program. then you
must include instructions to load the stack segment
register and an instruction to load the stack pointer
register with the offset of the top of the stack. Most
microcomputer systems contain several programmable
peripheral devices, such as ports, timers, and control-
lers, You must include Instructions which send control
words to these devices to tell them the function you
want them to perform. Also, you usually want to include
instrurtions which set or clear the control flags, such
as the interrupt enable flag and the direction flag.

The best way to approach the initialization task is to
make a checklist of all the registers. programmable
devices, and flags in the system you are working on.
Then you can mark the ones you need for a specific
program and determine the instrucdons needed to
initialize each part. An initialization list (or an 8086-
based system, such as the SDK-86 prototyping board.
might look like the following.

INITIALIZATION LIST

Data segment register DS

Stack segment register SS

Extra Segment register ES

Stack pointer register SF'

8255 programmable parallel port

8259A priority Interrupt controller

8254 programmable Counter

825 IA programmable serial port

Initialize data variables

Set interrupt enable flag

As you can see, the list can become quite lengthy even
though we have not included all the devices a system
might commonly have, Note that initiauzing the code
segment register CS is absent from this list. The code
segment register is loaded with the correct starting value
by the system command you use to run the program.
Now let's see how you put all these parts together to
make a program.

A STANDARD PROGRAM FORMAT
In this section we show you how to format your programs
if you are going to construct the machine codes for each
Instruction by hand. A later section of this chapter will
show you the additional parts you need to add to the
program if you are going to use a computer program
called an assembler to produce the binary codes for the
instructions.

To help you write your programs In the correct format,
assembly language coding sheets such as that shown
in Figure 3-4 are available. The ADDRESS column is
used for the address or the offset of a code byte or data
byte. The actual code bytes or data bytes are put in the
DATA/CODE column. A label isa name which represents
an address referred to in a Jump or call instruction:
labels are put in the LABELS column. A label is followed
by a colon I:) if it is used by a Jump or call Instruction
in the same code segment. The MNEM column contains
the opcode mnemonics for the instructions. The OP-
ERAND(S) column contains the registers. memory loca-
tions, or data acted upon by the instructions. A COM-
MENTS column gives you space to describe the function
of the instruction for future reference.

Figure 3-4, p. 46. shows how instructions for the
"read temperature, add + 7, store result in memoly
program can be written in sequence on a coding sheet.
We will discuss here the operation of these instructions

80&, FAMILY ASSFMBLV LANGUAGE PROGRAMMING—INTRODUCTION 	 45

PROGRAMMER - 	 SHEET /	 OF	 /
PROGRAM_TITLE	 M7	 //''	 ____
4S74QC7	 7h pan 'zead d6 a 1epeaL.e tah4e /om a e#so ewacled /s po4I 05s1. ad4 a aecho

Ae ca&4
ICQ9S7C 1S: 4
'9J34QS 42ee7e: /1/I cwddio.aI

1&i.O5asnpdpoI
ooioJ?74• oa2oo/-oo2oi/ eôe

DATA
ADDRESS	 or	 LABELS	 MN[M.	 OPERAND(S) 	 COMMENTS

CODE
00/00 X' __________ ______ _____________ 	 mem Iocdi,.i / a

	

00101	 _______	 ses4I. 7hjje1oaded

	

00/02	 a dIz 4k as ead n

	

00103	 _____________	 coeckd 4 Ihe pzo9'iase.

	

00/04	 __________ ______	 1 ca4e a1d

	

00/05	 _________ _____ ___________	 1,caho.
00106
00107
00108
00109
OO/OA
00/08
OOIOC
00/OD

	

OOIOE	 ___________	 Cede s/aat he'ie

	

00/OF	 _________	 iVa/ hea a&ess

	

20U	 L?8 _________	 4 00/O.J	 9Iie S /. poI.eI / sI
01

	

02	 00

	

03	 5e	 M'YlJ	 4X

	

04	 8

	

- 05	 C4 _________	 9A'	 4 oM	 '&ad Iempe'ah4e jos
	06	 05 ____________ ________ ________________ O4I 05J

	

07	 01/ _________ _____	 /ZL 071/	 414 ecIio.. jad

	

08	 07

	

09	 42 _________ MC'	 /0000j, 4t?	 SE	 d1
OA00 ____________ ________ ________________ mem

	

08	 00

	

OC	 CC __________ 9A7	 3	 Slop. wail
OD
OE
OF

FIGURE 3-4 Assembly language program on standard coding form.
46	 CHAPTER THREE

to the extent needed. If you want more information,
detailed descriptions of the syntax (assembly language
grammar) and operation of each of these instructions
can be found in Chapter 6.

The first line at the top of the coding form in Figure
3-4 does not represent an Instruction. It simply indicates
that we want to set aside a memory location to store the
result. This location must be In available RAM so that
we can write to it. Address OOIOOH is an available RAM
location on an SDK-86 prototyping board, so we chose
it for this example. Next, we decide where in memory
we want to start putting the code bytes for the iostruc-
tior.5,of the program. Again, on an SDK-86 prototyping
board, address 00200H and above is available RAM. so
we chose to start the program at address 00200H,

The first operation we want to do in the program is
to initialize the data segment register. As discussed
previously, two MOV instructions are used to do this.
The MOV AX, OO1OH instruction, when executed, will
load the upper 16 bits of the address we chose for data
storage into the AX register. The MOV DS, AX instruction
will copy this number from the AX register to the data
segment register. Now we get to the instructions that
do the input, add, and store operations. The IN AL. 0511
instruction will copy a data byte from the port 05H to
the AL register. The ADD AL. 07 instruction will add
0711 to the AL register and leave the result In the AL
register. The MOV 10000). AL instruction will copy the
byte In AL to a memory location at a displacement of
0000H from the data segment base. In other words. AL
will be copied to a physical address computed by adding
0000 to the segment base address represented by the
OO1OH in the DS register. The result of this addition is
a physical address of OOlOOH. so the result in AL will
be copied to physical address 0010011 in memory. This
Is an example of the direct addressing mode described
near the end of the previous chapter.

The INT 3 instruction at the end of the program
functions as a breakpoint. When the 8086 on an SDK-
86 board executes this instruction, it will cause the
8086 to stop executing the instructions of your program
and return control to the monitor or system program.
You can then use system commands to look at the
contents of registers and memory locations, or you can
run another program. Without an instruction such as
this at the end of the program. the 8086 would fetch
and execute the code bytes for your program, then go
on fetching meaningless bytes from memory and trying
to execute them as if they were code bytes.

The next major section of this chapter will show you
how to construct the binary codes for these and other
8086 instructions so that you can assemble and run the
programs on a development board such as the SDK-86.
First, however, we want to use Figure 3-4 to make
an important point about writing assembly language
programs.

DOCUMENTATION

In a previous section of this chapter. we stressed the
point that you should do a lot of thinking and carefully
write down the algorithm for a program before you
start writing instruction statements. You shiiuld also

document the program Itself so that its operation is
clear to you and to anyone else who needs to understand
it.

Each page of the program should contain the name
of the program. the page number, the name of the
programmer, and perhaps a version number. Each
program or procedure should have a heading block
containing an abstract describing what the program is
supposed to do. which procedures it calls, which regis-
ters it uses, which ports it uses, which flags it affects.
the memory used, and any other information which will
make It easier for another programmer to Interface with
the program.

Comments should be used genrously to describe
the specific Junction of an instruction or group of
instructions in (his particular program. Comments
should not be just an expansion of the instruction
mnemonic. A comment of ":add 7 to AL after the
instruction ADD AL. 0711, for example, would not tell
you much about the function of the instruction in a
particular program. A more enlightening comment
might be ":Add altitude correction factor to tempera-
ture. Incidentally. nDt every statement needs an Individ-
ual comment. It is often more useful to write a comment
which explains the [unction ola group of instructiops.

We cannot overemphasize the importance of clear,
concise documentation in your programs. Experience
has shown that even a short program you wrote without
comments a month ago may not be at all understandable
to you row.

CONSTRUCTING THE MACHINE CODES
FOR 8086 INSTRUCTIONS

This section shows you how to construct the binary
codes for 8086 Instructions. Most of the time you will
probably use an assembler program to do this for you.
but it is useful to understand how the codes are con-
structed. If you have an 8086-based prototyping board
such as the Intel SDK-86 available, knowing how to
hand code instructions will enable you to code, enter,
and run simple programs.

Instruct ion Templates

To code the instructions for 8-bit processors such as
the 8085, all you have to do is look up the hexadecimal
code for each instruction on a one-page chart. For the
8086, the process is not quite as simple. Heres why.
There are 32 ways to specify the source of the operand
in an instruction such as MOV CX, source. The source
of the operand can be an y one of eight 16-bit registers.
or a memory loation specified b' any one of 24 memory
addressing modes. Each of the 32 possible instructions
requires a dilferent binary code. IfCX is made the source
rather than the destination, then there are 32 wa ys of
specify ing the destination. Each of these 32 possible
instructions requires a different binary code. There are
thus 64 different codes for MOV instructions using CX
as a source or as a destination. Likewise, another 64
codes are required to specif y all the possible MOVs using

tu&, FA\tILS ASSE\ttlLY LANGUAC;E PROGRAMMING-.INTRODLJCTION 	 47

OPCODEFOR"IN"	 POATAUDRESS
L_ WO BYTEW I WORD

I_L[h 1 h 1 0 1 0 1 h 1 0 1 0 1 0 1 0 1 0 1 0 1 o 1 110111
______________________________________I 	

'OPCOOEFOR"IN" 	 j	 POATO5II
INPUT A B YTE

(b)

ADDRESS 	 CONTENTS00205)4	 E4H00206)4	 05)4
Id

FIGURE 3-5 Coding template for 8086 IN (fixed port)
instruction. (a) Template. Ib) Example. (C) Hex codes in
sequential memory locations.

CL as a source or a destination, and 64 more are required
to speci all the possible MOVs using CH as a source or
a destination. The point here is that, because there Is
such a large number of possible codes for the 8086
instructions. it is impractical to list them all In a
simple table. Instead, we use a template (or each basic
instruction type and fill in bits within this template to
indicate the desired addressing mode, data type, etc. in
other words, we build up the instruction codes on a bit-
by-bit basis.

Different Intel literature shows two slightly different
formats for coding 8086 instructions. One format is
shown at the end of the 8086 data sheet in Appendix
A. The second format is shown along with the 8086
instruction timings in Appendix B. We will start by
showing you how to use the templates shown in the
8086 data sheet.

As a first example of how to use these templates, we
will build the code for the !N AL. 05H instruction from
our example program. To start, look at the template for
this Instruction in Figure 3-5a. Note that two bytes are

required for the tnstructioi%. The upper 7 bits of the first
byt. tell the 8086 that this is an input from a fixed
port instruction. The bit labeled W In thc template is
used to tell the 8086 whether it should input a byte to
AL or a word to AX. If you want the 8086 to input a byte
from an 8-bit port to AL. then make the W bit a 0. If you
want the 8086 to input a word from a 16-bit port to the
AX register, then make the W bit a I. The 8-bit port
address. 05H or 00000101 bInary, is put in the second
byte of the instruction. When the program is loaded intj
memory to be run, the first instruction byte will be put
in one memory location, and the second instruction byte
will be put in the next. Figure 3-Sc shows this in
hexadecimal form as E4H. 05H.

To further illustrate how these templates are used, we
will show here several examples with the simple MOV
instruction. We will then show you how to construct the
rest of the codes for the example program in Figure
34. Other examples will be shown as needed in the
following chapters.

MOV Instruction Coding Format and Examples

FORMAT

Figure 3-6 shows the coding template or format for 8086
instructions which MOV data from a register to a
register, from a register to a memory location, or from
a memory location to a register. Note that at least two
code bytes are required for the instruction,

The upper 6 bits of the first byte arc an opeode which
indicates the general type of instruction. Look in the
table In Appendix A to find the 6-bit opcode for this
MOV register/memory to/from register instruction. You
should find it to be 100010.

The \V bit In the first word is used to indicate whether
a byte or a word is being moved. If you are moving a
byte, make W = 0. If you are moving a word, make
W	 1.

In this instruction, one operand must always be a
register, so 3 hits in the second byte are used to indicate
which register is involved. The 3-bit codes for each
register are shown in the table at the end of Appendix
A and in Figure 3-7. Look in one of these places to find
the code for the CL register. You should get 001.

REGISTER SELECT (SEE FIGURE 3-7)
BYTE 1	 BYTE 3 	 BYTE 41 0 I Opop l i e	 I I	 I------T' ----------LOW DISPLACEMENT	 HIGH DISPLACEMENTOPCODE	 0 W MOD	 REG	 R'M

	

LL	 J
LDRESS	 DIRECT ADDRESfl
(5 81151 ADDRESSING MODE (SEE FIGURE 3-8)

I	 BYTE.'WORDDATA 0-BYTE lWORDDIRECTION TO/FROM PEG 0 FROM 1 - TOOPERATION CODE
FIGURE 3-6 Coding template for 8086 instructions which MOV data between
regi5trs or between a register and a memory location.

48	 CHAPTER THREE

REGISTER
	

CODE

	

w=1
	

wO
AL	 AX
	

000
BL
	

011
C1_	 CX
	

001
DL	 DX
	

010
AH	 Sp
	

100
BH	 DI
	

111
CK	 BP
	

101
OH	 SI
	

110

	

SEGREG	 CODE

	

CS	 01

	

OS	 11

	

ES	 00

	

SS	 10

FIGURE 3-7 instruction codes for 8086 registers.

The 0 bit In the first byte of the instruction code is
used to indicate whether the data is being moved to the
register identified In the REG field of the second byte or

from that register. If the instruction is moving data to
the register identified in the REG field, make 0 = I. if
the instruction is moving datafrom that register, make
O = 0.

Now remember that In a MOV instruction, one operand
must be a register and the other operand may be a
register or a memory location. The 2-bit field labeled
MOD and the 3-bit field labeled R/M in the second byte
of the instruction code are used to specify the desired
addressing mode for the other operand. Figure 3-8
shows the MOD and R/M bit patterns for each of the 32

possible addressing modes. Heres an overview of how
you use this table.

if the other operand in the Instruction is also one of
the eight regisfrrs, then put in 11 for the MOD bits
in the instruction code, in the R/M bit positions in
the instruction code, put the 3-bit code for the other
register.

2. If the other operand is a memory location, there are
24 ways of specifying how the execution unit should
compute the effective address of the operand in
memory. Remember from Chapter 2 that the effective
address can be specified directly in the instruction,
it can be contained in a register, or it can be the
sum of one or two registers and a displacement. The
MOD bits are used to indicate whether the address
specification .in the instruction contains a displace.
ment. The R/M code indicates which register(s)
Contain part(s) 01 the effective address. Here's how
It works:

If the specified effective address contains no dis-
placement, as in the instruction MOV CX, IBXI or in
the instruction MOV [BXJSIi, DX, then make the
MOD bits 00 and choose the R/M bits which corre-
spond to the register(s) containing the effective
address. For example. if an instruction containsjust
(BXI. the 3-bttjR/M code is ill. For an instruction
which contains IBXISII. the R/M code is 000. Note
that for direct addressing. where the displacement
of the operand from the segment base is specified
directly in the instruction. MOD is 00 and R/M is

MOD
RIM	 00	 01	 10	 11

w=O w=1

000	 IBX(+	 ISa)	 (BXI + (SI) + d8	 IBXI + (611 + d16	 AL	 AX

001)BX(+	 (Dl)	 IBXI + (DII + d8	 IBX(+ (Dl) + d16	 CL	 CX

010)BPJ +	 (SI)	 (BP1 + (SI) + d8	 BPI + 1511 + d16	 DL	 DX

Oil	 -	 IBP(+	 (DII	 IBP) + (DI) + d8)BPI + (Dl) + d16	 BL	 BX

i00	 (SI)	 (SI) + d8	 Sli + d16	 AH	 SI'

101	 (DI)	 (DI) + d8	 (Dli + dI6	 CH	 BP

110

	

	 d16	 (BPI +d8	 (BE') +d16	 OH	 SI
(direct address)

111	 IBX((BXI + d8)BXJ + dl I,	 BH	 Dl

MEMORY MODE
d8 = 8-bit displacement 	 d16	 16-bit displacement

FIGURE 3-8 MOD and RiM bit patterns for 8086 instructions. The effective
address ([A) produced by these addressing modes will be added to the data
segment base to form the physical address, except for those eases where BE' is
used as part of the EA. In that case the EA will be added to the slack segment
base to form the physical address. You can use a segment-override prefix to
indicate that you want the [A to be added to some other segment basç.

REGISTER MODE

8086 FAMItY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION 	 49

I 10. For an instruction using direct addressing. the
low byte of the direct address Is put in as a third
instruction code byte of the Instruction, and the
high byte of the direct address is put in as a fourth
instruction code byte.

3. If the effective address specified in the instruction
contains a displacement less than 256 along with a
reference to the contents of a register, as in the
instruction MOV CX, 43HLBX), then code in MOD as
01 and choose the R'M bits which correspond to the
register(s) which contain the part(s) for the effective
address. For the instruction MOVCX. 43H(BXJ, MOD
will be 01 and RIM will be III. Put the 8-bit value
of the displacement in as the third byte of the
instruction.

4. If the expression for the effective address contains
a displacement which is too large to fit in 8 bIts, as
in the instruction MOV DX. 4527H[BX(, then put in
10 for MOD and choose the RiM bits which corre-
sporid to the register(s) which contain the part(s)
for the effective address. For the instruction MOV
DX. 4527H{BXI, the RIM bits are Ill. The low byte
of the displacement is put in as a third byte of the
instruction. The high byte of the displacement is
put in as a fourth byte of the instruction. The
examples which follow should help clarify all this for
you.

MOV Instruction Coding Examples

All the examples in this section use the MOV instruction
template in Figure 3-6. As you read through these
examples, it is a good idea to keep track of the bit-by-
bit development on a separate piece of paper for practice.

CODING MOV SP, BX

This instruction will copy a word from the BX register
to the SP register. Consulting the table in Appendix A.
you find that the 6-bit opcode for this instruction is
100010. Because you are moving a word. W = 1. The D
bit for this instruction may be somewhat confusing.
however. Since two registers are involved, you can think
of the move as either to SP or from BX. It actually
does not matter which you assume as long as you are
consistent in coding the rest of the instruction, If you
thtnk of the instruction as moving a word to SF. then
make I) I and put 100 in the REG field to represent
the SF' register, The MOD field will be II to represent

register addressing mode. Make the R/M field OIl to
represent the other register. BX. The resultant code for
the instruction MOVSP. BX will be 11)00101111 100011.
Figure 3-9a shows the meaning of all these bits.

If you change the D bit ba 0 and swap the codes in the
REG and R/M fields, you will get 10001001 11011100.
which is another equally valid code for the Instruction,
Figure 3-9b shows the meaning of the bits in this form.
This second form, incidentally. is the form that the Intel
8086 Macroassembler produces.

CODING MOV CL, EBX

This Instruction will copy a byte to CL from the memory
location whose effective address is contained in BX. The
effective address will be added to the data segment base
in DS to produce the physical address.

To find the 6-bit opcode for byte 1 of the Instruction.
consult the table in Appendix A. You should find that
this code is 100010. Make D = I because data is
being moved to register CL. Make W = 0 because the
instruction is moving a byte into CL. Next you need to
put the 3-bit code which represents register CL in the
REG field of the second byte of the instruction code. The
codes for each register are shown in Figurt 3-7. In this
figure you should find that the code for CL Is 001. Now.
all you need to determine is the bit patterns for the MOD
and RIM fields. Again use the table in Figure 3-8 to do
this. In the table, first find the box containing the
desired addressing mode. The box containing EBXI. for
example, is in the lower left corner of the (able, Read
the required MOD-bit pattern from the top of the column.
In this case. MOD is 00. Then read the required R/M-
bit pattern at the left of the box. For this instruction
you should find R/M t" he Ill. Assembling all these bits
together should gi 000l0l0 0000llIl as the
binary code for the instruction MOV CL, IBXI. Figure
310 summarizes the meaning of ail the bits in this
result.

CODING MOV 43H [S I J, OH

This Instruction will copy a byte from tbe DH register
to a memory location. The BIU wiJI compute the effective
address of the methory location by adding the indicated
displacement of 43H to the contents of the SI register.
As we showed you in the last chapter. the FilU then
produces the actual physical address b y adding this
effective address to the data segment base represented
by the 16-bit number in the DS register.

I	 BYTE 1	 BYTE 2	 J	 I	 BYTE I	 J	 ByTE 2

I 1jOIOIOI1OIlJ1!lI1Ii!O101oIlI1IMOv5pBx	 OjOI1IOtOI1IlI1OIIII1QjO]MOvSpBX
I	 .

OP CODE FOR MOV	 a;M	 '	 OP CODE MOVI j	 SP
'TO' REG —i	 1... REG SP	 FROM' REG -	 j	 - REG EX

MDV WORD	 REGISTER TO REGISTER	 MOV WORD	 '-REGI5TtR TO REGISTER

b

FIGURE 3-9 MOV iOstruction codng esamples. (at MOV SF, BX. lb MOV SP.
BX alternative.

50	 CHAPTER THREE

BYTEI	 BYTE2

1 0 1 0 I o h joji 1010 ho loloht Ii I i I l l MOVCL.IBX)

OP CODE	 IBX]

TO'REG—J	L_REGCI.

MOV BYTE	 _______ MEMORY.
NO DISPLACEMENT

FIGURE 3-10 MOV CL, IBXI.

The 6-bit opcode for this instruction is again 100010.
Put 110 in the REG field to represent the OH register.
D = 0 because you are moving datafmm the DI-I register.
W = 0 because you are moving a byte. The R/M field will
be 100 because SI Contains part of the effective address.
The MOO field will be 01 because the displacement
contained in the instruction. 43H, will fit in 1 byte. if
the specified displacement had been a number larger
than FFH, then MOD would be 10. Putting all these
pieces together gives 10001000 01110100 for the first
two bytes of the instruction code. The specified displace-
ment. 43H or 01000011 binary, is put after these two
as a third instruction byte. Figure 3-11 shows this. If
an instruction specifies a 16-bit displacement, then the
low byte of the displacement is put in as byte 3 of the
instruction code, and the high byte of the displacement
is put in as byte 4 of the instruction code.

BYTE1	 BYTE2

Ii 1010 ho 1 oj oh 01011 Il I 1 lo II 1 0 1 0 1 MOV43HISII.DH

-v--- , t _v_=__v__ '-V'
OP CODE	 J	 A/M ISI)

'FROM'REG-	 LREG.,DH

MOV BYTE	 ________ MEMORY, ONE BYTE
DISPLACEMENT

BYTE3	 I

lolilolololohlhil

DISPLACEMENT 4311

FIGURE 3-11 MOV 43H(SIJ, OH.

CODING MOV CX, 1437AH1

This instruction copies the contents of two memory
locations into the CX register. The direct address or
displacement of the first memory location from the start
of the data segment is 437AH. As we showed you In the
last chapter. the BIU will produce the physical memory
address by adding this displacement to the data segment
base represented by the 16-bit number in the OS reg-
ister.

The 6-bit opcode for this instruction is again 100010.
Make D = I because you are moving data to the CX
register, and make W = 1 because the data being moved
Is a word. Put 001 in the REG field to represent the CX
register, then consut Figure 3-8 to find the MOD and
R/M codes. In the firt column of the figure. you should
find a box labeled direct address, which is the name
given to the addressing mode used in this instruction.
For direct addressing. you should find MOD to be 00

	

BYIE1J	 I	 BYTE2

liIoloIohiloliItIololololihiliIoI

	

-	 t '—v—,'---v-----.---_---.,
OP CODE	

]	 I DIRECT

	

'TO' PEG	 I	 ADDRESSING

	

M0VWORD-1	REGCX

	

BYTE3	 I	 BYTE4

l o l l j1 1 1 1 1 1. 01 iI o I o IiI o I o_1_o I o l l I 1 IM0VCx.1437A11)

DIRECT ADDRESS	 DIRECT ADDRESS

	

LOW BYTE	 HIGH BYTE

	

lAN	 4311

FIGURE 3-12 MOV CX, 1437AH].

and R/M to be 110. The first two code bytes for the
instruction, then, are 10001011 00001110, These two
bytes will be followed by the low byte of the direct
address, 7AH (01111010 binary), and the high byte
of the direct address, 43H (01000011 blnaiy). The
instruction will be coded Into four successive memory
addresses as 8BH. OEH, 7AH, and 43H. Figure 3-12
spells this out in detail,

CODING MOV CS:LBX], DL

This instruction copies a byte from the DL register to a
memory location - The effective address for the memory
location is contained in the BX register. Normally an
effective address in BX will be added to the data segment
base in DS to produce the physical memory address. In
this instruction, the CS: in front of IBXI indicates that
we want the BIU to add the effective address to the code
segment base in CS to produce the physical address.
The CS: is called a segment override prefix.

'n instruction containing a segment override
prefix is coded, an 8-bit code for the segment override
prefix is put in memory before the code for the rest of
the instruction. The code byte for the segment override
prefix has the format OOIXXI 10. You insert a 2-bit code
in place of the X's to indicate which segment base you
want the effective address to be added to. As shown in
Figure 3-7. the codes for these 2 bits are as follows:
ES = 00.CS =01.SS = 10.andDS = 1I.Thcsegment
override prefix byte [or CS. then, is 00101110. For
practice, code out the rest of this instruction. Figure
3-13 shows the result you should get and how the code

SEGMENT OVERRIDE PREFIX
BYTE1

loIohlohihiIiIol

CS REGISTER

	

BYTE2	 BYTE3

Ji 0 1 0 1 D li I O I O I O I O I O I O I I loll i Iii MOV CS: iBX). DL

	

FM PEG	 LLREGDL

	

NOV BYTE	 MEMORY. NO DISPLACEMENT

FIGURE 3-13 MOV CS:)BXI, DL.

—9
518086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING—INTRODUCTION

A — 2-9O

for the segment override prefix isput before the other 	 MOV 100001, AL
code bytes (or the Instruction.	 '

Coding the Example Program in Figure 3-4

Again, as you read through this section. follow the bit-
by-bit development of the Instruction codes on a separate
piece of paper for practIce.

MOV AX. OO1OH

This Instruction will load the immediate word 0010Ff
into the AX register. The simplest code template to use
for thIs instruction is listed in the table in Appendix A
under the MOV - Immediate to register heading. The
format for this instruction Is loll W REG. data byte
low, data byte high. W I because you are moving a
word. Consult Figure 3-7 to fInd the code for the AX
register. You should find this to be 000. Put this 3-bit
code in the REG field of the instruction code. The
completed instruction code byte is 10111000. Put the
low byte of the immediate number. 1 OH, in as the second
code byte. Then put the high byte of the Immediate data.
00Ff. in as the third code byte. The resultant sequence
of code bytes, then, will be B8H, 10Ff. 00Ff.

MOV DS, AX

This instruction copies the contents of the AX register
into the data segment register. The template to use for
coding this instruction is found in the table in Appendix
A under the heading MOV - Register/memory to seg-
ment register The format for this template Is 100011 It)
MOD 0 segreg RIM. Segreg represents the 2-bit code for
the desired segment register, as shown in Figure 3-7.
These codes are also found in the table at the end of
Appendix A. The segreg code for the DS register is 11.
Since the other operand is a register. MOD should be
11. Put the 3-bit code for the AX register, 000. in the
R/M field. The resultant codes for the two code bytes
should then be 10001110 11011000. or 8EH D8H.

IN AL 05H

This instruction copies a byte of data from port 051! to
the AL register. The coding for this instruction was
described in a previous section. The code for the instruc-
tion Is 11100100 00000101 or E4FI 05Ff.

ADD AL, 07H

This instruction adds the immediate number 07H to
the AL register and puts the result in the AL register.
The simplest template to use for coding this Instruction
is found in the table in Appendix A under the heading
ADD - Immediate to accumulator. - The format is

0000010W, data byte, data byte. Since you are adding
a byte. W = 0. Tbe immediate data byte you are adding
will be put in the second code byte. The third code byte
will not be needed because you are adding only a byte.
The resultant codes, then, are 00000100 00000111 or
04Ff 07H.

i nis Instruction copies the contents of the AL register
to a memory location. The direct address or displacement
of the memory location from the start of the data segment
is 0000H. The code template for this instruction is found
in the table in Appendix A under the heading "MOV -
Accumulator to memory. The format for the instruction
is 1010001 W. address low byte, address high byte.
Since the instruction moves a byte, W = 0. The low
byte of the direct address is written in as the second
instruction code byte, and the high byte of the direct
address Is written in as the third instruction code byte.
The codes for these 3 bytes, then, will be 10100010
00000000 00000000 or A2Ff 00Ff 00Ff.

INT 3

In some 8086 systems this instruction causes the 8086
to stop executing your program instructions, return to
the monitor program, and wait for your next command.
According to the format table in Appendix A, the code
for a type 3 interrupt is the single byte 11001100 or
CCH.

SUMMARY OF HAND CODING
THE EXAMPLE PROGRAM

Figure 3-4 shows the example program with all the
Instruction codes in sequential order as you would write
them so that you could load the program into memory
and run it. Codes are in HEX to save space.

A Look at Another Coding Template Format

As we mentioned previously, Intel literature shows the
8086 instruction coding templates in two different
forms. The preceding sections have shown you how to
use the templates found at the end of the 8086 data
sheet in Appendix A. Now let's take a brief look at the
second form, which is shown along with the instruction
clock cycles in Appendix B.

The only difference between the second form for the
templates and the form we discussed previously is that
the D and W bits are not individually identified. Instead.
the complete o2code bytes are shown for each version
of an 'nstruction. For example, in Appendix B. the
opcode byte for the MOV memory 8, regIster 8 instruction
is shown as 88Ff. and the opcode byte for the MOV
memory 16, register 16 instruction is shown as 89Ff.
If you compare these codes with those derived from
Appendix A. you will see that the only difference between
the two codes is the W bit. For the 8-bit move, W = 0.
and for the 16-bit move, W	 1.

One important point t make about using the tem-
plates in Appendix B Is that for operations Involving two
registers, the register identified in the kEG field is not
consistent from instruction to instruction. For the MOV
instructions, the templates in Appendix B assume that
the 3-bit code for the source register is put In the kEG
field of the MOD/RM instruction byte, and the 3-bit code
for the destination register is put In the RIM field of the
MOD/RM instruction byte. According to Appendix B. the

52	 CHAPTER THREE

template for a 16-bit register-to-register move is 89H
followed by the MOD reg R/M byte. In this template.
D = 0. so the 3-bit code for the source register will be put
in the reg field. Using this template. then, the Instruc-
tion MOV BX. CX is coded as 10001001 11001011 or
89H CBH.

For the ADD, ADC. SUB. SBB. AND, OR. and XOR
instruCtiOns which involve two registers. the templates
In Appendix B show 1) 1. To be consistent with these
templates. then, you have to put the 3-bit code for the
destination register in the reg field in the instruction,

It really doesn't matter whether you use the templates
in Appendix A or those in Appendix B. as long as you
are consistent in coding each instruction.

A Few Words about Hand Coding
If you have to hand code 8086 assembly language
programs. here are a few tips to make your life easier,
First, check jour algorithm very carefully to make sure
that it really does what it is supposed to do, Second.
initially write dowp Just the assembly language state-
ments and comments for pour program. You can check
the table in the appendix to determine how many bytes
each instruction takes so that you know how many
blank lines to leave between instruction statements.
You may find it helpful to insert three or four NOP
instructions after every nine or ten instructions, The
NOP instruction doesn't do anything but kill time.
However, if you accidentally leave out an instruction in
your program, you can replace the NOPs with the needed
instruction(s). This way you don't have to rewrite the
entire program after the missing instruction.

After you have written down the instruction state-
ments, recheck very carefully to make sure you have the
right Instructions to implement your algorithm. Then
work out the binary codes for each instruction and write
them in the appropriate places on the coding form.

Hand coding is laborious for long programs, When
writing long programs, it is much more efficient to use
an assembler. The next section of this chapter shows
you how to write your programs so that you can use
an assembler to produce the machine codes for the
instructions.

WRITING PROGRAMS FOR USE
WITH AN ASSEMBLER
If you have an 8086 , assembler available, you should
learn to use It as soon as possible. Besides doing the
tedious task of producing the binary codes for your
instruction statements, an assembler also allows you to
refer to data items by name rather than by their numeri-
cal offsets. As you should soon see, this greatly reduces
the work you have to do and makes your programs much
more readable. In this section we show you how to write
your programs so that you can use an assembler on
them.

NOTE: The assembly language programs in the
rest of this book were assembled with TASM 1.0
from Borland International or MASM 5,1 from
Microsoft Corp. TASM is faster, but the program
format for these two assemblers is essentially the
same. If you are using some other assembler, check
the manual for it to determine any differences In
syntax from the examples in this book.

Program Format
The best way to approach this section seems to be to
show you a simple, but complete, program written for
an assembler and explain the function of the various
parts of the program. By now you are probably tired of
the read temperature, add + 7. and store result in -
memozy program, so we will use another example,

FIgure 3-14. p. 54. shows an 8086 assembly language
program which multiplies two 16-bit binary numbers to
give *32-bit binary result. If you have a microcomputer
development system or a microcomputer with an 8086
assembler to work on, this is a good program for you to
key in. assemble, and run to become familiar with the
operation of your system, (A sequence of exercises in
the accompanying lab manual explains how to do this.)
In any case, you can use the structure of this example
program as a model for your own programs,

In addition to program instructions, the example
program In Figure 3-14 contains dlrection to the assem-
bler. These directions to the assembler are commonly
called assembler directives or pseudo operations. A
section at the end of Chapter 6 lIsts and describes for
your reference a large number of the available assembler
directives. Here we will discuss the basic assembler
directives you need to get started writing programs. We
will introduce more of these directives as we need them
in the next two chapters.

SEGMENT and ENDS Directives
The SEGMENT and ENDS directives are used to Identi'
a group of data items or a group of instructions that
you want to be put . together In a particular segment.
These directives are used in the same way that parenthe-
ses are used to group like terms in algebra. A group of
data statements or a group of instruction statements
containedbetween SEGMENT and ENDS directives Is
called a logical segment. When you Set up a logical
segment, you give it a name of your choosing. In the
example program, the statements DATA.J4ERE SEG-
MENT and DATA_HERE ENDS set up a logical segment
named DATA_HERE. There is nothing sacred about the
name DATA_1-IERE. We simply chose this name to help
us remember that this logical segment contains data
statements. The statements CODE_HERE SEGMENT
and CODE_HERE ENDS In the example program set up
a logical segment named CODE_HERE which contains
instruction statements. Most 8086 assemblers. inciden-
tally. allow you to use names and labels of up to 31
characters. You cant use spaces in a name, but you can

8086 FAMItY ASSEMBIY LANGUAGE PROGRAMMING_INTRODUCTION 	 53

8086 PROGRAM F3-14.ASM
;ABSTRACT : This program TeiltipLies the two 16-bit words in the memory

locations called MULTIPLICAND and MULTIPLIER. The result
Is stored in the memory location, PRUCT

;REGISIERS : Uses CS, OS, AX, DX
;PORTS	 : Noiie used

DATA HERE

DATA_HERE

SEGMENT
MULTIPLICAND OW 204AM 	 First word here
MULTIPLIER	 OW 3B2A11	 Second word here
PROGUCT	 OW 2 DUP(0)	 Result of n5ittip(ication hereENDS

CCCE_HERE	 SEGMENT
ASSUME	 CS:C)E_HERE, DS:DATAIIERE

START:

	

	 NOV AX, DATA_HERE	 InitiaL ize Os register
NOV OS, AX
NOV AX, MULTLICANO	 Get one word
liii MULTIPLIER	 Multiply by second word
NOV PROGUCT, AX 	 Store low word of result
NOV PRUCT,2, DX	 Store high word of result
INT 3	 Wait for coeleand from userCCOE_HERE	 ENDS
END START

Programs to be rI.& using a debugger in DOS eust include the START: Label and the
START after the END fajwed by a carriage return. Programs to be downloaded and run need
only the END directivi oltowed by a carriage return.

FIGURE 3-14 Assembly language source program to multiply two 16-bit binary
numbers to give a 32-bit result.

use an underscore as shown to sepMt. words in a
name. Also, you can't use Instruction Itinemonics as
segment names or labels. Throughout the rest of the
program you will refer to a logical segment by the name
that you give it when you define It.

A logical segment is not usually given a physical
starting address when Ills declared. After the program
is assembled and perhaps linked with other assembled
program modules, it is then assigned the physical
address where it wiU be loaded in memory to be run.

Naming Data and Addresses - QU, DB, DW,
and DD Directives

Programs work with three general categories of data:
constants, variables, and addresses. The value of a
constant does not change during the execution of the
program. The number 7 Is an example of a constant you
might use In a program. A variable Is the name given to
a data item which can change during the execution of
a program. The Current temperature of an oven is an
example of a variable. Addresses are referred to in many
Instructions. You may. for example, load an address into
a register or Jump to an, address.

Constants, variables, and addresses used In your
programs can be given names. This allows you to refer
to them by name rather than having to remember or
iTcuIate their -value each time you refer to them in

an instruction, In other words, if you give names to
constants, variables, and addresses, the assembler can

use these names to find a desired data item or address
when you refer to it in an instruction. Specific directives
are used to give names to constants and variables in your
programs. Labels are used to give names to addresses In
your programs.

THE EQU DIRECTIVE
The EQU, or equate, directive is used to assign names
to constants used In your programs. The statement
CORRECTION_FACTOR EQU 07H. in a program such
as our previous example, would tell the assembler to
Insert the value 07H every time it finds the name
CORRECTION_yACT in a program statement. In
other Words, when the assembler reads the statement
AD!) AL, CORRECTION_FACTOR it will automatically
Code the Instruction as if you had written it ADD AL.
0711. Here's the advantage of using an EQU directive to
declare constants at the start of your program. Suppose
you use the correction factor of +07H 23 times In your
program. Now the company you work for changes the
brand of temperature sensor It buys, and the new
correction factor is +09H. If you used the number
0711 directly in the 23 instructions which contain this
correction factor. then you have to go through the entire
program, find each instruction that uses the Correction
factor, and update the value. Murphy's law being what
It is. you are likely to miss one or two of these, and the
program won't work correctly. If you used an EQU at the
Start of your program and then referred to CORREC-TION_FAC'FOR ; iame In the 23 instructIons, then all

54	 CHAPTER ThREE

you do is change the value in the EQU statement from
07H to 09H and reassemble the program. The assembler
automatIcally inserts the new value of 09H In all 23
instructions.

DB, DW, AND DD DIRECTIVES

The 1DB. DW. and DD directives are used to assign names
to variables In your programs. The DB, directive after a
name specifies that the data is of type byte. The program
statement OVEN_TEMPERATURE 1DB 271-1. for example.
declares a variable of type byte, gives It the name
OVEN_TEMPERATURE, and gives it an initial value of
27H. When the binary code for the program is loaded
into memory to be run, the value 27H will be loaded into
the memory location identified by the name OVEN_
TEMPERATURE 1DB 2711.

As another example, the statement CONVER-
SiON_FACTORS 1DB 27H, 48H, 32H, 69H will declare a
data structure (array) of 4 bytes and inittalize the 4 bytes
with the specified 4 values. If you don't care what value
a data item Is initialized to. then you can indicate this
with a "?," as in the statement TARE_WEIGHT 1DB?.

NOTE: Variables which are changed during the
operation of a program should also be initialized
with program instructions so that the program
can be rerun from the start without reloading It
to initialize the variables.

DW is used to specify that the data is of type word
16 bits), and DID is used to specify that the data is of

type doubleword (32 bits). The example program in
Figure 3-14 shows three examples of naming and initial-
izing word-type data items.

The first example. MULTIPLICAND DW 204AH. de-
clares a data word named MULTIPLICAND and initializes
that data word with the value 204AH. What this means
Is that the assembler will set aside two successive
memory locations and assign the name MULTIPLICAND
to the first location. As you will see, this allows us to
access the data in these memory locations by name. Th&
MULTIPLICAND DW 204AM statement also indicates
that when the final program is loaded into memory to
be run, these memory locations will be loaded with
(initialized to) 204AM. Actually, since this is an Intel
microprocessor, the first address in memory will contain
the low byte of the word. 4AM. and the second memory
address will contain the high byte of the word. 2011.

The second data declaration example in Figure 3-14.
MULTIPLIER L1W 3B2AH. Sets aside storage for a word
in memory and gives the starting address of this word
the name MULTIPLIER. When the program is loaded.
the first memory address wIll be initialized with 2AM.
and the second memory location with 3BH.

The third data declaration example in Figure 3-14.
PRODUCT DW 2 DUP(0). sets aside storage for two words
in memory and gives the starting address of the first
word the name PRODUCT. The DUP(0) part of the
statement tells the assembler to initialize the two words
to all zeros. When we multiply two 16-bit binary num-
bers. the product can be as large as 32 bIts, so we must
set aside this much space to store the product. We could

have used the DD directive to declare PRODUCT a
doubleword, but since in the program we move the result
to PRODUCT one word at a time, It is more convenient
to declare PRODUCT 2 words.

Figure 3-15 shows how the data for MULTIPLICAND,
MULTIPLIER, and PRODUCT will actually be arranged
in memory starting from the base ol the DATA_HERE
segment. The' first byte of MULTIPLICAND. 4AM, will be
at a displacement of zero from the segment base, because
MULTIPLICAND is the first data item declared in the
logical segment DATA_HERE. The displacement of the
second byte of MULTIPLICAND is 0001. The displace-
ment of the first byte of MULTIPLIER from the segment
base is 0002H. and the displacement of the second byte
of MULTIPLIER is 0003H. These are the displacements
that we would have to figure Out for each data item if
we were not using names to refer to them,

If the logical segment DATA_HERE is eventually put
in ROM oi EPROM, then MULTIPLICAND will function
as a constant, because it cannot be changed during
program execution. However, if DATA_HERE is eventu-
ally put in RAM, then MULTIPLICAND can function as
a variable because a new value could be written in those
memory locations during program execution.

MEMORY

HIGHWORD{	
I

LOW WORD-f
I	 I
I	 I - START OF PRODUCTI 38 II 2A I -P- START OF MULTIPLIER

1201

DATAHERE
SEGMENT BASE -

L_..._I	
START OF MULTIPLICAND

FIGURE 3-15 Data arrangement in memory for multipfy
program.

Types of Numbers Used in Data Statements

All the previous examples of DB. DW. and DID declara-
tions use hexadecimal numbers, as indicated by an 'H'
after the number. You can, however, put in a number
In any one of several other forms. For each form you
must tell the assembler which form you are using.

BINARY

For example. when you use a binary number in a
statement, you put a 'B' after the string of l's and Os
to let the assembler know that you want the number to
be treated as a binary number. The statement TEMP_
MAX 1DB 0111 100IB is an example. If you want to put
In a negative binary number. write the number in its
2's complement sign-and-magnitude form.

8086 FAMIlY ASSEMBLY LANGUAGE PROGRAMMING_INTRODUCTION 	 55

DECIMAL

The assembler treats a number with no identifying
letter after it as a decjmaj number. The assembler
automatically converts a decimal number in a statement
to binary so that the value can be loaded Into memory.
Given the statement TEMP._MAX DB 49, for example.
the assembler will automatically convert the 49 decimal
to Its binary equivalent, 00110001. If you Indicate a
negative number in a data declaration statement, the
assembler will Convert the number to its 2's complement
sign-and-magnitude form. For example, given the state-
ment TEMP_MIN DB -20. the assembler will insert the
value 11101100. which is the 2's complement represen-
tation for -20 decimal.

NOTE: If you forget to put an H after a number
that you want the assembler to treat as hexadeci-
mal, the assembler will treat it as a decimal num-
ber. You can put a D after tbe decimal values if
you want to indicate more clearly that the value is
decimal.

HEXADECIMAL

As shown In several previous examples, a hexadecimal
number is indicated by an H after the hexadecimal
digits. The statement MULTIPLIER DW 3B2AH is an
example. A zero must be placed In front of a hex number
that starts with a letter; for example, the number Al-I
must be written OAE.

BCD

Remember from Chapter 1 that In BCD each decimal
digit Is represented by its 4.bit binary equivalent. The
decimal number 37, for example, Is represented in BCD
as 00110111. As you can see, this number is equal to
37H. The only way you can tell whether the number
00110111 represents BCD 37 or hexadecimal 37 is by
how it is used in the program! The point here Is that if
you want the assembler to initialize a variable with the
value 37 BCE), you put an H after the number. The
statement SECONDS DB59H. forexample, will initialize
the variable SECONDS with 01011001. the BCE) repre-
sentation of 59.

ASCII

You can declare a data structure (array) containing a
sequence of ASCII codes by enclosing the letters or
numbers after a DB in single quotation marks. The
statement BOY1 DB 'ALBERT'. for example, tells the
assembler to declare a data item named BOYI that has
Six memory locations. It also tells the assembler to put

•he ASCII code for A in the first memory location, the
ASCII code for L in the second the ASCII code for B in
the third, etc. The assembler will automalically deter-
mine the ASCII codes for the letters or numbers within
the quotes. Note that this ASCII trick can be used only
with the DB directive.

Au.essing N4med Data
with Program Instructions
Now that we have shown you how a data structure can
be set up. let's look at how program iistructions access
this data. Temporarily skipping over the first two in-
structions In the CODE._HERE section of the program
in Figure 3-16. find the instruction MOVAX. MULTIPLI-
CAND, This instruction, when executed, will copy a
word from the memory location named MULTIPLICAND
to the AX register. Here's how this works.

When the assembler reads through this program the
first time, it automatically calculates the offset of each
of the named data items from the segment base DATA_
HERE, In Figure 3-15 you can see that the displacement
of MULTIPLICAND from the segment base is 0000. This
is because MULTIPLICAND Is the first data Item declared
in the segment. The assembler, then, will find that the
displacement of MULTIPLICAI.Jj) Is 0000H. When the
assembler reads the program the second time to produce
the binary codes for the Instructions. it will Insert
this displacement as part of the binary code for the
instruction MOV AX, MULTIPLICAND. Since we know
that the displacement of MULTIPLICAND is 0000. we
could have written the Instruction as MOV AX, 100001.
However, there would be a problem If we later changed
the program by adding another data item before MULTI-
PLICAND in DATA_HERE. The displacement of MULTI-
PLICAND would be changed. Therefore, we would have
to remember to go through the entire program and
correct the displacement in all instructions that access
MULTIPLICAND. If you use a name to refer to each data
item as shown, the assembler will automatically calculate
the correct displacement of that data item for you and
insert this displacement each time you refer to it in an
Instruction.

To summarize how this works, then, the instruction
MOV AX, MULTIPLICAND is an example of direct ad-
dressing where the direct address or displacement of
the desired data word in the data segment Is represented
by the name MULTIPLICAND, For Instructions such
as this, the assembler will automatically calculate the
displacement of the named data item from the start of
the segment and Insert this value as part of the binary
code for the instruction. This can be seen on line 18 of
the assembler lIsting shown in Figure 3-16. When the
instruction executes, the Blu will add the displacement
contained in the Instruction to the data segment base
in DS to produce the 20-bit physical address of the data
word named MULTIPLICAND.

The next instruction in the program in Figure 3-16 is
another example of direct addressing using a named
data item. The instruction MUL MULTIPLIER multiplies
the word from the memory location named MULTIPLIER
in DATA_HERE by the word In the AX register. When
the assembler reads through this program the first time,
it will find that the displacement of MULTIPLIER In
DATA_.HERE is 0002H. When it reads through the
program the second time, it inserts this displacement
as part of the binary code for the MUL instruction,
as shown on line 19 In Figure 3-16. When the MUL
MULTIPLIER instruction executes, the BIU will add the
-displacement contained in the instruction to the data

56	 CHAPTER THREE

2
3
4
5
6
7
8 0000
9 0000

10 0002
11 0004
12 0008
13
14 0000
15
16 0000
17 0003
18 0005
19 0008
20 000C
21 000F
22 0013
23 0014
24

204A
3B2A
02*(0000)

B8 0000s
8€ 08
Al 0000r
F7 26 0002r
*3 0004r
89 16 0006r
Cc

Turbo Assefitler VersIon 1.0
	 Page 1

8086 PROGRAM F3-14.ASM
;ABSTRACT : This progrms ia.iLtipties the two 16-bit words in the meery

Locations called MULTIPLICAND and MULTIPLIER. The result
is stored in the meiry Location, PROGUCI

;REGISTERS : Uses CS, OS, AX, DX
;PORTS	 : None used

DATA_HERE	 SEGMEN1
MULTIPLICAND OW 204AH	 First word here
MULTIPLIER	 OW 382A14	 Second word here
PRcOUCT	 DV 2 DUP(0)	 Result of mjltiptication here

DATA_HERE	 ENDS

COGE_HERE
	 SEGMENT

ASSUME	 CS:COGE_HERE, DS:DATA_HERE
START:	 NOV AX, DATA_HERE	 initialize OS register

NOV OS, AX
NOV AX, MULTIPLICAND	 Get one word
MUL MULTIPLIER	 ; Multiply by second word
NOV PROGUCT, AX	 ; Store tow word of result
NOV PROGUCI+2, DX	 ; Store high word of result
INT 3	 Wait for ccm'nuand from user

COG E_HERE
	 ENDS

END START

Turbo Assethter Versmn 1.0
S 'itho(Table

Syeto(I1

??DATE
fl Fit ENAJIE
1? TINE
??VERSION
acPu
OCURSEG
OF I LEHAME
aoRDSIZE
MULTIPLICAND
MULTIPLIER
PR00UCT
START

Groups & SegmentS

CboE_HERE
DATA_HERE

Page 2

Type Value

Text	 "04-06-8'?"
Text	 "F3-14
Text	 "07:41 :58"
Nsrer 0100
Text	 0101K
Text COGE_HERE
Text	 F3-14
text	 2
Word OATA_HERE:0000
Word DATA KENt :0002
Word DATA_HERE :0004
Near COGE_HERE :0000

Bi.t Size Align Coetint Class

16 0014 Para none
16 0008 Para none

FIGURE 3-16 Assembler listing for example program in Figure 3-14.

segment base in DS to address MULTIPLIER in memory.
After the multiplication, the low word of the result Is
left In the AX register. and the high word of the result
Is left in the DX register.

The next instruction. MOV PRODUCT. AX, in the
program in Figure 3-16 copies the low word of the result
from AX to memory. The low byte of AX wilt be copied
to a memory location named PRODUCT. The high byte
of AX will be copied to the next higher address, which
we can refer to as PRODUCT + I. As you can see on line

20 In Figure 3-16. the displacement of PRODUCT.
0004H. is Inserted in the code for the MOV PRODUCT.
AX instructIon.

The following Instruction In the program. MOV PROD-
UCT + 2. DX. copies the high word of the multiplication
result from DX to memory. When the assembler reads
this instruction, it will add the Indicated 2 to the
displacement it calculated for PRODUCT and Insert the
result as part of the binary tode for the nstructt0fl. as
shown on line 21 in Figure 3-16. Therefore, when the

8086 FAMILY ASSEMBLY LANGUAGE PROGRAMMING_INTRODUCTION 	 57

instruction executes, the low byte of DX will be copied
to memory at a dispIacment of PRODUCT + 2. The
high byte of DX will be copied to a memoly location
which we can refer to as PRODUCT + 3. Figure 3-15
shows how the two words of the product are put in
memory. Note that the lower byte of a word Is always
put in the lower memory address.

This example program should show you that if you
are using art assembler, names are a very convenient
way of specifying the direct address of data in memory.
In the next section we show you how to refer to addresses
by name.

Naming Addresses - Labels

One type of name used to represent addresses Is called
a label. Labels are written In the label field of an
instruction statement or a directive statement, One
major use of labels is to represent the destination for
jump 2nd call instructions. C ppose, for example, we
want the 8086 toJump back to some previous instruction
over and over. Instead of computing the numerical
address that we want the 8086 to jump to, we put a
label in front of the destination instruction and write
the jump Instruction as JMP label:. Here is a specific
example.

NEXT: IN AL. 05H : Get data sample from port 051-1
Process data value read in

JMP NEXT	 Get next data value and
process

If you use a label to represent an address, as shown in
this example, the assembler will automatically calculate
the address that needs to be put in the code for the
jump instruction, The next two chapters show many
examples of the use of labels with Jump and call instruc-
tions,

Another ample of using a name to represent an
address is in the SEGMENT directive statement. The
name DATA_HERE in the statement DATA_HERE SEG-
MENT, for example, represents the starting address of
a segment named DATA_HERE. Later we show you how
we use this name to initialize the data segment register,
but first we will discuss some other parts you need to
know about In the example program n Figure 3-14.

The ASSUME Directive

An 8086 program may have several logical segments that
contain code and several that contain data. However, at
any given time the 8086 works directly with only four
physical segments: a code segment, a data segment, a
stack segment, and an extra segment. The ASSUME
directive tells the assembler which logical segment to
use for each of these physical segments at a given time.

In Figure 3-14, for example, the statement ASSUME
CS:CODE_}IERE DS:DATA_HERE tells the assembler
that the logical segment named CODE_HERE contains
the Instruction statements for the program and should
be treated as a code segment. It also tejis the assembler

that it should treat the logical segment DATA_HERE as
the data segment for this program. In other words.
the DS:DATA_HERE part of the statement tells the
assembler that for any instruction which refers to data
in the data segment, data will be found in the logical
segment DATA_HERE. The ASSUME. . . DS:DATA_
HERE, for example, tells the assembler that a named
data item such as MULTIPLICM4D is contained in the
logical segment called DATA...HERE. Given this informa-
tion, the assembler can construct the binary codes for
the instruction. As we explained before, the displace-
ment of MULTIPLICAND from the start of the DATA_
HERE segment will be inserted as part of the instruction
by the assembler.

If you are using the stack segment and the extra
segment In your program. you must include terms in
the ASSUME statement to tell the assembler which
logical segments to use for each of these. To do this, you
might add terms such as SS:STACK_FIERE, ES:EX-
TRA_1-IERE. As we will show later, you can put another
ASSUME directive later in the program to tell the assem-
bler to use different logical segments from that point
on.

If the ASSUME directive is not completely clear to you
at this point, don't worry. We show many more examples
of its use throughout the rest of the book. We introduced
the ASSUME directive here because you need to put it
in your programs for most 8086 assemblers. You can
use th ASSUME statement in Figure 314 as a model
ol how to write this directive for your programs.

Initializing Segment Registers

The ASSUME directive tells the assembler the names of
the logical segments to use as the code segment, data
segment, stack segment, and extra segment. The assem-
bler uses displacements from the start of the specified
logical segment to code out instructions. When the
instructions are executed, the displacements in the
instructions will be added to the segment base addresses
represented by the 16-bit numbers in the segment
registers to produce the actual physical addresses. The
assembler, however, cannot directly load the segment
registers with the upper 16 bits of the segment starting
addresses as needed.

The segment registers other than the code segment
register must be Initialized by program Instructions
before they can be used to access data. The first two
instructions of the example program in Figure 3-14
show how you inItialize the data segment register. The
name DATA._f-IERE in the first instruction represents
the upper 16 bits of the starting address you give the
segment DATA_HERE. Since the 8086 does riot allow
us to move this immediate number directly into the data
segment register. we must first load it into one of the
general-purpose registers, then copy it into the data
segment register. MOVAX, DATA_HERE loads the upper
16 bits of the segment .stai ting address into the AX
register. -MOV DS. AX copies this value from AX to the
data segment register. This is the same operation we
described for hand coding the example program in
Figure 3-4. except that here we use the segment name

58	 CHAPTER THREE

Instead of a number to refer to the segment base address.
In this example we used the AX register to pass the
value, but any 16-bit register other than a segment
register can be used. II you are hand coding your
program, you can just Insert the upper 16 bits of the
20-bit segment starting address in place of DATA_HERE
In the Instruction. For example, if In your particular
systeth you decide to locate DATkJ'1ERE at address
00300H. DS should be loaded with 0030H. If you are
using an assembler, you can use the segment name to
reler to the segment base address, as shown in the
example.

If you use the stack segment and the extra segment
in a program, the stack segment register and the extra
segment register must be initialized by program instruc-
tions in the same way.

When the assembler reads through your assemblr
language program. it calculates the displacement of each
named variable from the start of the logical segment
that contains it. The assembler also keeps track of the
displacement of each Instruction code byte from the
start of a logical segment. The CS:CODE_FIERE part of
the ASSUME statement in Figure 3-14 tells the assembler
to calculate the displacements of the following Instruc-
tions from the start of the logical segment CODE_HERE.
In other words, it tells the assembler that when this
program is run, the code segment register will contain
the upper 16 bits of the address where the logical
segment CODE_HERE was located in memory. The
instruction byte displacements that the assembler is
keeping track of are the values that the 8086 will put In
the Instruction pointer UP) to fetch each instruction
byte.

There are several ways in which the CS register can
be loaded with the code segment base address and the
instruction pointer can be loaded with the offset of the
instruction byte to be fetched next. The first way is with
the command you give your system to execute a program
starting at a given address, A typical command of this
sort is G = 0010:0000 <CR>. (<CR> means "press the
return key.") This command will load CS with 0010 and
load IP with 0000. The 8086 will then fetch and execute
instructions starting from address 00100. the address
produced when the BIU adds IP to the code segment
base in the CS register.

As we will show you in the next two chapters, Jump
and call instructions load new values in IP, and in some
cases they load new values in the CS register.

The [ND Directive

The END directive, as the name implies. tells the assem-
bler to stop reading. Any Instructions or statements that
you write after an END directive will be Ignored.

ASSEMBLY LANGUAGE PROGRAM
DEVELOPMENT TOOLS

Introduction

For all but the very simplest assembly language pro-
grams. you will probably want to use some type of

FIGURE 3-17 Applied Microsystems ES 1800 16-bit
emulator. (Applied Microsystems Coip.)

microcomputer development system and program de-
velopment tools to make your work easier. A typical
system might consist of an IBM PC-type microcomputer
with at least several hundred kilobytes of RAM. a key-
board and video display, floppy an&or hard disk drives.
a printer, and an emulator. Figure 3-17 shows anApplied
Microsystems ES 1800 16-bIt emulator which an be
added to an IBM PC/AT or compatible computer to
produce a Complete 8086S0 186/80286 development
system.

The following sections give you an tqtroductton to
several common program development tools which you
use with a system such as this. Most of these tools are
programs which you run to perform some function on
the program you are writing. You will have to consult
the manuals for your system to get the specific details.
but this section should give you an overview of the steps
involved in developing an assembly language program.
An accompanying lab manual takes you through the use
of all these tools with the SDK-86 board and an IBM PC-
type computer.

Editor

An editor is a program which allows you to create a file
containing the assembly language statements for your
program. -Examples of suitable editors are PC Write.
Wordstar, and the editor that comes with some assem-
blers.

Ftgure 3-14 shows an example of the format you
should use when typing in your program. The actual
position of each field on a line is not important, but you
must put the fields b each statement in the correct
order, and you must leave at least one blank between
fields. Whenever possible. we like to line the fields up In
columns so that it is easier to read the program.

As you type in your program. the editor stores the
ASCII codes for the letters and numbers in successive
RAM locations, If you make a typing error, the editor
will let you back up and correct it. If you leave out a
program statement, the editor will let you move every-
thing down and Insert the line. This is much easier
than working with pencil and paper, even If you type as
slowly as I do.

- 10	 8086 FAMILY ASSEMSIY LANGUAGE PROGRAMMING_iNTRODUCTION 	 59

When you have typed in all of your program. you then
save the the on a floppy or hard disk. This file Is called
a source file. The next step Is to process the source fIle
with an assembler. Incidentally. if you are going to use
the TASM or MASM assembler, you should give your
source file name the extension .ASM. You might. for
Inst5nce, give the example source program in Figure
3-14 a name such as MULTIPLY.ASM.

Assembler

As we told you earlier in the chapter. an assembler
program Is used to translate the assembly language
mnemonics for Instructions to the corresponding binary
codes. When you run the assembler, it reads the source
tIle of your program from the disk where you saved It
after edittng. On the first pass through the source
program. the assembler determines the displacement of
named data items, the offset of labels. etc., arid puts
this information in a symbol table. On the second pass
through the source program. the assembler prouces
the binary code for each instruction and inserts the
offsets, etc.. that it calculated during the first pass.

The assembler generates two flies on the floppy or
hard disk. The first fIle, called the object file. is given
the extension .OBJ. The object file contains the binary
codes for the Instructions and Information about the
addresses of the instructions. After further processing,
the contents of this file will be loaded into memory and
run. The second the generated by the assembler is called
the assembler list file and is given the extension [ST.
Figure 3-16 shows the assembler lIst file for the source
program in Figure 3-14. The list file contains your
assembly language statements, the binary codes for each
instruction, and the offset for each instruction. You
usually send this file to a printer so that you will have
a printout of the entire program to work with when
you are testing and troubleshooting the program. The
assembler listing will also indicate any typing or syntax
(assembly language grammar) errors you made in your
source program.

To correct the errors indicated on the listing, you use
the editor to reedit your source program and save the
corrected source program on disk. You then reassemble
the corrected source program. it may take several times
through the edit-assemble loop before you get all the
syntax errors out of your source program.

NOTE: The assembler only finds syntax errors: it
will not tell you whether your program does what
itis supposed to do. To determine whether your
program works, you have to run the program and
test it.

Now let's take a closer look at some of the tnforrnation
given on the assembler listing in FIgure 3-16. The
leftmost column In the listing gives the offsets of data
items from the start of the data segment and the of(sets
of code bytes from the start of the code segment. Note
that the assembler generates only offsets, not absolute
physical addresses. A linker or locator will be used to

stgn the physical itãi-ting addresses for the segments.

As evidence of this, note that the MOV AX, DATA_HERE
statement is assembled with some blanks after the basic
instruction code because the start of DS is not known
at the time the program is assembled.

The trailer section of the listing in Figure 3-16 gives
some additional information about the segments and
names used in the program. The statement CODE_
HERE 160014 Para none, for example. tells you that the
segment CODE_HERE is 14H bytes long. The statement
MULTIPLIER Word DATA_.HERE:0002 tells you that
MULTIPLIER is a variable of type word and that it is
located at an offset of 0002 in the segment DATA_HERE.

Linker

A Linker is a program used to join several object flies
into one large object file. When writing large programs.
it Is usually much more efficient to divide the large
program into smaller modules. Each module can be
Individually written, tested, and debugged. Then, when
all the modules work, their object modules can be linked
together to form a large. functioning program. Als,. the
object modules for useful programs - a square root
program. for example -. can be kept in a ltbraryJile and
linked into other programs as needed.

NOTE: On IBM PC-type computers, you must run
the LINK program on your .OBJ tile, even if it
contains only one assembly module.

The linker produces a link file which contains the
binary codes for all the combined modules. The linker
also produces a link map the which contains the address
information about the linked files. The linker, however,
does not assign absolute addresses to the program: it
assigns only relative addressis starting from zero. This
form of the program Is said to be relocatable because it
can be iut anywhere in memory to be run. The linkers
which come with the TASM or MASM assemblers pro-
duce link files with the .EXE extension.

If your program does not require any external hard-
ware, you can use a program called a debugger to load
and run the .EXE file. We will tell you more about
debuggers later. The debugger program which loads your
program into memory automatically assigns physical
starting addresses to the segments.

If you are going to run your program on a system such
as an SDK-86 board, then you must use a locator
program to assign physical addresses to the segments.
In the .EXE the.

Locator

A locator Is a program used to assign the specific
addresses of where tht segments of object code are
to be loaded into memory. A locator program called
EXE2BIN comes with the IBM PC Disk Operating System
(DOS). EXE2BIN converts a .EXE file to a BIN file which
has physical addresses. You can then use the SDKCOM I
program from Chapter 13 to download the BIN file in
the SDK.8 board. The SDKCOM 1 program can also be
used to run the program and debug it on the SDK-86
board.

60	 CHAPTER THRFE

_STJ

DEFINE
PROBLEM

DEVELOP
ALGORITHM

H
CREATE

SOURCE FILE
WITH EDITOR

ASSEMBLE

LINK

LOCATE

EXTENSION OF
FILES GENERATED
BY PC-BASED
TOO LS

-ASM

OBJ

L.ST

•EXE

'MAP

'BIN

XTERNAL
<YSTE>

LOAD
OEBUGGJ

LOAD
PROGRAM

RUN AND TEST
PROGRAM

USE DEBUGGER
TOOLS TO

FIND ERRORS

(ST0D

LOAD
EMULATOR

LOAD
PROGRAM

RUN AND TEST
PROGRAM

ERRORS

YES

USE EMULATOR
TOOLS TO FIND

ERRORS

FIGURE 3-18 Program development algorithm
(see p. 62).

Debugger

If your program requires no external hardware or re-
quires only hardware accessible directly from your micro-
computer. then you can use a debugger to run and
debug your program. A debugger is a program which
allows you to 1od your object code program into system
memory, execute the program, and troubleshoot or
debug it. The debugger allows you to look at the

contents of registers and memory locations after your
program runs. it allows you to change the contents of
registers and memory locations and rerun the program.
Some debuggers allow you to stop execution after each
Instruction so that you can check or alter memory and
register contents. A debugger also allows you to set a
breakpoint at any point in your program. if you insert
a breakpoint, the debugger will run the program up to
the instruction where you put the breakpoint and then
stop execution. You can then examine register and
memory contents to see whether the results are correct
at that point. lithe results are correct, you can move
the breakpoint to a later point in the program. If the
results are not correct, you can check the program up
to that point to find out why they are not correct.

The point here is that the debugger commands help
you to quickly find the source of a problem in your
program. Once you find the problem, you can then cycle
back and correct the algorithm if necessary, use the
editor to correct your source program, reassemble the
corrected source program. relink, arid run the program
again.

A basic debugger comes with the DOS for most IBM
PC-type computers, but more powerful debuggers such
as Borland's Turbo Debugger and Microsoft's Codeview
debugger make debugging much easier because they
allow you to directly see the contents of registers and
memory locations change as a program executes. In a
later chapter we show you how to use one of these
debuggers.

Microprocessor prototyping boards such as the SDK-
86 contain a debugger program in ROM. On boards
such as this, the debugger is commonly called a monitor
program because it lets you monitor program activity.
The SDK-86 monitor program, for example, lets you
enter and run programs, single-step through programs,
examine register and memory contents, and insert
breakpoints.

Emulator

Another way to run your program is with an emulator.
such as that shown .in Figure 3-17. An emulator is a
mixture of hardware andsoftware. It is usually used to
test and debug the hardware and software of an external
system, such as the prototype of a microprocessor-based
instrument. Part of the hardware of an emulator is a
multiwire cable which connects the host system to the
system being developed. A plug at the end of the cable
Is plugged into the prototype system in place of its
microprocessor. Through this connection the software
of the emulator allows you to download your object code
program into RAM in the system being tested and run

8O8t FAMILY ASSEMBLY LANGUAGE PROGRAMMING- ,INT'OOUCTION	 61

it. Like a debugger. an emulator allows you to load and
run programs, examine and change the contents of
registers, examine and change the contents of memory
locations, and insert breakpoints in the program. The
emulator also takes a snapshot of the contents of
registers, activity on the address and data bus, and the
state of the flags as each instruction executes. The
emulator stores this trace data, as it is calkd. iA a large
RAM. You can do a printout of the trace data to see the
results that your program produced on a step-by-step
basis.

Another powerful feature of an emulator is the ability
to use either system memory or the memory on the
prototype for the program you are debugging. In a later
chapter we discuss in detail the use of an emulator in
developing a microprocessor-based product.

Summary of the Use of Program
Development Tools

Figure 3-18(p. 61) summarIzes the steps in developing a
working program. This may seem complicated, but if
you use the accompanying lab manual to go through the
processacoupleoftimes. youwlll find that it is quite easy.

The first and most important step is to think out very
carefully what you want the program to do and how you
want the program to do it. Next, use an editor to create
the source tile for your program. Assemble the source
file. If the assembler list tile indicates any errors in your
program, use the editor to correct these errors. Cycle
through the edit-assemble loop until the assembler tells
you on the listing that it found no errors. If your program
consists of several modules, then use the linker to join
their object modules Into one large object module. If
your system requires it. use a locate program to specify
where you want your program to be put in memory.
Your program is now ready to be loaded into memory
and run. Note that Figure 3-18 also shows the extensions
for the files produced by each of the development pro-
grams.

If your program does not Interact with any external
hardware other than that connected directly to the
system, then you can use the system debugger to run
and debug your program. If your program is intended
to work with external hardware, such as the prototype
of a microprocessor-based Instrument, then you will
probably use an emulator to run and debug your pro-

gram. We will be discussing and showing the use of
these program development tools throughout the rest of
this book.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
the following list, use the index to find them in the
chapter.

Algorithm

Flowcharts and flowchart symbols

Structured programming

Pseudocode

Top-down and bottom-up design methods

Sequence, repetition, and decision operations

SEQUENCE. IF-THEN-ELSE. IF-THEN, nested IF-THEN-
ELSE. CASE, WHILE-DO. REPEAT-UNTIL pro-
gramming structures

8086 instructions: MOV, IN, OUT. ADD, ADC. SUB.
SBB. AND. OR. XOR, MUL. DIV

Instruction mnemonics

InitialIzation list

Assembly language program format

Instruction template: W bit. MOD. RIM. D bit

Segment-override prefix

Assembler directives: SEGMENT. ENDS. END. DB, OW,
DD. EQU. ASSUME

Accessing named data items

Editor

Assembler

Linker: library file, link files, link map, relocatable

Locator

Debugger, monitor program

Emulator, trace data

REVIEW QUESTIONS AND PROBLEMS

I. List the major steps in developing an assembly	 b. What is the advantage of using only these
language program.	 structures when writing the algorithm for a

program?2. What is the main advantage of a top-down design
approach to solving a programming problem? 	 s. .A program is like a recipe. Use a flowchart or

3. Why should you develop a detailed algorithm for a 	 psedocode to show the algorithm for the following
program before writing down any assembly Ian 	 recipe. The operations in It are sequence and
guage Instructions?

	

	 repetition. Instead of implementing the resulting
algorithm in assembly language. Implement Ii In

4. a. What are the three basic structure types used	 your microwave and use the result to help you get
to write the algorithm for a program? 	 through the rest of the book.

62	 CHAPTER THREE

Peanut Brl.ttle:
1 cup sugar
	 1 teaspoon butter

0.5 cup white corn syrup
	 1 teaspOOn vanilla

1 cup unsalted peanuts
	 1 teaspoon baking soda

I. Put sugar and syrup In 1.5-quart caserole
(wiih handle) and stir until thoroughly mixed.

It. Microwave at HIGH setting for 4 mInutes.
III. Add peanuts and stir until thoroughly mixed.
lv. Microwave at HIGH setting for 4 minutes. Add

butter and var.lIla. Stir until well mixed, and
microwave at HIGH setting for 2 more minutes.

v. Add baking soda and gently stir until light and
loamy. Pour mixture Onto nonstick cookie
sheet and let cool for I hour. When cool, break
into pieces. Makes 1 pound.

6. Use a flowchart or pseudocodc to Dhow the algo.
rithm for a program which gets a number from a
memory location. subtracts 20H from it. and out-
puts 01 H to port 3AH if the result olthe subtraction
is greater than 25H.

7. Given the register Contents in Figure 3-19. answer
the following questions:
a. What physical address will the next instrileto.

be fetched from?
b. What Is the physical address for the top ol to

stack?

DATA SEGMENT

ES 6000
	

5000CH 07
CS 4000
	 5000H 9A

SS 7000
	 5000AH 7C

OS 5000
	 50009K 08

IP 43E8
	 50008K C3

SP 0000
	 50007K B2

BP 2468
	 50006H 49

SI 4C00
	 5000it 21

DI 7000 50004H 89
50003K 71
50002H 22
50001K 4A
50000K 30

AK AL	 BK DL
AX 42 35	 BX	 07 5A

CH CL	 OH DL
CX 00 04	 DX	 33 02

FIGURE 3-19 8086 register and memory contents (or
Problems 7, 8, and 10.

S. Describe the operation and results of each of the
following Instructions, given the register contents
shown In Figure 3-19. Include In your answer the
physical address or register that each instruction
will get its operands from and the physical address
or register in which each instruction will put the
result. Use the instruction descriptions in Chapier
6 to help you. Assume that the following instruc-
(tons are independent, not sequential. unless listed
together under a letter.

a. MOV AX. BX	 k. OR CL, OL
b. MOV CL. 37H	 I. NOT AH
c. INC BX	 m. ROL BX. 1
d. MOV CX. (246BH1 n. AND AL. CI-!
e. MOV CX. 246BH	 0. MOV OS, AX

J. ADD AL. OH	 p. ROR BX, CL

g. MUL BX	 q. AND AL. OFH
h. DEC BP	 r. MOV. AX. lBXl
I. DIV BL	 s. MOV IBXI ISil. CL
j. SUBAX.DX

9. See if you can spot the grammatical (syntax) errors
in the following instructions (use Chapter 6 to help
you I:
a. MOV BH. AX	 d. MOV 7632H. CX
b MO' DX, CL	 e. IN BL, 04H

ADo AL. 2073H

10. Show the results that will be in the affected registers
or memory locations after each of the following
groups of instructions executes. Assume that each
group of instructions starts with the register and
memory coni-nis shown in Figure 3-19. (Use Chap-
ter 6.)
u. AI)DIl!. ..\.	 d. MOVBX.000AII

MDV jo..;)[.	 MOVAL. IBXI
h. MOV (I. .1	 SUB AL. ('L

ROR LI. LI	 INC BX
c. AD!) AL. HI	 MDV IPX). AL

DAA

II. \Vri C liii' 5156 instruct ion eh ich will perform the
iii(il-1)pira to. Use the instruction overview
iii i!'. liapice itid the- det t ied descriptions in
t 'Iin 1 ,ti't 1	 !(Iii')	 \k.iI.
o	 (iip'. .'\I. Ii 131..
I,.	 t.,,tit 4 ••.I	 0	 (l..

Ito rio I:: . '	 oiitcnt , '1 C.X be I.
(I	 (.ii' St

J\j 0711 '. DL.

I	 ltilt pR ,'\l. times OIl..
q. Cop AX to 1 intilorv neaT an .11 offset 245AH

iii the d.t I.
ft. Dec rernent SI he I

Rotate tIle most iitIl tilt bit ot Al. into the
least signiliciril bit p0511100.

j. Copy 1)1. ti ii ttliillilrV location whose offset is
itt LIX.

k. Mask the lower 4 hits of IlL.
I.	 Set the 10051 si i.)utiiiailt bit ol AX to a 1. but

do not affect the other bits.
m. Invert the lower 4 bits of IlL, but do not affect

the other bits.

12. Cortst ruct the 1) ittarv code (or each of the following
R086 instructiotis
a. MOV [IL, Al.	 I	 ROR AX. I
b. MO' LIX). (:X	 g OUT DX. AL
C. ADD [IX. 59IUD1!	 ft. AND AL. OFH
d. SUB (2048). DII	 . NOP
e. XCHG CH. ES:IBXJ j . IN AL. DX

8086 FAettL As'[\tBi V [ANGI.JAC,[PROCRA.\l5iING_t ..TRODUCTlO N	 63

14. Describe how an assembly language program Is
developed and debugged using system tools such
as editors, assemblers, linkers, locators, emulators.
and debuggers.

IS. Write the pseudocode representation for the flow-
chart inFlgure 3-18. p. 61.

I). Decribe the function r(each assembler directive
and instruction statement in the short program
shown in Figure 3-20.

;PRESSURE READ PROGRAII

DATA_HERE SEGMENT
PRESSURE 08 0

DATA_HERE ENDS

PRESSURE_PORT	 EQIJ 0.H

CORRECT ION ACTOR EQIJ 0714

;storage for pressure

;Pressure sensor connected
to port 0414

;Current correction factor
of 07

CE_HERE SEGMENT
ASSUME CS:CE_HERE, DS:DATA_HERE
NOV AX, DATA_HERE
NOV OS, AX
IN	 AL, PRESSURE_PORT
ADD AL. CORRECTION_FACTOR
NOV PRESSURE, AL

CE_HERE ENDS
END

FIGURE 3-20 Program for Problem 13.

64	 CHAPTER THREE

Implementing Standard Program
Structures in 8086 Assembly Language

In Chapter 3 we worked very hard to convince you that
you should not try to write programs directly in assembly
language. The analogy of building a house without a
plan should come to mind here. When faced with a
programming problem. you should solve the problem
and write the algorithm for the solution using the
standard program structures we described. Then you
simply translate each step in the flowchart or pseudocode
to a group of one to four assembly language Instructions
which will implement that step. The comments in the
assembly language program should describe the func-
tions of each instruction or group of instructions, so
you essentially write the comments for the program.
then write the assembly language instructions which
implement those comments Once you learn how to
implement each of the standard programming struc-
tures. you should find it quite easy to translate algo-
rithms to assembly language. Also, as we will show
you, the standard structure approach makes debugging
relatively easy.

The purposes of this chapter are to show you how to
write the algorithms for some common programming
problems, how to implement these algorithms in 8086
assembly language, and how to systematically debug
assembly language programs. in the process you will
also leain more about how some of the 8086 instructions
work.

OBJECTIVES
At the conclusion of this chapter. you should be able to

I. Write flowcharts or pseudocode for simple program.
ming problems.

2. Implement SEQUENCE. IF-THEN-ELSE. WHILE-
DO, and RlPE,AT-UNTlL program structures in 8086
assembly language.

3. Describe the operation of selected data transfer.
arithmetic, logical. jump, and loop instructions.

4. Use based and indexed addressing mod's to access
data in your programs.

5. DescrIbe a systematic approach to debugging a
simple assembly language program using debugger,
monitor, Or emulator tools.

6. Write a delay loop which produces a desired amount
of delay on a specific 8086 system.

SIMPLE SEQUENCE PROGRAMS

Finding the Average of Two Numbers

DEFINING THE PROBLEM AND WRITING
THE ALGORITHM

A common need in programming is to find the average
of two numbers. Suppose. for example, we know the
maximum temperature and the thintmum temperature
for a given day, and we want to determine the average
temperature. The sequence of steps we go through to
do this might iook something like the following.

Add maximum temperature and minimum temperature.

Divide sum by 2 to get average temperature.

This sequence doesnt look much like an assembly
language program. and it shouldn't. The algorithm at
this point shouid be general enough that it could be
implemented in any programming language. or on any
machine. Once you are reasonably sure of your algo-
rithm, then you can start thinking about the architec-
ture and intructions of the specific microcomputer on
which you plan to run the program. Now let's show you
how we get from the algorithm to the assembly language
program for It.

SETEING UP THE DATA STRUCTURE

One of the first things for you to think about in this
process is the data that the program will be working
with. You need to ask yourself questions such as:

I. Will the data be In memory or in registers?

2. Is the data of type byle, type word, or perhaps type
doublewd'rd?

3. How many data Items are there?

4. Does the data represent only positive numbers, or
does it represent positive and negative (signed)
numbers?

65

5. For more complex problems, you might ask how the
data is structured. For example, is the data in an
array or in a record?

Let's assume for this example that the data is all in
memory, that the data Is of type byte, and that the data
represents only positive numbers in the range 0 to OFFH.
The top part of Figure 4-I. between the DATA SEGMENT
and the DATA ENDS directives, shows how you might
set up the data structure for this program. it is very
similar to the data structure for the multiplication
example in the last chapter. In the logical segment called
DATA. i-Il_TEMP is declared as a variable of type byte
and initialized with a value of 92H. In an actual applica-
tion, the value in HI_TEMP would probably be put there
by another program which reads the output from a
temperature sensor. The statement LO_TEMP DB 52H
declares a variable of type byte and initializes it with the
value 52H. The statement AV_TEMP DB ? sets aside a
byte location to store the average temperature, but does
not initialize thelocation to any value. When the program
executes, I will write a value to this location.

INITIALIZATION CHECKLIST

Although it does not show in the algorithm, you know
from the discussion in Chapter 3 that most programs
start with a series of initialization instructions. For this
example program, all you have to initialize is the data
segment register. The MOV AX.DATA and MOV DS.AX
instructions at the start of the program in Figure 41
do this..

These instructions load the DS register with the upper
16 bits of the starting address for the data segment. If

you are using an assembler, you can use the name DATA
in the Instruction to refer to this adaress. If you are not
using an assembler, then just put the hex for the upper
16 bits of the address In the MOV AX,DATA instruction
In place of the name.

CHOOSING INSTRUCTIONS TO IMPLEMENT
THE ALGORITHM

The next step is to look at the algorithm to determine
the major actions that you want the program to perform.
II you have written the algorithm correctly, then all you
should have to do is translate each step in the algorithm
to one to four assembly language instructions which
wilt implement that step.

You want the program to add two byte . type numbers
together, so scan through the instruction groups in
Chapter 3 to determine which 8086 instruction will do
this for you. The ADD instruction is the obvious choice
in this case.

Next, find and read the detailed discussion of the ADD
instruction in Chapter 6. From the discussion there.
you can determine how the instruction works and see
if it will do the necessary Job. From the discussion of
the ADD tnstruction. you should find that the ADD
instruction has the format ADD destination.source, A
byte from the specified source is added to a byte in the
specified destination, or a word from the specified source
is added to a word in the specified destination. (Note
that you cannot directly add a byte to a word.) The result
in either case is put iii the specified destination, The
source can be an Immediate number, a register, or a
memory location. The destination can be a register or a

2.
3
4
5
6
7
80000
9 0000 92

10 0001 52
11 0002 7?
12 0003
13
140000
15
16 0000 B8 0000a
17 0003 BE 08
18 0005 *0 0000r
19 0008 02 06 000lr
20 000C B4 90
21 000€ 80 04 00
22 0011 B3 02
23 0013 F6 F3
24
25 0015 *2 0002r
26 0018
27

8086 PROGRAM	 F4C'tTl1
;ABSTRACT This program averages two temperatures

named HI_TEMP and 10 TEMP and pots the
result in the memory Location AV_TEMP.

;REGISTERS	 Uses OS. CS, AX, BL
;PORTS	 : None used

DATA
	

SEGMENT
HI_tEMP OB 9211	 Max ter, storage
10_TEMP DB 5211	 low temp storage
AVTEMP D8 7	 Store average here

DATA
	

ENDS

COOE	 SEGMENT
ASSUME CS:C00t, OS:DATA

START: NOV AX, DATA	 Initialize data segment
MOY DS, AX
NOV AL, HI_TEMP	 Get first temperature
ADD AL. 10_TEMP	 Add second to it
MOV All, OOH	 Clear atL of AN register
ADC All, OOH	 Put carry in LSB of AN
NOV BI, 0211	 Load divisor in BL register
DIV BL	 Divide AX by BL. Ouotient in AL,

and remainder in AM
MOV AV_TEMP, AL	 Copy result to e?mory

C00E	 ENDS
END START

FIGURE 4-1 8086 program to average two temperatures.

66	 CHAPTER FOUR

memory location. However, in a single instruction the
source and the destination cannot both be memory
locations. This means that you have to move one of the
operands from memory to a register before you can do
the ADD.

Another point to consider here is that if you add two
8-bit numbers, the sum can be larger than 8 bits.
Adding FOH and 40H. for example, gives I 30H. The 8-bit
destination will contain 30H. and the carry will be held
in the carry flag. This means that to have the complete
sum, you must collect the parts of the result in a location
large enough to hold all 9 bits. A 16-bit register isa good
choice.

To summarize, then, you need to move one of the
numbers you want to add into a register. such as AL.
add the other number from memory to it. and move any
carry produced by the addition to the upper half of the
16-bit register which contains the sum in its lower 8
bits. Now let's take another look at Figure 4-ito see how
you implement this step in the algorithm with 8086
instructions.

The instruction MOV AL.l-Il_TEMP copies one of the
temperatures from a memory location to the AL register.
The name HI_TEMP in the instruction represents the
direct address or displacement of the variable in the
logical segment DATA. The ADD AL.LO_TEMP instruc-
tion adds the specified byte from memory to the contents
of the AL register. The lower 8 bits of the sum are left
in the AL register. If the addition produces a result
greater than FFH, the carry flag will be set to a I. If the
addition produces a result less than or equal to FF11.
the carry flag will be a 0. In either case, we want to get
the contents of the carry flag into the least significant
bit of the AH register. so that the entire sum is in the
AX register.

The MOV Al-I.00H instruction clears all the bits of AH
to 0's. The ADC AH,00H instruction adds the immediate
number 0011 plus the Contents of the carry flag to the
contents of the Al-I register. The result will be left in the
Al-I register. Since we cleared Al-I to all 0's before
the add, what we are really adding is OOH + OOH + CF.
The result of all this is that the carry bit ends up in the
least significant bit of AH. which is what we set out to
do.

The next major action In our algorithm is to divide
the sum of the two temperatures by 2. To determine
how this step can be translated to assembly language
instructions, look at the instruction groups in the last
chapter to see if the 8086 has a Divide instruction. You
should find that it has two Divide instructions, DIV and
IDEV. DIV Is for dividing unsigned numbers, and IDIV
is used for dividing , signed binary numbers. Since in
this example we are dividing unsigned binary numbers.
look up the DIV instruction in Chapter 6 to find out how
it works.

The DIV instruction can be used to divide a 16-bit
number In AX by a spccified byte in a register or in a
memory location. After the division, an 8-bit quotient
is left in the AL register. and an 8-bit remainder is left
in the Al-I register. The DIV instruction can also be used
to divide a 32-bit number in the DX and AX registers by
a 16-bit number from a specified register or memory

location. In this case, a 16-bit quotient is left in the AX
register. and a l6-bt remainder is left in the DX register.
In either case, there is a problem if the quotient is too
large to fit in AX for a 32-btt divide or AL for a 16-bit
divide. Fortunately, the data in the example here is such
that the problem will not arise. In a later chapter we
discuss what to do about this problem.

Remember from the previous discussion that the sum
of the two temperatures is already positioned in the AX
registel' as required by the DIV operation. Before we can
do the blv operation, however, we have to get the divisor.
02H. into a register or memory location to satisfy the
requirements of the DIV instruction. A simple way to do
this is with the MOV BL.02H instruction, which loads
the immediate number 0211 into the BL register. Now
you can do the divide operation with the instruction
DIV EL. The 8-bit quotient from the division will be left
in the AL register.

The algorithm doesn't show it. but in our discussion
of the data structure we said that the minimum, maxi-
mum, and average temperatures were all in memory
locations. Therefore, to complete the program, you have
to copy the quotient in AL to the memory location we
set aside for the average temperature. As shown in
Figure 4-1. the instruction MOV AV_TEMP.AL will copy
AL to this memory location.

NOTE: We could have used the remainder from
the division in Al-I to round off the average tempera-
ture to the nearest degree. but that would have
made the program more complex than we wanted
for this example.

SUMMARY OF CONVERTING AN ALGORITHM
TO ASSEMBLY LANGUAGE

Ti-? firs t in converting an algorithm to assembly
Ianguge is to set up the data Structure that the algo-
rithm will be working with. The next step is to write at
the start of the code segment any instructions required
to initialize variables, segment registers. peripheral de-
vices, etc. Then determine the instructions required to
implement each of the major actions in the algorithm.
and decide how the data must be positioned for these
instructions. Finally, insert the MOV or other instruc-
tions required to get the data into the correct position
for these instructions.

A Few Comments about the 8086
Arithmetic Instructions

The 8086 has instructions to add, subtract, multiply.
and divide. It can operate on signed or unsigned binary
numbers. BCD numbers, or numbers represented In
ASCII. Rather than put a lot of arithmetic examples at
this point in the book, we show arithmetic examples
with each arithmetic Instruction description in Chapter
6. The description of the MUL instruction in Chapter 6.
for example, shows how unsigned binary numbers are
multiplied. Also we show other arithmetic examples as
needed throughout the rest of the book. If you need to
do some arilhmetic operations with an 8086. there are
a few instructions in addition to the basic add, subtract.

- 11	 IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8081, ASSEMBLY LANGUAGE 	 67

multiply, and divide Instructions that you need to look
up In Chapter 6.

If you are adding BCD numbers, you need to also look
up the Decimal Adjust for Addition (DAA) instruction,
If you are subtracting BCD numbers, then you need
to look up the Decimal Adjust for Subtraction (DASI
Instruction. If you are working with ASCII numbers.
then you need to look up the ASCI Adjust after Addition
(AAA) instruction. the ASCII Adjust after Subtraction
(AASI Instruction, the ASCII Adjust after Multiply (AAM)
instruction, and the ASC!l Adjust before Division IAAD)
instruction,

5,

Debugging Assembly Language Programs

By now you should be writing some programs of your
own, so we need to give you a few hints on how to debug
them If they don't work correctly the first time you try
to run them.

The first technique you use when you hit a difficult-
to-find problem in either hardware or software is the 5-
minute rule. This rule says. "You get 5 minutes to freak
out and mumble about changing vocations, then you
have to cope with the problem in a systematic manner."
What this means Is step back from the problem, collect
your wits, and think out a systematic Series of steps to
find the solution. Random poking and probing wastes
a lot of valuable time and seldom finds the problem.
Here Is a lIst of additional techniques you may find
useful In writing and debuggIng your programs.

1. Very carefully define the problem you are trying to
solve with the program and work cut the hst
algorithm you can.

2. Write and test each Section of a program as you go,
Instead of writing a large program all at once.

3. If a program or program section does not work, first
recheck the algorithm to make sure it really does
what you want it to, You might have someone else
look at It also. Another person may quickly spot an
error you have overlooked 17 times.

4. If the algorithm seems correct, check to make sure
that you have used the correct instructions to iniple-
ment the algorithm. It is very easy to accidentally
switch the operands in an instruction. You might.
for example, write down the instruction MOVAX.DX
when the instruction you really want is MOV DX.AX
Sometimes it helps to work out on paper the effect
that a series of instructions will have on some sample
numbers. These predictions can later be compared
with the actual results produced when the program
section runs.

If you are hand coding your programs, this Is the
next place to check, It Is very eas y to get a hit wrong
when you construct the 8086 instruction c-ides. Ako
remember, when constructing insti oct ion COdeS
which contain addresses or displacemenis , hint the
lbw byte of the address or displacement Is 'odrd in
before the high byte.

6. hfyou don't find a problem in the a1gorl1hi i , i..struc.
tions. or coding, now is the time to rise debugger,
monitor, or emulator tools to help you localize the
problem. You could use these tools righ' from the
Start, but II you do. it is easy to get lost In chasing
bits and not see the bigger picture of what is causing
the program to fail. When debugging short [rograni
Sections on an SDK-86 board, for example, you
might use the single-step command to help you
determine why the program Is not doing what
you want it to do. The SDK-86 hoards singie.step
comniarid executes cne instruction and then stops
execution. You can then use the Examine Register
and Examine Memory commands to see if registers
and memory contain the correct data If the results
are correct at that point, you can use the single-step
command to execute the next instruction, You keep
stepping through the program until you reach a
point where the results arc not what you predicted
they should be at that point. Once you have localized
the problem to one or two instructions, it is usually
not too hard to find the error. An exercise in the
accompanying lab manual shows you how to use the
single .step command on an SDK-86 board.

7. For longer programs, the single .slep approach can
be somewhat tedious, Breakpoints are often a faster
technique to narrow the source of a problem down
to a small region. Most debuggers, monitors, and
emulators allow you to specify both a starting ad-
dress and an ending address in their GO command.
The SDK-86 monitor GO command, for example,
has the format GO address.brcakpoint address.
When you enter one of these commands, execution
will Start at the address spccific'd first In the corn.
mnand and stop when it i caches the address specitled
in the second position in the command. After the
program runs to a breakpoint, you can use the
Examine Reg' ter and Examine Memory commands
to check tire results at that point.

Here's how you use breakpoints. Instead of running
the entire program, specify a breakpoint so that execu-
tion stop.s sonic distance into the program, You ('an
then check to set' if the result are correct at this point.
'r they are. y''. can n.m the protram again wiih the
)reakpiiat at a later address and check the results at
that point. if the results are riot correct. you can move
the breakpoint to an earlier oSini in the program, run
It again, and check whether the results In registers arid
memory are correct,

Suppose, for example. you write a program such as
the averaging program In Figure 4-! and it (fOeS riot
give the correct results. The first place to put a
breakpoint might be at the address of the MOV AH,00
instruction lrit'idr'ntallv in most s y tems the instruc-
tion at the address where you put the breakpoint does
not get executed. After the program runs to this
breakpoint, you check to see if the data segment register
was Initialized correctl y and if the basic addition was
perfurnir'd correctl y . If the program works correctly to
this pcnI, von can nor it again with the breakpoint at
Iii, actd i ess of the MQ\•' A\',TEMP,AL instruction After

68	 CHAPTfR FOUR

the program executes to this breakpoint, you can check
AL to see if the dwision produced the results you
predicted. If the 8086 is working at all, it will almost
always do operations such as this correctly, so recheck
your predictions if you disagree with it.

It helps your frustration level if you make a game of
thinking where to put breakpoints to track down the
little bug that is messing up your program. With a little
practice you should soon develop an efficient debugging
algorithm of your own using the specific tools available
on your system. In the next chapter we show you how
to use a more powerful debugger to run and debug
programs in an IBM PC-t ype computer.

Converting Two ASCII Codes to Packed BCD

DEFINING THE PROBLEM AND WRITING
THE ALGORITHM

Computer data is often traisferred as a series of 8-bit
ASCII codes. If, or example, you have a microcomputer
connected to an SDK-86 board and you type a 9 on an
ASCII-encoded computer terminal keyboard, the 8-bit
ASCII code sent to the SDK-86 will be 00111001 binary,
or 39H. If you type a 5 on the keyboard, the code Sent
to the computer will be 00110101 binary or 35H, the
ASCII code for 5. As shown in Table 1-2. the ASCII codes
for the numbers 0 through 9 are 30H through 39H. The
lower nibble of the ASCII codes contains the 4-bit BC!)
code for the decimal number represented by the ASCII
code.

For many applications, we want to convert the ASCII
code to its simple BC!) equivalent. We can do this by
Simply replacing the 3 in the upper nibble of the byte
with four 0's. For example, suppose we read in 001 ii 001
binary or 39H, the ASCII code for 9. If we replace the
upper 4 bits with Os. we are left with 00001001 binary
or 09H. The lower 4 bits then contain 1001 binary, the
BCD code for 9. Numbers represented as one BCD digit
per byte are called unpacked BCD.

For applications in which we are going to perform
mathematical operations on the BC!) numbers, we
usually combine two BCD digits in a single byte. This
form is called pocked BCD, Figure 4-2 shows examples
of ASCII. unpacked BCD. and packed BC!). The problem
wc are going to work on here Is how to convert two
numbers from ASCII code form to unpacked BCD form
and then pack the two BCD digits into one byte. Figure
4-2 shows in numerical form the sieps we want the
program to pci form. When you are writing a program

ASCII	 5	 0011 0101 = 35H
ASCII	 9	 0011 1001 = 39H

UNPACKED BCD	 5	 0000 6101 = aSH
UNPACKED OCI	 9	 0000 1001	 09H

UNPACKED BCD 5	 0101 0000 = SOH
MOVED TO UPPER NIBBLE

PACKED BOB	 59	 0101 1001	 59H

FIGURE 42 ASCII, unpacked BC!), and packed BCD
examples.

which manipulates data such as this, a numerical
example will help you visualize the algorithm.

The algorithm for this problem can be stated simply
as

Convert first ASCII number to unpacked BC!).

Convert second ASCII number to unpacked BC!).

Move fix-st BC!) nibble to upper nibble position in byte.

Pack two BC!) nibbles in one byte.

Now let's see how you can implement this algorithm in
8086 assembly language.

THE DATA STRUCTURE AND INITIALIZATION LIST

For this example program, let's assume that the ASCII
code for 5 was received and put In the BL register, and
the second ASCII code was received and left in the AL
register, Since we are not using memory for data in this
program. we do not need to declare a data segment or
initialize the data segment register. incidentally, in
a real application this program would probably be a
procedure or a part of a larger program.

MASKING WITH THE AND INSTRUCTION

The first operation In the algorithm is to convert a
number in ASCII form to Its unpacked BCD equivalent.
This is done by replacing the upper 4 bits of the ASCII
byte with four 0's. The 8086 AND instruction can be
used to do this operation. Remember from basic logic
or from the review in Chapter 1 that when a I or a 0 is
ANDed with a 0, the result is always a zero. ANDing a
bit with a 0 is called masking that bit because the
previous state of the bit is hidden or masked. To mask
4 bits in a word, then, all you do is AND each bit you
want to mask with a 0. A bit ANDed with a I, remember.
is not changed.

According to the description of the AND instruction
In Chapter 6, the instruction has the format AND
destinatlon,source. The instruction ANDs each bit of
the specified source with the corresponding bit of the
Specified destination and puts the result In the specified
destination. The source can be an immediate number.
a register, or a memory location specified in one of those
24 different ways. The destination can be a register or
a memory location. The source and the destination must
both be bytes, or they must both be words. The source
and the destination cannot both be memory locations
in an instruction.

For this example the first ASCII number Is in the BL
register. so we can just AND an immediate number with
this register to mask the desired bits. The upper 4 bits
of the immediate number should be 0's because these
correspond to the bits we want to mask in BL. The lower
4 bits of the immediate number should be Is because
we want tc leave these bits unchanged. The immediate
number, then, should be 00001111 binary or OFH. The
instruction to convert the first ASCII number is AND
BL.OFH. When this instruction executes, it will leave the
desired unpacked BCD in BL. Figure 4-3 shows how
this wW work for an ASCII number of 3SF-I initIally in
BL.

IMPiEMINJING STANDARD PROGRAM STRUCTURES IN 8U8 ASSEMBLY LANGUAGE 	 69

ASCII 5	 0011 0101
MASK	 0000 1111
RESULT	 0000 0101

FIGURE 4-3 Effects of ANDing with l's and 0's.

For the next action In the algorithm, we want to
perform the same operation on a second ASCII number
in the AL register. The Instruction AND AL,PFH will do
this for us. After this Instruction executes. AL will
contain the unpacked BCD for the second ASCII number.

MOVING A NIBBLE WITH THE
ROTATE INSTRUCTION

The next action In the algorithm is to move the 4 BCD
bits in the first unpacked BCD byte to the upper nibble
position in the byte. We need to do this so that the 4
BCD bits are in the correct position for packing with
the second BCD nibble. Take another look at Figure
4-2 to help you visualize this. What we are effectively
doing here is swapping or exchanging the top nibble
with the bottom nibble of the byte. If you check the
instruction groups in Chapter 3, you will find that the
8086 has an Exchange instruction. XCHG. which can
be used to swap two bytes or to swap two words. The
8086 does not have a specific instruction to swap the
nibbles in a byte. However, if you think of the operation
that we need to do as shifting or rotating the BCD bits
4 bit positions to the left, this will give you a good idea
which instruction will do the Job for you. The 8086 has
a wide variety of rotate an4 shift instructions, For now.
let's look at the rotate instructions, There are two
Instructions, ROL and RCL, which rotate the bits of a
specified Operand to the left, Figure 4-4 shows in diagram
form how these two instructions work. For ROL. each
bit in the specified register or memory location is rotated
I bit position to the left. The bit that was the MSB is
rotated around into the LSB position, The old MSB is
also copied to the carry flag. For the RCL Instruction.
each bit of the specified register or memory location is
also rotated 1 bit position to the left, However, the bit
that was in the MSB position is moved to the carry flag.
and the bit that was in the carry flag is moved into the
LSI3 position. The C in the middle of the mnemonic

.u..

wi

FIGURE 4-4 ROt instruction and RCL instruction
operations for byte operands.

should help you remember that the carry flag is Included
in the rotated luop when the RCL instruction cxecutcs.

In the example program we really don't want the
contents of the carry flag rotated Into the operand, so
the ROL instruction seems to be the one we want. If you
consult the ROL instruction description in Chapter 6.
you will find that the instruction has the format ROL
destination.count. The destination can be a register or
a memory location. It can be a byte location or a word
location. The count can be the immediate number I
specified directly in the instruction, or it can be a
number previously loaded Into the CL register. The
instruction ROL AL, 1, for example, will rotate the con-
tents of AL 1 bit position to the left. We could repeat
this instruction four times to produce the shift of 4 bit
positions that we need for our BCD packing problem.
However, there is an easier way to do it. We first load
the CL register with the number of times we want to
rotate AL. The instruction MOV CL.04H will do this.
Then we use the instruction ROL. BL.CL to do the
rotation. When It executes, this instruction will automat-
ically rotate BL the number of bit positions loaded into
CL. Note that for the 80186 you can write the single
instruction ROL BL.04H to do this Job.

Now that we have determined the instructions needed
to mask the upper nibbles and the instructions needed
to move the first BCD digit into position, the Only thing
left is to pack the upper nibble from BL and the lower
nibble from AL into a single byte.

COMBINING BYTES OR WORDS WITH THE ADD
OR THE OR INSTRUCTION

You Can't use a standard MOV instruction to combine
two bytes into one as we need to do here. The reason Is
that the MOV instruction copies an operand from a
Specified source to a specified destination. The previous
Contents of the destination are lost. You can, however,
use an ADD or an OR instruction to pack the two BCD
nibbles.

As described in the previous program example, the
ADD instruction adds the Contents of a specified sc,tirce
to the contents of a specified destination and leaves the
result in the specified destination. For the example
program here, the instruction ADD AL,BL can be used
to combine the two HCD nibbles. Take a look at Figure
4-2 to help you visualize this addition.

Another way to combine the two nibbles is with the
OR instruction. II you look up the OR instruction in
Chapter 6. you will find that It has the format OR
destination,source. This instruction ORs each bit in
the specified source with the corresponding bit in the
specified destination. The result of the ORing is left in
the specified destination. Remember from basic logic or
the review in Chapter I that ORing a bit with a I always
produces a result of I. ORing a bit with a 0 leaves the
bit unchanged. To set a bit in a word to a I. then, all
you have to do is OR that bit with a word which has a
I in that bit position and 0's in all the otherbit positions.
This is similar to the way the AND instruction is used
to clear bits in a word to Os. See the OR instruction
description in Chapter 6 for examples of this.

70	 CHAPTER FOUR

SEGMENT
ASSUME CS:CCOE
NOV DL. '5'
NOV AL. '9'
AND DL, Ofli
AND AL, OFK
NOV çL. 04K
ROL BL. CL
OR Al, DL
ENDS
END START

Load first ASCII digit into 81
Load second ASCII digit into AL
Mask .çper 4 bits of first digit
Mask upper 4 bits of second digit
Load CL for 4 rotates required
Rotate 81 4 bit positions
Coiitine nibbles, result in AL

2
3
4
5
6
7
8
9 0000

10
11 0000 83 35
12 0002 80 39
13 0004 80 E3 OF
14 0007 24 OF
15 0009 81 04
16 0008 02 C3
17 0000 OA C3
18 000F
19

8086 PROGRAM F4-05.ASN
;ABSTRACT : Program produces a packed BCD byte from 2 ASCII-encoded digits

The first ASCII digit (5) is Loaded in DL.
The second ASCII digit (9) is loaded in AL.
The resuLt (packed BCD) is Left in AL

;REGISTERS	 Uses CS, AL, DL, CL
;PORTS	 : None used

CE

START:

CE

FIGURE 4-5 List file of 8086 assembly language program to produce packed
BCD from two ASCII characters.

For the example program here, we use the instruction
OR AL,BL to pack the two BCD nibbles. Bits ORd with
Os will not be changed. Bits ORed with l's will become
or stay is. Again look at Figure 4-2 to help you visualize
this operation.

SUMMARY OF BCD PACKING PROGRAM

If you compare the algorithm for this program with the
fInished program In Figure 4-5. you should see that each
step in the algorithm translates to one or two assembly
language instructions. As we told you before, developing
the assembly language program from a good algorithm
is really quite easy because you are simply translating
one step at a time to its equivalent assembly language
instructions. Also, debugging a program developed In
this way is quite easy because you simply single-step or
breakpoint your way through it and check the results
after each step. In the next section we discuss the 8086
JMP instructions and flags so we can show you how you
implement some of the other programming structures
In assembly language.

the 8086 to fetch its next instruction from some place
in memory other than the next sequential location,

The 8086 has two types of Jump Instructions, condi-
tional and unconditional. When the 8086 fetches and
decodes an Unconditional Jump instruction, it always
goes to the specified jump destination. You might use
this type of Jump Instruction at the end of a program
so that the entire program runs over and over, as shown
In Figure 4-6.

When the 8086 fetches and decodes a Conditional
Jump instruction, It evaluates the -state of a specified
flag to determine whether to fetch its next tnstruction
from the jump destination location or to fetch its next
InstructIon from the next sequential memory location.

START

JUMPS, FLAGS, AND
CONDITIONAL JUMPS

Introduction

The real power of a computer comes from Its ability to
choose between two or more sequences of actions based
on some condition, repeat a sequence of Instructions as
long as some condition exists, or repeat a sequence of
instructions until some condition exists. Flags indicate
whether some condition is present or not. Jump IflstruC-
Lions are used to tell the computer the address to fetch
its next instruction from. Figure 4-6 shows in diagram
form the different ways a Jump instruction can direct

MAIN
PROGRAM
SEQUENCE

JUMP ro
START

STOP

FIGURE -4-6 Change in program flow that can be caused
by jump instructions.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8084, ASSEMBLY LANGUAGE 	 71

I ." i start by taking a look at how the BORG Uncoiidi
tiunal Jump instruction works.

The 8086 Unconditional Jump Instruction

INTRODUCTION

As we said before. Jump instruct!ons can be used to tell
the 8086 to start fetching its instructions from some
new location rallier than from the next sequential
location. The 8086 JMP instruction always causes a
jump to occur, so this is referred to as a unconditional
jump.

1ememher from previous discussions that the 8086
computes the physical address froni which to fetch its
next code byte b y adding the offset in the Instruction
pointer register to the code segment base represented
by the 16-bit number in the CS register. When the 8086
executes a JMP instruction, it loads a new number into
the instruction pointer register, and in some eases it
also loads a new number into the code segment register.

lftheJMPdestination Is in the same codesegment. the
8086 only has to change the contents of the instruction
pointer. This type of jump is referred to as a near, or
intrasegment, jump.

If the JMP destination is in a code segment which has
a different name from the segment in which the JMP
instruction is located, the 8086 has to change the
contents of both CS and IP to make the jump. This type
of jump Is referred to as ajar, or intersegment, jump.

Near and far jumps are further described as either
direct or indirect. If the destination address for thejump
is specified directly as part of the instruction, then the
jump is described as direct. You can have a direct near
jump or a direct far jump. If the destination address for
the jump is contained in a register or memory location.
the jump Is referred to as indirect, because the 8086
has to go to the specified register or memory location to
get the required destination address. You can have an
indirect near jump or an indirect far jump.

Figure 4-7 shows the coding templates for the four
basic ty'pes of unconditional jumps. As you can see, for
the direct types, the destination offset, and. if necessary.
the segment base are includcddirectly in the instruction.
l'he Indirect types of jumps use the second byte of the
instruction to tell the 8086 whether the destination
offset (and segment base, if necessary) is contained in
a register or in memory locations specified with one of
the 24 address modes we Introduced you to in the last
chapter.

The JMP instruction description in Chapter 6 shows
examples of each type of jump instruction, but in most
of your programs you will use a direet near-type JMt'
instruction so in the next section we will discuss in
detail how this type works.

UNCONDITIONAL JUMP INSTRUCTION
TYPE S—OV[RVI EW

i'hc 8086 Unconditional Jump instruction. JMI'. has
five cii fleren t types Figure 4-7 shows the names and
instruction coding templates for these five types. We will
first siimntari,.e how tbese five t ypes work to give you

JMP Jump

Within segment or group. IP relative—near and shortLLLL
Opcod	 CIod	 Opiio.,

[9	 5	 iF.- IF * O'SpIb
(8	 5	 P.- IP Dsp8

D,sp8 sign.eIendcd

Within segment or group, Indirect

Lrn

Oprd	 Ciod.	 Op.iio.

U	 II	 IF.- RegI6
ES	 6.1*	 IF.- MqmIb

Inter-segment or group. Direct

Op.od	 Clodu	 Opflon

5*	 IS	 C5—*[b
IF .- 0Usd

Inter-segment or group. Indirect

I oo	 Fmoi_[i	 liE	 liii
Op*d	 Ciok

SF	 2s1A	 CS —
P — o(IsdI

FIGURE 4-7 8086 Unconditional lump instructions.
(Intel Corporation)

an overview then wr will describe in detail the two types
you need for your programs at this point. The JMP
Instruction description its Chapter 6 shows examples of
each of the five types

THE DIRECT NEAR . AND SHO I<1 f'PE
IMP INSTRUCTIONS

As WI' described previously, a near- typejcnp truction
can cause the next instrtictjroj to Is' li'tchecl from
anywhere in the current code segment. To produce the
new instruction fetch address, this instruction adds a
16-hit signed displacement contained In the instruction
to the contents of the instruction pointer register. A 16-
bit signed displacement means that the jump can be to
a location anywhere from + 32.7f7 to 32.768 bytes
from the current instruction pointer location. A positive
displacement usually means you arc jumping ahead in
the program, and a negative displacement usuall y means
that you are Jumping 'backward iu the program.

A special case of the direct near -t ype jump instruction
is the direct short-type jump. If the destination for the
jump is within a displacement range of -- 127 to -128
bytes from the current Instruction pointer location. th

72	 CHAPTER fOUR

destination can be reached with just an 8-bit displace-
ment. The coding for this type of jump is shown on the
second line of the coding template for the direct near
JMP in Figure 4-7. Only one byte Is req ed for the
displacement in this case. Again the 8086 produces the
new Instruction fetch address by addin, the signed 8-
bit displacement, contained In the instruction, to the
contents of the instruction pointer register. Here are
some examples of how you use these JMP instruct!ons
in programs.

DIRECT WI1HIN-SEGMENT NEAR AND DIRECT
WITHIN-SEGMENT SHORI IMP EXAMPLES

Suppose that we \"ant an 8086 to execute the Instruc-
(ions in a program over and over. Figure 4-8 shows how
the JMP instruction can be used to do this. In this
program, the tebel BACK followed by a colon is used to
give a name to the address we want to jump back Ia.
When the assembler reads this label, It will make an
entry in its syrnb-' l table indicating where it found
the label. Then, when the assembler reads thr JMP
instruction and finds the name BACK in the instruction.
it wilt be able to calculate the displacement from the
jump instruction to the label. This displacement will he
inserted as part of the code for the instruction. Even if
you are not using an assembler, you should use labels
to indicate jump destinations so that you can easily see
them. The NOP instructions used in the program in
Figure 4-8 do nothing except fill space. We used them
in this example to represent the instructions that we
want to loop through over and over. Once the 8086 gets
into the JM1'-BACK loop, the only ways It can get out
are If the power is turned off, an interrupt occurs, or
the system is reset.

Now let's r'e how the binary code for the JMP instruc-
tion in Figurc 4-8 is constructed. The jump is to a label
In the same segment. so this narrows our choices down
to the first three types of JMP instruction shown in
Figure 4-7. For several reasons, It Is best to use the
direct-type JMP instruction whenever possible. l'his
narrows our cholces down to the first two types In Figure
4-7. The choice between these two is determined by
whether you need a 1-byte or a 2-byte dispacement to
reach the JMP destination address. Sini-e for our exam-
ple program the destination address is within the range
of - 128 to + 127 bytes from the instruction after the

JMP instruction, we can use the direct within-segment
short type of JMP. According to Figure 4-7. the instruc-
tion template for this instruction Is 11101011 (EBH)
followed by a displacement. Here's how you calculate the
disojacement to put in the instruction.

NOTE: An assembler does this for you automati-
cally. but you should still learn how it is done to
help you in troubleshooting.

The numbers in the left Column of Figure 4-8 represent
the offset of each code byte from the code segment base,
These are the numbers that will be in the instruction
pointer as the program executes. After the 8086 fetches
an Instruction byte, it automatically increments the
Instruction pointer to point to the next !nstruction byte.
The displacement in the JMP Instruction will then be
added to the offset of the next In-tine instruction after
the JMP instruction. For the example program In Figure
4-8, the displacement In the JMP instruction will be
added to offset 0006H, which is in the instruction
pointer after the JMP Instruction executes. What this
means is that when you are counting the number of
bytes of displacement, you always start counting from
the address of the instruction immediately after the JMP
instruction. For the example program, we want to jump
from offset 0006H back to offset 0000FI. This Is a
displacement of —GH.

You cant, however, write the displacement in the
instruction as —GH. Negative displacerrients must be
expressed in 2's complement, sign-and-magnitude form.
We showed how todo this in Chapter!. First, write the
number as an 8-bit positivebinary number. In this case,
that is 000001 10. Then, invert each bit of this, including
the sign bit, to give 11111001. Finally, add I to that
result to give 11111010 binary or FAI-I. which Is the
correct 2s complement representation for - GB. As
shown online 11 in the assembler listing for the program
in Figure 4-8. the two code bytes for this JMP instruction
then are EBB and FAFI.

i'o summarize this example, then, a label is used to
give a name to the destination address for the jump.
This name Is used to refer to the destination address in
(tie JMP Instruction, Since the destination in this
example Is within the range of - 128 to + 127 bytes
from the address after the JMP Instruction, the instruc-
tion can be coded as a direct within-segment short-type

2
3
4
5
6 0000
7
8 0000 04 03
9 0002 90

10 0003 90
11 0004 ER FA
12 0006
13

8086 PROGRAM	 F4'08,ASM
;ABSTRACT	 This pro9rain iltusrr-ates a "backards' juiip
;REGISTERS : Uses CS, AL
;PORTS	 Mone used

CcBI E
	

SE GME S I
ASSUME CS:C0O(

BACK	 ADO AL, 03H	 Add 3 to total
MOP	 Dc.miy instructions to repr-esent those
MOP	 lristrurt ions jsaeped back over
iMP BACK	 J,jr back over instructions to BACK label

CE
	

twos
END

FIGURE 4-8 List ide ot program demonstrating 'backward' IMP.

IMPEEMENTING STANDARD PROGRAM STRL(: TUR[5 IN si, SEBLY LAN(,t)At .t	 73

5086 PROGRAM	 F4 09.ASH

;A8STRACT : This prograel ittustrateC a "forwards" j.m

;REGISTERS : Uses CS. AX

;PORTS	 : tione used

2

3
4
5
6 0000
	 CE	 SEGMENT

7
	 ASSUME CS:CmE

8 0000 EB 03 90	 JMP THERE
9 0003 90	 HOP
10 0004 90	 HOP
11 0005 88 0000	 THERE: MOV AX, 0000H
12 0008 90	 HOP
13 0009
	

CE	 ENDS

14
	 END

Skip over a series of instructions

Di.srvTTy instructions to represent those

Instructions skipped over
Zero accumjiator before addition instructions

Dtniiy instruction to represent continuation of execution

FIGURE 4 -9 List file of program demonstrating 'forward" JMI'.

JMP. The displacement is calculated by counting the
number of bytes from the next address after the JMP
instruction to the destination. if the displacement is
negative (backward in the progr?m). then it must be
expressed In 2's complement form before it can be
written in the instruction code template.

Now let's look at another simple example program, in
Figure 4-9. to see how you can Jump ahead over a group
of Instructions in a program. Here again we use a label
to give a name to the address that we want to JMP to.
We also use NOP instructions to represent the instruc-
tions that we want to skip over and the instructions
that continue after the JMP. Let's see how this JMP
instruction is coded,

When the assembler reads through the source file for
this program. It will find the label "THERE" after the
JMP mnemonic. At this point the assembler has no way
of knowing whether it will need 1 or 2 bytes to represent
the displacement to the destination address. The assem-
bler plays it sale by resetving 2 bytes for the displace-
ment, Then the assembler reads on through the rest of
the program. When the assembler finds the specified
label, it calculates the displacement from the instruction
after the JMP instruction to the label, If the assembler
finds the displacement to be outside the range of - 128
bytes to + 127 bytes, then it will code the instruction as
a direct within-segment near JMP with 2 bytes of
displacement. lIthe assembler finds the displacement
lobe within the - 128- to + 127- byte range, then It will
code the instruction as a direct within-segment short-
type JMP with a 1-byte displacement. In the latter case,
the assembler will put the code for a NOP instruction.
9011. in the third byte it had reserved for the JMP
Instruction. The instruction codes for the JMP THERE
instruction on line 8 of Figure 4-9 demonstrate this. As
shown in the instruction template in Figure 4-7, EBH
is the basic opcode for the direct within-segment short
JMP. The 03H represents the displacement to the JMP
destination. Since we arc jumping forward In this case.
the displacement is a positive number. The 9011 in the
next memory byte Is the code for a NOP instruction. The
displacement is calculated from the offset of this NOP
instruction. 00021-I, to the offset of the destination label,
00051-I. The dillerence of 03H between these two is the
displacement you see coded in the instruction.

If you arc hand coding a program such as this, you

will probably know how far it is to the label, and you
can leave just I byte for the displacement ii that Is
enough. If you are using an assembler and you dont
want to waste the byte of memory or the time it takes
to fetch the extra NOP instruction, you can write the
instruction as JMP SHOR1 label. The SHORT operator
is a promise to the assembler that the destination will
not be outside the range of - 128 to + 127 bytes.
Trusting your promise. the assembler then reserves only
I byte for the displacement.

Note that if you are making a JMP from an address
near the start of a 64-Kbyte segment to an address near
the end of the segment. you may not be able to get there
with a jump of ^32.767. The wa y you get there is
to JMP backward around to the desired destination
address. An assembler will automatically do this for you.

One advantage of the direct near- and short-type JMPs
is that the destination address is specified relative to
the address of the instruction after the JMP instruction.
Since the JMP instruction in this case does not contain
an absolute address or offset, the program can be loaded
anywhere in memory and still run correctl y . A program
which can be loaded anywhere in memon' to be run is
said to be relocatable. You should try to write your
programs so that they are relocatable.

Now that you know about unconditional JMP Instruc-
tions, we will discuss the 8086 flags. so that we can
show how the 8086 Conditional Jump instructions are
used to implement the rest ol the standard programming
structures.

The 8086 Conditional Flags

The 8086 has six cortdiiionia(flags. They are the carnj
flag (CF). the paruy flag (PF'). the auxiliary ccsrnj flag
IAF). the zero flag (ZF1. the sign flag (SF). and the
overflow flag (OF). Chapter I shows numerical examples
of some of the conditions indicated by these ilags. Here
we review these conditions and show how some of the
Important 8086 Instructions affect these Ilags.

THE CARRY FLAG WITH ADD, SUBTRACT, AND
COMPARE INSTRUCTIONS

If the addition of two 8-bit numbers produces a sum
greater than 8 bits, the care',' flag will be set to a I to
indicate a carry into the next bit position. Likewise, if

74	 CI-IAPTER FOUR

the addition of two 16-bit numbers produces a sum
greater than 16 bits, then the carry flag will be set to a
I to indicate that a finai carry was produced by the
addition.

During subtraction, the carry flag functions as a
borrow flag. if the bottom number in a subtraction Is
larger than the top number, then the carry/borrow flag
will be set to indicate that a borrow was needed to
perform the subtraction.

The 8086 compare instruction has the format CMP
destination.source. The source can be an immediate
number, a register, or a memory location. The destina-
tion can be a register or a memory location. The compari-
son is done by subtracting the contents of the specified
source from the contents of the specified destination.
Flags are updated to reflect the result of the comparison.
but neither the source nor the destination is changed.
if the source operand is greater than the specified
destination operand, then the carry/borrow flag will be
set to indicate that a borrow was needed to do the
comparison (subtraction). if the source operand, is the
same size as or smaller than the specified destination
operand, then the carry/borrow flag will not be set after
the compare. lithe two operands are equal, the zero flag
will be set to a 1 to indicate that the result of the
compare (subtraction) was all 0's. Here's an example and
summary of this for your reference.

CMP BX. CX
condition CF ZF
CX>BX	 I	 0
CX<BX	 0 0
CX=BX	 0	 1

The compare instruction Is very important because it
allows you to easily determine whether one operand is
greater than, less than, or the same size as another
operand.

THE PARITY FLAG
Parity is a term used to indicate whether a binary word
has an even number oil's or an odd number of l's. A
binary number with an even number of l's Is said to
have even parity. The 8086 parity flag will be set to a 1
after an instruction if the lower 8 bits of the destination
operand has an even number of l's, Probably the most
common use of the parity flag Is to determine whether
ASCII data sent to a computer over phone lines or some
other communications link contains any errors, In
Chapter i4we describe this use of parity.

THE AUXILIARY CARRY FLAG

This flag has significance In BCD addition or BCD
subtraction. If a carry is produced when the least
significant nibbles of 2 bytes are added, the auxiliary
carry flag will be set. in othr words, a carry out of bit
3 sets theauxiliary carry flag. Likewise. if the subtraction
of the least significant nlbbles requires a borrow, the
auxiliary carry/borrow flagwilI be set. The auxiliary
carry/borrow flag is used oay by the DAA and DAS
Instructions. Consult the DAA and DAS instruction
descriptions In Chapter 6 and the BCD operation exam-

pies section of Chapter 1 for further discussion of
addition and subtraction of BCD numbers.

THE ZERO FLAG WITH INCREMENT, DECREMENT,
AND COMPARE INSTRUCTIONS
As the name implies, this flag will be set to a I if the
result of an arithmetic or logic operation is zero. For
example. if you subtract two numbers which are equal,
the zero flag will be set to indicate that the result of the
subtraction is zero. If you AND two words together and
the result contains no l's, the zero flag will be set to
indicate that the result Is all 0's.

Besides the more obvious arithmetic and logic instruc-
tions, there are a few other very useful instructions
which also affect the zero flag. One of these is the
compare Instruction CMP. which we discussed previ-
ously with the early flag. As shown there, the zero flag
will be set to a 1 if the two operands compared are equal,

Another lmportan instruction which affects the zero
flag is the decrement InstructIon, DEC. This instruction
will decrement (or. in other words, subtract 1 from) a
number in a specified regIster or memory location, If.
after decrementing, the contents of the register or
memory location are zero, the zero flag will be set. Here's
a preview of how this is used. Suppose that we want to
repeat a sequence of actions nine times. To do this, we
first load a register with the number 09H and execute
the sequence of actions. We then decremept the register
and look at the zero flag to see if the register is down to
zero yet. If the zero flag Is not set, then we know that
the register is not yet down to zero, so we tell the 8086.
with a Jump instruction, to go back and execute the
sequence of instructions again. The following sections
will show many specific examples of how this Is done.

The increment Instruction. INC destination, also af-
fects the zero flag. If an 8-bit destination containing
FFH or a 16-bit destination containing FFFFI-I is incre-
mented. the result In the destination will be all 0's. The
zero flag will be set to indicate this.

THE SIGN FLAG—POSITIVE AND
NEGATIVE NUMBERS
When you need to represent both positive and negative
numbers for an 8086. you use 2's complement sign .and-
magnitude form as ctescribed in Chapter 1. in this form.
the most significant bit of the byte or word is used as a
sign bit. A 0 in this bit indicates that the number is
positive. A I in this bit indicates that the number Is
negative. The remaining 7 bits of a byte or the remaining
15 bits of a word are used to represent the magnitude
of the number. For a positive number, the magnitude
will be In standard binary form. For a negative number.
the magnitude will be in 2's complement form. After an
arithmetic or logic instruction executes, the sign flag
will be a copyof the most significant bit of the destination
byte or the destination word. in addition to its use with
signed arithmetic operations, the sign flag can be used
to determine whether an operand has been decremented
beyond zero. Decrementing OOH, for example, will give
FFH. Since the MSB of FFH is a 1, the sign flag will be
set.

- 12	 IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE	 75

THE OVERFLOW FLAG

This flag will be set if the result of a signed operation is
too large to fit in the number of bits available to represent
it. To remind you of what ovefiow means, here is an
example. Suppose you add the 8-bit signed number
011101011+ 117 decimal) and the 8-bit signed number
OO1IOI11 (+55 déctmaJ). The resultwillbe 10101100
1+ 172 decimal), which is the correct binary result in
this case. t?ut is too large to fit in the 7 bIts allowed for
the magnitude in an 8-bit signed number. For an S-bit
signed number, a 1 in the most significant bit indIcates
a negative number. The overflow flag will be set after
this operation to indicate that the result of the addition
has overflowed into the sign bit.

The 8086 Conditional Jump Instrudions

As we stated previously, much of the' reai power of a
computer comes from its ability to choose between two
courses of action depending on whether some condition
is present or not. In the 8086 the six conditional
flags indicate the conditions that are present after an
instruction. The 8086 Conditional Jump instructions
look at the state of a specified flag(s) to determine
whether the Jump should be made or not.

Figure 4-10 shows the mnemonica for the 8086 Condi-
tional Jump instructions. Next to each mnemonic is a
brief explanation of the mnemonic. Note that the terms
above and below are used when you are working with
unsigned binary numbers. The 8-bit unsigned number
11000110 is above the 8-bit unsigned number
00111001. for example. The terms greater and less are
used when you are working with signed binary numbers.
The 8-bit signed number 00111001 is greater (more

positive) than the S-bit signed number 11000110, which
represents a negative number. Also shown in Figure 4-
lOis an indication of the flag conditions that will cause
the 8086 to do the Jump. If the specified flag Conditions
are not present, the 8086 will Just continue on to the
next instruction in sequence. In other words, if the
jump condition is not met, the Conditional Jump in-
struction will effectively function as a NOP. Suppose, for
example. we have the instruction JC SAVE, where SAVE
is the label at the destination address. If the carry flag
Is set, this instruction will cause the 8086 to jump to
the instruction at the SAVE: label. If the carry flag is
not set, the instruction will have no effect other than
taking up a little processor time.

All conditional Jumps are short-type jumps. This
means that the destination label must be in the same
code segment as thejump instruôtion. Also, the destina-
tion address must he in the range of - 128 bytes to
+ 127 bytes from the address of the Instruction after
the Jump instruction. As we show In later examples, it
is important to be aware of this limit on the range of
conditional Jumps as you write your programs.

The Conditional Jump instructions are usually used
after arithmetic or logic instructions, They are very
commonly used after Compare Instructions, For this
case, the Compare instruction syntax and the Condi-
tional Jump instruction syntax are such that a little
trick makes it very easy to see what will cause a jump
to occur. Here's the trick. Suppose that you see the
instruction sequence

CMP BL, DH
JAE HEATER...OFF

in a program, and you want to determine what these
instructions do. The CMP instruction compares the byte

MNEMONIC	 CONDITION TESTED	 "JUMP IF.

JA/JNRE	 (CF or ZF)=0	 above/not below nor equal
JAEJJNB	 CF=0	 above or equal/not below
JBIJNAE	 CF = I	 below/not above nor equal
JSE1JNA	 (CForZF)=1	 -	 -belowor.equal/notabove
JC	 CF1	 carry
JE/JZ	 ZE 1	 equal/zero
IG/JNLE	 ((SF xor OF) or ZF)0 	 greater/not less nor equal
JGEIJNL	 (SF xor OF)=0	 greater or equal/not less
JIJJNGE	 (SF xor OF) 1	 less/not greater nor equal
JLE/JNG	 ((SF xor OF) or ZF) 1	 less or equal/not greater
INC	 CF=0	 not carry
JNE/JNZ	 ZF = 0	 fbi equal/not zero
INO	 OF = 0	 not overflow
JNP/JPO	 PF =0	 not parity/parity odd
INS	 SF0	 not sign
JO -	 OF = I	 overflow
JP/JPE	 PF I	 parity/parity equal
IS	 SF= 1	 sign

Note: "above" and "below" refer to the relationship of twc unsigned values;
"greater" and "less" refer to the relationship of two signed values.

FIGURE 4-10 5086 Conditional Jump instructions.

76	 CHAPTER FOUR

In the DII register with the byte In the BL register and
sets flags according to the result. A previous section
showed you how the cany and zero flags are affected by
a Compare Instruction. According to Figure 4-10. the
JAE instruction says. "Jump If above or equal" to the
label HEATER_OFF. The question now Is. will it jump
ii BL is above DH, or will it Jump if DH is above BL? You
could determine how the flags will be affected by the
comparison and use FIgure 4-10 to answer the question.
but an easier way is to mentally read parts of the
Compare instruction between parts of the Jump instruc-
tion, if you read the example sequence as "Jump if BL
is above or equal to DH,' the meaning of the sequence
is immediately clear. As you write your own programs,
thinking of a conditional sequence in this way should
help you to choose the right Conditional Jump InStruc-
tion. The next sections show you how we use Conditional
and Unconditional Jump instructions to implement
some of the standard program structures and solve some
common programming problems.

IF-THEN, IF-THEN-ELSE, AND MULTIPLE -
IF-THEN-ELSE PROGRAMS

IF-THEN Programs

Remember from Chapter 2 that the IF-THEN structure
has the format

IF condition THEN
action
action

This structure says that IF the stated condition is
found to be true, the series of actions following THEN-
will be executed, If the condition is false, execution will
skip over the actions after the THEN and proceed with
the next mainline instruction.

The Simple IF-THEN is Implemented with a Condi-
tional Jump instruction. In some cases an instruction
to set flags is needed before the Conditional Jump
instruction. Figure 4-110 shows, with a program frag-

CJ4P AX, Bit	 Comçere to set usgs
JE THERE	 If equal then skip correction
ADO AX, 0002K Add correction factor

THERE: NOV CL, 07K	 Load cotrit

(a)

CMP AX, BX	 Coirpare to set flags
JNE FIX	 if not equal do correction
JMP THERE	 If equat . thefl skip correction

FIX:	 ADO AX. 0002K	 Add correction factor

THERE: NOV CL, 07K : Load coerit

(6)

FIGURE 4-11 Programming conditional jumps. (a)
Destinations closer than ±128 bytes. (b) Destinations
further than ±128 bytes.

ment. one way to Implement the simple IF-THEN struc-
ture. In this program we first compare BX with AX to
set the required flags. If the zerà flag Is set after the
comparison. indicating that AX BX. the JE instruc-
tion will cause execution to Jump to the MOV CLO7H
instruction labeled THERE. If AX ^ BX, then the ADD
AX,0002H instruction after the JE instruction will be
executed before the MOV CL,07H instruction.

The implementation in Figure 4-1 Ia will work well for
a short sequence of instructions after the Conditional
Jump Instruction. However, if the sequence of instruc-
tions is lengthy, there is a potential problem. Remember
from the discussion of conditional jumps in the last
section that a conditional jump can only be to a location
in the range of — 128 bytes to + 127 bytes from the
address after the Conditional Jump instruction. A long
sequence tf instructions after the Conditional Jump
instruction may put the label out of range of the instruc-
tion. if you are absolutely sure that the destination label
will not be out of range, then use the instruction
sequence shown In Figure 4-1 la to implement an IF-
THEN structure. II you are not sure whether the destina-
tion will be In range, the Instruction sequence shown
in Figure 4-1 lb will always work. In this sequence. the
Conditional Jump instruction only has tojump over the
JMP instruction. The JMP Instruction used to get to the
label THERE canjump to anywhere in the code segment.
or even to another code segment. Note that you have to
change the Conditional Jump instruction from JE to.
JNE for this second version. The price you pay for not
having to wony whether the destination is in range is
an extra Jump instruction. Incidentally, some assem-
blers now automatically code Conditional Jump instruc-
tions in this way ii necessary.

IF-THEN-ELSE Programs

OVERVIEW

The IF-THEN-ELSE structure is used to indicate a choice
between two alternative courses of action. Figure 3-3b
shows the flowchart and pseudocode for this structure.
Basically the structure has the format

IF condition THEN
action

ELSE
action

This is a different situation from the simple IF-THEN.

because here either one series of actiOns or another
series of actions is done before the program goes on

with the next mainline instruction. An example will

show how we implement this structure.

Suppose that in the computerized factory we discussed
in Chapter 2. we have an 8086 microcomputer which
controls a prtnted-circuit-board . making machine. Part
of the Job of this 8086 Is to check a temperature sensor
and turn on a green lamp or a yellow lamp depending
on the value of the temperature it reads in. If the
temperature is below 30C. we want to turn on a yellow
lamp to tell the operator that the solution is not up to
temperature. If the temperature is greater than or equal

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE	 77

to 30°C. we want to light a green lamp. With a system
such as this, the operator can visually scan all the lamps
on the control panel until all the green lamps are lit.
When all the lamps are green. the operator can push the
GO button to start making boards. The reason that we
have the yellow lamp is to let the operator know that
this part of the machine is working, but that the
temperature is not yet up to 30°C.

Figure 4-12 shows with flowcharts and with pseudo-
code two ways we can represent the algorithm for this
problem. The difference between the two is simply a
matter of whether we make the decision based on
the temperature being below 30°C or based on the
temperature being above or equal to 30°C. The two
approaches are equally valid, but your choice determines
which Conditional Jump instruction you use to Imple-
ment the algorithm. Since this program involves reading
data in from a port and writing data out to a port.
we need to talk briefly about the 8086 IN and 0151'
instructions before we discuss the details of how these
two algorithms can be implemented in assembly lan-
guage.

THE 8086 IN AND OUT INSTRUCTIONS
The 8086 has two types of input instruction.fixed-port
and variable-port. The fixed-port instruction has the
format IN AL.port or IN AX.port. The term port in these
Instructions represents an 8-bit port address to be put
directly In the instruction. The instruction IN AX.04H.
for example, will copy a word from port 04H to the AX
register. The 8-bit port address in this type of IN

READ
TEMPERATURE

i YESO

LIGHT	 LIGHT
YELLOW	 GREEN

READ pH
SENSOR

instruction allows you to address any one of 256 possible
Input ports, but the port address Is fixed. The program
cannot change the port address as It executes. Keep this
In mind as we discuss the variable-port IN instruction.

The variable-port Input Instruction has the format IN
AL.DX or IN AX.DX. When using the variable-port Input
Instruction, you must first put the address of the desired
port In the DX register. If. for example, you load DX with
FFF8H and then do an IN AL.DX. the 8086 will copy a
byte of data from port FFF8H to the AL register. The
variable-port input instruction has two major advan-
tages. First, up to 65.536 different Input ports can be
specified with the 16-bit port address In DX. Second.
the port address can be changed as a program executes
by simply putting a different number In DX. This is
handy in a case where you want the computer to be able
to input from 15 different terminals, for example. Instead
of writing IS different Input programs, you can write
one input program which simply changes the contents
of DX to input from each of the different terminals.

The 8086 also has a fixed-port output Instruction and
a variable-port output instruction. The fixed-port output
instruction has the form OUT port.AL or OUT port.AX.
Here again the term port represents sri 8-bit port address
written in the instruction, OUT OAH.AL, for example.
wiU copy the contents of the AL register to port GAl-I.

The format for the variable-port output instruction is
OUT DX.AL or OUT DX.AX. To use this type of instruc-
tion, you have to first put the 16-bit port address in the
DX register. If. for example, you load DX with FFFA}I
and then do an OUT DX.AL instruction, the 8086 will
copy the contents of the AL register to port FFFA}I.

READ
TEMPERATURE

LIGHT	 I	 I	 LIGHT
GREEN	 I	 I YELLOW

READ pH
SENSOR

READ TEMPERATURE 	 READ TEMPERATURE
IF TEMPERATURE <30° THEN

	
IF TEMPERATURE 30° THEN

LIGHT YELLOW LAMP
	

LIGHT GREEN LAMP
ELSE
	

ELSE
EIGHT GREEN LAMP
	

LIGHT YELLOW LAMP
READ pH SENSOR	 READ pH SENSOR

(a)	 Ibl

FIGURE 4-12 Flowcharts and pseudocode for Iwo ways of expressing algorithm
for printed-circuit-board-making machine. (a) Temperature below 30° test.
(b) Temperature above 30° test.

78	 CHAPTER FOUR

DATA
BUS

8255A	 word to this address, you first point DX at the address
with the instruction MOV DX.OFFFEH.

i	 The control word needed to make port P2B of this
2	 8255 an output, and P2A and P2C inputs, is 99H. (In
I	 Chapter 9 we show how we determined this control

Al	
P2A	 40	 word.) You load this control word into AL with MOV

A0	 5	 AL.99H and send it to the 8255 control register with

6 38	 OUT DX.AL. Now that port 2B Is initialized as an output.

7 37	
you can output a byte to that port of the device any time

06	 0 14	 you need to in the program.

IF-THEN-ELSE ASSEMBLY LANGUAGE
PROGRAM EXAMPLE

03	 3
02	

P2C	 13	 Figure 4-14a. p. 80. shows the list file of the 8086
12	 assembly language implementation of the algorithm In

00	 6	 Figure 4-1 2a. The first three Instructions in this pro-
io	 gram initialize port 2B at address FFFA}1 as an output

Os	 I 1I
04	 I2I

	

0 is
	 port, so we can output values to It to turn on LEDS. !as-

	

1 19	
sume that the driver for the yellow lamp is connected to

	

2 20
	 bit 0 of port FFFAH. and the driver for the green lamp is

	

21	 connected to bit I ofportFFFAH. A 1 sent to a bit position

	

22	 of port FFFAH turns on the lamp connected to that line,

	

23	 The next two Instructions in the example program

1100
i'10,

CONTROL	 01
REGISTER	 D3

Os

0,

FIGURE 4-13 Block diagram of SDK-86 board's 8255A
port.

The device used for parallel input and output ports
on the SDK-86 board and in many microcomputers Is
the Intel 8255. As shown in the block diagram In Figure
4-13. the 8255 basically contains three 8-bit ports and
a control register. Each of the ports and the control
register will have a separate address, so you can write
to them or read from them. The addresses for the ports
and control registers for the two 8255s on an SDK-86
board, for example, are as follows:

PORT 2A	 FFF8H	 PORT IA	 FFF9II
PORT 2B	 FFFAI-1	 PORT lB	 FFFI3I'I
PORT 2C	 FFFCH	 PORT IC	 FFFDH
CONTROL2 FFFEH	 CONTROL I FE'FFH

The ports In an 8255 can be Individually programmed
to operate as input or output ports. When the power Is
first applied to an 8255. the ports are all configured as
input ports. If you want to use any of the ports as an
output port, you must write a control word to the control
register to initialize that port for, operation as an output.
Chapter 9 and later chapters describe in detail how to
initialize an 8255 for a varIety of applications, but we
show you here how to initialize one of the ports In an
8255 devIce on an SDK-86 microcomputer for use as an
output port.

You Initialize an 8255 by sending a control word to
the control register address for that device. As we showed
above, the control register address for one of the 8255s
on an SDK-86 board Is FFFEH. In order to write a control

read the temperature in from an analog-to-digital con-
verter connected to input port FFFSH.

After we read the data in from the port, we compare
it with our set-point value of 30°C. lIthe Input value is
below 30°C, then we jump to the instructions which
turn on the yellow lamp. If the temperature is above or
equal to 30°C. we jump to the instructions which turn
on the green lamp. Note that we have implemented this
algorithm in such a way that the JB instruction will'
always be able to reach the label YELLOW.

To actually turn on a lamp, we load a i in the
appropriate bit of the AL register with a MOV Instruction
and send the byte to the lamp control port. FFFAJ-i. The
Instruction sequence MOV AL,O1H—OUT DX,AL. for
example, will light the yellow lamp by sending a I to bit
0 of port FFFAI-1.

The Instruction sequence MOV AL.02H—OUT DX.AL
will light the green lamp by sendipg a ito bit I of port
FFFAH. Note that control words are sent to the control
register address In an 8255 and data words are read
from or written to the individual port addresses. Here's
another way to implement this program in assembly
language.

Figure 4-i4b shows another equally valid assembly
language program segment to solve our problem. This
one uses a Jump If Above or Equal instruction, JAE, at
the decision point and switches the order of the actions.
This pcogram more closely follows the second algorithm
statement in Figure 4-l2b. Perhaps you can see from
these examples why two programmers may write very
different programs to solve even very simple program-
ming problems.

Multiple IF-THEN-ELSE Assembly
Language Programs

In the preceding section we showed how to imple-
ment and use the IF-THEN-ELSE structure, which
chooses between two alternative courses of action. In

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 	 79

2
3
4
5
6
7
8
9

10
11 0000
12
13
14 0000
15 0003
16 0005
17
18 0006
19 0009
20 000A
21 000C
22 000E
23 0011
24 0013
25 0016
26 0017
27 OO1A
28 OO1C
29 OO1F
30 0020
31 0023
32 0024
33

8086 PROGRAJ4 F4-14A.ASM
;ABSTRACT : Program section for PC board aiking machine.

This program section reads the teerature of a cleaning bath
solution and tights on of two laa,s according to the
teuperature read. If the teeç '30C, a yet low talup will be
turned on. If the te	 is 30C, a green laup will be turned on.

;REGISTERS: Uses CS, AL, DX _
;PORTS	 : Uses FFF8I$ - teuperatur. irçut

FFFAH - lp control output (yellow=bit 0, green°bit 1)

CE	 SEIEN1
ASSIJHE CS:CCOE

;InEtiatize SOK-66 port EFFAN as output port, FFF8H as input port
BA FFFE	 NOV OX, OFI'FEH	 Point DX to port control register
BO 99	 NOV AL. 99H	 Load control word to initialize ports
EE	 001 DX, AL	 Send control word to port control register

BA FFFB
	

NOV DX, OFFF8H	 Point DX at input port
EC	 IN AL, DX	 Read tee from sensor on input port
3C 1E	 CUP Al, 30

	
Colupare te with 30C

72 03
	

JB Y°.LlOW
	

IF tC4Tp 30 THEN tight yellow lamp
EB OA 90	 JMP GREEN.	 ELSE light green lamp
BO 01
	

YELLOW: NOV AL, 0111 	 Load code to light yellow laup
BA FFFA	 NOV DX, QFFFAH	 Point DX at oUtit port
EE	 001 DX, AL	 Send code to light yellow Letup
EB 07 90	 JMP EXIT	 Go to next mainline instruction
BO 02
	

GREEN: NOV AL, 0214	 Load code to tight green tarp
BA FFFA	 NOV DX, OFFFAH	 Point DX at output port
EE	 001 DX, Al.	 Send code to light green laep
BA FFFC	 EXIT:	 NOV DX, OFFFCH	 Next mainline instruction
EC
	

IN AL, DX	 Read ph sensor
C00E ENDS

END

(a)

20 000A
21 000C
22 000E
23 0011
24 0013
25 0016
26 0017
27 OO1A
28 001C
29 OOIF
30 0020
31 0023
32 0024
33

3C 1E
73 03
ES OA 90
BO 02
BA FFFA
EE
EB 07 90
80 01
BA EFFA
EE
BA FFFC
(C

CMP AL, 30
.IAE GREEN
JNP YELLOW

GREEN: NOV AL, 02H
NOV DX, OFFFAII
001 DX, AL
JUP EXIT

YELLOW: NOV AL, 0111
NOV DX, OFFFAH
EXIT DX, AL

EXIT:	 NOV DX, OFFFCH
IN Al, DX

C00E ENDS
END

Compare teup with 30°C
IF teep e30 THEN light green lamp
ELSE light yellow tarp
Load code to light green lamp
Point DX at output port
Send code to light green lamp
Go to next mainline instruction
Load code to light yellow Iaiip
Point DX at output port
Send code to light yellow tarp
Next mainline instruction
Read ph sensor

lb)

FIGURE 4-14 List file for printed-circuit-board-making machine program.
(a) Below 30° version. (b) Program section for above 30° version.

many situations we want a computer to choose one 	 IF condition THEN
of several alternative ' actions based on the value of 	 action
some variable read in or on a command code entered 	 ELSE IF condition THEN
by a user. To choose one alternative from several, we 	 action
can nest IF-THEN-ELSE structures. The result has 	 ELSE
the form	 action

80	 CHAPTER FOUR

It is important to note that in this structure the last
ELSE is part of the IF-THEN just before it. Figure 3-3d
showed a flowchart and pseudocode for a "soup cook"
example using this structure, but the soup cook example
is too messy to implement here. Therefore, while the
printed-drcult-board .maklog machine from the last sec
tion is still fresh in your mind, we will expand that
example to show you how a multiple IF-THEN-ELSE is
implemented.

Suppose that we want to have three lamps on our
printed-circuit-board-making machine. We want a ye!-
low lamp to indicate that the temperature is below 30°C.
a green lamp to indicate that the temperature is above
or equal to 30°C but below 40°C, and a red lamp to
indicate that the temperature is at or above 40°C. Figure
4-15 shows three ways to indicate what we want to do
here. The first way, in Figure 4-15a. simply Indicates
the desired action next to each temperature range. You
may find this form very useful in visualizing problems
where the alternatives are based on the range of a
variable, Don't miss the ASCII-to-hexadecimal problem
at the end of the chapter for some practice with this.

Once you get a problem such as this defined in
list form, you can easily convert it to a flowchart or
pseudocode. When writing the flowchart or the pseudo-
code. It is best to start at one end of the overall range

TEMPERATURE

1YELLOW
(LAMP

29)

1. GREEN
CLAMP

39J
40	 RED

fLAMP

(I

READ
TEMPERATURE

YES

LIGHT
YELLOW	 YESLAMP

LIGHT
GREEN
LAMP

READ pH
SENSOR

FIGURE 4-15 Algorithm for three-lamp printed-circuit-
board-making machine. (a) Condition list.
(6) Pseudocode. (C) Flowchart.

and work your way to the other, For example, in the
flowchart in Figure 4-15c. start by checking whether
the temperature is below 30°. If the temperature is not
below 30°. then it must be above or equal to 30°. and
you do not have to do another test to determine this,
You then check whether the temperature is below 40°.
If the temperature is above or equal to 30°, but below
40°. then you know that the temperature is in the green
lamp range. if the temperature is not below 40°. then
you know that the temperature must be above or equal
to 40°. In other words, two carefully chosen tests will
direct execution to one of the three alternatives.

Figure 4-16. p. 82. shows how we can write a program
for this algorithm in 8086 assembly language. In the
program, we first initialize port FFFAH as an output
port. We then read in the temperatur- from an A/D
converter connected to port FFF8H. We compare the
temperature read in with the first set-point value. 30°.
If the temperature is below 30°. the Jump If Below
Instruction, JB, will cause a Jump to the label YELLOW.
If the jump is not taken, we know the temperature is
above or equal to 30°. so we go on to the'OMP AL,40
instruction to see whether the temperature is below the
second set point, 40°. The JB GREEN instruction will
cause a Jump to the label GREEN If the temperature is
less than 40°. If the Jump is not taken, we know that
the temperature must be at or above 40°C. so wejust go
ahead and turn on the red lamp.

For this program, we assume that the lines which
control the three lamps are connected t0 port FFFAH.
The yellow lamp is connected to bit 0, the green is
Connected to bit 1. and the red is connected to bit 2.
We turn on a lamp by outputting a 1 to the appropriate
bit of port FEFAI-!. The instruction seuence MOV
AL,04H—OUT DX.AL. for example, will turn on the
red lamp by sending a I to bit 2 of port FFFAH.

Summary of IF-THEN-ELSE Implementation
From the preceding examples, you should see that
you can implement IF-THEN-ELSE structures in your
programs ti using Compare or other instructions to set
the appropriate flag(s) andCond1tIonal Jump instruc-
tions to go to the desired sequence of actions.

A single IF-THEN-ELSE structure is used to choose
one of two alternative series of actions. IF-THEN-ELSE
structures can be linked to choose one of three or more
alternative series of actions. As shown in Figure
3-3d, linked IF-THEN-ELSE structures are one way to
implement the CASE structure. The algorithm for the
printed-circuit-board-making machine lamps program
in the preceding section's example could have been
expressed as

CASE temperature OF
<30	 :	 light yellow lamp
^ 30 and <40	 light green lamp

40	 :	 light red lamp

This CASE structure would be Implemented In the same
way as the program In Figure 4-16. However, expressing

READ TEMPERATURE
IE TEMPERATURE < 30' THEN

LIGHT YELLOW LAMP
ELSE IF TEMPERATURE <40° THEN

LIGHT GREEN LAMP
ELSE LIGHT RED LAMP

READ pH SENSOR

(0)

40 >2±2

RED
LAMP

IMPtEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASS(MBLY LANGUAGE 	 81

2
3
4
5
6
7
8
9

10 0000
11
12
13 0000 BA FFFE
14 0003 80 99
15 0005 U
16
17 0006 8* FFF8
18 0009 EC
19 000* BA FFFA
20 0000 3C 1E
21 00Cr 72 0*
22 0911 3C 28
23 0013 72 Oc
24 0015 80 04
25 0017 U
26 0018 EB OA 90
27 OO1B 80 01
28 0010 U
29001E EB 04 90
30 0021 80 02
31 0023 U
32 0024_BA FFFC
33 0027 EC
34 0028
35

8086 PROGRAM F416.A*M
;ABSTRAC1 : This progr.0 sectiUn ruids the II*rat.r. of a cleaning bath

soLution and lights one of three (. .ccording to the
teirçerature read. If the tei 30°C, a yellow lisp wilt be
turnedon. If the tepE3O ande4O', agreentwitt be
turned on. Tsiçeratures t 40 wilt turn on a red tslç.

;REGISTERS : Uses CS, AL, DX
;PORTS	 : Uses FFFBH - teiiçurature input

FFFAH - lae control output, yeltow'bit 0, green'bit 1, redublt 2
C00E SEGi1ENT

ASSIME CS:C00E
;initialize port FFFAH for output and port FFF8H for irçut

NOV DX, OFFFEK	 Point Dx to port control register
NOV *1, 99K	 load control word to set up output port
001 DX, AL	 Send control word to control register

NOV DX, OFFF8N	 Point DX at input port
IN AL, DX	 Read terp from sensor on input port
NOV DX, OFFFAII 	 Point OX at output port
CMP AL, 30	 Cospare teep with 30°C
JB YELL00	 IF teap 30 ThEN tight yellow lisp
CNP AL, 40	 ELSE cicare with 40'
JB GREEN	 IF terç	 40 111th light green laii

RED:	 NOV AL, 04K	 ELSE teli, 40 so light red lasp
(Xii OX, AL	 Send code to light red laip
iMP EXIT	 Go to next mainline instruction

YELL00: NOV AL, 01K 	 Load code to tight yellow lisp
(XJT DX, AL	 Send code to light yellow lisp
JMP EXIT	 Go to next mainline instruction

GREEN: NOV AL, 02K 	 Load code to light green lisp
(Xii DX, Al	 Send code to tight green lisp

EXIT:	 NOV DX, OFFFCH 	 Next mainline instruction
IN Al, DX	 Read ph sensor

C00E ENDS
END

FIGURE 4-16 List file for three-lamp printed-circuit-board-making machine
program.

the algorithm for the problem as linked IF-THEN-ELSE
structures makes It much easier to see how to implement
the algorithm In assembly language. In Chapter 10 we
show you another way to implement a CA$E situation
using a jump table.

WHILE-DO PROGRAMS

Overview

Remember from the discussIon In Chapter 3 that the
WHILE-DO structure "as the form

WHILE some conditlor. Is present DO
action
action

An Important poInt about this structure is that the
condition Is checked before any action is done. in
Industrial control applications of mIcroprocessors, there
are many cases where we want to do this. The following
very simple example will show you how to implement
this structure in 8086 assemblyJanguage.

Defining the Problem and Writing the Algorithm

Suppose that, in controlling a chemical process. we
want to bring the temperature of a solution up to 100°C
before going on to the next step In the process. If the
solution temperature is below 100°. we want to turn on
a heater and wait for the temperature to reach 100°. If
the solution temperature is at or above 100°. then we
want to go on with the next step In the process. The
WHILE-DO structure fits this problem because we want
to check the condition (temperature) before we turn on
the heater. We don't want to turn on the heater lithe
temperature is already high enough because we might
overheat the solution.

Figure 4-17 shows a flowchart and the pseudocode of
an algorithm for this problem. The first step In the
algorithm is to read In the temperature from'a sensor
connected to a port. The temperature read in is then
compared with 100°. These two parts represent the
condition .checking part of the structure. If the tempera-
ture is at or above 100°, execution will exit the structure
and do the next mainline action, turn off the heater. if
the temperature Is less than 100°. the heater is turned
on and the temperature rechecked. Execution will stay
in this loop while the temperature is below 100°. Inclden.

82	 CHAPTER FOUR

START

I	 [Ii
I	 TEMPERATURE

I	 YES	 Talrff

I	 NO

I	 TURNON
HEATER

L -----------

TURN OFF
HEATER

FLOWCHART

I.)

READ TEMPERATURE
WHILE TEMPERATURE < 1OO DO

TURN HEATER ON
TURN HEATER OFF

PSEUDOCODE

(5)

FIGURE 4-17 Flowchart and pseudocode for heater
control program.

tally, it will not do any harm to turn the heater on if it
is already on.

When the temperature reaches 1000, execution will
exit the structure and go on to the next mainline action.
turn off the heater.

Implementing the Algorithm
in Assembly Language
We have assumed for this example that the temperature
sensor inputs an 8-bit binary value for the Celsius
temperature to port FFF8H. We have also assumed that
the heater control output is connected to the most
significant bit of port FFFAH. As we showed previously.
the actual address of port P2B on the SDK-86 board is
FFFAJ-{. It is to this address that we wili output a byte
to turn tle heater on or off.

Figure 4-18a. p. 84, shows one way to implement out
algorithm. After Initializing the heater control port for
output, we read in the temperature, and compare the

value read with 100. The JAE instruction after the
compare can be read as "Jump to the label HEATER_OFF
lf)AL is above or equal to 100." Note that we used the
Jump If Above or Equal instruction rather than a Jump
If Equal Instruction. Can you see why? To see the
answer, visualize what would happen If we had used a
JE instruction and the temperature of the solution were
101 0. On the first check, the temperature would not be
equal to 1000, so the 8086 would turn on the heater.
The heater would not get turned off until meltdown.

If the heater temperature is below 1OO, we turn on
the heater by loading a I in the most significant bit of
AL and outputting this value to the most significant bit
of port FFFAI-1. Then we do an unconditional JMP to
loop back and check the temperature again.

When the temperature is at or above 1000. we load a
O in the most significant bit of AL and output this to
port FFFAH to turn off the heater. Note that the action
of turning off the heater is outside the basic WHILE-DO
structure. The WHILE-DO structure is shown by the
dotted box in the flowchart in Figure 4-17a and by the
Indentation in the pseudocode in Figure 4-17b.

Solving a Potential Problem of Conditional
Jump Instructions
In the example program in Figure 4-l8a, we used the
Conditional Jump instruction JAE to implement the
WHILE-DO structure. Remember that all the Conditional
Jump instructions are short-type jumps. This means
that a conditional jump can Only be to a location within
the range of - 128 to + 127 bytes from the instruction
after the Conditional Jump instruction. This limit on
the range of the jump posed no problem for the example
program in Figure 4-18a because we were only jumping
to a location 8 bytes ahead in the program. Suppose.
however, that the instructions for turning on the heater
required 220 bytes of memory, The HEATER_OFF label
would then be outside the range of the JAE instruction.

We showed you how to solve this problem in Figure
4-11. To refresh your memory. Figure 4-1 8b shows how
you can change the instructions in this program slightly
to solve the problem without changing the basic WHILE-
DO overall structure. In this exampie, we read the
temperature in as before and compare it to 100. We then
use the Jump if Below instructton to jump to the
program section which turns on the heater. This instruc-
tion, together with the CMP Instruction, says. "Jump
to the label HEATER_ON if AL Is below 100." If the
temperature is at or above 100. the JB instruction will
act like a NOP. and the 8086 will go on to the JMP
HEATER_OFF instruction. Changing the Conditional
Jump instruction and writing the program in this way
means that the destination for the Conditional Jump
instruction is always Just two instructions away. There-
fore, you know that the destination will always be
reachable. Except for very time-critical program sec-
tions. you should always write Conditional Jump in-
struction sequences in this way so that you doni have
to worry about the potential problem. 'rhe disadvantages
of this approach are the time and memory space required
by the extra JMP instruction.

- 13	 IMPI.EMENTINC STANDARD PROGRAM STRUCTURES IN 8085 ASStMBLY LANCUAGE 	 83

8086 PROGRAM	 F4-18A.ASN
;ABSTRACT : Program turns Feater off if teeçerature S 100C

and turns heater on if teeerature	 100C.
;REGISTERS : Uses CS, OX, AL
;PORTS	 Uses FFF8H - teaerature data inp.t

FFFAH - NSB for heater control output, Ooff. l'on
CE	 SEGMENT

ASSUME CS:C00E
Initialize port FFFAH for output, and port FFF8H for input

BA FFFE	 NOV OX, OFFFEH	 Point Dx tO port control register
80 99	 NOV AL, 9911	 Control word to st up output port
EE	 007 DX, At.	 ; Send control word to port

BA FFF8
	 TEMP_IN:	 NOV DX, OFFF8H	 Point at input port

EC
	 IN	 Al, DX	 Input teferature date

3C 64
	 CMP AL, 100	 If tee 5 100 then

73 08
	 JAE HEATER_OFF	 turn heater off

HO 80
	 NOV Al, 80H	 else load code for heater on

BA FFFA	 NOV DX, OFFFAH	 Point DX to output port
EE
	 DX, AL	 Turn heater on

EB FO
	 JMP TEMP_IN	 WHILE tee	 100 read te1t again

80 00
	 HEATER_OF F : NOV AL, 00 	 load code for heater off

BA FEFA
	 NOV DX, OFFFAH	 Point DX to output port

OUT DX, AL	 Turn heater off
C00E	 ENDS

END

Ia)

BA FFF8
	 TEMP_IN:	 NOV DX, OFFF8H	 ; Point DX at input port

CC
	 IN	 AL, -DX	 Read in teITçerature data

3C 64
	

CMP AL, 100	 If teirç	 100' then
72 03
	

JB	 HEATER_ON	 ; turn heater on
EB 09 90
	

iMP HEATER OFF	 else teirç 5100 so turn heater off
80 80
	

HEATER_OW: NOV AL, 80H 	 Load code for heater on
BA FFFA	 NOV DX, OFFFAH	 ; Point DX at output port
EE
	 OUT DX, AL	 Turn heater on

EB ED
	 iMP TEMP IN	 WHILE te1Tç < 100' read ten again

BC 00
	

HEATER_OFF :NOV AL, 00	 Load code for heater off
BA FFEA	 NOV DX, OFFFAH	 ; Point DX at output port
CE
	

OUT DX, AL	 Turn heater off
COGE	 ENDS

END

2
3
4
5
6
7 0000
8
9

10 0000
11 0003
12 0005
13
14 0006
15 0009
16 000A
17 000c
18 000E
19 0010
20 0013
21 0014
220016
23 0018
24 OO1B
25 OO1C
26

14 0006
15 0009
16 000A
17 000C
18 000E
19 0011
20 0013
21 0016
22 0017
23 D01
24 0018
25 OO1E
26 OO1F
27

lb)

FIGURE 4-18 List file for heater control program. (a) First approach. (b)
tmp'oved version of WHILE-DO section of program.

REPEAT-UNTIL PROGRAMS	 condition is checked. This Is different from the WHILE-
DO structure, where the condition is checked before any

Overview	 action(s).-
The following examples will show you how you can

Remember from the discussion in Chapter 3 that the 	 implement the REPEAT-UN'FIL with 8086 assembly tan-
REPEAT-UNTIL structure has the form	 guage and introduce you to some more assembly Ian-

guage programming techniques.
REPEAT

action

UNTIL some condition is present

An important point about this structure is that the
action or series of actions is done once before the

Defining the Problem and Writing the Algorithm

Many systems that interface with a microcomputer
output data on parallel-signal lines and then output a
separate signal to indicate that valid data is on the
parallel lines. The data-ready signal is often called a

84	 CHAPTER FOUR

which it is connected Into the DX register. Then we use
00	 DO the variable-port input instruction, IN . AL,DX. to read
Dl	 Dl the strobe data to AL. This input instruction copies a

byte of data from port FFFAH to the AL register. We care

-lusTo
03 PORT about only the least significant bit of the byte read In

from the port, however, because that is where the04	 04 FcFBI4
strobe Is connected. To determine whether the strobe is05	 05

	

p - p	_____ -- —
ASCII

KEYBOARD
STROBE	 DO

01
02

03 PORT
04 FFFAN
05
06 8255
07 P28

FIGURE 4-19 ASCII-encoded keyboard with strobe
connected to microcomputer port.

strobe. An example of a strobed data system such
as this is an ASCII-encoded computer-type keyboard.
Figure 4-19 shows how the parallel data lines and the
strobe line from such a keyboard are connected to ports
of a microcomputer. When a key Is pressed on the
keyboard, circuitry in the keyboard detects which key
is pressed and sends the ASCII code for that key out on
the eight data lines connected to port FFF8H. After the
data has had time to settle on these lines, the circuitry
in the keyboard sends out a key-pressed strobe, which
lets you know that the data on the eight tines is valid.
A strobe can be an active high signal or an active low
signal. For the example here, assume that the strobe
signal goes high when a valid ASCII code is on the
parallel data lines. As you can see In FIgure 4-19, we
have connected this strobe line to the least significant
bit of port FFFAH so that we can Input the strobe signal.

If we want to read the data from this keyboard, we Can't
do it at Just any time, We must wait for the strobe to go
high so that we know that the data we read will be valid,
Basically, what we have to do is look at the strobe signal
and test it over and over until it goes high. Figure 4-20a,

p. 86. shows how we can represent this operation with a
flowchart, and Figure 4-20b shows the pseudocode. We
want to repeat the read-strobe-and-test loop until the
strobe Is found to be high. Then we want to exit the loop
and read In the ASCII code byte. The basic REPEAT-
UNTIL structure is shown by the Indentation in the
pseudocode. Note that the read ASCII data action is not
part of this structure and is therefore not indented.

Implementing the Algorithm
with Assembly Language

Figure 4-20c shows the 8086 assembly language to
implement this algorithm. To read in the key.pressed
strobe signal. we first load the address of the port to

present, we need to check just this bit and determine
whether it is a I. Here are three different ways you can
do this.

The first way, shown in Figure 4-20c. is to AND the
byte in AL with the immediate number 01 H. Remember
that a bit ANDed with a 0 becomes a 0 (is masked). A
bit ANDed with a I is not changed. If the least significant
bit is a 0. then the result of the ANDing will be all 0's.
The zero flag ZF will be set to a I to indicate this. If the
least significant bit is a I. the zero flag will not be set
to a I because the result of the ANDing will still have a
1 in the least significant bit. The Jump If Zero Instruc-
tion, JZ, will check the state of the zero flag: if it finds
the zero flag set, It will jump to the label LOOK_AGAIN.
If the JZ instruction finds the zero flag not set (indicating
that the LSB was a 11, it passes execution on to the
instructions which read in the ASCII data.

Another way to check the least significant bit of. the
strobe word is with the TEST instruction instead of
the AND instruction. The 8086 TEST instruction has the
format TEST destination,source. The TEST instruction
ANDs the contents of the specified source with the
contents of the specified destination and sets flags
according to the result. However, the TEST instruction
does not change the contents of either the source or the
destination. The AND instruction, remember, puts the
result of the ANDIng In the specified destination.
The TEST instruction is useful if you want to set flags
without changing the operands. In the example program
in Figure 4-20c. the AND AL.O 11-I instruction could be
replaced with the TEST AL.OIH instruction.

Still another way to check the least significant bit of
the strobe byte is with a Rotate instruction. If you rotate
the least significant bit into the carry flag. you can use
a Jump if Carry or Jump if Not Carry instruction to
control the loop. For this example' program, you could
use either the ROR instruction or the RCR instruction,
To verify this, take a look at the discussions of these
instructions In Chapter 6. Assuming that you use the
ROR instruction, the check and jump instruction se-
quence would look like this:

LOOK...AGAIN:IN AL, DX
RORAL. I	 ;RotateLSBtntocarly
JNC LOOK_AGAIN: If 1,58 = 0. keep looking

For your programs you can use the way of checking a
bit that seems easiest in a particular situation.

To read the ASCII data. we first have to load the port
address. FFF8I-I. into the DX register. We then use the
variable .port input instruction IN AL.DX to copy the
ASCII data byte from the port to the AL register.

The main purpose of the preceding section was to show
you how you can use a Conditional Jump Instruction to
make the 8086 REPEAT a series of actions IJNTIL

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 	 85

C00E	 SEGMENT
ASSUME CS:CcOE
MOV WI, OFFFAH

100K_AGAIN: IN AL, OX
AND AL, 01
JZ LOOK AGAIN
MOV DX, OFFF8II
IN AL, DX

COOE	 ENDS
END

(C)

Point DX at strobe port
Read keyboard strobe
Mask estra bits and set flags
If strobe is low then keep looking
else point DX at data port
Read in ASCII code

the flags Indicate that some condition is present. The
following section shows another example of Implement-
ing the REPEAT-UNTIL structure. This example also
shows you how a register-based addressing mode is used
to access data in memory.

START

READ STROBE

ROBE

READ
ASCII CODE

FLOWCHART

(a)

REPEAT
READ KEYPRESSED STROBE

UNTIL STROBE 1
READ ASCII CODE FOR KEY PRESSED

PSEUDOCOOE

(6)

Operating on a Series of Data Items in
Memory—Another REPEAT-UNTIL Example

In many programming situations we want to perform
some operation on a series of data items stored in
successive memory locations. We might, for example.
want to read In a series of data values from a port and
put the values in successive memory locations. A series
of data values of the same type stored In successive
memory locations is often called an array. Each value
In the array Is referred to as an element of the array.
For our example program here, we want to add an
inflation factor of 031-I to each price in an eight-element
array of prices. Each price is stored In a byte location
as packed BCD (two BCD digits per byte). The prices
then are in the range of 1 cent to 99 cents. Figure
4-21 a shows a flowchart and Figure 4-2 lb shows a
pseudocode algorithm for the operations that we want
to perform. Follow through whichever form you feel more
comfortable with.

We read one of the BCD prices from memory, add the
Inflation factor to it, and adjust the result to keep it in
BCD format. The new value is then copied back to the
array, replacing the old value. After that, a check is
made to see whether all the prices have been operated
on. If they haven't, then we loop back and operate on
the next price. The two questions that may occur to you
at this point are, "How are we going to indicate In the
program which price we want to operate on. and how
are we going to know when we have operated on all of
the prices?" To indicate which price we are operating
on at a particular time, we use a register as a pointer.
To keep track of how many prices we have operated on,
we use another register as a counter. The example
program in Figure 4-21c shows one way in which the
algorithm for this problem can be implemented in
assembly language.

The example program in Figure 4-21c uses several
assembler directives, Let's review the function of these

2
3
4

6
7
8 0000
9

10 0000 BA FEFA
11 0003 EC
12 0004 26 01
1 •3 0006 74 FB
14 0008 BA FFF8
15 000B CC
16 000C
17

8086 PROGRAM F4-20C.ASH
;ABSTRACT	 Progroc to read ASCII code after a strobe signal

is sent from a keyboard
;REGISTERS	 Uses CS, DX, Al
;PORTS	 : Uses FFFAH - strobe signal input on ISB

FFF8I4 - ASCII data input port

FIGURE 4-20 Flowchart, pseudocode, and assembly language for reading
ASCII code when a strobe is present. (a) Flowchart. (b) Pseudocode, Cc) List file
of program.

86	 CHAPTER FOUR

(,STARJJ

GET A PRICE

[ADD INFLATION
FACTOR

[ADJUST RESULT
TOBCO

PUT RESULT
BACK IN ARRAY

FLOWCHART

(a)

REPEAT
GET A PRICE FROM ARRAY
ADD INFLATION FACTOR
ADJUST RESULT TO CORRECT BCD
PUT RESULT BACK IN ARRAY

UNTIL ALL PRICES ARE INFLATED
PSEUDOCODE

fbI

before describing the operation of the program instruc-
tions. The ARRAYS SEGMENT and ARRAYS ENDS direc-
tives are used to set up a logical segment containing the
data definitions. The CODE SEGMENT and CODE ENDS
directives are used to set up a logical segment which
contains the program instructions. The ASSUME
CS:CODE.DS:ARRAYS directive tells the assembler to
use CODE as the code segment and use ARRAYS for all
references to the data segment. The END directive lets
the assembler know that it has reached the end of the
program. Now let's discuss the data structure for the
program.

ThcstatementCOSTDB 20H.28H, 15H,26H,19F1.27H.
1 6H.29H in the program tells the assembler to set aside
successive memory locations for an eight-element array
of bytes. The array is given the name COST. When the
assembled program is loaded into memory to be run,
the eight memory locations will be loaded with the eight
values specified in the DB statement. The statement
PRICES DB 36H,55H,27H,42H.38H.41H,29ft39H sets
up another eight-element array of bytes and gives it the
name PRICES. The eight memory locations will be loaded
with the specified values when the assembled program
is loaded into memory. Figure 4-22, p. 88. shows how
these two arrays will be arranged in memory. Note that
the name of the array represents the displacement or
offset of the first element of the array from the start of

the data segment.
• The fIrst two instructidns. MOV AX.ARRAYS and MOV
DS,AX. initialize the data segment register as was

2
3
4
5
6
7 0000
8 0000
9

10 0008
11
12 0010
13
14 0000
15
¶6 0000
17 0003
18 0005
19 0009
20 000C
21 000E
22 0010
23 0011
24 0013
25 0014
26 0015
27 0017
28

SEGMENT
ASS(IIE CS:CODE, DS:ARRAYS
NOV AX, ARRAYS	 initialize data segment
NOV OS, AX	 register
LEA 8)1, PRICES)nitiaiize pointer
NOV CX, 000811	 Initialize counter
NOV AL, (8)1)	 Copy a price to AL
ADD AL, 0311	 Add inflation factor
DAA	 Make sure result is 8C0
NOV (8)11, AL	 Copy result back to neoory
iNC 8)1	 Point to nest price
DEC CX	 Decresent counter
JNZ DO_NEXT	 If not last, go get nest
ENDS
END START

Ic)

8086 PROGRAM	 F4-21C.ASII
;ABSTRACT : Program adds an inflation factor to a series of prices

in memory. It copies the new price over the old price.
;REGISTERS : Uses DS, CS, AX, 8)1, CX
;PORTS	 : None used

ARRAYS SEGMENT
20 28 15 26 19 27' 1, +
	 COST	 D8	 2011, 2811, 1511, 2611, 1911. 2711, 1611, 2911

29
36 55 27 42 38 41 29 +
	 PRICES	 D8	 3611, 5511, 2711, 4211, 3811, 4111. 2911, 3911

39
ARRAYS ENDS

CODE

88 0000s
	 START:

8E D8
80 it 0008r
89 0008
8A 07
	 D0_NETT

04 03
27
88 07
43
49
75 F5

CODE

FIGURE 4-21 Adding a constant to a series of values in memory. (a) Flowchart.
(b) Pseudocode. (C) List file of program.

IMPLEMENTING STANDARD PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 	 87

MEMORY

42 I-j 8XOFFSETOFOESIRED

	

27	 EL MENT IN PRICES

1
___f_STARTOFARRAYPRICES

I DISPLACEMENT OF START

	

19	 OF ARRAY PRICES

15

ARRAYS_HERE

	

SEGMENT8ASE — 20	 STARTOFARRAYCOST
OS • 3400H

FIGURE 4-22 Data arrangement in memory for "inflate
prices" program.

described for the example program in Ftgure 3-14. The
LEA mnemonic in the next Instruction stands for Load
Effective Address. An effective address, remember, is
the number of bytes from the start of a segment to the
desired data Item. The instruction LEA BX.PRICES
loads the displacement of the first element of PRICES
into the BX register. A displacement contained In a
register is usually referred to as an offset. If you take
another look at the data structure for this program in
FIgure 4-22. you should see that the offset of PRICES is
0008H. Therefore, the LEA BX,PRICES instruction will
load BX with 0008H. We are using BX as a pointer to
an element In PRICES. We will soon show you how this
pointer is used to Indicate which price we want to
operate on at a gIven time in the program.

The next instruction, MOV CX,0008H. loads the CX
register with the number of prices in the array. We use
this register as a counter to keep track of how many
prices we have operated on. After we operate on each
price, we decrement the counter by I. When the counter
reaches 0. we know that we have operated on all the
prices.

The MOV AL.IBXI instruction copies one of the prices
from memory to the AL register. Here's how it works.
Remember, the 8086 produces the physical address for
accessing data In memory by adding an effective address
to the segment base represented by the 16-bit number
in a segment register. A section in Chapter 3 showed
you how the effective address could be specified dlretly
In the Instruction with either a name or a number.
The Instructions MOV AX.MULTIPLICAND and MOV
AX.DSWORD PTR000OH: are examples •of this ad-
dresing mode. We also showed you that the effective
address can be contained In a register. The square
brackets around BX In the Instruction MOV AL.IBXI
Indicate that the effective address Is contained in the
BX register. In our example program, we used the LEA
BX.PRICES instruction to load tile BX register with the

offset of the first element in the array PRICES. The first
time the MOV AL,(BXI instruction executes, BX will
contain 0008H. the effective address or offset of the first
price in the array. Therefore, the first price will be Copied
Into AL.

The next instruction, ADD AL,03H. adds the immedi-
ate number 03H to the contents of the AL register. The
binary result of the addition will be left in AL. We want
the prices in the array to be in BCD form, so we have to
make sure the result Is adjusted to be a legal BCD
number. For example, if we add 03 to 29. the result In
AL will be 2C. Most people would not understand this
as a price, so we have to adjust the result to the
desired BCD number. The Decimal Adjust after Addition
Instruction DAA will automatically make this adjust-
ment for us. DAA will adjust the 2CH by adding 6 to the
lower nibble and the carry produced to the upper nibble.
The result of this in AL will be 32H. which is the result
we want from adding 03 to 29. Note that the DAA
Instruction works only on the AL register. For further
examples of DAA operation. consult the DAA Instruction
description in Chapter 6.

The INC BX Instruction adds 1 to the number in BX.
BX flOW Contains the effective address or offset of the
next price in the array. We like to say that }3X now points
to the next element in the array.

The DEC CX instruction decrements the Count we set
up in the CX register by 1. If CX contaIns 0 after this
decrement, the zero flag will be set to a 1. The JNZ
DO_NEXT checks the zero flag. If it finds the zero flag
set, it just passes execution Out of the structure to the
next mainline instruction. If it finds the zero flag not
set, the JNZ instruction will cause a jump to the labei
DO_NEXT. In other words, the 8086 will repeat the
sequence of instructions between the label and the JNZ
instruction until CX is counted down to zero. Each time
through the loop. BX will be incremented to point to the
next price in the array.

Still Another REPEAT-U Nil I Example

Using a pointer to access data items in memory is a
powerful technique that you will want to use in many
of your programs, so Figure 4-23 shows still another
example. In this example, we want to add a profit of 15
cents to each element of an array called COST and put
the result in the corresponding element of an array
called PRICES. The algorIthm for this example is

REPEAT
et an item from cost array

Add profit factor
Adjust result to correct BCD
Put result into price array

UNTIL all prices are calculated

The assembly language tmplementation of this algo-
rIthm Is very similar to that for the last example, except
for the way we use the pointers. In this example we need
to point to the same element In two different arrays. To
do this, we use the HX register to keep track of which
element we are currently accessing in the arrays. At the

88	 CHAPTER FOUR

2
3
4.
5
6
7
8 0000
9 0000

10
11 0008
12 0010
13
14 0000
15
16 0000
17 0003
18 0005
19 0008
20 0008
21 000F
22 0011
23 0012
24 0016
25 0017
26 0016
27 OO1A
28

8086 PROGRAII F4-23.ASl
;ASSTRACT : Program adds a profit factor to each element in a

COST array and puts the result in an PRICES array.
;REGISTERS	 Uses OS, CS. AX, BX, CX
;PORTS	 : None used

0015
	 PROFIT	 EQU	 15K	 profit = 15 cents

ARRAYS	 SEG$ENT
20 28 15 26 19 27 16
	

COST	 08 20K, 28H, 15K, 26K, 1911, 2711, 1614, 29K
29
08* (00)
	 PRICES 08 8 OUP(0)

ARRAYS	 ENDS

C00E	 SEG1ENT
ASS1)IE CS:CCCE, DS:ARRAYS

88 0000s	 START:	 NOV AX, ARRAYS	 InitiaLize data segment
8E D8	 NOV 05, AX	 ; register
89 0008	 NOV CX, 000811	 Initialize cotaiter
BR 0000	 NOV 8*, 0000K	 Initialize pointer
8A 87 0000r	 DO_NEXT: NOV AL, COST(BXI	 Get element (8*1 from COST
04 15	 ADD AL, PROFIT	 Add the profit to value
27	 DAA	 Decimal adjust result
88 87 0008r	 NOV PRICES(BXI, AL	 Store result in PRICES at (8*1
43	 INC 8*	 Point to next element in arrays
49	 DEC CX	 Decrement the counter
75 Fl	 JNZ DO_NEXT	 If not Last element, do again

C00E	 (lIDS
END START

FIGURE 4-23 List file of "price-calculating" program.

start of the program, then, we initialize BX as a pointer
to the first element of each array with MOV BX.0000H.
The instruction MOV AL.COSTIBXI then will copy the
first value from the array COST Into AL. The effective
address for this instruction will be produced by adding
the displacement represented by the name COST to the
contents of BX.

After the Addition and Decimal Adjust Instructions.
the Instruction MOV PRICESBXI,AL copies the result
of the addition to the first element of PRICES. The 8086
computes the effective address for this instruction by
adding the Contents of BX to the displacement repre-
sented by the name PRICES.

The L1X register Is Incremented, so that if CX has not
been decren-tented to zero. COSTTBXI and PRICESIBXI
will each access the next element ix the array when
execution goes through the DO_.NEXT loop again. A
programmer familiar with higher-level languages wuld
probably say that fiX is being used as an array index in
this example.

Another Look at 8086 Addressing Modes

The preceding examples showed you how a register can
be used as a pointer or index to access a sequence of
data Items in memory. While these examples are fresh
in your mind, we want to show you more about the 8086
addressing modes we Introduced you to in Chapter 3.

Figure 4-24. p. 90. Summarizes all the wa ys you can
tell the 8088 to calculate an effective address and a
physical address for accessing data in memory. In all

If,

cases, the physical address Is generated by adding an
effective address to one of the segment bases. CS.
SS, PS, or ES. The effective address can be a direct
displacement specified directly in the instruction, as.
for example, MOV AX.MULTIPLIER. The effective address
or offset can be specified to be in a register. as in the
Instruction MOV AL,IBXI. Also, the effective address can
be specified to be the contents of a register plus a
displacement included in the instruction. The instruc-
tion MOV AX,PRICESIBXI Is an example of this ad-
dressing mode. For this example. PRICES represents
the displacement of thestart of the arrayfrorn the segment
base, and fix represents the number of the element in the
array that we want to access. The effective address of the
desired element, then, is the sum of these two.

For working with more complex data structures such
as the array of records shown in Figure 4-25. p. 90. you
can tell the 8086 to compute an effective address by
adding The contents of BX or BP plus the contents of SI
or Dl plus an 8-bit or a 16-bit displacement contained in
the instruction. You can, forexample, use an instruction
such as MOVAL. PATIENTSIBXISII to access the balance
due field in the array of medical records shown in Figure
425. The name PATIENTS in this instruçliion represents
the displacement of the array PATIENTS from the start
of the data segment. The BX register holds the offset of
the start of the desired record in the array. The SI
register holds the offset of the Start of the desired field
in the record. To access the next record In the array.
you simply add a number equal to the length of the
record to the BX register. To access another field in a
record, you just change the value In the SI register.

I\IPLEMENTJNG STANDARD PROGRAM STRUCTURES IN 81Jl3t, ASSEMBLY LANGUAGE 	 89

SINGLE INDEX	 DOUBLE INDEX

	

BX	 '95	 SI'l

	

OR	 OR	 OR

	

BP	 BP	 01
ENCODED	 I

INSTRUCTION I	 *
IN THE	 OR

	

I	 SI	 EU

OR

	

LDI	 EFFECTIVE

IN THE	
{	

'OISPLACEMENT	
ADDRESS

EXPLICIT

INSTRUCTION
CS

OR

ASSUMED	 I	 55	 O
ORUNLESS

OVERRIDDEN I

OR
BY PREFIX	

[

DS	 BIU

ES

PHYSICAL ADOR

FIGURE 4-24 Summary of 8086 addressing modes.

When ,BX, St. or Dl Is used to contain all or part
of the effective address, the physical address will be
produced by adding the effective address to the data
segment base in DS. When HP is used to contain all or
part ol the effective address, the physical address will
be produced by adding the effective address to the stack
segment base in SS. For any of these four, you can use
a segment override prefix to tell the 8086 to add the
effective address to some other segment base. The
instruction MOV AL,CS:lBXl tells the 8086 to produce
a physical memory address by adding the offset In HX
to the code segment base instead of adding it to the data
segment base. An exception to this is that with a special
group of instructions called string instructIons, an offset

SEGMENT BASE
Name PATIENTS represents displacement of

/ .	 start of array of records from segment base

PATIENTS	 array of patient records start here

RECORD 1
TV N. BEER
1324 Down Street
PORTLAND, OR 97219
2/15/45
247 lb
S327.56

BX holds g ffset of ---------RECORD 2
desired record in array 	 iN A. RUNNER

17197 Hatton Road
Oregon City, OR 97045
6/ 30/4 1

SI holds offset of ---------145 lb
desired field in record	 50.00

RECORD 3

FIGURE 4-25 Use of double indexed addressing mode

in Dl will always be added to the extra segment base in
ES to produce the physical address.

The 8086 LOOP Instructions

In the second REPEAT-UNTIL example, we showed you
how to make a program repeat a sequence olinstructions
a specific number of times. To do this, you load the
desired number of repeats in a register or memory
location. Each time the sequence of instructions exe-
cutes. the count value in the register or memory location
is decremented by I When the count is decremented to
zero, the zeio flag 'sill 'e Set. You use a Conditional
Jump instruction to cneck this flag and to decide
whether to repeat the instruction sequence In the loop
again.

The need to perform a sequence of actions a specified
number of times in a program is so common that some
programming languages use a specific structure to
express it. This structure, derived from the basic WHILE-
DO, is called the FOR-DO loop. It has the form

FOR count = I to count = n DO
action
action

where rI is the number of times we want to do the
sequence of actions.

Ttie common need to repeat a sequence of actions a
specified number of times led the de'signers of the 8086
tO give it a group of Instructions which make this easier
for you. These instructions are the LOOP instructions.

INSTRUCTION OPERATION

The LOOP Instructions are basically Conditional Jump
instructions which have the format LOOP label. LOOP
instructions, however, combine two operations in each
instruction. The first operation is to decrement the CX

90	 CHAPTER FOUR

efficient than single instructions to do the same Job. In
LOOP	 Loop until CX = 0	 the next section we introduce you to instruction timing
LOOPE/LOOPZ	 loop if zero flag set 	 and show you how the LOOP instruction can be used to

and CX	 0	 produce a delay between the execution of two instruc-
LOOPNE/LOOPNZ Loop if zero flag not set 	 tions.

and CX * 0
)CXZ	 jump lf CX 0

FrGURE 4-26 8086 LOOP instructions.

register by 1. The second operation is to chec4c the CX
register and, in some cases, also the zero flag to decide
whether to do a Jump to the specified label. The simple
LOOP label instruction then can be used in place of the
DEC CX—JNZ label instructidn sequence we used In
Figure 4-2 Ic.

As with, the previously described Conditional Jump
instructions, the LOOP instructions can do only short
jumps. This means that the destination label must be
in the range of –128 bytes to + 127 bytes from the
instruction after the LOOP instruction.

As shown in Figure 4-26. there are two additional
forms of LOOP instructions. These Instructions check
the state of the zero flag as well as the value in the CX
register to determine whether to take the jump or not.
Shown in Figure 4-26 are the condition(s) checked by
each instruction to determine whether it should do the
jump. NE in the mnemonics stands for "not equal." and
NZ in the mnemonics stands for "not zero." Instruction
mnemonics separated by a "I" in Figure 4-26 represent
the same instruction.

The LOOP Instructions decrement the CX register but
do not affect the zero flag. This leaves the zero flag
available for other tests. The LOOPE/LOOPZ label in-
stnjction will decrement the CX register by I and jump
to the specified label If CX 0 and ZF = I. In other
words, program execution will exit from the repeat loop
if CX has been decremented to zero or the zero flag is
not set. This instruction might be used after a Compare
instruction, for example, to continue a sequence of
operations for a specified number of times or until
compared values were no longer equal.

The LOOPNE/LOOPNZ label instruction decrements
the CX register by 1. if CX 0 and ZF = 0, this
instruction will cause a jump to the specified label. In
other words, execution will exit from the loop if CX Is
equal to zero or the zero flag is set. This instruction
is useful when you want to execute a sequence of
instructions a fixed number of times or until two values
are equal. An example might be a program to read data
from a disk. We typically write this type of program so
that it attempts to read the data until the checksums
are equal or until 10 unsuccessful attempts have been
made to read the disk. Consult the descriptions for these
instructions in Chapter 6 for specific examples of hw
the LOOPE and LOOPNE instructions are used.

In summary, then. the LOOP instructions are useful
for implementing the REPEAT-UNTIL structure for those
special cases where we want to do a series of actions a
fixed number of times or until the zero flag changes

INSTRUCTION TIMING
AND DELAY LOOPS
The rate at which 8086 instructions are executed is
determined by a crystal-controlled clock with a frequency
of a few megahertz. Each instruction takes a certain
number of clock cycles to execute. The MOV register.
register instruction, for example, requires 2 clock cycles
to execu.te. and the DAA instruction requires 4 clock
cycles. The JNZ instruction requires 16 clock cycles if
it does the Jump, but it requires only 4 clock cycles tilt
doesn't do the Jump. A table in Appendix B shows the
number of clock cycles required by each instruction.
Using the numbers in this table, you can calculate how
long it takes to execute an instruction or series of
instructions. For example. if you are running an 8086
with a 5-MHz clock, then each clock cycle takes 11(5
MHz) or 0.2 p.s. An instruction which takes 4 deck
cycles, then, will take 4 clock cycles x 0.2 p.s/clock cycle
or 0.8 p.s to execute.

A common programming problem is the need to
introduce a delay between the execution of two instruC
ttons. For example, we might want to read a data value
from a port, wait 1 ms. and then read the port again. A
later chapter will show how you can use interrupts to
mark off time intervals such as this, but for now we will
show you how to use a program 1oop to do it.

The basic principle is to execute an instruction or
series of instructions over and over until the desired
time hr. elapsed. Figure 4-27a shows a program we
n,.a use to do this. The MOV CX.N instruction loads
the CX regIster with the number of times we want to
repeat the delay loop. The NOP instructions next in the
program are not required the KILL_TIME label could
be right in front of the LOOP instruction. In this case.
only the LOOP Instruction would be repeated. However.
we put the NOPs in to show you how you can get more
delay by extending the time it takes to execute the loop.

	

;	 Clock Cycles
MOVCX,N	 ;	 4

KILL_TIME: NOP	 ;	 3
NOP	 ;	 3
LOOP KILL_TIME	 ;	 17 or 5

()

C 1 =	 + N (CL) –12

C –C +1	 5000-4+12
1 0

=218=ODAH
CL	 23

lb)

state. LOOP instructions incorporate two operations in 	 FIGURE 4-27 Delay loop program and calculations. (a)

each instruction; therefore, they are somewhat more 	 Program. (b) Calculations.

- 14	 IMPLIMENTNG STANDARD PROGRAM STRUCTURES IN 8&t ASSEMBlY LANGUAGE

The LOOP KILLTIME instruction will decrement CX
an4, If CX is not down to zero yet, do a Jump to the label
KILL.TIME. The program then will cause the 8086
to execute the two NOP instructions and the LOOP
instruction over and over until CX is counted down to
zero. The number in CX will determine how long this
takes. Here's how you determine the value to put In CX
for a given amount of delay.

First you calculate the number of clock cycles needed
to produce the desired delay. if you are running your
8086 wIth a 5-MHz clock, then the time for each clock
cycle is 1/(5 MHz) or 0.2 p.s. Now, suppose that you want
to create a delay of I ms or 1000 p.s with a delay loop.
If you divide the 1000 p.s desired by the 0.2 p.s per clock
cycle, you get the number of clock cycles required to
produce the desired delay. For this example you need a
total of 1000/0.2 or 5000 processor clock cycles to
produce the desired delay. We will call this number CT
for future reference.

The next step Is to write the number of clock cycles
required for each instruction next to that instruction.
as shown in Figure 4-27a. Then you look at the program
to determine which instructions get executed only once.
The number of clock cycles for the instructions which
execute Only Once will only contribute to the total once.
Instructions which only enter, the calculation once are
often called overhead. We will represent the number of
cycles of overhead with the symbol C0 . In Figure 4-27a.
the only instruction which executes Just once 10 MOV
CX.N. which takes 4 clock cycles. For this example, then.
C, = 4.

Next you determine how many clock cyck required
for the loop. The two NOPs In the loop require a total of
6 clock cycles. The LOOP instruction requires 17 clock
cycles If it does the Jump back to KILL..TIME, but it
requires only 5 clock cycles when it exits the loop. The
jump takes longer because the instruction byte queue
has to be reloaded starting from the new address. For
all but the very last time through the loop, it will require
17 clock cycles for the LOOP Instruction. Therefore, you
can use 17 as the number of cycles for the LOOP
instruction and compensate later for the fact that the
last time it takes 12 cycles less. For the example program.
the number of cycles per loop C L = 6 + 17 or 23.

The total number of clock cycles delayed by the Ioo
is equal to the number of times the loop executes
multiplied by the time per loop. To be somewhat more
accurate, you can subtract the 12 cycles that were not
used when the last LOOP instruction executed. The total.
number ofclock cycles required for the example program
to execute is

CT = C0 + N(C L) - 12

To find the value for N for a desired amount of delay.
put in the r'equired CT . 5000 for this example, and solve
the result for N. Figure 4-27b shows how this is done.
The resultant value for N is 218 decimal or ODAH. This
is the number of times you want the loop to repeat, so
this is the value of N that you will load Into CX before
entering the loop.

With the simple relationship show!) In Figure 4-27b.

you can determine the value of N to put in a delay loop
you write, or you can determine the time a delay loop
written by someone else will take to execute.

If you can't get a long enough delay by counting down
a single register or memory location, you can nest delay
loops. An example of this nesting is

number of states
MOV BX. COUNTI; 4

CN'lDNl MOV CX. COUt; 4COUNTl)
CNTDN2:LOOP CNTDN2 ((17 x cOUNP2) - 12)COUNTI

DEXBX	 ;2{COUNTI)
JNZ CNTDNI	 16(COUNTI)— 12

The principle here is to load CX with COUNT2 and count
CX down COUNT! times. To determine the number of
states that this program section will take to execute.
observe that the LOOP instruction will execute COUNT2
times for each time CX is loaded with COUNT!. The
total number of states, then, is COUNT! times the
number of States for the last four Instructions plus 4,
for the MOV BX.COUNTI instruction. The best way to
approach getting vahtes for the two unknowns. COUNT!
and COUNT2. is to choose a value such as FFFFH for
COUNT2 and then solve for the value of COUNT1. A
couple of tries should get reasonable values for both
COUNT 1 and COUNT2.

Notes about Using Delay Loops for Timing

There are several additIonal factors you have to take into
account when determining the time that a sequence of
instructions will require to execute.

1. The BIU and the EU arc asynchronous. so for some
instruction sequences an extra clock cycle may be
required. For a given sequence of instructions the
added cycles are always the same, but Obviously
these cycles are not included in the numbers given
In Appendix B.

2. The number of clock cycles required to read a word
from memory or write a word to memory depends
on whether the first byte of the word is at an even
address or at an odd address. The 8086 will require
4 addItional clock cycles to read or write a word
located on an odd address.

3. The number of clock cycles required to read a byte
from memory or write a byte to memory depends on
the addressing mode used to access that byte. A
table at the start of Appendix B shws the number of
clock cycles that must be added kr each addressing
mode. According to Appendix B. the basic mem 8 to
reg 8 instruction requires 8 + iA clock cycles. The
IBXI addressing mode requires .i clock cycles, so the
instruction MOVAL.[BXI requires 8 + 5 or 13 clock
cycles to execute.

If a given microcomputer system is designed to
insert WAIT States during each memory access, this
will increase the number of clock cycles required for
each memory access, in Chapter 1 we discuss the
use of WAIT states.

92	 CHAPTER FOUR

in summaly, the calculations we showed you how to
do In the preceding section give you the approximate
time it will take a sequence of instructions to execute.
If you really need to know the precise time a sequence
of instructions requires to execute, the only way to
determine it is to use a logic analyzer or emulator to
measure the actual number of dock cycles.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
the following list, use the index to find them in the
chapter.

Defining a problem

Setting up a data structure

Making an initialization checklist

Masking using the AND instnction

Packed and unpacked BCD numbers

Debugging—breakpoints, trace, single step

Conditional (lags: CF. PF. AF. ZF. SF. OF

Unconditional JMP instructions
Direct and indirect near (intrasegment).jumps
Direct and Indirect far (intersegment) jumps
Short jumps

Conditional Jumps

Fixed- and variable-port Input/output instructions

Based and indexed addressing modes

1oop instruction

Processor clock cycles

Delay loops

REVIEW QUESTIONS AND PROBIEMS

1. DescrIbe the operation and results of each of the
following instructions, given the register contents
shown in Figure 4-28 (below question 3). include
in your answer the physical address or register that
each instruction will get its operands from and the
physical address or register that each instruction
will put the result in. Use the instruction descrip-
tions in Chapter 6 to help you. Assume that the
instructions below are independent, not sequential.
unless listed together under a letter.
a. ROL AX.CL	 d. ADD AX.IBXISI)
b. IN AL, DX?	 e. JMP 023A1-1
c. MOV CX.IBXI	 f. JMP BX

2. Construct the binary codes for the Instructions of
Questions Ia through if.

3. Predict the state of the six 8086 conditional flags
after each of the following instructions or group of
instructions executes. Use the register contents
shown in Figure 4-28. Assume that all flags are reset
before the instructions execute. Use the detailed
instruction descriptions in Chapter 6 to help you.
a. MOV AL,AH	 C. ADD CL.DH
b. ADD BL,CL	 d. OR CX,BX

	

CS 2000	 AX A407

	

DS 3000	 OX 2403

	

SS=4000	 CX 0002
ES	 3000	 D.X	 FFFA
SP FFFF
BP 0009
St = 4200
DI	 4300

FIGURE 4-28 Figure for Chapter 4 problems.

See ii you can find any errors in the following
instructions or groups of instructions.

a. CNTDOWN: MOV BL. 72H
DEC BL
JNZ CNTDOWN

b. ADD CX.AL
C. JMP BL
d. JNZIBX)

a. Write an algorithm for a program which adds
a byte number from one memory location to a
byte from the next memory location, puts the
sum in a third memory location, and saves the
state of the carry flag in the least significant bit
of a fourth memory location. Mask the upper 7
bits of the memory location where the carry is
stored.

b. Write an 8086 assembly language program for
this algorithm. Hints: Set up data declarations
similar to those in Figure 3-14. Use a Rotate
instruction to get the carry flag state into the.
LSB of a register or memory location.

c. What additional instructions would you have
to add to this program so that it correctly adds
2BCD bytes?

For each of the following programming problems, draw
a flowchart or write the pseudocode for an algorithm to
solve the problem. Then write an 8086 assembly lan-
guage program to implement the algorithm. If you have
an 8086 system available, enter and assemble your
source program, then load the object code for the pro-
gram into memory so that you canrun and test it. If the
program does not work correctly, use the single .step or
breakpoint approaches described earlier in this chapter
to help you debug it.

6. Convert a packed BCD byte to two ASCII characters
for the two BCD digits in the byte. For example.
given a BCD byte containing 57H (01010111 bi.
nary), produce the two ASCII codes 35H and 37H.

IMPLEMENTING STANDARO PROGRAM STRUCTURES IN 8086 ASSEMBLY LANGUAGE 	 93

7. In order to avoid hand keying programs into an
SDK-86 board, we wrote a program to send machine
code programs from an IBM PC to an SDK-86 board
through a serial link. As part of this program, we
had to convert each byte of the machine code
program to ASCII codes for the two nibbles in the
byte. In other words, a byte of 7AH has to be sent
as 37H, the ASCII code for 7, and 41H. the ASCII
code for A. Once you separate the nibbles of the
byte, this conversion Is a simple IF-THEN-ELSE
situation. Write an algorithm and assembly lan-
guage program section which does the needed
Conversion.

8. A common problem when reading a series of ASCII
characters from a keyboard is the need to ifiter out
those codes which represent the hex digits 0 to 9
and A to F. and convert these ASCII codes to the
hex digits they represent. For example, if we read
,in 34H. the ASCII code for 4. we want to mask the
upper 4 bIts to leave 04. the 8-bit hex code for 4. If
we read In 42H, the ASCII code for B, we want to
add 09 and mask the upper 4 bits to leave OB. the
8-bit code for hex B. If we read In an ASCII code
that is not in the range of 30H to 39H or 41H to
46H, then we want to load an error code of FFH
instead of the hex value of the entered character.
Figure 4-29 shows the desired action next to each
range of ASCII values. Write an algorithm and
an assembly language program which implements
these actions. Hint: A nested IF-THEN-ELSE struc-
ture might be useful.

ASCII

OOH-,
J-	 ERROR

2FH -

30H -
k	 HEX 0-9

39H

3*41 -
i-	 ERROR

40H J

41H -
i-	 HEX A-F

46H -

47H -
j—	 ERROR

7FH J

FIGURE 4-29 ASCII chart for Problem 8.

9. Compute the average of 4 bytes stored in an array
in memory.

10. Compute the average of any number of bytes in an
array in memory. The number of bytes to be added
is in the first byte of the array.

II. Add a 5-byte number in one array to a 5-byte
number in another array. Put the sum in another
array. Put the state of the carry flag in byte 6 of the
array that contains the sum. The first value in each
array is the least significant byte of that number.
Hint: See Figure 4-23.

12. An 8086-based process control system outputs a
measured Fahrenheit temperature to a display on
its front panel. You need to write a short program
which converts the Fahrenheit temperature to Cel-
sius so that the system can be sold in Europe. The
relationship between Fahrenheit and Celsius is
C = (F - 32)5/9. The. Fahrenheit temperature will
always be in the range of 50 to 250. Round the
Celsius value to the nearest degree.

13. An ASCII keyboard outputs parallel ASCII + parity
to port FFF8H of an SDK-86 board. The keyboard
also outputs a strobe to the least significant bit
(DO) of port FFFAH. (See Figure 4 . 19.) When you
press a key, the keyboard outputs the ASCII code
for the pressed key on the eight parallel lines and
outputs a strobe pulse high for 1 ms. You want to
poll the strobe over and over until you find I t high.
Then you want to read in the ASCII code, mask the
parity bit (D7), and store the ASCII code In an array
in memory. Next, you, want to poll the strobe over
and over again until you find it low. When you find
the strobe has gone low, check to see if you have
read in 10 characters yet. If not, then go back and
wait for the strobe to go high again. If 10 characters
have been read in, stop.

14. a Write a delay loop which produces a dehy of
500 .s on an 8086 with a 5-MHz clock.

b. Write a short program which outputs a 1-kHz
square wave on DO of port FF'FAH. The basic
principle here Is to output a high. wait 500 p.s
(0.5 ms). output a low, wait 500 p.s. output a
high. etc. Remember that, before you can Out-
put to a port device, you must first initialize it
as in Figure 4-1 8a. If you connect a buffer such
as that shown in Figure 8-23 and a speaker to
DO of the port, you will be able to hear the tone
produced.

94	 CHAPTER FOUR

Procedures,

The last chapter showed you how quite a few of the 8086
instruction6 work and how jump instructions are used
to implement IF-THEN-ELSE. WHILE-DO, and REPEAT-
UNTIL program structures. The first section of this
chapter Introduces you to the 8086 string Instructions,
which can be used to repeat some operations on a
sequence of data words In memory. The major point of
this chapter. however, is to show you how to write and
use subprograms called procedures. A final section of
the chapter shows you how to write and use assembler
macros.

OBJECTIVES
At the conclusion of this chapter, you should be able to:

I. Use the 8086 string instructions to perform a variety
of operations on a sequence ofdata words In memory.

2. Describe how a stack is initialized and used in 8086
assembly language programs which call procedures.

3. Write an 8086 assembly language program which
calls a near procedure.

4. Write an 8086 assembly language program which
calls a far procedure.

5. Write, assemble, link, and run a program which
consists of more than one assembly module.

6. Write and use an assembler macro.

THE 8086 STRING INSTRUCTIONS

Introduction and Operation

A senrtg isa series of bytes or words stored in successive
memory locations. Often a string consists of a series oi
ASCII character codes. When you use a word processor
or text editor program, you are actually creating a string
of this sort as you type in a series of characters. One
important feature of a word processor is the' aJ.i 1 ity to
move a sentence or group of sentences from one place
In the text to another. Doing this involves moving a
siring of ASCII characters from one place in memory to
another. The 8086 Move String instruction. MOVS.
allows you to do operations such as this very easily.

Another important feature of most word processors is
the ability to search through the text looking for a given
word or phrase: The 8086 Compare String instruction.
CMPS. can be used to do operations of this type. In a
similar manner, the 8086 SCAS instruction can be used
to search a sUing to see whether it contains a specified
character. A couple of examples should help you see how
these instructions work.

MOVING A STRING

Suppose that you have a string of ASCII characters In
successiv memory locations in the data segment. and
you want to move the string to some new sequence ol
locations in the data segment. To help you visualize
this, take a look at the strings we Set U in the data

segment in Figure 5 . lb, p. 96. to test our program.
The statement TEST_MESS DB 'TIS TIME FOR A

NEW HOME' sets slde 23 bytes of memory and gives
the first memory location the name TEST_MESS. This
statement will also cause the ASCII codes for the letters
enclosed In the single quotes tobe written in the reserved
memory locations when the program Is loaded in memory
to be run. This array or string then will contain 54H.
49H, 53H, 20H. etc. The statement DB 100 DUP(?l will
set aside 100 memory locations, but the DUP(?) in the
statement tells the assembler not to initialize these 100
locations. We put these bytes in to represent the block
of text that we are going to move our string over.
The statement NEW_LOC DB 23 DUP(0) sets aside 23
memory locations and gives the first byte the name
NEW_LOC. When this program is loaded In memory to
be run, the 23 locatIons will be loaded with 00 as
specified by the DUPIO) in the statement. To help you
visualize this. Figure 5-la shows a memory map for
this data segment. Now that you understand the data
structure for the problem. the next step is to write an
algorithm for the program.

The basic pseudocode algorithm shown here for the
operations you want to performdoesn't really help you
see how you might implement the algorithm In assembly
language.

RE PEA F
MOVE BYTE FROM SOURCE STRING

TO DESTINATION STRING
UNTIL ALL BYTES MOVED

95

In Chapter 3 we introduced you to the use of pointers
to access data in sequential memory locations, so your
next thought might be to expand the algorithm as shown
next

INrnALIZE SOURC POINTER, SI
INITIALIZE DESTINATION POINTER. DI
INITIALIZE COUNTER. CX

23 bytes initiaLized	 00
to zero
Start of NEW_LOC --. 00

Start of undefined
data block	 --

53	 ASCII S

49	 ASCII I
Start of
TEST_MESS	 --	 54	 ASCII T

I')

REPEAT .
COPY BYTE FROM SOURCE TO DESTINATION
INCREMENT SOURCE POINTER
INCREMENT DESTINATION POiNTER
DECREMENT COUNTER

UNTIL COUNTER 0

We often describe an algorithm in general terms at first
and then expand sections as needed to help us see how
the algorithm Is implemented In a specific lsnguage. In
the expanded algorithm you can see that as part of the
Initialization list you need to initialize the two pointers
and a counter. The REPEAT-UNTIL loop then consists
of moving a byte, incrementing the pointers to point
to the source and destination for the next byte, and
decrementing the counter to determine whether all the
bytes have been moved.

As it turns out, the single 8086 string instruction.
MOVSB. will perform all the actions in the REPEAT-
UNTIL ioop. The MOVSB instruction will copy a byte
from the location pointed to by the SI register to a
location pointed to by the DI register. It will then
automatically increment St to point to the next source
location, and increment DI to poInt to the next destina-
tion location. Actually, as we will show you soon, we can
specify whether we want SI and Dl to increment or
decrement. If you add a special prefix called the repeal

2
3
4
5
6
7 0000
8 0000
9

10
11
12 0017
13 0078
14 0092
15
16 0000
17
18
19 0000
20 0003
21 0005
22 0007
23 0008
24 000F
25 0012
26
27 0013
28
29 0015
30

8086 PROGRAM F5-01.ASM
;ABSTRACT : Program ves a string from the Location TEST_HESS

to the location NEW bC.
;REGISTERS	 Uses CS, OS, ES, SI, DI, AX, CX
;PORTS	 None used

DATA SEGMENT
54 49 53 20 54 49 40 * 	 TEST_MESS DR TIS TIME FOR A NEW H4E' 	 String to move
45 20 46 4F 52 20 41 *
20 4E 45 57 20 48 4F •
40 45
64(?')	 08 100 DUP(?)	 Stationary block of text
17*(00)	 NEW LOC	 DR 23. DUP(0)	 String destination

DATA ENDS

C00E SEGMENT
ASSISIE CS:COGE, DS:DATA, ES:OATA

88 0000s	 START:MOV AX, DATA	 Initialize data segment register
8E08	 MOVDS, AX
8E CO	 MOV ES, AX	 Initialize extra segment register
80 36 0000r	 LEA Si. TEST_MESS	 Point SI at source string
80 3E 0078r	 LEA DI, NEW_bC	 Point DI at destination Location
89 0017	 MOV CX, 23	 Use CX register as counter
FC	 CLO	 Clear direction flag so pointers autoincement

after each string element is moved
F3' A4	 REP MOVSB	 Move string bytes until all moved

COGE ENDS
END START

lbl
FIGURE 5-1 Program for moving a string from one location to another in
memory. (a) Memory map. (b) Assembly language program.

96	 CHAPTER FIVE

prefix in front of the MOVSB instruction, the MOVSB
instruction will be repeated and CX decremented until
CX is counted down to zero. In other words, the REP
MOVSB Instruction will move the entire string from the
source location to the destination location If the pointers
are properly initialized.

In order for the MOVSB instruction to work correctly.
the source Index register. SI. must contain the offset of
the start of the source string, and the destination index
register. Dl. must contain the offset of the start Cf the
destination location. Also, the number of string elements
to be moved must be loaded Into the CX register.

As we said previously, the string instructions will
automatically increment or decrement the pointers after
each operation, depending on the State of the direction
flag DF. If the direction flag is cleared with a CLI)
instruotion, then the pointers in SI and DI will automati-
cally bç incremented after each string operation. If the
direction flag is set with an STD instruction, then the
pointers in SI and DI will be automatically decremented
after each string operation. For this example, it is easier
to initialize the pointers to the starting offsets of each
string and increment the pointers after each operation.
so you will include the CLI) Instruction as part of the
initialization.

Figure 5-lb shows how this algorithm can be imple-
mented in assembly language. The first two MOV instruc-
tions in the program initialize the data segment register.
The next instruction initializes the extra segment regis-
ter. This is necessary because for string instructions.
an offset In Dl is added to the segment base represented
by the number in the ES register to produce a physical
address, If DS and ES are initialized with the same
value, as we did with the first three instructions in this
program, then SI and DI will point *0 locations in the
same segment.

The next step in the program is to load SI with the
effective address or offset of the first element in the
source string. In the example we used the LEA Instruc-
tion, but an alternative way to do this Is with the
instruction MOV SI,OFFSET TEST_MESS. The DI regis-
ter is then initialized to contain the effective address or
offset of the first destination location.

Next we load the CX register with the number of bytes
in the string. Remember. CX functions as a counter to
keep track of how many string bytes have been moved
at any given time. Finally, we make the direction flag a
zero with the Clear Direction Flag instruction. CLI).
This will cause both SI and DI to be automatically
incremented after a string byte Is moved.

When the Move String Byte instruction. MOVSB,
executes, a byte pointed to by SI will be copied to the
location pointed to by DI. SI and Dl will be automatically
incremented to point to the next source and the next
destination locations. The count register will be auto-
matically decremented. The MOVSB instruction by itself
will Just copy one byte and update SI and DI to point to
the next locations. However, as we said before, the repeat
prefix. REP, will cause the MOVSB to be executed and
the CX to be decremented over and over again until the
CX register is counted down to zero. Incidentally, when
the program is coded, the 8-bit code for the REP prefix.

11110011. is put In the memory location before the code
for the MOVSB instruction.

After the MOVSB instruction is finished, SI will be
pointing to the location after the last source string
byte. DI will be pointing to the location after the last
destination address, and CX will be zero.

The MOVSW instruction can be used to move a string
of words. Depending on the State of the direction flag.
SI and DI will automatically be incremented or decre-
mented by 2 after each word move. If the REP prefix is
used. CX will be decremented by I after each word move.
so CX should be initialized with the number of words
in the string.

As you can see from this example. a single MOVSB
instruction can cause the 8086 to move up to 65.536
bytes from one location in memory to another. The
string instruction Is much more efficient than using a
sequence of standard instructions, because the 8086
only has to fetch and decode the REP MOVSB instruction
once! A standard instruction sequence such as MOV.
MOV. INC. INC. LOOP. etc., would have to be fetched
and decoded each time around the loop.

USING THE COMPARE STRING BYTE
TO CHECK A PASSWORD

For this program example, suppose that we want to
compare a user-entered password1with the correct pass-
word stored in memory. If the passwords zlo not match,
we want to sound an alarm. If the passwoqts match, we
want to allow the user access to the computer and
continue with the mainline program. Figure 5-2. p. 98.
shows how we might represent the algorithm for this
with a flowchart and with pseudocode. Note that we
want to terminate the REPEAT-UNTIL when either the
compared bytes do not match or we are at the end of
the string. We then use an Il'-THEN-ELSE structure to
sound the alarm if the compared strings were not equal
at any point. If the strings match, the IF-THEN-ELSE
Just directs execution on to the main program.

To implement this algorithm in assembly language.
we probably would first expand the basic structures as
shown in Figure 5-2c. The first action in the expanded
algorithm is to initialize the port device for output. We
need to have an output port because we will turn on the
alarm by dutputting a 1 to the alarm control Circuit.
Next we need to initialize a pointer to each string and a
counter to keep track of how many string elements have
ten compared. The REPEAT-UNTIL shows how we will
use the pointer and counter to do the compare.

Figure 5-3. p. 99. shows how the Compare String in-
struction. CMPS. can be used to help translate this algo-
rithm to assembly language. As a review, first lets look at
the data structure for this program. The statement PASS-
WORD DBThIL-SAFE sets aside S bytes cf memoey and
gives the first memory location the name PASSWORD.
Thisstatementalsoinitializestheeight memorylocations
with the ASCII codes for the letters FAILSAFE. The ASCII
codes will be 4611.4111.4911. 4C11, 53H, 4111. 46H, 4511.

When an assembler reads through the source code for
a program, it uses a location counter to keep track of
the offset of each item in a segment. A S is used to
symbolically represent the current value of the locatio

STRINGS, PROCEDURES, AND MACROS	 97

START

COMPARE
BYTES

NO	 BYTES
EQUAL

YES

LAST	 NO

YES

BYTES	 YES
EOU'-

NO

SOUND
ALARM

STOP

NEXT MAINLINE
INSTRUCTION

('I

REPEAT
COMPARE SOURCE BYTE WITH DESTINATON BYTE

UNTIL (BYTES NOT EQUAL) OR (END OF STRING)
IF BYTES NOT EQUAL THEN

SQUND ALARM
si-op

ELSE 00 NEXT MAINLINE INSTRUCTION

(b(

INITIALIZE PORT DEVICE FOR OUTPUT
INITIALIZ SOURCE POINTER —SI
INITIALIZE DESTINATION POINTER - DI
INITIALIZE COUNTER - CX
REPEAT

COMPARE SOURCE BYTE WITH DESTINATION BYTE
INCREMENT SOURCE POINTER
INCREMENT DESTINATION POINTER
DECREMENT, COUNTER

UNTIL (STRING B'TES NOT EQUAL) OR (CX 0)
IF STRING BYTES NOT EQUAL THEN

SOUND A LARM
STOP

ELSE 00 NEXT MAINLINE INSTRUCTION

(ci

FIGURE 5-2 Flowchart and pseudocode for comparing
strings program. (a) Flowchart, (6) Inilial pseudocode.
(c) Expanded pseudocode.

counter at any point. The statement STR_LENGTH
EQU (8-PASSWORD) in the data segment then tells the
assembler to compute the value for a constant called
STRJ..ENOTH by subtracting the offset of PASSWORD
from the current value in the location counter. The
value of STR.J..ENGTH will be the length of the string
PASSWORD. Note that the EQU statement must be in
the data segment immediately after the password array
so that the location counter contains the desired value.
As you will see later, this trick with the S sign allows you
to load the number of string elements in (X symbolically.
rather than having to manually count the number. This
trick has the further advantage that if the password Is
changed and the program reassembled, the instruction
that loads CX with the string length will automatically
Use the new value.

The statement INPUT_WORD DB 8 DUP(0) will set
aside eight memory locations and assign the name
INPUT_WORD to the first location. The DUP(0) n the
statement tells the assembler to put OOH In each of these
locations. We assume that a keyboard Interface program
section will load these locations with ASCII codes read
from the keyboard as a user enters a password. We like
to initialize locations such as this with zeros, so that
during debugging we can more easily tell If the keyboard
section correctly loaded the ASCII codes for the pressed
keys in these locations.

Now let's look at the code segm.ent section of the
program. The ASSUME statement tells the assembler
that the instructions will be in the segment CODE. It
also tells the assembler that any references to the data
segment or to the extra segment will mean the segment
DATA. Remember that when you are using string in-
structions, you have to tell the assembler what to assume
about the extra segment. because with string instruc-
tions an offset in DI Is added to the extra segment base
to produce . the physical address.

The first three MOV statements In the program initial-
ize the data and extra segment registers. Since we
initialize DS and ES with the same values, both SI and
DI will point to locations n the segment DATA. The next
three instructions Initialize port P25 of an SDK-86
board as an output port.

LEA SI.PASSWORD loads the effective address or offset
of the start of the FAILSAFE string Into the SI register.
Since PASSWORD is the first data Item in the segment
DATA. SI will be loaded with 0000H. LEA DI.IN-
PUT_WORD loads the effective address or offset of the
start of the INPUT_WORD string into the DI register.
Since the offset of INPUT_WORD is 0008H. Dl will be
loaded with this value. The MOV CX.STR_LENGTH
Statement uses the EQU we defined previously to initial-
ize CX with the number of bytes in the string. The Clear
Direction flag instruction tells the 8086 to automatically
increment SI and Dl after two string bytes are compared.

The CMPSB Instruction will compare the byte pointed
to by SI with the byte pointed to by Dl and set the
flags according to the result. It wtll also Increment the
pointers. SI and DI. to point to the net string elements.
The REPE prefix in front of this instruction tells the
8086 to decrement the CX register after each compare,
and repeat the CMPSB instruction If the compared bytes

18	 CHAPTER FIVE

2
3
4
5
6
7 0000
8 0000
9

10
11 0008
12 0010
13
14 0000
15
16 0000
17 0003
18 0005
19 0007
20 000A
21 000C
22 0000
23 0011
24 0015
25 0018
26 0019
27 0018
28 0010
29 0020
30 0022
31 0025
32 0026
33 0027
34 0028
35

46 41 49 4C 53 41 46
45

0008
08* (00)

88 0000s
8E 08
8E CO
BA FFFE
BO 99
EE
80 36 0000r
81) 3E 0008r
B9 0008

F3 *6
75 03
EB 08 90
80 01
BA FFFA
EE
F4
90

6086 PROGRAM F5-03.ASM
;ABSTRACT : This progra inputs a password arid sot,,ds an alarm

if the password Is incorrect
;REGISTERS	 Uses CS, DS, ES, AX, DX, CX, SI, DI
;PORTS	 Uses FFFAH - Port 2B on SDK-86,for aLarm output

DATA SEGMENT
PASSWORD	 08	 'FAILSAFE'	 Password

SIR_LENGTH EQU (S PASSWORD) Coeçute Length of string
INPUT_WORD 08 8 DUP(0) 	 Space for user password input

DATA ENDS

CE SEGMENT
ASSI,54E CS:C(X)E, DS:DATA, ES:DATA

NOV AX, DATA
NOV DS, AX	 Initialize data segment register
NOV ES, AX	 Initialize extra segment register
NOV DX, OFFFEN	 ; These next three instructions
NOV AL, 99H	 set up an output port on
CUT DX, AL	 the SDK-86 board
LEA SI, PASSWORD	 Load source pointer
LEA Dl, INPUT_WORD	 Load destination pointer
NOV CX, SIR_LENGTH 	 Load counter with password Length
CLD	 Increment DI & SI

REPE	 CNPSB	 Ccmpare the two string bytes
JNE SCUND_ALARM	 If not equal, sound alarm
JNP O	 else continue

SIXJND_ALARM:MOV AL, 01 	 To sound alarm, send a 1
NOV DX, OFFFAH	 to the output port whose
CUT DX, AL	 address is in DX
lILT	 ; arid HALT.

OX:	 NOP	 Program continues if password is OK
C00E	 ENDS

END

1IGUR 5-3 Assembly language program br comparing strings.

were equal ar'.d CX is not yet decremented down to zero.
As we mentioned before, when this Instruction is coded.
the code for the prefix will be put In memory before the
code for the CMPSB instruction.

If the zero flag Is not set when execution leaves the
repeat loop, then we know that the two strings are not
equal. This means that the password entered was not
valid, so we want to sound an alarm. The JNE SOUND_
ALARM will check the zero flag and. ifit is not set, do a
jump to the specified label. If the zero flag is set.
indicating a valid password, then execution falls through
to the JMP OK instruction. This JMP instruction simply
jumps over the instructions which sound the alarm and
stop the computer.

For this example. we assume that the alarm control
is connected to the least significant bit of port FFFAI-1
and that a I output to this bit turns on the alarm. The
MOVAL,Ol instructio; loads a I in the L513 of AL. The
MOV DX.OFFFAH instruction points DX at the port
that the alarm is connected to. and, the OUT DX.AL
instruction copic's this byte to port FFFAFI. Finattv. the
LILT instruction stops the computer. An interrupt or
reset will he required to get it started again.

As the preceding examples show, the string instruc-
ions make it cciv eas y to implement sonic corn itonly

needed REPEAT-UNTIL algorithms. Some of the pro-
gramming problems at the end of the chapter will give
you practice with MOVS, CMPS, and SCAS Instructions.

WRITING AND USING PROCEDURES

Introduction

Often when writing programsyou will find that you need
to use a particular sequence of instructions at several
different points in a program. To avoid writing the
sequence ol instructions in the program each time you
need them, you can write the sequence as a separate
"subprogram called a procedure. Each time you need
to execute the sequence of instructions contained in the
procedure, you use the CALL instruction to send the
8086 to the starting address of the procedure in memory.
Figure 5-4a. p. 100. shows in diagram form how a CALL.
instruction causes execution to go from the mainline
program to a procedure. A RET instruction at the
end of the procedure returns execution to the next
instruction in the mainline. As shown in Figure 5-4b.
procedures can even be "nested.' This means that
one procedure calls another procedure as part of Its
instruction sequence. Follow the arrows in Figure 54b

- 15	 STRINGS, PROCEDURES, AND MACROS 	 '99

MAIN

LEVEL 1

LEVEL 2

MAINLINE OR
CALLING PROGRAM

PROCEDURE
TRUCTIONS

CALL

NEXT MAINLtNE
INST AUCTION

level of the hierarchy. This approach has the added
advantage that a person caji read the mainline pluglalli
to get an overview of what the program does and then
work down into the procedures to see the amount of
detail needed at a particular point. Also, tested and
debugged procedures can be used in writing new pro.
grams. Now that you know what procedures are used
for, we will discuss the 8086 CALL and RET.

MAINLINE
INSTRUCTIONS

LOWER LEVEL
PROCEDURE !ROCEDURE

CALL ' CALL
NEXT MAINLINE

INSTRUCTION

RET	 RET

(hi

FIGURE 5-4 Program flow to and from procedures. (a)
Single procedures. (b> Nested procedures.

to see how this works. Now, before we get into the details
of how to write and use procedures, we need to discuss
another reason we use procedures In programs.

Recall from Chapter 2 the top-down desla approach
to solving a programming problem. In this approach.
the problem is carefully defined, and then the overall job
is broken down into modules. Each of these modules Is
broken down into smaller modules. The division process
is continued until the algorithm for each module is
clearly obvious. Figure 5-5 shows an example of how
this modular structure can be represented in diagram
form. A diagram such as this Is often called a hierarchi-
cal chart. The point of all this is to break a large
problem down into manageable-size pieces which can be
Individually written, tested, and debugged. The individ-
uai modules are usually written as procedures-and called
from a mainline program which implements the highest

The 3086 CALL and RET Instructions

As shown In Figure 5-4, a CALL Instruction in the
mainline program loads the instruction pointer and in
some cases also the code segment register with the
starting address of the procedure, The next instruction
fetched will be the first instruction of the procedure. At
the end of the procedure, a RET instruction sends
execution back to the next instruction after the CALL
in the mainline program. The RET instruction does this
by loading the Instruction pointer and. If necessary, the
code segment register with the address of the next
instruction after the CALL instruction.

The question that may occur to you at this point Is,
"If a procedure can be called from anywhere In a program.
how does the RET instruction know where to return
execution to?" The answer to this question is that when
a CALL instruction executes, it automatically stores the
return address In a special section of memory called the
stack. A later section will introduce you to how the 8086
stack works. For now, let's take a closer iook at the 8086
CALL and RET instructions.

THE CALL INSTRUCTION OVERVIEW

As we said previously, the 8086 CALL Instruction per-
forms two operations when it executes. First, it stores
the address of the Instruction after the CALL instruction
on the stack. This address is called the return address
because it is the address that execution will return to
after the procedure executes. If the CALL is to a proce-
dure in the same code segment, then the call is near,
and only the Instruction pointer contents will be saved
on the stack. If the CALL is to a procedure in another
code segment, the call Is far. Iii this case, both the
instruction pointer and the code segment register con-
tents will be saved on the stack.

FIGURE 5-5 Hierarchical chart for inventory update program.

100	 CHAPTER FIVE

The second operation of the CALL instructiOn Es to
change the contents of the instruction pointer and, in
some cases, the contents of the code segment register
to contain the starting address of the procedure. This
second function of the CALL instruction ts very similar
to the operation of the JMP instructions we discussed
in Chapter 4.

For most of your programs. you will simply call proce-
dures by name with an instruction such as CALL DELAY.
The DELAY in this instruction represents a label you
put next to the first instruction of the procedure. This
form of CALL instruction is referred to as direct because
the destination address is specified directly in the in-
struction. As with the JMP instructions, however, the
destination address for a CALL can be specified in several
different ways. For reference. Figure 5-6u shows the
coding formats for the four forms of the 8086 CALL
instruction. The differences among these four forms are
in the way they tell the 8086 to get the starting address
for the procedure.

DIRECT WITHIN-SEGMENT NEAR CALL

The first form, direct within-segment near call, tells the
8086 to produce the starting address of the procedure
by adding a 16-bit signed displacement contained in the
instruction to the contents of the instruction pointer.
This is the same process as we described for the direct
within-segment near JMP instruction in Chapter 4.
With this Instruction, the starting address of the proce-
dure can be anywhere In the range of -. 32,768 bytes to
+ 32.767 bytes from the address of the instruction after
the CALL. If you are hand coding a program. you
calculate the displacement by counting from the address
of the instruction after the CALL to the starting address
of the procedure. If the procedure is in memory before
the CALL instruction, then the displacement will be
negative. In this case you represent the displacement in
16-bit. 2's complement sign-and-magnitude form just
as you do for backward JMP Instructions. If you are
using an assembler, the assembler will automatically
calculate the displacement from the instruction after
the CALL to a label you put at the start of the procedure.

THE INDIRECT WITHIN-SEGMENT NEAR CALL

The Indirect within-segment CALL instruction is also a
near call. When this form of CALL executes. the instruc-
tion pointer is replaced with a 16-bit value from a
specified register or memory location. As indicated by
the MOD-RIM byte in the coding template. the source of
the value can be any of the eight 16-bit registers or a
memory location specified by any one of the 24 ad-
dressing modes shown in Figure 3-8. This form of-
CALL instruction can be used to choose one of several
procedures based on a computed value. The instruction
CALL BP. for example. will do a near call to the offset
contained In BP In other words, the value in BP will be
put in the instruction pointer. The instruction CALL
WORD PTR 13X1 will get the new value for the Instruction
pointer from a memory location pointed to by BX.

CALL = Call

Within segment or group. IP relative

OHi

o_ C	 O

(8	 19	 UP'— IP+Dtnpi6.—ISP) .-
Iin6

Within segment or group. Indirect

III_

	

Op.od.	 Ciokn	 Oçenauio..

Ff	 16	 P — Rnllb—USP) — return Irnk
PP	 21 -.(A	 UP .- Mnrrri6—USP) — return link

Inter-segment or group. Direct

Opo	 (IndUn	 OpenMio

9A	 28	 CS.—ue'ar

Inter-segment or group. Indirect

____	 o "a' L0I&I1t
Opod	 CIodt	 Openailo.

	

PP	 37-tEA	 cS—ue8barn
IP .-

(.al

RET = Return from Subroutine

Opunde	 CIokt	 Op.nailo.0

	

Cs	 B	 inlra'SeVfleflt return

	

CB	 18	 inter-wgmnnrl return

Return and add constant to SP

nde Joarai

Opeode	 Ciorko	 Optio.r

	

C 2	 11	 Inr,ase5rneflt ret and add

	

CA	 17	 nrer.sflrfleflr ret and add

Ib)

FIGURE 5-6 8086 CAI.L and RET instruction formats. (a)

CALL. (b) RET. (Intel Corporation)

THE DIRECT fNTERSCMENT FAR CALL

The direct intersegment far call is used when the proce-
dure is in a segment with a different name from that
where the CALL is located. If the procedure is in another
segment. you have to change both the instruction

STRINGS, PROCEDURES, AND MACROS 	 101

pointer and the code segment register to get to it. For
this form of the CALL instruction, the new value for the
instruction pointer is written in as bytes 2 and 3 of the
instruction code. Note that the low byte of the new IF'
value is written beforc the high byte. The new value for
the code segment register is written in as bytes 4 and 5
of the instruction code. Again the low byte is written
before the high byte. A program example later in this
chapter shows you how to write your programs so that
an assembler can find a procedure label in another
segment.

THE INDIRECT INTERSEGMENT FAR CALL.

This form of the CALL instruction replaces the instruc-
tion pointer and the code segment register Contents
with two 16-bit values from memory. Since two 16-bit
values are needed, the values Cannot come from a
register. The MOD-RIM byte in the instruction is used
to speci the addressing mode for the memory location
where the 8086 goes to get the new values. The first
word from memory is put in the instruction pointer.
and the second word from memory is put in the code
segment register. The instruction CALL IJWORD PTR
LBXI. for example, will get a new value for IF' from [BXI
and IBX + ii in the data segment and a new value for
CS from offsets IBX + 21 and [BX + 3] in the data
segment,

THE 8086 RET INSTRUCTION

When the 8086 does a near call, it saves the instruction
pointer value for the instruction after the CALL on the
stack. A RET at the end of the procedure copies this
value from the stack back to' the instruction pointer to
return execution to the calling program. This then
returns execution to the mainline program. When the
8086 does a far call, it saves the contents of both the
instruction pointer and the code segment register on
the stack. A RET instruction at the end of the procedure
copies these values from the stack back into the IP
and CS registers to return execution to the mainline
program. Obviously we need one form of the RET instruc-
tion to handle returns from near procedures and another
form of the instruction to handle returns from far
procedures. Actually, the 8086 has four forms of the RET
instruction Figure 5-6b shows the coding templates for
these four.

The simple within-segment form of RET copies a word
from the top of the stack to the instruction pointer
register. This is the instruction form you will Usually
use to return from a near procedure. The wlthirr.segment
adding immediate to SP form Is also used to return from
a near procedure, When this form executes, however, It
will copy the word at the top of the stack to the
instruction pointer and also add an Immediate number
contained In the instruction to the contents of SP. Later.
we show you what this form is used for.

The intersegment form of the RET instruction is used
to return from far procedures. When this form of the
RET instruction executes, it will copy the word from the
top of the stack to the instruction pointer. It will then
increment the stack pointer by 2 and copy the next

word from the stack to the code segment register.
The Intersegment adding Immediate to SF' form of the
instruction also copies a new value for IP and a new
value for CS from the stack. However, it also adds a 16-
bit immediate number contained in the instruction code
to SP.

NOTE: If you are using an assembler, the assem-
bler will automatically code a near RET for a near
procedure and a far RET for a far procedure.

The 8086 Stack

Throughout the preceding discussions of the CALL and
RET instructions, we have talked about writing words
to the stack and copying these words back to the
instruction pointer and/or code segment register. Now
we will show you how to Set up a stack In your programs
and how the stack Is used.

The stack is a section of memory you set aside for
storing return addresses. The stack is also used to save
the contents of registers for the calling program while a
procedure executes. A third use of the stack is to hold
data or addresses that will be acted upon by a procedure.

The 8086 lets you Set aside up to an entire 64-Kbyte
segment of memory as a stack. Remember from the
block diagram in Figure 2•7 that the 8086 contains a
stack segment register and a stack pointer register. The
stack segment register is used to hold the upper 16 bits
of the starting address you give to the stack segment. If
you decide to start the stack segment at 70000H, for
example, the stack segment register will Contain 7000H.
The stack pointer register is used to hold the offset of
the last word written on the stack. The 8086 produces
the physical address for a stack location by adding the
offset contained in the SP register to the stack segment
base address represented by the 16-bit number in the
SS register.

An Important point about the operation of the stack
is that the SP register is automatically decremented by
2 before a word is written to the stack. This means that
at the start of your program you must initialize the SP
register to point to the top of the memory you set aside
as a stack, rather than initializing it to point to the
bottom location. To help you visualize this, Figure 57
shows how WC set up the stark in memory for this
example program.

Before a CALL instruction, assume that the SS register
contains 7000H and the SP register contains 0050H.
The physical address of the current top of the stack.
then. will be 70050H. If the 8086 executes a near
CALL instruction, the SP register will automatically be
decremented by 2 and the Contents of the IP register will
be written to the stack as shown.

When a near RET instruction executes. the IF' value
stored in the stack will be copied back to the lP register,
and the SF' register will be automatically incremented
by 2. After a CALL—RET sequence. then, the SP register
is again pointing to the initial top-of-stack location.

From the preceding discussion you should see that if
you are going to call procedures or use the stack in some
other way in your program, you need to declare a stack

102	 CHAPTER FIVE

MEMORY

75OI.f -	 - .I'NTIAL TOP OF STACK
7004FH	 AND TOS AFTER RET

7004E1'f -	 FL	 - TOP OF STACK
AFTER CALL

ST AC K

7%H -	 - - START OF STACK
SEGMENT

FIGURE 5-7 Stack diagram showing how the return
address is pushed onto the stack by CALL.

segment at the start of your program. You aiso need to
initialize the SS register with the base address of the
stack segment and initialize the SP register with the
offset of the top of the stack. Figure 5-8 shows the pieces
you need to add to your programs to declare a stack
segment and to initialize SS and SP.

The STACK_SEG SEGMENT STACK and STACK_SEG
ENDS statements in Figure 5-8 are used to declare a
logical segment that will be used for the stack. The
STACK directive tells the assembler that this segment
will be used as a last-in—first-out stack.

NOTE: If you are going t use the IBM program
EXE2BIN on your programs so that you can down-
load them to an SDK-86, omit the STACK directive
here. The linker will then give you an error mes-
sage, WARNING—NO STACK SEGMENT, but you
can ignore this warning.

You don't need all 64.000 bytes of the logical segment
in your programs, so you tell the assembler to set aside
40 decimal or 28H words of storage in this logica'

8086 PROGRAM fragment showing the 1nitialjatton
of stack segment register and stack pointer register

STACK SEG SEGMENT STACK

DW	 40 DUP(U)

STACK lOP LABEL WORD

STACK SEG ENDS

CODE	 SEGMENT

ASSUME CS:CODE, SS:STACKSEG

NOV AX, STACK_SEG	 tnit j alie stack
MOV SS, AX	 ; segment register
LEA SP, STACK_TOP	 InitiaLize stack pointer

Continue with pro'an,

CODE	 ENDS

END

FIGURE 5-8 Required program additions when using a
stack.

segment with the DW 40 DUP(0) statement. If the
actual stack is limited to approximately the size actually
needed, this segment can be overlapped with other
logical segments to save on the amount of physical
memory required for a program.

Since words are written to the stack starting from the
highest location, it is convenient to have a name attached
to this location so that you can Initialize the SP register
with a name instead of a number. The statement
STACK_TOP LABEL WORD in Figure 5-8 gives the name
STACK_TOP to the next even address after the 40 words
you set aside for the stack.

We arbitrarily choose to start the stack segment at
address 70000H for this example, and we set a stack
length of 40 words with the DW 40 DUP(0) statement.
Since each memory address represents a byte, these 40
words will occupy the 80 addresses 70000H to 7004FH,
as shown in Figure 57. The label STACK_TOP is associ-
ated with address 70050Ff. the next address after the
stack. We will explain later Why you want the name at
the address after the actual stack.

The next program addition you need to look at is in
the ASSUME statement, Note that we have added the
term SS:STACK_SEG to tell the assembler that any
reference in the program to the stack means the segment
STACK_.sEG. This term tells the assembler that SS will
contain the starting address of STACK_SEG. but it does
not load this value into the SS register. Loading the SS
register must be done with program instructions, just
as you initialize the data segment register and the extra
segment registerwith program instructions. Remember.
you can't load an immediate number directly into a
segment register. so you load the starting address of
the segment Into a register and then copy it Into the
stack segment register. The MOV AX,STACI(_SEG and
MOV SS.AX Instructions do this. Now all you have to do
Is initialize the stack pointer.

You want to initialize SP so that the first word written
to the stack goes to the highest location in the memory
you set aside for the stack. All the instructions which
write a word to the stack-decrement the stack pointer
by 2 before writing the word. Therefore, you want the
stack pointer to be initially loaded with the next even
address above the actual stack. We gave this location
the name STACK_TOP, so you can use the LEA
SP.STACK_TOP instruction to initialize the stack
pointer with the desired offset. You could also have
used the instruction MOV SP,OFFSET STACK_TOP to
initialize the stack pointer,

Now that you know the initialization steps required
in a program that uses procedures, we will show
you how to write and call a procedure. We will also
take another look at how the stack functions during a
CALL—RET sequence,

A Near Procedure Call and Return Example

DEFINING THE PROBLEM AND WRITING
THE ALGORITHM

Delay loops such as that shown in Figure 4-20 are often
written as procedures so that they can be cailed from
anywhere in a program. Suppose that you want to write

STRINGS, PROCEDURES, AND MACROS	 '103

READ VALUE
FROM PORT

MASK UPPER
4 BITS

PUT IN
ARRAY

WAIT1MS

I,)

Initialize
REPEAT

Get data sample from port
Mask Upper 4 bits
Put in array
Wait 1 ms

UNTIL 100 samples taken

Ib)

DATA SAMPLES PROGRAM
InitiaLize pointer to array, SI
Initialize counter, BX
REPEAT

Read port
Mask Upper 4 bits
Put in array
Wait 1 ms procedure
Increment pointer, SI
Decrement coUnter, OX

UNTIL counter = 0

WAIT—IrIS PROCEDURE
Load count value
REPEAT

Decrement count value
UNTIL Count	 0

(C)

FIGURE 5-9 Algorithm for data samples at 1-ms intervals
program. (a) Flowchart. (b) Pseudocode. (c) Pseudocode
expanded.

a program which reads 100 data words from a port at
1-ms intervals, masks the upper 4 bits of each word.
and puts each result in an array in memory. Before you
read on, see if.you can write a flowchart or pseudocode
for this problem. Then compare your results with those
in Figure 5-9a orb. We hope you recognized this problem
as a REPEAT-UNTIL situation.

The next step Is to expand the algot ithin to takv ioto
account the specific architectural features of the 8086
that you can use to implement the algorithm. Figure
5-9c shows one way to do this expansion.

At the start you initialize a pointer to the array and a
Counter to keep track of how many values have been put
in the array. After each value is read In and put in the
array, the delay procedure Is called to produce the desired
interval between samples. When execution returns to
the mainline, the pointer Is incremented so that It points
to the next location in the array. Finally, the counter is
decremented to determine whether the desired number
of samples have been taken. If not, the read, store, and
delay series of instructions is repeated.

Note that the algorithm for the procedure is done
separately from that for the main program. As we
discussed in the introduction to procedures, the flow of
the mainline program is clearer if much of the detail is
put in separate procedures. For the delay procedure.
you simply load a number In a register or memory
location and decrement the number until it is zero.

Note that even the expanded algorithm in Figure 5-9c
is general enough that it could be implemented on
almost any microprocessor. Let's see how it can be
translated to run on an 8086.

THE 8086 ASSEMBlY LANGUAGE PROGRAM
Figure 5-10 shows the assembly language program for
the expanded algorithm in Figure 5-9c. Read through
this program and see how much of it you can remember
and/or figure out before you read our explanations
in the following paragraphs. Deciphering a program
written by someone else is an important skill to develop.

At the start of the program. we declare a logical
segment for data with the DATA SEGMENT—DATA
ENDS statements. The statement PRESSURES DW 100
DUP(0) in this segment sets aside 100 words of memory
to store the values read in from a pressure sensor. This
statement also initializes these 100 words to all Os. It
really doesn't matter what values are initially in these
locations because the program is going to write values
in them. However, as we mentioned in an earlier exam-
ple, we like to initialize arrays such as this to all U's so
that during debugging we can tell whether the program
wrote any values to these locations,

Next, we declare a logical segment to be used for the
stack with the STACK_.SEG SEGMENT and STACK-
_SEG ENDS statements. As described previously, the
statement DW 40 DUP(O(sets up a stack length of 40
words and initializes these words to all 0's. Again we
really don't care what value these words have initially
because the 8086 will be writing values there as we call
procedures. The statement STACIC.TOP LABEL WORD
gives a name to the next even address after the highest
address in the stack we set up.

Now let's work our way through the main program
and the procedure In the cOde segment. We have to till
the assembler which logical segments are being used for
code, data, and stack in the program. The ASSUME
CSCODE. DS:DATA. SS:STACK....SEG statement does
this. The ASSUME statement, however, does not actually
initialize the segment registers. We have to do this with

104	 ('HAPTFR FIVE

2
3
4
5
6
7
8
9

10
11 0000
12 0000
13
14 0008
15
16 0000
17 0000
18
19 0050
20
21 0000
22
23 0000
24 0003
25 0005
26 0008
27 000A
28
29 0000
30 0011
31 0014
32 0017
33 0018
34 0018
35 OO1D
36 0020
37 0021
38 0022
39 0023
40 0025
41
42 0026
43 0026
44 0029
45 0028
46 002C
47
48 002C
49
49

8086 PROGRM F5-10.ASN
;ABSTRACT : This program takes in data sanples from a port at 1 ms

intervaLs, masks the upper 4 bits of each sanple, and
puts each masked saeçle in successive locations in an array.

;REGISTERS : Uses CS, SS, DS. AX, BX, CX, DX, SI, SP
;PORTS	 : Uses OFFF8H - data sanptes input from port P2A on SDK-86
;PROCEDURES: Uses WAIT iNS

PRESSURE_PORT	 EQU OFFF8H

DATA	 SEGMENT
PRESSURES	 DU	 100 DUP(0)	 Set up array of ¶00 words
NBR_OF_SAMPLES EQU ((S-PRESSURES)/2)

DATA
	

ENDS

STACK_SEC SEGMENT
28*(0000)	 OW 40 DUP(0)	 set stack Length of 40 words

STACK_TOP LABEL	 WORD
STACK_SEC ENDS

COOE	 SEGMENT
ASSUME CS:COOE, DS:DATA, SS:STACK_SEG

88 0000s	 START:	 NOV AX, DATA	 initiaLize data segment register
8E 08	 NOV OS, AX
88 0000s	 NOV AX, STACK_SEG	 Initialize stack segment register
8E DO	 NOV SS, AX
BC 0050r	 NOV SP, OFFSET STACK_TOP 	 intiatize stack pointer to top of stack

LEA Si. PRESSURES 	 Point SI to start of array
NOV BX, NBR_OF_SANPLES 	 Load BX with ntsther of sairptes
NOV DX, PRESSURE_PORT	 Point DX at input port

NEXT VALUE:1N AX, DX	 Read data from port
AND AX, OFFFH	 Mask upper 4 bits
NOV (SI1,AX	 Store data word in array
CALL WAIT_iNS	 Delay 1 ma
INC SI	 Point SI at next Location n array
INC Si
DEC BX	 Decrement sairpLe counter
JNZ NEXT_VALUE	 Repeat until 100 sarrpLes done

STOP:	 NOP

PROC	 NEAR
NOV CX, 23F2H	 Load delay constant into CX
LOOP HERE	 Loop until CX 0
RET
E NDP

ENDS
END
END

FFF8

64(0000)
0064

80 36 0000r
88 0064
BA FFF8
ED
25 OFFF
89 04
E8 0006
46
46
48
75 F2
90

89 23F2
E2 FE
C3

WAIT_iNS

HERE:

WAIT_iNS

COOt

FIGURE 5-10 Assembly language program to read in 100 samples of data at
1-ms intervals.

program Instructions. The MOV AX,DATA and MOV
DS,AX Instructions initialize the data segment regIster.
The MOV AX.STACK_.SEG and MOV SS.AX Instructions
Initialize the stack segment register. The MOV SP.OFF-
SET STACK_TOP statement Initializes the stack pointer
register. The program to this point Is essentially just
housekeeping chores. After a few more initialization
Instructions, you will finally see some action.

The statement LEA SI.PRESSVRES lnItialIzs the SI
register as a pointer to the first location in the array

PRESSURES. It loads the effective address or offset of
the first word In PRESSURES Into SI. For our example
here. PRESSURES Is the first data Item in the segment.
so the value loaded into SI will be 0000H. We chose to
use the BX register as a sample Counter, so we use the
statement MOV BX.NBR_SAMPLES to Initialize BX with
the number of samples we want to take and store. We
could have just used the Instruction MOV X.lOO to
initialize BX with the number of words in the array.
However, representing the number of samples symboll'

STRINGS, PROCEDURES, AND MACROS 	 105

cally en.iires that this number will get updated if we
increase the length of PRESSURES. To represent the
length of PRESSURES symbolically, we used the
NBR_SAMPLES EQU ((S-PRESSURESV2) statement tn
the data segment. The (S . PRESSURES) In this statement
tells the assembler to subtract the offset of PRESSURES
from the value In the location counter. This value then
represents the number of bytes in the array. The /2 In
the expression tells the assembler to divide the number
of bytes by 2 to give the number of words, which Is the
number we want to load into BX. Finally, we are going
to get to some action.

The final Initialization Instruction Is to point DX at
the port that we will read to get the data value from the
pressure sensor. As Indicated by the PRESSURE_PORT
EQU OFFF8FI statement at the top of the program. the
pressure sensor is connected to port FFF8H. Since this
port address Is larger than FFFI, we have to use the
variable-port input instruction. For this input instruc-
tion, we first load the port address in the DX register
with the MOV DX.PRESSURE_PORT Instruction, then
read the data word in with the IN AX,DX instruction.
Notice how much more tinderstadable It makes a
program when we use a name such as PRESSURE_PORT
in an Instruction rather than OFFF'8H. the numerical
port address. If you are working with an assembler, EQU
statements are a handy way to give names to constants
in your program.

When we get the pressure value into AX. we mask out
the upper 4 bits with the AND AX.OFFFH instruction.
The reason why we want to do this is that the analog-
to-digital converter that the pressure sensor is connected
tois a 12-bit unit. The upper four bits of the 16-bit port
are not connected to anything and may pick up random
noise signals. To prevent noise signals on the upper 4
bits from getting put in memory with our data, we mask
these bits out by ANDing them with Os. The instruction
MOV SU.AX then copies the/ daL word from the AX
register to the memory location pointed to by SI in the
data segment.

To produce the desired delay between samples, we
CALL the WAIT_IMS procedure. This is a direct within-
segment CALL because the procedure Is contained in
the same code segment as the CALL instruction.

We use the PROC and ENDP directives to "bracket"
the assembly language statements of the procedure.
rutting a name In front of these directives allows us to
call the procedure by name. For the example in Figure
5-10. we gave the procedure the name WAIT_1MS to
remind us of the function of the procedure. To produce
the desired delay, we load a number Into the CX register
with the MOV CX.23F211 instruction and count the
number down to 0 wIth the LOOP HERE instruction.
The LOOP instruction, remember, decrements CX by 1
and jumps to the specified label if CX is not yet down to
0. Since we put the label HERE directly on the LOOP
Instruction, the LoOP Instruction will simply execute
over and over until CX reaches 0. When CX gets counted
down to zero, the RET instruction at the end of the
procedure will return execution to the next instruction
after the CALL in the mainline program.

Since this procedure is in the same code segment as
the mainline prograilt. only the instruction pointer has
to be changed to get back to the mainline. This Is an
example of a near procedure return. If you are hand
coding a program such as this, make sure to use the
correct form of the RET instruction.

Now, back In the mainline program. we need to get
ready to read the next data value. First, we want to get
SI pointed to the location where we want input the next
data word. Since each address represents a byte, and
we are storing words, we have to Increment the pointer
by 2 to point to the next storage location. We used two
INC SI instructions to do this, but you could use the
single instruction ADD Sl.02H to do the same job. After
updating the pointer, we decrement the sample counter
in BX with the DEC BX instruction. If BX is not yet
counted down to 0, the JNZ NEXT_VALUE Instruction
will cause the 8086 to read in and process another value
from the port. If BX isO, IndIcating that all tOO samples
have been taken, execution goes on to the next mainline
instruction after JNZ. Now let's take another look at
what happens to the stack and the stack pointer as this
example program executes.

Another Look at Stack Operation
During a CALl and RET
For the example program in the last section. we started
the stack at address 70000H. so the stack segment
register was initialized with 7000H. We Set a stack
length of 40 decimal or 28H words with the DW 40
DUP(0) statement. These 40 words will occupy the 80
(50H) memory locations from 70000H to 7004FF1. as
shown In Figure 5-1 Ia. Initially we want the stack
pointer to point at the next address above the stack.
Therefore, we ii L:..eJ the stack pointer to offset
0050H, the next even aduress above our actual stack.
with the MOV SP,OFFSET STACK_TOP instruction.

After the 8086 fetches the CALL instruction from
the instruction-byte queue in the BIU, it automatically
Increments the instruction pointer to 00201-I. the offset
of the next instruction after the CALL. You can see this
if you look at line 36 in the program listing in Figure
5-10. The instruction pointer then contains the address
we want execution to return to after the procedure Is
completed. When the near CALL instruction in our
example program executes. the 8086 first decrements
the stack pointer by 2. Then it copies the return address
In the instruction pointer to the memory location now
pointed to by the stack pointer. If the stack pointer
contained 0050H before being decremented. then after
being decremented by 2 it contains OO4EH. The physical
address pointed to by the stack pointer and the stack
segment register will be 70J4EH. The low byte of the
instruction pointer will be copied to address 7004EH,
and the high byte of the '-'ruction pointer will be
copied to address 7004FH. as shown in Figure 51 In.
This follows the intel convention of putting the lower
byte of a word at the lower address n memory. After the
CALL instruction executes, the stack pointer Is left

106	 CHAPTER lIVE

- SP INITIALIZED
TO HERE - SP 0050H

SP POINTS HERE
AFTER NEAR CALL
SP - OO4EH

STACK IN MEMORY

70050H -

700tFH -

71X34EH

7m4DH -

7t54CH -

BASE 7OH
—STACK SEGMENT

SS- ltXXlH

STACK IN MEMORY

tents of the code segment register to the stack. It then
decrements the stack pointer by 2 again and copies
the offset of the next mainline instruction from the
instruction pointer to the stack. To help you visualize
this. Figure 5-1 lb shows how these would be written to
the stack, assuming the same stack starting addresses
that we used for the previous . example. As you can see
from this figure. after a far CALL the top of the stack
will be four addresses lower than It was before the CALL.

A far RET used at the end of a far procedure will copy
the word from the top of the stack to the instruction
pointer and increment the stack pointer by 2. it will
then copy the word from the new top of the stack to the
code segment register. The next instruction will then be
fetched from the physical address after the far CALL
instruction. The top of the stack will be back to where
it was before the CALL and RET.

As we mentioned previously, the stack is also used to
save the contents of registers while a procedure executes
and to hold data that the procedure is to act on. The
next section shows you how we do this.

________	 Using PUSH and POP to Save Register Contents
In the example program in Figure 5-10. we used the BX
register to keep track of how many data samples we had

________	 taken in. After each data sample was taken in, we
________ decremented the BX register and used the JNZ instruc-

tion to determine whether to take another sample or to
exit. We would like to have used the CX register to keep
track of the number of samples taken so that we could

_________ have used a single LOOP Instruction Instead of the DEC
BX and JNZ label instructions. The reason that we
couldn't use CX for this in the program is because CX
is used In the procedure. Any ,value we put in CX In the
mainline program would be written over by the MOV
CX.23F2H instruction In the procedure. It is very com-
mon to want to use registers both in the mainline
program and in a procedure without the two uses
Interfering with each other. The PUSH and POP instruc-
tions make this very easy to do.

The PUSH register/memory Instruction decrements
the stack pointer by 2 and copies the contents of the
specified 16-bit register or memory location to memory
at the new top-of-stack location. The PUSH CX instruc-
tion, for example, will decrement the stack pointer by 2
and copy the Contents of the CX register to the stack
where the stack pointer now points. This Instruction.
then. Can be used to save the contents of CX while a

	

pointer. After	 procedure executes. The next question is. how do we

	

it copies the word from the top of the stack to the 	 get the saved value back when we want it?

7t5OH -	 - SP INITIALIZED

7004FH
	

CS HIGH
	 TO HERE - SP - 5OH

74EH - CS LOW

74DH —'i-'	 IP HIGH

7IX4CH - IP LOW
	

SI' POINTS HERE
AFTER FAR CALL

7mOOH
	 STACK SEGMENT

BASE - SS = 7000H

(b)

FIGURE 5-11 Stack diagram for program in Figure 5-10.
(a) For near CALL. (b) F.or far CALL.

pointing to offset OO4EH. This location is now the top
of the stack, or TOS.

When the RET instuction at the end of the procedure
in the example program executes, the 8086 copIes
the return address from the top of the stack to the
Instruction pointer. Since the top of the
offset OO4EH, the word from addresses
7004FH will be copied to the Instruction

stack was at
7004EH and

instruction pointer, the 8086 increments the stack..
pointer by 2. For our example here, it will increment the
stack pointer from OO4EH to 00501-I. The stack pointer
is now back where ii was before the CALL instruction
executed. Note that the return address is still present
in memory because the RET instruction simply copied
it to the instruction pointer and incremented the stack
pointer over it.

When the h086 executes a far CALL Instruction, it
decrements the stack pointer b y 2 and copies the con-

The POP register/memory instruction copies a word
from the top of the stack to the specified 16-bit register
or memory location and increments the stack pointer
by 2. The POP CX instruction, for example, will copy a
word from the top of the stack to the CX register and
increment the stack pointer by 2. After a POP. the stack
pointer will point to the next word on the stack.

You can PUSH any of the 16-bit general-purpose
registers AX, BX. Cx, and DX: any ol the base or pointer
registers BP. SP, SI. and DI: any of the segment registers

- 16	 STRINGS, PROCEDL'RES. AND MACROS 	 1 O

CS, DS, SS. and ES: or even a word from a memory
location specified by one of those 24 memory addressing
modes In Figure 3-8. A separate instruction. PUSHF,
decrements the stack pointer by 2 and copies the flag
word to the stack. The 80186, 80286. and 80386.
incidentally, have a single instruction. PUSHA. which
pushes AX. CX. DX. BX, SP. BP, Si, and DI on the stack.

You can POP a word from the stack to any of the
registers except CS. and you can POP a word from the
stack to a memory location specified in any one of those
24 ways. The POPF instruction copies a word from the
stack to the flag register and increments the stack
pointer by 2. The 80186, 80286. and 80386 POPA
instruction copies words from the stack to the Dl. St.
BP, BX, DX, CX. and AX registers. Note that the POPA
Instruction does not return a value to the SP register.

When you PUSH several registers on the stack, you
have to remember to POP them off in the reverse order
that you pushed them on. This Is because the stack
functions in a hzst-tn—first-out manner. An everyday
example ol this type of operation Is the spring-loaded
plate stacks seen In some restaurants. The last plate
pushed onto the stack is the first one popped off. Figure
5-12a should help you visualize how this works for the
8086.

The first four instructions show a sequence of PUSH
instructions you might use to save registers and flags
at the Start of a near procedure called MULTO. Figure
5-I 2b shows the contents of the stack after the CALL
and PUSH instructions execute. The first entry In the
stack is the copy of the Instruction pointer put there
by the CALL instruction that called the procedure.
Following this are the flag word and the words from
registers AX. BX. and CX. After all of these are pushed
on the stack, the stack pointer is left pointing at the
location in the stack where CX was pushed.

At the end of the procedure, you want to restore the
saved values to the registers and (lags. You first POP CX
because it was the last register pushed on the stack.
After CX is popped, the stack pointer will be left pointing
at the location where BX is stored. Therefore, you POP

BX next You Continue popping until all the registers
and flags are restored. The RET instruction then copies
the return address from the stack to the instruction
pointer to return execution to the main program. It is
very Important to keep the number of pushes equal to
the number of pops or in some other way keep the stack
balanced so that the RET instruction finds the correct
word to put in the instruction pointer.

Some programmers like to push and pop registers in
the mainline or calling program rather than in the
procedure as we did in Figure 5-12a. This approach has
the advantage that you can push only those registers
that you care about saving each time you call the
procedure. The disadvantages of this approach are that
the pushes and pops clutter up the mainline program.
and that you may decide to use another register at some
point in the program and forget to add a push for it. We
like to push the flags and any registers used in a
procedure directly in the procedure. This way we always
know that the procedure can be called from anywhere
in the program without losing the contents of any
registers. Another advantage of this approach is that
you only have to write the pushes and pops once. A
disadvantage is that in a situation in which not all the
pushes are needed, the procedure may take a little longer
to run.

Passing Parameters to and from Procedures

OFten when we call a procedure, we want to make some
data values or addresses available to the procedure.
Likewise, we often want a procedure to make some
processed data values or addresses available to the main
program. These addresses or data values passed back
and forth between the mainline and the procedure are
commonly called parameters. The four major ways of
passing parameters to and from a procedure are:

I. In registers

2. In dedicated memory locations accessed by name

BEFORE CALL

AFTER CALL

AFTER FUSUF

AFTER PUSH AX

AFTER PUSH BX

AFTER PUSH CX

MUITO PROC NEAR
PUSH F
PUSH AX
PUSH BX
PUSH CX

POP CX
POP OX
POP AX
POP F
RET

MULTO CNDP

SF

5OH -

P FIlCH
004EU	 FLOW

FLAG FIlCH
OO4CH - FLAG LOW

-	 AU
OO4AH -	 AL

BH
0048U --	 EL

CU
OOFI6H- ____

SP

	

AFTER RET	 0050H

	

-. AFTER POPF	 0048FF

- AFTERPOPAX 00401

- AFTER POPDX 004411

- AFTER POP CX 004811

BEFORE POP CX

STACK IN MEMORY

Is)

FIGURE 5-12 . Using PUSH and POP instructions. (a) Instruction sequence. (hI
Et(ect on stack and stack pointer.

108	 CHAPTER FIVE

4596 = (4 x 1000) + (5 x 100) + (9 x 10) + (6 x 1)

1 = 0001H therefore	 6 = 6 x 0001K 0006K
10 000AII therefore 90 = 9 x 000AH OO5AH

100 = 0064K therefore 500 = 5 x 0064K O1F4H
1000 03E811 therefore 4000 = 4 x 03E8H OFA0H

4596	 1IF4H

FIGURE 5-13 BCD-to-binary algonthm.

3. With pointers passed in registers

4. With the stack

In the following sections we use a simple program to
show you how each of these methods works.

DEFINING THE PROGRAMMING PROBLEM

A common programming need is to Convert a packed
BCE) number to Its binary equivalent. You might, for
example, want to convert a packed BCE) such as 0100
0101 1001 0110. which represents 4596 decimal, to
000I000llll 10100 binary, or I 1F4H. There are several
ways to do this conversion, but to us the easiest is based
on using the value of each placeholder in the BCE)
number.

Figure 5-13 shows the names and values for each digit
in a four-digit BCE) number such as 4596. When you
write a number such as this, it means that you have a
total of 4 thousands + 5 hundreds + 9 tens + 6 units.
To determine the value of this number in binary, you
just multiply the number In each digit position by the
value of that digit position in binary and add up the
results. The right-hand side of Figure 5-13 shows how
this works. A microprocessor, of course, uses the binary
equivalents, but to make it ':asier for you to see what is
going on here, we have represented the binary values
with their hexadecimal equivalents.

The units position has a value of I in hex, so multi-
plying this by 6 units gives 0006H. The tens position
has a value of 1010 binary. or OAI-l. Multiplying this
value by 9. the number of tens, gives 005A1-l. The
value of the hundreds position in the BCE) number is
01100100 binary, or 64H. When you multiply this value
by 5, the number pf hundreds, you get OIF4H. When
you multiply the hex value of the thousands position.
O3ESH. by 4 (the number of thousands), you get OFAOH.
Adding up the results for the four digits gives I IF4H or
00010001ll1t0 100, which is the binary equivalent of
4596 BCD. You can use this method to convert a
BCE) number with any number of digits to its binary
equivalent, but to save space here we will show the
program for just a two-digit BCE) number.

From the example in Figure. 5-13. perhaps you Can
see that the algorithm for this program is the simple
sequence of operations

Separate nibbles

Save lower nibble (don't need to multiply by 1)

Multiply upper nibble by OAH

Add lower nibble to result of multiplication

We want to implement this program as a procedure
which can be called from anywhere in a mainline pro-
gram. For our first version. we pass the BCD number to
the procedure in a register.

PASSING PARAMETERS IN REGISTERS

Figure 5-14, p. 110, shows our first version of a proce-
dure to Convert a two-digit packed BCE) number to its
binary equivalent. The BCE) number is copied from
memory to the AL register and then passed to the
procedure in the AL register. We start the procedure by
pushing the flag gIster and the other registers we use
in the procedure. Notice that we don't push the AX
register because we are using it to pass a value to
the procedure and expecting the procedure to pass a
different value back to the calling program in it.

The function of tht\ rest of the instructions in the
procedure should be reasonably clear from the comments
with them. We first make a copy of the BCE) number in
AL to BL so that we have two copies to work on. We
then mask the upper nibble of the copy in BL. Since
multiplying this nibble by 1 would not change its value.
we are done with it for now. Next, we mask the lower
nibble of the other copy of the BCD number and rotate
this nibble into the lower nibble position of the bgte so
that we can multiply it correctly. When we multiply this
nibble by the digit weight of OAH. the result is left in
the AX register. However, since the result can never be
greater than 8 bits, we can disregard the contents of
AH. Finally, we add the lower nibble we saved in BE. to
the result in AL to gel the binary total. The desired result
is left in AL. Before returning to the main program, we
pop the registers we pushed at the start of the procedure.
Since we did not push AX, the binary value in AX at the
end of the procedure will be there when execution
returns to the calling program.

The disadvantage of using registers to pass parameters
is that the number of registers limits the number of
parameters you can pass. You can't, for example, pass
an array of 100 elements to a procedure in registers..

PASSING PARAMETERS IN GENERAL MEMORY

As you read through the preceding example, the question
that may have occurred to you is. "Why didn't you simply
access the BCD_INPUT value and the BIN_VALUE by
name from the procedure?" The answer to the question
is that we can directly access the parameters by name
from the procedure, but in some cases there are problems
wtth doing it this way. Figure 5-15. p. 111. shows a proce-
dure 'that accesses the parameters directly by name,

In this procedure we first push the flags and all the
registers used in the procedure. We then copy the
BCD number into AL with the MOV AL.BCDINPUT
Instruction. From here on, the procedure is the same
as the previous version until we reach the point where
we want to pass the binary result back to the calling
program. Here we use the MOV BINVALUE.AL instruc-
tion to copy the result directly to the dedicated memory
location we set aside for it. To complete the procedure.
we pop the flags and registers. and return to the main
program.

STRINGS, PROCEDURES, AND MACROS	 1 09

2
3
4
5
6
7
8
9

10 0000
11 0000 17
12 0001 '?
13 0002
14
15 0000
16 0000 64*(0000)
17
18 0008
19
200000
21
22 0000 88 0000s
23 0003 6€ 08
24 0005 88 0000s
25 0008 8€ DO
26 000A BC OOC8r
27
28 0000 AO 0000r
29 0010 E8 0005
30 0013 *2 000lr
31 0016 90
32 0017 90
33
34
35
36
37
38
39 0018
40 0018 9C
41 0019 53
42 001* 51
43
44 0018 8A D8
45 0010 80 E3 0
46 0020 24 FO
47 0022 81 04
48 0024 02 C8
49 0026 87 GA
50 0028 F6 E7
51
52 00,2A 02 C3
53
54 002C 59
550020 58
56 OO2E 90
57 002F C3
58 0030
59
60 0030
61

8086 PROGRAM FS-14.ASM
;ABSTRACT : BCD to BINARY conversion progra that uses a

procedure to convert BCD nuters to binary.
Program uses the AL register to pass parters
to the procedure

;REGISTERS	 Uses CS, DS, SS, SP, AX
P0RTS	 : None Used

;PROCEOURES: BcD_BIN

DATA
	

SEGMENT
BCO_INPUT	 D8 1711	 storage for BCD value
BIN_VALUE	 08 7	 ; storage for binary value

DATA
	

ENDS

STACK_SEG	 SEGMENT	 STACK
OW 100 DUP(0)	 ; stack of 100 words

TOP_STACK	 LABEL	 5R0
STACK_SEG	 ENDS

CODE	 SEGMENT
ASSI$4E CS:CODE, DS:DATA, SS:STACK_SEG

START:	 NOV AX, DATA	 Initialize data segment
NOV OS, AX	 register
NOV AX, STACK SEC	 Initialize stack segment
NOV 55, AX	 register
NOV SP, OFFSET TOP_STACK	 Initialize Stack pointer

NOV AL, BCD_IWPIJT
CALL BCD_BIN	 Do the conversion
NOV BIN_VALUE, AL	 Store the result
HOP	 Continue with program here
Nap

PR0CEDURE: BCD_BIN - Converts BCO fluTters to binary.
;INPUT	 : Al with BCD value
;00TPUT	 : AL with binary value
;DESTROYS : AX

BCD_BIN	 PROC HEAR
PUSHF	 ; Save flags
PtiSlI BX	 and registers used in procedure
PUSH CX	 before starting the conversion

;Do the conversion
NOV 81, AL	 Save copy of BCD in BL
AND 61., OFH	 and mask
AND AL, OFOil	 Separate upper nibble
NOV CL, 04	 Hove upper BCD digit to low
ROR AL, CL	 nibble position for nai1tiply
NOV BH, DAM	 Load conversion factor in BH
PHJL BH	 Multiply upper BCD digit in AL

by OAM in BH, leave result in AL
ADD AL, BL	 Add lower BCD digit to HU1 result

;End of conversion; binary result in AL
POP CX	 Restore registers
POP BX
POPF
RET	 and return to mainline

BCD_81N	 ENDP

CODE	 ENDS
END	 START

FIGURE 5-14 Example program passing parameters in registers.

1 10	 CHAPTER FIVE

28 0000
29 0010
30 0011
31
32
33
34
35
36
37
38
39 0012
40 0012
41 0013
42 0014
43 0015
44 0016
45
46 0019
47 OO1B
48 DOlE
49 0020
50 0022
51 0024
52 0026
53
54 0028
55
56 002A
57 0020
58 002E
59 002F
60 0030
61 0031
62 0032
63
64 0032
65

E8 0002
90
90

9C
50
53
51
AD 0000r

8A 08
80 53 OF
24 FO
Bi 04
D2 C8
87 OA
F6 57

02 C3

*2 0001r
59
55
58
90
C3

8086 PROGRAI F5-1S.AS$
2
	 ;ABSTRACT : BCO to BINARY conversion program that uses a

3
	 procedure to convert BCD nuthers to binary.

4
	 Program uses dedicated memory Locations to

S
	 pass parameters to the procedure.

6
	 ;REGISTERS	 Uses •CS, DS, SS, SP, AX

7
	 ;9ORTS	 : None used

8
	 ;PROCEDIiRES: Uses BCO BIN

SAJIE DATA STRUCTURE AND INITIALIZATION AS FIGURE 5-14 LINES 9 THRGUGH 27

CALL BCD BIN	 Do the conversion
NOP	 Continue with program here
MOP

;PROCEDURE: BCO_BIN - Converts BCD nuTters to binary.
;IMPUT	 Data from dedicated memory Location BCO_IMPUT
;IXITPUT	 : Data to dedicated memory Location BIN VALUE
;DESTROYS : Nothing

BCO_BIN	 PROC	 NEAR
PUSHF	 Save fLags
PUSH AX	 and registers
PUSH SN
PUSH CX
NOV AL. BCD_INPUT Get BCD vaLue from memory

;Oo the conversion 	 -
NOV BL, AL	 Save copy of BtD in BL
AND BL, OFH	 and mask
AND AL, OFOK	 Separate upper nibble
NOV CL, 04	 ; Move upper BCO digit to Low
RON AL, CL	 nibbLe position for rmLtiply
NOV BH, OAH	 Load conversion factor in SM
MUL SM	 MultipLy upper BCD digit in AL

by DAN in BH, Leave result in AL
ADD AL, BL	 Add Lower BCO digit to MUL result

;End of conversion, binary value in AL
MDV BIN_VALUE, AL Store binary value in memory
POP CX	 Restore flags and
POP SN	 registers
POP AX
POP F
RET

BCD_BIN	 ENDP

C00E	 ENDS
END	 START

FIGURE 5-15 Example program passing parameters in named memory
locations.

The approach used in Figure 5-15 works in (his case,
but it has a severe limitation. Can you see what Ills?
The limitation is that this procedure will always look to
the memory location named BCD_INPUT to get its data
and will always put its result in the memory location
called BIN_VALUE. in other words, the way it is written.
we can't easily use this procedure to convert a BCD
number in some other memory location. As we explain
in detail later, this method has the further problem that
it makes the procedure nonreentrarit.

PASSING PARAMETERS USING POINTERS

A parameter-passing method which overcomes the dis-
advantage of using data item names directly in a proce-
dure is to use registers to pass the procedure pointers
to the desired data. Figure 5-16. p. 112, shows one waytO
do this. In the main program, before we call the proce-
dure, we use the MOV SI.OFFSET BCD_INPUT instruc-
tion to set up the SI register as a pointer to the memory
location BCD_INPUT. We also use the MOV DI.OFFSET

STRINGS, PROCEDUREt AND MACKOS	 111

28
29 0000
30 0010
31 0013
32 0016
33
34
35
36
37
38
39 0017
40 0017
41 0018
42 0019
43 OO1A
44 0018
45
46 0010
47 OO1F
48 0022
49 0024
50 0026
51 0028
52 002A
53
54 002C
55
56 OOZE
57 0030
58 0031
59 0032
60 0033
61 0034
62 0035
63
64 0035
65

BE 0000r
BF 000lr
E8 0001
90

9C
50
53
51
8A 04

8A D8
80 E3 OF
24 FO
81 04
02 C8
87 OA
F6E7

02 C3

88 05
59
5B
58
90
C3

8086 PROGRAI4 F5-16.ASIt
2
	

A8STRACT : B0 to BINARY conversion program that uses a
3	 procedure to convert BCD ntaTters to binary.
4
	

Program shows how to use pointers to pass
5	 parameters to a procedure.
6	 ;REGISTERS	 Uses CS, OS, SS, SP, AX, SI, DI
7	 ;PORTS	 Uses none
8	 ;PROCEDURES: Uses BCD_BIN

SAI4E DATA STRUCTURE AND INITIALIZATI4 AS FIGURE 5-14 LINES 9 THRGUGH 27

Put pointer to BCD storage in SI end pointer to binary storage ir DI
NOV SI, OFFSET SCO_INPUT 	 Create pointers to 8C0 and
NOV Dl, OFFSET BIN_VALUE	 binary storage
CALL BCD_BIN	 Do the conversion

Continue with program here

;PROCEOURE: BCD_BIN - Converts BCO n(aTers to binary.
;INPUT	 SI, points to Location in memory of data
;GUIPUT	 01, points to Location in memory for result
;OESTROYS	 Nothing

BCD_BIN	 PROC	 NEAR
PUSHF	 Save f Lags
PUSH AX	 and registers
PUSH 8X
PUSH CX
NOV AL, (Sf1	 Get BCD value from memory

;Do the conversion
NOV BL, Al.	 Save copy of BCD in BL
AND 81, OFH	 and mask
AND AL, OFOK	 Separate upper nibble
NOV CL, 04	 Hove upper BCD digit to Low
ROR AL, CL	 nibble position for Tuttiply
NOV Bit, OAK	 Load conversion factor in BK
1401 BK	 MultipLy upper BCD digit in AL

by OAK in BK, Leave result in AL
ADD AL, 81	 Add Lower BCD digit to MUL result

;End of conversion, binary value in AL
NOV (DII, AL	 Store binary value in memory
POP CX	 Restore flags and
POP BX	 registers
POP AX
POPF
RET

BCD_8IN	 ENDP

CCOE	 ENDS
END	 START

FIGURE 5-16 Example program passing parameters using pointers to named
memory locations.

BIN_VALUE Instruction to set up the DI register as a
pointer to the memory location named BIN_VALUE.

In the procedure, the MOV AL.(SIJ Instruction will
copy the byte pointed to by SI Into AL. Ltkewlse. the
MOV IDJI.AL Instruction later In the procedure will copy
the byte from AL to the memory location pointed to by
Dl.

This pointer approach is more versatile because you
can pass the procedure pointers to data anywhere in
memory. You can pass pointers to individual values or
pointers to arrays or strings. To access complex data

structures, you can use registers to pass the segment
base and the offset of a table of pointers in memory. The
procedure then can read in a pointer from the table and
use the pointer to access the desired data.

For many of your programs, you will probably use
registers to pass data parameters or pointers to proce-
dures. As we show you in Chapter 8, this is the method
you use when you call procedures in the Basic Input)
Output System or BIOS of a computer. However, as we
show you In later chapters. for programs whIch allow
several users to timeshare a system or those which

112	 CHAPTER FIVE

consist of a mixture of high-level languages and assembly
language, we usually use the stack to pass parameters
to and from procedures.

PASSING PARAMETERS USING THE STACK

To pass parameters to a procedure using the stack, we
push the parameters on the stack somewhere In the
mainline program before we call the procedure. Instruc-
tions in the procedure then read the parameters from
the stack as needed. Likewise, parameters to be passed
back to the calling program are written to the stack by
instructions in the procedure and read off the stack by
instructions In the mainline program. A simple example
will best show you how this works.

Figure 5-17, p. 114, shows a version of our BCD._.BIN
procedure which uses the stack for passing the BCD
number to the procedure and for passing the binary
value back to the calling program. To save space here,
we assume that previous instructions in the mainline
program set up a stack segment. Initialized the stack
segment register, and initialized the stack pointer. Now
in the mainline fragment In Figure 5-17, we copy the
BCD number into AL. We then éopy AX to the stack with
the PUSH AX instruction. In .a more complex example,
the BCD number or a pointer to it would probably be
put on the stack bya different mechanism, but the
important point for now is that the BCD value is on the
stack for the procedure to access.

The CALL instruction In the mainline program decre-
ments the stack pointer by 2, copies the return address
onto the stack, and loads the instruction pointer with
the starting address of the procedure. PUSH instructions
at the start of the procedure save the flags and all the
registers used in the procedure on the stack. Before
discussing any more instructiotis, let's take a look at
the contents of the stack after these pushes.

Figure 5-18. p. 115, shows how the values pushed on
the stack will be arranged. Note that the BCD value is
in the stack at a higher address than the return address.
After the registers are pushed Onto the stack, the stack
pointer is left pointing to the stack location where BP Is
stored. Now, the question is, how can we easily access
the parameter that seems buried in the stack? One way
is to add 12 to the stack pointer with an ADD SP,l2
instruction so that the stack pointer points to the word
we want from the stack. A POP AX instruction could
then be used to copy the desired word from the stack to
AX. However, for a variety of reasons, which we will
explain later. we would like to be able to access the
parameter without changing the contents oIhe stack
pointer.

An alternative to using the SP register is to use the
BP register to access the parameters in the stack.
Remember from Chapter 2 that an offset in the BP
register will be added to the stack segment register to
produce a physical memory address. This means that.
the BP register can easily be used as a second pointer
to a location in the stack. Here's how we use it this way
in Our example program.

After pushing all the registers at the start of the
procedure, we copy the contents of the stack pointer
register to the BP register with the MOV BP.SP instruc-

tion. BP then points to the same location as the stack
pointer, Then we use the MOVAX,IBP + 12) instruction
to copy the desired word from the stack to AX, The 8086
will produce the effective address for this Instruction
by adding the displacement of 12. specified In the -
instruction, to the Contents of the BP register. As you
can see in Figure 5-18, the effective address produced
by adding 12 to the Contents of B? will be that of the
desired parameter. Note that the MOV AX.IBP + 121
instruction does not Change the contents of B?. B? can
then be used to access other parameters on the stack
by simply specifying a different displacement in the
instruction used to access the parameter.

Once we have the BCD number copied from the stack
into AL. the instructions which convert it to binary are
the same as those in the previous versions. When we
want to put the binary value back in the stack to return
it to th calling program, we again use B? as a pointer
to the stack. The instruction MOV (B? + 12!,AX will
copy AX to a stack location 12 addresses higher than
that to which BP is pointing. This, of course. is the
same location we used to pass the BCD number to the
procedure. After we pop the registers and return to
the calling program, the registers will all have the values
they had before the CALL instruction executed. AX will
contain the original BCD number, and the stack pointer
will be pointing to the binary value, now at the top of
the stack, In the mainline program we can now pop this
hex value into a 5eglster with an instruction such as
PoPCX.

Whenever you are using the stack to pass parameters,
it is very important to keep track of what you have
pushed on the stack and where the stack pointer is at
each point in a program. We have found that diagrams
such as the one in Figure 5-18 are very helpful in doing
this. One potential problem to watch for when using
the stack to pass parameters is stack ovedlow. Stack
overflow means that the stack fills up and overflows the
memory space you set aside for it. To see how this can
easily happen if you don't watch for it, consider the
following. Suppose that w€ use the stack to pass four
word parameters to a procedure, but that we pass Only
one word parameter back to the calling program on the
stack. Figure 5-19, p. 115, shows a stack diagram for this
situation. Before a CALL instruction, the fourparameters
to be passed to the procedure are pushed on the stack.
During the procedure, the parameter to be returned is
put in the stack location previously occupied by the
fourth input parameter. After the RET Instruction at
the end of the procedure executes, the stack'pointcr will
bele(t pointing at this value. Now assume that we pop
this value into a register. The POP instruction will copy
the value to a register and increment the stack pointer
by 2. The stack pointer now points to the third word we
pushed to pass to the procedure. In other words the
stack pointer is six addresses low,er than it was when
we started this process. Now suppose that we call this
procedure many times in the course of the mainline
program. Each time we push four words on the stack
but only pop one word off, the stack pointer will be left
six addresses lower than it was before the process. The
top of the stack will keep moving downward. When the

TRINCS, PROCEDURES,	 MACROS	 113

28 0000
29 0010
30 0011
31 0014
32 0015
33 0018
34
35
36
37
38
39
40 0019
41 0019
42 OO1A
43 0018
44 OO1C
45 0010
46 DOlE
47 0020
48
49 0023
50 0025
51 0028
52 002A
53 002C
54 002E
55 0030
56
57 0032
58
59 0034
60 0037
61 0038
62 0039
63 003A
64 0038
65 003C
66 0030
67
68 0030
69

AO 0000r
50
E8 0005
58
A2 000lr
90

9C
50
53
51
55
88 EC
88 46 DC

BA 08
80 E3 OF
24 FO
81 04
02 C8
87 OA
F6 E7

02 C3

89 46 OC
50
59
58
58
90
C3

8086 PROGRAM F5-17.ASN
2
	 ;ABSTRACT : BCD to BINARY con'ersion program that uses a

3
	 procedure to convert BCD nssvt,ers to binary.

4.	 Program shows how to use the stack to pass
5
	 parameters to a procedure.

6
	 ;REGISTERS : Uses CS, OS, SS, SP, AX

7	 ;PORTS	 Uses none
8
	 ;PROCEDURES: Uses BCD_BIN

YAI4E DATA STRUCTURE AND INITIALIZATION AS FIGURE 5-14 LINES 9 THRJGH 27

NOV AL, BCD_INPUT	 Move BCD value into AL
PUSH AX	 and push it onto onto stack
CALL BCD_81N	 Do the conversion
POP AX	 Get the binary value
NOV BIN_VALUE, AL 	 and save it
HOP	 ; Continue with program here

;PROCEDURE	 BCD_BIN - Converts BCD n&sthers to binary.
;INPUT	 : None BCD value ass.ne to be on stack before call
;JTPUT	 None - Binary value on top of stack after return
DESTROYS : Nothing

BCO BIN	 PROC	 NEAR
PUSHY	 Save flags
PUSH AX	 and registers
PUSH BX
PUSH CX
PUSH BP
NOV BP. SP	 Make a copy of the stack pointer
NOV AX, (BP+12) 	 Get BCD ns.mber from stack

;Do the conversion
MOV BL, AL	 Save copy of BCD in BL
AND BL, OFH	 and mask
AND AL, OFOH	 Separate upper nibble
NOV CL, 04	 Move upper BCD digit to low
ROR AL, CL	 nibble position for multiply
NOV BK, OAK	 Load conversion factor in BK
MUL BK	 Multiply upper SCO digit in AL

by OAK in BK, leave result in Al
ADD AL, BL	 Add lower BCD digit to MUL result

;End of conversion, binary value in AL
NOV EBP*12i, AX	 Put binary value on stack
POP BP	 Restore flags and
POP CX	 registers
POP BX
POP AX
POP F
RET

BCO_BIN	 ENDP

CE	 ENDS
END	 START

FIGURE 5-17 Example program passing parameters on the stack.

stack poinler gets down to 00001-1. the next push will
roll It around to FFFEH and write a word at the very
top of the 64-Kbyte stack segment. If you overlapped
segments as you usually do In a small system, the word
may get written In a memory location that you are using
for data or your program code, and your data or code
will be lost! This is what we mean by the term stack
overflow.

The cure for this potential problem is to use stack
diagrams to help you keep the stack balanced. You need
to keep the number of pops equal to the number of
pushes or in some other way make sure the stack pointer
gets back 10 Its initial location.

For this example, we could use an ADD SP.06H
instruction after the POP instruction to get the stack
pointer back up the additional six addresses to where It

114	 CHAPTER FIVE

BEFORE PUSH

AFTER PUSH I

AFTER PUSH?

AFTER PUSH 3

AFTER PUSH 4

AFTER CALL

STACK IN MEMORY

SE

OOSOH -

OO4EH

4CH -

______	 SE
4AH-	 -AFTERPOPOF

RETURNED VALUE	 4AI-I

48H -.-	 - AFTER RET	 4SH

46H -

FIGURE 5-19 Stack diagram showing cause of stack
overflow.

STACK IN MEMORY

BEFOIRE PUSH AX - w fl5OH -

AFTER PUSH AX -	 OO4EH -I AL I

AFTER PUSH EP - 	 0042H

STACK SEGMENT BASE - 7000H -

FIGURE 5-18 Stack diagram for program in Figure 5-17

was before we pushed the four parameters onto the
stack.

For other cases such as this, the 8086 RET instruction
has two forms which help you to keep the stack balanced.
Remember from a previous section of this chapter that
the 8086 has four forms of the RET Instruction. The
regular near RET instruction copies the return address
from the stack to the instruction pointer and increments
the stack pointer by 2. The regular far RET instruction
copies the return IP and CS values from the stack to Ii'
and CS, and increments the stack pointer by 4. The
otheE two forms of RET instruction perform the same
functions, but they also add a number specified in
the instruction to the stack pointer. The near RET 6

instruction, for example, will first copy a word from the
stack to the instruction pointer and increment the stack
pointer by 2. It will then add 6 more to the stack pointer.
This is a quick way to skip the stack pointer up over
some old parameters on the stack.

SUI4MARY OF PASSING PARAMETERS
TO AND FROM PROCEDURES

You can pass parameters between a calling program
and a procedure using registers, dedicated ritemoly
locations, or the stack. The method you choose depends
largely on the specific program. There are no hard rules.
but here are a few guidelines. For simple programs with
Just a few parameters to pass. registers are usually
the easiest to use. For passing arrays or other data
structures to and from procedures, you can use registers
to pass pointers to the start of- these data structures.
As we explained previously, passing pointers to the
procedure is a much more versatile method th,an having
the procedure access the data structure directly by
name.

For procedures in a multiuser-system program, proce-
dures that will be called from a high-level language
program, or procedures that call themselves, parameters
should be passed on the stack. When writing programs
which pass parameters on the stack. you should use
stack diagrams such as the one in Figure 5-18 to help
you keep track of where everything is in the stack at a
particular time. The following section wIll GIve you some
additional guidance as to when o use the stack to pass
parameters, and it will give you some additional practice
following the stack and stack pointer as a pl4gram
executes.

Writing and Debugging Programs
Containing Procedures
The most important point in writing a program con-
taining procedures is to approach the overall Job very
systematically. You Carefully work out the overall struc-
ture of the program and break It down into modules
which can easily be written as procedures. You then set
up the data structures and write the mainlIne program
so that you know what each procedure has to do and
how parameters can be most easily passed to each
procedure.

To test this mainline program. you can simulate each
procedure with a few instructions which simply pass
test values back to the mainline program. Some pro-
grammers refer to these 'dummy procedures as stubs. If
the structure of the mainline program seems reasonable.
you then develop each procedure and replace the dummy
with it. The advantage of this approach is that you have
a structure to hang the procedures on. If you write the
procedures first, you have the messy problem of tr ing
to write a mainline program to connect all the pieces
together.

Now, suppose that you have approached a program as
we suggested. and the program doesn't work. After you
have checked the algorithm and instructions, you should
check that the number of PUSH and POP Instructions

- 17	 '	 STRINGS, PROCtDURES, AND MACROS	 115

ate equal in each procedure. II none of the checks turns
up anythlng. you can use the sys tem debugging tools to
track down the problem. Probably the best tools to help
you localIze a problem to a small area are breakpoints.
Run the program to a breakpoint Just before a CALL
Instruction to see whether the correct parameters are
being passed to the procedure. Put a breakpoint at the
start of the procedure to see ((execution ever gets to the
procedure. If execution gets to the procedure. move
the breakpoint to a later point in the procedure to
determine whether the procedure found the parameters
passed from the mainline. Use a breakpoint Just before
the RET instruction to see whether the procedure pro-
duced the correct results and put these results in the
correct locations to pass them back to the mainline
program. Inserting breakpoints at key points in your
program and checking the results at those points is
much more effective in locating a problem than random
poking and experimenting.

Reentrant and Recursive Procedures

The terms reentrant and recurstue are often used In
microprocessor manufacturers' literature, but seldom
illustrated with examples. Here we try to give these terms
some meaning for you. You should make almost all the
procedures you write reentrant, so read that section
carefully. You will seldom have to write a recursive
procedure. so the main points to look for in that section
are the definition of the term and the operation of the
stack as a recursive procedure operaLc.

REENTRANT PROCEDURES.
The 8086 has a signal Input which allows a signal from
some external device to interrupt the normal program
execution sequence and call a specified procedure. In our
electronics factory, for example. a temperature sensor in
a flow-solder machine could be connected to the inter-
rupt input. If the temperature gets too high. the sensor
sends an interrupting signal to the 8086. The 8086 wIll
then stop whatever it is doing and go to a procedure
which takes whatever steps are necessary to cool down
the solder bath. This procedure is called an Lnte. rupt
service procedure. Chapter 8 discusses 8086 interrui.Ls
and interrupt service procedures in great detail, but it
is appropriate to Introduce the concept here.

Now, suppose that the 8086 was in the middle of
executing a multiply procedure when the interrupt
signal occurred, and that we also need to use the multiply
procedure In the interrupt service subroutine. Figure
5-20 shows the program execution flow we want for this
situation. When the interrupt occurs, execution goes to
the Interrupt service procedure. The interrupt service
procedure then calls the multiply procedure when it
needs it. The RET Instruction at the end of the multiply
procedure returns execution to the interrupt service
procedure. A special return instruction at the end of the
interrupt service procedure returns execution to the
multiply procedure where it was executing when
the-interrupt occurred.

In order for the program flow in Figure 5-20 to work

MAINLINE	 /	 INTERRUPT
I	 MUI PLY	 PROCEDURE
I	 PR	 URE

CALLCALL
MULTIP.Y L	 RRUPT_..L""	 MULTIPLY

RETURN TONEXT MAINLINE
INTERRUPTEDINSTRUCTION ocCU

Ct.JRHERE 1"..PROGRAMAFTER CALL

RETURN TO
CALLING PROGRAM

FIGURE 5-20 Program execution flow for reentrant
procedure.

correctly. the multiply procedure must be written in such
a way that It can be Interrupted, used, and "reentered"
without losing or writing over anything. A procedure
which can function In this way is said to be reentrant.

To be reentrant, a procedure must first of all push the
flags and all registers used in the procedure. Also, to be
reentrant, a program should use only registers or the
"tack to pass parameters. To see why this second point
is necessary, let's take another look at- the program in
Figure 5-15. This program uses the named variables
BCD_INPUT and BIN_VALUE. The procedure BCD_BIN
accesses these two directly by name.

Now, suppose that the 8086 is in the middle of
executing the BCD_BIN procedure and an interrupt
occurs. Further supposc that the interrupt service proce-
dure loads some new value in the memory location
named BCD_INPUT. and calls the BCD_BIN procedure
again. The initial value in BCD_JNPUT has now been
written over. If the interrupt occurred before the first
execution of the procedure had a chance to read this
value in, the value will be lost forever. When execution
returns te BCD_BIN after the interrupt service,proce-
dure, the value used for BCD_INPUT will be that put
there by the Interrupt service routine Instead of the
desired Initial value. There are several ways we can
handle the parameters so that the procedure BCD_BIN
Is reentrant.

The fIrst is to simply pass the parameters in registers.
as we did In the program in Figure 5-14. If the interrupt
procedure-and the BCD_BIN procedure each push and
pop all the registers they use, all the parameters from
the interrupted execution will be saved and restored.
When execution returns to BCD_BIN again, the registers
will contain the same data they did when the interrupt
occurred. The, interrupted execution will then complete
correctly.

A second method of making the BCD._BIN procedure.
reentrant is to pass pointers to the data Items in
registers. as we did in the program in Figure 5-16.

116	 CHAPTER FIVE

Again. if the interrupt procedure and the BCD_..BIN
procedure each push and pop the registers they use.
execution will return to the interrupted procedure with
data intact.

The third way to make the BCD_BIN procedure reen-
trant is by passing parameters or pointers on the stack.
as we did in the version in Figure 5-17. In this version.
the mainline program pushes the BCD number onto the
stack and then calls the procedure. The procedure
pushes registers on the stack and uses BP to access the
BCD number relative to where the stack pointer ended
up. If an interrupt occurs, the interrupt service proce-
dure will push on the stack the BCD number it wishes
to convert and cafi BCD_BIN, This second UCD number
will be pushed on the stack at a different location from
the first BCD number that was pushed.

The BCD_.BIN procedure will use BP to access the new
BCD value and pass the binary value back on the stack.
If the BCIL.BIN and interrupt procedure each save and
restore the registers they use, the first execution of
the procedure will produce correct results when it is
reentered.

If you are writing a procedure that you may want to
call from a program written in a high-level language
such as Pascal or C, then you should definitely use the
stack for passing parameters because that is how these
languages do it. In a later chapter we show you how to
pass parameters between C programs and assembly
language programs.

RECURSIVE PROCEDURES
A recursive procedure is a procedure which calls itself.
This seems simple enough, but the question you may
be thinking is, "Why would we want a procedure to call
itself?' The answer is that certain types of problems.
such as choosing the next move in a computer chess
program, can best be solved with a recursive procedure.
Recursive procedures are often used to work with com-
plex data structures called trees.

We usually write recursive procedures In a high-level
language such as C or Pascal. except in those cases
where we need the speed gained by writing in assembly
language. However, the assembly language example in
the following sections should help you understand how
recursion works and how the stack is used by recursive
and other nested procedures.

Recursive Procedure Example

ALGORITHM
Most of the examples of recursive procedures that we
could think of are too complex to show here. Therefore,
we have chosen a simple problem which could be solved
without recursion.

The problem we have chosen to solve is to compute
the factorial of a given number in the range of I to 8.
The factorial of a number is the product of the number
and all the positive Integers less than the number. For
example. 5 factorIal Is equal to 5 x 4 x 3 X 2 x 1.

The word "factorial" is often represented with '!.' For
example, 5! is another way to represent 5 factorial,

What we want here is a recursive procedure which will
compute the factorial of a number N which we pass to
it on the stack, then pass the factorial back to the calling
program on the stack. The basic algorithm can be
expressed very simply as

IFN = 1 THEN factorial	 1,
ELSE factorial = N x (factorial of N - 1)

This says that if the number we pass to the procedure
is I. the procedure should return the factorial of 1,
which is 1. If the number we pass is not 1, then the
procedure shoul4 muluply this number by the factorial
of the number mIus 1.

Now here's where the recursion comes in. Suppose we
pass a 3 to the procedure. When the procedure Is first
called, it has the value of 3 (or N, but it does not have
the value for the factorial of N - 1 that it needs to
do the multiplication indicated in the algorithm. The
procedure solves this problem bycalling itself to compute
the needed factorial of N - 1. It calls itself over and over
until the factorial of N - 1 that it has to compute is the
factorial of!.

Figure 5-2!, p. 118. shows sçveral ways in which we
can represent thisprocess. In the program flow diagram
in Figure 5-21a. you can see that if the value ofN passed
to the procedure is 1. then the proceduie simply loads
1 into the stack location reserved for N! and returns to
the calling program. Figure 5-2!b shows the program
flow that will occur when the number passed to the
procedure is some number other than 1. If we call the
procedure with N 3. the procedure will call itself to
compute (N - 1)! or 2!. It will then call itself again to
compute the value of the , next (N - 1)! or II. Since
1! 1. the procedure will return this value to the
program that called it. In this case the program that
called it was a previous execution of the same procedure
that needed this value to compute 2!. Given this value.
it will compute 2! and return the value to the program
that called it. Here again, the program that called it was
a previous execution of the same procedure that needed
2! to compute the factorial of 3. Given the factorial of 2.
this call of the procedure can now compute 3! and return
to the program that called it. For the example here, the
return now will be to the mainline program.

Figure 5-21c shows how we can represent this algo-
rithm in slightly expanded pseudocode. Use the program
flow diagram in Figure 5-2!b to help you see how
execution continues after the return when N = 1 and
N = 3. Can you see that ifN Is initially I, the first return
will return execution to the instruction following CALL
FACTO in the mainline program? If the initial N was 3.
for example, this return will return execution to the
Instruction after the call in the procedure. Likewise, the
return after the multiply can send execution back to the
next Instruction after the call or back to the mainline
program if the final result has been computed.

Figure 5-2 Id shows a flowchart for this algorithm.
Note that the flowchart shows the same ambiguity about
where the return operations send execution to.

STRINGS, PROCEDURES, AND MACROS 	 117

Id)

MAINLINE

ROCE OUR E
FACTO

CALL FACTO

WITH ii

(a)

MAINLINE

PROCEDURE PROCEDURE PROCEDURE

	

FACTO	 FACTO	 FACTO

CALL FACTO

	

LALL1

NEXT MAIN'IINE
INSTRUCTION

	

RET	 RET
	 RET

	

WITH 31	 WITH 21
	 WITH 11

(b)

PROCEDURE FACTO
IF N -

FACTORIAL-i
RET

ELSE
REPEAT

DECREMENT N
CALL FACTO

UNTIL N-i
MULTIPLY (N - ill X PREVIOUS N
RET

(c)

FIGURE 5-21 Algorithm for program to compute factorial for a number N
between 1 and 8. (a) Flow diagram for N = 1. (b) Flow diagram for N = 3
(C) Pseudocode. (ci) Flowchart.

ASSEMBLY LANGUAGE RECURSIVE
FACTORIAL PROCEDURE

Figure 5-22 shows an 8086 assembly language procedure
which computes the factorial of a number in the range
of 1 to 8. To save space, we have not included Instruc-
tions to return an error message if the number passed
to thc procedure is out of this range. Figure 5-23.
p. 120. shows, with a stack diagram. how the stack will
be affected If this procedure Is called with N 3. When
working your way through a recursive procedure or any
procedure which uses the stack extensively, a stack
diagram such as this is absolutely necessaly to keep
track of everything.

The first parts of the program are housekeeping
chores. We start the mainline program by declaring a
stack segment and setting aside a stack of 200 words
with a label at the top of the stack. The first three
Instructions in the code segment of the mainline pro-
gram InItialize the stack segment register and the stack
pointer register. The SUB SP.04 instruction after this

will decrement the stack pointer register by 4. in other
words, we skip the stack pointer down over 2 words In
the stack. These two word locations will be used to pass
the computed factorial from the procedure back to the
mainline program. Next we load the number whose
factorial we want into AX and push the value on the
stack where the procedure will access it. Now we are
ready to call the procedure. The procedure is near
because it is In the same code segment as the instruct'ion
which calls it.

At the start of the procedure, we save the flags and all
the registers used In the procedure on the stack. Let's
take a look at Figure 5 .23 to see what Is on the stack at
this point. As you can see, the stack now has the space
for the result, the passed value, the return address, and
the pushed registers. Unfortunately, the value of N is
buried 10 addresses up the stack from where the stack
pointer was left after BP was pushed. To access this
buried value, we first copy SP to BP with the MOV BP.SP
instruction so that BP points to the top of the stack.
Then we use the MOV AX.IBP + 10) instruction to copy

118	 CHAPTER FIVE

2
3
4
5
6
7 0000
8 0000 C8(0000)
9

100190
II
12	 0OO8
13
14 0000
15
16 0000 58 0000s
17 0003 8E DO
18 0005 BC 0190r
19 0008 83 EC 04
20 0005 88 0008
21 000E 50
22 000F E8 0009
23 0012 83 C4 02
24 0015 58
25 0016 SA
26 0017 90
27 0018 ES 3A 90
28
29
30
31
32
33
34 0018
35 001B 9C
36 OO1C 50
37 0010 52
38 DOlE 55
39 OO1F 88 EC
40 0021 88 46 QA
41 0024 3D 0001
42 0027 75 00
43 0029 C? 46 OC 0001
44 002E C7 46 OE 0000
45 0033 ES 1* 90
46 0036 83 EC 04
47
48 0039
49 003*
50 0035
51 003E
52 0040
53 0043
54 0046
55 0049
56 004C
57 004F
58 0050
59 0051
60 0052
61 0053
62 0054
63 0054
64 0055
65

FIGURE 5-2:

48
50
E8 FF00
88 EC
88 46 02
FT 66 10
89 46 12
89 56 14
83 C4 06
50
5*
58
90
C3

90

8086 PROGRAM F5-22ASM
;ABSTRACT : Progr cJtes the factorial of a nuer between 1 aM 8
;REGISTERS : Uses CS, SS, SP, AX. DX
;PORTS	 : None used
;PROCEDURES: Uses FACTO

STACK_SEG	 SEGMENT	 STACK
OW	 200 OUP(0)

STACK_TOP	 LABEL WORD
STACK_SEG	 ENDS

NLRI8ER	 EQU	 08

CCOE	 SEGMENT
ASSIME CS:C00E, SS:STACK_SEG

START:	 NOV AX, STACK_SEG	 Intia1ize stack segment register
NOV 55, AX
NOV SP, OFFSET STACK_TOP	 Initialize stack pointer
SUB SP, 0004K	 Make space in stack for factorial
NOV AX, NUMBER	 to be returned and put raster
PUSH AX	 to be passed on stack
CALL FACTO	 Coopute factorial of nuiter
ADD SI', 2	 Get over original nurter in stack
POP AX	 Get low word of the result
POP DX	 Get high word of the result
MOP	 Siimalate next mainline instruction
JNP FIN	 Or EXIT p-ogram

;PROCEDURE: FACTO: Recursive proce&re that coep.ites the factorial of a nurter

	

INPUT	 : Takes data (nuTter 	 N) from the stack
;JTPUT	 : Returns wtth result on stack above original data
;OESTROYS : Nothing

FACTO
	 PROC	 WEAR

PUSH F
	 Save flags and registers

PUSH AX	 on the stack
PUSH DX
PUSH BP
NOV BP, SP
	 Point BP at top of stack

NOV AX, (BP10I
	 Copy ramter from stack to AX

CMI' AX, 0001K
	 If N not	 1 THEN

JME 00014	 coeç,ute factorial
NOV WORD PTR (BP12), 0001H ELSE load 1! on stack
NOV WORD PIR (BP.14), 0000H and return to calling progrs
,JNP EXIT

GO_OW
	 SUB SP. 000414
	 Make space in stack for

preliminary factorial
DEC AX
	 Decrement nuiter now in AX

PUSH AX. 	 Save N-I on stack
CALL FACTO
	 Conçute factorial of N-I

NOV SI', SP
	 Point SI' at top of stack

NOV AX, (BP21
	 Last (N-i)' from stack to AX

KIlL WORD PTR (BP+163
	 Multiply by previous N

NOV (BP*181, AX
	 Copy new factorial to stack

MOW (IIP.20), DX
ADD SP, 000614
	 Point SI' at pushed register

POP BP
	 Restore registers	 -

POP DX
POP AX
POP F
RET

	

FACTO
	 ENOP

	

FIN:	 HOP

	

C00E
	 ENDS

Set aside 200 words for stack
Assign nai to word above stack top

8	 40320 9080K

EXIT:

END	 START
Program which uses a recursive procedure to calculate the factorial of a number between 1 and 8.

119

STACK IN MEMORY
NOTE EACH BOX IN THIS

	

SF
	

STACK DIAGRAM

cXOH -
	 REPRESENTS A WORD

	

)7CH	 M LOW WORD I 3' FOR FINAL FACTORIAL

	

7EH	 NI HIGH WORD I) 4-BYTE SPACE RESERVED

m7AH	 N	 I - SF AFTER FINAL RET

	

W78H	 IF

	

I76H	 FLAC

	

74H	 AX

	

72H	 DX

	

7OI'I	 BP	 SF AFTER +6 BALANCE

	

OEH	
___________ 4-BYTE SPACE FOR (N- ill

6CH ____

	

OO6AH	 N-i	 —SPAFTERSECONDRET

	

68H	 UP

	

OOBBH	 F LAC

	

MH	 AX

	

1X162H	 DX

	

OOBOH	 BP	 —SPAFTER+SBALANCE

	

(X$EH	 ____________
l'4-BYTE SPACE FOR (N - 1)!

CH ____

	

I5AH	 (N-i) - I	 - SF AFTER FIRST RET

	

58H	 IF

	

XBBH	 FLAGS

	

0064H	 AX

	

mS2H	 DX

	

COSOH	 P	 - SF AFTER LAST CALL

	

004EH	 AND PUSHES

FIGURE 5-23 Stack diagram for program in Figure 5-22
showing contents of stack for N = 3.

N from the stack to AX. Now that the procedure has the
value of N. let's work through how It gets processed.

If the value of N read in is 1, then the factorial Is 1.
We want to put 0000000lH in the stack locations we
reserved for the result, restore the registers, and return
to the mainline program. Follow this path through the
program in Figure 5-2 2. Note how the MOV WORD F'TR
IBP + 12l.0001H instruction is used to load a value to
a location buried in the stack. The WORD PTR directives
tell the assembler that you want to move a word to the
specified memory location. Without these directives, the
assembler will not know whether to code the instruction
for moving a byte or for moving a word. The MOV WORD
PTR (B? + 14),0000H Instruction is iikewiseused to
move a word value to the stack location reserved for the
high word of the factorial.

Now let's see what happens if the number passed to
FACTO is a 3. The CM? AX,000IH Instruction and the
JNE Go_ON instructions determine that N is not 1
and send execution to the SUB SP.04H instruction.
According to the algorithm, we are. going to find the
value of N! by multiplying N times the value of(N - 11!.
We will be calling FACTO again to find the value of (N -
1)!. The SUB SP,04H instruction skips the stack pointer

duw over fuur addrse lii the stack to offset OO6CH
for our example. The value of(3 - 1)! will be returned
in these locations.

The next step in the program is to decrement N by 1
and push the value of N - I on the stack at offset
OO6Ali. where it can be accessed during the next call of
FACTO.

Next we call FACTO again to compute the value of
(N - 1)!. The I? flags and registers will again be pushed
on the stack. As shown in FIgure 5-23. the stack pointer
is now pointing at offset 0060H. and he value of N -
1 that we need is again buried 10 addresses up in the
stack. This is no problem, because the MOV BP,SP and
MOV AX.IBP + 101 instructions will allow us to access
the value. We started with N 3 for this example, so
thevalueofN - I thatwereadlnatthlspointisequal
to 2. Since this value Is not 1. execution will again go
to the label GO_ON, The SUB SP.04 Instruction will
again skip the stack pointer down over four addresses
to offset OO5CH. This leaves space for (2 - I)!. which
will be returned by the next call of FACTO. We decrement
N - 1byItogivearesultof1andthenpushthisue
on the stack at offset OO5AH. We then call FACTO to
compute the factorial of 1.

After calling FACTO again and pushing all the registers
on the stack, the stack pointer, now points to offset
0050H. FACTO then reads N = 1 from the stack with
the MOV AX.(BP + 101 Instruction. When the CM?
AX,0001H instruction in FACTO finds that the number
pased to it Is 1, FACTO loads a factorial value of 1 into
the four memory locations we most recently set aside
for a returned factorial at offsets OO5CH to OO5FH. The
MOV WORD PTR IB? + 121.0001 and MOV WORD PTR
IBP + 141,0000 Instructions do this. Since N was a 1,
execution will go to the EXIT label. The registers will
then be popped and execution returned to the next
instruction after the CALL instruction that last called
FACTO.

Now in this case FACTO was called from a previous
execution of FACTO, so the return will be to the MOV
BP,SP Instruction after CALL FACTO. The MOV BP.SP
instruction points BP at the top of the stack at 005A}l.
so that we can access data on the stack without affecting
the stack pointer. The MOV AXJflP + 21 instruction
after this copies the low word of (N -. I - I)! or I from
the stack to AX so that we can mUltiply it by N - 1. We
need only the lower word of the two we set aside for the
factorial, because for an N of 8 or less, only the lower
word will contaIn data. Restricting the allowed range of
N (or this example means that we Only have to do a 16-
bit by 16-bit multiplicatIon. We could increase the
al towed range of N by simply setting aside larger spaces
hit the stack for factorials and including Instructions to
muliiply larger numbers.

In this example, the MUL WORD PTR IBP + 16]
in structidn multiplies the (N - 1 - II! in AX by the
previous N from the stack. The low word of the product
is left in AX, and the high word of the product Is left In
DX. The MOV IBP + 18(.AX and the MOV IBP + 20l,DX
instructions copy these two words to the stack locations
we reserved for the next factorial result at offsets OO6CH
to 006FF!.

1 20	 CHAPTER FIVE

The next operation we would like to do in the program
is pop the registers and return. As you can see from
Figure 5-23, however, the stack pointer Is flow pointing
at some old data on the stack at offset 005A1-I. not at
the first register we want to pop. To get the stack pointer
pointing where we want It. we add 8 to It with the ADD
SP,06H instruction. Then we pop the registers and
return.

After the pops and return. the stack pointer will be
pointing at N - I at offset 006A14. and the value for 2!
will be in the stack at offsets OO6AH to OO6FH in the
stack. We still have one more computation to produce
the desired 3?. Therefore, the return Is again to the
MOV BP.SP instruction after CALL In FACTO. The
instructions after this will multIply 2! times 3 to produce
the desired 3!. and copy 3! to the stack as described in
the preceding paragraph. The ADD SP,06H instruction
will again adjust the stack pointer so that we can pop
the registers and return. Since we have done all the
required computations, this time the return will be to
the mainline program. The desired result. 3!. will be in
the memoiy locations we reserved for it in the stack at
offsets OO7AH to OO7FH.

After the final return, the stack pointer will be pointing
at offset OO7AH in the stack. We add 2 to the stack
pointer so that It points to the factorial result and pop
the result into the DX and AX registers. This brings the
stack pointer back to Its initial value.

If you work your way through the flow of the stack
and the stack pointer in this example program, you
should have a good understanding of how the stack
functions during nested procedures.

•Writin? and Calling Far Procedures

INTRODUCTION AND OVERVIEW
Afar procedure is one that is located in a segment which
has adiuferent name from the segment containing the
CALL Instruction. To get to the starting address of a far
procedure. the 8086 must change the contents of both
the code segment register and the Instruction pointer.

CE SEONT
ASSIJE CS:CE, DS:DATA, SS:STACK_SEG

CALL *JLTIPLY..,32

CXE ENDS

PROCEDURES SEGMENT
Mut.T!PLY_32 PROC FAR

ASSIJE CS:PROCEDURES

MULl IPLY ,_32 ENOP
PROCEDURES	 ENDS

FIGURE 5-24 Program additions needed for a far
procedure.

Therefore, if you are hand coding a program which calls
a far procedure. make sure to use one of the intersegment
forms of the CALL instruction shown in Figure 5-6.
Likewise, at the end of a far procedure. both the contents
of the code segment register and the contents of the
Instruction pointer must be popped off the stack to
return to the calling program, so make sure to use one
of the Intersegment forms of the RET instruction to do
this.

If you are using an assembler to assemble a program
containing a far procedure. there are a few additional
directives you have to give the assembler. The following
sections show you how to put these needed additions
into your programs. The first case we will describe is
one in which the procedure is in the same assembly
module, but it Is in a segment with a different name
from the segment that contains the CALL instruction.

ACCESSING A PROCEDURE
IN ANOTHER SEGMENT
Suppose that In a program you want to put all of the
mainline program in one logical segment and you want
to put several procedures in another logical segment to
keep them separate from the mainline program. Figyre
5-24 shows some program fragments which illustrate
this situation. For this example, our mainline instruc-
tions are in a segment named CODE. A procedure called
MIJLTIPLY_.32 is in a segment named PROCEDURES.
Since the procedure is in a different segment from the
CALL instruction, the)86 must change the contents
of the code segment register to access it. Therefore, the
procedure is far.

You let the assembler know that the procedure is far
by using the word FAR in the MULTiPLY_32 PROC FAR
statement. When the assembler finds that the procedure
is declared as far. It will automatically code the CALL
instruction as an Intersegment call and the RET instruc-
tion as an intersegment return.

Now the remaining thing you have to do, so that the
program gets assembled correctly. is to make sure thai
the assembler uses the right code segment for each part
of the program You use the ASSUME directive to do
this. At the start of the mainline program. you use the
statement ASSUME CS:CODE to tell the assembler to
compute the offsets of the following instructions from
the segment base named CODE. At the start of the
procedure. you use the ASSUME CS:PROCEDURES
statement to tell the assembler to compute the offsets
for the instructions in the procedure starting from the
segment base named PROCEDURES.

When the assembler finally codes the CALL instruc-
tion, It will put the value of PROCEDURES In for CS In
the instruction. It will put the offset of the first instruc-
tion of the procedure In PROCEDURES as the lP value
in the instruction.

To summarize, then, if a procedure Is b a different
segment from the CALL Instruction. yó((must declare
it far with the FAR directive. Also, you must put an
ASSUME statement in the procedure to tell the assembler
what segment base to use when calculating the offsets
of the instructions In the procedure.

STRINGS, PROCEDURES, AND MACROS	 121

	

AcM MODULE	 ASM MODULE .
	

ASM MODULE

	

___	 1	 1

ASSEMBLE	 ASSEMBLE	 ASSEMBLE

	

___	 1	 1

.OBJ FILE	
J	

.OBJ FILE	
(

.OBJ FILE

L	
I.	 I

LINK

.LNK or .EXE.
FILE

LOCATE	 (itrvI

BIN FILE_J

LOAD

RUN

TEST

FIGURE 5-25 Chart showing the steps needed to run a
program that has been written in modular form.

ACCESSING A PROCEDURE AND DATA IN A
SEPARATE ASSEMBLY MODULE

As we have discussed previously, the best way to write
a large program is to divide it into a series of modules.
Each module can be individually written, assembled,
tested, and debugged as shown in Figure 5-25. The
object code files for the modules can then be linked
t9gether. Finally, the resulting link file can be located,
run, and tested.

As we said earlier in this chapter, the individual
modules of a large program are often written as proce-
dures and called from a mainline or executive program.
In the preceding section we showed you how to access
a procedure in a different segment from the CALL
instruction. Here we show you how to access a procedure
or data in a different assethbly module.

In order for a linker to be able to access data or a
procedure in another assembly module correctly, there
are two directives that you must use in your modules.
We will give.you an overview of these two and then show
with an example how they are used in a program.

I. In the module where a variable or procedure is
declared, you must use the PUBLIC directive to let
the linker know that the variable or procedure can
be accessed from other modules. The statement

PUBLIC DISPLAY, for example. tells the linker that
a procedure or variable named DISPLAY can be
legally accessed from another assembly module.

2. In a module which calls a procedure or accesses a
variable in another module, you must use the EXTRN
directive to let the assembler know that the proce.
dure or variable is not in this module. The EXTRN
statement also gives the linker some needed informa-
tion about the procedure or variable. As an example
of this, the statement EXTRN DISPLAY:FAR. SEC-
ONDS:BYFE tells the linker that DISPLAY is a far
procedure and SECONDS. is a variable of type byte
located in another assembly module.

To summarize, a procedure or variable declared PUB-
LIC In one module will be declared EXTRN in modules
which access the procedure or variable. Now let's see
how these directives are used in an actual program.

PROBLEM DEFINITION AND
ALGORITHM DISCUSSION

The procedure in the following example program, was
written to solve a small problem we encountered when
wilting the program for a microprocessor-controlled
medical instrument. Here's the problem.

in the program we add up a series of values read in
from an A/D converter. The sum is an unsigned number
of between 24 and 32 bits. We needed to scale this value
by dividing it by 10. This seems easy because the 8086
DIV instruction will divide a 32-bit unsigned binary
number by a 16-bit binary number. The quotient from
the division, remember, is put in AX, and the remainder
is put in DX. However, if the quotient is larger than 16
bits, as it will often be for our scaling, the quotient will
not fit In AX. In this case the 8086 will automatically
respond in the same way that it would If you tried to
divide a number by zero. We will discuss the details of
this response in Chapter 8. For now, it is enough to say
that we don't want the 8086 to make this response. The
simple solution we came up with is to do the division
in two steps in such a way that we get a 32-bit quotient
and a 16-bit remainder.

Our algorithm is a simple sequence of actions very
similar to the way you were probably taught to do long
division, We will first describe how this works with
decimal numbers, and then we will show how it works
with 32-bit and 16-bit binary numbers.

Figure 5-26a shows an example of long division of the
decimal number 433 by the decimal number 9. The 9
won't divide into the 4, so we put a 0 or nothing into
this digit position of the quotient. We then see if 9
divides into 43. It fits 4 times. so we put a 4 in this digit
position of the quotient and subtract 4 x 9 from the
43. The remainder of 7 now becomes the high digit of
the 73. the next number we try to divide the 9 into.
After we find that the 9 fits 8 times and subtract 9 x 8
from the 73. we are left with a final remainder of I. Now
lets see how we do this with large binary numbers.

As shown In Figure 5-26b, we first divide the 16-bit
divisor into a 32-bit number made up of a word of all
0's and the high word of the dividend. This division

122	 CHAPTER FIVE

048 Ri

9) 433
36

73
72

QUOTIENT I QUOTIENT
HIGH WORD [WWORD

DIVISOR])

J
t6B] DIVIDEND	 DIVIDEND

16 BITS	 H	 HIGH WORD
I LOW WORD I

______________________ 	 I

I
REMAIND' DIVIDENDFIRST DIV	

WORD I [LOW WORD 1

REMAINDER
SECOND DIV	 WORD

(FINAL

WI

FIGURE 5-26 Algorithm for smart divide procedure. (a)
Decimal analogy. (b) 8086 approach.

gives us the high word of the quotient and a remainder.
The remainder becomes the high word of the dividend
for the next division, just as it did for the decimal
division. We move the low word of the original dividend
in as the low word of this dividend and divide by the 16-
bit divisor again. The 16-bit quotient from this division
is the low word of the 32-bit quotient we want. The 16-
bit final remainder can be used to round off the quotient
or be discarded, depending on the application.

THE ASSEMBLY LANGUAGE PROGRAM

Figure 5-27a. pp. 124-5. shows the mainline of a pro-
gram which calls the procedure shown in Figure 5-27b,
p. 126, whIch Implements our division algorithm. We
wrote these two as separate assembly modules to show
you how to add PUBLIC and EXTRN statements so that
the modules are linkable. Let's look closely at these added
parts before we discuss the actual division procedure.

The first added part of the program to took at is in the
statement DATA SEGMENT WORD PUBLIC. The word
PUBLIC in this statement tells the linker that this
segment can be combined (concatenated) with seg-
ment(s) that have the same name but are located in
other modules. In other words, if two or more assembly
modules have PUBLIC segments named DATA, their
contents will be pulled together in successive memory
locations when the program modules are linked. You
should then declare a segment PUBLIC anytime you
want It to be linked with other segments of the same
name in other modules.

The next addition to look at is the statement PUBLIC
DIVISOR in the mainline module in Figure 5-27a. This

statement is necessary to tell the assembler and the
linker that it is legal for the data Item named DMSOR
to be accessed from other assembly modules. Essentially
what we are doing here is telling the assembler to put
the offset of DIVISOR in a special table where It can
be accessed when the program modules are linked.
Whenever you want a named data item or a label to be
accessible from another assembly module, you must
declare it as PUBLIC

The other side of this coin is that, when you need to
access atabel, procedure, or variable in another module.
you mut use the EXTRN directive to tell the assembler
that the label or data item is not in the present module.
If you don't do this, the assembler will give you an error
message because it can't find the label or variable In the
current module. In the example program, the statement
EXTRN SMART_Dfl/IDE:FAR tells the assembler that
we will be accessing a label or procedure of type FAR in
some other assembly module. For this example, we will
be accessing our procedure, SMART_DIVIDE. We enclose
the EXTRN statement with the PROCEDURES SEG-
MENT PUBLIC and the PROCEDURES ENDS statements
hi tell the assembler and linker, that the procedure
SMART_DIVIDE is located In the segment PROCE-
DURES. There are some cases in which these statements
are not needed, but we have found that bracketing the
EXTRN statement with SEGMENT-ENDS directives In
this way is the best way to make sure .that the linker
can find everything when It links modules. As you can
see In the table at the end of the assembler listing
in Figure 5-27a. SMART_DIVIDE Is identified as an
external label of type FAR, found in a segment named
PROCEDURES.

Now let's see how we handle EXTRN and PUBLIC in
the procedure module in Figure 5-27b. The procedure
accesses the data item named DIVISOR, which is defined
in the mainline module. Therefore, we must use the
statement EXTRN DIVISOR:WORD to tell the assembler
that DIVISOR, a data item of type word, will be found
in some other module. Furthermore, we enclose the
EXTRN statement with the DATA SEGMENT PUBLIC
and DATA ENDS statements to tell the assembler that
DIVISOR will be found in a segment named DATA.

The procedure SMART_DIVIDE must be accessible
from other modules, so we declare it public with the
PUBLIC SMART._DIVIDE statement in the procedure
module. If we needed to make other labels or data items
public, we could have listed them separated by commas
alter PUBLIC SMART_DIVIDE. An example Is PUBLIC
SMART_DIVIDE, EXIT.

NOTES:

I. If we had needed to access DMDEND also, we
could have written the EXTRN statement as
EXTRN DMsOR:WORD.DMDEND:WORD. To
add more terms, just separate them with a
comma.

2. Constants defined with an EQU directive in
one module can be imported to another module
by identifying them as EXTRN of type ABS. For
example, If you declare CORRECTION....FAC.

- 18	 STRINGS, PROCEDURES, AND MACROS 	 123

Iurbo AsseLer Version 1.0
	

05-05-89 13:09:06	 Page 1

8086 PROGRAM F5-27A.ASM
;ABSTRACT : Progre divides a 32-bit nuther by a 16-bit nuTer

to give a 32-bit quotielt and a 16-bit rema:nder.
;REGISTERS	 Uses CS. OS, 5$, AX, SP, OX, CX
;PORTS	 : None used
;PROCEDURES: Far procedure SMART_DIVIDE

DATA
	

SEGMENT	 WORO PU8LIC
DIVIDEND	 OW	 403811, 8C72H	 ; Dividend	 8C724039K

DIVISOR	 CU	 569214	 16-bit divisor

DATA
	

ENDS

MORE_DATA SEGMENT	 WORD
QUOTIENT	 OW	 2 DUP(0)
REMAINDER DV	 0

MORE_DATA ENDS

STACK_SEG SEGMENT	 STACK
OW	 100 DUP(0)

	
Stack of 100 words

TOP_STACK	 LABEL WORD
	

Name pointer to top of stack

STACK_SEG ENDS

PUBLIC	 DIVISOR

PROCEDURES SEGMENT 	 PUBLIC	 Let asseatter know that SMART_DIVIDE
EXTRN SMART_DIVIDE : FAR	 is a label of type FAR and is located

PROCEDURES ENDS	 in the segment PROCEDURES

C00E	 SEGMENT	 WORD	 PUBLIC
ASSUME	 CS:C00E, OS:DATA, SS:STACK_SEG

START:	 NOV AX, DATA	 Initialize data segment
NOV OS, AX	 register
NOV AX, STACK_SEG	 Initialize stack segment

NOV SS, AX	 register
NOV SP, OFFSET TOP_STACK	 Initialize stack pointer
NOV AX, DIVIDEND	 Load tow word of divderid
NOV DX, DIVIDEND • 2	 Load high word of div dend
NOV CX. DIVISOR	 Load divisor
CALL SMART_DIVIDE	 Quotient returned in DX:AX

Remainder returned in CX, carry set if result invalid
JNC SAVE_ALL	 IF carry = 0. result valid
JMP STOP	 ; ELSE carry set, dont save result

	

ASSUME OS:MORE_OATA 	 Change data segment
SAVE ALL: PUSH DS	 ; Save oLd OS

NOV DX, MORE_DATA	 Load new data segment
NOV OS, DX	 register
NOV QUOTIENT, AX	 Store tow word of quotient
MOV QUOTIENT • 2, DX	 Store high word of quotient
MOV REMAINDER, CX	 Store remainder

ASSUME DS:DATA
POP CS	 ; Restore initial OS

STOP:	 MOP
C00E	 ENDS

END	 START

FIGURE 5-27 Assembly language program to divide a 32-bt number by a 16-bit
number and return a 32-bit quotient. (a) Mainline program module (continued
on p. 125). (b) Procedure module (p. 126).

2
3
4
5
6
7
8 0000
9 0000 403B 8C72

10 0004 5692
11 0006
12
13 0000
14 0000 02*(0000)
15 0004 0000
16 0006
17
18 0000
19 0000 64*(0000)
20
21 0008
22
23
24
25 0000
26
27 0000
28
29 0000
30
31 0000 88 0000s
32 0003 8€ 08
33 0005 88 0000s
34 0008 8€ DO
35 000A BC OOC8r
36 0000 Al 0000r
37 0010 88 16 0002r
38 0014 88 OE 0004r
39 0018 9A 00000000se
40
41 0010 73 03
42 OO1F (0 13 90
43
44 0022 1E
45 0023 88 0000s
46 0026 8€ 08
47 0028 A3 0000r
48 0028 89 16 0002r
49 002F 89 OE 0004r
50
51 0033 iF
52 0034 90
53 0035
S4

124	 CHAPTER FIVE

Turbo Asse,itter Versoo 1.0
SyTitot Table

SyiTtot Name

??DATE
'?FILEPIAME
?' TIME
7 ?VERS ION
&IcPU

ICURSEG
FII.EWAME

RDSIZE
DIVIDEND
DIV I 5CR
QUOTIENT
RENA I NOER
SAVE_ALL
SMART_DIVIDE
START
STOP

TOP_STACK

Groups & SegiDents

CcOE
DATA
MORE_DATA
PROCEDURES
STACK_SEC

05-05-89 13:09:06 Page 2

Type Value

Text	 'O5-O5-89'
Text	 "F5-27A
Text	 13:09:05"
Nuther 0100
Text	 01011$
Text	 CE
Text	 F5'27A
Text	 2
Word DATA:0000
Word DATA:0004
Word MORE_DATA:0000
Word MORE_DATA:0004
Mer CE:0022
Far	 PROCEDURES.Extern
Near CcOE:0000
Wear CE:0034
Word STACK_SEG:00C8

Bit Size Align Cthine Class

16 0035 Word Public
16 0006 Word Public
16 0006 Word noc.e
16 0000 Pars Public
16 OOC8 Pars Stack

(a)

FIGURE 5-27 (continued)

TOR EQU 07 In one module, you can import
CORRECTION_FACTOR to another module
with the Statement
EXTRN CORRECTION,_FACTOR:ABS.

Now that we have explained the use of PUBLIC and
EXTRN, let's work our way through the rest of the
program. At the start of the mainline, the ASSUME
statement tells the assembler which logical segments to
use as code, data, and stack. We then Initialize the data
segment, stack segment, and stack pointer registers as
described In previous example programs. Now, before
calling the SMARL_DIVIDE procedure, we copy the
dividend and divisor from memory to some registers.
The dividend and the divisor are passed to the procedure
in these registers. As we explained in a previous section.
if we pass parameters to a procedure in registers. the
procedure does not have to refer to specific named
memory locations. The procedure is then more general
and can more easily be called from any place in the
mainline program. However, in this example we refer-
enced the named memory location. DIViSOR, from the
procedure just to show you how It can be done using
the EXTRN and PUBLIC directives. The procedure is of
type FAR, so when we call It. both the code segment
register and the instruction pointer contents will be
changed.

In the procedure shown In Figure 5-27b. we first check

to see if the divisor is zero with a CMP DIVISOR.0
instruction. If the divisor is zero, the JE Instruction will
send execution to the label ERROR_EXIT. There we set
the carry flag with STC as an error indicator and return
to the mainline program. If the divisor is not zero, then
we go on with the division. To understand how we do
the division, remember that the 8086 DIV Instruction
divides the 32-bit number In DX and AX by the 16-bit
number in a specified register or memory location. It
puts a 16-bit quotient in AX and a 16-bit remainder in
DX. Now, according to our algorithm In Figure 5-26b.
we want to put 0000H in DX and the hIgh word of the
dividend In AX for our first DIV ope'ation. MOV BX.AX
saves a copy of the low word of the dividend for future
reference. MOV AX,DX copies the high word of the
dividend into AX where we want It, and MOV DX.0000H
puts all 0's in DX. After the first DIV Instruction executes.
AX will contain the high word of the 32-bit quotient we
want as our final answer. We save this in BP with the
MOV BPAX instruction so that we can use AX for the
second DIV operation.

The remainder from the first DIV operation was left
in the DX register. As shown by the diagram in Figure
5-26b. this is right where we want it for the second DIV
operation. All we have to do now, before we do the second
DIV operation. is to get the low word of the original
dividend back into AX with the MOV AX,BX instruction.
After the second DIV Instruction executes, the 16-bit
quotient will be in AX. This word is the low word of our

STRINGS, PROCEDURES, AND MACROS	 125

PROCEDURES SEGMENT PUBLIC
SMART DIVIDE PROC	 FAR

ASSUME CS:PROCEDURES, DS:DATA
F.MP DIVISOR, 0
JE	 ERROR_EXFT
NOV BX, AX
NOV AX, DX
NOV DX, 000011
DIV CX
NOV BP, AX
NOV AX, BX.
DIV CX
NOV CX, DX
NOV DX, BP
dC
JNP EXIT

ERROR_EXIT: STC
EXIT:	 RET
SMART_DIVIDE ENDP
PROCEDURES ENDS

END

Check for illegal divide
IF divisor = 0, exit procedure
Save low order of dividend
Position high word for 1st divide
Zero DX
DX:AX/CX, quotient in AX, remainder in DX
Save high order of final result
Get back Low order of ''vidend
DX:AX/CX, quotient in AX, remainder in DX
Pass remainder back in CX
Pass high order result back in DX
Clear carry to indicate valid result
Finished
Set carry to indicate divide by zero

turbo Asseler Version 1.0

2
3
4
5
6
7
8
9

10
1.1 0000
12
13 0000
14
15
16
17 0000
18 0000
19
20 0000 83 3E 0000e 00
21 0005 74 17
22 0007 88 08
23 0009 88 C2
24 0008 BA 0000
25 000E F? Fl
26 0010 88 E8
27 0012 88 C3
28 0014 F7 Fl
29 0016 88 CA
30 0018 88 05
31 OO1A F8
32 0018 EB 02 90
33 OO1E F9
34 OO1F CB
35 0020
36 0020
37

Turbo Assetter VersTon 1.0
Systot Table

S1TtO1 Naa

?'OATE
'?F I LENAME
?'TIME
'?VERS ION
CPu

ICURSEG
FILENA14E

IW0QDSIZE
Dlvi SOR
ERROR_EXIT
EXIT
SMART_DIVIDE

Groups & Segments

DATA
PROCEDURES

FIGURE 5-27 (continued)

05-05-89 13:09:20	 Page 1

8086 PROCEDURE F5-278.ASM catted by program F5-27AASM
;ABSTRACT : PROCEDURE SMART_DIVIDE.

This procedure divides a 32-bit ntsrCer by a 16-bit narer
to give a 32-bit quotient and a 16-bit remainder

;INPUT	 : Dividend - low word in AX, high word in DX, Divisor in CX
;CJTPUT	 : Quotient - tow word in AX, high word in DX. Remainder in CX

Carry	 - carry flag set if try to divide by zero
;DESTROYS : AX, BX, CX, DX, BP, FLAGS
;PORTS	 : None used

DATA	 SEGMENT PUBLIC	 This block tells the assen*,ler that
EXTRN DIVISOR:WORD	 the divisor is a word variable found

DATA	 ENDS	 in the external segment named DATA

PUBLIC SMART_DIVIDE	 Make SMART_DIVIDE available to other modules

05-05-89 13:09:20	 Page 2

Type Value

Text	 "05-05-89"
Text	 "F5-27B
Text	 "13:09: 19'
NuTer 0100
Text	 010111
Text PROCEDURES
Text	 F5-27B
Text	 2
Word	 DATA:---- Extern
Near	 PROCEDURES:OO1E
Near	 PROCEDURES:001F
Far	 PROCEDURES:0000

Bit Size Align Coi,ine Class

16 0000 Para	 Public
16 0020 Par8	 Ptlic

(b)

126	 CHAPTER FIVE

desired 32-bit quotient. We Just leave this word In AX
to be passed back to the mainline program. The DX
register was left with the fInal remainder. We copy this
remainder to CX with the MOV CX,DX instruction-to be
passed back to the mainline program. After the first DIV
operation, we saved the high word of our 32-bit quotient
In BP. We now use the MOV DX,BP instruction to copy
this word back to DX, where we want it to be when we
return to the mainline program. You really don't have
to shuffle the results around the way we did with these
last three instructions, but we like to pass parameters
to and from procedures in as systematic a way as possible
so that we can more easily keep track of everything.
After the shuffling, we clear the carry flag with CLC
before returning to indicate that the result in DX and
AX is valid.

Back in the mainline program, we check the carry flag
with the JNC Instruction. If the carry flag is set, we
know that the divisor was 0, no division was done, and
there is no result to put in memory. lithe carry flag is
not set, then we know that a valid 32-bit quotient was
returned in DX and AX and a 16-bit remainder was
returned in CX. We now want to copy this quotient and
this remainder to some named memory locations we set
aside for theM.

If you look at some earlier lines in the program. you
will see that the memory locations called QUOTIENT and
REMAINDER are in a segment called MORE_DATA. At
the start of the mainline program, we tell the assembler
to ASSUME that we will be using DATA as the data
segment. Now, however, we want to access some data
items in MORE_DATA using DS. To do this, we have to
do two things. First, we have to tell the assembler to
ASSUME DS:MORE_DATA. Second, we have to load the
segment base of MORE_DATA into DS. In our program
we save the old value of DS by pushing it on the stack.
We do this so that we can easily reload DS with the
base address of DATA later in the program. The MOV
BX.MORE_DATA and MOV DS.BX instructions load the
base address of MORE_DATA into DS. The three MOV
instructions after this copy the quotient and the remain-
der into the named memory locations.

Finally, in the program we point DS back at DATA so
that later Instructions can access data items In the
DATA segment. To do this, we first tell the assembler to
ASSUME DS:DATA. Then we pop the-base address of
DATA off the stack into DS. As you write more complex
programs. you will often want to access different seg-
ments at different times In the program, so we wrote
this example to show you how to do it. Remember, when
you change segments, you have to do a new ASSUME
statement and include instructions which initialize the
segment register to the base address of the new segment.

WRITING AND USING
ASSEMBLER MACROS

Macros and Procedures Compared

Whenever we need to use a group of instructions several
times throughout a program. there are two ways we can
avoid having to write the group of instructions each

time we want to use it. One way is to write the group of
Instructions as a separate procedure. We can then just
call the procedure whenever we need to execute that
group of instructions. A big advantage of using a proce-
dureis that the machine codes for the group of instruc-
tions in the procedure only have to be put in memory
once, Disadvantages of using a procedure are the need
for a stack, and the derhead time required to call the
procedure and return to the calling program.

When the repeated group of instructions is too short
or not appropriate to be written as a procedure, we use
a macro. A macro is a group of instructions we bracket
and give a name to at the start of our program. Each
time we "call" the macro in our program, the assembler
will insert the defined group of instructions In place of
the "call." In other words, the macro call is like a
shorthand expression which tells the assembler. "Every
time you see a macro name in the program, replace it
with the group of instructions defined as that macro at
the start of the program." An important point here is
that the assembler generates machine codes for the
group of instructions each time the macro is called.
Replacing the macro with the instructions it represents
is commonly called "expanding" the macro. Since the
generated machine codes are right (n-line with the rest
of the program. the processor does not have to go oft to
a procedure and return. Therefore, using a macro avoids
the overhead time involved in calling and returning from
a procedure. A disadvantage of generating in-line code
each time a macro is called is that this will make the
program take up more memory than using a procedure.

The examples which follow should help you see how
to define and call macros. For these examples we use
the syntax of MASM and TASM. If you are developing
your programs on some other machine, consult the
assembly language programming manual for your ma-
chine to find the macro definition and calling formats
for it.

Defining and Calling a Macro
Without Parameters

For our first example, suppose that we are writing an
8086 program which has many complex procedures. At
the start of each procedure, we want to save the flags
and all the registers by pushing them on the stack. At
the end of each procedure, we want to restore the flags
and all th registers by popping them off the stack. Each
procedure would normally contain a long series of PUSH
instructions at the start and a long series of POP
instructions at the end. Typing in these lists of PUSH
and POP instructions is tedious and prone to errors. We
could write a procedure to do the pushing and another
procedure to do the popping. However, this adds more
complexity to the program and is therefore not appro-
priate. Two simple macros will solve the problem for us.

Here's how we write a macro to save all the registers.

PUSH_ALL MACRO
PUSHF
PUSH AX
PUSH BX

STRINGS, PROCEDURES. AND MACROS	 127

PUSH CX
PUSH Dx
PUSH BP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
PUSH SS

The PUSILALL MACRO statement identifies the start
or the macro and gives the macro a name. The ENDM
identifies the end of the macro.

Now, to call the macro In one of our procedures, we
simply put in the name of the macro just as we would
an instruction mnemonic. The start of the procedure
which does this might look like this:

BREATH....RATE	 PROC FAR
ASSUME CS:PROCEDURES. DS:PATIENT_PAJW!ETER5

PtiSl-LALI.	 Maoro call
MOV AX, PATIEN'L..PARAMETERS InitialIze data
MOVE DS. AX	 aegment reg

When the assembler assembles this program section.
it will replace PUSI-L.ALL with the Instructions that it
represents and insert the machine codes for these
instructions in the object code version of the program.
The assembler listing tells you which lines were inserted
by a macro call by putting a + in each program line
Inserted by a macro call. As you can see from the example
here, using a macro makes the source program much
more readable because the source program does not
have the long series of push instructions cluttering it
up.

The preceding example showed how a macro can be
used as simple shorthand for a series of instructions.
The real power of macros, however, comes from being
able to pass parameters to them when you call them.
The next section shows you how and why this is done.

Passing Parameters to Macros

Most of us have received computer printed letters of the
form:

Dear MR. HALL.
We are pleased to inform you that you may have

won up to $1,000,000 in the Readers Weekly
sweepstakes. To find out if you are a winner. MR.
HALL, return the gold card to Reader's Weekly in
the enclosed envelope before OCTOBER 22. 1991.
You can take advantage of our special offer of
three years of Readers Weekly for only S24.95 by
putting an X in the YES box on the gold card. II
you do not wish to take advantage of this offer.
which is one third off the newsstand price, mark
the no box on the gold card.

Thank you.

A letter such as this Is an everyday example of the
macro with parameters concept. The basic letter "macro"
is written with dummy words in place of the addressee's
name, the reply date, and the cost of a three-year
subscription. Each time the macro which prints the
letter Is called, new values for these parameters are
passed to the macro. The result is a 'personal"-looking
letter.

In assembly language programs, we likewise can write
a generalized macro with dummy parameters. Then,
when we call the macro, we can pass it the actual
parameters needed for the specific application. Suppose,
for example, we are writing a word processing program.
A frequent need tn a word processing program is to
move strings of ASCII characters from one place in
memory to another. The 8086 MOVS Instruction is
intended to do this. Remember from the discussion of
the string instructions at the beginntng of this chapter.
however, that In order for the MOVS Instruction to
work correctly, you first have to load SI with the offset
of the source start. DI with the offset of the destination
start, and Cx with the number of bytes or words to be
moved, We can define a macro to do all of this as
follows:

MOVE.ASC!I CRO NUMBER. SOURCE. DESTINAI1ON
MOV CX, NUMBER	 Nombeo of tharactere to be n,oaed to CX
LEA SI, SOURCE	 Point SI at ASCII souret
LEA DI. DESTINATION	 Ik,int DI at ASCII dealloation
CU)	 Autolncrement pointen after move

REP MOB	 Copy ASCII atrthg to new kxatlon
ENDM

The words NUMBER. SOURCE, and DESTINATION In
this macro are called dummy uarfabtes. When we call
the macro, values from the calling statement will be put
in the instructions In place of the dummies. If. for exam-
ple, we call this macro with the statement MOVE_
ASCII O3DH.BLOCK_START.BLOCKDEST the assem-
bler will expand the macro as follows.

MOV CX. 03011	 Number of ehararters to be moved In CX
LEA SI. BLOCI(..STAET	 Point SI at ASCII deslinatlon
LEA DI. BLOCKJIE,SF 	 Point DI at ASCII devtlnation
CLI)	 Autoincrnnent pointers after mow

REP MOVSB	 Copy ASCII airing to new location

We do not have space here to show you very much of what
you can do with macros. Read through the assembly
language programming manual for your system to find
more details about working with macros. To help stick
in your mind the differences between procedures and
macros, here is a comparison between the two.

Summary of Procedures Versus Macros

PROCEDURE

Accessed by CALL and RET mechanism during program
execution. Machine code for Instructions only put in
memory once. Parameters passed In registers, memory
locations, or stack.

128	 CHAPTER FIVE

MACRO
Accessed during assembly with name given to macro
when defined. Machine code generated for instructions
each time called. Parameters passed as part of statement
which calls macro.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER
If you do not remember any of the terms in the following
list, use the index to help you find them in the chapter
for review.

Strings and 8086 string instructions

Procedures and nested procedures

CALL and RET instructions

Near and far procedures

Direct intersegment far call

Indirect Intersegment far call

Direct Intrasegment near call

Indirect intrasegment near call

Stack: top of stack, stack pointer

PUSH and POP instructions

Parameter, parameter passing methods

Stack overflow

Reentrant and recursive procedures

Interrupt

Interrupt service procedure

Separate assembly modules

PUBLIC and EXTRN directives

Macro

REVIEW QUESTIONS AND PROBLEMS

1. a. Given the following data structure. use the
8086 string instructions to help you write a
program. which moves the string "Charlie T.
Tuna' from OLD_HOME to NEW_HOME.
which is Just above the initial location.

NAMES_HERE SEGMENT
OLD_HOME	 UB 'CHARLIE T. TUNA'
NEW_HOME	 DB 15 DUP(0)

NAMES_HERE ENDS

b. Use the string instructions to write a simple
program to move the string "Charlie T. Tuna"
up four addresses in memory. Consider
whether the pointers should be incremented or
decremented after each byte is moved in order
to keep any needed byte from being written
over. Hint: Initialize Dl with the value of SI + 4,

2, Use the 8086 string instructions to write a program
which scans a string of 80 characters looking for a
carriage return (ODH). If a carria'ge return is found,
put the length of the string up to the carriage
return In AL. If no carriage return is found, put
50H (80 decimal) In AL.

3. Show the 8086 in3truction or group of instructions
which will:
a. Initialize the stack segment register to 4000H

and the stack pointer register to 8000H.
b. Call a near procedure named FI,XIT.
c. Save BX and BP at the start of a procedure and

restore them at the end of the procedure.
d. Return from a procedure and automatically

Increment the stack pointer by 8.

4, a. Use a stack map to show the effect of each of
the following Instructions on the stack pointer
and on the contents of the stack.

MOV SP,4000H
PUSH AX
CALL MULTO
POP AX

MULTO PROC NEAR
PUSHF
PUSH BX

POP BX
POPE'
RET

MULTO ENDP

b. What effect would it have on the executionøf
this program if the POPF instruction in the
procedure was accidentally left Out? Describe
the steps you would take in tracking down this
problem if you did not notice it in the program
listing.

5. Show the binary codes for the following instruc-
tions.
a. The Instruction which will call a procedure

which is 97H addresses higher in memory than
the instructton alter a call Instruction.

b. An instruction which returns execution Irom
a far procedure to a mainline program and
increments the stack pointer by 4.

6. a. List three methods of passing parameters to a
procedure and give the advantages and disad-
vantages of each method.

b. Define the term reentrant and explain how you
must pass parameters to a procedure so that it
Is reentrant.

7. a. Write a procedure which produces a delay of

STNGS, PROCEDURES, AND MACROS	 129

3.33 ma when run on an 8086 with a 5-MHz
clock.

b. Write a mainline program which uses this
procedure to output a square wave on bit DO
of port FFFAH.

8. Write a procedure which converts a four-digit BCD
number passed in AX to its binary equivalent. Use
the algorithm in Figure 5-13.

9. The 8086 MUL instruction allows you to multiply
a 16-bit number by a 16-bit binary number to give
a 32-bit result. in some cases, however, you may
need to multiply a 32-bit number by a 32-bit
number to give a 64-bit result. With the MUL
instruction and a little adding. you can easily do
this. Figure 5-28 shows In diagram form how to do

Iwixi

xIvIzI

Z xx

:	
W 32 BITS

V XX 32BITS

* I	 32 BITS

RESULT
_______________ 64 BITS

FIGURE 5-28 32-bit by 32-bit multiply method for
Problem 9.

it. Each lettcr in thc diagram represents a 16-bit
number. The principle is to use MUL to form partial
products and add these partial products together
asshown. Write an algorithm for this multiplication
and then write the 8086 assembly language pro-
gram for the algorithm.

10. Calculating the factorial of a number, which we did
with a recursive procedure in Figure 5-22, can easily
be done with a simple REPEAT-UNTIL structure of
the form

IF N = I THEN
FACTORIAL = 1

ELSE
FACTORIAL =
REPEAT

FACTORIAL = FACTORIAL x N
DECREMENT N

UNTIL N = 0

Write an 8086 procedure which implements this
algorithm for an N between 1 and 8.

II. a. Show the statement you would use to tell the
assembler to make the label BINADD available
to other assembly modules.

b. Show how you would tell the assembler to look
for a byte type data item named CONVER-
SION.YACTOR in a segment named FIXUPS.

12. a. Write an assembler macro which will restore.
in the correct order, the registers saved by tle
macro PUSFL.ALL in this chapter.

b. Write the statement you would use to call the
macro you wrote in part a.

130	 CHAPTER FIVE

8086 Instruction Descriptions
and Assembler Directives

This chapter consists of two major sections. The first
section isa dictionary of all the 808618088 Instructions.
For each instruction. we give a detailed description of
its operation, the correct syntax for the instruction, and
the flags affected by the instruction. Numerical examples
are shown for those instructions for which they are
appropriate. Instead of putting the binary codes for the
instructions here, we have listed them alphabetically in
Appendixcs A and B. Putting the codes together in a
table makes them easier to find if you are hand coding
a program.

Thc second major section of this chapter is a dictionary
of commonly used 8086 assembler directives. The direc-
tives described here are those defined for the Intel
8086 macro assembler, the Microsoft macro assembler
IMASM). and the Borland Turbo Assembler (TASMI. If
you are using some other assembler, it probably has
similar capabilities, but the names may be different.

You will probably use this chapter mostlyas a reference
to get the details of an Instruction or directive as you
write programs of your own or decipher someone else's
programs. However, you should skim through the chap-
ter at least once to give yourself an overview of the
material It contains. You should not try to absorb all of
this chapter at once. Many of the Instructions described
are used and discussed In various example programs
throughout the book. For these instructions, we have
included references to the appropriate sections in the
text.

INSTRUCTION DESCRIPTIONS

AAA—ASCII Adjust for Addition

Numerical data coming into a computer from a terminal
is usually in ASCII code. In this code, the numbers 0 to
9 are represented b y the ASCII codes 30H to 39H. The
8086 allows you to add the ASCII (-odes for two di-cuual
digits without maskini off the 3 in the upper nibble
of each After the addition, the AAA instruction Is used
to ritaki' sure the result is the correct unpacked UC[). A
si mplt- nit tncrical cxarttple will show how this works.

I

Assume Al. - 0011 0101. ASCII 5
[II. - 0011 1001. ASCII 9

ADD AL. BL : Result: AL = 0110 1110 = 6EH. which
is incorrect BCD

AAA	 Now AL = 00000100. unpacked BCD 4.
CF = I indicates answer is 14 decimal

NOTE: OR AL with 30H to get 34H. the ASCII
code for 4. If you want to send the result back to
a CRT terminal. The I in the carry flag can be
rotated into the low nibble of a register. ORed with
30H to give the ASCIi code for 1. and then sent to
the terminal.

The AAA Instruction works only on the AL register.
The AAA instruction updates AF and CF. but OF. PF,

SF, and ZF are left undefined.

AAD—BCD-to-Binary Convert before Division

AAD converts two unpacked BCD digits in AU and AL
to the equivalent binary number in AL. This adjustment
must be made before dividing the two unpacked BCD
digits in AX by an unpacked BCD byte. After the division,
AL will contain the unpacked BCD quotient and AU will
contain the unpacked HCD remainder. PF. SF. and ZF
are updated. AF, CF. and OF are undefined after AAD.

EXAMPLE;

AX - 0607H unpacked L3CD for 67 decImal
CU 09H. now adjust to binary

AAD	 : Result; AX	 0043 = 4311	 6'
DIV CII - Divide AX by unpacked DCI) iii

Quotient; AL 07 unpacked DCI
Remainder; AH 04 unpacked DCI)
Flags undefined after DIV

NOTE If an attempt Is made to divide b y 0. the
8086 will do a t ype 0 Interrupt. The type 0 Interrupt
response is described in Chapter 8.

AAM—BCD Adjust after Multiply

fiefore you can multipl y two ASCII digits. you must first
mask the upper 4 hits of each. This eaves unpacked
DCL) lone F3CD dtit per b\leJ in each h1e After the two
unpacked [ICE) digits are multiplied, the	 Instr-iic-

-19	 131

tion is used to adjust the product to two unpacked BCL)
digits In AX.

AAM works only after the multiplication of two un-
packed BCD bytes, and it works oniy on an operand in
AL. AAM updates PF. SF. and ZF, but AF. CF. and OF
are left undefined.

EXAMPLE

AL 00000101 = unpacked BCD S
BI-I = 00001001 = unpacked BCD 9

MULBH	 ;ALXBH;resuitinAX
AX = 0000000000101101 OO2DH

AAM	 ; AX = 00000100 00000101 = 0405H,
which is unpacked BCD for 45.
If ASCII codes for the result are
desired. use next instruction

OR AX.30301-1 Put 3 in upper nibble of each byte.
:AX = 001 10100 001 101Ot = 3435H.
which is ASCII code for 45

AAS—ASCII Adjust for Subtraction

Numerical data coming into a computer from a terminal
is usually in ASCII code. In this code the numbers 0 to
9 are represented by the ASCII codes 30H to 39H. The
8086 allows you to subtract the ASCII codes for two
decimal digits without masking the "3" in the upper
nibble of each. The AAS instruction is then used to
make sure the result is the correct unpacked BCD. Some
simple numerical examples will show how this works.

EXAMPLE

ASCII 9-ASCII 5 (9-5)
;AL=O011lQOl 39H=ASCII9
BL = 00110101 = 35H ASCII 5

SUB AL, 13L ; Result: AL = 00000100 = BCD 04
and CF = 0

AAS	 Result: AL = 00000100 = BCD 04
and CF = 0; no borrow required

ASCII 5-ASCII 9 (5-9)
;AssumeAL = 001 10101 = 35H =
ASCII 5
and BL = 00111001 = 39H = ASCII 9

SUB AL, BL ; Result: AL 11111100	 4
in 2s complement and CF

AAS	 : Result: AL = 00000100 = BCD 04
and CF = I; borrow needed

The AAS instruction leaves the correct unpacked BCD
result in the low nibble 0IAL and resets the upper nibble
of AL to all 0's. If you want to send the result back to a
CRT terminal, you can OR AL with 30H to produce
the correct ASCII code for the result. If multiple-digit
numbers are being subtracted, the CF can be taken into
account by using the SBB instruction when subtracting
the next digits.

The AAS instruction works only on the AL register. It
updates AF and CF. but OF. PF, SF. and ZF are left
u ndefi ned.

ADC—Add with Carry—ADC Oestination,Soutce
ADD—Add—ADD Destination,Source

These instructions add a number from some source to
a number from some destination and put the result in
the specified destination. The Add with Carry instruc-
tion, ADC, also adds the status of the carry flag into the
result. The source may be an immediate number, a
register, or a memory location specified by any one of
the 24 addressing modes shown in Figure 3-8. The
destination may be a register or a memory location
specified by any one of the 24 addressing modes in Figure
3-8. The source and the destination in ari instruction
cannot both be memory locations. The source and the
destination must be of the same type. In other words.
they must both be byte locations, or they must both be
word locations. If you want to add a byte to a word, you
must copy the byte to a word location and fill the upper
byte of the word with 0's before adding. Flags affected:
AF, CF. OF, PF, SF, ZF.

EXAMPLES (CODING):

Add immediate number 74H to
ADD AL.74H	 ; contents of AL. Result In AL

Add contents of BL plus carry
status

ADC CL,BL	 ; to contents of CL.

Add contents of BX
ADD DX,BX	 ; to contents of DX

Add word from memory at offset
ISI I

ADD DX.ISII	 in DS to contents of DX

Add byte from effective
ADC AL,PRICESIBXI ; address PRICESIBXI plus carry

status to Contents of AL

Add contents of AL to
ADD PRICES)BXI,AL ; contents of memory location at

effective address PRICESIBXI

EXAMPLES (NUMERICAL):

Addition of unsigned numbers
;CL = 01110011 = 115 decimal

+ BL = OlO011il = 79 decimal
ADD CL.BL ; Result in CL

;CL = 11000010 194 decimal

Addition of signed numbers
CL = 01110011 = + 115 decimal
+ RI. 01001111 = + 79 decimal

ADD CL.BL : Result in CL
CL	 11000010	 - 62 decimal—
incorrect because result too large to fit
in 7 bits

132	 CHAPTER SIX

FLAG RESULTS FOR SIGNED ADDITION EXAMPLE
CF = 0 No carry Out of bit 7.
PF 0 Result has odd parity.
AF = 1 Carry was produced Out of bit 3.
ZF 0 Result in destination was not 0.
SF = I Copies most significant bit of result: indicates

negative result if you are adding signed
numbers.

OF 1 Set to indicate that the result of the addition
was too large to fit in the lower 7 bits of the
destination used to represent the magnitude
of a signed number. In other words, the result
was greater than + 127 decimal, so the result
overflowed into the sign bit position and incor-
rectly indicated that the result was negative.
If you are adding two signed 16-bit values, the
OF will be set if the magnitude of the result is
too large to fit in the lower 15 bits of the
destination.

NOTE: PF is meaningful Only for an 8-bit result.
AF is set only by a carry out of bit 3. Therefore,
the DAA instruction cannot be used after word
additions to convert the result to correct BCD.

AND—AND Corresponding Bits of Two
Operands—AND DestinationSource

This instruction ANDs each bit in a source byte or word
with the same number bit in a destination byte or word.
The result is put in the specified destination. The
contents of the specified source will not be changed. The
result for each bit position will follow the truth table for
a two-input AND gate. In other words, a bit in the
specified destination will be a I only if that bit is a 1 in
both the source and the destination operands. There-
fore, a bit can be masked (reset) by ANDing it with 0.

The source operand can be an Immediate number.
the contents of a register. or the contents of a memory
location specified by one of the 24 addressing modes
shown in Figure 3-8. The destination can be a register
or a memory location. The source and the destination
cannoi both be memory locations in the same instruc-
tion. CF and OF are both 0 after AND. PF, SF. and ZF
are updated by AND. AF is undefined. Note that PF has
meaning only [or an 8-bit operand.

EXAMPLES (CODING):

AND word in DS at offset ISII
with word in CX register

AND CX.ISU	 Result In CX register

AND 8l-1.CL	 : AND byte in CL with byte in WI
Result In BR

AND word in DX with immediate
AND BX.00FFI-j : OOFFFI. Masks upper b yte, leaves

nwer by te unchanged

EXAMPLE (NUMERiCAL):

BX= 1011001! 01011110
AND BX.00FFH : Mask out upper 8 bits of BX

Result: BX = 00000000 01011110
CF. OF, PF. SF. ZF = 0

CALL—Call a Procedure

The CALL instruction is used to transfer execution to a
subprogram or procedure. There are two basic types of
calls, near andJar. A near call is a call to a procedure
which is in the same code segment as the CALL instruc-
tion. When the 8086 executes a near CALL instruction,
it decrements the stack pointer by 2 and copies the
offset of the next instruction after the CALL Onto the
stack. This offset saved on the stack is referred to as
the return address, because this is the address that
execution will return to after the procedure executes. A
near CALL instruction will also load the instruction
pointer with the offset of the first instruction in the
procedure. A RET instruction at the end of the procedure
will return execution to the instruction after the call by
copying the offset saved on the stack back to IP.

A far call is a call to a procedure which is in a
different segment from the one that contains the CALL
instruction. When the 8086 executes a far call, it decre-
ments the stack pointer by 2 and copies the contents of
the CS register to the stack. It then decrements the
stack pointer by 2 again and copies the offset of the
instruction after the CALL instruction to the stack.
Finally. it loads CS with the segment base of the segment
which contains the procedure, and loads IP with the
offset of the first instruction of the procedure in that
segment. A RET instruction at the end of the procedure
will return execution to the next instruction after the
CALL by restoring the saved values of CS and IP from
the stack.

EXAMPLES:

CALL MULTO A direct within .segment (near or intra-
segment) call. MULTO is the name of the procedure. The
assembler determines the displacement of MULTO from
the Instruction after the CALL and codes this displace-
ment In as part of the instruction.

CALl. BX : An indirect within-segment near or Intraseg-
ment call. [IX contains the offset of the first Instruction
of the procedure. Replaces contents of IP with contents
of register DX.

CALl. WORD l'TR IBX) An indirect within-segment
near or intrasegment call. Offset of first Instruction of
procedure is In two memory addresses In DS. Replaces
contents of IP with contents of word memory location
in DS pointed to by DX.

CALL SMART_DIVIDE : A direct call to another seg.
ment—far or Intersegment call. SMART_DIViDE Is the
name of the procedure. The procedure must be declared
far with SMART_DIVIDE PROC FAR at Its start (see

8I8, NSTRLCTIQN DESCRIPTIONS AND ASSEMBLER DIREcTISES 	 133

(hapter SI. The assembler will determine the code
segment b.se Lou (lie segment whkh ontaliis the pioee-
dure and the offset of the start of the procedure. It will
put these values In as part of the instruction code.

CALL DWORD PTRIBXI An Indirect call to another
segment_far or intersegment call. New values for CS
and IP are fetched from four memory locations in DS.
The new value br CS is fetched from (BXI and IBX 4- 1 I:
the new IF is fetched from IBX + 21 and 113X + 31.

CBW—Convert Signed Byte to Signed Word

This instruction copies the sign of a byte in AL to all
the bits in AH. AH is then said to be the sign extenswn
of AL. The CBW operation must be done before a signed
byte in AL can be divided by another signed byte with
the iDly instruction. CBW affects no flags.

EXAMPLE

;AX = 00000000 10011011 = - 155 decimal
CBW Convert signed byte in AL to signed word in AX

Result: AX = 11111111 10011011	 - 155
decimal

For further examples of the use of CBW. see the IIDW
instruction description.

CIC—Clear the Carry Flag (CF)

This instruction resets the carry flag toO. No other flags
arc affected.

EXAMPLE

CLC

CLD—Clear Direction Flag

This instruction resets the direction flag to 0. No other
flags are affected. If the direction flag is reset, SI and DI
will automatically be incremented when one of the string
instructions, such as MOVS. CMPS. or SCAS. executes.
Consult the string instruction descriptions (or examples
of the use of the direction flag.

EXAMPLE

CLD : Clear direction flag so (hat string pointers
autoincrement after each string operation

CLI—Clear Interrupt Flag

This instruction resets the interrupt flag to 0. No other
flags are affected. If the interrupt flag is reset, the 8086
will not respond to an interrupt signal on its INTR Input.
The CLI Instruction, however, has no effect on the
nonmaskable Interrupt input. NMI.

CMC—Complement the Carry Flag

If the carry flag (CFI is a 0 before this instruction, it will
be set to a I after the Instruction. If the carry flag is I
before this instruction, It will be reset to a 0 after the
Instruction executes. CMC affects no other flags.

EXAMPLE:

CMC Invert the carry flag

CMP—Compare Byte or Word—CMP
Destination,Source

This instruction compares a byte from the specified
source with a byte from the specified destination, or a
word from the specified source with a word from the
specified destination. The source can be an immediate
number, a register, or a memory location specified by
one of the 24 addressing modes shown in Figure 3-8.
The destination can be a register or a memory location.
However, the source and the destination cannot both
be memory locations in the same Instruction. The
comparison is actually done by subtracting the source
byte or word from the destination byte or word. The
source and the destination are not changed. but the
flags are Set to Indicate the results of the comparison.
AF, OF. SF, ZF. PF. and CF are updated by the CMP
Instruction. For the instruction CMP CX.BX, CF. ZF,
and SF will be left as follows:

CF ZF SF
CX = BX 0 1 0 Result of subtraction Is 0
CX > BX 0 0 0 No borrow required, so CF = 0
CX < BX 1 0 1 : Subtraction required

borrow, so CF	 1

EXAMPLES:

Compare Immediate number
CMP AL.OIH	 : OIH with byte in AL

Compare byte in CL with
CMPBH.CL	 byte in BU

Compare word in DS at
displacement TEMP_MIN

CMP CX,TEMP_MIN	 with word in CX

Compare CX with word In DS
CMP TEMP_MAX.CX at displacement TEMP_MAX

Compare Immediate 49H
CMP PRICESIBXI.49H with byte at offset

IBXI in array PRICES

NOTE: The Compare Instructions are often used
with the Conditional Jump Instructions, described
in a later section. Having the Compare instructions
formatted the way they are makes this use very easy
to understand. For example, given the instruction
sequence

134	 CHAPTER SIX

MP BX.CX
JAE TARGET

you can mentally read it as "jump to target If BX
Is above or equal to CX. In other words. just
mentally Insert the first operand after the J for
jump and the second operand after the condition.

CMPS/CMPSB/CMPSW—Compare
String Bytes or String Words

A string is a series of the same type of data items in
sequential memory locations. The CMPS instruction can
be used to compare a byte In one string with a byte in
another string or to compare a word in one string with
a word in another string. SI is used to hold the offset of
a byte or word in the source string, and Dl is used to
hold the offset of a byte or a word in the other string.
The comparison is done by subtracting the byte or word
pointed to by Dl from the byte or word pointed to by SI.
The AF. CF. OF. PF. SF. and ZF flags are affected by the
comparison, but neither operand is affected. After the
comparison. SI and Dl will automatically be Incremented
or decremented to point to the next elements In the two
strings. If the direction flag has previously been set to
a I with an STD Instruction, then SI and Dl will
automatically be decremented by I for a byte string or
by 2 for a word string. If the direction flag has previously
been reset to a 0 with a CLD Instruction, then SI and
Dl will automatically be incremented after the compare.
They will be incremented by 1 for byte strings and by 2
for word strings.

The string pointed to by DI must be in the extra
segment. The string pointed to by SI must be in the
data segment.

The CMPS instruction can be used with a REPE or
REPNE prefix to compare all the elements of a string.
For further discussion of strings, see the discussion at
the start of Chapter 5.

EXAMPLE:

MOV SI.OFFSET FIRST_STRING
Point SI at source string

MOV DLOFFSET SECOND_STRING
Point DI at destination string

CLI)	 :DFcleared,soSIandDlwIll
autoincrement after compare

MOV CX, 100	 Put number of string elements
in CX

REPE CMPSB	 Repeat the comparison of
string bytes
until end of string or until
compared bytes are not equal

NOTE: CX functions as a counter which the REPE
prefix will cause to be decremented after each
compare. The B attached to CMPS tells the assem-
bler that the strings are of type b yte. If you want
to tell the assembler that the strings are of type

word, write the instruction as CMPSW. The REPE
CMPSW instruction will cause the pointers In SI
and Dl to be incremented by 2 after each compare
if the direction flag is cleared or decremented by 2
if the direction flag is set.

CWD—Convert Signed Word
to Signed Doubleword

CWD copies the sign bit of a word in AX to afl the bits
of the DX register. In other words, it extends the sign
of AX into all of DX. The CWD operation must be done
before a signed word in AX can be divided by another
signed word with the IDIV instruction. CWD affects no
flags.

EXAMPLE:

DX = 00000000 00000000
;AX = 11110000 11000111 = - 3897 decImal

CWD Convert signed word In AX to signed
doubieword in DX:AX

;Result:DX	 11111111 11111111
;AX = 11110000 11000111 = 3897 decimal

For a further example of the use of CWD. see the IDIV
instruction description.

DAA—Decimal Adjust AL after BCD Addition

This instruction is used to make sure the result of
adding two packed BCD numbers is adjusted to be a
legal BCD number. The result of the addition must be
in AL for DAA to work correctly. If the lower nibble in
AL after an addition Is greater than 9 or AF was set by
the addition, then the DAA instruction will add 6 to the
lower nibble in AL. If the result in the upper nibble of
AL is now greater than 9 or if the carry flag was Set by
the addition or correction, then the DAA instruction will
add 601-I to AL. A couple of simple examples should
clarify how this works.

EXAMPLES:

AL = 0101 1001 = 59 BCD
BL = 0011 0101 35 BCD

ADD AL.BL	 AL 1000 1110 = 8EH
DAA	 ;Add0110becauselllO>9

AL 1001 0100 94 BCD

AL = 1000 1000 = 88 BCD
BL = 0100 1001 = 49 BCD

ADDAL.BL :AL 1101 0001.AF
DAA	 :Add0ll0becauseAF 1

AL = 1101 0111 = 1)71-i
:1101 >9soadd01100000
;AL = O011011l =37BCD,CF

The DAA instruction updates AF. CF. PF. and ZF. OF is
undefined after a DAA instruction.

5086 INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECTIVES 	 135

A decimal up counter can be implemented using the
DAA instruction as follows:

MOV COUNT,00H Initialize count in memory
location to 0
Other instructions here

MOV AL. COUNT	 Bring count Into AL to work on
ADD AL.OiH Can alSo Count up by 2. by 3. or

by some other number using the
ADD instruction

DAA	 : Decimal adjust the result
MOV COUNT.AL	 Put decimal result back

in memory

DAS—Decimal Adjust after BCD Subtraction

This instruction is used after subtracting two packed
BCD numbers to make sure the result is correct packed
BCD. The result of the subtraction must be in AL for
DAS to work correctly. If the lower nibble In AL after a
subtraction Is greater than 9 or the AF was set by the
subtraction, then the DAS Instruction will subtract 6
from the lower nibble of AL. If the result in the upper
nibble Is now greater than 9 or lithe carry flag was set.
the DAS Instruction will subtract 60 from AL. A couple
of Simple examples should clarify how this works.

EXAMPLES:

AL = 10000110 = 86BCD
BH = 0101 0111 = 57 BCD

SUBAL,Bl-1 ;AL = 00101111 = 2FH,CF = 0
DAS	 Lower nibble of result is 1111.

so DAS automatically subtracts
:0000 01 10 to giveAL = 00101001

= 29 BCD

AL = 0100 1001 = 49 BCD
RH = 0111 0010 72 BCD

SUB AL.BH AL = 1101 0111	 D7H. CF 1
DAS	 Subtracts 01100000 I — 601-1)

because 1101 in upper nibble> 9
:AL=011l0Ill=77BCD.CF,-1
CF I means borrow was needed

The DAS instruction updates AF, CF. SF. PF. and ZF,
but OF is undefined,

A decimal down Counter can be Implemented using
the DAS Instruction as follows:

MOV AL.COUNT Bring Count Into AL to work on
SUB AL.OII-1	 Decrement, Can also count down

by 2. 3. etc.. using SUB instruction
DAS	 : Keep results in BCD format
MOV COUNT,A1 Put new count back in memory

DEC—Decrement Destination 'Register
or Memory-_DEC Destination

This instruction subtracts 1 from the destination word
or byte The destination can be a regitter or a memory

location peclfied by any one of the 24 addressing mnde
shown in Figure 3-8..AF. OF, PF. SF. and ZF are updated,
but CF Is not affected. This means that If an 8-bit
destination containing OOH or a 16-bit destination
containing 0000H is decremented. the result will be FF11
or FFFFH with no carry (borrowl.

EXAMPLES

DEC CL	 Subtract I from Contents of CL register

DEC BP : Subtract 1 from contents of BP register

DEC BYTE PTR IBXI: Subtract I from byte at offset IBX(
in DS. The BYTE PTR directive Is necessary to tell the
assembler to put in the correct code for decrementing a
byte in memory, rather than decrementing a word. The
instruction essentially says, "Decrement the byte in
memory pointed to by the offset in BX."

DEC WORD PTR [BPJ Subtract 1 from a word at offset
(BPJ in SS. The WORD PTR directive tells the assembler
to put in the code for decrementing a word pointed to
by the Contents of BP. An offset in BP will be added to
the SS register contents to produce the physical address.

DEC TOMATO_CAN_COUNT Subtract I from byte or
word named TOMATO_CAN_COUPfl' in DS. if TOMA-
TO_CAN_COUNT was declared with a DR. then the
assembler will code this instruction to decrement a byte.
If TOMATO_CAN_COUNT was declared with a DW, then
the assembler will code this instruction to decrement a
word.

DIV—Unsigned Divide—DIV Source

This instruction is used to divide an unsigned word by
a byte or to divide an unsigned doubleword (32 bits) by
a word.

When a word is divided by a byte, the word must be
in the AX register. 'l'he divisor can be in a register or a
memory location. After the division, AL will contain an
8-bit result (quotient), and All will contain an 8-bit
remainder, If an attempt is made to divide by 0 or if the
quotient is 100 large to lit in Al. (greater than FF1-I). the
8086 will automatically do a typeD interrupt. Interrupts
arc explained In Chapter 8.

When a doubleword is divided by a word, the most
significant word of the doubleword must he in DX. and
the least significant word of the cioiiblcword must be in
AX. After the division. AX will contain the 16-bit result
(quotient), and DX will contain a 16-bit remainder.
Again, If an attempt is made to divide by 0 or it the
quotient is too large to fit in AX (greater than FFFFH).
the 8086 will do a t ype 0 interrupt.

For a DIV. the dividend (numerator) must always be
in AX or DX and AX. but the source of the divisor
(denominator) can be a register or a menlory location
specified by any one of the 24 addressing modes shown
in Figure 3-8. If the divisor does not divide an integral
number of times into the dividend, the quotient is

136	 CHAPTER SiX

truncated, not rounded. The example below will Illus-
trate this. All flags are undefined after a DIV In-
struction.

If you want to divide a byte by a byte, you must first
put the dividend byte in AL and fill AM with all 0's. The
SUB AH,AJ-1 instruction is a quick way to do this.
Likewise. if you want to divide a word by a word, put
the dividend word in AX and fill DX with all 0's. The
SUB DX.DX Instruction does this quickly.

EXAMPLES (SYNTAX):

DIV BL	 Divide word In AX by byte in BL.
Quotient in AL, remainder in AM

DIV CX	 Divide doubleword in DX and AX by
word in CX. Quotient in AX,
remainder in DX.

DIV SCALEIBXI	 AXJ(byte at effective address
SCALE[BX() if SCALEIBX(is of type
byte or (DX and AX(/(word at effective
address SCALE (BXI) if SCALE(BX!
is of type word

EXAMPLE (NUMERICAL):

AX = 37D7H = 14,295 decimal
BH = 97H = 151 decimal

DIV BH : AX/MM. AL = quotient = 5EH = 94 decimal
AM remainder = 65H = 101 decimal

Since the remainder is greater than half of the divisor.
the actual quotient is closer to 5FH than to the 5EH
produced. However, as indicated before, the quotient is
always truncated to the next lower integer rather than
rounded to the closest integer. If you want to round the
quotient, you can compare the remainder with (dlvisor/
21 and add I to the quotient if the remainder is greater
than (divisor/2).

[SC—Escape

This instruction is used to pass instructions to
coprocessor, such as the 8087 math coprocessor which
shares the address and data bus with an 8086. Instruc-
tions for the coprocessor are represented by a 6-bit code
embedded in the escape instruction. As the 8086 fetches
instruction bytes. the coprocessor also catches these
bytes Irom the data bus and puts them in its queue.
However, the coprocessor treats all the normal 8086
instructions as NOPs. When the 8086 [etches an ESC
instruction, the coprocessor decodes the instruction
and carries out the action specified by the 6-bit code
specified in the instruction, In most cases the 8086
treats the ESC instruction as a NOP. In some cases
the 8086 will access a data item in memory for the
coprocessor. A section in Chapter Il describes the
operation and use of the ESC instruction.

H IT—Halt Processing

The HLT instruction will cause the 808610 stop fetching
and executing instructions. The 8086 wIll enter a halt
state. The only ways to get the processor out of the halt
State are with an interrupt signal on the INTR pin, an
interrupt signal on the NMI pin, or a reset signal on the
RESET input. See Chapter 7 for further details about
the halt State.

IDIV—Divide by Signed Byte
or Word—IDIV Source

This instruction is used to divide a signed word by a
signed byte, or to divide a signed doubleword (32 bits)
by a signed word.

When dividing a signed word by a signed byte, the
word must be in the AX register. The divisor can be in
an 8-bit register or a memory location. After the division.
AL will contain the signed result (quotient), and AM will
contain the signed remainder. The sign of the remainder
will be the same as the sign of the dividend. If an attempt
is made to divide by 0. the quotient is greater than 127
(7FH), or the quotient is less than - 127(8 1H). the 8086
will automatically do a type 0 interrupt. Interrupts are
discussed in Chapter 8. For the 80186. 80286, etc., tbis
range is —128 to + 127.

When dividing a signed doubleword by a signed word,
the most significant word of the dividend (numerator)
must be in the DX register, and the least significant
word of the dividend must be in the AX register. The
divisor can be in any other 16-bit register or memory
location, After the division. AX will contain a signed
16-bit quotient, and DX will contain a signed 16-bit
remainder. The sign of the remainder will be the same
as the sign of the dividend. Again, if an attempt is made
to divide by 0. the quotient is greater than + 32.767
(7FFFH), or the quotient Is less than —32.767 (8001H).
the 8086 will automatically do a type 0 interrupt. For the
80186, 80286. etc., this range is —32.768 to + 32,767.

If the divisor does not divide evenly Into the dividend,
the quotient will be truncated, not rounded. An example
below illustrates this. All flags are undefined after an
IDly.

If you want to divide a signed byte by a signed byte.
you must first put the dividend byte in AL and fill AH
with copies of the sign bit from AL. In other words, if
AL Is positive (sign bit 0). then AM should be filled
with 0's. lfAL is negative (sign bit = Ii. then All should
be filled with l's. The 8086 Convert Byte to Word
Instruction. CBW, does this by copying the sign bit of
AL to all the bits of AM. AM is then said to contain the
"sign extension of AL." Likewise. If you want to divide
a signed word by a signed word, you must put the
dividend word in AX and extend the sign of AX to all the
bits of DX. The 8086 Convert Word to Doubleword
Instruction. CWD. will copy the sign bit of AX to all the
bits of DX.

EXAMPLES CODIN(

IDly BL	 Signed word in AXsigned byte
in ML

808(, INSTRUCTION D[SCRJPTlON AND ASSEMBlER DIRECTIVES 	 137

(DIV BP	 Signed doublcword In DX and
AXlsigried word
in BP

IDIV BYTE FIR IBXI AX/byte at offset IBX) in DS

MOV AL.D1VIDENTJ	 Position byte dividend
CBW	 Extend sign of AL into AH
(DIV DIVISOR	 Divide by byte divisor

EXAMPLES (NUMERICAL):

A signed word divided by a signed byte
:AX = 00000011 10101011 = O3ABH

39 decimal
:BL 11010011 = D3H = - 2DH

= - 45 decimal
IDIV BL	 : Quotient: AL = ECH = - 14Ff - 20

decimal
Remainder: AH = 27(1 = + 39 decimal

NOTE: The quotient is negative because positive
was divided by negative. The remainder has same
sign as dividend (positive).

A signed byte divided by a signed byte
;AL = 11011010 = - 26(1 = 38decimal
CH = 00000011 = + 3H = + 3 decimal

CBW	 Extend sign of AL through Al-I,
AX	 11111111 1101 1010

IDly CH Divide AX by CH
AL = 11110100 = - OCH = - l2decimal
AH = 11111110 = - 2H = - 2declmal

Although the quotient is actually closer to 13
(12.666667) than to 12. the 8086 truncates it to 12
rather than rounding It to 13. If you want to round
the quotient, you can compare the magnitude of the
remainder with (divisorf2(and add I to the quotient if
the remainder is greater than (divisor/2). Note that the
sign of the remainder is the same as the sign of the
dividend (negative). All flags are undefined after (DIV.

IMUL—Multiply Signed Numbers—IMUL Source

This instruction multiplies a signed byte from some
source times a signed byte in AL or a signed word from
some source times a signed word in AX. The source can
be another register or a memory location specified by
any one of the 24 addressing modes shown in Figure
3-8. When a byte from some source is multiplied by AL,
the signed result (product) will be put in AX. A 16-bit
destination is required because the result of multiplying
two 8-bit numbers can be as large as 16 bits. When a
word from some source is multiplied by AX. the result
can be as iarge as 32 bIts. The high-order (most signifi-
cant) word of the signed result Is put In DX, and the
low-order ((east significant) word of the signed result is
put In AX. If the magnitude of the product does not
require all the bits of the destination, the unused bits
will be filled with copies of the sign bit. If the upper byte

of a 16 bit result or the upper word of a 32-bit iesult
contains only copies of the sign bit (all 0's or all l's),
then CF and the OF will both be 0. lIthe upper byte of
a 16-bit result or the upper word of a 32-bit result
Contains part of the product. CF and OF will both be 1.
You can use the status of these flags to determine
whether the upper byte or word of the product needs to
be kept. AF, PF, SF, and ZF are undefined after IMUL.

If you want to multiply a signed byte by a signed word.
you must first move the byte into a word location and
fill the upper byte of the word with copies of the sign
bit. If you move the byte Into AL, you can use the 8086
Convert Byte to Word Instruction. CBW. to do this. CBW
extends the sign bit from AL into all the bits oIAH. Once
you have converted the byte to a word, you can do word
times word IMUL. The result of this multiplication will
be in DX and AX.

EXAMPLES (CODING):

IMUL BH Signed byte in AL times signed byte in BH.
result in AX

IMUL AX	 AX times AX, result in DX
and AX

Multiplying a signed byte
by a signed word

MOV CX.MULTIPLIER	 Load signed word in CX
MOV AL,MULTIPLICAND : Load signed byte in AL
CBW	 Extend sign of AL into Al-I
IMUL CX	 Result in DX and AX

EXAMPLES (NUMERICAL):

69 x 4
AL = 01000101 = 69 decimal
BL 00001110 14 decimal

IMUL BL AX = 03C6H = + 966 decimal
MSB	 0. positive result magnitude
In true form. SF 0. CF.OF =

–28 >< 59
AL = 11100100 = - 28 decimal
BL = 00111011 = + 59 decimal

IMUL 13L AX = F98CH	 - 1652 decimal
MSB	 1. negative result magnitude
in 2's complement. SF.CF .OF = 1

IMUL-801 86/80188 Only—Integer (Signed)
Multiply Immediate—IMUL Destination
Register,Source,Immediate Byte or Word

This version of the IMUL Instruction functions in the
same way as the IMUL instruction described In the
preceding section, except that this version allows u to
multiply an immediate byte or word by a byte or word
in a specified register and put the result in a specified
general-purpose register. If the immediate number is a
byte, It will be automatically sign-extended to 16 bits.
The source of the other operand for the multiplicatIon

138	 CHAPTER SIX

an be a register or a memory location specified by any
'tie of the 24 addressIng modes showi in Figure 3-8.
lnce the result Is put in a 16-bit general-purpose
egister. only the lower 16 bIts of the product are saved!

shown in Figure 3-8. A?. OF. PLSF. and ZF are affected
(updated) by this instruction. Note that the carry flag
(CF) is not affected. This means that If an 8-bit destina-
lion osntalning FTh or a 16-bit destination contaIning
FFFE is incremented, the result will be all 0's with no
cany.EXAMPLE:

MUL CX,BX,07H Multiply contents of BX by 07H
CX lower 16 bits of result

IN—Copy Data from a Port—IN
kccumulator,Port

Fhe IN Instruction will copy data from a port to the AL
or AX register. If an 8-bit port Is read, the data will go
to AL. If a 16-bit port is read, the data will go to AX. The
IN Instruction has two possible formats, fixed port and
variable port.

For the fixed-port type, the 8-bit address of a port is
specified directly in the instruction.

EXAMPLES:

IN AL,OC8H	 : Input a byte from port OC8H to AL

IN AX.341-1	 Input a word from port 34H to AX

A_TO_D EQU 4AH
IN AX,A_TO_J) Input a Word from port 4A}1 to AX

For the variable-port-type IN Instruction, the port
address Is loaded into the DX register before the IN
Instruction. Since DX is a 16-bit register, the port
address can be any number between 0000H and FFFFFI.
Therefore, up to 6E.536 ports are addressable in this
mode.

EXAMPLES:

MOV DX,OFF78H Initialize DX to point to port
IN AL.DX	 Input a byte from 8-bit port

OFF78H to AL

IN AX.DX	 Input a word from 16-bit port
OFF78H to AX

The variable-port IN instruction has the advantage that
the port address can be computed or dynamically deter-
mined in the program. Suppose, for example, that an
8086-based computer needs to input data from 10
terminals, each having Its own port address. Instead of
having a separate procedure to input data from each
port, we can write one generalized input procedure and
simply pass the address of the desired port to the
procedure in DX. The IN instructions do not change any
flags.

I NC—Increment—I NC Destination

The INC instruction adds 1 to a specified register or to
a memory location specified in any one of the 24 ways

EX4vtPLES:

INC BL Add 1 to contents of BL register
INC CX Add I to contents of CX register

INC BYTE PTR IBXI : Increment byte in data segment at
offset contained in BX. The BYTE PTR directive is
necessary to tell the assembler to put in the right code
to Indicate that a byte in memory, rather than a word,
Is to be incremented. The instruction essentially says.
"Increment the byte pointed to by the contents of BX."

INC WORD PTR IBXI Increment the word at offset of
IBXI and IBX + II in the data segment. In other words,
increment the word in memory pointed to by BX.

INC MAX_TEMPERATURE Increment byte or word
named MAX_TEMPERATURE in data segment. Ipere-
ment byte If MAX_TEMPERATURE declared with DB.
Increment word If MAX_TEMPERATURE declared with
DW.

INC PRICES IBXI: Increment element pointed to byIBXI
in array PRICES. Increment a word if PRICES was
defined as an array of words with a DW directive,
Increment a byte if PRICES was defined as an array of
bytes with a DB directive.

NOTE: The PTR operator is not needed in the last
two examples because the assembler knows the
type of the operand from the DB or DW used to
declare the named data inItially.

INT—Interrupt Program Execution—INT Type

The term type in the instruction format refers to a
number between 0 and 255 which identifies the inter-
rupt. When an 8086 executes an INT instruction, it will:

I. Decrement the stack pointer by 2 and push the flags
onto the stack.

2. Decrement the stack pointer by 2 and push the
contents of CS onto the stack.

3. Decrement the stack pointer by 2 and push the
offset of the next instruction after the INT number
instruction on the stack.

4. Get a new value for IP from an absolute memory
address of 4 times the type specified In the instruc-
tion. For an INT 8 instruction, for example, the new
IP will be read from address 00020H.

5. Get a new value for CS from an absolute memory
address of 4 times the type specified in the instruc-

- 20	 Rtw. NcTPUCTION DFPI1IONS AND ASSEMBLER DIRECTIVES 	 139

tion pIus 2. For an INT 8 instruction, for example,
the new value of CS will he read from address
00022H.

6. Reset both IF and TF. Other flags are not affected.

Chapter8 furtherdescr-thes the use of this instruction.

EXAMPLES:

INT 35 New IP from 0008CH. new CS from 0008EH

tNT 3 This is a special form which has the sine-byte
code of CCH. Many systems use this as a breakpoint
instruction, New IP from 0000CH, new CS from 0000EH.

INTO—Interrupt on Overflow
if the overflow flag (OF) is set, this instruction will cause
the 8086 to do an indirect far call to a procedure you
write to handle the overflow condition. Before doing the
call, the 8086 wIll:

I. Decrement the stack pointer by 2 and push the flags
onto the stack.

2. Decrement the stack pointerby 2 and push CS Onto
the stack.

3. Decrement the stack pointer by 2 and push the offset
of the next instruction after the INTO instruction
onto the stack

4. Reset TF and IF. Other flags are not affected. To do
the call, the 8086 wIll read a new value for IF from
address 000 IOH and a new value of CS from address
0001 2H.

Chapter 8 further describes the 8086 interrupt
system.

EXAMPLE:

INTO Call interrupt procedure if OF =

IRET—Interrupt Return
When the 8086 responds to an interrupt signal or to an
Interrupt instruction, it pushes the flags, the current
value of CS. and the current value of IF onto the stack.
It then kads CS and iP v. tt: the starting address of the
procedure which you write for the response to that
interrupt. The IRET instruction is used at the end of
the Interrupt service procedure to return execution to
the Interrupted program. To do this return, the 8086
copies the saved value of IP from the stack to IP, the
stored value of CS from the stack to CS. and the stored
value of the flags back to the flag register. Flags will have
the values they had before the interrupt, so any flag
settings from the procedure will be lost unless they are
specifically saved in some way.

NOTE: The RET struction should not normally
be used to return	 Interrupt procedures be-

cause it does not copy the flags from the stack
back to the flag register. See Chapter 8 for further
discussion .01 Interrupts and the use of IRET.

JAJJNBE—Jump if Above/Jump
if Not Below or Equal
These two mnemonics represent the same instruction.
The terms aboue and below are used when referring to
the magnitude of unsigned numbers. The number 0111
Is above the number 0010. If. after a compare or some
other instruction which affects flags, the zero flag and
the carly flag are both 0, this instruction will cause
execution to jump to a label given In the Instruction. If
CF and ZF are not both 0, the Instruction will have no
effect on program execution. The destination label for
the jump must be In the range of —128 bytes to + 127
bytes from the address of the instruction after the JA.
JA/JNBE affects no flags. For further explanation of
Conditional Jump instructions, see Chapter 4.

EXAMPLES:

CMP AX.4371H	 Compare by subtracting 4371H
from AX

JA RUN_PRESS	 Jump to label RUN_PRESS If AX
above 4371H

CMP AX,4371H	 Compare (AX - 4371H)
JNBE RUN_PRESS : Jump to label RUN_PRESS If AX

not below or equal to 4371H

JAE/JNB/JNC—jump if Above or Equal/Jump
if Not Below/jump if No Carry
These three mnemonics represent the same instruction.
The terms above and below are used when referring to
the magnitude of unsigned numbers. The number 0111
Is above the number 0010. If, after a compare or some
other instruction which affects flags, the early flag is 0.
this instruction will cause execution to jump to a label
given in the instruction. If CF is 1. the instruction will
have no effect on program execution. The destination
label for the Jump must be in the range of - 128 bytes
Co + 127 bytes from the address of the instruction after
the JAE. JAE/JNB/JNC affects no flags. For further
explanation of Conditional Jump instructions, see
Chapter 4.

EXAMPLES:

CMP AX,4371H	 Compare (AX - 4371H)
JAE RUN_PRESS	 Jump to label RUN_PRESS if AX

above or equal to 437lH

CMPAX,4371H	 : Compare (AX - 437lH)
JNB RUN_PRESS	 Jump to label RUN_PRESS if AX

not below 4371H

ADD AL,BL	 : Add two bytes, if result within
JNC OK	 : acceptable range. continue

140	 CHAPTER 5l

jB/JC/jNAE—Jump if Below/jump
if Carry/jump if Not Above or Equal

These three mnemonics represent the same instruction.
The terms above and below are used when referring to
the magnitude of unsigned numbers. The number 0111
is above the number 0010. II. after a compare or some
other instruction which affects flags, the carry flag is a
1, this instruction will cause execution to Jump to a
label given in the instruction. If CF isO. the instruction
will have no effect on program execution. The destination
label for the Jump must be in the range of -128 bytes
to + 127 bytes from the address of the instruction
after the JB. JB/JC/JNAE affects no flags. For further
explanation of Conditional Jump instructions, see
Chapter 4.

EXAMPLES:

CMP AX.4371H	 Compare (AX - 4371H)
JE RUN_PRESS	 Jump to label RUN_PRESS If

AX below 4371H

ADD BX,CX	 Add two words and jump
JC ERROR.YIX	 to label ERROR_FIX if CF = 1

CMP AX.4371H

	

	 Compare (AX - 4371H)
JNAE RUN_PRESS Jump to label RUN_PRESS if

AX not above or equal to 4371H

JBEJJNA—Jump if Below
or Equal/jump if Not Above

These two mnemonics represent the same instruction.
The terms above and below are used when referring to
the magnitude of unsigned numbers. The number 0111
is above the number 0010. If. after a compare or some
other instruction which affects flags, either the zero flag
or the carry flag is 1. this in3tructlon will cause execution
tojump to a label given in the instruction. If CF and ZF
are both 0. the instruction will have no effect on program
execution. The destination label for the jump must be
in the range of -128 bytes to + 127 bytes from the
address of the instruction after the JBE. JBE/JNA affects
no flags. For further explanation of Conditional Jump
instructions, see Chapter 4.

EXAMPLES:

CMP AX.437lH	 : Compare (AX - 437lH)
JBE RUN_PRESS : Jump to label RUN_PRESS If AX

below or equal to 437111

CMP AX.43711-1	 Compare (AX - 437111)
JNA RUN_PRESS	 Jump to label RUN_PRESS if AX

not above 43711-I

ICXZ-..-Jump if the CX Register Is Zero

This instruction will cause a jump to a label given in
the instruction if the CX register contains all 0's. If CX

does not contain all 0's, execution will simply proceed
to the next instruction. Note that this instruction does
not look at the zero flag when it decides whether to Jump
or not. The destination label for this Instruction must
beintherangeol - 128to + I2lbyteefromtheaddreee
of the Instruction after the JCXZ instruction. JCXZ
affects no flags.

EXAMPLE:

JCXZSK11LOOP ;IfCX = 0. skIp the process
NXT:SLJB [81(1,0713 Subtract 7 from data value

INC BX	 Point to next value
LOOP NXX'	 Loop until CX 0
SKlP_LOO:	 Next instruction

JE/JZ—Jump if Equal/Jump if Zero
These two mnemonics represent the same instruction.
If the zero flag Is set, then this instruction will cause
execution toJwnp to a label given in the instruction. If
the zero flag is not 1. then execution will simply go on
to the next instruction after JE or JZ. The destination
label for the JEIJZ inMructlon must be in the range of
- 128to +l27bytesfromtbeaddoftheco
after the JE/JZ instruction. JFIJZ affects no flag..

EXAMPLES:

NXT:CMJ BX.DX	 Compare (BX-DX)
JE DONF	 Jump to DONE if BX - DX
SUB BX.AX	 Ele subtract AX
INC CX	 Increment counter
JMP NXT	 Check again

DONE:MOV AX,CX	 Copy count to AX

IN AL,8FH	 Read data from port 8FH
SUB AL.30H	 Subtract minimum value
JZ START_MACHINE Jump to label if result of

subtraction was 0

!G/J NLE_Jump if Greater/Jump
i Not Less Than or Equal

These tWo mnemonics represent the same instruction.
The terms greater and less are used to refer to the
relationship of two signed numbers. Greater means
more positive. The number 00000111 is greater than
the number 11101010. because in signed notation the
second number Is negative. This instruction is usually
used after a Compare instruction. The instruction will
cause a jump to a label given in the instruction if the
zero flag is 0 and the carry flag Is the same as the
overflow flag. The destination label must be in the range
of -128 bytes to + 127 bytes from the address of the
instruction after the JG/JNLE instruction. If the jump
is not taken, execution simply goes on to the next
instruction after the JO or JNLE instruction. JGIJNLE
affects no flags.

8086 INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECTIvES	 141

EXAMPLES:

CMP BL,39H	 : Compare by subtracting 3911 from BL
JO NEXT_I	 Jump to label If BE. more positive

than 39H
CM? BL,39H	 : Compare by subtracting

3911 from BL
JNLE NEXT_I Jump to label if BL not less than

or equal to 39H

JGE/JNL—Jump if Greater Than
or Equal/Jump if Not Less Than

These two mnemonics represent the same instruction.
The terms greater and less are used to refer to the
relationship of two signed numbers. Greater means
more positive. The number 0000011! Is greater than
the number 11101010, because in signed notation the
second number is negative. This Instruction is usually
used after a Compare instruction. The Instruction will
cause a jump to a label given in the Instruction If the
sign flag is equal to the overflow flag. The destination
label must be in the range of - 128 bytes to + 127 bytes
from the address of the instruction after the JGE/JNL
Instruction. If the jump is not taken, execution Simply
goes on to the next instruction after the JGE or JNL
instruction. JGEIJNL affects no flags.

EXAMPLES:

CM? BL.39H	 : Compare by subtracting 39H from BL
JGE NEXT_i	 Jump to label if BL more positive

than 3911. or equal to 39H

CM? BL.39H	 Compare by subtracting 3911 from B
JNGE AGAIN	 Jump to label if BL not more posiu

than 3911 or BE. not equal to 3911

JLE/JNG—Jump if Les s Than
or Equal/Jump if Not Greater

These two mnemonics represent the same Instruction
The terms greater and less are used to refer to th
relationship of two signed numbers. Greater mean:
more positive. The number 00000111 is greater thai
the number 11101010, because in signed notation th
second number is negative. This Instruction is usuail
used after a Compare instruction. The instruction wil
cause a jump to a label given in the instruction If th
zero flag is set, or if the sign flag is not equal to the
overflow flag. The destination label must be In the range
of - 128 bytes to + 127 bytes from the address of th
instruction after the JLE/JNG instruction, If the Jumi
Is not taken, execution simply goes on to the nex
instruction after the JLEIJNG instruction. JLE/JNG
affects no flags.

EXAMPLES:

CMP BL,39H	 Compare by subtracting 39H from BL
JLE NXT_1	 Jump to label if BL more negative

than 39H or equal to 3911

CMP BL,39H	 Compare by subtracting 3911 from BL
JNG PRIN'FER : Jump to label if BE. not more

positive than 3911

CMP BL,39H	 : Compare by subtracting 3911 from 13L 	 JMP—Unconditional jump
JNL NEXT_I	 Jump to label if BE. not less than 3911 to Specified Destination

JL/JNGE—Jump if Less Than/Jump
if Not Greater Than or Equal

'Fhese two mnemonics represent the same instruction.
The terms greater and less are used to refer to the
relationship of two signed numbers. Greater means
more positive. The number 00000111 is greater than
the number 11101010, because in signednotation the
second number is negative. This instruction is usually
used after a Compare instruction. The instruction will
cause a jump to a label given in the Instruction lithe
sign flag is not equal to the overflow flag. The destination
label must be in the range of - 128 bytes to + 127 bytes
from the address of the instruction after the JLJJNGE
Instruction. if the jump is not taken, execution simply
goes on to the next instruction after the JL or JNGE
instrucuon. JL/JNGE affects no flags.

EXAMPLES:

CMP BL,39H	 Compare by subtracting 3911 from BL
JL AGAIN	 Jump to label if BL more negative

than 39H

This instruction will always cause the 8086 to fetch
its next Instruction from the location specified in the
instruction rather than from the next location after the
JMP instruction. If the destination is in the same
code segment as the JMP instruction, then only the
instruction pointer will be changed to get to the destina-
tion location. This is referred to as a near Jump. If the
destination for thejump instruction is in a segment with
a name different from that of the segment containing the
JMP instruction, then both the instruction pointer and
the code segment register contents will be changed to
get to the destination location. This is referred to as a
far Jump. The JMP instruction affects no flags. Refer to
Chapter 4 for a detailed discussion of the different forms
of the unconditional JMP instruction.

EXAMPLES:

JMP CONTINUE Fetch next instruction from address
at label CONTINUE. lithe label is in the same segment.
an offset coded as part of the instruction will be added
to the instruction pointer to produce the new fetch
address, if the label is in another segment. then lP and
CS will be replaced with values coded in as part of the

142	 CHAPTER SIX

instruction. This type of jump is referred to as direct
because the displacement of the destination or the
destination itself is specified directly in the instruction.

JMP BX Replace the contents oT IP with the contents
of BX. BX must first be loaded with the offset of the
destination instruction In CS. This is a near jump. It is
also referred to as an indirect jump because the new
value for IP comes from a register rather than from the
Instruction itself, as in a direct jump.

JMP WORD PTR IBXI Replace II' with a word from a
memory location pointed to by BX in DS. This is an
indirect near jump.

JMP DWORD PTR IS!] Replace IP with a word pointed
to by SI in DS. Replace CS with a word pointed to by SI
+ 2 In DS. This Is an Indirect far jump.

JNA—See Heading JBE

JNAE—See Heading JB

JNB—See Heading JA[

JNBE—See Heading JA

INC—See Heading JAE

JNE/JNZ—Jump if Not Equal/Jump if Not Zero

These two mnemonics represent the same instruction.
If the zero flag is 0, then this instruction will cause
execution to jump to a label given in the instruction. If
the zero flag is 1. then execution will simply go on to
the next insu-uction after JNE or JNZ. The destination
label for the JNE/JNZ instruction must be in the range of
- 128 to + 127 bytes from the address of the instruction
after the JNE/JNZ Instruction. JNE/JNZ affects no flags.

EXAMPLES:

	

NXT: IN AL.OF8H	 Read data value from port

	

CMP AL.72	 : Compare (AL-72)
JNE NXT	 Jump to NXT ifAL 5 72

	

IN AL.OF9H	 : Read next port when
AL = 72

MOVBX.2734H Load BX as counter
NXT_ I ADD AX.0002H Add count factor to AX

	

DEC 8X	 Decrement BX
JNZ NXT_l:	 Repeat until BX = 0

JNG—See Heading JLE

JNGE—See Heading JL

JNL—See Heading JGE

JNLE—See Heading JG

INO—Jump if No Overflow

register or memory location. The JNO instruction will
cause the 8086 to jump to a destination given in the
Instruction If the overflow flag is not set. The destination
must be In the range of - 128 bytes to + 127 bytes from
the address of the instruction after the JNO instruction.
If the overflow flag is set, execution will simply continue
with the next instruction after JNO. JNO affects no
flags.

EXAMPLE:

ADD AL,BL	 Add signed bytes in AL and BL
JNO DONE	 Process done if no overflow
MOV AL.00H Else load error code in AL

DONE: OUT 24H.AL Send result to display

JNP/JPO—jump if No Parity/Jump if Parity Odd

If the number of l's left in the lower 8 bits of a data
word after an instruction which affects the parity flag
Is odd, then the parity flag will be 0. The JNP/JPO
instruction will cause execution to jump to a specified
destination address if the parity flag isO. The destination
address must be in the range of - 128 bytes to + 127
bytes from the addres of the instruction after the JNP/
JPO instruction. If the parity flag Is set, execution will
simply Continue Ofl to the instruction after the JNP/JPO
instruction. The JNP/JPO instruction affects no flags.

EXAMPLE:

IN AL,OF8H	 Read ASCII character from UART
OR AL.AL	 Set flags
JPOERROR1 : Even parity expected, send error

message if parity found odd

JNS—Jump if Not Signed (Jump if Positive)

This instruction will cause execution to jump to a
specified destination lithe sign flag is 0. Since a 0 in
the sign flag indicates a positive signed number, you
can think of this Instruction as saying 'Jump if positive."
if the sign flag is set, Indicating a negative signed result.
execution will simply go on to the next instruction after
JNS. The destination for the jump must be In the range
of - 128 bytes to + 127 bytes from the address of the
instruction after the JNS. JNS affects no flags.

EXAMPLE:

DEC AL	 : Decrement counter
JNS REDO	 : Jump to label REDO if counter has not

decremented to FFH

JNZ—See Heading JNE

10—Jump if Overflow

The overflow flag will be set lithe result of some signed 	 The JO instruction will cause the 8086 to Jump to a
arithmetic operation s too large to fit ii: the destination 	 destination given in the instruciton if the overflow flag

8086 INSTRUCTION DESCRIPTIONS AND ACSEMBLER DIRECTIVES	 143

Ii sat. The overflow flag will be set if the magnitude of
the result produced by some signed arithmetic operation
is too large to fit in the destination register or memory
location. The destination for the JO instruction must
be In the range of - 128 bytes to + 127 bytes from the
address of the instruction after the JO instruction. If
the overflow flag is not set, execution will simply continue
with the next instruction after JO. JO affects no flags.

EXAMPLE:

ADD AL,BL	 Add signed bytes In AL and BL
JO ERROR	 Jump to label ERROR if overflow

from add
MOV SUM.AL Else put result in memory location

named SUM

JP/JPE—Jump if Parity/Jump if Parity Even

If the number of l's left in the lower 8 bits of a data
word after an Instruction which affects the parity flag
is even, then the parity flag will be Set. If the parity flag
is set, the JP/JPE Instruction will cause execution to
Jump to a specified destination address. if the parity flag
isO, execution will simply continue on to the instruction
after the JP/JPE Instruction. The destination address
must be In the range of —128 bytes to + 127 bytes
from the address of the instuction after the JP/JPE
Instruction. The JP/JPE instruction affects no flags.

EXAMPLE:

IN AL.F8H	 : Read ASCfl character from UART
ORAL.AL	 ;Set flags
JPE ERROR2 : Odd parity expected, send error

message if parity found even

JPE—See Heading JP

JPO—See Heading JNP

JS.—Jump if Signed (Jump if Negative)

This instruction will cause execution to Jump to a
specified destination If the sign flag is set. Since a I In
the sign flag indicates a negative signed number, you
can think of this instruction as saying "jump if negative'
or "Jump if minus." If the sign flag is 0, indicating a
positive signed result, execution will simply go on to the
next instruction after JS. The destination for the Jump
must be in the range of —128 bytes to + 127 bytes from
the address of the instruction after the JS. JS affects
ho flags.

EXAMPLE

ADD BL.DH	 Add signed byte in PH to Signed
byte iii 81,.

JS TOO_.COLD Jump to label TOO_COLD if result
of addition is negative number

JZ—See Heading JE

LAHF—.Copy Low Byte of Flag Register to AH

The lower byte of the 8086 flag register is the same as
the flag byte (or the 8085. LAHF copies these 8085
equivalent flags to the AH register. They can then be
pushed onto the stack along with AL by a PUSH AX
instruction, An LAHF instruction followed by a PUSH
AX instruction has the same effect as the 8085 PUSH
P5W instruction. The LAHF instruction was included in
the 8086 instruction set so that the 8085 PUSH PSW
instruction could easily be simulated on an 8086, LAHF
changes no flags.

LDS—Load Register and OS with Words
from Memory—LDS Register, Memory
Address of First Word

This instruction copies a word from two memory loca-
tions into the register specified in the instruction. It
then copies a word from the next two memory locations
into the OS register. LDS is useful for pointing SI and
DS at the start of a string before using one of the string
instructions. LDS affects no flags.

EXAMPLES;

LOS BX. 143261 Copy contents of memory at displace-
ment 4326H in OS to BL, contents of 4327H to BH.
Copy contents at displacement of 428H and 4329H in
DS to OS register.

LDS SI.STRING_POINTER : Copy contents of rne
at displacements STRING_POINTER arid STRTh
POINTER + I in DS to Si register. Copy contc
of memory at displacements STRING_POINTER
2 and STRING POINTER + 3 in OS to DS regis
DS:SI now points at start of desired string.

LEA—Load Effective Address—LEA
Register,Source

This instruction determines the offset of the variable or
memory location named as the source and puts this
offset in the indicated 16-bit register. LEA changes no
flags.

EXAMPLES:

LEA BX,PRICES	 : Load BX with offset of
PRICES in OS

LEA BP,SS:STACK_TOP : Load BP with offset of
STACIL.TOP in SS

LEA CX.IBXIDfl	 Load CX with EA =
(BX) + (DI)

A program example will better show the context in which
this instruction is used. If you look at the program in
Figure 4-2 Ic, you will see that PRICES is an array of

ioiy

,nts

icr,

144	 CHAPTER SIX

bytes in a segment caned ARRAYS. The instruction LEA
BX, PRICES will load the displacement of the first
element of PRICES directly Into BX. The instruction
MOVAL. IBXI can then be used to bring an element from
the array into AL. Alter one element in the array is
processed. BX is Incremented to point to the next
element in the array.

LES—Load Register and ES with Words
from Memory—LES Register, Memory
Address of First Word

This instruction loads new values into the specified
register and Into the ES register from four successive
memory locations. The word from the first two memory
locations is copied into the specified register, and the
word from the next two memory locations is copied into
the ES register. LES can be used to point DI and ES at
the start of a string before a string instruction is
executed. LES affects no flags.

EXAMPLES:

LES BX,1789AH1 Contents of memory at displacements
789AH and 789BH in DS copied to BX. Contents of
memory at displacements 789CH and 789DH In DS
copied to ES register.

LES DI.IBX) Copy Contents of memory. at offset IBXI
and offset [BX + 1) in DS to DI register. Copy Contents
of memory at offsets (BX + 21 and IBX + 31 to ES
register.

LOCK—Assert Bus Lock Signal

Many microcomputer systems contain several micropro-
cessors. Each microprocessor has its own local buses
and memory. The individual microprocessors are Con-
nected together by a system bus so that each can access
system resources such as disk drives or memory. Each
microprocessor takes control of the system bus only
when it needs to access some system resource. The
LOCK prefix allows a microprocessor to make sure that
another processor does not take control of the system
bus while It is in the middle of a critical instruction
which uses the system bus. The LOCK prefix is put in
front of the critical instruction. When an instruction
with a LOCK prefix executes, the 8086 will assert its
bus lock signal output. This signal is connected to an
external bus controller device, which then prevents soy
other processor from taking over the system bus. LOCK
affects no flags. See Chapter II for further discussion
of this.

EXAMPLE

LOCK XCHG SEMAPJ-{ORE.AL The XCHG instruction
requires two bus accesses. The LOCK prefix prevents
another processor from taking control of the system bus
between the two accesses.

LODS/LODSB/LODSW—Load String Byte
into AL or Load String Word into AX

This instruction copies a byte from a string location
pointed to by SI to AL. or a word from a string location
pointed to by SI to AX. if the direction flag is cleared (0).
Si will automatically be incremented to point to the next
element of the string. For a string of bytes. SI will be
incremented by 1. For a string of words. SI will be
incremented by 2. If the direction flag (OF) is set (ii. SI
will be automatically decremented to point to the next
string element. For a byte string. SI will be decremented
by 1, and for a word string, Si will be decremented by
2. LODS affects no flags.

EXAMPLE:

CLD	 Clear direction flag so SI
is autoincremented

MOV SI, OFFSET SOURCE_STRiNG
Point SI at start
of string

LODS SOURCE_STRING Copy byte or word from
string to AL or AX

NOTE: The assembler uses the name of the string
to determine whether the string is of type byte or
type word. Instead of using the string name to do
this, you can use the mnemonic LODSB to tell the
assembler that the 4ring is of type byte or the
mnemonic LODSW to tell the assembler that
the string is of type word.

LOOP—Jump to Specified Label if CX 0
after Autodecrement—LOOP Label

This instruction is used to repeat a series of instructions
some number of times. Th. number of times the instruc-
tion sequence is to be repeated is loaded into CX. Each
time the LOOP instruction executes. CX is automatically
decremented by I. If C?(is not 0. execution will jump to
a destination specified by a label in the instruction. If
CX = 0 after the autodeerement, execution will simply
go on to the next instruction after LOOP. The destination
address for the jump must be in the range of - 128
bytes to + 127 bytes from the address of the instruction
after the LOOP instruction. LOOP affects no flags. See
Chapter 4 for further discussion and examples of the
LOOP instruction.

EXAMPLE:

MOV BX. OFFSET PRICES
Point BX at
first element 4narray

MOV CX.40	 Load CX with number of
elements in array

NEXT: MOV AL.IBXI 	 Get element from array
ADD AL.07H	 Add correction factor
DAA	 Decimal adjust result

8086 INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECTIVES 	 145

EXAMPLE:

MOV BX,OFFSET ARRAY
DEC BX
MOV CX, 100

NEXT: INC BX

CMP IBXI.ODH

LOOPNE NEXT

Point BX to Just
before start of array
Put number of array
elements in CX
Point to next
element in array
Compare array
element with ODH

MOV IBXI.AL	 Put result back In array
INCBX
LOOP NEXT

	

	 Repeat until all elements
adjusted

LOOPEJLOOPZ—Loop While
CX * 0 and ZF = 1
LOOPE and LOOPZ are two mnemonics for the same
Instruction. This instruction is used to repeat a group
of instructions some number of times or until the zero
flag becomes 0. The number of times the instruction
sequence is to be repeated is loaded into CX. Each time
the LOOP instruction executes. CX is automatically
decr.mented by 1. If CX ^ 0 and ZF = 1. execution
will Jump to a destination specified by a label in the
instruction. If CX = 0 after the autodecrement or if
ZF = 0. execution will simply go on to the next instruc-
tion after LOOPE/LOOPZ. In other words, the two ways
to exit the loop are CX = 0 or ZF = 0. The destination
address for the jump must be in the range of - 128
bytes to + 127 bytes from the address of the instruction
after the LOOPE/LOOPZ instruction. LOOPE/LOOPZ
affects no flags. See Chapter 4 for further discussion
and examples of the LOOPE/LOOPZ instruction.

EXAMPLE:

MOV BX,OFFSET ARRAY Point BX to Just
DEC BX	 before start of array
MOVCX,l0O	 Put number of array

elements in CX

NEXT: INC BX	 Point to next
element in array

CMP (BXI,OFFH	 Compare array
element with FFH

LOOPE NEXT

NOTE: The next element Is thecked if the element
equals FEE! and the element was not the last one
In the array. If CX 0 and ZF I on exit, all
elements were equal to FFH. If CX 0 0 on exit from
the loop, then 13X points to the first element that
was not FFH. If CX = 0 and ZF = 0 on exit, then

/ the last element was not FFH.

LOOPNEILOOPNZ—Loop While
CX * 0 and ZF = 0
LOOPNE and LOOPNZ are two mnemonics for the same
instruction. This instruction is used to repeat a group
of instructions some nurdber of times or until the zero
flag becomes a 1. The number of times the instruction
sequence is to be repeated is loaded into the count
register CX. Each time the LOOPNE/LOOPNZ instruc-
tion execues. CX is automatically decremented by I. If
CX 0 0 and ZF = 0. execution will Jump to a destination
specified by a label In the instruction. If CX 0 after
the autodecrement or If ZF = I. execution will simply
go on to the next instruction after LOOPNE/LOOPNZ. In
other words, the two ways to exit the loop are CX = 0

and ZF = 1. The destination address for the jump must
be in the range of —128 bytes to + 127 bytes from the
address of the instruction after the LOOPNE/LOOPNZ
instruction. LOOPNE/LOOPNZ affects no flags. See
Chapter 4 for further discussion and examples of the
LOOPNE/LOOPNZ Instruction.

NOTE: When the LOOPNE instruction executes.
CX will be decremented by I. If CX 0 0 and ZF =
0. execution will go to the label NEXT. If CX = 0
or ZF = I. execution will go on to the next
instruction after LOOPNE. If CX 0 and ZF = 0
on exit. 0011 was not found in the array. If CX 0
0 on exit from the loop, then BX points to the first
element which Contains ODH. If CX = 0 and ZF =
1 on exit from the loop, the last array element was
ODH.

LOOPNZ—See Heading LOOPNE
LOOPZ—See Heading LOOPE
MOV—Copy a Word or Bvte—MOV
Destination,Source
The MOV Instruction copies a word or byte of data
from a specified source to a specified destination. The
destination can be a register or a memory location. The
source can be a register, a memory location, or an
immediate number. The source and destination in an
instruction cannot both be memoiy locations. The
source and destination in a MOV instruction must both
be of type byte. or they must both be of type word. MOV
instructions do not affect any flags.

EXAMPLES:

MOV CX.037AH	 Put the Immediate number
037A11 in CX

MOV BL.1437AHj Copy byte In DS at offset
437AH to BL

MOV AX.X
	

Copy contents of register BX to AX

MOV DL.IBXI
	

Copy byte from memory at IBXI
to DL
BX contains offset of byte in OS

MOV DS.11X
	

Copy word from BX to DS register

146	 CHAPTER SIX

MOV RESULTS(BPj,AX; Copy AX to two memory loca-
tions—AL to the first location, AH to the second. EA of
the first memory location is the sum of the displacement
represented by RESULTS and contents of BP. Physical
address = EA + SS.

MOV CS:RESULTS{BPI,AX Same as the above instruc-
tion, but physical address = EA + CS because of the
segment override prefix CS.

MOVS/MOVSB/MOVSW—Move String Byte
or String Word—MOVS Destination String
Name,Source String Name

This instruction copies a byte or a word from a location
in the data segment to a location in the extra segment.
The offset of the source byte or word in the data segment
must be in the SI register. The offset of the destination
in the extra segment must be contained in the Dl
register. For multiple-byte or multiple-word moves, the
number of elements to be moved is put in the CX register
so that it can function as a counter. After the byte or
word Is moved, SI and DI are automatically adjusted to
point to the next source and the next destInation. If the
direction flag Is 0, then SI and DI will be incremented
by 1 after a byte move and incremented by 2 after a word
move, If the DF is a 1, then SI and Dl will be decrernented
by 1 after a byte move and decrementeu by 2 after a
word move. MOVS affects no flags.

When using the MOVS instruction, you must in some
way tell the assembler whether you wan' to rirove a strIng
as bytes or as words. There are two ways to do this. The
first way is to indicate the names of the source and
destination strings in the instruction, as. for example.
MOVS STRING_DUMP,STR!NG_CREATE. The assem-
bler will code the instruction for a byte move if STRING_
DUMP and STRING_CREATE were declared with a DB.
It will code the instruction for a word move if they were
declared with a DW. Note that this reference to the
source and destination strings does not load SI and Dl.
This must be done with separate instructions. The
second way to tell the assembler whether to code the
instruction for a byte or word move Is to add a "B' or a
"W" to the MOVS mnemonic. MOVSB, for example, says
move a string as bytes. MOVSW says move a string as
words.

EXAMPLE

MOV SI.OF'FSET SOURCE_STRING
Load offset of start of source
string to DS into SI

MOV DI.OFFSET DESTINATION_STRING
Load offset of start of
destination
string in ES into DI

CLD	 Clear directIon flag to auto-
increment SI & DI after move

MOV CX,04H	 Load length of string into CX
as counter -- -

REP MOVSB	 Decrenient CX and copy
string bytes until CX = 0

After the move, SI will be 1 greater than the offset of the
last byte in the source string. DI will be I greater than
the offset of the last byte in the destination string. CX
will be 0.

MUL—Multiply Unsigned Bytes
or Words—MUL Source

This Instruction multiplies an unsigned byte from some
source times an unsigned byte in the AL register or an
unsigned word from some source times an unsigned
word in the AX register. The source can be a register or
a memory location Specified by any one of the 24
addressing modes shown in Figure 3-8. When a byte is
multiplied by the Contents of AL. the result (product) is
put in AX. A 16-bit destination Is required because the
result of multipl ring an 8-bit number by an 8-bit number
can be as large as 16 bits. The most significant byte of
the result is put in AH. and the least sIgnificant byte of
the result is put in AL. When a word is multiplied
by the contents of AX. the product can be as large as 32
bits. The most signIficant word of the result is put in
the DX register, and the least significant word of the
result is put in the AX register. If the most sIgnificant
byte of a 16-bit result or the most significant word of a
32-bit result is 0. CF and OF wIll both be 0's. Checking
these flags, then, allows you to detect and perhaps
discard unnecessary leading 0's in a result. AF, PF. SF.
and ZF are undefined after a'MUL instruction.

If you want to multiply a byte by a word, you must
first move the byte to a word location such as an extended
register and fill the upper by'e of the word with all 0's.

NOTE: You cannot use the 8086 Convert Byte to
Word instruction. CBW. to do this. The CBW
instruction fills the upper byte of AX with copies
of the MSB of AL. If the number in AL Is 80H or
greater. CEW will fill the upper half of AX with l's
instead of with U's. One you get the byte converted
corretly to a word with 0's in the upper byte, you
can then do a word times word multiply. The 32-
bit result will be in DX and AX.

EXAMPLES:

	

UL Bit	 : AL times BH, result in AX

	

MUL CX	 AX times CX, result high word
in DX.
low word in AX

MUL BYTE PTR (HXI : AL times byte in DS pointed
to by IBXI

MUL CONVERSION_FACTORIBXI Multiply AL times
byte at effective address CONVERSION_FACTORIBXI if
it wts declared as type byte with DB. Multiply AX tim.'s
word at effective address CONVERSION_FACTORJBX 'I
it was declared as type word with DW.

21	 8086 INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECTIVES 	 47

Example showing a byte multiplied by a word
	

also be used to hold a place in a program for an
instruction thst will he added later.

MOV AX.MULTIPLICAND_16 : Load 16-bit
multiplicand into AX

MOV CL,MtJLTIPLIER_8	 Load 8-bit multiplier
into CL

MOV CH.00H

	

	 Set upper byte of CX
to au 0's

MUL C)

	

	 AX times CX. 32-bit
result in DX and AX

NEC—Form 2's Complement—NEC Destination

This instruction replaces the number in a destination
with the 2's complement of that number. The destination
can be a register or a memory location specified by any
one of the 24 addressing modes shown in Figure 3-8.
This instruction forms the 2's complement by sub-

a:Ung the original word or byte in the indicated
destination from zero. You way want to try this with a
couple of numbers to conviric yourself that it gives the
same result as the tnvert each øh and add I algorIthm.
Aa shown in some of the Ioilowtng examples, the NEG
instruction is useful for ch .. ogtng the sign of a signed
won" or byte. An attempt to NC a byte location con
tair.ing - 128 or a word loca'oo containing —32,763
will produce no change in the destination contents
because the maximum poslilve signed number in 8 btt
is + 127 and the msxie,un oc . ti'' igoed nmbtr i
l hits Is I32,767. o'	 be ------.iete iha the
cperatko could nc	 s.oe. 1 -------B
updatesAF,CF,t). 'c

EXAMPLES.

NEC AL
.:-,	 r.:)t,.lU

NF.G BX	 R.'ae-:.d i LX wub ir:

NFG BYrE -I'rlBx

	

	 .:bc'e Ly:e t ffs FP'i t.
,". 'vlth Pa s compne.

NEG WORD PTh '": tjac- ..c,d at Jset IBP iu
SS with b 2s complement

NOTE: The BYTE PTR and WORD PTR dtrc.th'es
are required In the last two exames to tell tue
assembler whether to code the instruction for
a byte operation oi a word operatior The)BPI
reference by itself does not indicate the type of the
operand.

NOP—Perform No Operation

'this host! uction simply uses up three clock cycles and
Increments the instnwtlon pointer to point to the flex'
Instruction. NOP affects no flags. The NOP Instruction
can be used to increase the delay of a delay loop, as
shown in Figure 4-27a. When hand coding. a NOP can

NOT—Invert Each Bit
of Operand—NOT Destination

The NOT instruction inverts each bit (forms the l's
complement) of the byte or word at thc specified destina-
tion. The destination can be a register or a memory
location specified by any one of the 24 addressing modes
shown In Figure 3-8. No flags ax-c aflécted by the NOT
instruction.

EXAMPlES:

NOT BY	 Complement contents of
BX register

NOT bYTE PTR BXI : Complement memory byte at
offset IBXI in data segment

OR-1e"icay OR Corresponding Bits of Two
Operind —Oct Destination,Source

This ins trucuon ORs each bit in a source byte or word
witn the cn eesx . nding bit in a destination byte or word.
rhe tesuit is put in the specified destination. The
conients ot the specified source will not be changed. The
rev:u for each bit will follow the truth table for a two-
inp:it JR gate. In other words, a bit In the destination
will bn'-ome a I if that bit Is a I in the source operand
c' th:t bit is a I in the original destination operand.

a bit In the destination operand can be set
I b' simp BRing that bit with a I in the same bit

soree operand. A bit ORed with Ois not changed.
' he "-oixrc operand can be an Immediate number.

contents of a register, or the contents of a memory
iccatuon specified by one of the 24 addressing modes
stu ..rn in Figure 3-8. The destination can be a register
or a nernory location. The source and the destination
'.'annot boi.h be memory locations in the same instruc-
tlo. CF and OF are both 0 after OR, PF, SF, and ZF are
undated by the OR instruction. AF Is undefined after
OR. Note that PF has meaning only for the lower 8 bits

a ree.xit.

I y AMPLLS (SYNTAX):

OR AH.CI.	 CL ORed with Al-), result in Al-I.
CL not changed

OR HP.S1	 SI ORed with BP, result in BP.
SI not changed

OR SJ.BP	 BP ORed with SI. result In SI.
BP not changed

OR BL.80H	 BL ORed with Immediate 80H.
Set MSB of BI. to a I

148	 CHAPTER SIX

OR CX. TABLELBXIISII
CX ORed with word from
effective address TABLEIBXISII
in data segment. Word in
memory is not changed

EXAMPLE (NUMERiCAL):

Copy a word from top of stack to DX
Increment SP by 2

Copy a word from top of stack to DS
Increment SP by 2

EXAMPLES:

POP DX

POP DS

CX = 00111101 10100101
ORCX,OFFOOH OR CX with immediate E'FOOH

Result in CX	 11111111 10100101
Note upper byte now all l's. lower
byte unchanged

:CF = 0,OF= 0,PF= 1,SF= I,
ZF = 0

OUT—Output a Byte or Word to a Port—OUT
Port,Accumutator AL or AX

The OUT instruction copies a byte from AL or a word
from AX to the specified port. The OUT instruction has
two possible forms. fixed port and variable port.

For the fixed-port form, the 8-bit poit address Is
specified directly in the Instruction. With this form, any
one of 256 possible ports can be addressed.

EXAMPLES:

OUT 3BH,AL Copy the contents of AL to port 3BH

OUT 2CH.AX ; Copy the contents of AX to port 2CH

For the variable-port form of the OUT instruction, the
contents of AL or AX w!tI be copied to the port at an
address contained in DX. Therefore, the DX register
must always be loaded with the desired port address
before this form of the OUT instruction is used. The
advantage of the variable-port form of addressing is
described in the discussion of the IN instruction. The
OUT instruction does not affect any flags.

EXAMPLES:

MOV DX,OFFF8I-I : Load desired port address In DX
OUT DX.AL	 Copy contents of AL to port FPF8H
OUT DX.AX	 Copy contents of AX to port FFF8H

POP—POP Destination

The POP Instruction copies a word from the stack
location pointed to by the stack pointer to a destination
specified in the Instruction, The destination can be a
general-purpose register, a segment register, or a mem-
ory location. The data in the stack is not changed. After
the word is Copied to the specified destination, the stack
pointer is automatically incremented by 2 to point to
the next word on the stack. No flags are affected by th
POP instruction,

NOTE: POP CS is Illegal.

POP TABLE EBXI Copy a word from top of stack to
memory in DS with EA =
TABLE + lBXl

POPF—Pop Word from Top
of Stack to Flag Register

This instruction copies a word from the two memory
locations at the top of the stack to the flag register and
increments the stack pointer by 2. The stack segment
register and the word on the stack are not affected. AU
flags are affected.

PUSH—PUSH Source

The PUSH instruction decrements the stack pointer by
2 and copies a word from a specified source to the
location in the stack segment where the stack pointer
then points. The source of the word can be a general-
purpose register, a segment register, or memory. The
stack segment register and the stack pointer must be
initialized before this instruction can be used. PUSH
can be used to save data on the stack so tlat it will not
be destroyed by a procedure. It can also be used to put
data on the stack so that a procedure can access it there
as needed. No flags are affected by this InstructIon. Refer
to Chapter 5 for further discussion of the stack and the
PUSH instruction,

EXAMPLES:

PUSH BX	 : Decrement SP by 2. copy UX
to stack

PUSH 'DS	 Decrement SP by 2. copy DS
to stack

PUSH AL	 Illegal, must push a word

PUSH TABLE (BXI Decrement SP by 2. copy word
from memory In DS at
EA = TABLE + (BXI to stack

PUSHF—Push Flag Register on the Stack

This instruction decrements the stack pointer by 2 and
copies the word in the flag register to the memory
locatIon(sl pointed to by the stack pointer. The stack
segment register Is not affected. No flags are changed.

RCL—Rotate Operand Around to the Left
through CF—RCL Destination,Count

This Instruction rotates all the bits In a specified word
or byte some number of bit positions to the left. The

8086 INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECTIVES	 149

operation is circular because tIi MSB f the operand is
rotated Into the carry flag and the bit in the carry flag
is rotated around Into the LSB of the operand. See the
following diagram.

CF4-MSB(LSB

The "C" in the middle of the mnemonic should help you
remember that CF is in the rotated loop and help
distinguish this instruction from the ROL instruction.
For multibit rotates, CF will contain the bit most recently
rotated out of the MSB.

The destination operand can be in a register or in a
memory location specified by any one of the 24 ad-
dressing modes shown in Figure 3-8. If you want to
rotate the operand one bit position, you can specify this
by putting a I in the count position of the instruction.
To rotate more than one bit position, load the desired
number into the CL register and put "CL" in the count
position of the instruction.

NOTE: The 80186. 80286. 80386. etc., allow you
to specify a rotate of up to 32 bit positions with
either an immediate number in the instruction or
a number in CL.

RCL affects only CF and OF. After RCL. CF will contain
the bit most recently rotated out of the MSB. OF will be
a I after a single-bit RCL if the MSB was changed by
the rotate. OF is undefined after a multibit rotate.

The RCL instruction is a handy way to move CF into
the LSB of a register or memory location to save it after
addition or subtraction.

EXAMPLES (SYNTAX):

RCL DX,1	 Word in DX 1 bit left, MSB to
CF. CF to LSB

MOV CL.4	 Load number of bit positions to
rotate into CL

RCL SUMIBXI.CL : Rotate byte or word at effective
address SUMIBXI 4 bits left
Original bit 4 now in CF. original
CF now in bit 3

EXAMPLES (NUMERICAL):

;CF0.BH	 10110011
RCLBH.1	 Result: HF! 01100110

CF = I. OF 1 because MSB changed

;CF	 1,AX 00011111 10101001

MOV CL,2	 Load CL for rotating 2 bit positions
RCL AX,CL	 Result: CF = 0, OF undefined

;AX	 01111110 10100110

RCR—Rotate Operand Around to the Right
through CF—RCR Qestination,Couflt

This instruction rotates all the bits in a specified word
or byte some number of bit positions to the right. The
operation Is circular because the LSB of the operand is
rotated into e carry flag and the bit in the carry flag
is rotated around into the MSB of the operand. See the
following dlagran.

CF - MSB	 - LSB

The "C" in the middle of the mnemonic should help you
remember that CF is in the rotated loop and should help
distinguish this instruction from the ROR instruction.
For multibit rotates. CF will contain the bit most recently
rotated out of the LSB.

The destination operand can be in a register or in a
memory location specified by any one of the 24 ad-
dressing modes shown in Figure 3-8. If you want to
rotate the operand one bit position, you can specify this
by putting a 1 in the count position of the instruction.
To rotate more than one bit position, loa the desired
number into the CL register and put "CL" In the count
position of the instruction.

NOTE: The 80186, 80286, 80386, etc.. allow you
to specify a rotate of up to 32 bit positions with
either an immediate number in the instruction or
a number In CL.

RCR affects only CF and OF, After RCR. CF will c'ntain
the bit most recently rotated Out of the MSB. OF will be
a I after a single-bit RCR if the MSB was changed by
the rotate. OF will be undefined after multibit rotates.

EXAMPLES (CODING):

RCR BX. I	 Word in BX right 1 bit
CF to MSB, LSB to CF

MOV CL,04F1	 Load CL for rotating
4 bit positions

RCR HYFE PTR IBXI ; Rotate byte at offset IBXI in
DS 4 bit positions right
CF = original bit 3. Hit 4
= original CF

EXAMPLES (NUMERICAL):

:CF	 l.BLOOII1000
RCR BL.1	 Result: BL = 10011100, CF

OF = I because MSB
changed to I

CF 0. WORD PTR IBXI
= 01011110 00001111

MOV CL.02H	 Load CL for rotate 2 bit
positions

150	 CHAP1'ER SIX

RCR WORD PTR LBXI. CL Rotate word in DS at
offset IBXI 2 bits right
CF = original bit 1.
Bit 14 = original CF
WORD PTR (BX]
10010111 10000011

REP/REPEIREPZ/REPNE/REPNZ—(PrefiX) Repeat
String Instruction until Specified Conditiqns Exist

REP is a prefix which is written before one of the
string instructions. It will cause the CX register to be
decremented and the string instruction to be repeated
until CX 0. The instruction REP MOVSB. for example.
will continue to copy string bytes until the number of
bytes loaded into CX has been copied.

REPE and REPZ are two mnemonics for the same
prefix. They stand for Repeat if Equal and Repeat if Zero,
respectively. You can use whichever prefix makes the
operation clearer to you in a given program. REPE or
REPZ is often used with the Compare String instruction
or with the Scan String instruction. REPE or REPZ will
cause the string instruction to be repeated as long as
the compared bytes or words are equal (ZF 1) and CX
is not yet counted down to zero. In other words, there
are two conditions that will stop the repetition: CX = 0
or string bytes or words not equal.

EXAMPLE:

REPE CMPSB Compare strIng bytes until end of string
or until string bytes not equal. See the discussion of the
CMPS instruction for a more detailed example of the use
of REPE.

REPNE and REPNZ are also two mnemonics for the
same prefix. They stand for Repeat if Not Equal and
Repeat if Not Zero, respectively. REPNE or REPNZ Is
often used with the Scan String instruction. REPNE or
REPNZ will cause the string instruction to be repeated
until the compared bytes or words are equal (ZF = 1)
or until CX = 0 (end of string).

EXAMPLE

REPNE SCASW Scan a string of words until a word in
the string matches the word In AX or until all of the
string has been scanned. See the discussion of SCAS

'for a more detailed example of the use of this prefix

The string instruction used with the prefix determines
which flags are affected. See the individual instructions
for this information. Also see Chapter 5 for further
examples of the REP instruction with string instruc-
tions.

NOTE: Interrupts should be disabled when multi-
ple prefixes are used, such as LOCK, segment
override, and REP with string instructions on the
8086/8088. This is because, during an interrupt
response. the 8086 can remember only the prefix

just before the string instruction. The 80186,
80286. etc., will remember all the prefixes and
start up correctly after an interrupt during a string
instruction.

RET—Return Execution from Procedure
to Calling Program
The RET instruction will return execution from a proce-
dure to the next instruction after the CALL instruction
which was used to call the procedure. If the procedure
Is a near procedure (in the same code segment as the
CALL instruction), then the return will be done by
replacing the Instruction pointer with a word from the
top of the stack. The word from the top of the stack is
the offset of the next instruction after the CALL. This
offset was pushed onto the stack as part of the operation
of the CALL instruction. The stack pointer will be
incremented by 2 after the return address is popped off
the stack.

If the procedure isa far procedure (in a different code
segment from the CALL instruction which calls it). then
the instruction pointer will be replaced by the word at
the top of the stack. This word is the offset part of the
return address put there by the CALL instruction. The
stack pointer will then be incrementea by 2. The code
segment register is then replaced . with a word from the
new top of the stack. This word is the segment base part
of the return address that was pushed onto the stack
by a far call operation. After the code segment word
is popped off the stack, the stack pointer is again
incremented by 2.

A RET Instruction can be followed by a number, for
eenmple. RET 6. In this case the stack pointer will be
incremented by an additional six addresses after the lP
or the IF and CS are popped off the stack, This form is
used to increment the stack pointer over parameters
passed to the procedure on the stack.

The RET instruction affects no flags.
Please refer to Chapter 5 for further discussion of the

CALL and RET instructions.

ROt—Rotate All Bits of Operand Left, MSB
to [SB—ROt Destination,Count

This instruction rotates all the bits in a specified word
or byte to the left some number of bit positions. The
operation can be thought of as circular; because the
data bit rotated Out of the MSB is circled back into
the LSB. The data bit rotated out of the MSB Is also
copied to CF during ROL. In the case of multiple bit
rotates. CF will contain a copy of the bit most recently
moved out of the MSB. See the following diagram.

CF4—MSB4	 LSB

The destination operand can be in a register or in a
memory location specified by any one of the 24 ad-

dressing modes shown in Figure 3-8. If you want to

8086 INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECTIVES	 151

rotate the operand one bit position, you can specify this
by putting a 1 in the count position of the instructIon.
To rotate more than one bit position, load the desired
number in the CL register and put 'CL' In the count
position of th instruction.

NOTE: The 80186. 80286. 80386. etc.. allow you
to specify a rotate of up to 32 bit positions with
either an immediate number in the instruction or
a number in CL.

ROL affects on ly CF arid OF. After ROL. CF will contain
the bit most recently rotated out of the MSB. OF will be
a I after a single bit ROL if the MSB was changed by
the rotate.

The ROL Instruction can be used to swap the nibbles
In a byte or to swap the bytes In a word. It can also be
used to rotate a bit into CF. where it cn be checked
and acted upon b the Conditional Jump instructions
JC (Jump if Cariy) and JNC (Jump if No Carry).

EXAMPLES (SYNTAX):

ROL AX!	 Word in AX I bit position left.
MSB to LSB and CF

MOV CL.04H	 Load number of bits to rotate in CL
ROL BL.CL	 Rotate BL 4 bit positions

(swap nibbles)

ROL FACFORIBXI. I MSB of word or byte In DS at
EA = FACFORJBXI
1 bit position left into CF

JC ERROR	 Jump if CF = 1 to error routine

EXAMPLES (NUMERICAL):

;CF=0,BH= 10101110
ROLBH,l	 ;Result:CF,OF= l.BH = 01011101

BX = 01011100 11010011
CL	 8. set for 8-bit rotate

ROL BX,CL Rotate BX 8 times left (Swap bytes)
:CF = 0,BX= l101OOlIOlOIIlOO
OF undefined

ROR—Rotate II Bits of Operand Right, [SB
to MSB—ROR Destination,Count

This instruction rotates all the bits of the specified word
or byte some number of bit positions to the right. The
operation is described as a rotate rather than a shift
because the bit moved out of the LSB is rotated around
Into the MSB. To help visualize the operation, think of
the operand as a loop with the LSB connected around
to the MSB. The data bit moved out of the LSB is also
copied to CF during ROR. See the following diagram. In
the case of multiple-bit rotates, CF will contain a copy
of the bit most recently moved out of the LSB.

CF	 MSB	 –LSl3

The destination operand can be in a register or in a
memory location specified by any one of the 24 ad-
dressing modes shown in Figure 3-8. If you want to
rotac the operand one bit position, you can specify this
by putting a I in the count position of the instructici.
To rotate more than one bit position. load the desired
number in the CL register and put 'CL" in the count
position of the instruction,

NOTE: The 80186. 80286. 80386, etc., allow you
to specify a rotate of up to 32 bit positions with
either an Immediate number or a number in CL.

ROR affects only CF and OF. After ROR. CF will contain
the bit most recentiy rotated out of the LSB. For a single-
bit rotate, OF will be a I after ROR if the MSL3 is changed
by the rotate.

The ROR instruction can be used to swap the nibbles
In a byte or to swap the bytes in a word. It can also be
used to rotate a bit into CF. where it can be checked
and acted upon by the Conditional Jump instructions
JC (Jump if Carry) and JNC (Jump if No Carry).

EXAMPLES (SYNTAX):

ROR BL,1	 Rotate all bits in BL right 1 bit position
LSB to MSB and to CF

MOV CL,081-1	 Load CL with number of bit
positions to be rotated

ROR WORD PTR IEIXLCL Rotate word In DS at offset
(BXI 8 bit positions right
(Swap bytes In word)

EXAMPLE S (NUMERICAl.):

CF = 0, BX = 00111011 01110101
ROR BX, 1	 Rotate all bits of BX 1 bit position right

CF	 l,BX = 10011101 10111010

;CF=0,AL=1011OOIlOFl
MOV CL.04H Load CL for rotate 4 bIt positions
ROR AL.CL	 Rotate all bits of AL 4 bits right

:CF=0.AL=OOlIloll.OF'=?

SAl-IF—Copy AH Register
to Low Byte of Flag Register

The lower byte of the 8086 flag regsiter corresponds
exactly to the 8085 flag byte. SAHF replaces this 8085
equivalent flag byte with a byte from the AH register.
SAl-IF is used with the POP AX instruction to simulate
the 8085 POP PSW instruction. As described under the
heading LAHF, an 8085 PUSH P5W instruction will be
translated to an LA}IF—PUSH AX sequence to run
on an 806. An 8085 POP PSW .nstn.Jction will be
translated to a POP AX—SAl-IF sequence to run on an
8086. SAHF changes the (lags in the lower byte of the
flag register.

152	 CHAPTER SIX

SAL'SHL—Shift Operand Bits Left, Put Zero
in LSB(s)—SAL/SHL Destination.Count

SAL and SElL are two mnemonics for the same instruc-
tion. This instruction shifts each bit in the specified
destination some number of bit positions to the left. As
a bit is shifted out of the LSB position, a 0 is put in the
LSB position. The MSB will be shifted into CF. In the
case of multiple-bit shifts. CF will contain the bit most
recently shifted in from the MSB. Bits shifted into CF
previously will be lost. See the following diagram.

CF't— MSB(LS8-0

The destination operand can be a byte or a word. It can
be in a register or in a memory location specified by any
one of the 24 addressing modes shown In Figure 3-8.

If the desired number of shifts is one, this can be
specified by putting a 1 in the count position of the
instruction. For shifts of more than 1 bit position, the
desired number of shifts is loaded Into the CL register,
and CL is put In the count position of the instruction.
The advantage of using the CL register is that the
number of shvfta can be dynamically calculated as the
program executes.

NOTE: The 80186. 80286. 80386. etc., allow you
to specify a shift of up to 32 bit positions with
either an Immediate number in the instruction or
a number In CL.

The flags are affected as follows: CF contains the bit
most recen'ly shifted in fron MSB. For a count of one.
OF will be 1 If CF and thc current MSB are not the same.
For multiple-bit shifts, OF is undefined. SF and ZF will
be updated to reflect the condition of the destination.
PF will have meaning only for an operand in AL. AF is
undefined.

The SAL or SHL instruction can aiso be used to
multiply an unsigned binary number by a power of 2.
Shifting a binary number one bit position to the left and
putting a 0 in the LSB multiplies the number by 2.
Shifting the number two bit positions multiplies it by
4. Shifting the number three bit positions multiplies It
by 8. etc. For this specific type of multiply, the SAL
method is faster than using MUL but you must make
sure that the result does not become too large for the
destination.

EXAMPLES (SYNTAX):

SAL BX,1	 : Shift word In BX I bit
position left,
0 in LSB

SAL BYTE PTR IBXI. 1	 Shift byte In DS at offset
IBX4
1 bit position left. 0 in
[SB

Example of SAL
instruction's
use to help pack BCD

IN AL,COUNTER_DIGIT Unpacked BCE) from
counter to AL

MOV CL,04H	 Set Count for 4 bit
positions

SAL AL,CL	 : Shift BCE) to upper
nibble,
0's in lower nibble. Ready
toOR
another BCE) digit into
lower nibble of AL

EXAMPLE (NUMERICAL):

;CFO.BX= 11100101 11010011
SAL BX. 1 : Shift 13X register oontents I bit p1tion left

	

:CF	 I,BX= 11001011 10100110
;0F0,PF= ?.SF 1,ZFO

SAR—Shift Operand Bits Right. New MSB =
Old MSB—SAR Destination,Cwn

This instruction shifts each bit Ir the specified destina-
tion some number of bit positions to the right. As a bit
is shifted out of the MSB position, a copy of the old MSB
Is put in the MSB position. in other words, the sign
bit is copied into the MSB. The [SB will be shifted into
CF. in the case of multiple bit shifts. CF will contain the
bit most recentiS' shifted in from the LSB. Bits shifted
into CF previously will be lost. See the following diagram.

	

MSB—*MSB) [SB —CF

The destination operand can be a byte or a word. It can
be in a register or In a memory location specified by any
one of the 24 addressing modes shown in Figure 3-8.

If the desired number of shifts Is one, this can be
specified by putting a 1 In the count position of the
instruction. For shifts of more than one bit position,
the desired number of shifts Is loaded into the CL
register, and CL Is pu4 in the count position of the
Instruction.

NOTE: The 80186. 80286, 80386. etc.. allow you
to specify a shift of up to 32 bIt positions with
either an ImmedIate number In the instruction or
a number In C).

MOV CL,02H	 Load desired number of	 The flags are affected as follows: CF contains the bit
shifts In CL	 most recently shifted In from the [SB. For a count of

SAL BP,CL	 : Shift word In BP left (CL)	 one, OF will be a I If the two MSBs are not the same.
bit	 After a multibit SAR. OF will be 0. SF and ZF will be
positions. 0's In 2 LSBs	 updated to show the condition of the destination. PF

8086 INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECTIVES 	 153

will have meaning only for an 8-bit destination, AF will
be undefined after SAR.

The SAR instruction can be used to divide a signed
byte or word by a power of 2. shifting a binary number
right one bit position divides it by 2. ShiftIng a binary
number right two bit positions divides It by 4. Shifting
it right three positions divides it by 8. etc. For unsigned
numbers, a 0 is put in the MSB after the old MSB is
shifted right. (See discussion of SHR Instruction.) For
signed binary numbers, the sign bit must be copied into
the new MSB as the old sign bit is shifted right. This is
necessary to retain the correct sign in the result. SAR
shifts the operand right and copies the sign bit into the
MSB as required for this operation. Using SAR to do a
divide by 2. however, gives slighuy different results than
using the IDE'.' instruction to do the same Job. IDE'.'
always truncates a signed result toward 0. For example.
an IDIV of 7 by 2 gives 3, and an IDly of —7 by 2 gives
— 3. SAR always truncates a result in a downward
direction. Using SAR to divide 7 by 2 gIves 3, but using
SAR to divide —7 by 2 gives —4.

EXAMPLES (SYNTAX):

SAR Dl.1 Shift word in Dl one bit position right,
new MSB = old MS8

MOV CL,02H	 Load desired number of
shifts In CL

SAR WORlD PTR IBPLCL Shift word at offset IBPI
in stack segment right
two bit positions. Two MSE3s
are now copies of
original MSB

EXAMPLES (NUMERICAL):

;AL = 00011101 = + 29 decimal CF 0
SAR AL.I Shift signed byte in AL right

to divide by 2
AL = 0000! 110 = + 14 decimal. CF = 1,

:OF=0,PF= 0,SF=0.ZFO

BH = 11110011	 - 13 decimal
SAR BH, 1; Shift signed byte In BH right to

divide by 2
:BH = 11111001 = - 7decimal.CF
:OF = 0,PF= l,SF= I. ZF=0

SBB—Subtract with Borrow—SBB
Destintion,Source

SUB—Subtract—SUB Destination,Source

These instructions subtract the number in the Indicated
source from the number in the Indicated destination
and put the result In the indicated destination. For
subtraction, the carry flag (CF) functions as a borrow
flag. The carry flag will be Set after a subtraction If the
number in the specified source is larger than the number
in the specified destination. In other words, the carry/

borrow flag will be set if a borrow was required to do the
subtraction. The Subtract Instruction. SliD. subtracts
just the contents of the specified source from the con-
tents of the specified destination. The Subtract with
Borrow instruction, SBB. subtracts the contents of the
source and the contents of CF from thecontents of the
Indicated destination. The source may be an immediate
number, a register. or a memory location specified by
any of the 24 addressing modes shown in Figure 3-8.
The destination can also be a register or a memory
location. However, the source and the destination cannot
both be memory locations In an instruction. The source
and the destination must both be of type byte or both
be of type word. If you want to subtract a byte from a
word, you must first move the byte to a word location
such as a 16-bit register and fIll the upper byte of the
word with 0's. AF, CF. OF, PF, SF, and ZF are updated
by the SUB instruction.

EXAMPLES (SYNTAX):

SUB CX,BX	 CX - BX. Result in CX

SBB CH.AL	 Si.±tract contents of AL and
contents of CF from
contents of CH. Result In CH

SUB AX,3427H	 Subtract Immediate number
34271! from AX

SBB BX,(3427H(Subtract word at displacement
3427H in DS and contents
of CF from DX

SUB PRICES) BXI.04H Subtract 04 from byte at effective
address PRICESIBXI if PRICES declared with DB. Sub-
tract 04 from word at effective address PRICES)BXJ If
PRICES decarcz '!'. DW.

SBB CX,TABLEIBXI S.ibtract word from effective ad-
dress TABLE[BXI and status of CF from CX.

SBB TABLE)BX],CX Subtract CX and status of CF from
word In memory at effective address TABLEIBXI.

EXAMPLES)NUMERICAL):

Example subtracting unsigned numbers
CL = 10011100 = 156 decimal

:BH 00110111 = 55 decimal
SUB CL, BH : Result: CF,AF.SF.ZF = 0, OF.PF = 1

CL = 01100101 = lOt decimal

First example subtracting signed numbers
CL = 00101110	 + 46 decimal
BH = 01001010	 + 74 decimal

SUB CL. BH : Results: AF,ZF	 0. PF
CL	 11100100 = —28 decimal
CF = I. borrow required
SF = 1, result negative
OF = 0. magnItude of result fits in 7 bIts

1 54	 CHAPTER SIX

Second example subtracting
signed numbers
CL 10100001 - 95 decimal

:BH=01001100 +76decimal
SUB CL. BH Results: CF.ZF = 0. AF.PF 1

CL 01010101 = + 85 decimal
SF 0. result positive!
OF 1, invalId result

The overflow flag being set indicates that the magnitude
of the expected result, —171 decimal, is too large to fit
in the 7 bits used for the magnitude in an 8-bit signed
number. If the Interrupt on Overflow Instruction, INTO.
has been executed previously, this error will cause the
8086 to perform a software Interrupt procedure. Part of
this procedure is a user-written subroutine to handle
the error.

NOTE: The SBB instruction allows you to sub-
tract two multibyte numbers because any borrow
produced by subtracting less significant bytes is
Included in the result when the SBB instruction
executes. Although the preceding examples were
for 8-bit numbers to save space, the principles are
the same for 16-bit numbers. For 16-bit signed
numbrs, however, SF isa copy of bit 15. and the
least significant 15 bits of the number are used to
represent the magnitude. Also. PF and AF function
only for the lower 8 bits.

SCAS/SCASB/SCASW—Scan a String Byte
or a String Word

SCAS compares a byte in AL or a word in AX with a byte
or word pointed to by DI in ES. Therefore, the string to
be scanned must be in the extra segment, and DI must
contain the offset of the byte or the word to be compared.
If the direction flag is cleared (0). then Dl will be
incremented after SCAS. If the direction flag is set (I),
then Dl will be decremented after SCAS. For byte strings.
Dl will be incremented or decremented by 1, and for
word strings. Dl will be incremented or decremented by
2. SCAS affects AF, CF. OF, PF. SF. and ZF. but it does
not change either the operand In AL (AX) or the operand
in the string. This instruction is often used with a
repeat prefix to find the first occurrence of a specified
byte or word in a string.

EXAMPLE:

Scan a text string of 80 characters
for a carriage return. ODH.
Put offset of string into DI

MOV DI.OFFSET TEXT_STRING
MOV AL.ODH	 Byte to be scanned for into AL
MOV CX,80	 CX used as element counter
CLD	 Clear DF so Dl auioincrements
REPNE SCAS TEXT_STRING

Compare byte in string with
byte in AL

NOTE: Scanning is repeated as long as the bytes
are not equal and the end of the string has not
been reached. If a carriage return ODH is found.
ZF = 1. and Dl will point at the next byte after the
carriage return In the string. If a carriage return
is not found, then CX = 0 and ZF 0. The
assembler uses the name of the string to determine
whether the string is of type byte or type word.
Instead of using te name, you can tell the assem-
bler the type of string directly by using the mne-
monic SCASB for a byte string and SCASW for a
word string.

SHL-See Heading SAL

SHR-.---Shift Operand Bits Right, Put Zero
in MSB(s)—SIIR Destination.Coun(

This instruction shifts each bit in the specified destina-
tion some number of bit positions to the right. As a bit
is shifted right out of the MSB position, a Ols pufin its
place. The bit shifted Out of the LSB position goes to
CF. In the case of a multiple-bit shift. CF will contain
the bit most recently shifted in from the LSB. Bits
shifted into CF previously \wili be lost. See the following
diagram.

O—SMSB	 >LSB—i'CF

The destination operand can be a byte or a word In a
register or in a memory location specified by any one of
the24 addressing modes shown in Figure 3-8.

If the desired number of shifts is one, this can be
specified by putting a 1 in the count position of the
instruction. For shifts of more than one bit position.
the desired number of shifts is loaded Into the CL
register. and CL is put in the count position of the
instruction.	 1

NOTE: The 80186. 80286, 80386. etc.. allow you
to specify a shift of up to 32 bit positions with
either an Immediate number in the instruction or
a number in CL.

The flags are affected by SFIR as follows: CF contains
the bit most recently shifted in from the LSB. For a
count of one, OF will be a lii the two MSBs are not both
0's. For multiple-bit shifts, OF is meaningless. SF and
ZF will be updated to show the condition of the destina-
tion. PF will have meaning only for the lower 8 bits of
the destination. AF is undefined.

The I-1R instruction can be used to divide an unsigned
binary numberby a power of 2. Shifting a binary number
one bit position to the right and putting 0 In the MSB
divides the number by 2. ShilLing the number two bit
positions to the right divides ii by 4. Shifting it three
bit positions to the right divides it by 8. etc. When an
odd number Is divided with this method, the result will
be truncated. In other words, dividing 7 by 2 will give a
result of 3.

- 22	 8086 INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECtIVES 	 155

EXAMPLES (SYNTAX):

SHR BP, I Shift word in BP one bit position right,
0 in MSB

MOV CL,031-(Load desired number of shifts into CL
SHR BYFE P1'R EBXI Shift byte In OS at offset

IBXI 3 bits right.
0's in 3 MSBs

Example of StiR used to help unpack
two BCD digits In AL to BH and BL

MOV BL.AL
	

Copy packed BCD to BL
AND BLOF1-I
	

Mask out upper nibble. Low BCD
digit now in BL

MOV CL.04H
	

Load count for shift In CL
StiR ALCL
	

Shift AL four bit poaitlorls right and
put 0's in upper 4 bits

MOV B!-1,AL
	

Copy upper BCD nibble to BH

EXAMPLES (NUMERICAL):

:SI	 10010011 1010110l,CF = 0
StiR SI,!	 Result: SI = 01001001 11010110

CF = 1, OF 1. PF = ?, SF = 0, ZF = 0

STC—Set the Carry Flag to a 1

STC does not affect any other flags.

STO—Set the Direction Flag to a 1

STD is used to set the direction flag to a 1 so that SI
and/or DI will automatically be clecremented to point
to the next string element when one of the string
instructions executes, tithe direction flag is set. SI and'
or DI will be decremented by I for byte strings, and by
2 for word strings. STD affects no other flags. Please
refer to Chapter 5 and the discussIon of the REP prefix
in this chapter forexamples of the use of this instruction,

STI—Set Interrupt Flag (IF)

Setting the interrupt flag to a 1 enables the INTR
interrupt input of the 8086, The instruction will not
take effect until after the next instruction afte STI.
When the INTR input is enabled, an interrupt signal on
this Input will then cause the 8086 to interrupt program
execution, push the return address and flags on the
stack, and execute an interrupt service procedure. An
IRET instruction at the end of the interrupt Service
procedure will restore the flags which were pushed Onto
the stack, and return xcciition to the interrupted
program. STI does not affect any other flags.

Please refer to Chapter 8 for a thorough discussion of
interrupts.

STOS/STOSB/STOSW__Store Byte
or Word in String

The STOS instruction copies a byte from AL or a word
from AX to a memory location in the extra. segment

pointed to by Dl. In effect, It replaces a string element
with a byte from AL or a word from AX. After the copy,
Dl is automatically incremented or decrernented to point
to the next string element in memory. lithe direction
flag (OF) is cleared, then Dl will automatically be Incre-
mented by I for a byte string or incremented by 2 for a
word string. If the direction flag is set. Dl wiU be
automatically decremented by I for a byte string or
decremented by 2 for a word string. STOS does not
affect any flags.

EXAMPLES:

Point DI at start of destination string
MOV DI,OFFSET TARGET_STRING
STOS TARGET_STRING

Assembler uses string name to determine
whether string is of type byte or type word. If
byte string, then string byte replaced with
contents of AL. If word string, then string word
replaced with contents of AX
Point Dl at Start of destination string.

MOV DI.OFFSET TARGET_STRING
SlOSH

'8" added to STOS mnemonic directly tells
assembler to replace byte in string with byte
from AL. STOSW would tell assembler directly to
replace a word in the string with a word from AX..

SUB—See Heading SBB

TEST—AND Operands to Update Flags-_TEST
Destination,Source

This instruction ANDs the contents of a source byte or
word with the contents olthe specified destination word.
Flags are updated, but neither operand is changed. The
TEST instruction is often used to Set flags before a
Conditional Jump instruction.

The source operand can be an immediate number.
the contents of a register, or the contents of a memory
location specified by one of the 24 addressing modes
shown in Figure 3-8. The destination operand can be in
a register or in a memory location. The Source and the
destination cannot both be memory locations in an
instruction. CF and OF are both 0's after TEST. PF. SF.
and ZF will be updated to show the results of the
ANDing. PF has meaning only for the lower 8 bits of the
destination. AF will be undefined.

EXAMPLES (SYNTAX):

TEST AL.B1-(AND 8)-I with AL. no result stored.
Update PF. SF. ZF

TEST CX.000IH : AND CX with immediate number
00011-I. no result stored.
Update PF. SF. ZF

TEST BP.IBXIDI) : AND word at offset IBXIDII in
OS with word in HP. no result
stored. Update PF. SF. and ZF

156	 CHAPTER SIX

Example of a polling sequence
using TEST

AGAIN; IN AL.2AH ; Read port with strobe
connected to LSB

TEST AL.OIH ; AXE) immediate 01Ff with AL
to test if LSB of AL is 1 or 0
ZF = 1 1fLSB of result isO
No result stored

JZ AGAIN	 ; Read port again if LSB 0

EXAMPLES (NUMERICAL):

;AL = 01010001
TEST AL,80H ; AND immediate 80H with AL to teat

;if MSB of AL is I orO
ZF 1 if MSB of AL = 0.
AL = 01010001 (unchanged)
PF 0, SF 0,
ZF I because AND1ng produced 00

WAIT—Wait for Test Signal or Interrupt Signal

When this Instruction executes, the 8086 enters an idle
condition in which it is doing no processing. The 8086
will stay in this idle state.until the 8086 TEST input
pin is made low or until an interrupt signal is received
on the INTR or the NMI interrupt input pins. if a valid
interrupt occurs white the 8086 is in this idle state, the
8086 will return to the Idle State after the 4nterrupt
service procedure executes. It returns to the idle state
because the address of the WAIT instruction is the
address pushed on the stack when the 8086 responds
to the interrupt request. WAIT affects no flags. The
WAIT instruction is used to synchronize the 8086 with
external hardware such as the 8087 math coprocessor.
In Chapter 11 we describe how this works.

XCHG—XCHG Oestination,Source

The XCHG instruction exchanges the contents of a
register with the contents of another register or the
contents of a register with the contents of a memory
iocation(s(. The XCHG cannot directly exchange the
contents of two memory locations. A memory location
can be specified as the source or as the destination by
any of the 24 addressing modes summarized in Figure
3-8. The source and destination must both be words, or
they must both be bytes. The segment registers cannot
be used in this instruction. No flags are affected by this
instruction.

EXAMPLES:

XCHG AX.DX ; Exchange word In AX with word in DX

XCHG BL.CH : Exchange byte in BL with byte in CII

XCHG AL.PRICES 113X1 Exchange byte in AL with
byte in memory at
EA = PRICES (BX! in DS

XLAT/XLATB—Translate a Byte in AL

The XLATB instruction is used to translate a byte from
one code to another code. The instruction replaces a
byte in the AL register with a byte pointed to by BX in
a lookup table in memory. Before the XLATB Instruction
can be executed, the lookup table containing the values
for the new code must be put in memory, and the offset
of the starting address of the lookup table must be
loaded in BX. The code byte to be translated is put in
AL. To point to the desired byte in the lookup table, the
XLATB instruction adds the byte in AL to the offset of
the start of the table in BX. It then copies the byte from
the address pointed to by (BX + AL) back into AL.
XLATB clnges no flags. The section "Converting One
Keyboard Code to Another" in Chapter 9 should clarify
the use of the XLATB instruction.

EXAMPLE: -

808 routine to Convert ASCII code
byte to EBCDIC equivalent.
ASCII code byte is in AL at start.
EBCDIC code in AL at end

MOV BX,OFFSET EBCDIC_TABLE
Point BX at start of EBCDIC
table in DS

XLATB Replace ASCII in AL with
EBCDIC from table

The %LATB instruction can be used to convert any code
of 8 bits or less to any other ccde of 8 bits or less.

XOR—Exdusive OR Corresponding Bits of Two
Operands—XOR Destination,Source

This instruction Exclusive-ORs each bit in a source byte
or word with the same number bit in a destination byte
orword. The result replaces the Contents of the specified
destination. The contents of the specified source will
not be changed. The result for each bit position will
follow the truth table for a two-input Exclusive OR gate.
In other words, a bit in the destination will be set to a
I if that bit in the source and that bit in the original
destination were not the same. A bit Exclusive-ORed
with a 1 will be inverted. A bit Exclusive-ORed with a 0
will not be changed. Because of this, you can use the
XOR instruction td selectively Invert or not invert bits
In an operand.

The source operand can be an immediate number.
the contents of a register, or the contents of a memory
location specified by any one of the addressing modes
shown in Figure 3-8. The destination can b a register
or a memory location. The source and destination cannot
both be memory locations in the same instruction. CF
and OF are both 0 after XOR. PP. SF'. and ZF are
updated. PP has meaning only for an 8-bit operand. AF Is
undefined after XOR.

EXAMPLES (SYNTAX):

XOR CL.B11 Byte in BH Exclusive-ORed with byte
in CL. Result in CL BH not changed

8086 INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECTIVES	 157

XOR BP,D1 Word In Dl Exciusive-ORed with word
in BP. Result in BP. DI not changed

XOR WORD PTR IBXIOOFFH
Exclusive-OR immediate number OOFFH with
word at offset IBXI in data segment. Result1r
memory location IBXI

EXAMPLE (NUMER1CALI:

BX = 0011110! 01101001
CX = 00000000 11111111

XOR BX.CX Result: BX = 00111101 10010110
Note bits in lower byte are inverted
CF,OF.SF.ZF 0. PF = 1. AF =

ASSEMBLER DIRECTIVES

The words defined in this section are directions to the
assembler, not Instructions for the 8086. The assembler
directives described here are those for the intel 8086
macro assembler (ASMS6). the Borland Turbo Assembler
(TASM). and the IBM macro assembler (MASM). If you
are using some other assembler, consult the manual for
it to find the corresponding directives.

ASSUME

The ASSUME directive is used to tell the assembler the
name of the logical segment It should use for a specified
segment. The statement ASSUME CS:CODE. for exam-
ple. tells the assembler that the instructions for a
program are in a logical segment named CODE. The
statement ASSUME DS:DATA tells the assembler that
for any program instruction which refers to the data
segment. it should use the logical segment called DATA.
If. for example, the assembler reads the statement MOV
AX.IBXI after it reads this ASSUME, it will know that
the memory location referred to by [BXI is in the logical
segment DATA. You must tell the assembler what to
assume fr any segment you use in a program. If you
use a stack in your program. you must tell the assembler
the name of the logical segment you have set up as a
stack with a statement such as ASSUME SS:STACK_.
HERE. For a program with string Instructions which
use Dl, the assembler must be told what to assume for
tht extra segment with a statement such as ASSUME
ES STRING_DESTINATION. For further discussion of
the ASSUME directive, refer to the appropriate section
of Chapter 3.

DB—Define Byte

The DB directive is used to declare a byte-type variable.
or to Set aside one or more storage locations of type byte
in memory. The statement CURRENT_TEMPERATURE
DR 42H. for example, tells the assembler to reserve I
byte of memory for a variable named CURRENT_TEM-
PERATURE and to put the value 42H in that memory
location when the program i loaded into RAM to be

i-un. Refer to Chapter 3 for further discussion of the DR
directive and to Chapter 4 for a discussion of how you
can access variables named with a DR in your programs.
Here are a few more examples of DR statements.

PRICES DB 49H,98H.29H : Declare array of 3 bytes
named PRICES and initialize 3 bytes as shown.

NAME_HERE OB THOMAS': Declare array of 6 bytes
and initialize with ASCII codes for letters in THOMAS.

TEMPERATURE_STORAGE DB 100 DUPI?) : Set aside
100 bytes of storage in memory and give it the name
TEMPERATURE_STORAGE. but leave the 100 bytes
uninitialized. Program instructions will load values into
these locations.

PRESSURE_STORAGE DB 20H DUPIO) : Set aside 20H
bytes of storage in memory, give it the name PRES-
SURE_STORAGE, and put 0 in all 20H locations.

00—Define Doubleword

The DD directive is used to declare a variable of type
doubleword or to reserve memory locations which
can be accessed as type doubleword. The statement AR-
RAY_POINTER DD 2562926lH. for example, will define
a doubleword named ARRAY_POINTER and initialize
the doubleword with the specified value when the pro-
gram is loaded Into memory to be run. The low word.
926lH. will he put in memory at a lower address than
the high word. A declaration of this type Is often used
with the LES or LOS instruction. The instruction LES
DI.ARRAY_POINTER. for example, will copy the low
word of this doubleword. 926lH. into the DI register
and the high word of the doubleword, 2562H, into the
extra segment register.

DQ.—Define Quadword

This directive Is used to tell the assembler to declare a
variable 4 words in length or to reserve 4 words of
storage in memory. The statement BIG_NUMBER DQ
243598740192A92BH. for example. will declare a vari-
able named BIG_NUMBER and initialize the 4 words set
aside with the specified number when the program is
loaded Into memory to be run. The statement STORAGE
DQ 100 DUP(0) reserves 100 quadwords of storage and
initializes them all to 0 when the program is loaded Into
memory to be run.

01—Define Ten Bytes

DT is used to tell the assembler to define a variable
which Is 10 bytes In length or to reserve 10 bytes of
storage In memory. The statement PACKED_BCD
DT I 1223344556677889900 will declare an array
named PACKED_BCD which is 10 bytes in length.
It will initialize the 10 bytes with the values
11223344556677889900 when the program is loaded
Into memory to be run. This directive Is often used when

158	 CHAPTER SIX

declaring data arrays for the 8087 math coprocessor.
discussed in Chapter 11. The statement RESULTS DT
20H DUPtO) will declare an array of 20H blocks of 10
bytes each and initialize all 320 bytes to 00 when the
program is loaded into memory to be run.

OW—Define Word
The DW directive is used to tell the assembler to define
a variable of type word or to reserve storage locations of
type word in memory. The statement MULTIPLIER DW
437AH. for example, declares a variable of type word
named MULTIPLIER. The statement also tells the assem-
bler that the variable MULTIPLIER should be initialized
with the value 437A}I when the program is loaded into
memory to be run. Refer to Chapter 3 for further
discussion of the DW directive and how you can access
variables named with a DW in your programs. Here are
a few more examples of DW statements.

THREE_LITFLE._WORDS DW 1234H.3456H,5678H
;Declare array of 3 words and initialize with specified
values.

STORAGE DW 100 DUP(0) Reserve an array of 100
words of memory and initialize all 100 words with 0000.
Array Is named STORAGE.

STORAGE DW 100 DUP(?) Reserve 100 words of storage
in memory and give it the name STORAGE, but leave
the words uninitialized.

END—End Program

The END directive is put after the last statement of a
program to tell the assembler that this is the end of
the program module. The assembler will ignore any
statements after an END directive, so you should make
sure to use only one END directive at the very end of
your program module. A carriage return is required after
the END directive.

ENDP—End Procedure

This directive is used along with the name of the
procedure to indicate the end of a procedure to the
assembler. This directive, together with the procedure
directive. PROC. is used to "bracket" a procedure. Here's
an example.

SQUARE_ROOT PROC Start of procedure
Procedure instruction
statements

SQUARE_ROOT ENDP End of procedure

Chapter 5 shows more examples and describes how
procedures are written and called.

ENDS—End Segment

This directive is used with the name of a segment to
indicate the end of that logical segment. ENDS is used

with the SEGMENT directive to "bracket" a logical
segment containing instructions or data. Here's an
example.

CODE SEGMENT Start of logical segment
containing code
Instruction statements

CODE ENDS	 End of segment named
CODE

EQU—Equate

EQU is used to give a name to some value 'or symbol.
Each time the assembler finds the given name in the
program, it will replace the name with the value or
symbol you equated with that name. Suppose, for exam-
ple. you write the statement CORRECTION_FACTOR
EQU 03H at the start of your program. and later in
the program you write the instruction statement ADD
AL,CORRECTION_FACTOR. When it codes this instruc-
tion statement, the assembler will code it as if you had
written the instrucUon ADD AL.03H The advantage of
using EQU in this nianner is that if CORRECTION_FAC-
TOR is used 27 times in a program. and you want to
change the value, all you have to do is change the EQU
statement and reassemble the program. The assembler
will automatically put in the new value each time it finds
the name CORRECTION_FACTOR, If you had used 03H
instead of the EQU approach. then you would have had
to try to find all 27 instructIons and change them
yourself. Here are some more examples.

CONTROL_WORD EQU 11001001 Replacement
MOV AL,CONTROL_WORD	 assignment

DECIMAL...ADJUST EQU DAA Create clearer
mnemonic for DAA

ADD AL,BL	 Add BCD numbers
DECIMAL_ADJUST Keep result in BCD format

STRING_START EQU IEXI Give name to IBXI

EVEN—Align on Even Memory Address

As the assembler assembles a section of data declaratIons
or instruction statements, it uses a location counter to
keep track of how many bytes it is from the start of a
segment at any time. The EVEN directive tells the
assembler to incremert the location counter to the next
even address if ills not already at an even address, The
8086 can read a word from memory in one bus cycle If
the word is at an even address, lithe word starts at an
odd address, the 8086 must do two bus cycles to get the
2 bytes of the word. Therefore, a series of words can be
read much more quickly if they are at even addresses.
When EVEN is used in a data segment. the location
counter will simply be incremented to the next even
address If necessary. When EVEN is used In a code
segment. the location counter will be incremented to
the next even address if necessary. A NOP instruction
will be inserted In the location Incremented over. Here's
an example which shows why you might want 10 use
EVEN in a data segment.

8086 INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECTIVES	 159

DATA_.HERE SEGMENT
Locatloif counter will point
to 0009 after assembler
reads next statement

SALES_AVERAGES DB 9 DUPI?)
declare array of 9 bytes

EVEN	 Increment location
Counter to 000AI-I

INVENTORY_RECORDS DW 100 DUP(0)
Array of 100 words starting
on even address for
quicker read

DATA_HERE ENDS

EXTRN

The EXTRN directive is used to tell the assembler that
the names or labels following the directive are in some
other assembly module. For example. if you want to call
a procedure which is in a program module assembled
at a different time from that which contains the CALL
instruction, you must tell the assembler that the proce-
dure is external. The assembler wiU then put information
In the object code file so that the linker can connect the
two modules together. For a reference to an external
named variable, you must specify the type of the variable,
as in the statement EXTRN DIVISOR:WORD. Constants
defined with an EQU in another module are identified
as type ABS in an EXTRN statement. For a reference to
a label, you must specify whether the label is near (in a
code segment with the same name) or far (in a code
segment with a different name). The statement EXTRN
SMART_DIVIDE:FAR tells the assembler that SMART_
DIVIDE isa label of type far In another assembly module.
Names or labels referred to as external in one module
must be declared public with the PUBLIC directive in
the module in which they are defined.

EXTRN statements should usually be bracketed with
SEGMENT_ENDS directives which identify the segment
in which the external name or label will be found. Here's
an example of how to do this.

PROCEDURES_HERE SEGMENT
EXTRN SMART_DIVIDE:FAR : Found in segment

PROCEDURES_HERE
PROCEDURES_HERE ENDS

Refer to Chapter 5 for a thorough discussion of the
use of the EXTEN and PUBLIC directives.

GLOBAL—Declare Symbols
as PUBLIC or EXTRN

The GLOBAL directive can be used in place of a PUBLIC
directive or in place of an EXTRN directive. For a name
or symbol defined in the current assembly module, the
GLOBAL directive Is used to make the symbol available
to other modules. The statement GLOBAL DIVISOR, for
example, makes the variable DIVISOR public so that it
can be accessed from other assembly modules.

The statement GLOBAL DIVISOR:WORD tells the as-

sembler that DMSOR is a variable of type word which
is in another assembly module or EXTRN. 	 -

GROUP—Group-Related 5egments

The GROUP directive is used to tell the assembler to
group the logical segments named after the directive
into one logical group segment. This allows the contents
of all the segments to be accessed from the same group
segment base. The assembler sends a message to the
linker and/or locator telling It to link the segments so
that the segments are physically in the same 64'Kbyte
segment. An example of the GROUP directive would be
SMALL_SYSTEM GROUP CODE.DATA,STACK_SEG.
An appropriate ASSUME statement to follow this would
be ASSUME CS:SMALL_SYSTEM, DS:SMALL_SYS-
TEM. SS SMALL_SYSTEM.

INCLUDE—Include Source Code from File

This directive is used to tell the assembler to insert a
block of source code from the named file into the current
source module. This shortens the source code. An
alternative is to use the editor block commands to copy
the tile into the current source module.

LABEL

As the assembler assembles a section of data declarations
or instruction statements, it uses a location counter to
keep track of how many bytes it Is from the start of a
segment at any time. The LABEL directive Is used to
give a name to the current value in the location counter.
The LABEL directive must be followed by a term which
specifies the type you want associated with that name.
lithe label is going to be used as the destination for a
jump or a call, then the label must be specified as type
near or type far. If the label is going to be used to
reference a data item, then the label must be specified
as type byte, type word, or type doubleword. Here's how
we use the LABEL directive for a jump address.

ENTRY_POINT LABEL FAR Can jump to here from
another segment

NEXT: MOV AL.BL	 Cannot do a far jump
directly to a label
with a colon

Here's how we use the LABEL directive for a data
reference.

STACK_SEG SEGMENT STACK
DW 100 DUP(0)	 Set aside 100 words

for stack
STACK_TOP LABEL WORD : Give name to next

location after last
STACK_SEG ENDS	 word in stack

To initialize stack pointer, then. MOV SP.OFFSET
STACK_TOP.

160	 CI-iAPTER SIX'

LENGTH—Not Implemented in IBM MASM

LENGTH is an operator which tells the assembler to
determine the number of elements in some named data
item, such as a string or an array When the assembler
reads the statement MOV CX.LENGTH STRING!, for
example, it will determine the number of elements in
STRING! and code this number in as part of the
Instruction. When the instruction executes, then, the
length of the string will be loaded into CX. If the string
was declared as a string of bytes, LENGTH will produce
the number of bytes in the string. If the string was
declared as a word string. LENGTH will produce the
number of words in the string.

NAME

The NAME directive Is used to give a specific name to
each assembly module when programs consisting of
several modules are written. The statement NAME
PC_BOARD, for example, might be used to name an
assembly module which contains the Instructions for
controlling a printed-circuit-board-making machine.

OFFSFT

OFFSET is an operator which tells the assembler to
determine the offset or displacement of a named data
item (variable) or procedure from the start of the segment
which contains It. This operator is Usually used to load
the offset of a variable into a register so that the variable
can be accessed with one of the indexed addressing
modes. When the assembler reads the statement MOV
BX.OFFSET PRICES, for example, it will determine the
offset of the variable PRICES from th€ start of the
segment in which PRICES is defined and code this
displacement in as part of the instruction. When the
instruction executes, this computed displacement will
be loaded into fiX. An instruction such as ADD AL.(BXI
can then be used to add a va'ue from PRICES to AL.

ORG—Originate

As the assembler assembles a section of data declarations
or instruction statements, it uses a location counter to
keep track of how many bytes It is from the start of a
segment at any time. The location counter is automati-
cally set to 0000 when the assembler starts reading a
segment. The ORG directive allows you to set the location
counter to a desired value at any point in e program.
The statement ORG 2000H tells the assembler to set the
location counter to 2000H, for example.

A "S' is often used to symbolically represent the
current value of the location counter. The S actually
represents the next available byte location where the
assembler can put a data or code byte. The S is often
used In ORG statements to tell the assembicr to make
some change in the location counter relative to its
Current value. The statement ORG S i- 100 tells the
assembler to increment the value of the location counter
by 100 from its current value. A statement such as this

might be used in a data segment to leave 100 bytes of
space for future use.

PROC—Procedure

The PROC directive is used to identify the start of a
procedure. The PROC directive follows a name you give
the procedure. After the PROC directive, the term near
or the term jar is used to specify the type of the
procedure. The statement SMART_DIVIDE PROC FAR,
for example, identifies the start of a procedure named
SMART_DMDE and tells the assembler that the proce-
dure is far (in a segment with a different name from
the one that contains the instruction which calls the
procedure). The PROC directive is used with the ENDP
directive to "bracket" a procedure. Refer to the ENDP
discussion for an example of this. Also refer to Chapter
5 for a thorough discussion of how procedures are
written and called.

PTR—Pointer

The PTR operator is used to assign a specific type to a
variable or to a label. It is necessaly to do this In any
instruction where the type of the operand is not cl.ar.
When the assembler reads the Instruction INC (BX). for
example, It will not know whether to Increment the byte
pointed to by fiX or to increment the word pointed to
by RX. We use the PTR operator to clarify how we want
the assembler to code the instruction. The statement
INC BYTE PTR {B(I tells the assembler that we want to
Increment the byte pointed to by BX, The statement INC
WORD PTR IBXJ tells the assembler that we want to
Increment the word pointed to by BX. The PTR operator
assigns the type specified before PTR to the variable
specified after PTR.

The PTR operator can be used to override the declared
type of a variable. Suppose, for example, that we have
declared an array of words with the statements WORDS
DW 437A1-1, 08972H, 7C4 iH. Normally we would access
the elements in this array as words. However. if we want
to access a byte in the array, we can do it with an
instruction suh as MOV AL. BYTE PTR WORDS.

We also use the ErR operator to clarify our intentions
when we use indirect Jump instructions. The statement
JMP IBXI. for example, does not tell the assembler
whether to code the instruction for a near jump or for
a far jump. If we want to do a near jump. we write the
instruction as JMP WORD VFR IBXI. If we want to do a
far jump, we write the instruction as JMP DWORD PTR
IBXJ. Please refer to Chapter 3 for further discussion of

'the 8086 jump instructions.

Public

Large programs are usuall y written as several separate
modules, Each module is individuall y assembled, tested,
and debugged. When all the Wiodules are working cor-
rectly. their object code files arc linked together to form
the complete program. In order for the modules to link
together correctl y , any variable name or label referred to
in other modules must be declared public in the module

8118€ INSTRUCTION DESCRIPTIONS AND ASSEMBLER DIRECTIVES 	 161

in which it Is defined. The PUBLIC directive is used to
tell the assembler that a speciñed name or label will
be accessed from other modules. An example is the
statement PUBLIC DIVISOR.DIVIDEND, which makes
the two variables DMSOR and DIVIDEND available to
other assembly modules.

If an instruction in a module refers to a variable or
label in another assembly module, the assembler must
be told that it is external with the EXTRN directive.
Refer to the discussion of the EXTRN directive to see
how this is done.

SEGMENT

The SEGMENT directive Is used to indicate the start of
a logical segment. Preceding the SEGMENT directive is
the name you want to give the segment. The Statement
CODE SEGMENT, for example, indicates to the assem-
bler the start of a logical segment called CODE. The
SEGMENT and ENDS directives are used to "bracket" a
logical segment containing code or data. Refer to the
ENDS directive for an example of how this is done.

Additional terms are often added to a SEGMENT
directive Statement to indicate some special way in
which we want the assembler .to treat the segment. The
statement CODE SEGMENT WORD tells the assembler
that we want the contents of this segment located on
the next available word (even) address when segments
are combined and given absolute addresses. Without
this WORD addition, the segment will be located on the
next available paragraph (16-byte) address, which might
waste as much as 15 bytes of memory. The statement

CODE SEGMENT PUBLIC tells the assembler that this
segment may he put together with other segments
named CODE from other assembly modules when the
modules are linked together.

SHORT

The SHORT operator is used to tell the assembler that
only a I-byte displacement is needed to code a Jump
instruction. If the jump destination is after the Jump
instruction in the program. the assembler will automati-
cally reserve 2 bytes for the displacement. Using the
SHORT operator saves 1 byte of memory by telling the
assembler that it needs to reserve only 1 byte for this
particularjump. In order for this to work, the destination
must be in the range of —'128 bytes to + 127 bytes from
the address of the instruction after the jump. The
statement JMP SHORT NEARBY_LABEL is an example
of the use of SHORT.

TYPE

The 'FYPE operator tells the assembler to determine the
type of a specified variable. The assembler actually
determines the number of bytes in the type of the
variable. For a byte-type variable, the assembler will give
a value of 1. For a word-type variable, the assembler will
give a value of 2. and for a doubleword-type variable. it
will give a value of 4. The TYPE operator can be used in
an instruction such as ADD BX,TYPE WORI1.ARRAY.
where we want to increment BX to point to the next
word in an array of words.

'162	 CHAPTER SiX

8086 System Connections,
Timing, and Troubleshooting

As we showed you in Chapter 2, a microcomputer
consists of a CPU. memory, and ports. These parts are
connected together by thiee major buses: the address
bus, the control bus, and the data bus. In Chapters 3
through 6, however, we made little mention of the
hardwate of a microcomputer because we were mostly
concerned in these chapters with how a microcomputer
is programmed. In this chapter we come back to take a
closer look at microcomputer hardware.

OBJECTIVES

At the conclusion of this chapter. you should be able to:

I. Draw a diagram showing how RAMs, ROMs, and
ports are added to an 8086 Cpu to make a simple
microcomputer.

2. Describe how addresses sent Out on the 8086 data
bus are demultiplexed.

3. Describe the 2lgnal sequence on the buses as a
simple 8086-based microcomputer fetches and exe-
cutes an Instruction.

4. Describe how a logic analyzer is connected to micro-
computer signal lines and how it Is used to make
state and timing measurements.

5. Describe how address decoding circuitry gives a
specific address to each device in a system and
makes sure that only one device is enabled at a time.

6. Calculate the access time required for a memory
device or port to work correctly in an 8086 microcom-
puter system.

7. List a series of steps you might take to troubleshoot
a malfunctioning microcomputer system that once
worked.

ASIC 8086 MICROCOMPUTER SYSTEM

Introduction

In previous chapters we worked with what is often called
the programmer's model of the 8086. This model shows
features such as internal registers. number of address
lines, number of data lnes. and port addresses, which

you need to write programs. Now we will look at the bus
signals. timing, and circuit connections of an 8086 and
an 8088. In a later chapter we will show the hardware
connections for the 80286 and 80386 microprocessorS.

System Overview

Figure 7-1 a shows a block diagram of a simple 8086-
based microcomputer. This diagram is a closer look at
the generalized microcomputer in Figure 2-5. First, find
the 8086 CPU, the ROM; and the RAM in Figure 7-la.
Next, look for the ports, represented by the block labeled
MCS .80 PERIPHERAL. As we discuss in detail later.
there .is a wide variety of port devices available. Some
examples are parallel port devices such as the 8255A.
serial port devices. special port devices which interface
with CRTs. port devices which interface with keyboards.
and port devices which Interface with floppy disks.

Next, find the control bus, address bus, and data bus
in Figure 7-la. The basic control bus consists of the
signals labeled M/lO, PD, and WR at the top of the figure.
If the 8086 is doing a read from memory or from a port.
the RD signal will be asserted, If the 8086 is doing a
write to memory or to a port, the WR signal will be
asserted. DurinLa read from memory or a write to
memory, the MflO signal will be high, and during port
operations the M/lO signal will be low. As we show you
in detail later, the RD. WR, and M/1O signals are used
to enable addressed devices.

The address bus and the data bus are shown separately
on the right side of Figure 7-la. but where they leave
the 8086, the two buses are shown as a single bus
labeled ADDR/DATA. The reason for this is that, in.
order to save pins, the lower 16 bits of addresses are
multiplexed on the data bus. Here's an overview of how
this works.

As a first st.ep in any operation where It accesses
memory or a port. the 8086 sends out the lower 16 bits
of the address on the data bus. External latches such
as the 74LS373 octal devices shown in Figure 7-la are
used to 'grab" this address and hold it during the rest
of the operation. To strobe these latches at the proper
time, the 8086 outputs a signal called Address Latch
Enable or ALE. Once the address is stored on the outputs
of the latches, the 8086 removes the address from the
address/data bus and uses the bus for reading or writing
data.

—23	
163

745373
OCTAL
LATCH

(2 OR 3)
ADDRESS

^ IsssvctocxI I	 w.I._-
I—•lcu(iiwiI

RIASY iiitA
NWT	 I

T
GIlD	 oTiI--,

'w I-----,

	

r— i	 I
I	 I	 ALE

lSOPU	 GNO-

	

GENERATOR	 AOtAD1 AOOR/DATA

	

I	 Al-AlE

	

L__J	 11111

=

I53..,
TRANSCEIVER

(2)

OPTIONAL
FOR INcMAEED
DATA 5(5 DRIVE

cso,	 E 00

2)42 RAM (41

1)	 (2)
XE I IKXI

2716-2PR014(2) I I	 ISCS-lO
I I PERIPHERAL

2KXS J 2KXS

(a)

FIGURI 7-1 (a) Block diagram of a simple 8066-based microcomputer. (See
also ne.d page.)

Another section of Figure 7-Ia to look at briefly Is the
block labeled 8286 Transceiver. This block represents
bidirectional three-state buffers. For a vely small system
these buffers are not needed, but as more devices are
added to a system, they become necessary. Here's why.
Must of the devices—such as ROMs, RAMs, and ports—
connected on microprocessor buses have MOS inputs.
so on a dc basis they don't require much current.
However, each Input or output added to the System data
bus. for example, acts like a capacitor of a few picofarads
connected to ground. In order to change the logic State
on these signal lines from low to high, all this added
capacitance must be charged. To change the logic state
to a low, the capacitance must be discharged. If we
connect more than a few devices on the data bus lines.
the 8086 outputs cannot supply enough current drive
to charge and discharge , the circuit capacitance fast
enough. Therefore, we add external high-current drive
buffers toö The Job.

Buffers used on the data bus must be bidirectional
because the 8086 sends data out on the data bus and
also re*ds data In on the data bus. The Data Transmitl
Recetue stgnal. DT/. from the 8086 sets the direction
In which data will pass through the buffers. When
OuR Is asaerted iigh. the buffers will be set up to trans-
mit data from the 8086 to ROM. RAM, or ports. When
D/R Is asserted low, the buffers will be set up to allow
data toT.come Into the 8086 from ROM, RAM. or ports.

The buffers used on the data bus must have three-
state outputs so the outputs can be floated when the

bus Is being used for other operations. For example, you
certainly don't want data bus buffer outputs enabled
Onto the data bus while the 8086 Is putting out the
lower 16 bIts of an address on these lines. The 8086
asserts the DEN signal to enable the three-state outputs
on data bus buffers at the appropriate time In an
operation.

The final section of Figure 7-la to look at is the 8284A
clock generator in the upper left corner. This device uses
a crystal to produce the stable-frequency clock signal
which steps the 8086 through execution of its iñstruc-
tions In an orderly manner, The 8284A also synchronizes
the RESET ilgnal and the READY signal with the clock
so that these signals are applied to the 8086 at the
proper times. When the RESET input Is asserted, the
8086 goes to address FFFFOH to get Its next Instruction.
The first Instruction of t)e system start-up program Is
usually located at this address. So asserting this signal
is a way to boot, or start, the system. We will discuss
the use of the READY input In the next section.

Now that you have an overview of the basic system
connections For an 8086 microcomputer. let's take a
look at the signal present on the buses as an 8086 reads
data from memory or from a port.

8086 Bus Activities During
a Read Machine Cycle

FIgure 7-lb shows the sIgnal activities on the 8086
microcomputer buses during simple read and write

164	 CHAPTER SEVEN

	

I-	 (4+N.7)-T,

13	13	 TWMT	 1.	 T	 T	 13
F

ALE ___r-___r-

	

MnoJ(XI	 __

A0DR/STA1'US

ADOR/DATA

READY

OuR

DEN

___I..
(b)

FIGURE 7-1 (continued) (b) Basic 8066 system timing. (Intel Corporation)

operations. Don't be overwhelmed by all the lines on this
diagram. Their meanings should become dear to you as
we work through the diagram.

The first line to look at in Figure 7-lb is the clock
waveform . CLK. at the top. This represents the crystal.
controlled clock signal sent to the 8086 from an external
clock generator device such as the 8284 shown in the
top left corner of Figure 7-la. One cycle of this clock is
called a state. For reference purposes, a state is measured
from the (ailing edge of one clock pulse to the (ailing
edge of the next clock pulse. The time intervAl labeled
T in the figure is an example of a state. Different
versions of the 8086 have maximum clock frequencies
of between 5 MHz and 10 MHz, so the minimum time
for one State will be between 100 and 200 es depending
on the part used and the crystal used.

A basic microprocessor operation such as reading a
byte from memory or writing a byte to a port is called a
machine cycle. The times labeled T In Ffgure 7-lb are
examples of machine cycles. As you can see in the figure.
a machine cycle consists of several states.

The time a microprocessor requires to fetch and
execute an entire instruction is referred to as an Inst ruc-

tion cycle. An instruction cycle consists of one or more
machine cycles.

To summarjze this, an instruction cycle is made un
of machine cycles, and a machine cycle is made up of
states. The time (or a State Is determined by the fre-
quency of the clock signal. In this section we discues
the activities that occur on the 8086 mIcrocomputer
buses during a read machine cycle.

The best way to analyze a timing diagram such as the
one in Figure 7-lb is to think of time as a vertical line
moving from left to right across the diagram. With this
technique you can easily see the sequence of activities
on the signal lines as you move your Imaginary time line
across the waveforms.

During T 1 of a read machine cycle the 8086 first
asserts the M/lO signal. It will assert this signal high if
it is going to do a read from memory during this cycle.
and it will assert M/lO low If it Is going to do a read from
a port during this cycle. The timing diagram in Figure
7-lb shows two crossed waveforms for the MilO signal
because the signal may be going low or going high for
a read cycle. The point where the two waveforms cross
indicates the time at which the signal becomes valid for

8086 SYSTEM CONNECTIONS, TIMiNG, AND TROIIBIESHOOTINC 	 165

this machine cycle. Likewise, in the resi of the timing
diagram. crossed lines are used to represent the time
when Information ona line or group of lines is changed.

After asserting M/lO. the 8086 sends out a high on
the Address Latch Enable signal (ALE). This signal Is
connected to the enable input (STBI of the 74S373 octal
latches, as shown In Figure 7-Ia. so these latches will
be enabled when ALE is high. As you can also see
In Figure 7-la, the data Inputs of these latches are
connected to the 8086 ADO—ADI5. Al6—A19. and Bus
High Enable IBHE) lines. After the 8086 asserts ALE
high. it sends Out on these lines the address of the
memory location that it wants toread. Since the latches
are enabled by ALE being high. this address information
passes through the latches to their outputs. The 8086
then makes the ALE output low, which disables the
latches. The address held on the latch Outputs travels
along the address bus to memory and port devices.

Note In the timing diagram in Figure 7-lb how the
activitiy on the ADDRIDATA lines Is represented. The
first point at which the two waveforms cross represents
the time at which the 8086 has put a valid address on
these lines. These two waveforms do not Indicate that
all 16 lines are going high or going low at this point.

After ALE goes low, the address information is held
on the latches, so the 8086 no longer needs to send out
the addresses, Therefore, as shown by a dashed line on
the ADDRIDATA line in Figure 7-lb. the 8086 floats the
ADO—AD 15 lines so that they can be used to input data
from memory or from a port. At about the same time,
the 8086 also removes the BHE and A16—A19 informa-
tion from the upper lines and sends out some status
information on those lines.

The 8086 Is now ready to read data from the addressed
memory location or port, so near the end of state T2
the 8086 asserts its RD signal low. If you trace the
connection of the RD signal in Figure 7-la. you should
see that this signal Is used to enable the addressed
memory device or port device. When enabled, the ad-
dressed device will put a byte or word of data on the
data bus. In other words, assertigtje RD signal low
causes the addressed device to put data on the data
bus. This cause-and-effect relationship is shown on the
uming diagram ingure 7-lb by an arrow going from
the falling edge of RD to the "bus reserved for data in"
section of the ADDR/DATA waveforms. The bubble on
the tail of the arrow Is always put on the signal transition
or- level that causes some action, and the point of the
arrow always indicates the action caused. Arrows of this
sort are only used to show the effect a signai from one
device will have on another device. They are not usually
used to indicate signal cause and effect within a device.

Now, referring to Figure 7-lb again, find the section
of the ADO—AD15 waveform marked off as memory
access time near the bottom of the diagram. This time
represents the time It takes br the memory to output
valid data after it receives an address and an RD signal.
If the access time for a memory device is too long, the
memory will not have valid data on Its outputs soon
enough in the machine cycle for the 8086 to receive Ii
correctly. The 8086 will then treat whatever garbage
happens to be on the data bus as valid data and go on

with the next machine cycie. As long as Murphy's law is
still in force, the garbage read in will probably cause the
entire program to crash. A section later in the chapter
shows you how to calculate whether a particular ROM.
RAM. or port device has a short-enough access time to
work properly In a given 8086 system. For now, however.
we Just need you to understand the concept so we can
show you one way that an 8086 can accommodate a
slow device.

To refresh your memory. look again at the block
diagram in Figure 7-Ia to find an input on the 8086
CPU labeled READY. When this pin is high. the 8086 Is
'ready" and operates normally.. If the READY input is
made low at the right time in a machine cycle, the 8086
will insert one or more WAIT states between T 3 and 1,
in that machine cycle. The read timing diagram in
Figure 7-lb shows an example of this. An external
hardware device is set up to pulse READY low before the
rising edge of the clock in T 2 . After the 8086 finIshes T
of the machine cycle, it enters a WAIT State. During a
WAIT state, the signals on the buses remain the same
as they were at (he start of the WAIT state. The address
of the addressed memory location Is held on the output
of the latches, so it does not change, and as you can see
from the timing diaam in Figure 7-lb. the control bus
signals, MIlO and RD, also do not change during the
WAIT state. T5 r-. The memory or port devIce then has
at least one more clock cycle to get its data output. If
the READY input is made high again during T 3 or during
the WAIT State. as shown in Figure 7-lb. then after one
WAIT state the 8086 will go on with the regular T, of
the machine cycle.

If the 8086 READY input is still low at the end of a
WAIT state, then the 8086 will insert another WAI'I'
state, The 8086 will continue inserting WAIT states until
the READY input is made high again.

To summarize, inserting the WAIT state(s) freezes the
action on the buses. This gives the addressed device one
or more extra clock cycles to put out valid data. As an
example of how this is used, we can use slower (cheaper)
ROM In a system by adding a simple circuit which pulses
the READY input low each time the ROM is addressed.
No WAIT states will be Inserted in the read machine
cycle for reading data from faster devices such as the
RAM In the system.

Note in Figure 7-la that a READY Input signal is
usually passed through the 8284A clock generator IC so
that the READY signal actually applied to the 8086 Is
synchronized with the system clock, 	 -

Now let's look back at Figure 7-lb to see how DEN and
DT/R function during a read machine cycle. During Tr
of the machine cycle the 8086 asserts DT/R low to put
the data buffers In the receive mode. Then, after the
8086 finishes using the data bus to send out the lower
16 address bits. ii asserts DEN low to enable the data
bus buffers. The data put on the data bus by an
audressed port or memory will then be able to come in
through the buffers to the 8086 on the data bus.

The activities on the 8086 buses during a read ma-
chine cycle can be summarized as follows. The 808I
asserts MO high If the read Is to be from memory and
asserts MJIO low If the read Is going to be from a port.

166	 CHAPTER SEVEN

At about the same time, the 8086 asserts ALE high to
enable the external address latches. It then sends out
BHE and the desired address on the ADO—A19 lines.
When the 8086 pulls the ALE line low, the address
information is latched on the outputs of the external
latches. After the 8086 is through using the ADO—AD 15
lines for an address. it removes the address from these
lines and puts the lines in the input mode (floats them).
The 8086 then asserts its RD signal low. The RD signal
going low turns on the addressed memory or port, which
then outputs the desired data on the data bus. To
complete the cycle the 8086 brings the RD line high
again. This causes the addressed memory or port to
float its outputs on the data bus. If the 8086 READY
input is made low before or duringT2 of a machine cycle.
the 8086 will insert WAIT states as long as the READY
input is low. When READY is made high. the 8086 wIll
continue with T, of the machine cycle. WAIT States can
be used to give slow devices additional time to put out
valid data, If a system is large enough to need data bus
buffers, then the 8086 DT/R signal connected to these
buffers will set them for input during a read operation
or set them for output during a write operation. The
8086 DEN signal , will enable the buffers at the appro-
priate time in the machine cycle.

8086 Bus Activities During
a Write Machine Cycle

Now that we have analyzed the 8086 bus activities for a
read machine cycle, let's take a look at the timing
diagram for a write machine cycle in the right-hand side
of Figure 7-lb. Most of this diagram should look very
familiar to you because it is very similar to that for a
read cycle.

During T of a write machine cycle the 8086 asserts
MIlO low lithe write is going to be to a port, and It
asserts M/lO high if the write is going to be to memory.
At about ihe same time, the 8086 raises ALE hig
enable the address latches. The 8086 then outputs BHE
and the address that It will be writing to on ADO.-A19.
incidentally, when writing to a port, lines Al6-Al9 will
always be low, because the 8086 only sends out 16-bit
port addresses. After the address has had time to pass
through the latches, the 8086 brings ALE low again to
latch the address on the outputs of the latches. Resides
holding the address, these latches also function as
buffers for the address lines. After the address informa-
tion Is latched, the 8086 removes the address informa-
tion from ADO-AD 15 and outputs the desired data on
the data bus. It then asserts its WR signal low. The WR
signal is used to turn on the memory or port that the
data is to be written t. After the addressed memory or
port has had time to accept the data from the data bus.
the 8086 raises the WR signal line high again and floats
the data bus.

If the memory or port device cannot accept the data
word within a normal machine cycle, external hardware
can be set up to pulse the READY input low each time
that memory or a port device is addressed. lithe READY
input is pulsed low before or during T 2 of the machine
cycle, the 8086 will insert a WAIT state after state T3.

Remember that during WAIT states the signals on the
data bus, address bus, and control bus are held constant.
so the addressed device has one or more extra clock
cycles to accept the data from the data bus. lithe READY
input is made high before the end of the WAIT state, the
8086 will go on with state T, as soon as it finishes the
WAIT state, If the READY input is still low just before
the end of the WAIT state, the 8086 will insert another
WAIT state. It will continue to insert WAIT states until
READY is made high. The point here is that the 8086
can be forced to insert as many WAIT states as are
necessary for the addressed device to accept the data.

lithe system Is large enough to need buffers on the
data bus, then DTIR will be connected to the direction
input on the buffers. During a write cycle, the 8086
asserts DTIR high to put the buffers in the transmit
mode. When the 8086 asserts DEN low to enable the
buffers, data output from the 8086 will pass through
the buffers to the addressed port or memory location.

Work your way across the timing diagrams for the
read and write machine cycles in Figure 7-lb until you.
feel that you understand the sequence of activities that
occurs.

A Closer Look at the 8086

Figure 7-2. p. 168, shows a pin diagram for the 8086.
You don't need to learn the detailed functions of all these
pins. The main reason for showing you this is so that
if you want to look at some of the 8086 sIgnals with a
scope or logic analyzer, you know which pins to connect
to. We also want to make a few comments about some
of the pins to give you a clearer idea of how an 8086-
based microcomputer functions.

NOTE: For reference, part of an 8086-data sheet
showing all the pin descriptions is shown in Appen-
dix A.

First, in Figure 7-2, find on pin 40 and ground on
pins I and 20. Next, find the clock input, labeled CLK.
on pin 19. As we showed you in the preceding sections,
an 8086 requires a clock signal from some external clock
generator to synchronize internal operations in the
processor. Different versions of the 8086 have maximum
clock frequencies ranging from 5 MHz to 10 MHz.

Now look for the address/data bus lines. ADO—ADIS.
Remember from the previous section that the 8086 has
a 20-bit address bus and a 16-bit data bus and that the
lower 16 address lines are multiplexed Out Ofl the data
bus to minimize the number of pins needed. The 8086
sends out a signal called Address Latch Enable, or ALE.
on pin 25 to strobe the external address latches. The
upper 4 bits of the 20-bit address are sent out on
the Lines labeled Al 61S3 through Al 9/S6. The double
mnemonic on these pins shows that address bits A16
through Al9 are seni out on these lines during the first
part of a machine cycle, and status information, which
Identifies the type o operation being done In that cycle,
is sent out on these lines during a later part of the cycle.

Having found the address bus and the data bus, now

8086 SYSTEM CONNECTIONS, TIMING. AND TR0USI.ESHOOTING 	 167

G NO	 40
AD 14	 36 *015
*013
	

35 * 16/53
*012	 37 Al 7/S4
*011	 36 A IS/SI
*010 6	 35 A 19/SI
*09	 34 BHE/S7
ADS 8
	

33 MN/MX
AD, 9	 32 A0
*09 ID	 31 R0/GTO (HOLD)
*05 it CPU	 RO/Orl (HLDA(
A04 12	 29 LOCK (WR)
*03	 13	 26	 (M/I)
*02	 14	 27	 Sl	 (01/RI
Aol	 15	 28	 (DEN)
ADO t6	 25 050	 (ALE)
NM)	 I,
	

24	 051	 (INTA)
INIR	 18	 23 TEST
CLK 19	 22 READY
OND 20	 21 RESET

40 LEAD

FIGURE 7-2 8086 pin diagram. (Intel Corporation)

look for the control bus, gnaJ pins. Pin 32 of the 8086
in Figure 7-2 is labeled RD. This signal will be asserted
low when the 8086 is reading data from memory or from
a port. Pin 29 has the labels WR and LOCK next to it
because it has two functions. The function of this pin
and the functions of the other pins between 24 and 31
depend on the mode in which the 8086 is operating.

The operating mode of the 8086 is determined by the
logic level applied to the MN/MX input, pin 33. If pin 33 is
asserted high, then the 8086 will function in minimum
mode, and pins 24 through 31 will have the functions
shown in parentheses next to the pins in Figure 7-2. In
minimum mode, for example, pin 29 will function as
WR. which will go low any time the 8086 writes to a port
or to a memory location. The RD. WR. and M/lO signals
form the heart of the control bus for a minimum-mode,
8086 system. The 8086 is operated in minimum mode
In systems such as the SOK-86 where it is the only
microprocessor on the system buses.

If the MN/MX pin is asserted low, then the 8086 is in
maximum mode. In this mode, pins 24 through 31 wIll
have the functions described by the mnemonics next to
the pins in gure 7-2 In this mode, the control bus
signals (SO. SI. and S21 are sent Out in encoded form
on pins 26. 27, and 28. An exterçial bus controller device
decodes these signals to produce the control bus signals
required for a system which has two or more micropro-
cessors sharing the same buses. In Chapter Ii we
discuss 8086 maximum-mode operation and show its
use in multiple-microprocessor systems.

Another important pin on the 8086 is pin 21. the
RESET input. If this input is asserted and then released,
the 8086 will, no matter what it was doing. fetch its
next instruction from physical address FFFFOH. At this
address then, you put the first instruction you want

the microcomputer to execute after a reset or when the
power is first turned on.

Finally, notice that the 8086 has two interrupt inputs.
the nonmaskable interrupt (NMI) input on pin 17 and
the Interrupt (INTR) input on pin 18. A signal. can be
applied to one of these inputs to cause the 8086 to
stop executing its current program and go execute an
interrupt procedure which takes care of the condition
that caused the interrupt. You might. for example.
connect a temperature sensor from a steam boiler to an
interrupt input on an 8086. II the boiler gets too hot.
then the temperature sensor will assert the interrupt
input. Ttils will cause the 8086 to stop executing its
current program and go execute an interrupt-service
procedure, which turns oIl' the fuel supply to the boiler.
A return instruction at the end of the interrupt-service
procedure sends execution back to the interrupted pro-
gram. In the next chapter we discuss interrupts further
and show you how to write interrupt-service procedures.

Now we show you how to use a logic analyzer to observe
and make measurements on microprocessor bus signals
such as those we discussed in the preceding section.

USING A LOGIC ANALYZER TO OBSERVE
MICROPROCESSOR BUS SIGNALS

Introduction

It is difficult to observe microprocessor bus signals with
a standard scope because you can only look at two signal
lines at a time. A logic analyzer such as the Tektronix
1230 shown in Figure 7-3 allows you to observe and
make measurements on 16 to 64 signal lines at once.
Tht- least expensive version of the 1230 allows you to
look at up to 16 signals at once, but expansion boards
can be added to increase the number of input signal
lines to 32, 48. or 64. Hewlett-Packard, Gould, and
several other companies make comparable stand-alone
logic analyzers.

Personal computers can be adapted to function as
logic analyzers by installing plug' In units such as the

FIGURE 7-3 Tektronix 1230 logic analyzer. (Courtesy
of Tektronix Inc.)

168	 CHAPTER SEVEN

MicroCase Inc. p. Analyst 2000 or the Bitwise Designs.
Inc. Logic 20.

One method of connecting signal lines to the analyzer
inputs is with a pod and test clips such as those shown
in front of the analyzer in Figure 7-3. Another method
commonly used with microcomputers is a special cable
with a plug which is inserted in the microprocessor
socket on the Circuit board. The microprocessor is
plugged into a socket on top of the plug.

Before we describe how to make measurements with
a logic analyzer, we will review the basic operation of a
logic analyzer.

Review of Logic Analyzer Operation

FIgure 7-4 shows a functional block diagram of a simple
logic analyzer. Since logic analyzers are used to detect
and display Only l's and Os. a comparator is put on
each input. The reference input of the comparator is set
for the logic threshold of he devices In the system you
arc looking at. If you are looking at TTL or CMOS
signals, for example, you set the threshold to 1.4 V. The
comparators then make sure that the signals to the rest
of the analyzer circuitry are clear-cut l's or 0's.

The analyzer takes a "snapshot" of the logic levels on
the data inputs each time it receives a clock pulse.
The samples are stored in an internal RAM. Different
analyzers store between 256 and 1024 samples for each
input channel.

As shown by the block diagram in Figure 7-4, the
analyzer can be clocked by an internally produced signal
or some external signal. II you are using an analyzer to
look at 8086 address and data lines, for example, you
could use ALE as a clock signal. The analyzer will then
take a Sample each time the 8086 puts out an address
and pulses ALE. The samples stored in the analyzer

memory will then represent a sequence of addresses
output by the 8086. As another example, you could clock
the analyzer on the RD signal from an 8086. With this
clock signal the analyzer will take a sample each time
the 8086 does a read operation, so the samples stored
in the analyzer memory will represent the sequence of
data words read in from memory or from ports.

To make precise timing measurements with an ana-
lyzer, you use a clock signal from an internal. clystal-
controlled oscillator, in this case the analyzer will take
a sample each time a pulse from the internal clock
oscillator occurs. If. for example, you choose an internal
clock frequency of 50 MHz, the analyzer will take a
sample every 20 ns. You can then determine the time
between two events by counting the number of samples
and multiplying the number by 20 ns.

If the analyzer is receiving either an internal or an
external clock, it will be continuously taking samples of
the input data and storing these samples in the internal
RAM. A trigger signal tells the analyzer when to stop
taking samples and display the samples stored in the
RAM. As shown by the block diagram in Figure 7-4. you
can use some external signal to trigger the analyzer, or
you can use a word recogntzer in the analyzer to produce
a trigger signal. A word recognizer compares the binaiy
word on the input signal lines with a word you set with
switches Or a keyboard. When the two words match, the
word recognizer sends out a trigger sial.

Since the analyzer is continuously taking samples.
you can set the analyzej for a pretrigger display. a center
trigger display, or a posuslgger display. For an analyzer
that displays 256 samples, pretrigger means that the
display will show the 256 samples that were taken .Just
before the trigger occurred. For center trigger mode. 128
samples taken before the trigger and 128 samples taken
after the trigger' will be displayed. Posttrigger mode

INTERNAL ASYNCHRONOUS CLOCK INPUT

INPUTS
	 EXTERNAL CLOCK I

ADJUSTABLE
THRESHOLD

COMPARATORS

TRIGGER WORD
SELECTION
SWITCHES

CLK

DISPLAY
-	 MEMORY	 SCAN

CIRCUIt

TRIGGER

WORD
COMPARATOR

AND
TRIGGER

CIRCUITRY

EXTERNAL TRIGGER INPUT

CRT
DISPLAY

FIGURE 7-4 Block diagram of simple logic analyzer.

6086 SYSTEM CONNECTIONS, TIMING, AND TROUBLLSHOOTING 	 169

•
9511 F3

-EITh'--FF1'
ITh Fm
0514 FFF4
9515 FTF6
951 F03C
951? rolE
9519 1140
S519 £992
9529 £898
9521 1144
9522 FBA
0523 1148
0524 £944
9525 F99C
0526 1194
952? F94E
0528 rooe
9529 £802
8539 1804

(a)

1022_90009 0999	 ExT-ru------
1023 00009 9000	 EfT FE!

09195 9039 NOV OL.899	 OPC FE! IN!!
I25 95110 14ff Oil! DX.#L	 OPC FiT INTO
1025 99111 8411 NOV DX,IF1Z8	 OPC FE! INTO
1926 09112 FF18	 EXT lET INTO
1927 0711* 8899	 I/O Ill INTO
1928 09114 CFBB NOV11 CX,)!	 OPC FIT II4TR
1959 09126 CIBI NOVI AL.CL	 OPC FE! lIlT!
1030 00118 9124 011DB AL.ISY	 OPC FIT 111111
1931 09114 ID? XL*T	 OPC lET INTO
1031 00118 ED? OUT DX,OL	 OPC FE! INTO
1932 OSIIC CIBO 804(1 4L,CL 	 ONC ITT INTO
JIB? 99119 04)1 804) C1.,184	 OFC FE! III!!
1034 0014* 9159	 NEW 2) iN!!
1935 99129 CE'! ROLl *L,CI.	 OPC Ut INTO
JI3 01118 0159	 I/O 142 InTO
1037 90122 0124 ON)) OL,197 	 OPC FIT INTO
1938 09124 ED? XL*T	 OPC 3'!! INtO
1038 09125 if)? OUT JILOL	 OPC FE.! INTO

Ic)
/

FIGURE 7-5 L6gic analyzer display formats. (a) State
listing showing sequences of addresses output by SDK-
86 after reset. (b) Timing diagram display showing time
between address output by 8086 and data output from
RAM. (C) Disassembly listing showing execution part of
SDK-86 display program.

means that the analyzer will take 256 more samples
after the trigger and display them.

Figure 7-5 shows some of the formats in which a logic
analyzer can display the samples stored in its RAM. The
series of displayed data samples is often called a trace.

The state table list shown in Figure 7-5a is useful for
observing, for example, a sequence of addresses sent
Out or a sequence of data words read in by a microproces-
sor. To determine whether a particular address line is
shorted, you might tell the analyzer to display the table
in binary so you can see the individual is and Os.

31 4s,i 48 nE Cur: 'T'	Ilk

	

513 Cursor	 526 2,1 to Curior = •52SiS	 Fyi

—j=
iai4	 1
IA I
Ic I

1
-_1
ii

itt'?

I
PA1'I

I
Ft
P4111___

I

hur:)	 Cro,-.,	 rII. Set Ref	 NtIS	 qe:S4,

However, a hexadecimal listing such as that in Figure
7-5a makes it easier to recognize if a microcomputer is
putting Out addresses in the right sequence. Some
analyzers, such as the Tektronix 1230. allow you to take
a series of samples from a functioning system, store
these samples in a second memory in the analyzer, and
then compare them with a series of samples taken from
a nonfunctioning system. We have found this feature
quite helpful in troubleshooting malfunctioning instru-
ments which have poor documentation.

The timing diagram format shown in Figure 7-5b is
most useful when making time measurements with an
internal clock. As we mentioned before, you can measure
times by simply couiiog the number of clock pulacs
between two events and ultiplying by the time per
clock pulse. Some analyzers. such as the Tektronix
1230. allow you to determine the time between two
events by placing a cursor on each event and reading
the time between cursors directly on the screen.

The disassembly format shown in Figure 7-5c allows
you to determine if microprocessor Is fetching and
executing a sequence of instructions correctly. To pro-
duce this type of display, the logic analyzer must have
additional hardware and software for the specific micro-
processor that you are working with.

The following are the three major points you have to
think about when you connect a logic analyzer up to do
a trace:

I. The data inputs of the analyzer are connected to the
system signals you want displayed in the trace.

2. The clock signal specified for the analyzer tells It
when to take data samples and store them in its
memory. To produce a trace which shows the se-
quence of States that a system steps through, you
usually use an external clock. When you are using
an external clock, you specify the clock edge which
occurs when valid data is on the data inputs. For
making timing measurements you usually use the
crystal-controlled internal clock.

170	 CHAPTER SEVEN

3. The trigger specified for the analyzer tells it when to
stop taking samples and display the set of samples
stored in its memory. Usually you will use the
internal word recognizer to trigger the analyzer when
a specified word is present on the data inputs.

Now that you have an overview of logic analyzer opera-
tion, here are some specific examples of how you observe
8086 bus signals and timing. Exercises in the lab
manual which goes with this book give still more detailed
examples.

MAKING A TRACE OF A SEQUENCE
OF ADDRESSES

The first step in using a logic analyzer to look at
microcomputer signals is to decide what specific signals
you want to look at and connect the analyzer data inputs
to those signals. If you want to do a trace which shows
the sequence of addresses that the 8036 outputs as it
executes a test program, you connect the data Inputs of
the analyzer pod to the 8086 ADO-AD15 pins.

The next step is to decide what signal to clock the
analyzer on. To make this decision, you look carefully
at the 8086 timing waveforms in Figure 7-lb to find a
signal edge which occurs when valid addresses are on
the ADO-ADI5 lines. One possible signal to use for
clocking the analyzer is the 8086 CL.K signal shown at
the top of the waveforms in Figure 7-lb. This signal has
a falling edge when the address Is valid on ADO-AD 15.
but it also has falling edges when the lines are floating
and when the data from or to memory is on the lines.
In other words, if the analyzer is clocked on this signal,
the trace will show a mixture of data, addresses, and
garbage. which you have to sort out.

A better choice for an analyzer clock signal Is the 8086
ALE signal, because this signal is present only when
addresses are on the ADO-AD15 lines. To use ALE as a
clock signal, connect the External Clock input of the
analyzer to the 8086 ALE pin. To determine which edge
of the ALE signal to clock the analyzer on, look closely
at the 8086 timing waveforms in Figure 7-lb. At the
time when the positive edge of the ALE signal occurs.
the 8086 has not yet output the address, so clocking
the analyzer on this edge will not grab the addresses.
The falling edge of the ALE signal occurs when the
address is solidly settled on the ADO-ADI5 lines. so you
should set the analyzer to clock on the falling edge of
ALE.

The final step is to determine what to trigger the
analyzer on. Since you want to make a trace of a sequence
of addresses, the logical choice here is to choose an
internal trigger and set the internal word recognizer to
produce a trigger when the first program address is
present on the data inputs. For example, if the first
program instruction is in memory at 0010011. you would
set the analyzer to trigger when this address is present.
When you specify the trigger position, set the anal zer
for "begin so that the trace listing starts with the
specified addre&,. The example logic analyzer trace in
Figure 7-5a shows this type of display.

MAKING A TRACE OF A SEQUENC€
OF DATA WORDS

As a second example of using an analyzer to look at
microcomputer signals, suppose that you want to do a
trace which shows the sequence of data wcrds read in
from memory as the 8086 executes a test program. For
this trace you connect the analyzer data inputs to the
8086 ADO-AD 15 pins, because the data comes in on
these lines.

To determine what signal to clock the analyzer on and
which edg, of that signal to specify, you again look
closely at the 8086 timing waveforms in Figure 7-lb.
From these waveforms you should see that the 8086 RI)
signal is asserted during a Memory Read operation, so
this is an appropriate signal to connect to the analyzer's
External Clock input. The ris.ng edge of the RI) signal
occurs when valid data is on the data bus, so set the
analyzer to clock on a rising edge.

Since you want a trace of the data words read in from
memory by the 8086, you need to look at the test
program to determine what to trigger the analyzer on.
For this example, assume the simple test program shown
here Is entered In memory and run. -

00100 EB HEREJMP HERE Endless io which does nothing
00101 FE
00102 90	 NOP	 Just more wont to fetch
0010390	 NOP
00104 04	 ADD AL.55H

Since the 8086 has a 16-bit data bus, it can read in
a word (2 bytes) at a time if the word starts on an even
address. When reading in the code bytes for this program
then, the 8086 will send out address 0010011 and assert
both A0 and BHE. The byte containing EBH will come
into the 8086 on ADO-AD7, and the byte containing
FEH will come into the 8086 on AD8.-ADl5. The first
data word read in from memory then is FEEBH, so this
is the word you set the analyzer to trigger on.

When the trace is completed, it will show the sequence
of words FEEBH. 909011, 'and 045511 over and over. The
only part of this program that the 8086 executes is the
HERE:JMP HERE instruction represented by the codes
EBH and FEH. While the 8086 is decoding the JMP
instruction, however, it fetches the codes for the follow.
ing instructions and stores them in Its queue, ready to
be used. This is analogous to the way a helper sets up
a stack of bricks for a bricklayer, so the bricklayer does
not have to wait for the helper to go to the truck and
get each brick as needed. In this program, however, the
JMP instruction tells the 8086 to go back and fetch the.
JMP instruction again. The words 9090H and 045511
are fetched from memory and stored in the 8086 queue.
but they are never used.

USING A CLOCK QUALIFIER IN LOGIC
ANALYZER MEASUREMENTS

In the preceding example we showed you how to produce
a trace of the data words read in from memory by an
8086. Now suppose that you are- executing a program
which reads ata words from memory and data words

24	 8086 SYSTEM CONNECTIONS, TIMING, AND TROUBLESHOOTiNG 	171

Irom ports. if1u simply clock the analyzer on the rising
edge of the RD stgnalas you did (or the preceding
example, the trace will contain both the data words read
from memory and the data words read from ports. You
can use the MJ1O signal to produce a trace which
Contains only the words read from memory or only the
words read from ports.

Remember from our previous discussions that when
the 8086 writes a word to a memory location or reads a
word from a memory location, it will assert Its M/lO
signal high. When the 8086 wrItes a word to port or
reads a word from a port, it wifi assert the MO signal
low.

To produce a trace of only the data words read from
ports.-you connect the RI) signal to the External Clock
Input of the analyzer and connect the MJlO signal to an
input on the analyzer labeled Clock Qualifier. The
principle here is that if this input Is used, the analyzer
will respond to a clock signal only if a specified level is
present on that input. For this example, you want the
analyzer to take a sample on the rising edge of the RD
if MflO is low. Therefore, you will specify a low as the
active level for the clock qualifier input. Depending on
the analyzer, the active level for the clock qualifier Input
may be set in amenu. by a switch on the pod, or by
connecting the qualifier signal to a specific input on the
data pod.

To produce a trace of only the data words read from
memo you can clock on the rising edge of RD. connect
the MflO signal to the Clock Qualifier input, and specify
a high for the clock qualifier. The point here Is that by
carefully choosing the clock signal and the qualifier
signal, you can usually produce a trace of Just the data
you want.

MEASURING MEMORY ACCESS TIME
WITH A LOGIC ANALYZER

As shown In the 8086 timIng wavefOrms In Figure 7-lb.
one type of memory access time Is the time It takes for
a memory device to produce valid data on its outputs
after an address is applied to its address inputs. With a
little thought you can use a logic analyzer to measure
the actual memory access time in a system.

The first step In this measurement is toenter and run
a test program which reads from the desired memory
device over and over. For this example, we will use the
same program we used in the preceding example. To
make it easy to.refer to. we repeat it here.

00100 ES HERE:JMP HERE Endless mop which dom nothing
00101 FE
00102 90	 NOP	 Just more weeds to fetch
0010090	 NOr'
00104 04	 ADt) AL5SH

The next step Is to think about what signals to connect
to the analyzer data Inputs. To determine the time
betweè, a valid address from the 8086 and valid data
from the memory drvice. you obviously need to look at
the address/data lines. The number that you can trace

display depends on the particular analyzer you are
using. The basic Tektronix 1230 analyzer will sample

and display lB chann.l In the timing mode which you
use for this type of measurement. If you have an analyzer
such as this, you can connect the analyzer data Inputs
to the ADO-ADI5 pins on the 8086. The upper four
address lines. Al6-Al9, do not change during the
execution of this example program. so you dont need
to look at them.

When making timing measurements with a logic
analyzer. you almost always use the crystal-controlled
internal clock to tell the analyzer to take samples so that
you know the exact time between samples. For an SDK-
86 board the memory access time for the RAM that
contains the sample program will be around 100 ns.
To get the best possible resolution for your timIng
measurement, then, you should set the analyzer clock
period for the shortest time possibie on your analyzer.
The shortest period for the Tektronix 1230 with a 16-
channel display is 40 ns per clock, so we will use this
setting.

To choose the trigger word for this measurement, look
again at the timing waveforms in Figure 7-lb. The
address goes out on the data bus and later the data
comes back in. Since the address is the first activity,
you set the word recognizer In the analyzer to trigger on
the first address that Is sent out.

Once you do a trace, you can determine the memory
access time by counting the number of sample points
between the address of 01 OOH appearing on the bus and
the data word of FEEBU appearing on the bus. Figure
7-5b shows an example of this type of display. If your
analyzer has cursors, you can position one cursor at the
time when the address becomes valid, position the other
cursor at the time when the data becomes valid, and
read the time difference between the two from the on-
screen display.

Note that the resolution of this measurement is only
40 ns, because that is the time between samples. In
other words, any changes that take place between sample
points will not be shown in the display until the next
set of samples is taken. On many analyzers you can
specify a shorter sampling period if you reduce the
number of signal lines being traced. With the Tektronix
1230. for example, you can use a sample clock with a
period as short as 10 ns If you can get by with sampling
only four signal lines. We usually start by doing a trace
of, for example, all 16 lines, and then from the 16 we
choose four which show the desired transitions. With
Just these four lines we can decrease the sample period
to 10 ns and thereby increase the resolution of our
measurement.

We obviously can't describe here all the ways to use a
logic analyzer. If you have one, consult the manual for
it to learn some of the finer points of its use. Also, the
lab manual that is available (or use with this book has
some exercises to help you gain more skill with an
ahalyzer. The point here was to show you hOw to use
the analyzer as a "window" Into what is going on In a
system. By carefully choosing the signals you look at,
the signal you clock on. and the word you trigger on.
you can often solve difficult problems. For this reason,
a logic analyzer is a valuable tool when developing a new
microcomputer-based product. -

172	 CHAPTER StVEN

Now that you know how to observe and make measure-
ments on microcomputer bus signals, let's take a closer
look at an 8086 system.

AN EXAMPLE MINIMUM-MODE
SYSTEM, THE SDK-86
The previous sections showed how a clock generator.
address latches, and data bus buffers are connected to
an 8086 to form what we might call the minimum-mode
CPU group. As shown In Figure 7-la, this group of ICs
generates the address bus, data bus, and control bus
signals needed for an 8086 minimum-mode system. In
this major section of the chapter we discuss how this
CPU group is connected with ROM. RAM. ports, and
other devices to form a system. The system we use (or
this discussion is the Intel SDK-86 system design kit,
an 8086-based unit suitable for building the prototypes
ol small microcomputer-based instruments.

Figure 7-6 shows a photograph ol an SIDK-86 board.
From the photograph you can see that, in addition to
the microcomputer iCs. the board has a hexadecimal
keypad, some 7-segment displays, and a large open area
for adding more ROM. RAM. ports, or interface circuitry.
A monitor program in ROM on the board allows you to
enter, execute, and debug machine code programs using
the onboard hex keypad or an external CRT terminal
connected to the serial port on the board. The board

t' D T) 0
DEDrFis

comes with 2 Kbytes of RAM and sockets where you can
add another 2 Kbytes. The board also has six 8-bit
parallel ports which you can program to be Inputs or
outputs. To get a better Idea of the hardware functions
on the board and the devices used to implement these
functions, let's look at the detailed block diagram of the
SDK-86 in Figure 7-7, p. 174.

Whenever you are 4pproaching a system that is new
to you, it is a good idea to study the detailed block
diagram of the system carefully before you start digging
into the actual schematics. The schematics for even a
small system such as this are often spread over many
sages. Without the overview that the block diagram
gives. it is very difficult for you to set how all the
schematic pieces fit together.

'be first parts to look at In Figure 7-7 are the 8086
CPtI and the 8284 clock generator. Note that the 8284
has 14.7456-MHz crystal connected to it. According
to the data sheet for the 8284, the frequency of the
crystal connected to the 8284 will be divided by 3 to
produce the clock signal sent to the 8086. Therefore.
the actual 8086 clock frequency for this board will be
4.9 15 MHz. Another clock signal called PCLK, which is
also produced by the 8284. has a frequency of half the
clock frequency, or In this case 2.45 MHz. This signal
Is used as a general-purpose clock signal throughout
the system. The hardware RST signal and the RDY
signal are also passed through the 8284 to synchronize
them with the clock signal before they are sent to the

KEYBOARD
DISPLAY
CONTR0LLcR
n /

.EfI .-L.

PARALLEL
PORTS

FIGURE 7-6 Intel SDK-86 microprocessor Oevelopment board. (Intel
Corporation).

8081, SYSTEM CONNECTIONS, TIMING, AND TROUBLESHOOTING	 173

=
o C-

.2 C0

o E
C

. ,—'

-C
.	 - —

.	 C
•" 0

,- .N
.

-	 .
o.9

0

-
e	 LI It-...

-

-

E
I/)

_c
. .	 •, 0

C
I 	 I/I
.0

- - a =

' a
t-	 •IO

C

11 , C

'In
C C

0 r -

174	 /

8086- As you can see in Figure 7-7, considcrable circuitry
is connected to the RDY I input so that several conditions
can cause a WAIT state to be inserted in a machine cycle.
The structure labeled W27 through W34 above the WAIT-
state generator in Figure 7-7 represents wire-wrap pins
which can be jurnpered to specIf r the number of WAIT
states desired in a machine cycle. We will discuss this
in detail later.

By this time you may have noticed that the symbols
for the 8284. 8086, and WAIT-state generator each have
a small box containing a 2 in their lower right corner.
This number tells you that the detailed schematic for
these parts will be found on sheet number two of the
set of schematics. Figure 7-8 on pages 176-184 shows
the complete schematic set for the SDK-86 board, so
you can check this out if you wish.

The next parts to look for in the block diagram of the
SDK-86 are the address latches, which you know are
needed to grab address information during Ti of a
machine cycle. The box Just below the 8086-in the
diagram Indicates that three 74S373s are used for
address latches. ADO—ADI5, A16—A19, and BHE are
connected to the inputs of these latches. As expected.
ALE is used to enable the latches. The information held
on the of the latches after ALE goes low is AO—
A19 and BHE. The /20 after A0—Al9 on the output of
the latches indicates that there are 20 lines In this
group. A heavy black line is used to distinguish the
demultiplexed address bus from the data bus.

Next. follow the address lines to the right on the
diagram to find the ROM In the system. The box labeled
PROM indicates that four 2316 or 276 devices are used
for ROM in the s"stem. Each of these devices holds 2
I(bytes of memory. Also indicated in the PROM box in
the diagram are the absolute addresses where these
devices are located. Two of the EPROMs occupy the
address space from FE000H to FEFFFH, and the other
two occupy the address space from FF0001! to FFFFFH.
The 3625 PROM decoder connected to these EPROMs
has two related purposes. The first is to produce a signal
which turns on the desired ROM when you send out an
address in the range assigned to that device. The second
purpose Is to make sure that only one device is out-
putting signals onto the data bus at a time. We discuss
in detail later how address decoders are connected to
give a desired address to a particular device in a system.
Note that the enablepuL CS2, of the decoder PROM
is connected to the RD signal from the 8086. This is
done so that the PROM decoder will be enabled only if
the 8086 Is doing a read operation. Can you see why
you would not want a ROM to be turned on If you
accidentally sent out, an address in its range during a
write operation? The answer Is that attempting to write
to the outputs of a ROM can burn out both the ROM
and the buffer outputs. The 1A26) in the PROM decoder
box of the block diagram. incidentally, indicates that
the 3625 IC will be numbered A26 on the schematic
sheet where it is found.

Follow the address bus to the upper right corner of
the block diagram in Figure 7-7 to find how RAM is
implemented in this system. The board comes with 2
Kbytes of static RAM contained in four 2142s. but there

are sockets for another four 2142.. The initial four
devices occupy the address space from 00000H to
OO7FFH. If four more 2142. are added, they will be
In the address space 00800H—OOF?FH. Another 3625
PROM is used here as a RAM decoder. As with the PROM
decoder, the purposes of this device are to turn on a
memory device which corresponds to a particular ad-
dress sent Out Ofl the address bus and to make sure that
only one device at a time Is outputting data on a data
bus line. The 8086 can read or write a byte or It can
read or write a word. Therefore, 16 data lines are
connected to the RAM block.

Now lets find the system ports In the block diagram
in Figure 7-7. Two 8255As at the top of the page
give the system programmable parallel ports. The term
programmable in this case means that, as part of your
program. you send the 8255A a control byte. The control
byte tells the 8255A whether you want a particular group
of lines on the device to function as outputs or as inputs.
In Chapter 9 we show you how to make up and send
these control words. The two 8255As in this system can
be used individually to input or output parallel bytes.
They can also be used together to input or output words.
For byte input or output operations, onjy,,one of the
devices will be turned on by asserting its CS input low.
For word input or output operations, both 8255As will
be turned on by asserting their CS inputs low. The high
byte of a word to be output, for example, will then be
sent to one of the ports In the PORT I 4vice. The low
byte of the word to be output will go to the corresponding
port in the PORT 2 device. To be more specific. If the
high byte of an output word goes to port P1A. then the
low byte of that word will go to port P2A, In a later
section of the chapter. we show hw the addresses work
out for these ports.

Most systems need a serial port so they can communi-
cate with CRT terminals, modems, and other devices
which require data to be sent and received in serial
form. As shown in the lower left corner of Figure 7-7.
the SDK-86 uses an 8251A as a serial port. The letters
USART on this device stand for universal synchronous)
asynchronous receiver transmitter, which is quite a
mouthful. Chapter 13 discusses the Initialization and
use of the 8251A. For now, just think of this device
as two back-to-back shift registers. One shift register
accepts a parallel byte from the system data bus and
shifts it out the TxD output in serial form. The other
shift register shifts in serial data from the RxD input
and Converts It to parallel bytes which can be read by
the 8086 on the system data bus. The 825 IA has only
eIght data inputs, so data can only be written to or read
from the 8251A a byte at a time. Therefore, only the
lower 8 bits of the data bus are connected to it. Each of
the shift registers in the 825 IA requires a clock signal
with a frequency of 16 or 64 times the rate at which you
want to shift data bits in or out. The clock for the
transmit shift register is called TxC, and the clock for
the receive shift register is called RxC on the block
diagram. These are tied together because you usually
want to send and receive data at the same rates. The
clock for these inputs Is produced by dividing the 2.45.
MHz PCLK signal from the 8284 clock generator. Wire-

8086 SYSTEM CONNECTiONS, 1IMlNG, AND TROUBLESHOOTING 	 175

7.	 I	 6	 j	 5	 4	 1	 I	 2

	

Al	 -'	 ES	 07	 07

	

*2	 51	 oe	 06

	

A3	 A2	 05	 05
3ZC2	 *4	 53	 04	 04

	AS	 .04	 03 U	 03

	

AS	 AS	 O2	 I	 -	Al	
\6	 10	 Di	 o	(AS	
"1	 0S	 JJ__ 	

A??

	

3ZB2 AiS
	 -	 9 2716

	

All	 19 .,•	 2132C2	 AS	 18 .	 VPP
3ZA2	

20

	

Ag	
8

45V

	

12	
7.2K	 AS	 07F0000-FDFFF 1641	 Al	

15FCO55-FCFFF	 I	 I	 *2	 05
14

	

I	 I	 *3	 04_____________	
135	 L	 A4	 03-

	

-	 111Al2 — AS	
5 4 3 2	 A5	 02A13—.-.--6 Al	 14	 19

A14— *2I	
01	 AS	 0I

	

Al	 00Al5—..i *3	 02 13	 2

*8 A36
3Z82 Al6

— A4	 12	 k5	 22 *9 2716	 5vAll	 A5	 03	
19

MO	 211	 11	 CSY	 18*18	 AS	 04	 CE --17	 OEA19 — Al	
202ZA3 u,i - A8 A26	 -

15	 3625	 8	 1/

	

*0	 01
7	 7622A3 RD	 CS2	 Al	 06-	 6	 ISCSI	 *7	 05	 -5	 14

	

*3	 04	 -
4	 13

	

A4	 03P7 Pt
3	 11	_____________________	

A5	 02
2	 I/O

C53	
Cl--CS,	 AS	 01j4j82

*	
CS-Cl 7. C26-C26.	 I	 *1	 00

ISV	 j'C34C38	 226 84	 22, 10%	 C28-C32	 23
*8	 A30

	

C40-052	 *9	 2716
9

	

I	 410	 2/	 -

	GNO	
IS --	 VJ4I1j	 CE OS

J20
8	 1	AlO 	 0/12	 7	 16

	

Al	 06
15

	

A2	 05

	

A4	 03

	

V	 3	 II
INPUT	

jJi2	
*3	 oo

AS 02-
2

	

66	 01
I	 9	*7 	 00INPUT	 23

	

*8	 *3/

	

A9	 2716

	

AlO	 2/
	-12 V IREFI	 78

II 01
4 ALL DIODES 1N9148	

203. ALL TRANSISTORS 0712905 	 -'----------___	 -
2 ALL CAPACITANCE VALUES ARE IN 08, 80 20% , 50 V
I. ALL RESISTANCE VALUES ARE IN OHMS 5% 1/4 WATT
NOTES. UNLESS OTHERWISE SPECIFIED

FIGURE 7-8 SDK-86 complete schematics; see also pages 177-184. Sheet 11)19. (Intel Corporation)

176	 CHAPTER SEVEN

00-07 2ZC3

OS-DIS 2Z83

C

ic

DIS
8255A	 26	 7
8251A	 26	 4
8284	 ¶8	 9
8279	 46

010	 2116	 74	 ¶2
2747	 70	 ¶0	 B

08	 3625	 18	 9
8286	 20	 10
14L500	 4	 7

__J	 7±ii±

74LSIO	 14	 7
/4LS14	 14	 1
74LS20	 ¶4	 7
74530 -	 14	 7
741S74	 14	 7
74101*6	 16	 8
74L5I64	 14	 7
/415244 20	 10	 A
74LS393	 14	 7
/445	 16	 8
40133	 16

'40313	 20	 10

6	 I	 4

5V

APIt
*75	 API

2ZAB	 M/i	 i-?4LS1O	 22 K
LS4

13

	

	 ___________ ____________I,
52*3 OFF BOARD	 j)l2	 ii 74L$

____	 ______	

64 64 64 621 MI
64

•	
.	 __________

W27 1W34

c	
2.2 K	 14.7446 MHZ	 55 57 59 61 63 65 61? 691 WAIT STATE

	

I	 I	 SELECTOR
I	 C7...L	 LI4 J I Li1

F'''4_1:
IPF_l'	 bA 08 OC GD GE Q 00 Gui

	

X2	 14LS164
AS

RDY10	
H	 .STM	

iE 13	 CLA	 114*	 INS	 I •sv111t 	 1NESET	
Ci8

RPS	
T

I UP	 ._! EFI	 12.2K	
osc	 Aii

1 -

	

CSVNC	 It	 -1Z.9Z	 POLK	

—	

701K 8264

	 -	 API
744.S4	 j	 A9	 22K

_E°
RDY2	 CLK 8__82	 2

W41	 13 74LS20.
-	 ROY RST

15 III	
W468	 _____

4ZA7

5208 ______ _
7206 RESET OUT
9208

	

I	 2I 211 19r'"
I	 119Ji

v	 ROY RST CLK

+5 V

Rfl tR2.
1

	

	 *21
74LS14.

S2	 Lc33
INTA	 "T'IUF

W37J,

us

A

BZA3 OFF BOARD

4282

FIGURE 7 .8 (continued) Sheet 2 of 9.

A0_	 09
MN/MX	 AD '	 ,	 DI

AD:	 07
AD 'I _________	 _______________ 03	 12C2, 3ZC5. 4Z05,

5ZC7, SZA2. 7ZD8,
AD	 04	 9ZD8
AO	 05
A03 11 _______ ____________ 06

NMI	 AD -	 07
AL	 -	 ALE 3ZC5. 4ZA8

HLD .,	 HLDA 3Z05.4ZA6
8 ________ _____________

AD	 09
ADI	 010
*01' -	 .	 IZC2.3ZB5.4Z6.
*oi	 012 SZC7.62A2
ADi; .-	 013

INTR	 ADi-:	 014
TEST	 ADI	 015
HOLD	 A16/S	 AI8fS3'

*17/S	 *17/54 ' 3ZA5.4ZAO
Al6/S	 Al0/55 J
*19/S	 A19/S8"I

• - 34	 -)3ZA5
8HE/S	 -	 OHE,S1J

28 __________	 _________________ - 1ZC7, 2208, 4286.Mill) -	 N/b	 SZA7. 6Z87, 1288

-	 _________	 _______________ h- IZB7, 4266, 5201,
8666	 MC	 D 6287, 72C8, 9206
All

- 29	 - 4Z68, 5Z01, 6Z87,W -	 WA 7208, 9208

INTA	 OT/r' 27 _________________________ DT/RZ86

BuFFE::: 4Z16

	

8086 SYSTEM CONNECTIONS, TIMING, AND TROUBLESHOOTING 	 177

a
J2 it

S
	

4
	

3
	

I	 2	 I

0

09

Dl

02

D3
2ZC3

04

05

06

Dl

2283 ALE

2Z83 HLDA

08

09

010

Dli
2Z83 012

013

014

015

Al 6/53

Al 7/S4

2283 A18/S5

Al 9/S6

BHE/S7
/

fl
AG	 l207.6ZD7,7ZC8

Al	 1ZDJ, 5Z07, 6ZC7, 7ZCS, 9208

A2	 1Z07.5Z07,6ZCI

A3 'I

A4 .3' 1ZD7,6ZC7.7ZC8

AS ')	 14	 J3

A6	 1207, 52C8, 6ZB8. 7ZC8

Al)

A6

Ag ' 1ZO7,5281,67B7,7ZC8

MO)

All	 1ZO1, 5ZB1. 6207, 7288

Al2 ',, 1ZC7, 5Z8?, 6207, 7288
Al 3)

A14

MS }
12C7, 5287, 6ZC7, 7ZB8

A16

All

A18	
IZC7,5ZA7,6ZC7

A19J

ii	 1Z07. 6207, 7ZCB

C

T	 B

I	 A

FIGURE 78 (continued) Sheet 3 of 9.

wrap jumper pins. W19-W25. allow you to select the 	 time per bit Is 416 s. for example, then the baud rate
desired TxC and RxC frequency from a divider chain in 	 Is 2400 baud. Common baud rates for serial data
the 74LS393 baud rate generator. Baud rate is a way	 transmission are 300. 600, 1200. 2400. 9600, and
of specifying the rate at which data bits are shifted in 	 19,200.
or out of a serial device. Baud rate for a device such as 	 The final port device to discuss here Is the 8279 in
the 825 IA is defined as I over the time per bit. lithe	 the bottom center of the SDK-86 block diagram (Figure

1 78	 CHAPTER SEVEN

.14

ã 5Z87

BMIO
BRO/
BWR/

!.I Al
9A1

9	 A25

(O
I RD

2ZA3'
DEN

OuR

ULOA 2Z58

44	 BHLOA
Se	 BALE

- 8S3

- 954
- 8S5

J3
8$NTAI

Dl
Dl
02

0	 03
2ZC3	 04

D5

Dl
07

2^A3 BUFFER ON

08
Dl

019
Dli

2ZB3
012
D13
014
015

5	 I	 4	 I.	 3

J2

—.-.-1A6
-1 A5	 IS

1A4	 141

Al

12	 lB

Al	 I
Al

•5 V
	

1	 8288
- Al

808
101
102
103
104
SOS
5DB
507

ii
508

J—ID9
BIl

24	 B011
28	 B012
28	 8013

5014
32	 BDIS

2

.12

3I9

74L514

	

- 2A3	 1Y3

	

13 2A2	 22
17	 3

	

- 2A4	 2v4

	

1AI	 lvi 18

	

1A2	 i'7 16

	

\A3	 1Y3 14

	

1A4	 1v4
i	 A8	 9

	

- 2A1	 211 -
A8

	

16	 26	 74LS244

	

11	 1

-	 2Z03

2ZC3	 INTA
(Ai6/S3

2ZB3 ' AI71S4

I A18/S5

A

48	 BDEN/

FIGURE 7-8 (continued) Sheet 4 of 9.

7-7). The 8279 is a specialized tnputloutput device	 and turns on that digit. The process is continued until

which has two major functions. The first function is to	 all digits have been lit, and then the 8279 cycles back

scan the hex keypad. detect when a key is pressed.	 to the first digit again. In Chapter 9 we discuss in detail

debounce the signal from a pressed key. and store the	 how you use an 8279. The main point for now is that

code for the pressed key in an Internal RAM. where it	 this device takes care of scanning a keyboard and

can be read by the 8086. The second major function of 	 refreshing a display so that you don't have to do these

the 8279 is to refresh the multiplexed display on the	 operations as part of your program.

eight 7-segment LED displays. Seven-segment codes for	 Now that you have an overview of the ports in this

the digits lobe disp'ayed are sent to a RAM in the 8279.	 system. see if you can find in the block diagram the

The 8279 then automatically sends out the code for one 	
decoder which selects an addressed port. You should

digit and turns on that digit. After a millisecond or so.	 find the 3625 PROM labeled (A22) about in the center

the 8279 sends out the 7-segment code for the next digit 	 of the block diagram. Later we discuss how this device

2&	 8086 SYSTEM CONNECTIONS, TIMING, AND TROUBLESHOOTING 	 179

S	7 	 6

2ZC8	 RESET OUT
(RD

7ZD2 HIGH POATSEL

f A2
I.. Al

7Z02 LOW PORT SEL

015
014
013

2ZB3 012
011
010
09
08
07
D6
05
04

22C3
03

02
DI
00

+5 V

AS
3ZC2' A6

A7
A8
A9

AlO
All

3282
Al2
A13
A14
A15

4ZB2

Al2

A13
A14
A15

3ZB2
A16
A17
A18
A19

2ZA3 M/R

3

J6	 J6

	

o	 P1A036
RESET	

1	 PIA1 40	 3
P1A2 42

	

6—	
2	

P1A344
WR

6	
PA340	 P1A4

	

39	
PtA5	9A0 	
P1A642	

13

	

637	
P1A7

	

14	
26	 17

	

27 07
	

1
0 15	 P1C1 24

	 19

	

2806	
1116	 P1C2 22

	 21

	

D5	 217	 pica
20	 23

	

04	
Pc	 13	 P1C4 28

	 25

	

313	
12	 PiGS

28	 27
32

	

02	

I	
P1C6 32
	 29

	

Dl	 6	
P1C7	

31

	

34D0	
18	 l'0 16
	 33

	

19	 P191 12

	

1 20	 P182

	

2 21	 P183	
28PB	 22	 P194 6
	 41

	

23	 RIBS 10
	 43

8255A	
6 24
	 P166 14	 4A35	 25	 P187

iS	 i5
4	 P2AORESET	

- 0

	
P2A1 28

113 P22 42
	 5

P2A38	

PA1340	 P2A4

	

539	
P2A640	

13

P2AS

1 62837 P2A7

	

27 07
	

14	 P2CO 24	 17

	

2806	

1	 PIC1 2
	 19

	

J

1 15	
P2C2 4
	 21

	

2 16
	

P2C3 6	 2317

	

31 03
	

P2C4 26
	 25

PC	 13

	

02	
12 P2C5 28
	 2701	

P2C6	
29

	

34 oa	
I 6
	

P2C7 32
	 3110

	

18	 P280

	

1
0 19	 P281 22

	 35

	

20	 P292

	

2 21	 P283 14
	 39

PB	 22	 P284 16
	 41

	

23	 P285 20
	 43

P286 12	 458255A 24
A40	 25	 P287

7

0

C

B

A

4- 	OFF BOARD 2ZA8, 2Z08

74 LS 14

IIGURE 7-8 (continued) Sheet 5 ol 9.

180	 CHAPTER SEVEN

7	 S	 I	 I	 4	 I	 S	 I	 2

0

3Zc2	 Al
3ZA2 BUE

All
Al2
A13
A14

3Z02 A15
A16
A17
AIB
A19

C

Al
A2
A3

3Z2	 A4
- A5

Al
Al

3ZB2 Al
All

AC
B 2ZA34

I_ u,ic

A

FIGURE 7-8 (continued) Sheet 6 of 9.

oil

Dl.
Dl

2Z13

014
013
012
07
Dl
Dl
04	 2ZC3
03
02
DI
0S

8016 SYSTEM CONNECTIONS. TIMING, AND TROUBLESHOOTING . 181

01 UI
-_.1

U-	 >
I__i,	 (I'

*

C)

00000000
30300000

-

4O0uJi&Q 0
0000000 0

61

'I

1!E

a,
0

=
C
0
U

-
U	 UI	 U U	 P	 C

N	 Q
I'-

C]	 U

182

ci

)
.	 *

0

0

0U

N

0	 V	 I

_3O0O0	 ___________
U-

183

1]1	 [
!

•-

I-	 -U
x	 ,c)C)C

ed	 -	 -	 -
)-	 ,-	 -	 >.-	 .-	 =
-	 -	 (_)

__' L:i+
-4f-1i	 ____________

•	
-ri

-44----

_1

4
V	 • m _J C,

•
.-	 —

—o----
I	 o

-ow----
p____	

am.

•	 I	 p.s,	 ,--	 Ca

C-

Ca

•

184

produces the port select signals from a port address sent
out by the 8086.

The final parts of the SDK-86 block diagram to take a
look at are the buffers along the tight-hand edge. The
purpose of these devices is to buffer the data and control
bus lines so that they can drive additional ROM, RAM.
or ports that you might add to the expansion area of the
board. Note that the address lines are already buffered
by the 74S373 address latches.

A First Look at the SDK-86 Schematics

Now that you have seen an overview of the SDK-86. the
next step is to take a first look at Figure 7-8, which
shows the actual schematics for the board. At first the
many pages of schematics may seem overwhelming to
you, but if you use the 5'mlnutefreak-out rule and then
approach the schematics one part at a time, you should
have no trouble understanding them. The schematics
simply show greater detail for each of the parts of
the block diagram that we discussed in the preceding
sections of the chapter.

At this point we want to make clear that it is not the
purpose of this chapter to make you an expert on the
circuit connections of an SDK-86 board. We use parts of
these schematics to demonstrate some major concepts.
such as address decoding, and to show how the parts
are connected tog.ther to form a small but real system.
Even if you do not have an SDK-86 board, you can learn
a great deal from these schematics about how an 8086
system functions. Multlpage schematics such as these
are typical for any microprocessor-based board or prod-
uct, so you need to get used to working with them.

Before getting started on the next major concept, we
will discuss some of the symbols commonly used on
microprocessor system schematics. First, take a look at
the numbers across the top and bottom of each sche-
niatic and the letters along the sides of each. These are
ca1le zone coordinates, You use these coordinates to
identi the location of a part or connection on the
schelPa. just as you might use similar coordinates on
a ro,ur'ap to help you locate Bowers Avenue. For
exan. on sheet I of the schematics, find the lines
labelA I through A7 in the upper left corner. Next to
the' .ines you should see 3ZC2. This indicates that
thc address lines come from zone C2 on sheet 3. To
see what the lines actually connect to. first find sche-
rustic sheet 3. Then move across the row of theschemat Ic
libeled C until you come to the column labeled 2. ThIs
zone is small enough that you should easily be able to
find where these lines come from. The zone coordinates
next to these lines on sheet 3 indicate the othesche-
matle sheets and zones that these lines go to. For
practice. try finding where a few more lines connect
from and to.

The next points to look at on the schematics are the
numbers on the ICs. in addition to a part number such
as 2716. each IC has a number of the form A36. This
second number is used to help locate the IC on the
printed circuit board. The number is commonly silk-
screened on the board next to the corresponding IC,
Usually IC numbers are sequential and start from the

upper left corner of the component side of a board. There
may be several 2716s on the board, but only one will be
labeled A36.

Inadditlon to ICs. another type of device often found
on microprocessor boards is a resistor pack. You can
find an example in zone CS of schematic sheet 1. As you
can see from the schematic, this device contains foui-
2.2-kfl resistors. Resistor packs may physically be thin.
vertical, rectangular wafers, or they may be in packages
simIlar to small ICs. The advantages of resistor packs
are that they take up less printed-clrct.it-board space
and that they are easier to install than individual
resistors.

Some other symbols to look at in the schematics are
the structures with labels such as J2 and P1. You can
find examples of these In zones C7 and B7 of schematic
sheet 1. These symbols are used to indicate connectors.
The number in the rectangular box specifies the pin
number on the connector that a signal goes to. The
letter P stands for plug. A connector is consIdered a plug
If it plugs into something else. In the case of the SDK.
86, the connector labeled Pits the printed-circuit-board
edge connector. The letter J next to a connector stands
forjack. A connector is considered a jack if something
else plugs into it. On the SDK-86 board the jacksJl
through J6 are 50-pin connectors that you can plug
ribbon cable connectors into. These jacks allow the
address bus, data bus, control bus, and parallel ports
to be connected to additional clrcuitly.

One more point to notice on the SDK-86 schematics
Is the capacitors on the power supply Inputs shown in
zone B6 of sheet 1. A(it you can see there, the schematic
shows a large number of 0. 1-p.F capacitors in parallel
with a 22-F capacitor. Most systems haveJlltering such
as this on their power lines. You may wonder what is
the use of putting all these small capacitors In parallel
with one which is obviously many times larger. The
point of this is that the large capacitor filters out, or
bypasses, low-frequency noise on the power lines, and
the small capacitors, spread around the board. bypas
high-frequency noise on the power supply lines. Noise is
produced on the power supply lines by devices switching
from one logic state to another. If this noise is not
filtered out with bypass capacitors, It may become great
enough to disturb system operation.

Glance through the SDK-86 schematics to get an idea
of where various parts are located and to see what
additional information you can pick up from the notes
on them. In the next Section of this chapter. we discuss
how microcomputer systems address memory and ports.
As part of the discussion, we cycle back to these schemat-
ics to see how the SDK-86 does it.

Addressing Memo'y and Ports
in Microcomputer Systems

ADDRESS DECODER CONCEPT

While discussing the block diagram of the SDK-86 board
earlier in this chapter, we mentioned that the 3625
devices on the board serve as address decoders. One
function of an address decoder Is to produce a signal

8086 SYSTEM CONNECTIONS, TIMING, AND TROUBLESHOOTING 	 185

Do
Al2

*13

*14

A15

RD

+5 V

-	 74LS138

DATA
BUS

Dl

FIGURE 7-9 Parallel ROMs with decoder.

which enables the ROM. RAM, or port device that you
want enabled for a particular address. A second, related
function of an address decoder is to make sure that only
one device at a time is enabled to put data on the data
bus lines.

It seems that every microcomputer system does ad-
dress decoding in a different way from every other
system. Therefore. instead of memorizing the method
used In one particular system, it is important that you
understand the concept of address decoding. You can
then figure out any system you have to work on.

AN EXAMPLE ROM DECODER
To start, look at Figure 7-9. This figure shows how eight
EPROMs can be connected in parallel on a common
address bus and common data bus. Just by looking at
the schematic you can see that these EPROMs output
bytes of data because each has eight outputs connected
to the system data bus. The number of address lines
connected to each devie gives you an Indication of how
many bytes are stored ft it. Each EPROM has 12 address
lines lAO—Al I) connected to it. Therefore, the number
of bytes stored In the device is 22 or 4096. If you have
trouble with this, think of how many bits a Counter has
to have to Count the 4096 States from 0 to 4095 decimal,
or 0000N to OFFFH.

Note that each 2732 in Figure 79 has a Chip Select.
CS. input. When this input Is asserted low, the addressed
byte in a device will be output on the data bus. The
74LS 138 in Figure 7-9 makes sure that the CS input of
only one ROM device at a time is low.

If the 74LS 138 is enabled by making its G2A and G2B
inputs low and its Gi input high, then only one output
of the device will be low at a time. The output that wlU
be low Is detennijied by the 3-bit address applied to the
C, B, and A select 'iputs. For exampfr, if CBA i 000.
then the YO output will be low, and all the other outputs
will be high. This wlU assert the CS input of ROM 0. If
CBA is 001. the Yl output will be low and the ROM I
will be selected. If CBA is 1 11. then Y7 will be low, and
only ROM 7 wIll be enabled. Now let's see what address
range these connections on the 74LS 138 wIll give each
of these ROMs in the system.

To determine the addresses of ROMs. RAMs, and ports
in a system, a good approach in many cases is to use a
worksheet such as that in Figure 7-10. To make one of
these worksheets, you start by writIng the address bits
and the binary weight of each address bit across the top
of the paper, as shown in the figure. To make it easier
to convert binary addresses to hex, it helps if you mark
off the address lines In groups of four, as shown. Next.
draw vertical lines which mark off the three address
lines that connect to the decoder select inputs (C. B.
and A). For the decoder in Figure 7-9. address lines A14.
Al.3. and Al2 are connected to the C, B. and A inputs
of the decoder, respectively. Then write under each
address bit the logic level that must be on that line to
address the first location in the first EPROM.

To address the first location in any of the EPROMs.
the A0 through All address lines must all below, so put
a 0 under each of these address bits on the worksheet. To
enable EPROM 0, the select inputs of the decoder must

186	 CHAPTER SEVEN

HEX DIGIT	 HEX DIGIT	 HEX DIGIT	 :1	 HEX DIGIT	 HEX
2"	 2"	 2°	 2"	 2"	 2"	 2'	 2'	 2'	 2' 2'	 2'	 2'	 '	 2'	 2° EQUIVALENT
Al5 A14 A13 Al2 All AlO AS AS *7 *6 A5 *4 *3 *2 Al A0	 ADDRESS

BLOCKISTART	 0	 0	 '	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0000
1	 lEND	 0	 0	 - -	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 OFFF

BLOCKSTART	 00	 00	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 -1000

	

2END	 0	 0	 - - --	 1	 11	 1	 1	 1	 1	 .1	 11	 1FFF -
BLOCK START	 001	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 2

3	 END	 0	 0	 I	 0	 1	 I	 1	 1	 1	 1	 1	 1	 1	 1	 •2FFF
BLOCKJSTART	 0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 -3000

4	 lEND	 0	 0	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 3FFF
BLOCKSTART	 01	 0	 00	 0	 000	 0	 0	 0	 0	 0	 0	 •4000

	

END	 0	 1	 0	 1	 1	 1	 I	 1	 1	 1	 1	 1	 1	 -4FFF
BLOCK START	 0	 1	 1	 00	 0	 0	 000	 0	 0	 0	 0	 0	 -5000

8	 END	 0	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 •SFFF
BLOCKSTART	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 '6000

	

?END	 0	 1	 0	 1	 1	 11	 1	 1	 1	 1	 1	 1	 1	 -BFFF
BLOCK START	 0	 - Il	 1	 00	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 7000

8	 END	 0	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 -7FFF

DECODER
ADO RESS

INPUTS

FIGURE 7-10 Address decoder worksheet showing address decoding for eight
2732s in Figure 7-9.

be all 0's. Since address lines A14, Al3. and Al2 are
connected to these select Inputs, they must then all be
0's to enable EPROM 0. WrIte a 0 under each of these
address bits on the worksheet. Since address line A 15
is connected to the G2A enable input of the decoder, it
must be asserted low in order for the decoder to work
at all. Write a0under the A15 bit on your worksheet.
Note that the RD signal from the microprocessor control
bus is connected to the 02B enable input of the decoder.
The decoder then will only be enabled during a read
operation. This Is done to make sure that data cannot
accidentally be written to ROM. The 01 enable input of
the decoder is permanently asserted by tying it to + 5 V
because we don't need it for anything else in this circuit,

You can now read the starting address of EPROM 0
directly from the woyksheet as 0000H. The highest
address In EPROM O,is that address where A0—Al I are
all l's. If you put a I under each of these bits as shown
on the worksheet, you can see that the ending address
for EPROM 0 is OFFFH. Remember that Al2—Al4 have
to be low to select EPROM 0. A 15 has to be low to enable
the decoder. The addres, range of EPROM 0 is said to
be 0000H to OFFFH. a 4-Kbyte .b4ock.

Now let's use the worksheet 'to determine the address
range for EPROM 1. EPROM 1 is enabled when Al5 is
0. Al4 is 0. Al3 Is 0, and Al2Ia I. For the first address
in EPROM I, address lines A0 through Al Imust all be
low. Therefore, the starting address of EPROM 1 Is
10001-I. Its ending address, when AO through All are
all l's. Is IFFFH. If you look at the worksheet In Figure
7-10. you should see that the address ranges for the
other six EPROMs In the system are 2000H to 2FFFH,
3000H to 3FFFH, 4000H to 4FTflI, 5000H to 5FFFH.
6000H to 6FFFH. and 7C)0H to 7FFFH. In this system,
then, we use address lines A14, A13, and Al2 to select
one of eight EPROMs in the overall address range of
00001-I to 7FFFH. Some people like to think of address
lines Al4. Al3. and Al2 as "counting off" 4096-byte

blocks of memory. If you think of the address lines as
the outputs of a 16-bit Counter, you can see how this
works. The end address for each EPROM has all l's in
address bits A0—A1 1. When you increment the address
to access the next byte In memory, these bits all go to
0, and a 1 rolls over into bits A14, A13. and Al2. This
increments the count in these 3 bits by 1 and enables
the next highest 4096-byte EPROM. The count In these
bits goes from binary 000 to ill.

AN EXAMPLE RAM DECODER

The system in Figure 7-9 contains only ROM. In most
systems, you want to have ROM. RAM, and ports. To
give you more practice with basic address decoding, we
will show you now how you can add a decoder for RAM
to the system.

Suppose that you want to add eight 2K x 8 RAMs to
the system, and you want the first RAM to start at
address 8000H. just above the EPROMs, which end at
address 7FFFH.

To start, make a worksheet similar to the one in Figure
7-10. Addressing one of the 2048 bytes (2") in each
RAM requires II address lines. A0 through AlO. These
lines will be connected directly to the address inputs on
each RAM, so draw a vertical line on the worksheet to
indicate this.

The three address lines All, Al2. and Al3 will be
used to select one of the eight RAMS, so write a 3-bit
binary count sequence under these three columns In
your worksheet.

We want the RAM to Start at address 8000H. For this
address, Al5 isa I and Al4 isa 0, so mark these values
in the appropriate columns in your worksheet. Your
completed worksheet should look like the one In Figure
7-I Ia. p. 188. Now, let's see how you can implement
this truth table with hardware.

Since you want to select one of eight RAM devices, you
can use another 74L.S 138 such as the one we used lot'

- 26	 6086 SYSTEM CONNECTIONS. TIMING. AND TROL)BLESHOOTINC 	 187

HEX DIGIT	 -	 -- HEX DIGIT	 HEX DIGIT	 HEX DIGIT	 HEX	 START
EQUIVALENT	 OF

A15	 A14	 A13	 Al2	 All	 AlO A9	 A8	 Al	 A6	 AS	 A4 A3 A2	 Al	 A0 - ADDRESS	 BLOCK
1	 0	 0	 0	 C	 00	 0	 0	 0	 0	 0	 0	 0	 0	 8000H
1	 0	 0	 0	 1	 0	 0	 0	 0	 C	 0	 0	 0	 0	 0	 0	 B800H	 2
1	 0	 0	 I	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 =9000H	 3
1	 0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 =980011	 4
1	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 j	 0	 0	 0	 0	 "AOOOH	 5
1	 0	 1	 0	 I	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 =ABOOH	 6
1	 0	 I	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 C	 0	 BOOOH	 7
I	 0	 I	 1	 1	 0	 D	 0	 0	 0	 0	 0	 0	 0	 0	 0	 B80OH	 B

DECODER
ADDRESS

INPUTS

(a)

A15	 G1	
26____.I ENABLE

A14 11j	
31:>-.- I SIGNALS

FOR

5I
RAM
DEVICES

A13 Al2 All

(b)

FIGURE 7-11 Address decoder. (a) Worksheet for eight
2-Kbyte RAMS starting at address 8000H. (b) Schematic
for 74LS138 connections.

the EPROMs. You want to select 2048-byte blocks of
memory, so address line All will be connected to the A
input of the decoder, Al2 will be connected to the B
input of the decoder, and A13 will be connected to the
C input of the decoder.

You want the block of RAM selected by the outputs of
this decoder to start at address 8000H. For this, address
A15 is high and A14 is low. The 01 enable input of the
decoder Is active high. so yo connect it to the A15
address line. This input will then be asserted when A15
is high. You connect the A14 address line to the G2A
input of the decoder so that this Input will be asserted
when A14 is low. Because you don't need to use it in
this circuit, you can simply tie the G2B input of the
decoder to ground o that it will be asserted all the time.
Figure 7-1 lb shows the connections for this decoder.
Note that you don't cnnect the 8086 RD signal to an
enable input on a RAM decoder, because you want to
enable the RAMs for both read and write operations.

From the worksheet or truth table in Figure 7-I la.
you can quickly determine the address range for each
of the RAMs. The first RAM will Start at address 8000H.
The ending address for this RAM will be at the address
where bits A0—Al0 are all l's. If you put l's under these
bits on your worksheet, you should see that the ending
address for the first EU\M is 87FFH. For practice, work

Out the hexadecimal addresses for each of the other
seven RAMs. Vhen you finish, compare your results
with those in Figure 7-1 la. The eight RAMs occupy the
address space from 80001-I to BFFFH.

AN EXAMPLE PORT DECODER

nected in a system to produce chip select signals br
some port devices. The truth table or address decoder
worksheet in Figure 7-12b shows the system address
which corresponds to each of the decoder outputs.

First, note that A15 and A14 must be hIgh to enable
the decoder, so these bits are l's in the worksheet. Then
notice that A13 and Al2 must be low to enable the
decoder, so these columns on the worksheet contain 0's.
Finally, address lines A3, A4, and A5 are connected to
the decoder select inputs, so we wrote a 3-bit binary
count sequence in these columns in the worksheet.

Address lines A0, Al, and A2 will be connected directly
to the port devices to address individual ports and
control registers in the devices. This is the same idea
as connecting the lower address lines directly to' ROM
so that we can address one of the bytes stored there.

Address lines A6 through All are not connected to
the port devices or to the decoder, so they have no effect
on selecting a port. We don't care then whether these
bits are l's or 0's. As you will see, these "don't care" bits
mean that there are many addresses whIch will turn on
one of the port devices, To give the simplest address for
each device, however, we assume that each of these
don't care bits is 0. Write 0's under each of these bits
on your worksheet. You should now see that the address
C000H will cause the Y0 output of the decoder to be
asserted. The address COO8H will cause the Y 1 output
of the decoder to be asserted, Using address lines A3.
A4, and A5 on the decoder select inputs, then, leaves
eight address spaces for each port device.

To see that any one of several different addresses can
select one of these port devices, replace the 0 you put
under A6 on the first line of your worksheet with a 1.
This represents a system address of CO4OH. A15 and
A14 are l's and A13, Al2, A5, A4, and A3 are Os for
this address. Therefore, this address will also cause the
Y0 output of the decoder to be asserted. You can try
other combinations of l's and Os on A6 through All if
you need to further convince yourself that these bits

6	

j	

Figure 7-1 2a shows how another 74LS 138 can be con-

188	 CHAPTER SEVEN

74LS1 38

vo74LS08
A15

A14	

SIGNALS
FOR

A13	 i PORT
DEVICES

Al 2

A5 A4 A3

(i

HEX	 HEX
DIGIT	 DIGIT

15A14A13Al2 A11AIO A

OH N H H

1	 I 0 OlB B N N

HEX
	

HEX
DIGIT	 DIGIT

A? A6 AS A4 A3 A2 Al AO

88000 000
001
010
01	 1
100
101
110

H	 H	 111

DtCODER
SELECT
INPUTS

lot

HEX
PORT DEVICE

ADDRESS

C 000
C 008
C 010
C 018
C 020
CO 28
CO 30
CO 38

FIGURE 7-12 Adding a port device decoder. (a) Schematic for 741.5138
connections. (b) Address decoder worksheet.

dont matter when addressing ports. Again, we usually
use 0's for these bits to give the simplest address.

Using a decoder which translates memory addresses
to chip select signals for port devices Is called memorr4-
mapped I/O. In this system a port will be written to or
read from in the same way as any other memory location.
In other words, If this were an 8088 system, you would
use an instruction such as MOV AL.DS:BYTE PTR
00000H to read a byte of data from the first port to the
AL register Instead of using the MOV DX.00000H and
IN AL.DX Instructions. The advantage of memory-
mapped 1/0 Is that any Instruction which references
memory can be used to input data from or output data
to ports. In a system such as this, for example, the single
Instruction ADD AL,DS:I3YTE VtROCOOOHJ could be
used to input a byte of data from the port at address
C000H and add the byte to the AL register. The disadvan-
tage of memory-mapped 110 is that some of the system
memory address space is used up for ports and is
therefore not available for memory.

You can use memory-mapped 1/0 with any micropro-
cessor. but some microprocessors, such as those of the
8086 family, allow you to setup separate address spaces
for input ports and for output ports. You access ports
In these separat address spaces dircctTy with (he IN
and OUT instructions. Having separate address spaces
[or input and output ports Is called direct I/O. The
advantage uf direct [/Ois that none of the system memory
space is used for ports. The disadvantage Is that Only
the specialized IN and OUT Instructions can be used to
Input or output data.

in a later section of this chapter. we show how direct
I/O is done with the 8086, but first we will discuss how
the 8086 addresses memory.

8086 and 8088 Addressing
and Address Decoding

8086 MEMORY BANKS

The 8086 has a 2Oblt address bus, so it can address
2° or 1.048,576 addresses. Each address represents a

stored byte. As you know from previous chapters. when
you write a word to memory with an instruction such
as MOV DS:WORI) rrRt43m11}.BX. the word is actually
written into two consecutive memory addresses. Asum-
ing that DS contains 0000. the low byte of the word is
written Into the specified memory address. 0437A}1, nd
the high byte of the word Is written Into the next-higher
address. 0437BH. To make it possible to read or write
a word with one machine cycle, the memory for an 8086
is set up as two "banks" of up to 524,288 bytes each.
Figure 713a, p. 190, shows this in diagram form.

One memory bank contains all the bytes which have
even addresses such as 00000, 00002. and 00004. The
data lines of this bank are connected to the lower eight
data lines. DO through D7. of the 8O8. The other
memory bank Contains all the bytes which have odd
addresses such as 00001. 00003. and 00005. The data
lines of this bank are connected to the upper eight data
lines. D8 through Dl5, of the 8086. Address line AO Is
used as part of the enabling for memory devices In the
lower bank. An addressed memory device In this bank
will be enabled when address line AD Is low, as it will be
for any even address. Address lines Al through A19 are
used to select the desired memory device in the bank
and to address the desired byte in that device.

Address lines Al through A19 are also used to select
a desired memory device In the upper bank and to
address the desired byte in that bank. An additional
part of the enabling for memory devices In the u_2p.r
bank is a separate signal called bus high enable. BHE.
BHE is multlpiexed out from the 8086 on a signal line
at the same time as an address is sent out. An external
latch. strobcd by ALE, grabs the BIlE signal and holds
It stable for the rest of the machine cycle. Just as is done
with addresses. Figure 7-13b shows you the logic level
that will be on the BHE and AO lines for different types
of memory accesses.

If you read a by te [ronl or Write a byte to an even
address such as 00000Ff. AO will be low and BHE will
be higF. The lower bank will be enabled, and the upper
bank will be disabled. A byte will be transferred to or
from the addressed location in the low bank on DO-

8086 SYSTEM CONNECTIONS. TIMING, AND TROUBLESHOOTING 	 '189

FFFFEH

00002

00000H

UPPER BANI-	 LOWER BANK-
ODD ADDRESSED	 EVEN ADDRESSED

8086A	 BYTES	 BYTES

I.)

DATA -ADDRESS TYPE	
BUS	 DATA

______	 CYCLES	 LINES USED

0000 BYTE	 1	 0 ONE	 00-07

	

0000 WORD 0	 0	 ONE	 DO-015
0001	 BYTE	 0	 1	 ONE	 07-015
0001	 WORD 0	 I	 FIRST	 00-07

	

1	 0 SECOND	 07-015

Ib)

FIGURE 7-13 8086 memory banks. (a) Block diagram. (b) Signals (or byte and
word operations.

07. For an instruction such as MOV AH.DS:BYTE
PTRI0000I. the 8086 will automatically transfer the byte
of data from the lower data bus lines to AH. the upper
byte of the AX register. You Just write the instruction
and the 8086 takes care of getting the data in the right
place.

Now. if the OS register contains 0000H and you use
an instruct ion such as MOV AX,DS:WORX) PTRI0000I
to read a word from memory into AX, both A0 and BHE
will be asserted low. Therefore, both banks will be
enabled. The low byte of the word will be transferred
from address 00000H to the 8086 on 00-07. The high
byte of the word will be transferred from address 00001 H
to the 8086 on 08-015. The 8086 memory, remember.
is set up in banks so that words: which have their low
byte at an even address, can be transferred to or from
the 8086 in one bus cycie. When programming an 8086.
then, It is important to start an array of words on an
even address for most efficient operation. If you are
using an assembler, the EVEN directive is used to do
this.

When you use an Instruction such as MOV AL.DS
BYTE P1'RJOOOl Ito access Just a byte at an odd address.
A0 will be high and BHE will be asserted low. Therefore.
the low bank will be disabled, and the high bank will be

enabled. The byte will be transferred from memory
address 0000IH in the high bank to the 8086 on lines
08-0 15. The 8086 will automatIcally transfer the byte
of data from the higher eight data lines to AL. the low
byte of the AX register. Note that address 0000IH Is
actually the first location in the upper bank.

The final case in Figure 7-13b Is the one where you
want to read a word Irom or write a word to an
odd address, The instruction MOV AX.DS:W0RD
PTRI000IHI copies the low byte of a word from address
00001 to AL and the high byte from address 00002H to
AN. In this case, the 8086 requires two machine cycles
to copy the two bytes from memory. During the first
machin , cle the 8086 will output address 0000lH,
assert RHE low, and assert A0 high. The byte from
address 0000)H will be read into the 8086 on lines 08-
Dl5 and put in AL. During the second machine cycle
the 8086 will send out address 00002H. Since this is
an even address, A0 will be low. However, Since we are
accessing Only a byte. HHE will be high. The second byte
will be read into the 8086 on lines 00-07 and put in
AH. Note that the 8086 automatically takes care of
gettIng a byte to the correct register regardless of which
data lines the byte comes in on.

The main reason that the A0 and BIlE signals function

190	 CHAPTER SEVEN

the way they do is to prevent the writing of an unwanted
byte into an adjacent memory location when the 8086
writes a byte. To understand this, think what would
happen if both memory banks were turned on for all
write operations and you wrote a byte to address 00002
with the instruction MOV DS:BYrE PTR!00021.AL. The
data from AL would be written to address 00002 as
desired. However, if the upper bank were also enabled,
the random data on D8—D15 would be written into
address 00003. Since the 8086 is designed so that BHE
Is high during this byte write. theupper bank of memory
is not enabled. This prevents the random data on D8—
D15 from being written to address 00003.

Now that you have an overview of address decoding
and of the 8086 memory banks, let's look at some
examples of how all this is put together in a small
system.

ROM ADDRESS DECODING ON THE SDK-86

Sheet 1 of the SDK-86 schematics in Figure 7-8 shows
the circuit connections for the EPROMs and EPROM
decoder. The 2716 EPROMs there are 2K x 8 devices.
Two of the EPROMs have their eight data outputs
connected in parallel to system data lines D0—D7. These
two EPROMs then give 4 Kbytes of storage in the lower
memory bank. The other two EPROMs have their data
outputs connected in parallel to system data lines D8—
D15 to give 4 Kbytes of storage in the upper bank of
ROM.

Eleven address lines arc needed to address the 2
Kbytes in each device. Therefore, system address lines
Al—All are connected to all the EPROMs in parallel.
Remember that A0 cannot be used to select a byte in
the EPROMs because, as we described in the last section,
it is used to enable or disable the lower bank.

A 2716 has two enable inputs. CE and OE. In order
for the 2716 to output an addressed byte, both of these
enable inputs must be asserted low. The CE inputs of
the two devices In the lower bank are connected to
system address line A0, so the CE iflputs of these devices
will be asserted II A0 is low. The CE inputs of the two
2716sin the upper bank are connected to the BE-IE line.
The CE irrni,is of these devices then will be asserted
whenever BHE is asserted low. To summarize, then, the
two devices labeled A27 and A36 form the lower bank of
EPROMs and the two devices labeled A30 and A37 form
the , per bank of EPROMs in this system. To see how
the OE enable input of each of these devices gets asserted
and to determine the address that each device will have

In the system. you need to look next at the 3625 address
decoder labeled A26 on sheet 1 of Figure 7-8.

A 3625 isa 1K x 4 bipolar PROM which functions as
ah address decoder, just as the 74LS 138 performs In
Figures 7-9 and 7-11. Since a 3625 has open collector
outputs, a pull-up resistor to + 5 V is required on each
output. The dotted box around the four resistors on the
schematic indicates the four are all contained In one
package, resistor pack 5 (RP5). The 3625 translates an
address to a signal which is used as part of the enabling
of the desired device. Using a PROM as an address
decoder, however, is for several reasons much more
powerful than using a simple decoder such as the
74LS 138. In the first place. the 3625 is programmable.
which means that you can move the memory devices to
new addresses in memory by simply programming a new
PROM. Second. the large number of inputs on the PROM
allows you to select a specific area of memory without
using external gates. If. for example, you wanted the
G2A input ofa 74LS138 to be asserted ifAl 1—A15 were
all high. you would have to use an external NAND gate
to detect this condition. With a PROM, you can just
make this condition part of the truth table you use to
burn the PROM.

Now, to analyze any address decoder circuit, first
determine what signals are required to enable the de-
coder. The CS 1 enable input of the 3625 EPROM decoder
is tied to ground. so it is permanently enabled. The CS2
enable input is tied to the RD signal 1ron the 8086. so
that the decoder will only be enabled if the 8086 is doing
a read operation. As explained previously, you don't
want to accidentally enable a ROM if you send out a
wrong address during a write operation.

The next step in analyzing a decoder circuit using a
PROM is to consult the manufacturer's manual for the
system. You have to do this because, for a PROM, the
relationship between the inputs and the outputs cannot
be determined directly from the schematic.

Figure 7-14 shows the truth table for the PROM
from the SDK-86 manual. This truth table is just a
compressed form of writing an address decoder work-
sheet such as those we used in the previous discussion
of address decoding. From the truth table you can see
that in order for the 01 output of the 3625 to be asserted
low. M/I0 has to be high. This is reasonable, since this
decoder is enabling memory devices, not port devices.
Also, address lines Al2 through A19 have to be high in
order for the 01 output of the PROM to be asserted low.
Since the upper eight address bits must all be Fs for
the 01 output lobe asserted, the lowest address which

	

PROM INPUTS	 PROM OUTPUTS______________________	 -	 PROM ADDRESS
BLOCK SELECTEDM/IO I A14-A19 A13 I Al2	 04	 03	 02	 01

1	 1	 I 1	 1	 1	 1	 0	 FFXIOH-FFFFFU

1	 I 1	 I o	 1	 1	 0	 I	 FEOU.FEFErH

1	 I	 I	 I	 I	 1	 0	 1	 1	 FDON-FDEFFH ICSXI
I	 0	 0	 0	 1	 I	 I	 FCOH-FCFFFH ICSYI

ALLOTHEA STATES	 1	 1	 1	 I	 NONE

FIGURE 7-14 Truth table for an SDK . BE. ROM decoder PROM lATh).

808A SYSTEM CONNICTIONS. TIMING, AND TROUBLESHOOTING 	 191

will cause this is IT000H. If you refer to sheet I of the
SL'K-86 schematics in Figure 7-8, you will see that the
01 output of the decoder PROM connects to the OE
enable puts of two of the 2716 EPROMs. A27 and A30.
These OE outputs then will be enabled whenever the
8086 sends Out an address In the range of FF000H to
FFFFFH. To fully enable these devices, however, their
CE Inputs must also be asserted.

The CE input of the A27 EPROM is connected to
system address line A0, so this device will be enabled
whenever the 8086 does a memory read from an even
address lAO = Olin the range FF000H to FFFFEH.

The CE enable input of A30 is connected to the system
BHE line. As shown in Figure 7-13. BHE will be asserted
low whenever the 8086 accesses a byte at an odd address
or a word at an even address. Therefore, the A30 EPROM
will be enabled when the 8086 reads a byte from an odd
address in the range FF000H to FFFFFH. A30 will also
be enabled when the 8086 asserts both AO and BHE low
to read a word that starts on an even address in the
range FF000H to FFFFFI-I.

Note in Figure 7-14 and the first sheet of Figure 7-8
that the 02 Output of the 3625 decoder PROM will be
asserted for addresses in the range of FE000}-1 to
FEFFFH. This signal is used as part of the enabling for
the A36 and A37 EPROMS. AO and BHE provide the rest
of the enabling for these devices. Just as we described
previously for A27 and A30 devices. For practice, trace
these signals on the first sheet of Figure 7-8.

Also note In the first sheet of Figure 7-8 that the 3625
ROM decoder has two unused outputs which can be
used as part of the enabling for EPROMs you add to the
prototyping section of the board. As shown In Figure 7-
14, the address ranges for these two outputs are FD000H
to FDFFFH and FC000H to FCFFFH.

The four SDK-86 EPROMs actually contain two moni-
tor programs. One monitor, in devices A27 and A30.
allows you to use the hex keypad for entering and
running programs. The other monitor, in devices A36
and A37. allows you to use an external CR1 terminal to
enter and run programs. The EPROMs are put at this
high address In memory on the SDK-86 board because.
after a RESET, the 8086 goes to address FFFFOH to get
Its first instruction. Since we want the SDK-86 to execute
its monitor program after we press the RESET button.
we locate the EPROM containing the monitor program
such that this address is In it. You can interchange the
actual EPROM devices so that either the keypad monitor
or the serial monitor executes when you press the
RESET button.

RAM ADDRESS DECODING ON THE SDK-86
To give you another example of memory address decod-
ing in a real system, we now discuss the RAM decoding
of the SDK-86 board. Sheet 6 of the SDK-86 schematics
in FIgure 7-8 shows the circuit for the system RAM and
RA.M decoder. Let's look at this schemattc to see what
we can learn from it.

First, take a look at the input and output lines on the
2142 static RAM devices. From the fact that each device
has four data 110 lines, you can conclude that the devices
store 4-bit words, 'the fact that each device has 10

address inputs. AO—A9. indIcates that each one stores
2' or 1024 of these 4-bit words. To store bytes, two
21 42s are enabled in parallel. Devices A38 and A4 1, for
example. are enabled together to store bytes from the
lower .clght data lines, and devices A43 and A45 are
enabled together to store bytes from the upper ei,gt
data lines. Note next that the control bus signals RD.
WR. and M.'lO are connected to all the 2142s. RD is
connected to the output disable. OD. pin on the 2l42s.
When the RD signal is high or when the device Is not
enabled, the output buffers will be disabled. During a
read operation the RD signal is asserted 'ow. Yf a 2142
is enabled and Its OD input is low, the output buffers
will be turned on so that an addressed word is output
onto the data bus.

WR from the 8086 is connected to the write enable.
WE. input of the 2142s. If a 2142 is enabled, data on
the data bus will bcwritten into the addressed location
in the RAM when the 8086 asserts WR low,

The 2142s have two enable inputs, CS! and CS2.
The M/lO signal from the 8086 is connected to the CS2
Input of all the 2142s. Since the CS2 Input Is active
high, it will be asserted whenever the 8086 Is doing a
memory operation. The CS 1 inputs of the 21 42s are
connected in pairs to the outputs of a 3625 PROM which
functions as an address decoder.

In order to assert any of its outputs and enable some
RAM, the 3625 must itself be enabled. Since the CS2
enable input of the 3625 PROM is tied to ground, it is
permanently enabled. The CSI enable input will be
asserted when system address line A19 is . 10w. To
determine any more information about this PROM. you
need to look at the truth table for the device. Before we
go on to that, however, note that AO and BHE are
connected to two of the address inputs on the 3625
PROM. Knowing what you do about 8086 memory banks,
why do you think we want AO and BHE to be part of
what determines the outputs for this decoder? If you
don't have the answer to this question, a look at the
truth table for the device in Figure 7-15 should help
you.

According to the third line of the truth tabl&address
decoder worksheet in Figure 7-15, the 01 output of the
PROM will be asserted low if At2 through A18 are low.
All is low, 8HE is high. and A0 is low. The 01 output
then will be asserted for even system addresses starting
with 00000H. A low on the Dl output will enable the
A38 and A4 I RAMs, which are connected to the lower
half of the data bus. These two devices are part of the
lower bank of RAM.

Next, look at the second line of the PROM truth table
in Figure 7-15. From this line you should see that the
02 output of the PROM will be asserted low if Al2
through Al8 are low, All Is low. BHE is low, and A0 is
high. The 02 output will then be asserted for odd system
addresses starting with 000IH. A lox on the 02 output
will enable the A43 and A4.5 RAIvls. which are connected
on the upper half of the data bus. These two devices are
part of the upper hank of RAM.

Now, suppose we want to write a 16-hit word to RAM
at an even address. To do this, we want both 01 and
02 to be asserted low so that both the lowcr-barik RAMs

192	 CHAPTER SEVEN

	

PROM INPUTS	 PROM OUTPUTS

	

______ - - - - - - -	 BYTE(S) SELECTED

	

Al2-A18 All	 A0	 04	 03	 02	 01	 (ADDRESS BLOCK)

O	 0	 0	 0	 1	 1	 0	 0	 BOTH BYTES (OH-O7FFH)

o	 0	 0	 1	 1	 0	 1	 HIGH BYTE (0I-4-OJFFH)

o	 0	 1	 0	 1	 1	 1	 0	 LOWBYTE(OH-O7FFNI

o	 l	 0	 0	 0	 0	 I	 1	 BOTH BYTES 08H-OFFFH)

o	 1	 0	 1	 0	 1	 1	 1	 HIGH BYTE IO8HOFFFI.4)

o	 1	 0	 1	 0	 1	 I	 LOWBYTEIO800H-OFFFHI

ALLOTHERSTATES	 1	 1	 I	 1	 NONE

FIGURE 7-15 Truth table for an SDK-86 RAM decoder PROM (A29).

and the upper-bank RAMs are enabled. According to the
first line of the PROM truth table In Figure 7-15, 01 and
02 wIll both he asserted low if BHE and AO are both low.
Remember from Figure 7-13 that BHE and AO will both
be low whenever you write a word to an even address or
read a word from an even address. This last case gives
the answer to the question we asked earlier about why
A0 and BHE are connected to the address decoder PROM
Inputs. The two Inputs are required to tell the PROM
decoder to assert both 01 and 02 for a word read or
write operation.

The address range for the A38, A41, A43, and A45
RAMs is 000001-i to OO7FFH. Another look at the PROM
truth table in Figure 7-15 should show you that RAMS
A39, A42, A44. and A46 Contain 2 Kbvtes more In the
range 00800H to OOFFFH. Again, both banks of this
additional RAM will be enabled If A0 and BHE are both
low, as they are for reading or writing a word to an even
address,

SDK-86 PORT ADDRESSING
AND PORT DECODING

In a previous section ol this chapter we described
memory-mapped inpuUoutput. In a system with memo-
ry-mapped 110, port devices are addressed and selected
by decoders as If they were memory devices. The main
advantage of memory-mapped I/O Is that any Instruction
which refers to memory can theoretically be used to read
from or write to a port. Thc single Instruction A1)D
BH,DS BYTE PTRI437AIII could be used to read a byte
from a memory-mapped port and add the byte read In
to the BH register. The disadvantage of men.ary-rnapped
110 Is that the ports occupy part of the system memory
space. This space Is then not available for storing data
or instructions.

To avoid having to use part of the system memory
space for ports, 8086 family microprocessors have a
separate address space for ports. Having a separate
address space for ports is called direct I/O because this
separate address space Is accessed directly with the IN
and the OUI Instructions.

Remember from previous chapters that the 8086 IN
and OUT instructions each have two forms.Jtxed port
arid variable port. For fixed-port instructions, an 8-bit
port address is written as part of the instruction. The
instruction IN AL,38H, for example, copies a byte from
port 38H to the AL register. For variable-port input or

output operations, the 16-bit port address Is first loaded
into the DX register with an instruction such as MOV
DX.OFFF8H. The Instruction IN AL,DX is then used to
copy a byte from port FFF8H to the AL register. MOV
DX,0038H followed by IN AL.DX has the same effect as
IN AL,38H.

Whenever the 8086 executes an IN or OUT instruction
to access a port, none of the segment registers are
Involved in producing the physical address sent Out by
the 8086. The port address Is sent out directly from the
8086 on lines ADO—ADI5. and 0's are output on lines
A16-Al9.

In an 8086 system which uses direct I/O, the M/lO
signal Is used to enable a memory decoder or a port
decoder. Remember that the MJIO signal being high was
one of the enabling conditions for the SDK-86 ROM and
RAM decoders we discussed in previous sections. As you
wIll see, a low on MJ1O Is used to enable a port decoder.

During the execution of an (N instruction, the RD
signal from the 8086 will be low, This signal can be
used to enable an addressed input port device. During
execution of an OUT instruction the WR signal from the
8086 will be low. This signal can be used to enable an
addressed output port device. Since the 8086 outputs
up to a 16-bit address for direct 110 operations. It can
address any one of 2' or 65.536 input ports and any
one of 65.536 output ports.

For an example of how direct I/O ports are addressed
and sclectedin a real system, we will again look at the
SDK-86 schematics In Figure 7-8. sheet 7. Here another
3625 PROM. A22, Is used to produce the chip select
signals for four I/O devices. The 01 output of the PROM
Is used to enable the 8279 kevboardidisplay interface
device, which we discuss in a section of Chapter 9. The
02 output of the PROM Is used to enable the 825 IA
USART shown on sheet 9 of the schematics. The 825 IA
allows communication with other systems in serial form.
A Section in Chapter 14 discusses the operation of this
device. The 03 arid 04 outputs are connected to two
8255A parallel port des ices, shown on sheet 5 of the
schematics. These devices can be eoabled individually
to Input or output bytes. The y can also be enabled
together to input or output words A section iii Chapter
9 shows you how to tell eac port in these devices
whether you want it to be an in it or an output.

Take a look now .ii the i'25	 . idcr PROM to deter-
mine what conrtilion' cii 	 ii shoub bud that

Sf186 SSsTEM CONNtCTIONS, T).',tl'-,C \[) -':')LP ',HOOTINi 	 193

PROM INPUTS	 PROM OUTPUTS __________ -

04	 03	 02	 01

	

A11-A15 A5-A1O A4 A3	 AO HIGH PORT SELECT LOW PORT SELECT USART SELECT KOSEL

1	 1	 0	 1	 0	 0	 1	 1	 1	 0

1	 1	 0	 1	 1	 0	 1	 1	 1	 0

1	 1	 1	 0	 0	 0	 1	 1	 0

1	 I	 1	 0	 I	 0	 1	 1	 0	 I

1	 I	 1	 1	 0	 0	 0	 0	 1	 I

1	 I	 1	 1	 0	 1	 0	 1	 1	 1

1	 1	 1	 10	 1	 0	 1	 1

	

ALLOTHER STATES	 I	 1	 1	 1

fi

Ib

FIGURE 7-16 Truth table and map for SDK-06 port decoder. (a) Truth table. (b) Map.

the CS2 enable input of the PROM will be asserted when
M/lO Is low, as it is during an input or put operation.
Furthermore, you should see that the CS! input will be
asserted when All to A15 are all high. Now, to see
what addresses cause each of the PROM outputs to be
asserted, refer to thc truth table for the PROM in Figure
7!6a. From this figure you can see that to assert the
01 output low. A5 through A15 have to be high. A4has
to below. A3 has to be high, and A0 has to be low. I3HE
can be either high or low. Note, however, that only the
lower eight data lines. DO—D7. are connected to the
8279. Therefore, data must be Sent to or read from
the 8279 at an even byte address. In other words, data
must be sent as a byte to an even address or as the lower
byte of a word to an even address.

The system base address for this device then is FFE8H.
System address line Al is connected to the 8279 to select
one of two internal addresses in the device. Al low

selects one Internal address. and Al high selects the
other Internal address. Al low gives system address
FFE8H. and Al high gives system address FFEAH. These
are then the two addresses for the 8279 in this system.

According to the truth table in Figure 7-16a. the 02
output ol the decoder PROM will be asserted low when
A4 through A15 arc high and A3 and AO arc low. BIlE
can be either low or high. but, since only the lower eight
data lines are connected to the 825 IA USART, data must
be sent to or read from the device as bytes at an even
address. Again, system address line Al is used to select
one of two internal addresses in the 825 IA (Figure 7-8.
sheet 9). Al low selects one internal address and Al
high selects the other internal address. Therefore, the
two system addresses for this device arc FFFOU and
FFF2I-f.

Now, before discussing the 03 and 04 outputs of the
decodcr PROM. we will take a brief look at the two 8255

194	 CHAPTER SEVEN

parallel port devices they enable. These devices are
shown on sheet 5 of the schematics In Figure 7-8. Each
of these devices contains three 8-bit parallel ports and
a control register. System address lines Al and A2 are
used to address the desired port or register in the device.
Just as lower address lines are used to address the
desired internal location In a memory device. Note that
the lower eight data lines. DO—D7. are connected to the
A40 device, and the upper eight data lines are connected
to the A35 device. This is done so that you have several
input or output possibilities. You can read a byte from
or write a byte to an even-addressed port in device A40.
You can read a byte from or write a byte to an odd-
addressed port in device A35. You can read a word from
or write a word to a 16-bit port made up from an 8-bit
port from device A40 and an 8-bit port from device A35.
To input or output a word, both devices have to be
enabled. Now let's look at the decoder truth table to
determine what addresses enable the various ports in
these devices.

The A40 device will be enabled by the 03 output of
the 3625 decoder PROM if address lines A3 through A 15
are high and A0 Is low. Al and A2 are used to select
internal ports of the 8255A. Let's assume that these two
bits are 0 for the first address in the device. To select
the A port in the A40 8255A. address lines Al and A2
have to be low. The system address that will enable this
device and select the A port within it is FFF8H. Other
values of A2 and Al will select one of the other ports or
the control register in this device. Figure 7-16b shows
the system addresses for the ports and control register
in this 8255. Note that the ports in this device (A40) are
identified as port 2A, port 2B. and port 2C. These all
have even addresses because AO must be low for this
device to be selected.

The A35 8255A, which contains port IA. port lB. and
port IC, will be enabled by the 04 output of the decoder
PROM if A3 through A15 are high and the BHE line is
low. If this 8255A is being enabled for a byte read or
write, then the A0 Line will also be high. A2 and Al are
again used to address one of the ports or the control
register within the 8255A. A2 0 and Al = I will select
port IA in this 8255A. As shown in Figure 7-I6b. then.
the system address for port IA is FFF9H. Port lB will
be accessed with asystem address of FFFBH. port IC
will be accessed with a system address of FFFIDH. and
the internal control register will be accessed with a
system address of FFFFH.

As we said before. (he 8086 can input a 16-bit value
in one operation by enabling a port device on the lower
hail of the data bus and a port device on the upper half

of the data bus at the same time. When the 8086 on an
SDK-86 board execut,ts the instructIon sequence MOV
DX,FFF8H—lN AX.DX. both A0 and BHE will be low
during the IN instruction. As shown by the fifth line in
the truth table, this will cause both the 03 and the 04
outputs of the port decoder to be low. These signals will
enable both the A40 and A35 port devices. The byte of
data on port 2A will be input to the 8086 on the lower
half of the data bus, arid the byte of data on port LA will
be input to the 8086 on the upper half of the data bus.

Note in the truth table in Figure 7-16a that the 3625
PROM decoder will enable a port device only when the
specific address assigned to that device is sent out by
the 8086. This is sometimes called comp fete decoding
because all the address lines play a part in selecting a
device and one of its internal ports or registers. As we
show In Chapter 8. adding another decoder to produce
enable signals for more port devices is very easy In a
system which uses this complete decoding.

THE SDK-86 "OFF-BOARD" DECODER

Take a look at the off-board clrcuitrlj in zone AS on sheet
5 of the SDK-86 schematics. The purpose of this circuitry
is to produce the signal OFF BOARD whenever the 8086
sends out a memory or port address which does not
correspond to a device decoded on the board, The 'F
I3OARD signal will be asserted low if pin 4 of the A3
NAND gate is low or if pin 5 of the A3 NAND gate is low,
According to the truth table for the Al2 PROM in Figure
7-17. the 01 output will be low if the 8086 is doing a
memory operation and the address sent Out is not in
one of the ranges decoded for the onboard RAM or ROM.

In order for pin 4 of the A3 NAND gate to be low, both
pin 9 and pin 10 of the A3 NAND gate must be high.
Pin 10 will be high if the 8086 is doing an Input or
output operation llO/M from the 8286 inverting buffer
equals I). Pin 9 of the A3 NAND gate will be high if any
one of the A19 NAND gate inputs is low. Since system
address lines A5 through A15 are connected to the
Inputs of the 74LS 133 NAND gate. the signal to pin 9
of A3 will be high for any address less than FFEOH. in
other words, pin 4 of the A3 NAND gate will be asserted
low for any i/O operation in an address range not selected
by the A22 port decoder.

The OFF BOARD signal produced by the previously
discussed PROM and logic gates Is connected to an input
of a NANE) gate labeled A2 on sheet2of the schematics.
If OFF BOARD is asserted low, or INTA Is asserted low.
or 1-ILIJA is asserted low, the output of this gate will be
high. For now, all we are Interested in is the fact that If
OFF BOARD Is asserted low, a high will be applied to

PROM INPUTS PROM OUTPUT	 CORRESPONDING
(01)	 ADDRESS BLOCK

M/iO I A19 AlS I 417! A161 415! A14 I A13 1412
1 I	 i	 I o I o	 0	 0 I 0	 1 (INACTIVE)	 ON-OFFFH ON-BOARD RAM)

	

I 1 I	 I i I i I 1 I 1	 1 I	 1 (INACTIVE)	 FE000H-FEFFFH (ON-BOARD PROM)

1	 1	 1	 I	 1	 1	 1	 I	 1	 I (INACTIVE)	 FF000H-FFFFFH ON-BOARD PROM)

ALL OTHER STATES	 0 (ACTIVE)	 O1000H-FDFFFH (OFF-BOARD)

FIGURE 7-17 SDX-86 oU . board decoder PROM truth table.

- 27	 80& SYSTEM CONNECTIONS. TIMING. AND TROUBLESHOOTING	 195

pin 1 of the A3 NAND gate in zone A4 of the schematic.
if the DEN signal from the 8086 is also asserted low the
signal labeled BUFFER ON will be as,serted low. The DEN
signal from the 8086 will be asserted whenever the 8086
reads in data from a memory location or a port or when
it writes data to a memory location or a port. The
BUFFER ON signal produced here is used to enable the
8286 data bus buffers (A6 and A7) shown on sheet 4 of
the schematics. Now here's the point of all this.

In the next chapter we show you how to add another
I/O decoder and some other devices to the prototyping
area of an SDK-86 board. To drive these additional
devices, the address, data, and control buses must all
be buffered. The address bus on the SDK-86 board is
buffered by the 74S373 address latches shown on sheet
3 of the schematics. Data bus and control bus buffers
are not needed to drive the ROM, RAM, and port devices
that come with the SDK-86 board. To read data from or
write data to external devices, however, the data bus Is
buffered by two 8286s. shown as A7 and A6 on sheet 4
of the SDK-86 schematics, These two buffers are turned
on when the BUFFER ON signal, described in the
preceding paragraph, is asserted low. The 8286 buffers
are bidirectional. When these buffers are enabled, the
Data Transmit/Receive signal, DT/R. from the 8086 will
determine in which direction the buffers are pointed. If
IYF/R Is high, the buffers will be enabled to write data
to some external device. II DT/R is low, the buffers will
be enabled to read data In from some external device.

The control bus signals are buffered by an 8286 labeled
All and a 74LS244 labeled AS on sheet 4 of the SDK-
86 schematics. These buffers are permanently enabled
to send Out the control bus signals except during a
HOLD state, which we will explain later.

THE SDK-86 WAIT-STATE GENERATOR CIRCUITRY
Now that you know how the OFF BOARD signal is
produced on the SDK-86 board, we can explain the
operation of the WAIT-stale generator circuitry shown
on sheet 2 of the schematics.

In a previous section of the chapter we showed you
that if the RDY input of the 8086 is asserted low, the
8086 will Insert one or more WAIT States in the machine
cycle it is currently executing. Figure 7-lb shows how a
WAIT state is inserted in an 8086 machine cycle. During
a WAIT state, the information on the buses is held
constant. The stgnal levels on the buses at the start of
the WAIT State remain there throughout the WAIT state.
The main purpose of Inserting one or more WAIT states
in a machine cycle is to give an addressed memory device
or 1,0 device more time to accept or output data. In the
next major sectionf the chapter, we show you how to
determine whether a WAIT s tate is needed for a given
device with a given 8086 clock frequency. For now.
however, lets just see how the circuitry on the SDK-86
board causes the 8086 to insert a selected number of
WAIT states.

WAIT states are inserted by pulling the RDYI Input of
the 8284 clock generator IC low (Figure 7-8. sheet 2.
zone D51. The 8284 internally synchronizes the RDY1
input signal with the clock signal and sends the resultant
signal to the ROY input of the 8086. For the SDK-86.

the RDYI lnp't will be asserted low if all three inputs
of the Al .5 NAND gate shown In zone D5o1 the schematic
are high. Pin 10 of this device Is tied to +5 V. so it is
permanently high. Pin 11 of Al5 will be high if any of
the inputs of the NAND gate in zone D7 are asserted
low. Pin I of gate AIS will be low whenever the 8086
does an input or output operation. Pin 2 of gate AI5
will be low whenever the 8086 accesses a port or memory
location which is not decoded on the board. In other
words, with these connections, the selected number of
WAIT states will be inserted In each machine cycle when
the 8086 does a read from or a write to an on-board 110
device or when the 8086 does a read from or a write to
any device not decoded on the board. If jumper W39 is
installed on pin 13 of AlS, pin II of A15 will always be
high. The number of WAIT states selected by the W27—
W34 jumpers will be inserted for all read and write
operations.

The desired number of WAIT states to be inserted is
selected by putting a jumper between two pins in the
W27—W34 matrix shown In zone D3 (sheet 2) of the
schematic. If ajumper is Installed in the W27 position.
for example, no WAIT states will be inserted. If a jumper
is installed in the W28 position, one WAIT state will be
inserted. The pattern continues to Jumper W34, which
will cause seven WAIT states to be inserted in each
machine cycle. Here's how the WAIT-state generator
itself works.

The 74LS164 WAIT-state generator is an 8-bit shift
register. At the start of a machine Cycle, the RI). WR.
and INTA signals from the 8086 are all high. These three
signals being high will cause the A2 NAND gate in zone
C4 to assert the clear input, CLR. of the shift register.
The outputs of the shift register will then all below. One
of these lows will be coupled through a jumper and an
inverter to pin 9 of the A15 NAND gate we discussed
previously. This high on pin 9. together with a high on
pin 11, will cause the RDYI input of the 8284 to be
pulled low. However, WAIT states will not be inserted
unless RDYI remains low long enough. Now. whenR.D.
WR. or INTA goes low In the machine cycle, the CLR
input of the 74LS 164 shift register will go high, and the
shift register will lunction normally. The highs on the
INA and INB inputs will be loaded Onto the QA output
on the next positive edge of the clock. If th WAIT-state
jumper Is in the W27 position, then this high on the QA
output will, through the inverter and NAND gate, cause
the RDYI input of the 8284 to go high again. For thIs
case, the RDYI input goes high soon enough that no
WAIT states are inserted.

The high loaded into the 74LS164 shift register is
shifted one stage to the right by each successive clock
pulse. When the high reaches the juniper connected to
the A25 inverter, it will cause the RDYI Input of the
8284 to go high. The 8086 will then exit from a WAIT
state on the next clock pulse. The number of WAIT States
inserted in a machine cycle is determined by how many
stages the high has to be shifted before it reaches the
installed jumper.

To summarize all this, the 8086 will insert the selected
number of WAIT states in any machine cycle which
accesses any device not addressed on the board or any

196	 CHAPTER S€V[N

I/O device on the board. If jumper W39 is Inserted, the
selected number of WAIT states Will be inserted for any
onboard or off-board access. The purpose of inserting
WAIT states is to give (he addressed devIce more time
to accept or output data.

How the 8088 MicroprOcessor
Accesses Memory and Ports
Now that we have shown in detail how the 8086 accesses
memory and port devices, we can show you how the
8088 does it.

In Chapter 2 we mentioned that the 8088 is the CPU
used in the original IBM PC and the IEIM PC/XT. The
instruction set of the 8088 is identical to that of the
8086. and the registers of the two are the same, but
there are two major differences between the two devices.
First, the 8088 Instruction byte queue Is only 4 bytes
long instead of 6. Second, and more important. the 8088
memory is not divided into two banks as the 8086
memory is: it consists of a single bank of up to 1.048.576
bytes, as shown in Figure 7-18.

As you can see, the 8088 has only an 8-bit data bus.
DO—D7. All the memory devices and ports in an 8088
system are connected onto these eight lines. Addrcsa
lines A0 through AI are used with some decoders to
select a desired byte in memory. The 8088 does not
produce the BHE signal because it is not needed, This
single bank structure means that an 8088 can read or
write Only a byte at a time. Therefore, art 8088 must
always do two machine cycles to read or write a word.
The 8088 was designed with an 8-bit data bus so that
it would interface more easily with 8-bit memory devices
and i/O devices.

8086 Timing Parameters

In previous sections of this chapter. we used generalized
timing waveforms such as that in Figure 7-lb. These
diagrams are sufficient to show the sequence of activities
on the 8086 buses. However, they are not detailed
enough to determine, for example, whether a memory
device is fast enough to work In a given 8086 system
To allow you to make precise timing calculations, man

ADDRESS

FFFFFHLi
00003 H

00002 H

00001 H

C0000H

FIGURE 7-18 8088 memory structure.

facturers' data books give detailed timing waveforms
and lists of timing pa.-ameters for each microprocessor.
Complete timing information for the 8086 is contained
in the data sheet in Appendix A. Figure 7-19. pp. 198-9,
shows some timing waveforms and parameters for an
8086 minimum-mode read machine cycle.

As you look at Figure 7-19a, remember the 5-minute
freak-out rule. Most of the time there are only a very few
of these parameters that you need to wony about. In
most systems. for example. you don't need to worry
about the clock signal parameters. because an 8284
clock generator and a crystal will be used to produce the
clock signal. The frequency of the clock signal from an
8284 is always one-third the resonant frequency of
the crystal connected to it. The 8284 is designed to
guarantee the correct clock period, clock time low, clock
time high. etc. - as long as the correct suffix number part
is used. The 8284A, for example, can be used in an
8-MHz system. but a faster part. the 8284A-1, must be
used for a system where a 10-MHz clock is desired.

The edges of the clock signal cause operations in the
8086 to occur: therefore, as you can see in Figure
7-19a. the clock waveform Is used as a reference for
other times, The timing values for when the 8086
puts out MJlO. addresses, ALE, and control signals, for
example, are all specified with reference to an appro-
priate clock edge.

As we mentioned earlier, o of the main things you
use these diagrams and parameters for is to find out
whether a particular memory or port device is fast
enough to work in a system with a gIven clock frequency.
Here's an example of how you do this.

If you look in zone C5 of sheet 2 of the SDK-86
hematics. you will see that if Jumper W4 1 is installed.

the 8086 will receive a 4,9-MHz clock signal from the
8284. If jumper W40 is installed, the 8086 will receive
the 2.45-MHz PCLK signal from the 8284. Now, suppose
that you want to determine whether the 2716 EPROMs
on the SDK-86 board will rk correctly with no WAIT
states If you install jumper W4 1 to run the 8086 with
the 4.9-MHz clock.

First, you look up the access times for the 2716
EPROM in the appropriate data book. According to an
Intel data book, the 2716 has a maximum address to
output access time, t, of 450 ns. This means that if
the 2716 Is already enabled and its output buffers are
turned on. it will put valid data on its outputs no more
than 450 ns after an address is applied to the address
inputs. The 2716 data sheet also gives a chip enable to
output access time, t, of 450 ns. This means that If
an address is already present on the address inputs of
the 2716 and the output buffers are already enabled.
the 2716 will put valid data on its outputs no later than
450 ns after the CE input is asserted low. A third
parameter given for the 2716 in the data book Is an
output enable to output time, t 0 . of 120 ns maximum.
This means that if the device already has an address on
ItS address inputs, and its CE input is already asserted.
valid data will appear on the output pins at most 120
ns after the OE pin is asserted low.

Now that you have these three parameters for the
2716. the next step is to check whether each one of

&18 SYSTEM CONNECTIONS, TIMING, AND TROUBLESHOOTING 	 197

M(NIMUM MODE

CLX (8264A OUTPUT(

M/IO

j /s7 AJS-A/S

ALE

ROY (8284A INPUT(
SEE NOTE 4

READY (8086 INPUT) {

I AD-AD0

AD
READ CYCLE

(NOTE II
(WR,INTAV0,I	 -

DT/R

DEN

FIGURE 7-19 8086 minimum-mode timing waveforms and parameters. (a) Read
waveforms. (See also next page.)

these times is short enough for the device to work with
a 4.9-MHz 8086. In other words, does the 2716 put Out
valid data soon enough after it is addressed and enabled
to satisfy the requirements of the 8086? To determine
this, you need to look at both the 8086 timing parameters
and how the 2716 is addressed and enabled on the SDK-
86 board.

To make it easier for you to find the important
parameters for these calculations, we show in Figure
7l9b a simplified version of the timing diagram in
Figure 7-19a. You should try to do this simplification
mentally whenever you are faced with a timing diagram.
As shown by the timing ,, agram in Figure 7-19b. the
8086 sends Out MIlO. BI-IE. and an address during T
of the machine cycle. Note on the AD 15—ADO lines of the
timing diagram that the 8086 outputs this information
within a time labeled TCLAV after the failing edge ol the
clock at the start of T TCLAV stands for ttme from
clock low to address valid. According to the 8086
column of the data sheet shown in Figure 7l9c. the
maximum value of this time is 110 ns.

Now took further to the right on the ADI5-ADO lines,
You should see that valid data must arrive at the 8086
from memory a time TDVCL before the failing edge of
the clock at the end of T 3 . TDVCL stands for time data
must be valid before clock goes low. The data sheet
gives a value of 30 ns for this parameter.

The time between the end of the TCLAV interval and
the start of the TDVCL interval is the time available for
getting the address to the memory and for the tM of
the memory device. You can determine this time by
subtracting TCLAV and TDVCL from the time for three
clock cycles. With a 4.9-MHz clock, each clock cycle
will be 204 ns. Three clock cycles then total 612 os.
Subtracting a TCLAV of 110 ns and a TDVCL of 30 ns
leaves 472 ns available for getting the address to the
2716 and for its t- To help you visualize these times.
Figure 7-20a. p. 200, shows this operation in simplified
diagram form.

If you look at sheets I and3of the SDK-86 schematics,
you should see that the BHE signal and the A0—Al I
address information go from the 8086 through the

198	 CHAPTER SEVEN

CLK)8284A OUTPUT)

M.'IO

A19S6-A16/53

ALE

AD 1 5—ADO

RD

DT/ R

DEN

(b)

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

8086	 8086-1)PreIinjnary) 	 8086-2
SYMBOL	 PARAMETER	 UNITS

MN.	 MA*,	 MIN.	 MAX.	 MIN.	 MAX.

TCLCL	 CLK Cycle Period	 200	 500	 100	 500	 125	 500	 n

TOVCL	 Dt in SetUP Time	 30	 5	 20

TCLAV	 Addrex VImd DeIy	 10	 110	 10	 50	 10	 60	 nx

TCLRL	 Active DoIy	 10	 165	 10	 70	 10	 100	 ox
NOTE: Complete tinting infomnmation itt Appendix

(C)

FIGURE 7-1	 (continued) (b) Simplified read waveforms. (c) Timing
parameters. (Intel Corporation)

74S373 latches to get to the 2716s. The propagation
delay of the 74S373s then must be subtracted from the
472 ns to determine how much time is actually available
for the t of the 2716. The maximum delay of a 74S373
is 12 ns. As shown in Figure 7-20a. subtracting this
from the 472 ns leaves 460 ns for the t of the 2716.
Now, as we told you in a previous paragraph, the 2716
has a maximum t . qf 450 ns. Since 450 ns is less than
the 460 ns available, you know that the t of the 2716
is acceptable for the SDK86 operating with a 4.9-MHz
clock. You still, however. must check if the values of tc
and t0 for the 2716 are acceptable.

If you look at sheet I of the SDK-86 schematics, you
should see that the CE inputs of the 27 16s are connected
either to AU or to L3HE. The timing for these signals is
the same as that for the addresses in the preceding
section. As shown in Figure 7-20a. the time available
for ke of the 2716 will be 460 ns. Since the maximum

ECE of the 2716 is 450 ns, you know that this parameter
is also acceptable for an SDK-86 operating with a 4.9-
MHz clock.

The final parameter to check Is t0 of the 2716.
According to sheet 1 of the SDK-86 schematics, the OE
signals for the 2716s are produced by the 3625 decoder.
The signals comg to this decoder are Al2 through
A19, MIlO. and RD. Look at the 8086 timing diagram
in Figure 7-19b to see if you can determine which of
these signals arrives last at the 3625. You should find
that addresses and MJlO are sent out during T,. but RD
is not sent >ut until T.As indicated by the arrow from
the falling edge of the RD signal, RD going low causes
the address decoder to send an OE signal to the 2716
EPROMs. Since RD Is sent out so much later than
addresses, it will be the limiting factor for timing. RD
going low and the EPROM returning valid data must
occur within the time of states T 2 and T Now, according

8086 SYSTEM CONNECTIONS, TI'.IINC, AND TROUBLESHOOTING	 199

to the timing diagram. RD is sent out from the 8086
within a time TCLRL after the falling edge of the (lock
at the start of T 2 . From the data sheet, the maximin1
value of TCLRL is 165 Os. As we discussed before, the
8086 requires that valid data arrive on ADO through
AD 15 from memory a time TDVCL before the falling edge
of the clock at the end of T. The minimum value of
TDVCL from the data sheet is 30 ns. The time between
the end of the TCLRL interval and the start of the TDVCL
Interval is the time available for the OE signal to be
produced and for the OF signal to turn on the memory.
To determine the actual time available for these opera-
tions, first compute the time for states T 2 and T. For a
4.9-MHz clock, each clock cycle or state will be 204 rts,
so the two together total 408 ns. Then subtract the
TCLRL of 165 ns and the TDVCL of 30 Cs. As shown by
the simple diagram in Figure 72Ob, this leaves 213 ns
available for the decoder delay and the tOE of the 2716.
Checking a data sheet for the 3625 would show you that
It has a maximum CS2 to output delay of 30 ns. Subtract
this from the available 213 ns to see how much time is
left for the t, of the 2716. The result of this subtraction
Is 183 ns.

As we Indicated in a previous paragraph, the 2716
has a maximum t0 of 120 ns. Since this time is
considerably less than the 183 ns available, the 2716
has an acceptable t<IE value for operating on he SDK-86
board with a 4.9-MHz clock.

All three times for the 2716 are less than those
required by the 8086 for 5-MHz operation, so you know
that the devices will work correctly at 4.9 MHz without
Inserting a WAIT state. You could use a logic analyzer
as we described earlier in the chapter to verify the timing
on an actual SDK-86 board.

Here's a final point about calculating the time available
for tACC, t, and t of some device in a system. Suppose
that you want to add another pair of 2716 EPROMs in
the prototyping area of the SDK-86 board, and you want
to enable the outputs of these added devices with the
03 output of the 3625 ROM decoder on sheet I of the
schematics. The timing for these added devices wU be
the same as for the previously discussed 27l6s, except
that the data from the added devices must come back
through the 8286 buffers shown on sheet 4 of the SDK-
86 schematics. According to an 8286 data sheet, these
buffers have a maximum delay of 30 ns. This 30 ns
must be subtracted from the times available for t, t,
and tOE' If you look back at our calculations of the tIme
available for t in Figure 7-20a. for example, you will
see that we ended up with 460 ns available for t.
Subtracting the 30 ns of buffer delay from this leaves
only 430 ns, which Is considerably less than the n6axi-
mum tM of 450 ns for the 2716. This tells you that,
because of the buffer delay, the added 271 6s are not fast
enough to operate on an SDK-86 board with a 4.9-MHz
clock and no WAIT states. To take care of this problem,
the SDK-86 is designed so that any access to a memory
or t'O device "off board" will cause the selected number
of WAIT atates to he inserted In the machine cycle. For
our example here, selecting one WAIT state with jumper
W28 on sheet 2 will give another 20' ns for the data to
get from the 2716s to the 8086. This is more than

L.2.L' L±i
L

ICLAV ItO,,I	 1P0141J')	 2.,.	 rDVcL
TIME AVAILABLE FOP 2116
*006605 ACCESS TIMF -
Pr?,, - lS2,	 4jJ

1

ICLAL = ISA,,	 1P031525 30,, 	 ,	 TDVCL - 30,9

TIME AVAILABLE 106 2716
22•_ 03,9

(Al

fIGURE 7-20 Calculations of maximum allowable access
times for 4.9-MHz 8086. (a) Time for tACO and 1611 . (b)
Time for t112;.

enough time to compensate for the buffer delay, so the
added 2716s will work correctiy.

TROUBLESHOOTING A SIMPLE 8086-
BASED MICROCOMPUTER

Now that you have some knowledge of the software and
the hardware of a microcomputer system, we can start
teaching you how to troubleshoot a simple microcom-
puter system such as an SDK-86 board. For this section
assume that the microcomputer or microprocessor-
based instrument previously worked. Later sections of
this book will describe how the prototype of a micropro.
cessor-based instrument is developed.

The following sections describe a series of steps that
we have found effective In troubleshooting various mi-
crocomputer systems. The first point to impress on your
mind about troubleshooting a microcomputer is that a
systematic approach is almost always more effecilve
than random poking, probing, and hoping. You don't,
for example, want to spend 2 hours troubleshooting a
system and finall y find that the only problem is that the
power supply is putting out only 3 V instead of 5 V. lJse
the following list of steps or a list of your own each time
you have to troubleshoot a microcomputer: (1) identify
the symptoms. (2) make a careful visual and tactile
inspection. (31 check the power supply. (4) do a "signal
roll call," (5) systematically substitute socketed (Cs, and
(6) troubleshoot soldered-in ICs. The following para-
graphs describe each step.

Identify the Symptoms

Make a list of the symptoms that you find or those that
a customer describes to you. Find out, for example,
whether the symplom Is present Immediately when the

200	 CHAPTER SEVEN

power is turned on or whether the system must operate
for a while before the symptom shows up. If someone
else describes the symptoms to you, check them yourself.
or have that person demonstratC the symptoms to you.
This allows you to check If the problem Is with the
machine or with how the person is attempting to use
the machine.

Make a Careful Visual and Tactile Inspection

This step is good for preventive maintenance as well for
finding a current problem. Check for components that
have been or are excessively hot. When touching compo-
ncnts to see if any are too hot, do it gently, because a
bad IC can get hot enough to give a nasty burn if you
keep your finger on it too long.

Check to see that all ICs are firmly seated in their
sockets and that the lCs have no bent pins. Vibration
can cause lCs to work loose in their sockets. A bent pin
may make contact for a while, but after heating. cooling,
and vibration, it may no longer make contact, Also.
inexpensive IC sockets may oxidize with age and no
longer make good contact.

Check for broken wires and loose connectors. A thin
film of dust. etc.. may form on printed . circuit-board edge
connectors and prevent them from making dependable
contact. The film can be removed by gently rubbing the
edge connector fingers with a cleaning pad available for
this purpose. If the microcomputer has ribbon cables.
check to see if they have been moved around or stressed.
Ribbon cables have small Wires that are easily broken.
II you suspect a broken conductor in a ribbon cable,
you can later make an ohmmeter check to verify your
suspicions.

Check the Power Supply

From the manual for the microcomputer, determine
the power supply voltages. Check the supply voltage(s)
directly on the appropriate pins of some ICs to make
sure the voltage is actually getting there. Check with a
scope to make sure the power supplies do not have
excessive noise or ripple. One microcomputer that we
were called on to troubleshoot had very strange symp-
toms caused by 2-V peak-to-peak ripple on the 5-V
supply.

Do a Signal Roll Call

The next step is to make a quick check of some key
signals around the CPU of the microcomputer. If the
problem is a bad IC, this can help point you toward the
one that is bad. First, check it the clock signal is present
and at the right frequency. If not, perhaps the clock
generator IC is bad. If the microcomputer has a clock but
doesn't seem to be doing anything, use an oscilloscope to
check ii the CPU Is putting out control signals such as
RD. WP. and ALE. Also, check the least significant data
bus line to see if there is any activity on the buses. If
there is no activity on these lines, a comrncn cause is
that the CPU is stuck in a wait, hold, halt, or reset

condition by the failure of some TTL devices. To check
this out, use the manual to help you predict what logic
level should be on each of the CPU input control signals
for normal operation. The RDY input of the 8086, for
example, should be high for normal operation. If an
external logic gate falls and holds RDY low, the 8086
will go on inserting WAIT states forever, and the buses
will be held constant, If the 8086 HOLD input is stuck
high or the RST input is held high. the 8086 address/
data bus will be floating. Connecting a scope probe to
these lines will pull them to ground. so you will see them
as constant lows,

If there is activity on the buses. use an oscilloscope to
see if the CPU is putting out control signals such as RD
and WR. Also, check with your oscilloscope to see if
select signals are being generated on the outputs of the
ROM. RAM. and port decoders as the system attempts
to run Its monitor or basic program. If no select signals
are being produced, then the address decoder may be
bad or the CPU may not be sending out the correct
addresses,

After a little practice, you should be able to work
through the previously described steps quite quickly. If
you have not located the problem at this point, the
next step for . system with its ICs in sockets is to
systematically substitute known good lCs for those in
the nonworking system.

Systematically Substitute Socketed ICs

The easiest case of substitution is that where you have
two Identical microcomputers, one that works and one
that doesn't, and the iCs of both units are in sockets,
For this case you can use the working system to test the
lCs from the noriworking system. The trick here is to
do this in such a way that you don't end up with two
systems that do not work! Here's how you do it.

First of all, do not remove or insert any ICs with the
power on! With the power off, remove the CPU from the
good system and put it in a piece of conductive foam.
Plug the CPU from the bad system into the now empty
socket on the good board and turn on the power. If the
good system still works, then the CPU is probably good.
Turn off the power and put the CPU back in the bad
system. If the good system does not work with the CPU
from the bad system, then the CPU is probably bad.
Remove It from the good system and bend the pins so
that you know it is bad. If the CPU seems bad. you can
try replacing it with the CPU you removed from the good
system. If you do this, however. it Is important that you
keep track of which IC came from which system. To do
this, we like to mark each IC from the good system with
a w!de-tip, water-soluble marking pen. We can then
rebuild the good system by simply putting back all the
marked lCs. The marks on the ICs can easily be removed
with a damp cloth.

The procedure from here on is to keep testing ICs
from the bad system until you find all the bad ICs. Make
sure you turn the power off before you remove or insert
any ICs. Be aware that more than one IC may be bad. It
Is not unusual, for example, for an AC power line surge
to wipe Out several devices in a s ystem. We usually work

5(186 SYST(M CONN[CFIONS, TIMING. AND TROU8LESHOOT I "	 "01

our way Out from the CPU to address latches, buffers,
decoders, and memory devices, Often the specific symp-
toms point you to the problem group of ICs without your
having to test every IC in the system. If, for example.
the system accesses ROM but doesn't access RAM,
suspect the RAM decoder. If a system uses buffers on
the buses, suspect these devices. Buffers are high-
current devices, and they often fail.

Troubleshoot Soldered-in ICs

The approach described in the preceding paragraphs
works well if the system ICs are all In sockets and you
have two identical systems. However, since sockets add
to the cost and unreliability of a system, many small
systems put only the CPU and ROMs in sockets. This
makes your troubleshooting work harder but not Impos.
slble.

Again, if you have two ldentica systems, one that
works and one that doesn't work, you can attempt to
run the monitor or basic system program on each and
compare signals on the two. A missing or wrong signal
may point you to the bad IC or ICs.

If the system works enough to read some instructions
from ROM and execute them, you can replace the
monitor or basic system ROM with one that contains
diagnostic programs which test RAM and I/O devices. A
RAM test routine, for example, might attempt to write
all l's to each RAM location and then read each memory
location to see if the data was written correctly to
that location, If the data read back is not correct, the
diagnostic program can stop and In some way tndicate
the address that it could not write to. If a write of all l's
Is successful, then the test routine will try to write all
0's to each memory location. A port test routine might
Initialize a port for output and then write alternating
l's and 0's to the port over and over again. With an
oscilloscope you .ean see if the port device is getting
enabled and if the data Is getting to the output of the
port device. Another port test routine might try to read
a byte of data in from a port over and over so that you
can again see if the device is getting enabled and if the
data Is getting through the device to the system data
bus. The technique of using program routines to test
hardware is a very Important one that you will use
many times when you are working with microcomputer
systems..

Now, suppose that you have localized the problem to
a few ICs that are soldered in. If the problem is one that
occurs when the unit gets hot, you might try spraying
some cold spray on the ICs, one at a time, to see if you
can determine which one has a problem. If this does not
find the bad IC or the problem is not heat-related, what
you do next is replace these ICs one at a time until the
system works correctly. The point we want to stress here
is that the Cost of these few ICs is probably much less
than the cost of the time it would take you to determine -,
Just which IC is bad, if you do not have specialized test
equipment.

If you do not have special tools available to remove a
"through-hole mounted" IC from a printed-circuit board,
do not attempt to desolder pins with a hand-held solder

"slorper. Modern multliayer printed-circuit boards are
quite fragile, and these tools can slip and knock a trace
right off the board. Instead, use cutters with narrow
tips to Cut all the leads of the IC next to the body. Since
you are going to throw it out anyway. you don't care if
you destroy the IC. With the body of the IC out of the
way, you can then gently heat each pin individually and
use needle-nose pliers to remove it from the PC board.
If the hole fills with solder, heat it gently and insert a
small wooden toothpick until the solder cools. After you
replace each IC. power up the system and see if it now
works.

To remove "surface-mount" ICs, use a tool such as
that shown in Figure 7-21. This tool sends out a directed
blast of hot air which heats all the pins at the same time,
and allows the IC to be easily removed. To replace the
IC, you put some solder paste on the PC board pads for
the IC. place the IC carefully in position, and heat the
pins with another blast of hot air.

The techniques described iii the preceding sections
will enable you to troubleshoot many microcomputer
systems with a minimum of test equipment. However,
specialized test equipment Is available to speed up the
process and help find complex problems. The following
sections describe two of these instruments.

Equipment for Troubleshooting Microcomputers

LOGIC ANALYZER

A logic analyzer can be a powerful tool for debugging
difficult problems, but it is important [or you 10 have a
perspective on when to use an analyzer in troubleshoot-
ing simple systems that previously worked. Generally
you can use the techniques described in previous see-

FIGURE 7-21 Leister-Labor S hot'air contactless
desoldering and soldering tool for removing and
replacing leaded and surface mount components on PC
boards. (Courtesy Brian R. White Co. Inc., Uk,ah,
California.)

202	 CI-4APTtR SEVEN

.1

tions to find and fix a problem in less time than it would
take you to connect the logic analyzer. figure out what

.you should see in a trace, and determine If (he trace is
correct.

One of the main problems is that in a repair setting
you often don't have good documentation on an instru-
ment, so it is difficult to determine what the correct
trace should be. Anaiyzers such as the Tektronix 1230
allow you to store a trace from a functioning Instrument
in a reference memory. This trace can then be compared
with a trace from a nonfunctioning instrument. We have
found this feature very helpful In pointing to the source
of a problem.

The disassembly feature found in some analyzers is
also useful, because it allows you to determine if a
microcomputer-based Instrument is correctly fetching
and executing its basic control program.

Despite the minor difficulties, don't hesitate to use an
analyzer when the simple techniques don't seem to be
getting you anywhere.

OTHER MICROCOMPUTER
TROUBLESHOOTING EQUIPMENT

A logic analyzer is a very powerful troubleshooting
tool, but to use it effectively, you need some detailed
knowledge and a program listing for the system that you
are trying to troubleshoot. If you are working as a repair

technician and have to repair several different types of
microcomputer systems with poor documentation to
work from, most analyzers are not too useful. To make
your life easier in this case, "smart' Instruments such
as the Fluke 9010A Microsystem troubleshooter have
been created.

An you can see from the picture of the 90 bA in Figure
7-22, it has a keyboard. a display. and an "umbilical"
cable with an IC plug on the end. The unit also contains
a rninicassette tape recorder, For troubleshooting, the
901 OA is used as follows.

The microprocessor In a fully functioning unit is
removed, and the plug at the end of the cable is inserted
in its place. The learn function of the 9010A is then
executed. This function finds and maps ROM. RAM. and
I/O registers that can be written into and read from. It
also computes signatures (checksums) for blocks of
ROM. All these parameters are stored in the 9010A's
RAM and/or on a minicassette tape. The microprocessor
on a malfunctioning unit is then removed and the plug
at the end of the umbilical cable inserted in its place.
An automatic test function is then executed. In this
mode, the 9010A tests the buses, RAM. ROM. ports.
power supply, and clock on the malfunctioning system.
Any problem found, such as stuck nodes or adJaccnt
trace short circuits. is Indicated on the display. The
results of this test give some good hints as to the source
of the problem. Because of its built-in intelligence, the
9010A can be programmed to do other tests as well.

FIGURE 7 .22 Fluke 9010A microsystem troubleshooter. (John Fluke ffg. Co.,
lfl(

- 28	 8Oô SYSTEM CONNECTIONS, TIMING, AND TROUBLESHOOTING 	 2C

The point of an instrument such as the 9010A is that
with It you do not have to be intimately familiar with
the programming language and hardware detailq
of a simple microcomputer system In order to trouble-
shoot it.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms or concepts in
the fouowtng list, use the Index to find them in the
chapter.

Pin functions of 8086:
RD. WR, CLK. ALE, M/lO, LOCK. MN/MX, RESET,
NMI, INTR, BHE, DEN, DT'R

8086 RESET response

4aximum and minimum mode of 8086

8086 timing diagram interpretation

State. instruction cycle, machine cycle, WAIT state, RDY
signal

Bus activities during read/write

Logic analyzer use: external clock, internal clock, word
recognizer. trigger, trace

Bidirectional buffer

General functions: 8284, 8255A, 8251A, 8279, 2716.
2142

SDK-86 schematic: zones, plugs, Jacks. resistor
packs

Address decoding: ROM decoding. RAM decoding. port
decoding

Memoiymapped and direct 110

8086 memory banks

Timing parameters: t. tç. tOE. t. TCLAV, TCLRL.
TDVCL

8086 typical clock frequencies

Troubleshooting steps for a simple 8086-based micro-
computer

REVIEW QUESTIONS AND PROBLEMS
I. From what point on the	 waveIonn is thc st:-rt	 e. How many WAIT states can be inserted in a

of an 8086 State measuj	 machine cycle?
-	

.	 j Why would you want the 8086 to insert a WAIT-. Why are latches requiret 'U,: e !. .) ADI5 bu ii' 	
statean 8086 system?

3. What is the purpose of the ALE sIgnal in an 8086
system?

4. Descrl be the sequence of events on the 8086
data/address bus, the ALE line, th .s M./iO line,
and the RI) line as the 8086 fetches an Instruction
word.

S. What, logic levels will be on the 8086 RD. WR. and
M/lO lines when the 8086 is doing a write to a
memory location? A read from a port?

6. What is the major difference between an 8086
operating in minimum mode and an 8086 operatIng
in maximum mode?

7. Describe the response an 8086 will make when its
RESET (RST) input is asserted high.

8. Why are buffers often needed on the address, data.
and control buses in a microcomputer system?

9. a. How is an 8086 entered into a WAIT state?
b. At what point In a machine cycle does an 8086

enter a WAIT state?
c. What Information Is on the buses during a

WAIT state?
ci. How long isa WAIT state?

10. What are the functions of the 8086 DT/R and DEN
signals?

11. What does an arrow going from a transition on
one signal waveform to a transition on another tell
you?

12. Draw a block diagram of a simple logic analyzer
and briefly describe how it operates. Include in your
answer the function of the clock and the function
of the trigger.

13. What do you use for a logic anaiyzer clock
when you want to make detailed timing measure-
ments?

14. On what signal and what edge of that signal would
you clock a logic analyzer, and on what word would
you trigger to see each of the following in an 8086
system?
a. The sequence of addresses output after a

RESET.
b. The sequence of instructions read in after a

RESET. (Assume that the first instruction word
is 9CEAH.I

c. Both the addresses sent out and the words
read in.

204	 CHAPTER SEVEN

d. What clock qualifier would you use to see a
trace of oniy data read in from ports?

IS. How Is it possible for a logic analyzer to display
data that occurred before the trigger?

16. How are wire-wrap Jumpers indicated on a sche-
matic?

17. What is the meaning of 18 on a signal line in a
schematic?

18. Describe the two purposes of address decoders In
microcomputer systems.

19. A memory device has 15 address lines connected
to it and 8 data outputs. What Size words and how
many words does the device store?

20. Briefly describe the function of the 8255. 8251A.
and 8279 devices in the SDK-86 microcomputer
system.

21. A group of signal lines In a schematic has the
label 2ZB3 next to it. What Is the meaning of
this label?

22. What is the difference between a connector identi-
fled with a J and a connector identified with a P?

23. Describe the purpose of the many small capacitors
connected between and ground on microcom-
puter printed-circuit boards.

24. A 74LS 138 decoder has Its three SELECT inputs
connected to Al2, A13, and A14 of the system
address bus. it has G2A connected to A15, G2B
connected to RD. and GI connected to +5 V. Use
an address decoder worksheet to determine what
eight ROM address blocks the decoder outputs will
select. Why is RD used as one of the enables on a
ROM decoder?

25. Show a memory map for the ROMs in Problem 24.

26. Use an address decoder worksheet to help you draw
a Circuit to show how another 74LS 138 can be
Connected to select one of eight I-Kbyte RAMs
starting at address 800011.

27. Why are there actually many addresses that will
select one of the port devices connected to the port
decoder in Figure 7-12a?

28. Describe memory-mapped I/O and direct ['0.
Give the main advantage and main disadvantage
of each.

31. Why is some ROM put at the top of the address
space in an 8086 system?

32. a. Show the truth table you would use for a 3625
PROM decoder to produce CSI signals for
4K x 8 RAMs In an 8086 system. Assume the
first RAM starts at address 00000H. Don't
forget A0 and BHE.

b. Draw the circuit connections for the 3625
decoder PROM and for two of the 4K x 8 RAMs.

33. Use sheets 5 and 7 of the SDK-86 schematics to
help you determine for the SDK-86 what lqg levels
will be on BHE. AO to Al 9. M/lO. RD. and WR when
a word is read from ports FFFSH and FFF9H.
Are these ports memory-mapped or direct? What
instruction(s) would you use to do this read oper-
ation?

34. a. How Is the OFF BOARD signal produced on the
SDK-86 board?

b. Describe the purpose of the OFF BOARD signal.

35. Describe how the 8088 memory is configured. Why
doesn't the 8088 need a BHE signal?

36. By referrtng to the 8086 timing diagrams in Figure
7-19a and parameters in Appendix A. determine
for the 8086-2:
a. The maximum clock frequency.
b. The time between CLOCK going low and RD

going low.
c. The time for which memory must hold data on

the data bus after CLOCK goes low at the start
of T4.

d. The time that the lower 16•address bits remain
on the data bus after ALE goes low.

37. The 27128-25 is a 16K x 8 EPROM with a tAec of
250 ns maximum, a t of 250 ns maximum, and
a t of 100 ns maximum. Will this device work
correctly without WAIT states in an 8-MHz 8086-2
system with circuit connections such as those
in the SDK-86 schematics? Assume the address
latches have a propagation delay of 12 ns and the
decoder has a delay 0130 ns.

List the major steps you would take to trouble-
shoot a microcomputer system such as the SDK-
86 which previously worked. Assume all ICs are in
sockets.

39. Why is it important to check power supplies with
an oscilloscope?

40. Describe how you can keep from mixing up ICs29. a. Why is the 8086 memory set up as 2-byte-wide	
from a good system with those from a bad systembanks?
when substituting.b. What logic levels would you find on BIlE and

	

A0 when an 8086 is writing a byte to address 	 41. Write an 8086 rOutine to test the system RAM in
0427411? When ii is writing a word to 04274H 	 addresses 0020011 through O7FFFH.

	

c Describe the 8086 bus operations required to 	
42. Write a test routine to output alternating is andwrite a word to address 04373Ff.

Os to port FFFAH over and over. With this routine30. how does the circuitry on the SDK-86 make sure	 running, you could check with an oscilloscope to

	

that von cannot accidentally write a byte or word	 see if the port device is getting enabled and is
to ROM?	 outputting data.

84)86 SYSTEM CONNECTIONS, TIMING, AND TROUBLESHOOTiNG	 205

43. Describe the symptoms that an SDK-86 would show 	 c. None of the outputs of A29 in zone D7 of
for each of the following problems.	 schematic sheet 6 ever goes low.
a. Pin 8 of Al 5 in zone D5 of schematic sheet 2 	 d. Pin 6 of A3 in zone A5 of schematic sheet 5 is

Is stuck low,	 stuck low.
b. The reset key is stuck on.

206	 CHAPTER SEVEN

8086 Interrupts and
Interrupt Applications

Most microprocessors allow normal program execution
to be interrupted by some external signal or by a special
instruction in the program. In response to an interrupt.
the microprocessor stops executing its current program
and calls a procedure which "services" the interrupt. An
IRET Instruction at the end of the interrupt-service
procedure returns execution to the interrupted program.
This chapter introduces you to the 8086 interrupt types.
shows you how the microprocessors in the 8086 family
respond to interrupts, teaches you how 10 write inter-
rupt-service procedures, and describes how interrupts
are used in a variety of applications.

OBJECTIVES
At the conclusion of this chapter, you should be able to;

I. Describe the interrupt response of an 8086 family
processor.

2. Initialize an 8086 interrupt vector (pointer) table.

3. Write interrupt-service procedures.

4. Describe the operation of an 8254 programmabic
counter/timer and write the instructions necessary
to initialize an 8254 for a specified application.

5. Describe the operation of an 8259A priority interrupt
controller and write the instructions needed to ini-
tialize an 8259A for a specified application.

6. Call a BIOS procedure using a software interrupt.

8086 INTERRUPTS AND
INTERRUPT RESPONSES

Overview

An 8086 interrupt can come from any one of three
sources. One source is an external signal applied to
the norrrnaskable interrupt INMII input pin or to the
Interrupt (INTR) input pin. An Interrupt caused by a
signal applied to one of these Inputs Is referred to as a
hardware Interrupt.

A second source of an interrupt is execution of the
Interrupt Instruction. tNT. This is referred to as a
software interrupt.

The third source of an interrupt is some error condi-
tion produced in the 8086 by the execution of an
instruction. An example of this is the divide-by-zero
interrupt. If you attempt to divide an operand by zero,
the 8086 will automatically interrupt the currently exe-
cuting program.

At the end of each instruction cycle, the 8086 checks
to see if any interrupts have been requested. If an
interrupt has been requested, the 8086 responds to the
interrupt by stepping through the following serie€ of
major actions.

I. It decrements the stack pointer by 2 and pushes the
flag register on the stack.

2. It disables the 8086 INTR Interrupt input by clearing
the interrupt flag (IF) In the flag register.

3. It resets the trap flag (TF) in the flag register.

4. It decrements the stack pointer by 2 and pushes the
current code segment register contents on the stack.

5. It decrements the stack pointer again by 2 and
pushes the current instruction pointer contents on
the stack.

6. It does an IndIrect far jump to the start of the
procedure you wrote to respond to the interrupt.

Figure 8-1, p. 208. summarizes these steps in diagram
form. As you can see, the 8086 pushes t he flag register
on the stack. dfsable& the INTR input and the single-
step function, and does essentially an indirect far call
to the interrupt service procedure. An IRET Instruction
at the end of the interrupt service procedure returns
execution to the main program. Now let's see how the
8086 actually gets to the interrupt procedure.

Remember from Chapter 5 that when the 8086 does
a far call to a procedure. it puts a new value in the code
segmeni register and a new value in the instruction
pointer. For an indirect far call, the 8086 gets the new
values for CS and IP from four memory addresses.
Likewise, when the 8086 responds to an Interrupt. It
goes to four memon' locations to get the CS and IP
values for the Start of the interrupt-service procedure.
In an 8086 system. the first 1 Kbyte of memor . from
00000H to 003FFH. is set aside as a table for storing
the starting addresses of interrupt service procedures.
Since 4 bytes are required to store the CS and IP values

207

TYPE 32 POINTER.
080H	 IAVAJ LABLE)
O7FH	 TYPE31POINTER

(RESERVED)

I	 TYPESPOINTER
01414	 (RESERVED)

TYPE 4 POINTER:
010H	 OVERFLOW

TYPE 3 POINTER.
1-BYTE INT INSTRUCTION

TYPE 2 POINTER
008H	 . NON-MASKABLE

RESERVED INTERRUPT
POINTERS)27(

DEDICATED INTERRUPT
POINTERS (5)

I	 TYPE 1 POINTER
____________________	 004H	 SINGLE-STEP

	

CS BASE ADDRESS1I	 TYPE OPOINTER
IPOFFSET	 '1 j,	 DIVIDE ERROR

0001-4 I
I-	 16 BITS

FIGURE 8-2 8086 Interrupt-pointer table.

MAINLINE
PROGRAM	 INTERRUPT

PUSH FLAGS

	

	
SERVICE

EDURE
CLEAR IF PUSH REGISTERS
CLEAR IF
PUSH CS
PUSH IF
FETCH ISR ADDRESS

POPIP	 I
PoPCS	 I	 I

POP REGISTERS
RET

FIGURE -1 8086 interrupt response.

for each Interrupt service procedure, the table can
hold the starting addresses for u.i to 256 Interrupt
procedures. The starting address of an Interrupt service
procedure Is often called the interrupt vector or the
interrupt pointer, so the table is referred to as the
interrupt-vector table or the interrupt -pointer table.

Figure 8-2 shows how the 256 Interrupt vectors are
arranged In the table In memory. Note that the instruc-
tlon pointer value is put In as the low word of the vector.
and the code segment regIster Is put In as the high
word of the vector. Each doubleword Interrupt vector is
identified by a number from 0 to 255. Intel calls this
number the type of the interrupt.

The lowest five types are dedicated to specIfic Inter-
rupts, such as the divide-by-zero interrupt, the single-
step interrupt, and the nonmaskable interrupt. Later In
this chapter we explain the operation of these Interrupts
in detail. Interrupt types 5 to 31 are reserved by Intel

3FFI-4	 TYPE 255 POINTER:
3FCH	 (AVAILABLE)

AVAILABLE INTERRUPT J	
TYPE 33 POINTER	 4POINTERS (224)

(AVAILABLE)

for use In more complex microprocessors, such as the
80288, 80386, and 80486. In a later chapter we dlscus.c
some of these Interrupt types. The upper 224 Interrupt
types, from 32 to 255. are available for you to use for
hardware or software interrupts.

As you can see in Figure 8-2. the vector for each
interrupt type requires four memory locations. There.
fore, when the 8086 responds to a particular type
Interrupt, it automatically multiplies the type by 4 to
produce the desired address In the vector table. It then
goes to that address In the (able to get the starting
address of the interrupt service procedure. We will show
you later how you use instructions at the start of your
program to load the starting address of a procedure into
the vector table.

Now that you have an overview of how the 8086
responds to interrupts, we will discuss one type of
interrupt in detail and showyou how to write a procedure
to service that interrupt.

An 8086 Interrupt Response Example—Type 0

Probably the easiest 8086 interrupt to understand It
the divide-by-zero Interrupt, identified as type 0 Ic
FIgure 8-2. Before we get into the details of the type C
interrupt response, let's refresh your memory about how
the 8086 DIV arid IDlY Instructions work.

The 8086 DIV instruction allows you to divide a 16-
bit unsigned binary number in AX by an 8-bit unsigned
number from a specified register or memory location.
The 8-bit result (quotient) from this division will be left
in the AL register. The 8-bit remainder will be left in the
Al-I register. The DIV Instruction also allowsyou to divide
a 32-bit unsigned binary number In DX and AX by a 16-
bit number in a specified register or memory location.
The 16-bit quotient from this division Is left in the AX
register, and the 16-bit remainder is left In the DX
register. In the same manner, the 8086 IDlY instruction
allows you to divIde a 16-bit signed number in AX by an
8-bit signed number In a specified register or a 32-bit
signed number in DX and AX by a 16-bit signed number
from a specified register or memory location.

lithe quotient from dividing a 16-btt number is too
large to fit in AL or the quotient from dividing a 32-bit
number is too large to fit In AX. the result of the division
will be meaningless. A special case of this Is where an
attempt Is made to divide a 32-bit number or a 16-bit
number by zero. The result of dividing by zero is Infinity
(actually undefined), which Is somewhat too large to fit
In AX or AL. Whenever the quotient from a DIV or IDly
operation IS too large to fit in the result register. the
8086 will automatically do a type 0 interrupl. In response
to this Interrupt the 8086 proceeds as follows.

The 8086 first decrements the stack pointer by 2 and
copies the flag register to the stack. It then clears IF and
TF. Next, It saves the return address on the stack. To
do this, the 8086 decrements the stack pointer by 2.
pushes the CS value of the return address on the stack.
decrements the stark pointer by 2 again, and pushes
the lP value of tile return address on the stack, The
8086 then gets the starting address of the interrupt-
service procedure from the type 0 locatIons In the

208	 CHAPTER FIGHT

interrupt-vector table. As you can see in Figure 8-2. It
gets the new value for Cs from addresses 00002H and
00003H and the new value for IP from addresses 00000H
and 00001 H. After the starting address of the procedure
is loaded Into CS and IP. the 8086 then fetches and
executes the first Instruction of the procedure.

At the end of the interrupt-service procedure, an IRET
instruction Is used to return execution to the interrupted
program.
• The IRET instruction pops the stored value of IP off
the stack and increments the stack pointer by 2. It then
pops the stored value of CS off the stack and increments
the stack pointer again by 2. Finally, it restores the flags
by popping off the stack the values stored during the
Interrupt response and increments the stack pointer by
2. Remember from the previous paragraph that during
Its Interrupt response, the 8086 disables the INTR and
single-step interrupts by clearing IF and TF. If the INTR
Input and/or the trap Interrupt were enabled before the
interrupt, they will be enabled upon return to the
interrupted program. The reason for this is that flags
from the interrupted program were pushed on the stack
before IF and TF were cleared by the 8086 in tts interrupt
response, To summarize, then. IRET returns execution
to the Interrupted program and restores IF and TF to
the state they were in before the Interrupt. Now that we
have described the type 0 response, we can show you
how to write a program to handle this interrupt.

An 8086 Interrupt Program Example

DEFINING THE PROBLEM AND
WRITING THE ALGORITHM
In the last chapter we were working mostly with hard-
ware, so Instead of jumping directly into the program,
let's use this example to review how you go about writing
any program.

For the example program here, assume we have four
word-sized hexadecimal values stored in memory. We
want to divide each of these values by a byte-type scale
factor to give a byte-type scaled value. If the result of the
division is valid, we want to put the scaled value in an
array in memory. If the result of the division is invalid
(too large to fit in the 8-bit result register), we want to
put 0 in the array for that scaled value. Figure 8-3 shows
the algorithm for this program in pseudocode.

As shown in Figure 8-3a. the mainline part of this
program gets each (6-bit value from memory in turn
and divides that value by the 8hii scale factor. If
the result of the division is valid, it is stored in the
appropriate memory location: else a 0 is stored in the
memory location. Not indicated in the algorithm is how
we determine whether the quotient is valid or not.
With 8086 family microprocessors, a t ype 0 interrupt
procedure is a handy way to do this.

Remember from the preceding discussion that If the
result of the division is too large to fit in the quotient
register. AL. then the 8086 will do a t ype 0 Interrupt
Im mediately aftcr the divide instruction finishes. Figure
8-3b shows the algorithm for a procedure to service this
type 0 interrupt. The main function of this procedure
is to set ajiag which will be checked by the mainline

INITIALIZATION LIST

REPEAT
Get INPUT VALUE

Divide by scale factor
If result valid THEN

store result as scaled value
ELSE store zero

UNTIL all values scaled

(a)

Save registers
Set error flag

Restore registers
Return to mainline

Is

FIGURE 8-3 Algorithm for divide'by-zero program
example. (a) Mainline program. (b) Interrupt.ser-vice
procedure.

program. The flag in this case Is not one of the flags in
the 8086 flag register. The flag here is a bit In a mem-
ory loiation we set aside for this purpose. In the
actual program, we give this memory locatIon the name
BAD..DIV_FLAG. At the end of the interrupt-service
procedure, execution is returned to the interrupted
mainline program.

After the divide operatIon in the mainline program.
we check the value of the BAD_DIV_FLAG to determine
If the result of the division is valid, If the result of the
division was too large. then the 8086 wIll have done a
type 0 Interrupt, and the interrupt .servtce procedure
will have set the BAD_DIV_FLAG to a 1. If the result of
the division is valid, then the 8086 will not have done
the type 0 interrupt, and the HAD_DIV_FLAG will be 0.

This sequence of operations is repeated until all the
values have been scaled.

WRITING THE INITIALIZATION LIST

After you have worked out the data structure and the
algorithm for a program. the next step is to make an
initialization list such as the one shown in Chapter 3.
Here is a list for this program.

I. Initialize the Interrupt-vector table. In other words,
the starting address of our type 0 interrupt service
routine must be put in locations 00000FI and
00002H.

2. Set up the data segment where the values to be
scaled, the scale factor, the scaled values, and the
BAD_DIV_FLAG will be put.

3. Initialize the' data segment register to point to tile
base addrcss of the data segment containing the
values to he scaled.

4. Set up a stack to store the 11a and return address.

5. Initialize the stack segment and stack pointer reg-
isters.

6. Initialize a pointer to the start of the data to he
scaled, a counter to keep track of how many values
have been scaled, and a pointer to the Start of the
array where the scaled values are to be written.

80& INTERRUPTS AND INTERRUPT APPLIcATIONS	 209

2
3
4
5
6
7
8 0000
9 0000

10 0008
11 000C
12 0000
¶3 000K
14
15 0000
¶6 0000
17
18 0008
19
20
21
22 0000
23
24 0000
25
26 0000
27
28 0000
29 0003
30 0005
31 0008
32 000B
33
31.
35
36 0000
37 0010
38 0012
39 0019
40 0020
41 0023
42 0026
43 0029
44 0029
45 002F
46 0034
47 0036
48 0039
49 003C
50 003E
51 0043
52 0046
53 0047
54 0049
55 004A
56

;8086 MAINLINE PROGRAM F8-04A.ASM
;A8STRACT	 Program scales data values using division.
;PORTS	 : None used
;REGISTERS	 Uses CS,DS,ES,SS,SP,Sl.AX,BX.CS
;PROCEDURES : Uses BAD_DIV. a type 0 interrupt service procedure

Link mailine FB-04A.OBJ with procedure F8-04B.OSJ

DATA SEGMENT WORD	 PUBLIC
0035 085S 2011 1359	 INPUT_VALUES DW 003514, 08554, 20114, 1359H
04(00)	 SCALED_VALUES 08 4 OUP(0)	 Answers 05,ED,CO300
09	 SCALE_FACTOR 08 09
00	 BAD DIV_FLAG 09 0

DATA ENDS

STACK_SEG SEGMENT STACK
DV 100 DUP (0)	 Set up stack of 100 words
TOP STACK LABEL WORD	 Pointer to top of stack

STACK_SEG ENDS

PUBI.IC	 BAD_DIV_FLAG	 Make flag available to other modules

BET_PROC SEGMENT WORD PUBLIC
EXTRN BAD DIV:FAR	 Let asseetter know procedure BAD DIV

INT_PROC ENDS	 is in another asseetty module

C00E SEGMENT WORD PUBLIC
ASSIJ4E CS:C00E, DS:DATA, SS:STACK_SEG

START: NOV AX, STACK_SEG 	 initialize stack Segment
NOV SS, AX	 register
NOV SP, OFFSET TOP_STACK	 Initialize stack pointer
NOV AX, DATA	 Initialize data segment
NOV OS, AX	 register

;Store the address for the BAD_DIV routine at address 0000:0000
;Address 00000-00003 is where type 0 interrupt gets interrupt
;service procedure address. CS at 00002 & 00003, IP at 00000 & 00001

NOV AX, 0000
NOV ES, AX
NOV WORD PTR ES:0002, SEG BAD_DIV
NOV WORD PTR ES:0000, OFFSET BAD_DIV
NOV SI, OFFSET INPUT_VALUES ; Initialize pointer for input values
NOV BX, OFFSET SCALED_VALUES 	 Point BX at start of result array
NOV CX, 0004	 Initialize data value counter

NEXT: NOV AX, (Si) 	 Bring a value to AX for divide
DIV SCALE_FACTOR	 Divide by scale factor
CMP BAD_DIV_FLAG, 01	 If divide produced valid result
JWE OK	 then go save scaled value
NOV BYTE PTR IBNI, 00	 eLse load	 icaled value
JMP SKIP

OK:	 NOV IBX), AL	 Save scaled value
SKIP: NOV BAD_DIV_FLAG. 0	 Reset BAD_DIV_FLAG

ADD SI, 02	 Point at next input value location
INC BX	 Point at location for next result
L00P NEXT	 Repeat untiL all values done

STOP: NOP
C00E ENDS

END START
Ia I

64(0000)

88 0000s
8€ 00
BC OOCBr
88 0000s
BE 08

88 0000
8E CO
26: C7 06 0002 0000s
26: C7 06 0000 0000e
BE 0000r
88 0008r
89 0004
8804
F6 36 000Cr
80 3E 0000r 01
7506
Co 07 00
KB 03 90
88 07
CO 06 0000r 00
83 CO 02
43
(2 EU
90

FIGURE 8-4 8086 assembly language program for divide-by-zero example. (a) Mainline.
(See also next page.)

Once you have the algorithm and the initialization list
for a program. the ni-st step is to start writing the
instructions for the program. so flow lets look at the
assembl y language program for this problem.

ASSIMBI.Y 1.ANC;UAGE PROGRAM
AND INTERRUP1 PROCEDURE

Figure 84 shows our 8086 assembl y lartguage program
for I lie mainline arid for the t ype 0 interrupt service
procedure. You can use man y parts from these examples

when you write your own interrupt programs. Also, to
help refresh your memory of the PUBLIC and EXTRN
directives, we have written the mainline program and
I lie interrupt service procedure as two separate assembly
modules.

At the start of the mainline program in Figure 8-4a,
we declare a segme lit named I)ATA for the data that
the program will he working with. The WOR[) in this
statement tells the Iltiker. locator to locate this segment
on the lirst available even address. The PUBLIC in this
statement tells the linker that this segment can bejoined

210	 CHAPTER EIGHT

2
3
4
5
6
7
8 0000
9

10 0000
11
12
13
14 0000
15 0000
16
17 0000 50
18 0001 1E
19 0002 B8 0000s
20 0005 SE 08
21 0007 C6 06 0000e 01
22 000C 11
23 0000 58
24 000E CF
25 000F
26 000F
27

;8086 PROCEDURE F8-04B.ASI4 catted by the program F8-04A.ASM
;ABSTRACT: PROCEDURE BAD DIV

Services divide-by-zero interrupt (TYPE 0).
Sets the LSB of a memery location catted BAD_DIV_FLAG,
enables INIR, and returns execution to the interri.çted program

;DESTROYS: Nothing

DATA SEGMENT	 D PUBLIC
EXIRN BAD_DIV_FLAG:BYTE ; Let asseithter know BAD_DIV_FLAG

DATA ENDS	 is in another asseithty module

PUBLIC BAD_DIV	 ; Make procedure BAD_DIV available
to other assethty modules

lilT_PROC SEGMENT bARD PUBLIC Segment for interrupt service procedure
BAD_DIV PROC FAR	 Procedure for type 0 interrupt
ASS*14E CS:INT_PROC, OS:DATA

PUSH AX	 Save AX of interrupted program
PUSH OS	 Save OS of interrupted program
NOV AX, DATA	 Load Data Segnt register value
NOV DS, AX	 needed here
NOV BAD_DIV_FLAG, 01	 Set LSB of BAD_DIV_FLAG byte
POP OS	 ; Restore OS of interrupted program
POP AX	 Restore AX of interrupted program
IRET	 Return to next instruction in interrupted

BAD_DIV ENDP	 ; program
INT_PROC ENDS

£110
(b)

FIGURE 8-4 (continued) (b) Interrupt-service procedure.

together (concatenated) with segments of the same name
from other assembly modules. The Input values are
words, so we use a DW directive to declare these four
values. The scaled values will be bytes. so we use a DB
directive to set aside four locations for them. Remember
that the DUP(0) In the statement initializes the 4-byte
locations to all Os. As the program executes, the results
will be written Into these locations. SCALE_FACTOR
DB 09H Sets aside a byte location for tl'ie number by
which we are going to be dividing the input values. The
advantage of using aDB rather than an EQU directive
to declare the scale factor is that with a DB the value of
the scale factor can be held in RAM, where ii can be
changed dynamically in the program as needed. If you
use a statement such as SCALE_FACTOR EQU 09H to
Set a value, you have to reassemble the program to
change the value.

Part of the 8086 interrupt response Is essentially a far
call to the Interrupt service procedure. In any psogram
that calls a procedure, we have to Set up a stack to Store
the return address and parameters passed to and from
the procedure. The next section of the program declares
a stack segment called STACK_SEG. It also establishes
a pointer to the next location above the stack with the
statement TOP_STACK LABEL WORD. Remember from
the examples in Chapter 5 that this label is used to
initialize the stack pointer to the next location after the
(op of the stack.

The next two parts of the program are necessary
because we wrote the mainline program and (he inter-
rupt service procedure as two separate assembly mod-
ules. When the assembler reads through a source pro-
gram, It makes a symbol table which contains the
segment and offset of each of the names and labels used
In the program. Thestatement PUBLIC_BAD_DIV_FLAG
tells the assembler to Identify the name BAD_DIV_FLAG

29

as public. This means that when the object module for
this program is linked with some other object module
that declares BAD_DIV_FLAG as EXTRN, the linker will
be allowed to make the connection. Some programmers
say that the PUBLIC directive "exports" a name or label.

The other end of this export operation is to "import"
labels or names that are defined in other assembly
modules. For example, the statement EXTRN BAD_
DIV:FAR in our example program tells the assembler
that BAD_DIV is a label of type far and that BAD_DIV ts
defined in some other assembly module. The INT_PROC
SEGMENT WORD PUBLIC and INT_PROC ENDS state-
ments tell the assembler that BAD_DIV is defined in a
segment named INT_PROC. When the assembler reads
these statements. It will make an entry in its symbol
table for BAD_DIV and identify It as external. When the
object module for this program is linked with the object
module for , the program where BAD_DIV Is defincI. the
linker will fill in the proper values for the CS and IP of
BAD_DIV.

For the actual instructions of our mainline program.
we declare a 'ode segment with the statement CODE
SEGMENT WORD PUBLIC.

As usual, at the start of the code segment we use an
ASSUME statement to tell the assembler what logical
segments to use for code, data, and stack. After this
come the familiar Instructions for initializing the stack
segment register. the stack pointer register. and the
data segmcrit register.

The next tour instructions load the address of the
BAD_DIV interrupt-service procedure in the type 0
locations the interrupt-vector table. We load ES with
0000 so tiat we can use it as an Imaginary segmc"t
absolute ,ddres 00000H. Then we use the staternn
MOV WC'i ii) PTR ES:0000 OFFSET BAD_DIV to Ioa
the offst)f the interrupt-service procedure in memory

8086 INTl KRUPTS ANI) INT'KK'Jrl ArtLILAIIUF4) 	 LI

at 00000FI and 00(X) I H. The statement MOV WORD PTR
ES:0000 SEG BAD_DIV is used to load the segment
base address of BAD_DIV into memory at 00002H and
00003H. It is necessary to load the interrupt procedure
addresses in this way if you are using an SDK-86 bosrd
or using the MASM and Link programs on an IBM PC-
type machine.

Next, we initialize SI as a pointer to the first input
value and initialize BX as a pointer to the first of the
locations we set aside for the 8-bit scaled results. CX is
initialized as a counter to keep track of how many values
have been scaled.

Finally, after everything is initialized, we get to the
operations weset out to do. The statement MOVAX.ISII
copies an input value from memory to the AX register,
where It has to be for the divide operation. The DIV
SCALE_FAC'FOR instruction divides the number in AX
by 09H, the value we assigned to SCALE...YACTOR
previously with a DB directive. The 8-bit quotient from
this division will be put in AL, and the S-bit remainder
will be put in AH. If the quotient Is too large to fit in AL.
then the 8086 wIll automatIcally do a type 0 Interrupt.
For our program here, the 8086 will push the flags on
the stack, reset IF and TF, and push the return address
on the stack. It will then go to addresses 0000H and
0002H to get the IP and CS values for the start of
BAD_DIV. the procedure we wrote to service a type 0
interrupt. It will then execute the HAD_DIV procedure.
Now let's look at the procedure in Figure 8-4b and see
how it works,

The BAD_DIV procc. iure starts h ietflng the assem-
bler know that the nanc' BAD_DI\,., t"LAG represents a
variable of type byte nd that this variable Is thtined in
a segment called DA"A In -a . me other tEXTRr4 assembly
module. We also tell the se. 'r that the label BAD_
DIV should be made available l& ther assembly modules
(PUBLIC).

Next, we declare a logical seg'et.0 called INT_PR')(.
We could have put this procedure in the segment CODE
with the maInline program. Howeer, in system pro-
grams where there are many interrupt-service procc.
dures, a separate segment is usually set aside for them.
The statement BAD_DIV PROC FAR identifies the actual
start of the procedure and tells the assembler that both
the CS and IP values for this procedure must be saved.

Now, an Important operation to do at the start of any
Interrupt-service procedure Is to push on the stack any
registers that are used in the procedure. You can then
restore these registers by popping them off the stack
just before returning to the Interrupted program. The
interrupted program will then resume with its registers
as they were before the interrupt. In the procedure in
Figure 8-4b, we saved AX and DS. Since we use the
same data segment, DATA, In the mainline and in the
procedure, you may wonder why we saved DS. The point
is that an interrupt-service procedure should be written
so that it can be used at any point In a program. By
saving the DS value for the Interrupted program. this
interrupt-service procedure can be used in a program
section (hat does not use DATA as Its data segment.

The ASSUME statement tells the assembler the name
of the segment to use as a data segment. but remember

that It does not load the DS register with a value for the
start of that segment. The instructions MOV AX,DATA
and MOV DS.AX do this In our procedure.

Finally, we get to the whole point of this procedure
with the MOV BAD_DIV_FLAG,01 instruction. This
instruction simply sets the least significant bit of the
memory location we set aside with a DB directive at the
start of the mainline program. Note that in order to
access this variable by name, you have to let the assem-
bler know that it Is external, and you have to make sure
that the DS register contains the segment base for the
segment in which BAD_DIV_FLAG Es located.

To complete the procedure, we pop the saved registers
off the stack and return to the interrupted program.
The IRET instruction, remember, is different from the
regular RET instruction in that it pops the flag register
and the return address off the stack. Note in the program
in Figure 8-4b that the procedure must be "closed" with
an ENDP directive, and the segment must as usual be
closed with an ENDS directive.

Now let's look back in the mainline to see what it does
with this BAD_DIV_FLAG. Immediately after the DIV
instruction, the mainline checks to see if the BAD_
DIV_FLAG is set by comparing it with 01. If the BAD_
DIV_FLAG was not set by the type 0 interrupt-servIce
procedure, then a Jump is made to the MOV IBXLAL
instruction. This instruction copies the result of the
division in AL to the memory location in SCALED_VAL-
UES pointed to by BX. If BAD_DIV_FLAG was set by a
type 0 interrupt, then 0 is put in the memory location
In SCALED_VALUES and a Jump will be made to the
MOV BAD_DIV_FLAG,00 instruction, which resets the
BAD_DIV_FLAG. Since this Jump passes over the MOV
(T3XJ.AL Instruction, the invalid result of the division
will not be copied into one of the locations in
SCALED_VALUES.

After putting the scaled value or 0 in the array and
resetting the flag. we get ready to operate on the next
input value. The ADD Sl.02 instruction increments SI
by 2 so that it points to the next 16-bit value in
INPUT_VALUES. The INC BX Instruction points BX at
the next 8-bit location in SCALED_VALUES. The LOOP
instruction after these automatically decrements the CX
register by 1 and, if CX is not then 0, causes the 8086
to Jump to the specified label. NEXT.

The preceding section has shown you how to set U
an interrupt-pointer table, how to write an Interrupt-
service procedure, and how the 8086 responds to a type
0 interrupt. Now we can discuss some of the other types
of 8086 Interrupts.

8086 Interrupt Types

The preceding sections used the type 0 Interrupt as an
example of how the 8086 interrupts function. In this
section we discuss In detail the different ways an 8086
can be Interrupted and how the 8086 responds to each
ol these Interrupts. We discuss these in order. starting
with type 0, so that you can easily find a particular
discussion when you need to refer back to it. However,
as you read through this section. you should not attempt
to learn all the details of all the interrupt types at once.

212	 CHAPTER EIGHT

Read through all the types to get an overview, and
then focus on the details of the hardware-caused NMI
interrupt, the software interrupts produced by the INT
Instruction, and the hardware interrupt produced by
applying a signal to the INTR input pin.

DIVIDE-BY-ZERO INTERRUPT-TYPE 0

As we described in the preceding section, the 8086 will
automatically do a type 0 Interrupt if the result of a DIV
operation or an IIDIV operation is too large to fit in the
destination register. For a type 0 interrupt, the 8086
pushes the flag register on the stack, resets IF and TF.
and pushes the return address (CS and IP) on the stack.
It then gets the CS value for the start of the interrupt-
service procedure from address 00002H in the Interrupt.
pointer table and the IP value for the start of the
procedure from address 00000H in the interrupt pointer-
table.

Since the 8086 type 0 response is automatic and
cannot be disabled In any way, you have to account for
it in any program where you use the DIV or IDly
instruction. One way is to in some way make sure the
result will never be too large for the result register. We
showed one way to do this in the example program in
Figure 5-27b. In that example, you may remember, we
first make sure the divisor is not zero, and then we do
the divisioji In several steps so that the result of the
division will never be too large.

Another way to account for the 8086 type 0 response
is to simply write an interrupt-service procedure which
takes the desired action when an invalid division occurs.
The advantage of this approach is that you don't have
the overhead of a more complex division routine in your
mainline program. The 8086 automatically does the
checking and does the interrupt procedure only if there
is a problem.

SINGLE-STEP INTERRUPT—TYPE 1

In a section of Chapter 3 on debugging assembly lan-
guage programs, we discussed the use of the single-step
feature found in some monitor programs and debugger
programs. When you tell a system to single-step. it will
execute one instruction and stop. You can then examine
the contents of registers and memory locations, If they
are correct, you can tell the system to goon and execute
the next instruction. In other words, when in single.
step mode, a system will stop after it executes each
instruction and wait for further direction from you. The
8086 trap flag and type I interrupt response make it
quite easy to Implement a single-step feature In an 8086-
based system.

If the 8086 trap flag Is Set, the 8086 will automatically
do a type I Interrupt after each instruction executes.
When the 8086 does a type I interrupt. it pushes the
flag register on the stack, resets TF and IF. and pushes
the CS and IP values for the next instruction on the
slack. It then gets the CS value for the start of the type
I interrupt-service procedure from address 0000611 and
it gets the IP value for the start of the procedure from
address 00004H.

The tasks Involved In implementing single stepping

are: Set the trap flag. write an interrupt-service proce-
dure which saves all registers on the stack, where they
can later be examined or perhaps displayed on the CRT.
and load the starting address of the type 1 interrupt-
service procedure into addresses 00004H and 00006F1,
The actual single-step procedure will depend very much
on the system on which it Is to be implemented. We do
not have space here to show you the different ways to
do this. We will. houever. show you how the trap flag Is
set or reset, because this is somewhat unusual,

The 8086 has no instructions to directly set or reset
the trap flag. These operations are done by pushing the
flag register on the stack, changing the trap flag bit to
what you want it to be, and then popping the flag
register back off the stack. Here Is the instruction
sequence to set the trap flag.

PUSHF	 Push flags on stack
MOV BP,SP	 Copy SP to BE' for use as index
OR WORD PTRIBP+0J,O100H

Set TF bit
POPF	 Restore flag register

To reset the trap flag. simply replace the OR instruction
in the preceding sequence with the instruction 4ND
WORD PTR{BP+Ol. OFEFFI-I.

NOTE: We have to use tBP + 0) because BR cannot
be used as a pointer without a displacement. See
Figure 3-8.

The trap flag is reset when the 8086 does a type I
interrupt, so the single-step mode will be disabled during
the interrupt-service procedure.

NONMASK4 BLE INTERRUPT—TYPE 2

The 8086 will automatically do a type 2 interrupt
response when it receives a low-to-high transition on its
NMI input pin. When it does a type 2 interrupt, the 8086
will push the flags on the stack, reset TF and IF.
and push the CS value and the IP value for the next
instruction on the stack, It will then get the CS value
for the Start of the type 2 interrupt-service procedure
from address 0000A}l and the IP value for the start of
the procedure from address 00008H.

The name nonmaskable given to this input pin on
the 8086 means that the type 2 interrupt response
cannot be disabled (masked) by any program instruc-
tions. Bccause this input cannot be intentionally or
accidentally disabled, we use it to signal the 8086 that
some condition in an external system must be taken
care of. We could, for example, have a pressure sensor
on a large steam boiler connected to the NMI input. If
the pressure goes above some preset limit, the sensor
will send an interrupt signal to the 8086. The type 2
interrupt-service procedure for this case might turn off
the fuel to the boiler, open a pressure-relief valve, and
sound an alarm.

Another common use of the type 2 interrupt is to save
program data in case of a sjstem power failure. Some
external circuitry detects when the ac power to the
system fads and sends an interrupt signal to the NM!

808k INTERRUPTS AND INTERRUPT APPLICATIONS 	 213

Input. Because of the large filter capacitors In most
power supplies, the dc system power will remain for
perhaps 50 ms after the ac power is gone. This is
more than enough time for a type 2 interrupt-service
procedure to copy program data to some RAM which has
a battery backup power supply. When the ac power
returhs. program data can be restored from the battery-
back'd RAM, and the program can resume execution
where it left off. A practice problem at the end of the
chapter gives you a chance to write a simple procedure
for this task.

B:AKpOINT INTERRUPT-TYPE 3

The type 3 interrupt is produced by execution of the
tNT 3 instruction. The main use of the type 3 interrupt
Is to Implement a breakpoint (unction in a system.
In Chapter 4 we described the use of breakpoints in
debugging assembly language programs. We hope that
you have been using them in debugging your programs.
When you insert a breakpoint, the system executes the
instructions up to the breakpoint and then goes to the
breah procedure. Unlike the single-step feature,
which stops execution after each instruction, the
breakpoint feature executes all the Instructions up to
the inserted breakpoint and then stops execution.

When you tell most 8086 systems to Insert a breakpoint
at some point in your program, they actually do it
by temporarily replacing the Instruction byte at that
address with CCH, the 8086 code for the INT 3 instruc-
tion. When the 8086 executes this INT 3 instruction. It
pu:hes the flag register on the stack, resets TF and IF,

pushes the CS and IP values for the next mainline
..truction on the stack. The 8086 then gets the CS

',alue of the startof the type 3 interrupt-service procedure
from address 0000EH and the IP value for the procedure
from address 0000CU. A breakpoint interrupt-service
procedure usually saves all the register contents on the
stack. Depending on the system. it may then send
the register contents to the CRT display and wait for the
next command from the user, or in a simple system It
may just return control to the user. In this case an
Examine Register command can be used to check if the
register contents are correct at that point In the program.

OVERFLOW INTERRUPT-TYPE 4

The 8086 overflow flag (OF) will be set if the signed
result of an arithmetIc operation on two signed numbers
is too large to be represented In the destination register
or memory location. For example, if you add the 8-bit
signed number 01101 100 (108 decimal) and the 8-bit
signed number 01010001 (81 decimal), the result will
be 10111101 (189 decimal). This would be the correct
result if we were adding unsigned binary numbers, but
it is not the correct signed result. For signed operations.
the I in the most significant bit of the result indicates
that he result is negative and in 2's complement form.
The result. 10111101. then actually represents –67
decimal, which Is obviously not the correct result for
adding + 108 and ^89.

There are two major ways to detect and respond to an

overflow error in a program. One way is to put the
Jump II Overflow instruchon, JO. immediately after the
arithmetic instruction. If the overflow (lag is set as a
result of the arithmetic operation. execution will Jump
to the address specified in the JO instruction. At this
address you can put an error routine which responds
to the overflow in the way you want.

The second way of detecting and responding to an
overflow error is to put the Interrupt on OvefJlow instruc-
tion. INTO, immediately after the arithmetic instruction
in the program. lithe overflow flag Is riot set when the
8086 executes the INTO Instruction, the Instruction will
simply function as an NOP. However, if the overflow flag
is set, indicating an overflow error, the 8086 will do a
type 4 Interrupt after It executes the INTO instruction.

When the 8086 does a type 4 interrupt. It pushes the
flag register on the stack, resets TF and IF, and pushes
the CS and IP values for the next Instruction on the
stack. It then gets the CS value for the start of the
interrupt-service procedure from address 00012H and
the IP value for the procedure from address 0001OH.
Instructions in the interrupt-service procedure then
perform the desired response to the error condition. The
procedure might, for example set a "flag" in a memory
location as we did in the BAD_DIV procedure in Figure
8-4b. The advantage of using the INTO and type 4
Interrupt approach is that the error routine is easily
accessible from any program.

SOFTWARE INTERRUPTS-TYPES 0 THROUGH 255

The 8086 INT instruction can be used to cause the 8086
to do any one of the 256 possible interrupt types.
The desired interrupt type is specified as part of the
instruction. The instruction INT 32, for example, will
cause the 8086 to do a type 32 interrupt response. The
8086 will push the flag register on the stack. reset TF
and IF. and push the CS and IP values of the next
instruction on the stack. It will then get the CS and IP
values for the start of the interrupt-service procedure
from the interrupt-pointer table In memory. The IP value
for any interrupt type Is always at an address of 4 times
the interrupt type, and the CS value is at a location two
addresses higher. For a type 32 interrupt, then, the IP
value will be put at 4 x 32 or 128 decimal (SOH). and
the CS value will be put at address 82H in the interrupt-
vector table.

Software interrupts produced by the INT instruction
have many uses. In a previous section we discussed the
use of the INT 3 instruction to insert breakpoints
in programs for debugging. Another use of software
interrupts is to test various interrupt-service proce-
dures. You could, for example. use an INTO instruction
to send execution to a divide-by-zero Interrupt-service
procedure without having to run the actual division
program. As another example, you could use an INT 2
instruction to send execution to an NM! interrupt-
service procedure. This allows you to test the NMI
procedure without needing to apply an external signal
to (he NMI input of the 8086. In a later section of the
chapter. we show an example of another important
application of software interrupts.

214	 CHAPTER EIGHT

INTERRUPT AND
TYPE TO 8088

ADO
	 DO

	
lAO

INTERRUPT
IN PUTS

AOl
	 07

	 IR7
INTA
	 tNT

INTA
IN TA

FIGURE 8-5 Block diagram showing an 8259 connected to an 8086.

INTR INTERRUPTS—TYPES 0 THROUGH 255

The 8086 INTR input allows some external signal to
interrupt execution of a program. Unlike the NM! input,
however, INTR can be masked (disabled) so that it
cannot cause an interrupt. If the interrupt flag (IF) is
cleared, then the !N'FR Input is disabled. IF can be
cleared at any time with the Clear Interrupt instruction,
CLI. If the interrupt flag is set, the INTRinput will be
enabled. IF can be set at any time with the Set Interrupt
instruction, STI.

When the 8086 is reset, the interrupt flag is automati-
cally cleared. Before the 8086 can respond to an Interrupt
signal on its INTR input. you have to set IF with an STI
Instruction. The 8086 was designed this way so that
ports, timers, registers. etc., can be initialized before
the INTR input Is enabled. In other words, this allows
you to get the 8086 ready to handle interrupts before
letting an interrupt in. just as you might want to get
yourself ready in the morning with a cup of coffee before
turning on the telephone and having to cope with the
interruptions it produces.

Remember that the Interrupt flag (IF) is also automati-
cally cleared as part of the response of an 8086 to an
Interrupt. This is done for two reasons. First, it prevents
a signal on the INTR input from interrupting a higher.
priority interrupt-service procedure in progress. How-
ever, if you want another INTR input signal to be able
to interrupt an interrupt procedure in progress. you can
reenable the INTR input with an STI Instruction at any
time.

The second reason for automatically disabling the
INTR input at the start of an INTR interrupt-service

procedure is to make sure that a signal on the INTR input
does not cause the 8086 to interrupt itself continuously.
The INTR input is activated by a high level. In other
words, whenever the INTR input is high and INTR is
enabled, the 8086 will be interrupted. If INTR were not
disabled during the first response, the 8086 would be
continuously interrupted and would never get to the
actual interrupt-service procedure.

The IRET instruction at the end of an interrupt-service
procedure restores the flags to the condition they 'were
in befort the procedure by popping the flag register off
thestack. This will reenable the INTR Input. If a high.
level signal is still present on the INTR input, It will
cause the 8086 to be interrupted again. If you do not
want the 8086 to be interrupted again by the same input
signal. you have to use external hardware to make sure
that the signal is made low again before you reenable
INTR with the STI instruction or before the IRET from
the INTR service procedure.

When the 8086 responds to an INTR interrupt signal.
Its response is somewhat different from its response to
other interrupts. The main difference is that for an INTR
interrupt the interrupt type is sent to the 8086 from
an external hardware device such as the 8259A priority
Interrupt controller, as shown in Figure 8-5. We discuss
the 8259A in detail later in the chapter. but here's an
introduction.

When an 8259A receives an interrupt signal on one of
its IR inputs, it sends an interrupt request signal to the
INTR input of the 8086. If the INTR Input of the 8086
has been enabled with an STI instruction, the 8086 will
respond as shown by the waveforms in Figure 8-6.

The 8086 first does two interrupt-acknowledge ma-

T	 T	 T	 T ITI T,	 j	 T3	 1'

ALE _,[\FROM 8086

INTA
F ROM 9086 TO\-_________.__'	 t_______f -

AO0-AD15 D.OAT

FIGURE 8-6 8086 interrupt-acknowledge machine cycles.

8086 INTERRUPTS AND INTERRUPT APPLICATIONS	 215

chine cycles, as shown in Figure 8-6. The purpose of
these two machine cycles is to get the interrupt type from
the external device. At the start of the first infrrrupt-
acknowledge machine cycle, the 8086 floats the data
bus lines, AtO—ADl5, and sends out an interrupt-
acknowledge pulse on its INTA output pin. This pulse
essentially tells the 8259A to "get ready." During the
second interrupt-acknowledge machine cycle, the 8086
sends out another pulse on Its INTA output pin. In
response to this second INTA pulse, the 8259A puts the
interrupt type (number) on the lower eight lines of the
data bus, where it is read by the 8086.

Once the 8086 receives the interrupt type, it pushes
the flag register on the stack, clears TF and IF. and
pushes the CS and IP values of the next instruction on
the stack. It then uses the type it read in from the
external device to get the CS and IP values for the
interrupt-service procedure from the interrupt-pointer
table In memory. The IP value for the procedure will be
put at an address equal to 4 tImes the type number, and
the CS value will be put at an address equal to 4 times
the type number pIus 2, Just as is done for the other
interrupts.

The advantage of having an external device insert the
desired interrupt type is that the external device can
"funnel" interrupt signals from many sources into the
lNTRpt pin on the 8086. When the 8086 responds
with INTA pulses, the external device can send to the
8086 the interrupt type that corresponds to the source
of the Interrupt signal. As you will see later, the external
device can also prevent an argument if two or more
sources send interrupt signals at the same time.

PRIORITY OF 8086 INTERRUPTS

As you read through the preceding discussions of the
different interrupt types, the question that may have
occurred to you is, What happens if two or more inter-
rupts occur at the same time? The answer to this
question is that the highest-priority interrupt will be
serviced first, and then the next-highest-priority inter-
rupt will be serviced. Figure 8-7 shows the priorities of
the 8086 interrupts as shown In the Intel data book.
Some examples will show you what these priorities
actually mean.

As a first example, suppose that the INTR Input
is enabled, the 8086 receives an INTR signal during
execution of a Divide instruction, and the divide opera-
tion produces a divide-by-zero interrupt. Since the inter-
nal interrupts__such as divide error, INT, and lN'FO -
have higher priority than INTR, the 8086 will do a divide
error (type 0) interrupt response first. Part of the type 0

INTERRUPT	 PRIOR77

DIVIDE ERROR INT n, INTO	 HIGHEST
NMI

INTR

[LE-STEP	 LOWEST

FIGURE 8-7 Priority of 8086 interrupts. (Intel
Corpora(,on)

interru response is to clear IF. This disables the INTR
input and prevents the INTR signal from interrupting
the higher.priority type 0 interrupt-servIce procedure.
An IRET instruction at the end of the type 0 procedure
will restore the flags to what they were before the type
0 response. This will reenable the INTR input, and the
8086 will do an INTR interrupt response. A similar
sequence of operations will occur if the 8086 Is executing
an INT or INTO instruction and an interrupt signal
arrives at the INTR input.

As a second example of how this priority works.
suppose that a rising-edge signal arrives at the NMI
input while the 8086 is executing a DIV instruction,
and that the division operation produces a divide error.
Since the 8086 checks for internal interrupts before It
checks for an NM! interrupt, the 8086 will push the
flags on the stack, clear TF and IF, push the return
address on the stack, and go to the start of the divide
error (type 0) service procedure. However, because the
NM! Interrupt request is not disabled, the 8086 will then
do an NMI (type 2) interrupt response. In other words.
the 8086 will push the flags on the stack, clear TF and
IF, push the return address on the stack. and go execute
the NM! interrupt-service procedure. When the 8086
fInishes the NMI procedure, it will return to the divide
error procedure, finish executing that procedure, and
then return to the mainline program.

To finish our discussion of 8086 interrupt priorities,
let's see how the single-step (trap. or type 1) interrupt
fits in, If the trap flag is set, the 8086 will do a type I
interrupt response after every mainline instruction.
When the 8086 responds to any Interrupt, however, part
of its response is to clear the trap flag. This disables the
single-step function, so the 8086 will not normally
single-step through the instructions of the interrupt-
service procedure. The trap flag can be set again in the
single-step procedure if single-stepping is desired in the
interrupt-service procedure.

Now that we have shown you the different types of
8086 Interrupts and how the 8086 responds to each, we
will show you a few examples of how the 8086 hardware
interrupts are used. Other applications of interrupts
will be shown throughout the rest of the book.

HARDWARE INTERRUPT APPLICATIONS

Simple Interrupt Data Input

One of the most common uses of interrupts Is to relieve
a CPU of the burden of polling. To refresh your memory,
polling works as follows.

The strobe or data ready signal from some external
device is connected to an input port line on the micro-
computer. The microcomputer uses a program loop to
read and test this port line over and over until the data
ready signal Is found lobe asserted. The microcompuier
then exits the polling loop and reads in the data from
the external device. Data can also be output on a polled
basis.

The disadvantage ol polled input or output is that
while the microcomputer is polling the strobe or data

216	 CHAPTER EiGHT

ready signal, it cannot easily be doing other tasks. In
systems where the microcomputer must be doing many
tasks, polling Is a waste of time, so interrupt input and
output is used. In this case the data ready or strobe
signal is connected to an interrupt input on the micro-
computer. The microcomputer then goes about doing
its other tasks until it is interrupted by a data ready
signal from the external device. An interrupt-service
procedure can read in or send out the desired data in a
few microseconds and return execution to the inter-
rupted program. The input or output operation then
uses only a small percentage of the microprocessor's
time.

For our example here, we will connect the key-pressed
strobe to the NMI interrupt input of the 8086 on an SDK-
86. The NMI Input is usually reserved for responding to
a power failure or some other catastrophic condition.
However, since we are not expecting any catastrophic
conditions to befall our DK-86, we choose to use this
input because it does not require an external hardware
device to insert the interrupt type as does the INTR
input.

Sheet 2 of the SDK-86 schematics In Figure 7-8 shows
the circuitry normally connected to the NMI input. This
circuitry is designed so that you can produce an NM!
interrupt by pressing a key labeled INTR on the hex
keypad. When this key is pressed, the input of the
74LS 14 inverter will be made low, and the output of the
inverter will go high. The low-to-high transition on
the NMI input causes the 8086 to automatically do an
NMI (type 2) interrupt response.

Figure 8-8 shows how we modified the circuitry for
our example here. We removed R22, a 110-fl resistor,
and C33. a 1-1iF capacitor, so that the keypad switch
can no longer cause an interrupt. We then connected
an active low strobe line from an ASCII-encoded keyboard
directly to the Input ofA2l, the 74LS14 inverter. When
a key on the ASCII keyboard is pressed, the keyboard
circuitry will send out te ASCII code for the pressed
key on its eight parallel data lines and it will assert the
key-pressed strobe line low. The key-pressed strobe going
low will cause the NMI input of the 8086 to be asserted
high. This will cause the 8086 to do a type 2 interrupt.

ASCII	 PORT
KEYBOARD	 FFF8H	 8086

I	 ool	 Ioo	 I	 IADO

8255
P2A ________

07	 A07

KP

S2
-I-

rO —
.1. INTR

FIGURE 8-8 Circuit modifications for SDK-86 N'1I input.

Now let's look at the software considerations for this
interrupt example.

The software considerations are very similar to those
for the divide-by-zero example in a previous section. As
shown in Figure 8-9a, p. 218, the mainline program for
this example consists mostly of a walk through an
initialization list. First, assuming that you are going to
read in the ASCII characters from the keyboard and put
them in an array in memory, you need to set up a data
segment for the array, set up the array, and declare any
other variables you are going to use in the program. The
statement ASCII_POINTER OW OFFSET ASCILSTRING
in the data segment In Figure 8-9a sets aside a word
location in memory and Initializes that location with
the offset of the start of the array we declared to put the
ASCII characters in. In the procedure we get this pointer,
use it to store a character, and Increment it to point to
the next location in the array. Since this pointer is
stored in a named memory location, it can be accessed
easily by the procedure, no matter when the interrupt
occurs in the mainline program. KEYDONE is a flag
which will be set by the interrupt procedure when 100
characters have been read in and stored,

Any interrupt response uses the stack, so next you
need to set up a stack. Note that the PUBLIC and EXTRN
directives are used so that the mainline program and
the interrupt procedure can be in separate assembly
modules.

In the code section of the mainline you need to
initialize the stack segment register, the stack pointer
register. and the data segment register. Finally, you
need to Initialize the Interrupt-vector table by loading
address 00008H with the IP value for the start of the
type 2 procedure, and address 0000AH with the CS
value for the start of the procedure.

The HERE:JMP HERE instruction at the end of the
mainline program stimulates a complex mainline pro.
gram that the 8086 might be executing. The 8086 will
execute this instruction over and over until an interrupt
occurs. When an interrupt occurs, the 8086 will service
the interrupt and then return to execute the HERE:JMP
HERE instruction over and over again until the next
interrupt. Now let's consider the interrupt procedure.

The algorithm for the interrupt procedure can be
simply stated as

IF 100 characters not read THEN
Read character from port
Mask parity bit
Put character irs array
Increment array pointer
Decrement character count
Return

ELSE Return

Note that we used an IFTHENELSE structure rather
than a WHILE not 100 characters DO structure, because
we want Only one character to be read in for each call of
the procedure.

Figure 8-9b, p. 219, shows the assembly language
program for the Interrupt .servlce procedure. After saving
AX, 9X. CX. and DX on the stack, we check to see if all

8086 INTERRUPTS AND INTERRUPT APPLICATIONS 	 217

;8086 PROGRAM F8-09A.AS14
2	 ;ABSTRACT .: Mainline of program to read characters frs a keyboard
3
	

The maintine of this program initializes the interrupt
4	 table with th, address of the procedure that reads
5	 characters fra a keyboard oc an interrupt basis.
6	 ;PORTS	 : Uses none in mainline. Uses FFF8H in procedure
7	 ;REGISIERS : Uses CS,DS,SS,(S,SP,AX
8	 ;PROCEDURES: Uses KEYBOARD
9
	

Link mainline F8-0A.O8J with procedure F8'098.OSJ
10
11 0000
	

DATA SEGMENT WORD PUBLIC
12 0000 64(00)	 ASCIISTRIMG	 09	 100 DUP(0)	 Store for characters
13 0064
14 0066 64	 CNARCNT	 OB	 100	 Read 100 characters

0000r	 ASCII_POINTER OW OFFSET ASCII_STRING 	 Pointer to ASCII_STRING

00	 KEYDOWE	 OB	 0	 =1 if characters alt read15 0067
16 0068
	

DATA ENDS
17
18 0000	 STACK_SEC SEGMENT

64*< 0000)	 OW 100 DUP (0) 	 ;'Set up stack of 100 words19 0000
20
	

TOP_STACK LABEL WORD	 Pointer to top of stack
21 0008	 STACK_SEC	 ENDS
22
23	 PUBLIC ASCII POINTER, CHARCNT, KEYDOME 	 Make available to other modules
24
	

EXTRN	 KEYBOARD:FAR	 Procedure in another asseity module
25
26 0000
	

C00E SEGMENT WORD PUBLIC
27
	

ASSUME CS:C00E, DS:DATA, SS:STACK_SEG
28 0000 58 0000s	 START: NOV AX, STACK_SEC 	 Initialize stack segment register
29 0003 8€ DO	 NOV SS, AX
30 0005 BC OOC8r 	 NOV SP, OFFSET TOP_STACK ; Initialize stack pointer
31 0008 B8 0000s 	 NOV AX, DATA	 Initialize data segment register
32 0008 8€ 08	 NOV DS, AX
33	 ;Store the address for the KEYBOARD routine at address 0000:0008
34	 ;Address 00008-00005 is wflCre type 2 interrupt gets interrupt
35	 ;service procedure address. CS at 0000A & 0000B, IP at 00008 & 00009
36 0000 B8 0000	 NOV AX, 0000

8€ CO	 NOV ES, AX37 0010
38 0012 26: C7 06 000A 0000s 	 NOV WORD PTR ES:000AH, SEC KEYBOARD
39 0019 26: C7 06 0008 0000e	 NOV WORD PTR ES:0008H, OFFSET KEYBOARD
40	 ;Siim.ilate larger program
41 0020 ES FE	 HERE: JNP HERE
42 0022
	

CXE ENDS
43
	

END
(a)

FIGURE 8-9 Reading characters from an ASCII keyboard on interrupt back.
(a) Initialization and mainline. (See also next page.)

.
characters ha,Ye been read, If CHARCNT Is 0, then
we Just pop the regIsters and return to the mainline
program. If CHARCNT Is not 0, we copy the array pointer
from Its named memory location, ASCII_POINTER, to
BX. We then read In the ASCII character from the port
that the keyboard Is connected to and mask the parity
bit of the ASCII character. The MOV {BXI,AL Instruction
next copies the ASCII character to the memory location
pointed to by BX. To get the poInter ready for the read
and store operation, we Increment the stored pointer
with the INC ASCII_POINTER Instruction. Finally, we
restore DX, CX. BX, and AX, and return to the mainline
program.

Sitting In a HEREJMP HERE loop waiting for an
Interrupt signal may not seem like much of an Improve.
mcnt over polling the key .pressed strobe. However, in a
more realistic program, the 8086 would be doing many
other tasks between keyboard interrupts. With polling.
the 8086 would not easily be able to do this.

Using Interrupts for Counting and Timing

COUNTING APPLICATIONS

As a simple example of the use of an interrupt Input for
counting, suppose that we are using an 8086 to control
a printed .clrcult-board . maklng machine In our comput.
erized electronics factory. Further suppose that we want
to detect each finished board as It comes Out ol the
machine and to keep a count of finished boards so that
we can compare this count with the number of boards
fed in. This way we can determine if any boards were
lost In the machine.

To do this count on an interrupt basis. all we have to
do is detect when a board passes out of the machine
and send an interrupt signal to an interrupt Input on
the 8086. The interrupt-service procedure [or that Input
can simply increment the board count stored in a named
memory location.

218	 CHAPTER EIGHT

DATA	 SEGMENT	 RD	 PUBLIC
EXTRN	 ASCII_POINTER:WORD, CHARCNT:BYTE. KEYDOIIE:BYTE

DATA	 ENDS

PUBLIC	 KEYBOARD

C00E	 SEGMENT PURL IC
KEYBOARD PR	 FAR

ASSIJ4E CSCE, DS:DATA
STI

PUSH AX
• PUSH BX
.PUSH CX
PUSH OX
CMP CHARCNT, 00
JZ	 EXIT
NOV BX. ASCII_POINTER
NOV DX, OFFF8H
IN	 Al, DX
AND AL, 7FH
NOV EBXI, AL
INC ASCII_POINTER
DEC CHARCNT
JNZ NOTDOWE
NOV KEYDONE, 01
.JMP EXIT

NOTOONE: NOV KEYDONE, 00
EXIT: POP OX

POP CX
POP BX
POP AX
IRET

KEYBOARD ENOP
C00E	 ENDS

END

Enable 8086 IIITR so higher priority
interrupts can be recognized
Save registers used

See if alt characters read in
Leave procedure if att done
Get pointer to buffer
Point at keyboard port
Read in ASCIF code
Mask parity bit
Write character to buffer
Point to next buffer Location
Reduce character co4x%t
If 100 chars mt read, cLear carry
etse Set fag to indicate done

More characters to read so zer flag
Restore registers

Return to interrupted program

2
3
4
5
6
7
8
9 0000

10
11 0000
12
13
14
15 0000
16 0000
17
18 0000
19
20 0001
21 0002
22 0003
23 0004
24 0005
25 000A
26 000C
27 0010
28 0013
29 0014
30 0C16
31 0018
32 OO1C
33 0020
34 0022
35 0027
36 002A
37 OO2F
38 0030
39 0031
40 0032
41 0033
42 0036
43 0034
44

;8086 PROCEDURE F8-098.ASM catted by program F8-09A.ASM
;ABSTRACT : 1'!OCEDURE KEYBOARD

This procedure reads in ASCII! characters frii an
encoded keyboard on an interrupt basis and stores them
in a buffer in meery.

;DESTROYS : Nothing
;PORTS	 : Uses input port FFF8H for the keyboard input.

FR

50
53
51
52
80 3E 0000e 00
74 23
88 1E 0000e
BA FFF8
EC
24 7F
88 07
FE 06 0000e
FE OE 0000e
7508
Co oo 00000 01
ER 06 90
CO 06 0000e 00
5A
59
5B
58
CF

(b)

FIGURE 8-9 (continued) (b) Interrupt-service procedure.

To detect a board coming out of the machine, we use an
infrared LED, a phototransistor. and two conditioning
gates. as shown In Figure 8-10, p. 220. The LED is
positioned over the track where the boards come Out,
and the phototransistor Is positioned below the track.
When no board Is between the LED and the phototransis.
tor, the light from the LED will strike the phototransistor
and turn it on. The collector of the phototransistor will
then be low, as will the NMI input on the 8086. When a
board passes between the.LED and the phototransistor.
the light will not reach the phototranststor. and it will
turn off. Its collector will go high, and so will the signal
to the NMI input of the 8086. The 74LS14 Schmitt
trigger inverters are necessary to turn the slow-risetime
signal from the phototransistor collector into a signal
which meets the risetine requirements of the NMI input
on the 8086.

When the 8086 receives the low-to-high signal on Its
NMI input. it will automatically do a type 2 interrupt

response. As we mentioned before, all the type 2 inter-
rupt-servIce procedure has to do in this case Is incremel:t
the board count in a named memory location and return
to running the machine. This same technique can be
used to count people going into a stadium, cows coming
in from the pasture, or Just. about anything else you
might want to• count.

TIMING APPLICATIONS
In Chapter 4 we showed how a delay loop could be used
to set the time between microcomputer operations. In
the example there, we used a delay loop to take in data
samples at 1-ms Intervals. The obvious disadvantage of
a delay loop Is that while the microcomputer is stuck in
the delay loop, it cannot easily be doing other useful
work, in many cases a delay loop would be a waste
of the microcomputers valuable time. so We USC an
interrupt approach.

- 30	 8086 INTERRUPTS AND INTERRUPT APPlICATIONS	 219

+5 V

100 kS 8086

470 kO
NMI

+5 V

•5V	
1kU

620
?4LS14	 74LS14

INFRARED
LED

BOARD PHOTOTRANSISTOR

FIGURE 8-10 Circuit br optcaIly detecting presence of
an object.

Suppose, for example, that in o'.r 8086-controlled
printed-circuit-board-making machine we need to check
the pH ol a solution approximately every 4 mm, If we
t.sed a delay loop to count off the 4 mm, either the 8086
wouldn't be able to do much else or we would have some
difficult calculations to figure out at what points in. the
program to go check the pH.

To solve this problem all we have to do Is connect a
s.mple 1 -Hz pulse source to an interrupt input, as shown
in Figure 8-Il. ThIs 555 timer cIrcuit is not very
+ccurate, hut it is Inexpensive, and It is good enough
tar this application. The 555 (liner will send an interrupt
signal to the 8086 NM! input approximately once every
second. An Interrupt procedure Is used to keep a count
of how many NM! interrupts have occurred. This count
s qual to the number of seconds that have passed.

'o help you visuahze how this works Figure 8-12
chews the algorithm for this rnai&ine and procedure.
In the mainline we set up stack aad 7ata segments. In
the data segment, we et a.dde a rneino!y location for
the seconds count and initialize that location to the
number of seconds that we want to count off. In this
case we want 4 mm, which is 240 decimal or FOH
seconds. Then we InitIalize the data segment register.
stack segment register, and stLch pointer register as
before.

Each time the 8086 recei.es art. interrupt from the
55 timer, It executes the Interru f-service procedure

FIGURE 8-11 inexpensive 1-Hz pulse source for interrupt
timing.

I r-	 t a I. i
Interrupt Punter Table
Stack and Stack seyserrt Pointer
Data Segment
Seconds count to 240 decimal

Wait br Irsterrutst

Ii)

Save Registers
Decrement Seconds Count
IF Secondt Count 	 0 THEN

	

Relc++rd Seconds count	 itb 240 decinal
Call pH read procedure
Restore registers
Ret'..n to Mainline

ELu Restore registers
Return to Mainline

lb I

FIGURE 8-2 Algorithm for p1-1 read at 4-mm intervals.
(a) Initialization and mainline. (b) Interrupt.service
procedure.

for the NMt interrupt. In this procedure we dccrement
the seconds count in the named memory location and
test to see if the count is down to zero yet. If the count
is zero. we know that 4 mm have elapsed, so we reload
the seconds count memory location with 240 and call
the procedure whici reads the pH of the solution and
tal'es appropriate action if the pH is not correct. If the
seconds count is not zcro, execution simply returns to
the mainline program until the next interrupt from the

or froru some other source occurs. The advantage
of Itt's interrupt approach is that the niterrupt-service
pmncedure takes only a few microsecm,nds of the 8086's
tmi'e once ever/ second. The rest of the time the 8086
is hce lu run tue mainline program.

USING AN INTERRUPT TO PRODuCE
A rEAL-TlM CLOCK

Another application using a 1-liz interrupt input might
be to generate a real-time clock of seconds, minutes,
and hours, The time from this clock can then be
displayed and/or printed out on tlmecards. etc. To
generate the clock, a I-Hz signal is applied to an Inter-
rupt input. A seconds count, a minutes count, and
art hours count are kept irs three successive memory
locations. When an interrupt occurs, the seconds count
is incremented by 1. If the seconds count is not equal
to 60, then execution is simply returned to the mainline
pi-ograul. If the seconds count is equal to 60. then the
seconds count is reset to 0 and the minutes count is
Incremented by 1. lIthe minutes count is not 60. then
execution is simply returned to the mainline. If the
minutes count is 60. then the minutes count is reset to
0 and the hours count is Incremented by 1. If the hours
count is not 13. then execution is simply returned to
the mainline. If the hours count is equal to 13, then it
is reset to I and execution is returned to the mainline,
A problem at the end of the chapter asks you to write
the algorithm and program for this real-time clock.

The interrupt-service nsutine for the real-time clock
can easily be modified to also keep track of other time
measurements such as the 4-mm timer shown in the

220	 CHAPTER EIGHT

preceding example. In other words, the single interrupt-
service routine can be used to keep track of several
different time intervals- By counting a different number
of interrupts or applying a different frequency signal to
the interrupt input, this technique can be used to time
many dlifr-rent tasks in a microcomputer system.

GENERATING AN ACCuRATE TIME BASE
FUR TIMING INTERRUPTS
The 555 timer that we used for the 4-miri timer tust
described was accurate enougn for that application, but
for many applications--such as a real-time clock-'it is
not. For more precise timing, we uauallv use a signal
derived from a crystal-controlled oscillator. The proces.
sor clock signal is generated by a crystal-controlled
oscillator. so ft is stable. bu'. thIs signal is onsiously too
high in lr .'qucncy to drive a processor interrupt input
directly. The solution is to divide the clock signal down
with an eternal counter device lottie desed frequency
for the interrupt input. Most microcomputer manu 1ac-
turers have a compatible device hich can be pro-
gramrncd with instructionS o dIvide air Input frequency
by any desired number. Besides acting as programmable
frequency dividers, these devices have many lrrportant
uses in microcomputer systems. Thereflire. the next
section describes how art Intel 8251 Programmable
Counter operates. how an 8254 can easil y be added to
an SDK-86 board, arid how an 8254 is used in a variety
of Interrupt applications. Also in the next section. we
use the 8254 discussion to show you the general proce-
dure [or initializing any of the progi ammable peripheral
devices we discuss in later chapters.

8254 SOFTWARE-PROGRAMMABLE
TIMER/COUNTER

hecause of the many tasks that they can be used tar in
microcomputer systems. prograinniabte timer/counters
are very important for you to learn about. As you read
through the following sections, pay particular attention
to the applications of this device in systems and the
general procedure for initializing a programmable device
such a.s the 8254. Read lightly through the discussions
of the different Counter modes to become aware oi the
types of problems that the device can solve for you. Later.
when you have a specite problem to solve, you can dig
into the details of these discussions.

Another important point to make to you here ithat
the discussions of various devices throughout the rest of
this book are not Intended to replace the manufacturers
data sheets for the devices. Many of the programmable
peripheral devices we discuss are so versatile that each
reoutres aknost a small book to describe all the details
of it operations The discussions here are intended to
introduce you to the devices, show you what they can
be used for, and show you enough details about them
that you can do some real jobs with them. After you
become familiar with the use of a device In some simple
applications, you can read the data sheets to learn
further 'bells and whistles" that the devices have.

Basic 8253 and 8254 Operation

The Intel 8253 and 8254 each contain three 16-bit
counters which can be programmed to operate in several
different modes. The 8253 and 8254 devices are pin-for-
pin compatible, and they are nearly identical in function.
The major differences are as follows:

1. The maximum Input clock frequency for the 6253
is 2.6 MHz: the maximum clock frequency for the
8254 ts 8MHz (10 MHz for the 8254-2).

2. The 8254 has a read-bock feature which allows you
to latch the count in all the counters and the status
of the counter at arty point. The 8253 does not have
this read-back feature.

To simplify reading of this section. we will refer only to
the 8254. However, you can assume that the discussion
also applies to the 8253 except where we specifically
state otherwise.

As shown by the block diagram of the 8254 In Figure
8-13. the device contains three 16-bit counters. in some
ways these counters are similar to the TTL presettable
counters we reviewed in Chapter 1. The big advantage
of these counters, however, is that you can load a count
in them, start them, and stop them with instructions
In your program. Such a device is said to be software-
programmable. To program the device, you send count
bytes and control bytes to the device just as you would
send data to a port device.

If you look along the left side of the block diagram in
Figure 8-13. you will see the signal lines used to Interface
the, device to the system buses. A little later we show
how these are actually connected in a real system. The
main points for you to note about the 8254 at the
moment are that it has an 8-bit in'terface to the data
bus, it has a CS input which will be asserted by an

I.—CLKO
DATA

BUFFER I	 I	
COUNTERI.._.GATEOBUS 0 I- OUT 0

CLK I
READ/ I	 cOUNTERER	 GATE I

OUT1LOGIC

I'.-'- CUt 2
CONTROL H I	

COUNTERLGATE2WORD
REGISTER r'i
	 I-.. OUT 2

FIGURE 8-13 8254 internal block diagram. (Intel
Corporation)

8086 INTERRUPTS AND INTERRUPT APPLICATIONS 	 221

r	 NUMBER
JACKNUMBEII	 +5

3433	 vc
3233 P14 2

A15	 1

15
A13 3

Vt30.J3	 j1 74LS30	 I	
Y21

26J3 TT_2P	 H12j.___ 8 I
11

22)3 A9 10

2433;74Ls2:
20J3 V6

V7M,10
44J3

74 IS 13818J3 Al
1 6J3 IIII - Th__!J G 1	 I
I 4J3 --___-cf' 6

321Afl
433

A4
1233 -

6J3
231
431
8J1--

831
10J1
1W
1431
tail

4&13-

I NT
3831-

A2
8J3 -

3231 -
3Wt2i
2BJ12!

26J1
2431
2231
2031
tail

741S30 AND 74LS27
V	 PIN 14
GND = PIN I

+5V 4-5V

SP/EN V GND
1	

80
1

	27 AO
	 181 19

11	 20

	

DO	 182
10	 21

	

01	 183

	

02	 184 22
8	 23

	

03	 185

	

04	 186 24
6	 25

	

D5	 IA)

	

06	 12

	

D7	 CASO 13
3	 CASt 15

	

2 -	 CAS2

	

6 -	 17INTA	 INT
8259A#1

+5 V

24

_!J	 GATEOLJJ

H D0 	 CLK2I-

-f 06	 OUTOI-
-D5	 I

-JD3	 GATE1L!i

—101	 I

—fAD	 GATE2I-

201	 8254
1A1

19.	 116
1	 Ii?

—1WA	 I
—lAD	 CIKOI-

—104	 CLK1I-

•— CS	 OUT2

2:11- Vcc	 I
22,—	 19

81	 118

!1 02	 0UTlL!
7,	 I

41	 ItS

21	 lic

GND

	
+5 V

112

+5 V

+5 V

+5V

1 28

	

--	 Ill	CS 	 lAB
27	 19

	

PB	 IR1

	

00	 182 20
10	

183 21
9	 22

	

02	 1R4

	

8 03	 IRS 23

	

04	 186 246	 25

	

05	 1R7
5	 II

	06 	
CASO 12D7
CASt13

	

2 --	 CAS2 15
WA

26	
INT 17

8259A$t2
SP/ENGN0

J6J,4

FIGURE 8-14 Circuit showing how to add an 8254 and 8259A(s) to an SDK-86 board.

address decoder when the device is addressed, and it 	 The right side of the 8254 block diagram in Figure
has two address Inputs, AO and Al. to allow you to	 8-13 shows the counter inputs and outputs. You can
address one of the three counters or the Control word 	 apply a signal of any frequency from dc to 8MHz to each
register in the device, 	 of the counter clock inputs, labeled CLK in the diagram.

222	 CHAPTER EIGHT

The GATE input on each counter allows you to start or
stop that Counter with an external hardMre signal. If
the GATE input of a counter is high (1), then that
Counter is enabled for counting. If the GATE input is
low, the Counter is disabled. The output signal from
each Counter appears on its OUT pin. Now let's see how
a programmable peripheral device such as the 8254 is
connected in a system.

System Copnedions for an 8254 Timer/Counter

8254 is a very useful device to have in a microcom-
puter system, but, in order to keep the cost down, the
SDK-86 was not designed with one on the board. Figure
8-14 shows the circuit connections for adding an 8254
Counter and an 8259A Priority interrupt Controlier to
an SDK-86 board. We discuss the 8259A in a later
section of this chapter.

If you use wire-wrap headers for connectors Ji and
J3 on an SDK-86 board, the circuitry shown can easily
be wire-wrapped on the prototyping area of the board.
Install th" WALT-state jumper to insert one WAIT state.
As explained in Chapter 7, a WALT state is needed
because of the added delay of the decoders and buffers.

The 74LS 138 in Figure 8-14 is used to produce chip
select (CS) signals for the 8254, the 8259A. and any
ether L'O devices you might want to add. Let's look first
at the cIrcuitry around this device to determine the
system base address which selects each device.

In order for any of the oups of the 74LS 138 to be
asserted, the Gi, G2A, and G2B enable inputs must all
be asserted The G1 Input will be asserted (high) if

em address lines A5, A6, and A7 are all low. The
G2A input will he asserted (low) if System address lines
A8 through Al5 are all high. As shown by the truth
table in Figure 8-15, these two inputs therefore will be
asserted for a system base address of FFOOH. The G2B
input of the 74LS138 will be asserted (low) if the M/lO
line is low, as It will be for a port read or write operation.

Now, remember from Chapter 7 that only one of the
Y outputs of the 74LS 138 will ever be asserted at a time.
The output asserted is determined by the 3-bit binary
code applied to the A. B, and C select inputs. Ii the
circuit in Figure 8-14. we connected system address line
AO to the C input, address line A4 to the B Input, and
address line A3 to the A input. The truth table in Figure

8-15 shows the system base addresses that will enable
each of the 74LS 138 Y outputs. As you will see a little
later, system address lines Al and A2 are used to select
internal parts of the 8254 and 8259A.

We connected AO to the C input so that half of the Y
outpits will be selected by even addresses and half of
the Y outputs will be selected by odd addresses. We did
this so that loading on the two halves of the data bus
will be equal as we add peripheral devices such as the
8254 and 8259A. To see how this works, note that the
peripheral devices have only eight data lines. For an
odd-addressed device we connect these data Lines to the
upper eight system data lines, and for an even-addressed
device, we connect these to the lower eight system data
lines. By alternating between odd- and even-selected
outputs as we add peripheral devices, we equalize load-
ing on the bus,

As shown by the truth table in Figure 8-15. the
system base address of the added 8254 is FFOIH. Other
connections to the 8254 are the system RD and WR lines
used to enable the 8254 for reading or writing: eight
data lines, used to send control bytes. status bytes, and
count values between the CPU and the 8254: and system
address lines Al and A2, used to select the control
register or one of the three counters In the 8254 , Now
that you see how an 8254 is connected in a system, we
will show you how to initialize an 8254 to do some useful
work for you.

Initializing an 8254 Programmable
Peripheral Device

When the power is first turned on. programmable periph-
eral devices such as the 8254 are usually in undefined
states. Before you can use them for anything, you have
to initialize them in the mode you need for your specific
application. initializing these devices is not usually
difficult, but it is very easy to make errors if you do
not do it in a very systematic way. To initialize any
programmable peripheral device, you should always
work your way through the following series of steps.

I. Determine the system base address for the device.
You do this from the address decoder circuitry or
the address decoder truth table. From the truth table

Y OUTPUT SYSTEM BASEA8-A15	 A5-A7	 A4 A3 A	 Al AO M/IO SELECTED	 ADDRESS	 DEVICE

1	 0	 0	 0	 X	 X	 0	 0	 0	 F F O 0 8259A#1
1	 0	 0	 1	 X	 X	 0	 0	 F F 0 8 8259A #2
1	 0	 1	 0	 X	 X	 0	 0	 2	 F	 F	 1	 0
1	 0	 1	 1	 X	 X	 0	 0	 3	 F	 F	 1	 8
1	 0	 0	 0	 X	 X	 I	 0	 4	 F	 F 0	 1	 8254
1	 0	 0	 1	 X	 X	 1	 0	 5	 F • F	 09
1	 0	 1	 0	 X	 X	 I	 0	 6	 F	 F	 1	 1
1	 0	 1	 1	 X	 X	 I	 0	 7	 F	 F	 1	 9

ALL OTHER STATES	 NONE

FIGURE 8-15 Truth table for 741S138 address decoder in Figure 8-14.

8086 INTERRUPTS AND INTERRUPT APPLICATIONS 	 223

Al	 AD	 SELECTS

o	 0	 COUNTER 0
o	 I	 COUNTER 1

I	 0	 COUNTER 2
I	 1	 CONI AOL WORD REGISTER

(t

SYStEM ADDRESS	 2254 PART

F F 0 1	 COUNTERO
F F 0 3	 COUNTER1
F F 0 5	 COUNTER2
F F 0 7	 CONTROL RED

(b)

FIGURE 8-16 8254 addresses. (a> Internal. (b) System

in Figure 8-15. the system base address of the 8254
In our example here Is FF011-I.

2. Use the device data sheet to determine the internal
addresses for each of the control registers, ports.
timers, status registers. etc., in the device. Figure
8-l6a shows the internal addresses for the three
counters and the control word register for the 8254.
AO in this table represents the AD input of the device.
and Al represents the Al input of the device. Note
in (he schematic in Figure 8-14 that system address
line Al Is connected to the AD input of the 8254,
and system address line A2 is connected to the Al
input. We could not use system address line AO as
oae of these because, as described before, we used
system address line AO as one of the inputs to the
address decoder.

3, Add each, of the internal addresses to the system
base address to determine the system address of
each of the parts of the device. You need to do this
so that you know the actual addresses where you
have to send control words, timer values, etc. Figure
8-16b shows the system addresses for the three
timers and the control register of the 8254 we added
to the SDK-86 board. Note that the addresses all
have to be odd because the device is connected on
the upper half of the data bus.

4. Look in the data sheet for the device for the format
of the control word(s) that you have to send to
the device to initialize it. For different devices.
incidentally, the control word(s) may he referred to
as command words or mode words. To initialize the
8254, you send a control word to the control register
for each counter that you want to use. Figure 8-17
shows the format for the 8254 control word.

5. Construct the control word required tc initialize the
device for your specific application. You copstruct
this control word on a bit-by-hit basis. We have
found it helpful to actually draw the eight little boxes
shown at the top of Figure 8-17 so that we don't
miss any bits, iAn easc way to draw Ihe eight boxes
is to draw a long rectangle. divide It ifl hail. divide

	

07	 06	 D5	 04	 03	 02	 Dl	 00

	

Sd	 SCO Awl AWO M2 Ml	 MO BCD
J

SC _SELECTCOUNfERI
Sd	 5CC

O	 0	 SELECTCOUNTERO
O	 1	 SELECT COUNTER I	 -

1	 0	 SELECTCOUNTER2 -
1	 1	 READ-BACK COMMAND SEE READ OPERATIONSi

RW .- READ/WRITE.
AWl RWO

COUNTER LATCH COMMAND (SEE READ
0	 0	 OPERATIONS)

O	 I	 READ/WAITE LEAST SIGNIFICANT BYTE ONLY.
1	 0	 READ/WRITE MOST SIGNIFICANT BYTE ONLY.
-	 READ/WAITE LEAST SIGNIFICANT BYTE FIRSTI	 1	 THEN MOST SIGNIFICANT BYTE.

M - MODE
M2	 Ml	 MO

O	 0	 0 MODE 0-' INTERRUPT ON TERMINAL. COUNT
0	 0	 I MODE 1 - HARDWARE ONE-SHOT
X	 1	 0 MODE2-PuLSEGENERATOR
X	 1	 1 MODE 3- SQUARE WAVE GENERATOR

1	 0	 0 MODE 4-SOFTWARE TRIGGERED STROBE
1	 0	 1	 MODES-HAFIDWARETRIGGEREDSTROBE

OCO:

0[iINARY COUNTER 16-BITS
BINARY CODED DECIMAL (BCD) COUNTER (4 DECADESt

NOTE: DON'T CARE BITS (Xl SHOULD BE 0 TO INSURE
COMPATIBILITY WITH FUTURE INTEL PRODUCTS.

FIGURE 8-7 8254 control word formal. (Intel

Corporation)

each resulting half in two, and finally divide each
resulting quarter in two.) To help keep track of the
meaning of each bit of a control word, write under
each bit the meaning of that bit. A little later we
show you how to do this br an 8254 control word.
Documentation of ih(s sort is very valuable when
you are trying to debug a program or modify an old
program for sonic new applicalion.

6. Finally. send the control words) you have made up
to the control register address for the device. III (lie
case of the 8254, you also have to sertd the starting
count to each of the counter regislers.

Now that you have ati overview oi' the initialization
process, let's take a closer look at how you do the lasI
two steps for an 8254.

A separate control word must be sent for each counter
that you want to use in the device. however, according
to Figure 8-16a. the 8254 has onl y one control register
add less. The trick here is tha I tile COIl I ml words for all
Ihrcc counters arc .senl to the same address In the

224	 CHAPTEk EIGHT

device. As shown in Figure 8-17. you use the upper 2
bits of a control word to tell the 8254 which counter you
want that control word to initialize. For example, if you
are making up a control word for counter 0 in the 8254.
you make the SC! bit of the control word a 0 and the
SCO bit a 0. Later we will explain the meaning of the
read-back command, specified by a 1 in each of these
bits.

The 16-bit counters In the 8254 are down counters.
This means that the number in a counter will be
decremented by each clock pulse. You can program the
8.54 to Count down a loaded number in BCD (decimal)
or in binary. If you make the DO bit of the control word
a 0, then the counter will treat the loaded number as a
pure binary number. In this case the largest number
that you can load in Is FFFFH. If you make the DO bit
of thc contxol word a 1. then the largest number you
can load in the countel is 99991-I, and the counter will
count a loaded number down in decimal (BCD). Actually,
because of the way the 8254 counts, the "largest"
number you can load In foi both cases is 0000. but
thinking of FFFFH and 9999H makes it easier to remem-
ber the difference between the two modes.

Now let's take a brief look at the mode bits (M2, Ml-,
and MO) in the control word format in Figure 8-17. The
binary number you put In these bits specifies the effect
that the gate Input will have on counting and the
waveform that wIll be produced on th OUT pin. For
example, if you specify mode 3 for a counter by putting
Oil in these 3 bits, the Counter will be put in a square-
wave mode. In this mode, the output will be high for the
first half of the loaded Count and low for the second half
of the loaded count. When the count reaches 0, the
original count is automatically reloaded and the count-
down repeated. The waveform on the OUT pin In this
mode will then be a ?quare wave with a frequency equal
to the input clock frequency divided by the count you
wrote to the counter. A little later we will discuss and
show applications for some of the six different modes.
First, let's finish looking at the control word bits and
see how you send the control word and a Count to the
device,

The RWI and RWO bIts of the control word are used
to specify how you want to write a count to a counter or
to read the count from a counter. If you want to load a
16-bit number into a counter, you put l's In both these
bits in the control word you send for that counter, After
you send the control word, you send the low byte of the
count to the counter address and then send the high

byte of the count ta the counter address. 'In a latet
paragraph we show an example of the instruction se-
quence to do this. In cases where you only want to load
a new value in the low byte of a counter, you can send
a control word with 01 in the RW bits and then send
the new low byte to the counter. Likewise, if you want
to load Only a new high byte value in the counter, you
can send a control word with 10 in the RW bits, and
then send only the new high byte to the counter.

You can read the number in one of the counters at
any time. The usual way to do this is to first latch the
current count In some internal latches by sending a
control word with 00 In the RW bits. Send another
control word with 01, 10. or 11 in the RW bits to specify
how you want to read Out the bytes of the latched count.
Then read the count from the counter address.

As a specific example of initializing an 8254. suppose
that we want to use counter 0 of the 8254 in Figure
8-14 to produce a stable 78.6-kHz square-wave signal
for a UART clock by dividing down the 2.45'MHz PCLK
signal available on the SDK-86 board. To do this, we
first connect the SDK-86 PCLK signal to the CLK input
of counter 0 and tie the GATE input of the counter hIgh
to enable it for counting. 'l'o produce 78.6 kHz from 2.45
MHz. we have to divide by 32 decimal, so this is the
i'alue that we will eventually load Into counter 0. First.
however, we have to determine the system addresses for
the device, make up the control word for counter 0. and
send the control word.

As shown in Figure 8-16b, the system address for the
control register of this 8254 is FFO7H. This Is where we
will send the control word. For our control word we want
to select counter 0, so we make the SC! and SCO bits
both 0's. We want the counter to operate in square-wave
mode. This is mode 3, so we make the mode bits of the
control word 01 l.Since we want to divide by 32 decImal.
we tell the counter to count down in decimal by making
the BCD bit of the control word a I. This makes our life
easier. because we don't have to convert the 32 to binary
or hex. Finally, we have to decide how we want to load
the count into the counter. Since the count that we
need to load in is less than 99. we only have to load the
lower byte of the counter. According to FIgure 8-17. the
RW! bit should be a 0 and the RWO bit a I for a write
to only the lower bye (LSB). The complete control word
then is 00010111 In binary. Here are the Instructions
to send the control word and count to counter 0 of the
8254 in Figure 8-14. Note how the bits of the control
word are documented.

MOV AL,000101 1113	 Control word for counter 0
Readlwrlte LSB only. mode 3. I3CD countdown

:0001 011 1

BCD countdown
Mode 3

WLSB only
Select counter 0

MOV DX.OFFO7FI	 Point at 8254 contr.l register
OU1' DX.AL	 : Send control word
MOV AL.3211	 . Load lower byte of count
MO' DX.OFFOIH	 : Point to counter 0 count register
OUT DX.AI.	 : Send count to count register

80&S INTERRUPTS AND INTERRUPT APPLICATIONS	 225

Note that since we set the RW bits of the control word
for reaWwrtte 'SB only, we do not have to include
instructions to load the MSB of the counter. Pro-
grammed in this way, the 8254 will automatically load
Os in the upper byte of the counter.

If you need to load a count that is larger than I byte.
make the RW bits In the control word both l's. Send the
lower byte of the count as shown above. Then send the
high byte of the count to the Count register by adding
the instructions

MOV AL,HIGI-L..BYTE_OFCOUNT Load MSB of count
OUT DX,AL	 Send MSB to

count register

Note that the high byte of the count is sent to the same
address that the low byte of the count was sent.

For each counter that you want to use in an 8254,
you repeat the preceding series of six or eight instruc-
tions with the control word and count for the mode that
you want. Before going on with this chapter. review the
six Initialization steps shown at the Start of this section
to make sure these are firmly fixed In your mind. In the
next Section we discuss and show some applications of
the different modes In which an 8254 counter can he
operated, but we do not have space there to show all the
steps for each of the modes.

8254 Counter Modes and Applications

As we mentioned previously, an 8254 counter can be
programmed to operte in anyone of six different modes.
The Intel data book uses timing diagrams such as those
in Figure 8-18 to show how a counter functions in each
of these modes. Since these waveforms may not be totally
obvious to you at first glance. we will work our way
through some of them to show you how to interpret
them. We will also show some uses of the different
counter mods. As you read through this scetion, don't
try to absorb all the details of the different modes.
Concentrate on learning to interpret the timing wave-
forms and on the different types of output signals you
can produce with an 8254.

MODE 0—INTERRUPT ON TERMINAL COUNT

First read the Intel notes at the bottom of Figure 8-18;
then take a look at the top set of waveforms in the figure.
For this first example, the GA'rE input is held high so
that the counter is always enabled for counting. The
first dip in the waveform labeled WR represents the
control word for the counter being written to the 8254.
CW - 10 over this dip Indicates that the control word
written is lOt-I. According to the control word format in
Figure 8-17, this means that counter 0 is being initial-
ized for binary counting, mode 0. and a readlwrite of
only the LSB. After the control word Is written to the
control register. the output pin of counter 0 will go low.
The next dip in the WR waveform represents a count of
4 being written to the count register of counter 0. Before
this count can be counted down, it must be transferred
from the count register to the actual counter, llyou look
at the count values shown under the ou'r waveform in

cw 10 LSB 4

JSJJ1JL1LJW
GATE

OUT

N N N	 N 0 0	 0	 0	 0 EF FF
4	 3	 2	 1	 0 FF FE

CW 10 LSB = 3

CL K

GATE	 I	 I
our

0 I 0 I 0 I 0 I 0 I 0 1FF I
N I NNN 31 21 2 I 2 I 1 101 FF1

CW=10 LSB = 3	 LSB2

C LK

GATE

OUT	 I

	

01 0	 01 01 01 01FF
NNNINIaI2Il2IljoIFF

NOTE THE FOLLOWING CONVENTIONS APPLY TO ALL MODE
TIMNG DIAGRAMS.
1. COIJNTERS ARE PROGRAMMED FOR BINARY NOT BCDI

COUNTING AND FOR READING/WRITING LEAST

	

SIGNIFICANT BYTE (LSBI ONLY. 	 -.
2. THE COUNTER IS ALWAYS SELECTED (CS ALWAYS LOW).
3. CWSTANDSFOR"C0NTR0LWORD";CW10MEANS

CONTROL WORD OF 10 HC ISVIRITTEN TO THE COUNTER.
4. LSB STANDS FOR 'LA	 ""ICANT BYTE' OF COLNT.
5. NUMBERS BELOW DIAGRAMS AFIE COUNT VALUES.

THE LOWER NUMBtR IS THE LEAST SIGNIFICANT BYTE.
THE-UPPER NUMBER IS THE MOST SIGNIFICANT SYTE.
SINCE THE COUNTER IS PROGRAMMED TO READ/WRITE
LSB ONLY. THE MOST SIGNIFICANT BYTE CANNOT BE READ.
N STANDS FOR AN UNDEFINED COUNT.
VERTICAL LINES SHOW TRANSITIONS BETWEEN
COUNT VALUES.

MOOED

FIGURE 8-18 8254 MODE 0 example timuig diagrams.
(Intel CorporatIon)

the timing diagram. you should see that the count of 4
is transferred into the counter by the next clock pulse
after WR goes high. Each clock pulse after this will
decrement the count by I. When the count is clecre-
mented to 0, the OUT pin will go high. If you write a
count N to a counter in mode 0. the OUT pin will go
high after N + I clock pulses have occurred. Note that
the counter decrements from 0000 to FFFFH on the next
clock pulse unless you load sonic new count into the

226	 CHAPTER EIGHT

CW12 LSB3

Lfl_fl
CLK ..f1J1J1J1JJ1J1J'lJlJlJlJ

GATE	 -	 - 111_______

OUT

	

	

0000FFOO
INININININI3I2I1I0IFFI3I2I

CW12 LSB3

C LKflJlJlJ •'lJlJ•lJ'lJ'lJ.l.flJ.lJ--
GATE	

-

OUT _J
I0IOIOl0IOlOI0I

	

I N I N I N I NN 1312	 1131211101

CW12 LS82	 LS84

CL Kj1J1J1J1J1JlJ1.flJl.jl.J.1,.f'
GATE	 ---_____

OUT

0 0 0 FF FF 0 0
N N N N N 2	 I	 0	 F FE 4 3

MODE 1

FIGURE 8-19 8254 MODE 1 example timing diagrams.
(Intel Corporation)

counter. If the OUT pin is connected to an 8259A IR
Input or the NMI interrupt Input of aj 8086. then the
processor will be interrupted when the counter reaches
0 Iterminat count).

The second set of waveforms in Figure 8-18 shows
that lithe GATE input is made low, the counter value
will be held. When the GATE input is made high again.
the Counter continues to decrement by I for each Clock
pulse.

The third set of waveforms in Figure 8-18 shows that
If a new count is written to a counter, the new Count
will be loaded into the Counter on the next clock pulse.
Following clock pulses will decrement the new count
until it reaches 0.

As an example 01 what you can use this mode for.
suppose that as one of its jobs you want to use an 8086
to control some parking lot signs around an electronics
factory. The main parking lot can hold 1000 cars. When
it gets full, you want to turn on a sign which directs
people to another lot. To detect when a car enters the

lot, you can use an optical sensor such as the one shown
in Figure 8-10. Each time a car passes through, this
circuit will produce a pulse. You could connect the signal
from this sensor directly to an interrupt input and we
the processor count interrupts, as we dtd for the printed-.
circuit-board-making machine in a previous example.
However, the less you burden the processor with trivial
tasks such as this, the more time tt has available to do
complex work for you. Therefore, you let a counter In
an 8254 count cars and Interrupt the 8086 only when
it has counted 1000 Cars.

You connect the output from the optical sensor circuit
to the CLK input of. say, counter 1 of an 8254. You tte
the GATE input of Counter Ito + S V so it will be enabled
for counting and connect the OUT pin of counter 1 to
an interrupt input on an 8259A or the NMI input on the
8086.

In the mainline program, you initialize counter I for
mode 0, BCD counting, and readiwrlte LSB then MSB
with a control word of 01110001 binary. You want the
counter to produce an interrupt after 1000 pulses from
the sensor, so you will send a count of 999 decimal to
the counter. The reason that you want to send 999
Instead of 1000 is that, as shown in FIgure 8-18. the
OUT pin will go high N + I clock pulses after the count
value is written to the counter. Since you Initialized the
counter for read/write LSB then MSB. you send 99H and
then 09H to the address of counter I. By Initializing the
counter for BCD counting. you can just send the Count
value as a BCD number instead of havtng.to convert it
to hex.

The service procedure for this interrupt will contain
instructions which turn on the parking-lot-full sign.
close off the main entrance, and return to the mainline
program. For this example you dort't have to worry that
the Counter decrements from 0000 to FFFFH. because
after you shut the gate, the counter will not receive any
more interrupts.

MODE 1—HARDWARE-RETRIGGERABIE
ONE-SHOT

The basic principle of a one-shot is that when a siga
is applied to the trigger input of the device, its outpt'
will be asserted. After a fixed amount of time the outpe.
will automatically return to its unasserted state. For
TFL one-shot such as the 74LS122. the time that t
output is asserted is determined by the time constao
of a resistor and a capacitor connected to the devhe
For an 8254 counter in one-shot mode, the time that
the output is asserted low Is determined by the frequency
of an applied clock and by a count loaded into the
counter. The advantage of the 8254 approach Is that
the output pulse width can be changed under program
control and, if a crystal-controlled clock is used, the
output pulse width can be very accurately specified.

Figure 8-19 shows some example timing waveforms
for an 8254 counter In mode I. Lets take a look at th,
top set of waveforms. Again, the Ilrst dip in the WR
waveform represents the control word of 12i1 being s'
to the 8254. Use Figure 8-17 to help you determine h'
this control word initializes the device. 'i'au shoulu fl

- 31	 8086 INTERRUPTS AND INTERRUPT APPLICATIONS	 2.

that a control word of 1 2H programs counter 0 for binary
count, mode 1. read/write LSB only. When the control
word is written to the 8254. the OUT pin goes high.

The second dip in the WR waveform represents writing
a Count to the counter. Note that, because the GATE
input is low, the counter does not 8tart counting down
Immediately when the count is written, as it does In
mode 0. For mode I, the GATE input functions as a
trigger input. When the GATE/trigger input is made
high, the count will be transferred from the count
register to the actual counter on the next clock pulse.
Each followIng clock pulse will decrement the counter
by I. When the counter reaches 0. the OUT pin will go
high again. In other words, if you load a value of N in
the counter and trigger the device by making the GATE
input high, the OUT pin will go low for a time equal to
N clock cycles. The output pulse width is then N times
the period of the signal applied to the CLK input.
Incidentally, the dashed sections of the GATE waveforms
in Figure 8-19 mean that the GATE/trigger input signal
can go low again any time during that time interval.

The second set of waveforms in Figure 8-19 demon-
strates what is meant by the term retrtggerable. If
another trigger pulse comes before the previously loaded
count has been counted down to 0. the original count
will be reloaded on the next clock pulse. The countdown
will then start over and continue until another trigger
occurs or until the count reaches 0. If trigger pulses
continue to come before the count is decremented to 0.
the OUT pin will rcmail low.

The bottom set of waveforms in i1gur - 19 shows
that if you write a new coui,t to a rou eg.ster whtle
the OUT pin is low, the new count wlL:-t'' t Lw o-aded
into the counter and couret1 rlown untti the ticxt trigger
pulse occurs.

For an example of the use ci mod" we will s ow 'ou
how to make a Circuit whirh prouuces an interrupt
signal if the ac power fails. This circuit could bi- con-
nected to the NMI input of an 80b6 to i-all an inter -ur't
procedure which saves parametrs in battery-backed
RAM when the ac power falls.

Figure 8-20 shows a circuit whith oscs an optical
coupler (an LED and a phototransistor packaged to-
gether) to produce logic-level pulses at power line Ire-

quency. The 74L.S14 inverters sharpen the edges of
these pulses so that they can be applied to the GATE/
trigger input of an 8254. For a 60-Hz line frequency, a
pulse will be produced every 16.66 ins. Now what we
want to do here is to load the countia with a value such
that the counter will always be retriggered by the power
line pulses before the countdown is completed. As shown
by the second set of waveforms in Figure 8-19. the OUT
pin will then stay low and not send an interrupt signal
to the NMI input of the 8086. If the ac power fails, no
more pulses come in to the 8254 trigger input. The
trigger input will be left high. and the countdown will
be completed. The 8254 OUT pin will then go high and
intemipt the 8086.

To determine the counter value for this application.
you just calculate the number of input clock pulses
required to produce a countdown time longer than 16.66
ms—for example. 20 ms. If you use the 2.4576-MHz
PCLK signal on an SDK-86 board, 20 ms requires 49.152
cycles of PCLK. so this Is the number you would load in
the 8254 counter. Since this number is too large to load
in as a BCD count, you put a 0 in the BCD bit of the
control word to tell the 8254 to count the number down
in binary. Then you send the count value of C000}-I to
the count register.

MODE 2-TIMED INTERRUPT GENERATOR
In a previous sect ion we described how a real-time clock
of seconds. minutes. and hours could be kept in three
memory locations by counting interrupts from a I-Hz
pulse source. We also described how the 1-Hz interrupts
could be used to measure off other time intervals. The
dii'ficulty with using a 1-Hz interrupt signal is that the
maximum resolution of any time measurement is I S.
In other words, if you use a I-Hz signal, you can Only
measure times to the nearest second. To improve the
rcsoiution of time measurements, most microcomputer
systems use a higher-frequency signal such as I kHz for
a real-time clock Interrupt. With a 1-kHz interrupt
signal. the time resolution is 1 ms. An 8254 counter
Operating in mode 2 can be used to produce a stable
1 -hHz signal by dividing down the processor clock signal.

Figure 8-21 shows the waveforms for an 8254 counter
operating in mode 2. E.ets look at the top set of waveforms

FILTERED
1N914	

J AAA

270 t

r

c___	 I
POWER	 L

TRANSFORMER

2.45 MHZ
•5V	 PCuc

OPTICAL	 1KCOUPLER 8254
4533

OUT 0

TO 8086 SMI

FIGURE 8-20 Circuit to produce logic-level pulses at power tine frequency.

228	 CHAPTER EIGHT

first. The two dips in the WR waveform represent a
control word and the LSB of a count being written to
the count register. The next clock pulse after the count
Is written will transfer the count from the count register
to the actual counter. Since the GATE input is high.
succeeding clock pulses will count down this value until
it reaches 1. When the count reaches 1. the OUT pin,
which was previously high. will go low for one clock
pulse time. The falling edge of the next clock pulse will
cause the OUT pin to go high again and the original
count to be loaded into the counter again. Successive
clock pulses will cause the countdown and load cycle to
repeat over and over. If the counter is loaded with a
number N. the OUT pin will go low (or one clock cycle
every N input clock pulses. The frequency of the output
waveform then will be equal to the input clock frequency
divided by N.

Now, for a specific example, suppose that you want to
produce a l'kHz signal for a real-time clock from an
8-MHz processor clock signal. To do this, you Connect

CW-14 LS53

CLK ,J1J1J'lJlJlJ'lJlJlJlJlJ'
GATE

CW14 LSB3

CL K

GATE

OUT

0000000N N	 N	 3	 2	 2	 3	 2	 I	 3

CW=i4 LSB4	 LS85

CL K

GATE

	

OUT_J	 U
N	 N N 000 0000

	

N	 4	 3	 2	 I	 54	 3

NOTE A GATE TRANSITION SHOULD NOT OCCUR ONE CLOCK
PRIOR TO TERMINAL COUNT

MODE 2

FIGURE 8-21 8254 MODE 2 example timing wavetorms
lintel Corporation

the processor clock signal to the CLK Input on one of
the 8254 counters and tie the GATE input of that Counter
high. You initialize that counter for BCD counting, mode
2, and read/write LSI3 then MSB. Since you want to
divide the 8 MHz by 8000 decimal to get I kHz. you then
write OOH to the counter as the LSB and 80H to the
counter as the MSB.

A question that may occur to you at this point is. How
do I count seconds if (lie interrupts are coming in every
millisecond? The answer to the question is that you set
aside a memory location as a milliseconds counter and
initialize that location with 1000 decimal (3E8H). The
interrupt .servlce procedure decrements this count each
time an interrupt occurs and checks to see if the count
is down toO yet. If the count is not 0. then execution is
simply returned to the mainline. If the Count is down to
0. 1000 interrupts or I s has passed. The milliseconds
counter location is then reloaded with 3E8H, and the
seconds.minutes-hours procedure is called to update
the count of seconds, minutes, and hours. An exercise
in the accompanying lab manual gives you a chance to
develop a real-time clock in this way. Incidentally, the
I -kHz Interrupt-service procedure can be used to meas-
ure off several different time intervals that are multiples
of lms.

The middle set of mode 2 waveforms in Figure 8-21
demonstrates that if the GATE input is made low while
the counter is counting, counting will stop. If the GATE
input is made high again, the original count will be
reloaded into the counter by the next clock pulse.
Succeeding clock pulses will decrement the loaded count.

The bottom set of mode 2 waveforms in Figure 8-21
shows that ifa new count is written to the count register.
this new count will not be transferred to the counter
until the previously loaded count has been decremented
to I.

MODE 3—SQUARE .WAVE MODE

If an 8254 counter is programmed for mode 3 and
an even number is written to its count register. the
waveform on the OUT pin will be a square wave. The
frequency of the square wave will be equal to the
frequency of the input clock divided by the number
written to the count register. 11 an odd number is
written to a counter programmed [or mode 3. the output
waveform will be high for one more clock cycle than Ii
is low, so the waveform will not be quite symmetrical.
Figure 8-22. p. 230, shows some example waveforms [or
mode 3. By now these waveforms should look quite
familiar to you.

The top set of waveforms shows thai after a control
word is written to the control register and a Count is
written to the coufll register. the Count is transferred
to the Counter on the next clock pulse. As shown by
the Count sequence under the OUT waveform, each
additional clock pulse decrements the counter by 2.
When the count is down to 2. the OUT pin goes low and
the original count is reloaded. The OUT pin stays low
whilc the loaded count is again counted down by 2's.
When the count is down to 2. the OUT pin goes high
again and the original Count is again loaded into the
counter, The cycle then repeats.

8086 INTERRUPTS AND INT[RRUPT APPLICATIONS 	 229

CWl6 LS84

C UK

GATE

OUT

0000000000
N N N N 4242424242

CW-1S LS85

CL

GATE

OUT

0000000000
N N N N 4204242042

CWi6 LSB4

CLK

HiATt	 1	 I

NOTE: A GATE TRANSITION SHOULD NOT OCCUR ONE CLOCK
PRIOR TO TERMINAL COUNT.

MODE 3

GURE 8-22 8254 MODE 3 example timing waveforms.
teI Corporation)

lie center set of waveforms in Figure 8-22 shows
hat happens ii an odd number is written to the Count

register. As you can see from this waveform, the number
of clock cycles for each waveform is still equal to the
number loaded Into the count register. However, as we
mentioned before, the clock is high for one more clock
Cycle than It Is low.

The bottom set of waveforms In Figure 8-22 shows
thit counting stops if the gate is made low at any time.
Alter the GATE Input is made high again, the countdown
will continue.

Mode 3 can be used for any case where you want a
repetitive square-wave-type signal. An 8254 counter
operating in mode 3 can be used to generate the baud
rate clock for a USART such as the 825 IA. Also, mode
3 could be used to generate interrupt pulses for a real-
tim clock as we described for mode 2. The square-wave
signal has the advantage that it Is more easily observed
with a scope than the narrow pulse produced by mode
2 operation.

Another use of 8254 counters operating In mode 3
Is as programmable audio-tone generators. For this
application, a high-frequency clock such as the 2.4576-
MHz PCLK signal on an SDK-86 board is connected to
the counter CLK Input, the GATE input Is tied high.

loon

El
IN PUT

FIGURE 8-23 Audio speaker buffer for 8254 timer output
or port.

and the OUT pin is connected to an audio buffer such
as that shown in Figure 8-23.

As an example of this application, suppose that you
want to produce a tone that Is a musical A of 440 Hz
from the 2.4576-MHz PCLK signal. Dividing the PCLK
signal by 5585 will give the desired 440 Hz. Therefore.
you simply send a control word which programs a
counter for mode 3, read/write LSB then MSB. and BCD
counting. You then write the LSB of 85H and the MSB
of 55H to the counter, if you want to change the
frequency, all you have to do is write a new count to the
Count register. With a few programmable counters and
some relatively Simple programming, you can play your
favorite songs.

MODE 4—SOF1WARE-TRIGGERED STROBE

This mode and mode 5 are often confused with mode I,
but there is an obvious difference. Mode I is used to
produce a low-going pulse that is N clock pulses wide.
If you look at the top set of waveforms for mode 4 in
Figure 8-24. you should see that mode 4 produces a low-
going pulse after N + I clock pulses. For mode 4. the
output pulse is low for the time of one input clock pulse
and then returns high. in other words. in mode 4. a
counter produces a low-going strobe pulse N + I clock
cycles after a count is written to the count register. Mode
4 is referred to as soft ware-tnggered because it is the
writing of the count to the count register that starts the
process. Note that after the loaded count is counted
down, the counter decrements to FFFFH and then
continues to decrement from Ehere.

Mode 4 can be used in a case where you want to send
out some parallel data on a port and then after some
delay send out a strobe signal to let the receiving system
know that the data Is available.

MODE 5—HARDWARE-TRIGGFRED STROBE

Mode 5 is used where we want to produce a low-going
strobe pulse some programmable time Interval after a
rising-edge trigger signal is applied to the GATE Input.
This mode is very useful when you want to delay a rising.
edge signal by some amount of time.

Figure 8-25 shows some example waveforms for a
counter operating In mode 5. For a start, lets look at
the top set of waveforms. As usual, we write a control
word and the desired Count to a counter. As shown

230	 CHAPTER EIGHT

CW18 LS93
w LflI

C LK ...f1J1J%fi,,,J1,f1.f1..f1..flfl...f
GATE

OUT	 LJ
0	 0 0 0 FF FF FF

	

N N N N	 3	 2	 1	 0 FF FE FD

CW18 LSS3

CLX _f1,fl_f1f1.f1L11..J1.f1_fl.flr

GATE

OUT	
000000FF

IN	 N IN IN	 31 31 31 2 I 1 Ia	 FF1

	

CW = 1B LSB3	 LSB2

C LKffLJ1...J1.fl.J1..f1..Jl.fl..f1J
GATE

OUT _fLf
NIN(NINIIIfjI?IoIFFl

MODE 4

FIGURE 8-24 8254 MODE 4 example timing waveforms.

(Intel Corporation)

by the count sequence under the OUT waveform, how-
ever, the count does not get transferred to the counter
until the GATE (trigger) Is made high. When the trigger
input is made high. the count will be transferred to the
Counter on the next clock pulse. Succeeding clock pulses
will decrement the counter. When the counter reaches
0. the OUT pin will go low for one clock pulse time. The
OUT pin will go low N + 1 clock pulses after the trigger
input goes high.

The second set of waveforms In Figure 8-25 shows
that If another trigger pulse occurs during the count-
down time, the original count will be reloaded on the
next clock pulse and the countdown will start over. The
OUT pin will remain high until the count is finally
counted down, If trigger pulses continue to come before
the countdown Is completed, the OUT pin will continue
to stay high. Therefore, you can use a counter In mode
5 to produce a power fail signal. as we showed in the
previous discussion of mode I. Note that for mode 5.
however, the OUT pin will bc high if the power is on and
go low when the power fails.

The bottom Set of waveforms En Figure 8-25 shows
that if a new count is written to a counter, the ne'

CW1A LSB3
w

CL K •..j1jiJ1...Jl.J1..flJl,j1..Tl.Jl.,1
GATE	 iflfl

OUT
0 0 0 0 FF UN N N N N 3 2	 0 FF 3

CW1A LSB3
g

CLK ,...J1J•1J'lflJ• 'lJ'l.JlJlJ-l..fl,..J.l..fl.J-
GATE PL__Jl--

OUT _fJ-

CW1A LS83	 LSB5
W4

CLX ...jiJljlJ1,fl,J'1J'1J'1flfl.J1.J'1..f
GATE jfl
ouij	 Li

0 0 0 0 FF FF 0 0
N N N N F. 3 2 1 0 FF FE 5 4

MODE 5

FIGURE 8-25 8254 MODE 5 example timing waveforms.

)InteI Corporation)

count will not be loaded Into the counter until a new
trigger pulse occurs.

USING A NONSYSTEM CLOCK
WITH AN 8254 IN MODES 2 AND 3

If you are applying a signal which is not derlvcd from
the system clock to the CLK input of an 8254 in mode
2 or mode 3, then a small note in the Intel data sheet
Indicates that the GATE input of the counter must be
pulsed low just alter the count Is written to the counter.
An easy way to do this is to connect the GATE Input of
the counter to an otherwise unused output port pin.
You can then pulse the GATE by outputting a low and
then outputting a high to that port pin.

READING THE COUNT FROM AN 8254 COUNTER

For many counter applications, we want to be able to
read the current count in the counter. Suppose. for
example. that we are using an 8254 counter to count
the cars coming into a parking lot, as we did In our
example for mode 0 In an earlier section. In that case

8O&, INTERRUPTS AND INTERRUPT APPLICATIONS	 231

we used the Counter to produce an Interrupt when the
parking lot was full, so we could shut the gatc. Now
further suppose that as part of a traffic flow study, we
want to find Out how many cars have come into the
lot by 7:30 AM. An interrupt-driven real-time clock
procedure can, at 730 AM., call a procedure which reads
in the current count from the counter. Since the Counter
was initially loaded with 1000 decimal and is being
Counted down as cars come in. we can simply subtract
the current count from 1000 to determine how many
cars have come in.

The Counters in an 8254 have latches on their outputs.
When you read the count from a counter, what you are
actually reading Is the data on the outputs of these
latches. These latches are normally enabled during
counting so that the latch outputsjust follow the counter
outputs. If you try to read the count while the counter
is counting, the count may change between reading the
LSB and the MSB. This may give you a strange count.
To read a correct count, then, you must in some way
stop the counting or latch the current count on the
output of the latches. There are three major ways of
doing this.

The first is to stop counting by turning off the clock
signal or making the GATE Input low with external
hardware. This method has the disadvantages that it
requires external hardware and that a clock pulse which
occurs while the clock is disabled will obviously not be
counted.

The second way of reading a stable value from a
counter is to latch the current count with a counter
latch command and then read the latched count. A
counter is latched by sending a control word to the
control register address in the 8254. If you look at the
format for the 8254 control word in F'tgure 8-17. you
should see that a counter latch command is specified by
making the RWI and RWO bits both 0. The SC! and
SCO bits specify which counter we want to latch. The
lower 4 bits of the control word are dont cares" for a
counter latch command word, so we usually make them
Os for simplicity. As an exam ple, here is the sequence
of instructions you would use to latch and read the LSB
and MSB from counter I of the 8254 in Figure 8-14. We
assume that the counter was already programmed for
read/write LSB then MSB when the device was initial-
ized. If the counter was programmed for only LSB or
only MSB. then Only that byte can be read.

MOVAL.ol000000B	 Counter I latch command
MOV DX,OFFO71-{	 Point at 8254 control register
OUT DX.AL	 Send latch command
MOV DX.OFFO3H	 ; Point at counter 1 address
IN AL.DX	 Read LSB of latched count
MOV A1-I,AL	 Save [SB of latched count
IN AL,DX	 Read MSB of latched count
XCI-{G AH,AL	 Count now in AX

When a counter latch command is sent, the latched
count is held until it Is read. When the count is read
from the latches, the latch outputs return to following
the Counter outputs.

The third method of reading a stable count from a
counter is to latch the count with a read-back Command.

AO,A1 = Ii CSO R0= WR=O

i7	 t6

I	 IT5IC21CNT1ICNTOI 10j

05 0 = LATCh COUNT or SELECTED COUNTERS(S)
04: 0 LATCh STATUS OF SELECTED COUNTER(S)
03 1 =SELECTCOUNTER2
02: I SELECT COUNTER I
Dl: 1 SELECTCOUNTEAO
00: RESERVED FOR FUTURE EXPANSION, MUST BE 0

FIGURE 8-26 8254 read-back control word format.

This method is available in the 8254 but not in the
8253. It is essentially an enhanced version of the counter
latch command approach described in the preceding
paragraphs.

Figure 826 shows the format for the 8254 counter
read-back command word. It is sent to the same address
that other control words are for a particular 8254. The
l's in bits D7 and D6 identify this as a read-back
command word. To latch the count on a counter, you
put a 0 in bit D5 of the control word and put a 1 in the
bit position that corresponds to that counter In the
control word. The advantage of this control word is that
you can latch one, two, or all three counters by putting
l's in the appropriate bits. Once a counter is latched.
the count is read as shown in the previous example
program. After being read, the latch outputs return to
following the counter outputs.

If a read-back command word with bit D4 = 0 is sent
to an 8254, the status of one or more counters will be
latched on the output latches. Consult the Intel data
sheet for further information on this latched status.

The preceding sections have shown how 8254
counters can be used to do a wide variety of tasks around
microcomputers. Many of these applications produce an
interrupt signal which must be connected to an inter-
rupt input on the microprocessor. In the next section
we show how a prionty interrupt controller device, the
Intel 8259A, is used to service multiple interrupts.

8259A PRIORITY INTERRUPT CONTROLLER

Previous sections of this chapter show how interrupts
can be used for a variety of applications. In a small
system, for example, we might read ASCII characters in
from a keyboard on an interrupt basis: count interrupts
from a timer to produce a real-time clock of seconds,
minutes, and hours: and detect several emergency or
job-done conditions on an interrupt basis. Each of these
interrupt applications requires a separate interrupt
input. If we are working with an 8086, we have a problem
here because the 8086 has only two interrupt inputs,
NM1 and INTR. If we save NMI for a power failure
interrupt, this leaves only one interrupt input for all the
other applications. For applications where we have
interrupts from multiple sources, we use an external
device called a priority interrupt controller (PlC) to "fun-
nel" the interrupt signals into a single interrupt input

232	 CHAPTER EIGHT

on the processor. in this section. we show how a common
PlC. the Intel 8259A, is connected in an 8086 system,
how it is initialized, and how It is used to handle
Interrupts from multiple sources.

8259A Overview and System Connections

To show you how an 8259A functions In an 8086 system,
we first need to review how the 8086 INTR input works.
Remember from Figure 8-5 and a discussion earlier in
this chapter that if the 8086 interrupt flag is set and
the INTR input receives a high signal. the 8086 wIll

1. Send Out two interrupt acknowledge pulses on its
INTA pin to the INTA pin of an 8259A PlC. The INTA
pulses tell the 8259A to send the desired interrupt
type to the 8086 on the data bus.

2. Multiply the interrupt type it receives from the 8259A
by 4 to produce an address in the interrupt vector
table.

3. Push the flags on the stack.

4. Clear IF and IF.

5. Push the return address on the stack.

6. Get the starting address for the interrupt procedure
from the interrupt-vector table and load that address
in CS and lP.

7. Execute the interrupt-service procedure.

Now let's take a little closer look at how the 8259A
functions during this process. To statt, study the inter-
nal block diagram of an 8259A in Figure 8-27. In the
figure, first notice the 8-bit data bus and control signal
pins in the upper left corner of the diagram. The data

bus allows the 8086 to send control words to the 8259A
and read a status word from the 8259A. The RD and
WR inputs control these transfers when the device is
selected by asserting its Chip select (CS) input low. The
8-bit data bus also allows the 8259A to send interrupt
types to the 8086.

Next, in Figure 8-27. observe the eight interrupt
inputs labeled IRO through 1R7 on the right side of the
diagram. If the 8259A is properly enabled, an interrupt
signal applied to any one of these inputs will cause the
8259A to assert its INT output pin high. If this pin is
connected to the INTR pin of an 8086 and if the 8086
Interrupt flag Is Set, then this high signal will cause the
previously1escribed INTR response.

The INTA input of the 8259A is connected to the INTA
output of the 8086. T-he 8259A uses the first INTA pulse
from the 8086 to do some activities that depend on the
mode in whichit is programmed. Wben it receives the
second INTA pulse from the 8086. the 8259A outputs
an interrupt type on the 8-bit data bus, as shown in
Figure 8-6. The Interrupt type that It sends to the 8086
is determined by the IR input that received an interrupt
signal and by a number you send the 8259A when you
initialize it. The point here Is that the 8259A "funnels"
interrupt signals from up to eight different sources into
the 8086 INTR Input, and it sends the 8086 a specitied
interrupt type for each of the eight Interrupt inputs.

At this point the question that may occur to you is,
What happens if interrupt signals appear at, for example.
1R2 and 1R4 at the same time? In theJixed -priority mode
that the 8259A is usually operated in, the answer to this
question is quite simple. In this mode, the IRO input
has the highest priority, the lRl input the next highest.
and so on down to lR7, which has the lowest priority.
What this means is that if two interrupt signals occur
at the same time, the 8259A will service the one with

NT
DATA

	

D7-D0	 BUS
BUFFER

RD
REAO/
WRITE
LOGIC

	

AD	 -

CS

CAS 0
CASCADE

	

CAS1	 BUFFER/
COM PA A A TO R

CAS2 -

CONTROL LOGIC

PRIORITY
RESOLVER

INTERRUPT MASK REQ
IIMRI

lAO
Ri

INTERRUPT	 1A2
REQUEST	 1R3

REG 1R4(IRA)
1R5
IRS
Ri

IN
SERVICE

REQ
ISR

SP/EN

FIGURE 8-27 8259A internal block diagram. (Intel Corporation)

8086 INTERRUPTS AND INTERRUPT APPLICATIONS 	 233

the highest priority first, assuming that both inputs are
unmasked (enabled) in the 8259A.

Now let's look again at the block diagiam of the 8259A
In Figure 8-27 so we can explain in more detail how the
device will respond to multiple interrupt signals. In the
block diagram note the four boxes labeled Interrupt
request register (IRR). interrupt mask register (IMR). to-
service register ([SRI. and priority resolver.

The interrupt mask register is used to disable (mask)
or enable (unmask) individual interrupt inputs. Each
bit in this register corresponds to the interrupt input
with the same number. You unmask an interrupt input
by sending a command word with a 0 in the hit position
that corresponds to that input.

The interrupt request register keeps track of which
interrupt inputs are asking for service. If an interrupt
input has an interrupt signal on it. then the correspond.
ing bit in the interrupt request register will be Set.

NOTE An interrupt signal must remain high on
aniR input until after the falling edge of the first
INTA pulse.

The inservice register keeps track of which interrupt
inputs are currently being serviced. For each input that
is currently being serviced, the corresponding bit will
be set in the in-service register.

The priority resolver acts as a "judge" that determines
if and when an interrupt request on one of theiR inputs
gets serviced.

As an example of how this works, suppose Ihat lR2
and lR4 are unmasked and that an interrupt signal
comes in on the 1R4 input. The interrupt request on the
1R4 input will set bit 4 in the interrupt request register.
The priority resolver will detect that this bit IS set and
check the bits in the in-service register (ISR) to see if a
higher-priority input is being serviced, If a higher-
priority Input Is being serviced, as indicated by a bit
being set for that input in the ISR, then the priority
resolver will take no action, If no higher-priority inter-
rupt is being serviced, then the priority resolver will
activate the circuitry which sends an inte, t signal
to the 8086. When the 8086 responds with INTA pulses,
the' 8259A will send the interrupt type that was specified
for the lR4 input when the 8259A was initialized. As we
said before, the 8086 will use the type number it receives
from the' 8259A to find and execute the inierrupt.scrviee
procedure written for the 1R4 interrupt.

Now, suppose that while the 8086 is executing the
lR4 Service procedure, an interrupt signal arrives at the
lR2 input of the 8259A. This will set bit 2 of the interrupt
request register. Since we assumed for this example
that 1R2 was unmasked, the priority resolver will detect
that this bit in the IRR is set and make a decision
whether to send another interrupt signal to the' 8086.
To make the decision, the priority re-solver looks at the
in-scr'ice register. If a higherpriorlty hit in the [SR is
set, then a higher . priority interrupt is being serviced.
The priority resolver will wait until the higher-priority
bit in the' ISR is re-set before sending an itlle'rrupt signal
to the 8086 for Ito' new interrupt input. Ii the priority
resolver finds that the' neW Interrupt has a higher priority

than the highest-priority interrupt currently being ser-
viced, it will set the appropriate bit In the ISR and
activate the circuitry which sends a new [NT signal to
the 8086. For our example here. lR2 has a higher priority
than lR4, so the priority resolver will set bit 2 of the ISR
and activate the circuitry which sends a new INT signal
to the 8086. II the 8086 INTR input was reenabled
with an STI instruction at the start of the iR4 service
procedure, as shown in Figure 8-28a. then this new INT
signal will interrupt the 8086 again. When the 8086
sends out a second INTA pulse in response to this
interrupt, the 8259A will send it the type number for
the lR2 service procedure. The 8086 will use the received
type number to find and execute the lR2 service pro-
cedure.

At the end of the lR2 procedure, we send the 8259A
a command word that resets bit 2 of the In-service
register so that lower-priority interrupts can be serviced.
After that, an IRET instruction at the end of the lR2
procedure sends execution back to the interrupted lR4
procedure. At the end of the lR4 procedure, we send the
8259A a command word which resets bit 4 of the In-
service register so that lower .priority interrupts can be

MAINLINE
INITIALIZE 8259A
UNMASK R2, R4

STI	 1R4	 IR2

	

PROCEDURE	 PROCEDURE
ST I

	

EOI	 EOI

	

RET	
COMMAND

(a)

MAIN
INITIALIZE 8259A
UNMASK 1R2. tR4

STI	 R4
PROCEDURE

EOI COMMAND
IRET

52
PROCEDURE

EOI COMMAND

(11)

FIGURE 8-28 8259A and 8086 program flow for lR4
Interrupt followed by tR2 Interrupt. (a) Response with
INTR enabled in 1R4 procedure. (b) Response with INIR
not enabled in 1R4 procedure.

234	 CHAPTER EtGH

siviced An IRET instruction at the end 01 the lR4
procedure returns execution to the mainline program.
This all sounds very messy, but it is really just a
special case 01 nested procedures. Incidentally. If the IR4
procedure did not reenabie the 8086 1NTR input with
an STI instruction, the 8086 would not respond to the
lR2-caused INT signal until it finished executing the 1R4
procedure. as shown in Figure 8-28b.

We can't describe all the possible cases, but the main
point here Is that the 8086 and the 8259A can be
programmed to respond to Interrupt signals from multi-
ple sources in almost any way you want them to. Now.
before we can show you how to initialize and write
programs for an 8259A. we need to show you more
about how one or more 8259As are connected In a
microcomputer system.

8259A System Connections and Cascading

Figure 8-14 shows how an 8259A can be added to an
SDK-86 board. As shown by the truth table in Figure
8-15, the 74LS138 address decoder will assert the CS
input of the 8259A when an I/O base address of FF0011
is on the address bus. The A0 input of the 8259A is
used to select one of two Internal addresses in the device.
This pin is connected to system address line Al, so the
system addresses for the two internal addresses of the
8259A are FF0011 and FF0211. The eight data lines of
the 8259A are always connected to the lower half of the
8086 data bus because the 8086 expects to receive
interrupt types on these lower el,gt data lines. RD and
WR are connected to the system RD and WR lines. INTA
from the 8086 is connected to INTA on the 8259A.
The interrupt request signal. tNT. from the 8259A is
connected to the INTR input of the 8086. The multipur-
pose SP/EN pin is tied high because we are using only
one 8259A in this system. When just one 8259A is used
in a system, the cascade lines (CASO. CASI. and CAS2)
can be left open. The eight IR inputs are available for
interrupt signals. Unused IR inputs should be tied to
ground so that a noise pulse cannot accidentaily cause
an Interrupt. In a later section we will show you how to
initialize this 8259A. but first we need to show you how
more than one 8259A can be added to a system.
- The dashed box on the right side of Figure 8-14 shows
how another 8259A could be added to the SDK-86
system to give a total of 15 interrupt inputs. If needed.
an 8259A could be connected to each of the eight
IR inputs of the original 8259A to give a total of 64
interrupt Inputs. Note that since the 8086 has Only one
INTR input, Only one of the 8259A tNT pins is connected
to the 8086 INTR pin. The 8259A connected directly
into the 8086 LNTR pin is referred to as the master. The
INT pin from the other 8259A connects Into an IR input
on the master. This secondary. or cascaded, device is
referred to as a staue. Note that the INTA signal from
the 8086 goes to both the master and the slave devices.

Each 8259A has its own addresses so that command
words can be written to it and status bytes read from
it. For the cascaded 8259A in Figure 8-i4. the two
system 110 addresses will be FF081-I arid FFOAH.

The cascade pirs (CASO. CASt, and CAS2) from the

master are connected to the corresponding pins of the
slave. For the master, these pins function as outputs,
and for the slave device, they function as inputs. A
further difference between the master and the slave is
that on the slave the SP/EN pin Is tied low to let the
device know that it is a slave.

Briefly, here Is how the master and the slave work
when the slave receives an Interrupt signal on one of its
IR Inputs. If that iR input is unmasked on the slave and
if that input isa higher priority than any other Interrup
level being serviced in the slave, then the slave will send
an INT signal to the IR input of the master, If that lR
input of the master is unmasked and if that input is a
higher prIority than any other IR inputs currently being
serviced in the master, then the master will send an tNT
signal to the 8086 INTR input. If the 8086 INTR is
enabled, the 8086 will go thrg its INTR Interrupt
procedure and send out two INTA pulses to both the
master and the slave. The slave ignores the first Interrupt
acknowledge pulse, but when the master receives the
first INTA pulse, it outputs a 3-bit slave identification
number on the CASO. CASI. and CAS2 lines. (Each
slave in a system is assigned a 3-bit ID as part of its
initIalization.) Sending the 3-bit ID number enables the
slave. When the slave receives the second INTA flulse
from the 8086, the slave will send the desired interrupt
type number to the 8086 on the lower eight data bus
lines.

If an interrupt signal is applied directly to one of the
IR inputs on the master, the master will send the desired
interrupt type to the 8086 when it reccives the second
INTA pulse from the 8086.

Now that we have given you an overview of how an
8259A operates and how 8259As can be cascaded, the
initialization command words for the 8259A should
make some sense to you.

Initializing an 8259A

Earlier In this chapter, when we showed you how to
initialize an 8254, we listed a series of steps you should
go through to initialize any programmable device. To
refresh your memory of these very important steps. we
will work quickly through them again for the 8259A

The first step in initializing any device is to find the
system base address for the device from the schematic
or from a memory map for the system. In order to have
a specific example here, we will use the 8259A shown in
Figure 8-14. The base address for the 8259A in this
system is FFOOH.

The next step is to find the internal addresses for the
device. For an 8259A the two internal addresses are
selected by a high or a low on the AU pin. In the circuit
in Figure 8-14, the A0 pints connected to system address
line Al, so the internal addresses correspond toO and
2.

Next, you add the internal addresses to the base
address for the device to get the system address for each
internal part of the device. The two system addresses
for this 8259A then are FF0011 and FFO2H.

Next, look at Figure 8-29a for the format of the
command words that must be sent to an 8259A to

- 32	 8Dm INTERRUPTS AND INT[RRUPT APPLICATIONS	 235

(b)

NOTE 1 SLAVE ID IS
EQUAL TO THE
CORRESPONDING
MASTER IR INPUT

1 SPECIAL FULLY NESTED

OT SPECIAL F UL LV
NESTED MODE

Ia)

ICW 1
AD	 07 D6 05	 04 03 02	 01	 DO
0	 A7 A6 A5	 1 jLTIMf ADI ! SNGL I 1C41 __________________________

___________I	 i__I	 1 CW4 NEEDED
[ONOICW4NEEDED

1 SINGLE
0 CASCADE MODE

CALL ADDRESS INTERVAL
1 INTERVAL OF 4
0 INTERVAL OF B

1 LEVEL TRIGGERED MODE
0 EDGE TRIGGERED MODE

AO 01	

(MCS8O/B5MODEONLyI

	

A15 A14 A13 Al2 All	 11	 ,.ç' ,4	 / / AlO A9 AB	 A15-A8OF INTERRUPT
VECTOR ADDRESS

I	 I	 I	 I	 I	 I)MCS80185 MODE)
T,-TOF INTERRUPT
VECTOR ADDRESSICW3 (MASTER DEVICE) 	 (8086/8088 MODEl

AD 07	 06 05	 04 03 02	 Dl DOhis, I S6 I S l S .	 _____________

I 	 I 	 I 	 I 	 I 	 I 	 I 	 Ii = IR INPUT HAS A SLAVE
I 	 I 	 I 	 I 	

-JOIRINPUTOOE5NOTHAVEI
[A SLAVE

ICW3 (SLAVE DEVICE)

1413 II[ib0uib001sLAvEi

I CW4

AU D7 0:	

SFNM BUF	 !AEOi ___________________

H

	

o	 x7 NON BUFFERED MODE

	

[1	 0	 BUFFERED MODE/SLAVE

	

1	 I	 BUFFERED MODE/MASTER

I CW2

ADE

ES
(SNGL-O)

ICW3

ICW4

H
READY TO

ACCEPT
INTERRUPT
REQUESTS

FIGURE 8-29 8259A InIllalizaton command word formats and sending order.
(a) lormals. (b) SendIn	 rder and requirements. (Intel Corporation)

236	 CI-IAPTER Er

initialize it. The sight of all these command words may
seem overwhelming at first, but taken one at a time,
they are quite straightforward. To help you see which
Initialization command words (ICWs) are needed for
various 8259A applications. Figure 8-29b shows this in
flowchart form. According to this flowchart, an ICW1
and an ICW2 must be sent to any 8259A in the system.
If the system has any slave 8259As (cascade mode), then
an ICW3 must be Sent to the master, and a different
ICW3 must be sent to the slave. If the system is an 8086
or if you want to specify certain special conditions, then
you have to send an ICW4 to the master and to each
slave. Now let's look at the formats for the different
ICWs,

The first thing to notice about the ICW formats in
Figure 8-29a is that the bit labeled AO on the left end of
each of these Is not part of the actual command word.
This bit tells you the internal address that the control
word must be sent to. The A0 = 0 next to ICWI. for
example, tells you that ICW 1 must be sent to internal
address 0. which for our 8259A corresponds to system
address FFOOH.

The next step in the initialization procedure is to
make up the control words. The least significant bit of
ICW1 tells the 8259A whether it needs to look for an
ICW4 or not. Since we are using the device in an 8086
system, we need to send ICW4. Therefore we make bit
DO a 1. We only want to use one 8259A for now, so we
make bit Dl a 1. When used with an $086, bit D2 isa
don't care, so we make it a 0. Bit D3 is used to specify
level-trIggered mode or edge-triggered mode. In level-
triggered mode, service will be requested whenever a
high level Is present on an IR input. In edge-triggered
mode, a signl on an IR input must go from low to high
and stay high until serviced. We usually use the edge-
triggered mode so that a signal such as a square wave
will not cause multiple interrupts. Making bit D3 a 0
does this. Bit D4 has to be a 1. For operation in an 8086
system, bits D5, D6. and D7 are don't cares, so we make
them Os for simplicity. Therefore, the ICWl for our
example here is 00010011.

In an 8086 system, ICW2 is used to tell the 8259A the
type number to send In response to an interrupt signal
on the IRO input. In response to an interrupt signal on
some other IR input, the 8259A will automattcally add
the number of the IR input to this base number and
send the result to the 8086 as the type number for that
input. Because 8086 Interrupt types 0 through 31 are
either dedicated or reserved, type 32 idecimal) is the
lowest type number available for us to use. If we send
the 8259A an ICW2 of 00100000 binary or 32 decimal,
the 8259A will send this number as the type to the 8086
in response to an !R0 interrupt. For an interrupt request
on the IRI input, the 8259A will send 00100001 binary
or 33 decImal, arid for an interrupt request on the 1R2
input, the 8259A will send an Interrupt type 001000010
binary or 34 decImal. The same pattern continues for
interrupt requesis on the remaining IR inputs. In any
ICW2 you send the 8259A, the lowest three bits must
always be Os because the 8259A automatically supplies
these bits to correspond to the number of the IR Input.

Since we are not usmg a slave in this examplr. we

don't need to send an ICW3. If you are using a slave
8259A in a system, you have to send an ICW3 to the
master to tell it which IR inputs have slaves. The master
has to be told this so that it knows for which IR input
signals it has to send out a slave ID number on the
CASO, CAS 1, and CAS2 lines. You have to send an ICW3
to a slave 8259A to give it an ID number. The ID number
you give a slave is equal to the IR input of the master
that its INT output is connected to. When the master
sends out an ID number on the CAS lines, the slave will
recognize Its ID number and opit the desired type to
the 8086 when it receives an INTA pulse.

For our example here, the only reason we need to send
an ICW4 is to let the 8259A know that it is operating in
an 8086 system. We do this by making bit DO of the
wor&a 1. Another interesting bit in this command word
is Dl, the automatic end-of-interrupt bit. If this bit is
set in ICW4, the 8259A will automatically reset the in-
service register bit for the interrupt input that is being
responded to when the second interrupt-acknowledge
pulse is received. The effect of this is that the 8259A
will then be able to respond to an interrupt signal on a
lower-priority IR input. In other words, a lower-priority
interrupt input could then interrupt a higher-priority
procedure. Since we don't want automatic end of inter-
rupt, the ICW4 for our example here is 00000001.

In addition to the initialization command words
shown in Figure 8-29a. the 8259A has a second set of
command words called operation command words, or
OCWs. These are shown in Figure 8-30.p. 238. An
OCW1 must be sent to an 8259A to unmask any IR
inputs that you want it to respond to. For our example
here, let's assume that we want to use only 1R2 and IR3,
Since a 0 in a bit position of OCWI unmasks the
corresponding IR input, we put 0's in these two bits and
is in the rest of the bits. Our OCWI is 111110011.
OCW2 is mainly used to reset a bit in the in-service
register. This is usually done at the end of the interrupt-
service proredure. but it can be done at any time in the
procedure. 'l'he effect of resetting the ISR bit for an
interrupt level is that once the bit is reset, the 8259A
can respond to interrupt signals of lower priority. In
small systems we usually use the nonspecific End-
of-Interrupt command word. The OCW2 for this is
00100000. When the 8259A receives this OCW, it will
automatically reset the in-service register bit for the IR
input currently being serviced. If you want to reset a
specific ISR bit, you can send the 8259A an OCW2 with
011 in bits 137. 136, and D5, and the number of the ISR
bit you want to reset in the lowest 3 bits of the word.
You can also use OCW2 to tell the 8259A to rotate the
priorities of the IR inputs so that after an IR input is
serviced, it drops to the lowest priority. If you are
interested, consult the Intel data sheet for more informa-
tion on this and on the use of OCW3.

Now thai we have made up the required iCWs and
OCWs. the next step is to write the instructions to send
these command words to the 8259A.

Figure 8-31. p. 239-40. shows an 8086 assembly
language program which initializes an 8259A and dem-
onstrates many of the concepts of this chapter. You can
use this program as a pattern for writing programs

8086 INTERRUPTS AND INTERRUPT AP	 'iONS	 237

OCw1

AU	 01	 DC	 05	 04	 D3	 02	 Dl	 DO

Mi [M6	 MS	 M4	 M3	 M2	 Ml I MO]
TERIPT MASK

AU	 07	 D6DS	 D4

NON-SPECIFIC EOI COMMAND

SPECIFIC EOI COMMAND

ROTATE ON NON-SPECIFIC 001 COMMAND
ROTATE IN AUTOMATIC EOI MODE (SET)

ROTATE IN AUTOMATIC 001 MODE (CLEAR)

ROTATE ON SPECIFIC EOi COMMAND
SET PRIORITY COMMAND

NO OPERATION
'LO-L2ARE USED

OCW3

	

AU	 07	 06	 D5	 D4	 03	 02	 Dl	 DO

	

I 0	 0 JESMMJ SMM j 0	 7	 P	 RR	 RIS	
READ REGISTER COMMAND

iIlroili	

oji	 I
I.	

0	 0	 7	 I	 I
I	 IREAD IR flOG ONIREAD IS flOG ONNOACTION	

1NEXTfi5PULSE !NEXTRDPULSE I

FIGURE 8-30 8259A operational command words. (Intel Corporation)

} END OF INTERRUPT

} AUTOMATIC ROTATION

} SPECIFIC ROTATION

which service one or more interrupts. This program
ln)tializes the SDK-86 system in Figure 8-14 for generat-
ing a real-time clock of seconds. minutes. and hours
from a l-kl-lz interrupt signal and for reading ASCII
codes from a keyboard on an interrupt basis. This
program assumes that the 2.4576-MHz PCLK signal on
the board Is connected to the CLK Input of the 8254
counter 0, the GATE input of the 8254 counter 0 is tied
high. and the OUT pin of counter 0 is connected to the
IRO input of the 8259A. The program further assumes

that the key-pressed strobe from the ASCII keyboard is
connected to the 1R2 input of the 8259A.

In the program. we first declare a segment called
AINT_TABLE to reserve space for the vectors to the
interrupt procedures. The statement TYPE_64 DW 2
DUP(0). for example, sets aside a word space for the
offset of the type 64 procedure and a word for the
segment base of the procedure. The statement TYPE_65
DW 2 DUP(Oi Sets aside a word for the offset of the type
65 procedure and a word space for the segment base

238	 CHAPTER EIGHT

2
3
4
5 0000
6 0000
7 0004
8 0008
9 000C

10
11 0000
12 0000
13 0001
14 0002
15 0003
16 0005
17 0069
18
19 0000
20 0000
21
22 0008
23
24 0000
25
26 0000
27 0003
28 0005
29 0008
30 0008
31
32 0000
33 0013
34 0019
35 OO1F
36
37
38 0025
39 0028
40
41 002A
42 002C
43 002F
44 0030
45 0032
46 0035
47 0036
48 0038
49 003
50 003B
51
52 003C
53 003E
54 0041
55 0042
56 0044
57 0047
58 0048
59 004*
60
61 004B
62 004C
63
64 004E
65
66 004E
67 0050
68 0053
69 0054
70 0055

;8086 PROGRAI F8-31.ASM
Program fragment to show the initialization of interrupt ji.p table,
8259* priority interrupt controLler, and 8254 prograiimable counter/timer

	

AINT_TABLE SEGMENT	 D PUBLIC
021(0000)	 TYPE 64 DU 2 DUP(0)	 ;Reserve space for clodc procedure address
02*(0000)	 TYPE_65 OW 2 DtJP(Q) 	 ;Not used in this program
o2*c0000)	 TYPE 66 Ow 2 DUP(0)	 ;Reserve space for keyboard procedure address

AINI_TABLE ENDS

DATA SEGMENT WORD PUBLIC
00	 SECONDS 08 0
00	 MINUTES DB 0
00	 HJRS	 D8 0
03E8	 INT_CJNT DV	 03E8H	 ;1 kHz interrupt coL,iter
64(00)	 KEY_BUt	 DB	 100	 DUP(0) ;Buffer for 100 ASCII characters

DATA ENDS

	

STACK_SEG SEGMENT	 ;No STACK directive used because
64* (0000)
	

OW	 100	 DUP(0)	 wilt be using EXE2BIN
TOP_STACK LABEL WORD

STACK_SEG	 ENDS

CE SEGMENT PUBLIC
ASSUME CS:COE, DS:AINT_TABLE, SS:STACK SEC

88 0000s
	

NOV AX. STACK_SEG	 ;lnitiatize stack
BE DO
	

NOV SS, AX	 ;segment register
BC OOCBr
	

NOV SP, OFFSET TOP_STACK	 ;Initialize stack pointer register
88 0000s
	

NOV AX, AINT_TABLE	 ;Initialize data
BE 08
	

NOV OS, AX	 ;segment register
;Defirie the addresses for the interrupt service procedures

C7 06 0002r 0000s
	

NOV TYPE_642, SEC CLOCK 	 Put in clock procedure address
C7 06 0000r 004Er
	

NOV TYPE_64,	 OFFSET CLOCK
C7 06 000Ar 0000s
	

NOV TYPE_66.2, SEC KEYBOARD	 Put in keyboard procedure address
C7 06 0008r OOSSr
	

NOV IYPE_66,	 OFFSET KEYBOARD
;Initialize data Segment register

ASSUME DS:DATA
88 0000s
	 NOV AX, DATA

8E 08
	

NOV OS, AX
;Initia(ize 8259* priority interrupt controller

80 13
	

NOV AL, 000100118	 Edge triggered, single, ICW4
BA FF00
	

NOV DX, OFFOOH	 Point at 8259A control
EE
	

JT DX, AL	 Send ICU1
80 40
	

NOV AL, 010000008	 Type 64 is first 8259A type
BA FF02
	

NOV DX, OFFO2I4	 Point at ICV2 address
EE
	

JT DX, AL	 Send 1CW2
80 01
	

NOV Al, 000000018	 1CW4, 8086 mode
EE
	

QJT DX. AL	 Send 1CW4
80 TA
	

NOV AL, 111110108	 OCWI to uranask IRO and 1R2
EE
	

DJT DX, AL	 Send OCW1
;Initiatije 8254 counter 0

80 37
	

NOV Al, OOI1OI11B	 1 kHz square wave, LSB then MSB, BCO
BA FF07
	

NOV DX, OFFO7H	 Point at 8254 controL address
EE
	

tUT DX, AL	 Send counter 0 comnand word
80 58
	

NOV AL, 58H	 Load LSB of count
BA FF01
	

NOV DX, OFFO1K	 Point at counter 0 data address
EE
	

JT DX, AL	 Send LSB of count
80 24
	

NOV AL, 24K	 load NSB of count
EE
	

JT OX, AL	 ; Send NSB of count
;Enable interrupt input of 8086

FB
	

511
EB FE
	

HERE:JNP HERE	 wait for interrupt

CLOCK PROC FAR
Clock procedure instructions

80 20	 NOV AL, 001000008	 0CW2 for non-specific EOI
BA FF00	 NOV DX, OFFOOM	 Address for OCW2

	

JT DX, AL	 Send 0CW2 for end of interrupt
CF	 IRE!

CLOCK EP4DP

FIGURE 8-31 Assembly language program showing initialization of 8086, 8259A, and 8254 for real-time
clock and keyboard interrupt procedures. (Continued on next page.)

8086 INTLRRUPTS AND INTERRUPT APPLICATIONS	 239

K*yboard procedure instructions
OCW2 for no . specific tOl
Addresa for 0042
Send OCW2 for end of interrupt

71
72 0055
T3
74 0055 80 20
75 0057 BA FF00
76 OOSA ft
77 0058 CF
78 005C
79 005C
80

FIGURE 8-31 (continued).

KEYBOARD PROC FAR

MOV AL, OOl00000b
V DX, OFFOON
)T DX, AL

IRET
KEYBOARD ENDP
CE ENDS

END

address of the type 65 procedure, etc. As you will soon
see, we use program instructions to load the actual
starting addresses of the interrupt procedures in these
locations.

NOTE: Because of the way the EXE2BIN program
works, the AINT_TABLE segment must be first In
your program so that It will be located at absolute
address 0000:01001-1, where it must be for the
program to work correctly when downloaded to an
SDK-86 board.

The next thing we do in our program Is to declare a
data segment and Set aside some memory locations for
seconds count. minutes count, hours count, and 100
characters read in from the keyboard. After the data
segment. we set up a stack segment.

At the start of the mainline, we Initialize the stack
segment register and the stack pointer register. Then
we initialize the DS register to point to the interrupt-
vector table we set up at the Start of the program.

The next four instructions load the addresses of the
clock and keyboard procedures in the type 64 and type
66 Locations In the interrupt-pointer table.

After we load the Interrupt-vector table, we ASSUME
DS:DATA and initialize DS to point to the data segment
which contains the data for the clock and keyboard.

The next step is to Initialize the 8259A as we described
in the preceding section. The AU bit next to lCWl in
Figure 8-29 is a 0, so ICW1 Is sent to the lower of the
two addresses for the 8259A, FFOOH. For the example
here we chose type 64 to correspond to an IRO interrupt.
so the needed ICW2 will be 01000000. The A0 bit next
to ICW2 in Figure 8-29 Is a 1. so ICW2 is sent to the
higher of the two addresses for the 8259A. FFO2H.
Likewise, ICW4 and OCW1 are sent to system address
FFO2H.

The next section of the mainline program initializes
counter 0 of the 8254 for mode 3, BCD countdown, and
read/write LSB then MSB. To produce a 1-kHz signal
from the 2.4576-MHz PCLK. we then write a count of
2458 to counter 0. This will not give exactly 1 kHz. but
it is as close as we can get with this particular Input
clock frequency. The PCLK frequency for this board was
chosen to make baud rate clock frequencies come out
exact, not a 1-kHz real-time clock.

Finally, after the timer is initialized, we enable the
8086 INTR input with the STI instruction so that the
8086 can respond to tNT signals from the 8259A.
and wait for an interrupt with the HERE:JMP HERE
instruction.

For the two interrupt .service procedures, we showJust
the skeletons and the End-of-Interrupt instructions. We
leave it to you to write the actual procedures. Note that
the interrupt procedures must be declared as far so that
the assembler will load both the IP and the CS values
in the interrupt-pointer table. Also note the End-of-
Interrupt operation at the end of each procedure.

Remember from a previous discussion that when the
8259A responds to an lR signal, it sets the corresponding
bit in the ISR. This bit must be reset at some time
during or at the end of the Interrupt-service procedure
so that the priority resolver can respond to future
interrupts of the same or lower priority. At the end of
our procedures here we do this by sending an OCW2 to
the 8259A. The OCW2 of 00100000 that we send tells
the 8259A to reset the ISR bit for the IR level that Is
currently being serviced. This is a nonspecific End-of-
Interrupt (EOl) Instruction.

SOFTWARE INTERRUPT APPLICATIONS

In an earlier section of the chapter, we described how
the 8086 software Interrupt instruction INT N can be
used to test any type of interrupt procedure. For example.
to test a type 64 interrupt procedure without the need
for external hardware such as we described in the
preceding section. you can just execute the instruction
[NT 64.

Another important use of software Interrupts is to call
Basic Input Output System, or BIOS. procedures in an
IBM PC-type computer. These procedures in the system
ROMs perform Specific input or output functions, such
as reading a character from the keyboard, writing some
characters to the CRT. or reading some Information
from a disk.

To call one of these procedures, you Ibad any required
parameters In specified registers and execute an INT N
instruction. N In this case is the interrupt type which
vectors to the desired procedure. You can read the BIOS
section of the IBM PC technical reference manual to get
all the details of these if you need them, but here's an
example of how you might use one of them.

Suppose that, as part of an assembly language pro-
gram that you are writing to run on an IBM PC-type
computer. you want to send some characters to the
printer. The [NT 17H instruction can be used to call a
procedure which will do this.

Figure 8-32 shows the header for the INt 17H proce-
dure from the IBM PC BIOS listing. Note that the DX,
.\i1. and AL registers are used to pass the required

240	 CHAPTER EIGHT

;INT 17
;Printerlo - Provides comy nication with the printer

INPUT:
AHO Print the character in AL.

On eturn AH=1 if character could not be
printed (Time out). Other bits set as on

;	 normal status call.
*11=1 InitiaLize printer port.

Returns with AK set with printer status
*14=2 Read the printer status into AK

bit	 7 6 5 4 3 2 1 0

LL±:t
1=1/0 error
lselec ted
lout of paper
lacknowl edge
1=Not busy

DX = Printer to be used (0,1,2) corresponding to
actual values in Printer_Base area

Data area Printer_Base contains the base address to
the printer card(s) available (Located at beginning
of data segment 408H absolute, 3 words)

Data area Print_Tim_Out (byte) may be changed to
cause different time out waits. Defautt2O

REGISTERS: *14 is modified, all others unchanged.

FIGURE 8-32 Header for INT 17 procedure.
(18M Corporation)

parameters to the procedure. Also note that the proce-
dure is used for two different operations: initializing the
printer port and sending a character to the printer. The
operation performed by the procedure Is determined by
the number passed to the procedure in the AH register.
Al-I = I means Initialize the printer port. AH 0 means
print the character In AL, and AH = 2 means read the
printer status and return It in AH. if an attempt to print
a character was not successful for some reason, such as
the printer not being turned on. not being selected, or
being busy. Oils returned in Al-i.

Now work your way through the program example in
Figure 8-33 to see how the INT 17H procedure is called
to Initialize the printer and how it is called over and
over to send a text string to the printer. Note that we
sent a carriage return character and a linefeed character
after the text string because the printer will not print a
line until it receives a carriage return.

The main advantage of calling procedures with soft-
ware Interrupts is that you don't need to woriy about the
absolute address where the procedure actually resides or
about trying to link the procedure into your program.
All you have to know is the interrupt type for the
procedure and how to pass parameters to the procedure.
This means that a program you write for an IBM
computer will work on a compatible COMPAQ computer,
even though the BIOS printer driver procedures are

;8086 PROGRAM F8'33.ASN
;ABSTRACT : This program sends a string of characters to a printer

fra en IBM type PC. To run this program, first asserèle
and use the LINK program to create the .EXE file. Then
turn on your printer, & at the DOS proapt type F8-33.

;REGISTERS : Uses CS, SS, OS, BX, AX, CX. DX
;PORTS	 : Uses printer port 0
;PROCEDURES: Calls BIOS printer 10 procedure HIT 17

STACK_SEC SEGMENT STACK
DW	 200	 DUP(0)	 Set aside 200 words for stack
STACK_TOP LABEL WORD	 Assign name to word above stack top

STACK_SEC ENDS

CHAR_C00NT EQU 30

DATA	 SEGMENT
MESSAGE	 08	 'HElLO THERE, HOW ARE YW?

MESSAGE_END	 DB	 0014, OAK, 0DM, OAK 	 return & line feed
DATA	 ENDS

CE	 SEGMENT
ASSUME CS:COOE, SS:STACK_SEG, DS:DATA

START: NOV AX. STACK_SEC	 nitialize stack segment register
NOV SS, Ax
NOV SP, OFFSET STACK_TOP	 Initialize stack pointer register
NOV AX, DATA	 Initialize data segment register
NOV OS, AX
NOV AN, 01	 Set up registers to initialize printer
NOV DX, C	 port 0
lIlT 1714	 CaLl procedure to intitialize printer port
LEA BX, MESSAGE	 Get to start of message
NOV CX, CHAR_COuNT 	 Set up a count ,'eriabte

AGAIN: NOV AN, 0	 Load code for procedure to send character

2
3
4
5
6
7
a
9

10 0000
11 0000 C8(0000)
12
13 0190
14
15	 = 001€
16
17 0000
18 0000 48 45 4C 4C 4F 20 54 +
19
	

48 45 52 45 2C 20 48 +
20
	

4F 57 20 41 52 45 20
21
	

59 4F 55 3F
22 0019 00 0* 00 0*
23 COlD
24
25 0000
26
27 0000 88 0000s
28 0003 8€ DO
29 0005 BC 0190r
30 0008 88 0000s
31 0008 8€ 08
32 0000 84 01
33 DOOr BA 0000
34 0012 CD 17
35 0014 80 1E 0000r
36 0018 B9 001E
37 0018 84 00

FIGURE 8-33 8086 assembly language program for outputting characters to a
printer. (Continued on next page.)

8086 INTERRUPTS AND INTERRUPT APPLICATIONS 	 , 241

8 0010 8A 07	 NOV AL, (BX]
39 0011 CD 17	 INT uN
40 0021 80 FC 01	 CHP AH, DiN
41 0024 75 04	 JNE NEXT
42 0026 F9	 NOT_RDY:STC
43 0027 U 05 90	 JI4P EXIT
44 002A F8	 NEXT:	 CLC
45 002B 43	 INC BX
46 t02C E2 ED	 L00P AGAIN
47 002E B8 4C00	 EXIT:	 NOV AX, 4COOH
48 0031 CD 21	 INT 21H
49 0033	 C00E	 ENDS
50	 END START
FIGURE 8--33 (continued).

located at very different absolute addresses in the two
machines. In later chapters we show more examples of
using BIOS procedures.

This chapter has introduced you to interrupts and
some interrupt applications. The following chapters will
show you many more applications of interrupts because
almost every microcomputer system uses a variety of
interrupts.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms in the following
list, use the index to help you find them in the chapter
for review.

8086 interrupt response

Interrupt-service procedure
Interrupt vector, interrupt pointer

interrupt-vector table, Interrupt-pointer table

interrupt type

Divide-by.zero interrupt—type 0

Load character to be sent into AL
Use BI(S routine to send character to printer
If character not printed then returns AN -1
IF character not printed THEN
Set carry to indicate message not sent
and Leave Loop
ELSE CLear carry fLag (character sent)
Move to address of next character
Send the next character
GracefuL exit to DOS
with ftxction caLL 4CH

Single-step interrupt—type I

Nonmaskable interrupt—type 2
Breakpoint interrupt—type 3

Overflow interrupt—type 4
Software interrupts—INT types 0 through 255

INTR interrupts—types 0 through 255
Edge- and level-activated interrupt input

Interrupt priority
Programmable timer/counter devices—.8253. 8254

Initialization steps for peripheral devices

internal addresses
Control words, command words, mode words

8259A priority interrupt controller
In-service register (ISR)
Priority resolver
interrupt requet rg'?r "RRI
Interrupt mask register (IMR)

BIOS

REVIEW QUESTIONS AND PROBLEMS

I. List and describe in general terms the steps an	 6. Briefly describe the condition(s) which cause the
8086 will take when it responds to an interrupt.

	

	 8086 to perform each of the following types of
interrupts: type 0, type I, type 2. type 3. type 4.

2. Describe the purpose of the 8086 interrupt.vector
table.

	

	 7. Why is it necessary to PUSH all registers used in
the procedure at the start of an Interrupt-service

3. What addresses In the interrupt-vector table are 	 procedure and to POP them at the end of the
used for a type 2 interrupt? 	 procedure?

4. The starting address for a type 4 interrupt-service
procedure is 0010:0082. Show where and in what
order this address should be placed In the interrupt.
vector table.

5. Address 00080H in the Interrupt-vector table con-
tains4A24H. and address 0008211 contains 0040H.
a. To what interrupt type do these iocattons corre-

spond?
b. What is the starig aidress for the interrupt-

service procedu

8. Why must you use an IRET instruction rather
than the regular RET instruction at the end of an
interrupt-service procedure?

9. Show the assembler directive and instructions you
would use to initialize the interrupt-pointer table
locations for a type 0 procedure called DIV_0_ER-
ROR and a type 2 procedure called POWER_-FAIL.

10. a. Describe the main use of the 8086 type 1
interrupt.

242	 CHAPTER EIGHT

b. Show the assembly language instructions nec-
essaly to set the 8086 trap flag.

II. In a system which has battery-backed RAM for
saving data in case of a power failure, the stack is
often put in the battery-backed RAM. This makes
It easy to save registers and critical program data.
Assume that the battery-backed RAM is in the
address range of 08000H through O8FFFH. Write
an 8086 power failure Interrupt-service procedure
which

Sets an external battery-backed flip-flop connected
to bit 0 of port 28H to indicate that a power failure
has occurred.

Saves all registers on the stack.

Saves the stack pointer value for the last entry at
location 8000H.

Saves the contents of memory locations OO100H
through 003FFH after the saved stack pointer value
at the start of the battery-backed memory. (A string
instruction might be useful for this.)

Halts.

When the power comes back on, the start-up
routine can check the power fail flip-flop. If the flip-
flop is set, the start-up procedure can copy the saved
data back into its operating locations. initialize the
stack segment register, and then get the saved SP
value from address 0800011. Using this value, it
can restore the pushed registers and return execu-
tion to where the power fail interrupt occurred.
This is called a "warm start." If we dont want it to
do a warm start, we can reset the flip-flop with an
external RESET key so the system does a start from
scratch, or "cold start."

12. a. Why is the 8086 INTR input automatically
disabled when the 8086 is RESET?

b. How is the 8086 INTR input enabled to respond
to interrupts?

c. What instruction can be used to disable the
INTR input?

ci. Why is the INTR input automatically disabled
as part of the response to an INTR interrupt?

e. How is the INTR input automatically reenabled
at the end of an INTR interrupt-service pro-
cedure?

13. Describe the response an 8086 will make if it
receives an NMI interrupt signal during a division
operation which produces a divide .by.zero in-
terru pt.

14. The data outputs of an 8-bit analog-to-digital con-
verter are connected to bits D0—D7 of port FFF9I-1,
and the end-of-conversion signal from the ND
converter is connected to the NMI input of an 8086.
Write a simple mainline program and an interrupt-
service procedure which, reads in a byte of data
from the converter. If tbe MSB of the data is a 0.
Indicating that the value is in range. add the byte

to a running total kept in two successive memory
locations. If the MSB of data is 1. showing that the
value is out of range, ignore the input. After 100
samples have been totaled, divide by 100 to get the
average, store this verage in another reserved
memory location, and reset the total to 0.

IS. Write the algorithm and the program for an inter-
rupt-service procedure which turns an LED con-
nected to bit DO of port FFFAH on for 25 s and off
for 25 s. The procedure should also turn a second
LED connected to bit Dl of port FFFAH on for I
minandofflor 1 min.Assumethata l-Hzinterrupt
signal is connected to the NMI input of an 8086
and that a high on a port bit turns on the LED
connected to it.

16. Write the algorithms for a mainline program and
an interrupt-service procedure which generate a
real-time clock of seconds. minutes, and hours in
three memory locations using a 1-Hz signal applied
to the NMI Input of an 8086. Then write the
assembly language programs for the mainline and
the procedure. If you are working on an SDK-86
board, there is a procedure in Figure 9-32 that you
can add to your program to display the time on the
data and address field LEDs of the board. You can
use this procedure without needing to understand
the details of how it works. To display a word on
the data field, simply put the wor in the CX
register, put OOH in AL. and call the procedure. To
display a word on the address field, put the word
in CX. OIH in AL. and call the procedure. Hint:
Clear carry before incrementing a count in AL so
that DAA works correctly.

17. In Chapter 5 we discussed using breakpoints to
debug programs containing procedures. List the
sequence of locations where you would put
breakpoints in the example program in Figure 8-9
to debug it if it did not work when you loaded it
into memory.

Ii. Suppose that we add another 8254 to the SDK-86
add-on circuitry shown in Figure 8-14 and that the
CS input of the new 8254 is connected to the Y5
output of the 74LS 138 decoder.
a. What will be the system base address for this

added 8254?
b. To which half of the 8086 data bus should the

eight data lines from thIs 8254 be connected?
c. What will be The system addresses for the three

counters and the control word register in this
8254?

ci. Show the control word you would use to initial-
ize counter I of this device for readiwrite LSB
then MSB. mode 3. and I3CD countdown

e. Show the sequence of Instructions you would
use to write this control word and a count of
0356 to the counter.

f. Assuming that the GATE input is high. when
does the counter start counting down in mode
3?

33
	 8O8, INTERRUPTS AND INTERRUPT APPlICATIONS 	 243

g Assuming initialization as in parts d andf. and
that a 712-kHz signal is applied to the CLK
Input of counter I in mode 3. describe the
frequency, period, and duty cycle of the wave-
form that will be on the OUT pin of the counter.
Describe the effect that a control word of
10010000 sent to this 8254 will have.

i9. Show the instructions you would use to Initialize
counter 2 of the .8254 In Figure 8-14 to produce a
1.2-ms-wide STROBE pulse on its OUT pin when
it receives a trigger Input on its GATE input.

20. Show the instructions needed to latch and read a
16-bit Count from counter 1 of the 8254 in Figure
8-14.

flescrlhe the sequence of actions that , an 8259A
and an 8086. as connected in Figure 8-14. will take
wtien the 8259A receives an interrupt signal on its

2 input. Assume only 1R2 is unmasked in the
i259A and that the 8086 INTR Input has been
nab1ed with an STI instruction.

22. Describe the use of the CASO, CASI. and CAS2
lines in a system with a cascaded 8259A.

23. DescrIbe the response that an 8259A will make if
It receives an tnterrupt signal on Its ikj and 1R3
inputs at the same time. Assume fixed priority for
the IR inputs. What response will the 8259A make
if it is servicing an lR5 interrupt and an 1R3
interrupt signal occurs?

24. Why Is it necessary to send an End-of-Interrupt
lEOl) command to an 8259A at some time in an
interrupt-service routine?

25. Show the sequence of command words and instruc-
tions that you would use to initialize an 8259A
with a base address of FFIOH as follows; edge-
triggered; only one 8259A; 8086 system; interrupt
type 40 corresponds to IRO input; normal EOl;
nonbuffered mode, not special fully nested mode:
lRl and 1R3 unmasked.

26. What is the major advantage of calling BIOS proce-
dures with software interrupts instead of calling
them with absolute addresses?

244	 CHAPTER EIGHT

Interfacing

The major goal of this chapter and the next Is to show
you the citcuitry and software needed to Interface a
basic microcomputer with a wide variety of digital and
analog devices. In each topic we try to show enough
detail so that you can build and experiment with these
circuits. Perhaps you can use some of them to control
appliances around your house or to solve some problems
at work.

in this chapter. we concentrate on the devices and
techniques used to get digital data into and out of the
basic microcomputer. Then, in the next chapter, we
concentrate on analog interfacing.

OBJECTIVES
At the conclusion of this chapter, you should be able to:

I. Describe simple input and output. strobed input
and output, and handshake input and output.

2. Initialize a programmable parallel-port device such
as the 8255A for simple Input or output and for
handshake input or output.

3. Interpret the timing waveforms for handshake in-
put and output operations.

4. Describe how parallel data is sent to a printer on a
handshake basis.

5. Show the hardware connections and the programs
that can be used to interface keyboards to a micro-
computer.

6. Show the hardware connections and the programs
that can be used to interface alphanumeric displays
to a microcomputer.

7, DescrIbe how an 8279 can be used to refresh a
multiplexed LED display and scan a matrix key-
board.

8. Initialize an 8279 for a given display and keftord
format.

9. Show the circuitry used to interface high-power
devices to microcomputer ports.

10. Describe the hardware and software needed to
control a stepper motor.

II. Describe how optical encoders are used to deter-
mine the position, direction of rotation, and speed
of a motor shalt.

PROGRAMMABLE PARALLEL PORTS AND
HAN DSHAKE INPUT/OUTPUT

Throughout the program examples in the preceding
chapters. we have used port devices to input parallel
data to the microprocessor and to output parallel data
from the microprocessor. Most of the available port
devices, such as the 8255A on the SDK-86 board, contain
two or three ports which can be programmed to operate
in one of several different modes. The different modes
allow you to use the devices for many common types of
parallel data-transfer. First we will discuss some of these
common methods of transferring parallel data, and then
we will show how the 8255A is initialized and used In
a variety of 110 operations.

Methods of Parallel Data Transfer

SIMPLE INPUT AND OUTPUT
When you need to get digital data from a simple switch.
such as a thermostat, into a microprocessor, all you
have to do is connect the switch to an input port line
and read the port. The thermostat data is always present
and ready, so you can read It at any time.

Likewise, when you need to output data to a simple
display dev1e such as an LED, aU you have to do is
connect the input of the LED buffer on an output port
pin and output the logic level required to turn on the
light. The LED is always there and ready, so you can send
data to It at any time. The timing waveform In Figure
9-Ia, p. 246. represents this situation. The crossed lines
on the waveform represent the time at which a new data
byte becomes valid on the output lines of the port. The
absence of other waveforms indicates that this output
operation is not directly dependent on any other signals.

SIMPLE STROBE I/O
In many applications, valid data is present on an external
device only at a certain time, so it must be read in at
that time. An example of this is the ASCII-encoded
keyboard discussed in Chapter 4. When a key is pressed.

245

DATA

(i

_____Jf--

DATA

b)

STB	 __

ACK

DATA

STB	 f_f

ACK

DATA

Id)

FIGURE 9-1 Parallel data transfer. (a) Simple output.
(b) Simple strobe I/O. (C) Single handshake i/O. (d)
Double handshake i/O.

circuitry on the keyboard sends out the ASCII code for
the pressed key on eight parallel data lines, and then
sends out a strobe signal on another line to indicate
that valid data is present on the eight data lines. As
shown In Figure 4-19. you can connect this strobe line
to an input port line and poll it to determine when
you can input valid data from the keyboard. Another
alternative, described in Chapter 8. is to connect the
strobe line to an interrupt input on the processor and
have an interrupt service procedure read in the data
when the processor receives an interrupt. The point
here is that this transfer Is time dependent. You can

read In data only when a strobe pulse tells you that the
data is valid.

Figure 9-lb shows the timing waveforms which repre-
sent this type of operation. The sending device, such as
a keyboard. outpuparallel data on the data lines, and
then outputs an STB signal to let you know th valid
data is present.

For low rates of data transfer, such as from a keyboard
to a microprocessor. a simple strobe transfer works well.
However, for higher-speed data transfer this method
does not work, because there is no signal which tells
the sending device when it is safe to send the next data
byte. In other words, the sending system might send
data bytes faster than the receiving system could read
them. To prevent this problem, a handshake data
transfer scheme is used.

SINGLE-HANDSHAKE I/O

Figure 9-2 shows the circuit connections and Figure 9-Ic
shows some example timing waveforms for a handshake
data transfer from a peripheral device to a microproces-
sor. The peripheral outputs some parallel data and sends
an STB signal to the microessor. The microproces-
sor detects the asserted STB signal on a polled or
interrupt basis and reads In the byte of data. Then the
microprocessor sends an Acknowledge signal lACK) to
the peripheral to indicate that the data has been read
and that the peripheral can send the next byte of data.
From the viewpoint of the microprocessor, this operation
is referred to as a handshake or strobed input.

These same waveforms might represent a handshake
output from a microprocessor to a parallel printer. In
this case, the microprocessor outputs a character to the
printer and asserts an STB signal to the printer to tell
the printer. "Here is a character for you." When the
printer is ready, it answers back with the ACK signal to
tell the microprocessor. "I got that one: send me an-
other." We will show you much more about printer
interfacing In a later section.

The point of this handshake scheme is that the
sending device or system is designed so that it does not
send the next data byte until the receiving device or
system indicates with an ACK signal that it is ready to
receive the next byte.

DOUBLE-HANDSHAKE DATA TRANSFER

For data transfers where even more coordination is
required between the sending system and the receiving

FIGURE 9-2 Signti directu,ns for handshake input data transfer.

246	 CHAP1) NINE

system, a double handshake is used: The circuit con-
nections are the same as those in Figure 9-2. Figure
9-Id shows some example waveforms for a double-
handshake input from a peripheral to a microprocessor.
Perhaps It will help you to follow these waveforms by
thinking of them as a conversation between two people.
In these waveforms each sgpl edge has meaning. The
sending device asserts its.STB line low to ask, "Are you
ready?" 'the receiving system raises its ACK line high
to say. "I'm ready." The peripal device then sends the
byte of data and raises its STB line high to say. "Here
is some valid data for you." After it has read in the data.
the receiving system drops its ACK line low to say. "I
have the data, thank you, and I await your request to
send the next byte of data."

For a handshake output of this type, from a micropro-
cessor to a peripheral, the waveforms are the same, but
the microprocessor sends the STB signal and the data.
and the peripheral sends the ACK signal. In the accompa-
nying laboratory manual we show you how to interface
with a speech-synthesizer device using this type of
handshake system.

Implementing Handshake Data Transfer

For handshake data transfer, a microprocessor can
determine when it is time to send the next data byte on
a polled or on an interrupt basis. The interrupt approach
is usually used, because it makes better use of the
processor's time,

The STB or ACK signals for thesç handshake transfers
can be produced on a port pin by instructions in the
program. However, this method usually uses too much
processor time, so parallel-port devices such as the
8255A have been designed to automatically manage the
handshake operation. The 8255A. for example, can be
programmed to automatically receive an STB signal from
a peripheral. send an interrupt signal to the processor,
and send the ACK signal to the peripheral at the proper
times. The following sections show you how to connect.
initialize, and use an 8255A for a variety of handshake
and nonhandshake applications.

8255A Internal Block Diagram
and System Connections

Figure 9-3. p. 248. shows the internal block diagram of
the 8255A. Along thc right side of the diagram. you can
see that the device has 24 input/output lines. Port A can
be used as an 8-bit input port or as an 8-bit output port.
Likewise, port B can be used as an 8-bit input port or as
art 8-bit output port. Port C can be used as an 8-bit
input or output port, as two 4-bit ports, or to produce
handshake signals for ports A and B. We will discuss
the different modes for these tines in detail a little later.

Along the left side of the diagram. you see the signal
lines used to connect the device to the system buses.
Eight data lines allow you to write data bytes to a port
or the control register and to read bytes from a port or
the status register under the control of the RD and WR
lines. The address inputs, A0 and Al. allow you to
selectively access one of the three ports or the control

register. The internal addresses for the device are: port
A.0O; port B, 01: port C. 10; control. 11. Asserting the
CS inut of the 8255A enables It for reading or writing.
The CS input will be connected to the output of the
address decoder circuitry to select the device when It is
addressed.

The RESET input of the 8255A is connected to the
system reset line so that, when the system is reset, all
the port lines are initialized as input lines, This is done
to prevent destruction of circuitry connected to port
lines. If port lines were initialized as outputs after a
power-up or reset, the port might try to output to the
output of a device connected to the port. The possible
argument between the two outputs might destroy one
or both of them. Therefore, all the programmable port
devices initialize their port lines as inputs when reset,

We discussed in Chapter 7 how two 8255As can be
connected in an 8086 system. Take a took at Figure 7-8
(sheet 5) to refresh your memory of these connections,
Note that one of the 8255As is connected to the lower
half of the 8086 data bus, and the other 8255A is
connected to the upper half of the data bus. This is done
so that a byte can be transferred by enabling one device.
or a word can be transferred by enabling both devices
at the same time, According to the truth table for the
1/0 port address decoder in Figure 7-16, the A40 82'55A
on the lower half of the data bus will be enabled for a
base address of FFF8H. and the A35 8255A will be
enabled for a base address of FFF9H.

Another point to notice in Figure 7-8 is that system
address line Al Is connected to the 8255A A0 inputs,
and system address line A2 i connected to the 8255A
Al inputs. With these connections, the system addresses
for the three ports and the control register In the A40
8255A will be FF'FSH, FFFAH, FFFCH, and FFFEH. as
shown in Figure 7-16. Likewise, the system addresses
for the three ports and the control register of the A35
8255A are FFF9H, FFFBH. FFFDH. and FFFFI-I.

8255A Operational Modes and Initialization

Figure 9-4. p. 249. summarizes the different modes in
which the ports of the 8255A can be initialized,

MODE 0

When you want to use a port for simple input or output
without handshakin'. you initialize that port in mode
0. If both port A and port B are initialized in mode 0.
then the two halves of port C can be used together as
an additional 8bit port, or they can be used individually
as two 4-bit ports. When used as outputs, the port C
lines can be individually set or reset by sendtrig a special
control word to the control register address. Later we
will show you how to do this. The two halves of port C
are independent. so one half can be initialized as input.
and the other half initialized as output.

MODE 1

When you want to use port A or port B for a handshake
(strobed) input or output operation such as we discussed
in previous sections, you initialize that port in mode I.

DIGITAL INTERFACING 	 247

GROUP
A

CONTROL

• +5V
POWER
SUPPLIES { - GND

A I/O
PORT

GROUP	

PA7-PAO

(8)

8-BIT
INTERNAL
DATA BUS

GROUP
A I/O

PORT C pci-PCI
UPPER

(41

GROUP
8 I/O

PORT C PC3-PCO
LOWER

(4)

BIDIRECTIONAL
DATA BUS

DI DO	
DATA

BUS
BUrFER

AEAD/
GROUP GROUPWRITE

Al	
CONTROL

AO

R ESE

FIGURE 9-3 Internal block diagram of 8255A programmable parallel port
device. (Intel Corporation)

I/O
P87-P80

in this mode, some of the pins of port C function as
handshake lines. Pins PCO. PC!. and PC2 function as
handshake lines for port BJ1 it is initialized In mode 1.
if port A is initialized as a handshake (mode 1) input
port, then pins PC3, PC4, and PC5 function as hand-
shake signals. Pins PC6 and PC7 are available for use
as Input lines or output lines. If portAls Initialized as

then tC pins PC3, PC6,
and PC7 fctIon as haihkè signâ]: Dort-C- pins

1C4 and PC5 are available for use as input or output
lines. Since the 8255A is often used in mode 1. we show
several examples in the foUowlng sections.

MODE 2
Only port A can be InItialized in mode 2. In mode 2. port
A can be used for bidirectional handshake data transfer.
This means that data can be output or Input on the
same eight lines. The 8255A might be used in this mode
to extend the system bus to a slave microprocessor or
to transfer data bytes to and from a floppy disk controller

board. If port A is Initialized in mode 2, then pins PC3
through PC7 are used as handshake lines for port A.
The other three pins. PCO through PC2, can be used for
110 if port B is in mode 0. The three pins will be used
for port B handshake lines if port B is initialized in
mode I. After you work your way through the mode I
examples in the following sections, you should have little
difficulty understanding the discussion of mode 2 in the
Intel data sheet if you encounter it in a system.

Constructing and Sending 8255A Control Words

Figure 9-5 shows the formats for the two 8255A control
words. Note that the MSB of the control word tells the
8255A which control word you are sending it. You use
the mode dejinitton control word format in Figure 9-5a
to tell the device what modes you want the ports to
operate In. You use the bit set/reset control word format
In Figure 9-Sb when you want to set or reset the output
on a pin of port C or when you want to enable the

248	 CHM'TER NINE

CONTROL WORD

07 106 105 104 103 ID? 101100
	

GROUP B

07-DO	 AO-AI

•255A

S -
C

	

I	 A

'C

•GRM.0	
j"	 'IO	

j'I0	
j'oHANOSI4AKE

P87-RIO	 PC-PcO	 PC7-PC4	 A7-PAO

S	 P	 PCI PC? PC? PC' PCS PC6 PC?	 A f

1.11111110
P87 -P80 11T8 ISP1 rtç 1NTR8 fl1 ISF I/O I/O PA7.P*O

HANDSHAKE ____-
	 OR OR	 OR OR OR OR

oiç	 IIO
I-UT
SIGNALS

-	 PORT A. PORTS CONTROL 	 HANDSHAKE
Oar-UT
SIGNALS

	

PC? PCI PC? PC? PC PCS PC? PC? 	 A J
S	 S

	

P.7-Plo	 ";—	 INTH	 IBPj	 OäF	 Pn7-P*O
CONTROL	 -___________________PORT ACONTROI. 	 El-

	

___________________________	 DIR ECTIONAL
PONTIMAVIE	 SUS
51005 0 OR 51000

FIGURE 9-4 Summary of 8255A operating modes.
(Intel Corporation)

PORT C (LOWER)
1 = INPUT
O = OUTPUT

PORT B
I = INPUT
O OUTPUT

MODE SELECTION
0 MODE 0
1 - MODE 1

GROUP A

PORT C (UPPER)
INPUT

O OUTPUT

PORT A
INPUT

O = OUTPUT

00 MODE 0
01 - MODE 1
1X MODE 2

MODE SET FLAG
1 - ACTIVE

CONTROL WORD

07 06 05 04 03 02 DI DO	 BIT SET/RESET
= SET

0 = RESET

interrupt output signals for handshake data transfers.
Both control words are sent to the control register
address of the 8255A.

As usual. Initializing a device such as this consists of
working your way through the steps we described in the
last chapter. As an example for this device, suppose that
you want to initialize the 8255A (A40) in Figure 7-8 as
foUows:

.75-S.

DON'T
CARE

It)

BIT SELECT
01 2 3 4 5 6

7 JO 1 0 1 _0 I 0 1

001 1001 1(511

0000tli i

BIT SET/RESET FLAG
0 = ACTIVE

Port B as mode 1 input

Port A as mode 0 output

Port C upper as inputs

Port C bIt 3 as output

As we said previously, the base address for the A40
8255A is FFFSH. and the control register address is
FFFEH. The next step is to make up the control word
by figuring out what to put in each of the little boxes.
one bit at a time. Figure 9-6a. p. 250. shows the control
word which will program the 8255A as desired for this ex-
ample. The figure also shows how you should document

FIGURE 9-5 8255A control word formats. (a) Mode-set
control word. (b) Port C bit set/reset control word.

any Control wordsyou make up for use in your programs.
Using Figure 9-5a, work your way through this word to
make sure you see why each bit has the value it does.

To send the Control word, you load the control word
in AL with a MOV AL,I000IIIOB instruction, point
DX at the port address with the MOV DX.OFFFEH
instruction, and scnd the control word to the 8255A
control register with the OUT DX.AL instruction.

As an example of how to use the bit set/reset control

DIGITAL INTERFACING	 249

07 D6 D5 04 03 02 Di o
1IG

PORT C BIT 3
PORT B INPUT
PORT B MODE 1

PORT C UPPER -
PORT A OUTPUT
PORT A MODE

-	 - MODE SET WORD

07 06 D5 04 D3 02

I Ø I G I B I B I °l	 Ii
SET BIT

--	 L	 } BIT #3I________________________
BIT SET/RESET WORD

Ib)

FIGURE 9-6 Control word examples for 8255A.
(a) Mode-set control word. (b) Port C bit set/reset
control word to set bit 3.

word, suppose that you want to output a Ito (set) bit 3
of port C. which was initialized as an output with the
mode set control word above. To set or reset a port C
Output f)ifl, you use the bit set/reset control word shown
in Figure 9-5b. Make bit D7 a 0 to identify this as a bit
set/reset control word. and put a I in bit DO to specify
that you want to set a bit of port C. Bits D3. D2. and
Dl are used to tell the 8255A which bit you want to act
on. For this example you want to set bit 3, so you put
011 in these 3 bits. For simplicity and compatibility
with future product. make the other 3 bits of the
control word 0's. Th result. 0000011 lB. is shown with
proper documentation in Figure 9-6b.

To send this control word to the 8255A. simply load
it into AL with the MOV AL.00000I jiB instruction,
point DX at the control register address with the MOV
DX.OFFFEH Instrucuon if DX is not already pointin&
there, and send the control word with the OUT DX.AL
instruction. As part of the application examples in the
following sections. we will show you how you know
which bit in port C to set to enable the interrupt output
signal for handshake data transfer.

8255A Handshake Application Examples

INTERFACING TO A
MICROCOMPUTERCONTROlLED LATHE

All the machines tn the machine shop of our computer.
controlled electronics factory operate under microcom-
puter control. One example of these machines is a lathe
which makes bolts from long rods of stainless steel. The
cutting instructions for each type of bolt that we need
to make are storeJ on a 3/4ifl,-widC teletype like metal

tape. Each instruction is represented by a series of holes
in the tape. A tape reader pulls the tape through an
optical or mechanical sensor to detect the hole patterns
and converts these to an 8-bit parallel code. The micro-
computer reads the instruction codes from the tape
reader on a handshake basis and sends the appropriate
control instructions to the lathe. The microcomputer
must also monitor various conditions around the lathe.
It must, for example. make sure the lathe has cutting
lubricant oil, is not Out of material to work on. and'is
not Jammed up in some way. Machines that operate in
this way are often referred to as computer numerical
control, or CNC. machines.

Figure 9-7 shows in diagram form how you might use
an 8255A to interface a microcomputer to the tape
reader and lathe. Later in the chapter. we will show you
some of the actual circuitry needed to interface the port
pins of the 8255A to the sensors and the high-power
motors of the lathe. For now, we want to talk about
initializing the 8255A for this application and analyze
the timing waveforms for the handshake input of data
from the tape reader.

Your first task is to make up the control word which
will initialize the 8255A in the correct modes for this
application. To do this, start by making a list showing
how you want each port pin or group of pins to function.
Then put in the control word bits that implement those
pin functions. For our example here.

Port A needs to be initialized for handshake input (mode
1) because instruction codes have to be read In from the
tape reader on a handshake basis.

INTERRUPT
P E DUE ST

PC3 IAOl.
IpAIL---1
I PA2 L—	 A? 8 LEVEL

IPA3I___________	 PAPER

1PA41	
TAPE

l'AsI	
-lR5 READER

MODE 1	 _________
INPUT)

ACK
STOP/GO

8255A

MODE 0
(INPUT) PC2
	 OUT OF FLUID

P80 -	 CHANGE TOOL
P81	 LEFT/RIGHT
PB?	 UP/DOWN

MODE 0 P3	 - HOP. STEP STROBE
(OUTPUT) P84	 VERT. STEP STROBE

PBS	 SLEW/STEP
P96	 - FLUID ENABLE
P97	 EMERGENCY STOP

FiGuRE 9-7 interfacing a microprocessor to a tape
reader and lathe.

250	 CHAF'TtR ..i?'t

Port B needs to be initialized for simple output (mode
0). No handshaking is needed here because this port is
being used to output simple on or off control signals to
the lathe.

Port C. bits PCO. 1.and PC2 are used for simple Input
of sensor signals from the lathe.

Port C, bits PC3, PC4, and PC5 function as the hand-
shake signals for the data transfer from the tape reader
connected to port A.

Port C	 To Enabte
Interrupt	 Sgnat	 Interrupt	 Request
Pin Nasber	 Set Port C bit

MODE 1
Port A IN	 P03	 PC4
Port 8 IN	 PCO	 PC2
Port A OUT	 PCO	 PC6
Port 8 OUT	 PCO	 PC2

MODE
Port A IN	 PC3
	

PC4
Port A OUT	 PC3
	

PC6

Port C, bit PC6 is used for output of the STOP/GO signal 	 FIGIJRL 9-9 Port C bits to set to enable interrupt
to the tape reader.	 request outputs for handshake modes.

Port C. bit PCi is not used for this example.

Figure 9-8 shows the control word to initialize the
8255A for these pin functions. You send this word to
the control register address of the 8255A as described
above.

Before we go on. there is one more point we have to
make about initializing the 8255A for this microcom-
puter-controlled lathe application. in order for the hand-
shake input data transfer from the tape reader to work
correctly, the interrupt request signal from bit PC3 has.
to be enabled. This is done by sending a bit set/reset
control word for the appropriate bit of port C. Figure 9-9
shows the port C bit that must be set to enable the
Interrupt output signal for each of the 8255A handshake
modes. For the example here, port A is being used for
handshake input, so according to Figure 9-9. port C.
bit PC4 must be set to enable the interrupt output for
this operation. The bit set/reset control word to do this
is 000010015. You send this bit set/reset control word
to the control address of the 8255A.

Handshake data transfer from the tape reader to the
8255A can be stopped by disabling the 8255A interrupt
output on port C, pin PC3. Th's Is done by resetting bit
PC4 with a bit set/reset control word of 00001000. You
will later see another example of the use of this interrupt
enable/disable process in Figure 9-16.

As another example of 8255A interrupt output en-
abling, suppose that you are using port B as a handshake
output port. According to Figure 9-9. you need to set, bit
PC2 to enable the 8255A Interrupt output signal. The
bit set/reset control word to do this is 00000:101.

Now let's talk about how the program for this machine
might operate and how the handshake data transfer
actually takes place.

07 06 05 D4 03 02 Dl D

1 1 1 0 1 1 1 iloIsIiI

I	 PORTCLOWERIN
PORT 8 OUTPUT
PORT B - MODE 0
PORT C UPPER OUT
PORT A INPUT
PORT A MODE I
MODE SET WORD

FIGURE 9-5 Control word to intialize 8255A for
interface with tape reader and Iahe.

After initializing everything, you would probably read
port C. bits PCO, PCI. and PC2 to check if the lathe was
ready to operate. For any 8255A mode, you read port C
by simply doing an Input from the port C address. Then
you output a start command to the tape reader on
bIt PC6. ThIs Is done with a bit set/reset command.
Assuming that you want to reset bit PC6 to start the
tape reader, the bit set/reset control word for this Is
00001100. When the tape reader receives the Go com-
mand, it will start the handshake data transfer to
the 8255A. Lets work our way through the timing
waveforms in Figure 9-10, p. 252. to see how the'data
transfer takes place.

The tape reader starts the process by sending out a
byte of data to port A on its eight data lines. The tape
reader then asserts its STB line low to tell the 8255A
that a new byte of data has been sent. In response, the
8255A raises its Input Buffer Full (IBF) signal on PC5
high to tell the tape reader that it is ready for the data.
When the tape reader detects the ISP signal at a high
level, it raises its STB signal high again. The rising edge
of the STB signal has two effects on the 8255A. It first
latches the data byte in the input latches of the 8255A.
Once the data is latched, the tape reader can remove the
data byte in preparation for sending the next data byte.
This Is shown by the dashed section on the right side
of the data waveform in Figure 9-10. Second. if the
interrupt sig output has been enabled, the rising
edge of the STB signal will cause the 8255A to output
an Interrupt Request signal to the microprocessor on
bit PC3.

The processor's response to the interrupt request will
be to go to an interrupt service procedure which reads
in the byte of data latched In port A. When the RD signal
from the microprocessor goes low for this read of port A,
the 8255A will automatically reset its Interrupt Request
signal on PC3. This Is done so that a second interrupt
cannot be caused by the same data byte transfer. When
the processor raises its RD signal high again at the end
of the read operation, the 8255A automatically drops Its
IBF signal on PC5 low again. 1SF going low again is the
signal to the tape reader that the data transfer is
complete and that it can send the next byte of data. The
time between when the 8255A sends the Intemapt
Request signal and when the processor reads the data
byte from port A depends on when the processor gets
around to servicing that interrupt. The point here Is
that this time doesn't matter. The tape reader will no

34	 DIGITAL INTERFACING	 251

MODE 1 ISTROBED INPUT)

FROM TAPE STB
READER TO
8255

FROM 8255	 1SF
TO TAPE
READER

FROM 8255 INTR
TO 8259A

FROM 8086	 AD
TO 8255

DATA INPUT FROM
PERIPHERAL

FIGURE 9-10 Timing waveforms for 8255 handshake data input from a tape
reader.

C -nd the next byte of data until It detects that the IBF
signal has gone low again. The transfer cycle will then
repeat for the next data byte.

After the processor reads in the lathe control instruc-
tion byte from the tape reader, it will decode this
instruction, and output the appropriate control byte to
the lathe on port B of the 8255A. The tape reader then
sends the next instruction byte. If the instructldn tape
is made into a Continuous loop, the lathe will keep
making the specified parts until it runs out of material,
The unused bit of port C. PCi, could b. "nnnected to a
mechanism which loads jr. more matr, m'I so the lathe

continue,
The microcomputer-controlled ithe w. htve thrbe'i

here is a small example (uomated manuiacurrIg.
The advantage of this approac 	 th t relieves hum-s
of the drudgery of standing mi h	 of a ma-hlne
continually making the sime part. rh after day, We
hope society can find more productive 	 for the human
time made available.

PARALLEL PRINTER INTERFACE—i-1AN)SI lAKE
OUTPUT EXAMPLE
At the end of Chapter 8. we showed you how to send a
string of text characters to a printer by calling a BIOS
procedure with a software Interrupt. In this section
we show you the hardware connections and software
required to interface with a parallel printer in a system
which does not have a BIOS procedure you can call to
do the Job.

For most common printers, such as the IBM PC
printers, the Epson dot-matrix printers, and the Pana-
sonic dot-matrix printers, data to be printed is sent to
the printer as ASCII characters on eight parallel lines.
The printer receives the characters to be printed and
stores them in an internal RAM buffer. When the printer
detects a carriage return character IODH). It prints out
the first row of charactès from the print buffer. When
the printer detects a second carriage return, it prints
Out the second row of characters. etc. The process
continues until all the desired characters have been
printed.

Transfer of the ASCII codes from a microcomputer to

a printer must he done on a handshake basis because
the microcomputer can send characters much faster
than the printer can print them. The printer must in
some way let the microcomputer know that its buffer is
full and that it cannot accept any more characters until
it prints some out. A common standard for interfacing
with parallel printers is the Cent ronics Parallel Interface
Standard, named for the company that developed it. In
the following sections, we show you how a Centronics
parallel interface works and how to implement it with
an 8255A.

Centronics Interface Pin Descriptions
and Circuit Connections
Centronics-type printers usually have a 36-pin interface
connector. Figure 9-li shows the pin assignments and
dscriptions for this connector as it is used in the IBM

C printer and the Epson printers. Some manufacturers
use one or two pins differently, so consult the manual
for your specific printer before connecting it up as we
show here.

'ihirty-six pins may seem like a lot of pinsJust to send
ASCII characters to a printer. The reason for the large
number of lines is that each data and signal line has its
own individual ground return line. For example, as
shown In Figure 9-il. pin 2 is the LSB of the data
character sent to the printer, and pin 20 is the ground
return for this signal. Individual ground returns reduce
the chance of picking up electrical noise in the lines. If
you are making an interface cable for a parallel printer.
these ground return lines should only be connected
together and to ground at the microcomputer end of the
cable, as shown in Figure 9-12. p. 254.

While we are talking about grounds. note that pIn 16
is listed as logic ground and pin 17 is listed as chassis
ground. In order to prevent large noise currents from
flowing in the logic ground wires, these wires should
only be connected together in the microcomputer. (This
precaution is necessary whenever you connect any exter-
nal device or system to a microcomputer.)

The rest of the pins on the 36-pin connector fall into
two categories: signals sent to the printer to tell it what

252	 CHAPTER NINE

	

SIGNAL	 RETURN	 SIGNAL	 DIRECTION	 DESCRIPTION

1	 19	 IN	 STROBE puIw to read data in. PuI,. width mss ben ethnO.Siesstr.ceivingtermfrisl. The

	

______ -	 SIR	 level is normally 'lsjgh"; reed-in of data ii performed at the "(Ow" livel of this signal.

2	 20	 DATA1	 IN
3	 21	 DATA2	 IN
4	 22	 DATA3	 IN
5	 23	 DATA 4	 IN	 These tignalt represent information of the let to 8th bits of petellil data r,ectively. Each

24	 DATA5	 IN	 t1,Mnduog1 and'iow"wh.nlogical"O."

7	 25	 DATA6	 IN
8	 26	 OATA7	 IN
•	 27	 DATA8	 IN

28	 ACKNLG	 OUT	 Approeimate!y5pspolw"iratesthetdatahaibeenrecaivsdandth.pnnteri.
reedy to accept other data.
A "high" signal indicates that the printer cannot receive data. The signal becomes "high"
in the following cases:Ii	 BUSY	 OUT	 1. During data envy. -	 3. in "offima" dat..
2. During printing operation. 	 4. Owing printer error satus,

12	 30	 Pt	 OUT	 A"hgh"tign.Iindicete.th.tth.print.risoototpaper.

13	 -	 SLCT	 OUT	 Th,ssignaIiatesthatthprinterisintheielictadRate.

14	 -	 AUTO	 With this ,ign.I being C 'low" level, the pap. ii automatically fed one Iln.alter printing, (The

	

_________ _________ FEED XI 	 IN	 signal level can be fixed to "low"with DIP SW pin 2-3 provided on the control clrcuitboald.)

IS	 -	 NC	 Not oued.
18	 -	 DV	 Logic GNO level,

17	 -	 CHASIS-	 Printer chatis GNO. In the printer, the chassis GNO and the logic GNO are ilased front
ONO	 -	 eachothar.

18	 -	 NC	 -	 Notud.	 -

	

19-30	 -	 GND	 -	 "1w	 Ii, etun,' sign.I ONO level.
When the level of this signal b,comes "low" the prInter controller is reset to its initial date

31	 -	 1Th'f	 IN -	 and the print buffer is cleared. This signal is normally at "hig" level, and it. pulls width
must be nor, than 50 ss at the receiving terminal,
The level of this signal becomes "(ow" when the printer is in "Paper End" seats, "Off line"

	

0	 OUT	 state and 'Error" state.
33	 -	 GNO	 -	 San, atwith pin number, 19 to 30.
34	 -	 NC	 -	 Notuted.
35	 Polled op to +5 Vdc throtgh 4,7 k-ohms resistance.

Data entry to the printer is possibl, only when the level of thu signet is "low." (Intirnel
-	 SLCT IN	 IN	 fising can be carried out with DIP SW 1-8. The condition at the time of thipvn.m is let

___________ ___________ ___________- __________ "low" for thi, aignal,l

Notes: 1. "Direction" refers to the direction of signal flow as viewed from th, printer.
2. "Return' denotes "Twisted-Pair Return" and is to be connected at signal-ground level,

When wir,trg the nterfec., be sure to use a twisted-pair cable for each signal and never fail tø complete connection on the return side. To prevent
noise effectively, these cables should be shielded and connected to the chiuls of the system unit.

3. All interface conditiont are based on TTL level. Both the rise and fall tirnesof each signal most be lela than 02 so'
4. DaIs transfer stunt not be carried Out by ignoring the ACKNLG or BUSY signal. Data transfer to thu printer can be carried out only after

confirming the ACXNLG signal or when the level of the BUSY signal is "low."l

FIGURE 9-11 Pin connections and descriptions for Centronics-type parallel
interface to IBM PC and EPSON FX-ltE printer, (IBM Corporation)

operation to do, and signals from the printer that
Indicate Its status. The major control signals to the
printer are INIT on pin 31, which tells the printer to
perform its Internal initialization sequence, and
STROBE on pin 1, which tells the printer, "Here Is a
character for you." Two additional input pins, pin 14
and pIn 36, are usually taken care of inside the printer.

The major status signals output from the printer are

I. The ACKNLG signal on p1 n 10. which, when low,
indicates that the data character has been accepted
and the printer Is ready for the next character.

2. The BUSY signal on pIn 11. which Is high If. før
some reason such as being out of paper, the printer
is not ready to receive a character.

3. The PE signal on pIn 12. winch goes high If the out-
of-paper switch In the printer Is activated.

4, The SLCT signal on pin 13, which goes high if the
printer Is selected for receiving data.

5. The ERROR signal on pin 32. which goes low for a
variety of problem conditions in the printer.

OICITM INTERFACING 	 253

INTR TO 8086 OR 825A

IC 1 AND 2 ARE 74LS07
Vc -PIN 14
OND PIN 7

	

IBM 25-FIN	 PRINTER
CONNECTOR-i r- CONNECTOR

	

PIN NUMBERS	 PIN NUMBERS

ERROR

PE

SLCT OUT

BUSY

NC

PlC

NC

NC

NC

NC

ACKNLG

STB

INIT

DATA 1

DATA 2

DATA 3

DATA 4

DATA 5

- DATA 6

DATA 7

DATA 8

30. 33-RET

LOGIC GND

CHASSIS GND

SURE 9-12 Circuit for interfacing Centronics-type parallel input printer to
on SDK-86 board.

hgure 9-13 shows the timing waveforms for transfer-
ring data characters to an IBM printer using the basic
handshakesignals. Here how this works.

Assuming the printer has been initialized, the BUSY
signal is checked to see ic the 1 rinter is ready to receive
data. if this signal is low, indicating the printer is ready
(not busy), an ASCII code is sent out on the eight parallel
data lines. After at least 0.5 p.s. the STROBE signal is
asserted low to tell th printer that a character has been
sent. The STROBE signal going low causes the printer
to assert its BUSY signal high. After a minimum time
of 0.5 p.s. the STROBE signal can be raised high again.
Note that the data must be held valid on the data lines
for at ieast 0.5 p.s after the STROBE signal Is made high.

-When the printer is ready to receive the next character.
it asserts its ACKNLO_signal low for about 5 s. The
rising edge of the ACKNLG signal tells the microcom-
puter that it can send the next_character. At the same
time as the rising edge of the ACKNLG signal. the printer
also resets the BUSY signal. A low on BUSY is another

Indication that the printer is ready to accept the next
character. Some systems use the ACKNLG signal for the
handshake, and some systems use the BUSY signal.
Now let's see how you can do this handshake printer
interface With an 8255A.

8255A CONNECTIONS AND INITIALIZATION
For this example, we disconnected our printer cable
from the printer output and connected It to an 8255A
on an SDK-86 board, as shown in Figure 9-12. The
74L507 open-collector buffers are used on the signal
and data lines from the 8255A because the 8255A
outputs do not have enough current drive to charge and
discharge the capacitance of the connecting cable fast
enough. Pull-up resistors for the open-collector outputs
of the 74LSO7s are built Into the printer.

Port B of the 8255A Is used for the handshake output
data lines. Therefore, as shown in Figure 9-4, bit PCO
functions as the Interrupt request output to the 8086.

25-4	 CHAPTER NINE

BUSY	 L__J
—1 I--APt' RoXIMATE LY 5p3

ACKNLG 1j

-1 1—O.5(MINlMUMl

DATA ______	 I
I H h-°•'' IMINIMUMI

STROBE	 [__J
—I .- 0.5s (MINIMUM)

FIGURE -13 Timing waveforms for transfer of a data
characte'r to a Centronics-type parallel printer such as
the IBM-PC or Epson printer. (IBM Corporation)

The ACKNLG signal from the printer is connected to the
8255A ACK input on bit PC2. The OBF signal on PC!
of the 8255A would normally be used as the strobe signal
for this type of handshake data transfer. Unfortunately.
however. it does not have the right timing parameters
for this handshake, so it is left unconnected. Therefore.
the STROBE input of the printer is connected to bit
PC4. The STROBE signal will be generated by a bit setl
reset of this pin.

The four printer status signals are connected to port
A so the program can read them In to determine the
condition of thpinter.

Finally, the INIT input of the printer is connected to
bit PC5 so that the printer can be initialized under
program control.

Now, while the hardware configuration is fresh In your
mind. let's look at the control words we have to send to
the 82.55A for this application.

Figure 9-1 4a shows the mode control word to initialize
port B for mode I output, port A for mode 0 input, and

07 06 05 04 03 02 Dl DO

I ilololilolilolol
ft

	

I	 CLOWERX
B"0UT
a MODE 1
C UPPER OUT
A INPUT
A MODE 0
MODE SET WORD

(I

07 06 05 D4 D3 D2 01 00

IoIoIo!olo!lIoIil

L_ SET TO ENABLE
BIT 2 CONTROLS INTR ON PCO
DONT CARES
BIT SET/RESET CONTROL WORD

Ib)

FIGURE 9-14 8255A control words for printer interface.
(a) Mode control word. (b) Bit set/reset control word.

the upper 4 bIts of port C as outputs. Figure 9-14b
shows the bit set/reset control word necessay to enable
the Interrupt request signal on bit PCO for the hand-
shake. The addresses for the 8255A, A35, on the SDK.
86 board are, as shown in Figure 7-16. port P1A—FFF9H;
port P1B—FFFBH; port P1C—FFFDH; and control Pt-
FFFFH. For that system, then, both control words are
output to FFFFH.

THE PRINTER DRIVER PROGRAM
Procedures which input data from or output data to
peripheral devices such as disk drives, modems, and
printers are often called I/O driuers. Here we show you
one way to write the I/O driver procedure for our pas'allel
printer interface.

The first point to consider when writing any I/O driver
is whether to do it on a polled or on an Interrupt basis.
For the parallel Centronics interface here, the maximum
data transfer rate is about 1000 characters/second. Thiá
means that there is about I ms between transfers. If
characters are sent on an interrupt basis, many other
program instructions can be executed while waiting for
the interrupt request to send the next character. Also.
when the printer buffer gets full, there will be an even
longer time that the processor can be working on some
other Job while waiting for the next Interrupt. This is
another illustration of how interrupts allow the com-
puter to do several tasks "at the same time." For our
elcample here, assume that the lnterrupt .request from
PCO of the 8255A is connected to the 1R6 interrupt Input
of the 8259A shown in Figure 8-14. The higher-prIority
interrupt Inputs on the 8255A are left for a clock
interrupt and a keyboard interrupt.

Figure 9-15a, p. 256. shows the steps needed In the
mainline to initialize everything and "call" the printer
driver to send a string of ASCII characters to the printer.

At the start of the mainline some named memory
locations are set aside to store parameters needed for
transfer of data to the printer. The memory locations
set aside for passing information between the mainline
and the i/O driver procedure are often called a control
block. In the control block, a named location is set aside
for a pointer to the addresr of the ASCII character that
is currently being sent. Another memory location is set
aside to store the number of characters to be sent. The
number In this location will function as a counter so
you know whe(t you have sent all the characters in the
buffer. Instead of uing this counter approach to keep
track of how many characters have been sent, a sentinel
method can be used. With the sentinel approach you put
a sentinel character in memory after the last character to
be sent Out. MS/DOS. for example, uses a $ (24H) as a
sentinel character for some of the 110 drivers. As you
read each character in from memory, you compare It
with the sentinel value. If it matches, you know all the
characters have been sent. The sentinel approach and
the count-r approach are both widely used, so you
should be lamliar with both.

To get the hardware ready to go. you need to initialize
the 8259A and unmask the IR Inputs of the 8259A that
are used. The 8086 INTR input must also be enabled.
Next, the 8255A must be Initialized by sending it the

DIGITAL INTERFACING	 255

MAINLINE ALGORITII FOR PRINTER &LY!

I NIT I AL I ZAI 1011
Set ç control block

Word for storing pointer to ASCII string
Word for n.rt.r of charatars in string

Initialization control vords to RS9A
Urisesk 8259A IR6 end any other IR inputs used
Mode set word to 8255A
Unaask 8086 INTR input
Send STROBE high to printer
Initialize printer (pulse 1*111 tow)

TO SEND ASCII STRING
Read printer status from port
IF error THEN

send massage
exit, ter*lnate progr

Set print done status bit
Lo.d starting doress of string into pointer store
Load length of string Into character Coslter
Enable 8255A IPITR output
Wait for interrt

(a)

PlNTER	 PR0EDURE ALGORITHM

Save registers
Enable 8086 INTR for higher priority interrI.ts
Get pointer to string
Get ASCII character from buffer
Send character to printer
Wait 5 .s
Send STROBE tow
Welt 5 g
Send STROBE high
Increment pointer to string
Decrement character coij'ter
IF character co.rt 	 0 THEN

Disable 8255A interri,t request output
Send EOI command to 8259A
Restore registers
Return from interrt proce&l-e

(5)

FIGURE 9-15 Algorithm for printer mainline and interrupt-based printer driver
procedure. (a) Mainline steps. (b) Printer driver procedure steps.

mode control word shown in Figure 9-14a. A bit seti
reset control word is then sent to the 8255A to make
the STROBE signal to the printer high, because this is
the unasserted level for the signal. When interfacing
with hardware, you must always remember to put control
and handshake signals such as this in known states.

Also, to make sure the printer is internally initialized,
we pulse the INIT line to the printer low for a few
microseconds.

When we reach a point in the mainline where we
want to print a string, we first read the printer status
from port A and check if the printer is selected, not
out of paper, and not busy. In a more complete
program, we could send a specific error message to
the display indicating the type of error found. The
program here Just sends a general error message. If
no printer error condition is found, the starting
address of the string of ASCII characters is loaded
into the control block location set aside for this, and
the number of characters in the string is sent to
a reserved location in the control block. Finally, the
interrupt request pin on the 8255A is enabled so that
printer interrupts can be output to the 8259A IR input.
Note that this interrupt is not enabled until everything
else is ready. To see how this algorithm is implemented
in assembly language, work your way through Figure
9-1 6a. The JMP wr at the end of this program represents
continued execution of the mainline program while
waiting for an interrupt from the printer.

A high on the ACKNLG line from the printer will cause
the 8255A to output an Interrupt Request signal. This
Interrupt Request signal goes through the 8259A to the
processor and causes it to go to the interrupt service
procedure.

Figure 9-15b shows the algorithm for the procedure
which services this interrupt and actually sends the
characters to the printer. After some registers are
pushed, the 8086 INTR input is enabled so that higher.

priority interrupts such as a clock can Interrupt this
procedure. The string address pointer is then read in
from the control block and used to read a character In
from the memory buffer to AL. The character in AL is
then output to port B of the $255A.

From here on. the program follows the timing diagram
in Figure 9-13. After sending the character,_the program
waits at least 0.5 p.s. asserts the STROBE input low,
waits at least another 0.5 p.s. and raises the STROBE
line high again. As we said before, the strobe signal
must be generated with program instructions because
the hardware strobe signal generated by the 8255A does
not have the correct timing for this handshake. The
data hold parameter in the timing diagram Is satisfied
because the data byte will be latched on the port B
output pins until the next character is sent. Sending of
the character is now complete, so the next step is to get
ready to send another character.

To do this, the buffer pointer in the control block is
incremented by 1. and the characier counter In the
control block is decremented by 1. If the character
counter is not down to 0, there are more characters to
send, so the EOI command is sent to the 8259A, the
registers are popped off the stack, and execution is
returned to the mainline to wait for the next Interrupt.
If the character counter in the control block Is down to
0. all the characters have been sent, so the Interrupt
Request output of the 8255A is disabled with a bit
set/reset control word. This prevents further interrupt
requests from the 8255A until we enable it again to send
another buffer of characters to the printer. Work your
way through Figure 9-16b to see how this algorithm is
easily implemented. One part of the program that we do
want to expand and clarify is the generation of the
STROBE signal with bit PC3.

We could use external hardware to "massage" the OBF
signal from the 8255A so it matches the timing and
polarity requirements of the receiving device. However.

256	 CHAPTER NiNE

DATA SEGMENT	 D PUBLIC
MESSAGE_i	 DB 'This is the message from the printer driverH

DB 0011, OAM, 0011 	 Return & line-feed for printer
MESSAGE_LENGTH EQU (S-MESSAGE_i)	 Coipute length of message
PRINI_DORE	 08 0
POINTER	 DV 00	 Storage for pointer to MESSAGE_i
WiNTER	 05 0	 Counter for length of MESSAGE_i
PRINTER_ERROR DB 0

DATA ENDS

54 68 69 73 20 69 73 *
20 74 68 65 20 60 65 +
73 73 61 67 65 20 66 +
72 6F 60 20 74 68 65 +
20 70 72 69 6€ 74 65 +
72 20 64 72 69 76 65 •
72 21
00 OA 00

002!'
00
0000
00
00

2
3
4
S
6
7
8
9

10
ii
12 0000
13 0000
14 0018
15 OO1C
16 0020
17
18 0000
19 0000
20
21
22
23
24
25
26 002C
27
28 002F
290030
30 0032
31 0033
32 0034
33
34
35
36
37 0000
38 0000
39
40 003C
41
42 0000
43
44
45 0000
46 0003
47 0005
48 0008
49 0005
50
51 0000
52 0013
53
54
55 0019
56 OO1C
57
58 OO1E
59 0021
60 0023
61 0024
62 0027
63 0029
64 002A
65 002C
66 0020
67 002F
68
69 0030
70 0033
71 0035
72 0036

;8086 MAINLINE PROGRAM F9-16A.ASM
;ABSTRACT	 Printer-driver	 lnline Inttiatizes the 8259A and the 8255A

en an SDK-86 board so that a message in a buffer can be sent
to a printer. It also sets t a control block and initializes
all variables used

;REGISTERS : Us.s CS.DS,SS,SP,AX,DX,Cx,
;PORTS	 SD-86 port P1A (FFF9H) - used to input status of printer

port P15 (FFFBH) - used to output a character
port PlC used for handshake signals for port B

;PROCEDURES: Uses PRINT_IT used to output characters

A_tNT_TABLE	 SEGMENT	 K)RD

	

0C(O000)	 TYPE_64_69 DV 12 DUP(0)	 Reserved for IRO-1R5

	

02*(0000)	 TYPE 70	 DV 2 DUP(0)	 IR6 interrupt

	

02*(0000)	 TYPE_71	 DV 2 DUP(0)	 187 interrupt - not used
A_INT_TABLE	 ENDS

PtLIC PRINT_DONE, POINTER, C00NTER, MESSAGE 1
EXTRN	 PRINT_IT:FAR

STACK_SEC SEGMENT
DV	 30 DUP(0)

STACK_TOP LABEL lRD
STACK_SEG ENDS

C00E SEGMENT LRD PUBLIC
ASS*J4E CS:CCOE, DS:A_INT_TABLE, SS:STACK_SEG

;Initialize stack and data segment registers
NOV AX, STACK_SEC	 Initialize stack
NOV SS, AX	 segment register
NOV SP, OFFSET STACK_TOP 	 Initialize top of stack
NOV AX, A_HIT_TABLE 	 Initialize data
NOV DS, AX	 segment register

;Set ç interrupt table and put in address for prin:er interrupt subroutine
NOV TYPE_70+2, SEC PRINT_IT
NOV TYPE_TO,	 OFFSET PRINT_IT

;Initielize data segment register
ASSLME DSOATA

NOV AX, DATA
NOV OS, AX

;Initialize 8259A and urynask 186
NOV DX, OFFOOII	 ; Point at 8259A control address
NOV AL, 000100118	 ICW1, edge triggered, single, 8086
00T DX, AL	 Send ICW1
NOV DX, OFFO2H	 Point at 1CW2 address
NOV AL, 010000008	 Type 4 is first 8259A type
001 DX, AL	 Send 1CW2
NOV AL, 000000018	 ICW4, 8086 mode
00T DX, AL	 Send 1CW4
NOV AL, 101111119	 OCWi to .nnask 186
001 DX, AL	 Send OCWi

;Initialize 8255A, MA-model input. P1B-niodeO output. Unused PlC bits-output
NOV DX, OFFFFH	 Control address for 8255A
NOV AL, 100101008	 Control word for above conditions
001 DX, AL	 Send control word
511	 ; IJr'mask 8086 !NTR interrupt

1 E* <0000)

88 0000s
SE DO
BC 003Cr
88 0000s
SE D8

Cl 06 OOlAr 0000s
Cl 06 0018r 0000e

88 0000s
8€ 08

BA FF00
BO 13
EE
BA FF02
50 40
EE
BO 01
EE
SO SF
EE

BA F!'!'!'
80 94
EE
FB

FIGURE 9-16 8086 assembly language program for driver. (a) Mainline.

(Continued)

DIGITAL INTERFACING	 257

;Send strobe hIg4 to pcinter with bit set on PCI.
NOV AL, 000010018

J1 DX, AL
;lnitiatize printer-pulse lull tow for 50 useconds (on PC5)

NOV AL, 000011018	 Bt set on PCS

	

JT DX, AL	 Send 11411 high
NOV AL, 000011008	 ; Bit reset on PC5
O.JT DX, AL	 Send 11411 tow
NOV CX, uN	 Wait 50 useconds

PAUSEI: L	 PAUSEI
NOV AL, 000011018	 Bit set on PC5
OJT DX, Al	 Send 11411 high again

;Read printer status from port A, status OK - AL XXXXO1O1
;PA3-BUSYO, PA2-SLCTI. PA1-PEO, PA0-ERR0R1

NOV PRINTER_ERROR. 0 	 Printer OK so far
NOV DX, OFFF9II	 Point at port A
IN	 AL, DX	 Get printer status
AND AL, OFH	 ; Upper 4 bits not used
CMP AL. 000001O1B	 If Status OK then
JZ	 SEND_IT	 ; send It

;etse printer not ready, wait 20 ms and try again
NOV CX, I6EAH	 Load cotxt for 20 s

	

PAUSE: LCCP PAUSE	 and wait
IN AL, DX	 Repeat steps to read status
AND AL. OFH
CIP AL, 000001018
JZ	 SEND IT	 If printer not ready then
NOV PRINTER_ERROR, 01	 set error code and
JMP FIN	 terminate program

;eise Set U pointer to message storage and say print not done yet
SENO_IT:MOV AX. OFFSET MESSAGE_I

NOV POINTER, AX
NOV PRINT_DONE, 00
NOV CI).JNTER, MESSAGE_LENGTH

;Enable 8255A interrupt request output on PCO by settng PC2
NOV OX, OFFFFH	 ; Point at port controL addr
NOV AL, 000001018	 Bit set word for PCO intr

J1 L'X, AL
;Wait for an interrupt from the printer
UT:	 JNP UT
FIN:	 NOP
CCCE ENDS

END
(a)

73
74 0037 80 09
75 0039 EE
76
77 003A 80 CC
78003C EE
790030 80 OC
80 003F EE
81 0040 89 0017
82 0043 E2 FE
83 0045 no CC
84 0047 EE
85
86
87 0048 Co oo 0033r 00
88 0040 BA FFF9
89 0050 EC
90 0051 24 OF
91 0053 3C 05
92 0055 74 14
93
94 0057 B9 16€A
95 OOSA E2 FE
96 005C EC
97 005D 24 OF
98 005F 3C 05
99 0061 74 08

100 0063 C6 06 0033r 01
101 0068 EB 19 90
102
103 0069 98 0000r
104 006E A3 0030r
105 0071 C6 06 OO2Fr 00
106 0076 C6 06 0032r 2F
107
108 007B BA FFFF
109 OOTE 80 05
110 0080 EE
111
112 0081 EB FE
113 0083 90
114 0084
115

FIGURE 9-16 (Continued) (a) Mainline.

here we generate thç strobe directly under software
control.	 ________

in the mainline we make the STROBE signal on PC4
high by sending a bit seUrset control word of 00001001
to the control register of the 8255A. In the printer driver
procedure a character is sent to the printer with the OUT
DX,AL instruction. According to the timing diagram in
Figure 9-13. we then want to wait at least 0.5 t.s before
asserting the STROBE signal low. This Is automatically
done in the program because the instructions required
to assert the strobe low take longer than 0.5 i.s. The
MOV AL,0000 I 000B instruction requires 4 clock cycles.
and the OUT DX.AL instruction requires 8 clock cycles
to execute. Assuming a 5-MHz clock l0.2-s period).
these two Instructions take 2.4 j,s to execute, which Is
more than required.

Again_referring to the timing diagram In Figure 9-13.
the STROBE time low must also be at least 0.5 u.s. The
MOV AL,0000IOOW instruction takes 4 clock cycles.
and the OUT DX.AL Instruction takes 8 clock cycles.
With a 5-MHz clock, this totals to 2.5 p.s. which again

is more than enough time for STROBE low. In this case.
creating the STRODE signal with software does not use
much of the processors time, so this is an efikient way
to do it.

A FEW MORE POINTS ABOUT THE 8255A
Before leaving our discussion of the 8255A. we want to
show you a little more about how port C can be used.

Any bits of port C which are programmed as Inputs
can be read by simply doing a read from the port C
add,ress. You can then mask out any unwanted bits of
the word read In. If port A and/or port B is programmed
'in a handshake mode. -theti some of the bits of a byte
read in from port C represent status information about
the handshake signals. Figure 9-17. p. 260, shows the
meaning of the bits read from port C for port A and/or
port B in mode I. Here's how you read this diagram. If
port B is initialized as a handshake (mode 1) input port,
then bits DO. Dl, and D2 read from port C represent
the status of the port B handshake signals. Bit D2 will

258	 CFIAPTER NINE

:8086 PROCEDURE F9-168.AS$ use with ..intin. F9-1U.ASII
;ASSTRACT	 : Printer Driver procetàire outputs a character froa a buffer

to a printer. If no characters ar. Left in th. buffer the
the interrWt to the 8086 on lR6 of th 8259A is disabled.

;PROCEDIJtES	 Non. used	 /
;PTS	 : Use* SDK-86 board POrt P18 (FFFBH) to output characters

and port c bits for handshake signaL, and printer Intr
;REGISTERS	 Destroys nothing

PUBLIC PRINT_IT
DATA SEONENI PUBLIC

EXTRN CLXJNTER :BYTE, POINTER 	 :tD
EXIRN MESSAGE 1:BYTE, PRINT_DONE:BYTE

DATA ENDS

C00E SEENT D PUBLIC
PRINT_IT PROC FAR

ASS1JIE CS:C00E, DS:DATA
PUSNF	 ; Save registers
PUSH AX
PUSH BX
PUSH DX
STI	 EnabLe higher interrt.ts
NOV DX, OFFFBN	 Point at port B
NOV BX, POINTER	 ; Load pointer to s.age
NOV AL, (BXI	 ; Get a character
DUT DX, AL	 ; Send th. character to printer

;Send printer strobe on PC4 low then high
NOV DX, OFFFFH 	 Point at port control addr
NOV AL, 000010008	 ; Strobe low control word
DUT DX, AL
NOV AL, 000010018
	

Strobe high control word
DUT DX, AL

;Increment pointer and decrement cotrter
INC POINTER
DEC CDUNTER
JNZ NEXT	 Wait for next character?

;No are characters-disable 8255* mt request on PCO by bit reset of PC2
NOV AL, 000001008
	

Bit reset word for PCO InterrLçt
DUT DX, AL
NOV PRINT_DONE, 1

NEXT:	 NOV AL, 001000008	 OCW2 for non-specific E0l
NOV DX, OTFOOH
	

Point at 8259A control addr
JT DX. AL

POPDX	 Restore registers
POP BX
POP AX
POP,
IRET

PRINT_IT ENDP
C00E	 ENDS

END

(b)

2
3
4
5
6
7
8
9

10
110000
12
13
14 0000
15
16 0000
17 0000
18
19 0000 cc
20 0001 50
21 0002 53
22 0003 52
23 0004 TB
24 0005 BA FFFB
25 0008 88 iT 0000e
26 000C 8A 07
27 000E EE
28
29 000F BA FFFF
30 0012 80 08
31 0014 EE
32 0015 80 09
33 0017 EE
34
35 0018 FT 06 0000e
36 001c FE OE 0000e
37 0020 75 08
38
39 0022 80 04
40 0024 EE
41 0025 C6 06 0000e 01
42 002A 80 20
43 002C BA FF00
44 002F EE
45 0030 5A
46 0031 58
47 0032 58
48 0033 90
49 0034 CF
50 0035
51 0035
52

FIGURE 9-16 (Continued) (b) Procedure.

be hIgh If the port H Interrupt request output has been
enabled. Bit D2 is a copy of the level on the input buffer
lull (IBF) pin. Bit D3 is a copy of the Interrupt request
output, so It will be high it' port B is requesting an
interrupt.

In our previous application examples. we showed how
to do handshake data transfer on an interrupt basis to
make maximum use of the CPU time. However, in
applications where the CPU has nothing else to do while
waiting to. for example, read in the next character from
some device, then you can save one interrupt input by
reading data from the 8255A on a polled basis. To do
this for a handshake input operatin on port B, you
Simply lOOP through reading port C and checking bit Dl

S ---

over and over until you find this bit high. The IBF pin
being high means that the input data byte has been
latched into the 8255A and can now be read. The timing
waveforms for this case are the same as those in Figure
9-10. except that you are not using the interrupt request
output from the 8255A.

Port C bits that are not used for handshake signals
and programmed as outputs can be written to by
sending bit set/reset control words to the control
register. Technically, bits PCO through PC3 can also
be written to directly at the port C address, but we
have found It safer to Just use the bit set/reset control
word approach to write to all leftover port C bits
programmed as outputs.

CGITAL INTERFACING	 259

POST C 501

107 I 0. 1 05 I	 o!	 I	 I1

GSOfrA	 OSOUPS
STARS	 STARS

I4T	 I*UT
POST	 POST

:	 ________

OUTPUT	 OUTPUT
POST

I c I'f "° I	 ImTI.I

FIGURE 9-17 8255A status word format for mode 1
input and output operations.

INTERFACING A MICROPROCESSOR
TO KEYBOARDS
keyboard Types

When you press a key on your computer, you are
activating a switch. There are many different ways
of making these switches. Heres an overview of the
construction and operation of some of the most common
types.

MECHANICAL KEYSWITCHES
In mechanical-switch keys, two pieces of metal are
pushed together when you press the key. The actual
switch elements are often made of a phosphor-bronze
alloy with gold plating on the contact areas. The key-
switch usually contains a spring to return the key to the
nonpressed position and perhaps a small piece of foam to
help damp Out bouncing. Some mechanical keyswltches
now consist of a molded silicone dome with a small piece
of conductive rubber on the underside. When a kejr is
pressed, the rubber foam shorts two traces on the
printed-circuit board to produce the Key Pressed signal.

Mechanical switches are relatively inexpensive but
they have several disadvantages. First, they suffer frc'm
Contact bounce. A pressed key may make and break
contact several times before it makes solid contact.
Second. the contacts may become oxidized or dirty with
age so they no longer make a dependable . connection.
Higher-quality mechanical switches typically have a
rated lifetime of about 1 million keystrokes. The silicone
dome type typically last 25 million keystrokes.

MEMBRANE XEYSWITCHES
These switches are really just a special type of mechanical
switch. They consist of a three-layer plastic or rubber
sandwich, as shown in Figure 9-ISa. The top layer has
a conductive line of silver ink running under each row
of keys. The middle layer has a hple under each key
position. The bottom layer has a conductive line of silver
ink running under each column of keys. When you press

KEY	 SHEETWITH ROW
_________	 ________ / CONDuCTORS

___________________________ / SHEETWITH HOLES

SHEET WITH COLUMN
________________________	 CONOUCTORS

KEY CAP
RETURN SPRING

PLUNGER

MOVA8LE PLATE
FOAM PAD

FIXED PLATES
'z'/VZ /ZZ//Z. . V/'/Z-'/ZZz	 ./'/ PC BOARD

(B)

HJ1
KEY MOT,jjj1

REFE RE NC
CURRENT

MAGNETIC
FIELD

I Ti

FIGURE 9-18 Keyswitch types. (a) Membrane.
(b) Capacitive. (C) Hall effect.

a key, you push the top ink line through the hole to
contact the bottom ink line. The advantage of membrane
keyboards is that they can be made as very thin, sealed
units. They are often t'sed on cash registers in fast.
food restaurants: on medical instruments, and in other
messy applications. The lifetime of membrane keyboards
varies over a wide range.

CAPACITIVE KEYSWITCHES
As shown in Figure 9-18b, a capacitive keyswitch has
two smafl metal plates on the printed-circuit board and
another metal plate on the bottom of a piece of foam.
When you press the key, the movable plate is pushed
closer to the fixed plate. This changes the capacitance
between the fixed plates. Sense amplifier circuitry de-
tects this change in capacitance and produces a logic-
level signal that indicates a key has been pressed. The
big advantage of a capacitive switch is that it has no
mechanical contacts to become oxidized or dirty. A small
disadvantage Is the specialized circuitry needed to detect
the change in capacitance. Capacitive keyswitches typi-
cally have a rated lifetime of about 20 million keystrokes.

HALL EFFECT KEYSWITCHES

This is another type of switch which has no mechanical
contact. It takes advantage of the deflection of a moving

260	 CHAPTER NINE

DIGITAL INTERFACING	 261

(a)

FIGURE 9-19 Detecting a matrix keyboard keypress,
debouncing it. and encoding it with a microcomputer.
(a) Port connections. (b) Flowchart for procedure.

charge by a magnetic field. Figure 9- 18c shows you how
this works. A reference current is passed through a
semiconductor crystal between two opposing faces.
When a key is pressed. the crystal is moved through a
magnetic field which has its flux lines perpendicular to
the direction of the current flow in the crystal. (Actually,
It is easier to move a smal! magnet past the crystal.)
Moving the crystal through the magnetic field causes a
small voltage to be developed between two of the other
opposing faces of the crystal. This voltage is amplified
and used to indicate that a key has been pressed. Flail
effect sensors are also used to detect motion in many
electrically controlled machines.) Hall effect keyboards
are more expensive because of the more complex switch
mechanisms, but they are very dependable and have
typical rated lifetimes of 100 million or more keystrokes.

Keyboard Circuit Connections and Interfacing
In most keyboards, the keyswitches are connected in a
matrix of rows and columns, as shown in Figure 9-I 9a.

DETECT

}OE BOUNCE

ENCODE

(b

We will use simple mechanlcaJ switches for our examples
here, but the principle Is the same for other types of
switches. Getting meaningful data from a keyboard such
as this requires the following three major tasks:

1. Detect a keypress.

2. Debounce the keypress.

3. Encode the keypress (produce a standard code for
the pressed key).

The three tasks can be done with hardware, software,
or a combination of the two. depending on the applica-
tion. We will first show you how they can be done with
software, as might be done in a microprocessor-based
grocery scaje whei'e the microprocessor Is not pressed
for time. Later we describe some hardware devices which
do these tasks.

Software Keyboard Interfacing

CIRCUIT CONNECTIONS AND ALGORITHM

Figure 9-19a shows how a hexadecimal keypad can be
connected to a couple of microcomputer ports so the
three interfacing tasks can be done as part of a program.
The rows of the matrix are connected to four output.
port lines. The column lines of the matrix are Connected
to four Input-port lines. To make the program simpler,
the row lines are also connected to four Input lines.

When no keys are pressed, the column lines are held
high by the pull-up resistors connected to + 5 V. Pressing
a key connects a row to a column, If a low is output on
a row and a key In that row is pressed, then the low will
appear on the column which contains that key and can
be detected on the input port. If you know the row and
the column of the pressed key, you then know which
key was pressed, and you can Convert this information
Into any code you want to represent that key. Figure
9-19b shows a flowchart for a procedure to detect.
debounce, and produce the hex code for a pressed key.
This procedure is another example of an VO driver.

An easy way to detect if any key in the matrix Is
pressed is to output 0's to all the rows and then check
the columns to see If a pressed key has connected a low
to a column. in the algorithm in Figure 9-19b. we first
output lows to all the rows and check the columns over
and over until the columns are all high. This is done to
make sure a previous key has been released before
looking for the next one. In standard keyboard terminol-
ogy, this is called two-key Lockout. Once the columns
are found to be all high, the program enters another
loop, which waits until a low appears on one of the
columns, Indicating that a key has been pressed. This
second loop does the detect task for us. A simple 20-ms
delay procedure then does the debounce task.

After the debounce time, another check Is made to see
if the key is still pressed. If the columns are now all
high. then no key is pressed and the initial detection
was caused by a noise pulse or a light brushing past a
key. If any of the columns are still low, then the assump.
lion Is made that it was a valid keypress.

The final task Is to determine the row and column of
thc pressed key and convert this row and column
information to the hex code for the pressed key. To get
the row and column information, a low is output to one
row and the columns are read, If jione of the columns
is low, the pressed key is not in that row, so the low is
rotated to the next row and the columns are checked
again. The process is repeated until a ow on a row
produces a low on one of the columns, The pressed key
then is in the row which is low at that time, With the
connections shown in Figure 9-i9a, the byte read in
from the input port will contain a 4-bit code which
represents the row of the pressed key and a 4-bit code
which represents the column of the pressed key. As we
show later, a lookup table can be used to easily convert
this row-column code to the desired hex value.

Figure 9-20 shows the assembly language program for
this procedure. The detect, debounce, and row-detect
parts of the program follow the flowchart "ely closely
and should be easy for you to follow. Work your way
down through these parts until you reach the ENCODE
label: then continue with the discussion here.

CODE CONVERSION

There are two important ways of converting one code to
another in a program. The ENCODE portion of this
program uses a compare technique, which we will
discuss in detail here, In a later section on keyboard
interfacing with hardware, we will show you the other
major code conversion technique, the XLAT method.

After the row which produces a low on one of the
columns is found, executionjumps to the label ENCODE.
The IN AL.DX instruction here reads the row and column
codes from the Input port. Since this 8-bit code read in
represents the pressed key. all that has o be done now
is to convert this 8-bit code to the hex code for that key.
If we press the D key, for example, we want to exit from
the procedure with ODH in AL.

The conversion is done with the lookup table declared
with DBs at the top of Figure 9-20. This table contains
the 8-bit keypressed codes for each of the 16 keys. Note
that the row-column codes are put in the table in the
same order as the hex codes they represent. To convert
a row-column code read In from the port, we compare it
with each value in the table until we reach the value it
matches. For several reasons, we Start by comparing a
row-column code with the highest entry in the table. A
counter is used to keep track of how far down the table
we have to go to find a match for a particular input code.
Because the entries in the table are in numerical order.
the counter will contain the hex code for the pressed
key when a match is found, Let's look at the actual
program Instructions in Figure 9-20 to help you see how
this works,

The BX register is used as a counter and as a pointer
to one of the codes in the table, so to start we load 000FH
In BX. The CMP AL.TABLELBXJ after this compares the
code at offset IBXI in the table with the row-column code
in AL. Initially. BX contains 000FH. so the row-column
code in AL is compared with the row-column code at the
highest location in the table. As shown In the data

262	 CHAPTER NINE

2
3
4
5
6
7
8
9 0000

10
11 0000
¶2
13
14 0008
15
16 0010
17 0000
18 0000
19
20 003C
21
22 0000
23
24 0000
25 0003
26 0005
27 0008
28 0008
29
30 0000
31 0010
32 0012
33 0013
34 0016
35
36
37
38
39
40
41
42
43
44
45
46
4? 0017
-68 0017
49 0018
50 0019
51 OUIA
52
53 0018
54 0010
55 0020
56
57 0021
58 0024
59 0025
60 0027
61 0025
62
63 O0
64 00
65 OO2E
66 O03(
67
68 003
69 003
70
71 003

;8086 PROGRAI4 F9-20.ASM
;ABSTRACT : Program scans and decodes a 16-switch keypad.

it initia&izes the ports beLow and then calls a procedure
to input an 8-hit vaLue from a 16-switch keypad and encode it.

;PORTS	 : SDK-86 board Port MA (FFF9H) - output, P18 (FFFBH) - input
;PROCEDURES: CalLs KEYBRD to scan and decode 16-switch keypad
;REGISTERS : Uses CS,DS,SS,SP.AX,DX

DATA SEGMENT WORD PU8LC
0	 1	 2	 3	 4	 5	 6	 7

777870 7E 87 BB 80 * TABLE D8 	 7714, 7814, 7014, 7tH, 08714,08844,080K, OBEII

BE
8	 9	 A	 B	 C	 0	 E	 F

070800 DE E7 ES ED *	 06 00714.00844,00014, ODEN, 08714, OEBH, OEOH, QEEK

8€
DATA ENDS
STACK_SEG SEGMENT

1E*(0000)	 OW	 30 DUP(0)	 Set	 stack of 30 words
Tap_STACK LABEL	 0	 ; Pointer to top of stack

-	 STACK_SEG ENDS

COUE SEGMENT WORD PUBLIC
ASSIJIE CS:COUE, DS:DAIA, SS:STACK_SEG

68 0000s	 START: NOV AX, STACK_SEG 	 Initialize stack

8€ 00	 NOV SS, AX	 segment register and

BC 003Cr	 NOV SP, OFFSET TOP_STACK top of stack
88 0000s	 NOV AX, DATA
8€D8	 NOV DS,AX

;Initiatiie ports, mode 0, Port A for output, Ports B & C for input
BA FFFF	 NOV DX, OFFFFH	 Put port control address in DX

80 88	 NOV AL, 100010118	 ; Code 8811

EE	 JT DX AL	 Send controL word.

€8 0001	 CALL KEYBRO
90	 PlOP

;Progrmfl wiLL continue here with other tasks

;8086 PROCEDURE KEYBRO
;ABSTRACT : Procedure gets a code from a 16-switch keypad and decodes it.

It returns the code for the keypress in AL and AHOO. if there
is an error in the kcypress then it returns AI401.

;PORTS	 : Uses SDK-86 ports MA (FFF9H) for output and P18 (FFFBH) for input
;INPUTS	 : Keypress from port
;CIJTPUTS	 : KeypreSs code or error message in AX
;PROCEDURES: None used
;REGISTERS : Destroys AX

KEYBRD PROC NEAR
PUSHF	 Save registers used
PUSH BX
PUSH CX
PUSH DX

;Send 0s to all rows
NOV AL, 00
NOV DX, OFFF9H	 Load output address
QJT DX, At.	 Send 0's

;Read cotuiws to see i' a(L keys are open
NOV DX, OFFFBH	 Load input port address

WAIT_OPEH:IN	 AL, DX
AND AL, OFH	 Mask row bits
CMP AL, OFII 	 Wait until no keys pressed
JNE WAIT OPEN

;Read cotuwis to see if a key is pressed
WAIT_PRESS:IN AL, DX 	 ; Read coturriS

AHO AL, OFH	 Mask row bits
CMP AL, OFH	 Sc-c if keypresSed
JE	 WAIT_PRESS

;Debounce keypresS
NOV CX, 16€A14	 Delay of 20 ms

DELAY:	 LOUP DELAY
;Read coLumns to see if key stilt pressed

Ill	 AL, DX

9C
53
51
52

80 00
BA FFF9
€8

BA FFFB
EC
24 OF
3C OF
75 F9

EC
24 OF
3C OF
74 F9

B9 16EA
E2 FE

EC

FIGURE 9-20 Assembly language instructions for keyboard detect, debounce,
and encode procedure. (Continued)

DIGITAL INTERFAC I NG	 263

720038
73003A
74 003C
75
76 003E
77 0060
78 0042
19 0045
800066
81 0049
82004*
83 004C
84 004E
85 0050
86 0052
87 0054
88
89 0056
90 0059
91 005*
92 005E
93 0060
94 0061
95 0063
96 0065
97 0068
98 006*
99006C

100 0060
101 006E
102 006F
103 0070
104 0071
105 0071
106

24 OF
3C OF
71. ED

ID FE
8AC8
BA FFF9
EE
BA FFFB
EC
24 OF
3C OF
7506
DO Cl
8* Cl
ED EC

88 000F
EC
3A 87 ODOUr
74 08
48
79 Fl
84 01
(8 05 90
8* C3
84 DO
5A
59
58
90
C3

AND AL. 0tH
NP AL 0tH

JE WAIT_PRESS
;Flnd the key

NOV AL, OFEN	 ; Initialize a row mask with bit 0
NOV CL, AL	 ; tow and save the mask

NEXT_RON: NOV DX, OFFF9H	 Send out a tow on one row
au os, AL
NOV DX, OFFF8H	 ; Read cotuws & check for tow
IN	 AL, DX
AND AL, 0tH	 Mask out row code
OW AL, 0tH	 ; If low In a cotuin then
JNE ENE	 ; key coli.jm, fou, so encode it
101. CL. 01	 else rotate mask
NOV AL,CL	 -
JJW NEXT_RON	 and took it next row

;Encode the row/col	 Infor.atlon
ENCa)E: NOV IX, 000FH	 ; Set t 85 as a cou,ter and

IN AL, DX	 ; read row and cottmm from port
TRY_NEXT: CNP AL, TA3LE(BX3 	 ; Ccsre row/cot code With table entry

JE DONE	 Hex code In 85
DEC BX	 ; Point at next table entry
JNS TRY IEXT
NOV AN, 01	 ; Pass an error code in AN
JMP EXIT

DONE:	 NOV AL, 81.	 ; Hex code for key In AL
NOV AN, 00	 ; Put key-valid code in AH

EXIT:	 POP DX	 ; Restore calLing progru
POP CX	 ; registers
POP BX
POPF
RET

KEYBRO	 ENDP
C00E	 ENDS

END

FIGURE 9-20 (Continued)

segment In FIgure 9-20. the row-column code at this
location in the table is the code for the F key. If the code
In AL matches this code, we knowthe F key was pressed.
BX contains 000FH. the hex code for this key. Since we
need only the lower 8 bits of BX, the hex code in BL Is
copied to AL to past' it back to the calling program. AH
is loaded with OOH to tell the calling program that this
was a valid keypress. and a return is made to the calling
program.

If the row-column code in AL doesn't match the table
value on the first compare, we decrement BX to point to
the code for the E key in the table and do another
compare. Ifa match occurs this time, then we know
that the E key was the key pressed and that the hex
code for that key. OEH. is In BE.. If we don't get a match
on this compare, we cycle through the loop until we get
a match or until the row-column code for the pressed
key has been compared with all the values in the table.
As long as the value in BX is 0 or above after the DEC
BX instruction, the Jump if Not Sign instruction, JNS
TRY_NEXT, will cause execution to go back to the
Compare Instruction. If no match Is found in the table.
BX will decrement from 0 to FFFFH. Since the sign bit
is a copy of the MSB of the result after the DEC
Instruction, the sign bit will then be set. Execution will
fall through loan instruction which loads an error code
of 0tH In AH. We then return to the calling program.
Tb.. calling program will check All on return to determine
if the contents of AL represent the code for a valid
keypress.

ERROR TRAPPING
The concept of detecting some error condition such as
"no match found" is called error trapping. Error trapping
is a veiy important part of real programs. Even in this
simple program, think what might happen with no error
trap if two keys in the same row were pressed at exactly
the same time and a column code with two lows in It
was produced. This code would not match any of the
row-column codes in the table, so after all the values in
the table were checked, BX would be decremented from
0000H to FFFFH. On the next compare. AL would be
compared with a value in memory at offset FFFFH. Since
this location is not even in the tabk'. the compare-
decrement cycle would continue -through 65.536 mem-
ory locations until, by chance, the value in a memory
location matched the row-column code in AL. The con-
tents of BL at that point would be passed back to the
calling routine. The chances are I in 256 that this would
be the correct value for one of the two pressed keys.
Since these are nct very good odds, you should put an
error trap in a program wherever there is a chance for
it to go off to "never-never land" in thIs way. An error/
no-error "flag" can be passed back to the calling program
in a register as shown, in a dedicated memory location,
or on the stack.

Keyboard Interfacing with Hardware

The previous Section descrIbed how you can connect a
keyboard matrix to a couple of microprocessor ports

264	 CHAPTER NINE

and perform the three interfacing tasks with program 	 microcomputer doesn't have to pay any attention to the
Instructions. For systems where the C pu is too busy to	 keyboard until It receives an Interrupt signal, so this
be bothered doing these tasks In software, an external 	 method uses vel'y little of the microcomputer's time.
device is used to do them. One example of a MOS device 	 The AYS-2376 has a feature called two-key rollover.
which can do this is the General Instrument AYS-2376.	 This means that ii two keys are pressed at nearly the
whicn can be connected to the rows and columns of a 	 same time, each key will be detected. debounced. and
keyboard switch matrix, The AY5-2376 Independently converted to ASCII. The ASCII code for the first key and
detects a keypress by cycling a low down through the 	 a strobe signal for it will be sent out; then the ASCII
rows and checking the columns just as we did in 	 code for the second key and a strobe signal for it will be
software. When it finds a key pressed, it waits a debounce 	 Sent out. Compare this with two-key lockout, which we
time. If the key is still pressed after the debounce time,	 described previously in our discussion of the software
the AY5-2376 produces the 8-bit code for the pressed	 method of keyboard interfacing.
key and sends it out to, for example, a microcomputer
port on eight parallel lines. To let the microcomputer 	 ICATE M CROPROCESSOR
know that a valid ASCII code i on the data lines, he	 B ARD EN ODERS
AY5-2376 outputs a strobe pulse. The microcomputer	 Most computers and computer terminals now use de-
can detect this strobe pulse and read in the ASCII code 	 tached keyboards with built-in encoders. Instead of
on a polled basis, as we showed in Figure 4-20. or it can 	 using a hardware encoder device such as the AYS-2376.
detect the strobe pulse on an interrupt basis, as we	 these keyboards use a dedicated microprocessor. Figure
showed In Figure 8-9. With the interrupt method the 	 9-21 shows the encoder circuitry for the IBM PC capaci-

+5 VOC	 ___
COl(A011(-

ciJ
56pF T'

P23

n
26 VDD	 P22

P21 22
40	 P20 21vCC

87 19
2 Xl

LI
475H	

27 M000
28 MOOl

3	 P12 29 M002
52

Lr
'GNO

56F1	

.SACLOSEO

SELECT 0	 67 'AO
SELECT I	 691

J7

SENSE B , A9
SENSE C Al

cc1

1C3
-r •'-

CON

1c2
-r 50 pF

C5
20.1 pP

CO I IA)

+5 VOC

AS
10 kfl

C4
20,7 pP	 P15 32 MOOS	 KEYBOARD	 SENSE P *1

I CAPACITIVE I
P16	

MDO6	 MATRIX	 SENSE 6 C3

EA	 P17	 MOO?	 SENSE H El
35 MDO8

I	 20	 _____VSS	 P25
P28	

MDI0
P27 38 MOlt

8040
MICROPROCESSOR

	

5	 ______________

R6	

85 17 DAIAOIJT	 _______________

ikil.

	

-P08 4	
.	

6 OATAIN	 __________

18 -REOOUT	 ____________

	

Ii	 86
ALE

tLce
22 pP

FIGURE 9-21 IBM PC keyboard scan circuitry using a dedicated
microprocessor. (IBM Coiporation)

SENSE	 I

•	

AMPLIFIER I

ZI	 I
83

2 kfl
•SBRIAI

: fI;.;;:;-1..:...-J1

DATA	 CDI IAO7I

M2

	

R2	 -

-REOLIE.
CLOCK

	

a	

)CDIIAO9I

I kIl

DIGITAL INTERFACING	 265

tive-awitch matrix keyboard. The 8048 microprocessor
used here contains an 8-bit CPU. a ROM, some RAM.
three ports, and a programmable timer/counter. A pro-
gram stored in the on-chip ROM performs the three
ke4oard tasks and sends the code for a pressed key out
to the computer. To cut down the number of connecting
wires, the key code is sent out in serial form rather than
in parallel form. Some keyboards send data to the
computer in serial form using a beam of infrared light
instead of a wire.

Note in Figure 9-21 that a sense amplifier is used to
detect the change in capacitance produced when a key
Is pressed. Also note that the 8048 uses a tuned LC
Circuit rather than a more expensive crystal to determine
its operating clock frequency.

One of the major advantages of using a dedicated
microprocessor to do the three keyboard tasks is pro-
grammability. Special-function keys on the keyboard
can be programmed to send out any code desired for a
particular application. By simply plugging in an 8048
with a different iookup table In ROM, the keyboard
can be changed from outpuuing ASCII characters to
outputting some other character set.

The IBM keyboard, incidentally, does not send out
ASCII codes, but instead sends out a hex "scarf' code
for each key when it Is pressed rind a different scan code
when that key is released. This double-code approach
gives the system software maximum flexibility because
a program command can be implemented either when
a key is pressed or when It is released.

CONVERTING ONE KEYBOARD CODE
TO ANOTHER USING XLAT

Suppose that you are building up a simple microcom-
puter to control the heating, watering, lighting, and
ventilation of your greenhouse. As part of the hardware,
you buy a high-quality, fully encoded keyboard at the
local electronics surplus Store for a few dollars. When
you get the keyboard home, you find that it works
perfectly, but that it outputs EBCDIC codes instead of
the ASCII codes that you waflt. Here's how you use the
8086 XLAT instruction to easily solve this problem.

First, look at Table 1-2. which shows the ASCII and
EBCDIC codes. The job you have to do here s to convert
each input EBCDIC input code to the corresponding
ASCII code. One way to do this is the compare technique
described previously for the hex .keyboard example. 11or
that method you would first put the EBCDIC codes ill a
table in memory in the order shown In Table 1-2 and
set up a register as a counter and pointer to the end of
the table. Then you enter a loop which compares the
EBCDIC character in AL with each of the EBCDIC codes
in the table until a match is found. The counter would
be decremented after each compare so that when a
match was found, the count register would contain the
desired ASCII code.

This compare technique works well, but since EBCDIC
contains 256 codes, the program will, on the average.
have to do 128 compares before a match Is found. The
compare technique then is often too time-consuming
for long tables. The XLAT method is much laster.

The first step in the XLAT method Is to make up a

TABLE CONTAINING
ASCII CODES

-ASCII A

OFFSET CiA	

START OF TABLE. OX

FIGURE 9-22 Memory table setup for using XLAT to
convert EBCDIC keycode to ASCII equivalent.

memory table which contains all the ASCII codes. The
trick here is to put each ASCII code in the table at a
dlsp!acement from the start of the table equal to the
value of the EBCDIC character. Forexample, the EBCDIC
code for uppercase A is CIH. so you put the ASCII code
for uppercase A. 41H. at offset CIH in the table, as
shown in Figure 9-22. Since EBCDIC code Is an 8-bit
code, the table will require 256 memory locations. For
EBCDIC values which have no ASCII equivalent, you
can just put in OOH because these locations wtlI not be
accessed. You can use the DB assembler directive to set
up the tahle, as we did with the row-column table In
Figure 9-20.

To do the actual conversion, you simply load the BX
register with the offset of the start of the table, load the
EBCDIC character to be converted In the AL register.
and do the XLAT instruction. When the 8086 executes
the XLAT instruction, it internally adds the EBCDIC
value in AL to the starting offset of the table in BX.
Because of the way the table is made up. the result of
this addition will be a pointer to the desired ASCII value
in the table. The 8086 then automatically uses this
pointer to copy the desired ASCII character from the
table to AL. Later in the chapter we show you another
example of the use of the XLAT instruction.

The advantage of the XLAT technique for this conver-
sion is that, no matter where in the table the desired
ASCII value is. the conversion only requtres execution
of two loads and one XLAT instruction. The question
may occur to you at this point, If this method is so fast.
why didn't we use it for the hex-keypad conversion
described earlier? The answer is that since the row-
column code from the hex keypad is an 8-bit code, the
lookup table for the XLAT method would require 256
memory locations. but only 16 of these would actually
be used. This would be a waste of memory, so the
compare method is a better choice. Since code conver-
sion is a commonly encountered problem in low-level
programming, it is important for you to become

266	 CHAPTER NINE

familiar with both the compare and the XLAT methods
so that you can use the one which best fits a particular
applicaUon.

INTLRFAC!NG TO
ALPHANUMERIC DISPLAYS

To give directions or data values to users, many micro-
processor-controlled instruments and machines need to
display letters of the alphabet and numbers. In systems
where a large amount of data needs to be displayed, a
CRT is usually used to display the data, so in Chapter
13 we show you how to interface a microcomputer to a
CRT. in systems where only a small amount of data
needs to be displayed, simple digit-type displays are
often used. There are several technologies used to make
these digit-oriented displays, but we have space here to
discuss only the two major types. These are light-
emitting diodes (LEDs) and liquid-crystal displays
(LCDsI. LCD displays use very low power, so they are
often used in portable. battety-powered Instruments.
LCDs, however, do not emit their own light; they simply
change the reflection of available light. Therefore, for an
instrument that is to be used in low-light conditions,
you have to include a light source for the LCDs or use
LEDs, which emit their own light. Starting with LEDs,
the following sections show you how to interface these
two types of displays to microcomputers.

Interfacing LED Displays to Microcomputers

Alphanumeric LED displays are available in three com-
mon formats. i"or displaying only numbers and hexadeci -
mal letters, simple 7-segment displays such as that
shown in Figure J-4a arc used.

To display numbers and the entire alphabet. 18-
segment displays such as that shown in Figure 9-23a
or 5 by 7 dot-matrIx displays such as that shown In
Figure 9-23b can be used. Th 7-segment type is the
least expensive, most commonly 'sed. and easiest to
interface with so we will concentrate first on how
to interface with this type. Later we will show the
modifications needed to interface with the other types.

DIRECTLY DRIVING LED DISPLAYS

Figure 9-24. p. 268. shows a circuit that you might
connect to a pataliel port on a mkroeornputcr to drive
a single 7-segment, common-anode display. For a com-
mon-anode display, a segment Is turned on by applytng
a logic low to it. The 7447 converts a 13C1.) code applid
io its Inputs to the pattern of lows required to dtspla
the number represented by the I3CD code. This Circuit
connection is referred to as a static display because
current is being passed through the displa y ai all times.
Here's how you calculate the value of the current-limiting
resistors that have to be connected in series with eact'
segment.

Each segment requires a current olhetwcen 5 and 30
mA to light. Let's assume you want a current of 20 mA,
The voltage drop across the LED when It Is lit is about

[a'

COLUMN OP.	 1	 2	 3	 4

ROy

2

3

6

TOP VIEW ORIENTATiON
TIL 305

FIGURE 9-23 Eighteen-segment and 5 by 7 matrix LED
displays. (a) 18-segment display. (b) 5 by 7 dot-matrix
display format. (C) 5 by 7 dot-matrix circuit connections.

1.5 V. The output low voltage for the 7447 isa maximum
of 0.4 Vat 40 mA, so assume that it Is about 0.2 Vat
20 mA. Subtracting these two voltage drops from the
supply voltage of 5 V leaves 33 V across the current-
limiting resistor. Dividing 3.3 V by 20 mA gives a value
of 168 fI for the current-limiting resistor. The voltage
drops across the LED and the output of the 7447 are
not exactly predictable, and the exact current through
the LED Is not critical as long as we don't exceed Its
maximum rating. Therefore, a standard value of 150 fl
is reasonable.

SOFTWARE-MULTIPLEXED LED DISPLAYS

The Circuit in Figure 9-24 works well for driving just
one or two LED digits with a parallel output port
However, this scheme has several problems if you want

00000
00000
00000
DO ODU
00000
00000
00000

ibi

-36 DIGITAL INTERFACING	 267

+5 V

MAN?

I-I
I-I

150(2EACH

13 12 Ii 10	 9 15 14	 5V
=	 a b C 0 e

+ 5

A	 B	 C

aco iNpuTs

FIGURE 9-24 Circuit for driving single 7-segment LED
display with 7447.

to drive, for example, eight digits. The first problem is
power consumption. For worst-case calculations, as-
sume that all 8 digits are displaying the digit 8. so all 7
segments are lit. Seven segments times 20 mA er
segment gives a current of 140 mA per digit. Multiplying
this by 8 digits gives a total current of 1120 mA, or 1.12
A. for the 8 digits! A second problem o "" static
approach is that each display digit requires a separate
7447 decoder, each of which uses, perhaps. another 13
mA. The current required by the decoders and the LED
displays might be several times the current required by
the rest ofthe circuitry in the instrument.

To solve the problems of the static display approach,
we use a multiplex method. A circuit example is the
easiest way to explain to you how this multiplexing
works. Figure 9-25 shows a circuit you can add to a
couple of microcomputer ports to drive some common-
anode LED displays in a multiplexed manner. Note that
the circuit has Only One 7447 and that the segment
outputs of the 7447 are bused in parallel to the segment
inputs of all the digits. The question that may occur to
you on first seeing this is: Aren't all the digits going to
display the same number? The answer is that they
would if all the digits were turned on at the same time.
The trick of multiplexing displays is that only one display
digit is turned on at a time. The PNP transistor in Series
with the common anode of each digit acts as an on/off
switch for that digit. Here's how the multiplexing process
works.

The BCD code for digit I is first output from port B
to the 7447. The 7447 outputs the corresponding 7-
segment code o'the segment bus lines. The transistor
connected to digit I is then turned on by outptttimg a
low to the appropriate bit of port A. (Remember, a low
turns on a PNP transistor.) All the rest of the bits of port
A are made high to make sure no other digits are turned
on. After1 or 2 ms. digit 1 is turned off by outputting

all highs to port A. The BCD code for dIgit 2 isih,'rc
output to the 7447 on port B, and a word to turn on
digit 2 is output on port A. After I or 2 nis. digI! 2 is
turned off and the process is repeated for digit '3. rh
procesS is continued until all tli ligits have had a turn.
Then digit I and the lollowirig digits are lit agaIn In
turn. We leave It to you as an exercise at the end of the
chapter to write a procedure which is railed on an
interrupt basis every 2 ms to keep these displava rr-
freshed wi:fj some values stored in a table.

WIth 8 digits and 2 ms per digit, you get hack to digit
1 every 16 ins, or about 60 times a second. This relrech
rate is fast enough that, to your eye, the digits will eah
appear to be lit all the time. Refresh rates of 40 to 20u
times a second are acceptable.

The immediately obvious advantages of multiplexing
the displays are that only one 7447 is required, and only
one digit is lii at a time. We usually increase the current
per segment to between 40 and 60 mA for multiplexed
displays so that they will appear as bright as they would
if they were not multiplexed. Even with this increased
segment current, multiplexing gives a large saving in
power and parts.

NOTE: If you are calculating the current-limiting
resistors for multiplexed displays with increased
segment current, check the data sheet for the
displays you are using to make sure you are not
exceeding their maximum current rating.

The software .multiplexed approach we have jusE de-
scrio "art also be used to drive 18-segment LED devices
and dot-matrix LED devices. For these devices, however,
you rep!ace the 7447 in Figure 925 with a ROM which
generates the required segment codes when the ASCII
code for a character is applied to the addiess inputs of
the ROM.

Display and Keyboard Interfacing with the 8279

A disadvantage of the software-multiplexing approach
shown here Is that it pu ! s an additional burden on the
CPU. Also, if the CPtJ gets involved in doing SOme lengthy
task which cannot be Interrupted to t-efresh the display.
only one digit of tb.. display will be left lit. An alternative
approach t. nterfacimig multiplexed displays to a micro-
computer is to use a dedicated display controller such
as the Intel 8279. As we show you in the nexi Section.
an 8279 independently keeps a bank of 7-segment
displays refreshed and performs the three tasks for a
matrix keyboard at the same time.

8279 CIRCUIT CONNECTIONS AND
OPERATION OVERVIEW

Sheets 7 and 8 of the SDK-86 schematics in Figure 7-
show the circuit connections for the keypad and the
multiplexed 7-segment displays. First lets look at Ihe
display circuitry on sheet 8. The displays there are
common-anode, and each digit has a PNP transistor
switrh between its anode and the -5-V supply. A logic
low is iqu red to tutu on one of these switches. Note

268	 CHAPTER NINE

NC-

iNC!!

c il_2

(6
OP --

(DECIMAL
POINT)

NC

OUTPUT
PORT

A

0O

Di

02

03

04

05

D6

OUTPUT
PORT

B

DO

Di

02

03

R2	 R3	

R4 l!r_:r	 AS t..r'

MSD

1500
	

1500	 1500	 15Ofl

+5 V

	
1(12((ii) (10) 1(9) 1(15) i"

vcc	 LI
1447	 RBO

GND	 RB1

R7.' +5V

07

1S0 0

+5 V

LW

1500

COMMON ANODE
DISPLAYS - DL 707

Ri-i 1 kO
01-7 2N3906

FIGURE 9-25 Circuit for multiplexing 7-segment displays with a
microcomputer.

the 22-pI capacitor between +5 V and ground at the
top of the schematic. This is necessary to fIlter Out
tra'islents caused by switching the large currents to the
LEDs off and on.

The segments of each digit are all connected on a
common bus. Since these are common-anode displays,
a low is needed to turn on a segment. Now let's look at
sheet 7 in Figure 7-8 to see how these displays are
driven.

The drive for the digit-switch transistors comes from
a 7445 BCD-to-declmal decoder. This device is also
known as a one-of-ten-l')w decoder. When a 4-bit BCD
code is applied to the inputs of this device, the output
corresponding to that BCD number will go low. For
example, when the 8279 outputs 0100 or BCD 4, the
7445 output labeled 04 will go low, In the mode used
for this circuit, the 8279 outputs a continuous count
sequence from 0000 to liii over and over. This causes
a low to be stepped from output to output of the 7445
in ring ccunter fashion, turning on each LED digit in
turn. Only one output of the 7445 will ever be low at a
time, so only one LED digit will be turned on at a time.

The segment bus lines for the displays are connected
to the A3--AO and B3—B0 outputs of the 8279 through
some high-current inverting buffers In the ULN2003A.

Note that the 22-fl current-limiting resistors In series
with the segment lines are much smaller in value than
those we calculated for the static circuit in Figure
9-24. There arc two reasons for this. First, there is an
additional few tenths of a volt drop across the transistor
switch on each anode. Second. when multiplexing dis-
plays. we pass a higher current through the displays so
that they appear as bright as they would if they were not
multiplexed. Here's how the 8279 keeps these displays
refreshed.

The 8279 contains a 16-byte display refresh RAM.
When you want to display some letters or numbers on
the LEDs. you write the 7-segment codes for the letters
or numbers that you want displayed to the appropriate
location in this display RAM. The 8279 then automati-
cally cycles through sending out one of the segment
codes, turning on the digit for a short time and then
moving on to the next digit. The top five lines in Figure
9-26, p. 270. show this multiplex operation in timing
dtagram form.

The 8279 first outputs the binary number for the first
digit to the 7445 on the SLO to SL3 lines (Figure 7-8.
sheet 7) to turn on the first of the digit-driver transistors.
The lines SLO and SLI in Figure 9-26 represent the SLO
and SL1 lines from the 8279. During this time. the 8279

DIGITAL iNTERFACING	 26

510

511

*0 - *3
ACTIVE HIGH

80-83
ACTIVE HIGH

RIO- Rh

PRESCALER PROGRAMMED FOR IN-
TERNAI. FREQUENCY	 100 EH SO

NQTE SHOWN IS ENCODED SCAN LEFT ENTRY
S2-S3 ARE NOT SHOWN BUT THEY ARE SIMPLY SI DIVIDED BY 2 AND 4

FIGURE 9-26 8279 display refresh timing and keyboard scan timing. (Intel
Corporation)

outputs on the A3—A0 and 3—BO segment lines a code
which turns off all the segments. For the circuit in
Figure 7-8. sheet 7, this blanking code will be all zeros
(OOH). The display is blanked here to prevent "ghosting"
of information from one digit to the next when the digit
strobe is switched from one digit to the next.

After about 70 ps. the 8279 outputs the 7-segment
code for the first digit on the A3—A0 and 83—BO lines.
This will light the first digit with the desired pattern.
After 490 ps. the 8279 outputs the blanking code again.
While the displays are blanked, the 8279 sends out the
BCD code for the next digit to the 7445 to enable the
driver transistor for digit 2. it then sends out the 7-
segment code for digit 2 on the A3—A0 and B3—B0 lines,
This lights the desired pattern on digit 2. After 490 ps,
the 8279 blanks the display again and goes on to digit
3. The 8279 steps through all the digits and then returns
to digit I and repeats the cycle. Since each digit requires
about 640 ps, the. 8279 gets back to digit I after about
5.1 ms for an 8-digit display and back to digit 1 after
about 10.3 ms for a 16-digit display. The time it takes
to get back to a digit again is referred to as the scan
time.

The point here Is that once you load the 7-segment
codes into the internal display RAM, the 8279 automati-
cally keeps the displays refreshed withnllt any help from

the microprocessor. As we will show you later, the 8279
can be connected and initialized to refresh a wide variety
of display configurations.

The 8279 can also automatically perform the three
tasks for interfacing to a matrix keyboard. Remember
from previous discussions that the three tasks involve
putting a low on a row of the keyboard matrix and
checking the columns of the matrix, if any keys are
pressed in that row, a low will be present on the column
which contains the key because pressing a key shorts a
row to a column. If no low- is found on the columns, the
low is stepped to the next row and the columns checked
again. If a low is found on a column, then, after a
debounce time, the column is checked again. If the
keypress was valid, a compact code representing the key
is constructed. Take a look at the circuit on sheet 7 of
Figure 7-8 to see how an 8279 can be connected to do
this.

When connected as shown in Figure 7-8. sheet 7. the
74LS156 functions as a one-of-eight-low decoder. In
other words. If you apply OIl. the binary code for 3. to
its inputs, the 74LS156 will output a low on its 2Y3
output. Now remember from the discussion of 8279
display refreshing that the 8279 is outputting a continu-
ous counting sequence from 0000 to 1111 on its SL0-
SL3 lines. Applying this count sequence to the Inputs

270	 CHAPTER NINE

of the 74L8156 will cause it to step a low along its
outputs. The 74LS156 then puts a low on one row of
the keyboard at a time, as desired.

The column lines of the keyboard are connected to the
return lines, RLO—RL7. of the 8279. As a low is put on
each row by the scan-line counter and the 74LS 156, the
8279 checks these return lines one at a time to see If
any of them are low. The bottom line of the timing
waveforms In Figure 9-26 shows when the return lines
arc checked. If the 8279 finds any of the return lines
low, indicating a keypress. it waits a debounce time of
about 10.3 ms and checks again. If the keypress is
still present, the 8279 produces an 8-bit code which
represents the pressed key. Figure 9-27 shows the format
for the code produced. Three bits of this code represent
the number of the row in which the 8279 found the
pressed key, and another 3 bits represent the column
of the pressed key. For interlacing to full typewriter
keyboards the shift and control keys are connected to
pins 36 and 37, respectively, of the 8279. The upper 2
bits of the code produced represent the status of these
two keys.

After the 8279 produces the 8-bit code for the pressed
key, It stores the byte in an internal 8-byte FIFO RAM.
The term FIFO stands for first in, first out, whicb means
that when you start reading codes from the FIFO, the
first code you read out will be that for the first key
pressed. The FIFO can store the codes for up to eight
pressed keys before overflowing.

When the 8279 finds a valid keypress. it does two
things to let you know about it. It asserts its interrupt
request pin. IRQ, high. and it Increments a FIFO count
In an internal status register. You can connect the IRQ
output to an Interrupt input and detect when the FIFO
has a character for you on an interrupt basis, or you
can simply check the Count in the status word to
determine when the FIFO has a code ready to be read.
The point here is that once the 8279 is Initialized, you
don't need to pay any attention to it until you want to
send some new characters to be displayed, or until It
notifies you that it has a valid keypressed code for you
in its FIFO. Now that you have an overview of how the
8279 functions, we will show you how to Initialize an
8279 to do all of these wondrous things arid more.

INITIALIZING AND COMMUNICATING
WITH AN 8279

As we have shown before, the first step in initializing a
programmable device is to determine the system base
address for the device, the internal addresses, and the
system addresses for the internal parts. As an example
here, we will use the 8279 on sheet 7 of the SDK-36

MSB	 LSB
I	 I	 I	 I
I CNTL SHIFT	 SCAN	 RETURN
L	 I	 I	 I

SCANNED KE V BOARD DATA F ORMA r

FIGURE 9-27 Formal for data word produced by 8279
keyboard encoding

schematics In Figure 7-8. Figure 7-16b shows that the
system base address for this device is FFE8H. The 8279
has only two internal addresses, which are selected by
the logic level on its A0 input, pin 21. If the A0 input is
low when the 8279 is selected, then the 8279 Is enabled
for reading data from it or writing data to It. A0 beIng
high selects the internal control/status registers. For the
circuit on sheet 7 of Figure 7-8. the A0 Input is connected
to system address line Al. Therefore, the data address
for this 8279 Is FFE8H and the control/status address
Is FFEAH.

After you have figured out the system addresses for a
device, the next step Is to look at the format for the
control word(s) you have to send to the device to make
it operate in the mode you want. Figure 9-28. p. 272,
shows the format for the 8279 control words as they
appear In the Intel data book. After you use up your 5-
minute "freak-out" time, we will help you decipher these.

One question that may occur to you when you see all
these control words is, If the 8279 only has one control
register address, how am I going to send it all these
different control words? The answer to this is that all
the control words are sent to the same control register
address, FFEAH for this example. The upper 3 bits of
each control word tell the 8279 which control word is
being sent. A pattern of 010 in the upper 3 bits of a
control word, for example, Identifies that control word
as a Rad FIFO/Sensor RAM control word. Keep Figure
9-28 Fandy as we discuss this and the pther control
words.

The first control word you send to initIalize the 8279
is the keyboardidlsplay mode set word. The bits labeled
DD in the control word specify first of all whether you
have 8 digit or 16 digits to refresh. If you have eight or
fewer displays, make sure to initialize for 8 diglt3 so the
8279 doesn't spend half its time refreshiug nonexistent
displays. The DD bits In this control word also specify
the order in which the characters in the internal 16-
byte display RAM will be sent out to the digits. In the
left entry mode, the 7-segment code In the first address
of the internal display RAM will be sent to the leftmost
digit of the display. if you want to display the letters
AbCd on the 4 leftmost digits of an &digit display. then
you put the 7-segment codes for these letters in the first
four locations of the display RAM. as shown in Figure
9-29a. p. 273. Codes put in higher addresses in the
display RAM will be displayed on following digits to the
right. In the right entry mode, the first code sent to the
display RAM is put in the lowest address. This character
will be displayed or- the rightmost digit of the display.
If a second character is written to the display RAM. It
will be put In the second location In the RAM. as shown
in Figure 9-29b. On the display, however, the new
character will be displayed on the rightmost digit, and
the previous character will be shifted over to the second
position from the right. This is the way the displays of
most calculators function as you enter numbers.

Now let's look at the KKK bits of the mode-set control
word. The first choice you have to make here ii you are
using the 8279 with a keyboard is whether you want
encoded scan or decoded scan. You know that for

DIGITAL INTERFACING	 271

K.yboardlDtsplay Mod. S•t

MSd	 LS8

Code	 LoioIoID!0IK IKIKI

Wner, OP sine Display Mode and KKK she KeyflOard
Mode

DD
0 I)	 8 8 bil character display - Lell entry

o I	 16 8 . t'l charade' Orsplay -- tell entry'
t 0	 88-bit cha,acle display - Right entry
1 1	 158-bit eflaradler display - Righi entry

For description 01 right and lell entry. see- Interface
Considerations Note that wfleri decoded scan is SO! 0
keyboard mode the display is red-iced to 4 Characters
independent ot display mode set.

KKK
o 0 0 Encoded Scan Keyboali - 2 Key lockonat
0 ci I Decoded Scan Keyboard - 2-Key Lockout
o 1 0 Encoded Scan Keyboard - N-Key Rollover
o 1 1	 Decoded Scan Keyboard --' N-idea Roliciser
1 0 0 Encoded Scan Sensor M&ln,v
1 0 I	 Decoded Scan Sensor MaIns
1 1 0	 Strobed Input. Encoded Display Scar,

1 I	 Slrobed Input, Decoded Display Scan 	 -

Progeim Clock

Code:	 IoIoIilPIPIPIPI
All tlrtring and multiplexing 5ignais to, the 8279 are
generated by an internal pnosc.aler. This prescater
divide, the eetemnsl clock (pin 3) by a prograrorssable
integer. Bits PPPPP determine the vilue of this Integer
which range. from 2 to 31. Choosing a dl',Isor that yields
100 kH, will give tile spocltied scan anti deboiance
tirrtos. For instance, if Pin iof the 8279 5 being clocked
by a 2 MHa signal. PPPPP should be set to 10100 to
divide file clock by 20 to yield the proper tOO kl-4z operat-
ing ireqlieflCy.

Read FlFOlSnsor RAM

Code: I0HIOIAI!XIAIAIAI XnDOtn'tCire

The CPU sets tap the 8279 tori read of the FIFO/Sensor
RAM by fIrst writing this command. in the Scan Key-
board Mode, the Auto-lrtCrerllont flag (Al) and the RAM
address bits (AAA) are irrelevant, the 8279 wit) anatornatt.
Catty drive the data ills tor each Subsequent read (A0= 0)
in the same sequence in which the data first entered the
FIFO. All subsequent reads will be from the FIFO until
anot her command is issued.

In the Sensor MaIns Mode, the RAM address bits AAA
setect one of the 8 rows of the Sensor RAM lithe Al flag
is set (At = 1), each Successive read will be from the Sub-
Sequent 0W of the sensor RAM.

R..d Display RAM

Code: I0I3I1uI*kHHI
The CPU sets vip the 8279 for a read at the Display RAM
by tirst writing thiS command. The addreSs bIts AAAA
select one of the 18 roes of the Display RAM lithe At
flag is set (At = 1). this row address CIII be incremented
after each following read a, write to the Display PAM,
Since the same Counter is used for both reading and
writing. thrn command sets the next read rn wilts
address and the sense o f the Auto-Increment mode for
both operations.

Widi. DIsplay RAM

Code LJ_!_1_o At A A AJ

i'h CPU twI, up the 8279 for a wrIte to tile DispISy RAM
by first writing this command. After writIng fl'ie corn
mind wrlh A0 = tall subsequent write, with A 0 'ri 0 will
ha to the Display RAM. The addressing md Auto-
Increment lunclions are identical to those tor the Reac,l
Dniplay RAM Howov.,, tIlts Command does not affect
thSoorce o l subsequent Data Reads: the CPU wilt read
front whichever RAM (Display or FIFOlSonsort Which
wa. last specified. If, indeed, the Display PAM was last
specified, the Write Display RAM will, nevertheless,
change the next Read location.

Dlipl.y Writ. lnNbffllanklng

A S A S
Cod.:	 11I0I1I*l1wliwSL!iii

The IW Bits can be used to masts nibble A and nibble B
in applications requiring separate 4-bit display port,, By
setling the 1W ttag (1W = 1) for one of the ports, the port
becomes marked so that entries to the Display RAM
Iron, fIle CPU do not affect lOaf port. Thus, if each nibble
is input to a BCD decoder, the CPU may writes digit to
the Display RAM without affecting the other dIgit being
displayed. It is inoportarrt to note that bit B 0 corresponds
to bit D0 on the CPU bus, and that bit A5 corresponds to
bit 0.

If life user wishes to bianli the display, the BL flags are
available for each nibble, The last Ctoar command Issued
deternxines the code to be Used 55 a "blank.' This code
defaults to all reros after a reset. Note that both BL
Ilags 11115sf be set to bl5nk a display formatted with a
single 8-btt port

Cf..'

Cods

The C 11 bits are available in this command to Clear alt
rows of the Display RAM to a selectable blanking code
as follows:

C0 C.,, C0

	

0 X	 All Zrvs)X Don! Care) 	 -

1 0	 Ail U.s 20 iQt 00001

1	 1	 All Ones
- Enabl, clear d.vplay when 1 lot by Ce	 11

During hhe time lhe Dioploy RAM is teing cleared 1 -' 160 as),
it may vol be enliton to. The 1110sf significant tilt of the
FIFO status word is svt during Ihis 1:1110 When the Dis-
play RAM beco'r:ei avale.,bin aain. if automnalicalty
resets,

It the C	 bit is as,,u:'r':,' I. , , ' . 	 ' ' i'S" '	 . i,s',us iii
cleared and the I tøI i'liii OS'] .	 ir,r.Air.0
Sensor RAM pointer is set fo':'.'r

C. lbs Clear All bit, rids Ifto combed shed ,, C,, iiC
Cy: fuses the C 0 clearing coda a'- rho Ospla, 10CM
also clears FIFO status Furlh, r ,n'orc. 1 'esynr.hrc,n:,es
the internal t:ming chain.
Cnd int.rrupUErrof Mode Sit

Code	 F1T ; xIi x '1 . LiOn I cab

For tile Sensor matrix modes It,iS co-n-and to, i's lne
tRO line Sod enables 'drI ller wr,l:r,q 'nb 'AM "I neRO
line would nave been raised upon Ire detectrirn 01 5
change in a sensor nalue rI,, WOOd ba-i, also 'ohio-led
hurther writing nb the RAM uflhl reset'

For ne N-key rollciner mode - if Iced CU . 5 program--re-)
to I life Chip wit ope r ate in life spend! E r-.r mci-be P
urIne, details See Inreniace Consideration. Sec

F(GURE 9-28 8279 command word (ormats and bit descriptions, (Intel CorporatIon)

272	 CHAPTER NtN

RAM	 -. .-
LOCATION

o (R)	 DISPLAY POSITION

[R j bI Ej d j I Li

3 ()j
4'	 —I

I	 I	 (A) REPRESENtS

5 L	 I	 7SEGMNT

Iii_ij
8 L.-...

RAM
LOCATION

o (R)	 DISPLAY POSITION

___	 [If_I	 Ribicidi

(d)

(A) REPRESENTS
5	 i SEGMENT
6	 CODE FOO A

7

8

lb

FIGURE 9-29 8279 RAM and display location
relatiorlships. (a) teft entry. (b) Right entry.

scanning a keyboard Or turning on digit drivers, you
need a pattern of stepping lows. In encoded mode the
8279 puts o'rt a binary Count sequence on its SLO--SL3
scan lines, an I ar external decoder such as the 7445 IS
used to prodc- ie stepping lows. If you have only 4
digits to refresh, you .an program the 8279 in decoded
mode. in this mode, the 8279 directly outputs stepping
lows on the four scan lines. The second choice you have
to make for this control word is whether you want two-
key lockout or N-key -otlover. in the two-key mode, one
key must be released before another keypress will be
detected and processed. In the N-key rollover mode. if
two keys are pressed at nearly the some time, both
keypresses will be detected and debounced and their
codes put In the FIFO RAM in the order the keys were
pressed.

In addition to being used to scan a keyboard, the 8279
can also be used to scan a matrix of switch sensors,
such as the metal strips and magnetic sensors you see
on store windows and doors. In sensor matrix mode.
the 8279 scans all the sensors and stores the condition
of up to 64 swItches In the Flf'O RAM, lithe condition
of any of the switches changes. an IRQ signal is Sent
out on the IRQ pin. An interrupt service procedure can
then sound an alarm and let the guard dogs loose. The
return lines of the 8279 can also function as a strobed
Input port In much the same way as port A or B on an
8255A.

The SDK-86 initializes the 8279 for eight-character
display, left entry, encoded scan. two-key lockout. Sec if

you can determine the mode-set control word for these
cowditions. You should get 00000000.

The next control 'word you nave to send the 8279 s
the progra'--ulock word. 'l'he 8279 requires an internal
clock frequency of about 100 kHz. A programmable
dlvlirr in the 8279 allows you to apply some available
frequency, such as the 2.45-MHz PCLK signal, to its
clock input and divide this frequency down to the needed
100 kFlz. The lower 5 bits of the program-clock control
word simply represent the binary number you want to
divide the applied clock by. For example, if you want to
divide the input clock frequency by 24. you send a
control word with 001 in the upper 3 bits and 11000 in
th' lower 5 bits.

flie final control word needed for basic initialization
Is the clear word. You need to send this word to tell the
8279 what code to send to the segments to turn them
off while the 8279 is switching from one digit to the
next. (Reter to Figure 9-26 and its discussion.) In
addition to telling the 8279 what blanking character to
use during refresh, this control word can be used to
clear the display RAM and/or the FIFO at any time. For
now we are only concerned with the first function. The
lower 2 bits, labeled C0 in the control word in Figure
9-20, specify the desired blanking code. The requIred
c..rdc will depend on the hardware connections in a
particular system. For the SDK-86 a high from the 8279
turns on a segment, so the required blanking code is all
Os. Therefore you can put 0's In the 2 C 0 bits. The
resultant control word is 11000000.

Fhe three control words described so far take care of
the basic initialiaation However, before you can send
codes to the internal display RAM, you l'iave to send the
8279 a write-display-RAM control word. This word tells
the 8279 that data sent to the data address laler should
be pn.it in the display RAM. and it tells the 8279 where
'o put the data in the display RAM. The 8279 has an
internal 4-bit pointer to the display RAM. The lower 4
bits of the write-display-RAM control word initialize the
pointer to the location where you want to write a data
byte in the RAM. If you want to write a data byte to the
first location in the display RAM, for example, you put
0000 in these bits. If you put a I in the auto increment
bit, labeled Al in the figure. the internal pointer will be
autoniatIcaily Incremented to point to the next RAM
location after each datt byte is written. To start loading
charactei-s in the first location in the RAM and select
auto increment, then, the control word is 10010000.

Figure 930. p. 274. shows the sequence of instruc-
tions to send the conf'rol words we have developed here'
to the 8279 on the SDK-86 board. Also shown are
instructions to send a 7-segment code to the first
location in the display RAM. Note that the control words
are all sent io the control address. FFEAH. .1 toe
character going to the display RAM is sent to the data
address. FFE8H. Also note from sheet 7 of Figure 7-8
that the DO bit of the byte sent to the display RAM
corresponds to segment output HO. and D7 of the byte
sent to the display corresponds to segment output A3
This is important to know when you are making up a
table of 7-segeent codes to send to the 8279.

You now know how to initialize an 8279 and send

DIGITAL INTIRFACINC	 273

INITIALIZATION
NOV DX, OFFEAI4	 Point at 8279 control address
NOV AL. 000000008	 Node set word for left entry,

encoded scan, 2-key Lockout
C&IT DX, AL	 Send to 8279
NOV AL, 001110008	 Clock wor-d for divide by 24
(SiT DX, Al
NOV AL. 110000008	 Clear iisptay char is all zeros
tilT DX, AL

;SLldD SEVEN SEG)ENT CCOE TO DISPLAT RAN
NOV AL, 100100008	 Write display RAIl, first location,

auto increlnent
NOV DX, OFFEAN	 Point at 8279 control address
(SiT DX, At,	 Send control word
NOV DX, OFFE8rI	 Point at 879 data address
NOV AL, f,FH	 Seven seg.eot code for 9
(SiT DX, AL	 Send to display RAM
P40W AL, .8H	 Seven segment code for 2
liii OX, AL	 Send to display .AIl

;READ KEYBOARD CWE FRON FIFO
NOV AL, (I1000000B	 Control word for read FIFO RAM
NOV DX, OFFEAS	 Poict at 8279 controL address
(lii DX, AL	 Send content word
NOV DX, OFFEB'	 Point at 82s	 ta addrc'
IN AL, DX	 , Psad rita RA14

FIGURE 9-30 80& instructions to initialize SDK-86 8279,
write to display RAM, and read FIFO RAM.

characters to Its display RAM. Two additional points we
need to show you are how to read keypressed codes from
the FIFO RAM and how to i-cad the status word. in order
to read a code from the FIFO RAM, you first have to send
a read FIFOIsen.so: R4M control word to the 8279
control address. Fiurc 9-28 shows the format for this
word. For a read of the FIFO RAM, (he lower 5 bits of
the control word are donI. cares, so yol.. can JUSt make
them 0's. You send the resultant control word.
01000000, to the control registe; Lddress and then do
a read from the data address. The bottom section of
Figure 9-30 shows this,

Now, suppose that the processor receives an interrupt
signal from the 8279, indIcating that one or more valid
keypresses have occurred. Tue question then comes tip,
How do I know how many codes I should read from the
FIFO? The answer to this question is that you read the
status register from the control register address betore
you read the FIFO. Flguie 9-31 shows the format for
this status word. The lowest 3 bits of the status word
Indicate the number of valid character In the FIFO. You
can load this number into a memory location and count
it down as you read In characters !nctdentally, if more
than eight characters have been etitered in the FIFO.
only the last eight will be kept. The erior-overrun bU.
labeled 0 In the status word. will be set to tell you that
characters have been lost.

Characters can be rad from the 8279 on a polled
basis as well as on an interrupt basis. To do this, you
Simply read and test the status word over and over again
until bit 0 of the status word becomes a 1. Since
the basic SDK-86 does not have an 8259A to receive
interrupt inputs, the SDK-86 monitor uses this polling
method to tell when the FIFO holds a keypressed code,

FIFO STATUS WORD

Hs,nI 0 IUl F I N ! NINI

1	 1	 LNUMBER O F CHARACTERS IN FIFO
FIFO FULL
ER RO ft - U NOt H FlU N
ERROR-OVERRUN
SEN0R CLOSURE/ERROR FLAG
FOR MULTIPLE CLOSURES

- DISPLAY UNAVAIL8LE

FIGURE 9-31 8279 status word format.

SDK .86 DISPLAY DRIVER PROCEDURE

Figure 9-32 shows an example of an i/O driver which
will send the contents of th four nibbles in the CX
register to four SDK-86 LED displays. You may have
Used this procedure for a variety of experiments: now
OU et to see how it works.
This procedure assumes the 8279 has already been

IT',Itiaiized by the SDK-86 monitor program, or a-s shown
in the fist part of Figure 9-30. If AL Is 0 when this
procedure La called, the contents of CX will be displayed
on the data field LEDs. If AL is not 0, then the contents
of CX wit! be displa yed on the addres,s field LEPs There
are two main points For you to see in this procedure.

The first is the sending of the write-display-RAM
control word to the 8279 so we can write to the desired
locations In ihc display RAM. Note that for ihe data field
we wrIte a control word of 90H. which tells the 8279 to
put the next data word se;it into the first location in the
display RAM. Since the 8279 is initialized ior left entry.
the first location shouki correspond to the leftmost
displa y digit. However, if you look at sheet 8 of the SDK-
86 schematics, you will see that digit I (leftmost as far
as the 8279 is concerned) is actually the rightmost on
Ihe hoard. This means that for the SDK-86, the position
of a 7-segment code in the display RAM corresponds to
its position in the display starting from the right! All
you have to do ts send the 7-segment code lor a number
you want to display in a particular digit position to the
corresponding location In the display RAM.

The next part of the display procedure to take a close
look at Is the instructions which convert the four hex
nibbles in the CX register to the co sponding 7.
segment codes for sending to the display RAM. To do
this, we first shuffle and mask to get each nibble into a
byte by itself. We then use a lookup table arid the Xt.AT
instruction to do the actual conversion. Note that when
making up 7-segmeril codes for the SDK-86 board, a
high turns on a segment. bit DO of a display RAM byte
represents the , "a" segment. bit D6 represents the 'g"
segment, and bit D7 represents the decimal point. If you
are displaying only I-3CD digIts, you can replace the
upper six values in th segment code table with values
which allow you t blank a olgit. display an A or P on a
clock, etc. Work your way through thc conversion section
a a review of using the XLA1 iistructiori.

274	 CHAPTER NINE

;8086 PROCEDURE F9-32.ASN
2
	

;ABSTRACT : Displays a 4-digit hex or BCD nurer onLEDs of the SDK-86.
3
	

;INPUTS	 : Data in CX, control in AL.
4
	

AL	 0014 data displayed rn data-field of LEDs
5
	

AL .c> CON data displayed in address field of LE05.
6
	 ;PORTS	 : None used

7
	 ;PROCEDURES: None used

8
	 ;REGISTERS : Destroys nothing

9
10
	

PUBLIC DISPLAY_IT
11
12 0000
	

DATA SEGI4ENT	 0 PUBLIC
13
	

;	 0	 1	 2	 3	 4	 5	 6	 7
14 0000 3F 06 5B 4F 666070 + SEVEN_SEQ DB	 3FH, 0614, 58H, 4FU, 6614,6014, 7DH, 0714
15
	

07
16
	

8	 9	 A	 b	 C	 d	 E	 F
17 0008 iF 6F 77 7C 39 SE 79 * 	 08	 7F14, 6FH, 7714, 7CH, 39H, 5EH, 7914, 7114
18
	

71
19 0010
	

DATA ENDS
20
21 0000
	

C00E SEGIIENT WORD PUBLIC
22
	

ASSt$E CS;CcOE, DS:DATA
23 0000
	

DISPLAY_IT PROC FAR
24 0000 9C
	

PUSHF	 Save flags
25 0001 1E
	

PUSH OS	 Save caller's registers
26 0002 50
	

PUSH AX
27 0003 53
	

PUSH BX
28 0004 51
	

PUSH CX
29 0005 52
	

PUSH DX
30 0006 BB 0000s
	 NOV BX, DATA	 Init DS as needed for procedure

31 0009 B 08
	

NOV OS, BX
32 0008 BA FFEA
	

NOV DX, OFFEAH	 Point at 8279 control address
33 000E 3C 00
	

CI4P AL, 0014	 ; If data field required then
34 0010 74 05
	

JZ	 DATFLD	 load control word for data field
35 0012 80 94
	

NOV AL, 9414	 else toad address-field control word
36 0014 EB 03 90
	

JMP SEND	 Send control word
37 0017 BO 90
	

OATFLO: NOV AL, 9014 	 Load control word for data field
38 0019 EE
	

SEND: DUT OX, AL	 Send control word to 8279
39 OO1A BB 0000r
	

NOV BX, OFFSET SEVEN_SEQ Pointer to seven-segment codes
40 0010 BA FFE8
	

NOV DX, OFFEBH	 ; Point at 8279 display RAM
41 0020 BA Cl
	

NOV AL, CL	 Get low byte to be displayed
42 0022 24 OF
	

AND AL, OFH	 Mask upper nibble
43 0024 D7
	

XLATB	 Translate lower nibble to 7-seg code
44 0025 EE
	

007 DX, AL	 Send to 8279 display RAIl
45 0026 BA Cl
	

NOV AL, CL	 Get low byte again
46 0028 B1 04
	

NOV CL. 04	 Load rotate count
47 002A D2 CO
	

ROL AL, CL	 ; Move upper nibble into low position
48 002C 24 OF
	

AND AL, OFH	 Mask upper nibble
49 002E 07
	

XLATB	 Translate 2nd nibble to 7-seg code
50 002F EE
	

DUT DX, AL	 Send to 8279 display RAM
51 0030 BA CS
	

MOV AL, CH	 Get high byte to translate
52 0032 24 OF
	

AND AL, OFH	 Mask upper nibble
53 0034 07
	

XLATB	 Translate to 7-seg code
54 0035
	

00T DX, AL	 Send to 8279 display RAM
55 0036 8* C5
	

NOV AL, CU	 Get high byte to fix upper nibble
56 0038 D2 CO
	

ROL AL, CL	 Hove upper nibble into low position
57 003A 24 OF
	

AND AL, OFH	 Mask upper nibble
58 003C 07
	

XL*TB	 Translate to 7-seg code
59 0030 EE
	

001 DX, AL	 7-seg code to 8279 display RAM
60 003E SA
	

POP DX	 Restore all registers and flags
61 003F 59
	

POP CX
62 0040 SB
	

POP BX
63 0041 58
	

POP AX
64 0042 iF
	

POP OS
65 0043 90
	

POP F
66 0044 CB
	

RET
67 0045
	

DISPLAY_IT EN0P
68 0045
	

C00E	 11105
69
	

END

FIGURE 9-32 Procedure to display contents of CX register on SDK-&, LED
displays.

- 37	 DIGITAL INT[RFACING	 275

INTERFACING TO 18-SEGMENT AND
DOT-MATRIX LED DISPLAYS

In the preceding examples we used an 8279 to refresh
some 7-segment displays. The 7-segment codes for each
digit were stored In successive locations In the display
RAM. To display ASCII codes on 18-segment LED dis-
plays, you can store the ASCII codes for each digit in
the display RAM. (Remember that the A lines are driven
from the upper nibble of the display RAM and the B
lines are driven by the lower nibble-) An external ROM
Is used to convert the ASCII codes to the required 18-
segment codes and send them to the segment drivers.
Strobes for each digit driver are produced Just as they
are for the 7-segment displays in Figure 7-8. The re-
freshing of each digit then proceeds just as it does for
the 7-segment displays.

Pefreshing 5 by 7 dot-matrix LED displays is a little
complex because, instead of lighting an entire

;gtt, you have to refresh one row n' one column at a
time in each digit. To solve this problem, Beckman
)nstr irnents. Hewlett-Packard. and several other compa-
nk snake large Integrated dispiay/driver devices which
i-c-, Jre you to send only a series of ASCII codes for the

racters you want displayed.

Lquid-Crystal Display Operation and Interfacing

LCD OPERATION

Liquid . crystal displays are crcted by sandw:.iing a
thin (10 to 12-ii.m) layerofa lIqourystai fluid
two glass plates. A transpare.e rically c-oi
fii rbackplane is put on the r	 "isssheet. Tran4
ent sections of conductive film	 .'ape - the desired
,haracters are coated on the fe. p)atc. Who
voltage is applied between a segment and the backpane.
an electric field is created in the regior . under the
egment. This electric field changes the transmission of
gn through the region under the segment fiho
There are two commonly available types of LC.':

namtc scattering andfie(d-effeet. The dynamic scaiter-
Ing type scrambles the molecules where the field is

-sent. This produces an etched-glass-looking light
uacter on a dark background. Field-effect types use

* brization to absorb light where the electric field is
'sent. This produces dark characters on a Silver-gray

Lkground.
Most LCDs require a voltage of 2 or 3 V between the

backplane and a segment to turn on the segment. You
can't, however, Just connect the backplane to ground
and drive the segments with the outputs of a TTL
decoder, as we did the static LED display in Figure
9-24. The reason for this is that LCDs rapidly and
ir;eversibly deteriorate if a steady dc voltage of more
than about 50 mV is applied between a segment and the
l)ckptane. To prevent a dc buildup on the segments,
the segment-drive signals for LCDs must be square
wvs with a frequency of 30 to 150 Hz. Even if you
pulse the TTL decoder, It still will not work because the
output low voltage of T'TL devices Is greater than 50 mV.
CMOS gates are often used to drive LCDs,

Figure 9-33a shows how-two CMOS gate outputs can

be connected to drive an LCD segment and backplane.
Figure 9-33b shows typical diivC waveforms for the
backplane and for the on and the off segments. The off
(in this case unused) segment receives the same drive
signal as the backplane. There is never any voltage
between them, so no electric field is produced. The
waveform for the on segment is 180° out of phase
with the backplane signal. so the voltage between this
segment and the backplane will always be + V. The logic
for this Is quite simple because you only have to produce
two signals. a square wave and its complement. To the
driving gates. the segment-backplane sandwich appears
as a somewhat leaky capacitor. The CMOS gates can
easily supply the current required to charge and dis-
charge this small capacitance.

Older and/or inexpensive LCD displays turn on and
off too slowly to be multiplexed the way we do LED
displays. At 0C. some LCDs may require as much as
0.5 s to turn on or off. To interface to these types
we use a nonmultiplexed driver device. Newer, more
expensive LCDs can turn on and off faster, so they are
often multiplexed using a variety of techniques. In
the following Section we show you how to Interface a
nonmultiplexed LCD display to a microprocessor such
as the SDK-86.

INTERFACING A MICROCOMPUTER TO
NONMULTIPLEXED LCD DISPLAYS

Figure 9-34 shows how an Intersil ICM72 11 M can be
"on.neted to drive a 4-digit. rionmultipiexed. 7-segment

UNUSED SEGMENT	 V0	 LIQUID CRYSTAL
DIELECTRIC

1

m	
/c\

ACTIVE SEGMENT	 BACKPL*NE

()

OFF-SEGMENT ' --lJ--1J 1J-
BACKPLANE

v ITJTLr'J-
.1i_1JTLTILII[

fbI

FIGURE 9-33 LCD drive circuit arid drive waveforms.
(a) CMOS drive circuits, fbi Segment and backplane
drive waveforms.

276	 CHAPTER NINE

1CM721 1M

D3
SEGMENT OUTPUTS

Ii ti fit
7 WIDE DRIVER

1111111
7WIDELATCH ENI

PROGRAMMABL1
4107 DECODER

D2
SEGMENT OUTPUTS

1111111
7 WIDE DRIVER

11111 H
WIDE LATCH EN!

I	 I	 11111
[PROGRAMMABLE
I 4107 DECODER

Dl
SEGMENT OUTPUTS

7 WIDE DRIVER

WIDE LATCH

PROGRAMMABLE
4107 DECODER

BACK-
PLANE
DRIVER

BACKPLANE
OUTPUT

D4
SEGMENT OUTPUTS

iii till
WIDE DRIVER

1111111
7 WIDE LATCH EN]

I PROGRAMMABLE
I 4107 DECODER

SOK-86	 _______ I

1111AD1 LATCH I
ADO	 0AT	

ENABI E I
AD2
A03

rsi	 2-BIT I	 I 2 TO4
DS2	 __________

Al	 j LATCH	 IDECODER
A?	 I

	

ENABLE1	 II ENABLE

74LS138
OSCILLATOR

16KHZ_________H____ __HFREE-
RUNNING

+5V OSCENABLE	

ENABLEDETECTOR

FIGURE 9-34 Circuit for interfacing four LCD digits to an SDK-86 bus using
Intersil ICM7211M.

LCD display such as you might buy from your local
electronics surplus store. The 721 1M Inputs can be
connected to port pins or directly to microcomputer
buses as shown. For our example here, we have con-
nected the CS inputs to the Y2 output of the 74LS 138
port decoder that we showed you how to add to an SDK-
86 board in Figure 8-14. According to the truth table in
Figure 8-15. the device will then be addressable as ports
with a base address of FFIOH. SDK-86 system address
line A2 is connected to the digit-select input (DS2). and
'v,lrrn address line Al is connected to the DS1 input.
This gives digit 4 a system address of FFIOH. Digit 3
will be addressed at FFI2H. digit 2 at FF14H, and digit
I at FFI6H. The data inputs are connected to the lower
four lines of the SDK-86 data bus. The oscillator input
is left open.

To display a character on one of the digits. you simpiy
put the 4-bit hex code for that digit In the lower 4 bits
of the AL register and output it to the system address
for that digit. The ICM72I IM converts the 4-bit hex
code to the required 7-segment code. The rising edge of
the CS input signal causes the 7-segment code to be
latched in the output latches for the addressed digit: An
internal oscillator automatically generates the segment
and backplane drive waveforms shown in Figure 9-33b.

For interfacing with LCD displays -which can be multi-
plexed. the Intersti 1CM7233 can be used.

INTERFACING MICROCOMPUTER PORTS
TO HIGH-POWER DEVICES
The output pins on programmable port devices can
typically source only a few tenths of a milliampere from
the +5-V supply and sink only 1 or 2 mA to ground. If
you want to control some high-power devices such as
lights, heaters, solenoids, and motors with a microcom-
puter. you need to use interface devices between the
port pins and the high-power device. This section shows
you a few of the commonly used devices and techniques.

Integrated-Circuit Buffers
One approach to buffering the outputs of port devices
is with TFL buffers such as the 7406 hex inverting and
7407 hex noninverting devices. In Figure 9-12. for
example, we show 74LS07 buffers on the lines from
ports to a printer. In an actual circuit the 8255A outputs
to the computer-controlled lathe in Figure 9-7 should
also have buffers of this type. The 74LS06 and 74LS07
have open-collector outputs, so you have to connect a
pull-up resistor from each output to 4-5 V. Each of the
buffers in a 74LS06 or 74LS07 can sink as much as 40
mA to ground. This is enough current that YOU can easily
drive an LED with each output by simply connecting the
LED and a current-limiting resistor in series between
the buffer output and +5 V.

DIGITAL INTERFACING	 7

Buffers of this type have the advantage that they come
Ix to parkage, and they are easy to apply. For cases

where you need a buffer on only one or two port pins or
you need more current, you can use discrete transistors.

Transistor Buffers

Figure 9-35 shows some single-transistor circuits you
can connect to microprocessor port lines to drive LEDs
or small dc lamps. We will show you how to quickly
determine the parts values to put In these circuits for
your particular appiicion. First, determine whether
you want a logic high on the output port pin to turn on
the device or whether you want a logic low to turn on
the device. if you want a logic high to turn on the LED.
then use the NPN circuit. If you want a logic low to turn
on the device, use the PNP circuit. Let's usen NPN for
the first example.

Next, determine how much current you need to flow
through the LED, lamp, or other device. For our example
here, suppose that you want 20 mA to flow through an
LED. You then look through your transistor collection
to find an NPN transistor which can carry the required
current, has a collector-to-emitter breakdown voltage
(V-Eo) greater than the applied supply voltage, and can
dissipate the power generated by the current flowing
through it. We usually keep some inexpensive 2N3904
NPNs and some 2N3906 PNPs on hand for low-current
switch applications such as this. Some alternatives are
the 2N2222 NPN and the 2N2907 PNP.

When you decide what transistor you are going to use.
look up its cuj-rent gain. h. on a data sheet. If you
don't have a data sheet, assume a value of 50 for the
current gain of small-signal transistors such as these.

+5 V

FROM OUTPUT	 2.1 K	

1500

PORT PIN	 >____vMv___tN39o4

(a)

+5 V

N,,FROM OUTPUT
2N3906POATFIN	

82K
OR

1150

Ib)

FIGURE 9-35 Transistor buffer Circuits for driving LED
from 8255A port pin. (a) NPN. (b) PNF'.

Remember. current gain, or 13, as it is commonjy called.
is the ratio of collector current to the base current
needed to produce that current. To produce a collector
current of 20 mA in a transistor with a (3 of 50 requires
a base current of 20 mA/50 or 0.4 mA. To drive this
buffer transistor, then, the output port pin has to supply
only the 0.4 mA.

The VOH(PER) specification of the 8255A shows that
an 8255A peripheral port pin can only source 200 A
(0.2 mAl of current and still maintain a legal TFL-
compatible output voltage of 2.4 V! The outputs can
source more than 0.2 mA. but if they source more than
0.2 mA. the output high voltage will drop below 2.4 V.
You don't care about the output high voltage dropping
below 2.4 V except in the unlikely case that you are
trying to drive a logic gate input off the same port pin
as the transistor. Let's assume an output voltage of
2.0 V for calculating the value of our current-limiting
resistor, R,. The value of this resistor is not very critical
as long as it lets through enough base current to drive
the transistor. The base of the NPN transistor will be at
about 0.7 V when the transistor is conducting, and the
output port pin will be at least 2.0 V. This leaves a
voltage of 1.3 V across Rb. Dividing the 1.3 V across Rb
by the desired base current of 0.4 mA gives an Rb value
of 3.25 kfl. A 2.7-kfl or 3.3-kil resistor will work fine
here,

if you chose to use the PNP circuit in Figure 9-35b.
an output pin on an 8255A could easily sink enough
current to drive the base of the transistor, The VOL(PER)
specification for an 8255A indicates that an output pin
can sink at least 1.7 mA and still have an output low
voltage no greater than 0.45 V. The base of the PNP
transistor in Figure 9-35b will be at about + 4.3 V when
the transistor is on. and the output of the 8255A will
be at about +0.3 V. This means that the Rb in Figure
9-35b has about 4 V across it. Dividing this voltage by
the required 0.4 mA gives an Rb value of 10 kf1,

When you need to switch currents larger than about
50 mA on and off with an output port line, a single
transistor does not have enough current gain to do this
dependably. One solutton to this problem is to connect
two transistors in a Darllngton configuration, as shown
In Figure 9-36. A circuit such as this might be used to
drive a small solenoid valve which controls the flow of a
chemical into our printed-circuit-board-making ma-
chine or a small solenoid in the, print heads of a
dot-matrt.x printer. The dotted lines around the two
transistors in Figure 9-36 indicate that both devices
are contained in the same package. Here's how this
configuration works.

The output port pin supplies base current to transistor
Ql. This base current produces a collector current 13
times as large in Q I. The collector current ofQ I becomes
the base current of Q2 and is amplified by the current
gain of Q2. The result of this is that the device acts like
a single transistor with a current gain of (3 QI x 13 Q2
and a base-emitter voltage of about 1.4 V. The internal
resistors help turn off the transistors. The TIP 110 device
we show here has a minimum (3 of 1000 at I A, so if we
assume that we need 400 mA to drive the solenoid, then
the worst-case current that must be supplied by the

278	 CHAPTfR N4INE

RELAY COIL
1N4002	 . OR SOLENOID

>WJ

—1

FROM
8255A
OUTPUT TIP 110
PIN.

8K	 60

L -J

FIGURE 9-36 Darlington transistor used to drive relay
coil or solenoid.

output port pin is about 400 mA/l000 or 0.4 mA. As we
indicated before, a port pin can easily do this.

If the drive current required for the Darlington is too
high for the port output, you can add, for example, a
3.3-ku resistor from the transistor base to +5 V to
supply an additional milhiampere of drive current. The
port output can easily sink this additional milliampere
of current when it is in the low state. Also, another
transistor could be added as a buffer between the output
pin and the Darlington input. Note that since the V o
the Dartington is about 1.4 V. a smaller Rb is needed
here. Now let's check out the power dissipation.

According to the data sheet for the TIP1 10, it comes
in a TO-220 package which can dissipate up to 2 W at
an ambient temperature of 25CC with no beat sink. With
400 mA flowing through the device, it will have a
collector-emitter saturation voltage of about 2 V. Multi-
plying the current of 400 mA times the voltage drop of
2 V gives us a power dissipation of 0.8W for our circuit
here. This is well within the limits for thedevice. A rule
)f thumb that we like to lollow is. If the calculated power
lissipation for a device such as this is more than half
of its 25CC no-heat-sink rating, mount the device on the
chassis or a heat sink to make sure it will woEk on a hot
day. If mounted on the appropriate heat sink, the device
will dissipate 50W at 25CC:

One more Important point to mention about the
circuit- in Figure 9-36 Is the reverse-biased diode con-
nected across the solenoid coil. You must remember to
put in this diode whenever you drive an Inductive load
such as a solenoid, relay, or motor. Here's why. The
basic principle of an inductor is that it fights a change
in the Current through it. When you apply a voltage to
the coil by turning on the transistor, it takes a while for
the current to start flowing. This does not cause any
major problems. However, when you turn off the transis-
tor. the collapsing magnetic field in the inductor keeps
the current flowing for a while. This current cannot flow
through the transistor, because it is off. Instead, this
current develops a voltage across the inductor with the
polarity shown by the + and - signs on the coil in

Figure 9-36. This Induced voltage, sometimes called
Inductive "kick," will usually be large enough to break
down the transistor if you forget to put in the diode.
When the coil Is conducting. the diode is reverse-biased.
so it doesn't conduct. However, as soon as the induced
voltage reaches 0.7 V. the diode turns on and supplies
a return path for the induced current. The voltage across
the inductor then is clamped at 0.7 V, the voltage across
a conducting diode, so the transistor is saved.

Figure 9-37a shows how a device cailed a power
MOSFET transistor can be used to drive a solenoid,
relay, or motor winding. Power MOSFETS are somewhat
more expensive than bipolar Darlingtons. but they have
the advantage that they require only a voltage to drive
them. The Motorola IRFI3O shown here, for example,
requires a maximum gate voltage of only 4 V to turn on
a drain current of 8 A. Note that this MOSFET circuit
also needs a reverse-biased diode across the solenoid to
protect the transistor from inductive kick.

Figure 9-37b shows a power driver Circuit using a
newer device called an Isolated-Gate Bipolar Transistor
(IGBT). In IGBT data books you may see the device
referred to as an IGBT or as an MOSIGT. As you might
expeCt from the schematic symbol, these devices are a
compromise between bipolar transistors and MOSFETs.
They have the high input impedance and fast switching
speed of MOSFETs, and they have the low voltage drop
and high current-carrying capacity of bipolar transis-
tors. The Toshiba MG400HIIJS1. for example, has a
collector-emitter breakdown voltage of 560 V and can

MOTOR WINDING
OR SOLENOID

I,

OUTPUT	
I IRF13O

FROM

PORT PIN

(a)

MOTOR WINDING
OR SOLENOID

PORT PIN

)b)

FIGURE 9-37 Circuits for driving solenoid or motor
winding. Cal Power MOSIET circuit. (b) IGBT circuit.

DIGITAL INTERFACING	 279

SSIRT-120010

+5V

LOAD

2N3904

120 VAC

- - - - 1

T01
F

wsw
HtATtR

switch a maximum current of 400 A. A driver device
such as the National DS0026, Motorola MMH1)fl2, or
Silicon General SG1626 is used to convert the logic
signal from an output port to the voltage and current
levels required to rapidly switch high-power MOSFETs
and IGHTs on and off.

Interfacing to AC Power Devices

To turn 110-V. 220-V. or 440-V ac devices on and off
under microprocessor control, We Usually use mechani-
cal or solid-state relays. The control circuitry for both
of these types of relay is electrically isolated from the
actual switch. This is very important, because if the
110-V ac line gets shorted to the line of a microcom-
puter, It usually ba.es most of the microcomputers ICs.

Figure 9-38a shows a picture of a mechanical relay.
This relay has both normally open and normally closed
contacts. When a current is passed through the coil of
the relay, the switch arm is pulled down, opening the
top contacts and closing the bottom set of contacts. The
contacts are rated for a maximum current of 25 A, so
this relay could be used to turn on a 1- or 2-hp motor
or a large electric heater in one of the machines in our
electronics factory. When driven from a 12-V supply, the
coil requires a current of about 170 mA. The Darlington
circuit shown in Figure -*ca*d easily drive this relay
coil from a microcomputer port line.

Mechanical relays, sometimes called conactors. are
available to switch currents from milliamperes up to
several thousand amperes. Mechanical relays, however,
have several Serious problems. First of all, when the
contacts are opened and closed, arcing takes place
between the contacts. This causes the contacts to oxidize
and pit, just as the ignition points in older-style cars
used to do. As the contacts become oxidized, they make
a higher-resistance contact and may get hot enough to
melt. Another disadvantage of mechanical relays is that
they can switch on or off at any point in the ac cycle.
Switching on or off at a high-voltage point in the ac
cycle can cause a large amount of electrical noise, called
electromagnetic interference (EM!). The solid-state re-
lays discussed next avoid these problems to a large
extent.

Figure 9-38b shows a picture of a solid-state relay
which is rated for 25 A at 25°C if mounted on a suitable
heat sink. Figure 9-38c shows a blocI diagram of the
circuitry in the device and how it is connected from an
output port to an ac load.

The input circuit of the solid-state relay is Just an
LED. A simple NPN transistor buffer and a current-
limiting resistor are all that is needed to Interface the
relay to a microcomputer output port pin. To turn the
relay on, you simply output a high on the port pin. This
turns on the transistor and pulls the required 11 mA
through the internal LED. The light from the LED is
focused on a phototransistor connected to the actual
output-controlclrcuitry. Since the only connection be-
tween the Input circuit and the output circuit Is a beam
of light, there are several thousand volts of isolation
between the input circuitry and the output circuitry.

The actual switch in a solid-state relay isa triac. When

PRD-11AY0120

27KI IN	 - ' - k

	
A = PF-IOTOTRANSISTOR
B ZERO CROSSING DETECTOR
C = TRIGGER CKT
0 = SNUBBER CKT

FIGURE 9-38 Relays for switching large currents. (Potter
a pr! Brumuieldl (a) techanicaI. lbl Solid-state.
Ic) Internal circuitry br soIidstate relay.

280	 CHAPTER NINE

triggered, this device conducts on either half of the ac
cycle. Thezerb-voltage detector makes sure that the triac
is only triggered when the ac line voltage is very close to
one of its zero-voltage crossing points. If you output a
signal, to turn on the relay, the relay will not actuajly
turn on until the next time the ac line voltage crosses
zero. This prevents .the triaC from turning on at a high-
voltage point in the ac cycle, which would produce a
burst of EM!. Triacs automatically turn off when the
Current through them drops below a small value called
the holding current, so the triac automatically turns off
at the end of each half-cycle of the ac power. If the control
signal is on. the trigger circuitry will automatically
retrigger the triac for each half-cycle. If you send a signal
to turn off the relay, it will actually turn off the next
time .the alternating current drops to zero. In this type
of solid-state relay, the triac Is always turned on or off
at a zero point on the ac voltage. Zero-point switching
eliminates most of the EMI that would be caused by
switching the triac on at random points in the ac cycle.

Solid-state relays have the advantages that they pro-
duce less EMI, they have no mechanical contacts to arc,
and they are easily driven from microcomputer ports.
Their disadvantages are that they are more expensive
than equivalent mechanical relays and there is a voltage
drop of a couple of volts across the triacs when they are
on. Another potential problem with solid-state relays
occurs when driving large Inductive loads, such as
motors. Remember from basic ac theory that the voltage
waveform leads the current waveform in an ac circuit
with inductance. A triac turns off when the current
through It drops to near zero. In an inductive circuit,
the voltage waveform may be at several tens of volts
when the current is at zero, When the triac is conducting.
it has perhaps 2 V across it. When the triac turns off.
the voltage across the triac will quickly jump to several
tens of volts. This large dV/dT may possibly turn on the
triac at a point when you don't want it turned on. To
keep the voltage across the iriac from changing too
rapidly, an RC snubber circuit is connected across the
triac. as shown in Figure 9-38c. A system example in
the next chapter uses a solid-state relay to control an
electric heater.

Interfacing a Microcomputer to a Stepper Motor

A unique type of motor useful for moving things in
small Increments is a stepper motor. Instead of rotating
Smoothly around and around as most motors do, stepper
motors rotate, or "step," from one fixed position to the
next. If you have a dot-matrix printer such as an Epson
FX, look inside and.you should see one small stepper
motor which is used to advance the paper to the next
line position and another small stepper motor which is
used to move the print head to the next character
position. While you are in there, you might look for a
small device containing all l.Ef) and a phototranslstor
which detects when the print head is in the "home
position. Stepper motors arc also used to position the
rcadiwrite head over the desired track of a flopp y disk
and to iiiovc the pert around on X-Y plotters.

Common step sizes for stepper motors range from 0.9°
to 30°. A stepper motor is stepped from one position to
the next by changing the currents through the fields in
the motor, The two common field connections are re-
ferred to as two-phase and four-phase. We will dicuss
four-phase steppers here because their drive circuitry
is much simpler.

Figure 9-39, p. 282. shows a circuit you can use to
interface a small four-phase stepper such as the Superior
Electric M061-FD302, IMC Magnetics Corp. Tormax
200, or a similar, nominal 5-V unit to five microcomputer
port lines. If you butld up this circuit, bolt some small
heat sinks on the MJE2955 transistors and mount the
l0-W resistors where you aren't likely to touch them,

Since the 7406 buffers are inverting, a high on an
output-port pin produces a low on a buffer output. This
low turns on the PNP driver transistor and supplies
current to a winding. Figure 9-39b shows the switching
sequence to step a motor such as this clockwIse or
counterclockwise, (The directions assume yoti are facing
the end of the motor shaft.) Here's how this works.

Suppose that SW1 and SW2 are turned on, Turning off
SW2 and turning o SW4 will cause the motor to rotate
one step of 1.8° doe wise, Changing to SW4 and SW3 on
will cause the moW to rotate another 1,8° clockwise.
Changing to SW3 and SW2 on will cause another step.
After that, changing to SW2 and SW1 on again will cause
another step clockwle, You can repeat the sequence un-
til the motor has rotated as many steps clockwise as you
want. To step the motor counterclockwise, you simply
work through the switch sequence in the reverse direc-
tion. The motor is held in position between steps by the
current through the coils. Figure 9-39c shows the switch
sequence that can be used to rotate the motor half-steps
of 0.9° clockwise or counterclockwise.

A close look at the switch sequence in Figure 9-39b
shows an interesting pattern. To take the first step
clockwise from SW2 and SWI being on, the pattern of
l's and Os is simpl y rotated one bit position around to
the right. 't'he 1 from SW1 is rotated around into bit 4,
To take the next step, the switch pattern is rotated one
more bit position. To step counterclockwise, the switch
pattern Is rotated lef'. one bit position for each step
desired. This rotating pattern can easily be produced
with a sequence of 8086 instructions. Suppose that you
initially lOad 00110011 into AL and output this to the
switches. (Duplicating the switch pattern In the upper
half of AL will make stepping easy.) To step the motor
clockwise one step. you just rotate this pattern right one
bit position and output it to the switches. To step
counterclockwise one step, you rotate the switch pattern
left one bit position and output it. You can repeat the
rotate and output sequence as many times as needed to
produce the desired number of steps.

Alter you output one step code, you must wait a few
milliseconds before you output another step command
because the motor can step only so fast. Maximum step-
ping rates for different types olsteppers vary from a few
huctred steps per second to several thousand steps per
second. To achieve high stepping rates. thetepping rate
is slowtv increased to the maxtmum and then decreased
as the desired number of steps is approached.

L)ICITAI. INTIRFACtN(, 	 281

OPTIONAL LOW POWER
HOLD CIRCUIT.
CONNECT POINT A TO
+1? V IF SWITCH NOT USED.

PORT BIT
OF

MICROCOMPUTER

16 7406

if 470

1/6 7406

12
01

470

1/67406

02
470

1/67406

03
470

1/6 7406

D4

5V	 -l?V	 *12V

I	 120	 1K
I	 2A
I DIODE

L--- - ------
1K	 I	 A

N4

1 N 4002

-'::	 j 2:r-j.. -
1 N 4002

—I MJE29S5	 __________

I K'" RED/WHITE	 I	 -

1N4002
Mit 2955	 ___________

GREEN/WHITE

Rl.-	 A2
80

iow1•	 10'

SWITCH
STEP

SW4 SW3 SW2 SW1 cW

1	 0	 0	 I	 1
2	 1	 0	 0	 I
3	 1	 I	 0	 0
4	 0	 1	 1	 0
1	 0	 0	 1	 1

cCW
SWITCH ON

bI

EIGHT-STEP INPUT SEQUENCE
HALF-STEP MODE)

STEP	 SW4	 SW3	 SW?	 SW1

1	 0FF	 OFF	 ON	 ON

2	 OFF	 OFF	 OFF	 ON

3	 ON	 OFF	 OFF	 ON

4	 ON	 OFF	 OFF	 OFF

5	 ON	 ON	 OFF	 OFF

6	 OFF	 ON	 OFF	 OFF

7	 OFF	 ON	 ON	 OFF

8	 OFF	 OFF	 ON	 OFF
1	 OFF	 OFF	 ON	 ON

(41

FWURE 9-39 Four-phase stepper motor interface Circuit and stepping
waveforms. (a) Circuit. (b) Full-step drive signal order. (C) Half-step drive signal
order.

When you step a stepper motor to a new position. it
tends to oscillate around the new position before settling
down. A common software technique to damp out this
oscillation is to first send the pattern to step the motor
toward the new position. Wher. the motor has rotated
part of the way to the new position, a word to step the
motor backward is output for a short time. This is like
putting the brakes on. The step-for-ward word is then
sent again to complete the step to the next position. The
timing for the damping command must be determined
experimentally for each motor and load.

Before we go on. here are a couple of additional points
about the Circuit in Figure 9-39a. in case you want to
add a stepper to your robot or some other project. First
of all. dont forget the clamp diodes across each winding
to save the transistors from inductive kick. Second. we
need to explain the function of the current.limiting
resistors, RI and P2. The motor we used here has a
nominal voltage rating of 5.5 V. This means that we
could have designed the circuit to operate with a voltage
of about 6.5 Von the emitters of the driver transistors
(5.5 V for the motor plus 1 V for the drop across thc
transistor). For low stepping rates, this would work fine.

However, for higher stepping rates and more torque
while stepping. we use a higher supply voltage and
current-limiting resistors, as shown. The point of this
Is that by adding Series resistance, we decrease the LJR
time constant, This allows the current in the windings
to change more rapidly. For the motor we used, the
current per winding is 0.88 A. Since only one winding
on each resistor is ever on at a time, 6.5 V/0.88 A gives
a resistor value of 7.4 fl. To be conservatIve, we used
8-ft. iO-W resistors. The optional transistor switch and
diode connection to the + 5-V supply arc used as follows.
When the motor is not stepping, the switch to + 12 V is
off. so the motor is held in position by the current from
the +5-V supply. Before you send a step command, you
turn on the transistor to #12 V to give the motor more
current for stepping. When stepping is done, you turn
off the switch to + 12 V. and drop back to the +5-V
supply. This Cuts the power dissipation.

In small printers, one or more dedicated microproces-
sors are used to control the various operations in the
printer. In this case, the microprocessors have plenty of
time to control the Print-head and line-feed stepper
motors In software, as we described above. For applica-

282	 CHAPTER NINE

DI AEC
CONTI

STEP JLINPUT

+29 V

tions where the main microcomputer is too busy to be
bothered with controlling a stepper directly. a smart
stepper controller device, such as the Sprague UCN-
5804B shown in Figure 9-40. can be used in place of
the circuitry in Figure 9-39. This device is manufactured
with a combination of CMOS and bipolar technology, so
it has high input impedance and high output current
drive capability. The device contains a shift resister to
produce the step patterns, the power driver transistors.
and the clamp diodes. Control inputs allow you to specify
half-step or full-step operation. step direction, and type
of motor. To step the motor, a pulse or series of pulses
is applied to the STEP input. A programmable counter
such as the 8254 we discussed earlier in the chapter
could be programmed to send a desired number of pulses
to the controller.

For applications where steps of 0.9° are not small
enough, a technique called 'microstepping" is used to
produce as many as 25,000 steps per revolution. For
microstep control, each winding is driven with the
output of a D/A converter instead of with on/off switches.
This means that the current through a winding can
have a range of values instead of just zero or maximum.
lithe current ratios in the four windings are changed
slightly, the motor will take a tiny step. Microstepping
is much more éomplex to implement. but it produces
very smooth and precise motion.

OPTICAL MOTOR SHAFT ENCODERS
In order to control the machines in our electronics
factory, the microcomputers in these machines often

need information about the position, direction of rota-
tion, and speed of rotation of various motor shafts. The
microcomputer. of couIe, needs this information in
digital form. The circuitry which produces this digital
information from each motor for the microcomputer Is
called a shaft encoder. There are two basic types of shaft
encoders, absolute and incremental. Here's how these

two types work.

Absolute Encoders

Absolute encoders have a binary-coded disk such as the
one shown in Figure 9-41. p. 284, on the rotating shaft.
Light sections of the disk are transparent, and dark
sections are opaque. An LED is mounted on one side of
each track, and a phototransistor is mounted on the
other side of each track, opposite the LED. Outputs
from the four phototransistors will produce one of the
binary codes shown in Figure 9-41. The phototransistor
outputs can be conditioned with Schmitt-trigger buffers
and connected to input port lines. Each code represents
an absolute angular position of the shaft in its rotation.
With a 4-bit disk. 360° are divided up into 16 parts, so
the position of the shaft can be determined to the nearest
22.5°. With an 8-bit disk, the position of the disk can
be determined to the nearest 360°1256, or 1.4°.

Note that the codes in Figure 9-41 follow a Gray-code
sequence rather than a normal binary count sequence.
Using Gray code reduces the size of the largest possible
error in reading the shaft position to the value of the
least significant bit. If the disk used straight binary
code, the largest possible error would be the value of the

FIGURE 9-40 UCN-5804B stepper motor driver.

38	 DiGITAL. INTERFACING	 283

\t000H/
\ IO01\	 /0001/

)Ol 1

0010

011O

>111

1101,7	
0100"\	

-\

FIGURE 9-41 Gray-code optical-encoder dish used to
determine angular position of a rotating shaft.

most significant bit. Look at the parallel listings of
binay and Gray codes in Table I-I to help you see why
this is the case.

To start, assume that a binazy-encoded disk was used
and that the disk was rotating from position 0111 (7)
to position 1000 (8). Now suppose that the detectors
pick up the change to 000 on the least significant 3 bits.
but don't pick up the change to 1 on the most significant
bit. The output code would then be 0000 instead of the
desired 1000. This is an error equal to the value of the
MSB. Now, while this is fresh in your mind, look across
the table at the same position change for the Gray-code
encoder. The Gray code for position 7 is 0100. and the
Gray code for positIon 8 Is 1100. Note that Only I bit
changes for this transition. If ou look at the Gray-code
table closely, you will see that this Is the case for all the
transitions. This means that if a detector fails to pick
up the new bit value during a transition, the resulting
code will always be the code for the preceding position.
This represents a maximum error equal to the value of
the LSB.

FIGURE 9-42 Rhino XR robotics system. (Rhino Robots
Incorporated)

AhnIut' encoding using a Gra y-code disk has the
advantage that each position is represented by a specific
code which can be directly read in by the microcomputer.
Disadvantages of absolute encoding are the multiple
detectors needed, the multiple lines required, and the
difficulty keeping track of position during multiple rota-
tions. Incremental encoders solve some of these
problems.

Incremental (ncoders

An Incremental encoder produces a pulse for each incre-
ment of shaft rotation. Figure 9-42 shows an early
version of the Rhino XR-2 robot arm, which uses Incre-
mental encoders to determine the position and direction
of rotation for each of its motors. For this encoder, a
metal disk with two tracks of slotted holes is mounted
on each motor shaft. An LED is mounted on one side of
each track of holes, and a phototransistor is mounted
opposite the LED on the other side of the disk. Each
phototransistor produces a train of pulses as the disk
Is rotated. The pulses are passed through Schmitt-
trigger buffers to sharpen their edges.

The top part of Figure 9-43 shows a section of the
encoder disk straightened out so it is easier to see the
pulses produced as it rotates. The two tracks of slotted
holes are 90° out of phase with each other, so as the
disk is rotated, the waveforms shown at the bottom of
Figure 9-43 wIll be produced by the phototransistors for
rotation in one direction. Rotation in the other direction
will shift the phase of the waveforms 180°, so that the
B waveform leads the A waveform by 90' instead of
lagging It by 90°. Now the question is, How do you get
position, speed, and direction information from these
waveforms?

You can determine the speed of rotation by simply
counting the number of pulses from one detector in a
fixed time interval, such as I s. As we described In
Chapter 8. you can use a programmable timer and an

ENCODER DISK

OUTER
IA)
INNER
ID)

HI

A

LO

B	 I	 I
I	 ____________	 I	 I
I	 p	 I	 I	 I

0°	 90' 180' 270' 360' 90° 190' 270° 360'
I	 I	 I	 I

00 I 10 I ii I 01 I 00	 10 I 11 I 01 I 00 I 10

0.004 SEC.
ONE CYC(E

FIGURE 9-43 Optical-encoder disk slot pattern and
output waveforms.

IOu

1010

1110

1111

284	 CHAPTER NINE

interrupt procedure to count off intervals of 1 s. If you
Connect the output of the detector to another Interrupt
input, you can use another interrupt procedure to count
the number of holes that pass by in a 1-s interval. Each
track has sb holes, so six pulses will be produced for
each revolution. Some simple arithmetIc will give you
the speed In revolutions per minute (rpm).

You can determine the direction of rotation with
hardware or with software. For the hardware approach.
connect the A signal to the D input of a D flip-flop and
the B signal to the clock input of the flip-flop. The rising
edge of the B signal will clock the level of the A signal at
that point through the flip-flop to its Q output. If you
look at the waveforms in Figure 9-43, you should see
that the Q output will be high for rotation in the
direction shown. You should also be able to convince
yourself that, the 9 output will be low for rotation in the
other direction.

To determine the direction of rotation with software.
you can detect the rising edge of the B signal on a polled
or an Interrupt basis and then read the logic level on
the A signal. As shown In the waveforms, the A signal
being high when B goes high represents rotation in oie
direction, and the A signal being low when B goes high
represents rotation in the opposite direction.

To determine the position of the motor shaft, you
simply count off how many holes the motor has moved
from some "home" position. On the Rhino robot arm a
small mechanical switch on each axis is activated when
the arm Is in its starting. or home, position. When you
turn on the power, the motor controller/driver box
automatically moves the arm to this home position. To
move the arm to some new position, you calculate the
number of holes each motor must rotate to get the arm
to that position. For each motor, you then send the
controller a command which tells it which direction to
rotate that motor and how many holes to rotate it. The
controller will drive the motor the specified number of
holes in the specified direction, If you then manually
rotate the encoder wheel or some heavy load moves the
arm and rotates the encoder disk, the controller will
detect the change in position of the disk and drive the
motor back to its specified position. This is an example
of digital feedback control, which is easily done with a
microcomputer. The Rhino controller uses an 8748
single-chip microcomputer to Interpret and cany out
the commands you send it. Commands are sent to the
controller In the serial ASCII form described at the start
of Chapter 13.

Incidentally, you may wonder at this point Why the
designers of the Rhino arm did not use stepper motors
such as those we described in a previous section. The
answers are: Stepper motors are much more expensive
than the simple dc motOrs used, and if a stepper motor
Is forced back a step by a sudden load change. there Is
no way to know about it and correct for it unless It
has an external encoder. Also, the dc motor-encoder
approach better demonstrates the method used In large
commercial robots.

In the Rhino robot arm, each motor drives its section
of the arm through a series of gears. Gearing the motor
down reduces the force that the motor has to exert and

makes the exact posit1'n of the motor shaft less critical.
Therefore, for the Rhino, six sets of slots in the encoder
disk are sufficient. However, for applications where a
much more accurate indication of shaft position is
needed, a self-contained shaft encoder such as the
Hewlett-Packard HEDS-5000 is attached to the motor
shaft. These encoders have two track-encoder disks with
500 tiny radial slits per track. The waveforms produced
are the same as thos. shown for the Rhino encoder in
Figure 9-43. but at a much higher frequency for the
same motor speed.

Another common application for optical encoders is
to produce digital information about the distance and
direction that a computer mouse is moved. The
Logictech mouse, for example, uses one optical encoder
disk to produce pulses for vertical motion and another
optical encoder disk to produce pulses for horizontal
motion. As you move the mouse around on your desk.
the rubber bail on the bottom of the mouse rotates the
encoder disks. Data from the encoders is processed and
sent to the microcomputer. The microcomputer uses
the data from the mouse to move the on-screen cursor
to the desired location.

Optical encoders In their many different forms are an
important part of a large number of microcomputer-
controlled machines.

CHECKlIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms in the following
list. U3e the index to help you find them in the chapter
for review.

Simple input and output

Strobed [/0

Single-handshake i/O

Doubk-handshake data transfer

8255A initialization
Mode 0. mode 1. mode 2
Mode definition control word
Set/reset control word

Computer numerical control (CNC) machines

Centronics parallel printer standard

110 driver
Control block
Sentinel

Keyswitches—mechanical. capacitive, Hall effect

Detect, debounce. and encode a keyboard

Two-key lockout, two-key rollover

Code conversion using compare method

Code conversion using XLAT method

Error trapping

DIGITAL INTERFACING	 285

LED Interfacing
f)Ir't drivr'
Software-multiplexed display
8279 hardware display controller

8279 display and keyboard operation
Encoded and decoded scan
Keyboard/display mode Set control word
Clear control word
Write-display control word

LCD interfacing
Dynamic scattering display

Field-effect display
Backplane drive

Relays
Mechanical
Solid-state
Electromagnetic interference
Zero-point switching
RC snubber Circuit

Four-phase stepper motor drive

Shaft encoders—absolute and incremental

REVIEW QUESTIONS AND PROBIEMS
I. Why must data be sento a printer on a handshake

basis?

2. For the double-handshake data transfer in Figure
9-Id.
a. Indicate which signal is asserted by the sender

and which signal is asserted by the receiver.
b. Describe the meaning of each of the signal

transitions.

3. Why are the port lines of programmable port devices
automatically put in the input mode when the
device is first powered up or reset?

4. An 8255A has a system base address of FFF9H.
What are the system addresses for the three ports
and the control register for this 8255A?

5. a. Show the mode set control word needed to
initialize an 8255A as follows: Port A—hand-
shake input: Port B—handshake output; Port
C—bits PC6 and PC7 as outputs.

b. Show the bit set/reset control word needed to
initialize the port A interrupt request and the
port B Interrupt request.

c. Show the assembly language instructions you
would use to send these control words to the
8255A in problem 4.

d. Show the additional instruction you need if you
want the handshake to be done on an interrupt
basis through the 1R3 input of the 8259A in
Figure 8-14.

e. Show the instructions you would use to put a
high on port C, bit PC6 of this device.

6. Describe the exchange of signals between the tape
reader, 8255A, and 8086 in Figure 9-7 as a byte of
data is transferred from the tape reader to the
microprocessor.

7. When connecting peripheral devices such as print.
ers, terminals. etc.. to a computer, why is it very
important to connect the logic ground and the
chassis gour.d together oniy at the computer?

8. Describe the function and direction of the following
signals_in a Centronics parallel printer Interface.
a. STROBE
b. ACKNLG
c. BUSY
d. INIT

9. Modify the printer driver procedure in Figure 9-16
so that it stops sending characters to the,printer
when it finds a sentinel character of 03H, instead
of using the counter approach.

10. Would the software method of generating the
STROBE signal to the printer in Figure 9-6 still
work if you tried to run the program with an 8-
MHz 8086?

11. Show the instructions you would use to read the
Status byte from the 8255A in Question 5.

12. Describe the three major tasks needed to get mean-
ingful information from a matrtx keyboard.

13. Describe how the compare method of code conver-
sion in Figure 9-20 works.

14. Why is error trapping necessary in real programs?
Describe how the error trap in the program in
Figure 9-20 works.

IS. Assume that the rows of the circuit shown in Figure
9-44 are connected to ports EFF8H and the 74148
is connected to port FFFAH of an SDK-86 board.
The 74148 will output a low on its GS output if a
low is applied to any of its inputs. The way the
keyboard is wired, the A2, Al. and A0 outputs will
have a 3-bit binary code for the column in which a
low appears. Use the algorithm and discussion of
Figure 9-20 to help you write a procedure which
detects a keypress. deb.ouiices the keypress, and
determines the row number and column number
of the pressed key. The procedure should then
combine the row code, column code, shift bit, and
control bit into a sirgle byte in the form: control.
shift, row code, column code. The XLAT instruction
can then be used to convert this code byte to ASCIi
for return to the calling program. Hint: Use a DB
directive to make up the table of ASCII codes.

Why is the XLAT approach more efficient than
the compare technique for this case?

NOTE: For test purposes, the keyboard matrix
can be simulated by building the diodes, resistors,
and 74148 on a proiotyping board and using a
jumper wire to produce a "keypress.'

16. a. Calculate the value of the current-limiting resis-
tor needed in Series with each segment of a 7-

286	 CHAPTER NINE

o

4.760
- -P%

4.1 Efl

N	 4710UL __

47 60
-

47 60
-

1	 0 COLUMN
3	 4
- ,-9 sv

76

*5 V

0 0 0 0 0 0 0 0

ROW)' 7'	 476 -O	 pa p*

I	 0	 II]	 U	 L	 K1	 J

V	 U	 I	 S	 P
0	 I	 A

3	 2	 1	 0	 2

-	 9	 8	 7

I	 BS	 IF DEl.

ESC TAB

7 CS

6	 5	 4	 3	 2
Il	 12	 73	 1	 2

2	 3	 4	 5
74148

l	 • t	 El	 E
1 7 	 6	 74	 5

___-___	 'NC

+5 VD---________ -_________

4.7 CO

06 ---'	 ---. ________	 SIIIFT
07 CONTROL	 ir

FIGURE 9-44 Interface circuitry for unencoded matrix
keyboard for problem 15.

segment display driven by a 7447 if you want
40 mA per segment.

b. Approximately how much current is being
pulsed through each LED segment on the SDK-
86 board?

17. a. Write the algorithm for a procedure which
refreshes the multiplexed LED displays shown
in Figure 9-25. Assume that the procedure will
be called evely 2 ms by an interrupt signal to
lR4 of an 8259A.

b. Write the assembly language instructions for
the display refresh procedure. Since this proce-
dure Is called on an interrupt basis, all display
parameters should be kept in named memory
locations, If you have time, you can add the
circuitry shown in Figure 9-25 to your micro-
computer so 'ou can test your program.

IS. Figure 9-45. p. 288. shows a circuit for an 8 by 8
matrix of LEDs that you can connect to a couple of
ports on your microcomputer to produce some
interesting displays. The principle here is to output
a I to port B for each LED you want turned on in
the top row and then output a I to the DO bit of
port A to turn on that row, Aftçr 2 ms you output
the pattern you want In the second row to port 13
and a I to bit I of port A to turn on the ',econd

row. The process is repeated until all rows are done
and then started over.

The row patterns can be kept in a table in
memory. If you want to display a sequence of letters,
you can display the Contents of one table for a
few seconds and then switch to another table
containing the second letter. Using the rotate in-
struction, you can produce some scrolled displays.
Hint: The wiring required to build the LED matrix
can be reduced by using an IC 5 by 7 dot-matrIx
LED display such as the Texas Instruments T1L305.

Write the algorithm and program for an inter-
rupt procedure (called every 2 msf to refresh these
displays.

19. You are assigned he job of fixing several SDK-86
boards with display problems. For each of the
following problems, describe a possible cause of the
problem and tell where you would look with an
oscilloscope to check out your theory. Use the
circuit on sheet 7 of Figure 7-8 to help you.
a. A segment never lights.
b. The leftmost digit of the data field never lights.
c All the displays show dim "eights."

20. a. Show the command words and assembly lan-
guage instructions necessary to initialize an
8279 at address 801-I and 821-I as follows: 16-
character display, left entry, encoded-scan key-
board, N-key rollover; 1-MHz input clock di-
vided to 100 kflz; blanking charcter FFH.

b. Show the 8279 instructions necessary to write
99H to the first location in the display RAM and
autoincrement the display RAM pointer.

c. Show the assembly language instructions nec-
essary to read the first byte from the 8279 F1FO
RAM.

d. Determine the 7-segment codes you would have
to send to the SDK-86 8279 to display the letters
HELP on the data field display. Remember that
DO of the byte sent - BO and D7 of the byte
sent = A3.

e. Show the sequence of instructions you can
send to the 8279 of the SDK-86 board to blank
the entire display.

21. Write a procedure which polls the LSB of the 8279
status register on the SDK-86 board until it finds
a key pressed, then reads the keypressed code from
the FIFO RAM to AL and returns.

22. Why must the backplane and segment-line signals
be pulsed for LCD displays?

23, Draw a circuit you could attach to an 8255A port
B pin to drive a 1-A solenoid valve from a + 12-V
supply. You want a high on the port pin to turn on
the solenoid:

24. Why must reverse-biased diodes always be placed
across inductive devices when you are driving them
with a transistor?

25. a. Define the terms MOSFET and IGBT.
b. What isa major advantage of these devices over

bipolar Darlingtons when driving a high-power
load with a microcomputer port line?

DIGITAL INT[RF ACING	 287

OUTPUT
PORT

00

DI

02

03

04

INPUT

22??

•5V	 *5V

FIGURE 9-45 8 by 8 LED matrix circuitry for problem 18.

26. a. What are the major disadvantages of mechani-
cal relays?

b. How do solid-state relays solve these problems?

27. a. 1-low is electrical isolation between the control
input and the output circuitry achieved -In a
solid-state relay?

b. Describe the function of the zero-crossing de-
tector used in better-quality solid-state relays.

C. Why is a snubber circuit required across the
triac of a solid-state relay when you are driving
inductive loads?

28. Write the algorithm and the program for an 8086
procedure to drive the stepper motor shown in
Figure 9-39. Assume the desired direction of rota-
tion is passed to the procedure in AL (AL = 1 is
clockwise. AL = 0 is counterclockwise) and the
number of steps is passed to the procedure in CX.
Also assume full-step mode, as shown in Figure
9-39b. Don't forget to delay 20 ms between step
commands!

29. a. Why is Gray code, rather than straight binary

code, used on many absolute-position shaft
encoders?

b. If a Gray-code wheel has six tracks and each
track represents I binarybit. what is its angular
resolution?

30. a. Look at the encoder disk on the Rhino arm in
Figure 9-42. Do the waveforms in Figure 9-43
represent clockwise or counterclockwise rota-
tion of the motor shaft as seen from the gear
end of the motor, which is what you care about?

b. Assume the A signal shown in Figure 9-43 Is
connected to bit DO and the B signal is con-
nected to bit DI of port FFF8H. Write a proce-
dure which determines the direction of rotation
and passes a I back in AL for clockwise rotation
and a 0 back In AL for counterclockwise
rotation.

c. DC motors, such as those on the Rhino arms.
are rotated clockwise by passing a current
through them in one direction and rotated
counterclockwise by passing a current through
them in the opposite direction. Assume you

288	 CHAPTER NiNE

have a motor controller that responds to a 2-
bit control word as follows:

00 = hold	 01 = rotate clockwise
11 = hold	 10 rotate counterclockwise

• Write the algorithm and program for a
procedure to rotate a motor. The number of
holes is passed to the procedure in CX: the
direction of rotation is determined by the
value in AL. AL = 1 is clockwise; AL = 0 is
counterclockwise.

DIGITAL INTERFACING	 289

,.;	 -:.:
1i

Analog Interlacing and
Industrial Control

In order to control the machines in our electronics
factory, medical instruments, or automobiles with mi-
crocomputers. we need to determine the values of vari-
ables such as pressure, temperature, and flow. There
are usually several steps in getting electrical signals
which represent the values of these variables and con-
verting the electrical signals to digital forms the micro-
computer can work with.

The first step involves a sensor, which converts the
physical pressure. temperature. or other variable to a
proportional voltage or current. The electrical signals
from most sensors are quite small, so they must next
be amplified and perhaps filtered. ThIs Is usually done
with some type of operational-amplifier (op-amp) circuit.
The final step is to convert the signal to digital form
with an analog-to.digital (A/D) converter.

In this chapter we review some op-amp circuits com-
monly used in these steps, show the interface circuitry
for some common sensors, and discuss the operatIon
and interfacing of D/A converters. We also discuss the
operation and Interfacing of A/D converters and show
how all of these pieces are put together in a microcomput-
er-based scale and a microcomputer based machine-
control system. As part of these examples, we discuss
the tools and techniques used to develop microcomputer.
based products. Finally, we discuss how an A/D con-
verter, a microcomputer, and a D/A converter can be
used to produce a digital filter.

OBJECTIVES
At the conclusion of this chapter, you should be able to:

I. Recognize several common op-amp circuits, de-
scribe their operation, and predict the voltages at
key points in each.

2. Describe the operation and interfacing of several
common sensors used to measure temperature.
pressure, flow, etc.

3. Describe the operation of a D/A converter and define
D/A data-sheet parameters. such as resolution.
settling time, accuracy, and linearity.

4. Draw ctrcuiis showing how to interface D/A convert-
ers with any number of bits to a microcomputer.

5. Describe briefly the operation of flash. successive-
approximation, and ramp A/D converters.

6. Draw circuits showing how A/D converters of vari-
ous types can be interfaced to a microcomputer.

7. Write programs to control A/D and D/A converters.

8. Describe how feedback is used to control variables
such as pressure. temperature. flow, motor speed.
etc.

9. Describe the operation of a 'time-slice" factory-
control system.

10. Describe the tools arid techniques currently used
to develop a microcomputer-based product.

11. Draw a block diagram of a digital filter and briefly
describe its basic operation.

REVIEW OF OPERATICNAL-AMPLIFIER
CHARACTERISTICS AND CIRCUITS

Basic Operational-Amplifier Characteristics

Figure 101a i-':. e schematic symt-'ol Icr a' op
amp. Herc are the important points for you to remember
about the basic op amp. First, the pins labeled +V
and - V represent the power-supply connections. The
voltages applied to these pins will usually be 1- 15 V and
- ISV. or + 12 V arid - 12 V. The op amp also has two
signal inputs. The Input labeled with a - sign is called
the inverting input, and the input labeled with a + sign
is called the noninverting input. The + and - on
these inputs have nothing to do with the power supply
voltages. These signs indicate the phase relationship
between a signal applied to that input and the result
that signal produces on the output. If, for example, the
noninverting input is made more positive than the
inverting input, the voltage on the output will move in
a positive direction. In other words, if a signal Is applied
to the noninverting input. the output signal will be in
phase with the input signal. If the Inverting input is
made more positive than the noninverting input, the
output signal will be inverted, or 180 out of phase with
the input signal.

The ratio of the voltage out from an amplifier circuit
to the input voltage is called voltage gain. A. In symbols,

290

INSTRUMENTATION AMP

COMMON OP AMP

A 0 > 1OO.IO

COMPARATOR

OIJTPUT.+v-tV
VI,. >__f.4,,IFV,,. >

-	 OUTPUT-V*IV
F '/,,. <V,.,.,.

COMPARATOR WITH HYSTERESIS

OUTPUT. +V -1 V
IF	 <V•,,

*	 OUTPUT-V+1V

- V x

IFV,>V,	
N,

V,,1,

NON INVERTING AMP

V1... >-t	 \I,. A

vrrl (R2 A..

L______4 i, > , MEG n

IN PHASE

Id)

(b)

INVERTING AMP

N)

Ni	 +V
%'.	 - -

Z,,. • Al

0=180'

ADDER (MIXER)

	

RI	 RI
VI	

OII

	

A?	 +V

	R1lIA2l)R	 -V	
• -

(I)
DIFFERENTIAL AMP

V..
RI

	

Ri	 V-(V-v,t

Rt=R2

	

H	 V	 R3- RI

('I

INTEGRATOR (RAMP GENERATOR)

C

V_>_	
* -

v
	L..JJ..R2 Hi

v0,

(/)

2ND ORDER LOW PASS FILTER

V1R3+:Vv:

1.00
Ci - 2C2

	

RI a?	 _______
A3..lK2

1k)

Va 1* N3, R2'%j NI'/	 N3 /'Hj

A)

DI F FERENTIATOR

RI

,. >—I	

-v	 M.. 1J-1JR2 '.Rl

VO.,

('I

2ND ORDER HIGH PASS FILTER

CIA3*V

H?
-1.00

C1C2	 -V
R2-2RI	 I
R3 I Kil

I/I

FIGURE 10-1 Overview of commonly used op-amdrcuits. (a) Common op
amp. (b) Comparator. Cc) Comparator with hysteresis. Cd) Noninverting amp.
Ce) Inverting amp. (I) Adder (mixer). (g) Differential amp. (h) Instrumentation
amp. (I) Integrator (ramp generator). C)) Differentiator. (k) Second-order low-
pass filter. (I) Second-order high-pass fitter.

- 39
ANAI.00 INTERFACING AND INDUSTRIAL CN1 Rot	 291

= V/V1N . The Av for an op amp is typically 100.000
or more. (The number is variable with temperature and
from device to device.) Another useful way of saying this
is that an -OP amp amplifIes the difference in voltage
between these two inputs by 100.000 or more. Now let's
see how much the output changes for a given input
signal, and see how an op amp Is used as a comparator.

Op-Amp Circuits and Applications

OP AMPS AS COMPARATORS

We said previously that an op amp amplifies the differ-
ence in voltage between its inputs by 100.000 or more.
Suppose that you power an op amp wIth +15 V and
-15 V. tie the inverting input of the op amp to ground.
and apply a signal of +0.01 V dc to the noninverting
input. The op amp will attempt to ampli1r this signal by
100,000 and produce the result on its output. An input
signal of 0.01 V times a gain of 100,000 predicts an
output voltage of 100 V. The maximum positive voltage
the op-amp output can go to, however, is a volt or two
less than the positIve supply voltage, so this is as far as
it goes. A common way of expressing this is to say the
op-amp output "goes into saturation" at about + 13 V.

Now suppose that you apply . a signal of -0.01 V to
the noninverting input. The output will now try to go
to - 100 V as fast as it can. The output, however, goes
into saturation at about - 13 V. so it stops there.

In this circut the op amp effectively compares the
input voltage with the voltage on the inverting input
and, gives a high or low output. depending on the result
of the comparison. If the input is more than a few
rnicrovolts above the reference voltage on the inverting
input, the output will be high (+ 13 V). lithe input
voltage is a few microvoIt more negative than the
reference voltage, the output will be low H 13 'IL An
op amp used in this way is called a comparator. Figure
10-lb shows how a comparator is usually labeled. The
reference voltage applied to the inverting input does not
have to be ground (0 VI. An input voltage can be
compared to any voltage within the input range specified
for the particular op amp.

As you will see throughout this chapter, comparators
have many applications. We might, for example, connect
a comparator to a temperature sensor on the boiler
in our electron4m, factory. When the voltage from the
temperature sensor goes above the voltage on the refer-
ence input of the comparator, the output of the compara-
tor will change state and send an interrupt signal to
the microprocessor controlling the boiler. Commonly
available comparators such as the LM3 19 have TFL-
compatible outputs which can be connected directly to
microcomputer ports or interrupt inputs.

Figure 10- Ic shows another commonly used compara-
tor circuit. Note in this circuit that the reference signal
is applied to the noninverting input, and the input
voltage Is applied to the inverting input. This Connection
simply inverts the output state from those in the previ-
ous circuit. Note also in Figure 10-Ic the positive-
feedback resistors from the output to the noninverting
input. This feedback gives the comparator a characteris-
tic called hysteresis. Hysteresis means that the output

voltage changes at a different input voltage when the
input is gntng in the positive direction than it does
when the input voltage is going in the negative direction.
If you have a thermostatically controlled furnace in your
house, you have seen hysteresis in action. The furnace,
for example. may turn on when the room temperature
drops to 65°F and then not turn off until the temperature
reaches 68° F. Hysteresis Is the difference between the
two temperatures. Without this hysteresis. the furnace
would be turning on and off rapidly lithe room tempera-
ture were near 68°F. Another situation where hysteresis
saves the day is the case where you have a slowly
changing signal with noise on it. Hysteresis prevents the
noise from Causing the comparator output to oscillate as
the input signal gets close to the reference voltage.

To determine the amount of hysteresis In a circuit
such as that in Figure I0-lc. assume V = 0 V and

= 13 V.A simple voltage-divider calculation will tell
you that the noninverting input is at about 13 mV. The
voltage on the inverting input of the amplifier wifi have
to go more positive than this before the comparator will
changestates. Likewise. if you assume V is -13 V.
the noninverting input will be at about - 13 mV. so the
voltage on the Inverting input of the amplifier will have
to go below this to change the state of the output. The
hysteresis of this comparator is 26 mV.

NONINVERTING AMPLIFIER OP-AMP CIRCUIT

When operating in open-loop mode (no feedback to the
Inverting input), an op amp has a very high, but
unpredictable, gain. This is acceptable for use as a
comparator, but not for use as a predictable amplifier.
Figure 10-Id shows one way negative feedback is added
to an o amp to produce an amplifier with stable,
predi'tahle gain. First of all, notice that the input signal
in this circuit is applied to the noninverting input, so
the output will be in phase with the input. Second. note
that a fraction of the output signal is fed back to the
inverting Input. Now, here's hc.w this works.

To start. assume that V is 0 V. V is 0 V. and the
voltage on the inverting Input is 0. Now, suppose that
you apply a + 0.01-V dc signal to the noninverting input.
Since theO. 1-V difference between the two inputs will
be amplifIed by 100.000, the output will head toward
+ 100 V as fast as it can. However, as the output goes
positive, some of the output voltage will be fed back to
the inverting input through the resistor divider. This
feedback to the inverting Input will decrease the differ-
ence in voltage between the two inputs. To make a long
story short, the circuit quickly reaches a predictable
balance point where the voltage on the inverting input.
V, is very, very close to the voltage on the noninverting
input. V,5 . Fora 1 .0-Vdc output, this equilibrium voltage
difference might be about 10 V. If you assume that the
voltagcs on the two inputs arc equal. then predicting
the output voltage for a given input voltage is 'simply
a voltage-divider problem. V0 = V (Ri + R2VR1. if
R2 = 99kClandRI = lkfl. then V0 = V 5 x 100. For
a 0.01-V input signal, the output voltage will be 100 V.

The voltage gain of a circuit with feedback is called its
closed-loop gain. The closed-loop gain. for this cir-
cuit is equal to the simple resistor ratio, (Rl + R2VRI.

292	 CHAPTER TEN

To see another advantage of feeding some of the output
signal back to the inverting input, let's see what, happens
when the load connected to the outpu t of the op amp
changes and draws more current from the output. The
output voltage wilt temporarily drop because of the
increased load. Part of this voltage drop will he fed back
to the inverting input, increasing the difference in
voltage between the two inputs. The increased difference
will cause the op amp to drive its output harder to
correct for the increased load. The feedback then causes
the op amp to at least partially compensate for the
increased load on its output.

Feedback which causes an amplifier to oppose a
change on its output is called negative feedback, Be-
cause of the negative feedback, the op amp will work
day and night to keep its output 8tabiluzed and its two
inputs at nearly the same voltage! This is probably the
moat important point you need to know to analyze or
troubleshoot an Op-amp circuit with negative feedback.
Draw a box around this point In your mind so you don't
forget it,

The noninverting circuit we have Just discussed Is
used mostly as a buffer because it has a very high input'
impedance, Z,. This means that it will not, load dow-i,
a sensor or some other device you onnect to Its input.
If it uses a bipolar-transistor input op amp, the circuit
in Figure 10-Id will have an input impedance greater
than 100 Mfl. If a FET input op amp such as the
National LF356 is used, the input impedance will be
'about 1ot2 ft
INVERTING AMPLIFIER OP-AMP CIRCUIT
Figure lO-le shows a somewhat more versatile amplifier
circuit using negative feedback. Note that in this circuit.
the noninverting input is tied to ground with a resistor.
and the signal you want to amplify is applied to the
inverting Input through a resistor. Since the signal is
applied to the inverting input, the output signal will be
180° out of phase with the input signal. For this circuit,
resistor RI suppltes the negative feedback which keeps
the two inputs at nearly the same voltage. Since the
noninverting input is tied to ground, the op amp will
sink or source whatever current is needed to hold the
inverting input also at zero volts. Because the op amp
holds the inverting input at zero volts, this node is
referred to as a virtual ground.

The voltage gain of this circuit is also determined by
the ratio of two resistors. The A 1 for this circuit at low
frequencies is equal to -RL'Rl. You can derive this for
yourself by just thinking of the two resistors as a voltage
divider with V,5 at one end. 0 V in the middle, and V,
on the other end, If V 1,, Is positive, then V must be
negative because current cannot flow from positive to
ground to positive again. The minus sign in the gain
expression is another way of indicating that the output
is inverted from the input. The input impedance Z,, of
this circuit is approximately Ri because the amplifier
end of this resistor is held at 0 V by the op amp.

One additional characteristic of op-amp circuits that
we need to refresh in your mind before going on to other
op-amp circuits is gain-bandwidth product. As we
indicated previously, an op amp may have an open-loop

dc gain of 100.000 or store. At hIgher frequencies, the
gain decreases until, at some frequency, the open-loop
gain drops to 1. Figure 1 0-2a shows an open-loop voltage
gain versus frequency graph for a common op amp such
as a 741 The frequency at which the gain is 1 Is referred
to on data sheets as the unity-gain bandwidth or the
gain-bandwidth product. A common value for this is I
MHz. The bandwidth of an amplifier circuit with negative
feedback times the low-frequency closed-loop gain will
be equal to this value. For example. if an op amp with
a gain-bandwidth product of 1 MHz t used to build an
amplifier circuIt with a closed-loop gain of 100, the
bandwidth of the circuit, f. will be about I MHz/10Oor
10 k}1z. as shown in Figure I0-2b.

The point here is that the gain-bandwidth product of
the op amp limits the maximum frequency that an
amplifier circuit can amplify.

OP-AMP ADDER CIRCUIT
Figure 10-if shows a commonly used variation of the
inverting amplifier described in the previous section.
This circuit adds together or mixes two or more input
signals. Here's how it works.

Remember from the previous discisslou that in an
inverting circuit, the op amp holds the inverting i9put
at 0 V or virtual ground. The current through each ci
the input resistors will be the same as if it were connected

SLOPE • -6 dO/OCTAVE OR10.0001 dO/DECADE
z i3O00 E-

I-100

'OF-I
	 UNITY GAIN

I	 /rRE,ENCv

1 11111	 I

1	 10 100	 I	 10 100
HZ	 KHZ	 MHZ	 FREQUEI.4CY

fi

io	 -
100,000

OPEN LOOP

1,000-
0	 I	 SLOPE°

1	 "	 / -20 dR/DECADE
70.7 ']

lot-
it	 I	 I	 -	 I

	

I	 10 100	 1	 10 100

	

Hz	 KHZ	 MHZ
BANDWIDTH

it)

FIGURE 10-2 (a) Open-loop gain versus frequency
response of 741 op amp. (b) Gain versus frequency
response of 741 op-amp circuit with closed-loop gain of
100.

ANALOG INTERFACING AND INDUSTRIAL CONTROl. . 	 293

to ground. Input voltage V produces a current through
RI to this point, and input voltage V2 causes a current
through R2 to this point. The two currents add together
at the virtual ground. In this circuit the virtual ground
is often called the summing point. The op amp pulls the
sum of the two currents through resistor RI to hold the
inverting input at 0 V. The left end of Rf is at 0 V. so
the output voltage is the voltage across RI. This is equal
to the sum of the currents times the value of Rf. or
V/Rl + V2/R2 x RI. A circuit such as this is used to
'mix" audio signals and to sum blnary .weighted cur-
rents in a D/A converter. Although the Circuit in Figure
10-if shows only two inputs, an adder can have any
number of inputs.

SIMPLE DIFFERENTIAL-INPUT AMPLIFIER CIRCUIT

As we show later, many sensors have two output signal
lines with a dc voltage of several volts on each signal
line. The dc voltage present on both signal leads is
referred to as a common-mode voltage. The actual signal
you need to amplify from these sensors is a difference
in voltage of a few millivolts between the two signal lines.
If you try to use a standard inverting or noninverting
amplifier Circuit to do this, the large dc voltage will be
amplified along with the small difference voltage you
need to amplify. Figure 10-19 shows a simple circuit
which, for the most part, solves thi problem without
ising coupling capacitors to block the dc. The analysis

of this circuit is beyond the space we have here, but
basically the resistors on the noninverting input hold
this input at a voltage near the common-mode dc voltage.
The amplifier holds the inverting input at the same
voltage. If the resistors are matched carefully, the result
is that only the difference in voltage between V 2 and V1
will be amplified. The output signal will consist of only
the amplified difference in voltage between the input
signals. We say that the common-mode signal has been
rejected.

AN INSTRUMENTATION AMPLIFIER CIRCUIT

Figure l0-ih shows an op .amp circuit used in applica-
tions that need a greater rejection of the common-mode
signal than is provided by the simple differential circuit
in Figure 10 . 1g. The first two op amps in this circuit
buffer the differential signals and give some amplifica-
tion. The output op amp removes the common-mode
voltage and provides further amplification. Another way
of describing the function of the output op amp is to
say that it converts the signal from a differential signal to
a single-ended signal. Instrumentation amplifier Circuits
such as this are available in single packages.

AN OP-AMP INTEGRATOR CIRCUIT

Figure 10-li shows art op-amp circuit that can be used
to produce linear voltage ramps. A dc voltage applied to
the input of this circuit will cause a constant Current of
V5/R ito flow into the virtual-ground point. This current
flows onto one plate of the capacitor. In ordet to hold
the inverting input at ground, the op-amp output must
pull the same current from the other plate of the capaci-
tor. The capacitor then is getting charged by the

constant current V,,,/R1. Basic physics tells you that the
voltage across a capacitor being charged by a constant
current is a linear ramp. Note that because of the
inverting amplifier connection, a positive input voltage
will cause the output to ramp negative. Also note that
some provision must be made to prevent the amplifier
output from ramping into saturation.

The circuit is called an Integrator because it produces
an output voltage proportional to the integral, or "sum."
of the current produced by an input voltage over a period
of time. The waveforms in Figure 10-li show the circuit
response for a pulse-input signal.

AN OP-AMP DIFFERENTIATOR CIRCUIT

Figure 10-li shows an op-amp circuit which produces
an output signal proportional to the rate of change of
the input signal. With the input voltage to this circuit
at 0 or some other steady dc voltage, the output will be
at 0. If a new voltage is applied to the input, the voltage
across the capacitor cannot change instantly, so the
inverting input will be pulled away from 0 V. This will
cause the op amp to drive its output in a direction to
charge the capacitor and pull the Inverting input back
to zero. The waveforms in Figure 10-1,1 show the circuit
response for a pulse-input signal. The time required for
the output to return to zero is determined by the time
constant of RI and C.

OP-AMP ACTIVE FILTERS

In many control applications, we need to filter Out
unwanted low-frequency or high-frequency noise from
the signals read in from sensors. This could be done
with simple RC filters, but active filters using op amps
give much better control over filter characteristics. There
are many different filter configurations using op amps.
The main points we want to refresh here are the mean-
ings of the terms low-pass filter, high-pass filter, and
bandpass filter and how you identify the type when you
find one in a circuit you are analyzing.

A low-pass filter amplifies or passes through low
frequencies, but at some frequency determined by circuit
values, the output of the filter starts to decrease. The
frequency at which the output is down to 0.707 of the
low-frequency value is called the critical frequency or
breakpoint. Figure iO-3a shows a graph of gain versus
frequency for a low-pass filter with the critical frequency.
Ic- labeled. Note that above the critical frequency the
gain drops off rapidly. For a first-order filter such as a
single R and C, the gain decreases by a factor of 10 for
each increase of 10 times infrequency (-20 dB/decade).
For a second-order filter, the gain decreases by a factor
of 100 for each ficrease of 10 times in frequency.

Figure 10-1k shows a common op-amp circuit for a
second-order low-pass filter. The way you recognize this
as a low-pass filter is to look for a dc path from the input
to the noninverting input of the amplifier. If the dc path
is present. as it is in Figure 10-1k. you know that the
amplifier can amplify dc and low frequencies. Therefore.
it is a low-pass filter with a response such as that shown
in Figure I0-3a.

For contrast, look at the circuit for the second-order
high-pass filter in Figure 10-1k. Note that in this circuit,

294	 CHAPTER TEN

1000

10,0001—
OP AMPN OPEN LOOP

100

10
0

0.1 ORDER
LOW PASS

.01 F I LT ER

.0001	 I
1 10 100 1 10 100 1

HZ	 KHZ	 MHZ

ic

(a)

100.000

10.000
OP AMP

1,000 LOOP

100

10
0

0.1-

.01	 /"1-..2NDORDER
/	 I HIGHPASSFILTER

.001-	 I

000•	 I	 I
1 10 100 I 10 100 1

HZ	 KHZ	 MHZ

fc

(b)

FIGURE 10-3 Cain versus frequency response for
second-order low-pass and high-pass filters. (a) Low-
pass. (b) High-pass.

the dc component of an input signal cannot reach the
noninverting input, because of the two capacitors In
series with that input. Therefore, this circuit will not
amplify dc and low-frequency signals. Figure 1O-3b
shows the graph of gain versus frequency for a high-
pass filter such as this. Note that the gain-bandwidth
product of the op amp limits the high-frequency re-
sponse of the circuit.

For the iow-pass circuit in Figure 10-1k, the gain for
the flat part of the response curve is 1. or unity, because
the output is fed back directly to the inverting input. At
the critical frequency, f,. the gain will be 0.707. and
above this frequency the gain will drop off. The critical
frequency for the cIrcuit is determined by the equation
next to the circuit. The equation assumes that RI and
R2 are equal and that the value of Cl is twice the value
of C2. R3 is simply a damping resistor. The positive
feedback supplied by C I is the reason the gain is only
down to 0.707 at the critical frequency, rather than

down to 0.5 as it would be if we cascaded two simple
RC circuits.

For the high-pass filter, the gain for the flat section of
the response curve is also 1. Assuming that the two
capacitors are equal and the value of R2 is twice the
value of Ri. the critical frequency is determined by the
formula shown next to Figure 10-lI. Again. R3 Is for
damping.

A low-pass filter can be put in series with a high-pass
ifiter to produce a bandpass filter which lets through a
desired range of frequencies. There are also many differ-
ent single-amplifier circuits which will pass or reject a
band of frequencies.

Now that we have refreshed your memory of basic op-
amp Circuits, we will next discuss some of the different
types of sensors you can use to produce electrical signals
proportional to the values of temperatures. pressures.
position, etc.

SENSORS AND TRANSDUCERS

It would take a book many times the size of this one to
describe the operation and applications of all the differ-
ent types of available sensors and transducers. What we
want to do here is introduce you to a few of these nd
show how they can be used to get data for microcomput-
er-based machines in, for example, our electronics
factory.

Light Sensors

One of the simplest light sensors is a light-dependent
resiStor such as the Clairex CL905 shown in Figure
lO-4a. A glass window allows light to fall on a zigzag

(a)

100 K	

__J_______
(At LAY

P HO TO A E SISTO A

(b)

FIGURE 10-4 (a) Cadmium sulfide photocell. (Clawex
E'ectronics) (b) Light-controller relay Circuit using a
photocell.

ANALOG INTERFACING AND INDUSTRIAL CONTROL 	 295

patteiri of cadniiu&u ulfid or cadmium sclenidc whose
resistance depends on the amount of light present. The
resistance of the CL905 varies from about 15 MIl when
in the dark to about 15 kfl when In a bright light.
Photoresistors such as this do not have a very fast
response time and are not stable with temperature, but
they are Inexpensive, durabie. and sensitive. For these
reasons, they are usually used in applications where the
light measurement need not be precise. The devices
placed on top of streetlights to turn them on when
It gets dark, for example, contain a photoresistor. a
transistor driver, and a mechanical relay, as shown in
Figure 10-4b. As it gets dark, the resistance of the
photoresistor goes up. This Increases the voltage on the
base of the transistor until, at some point, it turns on.
This turns on the ti-ansistor driving the relay, which In
turn switches on the lamp.

Another device used to sense the amount of light
present is a photodiode. If light is allowed to fall on the
junction of a specially constructed silicon diode, the
reverse leakage current of the diode increases linearly
as the amount of light falling on it Increases. A circuit
such as that shown In Figure 10-5 can be used to convert
this small leakage current to a proportional voltage. Note
that in this circuit a negative reference voltage is applied
to the noninvertlng input of the amplifier. The op amp
will then poduce this same voltage on its inverting
input, reverse-biasing the photodiode. The op amp will
pull the photodiode leakage Current through Rf to pro-
duce a proportional voltage on the output of the ampli-
fier. For a typical photodiode such as the HP 5082-4203
shown, the reverse leakage current varies from near 0
pA to about 100 pA, so with the l00-kfl Rf. an Output
voltage of about 0 to 10 V will be produced. The circuit
will work without any reverse bias on the diode, but
with the reverse bias, the diode responds faster to
changes In light. An LM356 FET input amplifier is used
here because it does not require an Input bias current.

A photodiode circuit such as this might be used to
determine the amount of smoke being emitted from a
smokestack, To do this, a gallium arsenide infrared
LED is put on one side of the smokestack, and the
photodetector cireit is put on the other. Since smoke
absorbs light, the aount of light arriving at the photo-
detector is a measurç of the amount of smoke present.
An infrared LED is uskd here because the photodiode is
most sensitive to Iigl wavelengths in the infrared
region.

Still another useful light-sensitive device is a solar

RI	 100 t(il

PHOTODIODE
HP5082-4203	

2V12v

FIGURE 10-5 Photodiode circuit lo measure light
intensity.

cell. Common solar cells are simply large, viy havlIy
doped silicon PN Junctions. Light shining on the solar
cell causes a reverse current to flow, just as In the
photodiode. Because of the large area and the hea,'y
doping in the solar cell, however, the current produceu
is milliamperes rather than microamperes. The cell
functions as a light-powered battery. Solar Cells can be
connected in a series-parallel array to produce a solar
power supply.

Light meters in cameras, photographic enlargers, and
our printed-circuit-board-making machine use solar
cells. The current from the solar cell is a linear function
of the amount of light railing on the cell. A circuIt such
as the one In Figure 10-5 can be'used to convert the
output cur-rent to a proportional voltage. Because of the
larger output Current, the value of R1 is decreased to a
much smaller value, depending on the output current
of the cell. The noninvertlng Input of the amplifier is
connected to ground because reverse biasing iS not
needed with solar cells. The frequency response to light
(spectral response) of solar cells has been tailored to
match the output of the sun. Therefore, they are ideal
in photographic applications where we want a signal
proportional to the total light from the sun.

Temperature Sensors

Again, there are many types of temperature sensors.
The four types we discuss in some detail here are
semicotiductor devices, thermocouples, RTDs, and
thermistors.

SEMICONDUCTOR TEMPERATURE SENSORS

The two main types of semiconductor temperature sen-
sors are temperature-sensitive voltage sources and tem-
perature-sensitive current sources. An example of the
first type Is the National LM35, which we show the
circuit connections for in FIgure t0-6a. •The voltage
output from this circuit increases by 10 mY for each
degree Celsius that its temperature is increased. If the
output is connected to a negative reference voltage. V5.
as shown, the sensor will give a meaningful output for
a temperature range of —55 to + 150° C. The output Is
adjusted to 0 V for 0° C. The output voltage can be
amplified to give the voltage range you need for a
particular application. In a later section of this chapter.
we show another circuit using the LM35 temperature
sensor. The accuracy of this device Is about 1°C.

Another common semiconductor temperature sensor
Is a temperature-dependent current source, such as the
Analog Devices AD590. The ADS9O produces a current
of I pAJ°K. Figure I0-6b shows a circuit which converts
this current to a proportional voltage. In this Circuit
th'e current from the sensor. I. is passed through an
approximately I -ku resistor to ground. This produces a
voltage which changes by ImVPK. The AD580 in the
circuit is a precision voltage reference used to produce
a referericevoltageof 273.2 mV With thisvoItageapplied
to the inverting input of the amplifier, the amplifier
output will be at zero volts for 0° C. The advantage of a
current-source sensor is that voltage drops in long

296	 CHAPTER T[N

P5P1
2000
TRIM

	

I'I	
R3

	

I	 1KO	 RG

4-X) V

r±1
Lt

our +1500 ItSV AT 1500C
+250 oW AT 250C
—550 roV AT —550C

v
R-

vs

MEASURED TEMP
OTO 10OC
	

Ir

REMOTE
TEMPERATURE-

TO-CURRENT
TRANSDUCER,

1 KO 01%1 '.A/K
LOW TCR

A0590 IC IS	 METERING
AVAILABLE IN	 RESISTOR,

PROBE AS AC2626J	 lroVlpA lrnV/K

OFFSET
REFERENCE

AD58OLQ	
P215K

R2	 TRIM 1000C
9.09 K	 4.Ay%Aq_1

INSTRUMENTATION
AMPLIFIER,
GAIN OF 10.

0.00 V TO 1.00 FS
ID ntV/0C

I)	 (b)

FIGURE 10-6 Semiconductor temperature-sensor circuits. (a) LM35
temperature-dependent voltage source. (b) AD590 temperature-dependent
current source. (Analog Devices Incorporated)	 -

connecting wires do not have any effect on the output
value. If the gain and offset are carefully adjusted, the
accuracy of the circuit in Figure l0-6b is ± 10 C using
an AD59OK part.

THERMOCOUPLES

Whenever two different metals are put in contact, a small
voltage is produced between them. The voltage developed
depends on the type of metals used and the temperature.
Depending on the metals, the developed voltage in-
creases between 7 and 75 p.V for each degree Celsius
increase in temperature. Different combinations of met-
als are useful for measuring different temperature
ranges. A thermocouple junction made of iron and
constantan, commonly called a type J thermocouple.
has a useful temperature range of about - 184 to + 7600
C. A junction of platinum and an alloy of platinum and
13 percent rhodium has a useful range of 0 to about
16000 C. Thermocouples can be made small, rugged,
and stable; however, they have three major problems
which must be overcome.

The first of these is the fact that the output is very
small and must be amplified a great deal to bring it up
into range where it can, for example, drive an A/D
converter.

Second. as shown in Figure 10-7. a reference junction
made of the same metals must be connected in series
with thejunction being used to make the measurement,
Note that the reference junction is connected in the
reverse direction from the measuring junction. This is
done so that the output connecting wires are both
constantan. The thermocouples formed by connecting
these wires to the copper wires going to the amplifier
will then cancel out. T.he input voltage to the amplifier
will be the difference between the voltages across the
two thermocouples. II we simply amplify this voltage.
however, there is a problem if the temperature of both

thermocouples is changing. The problem is that it is
Impossible to tell which thermocouple caused a change
in output voltage. One cure for this is to put the reference
junction in an ice bath or a small oven to hold it at a
constant temperature. This solution is us'ually inconve-
nient, so instead a circuit such as that in Figure 10-7
is used to compensate electronically for changes in the
temperature of the reference junction.

As we discussed In a previous section, the AD590
shown here produces a current proportional to its
temperature. The AD590 Is attached to the reference
thermocouple so that they are both at the same tempera-
ture. The current frorp the AD590, when passed through
the resistor network, produces a voltage which compen-
sates for changes in the reference thermocouple with
temperature .. The signal to the amplifier then is proper-

7.5V

REPEAEE,CE	 ,_1!10
JUNCTION	 I
15C < T4<35'C,,

OUTPUT
AMPLIFIER

JUNCTION
MEASURING

ii___
523flI25V

I.+P -25V I	 866Ki)

	

1TE j 50M1i	 OVT
I	 I VALUE I
I	 I 52311	 I
I	 I 4120 I

	

£ I 61412 I	 NOMiNAL
T	 402	 I	 VALUE

I S.	 I 5760	 91350

FIGURE 10-7 Circuit showing amplification and cold-
function compensation for thermocouple. (Analog
Devices Incorporated)

ANALOG INTERFACING AND INDUSTRIAL CONTROL	 297

25 K	 -625 V
*15 V

1K
REF.

SPAN

	

500	 *15V

	

...'	 2200	 -

A2

	

4.7 KO	 1.8 V
FOR 0 TO
266° C

-1.8 V

tional only to changes in the sensor thermocouple.
Canceling out the effects of ambient temperature varia-
tions on the reference Junction is referred to as cold-
junction compensation. The table in Figure 10-7 shows
the values of R which will provide cold-junction compen-
sation for common types of thermocouples. An Instru-
mentation amplifier such as that In Figure lO-lh is
usually used for this application.

The third problem with thermocouples is that their
output voltages do not change linearly with temperature.
This can be corrected with analog circuitry which
changes the gain of an amplifier according to the value
of the signal However, when a thermocouple is used
with a microcomputer-based instrument, the correction
can be easily done using a lookup table in ROM. An
A/D Converter converts the voltage from the thermocou-
pie to a digital value. The digital value is then used as
a pointer to a ROM location which contains the correct
temperature for that reading.

RTDS AND THERMISTORS

Resistance temperature detectors (RTD5) and thermal
sensitive resistors (thermistois) are two other commonly
used types of temperature sensors. Both of these types
are essentially resistors which change value with a
change in temperature. RTDs consist of a wire or a thin
film of platinum or a nickel wire. The response of
RTDs is nonlinear, but they have excellent stability
and repeatability. Therefore, they are often used in
applications >vhere very precise temperature measure-
ment Is needed. RTDs are useful for measures in the
range of —250 to +850° C. A circuit such as that In
Figure 10-8 can be used to convert the change in
resistance of the RTD to a proportional voltage. 0p amp
Al in this circuit produces a precise reference voltage
of —6.25 V. This voltage produces a precise current at
the inverting input of A2. °p amp A2 pulls this current
through the RTD to produce a voltage proportional to

the resistance of the RTD. The resistance of an RTD
increases with an increase in temperature.

Thermistors consist of semiconductor material whose
resistance decreases nonlinearly with temperatjre. De-
vices with 25° C resistance of tens of ohms to millions
of ohms are available for different applications. Thermis-
tors are relatively inexpensive, have very fast response
times, and are useful in applications where precise
measurement is not required. A circuit similar to that
in Figure 10-8 can be used to produce a voltage propor-
tional to the resistance of the thermistor.

Force and Pressure Transducers

To convert force or pressure (force/area) to a proportional
electrical signal, the most common methods use strain
gages or linear variable differential transformers
(LVDTs). Both of these methods Involve moving some-
thing. This why we refer to them as transducers rather
than as sensors. Heres how strain gages work.

STRAIN GAGES AND LOAD CELLS

A strain gage Is a small resistor whose value changes
when its length is changed. It may be made of thin wire.
thin foil, or semiconductor material. Figure 10-9a shows
a simple setup for measuring force or weight with Strain
gages. One end of a piece of spring steel is attached to
a fixed surface, A strain gage is glued on the top of the
flexible bar. The force or weight to be measured is
applied to the unattached end of the bar. As the applied
force bends the bar, the strain gage is stretched. Increas-
ing its resistance. Since the amount that the bar is bent
is directly proportional to the aDplted force, the change
in resistance will be proportional to the applied force, If
a current Is passed through the strain gage, then
the change in voltage across the strain gage will be
proportional to the applied force.

PLATINUM
RTD
loon to 2000

OFFSET

1.5 KiZ

FIGURE 10-8 100.11 RTD connected to perform temperature measurements in
the range 0°C to 266°C. (Analog Devices Incorporated)

298	 CHAPTER TEN

Unfortunately, the resistance of the strain-gage ele-
ment also changes with temperature. To compensate for
this problem, two strain-gage elements mounted at right
angles, as shown in Figure IO-9b. are often used. Both
of the elements will change resistance with temperature,
but only element A will change resistance appreciably
with anplied force. When these two elements are con-
nected in a balanced-bridge configuration, as shown in
Figure lO:9c. any change in the resistance of the ele-
ments due to temperature will have no effect on the
differential output of the bridge. However, as force is
applied, the resistance of the element under strain will
change and produce a small differential output voltage.
The full-scale differential output voltage is typically 2 or
3 mV for each volt of excitation voltage applied to the
top of the bridge. For example, if 10 V is applied to the
top of the bridge, the full-lead output voltage will be 20
or 30 mV. This small signal can be amplified with a
differential amplifier or an instrumentation amplifier.

Strain-gage bridges are used in many different forms
to measure many different types of force and pressure.
If the strain-gage bridge is connected to a bendable

STRAIN GAGES	 SPRING STEEL STRIP

'LJ

WEIGHT

Ia)

STRAIN GAGES	 SPRING STEEL STRIP

IbI

FIGURE 10-9 Strain gage' used to measure force.
(a) Side view. fbi lop view)expanded).
IC) Circuit connections.

beam structure, as shown in Figure iO-9a. the result
is called a food cell and Is used to measure weight.
FIgure 10-10 shows a 10-lb load cell that might be
used in a microprocessor-controUed dlicatessen scale or
postal scale, Larger versionscan be used to weigh barrels
being filled or even trLcks.

If a strain-gage bridge is mounted on a movable
diaphragm in a threaded housing, the output of the
bridge will be proportional to the pressure applied to the
diaphragm. If a vacuum is present on one side of the
diaphragm, then the value read out will be a measure
of the absolute pressure, If one side of the diaphragm is
open, then the output will be a measure of the pressure
relative to atmospheric pressure. If the two sides of the
diaphragm are connected to two different pressure
sources, then the output will be a measure of the differen-
tial pressure between the two sides. Figure 10-Il shows
a Sensyrn LXI 8O4GBZ pressure transducer which meas-
ures pressures in the range of 0 to 15 lb/in. A transducer
such as this might be used to measure blood pressure
In a microcomputer-based medical instrument.

LINEAR VARIABLE DIFFERENTIAL TRANSFORMERS

An LVDT is another type of transducer often used to
measure force, pressure, or position. Figure 10-12 shows
the basic structureof an LVE)T. It consists of three coils
of Wire wound on the same form and a movable Iron
core. An ac excitation signal of perhaps 20 kHz is applied
to the primaly. The secondaries are conneted such that
the voltage, induced in one opposes the voltage induced
in the other, If the core is centered, then the induced
voltages are equal arid cancel each other, so there is no
net output voltage. If the coil is moved off center,
coupling to one secondary coil will be stronger, so that
the coil will produce a greater output voltage. The result
will he a net output voltage. The phase relationship
oeL..... ui' output signal and the input signal is an
indication of which direction the core moved from the
center position. The amplitude of the output signal is
linearly proportional to how far the core moves from the
center position.

FIGURE 10-10 Photograph of load-cell transducer used
to measure weight. ITransducers Incorporated I

- 40 .	 ANALOG INTERFACING AND INDUSTRIAL CONTROL	 299

FIGURE 10-11 LX18O4GBL pressure
transducer. (Sensym, Incorporated)

• PRIMARY	 SECONDARIES

1+

AC	 -
EXCITATION

SIGNAL
20KHZ	

1
MOVEABLE IRON CORE

FIGURE 10-12 Linear variable differential transformer
(LVDT) structure.

An LVDT can be used directly in this form to measure
displacement or position. If you add'a spring so that a
force is required to move the core, then the voltage cu'
of the LVDT will be proportional to the force applied tc
the core. In this form, the LVDT can be used in a load
cell for an electronic scale. Likewise, if a spring is added
and the core of the LVDT is attached to a diaphragm in
a threaded housing. the output from the LVDT will be
proportional to the pressure exerted on the diaphragm.
We do not have the space here to show the ac-interface
circuitry required for an LVDT.

Flow Sensors

If we are going to control the flow rate of some material
in our electronics factory, we need o be able to measure
it. Depending on the material, flow rate, and tempera-
ture, we use different methods.

Qn. method used is to put a paddle whcel in the flow.
aown in Figure lO l3a. The rate at which the paddle
iei turns Is proportional to tJ' rate of flow of a liquid

or gas. An optical encoder can be attached to the shalt
of the paddle wheel to produce digital information as to
how fast the paddle wheel is turning.

A second common meth&d of measuring flow Is with
a differential pressure transducer, as shown in Figure
10-13b. A wire mesh or screen is put in the pipe to
create some resistance. Flow through this resistance
produces a difference in pressure between the two sides
of the screen. The pressure transducer gives an output
proportional to the difference in pressure between the
two sides of the resistance. In the same way that the
voltage across an electrical resistor is proportional to
the flow of current through the resistor, the output of
the pressure transducer is proportional to the flow of a
liquid or gas through the pipe.

Other Sensors

As we mentioned previously, the number of different
types of sensors Is very large. In addition to the types
we have discussed, there are sensors to measure pH,
concentration of various gases, thickness of materials,
presence of an object (proximity), and just about any-
thing else you might want to measure. Often you can
use commonly available transducers in creative ways
to solve a particular application problem you have.
Suppose, for example, that you need to accurately deter-
mine the level of a liquid in a large tank. To do this, you
could install a pressure transducer at the bottom of the
tank. The pressure in a liquid is proportional to the
hed of the liquid in the tank, so you can easily convert
a pressure reading to the desired liquid height. ']he
point here Is to check out what is available and then be
creative.

4- to 20-mA Current Loops

In the preceding discussions, we showed how op amps
can be used to convert output signals to voltages in a
range thai can be applied to the input of an AID

FLO" -

cat

OIFFELENTIAL
PRESSURE
TRAr' SDUCER

FLOW-.

RESISTANCE

0)

FIGURE 10-13 Flow sensors. (a) Paddle wheel,
b DI tferen hal pres,u re.

CHAPTE R Tt'J

P14	 Vi,,41

15 pF
v,

MSB A1O---"
A2o---

A3o—

A4

A5
110

A60—
A7

II?
LSB AO-

11151

MC1508L8I	
.A,//1
P15MC14O8L I

SERIES III

2)
(6)

131
MCi 741SG
OR EOUIV.

converter. In many industrial applications where the
sensor Is a long distance from the A/D converter, how-
ever, the signals from the sensors or transducers are
converted to currents instead of voltages. Sending a
signal as a current has the advantages that the signal
amplitude Is not affected by resistance, induced-voltage
noise, or voltage drops in a long connecting line. A
common range of currents used to represent analog
signals in industrial environments Is 4 to 20 mA. A
current of 4 mA represents a zero output, and a Current
of 20 mA represents the full-scale value. The reason the
current range is offset from zero is so that a current of
zero is left to represent an open circuit. At the receiving
end of the line, a resistor or a simple op-amp Circuit is
used to Convert the current to a proportional voltage
which can be applied to the input of the A/D converter.

0/A CONVERTER OPERATION,
INTERFACING, AND APPI.ICATIONS

In the previous sections of this chapter we have dis-
cussed how we use sensors to get electrical signals
proportional to pressure, temperature. etc. and how we
use op amps to amplify and filter these electrical signals.
The next logical step would be to show you how to use
an A/D converter to get these signals into digital form
that a microcomputer can work with. However, since
D/A converters are simpler and since several types of
A/D converters have D/As as part of their circuitry, we
will discuss DIAs first.

D/A Converter Operation and Specifications

OPERATION

order to pull this current through the feedback resistor,
the op amp must put a voltage of 0.05 mA x 10 ku or
0.5 Von its output. If you also close switch Dl. it will
send another 0.1 mA into the summing point. In order
to pull the sum of the currents through the feedback
resistor, the op amp has to output a voltage of 0.15
mA X 10 kfl or 1.5 V.

The point here is that the binary-weighted resistors
produce binary-weighted currents which are summed
by the op amp to produce a proportional output voltage.
The binary word applied to the switches produces a
proportional output voltage. Technically the output volt-
age is "digital" because it can only have certain fixed
values. Just as the display on a digital voltmeter can.
However, the output simulates an analog signal, so we
refer to it as analog. Switch D3 in Figure 10-14 repre-
sentS the most significant bit because closIng it produces
the largest current. Note that since V l,.EF is negative, the
output will go positive as switches are closed.

As you see here, the heart of a D/A converter is a
set of binary-weighted current sources which can be
switched on or off according to a binary word applied to
its inputs. Since these current sources are usually inside
an IC. we don't need to discuss the different ways the
binary-weighted currents can be produced. The op-amp
circuit in Figure 10-14 converts the sum of the currents
to a proportional voltage.

D/A CHARACTERISTICS AND SPECIFICATIONS

Figure 10-15 shows the circuit for an inexpensive IC
D/A converter with an op-amp circuit as a current-to-

V,,, 2.0 V dc
P14 P15 1.0kg
P0 5.0 kit

a
The purpose of a digital-to-analog converter is to convert
a binary word to a proportional current or voltage. To
see how this is done, let's look at the simple 4-input
adder circuit in Figure i014.

Since the noninverting input of the op amp is
grounded. the op amp will work day and night to hold
the inverting input also at 0 V. Remember that the
inverting input in this circuit is referred to as the
summing point. When one of the switches is closed, a
current will flow from 5 V (VREr) through that resistor to
the summing point. The op amp will pull the current on
through the feedback resistor to produce a proportional
output voltage. If you close switch DO. for example, a
current of 0.05 mA will flow into the summing point. In

lOkO

R1

1 k 0	 r--
v	 5 V	

5Ok06

25k0	 I	 I	 602	 R3

03	 °2kf	 L	 1., V

o—,AA	 -

FiGURE 10-14 Simple 4-bit DIA converter.

ThorIicI

	

v,,	 fA1A2	 +A4++M+A7^V0	 (A0) 1 2	 4	 8	 16 32	 64 128 256

ADJUST Vs,,, P14 OR P0 SO THAT V0 WITH ALL DIGITAL
INPUTS AT HIGH LEVEL IS EQUAL TO 9961 V

{ +	 +

f 255

	

-b y	-9961V

FIGURE 10-15 Molorola MC1408 S-bit D/A with current-
to-voltage converter.

ANALOG INTERFACING AND INDUSTRIAL CONTROL 	 301

voltage converter, We will use this Circuit for our discus-
sion of D/A characteristics.

The first characteristic of a D/A converter to considet
is resolution. This is determined by the number of bits
in the input binary word. A converter with S binary
inputs, such as the one in Figure 10-15, has 2 or 256
possible output levels, so its resolution is I part in 256.
As another example, a 12-bit converter has a resolution
of I part in 22 or 4096. Resolution is sometimes
expressed as a percentage. The resolution of an 8-bit
converter expressed as a percentage is 11/256) x 100
percent or about 0.39 percent.

The next D/A characteristic to determine is thefull-
scale output voltage. For the converter in Figure 10-15,
the current for all the switches is supplied by V,.,5r
through R14. The current output from pin 4 of the U/A
is pulled through R0 to produce the output voltage. The
formula for the output voltage is shown under the circuit
in Figure 10-15. In the equation the term Al, for
example, represents the condition of the switch for that
bit. If a switch is closed, allowing a Current to flow, put
a 1 in that bit. If a switch Is open, put a 0 in that bit.
As we also show in Figure 10-15, if all the switches are
closed, the output will be 10 V x (255/256) or 9.961 V.
Even though the output voltage can never actually get
to 10 V. this is referred to as a JO-V output converter,
The maximum output voltage of a converter will always
have a value I least significant bit less than the named
value. As another example of this, suppose that you
have a 12-bit, 10-V converter. The value of 1 LSB will
be (10 V)/4096 or 2.44 mV. The highest voltage out of
this converter when it is properly adjusted will then be
(10.0000 - 0.0024) V or 9.9976 V.

Several different binary codes, such as straight binary,
BCD. and offset binary, are commonly us&1 as inputs
to U/A converters, We will show examples of these codes
In a later discussion of A/D converters.

The accuracy specification for a U/A converter Is a
comparison between the actual output and the expected
output. It Is specified as a percentage of.the.fuII-scale
output voltage or current. If a converter has a full-scale
output of 10 V and ±0.2 percent accuracy, then the
maximum error for any output will be 0.002 x 10.00 V.
or 20 mV. Ideally the maximum error for a U/A converter
should be no more than ±1 the value of the LSB.

Another important specification for a U/A converter is
linearity. Linearity isa measure of how much the output
ramp deviates from.a straight line as the converter Is
stepped from no switches on to all switches on. Ideally,
the devtatlon of the output from a straight line as the
converter is stepped from no switches on to all switches
on. Ideally, the deviation of the output from a straight
line should be no greater than ±) the value of the
LSB to maintain overall accuracy. However, many U/A
converters are marketed which have linearity errors
greater than that. National Semiconductor, for example,
markets the DACIO2O. DACIO2I, DACIO22 series of
IO'bii-resoiution converters. The linearity specification
for the DAC 1020 is 0.05 percent, which is appropriate
for a 10-bit Converter. The DACIO2I has a linearity
specification of 0.10 percent. and the DAC 102.2 has a
specification of 0.20 percent. The c1uestion that may

occur to you at thIs point is. What good IS It to have a
10-bit converter if the linearity Is only equivalent to that
of an 8- orO bit converter2 The answer to this question
is that for many applications, the resolution given by a
10-bit converter is needed for small output signals.
but it doesn't matter if the output value is somewhat
nonlinear for large signals. The price you pay for a U/A
converter is proportional not only to its resolution, but
also to its linearity specification.

Still another U/A specification to look for is settling
time. When you change the binary word applied to the
input of a converter, the output will change to the
appropriate new value. The output, however, may over-
shoot the Correct value and 'ring" for a while before
finally settling down to the correct value. The tlme'the
output takes to get within ± LSB of the final value is
called settling time. As an example, the National
DACIO2O 10-bit converter has a typical settling time o
500 ns for a full-scale change on the output. This
specification is important because if a converter is
operated at too high a frequency, it may not have time
to settle to one value before It is switched to the next.

D/A Applications and Interfacing
to Microcomputers

U/A converters have many applications besides those
where theyare used with a microcomputer, In a compact-
disk audio player, for example. a 14- or 16-bit U/A
converter is used to convert the binary data read off the
disk by a laser to an analog audio signal. Most speech-
synthesizer ICs contain a U/A converter to convert stored
binary data for words into analog audio signals. Here.
however, we are primarily interested in the use of a
U/A converter with a microcomputer,

The inputs of the U/A circuit (Al through A8) in
Figure 10-15 can be connected directly to a microcom-
puter output port. As part of a program, you can produce
any desired voltage on the output of the U/A, Here are
some ideas as to what you might use this circuit for.

As a first example, suppose that you want to build a
microcomputer-controlled tester which determines the
effect of power supply voltage on the output voltage of
some integrated-circuit amplifiers. If you Connect the
output of the U/A converter to the reference input of a
programmable power supply or simply add the high-
current buffer circuit shown in Figure 10-16 to the
output of the U/A, you have a power supply which you
can vary under program control. To determine the
output voltage of the IC under test as you vary its supply
voltage, connect the input of an A/D converter to the IC
output, and connect the output of the A'U converter to
an input port of your microcomputer. You can then read
in the value of the output voltage on the IC,

Another application you might use a D/A and a power
buffer for is to vary the voltage supplied to a small
resistive heater under program control. Also, the speed
of small dc motOrs is proportional to the amount of
current passed through them, so you Could Connect a
small dc motor to the output of the power buffer and
control the speed of the motor with the value you output
to the D1A. Note that without feedback control, the speed

302	 CHAPTER TEN

D/A

I TO V
CONVERTER	 TIP11O

rV

RF

JUSTIFIED
RIGHT LEFT
DElI 0815

18-BIT
DATA BUS

OBO D84

DEVICE
UNDER

TEST

—'--1V0U.r I
I	 our

PORT	 A/D
D/A
CURRENT
OUTPUT

OAC12c€, OACl2OB, DAC12IO

	

-1D	 01—iD

	

-1 D 	 01-1D	 0—I

	

D	

oH o 	 aki

	

D 8-BIT al—ID	 01— IINPUT

	

DLATCH O 1 i D	at—'I
o

:HD

°H

	

o	 0	 o	 ai—..l,,ro

	

O	 a	 o	 °l-j CURRENT
SWITCHES

12-BIT
DAC

REGISTER

	

D	 a

	

D	 a

	

0	 0

LE

0
o 4-BIT

INPUT
o LATCH
0

FIGURE 10-16 High-power buffer for 0/A output.

of the motor will vaxy if the load changes. Later in the
chapter we show you how to add feedback control to
maintain constant motor speed under changing loads.

So far we have talked about using an 8-bit 0/A with
a microprocessor. Interfacing an 8-bit converter Involves
simply connecting the inputs of the converter to an
output port or, for some 0/As, simply connecting the
inputs to the buses as you would a port device. Now,
suppose that for some application you need 12 bits of
resolution, so YOU need to interface a 12-bit converter.
If you are working with a system which has an 8-bit
data bus, your first thought might be to connect the
lower 8 inputs of the 12-bit converter to one output port
and the upper four inputs to another port. You could
send the lower S bits with one write operation and the
upper 4 bits with another write operation. However, the
time between the two writes introduces a potential
problem in this approach.

Suppose, for example, that you want to change the
output of a 12-bit converter from 0000 1111 1111 to
0001 0000 0000. When you write the lower 8 bits, the
outputwfllgofrom0000 liii 1111 to000000000000.
When you write the upper 4 bits, the output will go back
up to the desired 0001 0000 0000. The point here is
that for the time between the two writes the output will
go to an unwanted value. In many systems this could
be disastrous. The cure for this problem Is to put latches
on the input lines. The latches can be loaded separately
and then strobed together to pass all 12 bits to the 0/A
converter at the same time.

Many currently available 0/A converters contain built-
in latches to make this easier. Figure lO-17a shows a
block diagram of the National DAC 1230- and DAC 1208-
type 12-bit Converters. Note the Internal latches and the
register. The DAC 1230 serIes of parts has the upper 4
input bits connected to the lower 4 bits so that the 12
bits can be written with two write operations from
an 8-bit port or data bus such as that of the 8088
microprocessor. The DAC 1208 series of parts has the
upper 4 data inputs available separately so they can be
connected directly to the bus in a system which has a
16-bit data bus, as shown in Figure l0-l7a. If, for
example. you want to connect a DAC 1208 converter to

Vcc °1 BYTE 1/

SIGNAL	
BYTE 2

FROM
ADDRESS
DECODER

SYSTEM WR2
STROBE	 -=.	 L

II

FULL-SCALE ADJUST

VoorOAC12. LF35
.

A DJ UST M E NT I

VorHI,, XRI=-2FORO<D.C4095

IbI

FIGURE 10-17 (a) National DAC12O8 12-bit 0/A input
block diagram showing internal latches. (b) Analog
Circuit connections.

an SDK-86 board, you can simply connect the DAC 1208
data inputs to the lower 12 data bus lines, connect the
CS input to an address decoder output, connect the
WR1 input to the system WR line and tie the WR2 and
XPER inputs to the ground. The BYTE 1/BYTE input is
tied high. You then write words to the converter just as
lilt were a 16-bi' port. The timing parameters for the
DAC 1208 are acceptable for an 8086 operating with a
clock frequency of 5 MHz or less. For higher 8086 clock
frequencies, you would have to add a one-shot or other
circuitry that inserts a WAIT state each time you write
to the 0/A. Here are a few notes about the analog
connections for these devices.

These 0/A converters require a precision voltage refer-
ence. The circuit in Figure l0-l7b uses a - 10.000-V

ANAI.00 INTERFACING AND INDUSTRIAL CONTROL 	 303

reference. The DIA converters have a current output. so
an op amp is used to convert the D/A output current to
a proportional voltage. A FET input amplifier is ts.d
here because the input bias current of a bipolar input
amp mtgh affect the accuracy of the output. The
DAC 1208 and DAC 1230 have built-In feedback resistors
which match the temperature characteristics of the
internal current-divider resistors, so all you have to add
externally is a 50-fl resistor for 'tweaking" purposes.
With a - 10.000-V reference as shown, the output
voltage will be equal to (the digital input word!
4096) >< I + 10.000 Vi. Note that the D/A has both a
digital ground and an analog ground. To avoid getting
digital noise In the analog portions cf the circuit, these
two should be connected together Only at the power
supply.

AID CONVERTER SPECIFICATIONS,
TYPES, AND INTERFACING

AID Specifications

The function of an AID converter is to produce a digital
word which represents the magnitude of some analog
voltage or current. The specifications for an A/D con-
verter are very similar to those for a D/A converter. The
resolution of an A/D converter refers to the number of
bits in the output binary word. An 8-bit converter, for
example, has a resolution of 1 part in 256. Accuracy and
linearity specifications have the same meanings for an
A/D converter as they do for a D/A converter. Another
important specification for an A/D converter is its conver-
sion time. This is simply the time it takes the converter
to produce a valid output binary code for an applied
input voltage. When we refer to a converter as high'
speed, we mean that it has a short conversion time.
There are many different ways to do an A/D conversion.
but we have spe here to review only three commonly
used methods, which represent a wide variety of conver-
sion times.

AID Converter Types

PARAI.LEL COMPAR,ATQR AID CONVERTER

Figure 10-18 shows a circuit for a 2-bit A/D converter
using parallel comparators. A voltage divider sets refer-
ence voltages on the inverting inputs of each of the
comparators. The voltage at the top of the divider chain
represents the full-scale value for the converter. The
voltage to be converted is applied to the noninverting
inputs of all the comparators in parallel. If the input
voltage on a comparator is greater than the reference
voltage on the inverting input, the output of the compa.
rator will go high. The outputs of the comparators then
give us a digital representation of the voltage level of the
input signal. With an input voltage of2.6 V. for example,
the outputs of comparators Al and A2 will be high.

The major advantage of a parallel. orflash. AID con-
verter is its speed of conversion, which is simply the
propagation delay time of the comparators. The output
code from the comparators Is not a standard binary

+4 V

Dl

BINARY CODE
OUTPUT

Do

FIGURE 10-18 Paraflel comparator A/D converter,

code, but it can be converted to any desired code with
some simple logic. The major disadvantage of a hash
A/D is the number of comparators needed to produce a
result with a reasonable amount of resolution. The 2-
bit converter in Figure 10-18 requires three compara-
tors. To produce a converter with N bits of resolution,
you need i2 5 - I I comparators. For an 8-bit conversion,
then, you need 255 comparators, and for a 10-bit Hash-
converter, you need 1023 comparators. Single-package
Hash converters are available from TRW for applications
in which the high speed is required, but they are
relatively expensive. Flash Converters which can do an
8-bit conversion in under 10 ns are currently available.

DUALSIOPE AID CONVERTERS

Figure lO-19a shows a functional block diagram of a
dual-slope AID converter. This type of converter is often
used as the heart of a digital voltmeter because it can
give a large number of bits 01' resolution at a low cost,
l-lere's how the converter ii. Figure 10-19 works.

To start, the control circu,tt-y rescts all the counters
to zero and connects the input of the integrator to the
input voltage to be converted. If you assume the input
voltage is positive, then this will cause the output of the
integrator to ramp negative, as shown In Figure lO-19b.
As soon as the output of the integrator goes a few
microvolts below ground. the comparator output will go
high. The comparator output being high enables the
AND gate and lets the I-MHz Jock Into the Counter
chain, After some fixed number of counts. typically
1000. the control circuitry switches the input of the
integrator to a negative reference voltage and resets all
the counters to zero, With a negative input voltage, the
integrator output will ramp positive, as shown in the
right-hand side of Figure 10-1 gb. When the integrator
output crosses 0 V. the comparalor output will drop low
and shut off the clock signal to the counters. The
number of Counts required for the integrator output to

304	 CHAPTER TiN

1-MFO CLOCK	 The main dIsadvantage of slope-type converters is

ANALOG	 INTEGRATOR
	 their slow speed. A 4k-digit unit may take 300 ms to do

v,,
ri COMPARATOR

	 a conversion.

10 kit

SWITCH
CONTROL

RESET I BINARYORBCOCOUNTERS

-. r'-i	 LATCHES
= -1 V

DECODER/DRIVERS

CONTROL	 _I	 L'	 I_I	 I_I
CIRCUITS	 i_I	 LI	 !_I	 LI

to
FIXED TIME
1000 COUNTS I t2

TIME

LAAGE V

SMALL V

V 1: X t2

V =	

}LOPEsJ._	 AC

- V11 e; X t2
AC	 AC

vo.ts	 t2=-- Xii

FIGURE 10-19 Dual-slope A/D conVerter.- (a) Circuit.
(b) Integrator output waveform.

get back to zero ts directly proportionai to the input
voltage. For the circuit shown in Figure 10-19a, an
input signal of +2 V. for example, produces a count of
2000. Because the resistor and the capacitor on the
integrator are used for both the input voltage integrate
and the reference integrate, small variations in their
value with temperature do not have any effect on the
accuracy of the conversion.

Complete iope-type AID converters are readily avail-
able In singI C packages. One example Is the Intersil
CL7 136, which contains all the circuitry for a 3k-digit

A/D converter and all'the Interface circuitry needed to
drive a 3)-digit LCD. Another example is the Intersil
1CL7135, which contains all the circuitry for a 4).diglt
A/D converter and has a multiplexed BCD output. Note
that, because of the usual use of this type of converter.
we often express its resolution in terms of a number of
digits. The full-scale reading for a 3 .digit converter is
1999, so the resolution corresponds to about I part in
2000. A two-chip set, the Intersil 1CL8068 and ICL7 104
16. contains all the circuitry for a slope-type 16-bit
binary output AID converter.

SUCCESSIVE-APPROXIMATION ND CONVERTERS

Figure 10-20. p. 306, shows a circuit for an 8-bit
successtve-approximatton converter which uses readily
available parts. The heart of this converter is a succes-
sive-approximation register (SARI such as the MC 14549,
which functions as follows.

On the fIrst clock pulse at the start of a conversion
cycle, the SAR outputs a high on its most-significant bit
to the MC 1408 D/A converter. The D/A converter and
the amplifier convert this to a voltage and apply it to one
input of a comparator. If this voltage is higher than the
input voltage on the other input of the comparator, the
comparator output will go low and tell the SAR to turn
off that bit because it is too large. If the voltage from the
D/A converter is less than the input voltage, then the
comparator output will be high, which tells the SAR to
keep that bit on. When the next clock pulse occurs, the
SAR will turn on the next most significant bit to the
1)/A converter, Based on the answer this produces from
the comparator, the SAR will keep or reset this bit. The
SAR proceeds In this way on down to the least significant
bit, adding each bit to the total in turn and using the
signal from the comparator to decide whether to keep
that bit in the result, Only nine clock pulses are needed
to do the actual conversion here. When the conversion
is complete, the binary result is on the parallel outputs
of the SAR, and the SAR sends out an end-of-conversion
(EOC) signal to indicate this. In the circuit in Figure
10-20, the EOC signal is used to strobe the binary
result into some latches, where it can be read by a
microcomputer. If the EOC signal is connected to the
start-conversion (SC) input as shown, then the converter
will do continuous conversions, Note in the circuit in
Figure 10-20 that the noninverting input of the op amp
on the 1408 D/A converter is connected to — 5 V instead
of to ground. This shifts the analog input range to —5
V to +5 V instead of 0 V to + 10 V so that sine waves
-and other ac signals can be input directly to the converter
to be digitized.

The National ADC 1280 isa single-chip 12-bit succes-
sive-approximation converter which does a conversion
in about 22 p.s. Datel and Analog Devices have several
12-bit converters with conversion times of about I p.s.

Several commonly available successive-approximation
A/D Converters have analog multipiexers on their inputs.
The National A11C0816. for example, has a 16-Input
multiplexer in front of the A/D converter. This allows
the one converter to digitize any one of 16 input signals.
The input channel to be digitized is determined by a 4-
bit address applied to the address inputs of the device.
An A/D converter with a multiplexer on Its inputs is
often called a data acquisition system, or DAS. Later in
this chapter we show an application of a DAS in a factory
Control system.

Before w go on to discuss ND interlacing, we need
to make a few comments about common A/D output
codes.

ANAI.OG INTERFACING ANI) INf)USTIIAL (1ONTOt 	 305

±5 V MA

CLOCK
INPUT

1060
+5V+15 V

?	 22k0'"

12I

1/2
181 1M319N

-15 V

10

+ 1EV

5OpF	 I +5V

OUTPUTMR SC

00	

(10)	 9) (16) 81	 SERIAL	

-5 VMC14549	 END OF CONVERSION
MS8IIIIIU	

1 DATA

14)

(SI 11I (B) I	 iOlt2l	

74LS374	

,,f
OUTPUTS

ITO,

MC 1408

3)	 114)1 (15))	 1)1
NC

	

OpF	 2.5k

	

.,1	 12113)1

	

-iSV	 -5V

	

+5V -iSV	 -
Vfiff F

FIGURE 10-20 Successive-apprOxmatiOfl NO converter circuit.

A/D OUTPUT CODES

For convenience indifferent applications, A/D converters
are available with several different, somewhat confusing.
output codes. The best way to make sense out of these
different codes is to see them all together with represen-
tative values, as shown in Figure 10-21. The values
shown here are for an 8-bit converter, but you can
extend them to any number of bits,

For an A/D converteE with only a positive input range
(urotpolar). a straight binary code or inverted binary
code is usually used. If the output of an A/D converter
is going to drive a display, then it is convenient to have
the output coded 1n BCD. For applications where the
input range of the converter has both a negative and a
positive range (bipolar), we usually use offset-binary
coding. As you can see in Figure 10-21, the values of
00000000 to 11111111 are simply shifted downward so
that 00000000 represents the most negative input value
and 10000000 represents an input value of zero. This
coding scheme has the advantage that the 2's comple-
ment representation can be produced by simply in-
verting the most significant bit. Some bipolar converters
output the digital value directly In 2's complement form.

Interfacing Different Types of A/D
Converters to Microcomputers

INTERFACING TO PARALIEI-COMPARATOR
k/D CONVERTERS

In any application where a parallel comparator converter
is used, the converter is most likelygoing to be producing
digital output values much faster than a microcomputer

306	 CHAPTER TEN

UNIPOLAR OI1.IABY CODES

10	 NVERTEO
COMPLEMENTARY INVERTEO COM PC 6 B 0 N I A B NVOLTS	 BINARY

VALUE FULL	 181)41	 BINARy	 BINARY BINARY
ICE)	 118)SCALE	 ICE)

+FS-1 LSB	 9.9609 1111 fl)
tOYS	 6.I) 10IXJO	 0111 1111
.SYS -1 LOB	 4.9609 0711 III)	 0900000
4) LSB	 0.039))00001	 TIll 17)0

	

ZERO	 0.0)390 0(030000	 TIlT Ill	 00O)0	 1111 1711

-1 LOB	 -0,039)	 000(10001	 1)11 1110
_'/, FS + I LOB -49609	 0(17 1111	 100000OS
-'SF0	 -5.0000)CO00	 0111 11)1
-FS,t LOB	 -99609	 j	 (Ill ill)

UNIPOLAR BINARY CODED DECIMAL CODES

COMPLEMENTARY INVERTED	 INVERTED
70	 BINARY BINARY	 BINARY COMPLEMENTARY

VOLTS	 COOED
COOED	 COOED	 BINARY CODEDVALUE PULL	 DECIMAL

DECIMAL	 OECIU,'IL	 DECIMAL
SCALE	 BCO) CBCD)	 IIBCOI)ICBCDI

4FS-. I LOB	 9,9	 10011001	 07100110
''SF5	 5,0	 OIOIOOCO	 70701111
+1 LSB	 -	 0.1	 0000)	 1111 1110

	

ZERO	 00	 00000009	 (111 III	 0000	 1111 1)11

-I ISS	 -01	 I1	 tIll 1110
-ISFS	 -5.0	 0l0l	 10101111
-FS +1 LOB	 --99	 1097 7001	 07100770

BIPOLAR BINAR y CODES

COMPLEMENTARY'
IOVOLI'S	 OFFSET	 TWOS

OFFSET

	

VALUE	 FULL SCALE	 BINARY	 COMPLEMENTBINARY lIdRANGE	 IDE) (COOl

+FS	 50000'
.1-S-I LOB	 49609	 III) 1111	 00000	 DIII Ill)
+1 CSB	 00391	 0)100091	 0(11 1110	 000OI

	

ZERO	 O3	 I0000XID	 OIl) 7)7

-T LOB	 -0039)	 011) 1111	 10005)09	 1111
-FS'T LSB	 -4,9609	 0I	 III 1110	 T0(0000I
-FE	 -5.0000	 CR0	 1171 TIlT	 1(030009

FIGURE 10-21 Common AID output codes.

could possibly read them In. Therefore, separate cir-
cuitry is used to bypass the microprocessor and load a
set of samples from the converter directly into a series of
memory locations. The microprocessor can later perform
the desired operation on the samples. Bypassing the
microprocessor In this way is called direct memory
access, or DMA. The basic principle of DMA is that an
external controller IC tells the microprocessor to float
its buses. When the microprocessor does this, the DMA
controller takes control of the buses and allows data
to be transferred directly from the A/D converter to
successive memory locations. We discuss DMA in detail
in the next chapter.

INTERFACING TO SIOPE-TYPE A/D CONVERTERS

Most of the commonly available slope-type Converters
were designed to drive 7-segment displays In. for exam-
ple, a digital voltmeter. Therefore, they usually output
data in a multiplexed BCD or 7-segment form. Figure
10-23 shows how you can connect the multiplexed BCD
outputs of an inexpensive 3-dig1t slope converter, the
MC 14433. to a microprocessor port. In the section of
the chapter where Figure 10-23 is located, we use thIs
converter as part of a microcomputer-based scale. The
BCD data is output from the converter on lines 90
through 93. A logic high is output on one of the digit
strobe lines. DSI through DS4. to indicate when the
BCD code for the corresponding digit is on the Q outputs.
The MCI 4433 converter shown in Figure 10-23 outputs
the BCD code for the most significant digit and then
outputs a high on the DS1 pin. After a period of time,
it outputs the BCI) code for the next most significant
digit and outputs a high on the DS2 pin. After all 4
digits have been put out, the cycle repeats.

To read In the data from this converter, the principle
is simply to poll the bit corresponding to a strobe line
until you find it high, read in the data for that digit,
and put the data in a reserved memory location for
future reference. After you have read the BCD code (or
one digit. you poll the bit which corresponde -id"ftie
strobe line for the next digit untflyou.Ond-thtgh, read
the code for that digit, and put it In memory. Repeat
the process until yOO have the data for all the digits.
The A/D converter in Figure 10-23 is connected to do
continuous conversions, so you can call the procedure
to read in the value from the A/D converter at any time.

Frequency counters: digital voltmeters, and other test
instruments often have multiplexed BCD outputs avail-
able on their back panel. With the connections and
procedure we have just described, you can use these
instruments to input data to your microcomputer.

INTERFACING A SUCCESSIVE-APPROXIMATION
A/D CONVERTER

Successive-approximation A/D converters usually have
outputs for each bit. The code output on these ilnes is
usually straight binary or offset binary. You can simply
connect the parallel outputs of the converter to the
required number of lnpu port pins and read in the
converter output under program control. In addition to
the data lines, there are two other successive-approxima-
lion A/D converter signal lines you need to interface to

the microcomputer for the data transfer. The first of
these is a START CO4VERT signal which you output
from the microcompter to the A/D to tell It to do a
conversion for you. The second signal is an EOC signal
which the A/I) converter outputs to indicate that the
conversion is complete and that the word on the outputs
is valid. Here are the program steps you use to get a
data sample from this type of converter.

First, you pulse the START CONVERT input for a time
required by the particular converter. Then you detect
the EOC signal going low on a polled or interrupt basis.
You then read In the digitized value from the parallel
outputs of the converter. In a later section of this chapter
we show a detailed example of this for the National
ADCOSO8 converter.

A MICROCOMPUTER-BASED SCALE

So far in this book we have shown you how a basic
microcomputer functions and how to interface a wide
variety of devices to the basic microcomputer. Now it's
tine to show you how some of these pitces are put
together to make a microcomputer-based instrument.
l'he first instrument we have chosen is a "smart" scale
such as you might see at the checkout stand in your
local grocery store.

Overview of Smart-Scale Operation

Figure 10-22. p. 308, shows a block diagram of our
smart scale. A load cell converts the applied weight of. for
example, a bunch of carrots to a proportional electrical
signal. This small signal is amplified and converted to
a digital value which can be read in by the microproces-
sor and sent to the attached display. The user then
enters the price per pound with the keyboard, and this
price per pound is shown on the display. When the
user presses the compute key on the keyboard, the
microprocessor multiplies the weight times the price
per pound and displays the computed price. After hold.
ing the price display long enough for the user to read
it. the scale goes back to reading in the weight and
displaying it. To save the user fron having to type the
computed price into the cash regIster, an output from
the scale could be connected directly into the cash
register circuitry. Also, a speech synthesizer could be
added to verbally tell the customer the weight, price per
pound. and total price.

Smart scales such as this have many applications
other than weighing carrots. A modified version of this
scale is used in company mail rooms to weigh packages
and calculate the postage required to send them to
different postal zones. The output of the scale Is usually
connected to a postage meter, which then automatically
prints out the required postage sticker. Another applica-
tion of smart scales is to count coins in a bank or
gambling casino. For this application the user simply
enters the type of coin being weighed: A conversion
factor in the program computes the total number olcoins
and the total doilar amount. Still another application of
a scale such as this is in packaging items for sale
Suppose, for example, that we are manufacturing wood-

- 41	 ANALOG INTtRFACING AND INDUSTRIAL CONTROl.	 307

FIGURE 10-22 Block diagram of microcomputer-based smart scale.

s-ews and that we want to package 100 of them per
box. We can pass the boxes over the load cell on a

,weyor belt and fill them from a chute until the we4ght.
P .1 therefore the Count, reaches some entered value.

'1 . ,c point here is that the combination of intelligence
some simple interface circuitry gies you an Instru-

r-ent with as many uses as your imagination can come
p with.

vart-Scale Input Circt"

re lO10 shows a picl;:	 1' 1e rras, :.... ;, l.c.
-f .ei C46-1 #-ION	 load

ce built this scale.	 'V.ei a p. :e o
top of the load c-eli to ,.-.	 -o Irma fn.,

.Thisloadcellhases	 a-
X,O. or 0.01 lb over the & . 	 oge for 1;ch

designed.
)s shown In Figure 10-2.3, the lo 	 i cnsls's c/

350-fl resistors connected In hr/dge 'fiiuratiou.
;-t.blc lO.00v excitation vtage i . spt	 tc, the top
ie bridge. With no load on the ceb. the cutpus frcn

: bridge are at aut th same .altage. 5 V. When a
v'i is applitd to thc bridge. - msstance of one of the
-ar resiatora will bc chanc: Tht produces a small

entIal output voltage t :tfl tIe bricige. The maxi-
m differential output voltage for thts 10-lb load cell
it/V per volt of excitation, so with 10.00 V excitatIon

s shown, the maximum differential-output voltage is
0 mV.
To ampl1li this small differential signal, we use a

National LM363 tpsti-umentation amplifier. This device
contains all the circuitry shown for the instrumentation
unpllfier In Figure 10-lh. The closed-loop gain of the
:rnplifier is programmable with Jumpers on pins 2, 3,
'd 4 for fixed values of 5, 100, and 500. We have

;3rpered it for a gain of 100 so that the 20-mV maximum
I,iial from the load cell will give a maximum voltage of

200 V to the A'D converter input. A precision voltage
divider on the output of the amplifier divides this signal
in half so that a weight of 10.00 lb produces an output
voltage of 1.000 V. This scaling simplifies the display of

the weight after it is read into the microprocessor. The
0.1 -ixF capacitor between pins 15 and 16 of the amplifier
reduces the bandwidth of the amplifier to about 7.5 Hz.
This removes 60 Hz and any high-frequency noise that
might have been induced in the signal lines.

The MC14433 A/D converter used here is an Inexpen-
sive dual-slope device intended for use In 3k-digit digital
voltmeters. etc. Because the load cell output changes
slowly, a fzs& converter isn't needed here. The voltage
across an LM329 6.9-V precision reference diode is
amplified by iC4 to produce the 10.00-V excitation
vclage for the load cell and a 2.000-V reference for the
JD. With a 2.000-V reference voltage, the full-scale Input
oig: for tie A/D Is 2.000 V. Conversion rate and

muipi'lng frequency for the converter are determined
by i internal oscillator and Ru. An Rh of 300 kfl

a elock [requency of 66 kFlz. a multiplex frequency
1 0. kh-lz. and about four conversions per second.

Ac-uIat) of the converter is ±0.05 percent and ± 1
count, which is comparable to the accuracy of the load
cell. in ,ther words, the last digit of toe displayed weight
may be off by 1 or 2 counts. As we described in a previous
scctio. the Output from this converter is in multiplexed
'-iCD form.

An Mgorthm for the Smart Scale
Figure 1024 shows the flowchart for our smart scale.
Note that, as indicated by the double-ended boxes In the
flowchart, most major parts of the program are written
as procedures. This is an example of the structured.
modular programming approach we have stressed
throughout the book. Here's how it all works.

The output of the A/D is in multiplexed BCD form.
The Converter outputs the BCD code for a digit on its
Q0—Q3 lines and outputs the strobe for that digit on
the corresponding digit strobe line. DSI—DS4. To read
the data for a digit, that digit strobe is polled until it
goes high; then the BCD code for that digit is read in.
After the four BCD values are read in from the converter.
a display procedure is called to display these values on
the address field displays of the SDK-86. The letters "Lb'
are displayed in the data field displays.

308	 CHAPTER TEN

+12 V + iSV

LM329'' 21LM30,	 k_

_j,jv

	

	
LOADCELL 1+15 V

BALANC I
6.4 K	 _DJUST	

KO1%	 1%

'	 --

j35Ofl	 350r) ':
	

3N,6i3
14

350
	 350)')	 I
	

12 IOKO

I
	

2i-J
	

2	
0.1%

WHITE
	 N	 iV	

I 0.1%

10 (UI

470 K))	 (3)	 Q2 22) - 44 - PA2

.4:-J-
(1)	

___?	 8255

[

2)

________	 J6

Q3)23)	 48 —PA3

(24) +5V -

A,A./y.__ (4)	 01(21)	 40 - PAl

_______	 00(20) - 36 —PAO(5)
Cl 0.1 pF	

0S1 (19) - 50 - PA4
-}------- (6)	

DS2 (18) - 46 - PA5	 PRICE/LB
GET

MODULE(7)	 0S3 (17) - 42 - PA6

2 \1 0i HF ,,

START

INITIALIZE

DISPLAY 'SP.
FOR

SELLING PRICE

DISPLAY KEY
PRESSED

READ
KEYBOARD

CONVERT
PRICE/LB

TO BINARY

CONVERT
WEIGHT

TO BINARY

MULTIPLY
WEIGHT X
PRICE/LB

CONVERT
TOTAL PRICE

TO BCD

ROUND OFF
'OTAL PRICE T(
NEAREST CENT

DISPLAY
TOTAL PRICE

I GET WEIGHT I
FROMAJO

DUMB	 II	 DISPLAY II
SCALE	 II WEIGHT AND LBII

MODULE	 II	 Ii

7N0

— 7r-- '	 •'	 -	 NO	 KEY	 WAIT
PRESSED	 3 SECONDS

7NO

YES

FIGURE 10-23 Circuit diagram for load-cell interface
circuitry and AID converter for smart scale, 	 FIGURE 10-24 Flowchart for smart-scale program.

	

Next, a check is made to see if any keys have been 	 equivalents and then multiplied the binary numbers.

	

pressed by the user. If a key has been pressed, the letters 	 Another procedure converts the binary result of the

	

"SP," which represent selling price, are displayed in the	 multiplication to RCD. The BCD result Is rounded to

	

address field. Keycodes are read from the 8279 as entered 	 the nearest cent and displyed in the data field. The

	

and displayed on the data field display. Keys can be 	 letters Pr" are displayed in the address field to indicate

	

pressed until the desired price per pound shows on	 that this is the total price. After a few seconds the

	

the display. When a nonnumeric key is pressed, it is 	 program goes back to reading and displaying weight

	

assumed that the entered price per pound is correct, 	 over and over, until a key is pressed.
and the program goes on to compute the total price.

	

Computing the price involves multiplying the weight	 The Microprocessor-Based Scale Program
in BCD form times the price per pound in BCD form. It

	

is not easy to do a BCD x BCD multiply directly, so we	 Figure 10-25. p. 310-15, shows the complete program

	

took an alternate route to get there. We converted both 	 for our microprocessor-based scale. It is important for

	

the weight and the price per pound to their binary	 you not to be overwhelmed by a multipage program such

	

ANALOG INTERFACING AND INDUSTRIAL CONTROL	 309

2
3
4
5
6 0000
7 0000
8 0004
9 0008

10 000C
11 000E
12 0012
13 0016
14
15
16 QOIA
17
18
19 0022
20
21
22 002A
23 0030
26
25 0000
26 0000
27
28 0050
29
30 0000
31
32
33 0000
34 0003
35 0005
36 0008
37 000A
38
39
40 0000
41 0010
42 0012
43 0013
44 0015
45 0016
46 0018
47
48 0019
69 OO1C
50 OO1F
51 0022
52 0023
53 0025
54 0028
55 0028
56 002E
57 002F
58
59 0031
60 0034
61 0037
62 0038
63 003A
64 003C
65 0030
66 003F
67 0041
68 0043
69 0046
70 0049
71 OO4C
72 0060

;8086 PROGRAM F10-25.ASM
;A8STRACI : Program for	 t scale
;PORTS	 Uses SDK-86 port PIA (FFF9H) for inp.it
;PR0CEDURES READ KEY, DISPLAY IT, PACK, EXPAND, CONVERT2BIII, BIWCVT

DATA SEGMENT WORD PUBLIC
04(00)
	

WEIGHT BUFFER 08 4 DUP(0) 	 Space for unpacked BCD weight
04 * (00>
	

SELL_PRICE	 08 4 DLIP(0)	 Space for unpacked price/pound
04 * (00)
	

PRICE_TOTAL	 08 4 DUP(0)	 Space for total price to display
0000
	

BINARY_WEIGHT OW 0	 Space for converted weight
08 10 14 ¶4
	

LB	 08 0814, 1014, 1614, 1414 	 b, L, blank, blank
12 11 14 14
	

S_P	 08 ¶214, 1114, 1414, 1414 	 P. S. blank, blank
13 12 14 14
	

PR	 08 1314, 1214, ¶414, 1414 	 r, P. blank, blank

1	 1	 2	 3	 4	 5	 6	 7
3F 06 5B 4F 666070 * SEVEN_SEG 08 	 3F14, 0614,5814, 4FH, 6614,6014, 7014,0714
07

8	 9	 A	 b	 C	 d	 E	 F
if 6F 77 7C 39 5E 79
	

08	 7F11, 6tH, 7714, 7C14, 3914, 5EN, 7914, 7114
71

I	 S	 P	 r blank H
38 60 7'S 50 00 76
	

08	 3814, 6014, 7314, 5014, 0014, 7614
DATA ENDS

STACK_SEG SEGMENT
28(0000)
	

OW	 40 DUP(0)
STACK TOP	 LABEL	 WORD

STACK_SEG	 ENDS

CE SEGMENT WORD PUBLIC
ASSUME CS:CtE, DS:DATA, SS:STACK_SEG

;Initialize data & stack seent registers
88 0000s	 START	 NOV AX, DATA
BE 08	 NOV OS, AX
88 0000s	 NOV AX, STACK_SEC
BE DO	 NOV SS, AX
BC 0050r	 NOV SP, OFFSET STACK_TOP

;8279 initialized at power-up of SDK-86 for 8 character display,
Left entry encoded scan, 2-key lockout.

BA FFEA	 NOV	 DX, OFFEAN	 Point at 8279 control address
80 00	 NOV AL, 0014	 Control word for above conditions
EE	 ESIT	 DX, AL	 Send control word
80 38	 NOV AL, 001110008	 Clock word for divide by 24
EE	 JT	 OX, AL
BO CO	 NOV	 AL, 110000008	 Clear display character is all 0's
EE	 c*JT	 DX, AL

;Dur scale start
89 0004	 ROWT:	 NOV	 CX, 0414	 Zero out weight buffer
68 0000r	 NOV BX, OFFSET WEIGHT_BUFFER
C6 07 00	 NEXT1:	 NOV	 BYTE PTR(BXI, 0014
43	 INC	 8X
E2 FA	 L00P NEXT1
89 0004	 NOV CX, 0414	 Zero out price/pound buffer
88 0004r	 NOV	 BX, OFFSET SELL_PRICE
Co 07 00	 NEXT2:	 NOV	 BYTE PTR(BX], 0014
43	 INC	 BX
E2 FA	 1DP NEXT2

;Get weight from A/D converter and display.
88 0003r	 NOV	 BX,OFFSET WEIGIITBUFFER.3; MSD Position in weight buffer
BA FFF9	 NOV	 DX, OFEF9H	 Point at A/I) port
EC	 OS1:	 IN	 AL, DX	 ; Read byte from A/D
24 10	 AND	 AL, 1014	 Check for NSD strobe high
74 FB	 JZ	 DS1	 Loop till high
EC	 IN	 AL, DX	 Read NSD data from A/D
24 OF	 AND	 AL, OFH	 Mask strobe bits
3C 04	 CNP	 AL, 0414	 See if MSD in bit 3 is a one
74 06	 JE	 LOAD1	 ; Yes, go toad 0114 in buffer
C6 07 14	 NOV BYTE PTR(BX], 1414	 No, load code for blank
ES 04 90	 JNP	 WXTCHR
CO 07 01	 LOAD1:	 NOV	 BYTE PTR(8X1. 0114
48	 NXTCHR: DEC aX	 Point to next buffer location

DS2:	 IN	 AL, OX	 Poll for digit 2 strobe

FIGURE 10-25 Assembly language program for smart scale. (Cont,nued on pages 311-75.)

310	 CHAPTER TEN

73 004€ 24 20
74 0050 74 FB
75 0052 Ec
76 0053 24 OF
77 0055 88 07
78 0057 48
79 0058 EC
80 0059 24 40
81 0058 74 FB
82 005D EC
83 005E 24 OF
84 0060 88 07
85 0062 48
86 0063 EC
87 0064 24 80
88 0066 74 FB
89 0068 EC
90 0069 24 OF
91 0068 88 07
92
93 0060 88 0000r
94 0070 BO 01
95 0072 94 01
96 0074 E8 OOCF
97 0077 88 000Er
98 007A 80 00
99007C 8400

100 COlE E8 OOCS
101
102 0081 BA FFEA
103 0084 EC
104 0085 24 01
105 0087 75 02
106 0089 ER 8E
107 0088 80 40
108 0080 EE
109 008€ BA FFE8
110 0091 EC
111 0092 3C 09
112 0094 76 02
113 0096 €8 81
114
115 0098 B8 0004r
116 0098 88 07
117 0090 80 00
118 009F 94 01
119 00*1 E8 00A2
120 00A4 88 0012r
121 00*7 80 01
122 00A9 94 00
123 COAB €8 0098
124 COAt €8 0083
¶25 0081 3C 09
126 0083 77 iF
127 0085 88 0004r
128 0088 8* 4F 02
129 0088 88 4F 03
130 008€ 8* 4F 01
131 OOC1 88 4F 02
132 00C4 8* OF
133 0006 88 4F 01
134 00C9 88 07
135 OOCB 80 00
136 OOCD 84 01
137 0OCF (8 0074
138 0002 ER DA
139
140
141 0004 98 000Cr
142 0007 80 7F 03 14
143 0008 75 04
144 0000 CO 47 03 00
145 00(1 (8 0098

FIGURE 10-25 (Continued)

AND	 AL, 20,4
JZ	 DS2
IN	 AL, DX	 ; Read digit 2 from AID
AND	 AL, 0FH	 ; Mask strobe bits
NOV	 (8X), AL	 ; Digit 2 BCD to buffer
DEC BX	 ; Point at next buffer location

DS3: IN	 AL, DX	 ; Poll for digit 3 from A/D
*110	 AL, 4011
JZ	 DS3
IN	 AL, DX	 ; Read digit 3 from A/D
AND AL, OFH	 ; Mask strobe bits
NOV	 (BX],AL	 ; Digit 3 to buffer
DEC	 RX	 ; Point to next buffer location

DS4: IN	 AL, DX	 ; Poll for digit 4 USC)
AND	 AL, 8011
J2	 DS4
IN	 AL, DX	 ; Read digit 4 from A/D
AND AL, 0TH	 ; Mask strobe bits
NOV	 (8)1), AL	 ; Digit 4 8CC to buffer

;Oisplay weight on address field of SDK-86
NOV	 BX, OFFSET WEIGHT BUFFER 	 ; Point at stored weight
NOV	 AL, 0114	 ; Specifies address field
NOV	 AN, O1H	 ; Specifies decimal point
CALL	 DISPLAY_IT
NOV	 8)4, OFFSET LB	 Point at Lb string
NOV	 AL, 00	 ; Specifies data field
NOV	 AM, 00	 ; Specifies no decimal point
CALL	 DISPLAY_IT

;Check if key has been pressed
NOV	 DX, OFFEAII	 Point at 8279 status address
IN	 AL, DX	 Read 8279 FIFO status
AND	 AL, O1H	 ; See it FIFO has keycode
JNZ	 GETKEY	 ; Yes, go read it
JMP	 ROUT	 140, go get weight and display

GETKEY: NOV	 AL, 010000008	 Control word for read FIFO
JT	 DX, AL	 ; Send to 8279

NOV	 DX, OFFE8H	 ; Point at 8279 data address
IN	 AL, DX	 ; Read code from FIFO
CMP	 AL, 09H	 ; Check if legal keycode (n.mer)
JBE	 OK	 Go on if below or equal 9
JNP	 RDWT	 ; Else ignore, read weight again

;Read in and display price/pound
OK:	 NOV	 8)4, OFFSET SELL_PRICE	 Point at price per pound buffer

NOV	 (8)41, AL	 ; Keycode to buffer
NOV	 AL, 00	 ; Specify data field for display
NOV	 AM, 01	 ; Specify decimal point
CALL	 DISPLAY IT
NOV	 BX, OFFSET SP	 ; Point at SP string
NOV	 AL, 01	 ; Specify address field
NOV	 All, 00	 ; Specify no decimal point
CALL	 DISPLAY_IT

NXTKEY: CALL	 READ_KEY	 Wait for next keypress
ClIP	 AL, 0911	 ; See if more price or cooinand
JA	 C()IPUTE	 ; Go coeute total price
NOV	 8)4, OFFSET SELL_PRICE ; Point at price per pound buffer
NOV	 CL, (8)4+2)	 ; Shift contents of buffer one
NOV	 (8)1+3), CL	 ; position left and insert new
NOV	 CL, (8)1+1)	 ; keycode
NOV	 (BX2] , CL
NOV	 CL, (8)4)
NOV	 [BX11, CL
NOV	 (8)41 , AL
NOV	 AL, 00	 ; Specify data field
NOV	 All, 01	 Specify decimajpoint
CALL	 DISPLAY_IT
JMP	 NXTKEY	 ; Keep reading and shifting keys

until conimand key pressed
;Coirpute total price
CNIPUTE: NOV	 BX,OFFSET WEIGHT_BUFFER; Point at weight buffer for pack

CNP	 BYTE PTR[Bx+3], 1/.11	 ; See if MSD of weight	 0
JIlt	 NOTZER
NOV	 BYTE PTR(BX+3], 00	 Yes, load 0 in place of blank code

NOTZER: CALL	 PACK	 ; Pack BCO weight into word

ANALOG INTERFACING AND INDUSTRIAL CONTROL	 311

READ_KEY PROC
PUSH

MOV
NO_KEY: IN

AND
J2

NOV
JT

NOV
IN
POP
RET

READ_KEY ENDP

NEAR
DX

DX, OFFEAH
AL, DX

AL, 00000001B
NO_KEY

Al, 010000008
DX, AL

DX, OFFE8H
AL, DX

DX

Point at 8279 control address
Get FIFO Status
Mask all but LSB, high if key in FIFO
Loop until a key is pressed

Control word for read FIFO
Send control word

Point at 8279 data address
Read character in FIFO ram

146 00E4
147 00E7
148 OOEA
149 OOED

150 OOFO
151 00F3
152
153 00F7
154 00F9
155

156 OOFC
157 00FF
158 0101
159 0103
160 0104
16T 0106

162 0108
163 O1OA
164 0108
165 0100
166 OlaF
161 0112
168 0115
169 0117
170 0119
171 O11C
172 OIIF
173 0121

174 0123
175
176 0126
177 0129
178 012C
179 0120
180 012F
181
182 0131
183
184
185
186
187
188
189

190
191

192 0134
193 0134
194 0135
195 0138
196 0139
197 0138

198 0130
199 013F
200 0140
201 0143
202 0144
203 0145

204 0146
205

206
207

208
209

210
211

212
213
214 0146
215 0146

216 0147
217 0148

218 0149

ES 0008
A3 000Cr
88 0004r
E8 008F

ES 00CC
Fl 26 000Cr

88 08
ES 0104

80 FB 49
BO 00
12 Cl
27

BA D8
80 00
12 C2
27

BA ED
BA C3

88 0008r
ES 0084

80 00
84 01

E8 002A
88 0016r
80 01
B4 00

E8 8020

89 FFFF
88 000*
48
75 FD

E2 F8

E9 FEE5

52
BA FfEA
EC
24 01
74 FB
BO 40

EE
BA FFE8
EC
5*
C3

9C

50
53
51

	

CALL	 COIIVERT2BIN	 Convert to 16 bit binary in AX

	

NOV	 BINARY_WEIGHT, AX	 and save

	

MDV	 BX, OFFSET SELL_PRICE	 Point at price per pound for pack

	

CALL	 PACK	 Pack 8C0 price into AX for convert

	

CALL	 CON VERT2BIN	 ; Convert price to 16-bit binary n Ax

	

IJL	 BINARY_WEIGHT	 Price per pound in AX * binary weight

total price result in DX:AX

	

NOV	 BX, Ax	 Prepare for convert to BCD

	

CALL	 BINCVT	 ; Packed BCD price result in DX:BX
;Round off price to nearest cent and display

	

ClIP	 BL, 49)1	 Carry set if BL .49H

	

MDV	 AL, 00	 Clear AL, keep carry

	

ADC	 Al, 8)1	 Add any carry to next di9it

	

DAA	 Keep in BCO format

	

NOV	 BL, AL	 Save Lower two digits of price

	

NOV	 AL, 00	 Clear AL, save carry

	

ADC	 Al, DL	 Propagate carry to upper digits

	

DAA	 Keep in BCD form

	

NOV	 AM, AL	 Position upper digits for EXPAND

	

NOV	 Al, BL	 Position lower digits for EXPAND

	

NOV	 BX, OFFSET PRICE_TOTAL Point at buffer for expanded BCD

	

CALL	 EXPANO	 Unpack BCD for DISPLAY_IT procedure

	

NOV	 AL, 00	 Display total priceon data field

	

NOV	 AM, 01	 with decimal point

	

CALL	 DISPLAY_IT

	

NOV	 BX, OFFSET PR	 Point at price/lb String

	

NOV	 AL, 01	 Display in address field

	

NOV	 AM, 00	 without decimal point
CALL DISPLAY_IT

;Delay a few seconds

	

NOV	 CX,OFFFFII	 ; Delay a few seconds

	

CNTON1: NOV	 BX, 000A14

	

CNTDN2: DEC	 BX

	

JNZ	 CNTDN2
LOOP CNTOM1

;Go reed next weight

	

JMP	 ROUT	 JUT back to dolt scale

PROCEDURES USED IN SMART SCALE PROGRAM

PROCEDURE READ_KEY
;ABSTRACI :Reads the SDK-86 keyboard - polls the Status register of the

8279 on the SDK-86 board untiit finds a key pressed. It then
reads the keypressed code fr	 the FIFO RAN to AL and exits

;REGISTERS: Destroys AL - returns with character read in AL

;	 PROCEDURE DISPLAY IT
;ABSTRACT: Displays chiracters on the SDK-86 display. The data is sent to
;INPUT	 : ALQ for data field

AL1 for address field

AH0 for no decimal point
AH=1 for decimaL point between second & third digit
8X offset of buffer containing 7-seq codes of the four

characters to be displayed
DISPLAY IT PROC NEAR

PUSHF	 Save flags and registers
PUSH Ax
PUSH BX

PUSH CX

FIGURE 10-25 (Continued)

312	 CHAPTER TEN

219 014*
220 0146
221 0140
222 014F
223 0151
224 0153
225 0155
226 0158
227 015*
228 0158
229 0150
230 015F
231 0162
232 0165
233 0167
231. 0168
235 0168
236 0160
237 0170
238 0172
239 0174
240 0175
241 0176
242 0178
243 0179
244 017*
245 0178
246 017C
247 0170
248 017E
249 017F
250
251
252
253
254
255
256 017f
257 017F
258 0180
259 0181
260 0182
261 0184
262 0186
263 0189
264 018C
265 01SF
266 0192
267 0195
268 0196
269 0197
270 0198
271 0199
272
273
274
275
276
277 0199
278 0199
279 019*
280 0198
281 019C
282 0190
283 019F
284 01*2
285 01*4
286 01*6
287 O1AB
288 OTAB
289 O1AE
290 0182
291 0164

PUSH DX
PUSH SI

FFEA	 NOV DX, OFFEAH
00	 CMP	 AL, 0011
05	 JZ	 DATFLD
94	 NOV AL, 9411
03 90	 .JMP SEND
90	 DATFLO: NOV AL, 90H

SEND:	 JT	 DX, AL
04	 NOV CL, 04H
F3	 NOV	 SI, BX
OOlAr	 NOV	 BX, OFFSET SEVEN_SEG
FFE8	 NOV	 DX, OFFE8H
04	 AGAIN:	 NOV	 AL, (SI]

XLATB
F9 02	 CNP	 CL, 02H
07	 JNE MORE
FC 01	 CMP	 AH, 0111
02	 JIlt	 MORE
80	 OR	 AL,80H

MORE:	 .JT	 DX, AL
INC	 SI

ED	 LOCP AGAIN
POP SI
POP OX
POP CX
POP BX
POP AX
POPF
RET

DISPLAY_IT ENDP

PACK
	

PROC NEAR
9C
	

PUSH F
53
	

PUSH BX
51
	

PUSH CX
8* 07
	

NOV AL, (8X)
81 04
	

NOV CL, 0411
02 47 01
	

ROL
	

BYTE PTR(BX1), CL
02 47 01
	

ADO
	

AL, (BX1]
BA 67 02
	

NOV AN, (BX+2]
D2 47 03
	

ROL
	

BYTE PTR[BX+3], CL
02 67 03
	

ADD
	

AN, (BX+3]
58
	

POP BX
59
	

POP CX
90
	

POP F
C3
	

RET
PACK
	

ENDP

EXPAND PROC NEAR
9C
	

PUSH F
50
	

PUSH AX
53
	

PUSH BX
51
	

PUSH CX
88 07
	

NOV	 (BX],AL
80 27 OF
	

AND	 BYTE PRIBX],OFH
81 04
	

NOV	 CL, 04H
02 C8
	

ROR	 AL, CL
24 OF
	

AND	 AL, OFH
88 47 01
	

NOV	 [BX*1), AL
88 67 02
	

MOV	 [BX+2] , AN
80 67 02 OF
	

AND	 BYTE PTR[BX+2] ,OFH
02 CC
	

ROR	 AU, CL
60 E4 OF
	

AND	 All, OFH

Point at 8279 controL address
See if •data field required
Yes, load control word for data field
No, Load address-field control word
Go send control word
Load control word for data field
Send control word to 8279
Counter for nurber of characters
Free 8)1 for use with XLAT
Pointer to seven-segment codes
Point at 8279 dispLay RAM
Get character to be dispLayed
TransLate to 7-seg code
See if digit that gets decimaL point
No, go send digit
Yes, see if decimal point specified
No, go send character
Yes, OR in decimal point
Send 7-seg code to 8279 display RAM
Point to next character
until all four characters sent

Restore alL registers and flags

Save flags and registers

First BCD digit to AL
Counter for rotate
Position second BCD digit
First 2 digits in AL
Third digit to AN
Position fourth digit
Second two digits now in AN

Move first 2 BCD digits to buffer
Mask off upper digit
Counter for rotates
Position digit 2 in low nibble
Mask uppor nibble
Digit 2	 buffer
Second 2 BCD digits to buffer
Mask off upper digit
Position digit 1 in Low nibble
Mask upper nibble

PROCEDURE PACK
;ABSTRACT: Converts four unpacked BCD digits pointed to by BX to

four packed 8CD digits in AX
;OESTROYS: AX	 -

PROCEDURE EXPAND
;ABSTRACT: Expands a packed BCD nuther in AX to 4 unpacked BCD

digits in a buffer pointed to by 8)1

FIGURE 10-25 (Continued)

ANALOG INTERFACING AND INDUSTRIAL CONTROL 	 313

292 0187
293 O1BA
294 0188
295 O1BC
296 0180
297 O1BE
298 OlaF
299
300
301
302
303
304
305
306 O1BF
307 O1BF
308 OTCO
309 OWl
310 01C2
311 01C3
312 01C4
313 0106
314 01C8
315
316 O1CA
317 01CC
318 O10E
319 0100
320 0103
321
322 0107
323 0109
324
325 O1DC
326 O1DE
327 O1E1
328
329
330
331 01E3
332 01E6
333 01E8
334
335 O1EA
336 O1ED
337 O1EF
338 O1F1
339 01F4
340 01F6
341 01F8
342 O1FA
343 0DB
344 O1FC
345 O1FD
346 O1FE
347 01FF
348 0200
349
350
351
352
353
354
355
356
357
358 0200
359 0200
360 0201
361 0202
362 0203
363 0205
364 0208

88 67 03	 NOV	 (BX*31, AH	 Digit 4 to buffer
59	 POP CX
58	 PUP	 lix
58	 POP AX
90	 POPF
C3	 RET

EXPAND	 EIdOP

PROCEDURE CONVERT2BI.N
;ABSTRACT: Converts a 4 digit BCD nu,er in AX register into its binary

(HEX) equivalent. It returns the result in the AX register
;DESTROYS: AX register

= 03E8
	

THJ EQU 3E8H	 1000	 3E8H
CONVERT2BIN	 PROC NEAR

9C
	

PUSHF	 Save fLags and registers
53
	

PUSH BX
52
	

PUSH DX
51
	

PUSH CX
57
	

PUSH DI
88 08
	

NOV	 BX, AX	 Copy nuer into BX
8A C4
	

NOV	 AL, All	 Place for upper 2 digits
8A F8
	

MDV	 RH, BL	 Place for Lower 2 digits
;Split up nuthers so that we have one digit in each register

81 04
	

NOV	 CL, 04	 NibbLe count for rotate
02 CC
	

ROR	 AN, CL	 Digit 1 in correct place
02 CF
	

ROR	 8H, CL	 Digit 3 in correct place
25 OFOF
	

AND	 AX, OFOFH
81 E3 OFOF
	

AND	 8X, OFOFH	 Mask upper nibbles of each digit
;Copy AX into CX so that can use AX for nultiplication

88 C8
	

NOV CX. AX
88 0000
	

NOV AX, 0000H
;Now nsLtipLy each nurer by its place value

8A CS
	

NOV	 AL, CH	 MuLtiply byte in AL * word
BF 03E8
	

NOV	 DI, THJ	 No imediate aultiplication
FT E7
	

MILL	 DI	 Digit I * 1000
;Result in DX and AX. Because BCD digit not >9 result in AX only
;Zero DX and add BL because that digit needs no aultiptication for
;place value. Then add the result in AX for digit 4

BA 0000
	

NOV DX, 0000H
02 D3
	

ADD	 DL, BL	 Add digit 1
03 DO
	

ADD	 DX, AX	 Add digit 4
;Continue with nuLtiplications

88 0064
	

NOV	 AX, 006411	 Byte * byte result in AX
F6 El
	

MUL	 CL	 ; Digit 2 * 100
03 DO
	

ADD	 DX, AX	 Add digit 3
88 090A
	

MOV	 AX, 000AH	 Byte * byte result in AX
F6 E7
	

NUL	 RH
03 00
	

ADD	 DX, AX	 dd d,yt
88 C2
	

NOV	 AX, DX	 Put result in correct place
SF
	

POP	 DI
59
	

POP CX
5A
	

POP	 DX	 Restore registers
SB
	

POP BX
90
	

POPF
C3
	

RET
CONVET2BIN	 ENDP

PROCEDURE BINCVT
;ABSTRACT: Converts a 24-bit binary njaber in DL and BX to a packed

BCD equivalent in DX:BX
;INPUTS:	 DL, BX - 24 BIT BINARY NUMBER
;JTPUTS: OX, BX - PACKED BCO RESULT
;CALLS:	 CNVT1
;OESTROS DX and 8X

BINCVT	 PROC NEAR
9C
	

PUSHF	 ; Save registers sod flags
50
	

PUSH AX
51
	

PUSH CX
86 19
	

NOV	 OH, 19H	 Bit counter for 24 bits
E8 0018
	

CALL CNVT1	 Produce 2 LS BCD digits in CH
8A CD
	

NOV	 CL CH	 : Save in CL

FIGURE 10-25 (Continued)

314	 CHAPTERTEN

32
8A
32
FE
75
C3
Dl
Do
8A
12
27
8A
73
83
80
ER

365 020A
366 020c
367 020F
368 0210
369 0212
370 0215
371 0217
372 0219
373 021C
374 021E
375 021F
376 0220
377 0221
378 0222
379 0223
380
381
382 0223
383 0223
38.4 0225
385 0227
386 0229
387 022B
388 0220
389 022E
390 0230
391 0232
392 0234
393 0236
394 0237
395 0239
396 023B
397 023E
398 0241
399 0243
400 0243
401

	

B6 19
	

OH, 19W
EB 0014
	

CALL CNVT1
51
	

PUSH CX

	

B6 19
	

NOV OH, 19W
ER 000E
	

CALL CNVT1

	

BAco
	

-v CL, CH

	

B6 19
	

NOV OH, 19H
E8 0007
	

CALL CNVT1

	

88 Dl
	

NOV 0X,CX
SB
	 Pop BX

59
	

Pop CX
58
	

Pop AX
90
	

POPF
C3
	

RET
BINCVT	 EPIDP

CNVT1	 PROC WEAR

	

CO	 XOR AL, AL

	

E8	 NOV CH, AL

	

CO	 CNVT2:	 NOR AL, AL

	

CE	 DEC	 DII

	

01	 JWZ	 CONTINUE
RET

	

03
	

CONTIWUE:RCI	 BX, 1

	

02
	

RCL
	

DL, 1

	

C5
	

NOV AL, CH

	

CO
	

ADC
	

AL, AL.
DAA

	

E8
	

NOV CII, AL

	

EC	 INC CNVT2
03 00
	

ADC BX, 0000W
D2 00
	

ADC DL, DOW

	

E4
	

JNP CWVT2
CNVT1	 ENDP
CE	 ENDS

END

Bit co,Jter for 24 BITS
Produce next 2 BCD digits in CII
Save tower 4 BcD digits on stack
Bit Co,ter for 4 bits
Produce next 2 8cO digits in CII
Position in CL
Set bit counter for 24 bits
Produce last 2 BCD digits in CH
Position 4 MS BCD DIGITS for return
Four LS BCD digits back from stack
for return

PROCEDURE CNVT1

Clear AL and carry as workspace
Clear CII
Clear AL and CARRY
Decrement bit counter
Do all bits
Done if OH down to zero
BX left one bit, MSB to carry
HSB from BX to 158 of DL, NSB of DI. to carry
Hove BCO digit being built to AL
Dote AL and add carry from DL shift
Keep result in BCD form
Put back in CII for next time through
No carry from DAA, continue
If carry, propagate to BIt and DL
for future terms

Cant i flue conversion

FIGURE 10-25 (Continued)

as this, If you use the 5-minute rule and work your way
through this program one module at a time, you should
pick up some more useful programming techniques and
procedures you can use in your programs.

Three 4-byte buffers set up at the start of the program
are used to Store the unpacked BCD values of the weight.
the price per pound. and the computed total price.
These buffers will be used to pass values to the display
procedure. The SEVEN_SEG table in the data segment
contains the 7-segment codes for BCD digits, hex digits.
and some letters we use to indicate which value is being
displayed. in the display procedure you will see how
these codes are accessed.

After Initializing everything, the program polls the
digit strobe for the most significant digit from the AID
converter. Since this A/D converter isa 3)-digit unit, the
MSD can be only a 0 or a I. The value for this digit is
sent in the third bit, (bit 2) of the 4-bit digit read in. If
this bit isa 1. then Otis loaded into the buffer location.
If the bit is a 0. then the value which will access the 7-
segment code for a blank (141-1) is loaded into the buffer
location. Each of the other digit strobes is then polled
in turn, and the values for those digits are read in. When
all the BCL) digits for the weight are in the WEIGHT_
BUFFER, the display procedure Is called to show the
weight on the address field.

To use the display procedure we wrote for this pro-
gram. you first load a 0 or a 1 intO AL to specify data

field or address field and a 1 or a 0 in AH to specify a
decimal point in the middle of the display or no decimal
point. You then load BX with the offset of the memory
buffer containing the unpacked codes for the digits to
be displayed. A program loop in the display procedure
uses the XLAT instruction and the SEVEN_SEG table
to convert these codes to the required 7-segment values
and send the values to the 8279 display RAM. For
displaying the weight, BX is simply loaded with the
offset of WEIGHT_BUFFER. AL is loaded with 01 to
display the weight in the address field, and All is loaded
with 01 to insert a decimal point at the appropriate
place.

To display the letters Lb in the data field. BX is loaded
with the offset of the string named LB. and the display
procedure is callçd. Again, the XLAT instruction loop
converts the code4 from the LB string to the required 7-
segment codes and sends them out of the 8279 display
RAM. The codes in the string named LB represent the
offsets from the start of the SEVEN_SEC table for the
desired 7-segment codes. For example, the 7-segment
code for a P is at offset 12H in the SEVEN_SEG table.
Therefore, if you want to display a P. you put l2H in the
appropriate location in the character string in memory.
The XLAT Instruction will then use the value l2H to
access the 7-segment code for P in the SEVEN_SEC.
table.

After displaying the weight. the program reads the

- 42	 ANALOC INT(RFACINC AND INDtJSIRIAI CONTROL 	 315

8279 status register to see. If the operator has pressed
a number key to start entering a price per pound. Ii no
key has been pressed or if a nonnumeric key has been
pressed, the program simply goes back and reads the
weight again. if a number keyhas been pressed, the
weIght is removedfrom the addis field and the letters
SP (selling price) are displayed in the address field. The
entered number is put in the SELL..PRICE buffer and
displayed on the rightmost digit of the data field. The
program then poiis the 8279 status register until another
keypress is detected, lithe pressed key is a numeric key,
then the code(s) for the previously entered number(s)
will be shifted one location in the buffer to make room
for the new number. The new number is then put in
the first location in the buffer so that it will be displayed
in the rightmost digit of the display. In other words.
previously entered numbers are continuously shifted to
the left as new numbers are entered. If a mistake is
made, the operator can simply enter a 0 followed by the
correct price per pound.

When a nonnumeric key is pressed, this is the signal
that the displayed price per pound is correct and that
the total price should now be computed. Before the
weight and the price per pound can be multiplied.
however, they must each be put in packed BCD form
and converted to binary.

The PACK procedure converts four unpacked BCE)
digits in a memory buffer pointed to by BX to a 4.dtgit
packed result in AX. This procedure is simply some
masking and moving of nibbles. Once the weight and
ptice per pound are packed in BCI) fomi. the CON
VERT2BIN procedure is used to convert ach to Its
binary equivalent. The algorithm for this procedur. is
explained in detail in Chapter 5.

Unlike earlier processors, which reulred a messy
procedure for multiplication, a single 8086 MUL insiruc.
tion does the 16 x 16 binary multiply to produce the
binary equivalent of the total price. The procedure
BINCVT is used to convert the binary total price to the
packed BCD form needed for the DISPLAY..,,IT procedure.
Here's how the BINCVT procedure works.

In a binary number, each bit position represents a
power of 2. An 8-bit binary number, for example, can
be represented as:

b7x21+b6x26+b5x25+t,<24
+b3x23 +b2x22 +bj x2+b0

This can be shuffled around and expressed as

Binary number
((U((2b7 + b6l 2 + bS) 2 + b4) 2

+ b3)2 + b2)2 + bl)2 + bO

where b7 through bO are the values of the binary bits.
If we start with a binary number and do each operation
in the nested parentheses in BCD with the aid of the
DAA instruction, the result will be the BCE) number
equivalent to the original binary number.

The procedure in Figure 10-25 produces two BCE)
digits of the result at a time by calling the subprocedure
CNVF 1. Figure 10-26 shows a flowchart for the operation

CLEAR AL AND CARRY
AS WORKSPACE

DECREMENT BIT
COUNTER

BIT
COUNTER

	

= 5 ?	 ________

	

NO	 __

[SHIFT BX LEFT BIT
MSB TO CARRY

SHIFT DL LEFT 1 BIT
CARRY TO LSB
MSB To CARRY

2. DIGIT BEING BUILT
AND ADD CARRY
FROM DL SHIFT

DECIMAL ADJUST TO
KEEP IN BCD FORMAT

INAL>99!	 NO

CARRY 1?

YES

ADD OVERFLOW
CARRY TO BX & DL

FOR NEXT BCD
BYTE CALCULATION

FIGURE 10-26 Flowchart for CNVT1 subpjocedure.

of CNVFI. The main principle he toshift the 24Ebit
number left one bit position so thai the MSB goes into
the carry flip . flop and then add hi bit lo twice the
previous result. We use the DAA instrucUpirto keep the
result of the addition in BCE) format. If th€DAA produces
a carry. we add this carry back into the shifted 24-bit
number in DL and BX so that it will be propagated into
higher BCE) digits. After each run ofCNVTI (24 runs of
CNVT2), DL and BX will be left with a binary number
Which Is equal to the original binary number minus the
value of the two BCE) digits produced. You can adapt
this procedure to work with a different number of bits
by simply calling CN'V'rI more or fewer times and by
adjusting the count loaded into DH to be I more than
the number of binary bits in the number to be converted.

316	 CHAPTER TEN

The count has to be 1 greater because of the position of
the decrement In the loop. The temperature-controller
procedure in FIgure 10-35 shows another example of
this conversion.

The least significant two digits of the BCD value for
the total price returned by BINCVT in BL represent
tenths and hundredths of a cent. If the value of these
two BCD digits is greater than 49H. then the carry
produced by the compare instruction and the next two
higher BCD digits in BH are added to AL. This must be
done In AL. because the DAA instruction, used to keep
the result in BCI) format, only works on an operand in
AL. Any carry from these two BCD digits is propagated
on to the upper two digits of the result in DL. After thi.
rounding off, the packed BCD for the total price is left
in AX.

In order for the display procedure to be able to display
this price, it must be converted to unpacked BCD form
and put in four successive memory locations. Another
"mask and move nibblc" procedure called EXPAND does
this. The DISPLAY.JT procedure is then called to display
the total price on the data field. The DISPLAY..JT proce-
dure Is called again to display the letters Pr in the
address field.

Finally, after delaying a few seconds to give the opera-
tor time to read the price, execution returns to the
"dumb-scale" portion of the program and starts over.

A question that may occur to you when reading a long
program such as this is, How do you decide which parts
of the program to keep in the mainline and which parts
to write as procedures? There is no universal agreement
on the answer to this question, The general guidelines
we follow are to write a program section as a procedure
if It is going to be used more than once in the program.
it is reusable (could be used in other programs). It is so
lengthy (more than 1 page) that it clutters up the
conceptual flow of the main program. or it is an essen-
tially independent section. The disadvantage of using
too many procedures is the time and overhead required
for each procedure call. As you write more programs,
you will arrive at a balance that feels comfortable to you.
The following section shows you another long program
example which was written in a highly modular manner
so that it can easily be expanded. This example should
lurther help you see when and how to use proedures.

A MICROCOMPUTER-BASED INDUSTRIAL
PROCESS-CONTROL SYSTEM

Overview of Industrial Process Control

One area in which microprocessors and microcomputers
have had a major impact is industrial process control.
Process control involves first measuring system variables
such as motor speed. temperature. the flow of reactants,
the level of a liquid in a tank, the thickness of a material.
etc. The output of the controller then adjusts the value
of each variable until it is equal to a predetermined value
called a set point. The system controller must maintain
each variable as close as possible to its set-point value.
and it must compensate as quickly and accurately as

DC
MoTor

FIGURE 10-27 Circuit for controlling speed of dc motor
using feedback from tachometer,

possible for any change in the variable caused by. for
example. increased load on a motor. A simple example
will show the traditional approach to control of a process
variable and explain some of the terms used in control
systems.

The circuit in Figure 10-27 shows an analog app
to controlling the speed of a dc motor. Atttched to the
shaft of the motor is a dc generator. or tachometer.
which puts out a voltage proportional to the speed of
the motor. The output voltage is typically a few volts per
1000 rpm. A fraction of the output voltage from the
tachometer is -fed back to the inverting input of the
power amplifier driving the motor. A positive voltage is
applied to the noninverting input of the amplifier as a
et point. When the power is turned on, the motor

accelerates until the voltage fed back from the tachome-
ter to the inverting input of the amplifier is nearly equal
to the set-point voltage.

If the load on the motor is increased, the motor will
initially slow down, and the voltage output from the
tachometer will decrease. This will increase the differ-
ence In voltage between the inputs of the amplifier and
cause it to drive more current to the motor. The increased
current will increase the speed of the motor to nearly
the speed it had before the increased load was added. A
similar reaction takes place if the load on the motor Is
decreased.

Using negative feedback to control a system such as
this is often called servo control. A control loop of
this type keeps the motor speed quite constant for
applications where the load on the motor does not
change much. Some hard-disk drive motors and high-
quality phonograph turntables use this method of speed
control.

For applications in which the load and/or the set point
changes drastically, there are several potential problems.
The first of these is overshoot when you change the set
point. Figure 10-28a, p. 318. shows an example of this.
in this case the variable—motor speed. for example—
overshoots the new set point and bounces up and down
for a while. The time it takes the bounclruZ to settle
within a specified error range or error band is cilied the

ANALOG INTERFACING AND INDUSTRIAL CONTROL	 317

PEAK
ERROR

ERROR
NEW
SETPOINT

ii } BAND

OLD
SETPOINT

RESIDUAL ERROR

-	 4ERROA
NEW	 -
SEIPOINT

BAND

OLD
SE TPOIN I

(b)

RESIDUAL ERROR

SETPOINT
MOTOR SPEED

INCREASEO LOAD

Id

FIGURE 10-28 Overshoot and undershoot of system
when set point or load is changed. (a) Overshoot.
(b) Undershoot, (c) load change.

settling time. This type of response Is referred to as
underdamped and Is sim'lar to the response that a car
with bad shock absorbers will make when it hits a
bump. The ringing can be prevented by adding damping
to the system. However, If too much damping Is added,
the response to a change in set point may look like that
'hown in Figure l0-28b. This type response is referred
to a.s .i overdamped response. The difficulty with this
type response is that it takes a long time for the variable
to reach the new set point. For best performance, the
damping must be custom designed for a particular
system.

Another problem in any process control system is
residual error. Figure lO-28c shows the response a
control system such as the motor speed controller in
Figure 10-27 will have when more load is added on the
motor. The motor initially slows down, so the voltage

of the tachometer decreases. As we said before, this
leases the voltage difference between thc amplifier

inputs and causes tl'e amplifier output to increase.
Increased amplifier output increases the speed of the
motor and thereby the output from the tachometer.
When the system reaches equilibrium, however, there
is some noticeable difference between the set point and
the voltage led back from the tachometer. It is this
difference or residual error which is amplified by the

gain of the amplifier to produce the additional drive for
the motor. For stability reasons, the gain
systems cannot be too high. Therefore, even if you adjust
the speed of a motor, for example. to be exactly at a
given speed for one load, when you change the load there
will always be some residual error between the set point
and the actual output.

To help solve these problems, circuits with more
complex feedback are used. Figure 10-29 shows a circuit
which represents the different types of feedback com-
monly used. First note in this Circuit that the output
power amplifier is an adderwlth four Inputs. The current
supplied to the summing point of the adder by the set-
point input produces the basic output drive current.
The other three inputs do not supply any current unless
there is a difference between the set point and the
feedback voltage from the tachometer. Amplifier I is
another adder whose function is to compare the set-
point voltage with the feedback voltage from the tachom-
eter. Let's assume the two input resistors, RI and R2.
are equal. Since the set-point voltage is negative and the
voltage from the tachometer is positive, there will be no
net current through the feedback resistor of the amplifier
If the two voltages are equal in magnitude. In other
words, if the speed of the motor is at its set-point value,
the output of amplifier 1 will be zero, and amplIfiers 2,
3. and 4 will contribute no current to the summing
junction of the power amp.

Now, suppose that you add more load on the motor.
slowing it down. The tachometer voltage Is no longer
equal to the set-point voltage, so amplifier I now has
some output. This error signal on the output produces
three types of feedback to the summing junction of the
power amp.

Amplifier I produces simple dc feedback proportional
to the difference between the set point and the tachome-
ter output. This Is exactly the same effect as the voltage
divider on (he tachometer output in Figure 10-27.
Proportional feed back, as this is called, will correct for
most of the effect of the increased load, but, as we
discussed before, there will always be some residual
error.

The cure for residual error is to use some integral
feedback, Amplifier 3 in Figure 10-29 provides this type
of feedback. Remember from a previous discussion that
this circuit produces a ramp on Its output whenever a
voltage is applied to its input. For the example here, the
integrator will ramp up or ramp down as long as there
is any error signal present on its input. By ramping up
and down Just a tiny bit about the set point, the
integrator can eliminate most of the residual error. Too
much integral feedback, however, will cause the output
to oscillate up and down. Also, feedback only slowly
affects the output because the error signal must be
present for some time before the integrator has much
output.

To improve the response time of the system. amplifier
4 in Figure lO-29suppllesa third type of feedback called
derivative feedback. Derivative feedback is a signal
proportional to the rate of change of the error signal. If
the load on the system is suddenly changed. the deriv3-
tive amplifier circuit will give a quick shot of Ieedbak

318	 CI-IAPTERT[N

MOTOR

FIGURE 10-29 Circuit showing proportional, integral, and derivative feedback
control.

to tly to correct the error. When the error signal is first
applied to the dltTerentiator circuit, the capacitor In
series with the input is not charged, so it acts like a
short circuit. This Initially lets a large current flow, so
the amplifier has a sizable output. As the capacitor
charges, the current decreases, so the feedback from the
differentiator decreases. The differentiator essentially
gives the amplifier a quick pulse of feedback to help
correct for the increased load. Too much derivative
feedback can cause the system to overshoot and oscillate.

The point here Is that by using a combination of some
or all of these types of feedback, a given feedback-
Controlled system can be adjusted for optimum response

to changes in load or set point. Process control 1oops
that use all three types of feedback are called proportional
integral derivative or PID control loops. Because process
variables change much more slowly than the microsec-
ond operation of a microcomputer, a microcomputer
with some simple input and output circuitry can perform
all the functions of the analog circuitry in Figure 10-29
for several PID loops.

Figure 10-30 shows a block diagram of .a microcom-
puter-based process-control system. Data acquisition
systems convert the analog signals from various sensors
to digital values that can be read in and processed by
the microcomputer. A keyboard and display in the

DISPLAY
PRESSURE SENSORS

TEMPERATURE SENSORS

FLOW METER
I-

2
	

MICRO-
COMPUTER

z

LOAD CELLS

LIQUID-LEVEL SENSORS 	 DAS

RN METERS
	

KEYBOARD

FIGURE 10-30 Block diagram of microcomputer-based process control system.

I—I RELAYS I

0A-

Io
a.
I-

0	

CONTAO'L
SIGNALS

NI TODAS

ANALOG INTERFACING AND INDUSTRIAL CONTROL 	 319

_J. I
r

FIGURE 10-31 Photograph of Texas Instruments'
programmable controller.

system allow the user to enter set-point values, to read
the current values of process variables, and to issue
commands. Relays. D/A converters, solenoid valves, and
other actuators are used to control process variables
under program direction. A programmable timer In the
system determines the rate at which control loops are
serviced.

Microcomputer-based process-control systems range
from a small programmable controller such as the one
shown in Figure 10-31. which might be used to control
a machine on a factory floor, to a large minicomputer
used to control an entire fractionating coh:imn In an oil
refinery. To show you how these microcomputer-based
control systems work. here's an example system you can
build and experiment with.

AN 8086-BASED
PROCESS-CONTROL SYSTEM

Program Overview

Figure 10-32 shows in flowchart form one way in which
the program for a microcomputer-based control system
with eight PlO loops can be structured. After power is
turned on, a mainline or executive program initializes
ports. Initializes the timer, and Initializes process vari-
ables to some starting values. The executive program
then sits in a loop waiting for a user command from the

kyhoard or a clock "tick" from the timer. The keyboard
strobe signal and the clock signal are each connected to
interrupt inputs.

When the microcomputer receives an interrupt from
the timer, it goes to a procedure which determines
whether it is time to service the next control loop. The
Interrupt procedure does this by counting interrupts In
the same way as the real-time clock we described In
Chapter 8 does. If you program the timer to produce a
pulse every I ms, and you want the controller to Service
another loop every 20 ms, for example. you can simply
have the interrupt procedure count 20 interrupts before
going on to update the next loop. Once 20 interrupts
have been counted down, the program falls into a
decision structure which determines which loop is to
be updated next. Every 20 ms a new loop is updated. so
with eight loops, each loop gets updated every 160 ms.
This system is an example of a time-slice system, because
each loop gets a 20-ms "slice" of time every 160 ms.

An important point here is that the microcomputer
services each loop at regular intervals instead of simply
updating all eight loops, one loop right after another.
This is done so that the timing for each loop is independ-
ent of the timing for the other 1oops. Therefore, a change
in the internal timing for one loop will not affect the
timing in the other 1oops.

Each PID loop is controlled by an independent proce-
dure. For our example system here, we have space to
show the implementation of only one loop, the control
of the temperature of a tank of liquid in. perhaps, our
printed-circuit .board-making machine. You could write
other similar control-loop procedures to control pH. flow,
light exposure timing, motor speed. etc.

Figure lO-32c shows the flowchart forour temperature-
controller PID loop. Note that we use lower-level proce-
dures to implement most steps in thebasic PID procedure.
These low-level operations are written as procedures so
that they can be used in other PID loops. Also, using
procedures here maintains the top-down program struc-
ture we have been trying to get you to use In your pro-
grams. Work your way through Figure 10-32 until you
clearly see the program levels. After we look at the hard-
ware of the system, we will dig into the details of the actual
program.

Hardware for Control Systems
and Temperature Controller -

To build the hardware for this project. we started by add-
ingan 8254 programmable timer and an 8259A priority
interrupt controller to an SDK-86 board, as shown in
Figure 8-14. The timer is initialized to produce l.kHz
clock ticks. The 8259A provides interrupt inputs for the
clock-tick interrupts and for keyboard interrupts. We
built the actual temperature sensing and detecting cir-
cuitry on a separate prototyping board and connected it
to some ports on the SDK-86 with a ribbon cable. Figure
10-33. p. 322. shows this analog interface circuitry.

The temperature-sensing element in the circuit is an
LM35 precision Celsius temperature sensor. The voltage
between the output pin and the ground pin of this device
will be 0 V at 0 C and will increase by 10 mV for

320	 CHAPTER TEN

START) MAINLINE OR
-	 - BACKGROUND

PROGRAM

INITIALIZE
PORTS

INITIALIZE
TIMER

INITIALIZE
PROCESS

VARIABLES

UNMASK AND
ENABLE

INTERRUPTS

LOOK FOR
USER

COMMAND
KEY PRESSED

YES

SERVICE
USER

COMMAND

-J
I.'

LOOP 0

ON TIME
COUNTED

TURN HEATER
OFF

OFF TINE
COUNTED

GET NEW
TEMPERATUR

READING

CONVERT TO
BCD FOR
DISPLAY

DISPLAY

FIND T

çAro

COMPUTE
HEATER

DUTY CYCLE

SET DUTY
CYCLE FOR ON

TURN HEATER
ON

SET DUTY
CYCLE FOR

OFF

AETI
TOINTR .)

II

ICK INTERRUPT

FIGURE 10-32 Flowchart for microcomputer-based process control system.
(a) Mainline or executive. (b) Loop selector. (ci Temperatue-controI loop.

ANALOG INTERFACING AND INDUSTRIAE CONTROL 	 321

PIN NUMBERS FOR
CONNECTOR iS OF

SOK-86
PORT 2C

28	 P2CS
26	 P2C4
6	 P2C3
4	 P2C2
2	 P2C1
24	 P2CG

°- B

NC- 12

- 20

16
NC- 14

- 16

- 22

- 10

36

40

46
42

38
34

PORT 28

P267

P266

P265

P264

P263

P262

P281

P260

PORT 2A

P2A7

P2A6

P2A5

P2A4

P2A3
P2A2

P2A1
P2AO

+5V	 +5V

-
HEATING

10k

l0k

STATE
RELAY 12OVAC

*5 V
t	 +15v

	

-15V	
[-15V '=•

1K

TEMPERATURE SENSOR

74C14
+5V

	

1k	 0.1,F	 4
+5 V	 ADCOSO8

OUTPUT	 END OF
ENABLE	 CONVERSION -

INPUT 0	 START
- CONVERSION 22

27 INPUT I	 ALE -18	 23
INPUT 2	 ADC -

DAS	 24INPUT 3	 A08 -

INPUT 4	 ADA

INPUTS	 DATA 7
INPUT 6	 DATA 6

[_5 INPUT7	 OATA5 I!
CLOCK	 DATA 4 18

_Li1i

V	 OATA3
*REF	 DATA 2

JII
16 -REF	 DATA 1

GND	 DATAO 17

10sF
SOLID
TANTALUM

O.J1pF	 OSCILLATOR

+15 V

LM329

10k

REFERENCE
FOR A/D

FIGURE 10-33 Temperature-sensing and heater-control circuitry for
microcomputer-based controfler.

each increase of 10 C above that. The 30O-kf resistor 	 zener is buffered by an LM308 amplifier to produce a
connecting the output of the LM35 to - ISV allows the 	 Vcc and a VREF 015.12 V for the A/D converter. With this
output to go negative for tmperatures below 0° C. (If 	 reference voltage, the A/D converter will have 256 steps
you are operating with ± 12-V supplies, use a 240- 	 of 20 mV each. Since the temperature sensor si$nal is
kft resistor.) This makes the circuit able to measure 	 amplified by 2. each degree Celsius of temperature
temperatures over the range of —55 to + 150° C. For 	 change will produce an output change of 20 my. or one
our application here, we use only the positive part of the 	 step on the AID converter. This gives us a resolution of
output range, but we thought you might find this circuit 	 1°C, which is about equal to the typical accuracy of the
useful for some of your other projects. An LM308 buffers	 sensor. The advantage of using V5 as the Vcc for the
and amplifies the signal from the sensor by 2 so that 	 aevice is that this voltage will not have the switching
the signal uses a greater part of the input range of the	 noise that the digital V line has. The control inputs and
A/D converter. This improves the noise immunity and	 dataoutputsoftheA/Dconverterareslmplyconnectedto
resolution.	 SDK-86 ports as shown.

The ADCO8O8 A/D converter used here is an 8-input 	 Figure 10-34 shows the timing waveforms and param-
data acquisition system. You tell the device which Input 	 eters for the ADCO8O8, Note the sequence in which
signal you want digitized with a 3-bit address you send 	 control signals must be sent to the device. The 3-bit
to the ADC, ADB. and ADA inputs. This 8-input device 	 address of the desired input channel Is first sent to the
was chosen so that other control loops could be added 	 multiplexer inputs. After at least 50 ns. the ALE input
later. Some Schmitt-trigger inverters In a 74C14 are 	 is sent high. After another 2.5s. the START CONVER-
connected as an oscillator to produce a 300-kl-lz clock 	 SION input is sent high and then low. Then the ALE
for the DAS. The voltage drop across an LM329 low-drift 	 input is brought low again. When the END OF CONVER-

322	 CHAPTER TEN

CLOCK

FIGURE 10-34 Timing waveforms for the ADCO8O8 data acquisition system.

SION signal from the A/D Converter is found to be high.
the 8-bit data value which represents the temperature
can be read in.

To control the power delivered to the heater, we used
a 25-A. 0-V turn-on, solid-state relay, such as the Potter
Brumfield unit described in Chapter 9. WIth this relay
we can control a 120- or 240-V ac-powered hot plate or
immersion heater. To control the amount of heat put
out by the heater, we vary the duty cycle of pulses sent
(o the relay.

For very low power .applicat ions, a D/A converter and
a power amplifier could be used to drive the heater.
However. In high-power applications this is not very
practical because the power amplifier may dissipate as
much or more power than the load. For example, an
amplifier intended to control a 5000-W heater over its
lull range must be able to dissipate more than 5000W.
The D/A-converter apprpach has the added disadvantage
that it cannot directly hse (he available ac line voltage.

l'hc driver transistor on the Input of the solid-state
relay supplies the drive for the relay, isolates the port

pin from the relay, and holds the relay in the off position
when the power is first turned on. Port pins, remember.
are in a floating state after a reset, so some method
must be used to hold external circuitry In a known state
until the port is Initialized and the desired value is
output to the port. Now that you know how the hardware
is connected, we can explain the operation of the control-
ler program.

The Controller System Program

THE MAINLINE OR EXECUTIVE SECTION

Figure 10-35. pp. 324-29, shows the assembly language
program for our controller system. Refer to the 1lowchart
in Figure 10-32 as you work your way through this
program. The mainline or executive part of the program
starts by initializing port FFFAI-I for output, the 8259A
to receive interrupt inputs from the timer and the
keyboard, and tht 8254 to produce a I -kHz square wave
on its counter 0 output. In Chapter 8 we described all

- 43	 ANALOG INTERFACING AND INDUSTRIAL CONTROL 	 323

2
3
4
S
6
7
8
9

10
11
12
13
14
15 0000
16
17 0000
18
19
20
21 0000
22 0000
23 0004
24 0008
25 000c
26
27 0000
28 0000
29 0001
30 0002
31 0003
32 0004
33 0005
34 0006
35
36 0000
37 0000
38
39 0050
49

;8086 I4AINLINE PROGRAM F1O-35a.ASM 	 -	 UI.E 1
;ABSTRACT; Program for controller system. Services eight process

control Loops on a rotating basis. Pri,ylain written to run on an
Intel SOK-86 board. Timing for the control Loops is generatedon
an interrupt basis by an o4i'board 8254 timer. ControL-Loop 0 in
the program controls the teeçereture of a water bath.

;PORTS:	 Uses port P28 (FFFAH) as output
bits 7 r heater, bits 6.3	 not connected, bit 5	 start conversion
bit 4 = ALE,	 bits 2,1,0	 channeL address
Uses port P2A (FFF8H) as data input
Uses port P2C (FFFCH) as end-of-conversion input fron, A/D

;PROCEOIJRES: Uses CLOCK_TICK - interrupt service procedure
KEYBOARD	 - interrupt service procedure (enty)

1111_PROC	 SEGMENT WORD	 PUBLIC
EXIRN CLOCK_TICK:FAR, KEYBOARD:FAR

INT_PROC	 ENDS

PUBLIC	 CtJNTER, TIMENI, TIMELO, L00PNUM, CLIRTEMP, SETPOINT

AINT TABLE	 SEGMENT WORD	 PUBLIC

	

02*(0000)	 TYPE 64	 DW	 2 DUP(0)	 ;Reserve space for clock-tick proc addr IRO

	

O2*(0000)	 TYPE_65 OW	 2 DUP(0)	 ;Not used irs this program - IR1

	

02*(0000)	 TYPE_66 OW	 2 DUP(0)	 ;Reserve space for keyboard proc addr -- 1R2
Mill_TABLE	 ENDS

00
01
01
00.
00
3C

78(0000)

DATA SEGMENT WORD PUBLIC
CJN1ER 08	 00
TIMEI4I	 08.	 01
TII4EIO	 08	 01
LOGPNI$I 08	 00
CURTEMP 08	 00
SETPOINT 08	 60

DATA ENDS

;Counter for nuther of interrupts
;Heater reLay - time on
;Heater relay - time off
;Tee storage for Loop counter
Current te.Tçerature

;Setpoint tefrperature

STACK SEG SEGMENT	 ;No STACK directive because using EXE2BIN

	

OW 40	 OUP(0) ;so car, then do,n1oad code to SOK-&,

	

TOP STACK LABEL	 WORD
STACK_SEG ENDS

41 UUUU	 C001 SEGMENT WORD PUBLIC
42	 ASSUME CSC00E, DS:AINT_TA8IE, SS:STACKSEG
43	 ;Ir,itialize stack segment. star-k pointer, and data segment registers
44 0000 88 0000s	 .	 NOV AX, STACK_SEG
45 0003 8€ DO	 NOV SS, AX
46 0005 DC OO5Or	 NOV SP, 0FSET TOP_STACK
47 0008 B8 0000s	 NOV AX, AuNT_TABLE
48 0008 8€ 08	 NOV OS, AX
49	 ;Define the addresses for the interrupt service procedures
50 0000 C? 06 0002r 0000s	 NOV	 TYPE_64+2, SEG CLOCK_TICK	 ;Put in clock-tick proc addr
51 0013 Cl 06 0000r 0000e	 NOV TYPE_64,	 OFFSET CLOCK_TICK
52 0019 C? 06 000Ar 0000s	 NOV TYPE_66.2, SEC KEYBOARD	 ;Put in keyboard Proc addr
53 OOIF C7 06 000Br 0000c 	 NOV TYPE_66,	 OFFSET KEYBOARD
54	 .	 ;Initiatize data segment register
55	 .	 ASSUME DS:DATA
56 0025 88 0000s	 NOV AX, DATA
57 0028 8€ 08	 .	 NOV OS. AX
58	 ;Initiatize port P28 (EFFA) as output - mode 0, P2A & P2C as inputs - mode 0
59. 002A BA FFFE	 NOV DX, OFFFEN	 ;Point DX at port control addr
60 0020 80 99	 NOV AL, 100110018	 ;Mode control word for above conditions
61 002F if	 csJT OX, Al	 ;Send control word
62	 ;Initialize 8259A, edge triggered, single, I.CW4
63 0030 80 13	 .	 NOV AL, 000100.118
640032 BA U_00	 NOV DX, OFFOOM	 ;Point at 8259A control
650035 EE	 JT	 OX, AL	 .	 ;Send ICW1
66 0036 80 40	 NOV	 AL, 010000008	 ;Type 64 is first 8259A type (IRO)
67 0038 BA FF02	 NOV DX, OFFO2H	 ;Point at 1CW2 address
68 0038 EE	 .	 CSJT	 DX, Al	 ;and send ICW2
69 003C 80 01	 .	 NOV . Al, 000000018	 ; 1CW4, 8086 rode
70 003E EE	 csi	 DX, Al	 ;Send 1CW4
71 003F BO FE	 .	 NOV	 AL, 111111108	 ;OCW1 to ursr,ask 1R0 only leave 1R2 masked
72 9041 EE	 001 CX, AL	 ;because not used & tend OCU1

FIGURE 10-35 8086 assembly language program for process control system (continued on pp. 325-29).
(a, pp. 324-5 Module 1—mainline. (b, pp. 325-61 Module 2—interrupt-service procedures.
(C, pp:326.-7) Module 3—loop service procedures. (d. pp. 327-29 Module 4—utility procedures.

324	 CHAPTER TEN

73
74 0042 BC 37
75 0044 BA FF07
76 0047 EE
77 0048 80 58
78 004* BA FF01
79 0040 EE
80 DO4E 80 24
81 0050 EE
82
83 0051 C6 06 000Sr 3C
84 0056 C6 06 0000r 14
85 005B C6 06 0003r 00
86 0060 C6 06 000lr 01
87 0065 C6 06 0002r Cl
88006* C6.060004r00
89
90006F FB
91 0070 EB FE
92 0072 90
93 0073
94

;lnitialize 8254 counter 0 for 1-kHz .utput, LSB then MSB, square wave, 8CD
NOV	 AL, OO11O11IB
NOV DX, OFFO7H	 ;Point 8254 controL addr
JT DX. AL	 ;Send counter 0 comand word

NOV AL, 58H	 ;Load LSB of count
NOV DX, OFFO1N	 ;Point at counter 0 data addr
JT DX. AL	 ;Send LSB of count

NOV AL, 24H	 ;Load MSB of count
JT . DX, AL	 ;Send MSB of count

;Irutialize variables
NOV	 SETPO!NT, 3CH	 ;Initialze fina teas, at 60
NOV	 CIXINTER, 14H	 ;Intiatize time counter
NOV	 L0OPNI, OOH	 ;Start at first toop
NOV	 TIMEHI,	 O1H
NOV	 TIMELO,	 O1H
NOV CURTEMP, OOH

;Enabte interrupt input of 8086
STI

I4ERE:JMP	 HERE	 Wait for interrupt, if required,
MOP	 ; can put more instructions here

CE ENDS
END

;8O86 MODULE 2 PROCEDURES: F10-35B.ASM
;ABSTRACT Module 2 contains the interrupt service subroçjtines for Module 1.

PUBLIC CLOCK_TICK, KEYBOARD

	

DATA SEGMENT WORD 	 PUBLIC	 ;TetL asseetler where to find

	

LOOP_ADDR_TABLE DO	 LODPO	 ;Loop addresses used in this module

	

DO	 LOOP1

	

DO	 LOOP2

	

DO	 L00P3

	

DO	 LOOP4

	

DO	 LOOP5

	

DO	 LOOP6

	

DO	 LODP7
EXTRN	 C'XJNTER:BYTE, LODPNUM:B1'TE
DATA ENDS

;teLL asset,tter where to find procedures used in this module
CODE SEGMENT WORD PUBLIC
E)(TRN	 LODP0:FAR, 100P1:FAR, LOOP2:FAR, L00P3:FAR
EXYRN	 100P4:FAR, LOOPS:FAR, 100P6:FAR, LODP7;FAR
CODE ENDS

	

INT_PROC SEGMENT WORD PUBLIC 	 ;Sgment for interrupt service procedures
ASSUME CS:IWT_PROC, DS:DATA

;8086 INTERRUPT PROCEDURE CALLED CLOCK_TICK
;A8STRACT:	 Services process control loops. Calls 1 of 8 process

control Loops on a rotating basis.
;PORTS USED: None
;PROCEDURES: Calls LODPO.LODP1,LOOP2,LODP3,100P4,LOOP5,LOOP6,100P7
;REGISTERS : Saves all

CLOCK_TICK PROC	 FAR
PUSH	 AX	 ;Save registers
PUSH	 8*
PUSH	 DX
PUSH	 OS	 ;Save OS of interrupted program
511	 ;Enabte higher interrupts if any
NOV	 AL, 001000008	 ;0CW2 for nonspecific EOI
NOV	 DX, OFFOOH	 ;Load address for 0CW2

JT	 DX, AL
NOV	 AX, DATA	 ;Load OS needed here
NOV	 OS, AX
DEC	 CJNTER	 ;Decrement interrupt counter
JNZ	 EXIT2	 ;Not zero yet, go wait
NOV	 CJM1ER, 20	 ;If zero, reset tick counter to 20
NOV	 814, 00	 ;Load 8* with fluTter of loop to

2
3
4
S
6 0000
7 0000 00000000se
8 0004 00000000se
9 0008 00000000se

10 000C 00000000se
11 0010 00000000se
12 0014 00000000se
13 0018 000000005e
14 OO1C 00000000se

.15
16 0020
17
1-8
19 0000
20
21
22 0000
23
24 0000
25
26
27
28
29
30
31
32
33
34 0000
35 0000 50
36 0001 53
37 0002 52
38 0003 1€
39 0004 F8
40 0005 80 20
41 0007 8* FF00
42 .000* EE
43 0008 88 0000s
44 000E 8€ 08
65 0010 FE Of 0000e
46 0014 75 20
47 0016 C6 06 0000e 14
48 0018 87 00

FIGURE 10-3 (Continued)

ANALOG INTERFACING AND INDUSTRIAL CONTROL	 325

49 OO1D
50 0021
51 0025
52 002A
53 002F
54 0031
55 0036
56 0037
57 0038
58 0039
59 003A
60 0038
61
62
63 003B
64
65 0038
66 0030
67 0040
68 0041
69 0042
70
71 0042
72.

8A IE 0000e
	 NOV
	

BL. IOOPNtJq 	 ;service and service that Loop
FF 9F 0000r
	 CALL

	
DWORD P18 LOOP ADOR TABLE (BXJ

80 06 0000e 04
	

ADO
	

LN(1, 04	 ;Point at next . p address
80 3E 0000e 20
	

CMP
	

LNL84, 20H	 ;Was this the Last loop?
75 05	 .JWE

	
EXIIZ	 ;Ilo, exit

C6 06 0000e 00
	

NOV
	

LOOPNIJ, 00	 ;Yes, get back to first loop
iF
	

EXIT2:POP
	

OS	 ;Restore registers
5A
	

Pop
	

DX
58
	

Pop
	

8)1
58
	

POP
	

AX
CF
	

IRET
CLOCK_Il	 CX
	

ENDP

;DUNMY INTERRUPT PROCEDURE TO SERVICE KEYBOARD
KEYBOARD PROC FAR

;Keyboard procedure intruct ions
BO 20	 NOV	 AL, 001000008	 ;OCW2 for non-specific (CI
BA FF00	 NOV	 OX, OFFOOH	 ;Load address for OCW2
EE	 .JT	 DX, AL	 ;arid send OCW2 for end of interrupt
CF	 IRET

	

KEYBOARD	 ENOP

	

INT_PROC	 ENDS
END

(b)

2
3
4 0000
5
6
7 0000
8
9

10
11 0000
12
13
14
15 0000
16
17 0000
18
1.9
20
21
22
23
24
25
26 0000
27 0000
28 0001
29 0002
30 0003
31 0004
32 0005
33 0009
34 0008
35 0010
36 0013
3? 0015
38 0016
39 OO1A
40 OO1C
41 DOlE
42 0021
43 0024
44 0027
45 0029
46 0028

9C
50
53
51
52
FE CE 0000e
75 50
C6 06 OQOOe 01
BA FFFA
80 80
EE
FE OE 0000e
75 3F
B3 00
E8 0000e
A2 0000e
(8 0000e
8A C8
85 00
BO CO

;8086 MOOULE 3 PROCEDURES: F10-35C.ASM
;ABSTRACT: Module 3 contains the procedures to service each Loop

DATA SEGMENT WORD	 PUBLIC

	

EXTRN	 TIMEHI :BYTE, TIMELO :BYIE ;1norted into this

	

EXTRN	 CURTENP:BYTE, SETPOINT:BYTE ;modu(e from the mainline
DATA ENDS

PUBLIC LOOPO, LOOP1, L2, LOOP3, 100P4, LOOP5, LOOP6. 100P7

COOE SEGMENT WORD PUBLIC
EXTRN DISPLAY IT	 HEAR

	
These procedures can be

EXIRN A_D_READ	 : HEAR
	

found in MOOULE 4 which
EXIRN BIPICVT	 : HEAR	 will be linked this module

	

COOt ENDS	 and MC)ULES 1 and 2

COOE SEGMENT WORD PUBLIC
ASSUME CSCOOE. DS:DATA

;8086 PROCEDURE - LOOPO

	

;ABSTRACT	 This procedure services the teirerature controller
;REGISTERS: Destroys none
:PORTS:	 Uses bit 7 of P2B (FFFAH) as output port control heater.
;PROCEDURES: Uses DISPLAY_IT, A_D_READ, BINCVT from Module 4

	

LOOPO PROC
	

FAR
	PUSH F	 ;Save registers

	

PUSH
	

AX
	PUSH

	
8)1

	

PUSH
	

CX

	

PUSH
	

DX
	DEC

	
TIME HI

	

JNZ
	

EXIT

	

NOV
	

TIMEHL, 01

	

NOV
	

DX, OFFFAH

	

NOV
	

AL, 80H

	

JT
	

DX, AL

	

DEC
	

TIMELO	 ;Decrement time for heater off

	

JNZ
	

EXIT	 ;Return to interrupt procedure

	

NOV
	

BL, 00	 ;Load charnel address (0)

	

CALL
	

A 0 READ	 ;Do A/D conversion

	

NOV
	

CURTEMP, AL	 Save current teff,erature

	

CALL
	

BINCVT	 ;Convert to BCD

	

NOV
	

CL, AL	 ;Put result in CX to display

	

NOV
	

CH, 00

	

NOV
	

AL, 00
	

tee in data field of SOK-86

;Decrement time for heater on
;Return to interrupt procedure
;Reset time high to fall through value
;Point at output port P28 &
;turn off heater

FIGURE 10-35 (Continued)

326	 CHAPTER TEN

c*t
NOV
SUB
IDE
NOV
NOV
DIV
NOV
NOV
NOV

•	 NOV
0-Jr
JNP

DONE: NOV
NOV

EXIT: POP
POP
POP
POP
POPE
RET

LOOPO ENDP

DISPLAY_IT
AL, SETPOINT
AL, CURTEMP
DONE
DL, AL
AX, 006411
DL
TIMELO, AL
TINEHI, 04
AL, 00
DX. OFFFAH
DX,AL
EXIT
'IIMEHI, 0111
TINELO, 7FH
DX
CX
BX
AX

47 0020 ES 0000e
48 0030 *0 0000e
49 0033 2* 06 0000e
50 0037 76 18
51 0039 8* 00
52 003B 88 0064
53 003E F6 F2
54 0040 *2 0000e
55 0043 C6 06 0000e 04
56 0048 BO 00
57 OO4A BA FFFA
58 0040 EE
59 004E EB 08 •90
60 0051 C6 06 0000e 01
61 0056 C6 06 0000e 7F
62 OOSB 5*
63 005C 59
64 0050 5B
65 005E 58
66 005F 90
67 0060 CB
68 0061
69
70
71 0061
72
73 0061 CS
74 0062
75
76 0062
Ti
78 0062 CB
79 0063
80
81 0063
82
83 0063 CB
84 0064
85
86 0064
87
88 0064 GB
89 0065
90
91 0065
92
93 0065 GB
940066
95
96 0066
97
98 0066 CB
99 0067

100
101 006?
102
103 0067 CS
104 0068
105
106 0068
107

;Get setpoint teeçerature
;Get teeçerature & stract from setpoint
;Ileater off if above or equal setpoint
;Save tefTperature difference
;Comçute new TIMELO

0064/error, quotient is value
for new time Low

;Set time high for 4 Loops

;Point at output port
:Turn on heater

;FaLL through value for time high
;Long off value for time Low
;Loop serviced - return to

interrupt service procedure

Instructions for this Loop

;Instructiols for this loop

;Instructions for this Loop

;Instructions for this loop

;Instructions for this Loop

;Instructions for this Loop

LOOP2 PROC FAR

RET
L2 EWDP

LOOP3 PROC FAR

RET	 II
100P3 ENOP

LWP4 PROC FAR

RET
LOOP4 ENDP

LOOPS PROC FAR

RET
LOOP5 ENDP

LOOP6 PROC FAR

RET
LOOP6 ENDP

LtYJP7 PROC FAR

RET
LOOP? ENDP

CE ENDS
END

;DUIIHY PROCEDURES FOR OTHER LOOPS INSERTED HERE
LOOP1 PROC FAR

Instructions for this Loop
RET

LOOPI	 ENOP

IC)

;8086 I4LJLE 4 PROCEDURES: 	 F10-350.ASM
;ABSTRACT : Module 4 contains the service procedures needed by the ioop modules

PUBLIC DISPLAY IT, ADREAD, BIIICVT 	 Make prdcedures availabLe to other modules

DATA SEGMENT WORD PUBLIC
0	 1	 2	 3	 4	 5	 6	 7

3F 06 55 4F 66 60 70 + SEVEN_SEC OB 	 3FH, 06H, SBH, 4FH, 6611, 6011, 7DH, 07H
07

FIGURE 10-35 (Continued)

2
3
4
5
6 0000
7
8 0000
9

ANALOG INTERFACING AND INDUSTRIAL CONTROL	 327

10
11 0008
12
13 0010
14 0000
15
16
17
18
19
20
21
22
23
24
25
26 0000
27 0000
28 0001
29 0002
30 0003
31 0004
32 0005
33 0006
34 0009
35 0008
36 000E
37 0010
38 0012
39 0014
40 0017
61 0019
42 001*
43 0010
44 0020
45 0022
46 0024
47 0025
48 0026
49 0028
50 002*
51 002C
52 002E
53 002F
54 0030
55 0032
56 0034
57 0035
58 0036
59 0038
60 003*
61 003C
62 0030
63 003E
64 003F
65 0040
66 0041
67 0042
68 0043
69 0044
70 0045
71
72
73
74
75
76
T7
78
79
80
81
82 0045

1E
50
53
51
52
88 0000s
8€ 08
BA FFEA
3C 00
74 0$
00 94
EB 03 90
80 90

SB ODOUr
BA FFE8
BA Cl
24 OF
07

BA Cl
81 04
02 CO
24 OF
07
EE
BA C5
240F
07
EE
BA C5
02 CO
24 OF
07
EE
5A
59.
58
58
iF
90
C3

;8O86 PROCEDURE DISPLAY_IT
;ABSTRACT: Displays a 4-digit hex or BCD nuer on tEDs of the SDK-86
;INPUTS;	 Data in CX, control in AL.

Al.	 00K data displayed in data-field of LED5
AL	 0011, data displayed in address field of tEDs.

;PORTS:	 Uses none
;PRQCEDURES:Use g none
;REGISTERS: Saves alt registers and flags

DISPLAY_IT PROC NEAR
PIJSHF	 ;Save flags
PUSH	 DS	 ;Save calLer's registers
PUSH AX
PUSH BX
PUSH	 CX
PUSH	 DX
NOV	 BX, DATA	 ;Initialize DS as needed for procedure
NOV	 os, ax
NOV	 DX, OFFEAK	 ;Point at 8279 controL address
ClIP	 AL. 00K	 ;See if data field required
JZ	 OATFLD	 ;Yes, load control word for data field

NOV	 AL, 9411	 ;No, Load address-field control word
JMP	 SEND	 ;Send control word

DATFLD:H0V	 AL, 90K	 ;Load contro' word for data field
SEND: 001	 DX, AL	 ;Send control word to 8279

NOV	 OX, OFFSET SEVEN_SEG ;Pointer to seven-segment codes
NOV	 DX, OFFEBH	 ;Point at 8279 display RAN
NOV	 AL, CL	 ;Get low byte to be displayed
AND-	 AL, OFH	 ;Mask upper nibble
XLAT8	 ;Transtate Lower nibble to 7-seg code
001	 DX, Al	 ;Send to 8279 display RAM
NOV	 AL, CL	 ;Get low byte again
NOV	 CL, 04	 ;Load rotate count
ROt	 AL, CL	 ;Nove upper nibble into Low position
AND	 AL, 0tH	 ;Mask upper nibble
XLATB	 ;TransLate 2nd nibble to 7-seg code
001	 DX, AL	 ;Send to 8279 display RAN
NOV	 . AL, Cli	 ;Get high byte to translate
AND	 AL, OFH	 ;Mask upper nibble
XLAT8	 ;Iranslate to 7-seg code
001	 DX, AL	 ;Send to 8279 display RAM
NOV	 AL, Cli	 ;Get high byte to fix upper nibble
ROL	 AL, CL	 ;Nove upper nibble into tow position
AND	 AL, OFH	 ;Mask upper nibble
XLATB	 ;Translate to 7-seg code
001	 DX, AL	 ;T-seg code to 8279 display RAM
POP	 DX	 ;Restore alL registers and flags
POP	 CX
POP	 OX
POP	 AX
POP	 DS
POPF
RET

DISPLAY IT	 ENOP

;8086 PROCEDURE AD READ
;ABsIRAcJ: Controls A/D converter
;PORTS:	 Uses Port P2A for input from A/D

port P28, bit 7 = heater, bit 5	 start conversion
bit 4 = ALE	 bits 2,1,0 channel address

Port P2C bit 0 = end of conversion
;INPUTS:	 Charv,el address for AID in BL
;00TPUTS: AID data in AL
;REGISIERS: DESTROYS AL & 81

A_O_READ	 PROC	 NEAR

8	 9	 *	 b	 C	 d	 F
77 6F 77 7C 39 SE 79.	 08	 7FH, 6FH, 77K, 7C11, 39K, 5tH, 79K, 71K
71

DATA ENDS
C00E SEGMENT lD PUBLIC

ASSL14E CS:C00E, DS:DATA

FIGURE 10-35 (Continued)

328	 CHAPTER TEN

830045 9C
840046 52
85 0047 80 80
86 0049 0* C3
87 004B 0* FFFA
88 004E EE
89 004F BO 90
90 0051 0* C3
91 0053 EE
92 0054 00 BO
93 0056 OA C3
94 0058 EE
95 0059 80 80
.96 0058 0* C3
97 0050 EE
98 005E 0* FFFC
99 0061 EC

100 0062 00 08
101 0064 72 FB
102 0066 EC
103 0067 DO 08
104 0069 73 FB
105 0068 BA FFF8
1060066. EC
107 006F 5*
108 0070 99
109 0071 C3
110 0012
111
112
113
114
115
116
117 0072
118 0072 9C
119 0073 51
120 0074 B4 09
121 0076 BA C8
122 0078 85 00
123 007A 32 Co
124 007C FE CC
125 007E 75 03
126 0080 EB OC 90
127 0083 DO 01
128 0085 8AC5
129 0087 12 CO
130 0089 27
131 008* 8* E8
132 008C EB EC
133 008E BA CS
1340090 59
135 0091 90
136 0092 C3
137 0093
138
139 0093
140

PU S H F
PUSH
NOV
OR
NOV
OJI
NOV
OR
001
NOV
OR

NOV
OR

NOV
EOCL: IN

8CR
JC

EOCH: IN
8CR
JNC
NOV
IN
POP
POPF
RET

A D READ

BINCVI PROC
'PUSH F

PUSH
NOV
NOV
NOV

CNVT2: XOR
DEC
JNZ
JMP

GO_ON: RCL
NOV
AOC
OAA
NOV
,iNP

HIE: NOV
POP
poet
RET

BINCVT ENDP

C00E ENDS
END

DX
AL, 8011
AL, BL
DX, OFFFAH
DX, AL
AL, 9011
AL, BL
OX, AL
Al, 08014
AL, BL
DX, AL
AL, 8014
AL, BL
DX, AL
DX, OFFFCH
AL, DX
AL, 01
EOCL
AL, DX
AL, 01
EOCII
DX, OFFF8H
AL, DX
DX

ENDP

NEAR

CX
*11,09K
CL, Al
CII, 00
AL, AL
AN
GO_ON
HIE
CL,1
AL, CII
AL, Al

CII, AL
CNVI2
AL, CII
CX

Id)

;Cootroi for heater off
;C.ine with charnel address
;Point at P28, output port
;send
;Send ALE, keep heater on
;Keep chamet address on

;Send Start of conversion
;Keep charnel address on

;Turn off ALE and Start
;Keep channel address

;Point at port P2C
;Wait for end of cdnversion

to go low

;Wait for end of conversion
to go high

;POint at port P2*
;Read data from AID

;Save registers and fLags

;Bit counter for 8 bits
;Save binary in CL
;Ctear CII for use as buffer
;Ctear AL and carry
;Decrenent bit counter
;Do alt bits
;Done if *11 down to zero
;HSB from CL to carry
;Hove BCD digit being built to AL
;Doubte Al and add carry from CL shift
;Keep result in BCD form
;Pit back in CH for next time through
;Continue Conversion
;BCD in AL for return
;Restore registers

;8086 PROCEDURE BINCVr
;ABSTRACI: ConvertS 8-bit binary n&jther in AL to packed BCD equivalent in AL
;INPUTS:	 AL - 8-bit binary ruTer
;00TPUTS: AL - packed BED result

FIGURE 10-35 (Continued)

these operations in detail, SO we won't dwell on them
here. Also In the mainline we initialize some process
variables. We will explain these initializations later when
they will have more meaning.

After enabling the 8086 INTR input with an STI
instruction, the program then enters a loop and watts
for an interrupt from the user via the keyboard, or
an interrupt from the timer. The keyboard-interrupt
procedure would normally contain a command recog-
nizer and subprocedures to implement commands

which allow the user to change set points, stop a process.
or examine the value of process variables at any lime.
Due to severe space limitations, we can't show here the
implementation of the keyboard interrupt procedure.
but we will show you how the timer interrupt procedure
and the example PID loop procedure work.

THE CLOCK.TICK IN1TERRPT HANDLER
As we said before, the 8254 is programmed to send a
pulse to an interrupt input of the 8259A every millisec-

ANALOG INTERFACING AND INDUSTRIAL CONTROL	 3?Q

ond When a clock Interrupt occurs, execution goes
to the CLOCK_TICK procedure. At the start of this
procedure, we simply decrement an interrupt "tick
counter" kept In a memory location called COUNTER.
In the Initialization, this counter was set to 20 decimal
or 14H. If the counter is not down to 0. execution is
simply returned to the wait loop in the mainline. If the
tick counter Is now down to 0, the clock-tick Counter is
reset to 20. and one of the loop procedures is called to
service the next loop. It is important that this clock-
tick procedure be reentrant because if one of the loop
procedures takes more than the time between clock ticks
II ms), the CLOCK_TICK procedure will be reentered
before its first use is completed. The procedure is made
reentrant by pushing all registers used in the procedure
and by immediately resetting the clock-tick counter to
20. If a loop procedure takes longer than 1 ms and the
clock_tick procedure is called again, the tick counter
will be decremented by 1 and execution returned to the
interrupted loop procedure.

Selecting one of the loop procedures Is an example
of the CASE or nested IF-THEN-ELSE programming
structure described in Chapter 3. To implement this
structure, we use a powerful programming technfque
called a call table. Here's how it works.

The starting addresses of all the loop procedures are
put in a table called LOOP_ADDR_TABLE. as shown at
the start of module 2 in Figure 10-35b. The names
LOOPO. LOOPI, L00P2. etc.. are the names of the
procedures to service each of the loops. Since these
procedures are FAR, the DD directive Is used. to reserve
space for the IP and CS of each. When this program
module is linked and loaded into memory, the instruc-
tion pointer and code segment addresses for each of the
loop procedures will be loaded into this table.

To point to the desired loop procedure address in
the table, we use a variable called LOOPNUM. During
initialization LOOPNUM is loaded with OOH. When it is
time to service the first loop, the value in LOOPNUM is
loaded into HX The CALL DWORD PTR LOOP_ADDP_
TABLE IBXI instruction then gets the address of the
LOOPO procedure from the call table and goes to that
address. For the first access to the table, BX is zero, so
the first address in the table is used to call LOOPO
procedure.

When execution returns from the LOOPO procedure
to the Interrupt handler, we add 4 to , the LOOPNUM.
This is done so that LOOP! will be called the next time
the tick counter is counted down to zero. LOOPNUM
must be incremented by 4 because each address in the
call table uses 4 bytes. When all loops have been serviced,
LOOPNUM is set back to 0 so LOOPO will be serviced
again. Now let's look at the actual temperature-control
loop.

THE TEMPERATURE-CONTROLLER PROCEDURE

As we said previously, the amount of heat output by the
heater is controlled by the duty cycle of a pulse waveform
sent to the solid-state relay. The time on for the output
waveform to the solid-state relay Is determined by count-
ing down a value called TIMEHI. The time off for this
waveform is determined by counting down a value called

TIMELO. At start-up the maihitne program initializes
TIMEHI and TIMELO to tJlH, so that the first time the
LOOPO procedure is called both of these are decremented
to 0. and execution falls through to the A/D conversion
procedure. This is done to get a temperature value which
can be compared with the set-point value. The difference
between the set-point value and the actual temperature
will be used to set the value of TIMEHI and TIMELO for
the next time the LOOPO procedure is called:

The part of the program which controls the AID
Converter is writlen as a separate procedure so that it
can be used in other PID loops. The A/D Converter has
eight input channels, so as part of the interadion with
the A/D converter, we have to tell it which channel to
digitize. The number of the A/D channel that we want
to digitize is passed to the A/D Conversion procedure in
the AL register. The procedure then sends out this
channel number to the A/D converter and generates the
control waveforms shown in Figure 10-34. Since the
timing for these waveforms is in the range of microsec-
onds, we chose to generate the waveforms with program
instructions rather than use an 8255A in handshake
mode. The binary value for the temperature is returned
in AL.

Upon return, the binary '.'a]ue of the temperature is
stored in a memory location called CURTEMP for future
reference. For testing purposes, we wanted to display
the temperature on the address fIeld of the SDK-86
display. To do this, the binary value for the temperatpre
is converted to a BCD value using a reduced version of
the binary-to-BCD procedure from the scale program
earlier in this chapter and the dispia routine from
Chapter 9.

After the current temperature is displayed, it is com-
pared with the set-point temperature to see if the heater
needs to be turned on. If the temperature is at or above
the set point. TIME1-i1 is loaded with fall-through value
and TIMELO is loaded with a large number.

If the temperature is hlm the set point, we call a
procedure. DUTYLCY2LL. d computes the correct
values for TIMEHI and TIMELO based on the difference
between the set point and the current temperature. In
a more critical application, a complex PlO algorithm
might be used for this procedure. For our example here.
however, we have used simple proportional feedback, To
further simplify the calculations, a fixed value of 4 was
used for TIMEHI. The thinking for the value of TIMELO
then goes as follows.

If the difference in temperature is large, then TIMELO
should be small so the heater is on for a longer duty
cycle. If the difference in temperature is small, then the
value of TIMELO should be large so the heater has a
short duty cycle. Experimentally we found that a good
first approximation for our system was ldifference in
temperature) < TIMELO 100 decimal 164H). For ex-
ample, If the difference in temperature is 20° (I 4H), then
64R/141-I gives a value of 5 for TIMELO. The values
for TIMEHI and TIMELO are returned in their named
memory locations. Upon return to the main loop proce-
dure, we send a control word which turns on the heater.
Execution then jumps to EXIT.

When execution returns to loop 0 again after 160 ms.

330	 CHAPTER TEN

(s,	 tested and debugged, as we have described' previously.

	

[S %	 is	 -

parts which can be individually tested and debugged. To
Likewise, the best way to develop the hardware is in small

6oI— 	—' j- give you a specific example of how to do this, here's how
we developed the SDK-86-basedJ factory-control system
described in the preceding section.

	

: :L:
-	 MICROCOMPUT The basic SDK-86 does not have a timer to produce

THERMOSTAT CON
1-kHz clock ticks or a priority interrupt controller to

30	
SETPOINT	

TROL	

hane keyboard and clock-tick intepts. Therefore,

15 30 45 1H	 2H	 3H
MIN MIN MIN	 TIME

FIGURE 10-36 Temperature versus time responses for
thermostat-controlled and microcomputer-controlled
heaters.

TIMEHI will be decremented. if TIMEI-Il is not yet dowi
to 0 after the decrement, then we simply adjust a few
things and return, If TIMEHI Is 0 after the decrement,
the heater is turned off, and TIMELO is decremented.
TIMELO is then decremented every time loopo is serviced
(every 160 ms) until TIMELO reaches 0. When TIMELO
gets counted down to 0. a new A/D conversion is done,
and a new feedback value for TIMELO is calculated.

An important point here is that the part of the program
that determines the feedback is separate from the rest
of the program, so it can be easily.altered without
changing the rest of the program. All that needs to be
changed in this procedure is the value of TiMEI-il. the
value of TIMELO, and the rate at which these change in
response to a difference in temperature to produce
proportional, integral, and derivative feedback control.

TEMPERATURE CONTROLLER RESPONSE

The dotted line in Figure 10-36 shows the temperature
versus time response of our system with traditional
thermostat control, which is often called on-off control
or "bang-bang" controL As you can see, with thermostat
control the temperature initially overshoots the set point
a great deal and then oscillates over a wide range around
the set point. The solid line in Figure 10-36 shows the
response of the system operating with our temperature
controller program. The initial overshoot was caused by
the large thermal inertia of the hot plate we used. The
overshoot and the residual error of about l could be
eliminated by using a more complex feedback algorithm.
This example should make you aware of the advantages
of computer feedback control.

DEVELOPING THE PROTOTYPE OF A
MICROCOMPUTER.I3AsED INSTRUMENT

The first step in developing a new instrument is to very
carefully define exactly what you want the Instrument
to do. The next step is to decide which parts of the
instrument you want to do in hardware and which parts
you want to do In software. You then earl decide how
you want to do each of these.

For the software, you will break the overall program.
ming job down Into modules which cn be Individually

we first added these two devices and - some address
decoder circuitry to the SDK-86, as shown in Figure 8-
14. To tet this circuitry we used a short program which
wrote a byte to the starting address for the timer over
and over again. We ran this test program with an
emulator such as the Applied Microsystems ES1800
shown in Figure 3-17. With the program running, we
used a scope to check if the CS input of the timer was
getting asserted. It was, so we knew that the address
decoding circuitry was working correctly.

We then connected the 2.45-MHz PCLK signal to the
clock inputs of all three timers in the 8254 and wrote
the instructions needed to initialize the three timers for
I -kHz square-wave outputs. Even though we need only
one timer here, it was very little additional work to check
the other two for future reference. Hurrah, the timers
worked the first time; now on to the 8259A priority
interrupt controller (PlC).

Testing the 8259A was a little more complex because
we had to provide an interrupt signal, initialize the
8259A. initialize the interrupt vector table in low RAM,
and provide a location for execution to go to when the
PlC received an interrupt. We used the 1-kHz clock tick
from the timer as the interrupt signal to the 8259A.
For 8259A initialization and the interrupt jump table
initialization, we used the instructions in the mainline
program in Figure 10-35. For the test-interrupt proce-
(lure, we actually used a real-time clock and display
procedure that we developed for examples in previous
chapters. We used these so that we could see if the
interrupt mechanism was working correctly by watching
the displays on the SDK-86 count off seconds. This
again shows the advantage of writing programs as
separate, reusable modules. Note in the program in
Figure 10-35 that we initialize the 8259A before we
inivalize and start the timer. When we first wrote a test
program to test an 8259A and an 8254. we did this in
the reverse order. When we ran the test program with
the emulator, the system would accept only one Interrupt
and then hang up. We did a trace with the emulator and
found that execution was returning from the interrupt
präcedure to the WAIT loop in the mainline program
properly, but it was not recognizing the next interrupt.
Careful reading of the 8259A data sheet showed us that
we had to initialize the 8259A before we started sending
it interrupt signals, or it would not respond correctly to
the nonspecific EOI command that we used at the end
of the interrupt procedure to reset the 8259A's in-service
register.

After the interrupt mechanism was working correctly,
we wrote the interrupt procedure which implements the
decision structure showu in Figure lO-32b. Initially we
made all eight loops dummy loops to test the basic

—44	
ANALOC NT[RFACING AND NDUSTRIAL CONTROl 	 331

structure. By inserting breakpoints with the emulator.
we were able to see whether execution was getting to
each of the eigIt loops. When all this was working.
we went on to build and test the temperature-control
section.

For the temperature-control section. we first built the
analog circuitry and tested it. Then we wrote a small
program to read the temperature from the A/I) converter
and display the result on the SDK-86 displays. Initially
then, the loop 0 procedure simply read in the tempera-
ture, displayed it in binary (hex) form, and returned.
This worked the first time, so we went on to add the
binary-to-BCD conversion routine and run the result
with the emulator. This was a previously written and
tested module, and when it was added, the result worked
fine.

Next we added a couple of instructions to turn the
heater on during one execution of loop 0 and turn the
heater off during the next time through loop 0. We then
used an oscilloscope to check that the solid-state relay
was getting turned on and off correctly.

Finally, we added the actual duty cycle and control
Instructions and sat back waiting for the system to heat
up a big container of water for tea.

The actual development cycle will obviously be some-
what different for every instrument developed. The main
points here are to develop and test both the hardware
and the software in small modules. To speed up the
debugging process, take the time to learn to use all or
most of the power of the emulator and system you are
working with.

ROBOTICS AND EMBEDDED CONTROL

In recent years the term robot has become a "buzzword'
In the media and in many people's minds. Science fiction
movies have helped us form an image of robots as
mobile, rational companions. Robots, however, have
many forms, and In operation they are simply a combina-
tion of feedback control systems such as we described
In the previous section. This Is why we have not Included
a chapter dedIcated Just to robotics. The controller for
the Rhino robot arm shown In Figure 9-42. br example.
uses optical encoders to detect the position of Its differ-
ent Joints, motors (actuators) to move each Joint to a
desired position, and a microcomputer to control the
motors based on feedback from the sensors. Large
Industrial robots such as those that weld or spray-paint
cars may also use tactile or visual sensors, and the
actuators maybe hydraulic or pneumatic, but the control
principle is the same, A microcomputer or several micro-
computers use feedback from the various sensors to
control one or more actuators.

Most of you have probably used some simple robots
around your home without realizing it. One example Is
an electric garage door openei which starts to open or
close when you tell it to and then stops when a sensor
indicates that it is open or closed as desired. Common
household examples of microcomputer-controlled robots
are a microwave oven with a temperature probe, a
programmable sewing machine, a remote-control Stereo
system. etc.

Smart machines such as these usually use specially
designed microprocessors called embedded controllers
Instead of a general-purpose microprocessor such as
the 6086 which we usii in the scale and the factory
controller examples. The main differences of these em-
bedded controlled microprocessors is that they have
additional functions included on the chip with the basic
CPU and they have special instructions for working with
individual bits in a word. In the following sections
we give you an overview of a few common embedded
controller families. Consult the appropriate Intel hand-
books for additk,nal details when you need them.

The Intel 8051 Embedded Controller Family

Figure iO-37a shows a block diagram of a basic 8051
family controller and Figure l0-37b summarizes some
of the features of the members of the family. These
controllers are 8-bit units which can address up to 64
Kbytes of memoxy. All of the family members have some
RAM on the chip, and different members of the family
have some ROM or EPROM also Included on the chip.
As shown in Figure lO-37b. members of this family
also have programmable timers and priority interrupt
controllers Included on the chips.

11 an application does not require any memory other
than that included on the chip, then all four parts are
available for use as input or output ports. If additional
memory is needed, then port 0 and port 2 can be
programriied to function as a multiplexed address/data
bus. When used with extern memo two lines on port
3 are used to generate the RD and WR signals.

The devices in the 8051 family also contain serial
data interface circuitry. When this feature is used.
two pins on port 3 function as the RxD and TxD
lines. Figure l0-37c shows the special uses of the port
3 pins.

The Intel 8096 Embedded Controller Family

Figure l0-38a. p. 334, shows a block diagram for the
Intel 8096 family of 16-bit microcontrollers. One of the
most important features of the members of this family
is the 232-byte register file and the register ALU (RALU)
shown in the center of Figure lO-38a. Instead of using
a single accumulator register as the 8086 does, the ALU
in the 8096 famil, devices can perform most operations
on any of the registers in the register file. This structure
is referred to as register-to-regIster architecture. The
large number of registers makes it possible to have many
data bytes in registers where they can be very quickly
accessed. Also, since tire contents of any register can be
output to a port, the 110 'bottleneck" of 8086-type
processors Is elimInated.The 8086, remember, requires
that data be output from or input to AL/AX.

Other features found in all the 8096 family devices
are five ports which can be programmed for use in a
variety of ways. In addition to their use as standard
ports. ports 3 and 4 can be used as a multiplexed
address/data bus to access external memory and ports.
Port 2 can be programmed for use as a serial port and!
or an output for the pulse-width-modulated signal. The

- 332	 CHAPTER TEN

E*TEB$IAL
N1IRUP1S11

INTRUPT

Iin
TR4cB I

I 25 Vylts
Th4ER 0

cOuNTtR
JPuTs

osc Bus
4 I/O PORTS SLRIAL

PORT

II
	

1*0 XD

P0	 P2	 Pt	 PS

ADORESS/DATA

270251-I

(a)

Device ________ _______intirnal Memory	 Tkn.j,/___________	
Progrm	 o.t.	 Event Counter,

8052AH	 OKx8AOM	 256xORAM	 3*16-Bit	 6OO51AH	 4Kx8R0M	 1288 RAM	 2*16-Bit	 58051	 4Kx$ROM	 I28xBRAM	 2*16-Bit	 58032AH	 none	 258x8RAM	 3*16-Bit	 68031AH	 flOfl	 128*0 RAM	 2*16-Bit	 58031	 none	 128X8RAM	 2*16-Bit	 587511-I	 4Kx8EPROM	 128x6flAM	 2*16-Bit	 5875lH-8	 4Kx8EPROM	 I28x8flAM	 2*16-Bit	 5
fbi

Poll 3 also serves the functions of va41ous spec*al
features ot the MCS-51 Family, as listed below

AJt.rnativ. Function
RXD (serial input poll)
TXO (serial output port)
IT (external Intemjpt 0)
INTl (external lnternt 1)
TO crner 0 external input)
Ti(Thter I external Input)
WP (external data memory wflte trobe)

(external data memory read strobe)
Ic)

FIGURE 10-37 8051 family. (a) Block diagram. (b) Family
features, (c) Port pin uses. (Intel Corporation)

PWM signal is software programmable and cart be used
to control the speed of a small motor or the duty cycle
of a heater, as we described earlier In the chapter.
The 8096 family devices also have two programmable
counters and 2) hardware and software Interrupt types.
Note that both the clock generator and the baud-rate
generator are included in the basic architecture.

Figure 10-38b shows the numbering for the different
members of the 8096 family so you can see the options
available in different parts. As you can see, devices are
available with 8 Kbytes of internal EPROM. 8 Kbyte, of
Internal mask-programmed ROM. or no internal ROM.
Also note that some members of the 8096 family contain
a 10-bit successive-approximation AID converter. As
shown in Figure l0-38c. this AID has a sample-and-hold
and an 8-input analog multiplexer on its input. This
allows it to digitize any of eight input signals under
program control.

The 8096 instructions are designed for fast operations
on registers and for easily working with individual bits
in data words. The 8096 also has multiply and divide
instructions. From the scale and temperature controller
examples earlier in the chapter. you should see that
these features optimize the devices for use in hardware
control applications.

The 80186 and 80188 Microprocessors

The 8051 and 8096 embedded controllers we described
lit the preceding sections have different Instruction sets
and vety different architectures from the 8086, which

port
pin

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7

ANAI.OG INTERFACING AND INDUSTRIAL CONTROL 	 333

SERIAL

PORT

POWE6
VRO AHGNO	 DOWN

nJ

IWATcH000I.

klux
:	 _________

Put.St
wiDTh

P21

IJ_/IADOR

•	 OATA

;—)	 RT4

Jeus

SPEED
I/O

FREQUENCY
REFERENCE

Ow-cHP
EPRO676xeH

tuENOfi________________________________ 	

I

BYTE	 GSTER	 CONL	 SGNAI.S

___I F

232

I
u	 :iiiwi	 1

Flu	 •l	 I	 6	 •POQT3
_________ __________ II

	 I

PORT 0 PORT I	 PORT 2	 HSI HSO
ALT FUNCTIONS

270280-1

(a)

Tha MCS-96 Fomily Nonwi,cI.W

WitIoui A/D	 With A/D

	

p1,	 C8095BH Ceraric DIP
ROMI.,,	 P8095BH - Plootic DIP
8O9XBH

A80968H - Cerat,jc PGA	 A80978H Ceran,ic PGA
N80969H PLCC	 N8097BH - PLCC

C83958H Ceramic DIP
ROM	 P8395811 Plastic DIP

839XBH

	

68 PIn	 A8396B1-4 CerarYTc PGA	 A83978H Cermic PGA
N8396BH - PLCc	 N83978H PLCC

	

48 Pin	 C87958H - Ceramic DIPEPROM
879XBH	 A87968H Cremic PGA	 A8797BH Ceramic PDA

	

68 Pn	 R87968H Ceramic LCC	 R87970H- Ceramic LCC

(b)

2702a6- 13

lc(

FIGURE 10-38 80% family. (a) Block diagram. (b) Family features.
334	 (C) ND converter diagram. (Intel Corporatiol

16-BIT
ALL)

16-BIT 1	 i
GENERAL I
PURPOSE I	 I
REGISSJ j

PROGRAMMABLE
INTERRUPT

CONTROLLER

CONT AOL
REGISTERS

CLOCK
NE R AT

CHIP-SELECT
UNIT

PROGRAMMABLE
CONTROL
REGISTERS

UCS
LCS

RCE

DESTINATION

TMROUT1 TMAOUTO
TMR IN	 TMR IN

PROGRAMMABLE 1
TIMERS

0	 1	 2
MAX COUNT L'\
REGISTER B

MAX COUNT
REGISTER A

CONTROL REGISTERS

16-BIT
COUNT REGISTER

_________	 ORGO
DRO1

(PROGRAMMABLE
I	 I	 DMA UNIT

INT3/INTAI

f
CLKOUT
	 GNO

SR DY -	 _________
AR))?	 BUS INTERFACE	 l6-BITrEST	 UNIT	 SEGMENT
HOLD	 REGISTEA5
HLOA	 6-BYTE

4ES	 PREFETCH

I +5D	 V
L6	 RD	 ADO- A16/S3

01/N	 BHE/S7	 A015 A19/S6

FIGURE 10-39 60186 Internal block diagram. (Intel Corporation)

we have used for examples In this book. The 80186
and 80188 are 16-bit processors commonly used for
embedded control applications, and they have basically
the same instructions set as the 8086. However, as
shown in Figure 10-39. they contain some peripheral
functions as well as a CPU.

The architecture and instruction Set of the 80188 are
identical to those of the 80186 except that the 80188
has only an 8-bit data bus instead of the 16-bit data bus
that the 80186 has. With this in mind, we will use the
80186 to represent both the 80186 and the 80188 in
our discussions here.

The 80186 has the same bus-interface unit and execu-
tion unit as the 8086 which we discussed previously. so
there is nothing new there for you. Unlike the 8086,
however, the 80186 has the clock generator built in so
that all you have to add is an external crystal. Also note
that the 80186 does not have a pin labeled MN/MX. The
80186 is packaged in a 68-pin ieadless package. so it
has enough s to send out both the minimum-mode-
type signals RD and WR and the SO—S3 status signals
which can be connected to external bus controller lCs
for maximum-mode systems. Now lets look at the four
peripheral chip function blocks in the 80186.

First is a priority interrupt controller which has up to
four interupt inputs. INTO. INTl. INT2JINTAO. and

INT3/INTAI as well as an NMI interrupt input- If the
four INT inputs are programmed in their internal mode,
then a signal applied to one of them will cause the 80186
to push the return address on the stack and vector
directly to the start of the interrupt service2dure
for that interrupt. The INT2/INTAO and INT3/INTAI pins
can be programmed to be used as interrupt Inputs,
or they can be programmed to function as interrupt
acknowledge outputs- This mode Is used to interlace
with external 8259As. The interrupt request line from
an external 8259A Is connected to. for ple. the
80186 INTO input, and the 80186 INT2/INTAO pin is
connected to the interrupt acknowledge input of the
8259A. When the 8259A receives an interrupt request.
it asserts the INTO input of the 80186. When the 8259A
receives interrupt acknowledge signals from the INT2J
INTAO pin. its sends the desired interrupt type to the
8018600 the data bus.

Next to look at in the block diagram is the built-in
address decoder, referred to in the drawing as the chIp
select unit. This unit can be programmed to produce an
active low chip select signal when a memory address in
the specified range or a port address in a specified range
is sent out. Six memory address chip select ,inalS are

avaIlable LCS. UCS, arid MCSO through MCS3. The
tower-chip select signal. LCS. will be asserted by ad-

ANALOG INTERFACING AND INDUSTRIAL CONTROL 	 335

Note 186, Introduction to the 80186 MIcroprocessor,
helpful.

The 10 add itinjia] instructions that the 80186 has are
as follows:

ENTER
LEAVE
BOUND

INS
OUTS

PUSHA
PUPA
PUSH immediate

IMUL destination
register, Source,
immediate
511111/ROTATE
destination,
Immediate

- Enter a procedure
- Leave a procedure
- Check if an array Index in a

register is in range of array
- Input string byte or string word
- Output string byte or string

Word
- Push all registers on stack

Pop all registers off stack
- Push Immediate number on

stack
- Immediate X source to destina-

tion

- Shift register or memory con-
tents specified immediate num-
ber of times

The 80960 Embedded Controller

The 80960 family controllers are 32-bit devices which
are an evolutionary step up from the 8096 family. They
are built with a register-to-register architecture for fast
processing, and they contain code and data caches. In
Chapter 11 we explain how these caches als help speed
up program execution.

The devices in the 80960 family also contain a floating.
point processor which performs mathematical opera-
tions on 80-bit floating-point numbers, In the next
chapter we show you how a floating point processor
such as this works.

DIGITAL SIGNAL PROCESSING
AND DIGITAL FILTERS

dresses between 00000H and some address which you
specify in a control word. The specified ending address
can be anywhere between 1K and 256K. The highest
address that will assert the upper-chip select signal,
WCS. is fixed at FFFFFH. The lowest address for this
block of memozy is again programmable by some bits
you put in a control word. The size of the upper memory
block can be anywhere between 1K and 256K. FInally.
there are four middle-chip select lines. MCSO through
MCS3. Each of these four Is asserted by an address in
a block of memory in the middle range of memory. Both
the starting address and the size of the four blocks can
be specified for this middle-range block. The specified
size of blocks can be anywhere from 2K to 128K.

In addition to producing memory chip select signals.
the 80186 can be programmed to pice up to seven
pheraI chip, ct signals on Its PCSO through PCS4.
PCS5/A I, and PCS6/A2 pins. You program a base address
for these [/0 addresses in a control word. PCSO will be
assexted when this base address is output during an IN
or an OUT instruction. The other PCS outputs will be
asserted by addresses at intervals of 128 bytes above the
base address.

Now lers look at the programmable DMA unit in the
80186. As you can see from the block diagram in Figure
10-39. the DMA unit has two DMA request Inputs, DRQO
and DRQI. These Inputs allow external devices such as
disk controllers, CRT controllers, etc. to request use of
the microcomputer address and data bus so that data
can be transferred directly from memory to the periph-
eral or from the peripheral to memory without going
through the CPU. In the next chapter we show you the
details of how a DMA controller manages this transfer.
For each DMA channel, the 80186 has a full 20-bit
register to hold the address of the source of the DMA
transfer, a 20-bit register to hold the destination ad-
dress. and a 16-bit counter to keep track of how many
words or bytes have been transferred. DMA transfers
can be from memory to memory, from 1/0 to 110. or
between [/0 and memory.

Finally, let's look at the three 16-bit programmable
counter/timers in the 80186. The inputs and outputs of
counters 0 and I are available on pins of the 80186.
These two counters can be used to divide down the
frequency of external signals, produce programmed
width pulses, etc. - just as you do with the counters in
an 8254. You can also internally direct the processor
clock to the input of one of these counter inputs by
clearing the appropriate bit in a control word. The input
of the third number in the 80186 is Internally connected
to the processor clock.

As you can see from the preceding discussion, the
80186 contains many of the peripheral chip functions
needed in a medium .complexity microcomputer system
In order to use these integrated peripherals, you have
to initialize them just as you do external peripherals. If
you have to work with an 80186. you can find the
formats for these words in the 80186 data sheet, and
work out the control words you need for your particular
application on a bit-bybit basis. just as you do for the
separate peripherals. You may also find intel Application

The term digital signal processing, or DSP. is a very
general term used to describe any system which takes
samples of a signal with an A/D converter, processes
the samples with a microcomputer, and outputs the
computed results to a D/A converter or some other
device. The process-control system and temperature
controller we described carrier in the chapter is one
example of digital signal processing. Other applications
of DSP include antiskid braking and engine-control
systems on automobiles, speech recognition and synthe-
sis systems, and contrast enhancement of images sent
back from satellites and planet probes. When most
people think of DSP. however, the thought that probably
comes to mind first isa special one called a digitalfihter.

A section at the start of this chapter showed how op
amps can be used to build high-pass and low-pass filter
circuits. In this section of the chapter, we show how
filtering of a signal can also be done by taking samples
of the signal with an AiD converter, performing mathe-

336	 CHAPTER TEN

'l _
iv:-n-n--n-n-

(a)

fo

"s, 3fo

'\., Sb	 V0

"s.d ito

-

(b)

matical operations on the samples with a microcom-
puter. and outputting the results to a 1)/A converter.
This digital filter approach can easily produce a filter
response which is difficult, if not impossible, to produce
with analog Circuitry. The digital approach has the
further advantage that the filter response can be changed
under program control.

To most people it is not Intuitively obvious how an
A/D converter. microcomputer. and 1)/A converter can
produce the same effect on a signal as. for example, an
RC low-pass filter. Before we can show you how digital
filters work, we need to review some basic signal relation-
ships and analog filter characteristics.

Time-Domain and Frequency-Domain
View of a Square Wave
There are two ways of producing or describing a wave-
form such as the square wave. One way is with a circuit
such as that in Figure 1 O-40a. If the switch is repeatedly
flipped up for one-half the period and down for one-half
the period, the output waveform will be a square wave
centered around 0 V. This way of producing or describing
a square wave is referred to as the time-domaf it method.

The second way of producing a square wave of a given
frequency is by adding together a series of sine-wave
signals which have Just the right amplitude and phase
relationships. This method of producing or describing
a square wave is called the frequency-domain method.
Figure lO-40b shows a circuit which generates a square
wave by adding sine-wave signals.

Remember from basic electric circuits that when
voltage sources are connected in series, the output
voltage at any time is the sum of the individual voltages.
The lowest-frequency sine-wave signal added here has
the same frequency as the desired square-wave signal.
Added to this is a signal with a frequency 3 times the
frequency of the fundamental frequency, a signal with
a.frequency 5 times the frequency of the fundamental
frequency, a signal with a frequency 7 times the funda-
mental frequency. etc. These multiples of the fundamen-
tal frequency are called harmonics. As we said before.
the added harmonics must have the right amplitude
and phase relationships to produce a square wave when
added. Figure 1O-40c shows the required phase and
relative amplitude relationships.

To help you further visualize this addition process.
Figure l0-40d shows the resultant wave1om that will
be produced by adding Just the fundamental frequency
and the third harmonic. It is somewhat difficult to show.
but the more harmonics you add, the more the resultant
waveform approaches. a square wave.

Mathematically, the equation for this square wave can
be expressed in terms of a fundamental frequency and
harmonics as

sin (217fl) + sin 3(27rJ1)

+ sin 5(2rJtl + Sifl 7(2lTJt) +

*10

to

—10

3.33

310	 C

—3-33

A £4! A

Cd)

0

Ce)

FIGURE 10-40 (a) Time-domain method of producing a
square wave. (b) Frequency-domain method of
producing a square wave. (C) Amplitude and phase
relationships of first, third, fifth, and seventh harmonics
which produce a square wave when added. (d I Addition
of first and third harmonics. (e) Amplitude versus
frequency graph (frequency spectrum) for square wave.

ANALOG INT[RFACING AND INDUSTRIAL CONTROL 	 3l

The terms In the right-hand side of this equation are
referred to as a Fourier series. As it turns out, any
periodic waveform can be described with a Fourier
series, but for now, we will Just stay with a square wave,

When we want to graphically represent the frequency
components in a signal. it is very messy to draw wave-
forms such as those In Figure lO-40c. Therefore, we
usually use an amplitude-versus-frequency graph, such
as that in Figure l0-40e. From this graph you can easily
see that the frequency components of our square wave
are a fundamental frequency with a relative amplitude
of 1, a third harmonic with a relative amplitude of , a
fifth harmonic with a relative amplitude of L a seventh
harmonic with a relative amplitude of , etc. Later we
will use this graph to help describe the effect of a low-
pass filter on a square-wave signal.

Time-Domain View and Frequency-Domain
View of a low-Pass Filter

Ifa square wave is passed through the simple RC circuit
shown in Figure 10-4 Ia, the output waveform will look
like that in Figure 10-41 b. The time-domain explanation
for this output waveform is that it takes time for the
capacitor to charge through the resistor, so the risetime
and failtime of the output signal will be increased. As
you may remember, the 10% to 90% risetime for the
output signal is t = 2.2RC.

Now, if you think of the square wave as a combination
of harmonically related sine waves, as shown in Figure
lO-40e. you can easily describe the operation of the
circuit in the frequency domain. In the frequency do-
main, this circuit acts as a low-pass filter. This means
that it passes the fundamental frequency but reduces
the amplitude of the harmonics. As we showed you in
Figure 10-40d, adding harmonics to the fundamental
frequency Is what produces the square wave. so reducing
the amplitude of the harmonics will change the output
waveform. For the simple RC circuit in Figure 10-4 Ia.
the critical frequency, or in other words the frequency
at which a sine-wave input signal will be attenuated to
0.707 of its input value, isJ'c l/(2r RC). Above the
critical frequency the output decreases by a factor of 10
for each increase of 10 in frequency. This means that
the upper harmonies will be attenuated more than the

RT'.I C	 VOr

(a)

U'

FIGURE 10-41 Ia) Simple RC circuit. (b) Output
waveform trom RC circuit.

lower harmonics, and mathematically it can be shown
that the result is the waveform in Figure lO-41b.

You can pull the time domain view of this circuit and
the frequency-domain view into the same equation as
follows:

15 2.2RC	 soRC

fc:;	 sofc=-;
0.35--

The point of the preceding discussions was to show
you the two equivalent ways of describing the operation
of a filter circuit. When we are designing analog filters,
such as those made with simple resistors and capacitors.
we usually think and work in the frequency domain.
When we are designing digital filters, we usually think
and work in the time domain. Now let's see how you
can use an AID, microcomputer, and 0/A converter to
function as a digital filter which modifies the waveform]
frequency composition of a signal.

Digital Filters

The basic principle of a digital filter is to take continuous
samples of the input waveform with the A/I) converter.
process the samples with the microcomputer, and out-
put the processed results to the 0/A converter. The
processing done by the microcomputer de:"rmines the
filter response.

If the samples are simply read in from 'he A/D converter
and output directly to he 0/A nverter, then the output
signal will be almost identical to the input signal. If the
samples arc read in from tI'. A/fl converter and held in
memory for some time before being output to the D/A
Cr iverter, then the output signal will simply be a delayed
version of the input sinat.

Now, to make it more ir sting. suppose that we
read in. for example, 100 samples from the A/I) converter
and use some mathematical algorithm to compute an
output value based on these samples. When we take in
the next sample from the A/D converter, we throw out
the oldest sample and use the latest 100 samples to
compute the next output value. The output value at any
time then will be a sort of "average" of the last 100
samples. To help visualize this, you might think of the
process as sliding a window of 100 samples along the
waveform and using some algorithm to compute an
"average" of the samples.

If the window is positioned so that all 100 samples
come from a section of the square wave where the
waveform is at —V. as shown in Figure 10'42a. then
the computed output value will be —V. As the window
slides to the right so that it includes some samples
from the high section, as shown in Figure lO-42b, the
"average" will increase, so the computed output value
will increase. The risetime of the output or the rate at
which the output value increases is determined by the
weight given to new samples versus the weight given to
old samples in computing the 'average." Using a low-

338	 CHAPTER TEN

If$, f(ffl l 	 I
t sampi., ill —V. ao co.nputed
Output value * -v

(a)

ii

Sons. samples = —V.
Some samples tV
So computed output value between -v and *V, depending
on weighting used in computation.

b)

Output waveform produced by 0/A, Output value increases
as "average' increase.

Id

FIGURE 10-42 Effective sample position on computed
output value,

pass ifiter weighting, the output waveform will took like
that in Figure lO-42c. The algorithm usedto compute
the output values determines the characteristics of the
output waveform. -

The two basic algorithms commonly used for comput-
ing the output values are the finite tmpuls,e response or
FIR type and the infinite impulse response or hR type.
Figure I0-43u shows a functiona] diagram of the opera-
tion of an FIR-type filter. The box containing Z - ' repre-

A0_..(X) A, —.(X) A

Y0	 I'Y,	 I;
ri - I r—i --

L_J

Id

FIGURE 10-43 Digital filter aIorithms. (a) FIR. fbI IIR.

—45

sents a delay of one sample interval time. Circles con-
taining an X represent a multiplication operation, and
the letters to the left of each circle represent the numbers
or coefficients that the term will be multiplied by. Y0
represents the value of the current sample from the
A/D. Y 1 represents the vlue of the previous sample from
the AID. andY2 represents the value of the sample before
that. Here's how this works. The output value V at any
time is produced by summing the (current sample X
some coefficient) + (the previous sample x some coef-
ficient) + (the sample before that x some coefficient).
etc. To do all this with a microprocessor requires the
simple operations of saving previous samples, multi-
plying, and adding.

Figure l0-43b shows a functional diagram for an
hR digital filter. Here again the blocks containing Z'
represent a delay of one sample time. The value of the
current sample from the A/D converter is represented by
the X at the left of the diagram. The Y0 point represents
the output from the microprocessor to the D/A converter.
Note that for an HR filter, it is this output value which
is saved to be used in computing feedback terms for
future samples, In the FIR type, remember, the samples
from the A/I) converter were saved directly for future
use. The output for an hR type Is produced by summing
(the current sample x a calculated coefficient) + (the
previous output value x a calculated coefficient) +(the
output value before that x a calculated coefficient). etc.

FIR filters are easier to design, but they may require
many terms to produce a given filter response. HR filters
require fewer stages, but they have to be carefully
designed so that they do not become oscillators. After
we take a look at the special hardware commonly used to
implement digital filters, we will describe how computer-
based tools are used to calculate the coefficients [or FIR
and hR filters.

Digital Filter Hardware

As we said before, the basic parts of a digital filter are
an A/D converter, a microcomputer, and a D/A converter.
For very low-speed applications the microprocesaor used
in the microcomputer can be a general-purpos= devke.
such as the 8086 we have used for other ap-piicatons
throughout the book. For many real-time applicatuns
such as digital speech processing, however, a genetal-
purpose microprocessor is not nearly fast enough. The'-e
are several reasons for this.

The architecture ol general-purpose machines Is
mostly memory-based, so most operands must be
[etched from memory. The memory access time then
adds to the processing time.

The Von Neuman architecture of general-purpose
microprocessors uses the same bus for instructions
and data. This means that data cannot be fetched
until the code fetch is completed.

The multiply and add operations needed in most
digital filter applications each require several clock
cycles to execute in a general-purpose machine be-
cause the Internal hardware is not optimized [or

ANALOG INTERFACING AND INDUSTRIAL CONTROL 	 339

MST RB
lOST RB
X R,W

XO(31-0(
XA112-O)

M
U
	

P
x	 E

7p
H
E
R
A
L

a
U

these operations. Since many computations are
needed to produce each output value, the time
required for these instructions severely limits the
sampling rate and the maximum frequency the filter
can handle.

To solve these and other problems, several companies
have designed microprocessors which have the specific
features needed for digital signal processing applica-
tions. The leading examples of these types of processors
are the TMS32OCXX family devices from Texas Instru-
ments. Currenfly the five generations in this family are
the TMS32OC1X. the TMS32OC2X. the TMS32OC3X.
the TMS32OC4X, and the TMS32005X devices. These
devices have a wide variety of features, but here are
some of the common features.

1. Sizable amounts of on-chip registers. ROM. and
RAM. so data and instructions can be accessed very
quickly.

2. Separate buses for code words and for data words.
This approach is commonly referred to as Haward
architecture. As you can see in Figure 10-44, the
TMS32OCXX devices' Implementation of Harvard
architecture has an address bus and a data bus for
program words, an address bus and a data bus for
data words, and even an address bus and a data bus
for direct memory access (DMA) by an external
device. These parallel buses allow instructions and
data to be fetched at the same time.

3. An optimized multiplier which, depending on the
speciflcdevice.canperforma 16 x 16-ora32 x 32-
bit multiply in one clock cycle. For the TMS32005O
device, a clock cycle can be as short as 35 ns.

4. A 32-bit barrel shifter which can shift an operand
any number of bits in one clock cycle.

5. A 16-bit or a 32-bit CPU which maintains precision
during the chain calculations needed in most digital
filter applications.

6. An instruction set optimized for DSP applications.
For example, the single TMS32OC3O instruction
MPYI3 <srcA>, <srcB>, <dstl> IIADDI3 <srcC>,
<srcD>, <dst2> will multiply two specified op-
erands (srcA x srcB) and add two different operands
(srcC + srcD}. Perhaps you can see how an instruc-
tion such as this would be useful in Implementing
the computations for an FIR filter such as we de-
serthed before. The TMS32OC3O also has a "zero-
overhead' loop instruction which can be used to
quickly repeat an operation some number of times.

7. Some devices in the family also have built-in floating-
point processors which can directly perform opera-
tions on numbers in floating-point format. (In the
next chapter we show you how the 8087 floating-
point processor works.)

Figure 10-45 shows a block diagram of a complete
digital filter system using one of the TMS320C25 family
parts. Note that a simple analog low-pass filter Is put In
series with the input. Remember the sampling theorem,
which states that the highest-frequency signal which
can he digitized and reconstructed Is one which contains
two samples per cycle. if higher frequencies are digitized.
alias frequencies will be generated when the signal Is
reconstructed with a 0/A converter. This low-pass filter
on the input helps prevent aliasing.

1	 RAM	 II	 RAM	 1	 ROM
CACHE j BLOCK 0 I BLOCK 1 I I BLOCK

(64X32I	 (1 KX32)	 Ii KX32(14KX32)

1	 24t	 24-1. 32.1.	 24-1. 32-1.	 24-I. 32-1.

32-j_ -f.24	
32.j. ..24j24 32j. J24

PROGRAM COUNTER/	 DMA
INSTRUCTION REGISTER	 CPU	 CONTROLLER

RDY

M
STAB -'K 1 U

x
0(31-0)
Al 23-01

FIGURE 10-44 The TMS32OCXX device's implementation ol Harvard
archilecture. (Texas Instruments Inc.)

340	 CHAPTER TEN

x,lt)	 Low pea
--	 f,Iter

hold chip convener

External
memory

I_______________
DSP microcompoter I	 Digilil-to- _______ Low-pux 	 YeW

ITMS32O-C25i j-	 walog	 filter

-_] Clock I

FIGURE 10-45 Block diagram of a TMS32OI25 DSP-based filter.

After the anti-alias filter a sample-and-hold is used to
keep the value on the input of the A/D constant during
conversion. A simple low-pass analog filter Is connected
to the output of the 0/A converter to "sniooth' the output
signal.

For development purposes and experimentation with
a PC-type microcomputer, the DSP-16 board from Arid
Corp. has two 16-bit, 50-kHz A/D converters, a 40-MHz
TMS320C25, and two 16-bit 50-kllz 0/A converters. The
dual channels allow two signals to be processed at the
same time. Other boards allow different combinations
of sampling rate and number of channels.

Digital Filter Software and Development Tools

As perhaps you can guess from the algorithms in Figure
10-43. developing the program for a digital filter involves
two main tasks. The first task is to determine the
coefficients by which the terms in the equation will be
multiplied to implement the desired filter. The second
task is to write a program which reads in values from
the A/fl converter, computes an output value, and sends
the completed value to the D/A converter at the right
time.

DELAR	 EQU	 1
*
FILTER

LARP	 DELAR
LRLK	 DELAR,Z000
LAC	 VSAMPL,15
SACH	 *

MPYK	 0
ZAC
LRLK	 DELAR,ZLAST
RPTK	 68
MACI	 FDATA+>F000, * -
APAC
SACH	 VSAMPL,O
RET

*
PENO
END

Several DOS-compatible software packages are avail-
able to help perform these tasks. Examples are the
Digital Filter Design Package-2 (DFDP2) from Atlanta
Signal Processors Inc. and the Filter Design and Analysis
System (FDAS2) from Momentum Data Systems. When
given the desired filter type, break frequencies, and
attenuation rates, these packages tell you if the desired
filter can be implemented and generate the required
coefficients. After the coefficients are generated, another
module in these software packages can be used to
produce the assembly language progam for the DSP
microprocessor. To give you an example of how simple
the actual program is. Figure 10-46 shows a procedure
which implements a bandpass filter on the TMS320C25
in Figure 10-45. The RPTK 68 Instruction in this
procedure causes the following instruction to be re-
peated 68 times. The MACD FDATA+ >FDOO. - that Is
repeated 68 times will multiply a data memory value
by a program memory value, add the result to an
accumulator, and decrement the pointer to point to the
next operands. These two Instructions then do most of
the work of computing an output value.

Once the coefficients and program for a digital flltr
have been produced. the next step is to test the result.

*DELAY AR REGISTER

*POINT TO THE DELAY INDEX REGISTER
* INDEX POINTS TO Z-0 (INPUT)
*GET I SCALE INPUT
*SAVE SCALED INPUT

aP 0
*AC = 0
*INDEX POINTS TO Z-N

*MULTXPLY,ACCUM.artd DELAY
*FORM RESULT
*SAVE OUTPUT
* RETURN

FIGURE 10-46 TMS320C25 digital filter program. (R.W. Schafer. "The Math
Behind the MIPS: DSP Basics." Electronic Design, September 1988)

ANALOG INTERFACING AND INDUSTRIAL CONTROL 	 341

One way to do this is with a PC-compatible board such
as the Arlel unit described before. Another method is
to use an emulator such as the Texas instruments
XDS 1000. ThIs emulator consists of a PC board which
plugs into an IBM PC-compatible computer and a buffer
pod which plugs into the prototype hardware. As with
other emulators we have discussed, it allows you to load
programs, set breakpoints, do traces. etc. A software
package and an emulator allow you to quickly design.
test, and debug a digital filter system.

Switched Capacitor Digital Filters

For simple filter designs, another type of digital filter
called a switched capacitor filter implements digital
filtering without the need for the A/D and DIA converters.
An example of this type of device is the National MFIO.
In this type of filter an input signal is sampled on a
capacitor. The signal is passed on to other capacitors.
and fractions of the outputs from these capacitors are
summed to produce an analog output signal directly.
Switched capacitor filters are less expensive, but they
do not give the degree of programmability that the
microprocessor-based filters do.

CHECKLIST OF IMPORTANT TERMS AND
CONCEPTS IN THIS CHAPTER

If you do not remember any of the terms in the following
list. use the index to help you find them in the chapter
hr review,

Op amp

Comparator

aysteresis

Noninverting amplifier

Inverting amplifier

Virtual ground

Gain-bandwidth product

Unity-gain bandwidth

Adder circuit—summing point

Differential amplifier

Common-mode signal. common-mode rejection
Instrumentation amplifier

Op-amp integrator Circuit

Linear ramp
Saturation

Op-amp differentiator

Op-amp active filters

Low-pass filter, high-pass filter, bandpass filter
Critical frequency or breakpoint
Second-order low-pass filter, second order high-pass

filter

Photodlode. solar cell

Temperature-sensitive voltage sources

Temperature-sensitive current sources

Thermocouples, cold-junction compensation

Force and pressure transducers

Strain gage, LVDT. load cell

Flow sensors—paddle wheel, differential pressure trans-
ducer

D/A converters
Resolution
Full-scale output voltage
Maximum error
Linearity
Settling time

A/D converters
Conversion time
Sample and hold
Sampling theorem
Quantizing error

A/D conversion methods
Parallel-comparator AID converter
Dual-slope A/D converter
Successive-approximation AID converter
Data acquisition system

Direct memory access. DMA

Set point

Servo control

Settling time. underdamped and overdamped responses

Residual error

Proportlonaiintegrajderivative control loop. P11)

Time-slice system

On/off control

Robotics

Embedded controllers

80186. 80188

Digital signal processing

Time-domain and frequency-domain view of a square
wave

Digital filter operation

Finite impulse response (FIR) filter algorithm

Infinite impulse response (lIR) filter algorithm

Switched capacitor filter

342	 CHAPTER TEN

REVIEW QUESTIONS AND PROBLEMS

1. a. A comparator circuit such as the one in Figure
10-Ibis powered by ± 15 V. the inverting input
is tied to + 5 V. and the noninverting input is
at -15.3 V. About what voltage will be on the
output of the comparator?

b. An amplifier circuit, such as the one in Figure
10-id, has Hi = 10 kfl and R2 = 190 kfl.
Calculate the closed-loop voltage gain for the
circuit and the V, that will be produced by a
V of 0.030 V. What voltage would you measure
on the inverting Input? What would be the gain
of the circuit if R2 = 0 11?

c. An amplifier circuit, such as the one in Figure
lO-le. is built with an Hi of 15 kIl and an H1
of 75 ML Calculate the closed-loop voltage gain
br the circuit and the output voltage for an
input voltage of 0.73 V. What voltage will you
always measure on the Inverting input of this
circuit?

d. A differential amplifier, such as the one in
Figure 10-19, is built with Ri = R2 = 100 ku
andR1 = R = I Mu1.V	 4.9V,andV2 = 5.1
V. Cakulate the output voltage and polarity.

e. Describe the main advantage of the instrumen-
tation amplifier in Figure 10-lh over the simple
differential amplifier in Figure 10-19.

f. If the amplifier used in the circuit in part b has
a gain-bandwidL product of 1 MHz, what will
be the closed-loop bandwidth of the circuit?

2. Draw a circuit showing how a light-dependent
resistor can be connected to a comparator so the
output of the comparator changes state when the
resistance of the LDR is 10 kfl.

3. For the photodiode amplifier circuit in Figure 10-5.
what voltage will you measure on the inverting
Input of the amplifier? Why is it important to use
an FET input amplifier for this circuit? Which
direction are electrons flowing through the photo.
diode?

4. In what application might you use a temperature-
dependent current device such as the AD590 rather
than a temperature-dependent voltage device such
as the LM35?

S. Why must thermocouples be cold-junction compen-
sated in order to make accurate measurements?
How can the nonlinearity of a thermocouple be
compensated for?

6. Why are strain gages usually connected in a bridge
configuration? Why do you use a dli erentiai ampli-
fier to amplify the signal from a strain gage bridge?

7. Calculate the full-scale output voltage for the simple
DiA converter in Figure 10-14.

8. What is the resolution of a 13-bit DIA converter? If
the converter has a full-scale output of 10.000 V.
what is the size of each step? What will be the

actual maximum output voltage of this converter?
What accuracy should this Converter have to be
consistent with its resolution?

9. Why must a 12-bit D/A converter have latches on
Its inputs if it is to be connected to 8-bit ports or
an 8-bit data bus?

10. Describe the operation of a flash-type A/D Converter.
What are its main advantages and disadvantages?

11. For the dual-slope A/D converter in Figure 10-19.
what will be the displayed Count for an input voltage
of 2372 V? What is the resolution of a 4-digtt
slope-type A/D converter expressed in bits?

12. How many clock cycles does a 12-bit successive-
approximation A/D converter take to do a conver-
sion on a 0.1-V input signal? On a 5-V input signal?
How does this compare with the number of clock
cycles required for a 12-bit dual-slope type?

13. a. Assume the inputs of the MC 1408 D/A converter
in Figure 10-20 are connected to an output port
on your microcomputer board and the output
of the comparator is connected to bit DO of an
input port. Write the algorithm for a procedure
to do an AID conversion by outputting an
incrementing Count to the output port.

b. Write an algorithm for a procedure to do the
conversion by the successive-approxlmation
method. Which method will produce a faster
result? If the hardware is available, write the
programs for these algorithms and compare the
times by watching the comparator output with
an oscilloscope.

14. Show the detailed algorithm for the procedure you
would use to read in the data from a multiplexed
BCD output A/D converter such as the MC 14433
in Figure 10-23 and assemble the value in a 16-bit
register for display.

15. The data sheet for an AID converter Indicates that
its output is In offset-binary code. If the converter
is set up for a range of —5 to + 5 V and the output
code is 01011011, what input voltage does this
represent? How could you convert this code to 2's
complement form after you read the code into your
microcomputer?

16. Write a procedure to round a 32-bit BCD number
in DXAX to a 16-bit BCD number in DX.

17. For the scale circuitry in Figure 10-23. what voltage
should you measure on the Inverting input of
the LM308 amplifier? What voltages should you
measure on the two inputs of the LM363 amplifier
with no load on the scale? What voltage should you
measure on the output of the LM363 with no load
on the scale?

18. The section of the scale program following the label

ANALOG INTLRIACtNG AND INDUSTRIAl. CONTROL	 343

NXTKEY in Figure 10-35 moves stme bytes around
in mernuzy. Rewrite this section of the program
using an 8086 strIng instruction to do the move
operations. Which version seems more efficient In
this case?

23. a. Describe how a square wave can be generated
by the time-domain method.

b. Describe how a square wave can be generated
by the frequency-domain method.

24.
19. Describe how feedback helps hold the value of some

variable, such as a motor speed, constant. Refer to
Figure 10-27 in your explanation.

20. What problem In a control loop does integral feed-
back help solve? Why is derivative feedback some- 	 25.
times added to a control loop?

21. What is the major advantage of a microcomputer.
controlled loop over the analog approach shown in
Figure 10-29?

a. Describe the basic operation of a dlgitaJ
filter.

b. Describe the major difference in how an output
value is computed in an FIR digital filter and
how it is computed in an HR filter.

a. Why is a general-purpose microprocessor such
as the 8086 not suitable for most digital filter
applications?

b. Describe three features designed into a digital
signal processing microprocessor such as a
TMS32OCXX device to speed up processing.

22. Suppose that you want to control the speed of a
small dc motor, such as the one in Figure 10-27,
with LOOP 1 of our microcomputer-based process
controller.
a. Show how you would Connect the output from

the motor's tachometer to the system in Figure
10-33. Also show how you would connect, an
8-bit D/A to control the current to the motor.

b. Write a flowchart for the LOOP! procedure to
control the speed of the motor.

c. Describe how a lookup table could be used to
determine the feedback value.

26. a. What Is the minimum frequency that a sine-
wave signal must be sampled with an AID
converter so that It can be reconstructed with
a D/A converter?

b. Why is an analog low-pass filter often put before
the A/D In a digital filter?

c. What is the purpose of the sample-and-
hold circuit on the input of the AID in Figure
10-45?

27. List the two tasks involved In writing the program
for a digital filter.

344	 CHAPTER TEN

